1 /* 2 ** $Id: lcode.c $ 3 ** Code generator for Lua 4 ** See Copyright Notice in lua.h 5 */ 6 7 #define lcode_c 8 #define LUA_CORE 9 10 #include "lprefix.h" 11 12 13 #include <float.h> 14 #include <limits.h> 15 #include <math.h> 16 #include <stdlib.h> 17 18 #include "lua.h" 19 20 #include "lcode.h" 21 #include "ldebug.h" 22 #include "ldo.h" 23 #include "lgc.h" 24 #include "llex.h" 25 #include "lmem.h" 26 #include "lobject.h" 27 #include "lopcodes.h" 28 #include "lparser.h" 29 #include "lstring.h" 30 #include "ltable.h" 31 #include "lvm.h" 32 33 34 /* Maximum number of registers in a Lua function (must fit in 8 bits) */ 35 #define MAXREGS 255 36 37 38 /* (note that expressions VJMP also have jumps.) */ 39 #define hasjumps(e) ((e)->t != (e)->f) 40 41 42 static int codesJ (FuncState *fs, OpCode o, int sj, int k); 43 44 45 46 /* semantic error */ 47 l_noret luaK_semerror (LexState *ls, const char *msg) { 48 ls->t.token = 0; /* remove "near <token>" from final message */ 49 luaX_syntaxerror(ls, msg); 50 } 51 52 53 /* 54 ** If expression is a numeric constant, fills 'v' with its value 55 ** and returns 1. Otherwise, returns 0. 56 */ 57 static int tonumeral (const expdesc *e, TValue *v) { 58 if (hasjumps(e)) 59 return 0; /* not a numeral */ 60 switch (e->k) { 61 case VKINT: 62 if (v) setivalue(v, e->u.ival); 63 return 1; 64 case VKFLT: 65 if (v) setfltvalue(v, e->u.nval); 66 return 1; 67 default: return 0; 68 } 69 } 70 71 72 /* 73 ** Get the constant value from a constant expression 74 */ 75 static TValue *const2val (FuncState *fs, const expdesc *e) { 76 lua_assert(e->k == VCONST); 77 return &fs->ls->dyd->actvar.arr[e->u.info].k; 78 } 79 80 81 /* 82 ** If expression is a constant, fills 'v' with its value 83 ** and returns 1. Otherwise, returns 0. 84 */ 85 int luaK_exp2const (FuncState *fs, const expdesc *e, TValue *v) { 86 if (hasjumps(e)) 87 return 0; /* not a constant */ 88 switch (e->k) { 89 case VFALSE: 90 setbfvalue(v); 91 return 1; 92 case VTRUE: 93 setbtvalue(v); 94 return 1; 95 case VNIL: 96 setnilvalue(v); 97 return 1; 98 case VKSTR: { 99 setsvalue(fs->ls->L, v, e->u.strval); 100 return 1; 101 } 102 case VCONST: { 103 setobj(fs->ls->L, v, const2val(fs, e)); 104 return 1; 105 } 106 default: return tonumeral(e, v); 107 } 108 } 109 110 111 /* 112 ** Return the previous instruction of the current code. If there 113 ** may be a jump target between the current instruction and the 114 ** previous one, return an invalid instruction (to avoid wrong 115 ** optimizations). 116 */ 117 static Instruction *previousinstruction (FuncState *fs) { 118 static const Instruction invalidinstruction = ~(Instruction)0; 119 if (fs->pc > fs->lasttarget) 120 return &fs->f->code[fs->pc - 1]; /* previous instruction */ 121 else 122 return cast(Instruction*, &invalidinstruction); 123 } 124 125 126 /* 127 ** Create a OP_LOADNIL instruction, but try to optimize: if the previous 128 ** instruction is also OP_LOADNIL and ranges are compatible, adjust 129 ** range of previous instruction instead of emitting a new one. (For 130 ** instance, 'local a; local b' will generate a single opcode.) 131 */ 132 void luaK_nil (FuncState *fs, int from, int n) { 133 int l = from + n - 1; /* last register to set nil */ 134 Instruction *previous = previousinstruction(fs); 135 if (GET_OPCODE(*previous) == OP_LOADNIL) { /* previous is LOADNIL? */ 136 int pfrom = GETARG_A(*previous); /* get previous range */ 137 int pl = pfrom + GETARG_B(*previous); 138 if ((pfrom <= from && from <= pl + 1) || 139 (from <= pfrom && pfrom <= l + 1)) { /* can connect both? */ 140 if (pfrom < from) from = pfrom; /* from = min(from, pfrom) */ 141 if (pl > l) l = pl; /* l = max(l, pl) */ 142 SETARG_A(*previous, from); 143 SETARG_B(*previous, l - from); 144 return; 145 } /* else go through */ 146 } 147 luaK_codeABC(fs, OP_LOADNIL, from, n - 1, 0); /* else no optimization */ 148 } 149 150 151 /* 152 ** Gets the destination address of a jump instruction. Used to traverse 153 ** a list of jumps. 154 */ 155 static int getjump (FuncState *fs, int pc) { 156 int offset = GETARG_sJ(fs->f->code[pc]); 157 if (offset == NO_JUMP) /* point to itself represents end of list */ 158 return NO_JUMP; /* end of list */ 159 else 160 return (pc+1)+offset; /* turn offset into absolute position */ 161 } 162 163 164 /* 165 ** Fix jump instruction at position 'pc' to jump to 'dest'. 166 ** (Jump addresses are relative in Lua) 167 */ 168 static void fixjump (FuncState *fs, int pc, int dest) { 169 Instruction *jmp = &fs->f->code[pc]; 170 int offset = dest - (pc + 1); 171 lua_assert(dest != NO_JUMP); 172 if (!(-OFFSET_sJ <= offset && offset <= MAXARG_sJ - OFFSET_sJ)) 173 luaX_syntaxerror(fs->ls, "control structure too long"); 174 lua_assert(GET_OPCODE(*jmp) == OP_JMP); 175 SETARG_sJ(*jmp, offset); 176 } 177 178 179 /* 180 ** Concatenate jump-list 'l2' into jump-list 'l1' 181 */ 182 void luaK_concat (FuncState *fs, int *l1, int l2) { 183 if (l2 == NO_JUMP) return; /* nothing to concatenate? */ 184 else if (*l1 == NO_JUMP) /* no original list? */ 185 *l1 = l2; /* 'l1' points to 'l2' */ 186 else { 187 int list = *l1; 188 int next; 189 while ((next = getjump(fs, list)) != NO_JUMP) /* find last element */ 190 list = next; 191 fixjump(fs, list, l2); /* last element links to 'l2' */ 192 } 193 } 194 195 196 /* 197 ** Create a jump instruction and return its position, so its destination 198 ** can be fixed later (with 'fixjump'). 199 */ 200 int luaK_jump (FuncState *fs) { 201 return codesJ(fs, OP_JMP, NO_JUMP, 0); 202 } 203 204 205 /* 206 ** Code a 'return' instruction 207 */ 208 void luaK_ret (FuncState *fs, int first, int nret) { 209 OpCode op; 210 switch (nret) { 211 case 0: op = OP_RETURN0; break; 212 case 1: op = OP_RETURN1; break; 213 default: op = OP_RETURN; break; 214 } 215 luaK_codeABC(fs, op, first, nret + 1, 0); 216 } 217 218 219 /* 220 ** Code a "conditional jump", that is, a test or comparison opcode 221 ** followed by a jump. Return jump position. 222 */ 223 static int condjump (FuncState *fs, OpCode op, int A, int B, int C, int k) { 224 luaK_codeABCk(fs, op, A, B, C, k); 225 return luaK_jump(fs); 226 } 227 228 229 /* 230 ** returns current 'pc' and marks it as a jump target (to avoid wrong 231 ** optimizations with consecutive instructions not in the same basic block). 232 */ 233 int luaK_getlabel (FuncState *fs) { 234 fs->lasttarget = fs->pc; 235 return fs->pc; 236 } 237 238 239 /* 240 ** Returns the position of the instruction "controlling" a given 241 ** jump (that is, its condition), or the jump itself if it is 242 ** unconditional. 243 */ 244 static Instruction *getjumpcontrol (FuncState *fs, int pc) { 245 Instruction *pi = &fs->f->code[pc]; 246 if (pc >= 1 && testTMode(GET_OPCODE(*(pi-1)))) 247 return pi-1; 248 else 249 return pi; 250 } 251 252 253 /* 254 ** Patch destination register for a TESTSET instruction. 255 ** If instruction in position 'node' is not a TESTSET, return 0 ("fails"). 256 ** Otherwise, if 'reg' is not 'NO_REG', set it as the destination 257 ** register. Otherwise, change instruction to a simple 'TEST' (produces 258 ** no register value) 259 */ 260 static int patchtestreg (FuncState *fs, int node, int reg) { 261 Instruction *i = getjumpcontrol(fs, node); 262 if (GET_OPCODE(*i) != OP_TESTSET) 263 return 0; /* cannot patch other instructions */ 264 if (reg != NO_REG && reg != GETARG_B(*i)) 265 SETARG_A(*i, reg); 266 else { 267 /* no register to put value or register already has the value; 268 change instruction to simple test */ 269 *i = CREATE_ABCk(OP_TEST, GETARG_B(*i), 0, 0, GETARG_k(*i)); 270 } 271 return 1; 272 } 273 274 275 /* 276 ** Traverse a list of tests ensuring no one produces a value 277 */ 278 static void removevalues (FuncState *fs, int list) { 279 for (; list != NO_JUMP; list = getjump(fs, list)) 280 patchtestreg(fs, list, NO_REG); 281 } 282 283 284 /* 285 ** Traverse a list of tests, patching their destination address and 286 ** registers: tests producing values jump to 'vtarget' (and put their 287 ** values in 'reg'), other tests jump to 'dtarget'. 288 */ 289 static void patchlistaux (FuncState *fs, int list, int vtarget, int reg, 290 int dtarget) { 291 while (list != NO_JUMP) { 292 int next = getjump(fs, list); 293 if (patchtestreg(fs, list, reg)) 294 fixjump(fs, list, vtarget); 295 else 296 fixjump(fs, list, dtarget); /* jump to default target */ 297 list = next; 298 } 299 } 300 301 302 /* 303 ** Path all jumps in 'list' to jump to 'target'. 304 ** (The assert means that we cannot fix a jump to a forward address 305 ** because we only know addresses once code is generated.) 306 */ 307 void luaK_patchlist (FuncState *fs, int list, int target) { 308 lua_assert(target <= fs->pc); 309 patchlistaux(fs, list, target, NO_REG, target); 310 } 311 312 313 void luaK_patchtohere (FuncState *fs, int list) { 314 int hr = luaK_getlabel(fs); /* mark "here" as a jump target */ 315 luaK_patchlist(fs, list, hr); 316 } 317 318 319 /* limit for difference between lines in relative line info. */ 320 #define LIMLINEDIFF 0x80 321 322 323 /* 324 ** Save line info for a new instruction. If difference from last line 325 ** does not fit in a byte, of after that many instructions, save a new 326 ** absolute line info; (in that case, the special value 'ABSLINEINFO' 327 ** in 'lineinfo' signals the existence of this absolute information.) 328 ** Otherwise, store the difference from last line in 'lineinfo'. 329 */ 330 static void savelineinfo (FuncState *fs, Proto *f, int line) { 331 int linedif = line - fs->previousline; 332 int pc = fs->pc - 1; /* last instruction coded */ 333 if (abs(linedif) >= LIMLINEDIFF || fs->iwthabs++ >= MAXIWTHABS) { 334 luaM_growvector(fs->ls->L, f->abslineinfo, fs->nabslineinfo, 335 f->sizeabslineinfo, AbsLineInfo, MAX_INT, "lines"); 336 f->abslineinfo[fs->nabslineinfo].pc = pc; 337 f->abslineinfo[fs->nabslineinfo++].line = line; 338 linedif = ABSLINEINFO; /* signal that there is absolute information */ 339 fs->iwthabs = 1; /* restart counter */ 340 } 341 luaM_growvector(fs->ls->L, f->lineinfo, pc, f->sizelineinfo, ls_byte, 342 MAX_INT, "opcodes"); 343 f->lineinfo[pc] = linedif; 344 fs->previousline = line; /* last line saved */ 345 } 346 347 348 /* 349 ** Remove line information from the last instruction. 350 ** If line information for that instruction is absolute, set 'iwthabs' 351 ** above its max to force the new (replacing) instruction to have 352 ** absolute line info, too. 353 */ 354 static void removelastlineinfo (FuncState *fs) { 355 Proto *f = fs->f; 356 int pc = fs->pc - 1; /* last instruction coded */ 357 if (f->lineinfo[pc] != ABSLINEINFO) { /* relative line info? */ 358 fs->previousline -= f->lineinfo[pc]; /* correct last line saved */ 359 fs->iwthabs--; /* undo previous increment */ 360 } 361 else { /* absolute line information */ 362 lua_assert(f->abslineinfo[fs->nabslineinfo - 1].pc == pc); 363 fs->nabslineinfo--; /* remove it */ 364 fs->iwthabs = MAXIWTHABS + 1; /* force next line info to be absolute */ 365 } 366 } 367 368 369 /* 370 ** Remove the last instruction created, correcting line information 371 ** accordingly. 372 */ 373 static void removelastinstruction (FuncState *fs) { 374 removelastlineinfo(fs); 375 fs->pc--; 376 } 377 378 379 /* 380 ** Emit instruction 'i', checking for array sizes and saving also its 381 ** line information. Return 'i' position. 382 */ 383 int luaK_code (FuncState *fs, Instruction i) { 384 Proto *f = fs->f; 385 /* put new instruction in code array */ 386 luaM_growvector(fs->ls->L, f->code, fs->pc, f->sizecode, Instruction, 387 MAX_INT, "opcodes"); 388 f->code[fs->pc++] = i; 389 savelineinfo(fs, f, fs->ls->lastline); 390 return fs->pc - 1; /* index of new instruction */ 391 } 392 393 394 /* 395 ** Format and emit an 'iABC' instruction. (Assertions check consistency 396 ** of parameters versus opcode.) 397 */ 398 int luaK_codeABCk (FuncState *fs, OpCode o, int a, int b, int c, int k) { 399 lua_assert(getOpMode(o) == iABC); 400 lua_assert(a <= MAXARG_A && b <= MAXARG_B && 401 c <= MAXARG_C && (k & ~1) == 0); 402 return luaK_code(fs, CREATE_ABCk(o, a, b, c, k)); 403 } 404 405 406 /* 407 ** Format and emit an 'iABx' instruction. 408 */ 409 int luaK_codeABx (FuncState *fs, OpCode o, int a, unsigned int bc) { 410 lua_assert(getOpMode(o) == iABx); 411 lua_assert(a <= MAXARG_A && bc <= MAXARG_Bx); 412 return luaK_code(fs, CREATE_ABx(o, a, bc)); 413 } 414 415 416 /* 417 ** Format and emit an 'iAsBx' instruction. 418 */ 419 static int codeAsBx (FuncState *fs, OpCode o, int a, int bc) { 420 unsigned int b = bc + OFFSET_sBx; 421 lua_assert(getOpMode(o) == iAsBx); 422 lua_assert(a <= MAXARG_A && b <= MAXARG_Bx); 423 return luaK_code(fs, CREATE_ABx(o, a, b)); 424 } 425 426 427 /* 428 ** Format and emit an 'isJ' instruction. 429 */ 430 static int codesJ (FuncState *fs, OpCode o, int sj, int k) { 431 unsigned int j = sj + OFFSET_sJ; 432 lua_assert(getOpMode(o) == isJ); 433 lua_assert(j <= MAXARG_sJ && (k & ~1) == 0); 434 return luaK_code(fs, CREATE_sJ(o, j, k)); 435 } 436 437 438 /* 439 ** Emit an "extra argument" instruction (format 'iAx') 440 */ 441 static int codeextraarg (FuncState *fs, int a) { 442 lua_assert(a <= MAXARG_Ax); 443 return luaK_code(fs, CREATE_Ax(OP_EXTRAARG, a)); 444 } 445 446 447 /* 448 ** Emit a "load constant" instruction, using either 'OP_LOADK' 449 ** (if constant index 'k' fits in 18 bits) or an 'OP_LOADKX' 450 ** instruction with "extra argument". 451 */ 452 static int luaK_codek (FuncState *fs, int reg, int k) { 453 if (k <= MAXARG_Bx) 454 return luaK_codeABx(fs, OP_LOADK, reg, k); 455 else { 456 int p = luaK_codeABx(fs, OP_LOADKX, reg, 0); 457 codeextraarg(fs, k); 458 return p; 459 } 460 } 461 462 463 /* 464 ** Check register-stack level, keeping track of its maximum size 465 ** in field 'maxstacksize' 466 */ 467 void luaK_checkstack (FuncState *fs, int n) { 468 int newstack = fs->freereg + n; 469 if (newstack > fs->f->maxstacksize) { 470 if (newstack >= MAXREGS) 471 luaX_syntaxerror(fs->ls, 472 "function or expression needs too many registers"); 473 fs->f->maxstacksize = cast_byte(newstack); 474 } 475 } 476 477 478 /* 479 ** Reserve 'n' registers in register stack 480 */ 481 void luaK_reserveregs (FuncState *fs, int n) { 482 luaK_checkstack(fs, n); 483 fs->freereg += n; 484 } 485 486 487 /* 488 ** Free register 'reg', if it is neither a constant index nor 489 ** a local variable. 490 ) 491 */ 492 static void freereg (FuncState *fs, int reg) { 493 if (reg >= luaY_nvarstack(fs)) { 494 fs->freereg--; 495 lua_assert(reg == fs->freereg); 496 } 497 } 498 499 500 /* 501 ** Free two registers in proper order 502 */ 503 static void freeregs (FuncState *fs, int r1, int r2) { 504 if (r1 > r2) { 505 freereg(fs, r1); 506 freereg(fs, r2); 507 } 508 else { 509 freereg(fs, r2); 510 freereg(fs, r1); 511 } 512 } 513 514 515 /* 516 ** Free register used by expression 'e' (if any) 517 */ 518 static void freeexp (FuncState *fs, expdesc *e) { 519 if (e->k == VNONRELOC) 520 freereg(fs, e->u.info); 521 } 522 523 524 /* 525 ** Free registers used by expressions 'e1' and 'e2' (if any) in proper 526 ** order. 527 */ 528 static void freeexps (FuncState *fs, expdesc *e1, expdesc *e2) { 529 int r1 = (e1->k == VNONRELOC) ? e1->u.info : -1; 530 int r2 = (e2->k == VNONRELOC) ? e2->u.info : -1; 531 freeregs(fs, r1, r2); 532 } 533 534 535 /* 536 ** Add constant 'v' to prototype's list of constants (field 'k'). 537 ** Use scanner's table to cache position of constants in constant list 538 ** and try to reuse constants. Because some values should not be used 539 ** as keys (nil cannot be a key, integer keys can collapse with float 540 ** keys), the caller must provide a useful 'key' for indexing the cache. 541 ** Note that all functions share the same table, so entering or exiting 542 ** a function can make some indices wrong. 543 */ 544 static int addk (FuncState *fs, TValue *key, TValue *v) { 545 TValue val; 546 lua_State *L = fs->ls->L; 547 Proto *f = fs->f; 548 const TValue *idx = luaH_get(fs->ls->h, key); /* query scanner table */ 549 int k, oldsize; 550 if (ttisinteger(idx)) { /* is there an index there? */ 551 k = cast_int(ivalue(idx)); 552 /* correct value? (warning: must distinguish floats from integers!) */ 553 if (k < fs->nk && ttypetag(&f->k[k]) == ttypetag(v) && 554 luaV_rawequalobj(&f->k[k], v)) 555 return k; /* reuse index */ 556 } 557 /* constant not found; create a new entry */ 558 oldsize = f->sizek; 559 k = fs->nk; 560 /* numerical value does not need GC barrier; 561 table has no metatable, so it does not need to invalidate cache */ 562 setivalue(&val, k); 563 luaH_finishset(L, fs->ls->h, key, idx, &val); 564 luaM_growvector(L, f->k, k, f->sizek, TValue, MAXARG_Ax, "constants"); 565 while (oldsize < f->sizek) setnilvalue(&f->k[oldsize++]); 566 setobj(L, &f->k[k], v); 567 fs->nk++; 568 luaC_barrier(L, f, v); 569 return k; 570 } 571 572 573 /* 574 ** Add a string to list of constants and return its index. 575 */ 576 static int stringK (FuncState *fs, TString *s) { 577 TValue o; 578 setsvalue(fs->ls->L, &o, s); 579 return addk(fs, &o, &o); /* use string itself as key */ 580 } 581 582 583 /* 584 ** Add an integer to list of constants and return its index. 585 */ 586 static int luaK_intK (FuncState *fs, lua_Integer n) { 587 TValue o; 588 setivalue(&o, n); 589 return addk(fs, &o, &o); /* use integer itself as key */ 590 } 591 592 /* 593 ** Add a float to list of constants and return its index. Floats 594 ** with integral values need a different key, to avoid collision 595 ** with actual integers. To that, we add to the number its smaller 596 ** power-of-two fraction that is still significant in its scale. 597 ** For doubles, that would be 1/2^52. 598 ** (This method is not bulletproof: there may be another float 599 ** with that value, and for floats larger than 2^53 the result is 600 ** still an integer. At worst, this only wastes an entry with 601 ** a duplicate.) 602 */ 603 static int luaK_numberK (FuncState *fs, lua_Number r) { 604 TValue o; 605 lua_Integer ik; 606 setfltvalue(&o, r); 607 #ifndef LUA_AVOID_FLOAT 608 if (!luaV_flttointeger(r, &ik, F2Ieq)) /* not an integral value? */ 609 return addk(fs, &o, &o); /* use number itself as key */ 610 else { /* must build an alternative key */ 611 const int nbm = l_floatatt(MANT_DIG); 612 const lua_Number q = l_mathop(ldexp)(l_mathop(1.0), -nbm + 1); 613 const lua_Number k = (ik == 0) ? q : r + r*q; /* new key */ 614 TValue kv; 615 setfltvalue(&kv, k); 616 /* result is not an integral value, unless value is too large */ 617 lua_assert(!luaV_flttointeger(k, &ik, F2Ieq) || 618 l_mathop(fabs)(r) >= l_mathop(1e6)); 619 return addk(fs, &kv, &o); 620 } 621 #else 622 /* 623 ** When we're avoiding floats, allow any collision since floats are ints. 624 */ 625 return addk(fs, &o, &o); /* use number itself as key */ 626 #endif 627 } 628 629 630 /* 631 ** Add a false to list of constants and return its index. 632 */ 633 static int boolF (FuncState *fs) { 634 TValue o; 635 setbfvalue(&o); 636 return addk(fs, &o, &o); /* use boolean itself as key */ 637 } 638 639 640 /* 641 ** Add a true to list of constants and return its index. 642 */ 643 static int boolT (FuncState *fs) { 644 TValue o; 645 setbtvalue(&o); 646 return addk(fs, &o, &o); /* use boolean itself as key */ 647 } 648 649 650 /* 651 ** Add nil to list of constants and return its index. 652 */ 653 static int nilK (FuncState *fs) { 654 TValue k, v; 655 setnilvalue(&v); 656 /* cannot use nil as key; instead use table itself to represent nil */ 657 sethvalue(fs->ls->L, &k, fs->ls->h); 658 return addk(fs, &k, &v); 659 } 660 661 662 /* 663 ** Check whether 'i' can be stored in an 'sC' operand. Equivalent to 664 ** (0 <= int2sC(i) && int2sC(i) <= MAXARG_C) but without risk of 665 ** overflows in the hidden addition inside 'int2sC'. 666 */ 667 static int fitsC (lua_Integer i) { 668 return (l_castS2U(i) + OFFSET_sC <= cast_uint(MAXARG_C)); 669 } 670 671 672 /* 673 ** Check whether 'i' can be stored in an 'sBx' operand. 674 */ 675 static int fitsBx (lua_Integer i) { 676 return (-OFFSET_sBx <= i && i <= MAXARG_Bx - OFFSET_sBx); 677 } 678 679 680 void luaK_int (FuncState *fs, int reg, lua_Integer i) { 681 if (fitsBx(i)) 682 codeAsBx(fs, OP_LOADI, reg, cast_int(i)); 683 else 684 luaK_codek(fs, reg, luaK_intK(fs, i)); 685 } 686 687 688 static void luaK_float (FuncState *fs, int reg, lua_Number f) { 689 lua_Integer fi; 690 if (luaV_flttointeger(f, &fi, F2Ieq) && fitsBx(fi)) 691 codeAsBx(fs, OP_LOADF, reg, cast_int(fi)); 692 else 693 luaK_codek(fs, reg, luaK_numberK(fs, f)); 694 } 695 696 697 /* 698 ** Convert a constant in 'v' into an expression description 'e' 699 */ 700 static void const2exp (TValue *v, expdesc *e) { 701 switch (ttypetag(v)) { 702 case LUA_VNUMINT: 703 e->k = VKINT; e->u.ival = ivalue(v); 704 break; 705 case LUA_VNUMFLT: 706 e->k = VKFLT; e->u.nval = fltvalue(v); 707 break; 708 case LUA_VFALSE: 709 e->k = VFALSE; 710 break; 711 case LUA_VTRUE: 712 e->k = VTRUE; 713 break; 714 case LUA_VNIL: 715 e->k = VNIL; 716 break; 717 case LUA_VSHRSTR: case LUA_VLNGSTR: 718 e->k = VKSTR; e->u.strval = tsvalue(v); 719 break; 720 default: lua_assert(0); 721 } 722 } 723 724 725 /* 726 ** Fix an expression to return the number of results 'nresults'. 727 ** 'e' must be a multi-ret expression (function call or vararg). 728 */ 729 void luaK_setreturns (FuncState *fs, expdesc *e, int nresults) { 730 Instruction *pc = &getinstruction(fs, e); 731 if (e->k == VCALL) /* expression is an open function call? */ 732 SETARG_C(*pc, nresults + 1); 733 else { 734 lua_assert(e->k == VVARARG); 735 SETARG_C(*pc, nresults + 1); 736 SETARG_A(*pc, fs->freereg); 737 luaK_reserveregs(fs, 1); 738 } 739 } 740 741 742 /* 743 ** Convert a VKSTR to a VK 744 */ 745 static void str2K (FuncState *fs, expdesc *e) { 746 lua_assert(e->k == VKSTR); 747 e->u.info = stringK(fs, e->u.strval); 748 e->k = VK; 749 } 750 751 752 /* 753 ** Fix an expression to return one result. 754 ** If expression is not a multi-ret expression (function call or 755 ** vararg), it already returns one result, so nothing needs to be done. 756 ** Function calls become VNONRELOC expressions (as its result comes 757 ** fixed in the base register of the call), while vararg expressions 758 ** become VRELOC (as OP_VARARG puts its results where it wants). 759 ** (Calls are created returning one result, so that does not need 760 ** to be fixed.) 761 */ 762 void luaK_setoneret (FuncState *fs, expdesc *e) { 763 if (e->k == VCALL) { /* expression is an open function call? */ 764 /* already returns 1 value */ 765 lua_assert(GETARG_C(getinstruction(fs, e)) == 2); 766 e->k = VNONRELOC; /* result has fixed position */ 767 e->u.info = GETARG_A(getinstruction(fs, e)); 768 } 769 else if (e->k == VVARARG) { 770 SETARG_C(getinstruction(fs, e), 2); 771 e->k = VRELOC; /* can relocate its simple result */ 772 } 773 } 774 775 776 /* 777 ** Ensure that expression 'e' is not a variable (nor a <const>). 778 ** (Expression still may have jump lists.) 779 */ 780 void luaK_dischargevars (FuncState *fs, expdesc *e) { 781 switch (e->k) { 782 case VCONST: { 783 const2exp(const2val(fs, e), e); 784 break; 785 } 786 case VLOCAL: { /* already in a register */ 787 int temp = e->u.var.ridx; 788 e->u.info = temp; /* (can't do a direct assignment; values overlap) */ 789 e->k = VNONRELOC; /* becomes a non-relocatable value */ 790 break; 791 } 792 case VUPVAL: { /* move value to some (pending) register */ 793 e->u.info = luaK_codeABC(fs, OP_GETUPVAL, 0, e->u.info, 0); 794 e->k = VRELOC; 795 break; 796 } 797 case VINDEXUP: { 798 e->u.info = luaK_codeABC(fs, OP_GETTABUP, 0, e->u.ind.t, e->u.ind.idx); 799 e->k = VRELOC; 800 break; 801 } 802 case VINDEXI: { 803 freereg(fs, e->u.ind.t); 804 e->u.info = luaK_codeABC(fs, OP_GETI, 0, e->u.ind.t, e->u.ind.idx); 805 e->k = VRELOC; 806 break; 807 } 808 case VINDEXSTR: { 809 freereg(fs, e->u.ind.t); 810 e->u.info = luaK_codeABC(fs, OP_GETFIELD, 0, e->u.ind.t, e->u.ind.idx); 811 e->k = VRELOC; 812 break; 813 } 814 case VINDEXED: { 815 freeregs(fs, e->u.ind.t, e->u.ind.idx); 816 e->u.info = luaK_codeABC(fs, OP_GETTABLE, 0, e->u.ind.t, e->u.ind.idx); 817 e->k = VRELOC; 818 break; 819 } 820 case VVARARG: case VCALL: { 821 luaK_setoneret(fs, e); 822 break; 823 } 824 default: break; /* there is one value available (somewhere) */ 825 } 826 } 827 828 829 /* 830 ** Ensure expression value is in register 'reg', making 'e' a 831 ** non-relocatable expression. 832 ** (Expression still may have jump lists.) 833 */ 834 static void discharge2reg (FuncState *fs, expdesc *e, int reg) { 835 luaK_dischargevars(fs, e); 836 switch (e->k) { 837 case VNIL: { 838 luaK_nil(fs, reg, 1); 839 break; 840 } 841 case VFALSE: { 842 luaK_codeABC(fs, OP_LOADFALSE, reg, 0, 0); 843 break; 844 } 845 case VTRUE: { 846 luaK_codeABC(fs, OP_LOADTRUE, reg, 0, 0); 847 break; 848 } 849 case VKSTR: { 850 str2K(fs, e); 851 } /* FALLTHROUGH */ 852 case VK: { 853 luaK_codek(fs, reg, e->u.info); 854 break; 855 } 856 case VKFLT: { 857 luaK_float(fs, reg, e->u.nval); 858 break; 859 } 860 case VKINT: { 861 luaK_int(fs, reg, e->u.ival); 862 break; 863 } 864 case VRELOC: { 865 Instruction *pc = &getinstruction(fs, e); 866 SETARG_A(*pc, reg); /* instruction will put result in 'reg' */ 867 break; 868 } 869 case VNONRELOC: { 870 if (reg != e->u.info) 871 luaK_codeABC(fs, OP_MOVE, reg, e->u.info, 0); 872 break; 873 } 874 default: { 875 lua_assert(e->k == VJMP); 876 return; /* nothing to do... */ 877 } 878 } 879 e->u.info = reg; 880 e->k = VNONRELOC; 881 } 882 883 884 /* 885 ** Ensure expression value is in a register, making 'e' a 886 ** non-relocatable expression. 887 ** (Expression still may have jump lists.) 888 */ 889 static void discharge2anyreg (FuncState *fs, expdesc *e) { 890 if (e->k != VNONRELOC) { /* no fixed register yet? */ 891 luaK_reserveregs(fs, 1); /* get a register */ 892 discharge2reg(fs, e, fs->freereg-1); /* put value there */ 893 } 894 } 895 896 897 static int code_loadbool (FuncState *fs, int A, OpCode op) { 898 luaK_getlabel(fs); /* those instructions may be jump targets */ 899 return luaK_codeABC(fs, op, A, 0, 0); 900 } 901 902 903 /* 904 ** check whether list has any jump that do not produce a value 905 ** or produce an inverted value 906 */ 907 static int need_value (FuncState *fs, int list) { 908 for (; list != NO_JUMP; list = getjump(fs, list)) { 909 Instruction i = *getjumpcontrol(fs, list); 910 if (GET_OPCODE(i) != OP_TESTSET) return 1; 911 } 912 return 0; /* not found */ 913 } 914 915 916 /* 917 ** Ensures final expression result (which includes results from its 918 ** jump lists) is in register 'reg'. 919 ** If expression has jumps, need to patch these jumps either to 920 ** its final position or to "load" instructions (for those tests 921 ** that do not produce values). 922 */ 923 static void exp2reg (FuncState *fs, expdesc *e, int reg) { 924 discharge2reg(fs, e, reg); 925 if (e->k == VJMP) /* expression itself is a test? */ 926 luaK_concat(fs, &e->t, e->u.info); /* put this jump in 't' list */ 927 if (hasjumps(e)) { 928 int final; /* position after whole expression */ 929 int p_f = NO_JUMP; /* position of an eventual LOAD false */ 930 int p_t = NO_JUMP; /* position of an eventual LOAD true */ 931 if (need_value(fs, e->t) || need_value(fs, e->f)) { 932 int fj = (e->k == VJMP) ? NO_JUMP : luaK_jump(fs); 933 p_f = code_loadbool(fs, reg, OP_LFALSESKIP); /* skip next inst. */ 934 p_t = code_loadbool(fs, reg, OP_LOADTRUE); 935 /* jump around these booleans if 'e' is not a test */ 936 luaK_patchtohere(fs, fj); 937 } 938 final = luaK_getlabel(fs); 939 patchlistaux(fs, e->f, final, reg, p_f); 940 patchlistaux(fs, e->t, final, reg, p_t); 941 } 942 e->f = e->t = NO_JUMP; 943 e->u.info = reg; 944 e->k = VNONRELOC; 945 } 946 947 948 /* 949 ** Ensures final expression result is in next available register. 950 */ 951 void luaK_exp2nextreg (FuncState *fs, expdesc *e) { 952 luaK_dischargevars(fs, e); 953 freeexp(fs, e); 954 luaK_reserveregs(fs, 1); 955 exp2reg(fs, e, fs->freereg - 1); 956 } 957 958 959 /* 960 ** Ensures final expression result is in some (any) register 961 ** and return that register. 962 */ 963 int luaK_exp2anyreg (FuncState *fs, expdesc *e) { 964 luaK_dischargevars(fs, e); 965 if (e->k == VNONRELOC) { /* expression already has a register? */ 966 if (!hasjumps(e)) /* no jumps? */ 967 return e->u.info; /* result is already in a register */ 968 if (e->u.info >= luaY_nvarstack(fs)) { /* reg. is not a local? */ 969 exp2reg(fs, e, e->u.info); /* put final result in it */ 970 return e->u.info; 971 } 972 /* else expression has jumps and cannot change its register 973 to hold the jump values, because it is a local variable. 974 Go through to the default case. */ 975 } 976 luaK_exp2nextreg(fs, e); /* default: use next available register */ 977 return e->u.info; 978 } 979 980 981 /* 982 ** Ensures final expression result is either in a register 983 ** or in an upvalue. 984 */ 985 void luaK_exp2anyregup (FuncState *fs, expdesc *e) { 986 if (e->k != VUPVAL || hasjumps(e)) 987 luaK_exp2anyreg(fs, e); 988 } 989 990 991 /* 992 ** Ensures final expression result is either in a register 993 ** or it is a constant. 994 */ 995 void luaK_exp2val (FuncState *fs, expdesc *e) { 996 if (e->k == VJMP || hasjumps(e)) 997 luaK_exp2anyreg(fs, e); 998 else 999 luaK_dischargevars(fs, e); 1000 } 1001 1002 1003 /* 1004 ** Try to make 'e' a K expression with an index in the range of R/K 1005 ** indices. Return true iff succeeded. 1006 */ 1007 static int luaK_exp2K (FuncState *fs, expdesc *e) { 1008 if (!hasjumps(e)) { 1009 int info; 1010 switch (e->k) { /* move constants to 'k' */ 1011 case VTRUE: info = boolT(fs); break; 1012 case VFALSE: info = boolF(fs); break; 1013 case VNIL: info = nilK(fs); break; 1014 case VKINT: info = luaK_intK(fs, e->u.ival); break; 1015 case VKFLT: info = luaK_numberK(fs, e->u.nval); break; 1016 case VKSTR: info = stringK(fs, e->u.strval); break; 1017 case VK: info = e->u.info; break; 1018 default: return 0; /* not a constant */ 1019 } 1020 if (info <= MAXINDEXRK) { /* does constant fit in 'argC'? */ 1021 e->k = VK; /* make expression a 'K' expression */ 1022 e->u.info = info; 1023 return 1; 1024 } 1025 } 1026 /* else, expression doesn't fit; leave it unchanged */ 1027 return 0; 1028 } 1029 1030 1031 /* 1032 ** Ensures final expression result is in a valid R/K index 1033 ** (that is, it is either in a register or in 'k' with an index 1034 ** in the range of R/K indices). 1035 ** Returns 1 iff expression is K. 1036 */ 1037 static int exp2RK (FuncState *fs, expdesc *e) { 1038 if (luaK_exp2K(fs, e)) 1039 return 1; 1040 else { /* not a constant in the right range: put it in a register */ 1041 luaK_exp2anyreg(fs, e); 1042 return 0; 1043 } 1044 } 1045 1046 1047 static void codeABRK (FuncState *fs, OpCode o, int a, int b, 1048 expdesc *ec) { 1049 int k = exp2RK(fs, ec); 1050 luaK_codeABCk(fs, o, a, b, ec->u.info, k); 1051 } 1052 1053 1054 /* 1055 ** Generate code to store result of expression 'ex' into variable 'var'. 1056 */ 1057 void luaK_storevar (FuncState *fs, expdesc *var, expdesc *ex) { 1058 switch (var->k) { 1059 case VLOCAL: { 1060 freeexp(fs, ex); 1061 exp2reg(fs, ex, var->u.var.ridx); /* compute 'ex' into proper place */ 1062 return; 1063 } 1064 case VUPVAL: { 1065 int e = luaK_exp2anyreg(fs, ex); 1066 luaK_codeABC(fs, OP_SETUPVAL, e, var->u.info, 0); 1067 break; 1068 } 1069 case VINDEXUP: { 1070 codeABRK(fs, OP_SETTABUP, var->u.ind.t, var->u.ind.idx, ex); 1071 break; 1072 } 1073 case VINDEXI: { 1074 codeABRK(fs, OP_SETI, var->u.ind.t, var->u.ind.idx, ex); 1075 break; 1076 } 1077 case VINDEXSTR: { 1078 codeABRK(fs, OP_SETFIELD, var->u.ind.t, var->u.ind.idx, ex); 1079 break; 1080 } 1081 case VINDEXED: { 1082 codeABRK(fs, OP_SETTABLE, var->u.ind.t, var->u.ind.idx, ex); 1083 break; 1084 } 1085 default: lua_assert(0); /* invalid var kind to store */ 1086 } 1087 freeexp(fs, ex); 1088 } 1089 1090 1091 /* 1092 ** Emit SELF instruction (convert expression 'e' into 'e:key(e,'). 1093 */ 1094 void luaK_self (FuncState *fs, expdesc *e, expdesc *key) { 1095 int ereg; 1096 luaK_exp2anyreg(fs, e); 1097 ereg = e->u.info; /* register where 'e' was placed */ 1098 freeexp(fs, e); 1099 e->u.info = fs->freereg; /* base register for op_self */ 1100 e->k = VNONRELOC; /* self expression has a fixed register */ 1101 luaK_reserveregs(fs, 2); /* function and 'self' produced by op_self */ 1102 codeABRK(fs, OP_SELF, e->u.info, ereg, key); 1103 freeexp(fs, key); 1104 } 1105 1106 1107 /* 1108 ** Negate condition 'e' (where 'e' is a comparison). 1109 */ 1110 static void negatecondition (FuncState *fs, expdesc *e) { 1111 Instruction *pc = getjumpcontrol(fs, e->u.info); 1112 lua_assert(testTMode(GET_OPCODE(*pc)) && GET_OPCODE(*pc) != OP_TESTSET && 1113 GET_OPCODE(*pc) != OP_TEST); 1114 SETARG_k(*pc, (GETARG_k(*pc) ^ 1)); 1115 } 1116 1117 1118 /* 1119 ** Emit instruction to jump if 'e' is 'cond' (that is, if 'cond' 1120 ** is true, code will jump if 'e' is true.) Return jump position. 1121 ** Optimize when 'e' is 'not' something, inverting the condition 1122 ** and removing the 'not'. 1123 */ 1124 static int jumponcond (FuncState *fs, expdesc *e, int cond) { 1125 if (e->k == VRELOC) { 1126 Instruction ie = getinstruction(fs, e); 1127 if (GET_OPCODE(ie) == OP_NOT) { 1128 removelastinstruction(fs); /* remove previous OP_NOT */ 1129 return condjump(fs, OP_TEST, GETARG_B(ie), 0, 0, !cond); 1130 } 1131 /* else go through */ 1132 } 1133 discharge2anyreg(fs, e); 1134 freeexp(fs, e); 1135 return condjump(fs, OP_TESTSET, NO_REG, e->u.info, 0, cond); 1136 } 1137 1138 1139 /* 1140 ** Emit code to go through if 'e' is true, jump otherwise. 1141 */ 1142 void luaK_goiftrue (FuncState *fs, expdesc *e) { 1143 int pc; /* pc of new jump */ 1144 luaK_dischargevars(fs, e); 1145 switch (e->k) { 1146 case VJMP: { /* condition? */ 1147 negatecondition(fs, e); /* jump when it is false */ 1148 pc = e->u.info; /* save jump position */ 1149 break; 1150 } 1151 case VK: case VKFLT: case VKINT: case VKSTR: case VTRUE: { 1152 pc = NO_JUMP; /* always true; do nothing */ 1153 break; 1154 } 1155 default: { 1156 pc = jumponcond(fs, e, 0); /* jump when false */ 1157 break; 1158 } 1159 } 1160 luaK_concat(fs, &e->f, pc); /* insert new jump in false list */ 1161 luaK_patchtohere(fs, e->t); /* true list jumps to here (to go through) */ 1162 e->t = NO_JUMP; 1163 } 1164 1165 1166 /* 1167 ** Emit code to go through if 'e' is false, jump otherwise. 1168 */ 1169 void luaK_goiffalse (FuncState *fs, expdesc *e) { 1170 int pc; /* pc of new jump */ 1171 luaK_dischargevars(fs, e); 1172 switch (e->k) { 1173 case VJMP: { 1174 pc = e->u.info; /* already jump if true */ 1175 break; 1176 } 1177 case VNIL: case VFALSE: { 1178 pc = NO_JUMP; /* always false; do nothing */ 1179 break; 1180 } 1181 default: { 1182 pc = jumponcond(fs, e, 1); /* jump if true */ 1183 break; 1184 } 1185 } 1186 luaK_concat(fs, &e->t, pc); /* insert new jump in 't' list */ 1187 luaK_patchtohere(fs, e->f); /* false list jumps to here (to go through) */ 1188 e->f = NO_JUMP; 1189 } 1190 1191 1192 /* 1193 ** Code 'not e', doing constant folding. 1194 */ 1195 static void codenot (FuncState *fs, expdesc *e) { 1196 switch (e->k) { 1197 case VNIL: case VFALSE: { 1198 e->k = VTRUE; /* true == not nil == not false */ 1199 break; 1200 } 1201 case VK: case VKFLT: case VKINT: case VKSTR: case VTRUE: { 1202 e->k = VFALSE; /* false == not "x" == not 0.5 == not 1 == not true */ 1203 break; 1204 } 1205 case VJMP: { 1206 negatecondition(fs, e); 1207 break; 1208 } 1209 case VRELOC: 1210 case VNONRELOC: { 1211 discharge2anyreg(fs, e); 1212 freeexp(fs, e); 1213 e->u.info = luaK_codeABC(fs, OP_NOT, 0, e->u.info, 0); 1214 e->k = VRELOC; 1215 break; 1216 } 1217 default: lua_assert(0); /* cannot happen */ 1218 } 1219 /* interchange true and false lists */ 1220 { int temp = e->f; e->f = e->t; e->t = temp; } 1221 removevalues(fs, e->f); /* values are useless when negated */ 1222 removevalues(fs, e->t); 1223 } 1224 1225 1226 /* 1227 ** Check whether expression 'e' is a short literal string 1228 */ 1229 static int isKstr (FuncState *fs, expdesc *e) { 1230 return (e->k == VK && !hasjumps(e) && e->u.info <= MAXARG_B && 1231 ttisshrstring(&fs->f->k[e->u.info])); 1232 } 1233 1234 /* 1235 ** Check whether expression 'e' is a literal integer. 1236 */ 1237 static int isKint (expdesc *e) { 1238 return (e->k == VKINT && !hasjumps(e)); 1239 } 1240 1241 1242 /* 1243 ** Check whether expression 'e' is a literal integer in 1244 ** proper range to fit in register C 1245 */ 1246 static int isCint (expdesc *e) { 1247 return isKint(e) && (l_castS2U(e->u.ival) <= l_castS2U(MAXARG_C)); 1248 } 1249 1250 1251 /* 1252 ** Check whether expression 'e' is a literal integer in 1253 ** proper range to fit in register sC 1254 */ 1255 static int isSCint (expdesc *e) { 1256 return isKint(e) && fitsC(e->u.ival); 1257 } 1258 1259 1260 /* 1261 ** Check whether expression 'e' is a literal integer or float in 1262 ** proper range to fit in a register (sB or sC). 1263 */ 1264 static int isSCnumber (expdesc *e, int *pi, int *isfloat) { 1265 lua_Integer i; 1266 if (e->k == VKINT) 1267 i = e->u.ival; 1268 else if (e->k == VKFLT && luaV_flttointeger(e->u.nval, &i, F2Ieq)) 1269 *isfloat = 1; 1270 else 1271 return 0; /* not a number */ 1272 if (!hasjumps(e) && fitsC(i)) { 1273 *pi = int2sC(cast_int(i)); 1274 return 1; 1275 } 1276 else 1277 return 0; 1278 } 1279 1280 1281 /* 1282 ** Create expression 't[k]'. 't' must have its final result already in a 1283 ** register or upvalue. Upvalues can only be indexed by literal strings. 1284 ** Keys can be literal strings in the constant table or arbitrary 1285 ** values in registers. 1286 */ 1287 void luaK_indexed (FuncState *fs, expdesc *t, expdesc *k) { 1288 if (k->k == VKSTR) 1289 str2K(fs, k); 1290 lua_assert(!hasjumps(t) && 1291 (t->k == VLOCAL || t->k == VNONRELOC || t->k == VUPVAL)); 1292 if (t->k == VUPVAL && !isKstr(fs, k)) /* upvalue indexed by non 'Kstr'? */ 1293 luaK_exp2anyreg(fs, t); /* put it in a register */ 1294 if (t->k == VUPVAL) { 1295 int temp = t->u.info; /* upvalue index */ 1296 lua_assert(isKstr(fs, k)); 1297 t->u.ind.t = temp; /* (can't do a direct assignment; values overlap) */ 1298 t->u.ind.idx = k->u.info; /* literal short string */ 1299 t->k = VINDEXUP; 1300 } 1301 else { 1302 /* register index of the table */ 1303 t->u.ind.t = (t->k == VLOCAL) ? t->u.var.ridx: t->u.info; 1304 if (isKstr(fs, k)) { 1305 t->u.ind.idx = k->u.info; /* literal short string */ 1306 t->k = VINDEXSTR; 1307 } 1308 else if (isCint(k)) { 1309 t->u.ind.idx = cast_int(k->u.ival); /* int. constant in proper range */ 1310 t->k = VINDEXI; 1311 } 1312 else { 1313 t->u.ind.idx = luaK_exp2anyreg(fs, k); /* register */ 1314 t->k = VINDEXED; 1315 } 1316 } 1317 } 1318 1319 1320 /* 1321 ** Return false if folding can raise an error. 1322 ** Bitwise operations need operands convertible to integers; division 1323 ** operations cannot have 0 as divisor. 1324 */ 1325 static int validop (int op, TValue *v1, TValue *v2) { 1326 switch (op) { 1327 case LUA_OPBAND: case LUA_OPBOR: case LUA_OPBXOR: 1328 case LUA_OPSHL: case LUA_OPSHR: case LUA_OPBNOT: { /* conversion errors */ 1329 lua_Integer i; 1330 return (luaV_tointegerns(v1, &i, LUA_FLOORN2I) && 1331 luaV_tointegerns(v2, &i, LUA_FLOORN2I)); 1332 } 1333 case LUA_OPDIV: case LUA_OPIDIV: case LUA_OPMOD: /* division by 0 */ 1334 return (nvalue(v2) != 0); 1335 default: return 1; /* everything else is valid */ 1336 } 1337 } 1338 1339 1340 /* 1341 ** Try to "constant-fold" an operation; return 1 iff successful. 1342 ** (In this case, 'e1' has the final result.) 1343 */ 1344 static int constfolding (FuncState *fs, int op, expdesc *e1, 1345 const expdesc *e2) { 1346 TValue v1, v2, res; 1347 if (!tonumeral(e1, &v1) || !tonumeral(e2, &v2) || !validop(op, &v1, &v2)) 1348 return 0; /* non-numeric operands or not safe to fold */ 1349 luaO_rawarith(fs->ls->L, op, &v1, &v2, &res); /* does operation */ 1350 if (ttisinteger(&res)) { 1351 e1->k = VKINT; 1352 e1->u.ival = ivalue(&res); 1353 } 1354 else { /* folds neither NaN nor 0.0 (to avoid problems with -0.0) */ 1355 lua_Number n = fltvalue(&res); 1356 if (luai_numisnan(n) || n == 0) 1357 return 0; 1358 e1->k = VKFLT; 1359 e1->u.nval = n; 1360 } 1361 return 1; 1362 } 1363 1364 1365 /* 1366 ** Convert a BinOpr to an OpCode (ORDER OPR - ORDER OP) 1367 */ 1368 l_sinline OpCode binopr2op (BinOpr opr, BinOpr baser, OpCode base) { 1369 lua_assert(baser <= opr && 1370 ((baser == OPR_ADD && opr <= OPR_SHR) || 1371 (baser == OPR_LT && opr <= OPR_LE))); 1372 return cast(OpCode, (cast_int(opr) - cast_int(baser)) + cast_int(base)); 1373 } 1374 1375 1376 /* 1377 ** Convert a UnOpr to an OpCode (ORDER OPR - ORDER OP) 1378 */ 1379 l_sinline OpCode unopr2op (UnOpr opr) { 1380 return cast(OpCode, (cast_int(opr) - cast_int(OPR_MINUS)) + 1381 cast_int(OP_UNM)); 1382 } 1383 1384 1385 /* 1386 ** Convert a BinOpr to a tag method (ORDER OPR - ORDER TM) 1387 */ 1388 l_sinline TMS binopr2TM (BinOpr opr) { 1389 lua_assert(OPR_ADD <= opr && opr <= OPR_SHR); 1390 return cast(TMS, (cast_int(opr) - cast_int(OPR_ADD)) + cast_int(TM_ADD)); 1391 } 1392 1393 1394 /* 1395 ** Emit code for unary expressions that "produce values" 1396 ** (everything but 'not'). 1397 ** Expression to produce final result will be encoded in 'e'. 1398 */ 1399 static void codeunexpval (FuncState *fs, OpCode op, expdesc *e, int line) { 1400 int r = luaK_exp2anyreg(fs, e); /* opcodes operate only on registers */ 1401 freeexp(fs, e); 1402 e->u.info = luaK_codeABC(fs, op, 0, r, 0); /* generate opcode */ 1403 e->k = VRELOC; /* all those operations are relocatable */ 1404 luaK_fixline(fs, line); 1405 } 1406 1407 1408 /* 1409 ** Emit code for binary expressions that "produce values" 1410 ** (everything but logical operators 'and'/'or' and comparison 1411 ** operators). 1412 ** Expression to produce final result will be encoded in 'e1'. 1413 */ 1414 static void finishbinexpval (FuncState *fs, expdesc *e1, expdesc *e2, 1415 OpCode op, int v2, int flip, int line, 1416 OpCode mmop, TMS event) { 1417 int v1 = luaK_exp2anyreg(fs, e1); 1418 int pc = luaK_codeABCk(fs, op, 0, v1, v2, 0); 1419 freeexps(fs, e1, e2); 1420 e1->u.info = pc; 1421 e1->k = VRELOC; /* all those operations are relocatable */ 1422 luaK_fixline(fs, line); 1423 luaK_codeABCk(fs, mmop, v1, v2, event, flip); /* to call metamethod */ 1424 luaK_fixline(fs, line); 1425 } 1426 1427 1428 /* 1429 ** Emit code for binary expressions that "produce values" over 1430 ** two registers. 1431 */ 1432 static void codebinexpval (FuncState *fs, BinOpr opr, 1433 expdesc *e1, expdesc *e2, int line) { 1434 OpCode op = binopr2op(opr, OPR_ADD, OP_ADD); 1435 int v2 = luaK_exp2anyreg(fs, e2); /* make sure 'e2' is in a register */ 1436 /* 'e1' must be already in a register or it is a constant */ 1437 lua_assert((VNIL <= e1->k && e1->k <= VKSTR) || 1438 e1->k == VNONRELOC || e1->k == VRELOC); 1439 lua_assert(OP_ADD <= op && op <= OP_SHR); 1440 finishbinexpval(fs, e1, e2, op, v2, 0, line, OP_MMBIN, binopr2TM(opr)); 1441 } 1442 1443 1444 /* 1445 ** Code binary operators with immediate operands. 1446 */ 1447 static void codebini (FuncState *fs, OpCode op, 1448 expdesc *e1, expdesc *e2, int flip, int line, 1449 TMS event) { 1450 int v2 = int2sC(cast_int(e2->u.ival)); /* immediate operand */ 1451 lua_assert(e2->k == VKINT); 1452 finishbinexpval(fs, e1, e2, op, v2, flip, line, OP_MMBINI, event); 1453 } 1454 1455 1456 /* 1457 ** Code binary operators with K operand. 1458 */ 1459 static void codebinK (FuncState *fs, BinOpr opr, 1460 expdesc *e1, expdesc *e2, int flip, int line) { 1461 TMS event = binopr2TM(opr); 1462 int v2 = e2->u.info; /* K index */ 1463 OpCode op = binopr2op(opr, OPR_ADD, OP_ADDK); 1464 finishbinexpval(fs, e1, e2, op, v2, flip, line, OP_MMBINK, event); 1465 } 1466 1467 1468 /* Try to code a binary operator negating its second operand. 1469 ** For the metamethod, 2nd operand must keep its original value. 1470 */ 1471 static int finishbinexpneg (FuncState *fs, expdesc *e1, expdesc *e2, 1472 OpCode op, int line, TMS event) { 1473 if (!isKint(e2)) 1474 return 0; /* not an integer constant */ 1475 else { 1476 lua_Integer i2 = e2->u.ival; 1477 if (!(fitsC(i2) && fitsC(-i2))) 1478 return 0; /* not in the proper range */ 1479 else { /* operating a small integer constant */ 1480 int v2 = cast_int(i2); 1481 finishbinexpval(fs, e1, e2, op, int2sC(-v2), 0, line, OP_MMBINI, event); 1482 /* correct metamethod argument */ 1483 SETARG_B(fs->f->code[fs->pc - 1], int2sC(v2)); 1484 return 1; /* successfully coded */ 1485 } 1486 } 1487 } 1488 1489 1490 static void swapexps (expdesc *e1, expdesc *e2) { 1491 expdesc temp = *e1; *e1 = *e2; *e2 = temp; /* swap 'e1' and 'e2' */ 1492 } 1493 1494 1495 /* 1496 ** Code binary operators with no constant operand. 1497 */ 1498 static void codebinNoK (FuncState *fs, BinOpr opr, 1499 expdesc *e1, expdesc *e2, int flip, int line) { 1500 if (flip) 1501 swapexps(e1, e2); /* back to original order */ 1502 codebinexpval(fs, opr, e1, e2, line); /* use standard operators */ 1503 } 1504 1505 1506 /* 1507 ** Code arithmetic operators ('+', '-', ...). If second operand is a 1508 ** constant in the proper range, use variant opcodes with K operands. 1509 */ 1510 static void codearith (FuncState *fs, BinOpr opr, 1511 expdesc *e1, expdesc *e2, int flip, int line) { 1512 if (tonumeral(e2, NULL) && luaK_exp2K(fs, e2)) /* K operand? */ 1513 codebinK(fs, opr, e1, e2, flip, line); 1514 else /* 'e2' is neither an immediate nor a K operand */ 1515 codebinNoK(fs, opr, e1, e2, flip, line); 1516 } 1517 1518 1519 /* 1520 ** Code commutative operators ('+', '*'). If first operand is a 1521 ** numeric constant, change order of operands to try to use an 1522 ** immediate or K operator. 1523 */ 1524 static void codecommutative (FuncState *fs, BinOpr op, 1525 expdesc *e1, expdesc *e2, int line) { 1526 int flip = 0; 1527 if (tonumeral(e1, NULL)) { /* is first operand a numeric constant? */ 1528 swapexps(e1, e2); /* change order */ 1529 flip = 1; 1530 } 1531 if (op == OPR_ADD && isSCint(e2)) /* immediate operand? */ 1532 codebini(fs, OP_ADDI, e1, e2, flip, line, TM_ADD); 1533 else 1534 codearith(fs, op, e1, e2, flip, line); 1535 } 1536 1537 1538 /* 1539 ** Code bitwise operations; they are all commutative, so the function 1540 ** tries to put an integer constant as the 2nd operand (a K operand). 1541 */ 1542 static void codebitwise (FuncState *fs, BinOpr opr, 1543 expdesc *e1, expdesc *e2, int line) { 1544 int flip = 0; 1545 if (e1->k == VKINT) { 1546 swapexps(e1, e2); /* 'e2' will be the constant operand */ 1547 flip = 1; 1548 } 1549 if (e2->k == VKINT && luaK_exp2K(fs, e2)) /* K operand? */ 1550 codebinK(fs, opr, e1, e2, flip, line); 1551 else /* no constants */ 1552 codebinNoK(fs, opr, e1, e2, flip, line); 1553 } 1554 1555 1556 /* 1557 ** Emit code for order comparisons. When using an immediate operand, 1558 ** 'isfloat' tells whether the original value was a float. 1559 */ 1560 static void codeorder (FuncState *fs, BinOpr opr, expdesc *e1, expdesc *e2) { 1561 int r1, r2; 1562 int im; 1563 int isfloat = 0; 1564 OpCode op; 1565 if (isSCnumber(e2, &im, &isfloat)) { 1566 /* use immediate operand */ 1567 r1 = luaK_exp2anyreg(fs, e1); 1568 r2 = im; 1569 op = binopr2op(opr, OPR_LT, OP_LTI); 1570 } 1571 else if (isSCnumber(e1, &im, &isfloat)) { 1572 /* transform (A < B) to (B > A) and (A <= B) to (B >= A) */ 1573 r1 = luaK_exp2anyreg(fs, e2); 1574 r2 = im; 1575 op = binopr2op(opr, OPR_LT, OP_GTI); 1576 } 1577 else { /* regular case, compare two registers */ 1578 r1 = luaK_exp2anyreg(fs, e1); 1579 r2 = luaK_exp2anyreg(fs, e2); 1580 op = binopr2op(opr, OPR_LT, OP_LT); 1581 } 1582 freeexps(fs, e1, e2); 1583 e1->u.info = condjump(fs, op, r1, r2, isfloat, 1); 1584 e1->k = VJMP; 1585 } 1586 1587 1588 /* 1589 ** Emit code for equality comparisons ('==', '~='). 1590 ** 'e1' was already put as RK by 'luaK_infix'. 1591 */ 1592 static void codeeq (FuncState *fs, BinOpr opr, expdesc *e1, expdesc *e2) { 1593 int r1, r2; 1594 int im; 1595 int isfloat = 0; /* not needed here, but kept for symmetry */ 1596 OpCode op; 1597 if (e1->k != VNONRELOC) { 1598 lua_assert(e1->k == VK || e1->k == VKINT || e1->k == VKFLT); 1599 swapexps(e1, e2); 1600 } 1601 r1 = luaK_exp2anyreg(fs, e1); /* 1st expression must be in register */ 1602 if (isSCnumber(e2, &im, &isfloat)) { 1603 op = OP_EQI; 1604 r2 = im; /* immediate operand */ 1605 } 1606 else if (exp2RK(fs, e2)) { /* 2nd expression is constant? */ 1607 op = OP_EQK; 1608 r2 = e2->u.info; /* constant index */ 1609 } 1610 else { 1611 op = OP_EQ; /* will compare two registers */ 1612 r2 = luaK_exp2anyreg(fs, e2); 1613 } 1614 freeexps(fs, e1, e2); 1615 e1->u.info = condjump(fs, op, r1, r2, isfloat, (opr == OPR_EQ)); 1616 e1->k = VJMP; 1617 } 1618 1619 1620 /* 1621 ** Apply prefix operation 'op' to expression 'e'. 1622 */ 1623 void luaK_prefix (FuncState *fs, UnOpr opr, expdesc *e, int line) { 1624 static const expdesc ef = {VKINT, {0}, NO_JUMP, NO_JUMP}; 1625 luaK_dischargevars(fs, e); 1626 switch (opr) { 1627 case OPR_MINUS: case OPR_BNOT: /* use 'ef' as fake 2nd operand */ 1628 if (constfolding(fs, opr + LUA_OPUNM, e, &ef)) 1629 break; 1630 /* else */ /* FALLTHROUGH */ 1631 case OPR_LEN: 1632 codeunexpval(fs, unopr2op(opr), e, line); 1633 break; 1634 case OPR_NOT: codenot(fs, e); break; 1635 default: lua_assert(0); 1636 } 1637 } 1638 1639 1640 /* 1641 ** Process 1st operand 'v' of binary operation 'op' before reading 1642 ** 2nd operand. 1643 */ 1644 void luaK_infix (FuncState *fs, BinOpr op, expdesc *v) { 1645 luaK_dischargevars(fs, v); 1646 switch (op) { 1647 case OPR_AND: { 1648 luaK_goiftrue(fs, v); /* go ahead only if 'v' is true */ 1649 break; 1650 } 1651 case OPR_OR: { 1652 luaK_goiffalse(fs, v); /* go ahead only if 'v' is false */ 1653 break; 1654 } 1655 case OPR_CONCAT: { 1656 luaK_exp2nextreg(fs, v); /* operand must be on the stack */ 1657 break; 1658 } 1659 case OPR_ADD: case OPR_SUB: 1660 case OPR_MUL: case OPR_DIV: case OPR_IDIV: 1661 case OPR_MOD: case OPR_POW: 1662 case OPR_BAND: case OPR_BOR: case OPR_BXOR: 1663 case OPR_SHL: case OPR_SHR: { 1664 if (!tonumeral(v, NULL)) 1665 luaK_exp2anyreg(fs, v); 1666 /* else keep numeral, which may be folded or used as an immediate 1667 operand */ 1668 break; 1669 } 1670 case OPR_EQ: case OPR_NE: { 1671 if (!tonumeral(v, NULL)) 1672 exp2RK(fs, v); 1673 /* else keep numeral, which may be an immediate operand */ 1674 break; 1675 } 1676 case OPR_LT: case OPR_LE: 1677 case OPR_GT: case OPR_GE: { 1678 int dummy, dummy2; 1679 if (!isSCnumber(v, &dummy, &dummy2)) 1680 luaK_exp2anyreg(fs, v); 1681 /* else keep numeral, which may be an immediate operand */ 1682 break; 1683 } 1684 default: lua_assert(0); 1685 } 1686 } 1687 1688 /* 1689 ** Create code for '(e1 .. e2)'. 1690 ** For '(e1 .. e2.1 .. e2.2)' (which is '(e1 .. (e2.1 .. e2.2))', 1691 ** because concatenation is right associative), merge both CONCATs. 1692 */ 1693 static void codeconcat (FuncState *fs, expdesc *e1, expdesc *e2, int line) { 1694 Instruction *ie2 = previousinstruction(fs); 1695 if (GET_OPCODE(*ie2) == OP_CONCAT) { /* is 'e2' a concatenation? */ 1696 int n = GETARG_B(*ie2); /* # of elements concatenated in 'e2' */ 1697 lua_assert(e1->u.info + 1 == GETARG_A(*ie2)); 1698 freeexp(fs, e2); 1699 SETARG_A(*ie2, e1->u.info); /* correct first element ('e1') */ 1700 SETARG_B(*ie2, n + 1); /* will concatenate one more element */ 1701 } 1702 else { /* 'e2' is not a concatenation */ 1703 luaK_codeABC(fs, OP_CONCAT, e1->u.info, 2, 0); /* new concat opcode */ 1704 freeexp(fs, e2); 1705 luaK_fixline(fs, line); 1706 } 1707 } 1708 1709 1710 /* 1711 ** Finalize code for binary operation, after reading 2nd operand. 1712 */ 1713 void luaK_posfix (FuncState *fs, BinOpr opr, 1714 expdesc *e1, expdesc *e2, int line) { 1715 luaK_dischargevars(fs, e2); 1716 if (foldbinop(opr) && constfolding(fs, opr + LUA_OPADD, e1, e2)) 1717 return; /* done by folding */ 1718 switch (opr) { 1719 case OPR_AND: { 1720 lua_assert(e1->t == NO_JUMP); /* list closed by 'luaK_infix' */ 1721 luaK_concat(fs, &e2->f, e1->f); 1722 *e1 = *e2; 1723 break; 1724 } 1725 case OPR_OR: { 1726 lua_assert(e1->f == NO_JUMP); /* list closed by 'luaK_infix' */ 1727 luaK_concat(fs, &e2->t, e1->t); 1728 *e1 = *e2; 1729 break; 1730 } 1731 case OPR_CONCAT: { /* e1 .. e2 */ 1732 luaK_exp2nextreg(fs, e2); 1733 codeconcat(fs, e1, e2, line); 1734 break; 1735 } 1736 case OPR_ADD: case OPR_MUL: { 1737 codecommutative(fs, opr, e1, e2, line); 1738 break; 1739 } 1740 case OPR_SUB: { 1741 if (finishbinexpneg(fs, e1, e2, OP_ADDI, line, TM_SUB)) 1742 break; /* coded as (r1 + -I) */ 1743 /* ELSE */ 1744 } /* FALLTHROUGH */ 1745 case OPR_DIV: case OPR_IDIV: case OPR_MOD: case OPR_POW: { 1746 codearith(fs, opr, e1, e2, 0, line); 1747 break; 1748 } 1749 case OPR_BAND: case OPR_BOR: case OPR_BXOR: { 1750 codebitwise(fs, opr, e1, e2, line); 1751 break; 1752 } 1753 case OPR_SHL: { 1754 if (isSCint(e1)) { 1755 swapexps(e1, e2); 1756 codebini(fs, OP_SHLI, e1, e2, 1, line, TM_SHL); /* I << r2 */ 1757 } 1758 else if (finishbinexpneg(fs, e1, e2, OP_SHRI, line, TM_SHL)) { 1759 /* coded as (r1 >> -I) */; 1760 } 1761 else /* regular case (two registers) */ 1762 codebinexpval(fs, opr, e1, e2, line); 1763 break; 1764 } 1765 case OPR_SHR: { 1766 if (isSCint(e2)) 1767 codebini(fs, OP_SHRI, e1, e2, 0, line, TM_SHR); /* r1 >> I */ 1768 else /* regular case (two registers) */ 1769 codebinexpval(fs, opr, e1, e2, line); 1770 break; 1771 } 1772 case OPR_EQ: case OPR_NE: { 1773 codeeq(fs, opr, e1, e2); 1774 break; 1775 } 1776 case OPR_GT: case OPR_GE: { 1777 /* '(a > b)' <=> '(b < a)'; '(a >= b)' <=> '(b <= a)' */ 1778 swapexps(e1, e2); 1779 opr = cast(BinOpr, (opr - OPR_GT) + OPR_LT); 1780 } /* FALLTHROUGH */ 1781 case OPR_LT: case OPR_LE: { 1782 codeorder(fs, opr, e1, e2); 1783 break; 1784 } 1785 default: lua_assert(0); 1786 } 1787 } 1788 1789 1790 /* 1791 ** Change line information associated with current position, by removing 1792 ** previous info and adding it again with new line. 1793 */ 1794 void luaK_fixline (FuncState *fs, int line) { 1795 removelastlineinfo(fs); 1796 savelineinfo(fs, fs->f, line); 1797 } 1798 1799 1800 void luaK_settablesize (FuncState *fs, int pc, int ra, int asize, int hsize) { 1801 Instruction *inst = &fs->f->code[pc]; 1802 int rb = (hsize != 0) ? luaO_ceillog2(hsize) + 1 : 0; /* hash size */ 1803 int extra = asize / (MAXARG_C + 1); /* higher bits of array size */ 1804 int rc = asize % (MAXARG_C + 1); /* lower bits of array size */ 1805 int k = (extra > 0); /* true iff needs extra argument */ 1806 *inst = CREATE_ABCk(OP_NEWTABLE, ra, rb, rc, k); 1807 *(inst + 1) = CREATE_Ax(OP_EXTRAARG, extra); 1808 } 1809 1810 1811 /* 1812 ** Emit a SETLIST instruction. 1813 ** 'base' is register that keeps table; 1814 ** 'nelems' is #table plus those to be stored now; 1815 ** 'tostore' is number of values (in registers 'base + 1',...) to add to 1816 ** table (or LUA_MULTRET to add up to stack top). 1817 */ 1818 void luaK_setlist (FuncState *fs, int base, int nelems, int tostore) { 1819 lua_assert(tostore != 0 && tostore <= LFIELDS_PER_FLUSH); 1820 if (tostore == LUA_MULTRET) 1821 tostore = 0; 1822 if (nelems <= MAXARG_C) 1823 luaK_codeABC(fs, OP_SETLIST, base, tostore, nelems); 1824 else { 1825 int extra = nelems / (MAXARG_C + 1); 1826 nelems %= (MAXARG_C + 1); 1827 luaK_codeABCk(fs, OP_SETLIST, base, tostore, nelems, 1); 1828 codeextraarg(fs, extra); 1829 } 1830 fs->freereg = base + 1; /* free registers with list values */ 1831 } 1832 1833 1834 /* 1835 ** return the final target of a jump (skipping jumps to jumps) 1836 */ 1837 static int finaltarget (Instruction *code, int i) { 1838 int count; 1839 for (count = 0; count < 100; count++) { /* avoid infinite loops */ 1840 Instruction pc = code[i]; 1841 if (GET_OPCODE(pc) != OP_JMP) 1842 break; 1843 else 1844 i += GETARG_sJ(pc) + 1; 1845 } 1846 return i; 1847 } 1848 1849 1850 /* 1851 ** Do a final pass over the code of a function, doing small peephole 1852 ** optimizations and adjustments. 1853 */ 1854 void luaK_finish (FuncState *fs) { 1855 int i; 1856 Proto *p = fs->f; 1857 for (i = 0; i < fs->pc; i++) { 1858 Instruction *pc = &p->code[i]; 1859 lua_assert(i == 0 || isOT(*(pc - 1)) == isIT(*pc)); 1860 switch (GET_OPCODE(*pc)) { 1861 case OP_RETURN0: case OP_RETURN1: { 1862 if (!(fs->needclose || p->is_vararg)) 1863 break; /* no extra work */ 1864 /* else use OP_RETURN to do the extra work */ 1865 SET_OPCODE(*pc, OP_RETURN); 1866 } /* FALLTHROUGH */ 1867 case OP_RETURN: case OP_TAILCALL: { 1868 if (fs->needclose) 1869 SETARG_k(*pc, 1); /* signal that it needs to close */ 1870 if (p->is_vararg) 1871 SETARG_C(*pc, p->numparams + 1); /* signal that it is vararg */ 1872 break; 1873 } 1874 case OP_JMP: { 1875 int target = finaltarget(p->code, i); 1876 fixjump(fs, i, target); 1877 break; 1878 } 1879 default: break; 1880 } 1881 } 1882 } 1883