xref: /freebsd/contrib/lua/src/lopcodes.h (revision 8e3e3a7ae841ccf6f6ac30a2eeab85df5d7f04bc)
1*8e3e3a7aSWarner Losh /*
2*8e3e3a7aSWarner Losh ** $Id: lopcodes.h,v 1.149 2016/07/19 17:12:21 roberto Exp $
3*8e3e3a7aSWarner Losh ** Opcodes for Lua virtual machine
4*8e3e3a7aSWarner Losh ** See Copyright Notice in lua.h
5*8e3e3a7aSWarner Losh */
6*8e3e3a7aSWarner Losh 
7*8e3e3a7aSWarner Losh #ifndef lopcodes_h
8*8e3e3a7aSWarner Losh #define lopcodes_h
9*8e3e3a7aSWarner Losh 
10*8e3e3a7aSWarner Losh #include "llimits.h"
11*8e3e3a7aSWarner Losh 
12*8e3e3a7aSWarner Losh 
13*8e3e3a7aSWarner Losh /*===========================================================================
14*8e3e3a7aSWarner Losh   We assume that instructions are unsigned numbers.
15*8e3e3a7aSWarner Losh   All instructions have an opcode in the first 6 bits.
16*8e3e3a7aSWarner Losh   Instructions can have the following fields:
17*8e3e3a7aSWarner Losh 	'A' : 8 bits
18*8e3e3a7aSWarner Losh 	'B' : 9 bits
19*8e3e3a7aSWarner Losh 	'C' : 9 bits
20*8e3e3a7aSWarner Losh 	'Ax' : 26 bits ('A', 'B', and 'C' together)
21*8e3e3a7aSWarner Losh 	'Bx' : 18 bits ('B' and 'C' together)
22*8e3e3a7aSWarner Losh 	'sBx' : signed Bx
23*8e3e3a7aSWarner Losh 
24*8e3e3a7aSWarner Losh   A signed argument is represented in excess K; that is, the number
25*8e3e3a7aSWarner Losh   value is the unsigned value minus K. K is exactly the maximum value
26*8e3e3a7aSWarner Losh   for that argument (so that -max is represented by 0, and +max is
27*8e3e3a7aSWarner Losh   represented by 2*max), which is half the maximum for the corresponding
28*8e3e3a7aSWarner Losh   unsigned argument.
29*8e3e3a7aSWarner Losh ===========================================================================*/
30*8e3e3a7aSWarner Losh 
31*8e3e3a7aSWarner Losh 
32*8e3e3a7aSWarner Losh enum OpMode {iABC, iABx, iAsBx, iAx};  /* basic instruction format */
33*8e3e3a7aSWarner Losh 
34*8e3e3a7aSWarner Losh 
35*8e3e3a7aSWarner Losh /*
36*8e3e3a7aSWarner Losh ** size and position of opcode arguments.
37*8e3e3a7aSWarner Losh */
38*8e3e3a7aSWarner Losh #define SIZE_C		9
39*8e3e3a7aSWarner Losh #define SIZE_B		9
40*8e3e3a7aSWarner Losh #define SIZE_Bx		(SIZE_C + SIZE_B)
41*8e3e3a7aSWarner Losh #define SIZE_A		8
42*8e3e3a7aSWarner Losh #define SIZE_Ax		(SIZE_C + SIZE_B + SIZE_A)
43*8e3e3a7aSWarner Losh 
44*8e3e3a7aSWarner Losh #define SIZE_OP		6
45*8e3e3a7aSWarner Losh 
46*8e3e3a7aSWarner Losh #define POS_OP		0
47*8e3e3a7aSWarner Losh #define POS_A		(POS_OP + SIZE_OP)
48*8e3e3a7aSWarner Losh #define POS_C		(POS_A + SIZE_A)
49*8e3e3a7aSWarner Losh #define POS_B		(POS_C + SIZE_C)
50*8e3e3a7aSWarner Losh #define POS_Bx		POS_C
51*8e3e3a7aSWarner Losh #define POS_Ax		POS_A
52*8e3e3a7aSWarner Losh 
53*8e3e3a7aSWarner Losh 
54*8e3e3a7aSWarner Losh /*
55*8e3e3a7aSWarner Losh ** limits for opcode arguments.
56*8e3e3a7aSWarner Losh ** we use (signed) int to manipulate most arguments,
57*8e3e3a7aSWarner Losh ** so they must fit in LUAI_BITSINT-1 bits (-1 for sign)
58*8e3e3a7aSWarner Losh */
59*8e3e3a7aSWarner Losh #if SIZE_Bx < LUAI_BITSINT-1
60*8e3e3a7aSWarner Losh #define MAXARG_Bx        ((1<<SIZE_Bx)-1)
61*8e3e3a7aSWarner Losh #define MAXARG_sBx        (MAXARG_Bx>>1)         /* 'sBx' is signed */
62*8e3e3a7aSWarner Losh #else
63*8e3e3a7aSWarner Losh #define MAXARG_Bx        MAX_INT
64*8e3e3a7aSWarner Losh #define MAXARG_sBx        MAX_INT
65*8e3e3a7aSWarner Losh #endif
66*8e3e3a7aSWarner Losh 
67*8e3e3a7aSWarner Losh #if SIZE_Ax < LUAI_BITSINT-1
68*8e3e3a7aSWarner Losh #define MAXARG_Ax	((1<<SIZE_Ax)-1)
69*8e3e3a7aSWarner Losh #else
70*8e3e3a7aSWarner Losh #define MAXARG_Ax	MAX_INT
71*8e3e3a7aSWarner Losh #endif
72*8e3e3a7aSWarner Losh 
73*8e3e3a7aSWarner Losh 
74*8e3e3a7aSWarner Losh #define MAXARG_A        ((1<<SIZE_A)-1)
75*8e3e3a7aSWarner Losh #define MAXARG_B        ((1<<SIZE_B)-1)
76*8e3e3a7aSWarner Losh #define MAXARG_C        ((1<<SIZE_C)-1)
77*8e3e3a7aSWarner Losh 
78*8e3e3a7aSWarner Losh 
79*8e3e3a7aSWarner Losh /* creates a mask with 'n' 1 bits at position 'p' */
80*8e3e3a7aSWarner Losh #define MASK1(n,p)	((~((~(Instruction)0)<<(n)))<<(p))
81*8e3e3a7aSWarner Losh 
82*8e3e3a7aSWarner Losh /* creates a mask with 'n' 0 bits at position 'p' */
83*8e3e3a7aSWarner Losh #define MASK0(n,p)	(~MASK1(n,p))
84*8e3e3a7aSWarner Losh 
85*8e3e3a7aSWarner Losh /*
86*8e3e3a7aSWarner Losh ** the following macros help to manipulate instructions
87*8e3e3a7aSWarner Losh */
88*8e3e3a7aSWarner Losh 
89*8e3e3a7aSWarner Losh #define GET_OPCODE(i)	(cast(OpCode, ((i)>>POS_OP) & MASK1(SIZE_OP,0)))
90*8e3e3a7aSWarner Losh #define SET_OPCODE(i,o)	((i) = (((i)&MASK0(SIZE_OP,POS_OP)) | \
91*8e3e3a7aSWarner Losh 		((cast(Instruction, o)<<POS_OP)&MASK1(SIZE_OP,POS_OP))))
92*8e3e3a7aSWarner Losh 
93*8e3e3a7aSWarner Losh #define getarg(i,pos,size)	(cast(int, ((i)>>pos) & MASK1(size,0)))
94*8e3e3a7aSWarner Losh #define setarg(i,v,pos,size)	((i) = (((i)&MASK0(size,pos)) | \
95*8e3e3a7aSWarner Losh                 ((cast(Instruction, v)<<pos)&MASK1(size,pos))))
96*8e3e3a7aSWarner Losh 
97*8e3e3a7aSWarner Losh #define GETARG_A(i)	getarg(i, POS_A, SIZE_A)
98*8e3e3a7aSWarner Losh #define SETARG_A(i,v)	setarg(i, v, POS_A, SIZE_A)
99*8e3e3a7aSWarner Losh 
100*8e3e3a7aSWarner Losh #define GETARG_B(i)	getarg(i, POS_B, SIZE_B)
101*8e3e3a7aSWarner Losh #define SETARG_B(i,v)	setarg(i, v, POS_B, SIZE_B)
102*8e3e3a7aSWarner Losh 
103*8e3e3a7aSWarner Losh #define GETARG_C(i)	getarg(i, POS_C, SIZE_C)
104*8e3e3a7aSWarner Losh #define SETARG_C(i,v)	setarg(i, v, POS_C, SIZE_C)
105*8e3e3a7aSWarner Losh 
106*8e3e3a7aSWarner Losh #define GETARG_Bx(i)	getarg(i, POS_Bx, SIZE_Bx)
107*8e3e3a7aSWarner Losh #define SETARG_Bx(i,v)	setarg(i, v, POS_Bx, SIZE_Bx)
108*8e3e3a7aSWarner Losh 
109*8e3e3a7aSWarner Losh #define GETARG_Ax(i)	getarg(i, POS_Ax, SIZE_Ax)
110*8e3e3a7aSWarner Losh #define SETARG_Ax(i,v)	setarg(i, v, POS_Ax, SIZE_Ax)
111*8e3e3a7aSWarner Losh 
112*8e3e3a7aSWarner Losh #define GETARG_sBx(i)	(GETARG_Bx(i)-MAXARG_sBx)
113*8e3e3a7aSWarner Losh #define SETARG_sBx(i,b)	SETARG_Bx((i),cast(unsigned int, (b)+MAXARG_sBx))
114*8e3e3a7aSWarner Losh 
115*8e3e3a7aSWarner Losh 
116*8e3e3a7aSWarner Losh #define CREATE_ABC(o,a,b,c)	((cast(Instruction, o)<<POS_OP) \
117*8e3e3a7aSWarner Losh 			| (cast(Instruction, a)<<POS_A) \
118*8e3e3a7aSWarner Losh 			| (cast(Instruction, b)<<POS_B) \
119*8e3e3a7aSWarner Losh 			| (cast(Instruction, c)<<POS_C))
120*8e3e3a7aSWarner Losh 
121*8e3e3a7aSWarner Losh #define CREATE_ABx(o,a,bc)	((cast(Instruction, o)<<POS_OP) \
122*8e3e3a7aSWarner Losh 			| (cast(Instruction, a)<<POS_A) \
123*8e3e3a7aSWarner Losh 			| (cast(Instruction, bc)<<POS_Bx))
124*8e3e3a7aSWarner Losh 
125*8e3e3a7aSWarner Losh #define CREATE_Ax(o,a)		((cast(Instruction, o)<<POS_OP) \
126*8e3e3a7aSWarner Losh 			| (cast(Instruction, a)<<POS_Ax))
127*8e3e3a7aSWarner Losh 
128*8e3e3a7aSWarner Losh 
129*8e3e3a7aSWarner Losh /*
130*8e3e3a7aSWarner Losh ** Macros to operate RK indices
131*8e3e3a7aSWarner Losh */
132*8e3e3a7aSWarner Losh 
133*8e3e3a7aSWarner Losh /* this bit 1 means constant (0 means register) */
134*8e3e3a7aSWarner Losh #define BITRK		(1 << (SIZE_B - 1))
135*8e3e3a7aSWarner Losh 
136*8e3e3a7aSWarner Losh /* test whether value is a constant */
137*8e3e3a7aSWarner Losh #define ISK(x)		((x) & BITRK)
138*8e3e3a7aSWarner Losh 
139*8e3e3a7aSWarner Losh /* gets the index of the constant */
140*8e3e3a7aSWarner Losh #define INDEXK(r)	((int)(r) & ~BITRK)
141*8e3e3a7aSWarner Losh 
142*8e3e3a7aSWarner Losh #if !defined(MAXINDEXRK)  /* (for debugging only) */
143*8e3e3a7aSWarner Losh #define MAXINDEXRK	(BITRK - 1)
144*8e3e3a7aSWarner Losh #endif
145*8e3e3a7aSWarner Losh 
146*8e3e3a7aSWarner Losh /* code a constant index as a RK value */
147*8e3e3a7aSWarner Losh #define RKASK(x)	((x) | BITRK)
148*8e3e3a7aSWarner Losh 
149*8e3e3a7aSWarner Losh 
150*8e3e3a7aSWarner Losh /*
151*8e3e3a7aSWarner Losh ** invalid register that fits in 8 bits
152*8e3e3a7aSWarner Losh */
153*8e3e3a7aSWarner Losh #define NO_REG		MAXARG_A
154*8e3e3a7aSWarner Losh 
155*8e3e3a7aSWarner Losh 
156*8e3e3a7aSWarner Losh /*
157*8e3e3a7aSWarner Losh ** R(x) - register
158*8e3e3a7aSWarner Losh ** Kst(x) - constant (in constant table)
159*8e3e3a7aSWarner Losh ** RK(x) == if ISK(x) then Kst(INDEXK(x)) else R(x)
160*8e3e3a7aSWarner Losh */
161*8e3e3a7aSWarner Losh 
162*8e3e3a7aSWarner Losh 
163*8e3e3a7aSWarner Losh /*
164*8e3e3a7aSWarner Losh ** grep "ORDER OP" if you change these enums
165*8e3e3a7aSWarner Losh */
166*8e3e3a7aSWarner Losh 
167*8e3e3a7aSWarner Losh typedef enum {
168*8e3e3a7aSWarner Losh /*----------------------------------------------------------------------
169*8e3e3a7aSWarner Losh name		args	description
170*8e3e3a7aSWarner Losh ------------------------------------------------------------------------*/
171*8e3e3a7aSWarner Losh OP_MOVE,/*	A B	R(A) := R(B)					*/
172*8e3e3a7aSWarner Losh OP_LOADK,/*	A Bx	R(A) := Kst(Bx)					*/
173*8e3e3a7aSWarner Losh OP_LOADKX,/*	A 	R(A) := Kst(extra arg)				*/
174*8e3e3a7aSWarner Losh OP_LOADBOOL,/*	A B C	R(A) := (Bool)B; if (C) pc++			*/
175*8e3e3a7aSWarner Losh OP_LOADNIL,/*	A B	R(A), R(A+1), ..., R(A+B) := nil		*/
176*8e3e3a7aSWarner Losh OP_GETUPVAL,/*	A B	R(A) := UpValue[B]				*/
177*8e3e3a7aSWarner Losh 
178*8e3e3a7aSWarner Losh OP_GETTABUP,/*	A B C	R(A) := UpValue[B][RK(C)]			*/
179*8e3e3a7aSWarner Losh OP_GETTABLE,/*	A B C	R(A) := R(B)[RK(C)]				*/
180*8e3e3a7aSWarner Losh 
181*8e3e3a7aSWarner Losh OP_SETTABUP,/*	A B C	UpValue[A][RK(B)] := RK(C)			*/
182*8e3e3a7aSWarner Losh OP_SETUPVAL,/*	A B	UpValue[B] := R(A)				*/
183*8e3e3a7aSWarner Losh OP_SETTABLE,/*	A B C	R(A)[RK(B)] := RK(C)				*/
184*8e3e3a7aSWarner Losh 
185*8e3e3a7aSWarner Losh OP_NEWTABLE,/*	A B C	R(A) := {} (size = B,C)				*/
186*8e3e3a7aSWarner Losh 
187*8e3e3a7aSWarner Losh OP_SELF,/*	A B C	R(A+1) := R(B); R(A) := R(B)[RK(C)]		*/
188*8e3e3a7aSWarner Losh 
189*8e3e3a7aSWarner Losh OP_ADD,/*	A B C	R(A) := RK(B) + RK(C)				*/
190*8e3e3a7aSWarner Losh OP_SUB,/*	A B C	R(A) := RK(B) - RK(C)				*/
191*8e3e3a7aSWarner Losh OP_MUL,/*	A B C	R(A) := RK(B) * RK(C)				*/
192*8e3e3a7aSWarner Losh OP_MOD,/*	A B C	R(A) := RK(B) % RK(C)				*/
193*8e3e3a7aSWarner Losh OP_POW,/*	A B C	R(A) := RK(B) ^ RK(C)				*/
194*8e3e3a7aSWarner Losh OP_DIV,/*	A B C	R(A) := RK(B) / RK(C)				*/
195*8e3e3a7aSWarner Losh OP_IDIV,/*	A B C	R(A) := RK(B) // RK(C)				*/
196*8e3e3a7aSWarner Losh OP_BAND,/*	A B C	R(A) := RK(B) & RK(C)				*/
197*8e3e3a7aSWarner Losh OP_BOR,/*	A B C	R(A) := RK(B) | RK(C)				*/
198*8e3e3a7aSWarner Losh OP_BXOR,/*	A B C	R(A) := RK(B) ~ RK(C)				*/
199*8e3e3a7aSWarner Losh OP_SHL,/*	A B C	R(A) := RK(B) << RK(C)				*/
200*8e3e3a7aSWarner Losh OP_SHR,/*	A B C	R(A) := RK(B) >> RK(C)				*/
201*8e3e3a7aSWarner Losh OP_UNM,/*	A B	R(A) := -R(B)					*/
202*8e3e3a7aSWarner Losh OP_BNOT,/*	A B	R(A) := ~R(B)					*/
203*8e3e3a7aSWarner Losh OP_NOT,/*	A B	R(A) := not R(B)				*/
204*8e3e3a7aSWarner Losh OP_LEN,/*	A B	R(A) := length of R(B)				*/
205*8e3e3a7aSWarner Losh 
206*8e3e3a7aSWarner Losh OP_CONCAT,/*	A B C	R(A) := R(B).. ... ..R(C)			*/
207*8e3e3a7aSWarner Losh 
208*8e3e3a7aSWarner Losh OP_JMP,/*	A sBx	pc+=sBx; if (A) close all upvalues >= R(A - 1)	*/
209*8e3e3a7aSWarner Losh OP_EQ,/*	A B C	if ((RK(B) == RK(C)) ~= A) then pc++		*/
210*8e3e3a7aSWarner Losh OP_LT,/*	A B C	if ((RK(B) <  RK(C)) ~= A) then pc++		*/
211*8e3e3a7aSWarner Losh OP_LE,/*	A B C	if ((RK(B) <= RK(C)) ~= A) then pc++		*/
212*8e3e3a7aSWarner Losh 
213*8e3e3a7aSWarner Losh OP_TEST,/*	A C	if not (R(A) <=> C) then pc++			*/
214*8e3e3a7aSWarner Losh OP_TESTSET,/*	A B C	if (R(B) <=> C) then R(A) := R(B) else pc++	*/
215*8e3e3a7aSWarner Losh 
216*8e3e3a7aSWarner Losh OP_CALL,/*	A B C	R(A), ... ,R(A+C-2) := R(A)(R(A+1), ... ,R(A+B-1)) */
217*8e3e3a7aSWarner Losh OP_TAILCALL,/*	A B C	return R(A)(R(A+1), ... ,R(A+B-1))		*/
218*8e3e3a7aSWarner Losh OP_RETURN,/*	A B	return R(A), ... ,R(A+B-2)	(see note)	*/
219*8e3e3a7aSWarner Losh 
220*8e3e3a7aSWarner Losh OP_FORLOOP,/*	A sBx	R(A)+=R(A+2);
221*8e3e3a7aSWarner Losh 			if R(A) <?= R(A+1) then { pc+=sBx; R(A+3)=R(A) }*/
222*8e3e3a7aSWarner Losh OP_FORPREP,/*	A sBx	R(A)-=R(A+2); pc+=sBx				*/
223*8e3e3a7aSWarner Losh 
224*8e3e3a7aSWarner Losh OP_TFORCALL,/*	A C	R(A+3), ... ,R(A+2+C) := R(A)(R(A+1), R(A+2));	*/
225*8e3e3a7aSWarner Losh OP_TFORLOOP,/*	A sBx	if R(A+1) ~= nil then { R(A)=R(A+1); pc += sBx }*/
226*8e3e3a7aSWarner Losh 
227*8e3e3a7aSWarner Losh OP_SETLIST,/*	A B C	R(A)[(C-1)*FPF+i] := R(A+i), 1 <= i <= B	*/
228*8e3e3a7aSWarner Losh 
229*8e3e3a7aSWarner Losh OP_CLOSURE,/*	A Bx	R(A) := closure(KPROTO[Bx])			*/
230*8e3e3a7aSWarner Losh 
231*8e3e3a7aSWarner Losh OP_VARARG,/*	A B	R(A), R(A+1), ..., R(A+B-2) = vararg		*/
232*8e3e3a7aSWarner Losh 
233*8e3e3a7aSWarner Losh OP_EXTRAARG/*	Ax	extra (larger) argument for previous opcode	*/
234*8e3e3a7aSWarner Losh } OpCode;
235*8e3e3a7aSWarner Losh 
236*8e3e3a7aSWarner Losh 
237*8e3e3a7aSWarner Losh #define NUM_OPCODES	(cast(int, OP_EXTRAARG) + 1)
238*8e3e3a7aSWarner Losh 
239*8e3e3a7aSWarner Losh 
240*8e3e3a7aSWarner Losh 
241*8e3e3a7aSWarner Losh /*===========================================================================
242*8e3e3a7aSWarner Losh   Notes:
243*8e3e3a7aSWarner Losh   (*) In OP_CALL, if (B == 0) then B = top. If (C == 0), then 'top' is
244*8e3e3a7aSWarner Losh   set to last_result+1, so next open instruction (OP_CALL, OP_RETURN,
245*8e3e3a7aSWarner Losh   OP_SETLIST) may use 'top'.
246*8e3e3a7aSWarner Losh 
247*8e3e3a7aSWarner Losh   (*) In OP_VARARG, if (B == 0) then use actual number of varargs and
248*8e3e3a7aSWarner Losh   set top (like in OP_CALL with C == 0).
249*8e3e3a7aSWarner Losh 
250*8e3e3a7aSWarner Losh   (*) In OP_RETURN, if (B == 0) then return up to 'top'.
251*8e3e3a7aSWarner Losh 
252*8e3e3a7aSWarner Losh   (*) In OP_SETLIST, if (B == 0) then B = 'top'; if (C == 0) then next
253*8e3e3a7aSWarner Losh   'instruction' is EXTRAARG(real C).
254*8e3e3a7aSWarner Losh 
255*8e3e3a7aSWarner Losh   (*) In OP_LOADKX, the next 'instruction' is always EXTRAARG.
256*8e3e3a7aSWarner Losh 
257*8e3e3a7aSWarner Losh   (*) For comparisons, A specifies what condition the test should accept
258*8e3e3a7aSWarner Losh   (true or false).
259*8e3e3a7aSWarner Losh 
260*8e3e3a7aSWarner Losh   (*) All 'skips' (pc++) assume that next instruction is a jump.
261*8e3e3a7aSWarner Losh 
262*8e3e3a7aSWarner Losh ===========================================================================*/
263*8e3e3a7aSWarner Losh 
264*8e3e3a7aSWarner Losh 
265*8e3e3a7aSWarner Losh /*
266*8e3e3a7aSWarner Losh ** masks for instruction properties. The format is:
267*8e3e3a7aSWarner Losh ** bits 0-1: op mode
268*8e3e3a7aSWarner Losh ** bits 2-3: C arg mode
269*8e3e3a7aSWarner Losh ** bits 4-5: B arg mode
270*8e3e3a7aSWarner Losh ** bit 6: instruction set register A
271*8e3e3a7aSWarner Losh ** bit 7: operator is a test (next instruction must be a jump)
272*8e3e3a7aSWarner Losh */
273*8e3e3a7aSWarner Losh 
274*8e3e3a7aSWarner Losh enum OpArgMask {
275*8e3e3a7aSWarner Losh   OpArgN,  /* argument is not used */
276*8e3e3a7aSWarner Losh   OpArgU,  /* argument is used */
277*8e3e3a7aSWarner Losh   OpArgR,  /* argument is a register or a jump offset */
278*8e3e3a7aSWarner Losh   OpArgK   /* argument is a constant or register/constant */
279*8e3e3a7aSWarner Losh };
280*8e3e3a7aSWarner Losh 
281*8e3e3a7aSWarner Losh LUAI_DDEC const lu_byte luaP_opmodes[NUM_OPCODES];
282*8e3e3a7aSWarner Losh 
283*8e3e3a7aSWarner Losh #define getOpMode(m)	(cast(enum OpMode, luaP_opmodes[m] & 3))
284*8e3e3a7aSWarner Losh #define getBMode(m)	(cast(enum OpArgMask, (luaP_opmodes[m] >> 4) & 3))
285*8e3e3a7aSWarner Losh #define getCMode(m)	(cast(enum OpArgMask, (luaP_opmodes[m] >> 2) & 3))
286*8e3e3a7aSWarner Losh #define testAMode(m)	(luaP_opmodes[m] & (1 << 6))
287*8e3e3a7aSWarner Losh #define testTMode(m)	(luaP_opmodes[m] & (1 << 7))
288*8e3e3a7aSWarner Losh 
289*8e3e3a7aSWarner Losh 
290*8e3e3a7aSWarner Losh LUAI_DDEC const char *const luaP_opnames[NUM_OPCODES+1];  /* opcode names */
291*8e3e3a7aSWarner Losh 
292*8e3e3a7aSWarner Losh 
293*8e3e3a7aSWarner Losh /* number of list items to accumulate before a SETLIST instruction */
294*8e3e3a7aSWarner Losh #define LFIELDS_PER_FLUSH	50
295*8e3e3a7aSWarner Losh 
296*8e3e3a7aSWarner Losh 
297*8e3e3a7aSWarner Losh #endif
298