1 /* 2 ** $Id: lgc.c $ 3 ** Garbage Collector 4 ** See Copyright Notice in lua.h 5 */ 6 7 #define lgc_c 8 #define LUA_CORE 9 10 #include "lprefix.h" 11 12 #include <stdio.h> 13 #include <string.h> 14 15 16 #include "lua.h" 17 18 #include "ldebug.h" 19 #include "ldo.h" 20 #include "lfunc.h" 21 #include "lgc.h" 22 #include "lmem.h" 23 #include "lobject.h" 24 #include "lstate.h" 25 #include "lstring.h" 26 #include "ltable.h" 27 #include "ltm.h" 28 29 30 /* 31 ** Maximum number of elements to sweep in each single step. 32 ** (Large enough to dissipate fixed overheads but small enough 33 ** to allow small steps for the collector.) 34 */ 35 #define GCSWEEPMAX 100 36 37 /* 38 ** Maximum number of finalizers to call in each single step. 39 */ 40 #define GCFINMAX 10 41 42 43 /* 44 ** Cost of calling one finalizer. 45 */ 46 #define GCFINALIZECOST 50 47 48 49 /* 50 ** The equivalent, in bytes, of one unit of "work" (visiting a slot, 51 ** sweeping an object, etc.) 52 */ 53 #define WORK2MEM sizeof(TValue) 54 55 56 /* 57 ** macro to adjust 'pause': 'pause' is actually used like 58 ** 'pause / PAUSEADJ' (value chosen by tests) 59 */ 60 #define PAUSEADJ 100 61 62 63 /* mask with all color bits */ 64 #define maskcolors (bitmask(BLACKBIT) | WHITEBITS) 65 66 /* mask with all GC bits */ 67 #define maskgcbits (maskcolors | AGEBITS) 68 69 70 /* macro to erase all color bits then set only the current white bit */ 71 #define makewhite(g,x) \ 72 (x->marked = cast_byte((x->marked & ~maskcolors) | luaC_white(g))) 73 74 /* make an object gray (neither white nor black) */ 75 #define set2gray(x) resetbits(x->marked, maskcolors) 76 77 78 /* make an object black (coming from any color) */ 79 #define set2black(x) \ 80 (x->marked = cast_byte((x->marked & ~WHITEBITS) | bitmask(BLACKBIT))) 81 82 83 #define valiswhite(x) (iscollectable(x) && iswhite(gcvalue(x))) 84 85 #define keyiswhite(n) (keyiscollectable(n) && iswhite(gckey(n))) 86 87 88 /* 89 ** Protected access to objects in values 90 */ 91 #define gcvalueN(o) (iscollectable(o) ? gcvalue(o) : NULL) 92 93 94 #define markvalue(g,o) { checkliveness(g->mainthread,o); \ 95 if (valiswhite(o)) reallymarkobject(g,gcvalue(o)); } 96 97 #define markkey(g, n) { if keyiswhite(n) reallymarkobject(g,gckey(n)); } 98 99 #define markobject(g,t) { if (iswhite(t)) reallymarkobject(g, obj2gco(t)); } 100 101 /* 102 ** mark an object that can be NULL (either because it is really optional, 103 ** or it was stripped as debug info, or inside an uncompleted structure) 104 */ 105 #define markobjectN(g,t) { if (t) markobject(g,t); } 106 107 static void reallymarkobject (global_State *g, GCObject *o); 108 static lu_mem atomic (lua_State *L); 109 static void entersweep (lua_State *L); 110 111 112 /* 113 ** {====================================================== 114 ** Generic functions 115 ** ======================================================= 116 */ 117 118 119 /* 120 ** one after last element in a hash array 121 */ 122 #define gnodelast(h) gnode(h, cast_sizet(sizenode(h))) 123 124 125 static GCObject **getgclist (GCObject *o) { 126 switch (o->tt) { 127 case LUA_VTABLE: return &gco2t(o)->gclist; 128 case LUA_VLCL: return &gco2lcl(o)->gclist; 129 case LUA_VCCL: return &gco2ccl(o)->gclist; 130 case LUA_VTHREAD: return &gco2th(o)->gclist; 131 case LUA_VPROTO: return &gco2p(o)->gclist; 132 case LUA_VUSERDATA: { 133 Udata *u = gco2u(o); 134 lua_assert(u->nuvalue > 0); 135 return &u->gclist; 136 } 137 default: lua_assert(0); return 0; 138 } 139 } 140 141 142 /* 143 ** Link a collectable object 'o' with a known type into the list 'p'. 144 ** (Must be a macro to access the 'gclist' field in different types.) 145 */ 146 #define linkgclist(o,p) linkgclist_(obj2gco(o), &(o)->gclist, &(p)) 147 148 static void linkgclist_ (GCObject *o, GCObject **pnext, GCObject **list) { 149 lua_assert(!isgray(o)); /* cannot be in a gray list */ 150 *pnext = *list; 151 *list = o; 152 set2gray(o); /* now it is */ 153 } 154 155 156 /* 157 ** Link a generic collectable object 'o' into the list 'p'. 158 */ 159 #define linkobjgclist(o,p) linkgclist_(obj2gco(o), getgclist(o), &(p)) 160 161 162 163 /* 164 ** Clear keys for empty entries in tables. If entry is empty, mark its 165 ** entry as dead. This allows the collection of the key, but keeps its 166 ** entry in the table: its removal could break a chain and could break 167 ** a table traversal. Other places never manipulate dead keys, because 168 ** its associated empty value is enough to signal that the entry is 169 ** logically empty. 170 */ 171 static void clearkey (Node *n) { 172 lua_assert(isempty(gval(n))); 173 if (keyiscollectable(n)) 174 setdeadkey(n); /* unused key; remove it */ 175 } 176 177 178 /* 179 ** tells whether a key or value can be cleared from a weak 180 ** table. Non-collectable objects are never removed from weak 181 ** tables. Strings behave as 'values', so are never removed too. for 182 ** other objects: if really collected, cannot keep them; for objects 183 ** being finalized, keep them in keys, but not in values 184 */ 185 static int iscleared (global_State *g, const GCObject *o) { 186 if (o == NULL) return 0; /* non-collectable value */ 187 else if (novariant(o->tt) == LUA_TSTRING) { 188 markobject(g, o); /* strings are 'values', so are never weak */ 189 return 0; 190 } 191 else return iswhite(o); 192 } 193 194 195 /* 196 ** Barrier that moves collector forward, that is, marks the white object 197 ** 'v' being pointed by the black object 'o'. In the generational 198 ** mode, 'v' must also become old, if 'o' is old; however, it cannot 199 ** be changed directly to OLD, because it may still point to non-old 200 ** objects. So, it is marked as OLD0. In the next cycle it will become 201 ** OLD1, and in the next it will finally become OLD (regular old). By 202 ** then, any object it points to will also be old. If called in the 203 ** incremental sweep phase, it clears the black object to white (sweep 204 ** it) to avoid other barrier calls for this same object. (That cannot 205 ** be done is generational mode, as its sweep does not distinguish 206 ** whites from deads.) 207 */ 208 void luaC_barrier_ (lua_State *L, GCObject *o, GCObject *v) { 209 global_State *g = G(L); 210 lua_assert(isblack(o) && iswhite(v) && !isdead(g, v) && !isdead(g, o)); 211 if (keepinvariant(g)) { /* must keep invariant? */ 212 reallymarkobject(g, v); /* restore invariant */ 213 if (isold(o)) { 214 lua_assert(!isold(v)); /* white object could not be old */ 215 setage(v, G_OLD0); /* restore generational invariant */ 216 } 217 } 218 else { /* sweep phase */ 219 lua_assert(issweepphase(g)); 220 if (g->gckind == KGC_INC) /* incremental mode? */ 221 makewhite(g, o); /* mark 'o' as white to avoid other barriers */ 222 } 223 } 224 225 226 /* 227 ** barrier that moves collector backward, that is, mark the black object 228 ** pointing to a white object as gray again. 229 */ 230 void luaC_barrierback_ (lua_State *L, GCObject *o) { 231 global_State *g = G(L); 232 lua_assert(isblack(o) && !isdead(g, o)); 233 lua_assert((g->gckind == KGC_GEN) == (isold(o) && getage(o) != G_TOUCHED1)); 234 if (getage(o) == G_TOUCHED2) /* already in gray list? */ 235 set2gray(o); /* make it gray to become touched1 */ 236 else /* link it in 'grayagain' and paint it gray */ 237 linkobjgclist(o, g->grayagain); 238 if (isold(o)) /* generational mode? */ 239 setage(o, G_TOUCHED1); /* touched in current cycle */ 240 } 241 242 243 void luaC_fix (lua_State *L, GCObject *o) { 244 global_State *g = G(L); 245 lua_assert(g->allgc == o); /* object must be 1st in 'allgc' list! */ 246 set2gray(o); /* they will be gray forever */ 247 setage(o, G_OLD); /* and old forever */ 248 g->allgc = o->next; /* remove object from 'allgc' list */ 249 o->next = g->fixedgc; /* link it to 'fixedgc' list */ 250 g->fixedgc = o; 251 } 252 253 254 /* 255 ** create a new collectable object (with given type, size, and offset) 256 ** and link it to 'allgc' list. 257 */ 258 GCObject *luaC_newobjdt (lua_State *L, int tt, size_t sz, size_t offset) { 259 global_State *g = G(L); 260 char *p = cast_charp(luaM_newobject(L, novariant(tt), sz)); 261 GCObject *o = cast(GCObject *, p + offset); 262 o->marked = luaC_white(g); 263 o->tt = tt; 264 o->next = g->allgc; 265 g->allgc = o; 266 return o; 267 } 268 269 270 GCObject *luaC_newobj (lua_State *L, int tt, size_t sz) { 271 return luaC_newobjdt(L, tt, sz, 0); 272 } 273 274 /* }====================================================== */ 275 276 277 278 /* 279 ** {====================================================== 280 ** Mark functions 281 ** ======================================================= 282 */ 283 284 285 /* 286 ** Mark an object. Userdata with no user values, strings, and closed 287 ** upvalues are visited and turned black here. Open upvalues are 288 ** already indirectly linked through their respective threads in the 289 ** 'twups' list, so they don't go to the gray list; nevertheless, they 290 ** are kept gray to avoid barriers, as their values will be revisited 291 ** by the thread or by 'remarkupvals'. Other objects are added to the 292 ** gray list to be visited (and turned black) later. Both userdata and 293 ** upvalues can call this function recursively, but this recursion goes 294 ** for at most two levels: An upvalue cannot refer to another upvalue 295 ** (only closures can), and a userdata's metatable must be a table. 296 */ 297 static void reallymarkobject (global_State *g, GCObject *o) { 298 switch (o->tt) { 299 case LUA_VSHRSTR: 300 case LUA_VLNGSTR: { 301 set2black(o); /* nothing to visit */ 302 break; 303 } 304 case LUA_VUPVAL: { 305 UpVal *uv = gco2upv(o); 306 if (upisopen(uv)) 307 set2gray(uv); /* open upvalues are kept gray */ 308 else 309 set2black(uv); /* closed upvalues are visited here */ 310 markvalue(g, uv->v.p); /* mark its content */ 311 break; 312 } 313 case LUA_VUSERDATA: { 314 Udata *u = gco2u(o); 315 if (u->nuvalue == 0) { /* no user values? */ 316 markobjectN(g, u->metatable); /* mark its metatable */ 317 set2black(u); /* nothing else to mark */ 318 break; 319 } 320 /* else... */ 321 } /* FALLTHROUGH */ 322 case LUA_VLCL: case LUA_VCCL: case LUA_VTABLE: 323 case LUA_VTHREAD: case LUA_VPROTO: { 324 linkobjgclist(o, g->gray); /* to be visited later */ 325 break; 326 } 327 default: lua_assert(0); break; 328 } 329 } 330 331 332 /* 333 ** mark metamethods for basic types 334 */ 335 static void markmt (global_State *g) { 336 int i; 337 for (i=0; i < LUA_NUMTAGS; i++) 338 markobjectN(g, g->mt[i]); 339 } 340 341 342 /* 343 ** mark all objects in list of being-finalized 344 */ 345 static lu_mem markbeingfnz (global_State *g) { 346 GCObject *o; 347 lu_mem count = 0; 348 for (o = g->tobefnz; o != NULL; o = o->next) { 349 count++; 350 markobject(g, o); 351 } 352 return count; 353 } 354 355 356 /* 357 ** For each non-marked thread, simulates a barrier between each open 358 ** upvalue and its value. (If the thread is collected, the value will be 359 ** assigned to the upvalue, but then it can be too late for the barrier 360 ** to act. The "barrier" does not need to check colors: A non-marked 361 ** thread must be young; upvalues cannot be older than their threads; so 362 ** any visited upvalue must be young too.) Also removes the thread from 363 ** the list, as it was already visited. Removes also threads with no 364 ** upvalues, as they have nothing to be checked. (If the thread gets an 365 ** upvalue later, it will be linked in the list again.) 366 */ 367 static int remarkupvals (global_State *g) { 368 lua_State *thread; 369 lua_State **p = &g->twups; 370 int work = 0; /* estimate of how much work was done here */ 371 while ((thread = *p) != NULL) { 372 work++; 373 if (!iswhite(thread) && thread->openupval != NULL) 374 p = &thread->twups; /* keep marked thread with upvalues in the list */ 375 else { /* thread is not marked or without upvalues */ 376 UpVal *uv; 377 lua_assert(!isold(thread) || thread->openupval == NULL); 378 *p = thread->twups; /* remove thread from the list */ 379 thread->twups = thread; /* mark that it is out of list */ 380 for (uv = thread->openupval; uv != NULL; uv = uv->u.open.next) { 381 lua_assert(getage(uv) <= getage(thread)); 382 work++; 383 if (!iswhite(uv)) { /* upvalue already visited? */ 384 lua_assert(upisopen(uv) && isgray(uv)); 385 markvalue(g, uv->v.p); /* mark its value */ 386 } 387 } 388 } 389 } 390 return work; 391 } 392 393 394 static void cleargraylists (global_State *g) { 395 g->gray = g->grayagain = NULL; 396 g->weak = g->allweak = g->ephemeron = NULL; 397 } 398 399 400 /* 401 ** mark root set and reset all gray lists, to start a new collection 402 */ 403 static void restartcollection (global_State *g) { 404 cleargraylists(g); 405 markobject(g, g->mainthread); 406 markvalue(g, &g->l_registry); 407 markmt(g); 408 markbeingfnz(g); /* mark any finalizing object left from previous cycle */ 409 } 410 411 /* }====================================================== */ 412 413 414 /* 415 ** {====================================================== 416 ** Traverse functions 417 ** ======================================================= 418 */ 419 420 421 /* 422 ** Check whether object 'o' should be kept in the 'grayagain' list for 423 ** post-processing by 'correctgraylist'. (It could put all old objects 424 ** in the list and leave all the work to 'correctgraylist', but it is 425 ** more efficient to avoid adding elements that will be removed.) Only 426 ** TOUCHED1 objects need to be in the list. TOUCHED2 doesn't need to go 427 ** back to a gray list, but then it must become OLD. (That is what 428 ** 'correctgraylist' does when it finds a TOUCHED2 object.) 429 */ 430 static void genlink (global_State *g, GCObject *o) { 431 lua_assert(isblack(o)); 432 if (getage(o) == G_TOUCHED1) { /* touched in this cycle? */ 433 linkobjgclist(o, g->grayagain); /* link it back in 'grayagain' */ 434 } /* everything else do not need to be linked back */ 435 else if (getage(o) == G_TOUCHED2) 436 changeage(o, G_TOUCHED2, G_OLD); /* advance age */ 437 } 438 439 440 /* 441 ** Traverse a table with weak values and link it to proper list. During 442 ** propagate phase, keep it in 'grayagain' list, to be revisited in the 443 ** atomic phase. In the atomic phase, if table has any white value, 444 ** put it in 'weak' list, to be cleared. 445 */ 446 static void traverseweakvalue (global_State *g, Table *h) { 447 Node *n, *limit = gnodelast(h); 448 /* if there is array part, assume it may have white values (it is not 449 worth traversing it now just to check) */ 450 int hasclears = (h->alimit > 0); 451 for (n = gnode(h, 0); n < limit; n++) { /* traverse hash part */ 452 if (isempty(gval(n))) /* entry is empty? */ 453 clearkey(n); /* clear its key */ 454 else { 455 lua_assert(!keyisnil(n)); 456 markkey(g, n); 457 if (!hasclears && iscleared(g, gcvalueN(gval(n)))) /* a white value? */ 458 hasclears = 1; /* table will have to be cleared */ 459 } 460 } 461 if (g->gcstate == GCSatomic && hasclears) 462 linkgclist(h, g->weak); /* has to be cleared later */ 463 else 464 linkgclist(h, g->grayagain); /* must retraverse it in atomic phase */ 465 } 466 467 468 /* 469 ** Traverse an ephemeron table and link it to proper list. Returns true 470 ** iff any object was marked during this traversal (which implies that 471 ** convergence has to continue). During propagation phase, keep table 472 ** in 'grayagain' list, to be visited again in the atomic phase. In 473 ** the atomic phase, if table has any white->white entry, it has to 474 ** be revisited during ephemeron convergence (as that key may turn 475 ** black). Otherwise, if it has any white key, table has to be cleared 476 ** (in the atomic phase). In generational mode, some tables 477 ** must be kept in some gray list for post-processing; this is done 478 ** by 'genlink'. 479 */ 480 static int traverseephemeron (global_State *g, Table *h, int inv) { 481 int marked = 0; /* true if an object is marked in this traversal */ 482 int hasclears = 0; /* true if table has white keys */ 483 int hasww = 0; /* true if table has entry "white-key -> white-value" */ 484 unsigned int i; 485 unsigned int asize = luaH_realasize(h); 486 unsigned int nsize = sizenode(h); 487 /* traverse array part */ 488 for (i = 0; i < asize; i++) { 489 if (valiswhite(&h->array[i])) { 490 marked = 1; 491 reallymarkobject(g, gcvalue(&h->array[i])); 492 } 493 } 494 /* traverse hash part; if 'inv', traverse descending 495 (see 'convergeephemerons') */ 496 for (i = 0; i < nsize; i++) { 497 Node *n = inv ? gnode(h, nsize - 1 - i) : gnode(h, i); 498 if (isempty(gval(n))) /* entry is empty? */ 499 clearkey(n); /* clear its key */ 500 else if (iscleared(g, gckeyN(n))) { /* key is not marked (yet)? */ 501 hasclears = 1; /* table must be cleared */ 502 if (valiswhite(gval(n))) /* value not marked yet? */ 503 hasww = 1; /* white-white entry */ 504 } 505 else if (valiswhite(gval(n))) { /* value not marked yet? */ 506 marked = 1; 507 reallymarkobject(g, gcvalue(gval(n))); /* mark it now */ 508 } 509 } 510 /* link table into proper list */ 511 if (g->gcstate == GCSpropagate) 512 linkgclist(h, g->grayagain); /* must retraverse it in atomic phase */ 513 else if (hasww) /* table has white->white entries? */ 514 linkgclist(h, g->ephemeron); /* have to propagate again */ 515 else if (hasclears) /* table has white keys? */ 516 linkgclist(h, g->allweak); /* may have to clean white keys */ 517 else 518 genlink(g, obj2gco(h)); /* check whether collector still needs to see it */ 519 return marked; 520 } 521 522 523 static void traversestrongtable (global_State *g, Table *h) { 524 Node *n, *limit = gnodelast(h); 525 unsigned int i; 526 unsigned int asize = luaH_realasize(h); 527 for (i = 0; i < asize; i++) /* traverse array part */ 528 markvalue(g, &h->array[i]); 529 for (n = gnode(h, 0); n < limit; n++) { /* traverse hash part */ 530 if (isempty(gval(n))) /* entry is empty? */ 531 clearkey(n); /* clear its key */ 532 else { 533 lua_assert(!keyisnil(n)); 534 markkey(g, n); 535 markvalue(g, gval(n)); 536 } 537 } 538 genlink(g, obj2gco(h)); 539 } 540 541 542 static lu_mem traversetable (global_State *g, Table *h) { 543 const char *weakkey, *weakvalue; 544 const TValue *mode = gfasttm(g, h->metatable, TM_MODE); 545 TString *smode; 546 markobjectN(g, h->metatable); 547 if (mode && ttisshrstring(mode) && /* is there a weak mode? */ 548 (cast_void(smode = tsvalue(mode)), 549 cast_void(weakkey = strchr(getshrstr(smode), 'k')), 550 cast_void(weakvalue = strchr(getshrstr(smode), 'v')), 551 (weakkey || weakvalue))) { /* is really weak? */ 552 if (!weakkey) /* strong keys? */ 553 traverseweakvalue(g, h); 554 else if (!weakvalue) /* strong values? */ 555 traverseephemeron(g, h, 0); 556 else /* all weak */ 557 linkgclist(h, g->allweak); /* nothing to traverse now */ 558 } 559 else /* not weak */ 560 traversestrongtable(g, h); 561 return 1 + h->alimit + 2 * allocsizenode(h); 562 } 563 564 565 static int traverseudata (global_State *g, Udata *u) { 566 int i; 567 markobjectN(g, u->metatable); /* mark its metatable */ 568 for (i = 0; i < u->nuvalue; i++) 569 markvalue(g, &u->uv[i].uv); 570 genlink(g, obj2gco(u)); 571 return 1 + u->nuvalue; 572 } 573 574 575 /* 576 ** Traverse a prototype. (While a prototype is being build, its 577 ** arrays can be larger than needed; the extra slots are filled with 578 ** NULL, so the use of 'markobjectN') 579 */ 580 static int traverseproto (global_State *g, Proto *f) { 581 int i; 582 markobjectN(g, f->source); 583 for (i = 0; i < f->sizek; i++) /* mark literals */ 584 markvalue(g, &f->k[i]); 585 for (i = 0; i < f->sizeupvalues; i++) /* mark upvalue names */ 586 markobjectN(g, f->upvalues[i].name); 587 for (i = 0; i < f->sizep; i++) /* mark nested protos */ 588 markobjectN(g, f->p[i]); 589 for (i = 0; i < f->sizelocvars; i++) /* mark local-variable names */ 590 markobjectN(g, f->locvars[i].varname); 591 return 1 + f->sizek + f->sizeupvalues + f->sizep + f->sizelocvars; 592 } 593 594 595 static int traverseCclosure (global_State *g, CClosure *cl) { 596 int i; 597 for (i = 0; i < cl->nupvalues; i++) /* mark its upvalues */ 598 markvalue(g, &cl->upvalue[i]); 599 return 1 + cl->nupvalues; 600 } 601 602 /* 603 ** Traverse a Lua closure, marking its prototype and its upvalues. 604 ** (Both can be NULL while closure is being created.) 605 */ 606 static int traverseLclosure (global_State *g, LClosure *cl) { 607 int i; 608 markobjectN(g, cl->p); /* mark its prototype */ 609 for (i = 0; i < cl->nupvalues; i++) { /* visit its upvalues */ 610 UpVal *uv = cl->upvals[i]; 611 markobjectN(g, uv); /* mark upvalue */ 612 } 613 return 1 + cl->nupvalues; 614 } 615 616 617 /* 618 ** Traverse a thread, marking the elements in the stack up to its top 619 ** and cleaning the rest of the stack in the final traversal. That 620 ** ensures that the entire stack have valid (non-dead) objects. 621 ** Threads have no barriers. In gen. mode, old threads must be visited 622 ** at every cycle, because they might point to young objects. In inc. 623 ** mode, the thread can still be modified before the end of the cycle, 624 ** and therefore it must be visited again in the atomic phase. To ensure 625 ** these visits, threads must return to a gray list if they are not new 626 ** (which can only happen in generational mode) or if the traverse is in 627 ** the propagate phase (which can only happen in incremental mode). 628 */ 629 static int traversethread (global_State *g, lua_State *th) { 630 UpVal *uv; 631 StkId o = th->stack.p; 632 if (isold(th) || g->gcstate == GCSpropagate) 633 linkgclist(th, g->grayagain); /* insert into 'grayagain' list */ 634 if (o == NULL) 635 return 1; /* stack not completely built yet */ 636 lua_assert(g->gcstate == GCSatomic || 637 th->openupval == NULL || isintwups(th)); 638 for (; o < th->top.p; o++) /* mark live elements in the stack */ 639 markvalue(g, s2v(o)); 640 for (uv = th->openupval; uv != NULL; uv = uv->u.open.next) 641 markobject(g, uv); /* open upvalues cannot be collected */ 642 if (g->gcstate == GCSatomic) { /* final traversal? */ 643 if (!g->gcemergency) 644 luaD_shrinkstack(th); /* do not change stack in emergency cycle */ 645 for (o = th->top.p; o < th->stack_last.p + EXTRA_STACK; o++) 646 setnilvalue(s2v(o)); /* clear dead stack slice */ 647 /* 'remarkupvals' may have removed thread from 'twups' list */ 648 if (!isintwups(th) && th->openupval != NULL) { 649 th->twups = g->twups; /* link it back to the list */ 650 g->twups = th; 651 } 652 } 653 return 1 + stacksize(th); 654 } 655 656 657 /* 658 ** traverse one gray object, turning it to black. 659 */ 660 static lu_mem propagatemark (global_State *g) { 661 GCObject *o = g->gray; 662 nw2black(o); 663 g->gray = *getgclist(o); /* remove from 'gray' list */ 664 switch (o->tt) { 665 case LUA_VTABLE: return traversetable(g, gco2t(o)); 666 case LUA_VUSERDATA: return traverseudata(g, gco2u(o)); 667 case LUA_VLCL: return traverseLclosure(g, gco2lcl(o)); 668 case LUA_VCCL: return traverseCclosure(g, gco2ccl(o)); 669 case LUA_VPROTO: return traverseproto(g, gco2p(o)); 670 case LUA_VTHREAD: return traversethread(g, gco2th(o)); 671 default: lua_assert(0); return 0; 672 } 673 } 674 675 676 static lu_mem propagateall (global_State *g) { 677 lu_mem tot = 0; 678 while (g->gray) 679 tot += propagatemark(g); 680 return tot; 681 } 682 683 684 /* 685 ** Traverse all ephemeron tables propagating marks from keys to values. 686 ** Repeat until it converges, that is, nothing new is marked. 'dir' 687 ** inverts the direction of the traversals, trying to speed up 688 ** convergence on chains in the same table. 689 ** 690 */ 691 static void convergeephemerons (global_State *g) { 692 int changed; 693 int dir = 0; 694 do { 695 GCObject *w; 696 GCObject *next = g->ephemeron; /* get ephemeron list */ 697 g->ephemeron = NULL; /* tables may return to this list when traversed */ 698 changed = 0; 699 while ((w = next) != NULL) { /* for each ephemeron table */ 700 Table *h = gco2t(w); 701 next = h->gclist; /* list is rebuilt during loop */ 702 nw2black(h); /* out of the list (for now) */ 703 if (traverseephemeron(g, h, dir)) { /* marked some value? */ 704 propagateall(g); /* propagate changes */ 705 changed = 1; /* will have to revisit all ephemeron tables */ 706 } 707 } 708 dir = !dir; /* invert direction next time */ 709 } while (changed); /* repeat until no more changes */ 710 } 711 712 /* }====================================================== */ 713 714 715 /* 716 ** {====================================================== 717 ** Sweep Functions 718 ** ======================================================= 719 */ 720 721 722 /* 723 ** clear entries with unmarked keys from all weaktables in list 'l' 724 */ 725 static void clearbykeys (global_State *g, GCObject *l) { 726 for (; l; l = gco2t(l)->gclist) { 727 Table *h = gco2t(l); 728 Node *limit = gnodelast(h); 729 Node *n; 730 for (n = gnode(h, 0); n < limit; n++) { 731 if (iscleared(g, gckeyN(n))) /* unmarked key? */ 732 setempty(gval(n)); /* remove entry */ 733 if (isempty(gval(n))) /* is entry empty? */ 734 clearkey(n); /* clear its key */ 735 } 736 } 737 } 738 739 740 /* 741 ** clear entries with unmarked values from all weaktables in list 'l' up 742 ** to element 'f' 743 */ 744 static void clearbyvalues (global_State *g, GCObject *l, GCObject *f) { 745 for (; l != f; l = gco2t(l)->gclist) { 746 Table *h = gco2t(l); 747 Node *n, *limit = gnodelast(h); 748 unsigned int i; 749 unsigned int asize = luaH_realasize(h); 750 for (i = 0; i < asize; i++) { 751 TValue *o = &h->array[i]; 752 if (iscleared(g, gcvalueN(o))) /* value was collected? */ 753 setempty(o); /* remove entry */ 754 } 755 for (n = gnode(h, 0); n < limit; n++) { 756 if (iscleared(g, gcvalueN(gval(n)))) /* unmarked value? */ 757 setempty(gval(n)); /* remove entry */ 758 if (isempty(gval(n))) /* is entry empty? */ 759 clearkey(n); /* clear its key */ 760 } 761 } 762 } 763 764 765 static void freeupval (lua_State *L, UpVal *uv) { 766 if (upisopen(uv)) 767 luaF_unlinkupval(uv); 768 luaM_free(L, uv); 769 } 770 771 772 static void freeobj (lua_State *L, GCObject *o) { 773 switch (o->tt) { 774 case LUA_VPROTO: 775 luaF_freeproto(L, gco2p(o)); 776 break; 777 case LUA_VUPVAL: 778 freeupval(L, gco2upv(o)); 779 break; 780 case LUA_VLCL: { 781 LClosure *cl = gco2lcl(o); 782 luaM_freemem(L, cl, sizeLclosure(cl->nupvalues)); 783 break; 784 } 785 case LUA_VCCL: { 786 CClosure *cl = gco2ccl(o); 787 luaM_freemem(L, cl, sizeCclosure(cl->nupvalues)); 788 break; 789 } 790 case LUA_VTABLE: 791 luaH_free(L, gco2t(o)); 792 break; 793 case LUA_VTHREAD: 794 luaE_freethread(L, gco2th(o)); 795 break; 796 case LUA_VUSERDATA: { 797 Udata *u = gco2u(o); 798 luaM_freemem(L, o, sizeudata(u->nuvalue, u->len)); 799 break; 800 } 801 case LUA_VSHRSTR: { 802 TString *ts = gco2ts(o); 803 luaS_remove(L, ts); /* remove it from hash table */ 804 luaM_freemem(L, ts, sizelstring(ts->shrlen)); 805 break; 806 } 807 case LUA_VLNGSTR: { 808 TString *ts = gco2ts(o); 809 luaM_freemem(L, ts, sizelstring(ts->u.lnglen)); 810 break; 811 } 812 default: lua_assert(0); 813 } 814 } 815 816 817 /* 818 ** sweep at most 'countin' elements from a list of GCObjects erasing dead 819 ** objects, where a dead object is one marked with the old (non current) 820 ** white; change all non-dead objects back to white, preparing for next 821 ** collection cycle. Return where to continue the traversal or NULL if 822 ** list is finished. ('*countout' gets the number of elements traversed.) 823 */ 824 static GCObject **sweeplist (lua_State *L, GCObject **p, int countin, 825 int *countout) { 826 global_State *g = G(L); 827 int ow = otherwhite(g); 828 int i; 829 int white = luaC_white(g); /* current white */ 830 for (i = 0; *p != NULL && i < countin; i++) { 831 GCObject *curr = *p; 832 int marked = curr->marked; 833 if (isdeadm(ow, marked)) { /* is 'curr' dead? */ 834 *p = curr->next; /* remove 'curr' from list */ 835 freeobj(L, curr); /* erase 'curr' */ 836 } 837 else { /* change mark to 'white' */ 838 curr->marked = cast_byte((marked & ~maskgcbits) | white); 839 p = &curr->next; /* go to next element */ 840 } 841 } 842 if (countout) 843 *countout = i; /* number of elements traversed */ 844 return (*p == NULL) ? NULL : p; 845 } 846 847 848 /* 849 ** sweep a list until a live object (or end of list) 850 */ 851 static GCObject **sweeptolive (lua_State *L, GCObject **p) { 852 GCObject **old = p; 853 do { 854 p = sweeplist(L, p, 1, NULL); 855 } while (p == old); 856 return p; 857 } 858 859 /* }====================================================== */ 860 861 862 /* 863 ** {====================================================== 864 ** Finalization 865 ** ======================================================= 866 */ 867 868 /* 869 ** If possible, shrink string table. 870 */ 871 static void checkSizes (lua_State *L, global_State *g) { 872 if (!g->gcemergency) { 873 if (g->strt.nuse < g->strt.size / 4) { /* string table too big? */ 874 l_mem olddebt = g->GCdebt; 875 luaS_resize(L, g->strt.size / 2); 876 g->GCestimate += g->GCdebt - olddebt; /* correct estimate */ 877 } 878 } 879 } 880 881 882 /* 883 ** Get the next udata to be finalized from the 'tobefnz' list, and 884 ** link it back into the 'allgc' list. 885 */ 886 static GCObject *udata2finalize (global_State *g) { 887 GCObject *o = g->tobefnz; /* get first element */ 888 lua_assert(tofinalize(o)); 889 g->tobefnz = o->next; /* remove it from 'tobefnz' list */ 890 o->next = g->allgc; /* return it to 'allgc' list */ 891 g->allgc = o; 892 resetbit(o->marked, FINALIZEDBIT); /* object is "normal" again */ 893 if (issweepphase(g)) 894 makewhite(g, o); /* "sweep" object */ 895 else if (getage(o) == G_OLD1) 896 g->firstold1 = o; /* it is the first OLD1 object in the list */ 897 return o; 898 } 899 900 901 static void dothecall (lua_State *L, void *ud) { 902 UNUSED(ud); 903 luaD_callnoyield(L, L->top.p - 2, 0); 904 } 905 906 907 static void GCTM (lua_State *L) { 908 global_State *g = G(L); 909 const TValue *tm; 910 TValue v; 911 lua_assert(!g->gcemergency); 912 setgcovalue(L, &v, udata2finalize(g)); 913 tm = luaT_gettmbyobj(L, &v, TM_GC); 914 if (!notm(tm)) { /* is there a finalizer? */ 915 int status; 916 lu_byte oldah = L->allowhook; 917 int oldgcstp = g->gcstp; 918 g->gcstp |= GCSTPGC; /* avoid GC steps */ 919 L->allowhook = 0; /* stop debug hooks during GC metamethod */ 920 setobj2s(L, L->top.p++, tm); /* push finalizer... */ 921 setobj2s(L, L->top.p++, &v); /* ... and its argument */ 922 L->ci->callstatus |= CIST_FIN; /* will run a finalizer */ 923 status = luaD_pcall(L, dothecall, NULL, savestack(L, L->top.p - 2), 0); 924 L->ci->callstatus &= ~CIST_FIN; /* not running a finalizer anymore */ 925 L->allowhook = oldah; /* restore hooks */ 926 g->gcstp = oldgcstp; /* restore state */ 927 if (l_unlikely(status != LUA_OK)) { /* error while running __gc? */ 928 luaE_warnerror(L, "__gc"); 929 L->top.p--; /* pops error object */ 930 } 931 } 932 } 933 934 935 /* 936 ** Call a few finalizers 937 */ 938 static int runafewfinalizers (lua_State *L, int n) { 939 global_State *g = G(L); 940 int i; 941 for (i = 0; i < n && g->tobefnz; i++) 942 GCTM(L); /* call one finalizer */ 943 return i; 944 } 945 946 947 /* 948 ** call all pending finalizers 949 */ 950 static void callallpendingfinalizers (lua_State *L) { 951 global_State *g = G(L); 952 while (g->tobefnz) 953 GCTM(L); 954 } 955 956 957 /* 958 ** find last 'next' field in list 'p' list (to add elements in its end) 959 */ 960 static GCObject **findlast (GCObject **p) { 961 while (*p != NULL) 962 p = &(*p)->next; 963 return p; 964 } 965 966 967 /* 968 ** Move all unreachable objects (or 'all' objects) that need 969 ** finalization from list 'finobj' to list 'tobefnz' (to be finalized). 970 ** (Note that objects after 'finobjold1' cannot be white, so they 971 ** don't need to be traversed. In incremental mode, 'finobjold1' is NULL, 972 ** so the whole list is traversed.) 973 */ 974 static void separatetobefnz (global_State *g, int all) { 975 GCObject *curr; 976 GCObject **p = &g->finobj; 977 GCObject **lastnext = findlast(&g->tobefnz); 978 while ((curr = *p) != g->finobjold1) { /* traverse all finalizable objects */ 979 lua_assert(tofinalize(curr)); 980 if (!(iswhite(curr) || all)) /* not being collected? */ 981 p = &curr->next; /* don't bother with it */ 982 else { 983 if (curr == g->finobjsur) /* removing 'finobjsur'? */ 984 g->finobjsur = curr->next; /* correct it */ 985 *p = curr->next; /* remove 'curr' from 'finobj' list */ 986 curr->next = *lastnext; /* link at the end of 'tobefnz' list */ 987 *lastnext = curr; 988 lastnext = &curr->next; 989 } 990 } 991 } 992 993 994 /* 995 ** If pointer 'p' points to 'o', move it to the next element. 996 */ 997 static void checkpointer (GCObject **p, GCObject *o) { 998 if (o == *p) 999 *p = o->next; 1000 } 1001 1002 1003 /* 1004 ** Correct pointers to objects inside 'allgc' list when 1005 ** object 'o' is being removed from the list. 1006 */ 1007 static void correctpointers (global_State *g, GCObject *o) { 1008 checkpointer(&g->survival, o); 1009 checkpointer(&g->old1, o); 1010 checkpointer(&g->reallyold, o); 1011 checkpointer(&g->firstold1, o); 1012 } 1013 1014 1015 /* 1016 ** if object 'o' has a finalizer, remove it from 'allgc' list (must 1017 ** search the list to find it) and link it in 'finobj' list. 1018 */ 1019 void luaC_checkfinalizer (lua_State *L, GCObject *o, Table *mt) { 1020 global_State *g = G(L); 1021 if (tofinalize(o) || /* obj. is already marked... */ 1022 gfasttm(g, mt, TM_GC) == NULL || /* or has no finalizer... */ 1023 (g->gcstp & GCSTPCLS)) /* or closing state? */ 1024 return; /* nothing to be done */ 1025 else { /* move 'o' to 'finobj' list */ 1026 GCObject **p; 1027 if (issweepphase(g)) { 1028 makewhite(g, o); /* "sweep" object 'o' */ 1029 if (g->sweepgc == &o->next) /* should not remove 'sweepgc' object */ 1030 g->sweepgc = sweeptolive(L, g->sweepgc); /* change 'sweepgc' */ 1031 } 1032 else 1033 correctpointers(g, o); 1034 /* search for pointer pointing to 'o' */ 1035 for (p = &g->allgc; *p != o; p = &(*p)->next) { /* empty */ } 1036 *p = o->next; /* remove 'o' from 'allgc' list */ 1037 o->next = g->finobj; /* link it in 'finobj' list */ 1038 g->finobj = o; 1039 l_setbit(o->marked, FINALIZEDBIT); /* mark it as such */ 1040 } 1041 } 1042 1043 /* }====================================================== */ 1044 1045 1046 /* 1047 ** {====================================================== 1048 ** Generational Collector 1049 ** ======================================================= 1050 */ 1051 1052 1053 /* 1054 ** Set the "time" to wait before starting a new GC cycle; cycle will 1055 ** start when memory use hits the threshold of ('estimate' * pause / 1056 ** PAUSEADJ). (Division by 'estimate' should be OK: it cannot be zero, 1057 ** because Lua cannot even start with less than PAUSEADJ bytes). 1058 */ 1059 static void setpause (global_State *g) { 1060 l_mem threshold, debt; 1061 int pause = getgcparam(g->gcpause); 1062 l_mem estimate = g->GCestimate / PAUSEADJ; /* adjust 'estimate' */ 1063 lua_assert(estimate > 0); 1064 threshold = (pause < MAX_LMEM / estimate) /* overflow? */ 1065 ? estimate * pause /* no overflow */ 1066 : MAX_LMEM; /* overflow; truncate to maximum */ 1067 debt = gettotalbytes(g) - threshold; 1068 if (debt > 0) debt = 0; 1069 luaE_setdebt(g, debt); 1070 } 1071 1072 1073 /* 1074 ** Sweep a list of objects to enter generational mode. Deletes dead 1075 ** objects and turns the non dead to old. All non-dead threads---which 1076 ** are now old---must be in a gray list. Everything else is not in a 1077 ** gray list. Open upvalues are also kept gray. 1078 */ 1079 static void sweep2old (lua_State *L, GCObject **p) { 1080 GCObject *curr; 1081 global_State *g = G(L); 1082 while ((curr = *p) != NULL) { 1083 if (iswhite(curr)) { /* is 'curr' dead? */ 1084 lua_assert(isdead(g, curr)); 1085 *p = curr->next; /* remove 'curr' from list */ 1086 freeobj(L, curr); /* erase 'curr' */ 1087 } 1088 else { /* all surviving objects become old */ 1089 setage(curr, G_OLD); 1090 if (curr->tt == LUA_VTHREAD) { /* threads must be watched */ 1091 lua_State *th = gco2th(curr); 1092 linkgclist(th, g->grayagain); /* insert into 'grayagain' list */ 1093 } 1094 else if (curr->tt == LUA_VUPVAL && upisopen(gco2upv(curr))) 1095 set2gray(curr); /* open upvalues are always gray */ 1096 else /* everything else is black */ 1097 nw2black(curr); 1098 p = &curr->next; /* go to next element */ 1099 } 1100 } 1101 } 1102 1103 1104 /* 1105 ** Sweep for generational mode. Delete dead objects. (Because the 1106 ** collection is not incremental, there are no "new white" objects 1107 ** during the sweep. So, any white object must be dead.) For 1108 ** non-dead objects, advance their ages and clear the color of 1109 ** new objects. (Old objects keep their colors.) 1110 ** The ages of G_TOUCHED1 and G_TOUCHED2 objects cannot be advanced 1111 ** here, because these old-generation objects are usually not swept 1112 ** here. They will all be advanced in 'correctgraylist'. That function 1113 ** will also remove objects turned white here from any gray list. 1114 */ 1115 static GCObject **sweepgen (lua_State *L, global_State *g, GCObject **p, 1116 GCObject *limit, GCObject **pfirstold1) { 1117 static const lu_byte nextage[] = { 1118 G_SURVIVAL, /* from G_NEW */ 1119 G_OLD1, /* from G_SURVIVAL */ 1120 G_OLD1, /* from G_OLD0 */ 1121 G_OLD, /* from G_OLD1 */ 1122 G_OLD, /* from G_OLD (do not change) */ 1123 G_TOUCHED1, /* from G_TOUCHED1 (do not change) */ 1124 G_TOUCHED2 /* from G_TOUCHED2 (do not change) */ 1125 }; 1126 int white = luaC_white(g); 1127 GCObject *curr; 1128 while ((curr = *p) != limit) { 1129 if (iswhite(curr)) { /* is 'curr' dead? */ 1130 lua_assert(!isold(curr) && isdead(g, curr)); 1131 *p = curr->next; /* remove 'curr' from list */ 1132 freeobj(L, curr); /* erase 'curr' */ 1133 } 1134 else { /* correct mark and age */ 1135 if (getage(curr) == G_NEW) { /* new objects go back to white */ 1136 int marked = curr->marked & ~maskgcbits; /* erase GC bits */ 1137 curr->marked = cast_byte(marked | G_SURVIVAL | white); 1138 } 1139 else { /* all other objects will be old, and so keep their color */ 1140 setage(curr, nextage[getage(curr)]); 1141 if (getage(curr) == G_OLD1 && *pfirstold1 == NULL) 1142 *pfirstold1 = curr; /* first OLD1 object in the list */ 1143 } 1144 p = &curr->next; /* go to next element */ 1145 } 1146 } 1147 return p; 1148 } 1149 1150 1151 /* 1152 ** Traverse a list making all its elements white and clearing their 1153 ** age. In incremental mode, all objects are 'new' all the time, 1154 ** except for fixed strings (which are always old). 1155 */ 1156 static void whitelist (global_State *g, GCObject *p) { 1157 int white = luaC_white(g); 1158 for (; p != NULL; p = p->next) 1159 p->marked = cast_byte((p->marked & ~maskgcbits) | white); 1160 } 1161 1162 1163 /* 1164 ** Correct a list of gray objects. Return pointer to where rest of the 1165 ** list should be linked. 1166 ** Because this correction is done after sweeping, young objects might 1167 ** be turned white and still be in the list. They are only removed. 1168 ** 'TOUCHED1' objects are advanced to 'TOUCHED2' and remain on the list; 1169 ** Non-white threads also remain on the list; 'TOUCHED2' objects become 1170 ** regular old; they and anything else are removed from the list. 1171 */ 1172 static GCObject **correctgraylist (GCObject **p) { 1173 GCObject *curr; 1174 while ((curr = *p) != NULL) { 1175 GCObject **next = getgclist(curr); 1176 if (iswhite(curr)) 1177 goto remove; /* remove all white objects */ 1178 else if (getage(curr) == G_TOUCHED1) { /* touched in this cycle? */ 1179 lua_assert(isgray(curr)); 1180 nw2black(curr); /* make it black, for next barrier */ 1181 changeage(curr, G_TOUCHED1, G_TOUCHED2); 1182 goto remain; /* keep it in the list and go to next element */ 1183 } 1184 else if (curr->tt == LUA_VTHREAD) { 1185 lua_assert(isgray(curr)); 1186 goto remain; /* keep non-white threads on the list */ 1187 } 1188 else { /* everything else is removed */ 1189 lua_assert(isold(curr)); /* young objects should be white here */ 1190 if (getage(curr) == G_TOUCHED2) /* advance from TOUCHED2... */ 1191 changeage(curr, G_TOUCHED2, G_OLD); /* ... to OLD */ 1192 nw2black(curr); /* make object black (to be removed) */ 1193 goto remove; 1194 } 1195 remove: *p = *next; continue; 1196 remain: p = next; continue; 1197 } 1198 return p; 1199 } 1200 1201 1202 /* 1203 ** Correct all gray lists, coalescing them into 'grayagain'. 1204 */ 1205 static void correctgraylists (global_State *g) { 1206 GCObject **list = correctgraylist(&g->grayagain); 1207 *list = g->weak; g->weak = NULL; 1208 list = correctgraylist(list); 1209 *list = g->allweak; g->allweak = NULL; 1210 list = correctgraylist(list); 1211 *list = g->ephemeron; g->ephemeron = NULL; 1212 correctgraylist(list); 1213 } 1214 1215 1216 /* 1217 ** Mark black 'OLD1' objects when starting a new young collection. 1218 ** Gray objects are already in some gray list, and so will be visited 1219 ** in the atomic step. 1220 */ 1221 static void markold (global_State *g, GCObject *from, GCObject *to) { 1222 GCObject *p; 1223 for (p = from; p != to; p = p->next) { 1224 if (getage(p) == G_OLD1) { 1225 lua_assert(!iswhite(p)); 1226 changeage(p, G_OLD1, G_OLD); /* now they are old */ 1227 if (isblack(p)) 1228 reallymarkobject(g, p); 1229 } 1230 } 1231 } 1232 1233 1234 /* 1235 ** Finish a young-generation collection. 1236 */ 1237 static void finishgencycle (lua_State *L, global_State *g) { 1238 correctgraylists(g); 1239 checkSizes(L, g); 1240 g->gcstate = GCSpropagate; /* skip restart */ 1241 if (!g->gcemergency) 1242 callallpendingfinalizers(L); 1243 } 1244 1245 1246 /* 1247 ** Does a young collection. First, mark 'OLD1' objects. Then does the 1248 ** atomic step. Then, sweep all lists and advance pointers. Finally, 1249 ** finish the collection. 1250 */ 1251 static void youngcollection (lua_State *L, global_State *g) { 1252 GCObject **psurvival; /* to point to first non-dead survival object */ 1253 GCObject *dummy; /* dummy out parameter to 'sweepgen' */ 1254 lua_assert(g->gcstate == GCSpropagate); 1255 if (g->firstold1) { /* are there regular OLD1 objects? */ 1256 markold(g, g->firstold1, g->reallyold); /* mark them */ 1257 g->firstold1 = NULL; /* no more OLD1 objects (for now) */ 1258 } 1259 markold(g, g->finobj, g->finobjrold); 1260 markold(g, g->tobefnz, NULL); 1261 atomic(L); 1262 1263 /* sweep nursery and get a pointer to its last live element */ 1264 g->gcstate = GCSswpallgc; 1265 psurvival = sweepgen(L, g, &g->allgc, g->survival, &g->firstold1); 1266 /* sweep 'survival' */ 1267 sweepgen(L, g, psurvival, g->old1, &g->firstold1); 1268 g->reallyold = g->old1; 1269 g->old1 = *psurvival; /* 'survival' survivals are old now */ 1270 g->survival = g->allgc; /* all news are survivals */ 1271 1272 /* repeat for 'finobj' lists */ 1273 dummy = NULL; /* no 'firstold1' optimization for 'finobj' lists */ 1274 psurvival = sweepgen(L, g, &g->finobj, g->finobjsur, &dummy); 1275 /* sweep 'survival' */ 1276 sweepgen(L, g, psurvival, g->finobjold1, &dummy); 1277 g->finobjrold = g->finobjold1; 1278 g->finobjold1 = *psurvival; /* 'survival' survivals are old now */ 1279 g->finobjsur = g->finobj; /* all news are survivals */ 1280 1281 sweepgen(L, g, &g->tobefnz, NULL, &dummy); 1282 finishgencycle(L, g); 1283 } 1284 1285 1286 /* 1287 ** Clears all gray lists, sweeps objects, and prepare sublists to enter 1288 ** generational mode. The sweeps remove dead objects and turn all 1289 ** surviving objects to old. Threads go back to 'grayagain'; everything 1290 ** else is turned black (not in any gray list). 1291 */ 1292 static void atomic2gen (lua_State *L, global_State *g) { 1293 cleargraylists(g); 1294 /* sweep all elements making them old */ 1295 g->gcstate = GCSswpallgc; 1296 sweep2old(L, &g->allgc); 1297 /* everything alive now is old */ 1298 g->reallyold = g->old1 = g->survival = g->allgc; 1299 g->firstold1 = NULL; /* there are no OLD1 objects anywhere */ 1300 1301 /* repeat for 'finobj' lists */ 1302 sweep2old(L, &g->finobj); 1303 g->finobjrold = g->finobjold1 = g->finobjsur = g->finobj; 1304 1305 sweep2old(L, &g->tobefnz); 1306 1307 g->gckind = KGC_GEN; 1308 g->lastatomic = 0; 1309 g->GCestimate = gettotalbytes(g); /* base for memory control */ 1310 finishgencycle(L, g); 1311 } 1312 1313 1314 /* 1315 ** Set debt for the next minor collection, which will happen when 1316 ** memory grows 'genminormul'%. 1317 */ 1318 static void setminordebt (global_State *g) { 1319 luaE_setdebt(g, -(cast(l_mem, (gettotalbytes(g) / 100)) * g->genminormul)); 1320 } 1321 1322 1323 /* 1324 ** Enter generational mode. Must go until the end of an atomic cycle 1325 ** to ensure that all objects are correctly marked and weak tables 1326 ** are cleared. Then, turn all objects into old and finishes the 1327 ** collection. 1328 */ 1329 static lu_mem entergen (lua_State *L, global_State *g) { 1330 lu_mem numobjs; 1331 luaC_runtilstate(L, bitmask(GCSpause)); /* prepare to start a new cycle */ 1332 luaC_runtilstate(L, bitmask(GCSpropagate)); /* start new cycle */ 1333 numobjs = atomic(L); /* propagates all and then do the atomic stuff */ 1334 atomic2gen(L, g); 1335 setminordebt(g); /* set debt assuming next cycle will be minor */ 1336 return numobjs; 1337 } 1338 1339 1340 /* 1341 ** Enter incremental mode. Turn all objects white, make all 1342 ** intermediate lists point to NULL (to avoid invalid pointers), 1343 ** and go to the pause state. 1344 */ 1345 static void enterinc (global_State *g) { 1346 whitelist(g, g->allgc); 1347 g->reallyold = g->old1 = g->survival = NULL; 1348 whitelist(g, g->finobj); 1349 whitelist(g, g->tobefnz); 1350 g->finobjrold = g->finobjold1 = g->finobjsur = NULL; 1351 g->gcstate = GCSpause; 1352 g->gckind = KGC_INC; 1353 g->lastatomic = 0; 1354 } 1355 1356 1357 /* 1358 ** Change collector mode to 'newmode'. 1359 */ 1360 void luaC_changemode (lua_State *L, int newmode) { 1361 global_State *g = G(L); 1362 if (newmode != g->gckind) { 1363 if (newmode == KGC_GEN) /* entering generational mode? */ 1364 entergen(L, g); 1365 else 1366 enterinc(g); /* entering incremental mode */ 1367 } 1368 g->lastatomic = 0; 1369 } 1370 1371 1372 /* 1373 ** Does a full collection in generational mode. 1374 */ 1375 static lu_mem fullgen (lua_State *L, global_State *g) { 1376 enterinc(g); 1377 return entergen(L, g); 1378 } 1379 1380 1381 /* 1382 ** Does a major collection after last collection was a "bad collection". 1383 ** 1384 ** When the program is building a big structure, it allocates lots of 1385 ** memory but generates very little garbage. In those scenarios, 1386 ** the generational mode just wastes time doing small collections, and 1387 ** major collections are frequently what we call a "bad collection", a 1388 ** collection that frees too few objects. To avoid the cost of switching 1389 ** between generational mode and the incremental mode needed for full 1390 ** (major) collections, the collector tries to stay in incremental mode 1391 ** after a bad collection, and to switch back to generational mode only 1392 ** after a "good" collection (one that traverses less than 9/8 objects 1393 ** of the previous one). 1394 ** The collector must choose whether to stay in incremental mode or to 1395 ** switch back to generational mode before sweeping. At this point, it 1396 ** does not know the real memory in use, so it cannot use memory to 1397 ** decide whether to return to generational mode. Instead, it uses the 1398 ** number of objects traversed (returned by 'atomic') as a proxy. The 1399 ** field 'g->lastatomic' keeps this count from the last collection. 1400 ** ('g->lastatomic != 0' also means that the last collection was bad.) 1401 */ 1402 static void stepgenfull (lua_State *L, global_State *g) { 1403 lu_mem newatomic; /* count of traversed objects */ 1404 lu_mem lastatomic = g->lastatomic; /* count from last collection */ 1405 if (g->gckind == KGC_GEN) /* still in generational mode? */ 1406 enterinc(g); /* enter incremental mode */ 1407 luaC_runtilstate(L, bitmask(GCSpropagate)); /* start new cycle */ 1408 newatomic = atomic(L); /* mark everybody */ 1409 if (newatomic < lastatomic + (lastatomic >> 3)) { /* good collection? */ 1410 atomic2gen(L, g); /* return to generational mode */ 1411 setminordebt(g); 1412 } 1413 else { /* another bad collection; stay in incremental mode */ 1414 g->GCestimate = gettotalbytes(g); /* first estimate */ 1415 entersweep(L); 1416 luaC_runtilstate(L, bitmask(GCSpause)); /* finish collection */ 1417 setpause(g); 1418 g->lastatomic = newatomic; 1419 } 1420 } 1421 1422 1423 /* 1424 ** Does a generational "step". 1425 ** Usually, this means doing a minor collection and setting the debt to 1426 ** make another collection when memory grows 'genminormul'% larger. 1427 ** 1428 ** However, there are exceptions. If memory grows 'genmajormul'% 1429 ** larger than it was at the end of the last major collection (kept 1430 ** in 'g->GCestimate'), the function does a major collection. At the 1431 ** end, it checks whether the major collection was able to free a 1432 ** decent amount of memory (at least half the growth in memory since 1433 ** previous major collection). If so, the collector keeps its state, 1434 ** and the next collection will probably be minor again. Otherwise, 1435 ** we have what we call a "bad collection". In that case, set the field 1436 ** 'g->lastatomic' to signal that fact, so that the next collection will 1437 ** go to 'stepgenfull'. 1438 ** 1439 ** 'GCdebt <= 0' means an explicit call to GC step with "size" zero; 1440 ** in that case, do a minor collection. 1441 */ 1442 static void genstep (lua_State *L, global_State *g) { 1443 if (g->lastatomic != 0) /* last collection was a bad one? */ 1444 stepgenfull(L, g); /* do a full step */ 1445 else { 1446 lu_mem majorbase = g->GCestimate; /* memory after last major collection */ 1447 lu_mem majorinc = (majorbase / 100) * getgcparam(g->genmajormul); 1448 if (g->GCdebt > 0 && gettotalbytes(g) > majorbase + majorinc) { 1449 lu_mem numobjs = fullgen(L, g); /* do a major collection */ 1450 if (gettotalbytes(g) < majorbase + (majorinc / 2)) { 1451 /* collected at least half of memory growth since last major 1452 collection; keep doing minor collections. */ 1453 lua_assert(g->lastatomic == 0); 1454 } 1455 else { /* bad collection */ 1456 g->lastatomic = numobjs; /* signal that last collection was bad */ 1457 setpause(g); /* do a long wait for next (major) collection */ 1458 } 1459 } 1460 else { /* regular case; do a minor collection */ 1461 youngcollection(L, g); 1462 setminordebt(g); 1463 g->GCestimate = majorbase; /* preserve base value */ 1464 } 1465 } 1466 lua_assert(isdecGCmodegen(g)); 1467 } 1468 1469 /* }====================================================== */ 1470 1471 1472 /* 1473 ** {====================================================== 1474 ** GC control 1475 ** ======================================================= 1476 */ 1477 1478 1479 /* 1480 ** Enter first sweep phase. 1481 ** The call to 'sweeptolive' makes the pointer point to an object 1482 ** inside the list (instead of to the header), so that the real sweep do 1483 ** not need to skip objects created between "now" and the start of the 1484 ** real sweep. 1485 */ 1486 static void entersweep (lua_State *L) { 1487 global_State *g = G(L); 1488 g->gcstate = GCSswpallgc; 1489 lua_assert(g->sweepgc == NULL); 1490 g->sweepgc = sweeptolive(L, &g->allgc); 1491 } 1492 1493 1494 /* 1495 ** Delete all objects in list 'p' until (but not including) object 1496 ** 'limit'. 1497 */ 1498 static void deletelist (lua_State *L, GCObject *p, GCObject *limit) { 1499 while (p != limit) { 1500 GCObject *next = p->next; 1501 freeobj(L, p); 1502 p = next; 1503 } 1504 } 1505 1506 1507 /* 1508 ** Call all finalizers of the objects in the given Lua state, and 1509 ** then free all objects, except for the main thread. 1510 */ 1511 void luaC_freeallobjects (lua_State *L) { 1512 global_State *g = G(L); 1513 g->gcstp = GCSTPCLS; /* no extra finalizers after here */ 1514 luaC_changemode(L, KGC_INC); 1515 separatetobefnz(g, 1); /* separate all objects with finalizers */ 1516 lua_assert(g->finobj == NULL); 1517 callallpendingfinalizers(L); 1518 deletelist(L, g->allgc, obj2gco(g->mainthread)); 1519 lua_assert(g->finobj == NULL); /* no new finalizers */ 1520 deletelist(L, g->fixedgc, NULL); /* collect fixed objects */ 1521 lua_assert(g->strt.nuse == 0); 1522 } 1523 1524 1525 static lu_mem atomic (lua_State *L) { 1526 global_State *g = G(L); 1527 lu_mem work = 0; 1528 GCObject *origweak, *origall; 1529 GCObject *grayagain = g->grayagain; /* save original list */ 1530 g->grayagain = NULL; 1531 lua_assert(g->ephemeron == NULL && g->weak == NULL); 1532 lua_assert(!iswhite(g->mainthread)); 1533 g->gcstate = GCSatomic; 1534 markobject(g, L); /* mark running thread */ 1535 /* registry and global metatables may be changed by API */ 1536 markvalue(g, &g->l_registry); 1537 markmt(g); /* mark global metatables */ 1538 work += propagateall(g); /* empties 'gray' list */ 1539 /* remark occasional upvalues of (maybe) dead threads */ 1540 work += remarkupvals(g); 1541 work += propagateall(g); /* propagate changes */ 1542 g->gray = grayagain; 1543 work += propagateall(g); /* traverse 'grayagain' list */ 1544 convergeephemerons(g); 1545 /* at this point, all strongly accessible objects are marked. */ 1546 /* Clear values from weak tables, before checking finalizers */ 1547 clearbyvalues(g, g->weak, NULL); 1548 clearbyvalues(g, g->allweak, NULL); 1549 origweak = g->weak; origall = g->allweak; 1550 separatetobefnz(g, 0); /* separate objects to be finalized */ 1551 work += markbeingfnz(g); /* mark objects that will be finalized */ 1552 work += propagateall(g); /* remark, to propagate 'resurrection' */ 1553 convergeephemerons(g); 1554 /* at this point, all resurrected objects are marked. */ 1555 /* remove dead objects from weak tables */ 1556 clearbykeys(g, g->ephemeron); /* clear keys from all ephemeron tables */ 1557 clearbykeys(g, g->allweak); /* clear keys from all 'allweak' tables */ 1558 /* clear values from resurrected weak tables */ 1559 clearbyvalues(g, g->weak, origweak); 1560 clearbyvalues(g, g->allweak, origall); 1561 luaS_clearcache(g); 1562 g->currentwhite = cast_byte(otherwhite(g)); /* flip current white */ 1563 lua_assert(g->gray == NULL); 1564 return work; /* estimate of slots marked by 'atomic' */ 1565 } 1566 1567 1568 static int sweepstep (lua_State *L, global_State *g, 1569 int nextstate, GCObject **nextlist) { 1570 if (g->sweepgc) { 1571 l_mem olddebt = g->GCdebt; 1572 int count; 1573 g->sweepgc = sweeplist(L, g->sweepgc, GCSWEEPMAX, &count); 1574 g->GCestimate += g->GCdebt - olddebt; /* update estimate */ 1575 return count; 1576 } 1577 else { /* enter next state */ 1578 g->gcstate = nextstate; 1579 g->sweepgc = nextlist; 1580 return 0; /* no work done */ 1581 } 1582 } 1583 1584 1585 static lu_mem singlestep (lua_State *L) { 1586 global_State *g = G(L); 1587 lu_mem work; 1588 lua_assert(!g->gcstopem); /* collector is not reentrant */ 1589 g->gcstopem = 1; /* no emergency collections while collecting */ 1590 switch (g->gcstate) { 1591 case GCSpause: { 1592 restartcollection(g); 1593 g->gcstate = GCSpropagate; 1594 work = 1; 1595 break; 1596 } 1597 case GCSpropagate: { 1598 if (g->gray == NULL) { /* no more gray objects? */ 1599 g->gcstate = GCSenteratomic; /* finish propagate phase */ 1600 work = 0; 1601 } 1602 else 1603 work = propagatemark(g); /* traverse one gray object */ 1604 break; 1605 } 1606 case GCSenteratomic: { 1607 work = atomic(L); /* work is what was traversed by 'atomic' */ 1608 entersweep(L); 1609 g->GCestimate = gettotalbytes(g); /* first estimate */ 1610 break; 1611 } 1612 case GCSswpallgc: { /* sweep "regular" objects */ 1613 work = sweepstep(L, g, GCSswpfinobj, &g->finobj); 1614 break; 1615 } 1616 case GCSswpfinobj: { /* sweep objects with finalizers */ 1617 work = sweepstep(L, g, GCSswptobefnz, &g->tobefnz); 1618 break; 1619 } 1620 case GCSswptobefnz: { /* sweep objects to be finalized */ 1621 work = sweepstep(L, g, GCSswpend, NULL); 1622 break; 1623 } 1624 case GCSswpend: { /* finish sweeps */ 1625 checkSizes(L, g); 1626 g->gcstate = GCScallfin; 1627 work = 0; 1628 break; 1629 } 1630 case GCScallfin: { /* call remaining finalizers */ 1631 if (g->tobefnz && !g->gcemergency) { 1632 g->gcstopem = 0; /* ok collections during finalizers */ 1633 work = runafewfinalizers(L, GCFINMAX) * GCFINALIZECOST; 1634 } 1635 else { /* emergency mode or no more finalizers */ 1636 g->gcstate = GCSpause; /* finish collection */ 1637 work = 0; 1638 } 1639 break; 1640 } 1641 default: lua_assert(0); return 0; 1642 } 1643 g->gcstopem = 0; 1644 return work; 1645 } 1646 1647 1648 /* 1649 ** advances the garbage collector until it reaches a state allowed 1650 ** by 'statemask' 1651 */ 1652 void luaC_runtilstate (lua_State *L, int statesmask) { 1653 global_State *g = G(L); 1654 while (!testbit(statesmask, g->gcstate)) 1655 singlestep(L); 1656 } 1657 1658 1659 1660 /* 1661 ** Performs a basic incremental step. The debt and step size are 1662 ** converted from bytes to "units of work"; then the function loops 1663 ** running single steps until adding that many units of work or 1664 ** finishing a cycle (pause state). Finally, it sets the debt that 1665 ** controls when next step will be performed. 1666 */ 1667 static void incstep (lua_State *L, global_State *g) { 1668 int stepmul = (getgcparam(g->gcstepmul) | 1); /* avoid division by 0 */ 1669 l_mem debt = (g->GCdebt / WORK2MEM) * stepmul; 1670 l_mem stepsize = (g->gcstepsize <= log2maxs(l_mem)) 1671 ? ((cast(l_mem, 1) << g->gcstepsize) / WORK2MEM) * stepmul 1672 : MAX_LMEM; /* overflow; keep maximum value */ 1673 do { /* repeat until pause or enough "credit" (negative debt) */ 1674 lu_mem work = singlestep(L); /* perform one single step */ 1675 debt -= work; 1676 } while (debt > -stepsize && g->gcstate != GCSpause); 1677 if (g->gcstate == GCSpause) 1678 setpause(g); /* pause until next cycle */ 1679 else { 1680 debt = (debt / stepmul) * WORK2MEM; /* convert 'work units' to bytes */ 1681 luaE_setdebt(g, debt); 1682 } 1683 } 1684 1685 /* 1686 ** Performs a basic GC step if collector is running. (If collector is 1687 ** not running, set a reasonable debt to avoid it being called at 1688 ** every single check.) 1689 */ 1690 void luaC_step (lua_State *L) { 1691 global_State *g = G(L); 1692 if (!gcrunning(g)) /* not running? */ 1693 luaE_setdebt(g, -2000); 1694 else { 1695 if(isdecGCmodegen(g)) 1696 genstep(L, g); 1697 else 1698 incstep(L, g); 1699 } 1700 } 1701 1702 1703 /* 1704 ** Perform a full collection in incremental mode. 1705 ** Before running the collection, check 'keepinvariant'; if it is true, 1706 ** there may be some objects marked as black, so the collector has 1707 ** to sweep all objects to turn them back to white (as white has not 1708 ** changed, nothing will be collected). 1709 */ 1710 static void fullinc (lua_State *L, global_State *g) { 1711 if (keepinvariant(g)) /* black objects? */ 1712 entersweep(L); /* sweep everything to turn them back to white */ 1713 /* finish any pending sweep phase to start a new cycle */ 1714 luaC_runtilstate(L, bitmask(GCSpause)); 1715 luaC_runtilstate(L, bitmask(GCSpropagate)); /* start new cycle */ 1716 g->gcstate = GCSenteratomic; /* go straight to atomic phase */ 1717 luaC_runtilstate(L, bitmask(GCScallfin)); /* run up to finalizers */ 1718 /* estimate must be correct after a full GC cycle */ 1719 lua_assert(g->GCestimate == gettotalbytes(g)); 1720 luaC_runtilstate(L, bitmask(GCSpause)); /* finish collection */ 1721 setpause(g); 1722 } 1723 1724 1725 /* 1726 ** Performs a full GC cycle; if 'isemergency', set a flag to avoid 1727 ** some operations which could change the interpreter state in some 1728 ** unexpected ways (running finalizers and shrinking some structures). 1729 */ 1730 void luaC_fullgc (lua_State *L, int isemergency) { 1731 global_State *g = G(L); 1732 lua_assert(!g->gcemergency); 1733 g->gcemergency = isemergency; /* set flag */ 1734 if (g->gckind == KGC_INC) 1735 fullinc(L, g); 1736 else 1737 fullgen(L, g); 1738 g->gcemergency = 0; 1739 } 1740 1741 /* }====================================================== */ 1742 1743 1744