1*8e3e3a7aSWarner Losh /* 2*8e3e3a7aSWarner Losh ** $Id: lopcodes.h,v 1.149 2016/07/19 17:12:21 roberto Exp $ 3*8e3e3a7aSWarner Losh ** Opcodes for Lua virtual machine 4*8e3e3a7aSWarner Losh ** See Copyright Notice in lua.h 5*8e3e3a7aSWarner Losh */ 6*8e3e3a7aSWarner Losh 7*8e3e3a7aSWarner Losh #ifndef lopcodes_h 8*8e3e3a7aSWarner Losh #define lopcodes_h 9*8e3e3a7aSWarner Losh 10*8e3e3a7aSWarner Losh #include "llimits.h" 11*8e3e3a7aSWarner Losh 12*8e3e3a7aSWarner Losh 13*8e3e3a7aSWarner Losh /*=========================================================================== 14*8e3e3a7aSWarner Losh We assume that instructions are unsigned numbers. 15*8e3e3a7aSWarner Losh All instructions have an opcode in the first 6 bits. 16*8e3e3a7aSWarner Losh Instructions can have the following fields: 17*8e3e3a7aSWarner Losh 'A' : 8 bits 18*8e3e3a7aSWarner Losh 'B' : 9 bits 19*8e3e3a7aSWarner Losh 'C' : 9 bits 20*8e3e3a7aSWarner Losh 'Ax' : 26 bits ('A', 'B', and 'C' together) 21*8e3e3a7aSWarner Losh 'Bx' : 18 bits ('B' and 'C' together) 22*8e3e3a7aSWarner Losh 'sBx' : signed Bx 23*8e3e3a7aSWarner Losh 24*8e3e3a7aSWarner Losh A signed argument is represented in excess K; that is, the number 25*8e3e3a7aSWarner Losh value is the unsigned value minus K. K is exactly the maximum value 26*8e3e3a7aSWarner Losh for that argument (so that -max is represented by 0, and +max is 27*8e3e3a7aSWarner Losh represented by 2*max), which is half the maximum for the corresponding 28*8e3e3a7aSWarner Losh unsigned argument. 29*8e3e3a7aSWarner Losh ===========================================================================*/ 30*8e3e3a7aSWarner Losh 31*8e3e3a7aSWarner Losh 32*8e3e3a7aSWarner Losh enum OpMode {iABC, iABx, iAsBx, iAx}; /* basic instruction format */ 33*8e3e3a7aSWarner Losh 34*8e3e3a7aSWarner Losh 35*8e3e3a7aSWarner Losh /* 36*8e3e3a7aSWarner Losh ** size and position of opcode arguments. 37*8e3e3a7aSWarner Losh */ 38*8e3e3a7aSWarner Losh #define SIZE_C 9 39*8e3e3a7aSWarner Losh #define SIZE_B 9 40*8e3e3a7aSWarner Losh #define SIZE_Bx (SIZE_C + SIZE_B) 41*8e3e3a7aSWarner Losh #define SIZE_A 8 42*8e3e3a7aSWarner Losh #define SIZE_Ax (SIZE_C + SIZE_B + SIZE_A) 43*8e3e3a7aSWarner Losh 44*8e3e3a7aSWarner Losh #define SIZE_OP 6 45*8e3e3a7aSWarner Losh 46*8e3e3a7aSWarner Losh #define POS_OP 0 47*8e3e3a7aSWarner Losh #define POS_A (POS_OP + SIZE_OP) 48*8e3e3a7aSWarner Losh #define POS_C (POS_A + SIZE_A) 49*8e3e3a7aSWarner Losh #define POS_B (POS_C + SIZE_C) 50*8e3e3a7aSWarner Losh #define POS_Bx POS_C 51*8e3e3a7aSWarner Losh #define POS_Ax POS_A 52*8e3e3a7aSWarner Losh 53*8e3e3a7aSWarner Losh 54*8e3e3a7aSWarner Losh /* 55*8e3e3a7aSWarner Losh ** limits for opcode arguments. 56*8e3e3a7aSWarner Losh ** we use (signed) int to manipulate most arguments, 57*8e3e3a7aSWarner Losh ** so they must fit in LUAI_BITSINT-1 bits (-1 for sign) 58*8e3e3a7aSWarner Losh */ 59*8e3e3a7aSWarner Losh #if SIZE_Bx < LUAI_BITSINT-1 60*8e3e3a7aSWarner Losh #define MAXARG_Bx ((1<<SIZE_Bx)-1) 61*8e3e3a7aSWarner Losh #define MAXARG_sBx (MAXARG_Bx>>1) /* 'sBx' is signed */ 62*8e3e3a7aSWarner Losh #else 63*8e3e3a7aSWarner Losh #define MAXARG_Bx MAX_INT 64*8e3e3a7aSWarner Losh #define MAXARG_sBx MAX_INT 65*8e3e3a7aSWarner Losh #endif 66*8e3e3a7aSWarner Losh 67*8e3e3a7aSWarner Losh #if SIZE_Ax < LUAI_BITSINT-1 68*8e3e3a7aSWarner Losh #define MAXARG_Ax ((1<<SIZE_Ax)-1) 69*8e3e3a7aSWarner Losh #else 70*8e3e3a7aSWarner Losh #define MAXARG_Ax MAX_INT 71*8e3e3a7aSWarner Losh #endif 72*8e3e3a7aSWarner Losh 73*8e3e3a7aSWarner Losh 74*8e3e3a7aSWarner Losh #define MAXARG_A ((1<<SIZE_A)-1) 75*8e3e3a7aSWarner Losh #define MAXARG_B ((1<<SIZE_B)-1) 76*8e3e3a7aSWarner Losh #define MAXARG_C ((1<<SIZE_C)-1) 77*8e3e3a7aSWarner Losh 78*8e3e3a7aSWarner Losh 79*8e3e3a7aSWarner Losh /* creates a mask with 'n' 1 bits at position 'p' */ 80*8e3e3a7aSWarner Losh #define MASK1(n,p) ((~((~(Instruction)0)<<(n)))<<(p)) 81*8e3e3a7aSWarner Losh 82*8e3e3a7aSWarner Losh /* creates a mask with 'n' 0 bits at position 'p' */ 83*8e3e3a7aSWarner Losh #define MASK0(n,p) (~MASK1(n,p)) 84*8e3e3a7aSWarner Losh 85*8e3e3a7aSWarner Losh /* 86*8e3e3a7aSWarner Losh ** the following macros help to manipulate instructions 87*8e3e3a7aSWarner Losh */ 88*8e3e3a7aSWarner Losh 89*8e3e3a7aSWarner Losh #define GET_OPCODE(i) (cast(OpCode, ((i)>>POS_OP) & MASK1(SIZE_OP,0))) 90*8e3e3a7aSWarner Losh #define SET_OPCODE(i,o) ((i) = (((i)&MASK0(SIZE_OP,POS_OP)) | \ 91*8e3e3a7aSWarner Losh ((cast(Instruction, o)<<POS_OP)&MASK1(SIZE_OP,POS_OP)))) 92*8e3e3a7aSWarner Losh 93*8e3e3a7aSWarner Losh #define getarg(i,pos,size) (cast(int, ((i)>>pos) & MASK1(size,0))) 94*8e3e3a7aSWarner Losh #define setarg(i,v,pos,size) ((i) = (((i)&MASK0(size,pos)) | \ 95*8e3e3a7aSWarner Losh ((cast(Instruction, v)<<pos)&MASK1(size,pos)))) 96*8e3e3a7aSWarner Losh 97*8e3e3a7aSWarner Losh #define GETARG_A(i) getarg(i, POS_A, SIZE_A) 98*8e3e3a7aSWarner Losh #define SETARG_A(i,v) setarg(i, v, POS_A, SIZE_A) 99*8e3e3a7aSWarner Losh 100*8e3e3a7aSWarner Losh #define GETARG_B(i) getarg(i, POS_B, SIZE_B) 101*8e3e3a7aSWarner Losh #define SETARG_B(i,v) setarg(i, v, POS_B, SIZE_B) 102*8e3e3a7aSWarner Losh 103*8e3e3a7aSWarner Losh #define GETARG_C(i) getarg(i, POS_C, SIZE_C) 104*8e3e3a7aSWarner Losh #define SETARG_C(i,v) setarg(i, v, POS_C, SIZE_C) 105*8e3e3a7aSWarner Losh 106*8e3e3a7aSWarner Losh #define GETARG_Bx(i) getarg(i, POS_Bx, SIZE_Bx) 107*8e3e3a7aSWarner Losh #define SETARG_Bx(i,v) setarg(i, v, POS_Bx, SIZE_Bx) 108*8e3e3a7aSWarner Losh 109*8e3e3a7aSWarner Losh #define GETARG_Ax(i) getarg(i, POS_Ax, SIZE_Ax) 110*8e3e3a7aSWarner Losh #define SETARG_Ax(i,v) setarg(i, v, POS_Ax, SIZE_Ax) 111*8e3e3a7aSWarner Losh 112*8e3e3a7aSWarner Losh #define GETARG_sBx(i) (GETARG_Bx(i)-MAXARG_sBx) 113*8e3e3a7aSWarner Losh #define SETARG_sBx(i,b) SETARG_Bx((i),cast(unsigned int, (b)+MAXARG_sBx)) 114*8e3e3a7aSWarner Losh 115*8e3e3a7aSWarner Losh 116*8e3e3a7aSWarner Losh #define CREATE_ABC(o,a,b,c) ((cast(Instruction, o)<<POS_OP) \ 117*8e3e3a7aSWarner Losh | (cast(Instruction, a)<<POS_A) \ 118*8e3e3a7aSWarner Losh | (cast(Instruction, b)<<POS_B) \ 119*8e3e3a7aSWarner Losh | (cast(Instruction, c)<<POS_C)) 120*8e3e3a7aSWarner Losh 121*8e3e3a7aSWarner Losh #define CREATE_ABx(o,a,bc) ((cast(Instruction, o)<<POS_OP) \ 122*8e3e3a7aSWarner Losh | (cast(Instruction, a)<<POS_A) \ 123*8e3e3a7aSWarner Losh | (cast(Instruction, bc)<<POS_Bx)) 124*8e3e3a7aSWarner Losh 125*8e3e3a7aSWarner Losh #define CREATE_Ax(o,a) ((cast(Instruction, o)<<POS_OP) \ 126*8e3e3a7aSWarner Losh | (cast(Instruction, a)<<POS_Ax)) 127*8e3e3a7aSWarner Losh 128*8e3e3a7aSWarner Losh 129*8e3e3a7aSWarner Losh /* 130*8e3e3a7aSWarner Losh ** Macros to operate RK indices 131*8e3e3a7aSWarner Losh */ 132*8e3e3a7aSWarner Losh 133*8e3e3a7aSWarner Losh /* this bit 1 means constant (0 means register) */ 134*8e3e3a7aSWarner Losh #define BITRK (1 << (SIZE_B - 1)) 135*8e3e3a7aSWarner Losh 136*8e3e3a7aSWarner Losh /* test whether value is a constant */ 137*8e3e3a7aSWarner Losh #define ISK(x) ((x) & BITRK) 138*8e3e3a7aSWarner Losh 139*8e3e3a7aSWarner Losh /* gets the index of the constant */ 140*8e3e3a7aSWarner Losh #define INDEXK(r) ((int)(r) & ~BITRK) 141*8e3e3a7aSWarner Losh 142*8e3e3a7aSWarner Losh #if !defined(MAXINDEXRK) /* (for debugging only) */ 143*8e3e3a7aSWarner Losh #define MAXINDEXRK (BITRK - 1) 144*8e3e3a7aSWarner Losh #endif 145*8e3e3a7aSWarner Losh 146*8e3e3a7aSWarner Losh /* code a constant index as a RK value */ 147*8e3e3a7aSWarner Losh #define RKASK(x) ((x) | BITRK) 148*8e3e3a7aSWarner Losh 149*8e3e3a7aSWarner Losh 150*8e3e3a7aSWarner Losh /* 151*8e3e3a7aSWarner Losh ** invalid register that fits in 8 bits 152*8e3e3a7aSWarner Losh */ 153*8e3e3a7aSWarner Losh #define NO_REG MAXARG_A 154*8e3e3a7aSWarner Losh 155*8e3e3a7aSWarner Losh 156*8e3e3a7aSWarner Losh /* 157*8e3e3a7aSWarner Losh ** R(x) - register 158*8e3e3a7aSWarner Losh ** Kst(x) - constant (in constant table) 159*8e3e3a7aSWarner Losh ** RK(x) == if ISK(x) then Kst(INDEXK(x)) else R(x) 160*8e3e3a7aSWarner Losh */ 161*8e3e3a7aSWarner Losh 162*8e3e3a7aSWarner Losh 163*8e3e3a7aSWarner Losh /* 164*8e3e3a7aSWarner Losh ** grep "ORDER OP" if you change these enums 165*8e3e3a7aSWarner Losh */ 166*8e3e3a7aSWarner Losh 167*8e3e3a7aSWarner Losh typedef enum { 168*8e3e3a7aSWarner Losh /*---------------------------------------------------------------------- 169*8e3e3a7aSWarner Losh name args description 170*8e3e3a7aSWarner Losh ------------------------------------------------------------------------*/ 171*8e3e3a7aSWarner Losh OP_MOVE,/* A B R(A) := R(B) */ 172*8e3e3a7aSWarner Losh OP_LOADK,/* A Bx R(A) := Kst(Bx) */ 173*8e3e3a7aSWarner Losh OP_LOADKX,/* A R(A) := Kst(extra arg) */ 174*8e3e3a7aSWarner Losh OP_LOADBOOL,/* A B C R(A) := (Bool)B; if (C) pc++ */ 175*8e3e3a7aSWarner Losh OP_LOADNIL,/* A B R(A), R(A+1), ..., R(A+B) := nil */ 176*8e3e3a7aSWarner Losh OP_GETUPVAL,/* A B R(A) := UpValue[B] */ 177*8e3e3a7aSWarner Losh 178*8e3e3a7aSWarner Losh OP_GETTABUP,/* A B C R(A) := UpValue[B][RK(C)] */ 179*8e3e3a7aSWarner Losh OP_GETTABLE,/* A B C R(A) := R(B)[RK(C)] */ 180*8e3e3a7aSWarner Losh 181*8e3e3a7aSWarner Losh OP_SETTABUP,/* A B C UpValue[A][RK(B)] := RK(C) */ 182*8e3e3a7aSWarner Losh OP_SETUPVAL,/* A B UpValue[B] := R(A) */ 183*8e3e3a7aSWarner Losh OP_SETTABLE,/* A B C R(A)[RK(B)] := RK(C) */ 184*8e3e3a7aSWarner Losh 185*8e3e3a7aSWarner Losh OP_NEWTABLE,/* A B C R(A) := {} (size = B,C) */ 186*8e3e3a7aSWarner Losh 187*8e3e3a7aSWarner Losh OP_SELF,/* A B C R(A+1) := R(B); R(A) := R(B)[RK(C)] */ 188*8e3e3a7aSWarner Losh 189*8e3e3a7aSWarner Losh OP_ADD,/* A B C R(A) := RK(B) + RK(C) */ 190*8e3e3a7aSWarner Losh OP_SUB,/* A B C R(A) := RK(B) - RK(C) */ 191*8e3e3a7aSWarner Losh OP_MUL,/* A B C R(A) := RK(B) * RK(C) */ 192*8e3e3a7aSWarner Losh OP_MOD,/* A B C R(A) := RK(B) % RK(C) */ 193*8e3e3a7aSWarner Losh OP_POW,/* A B C R(A) := RK(B) ^ RK(C) */ 194*8e3e3a7aSWarner Losh OP_DIV,/* A B C R(A) := RK(B) / RK(C) */ 195*8e3e3a7aSWarner Losh OP_IDIV,/* A B C R(A) := RK(B) // RK(C) */ 196*8e3e3a7aSWarner Losh OP_BAND,/* A B C R(A) := RK(B) & RK(C) */ 197*8e3e3a7aSWarner Losh OP_BOR,/* A B C R(A) := RK(B) | RK(C) */ 198*8e3e3a7aSWarner Losh OP_BXOR,/* A B C R(A) := RK(B) ~ RK(C) */ 199*8e3e3a7aSWarner Losh OP_SHL,/* A B C R(A) := RK(B) << RK(C) */ 200*8e3e3a7aSWarner Losh OP_SHR,/* A B C R(A) := RK(B) >> RK(C) */ 201*8e3e3a7aSWarner Losh OP_UNM,/* A B R(A) := -R(B) */ 202*8e3e3a7aSWarner Losh OP_BNOT,/* A B R(A) := ~R(B) */ 203*8e3e3a7aSWarner Losh OP_NOT,/* A B R(A) := not R(B) */ 204*8e3e3a7aSWarner Losh OP_LEN,/* A B R(A) := length of R(B) */ 205*8e3e3a7aSWarner Losh 206*8e3e3a7aSWarner Losh OP_CONCAT,/* A B C R(A) := R(B).. ... ..R(C) */ 207*8e3e3a7aSWarner Losh 208*8e3e3a7aSWarner Losh OP_JMP,/* A sBx pc+=sBx; if (A) close all upvalues >= R(A - 1) */ 209*8e3e3a7aSWarner Losh OP_EQ,/* A B C if ((RK(B) == RK(C)) ~= A) then pc++ */ 210*8e3e3a7aSWarner Losh OP_LT,/* A B C if ((RK(B) < RK(C)) ~= A) then pc++ */ 211*8e3e3a7aSWarner Losh OP_LE,/* A B C if ((RK(B) <= RK(C)) ~= A) then pc++ */ 212*8e3e3a7aSWarner Losh 213*8e3e3a7aSWarner Losh OP_TEST,/* A C if not (R(A) <=> C) then pc++ */ 214*8e3e3a7aSWarner Losh OP_TESTSET,/* A B C if (R(B) <=> C) then R(A) := R(B) else pc++ */ 215*8e3e3a7aSWarner Losh 216*8e3e3a7aSWarner Losh OP_CALL,/* A B C R(A), ... ,R(A+C-2) := R(A)(R(A+1), ... ,R(A+B-1)) */ 217*8e3e3a7aSWarner Losh OP_TAILCALL,/* A B C return R(A)(R(A+1), ... ,R(A+B-1)) */ 218*8e3e3a7aSWarner Losh OP_RETURN,/* A B return R(A), ... ,R(A+B-2) (see note) */ 219*8e3e3a7aSWarner Losh 220*8e3e3a7aSWarner Losh OP_FORLOOP,/* A sBx R(A)+=R(A+2); 221*8e3e3a7aSWarner Losh if R(A) <?= R(A+1) then { pc+=sBx; R(A+3)=R(A) }*/ 222*8e3e3a7aSWarner Losh OP_FORPREP,/* A sBx R(A)-=R(A+2); pc+=sBx */ 223*8e3e3a7aSWarner Losh 224*8e3e3a7aSWarner Losh OP_TFORCALL,/* A C R(A+3), ... ,R(A+2+C) := R(A)(R(A+1), R(A+2)); */ 225*8e3e3a7aSWarner Losh OP_TFORLOOP,/* A sBx if R(A+1) ~= nil then { R(A)=R(A+1); pc += sBx }*/ 226*8e3e3a7aSWarner Losh 227*8e3e3a7aSWarner Losh OP_SETLIST,/* A B C R(A)[(C-1)*FPF+i] := R(A+i), 1 <= i <= B */ 228*8e3e3a7aSWarner Losh 229*8e3e3a7aSWarner Losh OP_CLOSURE,/* A Bx R(A) := closure(KPROTO[Bx]) */ 230*8e3e3a7aSWarner Losh 231*8e3e3a7aSWarner Losh OP_VARARG,/* A B R(A), R(A+1), ..., R(A+B-2) = vararg */ 232*8e3e3a7aSWarner Losh 233*8e3e3a7aSWarner Losh OP_EXTRAARG/* Ax extra (larger) argument for previous opcode */ 234*8e3e3a7aSWarner Losh } OpCode; 235*8e3e3a7aSWarner Losh 236*8e3e3a7aSWarner Losh 237*8e3e3a7aSWarner Losh #define NUM_OPCODES (cast(int, OP_EXTRAARG) + 1) 238*8e3e3a7aSWarner Losh 239*8e3e3a7aSWarner Losh 240*8e3e3a7aSWarner Losh 241*8e3e3a7aSWarner Losh /*=========================================================================== 242*8e3e3a7aSWarner Losh Notes: 243*8e3e3a7aSWarner Losh (*) In OP_CALL, if (B == 0) then B = top. If (C == 0), then 'top' is 244*8e3e3a7aSWarner Losh set to last_result+1, so next open instruction (OP_CALL, OP_RETURN, 245*8e3e3a7aSWarner Losh OP_SETLIST) may use 'top'. 246*8e3e3a7aSWarner Losh 247*8e3e3a7aSWarner Losh (*) In OP_VARARG, if (B == 0) then use actual number of varargs and 248*8e3e3a7aSWarner Losh set top (like in OP_CALL with C == 0). 249*8e3e3a7aSWarner Losh 250*8e3e3a7aSWarner Losh (*) In OP_RETURN, if (B == 0) then return up to 'top'. 251*8e3e3a7aSWarner Losh 252*8e3e3a7aSWarner Losh (*) In OP_SETLIST, if (B == 0) then B = 'top'; if (C == 0) then next 253*8e3e3a7aSWarner Losh 'instruction' is EXTRAARG(real C). 254*8e3e3a7aSWarner Losh 255*8e3e3a7aSWarner Losh (*) In OP_LOADKX, the next 'instruction' is always EXTRAARG. 256*8e3e3a7aSWarner Losh 257*8e3e3a7aSWarner Losh (*) For comparisons, A specifies what condition the test should accept 258*8e3e3a7aSWarner Losh (true or false). 259*8e3e3a7aSWarner Losh 260*8e3e3a7aSWarner Losh (*) All 'skips' (pc++) assume that next instruction is a jump. 261*8e3e3a7aSWarner Losh 262*8e3e3a7aSWarner Losh ===========================================================================*/ 263*8e3e3a7aSWarner Losh 264*8e3e3a7aSWarner Losh 265*8e3e3a7aSWarner Losh /* 266*8e3e3a7aSWarner Losh ** masks for instruction properties. The format is: 267*8e3e3a7aSWarner Losh ** bits 0-1: op mode 268*8e3e3a7aSWarner Losh ** bits 2-3: C arg mode 269*8e3e3a7aSWarner Losh ** bits 4-5: B arg mode 270*8e3e3a7aSWarner Losh ** bit 6: instruction set register A 271*8e3e3a7aSWarner Losh ** bit 7: operator is a test (next instruction must be a jump) 272*8e3e3a7aSWarner Losh */ 273*8e3e3a7aSWarner Losh 274*8e3e3a7aSWarner Losh enum OpArgMask { 275*8e3e3a7aSWarner Losh OpArgN, /* argument is not used */ 276*8e3e3a7aSWarner Losh OpArgU, /* argument is used */ 277*8e3e3a7aSWarner Losh OpArgR, /* argument is a register or a jump offset */ 278*8e3e3a7aSWarner Losh OpArgK /* argument is a constant or register/constant */ 279*8e3e3a7aSWarner Losh }; 280*8e3e3a7aSWarner Losh 281*8e3e3a7aSWarner Losh LUAI_DDEC const lu_byte luaP_opmodes[NUM_OPCODES]; 282*8e3e3a7aSWarner Losh 283*8e3e3a7aSWarner Losh #define getOpMode(m) (cast(enum OpMode, luaP_opmodes[m] & 3)) 284*8e3e3a7aSWarner Losh #define getBMode(m) (cast(enum OpArgMask, (luaP_opmodes[m] >> 4) & 3)) 285*8e3e3a7aSWarner Losh #define getCMode(m) (cast(enum OpArgMask, (luaP_opmodes[m] >> 2) & 3)) 286*8e3e3a7aSWarner Losh #define testAMode(m) (luaP_opmodes[m] & (1 << 6)) 287*8e3e3a7aSWarner Losh #define testTMode(m) (luaP_opmodes[m] & (1 << 7)) 288*8e3e3a7aSWarner Losh 289*8e3e3a7aSWarner Losh 290*8e3e3a7aSWarner Losh LUAI_DDEC const char *const luaP_opnames[NUM_OPCODES+1]; /* opcode names */ 291*8e3e3a7aSWarner Losh 292*8e3e3a7aSWarner Losh 293*8e3e3a7aSWarner Losh /* number of list items to accumulate before a SETLIST instruction */ 294*8e3e3a7aSWarner Losh #define LFIELDS_PER_FLUSH 50 295*8e3e3a7aSWarner Losh 296*8e3e3a7aSWarner Losh 297*8e3e3a7aSWarner Losh #endif 298