1 /* 2 ** $Id: lcode.c $ 3 ** Code generator for Lua 4 ** See Copyright Notice in lua.h 5 */ 6 7 #define lcode_c 8 #define LUA_CORE 9 10 #include "lprefix.h" 11 12 13 #include <limits.h> 14 #include <math.h> 15 #include <stdlib.h> 16 17 #include "lua.h" 18 19 #include "lcode.h" 20 #include "ldebug.h" 21 #include "ldo.h" 22 #include "lgc.h" 23 #include "llex.h" 24 #include "lmem.h" 25 #include "lobject.h" 26 #include "lopcodes.h" 27 #include "lparser.h" 28 #include "lstring.h" 29 #include "ltable.h" 30 #include "lvm.h" 31 32 33 /* Maximum number of registers in a Lua function (must fit in 8 bits) */ 34 #define MAXREGS 255 35 36 37 #define hasjumps(e) ((e)->t != (e)->f) 38 39 40 static int codesJ (FuncState *fs, OpCode o, int sj, int k); 41 42 43 44 /* semantic error */ 45 l_noret luaK_semerror (LexState *ls, const char *msg) { 46 ls->t.token = 0; /* remove "near <token>" from final message */ 47 luaX_syntaxerror(ls, msg); 48 } 49 50 51 /* 52 ** If expression is a numeric constant, fills 'v' with its value 53 ** and returns 1. Otherwise, returns 0. 54 */ 55 static int tonumeral (const expdesc *e, TValue *v) { 56 if (hasjumps(e)) 57 return 0; /* not a numeral */ 58 switch (e->k) { 59 case VKINT: 60 if (v) setivalue(v, e->u.ival); 61 return 1; 62 case VKFLT: 63 if (v) setfltvalue(v, e->u.nval); 64 return 1; 65 default: return 0; 66 } 67 } 68 69 70 /* 71 ** Get the constant value from a constant expression 72 */ 73 static TValue *const2val (FuncState *fs, const expdesc *e) { 74 lua_assert(e->k == VCONST); 75 return &fs->ls->dyd->actvar.arr[e->u.info].k; 76 } 77 78 79 /* 80 ** If expression is a constant, fills 'v' with its value 81 ** and returns 1. Otherwise, returns 0. 82 */ 83 int luaK_exp2const (FuncState *fs, const expdesc *e, TValue *v) { 84 if (hasjumps(e)) 85 return 0; /* not a constant */ 86 switch (e->k) { 87 case VFALSE: 88 setbfvalue(v); 89 return 1; 90 case VTRUE: 91 setbtvalue(v); 92 return 1; 93 case VNIL: 94 setnilvalue(v); 95 return 1; 96 case VKSTR: { 97 setsvalue(fs->ls->L, v, e->u.strval); 98 return 1; 99 } 100 case VCONST: { 101 setobj(fs->ls->L, v, const2val(fs, e)); 102 return 1; 103 } 104 default: return tonumeral(e, v); 105 } 106 } 107 108 109 /* 110 ** Return the previous instruction of the current code. If there 111 ** may be a jump target between the current instruction and the 112 ** previous one, return an invalid instruction (to avoid wrong 113 ** optimizations). 114 */ 115 static Instruction *previousinstruction (FuncState *fs) { 116 static const Instruction invalidinstruction = ~(Instruction)0; 117 if (fs->pc > fs->lasttarget) 118 return &fs->f->code[fs->pc - 1]; /* previous instruction */ 119 else 120 return cast(Instruction*, &invalidinstruction); 121 } 122 123 124 /* 125 ** Create a OP_LOADNIL instruction, but try to optimize: if the previous 126 ** instruction is also OP_LOADNIL and ranges are compatible, adjust 127 ** range of previous instruction instead of emitting a new one. (For 128 ** instance, 'local a; local b' will generate a single opcode.) 129 */ 130 void luaK_nil (FuncState *fs, int from, int n) { 131 int l = from + n - 1; /* last register to set nil */ 132 Instruction *previous = previousinstruction(fs); 133 if (GET_OPCODE(*previous) == OP_LOADNIL) { /* previous is LOADNIL? */ 134 int pfrom = GETARG_A(*previous); /* get previous range */ 135 int pl = pfrom + GETARG_B(*previous); 136 if ((pfrom <= from && from <= pl + 1) || 137 (from <= pfrom && pfrom <= l + 1)) { /* can connect both? */ 138 if (pfrom < from) from = pfrom; /* from = min(from, pfrom) */ 139 if (pl > l) l = pl; /* l = max(l, pl) */ 140 SETARG_A(*previous, from); 141 SETARG_B(*previous, l - from); 142 return; 143 } /* else go through */ 144 } 145 luaK_codeABC(fs, OP_LOADNIL, from, n - 1, 0); /* else no optimization */ 146 } 147 148 149 /* 150 ** Gets the destination address of a jump instruction. Used to traverse 151 ** a list of jumps. 152 */ 153 static int getjump (FuncState *fs, int pc) { 154 int offset = GETARG_sJ(fs->f->code[pc]); 155 if (offset == NO_JUMP) /* point to itself represents end of list */ 156 return NO_JUMP; /* end of list */ 157 else 158 return (pc+1)+offset; /* turn offset into absolute position */ 159 } 160 161 162 /* 163 ** Fix jump instruction at position 'pc' to jump to 'dest'. 164 ** (Jump addresses are relative in Lua) 165 */ 166 static void fixjump (FuncState *fs, int pc, int dest) { 167 Instruction *jmp = &fs->f->code[pc]; 168 int offset = dest - (pc + 1); 169 lua_assert(dest != NO_JUMP); 170 if (!(-OFFSET_sJ <= offset && offset <= MAXARG_sJ - OFFSET_sJ)) 171 luaX_syntaxerror(fs->ls, "control structure too long"); 172 lua_assert(GET_OPCODE(*jmp) == OP_JMP); 173 SETARG_sJ(*jmp, offset); 174 } 175 176 177 /* 178 ** Concatenate jump-list 'l2' into jump-list 'l1' 179 */ 180 void luaK_concat (FuncState *fs, int *l1, int l2) { 181 if (l2 == NO_JUMP) return; /* nothing to concatenate? */ 182 else if (*l1 == NO_JUMP) /* no original list? */ 183 *l1 = l2; /* 'l1' points to 'l2' */ 184 else { 185 int list = *l1; 186 int next; 187 while ((next = getjump(fs, list)) != NO_JUMP) /* find last element */ 188 list = next; 189 fixjump(fs, list, l2); /* last element links to 'l2' */ 190 } 191 } 192 193 194 /* 195 ** Create a jump instruction and return its position, so its destination 196 ** can be fixed later (with 'fixjump'). 197 */ 198 int luaK_jump (FuncState *fs) { 199 return codesJ(fs, OP_JMP, NO_JUMP, 0); 200 } 201 202 203 /* 204 ** Code a 'return' instruction 205 */ 206 void luaK_ret (FuncState *fs, int first, int nret) { 207 OpCode op; 208 switch (nret) { 209 case 0: op = OP_RETURN0; break; 210 case 1: op = OP_RETURN1; break; 211 default: op = OP_RETURN; break; 212 } 213 luaK_codeABC(fs, op, first, nret + 1, 0); 214 } 215 216 217 /* 218 ** Code a "conditional jump", that is, a test or comparison opcode 219 ** followed by a jump. Return jump position. 220 */ 221 static int condjump (FuncState *fs, OpCode op, int A, int B, int C, int k) { 222 luaK_codeABCk(fs, op, A, B, C, k); 223 return luaK_jump(fs); 224 } 225 226 227 /* 228 ** returns current 'pc' and marks it as a jump target (to avoid wrong 229 ** optimizations with consecutive instructions not in the same basic block). 230 */ 231 int luaK_getlabel (FuncState *fs) { 232 fs->lasttarget = fs->pc; 233 return fs->pc; 234 } 235 236 237 /* 238 ** Returns the position of the instruction "controlling" a given 239 ** jump (that is, its condition), or the jump itself if it is 240 ** unconditional. 241 */ 242 static Instruction *getjumpcontrol (FuncState *fs, int pc) { 243 Instruction *pi = &fs->f->code[pc]; 244 if (pc >= 1 && testTMode(GET_OPCODE(*(pi-1)))) 245 return pi-1; 246 else 247 return pi; 248 } 249 250 251 /* 252 ** Patch destination register for a TESTSET instruction. 253 ** If instruction in position 'node' is not a TESTSET, return 0 ("fails"). 254 ** Otherwise, if 'reg' is not 'NO_REG', set it as the destination 255 ** register. Otherwise, change instruction to a simple 'TEST' (produces 256 ** no register value) 257 */ 258 static int patchtestreg (FuncState *fs, int node, int reg) { 259 Instruction *i = getjumpcontrol(fs, node); 260 if (GET_OPCODE(*i) != OP_TESTSET) 261 return 0; /* cannot patch other instructions */ 262 if (reg != NO_REG && reg != GETARG_B(*i)) 263 SETARG_A(*i, reg); 264 else { 265 /* no register to put value or register already has the value; 266 change instruction to simple test */ 267 *i = CREATE_ABCk(OP_TEST, GETARG_B(*i), 0, 0, GETARG_k(*i)); 268 } 269 return 1; 270 } 271 272 273 /* 274 ** Traverse a list of tests ensuring no one produces a value 275 */ 276 static void removevalues (FuncState *fs, int list) { 277 for (; list != NO_JUMP; list = getjump(fs, list)) 278 patchtestreg(fs, list, NO_REG); 279 } 280 281 282 /* 283 ** Traverse a list of tests, patching their destination address and 284 ** registers: tests producing values jump to 'vtarget' (and put their 285 ** values in 'reg'), other tests jump to 'dtarget'. 286 */ 287 static void patchlistaux (FuncState *fs, int list, int vtarget, int reg, 288 int dtarget) { 289 while (list != NO_JUMP) { 290 int next = getjump(fs, list); 291 if (patchtestreg(fs, list, reg)) 292 fixjump(fs, list, vtarget); 293 else 294 fixjump(fs, list, dtarget); /* jump to default target */ 295 list = next; 296 } 297 } 298 299 300 /* 301 ** Path all jumps in 'list' to jump to 'target'. 302 ** (The assert means that we cannot fix a jump to a forward address 303 ** because we only know addresses once code is generated.) 304 */ 305 void luaK_patchlist (FuncState *fs, int list, int target) { 306 lua_assert(target <= fs->pc); 307 patchlistaux(fs, list, target, NO_REG, target); 308 } 309 310 311 void luaK_patchtohere (FuncState *fs, int list) { 312 int hr = luaK_getlabel(fs); /* mark "here" as a jump target */ 313 luaK_patchlist(fs, list, hr); 314 } 315 316 317 /* 318 ** MAXimum number of successive Instructions WiTHout ABSolute line 319 ** information. 320 */ 321 #if !defined(MAXIWTHABS) 322 #define MAXIWTHABS 120 323 #endif 324 325 326 /* limit for difference between lines in relative line info. */ 327 #define LIMLINEDIFF 0x80 328 329 330 /* 331 ** Save line info for a new instruction. If difference from last line 332 ** does not fit in a byte, of after that many instructions, save a new 333 ** absolute line info; (in that case, the special value 'ABSLINEINFO' 334 ** in 'lineinfo' signals the existence of this absolute information.) 335 ** Otherwise, store the difference from last line in 'lineinfo'. 336 */ 337 static void savelineinfo (FuncState *fs, Proto *f, int line) { 338 int linedif = line - fs->previousline; 339 int pc = fs->pc - 1; /* last instruction coded */ 340 if (abs(linedif) >= LIMLINEDIFF || fs->iwthabs++ > MAXIWTHABS) { 341 luaM_growvector(fs->ls->L, f->abslineinfo, fs->nabslineinfo, 342 f->sizeabslineinfo, AbsLineInfo, MAX_INT, "lines"); 343 f->abslineinfo[fs->nabslineinfo].pc = pc; 344 f->abslineinfo[fs->nabslineinfo++].line = line; 345 linedif = ABSLINEINFO; /* signal that there is absolute information */ 346 fs->iwthabs = 0; /* restart counter */ 347 } 348 luaM_growvector(fs->ls->L, f->lineinfo, pc, f->sizelineinfo, ls_byte, 349 MAX_INT, "opcodes"); 350 f->lineinfo[pc] = linedif; 351 fs->previousline = line; /* last line saved */ 352 } 353 354 355 /* 356 ** Remove line information from the last instruction. 357 ** If line information for that instruction is absolute, set 'iwthabs' 358 ** above its max to force the new (replacing) instruction to have 359 ** absolute line info, too. 360 */ 361 static void removelastlineinfo (FuncState *fs) { 362 Proto *f = fs->f; 363 int pc = fs->pc - 1; /* last instruction coded */ 364 if (f->lineinfo[pc] != ABSLINEINFO) { /* relative line info? */ 365 fs->previousline -= f->lineinfo[pc]; /* correct last line saved */ 366 fs->iwthabs--; /* undo previous increment */ 367 } 368 else { /* absolute line information */ 369 lua_assert(f->abslineinfo[fs->nabslineinfo - 1].pc == pc); 370 fs->nabslineinfo--; /* remove it */ 371 fs->iwthabs = MAXIWTHABS + 1; /* force next line info to be absolute */ 372 } 373 } 374 375 376 /* 377 ** Remove the last instruction created, correcting line information 378 ** accordingly. 379 */ 380 static void removelastinstruction (FuncState *fs) { 381 removelastlineinfo(fs); 382 fs->pc--; 383 } 384 385 386 /* 387 ** Emit instruction 'i', checking for array sizes and saving also its 388 ** line information. Return 'i' position. 389 */ 390 int luaK_code (FuncState *fs, Instruction i) { 391 Proto *f = fs->f; 392 /* put new instruction in code array */ 393 luaM_growvector(fs->ls->L, f->code, fs->pc, f->sizecode, Instruction, 394 MAX_INT, "opcodes"); 395 f->code[fs->pc++] = i; 396 savelineinfo(fs, f, fs->ls->lastline); 397 return fs->pc - 1; /* index of new instruction */ 398 } 399 400 401 /* 402 ** Format and emit an 'iABC' instruction. (Assertions check consistency 403 ** of parameters versus opcode.) 404 */ 405 int luaK_codeABCk (FuncState *fs, OpCode o, int a, int b, int c, int k) { 406 lua_assert(getOpMode(o) == iABC); 407 lua_assert(a <= MAXARG_A && b <= MAXARG_B && 408 c <= MAXARG_C && (k & ~1) == 0); 409 return luaK_code(fs, CREATE_ABCk(o, a, b, c, k)); 410 } 411 412 413 /* 414 ** Format and emit an 'iABx' instruction. 415 */ 416 int luaK_codeABx (FuncState *fs, OpCode o, int a, unsigned int bc) { 417 lua_assert(getOpMode(o) == iABx); 418 lua_assert(a <= MAXARG_A && bc <= MAXARG_Bx); 419 return luaK_code(fs, CREATE_ABx(o, a, bc)); 420 } 421 422 423 /* 424 ** Format and emit an 'iAsBx' instruction. 425 */ 426 int luaK_codeAsBx (FuncState *fs, OpCode o, int a, int bc) { 427 unsigned int b = bc + OFFSET_sBx; 428 lua_assert(getOpMode(o) == iAsBx); 429 lua_assert(a <= MAXARG_A && b <= MAXARG_Bx); 430 return luaK_code(fs, CREATE_ABx(o, a, b)); 431 } 432 433 434 /* 435 ** Format and emit an 'isJ' instruction. 436 */ 437 static int codesJ (FuncState *fs, OpCode o, int sj, int k) { 438 unsigned int j = sj + OFFSET_sJ; 439 lua_assert(getOpMode(o) == isJ); 440 lua_assert(j <= MAXARG_sJ && (k & ~1) == 0); 441 return luaK_code(fs, CREATE_sJ(o, j, k)); 442 } 443 444 445 /* 446 ** Emit an "extra argument" instruction (format 'iAx') 447 */ 448 static int codeextraarg (FuncState *fs, int a) { 449 lua_assert(a <= MAXARG_Ax); 450 return luaK_code(fs, CREATE_Ax(OP_EXTRAARG, a)); 451 } 452 453 454 /* 455 ** Emit a "load constant" instruction, using either 'OP_LOADK' 456 ** (if constant index 'k' fits in 18 bits) or an 'OP_LOADKX' 457 ** instruction with "extra argument". 458 */ 459 static int luaK_codek (FuncState *fs, int reg, int k) { 460 if (k <= MAXARG_Bx) 461 return luaK_codeABx(fs, OP_LOADK, reg, k); 462 else { 463 int p = luaK_codeABx(fs, OP_LOADKX, reg, 0); 464 codeextraarg(fs, k); 465 return p; 466 } 467 } 468 469 470 /* 471 ** Check register-stack level, keeping track of its maximum size 472 ** in field 'maxstacksize' 473 */ 474 void luaK_checkstack (FuncState *fs, int n) { 475 int newstack = fs->freereg + n; 476 if (newstack > fs->f->maxstacksize) { 477 if (newstack >= MAXREGS) 478 luaX_syntaxerror(fs->ls, 479 "function or expression needs too many registers"); 480 fs->f->maxstacksize = cast_byte(newstack); 481 } 482 } 483 484 485 /* 486 ** Reserve 'n' registers in register stack 487 */ 488 void luaK_reserveregs (FuncState *fs, int n) { 489 luaK_checkstack(fs, n); 490 fs->freereg += n; 491 } 492 493 494 /* 495 ** Free register 'reg', if it is neither a constant index nor 496 ** a local variable. 497 ) 498 */ 499 static void freereg (FuncState *fs, int reg) { 500 if (reg >= luaY_nvarstack(fs)) { 501 fs->freereg--; 502 lua_assert(reg == fs->freereg); 503 } 504 } 505 506 507 /* 508 ** Free two registers in proper order 509 */ 510 static void freeregs (FuncState *fs, int r1, int r2) { 511 if (r1 > r2) { 512 freereg(fs, r1); 513 freereg(fs, r2); 514 } 515 else { 516 freereg(fs, r2); 517 freereg(fs, r1); 518 } 519 } 520 521 522 /* 523 ** Free register used by expression 'e' (if any) 524 */ 525 static void freeexp (FuncState *fs, expdesc *e) { 526 if (e->k == VNONRELOC) 527 freereg(fs, e->u.info); 528 } 529 530 531 /* 532 ** Free registers used by expressions 'e1' and 'e2' (if any) in proper 533 ** order. 534 */ 535 static void freeexps (FuncState *fs, expdesc *e1, expdesc *e2) { 536 int r1 = (e1->k == VNONRELOC) ? e1->u.info : -1; 537 int r2 = (e2->k == VNONRELOC) ? e2->u.info : -1; 538 freeregs(fs, r1, r2); 539 } 540 541 542 /* 543 ** Add constant 'v' to prototype's list of constants (field 'k'). 544 ** Use scanner's table to cache position of constants in constant list 545 ** and try to reuse constants. Because some values should not be used 546 ** as keys (nil cannot be a key, integer keys can collapse with float 547 ** keys), the caller must provide a useful 'key' for indexing the cache. 548 */ 549 static int addk (FuncState *fs, TValue *key, TValue *v) { 550 lua_State *L = fs->ls->L; 551 Proto *f = fs->f; 552 TValue *idx = luaH_set(L, fs->ls->h, key); /* index scanner table */ 553 int k, oldsize; 554 if (ttisinteger(idx)) { /* is there an index there? */ 555 k = cast_int(ivalue(idx)); 556 /* correct value? (warning: must distinguish floats from integers!) */ 557 if (k < fs->nk && ttypetag(&f->k[k]) == ttypetag(v) && 558 luaV_rawequalobj(&f->k[k], v)) 559 return k; /* reuse index */ 560 } 561 /* constant not found; create a new entry */ 562 oldsize = f->sizek; 563 k = fs->nk; 564 /* numerical value does not need GC barrier; 565 table has no metatable, so it does not need to invalidate cache */ 566 setivalue(idx, k); 567 luaM_growvector(L, f->k, k, f->sizek, TValue, MAXARG_Ax, "constants"); 568 while (oldsize < f->sizek) setnilvalue(&f->k[oldsize++]); 569 setobj(L, &f->k[k], v); 570 fs->nk++; 571 luaC_barrier(L, f, v); 572 return k; 573 } 574 575 576 /* 577 ** Add a string to list of constants and return its index. 578 */ 579 static int stringK (FuncState *fs, TString *s) { 580 TValue o; 581 setsvalue(fs->ls->L, &o, s); 582 return addk(fs, &o, &o); /* use string itself as key */ 583 } 584 585 586 /* 587 ** Add an integer to list of constants and return its index. 588 ** Integers use userdata as keys to avoid collision with floats with 589 ** same value; conversion to 'void*' is used only for hashing, so there 590 ** are no "precision" problems. 591 */ 592 static int luaK_intK (FuncState *fs, lua_Integer n) { 593 TValue k, o; 594 setpvalue(&k, cast_voidp(cast_sizet(n))); 595 setivalue(&o, n); 596 return addk(fs, &k, &o); 597 } 598 599 /* 600 ** Add a float to list of constants and return its index. 601 */ 602 static int luaK_numberK (FuncState *fs, lua_Number r) { 603 TValue o; 604 setfltvalue(&o, r); 605 return addk(fs, &o, &o); /* use number itself as key */ 606 } 607 608 609 /* 610 ** Add a false to list of constants and return its index. 611 */ 612 static int boolF (FuncState *fs) { 613 TValue o; 614 setbfvalue(&o); 615 return addk(fs, &o, &o); /* use boolean itself as key */ 616 } 617 618 619 /* 620 ** Add a true to list of constants and return its index. 621 */ 622 static int boolT (FuncState *fs) { 623 TValue o; 624 setbtvalue(&o); 625 return addk(fs, &o, &o); /* use boolean itself as key */ 626 } 627 628 629 /* 630 ** Add nil to list of constants and return its index. 631 */ 632 static int nilK (FuncState *fs) { 633 TValue k, v; 634 setnilvalue(&v); 635 /* cannot use nil as key; instead use table itself to represent nil */ 636 sethvalue(fs->ls->L, &k, fs->ls->h); 637 return addk(fs, &k, &v); 638 } 639 640 641 /* 642 ** Check whether 'i' can be stored in an 'sC' operand. Equivalent to 643 ** (0 <= int2sC(i) && int2sC(i) <= MAXARG_C) but without risk of 644 ** overflows in the hidden addition inside 'int2sC'. 645 */ 646 static int fitsC (lua_Integer i) { 647 return (l_castS2U(i) + OFFSET_sC <= cast_uint(MAXARG_C)); 648 } 649 650 651 /* 652 ** Check whether 'i' can be stored in an 'sBx' operand. 653 */ 654 static int fitsBx (lua_Integer i) { 655 return (-OFFSET_sBx <= i && i <= MAXARG_Bx - OFFSET_sBx); 656 } 657 658 659 void luaK_int (FuncState *fs, int reg, lua_Integer i) { 660 if (fitsBx(i)) 661 luaK_codeAsBx(fs, OP_LOADI, reg, cast_int(i)); 662 else 663 luaK_codek(fs, reg, luaK_intK(fs, i)); 664 } 665 666 667 static void luaK_float (FuncState *fs, int reg, lua_Number f) { 668 lua_Integer fi; 669 if (luaV_flttointeger(f, &fi, F2Ieq) && fitsBx(fi)) 670 luaK_codeAsBx(fs, OP_LOADF, reg, cast_int(fi)); 671 else 672 luaK_codek(fs, reg, luaK_numberK(fs, f)); 673 } 674 675 676 /* 677 ** Convert a constant in 'v' into an expression description 'e' 678 */ 679 static void const2exp (TValue *v, expdesc *e) { 680 switch (ttypetag(v)) { 681 case LUA_VNUMINT: 682 e->k = VKINT; e->u.ival = ivalue(v); 683 break; 684 case LUA_VNUMFLT: 685 e->k = VKFLT; e->u.nval = fltvalue(v); 686 break; 687 case LUA_VFALSE: 688 e->k = VFALSE; 689 break; 690 case LUA_VTRUE: 691 e->k = VTRUE; 692 break; 693 case LUA_VNIL: 694 e->k = VNIL; 695 break; 696 case LUA_VSHRSTR: case LUA_VLNGSTR: 697 e->k = VKSTR; e->u.strval = tsvalue(v); 698 break; 699 default: lua_assert(0); 700 } 701 } 702 703 704 /* 705 ** Fix an expression to return the number of results 'nresults'. 706 ** 'e' must be a multi-ret expression (function call or vararg). 707 */ 708 void luaK_setreturns (FuncState *fs, expdesc *e, int nresults) { 709 Instruction *pc = &getinstruction(fs, e); 710 if (e->k == VCALL) /* expression is an open function call? */ 711 SETARG_C(*pc, nresults + 1); 712 else { 713 lua_assert(e->k == VVARARG); 714 SETARG_C(*pc, nresults + 1); 715 SETARG_A(*pc, fs->freereg); 716 luaK_reserveregs(fs, 1); 717 } 718 } 719 720 721 /* 722 ** Convert a VKSTR to a VK 723 */ 724 static void str2K (FuncState *fs, expdesc *e) { 725 lua_assert(e->k == VKSTR); 726 e->u.info = stringK(fs, e->u.strval); 727 e->k = VK; 728 } 729 730 731 /* 732 ** Fix an expression to return one result. 733 ** If expression is not a multi-ret expression (function call or 734 ** vararg), it already returns one result, so nothing needs to be done. 735 ** Function calls become VNONRELOC expressions (as its result comes 736 ** fixed in the base register of the call), while vararg expressions 737 ** become VRELOC (as OP_VARARG puts its results where it wants). 738 ** (Calls are created returning one result, so that does not need 739 ** to be fixed.) 740 */ 741 void luaK_setoneret (FuncState *fs, expdesc *e) { 742 if (e->k == VCALL) { /* expression is an open function call? */ 743 /* already returns 1 value */ 744 lua_assert(GETARG_C(getinstruction(fs, e)) == 2); 745 e->k = VNONRELOC; /* result has fixed position */ 746 e->u.info = GETARG_A(getinstruction(fs, e)); 747 } 748 else if (e->k == VVARARG) { 749 SETARG_C(getinstruction(fs, e), 2); 750 e->k = VRELOC; /* can relocate its simple result */ 751 } 752 } 753 754 755 /* 756 ** Ensure that expression 'e' is not a variable (nor a <const>). 757 ** (Expression still may have jump lists.) 758 */ 759 void luaK_dischargevars (FuncState *fs, expdesc *e) { 760 switch (e->k) { 761 case VCONST: { 762 const2exp(const2val(fs, e), e); 763 break; 764 } 765 case VLOCAL: { /* already in a register */ 766 e->u.info = e->u.var.sidx; 767 e->k = VNONRELOC; /* becomes a non-relocatable value */ 768 break; 769 } 770 case VUPVAL: { /* move value to some (pending) register */ 771 e->u.info = luaK_codeABC(fs, OP_GETUPVAL, 0, e->u.info, 0); 772 e->k = VRELOC; 773 break; 774 } 775 case VINDEXUP: { 776 e->u.info = luaK_codeABC(fs, OP_GETTABUP, 0, e->u.ind.t, e->u.ind.idx); 777 e->k = VRELOC; 778 break; 779 } 780 case VINDEXI: { 781 freereg(fs, e->u.ind.t); 782 e->u.info = luaK_codeABC(fs, OP_GETI, 0, e->u.ind.t, e->u.ind.idx); 783 e->k = VRELOC; 784 break; 785 } 786 case VINDEXSTR: { 787 freereg(fs, e->u.ind.t); 788 e->u.info = luaK_codeABC(fs, OP_GETFIELD, 0, e->u.ind.t, e->u.ind.idx); 789 e->k = VRELOC; 790 break; 791 } 792 case VINDEXED: { 793 freeregs(fs, e->u.ind.t, e->u.ind.idx); 794 e->u.info = luaK_codeABC(fs, OP_GETTABLE, 0, e->u.ind.t, e->u.ind.idx); 795 e->k = VRELOC; 796 break; 797 } 798 case VVARARG: case VCALL: { 799 luaK_setoneret(fs, e); 800 break; 801 } 802 default: break; /* there is one value available (somewhere) */ 803 } 804 } 805 806 807 /* 808 ** Ensure expression value is in register 'reg', making 'e' a 809 ** non-relocatable expression. 810 ** (Expression still may have jump lists.) 811 */ 812 static void discharge2reg (FuncState *fs, expdesc *e, int reg) { 813 luaK_dischargevars(fs, e); 814 switch (e->k) { 815 case VNIL: { 816 luaK_nil(fs, reg, 1); 817 break; 818 } 819 case VFALSE: { 820 luaK_codeABC(fs, OP_LOADFALSE, reg, 0, 0); 821 break; 822 } 823 case VTRUE: { 824 luaK_codeABC(fs, OP_LOADTRUE, reg, 0, 0); 825 break; 826 } 827 case VKSTR: { 828 str2K(fs, e); 829 } /* FALLTHROUGH */ 830 case VK: { 831 luaK_codek(fs, reg, e->u.info); 832 break; 833 } 834 case VKFLT: { 835 luaK_float(fs, reg, e->u.nval); 836 break; 837 } 838 case VKINT: { 839 luaK_int(fs, reg, e->u.ival); 840 break; 841 } 842 case VRELOC: { 843 Instruction *pc = &getinstruction(fs, e); 844 SETARG_A(*pc, reg); /* instruction will put result in 'reg' */ 845 break; 846 } 847 case VNONRELOC: { 848 if (reg != e->u.info) 849 luaK_codeABC(fs, OP_MOVE, reg, e->u.info, 0); 850 break; 851 } 852 default: { 853 lua_assert(e->k == VJMP); 854 return; /* nothing to do... */ 855 } 856 } 857 e->u.info = reg; 858 e->k = VNONRELOC; 859 } 860 861 862 /* 863 ** Ensure expression value is in a register, making 'e' a 864 ** non-relocatable expression. 865 ** (Expression still may have jump lists.) 866 */ 867 static void discharge2anyreg (FuncState *fs, expdesc *e) { 868 if (e->k != VNONRELOC) { /* no fixed register yet? */ 869 luaK_reserveregs(fs, 1); /* get a register */ 870 discharge2reg(fs, e, fs->freereg-1); /* put value there */ 871 } 872 } 873 874 875 static int code_loadbool (FuncState *fs, int A, OpCode op) { 876 luaK_getlabel(fs); /* those instructions may be jump targets */ 877 return luaK_codeABC(fs, op, A, 0, 0); 878 } 879 880 881 /* 882 ** check whether list has any jump that do not produce a value 883 ** or produce an inverted value 884 */ 885 static int need_value (FuncState *fs, int list) { 886 for (; list != NO_JUMP; list = getjump(fs, list)) { 887 Instruction i = *getjumpcontrol(fs, list); 888 if (GET_OPCODE(i) != OP_TESTSET) return 1; 889 } 890 return 0; /* not found */ 891 } 892 893 894 /* 895 ** Ensures final expression result (which includes results from its 896 ** jump lists) is in register 'reg'. 897 ** If expression has jumps, need to patch these jumps either to 898 ** its final position or to "load" instructions (for those tests 899 ** that do not produce values). 900 */ 901 static void exp2reg (FuncState *fs, expdesc *e, int reg) { 902 discharge2reg(fs, e, reg); 903 if (e->k == VJMP) /* expression itself is a test? */ 904 luaK_concat(fs, &e->t, e->u.info); /* put this jump in 't' list */ 905 if (hasjumps(e)) { 906 int final; /* position after whole expression */ 907 int p_f = NO_JUMP; /* position of an eventual LOAD false */ 908 int p_t = NO_JUMP; /* position of an eventual LOAD true */ 909 if (need_value(fs, e->t) || need_value(fs, e->f)) { 910 int fj = (e->k == VJMP) ? NO_JUMP : luaK_jump(fs); 911 p_f = code_loadbool(fs, reg, OP_LFALSESKIP); /* skip next inst. */ 912 p_t = code_loadbool(fs, reg, OP_LOADTRUE); 913 /* jump around these booleans if 'e' is not a test */ 914 luaK_patchtohere(fs, fj); 915 } 916 final = luaK_getlabel(fs); 917 patchlistaux(fs, e->f, final, reg, p_f); 918 patchlistaux(fs, e->t, final, reg, p_t); 919 } 920 e->f = e->t = NO_JUMP; 921 e->u.info = reg; 922 e->k = VNONRELOC; 923 } 924 925 926 /* 927 ** Ensures final expression result is in next available register. 928 */ 929 void luaK_exp2nextreg (FuncState *fs, expdesc *e) { 930 luaK_dischargevars(fs, e); 931 freeexp(fs, e); 932 luaK_reserveregs(fs, 1); 933 exp2reg(fs, e, fs->freereg - 1); 934 } 935 936 937 /* 938 ** Ensures final expression result is in some (any) register 939 ** and return that register. 940 */ 941 int luaK_exp2anyreg (FuncState *fs, expdesc *e) { 942 luaK_dischargevars(fs, e); 943 if (e->k == VNONRELOC) { /* expression already has a register? */ 944 if (!hasjumps(e)) /* no jumps? */ 945 return e->u.info; /* result is already in a register */ 946 if (e->u.info >= luaY_nvarstack(fs)) { /* reg. is not a local? */ 947 exp2reg(fs, e, e->u.info); /* put final result in it */ 948 return e->u.info; 949 } 950 /* else expression has jumps and cannot change its register 951 to hold the jump values, because it is a local variable. 952 Go through to the default case. */ 953 } 954 luaK_exp2nextreg(fs, e); /* default: use next available register */ 955 return e->u.info; 956 } 957 958 959 /* 960 ** Ensures final expression result is either in a register 961 ** or in an upvalue. 962 */ 963 void luaK_exp2anyregup (FuncState *fs, expdesc *e) { 964 if (e->k != VUPVAL || hasjumps(e)) 965 luaK_exp2anyreg(fs, e); 966 } 967 968 969 /* 970 ** Ensures final expression result is either in a register 971 ** or it is a constant. 972 */ 973 void luaK_exp2val (FuncState *fs, expdesc *e) { 974 if (hasjumps(e)) 975 luaK_exp2anyreg(fs, e); 976 else 977 luaK_dischargevars(fs, e); 978 } 979 980 981 /* 982 ** Try to make 'e' a K expression with an index in the range of R/K 983 ** indices. Return true iff succeeded. 984 */ 985 static int luaK_exp2K (FuncState *fs, expdesc *e) { 986 if (!hasjumps(e)) { 987 int info; 988 switch (e->k) { /* move constants to 'k' */ 989 case VTRUE: info = boolT(fs); break; 990 case VFALSE: info = boolF(fs); break; 991 case VNIL: info = nilK(fs); break; 992 case VKINT: info = luaK_intK(fs, e->u.ival); break; 993 case VKFLT: info = luaK_numberK(fs, e->u.nval); break; 994 case VKSTR: info = stringK(fs, e->u.strval); break; 995 case VK: info = e->u.info; break; 996 default: return 0; /* not a constant */ 997 } 998 if (info <= MAXINDEXRK) { /* does constant fit in 'argC'? */ 999 e->k = VK; /* make expression a 'K' expression */ 1000 e->u.info = info; 1001 return 1; 1002 } 1003 } 1004 /* else, expression doesn't fit; leave it unchanged */ 1005 return 0; 1006 } 1007 1008 1009 /* 1010 ** Ensures final expression result is in a valid R/K index 1011 ** (that is, it is either in a register or in 'k' with an index 1012 ** in the range of R/K indices). 1013 ** Returns 1 iff expression is K. 1014 */ 1015 int luaK_exp2RK (FuncState *fs, expdesc *e) { 1016 if (luaK_exp2K(fs, e)) 1017 return 1; 1018 else { /* not a constant in the right range: put it in a register */ 1019 luaK_exp2anyreg(fs, e); 1020 return 0; 1021 } 1022 } 1023 1024 1025 static void codeABRK (FuncState *fs, OpCode o, int a, int b, 1026 expdesc *ec) { 1027 int k = luaK_exp2RK(fs, ec); 1028 luaK_codeABCk(fs, o, a, b, ec->u.info, k); 1029 } 1030 1031 1032 /* 1033 ** Generate code to store result of expression 'ex' into variable 'var'. 1034 */ 1035 void luaK_storevar (FuncState *fs, expdesc *var, expdesc *ex) { 1036 switch (var->k) { 1037 case VLOCAL: { 1038 freeexp(fs, ex); 1039 exp2reg(fs, ex, var->u.var.sidx); /* compute 'ex' into proper place */ 1040 return; 1041 } 1042 case VUPVAL: { 1043 int e = luaK_exp2anyreg(fs, ex); 1044 luaK_codeABC(fs, OP_SETUPVAL, e, var->u.info, 0); 1045 break; 1046 } 1047 case VINDEXUP: { 1048 codeABRK(fs, OP_SETTABUP, var->u.ind.t, var->u.ind.idx, ex); 1049 break; 1050 } 1051 case VINDEXI: { 1052 codeABRK(fs, OP_SETI, var->u.ind.t, var->u.ind.idx, ex); 1053 break; 1054 } 1055 case VINDEXSTR: { 1056 codeABRK(fs, OP_SETFIELD, var->u.ind.t, var->u.ind.idx, ex); 1057 break; 1058 } 1059 case VINDEXED: { 1060 codeABRK(fs, OP_SETTABLE, var->u.ind.t, var->u.ind.idx, ex); 1061 break; 1062 } 1063 default: lua_assert(0); /* invalid var kind to store */ 1064 } 1065 freeexp(fs, ex); 1066 } 1067 1068 1069 /* 1070 ** Emit SELF instruction (convert expression 'e' into 'e:key(e,'). 1071 */ 1072 void luaK_self (FuncState *fs, expdesc *e, expdesc *key) { 1073 int ereg; 1074 luaK_exp2anyreg(fs, e); 1075 ereg = e->u.info; /* register where 'e' was placed */ 1076 freeexp(fs, e); 1077 e->u.info = fs->freereg; /* base register for op_self */ 1078 e->k = VNONRELOC; /* self expression has a fixed register */ 1079 luaK_reserveregs(fs, 2); /* function and 'self' produced by op_self */ 1080 codeABRK(fs, OP_SELF, e->u.info, ereg, key); 1081 freeexp(fs, key); 1082 } 1083 1084 1085 /* 1086 ** Negate condition 'e' (where 'e' is a comparison). 1087 */ 1088 static void negatecondition (FuncState *fs, expdesc *e) { 1089 Instruction *pc = getjumpcontrol(fs, e->u.info); 1090 lua_assert(testTMode(GET_OPCODE(*pc)) && GET_OPCODE(*pc) != OP_TESTSET && 1091 GET_OPCODE(*pc) != OP_TEST); 1092 SETARG_k(*pc, (GETARG_k(*pc) ^ 1)); 1093 } 1094 1095 1096 /* 1097 ** Emit instruction to jump if 'e' is 'cond' (that is, if 'cond' 1098 ** is true, code will jump if 'e' is true.) Return jump position. 1099 ** Optimize when 'e' is 'not' something, inverting the condition 1100 ** and removing the 'not'. 1101 */ 1102 static int jumponcond (FuncState *fs, expdesc *e, int cond) { 1103 if (e->k == VRELOC) { 1104 Instruction ie = getinstruction(fs, e); 1105 if (GET_OPCODE(ie) == OP_NOT) { 1106 removelastinstruction(fs); /* remove previous OP_NOT */ 1107 return condjump(fs, OP_TEST, GETARG_B(ie), 0, 0, !cond); 1108 } 1109 /* else go through */ 1110 } 1111 discharge2anyreg(fs, e); 1112 freeexp(fs, e); 1113 return condjump(fs, OP_TESTSET, NO_REG, e->u.info, 0, cond); 1114 } 1115 1116 1117 /* 1118 ** Emit code to go through if 'e' is true, jump otherwise. 1119 */ 1120 void luaK_goiftrue (FuncState *fs, expdesc *e) { 1121 int pc; /* pc of new jump */ 1122 luaK_dischargevars(fs, e); 1123 switch (e->k) { 1124 case VJMP: { /* condition? */ 1125 negatecondition(fs, e); /* jump when it is false */ 1126 pc = e->u.info; /* save jump position */ 1127 break; 1128 } 1129 case VK: case VKFLT: case VKINT: case VKSTR: case VTRUE: { 1130 pc = NO_JUMP; /* always true; do nothing */ 1131 break; 1132 } 1133 default: { 1134 pc = jumponcond(fs, e, 0); /* jump when false */ 1135 break; 1136 } 1137 } 1138 luaK_concat(fs, &e->f, pc); /* insert new jump in false list */ 1139 luaK_patchtohere(fs, e->t); /* true list jumps to here (to go through) */ 1140 e->t = NO_JUMP; 1141 } 1142 1143 1144 /* 1145 ** Emit code to go through if 'e' is false, jump otherwise. 1146 */ 1147 void luaK_goiffalse (FuncState *fs, expdesc *e) { 1148 int pc; /* pc of new jump */ 1149 luaK_dischargevars(fs, e); 1150 switch (e->k) { 1151 case VJMP: { 1152 pc = e->u.info; /* already jump if true */ 1153 break; 1154 } 1155 case VNIL: case VFALSE: { 1156 pc = NO_JUMP; /* always false; do nothing */ 1157 break; 1158 } 1159 default: { 1160 pc = jumponcond(fs, e, 1); /* jump if true */ 1161 break; 1162 } 1163 } 1164 luaK_concat(fs, &e->t, pc); /* insert new jump in 't' list */ 1165 luaK_patchtohere(fs, e->f); /* false list jumps to here (to go through) */ 1166 e->f = NO_JUMP; 1167 } 1168 1169 1170 /* 1171 ** Code 'not e', doing constant folding. 1172 */ 1173 static void codenot (FuncState *fs, expdesc *e) { 1174 switch (e->k) { 1175 case VNIL: case VFALSE: { 1176 e->k = VTRUE; /* true == not nil == not false */ 1177 break; 1178 } 1179 case VK: case VKFLT: case VKINT: case VKSTR: case VTRUE: { 1180 e->k = VFALSE; /* false == not "x" == not 0.5 == not 1 == not true */ 1181 break; 1182 } 1183 case VJMP: { 1184 negatecondition(fs, e); 1185 break; 1186 } 1187 case VRELOC: 1188 case VNONRELOC: { 1189 discharge2anyreg(fs, e); 1190 freeexp(fs, e); 1191 e->u.info = luaK_codeABC(fs, OP_NOT, 0, e->u.info, 0); 1192 e->k = VRELOC; 1193 break; 1194 } 1195 default: lua_assert(0); /* cannot happen */ 1196 } 1197 /* interchange true and false lists */ 1198 { int temp = e->f; e->f = e->t; e->t = temp; } 1199 removevalues(fs, e->f); /* values are useless when negated */ 1200 removevalues(fs, e->t); 1201 } 1202 1203 1204 /* 1205 ** Check whether expression 'e' is a small literal string 1206 */ 1207 static int isKstr (FuncState *fs, expdesc *e) { 1208 return (e->k == VK && !hasjumps(e) && e->u.info <= MAXARG_B && 1209 ttisshrstring(&fs->f->k[e->u.info])); 1210 } 1211 1212 /* 1213 ** Check whether expression 'e' is a literal integer. 1214 */ 1215 int luaK_isKint (expdesc *e) { 1216 return (e->k == VKINT && !hasjumps(e)); 1217 } 1218 1219 1220 /* 1221 ** Check whether expression 'e' is a literal integer in 1222 ** proper range to fit in register C 1223 */ 1224 static int isCint (expdesc *e) { 1225 return luaK_isKint(e) && (l_castS2U(e->u.ival) <= l_castS2U(MAXARG_C)); 1226 } 1227 1228 1229 /* 1230 ** Check whether expression 'e' is a literal integer in 1231 ** proper range to fit in register sC 1232 */ 1233 static int isSCint (expdesc *e) { 1234 return luaK_isKint(e) && fitsC(e->u.ival); 1235 } 1236 1237 1238 /* 1239 ** Check whether expression 'e' is a literal integer or float in 1240 ** proper range to fit in a register (sB or sC). 1241 */ 1242 static int isSCnumber (expdesc *e, int *pi, int *isfloat) { 1243 lua_Integer i; 1244 if (e->k == VKINT) 1245 i = e->u.ival; 1246 else if (e->k == VKFLT && luaV_flttointeger(e->u.nval, &i, F2Ieq)) 1247 *isfloat = 1; 1248 else 1249 return 0; /* not a number */ 1250 if (!hasjumps(e) && fitsC(i)) { 1251 *pi = int2sC(cast_int(i)); 1252 return 1; 1253 } 1254 else 1255 return 0; 1256 } 1257 1258 1259 /* 1260 ** Create expression 't[k]'. 't' must have its final result already in a 1261 ** register or upvalue. Upvalues can only be indexed by literal strings. 1262 ** Keys can be literal strings in the constant table or arbitrary 1263 ** values in registers. 1264 */ 1265 void luaK_indexed (FuncState *fs, expdesc *t, expdesc *k) { 1266 if (k->k == VKSTR) 1267 str2K(fs, k); 1268 lua_assert(!hasjumps(t) && 1269 (t->k == VLOCAL || t->k == VNONRELOC || t->k == VUPVAL)); 1270 if (t->k == VUPVAL && !isKstr(fs, k)) /* upvalue indexed by non 'Kstr'? */ 1271 luaK_exp2anyreg(fs, t); /* put it in a register */ 1272 if (t->k == VUPVAL) { 1273 t->u.ind.t = t->u.info; /* upvalue index */ 1274 t->u.ind.idx = k->u.info; /* literal string */ 1275 t->k = VINDEXUP; 1276 } 1277 else { 1278 /* register index of the table */ 1279 t->u.ind.t = (t->k == VLOCAL) ? t->u.var.sidx: t->u.info; 1280 if (isKstr(fs, k)) { 1281 t->u.ind.idx = k->u.info; /* literal string */ 1282 t->k = VINDEXSTR; 1283 } 1284 else if (isCint(k)) { 1285 t->u.ind.idx = cast_int(k->u.ival); /* int. constant in proper range */ 1286 t->k = VINDEXI; 1287 } 1288 else { 1289 t->u.ind.idx = luaK_exp2anyreg(fs, k); /* register */ 1290 t->k = VINDEXED; 1291 } 1292 } 1293 } 1294 1295 1296 /* 1297 ** Return false if folding can raise an error. 1298 ** Bitwise operations need operands convertible to integers; division 1299 ** operations cannot have 0 as divisor. 1300 */ 1301 static int validop (int op, TValue *v1, TValue *v2) { 1302 switch (op) { 1303 case LUA_OPBAND: case LUA_OPBOR: case LUA_OPBXOR: 1304 case LUA_OPSHL: case LUA_OPSHR: case LUA_OPBNOT: { /* conversion errors */ 1305 lua_Integer i; 1306 return (tointegerns(v1, &i) && tointegerns(v2, &i)); 1307 } 1308 case LUA_OPDIV: case LUA_OPIDIV: case LUA_OPMOD: /* division by 0 */ 1309 return (nvalue(v2) != 0); 1310 default: return 1; /* everything else is valid */ 1311 } 1312 } 1313 1314 1315 /* 1316 ** Try to "constant-fold" an operation; return 1 iff successful. 1317 ** (In this case, 'e1' has the final result.) 1318 */ 1319 static int constfolding (FuncState *fs, int op, expdesc *e1, 1320 const expdesc *e2) { 1321 TValue v1, v2, res; 1322 if (!tonumeral(e1, &v1) || !tonumeral(e2, &v2) || !validop(op, &v1, &v2)) 1323 return 0; /* non-numeric operands or not safe to fold */ 1324 luaO_rawarith(fs->ls->L, op, &v1, &v2, &res); /* does operation */ 1325 if (ttisinteger(&res)) { 1326 e1->k = VKINT; 1327 e1->u.ival = ivalue(&res); 1328 } 1329 else { /* folds neither NaN nor 0.0 (to avoid problems with -0.0) */ 1330 lua_Number n = fltvalue(&res); 1331 if (luai_numisnan(n) || n == 0) 1332 return 0; 1333 e1->k = VKFLT; 1334 e1->u.nval = n; 1335 } 1336 return 1; 1337 } 1338 1339 1340 /* 1341 ** Emit code for unary expressions that "produce values" 1342 ** (everything but 'not'). 1343 ** Expression to produce final result will be encoded in 'e'. 1344 */ 1345 static void codeunexpval (FuncState *fs, OpCode op, expdesc *e, int line) { 1346 int r = luaK_exp2anyreg(fs, e); /* opcodes operate only on registers */ 1347 freeexp(fs, e); 1348 e->u.info = luaK_codeABC(fs, op, 0, r, 0); /* generate opcode */ 1349 e->k = VRELOC; /* all those operations are relocatable */ 1350 luaK_fixline(fs, line); 1351 } 1352 1353 1354 /* 1355 ** Emit code for binary expressions that "produce values" 1356 ** (everything but logical operators 'and'/'or' and comparison 1357 ** operators). 1358 ** Expression to produce final result will be encoded in 'e1'. 1359 */ 1360 static void finishbinexpval (FuncState *fs, expdesc *e1, expdesc *e2, 1361 OpCode op, int v2, int flip, int line, 1362 OpCode mmop, TMS event) { 1363 int v1 = luaK_exp2anyreg(fs, e1); 1364 int pc = luaK_codeABCk(fs, op, 0, v1, v2, 0); 1365 freeexps(fs, e1, e2); 1366 e1->u.info = pc; 1367 e1->k = VRELOC; /* all those operations are relocatable */ 1368 luaK_fixline(fs, line); 1369 luaK_codeABCk(fs, mmop, v1, v2, event, flip); /* to call metamethod */ 1370 luaK_fixline(fs, line); 1371 } 1372 1373 1374 /* 1375 ** Emit code for binary expressions that "produce values" over 1376 ** two registers. 1377 */ 1378 static void codebinexpval (FuncState *fs, OpCode op, 1379 expdesc *e1, expdesc *e2, int line) { 1380 int v2 = luaK_exp2anyreg(fs, e2); /* both operands are in registers */ 1381 lua_assert(OP_ADD <= op && op <= OP_SHR); 1382 finishbinexpval(fs, e1, e2, op, v2, 0, line, OP_MMBIN, 1383 cast(TMS, (op - OP_ADD) + TM_ADD)); 1384 } 1385 1386 1387 /* 1388 ** Code binary operators with immediate operands. 1389 */ 1390 static void codebini (FuncState *fs, OpCode op, 1391 expdesc *e1, expdesc *e2, int flip, int line, 1392 TMS event) { 1393 int v2 = int2sC(cast_int(e2->u.ival)); /* immediate operand */ 1394 lua_assert(e2->k == VKINT); 1395 finishbinexpval(fs, e1, e2, op, v2, flip, line, OP_MMBINI, event); 1396 } 1397 1398 1399 /* Try to code a binary operator negating its second operand. 1400 ** For the metamethod, 2nd operand must keep its original value. 1401 */ 1402 static int finishbinexpneg (FuncState *fs, expdesc *e1, expdesc *e2, 1403 OpCode op, int line, TMS event) { 1404 if (!luaK_isKint(e2)) 1405 return 0; /* not an integer constant */ 1406 else { 1407 lua_Integer i2 = e2->u.ival; 1408 if (!(fitsC(i2) && fitsC(-i2))) 1409 return 0; /* not in the proper range */ 1410 else { /* operating a small integer constant */ 1411 int v2 = cast_int(i2); 1412 finishbinexpval(fs, e1, e2, op, int2sC(-v2), 0, line, OP_MMBINI, event); 1413 /* correct metamethod argument */ 1414 SETARG_B(fs->f->code[fs->pc - 1], int2sC(v2)); 1415 return 1; /* successfully coded */ 1416 } 1417 } 1418 } 1419 1420 1421 static void swapexps (expdesc *e1, expdesc *e2) { 1422 expdesc temp = *e1; *e1 = *e2; *e2 = temp; /* swap 'e1' and 'e2' */ 1423 } 1424 1425 1426 /* 1427 ** Code arithmetic operators ('+', '-', ...). If second operand is a 1428 ** constant in the proper range, use variant opcodes with K operands. 1429 */ 1430 static void codearith (FuncState *fs, BinOpr opr, 1431 expdesc *e1, expdesc *e2, int flip, int line) { 1432 TMS event = cast(TMS, opr + TM_ADD); 1433 if (tonumeral(e2, NULL) && luaK_exp2K(fs, e2)) { /* K operand? */ 1434 int v2 = e2->u.info; /* K index */ 1435 OpCode op = cast(OpCode, opr + OP_ADDK); 1436 finishbinexpval(fs, e1, e2, op, v2, flip, line, OP_MMBINK, event); 1437 } 1438 else { /* 'e2' is neither an immediate nor a K operand */ 1439 OpCode op = cast(OpCode, opr + OP_ADD); 1440 if (flip) 1441 swapexps(e1, e2); /* back to original order */ 1442 codebinexpval(fs, op, e1, e2, line); /* use standard operators */ 1443 } 1444 } 1445 1446 1447 /* 1448 ** Code commutative operators ('+', '*'). If first operand is a 1449 ** numeric constant, change order of operands to try to use an 1450 ** immediate or K operator. 1451 */ 1452 static void codecommutative (FuncState *fs, BinOpr op, 1453 expdesc *e1, expdesc *e2, int line) { 1454 int flip = 0; 1455 if (tonumeral(e1, NULL)) { /* is first operand a numeric constant? */ 1456 swapexps(e1, e2); /* change order */ 1457 flip = 1; 1458 } 1459 if (op == OPR_ADD && isSCint(e2)) /* immediate operand? */ 1460 codebini(fs, cast(OpCode, OP_ADDI), e1, e2, flip, line, TM_ADD); 1461 else 1462 codearith(fs, op, e1, e2, flip, line); 1463 } 1464 1465 1466 /* 1467 ** Code bitwise operations; they are all associative, so the function 1468 ** tries to put an integer constant as the 2nd operand (a K operand). 1469 */ 1470 static void codebitwise (FuncState *fs, BinOpr opr, 1471 expdesc *e1, expdesc *e2, int line) { 1472 int flip = 0; 1473 int v2; 1474 OpCode op; 1475 if (e1->k == VKINT && luaK_exp2RK(fs, e1)) { 1476 swapexps(e1, e2); /* 'e2' will be the constant operand */ 1477 flip = 1; 1478 } 1479 else if (!(e2->k == VKINT && luaK_exp2RK(fs, e2))) { /* no constants? */ 1480 op = cast(OpCode, opr + OP_ADD); 1481 codebinexpval(fs, op, e1, e2, line); /* all-register opcodes */ 1482 return; 1483 } 1484 v2 = e2->u.info; /* index in K array */ 1485 op = cast(OpCode, opr + OP_ADDK); 1486 lua_assert(ttisinteger(&fs->f->k[v2])); 1487 finishbinexpval(fs, e1, e2, op, v2, flip, line, OP_MMBINK, 1488 cast(TMS, opr + TM_ADD)); 1489 } 1490 1491 1492 /* 1493 ** Emit code for order comparisons. When using an immediate operand, 1494 ** 'isfloat' tells whether the original value was a float. 1495 */ 1496 static void codeorder (FuncState *fs, OpCode op, expdesc *e1, expdesc *e2) { 1497 int r1, r2; 1498 int im; 1499 int isfloat = 0; 1500 if (isSCnumber(e2, &im, &isfloat)) { 1501 /* use immediate operand */ 1502 r1 = luaK_exp2anyreg(fs, e1); 1503 r2 = im; 1504 op = cast(OpCode, (op - OP_LT) + OP_LTI); 1505 } 1506 else if (isSCnumber(e1, &im, &isfloat)) { 1507 /* transform (A < B) to (B > A) and (A <= B) to (B >= A) */ 1508 r1 = luaK_exp2anyreg(fs, e2); 1509 r2 = im; 1510 op = (op == OP_LT) ? OP_GTI : OP_GEI; 1511 } 1512 else { /* regular case, compare two registers */ 1513 r1 = luaK_exp2anyreg(fs, e1); 1514 r2 = luaK_exp2anyreg(fs, e2); 1515 } 1516 freeexps(fs, e1, e2); 1517 e1->u.info = condjump(fs, op, r1, r2, isfloat, 1); 1518 e1->k = VJMP; 1519 } 1520 1521 1522 /* 1523 ** Emit code for equality comparisons ('==', '~='). 1524 ** 'e1' was already put as RK by 'luaK_infix'. 1525 */ 1526 static void codeeq (FuncState *fs, BinOpr opr, expdesc *e1, expdesc *e2) { 1527 int r1, r2; 1528 int im; 1529 int isfloat = 0; /* not needed here, but kept for symmetry */ 1530 OpCode op; 1531 if (e1->k != VNONRELOC) { 1532 lua_assert(e1->k == VK || e1->k == VKINT || e1->k == VKFLT); 1533 swapexps(e1, e2); 1534 } 1535 r1 = luaK_exp2anyreg(fs, e1); /* 1st expression must be in register */ 1536 if (isSCnumber(e2, &im, &isfloat)) { 1537 op = OP_EQI; 1538 r2 = im; /* immediate operand */ 1539 } 1540 else if (luaK_exp2RK(fs, e2)) { /* 1st expression is constant? */ 1541 op = OP_EQK; 1542 r2 = e2->u.info; /* constant index */ 1543 } 1544 else { 1545 op = OP_EQ; /* will compare two registers */ 1546 r2 = luaK_exp2anyreg(fs, e2); 1547 } 1548 freeexps(fs, e1, e2); 1549 e1->u.info = condjump(fs, op, r1, r2, isfloat, (opr == OPR_EQ)); 1550 e1->k = VJMP; 1551 } 1552 1553 1554 /* 1555 ** Apply prefix operation 'op' to expression 'e'. 1556 */ 1557 void luaK_prefix (FuncState *fs, UnOpr op, expdesc *e, int line) { 1558 static const expdesc ef = {VKINT, {0}, NO_JUMP, NO_JUMP}; 1559 luaK_dischargevars(fs, e); 1560 switch (op) { 1561 case OPR_MINUS: case OPR_BNOT: /* use 'ef' as fake 2nd operand */ 1562 if (constfolding(fs, op + LUA_OPUNM, e, &ef)) 1563 break; 1564 /* else */ /* FALLTHROUGH */ 1565 case OPR_LEN: 1566 codeunexpval(fs, cast(OpCode, op + OP_UNM), e, line); 1567 break; 1568 case OPR_NOT: codenot(fs, e); break; 1569 default: lua_assert(0); 1570 } 1571 } 1572 1573 1574 /* 1575 ** Process 1st operand 'v' of binary operation 'op' before reading 1576 ** 2nd operand. 1577 */ 1578 void luaK_infix (FuncState *fs, BinOpr op, expdesc *v) { 1579 luaK_dischargevars(fs, v); 1580 switch (op) { 1581 case OPR_AND: { 1582 luaK_goiftrue(fs, v); /* go ahead only if 'v' is true */ 1583 break; 1584 } 1585 case OPR_OR: { 1586 luaK_goiffalse(fs, v); /* go ahead only if 'v' is false */ 1587 break; 1588 } 1589 case OPR_CONCAT: { 1590 luaK_exp2nextreg(fs, v); /* operand must be on the stack */ 1591 break; 1592 } 1593 case OPR_ADD: case OPR_SUB: 1594 case OPR_MUL: case OPR_DIV: case OPR_IDIV: 1595 case OPR_MOD: case OPR_POW: 1596 case OPR_BAND: case OPR_BOR: case OPR_BXOR: 1597 case OPR_SHL: case OPR_SHR: { 1598 if (!tonumeral(v, NULL)) 1599 luaK_exp2anyreg(fs, v); 1600 /* else keep numeral, which may be folded with 2nd operand */ 1601 break; 1602 } 1603 case OPR_EQ: case OPR_NE: { 1604 if (!tonumeral(v, NULL)) 1605 luaK_exp2RK(fs, v); 1606 /* else keep numeral, which may be an immediate operand */ 1607 break; 1608 } 1609 case OPR_LT: case OPR_LE: 1610 case OPR_GT: case OPR_GE: { 1611 int dummy, dummy2; 1612 if (!isSCnumber(v, &dummy, &dummy2)) 1613 luaK_exp2anyreg(fs, v); 1614 /* else keep numeral, which may be an immediate operand */ 1615 break; 1616 } 1617 default: lua_assert(0); 1618 } 1619 } 1620 1621 /* 1622 ** Create code for '(e1 .. e2)'. 1623 ** For '(e1 .. e2.1 .. e2.2)' (which is '(e1 .. (e2.1 .. e2.2))', 1624 ** because concatenation is right associative), merge both CONCATs. 1625 */ 1626 static void codeconcat (FuncState *fs, expdesc *e1, expdesc *e2, int line) { 1627 Instruction *ie2 = previousinstruction(fs); 1628 if (GET_OPCODE(*ie2) == OP_CONCAT) { /* is 'e2' a concatenation? */ 1629 int n = GETARG_B(*ie2); /* # of elements concatenated in 'e2' */ 1630 lua_assert(e1->u.info + 1 == GETARG_A(*ie2)); 1631 freeexp(fs, e2); 1632 SETARG_A(*ie2, e1->u.info); /* correct first element ('e1') */ 1633 SETARG_B(*ie2, n + 1); /* will concatenate one more element */ 1634 } 1635 else { /* 'e2' is not a concatenation */ 1636 luaK_codeABC(fs, OP_CONCAT, e1->u.info, 2, 0); /* new concat opcode */ 1637 freeexp(fs, e2); 1638 luaK_fixline(fs, line); 1639 } 1640 } 1641 1642 1643 /* 1644 ** Finalize code for binary operation, after reading 2nd operand. 1645 */ 1646 void luaK_posfix (FuncState *fs, BinOpr opr, 1647 expdesc *e1, expdesc *e2, int line) { 1648 luaK_dischargevars(fs, e2); 1649 if (foldbinop(opr) && constfolding(fs, opr + LUA_OPADD, e1, e2)) 1650 return; /* done by folding */ 1651 switch (opr) { 1652 case OPR_AND: { 1653 lua_assert(e1->t == NO_JUMP); /* list closed by 'luaK_infix' */ 1654 luaK_concat(fs, &e2->f, e1->f); 1655 *e1 = *e2; 1656 break; 1657 } 1658 case OPR_OR: { 1659 lua_assert(e1->f == NO_JUMP); /* list closed by 'luaK_infix' */ 1660 luaK_concat(fs, &e2->t, e1->t); 1661 *e1 = *e2; 1662 break; 1663 } 1664 case OPR_CONCAT: { /* e1 .. e2 */ 1665 luaK_exp2nextreg(fs, e2); 1666 codeconcat(fs, e1, e2, line); 1667 break; 1668 } 1669 case OPR_ADD: case OPR_MUL: { 1670 codecommutative(fs, opr, e1, e2, line); 1671 break; 1672 } 1673 case OPR_SUB: { 1674 if (finishbinexpneg(fs, e1, e2, OP_ADDI, line, TM_SUB)) 1675 break; /* coded as (r1 + -I) */ 1676 /* ELSE */ 1677 } /* FALLTHROUGH */ 1678 case OPR_DIV: case OPR_IDIV: case OPR_MOD: case OPR_POW: { 1679 codearith(fs, opr, e1, e2, 0, line); 1680 break; 1681 } 1682 case OPR_BAND: case OPR_BOR: case OPR_BXOR: { 1683 codebitwise(fs, opr, e1, e2, line); 1684 break; 1685 } 1686 case OPR_SHL: { 1687 if (isSCint(e1)) { 1688 swapexps(e1, e2); 1689 codebini(fs, OP_SHLI, e1, e2, 1, line, TM_SHL); /* I << r2 */ 1690 } 1691 else if (finishbinexpneg(fs, e1, e2, OP_SHRI, line, TM_SHL)) { 1692 /* coded as (r1 >> -I) */; 1693 } 1694 else /* regular case (two registers) */ 1695 codebinexpval(fs, OP_SHL, e1, e2, line); 1696 break; 1697 } 1698 case OPR_SHR: { 1699 if (isSCint(e2)) 1700 codebini(fs, OP_SHRI, e1, e2, 0, line, TM_SHR); /* r1 >> I */ 1701 else /* regular case (two registers) */ 1702 codebinexpval(fs, OP_SHR, e1, e2, line); 1703 break; 1704 } 1705 case OPR_EQ: case OPR_NE: { 1706 codeeq(fs, opr, e1, e2); 1707 break; 1708 } 1709 case OPR_LT: case OPR_LE: { 1710 OpCode op = cast(OpCode, (opr - OPR_EQ) + OP_EQ); 1711 codeorder(fs, op, e1, e2); 1712 break; 1713 } 1714 case OPR_GT: case OPR_GE: { 1715 /* '(a > b)' <=> '(b < a)'; '(a >= b)' <=> '(b <= a)' */ 1716 OpCode op = cast(OpCode, (opr - OPR_NE) + OP_EQ); 1717 swapexps(e1, e2); 1718 codeorder(fs, op, e1, e2); 1719 break; 1720 } 1721 default: lua_assert(0); 1722 } 1723 } 1724 1725 1726 /* 1727 ** Change line information associated with current position, by removing 1728 ** previous info and adding it again with new line. 1729 */ 1730 void luaK_fixline (FuncState *fs, int line) { 1731 removelastlineinfo(fs); 1732 savelineinfo(fs, fs->f, line); 1733 } 1734 1735 1736 void luaK_settablesize (FuncState *fs, int pc, int ra, int asize, int hsize) { 1737 Instruction *inst = &fs->f->code[pc]; 1738 int rb = (hsize != 0) ? luaO_ceillog2(hsize) + 1 : 0; /* hash size */ 1739 int extra = asize / (MAXARG_C + 1); /* higher bits of array size */ 1740 int rc = asize % (MAXARG_C + 1); /* lower bits of array size */ 1741 int k = (extra > 0); /* true iff needs extra argument */ 1742 *inst = CREATE_ABCk(OP_NEWTABLE, ra, rb, rc, k); 1743 *(inst + 1) = CREATE_Ax(OP_EXTRAARG, extra); 1744 } 1745 1746 1747 /* 1748 ** Emit a SETLIST instruction. 1749 ** 'base' is register that keeps table; 1750 ** 'nelems' is #table plus those to be stored now; 1751 ** 'tostore' is number of values (in registers 'base + 1',...) to add to 1752 ** table (or LUA_MULTRET to add up to stack top). 1753 */ 1754 void luaK_setlist (FuncState *fs, int base, int nelems, int tostore) { 1755 lua_assert(tostore != 0 && tostore <= LFIELDS_PER_FLUSH); 1756 if (tostore == LUA_MULTRET) 1757 tostore = 0; 1758 if (nelems <= MAXARG_C) 1759 luaK_codeABC(fs, OP_SETLIST, base, tostore, nelems); 1760 else { 1761 int extra = nelems / (MAXARG_C + 1); 1762 nelems %= (MAXARG_C + 1); 1763 luaK_codeABCk(fs, OP_SETLIST, base, tostore, nelems, 1); 1764 codeextraarg(fs, extra); 1765 } 1766 fs->freereg = base + 1; /* free registers with list values */ 1767 } 1768 1769 1770 /* 1771 ** return the final target of a jump (skipping jumps to jumps) 1772 */ 1773 static int finaltarget (Instruction *code, int i) { 1774 int count; 1775 for (count = 0; count < 100; count++) { /* avoid infinite loops */ 1776 Instruction pc = code[i]; 1777 if (GET_OPCODE(pc) != OP_JMP) 1778 break; 1779 else 1780 i += GETARG_sJ(pc) + 1; 1781 } 1782 return i; 1783 } 1784 1785 1786 /* 1787 ** Do a final pass over the code of a function, doing small peephole 1788 ** optimizations and adjustments. 1789 */ 1790 void luaK_finish (FuncState *fs) { 1791 int i; 1792 Proto *p = fs->f; 1793 for (i = 0; i < fs->pc; i++) { 1794 Instruction *pc = &p->code[i]; 1795 lua_assert(i == 0 || isOT(*(pc - 1)) == isIT(*pc)); 1796 switch (GET_OPCODE(*pc)) { 1797 case OP_RETURN0: case OP_RETURN1: { 1798 if (!(fs->needclose || p->is_vararg)) 1799 break; /* no extra work */ 1800 /* else use OP_RETURN to do the extra work */ 1801 SET_OPCODE(*pc, OP_RETURN); 1802 } /* FALLTHROUGH */ 1803 case OP_RETURN: case OP_TAILCALL: { 1804 if (fs->needclose) 1805 SETARG_k(*pc, 1); /* signal that it needs to close */ 1806 if (p->is_vararg) 1807 SETARG_C(*pc, p->numparams + 1); /* signal that it is vararg */ 1808 break; 1809 } 1810 case OP_JMP: { 1811 int target = finaltarget(p->code, i); 1812 fixjump(fs, i, target); 1813 break; 1814 } 1815 default: break; 1816 } 1817 } 1818 } 1819