1 /* 2 ** $Id: lmathlib.c $ 3 ** Standard mathematical library 4 ** See Copyright Notice in lua.h 5 */ 6 7 #define lmathlib_c 8 #define LUA_LIB 9 10 #include "lprefix.h" 11 12 13 #include <float.h> 14 #include <limits.h> 15 #include <math.h> 16 #include <stdlib.h> 17 #include <time.h> 18 19 #include "lua.h" 20 21 #include "lauxlib.h" 22 #include "lualib.h" 23 24 25 #undef PI 26 #define PI (l_mathop(3.141592653589793238462643383279502884)) 27 28 29 static int math_abs (lua_State *L) { 30 if (lua_isinteger(L, 1)) { 31 lua_Integer n = lua_tointeger(L, 1); 32 if (n < 0) n = (lua_Integer)(0u - (lua_Unsigned)n); 33 lua_pushinteger(L, n); 34 } 35 else 36 lua_pushnumber(L, l_mathop(fabs)(luaL_checknumber(L, 1))); 37 return 1; 38 } 39 40 static int math_sin (lua_State *L) { 41 lua_pushnumber(L, l_mathop(sin)(luaL_checknumber(L, 1))); 42 return 1; 43 } 44 45 static int math_cos (lua_State *L) { 46 lua_pushnumber(L, l_mathop(cos)(luaL_checknumber(L, 1))); 47 return 1; 48 } 49 50 static int math_tan (lua_State *L) { 51 lua_pushnumber(L, l_mathop(tan)(luaL_checknumber(L, 1))); 52 return 1; 53 } 54 55 static int math_asin (lua_State *L) { 56 lua_pushnumber(L, l_mathop(asin)(luaL_checknumber(L, 1))); 57 return 1; 58 } 59 60 static int math_acos (lua_State *L) { 61 lua_pushnumber(L, l_mathop(acos)(luaL_checknumber(L, 1))); 62 return 1; 63 } 64 65 static int math_atan (lua_State *L) { 66 lua_Number y = luaL_checknumber(L, 1); 67 lua_Number x = luaL_optnumber(L, 2, 1); 68 lua_pushnumber(L, l_mathop(atan2)(y, x)); 69 return 1; 70 } 71 72 73 static int math_toint (lua_State *L) { 74 int valid; 75 lua_Integer n = lua_tointegerx(L, 1, &valid); 76 if (l_likely(valid)) 77 lua_pushinteger(L, n); 78 else { 79 luaL_checkany(L, 1); 80 luaL_pushfail(L); /* value is not convertible to integer */ 81 } 82 return 1; 83 } 84 85 86 static void pushnumint (lua_State *L, lua_Number d) { 87 lua_Integer n; 88 if (lua_numbertointeger(d, &n)) /* does 'd' fit in an integer? */ 89 lua_pushinteger(L, n); /* result is integer */ 90 else 91 lua_pushnumber(L, d); /* result is float */ 92 } 93 94 95 static int math_floor (lua_State *L) { 96 if (lua_isinteger(L, 1)) 97 lua_settop(L, 1); /* integer is its own floor */ 98 else { 99 lua_Number d = l_mathop(floor)(luaL_checknumber(L, 1)); 100 pushnumint(L, d); 101 } 102 return 1; 103 } 104 105 106 static int math_ceil (lua_State *L) { 107 if (lua_isinteger(L, 1)) 108 lua_settop(L, 1); /* integer is its own ceil */ 109 else { 110 lua_Number d = l_mathop(ceil)(luaL_checknumber(L, 1)); 111 pushnumint(L, d); 112 } 113 return 1; 114 } 115 116 117 static int math_fmod (lua_State *L) { 118 if (lua_isinteger(L, 1) && lua_isinteger(L, 2)) { 119 lua_Integer d = lua_tointeger(L, 2); 120 if ((lua_Unsigned)d + 1u <= 1u) { /* special cases: -1 or 0 */ 121 luaL_argcheck(L, d != 0, 2, "zero"); 122 lua_pushinteger(L, 0); /* avoid overflow with 0x80000... / -1 */ 123 } 124 else 125 lua_pushinteger(L, lua_tointeger(L, 1) % d); 126 } 127 else 128 lua_pushnumber(L, l_mathop(fmod)(luaL_checknumber(L, 1), 129 luaL_checknumber(L, 2))); 130 return 1; 131 } 132 133 134 /* 135 ** next function does not use 'modf', avoiding problems with 'double*' 136 ** (which is not compatible with 'float*') when lua_Number is not 137 ** 'double'. 138 */ 139 static int math_modf (lua_State *L) { 140 if (lua_isinteger(L ,1)) { 141 lua_settop(L, 1); /* number is its own integer part */ 142 lua_pushnumber(L, 0); /* no fractional part */ 143 } 144 else { 145 lua_Number n = luaL_checknumber(L, 1); 146 /* integer part (rounds toward zero) */ 147 lua_Number ip = (n < 0) ? l_mathop(ceil)(n) : l_mathop(floor)(n); 148 pushnumint(L, ip); 149 /* fractional part (test needed for inf/-inf) */ 150 lua_pushnumber(L, (n == ip) ? l_mathop(0.0) : (n - ip)); 151 } 152 return 2; 153 } 154 155 156 static int math_sqrt (lua_State *L) { 157 lua_pushnumber(L, l_mathop(sqrt)(luaL_checknumber(L, 1))); 158 return 1; 159 } 160 161 162 static int math_ult (lua_State *L) { 163 lua_Integer a = luaL_checkinteger(L, 1); 164 lua_Integer b = luaL_checkinteger(L, 2); 165 lua_pushboolean(L, (lua_Unsigned)a < (lua_Unsigned)b); 166 return 1; 167 } 168 169 static int math_log (lua_State *L) { 170 lua_Number x = luaL_checknumber(L, 1); 171 lua_Number res; 172 if (lua_isnoneornil(L, 2)) 173 res = l_mathop(log)(x); 174 else { 175 lua_Number base = luaL_checknumber(L, 2); 176 #if !defined(LUA_USE_C89) 177 if (base == l_mathop(2.0)) 178 res = l_mathop(log2)(x); 179 else 180 #endif 181 if (base == l_mathop(10.0)) 182 res = l_mathop(log10)(x); 183 else 184 res = l_mathop(log)(x)/l_mathop(log)(base); 185 } 186 lua_pushnumber(L, res); 187 return 1; 188 } 189 190 static int math_exp (lua_State *L) { 191 lua_pushnumber(L, l_mathop(exp)(luaL_checknumber(L, 1))); 192 return 1; 193 } 194 195 static int math_deg (lua_State *L) { 196 lua_pushnumber(L, luaL_checknumber(L, 1) * (l_mathop(180.0) / PI)); 197 return 1; 198 } 199 200 static int math_rad (lua_State *L) { 201 lua_pushnumber(L, luaL_checknumber(L, 1) * (PI / l_mathop(180.0))); 202 return 1; 203 } 204 205 206 static int math_min (lua_State *L) { 207 int n = lua_gettop(L); /* number of arguments */ 208 int imin = 1; /* index of current minimum value */ 209 int i; 210 luaL_argcheck(L, n >= 1, 1, "value expected"); 211 for (i = 2; i <= n; i++) { 212 if (lua_compare(L, i, imin, LUA_OPLT)) 213 imin = i; 214 } 215 lua_pushvalue(L, imin); 216 return 1; 217 } 218 219 220 static int math_max (lua_State *L) { 221 int n = lua_gettop(L); /* number of arguments */ 222 int imax = 1; /* index of current maximum value */ 223 int i; 224 luaL_argcheck(L, n >= 1, 1, "value expected"); 225 for (i = 2; i <= n; i++) { 226 if (lua_compare(L, imax, i, LUA_OPLT)) 227 imax = i; 228 } 229 lua_pushvalue(L, imax); 230 return 1; 231 } 232 233 234 static int math_type (lua_State *L) { 235 if (lua_type(L, 1) == LUA_TNUMBER) 236 lua_pushstring(L, (lua_isinteger(L, 1)) ? "integer" : "float"); 237 else { 238 luaL_checkany(L, 1); 239 luaL_pushfail(L); 240 } 241 return 1; 242 } 243 244 245 246 /* 247 ** {================================================================== 248 ** Pseudo-Random Number Generator based on 'xoshiro256**'. 249 ** =================================================================== 250 */ 251 252 /* 253 ** This code uses lots of shifts. ANSI C does not allow shifts greater 254 ** than or equal to the width of the type being shifted, so some shifts 255 ** are written in convoluted ways to match that restriction. For 256 ** preprocessor tests, it assumes a width of 32 bits, so the maximum 257 ** shift there is 31 bits. 258 */ 259 260 261 /* number of binary digits in the mantissa of a float */ 262 #define FIGS l_floatatt(MANT_DIG) 263 264 #if FIGS > 64 265 /* there are only 64 random bits; use them all */ 266 #undef FIGS 267 #define FIGS 64 268 #endif 269 270 271 /* 272 ** LUA_RAND32 forces the use of 32-bit integers in the implementation 273 ** of the PRN generator (mainly for testing). 274 */ 275 #if !defined(LUA_RAND32) && !defined(Rand64) 276 277 /* try to find an integer type with at least 64 bits */ 278 279 #if ((ULONG_MAX >> 31) >> 31) >= 3 280 281 /* 'long' has at least 64 bits */ 282 #define Rand64 unsigned long 283 #define SRand64 long 284 285 #elif !defined(LUA_USE_C89) && defined(LLONG_MAX) 286 287 /* there is a 'long long' type (which must have at least 64 bits) */ 288 #define Rand64 unsigned long long 289 #define SRand64 long long 290 291 #elif ((LUA_MAXUNSIGNED >> 31) >> 31) >= 3 292 293 /* 'lua_Unsigned' has at least 64 bits */ 294 #define Rand64 lua_Unsigned 295 #define SRand64 lua_Integer 296 297 #endif 298 299 #endif 300 301 302 #if defined(Rand64) /* { */ 303 304 /* 305 ** Standard implementation, using 64-bit integers. 306 ** If 'Rand64' has more than 64 bits, the extra bits do not interfere 307 ** with the 64 initial bits, except in a right shift. Moreover, the 308 ** final result has to discard the extra bits. 309 */ 310 311 /* avoid using extra bits when needed */ 312 #define trim64(x) ((x) & 0xffffffffffffffffu) 313 314 315 /* rotate left 'x' by 'n' bits */ 316 static Rand64 rotl (Rand64 x, int n) { 317 return (x << n) | (trim64(x) >> (64 - n)); 318 } 319 320 static Rand64 nextrand (Rand64 *state) { 321 Rand64 state0 = state[0]; 322 Rand64 state1 = state[1]; 323 Rand64 state2 = state[2] ^ state0; 324 Rand64 state3 = state[3] ^ state1; 325 Rand64 res = rotl(state1 * 5, 7) * 9; 326 state[0] = state0 ^ state3; 327 state[1] = state1 ^ state2; 328 state[2] = state2 ^ (state1 << 17); 329 state[3] = rotl(state3, 45); 330 return res; 331 } 332 333 334 /* 335 ** Convert bits from a random integer into a float in the 336 ** interval [0,1), getting the higher FIG bits from the 337 ** random unsigned integer and converting that to a float. 338 ** Some old Microsoft compilers cannot cast an unsigned long 339 ** to a floating-point number, so we use a signed long as an 340 ** intermediary. When lua_Number is float or double, the shift ensures 341 ** that 'sx' is non negative; in that case, a good compiler will remove 342 ** the correction. 343 */ 344 345 /* must throw out the extra (64 - FIGS) bits */ 346 #define shift64_FIG (64 - FIGS) 347 348 /* 2^(-FIGS) == 2^-1 / 2^(FIGS-1) */ 349 #define scaleFIG (l_mathop(0.5) / ((Rand64)1 << (FIGS - 1))) 350 351 static lua_Number I2d (Rand64 x) { 352 SRand64 sx = (SRand64)(trim64(x) >> shift64_FIG); 353 lua_Number res = (lua_Number)(sx) * scaleFIG; 354 if (sx < 0) 355 res += l_mathop(1.0); /* correct the two's complement if negative */ 356 lua_assert(0 <= res && res < 1); 357 return res; 358 } 359 360 /* convert a 'Rand64' to a 'lua_Unsigned' */ 361 #define I2UInt(x) ((lua_Unsigned)trim64(x)) 362 363 /* convert a 'lua_Unsigned' to a 'Rand64' */ 364 #define Int2I(x) ((Rand64)(x)) 365 366 367 #else /* no 'Rand64' }{ */ 368 369 /* get an integer with at least 32 bits */ 370 #if LUAI_IS32INT 371 typedef unsigned int lu_int32; 372 #else 373 typedef unsigned long lu_int32; 374 #endif 375 376 377 /* 378 ** Use two 32-bit integers to represent a 64-bit quantity. 379 */ 380 typedef struct Rand64 { 381 lu_int32 h; /* higher half */ 382 lu_int32 l; /* lower half */ 383 } Rand64; 384 385 386 /* 387 ** If 'lu_int32' has more than 32 bits, the extra bits do not interfere 388 ** with the 32 initial bits, except in a right shift and comparisons. 389 ** Moreover, the final result has to discard the extra bits. 390 */ 391 392 /* avoid using extra bits when needed */ 393 #define trim32(x) ((x) & 0xffffffffu) 394 395 396 /* 397 ** basic operations on 'Rand64' values 398 */ 399 400 /* build a new Rand64 value */ 401 static Rand64 packI (lu_int32 h, lu_int32 l) { 402 Rand64 result; 403 result.h = h; 404 result.l = l; 405 return result; 406 } 407 408 /* return i << n */ 409 static Rand64 Ishl (Rand64 i, int n) { 410 lua_assert(n > 0 && n < 32); 411 return packI((i.h << n) | (trim32(i.l) >> (32 - n)), i.l << n); 412 } 413 414 /* i1 ^= i2 */ 415 static void Ixor (Rand64 *i1, Rand64 i2) { 416 i1->h ^= i2.h; 417 i1->l ^= i2.l; 418 } 419 420 /* return i1 + i2 */ 421 static Rand64 Iadd (Rand64 i1, Rand64 i2) { 422 Rand64 result = packI(i1.h + i2.h, i1.l + i2.l); 423 if (trim32(result.l) < trim32(i1.l)) /* carry? */ 424 result.h++; 425 return result; 426 } 427 428 /* return i * 5 */ 429 static Rand64 times5 (Rand64 i) { 430 return Iadd(Ishl(i, 2), i); /* i * 5 == (i << 2) + i */ 431 } 432 433 /* return i * 9 */ 434 static Rand64 times9 (Rand64 i) { 435 return Iadd(Ishl(i, 3), i); /* i * 9 == (i << 3) + i */ 436 } 437 438 /* return 'i' rotated left 'n' bits */ 439 static Rand64 rotl (Rand64 i, int n) { 440 lua_assert(n > 0 && n < 32); 441 return packI((i.h << n) | (trim32(i.l) >> (32 - n)), 442 (trim32(i.h) >> (32 - n)) | (i.l << n)); 443 } 444 445 /* for offsets larger than 32, rotate right by 64 - offset */ 446 static Rand64 rotl1 (Rand64 i, int n) { 447 lua_assert(n > 32 && n < 64); 448 n = 64 - n; 449 return packI((trim32(i.h) >> n) | (i.l << (32 - n)), 450 (i.h << (32 - n)) | (trim32(i.l) >> n)); 451 } 452 453 /* 454 ** implementation of 'xoshiro256**' algorithm on 'Rand64' values 455 */ 456 static Rand64 nextrand (Rand64 *state) { 457 Rand64 res = times9(rotl(times5(state[1]), 7)); 458 Rand64 t = Ishl(state[1], 17); 459 Ixor(&state[2], state[0]); 460 Ixor(&state[3], state[1]); 461 Ixor(&state[1], state[2]); 462 Ixor(&state[0], state[3]); 463 Ixor(&state[2], t); 464 state[3] = rotl1(state[3], 45); 465 return res; 466 } 467 468 469 /* 470 ** Converts a 'Rand64' into a float. 471 */ 472 473 /* an unsigned 1 with proper type */ 474 #define UONE ((lu_int32)1) 475 476 477 #if FIGS <= 32 478 479 /* 2^(-FIGS) */ 480 #define scaleFIG (l_mathop(0.5) / (UONE << (FIGS - 1))) 481 482 /* 483 ** get up to 32 bits from higher half, shifting right to 484 ** throw out the extra bits. 485 */ 486 static lua_Number I2d (Rand64 x) { 487 lua_Number h = (lua_Number)(trim32(x.h) >> (32 - FIGS)); 488 return h * scaleFIG; 489 } 490 491 #else /* 32 < FIGS <= 64 */ 492 493 /* 2^(-FIGS) = 1.0 / 2^30 / 2^3 / 2^(FIGS-33) */ 494 #define scaleFIG \ 495 (l_mathop(1.0) / (UONE << 30) / l_mathop(8.0) / (UONE << (FIGS - 33))) 496 497 /* 498 ** use FIGS - 32 bits from lower half, throwing out the other 499 ** (32 - (FIGS - 32)) = (64 - FIGS) bits 500 */ 501 #define shiftLOW (64 - FIGS) 502 503 /* 504 ** higher 32 bits go after those (FIGS - 32) bits: shiftHI = 2^(FIGS - 32) 505 */ 506 #define shiftHI ((lua_Number)(UONE << (FIGS - 33)) * l_mathop(2.0)) 507 508 509 static lua_Number I2d (Rand64 x) { 510 lua_Number h = (lua_Number)trim32(x.h) * shiftHI; 511 lua_Number l = (lua_Number)(trim32(x.l) >> shiftLOW); 512 return (h + l) * scaleFIG; 513 } 514 515 #endif 516 517 518 /* convert a 'Rand64' to a 'lua_Unsigned' */ 519 static lua_Unsigned I2UInt (Rand64 x) { 520 return (((lua_Unsigned)trim32(x.h) << 31) << 1) | (lua_Unsigned)trim32(x.l); 521 } 522 523 /* convert a 'lua_Unsigned' to a 'Rand64' */ 524 static Rand64 Int2I (lua_Unsigned n) { 525 return packI((lu_int32)((n >> 31) >> 1), (lu_int32)n); 526 } 527 528 #endif /* } */ 529 530 531 /* 532 ** A state uses four 'Rand64' values. 533 */ 534 typedef struct { 535 Rand64 s[4]; 536 } RanState; 537 538 539 /* 540 ** Project the random integer 'ran' into the interval [0, n]. 541 ** Because 'ran' has 2^B possible values, the projection can only be 542 ** uniform when the size of the interval is a power of 2 (exact 543 ** division). Otherwise, to get a uniform projection into [0, n], we 544 ** first compute 'lim', the smallest Mersenne number not smaller than 545 ** 'n'. We then project 'ran' into the interval [0, lim]. If the result 546 ** is inside [0, n], we are done. Otherwise, we try with another 'ran', 547 ** until we have a result inside the interval. 548 */ 549 static lua_Unsigned project (lua_Unsigned ran, lua_Unsigned n, 550 RanState *state) { 551 if ((n & (n + 1)) == 0) /* is 'n + 1' a power of 2? */ 552 return ran & n; /* no bias */ 553 else { 554 lua_Unsigned lim = n; 555 /* compute the smallest (2^b - 1) not smaller than 'n' */ 556 lim |= (lim >> 1); 557 lim |= (lim >> 2); 558 lim |= (lim >> 4); 559 lim |= (lim >> 8); 560 lim |= (lim >> 16); 561 #if (LUA_MAXUNSIGNED >> 31) >= 3 562 lim |= (lim >> 32); /* integer type has more than 32 bits */ 563 #endif 564 lua_assert((lim & (lim + 1)) == 0 /* 'lim + 1' is a power of 2, */ 565 && lim >= n /* not smaller than 'n', */ 566 && (lim >> 1) < n); /* and it is the smallest one */ 567 while ((ran &= lim) > n) /* project 'ran' into [0..lim] */ 568 ran = I2UInt(nextrand(state->s)); /* not inside [0..n]? try again */ 569 return ran; 570 } 571 } 572 573 574 static int math_random (lua_State *L) { 575 lua_Integer low, up; 576 lua_Unsigned p; 577 RanState *state = (RanState *)lua_touserdata(L, lua_upvalueindex(1)); 578 Rand64 rv = nextrand(state->s); /* next pseudo-random value */ 579 switch (lua_gettop(L)) { /* check number of arguments */ 580 case 0: { /* no arguments */ 581 lua_pushnumber(L, I2d(rv)); /* float between 0 and 1 */ 582 return 1; 583 } 584 case 1: { /* only upper limit */ 585 low = 1; 586 up = luaL_checkinteger(L, 1); 587 if (up == 0) { /* single 0 as argument? */ 588 lua_pushinteger(L, I2UInt(rv)); /* full random integer */ 589 return 1; 590 } 591 break; 592 } 593 case 2: { /* lower and upper limits */ 594 low = luaL_checkinteger(L, 1); 595 up = luaL_checkinteger(L, 2); 596 break; 597 } 598 default: return luaL_error(L, "wrong number of arguments"); 599 } 600 /* random integer in the interval [low, up] */ 601 luaL_argcheck(L, low <= up, 1, "interval is empty"); 602 /* project random integer into the interval [0, up - low] */ 603 p = project(I2UInt(rv), (lua_Unsigned)up - (lua_Unsigned)low, state); 604 lua_pushinteger(L, p + (lua_Unsigned)low); 605 return 1; 606 } 607 608 609 static void setseed (lua_State *L, Rand64 *state, 610 lua_Unsigned n1, lua_Unsigned n2) { 611 int i; 612 state[0] = Int2I(n1); 613 state[1] = Int2I(0xff); /* avoid a zero state */ 614 state[2] = Int2I(n2); 615 state[3] = Int2I(0); 616 for (i = 0; i < 16; i++) 617 nextrand(state); /* discard initial values to "spread" seed */ 618 lua_pushinteger(L, n1); 619 lua_pushinteger(L, n2); 620 } 621 622 623 /* 624 ** Set a "random" seed. To get some randomness, use the current time 625 ** and the address of 'L' (in case the machine does address space layout 626 ** randomization). 627 */ 628 static void randseed (lua_State *L, RanState *state) { 629 lua_Unsigned seed1 = (lua_Unsigned)time(NULL); 630 lua_Unsigned seed2 = (lua_Unsigned)(size_t)L; 631 setseed(L, state->s, seed1, seed2); 632 } 633 634 635 static int math_randomseed (lua_State *L) { 636 RanState *state = (RanState *)lua_touserdata(L, lua_upvalueindex(1)); 637 if (lua_isnone(L, 1)) { 638 randseed(L, state); 639 } 640 else { 641 lua_Integer n1 = luaL_checkinteger(L, 1); 642 lua_Integer n2 = luaL_optinteger(L, 2, 0); 643 setseed(L, state->s, n1, n2); 644 } 645 return 2; /* return seeds */ 646 } 647 648 649 static const luaL_Reg randfuncs[] = { 650 {"random", math_random}, 651 {"randomseed", math_randomseed}, 652 {NULL, NULL} 653 }; 654 655 656 /* 657 ** Register the random functions and initialize their state. 658 */ 659 static void setrandfunc (lua_State *L) { 660 RanState *state = (RanState *)lua_newuserdatauv(L, sizeof(RanState), 0); 661 randseed(L, state); /* initialize with a "random" seed */ 662 lua_pop(L, 2); /* remove pushed seeds */ 663 luaL_setfuncs(L, randfuncs, 1); 664 } 665 666 /* }================================================================== */ 667 668 669 /* 670 ** {================================================================== 671 ** Deprecated functions (for compatibility only) 672 ** =================================================================== 673 */ 674 #if defined(LUA_COMPAT_MATHLIB) 675 676 static int math_cosh (lua_State *L) { 677 lua_pushnumber(L, l_mathop(cosh)(luaL_checknumber(L, 1))); 678 return 1; 679 } 680 681 static int math_sinh (lua_State *L) { 682 lua_pushnumber(L, l_mathop(sinh)(luaL_checknumber(L, 1))); 683 return 1; 684 } 685 686 static int math_tanh (lua_State *L) { 687 lua_pushnumber(L, l_mathop(tanh)(luaL_checknumber(L, 1))); 688 return 1; 689 } 690 691 static int math_pow (lua_State *L) { 692 lua_Number x = luaL_checknumber(L, 1); 693 lua_Number y = luaL_checknumber(L, 2); 694 lua_pushnumber(L, l_mathop(pow)(x, y)); 695 return 1; 696 } 697 698 static int math_frexp (lua_State *L) { 699 int e; 700 lua_pushnumber(L, l_mathop(frexp)(luaL_checknumber(L, 1), &e)); 701 lua_pushinteger(L, e); 702 return 2; 703 } 704 705 static int math_ldexp (lua_State *L) { 706 lua_Number x = luaL_checknumber(L, 1); 707 int ep = (int)luaL_checkinteger(L, 2); 708 lua_pushnumber(L, l_mathop(ldexp)(x, ep)); 709 return 1; 710 } 711 712 static int math_log10 (lua_State *L) { 713 lua_pushnumber(L, l_mathop(log10)(luaL_checknumber(L, 1))); 714 return 1; 715 } 716 717 #endif 718 /* }================================================================== */ 719 720 721 722 static const luaL_Reg mathlib[] = { 723 {"abs", math_abs}, 724 {"acos", math_acos}, 725 {"asin", math_asin}, 726 {"atan", math_atan}, 727 {"ceil", math_ceil}, 728 {"cos", math_cos}, 729 {"deg", math_deg}, 730 {"exp", math_exp}, 731 {"tointeger", math_toint}, 732 {"floor", math_floor}, 733 {"fmod", math_fmod}, 734 {"ult", math_ult}, 735 {"log", math_log}, 736 {"max", math_max}, 737 {"min", math_min}, 738 {"modf", math_modf}, 739 {"rad", math_rad}, 740 {"sin", math_sin}, 741 {"sqrt", math_sqrt}, 742 {"tan", math_tan}, 743 {"type", math_type}, 744 #if defined(LUA_COMPAT_MATHLIB) 745 {"atan2", math_atan}, 746 {"cosh", math_cosh}, 747 {"sinh", math_sinh}, 748 {"tanh", math_tanh}, 749 {"pow", math_pow}, 750 {"frexp", math_frexp}, 751 {"ldexp", math_ldexp}, 752 {"log10", math_log10}, 753 #endif 754 /* placeholders */ 755 {"random", NULL}, 756 {"randomseed", NULL}, 757 {"pi", NULL}, 758 {"huge", NULL}, 759 {"maxinteger", NULL}, 760 {"mininteger", NULL}, 761 {NULL, NULL} 762 }; 763 764 765 /* 766 ** Open math library 767 */ 768 LUAMOD_API int luaopen_math (lua_State *L) { 769 luaL_newlib(L, mathlib); 770 lua_pushnumber(L, PI); 771 lua_setfield(L, -2, "pi"); 772 lua_pushnumber(L, (lua_Number)HUGE_VAL); 773 lua_setfield(L, -2, "huge"); 774 lua_pushinteger(L, LUA_MAXINTEGER); 775 lua_setfield(L, -2, "maxinteger"); 776 lua_pushinteger(L, LUA_MININTEGER); 777 lua_setfield(L, -2, "mininteger"); 778 setrandfunc(L); 779 return 1; 780 } 781 782