1 /* 2 * z_Windows_NT_util.cpp -- platform specific routines. 3 */ 4 5 //===----------------------------------------------------------------------===// 6 // 7 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 8 // See https://llvm.org/LICENSE.txt for license information. 9 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "kmp.h" 14 #include "kmp_affinity.h" 15 #include "kmp_i18n.h" 16 #include "kmp_io.h" 17 #include "kmp_itt.h" 18 #include "kmp_wait_release.h" 19 20 /* This code is related to NtQuerySystemInformation() function. This function 21 is used in the Load balance algorithm for OMP_DYNAMIC=true to find the 22 number of running threads in the system. */ 23 24 #include <ntsecapi.h> // UNICODE_STRING 25 #include <ntstatus.h> 26 27 enum SYSTEM_INFORMATION_CLASS { 28 SystemProcessInformation = 5 29 }; // SYSTEM_INFORMATION_CLASS 30 31 struct CLIENT_ID { 32 HANDLE UniqueProcess; 33 HANDLE UniqueThread; 34 }; // struct CLIENT_ID 35 36 enum THREAD_STATE { 37 StateInitialized, 38 StateReady, 39 StateRunning, 40 StateStandby, 41 StateTerminated, 42 StateWait, 43 StateTransition, 44 StateUnknown 45 }; // enum THREAD_STATE 46 47 struct VM_COUNTERS { 48 SIZE_T PeakVirtualSize; 49 SIZE_T VirtualSize; 50 ULONG PageFaultCount; 51 SIZE_T PeakWorkingSetSize; 52 SIZE_T WorkingSetSize; 53 SIZE_T QuotaPeakPagedPoolUsage; 54 SIZE_T QuotaPagedPoolUsage; 55 SIZE_T QuotaPeakNonPagedPoolUsage; 56 SIZE_T QuotaNonPagedPoolUsage; 57 SIZE_T PagefileUsage; 58 SIZE_T PeakPagefileUsage; 59 SIZE_T PrivatePageCount; 60 }; // struct VM_COUNTERS 61 62 struct SYSTEM_THREAD { 63 LARGE_INTEGER KernelTime; 64 LARGE_INTEGER UserTime; 65 LARGE_INTEGER CreateTime; 66 ULONG WaitTime; 67 LPVOID StartAddress; 68 CLIENT_ID ClientId; 69 DWORD Priority; 70 LONG BasePriority; 71 ULONG ContextSwitchCount; 72 THREAD_STATE State; 73 ULONG WaitReason; 74 }; // SYSTEM_THREAD 75 76 KMP_BUILD_ASSERT(offsetof(SYSTEM_THREAD, KernelTime) == 0); 77 #if KMP_ARCH_X86 78 KMP_BUILD_ASSERT(offsetof(SYSTEM_THREAD, StartAddress) == 28); 79 KMP_BUILD_ASSERT(offsetof(SYSTEM_THREAD, State) == 52); 80 #else 81 KMP_BUILD_ASSERT(offsetof(SYSTEM_THREAD, StartAddress) == 32); 82 KMP_BUILD_ASSERT(offsetof(SYSTEM_THREAD, State) == 68); 83 #endif 84 85 struct SYSTEM_PROCESS_INFORMATION { 86 ULONG NextEntryOffset; 87 ULONG NumberOfThreads; 88 LARGE_INTEGER Reserved[3]; 89 LARGE_INTEGER CreateTime; 90 LARGE_INTEGER UserTime; 91 LARGE_INTEGER KernelTime; 92 UNICODE_STRING ImageName; 93 DWORD BasePriority; 94 HANDLE ProcessId; 95 HANDLE ParentProcessId; 96 ULONG HandleCount; 97 ULONG Reserved2[2]; 98 VM_COUNTERS VMCounters; 99 IO_COUNTERS IOCounters; 100 SYSTEM_THREAD Threads[1]; 101 }; // SYSTEM_PROCESS_INFORMATION 102 typedef SYSTEM_PROCESS_INFORMATION *PSYSTEM_PROCESS_INFORMATION; 103 104 KMP_BUILD_ASSERT(offsetof(SYSTEM_PROCESS_INFORMATION, NextEntryOffset) == 0); 105 KMP_BUILD_ASSERT(offsetof(SYSTEM_PROCESS_INFORMATION, CreateTime) == 32); 106 KMP_BUILD_ASSERT(offsetof(SYSTEM_PROCESS_INFORMATION, ImageName) == 56); 107 #if KMP_ARCH_X86 108 KMP_BUILD_ASSERT(offsetof(SYSTEM_PROCESS_INFORMATION, ProcessId) == 68); 109 KMP_BUILD_ASSERT(offsetof(SYSTEM_PROCESS_INFORMATION, HandleCount) == 76); 110 KMP_BUILD_ASSERT(offsetof(SYSTEM_PROCESS_INFORMATION, VMCounters) == 88); 111 KMP_BUILD_ASSERT(offsetof(SYSTEM_PROCESS_INFORMATION, IOCounters) == 136); 112 KMP_BUILD_ASSERT(offsetof(SYSTEM_PROCESS_INFORMATION, Threads) == 184); 113 #else 114 KMP_BUILD_ASSERT(offsetof(SYSTEM_PROCESS_INFORMATION, ProcessId) == 80); 115 KMP_BUILD_ASSERT(offsetof(SYSTEM_PROCESS_INFORMATION, HandleCount) == 96); 116 KMP_BUILD_ASSERT(offsetof(SYSTEM_PROCESS_INFORMATION, VMCounters) == 112); 117 KMP_BUILD_ASSERT(offsetof(SYSTEM_PROCESS_INFORMATION, IOCounters) == 208); 118 KMP_BUILD_ASSERT(offsetof(SYSTEM_PROCESS_INFORMATION, Threads) == 256); 119 #endif 120 121 typedef NTSTATUS(NTAPI *NtQuerySystemInformation_t)(SYSTEM_INFORMATION_CLASS, 122 PVOID, ULONG, PULONG); 123 NtQuerySystemInformation_t NtQuerySystemInformation = NULL; 124 125 HMODULE ntdll = NULL; 126 127 /* End of NtQuerySystemInformation()-related code */ 128 129 static HMODULE kernel32 = NULL; 130 131 #if KMP_HANDLE_SIGNALS 132 typedef void (*sig_func_t)(int); 133 static sig_func_t __kmp_sighldrs[NSIG]; 134 static int __kmp_siginstalled[NSIG]; 135 #endif 136 137 #if KMP_USE_MONITOR 138 static HANDLE __kmp_monitor_ev; 139 #endif 140 static kmp_int64 __kmp_win32_time; 141 double __kmp_win32_tick; 142 143 int __kmp_init_runtime = FALSE; 144 CRITICAL_SECTION __kmp_win32_section; 145 146 void __kmp_win32_mutex_init(kmp_win32_mutex_t *mx) { 147 InitializeCriticalSection(&mx->cs); 148 #if USE_ITT_BUILD 149 __kmp_itt_system_object_created(&mx->cs, "Critical Section"); 150 #endif /* USE_ITT_BUILD */ 151 } 152 153 void __kmp_win32_mutex_destroy(kmp_win32_mutex_t *mx) { 154 DeleteCriticalSection(&mx->cs); 155 } 156 157 void __kmp_win32_mutex_lock(kmp_win32_mutex_t *mx) { 158 EnterCriticalSection(&mx->cs); 159 } 160 161 int __kmp_win32_mutex_trylock(kmp_win32_mutex_t *mx) { 162 return TryEnterCriticalSection(&mx->cs); 163 } 164 165 void __kmp_win32_mutex_unlock(kmp_win32_mutex_t *mx) { 166 LeaveCriticalSection(&mx->cs); 167 } 168 169 void __kmp_win32_cond_init(kmp_win32_cond_t *cv) { 170 cv->waiters_count_ = 0; 171 cv->wait_generation_count_ = 0; 172 cv->release_count_ = 0; 173 174 /* Initialize the critical section */ 175 __kmp_win32_mutex_init(&cv->waiters_count_lock_); 176 177 /* Create a manual-reset event. */ 178 cv->event_ = CreateEvent(NULL, // no security 179 TRUE, // manual-reset 180 FALSE, // non-signaled initially 181 NULL); // unnamed 182 #if USE_ITT_BUILD 183 __kmp_itt_system_object_created(cv->event_, "Event"); 184 #endif /* USE_ITT_BUILD */ 185 } 186 187 void __kmp_win32_cond_destroy(kmp_win32_cond_t *cv) { 188 __kmp_win32_mutex_destroy(&cv->waiters_count_lock_); 189 __kmp_free_handle(cv->event_); 190 memset(cv, '\0', sizeof(*cv)); 191 } 192 193 /* TODO associate cv with a team instead of a thread so as to optimize 194 the case where we wake up a whole team */ 195 196 template <class C> 197 static void __kmp_win32_cond_wait(kmp_win32_cond_t *cv, kmp_win32_mutex_t *mx, 198 kmp_info_t *th, C *flag) { 199 int my_generation; 200 int last_waiter; 201 202 /* Avoid race conditions */ 203 __kmp_win32_mutex_lock(&cv->waiters_count_lock_); 204 205 /* Increment count of waiters */ 206 cv->waiters_count_++; 207 208 /* Store current generation in our activation record. */ 209 my_generation = cv->wait_generation_count_; 210 211 __kmp_win32_mutex_unlock(&cv->waiters_count_lock_); 212 __kmp_win32_mutex_unlock(mx); 213 214 for (;;) { 215 int wait_done = 0; 216 DWORD res, timeout = 5000; // just tried to quess an appropriate number 217 /* Wait until the event is signaled */ 218 res = WaitForSingleObject(cv->event_, timeout); 219 220 if (res == WAIT_OBJECT_0) { 221 // event signaled 222 __kmp_win32_mutex_lock(&cv->waiters_count_lock_); 223 /* Exit the loop when the <cv->event_> is signaled and there are still 224 waiting threads from this <wait_generation> that haven't been released 225 from this wait yet. */ 226 wait_done = (cv->release_count_ > 0) && 227 (cv->wait_generation_count_ != my_generation); 228 __kmp_win32_mutex_unlock(&cv->waiters_count_lock_); 229 } else if (res == WAIT_TIMEOUT || res == WAIT_FAILED) { 230 // check if the flag and cv counters are in consistent state 231 // as MS sent us debug dump whith inconsistent state of data 232 __kmp_win32_mutex_lock(mx); 233 typename C::flag_t old_f = flag->set_sleeping(); 234 if (!flag->done_check_val(old_f & ~KMP_BARRIER_SLEEP_STATE)) { 235 __kmp_win32_mutex_unlock(mx); 236 continue; 237 } 238 // condition fulfilled, exiting 239 old_f = flag->unset_sleeping(); 240 KMP_DEBUG_ASSERT(old_f & KMP_BARRIER_SLEEP_STATE); 241 TCW_PTR(th->th.th_sleep_loc, NULL); 242 KF_TRACE(50, ("__kmp_win32_cond_wait: exiting, condition " 243 "fulfilled: flag's loc(%p): %u => %u\n", 244 flag->get(), old_f, *(flag->get()))); 245 246 __kmp_win32_mutex_lock(&cv->waiters_count_lock_); 247 KMP_DEBUG_ASSERT(cv->waiters_count_ > 0); 248 cv->release_count_ = cv->waiters_count_; 249 cv->wait_generation_count_++; 250 wait_done = 1; 251 __kmp_win32_mutex_unlock(&cv->waiters_count_lock_); 252 253 __kmp_win32_mutex_unlock(mx); 254 } 255 /* there used to be a semicolon after the if statement, it looked like a 256 bug, so i removed it */ 257 if (wait_done) 258 break; 259 } 260 261 __kmp_win32_mutex_lock(mx); 262 __kmp_win32_mutex_lock(&cv->waiters_count_lock_); 263 264 cv->waiters_count_--; 265 cv->release_count_--; 266 267 last_waiter = (cv->release_count_ == 0); 268 269 __kmp_win32_mutex_unlock(&cv->waiters_count_lock_); 270 271 if (last_waiter) { 272 /* We're the last waiter to be notified, so reset the manual event. */ 273 ResetEvent(cv->event_); 274 } 275 } 276 277 void __kmp_win32_cond_broadcast(kmp_win32_cond_t *cv) { 278 __kmp_win32_mutex_lock(&cv->waiters_count_lock_); 279 280 if (cv->waiters_count_ > 0) { 281 SetEvent(cv->event_); 282 /* Release all the threads in this generation. */ 283 284 cv->release_count_ = cv->waiters_count_; 285 286 /* Start a new generation. */ 287 cv->wait_generation_count_++; 288 } 289 290 __kmp_win32_mutex_unlock(&cv->waiters_count_lock_); 291 } 292 293 void __kmp_win32_cond_signal(kmp_win32_cond_t *cv) { 294 __kmp_win32_cond_broadcast(cv); 295 } 296 297 void __kmp_enable(int new_state) { 298 if (__kmp_init_runtime) 299 LeaveCriticalSection(&__kmp_win32_section); 300 } 301 302 void __kmp_disable(int *old_state) { 303 *old_state = 0; 304 305 if (__kmp_init_runtime) 306 EnterCriticalSection(&__kmp_win32_section); 307 } 308 309 void __kmp_suspend_initialize(void) { /* do nothing */ 310 } 311 312 void __kmp_suspend_initialize_thread(kmp_info_t *th) { 313 int old_value = KMP_ATOMIC_LD_RLX(&th->th.th_suspend_init); 314 int new_value = TRUE; 315 // Return if already initialized 316 if (old_value == new_value) 317 return; 318 // Wait, then return if being initialized 319 if (old_value == -1 || 320 !__kmp_atomic_compare_store(&th->th.th_suspend_init, old_value, -1)) { 321 while (KMP_ATOMIC_LD_ACQ(&th->th.th_suspend_init) != new_value) { 322 KMP_CPU_PAUSE(); 323 } 324 } else { 325 // Claim to be the initializer and do initializations 326 __kmp_win32_cond_init(&th->th.th_suspend_cv); 327 __kmp_win32_mutex_init(&th->th.th_suspend_mx); 328 KMP_ATOMIC_ST_REL(&th->th.th_suspend_init, new_value); 329 } 330 } 331 332 void __kmp_suspend_uninitialize_thread(kmp_info_t *th) { 333 if (KMP_ATOMIC_LD_ACQ(&th->th.th_suspend_init)) { 334 /* this means we have initialize the suspension pthread objects for this 335 thread in this instance of the process */ 336 __kmp_win32_cond_destroy(&th->th.th_suspend_cv); 337 __kmp_win32_mutex_destroy(&th->th.th_suspend_mx); 338 KMP_ATOMIC_ST_REL(&th->th.th_suspend_init, FALSE); 339 } 340 } 341 342 int __kmp_try_suspend_mx(kmp_info_t *th) { 343 return __kmp_win32_mutex_trylock(&th->th.th_suspend_mx); 344 } 345 346 void __kmp_lock_suspend_mx(kmp_info_t *th) { 347 __kmp_win32_mutex_lock(&th->th.th_suspend_mx); 348 } 349 350 void __kmp_unlock_suspend_mx(kmp_info_t *th) { 351 __kmp_win32_mutex_unlock(&th->th.th_suspend_mx); 352 } 353 354 /* This routine puts the calling thread to sleep after setting the 355 sleep bit for the indicated flag variable to true. */ 356 template <class C> 357 static inline void __kmp_suspend_template(int th_gtid, C *flag) { 358 kmp_info_t *th = __kmp_threads[th_gtid]; 359 int status; 360 typename C::flag_t old_spin; 361 362 KF_TRACE(30, ("__kmp_suspend_template: T#%d enter for flag's loc(%p)\n", 363 th_gtid, flag->get())); 364 365 __kmp_suspend_initialize_thread(th); 366 __kmp_win32_mutex_lock(&th->th.th_suspend_mx); 367 368 KF_TRACE(10, ("__kmp_suspend_template: T#%d setting sleep bit for flag's" 369 " loc(%p)\n", 370 th_gtid, flag->get())); 371 372 /* TODO: shouldn't this use release semantics to ensure that 373 __kmp_suspend_initialize_thread gets called first? */ 374 old_spin = flag->set_sleeping(); 375 if (__kmp_dflt_blocktime == KMP_MAX_BLOCKTIME && 376 __kmp_pause_status != kmp_soft_paused) { 377 flag->unset_sleeping(); 378 __kmp_win32_mutex_unlock(&th->th.th_suspend_mx); 379 return; 380 } 381 382 KF_TRACE(5, ("__kmp_suspend_template: T#%d set sleep bit for flag's" 383 " loc(%p)==%d\n", 384 th_gtid, flag->get(), *(flag->get()))); 385 386 if (flag->done_check_val(old_spin)) { 387 old_spin = flag->unset_sleeping(); 388 KF_TRACE(5, ("__kmp_suspend_template: T#%d false alarm, reset sleep bit " 389 "for flag's loc(%p)\n", 390 th_gtid, flag->get())); 391 } else { 392 #ifdef DEBUG_SUSPEND 393 __kmp_suspend_count++; 394 #endif 395 /* Encapsulate in a loop as the documentation states that this may "with 396 low probability" return when the condition variable has not been signaled 397 or broadcast */ 398 int deactivated = FALSE; 399 TCW_PTR(th->th.th_sleep_loc, (void *)flag); 400 while (flag->is_sleeping()) { 401 KF_TRACE(15, ("__kmp_suspend_template: T#%d about to perform " 402 "kmp_win32_cond_wait()\n", 403 th_gtid)); 404 // Mark the thread as no longer active (only in the first iteration of the 405 // loop). 406 if (!deactivated) { 407 th->th.th_active = FALSE; 408 if (th->th.th_active_in_pool) { 409 th->th.th_active_in_pool = FALSE; 410 KMP_ATOMIC_DEC(&__kmp_thread_pool_active_nth); 411 KMP_DEBUG_ASSERT(TCR_4(__kmp_thread_pool_active_nth) >= 0); 412 } 413 deactivated = TRUE; 414 __kmp_win32_cond_wait(&th->th.th_suspend_cv, &th->th.th_suspend_mx, th, 415 flag); 416 } else { 417 __kmp_win32_cond_wait(&th->th.th_suspend_cv, &th->th.th_suspend_mx, th, 418 flag); 419 } 420 421 #ifdef KMP_DEBUG 422 if (flag->is_sleeping()) { 423 KF_TRACE(100, 424 ("__kmp_suspend_template: T#%d spurious wakeup\n", th_gtid)); 425 } 426 #endif /* KMP_DEBUG */ 427 428 } // while 429 430 // Mark the thread as active again (if it was previous marked as inactive) 431 if (deactivated) { 432 th->th.th_active = TRUE; 433 if (TCR_4(th->th.th_in_pool)) { 434 KMP_ATOMIC_INC(&__kmp_thread_pool_active_nth); 435 th->th.th_active_in_pool = TRUE; 436 } 437 } 438 } 439 440 __kmp_win32_mutex_unlock(&th->th.th_suspend_mx); 441 442 KF_TRACE(30, ("__kmp_suspend_template: T#%d exit\n", th_gtid)); 443 } 444 445 void __kmp_suspend_32(int th_gtid, kmp_flag_32 *flag) { 446 __kmp_suspend_template(th_gtid, flag); 447 } 448 void __kmp_suspend_64(int th_gtid, kmp_flag_64 *flag) { 449 __kmp_suspend_template(th_gtid, flag); 450 } 451 void __kmp_suspend_oncore(int th_gtid, kmp_flag_oncore *flag) { 452 __kmp_suspend_template(th_gtid, flag); 453 } 454 455 /* This routine signals the thread specified by target_gtid to wake up 456 after setting the sleep bit indicated by the flag argument to FALSE */ 457 template <class C> 458 static inline void __kmp_resume_template(int target_gtid, C *flag) { 459 kmp_info_t *th = __kmp_threads[target_gtid]; 460 int status; 461 462 #ifdef KMP_DEBUG 463 int gtid = TCR_4(__kmp_init_gtid) ? __kmp_get_gtid() : -1; 464 #endif 465 466 KF_TRACE(30, ("__kmp_resume_template: T#%d wants to wakeup T#%d enter\n", 467 gtid, target_gtid)); 468 469 __kmp_suspend_initialize_thread(th); 470 __kmp_win32_mutex_lock(&th->th.th_suspend_mx); 471 472 if (!flag) { // coming from __kmp_null_resume_wrapper 473 flag = (C *)th->th.th_sleep_loc; 474 } 475 476 // First, check if the flag is null or its type has changed. If so, someone 477 // else woke it up. 478 if (!flag || flag->get_type() != flag->get_ptr_type()) { // get_ptr_type 479 // simply shows what 480 // flag was cast to 481 KF_TRACE(5, ("__kmp_resume_template: T#%d exiting, thread T#%d already " 482 "awake: flag's loc(%p)\n", 483 gtid, target_gtid, NULL)); 484 __kmp_win32_mutex_unlock(&th->th.th_suspend_mx); 485 return; 486 } else { 487 typename C::flag_t old_spin = flag->unset_sleeping(); 488 if (!flag->is_sleeping_val(old_spin)) { 489 KF_TRACE(5, ("__kmp_resume_template: T#%d exiting, thread T#%d already " 490 "awake: flag's loc(%p): %u => %u\n", 491 gtid, target_gtid, flag->get(), old_spin, *(flag->get()))); 492 __kmp_win32_mutex_unlock(&th->th.th_suspend_mx); 493 return; 494 } 495 } 496 TCW_PTR(th->th.th_sleep_loc, NULL); 497 KF_TRACE(5, ("__kmp_resume_template: T#%d about to wakeup T#%d, reset sleep " 498 "bit for flag's loc(%p)\n", 499 gtid, target_gtid, flag->get())); 500 501 __kmp_win32_cond_signal(&th->th.th_suspend_cv); 502 __kmp_win32_mutex_unlock(&th->th.th_suspend_mx); 503 504 KF_TRACE(30, ("__kmp_resume_template: T#%d exiting after signaling wake up" 505 " for T#%d\n", 506 gtid, target_gtid)); 507 } 508 509 void __kmp_resume_32(int target_gtid, kmp_flag_32 *flag) { 510 __kmp_resume_template(target_gtid, flag); 511 } 512 void __kmp_resume_64(int target_gtid, kmp_flag_64 *flag) { 513 __kmp_resume_template(target_gtid, flag); 514 } 515 void __kmp_resume_oncore(int target_gtid, kmp_flag_oncore *flag) { 516 __kmp_resume_template(target_gtid, flag); 517 } 518 519 void __kmp_yield() { Sleep(0); } 520 521 void __kmp_gtid_set_specific(int gtid) { 522 if (__kmp_init_gtid) { 523 KA_TRACE(50, ("__kmp_gtid_set_specific: T#%d key:%d\n", gtid, 524 __kmp_gtid_threadprivate_key)); 525 if (!TlsSetValue(__kmp_gtid_threadprivate_key, (LPVOID)(gtid + 1))) 526 KMP_FATAL(TLSSetValueFailed); 527 } else { 528 KA_TRACE(50, ("__kmp_gtid_set_specific: runtime shutdown, returning\n")); 529 } 530 } 531 532 int __kmp_gtid_get_specific() { 533 int gtid; 534 if (!__kmp_init_gtid) { 535 KA_TRACE(50, ("__kmp_gtid_get_specific: runtime shutdown, returning " 536 "KMP_GTID_SHUTDOWN\n")); 537 return KMP_GTID_SHUTDOWN; 538 } 539 gtid = (int)(kmp_intptr_t)TlsGetValue(__kmp_gtid_threadprivate_key); 540 if (gtid == 0) { 541 gtid = KMP_GTID_DNE; 542 } else { 543 gtid--; 544 } 545 KA_TRACE(50, ("__kmp_gtid_get_specific: key:%d gtid:%d\n", 546 __kmp_gtid_threadprivate_key, gtid)); 547 return gtid; 548 } 549 550 void __kmp_affinity_bind_thread(int proc) { 551 if (__kmp_num_proc_groups > 1) { 552 // Form the GROUP_AFFINITY struct directly, rather than filling 553 // out a bit vector and calling __kmp_set_system_affinity(). 554 GROUP_AFFINITY ga; 555 KMP_DEBUG_ASSERT((proc >= 0) && (proc < (__kmp_num_proc_groups * CHAR_BIT * 556 sizeof(DWORD_PTR)))); 557 ga.Group = proc / (CHAR_BIT * sizeof(DWORD_PTR)); 558 ga.Mask = (unsigned long long)1 << (proc % (CHAR_BIT * sizeof(DWORD_PTR))); 559 ga.Reserved[0] = ga.Reserved[1] = ga.Reserved[2] = 0; 560 561 KMP_DEBUG_ASSERT(__kmp_SetThreadGroupAffinity != NULL); 562 if (__kmp_SetThreadGroupAffinity(GetCurrentThread(), &ga, NULL) == 0) { 563 DWORD error = GetLastError(); 564 if (__kmp_affinity_verbose) { // AC: continue silently if not verbose 565 kmp_msg_t err_code = KMP_ERR(error); 566 __kmp_msg(kmp_ms_warning, KMP_MSG(CantSetThreadAffMask), err_code, 567 __kmp_msg_null); 568 if (__kmp_generate_warnings == kmp_warnings_off) { 569 __kmp_str_free(&err_code.str); 570 } 571 } 572 } 573 } else { 574 kmp_affin_mask_t *mask; 575 KMP_CPU_ALLOC_ON_STACK(mask); 576 KMP_CPU_ZERO(mask); 577 KMP_CPU_SET(proc, mask); 578 __kmp_set_system_affinity(mask, TRUE); 579 KMP_CPU_FREE_FROM_STACK(mask); 580 } 581 } 582 583 void __kmp_affinity_determine_capable(const char *env_var) { 584 // All versions of Windows* OS (since Win '95) support SetThreadAffinityMask(). 585 586 #if KMP_GROUP_AFFINITY 587 KMP_AFFINITY_ENABLE(__kmp_num_proc_groups * sizeof(DWORD_PTR)); 588 #else 589 KMP_AFFINITY_ENABLE(sizeof(DWORD_PTR)); 590 #endif 591 592 KA_TRACE(10, ("__kmp_affinity_determine_capable: " 593 "Windows* OS affinity interface functional (mask size = " 594 "%" KMP_SIZE_T_SPEC ").\n", 595 __kmp_affin_mask_size)); 596 } 597 598 double __kmp_read_cpu_time(void) { 599 FILETIME CreationTime, ExitTime, KernelTime, UserTime; 600 int status; 601 double cpu_time; 602 603 cpu_time = 0; 604 605 status = GetProcessTimes(GetCurrentProcess(), &CreationTime, &ExitTime, 606 &KernelTime, &UserTime); 607 608 if (status) { 609 double sec = 0; 610 611 sec += KernelTime.dwHighDateTime; 612 sec += UserTime.dwHighDateTime; 613 614 /* Shift left by 32 bits */ 615 sec *= (double)(1 << 16) * (double)(1 << 16); 616 617 sec += KernelTime.dwLowDateTime; 618 sec += UserTime.dwLowDateTime; 619 620 cpu_time += (sec * 100.0) / KMP_NSEC_PER_SEC; 621 } 622 623 return cpu_time; 624 } 625 626 int __kmp_read_system_info(struct kmp_sys_info *info) { 627 info->maxrss = 0; /* the maximum resident set size utilized (in kilobytes) */ 628 info->minflt = 0; /* the number of page faults serviced without any I/O */ 629 info->majflt = 0; /* the number of page faults serviced that required I/O */ 630 info->nswap = 0; // the number of times a process was "swapped" out of memory 631 info->inblock = 0; // the number of times the file system had to perform input 632 info->oublock = 0; // number of times the file system had to perform output 633 info->nvcsw = 0; /* the number of times a context switch was voluntarily */ 634 info->nivcsw = 0; /* the number of times a context switch was forced */ 635 636 return 1; 637 } 638 639 void __kmp_runtime_initialize(void) { 640 SYSTEM_INFO info; 641 kmp_str_buf_t path; 642 UINT path_size; 643 644 if (__kmp_init_runtime) { 645 return; 646 } 647 648 #if KMP_DYNAMIC_LIB 649 /* Pin dynamic library for the lifetime of application */ 650 { 651 // First, turn off error message boxes 652 UINT err_mode = SetErrorMode(SEM_FAILCRITICALERRORS); 653 HMODULE h; 654 BOOL ret = GetModuleHandleEx(GET_MODULE_HANDLE_EX_FLAG_FROM_ADDRESS | 655 GET_MODULE_HANDLE_EX_FLAG_PIN, 656 (LPCTSTR)&__kmp_serial_initialize, &h); 657 KMP_DEBUG_ASSERT2(h && ret, "OpenMP RTL cannot find itself loaded"); 658 SetErrorMode(err_mode); // Restore error mode 659 KA_TRACE(10, ("__kmp_runtime_initialize: dynamic library pinned\n")); 660 } 661 #endif 662 663 InitializeCriticalSection(&__kmp_win32_section); 664 #if USE_ITT_BUILD 665 __kmp_itt_system_object_created(&__kmp_win32_section, "Critical Section"); 666 #endif /* USE_ITT_BUILD */ 667 __kmp_initialize_system_tick(); 668 669 #if (KMP_ARCH_X86 || KMP_ARCH_X86_64) 670 if (!__kmp_cpuinfo.initialized) { 671 __kmp_query_cpuid(&__kmp_cpuinfo); 672 } 673 #endif /* KMP_ARCH_X86 || KMP_ARCH_X86_64 */ 674 675 /* Set up minimum number of threads to switch to TLS gtid */ 676 #if KMP_OS_WINDOWS && !KMP_DYNAMIC_LIB 677 // Windows* OS, static library. 678 /* New thread may use stack space previously used by another thread, 679 currently terminated. On Windows* OS, in case of static linking, we do not 680 know the moment of thread termination, and our structures (__kmp_threads 681 and __kmp_root arrays) are still keep info about dead threads. This leads 682 to problem in __kmp_get_global_thread_id() function: it wrongly finds gtid 683 (by searching through stack addresses of all known threads) for 684 unregistered foreign tread. 685 686 Setting __kmp_tls_gtid_min to 0 workarounds this problem: 687 __kmp_get_global_thread_id() does not search through stacks, but get gtid 688 from TLS immediately. 689 --ln 690 */ 691 __kmp_tls_gtid_min = 0; 692 #else 693 __kmp_tls_gtid_min = KMP_TLS_GTID_MIN; 694 #endif 695 696 /* for the static library */ 697 if (!__kmp_gtid_threadprivate_key) { 698 __kmp_gtid_threadprivate_key = TlsAlloc(); 699 if (__kmp_gtid_threadprivate_key == TLS_OUT_OF_INDEXES) { 700 KMP_FATAL(TLSOutOfIndexes); 701 } 702 } 703 704 // Load ntdll.dll. 705 /* Simple GetModuleHandle( "ntdll.dl" ) is not suitable due to security issue 706 (see http://www.microsoft.com/technet/security/advisory/2269637.mspx). We 707 have to specify full path to the library. */ 708 __kmp_str_buf_init(&path); 709 path_size = GetSystemDirectory(path.str, path.size); 710 KMP_DEBUG_ASSERT(path_size > 0); 711 if (path_size >= path.size) { 712 // Buffer is too short. Expand the buffer and try again. 713 __kmp_str_buf_reserve(&path, path_size); 714 path_size = GetSystemDirectory(path.str, path.size); 715 KMP_DEBUG_ASSERT(path_size > 0); 716 } 717 if (path_size > 0 && path_size < path.size) { 718 // Now we have system directory name in the buffer. 719 // Append backslash and name of dll to form full path, 720 path.used = path_size; 721 __kmp_str_buf_print(&path, "\\%s", "ntdll.dll"); 722 723 // Now load ntdll using full path. 724 ntdll = GetModuleHandle(path.str); 725 } 726 727 KMP_DEBUG_ASSERT(ntdll != NULL); 728 if (ntdll != NULL) { 729 NtQuerySystemInformation = (NtQuerySystemInformation_t)GetProcAddress( 730 ntdll, "NtQuerySystemInformation"); 731 } 732 KMP_DEBUG_ASSERT(NtQuerySystemInformation != NULL); 733 734 #if KMP_GROUP_AFFINITY 735 // Load kernel32.dll. 736 // Same caveat - must use full system path name. 737 if (path_size > 0 && path_size < path.size) { 738 // Truncate the buffer back to just the system path length, 739 // discarding "\\ntdll.dll", and replacing it with "kernel32.dll". 740 path.used = path_size; 741 __kmp_str_buf_print(&path, "\\%s", "kernel32.dll"); 742 743 // Load kernel32.dll using full path. 744 kernel32 = GetModuleHandle(path.str); 745 KA_TRACE(10, ("__kmp_runtime_initialize: kernel32.dll = %s\n", path.str)); 746 747 // Load the function pointers to kernel32.dll routines 748 // that may or may not exist on this system. 749 if (kernel32 != NULL) { 750 __kmp_GetActiveProcessorCount = 751 (kmp_GetActiveProcessorCount_t)GetProcAddress( 752 kernel32, "GetActiveProcessorCount"); 753 __kmp_GetActiveProcessorGroupCount = 754 (kmp_GetActiveProcessorGroupCount_t)GetProcAddress( 755 kernel32, "GetActiveProcessorGroupCount"); 756 __kmp_GetThreadGroupAffinity = 757 (kmp_GetThreadGroupAffinity_t)GetProcAddress( 758 kernel32, "GetThreadGroupAffinity"); 759 __kmp_SetThreadGroupAffinity = 760 (kmp_SetThreadGroupAffinity_t)GetProcAddress( 761 kernel32, "SetThreadGroupAffinity"); 762 763 KA_TRACE(10, ("__kmp_runtime_initialize: __kmp_GetActiveProcessorCount" 764 " = %p\n", 765 __kmp_GetActiveProcessorCount)); 766 KA_TRACE(10, ("__kmp_runtime_initialize: " 767 "__kmp_GetActiveProcessorGroupCount = %p\n", 768 __kmp_GetActiveProcessorGroupCount)); 769 KA_TRACE(10, ("__kmp_runtime_initialize:__kmp_GetThreadGroupAffinity" 770 " = %p\n", 771 __kmp_GetThreadGroupAffinity)); 772 KA_TRACE(10, ("__kmp_runtime_initialize: __kmp_SetThreadGroupAffinity" 773 " = %p\n", 774 __kmp_SetThreadGroupAffinity)); 775 KA_TRACE(10, ("__kmp_runtime_initialize: sizeof(kmp_affin_mask_t) = %d\n", 776 sizeof(kmp_affin_mask_t))); 777 778 // See if group affinity is supported on this system. 779 // If so, calculate the #groups and #procs. 780 // 781 // Group affinity was introduced with Windows* 7 OS and 782 // Windows* Server 2008 R2 OS. 783 if ((__kmp_GetActiveProcessorCount != NULL) && 784 (__kmp_GetActiveProcessorGroupCount != NULL) && 785 (__kmp_GetThreadGroupAffinity != NULL) && 786 (__kmp_SetThreadGroupAffinity != NULL) && 787 ((__kmp_num_proc_groups = __kmp_GetActiveProcessorGroupCount()) > 788 1)) { 789 // Calculate the total number of active OS procs. 790 int i; 791 792 KA_TRACE(10, ("__kmp_runtime_initialize: %d processor groups" 793 " detected\n", 794 __kmp_num_proc_groups)); 795 796 __kmp_xproc = 0; 797 798 for (i = 0; i < __kmp_num_proc_groups; i++) { 799 DWORD size = __kmp_GetActiveProcessorCount(i); 800 __kmp_xproc += size; 801 KA_TRACE(10, ("__kmp_runtime_initialize: proc group %d size = %d\n", 802 i, size)); 803 } 804 } else { 805 KA_TRACE(10, ("__kmp_runtime_initialize: %d processor groups" 806 " detected\n", 807 __kmp_num_proc_groups)); 808 } 809 } 810 } 811 if (__kmp_num_proc_groups <= 1) { 812 GetSystemInfo(&info); 813 __kmp_xproc = info.dwNumberOfProcessors; 814 } 815 #else 816 GetSystemInfo(&info); 817 __kmp_xproc = info.dwNumberOfProcessors; 818 #endif /* KMP_GROUP_AFFINITY */ 819 820 // If the OS said there were 0 procs, take a guess and use a value of 2. 821 // This is done for Linux* OS, also. Do we need error / warning? 822 if (__kmp_xproc <= 0) { 823 __kmp_xproc = 2; 824 } 825 826 KA_TRACE(5, 827 ("__kmp_runtime_initialize: total processors = %d\n", __kmp_xproc)); 828 829 __kmp_str_buf_free(&path); 830 831 #if USE_ITT_BUILD 832 __kmp_itt_initialize(); 833 #endif /* USE_ITT_BUILD */ 834 835 __kmp_init_runtime = TRUE; 836 } // __kmp_runtime_initialize 837 838 void __kmp_runtime_destroy(void) { 839 if (!__kmp_init_runtime) { 840 return; 841 } 842 843 #if USE_ITT_BUILD 844 __kmp_itt_destroy(); 845 #endif /* USE_ITT_BUILD */ 846 847 /* we can't DeleteCriticalsection( & __kmp_win32_section ); */ 848 /* due to the KX_TRACE() commands */ 849 KA_TRACE(40, ("__kmp_runtime_destroy\n")); 850 851 if (__kmp_gtid_threadprivate_key) { 852 TlsFree(__kmp_gtid_threadprivate_key); 853 __kmp_gtid_threadprivate_key = 0; 854 } 855 856 __kmp_affinity_uninitialize(); 857 DeleteCriticalSection(&__kmp_win32_section); 858 859 ntdll = NULL; 860 NtQuerySystemInformation = NULL; 861 862 #if KMP_ARCH_X86_64 863 kernel32 = NULL; 864 __kmp_GetActiveProcessorCount = NULL; 865 __kmp_GetActiveProcessorGroupCount = NULL; 866 __kmp_GetThreadGroupAffinity = NULL; 867 __kmp_SetThreadGroupAffinity = NULL; 868 #endif // KMP_ARCH_X86_64 869 870 __kmp_init_runtime = FALSE; 871 } 872 873 void __kmp_terminate_thread(int gtid) { 874 kmp_info_t *th = __kmp_threads[gtid]; 875 876 if (!th) 877 return; 878 879 KA_TRACE(10, ("__kmp_terminate_thread: kill (%d)\n", gtid)); 880 881 if (TerminateThread(th->th.th_info.ds.ds_thread, (DWORD)-1) == FALSE) { 882 /* It's OK, the thread may have exited already */ 883 } 884 __kmp_free_handle(th->th.th_info.ds.ds_thread); 885 } 886 887 void __kmp_clear_system_time(void) { 888 BOOL status; 889 LARGE_INTEGER time; 890 status = QueryPerformanceCounter(&time); 891 __kmp_win32_time = (kmp_int64)time.QuadPart; 892 } 893 894 void __kmp_initialize_system_tick(void) { 895 { 896 BOOL status; 897 LARGE_INTEGER freq; 898 899 status = QueryPerformanceFrequency(&freq); 900 if (!status) { 901 DWORD error = GetLastError(); 902 __kmp_fatal(KMP_MSG(FunctionError, "QueryPerformanceFrequency()"), 903 KMP_ERR(error), __kmp_msg_null); 904 905 } else { 906 __kmp_win32_tick = ((double)1.0) / (double)freq.QuadPart; 907 } 908 } 909 } 910 911 /* Calculate the elapsed wall clock time for the user */ 912 913 void __kmp_elapsed(double *t) { 914 BOOL status; 915 LARGE_INTEGER now; 916 status = QueryPerformanceCounter(&now); 917 *t = ((double)now.QuadPart) * __kmp_win32_tick; 918 } 919 920 /* Calculate the elapsed wall clock tick for the user */ 921 922 void __kmp_elapsed_tick(double *t) { *t = __kmp_win32_tick; } 923 924 void __kmp_read_system_time(double *delta) { 925 if (delta != NULL) { 926 BOOL status; 927 LARGE_INTEGER now; 928 929 status = QueryPerformanceCounter(&now); 930 931 *delta = ((double)(((kmp_int64)now.QuadPart) - __kmp_win32_time)) * 932 __kmp_win32_tick; 933 } 934 } 935 936 /* Return the current time stamp in nsec */ 937 kmp_uint64 __kmp_now_nsec() { 938 LARGE_INTEGER now; 939 QueryPerformanceCounter(&now); 940 return 1e9 * __kmp_win32_tick * now.QuadPart; 941 } 942 943 extern "C" 944 void *__stdcall __kmp_launch_worker(void *arg) { 945 volatile void *stack_data; 946 void *exit_val; 947 void *padding = 0; 948 kmp_info_t *this_thr = (kmp_info_t *)arg; 949 int gtid; 950 951 gtid = this_thr->th.th_info.ds.ds_gtid; 952 __kmp_gtid_set_specific(gtid); 953 #ifdef KMP_TDATA_GTID 954 #error "This define causes problems with LoadLibrary() + declspec(thread) " \ 955 "on Windows* OS. See CQ50564, tests kmp_load_library*.c and this MSDN " \ 956 "reference: http://support.microsoft.com/kb/118816" 957 //__kmp_gtid = gtid; 958 #endif 959 960 #if USE_ITT_BUILD 961 __kmp_itt_thread_name(gtid); 962 #endif /* USE_ITT_BUILD */ 963 964 __kmp_affinity_set_init_mask(gtid, FALSE); 965 966 #if KMP_ARCH_X86 || KMP_ARCH_X86_64 967 // Set FP control regs to be a copy of the parallel initialization thread's. 968 __kmp_clear_x87_fpu_status_word(); 969 __kmp_load_x87_fpu_control_word(&__kmp_init_x87_fpu_control_word); 970 __kmp_load_mxcsr(&__kmp_init_mxcsr); 971 #endif /* KMP_ARCH_X86 || KMP_ARCH_X86_64 */ 972 973 if (__kmp_stkoffset > 0 && gtid > 0) { 974 padding = KMP_ALLOCA(gtid * __kmp_stkoffset); 975 } 976 977 KMP_FSYNC_RELEASING(&this_thr->th.th_info.ds.ds_alive); 978 this_thr->th.th_info.ds.ds_thread_id = GetCurrentThreadId(); 979 TCW_4(this_thr->th.th_info.ds.ds_alive, TRUE); 980 981 if (TCR_4(__kmp_gtid_mode) < 982 2) { // check stack only if it is used to get gtid 983 TCW_PTR(this_thr->th.th_info.ds.ds_stackbase, &stack_data); 984 KMP_ASSERT(this_thr->th.th_info.ds.ds_stackgrow == FALSE); 985 __kmp_check_stack_overlap(this_thr); 986 } 987 KMP_MB(); 988 exit_val = __kmp_launch_thread(this_thr); 989 KMP_FSYNC_RELEASING(&this_thr->th.th_info.ds.ds_alive); 990 TCW_4(this_thr->th.th_info.ds.ds_alive, FALSE); 991 KMP_MB(); 992 return exit_val; 993 } 994 995 #if KMP_USE_MONITOR 996 /* The monitor thread controls all of the threads in the complex */ 997 998 void *__stdcall __kmp_launch_monitor(void *arg) { 999 DWORD wait_status; 1000 kmp_thread_t monitor; 1001 int status; 1002 int interval; 1003 kmp_info_t *this_thr = (kmp_info_t *)arg; 1004 1005 KMP_DEBUG_ASSERT(__kmp_init_monitor); 1006 TCW_4(__kmp_init_monitor, 2); // AC: Signal library that monitor has started 1007 // TODO: hide "2" in enum (like {true,false,started}) 1008 this_thr->th.th_info.ds.ds_thread_id = GetCurrentThreadId(); 1009 TCW_4(this_thr->th.th_info.ds.ds_alive, TRUE); 1010 1011 KMP_MB(); /* Flush all pending memory write invalidates. */ 1012 KA_TRACE(10, ("__kmp_launch_monitor: launched\n")); 1013 1014 monitor = GetCurrentThread(); 1015 1016 /* set thread priority */ 1017 status = SetThreadPriority(monitor, THREAD_PRIORITY_HIGHEST); 1018 if (!status) { 1019 DWORD error = GetLastError(); 1020 __kmp_fatal(KMP_MSG(CantSetThreadPriority), KMP_ERR(error), __kmp_msg_null); 1021 } 1022 1023 /* register us as monitor */ 1024 __kmp_gtid_set_specific(KMP_GTID_MONITOR); 1025 #ifdef KMP_TDATA_GTID 1026 #error "This define causes problems with LoadLibrary() + declspec(thread) " \ 1027 "on Windows* OS. See CQ50564, tests kmp_load_library*.c and this MSDN " \ 1028 "reference: http://support.microsoft.com/kb/118816" 1029 //__kmp_gtid = KMP_GTID_MONITOR; 1030 #endif 1031 1032 #if USE_ITT_BUILD 1033 __kmp_itt_thread_ignore(); // Instruct Intel(R) Threading Tools to ignore 1034 // monitor thread. 1035 #endif /* USE_ITT_BUILD */ 1036 1037 KMP_MB(); /* Flush all pending memory write invalidates. */ 1038 1039 interval = (1000 / __kmp_monitor_wakeups); /* in milliseconds */ 1040 1041 while (!TCR_4(__kmp_global.g.g_done)) { 1042 /* This thread monitors the state of the system */ 1043 1044 KA_TRACE(15, ("__kmp_launch_monitor: update\n")); 1045 1046 wait_status = WaitForSingleObject(__kmp_monitor_ev, interval); 1047 1048 if (wait_status == WAIT_TIMEOUT) { 1049 TCW_4(__kmp_global.g.g_time.dt.t_value, 1050 TCR_4(__kmp_global.g.g_time.dt.t_value) + 1); 1051 } 1052 1053 KMP_MB(); /* Flush all pending memory write invalidates. */ 1054 } 1055 1056 KA_TRACE(10, ("__kmp_launch_monitor: finished\n")); 1057 1058 status = SetThreadPriority(monitor, THREAD_PRIORITY_NORMAL); 1059 if (!status) { 1060 DWORD error = GetLastError(); 1061 __kmp_fatal(KMP_MSG(CantSetThreadPriority), KMP_ERR(error), __kmp_msg_null); 1062 } 1063 1064 if (__kmp_global.g.g_abort != 0) { 1065 /* now we need to terminate the worker threads */ 1066 /* the value of t_abort is the signal we caught */ 1067 int gtid; 1068 1069 KA_TRACE(10, ("__kmp_launch_monitor: terminate sig=%d\n", 1070 (__kmp_global.g.g_abort))); 1071 1072 /* terminate the OpenMP worker threads */ 1073 /* TODO this is not valid for sibling threads!! 1074 * the uber master might not be 0 anymore.. */ 1075 for (gtid = 1; gtid < __kmp_threads_capacity; ++gtid) 1076 __kmp_terminate_thread(gtid); 1077 1078 __kmp_cleanup(); 1079 1080 Sleep(0); 1081 1082 KA_TRACE(10, 1083 ("__kmp_launch_monitor: raise sig=%d\n", __kmp_global.g.g_abort)); 1084 1085 if (__kmp_global.g.g_abort > 0) { 1086 raise(__kmp_global.g.g_abort); 1087 } 1088 } 1089 1090 TCW_4(this_thr->th.th_info.ds.ds_alive, FALSE); 1091 1092 KMP_MB(); 1093 return arg; 1094 } 1095 #endif 1096 1097 void __kmp_create_worker(int gtid, kmp_info_t *th, size_t stack_size) { 1098 kmp_thread_t handle; 1099 DWORD idThread; 1100 1101 KA_TRACE(10, ("__kmp_create_worker: try to create thread (%d)\n", gtid)); 1102 1103 th->th.th_info.ds.ds_gtid = gtid; 1104 1105 if (KMP_UBER_GTID(gtid)) { 1106 int stack_data; 1107 1108 /* TODO: GetCurrentThread() returns a pseudo-handle that is unsuitable for 1109 other threads to use. Is it appropriate to just use GetCurrentThread? 1110 When should we close this handle? When unregistering the root? */ 1111 { 1112 BOOL rc; 1113 rc = DuplicateHandle(GetCurrentProcess(), GetCurrentThread(), 1114 GetCurrentProcess(), &th->th.th_info.ds.ds_thread, 0, 1115 FALSE, DUPLICATE_SAME_ACCESS); 1116 KMP_ASSERT(rc); 1117 KA_TRACE(10, (" __kmp_create_worker: ROOT Handle duplicated, th = %p, " 1118 "handle = %" KMP_UINTPTR_SPEC "\n", 1119 (LPVOID)th, th->th.th_info.ds.ds_thread)); 1120 th->th.th_info.ds.ds_thread_id = GetCurrentThreadId(); 1121 } 1122 if (TCR_4(__kmp_gtid_mode) < 2) { // check stack only if used to get gtid 1123 /* we will dynamically update the stack range if gtid_mode == 1 */ 1124 TCW_PTR(th->th.th_info.ds.ds_stackbase, &stack_data); 1125 TCW_PTR(th->th.th_info.ds.ds_stacksize, 0); 1126 TCW_4(th->th.th_info.ds.ds_stackgrow, TRUE); 1127 __kmp_check_stack_overlap(th); 1128 } 1129 } else { 1130 KMP_MB(); /* Flush all pending memory write invalidates. */ 1131 1132 /* Set stack size for this thread now. */ 1133 KA_TRACE(10, 1134 ("__kmp_create_worker: stack_size = %" KMP_SIZE_T_SPEC " bytes\n", 1135 stack_size)); 1136 1137 stack_size += gtid * __kmp_stkoffset; 1138 1139 TCW_PTR(th->th.th_info.ds.ds_stacksize, stack_size); 1140 TCW_4(th->th.th_info.ds.ds_stackgrow, FALSE); 1141 1142 KA_TRACE(10, 1143 ("__kmp_create_worker: (before) stack_size = %" KMP_SIZE_T_SPEC 1144 " bytes, &__kmp_launch_worker = %p, th = %p, &idThread = %p\n", 1145 (SIZE_T)stack_size, (LPTHREAD_START_ROUTINE)&__kmp_launch_worker, 1146 (LPVOID)th, &idThread)); 1147 1148 handle = CreateThread( 1149 NULL, (SIZE_T)stack_size, (LPTHREAD_START_ROUTINE)__kmp_launch_worker, 1150 (LPVOID)th, STACK_SIZE_PARAM_IS_A_RESERVATION, &idThread); 1151 1152 KA_TRACE(10, 1153 ("__kmp_create_worker: (after) stack_size = %" KMP_SIZE_T_SPEC 1154 " bytes, &__kmp_launch_worker = %p, th = %p, " 1155 "idThread = %u, handle = %" KMP_UINTPTR_SPEC "\n", 1156 (SIZE_T)stack_size, (LPTHREAD_START_ROUTINE)&__kmp_launch_worker, 1157 (LPVOID)th, idThread, handle)); 1158 1159 if (handle == 0) { 1160 DWORD error = GetLastError(); 1161 __kmp_fatal(KMP_MSG(CantCreateThread), KMP_ERR(error), __kmp_msg_null); 1162 } else { 1163 th->th.th_info.ds.ds_thread = handle; 1164 } 1165 1166 KMP_MB(); /* Flush all pending memory write invalidates. */ 1167 } 1168 1169 KA_TRACE(10, ("__kmp_create_worker: done creating thread (%d)\n", gtid)); 1170 } 1171 1172 int __kmp_still_running(kmp_info_t *th) { 1173 return (WAIT_TIMEOUT == WaitForSingleObject(th->th.th_info.ds.ds_thread, 0)); 1174 } 1175 1176 #if KMP_USE_MONITOR 1177 void __kmp_create_monitor(kmp_info_t *th) { 1178 kmp_thread_t handle; 1179 DWORD idThread; 1180 int ideal, new_ideal; 1181 1182 if (__kmp_dflt_blocktime == KMP_MAX_BLOCKTIME) { 1183 // We don't need monitor thread in case of MAX_BLOCKTIME 1184 KA_TRACE(10, ("__kmp_create_monitor: skipping monitor thread because of " 1185 "MAX blocktime\n")); 1186 th->th.th_info.ds.ds_tid = 0; // this makes reap_monitor no-op 1187 th->th.th_info.ds.ds_gtid = 0; 1188 TCW_4(__kmp_init_monitor, 2); // Signal to stop waiting for monitor creation 1189 return; 1190 } 1191 KA_TRACE(10, ("__kmp_create_monitor: try to create monitor\n")); 1192 1193 KMP_MB(); /* Flush all pending memory write invalidates. */ 1194 1195 __kmp_monitor_ev = CreateEvent(NULL, TRUE, FALSE, NULL); 1196 if (__kmp_monitor_ev == NULL) { 1197 DWORD error = GetLastError(); 1198 __kmp_fatal(KMP_MSG(CantCreateEvent), KMP_ERR(error), __kmp_msg_null); 1199 } 1200 #if USE_ITT_BUILD 1201 __kmp_itt_system_object_created(__kmp_monitor_ev, "Event"); 1202 #endif /* USE_ITT_BUILD */ 1203 1204 th->th.th_info.ds.ds_tid = KMP_GTID_MONITOR; 1205 th->th.th_info.ds.ds_gtid = KMP_GTID_MONITOR; 1206 1207 // FIXME - on Windows* OS, if __kmp_monitor_stksize = 0, figure out how 1208 // to automatically expand stacksize based on CreateThread error code. 1209 if (__kmp_monitor_stksize == 0) { 1210 __kmp_monitor_stksize = KMP_DEFAULT_MONITOR_STKSIZE; 1211 } 1212 if (__kmp_monitor_stksize < __kmp_sys_min_stksize) { 1213 __kmp_monitor_stksize = __kmp_sys_min_stksize; 1214 } 1215 1216 KA_TRACE(10, ("__kmp_create_monitor: requested stacksize = %d bytes\n", 1217 (int)__kmp_monitor_stksize)); 1218 1219 TCW_4(__kmp_global.g.g_time.dt.t_value, 0); 1220 1221 handle = 1222 CreateThread(NULL, (SIZE_T)__kmp_monitor_stksize, 1223 (LPTHREAD_START_ROUTINE)__kmp_launch_monitor, (LPVOID)th, 1224 STACK_SIZE_PARAM_IS_A_RESERVATION, &idThread); 1225 if (handle == 0) { 1226 DWORD error = GetLastError(); 1227 __kmp_fatal(KMP_MSG(CantCreateThread), KMP_ERR(error), __kmp_msg_null); 1228 } else 1229 th->th.th_info.ds.ds_thread = handle; 1230 1231 KMP_MB(); /* Flush all pending memory write invalidates. */ 1232 1233 KA_TRACE(10, ("__kmp_create_monitor: monitor created %p\n", 1234 (void *)th->th.th_info.ds.ds_thread)); 1235 } 1236 #endif 1237 1238 /* Check to see if thread is still alive. 1239 NOTE: The ExitProcess(code) system call causes all threads to Terminate 1240 with a exit_val = code. Because of this we can not rely on exit_val having 1241 any particular value. So this routine may return STILL_ALIVE in exit_val 1242 even after the thread is dead. */ 1243 1244 int __kmp_is_thread_alive(kmp_info_t *th, DWORD *exit_val) { 1245 DWORD rc; 1246 rc = GetExitCodeThread(th->th.th_info.ds.ds_thread, exit_val); 1247 if (rc == 0) { 1248 DWORD error = GetLastError(); 1249 __kmp_fatal(KMP_MSG(FunctionError, "GetExitCodeThread()"), KMP_ERR(error), 1250 __kmp_msg_null); 1251 } 1252 return (*exit_val == STILL_ACTIVE); 1253 } 1254 1255 void __kmp_exit_thread(int exit_status) { 1256 ExitThread(exit_status); 1257 } // __kmp_exit_thread 1258 1259 // This is a common part for both __kmp_reap_worker() and __kmp_reap_monitor(). 1260 static void __kmp_reap_common(kmp_info_t *th) { 1261 DWORD exit_val; 1262 1263 KMP_MB(); /* Flush all pending memory write invalidates. */ 1264 1265 KA_TRACE( 1266 10, ("__kmp_reap_common: try to reap (%d)\n", th->th.th_info.ds.ds_gtid)); 1267 1268 /* 2006-10-19: 1269 There are two opposite situations: 1270 1. Windows* OS keep thread alive after it resets ds_alive flag and 1271 exits from thread function. (For example, see C70770/Q394281 "unloading of 1272 dll based on OMP is very slow".) 1273 2. Windows* OS may kill thread before it resets ds_alive flag. 1274 1275 Right solution seems to be waiting for *either* thread termination *or* 1276 ds_alive resetting. */ 1277 { 1278 // TODO: This code is very similar to KMP_WAIT. Need to generalize 1279 // KMP_WAIT to cover this usage also. 1280 void *obj = NULL; 1281 kmp_uint32 spins; 1282 #if USE_ITT_BUILD 1283 KMP_FSYNC_SPIN_INIT(obj, (void *)&th->th.th_info.ds.ds_alive); 1284 #endif /* USE_ITT_BUILD */ 1285 KMP_INIT_YIELD(spins); 1286 do { 1287 #if USE_ITT_BUILD 1288 KMP_FSYNC_SPIN_PREPARE(obj); 1289 #endif /* USE_ITT_BUILD */ 1290 __kmp_is_thread_alive(th, &exit_val); 1291 KMP_YIELD_OVERSUB_ELSE_SPIN(spins); 1292 } while (exit_val == STILL_ACTIVE && TCR_4(th->th.th_info.ds.ds_alive)); 1293 #if USE_ITT_BUILD 1294 if (exit_val == STILL_ACTIVE) { 1295 KMP_FSYNC_CANCEL(obj); 1296 } else { 1297 KMP_FSYNC_SPIN_ACQUIRED(obj); 1298 } 1299 #endif /* USE_ITT_BUILD */ 1300 } 1301 1302 __kmp_free_handle(th->th.th_info.ds.ds_thread); 1303 1304 /* NOTE: The ExitProcess(code) system call causes all threads to Terminate 1305 with a exit_val = code. Because of this we can not rely on exit_val having 1306 any particular value. */ 1307 if (exit_val == STILL_ACTIVE) { 1308 KA_TRACE(1, ("__kmp_reap_common: thread still active.\n")); 1309 } else if ((void *)exit_val != (void *)th) { 1310 KA_TRACE(1, ("__kmp_reap_common: ExitProcess / TerminateThread used?\n")); 1311 } 1312 1313 KA_TRACE(10, 1314 ("__kmp_reap_common: done reaping (%d), handle = %" KMP_UINTPTR_SPEC 1315 "\n", 1316 th->th.th_info.ds.ds_gtid, th->th.th_info.ds.ds_thread)); 1317 1318 th->th.th_info.ds.ds_thread = 0; 1319 th->th.th_info.ds.ds_tid = KMP_GTID_DNE; 1320 th->th.th_info.ds.ds_gtid = KMP_GTID_DNE; 1321 th->th.th_info.ds.ds_thread_id = 0; 1322 1323 KMP_MB(); /* Flush all pending memory write invalidates. */ 1324 } 1325 1326 #if KMP_USE_MONITOR 1327 void __kmp_reap_monitor(kmp_info_t *th) { 1328 int status; 1329 1330 KA_TRACE(10, ("__kmp_reap_monitor: try to reap %p\n", 1331 (void *)th->th.th_info.ds.ds_thread)); 1332 1333 // If monitor has been created, its tid and gtid should be KMP_GTID_MONITOR. 1334 // If both tid and gtid are 0, it means the monitor did not ever start. 1335 // If both tid and gtid are KMP_GTID_DNE, the monitor has been shut down. 1336 KMP_DEBUG_ASSERT(th->th.th_info.ds.ds_tid == th->th.th_info.ds.ds_gtid); 1337 if (th->th.th_info.ds.ds_gtid != KMP_GTID_MONITOR) { 1338 KA_TRACE(10, ("__kmp_reap_monitor: monitor did not start, returning\n")); 1339 return; 1340 } 1341 1342 KMP_MB(); /* Flush all pending memory write invalidates. */ 1343 1344 status = SetEvent(__kmp_monitor_ev); 1345 if (status == FALSE) { 1346 DWORD error = GetLastError(); 1347 __kmp_fatal(KMP_MSG(CantSetEvent), KMP_ERR(error), __kmp_msg_null); 1348 } 1349 KA_TRACE(10, ("__kmp_reap_monitor: reaping thread (%d)\n", 1350 th->th.th_info.ds.ds_gtid)); 1351 __kmp_reap_common(th); 1352 1353 __kmp_free_handle(__kmp_monitor_ev); 1354 1355 KMP_MB(); /* Flush all pending memory write invalidates. */ 1356 } 1357 #endif 1358 1359 void __kmp_reap_worker(kmp_info_t *th) { 1360 KA_TRACE(10, ("__kmp_reap_worker: reaping thread (%d)\n", 1361 th->th.th_info.ds.ds_gtid)); 1362 __kmp_reap_common(th); 1363 } 1364 1365 #if KMP_HANDLE_SIGNALS 1366 1367 static void __kmp_team_handler(int signo) { 1368 if (__kmp_global.g.g_abort == 0) { 1369 // Stage 1 signal handler, let's shut down all of the threads. 1370 if (__kmp_debug_buf) { 1371 __kmp_dump_debug_buffer(); 1372 } 1373 KMP_MB(); // Flush all pending memory write invalidates. 1374 TCW_4(__kmp_global.g.g_abort, signo); 1375 KMP_MB(); // Flush all pending memory write invalidates. 1376 TCW_4(__kmp_global.g.g_done, TRUE); 1377 KMP_MB(); // Flush all pending memory write invalidates. 1378 } 1379 } // __kmp_team_handler 1380 1381 static sig_func_t __kmp_signal(int signum, sig_func_t handler) { 1382 sig_func_t old = signal(signum, handler); 1383 if (old == SIG_ERR) { 1384 int error = errno; 1385 __kmp_fatal(KMP_MSG(FunctionError, "signal"), KMP_ERR(error), 1386 __kmp_msg_null); 1387 } 1388 return old; 1389 } 1390 1391 static void __kmp_install_one_handler(int sig, sig_func_t handler, 1392 int parallel_init) { 1393 sig_func_t old; 1394 KMP_MB(); /* Flush all pending memory write invalidates. */ 1395 KB_TRACE(60, ("__kmp_install_one_handler: called: sig=%d\n", sig)); 1396 if (parallel_init) { 1397 old = __kmp_signal(sig, handler); 1398 // SIG_DFL on Windows* OS in NULL or 0. 1399 if (old == __kmp_sighldrs[sig]) { 1400 __kmp_siginstalled[sig] = 1; 1401 } else { // Restore/keep user's handler if one previously installed. 1402 old = __kmp_signal(sig, old); 1403 } 1404 } else { 1405 // Save initial/system signal handlers to see if user handlers installed. 1406 // 2009-09-23: It is a dead code. On Windows* OS __kmp_install_signals 1407 // called once with parallel_init == TRUE. 1408 old = __kmp_signal(sig, SIG_DFL); 1409 __kmp_sighldrs[sig] = old; 1410 __kmp_signal(sig, old); 1411 } 1412 KMP_MB(); /* Flush all pending memory write invalidates. */ 1413 } // __kmp_install_one_handler 1414 1415 static void __kmp_remove_one_handler(int sig) { 1416 if (__kmp_siginstalled[sig]) { 1417 sig_func_t old; 1418 KMP_MB(); // Flush all pending memory write invalidates. 1419 KB_TRACE(60, ("__kmp_remove_one_handler: called: sig=%d\n", sig)); 1420 old = __kmp_signal(sig, __kmp_sighldrs[sig]); 1421 if (old != __kmp_team_handler) { 1422 KB_TRACE(10, ("__kmp_remove_one_handler: oops, not our handler, " 1423 "restoring: sig=%d\n", 1424 sig)); 1425 old = __kmp_signal(sig, old); 1426 } 1427 __kmp_sighldrs[sig] = NULL; 1428 __kmp_siginstalled[sig] = 0; 1429 KMP_MB(); // Flush all pending memory write invalidates. 1430 } 1431 } // __kmp_remove_one_handler 1432 1433 void __kmp_install_signals(int parallel_init) { 1434 KB_TRACE(10, ("__kmp_install_signals: called\n")); 1435 if (!__kmp_handle_signals) { 1436 KB_TRACE(10, ("__kmp_install_signals: KMP_HANDLE_SIGNALS is false - " 1437 "handlers not installed\n")); 1438 return; 1439 } 1440 __kmp_install_one_handler(SIGINT, __kmp_team_handler, parallel_init); 1441 __kmp_install_one_handler(SIGILL, __kmp_team_handler, parallel_init); 1442 __kmp_install_one_handler(SIGABRT, __kmp_team_handler, parallel_init); 1443 __kmp_install_one_handler(SIGFPE, __kmp_team_handler, parallel_init); 1444 __kmp_install_one_handler(SIGSEGV, __kmp_team_handler, parallel_init); 1445 __kmp_install_one_handler(SIGTERM, __kmp_team_handler, parallel_init); 1446 } // __kmp_install_signals 1447 1448 void __kmp_remove_signals(void) { 1449 int sig; 1450 KB_TRACE(10, ("__kmp_remove_signals: called\n")); 1451 for (sig = 1; sig < NSIG; ++sig) { 1452 __kmp_remove_one_handler(sig); 1453 } 1454 } // __kmp_remove_signals 1455 1456 #endif // KMP_HANDLE_SIGNALS 1457 1458 /* Put the thread to sleep for a time period */ 1459 void __kmp_thread_sleep(int millis) { 1460 DWORD status; 1461 1462 status = SleepEx((DWORD)millis, FALSE); 1463 if (status) { 1464 DWORD error = GetLastError(); 1465 __kmp_fatal(KMP_MSG(FunctionError, "SleepEx()"), KMP_ERR(error), 1466 __kmp_msg_null); 1467 } 1468 } 1469 1470 // Determine whether the given address is mapped into the current address space. 1471 int __kmp_is_address_mapped(void *addr) { 1472 DWORD status; 1473 MEMORY_BASIC_INFORMATION lpBuffer; 1474 SIZE_T dwLength; 1475 1476 dwLength = sizeof(MEMORY_BASIC_INFORMATION); 1477 1478 status = VirtualQuery(addr, &lpBuffer, dwLength); 1479 1480 return !(((lpBuffer.State == MEM_RESERVE) || (lpBuffer.State == MEM_FREE)) || 1481 ((lpBuffer.Protect == PAGE_NOACCESS) || 1482 (lpBuffer.Protect == PAGE_EXECUTE))); 1483 } 1484 1485 kmp_uint64 __kmp_hardware_timestamp(void) { 1486 kmp_uint64 r = 0; 1487 1488 QueryPerformanceCounter((LARGE_INTEGER *)&r); 1489 return r; 1490 } 1491 1492 /* Free handle and check the error code */ 1493 void __kmp_free_handle(kmp_thread_t tHandle) { 1494 /* called with parameter type HANDLE also, thus suppose kmp_thread_t defined 1495 * as HANDLE */ 1496 BOOL rc; 1497 rc = CloseHandle(tHandle); 1498 if (!rc) { 1499 DWORD error = GetLastError(); 1500 __kmp_fatal(KMP_MSG(CantCloseHandle), KMP_ERR(error), __kmp_msg_null); 1501 } 1502 } 1503 1504 int __kmp_get_load_balance(int max) { 1505 static ULONG glb_buff_size = 100 * 1024; 1506 1507 // Saved count of the running threads for the thread balance algorithm 1508 static int glb_running_threads = 0; 1509 static double glb_call_time = 0; /* Thread balance algorithm call time */ 1510 1511 int running_threads = 0; // Number of running threads in the system. 1512 NTSTATUS status = 0; 1513 ULONG buff_size = 0; 1514 ULONG info_size = 0; 1515 void *buffer = NULL; 1516 PSYSTEM_PROCESS_INFORMATION spi = NULL; 1517 int first_time = 1; 1518 1519 double call_time = 0.0; // start, finish; 1520 1521 __kmp_elapsed(&call_time); 1522 1523 if (glb_call_time && 1524 (call_time - glb_call_time < __kmp_load_balance_interval)) { 1525 running_threads = glb_running_threads; 1526 goto finish; 1527 } 1528 glb_call_time = call_time; 1529 1530 // Do not spend time on running algorithm if we have a permanent error. 1531 if (NtQuerySystemInformation == NULL) { 1532 running_threads = -1; 1533 goto finish; 1534 } 1535 1536 if (max <= 0) { 1537 max = INT_MAX; 1538 } 1539 1540 do { 1541 1542 if (first_time) { 1543 buff_size = glb_buff_size; 1544 } else { 1545 buff_size = 2 * buff_size; 1546 } 1547 1548 buffer = KMP_INTERNAL_REALLOC(buffer, buff_size); 1549 if (buffer == NULL) { 1550 running_threads = -1; 1551 goto finish; 1552 } 1553 status = NtQuerySystemInformation(SystemProcessInformation, buffer, 1554 buff_size, &info_size); 1555 first_time = 0; 1556 1557 } while (status == STATUS_INFO_LENGTH_MISMATCH); 1558 glb_buff_size = buff_size; 1559 1560 #define CHECK(cond) \ 1561 { \ 1562 KMP_DEBUG_ASSERT(cond); \ 1563 if (!(cond)) { \ 1564 running_threads = -1; \ 1565 goto finish; \ 1566 } \ 1567 } 1568 1569 CHECK(buff_size >= info_size); 1570 spi = PSYSTEM_PROCESS_INFORMATION(buffer); 1571 for (;;) { 1572 ptrdiff_t offset = uintptr_t(spi) - uintptr_t(buffer); 1573 CHECK(0 <= offset && 1574 offset + sizeof(SYSTEM_PROCESS_INFORMATION) < info_size); 1575 HANDLE pid = spi->ProcessId; 1576 ULONG num = spi->NumberOfThreads; 1577 CHECK(num >= 1); 1578 size_t spi_size = 1579 sizeof(SYSTEM_PROCESS_INFORMATION) + sizeof(SYSTEM_THREAD) * (num - 1); 1580 CHECK(offset + spi_size < 1581 info_size); // Make sure process info record fits the buffer. 1582 if (spi->NextEntryOffset != 0) { 1583 CHECK(spi_size <= 1584 spi->NextEntryOffset); // And do not overlap with the next record. 1585 } 1586 // pid == 0 corresponds to the System Idle Process. It always has running 1587 // threads on all cores. So, we don't consider the running threads of this 1588 // process. 1589 if (pid != 0) { 1590 for (int i = 0; i < num; ++i) { 1591 THREAD_STATE state = spi->Threads[i].State; 1592 // Count threads that have Ready or Running state. 1593 // !!! TODO: Why comment does not match the code??? 1594 if (state == StateRunning) { 1595 ++running_threads; 1596 // Stop counting running threads if the number is already greater than 1597 // the number of available cores 1598 if (running_threads >= max) { 1599 goto finish; 1600 } 1601 } 1602 } 1603 } 1604 if (spi->NextEntryOffset == 0) { 1605 break; 1606 } 1607 spi = PSYSTEM_PROCESS_INFORMATION(uintptr_t(spi) + spi->NextEntryOffset); 1608 } 1609 1610 #undef CHECK 1611 1612 finish: // Clean up and exit. 1613 1614 if (buffer != NULL) { 1615 KMP_INTERNAL_FREE(buffer); 1616 } 1617 1618 glb_running_threads = running_threads; 1619 1620 return running_threads; 1621 } //__kmp_get_load_balance() 1622