1 /* 2 * z_Linux_util.cpp -- platform specific routines. 3 */ 4 5 //===----------------------------------------------------------------------===// 6 // 7 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 8 // See https://llvm.org/LICENSE.txt for license information. 9 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "kmp.h" 14 #include "kmp_affinity.h" 15 #include "kmp_i18n.h" 16 #include "kmp_io.h" 17 #include "kmp_itt.h" 18 #include "kmp_lock.h" 19 #include "kmp_stats.h" 20 #include "kmp_str.h" 21 #include "kmp_wait_release.h" 22 #include "kmp_wrapper_getpid.h" 23 24 #if !KMP_OS_DRAGONFLY && !KMP_OS_FREEBSD && !KMP_OS_NETBSD && !KMP_OS_OPENBSD 25 #include <alloca.h> 26 #endif 27 #include <math.h> // HUGE_VAL. 28 #if KMP_OS_LINUX 29 #include <semaphore.h> 30 #endif // KMP_OS_LINUX 31 #include <sys/resource.h> 32 #include <sys/syscall.h> 33 #include <sys/time.h> 34 #include <sys/times.h> 35 #include <unistd.h> 36 37 #if KMP_OS_LINUX 38 #include <sys/sysinfo.h> 39 #if KMP_USE_FUTEX 40 // We should really include <futex.h>, but that causes compatibility problems on 41 // different Linux* OS distributions that either require that you include (or 42 // break when you try to include) <pci/types.h>. Since all we need is the two 43 // macros below (which are part of the kernel ABI, so can't change) we just 44 // define the constants here and don't include <futex.h> 45 #ifndef FUTEX_WAIT 46 #define FUTEX_WAIT 0 47 #endif 48 #ifndef FUTEX_WAKE 49 #define FUTEX_WAKE 1 50 #endif 51 #endif 52 #elif KMP_OS_DARWIN 53 #include <mach/mach.h> 54 #include <sys/sysctl.h> 55 #elif KMP_OS_DRAGONFLY || KMP_OS_FREEBSD 56 #include <sys/types.h> 57 #include <sys/sysctl.h> 58 #include <sys/user.h> 59 #include <pthread_np.h> 60 #elif KMP_OS_NETBSD || KMP_OS_OPENBSD 61 #include <sys/types.h> 62 #include <sys/sysctl.h> 63 #endif 64 65 #include <ctype.h> 66 #include <dirent.h> 67 #include <fcntl.h> 68 69 struct kmp_sys_timer { 70 struct timespec start; 71 }; 72 73 // Convert timespec to nanoseconds. 74 #define TS2NS(timespec) \ 75 (((timespec).tv_sec * (long int)1e9) + (timespec).tv_nsec) 76 77 static struct kmp_sys_timer __kmp_sys_timer_data; 78 79 #if KMP_HANDLE_SIGNALS 80 typedef void (*sig_func_t)(int); 81 STATIC_EFI2_WORKAROUND struct sigaction __kmp_sighldrs[NSIG]; 82 static sigset_t __kmp_sigset; 83 #endif 84 85 static int __kmp_init_runtime = FALSE; 86 87 static int __kmp_fork_count = 0; 88 89 static pthread_condattr_t __kmp_suspend_cond_attr; 90 static pthread_mutexattr_t __kmp_suspend_mutex_attr; 91 92 static kmp_cond_align_t __kmp_wait_cv; 93 static kmp_mutex_align_t __kmp_wait_mx; 94 95 kmp_uint64 __kmp_ticks_per_msec = 1000000; 96 97 #ifdef DEBUG_SUSPEND 98 static void __kmp_print_cond(char *buffer, kmp_cond_align_t *cond) { 99 KMP_SNPRINTF(buffer, 128, "(cond (lock (%ld, %d)), (descr (%p)))", 100 cond->c_cond.__c_lock.__status, cond->c_cond.__c_lock.__spinlock, 101 cond->c_cond.__c_waiting); 102 } 103 #endif 104 105 #if ((KMP_OS_LINUX || KMP_OS_FREEBSD) && KMP_AFFINITY_SUPPORTED) 106 107 /* Affinity support */ 108 109 void __kmp_affinity_bind_thread(int which) { 110 KMP_ASSERT2(KMP_AFFINITY_CAPABLE(), 111 "Illegal set affinity operation when not capable"); 112 113 kmp_affin_mask_t *mask; 114 KMP_CPU_ALLOC_ON_STACK(mask); 115 KMP_CPU_ZERO(mask); 116 KMP_CPU_SET(which, mask); 117 __kmp_set_system_affinity(mask, TRUE); 118 KMP_CPU_FREE_FROM_STACK(mask); 119 } 120 121 /* Determine if we can access affinity functionality on this version of 122 * Linux* OS by checking __NR_sched_{get,set}affinity system calls, and set 123 * __kmp_affin_mask_size to the appropriate value (0 means not capable). */ 124 void __kmp_affinity_determine_capable(const char *env_var) { 125 // Check and see if the OS supports thread affinity. 126 127 #if KMP_OS_LINUX 128 #define KMP_CPU_SET_SIZE_LIMIT (1024 * 1024) 129 #define KMP_CPU_SET_TRY_SIZE CACHE_LINE 130 #elif KMP_OS_FREEBSD 131 #define KMP_CPU_SET_SIZE_LIMIT (sizeof(cpuset_t)) 132 #endif 133 134 #if KMP_OS_LINUX 135 long gCode; 136 unsigned char *buf; 137 buf = (unsigned char *)KMP_INTERNAL_MALLOC(KMP_CPU_SET_SIZE_LIMIT); 138 139 // If the syscall returns a suggestion for the size, 140 // then we don't have to search for an appropriate size. 141 gCode = syscall(__NR_sched_getaffinity, 0, KMP_CPU_SET_TRY_SIZE, buf); 142 KA_TRACE(30, ("__kmp_affinity_determine_capable: " 143 "initial getaffinity call returned %ld errno = %d\n", 144 gCode, errno)); 145 146 if (gCode < 0 && errno != EINVAL) { 147 // System call not supported 148 if (__kmp_affinity_verbose || 149 (__kmp_affinity_warnings && (__kmp_affinity_type != affinity_none) && 150 (__kmp_affinity_type != affinity_default) && 151 (__kmp_affinity_type != affinity_disabled))) { 152 int error = errno; 153 kmp_msg_t err_code = KMP_ERR(error); 154 __kmp_msg(kmp_ms_warning, KMP_MSG(GetAffSysCallNotSupported, env_var), 155 err_code, __kmp_msg_null); 156 if (__kmp_generate_warnings == kmp_warnings_off) { 157 __kmp_str_free(&err_code.str); 158 } 159 } 160 KMP_AFFINITY_DISABLE(); 161 KMP_INTERNAL_FREE(buf); 162 return; 163 } else if (gCode > 0) { 164 // The optimal situation: the OS returns the size of the buffer it expects. 165 KMP_AFFINITY_ENABLE(gCode); 166 KA_TRACE(10, ("__kmp_affinity_determine_capable: " 167 "affinity supported (mask size %d)\n", 168 (int)__kmp_affin_mask_size)); 169 KMP_INTERNAL_FREE(buf); 170 return; 171 } 172 173 // Call the getaffinity system call repeatedly with increasing set sizes 174 // until we succeed, or reach an upper bound on the search. 175 KA_TRACE(30, ("__kmp_affinity_determine_capable: " 176 "searching for proper set size\n")); 177 int size; 178 for (size = 1; size <= KMP_CPU_SET_SIZE_LIMIT; size *= 2) { 179 gCode = syscall(__NR_sched_getaffinity, 0, size, buf); 180 KA_TRACE(30, ("__kmp_affinity_determine_capable: " 181 "getaffinity for mask size %ld returned %ld errno = %d\n", 182 size, gCode, errno)); 183 184 if (gCode < 0) { 185 if (errno == ENOSYS) { 186 // We shouldn't get here 187 KA_TRACE(30, ("__kmp_affinity_determine_capable: " 188 "inconsistent OS call behavior: errno == ENOSYS for mask " 189 "size %d\n", 190 size)); 191 if (__kmp_affinity_verbose || 192 (__kmp_affinity_warnings && 193 (__kmp_affinity_type != affinity_none) && 194 (__kmp_affinity_type != affinity_default) && 195 (__kmp_affinity_type != affinity_disabled))) { 196 int error = errno; 197 kmp_msg_t err_code = KMP_ERR(error); 198 __kmp_msg(kmp_ms_warning, KMP_MSG(GetAffSysCallNotSupported, env_var), 199 err_code, __kmp_msg_null); 200 if (__kmp_generate_warnings == kmp_warnings_off) { 201 __kmp_str_free(&err_code.str); 202 } 203 } 204 KMP_AFFINITY_DISABLE(); 205 KMP_INTERNAL_FREE(buf); 206 return; 207 } 208 continue; 209 } 210 211 KMP_AFFINITY_ENABLE(gCode); 212 KA_TRACE(10, ("__kmp_affinity_determine_capable: " 213 "affinity supported (mask size %d)\n", 214 (int)__kmp_affin_mask_size)); 215 KMP_INTERNAL_FREE(buf); 216 return; 217 } 218 #elif KMP_OS_FREEBSD 219 long gCode; 220 unsigned char *buf; 221 buf = (unsigned char *)KMP_INTERNAL_MALLOC(KMP_CPU_SET_SIZE_LIMIT); 222 gCode = pthread_getaffinity_np(pthread_self(), KMP_CPU_SET_SIZE_LIMIT, 223 reinterpret_cast<cpuset_t *>(buf)); 224 KA_TRACE(30, ("__kmp_affinity_determine_capable: " 225 "initial getaffinity call returned %d errno = %d\n", 226 gCode, errno)); 227 if (gCode == 0) { 228 KMP_AFFINITY_ENABLE(KMP_CPU_SET_SIZE_LIMIT); 229 KA_TRACE(10, ("__kmp_affinity_determine_capable: " 230 "affinity supported (mask size %d)\n", 231 (int)__kmp_affin_mask_size)); 232 KMP_INTERNAL_FREE(buf); 233 return; 234 } 235 #endif 236 KMP_INTERNAL_FREE(buf); 237 238 // Affinity is not supported 239 KMP_AFFINITY_DISABLE(); 240 KA_TRACE(10, ("__kmp_affinity_determine_capable: " 241 "cannot determine mask size - affinity not supported\n")); 242 if (__kmp_affinity_verbose || 243 (__kmp_affinity_warnings && (__kmp_affinity_type != affinity_none) && 244 (__kmp_affinity_type != affinity_default) && 245 (__kmp_affinity_type != affinity_disabled))) { 246 KMP_WARNING(AffCantGetMaskSize, env_var); 247 } 248 } 249 250 #endif // KMP_OS_LINUX && KMP_AFFINITY_SUPPORTED 251 252 #if KMP_USE_FUTEX 253 254 int __kmp_futex_determine_capable() { 255 int loc = 0; 256 long rc = syscall(__NR_futex, &loc, FUTEX_WAKE, 1, NULL, NULL, 0); 257 int retval = (rc == 0) || (errno != ENOSYS); 258 259 KA_TRACE(10, 260 ("__kmp_futex_determine_capable: rc = %d errno = %d\n", rc, errno)); 261 KA_TRACE(10, ("__kmp_futex_determine_capable: futex syscall%s supported\n", 262 retval ? "" : " not")); 263 264 return retval; 265 } 266 267 #endif // KMP_USE_FUTEX 268 269 #if (KMP_ARCH_X86 || KMP_ARCH_X86_64) && (!KMP_ASM_INTRINS) 270 /* Only 32-bit "add-exchange" instruction on IA-32 architecture causes us to 271 use compare_and_store for these routines */ 272 273 kmp_int8 __kmp_test_then_or8(volatile kmp_int8 *p, kmp_int8 d) { 274 kmp_int8 old_value, new_value; 275 276 old_value = TCR_1(*p); 277 new_value = old_value | d; 278 279 while (!KMP_COMPARE_AND_STORE_REL8(p, old_value, new_value)) { 280 KMP_CPU_PAUSE(); 281 old_value = TCR_1(*p); 282 new_value = old_value | d; 283 } 284 return old_value; 285 } 286 287 kmp_int8 __kmp_test_then_and8(volatile kmp_int8 *p, kmp_int8 d) { 288 kmp_int8 old_value, new_value; 289 290 old_value = TCR_1(*p); 291 new_value = old_value & d; 292 293 while (!KMP_COMPARE_AND_STORE_REL8(p, old_value, new_value)) { 294 KMP_CPU_PAUSE(); 295 old_value = TCR_1(*p); 296 new_value = old_value & d; 297 } 298 return old_value; 299 } 300 301 kmp_uint32 __kmp_test_then_or32(volatile kmp_uint32 *p, kmp_uint32 d) { 302 kmp_uint32 old_value, new_value; 303 304 old_value = TCR_4(*p); 305 new_value = old_value | d; 306 307 while (!KMP_COMPARE_AND_STORE_REL32(p, old_value, new_value)) { 308 KMP_CPU_PAUSE(); 309 old_value = TCR_4(*p); 310 new_value = old_value | d; 311 } 312 return old_value; 313 } 314 315 kmp_uint32 __kmp_test_then_and32(volatile kmp_uint32 *p, kmp_uint32 d) { 316 kmp_uint32 old_value, new_value; 317 318 old_value = TCR_4(*p); 319 new_value = old_value & d; 320 321 while (!KMP_COMPARE_AND_STORE_REL32(p, old_value, new_value)) { 322 KMP_CPU_PAUSE(); 323 old_value = TCR_4(*p); 324 new_value = old_value & d; 325 } 326 return old_value; 327 } 328 329 #if KMP_ARCH_X86 330 kmp_int8 __kmp_test_then_add8(volatile kmp_int8 *p, kmp_int8 d) { 331 kmp_int8 old_value, new_value; 332 333 old_value = TCR_1(*p); 334 new_value = old_value + d; 335 336 while (!KMP_COMPARE_AND_STORE_REL8(p, old_value, new_value)) { 337 KMP_CPU_PAUSE(); 338 old_value = TCR_1(*p); 339 new_value = old_value + d; 340 } 341 return old_value; 342 } 343 344 kmp_int64 __kmp_test_then_add64(volatile kmp_int64 *p, kmp_int64 d) { 345 kmp_int64 old_value, new_value; 346 347 old_value = TCR_8(*p); 348 new_value = old_value + d; 349 350 while (!KMP_COMPARE_AND_STORE_REL64(p, old_value, new_value)) { 351 KMP_CPU_PAUSE(); 352 old_value = TCR_8(*p); 353 new_value = old_value + d; 354 } 355 return old_value; 356 } 357 #endif /* KMP_ARCH_X86 */ 358 359 kmp_uint64 __kmp_test_then_or64(volatile kmp_uint64 *p, kmp_uint64 d) { 360 kmp_uint64 old_value, new_value; 361 362 old_value = TCR_8(*p); 363 new_value = old_value | d; 364 while (!KMP_COMPARE_AND_STORE_REL64(p, old_value, new_value)) { 365 KMP_CPU_PAUSE(); 366 old_value = TCR_8(*p); 367 new_value = old_value | d; 368 } 369 return old_value; 370 } 371 372 kmp_uint64 __kmp_test_then_and64(volatile kmp_uint64 *p, kmp_uint64 d) { 373 kmp_uint64 old_value, new_value; 374 375 old_value = TCR_8(*p); 376 new_value = old_value & d; 377 while (!KMP_COMPARE_AND_STORE_REL64(p, old_value, new_value)) { 378 KMP_CPU_PAUSE(); 379 old_value = TCR_8(*p); 380 new_value = old_value & d; 381 } 382 return old_value; 383 } 384 385 #endif /* (KMP_ARCH_X86 || KMP_ARCH_X86_64) && (! KMP_ASM_INTRINS) */ 386 387 void __kmp_terminate_thread(int gtid) { 388 int status; 389 kmp_info_t *th = __kmp_threads[gtid]; 390 391 if (!th) 392 return; 393 394 #ifdef KMP_CANCEL_THREADS 395 KA_TRACE(10, ("__kmp_terminate_thread: kill (%d)\n", gtid)); 396 status = pthread_cancel(th->th.th_info.ds.ds_thread); 397 if (status != 0 && status != ESRCH) { 398 __kmp_fatal(KMP_MSG(CantTerminateWorkerThread), KMP_ERR(status), 399 __kmp_msg_null); 400 } 401 #endif 402 KMP_YIELD(TRUE); 403 } // 404 405 /* Set thread stack info according to values returned by pthread_getattr_np(). 406 If values are unreasonable, assume call failed and use incremental stack 407 refinement method instead. Returns TRUE if the stack parameters could be 408 determined exactly, FALSE if incremental refinement is necessary. */ 409 static kmp_int32 __kmp_set_stack_info(int gtid, kmp_info_t *th) { 410 int stack_data; 411 #if KMP_OS_LINUX || KMP_OS_DRAGONFLY || KMP_OS_FREEBSD || KMP_OS_NETBSD || \ 412 KMP_OS_HURD 413 pthread_attr_t attr; 414 int status; 415 size_t size = 0; 416 void *addr = 0; 417 418 /* Always do incremental stack refinement for ubermaster threads since the 419 initial thread stack range can be reduced by sibling thread creation so 420 pthread_attr_getstack may cause thread gtid aliasing */ 421 if (!KMP_UBER_GTID(gtid)) { 422 423 /* Fetch the real thread attributes */ 424 status = pthread_attr_init(&attr); 425 KMP_CHECK_SYSFAIL("pthread_attr_init", status); 426 #if KMP_OS_DRAGONFLY || KMP_OS_FREEBSD || KMP_OS_NETBSD 427 status = pthread_attr_get_np(pthread_self(), &attr); 428 KMP_CHECK_SYSFAIL("pthread_attr_get_np", status); 429 #else 430 status = pthread_getattr_np(pthread_self(), &attr); 431 KMP_CHECK_SYSFAIL("pthread_getattr_np", status); 432 #endif 433 status = pthread_attr_getstack(&attr, &addr, &size); 434 KMP_CHECK_SYSFAIL("pthread_attr_getstack", status); 435 KA_TRACE(60, 436 ("__kmp_set_stack_info: T#%d pthread_attr_getstack returned size:" 437 " %lu, low addr: %p\n", 438 gtid, size, addr)); 439 status = pthread_attr_destroy(&attr); 440 KMP_CHECK_SYSFAIL("pthread_attr_destroy", status); 441 } 442 443 if (size != 0 && addr != 0) { // was stack parameter determination successful? 444 /* Store the correct base and size */ 445 TCW_PTR(th->th.th_info.ds.ds_stackbase, (((char *)addr) + size)); 446 TCW_PTR(th->th.th_info.ds.ds_stacksize, size); 447 TCW_4(th->th.th_info.ds.ds_stackgrow, FALSE); 448 return TRUE; 449 } 450 #endif /* KMP_OS_LINUX || KMP_OS_DRAGONFLY || KMP_OS_FREEBSD || KMP_OS_NETBSD \ 451 || KMP_OS_HURD */ 452 /* Use incremental refinement starting from initial conservative estimate */ 453 TCW_PTR(th->th.th_info.ds.ds_stacksize, 0); 454 TCW_PTR(th->th.th_info.ds.ds_stackbase, &stack_data); 455 TCW_4(th->th.th_info.ds.ds_stackgrow, TRUE); 456 return FALSE; 457 } 458 459 static void *__kmp_launch_worker(void *thr) { 460 int status, old_type, old_state; 461 #ifdef KMP_BLOCK_SIGNALS 462 sigset_t new_set, old_set; 463 #endif /* KMP_BLOCK_SIGNALS */ 464 void *exit_val; 465 #if KMP_OS_LINUX || KMP_OS_DRAGONFLY || KMP_OS_FREEBSD || KMP_OS_NETBSD || \ 466 KMP_OS_OPENBSD || KMP_OS_HURD 467 void *volatile padding = 0; 468 #endif 469 int gtid; 470 471 gtid = ((kmp_info_t *)thr)->th.th_info.ds.ds_gtid; 472 __kmp_gtid_set_specific(gtid); 473 #ifdef KMP_TDATA_GTID 474 __kmp_gtid = gtid; 475 #endif 476 #if KMP_STATS_ENABLED 477 // set thread local index to point to thread-specific stats 478 __kmp_stats_thread_ptr = ((kmp_info_t *)thr)->th.th_stats; 479 __kmp_stats_thread_ptr->startLife(); 480 KMP_SET_THREAD_STATE(IDLE); 481 KMP_INIT_PARTITIONED_TIMERS(OMP_idle); 482 #endif 483 484 #if USE_ITT_BUILD 485 __kmp_itt_thread_name(gtid); 486 #endif /* USE_ITT_BUILD */ 487 488 #if KMP_AFFINITY_SUPPORTED 489 __kmp_affinity_set_init_mask(gtid, FALSE); 490 #endif 491 492 #ifdef KMP_CANCEL_THREADS 493 status = pthread_setcanceltype(PTHREAD_CANCEL_ASYNCHRONOUS, &old_type); 494 KMP_CHECK_SYSFAIL("pthread_setcanceltype", status); 495 // josh todo: isn't PTHREAD_CANCEL_ENABLE default for newly-created threads? 496 status = pthread_setcancelstate(PTHREAD_CANCEL_ENABLE, &old_state); 497 KMP_CHECK_SYSFAIL("pthread_setcancelstate", status); 498 #endif 499 500 #if KMP_ARCH_X86 || KMP_ARCH_X86_64 501 // Set FP control regs to be a copy of the parallel initialization thread's. 502 __kmp_clear_x87_fpu_status_word(); 503 __kmp_load_x87_fpu_control_word(&__kmp_init_x87_fpu_control_word); 504 __kmp_load_mxcsr(&__kmp_init_mxcsr); 505 #endif /* KMP_ARCH_X86 || KMP_ARCH_X86_64 */ 506 507 #ifdef KMP_BLOCK_SIGNALS 508 status = sigfillset(&new_set); 509 KMP_CHECK_SYSFAIL_ERRNO("sigfillset", status); 510 status = pthread_sigmask(SIG_BLOCK, &new_set, &old_set); 511 KMP_CHECK_SYSFAIL("pthread_sigmask", status); 512 #endif /* KMP_BLOCK_SIGNALS */ 513 514 #if KMP_OS_LINUX || KMP_OS_DRAGONFLY || KMP_OS_FREEBSD || KMP_OS_NETBSD || \ 515 KMP_OS_OPENBSD 516 if (__kmp_stkoffset > 0 && gtid > 0) { 517 padding = KMP_ALLOCA(gtid * __kmp_stkoffset); 518 (void)padding; 519 } 520 #endif 521 522 KMP_MB(); 523 __kmp_set_stack_info(gtid, (kmp_info_t *)thr); 524 525 __kmp_check_stack_overlap((kmp_info_t *)thr); 526 527 exit_val = __kmp_launch_thread((kmp_info_t *)thr); 528 529 #ifdef KMP_BLOCK_SIGNALS 530 status = pthread_sigmask(SIG_SETMASK, &old_set, NULL); 531 KMP_CHECK_SYSFAIL("pthread_sigmask", status); 532 #endif /* KMP_BLOCK_SIGNALS */ 533 534 return exit_val; 535 } 536 537 #if KMP_USE_MONITOR 538 /* The monitor thread controls all of the threads in the complex */ 539 540 static void *__kmp_launch_monitor(void *thr) { 541 int status, old_type, old_state; 542 #ifdef KMP_BLOCK_SIGNALS 543 sigset_t new_set; 544 #endif /* KMP_BLOCK_SIGNALS */ 545 struct timespec interval; 546 547 KMP_MB(); /* Flush all pending memory write invalidates. */ 548 549 KA_TRACE(10, ("__kmp_launch_monitor: #1 launched\n")); 550 551 /* register us as the monitor thread */ 552 __kmp_gtid_set_specific(KMP_GTID_MONITOR); 553 #ifdef KMP_TDATA_GTID 554 __kmp_gtid = KMP_GTID_MONITOR; 555 #endif 556 557 KMP_MB(); 558 559 #if USE_ITT_BUILD 560 // Instruct Intel(R) Threading Tools to ignore monitor thread. 561 __kmp_itt_thread_ignore(); 562 #endif /* USE_ITT_BUILD */ 563 564 __kmp_set_stack_info(((kmp_info_t *)thr)->th.th_info.ds.ds_gtid, 565 (kmp_info_t *)thr); 566 567 __kmp_check_stack_overlap((kmp_info_t *)thr); 568 569 #ifdef KMP_CANCEL_THREADS 570 status = pthread_setcanceltype(PTHREAD_CANCEL_ASYNCHRONOUS, &old_type); 571 KMP_CHECK_SYSFAIL("pthread_setcanceltype", status); 572 // josh todo: isn't PTHREAD_CANCEL_ENABLE default for newly-created threads? 573 status = pthread_setcancelstate(PTHREAD_CANCEL_ENABLE, &old_state); 574 KMP_CHECK_SYSFAIL("pthread_setcancelstate", status); 575 #endif 576 577 #if KMP_REAL_TIME_FIX 578 // This is a potential fix which allows application with real-time scheduling 579 // policy work. However, decision about the fix is not made yet, so it is 580 // disabled by default. 581 { // Are program started with real-time scheduling policy? 582 int sched = sched_getscheduler(0); 583 if (sched == SCHED_FIFO || sched == SCHED_RR) { 584 // Yes, we are a part of real-time application. Try to increase the 585 // priority of the monitor. 586 struct sched_param param; 587 int max_priority = sched_get_priority_max(sched); 588 int rc; 589 KMP_WARNING(RealTimeSchedNotSupported); 590 sched_getparam(0, ¶m); 591 if (param.sched_priority < max_priority) { 592 param.sched_priority += 1; 593 rc = sched_setscheduler(0, sched, ¶m); 594 if (rc != 0) { 595 int error = errno; 596 kmp_msg_t err_code = KMP_ERR(error); 597 __kmp_msg(kmp_ms_warning, KMP_MSG(CantChangeMonitorPriority), 598 err_code, KMP_MSG(MonitorWillStarve), __kmp_msg_null); 599 if (__kmp_generate_warnings == kmp_warnings_off) { 600 __kmp_str_free(&err_code.str); 601 } 602 } 603 } else { 604 // We cannot abort here, because number of CPUs may be enough for all 605 // the threads, including the monitor thread, so application could 606 // potentially work... 607 __kmp_msg(kmp_ms_warning, KMP_MSG(RunningAtMaxPriority), 608 KMP_MSG(MonitorWillStarve), KMP_HNT(RunningAtMaxPriority), 609 __kmp_msg_null); 610 } 611 } 612 // AC: free thread that waits for monitor started 613 TCW_4(__kmp_global.g.g_time.dt.t_value, 0); 614 } 615 #endif // KMP_REAL_TIME_FIX 616 617 KMP_MB(); /* Flush all pending memory write invalidates. */ 618 619 if (__kmp_monitor_wakeups == 1) { 620 interval.tv_sec = 1; 621 interval.tv_nsec = 0; 622 } else { 623 interval.tv_sec = 0; 624 interval.tv_nsec = (KMP_NSEC_PER_SEC / __kmp_monitor_wakeups); 625 } 626 627 KA_TRACE(10, ("__kmp_launch_monitor: #2 monitor\n")); 628 629 while (!TCR_4(__kmp_global.g.g_done)) { 630 struct timespec now; 631 struct timeval tval; 632 633 /* This thread monitors the state of the system */ 634 635 KA_TRACE(15, ("__kmp_launch_monitor: update\n")); 636 637 status = gettimeofday(&tval, NULL); 638 KMP_CHECK_SYSFAIL_ERRNO("gettimeofday", status); 639 TIMEVAL_TO_TIMESPEC(&tval, &now); 640 641 now.tv_sec += interval.tv_sec; 642 now.tv_nsec += interval.tv_nsec; 643 644 if (now.tv_nsec >= KMP_NSEC_PER_SEC) { 645 now.tv_sec += 1; 646 now.tv_nsec -= KMP_NSEC_PER_SEC; 647 } 648 649 status = pthread_mutex_lock(&__kmp_wait_mx.m_mutex); 650 KMP_CHECK_SYSFAIL("pthread_mutex_lock", status); 651 // AC: the monitor should not fall asleep if g_done has been set 652 if (!TCR_4(__kmp_global.g.g_done)) { // check once more under mutex 653 status = pthread_cond_timedwait(&__kmp_wait_cv.c_cond, 654 &__kmp_wait_mx.m_mutex, &now); 655 if (status != 0) { 656 if (status != ETIMEDOUT && status != EINTR) { 657 KMP_SYSFAIL("pthread_cond_timedwait", status); 658 } 659 } 660 } 661 status = pthread_mutex_unlock(&__kmp_wait_mx.m_mutex); 662 KMP_CHECK_SYSFAIL("pthread_mutex_unlock", status); 663 664 TCW_4(__kmp_global.g.g_time.dt.t_value, 665 TCR_4(__kmp_global.g.g_time.dt.t_value) + 1); 666 667 KMP_MB(); /* Flush all pending memory write invalidates. */ 668 } 669 670 KA_TRACE(10, ("__kmp_launch_monitor: #3 cleanup\n")); 671 672 #ifdef KMP_BLOCK_SIGNALS 673 status = sigfillset(&new_set); 674 KMP_CHECK_SYSFAIL_ERRNO("sigfillset", status); 675 status = pthread_sigmask(SIG_UNBLOCK, &new_set, NULL); 676 KMP_CHECK_SYSFAIL("pthread_sigmask", status); 677 #endif /* KMP_BLOCK_SIGNALS */ 678 679 KA_TRACE(10, ("__kmp_launch_monitor: #4 finished\n")); 680 681 if (__kmp_global.g.g_abort != 0) { 682 /* now we need to terminate the worker threads */ 683 /* the value of t_abort is the signal we caught */ 684 685 int gtid; 686 687 KA_TRACE(10, ("__kmp_launch_monitor: #5 terminate sig=%d\n", 688 __kmp_global.g.g_abort)); 689 690 /* terminate the OpenMP worker threads */ 691 /* TODO this is not valid for sibling threads!! 692 * the uber master might not be 0 anymore.. */ 693 for (gtid = 1; gtid < __kmp_threads_capacity; ++gtid) 694 __kmp_terminate_thread(gtid); 695 696 __kmp_cleanup(); 697 698 KA_TRACE(10, ("__kmp_launch_monitor: #6 raise sig=%d\n", 699 __kmp_global.g.g_abort)); 700 701 if (__kmp_global.g.g_abort > 0) 702 raise(__kmp_global.g.g_abort); 703 } 704 705 KA_TRACE(10, ("__kmp_launch_monitor: #7 exit\n")); 706 707 return thr; 708 } 709 #endif // KMP_USE_MONITOR 710 711 void __kmp_create_worker(int gtid, kmp_info_t *th, size_t stack_size) { 712 pthread_t handle; 713 pthread_attr_t thread_attr; 714 int status; 715 716 th->th.th_info.ds.ds_gtid = gtid; 717 718 #if KMP_STATS_ENABLED 719 // sets up worker thread stats 720 __kmp_acquire_tas_lock(&__kmp_stats_lock, gtid); 721 722 // th->th.th_stats is used to transfer thread-specific stats-pointer to 723 // __kmp_launch_worker. So when thread is created (goes into 724 // __kmp_launch_worker) it will set its thread local pointer to 725 // th->th.th_stats 726 if (!KMP_UBER_GTID(gtid)) { 727 th->th.th_stats = __kmp_stats_list->push_back(gtid); 728 } else { 729 // For root threads, __kmp_stats_thread_ptr is set in __kmp_register_root(), 730 // so set the th->th.th_stats field to it. 731 th->th.th_stats = __kmp_stats_thread_ptr; 732 } 733 __kmp_release_tas_lock(&__kmp_stats_lock, gtid); 734 735 #endif // KMP_STATS_ENABLED 736 737 if (KMP_UBER_GTID(gtid)) { 738 KA_TRACE(10, ("__kmp_create_worker: uber thread (%d)\n", gtid)); 739 th->th.th_info.ds.ds_thread = pthread_self(); 740 __kmp_set_stack_info(gtid, th); 741 __kmp_check_stack_overlap(th); 742 return; 743 } 744 745 KA_TRACE(10, ("__kmp_create_worker: try to create thread (%d)\n", gtid)); 746 747 KMP_MB(); /* Flush all pending memory write invalidates. */ 748 749 #ifdef KMP_THREAD_ATTR 750 status = pthread_attr_init(&thread_attr); 751 if (status != 0) { 752 __kmp_fatal(KMP_MSG(CantInitThreadAttrs), KMP_ERR(status), __kmp_msg_null); 753 } 754 status = pthread_attr_setdetachstate(&thread_attr, PTHREAD_CREATE_JOINABLE); 755 if (status != 0) { 756 __kmp_fatal(KMP_MSG(CantSetWorkerState), KMP_ERR(status), __kmp_msg_null); 757 } 758 759 /* Set stack size for this thread now. 760 The multiple of 2 is there because on some machines, requesting an unusual 761 stacksize causes the thread to have an offset before the dummy alloca() 762 takes place to create the offset. Since we want the user to have a 763 sufficient stacksize AND support a stack offset, we alloca() twice the 764 offset so that the upcoming alloca() does not eliminate any premade offset, 765 and also gives the user the stack space they requested for all threads */ 766 stack_size += gtid * __kmp_stkoffset * 2; 767 768 #if defined(__ANDROID__) && __ANDROID_API__ < 19 769 // Round the stack size to a multiple of the page size. Older versions of 770 // Android (until KitKat) would fail pthread_attr_setstacksize with EINVAL 771 // if the stack size was not a multiple of the page size. 772 stack_size = (stack_size + PAGE_SIZE - 1) & ~(PAGE_SIZE - 1); 773 #endif 774 775 KA_TRACE(10, ("__kmp_create_worker: T#%d, default stacksize = %lu bytes, " 776 "__kmp_stksize = %lu bytes, final stacksize = %lu bytes\n", 777 gtid, KMP_DEFAULT_STKSIZE, __kmp_stksize, stack_size)); 778 779 #ifdef _POSIX_THREAD_ATTR_STACKSIZE 780 status = pthread_attr_setstacksize(&thread_attr, stack_size); 781 #ifdef KMP_BACKUP_STKSIZE 782 if (status != 0) { 783 if (!__kmp_env_stksize) { 784 stack_size = KMP_BACKUP_STKSIZE + gtid * __kmp_stkoffset; 785 __kmp_stksize = KMP_BACKUP_STKSIZE; 786 KA_TRACE(10, ("__kmp_create_worker: T#%d, default stacksize = %lu bytes, " 787 "__kmp_stksize = %lu bytes, (backup) final stacksize = %lu " 788 "bytes\n", 789 gtid, KMP_DEFAULT_STKSIZE, __kmp_stksize, stack_size)); 790 status = pthread_attr_setstacksize(&thread_attr, stack_size); 791 } 792 } 793 #endif /* KMP_BACKUP_STKSIZE */ 794 if (status != 0) { 795 __kmp_fatal(KMP_MSG(CantSetWorkerStackSize, stack_size), KMP_ERR(status), 796 KMP_HNT(ChangeWorkerStackSize), __kmp_msg_null); 797 } 798 #endif /* _POSIX_THREAD_ATTR_STACKSIZE */ 799 800 #endif /* KMP_THREAD_ATTR */ 801 802 status = 803 pthread_create(&handle, &thread_attr, __kmp_launch_worker, (void *)th); 804 if (status != 0 || !handle) { // ??? Why do we check handle?? 805 #ifdef _POSIX_THREAD_ATTR_STACKSIZE 806 if (status == EINVAL) { 807 __kmp_fatal(KMP_MSG(CantSetWorkerStackSize, stack_size), KMP_ERR(status), 808 KMP_HNT(IncreaseWorkerStackSize), __kmp_msg_null); 809 } 810 if (status == ENOMEM) { 811 __kmp_fatal(KMP_MSG(CantSetWorkerStackSize, stack_size), KMP_ERR(status), 812 KMP_HNT(DecreaseWorkerStackSize), __kmp_msg_null); 813 } 814 #endif /* _POSIX_THREAD_ATTR_STACKSIZE */ 815 if (status == EAGAIN) { 816 __kmp_fatal(KMP_MSG(NoResourcesForWorkerThread), KMP_ERR(status), 817 KMP_HNT(Decrease_NUM_THREADS), __kmp_msg_null); 818 } 819 KMP_SYSFAIL("pthread_create", status); 820 } 821 822 th->th.th_info.ds.ds_thread = handle; 823 824 #ifdef KMP_THREAD_ATTR 825 status = pthread_attr_destroy(&thread_attr); 826 if (status) { 827 kmp_msg_t err_code = KMP_ERR(status); 828 __kmp_msg(kmp_ms_warning, KMP_MSG(CantDestroyThreadAttrs), err_code, 829 __kmp_msg_null); 830 if (__kmp_generate_warnings == kmp_warnings_off) { 831 __kmp_str_free(&err_code.str); 832 } 833 } 834 #endif /* KMP_THREAD_ATTR */ 835 836 KMP_MB(); /* Flush all pending memory write invalidates. */ 837 838 KA_TRACE(10, ("__kmp_create_worker: done creating thread (%d)\n", gtid)); 839 840 } // __kmp_create_worker 841 842 #if KMP_USE_MONITOR 843 void __kmp_create_monitor(kmp_info_t *th) { 844 pthread_t handle; 845 pthread_attr_t thread_attr; 846 size_t size; 847 int status; 848 int auto_adj_size = FALSE; 849 850 if (__kmp_dflt_blocktime == KMP_MAX_BLOCKTIME) { 851 // We don't need monitor thread in case of MAX_BLOCKTIME 852 KA_TRACE(10, ("__kmp_create_monitor: skipping monitor thread because of " 853 "MAX blocktime\n")); 854 th->th.th_info.ds.ds_tid = 0; // this makes reap_monitor no-op 855 th->th.th_info.ds.ds_gtid = 0; 856 return; 857 } 858 KA_TRACE(10, ("__kmp_create_monitor: try to create monitor\n")); 859 860 KMP_MB(); /* Flush all pending memory write invalidates. */ 861 862 th->th.th_info.ds.ds_tid = KMP_GTID_MONITOR; 863 th->th.th_info.ds.ds_gtid = KMP_GTID_MONITOR; 864 #if KMP_REAL_TIME_FIX 865 TCW_4(__kmp_global.g.g_time.dt.t_value, 866 -1); // Will use it for synchronization a bit later. 867 #else 868 TCW_4(__kmp_global.g.g_time.dt.t_value, 0); 869 #endif // KMP_REAL_TIME_FIX 870 871 #ifdef KMP_THREAD_ATTR 872 if (__kmp_monitor_stksize == 0) { 873 __kmp_monitor_stksize = KMP_DEFAULT_MONITOR_STKSIZE; 874 auto_adj_size = TRUE; 875 } 876 status = pthread_attr_init(&thread_attr); 877 if (status != 0) { 878 __kmp_fatal(KMP_MSG(CantInitThreadAttrs), KMP_ERR(status), __kmp_msg_null); 879 } 880 status = pthread_attr_setdetachstate(&thread_attr, PTHREAD_CREATE_JOINABLE); 881 if (status != 0) { 882 __kmp_fatal(KMP_MSG(CantSetMonitorState), KMP_ERR(status), __kmp_msg_null); 883 } 884 885 #ifdef _POSIX_THREAD_ATTR_STACKSIZE 886 status = pthread_attr_getstacksize(&thread_attr, &size); 887 KMP_CHECK_SYSFAIL("pthread_attr_getstacksize", status); 888 #else 889 size = __kmp_sys_min_stksize; 890 #endif /* _POSIX_THREAD_ATTR_STACKSIZE */ 891 #endif /* KMP_THREAD_ATTR */ 892 893 if (__kmp_monitor_stksize == 0) { 894 __kmp_monitor_stksize = KMP_DEFAULT_MONITOR_STKSIZE; 895 } 896 if (__kmp_monitor_stksize < __kmp_sys_min_stksize) { 897 __kmp_monitor_stksize = __kmp_sys_min_stksize; 898 } 899 900 KA_TRACE(10, ("__kmp_create_monitor: default stacksize = %lu bytes," 901 "requested stacksize = %lu bytes\n", 902 size, __kmp_monitor_stksize)); 903 904 retry: 905 906 /* Set stack size for this thread now. */ 907 #ifdef _POSIX_THREAD_ATTR_STACKSIZE 908 KA_TRACE(10, ("__kmp_create_monitor: setting stacksize = %lu bytes,", 909 __kmp_monitor_stksize)); 910 status = pthread_attr_setstacksize(&thread_attr, __kmp_monitor_stksize); 911 if (status != 0) { 912 if (auto_adj_size) { 913 __kmp_monitor_stksize *= 2; 914 goto retry; 915 } 916 kmp_msg_t err_code = KMP_ERR(status); 917 __kmp_msg(kmp_ms_warning, // should this be fatal? BB 918 KMP_MSG(CantSetMonitorStackSize, (long int)__kmp_monitor_stksize), 919 err_code, KMP_HNT(ChangeMonitorStackSize), __kmp_msg_null); 920 if (__kmp_generate_warnings == kmp_warnings_off) { 921 __kmp_str_free(&err_code.str); 922 } 923 } 924 #endif /* _POSIX_THREAD_ATTR_STACKSIZE */ 925 926 status = 927 pthread_create(&handle, &thread_attr, __kmp_launch_monitor, (void *)th); 928 929 if (status != 0) { 930 #ifdef _POSIX_THREAD_ATTR_STACKSIZE 931 if (status == EINVAL) { 932 if (auto_adj_size && (__kmp_monitor_stksize < (size_t)0x40000000)) { 933 __kmp_monitor_stksize *= 2; 934 goto retry; 935 } 936 __kmp_fatal(KMP_MSG(CantSetMonitorStackSize, __kmp_monitor_stksize), 937 KMP_ERR(status), KMP_HNT(IncreaseMonitorStackSize), 938 __kmp_msg_null); 939 } 940 if (status == ENOMEM) { 941 __kmp_fatal(KMP_MSG(CantSetMonitorStackSize, __kmp_monitor_stksize), 942 KMP_ERR(status), KMP_HNT(DecreaseMonitorStackSize), 943 __kmp_msg_null); 944 } 945 #endif /* _POSIX_THREAD_ATTR_STACKSIZE */ 946 if (status == EAGAIN) { 947 __kmp_fatal(KMP_MSG(NoResourcesForMonitorThread), KMP_ERR(status), 948 KMP_HNT(DecreaseNumberOfThreadsInUse), __kmp_msg_null); 949 } 950 KMP_SYSFAIL("pthread_create", status); 951 } 952 953 th->th.th_info.ds.ds_thread = handle; 954 955 #if KMP_REAL_TIME_FIX 956 // Wait for the monitor thread is really started and set its *priority*. 957 KMP_DEBUG_ASSERT(sizeof(kmp_uint32) == 958 sizeof(__kmp_global.g.g_time.dt.t_value)); 959 __kmp_wait_4((kmp_uint32 volatile *)&__kmp_global.g.g_time.dt.t_value, -1, 960 &__kmp_neq_4, NULL); 961 #endif // KMP_REAL_TIME_FIX 962 963 #ifdef KMP_THREAD_ATTR 964 status = pthread_attr_destroy(&thread_attr); 965 if (status != 0) { 966 kmp_msg_t err_code = KMP_ERR(status); 967 __kmp_msg(kmp_ms_warning, KMP_MSG(CantDestroyThreadAttrs), err_code, 968 __kmp_msg_null); 969 if (__kmp_generate_warnings == kmp_warnings_off) { 970 __kmp_str_free(&err_code.str); 971 } 972 } 973 #endif 974 975 KMP_MB(); /* Flush all pending memory write invalidates. */ 976 977 KA_TRACE(10, ("__kmp_create_monitor: monitor created %#.8lx\n", 978 th->th.th_info.ds.ds_thread)); 979 980 } // __kmp_create_monitor 981 #endif // KMP_USE_MONITOR 982 983 void __kmp_exit_thread(int exit_status) { 984 pthread_exit((void *)(intptr_t)exit_status); 985 } // __kmp_exit_thread 986 987 #if KMP_USE_MONITOR 988 void __kmp_resume_monitor(); 989 990 void __kmp_reap_monitor(kmp_info_t *th) { 991 int status; 992 void *exit_val; 993 994 KA_TRACE(10, ("__kmp_reap_monitor: try to reap monitor thread with handle" 995 " %#.8lx\n", 996 th->th.th_info.ds.ds_thread)); 997 998 // If monitor has been created, its tid and gtid should be KMP_GTID_MONITOR. 999 // If both tid and gtid are 0, it means the monitor did not ever start. 1000 // If both tid and gtid are KMP_GTID_DNE, the monitor has been shut down. 1001 KMP_DEBUG_ASSERT(th->th.th_info.ds.ds_tid == th->th.th_info.ds.ds_gtid); 1002 if (th->th.th_info.ds.ds_gtid != KMP_GTID_MONITOR) { 1003 KA_TRACE(10, ("__kmp_reap_monitor: monitor did not start, returning\n")); 1004 return; 1005 } 1006 1007 KMP_MB(); /* Flush all pending memory write invalidates. */ 1008 1009 /* First, check to see whether the monitor thread exists to wake it up. This 1010 is to avoid performance problem when the monitor sleeps during 1011 blocktime-size interval */ 1012 1013 status = pthread_kill(th->th.th_info.ds.ds_thread, 0); 1014 if (status != ESRCH) { 1015 __kmp_resume_monitor(); // Wake up the monitor thread 1016 } 1017 KA_TRACE(10, ("__kmp_reap_monitor: try to join with monitor\n")); 1018 status = pthread_join(th->th.th_info.ds.ds_thread, &exit_val); 1019 if (exit_val != th) { 1020 __kmp_fatal(KMP_MSG(ReapMonitorError), KMP_ERR(status), __kmp_msg_null); 1021 } 1022 1023 th->th.th_info.ds.ds_tid = KMP_GTID_DNE; 1024 th->th.th_info.ds.ds_gtid = KMP_GTID_DNE; 1025 1026 KA_TRACE(10, ("__kmp_reap_monitor: done reaping monitor thread with handle" 1027 " %#.8lx\n", 1028 th->th.th_info.ds.ds_thread)); 1029 1030 KMP_MB(); /* Flush all pending memory write invalidates. */ 1031 } 1032 #endif // KMP_USE_MONITOR 1033 1034 void __kmp_reap_worker(kmp_info_t *th) { 1035 int status; 1036 void *exit_val; 1037 1038 KMP_MB(); /* Flush all pending memory write invalidates. */ 1039 1040 KA_TRACE( 1041 10, ("__kmp_reap_worker: try to reap T#%d\n", th->th.th_info.ds.ds_gtid)); 1042 1043 status = pthread_join(th->th.th_info.ds.ds_thread, &exit_val); 1044 #ifdef KMP_DEBUG 1045 /* Don't expose these to the user until we understand when they trigger */ 1046 if (status != 0) { 1047 __kmp_fatal(KMP_MSG(ReapWorkerError), KMP_ERR(status), __kmp_msg_null); 1048 } 1049 if (exit_val != th) { 1050 KA_TRACE(10, ("__kmp_reap_worker: worker T#%d did not reap properly, " 1051 "exit_val = %p\n", 1052 th->th.th_info.ds.ds_gtid, exit_val)); 1053 } 1054 #endif /* KMP_DEBUG */ 1055 1056 KA_TRACE(10, ("__kmp_reap_worker: done reaping T#%d\n", 1057 th->th.th_info.ds.ds_gtid)); 1058 1059 KMP_MB(); /* Flush all pending memory write invalidates. */ 1060 } 1061 1062 #if KMP_HANDLE_SIGNALS 1063 1064 static void __kmp_null_handler(int signo) { 1065 // Do nothing, for doing SIG_IGN-type actions. 1066 } // __kmp_null_handler 1067 1068 static void __kmp_team_handler(int signo) { 1069 if (__kmp_global.g.g_abort == 0) { 1070 /* Stage 1 signal handler, let's shut down all of the threads */ 1071 #ifdef KMP_DEBUG 1072 __kmp_debug_printf("__kmp_team_handler: caught signal = %d\n", signo); 1073 #endif 1074 switch (signo) { 1075 case SIGHUP: 1076 case SIGINT: 1077 case SIGQUIT: 1078 case SIGILL: 1079 case SIGABRT: 1080 case SIGFPE: 1081 case SIGBUS: 1082 case SIGSEGV: 1083 #ifdef SIGSYS 1084 case SIGSYS: 1085 #endif 1086 case SIGTERM: 1087 if (__kmp_debug_buf) { 1088 __kmp_dump_debug_buffer(); 1089 } 1090 __kmp_unregister_library(); // cleanup shared memory 1091 KMP_MB(); // Flush all pending memory write invalidates. 1092 TCW_4(__kmp_global.g.g_abort, signo); 1093 KMP_MB(); // Flush all pending memory write invalidates. 1094 TCW_4(__kmp_global.g.g_done, TRUE); 1095 KMP_MB(); // Flush all pending memory write invalidates. 1096 break; 1097 default: 1098 #ifdef KMP_DEBUG 1099 __kmp_debug_printf("__kmp_team_handler: unknown signal type"); 1100 #endif 1101 break; 1102 } 1103 } 1104 } // __kmp_team_handler 1105 1106 static void __kmp_sigaction(int signum, const struct sigaction *act, 1107 struct sigaction *oldact) { 1108 int rc = sigaction(signum, act, oldact); 1109 KMP_CHECK_SYSFAIL_ERRNO("sigaction", rc); 1110 } 1111 1112 static void __kmp_install_one_handler(int sig, sig_func_t handler_func, 1113 int parallel_init) { 1114 KMP_MB(); // Flush all pending memory write invalidates. 1115 KB_TRACE(60, 1116 ("__kmp_install_one_handler( %d, ..., %d )\n", sig, parallel_init)); 1117 if (parallel_init) { 1118 struct sigaction new_action; 1119 struct sigaction old_action; 1120 new_action.sa_handler = handler_func; 1121 new_action.sa_flags = 0; 1122 sigfillset(&new_action.sa_mask); 1123 __kmp_sigaction(sig, &new_action, &old_action); 1124 if (old_action.sa_handler == __kmp_sighldrs[sig].sa_handler) { 1125 sigaddset(&__kmp_sigset, sig); 1126 } else { 1127 // Restore/keep user's handler if one previously installed. 1128 __kmp_sigaction(sig, &old_action, NULL); 1129 } 1130 } else { 1131 // Save initial/system signal handlers to see if user handlers installed. 1132 __kmp_sigaction(sig, NULL, &__kmp_sighldrs[sig]); 1133 } 1134 KMP_MB(); // Flush all pending memory write invalidates. 1135 } // __kmp_install_one_handler 1136 1137 static void __kmp_remove_one_handler(int sig) { 1138 KB_TRACE(60, ("__kmp_remove_one_handler( %d )\n", sig)); 1139 if (sigismember(&__kmp_sigset, sig)) { 1140 struct sigaction old; 1141 KMP_MB(); // Flush all pending memory write invalidates. 1142 __kmp_sigaction(sig, &__kmp_sighldrs[sig], &old); 1143 if ((old.sa_handler != __kmp_team_handler) && 1144 (old.sa_handler != __kmp_null_handler)) { 1145 // Restore the users signal handler. 1146 KB_TRACE(10, ("__kmp_remove_one_handler: oops, not our handler, " 1147 "restoring: sig=%d\n", 1148 sig)); 1149 __kmp_sigaction(sig, &old, NULL); 1150 } 1151 sigdelset(&__kmp_sigset, sig); 1152 KMP_MB(); // Flush all pending memory write invalidates. 1153 } 1154 } // __kmp_remove_one_handler 1155 1156 void __kmp_install_signals(int parallel_init) { 1157 KB_TRACE(10, ("__kmp_install_signals( %d )\n", parallel_init)); 1158 if (__kmp_handle_signals || !parallel_init) { 1159 // If ! parallel_init, we do not install handlers, just save original 1160 // handlers. Let us do it even __handle_signals is 0. 1161 sigemptyset(&__kmp_sigset); 1162 __kmp_install_one_handler(SIGHUP, __kmp_team_handler, parallel_init); 1163 __kmp_install_one_handler(SIGINT, __kmp_team_handler, parallel_init); 1164 __kmp_install_one_handler(SIGQUIT, __kmp_team_handler, parallel_init); 1165 __kmp_install_one_handler(SIGILL, __kmp_team_handler, parallel_init); 1166 __kmp_install_one_handler(SIGABRT, __kmp_team_handler, parallel_init); 1167 __kmp_install_one_handler(SIGFPE, __kmp_team_handler, parallel_init); 1168 __kmp_install_one_handler(SIGBUS, __kmp_team_handler, parallel_init); 1169 __kmp_install_one_handler(SIGSEGV, __kmp_team_handler, parallel_init); 1170 #ifdef SIGSYS 1171 __kmp_install_one_handler(SIGSYS, __kmp_team_handler, parallel_init); 1172 #endif // SIGSYS 1173 __kmp_install_one_handler(SIGTERM, __kmp_team_handler, parallel_init); 1174 #ifdef SIGPIPE 1175 __kmp_install_one_handler(SIGPIPE, __kmp_team_handler, parallel_init); 1176 #endif // SIGPIPE 1177 } 1178 } // __kmp_install_signals 1179 1180 void __kmp_remove_signals(void) { 1181 int sig; 1182 KB_TRACE(10, ("__kmp_remove_signals()\n")); 1183 for (sig = 1; sig < NSIG; ++sig) { 1184 __kmp_remove_one_handler(sig); 1185 } 1186 } // __kmp_remove_signals 1187 1188 #endif // KMP_HANDLE_SIGNALS 1189 1190 void __kmp_enable(int new_state) { 1191 #ifdef KMP_CANCEL_THREADS 1192 int status, old_state; 1193 status = pthread_setcancelstate(new_state, &old_state); 1194 KMP_CHECK_SYSFAIL("pthread_setcancelstate", status); 1195 KMP_DEBUG_ASSERT(old_state == PTHREAD_CANCEL_DISABLE); 1196 #endif 1197 } 1198 1199 void __kmp_disable(int *old_state) { 1200 #ifdef KMP_CANCEL_THREADS 1201 int status; 1202 status = pthread_setcancelstate(PTHREAD_CANCEL_DISABLE, old_state); 1203 KMP_CHECK_SYSFAIL("pthread_setcancelstate", status); 1204 #endif 1205 } 1206 1207 static void __kmp_atfork_prepare(void) { 1208 __kmp_acquire_bootstrap_lock(&__kmp_initz_lock); 1209 __kmp_acquire_bootstrap_lock(&__kmp_forkjoin_lock); 1210 } 1211 1212 static void __kmp_atfork_parent(void) { 1213 __kmp_release_bootstrap_lock(&__kmp_forkjoin_lock); 1214 __kmp_release_bootstrap_lock(&__kmp_initz_lock); 1215 } 1216 1217 /* Reset the library so execution in the child starts "all over again" with 1218 clean data structures in initial states. Don't worry about freeing memory 1219 allocated by parent, just abandon it to be safe. */ 1220 static void __kmp_atfork_child(void) { 1221 __kmp_release_bootstrap_lock(&__kmp_forkjoin_lock); 1222 __kmp_release_bootstrap_lock(&__kmp_initz_lock); 1223 /* TODO make sure this is done right for nested/sibling */ 1224 // ATT: Memory leaks are here? TODO: Check it and fix. 1225 /* KMP_ASSERT( 0 ); */ 1226 1227 ++__kmp_fork_count; 1228 1229 #if KMP_AFFINITY_SUPPORTED 1230 #if KMP_OS_LINUX || KMP_OS_FREEBSD 1231 // reset the affinity in the child to the initial thread 1232 // affinity in the parent 1233 kmp_set_thread_affinity_mask_initial(); 1234 #endif 1235 // Set default not to bind threads tightly in the child (we’re expecting 1236 // over-subscription after the fork and this can improve things for 1237 // scripting languages that use OpenMP inside process-parallel code). 1238 __kmp_affinity_type = affinity_none; 1239 if (__kmp_nested_proc_bind.bind_types != NULL) { 1240 __kmp_nested_proc_bind.bind_types[0] = proc_bind_false; 1241 } 1242 __kmp_affinity_masks = NULL; 1243 __kmp_affinity_num_masks = 0; 1244 #endif // KMP_AFFINITY_SUPPORTED 1245 1246 #if KMP_USE_MONITOR 1247 __kmp_init_monitor = 0; 1248 #endif 1249 __kmp_init_parallel = FALSE; 1250 __kmp_init_middle = FALSE; 1251 __kmp_init_serial = FALSE; 1252 TCW_4(__kmp_init_gtid, FALSE); 1253 __kmp_init_common = FALSE; 1254 1255 TCW_4(__kmp_init_user_locks, FALSE); 1256 #if !KMP_USE_DYNAMIC_LOCK 1257 __kmp_user_lock_table.used = 1; 1258 __kmp_user_lock_table.allocated = 0; 1259 __kmp_user_lock_table.table = NULL; 1260 __kmp_lock_blocks = NULL; 1261 #endif 1262 1263 __kmp_all_nth = 0; 1264 TCW_4(__kmp_nth, 0); 1265 1266 __kmp_thread_pool = NULL; 1267 __kmp_thread_pool_insert_pt = NULL; 1268 __kmp_team_pool = NULL; 1269 1270 /* Must actually zero all the *cache arguments passed to __kmpc_threadprivate 1271 here so threadprivate doesn't use stale data */ 1272 KA_TRACE(10, ("__kmp_atfork_child: checking cache address list %p\n", 1273 __kmp_threadpriv_cache_list)); 1274 1275 while (__kmp_threadpriv_cache_list != NULL) { 1276 1277 if (*__kmp_threadpriv_cache_list->addr != NULL) { 1278 KC_TRACE(50, ("__kmp_atfork_child: zeroing cache at address %p\n", 1279 &(*__kmp_threadpriv_cache_list->addr))); 1280 1281 *__kmp_threadpriv_cache_list->addr = NULL; 1282 } 1283 __kmp_threadpriv_cache_list = __kmp_threadpriv_cache_list->next; 1284 } 1285 1286 __kmp_init_runtime = FALSE; 1287 1288 /* reset statically initialized locks */ 1289 __kmp_init_bootstrap_lock(&__kmp_initz_lock); 1290 __kmp_init_bootstrap_lock(&__kmp_stdio_lock); 1291 __kmp_init_bootstrap_lock(&__kmp_console_lock); 1292 __kmp_init_bootstrap_lock(&__kmp_task_team_lock); 1293 1294 #if USE_ITT_BUILD 1295 __kmp_itt_reset(); // reset ITT's global state 1296 #endif /* USE_ITT_BUILD */ 1297 1298 __kmp_serial_initialize(); 1299 1300 /* This is necessary to make sure no stale data is left around */ 1301 /* AC: customers complain that we use unsafe routines in the atfork 1302 handler. Mathworks: dlsym() is unsafe. We call dlsym and dlopen 1303 in dynamic_link when check the presence of shared tbbmalloc library. 1304 Suggestion is to make the library initialization lazier, similar 1305 to what done for __kmpc_begin(). */ 1306 // TODO: synchronize all static initializations with regular library 1307 // startup; look at kmp_global.cpp and etc. 1308 //__kmp_internal_begin (); 1309 } 1310 1311 void __kmp_register_atfork(void) { 1312 if (__kmp_need_register_atfork) { 1313 int status = pthread_atfork(__kmp_atfork_prepare, __kmp_atfork_parent, 1314 __kmp_atfork_child); 1315 KMP_CHECK_SYSFAIL("pthread_atfork", status); 1316 __kmp_need_register_atfork = FALSE; 1317 } 1318 } 1319 1320 void __kmp_suspend_initialize(void) { 1321 int status; 1322 status = pthread_mutexattr_init(&__kmp_suspend_mutex_attr); 1323 KMP_CHECK_SYSFAIL("pthread_mutexattr_init", status); 1324 status = pthread_condattr_init(&__kmp_suspend_cond_attr); 1325 KMP_CHECK_SYSFAIL("pthread_condattr_init", status); 1326 } 1327 1328 void __kmp_suspend_initialize_thread(kmp_info_t *th) { 1329 int old_value = KMP_ATOMIC_LD_RLX(&th->th.th_suspend_init_count); 1330 int new_value = __kmp_fork_count + 1; 1331 // Return if already initialized 1332 if (old_value == new_value) 1333 return; 1334 // Wait, then return if being initialized 1335 if (old_value == -1 || !__kmp_atomic_compare_store( 1336 &th->th.th_suspend_init_count, old_value, -1)) { 1337 while (KMP_ATOMIC_LD_ACQ(&th->th.th_suspend_init_count) != new_value) { 1338 KMP_CPU_PAUSE(); 1339 } 1340 } else { 1341 // Claim to be the initializer and do initializations 1342 int status; 1343 status = pthread_cond_init(&th->th.th_suspend_cv.c_cond, 1344 &__kmp_suspend_cond_attr); 1345 KMP_CHECK_SYSFAIL("pthread_cond_init", status); 1346 status = pthread_mutex_init(&th->th.th_suspend_mx.m_mutex, 1347 &__kmp_suspend_mutex_attr); 1348 KMP_CHECK_SYSFAIL("pthread_mutex_init", status); 1349 KMP_ATOMIC_ST_REL(&th->th.th_suspend_init_count, new_value); 1350 } 1351 } 1352 1353 void __kmp_suspend_uninitialize_thread(kmp_info_t *th) { 1354 if (KMP_ATOMIC_LD_ACQ(&th->th.th_suspend_init_count) > __kmp_fork_count) { 1355 /* this means we have initialize the suspension pthread objects for this 1356 thread in this instance of the process */ 1357 int status; 1358 1359 status = pthread_cond_destroy(&th->th.th_suspend_cv.c_cond); 1360 if (status != 0 && status != EBUSY) { 1361 KMP_SYSFAIL("pthread_cond_destroy", status); 1362 } 1363 status = pthread_mutex_destroy(&th->th.th_suspend_mx.m_mutex); 1364 if (status != 0 && status != EBUSY) { 1365 KMP_SYSFAIL("pthread_mutex_destroy", status); 1366 } 1367 --th->th.th_suspend_init_count; 1368 KMP_DEBUG_ASSERT(KMP_ATOMIC_LD_RLX(&th->th.th_suspend_init_count) == 1369 __kmp_fork_count); 1370 } 1371 } 1372 1373 // return true if lock obtained, false otherwise 1374 int __kmp_try_suspend_mx(kmp_info_t *th) { 1375 return (pthread_mutex_trylock(&th->th.th_suspend_mx.m_mutex) == 0); 1376 } 1377 1378 void __kmp_lock_suspend_mx(kmp_info_t *th) { 1379 int status = pthread_mutex_lock(&th->th.th_suspend_mx.m_mutex); 1380 KMP_CHECK_SYSFAIL("pthread_mutex_lock", status); 1381 } 1382 1383 void __kmp_unlock_suspend_mx(kmp_info_t *th) { 1384 int status = pthread_mutex_unlock(&th->th.th_suspend_mx.m_mutex); 1385 KMP_CHECK_SYSFAIL("pthread_mutex_unlock", status); 1386 } 1387 1388 /* This routine puts the calling thread to sleep after setting the 1389 sleep bit for the indicated flag variable to true. */ 1390 template <class C> 1391 static inline void __kmp_suspend_template(int th_gtid, C *flag) { 1392 KMP_TIME_DEVELOPER_PARTITIONED_BLOCK(USER_suspend); 1393 kmp_info_t *th = __kmp_threads[th_gtid]; 1394 int status; 1395 typename C::flag_t old_spin; 1396 1397 KF_TRACE(30, ("__kmp_suspend_template: T#%d enter for flag = %p\n", th_gtid, 1398 flag->get())); 1399 1400 __kmp_suspend_initialize_thread(th); 1401 1402 __kmp_lock_suspend_mx(th); 1403 1404 KF_TRACE(10, ("__kmp_suspend_template: T#%d setting sleep bit for spin(%p)\n", 1405 th_gtid, flag->get())); 1406 1407 /* TODO: shouldn't this use release semantics to ensure that 1408 __kmp_suspend_initialize_thread gets called first? */ 1409 old_spin = flag->set_sleeping(); 1410 if (__kmp_dflt_blocktime == KMP_MAX_BLOCKTIME && 1411 __kmp_pause_status != kmp_soft_paused) { 1412 flag->unset_sleeping(); 1413 __kmp_unlock_suspend_mx(th); 1414 return; 1415 } 1416 KF_TRACE(5, ("__kmp_suspend_template: T#%d set sleep bit for spin(%p)==%x," 1417 " was %x\n", 1418 th_gtid, flag->get(), flag->load(), old_spin)); 1419 1420 if (flag->done_check_val(old_spin)) { 1421 old_spin = flag->unset_sleeping(); 1422 KF_TRACE(5, ("__kmp_suspend_template: T#%d false alarm, reset sleep bit " 1423 "for spin(%p)\n", 1424 th_gtid, flag->get())); 1425 } else { 1426 /* Encapsulate in a loop as the documentation states that this may 1427 "with low probability" return when the condition variable has 1428 not been signaled or broadcast */ 1429 int deactivated = FALSE; 1430 TCW_PTR(th->th.th_sleep_loc, (void *)flag); 1431 1432 while (flag->is_sleeping()) { 1433 #ifdef DEBUG_SUSPEND 1434 char buffer[128]; 1435 __kmp_suspend_count++; 1436 __kmp_print_cond(buffer, &th->th.th_suspend_cv); 1437 __kmp_printf("__kmp_suspend_template: suspending T#%d: %s\n", th_gtid, 1438 buffer); 1439 #endif 1440 // Mark the thread as no longer active (only in the first iteration of the 1441 // loop). 1442 if (!deactivated) { 1443 th->th.th_active = FALSE; 1444 if (th->th.th_active_in_pool) { 1445 th->th.th_active_in_pool = FALSE; 1446 KMP_ATOMIC_DEC(&__kmp_thread_pool_active_nth); 1447 KMP_DEBUG_ASSERT(TCR_4(__kmp_thread_pool_active_nth) >= 0); 1448 } 1449 deactivated = TRUE; 1450 } 1451 1452 #if USE_SUSPEND_TIMEOUT 1453 struct timespec now; 1454 struct timeval tval; 1455 int msecs; 1456 1457 status = gettimeofday(&tval, NULL); 1458 KMP_CHECK_SYSFAIL_ERRNO("gettimeofday", status); 1459 TIMEVAL_TO_TIMESPEC(&tval, &now); 1460 1461 msecs = (4 * __kmp_dflt_blocktime) + 200; 1462 now.tv_sec += msecs / 1000; 1463 now.tv_nsec += (msecs % 1000) * 1000; 1464 1465 KF_TRACE(15, ("__kmp_suspend_template: T#%d about to perform " 1466 "pthread_cond_timedwait\n", 1467 th_gtid)); 1468 status = pthread_cond_timedwait(&th->th.th_suspend_cv.c_cond, 1469 &th->th.th_suspend_mx.m_mutex, &now); 1470 #else 1471 KF_TRACE(15, ("__kmp_suspend_template: T#%d about to perform" 1472 " pthread_cond_wait\n", 1473 th_gtid)); 1474 status = pthread_cond_wait(&th->th.th_suspend_cv.c_cond, 1475 &th->th.th_suspend_mx.m_mutex); 1476 #endif // USE_SUSPEND_TIMEOUT 1477 1478 if ((status != 0) && (status != EINTR) && (status != ETIMEDOUT)) { 1479 KMP_SYSFAIL("pthread_cond_wait", status); 1480 } 1481 #ifdef KMP_DEBUG 1482 if (status == ETIMEDOUT) { 1483 if (flag->is_sleeping()) { 1484 KF_TRACE(100, 1485 ("__kmp_suspend_template: T#%d timeout wakeup\n", th_gtid)); 1486 } else { 1487 KF_TRACE(2, ("__kmp_suspend_template: T#%d timeout wakeup, sleep bit " 1488 "not set!\n", 1489 th_gtid)); 1490 } 1491 } else if (flag->is_sleeping()) { 1492 KF_TRACE(100, 1493 ("__kmp_suspend_template: T#%d spurious wakeup\n", th_gtid)); 1494 } 1495 #endif 1496 } // while 1497 1498 // Mark the thread as active again (if it was previous marked as inactive) 1499 if (deactivated) { 1500 th->th.th_active = TRUE; 1501 if (TCR_4(th->th.th_in_pool)) { 1502 KMP_ATOMIC_INC(&__kmp_thread_pool_active_nth); 1503 th->th.th_active_in_pool = TRUE; 1504 } 1505 } 1506 } 1507 #ifdef DEBUG_SUSPEND 1508 { 1509 char buffer[128]; 1510 __kmp_print_cond(buffer, &th->th.th_suspend_cv); 1511 __kmp_printf("__kmp_suspend_template: T#%d has awakened: %s\n", th_gtid, 1512 buffer); 1513 } 1514 #endif 1515 1516 __kmp_unlock_suspend_mx(th); 1517 KF_TRACE(30, ("__kmp_suspend_template: T#%d exit\n", th_gtid)); 1518 } 1519 1520 template <bool C, bool S> 1521 void __kmp_suspend_32(int th_gtid, kmp_flag_32<C, S> *flag) { 1522 __kmp_suspend_template(th_gtid, flag); 1523 } 1524 template <bool C, bool S> 1525 void __kmp_suspend_64(int th_gtid, kmp_flag_64<C, S> *flag) { 1526 __kmp_suspend_template(th_gtid, flag); 1527 } 1528 void __kmp_suspend_oncore(int th_gtid, kmp_flag_oncore *flag) { 1529 __kmp_suspend_template(th_gtid, flag); 1530 } 1531 1532 template void __kmp_suspend_32<false, false>(int, kmp_flag_32<false, false> *); 1533 template void __kmp_suspend_64<false, true>(int, kmp_flag_64<false, true> *); 1534 template void __kmp_suspend_64<true, false>(int, kmp_flag_64<true, false> *); 1535 1536 /* This routine signals the thread specified by target_gtid to wake up 1537 after setting the sleep bit indicated by the flag argument to FALSE. 1538 The target thread must already have called __kmp_suspend_template() */ 1539 template <class C> 1540 static inline void __kmp_resume_template(int target_gtid, C *flag) { 1541 KMP_TIME_DEVELOPER_PARTITIONED_BLOCK(USER_resume); 1542 kmp_info_t *th = __kmp_threads[target_gtid]; 1543 int status; 1544 1545 #ifdef KMP_DEBUG 1546 int gtid = TCR_4(__kmp_init_gtid) ? __kmp_get_gtid() : -1; 1547 #endif 1548 1549 KF_TRACE(30, ("__kmp_resume_template: T#%d wants to wakeup T#%d enter\n", 1550 gtid, target_gtid)); 1551 KMP_DEBUG_ASSERT(gtid != target_gtid); 1552 1553 __kmp_suspend_initialize_thread(th); 1554 1555 __kmp_lock_suspend_mx(th); 1556 1557 if (!flag) { // coming from __kmp_null_resume_wrapper 1558 flag = (C *)CCAST(void *, th->th.th_sleep_loc); 1559 } 1560 1561 // First, check if the flag is null or its type has changed. If so, someone 1562 // else woke it up. 1563 if (!flag || flag->get_type() != flag->get_ptr_type()) { // get_ptr_type 1564 // simply shows what flag was cast to 1565 KF_TRACE(5, ("__kmp_resume_template: T#%d exiting, thread T#%d already " 1566 "awake: flag(%p)\n", 1567 gtid, target_gtid, NULL)); 1568 __kmp_unlock_suspend_mx(th); 1569 return; 1570 } else { // if multiple threads are sleeping, flag should be internally 1571 // referring to a specific thread here 1572 typename C::flag_t old_spin = flag->unset_sleeping(); 1573 if (!flag->is_sleeping_val(old_spin)) { 1574 KF_TRACE(5, ("__kmp_resume_template: T#%d exiting, thread T#%d already " 1575 "awake: flag(%p): " 1576 "%u => %u\n", 1577 gtid, target_gtid, flag->get(), old_spin, flag->load())); 1578 __kmp_unlock_suspend_mx(th); 1579 return; 1580 } 1581 KF_TRACE(5, ("__kmp_resume_template: T#%d about to wakeup T#%d, reset " 1582 "sleep bit for flag's loc(%p): " 1583 "%u => %u\n", 1584 gtid, target_gtid, flag->get(), old_spin, flag->load())); 1585 } 1586 TCW_PTR(th->th.th_sleep_loc, NULL); 1587 1588 #ifdef DEBUG_SUSPEND 1589 { 1590 char buffer[128]; 1591 __kmp_print_cond(buffer, &th->th.th_suspend_cv); 1592 __kmp_printf("__kmp_resume_template: T#%d resuming T#%d: %s\n", gtid, 1593 target_gtid, buffer); 1594 } 1595 #endif 1596 status = pthread_cond_signal(&th->th.th_suspend_cv.c_cond); 1597 KMP_CHECK_SYSFAIL("pthread_cond_signal", status); 1598 __kmp_unlock_suspend_mx(th); 1599 KF_TRACE(30, ("__kmp_resume_template: T#%d exiting after signaling wake up" 1600 " for T#%d\n", 1601 gtid, target_gtid)); 1602 } 1603 1604 template <bool C, bool S> 1605 void __kmp_resume_32(int target_gtid, kmp_flag_32<C, S> *flag) { 1606 __kmp_resume_template(target_gtid, flag); 1607 } 1608 template <bool C, bool S> 1609 void __kmp_resume_64(int target_gtid, kmp_flag_64<C, S> *flag) { 1610 __kmp_resume_template(target_gtid, flag); 1611 } 1612 void __kmp_resume_oncore(int target_gtid, kmp_flag_oncore *flag) { 1613 __kmp_resume_template(target_gtid, flag); 1614 } 1615 1616 template void __kmp_resume_32<false, true>(int, kmp_flag_32<false, true> *); 1617 template void __kmp_resume_64<false, true>(int, kmp_flag_64<false, true> *); 1618 1619 #if KMP_USE_MONITOR 1620 void __kmp_resume_monitor() { 1621 KMP_TIME_DEVELOPER_PARTITIONED_BLOCK(USER_resume); 1622 int status; 1623 #ifdef KMP_DEBUG 1624 int gtid = TCR_4(__kmp_init_gtid) ? __kmp_get_gtid() : -1; 1625 KF_TRACE(30, ("__kmp_resume_monitor: T#%d wants to wakeup T#%d enter\n", gtid, 1626 KMP_GTID_MONITOR)); 1627 KMP_DEBUG_ASSERT(gtid != KMP_GTID_MONITOR); 1628 #endif 1629 status = pthread_mutex_lock(&__kmp_wait_mx.m_mutex); 1630 KMP_CHECK_SYSFAIL("pthread_mutex_lock", status); 1631 #ifdef DEBUG_SUSPEND 1632 { 1633 char buffer[128]; 1634 __kmp_print_cond(buffer, &__kmp_wait_cv.c_cond); 1635 __kmp_printf("__kmp_resume_monitor: T#%d resuming T#%d: %s\n", gtid, 1636 KMP_GTID_MONITOR, buffer); 1637 } 1638 #endif 1639 status = pthread_cond_signal(&__kmp_wait_cv.c_cond); 1640 KMP_CHECK_SYSFAIL("pthread_cond_signal", status); 1641 status = pthread_mutex_unlock(&__kmp_wait_mx.m_mutex); 1642 KMP_CHECK_SYSFAIL("pthread_mutex_unlock", status); 1643 KF_TRACE(30, ("__kmp_resume_monitor: T#%d exiting after signaling wake up" 1644 " for T#%d\n", 1645 gtid, KMP_GTID_MONITOR)); 1646 } 1647 #endif // KMP_USE_MONITOR 1648 1649 void __kmp_yield() { sched_yield(); } 1650 1651 void __kmp_gtid_set_specific(int gtid) { 1652 if (__kmp_init_gtid) { 1653 int status; 1654 status = pthread_setspecific(__kmp_gtid_threadprivate_key, 1655 (void *)(intptr_t)(gtid + 1)); 1656 KMP_CHECK_SYSFAIL("pthread_setspecific", status); 1657 } else { 1658 KA_TRACE(50, ("__kmp_gtid_set_specific: runtime shutdown, returning\n")); 1659 } 1660 } 1661 1662 int __kmp_gtid_get_specific() { 1663 int gtid; 1664 if (!__kmp_init_gtid) { 1665 KA_TRACE(50, ("__kmp_gtid_get_specific: runtime shutdown, returning " 1666 "KMP_GTID_SHUTDOWN\n")); 1667 return KMP_GTID_SHUTDOWN; 1668 } 1669 gtid = (int)(size_t)pthread_getspecific(__kmp_gtid_threadprivate_key); 1670 if (gtid == 0) { 1671 gtid = KMP_GTID_DNE; 1672 } else { 1673 gtid--; 1674 } 1675 KA_TRACE(50, ("__kmp_gtid_get_specific: key:%d gtid:%d\n", 1676 __kmp_gtid_threadprivate_key, gtid)); 1677 return gtid; 1678 } 1679 1680 double __kmp_read_cpu_time(void) { 1681 /*clock_t t;*/ 1682 struct tms buffer; 1683 1684 /*t =*/times(&buffer); 1685 1686 return (double)(buffer.tms_utime + buffer.tms_cutime) / 1687 (double)CLOCKS_PER_SEC; 1688 } 1689 1690 int __kmp_read_system_info(struct kmp_sys_info *info) { 1691 int status; 1692 struct rusage r_usage; 1693 1694 memset(info, 0, sizeof(*info)); 1695 1696 status = getrusage(RUSAGE_SELF, &r_usage); 1697 KMP_CHECK_SYSFAIL_ERRNO("getrusage", status); 1698 1699 // The maximum resident set size utilized (in kilobytes) 1700 info->maxrss = r_usage.ru_maxrss; 1701 // The number of page faults serviced without any I/O 1702 info->minflt = r_usage.ru_minflt; 1703 // The number of page faults serviced that required I/O 1704 info->majflt = r_usage.ru_majflt; 1705 // The number of times a process was "swapped" out of memory 1706 info->nswap = r_usage.ru_nswap; 1707 // The number of times the file system had to perform input 1708 info->inblock = r_usage.ru_inblock; 1709 // The number of times the file system had to perform output 1710 info->oublock = r_usage.ru_oublock; 1711 // The number of times a context switch was voluntarily 1712 info->nvcsw = r_usage.ru_nvcsw; 1713 // The number of times a context switch was forced 1714 info->nivcsw = r_usage.ru_nivcsw; 1715 1716 return (status != 0); 1717 } 1718 1719 void __kmp_read_system_time(double *delta) { 1720 double t_ns; 1721 struct timeval tval; 1722 struct timespec stop; 1723 int status; 1724 1725 status = gettimeofday(&tval, NULL); 1726 KMP_CHECK_SYSFAIL_ERRNO("gettimeofday", status); 1727 TIMEVAL_TO_TIMESPEC(&tval, &stop); 1728 t_ns = (double)(TS2NS(stop) - TS2NS(__kmp_sys_timer_data.start)); 1729 *delta = (t_ns * 1e-9); 1730 } 1731 1732 void __kmp_clear_system_time(void) { 1733 struct timeval tval; 1734 int status; 1735 status = gettimeofday(&tval, NULL); 1736 KMP_CHECK_SYSFAIL_ERRNO("gettimeofday", status); 1737 TIMEVAL_TO_TIMESPEC(&tval, &__kmp_sys_timer_data.start); 1738 } 1739 1740 static int __kmp_get_xproc(void) { 1741 1742 int r = 0; 1743 1744 #if KMP_OS_LINUX || KMP_OS_DRAGONFLY || KMP_OS_FREEBSD || KMP_OS_NETBSD || \ 1745 KMP_OS_OPENBSD || KMP_OS_HURD 1746 1747 __kmp_type_convert(sysconf(_SC_NPROCESSORS_ONLN), &(r)); 1748 1749 #elif KMP_OS_DARWIN 1750 1751 // Bug C77011 High "OpenMP Threads and number of active cores". 1752 1753 // Find the number of available CPUs. 1754 kern_return_t rc; 1755 host_basic_info_data_t info; 1756 mach_msg_type_number_t num = HOST_BASIC_INFO_COUNT; 1757 rc = host_info(mach_host_self(), HOST_BASIC_INFO, (host_info_t)&info, &num); 1758 if (rc == 0 && num == HOST_BASIC_INFO_COUNT) { 1759 // Cannot use KA_TRACE() here because this code works before trace support 1760 // is initialized. 1761 r = info.avail_cpus; 1762 } else { 1763 KMP_WARNING(CantGetNumAvailCPU); 1764 KMP_INFORM(AssumedNumCPU); 1765 } 1766 1767 #else 1768 1769 #error "Unknown or unsupported OS." 1770 1771 #endif 1772 1773 return r > 0 ? r : 2; /* guess value of 2 if OS told us 0 */ 1774 1775 } // __kmp_get_xproc 1776 1777 int __kmp_read_from_file(char const *path, char const *format, ...) { 1778 int result; 1779 va_list args; 1780 1781 va_start(args, format); 1782 FILE *f = fopen(path, "rb"); 1783 if (f == NULL) 1784 return 0; 1785 result = vfscanf(f, format, args); 1786 fclose(f); 1787 1788 return result; 1789 } 1790 1791 void __kmp_runtime_initialize(void) { 1792 int status; 1793 pthread_mutexattr_t mutex_attr; 1794 pthread_condattr_t cond_attr; 1795 1796 if (__kmp_init_runtime) { 1797 return; 1798 } 1799 1800 #if (KMP_ARCH_X86 || KMP_ARCH_X86_64) 1801 if (!__kmp_cpuinfo.initialized) { 1802 __kmp_query_cpuid(&__kmp_cpuinfo); 1803 } 1804 #endif /* KMP_ARCH_X86 || KMP_ARCH_X86_64 */ 1805 1806 __kmp_xproc = __kmp_get_xproc(); 1807 1808 #if !KMP_32_BIT_ARCH 1809 struct rlimit rlim; 1810 // read stack size of calling thread, save it as default for worker threads; 1811 // this should be done before reading environment variables 1812 status = getrlimit(RLIMIT_STACK, &rlim); 1813 if (status == 0) { // success? 1814 __kmp_stksize = rlim.rlim_cur; 1815 __kmp_check_stksize(&__kmp_stksize); // check value and adjust if needed 1816 } 1817 #endif /* KMP_32_BIT_ARCH */ 1818 1819 if (sysconf(_SC_THREADS)) { 1820 1821 /* Query the maximum number of threads */ 1822 __kmp_type_convert(sysconf(_SC_THREAD_THREADS_MAX), &(__kmp_sys_max_nth)); 1823 if (__kmp_sys_max_nth == -1) { 1824 /* Unlimited threads for NPTL */ 1825 __kmp_sys_max_nth = INT_MAX; 1826 } else if (__kmp_sys_max_nth <= 1) { 1827 /* Can't tell, just use PTHREAD_THREADS_MAX */ 1828 __kmp_sys_max_nth = KMP_MAX_NTH; 1829 } 1830 1831 /* Query the minimum stack size */ 1832 __kmp_sys_min_stksize = sysconf(_SC_THREAD_STACK_MIN); 1833 if (__kmp_sys_min_stksize <= 1) { 1834 __kmp_sys_min_stksize = KMP_MIN_STKSIZE; 1835 } 1836 } 1837 1838 /* Set up minimum number of threads to switch to TLS gtid */ 1839 __kmp_tls_gtid_min = KMP_TLS_GTID_MIN; 1840 1841 status = pthread_key_create(&__kmp_gtid_threadprivate_key, 1842 __kmp_internal_end_dest); 1843 KMP_CHECK_SYSFAIL("pthread_key_create", status); 1844 status = pthread_mutexattr_init(&mutex_attr); 1845 KMP_CHECK_SYSFAIL("pthread_mutexattr_init", status); 1846 status = pthread_mutex_init(&__kmp_wait_mx.m_mutex, &mutex_attr); 1847 KMP_CHECK_SYSFAIL("pthread_mutex_init", status); 1848 status = pthread_mutexattr_destroy(&mutex_attr); 1849 KMP_CHECK_SYSFAIL("pthread_mutexattr_destroy", status); 1850 status = pthread_condattr_init(&cond_attr); 1851 KMP_CHECK_SYSFAIL("pthread_condattr_init", status); 1852 status = pthread_cond_init(&__kmp_wait_cv.c_cond, &cond_attr); 1853 KMP_CHECK_SYSFAIL("pthread_cond_init", status); 1854 status = pthread_condattr_destroy(&cond_attr); 1855 KMP_CHECK_SYSFAIL("pthread_condattr_destroy", status); 1856 #if USE_ITT_BUILD 1857 __kmp_itt_initialize(); 1858 #endif /* USE_ITT_BUILD */ 1859 1860 __kmp_init_runtime = TRUE; 1861 } 1862 1863 void __kmp_runtime_destroy(void) { 1864 int status; 1865 1866 if (!__kmp_init_runtime) { 1867 return; // Nothing to do. 1868 } 1869 1870 #if USE_ITT_BUILD 1871 __kmp_itt_destroy(); 1872 #endif /* USE_ITT_BUILD */ 1873 1874 status = pthread_key_delete(__kmp_gtid_threadprivate_key); 1875 KMP_CHECK_SYSFAIL("pthread_key_delete", status); 1876 1877 status = pthread_mutex_destroy(&__kmp_wait_mx.m_mutex); 1878 if (status != 0 && status != EBUSY) { 1879 KMP_SYSFAIL("pthread_mutex_destroy", status); 1880 } 1881 status = pthread_cond_destroy(&__kmp_wait_cv.c_cond); 1882 if (status != 0 && status != EBUSY) { 1883 KMP_SYSFAIL("pthread_cond_destroy", status); 1884 } 1885 #if KMP_AFFINITY_SUPPORTED 1886 __kmp_affinity_uninitialize(); 1887 #endif 1888 1889 __kmp_init_runtime = FALSE; 1890 } 1891 1892 /* Put the thread to sleep for a time period */ 1893 /* NOTE: not currently used anywhere */ 1894 void __kmp_thread_sleep(int millis) { sleep((millis + 500) / 1000); } 1895 1896 /* Calculate the elapsed wall clock time for the user */ 1897 void __kmp_elapsed(double *t) { 1898 int status; 1899 #ifdef FIX_SGI_CLOCK 1900 struct timespec ts; 1901 1902 status = clock_gettime(CLOCK_PROCESS_CPUTIME_ID, &ts); 1903 KMP_CHECK_SYSFAIL_ERRNO("clock_gettime", status); 1904 *t = 1905 (double)ts.tv_nsec * (1.0 / (double)KMP_NSEC_PER_SEC) + (double)ts.tv_sec; 1906 #else 1907 struct timeval tv; 1908 1909 status = gettimeofday(&tv, NULL); 1910 KMP_CHECK_SYSFAIL_ERRNO("gettimeofday", status); 1911 *t = 1912 (double)tv.tv_usec * (1.0 / (double)KMP_USEC_PER_SEC) + (double)tv.tv_sec; 1913 #endif 1914 } 1915 1916 /* Calculate the elapsed wall clock tick for the user */ 1917 void __kmp_elapsed_tick(double *t) { *t = 1 / (double)CLOCKS_PER_SEC; } 1918 1919 /* Return the current time stamp in nsec */ 1920 kmp_uint64 __kmp_now_nsec() { 1921 struct timeval t; 1922 gettimeofday(&t, NULL); 1923 kmp_uint64 nsec = (kmp_uint64)KMP_NSEC_PER_SEC * (kmp_uint64)t.tv_sec + 1924 (kmp_uint64)1000 * (kmp_uint64)t.tv_usec; 1925 return nsec; 1926 } 1927 1928 #if KMP_ARCH_X86 || KMP_ARCH_X86_64 1929 /* Measure clock ticks per millisecond */ 1930 void __kmp_initialize_system_tick() { 1931 kmp_uint64 now, nsec2, diff; 1932 kmp_uint64 delay = 100000; // 50~100 usec on most machines. 1933 kmp_uint64 nsec = __kmp_now_nsec(); 1934 kmp_uint64 goal = __kmp_hardware_timestamp() + delay; 1935 while ((now = __kmp_hardware_timestamp()) < goal) 1936 ; 1937 nsec2 = __kmp_now_nsec(); 1938 diff = nsec2 - nsec; 1939 if (diff > 0) { 1940 kmp_uint64 tpms = ((kmp_uint64)1e6 * (delay + (now - goal)) / diff); 1941 if (tpms > 0) 1942 __kmp_ticks_per_msec = tpms; 1943 } 1944 } 1945 #endif 1946 1947 /* Determine whether the given address is mapped into the current address 1948 space. */ 1949 1950 int __kmp_is_address_mapped(void *addr) { 1951 1952 int found = 0; 1953 int rc; 1954 1955 #if KMP_OS_LINUX || KMP_OS_HURD 1956 1957 /* On GNUish OSes, read the /proc/<pid>/maps pseudo-file to get all the 1958 address ranges mapped into the address space. */ 1959 1960 char *name = __kmp_str_format("/proc/%d/maps", getpid()); 1961 FILE *file = NULL; 1962 1963 file = fopen(name, "r"); 1964 KMP_ASSERT(file != NULL); 1965 1966 for (;;) { 1967 1968 void *beginning = NULL; 1969 void *ending = NULL; 1970 char perms[5]; 1971 1972 rc = fscanf(file, "%p-%p %4s %*[^\n]\n", &beginning, &ending, perms); 1973 if (rc == EOF) { 1974 break; 1975 } 1976 KMP_ASSERT(rc == 3 && 1977 KMP_STRLEN(perms) == 4); // Make sure all fields are read. 1978 1979 // Ending address is not included in the region, but beginning is. 1980 if ((addr >= beginning) && (addr < ending)) { 1981 perms[2] = 0; // 3th and 4th character does not matter. 1982 if (strcmp(perms, "rw") == 0) { 1983 // Memory we are looking for should be readable and writable. 1984 found = 1; 1985 } 1986 break; 1987 } 1988 } 1989 1990 // Free resources. 1991 fclose(file); 1992 KMP_INTERNAL_FREE(name); 1993 #elif KMP_OS_FREEBSD 1994 char *buf; 1995 size_t lstsz; 1996 int mib[] = {CTL_KERN, KERN_PROC, KERN_PROC_VMMAP, getpid()}; 1997 rc = sysctl(mib, 4, NULL, &lstsz, NULL, 0); 1998 if (rc < 0) 1999 return 0; 2000 // We pass from number of vm entry's semantic 2001 // to size of whole entry map list. 2002 lstsz = lstsz * 4 / 3; 2003 buf = reinterpret_cast<char *>(kmpc_malloc(lstsz)); 2004 rc = sysctl(mib, 4, buf, &lstsz, NULL, 0); 2005 if (rc < 0) { 2006 kmpc_free(buf); 2007 return 0; 2008 } 2009 2010 char *lw = buf; 2011 char *up = buf + lstsz; 2012 2013 while (lw < up) { 2014 struct kinfo_vmentry *cur = reinterpret_cast<struct kinfo_vmentry *>(lw); 2015 size_t cursz = cur->kve_structsize; 2016 if (cursz == 0) 2017 break; 2018 void *start = reinterpret_cast<void *>(cur->kve_start); 2019 void *end = reinterpret_cast<void *>(cur->kve_end); 2020 // Readable/Writable addresses within current map entry 2021 if ((addr >= start) && (addr < end)) { 2022 if ((cur->kve_protection & KVME_PROT_READ) != 0 && 2023 (cur->kve_protection & KVME_PROT_WRITE) != 0) { 2024 found = 1; 2025 break; 2026 } 2027 } 2028 lw += cursz; 2029 } 2030 kmpc_free(buf); 2031 2032 #elif KMP_OS_DARWIN 2033 2034 /* On OS X*, /proc pseudo filesystem is not available. Try to read memory 2035 using vm interface. */ 2036 2037 int buffer; 2038 vm_size_t count; 2039 rc = vm_read_overwrite( 2040 mach_task_self(), // Task to read memory of. 2041 (vm_address_t)(addr), // Address to read from. 2042 1, // Number of bytes to be read. 2043 (vm_address_t)(&buffer), // Address of buffer to save read bytes in. 2044 &count // Address of var to save number of read bytes in. 2045 ); 2046 if (rc == 0) { 2047 // Memory successfully read. 2048 found = 1; 2049 } 2050 2051 #elif KMP_OS_NETBSD 2052 2053 int mib[5]; 2054 mib[0] = CTL_VM; 2055 mib[1] = VM_PROC; 2056 mib[2] = VM_PROC_MAP; 2057 mib[3] = getpid(); 2058 mib[4] = sizeof(struct kinfo_vmentry); 2059 2060 size_t size; 2061 rc = sysctl(mib, __arraycount(mib), NULL, &size, NULL, 0); 2062 KMP_ASSERT(!rc); 2063 KMP_ASSERT(size); 2064 2065 size = size * 4 / 3; 2066 struct kinfo_vmentry *kiv = (struct kinfo_vmentry *)KMP_INTERNAL_MALLOC(size); 2067 KMP_ASSERT(kiv); 2068 2069 rc = sysctl(mib, __arraycount(mib), kiv, &size, NULL, 0); 2070 KMP_ASSERT(!rc); 2071 KMP_ASSERT(size); 2072 2073 for (size_t i = 0; i < size; i++) { 2074 if (kiv[i].kve_start >= (uint64_t)addr && 2075 kiv[i].kve_end <= (uint64_t)addr) { 2076 found = 1; 2077 break; 2078 } 2079 } 2080 KMP_INTERNAL_FREE(kiv); 2081 #elif KMP_OS_OPENBSD 2082 2083 int mib[3]; 2084 mib[0] = CTL_KERN; 2085 mib[1] = KERN_PROC_VMMAP; 2086 mib[2] = getpid(); 2087 2088 size_t size; 2089 uint64_t end; 2090 rc = sysctl(mib, 3, NULL, &size, NULL, 0); 2091 KMP_ASSERT(!rc); 2092 KMP_ASSERT(size); 2093 end = size; 2094 2095 struct kinfo_vmentry kiv = {.kve_start = 0}; 2096 2097 while ((rc = sysctl(mib, 3, &kiv, &size, NULL, 0)) == 0) { 2098 KMP_ASSERT(size); 2099 if (kiv.kve_end == end) 2100 break; 2101 2102 if (kiv.kve_start >= (uint64_t)addr && kiv.kve_end <= (uint64_t)addr) { 2103 found = 1; 2104 break; 2105 } 2106 kiv.kve_start += 1; 2107 } 2108 #elif KMP_OS_DRAGONFLY 2109 2110 // FIXME(DragonFly): Implement this 2111 found = 1; 2112 2113 #else 2114 2115 #error "Unknown or unsupported OS" 2116 2117 #endif 2118 2119 return found; 2120 2121 } // __kmp_is_address_mapped 2122 2123 #ifdef USE_LOAD_BALANCE 2124 2125 #if KMP_OS_DARWIN || KMP_OS_NETBSD 2126 2127 // The function returns the rounded value of the system load average 2128 // during given time interval which depends on the value of 2129 // __kmp_load_balance_interval variable (default is 60 sec, other values 2130 // may be 300 sec or 900 sec). 2131 // It returns -1 in case of error. 2132 int __kmp_get_load_balance(int max) { 2133 double averages[3]; 2134 int ret_avg = 0; 2135 2136 int res = getloadavg(averages, 3); 2137 2138 // Check __kmp_load_balance_interval to determine which of averages to use. 2139 // getloadavg() may return the number of samples less than requested that is 2140 // less than 3. 2141 if (__kmp_load_balance_interval < 180 && (res >= 1)) { 2142 ret_avg = (int)averages[0]; // 1 min 2143 } else if ((__kmp_load_balance_interval >= 180 && 2144 __kmp_load_balance_interval < 600) && 2145 (res >= 2)) { 2146 ret_avg = (int)averages[1]; // 5 min 2147 } else if ((__kmp_load_balance_interval >= 600) && (res == 3)) { 2148 ret_avg = (int)averages[2]; // 15 min 2149 } else { // Error occurred 2150 return -1; 2151 } 2152 2153 return ret_avg; 2154 } 2155 2156 #else // Linux* OS 2157 2158 // The function returns number of running (not sleeping) threads, or -1 in case 2159 // of error. Error could be reported if Linux* OS kernel too old (without 2160 // "/proc" support). Counting running threads stops if max running threads 2161 // encountered. 2162 int __kmp_get_load_balance(int max) { 2163 static int permanent_error = 0; 2164 static int glb_running_threads = 0; // Saved count of the running threads for 2165 // the thread balance algorithm 2166 static double glb_call_time = 0; /* Thread balance algorithm call time */ 2167 2168 int running_threads = 0; // Number of running threads in the system. 2169 2170 DIR *proc_dir = NULL; // Handle of "/proc/" directory. 2171 struct dirent *proc_entry = NULL; 2172 2173 kmp_str_buf_t task_path; // "/proc/<pid>/task/<tid>/" path. 2174 DIR *task_dir = NULL; // Handle of "/proc/<pid>/task/<tid>/" directory. 2175 struct dirent *task_entry = NULL; 2176 int task_path_fixed_len; 2177 2178 kmp_str_buf_t stat_path; // "/proc/<pid>/task/<tid>/stat" path. 2179 int stat_file = -1; 2180 int stat_path_fixed_len; 2181 2182 int total_processes = 0; // Total number of processes in system. 2183 int total_threads = 0; // Total number of threads in system. 2184 2185 double call_time = 0.0; 2186 2187 __kmp_str_buf_init(&task_path); 2188 __kmp_str_buf_init(&stat_path); 2189 2190 __kmp_elapsed(&call_time); 2191 2192 if (glb_call_time && 2193 (call_time - glb_call_time < __kmp_load_balance_interval)) { 2194 running_threads = glb_running_threads; 2195 goto finish; 2196 } 2197 2198 glb_call_time = call_time; 2199 2200 // Do not spend time on scanning "/proc/" if we have a permanent error. 2201 if (permanent_error) { 2202 running_threads = -1; 2203 goto finish; 2204 } 2205 2206 if (max <= 0) { 2207 max = INT_MAX; 2208 } 2209 2210 // Open "/proc/" directory. 2211 proc_dir = opendir("/proc"); 2212 if (proc_dir == NULL) { 2213 // Cannot open "/prroc/". Probably the kernel does not support it. Return an 2214 // error now and in subsequent calls. 2215 running_threads = -1; 2216 permanent_error = 1; 2217 goto finish; 2218 } 2219 2220 // Initialize fixed part of task_path. This part will not change. 2221 __kmp_str_buf_cat(&task_path, "/proc/", 6); 2222 task_path_fixed_len = task_path.used; // Remember number of used characters. 2223 2224 proc_entry = readdir(proc_dir); 2225 while (proc_entry != NULL) { 2226 // Proc entry is a directory and name starts with a digit. Assume it is a 2227 // process' directory. 2228 if (proc_entry->d_type == DT_DIR && isdigit(proc_entry->d_name[0])) { 2229 2230 ++total_processes; 2231 // Make sure init process is the very first in "/proc", so we can replace 2232 // strcmp( proc_entry->d_name, "1" ) == 0 with simpler total_processes == 2233 // 1. We are going to check that total_processes == 1 => d_name == "1" is 2234 // true (where "=>" is implication). Since C++ does not have => operator, 2235 // let us replace it with its equivalent: a => b == ! a || b. 2236 KMP_DEBUG_ASSERT(total_processes != 1 || 2237 strcmp(proc_entry->d_name, "1") == 0); 2238 2239 // Construct task_path. 2240 task_path.used = task_path_fixed_len; // Reset task_path to "/proc/". 2241 __kmp_str_buf_cat(&task_path, proc_entry->d_name, 2242 KMP_STRLEN(proc_entry->d_name)); 2243 __kmp_str_buf_cat(&task_path, "/task", 5); 2244 2245 task_dir = opendir(task_path.str); 2246 if (task_dir == NULL) { 2247 // Process can finish between reading "/proc/" directory entry and 2248 // opening process' "task/" directory. So, in general case we should not 2249 // complain, but have to skip this process and read the next one. But on 2250 // systems with no "task/" support we will spend lot of time to scan 2251 // "/proc/" tree again and again without any benefit. "init" process 2252 // (its pid is 1) should exist always, so, if we cannot open 2253 // "/proc/1/task/" directory, it means "task/" is not supported by 2254 // kernel. Report an error now and in the future. 2255 if (strcmp(proc_entry->d_name, "1") == 0) { 2256 running_threads = -1; 2257 permanent_error = 1; 2258 goto finish; 2259 } 2260 } else { 2261 // Construct fixed part of stat file path. 2262 __kmp_str_buf_clear(&stat_path); 2263 __kmp_str_buf_cat(&stat_path, task_path.str, task_path.used); 2264 __kmp_str_buf_cat(&stat_path, "/", 1); 2265 stat_path_fixed_len = stat_path.used; 2266 2267 task_entry = readdir(task_dir); 2268 while (task_entry != NULL) { 2269 // It is a directory and name starts with a digit. 2270 if (proc_entry->d_type == DT_DIR && isdigit(task_entry->d_name[0])) { 2271 ++total_threads; 2272 2273 // Construct complete stat file path. Easiest way would be: 2274 // __kmp_str_buf_print( & stat_path, "%s/%s/stat", task_path.str, 2275 // task_entry->d_name ); 2276 // but seriae of __kmp_str_buf_cat works a bit faster. 2277 stat_path.used = 2278 stat_path_fixed_len; // Reset stat path to its fixed part. 2279 __kmp_str_buf_cat(&stat_path, task_entry->d_name, 2280 KMP_STRLEN(task_entry->d_name)); 2281 __kmp_str_buf_cat(&stat_path, "/stat", 5); 2282 2283 // Note: Low-level API (open/read/close) is used. High-level API 2284 // (fopen/fclose) works ~ 30 % slower. 2285 stat_file = open(stat_path.str, O_RDONLY); 2286 if (stat_file == -1) { 2287 // We cannot report an error because task (thread) can terminate 2288 // just before reading this file. 2289 } else { 2290 /* Content of "stat" file looks like: 2291 24285 (program) S ... 2292 2293 It is a single line (if program name does not include funny 2294 symbols). First number is a thread id, then name of executable 2295 file name in paretheses, then state of the thread. We need just 2296 thread state. 2297 2298 Good news: Length of program name is 15 characters max. Longer 2299 names are truncated. 2300 2301 Thus, we need rather short buffer: 15 chars for program name + 2302 2 parenthesis, + 3 spaces + ~7 digits of pid = 37. 2303 2304 Bad news: Program name may contain special symbols like space, 2305 closing parenthesis, or even new line. This makes parsing 2306 "stat" file not 100 % reliable. In case of fanny program names 2307 parsing may fail (report incorrect thread state). 2308 2309 Parsing "status" file looks more promissing (due to different 2310 file structure and escaping special symbols) but reading and 2311 parsing of "status" file works slower. 2312 -- ln 2313 */ 2314 char buffer[65]; 2315 ssize_t len; 2316 len = read(stat_file, buffer, sizeof(buffer) - 1); 2317 if (len >= 0) { 2318 buffer[len] = 0; 2319 // Using scanf: 2320 // sscanf( buffer, "%*d (%*s) %c ", & state ); 2321 // looks very nice, but searching for a closing parenthesis 2322 // works a bit faster. 2323 char *close_parent = strstr(buffer, ") "); 2324 if (close_parent != NULL) { 2325 char state = *(close_parent + 2); 2326 if (state == 'R') { 2327 ++running_threads; 2328 if (running_threads >= max) { 2329 goto finish; 2330 } 2331 } 2332 } 2333 } 2334 close(stat_file); 2335 stat_file = -1; 2336 } 2337 } 2338 task_entry = readdir(task_dir); 2339 } 2340 closedir(task_dir); 2341 task_dir = NULL; 2342 } 2343 } 2344 proc_entry = readdir(proc_dir); 2345 } 2346 2347 // There _might_ be a timing hole where the thread executing this 2348 // code get skipped in the load balance, and running_threads is 0. 2349 // Assert in the debug builds only!!! 2350 KMP_DEBUG_ASSERT(running_threads > 0); 2351 if (running_threads <= 0) { 2352 running_threads = 1; 2353 } 2354 2355 finish: // Clean up and exit. 2356 if (proc_dir != NULL) { 2357 closedir(proc_dir); 2358 } 2359 __kmp_str_buf_free(&task_path); 2360 if (task_dir != NULL) { 2361 closedir(task_dir); 2362 } 2363 __kmp_str_buf_free(&stat_path); 2364 if (stat_file != -1) { 2365 close(stat_file); 2366 } 2367 2368 glb_running_threads = running_threads; 2369 2370 return running_threads; 2371 2372 } // __kmp_get_load_balance 2373 2374 #endif // KMP_OS_DARWIN 2375 2376 #endif // USE_LOAD_BALANCE 2377 2378 #if !(KMP_ARCH_X86 || KMP_ARCH_X86_64 || KMP_MIC || \ 2379 ((KMP_OS_LINUX || KMP_OS_DARWIN) && KMP_ARCH_AARCH64) || \ 2380 KMP_ARCH_PPC64 || KMP_ARCH_RISCV64) 2381 2382 // we really only need the case with 1 argument, because CLANG always build 2383 // a struct of pointers to shared variables referenced in the outlined function 2384 int __kmp_invoke_microtask(microtask_t pkfn, int gtid, int tid, int argc, 2385 void *p_argv[] 2386 #if OMPT_SUPPORT 2387 , 2388 void **exit_frame_ptr 2389 #endif 2390 ) { 2391 #if OMPT_SUPPORT 2392 *exit_frame_ptr = OMPT_GET_FRAME_ADDRESS(0); 2393 #endif 2394 2395 switch (argc) { 2396 default: 2397 fprintf(stderr, "Too many args to microtask: %d!\n", argc); 2398 fflush(stderr); 2399 exit(-1); 2400 case 0: 2401 (*pkfn)(>id, &tid); 2402 break; 2403 case 1: 2404 (*pkfn)(>id, &tid, p_argv[0]); 2405 break; 2406 case 2: 2407 (*pkfn)(>id, &tid, p_argv[0], p_argv[1]); 2408 break; 2409 case 3: 2410 (*pkfn)(>id, &tid, p_argv[0], p_argv[1], p_argv[2]); 2411 break; 2412 case 4: 2413 (*pkfn)(>id, &tid, p_argv[0], p_argv[1], p_argv[2], p_argv[3]); 2414 break; 2415 case 5: 2416 (*pkfn)(>id, &tid, p_argv[0], p_argv[1], p_argv[2], p_argv[3], p_argv[4]); 2417 break; 2418 case 6: 2419 (*pkfn)(>id, &tid, p_argv[0], p_argv[1], p_argv[2], p_argv[3], p_argv[4], 2420 p_argv[5]); 2421 break; 2422 case 7: 2423 (*pkfn)(>id, &tid, p_argv[0], p_argv[1], p_argv[2], p_argv[3], p_argv[4], 2424 p_argv[5], p_argv[6]); 2425 break; 2426 case 8: 2427 (*pkfn)(>id, &tid, p_argv[0], p_argv[1], p_argv[2], p_argv[3], p_argv[4], 2428 p_argv[5], p_argv[6], p_argv[7]); 2429 break; 2430 case 9: 2431 (*pkfn)(>id, &tid, p_argv[0], p_argv[1], p_argv[2], p_argv[3], p_argv[4], 2432 p_argv[5], p_argv[6], p_argv[7], p_argv[8]); 2433 break; 2434 case 10: 2435 (*pkfn)(>id, &tid, p_argv[0], p_argv[1], p_argv[2], p_argv[3], p_argv[4], 2436 p_argv[5], p_argv[6], p_argv[7], p_argv[8], p_argv[9]); 2437 break; 2438 case 11: 2439 (*pkfn)(>id, &tid, p_argv[0], p_argv[1], p_argv[2], p_argv[3], p_argv[4], 2440 p_argv[5], p_argv[6], p_argv[7], p_argv[8], p_argv[9], p_argv[10]); 2441 break; 2442 case 12: 2443 (*pkfn)(>id, &tid, p_argv[0], p_argv[1], p_argv[2], p_argv[3], p_argv[4], 2444 p_argv[5], p_argv[6], p_argv[7], p_argv[8], p_argv[9], p_argv[10], 2445 p_argv[11]); 2446 break; 2447 case 13: 2448 (*pkfn)(>id, &tid, p_argv[0], p_argv[1], p_argv[2], p_argv[3], p_argv[4], 2449 p_argv[5], p_argv[6], p_argv[7], p_argv[8], p_argv[9], p_argv[10], 2450 p_argv[11], p_argv[12]); 2451 break; 2452 case 14: 2453 (*pkfn)(>id, &tid, p_argv[0], p_argv[1], p_argv[2], p_argv[3], p_argv[4], 2454 p_argv[5], p_argv[6], p_argv[7], p_argv[8], p_argv[9], p_argv[10], 2455 p_argv[11], p_argv[12], p_argv[13]); 2456 break; 2457 case 15: 2458 (*pkfn)(>id, &tid, p_argv[0], p_argv[1], p_argv[2], p_argv[3], p_argv[4], 2459 p_argv[5], p_argv[6], p_argv[7], p_argv[8], p_argv[9], p_argv[10], 2460 p_argv[11], p_argv[12], p_argv[13], p_argv[14]); 2461 break; 2462 } 2463 2464 return 1; 2465 } 2466 2467 #endif 2468 2469 #if KMP_OS_LINUX 2470 // Functions for hidden helper task 2471 namespace { 2472 // Condition variable for initializing hidden helper team 2473 pthread_cond_t hidden_helper_threads_initz_cond_var; 2474 pthread_mutex_t hidden_helper_threads_initz_lock; 2475 volatile int hidden_helper_initz_signaled = FALSE; 2476 2477 // Condition variable for deinitializing hidden helper team 2478 pthread_cond_t hidden_helper_threads_deinitz_cond_var; 2479 pthread_mutex_t hidden_helper_threads_deinitz_lock; 2480 volatile int hidden_helper_deinitz_signaled = FALSE; 2481 2482 // Condition variable for the wrapper function of main thread 2483 pthread_cond_t hidden_helper_main_thread_cond_var; 2484 pthread_mutex_t hidden_helper_main_thread_lock; 2485 volatile int hidden_helper_main_thread_signaled = FALSE; 2486 2487 // Semaphore for worker threads. We don't use condition variable here in case 2488 // that when multiple signals are sent at the same time, only one thread might 2489 // be waken. 2490 sem_t hidden_helper_task_sem; 2491 } // namespace 2492 2493 void __kmp_hidden_helper_worker_thread_wait() { 2494 int status = sem_wait(&hidden_helper_task_sem); 2495 KMP_CHECK_SYSFAIL("sem_wait", status); 2496 } 2497 2498 void __kmp_do_initialize_hidden_helper_threads() { 2499 // Initialize condition variable 2500 int status = 2501 pthread_cond_init(&hidden_helper_threads_initz_cond_var, nullptr); 2502 KMP_CHECK_SYSFAIL("pthread_cond_init", status); 2503 2504 status = pthread_cond_init(&hidden_helper_threads_deinitz_cond_var, nullptr); 2505 KMP_CHECK_SYSFAIL("pthread_cond_init", status); 2506 2507 status = pthread_cond_init(&hidden_helper_main_thread_cond_var, nullptr); 2508 KMP_CHECK_SYSFAIL("pthread_cond_init", status); 2509 2510 status = pthread_mutex_init(&hidden_helper_threads_initz_lock, nullptr); 2511 KMP_CHECK_SYSFAIL("pthread_mutex_init", status); 2512 2513 status = pthread_mutex_init(&hidden_helper_threads_deinitz_lock, nullptr); 2514 KMP_CHECK_SYSFAIL("pthread_mutex_init", status); 2515 2516 status = pthread_mutex_init(&hidden_helper_main_thread_lock, nullptr); 2517 KMP_CHECK_SYSFAIL("pthread_mutex_init", status); 2518 2519 // Initialize the semaphore 2520 status = sem_init(&hidden_helper_task_sem, 0, 0); 2521 KMP_CHECK_SYSFAIL("sem_init", status); 2522 2523 // Create a new thread to finish initialization 2524 pthread_t handle; 2525 status = pthread_create( 2526 &handle, nullptr, 2527 [](void *) -> void * { 2528 __kmp_hidden_helper_threads_initz_routine(); 2529 return nullptr; 2530 }, 2531 nullptr); 2532 KMP_CHECK_SYSFAIL("pthread_create", status); 2533 } 2534 2535 void __kmp_hidden_helper_threads_initz_wait() { 2536 // Initial thread waits here for the completion of the initialization. The 2537 // condition variable will be notified by main thread of hidden helper teams. 2538 int status = pthread_mutex_lock(&hidden_helper_threads_initz_lock); 2539 KMP_CHECK_SYSFAIL("pthread_mutex_lock", status); 2540 2541 if (!TCR_4(hidden_helper_initz_signaled)) { 2542 status = pthread_cond_wait(&hidden_helper_threads_initz_cond_var, 2543 &hidden_helper_threads_initz_lock); 2544 KMP_CHECK_SYSFAIL("pthread_cond_wait", status); 2545 } 2546 2547 status = pthread_mutex_unlock(&hidden_helper_threads_initz_lock); 2548 KMP_CHECK_SYSFAIL("pthread_mutex_unlock", status); 2549 } 2550 2551 void __kmp_hidden_helper_initz_release() { 2552 // After all initialization, reset __kmp_init_hidden_helper_threads to false. 2553 int status = pthread_mutex_lock(&hidden_helper_threads_initz_lock); 2554 KMP_CHECK_SYSFAIL("pthread_mutex_lock", status); 2555 2556 status = pthread_cond_signal(&hidden_helper_threads_initz_cond_var); 2557 KMP_CHECK_SYSFAIL("pthread_cond_wait", status); 2558 2559 TCW_SYNC_4(hidden_helper_initz_signaled, TRUE); 2560 2561 status = pthread_mutex_unlock(&hidden_helper_threads_initz_lock); 2562 KMP_CHECK_SYSFAIL("pthread_mutex_unlock", status); 2563 } 2564 2565 void __kmp_hidden_helper_main_thread_wait() { 2566 // The main thread of hidden helper team will be blocked here. The 2567 // condition variable can only be signal in the destructor of RTL. 2568 int status = pthread_mutex_lock(&hidden_helper_main_thread_lock); 2569 KMP_CHECK_SYSFAIL("pthread_mutex_lock", status); 2570 2571 if (!TCR_4(hidden_helper_main_thread_signaled)) { 2572 status = pthread_cond_wait(&hidden_helper_main_thread_cond_var, 2573 &hidden_helper_main_thread_lock); 2574 KMP_CHECK_SYSFAIL("pthread_cond_wait", status); 2575 } 2576 2577 status = pthread_mutex_unlock(&hidden_helper_main_thread_lock); 2578 KMP_CHECK_SYSFAIL("pthread_mutex_unlock", status); 2579 } 2580 2581 void __kmp_hidden_helper_main_thread_release() { 2582 // The initial thread of OpenMP RTL should call this function to wake up the 2583 // main thread of hidden helper team. 2584 int status = pthread_mutex_lock(&hidden_helper_main_thread_lock); 2585 KMP_CHECK_SYSFAIL("pthread_mutex_lock", status); 2586 2587 status = pthread_cond_signal(&hidden_helper_main_thread_cond_var); 2588 KMP_CHECK_SYSFAIL("pthread_cond_signal", status); 2589 2590 // The hidden helper team is done here 2591 TCW_SYNC_4(hidden_helper_main_thread_signaled, TRUE); 2592 2593 status = pthread_mutex_unlock(&hidden_helper_main_thread_lock); 2594 KMP_CHECK_SYSFAIL("pthread_mutex_unlock", status); 2595 } 2596 2597 void __kmp_hidden_helper_worker_thread_signal() { 2598 int status = sem_post(&hidden_helper_task_sem); 2599 KMP_CHECK_SYSFAIL("sem_post", status); 2600 } 2601 2602 void __kmp_hidden_helper_threads_deinitz_wait() { 2603 // Initial thread waits here for the completion of the deinitialization. The 2604 // condition variable will be notified by main thread of hidden helper teams. 2605 int status = pthread_mutex_lock(&hidden_helper_threads_deinitz_lock); 2606 KMP_CHECK_SYSFAIL("pthread_mutex_lock", status); 2607 2608 if (!TCR_4(hidden_helper_deinitz_signaled)) { 2609 status = pthread_cond_wait(&hidden_helper_threads_deinitz_cond_var, 2610 &hidden_helper_threads_deinitz_lock); 2611 KMP_CHECK_SYSFAIL("pthread_cond_wait", status); 2612 } 2613 2614 status = pthread_mutex_unlock(&hidden_helper_threads_deinitz_lock); 2615 KMP_CHECK_SYSFAIL("pthread_mutex_unlock", status); 2616 } 2617 2618 void __kmp_hidden_helper_threads_deinitz_release() { 2619 int status = pthread_mutex_lock(&hidden_helper_threads_deinitz_lock); 2620 KMP_CHECK_SYSFAIL("pthread_mutex_lock", status); 2621 2622 status = pthread_cond_signal(&hidden_helper_threads_deinitz_cond_var); 2623 KMP_CHECK_SYSFAIL("pthread_cond_wait", status); 2624 2625 TCW_SYNC_4(hidden_helper_deinitz_signaled, TRUE); 2626 2627 status = pthread_mutex_unlock(&hidden_helper_threads_deinitz_lock); 2628 KMP_CHECK_SYSFAIL("pthread_mutex_unlock", status); 2629 } 2630 #else // KMP_OS_LINUX 2631 void __kmp_hidden_helper_worker_thread_wait() { 2632 KMP_ASSERT(0 && "Hidden helper task is not supported on this OS"); 2633 } 2634 2635 void __kmp_do_initialize_hidden_helper_threads() { 2636 KMP_ASSERT(0 && "Hidden helper task is not supported on this OS"); 2637 } 2638 2639 void __kmp_hidden_helper_threads_initz_wait() { 2640 KMP_ASSERT(0 && "Hidden helper task is not supported on this OS"); 2641 } 2642 2643 void __kmp_hidden_helper_initz_release() { 2644 KMP_ASSERT(0 && "Hidden helper task is not supported on this OS"); 2645 } 2646 2647 void __kmp_hidden_helper_main_thread_wait() { 2648 KMP_ASSERT(0 && "Hidden helper task is not supported on this OS"); 2649 } 2650 2651 void __kmp_hidden_helper_main_thread_release() { 2652 KMP_ASSERT(0 && "Hidden helper task is not supported on this OS"); 2653 } 2654 2655 void __kmp_hidden_helper_worker_thread_signal() { 2656 KMP_ASSERT(0 && "Hidden helper task is not supported on this OS"); 2657 } 2658 2659 void __kmp_hidden_helper_threads_deinitz_wait() { 2660 KMP_ASSERT(0 && "Hidden helper task is not supported on this OS"); 2661 } 2662 2663 void __kmp_hidden_helper_threads_deinitz_release() { 2664 KMP_ASSERT(0 && "Hidden helper task is not supported on this OS"); 2665 } 2666 #endif // KMP_OS_LINUX 2667 2668 // end of file // 2669