xref: /freebsd/contrib/lua/src/lcode.c (revision ecaeac805b044f715c98960a8fbf19fe2b76ae6b)
1 /*
2 ** $Id: lcode.c $
3 ** Code generator for Lua
4 ** See Copyright Notice in lua.h
5 */
6 
7 #define lcode_c
8 #define LUA_CORE
9 
10 #include "lprefix.h"
11 
12 
13 #include <float.h>
14 #include <limits.h>
15 #include <math.h>
16 #include <stdlib.h>
17 
18 #include "lua.h"
19 
20 #include "lcode.h"
21 #include "ldebug.h"
22 #include "ldo.h"
23 #include "lgc.h"
24 #include "llex.h"
25 #include "lmem.h"
26 #include "lobject.h"
27 #include "lopcodes.h"
28 #include "lparser.h"
29 #include "lstring.h"
30 #include "ltable.h"
31 #include "lvm.h"
32 
33 
34 /* Maximum number of registers in a Lua function (must fit in 8 bits) */
35 #define MAXREGS		255
36 
37 
38 #define hasjumps(e)	((e)->t != (e)->f)
39 
40 
41 static int codesJ (FuncState *fs, OpCode o, int sj, int k);
42 
43 
44 
45 /* semantic error */
46 l_noret luaK_semerror (LexState *ls, const char *msg) {
47   ls->t.token = 0;  /* remove "near <token>" from final message */
48   luaX_syntaxerror(ls, msg);
49 }
50 
51 
52 /*
53 ** If expression is a numeric constant, fills 'v' with its value
54 ** and returns 1. Otherwise, returns 0.
55 */
56 static int tonumeral (const expdesc *e, TValue *v) {
57   if (hasjumps(e))
58     return 0;  /* not a numeral */
59   switch (e->k) {
60     case VKINT:
61       if (v) setivalue(v, e->u.ival);
62       return 1;
63     case VKFLT:
64       if (v) setfltvalue(v, e->u.nval);
65       return 1;
66     default: return 0;
67   }
68 }
69 
70 
71 /*
72 ** Get the constant value from a constant expression
73 */
74 static TValue *const2val (FuncState *fs, const expdesc *e) {
75   lua_assert(e->k == VCONST);
76   return &fs->ls->dyd->actvar.arr[e->u.info].k;
77 }
78 
79 
80 /*
81 ** If expression is a constant, fills 'v' with its value
82 ** and returns 1. Otherwise, returns 0.
83 */
84 int luaK_exp2const (FuncState *fs, const expdesc *e, TValue *v) {
85   if (hasjumps(e))
86     return 0;  /* not a constant */
87   switch (e->k) {
88     case VFALSE:
89       setbfvalue(v);
90       return 1;
91     case VTRUE:
92       setbtvalue(v);
93       return 1;
94     case VNIL:
95       setnilvalue(v);
96       return 1;
97     case VKSTR: {
98       setsvalue(fs->ls->L, v, e->u.strval);
99       return 1;
100     }
101     case VCONST: {
102       setobj(fs->ls->L, v, const2val(fs, e));
103       return 1;
104     }
105     default: return tonumeral(e, v);
106   }
107 }
108 
109 
110 /*
111 ** Return the previous instruction of the current code. If there
112 ** may be a jump target between the current instruction and the
113 ** previous one, return an invalid instruction (to avoid wrong
114 ** optimizations).
115 */
116 static Instruction *previousinstruction (FuncState *fs) {
117   static const Instruction invalidinstruction = ~(Instruction)0;
118   if (fs->pc > fs->lasttarget)
119     return &fs->f->code[fs->pc - 1];  /* previous instruction */
120   else
121     return cast(Instruction*, &invalidinstruction);
122 }
123 
124 
125 /*
126 ** Create a OP_LOADNIL instruction, but try to optimize: if the previous
127 ** instruction is also OP_LOADNIL and ranges are compatible, adjust
128 ** range of previous instruction instead of emitting a new one. (For
129 ** instance, 'local a; local b' will generate a single opcode.)
130 */
131 void luaK_nil (FuncState *fs, int from, int n) {
132   int l = from + n - 1;  /* last register to set nil */
133   Instruction *previous = previousinstruction(fs);
134   if (GET_OPCODE(*previous) == OP_LOADNIL) {  /* previous is LOADNIL? */
135     int pfrom = GETARG_A(*previous);  /* get previous range */
136     int pl = pfrom + GETARG_B(*previous);
137     if ((pfrom <= from && from <= pl + 1) ||
138         (from <= pfrom && pfrom <= l + 1)) {  /* can connect both? */
139       if (pfrom < from) from = pfrom;  /* from = min(from, pfrom) */
140       if (pl > l) l = pl;  /* l = max(l, pl) */
141       SETARG_A(*previous, from);
142       SETARG_B(*previous, l - from);
143       return;
144     }  /* else go through */
145   }
146   luaK_codeABC(fs, OP_LOADNIL, from, n - 1, 0);  /* else no optimization */
147 }
148 
149 
150 /*
151 ** Gets the destination address of a jump instruction. Used to traverse
152 ** a list of jumps.
153 */
154 static int getjump (FuncState *fs, int pc) {
155   int offset = GETARG_sJ(fs->f->code[pc]);
156   if (offset == NO_JUMP)  /* point to itself represents end of list */
157     return NO_JUMP;  /* end of list */
158   else
159     return (pc+1)+offset;  /* turn offset into absolute position */
160 }
161 
162 
163 /*
164 ** Fix jump instruction at position 'pc' to jump to 'dest'.
165 ** (Jump addresses are relative in Lua)
166 */
167 static void fixjump (FuncState *fs, int pc, int dest) {
168   Instruction *jmp = &fs->f->code[pc];
169   int offset = dest - (pc + 1);
170   lua_assert(dest != NO_JUMP);
171   if (!(-OFFSET_sJ <= offset && offset <= MAXARG_sJ - OFFSET_sJ))
172     luaX_syntaxerror(fs->ls, "control structure too long");
173   lua_assert(GET_OPCODE(*jmp) == OP_JMP);
174   SETARG_sJ(*jmp, offset);
175 }
176 
177 
178 /*
179 ** Concatenate jump-list 'l2' into jump-list 'l1'
180 */
181 void luaK_concat (FuncState *fs, int *l1, int l2) {
182   if (l2 == NO_JUMP) return;  /* nothing to concatenate? */
183   else if (*l1 == NO_JUMP)  /* no original list? */
184     *l1 = l2;  /* 'l1' points to 'l2' */
185   else {
186     int list = *l1;
187     int next;
188     while ((next = getjump(fs, list)) != NO_JUMP)  /* find last element */
189       list = next;
190     fixjump(fs, list, l2);  /* last element links to 'l2' */
191   }
192 }
193 
194 
195 /*
196 ** Create a jump instruction and return its position, so its destination
197 ** can be fixed later (with 'fixjump').
198 */
199 int luaK_jump (FuncState *fs) {
200   return codesJ(fs, OP_JMP, NO_JUMP, 0);
201 }
202 
203 
204 /*
205 ** Code a 'return' instruction
206 */
207 void luaK_ret (FuncState *fs, int first, int nret) {
208   OpCode op;
209   switch (nret) {
210     case 0: op = OP_RETURN0; break;
211     case 1: op = OP_RETURN1; break;
212     default: op = OP_RETURN; break;
213   }
214   luaK_codeABC(fs, op, first, nret + 1, 0);
215 }
216 
217 
218 /*
219 ** Code a "conditional jump", that is, a test or comparison opcode
220 ** followed by a jump. Return jump position.
221 */
222 static int condjump (FuncState *fs, OpCode op, int A, int B, int C, int k) {
223   luaK_codeABCk(fs, op, A, B, C, k);
224   return luaK_jump(fs);
225 }
226 
227 
228 /*
229 ** returns current 'pc' and marks it as a jump target (to avoid wrong
230 ** optimizations with consecutive instructions not in the same basic block).
231 */
232 int luaK_getlabel (FuncState *fs) {
233   fs->lasttarget = fs->pc;
234   return fs->pc;
235 }
236 
237 
238 /*
239 ** Returns the position of the instruction "controlling" a given
240 ** jump (that is, its condition), or the jump itself if it is
241 ** unconditional.
242 */
243 static Instruction *getjumpcontrol (FuncState *fs, int pc) {
244   Instruction *pi = &fs->f->code[pc];
245   if (pc >= 1 && testTMode(GET_OPCODE(*(pi-1))))
246     return pi-1;
247   else
248     return pi;
249 }
250 
251 
252 /*
253 ** Patch destination register for a TESTSET instruction.
254 ** If instruction in position 'node' is not a TESTSET, return 0 ("fails").
255 ** Otherwise, if 'reg' is not 'NO_REG', set it as the destination
256 ** register. Otherwise, change instruction to a simple 'TEST' (produces
257 ** no register value)
258 */
259 static int patchtestreg (FuncState *fs, int node, int reg) {
260   Instruction *i = getjumpcontrol(fs, node);
261   if (GET_OPCODE(*i) != OP_TESTSET)
262     return 0;  /* cannot patch other instructions */
263   if (reg != NO_REG && reg != GETARG_B(*i))
264     SETARG_A(*i, reg);
265   else {
266      /* no register to put value or register already has the value;
267         change instruction to simple test */
268     *i = CREATE_ABCk(OP_TEST, GETARG_B(*i), 0, 0, GETARG_k(*i));
269   }
270   return 1;
271 }
272 
273 
274 /*
275 ** Traverse a list of tests ensuring no one produces a value
276 */
277 static void removevalues (FuncState *fs, int list) {
278   for (; list != NO_JUMP; list = getjump(fs, list))
279       patchtestreg(fs, list, NO_REG);
280 }
281 
282 
283 /*
284 ** Traverse a list of tests, patching their destination address and
285 ** registers: tests producing values jump to 'vtarget' (and put their
286 ** values in 'reg'), other tests jump to 'dtarget'.
287 */
288 static void patchlistaux (FuncState *fs, int list, int vtarget, int reg,
289                           int dtarget) {
290   while (list != NO_JUMP) {
291     int next = getjump(fs, list);
292     if (patchtestreg(fs, list, reg))
293       fixjump(fs, list, vtarget);
294     else
295       fixjump(fs, list, dtarget);  /* jump to default target */
296     list = next;
297   }
298 }
299 
300 
301 /*
302 ** Path all jumps in 'list' to jump to 'target'.
303 ** (The assert means that we cannot fix a jump to a forward address
304 ** because we only know addresses once code is generated.)
305 */
306 void luaK_patchlist (FuncState *fs, int list, int target) {
307   lua_assert(target <= fs->pc);
308   patchlistaux(fs, list, target, NO_REG, target);
309 }
310 
311 
312 void luaK_patchtohere (FuncState *fs, int list) {
313   int hr = luaK_getlabel(fs);  /* mark "here" as a jump target */
314   luaK_patchlist(fs, list, hr);
315 }
316 
317 
318 /* limit for difference between lines in relative line info. */
319 #define LIMLINEDIFF	0x80
320 
321 
322 /*
323 ** Save line info for a new instruction. If difference from last line
324 ** does not fit in a byte, of after that many instructions, save a new
325 ** absolute line info; (in that case, the special value 'ABSLINEINFO'
326 ** in 'lineinfo' signals the existence of this absolute information.)
327 ** Otherwise, store the difference from last line in 'lineinfo'.
328 */
329 static void savelineinfo (FuncState *fs, Proto *f, int line) {
330   int linedif = line - fs->previousline;
331   int pc = fs->pc - 1;  /* last instruction coded */
332   if (abs(linedif) >= LIMLINEDIFF || fs->iwthabs++ >= MAXIWTHABS) {
333     luaM_growvector(fs->ls->L, f->abslineinfo, fs->nabslineinfo,
334                     f->sizeabslineinfo, AbsLineInfo, MAX_INT, "lines");
335     f->abslineinfo[fs->nabslineinfo].pc = pc;
336     f->abslineinfo[fs->nabslineinfo++].line = line;
337     linedif = ABSLINEINFO;  /* signal that there is absolute information */
338     fs->iwthabs = 1;  /* restart counter */
339   }
340   luaM_growvector(fs->ls->L, f->lineinfo, pc, f->sizelineinfo, ls_byte,
341                   MAX_INT, "opcodes");
342   f->lineinfo[pc] = linedif;
343   fs->previousline = line;  /* last line saved */
344 }
345 
346 
347 /*
348 ** Remove line information from the last instruction.
349 ** If line information for that instruction is absolute, set 'iwthabs'
350 ** above its max to force the new (replacing) instruction to have
351 ** absolute line info, too.
352 */
353 static void removelastlineinfo (FuncState *fs) {
354   Proto *f = fs->f;
355   int pc = fs->pc - 1;  /* last instruction coded */
356   if (f->lineinfo[pc] != ABSLINEINFO) {  /* relative line info? */
357     fs->previousline -= f->lineinfo[pc];  /* correct last line saved */
358     fs->iwthabs--;  /* undo previous increment */
359   }
360   else {  /* absolute line information */
361     lua_assert(f->abslineinfo[fs->nabslineinfo - 1].pc == pc);
362     fs->nabslineinfo--;  /* remove it */
363     fs->iwthabs = MAXIWTHABS + 1;  /* force next line info to be absolute */
364   }
365 }
366 
367 
368 /*
369 ** Remove the last instruction created, correcting line information
370 ** accordingly.
371 */
372 static void removelastinstruction (FuncState *fs) {
373   removelastlineinfo(fs);
374   fs->pc--;
375 }
376 
377 
378 /*
379 ** Emit instruction 'i', checking for array sizes and saving also its
380 ** line information. Return 'i' position.
381 */
382 int luaK_code (FuncState *fs, Instruction i) {
383   Proto *f = fs->f;
384   /* put new instruction in code array */
385   luaM_growvector(fs->ls->L, f->code, fs->pc, f->sizecode, Instruction,
386                   MAX_INT, "opcodes");
387   f->code[fs->pc++] = i;
388   savelineinfo(fs, f, fs->ls->lastline);
389   return fs->pc - 1;  /* index of new instruction */
390 }
391 
392 
393 /*
394 ** Format and emit an 'iABC' instruction. (Assertions check consistency
395 ** of parameters versus opcode.)
396 */
397 int luaK_codeABCk (FuncState *fs, OpCode o, int a, int b, int c, int k) {
398   lua_assert(getOpMode(o) == iABC);
399   lua_assert(a <= MAXARG_A && b <= MAXARG_B &&
400              c <= MAXARG_C && (k & ~1) == 0);
401   return luaK_code(fs, CREATE_ABCk(o, a, b, c, k));
402 }
403 
404 
405 /*
406 ** Format and emit an 'iABx' instruction.
407 */
408 int luaK_codeABx (FuncState *fs, OpCode o, int a, unsigned int bc) {
409   lua_assert(getOpMode(o) == iABx);
410   lua_assert(a <= MAXARG_A && bc <= MAXARG_Bx);
411   return luaK_code(fs, CREATE_ABx(o, a, bc));
412 }
413 
414 
415 /*
416 ** Format and emit an 'iAsBx' instruction.
417 */
418 int luaK_codeAsBx (FuncState *fs, OpCode o, int a, int bc) {
419   unsigned int b = bc + OFFSET_sBx;
420   lua_assert(getOpMode(o) == iAsBx);
421   lua_assert(a <= MAXARG_A && b <= MAXARG_Bx);
422   return luaK_code(fs, CREATE_ABx(o, a, b));
423 }
424 
425 
426 /*
427 ** Format and emit an 'isJ' instruction.
428 */
429 static int codesJ (FuncState *fs, OpCode o, int sj, int k) {
430   unsigned int j = sj + OFFSET_sJ;
431   lua_assert(getOpMode(o) == isJ);
432   lua_assert(j <= MAXARG_sJ && (k & ~1) == 0);
433   return luaK_code(fs, CREATE_sJ(o, j, k));
434 }
435 
436 
437 /*
438 ** Emit an "extra argument" instruction (format 'iAx')
439 */
440 static int codeextraarg (FuncState *fs, int a) {
441   lua_assert(a <= MAXARG_Ax);
442   return luaK_code(fs, CREATE_Ax(OP_EXTRAARG, a));
443 }
444 
445 
446 /*
447 ** Emit a "load constant" instruction, using either 'OP_LOADK'
448 ** (if constant index 'k' fits in 18 bits) or an 'OP_LOADKX'
449 ** instruction with "extra argument".
450 */
451 static int luaK_codek (FuncState *fs, int reg, int k) {
452   if (k <= MAXARG_Bx)
453     return luaK_codeABx(fs, OP_LOADK, reg, k);
454   else {
455     int p = luaK_codeABx(fs, OP_LOADKX, reg, 0);
456     codeextraarg(fs, k);
457     return p;
458   }
459 }
460 
461 
462 /*
463 ** Check register-stack level, keeping track of its maximum size
464 ** in field 'maxstacksize'
465 */
466 void luaK_checkstack (FuncState *fs, int n) {
467   int newstack = fs->freereg + n;
468   if (newstack > fs->f->maxstacksize) {
469     if (newstack >= MAXREGS)
470       luaX_syntaxerror(fs->ls,
471         "function or expression needs too many registers");
472     fs->f->maxstacksize = cast_byte(newstack);
473   }
474 }
475 
476 
477 /*
478 ** Reserve 'n' registers in register stack
479 */
480 void luaK_reserveregs (FuncState *fs, int n) {
481   luaK_checkstack(fs, n);
482   fs->freereg += n;
483 }
484 
485 
486 /*
487 ** Free register 'reg', if it is neither a constant index nor
488 ** a local variable.
489 )
490 */
491 static void freereg (FuncState *fs, int reg) {
492   if (reg >= luaY_nvarstack(fs)) {
493     fs->freereg--;
494     lua_assert(reg == fs->freereg);
495   }
496 }
497 
498 
499 /*
500 ** Free two registers in proper order
501 */
502 static void freeregs (FuncState *fs, int r1, int r2) {
503   if (r1 > r2) {
504     freereg(fs, r1);
505     freereg(fs, r2);
506   }
507   else {
508     freereg(fs, r2);
509     freereg(fs, r1);
510   }
511 }
512 
513 
514 /*
515 ** Free register used by expression 'e' (if any)
516 */
517 static void freeexp (FuncState *fs, expdesc *e) {
518   if (e->k == VNONRELOC)
519     freereg(fs, e->u.info);
520 }
521 
522 
523 /*
524 ** Free registers used by expressions 'e1' and 'e2' (if any) in proper
525 ** order.
526 */
527 static void freeexps (FuncState *fs, expdesc *e1, expdesc *e2) {
528   int r1 = (e1->k == VNONRELOC) ? e1->u.info : -1;
529   int r2 = (e2->k == VNONRELOC) ? e2->u.info : -1;
530   freeregs(fs, r1, r2);
531 }
532 
533 
534 /*
535 ** Add constant 'v' to prototype's list of constants (field 'k').
536 ** Use scanner's table to cache position of constants in constant list
537 ** and try to reuse constants. Because some values should not be used
538 ** as keys (nil cannot be a key, integer keys can collapse with float
539 ** keys), the caller must provide a useful 'key' for indexing the cache.
540 ** Note that all functions share the same table, so entering or exiting
541 ** a function can make some indices wrong.
542 */
543 static int addk (FuncState *fs, TValue *key, TValue *v) {
544   TValue val;
545   lua_State *L = fs->ls->L;
546   Proto *f = fs->f;
547   const TValue *idx = luaH_get(fs->ls->h, key);  /* query scanner table */
548   int k, oldsize;
549   if (ttisinteger(idx)) {  /* is there an index there? */
550     k = cast_int(ivalue(idx));
551     /* correct value? (warning: must distinguish floats from integers!) */
552     if (k < fs->nk && ttypetag(&f->k[k]) == ttypetag(v) &&
553                       luaV_rawequalobj(&f->k[k], v))
554       return k;  /* reuse index */
555   }
556   /* constant not found; create a new entry */
557   oldsize = f->sizek;
558   k = fs->nk;
559   /* numerical value does not need GC barrier;
560      table has no metatable, so it does not need to invalidate cache */
561   setivalue(&val, k);
562   luaH_finishset(L, fs->ls->h, key, idx, &val);
563   luaM_growvector(L, f->k, k, f->sizek, TValue, MAXARG_Ax, "constants");
564   while (oldsize < f->sizek) setnilvalue(&f->k[oldsize++]);
565   setobj(L, &f->k[k], v);
566   fs->nk++;
567   luaC_barrier(L, f, v);
568   return k;
569 }
570 
571 
572 /*
573 ** Add a string to list of constants and return its index.
574 */
575 static int stringK (FuncState *fs, TString *s) {
576   TValue o;
577   setsvalue(fs->ls->L, &o, s);
578   return addk(fs, &o, &o);  /* use string itself as key */
579 }
580 
581 
582 /*
583 ** Add an integer to list of constants and return its index.
584 */
585 static int luaK_intK (FuncState *fs, lua_Integer n) {
586   TValue o;
587   setivalue(&o, n);
588   return addk(fs, &o, &o);  /* use integer itself as key */
589 }
590 
591 /*
592 ** Add a float to list of constants and return its index. Floats
593 ** with integral values need a different key, to avoid collision
594 ** with actual integers. To that, we add to the number its smaller
595 ** power-of-two fraction that is still significant in its scale.
596 ** For doubles, that would be 1/2^52.
597 ** (This method is not bulletproof: there may be another float
598 ** with that value, and for floats larger than 2^53 the result is
599 ** still an integer. At worst, this only wastes an entry with
600 ** a duplicate.)
601 */
602 static int luaK_numberK (FuncState *fs, lua_Number r) {
603   TValue o;
604   lua_Integer ik;
605   setfltvalue(&o, r);
606 #ifndef LUA_AVOID_FLOAT
607   if (!luaV_flttointeger(r, &ik, F2Ieq))  /* not an integral value? */
608     return addk(fs, &o, &o);  /* use number itself as key */
609   else {  /* must build an alternative key */
610     const int nbm = l_floatatt(MANT_DIG);
611     const lua_Number q = l_mathop(ldexp)(l_mathop(1.0), -nbm + 1);
612     const lua_Number k = (ik == 0) ? q : r + r*q;  /* new key */
613     TValue kv;
614     setfltvalue(&kv, k);
615     /* result is not an integral value, unless value is too large */
616     lua_assert(!luaV_flttointeger(k, &ik, F2Ieq) ||
617                 l_mathop(fabs)(r) >= l_mathop(1e6));
618     return addk(fs, &kv, &o);
619   }
620 #else
621   /*
622   ** When we're avoiding floats, allow any collision since floats are ints.
623   */
624   return addk(fs, &o, &o);  /* use number itself as key */
625 #endif
626 }
627 
628 
629 /*
630 ** Add a false to list of constants and return its index.
631 */
632 static int boolF (FuncState *fs) {
633   TValue o;
634   setbfvalue(&o);
635   return addk(fs, &o, &o);  /* use boolean itself as key */
636 }
637 
638 
639 /*
640 ** Add a true to list of constants and return its index.
641 */
642 static int boolT (FuncState *fs) {
643   TValue o;
644   setbtvalue(&o);
645   return addk(fs, &o, &o);  /* use boolean itself as key */
646 }
647 
648 
649 /*
650 ** Add nil to list of constants and return its index.
651 */
652 static int nilK (FuncState *fs) {
653   TValue k, v;
654   setnilvalue(&v);
655   /* cannot use nil as key; instead use table itself to represent nil */
656   sethvalue(fs->ls->L, &k, fs->ls->h);
657   return addk(fs, &k, &v);
658 }
659 
660 
661 /*
662 ** Check whether 'i' can be stored in an 'sC' operand. Equivalent to
663 ** (0 <= int2sC(i) && int2sC(i) <= MAXARG_C) but without risk of
664 ** overflows in the hidden addition inside 'int2sC'.
665 */
666 static int fitsC (lua_Integer i) {
667   return (l_castS2U(i) + OFFSET_sC <= cast_uint(MAXARG_C));
668 }
669 
670 
671 /*
672 ** Check whether 'i' can be stored in an 'sBx' operand.
673 */
674 static int fitsBx (lua_Integer i) {
675   return (-OFFSET_sBx <= i && i <= MAXARG_Bx - OFFSET_sBx);
676 }
677 
678 
679 void luaK_int (FuncState *fs, int reg, lua_Integer i) {
680   if (fitsBx(i))
681     luaK_codeAsBx(fs, OP_LOADI, reg, cast_int(i));
682   else
683     luaK_codek(fs, reg, luaK_intK(fs, i));
684 }
685 
686 
687 static void luaK_float (FuncState *fs, int reg, lua_Number f) {
688   lua_Integer fi;
689   if (luaV_flttointeger(f, &fi, F2Ieq) && fitsBx(fi))
690     luaK_codeAsBx(fs, OP_LOADF, reg, cast_int(fi));
691   else
692     luaK_codek(fs, reg, luaK_numberK(fs, f));
693 }
694 
695 
696 /*
697 ** Convert a constant in 'v' into an expression description 'e'
698 */
699 static void const2exp (TValue *v, expdesc *e) {
700   switch (ttypetag(v)) {
701     case LUA_VNUMINT:
702       e->k = VKINT; e->u.ival = ivalue(v);
703       break;
704     case LUA_VNUMFLT:
705       e->k = VKFLT; e->u.nval = fltvalue(v);
706       break;
707     case LUA_VFALSE:
708       e->k = VFALSE;
709       break;
710     case LUA_VTRUE:
711       e->k = VTRUE;
712       break;
713     case LUA_VNIL:
714       e->k = VNIL;
715       break;
716     case LUA_VSHRSTR:  case LUA_VLNGSTR:
717       e->k = VKSTR; e->u.strval = tsvalue(v);
718       break;
719     default: lua_assert(0);
720   }
721 }
722 
723 
724 /*
725 ** Fix an expression to return the number of results 'nresults'.
726 ** 'e' must be a multi-ret expression (function call or vararg).
727 */
728 void luaK_setreturns (FuncState *fs, expdesc *e, int nresults) {
729   Instruction *pc = &getinstruction(fs, e);
730   if (e->k == VCALL)  /* expression is an open function call? */
731     SETARG_C(*pc, nresults + 1);
732   else {
733     lua_assert(e->k == VVARARG);
734     SETARG_C(*pc, nresults + 1);
735     SETARG_A(*pc, fs->freereg);
736     luaK_reserveregs(fs, 1);
737   }
738 }
739 
740 
741 /*
742 ** Convert a VKSTR to a VK
743 */
744 static void str2K (FuncState *fs, expdesc *e) {
745   lua_assert(e->k == VKSTR);
746   e->u.info = stringK(fs, e->u.strval);
747   e->k = VK;
748 }
749 
750 
751 /*
752 ** Fix an expression to return one result.
753 ** If expression is not a multi-ret expression (function call or
754 ** vararg), it already returns one result, so nothing needs to be done.
755 ** Function calls become VNONRELOC expressions (as its result comes
756 ** fixed in the base register of the call), while vararg expressions
757 ** become VRELOC (as OP_VARARG puts its results where it wants).
758 ** (Calls are created returning one result, so that does not need
759 ** to be fixed.)
760 */
761 void luaK_setoneret (FuncState *fs, expdesc *e) {
762   if (e->k == VCALL) {  /* expression is an open function call? */
763     /* already returns 1 value */
764     lua_assert(GETARG_C(getinstruction(fs, e)) == 2);
765     e->k = VNONRELOC;  /* result has fixed position */
766     e->u.info = GETARG_A(getinstruction(fs, e));
767   }
768   else if (e->k == VVARARG) {
769     SETARG_C(getinstruction(fs, e), 2);
770     e->k = VRELOC;  /* can relocate its simple result */
771   }
772 }
773 
774 
775 /*
776 ** Ensure that expression 'e' is not a variable (nor a <const>).
777 ** (Expression still may have jump lists.)
778 */
779 void luaK_dischargevars (FuncState *fs, expdesc *e) {
780   switch (e->k) {
781     case VCONST: {
782       const2exp(const2val(fs, e), e);
783       break;
784     }
785     case VLOCAL: {  /* already in a register */
786       e->u.info = e->u.var.ridx;
787       e->k = VNONRELOC;  /* becomes a non-relocatable value */
788       break;
789     }
790     case VUPVAL: {  /* move value to some (pending) register */
791       e->u.info = luaK_codeABC(fs, OP_GETUPVAL, 0, e->u.info, 0);
792       e->k = VRELOC;
793       break;
794     }
795     case VINDEXUP: {
796       e->u.info = luaK_codeABC(fs, OP_GETTABUP, 0, e->u.ind.t, e->u.ind.idx);
797       e->k = VRELOC;
798       break;
799     }
800     case VINDEXI: {
801       freereg(fs, e->u.ind.t);
802       e->u.info = luaK_codeABC(fs, OP_GETI, 0, e->u.ind.t, e->u.ind.idx);
803       e->k = VRELOC;
804       break;
805     }
806     case VINDEXSTR: {
807       freereg(fs, e->u.ind.t);
808       e->u.info = luaK_codeABC(fs, OP_GETFIELD, 0, e->u.ind.t, e->u.ind.idx);
809       e->k = VRELOC;
810       break;
811     }
812     case VINDEXED: {
813       freeregs(fs, e->u.ind.t, e->u.ind.idx);
814       e->u.info = luaK_codeABC(fs, OP_GETTABLE, 0, e->u.ind.t, e->u.ind.idx);
815       e->k = VRELOC;
816       break;
817     }
818     case VVARARG: case VCALL: {
819       luaK_setoneret(fs, e);
820       break;
821     }
822     default: break;  /* there is one value available (somewhere) */
823   }
824 }
825 
826 
827 /*
828 ** Ensure expression value is in register 'reg', making 'e' a
829 ** non-relocatable expression.
830 ** (Expression still may have jump lists.)
831 */
832 static void discharge2reg (FuncState *fs, expdesc *e, int reg) {
833   luaK_dischargevars(fs, e);
834   switch (e->k) {
835     case VNIL: {
836       luaK_nil(fs, reg, 1);
837       break;
838     }
839     case VFALSE: {
840       luaK_codeABC(fs, OP_LOADFALSE, reg, 0, 0);
841       break;
842     }
843     case VTRUE: {
844       luaK_codeABC(fs, OP_LOADTRUE, reg, 0, 0);
845       break;
846     }
847     case VKSTR: {
848       str2K(fs, e);
849     }  /* FALLTHROUGH */
850     case VK: {
851       luaK_codek(fs, reg, e->u.info);
852       break;
853     }
854     case VKFLT: {
855       luaK_float(fs, reg, e->u.nval);
856       break;
857     }
858     case VKINT: {
859       luaK_int(fs, reg, e->u.ival);
860       break;
861     }
862     case VRELOC: {
863       Instruction *pc = &getinstruction(fs, e);
864       SETARG_A(*pc, reg);  /* instruction will put result in 'reg' */
865       break;
866     }
867     case VNONRELOC: {
868       if (reg != e->u.info)
869         luaK_codeABC(fs, OP_MOVE, reg, e->u.info, 0);
870       break;
871     }
872     default: {
873       lua_assert(e->k == VJMP);
874       return;  /* nothing to do... */
875     }
876   }
877   e->u.info = reg;
878   e->k = VNONRELOC;
879 }
880 
881 
882 /*
883 ** Ensure expression value is in a register, making 'e' a
884 ** non-relocatable expression.
885 ** (Expression still may have jump lists.)
886 */
887 static void discharge2anyreg (FuncState *fs, expdesc *e) {
888   if (e->k != VNONRELOC) {  /* no fixed register yet? */
889     luaK_reserveregs(fs, 1);  /* get a register */
890     discharge2reg(fs, e, fs->freereg-1);  /* put value there */
891   }
892 }
893 
894 
895 static int code_loadbool (FuncState *fs, int A, OpCode op) {
896   luaK_getlabel(fs);  /* those instructions may be jump targets */
897   return luaK_codeABC(fs, op, A, 0, 0);
898 }
899 
900 
901 /*
902 ** check whether list has any jump that do not produce a value
903 ** or produce an inverted value
904 */
905 static int need_value (FuncState *fs, int list) {
906   for (; list != NO_JUMP; list = getjump(fs, list)) {
907     Instruction i = *getjumpcontrol(fs, list);
908     if (GET_OPCODE(i) != OP_TESTSET) return 1;
909   }
910   return 0;  /* not found */
911 }
912 
913 
914 /*
915 ** Ensures final expression result (which includes results from its
916 ** jump lists) is in register 'reg'.
917 ** If expression has jumps, need to patch these jumps either to
918 ** its final position or to "load" instructions (for those tests
919 ** that do not produce values).
920 */
921 static void exp2reg (FuncState *fs, expdesc *e, int reg) {
922   discharge2reg(fs, e, reg);
923   if (e->k == VJMP)  /* expression itself is a test? */
924     luaK_concat(fs, &e->t, e->u.info);  /* put this jump in 't' list */
925   if (hasjumps(e)) {
926     int final;  /* position after whole expression */
927     int p_f = NO_JUMP;  /* position of an eventual LOAD false */
928     int p_t = NO_JUMP;  /* position of an eventual LOAD true */
929     if (need_value(fs, e->t) || need_value(fs, e->f)) {
930       int fj = (e->k == VJMP) ? NO_JUMP : luaK_jump(fs);
931       p_f = code_loadbool(fs, reg, OP_LFALSESKIP);  /* skip next inst. */
932       p_t = code_loadbool(fs, reg, OP_LOADTRUE);
933       /* jump around these booleans if 'e' is not a test */
934       luaK_patchtohere(fs, fj);
935     }
936     final = luaK_getlabel(fs);
937     patchlistaux(fs, e->f, final, reg, p_f);
938     patchlistaux(fs, e->t, final, reg, p_t);
939   }
940   e->f = e->t = NO_JUMP;
941   e->u.info = reg;
942   e->k = VNONRELOC;
943 }
944 
945 
946 /*
947 ** Ensures final expression result is in next available register.
948 */
949 void luaK_exp2nextreg (FuncState *fs, expdesc *e) {
950   luaK_dischargevars(fs, e);
951   freeexp(fs, e);
952   luaK_reserveregs(fs, 1);
953   exp2reg(fs, e, fs->freereg - 1);
954 }
955 
956 
957 /*
958 ** Ensures final expression result is in some (any) register
959 ** and return that register.
960 */
961 int luaK_exp2anyreg (FuncState *fs, expdesc *e) {
962   luaK_dischargevars(fs, e);
963   if (e->k == VNONRELOC) {  /* expression already has a register? */
964     if (!hasjumps(e))  /* no jumps? */
965       return e->u.info;  /* result is already in a register */
966     if (e->u.info >= luaY_nvarstack(fs)) {  /* reg. is not a local? */
967       exp2reg(fs, e, e->u.info);  /* put final result in it */
968       return e->u.info;
969     }
970     /* else expression has jumps and cannot change its register
971        to hold the jump values, because it is a local variable.
972        Go through to the default case. */
973   }
974   luaK_exp2nextreg(fs, e);  /* default: use next available register */
975   return e->u.info;
976 }
977 
978 
979 /*
980 ** Ensures final expression result is either in a register
981 ** or in an upvalue.
982 */
983 void luaK_exp2anyregup (FuncState *fs, expdesc *e) {
984   if (e->k != VUPVAL || hasjumps(e))
985     luaK_exp2anyreg(fs, e);
986 }
987 
988 
989 /*
990 ** Ensures final expression result is either in a register
991 ** or it is a constant.
992 */
993 void luaK_exp2val (FuncState *fs, expdesc *e) {
994   if (hasjumps(e))
995     luaK_exp2anyreg(fs, e);
996   else
997     luaK_dischargevars(fs, e);
998 }
999 
1000 
1001 /*
1002 ** Try to make 'e' a K expression with an index in the range of R/K
1003 ** indices. Return true iff succeeded.
1004 */
1005 static int luaK_exp2K (FuncState *fs, expdesc *e) {
1006   if (!hasjumps(e)) {
1007     int info;
1008     switch (e->k) {  /* move constants to 'k' */
1009       case VTRUE: info = boolT(fs); break;
1010       case VFALSE: info = boolF(fs); break;
1011       case VNIL: info = nilK(fs); break;
1012       case VKINT: info = luaK_intK(fs, e->u.ival); break;
1013       case VKFLT: info = luaK_numberK(fs, e->u.nval); break;
1014       case VKSTR: info = stringK(fs, e->u.strval); break;
1015       case VK: info = e->u.info; break;
1016       default: return 0;  /* not a constant */
1017     }
1018     if (info <= MAXINDEXRK) {  /* does constant fit in 'argC'? */
1019       e->k = VK;  /* make expression a 'K' expression */
1020       e->u.info = info;
1021       return 1;
1022     }
1023   }
1024   /* else, expression doesn't fit; leave it unchanged */
1025   return 0;
1026 }
1027 
1028 
1029 /*
1030 ** Ensures final expression result is in a valid R/K index
1031 ** (that is, it is either in a register or in 'k' with an index
1032 ** in the range of R/K indices).
1033 ** Returns 1 iff expression is K.
1034 */
1035 int luaK_exp2RK (FuncState *fs, expdesc *e) {
1036   if (luaK_exp2K(fs, e))
1037     return 1;
1038   else {  /* not a constant in the right range: put it in a register */
1039     luaK_exp2anyreg(fs, e);
1040     return 0;
1041   }
1042 }
1043 
1044 
1045 static void codeABRK (FuncState *fs, OpCode o, int a, int b,
1046                       expdesc *ec) {
1047   int k = luaK_exp2RK(fs, ec);
1048   luaK_codeABCk(fs, o, a, b, ec->u.info, k);
1049 }
1050 
1051 
1052 /*
1053 ** Generate code to store result of expression 'ex' into variable 'var'.
1054 */
1055 void luaK_storevar (FuncState *fs, expdesc *var, expdesc *ex) {
1056   switch (var->k) {
1057     case VLOCAL: {
1058       freeexp(fs, ex);
1059       exp2reg(fs, ex, var->u.var.ridx);  /* compute 'ex' into proper place */
1060       return;
1061     }
1062     case VUPVAL: {
1063       int e = luaK_exp2anyreg(fs, ex);
1064       luaK_codeABC(fs, OP_SETUPVAL, e, var->u.info, 0);
1065       break;
1066     }
1067     case VINDEXUP: {
1068       codeABRK(fs, OP_SETTABUP, var->u.ind.t, var->u.ind.idx, ex);
1069       break;
1070     }
1071     case VINDEXI: {
1072       codeABRK(fs, OP_SETI, var->u.ind.t, var->u.ind.idx, ex);
1073       break;
1074     }
1075     case VINDEXSTR: {
1076       codeABRK(fs, OP_SETFIELD, var->u.ind.t, var->u.ind.idx, ex);
1077       break;
1078     }
1079     case VINDEXED: {
1080       codeABRK(fs, OP_SETTABLE, var->u.ind.t, var->u.ind.idx, ex);
1081       break;
1082     }
1083     default: lua_assert(0);  /* invalid var kind to store */
1084   }
1085   freeexp(fs, ex);
1086 }
1087 
1088 
1089 /*
1090 ** Emit SELF instruction (convert expression 'e' into 'e:key(e,').
1091 */
1092 void luaK_self (FuncState *fs, expdesc *e, expdesc *key) {
1093   int ereg;
1094   luaK_exp2anyreg(fs, e);
1095   ereg = e->u.info;  /* register where 'e' was placed */
1096   freeexp(fs, e);
1097   e->u.info = fs->freereg;  /* base register for op_self */
1098   e->k = VNONRELOC;  /* self expression has a fixed register */
1099   luaK_reserveregs(fs, 2);  /* function and 'self' produced by op_self */
1100   codeABRK(fs, OP_SELF, e->u.info, ereg, key);
1101   freeexp(fs, key);
1102 }
1103 
1104 
1105 /*
1106 ** Negate condition 'e' (where 'e' is a comparison).
1107 */
1108 static void negatecondition (FuncState *fs, expdesc *e) {
1109   Instruction *pc = getjumpcontrol(fs, e->u.info);
1110   lua_assert(testTMode(GET_OPCODE(*pc)) && GET_OPCODE(*pc) != OP_TESTSET &&
1111                                            GET_OPCODE(*pc) != OP_TEST);
1112   SETARG_k(*pc, (GETARG_k(*pc) ^ 1));
1113 }
1114 
1115 
1116 /*
1117 ** Emit instruction to jump if 'e' is 'cond' (that is, if 'cond'
1118 ** is true, code will jump if 'e' is true.) Return jump position.
1119 ** Optimize when 'e' is 'not' something, inverting the condition
1120 ** and removing the 'not'.
1121 */
1122 static int jumponcond (FuncState *fs, expdesc *e, int cond) {
1123   if (e->k == VRELOC) {
1124     Instruction ie = getinstruction(fs, e);
1125     if (GET_OPCODE(ie) == OP_NOT) {
1126       removelastinstruction(fs);  /* remove previous OP_NOT */
1127       return condjump(fs, OP_TEST, GETARG_B(ie), 0, 0, !cond);
1128     }
1129     /* else go through */
1130   }
1131   discharge2anyreg(fs, e);
1132   freeexp(fs, e);
1133   return condjump(fs, OP_TESTSET, NO_REG, e->u.info, 0, cond);
1134 }
1135 
1136 
1137 /*
1138 ** Emit code to go through if 'e' is true, jump otherwise.
1139 */
1140 void luaK_goiftrue (FuncState *fs, expdesc *e) {
1141   int pc;  /* pc of new jump */
1142   luaK_dischargevars(fs, e);
1143   switch (e->k) {
1144     case VJMP: {  /* condition? */
1145       negatecondition(fs, e);  /* jump when it is false */
1146       pc = e->u.info;  /* save jump position */
1147       break;
1148     }
1149     case VK: case VKFLT: case VKINT: case VKSTR: case VTRUE: {
1150       pc = NO_JUMP;  /* always true; do nothing */
1151       break;
1152     }
1153     default: {
1154       pc = jumponcond(fs, e, 0);  /* jump when false */
1155       break;
1156     }
1157   }
1158   luaK_concat(fs, &e->f, pc);  /* insert new jump in false list */
1159   luaK_patchtohere(fs, e->t);  /* true list jumps to here (to go through) */
1160   e->t = NO_JUMP;
1161 }
1162 
1163 
1164 /*
1165 ** Emit code to go through if 'e' is false, jump otherwise.
1166 */
1167 void luaK_goiffalse (FuncState *fs, expdesc *e) {
1168   int pc;  /* pc of new jump */
1169   luaK_dischargevars(fs, e);
1170   switch (e->k) {
1171     case VJMP: {
1172       pc = e->u.info;  /* already jump if true */
1173       break;
1174     }
1175     case VNIL: case VFALSE: {
1176       pc = NO_JUMP;  /* always false; do nothing */
1177       break;
1178     }
1179     default: {
1180       pc = jumponcond(fs, e, 1);  /* jump if true */
1181       break;
1182     }
1183   }
1184   luaK_concat(fs, &e->t, pc);  /* insert new jump in 't' list */
1185   luaK_patchtohere(fs, e->f);  /* false list jumps to here (to go through) */
1186   e->f = NO_JUMP;
1187 }
1188 
1189 
1190 /*
1191 ** Code 'not e', doing constant folding.
1192 */
1193 static void codenot (FuncState *fs, expdesc *e) {
1194   switch (e->k) {
1195     case VNIL: case VFALSE: {
1196       e->k = VTRUE;  /* true == not nil == not false */
1197       break;
1198     }
1199     case VK: case VKFLT: case VKINT: case VKSTR: case VTRUE: {
1200       e->k = VFALSE;  /* false == not "x" == not 0.5 == not 1 == not true */
1201       break;
1202     }
1203     case VJMP: {
1204       negatecondition(fs, e);
1205       break;
1206     }
1207     case VRELOC:
1208     case VNONRELOC: {
1209       discharge2anyreg(fs, e);
1210       freeexp(fs, e);
1211       e->u.info = luaK_codeABC(fs, OP_NOT, 0, e->u.info, 0);
1212       e->k = VRELOC;
1213       break;
1214     }
1215     default: lua_assert(0);  /* cannot happen */
1216   }
1217   /* interchange true and false lists */
1218   { int temp = e->f; e->f = e->t; e->t = temp; }
1219   removevalues(fs, e->f);  /* values are useless when negated */
1220   removevalues(fs, e->t);
1221 }
1222 
1223 
1224 /*
1225 ** Check whether expression 'e' is a small literal string
1226 */
1227 static int isKstr (FuncState *fs, expdesc *e) {
1228   return (e->k == VK && !hasjumps(e) && e->u.info <= MAXARG_B &&
1229           ttisshrstring(&fs->f->k[e->u.info]));
1230 }
1231 
1232 /*
1233 ** Check whether expression 'e' is a literal integer.
1234 */
1235 int luaK_isKint (expdesc *e) {
1236   return (e->k == VKINT && !hasjumps(e));
1237 }
1238 
1239 
1240 /*
1241 ** Check whether expression 'e' is a literal integer in
1242 ** proper range to fit in register C
1243 */
1244 static int isCint (expdesc *e) {
1245   return luaK_isKint(e) && (l_castS2U(e->u.ival) <= l_castS2U(MAXARG_C));
1246 }
1247 
1248 
1249 /*
1250 ** Check whether expression 'e' is a literal integer in
1251 ** proper range to fit in register sC
1252 */
1253 static int isSCint (expdesc *e) {
1254   return luaK_isKint(e) && fitsC(e->u.ival);
1255 }
1256 
1257 
1258 /*
1259 ** Check whether expression 'e' is a literal integer or float in
1260 ** proper range to fit in a register (sB or sC).
1261 */
1262 static int isSCnumber (expdesc *e, int *pi, int *isfloat) {
1263   lua_Integer i;
1264   if (e->k == VKINT)
1265     i = e->u.ival;
1266   else if (e->k == VKFLT && luaV_flttointeger(e->u.nval, &i, F2Ieq))
1267     *isfloat = 1;
1268   else
1269     return 0;  /* not a number */
1270   if (!hasjumps(e) && fitsC(i)) {
1271     *pi = int2sC(cast_int(i));
1272     return 1;
1273   }
1274   else
1275     return 0;
1276 }
1277 
1278 
1279 /*
1280 ** Create expression 't[k]'. 't' must have its final result already in a
1281 ** register or upvalue. Upvalues can only be indexed by literal strings.
1282 ** Keys can be literal strings in the constant table or arbitrary
1283 ** values in registers.
1284 */
1285 void luaK_indexed (FuncState *fs, expdesc *t, expdesc *k) {
1286   if (k->k == VKSTR)
1287     str2K(fs, k);
1288   lua_assert(!hasjumps(t) &&
1289              (t->k == VLOCAL || t->k == VNONRELOC || t->k == VUPVAL));
1290   if (t->k == VUPVAL && !isKstr(fs, k))  /* upvalue indexed by non 'Kstr'? */
1291     luaK_exp2anyreg(fs, t);  /* put it in a register */
1292   if (t->k == VUPVAL) {
1293     t->u.ind.t = t->u.info;  /* upvalue index */
1294     t->u.ind.idx = k->u.info;  /* literal string */
1295     t->k = VINDEXUP;
1296   }
1297   else {
1298     /* register index of the table */
1299     t->u.ind.t = (t->k == VLOCAL) ? t->u.var.ridx: t->u.info;
1300     if (isKstr(fs, k)) {
1301       t->u.ind.idx = k->u.info;  /* literal string */
1302       t->k = VINDEXSTR;
1303     }
1304     else if (isCint(k)) {
1305       t->u.ind.idx = cast_int(k->u.ival);  /* int. constant in proper range */
1306       t->k = VINDEXI;
1307     }
1308     else {
1309       t->u.ind.idx = luaK_exp2anyreg(fs, k);  /* register */
1310       t->k = VINDEXED;
1311     }
1312   }
1313 }
1314 
1315 
1316 /*
1317 ** Return false if folding can raise an error.
1318 ** Bitwise operations need operands convertible to integers; division
1319 ** operations cannot have 0 as divisor.
1320 */
1321 static int validop (int op, TValue *v1, TValue *v2) {
1322   switch (op) {
1323     case LUA_OPBAND: case LUA_OPBOR: case LUA_OPBXOR:
1324     case LUA_OPSHL: case LUA_OPSHR: case LUA_OPBNOT: {  /* conversion errors */
1325       lua_Integer i;
1326       return (luaV_tointegerns(v1, &i, LUA_FLOORN2I) &&
1327               luaV_tointegerns(v2, &i, LUA_FLOORN2I));
1328     }
1329     case LUA_OPDIV: case LUA_OPIDIV: case LUA_OPMOD:  /* division by 0 */
1330       return (nvalue(v2) != 0);
1331     default: return 1;  /* everything else is valid */
1332   }
1333 }
1334 
1335 
1336 /*
1337 ** Try to "constant-fold" an operation; return 1 iff successful.
1338 ** (In this case, 'e1' has the final result.)
1339 */
1340 static int constfolding (FuncState *fs, int op, expdesc *e1,
1341                                         const expdesc *e2) {
1342   TValue v1, v2, res;
1343   if (!tonumeral(e1, &v1) || !tonumeral(e2, &v2) || !validop(op, &v1, &v2))
1344     return 0;  /* non-numeric operands or not safe to fold */
1345   luaO_rawarith(fs->ls->L, op, &v1, &v2, &res);  /* does operation */
1346   if (ttisinteger(&res)) {
1347     e1->k = VKINT;
1348     e1->u.ival = ivalue(&res);
1349   }
1350   else {  /* folds neither NaN nor 0.0 (to avoid problems with -0.0) */
1351     lua_Number n = fltvalue(&res);
1352     if (luai_numisnan(n) || n == 0)
1353       return 0;
1354     e1->k = VKFLT;
1355     e1->u.nval = n;
1356   }
1357   return 1;
1358 }
1359 
1360 
1361 /*
1362 ** Emit code for unary expressions that "produce values"
1363 ** (everything but 'not').
1364 ** Expression to produce final result will be encoded in 'e'.
1365 */
1366 static void codeunexpval (FuncState *fs, OpCode op, expdesc *e, int line) {
1367   int r = luaK_exp2anyreg(fs, e);  /* opcodes operate only on registers */
1368   freeexp(fs, e);
1369   e->u.info = luaK_codeABC(fs, op, 0, r, 0);  /* generate opcode */
1370   e->k = VRELOC;  /* all those operations are relocatable */
1371   luaK_fixline(fs, line);
1372 }
1373 
1374 
1375 /*
1376 ** Emit code for binary expressions that "produce values"
1377 ** (everything but logical operators 'and'/'or' and comparison
1378 ** operators).
1379 ** Expression to produce final result will be encoded in 'e1'.
1380 */
1381 static void finishbinexpval (FuncState *fs, expdesc *e1, expdesc *e2,
1382                              OpCode op, int v2, int flip, int line,
1383                              OpCode mmop, TMS event) {
1384   int v1 = luaK_exp2anyreg(fs, e1);
1385   int pc = luaK_codeABCk(fs, op, 0, v1, v2, 0);
1386   freeexps(fs, e1, e2);
1387   e1->u.info = pc;
1388   e1->k = VRELOC;  /* all those operations are relocatable */
1389   luaK_fixline(fs, line);
1390   luaK_codeABCk(fs, mmop, v1, v2, event, flip);  /* to call metamethod */
1391   luaK_fixline(fs, line);
1392 }
1393 
1394 
1395 /*
1396 ** Emit code for binary expressions that "produce values" over
1397 ** two registers.
1398 */
1399 static void codebinexpval (FuncState *fs, OpCode op,
1400                            expdesc *e1, expdesc *e2, int line) {
1401   int v2 = luaK_exp2anyreg(fs, e2);  /* both operands are in registers */
1402   lua_assert(OP_ADD <= op && op <= OP_SHR);
1403   finishbinexpval(fs, e1, e2, op, v2, 0, line, OP_MMBIN,
1404                   cast(TMS, (op - OP_ADD) + TM_ADD));
1405 }
1406 
1407 
1408 /*
1409 ** Code binary operators with immediate operands.
1410 */
1411 static void codebini (FuncState *fs, OpCode op,
1412                        expdesc *e1, expdesc *e2, int flip, int line,
1413                        TMS event) {
1414   int v2 = int2sC(cast_int(e2->u.ival));  /* immediate operand */
1415   lua_assert(e2->k == VKINT);
1416   finishbinexpval(fs, e1, e2, op, v2, flip, line, OP_MMBINI, event);
1417 }
1418 
1419 
1420 /* Try to code a binary operator negating its second operand.
1421 ** For the metamethod, 2nd operand must keep its original value.
1422 */
1423 static int finishbinexpneg (FuncState *fs, expdesc *e1, expdesc *e2,
1424                              OpCode op, int line, TMS event) {
1425   if (!luaK_isKint(e2))
1426     return 0;  /* not an integer constant */
1427   else {
1428     lua_Integer i2 = e2->u.ival;
1429     if (!(fitsC(i2) && fitsC(-i2)))
1430       return 0;  /* not in the proper range */
1431     else {  /* operating a small integer constant */
1432       int v2 = cast_int(i2);
1433       finishbinexpval(fs, e1, e2, op, int2sC(-v2), 0, line, OP_MMBINI, event);
1434       /* correct metamethod argument */
1435       SETARG_B(fs->f->code[fs->pc - 1], int2sC(v2));
1436       return 1;  /* successfully coded */
1437     }
1438   }
1439 }
1440 
1441 
1442 static void swapexps (expdesc *e1, expdesc *e2) {
1443   expdesc temp = *e1; *e1 = *e2; *e2 = temp;  /* swap 'e1' and 'e2' */
1444 }
1445 
1446 
1447 /*
1448 ** Code arithmetic operators ('+', '-', ...). If second operand is a
1449 ** constant in the proper range, use variant opcodes with K operands.
1450 */
1451 static void codearith (FuncState *fs, BinOpr opr,
1452                        expdesc *e1, expdesc *e2, int flip, int line) {
1453   TMS event = cast(TMS, opr + TM_ADD);
1454   if (tonumeral(e2, NULL) && luaK_exp2K(fs, e2)) {  /* K operand? */
1455     int v2 = e2->u.info;  /* K index */
1456     OpCode op = cast(OpCode, opr + OP_ADDK);
1457     finishbinexpval(fs, e1, e2, op, v2, flip, line, OP_MMBINK, event);
1458   }
1459   else {  /* 'e2' is neither an immediate nor a K operand */
1460     OpCode op = cast(OpCode, opr + OP_ADD);
1461     if (flip)
1462       swapexps(e1, e2);  /* back to original order */
1463     codebinexpval(fs, op, e1, e2, line);  /* use standard operators */
1464   }
1465 }
1466 
1467 
1468 /*
1469 ** Code commutative operators ('+', '*'). If first operand is a
1470 ** numeric constant, change order of operands to try to use an
1471 ** immediate or K operator.
1472 */
1473 static void codecommutative (FuncState *fs, BinOpr op,
1474                              expdesc *e1, expdesc *e2, int line) {
1475   int flip = 0;
1476   if (tonumeral(e1, NULL)) {  /* is first operand a numeric constant? */
1477     swapexps(e1, e2);  /* change order */
1478     flip = 1;
1479   }
1480   if (op == OPR_ADD && isSCint(e2))  /* immediate operand? */
1481     codebini(fs, cast(OpCode, OP_ADDI), e1, e2, flip, line, TM_ADD);
1482   else
1483     codearith(fs, op, e1, e2, flip, line);
1484 }
1485 
1486 
1487 /*
1488 ** Code bitwise operations; they are all associative, so the function
1489 ** tries to put an integer constant as the 2nd operand (a K operand).
1490 */
1491 static void codebitwise (FuncState *fs, BinOpr opr,
1492                          expdesc *e1, expdesc *e2, int line) {
1493   int flip = 0;
1494   int v2;
1495   OpCode op;
1496   if (e1->k == VKINT && luaK_exp2RK(fs, e1)) {
1497     swapexps(e1, e2);  /* 'e2' will be the constant operand */
1498     flip = 1;
1499   }
1500   else if (!(e2->k == VKINT && luaK_exp2RK(fs, e2))) {  /* no constants? */
1501     op = cast(OpCode, opr + OP_ADD);
1502     codebinexpval(fs, op, e1, e2, line);  /* all-register opcodes */
1503     return;
1504   }
1505   v2 = e2->u.info;  /* index in K array */
1506   op = cast(OpCode, opr + OP_ADDK);
1507   lua_assert(ttisinteger(&fs->f->k[v2]));
1508   finishbinexpval(fs, e1, e2, op, v2, flip, line, OP_MMBINK,
1509                   cast(TMS, opr + TM_ADD));
1510 }
1511 
1512 
1513 /*
1514 ** Emit code for order comparisons. When using an immediate operand,
1515 ** 'isfloat' tells whether the original value was a float.
1516 */
1517 static void codeorder (FuncState *fs, OpCode op, expdesc *e1, expdesc *e2) {
1518   int r1, r2;
1519   int im;
1520   int isfloat = 0;
1521   if (isSCnumber(e2, &im, &isfloat)) {
1522     /* use immediate operand */
1523     r1 = luaK_exp2anyreg(fs, e1);
1524     r2 = im;
1525     op = cast(OpCode, (op - OP_LT) + OP_LTI);
1526   }
1527   else if (isSCnumber(e1, &im, &isfloat)) {
1528     /* transform (A < B) to (B > A) and (A <= B) to (B >= A) */
1529     r1 = luaK_exp2anyreg(fs, e2);
1530     r2 = im;
1531     op = (op == OP_LT) ? OP_GTI : OP_GEI;
1532   }
1533   else {  /* regular case, compare two registers */
1534     r1 = luaK_exp2anyreg(fs, e1);
1535     r2 = luaK_exp2anyreg(fs, e2);
1536   }
1537   freeexps(fs, e1, e2);
1538   e1->u.info = condjump(fs, op, r1, r2, isfloat, 1);
1539   e1->k = VJMP;
1540 }
1541 
1542 
1543 /*
1544 ** Emit code for equality comparisons ('==', '~=').
1545 ** 'e1' was already put as RK by 'luaK_infix'.
1546 */
1547 static void codeeq (FuncState *fs, BinOpr opr, expdesc *e1, expdesc *e2) {
1548   int r1, r2;
1549   int im;
1550   int isfloat = 0;  /* not needed here, but kept for symmetry */
1551   OpCode op;
1552   if (e1->k != VNONRELOC) {
1553     lua_assert(e1->k == VK || e1->k == VKINT || e1->k == VKFLT);
1554     swapexps(e1, e2);
1555   }
1556   r1 = luaK_exp2anyreg(fs, e1);  /* 1st expression must be in register */
1557   if (isSCnumber(e2, &im, &isfloat)) {
1558     op = OP_EQI;
1559     r2 = im;  /* immediate operand */
1560   }
1561   else if (luaK_exp2RK(fs, e2)) {  /* 1st expression is constant? */
1562     op = OP_EQK;
1563     r2 = e2->u.info;  /* constant index */
1564   }
1565   else {
1566     op = OP_EQ;  /* will compare two registers */
1567     r2 = luaK_exp2anyreg(fs, e2);
1568   }
1569   freeexps(fs, e1, e2);
1570   e1->u.info = condjump(fs, op, r1, r2, isfloat, (opr == OPR_EQ));
1571   e1->k = VJMP;
1572 }
1573 
1574 
1575 /*
1576 ** Apply prefix operation 'op' to expression 'e'.
1577 */
1578 void luaK_prefix (FuncState *fs, UnOpr op, expdesc *e, int line) {
1579   static const expdesc ef = {VKINT, {0}, NO_JUMP, NO_JUMP};
1580   luaK_dischargevars(fs, e);
1581   switch (op) {
1582     case OPR_MINUS: case OPR_BNOT:  /* use 'ef' as fake 2nd operand */
1583       if (constfolding(fs, op + LUA_OPUNM, e, &ef))
1584         break;
1585       /* else */ /* FALLTHROUGH */
1586     case OPR_LEN:
1587       codeunexpval(fs, cast(OpCode, op + OP_UNM), e, line);
1588       break;
1589     case OPR_NOT: codenot(fs, e); break;
1590     default: lua_assert(0);
1591   }
1592 }
1593 
1594 
1595 /*
1596 ** Process 1st operand 'v' of binary operation 'op' before reading
1597 ** 2nd operand.
1598 */
1599 void luaK_infix (FuncState *fs, BinOpr op, expdesc *v) {
1600   luaK_dischargevars(fs, v);
1601   switch (op) {
1602     case OPR_AND: {
1603       luaK_goiftrue(fs, v);  /* go ahead only if 'v' is true */
1604       break;
1605     }
1606     case OPR_OR: {
1607       luaK_goiffalse(fs, v);  /* go ahead only if 'v' is false */
1608       break;
1609     }
1610     case OPR_CONCAT: {
1611       luaK_exp2nextreg(fs, v);  /* operand must be on the stack */
1612       break;
1613     }
1614     case OPR_ADD: case OPR_SUB:
1615     case OPR_MUL: case OPR_DIV: case OPR_IDIV:
1616     case OPR_MOD: case OPR_POW:
1617     case OPR_BAND: case OPR_BOR: case OPR_BXOR:
1618     case OPR_SHL: case OPR_SHR: {
1619       if (!tonumeral(v, NULL))
1620         luaK_exp2anyreg(fs, v);
1621       /* else keep numeral, which may be folded with 2nd operand */
1622       break;
1623     }
1624     case OPR_EQ: case OPR_NE: {
1625       if (!tonumeral(v, NULL))
1626         luaK_exp2RK(fs, v);
1627       /* else keep numeral, which may be an immediate operand */
1628       break;
1629     }
1630     case OPR_LT: case OPR_LE:
1631     case OPR_GT: case OPR_GE: {
1632       int dummy, dummy2;
1633       if (!isSCnumber(v, &dummy, &dummy2))
1634         luaK_exp2anyreg(fs, v);
1635       /* else keep numeral, which may be an immediate operand */
1636       break;
1637     }
1638     default: lua_assert(0);
1639   }
1640 }
1641 
1642 /*
1643 ** Create code for '(e1 .. e2)'.
1644 ** For '(e1 .. e2.1 .. e2.2)' (which is '(e1 .. (e2.1 .. e2.2))',
1645 ** because concatenation is right associative), merge both CONCATs.
1646 */
1647 static void codeconcat (FuncState *fs, expdesc *e1, expdesc *e2, int line) {
1648   Instruction *ie2 = previousinstruction(fs);
1649   if (GET_OPCODE(*ie2) == OP_CONCAT) {  /* is 'e2' a concatenation? */
1650     int n = GETARG_B(*ie2);  /* # of elements concatenated in 'e2' */
1651     lua_assert(e1->u.info + 1 == GETARG_A(*ie2));
1652     freeexp(fs, e2);
1653     SETARG_A(*ie2, e1->u.info);  /* correct first element ('e1') */
1654     SETARG_B(*ie2, n + 1);  /* will concatenate one more element */
1655   }
1656   else {  /* 'e2' is not a concatenation */
1657     luaK_codeABC(fs, OP_CONCAT, e1->u.info, 2, 0);  /* new concat opcode */
1658     freeexp(fs, e2);
1659     luaK_fixline(fs, line);
1660   }
1661 }
1662 
1663 
1664 /*
1665 ** Finalize code for binary operation, after reading 2nd operand.
1666 */
1667 void luaK_posfix (FuncState *fs, BinOpr opr,
1668                   expdesc *e1, expdesc *e2, int line) {
1669   luaK_dischargevars(fs, e2);
1670   if (foldbinop(opr) && constfolding(fs, opr + LUA_OPADD, e1, e2))
1671     return;  /* done by folding */
1672   switch (opr) {
1673     case OPR_AND: {
1674       lua_assert(e1->t == NO_JUMP);  /* list closed by 'luaK_infix' */
1675       luaK_concat(fs, &e2->f, e1->f);
1676       *e1 = *e2;
1677       break;
1678     }
1679     case OPR_OR: {
1680       lua_assert(e1->f == NO_JUMP);  /* list closed by 'luaK_infix' */
1681       luaK_concat(fs, &e2->t, e1->t);
1682       *e1 = *e2;
1683       break;
1684     }
1685     case OPR_CONCAT: {  /* e1 .. e2 */
1686       luaK_exp2nextreg(fs, e2);
1687       codeconcat(fs, e1, e2, line);
1688       break;
1689     }
1690     case OPR_ADD: case OPR_MUL: {
1691       codecommutative(fs, opr, e1, e2, line);
1692       break;
1693     }
1694     case OPR_SUB: {
1695       if (finishbinexpneg(fs, e1, e2, OP_ADDI, line, TM_SUB))
1696         break; /* coded as (r1 + -I) */
1697       /* ELSE */
1698     }  /* FALLTHROUGH */
1699     case OPR_DIV: case OPR_IDIV: case OPR_MOD: case OPR_POW: {
1700       codearith(fs, opr, e1, e2, 0, line);
1701       break;
1702     }
1703     case OPR_BAND: case OPR_BOR: case OPR_BXOR: {
1704       codebitwise(fs, opr, e1, e2, line);
1705       break;
1706     }
1707     case OPR_SHL: {
1708       if (isSCint(e1)) {
1709         swapexps(e1, e2);
1710         codebini(fs, OP_SHLI, e1, e2, 1, line, TM_SHL);  /* I << r2 */
1711       }
1712       else if (finishbinexpneg(fs, e1, e2, OP_SHRI, line, TM_SHL)) {
1713         /* coded as (r1 >> -I) */;
1714       }
1715       else  /* regular case (two registers) */
1716        codebinexpval(fs, OP_SHL, e1, e2, line);
1717       break;
1718     }
1719     case OPR_SHR: {
1720       if (isSCint(e2))
1721         codebini(fs, OP_SHRI, e1, e2, 0, line, TM_SHR);  /* r1 >> I */
1722       else  /* regular case (two registers) */
1723         codebinexpval(fs, OP_SHR, e1, e2, line);
1724       break;
1725     }
1726     case OPR_EQ: case OPR_NE: {
1727       codeeq(fs, opr, e1, e2);
1728       break;
1729     }
1730     case OPR_LT: case OPR_LE: {
1731       OpCode op = cast(OpCode, (opr - OPR_EQ) + OP_EQ);
1732       codeorder(fs, op, e1, e2);
1733       break;
1734     }
1735     case OPR_GT: case OPR_GE: {
1736       /* '(a > b)' <=> '(b < a)';  '(a >= b)' <=> '(b <= a)' */
1737       OpCode op = cast(OpCode, (opr - OPR_NE) + OP_EQ);
1738       swapexps(e1, e2);
1739       codeorder(fs, op, e1, e2);
1740       break;
1741     }
1742     default: lua_assert(0);
1743   }
1744 }
1745 
1746 
1747 /*
1748 ** Change line information associated with current position, by removing
1749 ** previous info and adding it again with new line.
1750 */
1751 void luaK_fixline (FuncState *fs, int line) {
1752   removelastlineinfo(fs);
1753   savelineinfo(fs, fs->f, line);
1754 }
1755 
1756 
1757 void luaK_settablesize (FuncState *fs, int pc, int ra, int asize, int hsize) {
1758   Instruction *inst = &fs->f->code[pc];
1759   int rb = (hsize != 0) ? luaO_ceillog2(hsize) + 1 : 0;  /* hash size */
1760   int extra = asize / (MAXARG_C + 1);  /* higher bits of array size */
1761   int rc = asize % (MAXARG_C + 1);  /* lower bits of array size */
1762   int k = (extra > 0);  /* true iff needs extra argument */
1763   *inst = CREATE_ABCk(OP_NEWTABLE, ra, rb, rc, k);
1764   *(inst + 1) = CREATE_Ax(OP_EXTRAARG, extra);
1765 }
1766 
1767 
1768 /*
1769 ** Emit a SETLIST instruction.
1770 ** 'base' is register that keeps table;
1771 ** 'nelems' is #table plus those to be stored now;
1772 ** 'tostore' is number of values (in registers 'base + 1',...) to add to
1773 ** table (or LUA_MULTRET to add up to stack top).
1774 */
1775 void luaK_setlist (FuncState *fs, int base, int nelems, int tostore) {
1776   lua_assert(tostore != 0 && tostore <= LFIELDS_PER_FLUSH);
1777   if (tostore == LUA_MULTRET)
1778     tostore = 0;
1779   if (nelems <= MAXARG_C)
1780     luaK_codeABC(fs, OP_SETLIST, base, tostore, nelems);
1781   else {
1782     int extra = nelems / (MAXARG_C + 1);
1783     nelems %= (MAXARG_C + 1);
1784     luaK_codeABCk(fs, OP_SETLIST, base, tostore, nelems, 1);
1785     codeextraarg(fs, extra);
1786   }
1787   fs->freereg = base + 1;  /* free registers with list values */
1788 }
1789 
1790 
1791 /*
1792 ** return the final target of a jump (skipping jumps to jumps)
1793 */
1794 static int finaltarget (Instruction *code, int i) {
1795   int count;
1796   for (count = 0; count < 100; count++) {  /* avoid infinite loops */
1797     Instruction pc = code[i];
1798     if (GET_OPCODE(pc) != OP_JMP)
1799       break;
1800      else
1801        i += GETARG_sJ(pc) + 1;
1802   }
1803   return i;
1804 }
1805 
1806 
1807 /*
1808 ** Do a final pass over the code of a function, doing small peephole
1809 ** optimizations and adjustments.
1810 */
1811 void luaK_finish (FuncState *fs) {
1812   int i;
1813   Proto *p = fs->f;
1814   for (i = 0; i < fs->pc; i++) {
1815     Instruction *pc = &p->code[i];
1816     lua_assert(i == 0 || isOT(*(pc - 1)) == isIT(*pc));
1817     switch (GET_OPCODE(*pc)) {
1818       case OP_RETURN0: case OP_RETURN1: {
1819         if (!(fs->needclose || p->is_vararg))
1820           break;  /* no extra work */
1821         /* else use OP_RETURN to do the extra work */
1822         SET_OPCODE(*pc, OP_RETURN);
1823       }  /* FALLTHROUGH */
1824       case OP_RETURN: case OP_TAILCALL: {
1825         if (fs->needclose)
1826           SETARG_k(*pc, 1);  /* signal that it needs to close */
1827         if (p->is_vararg)
1828           SETARG_C(*pc, p->numparams + 1);  /* signal that it is vararg */
1829         break;
1830       }
1831       case OP_JMP: {
1832         int target = finaltarget(p->code, i);
1833         fixjump(fs, i, target);
1834         break;
1835       }
1836       default: break;
1837     }
1838   }
1839 }
1840