1 /* 2 * z_Linux_util.cpp -- platform specific routines. 3 */ 4 5 //===----------------------------------------------------------------------===// 6 // 7 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 8 // See https://llvm.org/LICENSE.txt for license information. 9 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "kmp.h" 14 #include "kmp_affinity.h" 15 #include "kmp_i18n.h" 16 #include "kmp_io.h" 17 #include "kmp_itt.h" 18 #include "kmp_lock.h" 19 #include "kmp_stats.h" 20 #include "kmp_str.h" 21 #include "kmp_wait_release.h" 22 #include "kmp_wrapper_getpid.h" 23 24 #if !KMP_OS_DRAGONFLY && !KMP_OS_FREEBSD && !KMP_OS_NETBSD && !KMP_OS_OPENBSD 25 #include <alloca.h> 26 #endif 27 #include <math.h> // HUGE_VAL. 28 #if KMP_OS_LINUX 29 #include <semaphore.h> 30 #endif // KMP_OS_LINUX 31 #include <sys/resource.h> 32 #if !KMP_OS_AIX 33 #include <sys/syscall.h> 34 #endif 35 #include <sys/time.h> 36 #include <sys/times.h> 37 #include <unistd.h> 38 39 #if KMP_OS_LINUX 40 #include <sys/sysinfo.h> 41 #if KMP_USE_FUTEX 42 // We should really include <futex.h>, but that causes compatibility problems on 43 // different Linux* OS distributions that either require that you include (or 44 // break when you try to include) <pci/types.h>. Since all we need is the two 45 // macros below (which are part of the kernel ABI, so can't change) we just 46 // define the constants here and don't include <futex.h> 47 #ifndef FUTEX_WAIT 48 #define FUTEX_WAIT 0 49 #endif 50 #ifndef FUTEX_WAKE 51 #define FUTEX_WAKE 1 52 #endif 53 #endif 54 #elif KMP_OS_DARWIN 55 #include <mach/mach.h> 56 #include <sys/sysctl.h> 57 #elif KMP_OS_DRAGONFLY || KMP_OS_FREEBSD 58 #include <sys/types.h> 59 #include <sys/sysctl.h> 60 #include <sys/user.h> 61 #include <pthread_np.h> 62 #elif KMP_OS_NETBSD || KMP_OS_OPENBSD 63 #include <sys/types.h> 64 #include <sys/sysctl.h> 65 #elif KMP_OS_SOLARIS 66 #include <sys/loadavg.h> 67 #endif 68 69 #include <ctype.h> 70 #include <dirent.h> 71 #include <fcntl.h> 72 73 struct kmp_sys_timer { 74 struct timespec start; 75 }; 76 77 #ifndef TIMEVAL_TO_TIMESPEC 78 // Convert timeval to timespec. 79 #define TIMEVAL_TO_TIMESPEC(tv, ts) \ 80 do { \ 81 (ts)->tv_sec = (tv)->tv_sec; \ 82 (ts)->tv_nsec = (tv)->tv_usec * 1000; \ 83 } while (0) 84 #endif 85 86 // Convert timespec to nanoseconds. 87 #define TS2NS(timespec) \ 88 (((timespec).tv_sec * (long int)1e9) + (timespec).tv_nsec) 89 90 static struct kmp_sys_timer __kmp_sys_timer_data; 91 92 #if KMP_HANDLE_SIGNALS 93 typedef void (*sig_func_t)(int); 94 STATIC_EFI2_WORKAROUND struct sigaction __kmp_sighldrs[NSIG]; 95 static sigset_t __kmp_sigset; 96 #endif 97 98 static int __kmp_init_runtime = FALSE; 99 100 static int __kmp_fork_count = 0; 101 102 static pthread_condattr_t __kmp_suspend_cond_attr; 103 static pthread_mutexattr_t __kmp_suspend_mutex_attr; 104 105 static kmp_cond_align_t __kmp_wait_cv; 106 static kmp_mutex_align_t __kmp_wait_mx; 107 108 kmp_uint64 __kmp_ticks_per_msec = 1000000; 109 kmp_uint64 __kmp_ticks_per_usec = 1000; 110 111 #ifdef DEBUG_SUSPEND 112 static void __kmp_print_cond(char *buffer, kmp_cond_align_t *cond) { 113 KMP_SNPRINTF(buffer, 128, "(cond (lock (%ld, %d)), (descr (%p)))", 114 cond->c_cond.__c_lock.__status, cond->c_cond.__c_lock.__spinlock, 115 cond->c_cond.__c_waiting); 116 } 117 #endif 118 119 #if ((KMP_OS_LINUX || KMP_OS_FREEBSD) && KMP_AFFINITY_SUPPORTED) 120 121 /* Affinity support */ 122 123 void __kmp_affinity_bind_thread(int which) { 124 KMP_ASSERT2(KMP_AFFINITY_CAPABLE(), 125 "Illegal set affinity operation when not capable"); 126 127 kmp_affin_mask_t *mask; 128 KMP_CPU_ALLOC_ON_STACK(mask); 129 KMP_CPU_ZERO(mask); 130 KMP_CPU_SET(which, mask); 131 __kmp_set_system_affinity(mask, TRUE); 132 KMP_CPU_FREE_FROM_STACK(mask); 133 } 134 135 /* Determine if we can access affinity functionality on this version of 136 * Linux* OS by checking __NR_sched_{get,set}affinity system calls, and set 137 * __kmp_affin_mask_size to the appropriate value (0 means not capable). */ 138 void __kmp_affinity_determine_capable(const char *env_var) { 139 // Check and see if the OS supports thread affinity. 140 141 #if KMP_OS_LINUX 142 #define KMP_CPU_SET_SIZE_LIMIT (1024 * 1024) 143 #define KMP_CPU_SET_TRY_SIZE CACHE_LINE 144 #elif KMP_OS_FREEBSD 145 #define KMP_CPU_SET_SIZE_LIMIT (sizeof(cpuset_t)) 146 #endif 147 148 int verbose = __kmp_affinity.flags.verbose; 149 int warnings = __kmp_affinity.flags.warnings; 150 enum affinity_type type = __kmp_affinity.type; 151 152 #if KMP_OS_LINUX 153 long gCode; 154 unsigned char *buf; 155 buf = (unsigned char *)KMP_INTERNAL_MALLOC(KMP_CPU_SET_SIZE_LIMIT); 156 157 // If the syscall returns a suggestion for the size, 158 // then we don't have to search for an appropriate size. 159 gCode = syscall(__NR_sched_getaffinity, 0, KMP_CPU_SET_TRY_SIZE, buf); 160 KA_TRACE(30, ("__kmp_affinity_determine_capable: " 161 "initial getaffinity call returned %ld errno = %d\n", 162 gCode, errno)); 163 164 if (gCode < 0 && errno != EINVAL) { 165 // System call not supported 166 if (verbose || 167 (warnings && (type != affinity_none) && (type != affinity_default) && 168 (type != affinity_disabled))) { 169 int error = errno; 170 kmp_msg_t err_code = KMP_ERR(error); 171 __kmp_msg(kmp_ms_warning, KMP_MSG(GetAffSysCallNotSupported, env_var), 172 err_code, __kmp_msg_null); 173 if (__kmp_generate_warnings == kmp_warnings_off) { 174 __kmp_str_free(&err_code.str); 175 } 176 } 177 KMP_AFFINITY_DISABLE(); 178 KMP_INTERNAL_FREE(buf); 179 return; 180 } else if (gCode > 0) { 181 // The optimal situation: the OS returns the size of the buffer it expects. 182 KMP_AFFINITY_ENABLE(gCode); 183 KA_TRACE(10, ("__kmp_affinity_determine_capable: " 184 "affinity supported (mask size %d)\n", 185 (int)__kmp_affin_mask_size)); 186 KMP_INTERNAL_FREE(buf); 187 return; 188 } 189 190 // Call the getaffinity system call repeatedly with increasing set sizes 191 // until we succeed, or reach an upper bound on the search. 192 KA_TRACE(30, ("__kmp_affinity_determine_capable: " 193 "searching for proper set size\n")); 194 int size; 195 for (size = 1; size <= KMP_CPU_SET_SIZE_LIMIT; size *= 2) { 196 gCode = syscall(__NR_sched_getaffinity, 0, size, buf); 197 KA_TRACE(30, ("__kmp_affinity_determine_capable: " 198 "getaffinity for mask size %ld returned %ld errno = %d\n", 199 size, gCode, errno)); 200 201 if (gCode < 0) { 202 if (errno == ENOSYS) { 203 // We shouldn't get here 204 KA_TRACE(30, ("__kmp_affinity_determine_capable: " 205 "inconsistent OS call behavior: errno == ENOSYS for mask " 206 "size %d\n", 207 size)); 208 if (verbose || 209 (warnings && (type != affinity_none) && 210 (type != affinity_default) && (type != affinity_disabled))) { 211 int error = errno; 212 kmp_msg_t err_code = KMP_ERR(error); 213 __kmp_msg(kmp_ms_warning, KMP_MSG(GetAffSysCallNotSupported, env_var), 214 err_code, __kmp_msg_null); 215 if (__kmp_generate_warnings == kmp_warnings_off) { 216 __kmp_str_free(&err_code.str); 217 } 218 } 219 KMP_AFFINITY_DISABLE(); 220 KMP_INTERNAL_FREE(buf); 221 return; 222 } 223 continue; 224 } 225 226 KMP_AFFINITY_ENABLE(gCode); 227 KA_TRACE(10, ("__kmp_affinity_determine_capable: " 228 "affinity supported (mask size %d)\n", 229 (int)__kmp_affin_mask_size)); 230 KMP_INTERNAL_FREE(buf); 231 return; 232 } 233 #elif KMP_OS_FREEBSD 234 long gCode; 235 unsigned char *buf; 236 buf = (unsigned char *)KMP_INTERNAL_MALLOC(KMP_CPU_SET_SIZE_LIMIT); 237 gCode = pthread_getaffinity_np(pthread_self(), KMP_CPU_SET_SIZE_LIMIT, 238 reinterpret_cast<cpuset_t *>(buf)); 239 KA_TRACE(30, ("__kmp_affinity_determine_capable: " 240 "initial getaffinity call returned %d errno = %d\n", 241 gCode, errno)); 242 if (gCode == 0) { 243 KMP_AFFINITY_ENABLE(KMP_CPU_SET_SIZE_LIMIT); 244 KA_TRACE(10, ("__kmp_affinity_determine_capable: " 245 "affinity supported (mask size %d)\n", 246 (int)__kmp_affin_mask_size)); 247 KMP_INTERNAL_FREE(buf); 248 return; 249 } 250 #endif 251 KMP_INTERNAL_FREE(buf); 252 253 // Affinity is not supported 254 KMP_AFFINITY_DISABLE(); 255 KA_TRACE(10, ("__kmp_affinity_determine_capable: " 256 "cannot determine mask size - affinity not supported\n")); 257 if (verbose || (warnings && (type != affinity_none) && 258 (type != affinity_default) && (type != affinity_disabled))) { 259 KMP_WARNING(AffCantGetMaskSize, env_var); 260 } 261 } 262 263 #endif // KMP_OS_LINUX && KMP_AFFINITY_SUPPORTED 264 265 #if KMP_USE_FUTEX 266 267 int __kmp_futex_determine_capable() { 268 int loc = 0; 269 long rc = syscall(__NR_futex, &loc, FUTEX_WAKE, 1, NULL, NULL, 0); 270 int retval = (rc == 0) || (errno != ENOSYS); 271 272 KA_TRACE(10, 273 ("__kmp_futex_determine_capable: rc = %d errno = %d\n", rc, errno)); 274 KA_TRACE(10, ("__kmp_futex_determine_capable: futex syscall%s supported\n", 275 retval ? "" : " not")); 276 277 return retval; 278 } 279 280 #endif // KMP_USE_FUTEX 281 282 #if (KMP_ARCH_X86 || KMP_ARCH_X86_64 || KMP_ARCH_WASM) && (!KMP_ASM_INTRINS) 283 /* Only 32-bit "add-exchange" instruction on IA-32 architecture causes us to 284 use compare_and_store for these routines */ 285 286 kmp_int8 __kmp_test_then_or8(volatile kmp_int8 *p, kmp_int8 d) { 287 kmp_int8 old_value, new_value; 288 289 old_value = TCR_1(*p); 290 new_value = old_value | d; 291 292 while (!KMP_COMPARE_AND_STORE_REL8(p, old_value, new_value)) { 293 KMP_CPU_PAUSE(); 294 old_value = TCR_1(*p); 295 new_value = old_value | d; 296 } 297 return old_value; 298 } 299 300 kmp_int8 __kmp_test_then_and8(volatile kmp_int8 *p, kmp_int8 d) { 301 kmp_int8 old_value, new_value; 302 303 old_value = TCR_1(*p); 304 new_value = old_value & d; 305 306 while (!KMP_COMPARE_AND_STORE_REL8(p, old_value, new_value)) { 307 KMP_CPU_PAUSE(); 308 old_value = TCR_1(*p); 309 new_value = old_value & d; 310 } 311 return old_value; 312 } 313 314 kmp_uint32 __kmp_test_then_or32(volatile kmp_uint32 *p, kmp_uint32 d) { 315 kmp_uint32 old_value, new_value; 316 317 old_value = TCR_4(*p); 318 new_value = old_value | d; 319 320 while (!KMP_COMPARE_AND_STORE_REL32(p, old_value, new_value)) { 321 KMP_CPU_PAUSE(); 322 old_value = TCR_4(*p); 323 new_value = old_value | d; 324 } 325 return old_value; 326 } 327 328 kmp_uint32 __kmp_test_then_and32(volatile kmp_uint32 *p, kmp_uint32 d) { 329 kmp_uint32 old_value, new_value; 330 331 old_value = TCR_4(*p); 332 new_value = old_value & d; 333 334 while (!KMP_COMPARE_AND_STORE_REL32(p, old_value, new_value)) { 335 KMP_CPU_PAUSE(); 336 old_value = TCR_4(*p); 337 new_value = old_value & d; 338 } 339 return old_value; 340 } 341 342 #if KMP_ARCH_X86 || KMP_ARCH_WASM 343 kmp_int8 __kmp_test_then_add8(volatile kmp_int8 *p, kmp_int8 d) { 344 kmp_int8 old_value, new_value; 345 346 old_value = TCR_1(*p); 347 new_value = old_value + d; 348 349 while (!KMP_COMPARE_AND_STORE_REL8(p, old_value, new_value)) { 350 KMP_CPU_PAUSE(); 351 old_value = TCR_1(*p); 352 new_value = old_value + d; 353 } 354 return old_value; 355 } 356 357 kmp_int64 __kmp_test_then_add64(volatile kmp_int64 *p, kmp_int64 d) { 358 kmp_int64 old_value, new_value; 359 360 old_value = TCR_8(*p); 361 new_value = old_value + d; 362 363 while (!KMP_COMPARE_AND_STORE_REL64(p, old_value, new_value)) { 364 KMP_CPU_PAUSE(); 365 old_value = TCR_8(*p); 366 new_value = old_value + d; 367 } 368 return old_value; 369 } 370 #endif /* KMP_ARCH_X86 */ 371 372 kmp_uint64 __kmp_test_then_or64(volatile kmp_uint64 *p, kmp_uint64 d) { 373 kmp_uint64 old_value, new_value; 374 375 old_value = TCR_8(*p); 376 new_value = old_value | d; 377 while (!KMP_COMPARE_AND_STORE_REL64(p, old_value, new_value)) { 378 KMP_CPU_PAUSE(); 379 old_value = TCR_8(*p); 380 new_value = old_value | d; 381 } 382 return old_value; 383 } 384 385 kmp_uint64 __kmp_test_then_and64(volatile kmp_uint64 *p, kmp_uint64 d) { 386 kmp_uint64 old_value, new_value; 387 388 old_value = TCR_8(*p); 389 new_value = old_value & d; 390 while (!KMP_COMPARE_AND_STORE_REL64(p, old_value, new_value)) { 391 KMP_CPU_PAUSE(); 392 old_value = TCR_8(*p); 393 new_value = old_value & d; 394 } 395 return old_value; 396 } 397 398 #endif /* (KMP_ARCH_X86 || KMP_ARCH_X86_64) && (! KMP_ASM_INTRINS) */ 399 400 void __kmp_terminate_thread(int gtid) { 401 int status; 402 kmp_info_t *th = __kmp_threads[gtid]; 403 404 if (!th) 405 return; 406 407 #ifdef KMP_CANCEL_THREADS 408 KA_TRACE(10, ("__kmp_terminate_thread: kill (%d)\n", gtid)); 409 status = pthread_cancel(th->th.th_info.ds.ds_thread); 410 if (status != 0 && status != ESRCH) { 411 __kmp_fatal(KMP_MSG(CantTerminateWorkerThread), KMP_ERR(status), 412 __kmp_msg_null); 413 } 414 #endif 415 KMP_YIELD(TRUE); 416 } // 417 418 /* Set thread stack info according to values returned by pthread_getattr_np(). 419 If values are unreasonable, assume call failed and use incremental stack 420 refinement method instead. Returns TRUE if the stack parameters could be 421 determined exactly, FALSE if incremental refinement is necessary. */ 422 static kmp_int32 __kmp_set_stack_info(int gtid, kmp_info_t *th) { 423 int stack_data; 424 #if KMP_OS_LINUX || KMP_OS_DRAGONFLY || KMP_OS_FREEBSD || KMP_OS_NETBSD || \ 425 KMP_OS_HURD || KMP_OS_SOLARIS 426 pthread_attr_t attr; 427 int status; 428 size_t size = 0; 429 void *addr = 0; 430 431 /* Always do incremental stack refinement for ubermaster threads since the 432 initial thread stack range can be reduced by sibling thread creation so 433 pthread_attr_getstack may cause thread gtid aliasing */ 434 if (!KMP_UBER_GTID(gtid)) { 435 436 /* Fetch the real thread attributes */ 437 status = pthread_attr_init(&attr); 438 KMP_CHECK_SYSFAIL("pthread_attr_init", status); 439 #if KMP_OS_DRAGONFLY || KMP_OS_FREEBSD || KMP_OS_NETBSD 440 status = pthread_attr_get_np(pthread_self(), &attr); 441 KMP_CHECK_SYSFAIL("pthread_attr_get_np", status); 442 #else 443 status = pthread_getattr_np(pthread_self(), &attr); 444 KMP_CHECK_SYSFAIL("pthread_getattr_np", status); 445 #endif 446 status = pthread_attr_getstack(&attr, &addr, &size); 447 KMP_CHECK_SYSFAIL("pthread_attr_getstack", status); 448 KA_TRACE(60, 449 ("__kmp_set_stack_info: T#%d pthread_attr_getstack returned size:" 450 " %lu, low addr: %p\n", 451 gtid, size, addr)); 452 status = pthread_attr_destroy(&attr); 453 KMP_CHECK_SYSFAIL("pthread_attr_destroy", status); 454 } 455 456 if (size != 0 && addr != 0) { // was stack parameter determination successful? 457 /* Store the correct base and size */ 458 TCW_PTR(th->th.th_info.ds.ds_stackbase, (((char *)addr) + size)); 459 TCW_PTR(th->th.th_info.ds.ds_stacksize, size); 460 TCW_4(th->th.th_info.ds.ds_stackgrow, FALSE); 461 return TRUE; 462 } 463 #endif /* KMP_OS_LINUX || KMP_OS_DRAGONFLY || KMP_OS_FREEBSD || KMP_OS_NETBSD \ 464 || KMP_OS_HURD || KMP_OS_SOLARIS */ 465 /* Use incremental refinement starting from initial conservative estimate */ 466 TCW_PTR(th->th.th_info.ds.ds_stacksize, 0); 467 TCW_PTR(th->th.th_info.ds.ds_stackbase, &stack_data); 468 TCW_4(th->th.th_info.ds.ds_stackgrow, TRUE); 469 return FALSE; 470 } 471 472 static void *__kmp_launch_worker(void *thr) { 473 int status, old_type, old_state; 474 #ifdef KMP_BLOCK_SIGNALS 475 sigset_t new_set, old_set; 476 #endif /* KMP_BLOCK_SIGNALS */ 477 void *exit_val; 478 #if KMP_OS_LINUX || KMP_OS_DRAGONFLY || KMP_OS_FREEBSD || KMP_OS_NETBSD || \ 479 KMP_OS_OPENBSD || KMP_OS_HURD || KMP_OS_SOLARIS 480 void *volatile padding = 0; 481 #endif 482 int gtid; 483 484 gtid = ((kmp_info_t *)thr)->th.th_info.ds.ds_gtid; 485 __kmp_gtid_set_specific(gtid); 486 #ifdef KMP_TDATA_GTID 487 __kmp_gtid = gtid; 488 #endif 489 #if KMP_STATS_ENABLED 490 // set thread local index to point to thread-specific stats 491 __kmp_stats_thread_ptr = ((kmp_info_t *)thr)->th.th_stats; 492 __kmp_stats_thread_ptr->startLife(); 493 KMP_SET_THREAD_STATE(IDLE); 494 KMP_INIT_PARTITIONED_TIMERS(OMP_idle); 495 #endif 496 497 #if USE_ITT_BUILD 498 __kmp_itt_thread_name(gtid); 499 #endif /* USE_ITT_BUILD */ 500 501 #if KMP_AFFINITY_SUPPORTED 502 __kmp_affinity_bind_init_mask(gtid); 503 #endif 504 505 #ifdef KMP_CANCEL_THREADS 506 status = pthread_setcanceltype(PTHREAD_CANCEL_ASYNCHRONOUS, &old_type); 507 KMP_CHECK_SYSFAIL("pthread_setcanceltype", status); 508 // josh todo: isn't PTHREAD_CANCEL_ENABLE default for newly-created threads? 509 status = pthread_setcancelstate(PTHREAD_CANCEL_ENABLE, &old_state); 510 KMP_CHECK_SYSFAIL("pthread_setcancelstate", status); 511 #endif 512 513 #if KMP_ARCH_X86 || KMP_ARCH_X86_64 514 // Set FP control regs to be a copy of the parallel initialization thread's. 515 __kmp_clear_x87_fpu_status_word(); 516 __kmp_load_x87_fpu_control_word(&__kmp_init_x87_fpu_control_word); 517 __kmp_load_mxcsr(&__kmp_init_mxcsr); 518 #endif /* KMP_ARCH_X86 || KMP_ARCH_X86_64 */ 519 520 #ifdef KMP_BLOCK_SIGNALS 521 status = sigfillset(&new_set); 522 KMP_CHECK_SYSFAIL_ERRNO("sigfillset", status); 523 status = pthread_sigmask(SIG_BLOCK, &new_set, &old_set); 524 KMP_CHECK_SYSFAIL("pthread_sigmask", status); 525 #endif /* KMP_BLOCK_SIGNALS */ 526 527 #if KMP_OS_LINUX || KMP_OS_DRAGONFLY || KMP_OS_FREEBSD || KMP_OS_NETBSD || \ 528 KMP_OS_OPENBSD || KMP_OS_HURD || KMP_OS_SOLARIS 529 if (__kmp_stkoffset > 0 && gtid > 0) { 530 padding = KMP_ALLOCA(gtid * __kmp_stkoffset); 531 (void)padding; 532 } 533 #endif 534 535 KMP_MB(); 536 __kmp_set_stack_info(gtid, (kmp_info_t *)thr); 537 538 __kmp_check_stack_overlap((kmp_info_t *)thr); 539 540 exit_val = __kmp_launch_thread((kmp_info_t *)thr); 541 542 #ifdef KMP_BLOCK_SIGNALS 543 status = pthread_sigmask(SIG_SETMASK, &old_set, NULL); 544 KMP_CHECK_SYSFAIL("pthread_sigmask", status); 545 #endif /* KMP_BLOCK_SIGNALS */ 546 547 return exit_val; 548 } 549 550 #if KMP_USE_MONITOR 551 /* The monitor thread controls all of the threads in the complex */ 552 553 static void *__kmp_launch_monitor(void *thr) { 554 int status, old_type, old_state; 555 #ifdef KMP_BLOCK_SIGNALS 556 sigset_t new_set; 557 #endif /* KMP_BLOCK_SIGNALS */ 558 struct timespec interval; 559 560 KMP_MB(); /* Flush all pending memory write invalidates. */ 561 562 KA_TRACE(10, ("__kmp_launch_monitor: #1 launched\n")); 563 564 /* register us as the monitor thread */ 565 __kmp_gtid_set_specific(KMP_GTID_MONITOR); 566 #ifdef KMP_TDATA_GTID 567 __kmp_gtid = KMP_GTID_MONITOR; 568 #endif 569 570 KMP_MB(); 571 572 #if USE_ITT_BUILD 573 // Instruct Intel(R) Threading Tools to ignore monitor thread. 574 __kmp_itt_thread_ignore(); 575 #endif /* USE_ITT_BUILD */ 576 577 __kmp_set_stack_info(((kmp_info_t *)thr)->th.th_info.ds.ds_gtid, 578 (kmp_info_t *)thr); 579 580 __kmp_check_stack_overlap((kmp_info_t *)thr); 581 582 #ifdef KMP_CANCEL_THREADS 583 status = pthread_setcanceltype(PTHREAD_CANCEL_ASYNCHRONOUS, &old_type); 584 KMP_CHECK_SYSFAIL("pthread_setcanceltype", status); 585 // josh todo: isn't PTHREAD_CANCEL_ENABLE default for newly-created threads? 586 status = pthread_setcancelstate(PTHREAD_CANCEL_ENABLE, &old_state); 587 KMP_CHECK_SYSFAIL("pthread_setcancelstate", status); 588 #endif 589 590 #if KMP_REAL_TIME_FIX 591 // This is a potential fix which allows application with real-time scheduling 592 // policy work. However, decision about the fix is not made yet, so it is 593 // disabled by default. 594 { // Are program started with real-time scheduling policy? 595 int sched = sched_getscheduler(0); 596 if (sched == SCHED_FIFO || sched == SCHED_RR) { 597 // Yes, we are a part of real-time application. Try to increase the 598 // priority of the monitor. 599 struct sched_param param; 600 int max_priority = sched_get_priority_max(sched); 601 int rc; 602 KMP_WARNING(RealTimeSchedNotSupported); 603 sched_getparam(0, ¶m); 604 if (param.sched_priority < max_priority) { 605 param.sched_priority += 1; 606 rc = sched_setscheduler(0, sched, ¶m); 607 if (rc != 0) { 608 int error = errno; 609 kmp_msg_t err_code = KMP_ERR(error); 610 __kmp_msg(kmp_ms_warning, KMP_MSG(CantChangeMonitorPriority), 611 err_code, KMP_MSG(MonitorWillStarve), __kmp_msg_null); 612 if (__kmp_generate_warnings == kmp_warnings_off) { 613 __kmp_str_free(&err_code.str); 614 } 615 } 616 } else { 617 // We cannot abort here, because number of CPUs may be enough for all 618 // the threads, including the monitor thread, so application could 619 // potentially work... 620 __kmp_msg(kmp_ms_warning, KMP_MSG(RunningAtMaxPriority), 621 KMP_MSG(MonitorWillStarve), KMP_HNT(RunningAtMaxPriority), 622 __kmp_msg_null); 623 } 624 } 625 // AC: free thread that waits for monitor started 626 TCW_4(__kmp_global.g.g_time.dt.t_value, 0); 627 } 628 #endif // KMP_REAL_TIME_FIX 629 630 KMP_MB(); /* Flush all pending memory write invalidates. */ 631 632 if (__kmp_monitor_wakeups == 1) { 633 interval.tv_sec = 1; 634 interval.tv_nsec = 0; 635 } else { 636 interval.tv_sec = 0; 637 interval.tv_nsec = (KMP_NSEC_PER_SEC / __kmp_monitor_wakeups); 638 } 639 640 KA_TRACE(10, ("__kmp_launch_monitor: #2 monitor\n")); 641 642 while (!TCR_4(__kmp_global.g.g_done)) { 643 struct timespec now; 644 struct timeval tval; 645 646 /* This thread monitors the state of the system */ 647 648 KA_TRACE(15, ("__kmp_launch_monitor: update\n")); 649 650 status = gettimeofday(&tval, NULL); 651 KMP_CHECK_SYSFAIL_ERRNO("gettimeofday", status); 652 TIMEVAL_TO_TIMESPEC(&tval, &now); 653 654 now.tv_sec += interval.tv_sec; 655 now.tv_nsec += interval.tv_nsec; 656 657 if (now.tv_nsec >= KMP_NSEC_PER_SEC) { 658 now.tv_sec += 1; 659 now.tv_nsec -= KMP_NSEC_PER_SEC; 660 } 661 662 status = pthread_mutex_lock(&__kmp_wait_mx.m_mutex); 663 KMP_CHECK_SYSFAIL("pthread_mutex_lock", status); 664 // AC: the monitor should not fall asleep if g_done has been set 665 if (!TCR_4(__kmp_global.g.g_done)) { // check once more under mutex 666 status = pthread_cond_timedwait(&__kmp_wait_cv.c_cond, 667 &__kmp_wait_mx.m_mutex, &now); 668 if (status != 0) { 669 if (status != ETIMEDOUT && status != EINTR) { 670 KMP_SYSFAIL("pthread_cond_timedwait", status); 671 } 672 } 673 } 674 status = pthread_mutex_unlock(&__kmp_wait_mx.m_mutex); 675 KMP_CHECK_SYSFAIL("pthread_mutex_unlock", status); 676 677 TCW_4(__kmp_global.g.g_time.dt.t_value, 678 TCR_4(__kmp_global.g.g_time.dt.t_value) + 1); 679 680 KMP_MB(); /* Flush all pending memory write invalidates. */ 681 } 682 683 KA_TRACE(10, ("__kmp_launch_monitor: #3 cleanup\n")); 684 685 #ifdef KMP_BLOCK_SIGNALS 686 status = sigfillset(&new_set); 687 KMP_CHECK_SYSFAIL_ERRNO("sigfillset", status); 688 status = pthread_sigmask(SIG_UNBLOCK, &new_set, NULL); 689 KMP_CHECK_SYSFAIL("pthread_sigmask", status); 690 #endif /* KMP_BLOCK_SIGNALS */ 691 692 KA_TRACE(10, ("__kmp_launch_monitor: #4 finished\n")); 693 694 if (__kmp_global.g.g_abort != 0) { 695 /* now we need to terminate the worker threads */ 696 /* the value of t_abort is the signal we caught */ 697 698 int gtid; 699 700 KA_TRACE(10, ("__kmp_launch_monitor: #5 terminate sig=%d\n", 701 __kmp_global.g.g_abort)); 702 703 /* terminate the OpenMP worker threads */ 704 /* TODO this is not valid for sibling threads!! 705 * the uber master might not be 0 anymore.. */ 706 for (gtid = 1; gtid < __kmp_threads_capacity; ++gtid) 707 __kmp_terminate_thread(gtid); 708 709 __kmp_cleanup(); 710 711 KA_TRACE(10, ("__kmp_launch_monitor: #6 raise sig=%d\n", 712 __kmp_global.g.g_abort)); 713 714 if (__kmp_global.g.g_abort > 0) 715 raise(__kmp_global.g.g_abort); 716 } 717 718 KA_TRACE(10, ("__kmp_launch_monitor: #7 exit\n")); 719 720 return thr; 721 } 722 #endif // KMP_USE_MONITOR 723 724 void __kmp_create_worker(int gtid, kmp_info_t *th, size_t stack_size) { 725 pthread_t handle; 726 pthread_attr_t thread_attr; 727 int status; 728 729 th->th.th_info.ds.ds_gtid = gtid; 730 731 #if KMP_STATS_ENABLED 732 // sets up worker thread stats 733 __kmp_acquire_tas_lock(&__kmp_stats_lock, gtid); 734 735 // th->th.th_stats is used to transfer thread-specific stats-pointer to 736 // __kmp_launch_worker. So when thread is created (goes into 737 // __kmp_launch_worker) it will set its thread local pointer to 738 // th->th.th_stats 739 if (!KMP_UBER_GTID(gtid)) { 740 th->th.th_stats = __kmp_stats_list->push_back(gtid); 741 } else { 742 // For root threads, __kmp_stats_thread_ptr is set in __kmp_register_root(), 743 // so set the th->th.th_stats field to it. 744 th->th.th_stats = __kmp_stats_thread_ptr; 745 } 746 __kmp_release_tas_lock(&__kmp_stats_lock, gtid); 747 748 #endif // KMP_STATS_ENABLED 749 750 if (KMP_UBER_GTID(gtid)) { 751 KA_TRACE(10, ("__kmp_create_worker: uber thread (%d)\n", gtid)); 752 th->th.th_info.ds.ds_thread = pthread_self(); 753 __kmp_set_stack_info(gtid, th); 754 __kmp_check_stack_overlap(th); 755 return; 756 } 757 758 KA_TRACE(10, ("__kmp_create_worker: try to create thread (%d)\n", gtid)); 759 760 KMP_MB(); /* Flush all pending memory write invalidates. */ 761 762 #ifdef KMP_THREAD_ATTR 763 status = pthread_attr_init(&thread_attr); 764 if (status != 0) { 765 __kmp_fatal(KMP_MSG(CantInitThreadAttrs), KMP_ERR(status), __kmp_msg_null); 766 } 767 status = pthread_attr_setdetachstate(&thread_attr, PTHREAD_CREATE_JOINABLE); 768 if (status != 0) { 769 __kmp_fatal(KMP_MSG(CantSetWorkerState), KMP_ERR(status), __kmp_msg_null); 770 } 771 772 /* Set stack size for this thread now. 773 The multiple of 2 is there because on some machines, requesting an unusual 774 stacksize causes the thread to have an offset before the dummy alloca() 775 takes place to create the offset. Since we want the user to have a 776 sufficient stacksize AND support a stack offset, we alloca() twice the 777 offset so that the upcoming alloca() does not eliminate any premade offset, 778 and also gives the user the stack space they requested for all threads */ 779 stack_size += gtid * __kmp_stkoffset * 2; 780 781 KA_TRACE(10, ("__kmp_create_worker: T#%d, default stacksize = %lu bytes, " 782 "__kmp_stksize = %lu bytes, final stacksize = %lu bytes\n", 783 gtid, KMP_DEFAULT_STKSIZE, __kmp_stksize, stack_size)); 784 785 #ifdef _POSIX_THREAD_ATTR_STACKSIZE 786 status = pthread_attr_setstacksize(&thread_attr, stack_size); 787 #ifdef KMP_BACKUP_STKSIZE 788 if (status != 0) { 789 if (!__kmp_env_stksize) { 790 stack_size = KMP_BACKUP_STKSIZE + gtid * __kmp_stkoffset; 791 __kmp_stksize = KMP_BACKUP_STKSIZE; 792 KA_TRACE(10, ("__kmp_create_worker: T#%d, default stacksize = %lu bytes, " 793 "__kmp_stksize = %lu bytes, (backup) final stacksize = %lu " 794 "bytes\n", 795 gtid, KMP_DEFAULT_STKSIZE, __kmp_stksize, stack_size)); 796 status = pthread_attr_setstacksize(&thread_attr, stack_size); 797 } 798 } 799 #endif /* KMP_BACKUP_STKSIZE */ 800 if (status != 0) { 801 __kmp_fatal(KMP_MSG(CantSetWorkerStackSize, stack_size), KMP_ERR(status), 802 KMP_HNT(ChangeWorkerStackSize), __kmp_msg_null); 803 } 804 #endif /* _POSIX_THREAD_ATTR_STACKSIZE */ 805 806 #endif /* KMP_THREAD_ATTR */ 807 808 status = 809 pthread_create(&handle, &thread_attr, __kmp_launch_worker, (void *)th); 810 if (status != 0 || !handle) { // ??? Why do we check handle?? 811 #ifdef _POSIX_THREAD_ATTR_STACKSIZE 812 if (status == EINVAL) { 813 __kmp_fatal(KMP_MSG(CantSetWorkerStackSize, stack_size), KMP_ERR(status), 814 KMP_HNT(IncreaseWorkerStackSize), __kmp_msg_null); 815 } 816 if (status == ENOMEM) { 817 __kmp_fatal(KMP_MSG(CantSetWorkerStackSize, stack_size), KMP_ERR(status), 818 KMP_HNT(DecreaseWorkerStackSize), __kmp_msg_null); 819 } 820 #endif /* _POSIX_THREAD_ATTR_STACKSIZE */ 821 if (status == EAGAIN) { 822 __kmp_fatal(KMP_MSG(NoResourcesForWorkerThread), KMP_ERR(status), 823 KMP_HNT(Decrease_NUM_THREADS), __kmp_msg_null); 824 } 825 KMP_SYSFAIL("pthread_create", status); 826 } 827 828 th->th.th_info.ds.ds_thread = handle; 829 830 #ifdef KMP_THREAD_ATTR 831 status = pthread_attr_destroy(&thread_attr); 832 if (status) { 833 kmp_msg_t err_code = KMP_ERR(status); 834 __kmp_msg(kmp_ms_warning, KMP_MSG(CantDestroyThreadAttrs), err_code, 835 __kmp_msg_null); 836 if (__kmp_generate_warnings == kmp_warnings_off) { 837 __kmp_str_free(&err_code.str); 838 } 839 } 840 #endif /* KMP_THREAD_ATTR */ 841 842 KMP_MB(); /* Flush all pending memory write invalidates. */ 843 844 KA_TRACE(10, ("__kmp_create_worker: done creating thread (%d)\n", gtid)); 845 846 } // __kmp_create_worker 847 848 #if KMP_USE_MONITOR 849 void __kmp_create_monitor(kmp_info_t *th) { 850 pthread_t handle; 851 pthread_attr_t thread_attr; 852 size_t size; 853 int status; 854 int auto_adj_size = FALSE; 855 856 if (__kmp_dflt_blocktime == KMP_MAX_BLOCKTIME) { 857 // We don't need monitor thread in case of MAX_BLOCKTIME 858 KA_TRACE(10, ("__kmp_create_monitor: skipping monitor thread because of " 859 "MAX blocktime\n")); 860 th->th.th_info.ds.ds_tid = 0; // this makes reap_monitor no-op 861 th->th.th_info.ds.ds_gtid = 0; 862 return; 863 } 864 KA_TRACE(10, ("__kmp_create_monitor: try to create monitor\n")); 865 866 KMP_MB(); /* Flush all pending memory write invalidates. */ 867 868 th->th.th_info.ds.ds_tid = KMP_GTID_MONITOR; 869 th->th.th_info.ds.ds_gtid = KMP_GTID_MONITOR; 870 #if KMP_REAL_TIME_FIX 871 TCW_4(__kmp_global.g.g_time.dt.t_value, 872 -1); // Will use it for synchronization a bit later. 873 #else 874 TCW_4(__kmp_global.g.g_time.dt.t_value, 0); 875 #endif // KMP_REAL_TIME_FIX 876 877 #ifdef KMP_THREAD_ATTR 878 if (__kmp_monitor_stksize == 0) { 879 __kmp_monitor_stksize = KMP_DEFAULT_MONITOR_STKSIZE; 880 auto_adj_size = TRUE; 881 } 882 status = pthread_attr_init(&thread_attr); 883 if (status != 0) { 884 __kmp_fatal(KMP_MSG(CantInitThreadAttrs), KMP_ERR(status), __kmp_msg_null); 885 } 886 status = pthread_attr_setdetachstate(&thread_attr, PTHREAD_CREATE_JOINABLE); 887 if (status != 0) { 888 __kmp_fatal(KMP_MSG(CantSetMonitorState), KMP_ERR(status), __kmp_msg_null); 889 } 890 891 #ifdef _POSIX_THREAD_ATTR_STACKSIZE 892 status = pthread_attr_getstacksize(&thread_attr, &size); 893 KMP_CHECK_SYSFAIL("pthread_attr_getstacksize", status); 894 #else 895 size = __kmp_sys_min_stksize; 896 #endif /* _POSIX_THREAD_ATTR_STACKSIZE */ 897 #endif /* KMP_THREAD_ATTR */ 898 899 if (__kmp_monitor_stksize == 0) { 900 __kmp_monitor_stksize = KMP_DEFAULT_MONITOR_STKSIZE; 901 } 902 if (__kmp_monitor_stksize < __kmp_sys_min_stksize) { 903 __kmp_monitor_stksize = __kmp_sys_min_stksize; 904 } 905 906 KA_TRACE(10, ("__kmp_create_monitor: default stacksize = %lu bytes," 907 "requested stacksize = %lu bytes\n", 908 size, __kmp_monitor_stksize)); 909 910 retry: 911 912 /* Set stack size for this thread now. */ 913 #ifdef _POSIX_THREAD_ATTR_STACKSIZE 914 KA_TRACE(10, ("__kmp_create_monitor: setting stacksize = %lu bytes,", 915 __kmp_monitor_stksize)); 916 status = pthread_attr_setstacksize(&thread_attr, __kmp_monitor_stksize); 917 if (status != 0) { 918 if (auto_adj_size) { 919 __kmp_monitor_stksize *= 2; 920 goto retry; 921 } 922 kmp_msg_t err_code = KMP_ERR(status); 923 __kmp_msg(kmp_ms_warning, // should this be fatal? BB 924 KMP_MSG(CantSetMonitorStackSize, (long int)__kmp_monitor_stksize), 925 err_code, KMP_HNT(ChangeMonitorStackSize), __kmp_msg_null); 926 if (__kmp_generate_warnings == kmp_warnings_off) { 927 __kmp_str_free(&err_code.str); 928 } 929 } 930 #endif /* _POSIX_THREAD_ATTR_STACKSIZE */ 931 932 status = 933 pthread_create(&handle, &thread_attr, __kmp_launch_monitor, (void *)th); 934 935 if (status != 0) { 936 #ifdef _POSIX_THREAD_ATTR_STACKSIZE 937 if (status == EINVAL) { 938 if (auto_adj_size && (__kmp_monitor_stksize < (size_t)0x40000000)) { 939 __kmp_monitor_stksize *= 2; 940 goto retry; 941 } 942 __kmp_fatal(KMP_MSG(CantSetMonitorStackSize, __kmp_monitor_stksize), 943 KMP_ERR(status), KMP_HNT(IncreaseMonitorStackSize), 944 __kmp_msg_null); 945 } 946 if (status == ENOMEM) { 947 __kmp_fatal(KMP_MSG(CantSetMonitorStackSize, __kmp_monitor_stksize), 948 KMP_ERR(status), KMP_HNT(DecreaseMonitorStackSize), 949 __kmp_msg_null); 950 } 951 #endif /* _POSIX_THREAD_ATTR_STACKSIZE */ 952 if (status == EAGAIN) { 953 __kmp_fatal(KMP_MSG(NoResourcesForMonitorThread), KMP_ERR(status), 954 KMP_HNT(DecreaseNumberOfThreadsInUse), __kmp_msg_null); 955 } 956 KMP_SYSFAIL("pthread_create", status); 957 } 958 959 th->th.th_info.ds.ds_thread = handle; 960 961 #if KMP_REAL_TIME_FIX 962 // Wait for the monitor thread is really started and set its *priority*. 963 KMP_DEBUG_ASSERT(sizeof(kmp_uint32) == 964 sizeof(__kmp_global.g.g_time.dt.t_value)); 965 __kmp_wait_4((kmp_uint32 volatile *)&__kmp_global.g.g_time.dt.t_value, -1, 966 &__kmp_neq_4, NULL); 967 #endif // KMP_REAL_TIME_FIX 968 969 #ifdef KMP_THREAD_ATTR 970 status = pthread_attr_destroy(&thread_attr); 971 if (status != 0) { 972 kmp_msg_t err_code = KMP_ERR(status); 973 __kmp_msg(kmp_ms_warning, KMP_MSG(CantDestroyThreadAttrs), err_code, 974 __kmp_msg_null); 975 if (__kmp_generate_warnings == kmp_warnings_off) { 976 __kmp_str_free(&err_code.str); 977 } 978 } 979 #endif 980 981 KMP_MB(); /* Flush all pending memory write invalidates. */ 982 983 KA_TRACE(10, ("__kmp_create_monitor: monitor created %#.8lx\n", 984 th->th.th_info.ds.ds_thread)); 985 986 } // __kmp_create_monitor 987 #endif // KMP_USE_MONITOR 988 989 void __kmp_exit_thread(int exit_status) { 990 #if KMP_OS_WASI 991 // TODO: the wasm32-wasi-threads target does not yet support pthread_exit. 992 #else 993 pthread_exit((void *)(intptr_t)exit_status); 994 #endif 995 } // __kmp_exit_thread 996 997 #if KMP_USE_MONITOR 998 void __kmp_resume_monitor(); 999 1000 extern "C" void __kmp_reap_monitor(kmp_info_t *th) { 1001 int status; 1002 void *exit_val; 1003 1004 KA_TRACE(10, ("__kmp_reap_monitor: try to reap monitor thread with handle" 1005 " %#.8lx\n", 1006 th->th.th_info.ds.ds_thread)); 1007 1008 // If monitor has been created, its tid and gtid should be KMP_GTID_MONITOR. 1009 // If both tid and gtid are 0, it means the monitor did not ever start. 1010 // If both tid and gtid are KMP_GTID_DNE, the monitor has been shut down. 1011 KMP_DEBUG_ASSERT(th->th.th_info.ds.ds_tid == th->th.th_info.ds.ds_gtid); 1012 if (th->th.th_info.ds.ds_gtid != KMP_GTID_MONITOR) { 1013 KA_TRACE(10, ("__kmp_reap_monitor: monitor did not start, returning\n")); 1014 return; 1015 } 1016 1017 KMP_MB(); /* Flush all pending memory write invalidates. */ 1018 1019 /* First, check to see whether the monitor thread exists to wake it up. This 1020 is to avoid performance problem when the monitor sleeps during 1021 blocktime-size interval */ 1022 1023 status = pthread_kill(th->th.th_info.ds.ds_thread, 0); 1024 if (status != ESRCH) { 1025 __kmp_resume_monitor(); // Wake up the monitor thread 1026 } 1027 KA_TRACE(10, ("__kmp_reap_monitor: try to join with monitor\n")); 1028 status = pthread_join(th->th.th_info.ds.ds_thread, &exit_val); 1029 if (exit_val != th) { 1030 __kmp_fatal(KMP_MSG(ReapMonitorError), KMP_ERR(status), __kmp_msg_null); 1031 } 1032 1033 th->th.th_info.ds.ds_tid = KMP_GTID_DNE; 1034 th->th.th_info.ds.ds_gtid = KMP_GTID_DNE; 1035 1036 KA_TRACE(10, ("__kmp_reap_monitor: done reaping monitor thread with handle" 1037 " %#.8lx\n", 1038 th->th.th_info.ds.ds_thread)); 1039 1040 KMP_MB(); /* Flush all pending memory write invalidates. */ 1041 } 1042 #else 1043 // Empty symbol to export (see exports_so.txt) when 1044 // monitor thread feature is disabled 1045 extern "C" void __kmp_reap_monitor(kmp_info_t *th) { 1046 (void)th; 1047 } 1048 #endif // KMP_USE_MONITOR 1049 1050 void __kmp_reap_worker(kmp_info_t *th) { 1051 int status; 1052 void *exit_val; 1053 1054 KMP_MB(); /* Flush all pending memory write invalidates. */ 1055 1056 KA_TRACE( 1057 10, ("__kmp_reap_worker: try to reap T#%d\n", th->th.th_info.ds.ds_gtid)); 1058 1059 status = pthread_join(th->th.th_info.ds.ds_thread, &exit_val); 1060 #ifdef KMP_DEBUG 1061 /* Don't expose these to the user until we understand when they trigger */ 1062 if (status != 0) { 1063 __kmp_fatal(KMP_MSG(ReapWorkerError), KMP_ERR(status), __kmp_msg_null); 1064 } 1065 if (exit_val != th) { 1066 KA_TRACE(10, ("__kmp_reap_worker: worker T#%d did not reap properly, " 1067 "exit_val = %p\n", 1068 th->th.th_info.ds.ds_gtid, exit_val)); 1069 } 1070 #else 1071 (void)status; // unused variable 1072 #endif /* KMP_DEBUG */ 1073 1074 KA_TRACE(10, ("__kmp_reap_worker: done reaping T#%d\n", 1075 th->th.th_info.ds.ds_gtid)); 1076 1077 KMP_MB(); /* Flush all pending memory write invalidates. */ 1078 } 1079 1080 #if KMP_HANDLE_SIGNALS 1081 1082 static void __kmp_null_handler(int signo) { 1083 // Do nothing, for doing SIG_IGN-type actions. 1084 } // __kmp_null_handler 1085 1086 static void __kmp_team_handler(int signo) { 1087 if (__kmp_global.g.g_abort == 0) { 1088 /* Stage 1 signal handler, let's shut down all of the threads */ 1089 #ifdef KMP_DEBUG 1090 __kmp_debug_printf("__kmp_team_handler: caught signal = %d\n", signo); 1091 #endif 1092 switch (signo) { 1093 case SIGHUP: 1094 case SIGINT: 1095 case SIGQUIT: 1096 case SIGILL: 1097 case SIGABRT: 1098 case SIGFPE: 1099 case SIGBUS: 1100 case SIGSEGV: 1101 #ifdef SIGSYS 1102 case SIGSYS: 1103 #endif 1104 case SIGTERM: 1105 if (__kmp_debug_buf) { 1106 __kmp_dump_debug_buffer(); 1107 } 1108 __kmp_unregister_library(); // cleanup shared memory 1109 KMP_MB(); // Flush all pending memory write invalidates. 1110 TCW_4(__kmp_global.g.g_abort, signo); 1111 KMP_MB(); // Flush all pending memory write invalidates. 1112 TCW_4(__kmp_global.g.g_done, TRUE); 1113 KMP_MB(); // Flush all pending memory write invalidates. 1114 break; 1115 default: 1116 #ifdef KMP_DEBUG 1117 __kmp_debug_printf("__kmp_team_handler: unknown signal type"); 1118 #endif 1119 break; 1120 } 1121 } 1122 } // __kmp_team_handler 1123 1124 static void __kmp_sigaction(int signum, const struct sigaction *act, 1125 struct sigaction *oldact) { 1126 int rc = sigaction(signum, act, oldact); 1127 KMP_CHECK_SYSFAIL_ERRNO("sigaction", rc); 1128 } 1129 1130 static void __kmp_install_one_handler(int sig, sig_func_t handler_func, 1131 int parallel_init) { 1132 KMP_MB(); // Flush all pending memory write invalidates. 1133 KB_TRACE(60, 1134 ("__kmp_install_one_handler( %d, ..., %d )\n", sig, parallel_init)); 1135 if (parallel_init) { 1136 struct sigaction new_action; 1137 struct sigaction old_action; 1138 new_action.sa_handler = handler_func; 1139 new_action.sa_flags = 0; 1140 sigfillset(&new_action.sa_mask); 1141 __kmp_sigaction(sig, &new_action, &old_action); 1142 if (old_action.sa_handler == __kmp_sighldrs[sig].sa_handler) { 1143 sigaddset(&__kmp_sigset, sig); 1144 } else { 1145 // Restore/keep user's handler if one previously installed. 1146 __kmp_sigaction(sig, &old_action, NULL); 1147 } 1148 } else { 1149 // Save initial/system signal handlers to see if user handlers installed. 1150 __kmp_sigaction(sig, NULL, &__kmp_sighldrs[sig]); 1151 } 1152 KMP_MB(); // Flush all pending memory write invalidates. 1153 } // __kmp_install_one_handler 1154 1155 static void __kmp_remove_one_handler(int sig) { 1156 KB_TRACE(60, ("__kmp_remove_one_handler( %d )\n", sig)); 1157 if (sigismember(&__kmp_sigset, sig)) { 1158 struct sigaction old; 1159 KMP_MB(); // Flush all pending memory write invalidates. 1160 __kmp_sigaction(sig, &__kmp_sighldrs[sig], &old); 1161 if ((old.sa_handler != __kmp_team_handler) && 1162 (old.sa_handler != __kmp_null_handler)) { 1163 // Restore the users signal handler. 1164 KB_TRACE(10, ("__kmp_remove_one_handler: oops, not our handler, " 1165 "restoring: sig=%d\n", 1166 sig)); 1167 __kmp_sigaction(sig, &old, NULL); 1168 } 1169 sigdelset(&__kmp_sigset, sig); 1170 KMP_MB(); // Flush all pending memory write invalidates. 1171 } 1172 } // __kmp_remove_one_handler 1173 1174 void __kmp_install_signals(int parallel_init) { 1175 KB_TRACE(10, ("__kmp_install_signals( %d )\n", parallel_init)); 1176 if (__kmp_handle_signals || !parallel_init) { 1177 // If ! parallel_init, we do not install handlers, just save original 1178 // handlers. Let us do it even __handle_signals is 0. 1179 sigemptyset(&__kmp_sigset); 1180 __kmp_install_one_handler(SIGHUP, __kmp_team_handler, parallel_init); 1181 __kmp_install_one_handler(SIGINT, __kmp_team_handler, parallel_init); 1182 __kmp_install_one_handler(SIGQUIT, __kmp_team_handler, parallel_init); 1183 __kmp_install_one_handler(SIGILL, __kmp_team_handler, parallel_init); 1184 __kmp_install_one_handler(SIGABRT, __kmp_team_handler, parallel_init); 1185 __kmp_install_one_handler(SIGFPE, __kmp_team_handler, parallel_init); 1186 __kmp_install_one_handler(SIGBUS, __kmp_team_handler, parallel_init); 1187 __kmp_install_one_handler(SIGSEGV, __kmp_team_handler, parallel_init); 1188 #ifdef SIGSYS 1189 __kmp_install_one_handler(SIGSYS, __kmp_team_handler, parallel_init); 1190 #endif // SIGSYS 1191 __kmp_install_one_handler(SIGTERM, __kmp_team_handler, parallel_init); 1192 #ifdef SIGPIPE 1193 __kmp_install_one_handler(SIGPIPE, __kmp_team_handler, parallel_init); 1194 #endif // SIGPIPE 1195 } 1196 } // __kmp_install_signals 1197 1198 void __kmp_remove_signals(void) { 1199 int sig; 1200 KB_TRACE(10, ("__kmp_remove_signals()\n")); 1201 for (sig = 1; sig < NSIG; ++sig) { 1202 __kmp_remove_one_handler(sig); 1203 } 1204 } // __kmp_remove_signals 1205 1206 #endif // KMP_HANDLE_SIGNALS 1207 1208 void __kmp_enable(int new_state) { 1209 #ifdef KMP_CANCEL_THREADS 1210 int status, old_state; 1211 status = pthread_setcancelstate(new_state, &old_state); 1212 KMP_CHECK_SYSFAIL("pthread_setcancelstate", status); 1213 KMP_DEBUG_ASSERT(old_state == PTHREAD_CANCEL_DISABLE); 1214 #endif 1215 } 1216 1217 void __kmp_disable(int *old_state) { 1218 #ifdef KMP_CANCEL_THREADS 1219 int status; 1220 status = pthread_setcancelstate(PTHREAD_CANCEL_DISABLE, old_state); 1221 KMP_CHECK_SYSFAIL("pthread_setcancelstate", status); 1222 #endif 1223 } 1224 1225 static void __kmp_atfork_prepare(void) { 1226 __kmp_acquire_bootstrap_lock(&__kmp_initz_lock); 1227 __kmp_acquire_bootstrap_lock(&__kmp_forkjoin_lock); 1228 } 1229 1230 static void __kmp_atfork_parent(void) { 1231 __kmp_release_bootstrap_lock(&__kmp_forkjoin_lock); 1232 __kmp_release_bootstrap_lock(&__kmp_initz_lock); 1233 } 1234 1235 /* Reset the library so execution in the child starts "all over again" with 1236 clean data structures in initial states. Don't worry about freeing memory 1237 allocated by parent, just abandon it to be safe. */ 1238 static void __kmp_atfork_child(void) { 1239 __kmp_release_bootstrap_lock(&__kmp_forkjoin_lock); 1240 __kmp_release_bootstrap_lock(&__kmp_initz_lock); 1241 /* TODO make sure this is done right for nested/sibling */ 1242 // ATT: Memory leaks are here? TODO: Check it and fix. 1243 /* KMP_ASSERT( 0 ); */ 1244 1245 ++__kmp_fork_count; 1246 1247 #if KMP_AFFINITY_SUPPORTED 1248 #if KMP_OS_LINUX || KMP_OS_FREEBSD 1249 // reset the affinity in the child to the initial thread 1250 // affinity in the parent 1251 kmp_set_thread_affinity_mask_initial(); 1252 #endif 1253 // Set default not to bind threads tightly in the child (we're expecting 1254 // over-subscription after the fork and this can improve things for 1255 // scripting languages that use OpenMP inside process-parallel code). 1256 if (__kmp_nested_proc_bind.bind_types != NULL) { 1257 __kmp_nested_proc_bind.bind_types[0] = proc_bind_false; 1258 } 1259 for (kmp_affinity_t *affinity : __kmp_affinities) 1260 *affinity = KMP_AFFINITY_INIT(affinity->env_var); 1261 __kmp_affin_fullMask = nullptr; 1262 __kmp_affin_origMask = nullptr; 1263 __kmp_topology = nullptr; 1264 #endif // KMP_AFFINITY_SUPPORTED 1265 1266 #if KMP_USE_MONITOR 1267 __kmp_init_monitor = 0; 1268 #endif 1269 __kmp_init_parallel = FALSE; 1270 __kmp_init_middle = FALSE; 1271 __kmp_init_serial = FALSE; 1272 TCW_4(__kmp_init_gtid, FALSE); 1273 __kmp_init_common = FALSE; 1274 1275 TCW_4(__kmp_init_user_locks, FALSE); 1276 #if !KMP_USE_DYNAMIC_LOCK 1277 __kmp_user_lock_table.used = 1; 1278 __kmp_user_lock_table.allocated = 0; 1279 __kmp_user_lock_table.table = NULL; 1280 __kmp_lock_blocks = NULL; 1281 #endif 1282 1283 __kmp_all_nth = 0; 1284 TCW_4(__kmp_nth, 0); 1285 1286 __kmp_thread_pool = NULL; 1287 __kmp_thread_pool_insert_pt = NULL; 1288 __kmp_team_pool = NULL; 1289 1290 /* Must actually zero all the *cache arguments passed to __kmpc_threadprivate 1291 here so threadprivate doesn't use stale data */ 1292 KA_TRACE(10, ("__kmp_atfork_child: checking cache address list %p\n", 1293 __kmp_threadpriv_cache_list)); 1294 1295 while (__kmp_threadpriv_cache_list != NULL) { 1296 1297 if (*__kmp_threadpriv_cache_list->addr != NULL) { 1298 KC_TRACE(50, ("__kmp_atfork_child: zeroing cache at address %p\n", 1299 &(*__kmp_threadpriv_cache_list->addr))); 1300 1301 *__kmp_threadpriv_cache_list->addr = NULL; 1302 } 1303 __kmp_threadpriv_cache_list = __kmp_threadpriv_cache_list->next; 1304 } 1305 1306 __kmp_init_runtime = FALSE; 1307 1308 /* reset statically initialized locks */ 1309 __kmp_init_bootstrap_lock(&__kmp_initz_lock); 1310 __kmp_init_bootstrap_lock(&__kmp_stdio_lock); 1311 __kmp_init_bootstrap_lock(&__kmp_console_lock); 1312 __kmp_init_bootstrap_lock(&__kmp_task_team_lock); 1313 1314 #if USE_ITT_BUILD 1315 __kmp_itt_reset(); // reset ITT's global state 1316 #endif /* USE_ITT_BUILD */ 1317 1318 { 1319 // Child process often get terminated without any use of OpenMP. That might 1320 // cause mapped shared memory file to be left unattended. Thus we postpone 1321 // library registration till middle initialization in the child process. 1322 __kmp_need_register_serial = FALSE; 1323 __kmp_serial_initialize(); 1324 } 1325 1326 /* This is necessary to make sure no stale data is left around */ 1327 /* AC: customers complain that we use unsafe routines in the atfork 1328 handler. Mathworks: dlsym() is unsafe. We call dlsym and dlopen 1329 in dynamic_link when check the presence of shared tbbmalloc library. 1330 Suggestion is to make the library initialization lazier, similar 1331 to what done for __kmpc_begin(). */ 1332 // TODO: synchronize all static initializations with regular library 1333 // startup; look at kmp_global.cpp and etc. 1334 //__kmp_internal_begin (); 1335 } 1336 1337 void __kmp_register_atfork(void) { 1338 if (__kmp_need_register_atfork) { 1339 #if !KMP_OS_WASI 1340 int status = pthread_atfork(__kmp_atfork_prepare, __kmp_atfork_parent, 1341 __kmp_atfork_child); 1342 KMP_CHECK_SYSFAIL("pthread_atfork", status); 1343 #endif 1344 __kmp_need_register_atfork = FALSE; 1345 } 1346 } 1347 1348 void __kmp_suspend_initialize(void) { 1349 int status; 1350 status = pthread_mutexattr_init(&__kmp_suspend_mutex_attr); 1351 KMP_CHECK_SYSFAIL("pthread_mutexattr_init", status); 1352 status = pthread_condattr_init(&__kmp_suspend_cond_attr); 1353 KMP_CHECK_SYSFAIL("pthread_condattr_init", status); 1354 } 1355 1356 void __kmp_suspend_initialize_thread(kmp_info_t *th) { 1357 int old_value = KMP_ATOMIC_LD_RLX(&th->th.th_suspend_init_count); 1358 int new_value = __kmp_fork_count + 1; 1359 // Return if already initialized 1360 if (old_value == new_value) 1361 return; 1362 // Wait, then return if being initialized 1363 if (old_value == -1 || !__kmp_atomic_compare_store( 1364 &th->th.th_suspend_init_count, old_value, -1)) { 1365 while (KMP_ATOMIC_LD_ACQ(&th->th.th_suspend_init_count) != new_value) { 1366 KMP_CPU_PAUSE(); 1367 } 1368 } else { 1369 // Claim to be the initializer and do initializations 1370 int status; 1371 status = pthread_cond_init(&th->th.th_suspend_cv.c_cond, 1372 &__kmp_suspend_cond_attr); 1373 KMP_CHECK_SYSFAIL("pthread_cond_init", status); 1374 status = pthread_mutex_init(&th->th.th_suspend_mx.m_mutex, 1375 &__kmp_suspend_mutex_attr); 1376 KMP_CHECK_SYSFAIL("pthread_mutex_init", status); 1377 KMP_ATOMIC_ST_REL(&th->th.th_suspend_init_count, new_value); 1378 } 1379 } 1380 1381 void __kmp_suspend_uninitialize_thread(kmp_info_t *th) { 1382 if (KMP_ATOMIC_LD_ACQ(&th->th.th_suspend_init_count) > __kmp_fork_count) { 1383 /* this means we have initialize the suspension pthread objects for this 1384 thread in this instance of the process */ 1385 int status; 1386 1387 status = pthread_cond_destroy(&th->th.th_suspend_cv.c_cond); 1388 if (status != 0 && status != EBUSY) { 1389 KMP_SYSFAIL("pthread_cond_destroy", status); 1390 } 1391 status = pthread_mutex_destroy(&th->th.th_suspend_mx.m_mutex); 1392 if (status != 0 && status != EBUSY) { 1393 KMP_SYSFAIL("pthread_mutex_destroy", status); 1394 } 1395 --th->th.th_suspend_init_count; 1396 KMP_DEBUG_ASSERT(KMP_ATOMIC_LD_RLX(&th->th.th_suspend_init_count) == 1397 __kmp_fork_count); 1398 } 1399 } 1400 1401 // return true if lock obtained, false otherwise 1402 int __kmp_try_suspend_mx(kmp_info_t *th) { 1403 return (pthread_mutex_trylock(&th->th.th_suspend_mx.m_mutex) == 0); 1404 } 1405 1406 void __kmp_lock_suspend_mx(kmp_info_t *th) { 1407 int status = pthread_mutex_lock(&th->th.th_suspend_mx.m_mutex); 1408 KMP_CHECK_SYSFAIL("pthread_mutex_lock", status); 1409 } 1410 1411 void __kmp_unlock_suspend_mx(kmp_info_t *th) { 1412 int status = pthread_mutex_unlock(&th->th.th_suspend_mx.m_mutex); 1413 KMP_CHECK_SYSFAIL("pthread_mutex_unlock", status); 1414 } 1415 1416 /* This routine puts the calling thread to sleep after setting the 1417 sleep bit for the indicated flag variable to true. */ 1418 template <class C> 1419 static inline void __kmp_suspend_template(int th_gtid, C *flag) { 1420 KMP_TIME_DEVELOPER_PARTITIONED_BLOCK(USER_suspend); 1421 kmp_info_t *th = __kmp_threads[th_gtid]; 1422 int status; 1423 typename C::flag_t old_spin; 1424 1425 KF_TRACE(30, ("__kmp_suspend_template: T#%d enter for flag = %p\n", th_gtid, 1426 flag->get())); 1427 1428 __kmp_suspend_initialize_thread(th); 1429 1430 __kmp_lock_suspend_mx(th); 1431 1432 KF_TRACE(10, ("__kmp_suspend_template: T#%d setting sleep bit for spin(%p)\n", 1433 th_gtid, flag->get())); 1434 1435 /* TODO: shouldn't this use release semantics to ensure that 1436 __kmp_suspend_initialize_thread gets called first? */ 1437 old_spin = flag->set_sleeping(); 1438 TCW_PTR(th->th.th_sleep_loc, (void *)flag); 1439 th->th.th_sleep_loc_type = flag->get_type(); 1440 if (__kmp_dflt_blocktime == KMP_MAX_BLOCKTIME && 1441 __kmp_pause_status != kmp_soft_paused) { 1442 flag->unset_sleeping(); 1443 TCW_PTR(th->th.th_sleep_loc, NULL); 1444 th->th.th_sleep_loc_type = flag_unset; 1445 __kmp_unlock_suspend_mx(th); 1446 return; 1447 } 1448 KF_TRACE(5, ("__kmp_suspend_template: T#%d set sleep bit for spin(%p)==%x," 1449 " was %x\n", 1450 th_gtid, flag->get(), flag->load(), old_spin)); 1451 1452 if (flag->done_check_val(old_spin) || flag->done_check()) { 1453 flag->unset_sleeping(); 1454 TCW_PTR(th->th.th_sleep_loc, NULL); 1455 th->th.th_sleep_loc_type = flag_unset; 1456 KF_TRACE(5, ("__kmp_suspend_template: T#%d false alarm, reset sleep bit " 1457 "for spin(%p)\n", 1458 th_gtid, flag->get())); 1459 } else { 1460 /* Encapsulate in a loop as the documentation states that this may 1461 "with low probability" return when the condition variable has 1462 not been signaled or broadcast */ 1463 int deactivated = FALSE; 1464 1465 while (flag->is_sleeping()) { 1466 #ifdef DEBUG_SUSPEND 1467 char buffer[128]; 1468 __kmp_suspend_count++; 1469 __kmp_print_cond(buffer, &th->th.th_suspend_cv); 1470 __kmp_printf("__kmp_suspend_template: suspending T#%d: %s\n", th_gtid, 1471 buffer); 1472 #endif 1473 // Mark the thread as no longer active (only in the first iteration of the 1474 // loop). 1475 if (!deactivated) { 1476 th->th.th_active = FALSE; 1477 if (th->th.th_active_in_pool) { 1478 th->th.th_active_in_pool = FALSE; 1479 KMP_ATOMIC_DEC(&__kmp_thread_pool_active_nth); 1480 KMP_DEBUG_ASSERT(TCR_4(__kmp_thread_pool_active_nth) >= 0); 1481 } 1482 deactivated = TRUE; 1483 } 1484 1485 KMP_DEBUG_ASSERT(th->th.th_sleep_loc); 1486 KMP_DEBUG_ASSERT(flag->get_type() == th->th.th_sleep_loc_type); 1487 1488 #if USE_SUSPEND_TIMEOUT 1489 struct timespec now; 1490 struct timeval tval; 1491 int msecs; 1492 1493 status = gettimeofday(&tval, NULL); 1494 KMP_CHECK_SYSFAIL_ERRNO("gettimeofday", status); 1495 TIMEVAL_TO_TIMESPEC(&tval, &now); 1496 1497 msecs = (4 * __kmp_dflt_blocktime) + 200; 1498 now.tv_sec += msecs / 1000; 1499 now.tv_nsec += (msecs % 1000) * 1000; 1500 1501 KF_TRACE(15, ("__kmp_suspend_template: T#%d about to perform " 1502 "pthread_cond_timedwait\n", 1503 th_gtid)); 1504 status = pthread_cond_timedwait(&th->th.th_suspend_cv.c_cond, 1505 &th->th.th_suspend_mx.m_mutex, &now); 1506 #else 1507 KF_TRACE(15, ("__kmp_suspend_template: T#%d about to perform" 1508 " pthread_cond_wait\n", 1509 th_gtid)); 1510 status = pthread_cond_wait(&th->th.th_suspend_cv.c_cond, 1511 &th->th.th_suspend_mx.m_mutex); 1512 #endif // USE_SUSPEND_TIMEOUT 1513 1514 if ((status != 0) && (status != EINTR) && (status != ETIMEDOUT)) { 1515 KMP_SYSFAIL("pthread_cond_wait", status); 1516 } 1517 1518 KMP_DEBUG_ASSERT(flag->get_type() == flag->get_ptr_type()); 1519 1520 if (!flag->is_sleeping() && 1521 ((status == EINTR) || (status == ETIMEDOUT))) { 1522 // if interrupt or timeout, and thread is no longer sleeping, we need to 1523 // make sure sleep_loc gets reset; however, this shouldn't be needed if 1524 // we woke up with resume 1525 flag->unset_sleeping(); 1526 TCW_PTR(th->th.th_sleep_loc, NULL); 1527 th->th.th_sleep_loc_type = flag_unset; 1528 } 1529 #ifdef KMP_DEBUG 1530 if (status == ETIMEDOUT) { 1531 if (flag->is_sleeping()) { 1532 KF_TRACE(100, 1533 ("__kmp_suspend_template: T#%d timeout wakeup\n", th_gtid)); 1534 } else { 1535 KF_TRACE(2, ("__kmp_suspend_template: T#%d timeout wakeup, sleep bit " 1536 "not set!\n", 1537 th_gtid)); 1538 TCW_PTR(th->th.th_sleep_loc, NULL); 1539 th->th.th_sleep_loc_type = flag_unset; 1540 } 1541 } else if (flag->is_sleeping()) { 1542 KF_TRACE(100, 1543 ("__kmp_suspend_template: T#%d spurious wakeup\n", th_gtid)); 1544 } 1545 #endif 1546 } // while 1547 1548 // Mark the thread as active again (if it was previous marked as inactive) 1549 if (deactivated) { 1550 th->th.th_active = TRUE; 1551 if (TCR_4(th->th.th_in_pool)) { 1552 KMP_ATOMIC_INC(&__kmp_thread_pool_active_nth); 1553 th->th.th_active_in_pool = TRUE; 1554 } 1555 } 1556 } 1557 // We may have had the loop variable set before entering the loop body; 1558 // so we need to reset sleep_loc. 1559 TCW_PTR(th->th.th_sleep_loc, NULL); 1560 th->th.th_sleep_loc_type = flag_unset; 1561 1562 KMP_DEBUG_ASSERT(!flag->is_sleeping()); 1563 KMP_DEBUG_ASSERT(!th->th.th_sleep_loc); 1564 #ifdef DEBUG_SUSPEND 1565 { 1566 char buffer[128]; 1567 __kmp_print_cond(buffer, &th->th.th_suspend_cv); 1568 __kmp_printf("__kmp_suspend_template: T#%d has awakened: %s\n", th_gtid, 1569 buffer); 1570 } 1571 #endif 1572 1573 __kmp_unlock_suspend_mx(th); 1574 KF_TRACE(30, ("__kmp_suspend_template: T#%d exit\n", th_gtid)); 1575 } 1576 1577 template <bool C, bool S> 1578 void __kmp_suspend_32(int th_gtid, kmp_flag_32<C, S> *flag) { 1579 __kmp_suspend_template(th_gtid, flag); 1580 } 1581 template <bool C, bool S> 1582 void __kmp_suspend_64(int th_gtid, kmp_flag_64<C, S> *flag) { 1583 __kmp_suspend_template(th_gtid, flag); 1584 } 1585 template <bool C, bool S> 1586 void __kmp_atomic_suspend_64(int th_gtid, kmp_atomic_flag_64<C, S> *flag) { 1587 __kmp_suspend_template(th_gtid, flag); 1588 } 1589 void __kmp_suspend_oncore(int th_gtid, kmp_flag_oncore *flag) { 1590 __kmp_suspend_template(th_gtid, flag); 1591 } 1592 1593 template void __kmp_suspend_32<false, false>(int, kmp_flag_32<false, false> *); 1594 template void __kmp_suspend_64<false, true>(int, kmp_flag_64<false, true> *); 1595 template void __kmp_suspend_64<true, false>(int, kmp_flag_64<true, false> *); 1596 template void 1597 __kmp_atomic_suspend_64<false, true>(int, kmp_atomic_flag_64<false, true> *); 1598 template void 1599 __kmp_atomic_suspend_64<true, false>(int, kmp_atomic_flag_64<true, false> *); 1600 1601 /* This routine signals the thread specified by target_gtid to wake up 1602 after setting the sleep bit indicated by the flag argument to FALSE. 1603 The target thread must already have called __kmp_suspend_template() */ 1604 template <class C> 1605 static inline void __kmp_resume_template(int target_gtid, C *flag) { 1606 KMP_TIME_DEVELOPER_PARTITIONED_BLOCK(USER_resume); 1607 kmp_info_t *th = __kmp_threads[target_gtid]; 1608 int status; 1609 1610 #ifdef KMP_DEBUG 1611 int gtid = TCR_4(__kmp_init_gtid) ? __kmp_get_gtid() : -1; 1612 #endif 1613 1614 KF_TRACE(30, ("__kmp_resume_template: T#%d wants to wakeup T#%d enter\n", 1615 gtid, target_gtid)); 1616 KMP_DEBUG_ASSERT(gtid != target_gtid); 1617 1618 __kmp_suspend_initialize_thread(th); 1619 1620 __kmp_lock_suspend_mx(th); 1621 1622 if (!flag || flag != th->th.th_sleep_loc) { 1623 // coming from __kmp_null_resume_wrapper, or thread is now sleeping on a 1624 // different location; wake up at new location 1625 flag = (C *)CCAST(void *, th->th.th_sleep_loc); 1626 } 1627 1628 // First, check if the flag is null or its type has changed. If so, someone 1629 // else woke it up. 1630 if (!flag) { // Thread doesn't appear to be sleeping on anything 1631 KF_TRACE(5, ("__kmp_resume_template: T#%d exiting, thread T#%d already " 1632 "awake: flag(%p)\n", 1633 gtid, target_gtid, (void *)NULL)); 1634 __kmp_unlock_suspend_mx(th); 1635 return; 1636 } else if (flag->get_type() != th->th.th_sleep_loc_type) { 1637 // Flag type does not appear to match this function template; possibly the 1638 // thread is sleeping on something else. Try null resume again. 1639 KF_TRACE( 1640 5, 1641 ("__kmp_resume_template: T#%d retrying, thread T#%d Mismatch flag(%p), " 1642 "spin(%p) type=%d ptr_type=%d\n", 1643 gtid, target_gtid, flag, flag->get(), flag->get_type(), 1644 th->th.th_sleep_loc_type)); 1645 __kmp_unlock_suspend_mx(th); 1646 __kmp_null_resume_wrapper(th); 1647 return; 1648 } else { // if multiple threads are sleeping, flag should be internally 1649 // referring to a specific thread here 1650 if (!flag->is_sleeping()) { 1651 KF_TRACE(5, ("__kmp_resume_template: T#%d exiting, thread T#%d already " 1652 "awake: flag(%p): %u\n", 1653 gtid, target_gtid, flag->get(), (unsigned int)flag->load())); 1654 __kmp_unlock_suspend_mx(th); 1655 return; 1656 } 1657 } 1658 KMP_DEBUG_ASSERT(flag); 1659 flag->unset_sleeping(); 1660 TCW_PTR(th->th.th_sleep_loc, NULL); 1661 th->th.th_sleep_loc_type = flag_unset; 1662 1663 KF_TRACE(5, ("__kmp_resume_template: T#%d about to wakeup T#%d, reset " 1664 "sleep bit for flag's loc(%p): %u\n", 1665 gtid, target_gtid, flag->get(), (unsigned int)flag->load())); 1666 1667 #ifdef DEBUG_SUSPEND 1668 { 1669 char buffer[128]; 1670 __kmp_print_cond(buffer, &th->th.th_suspend_cv); 1671 __kmp_printf("__kmp_resume_template: T#%d resuming T#%d: %s\n", gtid, 1672 target_gtid, buffer); 1673 } 1674 #endif 1675 status = pthread_cond_signal(&th->th.th_suspend_cv.c_cond); 1676 KMP_CHECK_SYSFAIL("pthread_cond_signal", status); 1677 __kmp_unlock_suspend_mx(th); 1678 KF_TRACE(30, ("__kmp_resume_template: T#%d exiting after signaling wake up" 1679 " for T#%d\n", 1680 gtid, target_gtid)); 1681 } 1682 1683 template <bool C, bool S> 1684 void __kmp_resume_32(int target_gtid, kmp_flag_32<C, S> *flag) { 1685 __kmp_resume_template(target_gtid, flag); 1686 } 1687 template <bool C, bool S> 1688 void __kmp_resume_64(int target_gtid, kmp_flag_64<C, S> *flag) { 1689 __kmp_resume_template(target_gtid, flag); 1690 } 1691 template <bool C, bool S> 1692 void __kmp_atomic_resume_64(int target_gtid, kmp_atomic_flag_64<C, S> *flag) { 1693 __kmp_resume_template(target_gtid, flag); 1694 } 1695 void __kmp_resume_oncore(int target_gtid, kmp_flag_oncore *flag) { 1696 __kmp_resume_template(target_gtid, flag); 1697 } 1698 1699 template void __kmp_resume_32<false, true>(int, kmp_flag_32<false, true> *); 1700 template void __kmp_resume_32<false, false>(int, kmp_flag_32<false, false> *); 1701 template void __kmp_resume_64<false, true>(int, kmp_flag_64<false, true> *); 1702 template void 1703 __kmp_atomic_resume_64<false, true>(int, kmp_atomic_flag_64<false, true> *); 1704 1705 #if KMP_USE_MONITOR 1706 void __kmp_resume_monitor() { 1707 KMP_TIME_DEVELOPER_PARTITIONED_BLOCK(USER_resume); 1708 int status; 1709 #ifdef KMP_DEBUG 1710 int gtid = TCR_4(__kmp_init_gtid) ? __kmp_get_gtid() : -1; 1711 KF_TRACE(30, ("__kmp_resume_monitor: T#%d wants to wakeup T#%d enter\n", gtid, 1712 KMP_GTID_MONITOR)); 1713 KMP_DEBUG_ASSERT(gtid != KMP_GTID_MONITOR); 1714 #endif 1715 status = pthread_mutex_lock(&__kmp_wait_mx.m_mutex); 1716 KMP_CHECK_SYSFAIL("pthread_mutex_lock", status); 1717 #ifdef DEBUG_SUSPEND 1718 { 1719 char buffer[128]; 1720 __kmp_print_cond(buffer, &__kmp_wait_cv.c_cond); 1721 __kmp_printf("__kmp_resume_monitor: T#%d resuming T#%d: %s\n", gtid, 1722 KMP_GTID_MONITOR, buffer); 1723 } 1724 #endif 1725 status = pthread_cond_signal(&__kmp_wait_cv.c_cond); 1726 KMP_CHECK_SYSFAIL("pthread_cond_signal", status); 1727 status = pthread_mutex_unlock(&__kmp_wait_mx.m_mutex); 1728 KMP_CHECK_SYSFAIL("pthread_mutex_unlock", status); 1729 KF_TRACE(30, ("__kmp_resume_monitor: T#%d exiting after signaling wake up" 1730 " for T#%d\n", 1731 gtid, KMP_GTID_MONITOR)); 1732 } 1733 #endif // KMP_USE_MONITOR 1734 1735 void __kmp_yield() { sched_yield(); } 1736 1737 void __kmp_gtid_set_specific(int gtid) { 1738 if (__kmp_init_gtid) { 1739 int status; 1740 status = pthread_setspecific(__kmp_gtid_threadprivate_key, 1741 (void *)(intptr_t)(gtid + 1)); 1742 KMP_CHECK_SYSFAIL("pthread_setspecific", status); 1743 } else { 1744 KA_TRACE(50, ("__kmp_gtid_set_specific: runtime shutdown, returning\n")); 1745 } 1746 } 1747 1748 int __kmp_gtid_get_specific() { 1749 int gtid; 1750 if (!__kmp_init_gtid) { 1751 KA_TRACE(50, ("__kmp_gtid_get_specific: runtime shutdown, returning " 1752 "KMP_GTID_SHUTDOWN\n")); 1753 return KMP_GTID_SHUTDOWN; 1754 } 1755 gtid = (int)(size_t)pthread_getspecific(__kmp_gtid_threadprivate_key); 1756 if (gtid == 0) { 1757 gtid = KMP_GTID_DNE; 1758 } else { 1759 gtid--; 1760 } 1761 KA_TRACE(50, ("__kmp_gtid_get_specific: key:%d gtid:%d\n", 1762 __kmp_gtid_threadprivate_key, gtid)); 1763 return gtid; 1764 } 1765 1766 double __kmp_read_cpu_time(void) { 1767 /*clock_t t;*/ 1768 struct tms buffer; 1769 1770 /*t =*/times(&buffer); 1771 1772 return (double)(buffer.tms_utime + buffer.tms_cutime) / 1773 (double)CLOCKS_PER_SEC; 1774 } 1775 1776 int __kmp_read_system_info(struct kmp_sys_info *info) { 1777 int status; 1778 struct rusage r_usage; 1779 1780 memset(info, 0, sizeof(*info)); 1781 1782 status = getrusage(RUSAGE_SELF, &r_usage); 1783 KMP_CHECK_SYSFAIL_ERRNO("getrusage", status); 1784 1785 #if !KMP_OS_WASI 1786 // The maximum resident set size utilized (in kilobytes) 1787 info->maxrss = r_usage.ru_maxrss; 1788 // The number of page faults serviced without any I/O 1789 info->minflt = r_usage.ru_minflt; 1790 // The number of page faults serviced that required I/O 1791 info->majflt = r_usage.ru_majflt; 1792 // The number of times a process was "swapped" out of memory 1793 info->nswap = r_usage.ru_nswap; 1794 // The number of times the file system had to perform input 1795 info->inblock = r_usage.ru_inblock; 1796 // The number of times the file system had to perform output 1797 info->oublock = r_usage.ru_oublock; 1798 // The number of times a context switch was voluntarily 1799 info->nvcsw = r_usage.ru_nvcsw; 1800 // The number of times a context switch was forced 1801 info->nivcsw = r_usage.ru_nivcsw; 1802 #endif 1803 1804 return (status != 0); 1805 } 1806 1807 void __kmp_read_system_time(double *delta) { 1808 double t_ns; 1809 struct timeval tval; 1810 struct timespec stop; 1811 int status; 1812 1813 status = gettimeofday(&tval, NULL); 1814 KMP_CHECK_SYSFAIL_ERRNO("gettimeofday", status); 1815 TIMEVAL_TO_TIMESPEC(&tval, &stop); 1816 t_ns = (double)(TS2NS(stop) - TS2NS(__kmp_sys_timer_data.start)); 1817 *delta = (t_ns * 1e-9); 1818 } 1819 1820 void __kmp_clear_system_time(void) { 1821 struct timeval tval; 1822 int status; 1823 status = gettimeofday(&tval, NULL); 1824 KMP_CHECK_SYSFAIL_ERRNO("gettimeofday", status); 1825 TIMEVAL_TO_TIMESPEC(&tval, &__kmp_sys_timer_data.start); 1826 } 1827 1828 static int __kmp_get_xproc(void) { 1829 1830 int r = 0; 1831 1832 #if KMP_OS_LINUX 1833 1834 __kmp_type_convert(sysconf(_SC_NPROCESSORS_CONF), &(r)); 1835 1836 #elif KMP_OS_DRAGONFLY || KMP_OS_FREEBSD || KMP_OS_NETBSD || KMP_OS_OPENBSD || \ 1837 KMP_OS_HURD || KMP_OS_SOLARIS || KMP_OS_WASI || KMP_OS_AIX 1838 1839 __kmp_type_convert(sysconf(_SC_NPROCESSORS_ONLN), &(r)); 1840 1841 #elif KMP_OS_DARWIN 1842 1843 // Bug C77011 High "OpenMP Threads and number of active cores". 1844 1845 // Find the number of available CPUs. 1846 kern_return_t rc; 1847 host_basic_info_data_t info; 1848 mach_msg_type_number_t num = HOST_BASIC_INFO_COUNT; 1849 rc = host_info(mach_host_self(), HOST_BASIC_INFO, (host_info_t)&info, &num); 1850 if (rc == 0 && num == HOST_BASIC_INFO_COUNT) { 1851 // Cannot use KA_TRACE() here because this code works before trace support 1852 // is initialized. 1853 r = info.avail_cpus; 1854 } else { 1855 KMP_WARNING(CantGetNumAvailCPU); 1856 KMP_INFORM(AssumedNumCPU); 1857 } 1858 1859 #else 1860 1861 #error "Unknown or unsupported OS." 1862 1863 #endif 1864 1865 return r > 0 ? r : 2; /* guess value of 2 if OS told us 0 */ 1866 1867 } // __kmp_get_xproc 1868 1869 int __kmp_read_from_file(char const *path, char const *format, ...) { 1870 int result; 1871 va_list args; 1872 1873 va_start(args, format); 1874 FILE *f = fopen(path, "rb"); 1875 if (f == NULL) { 1876 va_end(args); 1877 return 0; 1878 } 1879 result = vfscanf(f, format, args); 1880 fclose(f); 1881 va_end(args); 1882 1883 return result; 1884 } 1885 1886 void __kmp_runtime_initialize(void) { 1887 int status; 1888 pthread_mutexattr_t mutex_attr; 1889 pthread_condattr_t cond_attr; 1890 1891 if (__kmp_init_runtime) { 1892 return; 1893 } 1894 1895 #if (KMP_ARCH_X86 || KMP_ARCH_X86_64) 1896 if (!__kmp_cpuinfo.initialized) { 1897 __kmp_query_cpuid(&__kmp_cpuinfo); 1898 } 1899 #endif /* KMP_ARCH_X86 || KMP_ARCH_X86_64 */ 1900 1901 __kmp_xproc = __kmp_get_xproc(); 1902 1903 #if !KMP_32_BIT_ARCH 1904 struct rlimit rlim; 1905 // read stack size of calling thread, save it as default for worker threads; 1906 // this should be done before reading environment variables 1907 status = getrlimit(RLIMIT_STACK, &rlim); 1908 if (status == 0) { // success? 1909 __kmp_stksize = rlim.rlim_cur; 1910 __kmp_check_stksize(&__kmp_stksize); // check value and adjust if needed 1911 } 1912 #endif /* KMP_32_BIT_ARCH */ 1913 1914 if (sysconf(_SC_THREADS)) { 1915 1916 /* Query the maximum number of threads */ 1917 __kmp_type_convert(sysconf(_SC_THREAD_THREADS_MAX), &(__kmp_sys_max_nth)); 1918 #ifdef __ve__ 1919 if (__kmp_sys_max_nth == -1) { 1920 // VE's pthread supports only up to 64 threads per a VE process. 1921 // So we use that KMP_MAX_NTH (predefined as 64) here. 1922 __kmp_sys_max_nth = KMP_MAX_NTH; 1923 } 1924 #else 1925 if (__kmp_sys_max_nth == -1) { 1926 /* Unlimited threads for NPTL */ 1927 __kmp_sys_max_nth = INT_MAX; 1928 } else if (__kmp_sys_max_nth <= 1) { 1929 /* Can't tell, just use PTHREAD_THREADS_MAX */ 1930 __kmp_sys_max_nth = KMP_MAX_NTH; 1931 } 1932 #endif 1933 1934 /* Query the minimum stack size */ 1935 __kmp_sys_min_stksize = sysconf(_SC_THREAD_STACK_MIN); 1936 if (__kmp_sys_min_stksize <= 1) { 1937 __kmp_sys_min_stksize = KMP_MIN_STKSIZE; 1938 } 1939 } 1940 1941 /* Set up minimum number of threads to switch to TLS gtid */ 1942 __kmp_tls_gtid_min = KMP_TLS_GTID_MIN; 1943 1944 status = pthread_key_create(&__kmp_gtid_threadprivate_key, 1945 __kmp_internal_end_dest); 1946 KMP_CHECK_SYSFAIL("pthread_key_create", status); 1947 status = pthread_mutexattr_init(&mutex_attr); 1948 KMP_CHECK_SYSFAIL("pthread_mutexattr_init", status); 1949 status = pthread_mutex_init(&__kmp_wait_mx.m_mutex, &mutex_attr); 1950 KMP_CHECK_SYSFAIL("pthread_mutex_init", status); 1951 status = pthread_mutexattr_destroy(&mutex_attr); 1952 KMP_CHECK_SYSFAIL("pthread_mutexattr_destroy", status); 1953 status = pthread_condattr_init(&cond_attr); 1954 KMP_CHECK_SYSFAIL("pthread_condattr_init", status); 1955 status = pthread_cond_init(&__kmp_wait_cv.c_cond, &cond_attr); 1956 KMP_CHECK_SYSFAIL("pthread_cond_init", status); 1957 status = pthread_condattr_destroy(&cond_attr); 1958 KMP_CHECK_SYSFAIL("pthread_condattr_destroy", status); 1959 #if USE_ITT_BUILD 1960 __kmp_itt_initialize(); 1961 #endif /* USE_ITT_BUILD */ 1962 1963 __kmp_init_runtime = TRUE; 1964 } 1965 1966 void __kmp_runtime_destroy(void) { 1967 int status; 1968 1969 if (!__kmp_init_runtime) { 1970 return; // Nothing to do. 1971 } 1972 1973 #if USE_ITT_BUILD 1974 __kmp_itt_destroy(); 1975 #endif /* USE_ITT_BUILD */ 1976 1977 status = pthread_key_delete(__kmp_gtid_threadprivate_key); 1978 KMP_CHECK_SYSFAIL("pthread_key_delete", status); 1979 1980 status = pthread_mutex_destroy(&__kmp_wait_mx.m_mutex); 1981 if (status != 0 && status != EBUSY) { 1982 KMP_SYSFAIL("pthread_mutex_destroy", status); 1983 } 1984 status = pthread_cond_destroy(&__kmp_wait_cv.c_cond); 1985 if (status != 0 && status != EBUSY) { 1986 KMP_SYSFAIL("pthread_cond_destroy", status); 1987 } 1988 #if KMP_AFFINITY_SUPPORTED 1989 __kmp_affinity_uninitialize(); 1990 #endif 1991 1992 __kmp_init_runtime = FALSE; 1993 } 1994 1995 /* Put the thread to sleep for a time period */ 1996 /* NOTE: not currently used anywhere */ 1997 void __kmp_thread_sleep(int millis) { sleep((millis + 500) / 1000); } 1998 1999 /* Calculate the elapsed wall clock time for the user */ 2000 void __kmp_elapsed(double *t) { 2001 int status; 2002 #ifdef FIX_SGI_CLOCK 2003 struct timespec ts; 2004 2005 status = clock_gettime(CLOCK_PROCESS_CPUTIME_ID, &ts); 2006 KMP_CHECK_SYSFAIL_ERRNO("clock_gettime", status); 2007 *t = 2008 (double)ts.tv_nsec * (1.0 / (double)KMP_NSEC_PER_SEC) + (double)ts.tv_sec; 2009 #else 2010 struct timeval tv; 2011 2012 status = gettimeofday(&tv, NULL); 2013 KMP_CHECK_SYSFAIL_ERRNO("gettimeofday", status); 2014 *t = 2015 (double)tv.tv_usec * (1.0 / (double)KMP_USEC_PER_SEC) + (double)tv.tv_sec; 2016 #endif 2017 } 2018 2019 /* Calculate the elapsed wall clock tick for the user */ 2020 void __kmp_elapsed_tick(double *t) { *t = 1 / (double)CLOCKS_PER_SEC; } 2021 2022 /* Return the current time stamp in nsec */ 2023 kmp_uint64 __kmp_now_nsec() { 2024 struct timeval t; 2025 gettimeofday(&t, NULL); 2026 kmp_uint64 nsec = (kmp_uint64)KMP_NSEC_PER_SEC * (kmp_uint64)t.tv_sec + 2027 (kmp_uint64)1000 * (kmp_uint64)t.tv_usec; 2028 return nsec; 2029 } 2030 2031 #if KMP_ARCH_X86 || KMP_ARCH_X86_64 2032 /* Measure clock ticks per millisecond */ 2033 void __kmp_initialize_system_tick() { 2034 kmp_uint64 now, nsec2, diff; 2035 kmp_uint64 delay = 1000000; // ~450 usec on most machines. 2036 kmp_uint64 nsec = __kmp_now_nsec(); 2037 kmp_uint64 goal = __kmp_hardware_timestamp() + delay; 2038 while ((now = __kmp_hardware_timestamp()) < goal) 2039 ; 2040 nsec2 = __kmp_now_nsec(); 2041 diff = nsec2 - nsec; 2042 if (diff > 0) { 2043 double tpus = 1000.0 * (double)(delay + (now - goal)) / (double)diff; 2044 if (tpus > 0.0) { 2045 __kmp_ticks_per_msec = (kmp_uint64)(tpus * 1000.0); 2046 __kmp_ticks_per_usec = (kmp_uint64)tpus; 2047 } 2048 } 2049 } 2050 #endif 2051 2052 /* Determine whether the given address is mapped into the current address 2053 space. */ 2054 2055 int __kmp_is_address_mapped(void *addr) { 2056 2057 int found = 0; 2058 int rc; 2059 2060 #if KMP_OS_LINUX || KMP_OS_HURD 2061 2062 /* On GNUish OSes, read the /proc/<pid>/maps pseudo-file to get all the 2063 address ranges mapped into the address space. */ 2064 2065 char *name = __kmp_str_format("/proc/%d/maps", getpid()); 2066 FILE *file = NULL; 2067 2068 file = fopen(name, "r"); 2069 KMP_ASSERT(file != NULL); 2070 2071 for (;;) { 2072 2073 void *beginning = NULL; 2074 void *ending = NULL; 2075 char perms[5]; 2076 2077 rc = fscanf(file, "%p-%p %4s %*[^\n]\n", &beginning, &ending, perms); 2078 if (rc == EOF) { 2079 break; 2080 } 2081 KMP_ASSERT(rc == 3 && 2082 KMP_STRLEN(perms) == 4); // Make sure all fields are read. 2083 2084 // Ending address is not included in the region, but beginning is. 2085 if ((addr >= beginning) && (addr < ending)) { 2086 perms[2] = 0; // 3th and 4th character does not matter. 2087 if (strcmp(perms, "rw") == 0) { 2088 // Memory we are looking for should be readable and writable. 2089 found = 1; 2090 } 2091 break; 2092 } 2093 } 2094 2095 // Free resources. 2096 fclose(file); 2097 KMP_INTERNAL_FREE(name); 2098 #elif KMP_OS_FREEBSD 2099 char *buf; 2100 size_t lstsz; 2101 int mib[] = {CTL_KERN, KERN_PROC, KERN_PROC_VMMAP, getpid()}; 2102 rc = sysctl(mib, 4, NULL, &lstsz, NULL, 0); 2103 if (rc < 0) 2104 return 0; 2105 // We pass from number of vm entry's semantic 2106 // to size of whole entry map list. 2107 lstsz = lstsz * 4 / 3; 2108 buf = reinterpret_cast<char *>(kmpc_malloc(lstsz)); 2109 rc = sysctl(mib, 4, buf, &lstsz, NULL, 0); 2110 if (rc < 0) { 2111 kmpc_free(buf); 2112 return 0; 2113 } 2114 2115 char *lw = buf; 2116 char *up = buf + lstsz; 2117 2118 while (lw < up) { 2119 struct kinfo_vmentry *cur = reinterpret_cast<struct kinfo_vmentry *>(lw); 2120 size_t cursz = cur->kve_structsize; 2121 if (cursz == 0) 2122 break; 2123 void *start = reinterpret_cast<void *>(cur->kve_start); 2124 void *end = reinterpret_cast<void *>(cur->kve_end); 2125 // Readable/Writable addresses within current map entry 2126 if ((addr >= start) && (addr < end)) { 2127 if ((cur->kve_protection & KVME_PROT_READ) != 0 && 2128 (cur->kve_protection & KVME_PROT_WRITE) != 0) { 2129 found = 1; 2130 break; 2131 } 2132 } 2133 lw += cursz; 2134 } 2135 kmpc_free(buf); 2136 2137 #elif KMP_OS_DARWIN 2138 2139 /* On OS X*, /proc pseudo filesystem is not available. Try to read memory 2140 using vm interface. */ 2141 2142 int buffer; 2143 vm_size_t count; 2144 rc = vm_read_overwrite( 2145 mach_task_self(), // Task to read memory of. 2146 (vm_address_t)(addr), // Address to read from. 2147 1, // Number of bytes to be read. 2148 (vm_address_t)(&buffer), // Address of buffer to save read bytes in. 2149 &count // Address of var to save number of read bytes in. 2150 ); 2151 if (rc == 0) { 2152 // Memory successfully read. 2153 found = 1; 2154 } 2155 2156 #elif KMP_OS_NETBSD 2157 2158 int mib[5]; 2159 mib[0] = CTL_VM; 2160 mib[1] = VM_PROC; 2161 mib[2] = VM_PROC_MAP; 2162 mib[3] = getpid(); 2163 mib[4] = sizeof(struct kinfo_vmentry); 2164 2165 size_t size; 2166 rc = sysctl(mib, __arraycount(mib), NULL, &size, NULL, 0); 2167 KMP_ASSERT(!rc); 2168 KMP_ASSERT(size); 2169 2170 size = size * 4 / 3; 2171 struct kinfo_vmentry *kiv = (struct kinfo_vmentry *)KMP_INTERNAL_MALLOC(size); 2172 KMP_ASSERT(kiv); 2173 2174 rc = sysctl(mib, __arraycount(mib), kiv, &size, NULL, 0); 2175 KMP_ASSERT(!rc); 2176 KMP_ASSERT(size); 2177 2178 for (size_t i = 0; i < size; i++) { 2179 if (kiv[i].kve_start >= (uint64_t)addr && 2180 kiv[i].kve_end <= (uint64_t)addr) { 2181 found = 1; 2182 break; 2183 } 2184 } 2185 KMP_INTERNAL_FREE(kiv); 2186 #elif KMP_OS_OPENBSD 2187 2188 int mib[3]; 2189 mib[0] = CTL_KERN; 2190 mib[1] = KERN_PROC_VMMAP; 2191 mib[2] = getpid(); 2192 2193 size_t size; 2194 uint64_t end; 2195 rc = sysctl(mib, 3, NULL, &size, NULL, 0); 2196 KMP_ASSERT(!rc); 2197 KMP_ASSERT(size); 2198 end = size; 2199 2200 struct kinfo_vmentry kiv = {.kve_start = 0}; 2201 2202 while ((rc = sysctl(mib, 3, &kiv, &size, NULL, 0)) == 0) { 2203 KMP_ASSERT(size); 2204 if (kiv.kve_end == end) 2205 break; 2206 2207 if (kiv.kve_start >= (uint64_t)addr && kiv.kve_end <= (uint64_t)addr) { 2208 found = 1; 2209 break; 2210 } 2211 kiv.kve_start += 1; 2212 } 2213 #elif KMP_OS_WASI 2214 found = (int)addr < (__builtin_wasm_memory_size(0) * PAGESIZE); 2215 #elif KMP_OS_DRAGONFLY || KMP_OS_SOLARIS || KMP_OS_AIX 2216 2217 // FIXME(DragonFly, Solaris, AIX): Implement this 2218 found = 1; 2219 2220 #else 2221 2222 #error "Unknown or unsupported OS" 2223 2224 #endif 2225 2226 return found; 2227 2228 } // __kmp_is_address_mapped 2229 2230 #ifdef USE_LOAD_BALANCE 2231 2232 #if KMP_OS_DARWIN || KMP_OS_DRAGONFLY || KMP_OS_FREEBSD || KMP_OS_NETBSD || \ 2233 KMP_OS_OPENBSD || KMP_OS_SOLARIS 2234 2235 // The function returns the rounded value of the system load average 2236 // during given time interval which depends on the value of 2237 // __kmp_load_balance_interval variable (default is 60 sec, other values 2238 // may be 300 sec or 900 sec). 2239 // It returns -1 in case of error. 2240 int __kmp_get_load_balance(int max) { 2241 double averages[3]; 2242 int ret_avg = 0; 2243 2244 int res = getloadavg(averages, 3); 2245 2246 // Check __kmp_load_balance_interval to determine which of averages to use. 2247 // getloadavg() may return the number of samples less than requested that is 2248 // less than 3. 2249 if (__kmp_load_balance_interval < 180 && (res >= 1)) { 2250 ret_avg = (int)averages[0]; // 1 min 2251 } else if ((__kmp_load_balance_interval >= 180 && 2252 __kmp_load_balance_interval < 600) && 2253 (res >= 2)) { 2254 ret_avg = (int)averages[1]; // 5 min 2255 } else if ((__kmp_load_balance_interval >= 600) && (res == 3)) { 2256 ret_avg = (int)averages[2]; // 15 min 2257 } else { // Error occurred 2258 return -1; 2259 } 2260 2261 return ret_avg; 2262 } 2263 2264 #else // Linux* OS 2265 2266 // The function returns number of running (not sleeping) threads, or -1 in case 2267 // of error. Error could be reported if Linux* OS kernel too old (without 2268 // "/proc" support). Counting running threads stops if max running threads 2269 // encountered. 2270 int __kmp_get_load_balance(int max) { 2271 static int permanent_error = 0; 2272 static int glb_running_threads = 0; // Saved count of the running threads for 2273 // the thread balance algorithm 2274 static double glb_call_time = 0; /* Thread balance algorithm call time */ 2275 2276 int running_threads = 0; // Number of running threads in the system. 2277 2278 DIR *proc_dir = NULL; // Handle of "/proc/" directory. 2279 struct dirent *proc_entry = NULL; 2280 2281 kmp_str_buf_t task_path; // "/proc/<pid>/task/<tid>/" path. 2282 DIR *task_dir = NULL; // Handle of "/proc/<pid>/task/<tid>/" directory. 2283 struct dirent *task_entry = NULL; 2284 int task_path_fixed_len; 2285 2286 kmp_str_buf_t stat_path; // "/proc/<pid>/task/<tid>/stat" path. 2287 int stat_file = -1; 2288 int stat_path_fixed_len; 2289 2290 #ifdef KMP_DEBUG 2291 int total_processes = 0; // Total number of processes in system. 2292 #endif 2293 2294 double call_time = 0.0; 2295 2296 __kmp_str_buf_init(&task_path); 2297 __kmp_str_buf_init(&stat_path); 2298 2299 __kmp_elapsed(&call_time); 2300 2301 if (glb_call_time && 2302 (call_time - glb_call_time < __kmp_load_balance_interval)) { 2303 running_threads = glb_running_threads; 2304 goto finish; 2305 } 2306 2307 glb_call_time = call_time; 2308 2309 // Do not spend time on scanning "/proc/" if we have a permanent error. 2310 if (permanent_error) { 2311 running_threads = -1; 2312 goto finish; 2313 } 2314 2315 if (max <= 0) { 2316 max = INT_MAX; 2317 } 2318 2319 // Open "/proc/" directory. 2320 proc_dir = opendir("/proc"); 2321 if (proc_dir == NULL) { 2322 // Cannot open "/proc/". Probably the kernel does not support it. Return an 2323 // error now and in subsequent calls. 2324 running_threads = -1; 2325 permanent_error = 1; 2326 goto finish; 2327 } 2328 2329 // Initialize fixed part of task_path. This part will not change. 2330 __kmp_str_buf_cat(&task_path, "/proc/", 6); 2331 task_path_fixed_len = task_path.used; // Remember number of used characters. 2332 2333 proc_entry = readdir(proc_dir); 2334 while (proc_entry != NULL) { 2335 #if KMP_OS_AIX 2336 // Proc entry name starts with a digit. Assume it is a process' directory. 2337 if (isdigit(proc_entry->d_name[0])) { 2338 #else 2339 // Proc entry is a directory and name starts with a digit. Assume it is a 2340 // process' directory. 2341 if (proc_entry->d_type == DT_DIR && isdigit(proc_entry->d_name[0])) { 2342 #endif 2343 2344 #ifdef KMP_DEBUG 2345 ++total_processes; 2346 #endif 2347 // Make sure init process is the very first in "/proc", so we can replace 2348 // strcmp( proc_entry->d_name, "1" ) == 0 with simpler total_processes == 2349 // 1. We are going to check that total_processes == 1 => d_name == "1" is 2350 // true (where "=>" is implication). Since C++ does not have => operator, 2351 // let us replace it with its equivalent: a => b == ! a || b. 2352 KMP_DEBUG_ASSERT(total_processes != 1 || 2353 strcmp(proc_entry->d_name, "1") == 0); 2354 2355 // Construct task_path. 2356 task_path.used = task_path_fixed_len; // Reset task_path to "/proc/". 2357 __kmp_str_buf_cat(&task_path, proc_entry->d_name, 2358 KMP_STRLEN(proc_entry->d_name)); 2359 __kmp_str_buf_cat(&task_path, "/task", 5); 2360 2361 task_dir = opendir(task_path.str); 2362 if (task_dir == NULL) { 2363 // Process can finish between reading "/proc/" directory entry and 2364 // opening process' "task/" directory. So, in general case we should not 2365 // complain, but have to skip this process and read the next one. But on 2366 // systems with no "task/" support we will spend lot of time to scan 2367 // "/proc/" tree again and again without any benefit. "init" process 2368 // (its pid is 1) should exist always, so, if we cannot open 2369 // "/proc/1/task/" directory, it means "task/" is not supported by 2370 // kernel. Report an error now and in the future. 2371 if (strcmp(proc_entry->d_name, "1") == 0) { 2372 running_threads = -1; 2373 permanent_error = 1; 2374 goto finish; 2375 } 2376 } else { 2377 // Construct fixed part of stat file path. 2378 __kmp_str_buf_clear(&stat_path); 2379 __kmp_str_buf_cat(&stat_path, task_path.str, task_path.used); 2380 __kmp_str_buf_cat(&stat_path, "/", 1); 2381 stat_path_fixed_len = stat_path.used; 2382 2383 task_entry = readdir(task_dir); 2384 while (task_entry != NULL) { 2385 // It is a directory and name starts with a digit. 2386 #if KMP_OS_AIX 2387 if (isdigit(task_entry->d_name[0])) { 2388 #else 2389 if (proc_entry->d_type == DT_DIR && isdigit(task_entry->d_name[0])) { 2390 #endif 2391 2392 // Construct complete stat file path. Easiest way would be: 2393 // __kmp_str_buf_print( & stat_path, "%s/%s/stat", task_path.str, 2394 // task_entry->d_name ); 2395 // but seriae of __kmp_str_buf_cat works a bit faster. 2396 stat_path.used = 2397 stat_path_fixed_len; // Reset stat path to its fixed part. 2398 __kmp_str_buf_cat(&stat_path, task_entry->d_name, 2399 KMP_STRLEN(task_entry->d_name)); 2400 __kmp_str_buf_cat(&stat_path, "/stat", 5); 2401 2402 // Note: Low-level API (open/read/close) is used. High-level API 2403 // (fopen/fclose) works ~ 30 % slower. 2404 stat_file = open(stat_path.str, O_RDONLY); 2405 if (stat_file == -1) { 2406 // We cannot report an error because task (thread) can terminate 2407 // just before reading this file. 2408 } else { 2409 /* Content of "stat" file looks like: 2410 24285 (program) S ... 2411 2412 It is a single line (if program name does not include funny 2413 symbols). First number is a thread id, then name of executable 2414 file name in paretheses, then state of the thread. We need just 2415 thread state. 2416 2417 Good news: Length of program name is 15 characters max. Longer 2418 names are truncated. 2419 2420 Thus, we need rather short buffer: 15 chars for program name + 2421 2 parenthesis, + 3 spaces + ~7 digits of pid = 37. 2422 2423 Bad news: Program name may contain special symbols like space, 2424 closing parenthesis, or even new line. This makes parsing 2425 "stat" file not 100 % reliable. In case of fanny program names 2426 parsing may fail (report incorrect thread state). 2427 2428 Parsing "status" file looks more promissing (due to different 2429 file structure and escaping special symbols) but reading and 2430 parsing of "status" file works slower. 2431 -- ln 2432 */ 2433 char buffer[65]; 2434 ssize_t len; 2435 len = read(stat_file, buffer, sizeof(buffer) - 1); 2436 if (len >= 0) { 2437 buffer[len] = 0; 2438 // Using scanf: 2439 // sscanf( buffer, "%*d (%*s) %c ", & state ); 2440 // looks very nice, but searching for a closing parenthesis 2441 // works a bit faster. 2442 char *close_parent = strstr(buffer, ") "); 2443 if (close_parent != NULL) { 2444 char state = *(close_parent + 2); 2445 if (state == 'R') { 2446 ++running_threads; 2447 if (running_threads >= max) { 2448 goto finish; 2449 } 2450 } 2451 } 2452 } 2453 close(stat_file); 2454 stat_file = -1; 2455 } 2456 } 2457 task_entry = readdir(task_dir); 2458 } 2459 closedir(task_dir); 2460 task_dir = NULL; 2461 } 2462 } 2463 proc_entry = readdir(proc_dir); 2464 } 2465 2466 // There _might_ be a timing hole where the thread executing this 2467 // code get skipped in the load balance, and running_threads is 0. 2468 // Assert in the debug builds only!!! 2469 KMP_DEBUG_ASSERT(running_threads > 0); 2470 if (running_threads <= 0) { 2471 running_threads = 1; 2472 } 2473 2474 finish: // Clean up and exit. 2475 if (proc_dir != NULL) { 2476 closedir(proc_dir); 2477 } 2478 __kmp_str_buf_free(&task_path); 2479 if (task_dir != NULL) { 2480 closedir(task_dir); 2481 } 2482 __kmp_str_buf_free(&stat_path); 2483 if (stat_file != -1) { 2484 close(stat_file); 2485 } 2486 2487 glb_running_threads = running_threads; 2488 2489 return running_threads; 2490 2491 } // __kmp_get_load_balance 2492 2493 #endif // KMP_OS_DARWIN 2494 2495 #endif // USE_LOAD_BALANCE 2496 2497 #if !(KMP_ARCH_X86 || KMP_ARCH_X86_64 || KMP_MIC || \ 2498 ((KMP_OS_LINUX || KMP_OS_DARWIN) && KMP_ARCH_AARCH64) || \ 2499 KMP_ARCH_PPC64 || KMP_ARCH_RISCV64 || KMP_ARCH_LOONGARCH64 || \ 2500 KMP_ARCH_ARM || KMP_ARCH_VE || KMP_ARCH_S390X || KMP_ARCH_PPC_XCOFF) 2501 2502 // we really only need the case with 1 argument, because CLANG always build 2503 // a struct of pointers to shared variables referenced in the outlined function 2504 int __kmp_invoke_microtask(microtask_t pkfn, int gtid, int tid, int argc, 2505 void *p_argv[] 2506 #if OMPT_SUPPORT 2507 , 2508 void **exit_frame_ptr 2509 #endif 2510 ) { 2511 #if OMPT_SUPPORT 2512 *exit_frame_ptr = OMPT_GET_FRAME_ADDRESS(0); 2513 #endif 2514 2515 switch (argc) { 2516 default: 2517 fprintf(stderr, "Too many args to microtask: %d!\n", argc); 2518 fflush(stderr); 2519 exit(-1); 2520 case 0: 2521 (*pkfn)(>id, &tid); 2522 break; 2523 case 1: 2524 (*pkfn)(>id, &tid, p_argv[0]); 2525 break; 2526 case 2: 2527 (*pkfn)(>id, &tid, p_argv[0], p_argv[1]); 2528 break; 2529 case 3: 2530 (*pkfn)(>id, &tid, p_argv[0], p_argv[1], p_argv[2]); 2531 break; 2532 case 4: 2533 (*pkfn)(>id, &tid, p_argv[0], p_argv[1], p_argv[2], p_argv[3]); 2534 break; 2535 case 5: 2536 (*pkfn)(>id, &tid, p_argv[0], p_argv[1], p_argv[2], p_argv[3], p_argv[4]); 2537 break; 2538 case 6: 2539 (*pkfn)(>id, &tid, p_argv[0], p_argv[1], p_argv[2], p_argv[3], p_argv[4], 2540 p_argv[5]); 2541 break; 2542 case 7: 2543 (*pkfn)(>id, &tid, p_argv[0], p_argv[1], p_argv[2], p_argv[3], p_argv[4], 2544 p_argv[5], p_argv[6]); 2545 break; 2546 case 8: 2547 (*pkfn)(>id, &tid, p_argv[0], p_argv[1], p_argv[2], p_argv[3], p_argv[4], 2548 p_argv[5], p_argv[6], p_argv[7]); 2549 break; 2550 case 9: 2551 (*pkfn)(>id, &tid, p_argv[0], p_argv[1], p_argv[2], p_argv[3], p_argv[4], 2552 p_argv[5], p_argv[6], p_argv[7], p_argv[8]); 2553 break; 2554 case 10: 2555 (*pkfn)(>id, &tid, p_argv[0], p_argv[1], p_argv[2], p_argv[3], p_argv[4], 2556 p_argv[5], p_argv[6], p_argv[7], p_argv[8], p_argv[9]); 2557 break; 2558 case 11: 2559 (*pkfn)(>id, &tid, p_argv[0], p_argv[1], p_argv[2], p_argv[3], p_argv[4], 2560 p_argv[5], p_argv[6], p_argv[7], p_argv[8], p_argv[9], p_argv[10]); 2561 break; 2562 case 12: 2563 (*pkfn)(>id, &tid, p_argv[0], p_argv[1], p_argv[2], p_argv[3], p_argv[4], 2564 p_argv[5], p_argv[6], p_argv[7], p_argv[8], p_argv[9], p_argv[10], 2565 p_argv[11]); 2566 break; 2567 case 13: 2568 (*pkfn)(>id, &tid, p_argv[0], p_argv[1], p_argv[2], p_argv[3], p_argv[4], 2569 p_argv[5], p_argv[6], p_argv[7], p_argv[8], p_argv[9], p_argv[10], 2570 p_argv[11], p_argv[12]); 2571 break; 2572 case 14: 2573 (*pkfn)(>id, &tid, p_argv[0], p_argv[1], p_argv[2], p_argv[3], p_argv[4], 2574 p_argv[5], p_argv[6], p_argv[7], p_argv[8], p_argv[9], p_argv[10], 2575 p_argv[11], p_argv[12], p_argv[13]); 2576 break; 2577 case 15: 2578 (*pkfn)(>id, &tid, p_argv[0], p_argv[1], p_argv[2], p_argv[3], p_argv[4], 2579 p_argv[5], p_argv[6], p_argv[7], p_argv[8], p_argv[9], p_argv[10], 2580 p_argv[11], p_argv[12], p_argv[13], p_argv[14]); 2581 break; 2582 } 2583 2584 return 1; 2585 } 2586 2587 #endif 2588 2589 #if KMP_OS_LINUX 2590 // Functions for hidden helper task 2591 namespace { 2592 // Condition variable for initializing hidden helper team 2593 pthread_cond_t hidden_helper_threads_initz_cond_var; 2594 pthread_mutex_t hidden_helper_threads_initz_lock; 2595 volatile int hidden_helper_initz_signaled = FALSE; 2596 2597 // Condition variable for deinitializing hidden helper team 2598 pthread_cond_t hidden_helper_threads_deinitz_cond_var; 2599 pthread_mutex_t hidden_helper_threads_deinitz_lock; 2600 volatile int hidden_helper_deinitz_signaled = FALSE; 2601 2602 // Condition variable for the wrapper function of main thread 2603 pthread_cond_t hidden_helper_main_thread_cond_var; 2604 pthread_mutex_t hidden_helper_main_thread_lock; 2605 volatile int hidden_helper_main_thread_signaled = FALSE; 2606 2607 // Semaphore for worker threads. We don't use condition variable here in case 2608 // that when multiple signals are sent at the same time, only one thread might 2609 // be waken. 2610 sem_t hidden_helper_task_sem; 2611 } // namespace 2612 2613 void __kmp_hidden_helper_worker_thread_wait() { 2614 int status = sem_wait(&hidden_helper_task_sem); 2615 KMP_CHECK_SYSFAIL("sem_wait", status); 2616 } 2617 2618 void __kmp_do_initialize_hidden_helper_threads() { 2619 // Initialize condition variable 2620 int status = 2621 pthread_cond_init(&hidden_helper_threads_initz_cond_var, nullptr); 2622 KMP_CHECK_SYSFAIL("pthread_cond_init", status); 2623 2624 status = pthread_cond_init(&hidden_helper_threads_deinitz_cond_var, nullptr); 2625 KMP_CHECK_SYSFAIL("pthread_cond_init", status); 2626 2627 status = pthread_cond_init(&hidden_helper_main_thread_cond_var, nullptr); 2628 KMP_CHECK_SYSFAIL("pthread_cond_init", status); 2629 2630 status = pthread_mutex_init(&hidden_helper_threads_initz_lock, nullptr); 2631 KMP_CHECK_SYSFAIL("pthread_mutex_init", status); 2632 2633 status = pthread_mutex_init(&hidden_helper_threads_deinitz_lock, nullptr); 2634 KMP_CHECK_SYSFAIL("pthread_mutex_init", status); 2635 2636 status = pthread_mutex_init(&hidden_helper_main_thread_lock, nullptr); 2637 KMP_CHECK_SYSFAIL("pthread_mutex_init", status); 2638 2639 // Initialize the semaphore 2640 status = sem_init(&hidden_helper_task_sem, 0, 0); 2641 KMP_CHECK_SYSFAIL("sem_init", status); 2642 2643 // Create a new thread to finish initialization 2644 pthread_t handle; 2645 status = pthread_create( 2646 &handle, nullptr, 2647 [](void *) -> void * { 2648 __kmp_hidden_helper_threads_initz_routine(); 2649 return nullptr; 2650 }, 2651 nullptr); 2652 KMP_CHECK_SYSFAIL("pthread_create", status); 2653 } 2654 2655 void __kmp_hidden_helper_threads_initz_wait() { 2656 // Initial thread waits here for the completion of the initialization. The 2657 // condition variable will be notified by main thread of hidden helper teams. 2658 int status = pthread_mutex_lock(&hidden_helper_threads_initz_lock); 2659 KMP_CHECK_SYSFAIL("pthread_mutex_lock", status); 2660 2661 if (!TCR_4(hidden_helper_initz_signaled)) { 2662 status = pthread_cond_wait(&hidden_helper_threads_initz_cond_var, 2663 &hidden_helper_threads_initz_lock); 2664 KMP_CHECK_SYSFAIL("pthread_cond_wait", status); 2665 } 2666 2667 status = pthread_mutex_unlock(&hidden_helper_threads_initz_lock); 2668 KMP_CHECK_SYSFAIL("pthread_mutex_unlock", status); 2669 } 2670 2671 void __kmp_hidden_helper_initz_release() { 2672 // After all initialization, reset __kmp_init_hidden_helper_threads to false. 2673 int status = pthread_mutex_lock(&hidden_helper_threads_initz_lock); 2674 KMP_CHECK_SYSFAIL("pthread_mutex_lock", status); 2675 2676 status = pthread_cond_signal(&hidden_helper_threads_initz_cond_var); 2677 KMP_CHECK_SYSFAIL("pthread_cond_wait", status); 2678 2679 TCW_SYNC_4(hidden_helper_initz_signaled, TRUE); 2680 2681 status = pthread_mutex_unlock(&hidden_helper_threads_initz_lock); 2682 KMP_CHECK_SYSFAIL("pthread_mutex_unlock", status); 2683 } 2684 2685 void __kmp_hidden_helper_main_thread_wait() { 2686 // The main thread of hidden helper team will be blocked here. The 2687 // condition variable can only be signal in the destructor of RTL. 2688 int status = pthread_mutex_lock(&hidden_helper_main_thread_lock); 2689 KMP_CHECK_SYSFAIL("pthread_mutex_lock", status); 2690 2691 if (!TCR_4(hidden_helper_main_thread_signaled)) { 2692 status = pthread_cond_wait(&hidden_helper_main_thread_cond_var, 2693 &hidden_helper_main_thread_lock); 2694 KMP_CHECK_SYSFAIL("pthread_cond_wait", status); 2695 } 2696 2697 status = pthread_mutex_unlock(&hidden_helper_main_thread_lock); 2698 KMP_CHECK_SYSFAIL("pthread_mutex_unlock", status); 2699 } 2700 2701 void __kmp_hidden_helper_main_thread_release() { 2702 // The initial thread of OpenMP RTL should call this function to wake up the 2703 // main thread of hidden helper team. 2704 int status = pthread_mutex_lock(&hidden_helper_main_thread_lock); 2705 KMP_CHECK_SYSFAIL("pthread_mutex_lock", status); 2706 2707 status = pthread_cond_signal(&hidden_helper_main_thread_cond_var); 2708 KMP_CHECK_SYSFAIL("pthread_cond_signal", status); 2709 2710 // The hidden helper team is done here 2711 TCW_SYNC_4(hidden_helper_main_thread_signaled, TRUE); 2712 2713 status = pthread_mutex_unlock(&hidden_helper_main_thread_lock); 2714 KMP_CHECK_SYSFAIL("pthread_mutex_unlock", status); 2715 } 2716 2717 void __kmp_hidden_helper_worker_thread_signal() { 2718 int status = sem_post(&hidden_helper_task_sem); 2719 KMP_CHECK_SYSFAIL("sem_post", status); 2720 } 2721 2722 void __kmp_hidden_helper_threads_deinitz_wait() { 2723 // Initial thread waits here for the completion of the deinitialization. The 2724 // condition variable will be notified by main thread of hidden helper teams. 2725 int status = pthread_mutex_lock(&hidden_helper_threads_deinitz_lock); 2726 KMP_CHECK_SYSFAIL("pthread_mutex_lock", status); 2727 2728 if (!TCR_4(hidden_helper_deinitz_signaled)) { 2729 status = pthread_cond_wait(&hidden_helper_threads_deinitz_cond_var, 2730 &hidden_helper_threads_deinitz_lock); 2731 KMP_CHECK_SYSFAIL("pthread_cond_wait", status); 2732 } 2733 2734 status = pthread_mutex_unlock(&hidden_helper_threads_deinitz_lock); 2735 KMP_CHECK_SYSFAIL("pthread_mutex_unlock", status); 2736 } 2737 2738 void __kmp_hidden_helper_threads_deinitz_release() { 2739 int status = pthread_mutex_lock(&hidden_helper_threads_deinitz_lock); 2740 KMP_CHECK_SYSFAIL("pthread_mutex_lock", status); 2741 2742 status = pthread_cond_signal(&hidden_helper_threads_deinitz_cond_var); 2743 KMP_CHECK_SYSFAIL("pthread_cond_wait", status); 2744 2745 TCW_SYNC_4(hidden_helper_deinitz_signaled, TRUE); 2746 2747 status = pthread_mutex_unlock(&hidden_helper_threads_deinitz_lock); 2748 KMP_CHECK_SYSFAIL("pthread_mutex_unlock", status); 2749 } 2750 #else // KMP_OS_LINUX 2751 void __kmp_hidden_helper_worker_thread_wait() { 2752 KMP_ASSERT(0 && "Hidden helper task is not supported on this OS"); 2753 } 2754 2755 void __kmp_do_initialize_hidden_helper_threads() { 2756 KMP_ASSERT(0 && "Hidden helper task is not supported on this OS"); 2757 } 2758 2759 void __kmp_hidden_helper_threads_initz_wait() { 2760 KMP_ASSERT(0 && "Hidden helper task is not supported on this OS"); 2761 } 2762 2763 void __kmp_hidden_helper_initz_release() { 2764 KMP_ASSERT(0 && "Hidden helper task is not supported on this OS"); 2765 } 2766 2767 void __kmp_hidden_helper_main_thread_wait() { 2768 KMP_ASSERT(0 && "Hidden helper task is not supported on this OS"); 2769 } 2770 2771 void __kmp_hidden_helper_main_thread_release() { 2772 KMP_ASSERT(0 && "Hidden helper task is not supported on this OS"); 2773 } 2774 2775 void __kmp_hidden_helper_worker_thread_signal() { 2776 KMP_ASSERT(0 && "Hidden helper task is not supported on this OS"); 2777 } 2778 2779 void __kmp_hidden_helper_threads_deinitz_wait() { 2780 KMP_ASSERT(0 && "Hidden helper task is not supported on this OS"); 2781 } 2782 2783 void __kmp_hidden_helper_threads_deinitz_release() { 2784 KMP_ASSERT(0 && "Hidden helper task is not supported on this OS"); 2785 } 2786 #endif // KMP_OS_LINUX 2787 2788 bool __kmp_detect_shm() { 2789 DIR *dir = opendir("/dev/shm"); 2790 if (dir) { // /dev/shm exists 2791 closedir(dir); 2792 return true; 2793 } else if (ENOENT == errno) { // /dev/shm does not exist 2794 return false; 2795 } else { // opendir() failed 2796 return false; 2797 } 2798 } 2799 2800 bool __kmp_detect_tmp() { 2801 DIR *dir = opendir("/tmp"); 2802 if (dir) { // /tmp exists 2803 closedir(dir); 2804 return true; 2805 } else if (ENOENT == errno) { // /tmp does not exist 2806 return false; 2807 } else { // opendir() failed 2808 return false; 2809 } 2810 } 2811 2812 // end of file // 2813