1 /* 2 ** $Id: lgc.c $ 3 ** Garbage Collector 4 ** See Copyright Notice in lua.h 5 */ 6 7 #define lgc_c 8 #define LUA_CORE 9 10 #include "lprefix.h" 11 12 #include <stdio.h> 13 #include <string.h> 14 15 16 #include "lua.h" 17 18 #include "ldebug.h" 19 #include "ldo.h" 20 #include "lfunc.h" 21 #include "lgc.h" 22 #include "lmem.h" 23 #include "lobject.h" 24 #include "lstate.h" 25 #include "lstring.h" 26 #include "ltable.h" 27 #include "ltm.h" 28 29 30 /* 31 ** Maximum number of elements to sweep in each single step. 32 ** (Large enough to dissipate fixed overheads but small enough 33 ** to allow small steps for the collector.) 34 */ 35 #define GCSWEEPMAX 100 36 37 /* 38 ** Maximum number of finalizers to call in each single step. 39 */ 40 #define GCFINMAX 10 41 42 43 /* 44 ** Cost of calling one finalizer. 45 */ 46 #define GCFINALIZECOST 50 47 48 49 /* 50 ** The equivalent, in bytes, of one unit of "work" (visiting a slot, 51 ** sweeping an object, etc.) 52 */ 53 #define WORK2MEM sizeof(TValue) 54 55 56 /* 57 ** macro to adjust 'pause': 'pause' is actually used like 58 ** 'pause / PAUSEADJ' (value chosen by tests) 59 */ 60 #define PAUSEADJ 100 61 62 63 /* mask with all color bits */ 64 #define maskcolors (bitmask(BLACKBIT) | WHITEBITS) 65 66 /* mask with all GC bits */ 67 #define maskgcbits (maskcolors | AGEBITS) 68 69 70 /* macro to erase all color bits then set only the current white bit */ 71 #define makewhite(g,x) \ 72 (x->marked = cast_byte((x->marked & ~maskcolors) | luaC_white(g))) 73 74 /* make an object gray (neither white nor black) */ 75 #define set2gray(x) resetbits(x->marked, maskcolors) 76 77 78 /* make an object black (coming from any color) */ 79 #define set2black(x) \ 80 (x->marked = cast_byte((x->marked & ~WHITEBITS) | bitmask(BLACKBIT))) 81 82 83 #define valiswhite(x) (iscollectable(x) && iswhite(gcvalue(x))) 84 85 #define keyiswhite(n) (keyiscollectable(n) && iswhite(gckey(n))) 86 87 88 /* 89 ** Protected access to objects in values 90 */ 91 #define gcvalueN(o) (iscollectable(o) ? gcvalue(o) : NULL) 92 93 94 #define markvalue(g,o) { checkliveness(g->mainthread,o); \ 95 if (valiswhite(o)) reallymarkobject(g,gcvalue(o)); } 96 97 #define markkey(g, n) { if keyiswhite(n) reallymarkobject(g,gckey(n)); } 98 99 #define markobject(g,t) { if (iswhite(t)) reallymarkobject(g, obj2gco(t)); } 100 101 /* 102 ** mark an object that can be NULL (either because it is really optional, 103 ** or it was stripped as debug info, or inside an uncompleted structure) 104 */ 105 #define markobjectN(g,t) { if (t) markobject(g,t); } 106 107 static void reallymarkobject (global_State *g, GCObject *o); 108 static lu_mem atomic (lua_State *L); 109 static void entersweep (lua_State *L); 110 111 112 /* 113 ** {====================================================== 114 ** Generic functions 115 ** ======================================================= 116 */ 117 118 119 /* 120 ** one after last element in a hash array 121 */ 122 #define gnodelast(h) gnode(h, cast_sizet(sizenode(h))) 123 124 125 static GCObject **getgclist (GCObject *o) { 126 switch (o->tt) { 127 case LUA_VTABLE: return &gco2t(o)->gclist; 128 case LUA_VLCL: return &gco2lcl(o)->gclist; 129 case LUA_VCCL: return &gco2ccl(o)->gclist; 130 case LUA_VTHREAD: return &gco2th(o)->gclist; 131 case LUA_VPROTO: return &gco2p(o)->gclist; 132 case LUA_VUSERDATA: { 133 Udata *u = gco2u(o); 134 lua_assert(u->nuvalue > 0); 135 return &u->gclist; 136 } 137 default: lua_assert(0); return 0; 138 } 139 } 140 141 142 /* 143 ** Link a collectable object 'o' with a known type into the list 'p'. 144 ** (Must be a macro to access the 'gclist' field in different types.) 145 */ 146 #define linkgclist(o,p) linkgclist_(obj2gco(o), &(o)->gclist, &(p)) 147 148 static void linkgclist_ (GCObject *o, GCObject **pnext, GCObject **list) { 149 lua_assert(!isgray(o)); /* cannot be in a gray list */ 150 *pnext = *list; 151 *list = o; 152 set2gray(o); /* now it is */ 153 } 154 155 156 /* 157 ** Link a generic collectable object 'o' into the list 'p'. 158 */ 159 #define linkobjgclist(o,p) linkgclist_(obj2gco(o), getgclist(o), &(p)) 160 161 162 163 /* 164 ** Clear keys for empty entries in tables. If entry is empty, mark its 165 ** entry as dead. This allows the collection of the key, but keeps its 166 ** entry in the table: its removal could break a chain and could break 167 ** a table traversal. Other places never manipulate dead keys, because 168 ** its associated empty value is enough to signal that the entry is 169 ** logically empty. 170 */ 171 static void clearkey (Node *n) { 172 lua_assert(isempty(gval(n))); 173 if (keyiscollectable(n)) 174 setdeadkey(n); /* unused key; remove it */ 175 } 176 177 178 /* 179 ** tells whether a key or value can be cleared from a weak 180 ** table. Non-collectable objects are never removed from weak 181 ** tables. Strings behave as 'values', so are never removed too. for 182 ** other objects: if really collected, cannot keep them; for objects 183 ** being finalized, keep them in keys, but not in values 184 */ 185 static int iscleared (global_State *g, const GCObject *o) { 186 if (o == NULL) return 0; /* non-collectable value */ 187 else if (novariant(o->tt) == LUA_TSTRING) { 188 markobject(g, o); /* strings are 'values', so are never weak */ 189 return 0; 190 } 191 else return iswhite(o); 192 } 193 194 195 /* 196 ** Barrier that moves collector forward, that is, marks the white object 197 ** 'v' being pointed by the black object 'o'. In the generational 198 ** mode, 'v' must also become old, if 'o' is old; however, it cannot 199 ** be changed directly to OLD, because it may still point to non-old 200 ** objects. So, it is marked as OLD0. In the next cycle it will become 201 ** OLD1, and in the next it will finally become OLD (regular old). By 202 ** then, any object it points to will also be old. If called in the 203 ** incremental sweep phase, it clears the black object to white (sweep 204 ** it) to avoid other barrier calls for this same object. (That cannot 205 ** be done is generational mode, as its sweep does not distinguish 206 ** whites from deads.) 207 */ 208 void luaC_barrier_ (lua_State *L, GCObject *o, GCObject *v) { 209 global_State *g = G(L); 210 lua_assert(isblack(o) && iswhite(v) && !isdead(g, v) && !isdead(g, o)); 211 if (keepinvariant(g)) { /* must keep invariant? */ 212 reallymarkobject(g, v); /* restore invariant */ 213 if (isold(o)) { 214 lua_assert(!isold(v)); /* white object could not be old */ 215 setage(v, G_OLD0); /* restore generational invariant */ 216 } 217 } 218 else { /* sweep phase */ 219 lua_assert(issweepphase(g)); 220 if (g->gckind == KGC_INC) /* incremental mode? */ 221 makewhite(g, o); /* mark 'o' as white to avoid other barriers */ 222 } 223 } 224 225 226 /* 227 ** barrier that moves collector backward, that is, mark the black object 228 ** pointing to a white object as gray again. 229 */ 230 void luaC_barrierback_ (lua_State *L, GCObject *o) { 231 global_State *g = G(L); 232 lua_assert(isblack(o) && !isdead(g, o)); 233 lua_assert((g->gckind == KGC_GEN) == (isold(o) && getage(o) != G_TOUCHED1)); 234 if (getage(o) == G_TOUCHED2) /* already in gray list? */ 235 set2gray(o); /* make it gray to become touched1 */ 236 else /* link it in 'grayagain' and paint it gray */ 237 linkobjgclist(o, g->grayagain); 238 if (isold(o)) /* generational mode? */ 239 setage(o, G_TOUCHED1); /* touched in current cycle */ 240 } 241 242 243 void luaC_fix (lua_State *L, GCObject *o) { 244 global_State *g = G(L); 245 lua_assert(g->allgc == o); /* object must be 1st in 'allgc' list! */ 246 set2gray(o); /* they will be gray forever */ 247 setage(o, G_OLD); /* and old forever */ 248 g->allgc = o->next; /* remove object from 'allgc' list */ 249 o->next = g->fixedgc; /* link it to 'fixedgc' list */ 250 g->fixedgc = o; 251 } 252 253 254 /* 255 ** create a new collectable object (with given type and size) and link 256 ** it to 'allgc' list. 257 */ 258 GCObject *luaC_newobj (lua_State *L, int tt, size_t sz) { 259 global_State *g = G(L); 260 GCObject *o = cast(GCObject *, luaM_newobject(L, novariant(tt), sz)); 261 o->marked = luaC_white(g); 262 o->tt = tt; 263 o->next = g->allgc; 264 g->allgc = o; 265 return o; 266 } 267 268 /* }====================================================== */ 269 270 271 272 /* 273 ** {====================================================== 274 ** Mark functions 275 ** ======================================================= 276 */ 277 278 279 /* 280 ** Mark an object. Userdata with no user values, strings, and closed 281 ** upvalues are visited and turned black here. Open upvalues are 282 ** already indirectly linked through their respective threads in the 283 ** 'twups' list, so they don't go to the gray list; nevertheless, they 284 ** are kept gray to avoid barriers, as their values will be revisited 285 ** by the thread or by 'remarkupvals'. Other objects are added to the 286 ** gray list to be visited (and turned black) later. Both userdata and 287 ** upvalues can call this function recursively, but this recursion goes 288 ** for at most two levels: An upvalue cannot refer to another upvalue 289 ** (only closures can), and a userdata's metatable must be a table. 290 */ 291 static void reallymarkobject (global_State *g, GCObject *o) { 292 switch (o->tt) { 293 case LUA_VSHRSTR: 294 case LUA_VLNGSTR: { 295 set2black(o); /* nothing to visit */ 296 break; 297 } 298 case LUA_VUPVAL: { 299 UpVal *uv = gco2upv(o); 300 if (upisopen(uv)) 301 set2gray(uv); /* open upvalues are kept gray */ 302 else 303 set2black(uv); /* closed upvalues are visited here */ 304 markvalue(g, uv->v); /* mark its content */ 305 break; 306 } 307 case LUA_VUSERDATA: { 308 Udata *u = gco2u(o); 309 if (u->nuvalue == 0) { /* no user values? */ 310 markobjectN(g, u->metatable); /* mark its metatable */ 311 set2black(u); /* nothing else to mark */ 312 break; 313 } 314 /* else... */ 315 } /* FALLTHROUGH */ 316 case LUA_VLCL: case LUA_VCCL: case LUA_VTABLE: 317 case LUA_VTHREAD: case LUA_VPROTO: { 318 linkobjgclist(o, g->gray); /* to be visited later */ 319 break; 320 } 321 default: lua_assert(0); break; 322 } 323 } 324 325 326 /* 327 ** mark metamethods for basic types 328 */ 329 static void markmt (global_State *g) { 330 int i; 331 for (i=0; i < LUA_NUMTAGS; i++) 332 markobjectN(g, g->mt[i]); 333 } 334 335 336 /* 337 ** mark all objects in list of being-finalized 338 */ 339 static lu_mem markbeingfnz (global_State *g) { 340 GCObject *o; 341 lu_mem count = 0; 342 for (o = g->tobefnz; o != NULL; o = o->next) { 343 count++; 344 markobject(g, o); 345 } 346 return count; 347 } 348 349 350 /* 351 ** For each non-marked thread, simulates a barrier between each open 352 ** upvalue and its value. (If the thread is collected, the value will be 353 ** assigned to the upvalue, but then it can be too late for the barrier 354 ** to act. The "barrier" does not need to check colors: A non-marked 355 ** thread must be young; upvalues cannot be older than their threads; so 356 ** any visited upvalue must be young too.) Also removes the thread from 357 ** the list, as it was already visited. Removes also threads with no 358 ** upvalues, as they have nothing to be checked. (If the thread gets an 359 ** upvalue later, it will be linked in the list again.) 360 */ 361 static int remarkupvals (global_State *g) { 362 lua_State *thread; 363 lua_State **p = &g->twups; 364 int work = 0; /* estimate of how much work was done here */ 365 while ((thread = *p) != NULL) { 366 work++; 367 if (!iswhite(thread) && thread->openupval != NULL) 368 p = &thread->twups; /* keep marked thread with upvalues in the list */ 369 else { /* thread is not marked or without upvalues */ 370 UpVal *uv; 371 lua_assert(!isold(thread) || thread->openupval == NULL); 372 *p = thread->twups; /* remove thread from the list */ 373 thread->twups = thread; /* mark that it is out of list */ 374 for (uv = thread->openupval; uv != NULL; uv = uv->u.open.next) { 375 lua_assert(getage(uv) <= getage(thread)); 376 work++; 377 if (!iswhite(uv)) { /* upvalue already visited? */ 378 lua_assert(upisopen(uv) && isgray(uv)); 379 markvalue(g, uv->v); /* mark its value */ 380 } 381 } 382 } 383 } 384 return work; 385 } 386 387 388 static void cleargraylists (global_State *g) { 389 g->gray = g->grayagain = NULL; 390 g->weak = g->allweak = g->ephemeron = NULL; 391 } 392 393 394 /* 395 ** mark root set and reset all gray lists, to start a new collection 396 */ 397 static void restartcollection (global_State *g) { 398 cleargraylists(g); 399 markobject(g, g->mainthread); 400 markvalue(g, &g->l_registry); 401 markmt(g); 402 markbeingfnz(g); /* mark any finalizing object left from previous cycle */ 403 } 404 405 /* }====================================================== */ 406 407 408 /* 409 ** {====================================================== 410 ** Traverse functions 411 ** ======================================================= 412 */ 413 414 415 /* 416 ** Check whether object 'o' should be kept in the 'grayagain' list for 417 ** post-processing by 'correctgraylist'. (It could put all old objects 418 ** in the list and leave all the work to 'correctgraylist', but it is 419 ** more efficient to avoid adding elements that will be removed.) Only 420 ** TOUCHED1 objects need to be in the list. TOUCHED2 doesn't need to go 421 ** back to a gray list, but then it must become OLD. (That is what 422 ** 'correctgraylist' does when it finds a TOUCHED2 object.) 423 */ 424 static void genlink (global_State *g, GCObject *o) { 425 lua_assert(isblack(o)); 426 if (getage(o) == G_TOUCHED1) { /* touched in this cycle? */ 427 linkobjgclist(o, g->grayagain); /* link it back in 'grayagain' */ 428 } /* everything else do not need to be linked back */ 429 else if (getage(o) == G_TOUCHED2) 430 changeage(o, G_TOUCHED2, G_OLD); /* advance age */ 431 } 432 433 434 /* 435 ** Traverse a table with weak values and link it to proper list. During 436 ** propagate phase, keep it in 'grayagain' list, to be revisited in the 437 ** atomic phase. In the atomic phase, if table has any white value, 438 ** put it in 'weak' list, to be cleared. 439 */ 440 static void traverseweakvalue (global_State *g, Table *h) { 441 Node *n, *limit = gnodelast(h); 442 /* if there is array part, assume it may have white values (it is not 443 worth traversing it now just to check) */ 444 int hasclears = (h->alimit > 0); 445 for (n = gnode(h, 0); n < limit; n++) { /* traverse hash part */ 446 if (isempty(gval(n))) /* entry is empty? */ 447 clearkey(n); /* clear its key */ 448 else { 449 lua_assert(!keyisnil(n)); 450 markkey(g, n); 451 if (!hasclears && iscleared(g, gcvalueN(gval(n)))) /* a white value? */ 452 hasclears = 1; /* table will have to be cleared */ 453 } 454 } 455 if (g->gcstate == GCSatomic && hasclears) 456 linkgclist(h, g->weak); /* has to be cleared later */ 457 else 458 linkgclist(h, g->grayagain); /* must retraverse it in atomic phase */ 459 } 460 461 462 /* 463 ** Traverse an ephemeron table and link it to proper list. Returns true 464 ** iff any object was marked during this traversal (which implies that 465 ** convergence has to continue). During propagation phase, keep table 466 ** in 'grayagain' list, to be visited again in the atomic phase. In 467 ** the atomic phase, if table has any white->white entry, it has to 468 ** be revisited during ephemeron convergence (as that key may turn 469 ** black). Otherwise, if it has any white key, table has to be cleared 470 ** (in the atomic phase). In generational mode, some tables 471 ** must be kept in some gray list for post-processing; this is done 472 ** by 'genlink'. 473 */ 474 static int traverseephemeron (global_State *g, Table *h, int inv) { 475 int marked = 0; /* true if an object is marked in this traversal */ 476 int hasclears = 0; /* true if table has white keys */ 477 int hasww = 0; /* true if table has entry "white-key -> white-value" */ 478 unsigned int i; 479 unsigned int asize = luaH_realasize(h); 480 unsigned int nsize = sizenode(h); 481 /* traverse array part */ 482 for (i = 0; i < asize; i++) { 483 if (valiswhite(&h->array[i])) { 484 marked = 1; 485 reallymarkobject(g, gcvalue(&h->array[i])); 486 } 487 } 488 /* traverse hash part; if 'inv', traverse descending 489 (see 'convergeephemerons') */ 490 for (i = 0; i < nsize; i++) { 491 Node *n = inv ? gnode(h, nsize - 1 - i) : gnode(h, i); 492 if (isempty(gval(n))) /* entry is empty? */ 493 clearkey(n); /* clear its key */ 494 else if (iscleared(g, gckeyN(n))) { /* key is not marked (yet)? */ 495 hasclears = 1; /* table must be cleared */ 496 if (valiswhite(gval(n))) /* value not marked yet? */ 497 hasww = 1; /* white-white entry */ 498 } 499 else if (valiswhite(gval(n))) { /* value not marked yet? */ 500 marked = 1; 501 reallymarkobject(g, gcvalue(gval(n))); /* mark it now */ 502 } 503 } 504 /* link table into proper list */ 505 if (g->gcstate == GCSpropagate) 506 linkgclist(h, g->grayagain); /* must retraverse it in atomic phase */ 507 else if (hasww) /* table has white->white entries? */ 508 linkgclist(h, g->ephemeron); /* have to propagate again */ 509 else if (hasclears) /* table has white keys? */ 510 linkgclist(h, g->allweak); /* may have to clean white keys */ 511 else 512 genlink(g, obj2gco(h)); /* check whether collector still needs to see it */ 513 return marked; 514 } 515 516 517 static void traversestrongtable (global_State *g, Table *h) { 518 Node *n, *limit = gnodelast(h); 519 unsigned int i; 520 unsigned int asize = luaH_realasize(h); 521 for (i = 0; i < asize; i++) /* traverse array part */ 522 markvalue(g, &h->array[i]); 523 for (n = gnode(h, 0); n < limit; n++) { /* traverse hash part */ 524 if (isempty(gval(n))) /* entry is empty? */ 525 clearkey(n); /* clear its key */ 526 else { 527 lua_assert(!keyisnil(n)); 528 markkey(g, n); 529 markvalue(g, gval(n)); 530 } 531 } 532 genlink(g, obj2gco(h)); 533 } 534 535 536 static lu_mem traversetable (global_State *g, Table *h) { 537 const char *weakkey, *weakvalue; 538 const TValue *mode = gfasttm(g, h->metatable, TM_MODE); 539 markobjectN(g, h->metatable); 540 if (mode && ttisstring(mode) && /* is there a weak mode? */ 541 (cast_void(weakkey = strchr(svalue(mode), 'k')), 542 cast_void(weakvalue = strchr(svalue(mode), 'v')), 543 (weakkey || weakvalue))) { /* is really weak? */ 544 if (!weakkey) /* strong keys? */ 545 traverseweakvalue(g, h); 546 else if (!weakvalue) /* strong values? */ 547 traverseephemeron(g, h, 0); 548 else /* all weak */ 549 linkgclist(h, g->allweak); /* nothing to traverse now */ 550 } 551 else /* not weak */ 552 traversestrongtable(g, h); 553 return 1 + h->alimit + 2 * allocsizenode(h); 554 } 555 556 557 static int traverseudata (global_State *g, Udata *u) { 558 int i; 559 markobjectN(g, u->metatable); /* mark its metatable */ 560 for (i = 0; i < u->nuvalue; i++) 561 markvalue(g, &u->uv[i].uv); 562 genlink(g, obj2gco(u)); 563 return 1 + u->nuvalue; 564 } 565 566 567 /* 568 ** Traverse a prototype. (While a prototype is being build, its 569 ** arrays can be larger than needed; the extra slots are filled with 570 ** NULL, so the use of 'markobjectN') 571 */ 572 static int traverseproto (global_State *g, Proto *f) { 573 int i; 574 markobjectN(g, f->source); 575 for (i = 0; i < f->sizek; i++) /* mark literals */ 576 markvalue(g, &f->k[i]); 577 for (i = 0; i < f->sizeupvalues; i++) /* mark upvalue names */ 578 markobjectN(g, f->upvalues[i].name); 579 for (i = 0; i < f->sizep; i++) /* mark nested protos */ 580 markobjectN(g, f->p[i]); 581 for (i = 0; i < f->sizelocvars; i++) /* mark local-variable names */ 582 markobjectN(g, f->locvars[i].varname); 583 return 1 + f->sizek + f->sizeupvalues + f->sizep + f->sizelocvars; 584 } 585 586 587 static int traverseCclosure (global_State *g, CClosure *cl) { 588 int i; 589 for (i = 0; i < cl->nupvalues; i++) /* mark its upvalues */ 590 markvalue(g, &cl->upvalue[i]); 591 return 1 + cl->nupvalues; 592 } 593 594 /* 595 ** Traverse a Lua closure, marking its prototype and its upvalues. 596 ** (Both can be NULL while closure is being created.) 597 */ 598 static int traverseLclosure (global_State *g, LClosure *cl) { 599 int i; 600 markobjectN(g, cl->p); /* mark its prototype */ 601 for (i = 0; i < cl->nupvalues; i++) { /* visit its upvalues */ 602 UpVal *uv = cl->upvals[i]; 603 markobjectN(g, uv); /* mark upvalue */ 604 } 605 return 1 + cl->nupvalues; 606 } 607 608 609 /* 610 ** Traverse a thread, marking the elements in the stack up to its top 611 ** and cleaning the rest of the stack in the final traversal. That 612 ** ensures that the entire stack have valid (non-dead) objects. 613 ** Threads have no barriers. In gen. mode, old threads must be visited 614 ** at every cycle, because they might point to young objects. In inc. 615 ** mode, the thread can still be modified before the end of the cycle, 616 ** and therefore it must be visited again in the atomic phase. To ensure 617 ** these visits, threads must return to a gray list if they are not new 618 ** (which can only happen in generational mode) or if the traverse is in 619 ** the propagate phase (which can only happen in incremental mode). 620 */ 621 static int traversethread (global_State *g, lua_State *th) { 622 UpVal *uv; 623 StkId o = th->stack; 624 if (isold(th) || g->gcstate == GCSpropagate) 625 linkgclist(th, g->grayagain); /* insert into 'grayagain' list */ 626 if (o == NULL) 627 return 1; /* stack not completely built yet */ 628 lua_assert(g->gcstate == GCSatomic || 629 th->openupval == NULL || isintwups(th)); 630 for (; o < th->top; o++) /* mark live elements in the stack */ 631 markvalue(g, s2v(o)); 632 for (uv = th->openupval; uv != NULL; uv = uv->u.open.next) 633 markobject(g, uv); /* open upvalues cannot be collected */ 634 if (g->gcstate == GCSatomic) { /* final traversal? */ 635 for (; o < th->stack_last + EXTRA_STACK; o++) 636 setnilvalue(s2v(o)); /* clear dead stack slice */ 637 /* 'remarkupvals' may have removed thread from 'twups' list */ 638 if (!isintwups(th) && th->openupval != NULL) { 639 th->twups = g->twups; /* link it back to the list */ 640 g->twups = th; 641 } 642 } 643 else if (!g->gcemergency) 644 luaD_shrinkstack(th); /* do not change stack in emergency cycle */ 645 return 1 + stacksize(th); 646 } 647 648 649 /* 650 ** traverse one gray object, turning it to black. 651 */ 652 static lu_mem propagatemark (global_State *g) { 653 GCObject *o = g->gray; 654 nw2black(o); 655 g->gray = *getgclist(o); /* remove from 'gray' list */ 656 switch (o->tt) { 657 case LUA_VTABLE: return traversetable(g, gco2t(o)); 658 case LUA_VUSERDATA: return traverseudata(g, gco2u(o)); 659 case LUA_VLCL: return traverseLclosure(g, gco2lcl(o)); 660 case LUA_VCCL: return traverseCclosure(g, gco2ccl(o)); 661 case LUA_VPROTO: return traverseproto(g, gco2p(o)); 662 case LUA_VTHREAD: return traversethread(g, gco2th(o)); 663 default: lua_assert(0); return 0; 664 } 665 } 666 667 668 static lu_mem propagateall (global_State *g) { 669 lu_mem tot = 0; 670 while (g->gray) 671 tot += propagatemark(g); 672 return tot; 673 } 674 675 676 /* 677 ** Traverse all ephemeron tables propagating marks from keys to values. 678 ** Repeat until it converges, that is, nothing new is marked. 'dir' 679 ** inverts the direction of the traversals, trying to speed up 680 ** convergence on chains in the same table. 681 ** 682 */ 683 static void convergeephemerons (global_State *g) { 684 int changed; 685 int dir = 0; 686 do { 687 GCObject *w; 688 GCObject *next = g->ephemeron; /* get ephemeron list */ 689 g->ephemeron = NULL; /* tables may return to this list when traversed */ 690 changed = 0; 691 while ((w = next) != NULL) { /* for each ephemeron table */ 692 Table *h = gco2t(w); 693 next = h->gclist; /* list is rebuilt during loop */ 694 nw2black(h); /* out of the list (for now) */ 695 if (traverseephemeron(g, h, dir)) { /* marked some value? */ 696 propagateall(g); /* propagate changes */ 697 changed = 1; /* will have to revisit all ephemeron tables */ 698 } 699 } 700 dir = !dir; /* invert direction next time */ 701 } while (changed); /* repeat until no more changes */ 702 } 703 704 /* }====================================================== */ 705 706 707 /* 708 ** {====================================================== 709 ** Sweep Functions 710 ** ======================================================= 711 */ 712 713 714 /* 715 ** clear entries with unmarked keys from all weaktables in list 'l' 716 */ 717 static void clearbykeys (global_State *g, GCObject *l) { 718 for (; l; l = gco2t(l)->gclist) { 719 Table *h = gco2t(l); 720 Node *limit = gnodelast(h); 721 Node *n; 722 for (n = gnode(h, 0); n < limit; n++) { 723 if (iscleared(g, gckeyN(n))) /* unmarked key? */ 724 setempty(gval(n)); /* remove entry */ 725 if (isempty(gval(n))) /* is entry empty? */ 726 clearkey(n); /* clear its key */ 727 } 728 } 729 } 730 731 732 /* 733 ** clear entries with unmarked values from all weaktables in list 'l' up 734 ** to element 'f' 735 */ 736 static void clearbyvalues (global_State *g, GCObject *l, GCObject *f) { 737 for (; l != f; l = gco2t(l)->gclist) { 738 Table *h = gco2t(l); 739 Node *n, *limit = gnodelast(h); 740 unsigned int i; 741 unsigned int asize = luaH_realasize(h); 742 for (i = 0; i < asize; i++) { 743 TValue *o = &h->array[i]; 744 if (iscleared(g, gcvalueN(o))) /* value was collected? */ 745 setempty(o); /* remove entry */ 746 } 747 for (n = gnode(h, 0); n < limit; n++) { 748 if (iscleared(g, gcvalueN(gval(n)))) /* unmarked value? */ 749 setempty(gval(n)); /* remove entry */ 750 if (isempty(gval(n))) /* is entry empty? */ 751 clearkey(n); /* clear its key */ 752 } 753 } 754 } 755 756 757 static void freeupval (lua_State *L, UpVal *uv) { 758 if (upisopen(uv)) 759 luaF_unlinkupval(uv); 760 luaM_free(L, uv); 761 } 762 763 764 static void freeobj (lua_State *L, GCObject *o) { 765 switch (o->tt) { 766 case LUA_VPROTO: 767 luaF_freeproto(L, gco2p(o)); 768 break; 769 case LUA_VUPVAL: 770 freeupval(L, gco2upv(o)); 771 break; 772 case LUA_VLCL: { 773 LClosure *cl = gco2lcl(o); 774 luaM_freemem(L, cl, sizeLclosure(cl->nupvalues)); 775 break; 776 } 777 case LUA_VCCL: { 778 CClosure *cl = gco2ccl(o); 779 luaM_freemem(L, cl, sizeCclosure(cl->nupvalues)); 780 break; 781 } 782 case LUA_VTABLE: 783 luaH_free(L, gco2t(o)); 784 break; 785 case LUA_VTHREAD: 786 luaE_freethread(L, gco2th(o)); 787 break; 788 case LUA_VUSERDATA: { 789 Udata *u = gco2u(o); 790 luaM_freemem(L, o, sizeudata(u->nuvalue, u->len)); 791 break; 792 } 793 case LUA_VSHRSTR: { 794 TString *ts = gco2ts(o); 795 luaS_remove(L, ts); /* remove it from hash table */ 796 luaM_freemem(L, ts, sizelstring(ts->shrlen)); 797 break; 798 } 799 case LUA_VLNGSTR: { 800 TString *ts = gco2ts(o); 801 luaM_freemem(L, ts, sizelstring(ts->u.lnglen)); 802 break; 803 } 804 default: lua_assert(0); 805 } 806 } 807 808 809 /* 810 ** sweep at most 'countin' elements from a list of GCObjects erasing dead 811 ** objects, where a dead object is one marked with the old (non current) 812 ** white; change all non-dead objects back to white, preparing for next 813 ** collection cycle. Return where to continue the traversal or NULL if 814 ** list is finished. ('*countout' gets the number of elements traversed.) 815 */ 816 static GCObject **sweeplist (lua_State *L, GCObject **p, int countin, 817 int *countout) { 818 global_State *g = G(L); 819 int ow = otherwhite(g); 820 int i; 821 int white = luaC_white(g); /* current white */ 822 for (i = 0; *p != NULL && i < countin; i++) { 823 GCObject *curr = *p; 824 int marked = curr->marked; 825 if (isdeadm(ow, marked)) { /* is 'curr' dead? */ 826 *p = curr->next; /* remove 'curr' from list */ 827 freeobj(L, curr); /* erase 'curr' */ 828 } 829 else { /* change mark to 'white' */ 830 curr->marked = cast_byte((marked & ~maskgcbits) | white); 831 p = &curr->next; /* go to next element */ 832 } 833 } 834 if (countout) 835 *countout = i; /* number of elements traversed */ 836 return (*p == NULL) ? NULL : p; 837 } 838 839 840 /* 841 ** sweep a list until a live object (or end of list) 842 */ 843 static GCObject **sweeptolive (lua_State *L, GCObject **p) { 844 GCObject **old = p; 845 do { 846 p = sweeplist(L, p, 1, NULL); 847 } while (p == old); 848 return p; 849 } 850 851 /* }====================================================== */ 852 853 854 /* 855 ** {====================================================== 856 ** Finalization 857 ** ======================================================= 858 */ 859 860 /* 861 ** If possible, shrink string table. 862 */ 863 static void checkSizes (lua_State *L, global_State *g) { 864 if (!g->gcemergency) { 865 if (g->strt.nuse < g->strt.size / 4) { /* string table too big? */ 866 l_mem olddebt = g->GCdebt; 867 luaS_resize(L, g->strt.size / 2); 868 g->GCestimate += g->GCdebt - olddebt; /* correct estimate */ 869 } 870 } 871 } 872 873 874 /* 875 ** Get the next udata to be finalized from the 'tobefnz' list, and 876 ** link it back into the 'allgc' list. 877 */ 878 static GCObject *udata2finalize (global_State *g) { 879 GCObject *o = g->tobefnz; /* get first element */ 880 lua_assert(tofinalize(o)); 881 g->tobefnz = o->next; /* remove it from 'tobefnz' list */ 882 o->next = g->allgc; /* return it to 'allgc' list */ 883 g->allgc = o; 884 resetbit(o->marked, FINALIZEDBIT); /* object is "normal" again */ 885 if (issweepphase(g)) 886 makewhite(g, o); /* "sweep" object */ 887 else if (getage(o) == G_OLD1) 888 g->firstold1 = o; /* it is the first OLD1 object in the list */ 889 return o; 890 } 891 892 893 static void dothecall (lua_State *L, void *ud) { 894 UNUSED(ud); 895 luaD_callnoyield(L, L->top - 2, 0); 896 } 897 898 899 static void GCTM (lua_State *L) { 900 global_State *g = G(L); 901 const TValue *tm; 902 TValue v; 903 lua_assert(!g->gcemergency); 904 setgcovalue(L, &v, udata2finalize(g)); 905 tm = luaT_gettmbyobj(L, &v, TM_GC); 906 if (!notm(tm)) { /* is there a finalizer? */ 907 int status; 908 lu_byte oldah = L->allowhook; 909 int oldgcstp = g->gcstp; 910 g->gcstp |= GCSTPGC; /* avoid GC steps */ 911 L->allowhook = 0; /* stop debug hooks during GC metamethod */ 912 setobj2s(L, L->top++, tm); /* push finalizer... */ 913 setobj2s(L, L->top++, &v); /* ... and its argument */ 914 L->ci->callstatus |= CIST_FIN; /* will run a finalizer */ 915 status = luaD_pcall(L, dothecall, NULL, savestack(L, L->top - 2), 0); 916 L->ci->callstatus &= ~CIST_FIN; /* not running a finalizer anymore */ 917 L->allowhook = oldah; /* restore hooks */ 918 g->gcstp = oldgcstp; /* restore state */ 919 if (l_unlikely(status != LUA_OK)) { /* error while running __gc? */ 920 luaE_warnerror(L, "__gc"); 921 L->top--; /* pops error object */ 922 } 923 } 924 } 925 926 927 /* 928 ** Call a few finalizers 929 */ 930 static int runafewfinalizers (lua_State *L, int n) { 931 global_State *g = G(L); 932 int i; 933 for (i = 0; i < n && g->tobefnz; i++) 934 GCTM(L); /* call one finalizer */ 935 return i; 936 } 937 938 939 /* 940 ** call all pending finalizers 941 */ 942 static void callallpendingfinalizers (lua_State *L) { 943 global_State *g = G(L); 944 while (g->tobefnz) 945 GCTM(L); 946 } 947 948 949 /* 950 ** find last 'next' field in list 'p' list (to add elements in its end) 951 */ 952 static GCObject **findlast (GCObject **p) { 953 while (*p != NULL) 954 p = &(*p)->next; 955 return p; 956 } 957 958 959 /* 960 ** Move all unreachable objects (or 'all' objects) that need 961 ** finalization from list 'finobj' to list 'tobefnz' (to be finalized). 962 ** (Note that objects after 'finobjold1' cannot be white, so they 963 ** don't need to be traversed. In incremental mode, 'finobjold1' is NULL, 964 ** so the whole list is traversed.) 965 */ 966 static void separatetobefnz (global_State *g, int all) { 967 GCObject *curr; 968 GCObject **p = &g->finobj; 969 GCObject **lastnext = findlast(&g->tobefnz); 970 while ((curr = *p) != g->finobjold1) { /* traverse all finalizable objects */ 971 lua_assert(tofinalize(curr)); 972 if (!(iswhite(curr) || all)) /* not being collected? */ 973 p = &curr->next; /* don't bother with it */ 974 else { 975 if (curr == g->finobjsur) /* removing 'finobjsur'? */ 976 g->finobjsur = curr->next; /* correct it */ 977 *p = curr->next; /* remove 'curr' from 'finobj' list */ 978 curr->next = *lastnext; /* link at the end of 'tobefnz' list */ 979 *lastnext = curr; 980 lastnext = &curr->next; 981 } 982 } 983 } 984 985 986 /* 987 ** If pointer 'p' points to 'o', move it to the next element. 988 */ 989 static void checkpointer (GCObject **p, GCObject *o) { 990 if (o == *p) 991 *p = o->next; 992 } 993 994 995 /* 996 ** Correct pointers to objects inside 'allgc' list when 997 ** object 'o' is being removed from the list. 998 */ 999 static void correctpointers (global_State *g, GCObject *o) { 1000 checkpointer(&g->survival, o); 1001 checkpointer(&g->old1, o); 1002 checkpointer(&g->reallyold, o); 1003 checkpointer(&g->firstold1, o); 1004 } 1005 1006 1007 /* 1008 ** if object 'o' has a finalizer, remove it from 'allgc' list (must 1009 ** search the list to find it) and link it in 'finobj' list. 1010 */ 1011 void luaC_checkfinalizer (lua_State *L, GCObject *o, Table *mt) { 1012 global_State *g = G(L); 1013 if (tofinalize(o) || /* obj. is already marked... */ 1014 gfasttm(g, mt, TM_GC) == NULL || /* or has no finalizer... */ 1015 (g->gcstp & GCSTPCLS)) /* or closing state? */ 1016 return; /* nothing to be done */ 1017 else { /* move 'o' to 'finobj' list */ 1018 GCObject **p; 1019 if (issweepphase(g)) { 1020 makewhite(g, o); /* "sweep" object 'o' */ 1021 if (g->sweepgc == &o->next) /* should not remove 'sweepgc' object */ 1022 g->sweepgc = sweeptolive(L, g->sweepgc); /* change 'sweepgc' */ 1023 } 1024 else 1025 correctpointers(g, o); 1026 /* search for pointer pointing to 'o' */ 1027 for (p = &g->allgc; *p != o; p = &(*p)->next) { /* empty */ } 1028 *p = o->next; /* remove 'o' from 'allgc' list */ 1029 o->next = g->finobj; /* link it in 'finobj' list */ 1030 g->finobj = o; 1031 l_setbit(o->marked, FINALIZEDBIT); /* mark it as such */ 1032 } 1033 } 1034 1035 /* }====================================================== */ 1036 1037 1038 /* 1039 ** {====================================================== 1040 ** Generational Collector 1041 ** ======================================================= 1042 */ 1043 1044 static void setpause (global_State *g); 1045 1046 1047 /* 1048 ** Sweep a list of objects to enter generational mode. Deletes dead 1049 ** objects and turns the non dead to old. All non-dead threads---which 1050 ** are now old---must be in a gray list. Everything else is not in a 1051 ** gray list. Open upvalues are also kept gray. 1052 */ 1053 static void sweep2old (lua_State *L, GCObject **p) { 1054 GCObject *curr; 1055 global_State *g = G(L); 1056 while ((curr = *p) != NULL) { 1057 if (iswhite(curr)) { /* is 'curr' dead? */ 1058 lua_assert(isdead(g, curr)); 1059 *p = curr->next; /* remove 'curr' from list */ 1060 freeobj(L, curr); /* erase 'curr' */ 1061 } 1062 else { /* all surviving objects become old */ 1063 setage(curr, G_OLD); 1064 if (curr->tt == LUA_VTHREAD) { /* threads must be watched */ 1065 lua_State *th = gco2th(curr); 1066 linkgclist(th, g->grayagain); /* insert into 'grayagain' list */ 1067 } 1068 else if (curr->tt == LUA_VUPVAL && upisopen(gco2upv(curr))) 1069 set2gray(curr); /* open upvalues are always gray */ 1070 else /* everything else is black */ 1071 nw2black(curr); 1072 p = &curr->next; /* go to next element */ 1073 } 1074 } 1075 } 1076 1077 1078 /* 1079 ** Sweep for generational mode. Delete dead objects. (Because the 1080 ** collection is not incremental, there are no "new white" objects 1081 ** during the sweep. So, any white object must be dead.) For 1082 ** non-dead objects, advance their ages and clear the color of 1083 ** new objects. (Old objects keep their colors.) 1084 ** The ages of G_TOUCHED1 and G_TOUCHED2 objects cannot be advanced 1085 ** here, because these old-generation objects are usually not swept 1086 ** here. They will all be advanced in 'correctgraylist'. That function 1087 ** will also remove objects turned white here from any gray list. 1088 */ 1089 static GCObject **sweepgen (lua_State *L, global_State *g, GCObject **p, 1090 GCObject *limit, GCObject **pfirstold1) { 1091 static const lu_byte nextage[] = { 1092 G_SURVIVAL, /* from G_NEW */ 1093 G_OLD1, /* from G_SURVIVAL */ 1094 G_OLD1, /* from G_OLD0 */ 1095 G_OLD, /* from G_OLD1 */ 1096 G_OLD, /* from G_OLD (do not change) */ 1097 G_TOUCHED1, /* from G_TOUCHED1 (do not change) */ 1098 G_TOUCHED2 /* from G_TOUCHED2 (do not change) */ 1099 }; 1100 int white = luaC_white(g); 1101 GCObject *curr; 1102 while ((curr = *p) != limit) { 1103 if (iswhite(curr)) { /* is 'curr' dead? */ 1104 lua_assert(!isold(curr) && isdead(g, curr)); 1105 *p = curr->next; /* remove 'curr' from list */ 1106 freeobj(L, curr); /* erase 'curr' */ 1107 } 1108 else { /* correct mark and age */ 1109 if (getage(curr) == G_NEW) { /* new objects go back to white */ 1110 int marked = curr->marked & ~maskgcbits; /* erase GC bits */ 1111 curr->marked = cast_byte(marked | G_SURVIVAL | white); 1112 } 1113 else { /* all other objects will be old, and so keep their color */ 1114 setage(curr, nextage[getage(curr)]); 1115 if (getage(curr) == G_OLD1 && *pfirstold1 == NULL) 1116 *pfirstold1 = curr; /* first OLD1 object in the list */ 1117 } 1118 p = &curr->next; /* go to next element */ 1119 } 1120 } 1121 return p; 1122 } 1123 1124 1125 /* 1126 ** Traverse a list making all its elements white and clearing their 1127 ** age. In incremental mode, all objects are 'new' all the time, 1128 ** except for fixed strings (which are always old). 1129 */ 1130 static void whitelist (global_State *g, GCObject *p) { 1131 int white = luaC_white(g); 1132 for (; p != NULL; p = p->next) 1133 p->marked = cast_byte((p->marked & ~maskgcbits) | white); 1134 } 1135 1136 1137 /* 1138 ** Correct a list of gray objects. Return pointer to where rest of the 1139 ** list should be linked. 1140 ** Because this correction is done after sweeping, young objects might 1141 ** be turned white and still be in the list. They are only removed. 1142 ** 'TOUCHED1' objects are advanced to 'TOUCHED2' and remain on the list; 1143 ** Non-white threads also remain on the list; 'TOUCHED2' objects become 1144 ** regular old; they and anything else are removed from the list. 1145 */ 1146 static GCObject **correctgraylist (GCObject **p) { 1147 GCObject *curr; 1148 while ((curr = *p) != NULL) { 1149 GCObject **next = getgclist(curr); 1150 if (iswhite(curr)) 1151 goto remove; /* remove all white objects */ 1152 else if (getage(curr) == G_TOUCHED1) { /* touched in this cycle? */ 1153 lua_assert(isgray(curr)); 1154 nw2black(curr); /* make it black, for next barrier */ 1155 changeage(curr, G_TOUCHED1, G_TOUCHED2); 1156 goto remain; /* keep it in the list and go to next element */ 1157 } 1158 else if (curr->tt == LUA_VTHREAD) { 1159 lua_assert(isgray(curr)); 1160 goto remain; /* keep non-white threads on the list */ 1161 } 1162 else { /* everything else is removed */ 1163 lua_assert(isold(curr)); /* young objects should be white here */ 1164 if (getage(curr) == G_TOUCHED2) /* advance from TOUCHED2... */ 1165 changeage(curr, G_TOUCHED2, G_OLD); /* ... to OLD */ 1166 nw2black(curr); /* make object black (to be removed) */ 1167 goto remove; 1168 } 1169 remove: *p = *next; continue; 1170 remain: p = next; continue; 1171 } 1172 return p; 1173 } 1174 1175 1176 /* 1177 ** Correct all gray lists, coalescing them into 'grayagain'. 1178 */ 1179 static void correctgraylists (global_State *g) { 1180 GCObject **list = correctgraylist(&g->grayagain); 1181 *list = g->weak; g->weak = NULL; 1182 list = correctgraylist(list); 1183 *list = g->allweak; g->allweak = NULL; 1184 list = correctgraylist(list); 1185 *list = g->ephemeron; g->ephemeron = NULL; 1186 correctgraylist(list); 1187 } 1188 1189 1190 /* 1191 ** Mark black 'OLD1' objects when starting a new young collection. 1192 ** Gray objects are already in some gray list, and so will be visited 1193 ** in the atomic step. 1194 */ 1195 static void markold (global_State *g, GCObject *from, GCObject *to) { 1196 GCObject *p; 1197 for (p = from; p != to; p = p->next) { 1198 if (getage(p) == G_OLD1) { 1199 lua_assert(!iswhite(p)); 1200 changeage(p, G_OLD1, G_OLD); /* now they are old */ 1201 if (isblack(p)) 1202 reallymarkobject(g, p); 1203 } 1204 } 1205 } 1206 1207 1208 /* 1209 ** Finish a young-generation collection. 1210 */ 1211 static void finishgencycle (lua_State *L, global_State *g) { 1212 correctgraylists(g); 1213 checkSizes(L, g); 1214 g->gcstate = GCSpropagate; /* skip restart */ 1215 if (!g->gcemergency) 1216 callallpendingfinalizers(L); 1217 } 1218 1219 1220 /* 1221 ** Does a young collection. First, mark 'OLD1' objects. Then does the 1222 ** atomic step. Then, sweep all lists and advance pointers. Finally, 1223 ** finish the collection. 1224 */ 1225 static void youngcollection (lua_State *L, global_State *g) { 1226 GCObject **psurvival; /* to point to first non-dead survival object */ 1227 GCObject *dummy; /* dummy out parameter to 'sweepgen' */ 1228 lua_assert(g->gcstate == GCSpropagate); 1229 if (g->firstold1) { /* are there regular OLD1 objects? */ 1230 markold(g, g->firstold1, g->reallyold); /* mark them */ 1231 g->firstold1 = NULL; /* no more OLD1 objects (for now) */ 1232 } 1233 markold(g, g->finobj, g->finobjrold); 1234 markold(g, g->tobefnz, NULL); 1235 atomic(L); 1236 1237 /* sweep nursery and get a pointer to its last live element */ 1238 g->gcstate = GCSswpallgc; 1239 psurvival = sweepgen(L, g, &g->allgc, g->survival, &g->firstold1); 1240 /* sweep 'survival' */ 1241 sweepgen(L, g, psurvival, g->old1, &g->firstold1); 1242 g->reallyold = g->old1; 1243 g->old1 = *psurvival; /* 'survival' survivals are old now */ 1244 g->survival = g->allgc; /* all news are survivals */ 1245 1246 /* repeat for 'finobj' lists */ 1247 dummy = NULL; /* no 'firstold1' optimization for 'finobj' lists */ 1248 psurvival = sweepgen(L, g, &g->finobj, g->finobjsur, &dummy); 1249 /* sweep 'survival' */ 1250 sweepgen(L, g, psurvival, g->finobjold1, &dummy); 1251 g->finobjrold = g->finobjold1; 1252 g->finobjold1 = *psurvival; /* 'survival' survivals are old now */ 1253 g->finobjsur = g->finobj; /* all news are survivals */ 1254 1255 sweepgen(L, g, &g->tobefnz, NULL, &dummy); 1256 finishgencycle(L, g); 1257 } 1258 1259 1260 /* 1261 ** Clears all gray lists, sweeps objects, and prepare sublists to enter 1262 ** generational mode. The sweeps remove dead objects and turn all 1263 ** surviving objects to old. Threads go back to 'grayagain'; everything 1264 ** else is turned black (not in any gray list). 1265 */ 1266 static void atomic2gen (lua_State *L, global_State *g) { 1267 cleargraylists(g); 1268 /* sweep all elements making them old */ 1269 g->gcstate = GCSswpallgc; 1270 sweep2old(L, &g->allgc); 1271 /* everything alive now is old */ 1272 g->reallyold = g->old1 = g->survival = g->allgc; 1273 g->firstold1 = NULL; /* there are no OLD1 objects anywhere */ 1274 1275 /* repeat for 'finobj' lists */ 1276 sweep2old(L, &g->finobj); 1277 g->finobjrold = g->finobjold1 = g->finobjsur = g->finobj; 1278 1279 sweep2old(L, &g->tobefnz); 1280 1281 g->gckind = KGC_GEN; 1282 g->lastatomic = 0; 1283 g->GCestimate = gettotalbytes(g); /* base for memory control */ 1284 finishgencycle(L, g); 1285 } 1286 1287 1288 /* 1289 ** Enter generational mode. Must go until the end of an atomic cycle 1290 ** to ensure that all objects are correctly marked and weak tables 1291 ** are cleared. Then, turn all objects into old and finishes the 1292 ** collection. 1293 */ 1294 static lu_mem entergen (lua_State *L, global_State *g) { 1295 lu_mem numobjs; 1296 luaC_runtilstate(L, bitmask(GCSpause)); /* prepare to start a new cycle */ 1297 luaC_runtilstate(L, bitmask(GCSpropagate)); /* start new cycle */ 1298 numobjs = atomic(L); /* propagates all and then do the atomic stuff */ 1299 atomic2gen(L, g); 1300 return numobjs; 1301 } 1302 1303 1304 /* 1305 ** Enter incremental mode. Turn all objects white, make all 1306 ** intermediate lists point to NULL (to avoid invalid pointers), 1307 ** and go to the pause state. 1308 */ 1309 static void enterinc (global_State *g) { 1310 whitelist(g, g->allgc); 1311 g->reallyold = g->old1 = g->survival = NULL; 1312 whitelist(g, g->finobj); 1313 whitelist(g, g->tobefnz); 1314 g->finobjrold = g->finobjold1 = g->finobjsur = NULL; 1315 g->gcstate = GCSpause; 1316 g->gckind = KGC_INC; 1317 g->lastatomic = 0; 1318 } 1319 1320 1321 /* 1322 ** Change collector mode to 'newmode'. 1323 */ 1324 void luaC_changemode (lua_State *L, int newmode) { 1325 global_State *g = G(L); 1326 if (newmode != g->gckind) { 1327 if (newmode == KGC_GEN) /* entering generational mode? */ 1328 entergen(L, g); 1329 else 1330 enterinc(g); /* entering incremental mode */ 1331 } 1332 g->lastatomic = 0; 1333 } 1334 1335 1336 /* 1337 ** Does a full collection in generational mode. 1338 */ 1339 static lu_mem fullgen (lua_State *L, global_State *g) { 1340 enterinc(g); 1341 return entergen(L, g); 1342 } 1343 1344 1345 /* 1346 ** Set debt for the next minor collection, which will happen when 1347 ** memory grows 'genminormul'%. 1348 */ 1349 static void setminordebt (global_State *g) { 1350 luaE_setdebt(g, -(cast(l_mem, (gettotalbytes(g) / 100)) * g->genminormul)); 1351 } 1352 1353 1354 /* 1355 ** Does a major collection after last collection was a "bad collection". 1356 ** 1357 ** When the program is building a big structure, it allocates lots of 1358 ** memory but generates very little garbage. In those scenarios, 1359 ** the generational mode just wastes time doing small collections, and 1360 ** major collections are frequently what we call a "bad collection", a 1361 ** collection that frees too few objects. To avoid the cost of switching 1362 ** between generational mode and the incremental mode needed for full 1363 ** (major) collections, the collector tries to stay in incremental mode 1364 ** after a bad collection, and to switch back to generational mode only 1365 ** after a "good" collection (one that traverses less than 9/8 objects 1366 ** of the previous one). 1367 ** The collector must choose whether to stay in incremental mode or to 1368 ** switch back to generational mode before sweeping. At this point, it 1369 ** does not know the real memory in use, so it cannot use memory to 1370 ** decide whether to return to generational mode. Instead, it uses the 1371 ** number of objects traversed (returned by 'atomic') as a proxy. The 1372 ** field 'g->lastatomic' keeps this count from the last collection. 1373 ** ('g->lastatomic != 0' also means that the last collection was bad.) 1374 */ 1375 static void stepgenfull (lua_State *L, global_State *g) { 1376 lu_mem newatomic; /* count of traversed objects */ 1377 lu_mem lastatomic = g->lastatomic; /* count from last collection */ 1378 if (g->gckind == KGC_GEN) /* still in generational mode? */ 1379 enterinc(g); /* enter incremental mode */ 1380 luaC_runtilstate(L, bitmask(GCSpropagate)); /* start new cycle */ 1381 newatomic = atomic(L); /* mark everybody */ 1382 if (newatomic < lastatomic + (lastatomic >> 3)) { /* good collection? */ 1383 atomic2gen(L, g); /* return to generational mode */ 1384 setminordebt(g); 1385 } 1386 else { /* another bad collection; stay in incremental mode */ 1387 g->GCestimate = gettotalbytes(g); /* first estimate */; 1388 entersweep(L); 1389 luaC_runtilstate(L, bitmask(GCSpause)); /* finish collection */ 1390 setpause(g); 1391 g->lastatomic = newatomic; 1392 } 1393 } 1394 1395 1396 /* 1397 ** Does a generational "step". 1398 ** Usually, this means doing a minor collection and setting the debt to 1399 ** make another collection when memory grows 'genminormul'% larger. 1400 ** 1401 ** However, there are exceptions. If memory grows 'genmajormul'% 1402 ** larger than it was at the end of the last major collection (kept 1403 ** in 'g->GCestimate'), the function does a major collection. At the 1404 ** end, it checks whether the major collection was able to free a 1405 ** decent amount of memory (at least half the growth in memory since 1406 ** previous major collection). If so, the collector keeps its state, 1407 ** and the next collection will probably be minor again. Otherwise, 1408 ** we have what we call a "bad collection". In that case, set the field 1409 ** 'g->lastatomic' to signal that fact, so that the next collection will 1410 ** go to 'stepgenfull'. 1411 ** 1412 ** 'GCdebt <= 0' means an explicit call to GC step with "size" zero; 1413 ** in that case, do a minor collection. 1414 */ 1415 static void genstep (lua_State *L, global_State *g) { 1416 if (g->lastatomic != 0) /* last collection was a bad one? */ 1417 stepgenfull(L, g); /* do a full step */ 1418 else { 1419 lu_mem majorbase = g->GCestimate; /* memory after last major collection */ 1420 lu_mem majorinc = (majorbase / 100) * getgcparam(g->genmajormul); 1421 if (g->GCdebt > 0 && gettotalbytes(g) > majorbase + majorinc) { 1422 lu_mem numobjs = fullgen(L, g); /* do a major collection */ 1423 if (gettotalbytes(g) < majorbase + (majorinc / 2)) { 1424 /* collected at least half of memory growth since last major 1425 collection; keep doing minor collections */ 1426 setminordebt(g); 1427 } 1428 else { /* bad collection */ 1429 g->lastatomic = numobjs; /* signal that last collection was bad */ 1430 setpause(g); /* do a long wait for next (major) collection */ 1431 } 1432 } 1433 else { /* regular case; do a minor collection */ 1434 youngcollection(L, g); 1435 setminordebt(g); 1436 g->GCestimate = majorbase; /* preserve base value */ 1437 } 1438 } 1439 lua_assert(isdecGCmodegen(g)); 1440 } 1441 1442 /* }====================================================== */ 1443 1444 1445 /* 1446 ** {====================================================== 1447 ** GC control 1448 ** ======================================================= 1449 */ 1450 1451 1452 /* 1453 ** Set the "time" to wait before starting a new GC cycle; cycle will 1454 ** start when memory use hits the threshold of ('estimate' * pause / 1455 ** PAUSEADJ). (Division by 'estimate' should be OK: it cannot be zero, 1456 ** because Lua cannot even start with less than PAUSEADJ bytes). 1457 */ 1458 static void setpause (global_State *g) { 1459 l_mem threshold, debt; 1460 int pause = getgcparam(g->gcpause); 1461 l_mem estimate = g->GCestimate / PAUSEADJ; /* adjust 'estimate' */ 1462 lua_assert(estimate > 0); 1463 threshold = (pause < MAX_LMEM / estimate) /* overflow? */ 1464 ? estimate * pause /* no overflow */ 1465 : MAX_LMEM; /* overflow; truncate to maximum */ 1466 debt = gettotalbytes(g) - threshold; 1467 if (debt > 0) debt = 0; 1468 luaE_setdebt(g, debt); 1469 } 1470 1471 1472 /* 1473 ** Enter first sweep phase. 1474 ** The call to 'sweeptolive' makes the pointer point to an object 1475 ** inside the list (instead of to the header), so that the real sweep do 1476 ** not need to skip objects created between "now" and the start of the 1477 ** real sweep. 1478 */ 1479 static void entersweep (lua_State *L) { 1480 global_State *g = G(L); 1481 g->gcstate = GCSswpallgc; 1482 lua_assert(g->sweepgc == NULL); 1483 g->sweepgc = sweeptolive(L, &g->allgc); 1484 } 1485 1486 1487 /* 1488 ** Delete all objects in list 'p' until (but not including) object 1489 ** 'limit'. 1490 */ 1491 static void deletelist (lua_State *L, GCObject *p, GCObject *limit) { 1492 while (p != limit) { 1493 GCObject *next = p->next; 1494 freeobj(L, p); 1495 p = next; 1496 } 1497 } 1498 1499 1500 /* 1501 ** Call all finalizers of the objects in the given Lua state, and 1502 ** then free all objects, except for the main thread. 1503 */ 1504 void luaC_freeallobjects (lua_State *L) { 1505 global_State *g = G(L); 1506 g->gcstp = GCSTPCLS; /* no extra finalizers after here */ 1507 luaC_changemode(L, KGC_INC); 1508 separatetobefnz(g, 1); /* separate all objects with finalizers */ 1509 lua_assert(g->finobj == NULL); 1510 callallpendingfinalizers(L); 1511 deletelist(L, g->allgc, obj2gco(g->mainthread)); 1512 lua_assert(g->finobj == NULL); /* no new finalizers */ 1513 deletelist(L, g->fixedgc, NULL); /* collect fixed objects */ 1514 lua_assert(g->strt.nuse == 0); 1515 } 1516 1517 1518 static lu_mem atomic (lua_State *L) { 1519 global_State *g = G(L); 1520 lu_mem work = 0; 1521 GCObject *origweak, *origall; 1522 GCObject *grayagain = g->grayagain; /* save original list */ 1523 g->grayagain = NULL; 1524 lua_assert(g->ephemeron == NULL && g->weak == NULL); 1525 lua_assert(!iswhite(g->mainthread)); 1526 g->gcstate = GCSatomic; 1527 markobject(g, L); /* mark running thread */ 1528 /* registry and global metatables may be changed by API */ 1529 markvalue(g, &g->l_registry); 1530 markmt(g); /* mark global metatables */ 1531 work += propagateall(g); /* empties 'gray' list */ 1532 /* remark occasional upvalues of (maybe) dead threads */ 1533 work += remarkupvals(g); 1534 work += propagateall(g); /* propagate changes */ 1535 g->gray = grayagain; 1536 work += propagateall(g); /* traverse 'grayagain' list */ 1537 convergeephemerons(g); 1538 /* at this point, all strongly accessible objects are marked. */ 1539 /* Clear values from weak tables, before checking finalizers */ 1540 clearbyvalues(g, g->weak, NULL); 1541 clearbyvalues(g, g->allweak, NULL); 1542 origweak = g->weak; origall = g->allweak; 1543 separatetobefnz(g, 0); /* separate objects to be finalized */ 1544 work += markbeingfnz(g); /* mark objects that will be finalized */ 1545 work += propagateall(g); /* remark, to propagate 'resurrection' */ 1546 convergeephemerons(g); 1547 /* at this point, all resurrected objects are marked. */ 1548 /* remove dead objects from weak tables */ 1549 clearbykeys(g, g->ephemeron); /* clear keys from all ephemeron tables */ 1550 clearbykeys(g, g->allweak); /* clear keys from all 'allweak' tables */ 1551 /* clear values from resurrected weak tables */ 1552 clearbyvalues(g, g->weak, origweak); 1553 clearbyvalues(g, g->allweak, origall); 1554 luaS_clearcache(g); 1555 g->currentwhite = cast_byte(otherwhite(g)); /* flip current white */ 1556 lua_assert(g->gray == NULL); 1557 return work; /* estimate of slots marked by 'atomic' */ 1558 } 1559 1560 1561 static int sweepstep (lua_State *L, global_State *g, 1562 int nextstate, GCObject **nextlist) { 1563 if (g->sweepgc) { 1564 l_mem olddebt = g->GCdebt; 1565 int count; 1566 g->sweepgc = sweeplist(L, g->sweepgc, GCSWEEPMAX, &count); 1567 g->GCestimate += g->GCdebt - olddebt; /* update estimate */ 1568 return count; 1569 } 1570 else { /* enter next state */ 1571 g->gcstate = nextstate; 1572 g->sweepgc = nextlist; 1573 return 0; /* no work done */ 1574 } 1575 } 1576 1577 1578 static lu_mem singlestep (lua_State *L) { 1579 global_State *g = G(L); 1580 lu_mem work; 1581 lua_assert(!g->gcstopem); /* collector is not reentrant */ 1582 g->gcstopem = 1; /* no emergency collections while collecting */ 1583 switch (g->gcstate) { 1584 case GCSpause: { 1585 restartcollection(g); 1586 g->gcstate = GCSpropagate; 1587 work = 1; 1588 break; 1589 } 1590 case GCSpropagate: { 1591 if (g->gray == NULL) { /* no more gray objects? */ 1592 g->gcstate = GCSenteratomic; /* finish propagate phase */ 1593 work = 0; 1594 } 1595 else 1596 work = propagatemark(g); /* traverse one gray object */ 1597 break; 1598 } 1599 case GCSenteratomic: { 1600 work = atomic(L); /* work is what was traversed by 'atomic' */ 1601 entersweep(L); 1602 g->GCestimate = gettotalbytes(g); /* first estimate */; 1603 break; 1604 } 1605 case GCSswpallgc: { /* sweep "regular" objects */ 1606 work = sweepstep(L, g, GCSswpfinobj, &g->finobj); 1607 break; 1608 } 1609 case GCSswpfinobj: { /* sweep objects with finalizers */ 1610 work = sweepstep(L, g, GCSswptobefnz, &g->tobefnz); 1611 break; 1612 } 1613 case GCSswptobefnz: { /* sweep objects to be finalized */ 1614 work = sweepstep(L, g, GCSswpend, NULL); 1615 break; 1616 } 1617 case GCSswpend: { /* finish sweeps */ 1618 checkSizes(L, g); 1619 g->gcstate = GCScallfin; 1620 work = 0; 1621 break; 1622 } 1623 case GCScallfin: { /* call remaining finalizers */ 1624 if (g->tobefnz && !g->gcemergency) { 1625 g->gcstopem = 0; /* ok collections during finalizers */ 1626 work = runafewfinalizers(L, GCFINMAX) * GCFINALIZECOST; 1627 } 1628 else { /* emergency mode or no more finalizers */ 1629 g->gcstate = GCSpause; /* finish collection */ 1630 work = 0; 1631 } 1632 break; 1633 } 1634 default: lua_assert(0); return 0; 1635 } 1636 g->gcstopem = 0; 1637 return work; 1638 } 1639 1640 1641 /* 1642 ** advances the garbage collector until it reaches a state allowed 1643 ** by 'statemask' 1644 */ 1645 void luaC_runtilstate (lua_State *L, int statesmask) { 1646 global_State *g = G(L); 1647 while (!testbit(statesmask, g->gcstate)) 1648 singlestep(L); 1649 } 1650 1651 1652 1653 /* 1654 ** Performs a basic incremental step. The debt and step size are 1655 ** converted from bytes to "units of work"; then the function loops 1656 ** running single steps until adding that many units of work or 1657 ** finishing a cycle (pause state). Finally, it sets the debt that 1658 ** controls when next step will be performed. 1659 */ 1660 static void incstep (lua_State *L, global_State *g) { 1661 int stepmul = (getgcparam(g->gcstepmul) | 1); /* avoid division by 0 */ 1662 l_mem debt = (g->GCdebt / WORK2MEM) * stepmul; 1663 l_mem stepsize = (g->gcstepsize <= log2maxs(l_mem)) 1664 ? ((cast(l_mem, 1) << g->gcstepsize) / WORK2MEM) * stepmul 1665 : MAX_LMEM; /* overflow; keep maximum value */ 1666 do { /* repeat until pause or enough "credit" (negative debt) */ 1667 lu_mem work = singlestep(L); /* perform one single step */ 1668 debt -= work; 1669 } while (debt > -stepsize && g->gcstate != GCSpause); 1670 if (g->gcstate == GCSpause) 1671 setpause(g); /* pause until next cycle */ 1672 else { 1673 debt = (debt / stepmul) * WORK2MEM; /* convert 'work units' to bytes */ 1674 luaE_setdebt(g, debt); 1675 } 1676 } 1677 1678 /* 1679 ** performs a basic GC step if collector is running 1680 */ 1681 void luaC_step (lua_State *L) { 1682 global_State *g = G(L); 1683 lua_assert(!g->gcemergency); 1684 if (gcrunning(g)) { /* running? */ 1685 if(isdecGCmodegen(g)) 1686 genstep(L, g); 1687 else 1688 incstep(L, g); 1689 } 1690 } 1691 1692 1693 /* 1694 ** Perform a full collection in incremental mode. 1695 ** Before running the collection, check 'keepinvariant'; if it is true, 1696 ** there may be some objects marked as black, so the collector has 1697 ** to sweep all objects to turn them back to white (as white has not 1698 ** changed, nothing will be collected). 1699 */ 1700 static void fullinc (lua_State *L, global_State *g) { 1701 if (keepinvariant(g)) /* black objects? */ 1702 entersweep(L); /* sweep everything to turn them back to white */ 1703 /* finish any pending sweep phase to start a new cycle */ 1704 luaC_runtilstate(L, bitmask(GCSpause)); 1705 luaC_runtilstate(L, bitmask(GCScallfin)); /* run up to finalizers */ 1706 /* estimate must be correct after a full GC cycle */ 1707 lua_assert(g->GCestimate == gettotalbytes(g)); 1708 luaC_runtilstate(L, bitmask(GCSpause)); /* finish collection */ 1709 setpause(g); 1710 } 1711 1712 1713 /* 1714 ** Performs a full GC cycle; if 'isemergency', set a flag to avoid 1715 ** some operations which could change the interpreter state in some 1716 ** unexpected ways (running finalizers and shrinking some structures). 1717 */ 1718 void luaC_fullgc (lua_State *L, int isemergency) { 1719 global_State *g = G(L); 1720 lua_assert(!g->gcemergency); 1721 g->gcemergency = isemergency; /* set flag */ 1722 if (g->gckind == KGC_INC) 1723 fullinc(L, g); 1724 else 1725 fullgen(L, g); 1726 g->gcemergency = 0; 1727 } 1728 1729 /* }====================================================== */ 1730 1731 1732