1 /* 2 * z_Windows_NT_util.cpp -- platform specific routines. 3 */ 4 5 //===----------------------------------------------------------------------===// 6 // 7 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 8 // See https://llvm.org/LICENSE.txt for license information. 9 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "kmp.h" 14 #include "kmp_affinity.h" 15 #include "kmp_i18n.h" 16 #include "kmp_io.h" 17 #include "kmp_itt.h" 18 #include "kmp_wait_release.h" 19 20 /* This code is related to NtQuerySystemInformation() function. This function 21 is used in the Load balance algorithm for OMP_DYNAMIC=true to find the 22 number of running threads in the system. */ 23 24 #include <ntsecapi.h> // UNICODE_STRING 25 #include <ntstatus.h> 26 27 enum SYSTEM_INFORMATION_CLASS { 28 SystemProcessInformation = 5 29 }; // SYSTEM_INFORMATION_CLASS 30 31 struct CLIENT_ID { 32 HANDLE UniqueProcess; 33 HANDLE UniqueThread; 34 }; // struct CLIENT_ID 35 36 enum THREAD_STATE { 37 StateInitialized, 38 StateReady, 39 StateRunning, 40 StateStandby, 41 StateTerminated, 42 StateWait, 43 StateTransition, 44 StateUnknown 45 }; // enum THREAD_STATE 46 47 struct VM_COUNTERS { 48 SIZE_T PeakVirtualSize; 49 SIZE_T VirtualSize; 50 ULONG PageFaultCount; 51 SIZE_T PeakWorkingSetSize; 52 SIZE_T WorkingSetSize; 53 SIZE_T QuotaPeakPagedPoolUsage; 54 SIZE_T QuotaPagedPoolUsage; 55 SIZE_T QuotaPeakNonPagedPoolUsage; 56 SIZE_T QuotaNonPagedPoolUsage; 57 SIZE_T PagefileUsage; 58 SIZE_T PeakPagefileUsage; 59 SIZE_T PrivatePageCount; 60 }; // struct VM_COUNTERS 61 62 struct SYSTEM_THREAD { 63 LARGE_INTEGER KernelTime; 64 LARGE_INTEGER UserTime; 65 LARGE_INTEGER CreateTime; 66 ULONG WaitTime; 67 LPVOID StartAddress; 68 CLIENT_ID ClientId; 69 DWORD Priority; 70 LONG BasePriority; 71 ULONG ContextSwitchCount; 72 THREAD_STATE State; 73 ULONG WaitReason; 74 }; // SYSTEM_THREAD 75 76 KMP_BUILD_ASSERT(offsetof(SYSTEM_THREAD, KernelTime) == 0); 77 #if KMP_ARCH_X86 78 KMP_BUILD_ASSERT(offsetof(SYSTEM_THREAD, StartAddress) == 28); 79 KMP_BUILD_ASSERT(offsetof(SYSTEM_THREAD, State) == 52); 80 #else 81 KMP_BUILD_ASSERT(offsetof(SYSTEM_THREAD, StartAddress) == 32); 82 KMP_BUILD_ASSERT(offsetof(SYSTEM_THREAD, State) == 68); 83 #endif 84 85 struct SYSTEM_PROCESS_INFORMATION { 86 ULONG NextEntryOffset; 87 ULONG NumberOfThreads; 88 LARGE_INTEGER Reserved[3]; 89 LARGE_INTEGER CreateTime; 90 LARGE_INTEGER UserTime; 91 LARGE_INTEGER KernelTime; 92 UNICODE_STRING ImageName; 93 DWORD BasePriority; 94 HANDLE ProcessId; 95 HANDLE ParentProcessId; 96 ULONG HandleCount; 97 ULONG Reserved2[2]; 98 VM_COUNTERS VMCounters; 99 IO_COUNTERS IOCounters; 100 SYSTEM_THREAD Threads[1]; 101 }; // SYSTEM_PROCESS_INFORMATION 102 typedef SYSTEM_PROCESS_INFORMATION *PSYSTEM_PROCESS_INFORMATION; 103 104 KMP_BUILD_ASSERT(offsetof(SYSTEM_PROCESS_INFORMATION, NextEntryOffset) == 0); 105 KMP_BUILD_ASSERT(offsetof(SYSTEM_PROCESS_INFORMATION, CreateTime) == 32); 106 KMP_BUILD_ASSERT(offsetof(SYSTEM_PROCESS_INFORMATION, ImageName) == 56); 107 #if KMP_ARCH_X86 108 KMP_BUILD_ASSERT(offsetof(SYSTEM_PROCESS_INFORMATION, ProcessId) == 68); 109 KMP_BUILD_ASSERT(offsetof(SYSTEM_PROCESS_INFORMATION, HandleCount) == 76); 110 KMP_BUILD_ASSERT(offsetof(SYSTEM_PROCESS_INFORMATION, VMCounters) == 88); 111 KMP_BUILD_ASSERT(offsetof(SYSTEM_PROCESS_INFORMATION, IOCounters) == 136); 112 KMP_BUILD_ASSERT(offsetof(SYSTEM_PROCESS_INFORMATION, Threads) == 184); 113 #else 114 KMP_BUILD_ASSERT(offsetof(SYSTEM_PROCESS_INFORMATION, ProcessId) == 80); 115 KMP_BUILD_ASSERT(offsetof(SYSTEM_PROCESS_INFORMATION, HandleCount) == 96); 116 KMP_BUILD_ASSERT(offsetof(SYSTEM_PROCESS_INFORMATION, VMCounters) == 112); 117 KMP_BUILD_ASSERT(offsetof(SYSTEM_PROCESS_INFORMATION, IOCounters) == 208); 118 KMP_BUILD_ASSERT(offsetof(SYSTEM_PROCESS_INFORMATION, Threads) == 256); 119 #endif 120 121 typedef NTSTATUS(NTAPI *NtQuerySystemInformation_t)(SYSTEM_INFORMATION_CLASS, 122 PVOID, ULONG, PULONG); 123 NtQuerySystemInformation_t NtQuerySystemInformation = NULL; 124 125 HMODULE ntdll = NULL; 126 127 /* End of NtQuerySystemInformation()-related code */ 128 129 static HMODULE kernel32 = NULL; 130 131 #if KMP_HANDLE_SIGNALS 132 typedef void (*sig_func_t)(int); 133 static sig_func_t __kmp_sighldrs[NSIG]; 134 static int __kmp_siginstalled[NSIG]; 135 #endif 136 137 #if KMP_USE_MONITOR 138 static HANDLE __kmp_monitor_ev; 139 #endif 140 static kmp_int64 __kmp_win32_time; 141 double __kmp_win32_tick; 142 143 int __kmp_init_runtime = FALSE; 144 CRITICAL_SECTION __kmp_win32_section; 145 146 void __kmp_win32_mutex_init(kmp_win32_mutex_t *mx) { 147 InitializeCriticalSection(&mx->cs); 148 #if USE_ITT_BUILD 149 __kmp_itt_system_object_created(&mx->cs, "Critical Section"); 150 #endif /* USE_ITT_BUILD */ 151 } 152 153 void __kmp_win32_mutex_destroy(kmp_win32_mutex_t *mx) { 154 DeleteCriticalSection(&mx->cs); 155 } 156 157 void __kmp_win32_mutex_lock(kmp_win32_mutex_t *mx) { 158 EnterCriticalSection(&mx->cs); 159 } 160 161 int __kmp_win32_mutex_trylock(kmp_win32_mutex_t *mx) { 162 return TryEnterCriticalSection(&mx->cs); 163 } 164 165 void __kmp_win32_mutex_unlock(kmp_win32_mutex_t *mx) { 166 LeaveCriticalSection(&mx->cs); 167 } 168 169 void __kmp_win32_cond_init(kmp_win32_cond_t *cv) { 170 cv->waiters_count_ = 0; 171 cv->wait_generation_count_ = 0; 172 cv->release_count_ = 0; 173 174 /* Initialize the critical section */ 175 __kmp_win32_mutex_init(&cv->waiters_count_lock_); 176 177 /* Create a manual-reset event. */ 178 cv->event_ = CreateEvent(NULL, // no security 179 TRUE, // manual-reset 180 FALSE, // non-signaled initially 181 NULL); // unnamed 182 #if USE_ITT_BUILD 183 __kmp_itt_system_object_created(cv->event_, "Event"); 184 #endif /* USE_ITT_BUILD */ 185 } 186 187 void __kmp_win32_cond_destroy(kmp_win32_cond_t *cv) { 188 __kmp_win32_mutex_destroy(&cv->waiters_count_lock_); 189 __kmp_free_handle(cv->event_); 190 memset(cv, '\0', sizeof(*cv)); 191 } 192 193 /* TODO associate cv with a team instead of a thread so as to optimize 194 the case where we wake up a whole team */ 195 196 template <class C> 197 static void __kmp_win32_cond_wait(kmp_win32_cond_t *cv, kmp_win32_mutex_t *mx, 198 kmp_info_t *th, C *flag) { 199 int my_generation; 200 int last_waiter; 201 202 /* Avoid race conditions */ 203 __kmp_win32_mutex_lock(&cv->waiters_count_lock_); 204 205 /* Increment count of waiters */ 206 cv->waiters_count_++; 207 208 /* Store current generation in our activation record. */ 209 my_generation = cv->wait_generation_count_; 210 211 __kmp_win32_mutex_unlock(&cv->waiters_count_lock_); 212 __kmp_win32_mutex_unlock(mx); 213 214 for (;;) { 215 int wait_done = 0; 216 DWORD res, timeout = 5000; // just tried to quess an appropriate number 217 /* Wait until the event is signaled */ 218 res = WaitForSingleObject(cv->event_, timeout); 219 220 if (res == WAIT_OBJECT_0) { 221 // event signaled 222 __kmp_win32_mutex_lock(&cv->waiters_count_lock_); 223 /* Exit the loop when the <cv->event_> is signaled and there are still 224 waiting threads from this <wait_generation> that haven't been released 225 from this wait yet. */ 226 wait_done = (cv->release_count_ > 0) && 227 (cv->wait_generation_count_ != my_generation); 228 __kmp_win32_mutex_unlock(&cv->waiters_count_lock_); 229 } else if (res == WAIT_TIMEOUT || res == WAIT_FAILED) { 230 // check if the flag and cv counters are in consistent state 231 // as MS sent us debug dump whith inconsistent state of data 232 __kmp_win32_mutex_lock(mx); 233 typename C::flag_t old_f = flag->set_sleeping(); 234 if (!flag->done_check_val(old_f & ~KMP_BARRIER_SLEEP_STATE)) { 235 __kmp_win32_mutex_unlock(mx); 236 continue; 237 } 238 // condition fulfilled, exiting 239 old_f = flag->unset_sleeping(); 240 KMP_DEBUG_ASSERT(old_f & KMP_BARRIER_SLEEP_STATE); 241 TCW_PTR(th->th.th_sleep_loc, NULL); 242 KF_TRACE(50, ("__kmp_win32_cond_wait: exiting, condition " 243 "fulfilled: flag's loc(%p): %u => %u\n", 244 flag->get(), old_f, *(flag->get()))); 245 246 __kmp_win32_mutex_lock(&cv->waiters_count_lock_); 247 KMP_DEBUG_ASSERT(cv->waiters_count_ > 0); 248 cv->release_count_ = cv->waiters_count_; 249 cv->wait_generation_count_++; 250 wait_done = 1; 251 __kmp_win32_mutex_unlock(&cv->waiters_count_lock_); 252 253 __kmp_win32_mutex_unlock(mx); 254 } 255 /* there used to be a semicolon after the if statement, it looked like a 256 bug, so i removed it */ 257 if (wait_done) 258 break; 259 } 260 261 __kmp_win32_mutex_lock(mx); 262 __kmp_win32_mutex_lock(&cv->waiters_count_lock_); 263 264 cv->waiters_count_--; 265 cv->release_count_--; 266 267 last_waiter = (cv->release_count_ == 0); 268 269 __kmp_win32_mutex_unlock(&cv->waiters_count_lock_); 270 271 if (last_waiter) { 272 /* We're the last waiter to be notified, so reset the manual event. */ 273 ResetEvent(cv->event_); 274 } 275 } 276 277 void __kmp_win32_cond_broadcast(kmp_win32_cond_t *cv) { 278 __kmp_win32_mutex_lock(&cv->waiters_count_lock_); 279 280 if (cv->waiters_count_ > 0) { 281 SetEvent(cv->event_); 282 /* Release all the threads in this generation. */ 283 284 cv->release_count_ = cv->waiters_count_; 285 286 /* Start a new generation. */ 287 cv->wait_generation_count_++; 288 } 289 290 __kmp_win32_mutex_unlock(&cv->waiters_count_lock_); 291 } 292 293 void __kmp_win32_cond_signal(kmp_win32_cond_t *cv) { 294 __kmp_win32_cond_broadcast(cv); 295 } 296 297 void __kmp_enable(int new_state) { 298 if (__kmp_init_runtime) 299 LeaveCriticalSection(&__kmp_win32_section); 300 } 301 302 void __kmp_disable(int *old_state) { 303 *old_state = 0; 304 305 if (__kmp_init_runtime) 306 EnterCriticalSection(&__kmp_win32_section); 307 } 308 309 void __kmp_suspend_initialize(void) { /* do nothing */ 310 } 311 312 void __kmp_suspend_initialize_thread(kmp_info_t *th) { 313 int old_value = KMP_ATOMIC_LD_RLX(&th->th.th_suspend_init); 314 int new_value = TRUE; 315 // Return if already initialized 316 if (old_value == new_value) 317 return; 318 // Wait, then return if being initialized 319 if (old_value == -1 || 320 !__kmp_atomic_compare_store(&th->th.th_suspend_init, old_value, -1)) { 321 while (KMP_ATOMIC_LD_ACQ(&th->th.th_suspend_init) != new_value) { 322 KMP_CPU_PAUSE(); 323 } 324 } else { 325 // Claim to be the initializer and do initializations 326 __kmp_win32_cond_init(&th->th.th_suspend_cv); 327 __kmp_win32_mutex_init(&th->th.th_suspend_mx); 328 KMP_ATOMIC_ST_REL(&th->th.th_suspend_init, new_value); 329 } 330 } 331 332 void __kmp_suspend_uninitialize_thread(kmp_info_t *th) { 333 if (KMP_ATOMIC_LD_ACQ(&th->th.th_suspend_init)) { 334 /* this means we have initialize the suspension pthread objects for this 335 thread in this instance of the process */ 336 __kmp_win32_cond_destroy(&th->th.th_suspend_cv); 337 __kmp_win32_mutex_destroy(&th->th.th_suspend_mx); 338 KMP_ATOMIC_ST_REL(&th->th.th_suspend_init, FALSE); 339 } 340 } 341 342 int __kmp_try_suspend_mx(kmp_info_t *th) { 343 return __kmp_win32_mutex_trylock(&th->th.th_suspend_mx); 344 } 345 346 void __kmp_lock_suspend_mx(kmp_info_t *th) { 347 __kmp_win32_mutex_lock(&th->th.th_suspend_mx); 348 } 349 350 void __kmp_unlock_suspend_mx(kmp_info_t *th) { 351 __kmp_win32_mutex_unlock(&th->th.th_suspend_mx); 352 } 353 354 /* This routine puts the calling thread to sleep after setting the 355 sleep bit for the indicated flag variable to true. */ 356 template <class C> 357 static inline void __kmp_suspend_template(int th_gtid, C *flag) { 358 kmp_info_t *th = __kmp_threads[th_gtid]; 359 int status; 360 typename C::flag_t old_spin; 361 362 KF_TRACE(30, ("__kmp_suspend_template: T#%d enter for flag's loc(%p)\n", 363 th_gtid, flag->get())); 364 365 __kmp_suspend_initialize_thread(th); 366 __kmp_lock_suspend_mx(th); 367 368 KF_TRACE(10, ("__kmp_suspend_template: T#%d setting sleep bit for flag's" 369 " loc(%p)\n", 370 th_gtid, flag->get())); 371 372 /* TODO: shouldn't this use release semantics to ensure that 373 __kmp_suspend_initialize_thread gets called first? */ 374 old_spin = flag->set_sleeping(); 375 if (__kmp_dflt_blocktime == KMP_MAX_BLOCKTIME && 376 __kmp_pause_status != kmp_soft_paused) { 377 flag->unset_sleeping(); 378 __kmp_unlock_suspend_mx(th); 379 return; 380 } 381 382 KF_TRACE(5, ("__kmp_suspend_template: T#%d set sleep bit for flag's" 383 " loc(%p)==%d\n", 384 th_gtid, flag->get(), *(flag->get()))); 385 386 if (flag->done_check_val(old_spin)) { 387 old_spin = flag->unset_sleeping(); 388 KF_TRACE(5, ("__kmp_suspend_template: T#%d false alarm, reset sleep bit " 389 "for flag's loc(%p)\n", 390 th_gtid, flag->get())); 391 } else { 392 #ifdef DEBUG_SUSPEND 393 __kmp_suspend_count++; 394 #endif 395 /* Encapsulate in a loop as the documentation states that this may "with 396 low probability" return when the condition variable has not been signaled 397 or broadcast */ 398 int deactivated = FALSE; 399 TCW_PTR(th->th.th_sleep_loc, (void *)flag); 400 while (flag->is_sleeping()) { 401 KF_TRACE(15, ("__kmp_suspend_template: T#%d about to perform " 402 "kmp_win32_cond_wait()\n", 403 th_gtid)); 404 // Mark the thread as no longer active (only in the first iteration of the 405 // loop). 406 if (!deactivated) { 407 th->th.th_active = FALSE; 408 if (th->th.th_active_in_pool) { 409 th->th.th_active_in_pool = FALSE; 410 KMP_ATOMIC_DEC(&__kmp_thread_pool_active_nth); 411 KMP_DEBUG_ASSERT(TCR_4(__kmp_thread_pool_active_nth) >= 0); 412 } 413 deactivated = TRUE; 414 __kmp_win32_cond_wait(&th->th.th_suspend_cv, &th->th.th_suspend_mx, th, 415 flag); 416 } else { 417 __kmp_win32_cond_wait(&th->th.th_suspend_cv, &th->th.th_suspend_mx, th, 418 flag); 419 } 420 421 #ifdef KMP_DEBUG 422 if (flag->is_sleeping()) { 423 KF_TRACE(100, 424 ("__kmp_suspend_template: T#%d spurious wakeup\n", th_gtid)); 425 } 426 #endif /* KMP_DEBUG */ 427 428 } // while 429 430 // Mark the thread as active again (if it was previous marked as inactive) 431 if (deactivated) { 432 th->th.th_active = TRUE; 433 if (TCR_4(th->th.th_in_pool)) { 434 KMP_ATOMIC_INC(&__kmp_thread_pool_active_nth); 435 th->th.th_active_in_pool = TRUE; 436 } 437 } 438 } 439 440 __kmp_unlock_suspend_mx(th); 441 KF_TRACE(30, ("__kmp_suspend_template: T#%d exit\n", th_gtid)); 442 } 443 444 template <bool C, bool S> 445 void __kmp_suspend_32(int th_gtid, kmp_flag_32<C, S> *flag) { 446 __kmp_suspend_template(th_gtid, flag); 447 } 448 template <bool C, bool S> 449 void __kmp_suspend_64(int th_gtid, kmp_flag_64<C, S> *flag) { 450 __kmp_suspend_template(th_gtid, flag); 451 } 452 void __kmp_suspend_oncore(int th_gtid, kmp_flag_oncore *flag) { 453 __kmp_suspend_template(th_gtid, flag); 454 } 455 456 template void __kmp_suspend_32<false, false>(int, kmp_flag_32<false, false> *); 457 template void __kmp_suspend_64<false, true>(int, kmp_flag_64<false, true> *); 458 template void __kmp_suspend_64<true, false>(int, kmp_flag_64<true, false> *); 459 460 /* This routine signals the thread specified by target_gtid to wake up 461 after setting the sleep bit indicated by the flag argument to FALSE */ 462 template <class C> 463 static inline void __kmp_resume_template(int target_gtid, C *flag) { 464 kmp_info_t *th = __kmp_threads[target_gtid]; 465 int status; 466 467 #ifdef KMP_DEBUG 468 int gtid = TCR_4(__kmp_init_gtid) ? __kmp_get_gtid() : -1; 469 #endif 470 471 KF_TRACE(30, ("__kmp_resume_template: T#%d wants to wakeup T#%d enter\n", 472 gtid, target_gtid)); 473 474 __kmp_suspend_initialize_thread(th); 475 __kmp_lock_suspend_mx(th); 476 477 if (!flag) { // coming from __kmp_null_resume_wrapper 478 flag = (C *)th->th.th_sleep_loc; 479 } 480 481 // First, check if the flag is null or its type has changed. If so, someone 482 // else woke it up. 483 if (!flag || flag->get_type() != flag->get_ptr_type()) { // get_ptr_type 484 // simply shows what 485 // flag was cast to 486 KF_TRACE(5, ("__kmp_resume_template: T#%d exiting, thread T#%d already " 487 "awake: flag's loc(%p)\n", 488 gtid, target_gtid, NULL)); 489 __kmp_unlock_suspend_mx(th); 490 return; 491 } else { 492 typename C::flag_t old_spin = flag->unset_sleeping(); 493 if (!flag->is_sleeping_val(old_spin)) { 494 KF_TRACE(5, ("__kmp_resume_template: T#%d exiting, thread T#%d already " 495 "awake: flag's loc(%p): %u => %u\n", 496 gtid, target_gtid, flag->get(), old_spin, *(flag->get()))); 497 __kmp_unlock_suspend_mx(th); 498 return; 499 } 500 } 501 TCW_PTR(th->th.th_sleep_loc, NULL); 502 KF_TRACE(5, ("__kmp_resume_template: T#%d about to wakeup T#%d, reset sleep " 503 "bit for flag's loc(%p)\n", 504 gtid, target_gtid, flag->get())); 505 506 __kmp_win32_cond_signal(&th->th.th_suspend_cv); 507 __kmp_unlock_suspend_mx(th); 508 509 KF_TRACE(30, ("__kmp_resume_template: T#%d exiting after signaling wake up" 510 " for T#%d\n", 511 gtid, target_gtid)); 512 } 513 514 template <bool C, bool S> 515 void __kmp_resume_32(int target_gtid, kmp_flag_32<C, S> *flag) { 516 __kmp_resume_template(target_gtid, flag); 517 } 518 template <bool C, bool S> 519 void __kmp_resume_64(int target_gtid, kmp_flag_64<C, S> *flag) { 520 __kmp_resume_template(target_gtid, flag); 521 } 522 void __kmp_resume_oncore(int target_gtid, kmp_flag_oncore *flag) { 523 __kmp_resume_template(target_gtid, flag); 524 } 525 526 template void __kmp_resume_32<false, true>(int, kmp_flag_32<false, true> *); 527 template void __kmp_resume_64<false, true>(int, kmp_flag_64<false, true> *); 528 529 void __kmp_yield() { Sleep(0); } 530 531 void __kmp_gtid_set_specific(int gtid) { 532 if (__kmp_init_gtid) { 533 KA_TRACE(50, ("__kmp_gtid_set_specific: T#%d key:%d\n", gtid, 534 __kmp_gtid_threadprivate_key)); 535 if (!TlsSetValue(__kmp_gtid_threadprivate_key, (LPVOID)(gtid + 1))) 536 KMP_FATAL(TLSSetValueFailed); 537 } else { 538 KA_TRACE(50, ("__kmp_gtid_set_specific: runtime shutdown, returning\n")); 539 } 540 } 541 542 int __kmp_gtid_get_specific() { 543 int gtid; 544 if (!__kmp_init_gtid) { 545 KA_TRACE(50, ("__kmp_gtid_get_specific: runtime shutdown, returning " 546 "KMP_GTID_SHUTDOWN\n")); 547 return KMP_GTID_SHUTDOWN; 548 } 549 gtid = (int)(kmp_intptr_t)TlsGetValue(__kmp_gtid_threadprivate_key); 550 if (gtid == 0) { 551 gtid = KMP_GTID_DNE; 552 } else { 553 gtid--; 554 } 555 KA_TRACE(50, ("__kmp_gtid_get_specific: key:%d gtid:%d\n", 556 __kmp_gtid_threadprivate_key, gtid)); 557 return gtid; 558 } 559 560 void __kmp_affinity_bind_thread(int proc) { 561 if (__kmp_num_proc_groups > 1) { 562 // Form the GROUP_AFFINITY struct directly, rather than filling 563 // out a bit vector and calling __kmp_set_system_affinity(). 564 GROUP_AFFINITY ga; 565 KMP_DEBUG_ASSERT((proc >= 0) && (proc < (__kmp_num_proc_groups * CHAR_BIT * 566 sizeof(DWORD_PTR)))); 567 ga.Group = proc / (CHAR_BIT * sizeof(DWORD_PTR)); 568 ga.Mask = (unsigned long long)1 << (proc % (CHAR_BIT * sizeof(DWORD_PTR))); 569 ga.Reserved[0] = ga.Reserved[1] = ga.Reserved[2] = 0; 570 571 KMP_DEBUG_ASSERT(__kmp_SetThreadGroupAffinity != NULL); 572 if (__kmp_SetThreadGroupAffinity(GetCurrentThread(), &ga, NULL) == 0) { 573 DWORD error = GetLastError(); 574 if (__kmp_affinity_verbose) { // AC: continue silently if not verbose 575 kmp_msg_t err_code = KMP_ERR(error); 576 __kmp_msg(kmp_ms_warning, KMP_MSG(CantSetThreadAffMask), err_code, 577 __kmp_msg_null); 578 if (__kmp_generate_warnings == kmp_warnings_off) { 579 __kmp_str_free(&err_code.str); 580 } 581 } 582 } 583 } else { 584 kmp_affin_mask_t *mask; 585 KMP_CPU_ALLOC_ON_STACK(mask); 586 KMP_CPU_ZERO(mask); 587 KMP_CPU_SET(proc, mask); 588 __kmp_set_system_affinity(mask, TRUE); 589 KMP_CPU_FREE_FROM_STACK(mask); 590 } 591 } 592 593 void __kmp_affinity_determine_capable(const char *env_var) { 594 // All versions of Windows* OS (since Win '95) support SetThreadAffinityMask(). 595 596 #if KMP_GROUP_AFFINITY 597 KMP_AFFINITY_ENABLE(__kmp_num_proc_groups * sizeof(DWORD_PTR)); 598 #else 599 KMP_AFFINITY_ENABLE(sizeof(DWORD_PTR)); 600 #endif 601 602 KA_TRACE(10, ("__kmp_affinity_determine_capable: " 603 "Windows* OS affinity interface functional (mask size = " 604 "%" KMP_SIZE_T_SPEC ").\n", 605 __kmp_affin_mask_size)); 606 } 607 608 double __kmp_read_cpu_time(void) { 609 FILETIME CreationTime, ExitTime, KernelTime, UserTime; 610 int status; 611 double cpu_time; 612 613 cpu_time = 0; 614 615 status = GetProcessTimes(GetCurrentProcess(), &CreationTime, &ExitTime, 616 &KernelTime, &UserTime); 617 618 if (status) { 619 double sec = 0; 620 621 sec += KernelTime.dwHighDateTime; 622 sec += UserTime.dwHighDateTime; 623 624 /* Shift left by 32 bits */ 625 sec *= (double)(1 << 16) * (double)(1 << 16); 626 627 sec += KernelTime.dwLowDateTime; 628 sec += UserTime.dwLowDateTime; 629 630 cpu_time += (sec * 100.0) / KMP_NSEC_PER_SEC; 631 } 632 633 return cpu_time; 634 } 635 636 int __kmp_read_system_info(struct kmp_sys_info *info) { 637 info->maxrss = 0; /* the maximum resident set size utilized (in kilobytes) */ 638 info->minflt = 0; /* the number of page faults serviced without any I/O */ 639 info->majflt = 0; /* the number of page faults serviced that required I/O */ 640 info->nswap = 0; // the number of times a process was "swapped" out of memory 641 info->inblock = 0; // the number of times the file system had to perform input 642 info->oublock = 0; // number of times the file system had to perform output 643 info->nvcsw = 0; /* the number of times a context switch was voluntarily */ 644 info->nivcsw = 0; /* the number of times a context switch was forced */ 645 646 return 1; 647 } 648 649 void __kmp_runtime_initialize(void) { 650 SYSTEM_INFO info; 651 kmp_str_buf_t path; 652 UINT path_size; 653 654 if (__kmp_init_runtime) { 655 return; 656 } 657 658 #if KMP_DYNAMIC_LIB 659 /* Pin dynamic library for the lifetime of application */ 660 { 661 // First, turn off error message boxes 662 UINT err_mode = SetErrorMode(SEM_FAILCRITICALERRORS); 663 HMODULE h; 664 BOOL ret = GetModuleHandleEx(GET_MODULE_HANDLE_EX_FLAG_FROM_ADDRESS | 665 GET_MODULE_HANDLE_EX_FLAG_PIN, 666 (LPCTSTR)&__kmp_serial_initialize, &h); 667 KMP_DEBUG_ASSERT2(h && ret, "OpenMP RTL cannot find itself loaded"); 668 SetErrorMode(err_mode); // Restore error mode 669 KA_TRACE(10, ("__kmp_runtime_initialize: dynamic library pinned\n")); 670 } 671 #endif 672 673 InitializeCriticalSection(&__kmp_win32_section); 674 #if USE_ITT_BUILD 675 __kmp_itt_system_object_created(&__kmp_win32_section, "Critical Section"); 676 #endif /* USE_ITT_BUILD */ 677 __kmp_initialize_system_tick(); 678 679 #if (KMP_ARCH_X86 || KMP_ARCH_X86_64) 680 if (!__kmp_cpuinfo.initialized) { 681 __kmp_query_cpuid(&__kmp_cpuinfo); 682 } 683 #endif /* KMP_ARCH_X86 || KMP_ARCH_X86_64 */ 684 685 /* Set up minimum number of threads to switch to TLS gtid */ 686 #if KMP_OS_WINDOWS && !KMP_DYNAMIC_LIB 687 // Windows* OS, static library. 688 /* New thread may use stack space previously used by another thread, 689 currently terminated. On Windows* OS, in case of static linking, we do not 690 know the moment of thread termination, and our structures (__kmp_threads 691 and __kmp_root arrays) are still keep info about dead threads. This leads 692 to problem in __kmp_get_global_thread_id() function: it wrongly finds gtid 693 (by searching through stack addresses of all known threads) for 694 unregistered foreign tread. 695 696 Setting __kmp_tls_gtid_min to 0 workarounds this problem: 697 __kmp_get_global_thread_id() does not search through stacks, but get gtid 698 from TLS immediately. 699 --ln 700 */ 701 __kmp_tls_gtid_min = 0; 702 #else 703 __kmp_tls_gtid_min = KMP_TLS_GTID_MIN; 704 #endif 705 706 /* for the static library */ 707 if (!__kmp_gtid_threadprivate_key) { 708 __kmp_gtid_threadprivate_key = TlsAlloc(); 709 if (__kmp_gtid_threadprivate_key == TLS_OUT_OF_INDEXES) { 710 KMP_FATAL(TLSOutOfIndexes); 711 } 712 } 713 714 // Load ntdll.dll. 715 /* Simple GetModuleHandle( "ntdll.dl" ) is not suitable due to security issue 716 (see http://www.microsoft.com/technet/security/advisory/2269637.mspx). We 717 have to specify full path to the library. */ 718 __kmp_str_buf_init(&path); 719 path_size = GetSystemDirectory(path.str, path.size); 720 KMP_DEBUG_ASSERT(path_size > 0); 721 if (path_size >= path.size) { 722 // Buffer is too short. Expand the buffer and try again. 723 __kmp_str_buf_reserve(&path, path_size); 724 path_size = GetSystemDirectory(path.str, path.size); 725 KMP_DEBUG_ASSERT(path_size > 0); 726 } 727 if (path_size > 0 && path_size < path.size) { 728 // Now we have system directory name in the buffer. 729 // Append backslash and name of dll to form full path, 730 path.used = path_size; 731 __kmp_str_buf_print(&path, "\\%s", "ntdll.dll"); 732 733 // Now load ntdll using full path. 734 ntdll = GetModuleHandle(path.str); 735 } 736 737 KMP_DEBUG_ASSERT(ntdll != NULL); 738 if (ntdll != NULL) { 739 NtQuerySystemInformation = (NtQuerySystemInformation_t)GetProcAddress( 740 ntdll, "NtQuerySystemInformation"); 741 } 742 KMP_DEBUG_ASSERT(NtQuerySystemInformation != NULL); 743 744 #if KMP_GROUP_AFFINITY 745 // Load kernel32.dll. 746 // Same caveat - must use full system path name. 747 if (path_size > 0 && path_size < path.size) { 748 // Truncate the buffer back to just the system path length, 749 // discarding "\\ntdll.dll", and replacing it with "kernel32.dll". 750 path.used = path_size; 751 __kmp_str_buf_print(&path, "\\%s", "kernel32.dll"); 752 753 // Load kernel32.dll using full path. 754 kernel32 = GetModuleHandle(path.str); 755 KA_TRACE(10, ("__kmp_runtime_initialize: kernel32.dll = %s\n", path.str)); 756 757 // Load the function pointers to kernel32.dll routines 758 // that may or may not exist on this system. 759 if (kernel32 != NULL) { 760 __kmp_GetActiveProcessorCount = 761 (kmp_GetActiveProcessorCount_t)GetProcAddress( 762 kernel32, "GetActiveProcessorCount"); 763 __kmp_GetActiveProcessorGroupCount = 764 (kmp_GetActiveProcessorGroupCount_t)GetProcAddress( 765 kernel32, "GetActiveProcessorGroupCount"); 766 __kmp_GetThreadGroupAffinity = 767 (kmp_GetThreadGroupAffinity_t)GetProcAddress( 768 kernel32, "GetThreadGroupAffinity"); 769 __kmp_SetThreadGroupAffinity = 770 (kmp_SetThreadGroupAffinity_t)GetProcAddress( 771 kernel32, "SetThreadGroupAffinity"); 772 773 KA_TRACE(10, ("__kmp_runtime_initialize: __kmp_GetActiveProcessorCount" 774 " = %p\n", 775 __kmp_GetActiveProcessorCount)); 776 KA_TRACE(10, ("__kmp_runtime_initialize: " 777 "__kmp_GetActiveProcessorGroupCount = %p\n", 778 __kmp_GetActiveProcessorGroupCount)); 779 KA_TRACE(10, ("__kmp_runtime_initialize:__kmp_GetThreadGroupAffinity" 780 " = %p\n", 781 __kmp_GetThreadGroupAffinity)); 782 KA_TRACE(10, ("__kmp_runtime_initialize: __kmp_SetThreadGroupAffinity" 783 " = %p\n", 784 __kmp_SetThreadGroupAffinity)); 785 KA_TRACE(10, ("__kmp_runtime_initialize: sizeof(kmp_affin_mask_t) = %d\n", 786 sizeof(kmp_affin_mask_t))); 787 788 // See if group affinity is supported on this system. 789 // If so, calculate the #groups and #procs. 790 // 791 // Group affinity was introduced with Windows* 7 OS and 792 // Windows* Server 2008 R2 OS. 793 if ((__kmp_GetActiveProcessorCount != NULL) && 794 (__kmp_GetActiveProcessorGroupCount != NULL) && 795 (__kmp_GetThreadGroupAffinity != NULL) && 796 (__kmp_SetThreadGroupAffinity != NULL) && 797 ((__kmp_num_proc_groups = __kmp_GetActiveProcessorGroupCount()) > 798 1)) { 799 // Calculate the total number of active OS procs. 800 int i; 801 802 KA_TRACE(10, ("__kmp_runtime_initialize: %d processor groups" 803 " detected\n", 804 __kmp_num_proc_groups)); 805 806 __kmp_xproc = 0; 807 808 for (i = 0; i < __kmp_num_proc_groups; i++) { 809 DWORD size = __kmp_GetActiveProcessorCount(i); 810 __kmp_xproc += size; 811 KA_TRACE(10, ("__kmp_runtime_initialize: proc group %d size = %d\n", 812 i, size)); 813 } 814 } else { 815 KA_TRACE(10, ("__kmp_runtime_initialize: %d processor groups" 816 " detected\n", 817 __kmp_num_proc_groups)); 818 } 819 } 820 } 821 if (__kmp_num_proc_groups <= 1) { 822 GetSystemInfo(&info); 823 __kmp_xproc = info.dwNumberOfProcessors; 824 } 825 #else 826 GetSystemInfo(&info); 827 __kmp_xproc = info.dwNumberOfProcessors; 828 #endif /* KMP_GROUP_AFFINITY */ 829 830 // If the OS said there were 0 procs, take a guess and use a value of 2. 831 // This is done for Linux* OS, also. Do we need error / warning? 832 if (__kmp_xproc <= 0) { 833 __kmp_xproc = 2; 834 } 835 836 KA_TRACE(5, 837 ("__kmp_runtime_initialize: total processors = %d\n", __kmp_xproc)); 838 839 __kmp_str_buf_free(&path); 840 841 #if USE_ITT_BUILD 842 __kmp_itt_initialize(); 843 #endif /* USE_ITT_BUILD */ 844 845 __kmp_init_runtime = TRUE; 846 } // __kmp_runtime_initialize 847 848 void __kmp_runtime_destroy(void) { 849 if (!__kmp_init_runtime) { 850 return; 851 } 852 853 #if USE_ITT_BUILD 854 __kmp_itt_destroy(); 855 #endif /* USE_ITT_BUILD */ 856 857 /* we can't DeleteCriticalsection( & __kmp_win32_section ); */ 858 /* due to the KX_TRACE() commands */ 859 KA_TRACE(40, ("__kmp_runtime_destroy\n")); 860 861 if (__kmp_gtid_threadprivate_key) { 862 TlsFree(__kmp_gtid_threadprivate_key); 863 __kmp_gtid_threadprivate_key = 0; 864 } 865 866 __kmp_affinity_uninitialize(); 867 DeleteCriticalSection(&__kmp_win32_section); 868 869 ntdll = NULL; 870 NtQuerySystemInformation = NULL; 871 872 #if KMP_ARCH_X86_64 873 kernel32 = NULL; 874 __kmp_GetActiveProcessorCount = NULL; 875 __kmp_GetActiveProcessorGroupCount = NULL; 876 __kmp_GetThreadGroupAffinity = NULL; 877 __kmp_SetThreadGroupAffinity = NULL; 878 #endif // KMP_ARCH_X86_64 879 880 __kmp_init_runtime = FALSE; 881 } 882 883 void __kmp_terminate_thread(int gtid) { 884 kmp_info_t *th = __kmp_threads[gtid]; 885 886 if (!th) 887 return; 888 889 KA_TRACE(10, ("__kmp_terminate_thread: kill (%d)\n", gtid)); 890 891 if (TerminateThread(th->th.th_info.ds.ds_thread, (DWORD)-1) == FALSE) { 892 /* It's OK, the thread may have exited already */ 893 } 894 __kmp_free_handle(th->th.th_info.ds.ds_thread); 895 } 896 897 void __kmp_clear_system_time(void) { 898 BOOL status; 899 LARGE_INTEGER time; 900 status = QueryPerformanceCounter(&time); 901 __kmp_win32_time = (kmp_int64)time.QuadPart; 902 } 903 904 void __kmp_initialize_system_tick(void) { 905 { 906 BOOL status; 907 LARGE_INTEGER freq; 908 909 status = QueryPerformanceFrequency(&freq); 910 if (!status) { 911 DWORD error = GetLastError(); 912 __kmp_fatal(KMP_MSG(FunctionError, "QueryPerformanceFrequency()"), 913 KMP_ERR(error), __kmp_msg_null); 914 915 } else { 916 __kmp_win32_tick = ((double)1.0) / (double)freq.QuadPart; 917 } 918 } 919 } 920 921 /* Calculate the elapsed wall clock time for the user */ 922 923 void __kmp_elapsed(double *t) { 924 BOOL status; 925 LARGE_INTEGER now; 926 status = QueryPerformanceCounter(&now); 927 *t = ((double)now.QuadPart) * __kmp_win32_tick; 928 } 929 930 /* Calculate the elapsed wall clock tick for the user */ 931 932 void __kmp_elapsed_tick(double *t) { *t = __kmp_win32_tick; } 933 934 void __kmp_read_system_time(double *delta) { 935 if (delta != NULL) { 936 BOOL status; 937 LARGE_INTEGER now; 938 939 status = QueryPerformanceCounter(&now); 940 941 *delta = ((double)(((kmp_int64)now.QuadPart) - __kmp_win32_time)) * 942 __kmp_win32_tick; 943 } 944 } 945 946 /* Return the current time stamp in nsec */ 947 kmp_uint64 __kmp_now_nsec() { 948 LARGE_INTEGER now; 949 QueryPerformanceCounter(&now); 950 return 1e9 * __kmp_win32_tick * now.QuadPart; 951 } 952 953 extern "C" 954 void *__stdcall __kmp_launch_worker(void *arg) { 955 volatile void *stack_data; 956 void *exit_val; 957 void *padding = 0; 958 kmp_info_t *this_thr = (kmp_info_t *)arg; 959 int gtid; 960 961 gtid = this_thr->th.th_info.ds.ds_gtid; 962 __kmp_gtid_set_specific(gtid); 963 #ifdef KMP_TDATA_GTID 964 #error "This define causes problems with LoadLibrary() + declspec(thread) " \ 965 "on Windows* OS. See CQ50564, tests kmp_load_library*.c and this MSDN " \ 966 "reference: http://support.microsoft.com/kb/118816" 967 //__kmp_gtid = gtid; 968 #endif 969 970 #if USE_ITT_BUILD 971 __kmp_itt_thread_name(gtid); 972 #endif /* USE_ITT_BUILD */ 973 974 __kmp_affinity_set_init_mask(gtid, FALSE); 975 976 #if KMP_ARCH_X86 || KMP_ARCH_X86_64 977 // Set FP control regs to be a copy of the parallel initialization thread's. 978 __kmp_clear_x87_fpu_status_word(); 979 __kmp_load_x87_fpu_control_word(&__kmp_init_x87_fpu_control_word); 980 __kmp_load_mxcsr(&__kmp_init_mxcsr); 981 #endif /* KMP_ARCH_X86 || KMP_ARCH_X86_64 */ 982 983 if (__kmp_stkoffset > 0 && gtid > 0) { 984 padding = KMP_ALLOCA(gtid * __kmp_stkoffset); 985 } 986 987 KMP_FSYNC_RELEASING(&this_thr->th.th_info.ds.ds_alive); 988 this_thr->th.th_info.ds.ds_thread_id = GetCurrentThreadId(); 989 TCW_4(this_thr->th.th_info.ds.ds_alive, TRUE); 990 991 if (TCR_4(__kmp_gtid_mode) < 992 2) { // check stack only if it is used to get gtid 993 TCW_PTR(this_thr->th.th_info.ds.ds_stackbase, &stack_data); 994 KMP_ASSERT(this_thr->th.th_info.ds.ds_stackgrow == FALSE); 995 __kmp_check_stack_overlap(this_thr); 996 } 997 KMP_MB(); 998 exit_val = __kmp_launch_thread(this_thr); 999 KMP_FSYNC_RELEASING(&this_thr->th.th_info.ds.ds_alive); 1000 TCW_4(this_thr->th.th_info.ds.ds_alive, FALSE); 1001 KMP_MB(); 1002 return exit_val; 1003 } 1004 1005 #if KMP_USE_MONITOR 1006 /* The monitor thread controls all of the threads in the complex */ 1007 1008 void *__stdcall __kmp_launch_monitor(void *arg) { 1009 DWORD wait_status; 1010 kmp_thread_t monitor; 1011 int status; 1012 int interval; 1013 kmp_info_t *this_thr = (kmp_info_t *)arg; 1014 1015 KMP_DEBUG_ASSERT(__kmp_init_monitor); 1016 TCW_4(__kmp_init_monitor, 2); // AC: Signal library that monitor has started 1017 // TODO: hide "2" in enum (like {true,false,started}) 1018 this_thr->th.th_info.ds.ds_thread_id = GetCurrentThreadId(); 1019 TCW_4(this_thr->th.th_info.ds.ds_alive, TRUE); 1020 1021 KMP_MB(); /* Flush all pending memory write invalidates. */ 1022 KA_TRACE(10, ("__kmp_launch_monitor: launched\n")); 1023 1024 monitor = GetCurrentThread(); 1025 1026 /* set thread priority */ 1027 status = SetThreadPriority(monitor, THREAD_PRIORITY_HIGHEST); 1028 if (!status) { 1029 DWORD error = GetLastError(); 1030 __kmp_fatal(KMP_MSG(CantSetThreadPriority), KMP_ERR(error), __kmp_msg_null); 1031 } 1032 1033 /* register us as monitor */ 1034 __kmp_gtid_set_specific(KMP_GTID_MONITOR); 1035 #ifdef KMP_TDATA_GTID 1036 #error "This define causes problems with LoadLibrary() + declspec(thread) " \ 1037 "on Windows* OS. See CQ50564, tests kmp_load_library*.c and this MSDN " \ 1038 "reference: http://support.microsoft.com/kb/118816" 1039 //__kmp_gtid = KMP_GTID_MONITOR; 1040 #endif 1041 1042 #if USE_ITT_BUILD 1043 __kmp_itt_thread_ignore(); // Instruct Intel(R) Threading Tools to ignore 1044 // monitor thread. 1045 #endif /* USE_ITT_BUILD */ 1046 1047 KMP_MB(); /* Flush all pending memory write invalidates. */ 1048 1049 interval = (1000 / __kmp_monitor_wakeups); /* in milliseconds */ 1050 1051 while (!TCR_4(__kmp_global.g.g_done)) { 1052 /* This thread monitors the state of the system */ 1053 1054 KA_TRACE(15, ("__kmp_launch_monitor: update\n")); 1055 1056 wait_status = WaitForSingleObject(__kmp_monitor_ev, interval); 1057 1058 if (wait_status == WAIT_TIMEOUT) { 1059 TCW_4(__kmp_global.g.g_time.dt.t_value, 1060 TCR_4(__kmp_global.g.g_time.dt.t_value) + 1); 1061 } 1062 1063 KMP_MB(); /* Flush all pending memory write invalidates. */ 1064 } 1065 1066 KA_TRACE(10, ("__kmp_launch_monitor: finished\n")); 1067 1068 status = SetThreadPriority(monitor, THREAD_PRIORITY_NORMAL); 1069 if (!status) { 1070 DWORD error = GetLastError(); 1071 __kmp_fatal(KMP_MSG(CantSetThreadPriority), KMP_ERR(error), __kmp_msg_null); 1072 } 1073 1074 if (__kmp_global.g.g_abort != 0) { 1075 /* now we need to terminate the worker threads */ 1076 /* the value of t_abort is the signal we caught */ 1077 int gtid; 1078 1079 KA_TRACE(10, ("__kmp_launch_monitor: terminate sig=%d\n", 1080 (__kmp_global.g.g_abort))); 1081 1082 /* terminate the OpenMP worker threads */ 1083 /* TODO this is not valid for sibling threads!! 1084 * the uber master might not be 0 anymore.. */ 1085 for (gtid = 1; gtid < __kmp_threads_capacity; ++gtid) 1086 __kmp_terminate_thread(gtid); 1087 1088 __kmp_cleanup(); 1089 1090 Sleep(0); 1091 1092 KA_TRACE(10, 1093 ("__kmp_launch_monitor: raise sig=%d\n", __kmp_global.g.g_abort)); 1094 1095 if (__kmp_global.g.g_abort > 0) { 1096 raise(__kmp_global.g.g_abort); 1097 } 1098 } 1099 1100 TCW_4(this_thr->th.th_info.ds.ds_alive, FALSE); 1101 1102 KMP_MB(); 1103 return arg; 1104 } 1105 #endif 1106 1107 void __kmp_create_worker(int gtid, kmp_info_t *th, size_t stack_size) { 1108 kmp_thread_t handle; 1109 DWORD idThread; 1110 1111 KA_TRACE(10, ("__kmp_create_worker: try to create thread (%d)\n", gtid)); 1112 1113 th->th.th_info.ds.ds_gtid = gtid; 1114 1115 if (KMP_UBER_GTID(gtid)) { 1116 int stack_data; 1117 1118 /* TODO: GetCurrentThread() returns a pseudo-handle that is unsuitable for 1119 other threads to use. Is it appropriate to just use GetCurrentThread? 1120 When should we close this handle? When unregistering the root? */ 1121 { 1122 BOOL rc; 1123 rc = DuplicateHandle(GetCurrentProcess(), GetCurrentThread(), 1124 GetCurrentProcess(), &th->th.th_info.ds.ds_thread, 0, 1125 FALSE, DUPLICATE_SAME_ACCESS); 1126 KMP_ASSERT(rc); 1127 KA_TRACE(10, (" __kmp_create_worker: ROOT Handle duplicated, th = %p, " 1128 "handle = %" KMP_UINTPTR_SPEC "\n", 1129 (LPVOID)th, th->th.th_info.ds.ds_thread)); 1130 th->th.th_info.ds.ds_thread_id = GetCurrentThreadId(); 1131 } 1132 if (TCR_4(__kmp_gtid_mode) < 2) { // check stack only if used to get gtid 1133 /* we will dynamically update the stack range if gtid_mode == 1 */ 1134 TCW_PTR(th->th.th_info.ds.ds_stackbase, &stack_data); 1135 TCW_PTR(th->th.th_info.ds.ds_stacksize, 0); 1136 TCW_4(th->th.th_info.ds.ds_stackgrow, TRUE); 1137 __kmp_check_stack_overlap(th); 1138 } 1139 } else { 1140 KMP_MB(); /* Flush all pending memory write invalidates. */ 1141 1142 /* Set stack size for this thread now. */ 1143 KA_TRACE(10, 1144 ("__kmp_create_worker: stack_size = %" KMP_SIZE_T_SPEC " bytes\n", 1145 stack_size)); 1146 1147 stack_size += gtid * __kmp_stkoffset; 1148 1149 TCW_PTR(th->th.th_info.ds.ds_stacksize, stack_size); 1150 TCW_4(th->th.th_info.ds.ds_stackgrow, FALSE); 1151 1152 KA_TRACE(10, 1153 ("__kmp_create_worker: (before) stack_size = %" KMP_SIZE_T_SPEC 1154 " bytes, &__kmp_launch_worker = %p, th = %p, &idThread = %p\n", 1155 (SIZE_T)stack_size, (LPTHREAD_START_ROUTINE)&__kmp_launch_worker, 1156 (LPVOID)th, &idThread)); 1157 1158 handle = CreateThread( 1159 NULL, (SIZE_T)stack_size, (LPTHREAD_START_ROUTINE)__kmp_launch_worker, 1160 (LPVOID)th, STACK_SIZE_PARAM_IS_A_RESERVATION, &idThread); 1161 1162 KA_TRACE(10, 1163 ("__kmp_create_worker: (after) stack_size = %" KMP_SIZE_T_SPEC 1164 " bytes, &__kmp_launch_worker = %p, th = %p, " 1165 "idThread = %u, handle = %" KMP_UINTPTR_SPEC "\n", 1166 (SIZE_T)stack_size, (LPTHREAD_START_ROUTINE)&__kmp_launch_worker, 1167 (LPVOID)th, idThread, handle)); 1168 1169 if (handle == 0) { 1170 DWORD error = GetLastError(); 1171 __kmp_fatal(KMP_MSG(CantCreateThread), KMP_ERR(error), __kmp_msg_null); 1172 } else { 1173 th->th.th_info.ds.ds_thread = handle; 1174 } 1175 1176 KMP_MB(); /* Flush all pending memory write invalidates. */ 1177 } 1178 1179 KA_TRACE(10, ("__kmp_create_worker: done creating thread (%d)\n", gtid)); 1180 } 1181 1182 int __kmp_still_running(kmp_info_t *th) { 1183 return (WAIT_TIMEOUT == WaitForSingleObject(th->th.th_info.ds.ds_thread, 0)); 1184 } 1185 1186 #if KMP_USE_MONITOR 1187 void __kmp_create_monitor(kmp_info_t *th) { 1188 kmp_thread_t handle; 1189 DWORD idThread; 1190 int ideal, new_ideal; 1191 1192 if (__kmp_dflt_blocktime == KMP_MAX_BLOCKTIME) { 1193 // We don't need monitor thread in case of MAX_BLOCKTIME 1194 KA_TRACE(10, ("__kmp_create_monitor: skipping monitor thread because of " 1195 "MAX blocktime\n")); 1196 th->th.th_info.ds.ds_tid = 0; // this makes reap_monitor no-op 1197 th->th.th_info.ds.ds_gtid = 0; 1198 TCW_4(__kmp_init_monitor, 2); // Signal to stop waiting for monitor creation 1199 return; 1200 } 1201 KA_TRACE(10, ("__kmp_create_monitor: try to create monitor\n")); 1202 1203 KMP_MB(); /* Flush all pending memory write invalidates. */ 1204 1205 __kmp_monitor_ev = CreateEvent(NULL, TRUE, FALSE, NULL); 1206 if (__kmp_monitor_ev == NULL) { 1207 DWORD error = GetLastError(); 1208 __kmp_fatal(KMP_MSG(CantCreateEvent), KMP_ERR(error), __kmp_msg_null); 1209 } 1210 #if USE_ITT_BUILD 1211 __kmp_itt_system_object_created(__kmp_monitor_ev, "Event"); 1212 #endif /* USE_ITT_BUILD */ 1213 1214 th->th.th_info.ds.ds_tid = KMP_GTID_MONITOR; 1215 th->th.th_info.ds.ds_gtid = KMP_GTID_MONITOR; 1216 1217 // FIXME - on Windows* OS, if __kmp_monitor_stksize = 0, figure out how 1218 // to automatically expand stacksize based on CreateThread error code. 1219 if (__kmp_monitor_stksize == 0) { 1220 __kmp_monitor_stksize = KMP_DEFAULT_MONITOR_STKSIZE; 1221 } 1222 if (__kmp_monitor_stksize < __kmp_sys_min_stksize) { 1223 __kmp_monitor_stksize = __kmp_sys_min_stksize; 1224 } 1225 1226 KA_TRACE(10, ("__kmp_create_monitor: requested stacksize = %d bytes\n", 1227 (int)__kmp_monitor_stksize)); 1228 1229 TCW_4(__kmp_global.g.g_time.dt.t_value, 0); 1230 1231 handle = 1232 CreateThread(NULL, (SIZE_T)__kmp_monitor_stksize, 1233 (LPTHREAD_START_ROUTINE)__kmp_launch_monitor, (LPVOID)th, 1234 STACK_SIZE_PARAM_IS_A_RESERVATION, &idThread); 1235 if (handle == 0) { 1236 DWORD error = GetLastError(); 1237 __kmp_fatal(KMP_MSG(CantCreateThread), KMP_ERR(error), __kmp_msg_null); 1238 } else 1239 th->th.th_info.ds.ds_thread = handle; 1240 1241 KMP_MB(); /* Flush all pending memory write invalidates. */ 1242 1243 KA_TRACE(10, ("__kmp_create_monitor: monitor created %p\n", 1244 (void *)th->th.th_info.ds.ds_thread)); 1245 } 1246 #endif 1247 1248 /* Check to see if thread is still alive. 1249 NOTE: The ExitProcess(code) system call causes all threads to Terminate 1250 with a exit_val = code. Because of this we can not rely on exit_val having 1251 any particular value. So this routine may return STILL_ALIVE in exit_val 1252 even after the thread is dead. */ 1253 1254 int __kmp_is_thread_alive(kmp_info_t *th, DWORD *exit_val) { 1255 DWORD rc; 1256 rc = GetExitCodeThread(th->th.th_info.ds.ds_thread, exit_val); 1257 if (rc == 0) { 1258 DWORD error = GetLastError(); 1259 __kmp_fatal(KMP_MSG(FunctionError, "GetExitCodeThread()"), KMP_ERR(error), 1260 __kmp_msg_null); 1261 } 1262 return (*exit_val == STILL_ACTIVE); 1263 } 1264 1265 void __kmp_exit_thread(int exit_status) { 1266 ExitThread(exit_status); 1267 } // __kmp_exit_thread 1268 1269 // This is a common part for both __kmp_reap_worker() and __kmp_reap_monitor(). 1270 static void __kmp_reap_common(kmp_info_t *th) { 1271 DWORD exit_val; 1272 1273 KMP_MB(); /* Flush all pending memory write invalidates. */ 1274 1275 KA_TRACE( 1276 10, ("__kmp_reap_common: try to reap (%d)\n", th->th.th_info.ds.ds_gtid)); 1277 1278 /* 2006-10-19: 1279 There are two opposite situations: 1280 1. Windows* OS keep thread alive after it resets ds_alive flag and 1281 exits from thread function. (For example, see C70770/Q394281 "unloading of 1282 dll based on OMP is very slow".) 1283 2. Windows* OS may kill thread before it resets ds_alive flag. 1284 1285 Right solution seems to be waiting for *either* thread termination *or* 1286 ds_alive resetting. */ 1287 { 1288 // TODO: This code is very similar to KMP_WAIT. Need to generalize 1289 // KMP_WAIT to cover this usage also. 1290 void *obj = NULL; 1291 kmp_uint32 spins; 1292 #if USE_ITT_BUILD 1293 KMP_FSYNC_SPIN_INIT(obj, (void *)&th->th.th_info.ds.ds_alive); 1294 #endif /* USE_ITT_BUILD */ 1295 KMP_INIT_YIELD(spins); 1296 do { 1297 #if USE_ITT_BUILD 1298 KMP_FSYNC_SPIN_PREPARE(obj); 1299 #endif /* USE_ITT_BUILD */ 1300 __kmp_is_thread_alive(th, &exit_val); 1301 KMP_YIELD_OVERSUB_ELSE_SPIN(spins); 1302 } while (exit_val == STILL_ACTIVE && TCR_4(th->th.th_info.ds.ds_alive)); 1303 #if USE_ITT_BUILD 1304 if (exit_val == STILL_ACTIVE) { 1305 KMP_FSYNC_CANCEL(obj); 1306 } else { 1307 KMP_FSYNC_SPIN_ACQUIRED(obj); 1308 } 1309 #endif /* USE_ITT_BUILD */ 1310 } 1311 1312 __kmp_free_handle(th->th.th_info.ds.ds_thread); 1313 1314 /* NOTE: The ExitProcess(code) system call causes all threads to Terminate 1315 with a exit_val = code. Because of this we can not rely on exit_val having 1316 any particular value. */ 1317 if (exit_val == STILL_ACTIVE) { 1318 KA_TRACE(1, ("__kmp_reap_common: thread still active.\n")); 1319 } else if ((void *)exit_val != (void *)th) { 1320 KA_TRACE(1, ("__kmp_reap_common: ExitProcess / TerminateThread used?\n")); 1321 } 1322 1323 KA_TRACE(10, 1324 ("__kmp_reap_common: done reaping (%d), handle = %" KMP_UINTPTR_SPEC 1325 "\n", 1326 th->th.th_info.ds.ds_gtid, th->th.th_info.ds.ds_thread)); 1327 1328 th->th.th_info.ds.ds_thread = 0; 1329 th->th.th_info.ds.ds_tid = KMP_GTID_DNE; 1330 th->th.th_info.ds.ds_gtid = KMP_GTID_DNE; 1331 th->th.th_info.ds.ds_thread_id = 0; 1332 1333 KMP_MB(); /* Flush all pending memory write invalidates. */ 1334 } 1335 1336 #if KMP_USE_MONITOR 1337 void __kmp_reap_monitor(kmp_info_t *th) { 1338 int status; 1339 1340 KA_TRACE(10, ("__kmp_reap_monitor: try to reap %p\n", 1341 (void *)th->th.th_info.ds.ds_thread)); 1342 1343 // If monitor has been created, its tid and gtid should be KMP_GTID_MONITOR. 1344 // If both tid and gtid are 0, it means the monitor did not ever start. 1345 // If both tid and gtid are KMP_GTID_DNE, the monitor has been shut down. 1346 KMP_DEBUG_ASSERT(th->th.th_info.ds.ds_tid == th->th.th_info.ds.ds_gtid); 1347 if (th->th.th_info.ds.ds_gtid != KMP_GTID_MONITOR) { 1348 KA_TRACE(10, ("__kmp_reap_monitor: monitor did not start, returning\n")); 1349 return; 1350 } 1351 1352 KMP_MB(); /* Flush all pending memory write invalidates. */ 1353 1354 status = SetEvent(__kmp_monitor_ev); 1355 if (status == FALSE) { 1356 DWORD error = GetLastError(); 1357 __kmp_fatal(KMP_MSG(CantSetEvent), KMP_ERR(error), __kmp_msg_null); 1358 } 1359 KA_TRACE(10, ("__kmp_reap_monitor: reaping thread (%d)\n", 1360 th->th.th_info.ds.ds_gtid)); 1361 __kmp_reap_common(th); 1362 1363 __kmp_free_handle(__kmp_monitor_ev); 1364 1365 KMP_MB(); /* Flush all pending memory write invalidates. */ 1366 } 1367 #endif 1368 1369 void __kmp_reap_worker(kmp_info_t *th) { 1370 KA_TRACE(10, ("__kmp_reap_worker: reaping thread (%d)\n", 1371 th->th.th_info.ds.ds_gtid)); 1372 __kmp_reap_common(th); 1373 } 1374 1375 #if KMP_HANDLE_SIGNALS 1376 1377 static void __kmp_team_handler(int signo) { 1378 if (__kmp_global.g.g_abort == 0) { 1379 // Stage 1 signal handler, let's shut down all of the threads. 1380 if (__kmp_debug_buf) { 1381 __kmp_dump_debug_buffer(); 1382 } 1383 KMP_MB(); // Flush all pending memory write invalidates. 1384 TCW_4(__kmp_global.g.g_abort, signo); 1385 KMP_MB(); // Flush all pending memory write invalidates. 1386 TCW_4(__kmp_global.g.g_done, TRUE); 1387 KMP_MB(); // Flush all pending memory write invalidates. 1388 } 1389 } // __kmp_team_handler 1390 1391 static sig_func_t __kmp_signal(int signum, sig_func_t handler) { 1392 sig_func_t old = signal(signum, handler); 1393 if (old == SIG_ERR) { 1394 int error = errno; 1395 __kmp_fatal(KMP_MSG(FunctionError, "signal"), KMP_ERR(error), 1396 __kmp_msg_null); 1397 } 1398 return old; 1399 } 1400 1401 static void __kmp_install_one_handler(int sig, sig_func_t handler, 1402 int parallel_init) { 1403 sig_func_t old; 1404 KMP_MB(); /* Flush all pending memory write invalidates. */ 1405 KB_TRACE(60, ("__kmp_install_one_handler: called: sig=%d\n", sig)); 1406 if (parallel_init) { 1407 old = __kmp_signal(sig, handler); 1408 // SIG_DFL on Windows* OS in NULL or 0. 1409 if (old == __kmp_sighldrs[sig]) { 1410 __kmp_siginstalled[sig] = 1; 1411 } else { // Restore/keep user's handler if one previously installed. 1412 old = __kmp_signal(sig, old); 1413 } 1414 } else { 1415 // Save initial/system signal handlers to see if user handlers installed. 1416 // 2009-09-23: It is a dead code. On Windows* OS __kmp_install_signals 1417 // called once with parallel_init == TRUE. 1418 old = __kmp_signal(sig, SIG_DFL); 1419 __kmp_sighldrs[sig] = old; 1420 __kmp_signal(sig, old); 1421 } 1422 KMP_MB(); /* Flush all pending memory write invalidates. */ 1423 } // __kmp_install_one_handler 1424 1425 static void __kmp_remove_one_handler(int sig) { 1426 if (__kmp_siginstalled[sig]) { 1427 sig_func_t old; 1428 KMP_MB(); // Flush all pending memory write invalidates. 1429 KB_TRACE(60, ("__kmp_remove_one_handler: called: sig=%d\n", sig)); 1430 old = __kmp_signal(sig, __kmp_sighldrs[sig]); 1431 if (old != __kmp_team_handler) { 1432 KB_TRACE(10, ("__kmp_remove_one_handler: oops, not our handler, " 1433 "restoring: sig=%d\n", 1434 sig)); 1435 old = __kmp_signal(sig, old); 1436 } 1437 __kmp_sighldrs[sig] = NULL; 1438 __kmp_siginstalled[sig] = 0; 1439 KMP_MB(); // Flush all pending memory write invalidates. 1440 } 1441 } // __kmp_remove_one_handler 1442 1443 void __kmp_install_signals(int parallel_init) { 1444 KB_TRACE(10, ("__kmp_install_signals: called\n")); 1445 if (!__kmp_handle_signals) { 1446 KB_TRACE(10, ("__kmp_install_signals: KMP_HANDLE_SIGNALS is false - " 1447 "handlers not installed\n")); 1448 return; 1449 } 1450 __kmp_install_one_handler(SIGINT, __kmp_team_handler, parallel_init); 1451 __kmp_install_one_handler(SIGILL, __kmp_team_handler, parallel_init); 1452 __kmp_install_one_handler(SIGABRT, __kmp_team_handler, parallel_init); 1453 __kmp_install_one_handler(SIGFPE, __kmp_team_handler, parallel_init); 1454 __kmp_install_one_handler(SIGSEGV, __kmp_team_handler, parallel_init); 1455 __kmp_install_one_handler(SIGTERM, __kmp_team_handler, parallel_init); 1456 } // __kmp_install_signals 1457 1458 void __kmp_remove_signals(void) { 1459 int sig; 1460 KB_TRACE(10, ("__kmp_remove_signals: called\n")); 1461 for (sig = 1; sig < NSIG; ++sig) { 1462 __kmp_remove_one_handler(sig); 1463 } 1464 } // __kmp_remove_signals 1465 1466 #endif // KMP_HANDLE_SIGNALS 1467 1468 /* Put the thread to sleep for a time period */ 1469 void __kmp_thread_sleep(int millis) { 1470 DWORD status; 1471 1472 status = SleepEx((DWORD)millis, FALSE); 1473 if (status) { 1474 DWORD error = GetLastError(); 1475 __kmp_fatal(KMP_MSG(FunctionError, "SleepEx()"), KMP_ERR(error), 1476 __kmp_msg_null); 1477 } 1478 } 1479 1480 // Determine whether the given address is mapped into the current address space. 1481 int __kmp_is_address_mapped(void *addr) { 1482 DWORD status; 1483 MEMORY_BASIC_INFORMATION lpBuffer; 1484 SIZE_T dwLength; 1485 1486 dwLength = sizeof(MEMORY_BASIC_INFORMATION); 1487 1488 status = VirtualQuery(addr, &lpBuffer, dwLength); 1489 1490 return !(((lpBuffer.State == MEM_RESERVE) || (lpBuffer.State == MEM_FREE)) || 1491 ((lpBuffer.Protect == PAGE_NOACCESS) || 1492 (lpBuffer.Protect == PAGE_EXECUTE))); 1493 } 1494 1495 kmp_uint64 __kmp_hardware_timestamp(void) { 1496 kmp_uint64 r = 0; 1497 1498 QueryPerformanceCounter((LARGE_INTEGER *)&r); 1499 return r; 1500 } 1501 1502 /* Free handle and check the error code */ 1503 void __kmp_free_handle(kmp_thread_t tHandle) { 1504 /* called with parameter type HANDLE also, thus suppose kmp_thread_t defined 1505 * as HANDLE */ 1506 BOOL rc; 1507 rc = CloseHandle(tHandle); 1508 if (!rc) { 1509 DWORD error = GetLastError(); 1510 __kmp_fatal(KMP_MSG(CantCloseHandle), KMP_ERR(error), __kmp_msg_null); 1511 } 1512 } 1513 1514 int __kmp_get_load_balance(int max) { 1515 static ULONG glb_buff_size = 100 * 1024; 1516 1517 // Saved count of the running threads for the thread balance algorithm 1518 static int glb_running_threads = 0; 1519 static double glb_call_time = 0; /* Thread balance algorithm call time */ 1520 1521 int running_threads = 0; // Number of running threads in the system. 1522 NTSTATUS status = 0; 1523 ULONG buff_size = 0; 1524 ULONG info_size = 0; 1525 void *buffer = NULL; 1526 PSYSTEM_PROCESS_INFORMATION spi = NULL; 1527 int first_time = 1; 1528 1529 double call_time = 0.0; // start, finish; 1530 1531 __kmp_elapsed(&call_time); 1532 1533 if (glb_call_time && 1534 (call_time - glb_call_time < __kmp_load_balance_interval)) { 1535 running_threads = glb_running_threads; 1536 goto finish; 1537 } 1538 glb_call_time = call_time; 1539 1540 // Do not spend time on running algorithm if we have a permanent error. 1541 if (NtQuerySystemInformation == NULL) { 1542 running_threads = -1; 1543 goto finish; 1544 } 1545 1546 if (max <= 0) { 1547 max = INT_MAX; 1548 } 1549 1550 do { 1551 1552 if (first_time) { 1553 buff_size = glb_buff_size; 1554 } else { 1555 buff_size = 2 * buff_size; 1556 } 1557 1558 buffer = KMP_INTERNAL_REALLOC(buffer, buff_size); 1559 if (buffer == NULL) { 1560 running_threads = -1; 1561 goto finish; 1562 } 1563 status = NtQuerySystemInformation(SystemProcessInformation, buffer, 1564 buff_size, &info_size); 1565 first_time = 0; 1566 1567 } while (status == STATUS_INFO_LENGTH_MISMATCH); 1568 glb_buff_size = buff_size; 1569 1570 #define CHECK(cond) \ 1571 { \ 1572 KMP_DEBUG_ASSERT(cond); \ 1573 if (!(cond)) { \ 1574 running_threads = -1; \ 1575 goto finish; \ 1576 } \ 1577 } 1578 1579 CHECK(buff_size >= info_size); 1580 spi = PSYSTEM_PROCESS_INFORMATION(buffer); 1581 for (;;) { 1582 ptrdiff_t offset = uintptr_t(spi) - uintptr_t(buffer); 1583 CHECK(0 <= offset && 1584 offset + sizeof(SYSTEM_PROCESS_INFORMATION) < info_size); 1585 HANDLE pid = spi->ProcessId; 1586 ULONG num = spi->NumberOfThreads; 1587 CHECK(num >= 1); 1588 size_t spi_size = 1589 sizeof(SYSTEM_PROCESS_INFORMATION) + sizeof(SYSTEM_THREAD) * (num - 1); 1590 CHECK(offset + spi_size < 1591 info_size); // Make sure process info record fits the buffer. 1592 if (spi->NextEntryOffset != 0) { 1593 CHECK(spi_size <= 1594 spi->NextEntryOffset); // And do not overlap with the next record. 1595 } 1596 // pid == 0 corresponds to the System Idle Process. It always has running 1597 // threads on all cores. So, we don't consider the running threads of this 1598 // process. 1599 if (pid != 0) { 1600 for (int i = 0; i < num; ++i) { 1601 THREAD_STATE state = spi->Threads[i].State; 1602 // Count threads that have Ready or Running state. 1603 // !!! TODO: Why comment does not match the code??? 1604 if (state == StateRunning) { 1605 ++running_threads; 1606 // Stop counting running threads if the number is already greater than 1607 // the number of available cores 1608 if (running_threads >= max) { 1609 goto finish; 1610 } 1611 } 1612 } 1613 } 1614 if (spi->NextEntryOffset == 0) { 1615 break; 1616 } 1617 spi = PSYSTEM_PROCESS_INFORMATION(uintptr_t(spi) + spi->NextEntryOffset); 1618 } 1619 1620 #undef CHECK 1621 1622 finish: // Clean up and exit. 1623 1624 if (buffer != NULL) { 1625 KMP_INTERNAL_FREE(buffer); 1626 } 1627 1628 glb_running_threads = running_threads; 1629 1630 return running_threads; 1631 } //__kmp_get_load_balance() 1632 1633 // Functions for hidden helper task 1634 void __kmp_hidden_helper_worker_thread_wait() { 1635 KMP_ASSERT(0 && "Hidden helper task is not supported on Windows"); 1636 } 1637 1638 void __kmp_do_initialize_hidden_helper_threads() { 1639 KMP_ASSERT(0 && "Hidden helper task is not supported on Windows"); 1640 } 1641 1642 void __kmp_hidden_helper_threads_initz_wait() { 1643 KMP_ASSERT(0 && "Hidden helper task is not supported on Windows"); 1644 } 1645 1646 void __kmp_hidden_helper_initz_release() { 1647 KMP_ASSERT(0 && "Hidden helper task is not supported on Windows"); 1648 } 1649 1650 void __kmp_hidden_helper_main_thread_wait() { 1651 KMP_ASSERT(0 && "Hidden helper task is not supported on Windows"); 1652 } 1653 1654 void __kmp_hidden_helper_main_thread_release() { 1655 KMP_ASSERT(0 && "Hidden helper task is not supported on Windows"); 1656 } 1657 1658 void __kmp_hidden_helper_worker_thread_signal() { 1659 KMP_ASSERT(0 && "Hidden helper task is not supported on Windows"); 1660 } 1661 1662 void __kmp_hidden_helper_threads_deinitz_wait() { 1663 KMP_ASSERT(0 && "Hidden helper task is not supported on Windows"); 1664 } 1665 1666 void __kmp_hidden_helper_threads_deinitz_release() { 1667 KMP_ASSERT(0 && "Hidden helper task is not supported on Windows"); 1668 } 1669