1 /* 2 * z_Windows_NT_util.cpp -- platform specific routines. 3 */ 4 5 //===----------------------------------------------------------------------===// 6 // 7 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 8 // See https://llvm.org/LICENSE.txt for license information. 9 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "kmp.h" 14 #include "kmp_affinity.h" 15 #include "kmp_i18n.h" 16 #include "kmp_io.h" 17 #include "kmp_itt.h" 18 #include "kmp_wait_release.h" 19 20 /* This code is related to NtQuerySystemInformation() function. This function 21 is used in the Load balance algorithm for OMP_DYNAMIC=true to find the 22 number of running threads in the system. */ 23 24 #include <ntsecapi.h> // UNICODE_STRING 25 #include <ntstatus.h> 26 #include <psapi.h> 27 #ifdef _MSC_VER 28 #pragma comment(lib, "psapi.lib") 29 #endif 30 31 enum SYSTEM_INFORMATION_CLASS { 32 SystemProcessInformation = 5 33 }; // SYSTEM_INFORMATION_CLASS 34 35 struct CLIENT_ID { 36 HANDLE UniqueProcess; 37 HANDLE UniqueThread; 38 }; // struct CLIENT_ID 39 40 enum THREAD_STATE { 41 StateInitialized, 42 StateReady, 43 StateRunning, 44 StateStandby, 45 StateTerminated, 46 StateWait, 47 StateTransition, 48 StateUnknown 49 }; // enum THREAD_STATE 50 51 struct VM_COUNTERS { 52 SIZE_T PeakVirtualSize; 53 SIZE_T VirtualSize; 54 ULONG PageFaultCount; 55 SIZE_T PeakWorkingSetSize; 56 SIZE_T WorkingSetSize; 57 SIZE_T QuotaPeakPagedPoolUsage; 58 SIZE_T QuotaPagedPoolUsage; 59 SIZE_T QuotaPeakNonPagedPoolUsage; 60 SIZE_T QuotaNonPagedPoolUsage; 61 SIZE_T PagefileUsage; 62 SIZE_T PeakPagefileUsage; 63 SIZE_T PrivatePageCount; 64 }; // struct VM_COUNTERS 65 66 struct SYSTEM_THREAD { 67 LARGE_INTEGER KernelTime; 68 LARGE_INTEGER UserTime; 69 LARGE_INTEGER CreateTime; 70 ULONG WaitTime; 71 LPVOID StartAddress; 72 CLIENT_ID ClientId; 73 DWORD Priority; 74 LONG BasePriority; 75 ULONG ContextSwitchCount; 76 THREAD_STATE State; 77 ULONG WaitReason; 78 }; // SYSTEM_THREAD 79 80 KMP_BUILD_ASSERT(offsetof(SYSTEM_THREAD, KernelTime) == 0); 81 #if KMP_ARCH_X86 82 KMP_BUILD_ASSERT(offsetof(SYSTEM_THREAD, StartAddress) == 28); 83 KMP_BUILD_ASSERT(offsetof(SYSTEM_THREAD, State) == 52); 84 #else 85 KMP_BUILD_ASSERT(offsetof(SYSTEM_THREAD, StartAddress) == 32); 86 KMP_BUILD_ASSERT(offsetof(SYSTEM_THREAD, State) == 68); 87 #endif 88 89 struct SYSTEM_PROCESS_INFORMATION { 90 ULONG NextEntryOffset; 91 ULONG NumberOfThreads; 92 LARGE_INTEGER Reserved[3]; 93 LARGE_INTEGER CreateTime; 94 LARGE_INTEGER UserTime; 95 LARGE_INTEGER KernelTime; 96 UNICODE_STRING ImageName; 97 DWORD BasePriority; 98 HANDLE ProcessId; 99 HANDLE ParentProcessId; 100 ULONG HandleCount; 101 ULONG Reserved2[2]; 102 VM_COUNTERS VMCounters; 103 IO_COUNTERS IOCounters; 104 SYSTEM_THREAD Threads[1]; 105 }; // SYSTEM_PROCESS_INFORMATION 106 typedef SYSTEM_PROCESS_INFORMATION *PSYSTEM_PROCESS_INFORMATION; 107 108 KMP_BUILD_ASSERT(offsetof(SYSTEM_PROCESS_INFORMATION, NextEntryOffset) == 0); 109 KMP_BUILD_ASSERT(offsetof(SYSTEM_PROCESS_INFORMATION, CreateTime) == 32); 110 KMP_BUILD_ASSERT(offsetof(SYSTEM_PROCESS_INFORMATION, ImageName) == 56); 111 #if KMP_ARCH_X86 112 KMP_BUILD_ASSERT(offsetof(SYSTEM_PROCESS_INFORMATION, ProcessId) == 68); 113 KMP_BUILD_ASSERT(offsetof(SYSTEM_PROCESS_INFORMATION, HandleCount) == 76); 114 KMP_BUILD_ASSERT(offsetof(SYSTEM_PROCESS_INFORMATION, VMCounters) == 88); 115 KMP_BUILD_ASSERT(offsetof(SYSTEM_PROCESS_INFORMATION, IOCounters) == 136); 116 KMP_BUILD_ASSERT(offsetof(SYSTEM_PROCESS_INFORMATION, Threads) == 184); 117 #else 118 KMP_BUILD_ASSERT(offsetof(SYSTEM_PROCESS_INFORMATION, ProcessId) == 80); 119 KMP_BUILD_ASSERT(offsetof(SYSTEM_PROCESS_INFORMATION, HandleCount) == 96); 120 KMP_BUILD_ASSERT(offsetof(SYSTEM_PROCESS_INFORMATION, VMCounters) == 112); 121 KMP_BUILD_ASSERT(offsetof(SYSTEM_PROCESS_INFORMATION, IOCounters) == 208); 122 KMP_BUILD_ASSERT(offsetof(SYSTEM_PROCESS_INFORMATION, Threads) == 256); 123 #endif 124 125 typedef NTSTATUS(NTAPI *NtQuerySystemInformation_t)(SYSTEM_INFORMATION_CLASS, 126 PVOID, ULONG, PULONG); 127 NtQuerySystemInformation_t NtQuerySystemInformation = NULL; 128 129 HMODULE ntdll = NULL; 130 131 /* End of NtQuerySystemInformation()-related code */ 132 133 static HMODULE kernel32 = NULL; 134 135 #if KMP_HANDLE_SIGNALS 136 typedef void (*sig_func_t)(int); 137 static sig_func_t __kmp_sighldrs[NSIG]; 138 static int __kmp_siginstalled[NSIG]; 139 #endif 140 141 #if KMP_USE_MONITOR 142 static HANDLE __kmp_monitor_ev; 143 #endif 144 static kmp_int64 __kmp_win32_time; 145 double __kmp_win32_tick; 146 147 int __kmp_init_runtime = FALSE; 148 CRITICAL_SECTION __kmp_win32_section; 149 150 void __kmp_win32_mutex_init(kmp_win32_mutex_t *mx) { 151 InitializeCriticalSection(&mx->cs); 152 #if USE_ITT_BUILD 153 __kmp_itt_system_object_created(&mx->cs, "Critical Section"); 154 #endif /* USE_ITT_BUILD */ 155 } 156 157 void __kmp_win32_mutex_destroy(kmp_win32_mutex_t *mx) { 158 DeleteCriticalSection(&mx->cs); 159 } 160 161 void __kmp_win32_mutex_lock(kmp_win32_mutex_t *mx) { 162 EnterCriticalSection(&mx->cs); 163 } 164 165 int __kmp_win32_mutex_trylock(kmp_win32_mutex_t *mx) { 166 return TryEnterCriticalSection(&mx->cs); 167 } 168 169 void __kmp_win32_mutex_unlock(kmp_win32_mutex_t *mx) { 170 LeaveCriticalSection(&mx->cs); 171 } 172 173 void __kmp_win32_cond_init(kmp_win32_cond_t *cv) { 174 cv->waiters_count_ = 0; 175 cv->wait_generation_count_ = 0; 176 cv->release_count_ = 0; 177 178 /* Initialize the critical section */ 179 __kmp_win32_mutex_init(&cv->waiters_count_lock_); 180 181 /* Create a manual-reset event. */ 182 cv->event_ = CreateEvent(NULL, // no security 183 TRUE, // manual-reset 184 FALSE, // non-signaled initially 185 NULL); // unnamed 186 #if USE_ITT_BUILD 187 __kmp_itt_system_object_created(cv->event_, "Event"); 188 #endif /* USE_ITT_BUILD */ 189 } 190 191 void __kmp_win32_cond_destroy(kmp_win32_cond_t *cv) { 192 __kmp_win32_mutex_destroy(&cv->waiters_count_lock_); 193 __kmp_free_handle(cv->event_); 194 memset(cv, '\0', sizeof(*cv)); 195 } 196 197 /* TODO associate cv with a team instead of a thread so as to optimize 198 the case where we wake up a whole team */ 199 200 template <class C> 201 static void __kmp_win32_cond_wait(kmp_win32_cond_t *cv, kmp_win32_mutex_t *mx, 202 kmp_info_t *th, C *flag) { 203 int my_generation; 204 int last_waiter; 205 206 /* Avoid race conditions */ 207 __kmp_win32_mutex_lock(&cv->waiters_count_lock_); 208 209 /* Increment count of waiters */ 210 cv->waiters_count_++; 211 212 /* Store current generation in our activation record. */ 213 my_generation = cv->wait_generation_count_; 214 215 __kmp_win32_mutex_unlock(&cv->waiters_count_lock_); 216 __kmp_win32_mutex_unlock(mx); 217 218 for (;;) { 219 int wait_done = 0; 220 DWORD res, timeout = 5000; // just tried to quess an appropriate number 221 /* Wait until the event is signaled */ 222 res = WaitForSingleObject(cv->event_, timeout); 223 224 if (res == WAIT_OBJECT_0) { 225 // event signaled 226 __kmp_win32_mutex_lock(&cv->waiters_count_lock_); 227 /* Exit the loop when the <cv->event_> is signaled and there are still 228 waiting threads from this <wait_generation> that haven't been released 229 from this wait yet. */ 230 wait_done = (cv->release_count_ > 0) && 231 (cv->wait_generation_count_ != my_generation); 232 __kmp_win32_mutex_unlock(&cv->waiters_count_lock_); 233 } else if (res == WAIT_TIMEOUT || res == WAIT_FAILED) { 234 // check if the flag and cv counters are in consistent state 235 // as MS sent us debug dump whith inconsistent state of data 236 __kmp_win32_mutex_lock(mx); 237 typename C::flag_t old_f = flag->set_sleeping(); 238 if (!flag->done_check_val(old_f & ~KMP_BARRIER_SLEEP_STATE)) { 239 __kmp_win32_mutex_unlock(mx); 240 continue; 241 } 242 // condition fulfilled, exiting 243 old_f = flag->unset_sleeping(); 244 KMP_DEBUG_ASSERT(old_f & KMP_BARRIER_SLEEP_STATE); 245 TCW_PTR(th->th.th_sleep_loc, NULL); 246 KF_TRACE(50, 247 ("__kmp_win32_cond_wait: exiting, condition " 248 "fulfilled: flag's loc(%p): %u => %u\n", 249 flag->get(), (unsigned int)old_f, (unsigned int)flag->load())); 250 251 __kmp_win32_mutex_lock(&cv->waiters_count_lock_); 252 KMP_DEBUG_ASSERT(cv->waiters_count_ > 0); 253 cv->release_count_ = cv->waiters_count_; 254 cv->wait_generation_count_++; 255 wait_done = 1; 256 __kmp_win32_mutex_unlock(&cv->waiters_count_lock_); 257 258 __kmp_win32_mutex_unlock(mx); 259 } 260 /* there used to be a semicolon after the if statement, it looked like a 261 bug, so i removed it */ 262 if (wait_done) 263 break; 264 } 265 266 __kmp_win32_mutex_lock(mx); 267 __kmp_win32_mutex_lock(&cv->waiters_count_lock_); 268 269 cv->waiters_count_--; 270 cv->release_count_--; 271 272 last_waiter = (cv->release_count_ == 0); 273 274 __kmp_win32_mutex_unlock(&cv->waiters_count_lock_); 275 276 if (last_waiter) { 277 /* We're the last waiter to be notified, so reset the manual event. */ 278 ResetEvent(cv->event_); 279 } 280 } 281 282 void __kmp_win32_cond_broadcast(kmp_win32_cond_t *cv) { 283 __kmp_win32_mutex_lock(&cv->waiters_count_lock_); 284 285 if (cv->waiters_count_ > 0) { 286 SetEvent(cv->event_); 287 /* Release all the threads in this generation. */ 288 289 cv->release_count_ = cv->waiters_count_; 290 291 /* Start a new generation. */ 292 cv->wait_generation_count_++; 293 } 294 295 __kmp_win32_mutex_unlock(&cv->waiters_count_lock_); 296 } 297 298 void __kmp_win32_cond_signal(kmp_win32_cond_t *cv) { 299 __kmp_win32_cond_broadcast(cv); 300 } 301 302 void __kmp_enable(int new_state) { 303 if (__kmp_init_runtime) 304 LeaveCriticalSection(&__kmp_win32_section); 305 } 306 307 void __kmp_disable(int *old_state) { 308 *old_state = 0; 309 310 if (__kmp_init_runtime) 311 EnterCriticalSection(&__kmp_win32_section); 312 } 313 314 void __kmp_suspend_initialize(void) { /* do nothing */ 315 } 316 317 void __kmp_suspend_initialize_thread(kmp_info_t *th) { 318 int old_value = KMP_ATOMIC_LD_RLX(&th->th.th_suspend_init); 319 int new_value = TRUE; 320 // Return if already initialized 321 if (old_value == new_value) 322 return; 323 // Wait, then return if being initialized 324 if (old_value == -1 || 325 !__kmp_atomic_compare_store(&th->th.th_suspend_init, old_value, -1)) { 326 while (KMP_ATOMIC_LD_ACQ(&th->th.th_suspend_init) != new_value) { 327 KMP_CPU_PAUSE(); 328 } 329 } else { 330 // Claim to be the initializer and do initializations 331 __kmp_win32_cond_init(&th->th.th_suspend_cv); 332 __kmp_win32_mutex_init(&th->th.th_suspend_mx); 333 KMP_ATOMIC_ST_REL(&th->th.th_suspend_init, new_value); 334 } 335 } 336 337 void __kmp_suspend_uninitialize_thread(kmp_info_t *th) { 338 if (KMP_ATOMIC_LD_ACQ(&th->th.th_suspend_init)) { 339 /* this means we have initialize the suspension pthread objects for this 340 thread in this instance of the process */ 341 __kmp_win32_cond_destroy(&th->th.th_suspend_cv); 342 __kmp_win32_mutex_destroy(&th->th.th_suspend_mx); 343 KMP_ATOMIC_ST_REL(&th->th.th_suspend_init, FALSE); 344 } 345 } 346 347 int __kmp_try_suspend_mx(kmp_info_t *th) { 348 return __kmp_win32_mutex_trylock(&th->th.th_suspend_mx); 349 } 350 351 void __kmp_lock_suspend_mx(kmp_info_t *th) { 352 __kmp_win32_mutex_lock(&th->th.th_suspend_mx); 353 } 354 355 void __kmp_unlock_suspend_mx(kmp_info_t *th) { 356 __kmp_win32_mutex_unlock(&th->th.th_suspend_mx); 357 } 358 359 /* This routine puts the calling thread to sleep after setting the 360 sleep bit for the indicated flag variable to true. */ 361 template <class C> 362 static inline void __kmp_suspend_template(int th_gtid, C *flag) { 363 kmp_info_t *th = __kmp_threads[th_gtid]; 364 typename C::flag_t old_spin; 365 366 KF_TRACE(30, ("__kmp_suspend_template: T#%d enter for flag's loc(%p)\n", 367 th_gtid, flag->get())); 368 369 __kmp_suspend_initialize_thread(th); 370 __kmp_lock_suspend_mx(th); 371 372 KF_TRACE(10, ("__kmp_suspend_template: T#%d setting sleep bit for flag's" 373 " loc(%p)\n", 374 th_gtid, flag->get())); 375 376 /* TODO: shouldn't this use release semantics to ensure that 377 __kmp_suspend_initialize_thread gets called first? */ 378 old_spin = flag->set_sleeping(); 379 if (__kmp_dflt_blocktime == KMP_MAX_BLOCKTIME && 380 __kmp_pause_status != kmp_soft_paused) { 381 flag->unset_sleeping(); 382 __kmp_unlock_suspend_mx(th); 383 return; 384 } 385 386 KF_TRACE(5, ("__kmp_suspend_template: T#%d set sleep bit for flag's" 387 " loc(%p)==%u\n", 388 th_gtid, flag->get(), (unsigned int)flag->load())); 389 390 if (flag->done_check_val(old_spin)) { 391 old_spin = flag->unset_sleeping(); 392 KF_TRACE(5, ("__kmp_suspend_template: T#%d false alarm, reset sleep bit " 393 "for flag's loc(%p)\n", 394 th_gtid, flag->get())); 395 } else { 396 #ifdef DEBUG_SUSPEND 397 __kmp_suspend_count++; 398 #endif 399 /* Encapsulate in a loop as the documentation states that this may "with 400 low probability" return when the condition variable has not been signaled 401 or broadcast */ 402 int deactivated = FALSE; 403 TCW_PTR(th->th.th_sleep_loc, (void *)flag); 404 while (flag->is_sleeping()) { 405 KF_TRACE(15, ("__kmp_suspend_template: T#%d about to perform " 406 "kmp_win32_cond_wait()\n", 407 th_gtid)); 408 // Mark the thread as no longer active (only in the first iteration of the 409 // loop). 410 if (!deactivated) { 411 th->th.th_active = FALSE; 412 if (th->th.th_active_in_pool) { 413 th->th.th_active_in_pool = FALSE; 414 KMP_ATOMIC_DEC(&__kmp_thread_pool_active_nth); 415 KMP_DEBUG_ASSERT(TCR_4(__kmp_thread_pool_active_nth) >= 0); 416 } 417 deactivated = TRUE; 418 __kmp_win32_cond_wait(&th->th.th_suspend_cv, &th->th.th_suspend_mx, th, 419 flag); 420 } else { 421 __kmp_win32_cond_wait(&th->th.th_suspend_cv, &th->th.th_suspend_mx, th, 422 flag); 423 } 424 425 #ifdef KMP_DEBUG 426 if (flag->is_sleeping()) { 427 KF_TRACE(100, 428 ("__kmp_suspend_template: T#%d spurious wakeup\n", th_gtid)); 429 } 430 #endif /* KMP_DEBUG */ 431 432 } // while 433 434 // Mark the thread as active again (if it was previous marked as inactive) 435 if (deactivated) { 436 th->th.th_active = TRUE; 437 if (TCR_4(th->th.th_in_pool)) { 438 KMP_ATOMIC_INC(&__kmp_thread_pool_active_nth); 439 th->th.th_active_in_pool = TRUE; 440 } 441 } 442 } 443 444 __kmp_unlock_suspend_mx(th); 445 KF_TRACE(30, ("__kmp_suspend_template: T#%d exit\n", th_gtid)); 446 } 447 448 template <bool C, bool S> 449 void __kmp_suspend_32(int th_gtid, kmp_flag_32<C, S> *flag) { 450 __kmp_suspend_template(th_gtid, flag); 451 } 452 template <bool C, bool S> 453 void __kmp_suspend_64(int th_gtid, kmp_flag_64<C, S> *flag) { 454 __kmp_suspend_template(th_gtid, flag); 455 } 456 void __kmp_suspend_oncore(int th_gtid, kmp_flag_oncore *flag) { 457 __kmp_suspend_template(th_gtid, flag); 458 } 459 460 template void __kmp_suspend_32<false, false>(int, kmp_flag_32<false, false> *); 461 template void __kmp_suspend_64<false, true>(int, kmp_flag_64<false, true> *); 462 template void __kmp_suspend_64<true, false>(int, kmp_flag_64<true, false> *); 463 464 /* This routine signals the thread specified by target_gtid to wake up 465 after setting the sleep bit indicated by the flag argument to FALSE */ 466 template <class C> 467 static inline void __kmp_resume_template(int target_gtid, C *flag) { 468 kmp_info_t *th = __kmp_threads[target_gtid]; 469 470 #ifdef KMP_DEBUG 471 int gtid = TCR_4(__kmp_init_gtid) ? __kmp_get_gtid() : -1; 472 #endif 473 474 KF_TRACE(30, ("__kmp_resume_template: T#%d wants to wakeup T#%d enter\n", 475 gtid, target_gtid)); 476 477 __kmp_suspend_initialize_thread(th); 478 __kmp_lock_suspend_mx(th); 479 480 if (!flag) { // coming from __kmp_null_resume_wrapper 481 flag = (C *)th->th.th_sleep_loc; 482 } 483 484 // First, check if the flag is null or its type has changed. If so, someone 485 // else woke it up. 486 if (!flag || flag->get_type() != flag->get_ptr_type()) { // get_ptr_type 487 // simply shows what 488 // flag was cast to 489 KF_TRACE(5, ("__kmp_resume_template: T#%d exiting, thread T#%d already " 490 "awake: flag's loc(%p)\n", 491 gtid, target_gtid, NULL)); 492 __kmp_unlock_suspend_mx(th); 493 return; 494 } else { 495 typename C::flag_t old_spin = flag->unset_sleeping(); 496 if (!flag->is_sleeping_val(old_spin)) { 497 KF_TRACE(5, ("__kmp_resume_template: T#%d exiting, thread T#%d already " 498 "awake: flag's loc(%p): %u => %u\n", 499 gtid, target_gtid, flag->get(), (unsigned int)old_spin, 500 (unsigned int)flag->load())); 501 __kmp_unlock_suspend_mx(th); 502 return; 503 } 504 } 505 TCW_PTR(th->th.th_sleep_loc, NULL); 506 KF_TRACE(5, ("__kmp_resume_template: T#%d about to wakeup T#%d, reset sleep " 507 "bit for flag's loc(%p)\n", 508 gtid, target_gtid, flag->get())); 509 510 __kmp_win32_cond_signal(&th->th.th_suspend_cv); 511 __kmp_unlock_suspend_mx(th); 512 513 KF_TRACE(30, ("__kmp_resume_template: T#%d exiting after signaling wake up" 514 " for T#%d\n", 515 gtid, target_gtid)); 516 } 517 518 template <bool C, bool S> 519 void __kmp_resume_32(int target_gtid, kmp_flag_32<C, S> *flag) { 520 __kmp_resume_template(target_gtid, flag); 521 } 522 template <bool C, bool S> 523 void __kmp_resume_64(int target_gtid, kmp_flag_64<C, S> *flag) { 524 __kmp_resume_template(target_gtid, flag); 525 } 526 void __kmp_resume_oncore(int target_gtid, kmp_flag_oncore *flag) { 527 __kmp_resume_template(target_gtid, flag); 528 } 529 530 template void __kmp_resume_32<false, true>(int, kmp_flag_32<false, true> *); 531 template void __kmp_resume_64<false, true>(int, kmp_flag_64<false, true> *); 532 533 void __kmp_yield() { Sleep(0); } 534 535 void __kmp_gtid_set_specific(int gtid) { 536 if (__kmp_init_gtid) { 537 KA_TRACE(50, ("__kmp_gtid_set_specific: T#%d key:%d\n", gtid, 538 __kmp_gtid_threadprivate_key)); 539 if (!TlsSetValue(__kmp_gtid_threadprivate_key, (LPVOID)(gtid + 1))) 540 KMP_FATAL(TLSSetValueFailed); 541 } else { 542 KA_TRACE(50, ("__kmp_gtid_set_specific: runtime shutdown, returning\n")); 543 } 544 } 545 546 int __kmp_gtid_get_specific() { 547 int gtid; 548 if (!__kmp_init_gtid) { 549 KA_TRACE(50, ("__kmp_gtid_get_specific: runtime shutdown, returning " 550 "KMP_GTID_SHUTDOWN\n")); 551 return KMP_GTID_SHUTDOWN; 552 } 553 gtid = (int)(kmp_intptr_t)TlsGetValue(__kmp_gtid_threadprivate_key); 554 if (gtid == 0) { 555 gtid = KMP_GTID_DNE; 556 } else { 557 gtid--; 558 } 559 KA_TRACE(50, ("__kmp_gtid_get_specific: key:%d gtid:%d\n", 560 __kmp_gtid_threadprivate_key, gtid)); 561 return gtid; 562 } 563 564 void __kmp_affinity_bind_thread(int proc) { 565 if (__kmp_num_proc_groups > 1) { 566 // Form the GROUP_AFFINITY struct directly, rather than filling 567 // out a bit vector and calling __kmp_set_system_affinity(). 568 GROUP_AFFINITY ga; 569 KMP_DEBUG_ASSERT((proc >= 0) && (proc < (__kmp_num_proc_groups * CHAR_BIT * 570 sizeof(DWORD_PTR)))); 571 ga.Group = proc / (CHAR_BIT * sizeof(DWORD_PTR)); 572 ga.Mask = (unsigned long long)1 << (proc % (CHAR_BIT * sizeof(DWORD_PTR))); 573 ga.Reserved[0] = ga.Reserved[1] = ga.Reserved[2] = 0; 574 575 KMP_DEBUG_ASSERT(__kmp_SetThreadGroupAffinity != NULL); 576 if (__kmp_SetThreadGroupAffinity(GetCurrentThread(), &ga, NULL) == 0) { 577 DWORD error = GetLastError(); 578 if (__kmp_affinity_verbose) { // AC: continue silently if not verbose 579 kmp_msg_t err_code = KMP_ERR(error); 580 __kmp_msg(kmp_ms_warning, KMP_MSG(CantSetThreadAffMask), err_code, 581 __kmp_msg_null); 582 if (__kmp_generate_warnings == kmp_warnings_off) { 583 __kmp_str_free(&err_code.str); 584 } 585 } 586 } 587 } else { 588 kmp_affin_mask_t *mask; 589 KMP_CPU_ALLOC_ON_STACK(mask); 590 KMP_CPU_ZERO(mask); 591 KMP_CPU_SET(proc, mask); 592 __kmp_set_system_affinity(mask, TRUE); 593 KMP_CPU_FREE_FROM_STACK(mask); 594 } 595 } 596 597 void __kmp_affinity_determine_capable(const char *env_var) { 598 // All versions of Windows* OS (since Win '95) support 599 // SetThreadAffinityMask(). 600 601 #if KMP_GROUP_AFFINITY 602 KMP_AFFINITY_ENABLE(__kmp_num_proc_groups * sizeof(DWORD_PTR)); 603 #else 604 KMP_AFFINITY_ENABLE(sizeof(DWORD_PTR)); 605 #endif 606 607 KA_TRACE(10, ("__kmp_affinity_determine_capable: " 608 "Windows* OS affinity interface functional (mask size = " 609 "%" KMP_SIZE_T_SPEC ").\n", 610 __kmp_affin_mask_size)); 611 } 612 613 double __kmp_read_cpu_time(void) { 614 FILETIME CreationTime, ExitTime, KernelTime, UserTime; 615 int status; 616 double cpu_time; 617 618 cpu_time = 0; 619 620 status = GetProcessTimes(GetCurrentProcess(), &CreationTime, &ExitTime, 621 &KernelTime, &UserTime); 622 623 if (status) { 624 double sec = 0; 625 626 sec += KernelTime.dwHighDateTime; 627 sec += UserTime.dwHighDateTime; 628 629 /* Shift left by 32 bits */ 630 sec *= (double)(1 << 16) * (double)(1 << 16); 631 632 sec += KernelTime.dwLowDateTime; 633 sec += UserTime.dwLowDateTime; 634 635 cpu_time += (sec * 100.0) / KMP_NSEC_PER_SEC; 636 } 637 638 return cpu_time; 639 } 640 641 int __kmp_read_system_info(struct kmp_sys_info *info) { 642 info->maxrss = 0; /* the maximum resident set size utilized (in kilobytes) */ 643 info->minflt = 0; /* the number of page faults serviced without any I/O */ 644 info->majflt = 0; /* the number of page faults serviced that required I/O */ 645 info->nswap = 0; // the number of times a process was "swapped" out of memory 646 info->inblock = 0; // the number of times the file system had to perform input 647 info->oublock = 0; // number of times the file system had to perform output 648 info->nvcsw = 0; /* the number of times a context switch was voluntarily */ 649 info->nivcsw = 0; /* the number of times a context switch was forced */ 650 651 return 1; 652 } 653 654 void __kmp_runtime_initialize(void) { 655 SYSTEM_INFO info; 656 kmp_str_buf_t path; 657 UINT path_size; 658 659 if (__kmp_init_runtime) { 660 return; 661 } 662 663 #if KMP_DYNAMIC_LIB 664 /* Pin dynamic library for the lifetime of application */ 665 { 666 // First, turn off error message boxes 667 UINT err_mode = SetErrorMode(SEM_FAILCRITICALERRORS); 668 HMODULE h; 669 BOOL ret = GetModuleHandleEx(GET_MODULE_HANDLE_EX_FLAG_FROM_ADDRESS | 670 GET_MODULE_HANDLE_EX_FLAG_PIN, 671 (LPCTSTR)&__kmp_serial_initialize, &h); 672 (void)ret; 673 KMP_DEBUG_ASSERT2(h && ret, "OpenMP RTL cannot find itself loaded"); 674 SetErrorMode(err_mode); // Restore error mode 675 KA_TRACE(10, ("__kmp_runtime_initialize: dynamic library pinned\n")); 676 } 677 #endif 678 679 InitializeCriticalSection(&__kmp_win32_section); 680 #if USE_ITT_BUILD 681 __kmp_itt_system_object_created(&__kmp_win32_section, "Critical Section"); 682 #endif /* USE_ITT_BUILD */ 683 __kmp_initialize_system_tick(); 684 685 #if (KMP_ARCH_X86 || KMP_ARCH_X86_64) 686 if (!__kmp_cpuinfo.initialized) { 687 __kmp_query_cpuid(&__kmp_cpuinfo); 688 } 689 #endif /* KMP_ARCH_X86 || KMP_ARCH_X86_64 */ 690 691 /* Set up minimum number of threads to switch to TLS gtid */ 692 #if KMP_OS_WINDOWS && !KMP_DYNAMIC_LIB 693 // Windows* OS, static library. 694 /* New thread may use stack space previously used by another thread, 695 currently terminated. On Windows* OS, in case of static linking, we do not 696 know the moment of thread termination, and our structures (__kmp_threads 697 and __kmp_root arrays) are still keep info about dead threads. This leads 698 to problem in __kmp_get_global_thread_id() function: it wrongly finds gtid 699 (by searching through stack addresses of all known threads) for 700 unregistered foreign tread. 701 702 Setting __kmp_tls_gtid_min to 0 workarounds this problem: 703 __kmp_get_global_thread_id() does not search through stacks, but get gtid 704 from TLS immediately. 705 --ln 706 */ 707 __kmp_tls_gtid_min = 0; 708 #else 709 __kmp_tls_gtid_min = KMP_TLS_GTID_MIN; 710 #endif 711 712 /* for the static library */ 713 if (!__kmp_gtid_threadprivate_key) { 714 __kmp_gtid_threadprivate_key = TlsAlloc(); 715 if (__kmp_gtid_threadprivate_key == TLS_OUT_OF_INDEXES) { 716 KMP_FATAL(TLSOutOfIndexes); 717 } 718 } 719 720 // Load ntdll.dll. 721 /* Simple GetModuleHandle( "ntdll.dl" ) is not suitable due to security issue 722 (see http://www.microsoft.com/technet/security/advisory/2269637.mspx). We 723 have to specify full path to the library. */ 724 __kmp_str_buf_init(&path); 725 path_size = GetSystemDirectory(path.str, path.size); 726 KMP_DEBUG_ASSERT(path_size > 0); 727 if (path_size >= path.size) { 728 // Buffer is too short. Expand the buffer and try again. 729 __kmp_str_buf_reserve(&path, path_size); 730 path_size = GetSystemDirectory(path.str, path.size); 731 KMP_DEBUG_ASSERT(path_size > 0); 732 } 733 if (path_size > 0 && path_size < path.size) { 734 // Now we have system directory name in the buffer. 735 // Append backslash and name of dll to form full path, 736 path.used = path_size; 737 __kmp_str_buf_print(&path, "\\%s", "ntdll.dll"); 738 739 // Now load ntdll using full path. 740 ntdll = GetModuleHandle(path.str); 741 } 742 743 KMP_DEBUG_ASSERT(ntdll != NULL); 744 if (ntdll != NULL) { 745 NtQuerySystemInformation = (NtQuerySystemInformation_t)GetProcAddress( 746 ntdll, "NtQuerySystemInformation"); 747 } 748 KMP_DEBUG_ASSERT(NtQuerySystemInformation != NULL); 749 750 #if KMP_GROUP_AFFINITY 751 // Load kernel32.dll. 752 // Same caveat - must use full system path name. 753 if (path_size > 0 && path_size < path.size) { 754 // Truncate the buffer back to just the system path length, 755 // discarding "\\ntdll.dll", and replacing it with "kernel32.dll". 756 path.used = path_size; 757 __kmp_str_buf_print(&path, "\\%s", "kernel32.dll"); 758 759 // Load kernel32.dll using full path. 760 kernel32 = GetModuleHandle(path.str); 761 KA_TRACE(10, ("__kmp_runtime_initialize: kernel32.dll = %s\n", path.str)); 762 763 // Load the function pointers to kernel32.dll routines 764 // that may or may not exist on this system. 765 if (kernel32 != NULL) { 766 __kmp_GetActiveProcessorCount = 767 (kmp_GetActiveProcessorCount_t)GetProcAddress( 768 kernel32, "GetActiveProcessorCount"); 769 __kmp_GetActiveProcessorGroupCount = 770 (kmp_GetActiveProcessorGroupCount_t)GetProcAddress( 771 kernel32, "GetActiveProcessorGroupCount"); 772 __kmp_GetThreadGroupAffinity = 773 (kmp_GetThreadGroupAffinity_t)GetProcAddress( 774 kernel32, "GetThreadGroupAffinity"); 775 __kmp_SetThreadGroupAffinity = 776 (kmp_SetThreadGroupAffinity_t)GetProcAddress( 777 kernel32, "SetThreadGroupAffinity"); 778 779 KA_TRACE(10, ("__kmp_runtime_initialize: __kmp_GetActiveProcessorCount" 780 " = %p\n", 781 __kmp_GetActiveProcessorCount)); 782 KA_TRACE(10, ("__kmp_runtime_initialize: " 783 "__kmp_GetActiveProcessorGroupCount = %p\n", 784 __kmp_GetActiveProcessorGroupCount)); 785 KA_TRACE(10, ("__kmp_runtime_initialize:__kmp_GetThreadGroupAffinity" 786 " = %p\n", 787 __kmp_GetThreadGroupAffinity)); 788 KA_TRACE(10, ("__kmp_runtime_initialize: __kmp_SetThreadGroupAffinity" 789 " = %p\n", 790 __kmp_SetThreadGroupAffinity)); 791 KA_TRACE(10, ("__kmp_runtime_initialize: sizeof(kmp_affin_mask_t) = %d\n", 792 sizeof(kmp_affin_mask_t))); 793 794 // See if group affinity is supported on this system. 795 // If so, calculate the #groups and #procs. 796 // 797 // Group affinity was introduced with Windows* 7 OS and 798 // Windows* Server 2008 R2 OS. 799 if ((__kmp_GetActiveProcessorCount != NULL) && 800 (__kmp_GetActiveProcessorGroupCount != NULL) && 801 (__kmp_GetThreadGroupAffinity != NULL) && 802 (__kmp_SetThreadGroupAffinity != NULL) && 803 ((__kmp_num_proc_groups = __kmp_GetActiveProcessorGroupCount()) > 804 1)) { 805 // Calculate the total number of active OS procs. 806 int i; 807 808 KA_TRACE(10, ("__kmp_runtime_initialize: %d processor groups" 809 " detected\n", 810 __kmp_num_proc_groups)); 811 812 __kmp_xproc = 0; 813 814 for (i = 0; i < __kmp_num_proc_groups; i++) { 815 DWORD size = __kmp_GetActiveProcessorCount(i); 816 __kmp_xproc += size; 817 KA_TRACE(10, ("__kmp_runtime_initialize: proc group %d size = %d\n", 818 i, size)); 819 } 820 } else { 821 KA_TRACE(10, ("__kmp_runtime_initialize: %d processor groups" 822 " detected\n", 823 __kmp_num_proc_groups)); 824 } 825 } 826 } 827 if (__kmp_num_proc_groups <= 1) { 828 GetSystemInfo(&info); 829 __kmp_xproc = info.dwNumberOfProcessors; 830 } 831 #else 832 (void)kernel32; 833 GetSystemInfo(&info); 834 __kmp_xproc = info.dwNumberOfProcessors; 835 #endif /* KMP_GROUP_AFFINITY */ 836 837 // If the OS said there were 0 procs, take a guess and use a value of 2. 838 // This is done for Linux* OS, also. Do we need error / warning? 839 if (__kmp_xproc <= 0) { 840 __kmp_xproc = 2; 841 } 842 843 KA_TRACE(5, 844 ("__kmp_runtime_initialize: total processors = %d\n", __kmp_xproc)); 845 846 __kmp_str_buf_free(&path); 847 848 #if USE_ITT_BUILD 849 __kmp_itt_initialize(); 850 #endif /* USE_ITT_BUILD */ 851 852 __kmp_init_runtime = TRUE; 853 } // __kmp_runtime_initialize 854 855 void __kmp_runtime_destroy(void) { 856 if (!__kmp_init_runtime) { 857 return; 858 } 859 860 #if USE_ITT_BUILD 861 __kmp_itt_destroy(); 862 #endif /* USE_ITT_BUILD */ 863 864 /* we can't DeleteCriticalsection( & __kmp_win32_section ); */ 865 /* due to the KX_TRACE() commands */ 866 KA_TRACE(40, ("__kmp_runtime_destroy\n")); 867 868 if (__kmp_gtid_threadprivate_key) { 869 TlsFree(__kmp_gtid_threadprivate_key); 870 __kmp_gtid_threadprivate_key = 0; 871 } 872 873 __kmp_affinity_uninitialize(); 874 DeleteCriticalSection(&__kmp_win32_section); 875 876 ntdll = NULL; 877 NtQuerySystemInformation = NULL; 878 879 #if KMP_ARCH_X86_64 880 kernel32 = NULL; 881 __kmp_GetActiveProcessorCount = NULL; 882 __kmp_GetActiveProcessorGroupCount = NULL; 883 __kmp_GetThreadGroupAffinity = NULL; 884 __kmp_SetThreadGroupAffinity = NULL; 885 #endif // KMP_ARCH_X86_64 886 887 __kmp_init_runtime = FALSE; 888 } 889 890 void __kmp_terminate_thread(int gtid) { 891 kmp_info_t *th = __kmp_threads[gtid]; 892 893 if (!th) 894 return; 895 896 KA_TRACE(10, ("__kmp_terminate_thread: kill (%d)\n", gtid)); 897 898 if (TerminateThread(th->th.th_info.ds.ds_thread, (DWORD)-1) == FALSE) { 899 /* It's OK, the thread may have exited already */ 900 } 901 __kmp_free_handle(th->th.th_info.ds.ds_thread); 902 } 903 904 void __kmp_clear_system_time(void) { 905 BOOL status; 906 LARGE_INTEGER time; 907 status = QueryPerformanceCounter(&time); 908 __kmp_win32_time = (kmp_int64)time.QuadPart; 909 } 910 911 void __kmp_initialize_system_tick(void) { 912 { 913 BOOL status; 914 LARGE_INTEGER freq; 915 916 status = QueryPerformanceFrequency(&freq); 917 if (!status) { 918 DWORD error = GetLastError(); 919 __kmp_fatal(KMP_MSG(FunctionError, "QueryPerformanceFrequency()"), 920 KMP_ERR(error), __kmp_msg_null); 921 922 } else { 923 __kmp_win32_tick = ((double)1.0) / (double)freq.QuadPart; 924 } 925 } 926 } 927 928 /* Calculate the elapsed wall clock time for the user */ 929 930 void __kmp_elapsed(double *t) { 931 BOOL status; 932 LARGE_INTEGER now; 933 status = QueryPerformanceCounter(&now); 934 *t = ((double)now.QuadPart) * __kmp_win32_tick; 935 } 936 937 /* Calculate the elapsed wall clock tick for the user */ 938 939 void __kmp_elapsed_tick(double *t) { *t = __kmp_win32_tick; } 940 941 void __kmp_read_system_time(double *delta) { 942 if (delta != NULL) { 943 BOOL status; 944 LARGE_INTEGER now; 945 946 status = QueryPerformanceCounter(&now); 947 948 *delta = ((double)(((kmp_int64)now.QuadPart) - __kmp_win32_time)) * 949 __kmp_win32_tick; 950 } 951 } 952 953 /* Return the current time stamp in nsec */ 954 kmp_uint64 __kmp_now_nsec() { 955 LARGE_INTEGER now; 956 QueryPerformanceCounter(&now); 957 return 1e9 * __kmp_win32_tick * now.QuadPart; 958 } 959 960 extern "C" void *__stdcall __kmp_launch_worker(void *arg) { 961 volatile void *stack_data; 962 void *exit_val; 963 void *padding = 0; 964 kmp_info_t *this_thr = (kmp_info_t *)arg; 965 int gtid; 966 967 gtid = this_thr->th.th_info.ds.ds_gtid; 968 __kmp_gtid_set_specific(gtid); 969 #ifdef KMP_TDATA_GTID 970 #error "This define causes problems with LoadLibrary() + declspec(thread) " \ 971 "on Windows* OS. See CQ50564, tests kmp_load_library*.c and this MSDN " \ 972 "reference: http://support.microsoft.com/kb/118816" 973 //__kmp_gtid = gtid; 974 #endif 975 976 #if USE_ITT_BUILD 977 __kmp_itt_thread_name(gtid); 978 #endif /* USE_ITT_BUILD */ 979 980 __kmp_affinity_set_init_mask(gtid, FALSE); 981 982 #if KMP_ARCH_X86 || KMP_ARCH_X86_64 983 // Set FP control regs to be a copy of the parallel initialization thread's. 984 __kmp_clear_x87_fpu_status_word(); 985 __kmp_load_x87_fpu_control_word(&__kmp_init_x87_fpu_control_word); 986 __kmp_load_mxcsr(&__kmp_init_mxcsr); 987 #endif /* KMP_ARCH_X86 || KMP_ARCH_X86_64 */ 988 989 if (__kmp_stkoffset > 0 && gtid > 0) { 990 padding = KMP_ALLOCA(gtid * __kmp_stkoffset); 991 } 992 993 KMP_FSYNC_RELEASING(&this_thr->th.th_info.ds.ds_alive); 994 this_thr->th.th_info.ds.ds_thread_id = GetCurrentThreadId(); 995 TCW_4(this_thr->th.th_info.ds.ds_alive, TRUE); 996 997 if (TCR_4(__kmp_gtid_mode) < 998 2) { // check stack only if it is used to get gtid 999 TCW_PTR(this_thr->th.th_info.ds.ds_stackbase, &stack_data); 1000 KMP_ASSERT(this_thr->th.th_info.ds.ds_stackgrow == FALSE); 1001 __kmp_check_stack_overlap(this_thr); 1002 } 1003 KMP_MB(); 1004 exit_val = __kmp_launch_thread(this_thr); 1005 KMP_FSYNC_RELEASING(&this_thr->th.th_info.ds.ds_alive); 1006 TCW_4(this_thr->th.th_info.ds.ds_alive, FALSE); 1007 KMP_MB(); 1008 return exit_val; 1009 } 1010 1011 #if KMP_USE_MONITOR 1012 /* The monitor thread controls all of the threads in the complex */ 1013 1014 void *__stdcall __kmp_launch_monitor(void *arg) { 1015 DWORD wait_status; 1016 kmp_thread_t monitor; 1017 int status; 1018 int interval; 1019 kmp_info_t *this_thr = (kmp_info_t *)arg; 1020 1021 KMP_DEBUG_ASSERT(__kmp_init_monitor); 1022 TCW_4(__kmp_init_monitor, 2); // AC: Signal library that monitor has started 1023 // TODO: hide "2" in enum (like {true,false,started}) 1024 this_thr->th.th_info.ds.ds_thread_id = GetCurrentThreadId(); 1025 TCW_4(this_thr->th.th_info.ds.ds_alive, TRUE); 1026 1027 KMP_MB(); /* Flush all pending memory write invalidates. */ 1028 KA_TRACE(10, ("__kmp_launch_monitor: launched\n")); 1029 1030 monitor = GetCurrentThread(); 1031 1032 /* set thread priority */ 1033 status = SetThreadPriority(monitor, THREAD_PRIORITY_HIGHEST); 1034 if (!status) { 1035 DWORD error = GetLastError(); 1036 __kmp_fatal(KMP_MSG(CantSetThreadPriority), KMP_ERR(error), __kmp_msg_null); 1037 } 1038 1039 /* register us as monitor */ 1040 __kmp_gtid_set_specific(KMP_GTID_MONITOR); 1041 #ifdef KMP_TDATA_GTID 1042 #error "This define causes problems with LoadLibrary() + declspec(thread) " \ 1043 "on Windows* OS. See CQ50564, tests kmp_load_library*.c and this MSDN " \ 1044 "reference: http://support.microsoft.com/kb/118816" 1045 //__kmp_gtid = KMP_GTID_MONITOR; 1046 #endif 1047 1048 #if USE_ITT_BUILD 1049 __kmp_itt_thread_ignore(); // Instruct Intel(R) Threading Tools to ignore 1050 // monitor thread. 1051 #endif /* USE_ITT_BUILD */ 1052 1053 KMP_MB(); /* Flush all pending memory write invalidates. */ 1054 1055 interval = (1000 / __kmp_monitor_wakeups); /* in milliseconds */ 1056 1057 while (!TCR_4(__kmp_global.g.g_done)) { 1058 /* This thread monitors the state of the system */ 1059 1060 KA_TRACE(15, ("__kmp_launch_monitor: update\n")); 1061 1062 wait_status = WaitForSingleObject(__kmp_monitor_ev, interval); 1063 1064 if (wait_status == WAIT_TIMEOUT) { 1065 TCW_4(__kmp_global.g.g_time.dt.t_value, 1066 TCR_4(__kmp_global.g.g_time.dt.t_value) + 1); 1067 } 1068 1069 KMP_MB(); /* Flush all pending memory write invalidates. */ 1070 } 1071 1072 KA_TRACE(10, ("__kmp_launch_monitor: finished\n")); 1073 1074 status = SetThreadPriority(monitor, THREAD_PRIORITY_NORMAL); 1075 if (!status) { 1076 DWORD error = GetLastError(); 1077 __kmp_fatal(KMP_MSG(CantSetThreadPriority), KMP_ERR(error), __kmp_msg_null); 1078 } 1079 1080 if (__kmp_global.g.g_abort != 0) { 1081 /* now we need to terminate the worker threads */ 1082 /* the value of t_abort is the signal we caught */ 1083 int gtid; 1084 1085 KA_TRACE(10, ("__kmp_launch_monitor: terminate sig=%d\n", 1086 (__kmp_global.g.g_abort))); 1087 1088 /* terminate the OpenMP worker threads */ 1089 /* TODO this is not valid for sibling threads!! 1090 * the uber master might not be 0 anymore.. */ 1091 for (gtid = 1; gtid < __kmp_threads_capacity; ++gtid) 1092 __kmp_terminate_thread(gtid); 1093 1094 __kmp_cleanup(); 1095 1096 Sleep(0); 1097 1098 KA_TRACE(10, 1099 ("__kmp_launch_monitor: raise sig=%d\n", __kmp_global.g.g_abort)); 1100 1101 if (__kmp_global.g.g_abort > 0) { 1102 raise(__kmp_global.g.g_abort); 1103 } 1104 } 1105 1106 TCW_4(this_thr->th.th_info.ds.ds_alive, FALSE); 1107 1108 KMP_MB(); 1109 return arg; 1110 } 1111 #endif 1112 1113 void __kmp_create_worker(int gtid, kmp_info_t *th, size_t stack_size) { 1114 kmp_thread_t handle; 1115 DWORD idThread; 1116 1117 KA_TRACE(10, ("__kmp_create_worker: try to create thread (%d)\n", gtid)); 1118 1119 th->th.th_info.ds.ds_gtid = gtid; 1120 1121 if (KMP_UBER_GTID(gtid)) { 1122 int stack_data; 1123 1124 /* TODO: GetCurrentThread() returns a pseudo-handle that is unsuitable for 1125 other threads to use. Is it appropriate to just use GetCurrentThread? 1126 When should we close this handle? When unregistering the root? */ 1127 { 1128 BOOL rc; 1129 rc = DuplicateHandle(GetCurrentProcess(), GetCurrentThread(), 1130 GetCurrentProcess(), &th->th.th_info.ds.ds_thread, 0, 1131 FALSE, DUPLICATE_SAME_ACCESS); 1132 KMP_ASSERT(rc); 1133 KA_TRACE(10, (" __kmp_create_worker: ROOT Handle duplicated, th = %p, " 1134 "handle = %" KMP_UINTPTR_SPEC "\n", 1135 (LPVOID)th, th->th.th_info.ds.ds_thread)); 1136 th->th.th_info.ds.ds_thread_id = GetCurrentThreadId(); 1137 } 1138 if (TCR_4(__kmp_gtid_mode) < 2) { // check stack only if used to get gtid 1139 /* we will dynamically update the stack range if gtid_mode == 1 */ 1140 TCW_PTR(th->th.th_info.ds.ds_stackbase, &stack_data); 1141 TCW_PTR(th->th.th_info.ds.ds_stacksize, 0); 1142 TCW_4(th->th.th_info.ds.ds_stackgrow, TRUE); 1143 __kmp_check_stack_overlap(th); 1144 } 1145 } else { 1146 KMP_MB(); /* Flush all pending memory write invalidates. */ 1147 1148 /* Set stack size for this thread now. */ 1149 KA_TRACE(10, 1150 ("__kmp_create_worker: stack_size = %" KMP_SIZE_T_SPEC " bytes\n", 1151 stack_size)); 1152 1153 stack_size += gtid * __kmp_stkoffset; 1154 1155 TCW_PTR(th->th.th_info.ds.ds_stacksize, stack_size); 1156 TCW_4(th->th.th_info.ds.ds_stackgrow, FALSE); 1157 1158 KA_TRACE(10, 1159 ("__kmp_create_worker: (before) stack_size = %" KMP_SIZE_T_SPEC 1160 " bytes, &__kmp_launch_worker = %p, th = %p, &idThread = %p\n", 1161 (SIZE_T)stack_size, (LPTHREAD_START_ROUTINE)&__kmp_launch_worker, 1162 (LPVOID)th, &idThread)); 1163 1164 handle = CreateThread( 1165 NULL, (SIZE_T)stack_size, (LPTHREAD_START_ROUTINE)__kmp_launch_worker, 1166 (LPVOID)th, STACK_SIZE_PARAM_IS_A_RESERVATION, &idThread); 1167 1168 KA_TRACE(10, 1169 ("__kmp_create_worker: (after) stack_size = %" KMP_SIZE_T_SPEC 1170 " bytes, &__kmp_launch_worker = %p, th = %p, " 1171 "idThread = %u, handle = %" KMP_UINTPTR_SPEC "\n", 1172 (SIZE_T)stack_size, (LPTHREAD_START_ROUTINE)&__kmp_launch_worker, 1173 (LPVOID)th, idThread, handle)); 1174 1175 if (handle == 0) { 1176 DWORD error = GetLastError(); 1177 __kmp_fatal(KMP_MSG(CantCreateThread), KMP_ERR(error), __kmp_msg_null); 1178 } else { 1179 th->th.th_info.ds.ds_thread = handle; 1180 } 1181 1182 KMP_MB(); /* Flush all pending memory write invalidates. */ 1183 } 1184 1185 KA_TRACE(10, ("__kmp_create_worker: done creating thread (%d)\n", gtid)); 1186 } 1187 1188 int __kmp_still_running(kmp_info_t *th) { 1189 return (WAIT_TIMEOUT == WaitForSingleObject(th->th.th_info.ds.ds_thread, 0)); 1190 } 1191 1192 #if KMP_USE_MONITOR 1193 void __kmp_create_monitor(kmp_info_t *th) { 1194 kmp_thread_t handle; 1195 DWORD idThread; 1196 int ideal, new_ideal; 1197 1198 if (__kmp_dflt_blocktime == KMP_MAX_BLOCKTIME) { 1199 // We don't need monitor thread in case of MAX_BLOCKTIME 1200 KA_TRACE(10, ("__kmp_create_monitor: skipping monitor thread because of " 1201 "MAX blocktime\n")); 1202 th->th.th_info.ds.ds_tid = 0; // this makes reap_monitor no-op 1203 th->th.th_info.ds.ds_gtid = 0; 1204 TCW_4(__kmp_init_monitor, 2); // Signal to stop waiting for monitor creation 1205 return; 1206 } 1207 KA_TRACE(10, ("__kmp_create_monitor: try to create monitor\n")); 1208 1209 KMP_MB(); /* Flush all pending memory write invalidates. */ 1210 1211 __kmp_monitor_ev = CreateEvent(NULL, TRUE, FALSE, NULL); 1212 if (__kmp_monitor_ev == NULL) { 1213 DWORD error = GetLastError(); 1214 __kmp_fatal(KMP_MSG(CantCreateEvent), KMP_ERR(error), __kmp_msg_null); 1215 } 1216 #if USE_ITT_BUILD 1217 __kmp_itt_system_object_created(__kmp_monitor_ev, "Event"); 1218 #endif /* USE_ITT_BUILD */ 1219 1220 th->th.th_info.ds.ds_tid = KMP_GTID_MONITOR; 1221 th->th.th_info.ds.ds_gtid = KMP_GTID_MONITOR; 1222 1223 // FIXME - on Windows* OS, if __kmp_monitor_stksize = 0, figure out how 1224 // to automatically expand stacksize based on CreateThread error code. 1225 if (__kmp_monitor_stksize == 0) { 1226 __kmp_monitor_stksize = KMP_DEFAULT_MONITOR_STKSIZE; 1227 } 1228 if (__kmp_monitor_stksize < __kmp_sys_min_stksize) { 1229 __kmp_monitor_stksize = __kmp_sys_min_stksize; 1230 } 1231 1232 KA_TRACE(10, ("__kmp_create_monitor: requested stacksize = %d bytes\n", 1233 (int)__kmp_monitor_stksize)); 1234 1235 TCW_4(__kmp_global.g.g_time.dt.t_value, 0); 1236 1237 handle = 1238 CreateThread(NULL, (SIZE_T)__kmp_monitor_stksize, 1239 (LPTHREAD_START_ROUTINE)__kmp_launch_monitor, (LPVOID)th, 1240 STACK_SIZE_PARAM_IS_A_RESERVATION, &idThread); 1241 if (handle == 0) { 1242 DWORD error = GetLastError(); 1243 __kmp_fatal(KMP_MSG(CantCreateThread), KMP_ERR(error), __kmp_msg_null); 1244 } else 1245 th->th.th_info.ds.ds_thread = handle; 1246 1247 KMP_MB(); /* Flush all pending memory write invalidates. */ 1248 1249 KA_TRACE(10, ("__kmp_create_monitor: monitor created %p\n", 1250 (void *)th->th.th_info.ds.ds_thread)); 1251 } 1252 #endif 1253 1254 /* Check to see if thread is still alive. 1255 NOTE: The ExitProcess(code) system call causes all threads to Terminate 1256 with a exit_val = code. Because of this we can not rely on exit_val having 1257 any particular value. So this routine may return STILL_ALIVE in exit_val 1258 even after the thread is dead. */ 1259 1260 int __kmp_is_thread_alive(kmp_info_t *th, DWORD *exit_val) { 1261 DWORD rc; 1262 rc = GetExitCodeThread(th->th.th_info.ds.ds_thread, exit_val); 1263 if (rc == 0) { 1264 DWORD error = GetLastError(); 1265 __kmp_fatal(KMP_MSG(FunctionError, "GetExitCodeThread()"), KMP_ERR(error), 1266 __kmp_msg_null); 1267 } 1268 return (*exit_val == STILL_ACTIVE); 1269 } 1270 1271 void __kmp_exit_thread(int exit_status) { 1272 ExitThread(exit_status); 1273 } // __kmp_exit_thread 1274 1275 // This is a common part for both __kmp_reap_worker() and __kmp_reap_monitor(). 1276 static void __kmp_reap_common(kmp_info_t *th) { 1277 DWORD exit_val; 1278 1279 KMP_MB(); /* Flush all pending memory write invalidates. */ 1280 1281 KA_TRACE( 1282 10, ("__kmp_reap_common: try to reap (%d)\n", th->th.th_info.ds.ds_gtid)); 1283 1284 /* 2006-10-19: 1285 There are two opposite situations: 1286 1. Windows* OS keep thread alive after it resets ds_alive flag and 1287 exits from thread function. (For example, see C70770/Q394281 "unloading of 1288 dll based on OMP is very slow".) 1289 2. Windows* OS may kill thread before it resets ds_alive flag. 1290 1291 Right solution seems to be waiting for *either* thread termination *or* 1292 ds_alive resetting. */ 1293 { 1294 // TODO: This code is very similar to KMP_WAIT. Need to generalize 1295 // KMP_WAIT to cover this usage also. 1296 void *obj = NULL; 1297 kmp_uint32 spins; 1298 #if USE_ITT_BUILD 1299 KMP_FSYNC_SPIN_INIT(obj, (void *)&th->th.th_info.ds.ds_alive); 1300 #endif /* USE_ITT_BUILD */ 1301 KMP_INIT_YIELD(spins); 1302 do { 1303 #if USE_ITT_BUILD 1304 KMP_FSYNC_SPIN_PREPARE(obj); 1305 #endif /* USE_ITT_BUILD */ 1306 __kmp_is_thread_alive(th, &exit_val); 1307 KMP_YIELD_OVERSUB_ELSE_SPIN(spins); 1308 } while (exit_val == STILL_ACTIVE && TCR_4(th->th.th_info.ds.ds_alive)); 1309 #if USE_ITT_BUILD 1310 if (exit_val == STILL_ACTIVE) { 1311 KMP_FSYNC_CANCEL(obj); 1312 } else { 1313 KMP_FSYNC_SPIN_ACQUIRED(obj); 1314 } 1315 #endif /* USE_ITT_BUILD */ 1316 } 1317 1318 __kmp_free_handle(th->th.th_info.ds.ds_thread); 1319 1320 /* NOTE: The ExitProcess(code) system call causes all threads to Terminate 1321 with a exit_val = code. Because of this we can not rely on exit_val having 1322 any particular value. */ 1323 if (exit_val == STILL_ACTIVE) { 1324 KA_TRACE(1, ("__kmp_reap_common: thread still active.\n")); 1325 } else if ((void *)exit_val != (void *)th) { 1326 KA_TRACE(1, ("__kmp_reap_common: ExitProcess / TerminateThread used?\n")); 1327 } 1328 1329 KA_TRACE(10, 1330 ("__kmp_reap_common: done reaping (%d), handle = %" KMP_UINTPTR_SPEC 1331 "\n", 1332 th->th.th_info.ds.ds_gtid, th->th.th_info.ds.ds_thread)); 1333 1334 th->th.th_info.ds.ds_thread = 0; 1335 th->th.th_info.ds.ds_tid = KMP_GTID_DNE; 1336 th->th.th_info.ds.ds_gtid = KMP_GTID_DNE; 1337 th->th.th_info.ds.ds_thread_id = 0; 1338 1339 KMP_MB(); /* Flush all pending memory write invalidates. */ 1340 } 1341 1342 #if KMP_USE_MONITOR 1343 void __kmp_reap_monitor(kmp_info_t *th) { 1344 int status; 1345 1346 KA_TRACE(10, ("__kmp_reap_monitor: try to reap %p\n", 1347 (void *)th->th.th_info.ds.ds_thread)); 1348 1349 // If monitor has been created, its tid and gtid should be KMP_GTID_MONITOR. 1350 // If both tid and gtid are 0, it means the monitor did not ever start. 1351 // If both tid and gtid are KMP_GTID_DNE, the monitor has been shut down. 1352 KMP_DEBUG_ASSERT(th->th.th_info.ds.ds_tid == th->th.th_info.ds.ds_gtid); 1353 if (th->th.th_info.ds.ds_gtid != KMP_GTID_MONITOR) { 1354 KA_TRACE(10, ("__kmp_reap_monitor: monitor did not start, returning\n")); 1355 return; 1356 } 1357 1358 KMP_MB(); /* Flush all pending memory write invalidates. */ 1359 1360 status = SetEvent(__kmp_monitor_ev); 1361 if (status == FALSE) { 1362 DWORD error = GetLastError(); 1363 __kmp_fatal(KMP_MSG(CantSetEvent), KMP_ERR(error), __kmp_msg_null); 1364 } 1365 KA_TRACE(10, ("__kmp_reap_monitor: reaping thread (%d)\n", 1366 th->th.th_info.ds.ds_gtid)); 1367 __kmp_reap_common(th); 1368 1369 __kmp_free_handle(__kmp_monitor_ev); 1370 1371 KMP_MB(); /* Flush all pending memory write invalidates. */ 1372 } 1373 #endif 1374 1375 void __kmp_reap_worker(kmp_info_t *th) { 1376 KA_TRACE(10, ("__kmp_reap_worker: reaping thread (%d)\n", 1377 th->th.th_info.ds.ds_gtid)); 1378 __kmp_reap_common(th); 1379 } 1380 1381 #if KMP_HANDLE_SIGNALS 1382 1383 static void __kmp_team_handler(int signo) { 1384 if (__kmp_global.g.g_abort == 0) { 1385 // Stage 1 signal handler, let's shut down all of the threads. 1386 if (__kmp_debug_buf) { 1387 __kmp_dump_debug_buffer(); 1388 } 1389 KMP_MB(); // Flush all pending memory write invalidates. 1390 TCW_4(__kmp_global.g.g_abort, signo); 1391 KMP_MB(); // Flush all pending memory write invalidates. 1392 TCW_4(__kmp_global.g.g_done, TRUE); 1393 KMP_MB(); // Flush all pending memory write invalidates. 1394 } 1395 } // __kmp_team_handler 1396 1397 static sig_func_t __kmp_signal(int signum, sig_func_t handler) { 1398 sig_func_t old = signal(signum, handler); 1399 if (old == SIG_ERR) { 1400 int error = errno; 1401 __kmp_fatal(KMP_MSG(FunctionError, "signal"), KMP_ERR(error), 1402 __kmp_msg_null); 1403 } 1404 return old; 1405 } 1406 1407 static void __kmp_install_one_handler(int sig, sig_func_t handler, 1408 int parallel_init) { 1409 sig_func_t old; 1410 KMP_MB(); /* Flush all pending memory write invalidates. */ 1411 KB_TRACE(60, ("__kmp_install_one_handler: called: sig=%d\n", sig)); 1412 if (parallel_init) { 1413 old = __kmp_signal(sig, handler); 1414 // SIG_DFL on Windows* OS in NULL or 0. 1415 if (old == __kmp_sighldrs[sig]) { 1416 __kmp_siginstalled[sig] = 1; 1417 } else { // Restore/keep user's handler if one previously installed. 1418 old = __kmp_signal(sig, old); 1419 } 1420 } else { 1421 // Save initial/system signal handlers to see if user handlers installed. 1422 // 2009-09-23: It is a dead code. On Windows* OS __kmp_install_signals 1423 // called once with parallel_init == TRUE. 1424 old = __kmp_signal(sig, SIG_DFL); 1425 __kmp_sighldrs[sig] = old; 1426 __kmp_signal(sig, old); 1427 } 1428 KMP_MB(); /* Flush all pending memory write invalidates. */ 1429 } // __kmp_install_one_handler 1430 1431 static void __kmp_remove_one_handler(int sig) { 1432 if (__kmp_siginstalled[sig]) { 1433 sig_func_t old; 1434 KMP_MB(); // Flush all pending memory write invalidates. 1435 KB_TRACE(60, ("__kmp_remove_one_handler: called: sig=%d\n", sig)); 1436 old = __kmp_signal(sig, __kmp_sighldrs[sig]); 1437 if (old != __kmp_team_handler) { 1438 KB_TRACE(10, ("__kmp_remove_one_handler: oops, not our handler, " 1439 "restoring: sig=%d\n", 1440 sig)); 1441 old = __kmp_signal(sig, old); 1442 } 1443 __kmp_sighldrs[sig] = NULL; 1444 __kmp_siginstalled[sig] = 0; 1445 KMP_MB(); // Flush all pending memory write invalidates. 1446 } 1447 } // __kmp_remove_one_handler 1448 1449 void __kmp_install_signals(int parallel_init) { 1450 KB_TRACE(10, ("__kmp_install_signals: called\n")); 1451 if (!__kmp_handle_signals) { 1452 KB_TRACE(10, ("__kmp_install_signals: KMP_HANDLE_SIGNALS is false - " 1453 "handlers not installed\n")); 1454 return; 1455 } 1456 __kmp_install_one_handler(SIGINT, __kmp_team_handler, parallel_init); 1457 __kmp_install_one_handler(SIGILL, __kmp_team_handler, parallel_init); 1458 __kmp_install_one_handler(SIGABRT, __kmp_team_handler, parallel_init); 1459 __kmp_install_one_handler(SIGFPE, __kmp_team_handler, parallel_init); 1460 __kmp_install_one_handler(SIGSEGV, __kmp_team_handler, parallel_init); 1461 __kmp_install_one_handler(SIGTERM, __kmp_team_handler, parallel_init); 1462 } // __kmp_install_signals 1463 1464 void __kmp_remove_signals(void) { 1465 int sig; 1466 KB_TRACE(10, ("__kmp_remove_signals: called\n")); 1467 for (sig = 1; sig < NSIG; ++sig) { 1468 __kmp_remove_one_handler(sig); 1469 } 1470 } // __kmp_remove_signals 1471 1472 #endif // KMP_HANDLE_SIGNALS 1473 1474 /* Put the thread to sleep for a time period */ 1475 void __kmp_thread_sleep(int millis) { 1476 DWORD status; 1477 1478 status = SleepEx((DWORD)millis, FALSE); 1479 if (status) { 1480 DWORD error = GetLastError(); 1481 __kmp_fatal(KMP_MSG(FunctionError, "SleepEx()"), KMP_ERR(error), 1482 __kmp_msg_null); 1483 } 1484 } 1485 1486 // Determine whether the given address is mapped into the current address space. 1487 int __kmp_is_address_mapped(void *addr) { 1488 DWORD status; 1489 MEMORY_BASIC_INFORMATION lpBuffer; 1490 SIZE_T dwLength; 1491 1492 dwLength = sizeof(MEMORY_BASIC_INFORMATION); 1493 1494 status = VirtualQuery(addr, &lpBuffer, dwLength); 1495 1496 return !(((lpBuffer.State == MEM_RESERVE) || (lpBuffer.State == MEM_FREE)) || 1497 ((lpBuffer.Protect == PAGE_NOACCESS) || 1498 (lpBuffer.Protect == PAGE_EXECUTE))); 1499 } 1500 1501 kmp_uint64 __kmp_hardware_timestamp(void) { 1502 kmp_uint64 r = 0; 1503 1504 QueryPerformanceCounter((LARGE_INTEGER *)&r); 1505 return r; 1506 } 1507 1508 /* Free handle and check the error code */ 1509 void __kmp_free_handle(kmp_thread_t tHandle) { 1510 /* called with parameter type HANDLE also, thus suppose kmp_thread_t defined 1511 * as HANDLE */ 1512 BOOL rc; 1513 rc = CloseHandle(tHandle); 1514 if (!rc) { 1515 DWORD error = GetLastError(); 1516 __kmp_fatal(KMP_MSG(CantCloseHandle), KMP_ERR(error), __kmp_msg_null); 1517 } 1518 } 1519 1520 int __kmp_get_load_balance(int max) { 1521 static ULONG glb_buff_size = 100 * 1024; 1522 1523 // Saved count of the running threads for the thread balance algorithm 1524 static int glb_running_threads = 0; 1525 static double glb_call_time = 0; /* Thread balance algorithm call time */ 1526 1527 int running_threads = 0; // Number of running threads in the system. 1528 NTSTATUS status = 0; 1529 ULONG buff_size = 0; 1530 ULONG info_size = 0; 1531 void *buffer = NULL; 1532 PSYSTEM_PROCESS_INFORMATION spi = NULL; 1533 int first_time = 1; 1534 1535 double call_time = 0.0; // start, finish; 1536 1537 __kmp_elapsed(&call_time); 1538 1539 if (glb_call_time && 1540 (call_time - glb_call_time < __kmp_load_balance_interval)) { 1541 running_threads = glb_running_threads; 1542 goto finish; 1543 } 1544 glb_call_time = call_time; 1545 1546 // Do not spend time on running algorithm if we have a permanent error. 1547 if (NtQuerySystemInformation == NULL) { 1548 running_threads = -1; 1549 goto finish; 1550 } 1551 1552 if (max <= 0) { 1553 max = INT_MAX; 1554 } 1555 1556 do { 1557 1558 if (first_time) { 1559 buff_size = glb_buff_size; 1560 } else { 1561 buff_size = 2 * buff_size; 1562 } 1563 1564 buffer = KMP_INTERNAL_REALLOC(buffer, buff_size); 1565 if (buffer == NULL) { 1566 running_threads = -1; 1567 goto finish; 1568 } 1569 status = NtQuerySystemInformation(SystemProcessInformation, buffer, 1570 buff_size, &info_size); 1571 first_time = 0; 1572 1573 } while (status == STATUS_INFO_LENGTH_MISMATCH); 1574 glb_buff_size = buff_size; 1575 1576 #define CHECK(cond) \ 1577 { \ 1578 KMP_DEBUG_ASSERT(cond); \ 1579 if (!(cond)) { \ 1580 running_threads = -1; \ 1581 goto finish; \ 1582 } \ 1583 } 1584 1585 CHECK(buff_size >= info_size); 1586 spi = PSYSTEM_PROCESS_INFORMATION(buffer); 1587 for (;;) { 1588 ptrdiff_t offset = uintptr_t(spi) - uintptr_t(buffer); 1589 CHECK(0 <= offset && 1590 offset + sizeof(SYSTEM_PROCESS_INFORMATION) < info_size); 1591 HANDLE pid = spi->ProcessId; 1592 ULONG num = spi->NumberOfThreads; 1593 CHECK(num >= 1); 1594 size_t spi_size = 1595 sizeof(SYSTEM_PROCESS_INFORMATION) + sizeof(SYSTEM_THREAD) * (num - 1); 1596 CHECK(offset + spi_size < 1597 info_size); // Make sure process info record fits the buffer. 1598 if (spi->NextEntryOffset != 0) { 1599 CHECK(spi_size <= 1600 spi->NextEntryOffset); // And do not overlap with the next record. 1601 } 1602 // pid == 0 corresponds to the System Idle Process. It always has running 1603 // threads on all cores. So, we don't consider the running threads of this 1604 // process. 1605 if (pid != 0) { 1606 for (int i = 0; i < num; ++i) { 1607 THREAD_STATE state = spi->Threads[i].State; 1608 // Count threads that have Ready or Running state. 1609 // !!! TODO: Why comment does not match the code??? 1610 if (state == StateRunning) { 1611 ++running_threads; 1612 // Stop counting running threads if the number is already greater than 1613 // the number of available cores 1614 if (running_threads >= max) { 1615 goto finish; 1616 } 1617 } 1618 } 1619 } 1620 if (spi->NextEntryOffset == 0) { 1621 break; 1622 } 1623 spi = PSYSTEM_PROCESS_INFORMATION(uintptr_t(spi) + spi->NextEntryOffset); 1624 } 1625 1626 #undef CHECK 1627 1628 finish: // Clean up and exit. 1629 1630 if (buffer != NULL) { 1631 KMP_INTERNAL_FREE(buffer); 1632 } 1633 1634 glb_running_threads = running_threads; 1635 1636 return running_threads; 1637 } //__kmp_get_load_balance() 1638 1639 // Find symbol from the loaded modules 1640 void *__kmp_lookup_symbol(const char *name) { 1641 HANDLE process = GetCurrentProcess(); 1642 DWORD needed; 1643 HMODULE *modules = nullptr; 1644 if (!EnumProcessModules(process, modules, 0, &needed)) 1645 return nullptr; 1646 DWORD num_modules = needed / sizeof(HMODULE); 1647 modules = (HMODULE *)malloc(num_modules * sizeof(HMODULE)); 1648 if (!EnumProcessModules(process, modules, needed, &needed)) { 1649 free(modules); 1650 return nullptr; 1651 } 1652 void *proc = nullptr; 1653 for (uint32_t i = 0; i < num_modules; i++) { 1654 proc = (void *)GetProcAddress(modules[i], name); 1655 if (proc) 1656 break; 1657 } 1658 free(modules); 1659 return proc; 1660 } 1661 1662 // Functions for hidden helper task 1663 void __kmp_hidden_helper_worker_thread_wait() { 1664 KMP_ASSERT(0 && "Hidden helper task is not supported on Windows"); 1665 } 1666 1667 void __kmp_do_initialize_hidden_helper_threads() { 1668 KMP_ASSERT(0 && "Hidden helper task is not supported on Windows"); 1669 } 1670 1671 void __kmp_hidden_helper_threads_initz_wait() { 1672 KMP_ASSERT(0 && "Hidden helper task is not supported on Windows"); 1673 } 1674 1675 void __kmp_hidden_helper_initz_release() { 1676 KMP_ASSERT(0 && "Hidden helper task is not supported on Windows"); 1677 } 1678 1679 void __kmp_hidden_helper_main_thread_wait() { 1680 KMP_ASSERT(0 && "Hidden helper task is not supported on Windows"); 1681 } 1682 1683 void __kmp_hidden_helper_main_thread_release() { 1684 KMP_ASSERT(0 && "Hidden helper task is not supported on Windows"); 1685 } 1686 1687 void __kmp_hidden_helper_worker_thread_signal() { 1688 KMP_ASSERT(0 && "Hidden helper task is not supported on Windows"); 1689 } 1690 1691 void __kmp_hidden_helper_threads_deinitz_wait() { 1692 KMP_ASSERT(0 && "Hidden helper task is not supported on Windows"); 1693 } 1694 1695 void __kmp_hidden_helper_threads_deinitz_release() { 1696 KMP_ASSERT(0 && "Hidden helper task is not supported on Windows"); 1697 } 1698