xref: /freebsd/contrib/llvm-project/openmp/runtime/src/z_Linux_util.cpp (revision 0d8fe2373503aeac48492f28073049a8bfa4feb5)
1 /*
2  * z_Linux_util.cpp -- platform specific routines.
3  */
4 
5 //===----------------------------------------------------------------------===//
6 //
7 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
8 // See https://llvm.org/LICENSE.txt for license information.
9 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "kmp.h"
14 #include "kmp_affinity.h"
15 #include "kmp_i18n.h"
16 #include "kmp_io.h"
17 #include "kmp_itt.h"
18 #include "kmp_lock.h"
19 #include "kmp_stats.h"
20 #include "kmp_str.h"
21 #include "kmp_wait_release.h"
22 #include "kmp_wrapper_getpid.h"
23 
24 #if !KMP_OS_DRAGONFLY && !KMP_OS_FREEBSD && !KMP_OS_NETBSD && !KMP_OS_OPENBSD
25 #include <alloca.h>
26 #endif
27 #include <math.h> // HUGE_VAL.
28 #include <semaphore.h>
29 #include <sys/resource.h>
30 #include <sys/syscall.h>
31 #include <sys/time.h>
32 #include <sys/times.h>
33 #include <unistd.h>
34 
35 #if KMP_OS_LINUX
36 #include <sys/sysinfo.h>
37 #if KMP_USE_FUTEX
38 // We should really include <futex.h>, but that causes compatibility problems on
39 // different Linux* OS distributions that either require that you include (or
40 // break when you try to include) <pci/types.h>. Since all we need is the two
41 // macros below (which are part of the kernel ABI, so can't change) we just
42 // define the constants here and don't include <futex.h>
43 #ifndef FUTEX_WAIT
44 #define FUTEX_WAIT 0
45 #endif
46 #ifndef FUTEX_WAKE
47 #define FUTEX_WAKE 1
48 #endif
49 #endif
50 #elif KMP_OS_DARWIN
51 #include <mach/mach.h>
52 #include <sys/sysctl.h>
53 #elif KMP_OS_DRAGONFLY || KMP_OS_FREEBSD
54 #include <sys/types.h>
55 #include <sys/sysctl.h>
56 #include <sys/user.h>
57 #include <pthread_np.h>
58 #elif KMP_OS_NETBSD || KMP_OS_OPENBSD
59 #include <sys/types.h>
60 #include <sys/sysctl.h>
61 #endif
62 
63 #include <ctype.h>
64 #include <dirent.h>
65 #include <fcntl.h>
66 
67 #include "tsan_annotations.h"
68 
69 struct kmp_sys_timer {
70   struct timespec start;
71 };
72 
73 // Convert timespec to nanoseconds.
74 #define TS2NS(timespec)                                                        \
75   (((timespec).tv_sec * (long int)1e9) + (timespec).tv_nsec)
76 
77 static struct kmp_sys_timer __kmp_sys_timer_data;
78 
79 #if KMP_HANDLE_SIGNALS
80 typedef void (*sig_func_t)(int);
81 STATIC_EFI2_WORKAROUND struct sigaction __kmp_sighldrs[NSIG];
82 static sigset_t __kmp_sigset;
83 #endif
84 
85 static int __kmp_init_runtime = FALSE;
86 
87 static int __kmp_fork_count = 0;
88 
89 static pthread_condattr_t __kmp_suspend_cond_attr;
90 static pthread_mutexattr_t __kmp_suspend_mutex_attr;
91 
92 static kmp_cond_align_t __kmp_wait_cv;
93 static kmp_mutex_align_t __kmp_wait_mx;
94 
95 kmp_uint64 __kmp_ticks_per_msec = 1000000;
96 
97 #ifdef DEBUG_SUSPEND
98 static void __kmp_print_cond(char *buffer, kmp_cond_align_t *cond) {
99   KMP_SNPRINTF(buffer, 128, "(cond (lock (%ld, %d)), (descr (%p)))",
100                cond->c_cond.__c_lock.__status, cond->c_cond.__c_lock.__spinlock,
101                cond->c_cond.__c_waiting);
102 }
103 #endif
104 
105 #if ((KMP_OS_LINUX || KMP_OS_FREEBSD) && KMP_AFFINITY_SUPPORTED)
106 
107 /* Affinity support */
108 
109 void __kmp_affinity_bind_thread(int which) {
110   KMP_ASSERT2(KMP_AFFINITY_CAPABLE(),
111               "Illegal set affinity operation when not capable");
112 
113   kmp_affin_mask_t *mask;
114   KMP_CPU_ALLOC_ON_STACK(mask);
115   KMP_CPU_ZERO(mask);
116   KMP_CPU_SET(which, mask);
117   __kmp_set_system_affinity(mask, TRUE);
118   KMP_CPU_FREE_FROM_STACK(mask);
119 }
120 
121 /* Determine if we can access affinity functionality on this version of
122  * Linux* OS by checking __NR_sched_{get,set}affinity system calls, and set
123  * __kmp_affin_mask_size to the appropriate value (0 means not capable). */
124 void __kmp_affinity_determine_capable(const char *env_var) {
125 // Check and see if the OS supports thread affinity.
126 
127 #if KMP_OS_LINUX
128 #define KMP_CPU_SET_SIZE_LIMIT (1024 * 1024)
129 #elif KMP_OS_FREEBSD
130 #define KMP_CPU_SET_SIZE_LIMIT (sizeof(cpuset_t))
131 #endif
132 
133 
134 #if KMP_OS_LINUX
135   // If Linux* OS:
136   // If the syscall fails or returns a suggestion for the size,
137   // then we don't have to search for an appropriate size.
138   long gCode;
139   long sCode;
140   unsigned char *buf;
141   buf = (unsigned char *)KMP_INTERNAL_MALLOC(KMP_CPU_SET_SIZE_LIMIT);
142   gCode = syscall(__NR_sched_getaffinity, 0, KMP_CPU_SET_SIZE_LIMIT, buf);
143   KA_TRACE(30, ("__kmp_affinity_determine_capable: "
144                 "initial getaffinity call returned %ld errno = %d\n",
145                 gCode, errno));
146 
147   // if ((gCode < 0) && (errno == ENOSYS))
148   if (gCode < 0) {
149     // System call not supported
150     if (__kmp_affinity_verbose ||
151         (__kmp_affinity_warnings && (__kmp_affinity_type != affinity_none) &&
152          (__kmp_affinity_type != affinity_default) &&
153          (__kmp_affinity_type != affinity_disabled))) {
154       int error = errno;
155       kmp_msg_t err_code = KMP_ERR(error);
156       __kmp_msg(kmp_ms_warning, KMP_MSG(GetAffSysCallNotSupported, env_var),
157                 err_code, __kmp_msg_null);
158       if (__kmp_generate_warnings == kmp_warnings_off) {
159         __kmp_str_free(&err_code.str);
160       }
161     }
162     KMP_AFFINITY_DISABLE();
163     KMP_INTERNAL_FREE(buf);
164     return;
165   }
166   if (gCode > 0) { // Linux* OS only
167     // The optimal situation: the OS returns the size of the buffer it expects.
168     //
169     // A verification of correct behavior is that setaffinity on a NULL
170     // buffer with the same size fails with errno set to EFAULT.
171     sCode = syscall(__NR_sched_setaffinity, 0, gCode, NULL);
172     KA_TRACE(30, ("__kmp_affinity_determine_capable: "
173                   "setaffinity for mask size %ld returned %ld errno = %d\n",
174                   gCode, sCode, errno));
175     if (sCode < 0) {
176       if (errno == ENOSYS) {
177         if (__kmp_affinity_verbose ||
178             (__kmp_affinity_warnings &&
179              (__kmp_affinity_type != affinity_none) &&
180              (__kmp_affinity_type != affinity_default) &&
181              (__kmp_affinity_type != affinity_disabled))) {
182           int error = errno;
183           kmp_msg_t err_code = KMP_ERR(error);
184           __kmp_msg(kmp_ms_warning, KMP_MSG(SetAffSysCallNotSupported, env_var),
185                     err_code, __kmp_msg_null);
186           if (__kmp_generate_warnings == kmp_warnings_off) {
187             __kmp_str_free(&err_code.str);
188           }
189         }
190         KMP_AFFINITY_DISABLE();
191         KMP_INTERNAL_FREE(buf);
192       }
193       if (errno == EFAULT) {
194         KMP_AFFINITY_ENABLE(gCode);
195         KA_TRACE(10, ("__kmp_affinity_determine_capable: "
196                       "affinity supported (mask size %d)\n",
197                       (int)__kmp_affin_mask_size));
198         KMP_INTERNAL_FREE(buf);
199         return;
200       }
201     }
202   }
203 
204   // Call the getaffinity system call repeatedly with increasing set sizes
205   // until we succeed, or reach an upper bound on the search.
206   KA_TRACE(30, ("__kmp_affinity_determine_capable: "
207                 "searching for proper set size\n"));
208   int size;
209   for (size = 1; size <= KMP_CPU_SET_SIZE_LIMIT; size *= 2) {
210     gCode = syscall(__NR_sched_getaffinity, 0, size, buf);
211     KA_TRACE(30, ("__kmp_affinity_determine_capable: "
212                   "getaffinity for mask size %ld returned %ld errno = %d\n",
213                   size, gCode, errno));
214 
215     if (gCode < 0) {
216       if (errno == ENOSYS) {
217         // We shouldn't get here
218         KA_TRACE(30, ("__kmp_affinity_determine_capable: "
219                       "inconsistent OS call behavior: errno == ENOSYS for mask "
220                       "size %d\n",
221                       size));
222         if (__kmp_affinity_verbose ||
223             (__kmp_affinity_warnings &&
224              (__kmp_affinity_type != affinity_none) &&
225              (__kmp_affinity_type != affinity_default) &&
226              (__kmp_affinity_type != affinity_disabled))) {
227           int error = errno;
228           kmp_msg_t err_code = KMP_ERR(error);
229           __kmp_msg(kmp_ms_warning, KMP_MSG(GetAffSysCallNotSupported, env_var),
230                     err_code, __kmp_msg_null);
231           if (__kmp_generate_warnings == kmp_warnings_off) {
232             __kmp_str_free(&err_code.str);
233           }
234         }
235         KMP_AFFINITY_DISABLE();
236         KMP_INTERNAL_FREE(buf);
237         return;
238       }
239       continue;
240     }
241 
242     sCode = syscall(__NR_sched_setaffinity, 0, gCode, NULL);
243     KA_TRACE(30, ("__kmp_affinity_determine_capable: "
244                   "setaffinity for mask size %ld returned %ld errno = %d\n",
245                   gCode, sCode, errno));
246     if (sCode < 0) {
247       if (errno == ENOSYS) { // Linux* OS only
248         // We shouldn't get here
249         KA_TRACE(30, ("__kmp_affinity_determine_capable: "
250                       "inconsistent OS call behavior: errno == ENOSYS for mask "
251                       "size %d\n",
252                       size));
253         if (__kmp_affinity_verbose ||
254             (__kmp_affinity_warnings &&
255              (__kmp_affinity_type != affinity_none) &&
256              (__kmp_affinity_type != affinity_default) &&
257              (__kmp_affinity_type != affinity_disabled))) {
258           int error = errno;
259           kmp_msg_t err_code = KMP_ERR(error);
260           __kmp_msg(kmp_ms_warning, KMP_MSG(SetAffSysCallNotSupported, env_var),
261                     err_code, __kmp_msg_null);
262           if (__kmp_generate_warnings == kmp_warnings_off) {
263             __kmp_str_free(&err_code.str);
264           }
265         }
266         KMP_AFFINITY_DISABLE();
267         KMP_INTERNAL_FREE(buf);
268         return;
269       }
270       if (errno == EFAULT) {
271         KMP_AFFINITY_ENABLE(gCode);
272         KA_TRACE(10, ("__kmp_affinity_determine_capable: "
273                       "affinity supported (mask size %d)\n",
274                       (int)__kmp_affin_mask_size));
275         KMP_INTERNAL_FREE(buf);
276         return;
277       }
278     }
279   }
280 #elif KMP_OS_FREEBSD
281   long gCode;
282   unsigned char *buf;
283   buf = (unsigned char *)KMP_INTERNAL_MALLOC(KMP_CPU_SET_SIZE_LIMIT);
284   gCode = pthread_getaffinity_np(pthread_self(), KMP_CPU_SET_SIZE_LIMIT, reinterpret_cast<cpuset_t *>(buf));
285   KA_TRACE(30, ("__kmp_affinity_determine_capable: "
286                 "initial getaffinity call returned %d errno = %d\n",
287                 gCode, errno));
288   if (gCode == 0) {
289     KMP_AFFINITY_ENABLE(KMP_CPU_SET_SIZE_LIMIT);
290     KA_TRACE(10, ("__kmp_affinity_determine_capable: "
291                   "affinity supported (mask size %d)\n",
292 		  (int)__kmp_affin_mask_size));
293     KMP_INTERNAL_FREE(buf);
294     return;
295   }
296 #endif
297   // save uncaught error code
298   // int error = errno;
299   KMP_INTERNAL_FREE(buf);
300   // restore uncaught error code, will be printed at the next KMP_WARNING below
301   // errno = error;
302 
303   // Affinity is not supported
304   KMP_AFFINITY_DISABLE();
305   KA_TRACE(10, ("__kmp_affinity_determine_capable: "
306                 "cannot determine mask size - affinity not supported\n"));
307   if (__kmp_affinity_verbose ||
308       (__kmp_affinity_warnings && (__kmp_affinity_type != affinity_none) &&
309        (__kmp_affinity_type != affinity_default) &&
310        (__kmp_affinity_type != affinity_disabled))) {
311     KMP_WARNING(AffCantGetMaskSize, env_var);
312   }
313 }
314 
315 #endif // KMP_OS_LINUX && KMP_AFFINITY_SUPPORTED
316 
317 #if KMP_USE_FUTEX
318 
319 int __kmp_futex_determine_capable() {
320   int loc = 0;
321   long rc = syscall(__NR_futex, &loc, FUTEX_WAKE, 1, NULL, NULL, 0);
322   int retval = (rc == 0) || (errno != ENOSYS);
323 
324   KA_TRACE(10,
325            ("__kmp_futex_determine_capable: rc = %d errno = %d\n", rc, errno));
326   KA_TRACE(10, ("__kmp_futex_determine_capable: futex syscall%s supported\n",
327                 retval ? "" : " not"));
328 
329   return retval;
330 }
331 
332 #endif // KMP_USE_FUTEX
333 
334 #if (KMP_ARCH_X86 || KMP_ARCH_X86_64) && (!KMP_ASM_INTRINS)
335 /* Only 32-bit "add-exchange" instruction on IA-32 architecture causes us to
336    use compare_and_store for these routines */
337 
338 kmp_int8 __kmp_test_then_or8(volatile kmp_int8 *p, kmp_int8 d) {
339   kmp_int8 old_value, new_value;
340 
341   old_value = TCR_1(*p);
342   new_value = old_value | d;
343 
344   while (!KMP_COMPARE_AND_STORE_REL8(p, old_value, new_value)) {
345     KMP_CPU_PAUSE();
346     old_value = TCR_1(*p);
347     new_value = old_value | d;
348   }
349   return old_value;
350 }
351 
352 kmp_int8 __kmp_test_then_and8(volatile kmp_int8 *p, kmp_int8 d) {
353   kmp_int8 old_value, new_value;
354 
355   old_value = TCR_1(*p);
356   new_value = old_value & d;
357 
358   while (!KMP_COMPARE_AND_STORE_REL8(p, old_value, new_value)) {
359     KMP_CPU_PAUSE();
360     old_value = TCR_1(*p);
361     new_value = old_value & d;
362   }
363   return old_value;
364 }
365 
366 kmp_uint32 __kmp_test_then_or32(volatile kmp_uint32 *p, kmp_uint32 d) {
367   kmp_uint32 old_value, new_value;
368 
369   old_value = TCR_4(*p);
370   new_value = old_value | d;
371 
372   while (!KMP_COMPARE_AND_STORE_REL32(p, old_value, new_value)) {
373     KMP_CPU_PAUSE();
374     old_value = TCR_4(*p);
375     new_value = old_value | d;
376   }
377   return old_value;
378 }
379 
380 kmp_uint32 __kmp_test_then_and32(volatile kmp_uint32 *p, kmp_uint32 d) {
381   kmp_uint32 old_value, new_value;
382 
383   old_value = TCR_4(*p);
384   new_value = old_value & d;
385 
386   while (!KMP_COMPARE_AND_STORE_REL32(p, old_value, new_value)) {
387     KMP_CPU_PAUSE();
388     old_value = TCR_4(*p);
389     new_value = old_value & d;
390   }
391   return old_value;
392 }
393 
394 #if KMP_ARCH_X86
395 kmp_int8 __kmp_test_then_add8(volatile kmp_int8 *p, kmp_int8 d) {
396   kmp_int8 old_value, new_value;
397 
398   old_value = TCR_1(*p);
399   new_value = old_value + d;
400 
401   while (!KMP_COMPARE_AND_STORE_REL8(p, old_value, new_value)) {
402     KMP_CPU_PAUSE();
403     old_value = TCR_1(*p);
404     new_value = old_value + d;
405   }
406   return old_value;
407 }
408 
409 kmp_int64 __kmp_test_then_add64(volatile kmp_int64 *p, kmp_int64 d) {
410   kmp_int64 old_value, new_value;
411 
412   old_value = TCR_8(*p);
413   new_value = old_value + d;
414 
415   while (!KMP_COMPARE_AND_STORE_REL64(p, old_value, new_value)) {
416     KMP_CPU_PAUSE();
417     old_value = TCR_8(*p);
418     new_value = old_value + d;
419   }
420   return old_value;
421 }
422 #endif /* KMP_ARCH_X86 */
423 
424 kmp_uint64 __kmp_test_then_or64(volatile kmp_uint64 *p, kmp_uint64 d) {
425   kmp_uint64 old_value, new_value;
426 
427   old_value = TCR_8(*p);
428   new_value = old_value | d;
429   while (!KMP_COMPARE_AND_STORE_REL64(p, old_value, new_value)) {
430     KMP_CPU_PAUSE();
431     old_value = TCR_8(*p);
432     new_value = old_value | d;
433   }
434   return old_value;
435 }
436 
437 kmp_uint64 __kmp_test_then_and64(volatile kmp_uint64 *p, kmp_uint64 d) {
438   kmp_uint64 old_value, new_value;
439 
440   old_value = TCR_8(*p);
441   new_value = old_value & d;
442   while (!KMP_COMPARE_AND_STORE_REL64(p, old_value, new_value)) {
443     KMP_CPU_PAUSE();
444     old_value = TCR_8(*p);
445     new_value = old_value & d;
446   }
447   return old_value;
448 }
449 
450 #endif /* (KMP_ARCH_X86 || KMP_ARCH_X86_64) && (! KMP_ASM_INTRINS) */
451 
452 void __kmp_terminate_thread(int gtid) {
453   int status;
454   kmp_info_t *th = __kmp_threads[gtid];
455 
456   if (!th)
457     return;
458 
459 #ifdef KMP_CANCEL_THREADS
460   KA_TRACE(10, ("__kmp_terminate_thread: kill (%d)\n", gtid));
461   status = pthread_cancel(th->th.th_info.ds.ds_thread);
462   if (status != 0 && status != ESRCH) {
463     __kmp_fatal(KMP_MSG(CantTerminateWorkerThread), KMP_ERR(status),
464                 __kmp_msg_null);
465   }
466 #endif
467   KMP_YIELD(TRUE);
468 } //
469 
470 /* Set thread stack info according to values returned by pthread_getattr_np().
471    If values are unreasonable, assume call failed and use incremental stack
472    refinement method instead. Returns TRUE if the stack parameters could be
473    determined exactly, FALSE if incremental refinement is necessary. */
474 static kmp_int32 __kmp_set_stack_info(int gtid, kmp_info_t *th) {
475   int stack_data;
476 #if KMP_OS_LINUX || KMP_OS_DRAGONFLY || KMP_OS_FREEBSD || KMP_OS_NETBSD ||     \
477         KMP_OS_HURD
478   pthread_attr_t attr;
479   int status;
480   size_t size = 0;
481   void *addr = 0;
482 
483   /* Always do incremental stack refinement for ubermaster threads since the
484      initial thread stack range can be reduced by sibling thread creation so
485      pthread_attr_getstack may cause thread gtid aliasing */
486   if (!KMP_UBER_GTID(gtid)) {
487 
488     /* Fetch the real thread attributes */
489     status = pthread_attr_init(&attr);
490     KMP_CHECK_SYSFAIL("pthread_attr_init", status);
491 #if KMP_OS_DRAGONFLY || KMP_OS_FREEBSD || KMP_OS_NETBSD
492     status = pthread_attr_get_np(pthread_self(), &attr);
493     KMP_CHECK_SYSFAIL("pthread_attr_get_np", status);
494 #else
495     status = pthread_getattr_np(pthread_self(), &attr);
496     KMP_CHECK_SYSFAIL("pthread_getattr_np", status);
497 #endif
498     status = pthread_attr_getstack(&attr, &addr, &size);
499     KMP_CHECK_SYSFAIL("pthread_attr_getstack", status);
500     KA_TRACE(60,
501              ("__kmp_set_stack_info: T#%d pthread_attr_getstack returned size:"
502               " %lu, low addr: %p\n",
503               gtid, size, addr));
504     status = pthread_attr_destroy(&attr);
505     KMP_CHECK_SYSFAIL("pthread_attr_destroy", status);
506   }
507 
508   if (size != 0 && addr != 0) { // was stack parameter determination successful?
509     /* Store the correct base and size */
510     TCW_PTR(th->th.th_info.ds.ds_stackbase, (((char *)addr) + size));
511     TCW_PTR(th->th.th_info.ds.ds_stacksize, size);
512     TCW_4(th->th.th_info.ds.ds_stackgrow, FALSE);
513     return TRUE;
514   }
515 #endif /* KMP_OS_LINUX || KMP_OS_DRAGONFLY || KMP_OS_FREEBSD || KMP_OS_NETBSD ||
516               KMP_OS_HURD */
517   /* Use incremental refinement starting from initial conservative estimate */
518   TCW_PTR(th->th.th_info.ds.ds_stacksize, 0);
519   TCW_PTR(th->th.th_info.ds.ds_stackbase, &stack_data);
520   TCW_4(th->th.th_info.ds.ds_stackgrow, TRUE);
521   return FALSE;
522 }
523 
524 static void *__kmp_launch_worker(void *thr) {
525   int status, old_type, old_state;
526 #ifdef KMP_BLOCK_SIGNALS
527   sigset_t new_set, old_set;
528 #endif /* KMP_BLOCK_SIGNALS */
529   void *exit_val;
530 #if KMP_OS_LINUX || KMP_OS_DRAGONFLY || KMP_OS_FREEBSD || KMP_OS_NETBSD ||     \
531         KMP_OS_OPENBSD || KMP_OS_HURD
532   void *volatile padding = 0;
533 #endif
534   int gtid;
535 
536   gtid = ((kmp_info_t *)thr)->th.th_info.ds.ds_gtid;
537   __kmp_gtid_set_specific(gtid);
538 #ifdef KMP_TDATA_GTID
539   __kmp_gtid = gtid;
540 #endif
541 #if KMP_STATS_ENABLED
542   // set thread local index to point to thread-specific stats
543   __kmp_stats_thread_ptr = ((kmp_info_t *)thr)->th.th_stats;
544   __kmp_stats_thread_ptr->startLife();
545   KMP_SET_THREAD_STATE(IDLE);
546   KMP_INIT_PARTITIONED_TIMERS(OMP_idle);
547 #endif
548 
549 #if USE_ITT_BUILD
550   __kmp_itt_thread_name(gtid);
551 #endif /* USE_ITT_BUILD */
552 
553 #if KMP_AFFINITY_SUPPORTED
554   __kmp_affinity_set_init_mask(gtid, FALSE);
555 #endif
556 
557 #ifdef KMP_CANCEL_THREADS
558   status = pthread_setcanceltype(PTHREAD_CANCEL_ASYNCHRONOUS, &old_type);
559   KMP_CHECK_SYSFAIL("pthread_setcanceltype", status);
560   // josh todo: isn't PTHREAD_CANCEL_ENABLE default for newly-created threads?
561   status = pthread_setcancelstate(PTHREAD_CANCEL_ENABLE, &old_state);
562   KMP_CHECK_SYSFAIL("pthread_setcancelstate", status);
563 #endif
564 
565 #if KMP_ARCH_X86 || KMP_ARCH_X86_64
566   // Set FP control regs to be a copy of the parallel initialization thread's.
567   __kmp_clear_x87_fpu_status_word();
568   __kmp_load_x87_fpu_control_word(&__kmp_init_x87_fpu_control_word);
569   __kmp_load_mxcsr(&__kmp_init_mxcsr);
570 #endif /* KMP_ARCH_X86 || KMP_ARCH_X86_64 */
571 
572 #ifdef KMP_BLOCK_SIGNALS
573   status = sigfillset(&new_set);
574   KMP_CHECK_SYSFAIL_ERRNO("sigfillset", status);
575   status = pthread_sigmask(SIG_BLOCK, &new_set, &old_set);
576   KMP_CHECK_SYSFAIL("pthread_sigmask", status);
577 #endif /* KMP_BLOCK_SIGNALS */
578 
579 #if KMP_OS_LINUX || KMP_OS_DRAGONFLY || KMP_OS_FREEBSD || KMP_OS_NETBSD ||     \
580         KMP_OS_OPENBSD
581   if (__kmp_stkoffset > 0 && gtid > 0) {
582     padding = KMP_ALLOCA(gtid * __kmp_stkoffset);
583   }
584 #endif
585 
586   KMP_MB();
587   __kmp_set_stack_info(gtid, (kmp_info_t *)thr);
588 
589   __kmp_check_stack_overlap((kmp_info_t *)thr);
590 
591   exit_val = __kmp_launch_thread((kmp_info_t *)thr);
592 
593 #ifdef KMP_BLOCK_SIGNALS
594   status = pthread_sigmask(SIG_SETMASK, &old_set, NULL);
595   KMP_CHECK_SYSFAIL("pthread_sigmask", status);
596 #endif /* KMP_BLOCK_SIGNALS */
597 
598   return exit_val;
599 }
600 
601 #if KMP_USE_MONITOR
602 /* The monitor thread controls all of the threads in the complex */
603 
604 static void *__kmp_launch_monitor(void *thr) {
605   int status, old_type, old_state;
606 #ifdef KMP_BLOCK_SIGNALS
607   sigset_t new_set;
608 #endif /* KMP_BLOCK_SIGNALS */
609   struct timespec interval;
610 
611   KMP_MB(); /* Flush all pending memory write invalidates.  */
612 
613   KA_TRACE(10, ("__kmp_launch_monitor: #1 launched\n"));
614 
615   /* register us as the monitor thread */
616   __kmp_gtid_set_specific(KMP_GTID_MONITOR);
617 #ifdef KMP_TDATA_GTID
618   __kmp_gtid = KMP_GTID_MONITOR;
619 #endif
620 
621   KMP_MB();
622 
623 #if USE_ITT_BUILD
624   // Instruct Intel(R) Threading Tools to ignore monitor thread.
625   __kmp_itt_thread_ignore();
626 #endif /* USE_ITT_BUILD */
627 
628   __kmp_set_stack_info(((kmp_info_t *)thr)->th.th_info.ds.ds_gtid,
629                        (kmp_info_t *)thr);
630 
631   __kmp_check_stack_overlap((kmp_info_t *)thr);
632 
633 #ifdef KMP_CANCEL_THREADS
634   status = pthread_setcanceltype(PTHREAD_CANCEL_ASYNCHRONOUS, &old_type);
635   KMP_CHECK_SYSFAIL("pthread_setcanceltype", status);
636   // josh todo: isn't PTHREAD_CANCEL_ENABLE default for newly-created threads?
637   status = pthread_setcancelstate(PTHREAD_CANCEL_ENABLE, &old_state);
638   KMP_CHECK_SYSFAIL("pthread_setcancelstate", status);
639 #endif
640 
641 #if KMP_REAL_TIME_FIX
642   // This is a potential fix which allows application with real-time scheduling
643   // policy work. However, decision about the fix is not made yet, so it is
644   // disabled by default.
645   { // Are program started with real-time scheduling policy?
646     int sched = sched_getscheduler(0);
647     if (sched == SCHED_FIFO || sched == SCHED_RR) {
648       // Yes, we are a part of real-time application. Try to increase the
649       // priority of the monitor.
650       struct sched_param param;
651       int max_priority = sched_get_priority_max(sched);
652       int rc;
653       KMP_WARNING(RealTimeSchedNotSupported);
654       sched_getparam(0, &param);
655       if (param.sched_priority < max_priority) {
656         param.sched_priority += 1;
657         rc = sched_setscheduler(0, sched, &param);
658         if (rc != 0) {
659           int error = errno;
660           kmp_msg_t err_code = KMP_ERR(error);
661           __kmp_msg(kmp_ms_warning, KMP_MSG(CantChangeMonitorPriority),
662                     err_code, KMP_MSG(MonitorWillStarve), __kmp_msg_null);
663           if (__kmp_generate_warnings == kmp_warnings_off) {
664             __kmp_str_free(&err_code.str);
665           }
666         }
667       } else {
668         // We cannot abort here, because number of CPUs may be enough for all
669         // the threads, including the monitor thread, so application could
670         // potentially work...
671         __kmp_msg(kmp_ms_warning, KMP_MSG(RunningAtMaxPriority),
672                   KMP_MSG(MonitorWillStarve), KMP_HNT(RunningAtMaxPriority),
673                   __kmp_msg_null);
674       }
675     }
676     // AC: free thread that waits for monitor started
677     TCW_4(__kmp_global.g.g_time.dt.t_value, 0);
678   }
679 #endif // KMP_REAL_TIME_FIX
680 
681   KMP_MB(); /* Flush all pending memory write invalidates.  */
682 
683   if (__kmp_monitor_wakeups == 1) {
684     interval.tv_sec = 1;
685     interval.tv_nsec = 0;
686   } else {
687     interval.tv_sec = 0;
688     interval.tv_nsec = (KMP_NSEC_PER_SEC / __kmp_monitor_wakeups);
689   }
690 
691   KA_TRACE(10, ("__kmp_launch_monitor: #2 monitor\n"));
692 
693   while (!TCR_4(__kmp_global.g.g_done)) {
694     struct timespec now;
695     struct timeval tval;
696 
697     /*  This thread monitors the state of the system */
698 
699     KA_TRACE(15, ("__kmp_launch_monitor: update\n"));
700 
701     status = gettimeofday(&tval, NULL);
702     KMP_CHECK_SYSFAIL_ERRNO("gettimeofday", status);
703     TIMEVAL_TO_TIMESPEC(&tval, &now);
704 
705     now.tv_sec += interval.tv_sec;
706     now.tv_nsec += interval.tv_nsec;
707 
708     if (now.tv_nsec >= KMP_NSEC_PER_SEC) {
709       now.tv_sec += 1;
710       now.tv_nsec -= KMP_NSEC_PER_SEC;
711     }
712 
713     status = pthread_mutex_lock(&__kmp_wait_mx.m_mutex);
714     KMP_CHECK_SYSFAIL("pthread_mutex_lock", status);
715     // AC: the monitor should not fall asleep if g_done has been set
716     if (!TCR_4(__kmp_global.g.g_done)) { // check once more under mutex
717       status = pthread_cond_timedwait(&__kmp_wait_cv.c_cond,
718                                       &__kmp_wait_mx.m_mutex, &now);
719       if (status != 0) {
720         if (status != ETIMEDOUT && status != EINTR) {
721           KMP_SYSFAIL("pthread_cond_timedwait", status);
722         }
723       }
724     }
725     status = pthread_mutex_unlock(&__kmp_wait_mx.m_mutex);
726     KMP_CHECK_SYSFAIL("pthread_mutex_unlock", status);
727 
728     TCW_4(__kmp_global.g.g_time.dt.t_value,
729           TCR_4(__kmp_global.g.g_time.dt.t_value) + 1);
730 
731     KMP_MB(); /* Flush all pending memory write invalidates.  */
732   }
733 
734   KA_TRACE(10, ("__kmp_launch_monitor: #3 cleanup\n"));
735 
736 #ifdef KMP_BLOCK_SIGNALS
737   status = sigfillset(&new_set);
738   KMP_CHECK_SYSFAIL_ERRNO("sigfillset", status);
739   status = pthread_sigmask(SIG_UNBLOCK, &new_set, NULL);
740   KMP_CHECK_SYSFAIL("pthread_sigmask", status);
741 #endif /* KMP_BLOCK_SIGNALS */
742 
743   KA_TRACE(10, ("__kmp_launch_monitor: #4 finished\n"));
744 
745   if (__kmp_global.g.g_abort != 0) {
746     /* now we need to terminate the worker threads  */
747     /* the value of t_abort is the signal we caught */
748 
749     int gtid;
750 
751     KA_TRACE(10, ("__kmp_launch_monitor: #5 terminate sig=%d\n",
752                   __kmp_global.g.g_abort));
753 
754     /* terminate the OpenMP worker threads */
755     /* TODO this is not valid for sibling threads!!
756      * the uber master might not be 0 anymore.. */
757     for (gtid = 1; gtid < __kmp_threads_capacity; ++gtid)
758       __kmp_terminate_thread(gtid);
759 
760     __kmp_cleanup();
761 
762     KA_TRACE(10, ("__kmp_launch_monitor: #6 raise sig=%d\n",
763                   __kmp_global.g.g_abort));
764 
765     if (__kmp_global.g.g_abort > 0)
766       raise(__kmp_global.g.g_abort);
767   }
768 
769   KA_TRACE(10, ("__kmp_launch_monitor: #7 exit\n"));
770 
771   return thr;
772 }
773 #endif // KMP_USE_MONITOR
774 
775 void __kmp_create_worker(int gtid, kmp_info_t *th, size_t stack_size) {
776   pthread_t handle;
777   pthread_attr_t thread_attr;
778   int status;
779 
780   th->th.th_info.ds.ds_gtid = gtid;
781 
782 #if KMP_STATS_ENABLED
783   // sets up worker thread stats
784   __kmp_acquire_tas_lock(&__kmp_stats_lock, gtid);
785 
786   // th->th.th_stats is used to transfer thread-specific stats-pointer to
787   // __kmp_launch_worker. So when thread is created (goes into
788   // __kmp_launch_worker) it will set its thread local pointer to
789   // th->th.th_stats
790   if (!KMP_UBER_GTID(gtid)) {
791     th->th.th_stats = __kmp_stats_list->push_back(gtid);
792   } else {
793     // For root threads, __kmp_stats_thread_ptr is set in __kmp_register_root(),
794     // so set the th->th.th_stats field to it.
795     th->th.th_stats = __kmp_stats_thread_ptr;
796   }
797   __kmp_release_tas_lock(&__kmp_stats_lock, gtid);
798 
799 #endif // KMP_STATS_ENABLED
800 
801   if (KMP_UBER_GTID(gtid)) {
802     KA_TRACE(10, ("__kmp_create_worker: uber thread (%d)\n", gtid));
803     th->th.th_info.ds.ds_thread = pthread_self();
804     __kmp_set_stack_info(gtid, th);
805     __kmp_check_stack_overlap(th);
806     return;
807   }
808 
809   KA_TRACE(10, ("__kmp_create_worker: try to create thread (%d)\n", gtid));
810 
811   KMP_MB(); /* Flush all pending memory write invalidates.  */
812 
813 #ifdef KMP_THREAD_ATTR
814   status = pthread_attr_init(&thread_attr);
815   if (status != 0) {
816     __kmp_fatal(KMP_MSG(CantInitThreadAttrs), KMP_ERR(status), __kmp_msg_null);
817   }
818   status = pthread_attr_setdetachstate(&thread_attr, PTHREAD_CREATE_JOINABLE);
819   if (status != 0) {
820     __kmp_fatal(KMP_MSG(CantSetWorkerState), KMP_ERR(status), __kmp_msg_null);
821   }
822 
823   /* Set stack size for this thread now.
824      The multiple of 2 is there because on some machines, requesting an unusual
825      stacksize causes the thread to have an offset before the dummy alloca()
826      takes place to create the offset.  Since we want the user to have a
827      sufficient stacksize AND support a stack offset, we alloca() twice the
828      offset so that the upcoming alloca() does not eliminate any premade offset,
829      and also gives the user the stack space they requested for all threads */
830   stack_size += gtid * __kmp_stkoffset * 2;
831 
832 #if defined(__ANDROID__) && __ANDROID_API__ < 19
833     // Round the stack size to a multiple of the page size. Older versions of
834     // Android (until KitKat) would fail pthread_attr_setstacksize with EINVAL
835     // if the stack size was not a multiple of the page size.
836     stack_size = (stack_size + PAGE_SIZE - 1) & ~(PAGE_SIZE - 1);
837 #endif
838 
839   KA_TRACE(10, ("__kmp_create_worker: T#%d, default stacksize = %lu bytes, "
840                 "__kmp_stksize = %lu bytes, final stacksize = %lu bytes\n",
841                 gtid, KMP_DEFAULT_STKSIZE, __kmp_stksize, stack_size));
842 
843 #ifdef _POSIX_THREAD_ATTR_STACKSIZE
844   status = pthread_attr_setstacksize(&thread_attr, stack_size);
845 #ifdef KMP_BACKUP_STKSIZE
846   if (status != 0) {
847     if (!__kmp_env_stksize) {
848       stack_size = KMP_BACKUP_STKSIZE + gtid * __kmp_stkoffset;
849       __kmp_stksize = KMP_BACKUP_STKSIZE;
850       KA_TRACE(10, ("__kmp_create_worker: T#%d, default stacksize = %lu bytes, "
851                     "__kmp_stksize = %lu bytes, (backup) final stacksize = %lu "
852                     "bytes\n",
853                     gtid, KMP_DEFAULT_STKSIZE, __kmp_stksize, stack_size));
854       status = pthread_attr_setstacksize(&thread_attr, stack_size);
855     }
856   }
857 #endif /* KMP_BACKUP_STKSIZE */
858   if (status != 0) {
859     __kmp_fatal(KMP_MSG(CantSetWorkerStackSize, stack_size), KMP_ERR(status),
860                 KMP_HNT(ChangeWorkerStackSize), __kmp_msg_null);
861   }
862 #endif /* _POSIX_THREAD_ATTR_STACKSIZE */
863 
864 #endif /* KMP_THREAD_ATTR */
865 
866   status =
867       pthread_create(&handle, &thread_attr, __kmp_launch_worker, (void *)th);
868   if (status != 0 || !handle) { // ??? Why do we check handle??
869 #ifdef _POSIX_THREAD_ATTR_STACKSIZE
870     if (status == EINVAL) {
871       __kmp_fatal(KMP_MSG(CantSetWorkerStackSize, stack_size), KMP_ERR(status),
872                   KMP_HNT(IncreaseWorkerStackSize), __kmp_msg_null);
873     }
874     if (status == ENOMEM) {
875       __kmp_fatal(KMP_MSG(CantSetWorkerStackSize, stack_size), KMP_ERR(status),
876                   KMP_HNT(DecreaseWorkerStackSize), __kmp_msg_null);
877     }
878 #endif /* _POSIX_THREAD_ATTR_STACKSIZE */
879     if (status == EAGAIN) {
880       __kmp_fatal(KMP_MSG(NoResourcesForWorkerThread), KMP_ERR(status),
881                   KMP_HNT(Decrease_NUM_THREADS), __kmp_msg_null);
882     }
883     KMP_SYSFAIL("pthread_create", status);
884   }
885 
886   th->th.th_info.ds.ds_thread = handle;
887 
888 #ifdef KMP_THREAD_ATTR
889   status = pthread_attr_destroy(&thread_attr);
890   if (status) {
891     kmp_msg_t err_code = KMP_ERR(status);
892     __kmp_msg(kmp_ms_warning, KMP_MSG(CantDestroyThreadAttrs), err_code,
893               __kmp_msg_null);
894     if (__kmp_generate_warnings == kmp_warnings_off) {
895       __kmp_str_free(&err_code.str);
896     }
897   }
898 #endif /* KMP_THREAD_ATTR */
899 
900   KMP_MB(); /* Flush all pending memory write invalidates.  */
901 
902   KA_TRACE(10, ("__kmp_create_worker: done creating thread (%d)\n", gtid));
903 
904 } // __kmp_create_worker
905 
906 #if KMP_USE_MONITOR
907 void __kmp_create_monitor(kmp_info_t *th) {
908   pthread_t handle;
909   pthread_attr_t thread_attr;
910   size_t size;
911   int status;
912   int auto_adj_size = FALSE;
913 
914   if (__kmp_dflt_blocktime == KMP_MAX_BLOCKTIME) {
915     // We don't need monitor thread in case of MAX_BLOCKTIME
916     KA_TRACE(10, ("__kmp_create_monitor: skipping monitor thread because of "
917                   "MAX blocktime\n"));
918     th->th.th_info.ds.ds_tid = 0; // this makes reap_monitor no-op
919     th->th.th_info.ds.ds_gtid = 0;
920     return;
921   }
922   KA_TRACE(10, ("__kmp_create_monitor: try to create monitor\n"));
923 
924   KMP_MB(); /* Flush all pending memory write invalidates.  */
925 
926   th->th.th_info.ds.ds_tid = KMP_GTID_MONITOR;
927   th->th.th_info.ds.ds_gtid = KMP_GTID_MONITOR;
928 #if KMP_REAL_TIME_FIX
929   TCW_4(__kmp_global.g.g_time.dt.t_value,
930         -1); // Will use it for synchronization a bit later.
931 #else
932   TCW_4(__kmp_global.g.g_time.dt.t_value, 0);
933 #endif // KMP_REAL_TIME_FIX
934 
935 #ifdef KMP_THREAD_ATTR
936   if (__kmp_monitor_stksize == 0) {
937     __kmp_monitor_stksize = KMP_DEFAULT_MONITOR_STKSIZE;
938     auto_adj_size = TRUE;
939   }
940   status = pthread_attr_init(&thread_attr);
941   if (status != 0) {
942     __kmp_fatal(KMP_MSG(CantInitThreadAttrs), KMP_ERR(status), __kmp_msg_null);
943   }
944   status = pthread_attr_setdetachstate(&thread_attr, PTHREAD_CREATE_JOINABLE);
945   if (status != 0) {
946     __kmp_fatal(KMP_MSG(CantSetMonitorState), KMP_ERR(status), __kmp_msg_null);
947   }
948 
949 #ifdef _POSIX_THREAD_ATTR_STACKSIZE
950   status = pthread_attr_getstacksize(&thread_attr, &size);
951   KMP_CHECK_SYSFAIL("pthread_attr_getstacksize", status);
952 #else
953   size = __kmp_sys_min_stksize;
954 #endif /* _POSIX_THREAD_ATTR_STACKSIZE */
955 #endif /* KMP_THREAD_ATTR */
956 
957   if (__kmp_monitor_stksize == 0) {
958     __kmp_monitor_stksize = KMP_DEFAULT_MONITOR_STKSIZE;
959   }
960   if (__kmp_monitor_stksize < __kmp_sys_min_stksize) {
961     __kmp_monitor_stksize = __kmp_sys_min_stksize;
962   }
963 
964   KA_TRACE(10, ("__kmp_create_monitor: default stacksize = %lu bytes,"
965                 "requested stacksize = %lu bytes\n",
966                 size, __kmp_monitor_stksize));
967 
968 retry:
969 
970 /* Set stack size for this thread now. */
971 #ifdef _POSIX_THREAD_ATTR_STACKSIZE
972   KA_TRACE(10, ("__kmp_create_monitor: setting stacksize = %lu bytes,",
973                 __kmp_monitor_stksize));
974   status = pthread_attr_setstacksize(&thread_attr, __kmp_monitor_stksize);
975   if (status != 0) {
976     if (auto_adj_size) {
977       __kmp_monitor_stksize *= 2;
978       goto retry;
979     }
980     kmp_msg_t err_code = KMP_ERR(status);
981     __kmp_msg(kmp_ms_warning, // should this be fatal?  BB
982               KMP_MSG(CantSetMonitorStackSize, (long int)__kmp_monitor_stksize),
983               err_code, KMP_HNT(ChangeMonitorStackSize), __kmp_msg_null);
984     if (__kmp_generate_warnings == kmp_warnings_off) {
985       __kmp_str_free(&err_code.str);
986     }
987   }
988 #endif /* _POSIX_THREAD_ATTR_STACKSIZE */
989 
990   status =
991       pthread_create(&handle, &thread_attr, __kmp_launch_monitor, (void *)th);
992 
993   if (status != 0) {
994 #ifdef _POSIX_THREAD_ATTR_STACKSIZE
995     if (status == EINVAL) {
996       if (auto_adj_size && (__kmp_monitor_stksize < (size_t)0x40000000)) {
997         __kmp_monitor_stksize *= 2;
998         goto retry;
999       }
1000       __kmp_fatal(KMP_MSG(CantSetMonitorStackSize, __kmp_monitor_stksize),
1001                   KMP_ERR(status), KMP_HNT(IncreaseMonitorStackSize),
1002                   __kmp_msg_null);
1003     }
1004     if (status == ENOMEM) {
1005       __kmp_fatal(KMP_MSG(CantSetMonitorStackSize, __kmp_monitor_stksize),
1006                   KMP_ERR(status), KMP_HNT(DecreaseMonitorStackSize),
1007                   __kmp_msg_null);
1008     }
1009 #endif /* _POSIX_THREAD_ATTR_STACKSIZE */
1010     if (status == EAGAIN) {
1011       __kmp_fatal(KMP_MSG(NoResourcesForMonitorThread), KMP_ERR(status),
1012                   KMP_HNT(DecreaseNumberOfThreadsInUse), __kmp_msg_null);
1013     }
1014     KMP_SYSFAIL("pthread_create", status);
1015   }
1016 
1017   th->th.th_info.ds.ds_thread = handle;
1018 
1019 #if KMP_REAL_TIME_FIX
1020   // Wait for the monitor thread is really started and set its *priority*.
1021   KMP_DEBUG_ASSERT(sizeof(kmp_uint32) ==
1022                    sizeof(__kmp_global.g.g_time.dt.t_value));
1023   __kmp_wait_4((kmp_uint32 volatile *)&__kmp_global.g.g_time.dt.t_value, -1,
1024                &__kmp_neq_4, NULL);
1025 #endif // KMP_REAL_TIME_FIX
1026 
1027 #ifdef KMP_THREAD_ATTR
1028   status = pthread_attr_destroy(&thread_attr);
1029   if (status != 0) {
1030     kmp_msg_t err_code = KMP_ERR(status);
1031     __kmp_msg(kmp_ms_warning, KMP_MSG(CantDestroyThreadAttrs), err_code,
1032               __kmp_msg_null);
1033     if (__kmp_generate_warnings == kmp_warnings_off) {
1034       __kmp_str_free(&err_code.str);
1035     }
1036   }
1037 #endif
1038 
1039   KMP_MB(); /* Flush all pending memory write invalidates.  */
1040 
1041   KA_TRACE(10, ("__kmp_create_monitor: monitor created %#.8lx\n",
1042                 th->th.th_info.ds.ds_thread));
1043 
1044 } // __kmp_create_monitor
1045 #endif // KMP_USE_MONITOR
1046 
1047 void __kmp_exit_thread(int exit_status) {
1048   pthread_exit((void *)(intptr_t)exit_status);
1049 } // __kmp_exit_thread
1050 
1051 #if KMP_USE_MONITOR
1052 void __kmp_resume_monitor();
1053 
1054 void __kmp_reap_monitor(kmp_info_t *th) {
1055   int status;
1056   void *exit_val;
1057 
1058   KA_TRACE(10, ("__kmp_reap_monitor: try to reap monitor thread with handle"
1059                 " %#.8lx\n",
1060                 th->th.th_info.ds.ds_thread));
1061 
1062   // If monitor has been created, its tid and gtid should be KMP_GTID_MONITOR.
1063   // If both tid and gtid are 0, it means the monitor did not ever start.
1064   // If both tid and gtid are KMP_GTID_DNE, the monitor has been shut down.
1065   KMP_DEBUG_ASSERT(th->th.th_info.ds.ds_tid == th->th.th_info.ds.ds_gtid);
1066   if (th->th.th_info.ds.ds_gtid != KMP_GTID_MONITOR) {
1067     KA_TRACE(10, ("__kmp_reap_monitor: monitor did not start, returning\n"));
1068     return;
1069   }
1070 
1071   KMP_MB(); /* Flush all pending memory write invalidates.  */
1072 
1073   /* First, check to see whether the monitor thread exists to wake it up. This
1074      is to avoid performance problem when the monitor sleeps during
1075      blocktime-size interval */
1076 
1077   status = pthread_kill(th->th.th_info.ds.ds_thread, 0);
1078   if (status != ESRCH) {
1079     __kmp_resume_monitor(); // Wake up the monitor thread
1080   }
1081   KA_TRACE(10, ("__kmp_reap_monitor: try to join with monitor\n"));
1082   status = pthread_join(th->th.th_info.ds.ds_thread, &exit_val);
1083   if (exit_val != th) {
1084     __kmp_fatal(KMP_MSG(ReapMonitorError), KMP_ERR(status), __kmp_msg_null);
1085   }
1086 
1087   th->th.th_info.ds.ds_tid = KMP_GTID_DNE;
1088   th->th.th_info.ds.ds_gtid = KMP_GTID_DNE;
1089 
1090   KA_TRACE(10, ("__kmp_reap_monitor: done reaping monitor thread with handle"
1091                 " %#.8lx\n",
1092                 th->th.th_info.ds.ds_thread));
1093 
1094   KMP_MB(); /* Flush all pending memory write invalidates.  */
1095 }
1096 #endif // KMP_USE_MONITOR
1097 
1098 void __kmp_reap_worker(kmp_info_t *th) {
1099   int status;
1100   void *exit_val;
1101 
1102   KMP_MB(); /* Flush all pending memory write invalidates.  */
1103 
1104   KA_TRACE(
1105       10, ("__kmp_reap_worker: try to reap T#%d\n", th->th.th_info.ds.ds_gtid));
1106 
1107   status = pthread_join(th->th.th_info.ds.ds_thread, &exit_val);
1108 #ifdef KMP_DEBUG
1109   /* Don't expose these to the user until we understand when they trigger */
1110   if (status != 0) {
1111     __kmp_fatal(KMP_MSG(ReapWorkerError), KMP_ERR(status), __kmp_msg_null);
1112   }
1113   if (exit_val != th) {
1114     KA_TRACE(10, ("__kmp_reap_worker: worker T#%d did not reap properly, "
1115                   "exit_val = %p\n",
1116                   th->th.th_info.ds.ds_gtid, exit_val));
1117   }
1118 #endif /* KMP_DEBUG */
1119 
1120   KA_TRACE(10, ("__kmp_reap_worker: done reaping T#%d\n",
1121                 th->th.th_info.ds.ds_gtid));
1122 
1123   KMP_MB(); /* Flush all pending memory write invalidates.  */
1124 }
1125 
1126 #if KMP_HANDLE_SIGNALS
1127 
1128 static void __kmp_null_handler(int signo) {
1129   //  Do nothing, for doing SIG_IGN-type actions.
1130 } // __kmp_null_handler
1131 
1132 static void __kmp_team_handler(int signo) {
1133   if (__kmp_global.g.g_abort == 0) {
1134 /* Stage 1 signal handler, let's shut down all of the threads */
1135 #ifdef KMP_DEBUG
1136     __kmp_debug_printf("__kmp_team_handler: caught signal = %d\n", signo);
1137 #endif
1138     switch (signo) {
1139     case SIGHUP:
1140     case SIGINT:
1141     case SIGQUIT:
1142     case SIGILL:
1143     case SIGABRT:
1144     case SIGFPE:
1145     case SIGBUS:
1146     case SIGSEGV:
1147 #ifdef SIGSYS
1148     case SIGSYS:
1149 #endif
1150     case SIGTERM:
1151       if (__kmp_debug_buf) {
1152         __kmp_dump_debug_buffer();
1153       }
1154       __kmp_unregister_library(); // cleanup shared memory
1155       KMP_MB(); // Flush all pending memory write invalidates.
1156       TCW_4(__kmp_global.g.g_abort, signo);
1157       KMP_MB(); // Flush all pending memory write invalidates.
1158       TCW_4(__kmp_global.g.g_done, TRUE);
1159       KMP_MB(); // Flush all pending memory write invalidates.
1160       break;
1161     default:
1162 #ifdef KMP_DEBUG
1163       __kmp_debug_printf("__kmp_team_handler: unknown signal type");
1164 #endif
1165       break;
1166     }
1167   }
1168 } // __kmp_team_handler
1169 
1170 static void __kmp_sigaction(int signum, const struct sigaction *act,
1171                             struct sigaction *oldact) {
1172   int rc = sigaction(signum, act, oldact);
1173   KMP_CHECK_SYSFAIL_ERRNO("sigaction", rc);
1174 }
1175 
1176 static void __kmp_install_one_handler(int sig, sig_func_t handler_func,
1177                                       int parallel_init) {
1178   KMP_MB(); // Flush all pending memory write invalidates.
1179   KB_TRACE(60,
1180            ("__kmp_install_one_handler( %d, ..., %d )\n", sig, parallel_init));
1181   if (parallel_init) {
1182     struct sigaction new_action;
1183     struct sigaction old_action;
1184     new_action.sa_handler = handler_func;
1185     new_action.sa_flags = 0;
1186     sigfillset(&new_action.sa_mask);
1187     __kmp_sigaction(sig, &new_action, &old_action);
1188     if (old_action.sa_handler == __kmp_sighldrs[sig].sa_handler) {
1189       sigaddset(&__kmp_sigset, sig);
1190     } else {
1191       // Restore/keep user's handler if one previously installed.
1192       __kmp_sigaction(sig, &old_action, NULL);
1193     }
1194   } else {
1195     // Save initial/system signal handlers to see if user handlers installed.
1196     __kmp_sigaction(sig, NULL, &__kmp_sighldrs[sig]);
1197   }
1198   KMP_MB(); // Flush all pending memory write invalidates.
1199 } // __kmp_install_one_handler
1200 
1201 static void __kmp_remove_one_handler(int sig) {
1202   KB_TRACE(60, ("__kmp_remove_one_handler( %d )\n", sig));
1203   if (sigismember(&__kmp_sigset, sig)) {
1204     struct sigaction old;
1205     KMP_MB(); // Flush all pending memory write invalidates.
1206     __kmp_sigaction(sig, &__kmp_sighldrs[sig], &old);
1207     if ((old.sa_handler != __kmp_team_handler) &&
1208         (old.sa_handler != __kmp_null_handler)) {
1209       // Restore the users signal handler.
1210       KB_TRACE(10, ("__kmp_remove_one_handler: oops, not our handler, "
1211                     "restoring: sig=%d\n",
1212                     sig));
1213       __kmp_sigaction(sig, &old, NULL);
1214     }
1215     sigdelset(&__kmp_sigset, sig);
1216     KMP_MB(); // Flush all pending memory write invalidates.
1217   }
1218 } // __kmp_remove_one_handler
1219 
1220 void __kmp_install_signals(int parallel_init) {
1221   KB_TRACE(10, ("__kmp_install_signals( %d )\n", parallel_init));
1222   if (__kmp_handle_signals || !parallel_init) {
1223     // If ! parallel_init, we do not install handlers, just save original
1224     // handlers. Let us do it even __handle_signals is 0.
1225     sigemptyset(&__kmp_sigset);
1226     __kmp_install_one_handler(SIGHUP, __kmp_team_handler, parallel_init);
1227     __kmp_install_one_handler(SIGINT, __kmp_team_handler, parallel_init);
1228     __kmp_install_one_handler(SIGQUIT, __kmp_team_handler, parallel_init);
1229     __kmp_install_one_handler(SIGILL, __kmp_team_handler, parallel_init);
1230     __kmp_install_one_handler(SIGABRT, __kmp_team_handler, parallel_init);
1231     __kmp_install_one_handler(SIGFPE, __kmp_team_handler, parallel_init);
1232     __kmp_install_one_handler(SIGBUS, __kmp_team_handler, parallel_init);
1233     __kmp_install_one_handler(SIGSEGV, __kmp_team_handler, parallel_init);
1234 #ifdef SIGSYS
1235     __kmp_install_one_handler(SIGSYS, __kmp_team_handler, parallel_init);
1236 #endif // SIGSYS
1237     __kmp_install_one_handler(SIGTERM, __kmp_team_handler, parallel_init);
1238 #ifdef SIGPIPE
1239     __kmp_install_one_handler(SIGPIPE, __kmp_team_handler, parallel_init);
1240 #endif // SIGPIPE
1241   }
1242 } // __kmp_install_signals
1243 
1244 void __kmp_remove_signals(void) {
1245   int sig;
1246   KB_TRACE(10, ("__kmp_remove_signals()\n"));
1247   for (sig = 1; sig < NSIG; ++sig) {
1248     __kmp_remove_one_handler(sig);
1249   }
1250 } // __kmp_remove_signals
1251 
1252 #endif // KMP_HANDLE_SIGNALS
1253 
1254 void __kmp_enable(int new_state) {
1255 #ifdef KMP_CANCEL_THREADS
1256   int status, old_state;
1257   status = pthread_setcancelstate(new_state, &old_state);
1258   KMP_CHECK_SYSFAIL("pthread_setcancelstate", status);
1259   KMP_DEBUG_ASSERT(old_state == PTHREAD_CANCEL_DISABLE);
1260 #endif
1261 }
1262 
1263 void __kmp_disable(int *old_state) {
1264 #ifdef KMP_CANCEL_THREADS
1265   int status;
1266   status = pthread_setcancelstate(PTHREAD_CANCEL_DISABLE, old_state);
1267   KMP_CHECK_SYSFAIL("pthread_setcancelstate", status);
1268 #endif
1269 }
1270 
1271 static void __kmp_atfork_prepare(void) {
1272   __kmp_acquire_bootstrap_lock(&__kmp_initz_lock);
1273   __kmp_acquire_bootstrap_lock(&__kmp_forkjoin_lock);
1274 }
1275 
1276 static void __kmp_atfork_parent(void) {
1277   __kmp_release_bootstrap_lock(&__kmp_forkjoin_lock);
1278   __kmp_release_bootstrap_lock(&__kmp_initz_lock);
1279 }
1280 
1281 /* Reset the library so execution in the child starts "all over again" with
1282    clean data structures in initial states.  Don't worry about freeing memory
1283    allocated by parent, just abandon it to be safe. */
1284 static void __kmp_atfork_child(void) {
1285   __kmp_release_bootstrap_lock(&__kmp_forkjoin_lock);
1286   __kmp_release_bootstrap_lock(&__kmp_initz_lock);
1287   /* TODO make sure this is done right for nested/sibling */
1288   // ATT:  Memory leaks are here? TODO: Check it and fix.
1289   /* KMP_ASSERT( 0 ); */
1290 
1291   ++__kmp_fork_count;
1292 
1293 #if KMP_AFFINITY_SUPPORTED
1294 #if KMP_OS_LINUX || KMP_OS_FREEBSD
1295   // reset the affinity in the child to the initial thread
1296   // affinity in the parent
1297   kmp_set_thread_affinity_mask_initial();
1298 #endif
1299   // Set default not to bind threads tightly in the child (we’re expecting
1300   // over-subscription after the fork and this can improve things for
1301   // scripting languages that use OpenMP inside process-parallel code).
1302   __kmp_affinity_type = affinity_none;
1303   if (__kmp_nested_proc_bind.bind_types != NULL) {
1304     __kmp_nested_proc_bind.bind_types[0] = proc_bind_false;
1305   }
1306 #endif // KMP_AFFINITY_SUPPORTED
1307 
1308 #if KMP_USE_MONITOR
1309   __kmp_init_monitor = 0;
1310 #endif
1311   __kmp_init_parallel = FALSE;
1312   __kmp_init_middle = FALSE;
1313   __kmp_init_serial = FALSE;
1314   TCW_4(__kmp_init_gtid, FALSE);
1315   __kmp_init_common = FALSE;
1316 
1317   TCW_4(__kmp_init_user_locks, FALSE);
1318 #if !KMP_USE_DYNAMIC_LOCK
1319   __kmp_user_lock_table.used = 1;
1320   __kmp_user_lock_table.allocated = 0;
1321   __kmp_user_lock_table.table = NULL;
1322   __kmp_lock_blocks = NULL;
1323 #endif
1324 
1325   __kmp_all_nth = 0;
1326   TCW_4(__kmp_nth, 0);
1327 
1328   __kmp_thread_pool = NULL;
1329   __kmp_thread_pool_insert_pt = NULL;
1330   __kmp_team_pool = NULL;
1331 
1332   /* Must actually zero all the *cache arguments passed to __kmpc_threadprivate
1333      here so threadprivate doesn't use stale data */
1334   KA_TRACE(10, ("__kmp_atfork_child: checking cache address list %p\n",
1335                 __kmp_threadpriv_cache_list));
1336 
1337   while (__kmp_threadpriv_cache_list != NULL) {
1338 
1339     if (*__kmp_threadpriv_cache_list->addr != NULL) {
1340       KC_TRACE(50, ("__kmp_atfork_child: zeroing cache at address %p\n",
1341                     &(*__kmp_threadpriv_cache_list->addr)));
1342 
1343       *__kmp_threadpriv_cache_list->addr = NULL;
1344     }
1345     __kmp_threadpriv_cache_list = __kmp_threadpriv_cache_list->next;
1346   }
1347 
1348   __kmp_init_runtime = FALSE;
1349 
1350   /* reset statically initialized locks */
1351   __kmp_init_bootstrap_lock(&__kmp_initz_lock);
1352   __kmp_init_bootstrap_lock(&__kmp_stdio_lock);
1353   __kmp_init_bootstrap_lock(&__kmp_console_lock);
1354   __kmp_init_bootstrap_lock(&__kmp_task_team_lock);
1355 
1356 #if USE_ITT_BUILD
1357   __kmp_itt_reset(); // reset ITT's global state
1358 #endif /* USE_ITT_BUILD */
1359 
1360   __kmp_serial_initialize();
1361 
1362   /* This is necessary to make sure no stale data is left around */
1363   /* AC: customers complain that we use unsafe routines in the atfork
1364      handler. Mathworks: dlsym() is unsafe. We call dlsym and dlopen
1365      in dynamic_link when check the presence of shared tbbmalloc library.
1366      Suggestion is to make the library initialization lazier, similar
1367      to what done for __kmpc_begin(). */
1368   // TODO: synchronize all static initializations with regular library
1369   //       startup; look at kmp_global.cpp and etc.
1370   //__kmp_internal_begin ();
1371 }
1372 
1373 void __kmp_register_atfork(void) {
1374   if (__kmp_need_register_atfork) {
1375     int status = pthread_atfork(__kmp_atfork_prepare, __kmp_atfork_parent,
1376                                 __kmp_atfork_child);
1377     KMP_CHECK_SYSFAIL("pthread_atfork", status);
1378     __kmp_need_register_atfork = FALSE;
1379   }
1380 }
1381 
1382 void __kmp_suspend_initialize(void) {
1383   int status;
1384   status = pthread_mutexattr_init(&__kmp_suspend_mutex_attr);
1385   KMP_CHECK_SYSFAIL("pthread_mutexattr_init", status);
1386   status = pthread_condattr_init(&__kmp_suspend_cond_attr);
1387   KMP_CHECK_SYSFAIL("pthread_condattr_init", status);
1388 }
1389 
1390 void __kmp_suspend_initialize_thread(kmp_info_t *th) {
1391   ANNOTATE_HAPPENS_AFTER(&th->th.th_suspend_init_count);
1392   int old_value = KMP_ATOMIC_LD_RLX(&th->th.th_suspend_init_count);
1393   int new_value = __kmp_fork_count + 1;
1394   // Return if already initialized
1395   if (old_value == new_value)
1396     return;
1397   // Wait, then return if being initialized
1398   if (old_value == -1 ||
1399       !__kmp_atomic_compare_store(&th->th.th_suspend_init_count, old_value,
1400                                   -1)) {
1401     while (KMP_ATOMIC_LD_ACQ(&th->th.th_suspend_init_count) != new_value) {
1402       KMP_CPU_PAUSE();
1403     }
1404   } else {
1405     // Claim to be the initializer and do initializations
1406     int status;
1407     status = pthread_cond_init(&th->th.th_suspend_cv.c_cond,
1408                                &__kmp_suspend_cond_attr);
1409     KMP_CHECK_SYSFAIL("pthread_cond_init", status);
1410     status = pthread_mutex_init(&th->th.th_suspend_mx.m_mutex,
1411                                 &__kmp_suspend_mutex_attr);
1412     KMP_CHECK_SYSFAIL("pthread_mutex_init", status);
1413     KMP_ATOMIC_ST_REL(&th->th.th_suspend_init_count, new_value);
1414     ANNOTATE_HAPPENS_BEFORE(&th->th.th_suspend_init_count);
1415   }
1416 }
1417 
1418 void __kmp_suspend_uninitialize_thread(kmp_info_t *th) {
1419   if (KMP_ATOMIC_LD_ACQ(&th->th.th_suspend_init_count) > __kmp_fork_count) {
1420     /* this means we have initialize the suspension pthread objects for this
1421        thread in this instance of the process */
1422     int status;
1423 
1424     status = pthread_cond_destroy(&th->th.th_suspend_cv.c_cond);
1425     if (status != 0 && status != EBUSY) {
1426       KMP_SYSFAIL("pthread_cond_destroy", status);
1427     }
1428     status = pthread_mutex_destroy(&th->th.th_suspend_mx.m_mutex);
1429     if (status != 0 && status != EBUSY) {
1430       KMP_SYSFAIL("pthread_mutex_destroy", status);
1431     }
1432     --th->th.th_suspend_init_count;
1433     KMP_DEBUG_ASSERT(KMP_ATOMIC_LD_RLX(&th->th.th_suspend_init_count) ==
1434                      __kmp_fork_count);
1435   }
1436 }
1437 
1438 // return true if lock obtained, false otherwise
1439 int __kmp_try_suspend_mx(kmp_info_t *th) {
1440   return (pthread_mutex_trylock(&th->th.th_suspend_mx.m_mutex) == 0);
1441 }
1442 
1443 void __kmp_lock_suspend_mx(kmp_info_t *th) {
1444   int status = pthread_mutex_lock(&th->th.th_suspend_mx.m_mutex);
1445   KMP_CHECK_SYSFAIL("pthread_mutex_lock", status);
1446 }
1447 
1448 void __kmp_unlock_suspend_mx(kmp_info_t *th) {
1449   int status = pthread_mutex_unlock(&th->th.th_suspend_mx.m_mutex);
1450   KMP_CHECK_SYSFAIL("pthread_mutex_unlock", status);
1451 }
1452 
1453 /* This routine puts the calling thread to sleep after setting the
1454    sleep bit for the indicated flag variable to true. */
1455 template <class C>
1456 static inline void __kmp_suspend_template(int th_gtid, C *flag) {
1457   KMP_TIME_DEVELOPER_PARTITIONED_BLOCK(USER_suspend);
1458   kmp_info_t *th = __kmp_threads[th_gtid];
1459   int status;
1460   typename C::flag_t old_spin;
1461 
1462   KF_TRACE(30, ("__kmp_suspend_template: T#%d enter for flag = %p\n", th_gtid,
1463                 flag->get()));
1464 
1465   __kmp_suspend_initialize_thread(th);
1466 
1467   __kmp_lock_suspend_mx(th);
1468 
1469   KF_TRACE(10, ("__kmp_suspend_template: T#%d setting sleep bit for spin(%p)\n",
1470                 th_gtid, flag->get()));
1471 
1472   /* TODO: shouldn't this use release semantics to ensure that
1473      __kmp_suspend_initialize_thread gets called first? */
1474   old_spin = flag->set_sleeping();
1475   if (__kmp_dflt_blocktime == KMP_MAX_BLOCKTIME &&
1476       __kmp_pause_status != kmp_soft_paused) {
1477     flag->unset_sleeping();
1478     __kmp_unlock_suspend_mx(th);
1479     return;
1480   }
1481   KF_TRACE(5, ("__kmp_suspend_template: T#%d set sleep bit for spin(%p)==%x,"
1482                " was %x\n",
1483                th_gtid, flag->get(), flag->load(), old_spin));
1484 
1485   if (flag->done_check_val(old_spin)) {
1486     old_spin = flag->unset_sleeping();
1487     KF_TRACE(5, ("__kmp_suspend_template: T#%d false alarm, reset sleep bit "
1488                  "for spin(%p)\n",
1489                  th_gtid, flag->get()));
1490   } else {
1491     /* Encapsulate in a loop as the documentation states that this may
1492        "with low probability" return when the condition variable has
1493        not been signaled or broadcast */
1494     int deactivated = FALSE;
1495     TCW_PTR(th->th.th_sleep_loc, (void *)flag);
1496 
1497     while (flag->is_sleeping()) {
1498 #ifdef DEBUG_SUSPEND
1499       char buffer[128];
1500       __kmp_suspend_count++;
1501       __kmp_print_cond(buffer, &th->th.th_suspend_cv);
1502       __kmp_printf("__kmp_suspend_template: suspending T#%d: %s\n", th_gtid,
1503                    buffer);
1504 #endif
1505       // Mark the thread as no longer active (only in the first iteration of the
1506       // loop).
1507       if (!deactivated) {
1508         th->th.th_active = FALSE;
1509         if (th->th.th_active_in_pool) {
1510           th->th.th_active_in_pool = FALSE;
1511           KMP_ATOMIC_DEC(&__kmp_thread_pool_active_nth);
1512           KMP_DEBUG_ASSERT(TCR_4(__kmp_thread_pool_active_nth) >= 0);
1513         }
1514         deactivated = TRUE;
1515       }
1516 
1517 #if USE_SUSPEND_TIMEOUT
1518       struct timespec now;
1519       struct timeval tval;
1520       int msecs;
1521 
1522       status = gettimeofday(&tval, NULL);
1523       KMP_CHECK_SYSFAIL_ERRNO("gettimeofday", status);
1524       TIMEVAL_TO_TIMESPEC(&tval, &now);
1525 
1526       msecs = (4 * __kmp_dflt_blocktime) + 200;
1527       now.tv_sec += msecs / 1000;
1528       now.tv_nsec += (msecs % 1000) * 1000;
1529 
1530       KF_TRACE(15, ("__kmp_suspend_template: T#%d about to perform "
1531                     "pthread_cond_timedwait\n",
1532                     th_gtid));
1533       status = pthread_cond_timedwait(&th->th.th_suspend_cv.c_cond,
1534                                       &th->th.th_suspend_mx.m_mutex, &now);
1535 #else
1536       KF_TRACE(15, ("__kmp_suspend_template: T#%d about to perform"
1537                     " pthread_cond_wait\n",
1538                     th_gtid));
1539       status = pthread_cond_wait(&th->th.th_suspend_cv.c_cond,
1540                                  &th->th.th_suspend_mx.m_mutex);
1541 #endif // USE_SUSPEND_TIMEOUT
1542 
1543       if ((status != 0) && (status != EINTR) && (status != ETIMEDOUT)) {
1544         KMP_SYSFAIL("pthread_cond_wait", status);
1545       }
1546 #ifdef KMP_DEBUG
1547       if (status == ETIMEDOUT) {
1548         if (flag->is_sleeping()) {
1549           KF_TRACE(100,
1550                    ("__kmp_suspend_template: T#%d timeout wakeup\n", th_gtid));
1551         } else {
1552           KF_TRACE(2, ("__kmp_suspend_template: T#%d timeout wakeup, sleep bit "
1553                        "not set!\n",
1554                        th_gtid));
1555         }
1556       } else if (flag->is_sleeping()) {
1557         KF_TRACE(100,
1558                  ("__kmp_suspend_template: T#%d spurious wakeup\n", th_gtid));
1559       }
1560 #endif
1561     } // while
1562 
1563     // Mark the thread as active again (if it was previous marked as inactive)
1564     if (deactivated) {
1565       th->th.th_active = TRUE;
1566       if (TCR_4(th->th.th_in_pool)) {
1567         KMP_ATOMIC_INC(&__kmp_thread_pool_active_nth);
1568         th->th.th_active_in_pool = TRUE;
1569       }
1570     }
1571   }
1572 #ifdef DEBUG_SUSPEND
1573   {
1574     char buffer[128];
1575     __kmp_print_cond(buffer, &th->th.th_suspend_cv);
1576     __kmp_printf("__kmp_suspend_template: T#%d has awakened: %s\n", th_gtid,
1577                  buffer);
1578   }
1579 #endif
1580 
1581   __kmp_unlock_suspend_mx(th);
1582   KF_TRACE(30, ("__kmp_suspend_template: T#%d exit\n", th_gtid));
1583 }
1584 
1585 template <bool C, bool S>
1586 void __kmp_suspend_32(int th_gtid, kmp_flag_32<C, S> *flag) {
1587   __kmp_suspend_template(th_gtid, flag);
1588 }
1589 template <bool C, bool S>
1590 void __kmp_suspend_64(int th_gtid, kmp_flag_64<C, S> *flag) {
1591   __kmp_suspend_template(th_gtid, flag);
1592 }
1593 void __kmp_suspend_oncore(int th_gtid, kmp_flag_oncore *flag) {
1594   __kmp_suspend_template(th_gtid, flag);
1595 }
1596 
1597 template void __kmp_suspend_32<false, false>(int, kmp_flag_32<false, false> *);
1598 template void __kmp_suspend_64<false, true>(int, kmp_flag_64<false, true> *);
1599 template void __kmp_suspend_64<true, false>(int, kmp_flag_64<true, false> *);
1600 
1601 /* This routine signals the thread specified by target_gtid to wake up
1602    after setting the sleep bit indicated by the flag argument to FALSE.
1603    The target thread must already have called __kmp_suspend_template() */
1604 template <class C>
1605 static inline void __kmp_resume_template(int target_gtid, C *flag) {
1606   KMP_TIME_DEVELOPER_PARTITIONED_BLOCK(USER_resume);
1607   kmp_info_t *th = __kmp_threads[target_gtid];
1608   int status;
1609 
1610 #ifdef KMP_DEBUG
1611   int gtid = TCR_4(__kmp_init_gtid) ? __kmp_get_gtid() : -1;
1612 #endif
1613 
1614   KF_TRACE(30, ("__kmp_resume_template: T#%d wants to wakeup T#%d enter\n",
1615                 gtid, target_gtid));
1616   KMP_DEBUG_ASSERT(gtid != target_gtid);
1617 
1618   __kmp_suspend_initialize_thread(th);
1619 
1620   __kmp_lock_suspend_mx(th);
1621 
1622   if (!flag) { // coming from __kmp_null_resume_wrapper
1623     flag = (C *)CCAST(void *, th->th.th_sleep_loc);
1624   }
1625 
1626   // First, check if the flag is null or its type has changed. If so, someone
1627   // else woke it up.
1628   if (!flag || flag->get_type() != flag->get_ptr_type()) { // get_ptr_type
1629     // simply shows what flag was cast to
1630     KF_TRACE(5, ("__kmp_resume_template: T#%d exiting, thread T#%d already "
1631                  "awake: flag(%p)\n",
1632                  gtid, target_gtid, NULL));
1633     __kmp_unlock_suspend_mx(th);
1634     return;
1635   } else { // if multiple threads are sleeping, flag should be internally
1636     // referring to a specific thread here
1637     typename C::flag_t old_spin = flag->unset_sleeping();
1638     if (!flag->is_sleeping_val(old_spin)) {
1639       KF_TRACE(5, ("__kmp_resume_template: T#%d exiting, thread T#%d already "
1640                    "awake: flag(%p): "
1641                    "%u => %u\n",
1642                    gtid, target_gtid, flag->get(), old_spin, flag->load()));
1643       __kmp_unlock_suspend_mx(th);
1644       return;
1645     }
1646     KF_TRACE(5, ("__kmp_resume_template: T#%d about to wakeup T#%d, reset "
1647                  "sleep bit for flag's loc(%p): "
1648                  "%u => %u\n",
1649                  gtid, target_gtid, flag->get(), old_spin, flag->load()));
1650   }
1651   TCW_PTR(th->th.th_sleep_loc, NULL);
1652 
1653 #ifdef DEBUG_SUSPEND
1654   {
1655     char buffer[128];
1656     __kmp_print_cond(buffer, &th->th.th_suspend_cv);
1657     __kmp_printf("__kmp_resume_template: T#%d resuming T#%d: %s\n", gtid,
1658                  target_gtid, buffer);
1659   }
1660 #endif
1661   status = pthread_cond_signal(&th->th.th_suspend_cv.c_cond);
1662   KMP_CHECK_SYSFAIL("pthread_cond_signal", status);
1663   __kmp_unlock_suspend_mx(th);
1664   KF_TRACE(30, ("__kmp_resume_template: T#%d exiting after signaling wake up"
1665                 " for T#%d\n",
1666                 gtid, target_gtid));
1667 }
1668 
1669 template <bool C, bool S>
1670 void __kmp_resume_32(int target_gtid, kmp_flag_32<C, S> *flag) {
1671   __kmp_resume_template(target_gtid, flag);
1672 }
1673 template <bool C, bool S>
1674 void __kmp_resume_64(int target_gtid, kmp_flag_64<C, S> *flag) {
1675   __kmp_resume_template(target_gtid, flag);
1676 }
1677 void __kmp_resume_oncore(int target_gtid, kmp_flag_oncore *flag) {
1678   __kmp_resume_template(target_gtid, flag);
1679 }
1680 
1681 template void __kmp_resume_32<false, true>(int, kmp_flag_32<false, true> *);
1682 template void __kmp_resume_64<false, true>(int, kmp_flag_64<false, true> *);
1683 
1684 #if KMP_USE_MONITOR
1685 void __kmp_resume_monitor() {
1686   KMP_TIME_DEVELOPER_PARTITIONED_BLOCK(USER_resume);
1687   int status;
1688 #ifdef KMP_DEBUG
1689   int gtid = TCR_4(__kmp_init_gtid) ? __kmp_get_gtid() : -1;
1690   KF_TRACE(30, ("__kmp_resume_monitor: T#%d wants to wakeup T#%d enter\n", gtid,
1691                 KMP_GTID_MONITOR));
1692   KMP_DEBUG_ASSERT(gtid != KMP_GTID_MONITOR);
1693 #endif
1694   status = pthread_mutex_lock(&__kmp_wait_mx.m_mutex);
1695   KMP_CHECK_SYSFAIL("pthread_mutex_lock", status);
1696 #ifdef DEBUG_SUSPEND
1697   {
1698     char buffer[128];
1699     __kmp_print_cond(buffer, &__kmp_wait_cv.c_cond);
1700     __kmp_printf("__kmp_resume_monitor: T#%d resuming T#%d: %s\n", gtid,
1701                  KMP_GTID_MONITOR, buffer);
1702   }
1703 #endif
1704   status = pthread_cond_signal(&__kmp_wait_cv.c_cond);
1705   KMP_CHECK_SYSFAIL("pthread_cond_signal", status);
1706   status = pthread_mutex_unlock(&__kmp_wait_mx.m_mutex);
1707   KMP_CHECK_SYSFAIL("pthread_mutex_unlock", status);
1708   KF_TRACE(30, ("__kmp_resume_monitor: T#%d exiting after signaling wake up"
1709                 " for T#%d\n",
1710                 gtid, KMP_GTID_MONITOR));
1711 }
1712 #endif // KMP_USE_MONITOR
1713 
1714 void __kmp_yield() { sched_yield(); }
1715 
1716 void __kmp_gtid_set_specific(int gtid) {
1717   if (__kmp_init_gtid) {
1718     int status;
1719     status = pthread_setspecific(__kmp_gtid_threadprivate_key,
1720                                  (void *)(intptr_t)(gtid + 1));
1721     KMP_CHECK_SYSFAIL("pthread_setspecific", status);
1722   } else {
1723     KA_TRACE(50, ("__kmp_gtid_set_specific: runtime shutdown, returning\n"));
1724   }
1725 }
1726 
1727 int __kmp_gtid_get_specific() {
1728   int gtid;
1729   if (!__kmp_init_gtid) {
1730     KA_TRACE(50, ("__kmp_gtid_get_specific: runtime shutdown, returning "
1731                   "KMP_GTID_SHUTDOWN\n"));
1732     return KMP_GTID_SHUTDOWN;
1733   }
1734   gtid = (int)(size_t)pthread_getspecific(__kmp_gtid_threadprivate_key);
1735   if (gtid == 0) {
1736     gtid = KMP_GTID_DNE;
1737   } else {
1738     gtid--;
1739   }
1740   KA_TRACE(50, ("__kmp_gtid_get_specific: key:%d gtid:%d\n",
1741                 __kmp_gtid_threadprivate_key, gtid));
1742   return gtid;
1743 }
1744 
1745 double __kmp_read_cpu_time(void) {
1746   /*clock_t   t;*/
1747   struct tms buffer;
1748 
1749   /*t =*/times(&buffer);
1750 
1751   return (double)(buffer.tms_utime + buffer.tms_cutime) /
1752          (double)CLOCKS_PER_SEC;
1753 }
1754 
1755 int __kmp_read_system_info(struct kmp_sys_info *info) {
1756   int status;
1757   struct rusage r_usage;
1758 
1759   memset(info, 0, sizeof(*info));
1760 
1761   status = getrusage(RUSAGE_SELF, &r_usage);
1762   KMP_CHECK_SYSFAIL_ERRNO("getrusage", status);
1763 
1764   // The maximum resident set size utilized (in kilobytes)
1765   info->maxrss = r_usage.ru_maxrss;
1766   // The number of page faults serviced without any I/O
1767   info->minflt = r_usage.ru_minflt;
1768   // The number of page faults serviced that required I/O
1769   info->majflt = r_usage.ru_majflt;
1770   // The number of times a process was "swapped" out of memory
1771   info->nswap = r_usage.ru_nswap;
1772   // The number of times the file system had to perform input
1773   info->inblock = r_usage.ru_inblock;
1774   // The number of times the file system had to perform output
1775   info->oublock = r_usage.ru_oublock;
1776   // The number of times a context switch was voluntarily
1777   info->nvcsw = r_usage.ru_nvcsw;
1778   // The number of times a context switch was forced
1779   info->nivcsw = r_usage.ru_nivcsw;
1780 
1781   return (status != 0);
1782 }
1783 
1784 void __kmp_read_system_time(double *delta) {
1785   double t_ns;
1786   struct timeval tval;
1787   struct timespec stop;
1788   int status;
1789 
1790   status = gettimeofday(&tval, NULL);
1791   KMP_CHECK_SYSFAIL_ERRNO("gettimeofday", status);
1792   TIMEVAL_TO_TIMESPEC(&tval, &stop);
1793   t_ns = (double)(TS2NS(stop) - TS2NS(__kmp_sys_timer_data.start));
1794   *delta = (t_ns * 1e-9);
1795 }
1796 
1797 void __kmp_clear_system_time(void) {
1798   struct timeval tval;
1799   int status;
1800   status = gettimeofday(&tval, NULL);
1801   KMP_CHECK_SYSFAIL_ERRNO("gettimeofday", status);
1802   TIMEVAL_TO_TIMESPEC(&tval, &__kmp_sys_timer_data.start);
1803 }
1804 
1805 static int __kmp_get_xproc(void) {
1806 
1807   int r = 0;
1808 
1809 #if KMP_OS_LINUX || KMP_OS_DRAGONFLY || KMP_OS_FREEBSD || KMP_OS_NETBSD ||     \
1810         KMP_OS_OPENBSD || KMP_OS_HURD
1811 
1812   __kmp_type_convert(sysconf(_SC_NPROCESSORS_ONLN), &(r));
1813 
1814 #elif KMP_OS_DARWIN
1815 
1816   // Bug C77011 High "OpenMP Threads and number of active cores".
1817 
1818   // Find the number of available CPUs.
1819   kern_return_t rc;
1820   host_basic_info_data_t info;
1821   mach_msg_type_number_t num = HOST_BASIC_INFO_COUNT;
1822   rc = host_info(mach_host_self(), HOST_BASIC_INFO, (host_info_t)&info, &num);
1823   if (rc == 0 && num == HOST_BASIC_INFO_COUNT) {
1824     // Cannot use KA_TRACE() here because this code works before trace support
1825     // is initialized.
1826     r = info.avail_cpus;
1827   } else {
1828     KMP_WARNING(CantGetNumAvailCPU);
1829     KMP_INFORM(AssumedNumCPU);
1830   }
1831 
1832 #else
1833 
1834 #error "Unknown or unsupported OS."
1835 
1836 #endif
1837 
1838   return r > 0 ? r : 2; /* guess value of 2 if OS told us 0 */
1839 
1840 } // __kmp_get_xproc
1841 
1842 int __kmp_read_from_file(char const *path, char const *format, ...) {
1843   int result;
1844   va_list args;
1845 
1846   va_start(args, format);
1847   FILE *f = fopen(path, "rb");
1848   if (f == NULL)
1849     return 0;
1850   result = vfscanf(f, format, args);
1851   fclose(f);
1852 
1853   return result;
1854 }
1855 
1856 void __kmp_runtime_initialize(void) {
1857   int status;
1858   pthread_mutexattr_t mutex_attr;
1859   pthread_condattr_t cond_attr;
1860 
1861   if (__kmp_init_runtime) {
1862     return;
1863   }
1864 
1865 #if (KMP_ARCH_X86 || KMP_ARCH_X86_64)
1866   if (!__kmp_cpuinfo.initialized) {
1867     __kmp_query_cpuid(&__kmp_cpuinfo);
1868   }
1869 #endif /* KMP_ARCH_X86 || KMP_ARCH_X86_64 */
1870 
1871   __kmp_xproc = __kmp_get_xproc();
1872 
1873 #if ! KMP_32_BIT_ARCH
1874   struct rlimit rlim;
1875   // read stack size of calling thread, save it as default for worker threads;
1876   // this should be done before reading environment variables
1877   status = getrlimit(RLIMIT_STACK, &rlim);
1878   if (status == 0) { // success?
1879     __kmp_stksize = rlim.rlim_cur;
1880     __kmp_check_stksize(&__kmp_stksize); // check value and adjust if needed
1881   }
1882 #endif /* KMP_32_BIT_ARCH */
1883 
1884   if (sysconf(_SC_THREADS)) {
1885 
1886     /* Query the maximum number of threads */
1887     __kmp_type_convert(sysconf(_SC_THREAD_THREADS_MAX), &(__kmp_sys_max_nth));
1888     if (__kmp_sys_max_nth == -1) {
1889       /* Unlimited threads for NPTL */
1890       __kmp_sys_max_nth = INT_MAX;
1891     } else if (__kmp_sys_max_nth <= 1) {
1892       /* Can't tell, just use PTHREAD_THREADS_MAX */
1893       __kmp_sys_max_nth = KMP_MAX_NTH;
1894     }
1895 
1896     /* Query the minimum stack size */
1897     __kmp_sys_min_stksize = sysconf(_SC_THREAD_STACK_MIN);
1898     if (__kmp_sys_min_stksize <= 1) {
1899       __kmp_sys_min_stksize = KMP_MIN_STKSIZE;
1900     }
1901   }
1902 
1903   /* Set up minimum number of threads to switch to TLS gtid */
1904   __kmp_tls_gtid_min = KMP_TLS_GTID_MIN;
1905 
1906   status = pthread_key_create(&__kmp_gtid_threadprivate_key,
1907                               __kmp_internal_end_dest);
1908   KMP_CHECK_SYSFAIL("pthread_key_create", status);
1909   status = pthread_mutexattr_init(&mutex_attr);
1910   KMP_CHECK_SYSFAIL("pthread_mutexattr_init", status);
1911   status = pthread_mutex_init(&__kmp_wait_mx.m_mutex, &mutex_attr);
1912   KMP_CHECK_SYSFAIL("pthread_mutex_init", status);
1913   status = pthread_condattr_init(&cond_attr);
1914   KMP_CHECK_SYSFAIL("pthread_condattr_init", status);
1915   status = pthread_cond_init(&__kmp_wait_cv.c_cond, &cond_attr);
1916   KMP_CHECK_SYSFAIL("pthread_cond_init", status);
1917 #if USE_ITT_BUILD
1918   __kmp_itt_initialize();
1919 #endif /* USE_ITT_BUILD */
1920 
1921   __kmp_init_runtime = TRUE;
1922 }
1923 
1924 void __kmp_runtime_destroy(void) {
1925   int status;
1926 
1927   if (!__kmp_init_runtime) {
1928     return; // Nothing to do.
1929   }
1930 
1931 #if USE_ITT_BUILD
1932   __kmp_itt_destroy();
1933 #endif /* USE_ITT_BUILD */
1934 
1935   status = pthread_key_delete(__kmp_gtid_threadprivate_key);
1936   KMP_CHECK_SYSFAIL("pthread_key_delete", status);
1937 
1938   status = pthread_mutex_destroy(&__kmp_wait_mx.m_mutex);
1939   if (status != 0 && status != EBUSY) {
1940     KMP_SYSFAIL("pthread_mutex_destroy", status);
1941   }
1942   status = pthread_cond_destroy(&__kmp_wait_cv.c_cond);
1943   if (status != 0 && status != EBUSY) {
1944     KMP_SYSFAIL("pthread_cond_destroy", status);
1945   }
1946 #if KMP_AFFINITY_SUPPORTED
1947   __kmp_affinity_uninitialize();
1948 #endif
1949 
1950   __kmp_init_runtime = FALSE;
1951 }
1952 
1953 /* Put the thread to sleep for a time period */
1954 /* NOTE: not currently used anywhere */
1955 void __kmp_thread_sleep(int millis) { sleep((millis + 500) / 1000); }
1956 
1957 /* Calculate the elapsed wall clock time for the user */
1958 void __kmp_elapsed(double *t) {
1959   int status;
1960 #ifdef FIX_SGI_CLOCK
1961   struct timespec ts;
1962 
1963   status = clock_gettime(CLOCK_PROCESS_CPUTIME_ID, &ts);
1964   KMP_CHECK_SYSFAIL_ERRNO("clock_gettime", status);
1965   *t =
1966       (double)ts.tv_nsec * (1.0 / (double)KMP_NSEC_PER_SEC) + (double)ts.tv_sec;
1967 #else
1968   struct timeval tv;
1969 
1970   status = gettimeofday(&tv, NULL);
1971   KMP_CHECK_SYSFAIL_ERRNO("gettimeofday", status);
1972   *t =
1973       (double)tv.tv_usec * (1.0 / (double)KMP_USEC_PER_SEC) + (double)tv.tv_sec;
1974 #endif
1975 }
1976 
1977 /* Calculate the elapsed wall clock tick for the user */
1978 void __kmp_elapsed_tick(double *t) { *t = 1 / (double)CLOCKS_PER_SEC; }
1979 
1980 /* Return the current time stamp in nsec */
1981 kmp_uint64 __kmp_now_nsec() {
1982   struct timeval t;
1983   gettimeofday(&t, NULL);
1984   kmp_uint64 nsec = (kmp_uint64)KMP_NSEC_PER_SEC * (kmp_uint64)t.tv_sec +
1985                     (kmp_uint64)1000 * (kmp_uint64)t.tv_usec;
1986   return nsec;
1987 }
1988 
1989 #if KMP_ARCH_X86 || KMP_ARCH_X86_64
1990 /* Measure clock ticks per millisecond */
1991 void __kmp_initialize_system_tick() {
1992   kmp_uint64 now, nsec2, diff;
1993   kmp_uint64 delay = 100000; // 50~100 usec on most machines.
1994   kmp_uint64 nsec = __kmp_now_nsec();
1995   kmp_uint64 goal = __kmp_hardware_timestamp() + delay;
1996   while ((now = __kmp_hardware_timestamp()) < goal)
1997     ;
1998   nsec2 = __kmp_now_nsec();
1999   diff = nsec2 - nsec;
2000   if (diff > 0) {
2001     kmp_uint64 tpms = ((kmp_uint64)1e6 * (delay + (now - goal)) / diff);
2002     if (tpms > 0)
2003       __kmp_ticks_per_msec = tpms;
2004   }
2005 }
2006 #endif
2007 
2008 /* Determine whether the given address is mapped into the current address
2009    space. */
2010 
2011 int __kmp_is_address_mapped(void *addr) {
2012 
2013   int found = 0;
2014   int rc;
2015 
2016 #if KMP_OS_LINUX || KMP_OS_HURD
2017 
2018   /* On GNUish OSes, read the /proc/<pid>/maps pseudo-file to get all the address
2019      ranges mapped into the address space. */
2020 
2021   char *name = __kmp_str_format("/proc/%d/maps", getpid());
2022   FILE *file = NULL;
2023 
2024   file = fopen(name, "r");
2025   KMP_ASSERT(file != NULL);
2026 
2027   for (;;) {
2028 
2029     void *beginning = NULL;
2030     void *ending = NULL;
2031     char perms[5];
2032 
2033     rc = fscanf(file, "%p-%p %4s %*[^\n]\n", &beginning, &ending, perms);
2034     if (rc == EOF) {
2035       break;
2036     }
2037     KMP_ASSERT(rc == 3 &&
2038                KMP_STRLEN(perms) == 4); // Make sure all fields are read.
2039 
2040     // Ending address is not included in the region, but beginning is.
2041     if ((addr >= beginning) && (addr < ending)) {
2042       perms[2] = 0; // 3th and 4th character does not matter.
2043       if (strcmp(perms, "rw") == 0) {
2044         // Memory we are looking for should be readable and writable.
2045         found = 1;
2046       }
2047       break;
2048     }
2049   }
2050 
2051   // Free resources.
2052   fclose(file);
2053   KMP_INTERNAL_FREE(name);
2054 #elif KMP_OS_FREEBSD
2055   char *buf;
2056   size_t lstsz;
2057   int mib[] = {CTL_KERN, KERN_PROC, KERN_PROC_VMMAP, getpid()};
2058   rc = sysctl(mib, 4, NULL, &lstsz, NULL, 0);
2059   if (rc < 0)
2060      return 0;
2061   // We pass from number of vm entry's semantic
2062   // to size of whole entry map list.
2063   lstsz = lstsz * 4 / 3;
2064   buf = reinterpret_cast<char *>(kmpc_malloc(lstsz));
2065   rc = sysctl(mib, 4, buf, &lstsz, NULL, 0);
2066   if (rc < 0) {
2067      kmpc_free(buf);
2068      return 0;
2069   }
2070 
2071   char *lw = buf;
2072   char *up = buf + lstsz;
2073 
2074   while (lw < up) {
2075       struct kinfo_vmentry *cur = reinterpret_cast<struct kinfo_vmentry *>(lw);
2076       size_t cursz = cur->kve_structsize;
2077       if (cursz == 0)
2078           break;
2079       void *start = reinterpret_cast<void *>(cur->kve_start);
2080       void *end = reinterpret_cast<void *>(cur->kve_end);
2081       // Readable/Writable addresses within current map entry
2082       if ((addr >= start) && (addr < end)) {
2083           if ((cur->kve_protection & KVME_PROT_READ) != 0 &&
2084               (cur->kve_protection & KVME_PROT_WRITE) != 0) {
2085               found = 1;
2086               break;
2087           }
2088       }
2089       lw += cursz;
2090   }
2091   kmpc_free(buf);
2092 
2093 #elif KMP_OS_DARWIN
2094 
2095   /* On OS X*, /proc pseudo filesystem is not available. Try to read memory
2096      using vm interface. */
2097 
2098   int buffer;
2099   vm_size_t count;
2100   rc = vm_read_overwrite(
2101       mach_task_self(), // Task to read memory of.
2102       (vm_address_t)(addr), // Address to read from.
2103       1, // Number of bytes to be read.
2104       (vm_address_t)(&buffer), // Address of buffer to save read bytes in.
2105       &count // Address of var to save number of read bytes in.
2106       );
2107   if (rc == 0) {
2108     // Memory successfully read.
2109     found = 1;
2110   }
2111 
2112 #elif KMP_OS_NETBSD
2113 
2114   int mib[5];
2115   mib[0] = CTL_VM;
2116   mib[1] = VM_PROC;
2117   mib[2] = VM_PROC_MAP;
2118   mib[3] = getpid();
2119   mib[4] = sizeof(struct kinfo_vmentry);
2120 
2121   size_t size;
2122   rc = sysctl(mib, __arraycount(mib), NULL, &size, NULL, 0);
2123   KMP_ASSERT(!rc);
2124   KMP_ASSERT(size);
2125 
2126   size = size * 4 / 3;
2127   struct kinfo_vmentry *kiv = (struct kinfo_vmentry *)KMP_INTERNAL_MALLOC(size);
2128   KMP_ASSERT(kiv);
2129 
2130   rc = sysctl(mib, __arraycount(mib), kiv, &size, NULL, 0);
2131   KMP_ASSERT(!rc);
2132   KMP_ASSERT(size);
2133 
2134   for (size_t i = 0; i < size; i++) {
2135     if (kiv[i].kve_start >= (uint64_t)addr &&
2136         kiv[i].kve_end <= (uint64_t)addr) {
2137       found = 1;
2138       break;
2139     }
2140   }
2141   KMP_INTERNAL_FREE(kiv);
2142 #elif KMP_OS_OPENBSD
2143 
2144   int mib[3];
2145   mib[0] = CTL_KERN;
2146   mib[1] = KERN_PROC_VMMAP;
2147   mib[2] = getpid();
2148 
2149   size_t size;
2150   uint64_t end;
2151   rc = sysctl(mib, 3, NULL, &size, NULL, 0);
2152   KMP_ASSERT(!rc);
2153   KMP_ASSERT(size);
2154   end = size;
2155 
2156   struct kinfo_vmentry kiv = {.kve_start = 0};
2157 
2158   while ((rc = sysctl(mib, 3, &kiv, &size, NULL, 0)) == 0) {
2159     KMP_ASSERT(size);
2160     if (kiv.kve_end == end)
2161       break;
2162 
2163     if (kiv.kve_start >= (uint64_t)addr && kiv.kve_end <= (uint64_t)addr) {
2164       found = 1;
2165       break;
2166     }
2167     kiv.kve_start += 1;
2168   }
2169 #elif KMP_OS_DRAGONFLY
2170 
2171   // FIXME(DragonFly): Implement this
2172   found = 1;
2173 
2174 #else
2175 
2176 #error "Unknown or unsupported OS"
2177 
2178 #endif
2179 
2180   return found;
2181 
2182 } // __kmp_is_address_mapped
2183 
2184 #ifdef USE_LOAD_BALANCE
2185 
2186 #if KMP_OS_DARWIN || KMP_OS_NETBSD
2187 
2188 // The function returns the rounded value of the system load average
2189 // during given time interval which depends on the value of
2190 // __kmp_load_balance_interval variable (default is 60 sec, other values
2191 // may be 300 sec or 900 sec).
2192 // It returns -1 in case of error.
2193 int __kmp_get_load_balance(int max) {
2194   double averages[3];
2195   int ret_avg = 0;
2196 
2197   int res = getloadavg(averages, 3);
2198 
2199   // Check __kmp_load_balance_interval to determine which of averages to use.
2200   // getloadavg() may return the number of samples less than requested that is
2201   // less than 3.
2202   if (__kmp_load_balance_interval < 180 && (res >= 1)) {
2203     ret_avg = (int)averages[0]; // 1 min
2204   } else if ((__kmp_load_balance_interval >= 180 &&
2205               __kmp_load_balance_interval < 600) &&
2206              (res >= 2)) {
2207     ret_avg = (int)averages[1]; // 5 min
2208   } else if ((__kmp_load_balance_interval >= 600) && (res == 3)) {
2209     ret_avg = (int)averages[2]; // 15 min
2210   } else { // Error occurred
2211     return -1;
2212   }
2213 
2214   return ret_avg;
2215 }
2216 
2217 #else // Linux* OS
2218 
2219 // The function returns number of running (not sleeping) threads, or -1 in case
2220 // of error. Error could be reported if Linux* OS kernel too old (without
2221 // "/proc" support). Counting running threads stops if max running threads
2222 // encountered.
2223 int __kmp_get_load_balance(int max) {
2224   static int permanent_error = 0;
2225   static int glb_running_threads = 0; // Saved count of the running threads for
2226   // the thread balance algorithm
2227   static double glb_call_time = 0; /* Thread balance algorithm call time */
2228 
2229   int running_threads = 0; // Number of running threads in the system.
2230 
2231   DIR *proc_dir = NULL; // Handle of "/proc/" directory.
2232   struct dirent *proc_entry = NULL;
2233 
2234   kmp_str_buf_t task_path; // "/proc/<pid>/task/<tid>/" path.
2235   DIR *task_dir = NULL; // Handle of "/proc/<pid>/task/<tid>/" directory.
2236   struct dirent *task_entry = NULL;
2237   int task_path_fixed_len;
2238 
2239   kmp_str_buf_t stat_path; // "/proc/<pid>/task/<tid>/stat" path.
2240   int stat_file = -1;
2241   int stat_path_fixed_len;
2242 
2243   int total_processes = 0; // Total number of processes in system.
2244   int total_threads = 0; // Total number of threads in system.
2245 
2246   double call_time = 0.0;
2247 
2248   __kmp_str_buf_init(&task_path);
2249   __kmp_str_buf_init(&stat_path);
2250 
2251   __kmp_elapsed(&call_time);
2252 
2253   if (glb_call_time &&
2254       (call_time - glb_call_time < __kmp_load_balance_interval)) {
2255     running_threads = glb_running_threads;
2256     goto finish;
2257   }
2258 
2259   glb_call_time = call_time;
2260 
2261   // Do not spend time on scanning "/proc/" if we have a permanent error.
2262   if (permanent_error) {
2263     running_threads = -1;
2264     goto finish;
2265   }
2266 
2267   if (max <= 0) {
2268     max = INT_MAX;
2269   }
2270 
2271   // Open "/proc/" directory.
2272   proc_dir = opendir("/proc");
2273   if (proc_dir == NULL) {
2274     // Cannot open "/prroc/". Probably the kernel does not support it. Return an
2275     // error now and in subsequent calls.
2276     running_threads = -1;
2277     permanent_error = 1;
2278     goto finish;
2279   }
2280 
2281   // Initialize fixed part of task_path. This part will not change.
2282   __kmp_str_buf_cat(&task_path, "/proc/", 6);
2283   task_path_fixed_len = task_path.used; // Remember number of used characters.
2284 
2285   proc_entry = readdir(proc_dir);
2286   while (proc_entry != NULL) {
2287     // Proc entry is a directory and name starts with a digit. Assume it is a
2288     // process' directory.
2289     if (proc_entry->d_type == DT_DIR && isdigit(proc_entry->d_name[0])) {
2290 
2291       ++total_processes;
2292       // Make sure init process is the very first in "/proc", so we can replace
2293       // strcmp( proc_entry->d_name, "1" ) == 0 with simpler total_processes ==
2294       // 1. We are going to check that total_processes == 1 => d_name == "1" is
2295       // true (where "=>" is implication). Since C++ does not have => operator,
2296       // let us replace it with its equivalent: a => b == ! a || b.
2297       KMP_DEBUG_ASSERT(total_processes != 1 ||
2298                        strcmp(proc_entry->d_name, "1") == 0);
2299 
2300       // Construct task_path.
2301       task_path.used = task_path_fixed_len; // Reset task_path to "/proc/".
2302       __kmp_str_buf_cat(&task_path, proc_entry->d_name,
2303                         KMP_STRLEN(proc_entry->d_name));
2304       __kmp_str_buf_cat(&task_path, "/task", 5);
2305 
2306       task_dir = opendir(task_path.str);
2307       if (task_dir == NULL) {
2308         // Process can finish between reading "/proc/" directory entry and
2309         // opening process' "task/" directory. So, in general case we should not
2310         // complain, but have to skip this process and read the next one. But on
2311         // systems with no "task/" support we will spend lot of time to scan
2312         // "/proc/" tree again and again without any benefit. "init" process
2313         // (its pid is 1) should exist always, so, if we cannot open
2314         // "/proc/1/task/" directory, it means "task/" is not supported by
2315         // kernel. Report an error now and in the future.
2316         if (strcmp(proc_entry->d_name, "1") == 0) {
2317           running_threads = -1;
2318           permanent_error = 1;
2319           goto finish;
2320         }
2321       } else {
2322         // Construct fixed part of stat file path.
2323         __kmp_str_buf_clear(&stat_path);
2324         __kmp_str_buf_cat(&stat_path, task_path.str, task_path.used);
2325         __kmp_str_buf_cat(&stat_path, "/", 1);
2326         stat_path_fixed_len = stat_path.used;
2327 
2328         task_entry = readdir(task_dir);
2329         while (task_entry != NULL) {
2330           // It is a directory and name starts with a digit.
2331           if (proc_entry->d_type == DT_DIR && isdigit(task_entry->d_name[0])) {
2332             ++total_threads;
2333 
2334             // Construct complete stat file path. Easiest way would be:
2335             //  __kmp_str_buf_print( & stat_path, "%s/%s/stat", task_path.str,
2336             //  task_entry->d_name );
2337             // but seriae of __kmp_str_buf_cat works a bit faster.
2338             stat_path.used =
2339                 stat_path_fixed_len; // Reset stat path to its fixed part.
2340             __kmp_str_buf_cat(&stat_path, task_entry->d_name,
2341                               KMP_STRLEN(task_entry->d_name));
2342             __kmp_str_buf_cat(&stat_path, "/stat", 5);
2343 
2344             // Note: Low-level API (open/read/close) is used. High-level API
2345             // (fopen/fclose)  works ~ 30 % slower.
2346             stat_file = open(stat_path.str, O_RDONLY);
2347             if (stat_file == -1) {
2348               // We cannot report an error because task (thread) can terminate
2349               // just before reading this file.
2350             } else {
2351               /* Content of "stat" file looks like:
2352                  24285 (program) S ...
2353 
2354                  It is a single line (if program name does not include funny
2355                  symbols). First number is a thread id, then name of executable
2356                  file name in paretheses, then state of the thread. We need just
2357                  thread state.
2358 
2359                  Good news: Length of program name is 15 characters max. Longer
2360                  names are truncated.
2361 
2362                  Thus, we need rather short buffer: 15 chars for program name +
2363                  2 parenthesis, + 3 spaces + ~7 digits of pid = 37.
2364 
2365                  Bad news: Program name may contain special symbols like space,
2366                  closing parenthesis, or even new line. This makes parsing
2367                  "stat" file not 100 % reliable. In case of fanny program names
2368                  parsing may fail (report incorrect thread state).
2369 
2370                  Parsing "status" file looks more promissing (due to different
2371                  file structure and escaping special symbols) but reading and
2372                  parsing of "status" file works slower.
2373                   -- ln
2374               */
2375               char buffer[65];
2376               ssize_t len;
2377               len = read(stat_file, buffer, sizeof(buffer) - 1);
2378               if (len >= 0) {
2379                 buffer[len] = 0;
2380                 // Using scanf:
2381                 //     sscanf( buffer, "%*d (%*s) %c ", & state );
2382                 // looks very nice, but searching for a closing parenthesis
2383                 // works a bit faster.
2384                 char *close_parent = strstr(buffer, ") ");
2385                 if (close_parent != NULL) {
2386                   char state = *(close_parent + 2);
2387                   if (state == 'R') {
2388                     ++running_threads;
2389                     if (running_threads >= max) {
2390                       goto finish;
2391                     }
2392                   }
2393                 }
2394               }
2395               close(stat_file);
2396               stat_file = -1;
2397             }
2398           }
2399           task_entry = readdir(task_dir);
2400         }
2401         closedir(task_dir);
2402         task_dir = NULL;
2403       }
2404     }
2405     proc_entry = readdir(proc_dir);
2406   }
2407 
2408   // There _might_ be a timing hole where the thread executing this
2409   // code get skipped in the load balance, and running_threads is 0.
2410   // Assert in the debug builds only!!!
2411   KMP_DEBUG_ASSERT(running_threads > 0);
2412   if (running_threads <= 0) {
2413     running_threads = 1;
2414   }
2415 
2416 finish: // Clean up and exit.
2417   if (proc_dir != NULL) {
2418     closedir(proc_dir);
2419   }
2420   __kmp_str_buf_free(&task_path);
2421   if (task_dir != NULL) {
2422     closedir(task_dir);
2423   }
2424   __kmp_str_buf_free(&stat_path);
2425   if (stat_file != -1) {
2426     close(stat_file);
2427   }
2428 
2429   glb_running_threads = running_threads;
2430 
2431   return running_threads;
2432 
2433 } // __kmp_get_load_balance
2434 
2435 #endif // KMP_OS_DARWIN
2436 
2437 #endif // USE_LOAD_BALANCE
2438 
2439 #if !(KMP_ARCH_X86 || KMP_ARCH_X86_64 || KMP_MIC ||                            \
2440       ((KMP_OS_LINUX || KMP_OS_DARWIN) && KMP_ARCH_AARCH64) ||                 \
2441       KMP_ARCH_PPC64 || KMP_ARCH_RISCV64)
2442 
2443 // we really only need the case with 1 argument, because CLANG always build
2444 // a struct of pointers to shared variables referenced in the outlined function
2445 int __kmp_invoke_microtask(microtask_t pkfn, int gtid, int tid, int argc,
2446                            void *p_argv[]
2447 #if OMPT_SUPPORT
2448                            ,
2449                            void **exit_frame_ptr
2450 #endif
2451 ) {
2452 #if OMPT_SUPPORT
2453   *exit_frame_ptr = OMPT_GET_FRAME_ADDRESS(0);
2454 #endif
2455 
2456   switch (argc) {
2457   default:
2458     fprintf(stderr, "Too many args to microtask: %d!\n", argc);
2459     fflush(stderr);
2460     exit(-1);
2461   case 0:
2462     (*pkfn)(&gtid, &tid);
2463     break;
2464   case 1:
2465     (*pkfn)(&gtid, &tid, p_argv[0]);
2466     break;
2467   case 2:
2468     (*pkfn)(&gtid, &tid, p_argv[0], p_argv[1]);
2469     break;
2470   case 3:
2471     (*pkfn)(&gtid, &tid, p_argv[0], p_argv[1], p_argv[2]);
2472     break;
2473   case 4:
2474     (*pkfn)(&gtid, &tid, p_argv[0], p_argv[1], p_argv[2], p_argv[3]);
2475     break;
2476   case 5:
2477     (*pkfn)(&gtid, &tid, p_argv[0], p_argv[1], p_argv[2], p_argv[3], p_argv[4]);
2478     break;
2479   case 6:
2480     (*pkfn)(&gtid, &tid, p_argv[0], p_argv[1], p_argv[2], p_argv[3], p_argv[4],
2481             p_argv[5]);
2482     break;
2483   case 7:
2484     (*pkfn)(&gtid, &tid, p_argv[0], p_argv[1], p_argv[2], p_argv[3], p_argv[4],
2485             p_argv[5], p_argv[6]);
2486     break;
2487   case 8:
2488     (*pkfn)(&gtid, &tid, p_argv[0], p_argv[1], p_argv[2], p_argv[3], p_argv[4],
2489             p_argv[5], p_argv[6], p_argv[7]);
2490     break;
2491   case 9:
2492     (*pkfn)(&gtid, &tid, p_argv[0], p_argv[1], p_argv[2], p_argv[3], p_argv[4],
2493             p_argv[5], p_argv[6], p_argv[7], p_argv[8]);
2494     break;
2495   case 10:
2496     (*pkfn)(&gtid, &tid, p_argv[0], p_argv[1], p_argv[2], p_argv[3], p_argv[4],
2497             p_argv[5], p_argv[6], p_argv[7], p_argv[8], p_argv[9]);
2498     break;
2499   case 11:
2500     (*pkfn)(&gtid, &tid, p_argv[0], p_argv[1], p_argv[2], p_argv[3], p_argv[4],
2501             p_argv[5], p_argv[6], p_argv[7], p_argv[8], p_argv[9], p_argv[10]);
2502     break;
2503   case 12:
2504     (*pkfn)(&gtid, &tid, p_argv[0], p_argv[1], p_argv[2], p_argv[3], p_argv[4],
2505             p_argv[5], p_argv[6], p_argv[7], p_argv[8], p_argv[9], p_argv[10],
2506             p_argv[11]);
2507     break;
2508   case 13:
2509     (*pkfn)(&gtid, &tid, p_argv[0], p_argv[1], p_argv[2], p_argv[3], p_argv[4],
2510             p_argv[5], p_argv[6], p_argv[7], p_argv[8], p_argv[9], p_argv[10],
2511             p_argv[11], p_argv[12]);
2512     break;
2513   case 14:
2514     (*pkfn)(&gtid, &tid, p_argv[0], p_argv[1], p_argv[2], p_argv[3], p_argv[4],
2515             p_argv[5], p_argv[6], p_argv[7], p_argv[8], p_argv[9], p_argv[10],
2516             p_argv[11], p_argv[12], p_argv[13]);
2517     break;
2518   case 15:
2519     (*pkfn)(&gtid, &tid, p_argv[0], p_argv[1], p_argv[2], p_argv[3], p_argv[4],
2520             p_argv[5], p_argv[6], p_argv[7], p_argv[8], p_argv[9], p_argv[10],
2521             p_argv[11], p_argv[12], p_argv[13], p_argv[14]);
2522     break;
2523   }
2524 
2525   return 1;
2526 }
2527 
2528 #endif
2529 
2530 // Functions for hidden helper task
2531 namespace {
2532 // Condition variable for initializing hidden helper team
2533 pthread_cond_t hidden_helper_threads_initz_cond_var;
2534 pthread_mutex_t hidden_helper_threads_initz_lock;
2535 volatile int hidden_helper_initz_signaled = FALSE;
2536 
2537 // Condition variable for deinitializing hidden helper team
2538 pthread_cond_t hidden_helper_threads_deinitz_cond_var;
2539 pthread_mutex_t hidden_helper_threads_deinitz_lock;
2540 volatile int hidden_helper_deinitz_signaled = FALSE;
2541 
2542 // Condition variable for the wrapper function of main thread
2543 pthread_cond_t hidden_helper_main_thread_cond_var;
2544 pthread_mutex_t hidden_helper_main_thread_lock;
2545 volatile int hidden_helper_main_thread_signaled = FALSE;
2546 
2547 // Semaphore for worker threads. We don't use condition variable here in case
2548 // that when multiple signals are sent at the same time, only one thread might
2549 // be waken.
2550 sem_t hidden_helper_task_sem;
2551 } // namespace
2552 
2553 void __kmp_hidden_helper_worker_thread_wait() {
2554   int status = sem_wait(&hidden_helper_task_sem);
2555   KMP_CHECK_SYSFAIL("sem_wait", status);
2556 }
2557 
2558 void __kmp_do_initialize_hidden_helper_threads() {
2559   // Initialize condition variable
2560   int status =
2561       pthread_cond_init(&hidden_helper_threads_initz_cond_var, nullptr);
2562   KMP_CHECK_SYSFAIL("pthread_cond_init", status);
2563 
2564   status = pthread_cond_init(&hidden_helper_threads_deinitz_cond_var, nullptr);
2565   KMP_CHECK_SYSFAIL("pthread_cond_init", status);
2566 
2567   status = pthread_cond_init(&hidden_helper_main_thread_cond_var, nullptr);
2568   KMP_CHECK_SYSFAIL("pthread_cond_init", status);
2569 
2570   status = pthread_mutex_init(&hidden_helper_threads_initz_lock, nullptr);
2571   KMP_CHECK_SYSFAIL("pthread_mutex_init", status);
2572 
2573   status = pthread_mutex_init(&hidden_helper_threads_deinitz_lock, nullptr);
2574   KMP_CHECK_SYSFAIL("pthread_mutex_init", status);
2575 
2576   status = pthread_mutex_init(&hidden_helper_main_thread_lock, nullptr);
2577   KMP_CHECK_SYSFAIL("pthread_mutex_init", status);
2578 
2579   // Initialize the semaphore
2580   status = sem_init(&hidden_helper_task_sem, 0, 0);
2581   KMP_CHECK_SYSFAIL("sem_init", status);
2582 
2583   // Create a new thread to finish initialization
2584   pthread_t handle;
2585   status = pthread_create(
2586       &handle, nullptr,
2587       [](void *) -> void * {
2588         __kmp_hidden_helper_threads_initz_routine();
2589         return nullptr;
2590       },
2591       nullptr);
2592   KMP_CHECK_SYSFAIL("pthread_create", status);
2593 }
2594 
2595 void __kmp_hidden_helper_threads_initz_wait() {
2596   // Initial thread waits here for the completion of the initialization. The
2597   // condition variable will be notified by main thread of hidden helper teams.
2598   int status = pthread_mutex_lock(&hidden_helper_threads_initz_lock);
2599   KMP_CHECK_SYSFAIL("pthread_mutex_lock", status);
2600 
2601   if (!TCR_4(hidden_helper_initz_signaled)) {
2602     status = pthread_cond_wait(&hidden_helper_threads_initz_cond_var,
2603                                &hidden_helper_threads_initz_lock);
2604     KMP_CHECK_SYSFAIL("pthread_cond_wait", status);
2605   }
2606 
2607   status = pthread_mutex_unlock(&hidden_helper_threads_initz_lock);
2608   KMP_CHECK_SYSFAIL("pthread_mutex_unlock", status);
2609 }
2610 
2611 void __kmp_hidden_helper_initz_release() {
2612   // After all initialization, reset __kmp_init_hidden_helper_threads to false.
2613   int status = pthread_mutex_lock(&hidden_helper_threads_initz_lock);
2614   KMP_CHECK_SYSFAIL("pthread_mutex_lock", status);
2615 
2616   status = pthread_cond_signal(&hidden_helper_threads_initz_cond_var);
2617   KMP_CHECK_SYSFAIL("pthread_cond_wait", status);
2618 
2619   TCW_SYNC_4(hidden_helper_initz_signaled, TRUE);
2620 
2621   status = pthread_mutex_unlock(&hidden_helper_threads_initz_lock);
2622   KMP_CHECK_SYSFAIL("pthread_mutex_unlock", status);
2623 }
2624 
2625 void __kmp_hidden_helper_main_thread_wait() {
2626   // The main thread of hidden helper team will be blocked here. The
2627   // condition variable can only be signal in the destructor of RTL.
2628   int status = pthread_mutex_lock(&hidden_helper_main_thread_lock);
2629   KMP_CHECK_SYSFAIL("pthread_mutex_lock", status);
2630 
2631   if (!TCR_4(hidden_helper_main_thread_signaled)) {
2632     status = pthread_cond_wait(&hidden_helper_main_thread_cond_var,
2633                                &hidden_helper_main_thread_lock);
2634     KMP_CHECK_SYSFAIL("pthread_cond_wait", status);
2635   }
2636 
2637   status = pthread_mutex_unlock(&hidden_helper_main_thread_lock);
2638   KMP_CHECK_SYSFAIL("pthread_mutex_unlock", status);
2639 }
2640 
2641 void __kmp_hidden_helper_main_thread_release() {
2642   // The initial thread of OpenMP RTL should call this function to wake up the
2643   // main thread of hidden helper team.
2644   int status = pthread_mutex_lock(&hidden_helper_main_thread_lock);
2645   KMP_CHECK_SYSFAIL("pthread_mutex_lock", status);
2646 
2647   status = pthread_cond_signal(&hidden_helper_main_thread_cond_var);
2648   KMP_CHECK_SYSFAIL("pthread_cond_signal", status);
2649 
2650   // The hidden helper team is done here
2651   TCW_SYNC_4(hidden_helper_main_thread_signaled, TRUE);
2652 
2653   status = pthread_mutex_unlock(&hidden_helper_main_thread_lock);
2654   KMP_CHECK_SYSFAIL("pthread_mutex_unlock", status);
2655 }
2656 
2657 void __kmp_hidden_helper_worker_thread_signal() {
2658   int status = sem_post(&hidden_helper_task_sem);
2659   KMP_CHECK_SYSFAIL("sem_post", status);
2660 }
2661 
2662 void __kmp_hidden_helper_threads_deinitz_wait() {
2663   // Initial thread waits here for the completion of the deinitialization. The
2664   // condition variable will be notified by main thread of hidden helper teams.
2665   int status = pthread_mutex_lock(&hidden_helper_threads_deinitz_lock);
2666   KMP_CHECK_SYSFAIL("pthread_mutex_lock", status);
2667 
2668   if (!TCR_4(hidden_helper_deinitz_signaled)) {
2669     status = pthread_cond_wait(&hidden_helper_threads_deinitz_cond_var,
2670                                &hidden_helper_threads_deinitz_lock);
2671     KMP_CHECK_SYSFAIL("pthread_cond_wait", status);
2672   }
2673 
2674   status = pthread_mutex_unlock(&hidden_helper_threads_deinitz_lock);
2675   KMP_CHECK_SYSFAIL("pthread_mutex_unlock", status);
2676 }
2677 
2678 void __kmp_hidden_helper_threads_deinitz_release() {
2679   int status = pthread_mutex_lock(&hidden_helper_threads_deinitz_lock);
2680   KMP_CHECK_SYSFAIL("pthread_mutex_lock", status);
2681 
2682   status = pthread_cond_signal(&hidden_helper_threads_deinitz_cond_var);
2683   KMP_CHECK_SYSFAIL("pthread_cond_wait", status);
2684 
2685   TCW_SYNC_4(hidden_helper_deinitz_signaled, TRUE);
2686 
2687   status = pthread_mutex_unlock(&hidden_helper_threads_deinitz_lock);
2688   KMP_CHECK_SYSFAIL("pthread_mutex_unlock", status);
2689 }
2690 
2691 // end of file //
2692