1 /* 2 * z_Linux_util.cpp -- platform specific routines. 3 */ 4 5 //===----------------------------------------------------------------------===// 6 // 7 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 8 // See https://llvm.org/LICENSE.txt for license information. 9 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "kmp.h" 14 #include "kmp_affinity.h" 15 #include "kmp_i18n.h" 16 #include "kmp_io.h" 17 #include "kmp_itt.h" 18 #include "kmp_lock.h" 19 #include "kmp_stats.h" 20 #include "kmp_str.h" 21 #include "kmp_wait_release.h" 22 #include "kmp_wrapper_getpid.h" 23 24 #if !KMP_OS_DRAGONFLY && !KMP_OS_FREEBSD && !KMP_OS_NETBSD && !KMP_OS_OPENBSD 25 #include <alloca.h> 26 #endif 27 #include <math.h> // HUGE_VAL. 28 #include <sys/resource.h> 29 #include <sys/syscall.h> 30 #include <sys/time.h> 31 #include <sys/times.h> 32 #include <unistd.h> 33 34 #if KMP_OS_LINUX && !KMP_OS_CNK 35 #include <sys/sysinfo.h> 36 #if KMP_USE_FUTEX 37 // We should really include <futex.h>, but that causes compatibility problems on 38 // different Linux* OS distributions that either require that you include (or 39 // break when you try to include) <pci/types.h>. Since all we need is the two 40 // macros below (which are part of the kernel ABI, so can't change) we just 41 // define the constants here and don't include <futex.h> 42 #ifndef FUTEX_WAIT 43 #define FUTEX_WAIT 0 44 #endif 45 #ifndef FUTEX_WAKE 46 #define FUTEX_WAKE 1 47 #endif 48 #endif 49 #elif KMP_OS_DARWIN 50 #include <mach/mach.h> 51 #include <sys/sysctl.h> 52 #elif KMP_OS_DRAGONFLY || KMP_OS_FREEBSD 53 #include <sys/types.h> 54 #include <sys/sysctl.h> 55 #include <sys/user.h> 56 #include <pthread_np.h> 57 #elif KMP_OS_NETBSD || KMP_OS_OPENBSD 58 #include <sys/types.h> 59 #include <sys/sysctl.h> 60 #endif 61 62 #include <ctype.h> 63 #include <dirent.h> 64 #include <fcntl.h> 65 66 #include "tsan_annotations.h" 67 68 struct kmp_sys_timer { 69 struct timespec start; 70 }; 71 72 // Convert timespec to nanoseconds. 73 #define TS2NS(timespec) (((timespec).tv_sec * 1e9) + (timespec).tv_nsec) 74 75 static struct kmp_sys_timer __kmp_sys_timer_data; 76 77 #if KMP_HANDLE_SIGNALS 78 typedef void (*sig_func_t)(int); 79 STATIC_EFI2_WORKAROUND struct sigaction __kmp_sighldrs[NSIG]; 80 static sigset_t __kmp_sigset; 81 #endif 82 83 static int __kmp_init_runtime = FALSE; 84 85 static int __kmp_fork_count = 0; 86 87 static pthread_condattr_t __kmp_suspend_cond_attr; 88 static pthread_mutexattr_t __kmp_suspend_mutex_attr; 89 90 static kmp_cond_align_t __kmp_wait_cv; 91 static kmp_mutex_align_t __kmp_wait_mx; 92 93 kmp_uint64 __kmp_ticks_per_msec = 1000000; 94 95 #ifdef DEBUG_SUSPEND 96 static void __kmp_print_cond(char *buffer, kmp_cond_align_t *cond) { 97 KMP_SNPRINTF(buffer, 128, "(cond (lock (%ld, %d)), (descr (%p)))", 98 cond->c_cond.__c_lock.__status, cond->c_cond.__c_lock.__spinlock, 99 cond->c_cond.__c_waiting); 100 } 101 #endif 102 103 #if ((KMP_OS_LINUX || KMP_OS_FREEBSD) && KMP_AFFINITY_SUPPORTED) 104 105 /* Affinity support */ 106 107 void __kmp_affinity_bind_thread(int which) { 108 KMP_ASSERT2(KMP_AFFINITY_CAPABLE(), 109 "Illegal set affinity operation when not capable"); 110 111 kmp_affin_mask_t *mask; 112 KMP_CPU_ALLOC_ON_STACK(mask); 113 KMP_CPU_ZERO(mask); 114 KMP_CPU_SET(which, mask); 115 __kmp_set_system_affinity(mask, TRUE); 116 KMP_CPU_FREE_FROM_STACK(mask); 117 } 118 119 /* Determine if we can access affinity functionality on this version of 120 * Linux* OS by checking __NR_sched_{get,set}affinity system calls, and set 121 * __kmp_affin_mask_size to the appropriate value (0 means not capable). */ 122 void __kmp_affinity_determine_capable(const char *env_var) { 123 // Check and see if the OS supports thread affinity. 124 125 #if KMP_OS_LINUX 126 #define KMP_CPU_SET_SIZE_LIMIT (1024 * 1024) 127 #elif KMP_OS_FREEBSD 128 #define KMP_CPU_SET_SIZE_LIMIT (sizeof(cpuset_t)) 129 #endif 130 131 132 #if KMP_OS_LINUX 133 // If Linux* OS: 134 // If the syscall fails or returns a suggestion for the size, 135 // then we don't have to search for an appropriate size. 136 int gCode; 137 int sCode; 138 unsigned char *buf; 139 buf = (unsigned char *)KMP_INTERNAL_MALLOC(KMP_CPU_SET_SIZE_LIMIT); 140 gCode = syscall(__NR_sched_getaffinity, 0, KMP_CPU_SET_SIZE_LIMIT, buf); 141 KA_TRACE(30, ("__kmp_affinity_determine_capable: " 142 "initial getaffinity call returned %d errno = %d\n", 143 gCode, errno)); 144 145 // if ((gCode < 0) && (errno == ENOSYS)) 146 if (gCode < 0) { 147 // System call not supported 148 if (__kmp_affinity_verbose || 149 (__kmp_affinity_warnings && (__kmp_affinity_type != affinity_none) && 150 (__kmp_affinity_type != affinity_default) && 151 (__kmp_affinity_type != affinity_disabled))) { 152 int error = errno; 153 kmp_msg_t err_code = KMP_ERR(error); 154 __kmp_msg(kmp_ms_warning, KMP_MSG(GetAffSysCallNotSupported, env_var), 155 err_code, __kmp_msg_null); 156 if (__kmp_generate_warnings == kmp_warnings_off) { 157 __kmp_str_free(&err_code.str); 158 } 159 } 160 KMP_AFFINITY_DISABLE(); 161 KMP_INTERNAL_FREE(buf); 162 return; 163 } 164 if (gCode > 0) { // Linux* OS only 165 // The optimal situation: the OS returns the size of the buffer it expects. 166 // 167 // A verification of correct behavior is that setaffinity on a NULL 168 // buffer with the same size fails with errno set to EFAULT. 169 sCode = syscall(__NR_sched_setaffinity, 0, gCode, NULL); 170 KA_TRACE(30, ("__kmp_affinity_determine_capable: " 171 "setaffinity for mask size %d returned %d errno = %d\n", 172 gCode, sCode, errno)); 173 if (sCode < 0) { 174 if (errno == ENOSYS) { 175 if (__kmp_affinity_verbose || 176 (__kmp_affinity_warnings && 177 (__kmp_affinity_type != affinity_none) && 178 (__kmp_affinity_type != affinity_default) && 179 (__kmp_affinity_type != affinity_disabled))) { 180 int error = errno; 181 kmp_msg_t err_code = KMP_ERR(error); 182 __kmp_msg(kmp_ms_warning, KMP_MSG(SetAffSysCallNotSupported, env_var), 183 err_code, __kmp_msg_null); 184 if (__kmp_generate_warnings == kmp_warnings_off) { 185 __kmp_str_free(&err_code.str); 186 } 187 } 188 KMP_AFFINITY_DISABLE(); 189 KMP_INTERNAL_FREE(buf); 190 } 191 if (errno == EFAULT) { 192 KMP_AFFINITY_ENABLE(gCode); 193 KA_TRACE(10, ("__kmp_affinity_determine_capable: " 194 "affinity supported (mask size %d)\n", 195 (int)__kmp_affin_mask_size)); 196 KMP_INTERNAL_FREE(buf); 197 return; 198 } 199 } 200 } 201 202 // Call the getaffinity system call repeatedly with increasing set sizes 203 // until we succeed, or reach an upper bound on the search. 204 KA_TRACE(30, ("__kmp_affinity_determine_capable: " 205 "searching for proper set size\n")); 206 int size; 207 for (size = 1; size <= KMP_CPU_SET_SIZE_LIMIT; size *= 2) { 208 gCode = syscall(__NR_sched_getaffinity, 0, size, buf); 209 KA_TRACE(30, ("__kmp_affinity_determine_capable: " 210 "getaffinity for mask size %d returned %d errno = %d\n", 211 size, gCode, errno)); 212 213 if (gCode < 0) { 214 if (errno == ENOSYS) { 215 // We shouldn't get here 216 KA_TRACE(30, ("__kmp_affinity_determine_capable: " 217 "inconsistent OS call behavior: errno == ENOSYS for mask " 218 "size %d\n", 219 size)); 220 if (__kmp_affinity_verbose || 221 (__kmp_affinity_warnings && 222 (__kmp_affinity_type != affinity_none) && 223 (__kmp_affinity_type != affinity_default) && 224 (__kmp_affinity_type != affinity_disabled))) { 225 int error = errno; 226 kmp_msg_t err_code = KMP_ERR(error); 227 __kmp_msg(kmp_ms_warning, KMP_MSG(GetAffSysCallNotSupported, env_var), 228 err_code, __kmp_msg_null); 229 if (__kmp_generate_warnings == kmp_warnings_off) { 230 __kmp_str_free(&err_code.str); 231 } 232 } 233 KMP_AFFINITY_DISABLE(); 234 KMP_INTERNAL_FREE(buf); 235 return; 236 } 237 continue; 238 } 239 240 sCode = syscall(__NR_sched_setaffinity, 0, gCode, NULL); 241 KA_TRACE(30, ("__kmp_affinity_determine_capable: " 242 "setaffinity for mask size %d returned %d errno = %d\n", 243 gCode, sCode, errno)); 244 if (sCode < 0) { 245 if (errno == ENOSYS) { // Linux* OS only 246 // We shouldn't get here 247 KA_TRACE(30, ("__kmp_affinity_determine_capable: " 248 "inconsistent OS call behavior: errno == ENOSYS for mask " 249 "size %d\n", 250 size)); 251 if (__kmp_affinity_verbose || 252 (__kmp_affinity_warnings && 253 (__kmp_affinity_type != affinity_none) && 254 (__kmp_affinity_type != affinity_default) && 255 (__kmp_affinity_type != affinity_disabled))) { 256 int error = errno; 257 kmp_msg_t err_code = KMP_ERR(error); 258 __kmp_msg(kmp_ms_warning, KMP_MSG(SetAffSysCallNotSupported, env_var), 259 err_code, __kmp_msg_null); 260 if (__kmp_generate_warnings == kmp_warnings_off) { 261 __kmp_str_free(&err_code.str); 262 } 263 } 264 KMP_AFFINITY_DISABLE(); 265 KMP_INTERNAL_FREE(buf); 266 return; 267 } 268 if (errno == EFAULT) { 269 KMP_AFFINITY_ENABLE(gCode); 270 KA_TRACE(10, ("__kmp_affinity_determine_capable: " 271 "affinity supported (mask size %d)\n", 272 (int)__kmp_affin_mask_size)); 273 KMP_INTERNAL_FREE(buf); 274 return; 275 } 276 } 277 } 278 #elif KMP_OS_FREEBSD 279 int gCode; 280 unsigned char *buf; 281 buf = (unsigned char *)KMP_INTERNAL_MALLOC(KMP_CPU_SET_SIZE_LIMIT); 282 gCode = pthread_getaffinity_np(pthread_self(), KMP_CPU_SET_SIZE_LIMIT, reinterpret_cast<cpuset_t *>(buf)); 283 KA_TRACE(30, ("__kmp_affinity_determine_capable: " 284 "initial getaffinity call returned %d errno = %d\n", 285 gCode, errno)); 286 if (gCode == 0) { 287 KMP_AFFINITY_ENABLE(KMP_CPU_SET_SIZE_LIMIT); 288 KA_TRACE(10, ("__kmp_affinity_determine_capable: " 289 "affinity supported (mask size %d)\n", 290 (int)__kmp_affin_mask_size)); 291 KMP_INTERNAL_FREE(buf); 292 return; 293 } 294 #endif 295 // save uncaught error code 296 // int error = errno; 297 KMP_INTERNAL_FREE(buf); 298 // restore uncaught error code, will be printed at the next KMP_WARNING below 299 // errno = error; 300 301 // Affinity is not supported 302 KMP_AFFINITY_DISABLE(); 303 KA_TRACE(10, ("__kmp_affinity_determine_capable: " 304 "cannot determine mask size - affinity not supported\n")); 305 if (__kmp_affinity_verbose || 306 (__kmp_affinity_warnings && (__kmp_affinity_type != affinity_none) && 307 (__kmp_affinity_type != affinity_default) && 308 (__kmp_affinity_type != affinity_disabled))) { 309 KMP_WARNING(AffCantGetMaskSize, env_var); 310 } 311 } 312 313 #endif // KMP_OS_LINUX && KMP_AFFINITY_SUPPORTED 314 315 #if KMP_USE_FUTEX 316 317 int __kmp_futex_determine_capable() { 318 int loc = 0; 319 int rc = syscall(__NR_futex, &loc, FUTEX_WAKE, 1, NULL, NULL, 0); 320 int retval = (rc == 0) || (errno != ENOSYS); 321 322 KA_TRACE(10, 323 ("__kmp_futex_determine_capable: rc = %d errno = %d\n", rc, errno)); 324 KA_TRACE(10, ("__kmp_futex_determine_capable: futex syscall%s supported\n", 325 retval ? "" : " not")); 326 327 return retval; 328 } 329 330 #endif // KMP_USE_FUTEX 331 332 #if (KMP_ARCH_X86 || KMP_ARCH_X86_64) && (!KMP_ASM_INTRINS) 333 /* Only 32-bit "add-exchange" instruction on IA-32 architecture causes us to 334 use compare_and_store for these routines */ 335 336 kmp_int8 __kmp_test_then_or8(volatile kmp_int8 *p, kmp_int8 d) { 337 kmp_int8 old_value, new_value; 338 339 old_value = TCR_1(*p); 340 new_value = old_value | d; 341 342 while (!KMP_COMPARE_AND_STORE_REL8(p, old_value, new_value)) { 343 KMP_CPU_PAUSE(); 344 old_value = TCR_1(*p); 345 new_value = old_value | d; 346 } 347 return old_value; 348 } 349 350 kmp_int8 __kmp_test_then_and8(volatile kmp_int8 *p, kmp_int8 d) { 351 kmp_int8 old_value, new_value; 352 353 old_value = TCR_1(*p); 354 new_value = old_value & d; 355 356 while (!KMP_COMPARE_AND_STORE_REL8(p, old_value, new_value)) { 357 KMP_CPU_PAUSE(); 358 old_value = TCR_1(*p); 359 new_value = old_value & d; 360 } 361 return old_value; 362 } 363 364 kmp_uint32 __kmp_test_then_or32(volatile kmp_uint32 *p, kmp_uint32 d) { 365 kmp_uint32 old_value, new_value; 366 367 old_value = TCR_4(*p); 368 new_value = old_value | d; 369 370 while (!KMP_COMPARE_AND_STORE_REL32(p, old_value, new_value)) { 371 KMP_CPU_PAUSE(); 372 old_value = TCR_4(*p); 373 new_value = old_value | d; 374 } 375 return old_value; 376 } 377 378 kmp_uint32 __kmp_test_then_and32(volatile kmp_uint32 *p, kmp_uint32 d) { 379 kmp_uint32 old_value, new_value; 380 381 old_value = TCR_4(*p); 382 new_value = old_value & d; 383 384 while (!KMP_COMPARE_AND_STORE_REL32(p, old_value, new_value)) { 385 KMP_CPU_PAUSE(); 386 old_value = TCR_4(*p); 387 new_value = old_value & d; 388 } 389 return old_value; 390 } 391 392 #if KMP_ARCH_X86 393 kmp_int8 __kmp_test_then_add8(volatile kmp_int8 *p, kmp_int8 d) { 394 kmp_int8 old_value, new_value; 395 396 old_value = TCR_1(*p); 397 new_value = old_value + d; 398 399 while (!KMP_COMPARE_AND_STORE_REL8(p, old_value, new_value)) { 400 KMP_CPU_PAUSE(); 401 old_value = TCR_1(*p); 402 new_value = old_value + d; 403 } 404 return old_value; 405 } 406 407 kmp_int64 __kmp_test_then_add64(volatile kmp_int64 *p, kmp_int64 d) { 408 kmp_int64 old_value, new_value; 409 410 old_value = TCR_8(*p); 411 new_value = old_value + d; 412 413 while (!KMP_COMPARE_AND_STORE_REL64(p, old_value, new_value)) { 414 KMP_CPU_PAUSE(); 415 old_value = TCR_8(*p); 416 new_value = old_value + d; 417 } 418 return old_value; 419 } 420 #endif /* KMP_ARCH_X86 */ 421 422 kmp_uint64 __kmp_test_then_or64(volatile kmp_uint64 *p, kmp_uint64 d) { 423 kmp_uint64 old_value, new_value; 424 425 old_value = TCR_8(*p); 426 new_value = old_value | d; 427 while (!KMP_COMPARE_AND_STORE_REL64(p, old_value, new_value)) { 428 KMP_CPU_PAUSE(); 429 old_value = TCR_8(*p); 430 new_value = old_value | d; 431 } 432 return old_value; 433 } 434 435 kmp_uint64 __kmp_test_then_and64(volatile kmp_uint64 *p, kmp_uint64 d) { 436 kmp_uint64 old_value, new_value; 437 438 old_value = TCR_8(*p); 439 new_value = old_value & d; 440 while (!KMP_COMPARE_AND_STORE_REL64(p, old_value, new_value)) { 441 KMP_CPU_PAUSE(); 442 old_value = TCR_8(*p); 443 new_value = old_value & d; 444 } 445 return old_value; 446 } 447 448 #endif /* (KMP_ARCH_X86 || KMP_ARCH_X86_64) && (! KMP_ASM_INTRINS) */ 449 450 void __kmp_terminate_thread(int gtid) { 451 int status; 452 kmp_info_t *th = __kmp_threads[gtid]; 453 454 if (!th) 455 return; 456 457 #ifdef KMP_CANCEL_THREADS 458 KA_TRACE(10, ("__kmp_terminate_thread: kill (%d)\n", gtid)); 459 status = pthread_cancel(th->th.th_info.ds.ds_thread); 460 if (status != 0 && status != ESRCH) { 461 __kmp_fatal(KMP_MSG(CantTerminateWorkerThread), KMP_ERR(status), 462 __kmp_msg_null); 463 } 464 #endif 465 KMP_YIELD(TRUE); 466 } // 467 468 /* Set thread stack info according to values returned by pthread_getattr_np(). 469 If values are unreasonable, assume call failed and use incremental stack 470 refinement method instead. Returns TRUE if the stack parameters could be 471 determined exactly, FALSE if incremental refinement is necessary. */ 472 static kmp_int32 __kmp_set_stack_info(int gtid, kmp_info_t *th) { 473 int stack_data; 474 #if KMP_OS_LINUX || KMP_OS_DRAGONFLY || KMP_OS_FREEBSD || KMP_OS_NETBSD || \ 475 KMP_OS_HURD 476 pthread_attr_t attr; 477 int status; 478 size_t size = 0; 479 void *addr = 0; 480 481 /* Always do incremental stack refinement for ubermaster threads since the 482 initial thread stack range can be reduced by sibling thread creation so 483 pthread_attr_getstack may cause thread gtid aliasing */ 484 if (!KMP_UBER_GTID(gtid)) { 485 486 /* Fetch the real thread attributes */ 487 status = pthread_attr_init(&attr); 488 KMP_CHECK_SYSFAIL("pthread_attr_init", status); 489 #if KMP_OS_DRAGONFLY || KMP_OS_FREEBSD || KMP_OS_NETBSD 490 status = pthread_attr_get_np(pthread_self(), &attr); 491 KMP_CHECK_SYSFAIL("pthread_attr_get_np", status); 492 #else 493 status = pthread_getattr_np(pthread_self(), &attr); 494 KMP_CHECK_SYSFAIL("pthread_getattr_np", status); 495 #endif 496 status = pthread_attr_getstack(&attr, &addr, &size); 497 KMP_CHECK_SYSFAIL("pthread_attr_getstack", status); 498 KA_TRACE(60, 499 ("__kmp_set_stack_info: T#%d pthread_attr_getstack returned size:" 500 " %lu, low addr: %p\n", 501 gtid, size, addr)); 502 status = pthread_attr_destroy(&attr); 503 KMP_CHECK_SYSFAIL("pthread_attr_destroy", status); 504 } 505 506 if (size != 0 && addr != 0) { // was stack parameter determination successful? 507 /* Store the correct base and size */ 508 TCW_PTR(th->th.th_info.ds.ds_stackbase, (((char *)addr) + size)); 509 TCW_PTR(th->th.th_info.ds.ds_stacksize, size); 510 TCW_4(th->th.th_info.ds.ds_stackgrow, FALSE); 511 return TRUE; 512 } 513 #endif /* KMP_OS_LINUX || KMP_OS_DRAGONFLY || KMP_OS_FREEBSD || KMP_OS_NETBSD || 514 KMP_OS_HURD */ 515 /* Use incremental refinement starting from initial conservative estimate */ 516 TCW_PTR(th->th.th_info.ds.ds_stacksize, 0); 517 TCW_PTR(th->th.th_info.ds.ds_stackbase, &stack_data); 518 TCW_4(th->th.th_info.ds.ds_stackgrow, TRUE); 519 return FALSE; 520 } 521 522 static void *__kmp_launch_worker(void *thr) { 523 int status, old_type, old_state; 524 #ifdef KMP_BLOCK_SIGNALS 525 sigset_t new_set, old_set; 526 #endif /* KMP_BLOCK_SIGNALS */ 527 void *exit_val; 528 #if KMP_OS_LINUX || KMP_OS_DRAGONFLY || KMP_OS_FREEBSD || KMP_OS_NETBSD || \ 529 KMP_OS_OPENBSD || KMP_OS_HURD 530 void *volatile padding = 0; 531 #endif 532 int gtid; 533 534 gtid = ((kmp_info_t *)thr)->th.th_info.ds.ds_gtid; 535 __kmp_gtid_set_specific(gtid); 536 #ifdef KMP_TDATA_GTID 537 __kmp_gtid = gtid; 538 #endif 539 #if KMP_STATS_ENABLED 540 // set thread local index to point to thread-specific stats 541 __kmp_stats_thread_ptr = ((kmp_info_t *)thr)->th.th_stats; 542 __kmp_stats_thread_ptr->startLife(); 543 KMP_SET_THREAD_STATE(IDLE); 544 KMP_INIT_PARTITIONED_TIMERS(OMP_idle); 545 #endif 546 547 #if USE_ITT_BUILD 548 __kmp_itt_thread_name(gtid); 549 #endif /* USE_ITT_BUILD */ 550 551 #if KMP_AFFINITY_SUPPORTED 552 __kmp_affinity_set_init_mask(gtid, FALSE); 553 #endif 554 555 #ifdef KMP_CANCEL_THREADS 556 status = pthread_setcanceltype(PTHREAD_CANCEL_ASYNCHRONOUS, &old_type); 557 KMP_CHECK_SYSFAIL("pthread_setcanceltype", status); 558 // josh todo: isn't PTHREAD_CANCEL_ENABLE default for newly-created threads? 559 status = pthread_setcancelstate(PTHREAD_CANCEL_ENABLE, &old_state); 560 KMP_CHECK_SYSFAIL("pthread_setcancelstate", status); 561 #endif 562 563 #if KMP_ARCH_X86 || KMP_ARCH_X86_64 564 // Set FP control regs to be a copy of the parallel initialization thread's. 565 __kmp_clear_x87_fpu_status_word(); 566 __kmp_load_x87_fpu_control_word(&__kmp_init_x87_fpu_control_word); 567 __kmp_load_mxcsr(&__kmp_init_mxcsr); 568 #endif /* KMP_ARCH_X86 || KMP_ARCH_X86_64 */ 569 570 #ifdef KMP_BLOCK_SIGNALS 571 status = sigfillset(&new_set); 572 KMP_CHECK_SYSFAIL_ERRNO("sigfillset", status); 573 status = pthread_sigmask(SIG_BLOCK, &new_set, &old_set); 574 KMP_CHECK_SYSFAIL("pthread_sigmask", status); 575 #endif /* KMP_BLOCK_SIGNALS */ 576 577 #if KMP_OS_LINUX || KMP_OS_DRAGONFLY || KMP_OS_FREEBSD || KMP_OS_NETBSD || \ 578 KMP_OS_OPENBSD 579 if (__kmp_stkoffset > 0 && gtid > 0) { 580 padding = KMP_ALLOCA(gtid * __kmp_stkoffset); 581 } 582 #endif 583 584 KMP_MB(); 585 __kmp_set_stack_info(gtid, (kmp_info_t *)thr); 586 587 __kmp_check_stack_overlap((kmp_info_t *)thr); 588 589 exit_val = __kmp_launch_thread((kmp_info_t *)thr); 590 591 #ifdef KMP_BLOCK_SIGNALS 592 status = pthread_sigmask(SIG_SETMASK, &old_set, NULL); 593 KMP_CHECK_SYSFAIL("pthread_sigmask", status); 594 #endif /* KMP_BLOCK_SIGNALS */ 595 596 return exit_val; 597 } 598 599 #if KMP_USE_MONITOR 600 /* The monitor thread controls all of the threads in the complex */ 601 602 static void *__kmp_launch_monitor(void *thr) { 603 int status, old_type, old_state; 604 #ifdef KMP_BLOCK_SIGNALS 605 sigset_t new_set; 606 #endif /* KMP_BLOCK_SIGNALS */ 607 struct timespec interval; 608 609 KMP_MB(); /* Flush all pending memory write invalidates. */ 610 611 KA_TRACE(10, ("__kmp_launch_monitor: #1 launched\n")); 612 613 /* register us as the monitor thread */ 614 __kmp_gtid_set_specific(KMP_GTID_MONITOR); 615 #ifdef KMP_TDATA_GTID 616 __kmp_gtid = KMP_GTID_MONITOR; 617 #endif 618 619 KMP_MB(); 620 621 #if USE_ITT_BUILD 622 // Instruct Intel(R) Threading Tools to ignore monitor thread. 623 __kmp_itt_thread_ignore(); 624 #endif /* USE_ITT_BUILD */ 625 626 __kmp_set_stack_info(((kmp_info_t *)thr)->th.th_info.ds.ds_gtid, 627 (kmp_info_t *)thr); 628 629 __kmp_check_stack_overlap((kmp_info_t *)thr); 630 631 #ifdef KMP_CANCEL_THREADS 632 status = pthread_setcanceltype(PTHREAD_CANCEL_ASYNCHRONOUS, &old_type); 633 KMP_CHECK_SYSFAIL("pthread_setcanceltype", status); 634 // josh todo: isn't PTHREAD_CANCEL_ENABLE default for newly-created threads? 635 status = pthread_setcancelstate(PTHREAD_CANCEL_ENABLE, &old_state); 636 KMP_CHECK_SYSFAIL("pthread_setcancelstate", status); 637 #endif 638 639 #if KMP_REAL_TIME_FIX 640 // This is a potential fix which allows application with real-time scheduling 641 // policy work. However, decision about the fix is not made yet, so it is 642 // disabled by default. 643 { // Are program started with real-time scheduling policy? 644 int sched = sched_getscheduler(0); 645 if (sched == SCHED_FIFO || sched == SCHED_RR) { 646 // Yes, we are a part of real-time application. Try to increase the 647 // priority of the monitor. 648 struct sched_param param; 649 int max_priority = sched_get_priority_max(sched); 650 int rc; 651 KMP_WARNING(RealTimeSchedNotSupported); 652 sched_getparam(0, ¶m); 653 if (param.sched_priority < max_priority) { 654 param.sched_priority += 1; 655 rc = sched_setscheduler(0, sched, ¶m); 656 if (rc != 0) { 657 int error = errno; 658 kmp_msg_t err_code = KMP_ERR(error); 659 __kmp_msg(kmp_ms_warning, KMP_MSG(CantChangeMonitorPriority), 660 err_code, KMP_MSG(MonitorWillStarve), __kmp_msg_null); 661 if (__kmp_generate_warnings == kmp_warnings_off) { 662 __kmp_str_free(&err_code.str); 663 } 664 } 665 } else { 666 // We cannot abort here, because number of CPUs may be enough for all 667 // the threads, including the monitor thread, so application could 668 // potentially work... 669 __kmp_msg(kmp_ms_warning, KMP_MSG(RunningAtMaxPriority), 670 KMP_MSG(MonitorWillStarve), KMP_HNT(RunningAtMaxPriority), 671 __kmp_msg_null); 672 } 673 } 674 // AC: free thread that waits for monitor started 675 TCW_4(__kmp_global.g.g_time.dt.t_value, 0); 676 } 677 #endif // KMP_REAL_TIME_FIX 678 679 KMP_MB(); /* Flush all pending memory write invalidates. */ 680 681 if (__kmp_monitor_wakeups == 1) { 682 interval.tv_sec = 1; 683 interval.tv_nsec = 0; 684 } else { 685 interval.tv_sec = 0; 686 interval.tv_nsec = (KMP_NSEC_PER_SEC / __kmp_monitor_wakeups); 687 } 688 689 KA_TRACE(10, ("__kmp_launch_monitor: #2 monitor\n")); 690 691 while (!TCR_4(__kmp_global.g.g_done)) { 692 struct timespec now; 693 struct timeval tval; 694 695 /* This thread monitors the state of the system */ 696 697 KA_TRACE(15, ("__kmp_launch_monitor: update\n")); 698 699 status = gettimeofday(&tval, NULL); 700 KMP_CHECK_SYSFAIL_ERRNO("gettimeofday", status); 701 TIMEVAL_TO_TIMESPEC(&tval, &now); 702 703 now.tv_sec += interval.tv_sec; 704 now.tv_nsec += interval.tv_nsec; 705 706 if (now.tv_nsec >= KMP_NSEC_PER_SEC) { 707 now.tv_sec += 1; 708 now.tv_nsec -= KMP_NSEC_PER_SEC; 709 } 710 711 status = pthread_mutex_lock(&__kmp_wait_mx.m_mutex); 712 KMP_CHECK_SYSFAIL("pthread_mutex_lock", status); 713 // AC: the monitor should not fall asleep if g_done has been set 714 if (!TCR_4(__kmp_global.g.g_done)) { // check once more under mutex 715 status = pthread_cond_timedwait(&__kmp_wait_cv.c_cond, 716 &__kmp_wait_mx.m_mutex, &now); 717 if (status != 0) { 718 if (status != ETIMEDOUT && status != EINTR) { 719 KMP_SYSFAIL("pthread_cond_timedwait", status); 720 } 721 } 722 } 723 status = pthread_mutex_unlock(&__kmp_wait_mx.m_mutex); 724 KMP_CHECK_SYSFAIL("pthread_mutex_unlock", status); 725 726 TCW_4(__kmp_global.g.g_time.dt.t_value, 727 TCR_4(__kmp_global.g.g_time.dt.t_value) + 1); 728 729 KMP_MB(); /* Flush all pending memory write invalidates. */ 730 } 731 732 KA_TRACE(10, ("__kmp_launch_monitor: #3 cleanup\n")); 733 734 #ifdef KMP_BLOCK_SIGNALS 735 status = sigfillset(&new_set); 736 KMP_CHECK_SYSFAIL_ERRNO("sigfillset", status); 737 status = pthread_sigmask(SIG_UNBLOCK, &new_set, NULL); 738 KMP_CHECK_SYSFAIL("pthread_sigmask", status); 739 #endif /* KMP_BLOCK_SIGNALS */ 740 741 KA_TRACE(10, ("__kmp_launch_monitor: #4 finished\n")); 742 743 if (__kmp_global.g.g_abort != 0) { 744 /* now we need to terminate the worker threads */ 745 /* the value of t_abort is the signal we caught */ 746 747 int gtid; 748 749 KA_TRACE(10, ("__kmp_launch_monitor: #5 terminate sig=%d\n", 750 __kmp_global.g.g_abort)); 751 752 /* terminate the OpenMP worker threads */ 753 /* TODO this is not valid for sibling threads!! 754 * the uber master might not be 0 anymore.. */ 755 for (gtid = 1; gtid < __kmp_threads_capacity; ++gtid) 756 __kmp_terminate_thread(gtid); 757 758 __kmp_cleanup(); 759 760 KA_TRACE(10, ("__kmp_launch_monitor: #6 raise sig=%d\n", 761 __kmp_global.g.g_abort)); 762 763 if (__kmp_global.g.g_abort > 0) 764 raise(__kmp_global.g.g_abort); 765 } 766 767 KA_TRACE(10, ("__kmp_launch_monitor: #7 exit\n")); 768 769 return thr; 770 } 771 #endif // KMP_USE_MONITOR 772 773 void __kmp_create_worker(int gtid, kmp_info_t *th, size_t stack_size) { 774 pthread_t handle; 775 pthread_attr_t thread_attr; 776 int status; 777 778 th->th.th_info.ds.ds_gtid = gtid; 779 780 #if KMP_STATS_ENABLED 781 // sets up worker thread stats 782 __kmp_acquire_tas_lock(&__kmp_stats_lock, gtid); 783 784 // th->th.th_stats is used to transfer thread-specific stats-pointer to 785 // __kmp_launch_worker. So when thread is created (goes into 786 // __kmp_launch_worker) it will set its thread local pointer to 787 // th->th.th_stats 788 if (!KMP_UBER_GTID(gtid)) { 789 th->th.th_stats = __kmp_stats_list->push_back(gtid); 790 } else { 791 // For root threads, __kmp_stats_thread_ptr is set in __kmp_register_root(), 792 // so set the th->th.th_stats field to it. 793 th->th.th_stats = __kmp_stats_thread_ptr; 794 } 795 __kmp_release_tas_lock(&__kmp_stats_lock, gtid); 796 797 #endif // KMP_STATS_ENABLED 798 799 if (KMP_UBER_GTID(gtid)) { 800 KA_TRACE(10, ("__kmp_create_worker: uber thread (%d)\n", gtid)); 801 th->th.th_info.ds.ds_thread = pthread_self(); 802 __kmp_set_stack_info(gtid, th); 803 __kmp_check_stack_overlap(th); 804 return; 805 } 806 807 KA_TRACE(10, ("__kmp_create_worker: try to create thread (%d)\n", gtid)); 808 809 KMP_MB(); /* Flush all pending memory write invalidates. */ 810 811 #ifdef KMP_THREAD_ATTR 812 status = pthread_attr_init(&thread_attr); 813 if (status != 0) { 814 __kmp_fatal(KMP_MSG(CantInitThreadAttrs), KMP_ERR(status), __kmp_msg_null); 815 } 816 status = pthread_attr_setdetachstate(&thread_attr, PTHREAD_CREATE_JOINABLE); 817 if (status != 0) { 818 __kmp_fatal(KMP_MSG(CantSetWorkerState), KMP_ERR(status), __kmp_msg_null); 819 } 820 821 /* Set stack size for this thread now. 822 The multiple of 2 is there because on some machines, requesting an unusual 823 stacksize causes the thread to have an offset before the dummy alloca() 824 takes place to create the offset. Since we want the user to have a 825 sufficient stacksize AND support a stack offset, we alloca() twice the 826 offset so that the upcoming alloca() does not eliminate any premade offset, 827 and also gives the user the stack space they requested for all threads */ 828 stack_size += gtid * __kmp_stkoffset * 2; 829 830 #if defined(__ANDROID__) && __ANDROID_API__ < 19 831 // Round the stack size to a multiple of the page size. Older versions of 832 // Android (until KitKat) would fail pthread_attr_setstacksize with EINVAL 833 // if the stack size was not a multiple of the page size. 834 stack_size = (stack_size + PAGE_SIZE - 1) & ~(PAGE_SIZE - 1); 835 #endif 836 837 KA_TRACE(10, ("__kmp_create_worker: T#%d, default stacksize = %lu bytes, " 838 "__kmp_stksize = %lu bytes, final stacksize = %lu bytes\n", 839 gtid, KMP_DEFAULT_STKSIZE, __kmp_stksize, stack_size)); 840 841 #ifdef _POSIX_THREAD_ATTR_STACKSIZE 842 status = pthread_attr_setstacksize(&thread_attr, stack_size); 843 #ifdef KMP_BACKUP_STKSIZE 844 if (status != 0) { 845 if (!__kmp_env_stksize) { 846 stack_size = KMP_BACKUP_STKSIZE + gtid * __kmp_stkoffset; 847 __kmp_stksize = KMP_BACKUP_STKSIZE; 848 KA_TRACE(10, ("__kmp_create_worker: T#%d, default stacksize = %lu bytes, " 849 "__kmp_stksize = %lu bytes, (backup) final stacksize = %lu " 850 "bytes\n", 851 gtid, KMP_DEFAULT_STKSIZE, __kmp_stksize, stack_size)); 852 status = pthread_attr_setstacksize(&thread_attr, stack_size); 853 } 854 } 855 #endif /* KMP_BACKUP_STKSIZE */ 856 if (status != 0) { 857 __kmp_fatal(KMP_MSG(CantSetWorkerStackSize, stack_size), KMP_ERR(status), 858 KMP_HNT(ChangeWorkerStackSize), __kmp_msg_null); 859 } 860 #endif /* _POSIX_THREAD_ATTR_STACKSIZE */ 861 862 #endif /* KMP_THREAD_ATTR */ 863 864 status = 865 pthread_create(&handle, &thread_attr, __kmp_launch_worker, (void *)th); 866 if (status != 0 || !handle) { // ??? Why do we check handle?? 867 #ifdef _POSIX_THREAD_ATTR_STACKSIZE 868 if (status == EINVAL) { 869 __kmp_fatal(KMP_MSG(CantSetWorkerStackSize, stack_size), KMP_ERR(status), 870 KMP_HNT(IncreaseWorkerStackSize), __kmp_msg_null); 871 } 872 if (status == ENOMEM) { 873 __kmp_fatal(KMP_MSG(CantSetWorkerStackSize, stack_size), KMP_ERR(status), 874 KMP_HNT(DecreaseWorkerStackSize), __kmp_msg_null); 875 } 876 #endif /* _POSIX_THREAD_ATTR_STACKSIZE */ 877 if (status == EAGAIN) { 878 __kmp_fatal(KMP_MSG(NoResourcesForWorkerThread), KMP_ERR(status), 879 KMP_HNT(Decrease_NUM_THREADS), __kmp_msg_null); 880 } 881 KMP_SYSFAIL("pthread_create", status); 882 } 883 884 th->th.th_info.ds.ds_thread = handle; 885 886 #ifdef KMP_THREAD_ATTR 887 status = pthread_attr_destroy(&thread_attr); 888 if (status) { 889 kmp_msg_t err_code = KMP_ERR(status); 890 __kmp_msg(kmp_ms_warning, KMP_MSG(CantDestroyThreadAttrs), err_code, 891 __kmp_msg_null); 892 if (__kmp_generate_warnings == kmp_warnings_off) { 893 __kmp_str_free(&err_code.str); 894 } 895 } 896 #endif /* KMP_THREAD_ATTR */ 897 898 KMP_MB(); /* Flush all pending memory write invalidates. */ 899 900 KA_TRACE(10, ("__kmp_create_worker: done creating thread (%d)\n", gtid)); 901 902 } // __kmp_create_worker 903 904 #if KMP_USE_MONITOR 905 void __kmp_create_monitor(kmp_info_t *th) { 906 pthread_t handle; 907 pthread_attr_t thread_attr; 908 size_t size; 909 int status; 910 int auto_adj_size = FALSE; 911 912 if (__kmp_dflt_blocktime == KMP_MAX_BLOCKTIME) { 913 // We don't need monitor thread in case of MAX_BLOCKTIME 914 KA_TRACE(10, ("__kmp_create_monitor: skipping monitor thread because of " 915 "MAX blocktime\n")); 916 th->th.th_info.ds.ds_tid = 0; // this makes reap_monitor no-op 917 th->th.th_info.ds.ds_gtid = 0; 918 return; 919 } 920 KA_TRACE(10, ("__kmp_create_monitor: try to create monitor\n")); 921 922 KMP_MB(); /* Flush all pending memory write invalidates. */ 923 924 th->th.th_info.ds.ds_tid = KMP_GTID_MONITOR; 925 th->th.th_info.ds.ds_gtid = KMP_GTID_MONITOR; 926 #if KMP_REAL_TIME_FIX 927 TCW_4(__kmp_global.g.g_time.dt.t_value, 928 -1); // Will use it for synchronization a bit later. 929 #else 930 TCW_4(__kmp_global.g.g_time.dt.t_value, 0); 931 #endif // KMP_REAL_TIME_FIX 932 933 #ifdef KMP_THREAD_ATTR 934 if (__kmp_monitor_stksize == 0) { 935 __kmp_monitor_stksize = KMP_DEFAULT_MONITOR_STKSIZE; 936 auto_adj_size = TRUE; 937 } 938 status = pthread_attr_init(&thread_attr); 939 if (status != 0) { 940 __kmp_fatal(KMP_MSG(CantInitThreadAttrs), KMP_ERR(status), __kmp_msg_null); 941 } 942 status = pthread_attr_setdetachstate(&thread_attr, PTHREAD_CREATE_JOINABLE); 943 if (status != 0) { 944 __kmp_fatal(KMP_MSG(CantSetMonitorState), KMP_ERR(status), __kmp_msg_null); 945 } 946 947 #ifdef _POSIX_THREAD_ATTR_STACKSIZE 948 status = pthread_attr_getstacksize(&thread_attr, &size); 949 KMP_CHECK_SYSFAIL("pthread_attr_getstacksize", status); 950 #else 951 size = __kmp_sys_min_stksize; 952 #endif /* _POSIX_THREAD_ATTR_STACKSIZE */ 953 #endif /* KMP_THREAD_ATTR */ 954 955 if (__kmp_monitor_stksize == 0) { 956 __kmp_monitor_stksize = KMP_DEFAULT_MONITOR_STKSIZE; 957 } 958 if (__kmp_monitor_stksize < __kmp_sys_min_stksize) { 959 __kmp_monitor_stksize = __kmp_sys_min_stksize; 960 } 961 962 KA_TRACE(10, ("__kmp_create_monitor: default stacksize = %lu bytes," 963 "requested stacksize = %lu bytes\n", 964 size, __kmp_monitor_stksize)); 965 966 retry: 967 968 /* Set stack size for this thread now. */ 969 #ifdef _POSIX_THREAD_ATTR_STACKSIZE 970 KA_TRACE(10, ("__kmp_create_monitor: setting stacksize = %lu bytes,", 971 __kmp_monitor_stksize)); 972 status = pthread_attr_setstacksize(&thread_attr, __kmp_monitor_stksize); 973 if (status != 0) { 974 if (auto_adj_size) { 975 __kmp_monitor_stksize *= 2; 976 goto retry; 977 } 978 kmp_msg_t err_code = KMP_ERR(status); 979 __kmp_msg(kmp_ms_warning, // should this be fatal? BB 980 KMP_MSG(CantSetMonitorStackSize, (long int)__kmp_monitor_stksize), 981 err_code, KMP_HNT(ChangeMonitorStackSize), __kmp_msg_null); 982 if (__kmp_generate_warnings == kmp_warnings_off) { 983 __kmp_str_free(&err_code.str); 984 } 985 } 986 #endif /* _POSIX_THREAD_ATTR_STACKSIZE */ 987 988 status = 989 pthread_create(&handle, &thread_attr, __kmp_launch_monitor, (void *)th); 990 991 if (status != 0) { 992 #ifdef _POSIX_THREAD_ATTR_STACKSIZE 993 if (status == EINVAL) { 994 if (auto_adj_size && (__kmp_monitor_stksize < (size_t)0x40000000)) { 995 __kmp_monitor_stksize *= 2; 996 goto retry; 997 } 998 __kmp_fatal(KMP_MSG(CantSetMonitorStackSize, __kmp_monitor_stksize), 999 KMP_ERR(status), KMP_HNT(IncreaseMonitorStackSize), 1000 __kmp_msg_null); 1001 } 1002 if (status == ENOMEM) { 1003 __kmp_fatal(KMP_MSG(CantSetMonitorStackSize, __kmp_monitor_stksize), 1004 KMP_ERR(status), KMP_HNT(DecreaseMonitorStackSize), 1005 __kmp_msg_null); 1006 } 1007 #endif /* _POSIX_THREAD_ATTR_STACKSIZE */ 1008 if (status == EAGAIN) { 1009 __kmp_fatal(KMP_MSG(NoResourcesForMonitorThread), KMP_ERR(status), 1010 KMP_HNT(DecreaseNumberOfThreadsInUse), __kmp_msg_null); 1011 } 1012 KMP_SYSFAIL("pthread_create", status); 1013 } 1014 1015 th->th.th_info.ds.ds_thread = handle; 1016 1017 #if KMP_REAL_TIME_FIX 1018 // Wait for the monitor thread is really started and set its *priority*. 1019 KMP_DEBUG_ASSERT(sizeof(kmp_uint32) == 1020 sizeof(__kmp_global.g.g_time.dt.t_value)); 1021 __kmp_wait_4((kmp_uint32 volatile *)&__kmp_global.g.g_time.dt.t_value, -1, 1022 &__kmp_neq_4, NULL); 1023 #endif // KMP_REAL_TIME_FIX 1024 1025 #ifdef KMP_THREAD_ATTR 1026 status = pthread_attr_destroy(&thread_attr); 1027 if (status != 0) { 1028 kmp_msg_t err_code = KMP_ERR(status); 1029 __kmp_msg(kmp_ms_warning, KMP_MSG(CantDestroyThreadAttrs), err_code, 1030 __kmp_msg_null); 1031 if (__kmp_generate_warnings == kmp_warnings_off) { 1032 __kmp_str_free(&err_code.str); 1033 } 1034 } 1035 #endif 1036 1037 KMP_MB(); /* Flush all pending memory write invalidates. */ 1038 1039 KA_TRACE(10, ("__kmp_create_monitor: monitor created %#.8lx\n", 1040 th->th.th_info.ds.ds_thread)); 1041 1042 } // __kmp_create_monitor 1043 #endif // KMP_USE_MONITOR 1044 1045 void __kmp_exit_thread(int exit_status) { 1046 pthread_exit((void *)(intptr_t)exit_status); 1047 } // __kmp_exit_thread 1048 1049 #if KMP_USE_MONITOR 1050 void __kmp_resume_monitor(); 1051 1052 void __kmp_reap_monitor(kmp_info_t *th) { 1053 int status; 1054 void *exit_val; 1055 1056 KA_TRACE(10, ("__kmp_reap_monitor: try to reap monitor thread with handle" 1057 " %#.8lx\n", 1058 th->th.th_info.ds.ds_thread)); 1059 1060 // If monitor has been created, its tid and gtid should be KMP_GTID_MONITOR. 1061 // If both tid and gtid are 0, it means the monitor did not ever start. 1062 // If both tid and gtid are KMP_GTID_DNE, the monitor has been shut down. 1063 KMP_DEBUG_ASSERT(th->th.th_info.ds.ds_tid == th->th.th_info.ds.ds_gtid); 1064 if (th->th.th_info.ds.ds_gtid != KMP_GTID_MONITOR) { 1065 KA_TRACE(10, ("__kmp_reap_monitor: monitor did not start, returning\n")); 1066 return; 1067 } 1068 1069 KMP_MB(); /* Flush all pending memory write invalidates. */ 1070 1071 /* First, check to see whether the monitor thread exists to wake it up. This 1072 is to avoid performance problem when the monitor sleeps during 1073 blocktime-size interval */ 1074 1075 status = pthread_kill(th->th.th_info.ds.ds_thread, 0); 1076 if (status != ESRCH) { 1077 __kmp_resume_monitor(); // Wake up the monitor thread 1078 } 1079 KA_TRACE(10, ("__kmp_reap_monitor: try to join with monitor\n")); 1080 status = pthread_join(th->th.th_info.ds.ds_thread, &exit_val); 1081 if (exit_val != th) { 1082 __kmp_fatal(KMP_MSG(ReapMonitorError), KMP_ERR(status), __kmp_msg_null); 1083 } 1084 1085 th->th.th_info.ds.ds_tid = KMP_GTID_DNE; 1086 th->th.th_info.ds.ds_gtid = KMP_GTID_DNE; 1087 1088 KA_TRACE(10, ("__kmp_reap_monitor: done reaping monitor thread with handle" 1089 " %#.8lx\n", 1090 th->th.th_info.ds.ds_thread)); 1091 1092 KMP_MB(); /* Flush all pending memory write invalidates. */ 1093 } 1094 #endif // KMP_USE_MONITOR 1095 1096 void __kmp_reap_worker(kmp_info_t *th) { 1097 int status; 1098 void *exit_val; 1099 1100 KMP_MB(); /* Flush all pending memory write invalidates. */ 1101 1102 KA_TRACE( 1103 10, ("__kmp_reap_worker: try to reap T#%d\n", th->th.th_info.ds.ds_gtid)); 1104 1105 status = pthread_join(th->th.th_info.ds.ds_thread, &exit_val); 1106 #ifdef KMP_DEBUG 1107 /* Don't expose these to the user until we understand when they trigger */ 1108 if (status != 0) { 1109 __kmp_fatal(KMP_MSG(ReapWorkerError), KMP_ERR(status), __kmp_msg_null); 1110 } 1111 if (exit_val != th) { 1112 KA_TRACE(10, ("__kmp_reap_worker: worker T#%d did not reap properly, " 1113 "exit_val = %p\n", 1114 th->th.th_info.ds.ds_gtid, exit_val)); 1115 } 1116 #endif /* KMP_DEBUG */ 1117 1118 KA_TRACE(10, ("__kmp_reap_worker: done reaping T#%d\n", 1119 th->th.th_info.ds.ds_gtid)); 1120 1121 KMP_MB(); /* Flush all pending memory write invalidates. */ 1122 } 1123 1124 #if KMP_HANDLE_SIGNALS 1125 1126 static void __kmp_null_handler(int signo) { 1127 // Do nothing, for doing SIG_IGN-type actions. 1128 } // __kmp_null_handler 1129 1130 static void __kmp_team_handler(int signo) { 1131 if (__kmp_global.g.g_abort == 0) { 1132 /* Stage 1 signal handler, let's shut down all of the threads */ 1133 #ifdef KMP_DEBUG 1134 __kmp_debug_printf("__kmp_team_handler: caught signal = %d\n", signo); 1135 #endif 1136 switch (signo) { 1137 case SIGHUP: 1138 case SIGINT: 1139 case SIGQUIT: 1140 case SIGILL: 1141 case SIGABRT: 1142 case SIGFPE: 1143 case SIGBUS: 1144 case SIGSEGV: 1145 #ifdef SIGSYS 1146 case SIGSYS: 1147 #endif 1148 case SIGTERM: 1149 if (__kmp_debug_buf) { 1150 __kmp_dump_debug_buffer(); 1151 } 1152 KMP_MB(); // Flush all pending memory write invalidates. 1153 TCW_4(__kmp_global.g.g_abort, signo); 1154 KMP_MB(); // Flush all pending memory write invalidates. 1155 TCW_4(__kmp_global.g.g_done, TRUE); 1156 KMP_MB(); // Flush all pending memory write invalidates. 1157 break; 1158 default: 1159 #ifdef KMP_DEBUG 1160 __kmp_debug_printf("__kmp_team_handler: unknown signal type"); 1161 #endif 1162 break; 1163 } 1164 } 1165 } // __kmp_team_handler 1166 1167 static void __kmp_sigaction(int signum, const struct sigaction *act, 1168 struct sigaction *oldact) { 1169 int rc = sigaction(signum, act, oldact); 1170 KMP_CHECK_SYSFAIL_ERRNO("sigaction", rc); 1171 } 1172 1173 static void __kmp_install_one_handler(int sig, sig_func_t handler_func, 1174 int parallel_init) { 1175 KMP_MB(); // Flush all pending memory write invalidates. 1176 KB_TRACE(60, 1177 ("__kmp_install_one_handler( %d, ..., %d )\n", sig, parallel_init)); 1178 if (parallel_init) { 1179 struct sigaction new_action; 1180 struct sigaction old_action; 1181 new_action.sa_handler = handler_func; 1182 new_action.sa_flags = 0; 1183 sigfillset(&new_action.sa_mask); 1184 __kmp_sigaction(sig, &new_action, &old_action); 1185 if (old_action.sa_handler == __kmp_sighldrs[sig].sa_handler) { 1186 sigaddset(&__kmp_sigset, sig); 1187 } else { 1188 // Restore/keep user's handler if one previously installed. 1189 __kmp_sigaction(sig, &old_action, NULL); 1190 } 1191 } else { 1192 // Save initial/system signal handlers to see if user handlers installed. 1193 __kmp_sigaction(sig, NULL, &__kmp_sighldrs[sig]); 1194 } 1195 KMP_MB(); // Flush all pending memory write invalidates. 1196 } // __kmp_install_one_handler 1197 1198 static void __kmp_remove_one_handler(int sig) { 1199 KB_TRACE(60, ("__kmp_remove_one_handler( %d )\n", sig)); 1200 if (sigismember(&__kmp_sigset, sig)) { 1201 struct sigaction old; 1202 KMP_MB(); // Flush all pending memory write invalidates. 1203 __kmp_sigaction(sig, &__kmp_sighldrs[sig], &old); 1204 if ((old.sa_handler != __kmp_team_handler) && 1205 (old.sa_handler != __kmp_null_handler)) { 1206 // Restore the users signal handler. 1207 KB_TRACE(10, ("__kmp_remove_one_handler: oops, not our handler, " 1208 "restoring: sig=%d\n", 1209 sig)); 1210 __kmp_sigaction(sig, &old, NULL); 1211 } 1212 sigdelset(&__kmp_sigset, sig); 1213 KMP_MB(); // Flush all pending memory write invalidates. 1214 } 1215 } // __kmp_remove_one_handler 1216 1217 void __kmp_install_signals(int parallel_init) { 1218 KB_TRACE(10, ("__kmp_install_signals( %d )\n", parallel_init)); 1219 if (__kmp_handle_signals || !parallel_init) { 1220 // If ! parallel_init, we do not install handlers, just save original 1221 // handlers. Let us do it even __handle_signals is 0. 1222 sigemptyset(&__kmp_sigset); 1223 __kmp_install_one_handler(SIGHUP, __kmp_team_handler, parallel_init); 1224 __kmp_install_one_handler(SIGINT, __kmp_team_handler, parallel_init); 1225 __kmp_install_one_handler(SIGQUIT, __kmp_team_handler, parallel_init); 1226 __kmp_install_one_handler(SIGILL, __kmp_team_handler, parallel_init); 1227 __kmp_install_one_handler(SIGABRT, __kmp_team_handler, parallel_init); 1228 __kmp_install_one_handler(SIGFPE, __kmp_team_handler, parallel_init); 1229 __kmp_install_one_handler(SIGBUS, __kmp_team_handler, parallel_init); 1230 __kmp_install_one_handler(SIGSEGV, __kmp_team_handler, parallel_init); 1231 #ifdef SIGSYS 1232 __kmp_install_one_handler(SIGSYS, __kmp_team_handler, parallel_init); 1233 #endif // SIGSYS 1234 __kmp_install_one_handler(SIGTERM, __kmp_team_handler, parallel_init); 1235 #ifdef SIGPIPE 1236 __kmp_install_one_handler(SIGPIPE, __kmp_team_handler, parallel_init); 1237 #endif // SIGPIPE 1238 } 1239 } // __kmp_install_signals 1240 1241 void __kmp_remove_signals(void) { 1242 int sig; 1243 KB_TRACE(10, ("__kmp_remove_signals()\n")); 1244 for (sig = 1; sig < NSIG; ++sig) { 1245 __kmp_remove_one_handler(sig); 1246 } 1247 } // __kmp_remove_signals 1248 1249 #endif // KMP_HANDLE_SIGNALS 1250 1251 void __kmp_enable(int new_state) { 1252 #ifdef KMP_CANCEL_THREADS 1253 int status, old_state; 1254 status = pthread_setcancelstate(new_state, &old_state); 1255 KMP_CHECK_SYSFAIL("pthread_setcancelstate", status); 1256 KMP_DEBUG_ASSERT(old_state == PTHREAD_CANCEL_DISABLE); 1257 #endif 1258 } 1259 1260 void __kmp_disable(int *old_state) { 1261 #ifdef KMP_CANCEL_THREADS 1262 int status; 1263 status = pthread_setcancelstate(PTHREAD_CANCEL_DISABLE, old_state); 1264 KMP_CHECK_SYSFAIL("pthread_setcancelstate", status); 1265 #endif 1266 } 1267 1268 static void __kmp_atfork_prepare(void) { 1269 __kmp_acquire_bootstrap_lock(&__kmp_initz_lock); 1270 __kmp_acquire_bootstrap_lock(&__kmp_forkjoin_lock); 1271 } 1272 1273 static void __kmp_atfork_parent(void) { 1274 __kmp_release_bootstrap_lock(&__kmp_initz_lock); 1275 __kmp_release_bootstrap_lock(&__kmp_forkjoin_lock); 1276 } 1277 1278 /* Reset the library so execution in the child starts "all over again" with 1279 clean data structures in initial states. Don't worry about freeing memory 1280 allocated by parent, just abandon it to be safe. */ 1281 static void __kmp_atfork_child(void) { 1282 __kmp_release_bootstrap_lock(&__kmp_forkjoin_lock); 1283 /* TODO make sure this is done right for nested/sibling */ 1284 // ATT: Memory leaks are here? TODO: Check it and fix. 1285 /* KMP_ASSERT( 0 ); */ 1286 1287 ++__kmp_fork_count; 1288 1289 #if KMP_AFFINITY_SUPPORTED 1290 #if KMP_OS_LINUX || KMP_OS_FREEBSD 1291 // reset the affinity in the child to the initial thread 1292 // affinity in the parent 1293 kmp_set_thread_affinity_mask_initial(); 1294 #endif 1295 // Set default not to bind threads tightly in the child (we’re expecting 1296 // over-subscription after the fork and this can improve things for 1297 // scripting languages that use OpenMP inside process-parallel code). 1298 __kmp_affinity_type = affinity_none; 1299 if (__kmp_nested_proc_bind.bind_types != NULL) { 1300 __kmp_nested_proc_bind.bind_types[0] = proc_bind_false; 1301 } 1302 #endif // KMP_AFFINITY_SUPPORTED 1303 1304 __kmp_init_runtime = FALSE; 1305 #if KMP_USE_MONITOR 1306 __kmp_init_monitor = 0; 1307 #endif 1308 __kmp_init_parallel = FALSE; 1309 __kmp_init_middle = FALSE; 1310 __kmp_init_serial = FALSE; 1311 TCW_4(__kmp_init_gtid, FALSE); 1312 __kmp_init_common = FALSE; 1313 1314 TCW_4(__kmp_init_user_locks, FALSE); 1315 #if !KMP_USE_DYNAMIC_LOCK 1316 __kmp_user_lock_table.used = 1; 1317 __kmp_user_lock_table.allocated = 0; 1318 __kmp_user_lock_table.table = NULL; 1319 __kmp_lock_blocks = NULL; 1320 #endif 1321 1322 __kmp_all_nth = 0; 1323 TCW_4(__kmp_nth, 0); 1324 1325 __kmp_thread_pool = NULL; 1326 __kmp_thread_pool_insert_pt = NULL; 1327 __kmp_team_pool = NULL; 1328 1329 /* Must actually zero all the *cache arguments passed to __kmpc_threadprivate 1330 here so threadprivate doesn't use stale data */ 1331 KA_TRACE(10, ("__kmp_atfork_child: checking cache address list %p\n", 1332 __kmp_threadpriv_cache_list)); 1333 1334 while (__kmp_threadpriv_cache_list != NULL) { 1335 1336 if (*__kmp_threadpriv_cache_list->addr != NULL) { 1337 KC_TRACE(50, ("__kmp_atfork_child: zeroing cache at address %p\n", 1338 &(*__kmp_threadpriv_cache_list->addr))); 1339 1340 *__kmp_threadpriv_cache_list->addr = NULL; 1341 } 1342 __kmp_threadpriv_cache_list = __kmp_threadpriv_cache_list->next; 1343 } 1344 1345 __kmp_init_runtime = FALSE; 1346 1347 /* reset statically initialized locks */ 1348 __kmp_init_bootstrap_lock(&__kmp_initz_lock); 1349 __kmp_init_bootstrap_lock(&__kmp_stdio_lock); 1350 __kmp_init_bootstrap_lock(&__kmp_console_lock); 1351 __kmp_init_bootstrap_lock(&__kmp_task_team_lock); 1352 1353 #if USE_ITT_BUILD 1354 __kmp_itt_reset(); // reset ITT's global state 1355 #endif /* USE_ITT_BUILD */ 1356 1357 /* This is necessary to make sure no stale data is left around */ 1358 /* AC: customers complain that we use unsafe routines in the atfork 1359 handler. Mathworks: dlsym() is unsafe. We call dlsym and dlopen 1360 in dynamic_link when check the presence of shared tbbmalloc library. 1361 Suggestion is to make the library initialization lazier, similar 1362 to what done for __kmpc_begin(). */ 1363 // TODO: synchronize all static initializations with regular library 1364 // startup; look at kmp_global.cpp and etc. 1365 //__kmp_internal_begin (); 1366 } 1367 1368 void __kmp_register_atfork(void) { 1369 if (__kmp_need_register_atfork) { 1370 int status = pthread_atfork(__kmp_atfork_prepare, __kmp_atfork_parent, 1371 __kmp_atfork_child); 1372 KMP_CHECK_SYSFAIL("pthread_atfork", status); 1373 __kmp_need_register_atfork = FALSE; 1374 } 1375 } 1376 1377 void __kmp_suspend_initialize(void) { 1378 int status; 1379 status = pthread_mutexattr_init(&__kmp_suspend_mutex_attr); 1380 KMP_CHECK_SYSFAIL("pthread_mutexattr_init", status); 1381 status = pthread_condattr_init(&__kmp_suspend_cond_attr); 1382 KMP_CHECK_SYSFAIL("pthread_condattr_init", status); 1383 } 1384 1385 void __kmp_suspend_initialize_thread(kmp_info_t *th) { 1386 ANNOTATE_HAPPENS_AFTER(&th->th.th_suspend_init_count); 1387 int old_value = KMP_ATOMIC_LD_RLX(&th->th.th_suspend_init_count); 1388 int new_value = __kmp_fork_count + 1; 1389 // Return if already initialized 1390 if (old_value == new_value) 1391 return; 1392 // Wait, then return if being initialized 1393 if (old_value == -1 || 1394 !__kmp_atomic_compare_store(&th->th.th_suspend_init_count, old_value, 1395 -1)) { 1396 while (KMP_ATOMIC_LD_ACQ(&th->th.th_suspend_init_count) != new_value) { 1397 KMP_CPU_PAUSE(); 1398 } 1399 } else { 1400 // Claim to be the initializer and do initializations 1401 int status; 1402 status = pthread_cond_init(&th->th.th_suspend_cv.c_cond, 1403 &__kmp_suspend_cond_attr); 1404 KMP_CHECK_SYSFAIL("pthread_cond_init", status); 1405 status = pthread_mutex_init(&th->th.th_suspend_mx.m_mutex, 1406 &__kmp_suspend_mutex_attr); 1407 KMP_CHECK_SYSFAIL("pthread_mutex_init", status); 1408 KMP_ATOMIC_ST_REL(&th->th.th_suspend_init_count, new_value); 1409 ANNOTATE_HAPPENS_BEFORE(&th->th.th_suspend_init_count); 1410 } 1411 } 1412 1413 void __kmp_suspend_uninitialize_thread(kmp_info_t *th) { 1414 if (KMP_ATOMIC_LD_ACQ(&th->th.th_suspend_init_count) > __kmp_fork_count) { 1415 /* this means we have initialize the suspension pthread objects for this 1416 thread in this instance of the process */ 1417 int status; 1418 1419 status = pthread_cond_destroy(&th->th.th_suspend_cv.c_cond); 1420 if (status != 0 && status != EBUSY) { 1421 KMP_SYSFAIL("pthread_cond_destroy", status); 1422 } 1423 status = pthread_mutex_destroy(&th->th.th_suspend_mx.m_mutex); 1424 if (status != 0 && status != EBUSY) { 1425 KMP_SYSFAIL("pthread_mutex_destroy", status); 1426 } 1427 --th->th.th_suspend_init_count; 1428 KMP_DEBUG_ASSERT(KMP_ATOMIC_LD_RLX(&th->th.th_suspend_init_count) == 1429 __kmp_fork_count); 1430 } 1431 } 1432 1433 // return true if lock obtained, false otherwise 1434 int __kmp_try_suspend_mx(kmp_info_t *th) { 1435 return (pthread_mutex_trylock(&th->th.th_suspend_mx.m_mutex) == 0); 1436 } 1437 1438 void __kmp_lock_suspend_mx(kmp_info_t *th) { 1439 int status = pthread_mutex_lock(&th->th.th_suspend_mx.m_mutex); 1440 KMP_CHECK_SYSFAIL("pthread_mutex_lock", status); 1441 } 1442 1443 void __kmp_unlock_suspend_mx(kmp_info_t *th) { 1444 int status = pthread_mutex_unlock(&th->th.th_suspend_mx.m_mutex); 1445 KMP_CHECK_SYSFAIL("pthread_mutex_unlock", status); 1446 } 1447 1448 /* This routine puts the calling thread to sleep after setting the 1449 sleep bit for the indicated flag variable to true. */ 1450 template <class C> 1451 static inline void __kmp_suspend_template(int th_gtid, C *flag) { 1452 KMP_TIME_DEVELOPER_PARTITIONED_BLOCK(USER_suspend); 1453 kmp_info_t *th = __kmp_threads[th_gtid]; 1454 int status; 1455 typename C::flag_t old_spin; 1456 1457 KF_TRACE(30, ("__kmp_suspend_template: T#%d enter for flag = %p\n", th_gtid, 1458 flag->get())); 1459 1460 __kmp_suspend_initialize_thread(th); 1461 1462 status = pthread_mutex_lock(&th->th.th_suspend_mx.m_mutex); 1463 KMP_CHECK_SYSFAIL("pthread_mutex_lock", status); 1464 1465 KF_TRACE(10, ("__kmp_suspend_template: T#%d setting sleep bit for spin(%p)\n", 1466 th_gtid, flag->get())); 1467 1468 /* TODO: shouldn't this use release semantics to ensure that 1469 __kmp_suspend_initialize_thread gets called first? */ 1470 old_spin = flag->set_sleeping(); 1471 if (__kmp_dflt_blocktime == KMP_MAX_BLOCKTIME && 1472 __kmp_pause_status != kmp_soft_paused) { 1473 flag->unset_sleeping(); 1474 status = pthread_mutex_unlock(&th->th.th_suspend_mx.m_mutex); 1475 KMP_CHECK_SYSFAIL("pthread_mutex_unlock", status); 1476 return; 1477 } 1478 KF_TRACE(5, ("__kmp_suspend_template: T#%d set sleep bit for spin(%p)==%x," 1479 " was %x\n", 1480 th_gtid, flag->get(), flag->load(), old_spin)); 1481 1482 if (flag->done_check_val(old_spin)) { 1483 old_spin = flag->unset_sleeping(); 1484 KF_TRACE(5, ("__kmp_suspend_template: T#%d false alarm, reset sleep bit " 1485 "for spin(%p)\n", 1486 th_gtid, flag->get())); 1487 } else { 1488 /* Encapsulate in a loop as the documentation states that this may 1489 "with low probability" return when the condition variable has 1490 not been signaled or broadcast */ 1491 int deactivated = FALSE; 1492 TCW_PTR(th->th.th_sleep_loc, (void *)flag); 1493 1494 while (flag->is_sleeping()) { 1495 #ifdef DEBUG_SUSPEND 1496 char buffer[128]; 1497 __kmp_suspend_count++; 1498 __kmp_print_cond(buffer, &th->th.th_suspend_cv); 1499 __kmp_printf("__kmp_suspend_template: suspending T#%d: %s\n", th_gtid, 1500 buffer); 1501 #endif 1502 // Mark the thread as no longer active (only in the first iteration of the 1503 // loop). 1504 if (!deactivated) { 1505 th->th.th_active = FALSE; 1506 if (th->th.th_active_in_pool) { 1507 th->th.th_active_in_pool = FALSE; 1508 KMP_ATOMIC_DEC(&__kmp_thread_pool_active_nth); 1509 KMP_DEBUG_ASSERT(TCR_4(__kmp_thread_pool_active_nth) >= 0); 1510 } 1511 deactivated = TRUE; 1512 } 1513 1514 #if USE_SUSPEND_TIMEOUT 1515 struct timespec now; 1516 struct timeval tval; 1517 int msecs; 1518 1519 status = gettimeofday(&tval, NULL); 1520 KMP_CHECK_SYSFAIL_ERRNO("gettimeofday", status); 1521 TIMEVAL_TO_TIMESPEC(&tval, &now); 1522 1523 msecs = (4 * __kmp_dflt_blocktime) + 200; 1524 now.tv_sec += msecs / 1000; 1525 now.tv_nsec += (msecs % 1000) * 1000; 1526 1527 KF_TRACE(15, ("__kmp_suspend_template: T#%d about to perform " 1528 "pthread_cond_timedwait\n", 1529 th_gtid)); 1530 status = pthread_cond_timedwait(&th->th.th_suspend_cv.c_cond, 1531 &th->th.th_suspend_mx.m_mutex, &now); 1532 #else 1533 KF_TRACE(15, ("__kmp_suspend_template: T#%d about to perform" 1534 " pthread_cond_wait\n", 1535 th_gtid)); 1536 status = pthread_cond_wait(&th->th.th_suspend_cv.c_cond, 1537 &th->th.th_suspend_mx.m_mutex); 1538 #endif 1539 1540 if ((status != 0) && (status != EINTR) && (status != ETIMEDOUT)) { 1541 KMP_SYSFAIL("pthread_cond_wait", status); 1542 } 1543 #ifdef KMP_DEBUG 1544 if (status == ETIMEDOUT) { 1545 if (flag->is_sleeping()) { 1546 KF_TRACE(100, 1547 ("__kmp_suspend_template: T#%d timeout wakeup\n", th_gtid)); 1548 } else { 1549 KF_TRACE(2, ("__kmp_suspend_template: T#%d timeout wakeup, sleep bit " 1550 "not set!\n", 1551 th_gtid)); 1552 } 1553 } else if (flag->is_sleeping()) { 1554 KF_TRACE(100, 1555 ("__kmp_suspend_template: T#%d spurious wakeup\n", th_gtid)); 1556 } 1557 #endif 1558 } // while 1559 1560 // Mark the thread as active again (if it was previous marked as inactive) 1561 if (deactivated) { 1562 th->th.th_active = TRUE; 1563 if (TCR_4(th->th.th_in_pool)) { 1564 KMP_ATOMIC_INC(&__kmp_thread_pool_active_nth); 1565 th->th.th_active_in_pool = TRUE; 1566 } 1567 } 1568 } 1569 #ifdef DEBUG_SUSPEND 1570 { 1571 char buffer[128]; 1572 __kmp_print_cond(buffer, &th->th.th_suspend_cv); 1573 __kmp_printf("__kmp_suspend_template: T#%d has awakened: %s\n", th_gtid, 1574 buffer); 1575 } 1576 #endif 1577 1578 status = pthread_mutex_unlock(&th->th.th_suspend_mx.m_mutex); 1579 KMP_CHECK_SYSFAIL("pthread_mutex_unlock", status); 1580 KF_TRACE(30, ("__kmp_suspend_template: T#%d exit\n", th_gtid)); 1581 } 1582 1583 void __kmp_suspend_32(int th_gtid, kmp_flag_32 *flag) { 1584 __kmp_suspend_template(th_gtid, flag); 1585 } 1586 void __kmp_suspend_64(int th_gtid, kmp_flag_64 *flag) { 1587 __kmp_suspend_template(th_gtid, flag); 1588 } 1589 void __kmp_suspend_oncore(int th_gtid, kmp_flag_oncore *flag) { 1590 __kmp_suspend_template(th_gtid, flag); 1591 } 1592 1593 /* This routine signals the thread specified by target_gtid to wake up 1594 after setting the sleep bit indicated by the flag argument to FALSE. 1595 The target thread must already have called __kmp_suspend_template() */ 1596 template <class C> 1597 static inline void __kmp_resume_template(int target_gtid, C *flag) { 1598 KMP_TIME_DEVELOPER_PARTITIONED_BLOCK(USER_resume); 1599 kmp_info_t *th = __kmp_threads[target_gtid]; 1600 int status; 1601 1602 #ifdef KMP_DEBUG 1603 int gtid = TCR_4(__kmp_init_gtid) ? __kmp_get_gtid() : -1; 1604 #endif 1605 1606 KF_TRACE(30, ("__kmp_resume_template: T#%d wants to wakeup T#%d enter\n", 1607 gtid, target_gtid)); 1608 KMP_DEBUG_ASSERT(gtid != target_gtid); 1609 1610 __kmp_suspend_initialize_thread(th); 1611 1612 status = pthread_mutex_lock(&th->th.th_suspend_mx.m_mutex); 1613 KMP_CHECK_SYSFAIL("pthread_mutex_lock", status); 1614 1615 if (!flag) { // coming from __kmp_null_resume_wrapper 1616 flag = (C *)CCAST(void *, th->th.th_sleep_loc); 1617 } 1618 1619 // First, check if the flag is null or its type has changed. If so, someone 1620 // else woke it up. 1621 if (!flag || flag->get_type() != flag->get_ptr_type()) { // get_ptr_type 1622 // simply shows what 1623 // flag was cast to 1624 KF_TRACE(5, ("__kmp_resume_template: T#%d exiting, thread T#%d already " 1625 "awake: flag(%p)\n", 1626 gtid, target_gtid, NULL)); 1627 status = pthread_mutex_unlock(&th->th.th_suspend_mx.m_mutex); 1628 KMP_CHECK_SYSFAIL("pthread_mutex_unlock", status); 1629 return; 1630 } else { // if multiple threads are sleeping, flag should be internally 1631 // referring to a specific thread here 1632 typename C::flag_t old_spin = flag->unset_sleeping(); 1633 if (!flag->is_sleeping_val(old_spin)) { 1634 KF_TRACE(5, ("__kmp_resume_template: T#%d exiting, thread T#%d already " 1635 "awake: flag(%p): " 1636 "%u => %u\n", 1637 gtid, target_gtid, flag->get(), old_spin, flag->load())); 1638 status = pthread_mutex_unlock(&th->th.th_suspend_mx.m_mutex); 1639 KMP_CHECK_SYSFAIL("pthread_mutex_unlock", status); 1640 return; 1641 } 1642 KF_TRACE(5, ("__kmp_resume_template: T#%d about to wakeup T#%d, reset " 1643 "sleep bit for flag's loc(%p): " 1644 "%u => %u\n", 1645 gtid, target_gtid, flag->get(), old_spin, flag->load())); 1646 } 1647 TCW_PTR(th->th.th_sleep_loc, NULL); 1648 1649 #ifdef DEBUG_SUSPEND 1650 { 1651 char buffer[128]; 1652 __kmp_print_cond(buffer, &th->th.th_suspend_cv); 1653 __kmp_printf("__kmp_resume_template: T#%d resuming T#%d: %s\n", gtid, 1654 target_gtid, buffer); 1655 } 1656 #endif 1657 status = pthread_cond_signal(&th->th.th_suspend_cv.c_cond); 1658 KMP_CHECK_SYSFAIL("pthread_cond_signal", status); 1659 status = pthread_mutex_unlock(&th->th.th_suspend_mx.m_mutex); 1660 KMP_CHECK_SYSFAIL("pthread_mutex_unlock", status); 1661 KF_TRACE(30, ("__kmp_resume_template: T#%d exiting after signaling wake up" 1662 " for T#%d\n", 1663 gtid, target_gtid)); 1664 } 1665 1666 void __kmp_resume_32(int target_gtid, kmp_flag_32 *flag) { 1667 __kmp_resume_template(target_gtid, flag); 1668 } 1669 void __kmp_resume_64(int target_gtid, kmp_flag_64 *flag) { 1670 __kmp_resume_template(target_gtid, flag); 1671 } 1672 void __kmp_resume_oncore(int target_gtid, kmp_flag_oncore *flag) { 1673 __kmp_resume_template(target_gtid, flag); 1674 } 1675 1676 #if KMP_USE_MONITOR 1677 void __kmp_resume_monitor() { 1678 KMP_TIME_DEVELOPER_PARTITIONED_BLOCK(USER_resume); 1679 int status; 1680 #ifdef KMP_DEBUG 1681 int gtid = TCR_4(__kmp_init_gtid) ? __kmp_get_gtid() : -1; 1682 KF_TRACE(30, ("__kmp_resume_monitor: T#%d wants to wakeup T#%d enter\n", gtid, 1683 KMP_GTID_MONITOR)); 1684 KMP_DEBUG_ASSERT(gtid != KMP_GTID_MONITOR); 1685 #endif 1686 status = pthread_mutex_lock(&__kmp_wait_mx.m_mutex); 1687 KMP_CHECK_SYSFAIL("pthread_mutex_lock", status); 1688 #ifdef DEBUG_SUSPEND 1689 { 1690 char buffer[128]; 1691 __kmp_print_cond(buffer, &__kmp_wait_cv.c_cond); 1692 __kmp_printf("__kmp_resume_monitor: T#%d resuming T#%d: %s\n", gtid, 1693 KMP_GTID_MONITOR, buffer); 1694 } 1695 #endif 1696 status = pthread_cond_signal(&__kmp_wait_cv.c_cond); 1697 KMP_CHECK_SYSFAIL("pthread_cond_signal", status); 1698 status = pthread_mutex_unlock(&__kmp_wait_mx.m_mutex); 1699 KMP_CHECK_SYSFAIL("pthread_mutex_unlock", status); 1700 KF_TRACE(30, ("__kmp_resume_monitor: T#%d exiting after signaling wake up" 1701 " for T#%d\n", 1702 gtid, KMP_GTID_MONITOR)); 1703 } 1704 #endif // KMP_USE_MONITOR 1705 1706 void __kmp_yield() { sched_yield(); } 1707 1708 void __kmp_gtid_set_specific(int gtid) { 1709 if (__kmp_init_gtid) { 1710 int status; 1711 status = pthread_setspecific(__kmp_gtid_threadprivate_key, 1712 (void *)(intptr_t)(gtid + 1)); 1713 KMP_CHECK_SYSFAIL("pthread_setspecific", status); 1714 } else { 1715 KA_TRACE(50, ("__kmp_gtid_set_specific: runtime shutdown, returning\n")); 1716 } 1717 } 1718 1719 int __kmp_gtid_get_specific() { 1720 int gtid; 1721 if (!__kmp_init_gtid) { 1722 KA_TRACE(50, ("__kmp_gtid_get_specific: runtime shutdown, returning " 1723 "KMP_GTID_SHUTDOWN\n")); 1724 return KMP_GTID_SHUTDOWN; 1725 } 1726 gtid = (int)(size_t)pthread_getspecific(__kmp_gtid_threadprivate_key); 1727 if (gtid == 0) { 1728 gtid = KMP_GTID_DNE; 1729 } else { 1730 gtid--; 1731 } 1732 KA_TRACE(50, ("__kmp_gtid_get_specific: key:%d gtid:%d\n", 1733 __kmp_gtid_threadprivate_key, gtid)); 1734 return gtid; 1735 } 1736 1737 double __kmp_read_cpu_time(void) { 1738 /*clock_t t;*/ 1739 struct tms buffer; 1740 1741 /*t =*/times(&buffer); 1742 1743 return (buffer.tms_utime + buffer.tms_cutime) / (double)CLOCKS_PER_SEC; 1744 } 1745 1746 int __kmp_read_system_info(struct kmp_sys_info *info) { 1747 int status; 1748 struct rusage r_usage; 1749 1750 memset(info, 0, sizeof(*info)); 1751 1752 status = getrusage(RUSAGE_SELF, &r_usage); 1753 KMP_CHECK_SYSFAIL_ERRNO("getrusage", status); 1754 1755 // The maximum resident set size utilized (in kilobytes) 1756 info->maxrss = r_usage.ru_maxrss; 1757 // The number of page faults serviced without any I/O 1758 info->minflt = r_usage.ru_minflt; 1759 // The number of page faults serviced that required I/O 1760 info->majflt = r_usage.ru_majflt; 1761 // The number of times a process was "swapped" out of memory 1762 info->nswap = r_usage.ru_nswap; 1763 // The number of times the file system had to perform input 1764 info->inblock = r_usage.ru_inblock; 1765 // The number of times the file system had to perform output 1766 info->oublock = r_usage.ru_oublock; 1767 // The number of times a context switch was voluntarily 1768 info->nvcsw = r_usage.ru_nvcsw; 1769 // The number of times a context switch was forced 1770 info->nivcsw = r_usage.ru_nivcsw; 1771 1772 return (status != 0); 1773 } 1774 1775 void __kmp_read_system_time(double *delta) { 1776 double t_ns; 1777 struct timeval tval; 1778 struct timespec stop; 1779 int status; 1780 1781 status = gettimeofday(&tval, NULL); 1782 KMP_CHECK_SYSFAIL_ERRNO("gettimeofday", status); 1783 TIMEVAL_TO_TIMESPEC(&tval, &stop); 1784 t_ns = TS2NS(stop) - TS2NS(__kmp_sys_timer_data.start); 1785 *delta = (t_ns * 1e-9); 1786 } 1787 1788 void __kmp_clear_system_time(void) { 1789 struct timeval tval; 1790 int status; 1791 status = gettimeofday(&tval, NULL); 1792 KMP_CHECK_SYSFAIL_ERRNO("gettimeofday", status); 1793 TIMEVAL_TO_TIMESPEC(&tval, &__kmp_sys_timer_data.start); 1794 } 1795 1796 static int __kmp_get_xproc(void) { 1797 1798 int r = 0; 1799 1800 #if KMP_OS_LINUX || KMP_OS_DRAGONFLY || KMP_OS_FREEBSD || KMP_OS_NETBSD || \ 1801 KMP_OS_OPENBSD || KMP_OS_HURD 1802 1803 r = sysconf(_SC_NPROCESSORS_ONLN); 1804 1805 #elif KMP_OS_DARWIN 1806 1807 // Bug C77011 High "OpenMP Threads and number of active cores". 1808 1809 // Find the number of available CPUs. 1810 kern_return_t rc; 1811 host_basic_info_data_t info; 1812 mach_msg_type_number_t num = HOST_BASIC_INFO_COUNT; 1813 rc = host_info(mach_host_self(), HOST_BASIC_INFO, (host_info_t)&info, &num); 1814 if (rc == 0 && num == HOST_BASIC_INFO_COUNT) { 1815 // Cannot use KA_TRACE() here because this code works before trace support 1816 // is initialized. 1817 r = info.avail_cpus; 1818 } else { 1819 KMP_WARNING(CantGetNumAvailCPU); 1820 KMP_INFORM(AssumedNumCPU); 1821 } 1822 1823 #else 1824 1825 #error "Unknown or unsupported OS." 1826 1827 #endif 1828 1829 return r > 0 ? r : 2; /* guess value of 2 if OS told us 0 */ 1830 1831 } // __kmp_get_xproc 1832 1833 int __kmp_read_from_file(char const *path, char const *format, ...) { 1834 int result; 1835 va_list args; 1836 1837 va_start(args, format); 1838 FILE *f = fopen(path, "rb"); 1839 if (f == NULL) 1840 return 0; 1841 result = vfscanf(f, format, args); 1842 fclose(f); 1843 1844 return result; 1845 } 1846 1847 void __kmp_runtime_initialize(void) { 1848 int status; 1849 pthread_mutexattr_t mutex_attr; 1850 pthread_condattr_t cond_attr; 1851 1852 if (__kmp_init_runtime) { 1853 return; 1854 } 1855 1856 #if (KMP_ARCH_X86 || KMP_ARCH_X86_64) 1857 if (!__kmp_cpuinfo.initialized) { 1858 __kmp_query_cpuid(&__kmp_cpuinfo); 1859 } 1860 #endif /* KMP_ARCH_X86 || KMP_ARCH_X86_64 */ 1861 1862 __kmp_xproc = __kmp_get_xproc(); 1863 1864 #if ! KMP_32_BIT_ARCH 1865 struct rlimit rlim; 1866 // read stack size of calling thread, save it as default for worker threads; 1867 // this should be done before reading environment variables 1868 status = getrlimit(RLIMIT_STACK, &rlim); 1869 if (status == 0) { // success? 1870 __kmp_stksize = rlim.rlim_cur; 1871 __kmp_check_stksize(&__kmp_stksize); // check value and adjust if needed 1872 } 1873 #endif /* KMP_32_BIT_ARCH */ 1874 1875 if (sysconf(_SC_THREADS)) { 1876 1877 /* Query the maximum number of threads */ 1878 __kmp_sys_max_nth = sysconf(_SC_THREAD_THREADS_MAX); 1879 if (__kmp_sys_max_nth == -1) { 1880 /* Unlimited threads for NPTL */ 1881 __kmp_sys_max_nth = INT_MAX; 1882 } else if (__kmp_sys_max_nth <= 1) { 1883 /* Can't tell, just use PTHREAD_THREADS_MAX */ 1884 __kmp_sys_max_nth = KMP_MAX_NTH; 1885 } 1886 1887 /* Query the minimum stack size */ 1888 __kmp_sys_min_stksize = sysconf(_SC_THREAD_STACK_MIN); 1889 if (__kmp_sys_min_stksize <= 1) { 1890 __kmp_sys_min_stksize = KMP_MIN_STKSIZE; 1891 } 1892 } 1893 1894 /* Set up minimum number of threads to switch to TLS gtid */ 1895 __kmp_tls_gtid_min = KMP_TLS_GTID_MIN; 1896 1897 status = pthread_key_create(&__kmp_gtid_threadprivate_key, 1898 __kmp_internal_end_dest); 1899 KMP_CHECK_SYSFAIL("pthread_key_create", status); 1900 status = pthread_mutexattr_init(&mutex_attr); 1901 KMP_CHECK_SYSFAIL("pthread_mutexattr_init", status); 1902 status = pthread_mutex_init(&__kmp_wait_mx.m_mutex, &mutex_attr); 1903 KMP_CHECK_SYSFAIL("pthread_mutex_init", status); 1904 status = pthread_condattr_init(&cond_attr); 1905 KMP_CHECK_SYSFAIL("pthread_condattr_init", status); 1906 status = pthread_cond_init(&__kmp_wait_cv.c_cond, &cond_attr); 1907 KMP_CHECK_SYSFAIL("pthread_cond_init", status); 1908 #if USE_ITT_BUILD 1909 __kmp_itt_initialize(); 1910 #endif /* USE_ITT_BUILD */ 1911 1912 __kmp_init_runtime = TRUE; 1913 } 1914 1915 void __kmp_runtime_destroy(void) { 1916 int status; 1917 1918 if (!__kmp_init_runtime) { 1919 return; // Nothing to do. 1920 } 1921 1922 #if USE_ITT_BUILD 1923 __kmp_itt_destroy(); 1924 #endif /* USE_ITT_BUILD */ 1925 1926 status = pthread_key_delete(__kmp_gtid_threadprivate_key); 1927 KMP_CHECK_SYSFAIL("pthread_key_delete", status); 1928 1929 status = pthread_mutex_destroy(&__kmp_wait_mx.m_mutex); 1930 if (status != 0 && status != EBUSY) { 1931 KMP_SYSFAIL("pthread_mutex_destroy", status); 1932 } 1933 status = pthread_cond_destroy(&__kmp_wait_cv.c_cond); 1934 if (status != 0 && status != EBUSY) { 1935 KMP_SYSFAIL("pthread_cond_destroy", status); 1936 } 1937 #if KMP_AFFINITY_SUPPORTED 1938 __kmp_affinity_uninitialize(); 1939 #endif 1940 1941 __kmp_init_runtime = FALSE; 1942 } 1943 1944 /* Put the thread to sleep for a time period */ 1945 /* NOTE: not currently used anywhere */ 1946 void __kmp_thread_sleep(int millis) { sleep((millis + 500) / 1000); } 1947 1948 /* Calculate the elapsed wall clock time for the user */ 1949 void __kmp_elapsed(double *t) { 1950 int status; 1951 #ifdef FIX_SGI_CLOCK 1952 struct timespec ts; 1953 1954 status = clock_gettime(CLOCK_PROCESS_CPUTIME_ID, &ts); 1955 KMP_CHECK_SYSFAIL_ERRNO("clock_gettime", status); 1956 *t = 1957 (double)ts.tv_nsec * (1.0 / (double)KMP_NSEC_PER_SEC) + (double)ts.tv_sec; 1958 #else 1959 struct timeval tv; 1960 1961 status = gettimeofday(&tv, NULL); 1962 KMP_CHECK_SYSFAIL_ERRNO("gettimeofday", status); 1963 *t = 1964 (double)tv.tv_usec * (1.0 / (double)KMP_USEC_PER_SEC) + (double)tv.tv_sec; 1965 #endif 1966 } 1967 1968 /* Calculate the elapsed wall clock tick for the user */ 1969 void __kmp_elapsed_tick(double *t) { *t = 1 / (double)CLOCKS_PER_SEC; } 1970 1971 /* Return the current time stamp in nsec */ 1972 kmp_uint64 __kmp_now_nsec() { 1973 struct timeval t; 1974 gettimeofday(&t, NULL); 1975 kmp_uint64 nsec = (kmp_uint64)KMP_NSEC_PER_SEC * (kmp_uint64)t.tv_sec + 1976 (kmp_uint64)1000 * (kmp_uint64)t.tv_usec; 1977 return nsec; 1978 } 1979 1980 #if KMP_ARCH_X86 || KMP_ARCH_X86_64 1981 /* Measure clock ticks per millisecond */ 1982 void __kmp_initialize_system_tick() { 1983 kmp_uint64 now, nsec2, diff; 1984 kmp_uint64 delay = 100000; // 50~100 usec on most machines. 1985 kmp_uint64 nsec = __kmp_now_nsec(); 1986 kmp_uint64 goal = __kmp_hardware_timestamp() + delay; 1987 while ((now = __kmp_hardware_timestamp()) < goal) 1988 ; 1989 nsec2 = __kmp_now_nsec(); 1990 diff = nsec2 - nsec; 1991 if (diff > 0) { 1992 kmp_uint64 tpms = (kmp_uint64)(1e6 * (delay + (now - goal)) / diff); 1993 if (tpms > 0) 1994 __kmp_ticks_per_msec = tpms; 1995 } 1996 } 1997 #endif 1998 1999 /* Determine whether the given address is mapped into the current address 2000 space. */ 2001 2002 int __kmp_is_address_mapped(void *addr) { 2003 2004 int found = 0; 2005 int rc; 2006 2007 #if KMP_OS_LINUX || KMP_OS_HURD 2008 2009 /* On GNUish OSes, read the /proc/<pid>/maps pseudo-file to get all the address 2010 ranges mapped into the address space. */ 2011 2012 char *name = __kmp_str_format("/proc/%d/maps", getpid()); 2013 FILE *file = NULL; 2014 2015 file = fopen(name, "r"); 2016 KMP_ASSERT(file != NULL); 2017 2018 for (;;) { 2019 2020 void *beginning = NULL; 2021 void *ending = NULL; 2022 char perms[5]; 2023 2024 rc = fscanf(file, "%p-%p %4s %*[^\n]\n", &beginning, &ending, perms); 2025 if (rc == EOF) { 2026 break; 2027 } 2028 KMP_ASSERT(rc == 3 && 2029 KMP_STRLEN(perms) == 4); // Make sure all fields are read. 2030 2031 // Ending address is not included in the region, but beginning is. 2032 if ((addr >= beginning) && (addr < ending)) { 2033 perms[2] = 0; // 3th and 4th character does not matter. 2034 if (strcmp(perms, "rw") == 0) { 2035 // Memory we are looking for should be readable and writable. 2036 found = 1; 2037 } 2038 break; 2039 } 2040 } 2041 2042 // Free resources. 2043 fclose(file); 2044 KMP_INTERNAL_FREE(name); 2045 #elif KMP_OS_FREEBSD 2046 char *buf; 2047 size_t lstsz; 2048 int mib[] = {CTL_KERN, KERN_PROC, KERN_PROC_VMMAP, getpid()}; 2049 rc = sysctl(mib, 4, NULL, &lstsz, NULL, 0); 2050 if (rc < 0) 2051 return 0; 2052 // We pass from number of vm entry's semantic 2053 // to size of whole entry map list. 2054 lstsz = lstsz * 4 / 3; 2055 buf = reinterpret_cast<char *>(kmpc_malloc(lstsz)); 2056 rc = sysctl(mib, 4, buf, &lstsz, NULL, 0); 2057 if (rc < 0) { 2058 kmpc_free(buf); 2059 return 0; 2060 } 2061 2062 char *lw = buf; 2063 char *up = buf + lstsz; 2064 2065 while (lw < up) { 2066 struct kinfo_vmentry *cur = reinterpret_cast<struct kinfo_vmentry *>(lw); 2067 size_t cursz = cur->kve_structsize; 2068 if (cursz == 0) 2069 break; 2070 void *start = reinterpret_cast<void *>(cur->kve_start); 2071 void *end = reinterpret_cast<void *>(cur->kve_end); 2072 // Readable/Writable addresses within current map entry 2073 if ((addr >= start) && (addr < end)) { 2074 if ((cur->kve_protection & KVME_PROT_READ) != 0 && 2075 (cur->kve_protection & KVME_PROT_WRITE) != 0) { 2076 found = 1; 2077 break; 2078 } 2079 } 2080 lw += cursz; 2081 } 2082 kmpc_free(buf); 2083 2084 #elif KMP_OS_DARWIN 2085 2086 /* On OS X*, /proc pseudo filesystem is not available. Try to read memory 2087 using vm interface. */ 2088 2089 int buffer; 2090 vm_size_t count; 2091 rc = vm_read_overwrite( 2092 mach_task_self(), // Task to read memory of. 2093 (vm_address_t)(addr), // Address to read from. 2094 1, // Number of bytes to be read. 2095 (vm_address_t)(&buffer), // Address of buffer to save read bytes in. 2096 &count // Address of var to save number of read bytes in. 2097 ); 2098 if (rc == 0) { 2099 // Memory successfully read. 2100 found = 1; 2101 } 2102 2103 #elif KMP_OS_NETBSD 2104 2105 int mib[5]; 2106 mib[0] = CTL_VM; 2107 mib[1] = VM_PROC; 2108 mib[2] = VM_PROC_MAP; 2109 mib[3] = getpid(); 2110 mib[4] = sizeof(struct kinfo_vmentry); 2111 2112 size_t size; 2113 rc = sysctl(mib, __arraycount(mib), NULL, &size, NULL, 0); 2114 KMP_ASSERT(!rc); 2115 KMP_ASSERT(size); 2116 2117 size = size * 4 / 3; 2118 struct kinfo_vmentry *kiv = (struct kinfo_vmentry *)KMP_INTERNAL_MALLOC(size); 2119 KMP_ASSERT(kiv); 2120 2121 rc = sysctl(mib, __arraycount(mib), kiv, &size, NULL, 0); 2122 KMP_ASSERT(!rc); 2123 KMP_ASSERT(size); 2124 2125 for (size_t i = 0; i < size; i++) { 2126 if (kiv[i].kve_start >= (uint64_t)addr && 2127 kiv[i].kve_end <= (uint64_t)addr) { 2128 found = 1; 2129 break; 2130 } 2131 } 2132 KMP_INTERNAL_FREE(kiv); 2133 #elif KMP_OS_OPENBSD 2134 2135 int mib[3]; 2136 mib[0] = CTL_KERN; 2137 mib[1] = KERN_PROC_VMMAP; 2138 mib[2] = getpid(); 2139 2140 size_t size; 2141 uint64_t end; 2142 rc = sysctl(mib, 3, NULL, &size, NULL, 0); 2143 KMP_ASSERT(!rc); 2144 KMP_ASSERT(size); 2145 end = size; 2146 2147 struct kinfo_vmentry kiv = {.kve_start = 0}; 2148 2149 while ((rc = sysctl(mib, 3, &kiv, &size, NULL, 0)) == 0) { 2150 KMP_ASSERT(size); 2151 if (kiv.kve_end == end) 2152 break; 2153 2154 if (kiv.kve_start >= (uint64_t)addr && kiv.kve_end <= (uint64_t)addr) { 2155 found = 1; 2156 break; 2157 } 2158 kiv.kve_start += 1; 2159 } 2160 #elif KMP_OS_DRAGONFLY 2161 2162 // FIXME(DragonFly): Implement this 2163 found = 1; 2164 2165 #else 2166 2167 #error "Unknown or unsupported OS" 2168 2169 #endif 2170 2171 return found; 2172 2173 } // __kmp_is_address_mapped 2174 2175 #ifdef USE_LOAD_BALANCE 2176 2177 #if KMP_OS_DARWIN || KMP_OS_NETBSD 2178 2179 // The function returns the rounded value of the system load average 2180 // during given time interval which depends on the value of 2181 // __kmp_load_balance_interval variable (default is 60 sec, other values 2182 // may be 300 sec or 900 sec). 2183 // It returns -1 in case of error. 2184 int __kmp_get_load_balance(int max) { 2185 double averages[3]; 2186 int ret_avg = 0; 2187 2188 int res = getloadavg(averages, 3); 2189 2190 // Check __kmp_load_balance_interval to determine which of averages to use. 2191 // getloadavg() may return the number of samples less than requested that is 2192 // less than 3. 2193 if (__kmp_load_balance_interval < 180 && (res >= 1)) { 2194 ret_avg = averages[0]; // 1 min 2195 } else if ((__kmp_load_balance_interval >= 180 && 2196 __kmp_load_balance_interval < 600) && 2197 (res >= 2)) { 2198 ret_avg = averages[1]; // 5 min 2199 } else if ((__kmp_load_balance_interval >= 600) && (res == 3)) { 2200 ret_avg = averages[2]; // 15 min 2201 } else { // Error occurred 2202 return -1; 2203 } 2204 2205 return ret_avg; 2206 } 2207 2208 #else // Linux* OS 2209 2210 // The function returns number of running (not sleeping) threads, or -1 in case 2211 // of error. Error could be reported if Linux* OS kernel too old (without 2212 // "/proc" support). Counting running threads stops if max running threads 2213 // encountered. 2214 int __kmp_get_load_balance(int max) { 2215 static int permanent_error = 0; 2216 static int glb_running_threads = 0; // Saved count of the running threads for 2217 // the thread balance algorithm 2218 static double glb_call_time = 0; /* Thread balance algorithm call time */ 2219 2220 int running_threads = 0; // Number of running threads in the system. 2221 2222 DIR *proc_dir = NULL; // Handle of "/proc/" directory. 2223 struct dirent *proc_entry = NULL; 2224 2225 kmp_str_buf_t task_path; // "/proc/<pid>/task/<tid>/" path. 2226 DIR *task_dir = NULL; // Handle of "/proc/<pid>/task/<tid>/" directory. 2227 struct dirent *task_entry = NULL; 2228 int task_path_fixed_len; 2229 2230 kmp_str_buf_t stat_path; // "/proc/<pid>/task/<tid>/stat" path. 2231 int stat_file = -1; 2232 int stat_path_fixed_len; 2233 2234 int total_processes = 0; // Total number of processes in system. 2235 int total_threads = 0; // Total number of threads in system. 2236 2237 double call_time = 0.0; 2238 2239 __kmp_str_buf_init(&task_path); 2240 __kmp_str_buf_init(&stat_path); 2241 2242 __kmp_elapsed(&call_time); 2243 2244 if (glb_call_time && 2245 (call_time - glb_call_time < __kmp_load_balance_interval)) { 2246 running_threads = glb_running_threads; 2247 goto finish; 2248 } 2249 2250 glb_call_time = call_time; 2251 2252 // Do not spend time on scanning "/proc/" if we have a permanent error. 2253 if (permanent_error) { 2254 running_threads = -1; 2255 goto finish; 2256 } 2257 2258 if (max <= 0) { 2259 max = INT_MAX; 2260 } 2261 2262 // Open "/proc/" directory. 2263 proc_dir = opendir("/proc"); 2264 if (proc_dir == NULL) { 2265 // Cannot open "/prroc/". Probably the kernel does not support it. Return an 2266 // error now and in subsequent calls. 2267 running_threads = -1; 2268 permanent_error = 1; 2269 goto finish; 2270 } 2271 2272 // Initialize fixed part of task_path. This part will not change. 2273 __kmp_str_buf_cat(&task_path, "/proc/", 6); 2274 task_path_fixed_len = task_path.used; // Remember number of used characters. 2275 2276 proc_entry = readdir(proc_dir); 2277 while (proc_entry != NULL) { 2278 // Proc entry is a directory and name starts with a digit. Assume it is a 2279 // process' directory. 2280 if (proc_entry->d_type == DT_DIR && isdigit(proc_entry->d_name[0])) { 2281 2282 ++total_processes; 2283 // Make sure init process is the very first in "/proc", so we can replace 2284 // strcmp( proc_entry->d_name, "1" ) == 0 with simpler total_processes == 2285 // 1. We are going to check that total_processes == 1 => d_name == "1" is 2286 // true (where "=>" is implication). Since C++ does not have => operator, 2287 // let us replace it with its equivalent: a => b == ! a || b. 2288 KMP_DEBUG_ASSERT(total_processes != 1 || 2289 strcmp(proc_entry->d_name, "1") == 0); 2290 2291 // Construct task_path. 2292 task_path.used = task_path_fixed_len; // Reset task_path to "/proc/". 2293 __kmp_str_buf_cat(&task_path, proc_entry->d_name, 2294 KMP_STRLEN(proc_entry->d_name)); 2295 __kmp_str_buf_cat(&task_path, "/task", 5); 2296 2297 task_dir = opendir(task_path.str); 2298 if (task_dir == NULL) { 2299 // Process can finish between reading "/proc/" directory entry and 2300 // opening process' "task/" directory. So, in general case we should not 2301 // complain, but have to skip this process and read the next one. But on 2302 // systems with no "task/" support we will spend lot of time to scan 2303 // "/proc/" tree again and again without any benefit. "init" process 2304 // (its pid is 1) should exist always, so, if we cannot open 2305 // "/proc/1/task/" directory, it means "task/" is not supported by 2306 // kernel. Report an error now and in the future. 2307 if (strcmp(proc_entry->d_name, "1") == 0) { 2308 running_threads = -1; 2309 permanent_error = 1; 2310 goto finish; 2311 } 2312 } else { 2313 // Construct fixed part of stat file path. 2314 __kmp_str_buf_clear(&stat_path); 2315 __kmp_str_buf_cat(&stat_path, task_path.str, task_path.used); 2316 __kmp_str_buf_cat(&stat_path, "/", 1); 2317 stat_path_fixed_len = stat_path.used; 2318 2319 task_entry = readdir(task_dir); 2320 while (task_entry != NULL) { 2321 // It is a directory and name starts with a digit. 2322 if (proc_entry->d_type == DT_DIR && isdigit(task_entry->d_name[0])) { 2323 ++total_threads; 2324 2325 // Construct complete stat file path. Easiest way would be: 2326 // __kmp_str_buf_print( & stat_path, "%s/%s/stat", task_path.str, 2327 // task_entry->d_name ); 2328 // but seriae of __kmp_str_buf_cat works a bit faster. 2329 stat_path.used = 2330 stat_path_fixed_len; // Reset stat path to its fixed part. 2331 __kmp_str_buf_cat(&stat_path, task_entry->d_name, 2332 KMP_STRLEN(task_entry->d_name)); 2333 __kmp_str_buf_cat(&stat_path, "/stat", 5); 2334 2335 // Note: Low-level API (open/read/close) is used. High-level API 2336 // (fopen/fclose) works ~ 30 % slower. 2337 stat_file = open(stat_path.str, O_RDONLY); 2338 if (stat_file == -1) { 2339 // We cannot report an error because task (thread) can terminate 2340 // just before reading this file. 2341 } else { 2342 /* Content of "stat" file looks like: 2343 24285 (program) S ... 2344 2345 It is a single line (if program name does not include funny 2346 symbols). First number is a thread id, then name of executable 2347 file name in paretheses, then state of the thread. We need just 2348 thread state. 2349 2350 Good news: Length of program name is 15 characters max. Longer 2351 names are truncated. 2352 2353 Thus, we need rather short buffer: 15 chars for program name + 2354 2 parenthesis, + 3 spaces + ~7 digits of pid = 37. 2355 2356 Bad news: Program name may contain special symbols like space, 2357 closing parenthesis, or even new line. This makes parsing 2358 "stat" file not 100 % reliable. In case of fanny program names 2359 parsing may fail (report incorrect thread state). 2360 2361 Parsing "status" file looks more promissing (due to different 2362 file structure and escaping special symbols) but reading and 2363 parsing of "status" file works slower. 2364 -- ln 2365 */ 2366 char buffer[65]; 2367 int len; 2368 len = read(stat_file, buffer, sizeof(buffer) - 1); 2369 if (len >= 0) { 2370 buffer[len] = 0; 2371 // Using scanf: 2372 // sscanf( buffer, "%*d (%*s) %c ", & state ); 2373 // looks very nice, but searching for a closing parenthesis 2374 // works a bit faster. 2375 char *close_parent = strstr(buffer, ") "); 2376 if (close_parent != NULL) { 2377 char state = *(close_parent + 2); 2378 if (state == 'R') { 2379 ++running_threads; 2380 if (running_threads >= max) { 2381 goto finish; 2382 } 2383 } 2384 } 2385 } 2386 close(stat_file); 2387 stat_file = -1; 2388 } 2389 } 2390 task_entry = readdir(task_dir); 2391 } 2392 closedir(task_dir); 2393 task_dir = NULL; 2394 } 2395 } 2396 proc_entry = readdir(proc_dir); 2397 } 2398 2399 // There _might_ be a timing hole where the thread executing this 2400 // code get skipped in the load balance, and running_threads is 0. 2401 // Assert in the debug builds only!!! 2402 KMP_DEBUG_ASSERT(running_threads > 0); 2403 if (running_threads <= 0) { 2404 running_threads = 1; 2405 } 2406 2407 finish: // Clean up and exit. 2408 if (proc_dir != NULL) { 2409 closedir(proc_dir); 2410 } 2411 __kmp_str_buf_free(&task_path); 2412 if (task_dir != NULL) { 2413 closedir(task_dir); 2414 } 2415 __kmp_str_buf_free(&stat_path); 2416 if (stat_file != -1) { 2417 close(stat_file); 2418 } 2419 2420 glb_running_threads = running_threads; 2421 2422 return running_threads; 2423 2424 } // __kmp_get_load_balance 2425 2426 #endif // KMP_OS_DARWIN 2427 2428 #endif // USE_LOAD_BALANCE 2429 2430 #if !(KMP_ARCH_X86 || KMP_ARCH_X86_64 || KMP_MIC || \ 2431 ((KMP_OS_LINUX || KMP_OS_DARWIN) && KMP_ARCH_AARCH64) || \ 2432 KMP_ARCH_PPC64 || KMP_ARCH_RISCV64) 2433 2434 // we really only need the case with 1 argument, because CLANG always build 2435 // a struct of pointers to shared variables referenced in the outlined function 2436 int __kmp_invoke_microtask(microtask_t pkfn, int gtid, int tid, int argc, 2437 void *p_argv[] 2438 #if OMPT_SUPPORT 2439 , 2440 void **exit_frame_ptr 2441 #endif 2442 ) { 2443 #if OMPT_SUPPORT 2444 *exit_frame_ptr = OMPT_GET_FRAME_ADDRESS(0); 2445 #endif 2446 2447 switch (argc) { 2448 default: 2449 fprintf(stderr, "Too many args to microtask: %d!\n", argc); 2450 fflush(stderr); 2451 exit(-1); 2452 case 0: 2453 (*pkfn)(>id, &tid); 2454 break; 2455 case 1: 2456 (*pkfn)(>id, &tid, p_argv[0]); 2457 break; 2458 case 2: 2459 (*pkfn)(>id, &tid, p_argv[0], p_argv[1]); 2460 break; 2461 case 3: 2462 (*pkfn)(>id, &tid, p_argv[0], p_argv[1], p_argv[2]); 2463 break; 2464 case 4: 2465 (*pkfn)(>id, &tid, p_argv[0], p_argv[1], p_argv[2], p_argv[3]); 2466 break; 2467 case 5: 2468 (*pkfn)(>id, &tid, p_argv[0], p_argv[1], p_argv[2], p_argv[3], p_argv[4]); 2469 break; 2470 case 6: 2471 (*pkfn)(>id, &tid, p_argv[0], p_argv[1], p_argv[2], p_argv[3], p_argv[4], 2472 p_argv[5]); 2473 break; 2474 case 7: 2475 (*pkfn)(>id, &tid, p_argv[0], p_argv[1], p_argv[2], p_argv[3], p_argv[4], 2476 p_argv[5], p_argv[6]); 2477 break; 2478 case 8: 2479 (*pkfn)(>id, &tid, p_argv[0], p_argv[1], p_argv[2], p_argv[3], p_argv[4], 2480 p_argv[5], p_argv[6], p_argv[7]); 2481 break; 2482 case 9: 2483 (*pkfn)(>id, &tid, p_argv[0], p_argv[1], p_argv[2], p_argv[3], p_argv[4], 2484 p_argv[5], p_argv[6], p_argv[7], p_argv[8]); 2485 break; 2486 case 10: 2487 (*pkfn)(>id, &tid, p_argv[0], p_argv[1], p_argv[2], p_argv[3], p_argv[4], 2488 p_argv[5], p_argv[6], p_argv[7], p_argv[8], p_argv[9]); 2489 break; 2490 case 11: 2491 (*pkfn)(>id, &tid, p_argv[0], p_argv[1], p_argv[2], p_argv[3], p_argv[4], 2492 p_argv[5], p_argv[6], p_argv[7], p_argv[8], p_argv[9], p_argv[10]); 2493 break; 2494 case 12: 2495 (*pkfn)(>id, &tid, p_argv[0], p_argv[1], p_argv[2], p_argv[3], p_argv[4], 2496 p_argv[5], p_argv[6], p_argv[7], p_argv[8], p_argv[9], p_argv[10], 2497 p_argv[11]); 2498 break; 2499 case 13: 2500 (*pkfn)(>id, &tid, p_argv[0], p_argv[1], p_argv[2], p_argv[3], p_argv[4], 2501 p_argv[5], p_argv[6], p_argv[7], p_argv[8], p_argv[9], p_argv[10], 2502 p_argv[11], p_argv[12]); 2503 break; 2504 case 14: 2505 (*pkfn)(>id, &tid, p_argv[0], p_argv[1], p_argv[2], p_argv[3], p_argv[4], 2506 p_argv[5], p_argv[6], p_argv[7], p_argv[8], p_argv[9], p_argv[10], 2507 p_argv[11], p_argv[12], p_argv[13]); 2508 break; 2509 case 15: 2510 (*pkfn)(>id, &tid, p_argv[0], p_argv[1], p_argv[2], p_argv[3], p_argv[4], 2511 p_argv[5], p_argv[6], p_argv[7], p_argv[8], p_argv[9], p_argv[10], 2512 p_argv[11], p_argv[12], p_argv[13], p_argv[14]); 2513 break; 2514 } 2515 2516 return 1; 2517 } 2518 2519 #endif 2520 2521 // end of file // 2522