xref: /freebsd/contrib/lua/src/lgc.c (revision f5f40dd63bc7acbb5312b26ac1ea1103c12352a6)
1 /*
2 ** $Id: lgc.c $
3 ** Garbage Collector
4 ** See Copyright Notice in lua.h
5 */
6 
7 #define lgc_c
8 #define LUA_CORE
9 
10 #include "lprefix.h"
11 
12 #include <stdio.h>
13 #include <string.h>
14 
15 
16 #include "lua.h"
17 
18 #include "ldebug.h"
19 #include "ldo.h"
20 #include "lfunc.h"
21 #include "lgc.h"
22 #include "lmem.h"
23 #include "lobject.h"
24 #include "lstate.h"
25 #include "lstring.h"
26 #include "ltable.h"
27 #include "ltm.h"
28 
29 
30 /*
31 ** Maximum number of elements to sweep in each single step.
32 ** (Large enough to dissipate fixed overheads but small enough
33 ** to allow small steps for the collector.)
34 */
35 #define GCSWEEPMAX	100
36 
37 /*
38 ** Maximum number of finalizers to call in each single step.
39 */
40 #define GCFINMAX	10
41 
42 
43 /*
44 ** Cost of calling one finalizer.
45 */
46 #define GCFINALIZECOST	50
47 
48 
49 /*
50 ** The equivalent, in bytes, of one unit of "work" (visiting a slot,
51 ** sweeping an object, etc.)
52 */
53 #define WORK2MEM	sizeof(TValue)
54 
55 
56 /*
57 ** macro to adjust 'pause': 'pause' is actually used like
58 ** 'pause / PAUSEADJ' (value chosen by tests)
59 */
60 #define PAUSEADJ		100
61 
62 
63 /* mask with all color bits */
64 #define maskcolors	(bitmask(BLACKBIT) | WHITEBITS)
65 
66 /* mask with all GC bits */
67 #define maskgcbits      (maskcolors | AGEBITS)
68 
69 
70 /* macro to erase all color bits then set only the current white bit */
71 #define makewhite(g,x)	\
72   (x->marked = cast_byte((x->marked & ~maskcolors) | luaC_white(g)))
73 
74 /* make an object gray (neither white nor black) */
75 #define set2gray(x)	resetbits(x->marked, maskcolors)
76 
77 
78 /* make an object black (coming from any color) */
79 #define set2black(x)  \
80   (x->marked = cast_byte((x->marked & ~WHITEBITS) | bitmask(BLACKBIT)))
81 
82 
83 #define valiswhite(x)   (iscollectable(x) && iswhite(gcvalue(x)))
84 
85 #define keyiswhite(n)   (keyiscollectable(n) && iswhite(gckey(n)))
86 
87 
88 /*
89 ** Protected access to objects in values
90 */
91 #define gcvalueN(o)     (iscollectable(o) ? gcvalue(o) : NULL)
92 
93 
94 #define markvalue(g,o) { checkliveness(g->mainthread,o); \
95   if (valiswhite(o)) reallymarkobject(g,gcvalue(o)); }
96 
97 #define markkey(g, n)	{ if keyiswhite(n) reallymarkobject(g,gckey(n)); }
98 
99 #define markobject(g,t)	{ if (iswhite(t)) reallymarkobject(g, obj2gco(t)); }
100 
101 /*
102 ** mark an object that can be NULL (either because it is really optional,
103 ** or it was stripped as debug info, or inside an uncompleted structure)
104 */
105 #define markobjectN(g,t)	{ if (t) markobject(g,t); }
106 
107 static void reallymarkobject (global_State *g, GCObject *o);
108 static lu_mem atomic (lua_State *L);
109 static void entersweep (lua_State *L);
110 
111 
112 /*
113 ** {======================================================
114 ** Generic functions
115 ** =======================================================
116 */
117 
118 
119 /*
120 ** one after last element in a hash array
121 */
122 #define gnodelast(h)	gnode(h, cast_sizet(sizenode(h)))
123 
124 
125 static GCObject **getgclist (GCObject *o) {
126   switch (o->tt) {
127     case LUA_VTABLE: return &gco2t(o)->gclist;
128     case LUA_VLCL: return &gco2lcl(o)->gclist;
129     case LUA_VCCL: return &gco2ccl(o)->gclist;
130     case LUA_VTHREAD: return &gco2th(o)->gclist;
131     case LUA_VPROTO: return &gco2p(o)->gclist;
132     case LUA_VUSERDATA: {
133       Udata *u = gco2u(o);
134       lua_assert(u->nuvalue > 0);
135       return &u->gclist;
136     }
137     default: lua_assert(0); return 0;
138   }
139 }
140 
141 
142 /*
143 ** Link a collectable object 'o' with a known type into the list 'p'.
144 ** (Must be a macro to access the 'gclist' field in different types.)
145 */
146 #define linkgclist(o,p)	linkgclist_(obj2gco(o), &(o)->gclist, &(p))
147 
148 static void linkgclist_ (GCObject *o, GCObject **pnext, GCObject **list) {
149   lua_assert(!isgray(o));  /* cannot be in a gray list */
150   *pnext = *list;
151   *list = o;
152   set2gray(o);  /* now it is */
153 }
154 
155 
156 /*
157 ** Link a generic collectable object 'o' into the list 'p'.
158 */
159 #define linkobjgclist(o,p) linkgclist_(obj2gco(o), getgclist(o), &(p))
160 
161 
162 
163 /*
164 ** Clear keys for empty entries in tables. If entry is empty, mark its
165 ** entry as dead. This allows the collection of the key, but keeps its
166 ** entry in the table: its removal could break a chain and could break
167 ** a table traversal.  Other places never manipulate dead keys, because
168 ** its associated empty value is enough to signal that the entry is
169 ** logically empty.
170 */
171 static void clearkey (Node *n) {
172   lua_assert(isempty(gval(n)));
173   if (keyiscollectable(n))
174     setdeadkey(n);  /* unused key; remove it */
175 }
176 
177 
178 /*
179 ** tells whether a key or value can be cleared from a weak
180 ** table. Non-collectable objects are never removed from weak
181 ** tables. Strings behave as 'values', so are never removed too. for
182 ** other objects: if really collected, cannot keep them; for objects
183 ** being finalized, keep them in keys, but not in values
184 */
185 static int iscleared (global_State *g, const GCObject *o) {
186   if (o == NULL) return 0;  /* non-collectable value */
187   else if (novariant(o->tt) == LUA_TSTRING) {
188     markobject(g, o);  /* strings are 'values', so are never weak */
189     return 0;
190   }
191   else return iswhite(o);
192 }
193 
194 
195 /*
196 ** Barrier that moves collector forward, that is, marks the white object
197 ** 'v' being pointed by the black object 'o'.  In the generational
198 ** mode, 'v' must also become old, if 'o' is old; however, it cannot
199 ** be changed directly to OLD, because it may still point to non-old
200 ** objects. So, it is marked as OLD0. In the next cycle it will become
201 ** OLD1, and in the next it will finally become OLD (regular old). By
202 ** then, any object it points to will also be old.  If called in the
203 ** incremental sweep phase, it clears the black object to white (sweep
204 ** it) to avoid other barrier calls for this same object. (That cannot
205 ** be done is generational mode, as its sweep does not distinguish
206 ** whites from deads.)
207 */
208 void luaC_barrier_ (lua_State *L, GCObject *o, GCObject *v) {
209   global_State *g = G(L);
210   lua_assert(isblack(o) && iswhite(v) && !isdead(g, v) && !isdead(g, o));
211   if (keepinvariant(g)) {  /* must keep invariant? */
212     reallymarkobject(g, v);  /* restore invariant */
213     if (isold(o)) {
214       lua_assert(!isold(v));  /* white object could not be old */
215       setage(v, G_OLD0);  /* restore generational invariant */
216     }
217   }
218   else {  /* sweep phase */
219     lua_assert(issweepphase(g));
220     if (g->gckind == KGC_INC)  /* incremental mode? */
221       makewhite(g, o);  /* mark 'o' as white to avoid other barriers */
222   }
223 }
224 
225 
226 /*
227 ** barrier that moves collector backward, that is, mark the black object
228 ** pointing to a white object as gray again.
229 */
230 void luaC_barrierback_ (lua_State *L, GCObject *o) {
231   global_State *g = G(L);
232   lua_assert(isblack(o) && !isdead(g, o));
233   lua_assert((g->gckind == KGC_GEN) == (isold(o) && getage(o) != G_TOUCHED1));
234   if (getage(o) == G_TOUCHED2)  /* already in gray list? */
235     set2gray(o);  /* make it gray to become touched1 */
236   else  /* link it in 'grayagain' and paint it gray */
237     linkobjgclist(o, g->grayagain);
238   if (isold(o))  /* generational mode? */
239     setage(o, G_TOUCHED1);  /* touched in current cycle */
240 }
241 
242 
243 void luaC_fix (lua_State *L, GCObject *o) {
244   global_State *g = G(L);
245   lua_assert(g->allgc == o);  /* object must be 1st in 'allgc' list! */
246   set2gray(o);  /* they will be gray forever */
247   setage(o, G_OLD);  /* and old forever */
248   g->allgc = o->next;  /* remove object from 'allgc' list */
249   o->next = g->fixedgc;  /* link it to 'fixedgc' list */
250   g->fixedgc = o;
251 }
252 
253 
254 /*
255 ** create a new collectable object (with given type, size, and offset)
256 ** and link it to 'allgc' list.
257 */
258 GCObject *luaC_newobjdt (lua_State *L, int tt, size_t sz, size_t offset) {
259   global_State *g = G(L);
260   char *p = cast_charp(luaM_newobject(L, novariant(tt), sz));
261   GCObject *o = cast(GCObject *, p + offset);
262   o->marked = luaC_white(g);
263   o->tt = tt;
264   o->next = g->allgc;
265   g->allgc = o;
266   return o;
267 }
268 
269 
270 GCObject *luaC_newobj (lua_State *L, int tt, size_t sz) {
271   return luaC_newobjdt(L, tt, sz, 0);
272 }
273 
274 /* }====================================================== */
275 
276 
277 
278 /*
279 ** {======================================================
280 ** Mark functions
281 ** =======================================================
282 */
283 
284 
285 /*
286 ** Mark an object.  Userdata with no user values, strings, and closed
287 ** upvalues are visited and turned black here.  Open upvalues are
288 ** already indirectly linked through their respective threads in the
289 ** 'twups' list, so they don't go to the gray list; nevertheless, they
290 ** are kept gray to avoid barriers, as their values will be revisited
291 ** by the thread or by 'remarkupvals'.  Other objects are added to the
292 ** gray list to be visited (and turned black) later.  Both userdata and
293 ** upvalues can call this function recursively, but this recursion goes
294 ** for at most two levels: An upvalue cannot refer to another upvalue
295 ** (only closures can), and a userdata's metatable must be a table.
296 */
297 static void reallymarkobject (global_State *g, GCObject *o) {
298   switch (o->tt) {
299     case LUA_VSHRSTR:
300     case LUA_VLNGSTR: {
301       set2black(o);  /* nothing to visit */
302       break;
303     }
304     case LUA_VUPVAL: {
305       UpVal *uv = gco2upv(o);
306       if (upisopen(uv))
307         set2gray(uv);  /* open upvalues are kept gray */
308       else
309         set2black(uv);  /* closed upvalues are visited here */
310       markvalue(g, uv->v.p);  /* mark its content */
311       break;
312     }
313     case LUA_VUSERDATA: {
314       Udata *u = gco2u(o);
315       if (u->nuvalue == 0) {  /* no user values? */
316         markobjectN(g, u->metatable);  /* mark its metatable */
317         set2black(u);  /* nothing else to mark */
318         break;
319       }
320       /* else... */
321     }  /* FALLTHROUGH */
322     case LUA_VLCL: case LUA_VCCL: case LUA_VTABLE:
323     case LUA_VTHREAD: case LUA_VPROTO: {
324       linkobjgclist(o, g->gray);  /* to be visited later */
325       break;
326     }
327     default: lua_assert(0); break;
328   }
329 }
330 
331 
332 /*
333 ** mark metamethods for basic types
334 */
335 static void markmt (global_State *g) {
336   int i;
337   for (i=0; i < LUA_NUMTAGS; i++)
338     markobjectN(g, g->mt[i]);
339 }
340 
341 
342 /*
343 ** mark all objects in list of being-finalized
344 */
345 static lu_mem markbeingfnz (global_State *g) {
346   GCObject *o;
347   lu_mem count = 0;
348   for (o = g->tobefnz; o != NULL; o = o->next) {
349     count++;
350     markobject(g, o);
351   }
352   return count;
353 }
354 
355 
356 /*
357 ** For each non-marked thread, simulates a barrier between each open
358 ** upvalue and its value. (If the thread is collected, the value will be
359 ** assigned to the upvalue, but then it can be too late for the barrier
360 ** to act. The "barrier" does not need to check colors: A non-marked
361 ** thread must be young; upvalues cannot be older than their threads; so
362 ** any visited upvalue must be young too.) Also removes the thread from
363 ** the list, as it was already visited. Removes also threads with no
364 ** upvalues, as they have nothing to be checked. (If the thread gets an
365 ** upvalue later, it will be linked in the list again.)
366 */
367 static int remarkupvals (global_State *g) {
368   lua_State *thread;
369   lua_State **p = &g->twups;
370   int work = 0;  /* estimate of how much work was done here */
371   while ((thread = *p) != NULL) {
372     work++;
373     if (!iswhite(thread) && thread->openupval != NULL)
374       p = &thread->twups;  /* keep marked thread with upvalues in the list */
375     else {  /* thread is not marked or without upvalues */
376       UpVal *uv;
377       lua_assert(!isold(thread) || thread->openupval == NULL);
378       *p = thread->twups;  /* remove thread from the list */
379       thread->twups = thread;  /* mark that it is out of list */
380       for (uv = thread->openupval; uv != NULL; uv = uv->u.open.next) {
381         lua_assert(getage(uv) <= getage(thread));
382         work++;
383         if (!iswhite(uv)) {  /* upvalue already visited? */
384           lua_assert(upisopen(uv) && isgray(uv));
385           markvalue(g, uv->v.p);  /* mark its value */
386         }
387       }
388     }
389   }
390   return work;
391 }
392 
393 
394 static void cleargraylists (global_State *g) {
395   g->gray = g->grayagain = NULL;
396   g->weak = g->allweak = g->ephemeron = NULL;
397 }
398 
399 
400 /*
401 ** mark root set and reset all gray lists, to start a new collection
402 */
403 static void restartcollection (global_State *g) {
404   cleargraylists(g);
405   markobject(g, g->mainthread);
406   markvalue(g, &g->l_registry);
407   markmt(g);
408   markbeingfnz(g);  /* mark any finalizing object left from previous cycle */
409 }
410 
411 /* }====================================================== */
412 
413 
414 /*
415 ** {======================================================
416 ** Traverse functions
417 ** =======================================================
418 */
419 
420 
421 /*
422 ** Check whether object 'o' should be kept in the 'grayagain' list for
423 ** post-processing by 'correctgraylist'. (It could put all old objects
424 ** in the list and leave all the work to 'correctgraylist', but it is
425 ** more efficient to avoid adding elements that will be removed.) Only
426 ** TOUCHED1 objects need to be in the list. TOUCHED2 doesn't need to go
427 ** back to a gray list, but then it must become OLD. (That is what
428 ** 'correctgraylist' does when it finds a TOUCHED2 object.)
429 */
430 static void genlink (global_State *g, GCObject *o) {
431   lua_assert(isblack(o));
432   if (getage(o) == G_TOUCHED1) {  /* touched in this cycle? */
433     linkobjgclist(o, g->grayagain);  /* link it back in 'grayagain' */
434   }  /* everything else do not need to be linked back */
435   else if (getage(o) == G_TOUCHED2)
436     changeage(o, G_TOUCHED2, G_OLD);  /* advance age */
437 }
438 
439 
440 /*
441 ** Traverse a table with weak values and link it to proper list. During
442 ** propagate phase, keep it in 'grayagain' list, to be revisited in the
443 ** atomic phase. In the atomic phase, if table has any white value,
444 ** put it in 'weak' list, to be cleared.
445 */
446 static void traverseweakvalue (global_State *g, Table *h) {
447   Node *n, *limit = gnodelast(h);
448   /* if there is array part, assume it may have white values (it is not
449      worth traversing it now just to check) */
450   int hasclears = (h->alimit > 0);
451   for (n = gnode(h, 0); n < limit; n++) {  /* traverse hash part */
452     if (isempty(gval(n)))  /* entry is empty? */
453       clearkey(n);  /* clear its key */
454     else {
455       lua_assert(!keyisnil(n));
456       markkey(g, n);
457       if (!hasclears && iscleared(g, gcvalueN(gval(n))))  /* a white value? */
458         hasclears = 1;  /* table will have to be cleared */
459     }
460   }
461   if (g->gcstate == GCSatomic && hasclears)
462     linkgclist(h, g->weak);  /* has to be cleared later */
463   else
464     linkgclist(h, g->grayagain);  /* must retraverse it in atomic phase */
465 }
466 
467 
468 /*
469 ** Traverse an ephemeron table and link it to proper list. Returns true
470 ** iff any object was marked during this traversal (which implies that
471 ** convergence has to continue). During propagation phase, keep table
472 ** in 'grayagain' list, to be visited again in the atomic phase. In
473 ** the atomic phase, if table has any white->white entry, it has to
474 ** be revisited during ephemeron convergence (as that key may turn
475 ** black). Otherwise, if it has any white key, table has to be cleared
476 ** (in the atomic phase). In generational mode, some tables
477 ** must be kept in some gray list for post-processing; this is done
478 ** by 'genlink'.
479 */
480 static int traverseephemeron (global_State *g, Table *h, int inv) {
481   int marked = 0;  /* true if an object is marked in this traversal */
482   int hasclears = 0;  /* true if table has white keys */
483   int hasww = 0;  /* true if table has entry "white-key -> white-value" */
484   unsigned int i;
485   unsigned int asize = luaH_realasize(h);
486   unsigned int nsize = sizenode(h);
487   /* traverse array part */
488   for (i = 0; i < asize; i++) {
489     if (valiswhite(&h->array[i])) {
490       marked = 1;
491       reallymarkobject(g, gcvalue(&h->array[i]));
492     }
493   }
494   /* traverse hash part; if 'inv', traverse descending
495      (see 'convergeephemerons') */
496   for (i = 0; i < nsize; i++) {
497     Node *n = inv ? gnode(h, nsize - 1 - i) : gnode(h, i);
498     if (isempty(gval(n)))  /* entry is empty? */
499       clearkey(n);  /* clear its key */
500     else if (iscleared(g, gckeyN(n))) {  /* key is not marked (yet)? */
501       hasclears = 1;  /* table must be cleared */
502       if (valiswhite(gval(n)))  /* value not marked yet? */
503         hasww = 1;  /* white-white entry */
504     }
505     else if (valiswhite(gval(n))) {  /* value not marked yet? */
506       marked = 1;
507       reallymarkobject(g, gcvalue(gval(n)));  /* mark it now */
508     }
509   }
510   /* link table into proper list */
511   if (g->gcstate == GCSpropagate)
512     linkgclist(h, g->grayagain);  /* must retraverse it in atomic phase */
513   else if (hasww)  /* table has white->white entries? */
514     linkgclist(h, g->ephemeron);  /* have to propagate again */
515   else if (hasclears)  /* table has white keys? */
516     linkgclist(h, g->allweak);  /* may have to clean white keys */
517   else
518     genlink(g, obj2gco(h));  /* check whether collector still needs to see it */
519   return marked;
520 }
521 
522 
523 static void traversestrongtable (global_State *g, Table *h) {
524   Node *n, *limit = gnodelast(h);
525   unsigned int i;
526   unsigned int asize = luaH_realasize(h);
527   for (i = 0; i < asize; i++)  /* traverse array part */
528     markvalue(g, &h->array[i]);
529   for (n = gnode(h, 0); n < limit; n++) {  /* traverse hash part */
530     if (isempty(gval(n)))  /* entry is empty? */
531       clearkey(n);  /* clear its key */
532     else {
533       lua_assert(!keyisnil(n));
534       markkey(g, n);
535       markvalue(g, gval(n));
536     }
537   }
538   genlink(g, obj2gco(h));
539 }
540 
541 
542 static lu_mem traversetable (global_State *g, Table *h) {
543   const char *weakkey, *weakvalue;
544   const TValue *mode = gfasttm(g, h->metatable, TM_MODE);
545   markobjectN(g, h->metatable);
546   if (mode && ttisstring(mode) &&  /* is there a weak mode? */
547       (cast_void(weakkey = strchr(svalue(mode), 'k')),
548        cast_void(weakvalue = strchr(svalue(mode), 'v')),
549        (weakkey || weakvalue))) {  /* is really weak? */
550     if (!weakkey)  /* strong keys? */
551       traverseweakvalue(g, h);
552     else if (!weakvalue)  /* strong values? */
553       traverseephemeron(g, h, 0);
554     else  /* all weak */
555       linkgclist(h, g->allweak);  /* nothing to traverse now */
556   }
557   else  /* not weak */
558     traversestrongtable(g, h);
559   return 1 + h->alimit + 2 * allocsizenode(h);
560 }
561 
562 
563 static int traverseudata (global_State *g, Udata *u) {
564   int i;
565   markobjectN(g, u->metatable);  /* mark its metatable */
566   for (i = 0; i < u->nuvalue; i++)
567     markvalue(g, &u->uv[i].uv);
568   genlink(g, obj2gco(u));
569   return 1 + u->nuvalue;
570 }
571 
572 
573 /*
574 ** Traverse a prototype. (While a prototype is being build, its
575 ** arrays can be larger than needed; the extra slots are filled with
576 ** NULL, so the use of 'markobjectN')
577 */
578 static int traverseproto (global_State *g, Proto *f) {
579   int i;
580   markobjectN(g, f->source);
581   for (i = 0; i < f->sizek; i++)  /* mark literals */
582     markvalue(g, &f->k[i]);
583   for (i = 0; i < f->sizeupvalues; i++)  /* mark upvalue names */
584     markobjectN(g, f->upvalues[i].name);
585   for (i = 0; i < f->sizep; i++)  /* mark nested protos */
586     markobjectN(g, f->p[i]);
587   for (i = 0; i < f->sizelocvars; i++)  /* mark local-variable names */
588     markobjectN(g, f->locvars[i].varname);
589   return 1 + f->sizek + f->sizeupvalues + f->sizep + f->sizelocvars;
590 }
591 
592 
593 static int traverseCclosure (global_State *g, CClosure *cl) {
594   int i;
595   for (i = 0; i < cl->nupvalues; i++)  /* mark its upvalues */
596     markvalue(g, &cl->upvalue[i]);
597   return 1 + cl->nupvalues;
598 }
599 
600 /*
601 ** Traverse a Lua closure, marking its prototype and its upvalues.
602 ** (Both can be NULL while closure is being created.)
603 */
604 static int traverseLclosure (global_State *g, LClosure *cl) {
605   int i;
606   markobjectN(g, cl->p);  /* mark its prototype */
607   for (i = 0; i < cl->nupvalues; i++) {  /* visit its upvalues */
608     UpVal *uv = cl->upvals[i];
609     markobjectN(g, uv);  /* mark upvalue */
610   }
611   return 1 + cl->nupvalues;
612 }
613 
614 
615 /*
616 ** Traverse a thread, marking the elements in the stack up to its top
617 ** and cleaning the rest of the stack in the final traversal. That
618 ** ensures that the entire stack have valid (non-dead) objects.
619 ** Threads have no barriers. In gen. mode, old threads must be visited
620 ** at every cycle, because they might point to young objects.  In inc.
621 ** mode, the thread can still be modified before the end of the cycle,
622 ** and therefore it must be visited again in the atomic phase. To ensure
623 ** these visits, threads must return to a gray list if they are not new
624 ** (which can only happen in generational mode) or if the traverse is in
625 ** the propagate phase (which can only happen in incremental mode).
626 */
627 static int traversethread (global_State *g, lua_State *th) {
628   UpVal *uv;
629   StkId o = th->stack.p;
630   if (isold(th) || g->gcstate == GCSpropagate)
631     linkgclist(th, g->grayagain);  /* insert into 'grayagain' list */
632   if (o == NULL)
633     return 1;  /* stack not completely built yet */
634   lua_assert(g->gcstate == GCSatomic ||
635              th->openupval == NULL || isintwups(th));
636   for (; o < th->top.p; o++)  /* mark live elements in the stack */
637     markvalue(g, s2v(o));
638   for (uv = th->openupval; uv != NULL; uv = uv->u.open.next)
639     markobject(g, uv);  /* open upvalues cannot be collected */
640   if (g->gcstate == GCSatomic) {  /* final traversal? */
641     for (; o < th->stack_last.p + EXTRA_STACK; o++)
642       setnilvalue(s2v(o));  /* clear dead stack slice */
643     /* 'remarkupvals' may have removed thread from 'twups' list */
644     if (!isintwups(th) && th->openupval != NULL) {
645       th->twups = g->twups;  /* link it back to the list */
646       g->twups = th;
647     }
648   }
649   else if (!g->gcemergency)
650     luaD_shrinkstack(th); /* do not change stack in emergency cycle */
651   return 1 + stacksize(th);
652 }
653 
654 
655 /*
656 ** traverse one gray object, turning it to black.
657 */
658 static lu_mem propagatemark (global_State *g) {
659   GCObject *o = g->gray;
660   nw2black(o);
661   g->gray = *getgclist(o);  /* remove from 'gray' list */
662   switch (o->tt) {
663     case LUA_VTABLE: return traversetable(g, gco2t(o));
664     case LUA_VUSERDATA: return traverseudata(g, gco2u(o));
665     case LUA_VLCL: return traverseLclosure(g, gco2lcl(o));
666     case LUA_VCCL: return traverseCclosure(g, gco2ccl(o));
667     case LUA_VPROTO: return traverseproto(g, gco2p(o));
668     case LUA_VTHREAD: return traversethread(g, gco2th(o));
669     default: lua_assert(0); return 0;
670   }
671 }
672 
673 
674 static lu_mem propagateall (global_State *g) {
675   lu_mem tot = 0;
676   while (g->gray)
677     tot += propagatemark(g);
678   return tot;
679 }
680 
681 
682 /*
683 ** Traverse all ephemeron tables propagating marks from keys to values.
684 ** Repeat until it converges, that is, nothing new is marked. 'dir'
685 ** inverts the direction of the traversals, trying to speed up
686 ** convergence on chains in the same table.
687 **
688 */
689 static void convergeephemerons (global_State *g) {
690   int changed;
691   int dir = 0;
692   do {
693     GCObject *w;
694     GCObject *next = g->ephemeron;  /* get ephemeron list */
695     g->ephemeron = NULL;  /* tables may return to this list when traversed */
696     changed = 0;
697     while ((w = next) != NULL) {  /* for each ephemeron table */
698       Table *h = gco2t(w);
699       next = h->gclist;  /* list is rebuilt during loop */
700       nw2black(h);  /* out of the list (for now) */
701       if (traverseephemeron(g, h, dir)) {  /* marked some value? */
702         propagateall(g);  /* propagate changes */
703         changed = 1;  /* will have to revisit all ephemeron tables */
704       }
705     }
706     dir = !dir;  /* invert direction next time */
707   } while (changed);  /* repeat until no more changes */
708 }
709 
710 /* }====================================================== */
711 
712 
713 /*
714 ** {======================================================
715 ** Sweep Functions
716 ** =======================================================
717 */
718 
719 
720 /*
721 ** clear entries with unmarked keys from all weaktables in list 'l'
722 */
723 static void clearbykeys (global_State *g, GCObject *l) {
724   for (; l; l = gco2t(l)->gclist) {
725     Table *h = gco2t(l);
726     Node *limit = gnodelast(h);
727     Node *n;
728     for (n = gnode(h, 0); n < limit; n++) {
729       if (iscleared(g, gckeyN(n)))  /* unmarked key? */
730         setempty(gval(n));  /* remove entry */
731       if (isempty(gval(n)))  /* is entry empty? */
732         clearkey(n);  /* clear its key */
733     }
734   }
735 }
736 
737 
738 /*
739 ** clear entries with unmarked values from all weaktables in list 'l' up
740 ** to element 'f'
741 */
742 static void clearbyvalues (global_State *g, GCObject *l, GCObject *f) {
743   for (; l != f; l = gco2t(l)->gclist) {
744     Table *h = gco2t(l);
745     Node *n, *limit = gnodelast(h);
746     unsigned int i;
747     unsigned int asize = luaH_realasize(h);
748     for (i = 0; i < asize; i++) {
749       TValue *o = &h->array[i];
750       if (iscleared(g, gcvalueN(o)))  /* value was collected? */
751         setempty(o);  /* remove entry */
752     }
753     for (n = gnode(h, 0); n < limit; n++) {
754       if (iscleared(g, gcvalueN(gval(n))))  /* unmarked value? */
755         setempty(gval(n));  /* remove entry */
756       if (isempty(gval(n)))  /* is entry empty? */
757         clearkey(n);  /* clear its key */
758     }
759   }
760 }
761 
762 
763 static void freeupval (lua_State *L, UpVal *uv) {
764   if (upisopen(uv))
765     luaF_unlinkupval(uv);
766   luaM_free(L, uv);
767 }
768 
769 
770 static void freeobj (lua_State *L, GCObject *o) {
771   switch (o->tt) {
772     case LUA_VPROTO:
773       luaF_freeproto(L, gco2p(o));
774       break;
775     case LUA_VUPVAL:
776       freeupval(L, gco2upv(o));
777       break;
778     case LUA_VLCL: {
779       LClosure *cl = gco2lcl(o);
780       luaM_freemem(L, cl, sizeLclosure(cl->nupvalues));
781       break;
782     }
783     case LUA_VCCL: {
784       CClosure *cl = gco2ccl(o);
785       luaM_freemem(L, cl, sizeCclosure(cl->nupvalues));
786       break;
787     }
788     case LUA_VTABLE:
789       luaH_free(L, gco2t(o));
790       break;
791     case LUA_VTHREAD:
792       luaE_freethread(L, gco2th(o));
793       break;
794     case LUA_VUSERDATA: {
795       Udata *u = gco2u(o);
796       luaM_freemem(L, o, sizeudata(u->nuvalue, u->len));
797       break;
798     }
799     case LUA_VSHRSTR: {
800       TString *ts = gco2ts(o);
801       luaS_remove(L, ts);  /* remove it from hash table */
802       luaM_freemem(L, ts, sizelstring(ts->shrlen));
803       break;
804     }
805     case LUA_VLNGSTR: {
806       TString *ts = gco2ts(o);
807       luaM_freemem(L, ts, sizelstring(ts->u.lnglen));
808       break;
809     }
810     default: lua_assert(0);
811   }
812 }
813 
814 
815 /*
816 ** sweep at most 'countin' elements from a list of GCObjects erasing dead
817 ** objects, where a dead object is one marked with the old (non current)
818 ** white; change all non-dead objects back to white, preparing for next
819 ** collection cycle. Return where to continue the traversal or NULL if
820 ** list is finished. ('*countout' gets the number of elements traversed.)
821 */
822 static GCObject **sweeplist (lua_State *L, GCObject **p, int countin,
823                              int *countout) {
824   global_State *g = G(L);
825   int ow = otherwhite(g);
826   int i;
827   int white = luaC_white(g);  /* current white */
828   for (i = 0; *p != NULL && i < countin; i++) {
829     GCObject *curr = *p;
830     int marked = curr->marked;
831     if (isdeadm(ow, marked)) {  /* is 'curr' dead? */
832       *p = curr->next;  /* remove 'curr' from list */
833       freeobj(L, curr);  /* erase 'curr' */
834     }
835     else {  /* change mark to 'white' */
836       curr->marked = cast_byte((marked & ~maskgcbits) | white);
837       p = &curr->next;  /* go to next element */
838     }
839   }
840   if (countout)
841     *countout = i;  /* number of elements traversed */
842   return (*p == NULL) ? NULL : p;
843 }
844 
845 
846 /*
847 ** sweep a list until a live object (or end of list)
848 */
849 static GCObject **sweeptolive (lua_State *L, GCObject **p) {
850   GCObject **old = p;
851   do {
852     p = sweeplist(L, p, 1, NULL);
853   } while (p == old);
854   return p;
855 }
856 
857 /* }====================================================== */
858 
859 
860 /*
861 ** {======================================================
862 ** Finalization
863 ** =======================================================
864 */
865 
866 /*
867 ** If possible, shrink string table.
868 */
869 static void checkSizes (lua_State *L, global_State *g) {
870   if (!g->gcemergency) {
871     if (g->strt.nuse < g->strt.size / 4) {  /* string table too big? */
872       l_mem olddebt = g->GCdebt;
873       luaS_resize(L, g->strt.size / 2);
874       g->GCestimate += g->GCdebt - olddebt;  /* correct estimate */
875     }
876   }
877 }
878 
879 
880 /*
881 ** Get the next udata to be finalized from the 'tobefnz' list, and
882 ** link it back into the 'allgc' list.
883 */
884 static GCObject *udata2finalize (global_State *g) {
885   GCObject *o = g->tobefnz;  /* get first element */
886   lua_assert(tofinalize(o));
887   g->tobefnz = o->next;  /* remove it from 'tobefnz' list */
888   o->next = g->allgc;  /* return it to 'allgc' list */
889   g->allgc = o;
890   resetbit(o->marked, FINALIZEDBIT);  /* object is "normal" again */
891   if (issweepphase(g))
892     makewhite(g, o);  /* "sweep" object */
893   else if (getage(o) == G_OLD1)
894     g->firstold1 = o;  /* it is the first OLD1 object in the list */
895   return o;
896 }
897 
898 
899 static void dothecall (lua_State *L, void *ud) {
900   UNUSED(ud);
901   luaD_callnoyield(L, L->top.p - 2, 0);
902 }
903 
904 
905 static void GCTM (lua_State *L) {
906   global_State *g = G(L);
907   const TValue *tm;
908   TValue v;
909   lua_assert(!g->gcemergency);
910   setgcovalue(L, &v, udata2finalize(g));
911   tm = luaT_gettmbyobj(L, &v, TM_GC);
912   if (!notm(tm)) {  /* is there a finalizer? */
913     int status;
914     lu_byte oldah = L->allowhook;
915     int oldgcstp  = g->gcstp;
916     g->gcstp |= GCSTPGC;  /* avoid GC steps */
917     L->allowhook = 0;  /* stop debug hooks during GC metamethod */
918     setobj2s(L, L->top.p++, tm);  /* push finalizer... */
919     setobj2s(L, L->top.p++, &v);  /* ... and its argument */
920     L->ci->callstatus |= CIST_FIN;  /* will run a finalizer */
921     status = luaD_pcall(L, dothecall, NULL, savestack(L, L->top.p - 2), 0);
922     L->ci->callstatus &= ~CIST_FIN;  /* not running a finalizer anymore */
923     L->allowhook = oldah;  /* restore hooks */
924     g->gcstp = oldgcstp;  /* restore state */
925     if (l_unlikely(status != LUA_OK)) {  /* error while running __gc? */
926       luaE_warnerror(L, "__gc");
927       L->top.p--;  /* pops error object */
928     }
929   }
930 }
931 
932 
933 /*
934 ** Call a few finalizers
935 */
936 static int runafewfinalizers (lua_State *L, int n) {
937   global_State *g = G(L);
938   int i;
939   for (i = 0; i < n && g->tobefnz; i++)
940     GCTM(L);  /* call one finalizer */
941   return i;
942 }
943 
944 
945 /*
946 ** call all pending finalizers
947 */
948 static void callallpendingfinalizers (lua_State *L) {
949   global_State *g = G(L);
950   while (g->tobefnz)
951     GCTM(L);
952 }
953 
954 
955 /*
956 ** find last 'next' field in list 'p' list (to add elements in its end)
957 */
958 static GCObject **findlast (GCObject **p) {
959   while (*p != NULL)
960     p = &(*p)->next;
961   return p;
962 }
963 
964 
965 /*
966 ** Move all unreachable objects (or 'all' objects) that need
967 ** finalization from list 'finobj' to list 'tobefnz' (to be finalized).
968 ** (Note that objects after 'finobjold1' cannot be white, so they
969 ** don't need to be traversed. In incremental mode, 'finobjold1' is NULL,
970 ** so the whole list is traversed.)
971 */
972 static void separatetobefnz (global_State *g, int all) {
973   GCObject *curr;
974   GCObject **p = &g->finobj;
975   GCObject **lastnext = findlast(&g->tobefnz);
976   while ((curr = *p) != g->finobjold1) {  /* traverse all finalizable objects */
977     lua_assert(tofinalize(curr));
978     if (!(iswhite(curr) || all))  /* not being collected? */
979       p = &curr->next;  /* don't bother with it */
980     else {
981       if (curr == g->finobjsur)  /* removing 'finobjsur'? */
982         g->finobjsur = curr->next;  /* correct it */
983       *p = curr->next;  /* remove 'curr' from 'finobj' list */
984       curr->next = *lastnext;  /* link at the end of 'tobefnz' list */
985       *lastnext = curr;
986       lastnext = &curr->next;
987     }
988   }
989 }
990 
991 
992 /*
993 ** If pointer 'p' points to 'o', move it to the next element.
994 */
995 static void checkpointer (GCObject **p, GCObject *o) {
996   if (o == *p)
997     *p = o->next;
998 }
999 
1000 
1001 /*
1002 ** Correct pointers to objects inside 'allgc' list when
1003 ** object 'o' is being removed from the list.
1004 */
1005 static void correctpointers (global_State *g, GCObject *o) {
1006   checkpointer(&g->survival, o);
1007   checkpointer(&g->old1, o);
1008   checkpointer(&g->reallyold, o);
1009   checkpointer(&g->firstold1, o);
1010 }
1011 
1012 
1013 /*
1014 ** if object 'o' has a finalizer, remove it from 'allgc' list (must
1015 ** search the list to find it) and link it in 'finobj' list.
1016 */
1017 void luaC_checkfinalizer (lua_State *L, GCObject *o, Table *mt) {
1018   global_State *g = G(L);
1019   if (tofinalize(o) ||                 /* obj. is already marked... */
1020       gfasttm(g, mt, TM_GC) == NULL ||    /* or has no finalizer... */
1021       (g->gcstp & GCSTPCLS))                   /* or closing state? */
1022     return;  /* nothing to be done */
1023   else {  /* move 'o' to 'finobj' list */
1024     GCObject **p;
1025     if (issweepphase(g)) {
1026       makewhite(g, o);  /* "sweep" object 'o' */
1027       if (g->sweepgc == &o->next)  /* should not remove 'sweepgc' object */
1028         g->sweepgc = sweeptolive(L, g->sweepgc);  /* change 'sweepgc' */
1029     }
1030     else
1031       correctpointers(g, o);
1032     /* search for pointer pointing to 'o' */
1033     for (p = &g->allgc; *p != o; p = &(*p)->next) { /* empty */ }
1034     *p = o->next;  /* remove 'o' from 'allgc' list */
1035     o->next = g->finobj;  /* link it in 'finobj' list */
1036     g->finobj = o;
1037     l_setbit(o->marked, FINALIZEDBIT);  /* mark it as such */
1038   }
1039 }
1040 
1041 /* }====================================================== */
1042 
1043 
1044 /*
1045 ** {======================================================
1046 ** Generational Collector
1047 ** =======================================================
1048 */
1049 
1050 
1051 /*
1052 ** Set the "time" to wait before starting a new GC cycle; cycle will
1053 ** start when memory use hits the threshold of ('estimate' * pause /
1054 ** PAUSEADJ). (Division by 'estimate' should be OK: it cannot be zero,
1055 ** because Lua cannot even start with less than PAUSEADJ bytes).
1056 */
1057 static void setpause (global_State *g) {
1058   l_mem threshold, debt;
1059   int pause = getgcparam(g->gcpause);
1060   l_mem estimate = g->GCestimate / PAUSEADJ;  /* adjust 'estimate' */
1061   lua_assert(estimate > 0);
1062   threshold = (pause < MAX_LMEM / estimate)  /* overflow? */
1063             ? estimate * pause  /* no overflow */
1064             : MAX_LMEM;  /* overflow; truncate to maximum */
1065   debt = gettotalbytes(g) - threshold;
1066   if (debt > 0) debt = 0;
1067   luaE_setdebt(g, debt);
1068 }
1069 
1070 
1071 /*
1072 ** Sweep a list of objects to enter generational mode.  Deletes dead
1073 ** objects and turns the non dead to old. All non-dead threads---which
1074 ** are now old---must be in a gray list. Everything else is not in a
1075 ** gray list. Open upvalues are also kept gray.
1076 */
1077 static void sweep2old (lua_State *L, GCObject **p) {
1078   GCObject *curr;
1079   global_State *g = G(L);
1080   while ((curr = *p) != NULL) {
1081     if (iswhite(curr)) {  /* is 'curr' dead? */
1082       lua_assert(isdead(g, curr));
1083       *p = curr->next;  /* remove 'curr' from list */
1084       freeobj(L, curr);  /* erase 'curr' */
1085     }
1086     else {  /* all surviving objects become old */
1087       setage(curr, G_OLD);
1088       if (curr->tt == LUA_VTHREAD) {  /* threads must be watched */
1089         lua_State *th = gco2th(curr);
1090         linkgclist(th, g->grayagain);  /* insert into 'grayagain' list */
1091       }
1092       else if (curr->tt == LUA_VUPVAL && upisopen(gco2upv(curr)))
1093         set2gray(curr);  /* open upvalues are always gray */
1094       else  /* everything else is black */
1095         nw2black(curr);
1096       p = &curr->next;  /* go to next element */
1097     }
1098   }
1099 }
1100 
1101 
1102 /*
1103 ** Sweep for generational mode. Delete dead objects. (Because the
1104 ** collection is not incremental, there are no "new white" objects
1105 ** during the sweep. So, any white object must be dead.) For
1106 ** non-dead objects, advance their ages and clear the color of
1107 ** new objects. (Old objects keep their colors.)
1108 ** The ages of G_TOUCHED1 and G_TOUCHED2 objects cannot be advanced
1109 ** here, because these old-generation objects are usually not swept
1110 ** here.  They will all be advanced in 'correctgraylist'. That function
1111 ** will also remove objects turned white here from any gray list.
1112 */
1113 static GCObject **sweepgen (lua_State *L, global_State *g, GCObject **p,
1114                             GCObject *limit, GCObject **pfirstold1) {
1115   static const lu_byte nextage[] = {
1116     G_SURVIVAL,  /* from G_NEW */
1117     G_OLD1,      /* from G_SURVIVAL */
1118     G_OLD1,      /* from G_OLD0 */
1119     G_OLD,       /* from G_OLD1 */
1120     G_OLD,       /* from G_OLD (do not change) */
1121     G_TOUCHED1,  /* from G_TOUCHED1 (do not change) */
1122     G_TOUCHED2   /* from G_TOUCHED2 (do not change) */
1123   };
1124   int white = luaC_white(g);
1125   GCObject *curr;
1126   while ((curr = *p) != limit) {
1127     if (iswhite(curr)) {  /* is 'curr' dead? */
1128       lua_assert(!isold(curr) && isdead(g, curr));
1129       *p = curr->next;  /* remove 'curr' from list */
1130       freeobj(L, curr);  /* erase 'curr' */
1131     }
1132     else {  /* correct mark and age */
1133       if (getage(curr) == G_NEW) {  /* new objects go back to white */
1134         int marked = curr->marked & ~maskgcbits;  /* erase GC bits */
1135         curr->marked = cast_byte(marked | G_SURVIVAL | white);
1136       }
1137       else {  /* all other objects will be old, and so keep their color */
1138         setage(curr, nextage[getage(curr)]);
1139         if (getage(curr) == G_OLD1 && *pfirstold1 == NULL)
1140           *pfirstold1 = curr;  /* first OLD1 object in the list */
1141       }
1142       p = &curr->next;  /* go to next element */
1143     }
1144   }
1145   return p;
1146 }
1147 
1148 
1149 /*
1150 ** Traverse a list making all its elements white and clearing their
1151 ** age. In incremental mode, all objects are 'new' all the time,
1152 ** except for fixed strings (which are always old).
1153 */
1154 static void whitelist (global_State *g, GCObject *p) {
1155   int white = luaC_white(g);
1156   for (; p != NULL; p = p->next)
1157     p->marked = cast_byte((p->marked & ~maskgcbits) | white);
1158 }
1159 
1160 
1161 /*
1162 ** Correct a list of gray objects. Return pointer to where rest of the
1163 ** list should be linked.
1164 ** Because this correction is done after sweeping, young objects might
1165 ** be turned white and still be in the list. They are only removed.
1166 ** 'TOUCHED1' objects are advanced to 'TOUCHED2' and remain on the list;
1167 ** Non-white threads also remain on the list; 'TOUCHED2' objects become
1168 ** regular old; they and anything else are removed from the list.
1169 */
1170 static GCObject **correctgraylist (GCObject **p) {
1171   GCObject *curr;
1172   while ((curr = *p) != NULL) {
1173     GCObject **next = getgclist(curr);
1174     if (iswhite(curr))
1175       goto remove;  /* remove all white objects */
1176     else if (getage(curr) == G_TOUCHED1) {  /* touched in this cycle? */
1177       lua_assert(isgray(curr));
1178       nw2black(curr);  /* make it black, for next barrier */
1179       changeage(curr, G_TOUCHED1, G_TOUCHED2);
1180       goto remain;  /* keep it in the list and go to next element */
1181     }
1182     else if (curr->tt == LUA_VTHREAD) {
1183       lua_assert(isgray(curr));
1184       goto remain;  /* keep non-white threads on the list */
1185     }
1186     else {  /* everything else is removed */
1187       lua_assert(isold(curr));  /* young objects should be white here */
1188       if (getage(curr) == G_TOUCHED2)  /* advance from TOUCHED2... */
1189         changeage(curr, G_TOUCHED2, G_OLD);  /* ... to OLD */
1190       nw2black(curr);  /* make object black (to be removed) */
1191       goto remove;
1192     }
1193     remove: *p = *next; continue;
1194     remain: p = next; continue;
1195   }
1196   return p;
1197 }
1198 
1199 
1200 /*
1201 ** Correct all gray lists, coalescing them into 'grayagain'.
1202 */
1203 static void correctgraylists (global_State *g) {
1204   GCObject **list = correctgraylist(&g->grayagain);
1205   *list = g->weak; g->weak = NULL;
1206   list = correctgraylist(list);
1207   *list = g->allweak; g->allweak = NULL;
1208   list = correctgraylist(list);
1209   *list = g->ephemeron; g->ephemeron = NULL;
1210   correctgraylist(list);
1211 }
1212 
1213 
1214 /*
1215 ** Mark black 'OLD1' objects when starting a new young collection.
1216 ** Gray objects are already in some gray list, and so will be visited
1217 ** in the atomic step.
1218 */
1219 static void markold (global_State *g, GCObject *from, GCObject *to) {
1220   GCObject *p;
1221   for (p = from; p != to; p = p->next) {
1222     if (getage(p) == G_OLD1) {
1223       lua_assert(!iswhite(p));
1224       changeage(p, G_OLD1, G_OLD);  /* now they are old */
1225       if (isblack(p))
1226         reallymarkobject(g, p);
1227     }
1228   }
1229 }
1230 
1231 
1232 /*
1233 ** Finish a young-generation collection.
1234 */
1235 static void finishgencycle (lua_State *L, global_State *g) {
1236   correctgraylists(g);
1237   checkSizes(L, g);
1238   g->gcstate = GCSpropagate;  /* skip restart */
1239   if (!g->gcemergency)
1240     callallpendingfinalizers(L);
1241 }
1242 
1243 
1244 /*
1245 ** Does a young collection. First, mark 'OLD1' objects. Then does the
1246 ** atomic step. Then, sweep all lists and advance pointers. Finally,
1247 ** finish the collection.
1248 */
1249 static void youngcollection (lua_State *L, global_State *g) {
1250   GCObject **psurvival;  /* to point to first non-dead survival object */
1251   GCObject *dummy;  /* dummy out parameter to 'sweepgen' */
1252   lua_assert(g->gcstate == GCSpropagate);
1253   if (g->firstold1) {  /* are there regular OLD1 objects? */
1254     markold(g, g->firstold1, g->reallyold);  /* mark them */
1255     g->firstold1 = NULL;  /* no more OLD1 objects (for now) */
1256   }
1257   markold(g, g->finobj, g->finobjrold);
1258   markold(g, g->tobefnz, NULL);
1259   atomic(L);
1260 
1261   /* sweep nursery and get a pointer to its last live element */
1262   g->gcstate = GCSswpallgc;
1263   psurvival = sweepgen(L, g, &g->allgc, g->survival, &g->firstold1);
1264   /* sweep 'survival' */
1265   sweepgen(L, g, psurvival, g->old1, &g->firstold1);
1266   g->reallyold = g->old1;
1267   g->old1 = *psurvival;  /* 'survival' survivals are old now */
1268   g->survival = g->allgc;  /* all news are survivals */
1269 
1270   /* repeat for 'finobj' lists */
1271   dummy = NULL;  /* no 'firstold1' optimization for 'finobj' lists */
1272   psurvival = sweepgen(L, g, &g->finobj, g->finobjsur, &dummy);
1273   /* sweep 'survival' */
1274   sweepgen(L, g, psurvival, g->finobjold1, &dummy);
1275   g->finobjrold = g->finobjold1;
1276   g->finobjold1 = *psurvival;  /* 'survival' survivals are old now */
1277   g->finobjsur = g->finobj;  /* all news are survivals */
1278 
1279   sweepgen(L, g, &g->tobefnz, NULL, &dummy);
1280   finishgencycle(L, g);
1281 }
1282 
1283 
1284 /*
1285 ** Clears all gray lists, sweeps objects, and prepare sublists to enter
1286 ** generational mode. The sweeps remove dead objects and turn all
1287 ** surviving objects to old. Threads go back to 'grayagain'; everything
1288 ** else is turned black (not in any gray list).
1289 */
1290 static void atomic2gen (lua_State *L, global_State *g) {
1291   cleargraylists(g);
1292   /* sweep all elements making them old */
1293   g->gcstate = GCSswpallgc;
1294   sweep2old(L, &g->allgc);
1295   /* everything alive now is old */
1296   g->reallyold = g->old1 = g->survival = g->allgc;
1297   g->firstold1 = NULL;  /* there are no OLD1 objects anywhere */
1298 
1299   /* repeat for 'finobj' lists */
1300   sweep2old(L, &g->finobj);
1301   g->finobjrold = g->finobjold1 = g->finobjsur = g->finobj;
1302 
1303   sweep2old(L, &g->tobefnz);
1304 
1305   g->gckind = KGC_GEN;
1306   g->lastatomic = 0;
1307   g->GCestimate = gettotalbytes(g);  /* base for memory control */
1308   finishgencycle(L, g);
1309 }
1310 
1311 
1312 /*
1313 ** Set debt for the next minor collection, which will happen when
1314 ** memory grows 'genminormul'%.
1315 */
1316 static void setminordebt (global_State *g) {
1317   luaE_setdebt(g, -(cast(l_mem, (gettotalbytes(g) / 100)) * g->genminormul));
1318 }
1319 
1320 
1321 /*
1322 ** Enter generational mode. Must go until the end of an atomic cycle
1323 ** to ensure that all objects are correctly marked and weak tables
1324 ** are cleared. Then, turn all objects into old and finishes the
1325 ** collection.
1326 */
1327 static lu_mem entergen (lua_State *L, global_State *g) {
1328   lu_mem numobjs;
1329   luaC_runtilstate(L, bitmask(GCSpause));  /* prepare to start a new cycle */
1330   luaC_runtilstate(L, bitmask(GCSpropagate));  /* start new cycle */
1331   numobjs = atomic(L);  /* propagates all and then do the atomic stuff */
1332   atomic2gen(L, g);
1333   setminordebt(g);  /* set debt assuming next cycle will be minor */
1334   return numobjs;
1335 }
1336 
1337 
1338 /*
1339 ** Enter incremental mode. Turn all objects white, make all
1340 ** intermediate lists point to NULL (to avoid invalid pointers),
1341 ** and go to the pause state.
1342 */
1343 static void enterinc (global_State *g) {
1344   whitelist(g, g->allgc);
1345   g->reallyold = g->old1 = g->survival = NULL;
1346   whitelist(g, g->finobj);
1347   whitelist(g, g->tobefnz);
1348   g->finobjrold = g->finobjold1 = g->finobjsur = NULL;
1349   g->gcstate = GCSpause;
1350   g->gckind = KGC_INC;
1351   g->lastatomic = 0;
1352 }
1353 
1354 
1355 /*
1356 ** Change collector mode to 'newmode'.
1357 */
1358 void luaC_changemode (lua_State *L, int newmode) {
1359   global_State *g = G(L);
1360   if (newmode != g->gckind) {
1361     if (newmode == KGC_GEN)  /* entering generational mode? */
1362       entergen(L, g);
1363     else
1364       enterinc(g);  /* entering incremental mode */
1365   }
1366   g->lastatomic = 0;
1367 }
1368 
1369 
1370 /*
1371 ** Does a full collection in generational mode.
1372 */
1373 static lu_mem fullgen (lua_State *L, global_State *g) {
1374   enterinc(g);
1375   return entergen(L, g);
1376 }
1377 
1378 
1379 /*
1380 ** Does a major collection after last collection was a "bad collection".
1381 **
1382 ** When the program is building a big structure, it allocates lots of
1383 ** memory but generates very little garbage. In those scenarios,
1384 ** the generational mode just wastes time doing small collections, and
1385 ** major collections are frequently what we call a "bad collection", a
1386 ** collection that frees too few objects. To avoid the cost of switching
1387 ** between generational mode and the incremental mode needed for full
1388 ** (major) collections, the collector tries to stay in incremental mode
1389 ** after a bad collection, and to switch back to generational mode only
1390 ** after a "good" collection (one that traverses less than 9/8 objects
1391 ** of the previous one).
1392 ** The collector must choose whether to stay in incremental mode or to
1393 ** switch back to generational mode before sweeping. At this point, it
1394 ** does not know the real memory in use, so it cannot use memory to
1395 ** decide whether to return to generational mode. Instead, it uses the
1396 ** number of objects traversed (returned by 'atomic') as a proxy. The
1397 ** field 'g->lastatomic' keeps this count from the last collection.
1398 ** ('g->lastatomic != 0' also means that the last collection was bad.)
1399 */
1400 static void stepgenfull (lua_State *L, global_State *g) {
1401   lu_mem newatomic;  /* count of traversed objects */
1402   lu_mem lastatomic = g->lastatomic;  /* count from last collection */
1403   if (g->gckind == KGC_GEN)  /* still in generational mode? */
1404     enterinc(g);  /* enter incremental mode */
1405   luaC_runtilstate(L, bitmask(GCSpropagate));  /* start new cycle */
1406   newatomic = atomic(L);  /* mark everybody */
1407   if (newatomic < lastatomic + (lastatomic >> 3)) {  /* good collection? */
1408     atomic2gen(L, g);  /* return to generational mode */
1409     setminordebt(g);
1410   }
1411   else {  /* another bad collection; stay in incremental mode */
1412     g->GCestimate = gettotalbytes(g);  /* first estimate */;
1413     entersweep(L);
1414     luaC_runtilstate(L, bitmask(GCSpause));  /* finish collection */
1415     setpause(g);
1416     g->lastatomic = newatomic;
1417   }
1418 }
1419 
1420 
1421 /*
1422 ** Does a generational "step".
1423 ** Usually, this means doing a minor collection and setting the debt to
1424 ** make another collection when memory grows 'genminormul'% larger.
1425 **
1426 ** However, there are exceptions.  If memory grows 'genmajormul'%
1427 ** larger than it was at the end of the last major collection (kept
1428 ** in 'g->GCestimate'), the function does a major collection. At the
1429 ** end, it checks whether the major collection was able to free a
1430 ** decent amount of memory (at least half the growth in memory since
1431 ** previous major collection). If so, the collector keeps its state,
1432 ** and the next collection will probably be minor again. Otherwise,
1433 ** we have what we call a "bad collection". In that case, set the field
1434 ** 'g->lastatomic' to signal that fact, so that the next collection will
1435 ** go to 'stepgenfull'.
1436 **
1437 ** 'GCdebt <= 0' means an explicit call to GC step with "size" zero;
1438 ** in that case, do a minor collection.
1439 */
1440 static void genstep (lua_State *L, global_State *g) {
1441   if (g->lastatomic != 0)  /* last collection was a bad one? */
1442     stepgenfull(L, g);  /* do a full step */
1443   else {
1444     lu_mem majorbase = g->GCestimate;  /* memory after last major collection */
1445     lu_mem majorinc = (majorbase / 100) * getgcparam(g->genmajormul);
1446     if (g->GCdebt > 0 && gettotalbytes(g) > majorbase + majorinc) {
1447       lu_mem numobjs = fullgen(L, g);  /* do a major collection */
1448       if (gettotalbytes(g) < majorbase + (majorinc / 2)) {
1449         /* collected at least half of memory growth since last major
1450            collection; keep doing minor collections. */
1451         lua_assert(g->lastatomic == 0);
1452       }
1453       else {  /* bad collection */
1454         g->lastatomic = numobjs;  /* signal that last collection was bad */
1455         setpause(g);  /* do a long wait for next (major) collection */
1456       }
1457     }
1458     else {  /* regular case; do a minor collection */
1459       youngcollection(L, g);
1460       setminordebt(g);
1461       g->GCestimate = majorbase;  /* preserve base value */
1462     }
1463   }
1464   lua_assert(isdecGCmodegen(g));
1465 }
1466 
1467 /* }====================================================== */
1468 
1469 
1470 /*
1471 ** {======================================================
1472 ** GC control
1473 ** =======================================================
1474 */
1475 
1476 
1477 /*
1478 ** Enter first sweep phase.
1479 ** The call to 'sweeptolive' makes the pointer point to an object
1480 ** inside the list (instead of to the header), so that the real sweep do
1481 ** not need to skip objects created between "now" and the start of the
1482 ** real sweep.
1483 */
1484 static void entersweep (lua_State *L) {
1485   global_State *g = G(L);
1486   g->gcstate = GCSswpallgc;
1487   lua_assert(g->sweepgc == NULL);
1488   g->sweepgc = sweeptolive(L, &g->allgc);
1489 }
1490 
1491 
1492 /*
1493 ** Delete all objects in list 'p' until (but not including) object
1494 ** 'limit'.
1495 */
1496 static void deletelist (lua_State *L, GCObject *p, GCObject *limit) {
1497   while (p != limit) {
1498     GCObject *next = p->next;
1499     freeobj(L, p);
1500     p = next;
1501   }
1502 }
1503 
1504 
1505 /*
1506 ** Call all finalizers of the objects in the given Lua state, and
1507 ** then free all objects, except for the main thread.
1508 */
1509 void luaC_freeallobjects (lua_State *L) {
1510   global_State *g = G(L);
1511   g->gcstp = GCSTPCLS;  /* no extra finalizers after here */
1512   luaC_changemode(L, KGC_INC);
1513   separatetobefnz(g, 1);  /* separate all objects with finalizers */
1514   lua_assert(g->finobj == NULL);
1515   callallpendingfinalizers(L);
1516   deletelist(L, g->allgc, obj2gco(g->mainthread));
1517   lua_assert(g->finobj == NULL);  /* no new finalizers */
1518   deletelist(L, g->fixedgc, NULL);  /* collect fixed objects */
1519   lua_assert(g->strt.nuse == 0);
1520 }
1521 
1522 
1523 static lu_mem atomic (lua_State *L) {
1524   global_State *g = G(L);
1525   lu_mem work = 0;
1526   GCObject *origweak, *origall;
1527   GCObject *grayagain = g->grayagain;  /* save original list */
1528   g->grayagain = NULL;
1529   lua_assert(g->ephemeron == NULL && g->weak == NULL);
1530   lua_assert(!iswhite(g->mainthread));
1531   g->gcstate = GCSatomic;
1532   markobject(g, L);  /* mark running thread */
1533   /* registry and global metatables may be changed by API */
1534   markvalue(g, &g->l_registry);
1535   markmt(g);  /* mark global metatables */
1536   work += propagateall(g);  /* empties 'gray' list */
1537   /* remark occasional upvalues of (maybe) dead threads */
1538   work += remarkupvals(g);
1539   work += propagateall(g);  /* propagate changes */
1540   g->gray = grayagain;
1541   work += propagateall(g);  /* traverse 'grayagain' list */
1542   convergeephemerons(g);
1543   /* at this point, all strongly accessible objects are marked. */
1544   /* Clear values from weak tables, before checking finalizers */
1545   clearbyvalues(g, g->weak, NULL);
1546   clearbyvalues(g, g->allweak, NULL);
1547   origweak = g->weak; origall = g->allweak;
1548   separatetobefnz(g, 0);  /* separate objects to be finalized */
1549   work += markbeingfnz(g);  /* mark objects that will be finalized */
1550   work += propagateall(g);  /* remark, to propagate 'resurrection' */
1551   convergeephemerons(g);
1552   /* at this point, all resurrected objects are marked. */
1553   /* remove dead objects from weak tables */
1554   clearbykeys(g, g->ephemeron);  /* clear keys from all ephemeron tables */
1555   clearbykeys(g, g->allweak);  /* clear keys from all 'allweak' tables */
1556   /* clear values from resurrected weak tables */
1557   clearbyvalues(g, g->weak, origweak);
1558   clearbyvalues(g, g->allweak, origall);
1559   luaS_clearcache(g);
1560   g->currentwhite = cast_byte(otherwhite(g));  /* flip current white */
1561   lua_assert(g->gray == NULL);
1562   return work;  /* estimate of slots marked by 'atomic' */
1563 }
1564 
1565 
1566 static int sweepstep (lua_State *L, global_State *g,
1567                       int nextstate, GCObject **nextlist) {
1568   if (g->sweepgc) {
1569     l_mem olddebt = g->GCdebt;
1570     int count;
1571     g->sweepgc = sweeplist(L, g->sweepgc, GCSWEEPMAX, &count);
1572     g->GCestimate += g->GCdebt - olddebt;  /* update estimate */
1573     return count;
1574   }
1575   else {  /* enter next state */
1576     g->gcstate = nextstate;
1577     g->sweepgc = nextlist;
1578     return 0;  /* no work done */
1579   }
1580 }
1581 
1582 
1583 static lu_mem singlestep (lua_State *L) {
1584   global_State *g = G(L);
1585   lu_mem work;
1586   lua_assert(!g->gcstopem);  /* collector is not reentrant */
1587   g->gcstopem = 1;  /* no emergency collections while collecting */
1588   switch (g->gcstate) {
1589     case GCSpause: {
1590       restartcollection(g);
1591       g->gcstate = GCSpropagate;
1592       work = 1;
1593       break;
1594     }
1595     case GCSpropagate: {
1596       if (g->gray == NULL) {  /* no more gray objects? */
1597         g->gcstate = GCSenteratomic;  /* finish propagate phase */
1598         work = 0;
1599       }
1600       else
1601         work = propagatemark(g);  /* traverse one gray object */
1602       break;
1603     }
1604     case GCSenteratomic: {
1605       work = atomic(L);  /* work is what was traversed by 'atomic' */
1606       entersweep(L);
1607       g->GCestimate = gettotalbytes(g);  /* first estimate */;
1608       break;
1609     }
1610     case GCSswpallgc: {  /* sweep "regular" objects */
1611       work = sweepstep(L, g, GCSswpfinobj, &g->finobj);
1612       break;
1613     }
1614     case GCSswpfinobj: {  /* sweep objects with finalizers */
1615       work = sweepstep(L, g, GCSswptobefnz, &g->tobefnz);
1616       break;
1617     }
1618     case GCSswptobefnz: {  /* sweep objects to be finalized */
1619       work = sweepstep(L, g, GCSswpend, NULL);
1620       break;
1621     }
1622     case GCSswpend: {  /* finish sweeps */
1623       checkSizes(L, g);
1624       g->gcstate = GCScallfin;
1625       work = 0;
1626       break;
1627     }
1628     case GCScallfin: {  /* call remaining finalizers */
1629       if (g->tobefnz && !g->gcemergency) {
1630         g->gcstopem = 0;  /* ok collections during finalizers */
1631         work = runafewfinalizers(L, GCFINMAX) * GCFINALIZECOST;
1632       }
1633       else {  /* emergency mode or no more finalizers */
1634         g->gcstate = GCSpause;  /* finish collection */
1635         work = 0;
1636       }
1637       break;
1638     }
1639     default: lua_assert(0); return 0;
1640   }
1641   g->gcstopem = 0;
1642   return work;
1643 }
1644 
1645 
1646 /*
1647 ** advances the garbage collector until it reaches a state allowed
1648 ** by 'statemask'
1649 */
1650 void luaC_runtilstate (lua_State *L, int statesmask) {
1651   global_State *g = G(L);
1652   while (!testbit(statesmask, g->gcstate))
1653     singlestep(L);
1654 }
1655 
1656 
1657 
1658 /*
1659 ** Performs a basic incremental step. The debt and step size are
1660 ** converted from bytes to "units of work"; then the function loops
1661 ** running single steps until adding that many units of work or
1662 ** finishing a cycle (pause state). Finally, it sets the debt that
1663 ** controls when next step will be performed.
1664 */
1665 static void incstep (lua_State *L, global_State *g) {
1666   int stepmul = (getgcparam(g->gcstepmul) | 1);  /* avoid division by 0 */
1667   l_mem debt = (g->GCdebt / WORK2MEM) * stepmul;
1668   l_mem stepsize = (g->gcstepsize <= log2maxs(l_mem))
1669                  ? ((cast(l_mem, 1) << g->gcstepsize) / WORK2MEM) * stepmul
1670                  : MAX_LMEM;  /* overflow; keep maximum value */
1671   do {  /* repeat until pause or enough "credit" (negative debt) */
1672     lu_mem work = singlestep(L);  /* perform one single step */
1673     debt -= work;
1674   } while (debt > -stepsize && g->gcstate != GCSpause);
1675   if (g->gcstate == GCSpause)
1676     setpause(g);  /* pause until next cycle */
1677   else {
1678     debt = (debt / stepmul) * WORK2MEM;  /* convert 'work units' to bytes */
1679     luaE_setdebt(g, debt);
1680   }
1681 }
1682 
1683 /*
1684 ** Performs a basic GC step if collector is running. (If collector is
1685 ** not running, set a reasonable debt to avoid it being called at
1686 ** every single check.)
1687 */
1688 void luaC_step (lua_State *L) {
1689   global_State *g = G(L);
1690   if (!gcrunning(g))  /* not running? */
1691     luaE_setdebt(g, -2000);
1692   else {
1693     if(isdecGCmodegen(g))
1694       genstep(L, g);
1695     else
1696       incstep(L, g);
1697   }
1698 }
1699 
1700 
1701 /*
1702 ** Perform a full collection in incremental mode.
1703 ** Before running the collection, check 'keepinvariant'; if it is true,
1704 ** there may be some objects marked as black, so the collector has
1705 ** to sweep all objects to turn them back to white (as white has not
1706 ** changed, nothing will be collected).
1707 */
1708 static void fullinc (lua_State *L, global_State *g) {
1709   if (keepinvariant(g))  /* black objects? */
1710     entersweep(L); /* sweep everything to turn them back to white */
1711   /* finish any pending sweep phase to start a new cycle */
1712   luaC_runtilstate(L, bitmask(GCSpause));
1713   luaC_runtilstate(L, bitmask(GCScallfin));  /* run up to finalizers */
1714   /* estimate must be correct after a full GC cycle */
1715   lua_assert(g->GCestimate == gettotalbytes(g));
1716   luaC_runtilstate(L, bitmask(GCSpause));  /* finish collection */
1717   setpause(g);
1718 }
1719 
1720 
1721 /*
1722 ** Performs a full GC cycle; if 'isemergency', set a flag to avoid
1723 ** some operations which could change the interpreter state in some
1724 ** unexpected ways (running finalizers and shrinking some structures).
1725 */
1726 void luaC_fullgc (lua_State *L, int isemergency) {
1727   global_State *g = G(L);
1728   lua_assert(!g->gcemergency);
1729   g->gcemergency = isemergency;  /* set flag */
1730   if (g->gckind == KGC_INC)
1731     fullinc(L, g);
1732   else
1733     fullgen(L, g);
1734   g->gcemergency = 0;
1735 }
1736 
1737 /* }====================================================== */
1738 
1739 
1740