1 /* 2 ** $Id: lmathlib.c $ 3 ** Standard mathematical library 4 ** See Copyright Notice in lua.h 5 */ 6 7 #define lmathlib_c 8 #define LUA_LIB 9 10 #include "lprefix.h" 11 12 13 #include <float.h> 14 #include <limits.h> 15 #include <math.h> 16 #include <stdlib.h> 17 #include <time.h> 18 19 #include "lua.h" 20 21 #include "lauxlib.h" 22 #include "lualib.h" 23 24 25 #undef PI 26 #define PI (l_mathop(3.141592653589793238462643383279502884)) 27 28 29 static int math_abs (lua_State *L) { 30 if (lua_isinteger(L, 1)) { 31 lua_Integer n = lua_tointeger(L, 1); 32 if (n < 0) n = (lua_Integer)(0u - (lua_Unsigned)n); 33 lua_pushinteger(L, n); 34 } 35 else 36 lua_pushnumber(L, l_mathop(fabs)(luaL_checknumber(L, 1))); 37 return 1; 38 } 39 40 static int math_sin (lua_State *L) { 41 lua_pushnumber(L, l_mathop(sin)(luaL_checknumber(L, 1))); 42 return 1; 43 } 44 45 static int math_cos (lua_State *L) { 46 lua_pushnumber(L, l_mathop(cos)(luaL_checknumber(L, 1))); 47 return 1; 48 } 49 50 static int math_tan (lua_State *L) { 51 lua_pushnumber(L, l_mathop(tan)(luaL_checknumber(L, 1))); 52 return 1; 53 } 54 55 static int math_asin (lua_State *L) { 56 lua_pushnumber(L, l_mathop(asin)(luaL_checknumber(L, 1))); 57 return 1; 58 } 59 60 static int math_acos (lua_State *L) { 61 lua_pushnumber(L, l_mathop(acos)(luaL_checknumber(L, 1))); 62 return 1; 63 } 64 65 static int math_atan (lua_State *L) { 66 lua_Number y = luaL_checknumber(L, 1); 67 lua_Number x = luaL_optnumber(L, 2, 1); 68 lua_pushnumber(L, l_mathop(atan2)(y, x)); 69 return 1; 70 } 71 72 73 static int math_toint (lua_State *L) { 74 int valid; 75 lua_Integer n = lua_tointegerx(L, 1, &valid); 76 if (valid) 77 lua_pushinteger(L, n); 78 else { 79 luaL_checkany(L, 1); 80 luaL_pushfail(L); /* value is not convertible to integer */ 81 } 82 return 1; 83 } 84 85 86 static void pushnumint (lua_State *L, lua_Number d) { 87 lua_Integer n; 88 if (lua_numbertointeger(d, &n)) /* does 'd' fit in an integer? */ 89 lua_pushinteger(L, n); /* result is integer */ 90 else 91 lua_pushnumber(L, d); /* result is float */ 92 } 93 94 95 static int math_floor (lua_State *L) { 96 if (lua_isinteger(L, 1)) 97 lua_settop(L, 1); /* integer is its own floor */ 98 else { 99 lua_Number d = l_mathop(floor)(luaL_checknumber(L, 1)); 100 pushnumint(L, d); 101 } 102 return 1; 103 } 104 105 106 static int math_ceil (lua_State *L) { 107 if (lua_isinteger(L, 1)) 108 lua_settop(L, 1); /* integer is its own ceil */ 109 else { 110 lua_Number d = l_mathop(ceil)(luaL_checknumber(L, 1)); 111 pushnumint(L, d); 112 } 113 return 1; 114 } 115 116 117 static int math_fmod (lua_State *L) { 118 if (lua_isinteger(L, 1) && lua_isinteger(L, 2)) { 119 lua_Integer d = lua_tointeger(L, 2); 120 if ((lua_Unsigned)d + 1u <= 1u) { /* special cases: -1 or 0 */ 121 luaL_argcheck(L, d != 0, 2, "zero"); 122 lua_pushinteger(L, 0); /* avoid overflow with 0x80000... / -1 */ 123 } 124 else 125 lua_pushinteger(L, lua_tointeger(L, 1) % d); 126 } 127 else 128 lua_pushnumber(L, l_mathop(fmod)(luaL_checknumber(L, 1), 129 luaL_checknumber(L, 2))); 130 return 1; 131 } 132 133 134 /* 135 ** next function does not use 'modf', avoiding problems with 'double*' 136 ** (which is not compatible with 'float*') when lua_Number is not 137 ** 'double'. 138 */ 139 static int math_modf (lua_State *L) { 140 if (lua_isinteger(L ,1)) { 141 lua_settop(L, 1); /* number is its own integer part */ 142 lua_pushnumber(L, 0); /* no fractional part */ 143 } 144 else { 145 lua_Number n = luaL_checknumber(L, 1); 146 /* integer part (rounds toward zero) */ 147 lua_Number ip = (n < 0) ? l_mathop(ceil)(n) : l_mathop(floor)(n); 148 pushnumint(L, ip); 149 /* fractional part (test needed for inf/-inf) */ 150 lua_pushnumber(L, (n == ip) ? l_mathop(0.0) : (n - ip)); 151 } 152 return 2; 153 } 154 155 156 static int math_sqrt (lua_State *L) { 157 lua_pushnumber(L, l_mathop(sqrt)(luaL_checknumber(L, 1))); 158 return 1; 159 } 160 161 162 static int math_ult (lua_State *L) { 163 lua_Integer a = luaL_checkinteger(L, 1); 164 lua_Integer b = luaL_checkinteger(L, 2); 165 lua_pushboolean(L, (lua_Unsigned)a < (lua_Unsigned)b); 166 return 1; 167 } 168 169 static int math_log (lua_State *L) { 170 lua_Number x = luaL_checknumber(L, 1); 171 lua_Number res; 172 if (lua_isnoneornil(L, 2)) 173 res = l_mathop(log)(x); 174 else { 175 lua_Number base = luaL_checknumber(L, 2); 176 #if !defined(LUA_USE_C89) 177 if (base == l_mathop(2.0)) 178 res = l_mathop(log2)(x); else 179 #endif 180 if (base == l_mathop(10.0)) 181 res = l_mathop(log10)(x); 182 else 183 res = l_mathop(log)(x)/l_mathop(log)(base); 184 } 185 lua_pushnumber(L, res); 186 return 1; 187 } 188 189 static int math_exp (lua_State *L) { 190 lua_pushnumber(L, l_mathop(exp)(luaL_checknumber(L, 1))); 191 return 1; 192 } 193 194 static int math_deg (lua_State *L) { 195 lua_pushnumber(L, luaL_checknumber(L, 1) * (l_mathop(180.0) / PI)); 196 return 1; 197 } 198 199 static int math_rad (lua_State *L) { 200 lua_pushnumber(L, luaL_checknumber(L, 1) * (PI / l_mathop(180.0))); 201 return 1; 202 } 203 204 205 static int math_min (lua_State *L) { 206 int n = lua_gettop(L); /* number of arguments */ 207 int imin = 1; /* index of current minimum value */ 208 int i; 209 luaL_argcheck(L, n >= 1, 1, "value expected"); 210 for (i = 2; i <= n; i++) { 211 if (lua_compare(L, i, imin, LUA_OPLT)) 212 imin = i; 213 } 214 lua_pushvalue(L, imin); 215 return 1; 216 } 217 218 219 static int math_max (lua_State *L) { 220 int n = lua_gettop(L); /* number of arguments */ 221 int imax = 1; /* index of current maximum value */ 222 int i; 223 luaL_argcheck(L, n >= 1, 1, "value expected"); 224 for (i = 2; i <= n; i++) { 225 if (lua_compare(L, imax, i, LUA_OPLT)) 226 imax = i; 227 } 228 lua_pushvalue(L, imax); 229 return 1; 230 } 231 232 233 static int math_type (lua_State *L) { 234 if (lua_type(L, 1) == LUA_TNUMBER) 235 lua_pushstring(L, (lua_isinteger(L, 1)) ? "integer" : "float"); 236 else { 237 luaL_checkany(L, 1); 238 luaL_pushfail(L); 239 } 240 return 1; 241 } 242 243 244 245 /* 246 ** {================================================================== 247 ** Pseudo-Random Number Generator based on 'xoshiro256**'. 248 ** =================================================================== 249 */ 250 251 /* number of binary digits in the mantissa of a float */ 252 #define FIGS l_floatatt(MANT_DIG) 253 254 #if FIGS > 64 255 /* there are only 64 random bits; use them all */ 256 #undef FIGS 257 #define FIGS 64 258 #endif 259 260 261 /* 262 ** LUA_RAND32 forces the use of 32-bit integers in the implementation 263 ** of the PRN generator (mainly for testing). 264 */ 265 #if !defined(LUA_RAND32) && !defined(Rand64) 266 267 /* try to find an integer type with at least 64 bits */ 268 269 #if (ULONG_MAX >> 31 >> 31) >= 3 270 271 /* 'long' has at least 64 bits */ 272 #define Rand64 unsigned long 273 274 #elif !defined(LUA_USE_C89) && defined(LLONG_MAX) 275 276 /* there is a 'long long' type (which must have at least 64 bits) */ 277 #define Rand64 unsigned long long 278 279 #elif (LUA_MAXUNSIGNED >> 31 >> 31) >= 3 280 281 /* 'lua_Integer' has at least 64 bits */ 282 #define Rand64 lua_Unsigned 283 284 #endif 285 286 #endif 287 288 289 #if defined(Rand64) /* { */ 290 291 /* 292 ** Standard implementation, using 64-bit integers. 293 ** If 'Rand64' has more than 64 bits, the extra bits do not interfere 294 ** with the 64 initial bits, except in a right shift. Moreover, the 295 ** final result has to discard the extra bits. 296 */ 297 298 /* avoid using extra bits when needed */ 299 #define trim64(x) ((x) & 0xffffffffffffffffu) 300 301 302 /* rotate left 'x' by 'n' bits */ 303 static Rand64 rotl (Rand64 x, int n) { 304 return (x << n) | (trim64(x) >> (64 - n)); 305 } 306 307 static Rand64 nextrand (Rand64 *state) { 308 Rand64 state0 = state[0]; 309 Rand64 state1 = state[1]; 310 Rand64 state2 = state[2] ^ state0; 311 Rand64 state3 = state[3] ^ state1; 312 Rand64 res = rotl(state1 * 5, 7) * 9; 313 state[0] = state0 ^ state3; 314 state[1] = state1 ^ state2; 315 state[2] = state2 ^ (state1 << 17); 316 state[3] = rotl(state3, 45); 317 return res; 318 } 319 320 321 /* must take care to not shift stuff by more than 63 slots */ 322 323 324 /* 325 ** Convert bits from a random integer into a float in the 326 ** interval [0,1), getting the higher FIG bits from the 327 ** random unsigned integer and converting that to a float. 328 */ 329 330 /* must throw out the extra (64 - FIGS) bits */ 331 #define shift64_FIG (64 - FIGS) 332 333 /* to scale to [0, 1), multiply by scaleFIG = 2^(-FIGS) */ 334 #define scaleFIG (l_mathop(0.5) / ((Rand64)1 << (FIGS - 1))) 335 336 static lua_Number I2d (Rand64 x) { 337 return (lua_Number)(trim64(x) >> shift64_FIG) * scaleFIG; 338 } 339 340 /* convert a 'Rand64' to a 'lua_Unsigned' */ 341 #define I2UInt(x) ((lua_Unsigned)trim64(x)) 342 343 /* convert a 'lua_Unsigned' to a 'Rand64' */ 344 #define Int2I(x) ((Rand64)(x)) 345 346 347 #else /* no 'Rand64' }{ */ 348 349 /* get an integer with at least 32 bits */ 350 #if LUAI_IS32INT 351 typedef unsigned int lu_int32; 352 #else 353 typedef unsigned long lu_int32; 354 #endif 355 356 357 /* 358 ** Use two 32-bit integers to represent a 64-bit quantity. 359 */ 360 typedef struct Rand64 { 361 lu_int32 h; /* higher half */ 362 lu_int32 l; /* lower half */ 363 } Rand64; 364 365 366 /* 367 ** If 'lu_int32' has more than 32 bits, the extra bits do not interfere 368 ** with the 32 initial bits, except in a right shift and comparisons. 369 ** Moreover, the final result has to discard the extra bits. 370 */ 371 372 /* avoid using extra bits when needed */ 373 #define trim32(x) ((x) & 0xffffffffu) 374 375 376 /* 377 ** basic operations on 'Rand64' values 378 */ 379 380 /* build a new Rand64 value */ 381 static Rand64 packI (lu_int32 h, lu_int32 l) { 382 Rand64 result; 383 result.h = h; 384 result.l = l; 385 return result; 386 } 387 388 /* return i << n */ 389 static Rand64 Ishl (Rand64 i, int n) { 390 lua_assert(n > 0 && n < 32); 391 return packI((i.h << n) | (trim32(i.l) >> (32 - n)), i.l << n); 392 } 393 394 /* i1 ^= i2 */ 395 static void Ixor (Rand64 *i1, Rand64 i2) { 396 i1->h ^= i2.h; 397 i1->l ^= i2.l; 398 } 399 400 /* return i1 + i2 */ 401 static Rand64 Iadd (Rand64 i1, Rand64 i2) { 402 Rand64 result = packI(i1.h + i2.h, i1.l + i2.l); 403 if (trim32(result.l) < trim32(i1.l)) /* carry? */ 404 result.h++; 405 return result; 406 } 407 408 /* return i * 5 */ 409 static Rand64 times5 (Rand64 i) { 410 return Iadd(Ishl(i, 2), i); /* i * 5 == (i << 2) + i */ 411 } 412 413 /* return i * 9 */ 414 static Rand64 times9 (Rand64 i) { 415 return Iadd(Ishl(i, 3), i); /* i * 9 == (i << 3) + i */ 416 } 417 418 /* return 'i' rotated left 'n' bits */ 419 static Rand64 rotl (Rand64 i, int n) { 420 lua_assert(n > 0 && n < 32); 421 return packI((i.h << n) | (trim32(i.l) >> (32 - n)), 422 (trim32(i.h) >> (32 - n)) | (i.l << n)); 423 } 424 425 /* for offsets larger than 32, rotate right by 64 - offset */ 426 static Rand64 rotl1 (Rand64 i, int n) { 427 lua_assert(n > 32 && n < 64); 428 n = 64 - n; 429 return packI((trim32(i.h) >> n) | (i.l << (32 - n)), 430 (i.h << (32 - n)) | (trim32(i.l) >> n)); 431 } 432 433 /* 434 ** implementation of 'xoshiro256**' algorithm on 'Rand64' values 435 */ 436 static Rand64 nextrand (Rand64 *state) { 437 Rand64 res = times9(rotl(times5(state[1]), 7)); 438 Rand64 t = Ishl(state[1], 17); 439 Ixor(&state[2], state[0]); 440 Ixor(&state[3], state[1]); 441 Ixor(&state[1], state[2]); 442 Ixor(&state[0], state[3]); 443 Ixor(&state[2], t); 444 state[3] = rotl1(state[3], 45); 445 return res; 446 } 447 448 449 /* 450 ** Converts a 'Rand64' into a float. 451 */ 452 453 /* an unsigned 1 with proper type */ 454 #define UONE ((lu_int32)1) 455 456 457 #if FIGS <= 32 458 459 /* 2^(-FIGS) */ 460 #define scaleFIG (l_mathop(0.5) / (UONE << (FIGS - 1))) 461 462 /* 463 ** get up to 32 bits from higher half, shifting right to 464 ** throw out the extra bits. 465 */ 466 static lua_Number I2d (Rand64 x) { 467 lua_Number h = (lua_Number)(trim32(x.h) >> (32 - FIGS)); 468 return h * scaleFIG; 469 } 470 471 #else /* 32 < FIGS <= 64 */ 472 473 /* must take care to not shift stuff by more than 31 slots */ 474 475 /* 2^(-FIGS) = 1.0 / 2^30 / 2^3 / 2^(FIGS-33) */ 476 #define scaleFIG \ 477 ((lua_Number)1.0 / (UONE << 30) / 8.0 / (UONE << (FIGS - 33))) 478 479 /* 480 ** use FIGS - 32 bits from lower half, throwing out the other 481 ** (32 - (FIGS - 32)) = (64 - FIGS) bits 482 */ 483 #define shiftLOW (64 - FIGS) 484 485 /* 486 ** higher 32 bits go after those (FIGS - 32) bits: shiftHI = 2^(FIGS - 32) 487 */ 488 #define shiftHI ((lua_Number)(UONE << (FIGS - 33)) * 2.0) 489 490 491 static lua_Number I2d (Rand64 x) { 492 lua_Number h = (lua_Number)trim32(x.h) * shiftHI; 493 lua_Number l = (lua_Number)(trim32(x.l) >> shiftLOW); 494 return (h + l) * scaleFIG; 495 } 496 497 #endif 498 499 500 /* convert a 'Rand64' to a 'lua_Unsigned' */ 501 static lua_Unsigned I2UInt (Rand64 x) { 502 return ((lua_Unsigned)trim32(x.h) << 31 << 1) | (lua_Unsigned)trim32(x.l); 503 } 504 505 /* convert a 'lua_Unsigned' to a 'Rand64' */ 506 static Rand64 Int2I (lua_Unsigned n) { 507 return packI((lu_int32)(n >> 31 >> 1), (lu_int32)n); 508 } 509 510 #endif /* } */ 511 512 513 /* 514 ** A state uses four 'Rand64' values. 515 */ 516 typedef struct { 517 Rand64 s[4]; 518 } RanState; 519 520 521 /* 522 ** Project the random integer 'ran' into the interval [0, n]. 523 ** Because 'ran' has 2^B possible values, the projection can only be 524 ** uniform when the size of the interval is a power of 2 (exact 525 ** division). Otherwise, to get a uniform projection into [0, n], we 526 ** first compute 'lim', the smallest Mersenne number not smaller than 527 ** 'n'. We then project 'ran' into the interval [0, lim]. If the result 528 ** is inside [0, n], we are done. Otherwise, we try with another 'ran', 529 ** until we have a result inside the interval. 530 */ 531 static lua_Unsigned project (lua_Unsigned ran, lua_Unsigned n, 532 RanState *state) { 533 if ((n & (n + 1)) == 0) /* is 'n + 1' a power of 2? */ 534 return ran & n; /* no bias */ 535 else { 536 lua_Unsigned lim = n; 537 /* compute the smallest (2^b - 1) not smaller than 'n' */ 538 lim |= (lim >> 1); 539 lim |= (lim >> 2); 540 lim |= (lim >> 4); 541 lim |= (lim >> 8); 542 lim |= (lim >> 16); 543 #if (LUA_MAXUNSIGNED >> 31) >= 3 544 lim |= (lim >> 32); /* integer type has more than 32 bits */ 545 #endif 546 lua_assert((lim & (lim + 1)) == 0 /* 'lim + 1' is a power of 2, */ 547 && lim >= n /* not smaller than 'n', */ 548 && (lim >> 1) < n); /* and it is the smallest one */ 549 while ((ran &= lim) > n) /* project 'ran' into [0..lim] */ 550 ran = I2UInt(nextrand(state->s)); /* not inside [0..n]? try again */ 551 return ran; 552 } 553 } 554 555 556 static int math_random (lua_State *L) { 557 lua_Integer low, up; 558 lua_Unsigned p; 559 RanState *state = (RanState *)lua_touserdata(L, lua_upvalueindex(1)); 560 Rand64 rv = nextrand(state->s); /* next pseudo-random value */ 561 switch (lua_gettop(L)) { /* check number of arguments */ 562 case 0: { /* no arguments */ 563 lua_pushnumber(L, I2d(rv)); /* float between 0 and 1 */ 564 return 1; 565 } 566 case 1: { /* only upper limit */ 567 low = 1; 568 up = luaL_checkinteger(L, 1); 569 if (up == 0) { /* single 0 as argument? */ 570 lua_pushinteger(L, I2UInt(rv)); /* full random integer */ 571 return 1; 572 } 573 break; 574 } 575 case 2: { /* lower and upper limits */ 576 low = luaL_checkinteger(L, 1); 577 up = luaL_checkinteger(L, 2); 578 break; 579 } 580 default: return luaL_error(L, "wrong number of arguments"); 581 } 582 /* random integer in the interval [low, up] */ 583 luaL_argcheck(L, low <= up, 1, "interval is empty"); 584 /* project random integer into the interval [0, up - low] */ 585 p = project(I2UInt(rv), (lua_Unsigned)up - (lua_Unsigned)low, state); 586 lua_pushinteger(L, p + (lua_Unsigned)low); 587 return 1; 588 } 589 590 591 static void setseed (lua_State *L, Rand64 *state, 592 lua_Unsigned n1, lua_Unsigned n2) { 593 int i; 594 state[0] = Int2I(n1); 595 state[1] = Int2I(0xff); /* avoid a zero state */ 596 state[2] = Int2I(n2); 597 state[3] = Int2I(0); 598 for (i = 0; i < 16; i++) 599 nextrand(state); /* discard initial values to "spread" seed */ 600 lua_pushinteger(L, n1); 601 lua_pushinteger(L, n2); 602 } 603 604 605 /* 606 ** Set a "random" seed. To get some randomness, use the current time 607 ** and the address of 'L' (in case the machine does address space layout 608 ** randomization). 609 */ 610 static void randseed (lua_State *L, RanState *state) { 611 lua_Unsigned seed1 = (lua_Unsigned)time(NULL); 612 lua_Unsigned seed2 = (lua_Unsigned)(size_t)L; 613 setseed(L, state->s, seed1, seed2); 614 } 615 616 617 static int math_randomseed (lua_State *L) { 618 RanState *state = (RanState *)lua_touserdata(L, lua_upvalueindex(1)); 619 if (lua_isnone(L, 1)) { 620 randseed(L, state); 621 } 622 else { 623 lua_Integer n1 = luaL_checkinteger(L, 1); 624 lua_Integer n2 = luaL_optinteger(L, 2, 0); 625 setseed(L, state->s, n1, n2); 626 } 627 return 2; /* return seeds */ 628 } 629 630 631 static const luaL_Reg randfuncs[] = { 632 {"random", math_random}, 633 {"randomseed", math_randomseed}, 634 {NULL, NULL} 635 }; 636 637 638 /* 639 ** Register the random functions and initialize their state. 640 */ 641 static void setrandfunc (lua_State *L) { 642 RanState *state = (RanState *)lua_newuserdatauv(L, sizeof(RanState), 0); 643 randseed(L, state); /* initialize with a "random" seed */ 644 lua_pop(L, 2); /* remove pushed seeds */ 645 luaL_setfuncs(L, randfuncs, 1); 646 } 647 648 /* }================================================================== */ 649 650 651 /* 652 ** {================================================================== 653 ** Deprecated functions (for compatibility only) 654 ** =================================================================== 655 */ 656 #if defined(LUA_COMPAT_MATHLIB) 657 658 static int math_cosh (lua_State *L) { 659 lua_pushnumber(L, l_mathop(cosh)(luaL_checknumber(L, 1))); 660 return 1; 661 } 662 663 static int math_sinh (lua_State *L) { 664 lua_pushnumber(L, l_mathop(sinh)(luaL_checknumber(L, 1))); 665 return 1; 666 } 667 668 static int math_tanh (lua_State *L) { 669 lua_pushnumber(L, l_mathop(tanh)(luaL_checknumber(L, 1))); 670 return 1; 671 } 672 673 static int math_pow (lua_State *L) { 674 lua_Number x = luaL_checknumber(L, 1); 675 lua_Number y = luaL_checknumber(L, 2); 676 lua_pushnumber(L, l_mathop(pow)(x, y)); 677 return 1; 678 } 679 680 static int math_frexp (lua_State *L) { 681 int e; 682 lua_pushnumber(L, l_mathop(frexp)(luaL_checknumber(L, 1), &e)); 683 lua_pushinteger(L, e); 684 return 2; 685 } 686 687 static int math_ldexp (lua_State *L) { 688 lua_Number x = luaL_checknumber(L, 1); 689 int ep = (int)luaL_checkinteger(L, 2); 690 lua_pushnumber(L, l_mathop(ldexp)(x, ep)); 691 return 1; 692 } 693 694 static int math_log10 (lua_State *L) { 695 lua_pushnumber(L, l_mathop(log10)(luaL_checknumber(L, 1))); 696 return 1; 697 } 698 699 #endif 700 /* }================================================================== */ 701 702 703 704 static const luaL_Reg mathlib[] = { 705 {"abs", math_abs}, 706 {"acos", math_acos}, 707 {"asin", math_asin}, 708 {"atan", math_atan}, 709 {"ceil", math_ceil}, 710 {"cos", math_cos}, 711 {"deg", math_deg}, 712 {"exp", math_exp}, 713 {"tointeger", math_toint}, 714 {"floor", math_floor}, 715 {"fmod", math_fmod}, 716 {"ult", math_ult}, 717 {"log", math_log}, 718 {"max", math_max}, 719 {"min", math_min}, 720 {"modf", math_modf}, 721 {"rad", math_rad}, 722 {"sin", math_sin}, 723 {"sqrt", math_sqrt}, 724 {"tan", math_tan}, 725 {"type", math_type}, 726 #if defined(LUA_COMPAT_MATHLIB) 727 {"atan2", math_atan}, 728 {"cosh", math_cosh}, 729 {"sinh", math_sinh}, 730 {"tanh", math_tanh}, 731 {"pow", math_pow}, 732 {"frexp", math_frexp}, 733 {"ldexp", math_ldexp}, 734 {"log10", math_log10}, 735 #endif 736 /* placeholders */ 737 {"random", NULL}, 738 {"randomseed", NULL}, 739 {"pi", NULL}, 740 {"huge", NULL}, 741 {"maxinteger", NULL}, 742 {"mininteger", NULL}, 743 {NULL, NULL} 744 }; 745 746 747 /* 748 ** Open math library 749 */ 750 LUAMOD_API int luaopen_math (lua_State *L) { 751 luaL_newlib(L, mathlib); 752 lua_pushnumber(L, PI); 753 lua_setfield(L, -2, "pi"); 754 lua_pushnumber(L, (lua_Number)HUGE_VAL); 755 lua_setfield(L, -2, "huge"); 756 lua_pushinteger(L, LUA_MAXINTEGER); 757 lua_setfield(L, -2, "maxinteger"); 758 lua_pushinteger(L, LUA_MININTEGER); 759 lua_setfield(L, -2, "mininteger"); 760 setrandfunc(L); 761 return 1; 762 } 763 764