1 /* 2 * z_Windows_NT_util.cpp -- platform specific routines. 3 */ 4 5 //===----------------------------------------------------------------------===// 6 // 7 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 8 // See https://llvm.org/LICENSE.txt for license information. 9 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "kmp.h" 14 #include "kmp_affinity.h" 15 #include "kmp_i18n.h" 16 #include "kmp_io.h" 17 #include "kmp_itt.h" 18 #include "kmp_wait_release.h" 19 20 /* This code is related to NtQuerySystemInformation() function. This function 21 is used in the Load balance algorithm for OMP_DYNAMIC=true to find the 22 number of running threads in the system. */ 23 24 #include <ntsecapi.h> // UNICODE_STRING 25 #include <ntstatus.h> 26 #include <psapi.h> 27 #ifdef _MSC_VER 28 #pragma comment(lib, "psapi.lib") 29 #endif 30 31 enum SYSTEM_INFORMATION_CLASS { 32 SystemProcessInformation = 5 33 }; // SYSTEM_INFORMATION_CLASS 34 35 struct CLIENT_ID { 36 HANDLE UniqueProcess; 37 HANDLE UniqueThread; 38 }; // struct CLIENT_ID 39 40 enum THREAD_STATE { 41 StateInitialized, 42 StateReady, 43 StateRunning, 44 StateStandby, 45 StateTerminated, 46 StateWait, 47 StateTransition, 48 StateUnknown 49 }; // enum THREAD_STATE 50 51 struct VM_COUNTERS { 52 SIZE_T PeakVirtualSize; 53 SIZE_T VirtualSize; 54 ULONG PageFaultCount; 55 SIZE_T PeakWorkingSetSize; 56 SIZE_T WorkingSetSize; 57 SIZE_T QuotaPeakPagedPoolUsage; 58 SIZE_T QuotaPagedPoolUsage; 59 SIZE_T QuotaPeakNonPagedPoolUsage; 60 SIZE_T QuotaNonPagedPoolUsage; 61 SIZE_T PagefileUsage; 62 SIZE_T PeakPagefileUsage; 63 SIZE_T PrivatePageCount; 64 }; // struct VM_COUNTERS 65 66 struct SYSTEM_THREAD { 67 LARGE_INTEGER KernelTime; 68 LARGE_INTEGER UserTime; 69 LARGE_INTEGER CreateTime; 70 ULONG WaitTime; 71 LPVOID StartAddress; 72 CLIENT_ID ClientId; 73 DWORD Priority; 74 LONG BasePriority; 75 ULONG ContextSwitchCount; 76 THREAD_STATE State; 77 ULONG WaitReason; 78 }; // SYSTEM_THREAD 79 80 KMP_BUILD_ASSERT(offsetof(SYSTEM_THREAD, KernelTime) == 0); 81 #if KMP_ARCH_X86 || KMP_ARCH_ARM 82 KMP_BUILD_ASSERT(offsetof(SYSTEM_THREAD, StartAddress) == 28); 83 KMP_BUILD_ASSERT(offsetof(SYSTEM_THREAD, State) == 52); 84 #else 85 KMP_BUILD_ASSERT(offsetof(SYSTEM_THREAD, StartAddress) == 32); 86 KMP_BUILD_ASSERT(offsetof(SYSTEM_THREAD, State) == 68); 87 #endif 88 89 struct SYSTEM_PROCESS_INFORMATION { 90 ULONG NextEntryOffset; 91 ULONG NumberOfThreads; 92 LARGE_INTEGER Reserved[3]; 93 LARGE_INTEGER CreateTime; 94 LARGE_INTEGER UserTime; 95 LARGE_INTEGER KernelTime; 96 UNICODE_STRING ImageName; 97 DWORD BasePriority; 98 HANDLE ProcessId; 99 HANDLE ParentProcessId; 100 ULONG HandleCount; 101 ULONG Reserved2[2]; 102 VM_COUNTERS VMCounters; 103 IO_COUNTERS IOCounters; 104 SYSTEM_THREAD Threads[1]; 105 }; // SYSTEM_PROCESS_INFORMATION 106 typedef SYSTEM_PROCESS_INFORMATION *PSYSTEM_PROCESS_INFORMATION; 107 108 KMP_BUILD_ASSERT(offsetof(SYSTEM_PROCESS_INFORMATION, NextEntryOffset) == 0); 109 KMP_BUILD_ASSERT(offsetof(SYSTEM_PROCESS_INFORMATION, CreateTime) == 32); 110 KMP_BUILD_ASSERT(offsetof(SYSTEM_PROCESS_INFORMATION, ImageName) == 56); 111 #if KMP_ARCH_X86 || KMP_ARCH_ARM 112 KMP_BUILD_ASSERT(offsetof(SYSTEM_PROCESS_INFORMATION, ProcessId) == 68); 113 KMP_BUILD_ASSERT(offsetof(SYSTEM_PROCESS_INFORMATION, HandleCount) == 76); 114 KMP_BUILD_ASSERT(offsetof(SYSTEM_PROCESS_INFORMATION, VMCounters) == 88); 115 KMP_BUILD_ASSERT(offsetof(SYSTEM_PROCESS_INFORMATION, IOCounters) == 136); 116 KMP_BUILD_ASSERT(offsetof(SYSTEM_PROCESS_INFORMATION, Threads) == 184); 117 #else 118 KMP_BUILD_ASSERT(offsetof(SYSTEM_PROCESS_INFORMATION, ProcessId) == 80); 119 KMP_BUILD_ASSERT(offsetof(SYSTEM_PROCESS_INFORMATION, HandleCount) == 96); 120 KMP_BUILD_ASSERT(offsetof(SYSTEM_PROCESS_INFORMATION, VMCounters) == 112); 121 KMP_BUILD_ASSERT(offsetof(SYSTEM_PROCESS_INFORMATION, IOCounters) == 208); 122 KMP_BUILD_ASSERT(offsetof(SYSTEM_PROCESS_INFORMATION, Threads) == 256); 123 #endif 124 125 typedef NTSTATUS(NTAPI *NtQuerySystemInformation_t)(SYSTEM_INFORMATION_CLASS, 126 PVOID, ULONG, PULONG); 127 NtQuerySystemInformation_t NtQuerySystemInformation = NULL; 128 129 HMODULE ntdll = NULL; 130 131 /* End of NtQuerySystemInformation()-related code */ 132 133 static HMODULE kernel32 = NULL; 134 135 #if KMP_HANDLE_SIGNALS 136 typedef void (*sig_func_t)(int); 137 static sig_func_t __kmp_sighldrs[NSIG]; 138 static int __kmp_siginstalled[NSIG]; 139 #endif 140 141 #if KMP_USE_MONITOR 142 static HANDLE __kmp_monitor_ev; 143 #endif 144 static kmp_int64 __kmp_win32_time; 145 double __kmp_win32_tick; 146 147 int __kmp_init_runtime = FALSE; 148 CRITICAL_SECTION __kmp_win32_section; 149 150 void __kmp_win32_mutex_init(kmp_win32_mutex_t *mx) { 151 InitializeCriticalSection(&mx->cs); 152 #if USE_ITT_BUILD 153 __kmp_itt_system_object_created(&mx->cs, "Critical Section"); 154 #endif /* USE_ITT_BUILD */ 155 } 156 157 void __kmp_win32_mutex_destroy(kmp_win32_mutex_t *mx) { 158 DeleteCriticalSection(&mx->cs); 159 } 160 161 void __kmp_win32_mutex_lock(kmp_win32_mutex_t *mx) { 162 EnterCriticalSection(&mx->cs); 163 } 164 165 int __kmp_win32_mutex_trylock(kmp_win32_mutex_t *mx) { 166 return TryEnterCriticalSection(&mx->cs); 167 } 168 169 void __kmp_win32_mutex_unlock(kmp_win32_mutex_t *mx) { 170 LeaveCriticalSection(&mx->cs); 171 } 172 173 void __kmp_win32_cond_init(kmp_win32_cond_t *cv) { 174 cv->waiters_count_ = 0; 175 cv->wait_generation_count_ = 0; 176 cv->release_count_ = 0; 177 178 /* Initialize the critical section */ 179 __kmp_win32_mutex_init(&cv->waiters_count_lock_); 180 181 /* Create a manual-reset event. */ 182 cv->event_ = CreateEvent(NULL, // no security 183 TRUE, // manual-reset 184 FALSE, // non-signaled initially 185 NULL); // unnamed 186 #if USE_ITT_BUILD 187 __kmp_itt_system_object_created(cv->event_, "Event"); 188 #endif /* USE_ITT_BUILD */ 189 } 190 191 void __kmp_win32_cond_destroy(kmp_win32_cond_t *cv) { 192 __kmp_win32_mutex_destroy(&cv->waiters_count_lock_); 193 __kmp_free_handle(cv->event_); 194 memset(cv, '\0', sizeof(*cv)); 195 } 196 197 /* TODO associate cv with a team instead of a thread so as to optimize 198 the case where we wake up a whole team */ 199 200 template <class C> 201 static void __kmp_win32_cond_wait(kmp_win32_cond_t *cv, kmp_win32_mutex_t *mx, 202 kmp_info_t *th, C *flag) { 203 int my_generation; 204 int last_waiter; 205 206 /* Avoid race conditions */ 207 __kmp_win32_mutex_lock(&cv->waiters_count_lock_); 208 209 /* Increment count of waiters */ 210 cv->waiters_count_++; 211 212 /* Store current generation in our activation record. */ 213 my_generation = cv->wait_generation_count_; 214 215 __kmp_win32_mutex_unlock(&cv->waiters_count_lock_); 216 __kmp_win32_mutex_unlock(mx); 217 218 for (;;) { 219 int wait_done = 0; 220 DWORD res, timeout = 5000; // just tried to quess an appropriate number 221 /* Wait until the event is signaled */ 222 res = WaitForSingleObject(cv->event_, timeout); 223 224 if (res == WAIT_OBJECT_0) { 225 // event signaled 226 __kmp_win32_mutex_lock(&cv->waiters_count_lock_); 227 /* Exit the loop when the <cv->event_> is signaled and there are still 228 waiting threads from this <wait_generation> that haven't been released 229 from this wait yet. */ 230 wait_done = (cv->release_count_ > 0) && 231 (cv->wait_generation_count_ != my_generation); 232 __kmp_win32_mutex_unlock(&cv->waiters_count_lock_); 233 } else if (res == WAIT_TIMEOUT || res == WAIT_FAILED) { 234 // check if the flag and cv counters are in consistent state 235 // as MS sent us debug dump whith inconsistent state of data 236 __kmp_win32_mutex_lock(mx); 237 typename C::flag_t old_f = flag->set_sleeping(); 238 if (!flag->done_check_val(old_f & ~KMP_BARRIER_SLEEP_STATE)) { 239 __kmp_win32_mutex_unlock(mx); 240 continue; 241 } 242 // condition fulfilled, exiting 243 flag->unset_sleeping(); 244 TCW_PTR(th->th.th_sleep_loc, NULL); 245 th->th.th_sleep_loc_type = flag_unset; 246 KF_TRACE(50, ("__kmp_win32_cond_wait: exiting, condition " 247 "fulfilled: flag's loc(%p): %u\n", 248 flag->get(), (unsigned int)flag->load())); 249 250 __kmp_win32_mutex_lock(&cv->waiters_count_lock_); 251 KMP_DEBUG_ASSERT(cv->waiters_count_ > 0); 252 cv->release_count_ = cv->waiters_count_; 253 cv->wait_generation_count_++; 254 wait_done = 1; 255 __kmp_win32_mutex_unlock(&cv->waiters_count_lock_); 256 257 __kmp_win32_mutex_unlock(mx); 258 } 259 /* there used to be a semicolon after the if statement, it looked like a 260 bug, so i removed it */ 261 if (wait_done) 262 break; 263 } 264 265 __kmp_win32_mutex_lock(mx); 266 __kmp_win32_mutex_lock(&cv->waiters_count_lock_); 267 268 cv->waiters_count_--; 269 cv->release_count_--; 270 271 last_waiter = (cv->release_count_ == 0); 272 273 __kmp_win32_mutex_unlock(&cv->waiters_count_lock_); 274 275 if (last_waiter) { 276 /* We're the last waiter to be notified, so reset the manual event. */ 277 ResetEvent(cv->event_); 278 } 279 } 280 281 void __kmp_win32_cond_broadcast(kmp_win32_cond_t *cv) { 282 __kmp_win32_mutex_lock(&cv->waiters_count_lock_); 283 284 if (cv->waiters_count_ > 0) { 285 SetEvent(cv->event_); 286 /* Release all the threads in this generation. */ 287 288 cv->release_count_ = cv->waiters_count_; 289 290 /* Start a new generation. */ 291 cv->wait_generation_count_++; 292 } 293 294 __kmp_win32_mutex_unlock(&cv->waiters_count_lock_); 295 } 296 297 void __kmp_win32_cond_signal(kmp_win32_cond_t *cv) { 298 __kmp_win32_cond_broadcast(cv); 299 } 300 301 void __kmp_enable(int new_state) { 302 if (__kmp_init_runtime) 303 LeaveCriticalSection(&__kmp_win32_section); 304 } 305 306 void __kmp_disable(int *old_state) { 307 *old_state = 0; 308 309 if (__kmp_init_runtime) 310 EnterCriticalSection(&__kmp_win32_section); 311 } 312 313 void __kmp_suspend_initialize(void) { /* do nothing */ 314 } 315 316 void __kmp_suspend_initialize_thread(kmp_info_t *th) { 317 int old_value = KMP_ATOMIC_LD_RLX(&th->th.th_suspend_init); 318 int new_value = TRUE; 319 // Return if already initialized 320 if (old_value == new_value) 321 return; 322 // Wait, then return if being initialized 323 if (old_value == -1 || 324 !__kmp_atomic_compare_store(&th->th.th_suspend_init, old_value, -1)) { 325 while (KMP_ATOMIC_LD_ACQ(&th->th.th_suspend_init) != new_value) { 326 KMP_CPU_PAUSE(); 327 } 328 } else { 329 // Claim to be the initializer and do initializations 330 __kmp_win32_cond_init(&th->th.th_suspend_cv); 331 __kmp_win32_mutex_init(&th->th.th_suspend_mx); 332 KMP_ATOMIC_ST_REL(&th->th.th_suspend_init, new_value); 333 } 334 } 335 336 void __kmp_suspend_uninitialize_thread(kmp_info_t *th) { 337 if (KMP_ATOMIC_LD_ACQ(&th->th.th_suspend_init)) { 338 /* this means we have initialize the suspension pthread objects for this 339 thread in this instance of the process */ 340 __kmp_win32_cond_destroy(&th->th.th_suspend_cv); 341 __kmp_win32_mutex_destroy(&th->th.th_suspend_mx); 342 KMP_ATOMIC_ST_REL(&th->th.th_suspend_init, FALSE); 343 } 344 } 345 346 int __kmp_try_suspend_mx(kmp_info_t *th) { 347 return __kmp_win32_mutex_trylock(&th->th.th_suspend_mx); 348 } 349 350 void __kmp_lock_suspend_mx(kmp_info_t *th) { 351 __kmp_win32_mutex_lock(&th->th.th_suspend_mx); 352 } 353 354 void __kmp_unlock_suspend_mx(kmp_info_t *th) { 355 __kmp_win32_mutex_unlock(&th->th.th_suspend_mx); 356 } 357 358 /* This routine puts the calling thread to sleep after setting the 359 sleep bit for the indicated flag variable to true. */ 360 template <class C> 361 static inline void __kmp_suspend_template(int th_gtid, C *flag) { 362 kmp_info_t *th = __kmp_threads[th_gtid]; 363 typename C::flag_t old_spin; 364 365 KF_TRACE(30, ("__kmp_suspend_template: T#%d enter for flag's loc(%p)\n", 366 th_gtid, flag->get())); 367 368 __kmp_suspend_initialize_thread(th); 369 __kmp_lock_suspend_mx(th); 370 371 KF_TRACE(10, ("__kmp_suspend_template: T#%d setting sleep bit for flag's" 372 " loc(%p)\n", 373 th_gtid, flag->get())); 374 375 /* TODO: shouldn't this use release semantics to ensure that 376 __kmp_suspend_initialize_thread gets called first? */ 377 old_spin = flag->set_sleeping(); 378 TCW_PTR(th->th.th_sleep_loc, (void *)flag); 379 th->th.th_sleep_loc_type = flag->get_type(); 380 if (__kmp_dflt_blocktime == KMP_MAX_BLOCKTIME && 381 __kmp_pause_status != kmp_soft_paused) { 382 flag->unset_sleeping(); 383 TCW_PTR(th->th.th_sleep_loc, NULL); 384 th->th.th_sleep_loc_type = flag_unset; 385 __kmp_unlock_suspend_mx(th); 386 return; 387 } 388 389 KF_TRACE(5, ("__kmp_suspend_template: T#%d set sleep bit for flag's" 390 " loc(%p)==%u\n", 391 th_gtid, flag->get(), (unsigned int)flag->load())); 392 393 if (flag->done_check_val(old_spin) || flag->done_check()) { 394 flag->unset_sleeping(); 395 TCW_PTR(th->th.th_sleep_loc, NULL); 396 th->th.th_sleep_loc_type = flag_unset; 397 KF_TRACE(5, ("__kmp_suspend_template: T#%d false alarm, reset sleep bit " 398 "for flag's loc(%p)\n", 399 th_gtid, flag->get())); 400 } else { 401 #ifdef DEBUG_SUSPEND 402 __kmp_suspend_count++; 403 #endif 404 /* Encapsulate in a loop as the documentation states that this may "with 405 low probability" return when the condition variable has not been signaled 406 or broadcast */ 407 int deactivated = FALSE; 408 409 while (flag->is_sleeping()) { 410 KF_TRACE(15, ("__kmp_suspend_template: T#%d about to perform " 411 "kmp_win32_cond_wait()\n", 412 th_gtid)); 413 // Mark the thread as no longer active (only in the first iteration of the 414 // loop). 415 if (!deactivated) { 416 th->th.th_active = FALSE; 417 if (th->th.th_active_in_pool) { 418 th->th.th_active_in_pool = FALSE; 419 KMP_ATOMIC_DEC(&__kmp_thread_pool_active_nth); 420 KMP_DEBUG_ASSERT(TCR_4(__kmp_thread_pool_active_nth) >= 0); 421 } 422 deactivated = TRUE; 423 } 424 425 KMP_DEBUG_ASSERT(th->th.th_sleep_loc); 426 KMP_DEBUG_ASSERT(th->th.th_sleep_loc_type == flag->get_type()); 427 428 __kmp_win32_cond_wait(&th->th.th_suspend_cv, &th->th.th_suspend_mx, th, 429 flag); 430 431 #ifdef KMP_DEBUG 432 if (flag->is_sleeping()) { 433 KF_TRACE(100, 434 ("__kmp_suspend_template: T#%d spurious wakeup\n", th_gtid)); 435 } 436 #endif /* KMP_DEBUG */ 437 438 } // while 439 440 // We may have had the loop variable set before entering the loop body; 441 // so we need to reset sleep_loc. 442 TCW_PTR(th->th.th_sleep_loc, NULL); 443 th->th.th_sleep_loc_type = flag_unset; 444 445 KMP_DEBUG_ASSERT(!flag->is_sleeping()); 446 KMP_DEBUG_ASSERT(!th->th.th_sleep_loc); 447 448 // Mark the thread as active again (if it was previous marked as inactive) 449 if (deactivated) { 450 th->th.th_active = TRUE; 451 if (TCR_4(th->th.th_in_pool)) { 452 KMP_ATOMIC_INC(&__kmp_thread_pool_active_nth); 453 th->th.th_active_in_pool = TRUE; 454 } 455 } 456 } 457 458 __kmp_unlock_suspend_mx(th); 459 KF_TRACE(30, ("__kmp_suspend_template: T#%d exit\n", th_gtid)); 460 } 461 462 template <bool C, bool S> 463 void __kmp_suspend_32(int th_gtid, kmp_flag_32<C, S> *flag) { 464 __kmp_suspend_template(th_gtid, flag); 465 } 466 template <bool C, bool S> 467 void __kmp_suspend_64(int th_gtid, kmp_flag_64<C, S> *flag) { 468 __kmp_suspend_template(th_gtid, flag); 469 } 470 template <bool C, bool S> 471 void __kmp_atomic_suspend_64(int th_gtid, kmp_atomic_flag_64<C, S> *flag) { 472 __kmp_suspend_template(th_gtid, flag); 473 } 474 void __kmp_suspend_oncore(int th_gtid, kmp_flag_oncore *flag) { 475 __kmp_suspend_template(th_gtid, flag); 476 } 477 478 template void __kmp_suspend_32<false, false>(int, kmp_flag_32<false, false> *); 479 template void __kmp_suspend_64<false, true>(int, kmp_flag_64<false, true> *); 480 template void __kmp_suspend_64<true, false>(int, kmp_flag_64<true, false> *); 481 template void 482 __kmp_atomic_suspend_64<false, true>(int, kmp_atomic_flag_64<false, true> *); 483 template void 484 __kmp_atomic_suspend_64<true, false>(int, kmp_atomic_flag_64<true, false> *); 485 486 /* This routine signals the thread specified by target_gtid to wake up 487 after setting the sleep bit indicated by the flag argument to FALSE */ 488 template <class C> 489 static inline void __kmp_resume_template(int target_gtid, C *flag) { 490 kmp_info_t *th = __kmp_threads[target_gtid]; 491 492 #ifdef KMP_DEBUG 493 int gtid = TCR_4(__kmp_init_gtid) ? __kmp_get_gtid() : -1; 494 #endif 495 496 KF_TRACE(30, ("__kmp_resume_template: T#%d wants to wakeup T#%d enter\n", 497 gtid, target_gtid)); 498 499 __kmp_suspend_initialize_thread(th); 500 __kmp_lock_suspend_mx(th); 501 502 if (!flag || flag != th->th.th_sleep_loc) { 503 // coming from __kmp_null_resume_wrapper, or thread is now sleeping on a 504 // different location; wake up at new location 505 flag = (C *)th->th.th_sleep_loc; 506 } 507 508 // First, check if the flag is null or its type has changed. If so, someone 509 // else woke it up. 510 if (!flag || flag->get_type() != th->th.th_sleep_loc_type) { 511 // simply shows what flag was cast to 512 KF_TRACE(5, ("__kmp_resume_template: T#%d exiting, thread T#%d already " 513 "awake: flag's loc(%p)\n", 514 gtid, target_gtid, NULL)); 515 __kmp_unlock_suspend_mx(th); 516 return; 517 } else { 518 if (!flag->is_sleeping()) { 519 KF_TRACE(5, ("__kmp_resume_template: T#%d exiting, thread T#%d already " 520 "awake: flag's loc(%p): %u\n", 521 gtid, target_gtid, flag->get(), (unsigned int)flag->load())); 522 __kmp_unlock_suspend_mx(th); 523 return; 524 } 525 } 526 KMP_DEBUG_ASSERT(flag); 527 flag->unset_sleeping(); 528 TCW_PTR(th->th.th_sleep_loc, NULL); 529 th->th.th_sleep_loc_type = flag_unset; 530 531 KF_TRACE(5, ("__kmp_resume_template: T#%d about to wakeup T#%d, reset sleep " 532 "bit for flag's loc(%p)\n", 533 gtid, target_gtid, flag->get())); 534 535 __kmp_win32_cond_signal(&th->th.th_suspend_cv); 536 __kmp_unlock_suspend_mx(th); 537 538 KF_TRACE(30, ("__kmp_resume_template: T#%d exiting after signaling wake up" 539 " for T#%d\n", 540 gtid, target_gtid)); 541 } 542 543 template <bool C, bool S> 544 void __kmp_resume_32(int target_gtid, kmp_flag_32<C, S> *flag) { 545 __kmp_resume_template(target_gtid, flag); 546 } 547 template <bool C, bool S> 548 void __kmp_resume_64(int target_gtid, kmp_flag_64<C, S> *flag) { 549 __kmp_resume_template(target_gtid, flag); 550 } 551 template <bool C, bool S> 552 void __kmp_atomic_resume_64(int target_gtid, kmp_atomic_flag_64<C, S> *flag) { 553 __kmp_resume_template(target_gtid, flag); 554 } 555 void __kmp_resume_oncore(int target_gtid, kmp_flag_oncore *flag) { 556 __kmp_resume_template(target_gtid, flag); 557 } 558 559 template void __kmp_resume_32<false, true>(int, kmp_flag_32<false, true> *); 560 template void __kmp_resume_32<false, false>(int, kmp_flag_32<false, false> *); 561 template void __kmp_resume_64<false, true>(int, kmp_flag_64<false, true> *); 562 template void 563 __kmp_atomic_resume_64<false, true>(int, kmp_atomic_flag_64<false, true> *); 564 565 void __kmp_yield() { Sleep(0); } 566 567 void __kmp_gtid_set_specific(int gtid) { 568 if (__kmp_init_gtid) { 569 KA_TRACE(50, ("__kmp_gtid_set_specific: T#%d key:%d\n", gtid, 570 __kmp_gtid_threadprivate_key)); 571 kmp_intptr_t g = (kmp_intptr_t)gtid; 572 if (!TlsSetValue(__kmp_gtid_threadprivate_key, (LPVOID)(g + 1))) 573 KMP_FATAL(TLSSetValueFailed); 574 } else { 575 KA_TRACE(50, ("__kmp_gtid_set_specific: runtime shutdown, returning\n")); 576 } 577 } 578 579 int __kmp_gtid_get_specific() { 580 int gtid; 581 if (!__kmp_init_gtid) { 582 KA_TRACE(50, ("__kmp_gtid_get_specific: runtime shutdown, returning " 583 "KMP_GTID_SHUTDOWN\n")); 584 return KMP_GTID_SHUTDOWN; 585 } 586 gtid = (int)(kmp_intptr_t)TlsGetValue(__kmp_gtid_threadprivate_key); 587 if (gtid == 0) { 588 gtid = KMP_GTID_DNE; 589 } else { 590 gtid--; 591 } 592 KA_TRACE(50, ("__kmp_gtid_get_specific: key:%d gtid:%d\n", 593 __kmp_gtid_threadprivate_key, gtid)); 594 return gtid; 595 } 596 597 void __kmp_affinity_bind_thread(int proc) { 598 if (__kmp_num_proc_groups > 1) { 599 // Form the GROUP_AFFINITY struct directly, rather than filling 600 // out a bit vector and calling __kmp_set_system_affinity(). 601 GROUP_AFFINITY ga; 602 KMP_DEBUG_ASSERT((proc >= 0) && (proc < (__kmp_num_proc_groups * CHAR_BIT * 603 sizeof(DWORD_PTR)))); 604 ga.Group = proc / (CHAR_BIT * sizeof(DWORD_PTR)); 605 ga.Mask = (unsigned long long)1 << (proc % (CHAR_BIT * sizeof(DWORD_PTR))); 606 ga.Reserved[0] = ga.Reserved[1] = ga.Reserved[2] = 0; 607 608 KMP_DEBUG_ASSERT(__kmp_SetThreadGroupAffinity != NULL); 609 if (__kmp_SetThreadGroupAffinity(GetCurrentThread(), &ga, NULL) == 0) { 610 DWORD error = GetLastError(); 611 // AC: continue silently if not verbose 612 if (__kmp_affinity.flags.verbose) { 613 kmp_msg_t err_code = KMP_ERR(error); 614 __kmp_msg(kmp_ms_warning, KMP_MSG(CantSetThreadAffMask), err_code, 615 __kmp_msg_null); 616 if (__kmp_generate_warnings == kmp_warnings_off) { 617 __kmp_str_free(&err_code.str); 618 } 619 } 620 } 621 } else { 622 kmp_affin_mask_t *mask; 623 KMP_CPU_ALLOC_ON_STACK(mask); 624 KMP_CPU_ZERO(mask); 625 KMP_CPU_SET(proc, mask); 626 __kmp_set_system_affinity(mask, TRUE); 627 KMP_CPU_FREE_FROM_STACK(mask); 628 } 629 } 630 631 void __kmp_affinity_determine_capable(const char *env_var) { 632 // All versions of Windows* OS (since Win '95) support 633 // SetThreadAffinityMask(). 634 635 #if KMP_GROUP_AFFINITY 636 KMP_AFFINITY_ENABLE(__kmp_num_proc_groups * sizeof(DWORD_PTR)); 637 #else 638 KMP_AFFINITY_ENABLE(sizeof(DWORD_PTR)); 639 #endif 640 641 KA_TRACE(10, ("__kmp_affinity_determine_capable: " 642 "Windows* OS affinity interface functional (mask size = " 643 "%" KMP_SIZE_T_SPEC ").\n", 644 __kmp_affin_mask_size)); 645 } 646 647 double __kmp_read_cpu_time(void) { 648 FILETIME CreationTime, ExitTime, KernelTime, UserTime; 649 int status; 650 double cpu_time; 651 652 cpu_time = 0; 653 654 status = GetProcessTimes(GetCurrentProcess(), &CreationTime, &ExitTime, 655 &KernelTime, &UserTime); 656 657 if (status) { 658 double sec = 0; 659 660 sec += KernelTime.dwHighDateTime; 661 sec += UserTime.dwHighDateTime; 662 663 /* Shift left by 32 bits */ 664 sec *= (double)(1 << 16) * (double)(1 << 16); 665 666 sec += KernelTime.dwLowDateTime; 667 sec += UserTime.dwLowDateTime; 668 669 cpu_time += (sec * 100.0) / KMP_NSEC_PER_SEC; 670 } 671 672 return cpu_time; 673 } 674 675 int __kmp_read_system_info(struct kmp_sys_info *info) { 676 info->maxrss = 0; /* the maximum resident set size utilized (in kilobytes) */ 677 info->minflt = 0; /* the number of page faults serviced without any I/O */ 678 info->majflt = 0; /* the number of page faults serviced that required I/O */ 679 info->nswap = 0; // the number of times a process was "swapped" out of memory 680 info->inblock = 0; // the number of times the file system had to perform input 681 info->oublock = 0; // number of times the file system had to perform output 682 info->nvcsw = 0; /* the number of times a context switch was voluntarily */ 683 info->nivcsw = 0; /* the number of times a context switch was forced */ 684 685 return 1; 686 } 687 688 void __kmp_runtime_initialize(void) { 689 SYSTEM_INFO info; 690 kmp_str_buf_t path; 691 UINT path_size; 692 693 if (__kmp_init_runtime) { 694 return; 695 } 696 697 #if KMP_DYNAMIC_LIB 698 /* Pin dynamic library for the lifetime of application */ 699 { 700 // First, turn off error message boxes 701 UINT err_mode = SetErrorMode(SEM_FAILCRITICALERRORS); 702 HMODULE h; 703 BOOL ret = GetModuleHandleEx(GET_MODULE_HANDLE_EX_FLAG_FROM_ADDRESS | 704 GET_MODULE_HANDLE_EX_FLAG_PIN, 705 (LPCTSTR)&__kmp_serial_initialize, &h); 706 (void)ret; 707 KMP_DEBUG_ASSERT2(h && ret, "OpenMP RTL cannot find itself loaded"); 708 SetErrorMode(err_mode); // Restore error mode 709 KA_TRACE(10, ("__kmp_runtime_initialize: dynamic library pinned\n")); 710 } 711 #endif 712 713 InitializeCriticalSection(&__kmp_win32_section); 714 #if USE_ITT_BUILD 715 __kmp_itt_system_object_created(&__kmp_win32_section, "Critical Section"); 716 #endif /* USE_ITT_BUILD */ 717 __kmp_initialize_system_tick(); 718 719 #if (KMP_ARCH_X86 || KMP_ARCH_X86_64) 720 if (!__kmp_cpuinfo.initialized) { 721 __kmp_query_cpuid(&__kmp_cpuinfo); 722 } 723 #endif /* KMP_ARCH_X86 || KMP_ARCH_X86_64 */ 724 725 /* Set up minimum number of threads to switch to TLS gtid */ 726 #if KMP_OS_WINDOWS && !KMP_DYNAMIC_LIB 727 // Windows* OS, static library. 728 /* New thread may use stack space previously used by another thread, 729 currently terminated. On Windows* OS, in case of static linking, we do not 730 know the moment of thread termination, and our structures (__kmp_threads 731 and __kmp_root arrays) are still keep info about dead threads. This leads 732 to problem in __kmp_get_global_thread_id() function: it wrongly finds gtid 733 (by searching through stack addresses of all known threads) for 734 unregistered foreign tread. 735 736 Setting __kmp_tls_gtid_min to 0 workarounds this problem: 737 __kmp_get_global_thread_id() does not search through stacks, but get gtid 738 from TLS immediately. 739 --ln 740 */ 741 __kmp_tls_gtid_min = 0; 742 #else 743 __kmp_tls_gtid_min = KMP_TLS_GTID_MIN; 744 #endif 745 746 /* for the static library */ 747 if (!__kmp_gtid_threadprivate_key) { 748 __kmp_gtid_threadprivate_key = TlsAlloc(); 749 if (__kmp_gtid_threadprivate_key == TLS_OUT_OF_INDEXES) { 750 KMP_FATAL(TLSOutOfIndexes); 751 } 752 } 753 754 // Load ntdll.dll. 755 /* Simple GetModuleHandle( "ntdll.dl" ) is not suitable due to security issue 756 (see http://www.microsoft.com/technet/security/advisory/2269637.mspx). We 757 have to specify full path to the library. */ 758 __kmp_str_buf_init(&path); 759 path_size = GetSystemDirectory(path.str, path.size); 760 KMP_DEBUG_ASSERT(path_size > 0); 761 if (path_size >= path.size) { 762 // Buffer is too short. Expand the buffer and try again. 763 __kmp_str_buf_reserve(&path, path_size); 764 path_size = GetSystemDirectory(path.str, path.size); 765 KMP_DEBUG_ASSERT(path_size > 0); 766 } 767 if (path_size > 0 && path_size < path.size) { 768 // Now we have system directory name in the buffer. 769 // Append backslash and name of dll to form full path, 770 path.used = path_size; 771 __kmp_str_buf_print(&path, "\\%s", "ntdll.dll"); 772 773 // Now load ntdll using full path. 774 ntdll = GetModuleHandle(path.str); 775 } 776 777 KMP_DEBUG_ASSERT(ntdll != NULL); 778 if (ntdll != NULL) { 779 NtQuerySystemInformation = (NtQuerySystemInformation_t)GetProcAddress( 780 ntdll, "NtQuerySystemInformation"); 781 } 782 KMP_DEBUG_ASSERT(NtQuerySystemInformation != NULL); 783 784 #if KMP_GROUP_AFFINITY 785 // Load kernel32.dll. 786 // Same caveat - must use full system path name. 787 if (path_size > 0 && path_size < path.size) { 788 // Truncate the buffer back to just the system path length, 789 // discarding "\\ntdll.dll", and replacing it with "kernel32.dll". 790 path.used = path_size; 791 __kmp_str_buf_print(&path, "\\%s", "kernel32.dll"); 792 793 // Load kernel32.dll using full path. 794 kernel32 = GetModuleHandle(path.str); 795 KA_TRACE(10, ("__kmp_runtime_initialize: kernel32.dll = %s\n", path.str)); 796 797 // Load the function pointers to kernel32.dll routines 798 // that may or may not exist on this system. 799 if (kernel32 != NULL) { 800 __kmp_GetActiveProcessorCount = 801 (kmp_GetActiveProcessorCount_t)GetProcAddress( 802 kernel32, "GetActiveProcessorCount"); 803 __kmp_GetActiveProcessorGroupCount = 804 (kmp_GetActiveProcessorGroupCount_t)GetProcAddress( 805 kernel32, "GetActiveProcessorGroupCount"); 806 __kmp_GetThreadGroupAffinity = 807 (kmp_GetThreadGroupAffinity_t)GetProcAddress( 808 kernel32, "GetThreadGroupAffinity"); 809 __kmp_SetThreadGroupAffinity = 810 (kmp_SetThreadGroupAffinity_t)GetProcAddress( 811 kernel32, "SetThreadGroupAffinity"); 812 813 KA_TRACE(10, ("__kmp_runtime_initialize: __kmp_GetActiveProcessorCount" 814 " = %p\n", 815 __kmp_GetActiveProcessorCount)); 816 KA_TRACE(10, ("__kmp_runtime_initialize: " 817 "__kmp_GetActiveProcessorGroupCount = %p\n", 818 __kmp_GetActiveProcessorGroupCount)); 819 KA_TRACE(10, ("__kmp_runtime_initialize:__kmp_GetThreadGroupAffinity" 820 " = %p\n", 821 __kmp_GetThreadGroupAffinity)); 822 KA_TRACE(10, ("__kmp_runtime_initialize: __kmp_SetThreadGroupAffinity" 823 " = %p\n", 824 __kmp_SetThreadGroupAffinity)); 825 KA_TRACE(10, ("__kmp_runtime_initialize: sizeof(kmp_affin_mask_t) = %d\n", 826 sizeof(kmp_affin_mask_t))); 827 828 // See if group affinity is supported on this system. 829 // If so, calculate the #groups and #procs. 830 // 831 // Group affinity was introduced with Windows* 7 OS and 832 // Windows* Server 2008 R2 OS. 833 if ((__kmp_GetActiveProcessorCount != NULL) && 834 (__kmp_GetActiveProcessorGroupCount != NULL) && 835 (__kmp_GetThreadGroupAffinity != NULL) && 836 (__kmp_SetThreadGroupAffinity != NULL) && 837 ((__kmp_num_proc_groups = __kmp_GetActiveProcessorGroupCount()) > 838 1)) { 839 // Calculate the total number of active OS procs. 840 int i; 841 842 KA_TRACE(10, ("__kmp_runtime_initialize: %d processor groups" 843 " detected\n", 844 __kmp_num_proc_groups)); 845 846 __kmp_xproc = 0; 847 848 for (i = 0; i < __kmp_num_proc_groups; i++) { 849 DWORD size = __kmp_GetActiveProcessorCount(i); 850 __kmp_xproc += size; 851 KA_TRACE(10, ("__kmp_runtime_initialize: proc group %d size = %d\n", 852 i, size)); 853 } 854 } else { 855 KA_TRACE(10, ("__kmp_runtime_initialize: %d processor groups" 856 " detected\n", 857 __kmp_num_proc_groups)); 858 } 859 } 860 } 861 if (__kmp_num_proc_groups <= 1) { 862 GetSystemInfo(&info); 863 __kmp_xproc = info.dwNumberOfProcessors; 864 } 865 #else 866 (void)kernel32; 867 GetSystemInfo(&info); 868 __kmp_xproc = info.dwNumberOfProcessors; 869 #endif /* KMP_GROUP_AFFINITY */ 870 871 // If the OS said there were 0 procs, take a guess and use a value of 2. 872 // This is done for Linux* OS, also. Do we need error / warning? 873 if (__kmp_xproc <= 0) { 874 __kmp_xproc = 2; 875 } 876 877 KA_TRACE(5, 878 ("__kmp_runtime_initialize: total processors = %d\n", __kmp_xproc)); 879 880 __kmp_str_buf_free(&path); 881 882 #if USE_ITT_BUILD 883 __kmp_itt_initialize(); 884 #endif /* USE_ITT_BUILD */ 885 886 __kmp_init_runtime = TRUE; 887 } // __kmp_runtime_initialize 888 889 void __kmp_runtime_destroy(void) { 890 if (!__kmp_init_runtime) { 891 return; 892 } 893 894 #if USE_ITT_BUILD 895 __kmp_itt_destroy(); 896 #endif /* USE_ITT_BUILD */ 897 898 /* we can't DeleteCriticalsection( & __kmp_win32_section ); */ 899 /* due to the KX_TRACE() commands */ 900 KA_TRACE(40, ("__kmp_runtime_destroy\n")); 901 902 if (__kmp_gtid_threadprivate_key) { 903 TlsFree(__kmp_gtid_threadprivate_key); 904 __kmp_gtid_threadprivate_key = 0; 905 } 906 907 __kmp_affinity_uninitialize(); 908 DeleteCriticalSection(&__kmp_win32_section); 909 910 ntdll = NULL; 911 NtQuerySystemInformation = NULL; 912 913 #if KMP_ARCH_X86_64 914 kernel32 = NULL; 915 __kmp_GetActiveProcessorCount = NULL; 916 __kmp_GetActiveProcessorGroupCount = NULL; 917 __kmp_GetThreadGroupAffinity = NULL; 918 __kmp_SetThreadGroupAffinity = NULL; 919 #endif // KMP_ARCH_X86_64 920 921 __kmp_init_runtime = FALSE; 922 } 923 924 void __kmp_terminate_thread(int gtid) { 925 kmp_info_t *th = __kmp_threads[gtid]; 926 927 if (!th) 928 return; 929 930 KA_TRACE(10, ("__kmp_terminate_thread: kill (%d)\n", gtid)); 931 932 if (TerminateThread(th->th.th_info.ds.ds_thread, (DWORD)-1) == FALSE) { 933 /* It's OK, the thread may have exited already */ 934 } 935 __kmp_free_handle(th->th.th_info.ds.ds_thread); 936 } 937 938 void __kmp_clear_system_time(void) { 939 LARGE_INTEGER time; 940 QueryPerformanceCounter(&time); 941 __kmp_win32_time = (kmp_int64)time.QuadPart; 942 } 943 944 void __kmp_initialize_system_tick(void) { 945 { 946 BOOL status; 947 LARGE_INTEGER freq; 948 949 status = QueryPerformanceFrequency(&freq); 950 if (!status) { 951 DWORD error = GetLastError(); 952 __kmp_fatal(KMP_MSG(FunctionError, "QueryPerformanceFrequency()"), 953 KMP_ERR(error), __kmp_msg_null); 954 955 } else { 956 __kmp_win32_tick = ((double)1.0) / (double)freq.QuadPart; 957 } 958 } 959 } 960 961 /* Calculate the elapsed wall clock time for the user */ 962 963 void __kmp_elapsed(double *t) { 964 LARGE_INTEGER now; 965 QueryPerformanceCounter(&now); 966 *t = ((double)now.QuadPart) * __kmp_win32_tick; 967 } 968 969 /* Calculate the elapsed wall clock tick for the user */ 970 971 void __kmp_elapsed_tick(double *t) { *t = __kmp_win32_tick; } 972 973 void __kmp_read_system_time(double *delta) { 974 if (delta != NULL) { 975 LARGE_INTEGER now; 976 QueryPerformanceCounter(&now); 977 *delta = ((double)(((kmp_int64)now.QuadPart) - __kmp_win32_time)) * 978 __kmp_win32_tick; 979 } 980 } 981 982 /* Return the current time stamp in nsec */ 983 kmp_uint64 __kmp_now_nsec() { 984 LARGE_INTEGER now; 985 QueryPerformanceCounter(&now); 986 return 1e9 * __kmp_win32_tick * now.QuadPart; 987 } 988 989 extern "C" void *__stdcall __kmp_launch_worker(void *arg) { 990 volatile void *stack_data; 991 void *exit_val; 992 void *padding = 0; 993 kmp_info_t *this_thr = (kmp_info_t *)arg; 994 int gtid; 995 996 gtid = this_thr->th.th_info.ds.ds_gtid; 997 __kmp_gtid_set_specific(gtid); 998 #ifdef KMP_TDATA_GTID 999 #error "This define causes problems with LoadLibrary() + declspec(thread) " \ 1000 "on Windows* OS. See CQ50564, tests kmp_load_library*.c and this MSDN " \ 1001 "reference: http://support.microsoft.com/kb/118816" 1002 //__kmp_gtid = gtid; 1003 #endif 1004 1005 #if USE_ITT_BUILD 1006 __kmp_itt_thread_name(gtid); 1007 #endif /* USE_ITT_BUILD */ 1008 1009 __kmp_affinity_set_init_mask(gtid, FALSE); 1010 1011 #if KMP_ARCH_X86 || KMP_ARCH_X86_64 1012 // Set FP control regs to be a copy of the parallel initialization thread's. 1013 __kmp_clear_x87_fpu_status_word(); 1014 __kmp_load_x87_fpu_control_word(&__kmp_init_x87_fpu_control_word); 1015 __kmp_load_mxcsr(&__kmp_init_mxcsr); 1016 #endif /* KMP_ARCH_X86 || KMP_ARCH_X86_64 */ 1017 1018 if (__kmp_stkoffset > 0 && gtid > 0) { 1019 padding = KMP_ALLOCA(gtid * __kmp_stkoffset); 1020 (void)padding; 1021 } 1022 1023 KMP_FSYNC_RELEASING(&this_thr->th.th_info.ds.ds_alive); 1024 this_thr->th.th_info.ds.ds_thread_id = GetCurrentThreadId(); 1025 TCW_4(this_thr->th.th_info.ds.ds_alive, TRUE); 1026 1027 if (TCR_4(__kmp_gtid_mode) < 1028 2) { // check stack only if it is used to get gtid 1029 TCW_PTR(this_thr->th.th_info.ds.ds_stackbase, &stack_data); 1030 KMP_ASSERT(this_thr->th.th_info.ds.ds_stackgrow == FALSE); 1031 __kmp_check_stack_overlap(this_thr); 1032 } 1033 KMP_MB(); 1034 exit_val = __kmp_launch_thread(this_thr); 1035 KMP_FSYNC_RELEASING(&this_thr->th.th_info.ds.ds_alive); 1036 TCW_4(this_thr->th.th_info.ds.ds_alive, FALSE); 1037 KMP_MB(); 1038 return exit_val; 1039 } 1040 1041 #if KMP_USE_MONITOR 1042 /* The monitor thread controls all of the threads in the complex */ 1043 1044 void *__stdcall __kmp_launch_monitor(void *arg) { 1045 DWORD wait_status; 1046 kmp_thread_t monitor; 1047 int status; 1048 int interval; 1049 kmp_info_t *this_thr = (kmp_info_t *)arg; 1050 1051 KMP_DEBUG_ASSERT(__kmp_init_monitor); 1052 TCW_4(__kmp_init_monitor, 2); // AC: Signal library that monitor has started 1053 // TODO: hide "2" in enum (like {true,false,started}) 1054 this_thr->th.th_info.ds.ds_thread_id = GetCurrentThreadId(); 1055 TCW_4(this_thr->th.th_info.ds.ds_alive, TRUE); 1056 1057 KMP_MB(); /* Flush all pending memory write invalidates. */ 1058 KA_TRACE(10, ("__kmp_launch_monitor: launched\n")); 1059 1060 monitor = GetCurrentThread(); 1061 1062 /* set thread priority */ 1063 status = SetThreadPriority(monitor, THREAD_PRIORITY_HIGHEST); 1064 if (!status) { 1065 DWORD error = GetLastError(); 1066 __kmp_fatal(KMP_MSG(CantSetThreadPriority), KMP_ERR(error), __kmp_msg_null); 1067 } 1068 1069 /* register us as monitor */ 1070 __kmp_gtid_set_specific(KMP_GTID_MONITOR); 1071 #ifdef KMP_TDATA_GTID 1072 #error "This define causes problems with LoadLibrary() + declspec(thread) " \ 1073 "on Windows* OS. See CQ50564, tests kmp_load_library*.c and this MSDN " \ 1074 "reference: http://support.microsoft.com/kb/118816" 1075 //__kmp_gtid = KMP_GTID_MONITOR; 1076 #endif 1077 1078 #if USE_ITT_BUILD 1079 __kmp_itt_thread_ignore(); // Instruct Intel(R) Threading Tools to ignore 1080 // monitor thread. 1081 #endif /* USE_ITT_BUILD */ 1082 1083 KMP_MB(); /* Flush all pending memory write invalidates. */ 1084 1085 interval = (1000 / __kmp_monitor_wakeups); /* in milliseconds */ 1086 1087 while (!TCR_4(__kmp_global.g.g_done)) { 1088 /* This thread monitors the state of the system */ 1089 1090 KA_TRACE(15, ("__kmp_launch_monitor: update\n")); 1091 1092 wait_status = WaitForSingleObject(__kmp_monitor_ev, interval); 1093 1094 if (wait_status == WAIT_TIMEOUT) { 1095 TCW_4(__kmp_global.g.g_time.dt.t_value, 1096 TCR_4(__kmp_global.g.g_time.dt.t_value) + 1); 1097 } 1098 1099 KMP_MB(); /* Flush all pending memory write invalidates. */ 1100 } 1101 1102 KA_TRACE(10, ("__kmp_launch_monitor: finished\n")); 1103 1104 status = SetThreadPriority(monitor, THREAD_PRIORITY_NORMAL); 1105 if (!status) { 1106 DWORD error = GetLastError(); 1107 __kmp_fatal(KMP_MSG(CantSetThreadPriority), KMP_ERR(error), __kmp_msg_null); 1108 } 1109 1110 if (__kmp_global.g.g_abort != 0) { 1111 /* now we need to terminate the worker threads */ 1112 /* the value of t_abort is the signal we caught */ 1113 int gtid; 1114 1115 KA_TRACE(10, ("__kmp_launch_monitor: terminate sig=%d\n", 1116 (__kmp_global.g.g_abort))); 1117 1118 /* terminate the OpenMP worker threads */ 1119 /* TODO this is not valid for sibling threads!! 1120 * the uber master might not be 0 anymore.. */ 1121 for (gtid = 1; gtid < __kmp_threads_capacity; ++gtid) 1122 __kmp_terminate_thread(gtid); 1123 1124 __kmp_cleanup(); 1125 1126 Sleep(0); 1127 1128 KA_TRACE(10, 1129 ("__kmp_launch_monitor: raise sig=%d\n", __kmp_global.g.g_abort)); 1130 1131 if (__kmp_global.g.g_abort > 0) { 1132 raise(__kmp_global.g.g_abort); 1133 } 1134 } 1135 1136 TCW_4(this_thr->th.th_info.ds.ds_alive, FALSE); 1137 1138 KMP_MB(); 1139 return arg; 1140 } 1141 #endif 1142 1143 void __kmp_create_worker(int gtid, kmp_info_t *th, size_t stack_size) { 1144 kmp_thread_t handle; 1145 DWORD idThread; 1146 1147 KA_TRACE(10, ("__kmp_create_worker: try to create thread (%d)\n", gtid)); 1148 1149 th->th.th_info.ds.ds_gtid = gtid; 1150 1151 if (KMP_UBER_GTID(gtid)) { 1152 int stack_data; 1153 1154 /* TODO: GetCurrentThread() returns a pseudo-handle that is unsuitable for 1155 other threads to use. Is it appropriate to just use GetCurrentThread? 1156 When should we close this handle? When unregistering the root? */ 1157 { 1158 BOOL rc; 1159 rc = DuplicateHandle(GetCurrentProcess(), GetCurrentThread(), 1160 GetCurrentProcess(), &th->th.th_info.ds.ds_thread, 0, 1161 FALSE, DUPLICATE_SAME_ACCESS); 1162 KMP_ASSERT(rc); 1163 KA_TRACE(10, (" __kmp_create_worker: ROOT Handle duplicated, th = %p, " 1164 "handle = %" KMP_UINTPTR_SPEC "\n", 1165 (LPVOID)th, th->th.th_info.ds.ds_thread)); 1166 th->th.th_info.ds.ds_thread_id = GetCurrentThreadId(); 1167 } 1168 if (TCR_4(__kmp_gtid_mode) < 2) { // check stack only if used to get gtid 1169 /* we will dynamically update the stack range if gtid_mode == 1 */ 1170 TCW_PTR(th->th.th_info.ds.ds_stackbase, &stack_data); 1171 TCW_PTR(th->th.th_info.ds.ds_stacksize, 0); 1172 TCW_4(th->th.th_info.ds.ds_stackgrow, TRUE); 1173 __kmp_check_stack_overlap(th); 1174 } 1175 } else { 1176 KMP_MB(); /* Flush all pending memory write invalidates. */ 1177 1178 /* Set stack size for this thread now. */ 1179 KA_TRACE(10, 1180 ("__kmp_create_worker: stack_size = %" KMP_SIZE_T_SPEC " bytes\n", 1181 stack_size)); 1182 1183 stack_size += gtid * __kmp_stkoffset; 1184 1185 TCW_PTR(th->th.th_info.ds.ds_stacksize, stack_size); 1186 TCW_4(th->th.th_info.ds.ds_stackgrow, FALSE); 1187 1188 KA_TRACE(10, 1189 ("__kmp_create_worker: (before) stack_size = %" KMP_SIZE_T_SPEC 1190 " bytes, &__kmp_launch_worker = %p, th = %p, &idThread = %p\n", 1191 (SIZE_T)stack_size, (LPTHREAD_START_ROUTINE)&__kmp_launch_worker, 1192 (LPVOID)th, &idThread)); 1193 1194 handle = CreateThread( 1195 NULL, (SIZE_T)stack_size, (LPTHREAD_START_ROUTINE)__kmp_launch_worker, 1196 (LPVOID)th, STACK_SIZE_PARAM_IS_A_RESERVATION, &idThread); 1197 1198 KA_TRACE(10, 1199 ("__kmp_create_worker: (after) stack_size = %" KMP_SIZE_T_SPEC 1200 " bytes, &__kmp_launch_worker = %p, th = %p, " 1201 "idThread = %u, handle = %" KMP_UINTPTR_SPEC "\n", 1202 (SIZE_T)stack_size, (LPTHREAD_START_ROUTINE)&__kmp_launch_worker, 1203 (LPVOID)th, idThread, handle)); 1204 1205 if (handle == 0) { 1206 DWORD error = GetLastError(); 1207 __kmp_fatal(KMP_MSG(CantCreateThread), KMP_ERR(error), __kmp_msg_null); 1208 } else { 1209 th->th.th_info.ds.ds_thread = handle; 1210 } 1211 1212 KMP_MB(); /* Flush all pending memory write invalidates. */ 1213 } 1214 1215 KA_TRACE(10, ("__kmp_create_worker: done creating thread (%d)\n", gtid)); 1216 } 1217 1218 int __kmp_still_running(kmp_info_t *th) { 1219 return (WAIT_TIMEOUT == WaitForSingleObject(th->th.th_info.ds.ds_thread, 0)); 1220 } 1221 1222 #if KMP_USE_MONITOR 1223 void __kmp_create_monitor(kmp_info_t *th) { 1224 kmp_thread_t handle; 1225 DWORD idThread; 1226 int ideal, new_ideal; 1227 1228 if (__kmp_dflt_blocktime == KMP_MAX_BLOCKTIME) { 1229 // We don't need monitor thread in case of MAX_BLOCKTIME 1230 KA_TRACE(10, ("__kmp_create_monitor: skipping monitor thread because of " 1231 "MAX blocktime\n")); 1232 th->th.th_info.ds.ds_tid = 0; // this makes reap_monitor no-op 1233 th->th.th_info.ds.ds_gtid = 0; 1234 TCW_4(__kmp_init_monitor, 2); // Signal to stop waiting for monitor creation 1235 return; 1236 } 1237 KA_TRACE(10, ("__kmp_create_monitor: try to create monitor\n")); 1238 1239 KMP_MB(); /* Flush all pending memory write invalidates. */ 1240 1241 __kmp_monitor_ev = CreateEvent(NULL, TRUE, FALSE, NULL); 1242 if (__kmp_monitor_ev == NULL) { 1243 DWORD error = GetLastError(); 1244 __kmp_fatal(KMP_MSG(CantCreateEvent), KMP_ERR(error), __kmp_msg_null); 1245 } 1246 #if USE_ITT_BUILD 1247 __kmp_itt_system_object_created(__kmp_monitor_ev, "Event"); 1248 #endif /* USE_ITT_BUILD */ 1249 1250 th->th.th_info.ds.ds_tid = KMP_GTID_MONITOR; 1251 th->th.th_info.ds.ds_gtid = KMP_GTID_MONITOR; 1252 1253 // FIXME - on Windows* OS, if __kmp_monitor_stksize = 0, figure out how 1254 // to automatically expand stacksize based on CreateThread error code. 1255 if (__kmp_monitor_stksize == 0) { 1256 __kmp_monitor_stksize = KMP_DEFAULT_MONITOR_STKSIZE; 1257 } 1258 if (__kmp_monitor_stksize < __kmp_sys_min_stksize) { 1259 __kmp_monitor_stksize = __kmp_sys_min_stksize; 1260 } 1261 1262 KA_TRACE(10, ("__kmp_create_monitor: requested stacksize = %d bytes\n", 1263 (int)__kmp_monitor_stksize)); 1264 1265 TCW_4(__kmp_global.g.g_time.dt.t_value, 0); 1266 1267 handle = 1268 CreateThread(NULL, (SIZE_T)__kmp_monitor_stksize, 1269 (LPTHREAD_START_ROUTINE)__kmp_launch_monitor, (LPVOID)th, 1270 STACK_SIZE_PARAM_IS_A_RESERVATION, &idThread); 1271 if (handle == 0) { 1272 DWORD error = GetLastError(); 1273 __kmp_fatal(KMP_MSG(CantCreateThread), KMP_ERR(error), __kmp_msg_null); 1274 } else 1275 th->th.th_info.ds.ds_thread = handle; 1276 1277 KMP_MB(); /* Flush all pending memory write invalidates. */ 1278 1279 KA_TRACE(10, ("__kmp_create_monitor: monitor created %p\n", 1280 (void *)th->th.th_info.ds.ds_thread)); 1281 } 1282 #endif 1283 1284 /* Check to see if thread is still alive. 1285 NOTE: The ExitProcess(code) system call causes all threads to Terminate 1286 with a exit_val = code. Because of this we can not rely on exit_val having 1287 any particular value. So this routine may return STILL_ALIVE in exit_val 1288 even after the thread is dead. */ 1289 1290 int __kmp_is_thread_alive(kmp_info_t *th, DWORD *exit_val) { 1291 DWORD rc; 1292 rc = GetExitCodeThread(th->th.th_info.ds.ds_thread, exit_val); 1293 if (rc == 0) { 1294 DWORD error = GetLastError(); 1295 __kmp_fatal(KMP_MSG(FunctionError, "GetExitCodeThread()"), KMP_ERR(error), 1296 __kmp_msg_null); 1297 } 1298 return (*exit_val == STILL_ACTIVE); 1299 } 1300 1301 void __kmp_exit_thread(int exit_status) { 1302 ExitThread(exit_status); 1303 } // __kmp_exit_thread 1304 1305 // This is a common part for both __kmp_reap_worker() and __kmp_reap_monitor(). 1306 static void __kmp_reap_common(kmp_info_t *th) { 1307 DWORD exit_val; 1308 1309 KMP_MB(); /* Flush all pending memory write invalidates. */ 1310 1311 KA_TRACE( 1312 10, ("__kmp_reap_common: try to reap (%d)\n", th->th.th_info.ds.ds_gtid)); 1313 1314 /* 2006-10-19: 1315 There are two opposite situations: 1316 1. Windows* OS keep thread alive after it resets ds_alive flag and 1317 exits from thread function. (For example, see C70770/Q394281 "unloading of 1318 dll based on OMP is very slow".) 1319 2. Windows* OS may kill thread before it resets ds_alive flag. 1320 1321 Right solution seems to be waiting for *either* thread termination *or* 1322 ds_alive resetting. */ 1323 { 1324 // TODO: This code is very similar to KMP_WAIT. Need to generalize 1325 // KMP_WAIT to cover this usage also. 1326 void *obj = NULL; 1327 kmp_uint32 spins; 1328 kmp_uint64 time; 1329 #if USE_ITT_BUILD 1330 KMP_FSYNC_SPIN_INIT(obj, (void *)&th->th.th_info.ds.ds_alive); 1331 #endif /* USE_ITT_BUILD */ 1332 KMP_INIT_YIELD(spins); 1333 KMP_INIT_BACKOFF(time); 1334 do { 1335 #if USE_ITT_BUILD 1336 KMP_FSYNC_SPIN_PREPARE(obj); 1337 #endif /* USE_ITT_BUILD */ 1338 __kmp_is_thread_alive(th, &exit_val); 1339 KMP_YIELD_OVERSUB_ELSE_SPIN(spins, time); 1340 } while (exit_val == STILL_ACTIVE && TCR_4(th->th.th_info.ds.ds_alive)); 1341 #if USE_ITT_BUILD 1342 if (exit_val == STILL_ACTIVE) { 1343 KMP_FSYNC_CANCEL(obj); 1344 } else { 1345 KMP_FSYNC_SPIN_ACQUIRED(obj); 1346 } 1347 #endif /* USE_ITT_BUILD */ 1348 } 1349 1350 __kmp_free_handle(th->th.th_info.ds.ds_thread); 1351 1352 /* NOTE: The ExitProcess(code) system call causes all threads to Terminate 1353 with a exit_val = code. Because of this we can not rely on exit_val having 1354 any particular value. */ 1355 kmp_intptr_t e = (kmp_intptr_t)exit_val; 1356 if (exit_val == STILL_ACTIVE) { 1357 KA_TRACE(1, ("__kmp_reap_common: thread still active.\n")); 1358 } else if ((void *)e != (void *)th) { 1359 KA_TRACE(1, ("__kmp_reap_common: ExitProcess / TerminateThread used?\n")); 1360 } 1361 1362 KA_TRACE(10, 1363 ("__kmp_reap_common: done reaping (%d), handle = %" KMP_UINTPTR_SPEC 1364 "\n", 1365 th->th.th_info.ds.ds_gtid, th->th.th_info.ds.ds_thread)); 1366 1367 th->th.th_info.ds.ds_thread = 0; 1368 th->th.th_info.ds.ds_tid = KMP_GTID_DNE; 1369 th->th.th_info.ds.ds_gtid = KMP_GTID_DNE; 1370 th->th.th_info.ds.ds_thread_id = 0; 1371 1372 KMP_MB(); /* Flush all pending memory write invalidates. */ 1373 } 1374 1375 #if KMP_USE_MONITOR 1376 void __kmp_reap_monitor(kmp_info_t *th) { 1377 int status; 1378 1379 KA_TRACE(10, ("__kmp_reap_monitor: try to reap %p\n", 1380 (void *)th->th.th_info.ds.ds_thread)); 1381 1382 // If monitor has been created, its tid and gtid should be KMP_GTID_MONITOR. 1383 // If both tid and gtid are 0, it means the monitor did not ever start. 1384 // If both tid and gtid are KMP_GTID_DNE, the monitor has been shut down. 1385 KMP_DEBUG_ASSERT(th->th.th_info.ds.ds_tid == th->th.th_info.ds.ds_gtid); 1386 if (th->th.th_info.ds.ds_gtid != KMP_GTID_MONITOR) { 1387 KA_TRACE(10, ("__kmp_reap_monitor: monitor did not start, returning\n")); 1388 return; 1389 } 1390 1391 KMP_MB(); /* Flush all pending memory write invalidates. */ 1392 1393 status = SetEvent(__kmp_monitor_ev); 1394 if (status == FALSE) { 1395 DWORD error = GetLastError(); 1396 __kmp_fatal(KMP_MSG(CantSetEvent), KMP_ERR(error), __kmp_msg_null); 1397 } 1398 KA_TRACE(10, ("__kmp_reap_monitor: reaping thread (%d)\n", 1399 th->th.th_info.ds.ds_gtid)); 1400 __kmp_reap_common(th); 1401 1402 __kmp_free_handle(__kmp_monitor_ev); 1403 1404 KMP_MB(); /* Flush all pending memory write invalidates. */ 1405 } 1406 #endif 1407 1408 void __kmp_reap_worker(kmp_info_t *th) { 1409 KA_TRACE(10, ("__kmp_reap_worker: reaping thread (%d)\n", 1410 th->th.th_info.ds.ds_gtid)); 1411 __kmp_reap_common(th); 1412 } 1413 1414 #if KMP_HANDLE_SIGNALS 1415 1416 static void __kmp_team_handler(int signo) { 1417 if (__kmp_global.g.g_abort == 0) { 1418 // Stage 1 signal handler, let's shut down all of the threads. 1419 if (__kmp_debug_buf) { 1420 __kmp_dump_debug_buffer(); 1421 } 1422 KMP_MB(); // Flush all pending memory write invalidates. 1423 TCW_4(__kmp_global.g.g_abort, signo); 1424 KMP_MB(); // Flush all pending memory write invalidates. 1425 TCW_4(__kmp_global.g.g_done, TRUE); 1426 KMP_MB(); // Flush all pending memory write invalidates. 1427 } 1428 } // __kmp_team_handler 1429 1430 static sig_func_t __kmp_signal(int signum, sig_func_t handler) { 1431 sig_func_t old = signal(signum, handler); 1432 if (old == SIG_ERR) { 1433 int error = errno; 1434 __kmp_fatal(KMP_MSG(FunctionError, "signal"), KMP_ERR(error), 1435 __kmp_msg_null); 1436 } 1437 return old; 1438 } 1439 1440 static void __kmp_install_one_handler(int sig, sig_func_t handler, 1441 int parallel_init) { 1442 sig_func_t old; 1443 KMP_MB(); /* Flush all pending memory write invalidates. */ 1444 KB_TRACE(60, ("__kmp_install_one_handler: called: sig=%d\n", sig)); 1445 if (parallel_init) { 1446 old = __kmp_signal(sig, handler); 1447 // SIG_DFL on Windows* OS in NULL or 0. 1448 if (old == __kmp_sighldrs[sig]) { 1449 __kmp_siginstalled[sig] = 1; 1450 } else { // Restore/keep user's handler if one previously installed. 1451 old = __kmp_signal(sig, old); 1452 } 1453 } else { 1454 // Save initial/system signal handlers to see if user handlers installed. 1455 // 2009-09-23: It is a dead code. On Windows* OS __kmp_install_signals 1456 // called once with parallel_init == TRUE. 1457 old = __kmp_signal(sig, SIG_DFL); 1458 __kmp_sighldrs[sig] = old; 1459 __kmp_signal(sig, old); 1460 } 1461 KMP_MB(); /* Flush all pending memory write invalidates. */ 1462 } // __kmp_install_one_handler 1463 1464 static void __kmp_remove_one_handler(int sig) { 1465 if (__kmp_siginstalled[sig]) { 1466 sig_func_t old; 1467 KMP_MB(); // Flush all pending memory write invalidates. 1468 KB_TRACE(60, ("__kmp_remove_one_handler: called: sig=%d\n", sig)); 1469 old = __kmp_signal(sig, __kmp_sighldrs[sig]); 1470 if (old != __kmp_team_handler) { 1471 KB_TRACE(10, ("__kmp_remove_one_handler: oops, not our handler, " 1472 "restoring: sig=%d\n", 1473 sig)); 1474 old = __kmp_signal(sig, old); 1475 } 1476 __kmp_sighldrs[sig] = NULL; 1477 __kmp_siginstalled[sig] = 0; 1478 KMP_MB(); // Flush all pending memory write invalidates. 1479 } 1480 } // __kmp_remove_one_handler 1481 1482 void __kmp_install_signals(int parallel_init) { 1483 KB_TRACE(10, ("__kmp_install_signals: called\n")); 1484 if (!__kmp_handle_signals) { 1485 KB_TRACE(10, ("__kmp_install_signals: KMP_HANDLE_SIGNALS is false - " 1486 "handlers not installed\n")); 1487 return; 1488 } 1489 __kmp_install_one_handler(SIGINT, __kmp_team_handler, parallel_init); 1490 __kmp_install_one_handler(SIGILL, __kmp_team_handler, parallel_init); 1491 __kmp_install_one_handler(SIGABRT, __kmp_team_handler, parallel_init); 1492 __kmp_install_one_handler(SIGFPE, __kmp_team_handler, parallel_init); 1493 __kmp_install_one_handler(SIGSEGV, __kmp_team_handler, parallel_init); 1494 __kmp_install_one_handler(SIGTERM, __kmp_team_handler, parallel_init); 1495 } // __kmp_install_signals 1496 1497 void __kmp_remove_signals(void) { 1498 int sig; 1499 KB_TRACE(10, ("__kmp_remove_signals: called\n")); 1500 for (sig = 1; sig < NSIG; ++sig) { 1501 __kmp_remove_one_handler(sig); 1502 } 1503 } // __kmp_remove_signals 1504 1505 #endif // KMP_HANDLE_SIGNALS 1506 1507 /* Put the thread to sleep for a time period */ 1508 void __kmp_thread_sleep(int millis) { 1509 DWORD status; 1510 1511 status = SleepEx((DWORD)millis, FALSE); 1512 if (status) { 1513 DWORD error = GetLastError(); 1514 __kmp_fatal(KMP_MSG(FunctionError, "SleepEx()"), KMP_ERR(error), 1515 __kmp_msg_null); 1516 } 1517 } 1518 1519 // Determine whether the given address is mapped into the current address space. 1520 int __kmp_is_address_mapped(void *addr) { 1521 MEMORY_BASIC_INFORMATION lpBuffer; 1522 SIZE_T dwLength; 1523 1524 dwLength = sizeof(MEMORY_BASIC_INFORMATION); 1525 1526 VirtualQuery(addr, &lpBuffer, dwLength); 1527 1528 return !(((lpBuffer.State == MEM_RESERVE) || (lpBuffer.State == MEM_FREE)) || 1529 ((lpBuffer.Protect == PAGE_NOACCESS) || 1530 (lpBuffer.Protect == PAGE_EXECUTE))); 1531 } 1532 1533 kmp_uint64 __kmp_hardware_timestamp(void) { 1534 kmp_uint64 r = 0; 1535 1536 QueryPerformanceCounter((LARGE_INTEGER *)&r); 1537 return r; 1538 } 1539 1540 /* Free handle and check the error code */ 1541 void __kmp_free_handle(kmp_thread_t tHandle) { 1542 /* called with parameter type HANDLE also, thus suppose kmp_thread_t defined 1543 * as HANDLE */ 1544 BOOL rc; 1545 rc = CloseHandle(tHandle); 1546 if (!rc) { 1547 DWORD error = GetLastError(); 1548 __kmp_fatal(KMP_MSG(CantCloseHandle), KMP_ERR(error), __kmp_msg_null); 1549 } 1550 } 1551 1552 int __kmp_get_load_balance(int max) { 1553 static ULONG glb_buff_size = 100 * 1024; 1554 1555 // Saved count of the running threads for the thread balance algorithm 1556 static int glb_running_threads = 0; 1557 static double glb_call_time = 0; /* Thread balance algorithm call time */ 1558 1559 int running_threads = 0; // Number of running threads in the system. 1560 NTSTATUS status = 0; 1561 ULONG buff_size = 0; 1562 ULONG info_size = 0; 1563 void *buffer = NULL; 1564 PSYSTEM_PROCESS_INFORMATION spi = NULL; 1565 int first_time = 1; 1566 1567 double call_time = 0.0; // start, finish; 1568 1569 __kmp_elapsed(&call_time); 1570 1571 if (glb_call_time && 1572 (call_time - glb_call_time < __kmp_load_balance_interval)) { 1573 running_threads = glb_running_threads; 1574 goto finish; 1575 } 1576 glb_call_time = call_time; 1577 1578 // Do not spend time on running algorithm if we have a permanent error. 1579 if (NtQuerySystemInformation == NULL) { 1580 running_threads = -1; 1581 goto finish; 1582 } 1583 1584 if (max <= 0) { 1585 max = INT_MAX; 1586 } 1587 1588 do { 1589 1590 if (first_time) { 1591 buff_size = glb_buff_size; 1592 } else { 1593 buff_size = 2 * buff_size; 1594 } 1595 1596 buffer = KMP_INTERNAL_REALLOC(buffer, buff_size); 1597 if (buffer == NULL) { 1598 running_threads = -1; 1599 goto finish; 1600 } 1601 status = NtQuerySystemInformation(SystemProcessInformation, buffer, 1602 buff_size, &info_size); 1603 first_time = 0; 1604 1605 } while (status == STATUS_INFO_LENGTH_MISMATCH); 1606 glb_buff_size = buff_size; 1607 1608 #define CHECK(cond) \ 1609 { \ 1610 KMP_DEBUG_ASSERT(cond); \ 1611 if (!(cond)) { \ 1612 running_threads = -1; \ 1613 goto finish; \ 1614 } \ 1615 } 1616 1617 CHECK(buff_size >= info_size); 1618 spi = PSYSTEM_PROCESS_INFORMATION(buffer); 1619 for (;;) { 1620 ptrdiff_t offset = uintptr_t(spi) - uintptr_t(buffer); 1621 CHECK(0 <= offset && 1622 offset + sizeof(SYSTEM_PROCESS_INFORMATION) < info_size); 1623 HANDLE pid = spi->ProcessId; 1624 ULONG num = spi->NumberOfThreads; 1625 CHECK(num >= 1); 1626 size_t spi_size = 1627 sizeof(SYSTEM_PROCESS_INFORMATION) + sizeof(SYSTEM_THREAD) * (num - 1); 1628 CHECK(offset + spi_size < 1629 info_size); // Make sure process info record fits the buffer. 1630 if (spi->NextEntryOffset != 0) { 1631 CHECK(spi_size <= 1632 spi->NextEntryOffset); // And do not overlap with the next record. 1633 } 1634 // pid == 0 corresponds to the System Idle Process. It always has running 1635 // threads on all cores. So, we don't consider the running threads of this 1636 // process. 1637 if (pid != 0) { 1638 for (int i = 0; i < num; ++i) { 1639 THREAD_STATE state = spi->Threads[i].State; 1640 // Count threads that have Ready or Running state. 1641 // !!! TODO: Why comment does not match the code??? 1642 if (state == StateRunning) { 1643 ++running_threads; 1644 // Stop counting running threads if the number is already greater than 1645 // the number of available cores 1646 if (running_threads >= max) { 1647 goto finish; 1648 } 1649 } 1650 } 1651 } 1652 if (spi->NextEntryOffset == 0) { 1653 break; 1654 } 1655 spi = PSYSTEM_PROCESS_INFORMATION(uintptr_t(spi) + spi->NextEntryOffset); 1656 } 1657 1658 #undef CHECK 1659 1660 finish: // Clean up and exit. 1661 1662 if (buffer != NULL) { 1663 KMP_INTERNAL_FREE(buffer); 1664 } 1665 1666 glb_running_threads = running_threads; 1667 1668 return running_threads; 1669 } //__kmp_get_load_balance() 1670 1671 // Find symbol from the loaded modules 1672 void *__kmp_lookup_symbol(const char *name, bool next) { 1673 HANDLE process = GetCurrentProcess(); 1674 DWORD needed; 1675 HMODULE *modules = nullptr; 1676 if (!EnumProcessModules(process, modules, 0, &needed)) 1677 return nullptr; 1678 DWORD num_modules = needed / sizeof(HMODULE); 1679 modules = (HMODULE *)malloc(num_modules * sizeof(HMODULE)); 1680 if (!EnumProcessModules(process, modules, needed, &needed)) { 1681 free(modules); 1682 return nullptr; 1683 } 1684 HMODULE curr_module = nullptr; 1685 if (next) { 1686 // Current module needs to be skipped if next flag is true 1687 if (!GetModuleHandleEx(GET_MODULE_HANDLE_EX_FLAG_FROM_ADDRESS, 1688 (LPCTSTR)&__kmp_lookup_symbol, &curr_module)) { 1689 free(modules); 1690 return nullptr; 1691 } 1692 } 1693 void *proc = nullptr; 1694 for (uint32_t i = 0; i < num_modules; i++) { 1695 if (next && modules[i] == curr_module) 1696 continue; 1697 proc = (void *)GetProcAddress(modules[i], name); 1698 if (proc) 1699 break; 1700 } 1701 free(modules); 1702 return proc; 1703 } 1704 1705 // Functions for hidden helper task 1706 void __kmp_hidden_helper_worker_thread_wait() { 1707 KMP_ASSERT(0 && "Hidden helper task is not supported on Windows"); 1708 } 1709 1710 void __kmp_do_initialize_hidden_helper_threads() { 1711 KMP_ASSERT(0 && "Hidden helper task is not supported on Windows"); 1712 } 1713 1714 void __kmp_hidden_helper_threads_initz_wait() { 1715 KMP_ASSERT(0 && "Hidden helper task is not supported on Windows"); 1716 } 1717 1718 void __kmp_hidden_helper_initz_release() { 1719 KMP_ASSERT(0 && "Hidden helper task is not supported on Windows"); 1720 } 1721 1722 void __kmp_hidden_helper_main_thread_wait() { 1723 KMP_ASSERT(0 && "Hidden helper task is not supported on Windows"); 1724 } 1725 1726 void __kmp_hidden_helper_main_thread_release() { 1727 KMP_ASSERT(0 && "Hidden helper task is not supported on Windows"); 1728 } 1729 1730 void __kmp_hidden_helper_worker_thread_signal() { 1731 KMP_ASSERT(0 && "Hidden helper task is not supported on Windows"); 1732 } 1733 1734 void __kmp_hidden_helper_threads_deinitz_wait() { 1735 KMP_ASSERT(0 && "Hidden helper task is not supported on Windows"); 1736 } 1737 1738 void __kmp_hidden_helper_threads_deinitz_release() { 1739 KMP_ASSERT(0 && "Hidden helper task is not supported on Windows"); 1740 } 1741