xref: /freebsd/contrib/llvm-project/openmp/runtime/src/z_Linux_util.cpp (revision 3dd5524264095ed8612c28908e13f80668eff2f9)
1 /*
2  * z_Linux_util.cpp -- platform specific routines.
3  */
4 
5 //===----------------------------------------------------------------------===//
6 //
7 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
8 // See https://llvm.org/LICENSE.txt for license information.
9 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "kmp.h"
14 #include "kmp_affinity.h"
15 #include "kmp_i18n.h"
16 #include "kmp_io.h"
17 #include "kmp_itt.h"
18 #include "kmp_lock.h"
19 #include "kmp_stats.h"
20 #include "kmp_str.h"
21 #include "kmp_wait_release.h"
22 #include "kmp_wrapper_getpid.h"
23 
24 #if !KMP_OS_DRAGONFLY && !KMP_OS_FREEBSD && !KMP_OS_NETBSD && !KMP_OS_OPENBSD
25 #include <alloca.h>
26 #endif
27 #include <math.h> // HUGE_VAL.
28 #if KMP_OS_LINUX
29 #include <semaphore.h>
30 #endif // KMP_OS_LINUX
31 #include <sys/resource.h>
32 #include <sys/syscall.h>
33 #include <sys/time.h>
34 #include <sys/times.h>
35 #include <unistd.h>
36 
37 #if KMP_OS_LINUX
38 #include <sys/sysinfo.h>
39 #if KMP_USE_FUTEX
40 // We should really include <futex.h>, but that causes compatibility problems on
41 // different Linux* OS distributions that either require that you include (or
42 // break when you try to include) <pci/types.h>. Since all we need is the two
43 // macros below (which are part of the kernel ABI, so can't change) we just
44 // define the constants here and don't include <futex.h>
45 #ifndef FUTEX_WAIT
46 #define FUTEX_WAIT 0
47 #endif
48 #ifndef FUTEX_WAKE
49 #define FUTEX_WAKE 1
50 #endif
51 #endif
52 #elif KMP_OS_DARWIN
53 #include <mach/mach.h>
54 #include <sys/sysctl.h>
55 #elif KMP_OS_DRAGONFLY || KMP_OS_FREEBSD
56 #include <sys/types.h>
57 #include <sys/sysctl.h>
58 #include <sys/user.h>
59 #include <pthread_np.h>
60 #elif KMP_OS_NETBSD || KMP_OS_OPENBSD
61 #include <sys/types.h>
62 #include <sys/sysctl.h>
63 #endif
64 
65 #include <ctype.h>
66 #include <dirent.h>
67 #include <fcntl.h>
68 
69 struct kmp_sys_timer {
70   struct timespec start;
71 };
72 
73 // Convert timespec to nanoseconds.
74 #define TS2NS(timespec)                                                        \
75   (((timespec).tv_sec * (long int)1e9) + (timespec).tv_nsec)
76 
77 static struct kmp_sys_timer __kmp_sys_timer_data;
78 
79 #if KMP_HANDLE_SIGNALS
80 typedef void (*sig_func_t)(int);
81 STATIC_EFI2_WORKAROUND struct sigaction __kmp_sighldrs[NSIG];
82 static sigset_t __kmp_sigset;
83 #endif
84 
85 static int __kmp_init_runtime = FALSE;
86 
87 static int __kmp_fork_count = 0;
88 
89 static pthread_condattr_t __kmp_suspend_cond_attr;
90 static pthread_mutexattr_t __kmp_suspend_mutex_attr;
91 
92 static kmp_cond_align_t __kmp_wait_cv;
93 static kmp_mutex_align_t __kmp_wait_mx;
94 
95 kmp_uint64 __kmp_ticks_per_msec = 1000000;
96 
97 #ifdef DEBUG_SUSPEND
98 static void __kmp_print_cond(char *buffer, kmp_cond_align_t *cond) {
99   KMP_SNPRINTF(buffer, 128, "(cond (lock (%ld, %d)), (descr (%p)))",
100                cond->c_cond.__c_lock.__status, cond->c_cond.__c_lock.__spinlock,
101                cond->c_cond.__c_waiting);
102 }
103 #endif
104 
105 #if ((KMP_OS_LINUX || KMP_OS_FREEBSD) && KMP_AFFINITY_SUPPORTED)
106 
107 /* Affinity support */
108 
109 void __kmp_affinity_bind_thread(int which) {
110   KMP_ASSERT2(KMP_AFFINITY_CAPABLE(),
111               "Illegal set affinity operation when not capable");
112 
113   kmp_affin_mask_t *mask;
114   KMP_CPU_ALLOC_ON_STACK(mask);
115   KMP_CPU_ZERO(mask);
116   KMP_CPU_SET(which, mask);
117   __kmp_set_system_affinity(mask, TRUE);
118   KMP_CPU_FREE_FROM_STACK(mask);
119 }
120 
121 /* Determine if we can access affinity functionality on this version of
122  * Linux* OS by checking __NR_sched_{get,set}affinity system calls, and set
123  * __kmp_affin_mask_size to the appropriate value (0 means not capable). */
124 void __kmp_affinity_determine_capable(const char *env_var) {
125   // Check and see if the OS supports thread affinity.
126 
127 #if KMP_OS_LINUX
128 #define KMP_CPU_SET_SIZE_LIMIT (1024 * 1024)
129 #define KMP_CPU_SET_TRY_SIZE CACHE_LINE
130 #elif KMP_OS_FREEBSD
131 #define KMP_CPU_SET_SIZE_LIMIT (sizeof(cpuset_t))
132 #endif
133 
134 #if KMP_OS_LINUX
135   long gCode;
136   unsigned char *buf;
137   buf = (unsigned char *)KMP_INTERNAL_MALLOC(KMP_CPU_SET_SIZE_LIMIT);
138 
139   // If the syscall returns a suggestion for the size,
140   // then we don't have to search for an appropriate size.
141   gCode = syscall(__NR_sched_getaffinity, 0, KMP_CPU_SET_TRY_SIZE, buf);
142   KA_TRACE(30, ("__kmp_affinity_determine_capable: "
143                 "initial getaffinity call returned %ld errno = %d\n",
144                 gCode, errno));
145 
146   if (gCode < 0 && errno != EINVAL) {
147     // System call not supported
148     if (__kmp_affinity_verbose ||
149         (__kmp_affinity_warnings && (__kmp_affinity_type != affinity_none) &&
150          (__kmp_affinity_type != affinity_default) &&
151          (__kmp_affinity_type != affinity_disabled))) {
152       int error = errno;
153       kmp_msg_t err_code = KMP_ERR(error);
154       __kmp_msg(kmp_ms_warning, KMP_MSG(GetAffSysCallNotSupported, env_var),
155                 err_code, __kmp_msg_null);
156       if (__kmp_generate_warnings == kmp_warnings_off) {
157         __kmp_str_free(&err_code.str);
158       }
159     }
160     KMP_AFFINITY_DISABLE();
161     KMP_INTERNAL_FREE(buf);
162     return;
163   } else if (gCode > 0) {
164     // The optimal situation: the OS returns the size of the buffer it expects.
165     KMP_AFFINITY_ENABLE(gCode);
166     KA_TRACE(10, ("__kmp_affinity_determine_capable: "
167                   "affinity supported (mask size %d)\n",
168                   (int)__kmp_affin_mask_size));
169     KMP_INTERNAL_FREE(buf);
170     return;
171   }
172 
173   // Call the getaffinity system call repeatedly with increasing set sizes
174   // until we succeed, or reach an upper bound on the search.
175   KA_TRACE(30, ("__kmp_affinity_determine_capable: "
176                 "searching for proper set size\n"));
177   int size;
178   for (size = 1; size <= KMP_CPU_SET_SIZE_LIMIT; size *= 2) {
179     gCode = syscall(__NR_sched_getaffinity, 0, size, buf);
180     KA_TRACE(30, ("__kmp_affinity_determine_capable: "
181                   "getaffinity for mask size %ld returned %ld errno = %d\n",
182                   size, gCode, errno));
183 
184     if (gCode < 0) {
185       if (errno == ENOSYS) {
186         // We shouldn't get here
187         KA_TRACE(30, ("__kmp_affinity_determine_capable: "
188                       "inconsistent OS call behavior: errno == ENOSYS for mask "
189                       "size %d\n",
190                       size));
191         if (__kmp_affinity_verbose ||
192             (__kmp_affinity_warnings &&
193              (__kmp_affinity_type != affinity_none) &&
194              (__kmp_affinity_type != affinity_default) &&
195              (__kmp_affinity_type != affinity_disabled))) {
196           int error = errno;
197           kmp_msg_t err_code = KMP_ERR(error);
198           __kmp_msg(kmp_ms_warning, KMP_MSG(GetAffSysCallNotSupported, env_var),
199                     err_code, __kmp_msg_null);
200           if (__kmp_generate_warnings == kmp_warnings_off) {
201             __kmp_str_free(&err_code.str);
202           }
203         }
204         KMP_AFFINITY_DISABLE();
205         KMP_INTERNAL_FREE(buf);
206         return;
207       }
208       continue;
209     }
210 
211     KMP_AFFINITY_ENABLE(gCode);
212     KA_TRACE(10, ("__kmp_affinity_determine_capable: "
213                   "affinity supported (mask size %d)\n",
214                   (int)__kmp_affin_mask_size));
215     KMP_INTERNAL_FREE(buf);
216     return;
217   }
218 #elif KMP_OS_FREEBSD
219   long gCode;
220   unsigned char *buf;
221   buf = (unsigned char *)KMP_INTERNAL_MALLOC(KMP_CPU_SET_SIZE_LIMIT);
222   gCode = pthread_getaffinity_np(pthread_self(), KMP_CPU_SET_SIZE_LIMIT,
223                                  reinterpret_cast<cpuset_t *>(buf));
224   KA_TRACE(30, ("__kmp_affinity_determine_capable: "
225                 "initial getaffinity call returned %d errno = %d\n",
226                 gCode, errno));
227   if (gCode == 0) {
228     KMP_AFFINITY_ENABLE(KMP_CPU_SET_SIZE_LIMIT);
229     KA_TRACE(10, ("__kmp_affinity_determine_capable: "
230                   "affinity supported (mask size %d)\n",
231                   (int)__kmp_affin_mask_size));
232     KMP_INTERNAL_FREE(buf);
233     return;
234   }
235 #endif
236   KMP_INTERNAL_FREE(buf);
237 
238   // Affinity is not supported
239   KMP_AFFINITY_DISABLE();
240   KA_TRACE(10, ("__kmp_affinity_determine_capable: "
241                 "cannot determine mask size - affinity not supported\n"));
242   if (__kmp_affinity_verbose ||
243       (__kmp_affinity_warnings && (__kmp_affinity_type != affinity_none) &&
244        (__kmp_affinity_type != affinity_default) &&
245        (__kmp_affinity_type != affinity_disabled))) {
246     KMP_WARNING(AffCantGetMaskSize, env_var);
247   }
248 }
249 
250 #endif // KMP_OS_LINUX && KMP_AFFINITY_SUPPORTED
251 
252 #if KMP_USE_FUTEX
253 
254 int __kmp_futex_determine_capable() {
255   int loc = 0;
256   long rc = syscall(__NR_futex, &loc, FUTEX_WAKE, 1, NULL, NULL, 0);
257   int retval = (rc == 0) || (errno != ENOSYS);
258 
259   KA_TRACE(10,
260            ("__kmp_futex_determine_capable: rc = %d errno = %d\n", rc, errno));
261   KA_TRACE(10, ("__kmp_futex_determine_capable: futex syscall%s supported\n",
262                 retval ? "" : " not"));
263 
264   return retval;
265 }
266 
267 #endif // KMP_USE_FUTEX
268 
269 #if (KMP_ARCH_X86 || KMP_ARCH_X86_64) && (!KMP_ASM_INTRINS)
270 /* Only 32-bit "add-exchange" instruction on IA-32 architecture causes us to
271    use compare_and_store for these routines */
272 
273 kmp_int8 __kmp_test_then_or8(volatile kmp_int8 *p, kmp_int8 d) {
274   kmp_int8 old_value, new_value;
275 
276   old_value = TCR_1(*p);
277   new_value = old_value | d;
278 
279   while (!KMP_COMPARE_AND_STORE_REL8(p, old_value, new_value)) {
280     KMP_CPU_PAUSE();
281     old_value = TCR_1(*p);
282     new_value = old_value | d;
283   }
284   return old_value;
285 }
286 
287 kmp_int8 __kmp_test_then_and8(volatile kmp_int8 *p, kmp_int8 d) {
288   kmp_int8 old_value, new_value;
289 
290   old_value = TCR_1(*p);
291   new_value = old_value & d;
292 
293   while (!KMP_COMPARE_AND_STORE_REL8(p, old_value, new_value)) {
294     KMP_CPU_PAUSE();
295     old_value = TCR_1(*p);
296     new_value = old_value & d;
297   }
298   return old_value;
299 }
300 
301 kmp_uint32 __kmp_test_then_or32(volatile kmp_uint32 *p, kmp_uint32 d) {
302   kmp_uint32 old_value, new_value;
303 
304   old_value = TCR_4(*p);
305   new_value = old_value | d;
306 
307   while (!KMP_COMPARE_AND_STORE_REL32(p, old_value, new_value)) {
308     KMP_CPU_PAUSE();
309     old_value = TCR_4(*p);
310     new_value = old_value | d;
311   }
312   return old_value;
313 }
314 
315 kmp_uint32 __kmp_test_then_and32(volatile kmp_uint32 *p, kmp_uint32 d) {
316   kmp_uint32 old_value, new_value;
317 
318   old_value = TCR_4(*p);
319   new_value = old_value & d;
320 
321   while (!KMP_COMPARE_AND_STORE_REL32(p, old_value, new_value)) {
322     KMP_CPU_PAUSE();
323     old_value = TCR_4(*p);
324     new_value = old_value & d;
325   }
326   return old_value;
327 }
328 
329 #if KMP_ARCH_X86
330 kmp_int8 __kmp_test_then_add8(volatile kmp_int8 *p, kmp_int8 d) {
331   kmp_int8 old_value, new_value;
332 
333   old_value = TCR_1(*p);
334   new_value = old_value + d;
335 
336   while (!KMP_COMPARE_AND_STORE_REL8(p, old_value, new_value)) {
337     KMP_CPU_PAUSE();
338     old_value = TCR_1(*p);
339     new_value = old_value + d;
340   }
341   return old_value;
342 }
343 
344 kmp_int64 __kmp_test_then_add64(volatile kmp_int64 *p, kmp_int64 d) {
345   kmp_int64 old_value, new_value;
346 
347   old_value = TCR_8(*p);
348   new_value = old_value + d;
349 
350   while (!KMP_COMPARE_AND_STORE_REL64(p, old_value, new_value)) {
351     KMP_CPU_PAUSE();
352     old_value = TCR_8(*p);
353     new_value = old_value + d;
354   }
355   return old_value;
356 }
357 #endif /* KMP_ARCH_X86 */
358 
359 kmp_uint64 __kmp_test_then_or64(volatile kmp_uint64 *p, kmp_uint64 d) {
360   kmp_uint64 old_value, new_value;
361 
362   old_value = TCR_8(*p);
363   new_value = old_value | d;
364   while (!KMP_COMPARE_AND_STORE_REL64(p, old_value, new_value)) {
365     KMP_CPU_PAUSE();
366     old_value = TCR_8(*p);
367     new_value = old_value | d;
368   }
369   return old_value;
370 }
371 
372 kmp_uint64 __kmp_test_then_and64(volatile kmp_uint64 *p, kmp_uint64 d) {
373   kmp_uint64 old_value, new_value;
374 
375   old_value = TCR_8(*p);
376   new_value = old_value & d;
377   while (!KMP_COMPARE_AND_STORE_REL64(p, old_value, new_value)) {
378     KMP_CPU_PAUSE();
379     old_value = TCR_8(*p);
380     new_value = old_value & d;
381   }
382   return old_value;
383 }
384 
385 #endif /* (KMP_ARCH_X86 || KMP_ARCH_X86_64) && (! KMP_ASM_INTRINS) */
386 
387 void __kmp_terminate_thread(int gtid) {
388   int status;
389   kmp_info_t *th = __kmp_threads[gtid];
390 
391   if (!th)
392     return;
393 
394 #ifdef KMP_CANCEL_THREADS
395   KA_TRACE(10, ("__kmp_terminate_thread: kill (%d)\n", gtid));
396   status = pthread_cancel(th->th.th_info.ds.ds_thread);
397   if (status != 0 && status != ESRCH) {
398     __kmp_fatal(KMP_MSG(CantTerminateWorkerThread), KMP_ERR(status),
399                 __kmp_msg_null);
400   }
401 #endif
402   KMP_YIELD(TRUE);
403 } //
404 
405 /* Set thread stack info according to values returned by pthread_getattr_np().
406    If values are unreasonable, assume call failed and use incremental stack
407    refinement method instead. Returns TRUE if the stack parameters could be
408    determined exactly, FALSE if incremental refinement is necessary. */
409 static kmp_int32 __kmp_set_stack_info(int gtid, kmp_info_t *th) {
410   int stack_data;
411 #if KMP_OS_LINUX || KMP_OS_DRAGONFLY || KMP_OS_FREEBSD || KMP_OS_NETBSD ||     \
412     KMP_OS_HURD
413   pthread_attr_t attr;
414   int status;
415   size_t size = 0;
416   void *addr = 0;
417 
418   /* Always do incremental stack refinement for ubermaster threads since the
419      initial thread stack range can be reduced by sibling thread creation so
420      pthread_attr_getstack may cause thread gtid aliasing */
421   if (!KMP_UBER_GTID(gtid)) {
422 
423     /* Fetch the real thread attributes */
424     status = pthread_attr_init(&attr);
425     KMP_CHECK_SYSFAIL("pthread_attr_init", status);
426 #if KMP_OS_DRAGONFLY || KMP_OS_FREEBSD || KMP_OS_NETBSD
427     status = pthread_attr_get_np(pthread_self(), &attr);
428     KMP_CHECK_SYSFAIL("pthread_attr_get_np", status);
429 #else
430     status = pthread_getattr_np(pthread_self(), &attr);
431     KMP_CHECK_SYSFAIL("pthread_getattr_np", status);
432 #endif
433     status = pthread_attr_getstack(&attr, &addr, &size);
434     KMP_CHECK_SYSFAIL("pthread_attr_getstack", status);
435     KA_TRACE(60,
436              ("__kmp_set_stack_info: T#%d pthread_attr_getstack returned size:"
437               " %lu, low addr: %p\n",
438               gtid, size, addr));
439     status = pthread_attr_destroy(&attr);
440     KMP_CHECK_SYSFAIL("pthread_attr_destroy", status);
441   }
442 
443   if (size != 0 && addr != 0) { // was stack parameter determination successful?
444     /* Store the correct base and size */
445     TCW_PTR(th->th.th_info.ds.ds_stackbase, (((char *)addr) + size));
446     TCW_PTR(th->th.th_info.ds.ds_stacksize, size);
447     TCW_4(th->th.th_info.ds.ds_stackgrow, FALSE);
448     return TRUE;
449   }
450 #endif /* KMP_OS_LINUX || KMP_OS_DRAGONFLY || KMP_OS_FREEBSD || KMP_OS_NETBSD  \
451           || KMP_OS_HURD */
452   /* Use incremental refinement starting from initial conservative estimate */
453   TCW_PTR(th->th.th_info.ds.ds_stacksize, 0);
454   TCW_PTR(th->th.th_info.ds.ds_stackbase, &stack_data);
455   TCW_4(th->th.th_info.ds.ds_stackgrow, TRUE);
456   return FALSE;
457 }
458 
459 static void *__kmp_launch_worker(void *thr) {
460   int status, old_type, old_state;
461 #ifdef KMP_BLOCK_SIGNALS
462   sigset_t new_set, old_set;
463 #endif /* KMP_BLOCK_SIGNALS */
464   void *exit_val;
465 #if KMP_OS_LINUX || KMP_OS_DRAGONFLY || KMP_OS_FREEBSD || KMP_OS_NETBSD ||     \
466     KMP_OS_OPENBSD || KMP_OS_HURD
467   void *volatile padding = 0;
468 #endif
469   int gtid;
470 
471   gtid = ((kmp_info_t *)thr)->th.th_info.ds.ds_gtid;
472   __kmp_gtid_set_specific(gtid);
473 #ifdef KMP_TDATA_GTID
474   __kmp_gtid = gtid;
475 #endif
476 #if KMP_STATS_ENABLED
477   // set thread local index to point to thread-specific stats
478   __kmp_stats_thread_ptr = ((kmp_info_t *)thr)->th.th_stats;
479   __kmp_stats_thread_ptr->startLife();
480   KMP_SET_THREAD_STATE(IDLE);
481   KMP_INIT_PARTITIONED_TIMERS(OMP_idle);
482 #endif
483 
484 #if USE_ITT_BUILD
485   __kmp_itt_thread_name(gtid);
486 #endif /* USE_ITT_BUILD */
487 
488 #if KMP_AFFINITY_SUPPORTED
489   __kmp_affinity_set_init_mask(gtid, FALSE);
490 #endif
491 
492 #ifdef KMP_CANCEL_THREADS
493   status = pthread_setcanceltype(PTHREAD_CANCEL_ASYNCHRONOUS, &old_type);
494   KMP_CHECK_SYSFAIL("pthread_setcanceltype", status);
495   // josh todo: isn't PTHREAD_CANCEL_ENABLE default for newly-created threads?
496   status = pthread_setcancelstate(PTHREAD_CANCEL_ENABLE, &old_state);
497   KMP_CHECK_SYSFAIL("pthread_setcancelstate", status);
498 #endif
499 
500 #if KMP_ARCH_X86 || KMP_ARCH_X86_64
501   // Set FP control regs to be a copy of the parallel initialization thread's.
502   __kmp_clear_x87_fpu_status_word();
503   __kmp_load_x87_fpu_control_word(&__kmp_init_x87_fpu_control_word);
504   __kmp_load_mxcsr(&__kmp_init_mxcsr);
505 #endif /* KMP_ARCH_X86 || KMP_ARCH_X86_64 */
506 
507 #ifdef KMP_BLOCK_SIGNALS
508   status = sigfillset(&new_set);
509   KMP_CHECK_SYSFAIL_ERRNO("sigfillset", status);
510   status = pthread_sigmask(SIG_BLOCK, &new_set, &old_set);
511   KMP_CHECK_SYSFAIL("pthread_sigmask", status);
512 #endif /* KMP_BLOCK_SIGNALS */
513 
514 #if KMP_OS_LINUX || KMP_OS_DRAGONFLY || KMP_OS_FREEBSD || KMP_OS_NETBSD ||     \
515     KMP_OS_OPENBSD
516   if (__kmp_stkoffset > 0 && gtid > 0) {
517     padding = KMP_ALLOCA(gtid * __kmp_stkoffset);
518     (void)padding;
519   }
520 #endif
521 
522   KMP_MB();
523   __kmp_set_stack_info(gtid, (kmp_info_t *)thr);
524 
525   __kmp_check_stack_overlap((kmp_info_t *)thr);
526 
527   exit_val = __kmp_launch_thread((kmp_info_t *)thr);
528 
529 #ifdef KMP_BLOCK_SIGNALS
530   status = pthread_sigmask(SIG_SETMASK, &old_set, NULL);
531   KMP_CHECK_SYSFAIL("pthread_sigmask", status);
532 #endif /* KMP_BLOCK_SIGNALS */
533 
534   return exit_val;
535 }
536 
537 #if KMP_USE_MONITOR
538 /* The monitor thread controls all of the threads in the complex */
539 
540 static void *__kmp_launch_monitor(void *thr) {
541   int status, old_type, old_state;
542 #ifdef KMP_BLOCK_SIGNALS
543   sigset_t new_set;
544 #endif /* KMP_BLOCK_SIGNALS */
545   struct timespec interval;
546 
547   KMP_MB(); /* Flush all pending memory write invalidates.  */
548 
549   KA_TRACE(10, ("__kmp_launch_monitor: #1 launched\n"));
550 
551   /* register us as the monitor thread */
552   __kmp_gtid_set_specific(KMP_GTID_MONITOR);
553 #ifdef KMP_TDATA_GTID
554   __kmp_gtid = KMP_GTID_MONITOR;
555 #endif
556 
557   KMP_MB();
558 
559 #if USE_ITT_BUILD
560   // Instruct Intel(R) Threading Tools to ignore monitor thread.
561   __kmp_itt_thread_ignore();
562 #endif /* USE_ITT_BUILD */
563 
564   __kmp_set_stack_info(((kmp_info_t *)thr)->th.th_info.ds.ds_gtid,
565                        (kmp_info_t *)thr);
566 
567   __kmp_check_stack_overlap((kmp_info_t *)thr);
568 
569 #ifdef KMP_CANCEL_THREADS
570   status = pthread_setcanceltype(PTHREAD_CANCEL_ASYNCHRONOUS, &old_type);
571   KMP_CHECK_SYSFAIL("pthread_setcanceltype", status);
572   // josh todo: isn't PTHREAD_CANCEL_ENABLE default for newly-created threads?
573   status = pthread_setcancelstate(PTHREAD_CANCEL_ENABLE, &old_state);
574   KMP_CHECK_SYSFAIL("pthread_setcancelstate", status);
575 #endif
576 
577 #if KMP_REAL_TIME_FIX
578   // This is a potential fix which allows application with real-time scheduling
579   // policy work. However, decision about the fix is not made yet, so it is
580   // disabled by default.
581   { // Are program started with real-time scheduling policy?
582     int sched = sched_getscheduler(0);
583     if (sched == SCHED_FIFO || sched == SCHED_RR) {
584       // Yes, we are a part of real-time application. Try to increase the
585       // priority of the monitor.
586       struct sched_param param;
587       int max_priority = sched_get_priority_max(sched);
588       int rc;
589       KMP_WARNING(RealTimeSchedNotSupported);
590       sched_getparam(0, &param);
591       if (param.sched_priority < max_priority) {
592         param.sched_priority += 1;
593         rc = sched_setscheduler(0, sched, &param);
594         if (rc != 0) {
595           int error = errno;
596           kmp_msg_t err_code = KMP_ERR(error);
597           __kmp_msg(kmp_ms_warning, KMP_MSG(CantChangeMonitorPriority),
598                     err_code, KMP_MSG(MonitorWillStarve), __kmp_msg_null);
599           if (__kmp_generate_warnings == kmp_warnings_off) {
600             __kmp_str_free(&err_code.str);
601           }
602         }
603       } else {
604         // We cannot abort here, because number of CPUs may be enough for all
605         // the threads, including the monitor thread, so application could
606         // potentially work...
607         __kmp_msg(kmp_ms_warning, KMP_MSG(RunningAtMaxPriority),
608                   KMP_MSG(MonitorWillStarve), KMP_HNT(RunningAtMaxPriority),
609                   __kmp_msg_null);
610       }
611     }
612     // AC: free thread that waits for monitor started
613     TCW_4(__kmp_global.g.g_time.dt.t_value, 0);
614   }
615 #endif // KMP_REAL_TIME_FIX
616 
617   KMP_MB(); /* Flush all pending memory write invalidates.  */
618 
619   if (__kmp_monitor_wakeups == 1) {
620     interval.tv_sec = 1;
621     interval.tv_nsec = 0;
622   } else {
623     interval.tv_sec = 0;
624     interval.tv_nsec = (KMP_NSEC_PER_SEC / __kmp_monitor_wakeups);
625   }
626 
627   KA_TRACE(10, ("__kmp_launch_monitor: #2 monitor\n"));
628 
629   while (!TCR_4(__kmp_global.g.g_done)) {
630     struct timespec now;
631     struct timeval tval;
632 
633     /*  This thread monitors the state of the system */
634 
635     KA_TRACE(15, ("__kmp_launch_monitor: update\n"));
636 
637     status = gettimeofday(&tval, NULL);
638     KMP_CHECK_SYSFAIL_ERRNO("gettimeofday", status);
639     TIMEVAL_TO_TIMESPEC(&tval, &now);
640 
641     now.tv_sec += interval.tv_sec;
642     now.tv_nsec += interval.tv_nsec;
643 
644     if (now.tv_nsec >= KMP_NSEC_PER_SEC) {
645       now.tv_sec += 1;
646       now.tv_nsec -= KMP_NSEC_PER_SEC;
647     }
648 
649     status = pthread_mutex_lock(&__kmp_wait_mx.m_mutex);
650     KMP_CHECK_SYSFAIL("pthread_mutex_lock", status);
651     // AC: the monitor should not fall asleep if g_done has been set
652     if (!TCR_4(__kmp_global.g.g_done)) { // check once more under mutex
653       status = pthread_cond_timedwait(&__kmp_wait_cv.c_cond,
654                                       &__kmp_wait_mx.m_mutex, &now);
655       if (status != 0) {
656         if (status != ETIMEDOUT && status != EINTR) {
657           KMP_SYSFAIL("pthread_cond_timedwait", status);
658         }
659       }
660     }
661     status = pthread_mutex_unlock(&__kmp_wait_mx.m_mutex);
662     KMP_CHECK_SYSFAIL("pthread_mutex_unlock", status);
663 
664     TCW_4(__kmp_global.g.g_time.dt.t_value,
665           TCR_4(__kmp_global.g.g_time.dt.t_value) + 1);
666 
667     KMP_MB(); /* Flush all pending memory write invalidates.  */
668   }
669 
670   KA_TRACE(10, ("__kmp_launch_monitor: #3 cleanup\n"));
671 
672 #ifdef KMP_BLOCK_SIGNALS
673   status = sigfillset(&new_set);
674   KMP_CHECK_SYSFAIL_ERRNO("sigfillset", status);
675   status = pthread_sigmask(SIG_UNBLOCK, &new_set, NULL);
676   KMP_CHECK_SYSFAIL("pthread_sigmask", status);
677 #endif /* KMP_BLOCK_SIGNALS */
678 
679   KA_TRACE(10, ("__kmp_launch_monitor: #4 finished\n"));
680 
681   if (__kmp_global.g.g_abort != 0) {
682     /* now we need to terminate the worker threads  */
683     /* the value of t_abort is the signal we caught */
684 
685     int gtid;
686 
687     KA_TRACE(10, ("__kmp_launch_monitor: #5 terminate sig=%d\n",
688                   __kmp_global.g.g_abort));
689 
690     /* terminate the OpenMP worker threads */
691     /* TODO this is not valid for sibling threads!!
692      * the uber master might not be 0 anymore.. */
693     for (gtid = 1; gtid < __kmp_threads_capacity; ++gtid)
694       __kmp_terminate_thread(gtid);
695 
696     __kmp_cleanup();
697 
698     KA_TRACE(10, ("__kmp_launch_monitor: #6 raise sig=%d\n",
699                   __kmp_global.g.g_abort));
700 
701     if (__kmp_global.g.g_abort > 0)
702       raise(__kmp_global.g.g_abort);
703   }
704 
705   KA_TRACE(10, ("__kmp_launch_monitor: #7 exit\n"));
706 
707   return thr;
708 }
709 #endif // KMP_USE_MONITOR
710 
711 void __kmp_create_worker(int gtid, kmp_info_t *th, size_t stack_size) {
712   pthread_t handle;
713   pthread_attr_t thread_attr;
714   int status;
715 
716   th->th.th_info.ds.ds_gtid = gtid;
717 
718 #if KMP_STATS_ENABLED
719   // sets up worker thread stats
720   __kmp_acquire_tas_lock(&__kmp_stats_lock, gtid);
721 
722   // th->th.th_stats is used to transfer thread-specific stats-pointer to
723   // __kmp_launch_worker. So when thread is created (goes into
724   // __kmp_launch_worker) it will set its thread local pointer to
725   // th->th.th_stats
726   if (!KMP_UBER_GTID(gtid)) {
727     th->th.th_stats = __kmp_stats_list->push_back(gtid);
728   } else {
729     // For root threads, __kmp_stats_thread_ptr is set in __kmp_register_root(),
730     // so set the th->th.th_stats field to it.
731     th->th.th_stats = __kmp_stats_thread_ptr;
732   }
733   __kmp_release_tas_lock(&__kmp_stats_lock, gtid);
734 
735 #endif // KMP_STATS_ENABLED
736 
737   if (KMP_UBER_GTID(gtid)) {
738     KA_TRACE(10, ("__kmp_create_worker: uber thread (%d)\n", gtid));
739     th->th.th_info.ds.ds_thread = pthread_self();
740     __kmp_set_stack_info(gtid, th);
741     __kmp_check_stack_overlap(th);
742     return;
743   }
744 
745   KA_TRACE(10, ("__kmp_create_worker: try to create thread (%d)\n", gtid));
746 
747   KMP_MB(); /* Flush all pending memory write invalidates.  */
748 
749 #ifdef KMP_THREAD_ATTR
750   status = pthread_attr_init(&thread_attr);
751   if (status != 0) {
752     __kmp_fatal(KMP_MSG(CantInitThreadAttrs), KMP_ERR(status), __kmp_msg_null);
753   }
754   status = pthread_attr_setdetachstate(&thread_attr, PTHREAD_CREATE_JOINABLE);
755   if (status != 0) {
756     __kmp_fatal(KMP_MSG(CantSetWorkerState), KMP_ERR(status), __kmp_msg_null);
757   }
758 
759   /* Set stack size for this thread now.
760      The multiple of 2 is there because on some machines, requesting an unusual
761      stacksize causes the thread to have an offset before the dummy alloca()
762      takes place to create the offset.  Since we want the user to have a
763      sufficient stacksize AND support a stack offset, we alloca() twice the
764      offset so that the upcoming alloca() does not eliminate any premade offset,
765      and also gives the user the stack space they requested for all threads */
766   stack_size += gtid * __kmp_stkoffset * 2;
767 
768 #if defined(__ANDROID__) && __ANDROID_API__ < 19
769   // Round the stack size to a multiple of the page size. Older versions of
770   // Android (until KitKat) would fail pthread_attr_setstacksize with EINVAL
771   // if the stack size was not a multiple of the page size.
772   stack_size = (stack_size + PAGE_SIZE - 1) & ~(PAGE_SIZE - 1);
773 #endif
774 
775   KA_TRACE(10, ("__kmp_create_worker: T#%d, default stacksize = %lu bytes, "
776                 "__kmp_stksize = %lu bytes, final stacksize = %lu bytes\n",
777                 gtid, KMP_DEFAULT_STKSIZE, __kmp_stksize, stack_size));
778 
779 #ifdef _POSIX_THREAD_ATTR_STACKSIZE
780   status = pthread_attr_setstacksize(&thread_attr, stack_size);
781 #ifdef KMP_BACKUP_STKSIZE
782   if (status != 0) {
783     if (!__kmp_env_stksize) {
784       stack_size = KMP_BACKUP_STKSIZE + gtid * __kmp_stkoffset;
785       __kmp_stksize = KMP_BACKUP_STKSIZE;
786       KA_TRACE(10, ("__kmp_create_worker: T#%d, default stacksize = %lu bytes, "
787                     "__kmp_stksize = %lu bytes, (backup) final stacksize = %lu "
788                     "bytes\n",
789                     gtid, KMP_DEFAULT_STKSIZE, __kmp_stksize, stack_size));
790       status = pthread_attr_setstacksize(&thread_attr, stack_size);
791     }
792   }
793 #endif /* KMP_BACKUP_STKSIZE */
794   if (status != 0) {
795     __kmp_fatal(KMP_MSG(CantSetWorkerStackSize, stack_size), KMP_ERR(status),
796                 KMP_HNT(ChangeWorkerStackSize), __kmp_msg_null);
797   }
798 #endif /* _POSIX_THREAD_ATTR_STACKSIZE */
799 
800 #endif /* KMP_THREAD_ATTR */
801 
802   status =
803       pthread_create(&handle, &thread_attr, __kmp_launch_worker, (void *)th);
804   if (status != 0 || !handle) { // ??? Why do we check handle??
805 #ifdef _POSIX_THREAD_ATTR_STACKSIZE
806     if (status == EINVAL) {
807       __kmp_fatal(KMP_MSG(CantSetWorkerStackSize, stack_size), KMP_ERR(status),
808                   KMP_HNT(IncreaseWorkerStackSize), __kmp_msg_null);
809     }
810     if (status == ENOMEM) {
811       __kmp_fatal(KMP_MSG(CantSetWorkerStackSize, stack_size), KMP_ERR(status),
812                   KMP_HNT(DecreaseWorkerStackSize), __kmp_msg_null);
813     }
814 #endif /* _POSIX_THREAD_ATTR_STACKSIZE */
815     if (status == EAGAIN) {
816       __kmp_fatal(KMP_MSG(NoResourcesForWorkerThread), KMP_ERR(status),
817                   KMP_HNT(Decrease_NUM_THREADS), __kmp_msg_null);
818     }
819     KMP_SYSFAIL("pthread_create", status);
820   }
821 
822   th->th.th_info.ds.ds_thread = handle;
823 
824 #ifdef KMP_THREAD_ATTR
825   status = pthread_attr_destroy(&thread_attr);
826   if (status) {
827     kmp_msg_t err_code = KMP_ERR(status);
828     __kmp_msg(kmp_ms_warning, KMP_MSG(CantDestroyThreadAttrs), err_code,
829               __kmp_msg_null);
830     if (__kmp_generate_warnings == kmp_warnings_off) {
831       __kmp_str_free(&err_code.str);
832     }
833   }
834 #endif /* KMP_THREAD_ATTR */
835 
836   KMP_MB(); /* Flush all pending memory write invalidates.  */
837 
838   KA_TRACE(10, ("__kmp_create_worker: done creating thread (%d)\n", gtid));
839 
840 } // __kmp_create_worker
841 
842 #if KMP_USE_MONITOR
843 void __kmp_create_monitor(kmp_info_t *th) {
844   pthread_t handle;
845   pthread_attr_t thread_attr;
846   size_t size;
847   int status;
848   int auto_adj_size = FALSE;
849 
850   if (__kmp_dflt_blocktime == KMP_MAX_BLOCKTIME) {
851     // We don't need monitor thread in case of MAX_BLOCKTIME
852     KA_TRACE(10, ("__kmp_create_monitor: skipping monitor thread because of "
853                   "MAX blocktime\n"));
854     th->th.th_info.ds.ds_tid = 0; // this makes reap_monitor no-op
855     th->th.th_info.ds.ds_gtid = 0;
856     return;
857   }
858   KA_TRACE(10, ("__kmp_create_monitor: try to create monitor\n"));
859 
860   KMP_MB(); /* Flush all pending memory write invalidates.  */
861 
862   th->th.th_info.ds.ds_tid = KMP_GTID_MONITOR;
863   th->th.th_info.ds.ds_gtid = KMP_GTID_MONITOR;
864 #if KMP_REAL_TIME_FIX
865   TCW_4(__kmp_global.g.g_time.dt.t_value,
866         -1); // Will use it for synchronization a bit later.
867 #else
868   TCW_4(__kmp_global.g.g_time.dt.t_value, 0);
869 #endif // KMP_REAL_TIME_FIX
870 
871 #ifdef KMP_THREAD_ATTR
872   if (__kmp_monitor_stksize == 0) {
873     __kmp_monitor_stksize = KMP_DEFAULT_MONITOR_STKSIZE;
874     auto_adj_size = TRUE;
875   }
876   status = pthread_attr_init(&thread_attr);
877   if (status != 0) {
878     __kmp_fatal(KMP_MSG(CantInitThreadAttrs), KMP_ERR(status), __kmp_msg_null);
879   }
880   status = pthread_attr_setdetachstate(&thread_attr, PTHREAD_CREATE_JOINABLE);
881   if (status != 0) {
882     __kmp_fatal(KMP_MSG(CantSetMonitorState), KMP_ERR(status), __kmp_msg_null);
883   }
884 
885 #ifdef _POSIX_THREAD_ATTR_STACKSIZE
886   status = pthread_attr_getstacksize(&thread_attr, &size);
887   KMP_CHECK_SYSFAIL("pthread_attr_getstacksize", status);
888 #else
889   size = __kmp_sys_min_stksize;
890 #endif /* _POSIX_THREAD_ATTR_STACKSIZE */
891 #endif /* KMP_THREAD_ATTR */
892 
893   if (__kmp_monitor_stksize == 0) {
894     __kmp_monitor_stksize = KMP_DEFAULT_MONITOR_STKSIZE;
895   }
896   if (__kmp_monitor_stksize < __kmp_sys_min_stksize) {
897     __kmp_monitor_stksize = __kmp_sys_min_stksize;
898   }
899 
900   KA_TRACE(10, ("__kmp_create_monitor: default stacksize = %lu bytes,"
901                 "requested stacksize = %lu bytes\n",
902                 size, __kmp_monitor_stksize));
903 
904 retry:
905 
906 /* Set stack size for this thread now. */
907 #ifdef _POSIX_THREAD_ATTR_STACKSIZE
908   KA_TRACE(10, ("__kmp_create_monitor: setting stacksize = %lu bytes,",
909                 __kmp_monitor_stksize));
910   status = pthread_attr_setstacksize(&thread_attr, __kmp_monitor_stksize);
911   if (status != 0) {
912     if (auto_adj_size) {
913       __kmp_monitor_stksize *= 2;
914       goto retry;
915     }
916     kmp_msg_t err_code = KMP_ERR(status);
917     __kmp_msg(kmp_ms_warning, // should this be fatal?  BB
918               KMP_MSG(CantSetMonitorStackSize, (long int)__kmp_monitor_stksize),
919               err_code, KMP_HNT(ChangeMonitorStackSize), __kmp_msg_null);
920     if (__kmp_generate_warnings == kmp_warnings_off) {
921       __kmp_str_free(&err_code.str);
922     }
923   }
924 #endif /* _POSIX_THREAD_ATTR_STACKSIZE */
925 
926   status =
927       pthread_create(&handle, &thread_attr, __kmp_launch_monitor, (void *)th);
928 
929   if (status != 0) {
930 #ifdef _POSIX_THREAD_ATTR_STACKSIZE
931     if (status == EINVAL) {
932       if (auto_adj_size && (__kmp_monitor_stksize < (size_t)0x40000000)) {
933         __kmp_monitor_stksize *= 2;
934         goto retry;
935       }
936       __kmp_fatal(KMP_MSG(CantSetMonitorStackSize, __kmp_monitor_stksize),
937                   KMP_ERR(status), KMP_HNT(IncreaseMonitorStackSize),
938                   __kmp_msg_null);
939     }
940     if (status == ENOMEM) {
941       __kmp_fatal(KMP_MSG(CantSetMonitorStackSize, __kmp_monitor_stksize),
942                   KMP_ERR(status), KMP_HNT(DecreaseMonitorStackSize),
943                   __kmp_msg_null);
944     }
945 #endif /* _POSIX_THREAD_ATTR_STACKSIZE */
946     if (status == EAGAIN) {
947       __kmp_fatal(KMP_MSG(NoResourcesForMonitorThread), KMP_ERR(status),
948                   KMP_HNT(DecreaseNumberOfThreadsInUse), __kmp_msg_null);
949     }
950     KMP_SYSFAIL("pthread_create", status);
951   }
952 
953   th->th.th_info.ds.ds_thread = handle;
954 
955 #if KMP_REAL_TIME_FIX
956   // Wait for the monitor thread is really started and set its *priority*.
957   KMP_DEBUG_ASSERT(sizeof(kmp_uint32) ==
958                    sizeof(__kmp_global.g.g_time.dt.t_value));
959   __kmp_wait_4((kmp_uint32 volatile *)&__kmp_global.g.g_time.dt.t_value, -1,
960                &__kmp_neq_4, NULL);
961 #endif // KMP_REAL_TIME_FIX
962 
963 #ifdef KMP_THREAD_ATTR
964   status = pthread_attr_destroy(&thread_attr);
965   if (status != 0) {
966     kmp_msg_t err_code = KMP_ERR(status);
967     __kmp_msg(kmp_ms_warning, KMP_MSG(CantDestroyThreadAttrs), err_code,
968               __kmp_msg_null);
969     if (__kmp_generate_warnings == kmp_warnings_off) {
970       __kmp_str_free(&err_code.str);
971     }
972   }
973 #endif
974 
975   KMP_MB(); /* Flush all pending memory write invalidates.  */
976 
977   KA_TRACE(10, ("__kmp_create_monitor: monitor created %#.8lx\n",
978                 th->th.th_info.ds.ds_thread));
979 
980 } // __kmp_create_monitor
981 #endif // KMP_USE_MONITOR
982 
983 void __kmp_exit_thread(int exit_status) {
984   pthread_exit((void *)(intptr_t)exit_status);
985 } // __kmp_exit_thread
986 
987 #if KMP_USE_MONITOR
988 void __kmp_resume_monitor();
989 
990 void __kmp_reap_monitor(kmp_info_t *th) {
991   int status;
992   void *exit_val;
993 
994   KA_TRACE(10, ("__kmp_reap_monitor: try to reap monitor thread with handle"
995                 " %#.8lx\n",
996                 th->th.th_info.ds.ds_thread));
997 
998   // If monitor has been created, its tid and gtid should be KMP_GTID_MONITOR.
999   // If both tid and gtid are 0, it means the monitor did not ever start.
1000   // If both tid and gtid are KMP_GTID_DNE, the monitor has been shut down.
1001   KMP_DEBUG_ASSERT(th->th.th_info.ds.ds_tid == th->th.th_info.ds.ds_gtid);
1002   if (th->th.th_info.ds.ds_gtid != KMP_GTID_MONITOR) {
1003     KA_TRACE(10, ("__kmp_reap_monitor: monitor did not start, returning\n"));
1004     return;
1005   }
1006 
1007   KMP_MB(); /* Flush all pending memory write invalidates.  */
1008 
1009   /* First, check to see whether the monitor thread exists to wake it up. This
1010      is to avoid performance problem when the monitor sleeps during
1011      blocktime-size interval */
1012 
1013   status = pthread_kill(th->th.th_info.ds.ds_thread, 0);
1014   if (status != ESRCH) {
1015     __kmp_resume_monitor(); // Wake up the monitor thread
1016   }
1017   KA_TRACE(10, ("__kmp_reap_monitor: try to join with monitor\n"));
1018   status = pthread_join(th->th.th_info.ds.ds_thread, &exit_val);
1019   if (exit_val != th) {
1020     __kmp_fatal(KMP_MSG(ReapMonitorError), KMP_ERR(status), __kmp_msg_null);
1021   }
1022 
1023   th->th.th_info.ds.ds_tid = KMP_GTID_DNE;
1024   th->th.th_info.ds.ds_gtid = KMP_GTID_DNE;
1025 
1026   KA_TRACE(10, ("__kmp_reap_monitor: done reaping monitor thread with handle"
1027                 " %#.8lx\n",
1028                 th->th.th_info.ds.ds_thread));
1029 
1030   KMP_MB(); /* Flush all pending memory write invalidates.  */
1031 }
1032 #endif // KMP_USE_MONITOR
1033 
1034 void __kmp_reap_worker(kmp_info_t *th) {
1035   int status;
1036   void *exit_val;
1037 
1038   KMP_MB(); /* Flush all pending memory write invalidates.  */
1039 
1040   KA_TRACE(
1041       10, ("__kmp_reap_worker: try to reap T#%d\n", th->th.th_info.ds.ds_gtid));
1042 
1043   status = pthread_join(th->th.th_info.ds.ds_thread, &exit_val);
1044 #ifdef KMP_DEBUG
1045   /* Don't expose these to the user until we understand when they trigger */
1046   if (status != 0) {
1047     __kmp_fatal(KMP_MSG(ReapWorkerError), KMP_ERR(status), __kmp_msg_null);
1048   }
1049   if (exit_val != th) {
1050     KA_TRACE(10, ("__kmp_reap_worker: worker T#%d did not reap properly, "
1051                   "exit_val = %p\n",
1052                   th->th.th_info.ds.ds_gtid, exit_val));
1053   }
1054 #else
1055   (void)status; // unused variable
1056 #endif /* KMP_DEBUG */
1057 
1058   KA_TRACE(10, ("__kmp_reap_worker: done reaping T#%d\n",
1059                 th->th.th_info.ds.ds_gtid));
1060 
1061   KMP_MB(); /* Flush all pending memory write invalidates.  */
1062 }
1063 
1064 #if KMP_HANDLE_SIGNALS
1065 
1066 static void __kmp_null_handler(int signo) {
1067   //  Do nothing, for doing SIG_IGN-type actions.
1068 } // __kmp_null_handler
1069 
1070 static void __kmp_team_handler(int signo) {
1071   if (__kmp_global.g.g_abort == 0) {
1072 /* Stage 1 signal handler, let's shut down all of the threads */
1073 #ifdef KMP_DEBUG
1074     __kmp_debug_printf("__kmp_team_handler: caught signal = %d\n", signo);
1075 #endif
1076     switch (signo) {
1077     case SIGHUP:
1078     case SIGINT:
1079     case SIGQUIT:
1080     case SIGILL:
1081     case SIGABRT:
1082     case SIGFPE:
1083     case SIGBUS:
1084     case SIGSEGV:
1085 #ifdef SIGSYS
1086     case SIGSYS:
1087 #endif
1088     case SIGTERM:
1089       if (__kmp_debug_buf) {
1090         __kmp_dump_debug_buffer();
1091       }
1092       __kmp_unregister_library(); // cleanup shared memory
1093       KMP_MB(); // Flush all pending memory write invalidates.
1094       TCW_4(__kmp_global.g.g_abort, signo);
1095       KMP_MB(); // Flush all pending memory write invalidates.
1096       TCW_4(__kmp_global.g.g_done, TRUE);
1097       KMP_MB(); // Flush all pending memory write invalidates.
1098       break;
1099     default:
1100 #ifdef KMP_DEBUG
1101       __kmp_debug_printf("__kmp_team_handler: unknown signal type");
1102 #endif
1103       break;
1104     }
1105   }
1106 } // __kmp_team_handler
1107 
1108 static void __kmp_sigaction(int signum, const struct sigaction *act,
1109                             struct sigaction *oldact) {
1110   int rc = sigaction(signum, act, oldact);
1111   KMP_CHECK_SYSFAIL_ERRNO("sigaction", rc);
1112 }
1113 
1114 static void __kmp_install_one_handler(int sig, sig_func_t handler_func,
1115                                       int parallel_init) {
1116   KMP_MB(); // Flush all pending memory write invalidates.
1117   KB_TRACE(60,
1118            ("__kmp_install_one_handler( %d, ..., %d )\n", sig, parallel_init));
1119   if (parallel_init) {
1120     struct sigaction new_action;
1121     struct sigaction old_action;
1122     new_action.sa_handler = handler_func;
1123     new_action.sa_flags = 0;
1124     sigfillset(&new_action.sa_mask);
1125     __kmp_sigaction(sig, &new_action, &old_action);
1126     if (old_action.sa_handler == __kmp_sighldrs[sig].sa_handler) {
1127       sigaddset(&__kmp_sigset, sig);
1128     } else {
1129       // Restore/keep user's handler if one previously installed.
1130       __kmp_sigaction(sig, &old_action, NULL);
1131     }
1132   } else {
1133     // Save initial/system signal handlers to see if user handlers installed.
1134     __kmp_sigaction(sig, NULL, &__kmp_sighldrs[sig]);
1135   }
1136   KMP_MB(); // Flush all pending memory write invalidates.
1137 } // __kmp_install_one_handler
1138 
1139 static void __kmp_remove_one_handler(int sig) {
1140   KB_TRACE(60, ("__kmp_remove_one_handler( %d )\n", sig));
1141   if (sigismember(&__kmp_sigset, sig)) {
1142     struct sigaction old;
1143     KMP_MB(); // Flush all pending memory write invalidates.
1144     __kmp_sigaction(sig, &__kmp_sighldrs[sig], &old);
1145     if ((old.sa_handler != __kmp_team_handler) &&
1146         (old.sa_handler != __kmp_null_handler)) {
1147       // Restore the users signal handler.
1148       KB_TRACE(10, ("__kmp_remove_one_handler: oops, not our handler, "
1149                     "restoring: sig=%d\n",
1150                     sig));
1151       __kmp_sigaction(sig, &old, NULL);
1152     }
1153     sigdelset(&__kmp_sigset, sig);
1154     KMP_MB(); // Flush all pending memory write invalidates.
1155   }
1156 } // __kmp_remove_one_handler
1157 
1158 void __kmp_install_signals(int parallel_init) {
1159   KB_TRACE(10, ("__kmp_install_signals( %d )\n", parallel_init));
1160   if (__kmp_handle_signals || !parallel_init) {
1161     // If ! parallel_init, we do not install handlers, just save original
1162     // handlers. Let us do it even __handle_signals is 0.
1163     sigemptyset(&__kmp_sigset);
1164     __kmp_install_one_handler(SIGHUP, __kmp_team_handler, parallel_init);
1165     __kmp_install_one_handler(SIGINT, __kmp_team_handler, parallel_init);
1166     __kmp_install_one_handler(SIGQUIT, __kmp_team_handler, parallel_init);
1167     __kmp_install_one_handler(SIGILL, __kmp_team_handler, parallel_init);
1168     __kmp_install_one_handler(SIGABRT, __kmp_team_handler, parallel_init);
1169     __kmp_install_one_handler(SIGFPE, __kmp_team_handler, parallel_init);
1170     __kmp_install_one_handler(SIGBUS, __kmp_team_handler, parallel_init);
1171     __kmp_install_one_handler(SIGSEGV, __kmp_team_handler, parallel_init);
1172 #ifdef SIGSYS
1173     __kmp_install_one_handler(SIGSYS, __kmp_team_handler, parallel_init);
1174 #endif // SIGSYS
1175     __kmp_install_one_handler(SIGTERM, __kmp_team_handler, parallel_init);
1176 #ifdef SIGPIPE
1177     __kmp_install_one_handler(SIGPIPE, __kmp_team_handler, parallel_init);
1178 #endif // SIGPIPE
1179   }
1180 } // __kmp_install_signals
1181 
1182 void __kmp_remove_signals(void) {
1183   int sig;
1184   KB_TRACE(10, ("__kmp_remove_signals()\n"));
1185   for (sig = 1; sig < NSIG; ++sig) {
1186     __kmp_remove_one_handler(sig);
1187   }
1188 } // __kmp_remove_signals
1189 
1190 #endif // KMP_HANDLE_SIGNALS
1191 
1192 void __kmp_enable(int new_state) {
1193 #ifdef KMP_CANCEL_THREADS
1194   int status, old_state;
1195   status = pthread_setcancelstate(new_state, &old_state);
1196   KMP_CHECK_SYSFAIL("pthread_setcancelstate", status);
1197   KMP_DEBUG_ASSERT(old_state == PTHREAD_CANCEL_DISABLE);
1198 #endif
1199 }
1200 
1201 void __kmp_disable(int *old_state) {
1202 #ifdef KMP_CANCEL_THREADS
1203   int status;
1204   status = pthread_setcancelstate(PTHREAD_CANCEL_DISABLE, old_state);
1205   KMP_CHECK_SYSFAIL("pthread_setcancelstate", status);
1206 #endif
1207 }
1208 
1209 static void __kmp_atfork_prepare(void) {
1210   __kmp_acquire_bootstrap_lock(&__kmp_initz_lock);
1211   __kmp_acquire_bootstrap_lock(&__kmp_forkjoin_lock);
1212 }
1213 
1214 static void __kmp_atfork_parent(void) {
1215   __kmp_release_bootstrap_lock(&__kmp_forkjoin_lock);
1216   __kmp_release_bootstrap_lock(&__kmp_initz_lock);
1217 }
1218 
1219 /* Reset the library so execution in the child starts "all over again" with
1220    clean data structures in initial states.  Don't worry about freeing memory
1221    allocated by parent, just abandon it to be safe. */
1222 static void __kmp_atfork_child(void) {
1223   __kmp_release_bootstrap_lock(&__kmp_forkjoin_lock);
1224   __kmp_release_bootstrap_lock(&__kmp_initz_lock);
1225   /* TODO make sure this is done right for nested/sibling */
1226   // ATT:  Memory leaks are here? TODO: Check it and fix.
1227   /* KMP_ASSERT( 0 ); */
1228 
1229   ++__kmp_fork_count;
1230 
1231 #if KMP_AFFINITY_SUPPORTED
1232 #if KMP_OS_LINUX || KMP_OS_FREEBSD
1233   // reset the affinity in the child to the initial thread
1234   // affinity in the parent
1235   kmp_set_thread_affinity_mask_initial();
1236 #endif
1237   // Set default not to bind threads tightly in the child (we're expecting
1238   // over-subscription after the fork and this can improve things for
1239   // scripting languages that use OpenMP inside process-parallel code).
1240   __kmp_affinity_type = affinity_none;
1241   if (__kmp_nested_proc_bind.bind_types != NULL) {
1242     __kmp_nested_proc_bind.bind_types[0] = proc_bind_false;
1243   }
1244   __kmp_affinity_masks = NULL;
1245   __kmp_affinity_num_masks = 0;
1246 #endif // KMP_AFFINITY_SUPPORTED
1247 
1248 #if KMP_USE_MONITOR
1249   __kmp_init_monitor = 0;
1250 #endif
1251   __kmp_init_parallel = FALSE;
1252   __kmp_init_middle = FALSE;
1253   __kmp_init_serial = FALSE;
1254   TCW_4(__kmp_init_gtid, FALSE);
1255   __kmp_init_common = FALSE;
1256 
1257   TCW_4(__kmp_init_user_locks, FALSE);
1258 #if !KMP_USE_DYNAMIC_LOCK
1259   __kmp_user_lock_table.used = 1;
1260   __kmp_user_lock_table.allocated = 0;
1261   __kmp_user_lock_table.table = NULL;
1262   __kmp_lock_blocks = NULL;
1263 #endif
1264 
1265   __kmp_all_nth = 0;
1266   TCW_4(__kmp_nth, 0);
1267 
1268   __kmp_thread_pool = NULL;
1269   __kmp_thread_pool_insert_pt = NULL;
1270   __kmp_team_pool = NULL;
1271 
1272   /* Must actually zero all the *cache arguments passed to __kmpc_threadprivate
1273      here so threadprivate doesn't use stale data */
1274   KA_TRACE(10, ("__kmp_atfork_child: checking cache address list %p\n",
1275                 __kmp_threadpriv_cache_list));
1276 
1277   while (__kmp_threadpriv_cache_list != NULL) {
1278 
1279     if (*__kmp_threadpriv_cache_list->addr != NULL) {
1280       KC_TRACE(50, ("__kmp_atfork_child: zeroing cache at address %p\n",
1281                     &(*__kmp_threadpriv_cache_list->addr)));
1282 
1283       *__kmp_threadpriv_cache_list->addr = NULL;
1284     }
1285     __kmp_threadpriv_cache_list = __kmp_threadpriv_cache_list->next;
1286   }
1287 
1288   __kmp_init_runtime = FALSE;
1289 
1290   /* reset statically initialized locks */
1291   __kmp_init_bootstrap_lock(&__kmp_initz_lock);
1292   __kmp_init_bootstrap_lock(&__kmp_stdio_lock);
1293   __kmp_init_bootstrap_lock(&__kmp_console_lock);
1294   __kmp_init_bootstrap_lock(&__kmp_task_team_lock);
1295 
1296 #if USE_ITT_BUILD
1297   __kmp_itt_reset(); // reset ITT's global state
1298 #endif /* USE_ITT_BUILD */
1299 
1300   {
1301     // Child process often get terminated without any use of OpenMP. That might
1302     // cause mapped shared memory file to be left unattended. Thus we postpone
1303     // library registration till middle initialization in the child process.
1304     __kmp_need_register_serial = FALSE;
1305     __kmp_serial_initialize();
1306   }
1307 
1308   /* This is necessary to make sure no stale data is left around */
1309   /* AC: customers complain that we use unsafe routines in the atfork
1310      handler. Mathworks: dlsym() is unsafe. We call dlsym and dlopen
1311      in dynamic_link when check the presence of shared tbbmalloc library.
1312      Suggestion is to make the library initialization lazier, similar
1313      to what done for __kmpc_begin(). */
1314   // TODO: synchronize all static initializations with regular library
1315   //       startup; look at kmp_global.cpp and etc.
1316   //__kmp_internal_begin ();
1317 }
1318 
1319 void __kmp_register_atfork(void) {
1320   if (__kmp_need_register_atfork) {
1321     int status = pthread_atfork(__kmp_atfork_prepare, __kmp_atfork_parent,
1322                                 __kmp_atfork_child);
1323     KMP_CHECK_SYSFAIL("pthread_atfork", status);
1324     __kmp_need_register_atfork = FALSE;
1325   }
1326 }
1327 
1328 void __kmp_suspend_initialize(void) {
1329   int status;
1330   status = pthread_mutexattr_init(&__kmp_suspend_mutex_attr);
1331   KMP_CHECK_SYSFAIL("pthread_mutexattr_init", status);
1332   status = pthread_condattr_init(&__kmp_suspend_cond_attr);
1333   KMP_CHECK_SYSFAIL("pthread_condattr_init", status);
1334 }
1335 
1336 void __kmp_suspend_initialize_thread(kmp_info_t *th) {
1337   int old_value = KMP_ATOMIC_LD_RLX(&th->th.th_suspend_init_count);
1338   int new_value = __kmp_fork_count + 1;
1339   // Return if already initialized
1340   if (old_value == new_value)
1341     return;
1342   // Wait, then return if being initialized
1343   if (old_value == -1 || !__kmp_atomic_compare_store(
1344                              &th->th.th_suspend_init_count, old_value, -1)) {
1345     while (KMP_ATOMIC_LD_ACQ(&th->th.th_suspend_init_count) != new_value) {
1346       KMP_CPU_PAUSE();
1347     }
1348   } else {
1349     // Claim to be the initializer and do initializations
1350     int status;
1351     status = pthread_cond_init(&th->th.th_suspend_cv.c_cond,
1352                                &__kmp_suspend_cond_attr);
1353     KMP_CHECK_SYSFAIL("pthread_cond_init", status);
1354     status = pthread_mutex_init(&th->th.th_suspend_mx.m_mutex,
1355                                 &__kmp_suspend_mutex_attr);
1356     KMP_CHECK_SYSFAIL("pthread_mutex_init", status);
1357     KMP_ATOMIC_ST_REL(&th->th.th_suspend_init_count, new_value);
1358   }
1359 }
1360 
1361 void __kmp_suspend_uninitialize_thread(kmp_info_t *th) {
1362   if (KMP_ATOMIC_LD_ACQ(&th->th.th_suspend_init_count) > __kmp_fork_count) {
1363     /* this means we have initialize the suspension pthread objects for this
1364        thread in this instance of the process */
1365     int status;
1366 
1367     status = pthread_cond_destroy(&th->th.th_suspend_cv.c_cond);
1368     if (status != 0 && status != EBUSY) {
1369       KMP_SYSFAIL("pthread_cond_destroy", status);
1370     }
1371     status = pthread_mutex_destroy(&th->th.th_suspend_mx.m_mutex);
1372     if (status != 0 && status != EBUSY) {
1373       KMP_SYSFAIL("pthread_mutex_destroy", status);
1374     }
1375     --th->th.th_suspend_init_count;
1376     KMP_DEBUG_ASSERT(KMP_ATOMIC_LD_RLX(&th->th.th_suspend_init_count) ==
1377                      __kmp_fork_count);
1378   }
1379 }
1380 
1381 // return true if lock obtained, false otherwise
1382 int __kmp_try_suspend_mx(kmp_info_t *th) {
1383   return (pthread_mutex_trylock(&th->th.th_suspend_mx.m_mutex) == 0);
1384 }
1385 
1386 void __kmp_lock_suspend_mx(kmp_info_t *th) {
1387   int status = pthread_mutex_lock(&th->th.th_suspend_mx.m_mutex);
1388   KMP_CHECK_SYSFAIL("pthread_mutex_lock", status);
1389 }
1390 
1391 void __kmp_unlock_suspend_mx(kmp_info_t *th) {
1392   int status = pthread_mutex_unlock(&th->th.th_suspend_mx.m_mutex);
1393   KMP_CHECK_SYSFAIL("pthread_mutex_unlock", status);
1394 }
1395 
1396 /* This routine puts the calling thread to sleep after setting the
1397    sleep bit for the indicated flag variable to true. */
1398 template <class C>
1399 static inline void __kmp_suspend_template(int th_gtid, C *flag) {
1400   KMP_TIME_DEVELOPER_PARTITIONED_BLOCK(USER_suspend);
1401   kmp_info_t *th = __kmp_threads[th_gtid];
1402   int status;
1403   typename C::flag_t old_spin;
1404 
1405   KF_TRACE(30, ("__kmp_suspend_template: T#%d enter for flag = %p\n", th_gtid,
1406                 flag->get()));
1407 
1408   __kmp_suspend_initialize_thread(th);
1409 
1410   __kmp_lock_suspend_mx(th);
1411 
1412   KF_TRACE(10, ("__kmp_suspend_template: T#%d setting sleep bit for spin(%p)\n",
1413                 th_gtid, flag->get()));
1414 
1415   /* TODO: shouldn't this use release semantics to ensure that
1416      __kmp_suspend_initialize_thread gets called first? */
1417   old_spin = flag->set_sleeping();
1418   TCW_PTR(th->th.th_sleep_loc, (void *)flag);
1419   th->th.th_sleep_loc_type = flag->get_type();
1420   if (__kmp_dflt_blocktime == KMP_MAX_BLOCKTIME &&
1421       __kmp_pause_status != kmp_soft_paused) {
1422     flag->unset_sleeping();
1423     TCW_PTR(th->th.th_sleep_loc, NULL);
1424     th->th.th_sleep_loc_type = flag_unset;
1425     __kmp_unlock_suspend_mx(th);
1426     return;
1427   }
1428   KF_TRACE(5, ("__kmp_suspend_template: T#%d set sleep bit for spin(%p)==%x,"
1429                " was %x\n",
1430                th_gtid, flag->get(), flag->load(), old_spin));
1431 
1432   if (flag->done_check_val(old_spin) || flag->done_check()) {
1433     flag->unset_sleeping();
1434     TCW_PTR(th->th.th_sleep_loc, NULL);
1435     th->th.th_sleep_loc_type = flag_unset;
1436     KF_TRACE(5, ("__kmp_suspend_template: T#%d false alarm, reset sleep bit "
1437                  "for spin(%p)\n",
1438                  th_gtid, flag->get()));
1439   } else {
1440     /* Encapsulate in a loop as the documentation states that this may
1441        "with low probability" return when the condition variable has
1442        not been signaled or broadcast */
1443     int deactivated = FALSE;
1444 
1445     while (flag->is_sleeping()) {
1446 #ifdef DEBUG_SUSPEND
1447       char buffer[128];
1448       __kmp_suspend_count++;
1449       __kmp_print_cond(buffer, &th->th.th_suspend_cv);
1450       __kmp_printf("__kmp_suspend_template: suspending T#%d: %s\n", th_gtid,
1451                    buffer);
1452 #endif
1453       // Mark the thread as no longer active (only in the first iteration of the
1454       // loop).
1455       if (!deactivated) {
1456         th->th.th_active = FALSE;
1457         if (th->th.th_active_in_pool) {
1458           th->th.th_active_in_pool = FALSE;
1459           KMP_ATOMIC_DEC(&__kmp_thread_pool_active_nth);
1460           KMP_DEBUG_ASSERT(TCR_4(__kmp_thread_pool_active_nth) >= 0);
1461         }
1462         deactivated = TRUE;
1463       }
1464 
1465       KMP_DEBUG_ASSERT(th->th.th_sleep_loc);
1466       KMP_DEBUG_ASSERT(flag->get_type() == th->th.th_sleep_loc_type);
1467 
1468 #if USE_SUSPEND_TIMEOUT
1469       struct timespec now;
1470       struct timeval tval;
1471       int msecs;
1472 
1473       status = gettimeofday(&tval, NULL);
1474       KMP_CHECK_SYSFAIL_ERRNO("gettimeofday", status);
1475       TIMEVAL_TO_TIMESPEC(&tval, &now);
1476 
1477       msecs = (4 * __kmp_dflt_blocktime) + 200;
1478       now.tv_sec += msecs / 1000;
1479       now.tv_nsec += (msecs % 1000) * 1000;
1480 
1481       KF_TRACE(15, ("__kmp_suspend_template: T#%d about to perform "
1482                     "pthread_cond_timedwait\n",
1483                     th_gtid));
1484       status = pthread_cond_timedwait(&th->th.th_suspend_cv.c_cond,
1485                                       &th->th.th_suspend_mx.m_mutex, &now);
1486 #else
1487       KF_TRACE(15, ("__kmp_suspend_template: T#%d about to perform"
1488                     " pthread_cond_wait\n",
1489                     th_gtid));
1490       status = pthread_cond_wait(&th->th.th_suspend_cv.c_cond,
1491                                  &th->th.th_suspend_mx.m_mutex);
1492 #endif // USE_SUSPEND_TIMEOUT
1493 
1494       if ((status != 0) && (status != EINTR) && (status != ETIMEDOUT)) {
1495         KMP_SYSFAIL("pthread_cond_wait", status);
1496       }
1497 
1498       KMP_DEBUG_ASSERT(flag->get_type() == flag->get_ptr_type());
1499 
1500       if (!flag->is_sleeping() &&
1501           ((status == EINTR) || (status == ETIMEDOUT))) {
1502         // if interrupt or timeout, and thread is no longer sleeping, we need to
1503         // make sure sleep_loc gets reset; however, this shouldn't be needed if
1504         // we woke up with resume
1505         flag->unset_sleeping();
1506         TCW_PTR(th->th.th_sleep_loc, NULL);
1507         th->th.th_sleep_loc_type = flag_unset;
1508       }
1509 #ifdef KMP_DEBUG
1510       if (status == ETIMEDOUT) {
1511         if (flag->is_sleeping()) {
1512           KF_TRACE(100,
1513                    ("__kmp_suspend_template: T#%d timeout wakeup\n", th_gtid));
1514         } else {
1515           KF_TRACE(2, ("__kmp_suspend_template: T#%d timeout wakeup, sleep bit "
1516                        "not set!\n",
1517                        th_gtid));
1518           TCW_PTR(th->th.th_sleep_loc, NULL);
1519           th->th.th_sleep_loc_type = flag_unset;
1520         }
1521       } else if (flag->is_sleeping()) {
1522         KF_TRACE(100,
1523                  ("__kmp_suspend_template: T#%d spurious wakeup\n", th_gtid));
1524       }
1525 #endif
1526     } // while
1527 
1528     // Mark the thread as active again (if it was previous marked as inactive)
1529     if (deactivated) {
1530       th->th.th_active = TRUE;
1531       if (TCR_4(th->th.th_in_pool)) {
1532         KMP_ATOMIC_INC(&__kmp_thread_pool_active_nth);
1533         th->th.th_active_in_pool = TRUE;
1534       }
1535     }
1536   }
1537   // We may have had the loop variable set before entering the loop body;
1538   // so we need to reset sleep_loc.
1539   TCW_PTR(th->th.th_sleep_loc, NULL);
1540   th->th.th_sleep_loc_type = flag_unset;
1541 
1542   KMP_DEBUG_ASSERT(!flag->is_sleeping());
1543   KMP_DEBUG_ASSERT(!th->th.th_sleep_loc);
1544 #ifdef DEBUG_SUSPEND
1545   {
1546     char buffer[128];
1547     __kmp_print_cond(buffer, &th->th.th_suspend_cv);
1548     __kmp_printf("__kmp_suspend_template: T#%d has awakened: %s\n", th_gtid,
1549                  buffer);
1550   }
1551 #endif
1552 
1553   __kmp_unlock_suspend_mx(th);
1554   KF_TRACE(30, ("__kmp_suspend_template: T#%d exit\n", th_gtid));
1555 }
1556 
1557 template <bool C, bool S>
1558 void __kmp_suspend_32(int th_gtid, kmp_flag_32<C, S> *flag) {
1559   __kmp_suspend_template(th_gtid, flag);
1560 }
1561 template <bool C, bool S>
1562 void __kmp_suspend_64(int th_gtid, kmp_flag_64<C, S> *flag) {
1563   __kmp_suspend_template(th_gtid, flag);
1564 }
1565 template <bool C, bool S>
1566 void __kmp_atomic_suspend_64(int th_gtid, kmp_atomic_flag_64<C, S> *flag) {
1567   __kmp_suspend_template(th_gtid, flag);
1568 }
1569 void __kmp_suspend_oncore(int th_gtid, kmp_flag_oncore *flag) {
1570   __kmp_suspend_template(th_gtid, flag);
1571 }
1572 
1573 template void __kmp_suspend_32<false, false>(int, kmp_flag_32<false, false> *);
1574 template void __kmp_suspend_64<false, true>(int, kmp_flag_64<false, true> *);
1575 template void __kmp_suspend_64<true, false>(int, kmp_flag_64<true, false> *);
1576 template void
1577 __kmp_atomic_suspend_64<false, true>(int, kmp_atomic_flag_64<false, true> *);
1578 template void
1579 __kmp_atomic_suspend_64<true, false>(int, kmp_atomic_flag_64<true, false> *);
1580 
1581 /* This routine signals the thread specified by target_gtid to wake up
1582    after setting the sleep bit indicated by the flag argument to FALSE.
1583    The target thread must already have called __kmp_suspend_template() */
1584 template <class C>
1585 static inline void __kmp_resume_template(int target_gtid, C *flag) {
1586   KMP_TIME_DEVELOPER_PARTITIONED_BLOCK(USER_resume);
1587   kmp_info_t *th = __kmp_threads[target_gtid];
1588   int status;
1589 
1590 #ifdef KMP_DEBUG
1591   int gtid = TCR_4(__kmp_init_gtid) ? __kmp_get_gtid() : -1;
1592 #endif
1593 
1594   KF_TRACE(30, ("__kmp_resume_template: T#%d wants to wakeup T#%d enter\n",
1595                 gtid, target_gtid));
1596   KMP_DEBUG_ASSERT(gtid != target_gtid);
1597 
1598   __kmp_suspend_initialize_thread(th);
1599 
1600   __kmp_lock_suspend_mx(th);
1601 
1602   if (!flag || flag != th->th.th_sleep_loc) {
1603     // coming from __kmp_null_resume_wrapper, or thread is now sleeping on a
1604     // different location; wake up at new location
1605     flag = (C *)CCAST(void *, th->th.th_sleep_loc);
1606   }
1607 
1608   // First, check if the flag is null or its type has changed. If so, someone
1609   // else woke it up.
1610   if (!flag) { // Thread doesn't appear to be sleeping on anything
1611     KF_TRACE(5, ("__kmp_resume_template: T#%d exiting, thread T#%d already "
1612                  "awake: flag(%p)\n",
1613                  gtid, target_gtid, (void *)NULL));
1614     __kmp_unlock_suspend_mx(th);
1615     return;
1616   } else if (flag->get_type() != th->th.th_sleep_loc_type) {
1617     // Flag type does not appear to match this function template; possibly the
1618     // thread is sleeping on something else. Try null resume again.
1619     KF_TRACE(
1620         5,
1621         ("__kmp_resume_template: T#%d retrying, thread T#%d Mismatch flag(%p), "
1622          "spin(%p) type=%d ptr_type=%d\n",
1623          gtid, target_gtid, flag, flag->get(), flag->get_type(),
1624          th->th.th_sleep_loc_type));
1625     __kmp_unlock_suspend_mx(th);
1626     __kmp_null_resume_wrapper(th);
1627     return;
1628   } else { // if multiple threads are sleeping, flag should be internally
1629     // referring to a specific thread here
1630     if (!flag->is_sleeping()) {
1631       KF_TRACE(5, ("__kmp_resume_template: T#%d exiting, thread T#%d already "
1632                    "awake: flag(%p): %u\n",
1633                    gtid, target_gtid, flag->get(), (unsigned int)flag->load()));
1634       __kmp_unlock_suspend_mx(th);
1635       return;
1636     }
1637   }
1638   KMP_DEBUG_ASSERT(flag);
1639   flag->unset_sleeping();
1640   TCW_PTR(th->th.th_sleep_loc, NULL);
1641   th->th.th_sleep_loc_type = flag_unset;
1642 
1643   KF_TRACE(5, ("__kmp_resume_template: T#%d about to wakeup T#%d, reset "
1644                "sleep bit for flag's loc(%p): %u\n",
1645                gtid, target_gtid, flag->get(), (unsigned int)flag->load()));
1646 
1647 #ifdef DEBUG_SUSPEND
1648   {
1649     char buffer[128];
1650     __kmp_print_cond(buffer, &th->th.th_suspend_cv);
1651     __kmp_printf("__kmp_resume_template: T#%d resuming T#%d: %s\n", gtid,
1652                  target_gtid, buffer);
1653   }
1654 #endif
1655   status = pthread_cond_signal(&th->th.th_suspend_cv.c_cond);
1656   KMP_CHECK_SYSFAIL("pthread_cond_signal", status);
1657   __kmp_unlock_suspend_mx(th);
1658   KF_TRACE(30, ("__kmp_resume_template: T#%d exiting after signaling wake up"
1659                 " for T#%d\n",
1660                 gtid, target_gtid));
1661 }
1662 
1663 template <bool C, bool S>
1664 void __kmp_resume_32(int target_gtid, kmp_flag_32<C, S> *flag) {
1665   __kmp_resume_template(target_gtid, flag);
1666 }
1667 template <bool C, bool S>
1668 void __kmp_resume_64(int target_gtid, kmp_flag_64<C, S> *flag) {
1669   __kmp_resume_template(target_gtid, flag);
1670 }
1671 template <bool C, bool S>
1672 void __kmp_atomic_resume_64(int target_gtid, kmp_atomic_flag_64<C, S> *flag) {
1673   __kmp_resume_template(target_gtid, flag);
1674 }
1675 void __kmp_resume_oncore(int target_gtid, kmp_flag_oncore *flag) {
1676   __kmp_resume_template(target_gtid, flag);
1677 }
1678 
1679 template void __kmp_resume_32<false, true>(int, kmp_flag_32<false, true> *);
1680 template void __kmp_resume_32<false, false>(int, kmp_flag_32<false, false> *);
1681 template void __kmp_resume_64<false, true>(int, kmp_flag_64<false, true> *);
1682 template void
1683 __kmp_atomic_resume_64<false, true>(int, kmp_atomic_flag_64<false, true> *);
1684 
1685 #if KMP_USE_MONITOR
1686 void __kmp_resume_monitor() {
1687   KMP_TIME_DEVELOPER_PARTITIONED_BLOCK(USER_resume);
1688   int status;
1689 #ifdef KMP_DEBUG
1690   int gtid = TCR_4(__kmp_init_gtid) ? __kmp_get_gtid() : -1;
1691   KF_TRACE(30, ("__kmp_resume_monitor: T#%d wants to wakeup T#%d enter\n", gtid,
1692                 KMP_GTID_MONITOR));
1693   KMP_DEBUG_ASSERT(gtid != KMP_GTID_MONITOR);
1694 #endif
1695   status = pthread_mutex_lock(&__kmp_wait_mx.m_mutex);
1696   KMP_CHECK_SYSFAIL("pthread_mutex_lock", status);
1697 #ifdef DEBUG_SUSPEND
1698   {
1699     char buffer[128];
1700     __kmp_print_cond(buffer, &__kmp_wait_cv.c_cond);
1701     __kmp_printf("__kmp_resume_monitor: T#%d resuming T#%d: %s\n", gtid,
1702                  KMP_GTID_MONITOR, buffer);
1703   }
1704 #endif
1705   status = pthread_cond_signal(&__kmp_wait_cv.c_cond);
1706   KMP_CHECK_SYSFAIL("pthread_cond_signal", status);
1707   status = pthread_mutex_unlock(&__kmp_wait_mx.m_mutex);
1708   KMP_CHECK_SYSFAIL("pthread_mutex_unlock", status);
1709   KF_TRACE(30, ("__kmp_resume_monitor: T#%d exiting after signaling wake up"
1710                 " for T#%d\n",
1711                 gtid, KMP_GTID_MONITOR));
1712 }
1713 #endif // KMP_USE_MONITOR
1714 
1715 void __kmp_yield() { sched_yield(); }
1716 
1717 void __kmp_gtid_set_specific(int gtid) {
1718   if (__kmp_init_gtid) {
1719     int status;
1720     status = pthread_setspecific(__kmp_gtid_threadprivate_key,
1721                                  (void *)(intptr_t)(gtid + 1));
1722     KMP_CHECK_SYSFAIL("pthread_setspecific", status);
1723   } else {
1724     KA_TRACE(50, ("__kmp_gtid_set_specific: runtime shutdown, returning\n"));
1725   }
1726 }
1727 
1728 int __kmp_gtid_get_specific() {
1729   int gtid;
1730   if (!__kmp_init_gtid) {
1731     KA_TRACE(50, ("__kmp_gtid_get_specific: runtime shutdown, returning "
1732                   "KMP_GTID_SHUTDOWN\n"));
1733     return KMP_GTID_SHUTDOWN;
1734   }
1735   gtid = (int)(size_t)pthread_getspecific(__kmp_gtid_threadprivate_key);
1736   if (gtid == 0) {
1737     gtid = KMP_GTID_DNE;
1738   } else {
1739     gtid--;
1740   }
1741   KA_TRACE(50, ("__kmp_gtid_get_specific: key:%d gtid:%d\n",
1742                 __kmp_gtid_threadprivate_key, gtid));
1743   return gtid;
1744 }
1745 
1746 double __kmp_read_cpu_time(void) {
1747   /*clock_t   t;*/
1748   struct tms buffer;
1749 
1750   /*t =*/times(&buffer);
1751 
1752   return (double)(buffer.tms_utime + buffer.tms_cutime) /
1753          (double)CLOCKS_PER_SEC;
1754 }
1755 
1756 int __kmp_read_system_info(struct kmp_sys_info *info) {
1757   int status;
1758   struct rusage r_usage;
1759 
1760   memset(info, 0, sizeof(*info));
1761 
1762   status = getrusage(RUSAGE_SELF, &r_usage);
1763   KMP_CHECK_SYSFAIL_ERRNO("getrusage", status);
1764 
1765   // The maximum resident set size utilized (in kilobytes)
1766   info->maxrss = r_usage.ru_maxrss;
1767   // The number of page faults serviced without any I/O
1768   info->minflt = r_usage.ru_minflt;
1769   // The number of page faults serviced that required I/O
1770   info->majflt = r_usage.ru_majflt;
1771   // The number of times a process was "swapped" out of memory
1772   info->nswap = r_usage.ru_nswap;
1773   // The number of times the file system had to perform input
1774   info->inblock = r_usage.ru_inblock;
1775   // The number of times the file system had to perform output
1776   info->oublock = r_usage.ru_oublock;
1777   // The number of times a context switch was voluntarily
1778   info->nvcsw = r_usage.ru_nvcsw;
1779   // The number of times a context switch was forced
1780   info->nivcsw = r_usage.ru_nivcsw;
1781 
1782   return (status != 0);
1783 }
1784 
1785 void __kmp_read_system_time(double *delta) {
1786   double t_ns;
1787   struct timeval tval;
1788   struct timespec stop;
1789   int status;
1790 
1791   status = gettimeofday(&tval, NULL);
1792   KMP_CHECK_SYSFAIL_ERRNO("gettimeofday", status);
1793   TIMEVAL_TO_TIMESPEC(&tval, &stop);
1794   t_ns = (double)(TS2NS(stop) - TS2NS(__kmp_sys_timer_data.start));
1795   *delta = (t_ns * 1e-9);
1796 }
1797 
1798 void __kmp_clear_system_time(void) {
1799   struct timeval tval;
1800   int status;
1801   status = gettimeofday(&tval, NULL);
1802   KMP_CHECK_SYSFAIL_ERRNO("gettimeofday", status);
1803   TIMEVAL_TO_TIMESPEC(&tval, &__kmp_sys_timer_data.start);
1804 }
1805 
1806 static int __kmp_get_xproc(void) {
1807 
1808   int r = 0;
1809 
1810 #if KMP_OS_LINUX
1811 
1812   __kmp_type_convert(sysconf(_SC_NPROCESSORS_CONF), &(r));
1813 
1814 #elif KMP_OS_DRAGONFLY || KMP_OS_FREEBSD || KMP_OS_NETBSD || KMP_OS_OPENBSD || \
1815     KMP_OS_HURD
1816 
1817   __kmp_type_convert(sysconf(_SC_NPROCESSORS_ONLN), &(r));
1818 
1819 #elif KMP_OS_DARWIN
1820 
1821   // Bug C77011 High "OpenMP Threads and number of active cores".
1822 
1823   // Find the number of available CPUs.
1824   kern_return_t rc;
1825   host_basic_info_data_t info;
1826   mach_msg_type_number_t num = HOST_BASIC_INFO_COUNT;
1827   rc = host_info(mach_host_self(), HOST_BASIC_INFO, (host_info_t)&info, &num);
1828   if (rc == 0 && num == HOST_BASIC_INFO_COUNT) {
1829     // Cannot use KA_TRACE() here because this code works before trace support
1830     // is initialized.
1831     r = info.avail_cpus;
1832   } else {
1833     KMP_WARNING(CantGetNumAvailCPU);
1834     KMP_INFORM(AssumedNumCPU);
1835   }
1836 
1837 #else
1838 
1839 #error "Unknown or unsupported OS."
1840 
1841 #endif
1842 
1843   return r > 0 ? r : 2; /* guess value of 2 if OS told us 0 */
1844 
1845 } // __kmp_get_xproc
1846 
1847 int __kmp_read_from_file(char const *path, char const *format, ...) {
1848   int result;
1849   va_list args;
1850 
1851   va_start(args, format);
1852   FILE *f = fopen(path, "rb");
1853   if (f == NULL)
1854     return 0;
1855   result = vfscanf(f, format, args);
1856   fclose(f);
1857 
1858   return result;
1859 }
1860 
1861 void __kmp_runtime_initialize(void) {
1862   int status;
1863   pthread_mutexattr_t mutex_attr;
1864   pthread_condattr_t cond_attr;
1865 
1866   if (__kmp_init_runtime) {
1867     return;
1868   }
1869 
1870 #if (KMP_ARCH_X86 || KMP_ARCH_X86_64)
1871   if (!__kmp_cpuinfo.initialized) {
1872     __kmp_query_cpuid(&__kmp_cpuinfo);
1873   }
1874 #endif /* KMP_ARCH_X86 || KMP_ARCH_X86_64 */
1875 
1876   __kmp_xproc = __kmp_get_xproc();
1877 
1878 #if !KMP_32_BIT_ARCH
1879   struct rlimit rlim;
1880   // read stack size of calling thread, save it as default for worker threads;
1881   // this should be done before reading environment variables
1882   status = getrlimit(RLIMIT_STACK, &rlim);
1883   if (status == 0) { // success?
1884     __kmp_stksize = rlim.rlim_cur;
1885     __kmp_check_stksize(&__kmp_stksize); // check value and adjust if needed
1886   }
1887 #endif /* KMP_32_BIT_ARCH */
1888 
1889   if (sysconf(_SC_THREADS)) {
1890 
1891     /* Query the maximum number of threads */
1892     __kmp_type_convert(sysconf(_SC_THREAD_THREADS_MAX), &(__kmp_sys_max_nth));
1893     if (__kmp_sys_max_nth == -1) {
1894       /* Unlimited threads for NPTL */
1895       __kmp_sys_max_nth = INT_MAX;
1896     } else if (__kmp_sys_max_nth <= 1) {
1897       /* Can't tell, just use PTHREAD_THREADS_MAX */
1898       __kmp_sys_max_nth = KMP_MAX_NTH;
1899     }
1900 
1901     /* Query the minimum stack size */
1902     __kmp_sys_min_stksize = sysconf(_SC_THREAD_STACK_MIN);
1903     if (__kmp_sys_min_stksize <= 1) {
1904       __kmp_sys_min_stksize = KMP_MIN_STKSIZE;
1905     }
1906   }
1907 
1908   /* Set up minimum number of threads to switch to TLS gtid */
1909   __kmp_tls_gtid_min = KMP_TLS_GTID_MIN;
1910 
1911   status = pthread_key_create(&__kmp_gtid_threadprivate_key,
1912                               __kmp_internal_end_dest);
1913   KMP_CHECK_SYSFAIL("pthread_key_create", status);
1914   status = pthread_mutexattr_init(&mutex_attr);
1915   KMP_CHECK_SYSFAIL("pthread_mutexattr_init", status);
1916   status = pthread_mutex_init(&__kmp_wait_mx.m_mutex, &mutex_attr);
1917   KMP_CHECK_SYSFAIL("pthread_mutex_init", status);
1918   status = pthread_mutexattr_destroy(&mutex_attr);
1919   KMP_CHECK_SYSFAIL("pthread_mutexattr_destroy", status);
1920   status = pthread_condattr_init(&cond_attr);
1921   KMP_CHECK_SYSFAIL("pthread_condattr_init", status);
1922   status = pthread_cond_init(&__kmp_wait_cv.c_cond, &cond_attr);
1923   KMP_CHECK_SYSFAIL("pthread_cond_init", status);
1924   status = pthread_condattr_destroy(&cond_attr);
1925   KMP_CHECK_SYSFAIL("pthread_condattr_destroy", status);
1926 #if USE_ITT_BUILD
1927   __kmp_itt_initialize();
1928 #endif /* USE_ITT_BUILD */
1929 
1930   __kmp_init_runtime = TRUE;
1931 }
1932 
1933 void __kmp_runtime_destroy(void) {
1934   int status;
1935 
1936   if (!__kmp_init_runtime) {
1937     return; // Nothing to do.
1938   }
1939 
1940 #if USE_ITT_BUILD
1941   __kmp_itt_destroy();
1942 #endif /* USE_ITT_BUILD */
1943 
1944   status = pthread_key_delete(__kmp_gtid_threadprivate_key);
1945   KMP_CHECK_SYSFAIL("pthread_key_delete", status);
1946 
1947   status = pthread_mutex_destroy(&__kmp_wait_mx.m_mutex);
1948   if (status != 0 && status != EBUSY) {
1949     KMP_SYSFAIL("pthread_mutex_destroy", status);
1950   }
1951   status = pthread_cond_destroy(&__kmp_wait_cv.c_cond);
1952   if (status != 0 && status != EBUSY) {
1953     KMP_SYSFAIL("pthread_cond_destroy", status);
1954   }
1955 #if KMP_AFFINITY_SUPPORTED
1956   __kmp_affinity_uninitialize();
1957 #endif
1958 
1959   __kmp_init_runtime = FALSE;
1960 }
1961 
1962 /* Put the thread to sleep for a time period */
1963 /* NOTE: not currently used anywhere */
1964 void __kmp_thread_sleep(int millis) { sleep((millis + 500) / 1000); }
1965 
1966 /* Calculate the elapsed wall clock time for the user */
1967 void __kmp_elapsed(double *t) {
1968   int status;
1969 #ifdef FIX_SGI_CLOCK
1970   struct timespec ts;
1971 
1972   status = clock_gettime(CLOCK_PROCESS_CPUTIME_ID, &ts);
1973   KMP_CHECK_SYSFAIL_ERRNO("clock_gettime", status);
1974   *t =
1975       (double)ts.tv_nsec * (1.0 / (double)KMP_NSEC_PER_SEC) + (double)ts.tv_sec;
1976 #else
1977   struct timeval tv;
1978 
1979   status = gettimeofday(&tv, NULL);
1980   KMP_CHECK_SYSFAIL_ERRNO("gettimeofday", status);
1981   *t =
1982       (double)tv.tv_usec * (1.0 / (double)KMP_USEC_PER_SEC) + (double)tv.tv_sec;
1983 #endif
1984 }
1985 
1986 /* Calculate the elapsed wall clock tick for the user */
1987 void __kmp_elapsed_tick(double *t) { *t = 1 / (double)CLOCKS_PER_SEC; }
1988 
1989 /* Return the current time stamp in nsec */
1990 kmp_uint64 __kmp_now_nsec() {
1991   struct timeval t;
1992   gettimeofday(&t, NULL);
1993   kmp_uint64 nsec = (kmp_uint64)KMP_NSEC_PER_SEC * (kmp_uint64)t.tv_sec +
1994                     (kmp_uint64)1000 * (kmp_uint64)t.tv_usec;
1995   return nsec;
1996 }
1997 
1998 #if KMP_ARCH_X86 || KMP_ARCH_X86_64
1999 /* Measure clock ticks per millisecond */
2000 void __kmp_initialize_system_tick() {
2001   kmp_uint64 now, nsec2, diff;
2002   kmp_uint64 delay = 100000; // 50~100 usec on most machines.
2003   kmp_uint64 nsec = __kmp_now_nsec();
2004   kmp_uint64 goal = __kmp_hardware_timestamp() + delay;
2005   while ((now = __kmp_hardware_timestamp()) < goal)
2006     ;
2007   nsec2 = __kmp_now_nsec();
2008   diff = nsec2 - nsec;
2009   if (diff > 0) {
2010     kmp_uint64 tpms = ((kmp_uint64)1e6 * (delay + (now - goal)) / diff);
2011     if (tpms > 0)
2012       __kmp_ticks_per_msec = tpms;
2013   }
2014 }
2015 #endif
2016 
2017 /* Determine whether the given address is mapped into the current address
2018    space. */
2019 
2020 int __kmp_is_address_mapped(void *addr) {
2021 
2022   int found = 0;
2023   int rc;
2024 
2025 #if KMP_OS_LINUX || KMP_OS_HURD
2026 
2027   /* On GNUish OSes, read the /proc/<pid>/maps pseudo-file to get all the
2028      address ranges mapped into the address space. */
2029 
2030   char *name = __kmp_str_format("/proc/%d/maps", getpid());
2031   FILE *file = NULL;
2032 
2033   file = fopen(name, "r");
2034   KMP_ASSERT(file != NULL);
2035 
2036   for (;;) {
2037 
2038     void *beginning = NULL;
2039     void *ending = NULL;
2040     char perms[5];
2041 
2042     rc = fscanf(file, "%p-%p %4s %*[^\n]\n", &beginning, &ending, perms);
2043     if (rc == EOF) {
2044       break;
2045     }
2046     KMP_ASSERT(rc == 3 &&
2047                KMP_STRLEN(perms) == 4); // Make sure all fields are read.
2048 
2049     // Ending address is not included in the region, but beginning is.
2050     if ((addr >= beginning) && (addr < ending)) {
2051       perms[2] = 0; // 3th and 4th character does not matter.
2052       if (strcmp(perms, "rw") == 0) {
2053         // Memory we are looking for should be readable and writable.
2054         found = 1;
2055       }
2056       break;
2057     }
2058   }
2059 
2060   // Free resources.
2061   fclose(file);
2062   KMP_INTERNAL_FREE(name);
2063 #elif KMP_OS_FREEBSD
2064   char *buf;
2065   size_t lstsz;
2066   int mib[] = {CTL_KERN, KERN_PROC, KERN_PROC_VMMAP, getpid()};
2067   rc = sysctl(mib, 4, NULL, &lstsz, NULL, 0);
2068   if (rc < 0)
2069     return 0;
2070   // We pass from number of vm entry's semantic
2071   // to size of whole entry map list.
2072   lstsz = lstsz * 4 / 3;
2073   buf = reinterpret_cast<char *>(kmpc_malloc(lstsz));
2074   rc = sysctl(mib, 4, buf, &lstsz, NULL, 0);
2075   if (rc < 0) {
2076     kmpc_free(buf);
2077     return 0;
2078   }
2079 
2080   char *lw = buf;
2081   char *up = buf + lstsz;
2082 
2083   while (lw < up) {
2084     struct kinfo_vmentry *cur = reinterpret_cast<struct kinfo_vmentry *>(lw);
2085     size_t cursz = cur->kve_structsize;
2086     if (cursz == 0)
2087       break;
2088     void *start = reinterpret_cast<void *>(cur->kve_start);
2089     void *end = reinterpret_cast<void *>(cur->kve_end);
2090     // Readable/Writable addresses within current map entry
2091     if ((addr >= start) && (addr < end)) {
2092       if ((cur->kve_protection & KVME_PROT_READ) != 0 &&
2093           (cur->kve_protection & KVME_PROT_WRITE) != 0) {
2094         found = 1;
2095         break;
2096       }
2097     }
2098     lw += cursz;
2099   }
2100   kmpc_free(buf);
2101 
2102 #elif KMP_OS_DARWIN
2103 
2104   /* On OS X*, /proc pseudo filesystem is not available. Try to read memory
2105      using vm interface. */
2106 
2107   int buffer;
2108   vm_size_t count;
2109   rc = vm_read_overwrite(
2110       mach_task_self(), // Task to read memory of.
2111       (vm_address_t)(addr), // Address to read from.
2112       1, // Number of bytes to be read.
2113       (vm_address_t)(&buffer), // Address of buffer to save read bytes in.
2114       &count // Address of var to save number of read bytes in.
2115   );
2116   if (rc == 0) {
2117     // Memory successfully read.
2118     found = 1;
2119   }
2120 
2121 #elif KMP_OS_NETBSD
2122 
2123   int mib[5];
2124   mib[0] = CTL_VM;
2125   mib[1] = VM_PROC;
2126   mib[2] = VM_PROC_MAP;
2127   mib[3] = getpid();
2128   mib[4] = sizeof(struct kinfo_vmentry);
2129 
2130   size_t size;
2131   rc = sysctl(mib, __arraycount(mib), NULL, &size, NULL, 0);
2132   KMP_ASSERT(!rc);
2133   KMP_ASSERT(size);
2134 
2135   size = size * 4 / 3;
2136   struct kinfo_vmentry *kiv = (struct kinfo_vmentry *)KMP_INTERNAL_MALLOC(size);
2137   KMP_ASSERT(kiv);
2138 
2139   rc = sysctl(mib, __arraycount(mib), kiv, &size, NULL, 0);
2140   KMP_ASSERT(!rc);
2141   KMP_ASSERT(size);
2142 
2143   for (size_t i = 0; i < size; i++) {
2144     if (kiv[i].kve_start >= (uint64_t)addr &&
2145         kiv[i].kve_end <= (uint64_t)addr) {
2146       found = 1;
2147       break;
2148     }
2149   }
2150   KMP_INTERNAL_FREE(kiv);
2151 #elif KMP_OS_OPENBSD
2152 
2153   int mib[3];
2154   mib[0] = CTL_KERN;
2155   mib[1] = KERN_PROC_VMMAP;
2156   mib[2] = getpid();
2157 
2158   size_t size;
2159   uint64_t end;
2160   rc = sysctl(mib, 3, NULL, &size, NULL, 0);
2161   KMP_ASSERT(!rc);
2162   KMP_ASSERT(size);
2163   end = size;
2164 
2165   struct kinfo_vmentry kiv = {.kve_start = 0};
2166 
2167   while ((rc = sysctl(mib, 3, &kiv, &size, NULL, 0)) == 0) {
2168     KMP_ASSERT(size);
2169     if (kiv.kve_end == end)
2170       break;
2171 
2172     if (kiv.kve_start >= (uint64_t)addr && kiv.kve_end <= (uint64_t)addr) {
2173       found = 1;
2174       break;
2175     }
2176     kiv.kve_start += 1;
2177   }
2178 #elif KMP_OS_DRAGONFLY
2179 
2180   // FIXME(DragonFly): Implement this
2181   found = 1;
2182 
2183 #else
2184 
2185 #error "Unknown or unsupported OS"
2186 
2187 #endif
2188 
2189   return found;
2190 
2191 } // __kmp_is_address_mapped
2192 
2193 #ifdef USE_LOAD_BALANCE
2194 
2195 #if KMP_OS_DARWIN || KMP_OS_NETBSD
2196 
2197 // The function returns the rounded value of the system load average
2198 // during given time interval which depends on the value of
2199 // __kmp_load_balance_interval variable (default is 60 sec, other values
2200 // may be 300 sec or 900 sec).
2201 // It returns -1 in case of error.
2202 int __kmp_get_load_balance(int max) {
2203   double averages[3];
2204   int ret_avg = 0;
2205 
2206   int res = getloadavg(averages, 3);
2207 
2208   // Check __kmp_load_balance_interval to determine which of averages to use.
2209   // getloadavg() may return the number of samples less than requested that is
2210   // less than 3.
2211   if (__kmp_load_balance_interval < 180 && (res >= 1)) {
2212     ret_avg = (int)averages[0]; // 1 min
2213   } else if ((__kmp_load_balance_interval >= 180 &&
2214               __kmp_load_balance_interval < 600) &&
2215              (res >= 2)) {
2216     ret_avg = (int)averages[1]; // 5 min
2217   } else if ((__kmp_load_balance_interval >= 600) && (res == 3)) {
2218     ret_avg = (int)averages[2]; // 15 min
2219   } else { // Error occurred
2220     return -1;
2221   }
2222 
2223   return ret_avg;
2224 }
2225 
2226 #else // Linux* OS
2227 
2228 // The function returns number of running (not sleeping) threads, or -1 in case
2229 // of error. Error could be reported if Linux* OS kernel too old (without
2230 // "/proc" support). Counting running threads stops if max running threads
2231 // encountered.
2232 int __kmp_get_load_balance(int max) {
2233   static int permanent_error = 0;
2234   static int glb_running_threads = 0; // Saved count of the running threads for
2235   // the thread balance algorithm
2236   static double glb_call_time = 0; /* Thread balance algorithm call time */
2237 
2238   int running_threads = 0; // Number of running threads in the system.
2239 
2240   DIR *proc_dir = NULL; // Handle of "/proc/" directory.
2241   struct dirent *proc_entry = NULL;
2242 
2243   kmp_str_buf_t task_path; // "/proc/<pid>/task/<tid>/" path.
2244   DIR *task_dir = NULL; // Handle of "/proc/<pid>/task/<tid>/" directory.
2245   struct dirent *task_entry = NULL;
2246   int task_path_fixed_len;
2247 
2248   kmp_str_buf_t stat_path; // "/proc/<pid>/task/<tid>/stat" path.
2249   int stat_file = -1;
2250   int stat_path_fixed_len;
2251 
2252   int total_processes = 0; // Total number of processes in system.
2253   int total_threads = 0; // Total number of threads in system.
2254 
2255   double call_time = 0.0;
2256 
2257   __kmp_str_buf_init(&task_path);
2258   __kmp_str_buf_init(&stat_path);
2259 
2260   __kmp_elapsed(&call_time);
2261 
2262   if (glb_call_time &&
2263       (call_time - glb_call_time < __kmp_load_balance_interval)) {
2264     running_threads = glb_running_threads;
2265     goto finish;
2266   }
2267 
2268   glb_call_time = call_time;
2269 
2270   // Do not spend time on scanning "/proc/" if we have a permanent error.
2271   if (permanent_error) {
2272     running_threads = -1;
2273     goto finish;
2274   }
2275 
2276   if (max <= 0) {
2277     max = INT_MAX;
2278   }
2279 
2280   // Open "/proc/" directory.
2281   proc_dir = opendir("/proc");
2282   if (proc_dir == NULL) {
2283     // Cannot open "/prroc/". Probably the kernel does not support it. Return an
2284     // error now and in subsequent calls.
2285     running_threads = -1;
2286     permanent_error = 1;
2287     goto finish;
2288   }
2289 
2290   // Initialize fixed part of task_path. This part will not change.
2291   __kmp_str_buf_cat(&task_path, "/proc/", 6);
2292   task_path_fixed_len = task_path.used; // Remember number of used characters.
2293 
2294   proc_entry = readdir(proc_dir);
2295   while (proc_entry != NULL) {
2296     // Proc entry is a directory and name starts with a digit. Assume it is a
2297     // process' directory.
2298     if (proc_entry->d_type == DT_DIR && isdigit(proc_entry->d_name[0])) {
2299 
2300       ++total_processes;
2301       // Make sure init process is the very first in "/proc", so we can replace
2302       // strcmp( proc_entry->d_name, "1" ) == 0 with simpler total_processes ==
2303       // 1. We are going to check that total_processes == 1 => d_name == "1" is
2304       // true (where "=>" is implication). Since C++ does not have => operator,
2305       // let us replace it with its equivalent: a => b == ! a || b.
2306       KMP_DEBUG_ASSERT(total_processes != 1 ||
2307                        strcmp(proc_entry->d_name, "1") == 0);
2308 
2309       // Construct task_path.
2310       task_path.used = task_path_fixed_len; // Reset task_path to "/proc/".
2311       __kmp_str_buf_cat(&task_path, proc_entry->d_name,
2312                         KMP_STRLEN(proc_entry->d_name));
2313       __kmp_str_buf_cat(&task_path, "/task", 5);
2314 
2315       task_dir = opendir(task_path.str);
2316       if (task_dir == NULL) {
2317         // Process can finish between reading "/proc/" directory entry and
2318         // opening process' "task/" directory. So, in general case we should not
2319         // complain, but have to skip this process and read the next one. But on
2320         // systems with no "task/" support we will spend lot of time to scan
2321         // "/proc/" tree again and again without any benefit. "init" process
2322         // (its pid is 1) should exist always, so, if we cannot open
2323         // "/proc/1/task/" directory, it means "task/" is not supported by
2324         // kernel. Report an error now and in the future.
2325         if (strcmp(proc_entry->d_name, "1") == 0) {
2326           running_threads = -1;
2327           permanent_error = 1;
2328           goto finish;
2329         }
2330       } else {
2331         // Construct fixed part of stat file path.
2332         __kmp_str_buf_clear(&stat_path);
2333         __kmp_str_buf_cat(&stat_path, task_path.str, task_path.used);
2334         __kmp_str_buf_cat(&stat_path, "/", 1);
2335         stat_path_fixed_len = stat_path.used;
2336 
2337         task_entry = readdir(task_dir);
2338         while (task_entry != NULL) {
2339           // It is a directory and name starts with a digit.
2340           if (proc_entry->d_type == DT_DIR && isdigit(task_entry->d_name[0])) {
2341             ++total_threads;
2342 
2343             // Construct complete stat file path. Easiest way would be:
2344             //  __kmp_str_buf_print( & stat_path, "%s/%s/stat", task_path.str,
2345             //  task_entry->d_name );
2346             // but seriae of __kmp_str_buf_cat works a bit faster.
2347             stat_path.used =
2348                 stat_path_fixed_len; // Reset stat path to its fixed part.
2349             __kmp_str_buf_cat(&stat_path, task_entry->d_name,
2350                               KMP_STRLEN(task_entry->d_name));
2351             __kmp_str_buf_cat(&stat_path, "/stat", 5);
2352 
2353             // Note: Low-level API (open/read/close) is used. High-level API
2354             // (fopen/fclose)  works ~ 30 % slower.
2355             stat_file = open(stat_path.str, O_RDONLY);
2356             if (stat_file == -1) {
2357               // We cannot report an error because task (thread) can terminate
2358               // just before reading this file.
2359             } else {
2360               /* Content of "stat" file looks like:
2361                  24285 (program) S ...
2362 
2363                  It is a single line (if program name does not include funny
2364                  symbols). First number is a thread id, then name of executable
2365                  file name in paretheses, then state of the thread. We need just
2366                  thread state.
2367 
2368                  Good news: Length of program name is 15 characters max. Longer
2369                  names are truncated.
2370 
2371                  Thus, we need rather short buffer: 15 chars for program name +
2372                  2 parenthesis, + 3 spaces + ~7 digits of pid = 37.
2373 
2374                  Bad news: Program name may contain special symbols like space,
2375                  closing parenthesis, or even new line. This makes parsing
2376                  "stat" file not 100 % reliable. In case of fanny program names
2377                  parsing may fail (report incorrect thread state).
2378 
2379                  Parsing "status" file looks more promissing (due to different
2380                  file structure and escaping special symbols) but reading and
2381                  parsing of "status" file works slower.
2382                   -- ln
2383               */
2384               char buffer[65];
2385               ssize_t len;
2386               len = read(stat_file, buffer, sizeof(buffer) - 1);
2387               if (len >= 0) {
2388                 buffer[len] = 0;
2389                 // Using scanf:
2390                 //     sscanf( buffer, "%*d (%*s) %c ", & state );
2391                 // looks very nice, but searching for a closing parenthesis
2392                 // works a bit faster.
2393                 char *close_parent = strstr(buffer, ") ");
2394                 if (close_parent != NULL) {
2395                   char state = *(close_parent + 2);
2396                   if (state == 'R') {
2397                     ++running_threads;
2398                     if (running_threads >= max) {
2399                       goto finish;
2400                     }
2401                   }
2402                 }
2403               }
2404               close(stat_file);
2405               stat_file = -1;
2406             }
2407           }
2408           task_entry = readdir(task_dir);
2409         }
2410         closedir(task_dir);
2411         task_dir = NULL;
2412       }
2413     }
2414     proc_entry = readdir(proc_dir);
2415   }
2416 
2417   // There _might_ be a timing hole where the thread executing this
2418   // code get skipped in the load balance, and running_threads is 0.
2419   // Assert in the debug builds only!!!
2420   KMP_DEBUG_ASSERT(running_threads > 0);
2421   if (running_threads <= 0) {
2422     running_threads = 1;
2423   }
2424 
2425 finish: // Clean up and exit.
2426   if (proc_dir != NULL) {
2427     closedir(proc_dir);
2428   }
2429   __kmp_str_buf_free(&task_path);
2430   if (task_dir != NULL) {
2431     closedir(task_dir);
2432   }
2433   __kmp_str_buf_free(&stat_path);
2434   if (stat_file != -1) {
2435     close(stat_file);
2436   }
2437 
2438   glb_running_threads = running_threads;
2439 
2440   return running_threads;
2441 
2442 } // __kmp_get_load_balance
2443 
2444 #endif // KMP_OS_DARWIN
2445 
2446 #endif // USE_LOAD_BALANCE
2447 
2448 #if !(KMP_ARCH_X86 || KMP_ARCH_X86_64 || KMP_MIC ||                            \
2449       ((KMP_OS_LINUX || KMP_OS_DARWIN) && KMP_ARCH_AARCH64) ||                 \
2450       KMP_ARCH_PPC64 || KMP_ARCH_RISCV64)
2451 
2452 // we really only need the case with 1 argument, because CLANG always build
2453 // a struct of pointers to shared variables referenced in the outlined function
2454 int __kmp_invoke_microtask(microtask_t pkfn, int gtid, int tid, int argc,
2455                            void *p_argv[]
2456 #if OMPT_SUPPORT
2457                            ,
2458                            void **exit_frame_ptr
2459 #endif
2460 ) {
2461 #if OMPT_SUPPORT
2462   *exit_frame_ptr = OMPT_GET_FRAME_ADDRESS(0);
2463 #endif
2464 
2465   switch (argc) {
2466   default:
2467     fprintf(stderr, "Too many args to microtask: %d!\n", argc);
2468     fflush(stderr);
2469     exit(-1);
2470   case 0:
2471     (*pkfn)(&gtid, &tid);
2472     break;
2473   case 1:
2474     (*pkfn)(&gtid, &tid, p_argv[0]);
2475     break;
2476   case 2:
2477     (*pkfn)(&gtid, &tid, p_argv[0], p_argv[1]);
2478     break;
2479   case 3:
2480     (*pkfn)(&gtid, &tid, p_argv[0], p_argv[1], p_argv[2]);
2481     break;
2482   case 4:
2483     (*pkfn)(&gtid, &tid, p_argv[0], p_argv[1], p_argv[2], p_argv[3]);
2484     break;
2485   case 5:
2486     (*pkfn)(&gtid, &tid, p_argv[0], p_argv[1], p_argv[2], p_argv[3], p_argv[4]);
2487     break;
2488   case 6:
2489     (*pkfn)(&gtid, &tid, p_argv[0], p_argv[1], p_argv[2], p_argv[3], p_argv[4],
2490             p_argv[5]);
2491     break;
2492   case 7:
2493     (*pkfn)(&gtid, &tid, p_argv[0], p_argv[1], p_argv[2], p_argv[3], p_argv[4],
2494             p_argv[5], p_argv[6]);
2495     break;
2496   case 8:
2497     (*pkfn)(&gtid, &tid, p_argv[0], p_argv[1], p_argv[2], p_argv[3], p_argv[4],
2498             p_argv[5], p_argv[6], p_argv[7]);
2499     break;
2500   case 9:
2501     (*pkfn)(&gtid, &tid, p_argv[0], p_argv[1], p_argv[2], p_argv[3], p_argv[4],
2502             p_argv[5], p_argv[6], p_argv[7], p_argv[8]);
2503     break;
2504   case 10:
2505     (*pkfn)(&gtid, &tid, p_argv[0], p_argv[1], p_argv[2], p_argv[3], p_argv[4],
2506             p_argv[5], p_argv[6], p_argv[7], p_argv[8], p_argv[9]);
2507     break;
2508   case 11:
2509     (*pkfn)(&gtid, &tid, p_argv[0], p_argv[1], p_argv[2], p_argv[3], p_argv[4],
2510             p_argv[5], p_argv[6], p_argv[7], p_argv[8], p_argv[9], p_argv[10]);
2511     break;
2512   case 12:
2513     (*pkfn)(&gtid, &tid, p_argv[0], p_argv[1], p_argv[2], p_argv[3], p_argv[4],
2514             p_argv[5], p_argv[6], p_argv[7], p_argv[8], p_argv[9], p_argv[10],
2515             p_argv[11]);
2516     break;
2517   case 13:
2518     (*pkfn)(&gtid, &tid, p_argv[0], p_argv[1], p_argv[2], p_argv[3], p_argv[4],
2519             p_argv[5], p_argv[6], p_argv[7], p_argv[8], p_argv[9], p_argv[10],
2520             p_argv[11], p_argv[12]);
2521     break;
2522   case 14:
2523     (*pkfn)(&gtid, &tid, p_argv[0], p_argv[1], p_argv[2], p_argv[3], p_argv[4],
2524             p_argv[5], p_argv[6], p_argv[7], p_argv[8], p_argv[9], p_argv[10],
2525             p_argv[11], p_argv[12], p_argv[13]);
2526     break;
2527   case 15:
2528     (*pkfn)(&gtid, &tid, p_argv[0], p_argv[1], p_argv[2], p_argv[3], p_argv[4],
2529             p_argv[5], p_argv[6], p_argv[7], p_argv[8], p_argv[9], p_argv[10],
2530             p_argv[11], p_argv[12], p_argv[13], p_argv[14]);
2531     break;
2532   }
2533 
2534   return 1;
2535 }
2536 
2537 #endif
2538 
2539 #if KMP_OS_LINUX
2540 // Functions for hidden helper task
2541 namespace {
2542 // Condition variable for initializing hidden helper team
2543 pthread_cond_t hidden_helper_threads_initz_cond_var;
2544 pthread_mutex_t hidden_helper_threads_initz_lock;
2545 volatile int hidden_helper_initz_signaled = FALSE;
2546 
2547 // Condition variable for deinitializing hidden helper team
2548 pthread_cond_t hidden_helper_threads_deinitz_cond_var;
2549 pthread_mutex_t hidden_helper_threads_deinitz_lock;
2550 volatile int hidden_helper_deinitz_signaled = FALSE;
2551 
2552 // Condition variable for the wrapper function of main thread
2553 pthread_cond_t hidden_helper_main_thread_cond_var;
2554 pthread_mutex_t hidden_helper_main_thread_lock;
2555 volatile int hidden_helper_main_thread_signaled = FALSE;
2556 
2557 // Semaphore for worker threads. We don't use condition variable here in case
2558 // that when multiple signals are sent at the same time, only one thread might
2559 // be waken.
2560 sem_t hidden_helper_task_sem;
2561 } // namespace
2562 
2563 void __kmp_hidden_helper_worker_thread_wait() {
2564   int status = sem_wait(&hidden_helper_task_sem);
2565   KMP_CHECK_SYSFAIL("sem_wait", status);
2566 }
2567 
2568 void __kmp_do_initialize_hidden_helper_threads() {
2569   // Initialize condition variable
2570   int status =
2571       pthread_cond_init(&hidden_helper_threads_initz_cond_var, nullptr);
2572   KMP_CHECK_SYSFAIL("pthread_cond_init", status);
2573 
2574   status = pthread_cond_init(&hidden_helper_threads_deinitz_cond_var, nullptr);
2575   KMP_CHECK_SYSFAIL("pthread_cond_init", status);
2576 
2577   status = pthread_cond_init(&hidden_helper_main_thread_cond_var, nullptr);
2578   KMP_CHECK_SYSFAIL("pthread_cond_init", status);
2579 
2580   status = pthread_mutex_init(&hidden_helper_threads_initz_lock, nullptr);
2581   KMP_CHECK_SYSFAIL("pthread_mutex_init", status);
2582 
2583   status = pthread_mutex_init(&hidden_helper_threads_deinitz_lock, nullptr);
2584   KMP_CHECK_SYSFAIL("pthread_mutex_init", status);
2585 
2586   status = pthread_mutex_init(&hidden_helper_main_thread_lock, nullptr);
2587   KMP_CHECK_SYSFAIL("pthread_mutex_init", status);
2588 
2589   // Initialize the semaphore
2590   status = sem_init(&hidden_helper_task_sem, 0, 0);
2591   KMP_CHECK_SYSFAIL("sem_init", status);
2592 
2593   // Create a new thread to finish initialization
2594   pthread_t handle;
2595   status = pthread_create(
2596       &handle, nullptr,
2597       [](void *) -> void * {
2598         __kmp_hidden_helper_threads_initz_routine();
2599         return nullptr;
2600       },
2601       nullptr);
2602   KMP_CHECK_SYSFAIL("pthread_create", status);
2603 }
2604 
2605 void __kmp_hidden_helper_threads_initz_wait() {
2606   // Initial thread waits here for the completion of the initialization. The
2607   // condition variable will be notified by main thread of hidden helper teams.
2608   int status = pthread_mutex_lock(&hidden_helper_threads_initz_lock);
2609   KMP_CHECK_SYSFAIL("pthread_mutex_lock", status);
2610 
2611   if (!TCR_4(hidden_helper_initz_signaled)) {
2612     status = pthread_cond_wait(&hidden_helper_threads_initz_cond_var,
2613                                &hidden_helper_threads_initz_lock);
2614     KMP_CHECK_SYSFAIL("pthread_cond_wait", status);
2615   }
2616 
2617   status = pthread_mutex_unlock(&hidden_helper_threads_initz_lock);
2618   KMP_CHECK_SYSFAIL("pthread_mutex_unlock", status);
2619 }
2620 
2621 void __kmp_hidden_helper_initz_release() {
2622   // After all initialization, reset __kmp_init_hidden_helper_threads to false.
2623   int status = pthread_mutex_lock(&hidden_helper_threads_initz_lock);
2624   KMP_CHECK_SYSFAIL("pthread_mutex_lock", status);
2625 
2626   status = pthread_cond_signal(&hidden_helper_threads_initz_cond_var);
2627   KMP_CHECK_SYSFAIL("pthread_cond_wait", status);
2628 
2629   TCW_SYNC_4(hidden_helper_initz_signaled, TRUE);
2630 
2631   status = pthread_mutex_unlock(&hidden_helper_threads_initz_lock);
2632   KMP_CHECK_SYSFAIL("pthread_mutex_unlock", status);
2633 }
2634 
2635 void __kmp_hidden_helper_main_thread_wait() {
2636   // The main thread of hidden helper team will be blocked here. The
2637   // condition variable can only be signal in the destructor of RTL.
2638   int status = pthread_mutex_lock(&hidden_helper_main_thread_lock);
2639   KMP_CHECK_SYSFAIL("pthread_mutex_lock", status);
2640 
2641   if (!TCR_4(hidden_helper_main_thread_signaled)) {
2642     status = pthread_cond_wait(&hidden_helper_main_thread_cond_var,
2643                                &hidden_helper_main_thread_lock);
2644     KMP_CHECK_SYSFAIL("pthread_cond_wait", status);
2645   }
2646 
2647   status = pthread_mutex_unlock(&hidden_helper_main_thread_lock);
2648   KMP_CHECK_SYSFAIL("pthread_mutex_unlock", status);
2649 }
2650 
2651 void __kmp_hidden_helper_main_thread_release() {
2652   // The initial thread of OpenMP RTL should call this function to wake up the
2653   // main thread of hidden helper team.
2654   int status = pthread_mutex_lock(&hidden_helper_main_thread_lock);
2655   KMP_CHECK_SYSFAIL("pthread_mutex_lock", status);
2656 
2657   status = pthread_cond_signal(&hidden_helper_main_thread_cond_var);
2658   KMP_CHECK_SYSFAIL("pthread_cond_signal", status);
2659 
2660   // The hidden helper team is done here
2661   TCW_SYNC_4(hidden_helper_main_thread_signaled, TRUE);
2662 
2663   status = pthread_mutex_unlock(&hidden_helper_main_thread_lock);
2664   KMP_CHECK_SYSFAIL("pthread_mutex_unlock", status);
2665 }
2666 
2667 void __kmp_hidden_helper_worker_thread_signal() {
2668   int status = sem_post(&hidden_helper_task_sem);
2669   KMP_CHECK_SYSFAIL("sem_post", status);
2670 }
2671 
2672 void __kmp_hidden_helper_threads_deinitz_wait() {
2673   // Initial thread waits here for the completion of the deinitialization. The
2674   // condition variable will be notified by main thread of hidden helper teams.
2675   int status = pthread_mutex_lock(&hidden_helper_threads_deinitz_lock);
2676   KMP_CHECK_SYSFAIL("pthread_mutex_lock", status);
2677 
2678   if (!TCR_4(hidden_helper_deinitz_signaled)) {
2679     status = pthread_cond_wait(&hidden_helper_threads_deinitz_cond_var,
2680                                &hidden_helper_threads_deinitz_lock);
2681     KMP_CHECK_SYSFAIL("pthread_cond_wait", status);
2682   }
2683 
2684   status = pthread_mutex_unlock(&hidden_helper_threads_deinitz_lock);
2685   KMP_CHECK_SYSFAIL("pthread_mutex_unlock", status);
2686 }
2687 
2688 void __kmp_hidden_helper_threads_deinitz_release() {
2689   int status = pthread_mutex_lock(&hidden_helper_threads_deinitz_lock);
2690   KMP_CHECK_SYSFAIL("pthread_mutex_lock", status);
2691 
2692   status = pthread_cond_signal(&hidden_helper_threads_deinitz_cond_var);
2693   KMP_CHECK_SYSFAIL("pthread_cond_wait", status);
2694 
2695   TCW_SYNC_4(hidden_helper_deinitz_signaled, TRUE);
2696 
2697   status = pthread_mutex_unlock(&hidden_helper_threads_deinitz_lock);
2698   KMP_CHECK_SYSFAIL("pthread_mutex_unlock", status);
2699 }
2700 #else // KMP_OS_LINUX
2701 void __kmp_hidden_helper_worker_thread_wait() {
2702   KMP_ASSERT(0 && "Hidden helper task is not supported on this OS");
2703 }
2704 
2705 void __kmp_do_initialize_hidden_helper_threads() {
2706   KMP_ASSERT(0 && "Hidden helper task is not supported on this OS");
2707 }
2708 
2709 void __kmp_hidden_helper_threads_initz_wait() {
2710   KMP_ASSERT(0 && "Hidden helper task is not supported on this OS");
2711 }
2712 
2713 void __kmp_hidden_helper_initz_release() {
2714   KMP_ASSERT(0 && "Hidden helper task is not supported on this OS");
2715 }
2716 
2717 void __kmp_hidden_helper_main_thread_wait() {
2718   KMP_ASSERT(0 && "Hidden helper task is not supported on this OS");
2719 }
2720 
2721 void __kmp_hidden_helper_main_thread_release() {
2722   KMP_ASSERT(0 && "Hidden helper task is not supported on this OS");
2723 }
2724 
2725 void __kmp_hidden_helper_worker_thread_signal() {
2726   KMP_ASSERT(0 && "Hidden helper task is not supported on this OS");
2727 }
2728 
2729 void __kmp_hidden_helper_threads_deinitz_wait() {
2730   KMP_ASSERT(0 && "Hidden helper task is not supported on this OS");
2731 }
2732 
2733 void __kmp_hidden_helper_threads_deinitz_release() {
2734   KMP_ASSERT(0 && "Hidden helper task is not supported on this OS");
2735 }
2736 #endif // KMP_OS_LINUX
2737 
2738 // end of file //
2739