1 /* 2 * z_Linux_util.cpp -- platform specific routines. 3 */ 4 5 //===----------------------------------------------------------------------===// 6 // 7 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 8 // See https://llvm.org/LICENSE.txt for license information. 9 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "kmp.h" 14 #include "kmp_affinity.h" 15 #include "kmp_i18n.h" 16 #include "kmp_io.h" 17 #include "kmp_itt.h" 18 #include "kmp_lock.h" 19 #include "kmp_stats.h" 20 #include "kmp_str.h" 21 #include "kmp_wait_release.h" 22 #include "kmp_wrapper_getpid.h" 23 24 #if !KMP_OS_DRAGONFLY && !KMP_OS_FREEBSD && !KMP_OS_NETBSD && !KMP_OS_OPENBSD 25 #include <alloca.h> 26 #endif 27 #include <math.h> // HUGE_VAL. 28 #include <semaphore.h> 29 #include <sys/resource.h> 30 #include <sys/syscall.h> 31 #include <sys/time.h> 32 #include <sys/times.h> 33 #include <unistd.h> 34 35 #if KMP_OS_LINUX 36 #include <sys/sysinfo.h> 37 #if KMP_USE_FUTEX 38 // We should really include <futex.h>, but that causes compatibility problems on 39 // different Linux* OS distributions that either require that you include (or 40 // break when you try to include) <pci/types.h>. Since all we need is the two 41 // macros below (which are part of the kernel ABI, so can't change) we just 42 // define the constants here and don't include <futex.h> 43 #ifndef FUTEX_WAIT 44 #define FUTEX_WAIT 0 45 #endif 46 #ifndef FUTEX_WAKE 47 #define FUTEX_WAKE 1 48 #endif 49 #endif 50 #elif KMP_OS_DARWIN 51 #include <mach/mach.h> 52 #include <sys/sysctl.h> 53 #elif KMP_OS_DRAGONFLY || KMP_OS_FREEBSD 54 #include <sys/types.h> 55 #include <sys/sysctl.h> 56 #include <sys/user.h> 57 #include <pthread_np.h> 58 #elif KMP_OS_NETBSD || KMP_OS_OPENBSD 59 #include <sys/types.h> 60 #include <sys/sysctl.h> 61 #endif 62 63 #include <ctype.h> 64 #include <dirent.h> 65 #include <fcntl.h> 66 67 #include "tsan_annotations.h" 68 69 struct kmp_sys_timer { 70 struct timespec start; 71 }; 72 73 // Convert timespec to nanoseconds. 74 #define TS2NS(timespec) \ 75 (((timespec).tv_sec * (long int)1e9) + (timespec).tv_nsec) 76 77 static struct kmp_sys_timer __kmp_sys_timer_data; 78 79 #if KMP_HANDLE_SIGNALS 80 typedef void (*sig_func_t)(int); 81 STATIC_EFI2_WORKAROUND struct sigaction __kmp_sighldrs[NSIG]; 82 static sigset_t __kmp_sigset; 83 #endif 84 85 static int __kmp_init_runtime = FALSE; 86 87 static int __kmp_fork_count = 0; 88 89 static pthread_condattr_t __kmp_suspend_cond_attr; 90 static pthread_mutexattr_t __kmp_suspend_mutex_attr; 91 92 static kmp_cond_align_t __kmp_wait_cv; 93 static kmp_mutex_align_t __kmp_wait_mx; 94 95 kmp_uint64 __kmp_ticks_per_msec = 1000000; 96 97 #ifdef DEBUG_SUSPEND 98 static void __kmp_print_cond(char *buffer, kmp_cond_align_t *cond) { 99 KMP_SNPRINTF(buffer, 128, "(cond (lock (%ld, %d)), (descr (%p)))", 100 cond->c_cond.__c_lock.__status, cond->c_cond.__c_lock.__spinlock, 101 cond->c_cond.__c_waiting); 102 } 103 #endif 104 105 #if ((KMP_OS_LINUX || KMP_OS_FREEBSD) && KMP_AFFINITY_SUPPORTED) 106 107 /* Affinity support */ 108 109 void __kmp_affinity_bind_thread(int which) { 110 KMP_ASSERT2(KMP_AFFINITY_CAPABLE(), 111 "Illegal set affinity operation when not capable"); 112 113 kmp_affin_mask_t *mask; 114 KMP_CPU_ALLOC_ON_STACK(mask); 115 KMP_CPU_ZERO(mask); 116 KMP_CPU_SET(which, mask); 117 __kmp_set_system_affinity(mask, TRUE); 118 KMP_CPU_FREE_FROM_STACK(mask); 119 } 120 121 /* Determine if we can access affinity functionality on this version of 122 * Linux* OS by checking __NR_sched_{get,set}affinity system calls, and set 123 * __kmp_affin_mask_size to the appropriate value (0 means not capable). */ 124 void __kmp_affinity_determine_capable(const char *env_var) { 125 // Check and see if the OS supports thread affinity. 126 127 #if KMP_OS_LINUX 128 #define KMP_CPU_SET_SIZE_LIMIT (1024 * 1024) 129 #elif KMP_OS_FREEBSD 130 #define KMP_CPU_SET_SIZE_LIMIT (sizeof(cpuset_t)) 131 #endif 132 133 134 #if KMP_OS_LINUX 135 // If Linux* OS: 136 // If the syscall fails or returns a suggestion for the size, 137 // then we don't have to search for an appropriate size. 138 long gCode; 139 long sCode; 140 unsigned char *buf; 141 buf = (unsigned char *)KMP_INTERNAL_MALLOC(KMP_CPU_SET_SIZE_LIMIT); 142 gCode = syscall(__NR_sched_getaffinity, 0, KMP_CPU_SET_SIZE_LIMIT, buf); 143 KA_TRACE(30, ("__kmp_affinity_determine_capable: " 144 "initial getaffinity call returned %ld errno = %d\n", 145 gCode, errno)); 146 147 // if ((gCode < 0) && (errno == ENOSYS)) 148 if (gCode < 0) { 149 // System call not supported 150 if (__kmp_affinity_verbose || 151 (__kmp_affinity_warnings && (__kmp_affinity_type != affinity_none) && 152 (__kmp_affinity_type != affinity_default) && 153 (__kmp_affinity_type != affinity_disabled))) { 154 int error = errno; 155 kmp_msg_t err_code = KMP_ERR(error); 156 __kmp_msg(kmp_ms_warning, KMP_MSG(GetAffSysCallNotSupported, env_var), 157 err_code, __kmp_msg_null); 158 if (__kmp_generate_warnings == kmp_warnings_off) { 159 __kmp_str_free(&err_code.str); 160 } 161 } 162 KMP_AFFINITY_DISABLE(); 163 KMP_INTERNAL_FREE(buf); 164 return; 165 } 166 if (gCode > 0) { // Linux* OS only 167 // The optimal situation: the OS returns the size of the buffer it expects. 168 // 169 // A verification of correct behavior is that setaffinity on a NULL 170 // buffer with the same size fails with errno set to EFAULT. 171 sCode = syscall(__NR_sched_setaffinity, 0, gCode, NULL); 172 KA_TRACE(30, ("__kmp_affinity_determine_capable: " 173 "setaffinity for mask size %ld returned %ld errno = %d\n", 174 gCode, sCode, errno)); 175 if (sCode < 0) { 176 if (errno == ENOSYS) { 177 if (__kmp_affinity_verbose || 178 (__kmp_affinity_warnings && 179 (__kmp_affinity_type != affinity_none) && 180 (__kmp_affinity_type != affinity_default) && 181 (__kmp_affinity_type != affinity_disabled))) { 182 int error = errno; 183 kmp_msg_t err_code = KMP_ERR(error); 184 __kmp_msg(kmp_ms_warning, KMP_MSG(SetAffSysCallNotSupported, env_var), 185 err_code, __kmp_msg_null); 186 if (__kmp_generate_warnings == kmp_warnings_off) { 187 __kmp_str_free(&err_code.str); 188 } 189 } 190 KMP_AFFINITY_DISABLE(); 191 KMP_INTERNAL_FREE(buf); 192 } 193 if (errno == EFAULT) { 194 KMP_AFFINITY_ENABLE(gCode); 195 KA_TRACE(10, ("__kmp_affinity_determine_capable: " 196 "affinity supported (mask size %d)\n", 197 (int)__kmp_affin_mask_size)); 198 KMP_INTERNAL_FREE(buf); 199 return; 200 } 201 } 202 } 203 204 // Call the getaffinity system call repeatedly with increasing set sizes 205 // until we succeed, or reach an upper bound on the search. 206 KA_TRACE(30, ("__kmp_affinity_determine_capable: " 207 "searching for proper set size\n")); 208 int size; 209 for (size = 1; size <= KMP_CPU_SET_SIZE_LIMIT; size *= 2) { 210 gCode = syscall(__NR_sched_getaffinity, 0, size, buf); 211 KA_TRACE(30, ("__kmp_affinity_determine_capable: " 212 "getaffinity for mask size %ld returned %ld errno = %d\n", 213 size, gCode, errno)); 214 215 if (gCode < 0) { 216 if (errno == ENOSYS) { 217 // We shouldn't get here 218 KA_TRACE(30, ("__kmp_affinity_determine_capable: " 219 "inconsistent OS call behavior: errno == ENOSYS for mask " 220 "size %d\n", 221 size)); 222 if (__kmp_affinity_verbose || 223 (__kmp_affinity_warnings && 224 (__kmp_affinity_type != affinity_none) && 225 (__kmp_affinity_type != affinity_default) && 226 (__kmp_affinity_type != affinity_disabled))) { 227 int error = errno; 228 kmp_msg_t err_code = KMP_ERR(error); 229 __kmp_msg(kmp_ms_warning, KMP_MSG(GetAffSysCallNotSupported, env_var), 230 err_code, __kmp_msg_null); 231 if (__kmp_generate_warnings == kmp_warnings_off) { 232 __kmp_str_free(&err_code.str); 233 } 234 } 235 KMP_AFFINITY_DISABLE(); 236 KMP_INTERNAL_FREE(buf); 237 return; 238 } 239 continue; 240 } 241 242 sCode = syscall(__NR_sched_setaffinity, 0, gCode, NULL); 243 KA_TRACE(30, ("__kmp_affinity_determine_capable: " 244 "setaffinity for mask size %ld returned %ld errno = %d\n", 245 gCode, sCode, errno)); 246 if (sCode < 0) { 247 if (errno == ENOSYS) { // Linux* OS only 248 // We shouldn't get here 249 KA_TRACE(30, ("__kmp_affinity_determine_capable: " 250 "inconsistent OS call behavior: errno == ENOSYS for mask " 251 "size %d\n", 252 size)); 253 if (__kmp_affinity_verbose || 254 (__kmp_affinity_warnings && 255 (__kmp_affinity_type != affinity_none) && 256 (__kmp_affinity_type != affinity_default) && 257 (__kmp_affinity_type != affinity_disabled))) { 258 int error = errno; 259 kmp_msg_t err_code = KMP_ERR(error); 260 __kmp_msg(kmp_ms_warning, KMP_MSG(SetAffSysCallNotSupported, env_var), 261 err_code, __kmp_msg_null); 262 if (__kmp_generate_warnings == kmp_warnings_off) { 263 __kmp_str_free(&err_code.str); 264 } 265 } 266 KMP_AFFINITY_DISABLE(); 267 KMP_INTERNAL_FREE(buf); 268 return; 269 } 270 if (errno == EFAULT) { 271 KMP_AFFINITY_ENABLE(gCode); 272 KA_TRACE(10, ("__kmp_affinity_determine_capable: " 273 "affinity supported (mask size %d)\n", 274 (int)__kmp_affin_mask_size)); 275 KMP_INTERNAL_FREE(buf); 276 return; 277 } 278 } 279 } 280 #elif KMP_OS_FREEBSD 281 long gCode; 282 unsigned char *buf; 283 buf = (unsigned char *)KMP_INTERNAL_MALLOC(KMP_CPU_SET_SIZE_LIMIT); 284 gCode = pthread_getaffinity_np(pthread_self(), KMP_CPU_SET_SIZE_LIMIT, reinterpret_cast<cpuset_t *>(buf)); 285 KA_TRACE(30, ("__kmp_affinity_determine_capable: " 286 "initial getaffinity call returned %d errno = %d\n", 287 gCode, errno)); 288 if (gCode == 0) { 289 KMP_AFFINITY_ENABLE(KMP_CPU_SET_SIZE_LIMIT); 290 KA_TRACE(10, ("__kmp_affinity_determine_capable: " 291 "affinity supported (mask size %d)\n", 292 (int)__kmp_affin_mask_size)); 293 KMP_INTERNAL_FREE(buf); 294 return; 295 } 296 #endif 297 // save uncaught error code 298 // int error = errno; 299 KMP_INTERNAL_FREE(buf); 300 // restore uncaught error code, will be printed at the next KMP_WARNING below 301 // errno = error; 302 303 // Affinity is not supported 304 KMP_AFFINITY_DISABLE(); 305 KA_TRACE(10, ("__kmp_affinity_determine_capable: " 306 "cannot determine mask size - affinity not supported\n")); 307 if (__kmp_affinity_verbose || 308 (__kmp_affinity_warnings && (__kmp_affinity_type != affinity_none) && 309 (__kmp_affinity_type != affinity_default) && 310 (__kmp_affinity_type != affinity_disabled))) { 311 KMP_WARNING(AffCantGetMaskSize, env_var); 312 } 313 } 314 315 #endif // KMP_OS_LINUX && KMP_AFFINITY_SUPPORTED 316 317 #if KMP_USE_FUTEX 318 319 int __kmp_futex_determine_capable() { 320 int loc = 0; 321 long rc = syscall(__NR_futex, &loc, FUTEX_WAKE, 1, NULL, NULL, 0); 322 int retval = (rc == 0) || (errno != ENOSYS); 323 324 KA_TRACE(10, 325 ("__kmp_futex_determine_capable: rc = %d errno = %d\n", rc, errno)); 326 KA_TRACE(10, ("__kmp_futex_determine_capable: futex syscall%s supported\n", 327 retval ? "" : " not")); 328 329 return retval; 330 } 331 332 #endif // KMP_USE_FUTEX 333 334 #if (KMP_ARCH_X86 || KMP_ARCH_X86_64) && (!KMP_ASM_INTRINS) 335 /* Only 32-bit "add-exchange" instruction on IA-32 architecture causes us to 336 use compare_and_store for these routines */ 337 338 kmp_int8 __kmp_test_then_or8(volatile kmp_int8 *p, kmp_int8 d) { 339 kmp_int8 old_value, new_value; 340 341 old_value = TCR_1(*p); 342 new_value = old_value | d; 343 344 while (!KMP_COMPARE_AND_STORE_REL8(p, old_value, new_value)) { 345 KMP_CPU_PAUSE(); 346 old_value = TCR_1(*p); 347 new_value = old_value | d; 348 } 349 return old_value; 350 } 351 352 kmp_int8 __kmp_test_then_and8(volatile kmp_int8 *p, kmp_int8 d) { 353 kmp_int8 old_value, new_value; 354 355 old_value = TCR_1(*p); 356 new_value = old_value & d; 357 358 while (!KMP_COMPARE_AND_STORE_REL8(p, old_value, new_value)) { 359 KMP_CPU_PAUSE(); 360 old_value = TCR_1(*p); 361 new_value = old_value & d; 362 } 363 return old_value; 364 } 365 366 kmp_uint32 __kmp_test_then_or32(volatile kmp_uint32 *p, kmp_uint32 d) { 367 kmp_uint32 old_value, new_value; 368 369 old_value = TCR_4(*p); 370 new_value = old_value | d; 371 372 while (!KMP_COMPARE_AND_STORE_REL32(p, old_value, new_value)) { 373 KMP_CPU_PAUSE(); 374 old_value = TCR_4(*p); 375 new_value = old_value | d; 376 } 377 return old_value; 378 } 379 380 kmp_uint32 __kmp_test_then_and32(volatile kmp_uint32 *p, kmp_uint32 d) { 381 kmp_uint32 old_value, new_value; 382 383 old_value = TCR_4(*p); 384 new_value = old_value & d; 385 386 while (!KMP_COMPARE_AND_STORE_REL32(p, old_value, new_value)) { 387 KMP_CPU_PAUSE(); 388 old_value = TCR_4(*p); 389 new_value = old_value & d; 390 } 391 return old_value; 392 } 393 394 #if KMP_ARCH_X86 395 kmp_int8 __kmp_test_then_add8(volatile kmp_int8 *p, kmp_int8 d) { 396 kmp_int8 old_value, new_value; 397 398 old_value = TCR_1(*p); 399 new_value = old_value + d; 400 401 while (!KMP_COMPARE_AND_STORE_REL8(p, old_value, new_value)) { 402 KMP_CPU_PAUSE(); 403 old_value = TCR_1(*p); 404 new_value = old_value + d; 405 } 406 return old_value; 407 } 408 409 kmp_int64 __kmp_test_then_add64(volatile kmp_int64 *p, kmp_int64 d) { 410 kmp_int64 old_value, new_value; 411 412 old_value = TCR_8(*p); 413 new_value = old_value + d; 414 415 while (!KMP_COMPARE_AND_STORE_REL64(p, old_value, new_value)) { 416 KMP_CPU_PAUSE(); 417 old_value = TCR_8(*p); 418 new_value = old_value + d; 419 } 420 return old_value; 421 } 422 #endif /* KMP_ARCH_X86 */ 423 424 kmp_uint64 __kmp_test_then_or64(volatile kmp_uint64 *p, kmp_uint64 d) { 425 kmp_uint64 old_value, new_value; 426 427 old_value = TCR_8(*p); 428 new_value = old_value | d; 429 while (!KMP_COMPARE_AND_STORE_REL64(p, old_value, new_value)) { 430 KMP_CPU_PAUSE(); 431 old_value = TCR_8(*p); 432 new_value = old_value | d; 433 } 434 return old_value; 435 } 436 437 kmp_uint64 __kmp_test_then_and64(volatile kmp_uint64 *p, kmp_uint64 d) { 438 kmp_uint64 old_value, new_value; 439 440 old_value = TCR_8(*p); 441 new_value = old_value & d; 442 while (!KMP_COMPARE_AND_STORE_REL64(p, old_value, new_value)) { 443 KMP_CPU_PAUSE(); 444 old_value = TCR_8(*p); 445 new_value = old_value & d; 446 } 447 return old_value; 448 } 449 450 #endif /* (KMP_ARCH_X86 || KMP_ARCH_X86_64) && (! KMP_ASM_INTRINS) */ 451 452 void __kmp_terminate_thread(int gtid) { 453 int status; 454 kmp_info_t *th = __kmp_threads[gtid]; 455 456 if (!th) 457 return; 458 459 #ifdef KMP_CANCEL_THREADS 460 KA_TRACE(10, ("__kmp_terminate_thread: kill (%d)\n", gtid)); 461 status = pthread_cancel(th->th.th_info.ds.ds_thread); 462 if (status != 0 && status != ESRCH) { 463 __kmp_fatal(KMP_MSG(CantTerminateWorkerThread), KMP_ERR(status), 464 __kmp_msg_null); 465 } 466 #endif 467 KMP_YIELD(TRUE); 468 } // 469 470 /* Set thread stack info according to values returned by pthread_getattr_np(). 471 If values are unreasonable, assume call failed and use incremental stack 472 refinement method instead. Returns TRUE if the stack parameters could be 473 determined exactly, FALSE if incremental refinement is necessary. */ 474 static kmp_int32 __kmp_set_stack_info(int gtid, kmp_info_t *th) { 475 int stack_data; 476 #if KMP_OS_LINUX || KMP_OS_DRAGONFLY || KMP_OS_FREEBSD || KMP_OS_NETBSD || \ 477 KMP_OS_HURD 478 pthread_attr_t attr; 479 int status; 480 size_t size = 0; 481 void *addr = 0; 482 483 /* Always do incremental stack refinement for ubermaster threads since the 484 initial thread stack range can be reduced by sibling thread creation so 485 pthread_attr_getstack may cause thread gtid aliasing */ 486 if (!KMP_UBER_GTID(gtid)) { 487 488 /* Fetch the real thread attributes */ 489 status = pthread_attr_init(&attr); 490 KMP_CHECK_SYSFAIL("pthread_attr_init", status); 491 #if KMP_OS_DRAGONFLY || KMP_OS_FREEBSD || KMP_OS_NETBSD 492 status = pthread_attr_get_np(pthread_self(), &attr); 493 KMP_CHECK_SYSFAIL("pthread_attr_get_np", status); 494 #else 495 status = pthread_getattr_np(pthread_self(), &attr); 496 KMP_CHECK_SYSFAIL("pthread_getattr_np", status); 497 #endif 498 status = pthread_attr_getstack(&attr, &addr, &size); 499 KMP_CHECK_SYSFAIL("pthread_attr_getstack", status); 500 KA_TRACE(60, 501 ("__kmp_set_stack_info: T#%d pthread_attr_getstack returned size:" 502 " %lu, low addr: %p\n", 503 gtid, size, addr)); 504 status = pthread_attr_destroy(&attr); 505 KMP_CHECK_SYSFAIL("pthread_attr_destroy", status); 506 } 507 508 if (size != 0 && addr != 0) { // was stack parameter determination successful? 509 /* Store the correct base and size */ 510 TCW_PTR(th->th.th_info.ds.ds_stackbase, (((char *)addr) + size)); 511 TCW_PTR(th->th.th_info.ds.ds_stacksize, size); 512 TCW_4(th->th.th_info.ds.ds_stackgrow, FALSE); 513 return TRUE; 514 } 515 #endif /* KMP_OS_LINUX || KMP_OS_DRAGONFLY || KMP_OS_FREEBSD || KMP_OS_NETBSD || 516 KMP_OS_HURD */ 517 /* Use incremental refinement starting from initial conservative estimate */ 518 TCW_PTR(th->th.th_info.ds.ds_stacksize, 0); 519 TCW_PTR(th->th.th_info.ds.ds_stackbase, &stack_data); 520 TCW_4(th->th.th_info.ds.ds_stackgrow, TRUE); 521 return FALSE; 522 } 523 524 static void *__kmp_launch_worker(void *thr) { 525 int status, old_type, old_state; 526 #ifdef KMP_BLOCK_SIGNALS 527 sigset_t new_set, old_set; 528 #endif /* KMP_BLOCK_SIGNALS */ 529 void *exit_val; 530 #if KMP_OS_LINUX || KMP_OS_DRAGONFLY || KMP_OS_FREEBSD || KMP_OS_NETBSD || \ 531 KMP_OS_OPENBSD || KMP_OS_HURD 532 void *volatile padding = 0; 533 #endif 534 int gtid; 535 536 gtid = ((kmp_info_t *)thr)->th.th_info.ds.ds_gtid; 537 __kmp_gtid_set_specific(gtid); 538 #ifdef KMP_TDATA_GTID 539 __kmp_gtid = gtid; 540 #endif 541 #if KMP_STATS_ENABLED 542 // set thread local index to point to thread-specific stats 543 __kmp_stats_thread_ptr = ((kmp_info_t *)thr)->th.th_stats; 544 __kmp_stats_thread_ptr->startLife(); 545 KMP_SET_THREAD_STATE(IDLE); 546 KMP_INIT_PARTITIONED_TIMERS(OMP_idle); 547 #endif 548 549 #if USE_ITT_BUILD 550 __kmp_itt_thread_name(gtid); 551 #endif /* USE_ITT_BUILD */ 552 553 #if KMP_AFFINITY_SUPPORTED 554 __kmp_affinity_set_init_mask(gtid, FALSE); 555 #endif 556 557 #ifdef KMP_CANCEL_THREADS 558 status = pthread_setcanceltype(PTHREAD_CANCEL_ASYNCHRONOUS, &old_type); 559 KMP_CHECK_SYSFAIL("pthread_setcanceltype", status); 560 // josh todo: isn't PTHREAD_CANCEL_ENABLE default for newly-created threads? 561 status = pthread_setcancelstate(PTHREAD_CANCEL_ENABLE, &old_state); 562 KMP_CHECK_SYSFAIL("pthread_setcancelstate", status); 563 #endif 564 565 #if KMP_ARCH_X86 || KMP_ARCH_X86_64 566 // Set FP control regs to be a copy of the parallel initialization thread's. 567 __kmp_clear_x87_fpu_status_word(); 568 __kmp_load_x87_fpu_control_word(&__kmp_init_x87_fpu_control_word); 569 __kmp_load_mxcsr(&__kmp_init_mxcsr); 570 #endif /* KMP_ARCH_X86 || KMP_ARCH_X86_64 */ 571 572 #ifdef KMP_BLOCK_SIGNALS 573 status = sigfillset(&new_set); 574 KMP_CHECK_SYSFAIL_ERRNO("sigfillset", status); 575 status = pthread_sigmask(SIG_BLOCK, &new_set, &old_set); 576 KMP_CHECK_SYSFAIL("pthread_sigmask", status); 577 #endif /* KMP_BLOCK_SIGNALS */ 578 579 #if KMP_OS_LINUX || KMP_OS_DRAGONFLY || KMP_OS_FREEBSD || KMP_OS_NETBSD || \ 580 KMP_OS_OPENBSD 581 if (__kmp_stkoffset > 0 && gtid > 0) { 582 padding = KMP_ALLOCA(gtid * __kmp_stkoffset); 583 } 584 #endif 585 586 KMP_MB(); 587 __kmp_set_stack_info(gtid, (kmp_info_t *)thr); 588 589 __kmp_check_stack_overlap((kmp_info_t *)thr); 590 591 exit_val = __kmp_launch_thread((kmp_info_t *)thr); 592 593 #ifdef KMP_BLOCK_SIGNALS 594 status = pthread_sigmask(SIG_SETMASK, &old_set, NULL); 595 KMP_CHECK_SYSFAIL("pthread_sigmask", status); 596 #endif /* KMP_BLOCK_SIGNALS */ 597 598 return exit_val; 599 } 600 601 #if KMP_USE_MONITOR 602 /* The monitor thread controls all of the threads in the complex */ 603 604 static void *__kmp_launch_monitor(void *thr) { 605 int status, old_type, old_state; 606 #ifdef KMP_BLOCK_SIGNALS 607 sigset_t new_set; 608 #endif /* KMP_BLOCK_SIGNALS */ 609 struct timespec interval; 610 611 KMP_MB(); /* Flush all pending memory write invalidates. */ 612 613 KA_TRACE(10, ("__kmp_launch_monitor: #1 launched\n")); 614 615 /* register us as the monitor thread */ 616 __kmp_gtid_set_specific(KMP_GTID_MONITOR); 617 #ifdef KMP_TDATA_GTID 618 __kmp_gtid = KMP_GTID_MONITOR; 619 #endif 620 621 KMP_MB(); 622 623 #if USE_ITT_BUILD 624 // Instruct Intel(R) Threading Tools to ignore monitor thread. 625 __kmp_itt_thread_ignore(); 626 #endif /* USE_ITT_BUILD */ 627 628 __kmp_set_stack_info(((kmp_info_t *)thr)->th.th_info.ds.ds_gtid, 629 (kmp_info_t *)thr); 630 631 __kmp_check_stack_overlap((kmp_info_t *)thr); 632 633 #ifdef KMP_CANCEL_THREADS 634 status = pthread_setcanceltype(PTHREAD_CANCEL_ASYNCHRONOUS, &old_type); 635 KMP_CHECK_SYSFAIL("pthread_setcanceltype", status); 636 // josh todo: isn't PTHREAD_CANCEL_ENABLE default for newly-created threads? 637 status = pthread_setcancelstate(PTHREAD_CANCEL_ENABLE, &old_state); 638 KMP_CHECK_SYSFAIL("pthread_setcancelstate", status); 639 #endif 640 641 #if KMP_REAL_TIME_FIX 642 // This is a potential fix which allows application with real-time scheduling 643 // policy work. However, decision about the fix is not made yet, so it is 644 // disabled by default. 645 { // Are program started with real-time scheduling policy? 646 int sched = sched_getscheduler(0); 647 if (sched == SCHED_FIFO || sched == SCHED_RR) { 648 // Yes, we are a part of real-time application. Try to increase the 649 // priority of the monitor. 650 struct sched_param param; 651 int max_priority = sched_get_priority_max(sched); 652 int rc; 653 KMP_WARNING(RealTimeSchedNotSupported); 654 sched_getparam(0, ¶m); 655 if (param.sched_priority < max_priority) { 656 param.sched_priority += 1; 657 rc = sched_setscheduler(0, sched, ¶m); 658 if (rc != 0) { 659 int error = errno; 660 kmp_msg_t err_code = KMP_ERR(error); 661 __kmp_msg(kmp_ms_warning, KMP_MSG(CantChangeMonitorPriority), 662 err_code, KMP_MSG(MonitorWillStarve), __kmp_msg_null); 663 if (__kmp_generate_warnings == kmp_warnings_off) { 664 __kmp_str_free(&err_code.str); 665 } 666 } 667 } else { 668 // We cannot abort here, because number of CPUs may be enough for all 669 // the threads, including the monitor thread, so application could 670 // potentially work... 671 __kmp_msg(kmp_ms_warning, KMP_MSG(RunningAtMaxPriority), 672 KMP_MSG(MonitorWillStarve), KMP_HNT(RunningAtMaxPriority), 673 __kmp_msg_null); 674 } 675 } 676 // AC: free thread that waits for monitor started 677 TCW_4(__kmp_global.g.g_time.dt.t_value, 0); 678 } 679 #endif // KMP_REAL_TIME_FIX 680 681 KMP_MB(); /* Flush all pending memory write invalidates. */ 682 683 if (__kmp_monitor_wakeups == 1) { 684 interval.tv_sec = 1; 685 interval.tv_nsec = 0; 686 } else { 687 interval.tv_sec = 0; 688 interval.tv_nsec = (KMP_NSEC_PER_SEC / __kmp_monitor_wakeups); 689 } 690 691 KA_TRACE(10, ("__kmp_launch_monitor: #2 monitor\n")); 692 693 while (!TCR_4(__kmp_global.g.g_done)) { 694 struct timespec now; 695 struct timeval tval; 696 697 /* This thread monitors the state of the system */ 698 699 KA_TRACE(15, ("__kmp_launch_monitor: update\n")); 700 701 status = gettimeofday(&tval, NULL); 702 KMP_CHECK_SYSFAIL_ERRNO("gettimeofday", status); 703 TIMEVAL_TO_TIMESPEC(&tval, &now); 704 705 now.tv_sec += interval.tv_sec; 706 now.tv_nsec += interval.tv_nsec; 707 708 if (now.tv_nsec >= KMP_NSEC_PER_SEC) { 709 now.tv_sec += 1; 710 now.tv_nsec -= KMP_NSEC_PER_SEC; 711 } 712 713 status = pthread_mutex_lock(&__kmp_wait_mx.m_mutex); 714 KMP_CHECK_SYSFAIL("pthread_mutex_lock", status); 715 // AC: the monitor should not fall asleep if g_done has been set 716 if (!TCR_4(__kmp_global.g.g_done)) { // check once more under mutex 717 status = pthread_cond_timedwait(&__kmp_wait_cv.c_cond, 718 &__kmp_wait_mx.m_mutex, &now); 719 if (status != 0) { 720 if (status != ETIMEDOUT && status != EINTR) { 721 KMP_SYSFAIL("pthread_cond_timedwait", status); 722 } 723 } 724 } 725 status = pthread_mutex_unlock(&__kmp_wait_mx.m_mutex); 726 KMP_CHECK_SYSFAIL("pthread_mutex_unlock", status); 727 728 TCW_4(__kmp_global.g.g_time.dt.t_value, 729 TCR_4(__kmp_global.g.g_time.dt.t_value) + 1); 730 731 KMP_MB(); /* Flush all pending memory write invalidates. */ 732 } 733 734 KA_TRACE(10, ("__kmp_launch_monitor: #3 cleanup\n")); 735 736 #ifdef KMP_BLOCK_SIGNALS 737 status = sigfillset(&new_set); 738 KMP_CHECK_SYSFAIL_ERRNO("sigfillset", status); 739 status = pthread_sigmask(SIG_UNBLOCK, &new_set, NULL); 740 KMP_CHECK_SYSFAIL("pthread_sigmask", status); 741 #endif /* KMP_BLOCK_SIGNALS */ 742 743 KA_TRACE(10, ("__kmp_launch_monitor: #4 finished\n")); 744 745 if (__kmp_global.g.g_abort != 0) { 746 /* now we need to terminate the worker threads */ 747 /* the value of t_abort is the signal we caught */ 748 749 int gtid; 750 751 KA_TRACE(10, ("__kmp_launch_monitor: #5 terminate sig=%d\n", 752 __kmp_global.g.g_abort)); 753 754 /* terminate the OpenMP worker threads */ 755 /* TODO this is not valid for sibling threads!! 756 * the uber master might not be 0 anymore.. */ 757 for (gtid = 1; gtid < __kmp_threads_capacity; ++gtid) 758 __kmp_terminate_thread(gtid); 759 760 __kmp_cleanup(); 761 762 KA_TRACE(10, ("__kmp_launch_monitor: #6 raise sig=%d\n", 763 __kmp_global.g.g_abort)); 764 765 if (__kmp_global.g.g_abort > 0) 766 raise(__kmp_global.g.g_abort); 767 } 768 769 KA_TRACE(10, ("__kmp_launch_monitor: #7 exit\n")); 770 771 return thr; 772 } 773 #endif // KMP_USE_MONITOR 774 775 void __kmp_create_worker(int gtid, kmp_info_t *th, size_t stack_size) { 776 pthread_t handle; 777 pthread_attr_t thread_attr; 778 int status; 779 780 th->th.th_info.ds.ds_gtid = gtid; 781 782 #if KMP_STATS_ENABLED 783 // sets up worker thread stats 784 __kmp_acquire_tas_lock(&__kmp_stats_lock, gtid); 785 786 // th->th.th_stats is used to transfer thread-specific stats-pointer to 787 // __kmp_launch_worker. So when thread is created (goes into 788 // __kmp_launch_worker) it will set its thread local pointer to 789 // th->th.th_stats 790 if (!KMP_UBER_GTID(gtid)) { 791 th->th.th_stats = __kmp_stats_list->push_back(gtid); 792 } else { 793 // For root threads, __kmp_stats_thread_ptr is set in __kmp_register_root(), 794 // so set the th->th.th_stats field to it. 795 th->th.th_stats = __kmp_stats_thread_ptr; 796 } 797 __kmp_release_tas_lock(&__kmp_stats_lock, gtid); 798 799 #endif // KMP_STATS_ENABLED 800 801 if (KMP_UBER_GTID(gtid)) { 802 KA_TRACE(10, ("__kmp_create_worker: uber thread (%d)\n", gtid)); 803 th->th.th_info.ds.ds_thread = pthread_self(); 804 __kmp_set_stack_info(gtid, th); 805 __kmp_check_stack_overlap(th); 806 return; 807 } 808 809 KA_TRACE(10, ("__kmp_create_worker: try to create thread (%d)\n", gtid)); 810 811 KMP_MB(); /* Flush all pending memory write invalidates. */ 812 813 #ifdef KMP_THREAD_ATTR 814 status = pthread_attr_init(&thread_attr); 815 if (status != 0) { 816 __kmp_fatal(KMP_MSG(CantInitThreadAttrs), KMP_ERR(status), __kmp_msg_null); 817 } 818 status = pthread_attr_setdetachstate(&thread_attr, PTHREAD_CREATE_JOINABLE); 819 if (status != 0) { 820 __kmp_fatal(KMP_MSG(CantSetWorkerState), KMP_ERR(status), __kmp_msg_null); 821 } 822 823 /* Set stack size for this thread now. 824 The multiple of 2 is there because on some machines, requesting an unusual 825 stacksize causes the thread to have an offset before the dummy alloca() 826 takes place to create the offset. Since we want the user to have a 827 sufficient stacksize AND support a stack offset, we alloca() twice the 828 offset so that the upcoming alloca() does not eliminate any premade offset, 829 and also gives the user the stack space they requested for all threads */ 830 stack_size += gtid * __kmp_stkoffset * 2; 831 832 #if defined(__ANDROID__) && __ANDROID_API__ < 19 833 // Round the stack size to a multiple of the page size. Older versions of 834 // Android (until KitKat) would fail pthread_attr_setstacksize with EINVAL 835 // if the stack size was not a multiple of the page size. 836 stack_size = (stack_size + PAGE_SIZE - 1) & ~(PAGE_SIZE - 1); 837 #endif 838 839 KA_TRACE(10, ("__kmp_create_worker: T#%d, default stacksize = %lu bytes, " 840 "__kmp_stksize = %lu bytes, final stacksize = %lu bytes\n", 841 gtid, KMP_DEFAULT_STKSIZE, __kmp_stksize, stack_size)); 842 843 #ifdef _POSIX_THREAD_ATTR_STACKSIZE 844 status = pthread_attr_setstacksize(&thread_attr, stack_size); 845 #ifdef KMP_BACKUP_STKSIZE 846 if (status != 0) { 847 if (!__kmp_env_stksize) { 848 stack_size = KMP_BACKUP_STKSIZE + gtid * __kmp_stkoffset; 849 __kmp_stksize = KMP_BACKUP_STKSIZE; 850 KA_TRACE(10, ("__kmp_create_worker: T#%d, default stacksize = %lu bytes, " 851 "__kmp_stksize = %lu bytes, (backup) final stacksize = %lu " 852 "bytes\n", 853 gtid, KMP_DEFAULT_STKSIZE, __kmp_stksize, stack_size)); 854 status = pthread_attr_setstacksize(&thread_attr, stack_size); 855 } 856 } 857 #endif /* KMP_BACKUP_STKSIZE */ 858 if (status != 0) { 859 __kmp_fatal(KMP_MSG(CantSetWorkerStackSize, stack_size), KMP_ERR(status), 860 KMP_HNT(ChangeWorkerStackSize), __kmp_msg_null); 861 } 862 #endif /* _POSIX_THREAD_ATTR_STACKSIZE */ 863 864 #endif /* KMP_THREAD_ATTR */ 865 866 status = 867 pthread_create(&handle, &thread_attr, __kmp_launch_worker, (void *)th); 868 if (status != 0 || !handle) { // ??? Why do we check handle?? 869 #ifdef _POSIX_THREAD_ATTR_STACKSIZE 870 if (status == EINVAL) { 871 __kmp_fatal(KMP_MSG(CantSetWorkerStackSize, stack_size), KMP_ERR(status), 872 KMP_HNT(IncreaseWorkerStackSize), __kmp_msg_null); 873 } 874 if (status == ENOMEM) { 875 __kmp_fatal(KMP_MSG(CantSetWorkerStackSize, stack_size), KMP_ERR(status), 876 KMP_HNT(DecreaseWorkerStackSize), __kmp_msg_null); 877 } 878 #endif /* _POSIX_THREAD_ATTR_STACKSIZE */ 879 if (status == EAGAIN) { 880 __kmp_fatal(KMP_MSG(NoResourcesForWorkerThread), KMP_ERR(status), 881 KMP_HNT(Decrease_NUM_THREADS), __kmp_msg_null); 882 } 883 KMP_SYSFAIL("pthread_create", status); 884 } 885 886 th->th.th_info.ds.ds_thread = handle; 887 888 #ifdef KMP_THREAD_ATTR 889 status = pthread_attr_destroy(&thread_attr); 890 if (status) { 891 kmp_msg_t err_code = KMP_ERR(status); 892 __kmp_msg(kmp_ms_warning, KMP_MSG(CantDestroyThreadAttrs), err_code, 893 __kmp_msg_null); 894 if (__kmp_generate_warnings == kmp_warnings_off) { 895 __kmp_str_free(&err_code.str); 896 } 897 } 898 #endif /* KMP_THREAD_ATTR */ 899 900 KMP_MB(); /* Flush all pending memory write invalidates. */ 901 902 KA_TRACE(10, ("__kmp_create_worker: done creating thread (%d)\n", gtid)); 903 904 } // __kmp_create_worker 905 906 #if KMP_USE_MONITOR 907 void __kmp_create_monitor(kmp_info_t *th) { 908 pthread_t handle; 909 pthread_attr_t thread_attr; 910 size_t size; 911 int status; 912 int auto_adj_size = FALSE; 913 914 if (__kmp_dflt_blocktime == KMP_MAX_BLOCKTIME) { 915 // We don't need monitor thread in case of MAX_BLOCKTIME 916 KA_TRACE(10, ("__kmp_create_monitor: skipping monitor thread because of " 917 "MAX blocktime\n")); 918 th->th.th_info.ds.ds_tid = 0; // this makes reap_monitor no-op 919 th->th.th_info.ds.ds_gtid = 0; 920 return; 921 } 922 KA_TRACE(10, ("__kmp_create_monitor: try to create monitor\n")); 923 924 KMP_MB(); /* Flush all pending memory write invalidates. */ 925 926 th->th.th_info.ds.ds_tid = KMP_GTID_MONITOR; 927 th->th.th_info.ds.ds_gtid = KMP_GTID_MONITOR; 928 #if KMP_REAL_TIME_FIX 929 TCW_4(__kmp_global.g.g_time.dt.t_value, 930 -1); // Will use it for synchronization a bit later. 931 #else 932 TCW_4(__kmp_global.g.g_time.dt.t_value, 0); 933 #endif // KMP_REAL_TIME_FIX 934 935 #ifdef KMP_THREAD_ATTR 936 if (__kmp_monitor_stksize == 0) { 937 __kmp_monitor_stksize = KMP_DEFAULT_MONITOR_STKSIZE; 938 auto_adj_size = TRUE; 939 } 940 status = pthread_attr_init(&thread_attr); 941 if (status != 0) { 942 __kmp_fatal(KMP_MSG(CantInitThreadAttrs), KMP_ERR(status), __kmp_msg_null); 943 } 944 status = pthread_attr_setdetachstate(&thread_attr, PTHREAD_CREATE_JOINABLE); 945 if (status != 0) { 946 __kmp_fatal(KMP_MSG(CantSetMonitorState), KMP_ERR(status), __kmp_msg_null); 947 } 948 949 #ifdef _POSIX_THREAD_ATTR_STACKSIZE 950 status = pthread_attr_getstacksize(&thread_attr, &size); 951 KMP_CHECK_SYSFAIL("pthread_attr_getstacksize", status); 952 #else 953 size = __kmp_sys_min_stksize; 954 #endif /* _POSIX_THREAD_ATTR_STACKSIZE */ 955 #endif /* KMP_THREAD_ATTR */ 956 957 if (__kmp_monitor_stksize == 0) { 958 __kmp_monitor_stksize = KMP_DEFAULT_MONITOR_STKSIZE; 959 } 960 if (__kmp_monitor_stksize < __kmp_sys_min_stksize) { 961 __kmp_monitor_stksize = __kmp_sys_min_stksize; 962 } 963 964 KA_TRACE(10, ("__kmp_create_monitor: default stacksize = %lu bytes," 965 "requested stacksize = %lu bytes\n", 966 size, __kmp_monitor_stksize)); 967 968 retry: 969 970 /* Set stack size for this thread now. */ 971 #ifdef _POSIX_THREAD_ATTR_STACKSIZE 972 KA_TRACE(10, ("__kmp_create_monitor: setting stacksize = %lu bytes,", 973 __kmp_monitor_stksize)); 974 status = pthread_attr_setstacksize(&thread_attr, __kmp_monitor_stksize); 975 if (status != 0) { 976 if (auto_adj_size) { 977 __kmp_monitor_stksize *= 2; 978 goto retry; 979 } 980 kmp_msg_t err_code = KMP_ERR(status); 981 __kmp_msg(kmp_ms_warning, // should this be fatal? BB 982 KMP_MSG(CantSetMonitorStackSize, (long int)__kmp_monitor_stksize), 983 err_code, KMP_HNT(ChangeMonitorStackSize), __kmp_msg_null); 984 if (__kmp_generate_warnings == kmp_warnings_off) { 985 __kmp_str_free(&err_code.str); 986 } 987 } 988 #endif /* _POSIX_THREAD_ATTR_STACKSIZE */ 989 990 status = 991 pthread_create(&handle, &thread_attr, __kmp_launch_monitor, (void *)th); 992 993 if (status != 0) { 994 #ifdef _POSIX_THREAD_ATTR_STACKSIZE 995 if (status == EINVAL) { 996 if (auto_adj_size && (__kmp_monitor_stksize < (size_t)0x40000000)) { 997 __kmp_monitor_stksize *= 2; 998 goto retry; 999 } 1000 __kmp_fatal(KMP_MSG(CantSetMonitorStackSize, __kmp_monitor_stksize), 1001 KMP_ERR(status), KMP_HNT(IncreaseMonitorStackSize), 1002 __kmp_msg_null); 1003 } 1004 if (status == ENOMEM) { 1005 __kmp_fatal(KMP_MSG(CantSetMonitorStackSize, __kmp_monitor_stksize), 1006 KMP_ERR(status), KMP_HNT(DecreaseMonitorStackSize), 1007 __kmp_msg_null); 1008 } 1009 #endif /* _POSIX_THREAD_ATTR_STACKSIZE */ 1010 if (status == EAGAIN) { 1011 __kmp_fatal(KMP_MSG(NoResourcesForMonitorThread), KMP_ERR(status), 1012 KMP_HNT(DecreaseNumberOfThreadsInUse), __kmp_msg_null); 1013 } 1014 KMP_SYSFAIL("pthread_create", status); 1015 } 1016 1017 th->th.th_info.ds.ds_thread = handle; 1018 1019 #if KMP_REAL_TIME_FIX 1020 // Wait for the monitor thread is really started and set its *priority*. 1021 KMP_DEBUG_ASSERT(sizeof(kmp_uint32) == 1022 sizeof(__kmp_global.g.g_time.dt.t_value)); 1023 __kmp_wait_4((kmp_uint32 volatile *)&__kmp_global.g.g_time.dt.t_value, -1, 1024 &__kmp_neq_4, NULL); 1025 #endif // KMP_REAL_TIME_FIX 1026 1027 #ifdef KMP_THREAD_ATTR 1028 status = pthread_attr_destroy(&thread_attr); 1029 if (status != 0) { 1030 kmp_msg_t err_code = KMP_ERR(status); 1031 __kmp_msg(kmp_ms_warning, KMP_MSG(CantDestroyThreadAttrs), err_code, 1032 __kmp_msg_null); 1033 if (__kmp_generate_warnings == kmp_warnings_off) { 1034 __kmp_str_free(&err_code.str); 1035 } 1036 } 1037 #endif 1038 1039 KMP_MB(); /* Flush all pending memory write invalidates. */ 1040 1041 KA_TRACE(10, ("__kmp_create_monitor: monitor created %#.8lx\n", 1042 th->th.th_info.ds.ds_thread)); 1043 1044 } // __kmp_create_monitor 1045 #endif // KMP_USE_MONITOR 1046 1047 void __kmp_exit_thread(int exit_status) { 1048 pthread_exit((void *)(intptr_t)exit_status); 1049 } // __kmp_exit_thread 1050 1051 #if KMP_USE_MONITOR 1052 void __kmp_resume_monitor(); 1053 1054 void __kmp_reap_monitor(kmp_info_t *th) { 1055 int status; 1056 void *exit_val; 1057 1058 KA_TRACE(10, ("__kmp_reap_monitor: try to reap monitor thread with handle" 1059 " %#.8lx\n", 1060 th->th.th_info.ds.ds_thread)); 1061 1062 // If monitor has been created, its tid and gtid should be KMP_GTID_MONITOR. 1063 // If both tid and gtid are 0, it means the monitor did not ever start. 1064 // If both tid and gtid are KMP_GTID_DNE, the monitor has been shut down. 1065 KMP_DEBUG_ASSERT(th->th.th_info.ds.ds_tid == th->th.th_info.ds.ds_gtid); 1066 if (th->th.th_info.ds.ds_gtid != KMP_GTID_MONITOR) { 1067 KA_TRACE(10, ("__kmp_reap_monitor: monitor did not start, returning\n")); 1068 return; 1069 } 1070 1071 KMP_MB(); /* Flush all pending memory write invalidates. */ 1072 1073 /* First, check to see whether the monitor thread exists to wake it up. This 1074 is to avoid performance problem when the monitor sleeps during 1075 blocktime-size interval */ 1076 1077 status = pthread_kill(th->th.th_info.ds.ds_thread, 0); 1078 if (status != ESRCH) { 1079 __kmp_resume_monitor(); // Wake up the monitor thread 1080 } 1081 KA_TRACE(10, ("__kmp_reap_monitor: try to join with monitor\n")); 1082 status = pthread_join(th->th.th_info.ds.ds_thread, &exit_val); 1083 if (exit_val != th) { 1084 __kmp_fatal(KMP_MSG(ReapMonitorError), KMP_ERR(status), __kmp_msg_null); 1085 } 1086 1087 th->th.th_info.ds.ds_tid = KMP_GTID_DNE; 1088 th->th.th_info.ds.ds_gtid = KMP_GTID_DNE; 1089 1090 KA_TRACE(10, ("__kmp_reap_monitor: done reaping monitor thread with handle" 1091 " %#.8lx\n", 1092 th->th.th_info.ds.ds_thread)); 1093 1094 KMP_MB(); /* Flush all pending memory write invalidates. */ 1095 } 1096 #endif // KMP_USE_MONITOR 1097 1098 void __kmp_reap_worker(kmp_info_t *th) { 1099 int status; 1100 void *exit_val; 1101 1102 KMP_MB(); /* Flush all pending memory write invalidates. */ 1103 1104 KA_TRACE( 1105 10, ("__kmp_reap_worker: try to reap T#%d\n", th->th.th_info.ds.ds_gtid)); 1106 1107 status = pthread_join(th->th.th_info.ds.ds_thread, &exit_val); 1108 #ifdef KMP_DEBUG 1109 /* Don't expose these to the user until we understand when they trigger */ 1110 if (status != 0) { 1111 __kmp_fatal(KMP_MSG(ReapWorkerError), KMP_ERR(status), __kmp_msg_null); 1112 } 1113 if (exit_val != th) { 1114 KA_TRACE(10, ("__kmp_reap_worker: worker T#%d did not reap properly, " 1115 "exit_val = %p\n", 1116 th->th.th_info.ds.ds_gtid, exit_val)); 1117 } 1118 #endif /* KMP_DEBUG */ 1119 1120 KA_TRACE(10, ("__kmp_reap_worker: done reaping T#%d\n", 1121 th->th.th_info.ds.ds_gtid)); 1122 1123 KMP_MB(); /* Flush all pending memory write invalidates. */ 1124 } 1125 1126 #if KMP_HANDLE_SIGNALS 1127 1128 static void __kmp_null_handler(int signo) { 1129 // Do nothing, for doing SIG_IGN-type actions. 1130 } // __kmp_null_handler 1131 1132 static void __kmp_team_handler(int signo) { 1133 if (__kmp_global.g.g_abort == 0) { 1134 /* Stage 1 signal handler, let's shut down all of the threads */ 1135 #ifdef KMP_DEBUG 1136 __kmp_debug_printf("__kmp_team_handler: caught signal = %d\n", signo); 1137 #endif 1138 switch (signo) { 1139 case SIGHUP: 1140 case SIGINT: 1141 case SIGQUIT: 1142 case SIGILL: 1143 case SIGABRT: 1144 case SIGFPE: 1145 case SIGBUS: 1146 case SIGSEGV: 1147 #ifdef SIGSYS 1148 case SIGSYS: 1149 #endif 1150 case SIGTERM: 1151 if (__kmp_debug_buf) { 1152 __kmp_dump_debug_buffer(); 1153 } 1154 __kmp_unregister_library(); // cleanup shared memory 1155 KMP_MB(); // Flush all pending memory write invalidates. 1156 TCW_4(__kmp_global.g.g_abort, signo); 1157 KMP_MB(); // Flush all pending memory write invalidates. 1158 TCW_4(__kmp_global.g.g_done, TRUE); 1159 KMP_MB(); // Flush all pending memory write invalidates. 1160 break; 1161 default: 1162 #ifdef KMP_DEBUG 1163 __kmp_debug_printf("__kmp_team_handler: unknown signal type"); 1164 #endif 1165 break; 1166 } 1167 } 1168 } // __kmp_team_handler 1169 1170 static void __kmp_sigaction(int signum, const struct sigaction *act, 1171 struct sigaction *oldact) { 1172 int rc = sigaction(signum, act, oldact); 1173 KMP_CHECK_SYSFAIL_ERRNO("sigaction", rc); 1174 } 1175 1176 static void __kmp_install_one_handler(int sig, sig_func_t handler_func, 1177 int parallel_init) { 1178 KMP_MB(); // Flush all pending memory write invalidates. 1179 KB_TRACE(60, 1180 ("__kmp_install_one_handler( %d, ..., %d )\n", sig, parallel_init)); 1181 if (parallel_init) { 1182 struct sigaction new_action; 1183 struct sigaction old_action; 1184 new_action.sa_handler = handler_func; 1185 new_action.sa_flags = 0; 1186 sigfillset(&new_action.sa_mask); 1187 __kmp_sigaction(sig, &new_action, &old_action); 1188 if (old_action.sa_handler == __kmp_sighldrs[sig].sa_handler) { 1189 sigaddset(&__kmp_sigset, sig); 1190 } else { 1191 // Restore/keep user's handler if one previously installed. 1192 __kmp_sigaction(sig, &old_action, NULL); 1193 } 1194 } else { 1195 // Save initial/system signal handlers to see if user handlers installed. 1196 __kmp_sigaction(sig, NULL, &__kmp_sighldrs[sig]); 1197 } 1198 KMP_MB(); // Flush all pending memory write invalidates. 1199 } // __kmp_install_one_handler 1200 1201 static void __kmp_remove_one_handler(int sig) { 1202 KB_TRACE(60, ("__kmp_remove_one_handler( %d )\n", sig)); 1203 if (sigismember(&__kmp_sigset, sig)) { 1204 struct sigaction old; 1205 KMP_MB(); // Flush all pending memory write invalidates. 1206 __kmp_sigaction(sig, &__kmp_sighldrs[sig], &old); 1207 if ((old.sa_handler != __kmp_team_handler) && 1208 (old.sa_handler != __kmp_null_handler)) { 1209 // Restore the users signal handler. 1210 KB_TRACE(10, ("__kmp_remove_one_handler: oops, not our handler, " 1211 "restoring: sig=%d\n", 1212 sig)); 1213 __kmp_sigaction(sig, &old, NULL); 1214 } 1215 sigdelset(&__kmp_sigset, sig); 1216 KMP_MB(); // Flush all pending memory write invalidates. 1217 } 1218 } // __kmp_remove_one_handler 1219 1220 void __kmp_install_signals(int parallel_init) { 1221 KB_TRACE(10, ("__kmp_install_signals( %d )\n", parallel_init)); 1222 if (__kmp_handle_signals || !parallel_init) { 1223 // If ! parallel_init, we do not install handlers, just save original 1224 // handlers. Let us do it even __handle_signals is 0. 1225 sigemptyset(&__kmp_sigset); 1226 __kmp_install_one_handler(SIGHUP, __kmp_team_handler, parallel_init); 1227 __kmp_install_one_handler(SIGINT, __kmp_team_handler, parallel_init); 1228 __kmp_install_one_handler(SIGQUIT, __kmp_team_handler, parallel_init); 1229 __kmp_install_one_handler(SIGILL, __kmp_team_handler, parallel_init); 1230 __kmp_install_one_handler(SIGABRT, __kmp_team_handler, parallel_init); 1231 __kmp_install_one_handler(SIGFPE, __kmp_team_handler, parallel_init); 1232 __kmp_install_one_handler(SIGBUS, __kmp_team_handler, parallel_init); 1233 __kmp_install_one_handler(SIGSEGV, __kmp_team_handler, parallel_init); 1234 #ifdef SIGSYS 1235 __kmp_install_one_handler(SIGSYS, __kmp_team_handler, parallel_init); 1236 #endif // SIGSYS 1237 __kmp_install_one_handler(SIGTERM, __kmp_team_handler, parallel_init); 1238 #ifdef SIGPIPE 1239 __kmp_install_one_handler(SIGPIPE, __kmp_team_handler, parallel_init); 1240 #endif // SIGPIPE 1241 } 1242 } // __kmp_install_signals 1243 1244 void __kmp_remove_signals(void) { 1245 int sig; 1246 KB_TRACE(10, ("__kmp_remove_signals()\n")); 1247 for (sig = 1; sig < NSIG; ++sig) { 1248 __kmp_remove_one_handler(sig); 1249 } 1250 } // __kmp_remove_signals 1251 1252 #endif // KMP_HANDLE_SIGNALS 1253 1254 void __kmp_enable(int new_state) { 1255 #ifdef KMP_CANCEL_THREADS 1256 int status, old_state; 1257 status = pthread_setcancelstate(new_state, &old_state); 1258 KMP_CHECK_SYSFAIL("pthread_setcancelstate", status); 1259 KMP_DEBUG_ASSERT(old_state == PTHREAD_CANCEL_DISABLE); 1260 #endif 1261 } 1262 1263 void __kmp_disable(int *old_state) { 1264 #ifdef KMP_CANCEL_THREADS 1265 int status; 1266 status = pthread_setcancelstate(PTHREAD_CANCEL_DISABLE, old_state); 1267 KMP_CHECK_SYSFAIL("pthread_setcancelstate", status); 1268 #endif 1269 } 1270 1271 static void __kmp_atfork_prepare(void) { 1272 __kmp_acquire_bootstrap_lock(&__kmp_initz_lock); 1273 __kmp_acquire_bootstrap_lock(&__kmp_forkjoin_lock); 1274 } 1275 1276 static void __kmp_atfork_parent(void) { 1277 __kmp_release_bootstrap_lock(&__kmp_forkjoin_lock); 1278 __kmp_release_bootstrap_lock(&__kmp_initz_lock); 1279 } 1280 1281 /* Reset the library so execution in the child starts "all over again" with 1282 clean data structures in initial states. Don't worry about freeing memory 1283 allocated by parent, just abandon it to be safe. */ 1284 static void __kmp_atfork_child(void) { 1285 __kmp_release_bootstrap_lock(&__kmp_forkjoin_lock); 1286 __kmp_release_bootstrap_lock(&__kmp_initz_lock); 1287 /* TODO make sure this is done right for nested/sibling */ 1288 // ATT: Memory leaks are here? TODO: Check it and fix. 1289 /* KMP_ASSERT( 0 ); */ 1290 1291 ++__kmp_fork_count; 1292 1293 #if KMP_AFFINITY_SUPPORTED 1294 #if KMP_OS_LINUX || KMP_OS_FREEBSD 1295 // reset the affinity in the child to the initial thread 1296 // affinity in the parent 1297 kmp_set_thread_affinity_mask_initial(); 1298 #endif 1299 // Set default not to bind threads tightly in the child (we’re expecting 1300 // over-subscription after the fork and this can improve things for 1301 // scripting languages that use OpenMP inside process-parallel code). 1302 __kmp_affinity_type = affinity_none; 1303 if (__kmp_nested_proc_bind.bind_types != NULL) { 1304 __kmp_nested_proc_bind.bind_types[0] = proc_bind_false; 1305 } 1306 #endif // KMP_AFFINITY_SUPPORTED 1307 1308 #if KMP_USE_MONITOR 1309 __kmp_init_monitor = 0; 1310 #endif 1311 __kmp_init_parallel = FALSE; 1312 __kmp_init_middle = FALSE; 1313 __kmp_init_serial = FALSE; 1314 TCW_4(__kmp_init_gtid, FALSE); 1315 __kmp_init_common = FALSE; 1316 1317 TCW_4(__kmp_init_user_locks, FALSE); 1318 #if !KMP_USE_DYNAMIC_LOCK 1319 __kmp_user_lock_table.used = 1; 1320 __kmp_user_lock_table.allocated = 0; 1321 __kmp_user_lock_table.table = NULL; 1322 __kmp_lock_blocks = NULL; 1323 #endif 1324 1325 __kmp_all_nth = 0; 1326 TCW_4(__kmp_nth, 0); 1327 1328 __kmp_thread_pool = NULL; 1329 __kmp_thread_pool_insert_pt = NULL; 1330 __kmp_team_pool = NULL; 1331 1332 /* Must actually zero all the *cache arguments passed to __kmpc_threadprivate 1333 here so threadprivate doesn't use stale data */ 1334 KA_TRACE(10, ("__kmp_atfork_child: checking cache address list %p\n", 1335 __kmp_threadpriv_cache_list)); 1336 1337 while (__kmp_threadpriv_cache_list != NULL) { 1338 1339 if (*__kmp_threadpriv_cache_list->addr != NULL) { 1340 KC_TRACE(50, ("__kmp_atfork_child: zeroing cache at address %p\n", 1341 &(*__kmp_threadpriv_cache_list->addr))); 1342 1343 *__kmp_threadpriv_cache_list->addr = NULL; 1344 } 1345 __kmp_threadpriv_cache_list = __kmp_threadpriv_cache_list->next; 1346 } 1347 1348 __kmp_init_runtime = FALSE; 1349 1350 /* reset statically initialized locks */ 1351 __kmp_init_bootstrap_lock(&__kmp_initz_lock); 1352 __kmp_init_bootstrap_lock(&__kmp_stdio_lock); 1353 __kmp_init_bootstrap_lock(&__kmp_console_lock); 1354 __kmp_init_bootstrap_lock(&__kmp_task_team_lock); 1355 1356 #if USE_ITT_BUILD 1357 __kmp_itt_reset(); // reset ITT's global state 1358 #endif /* USE_ITT_BUILD */ 1359 1360 __kmp_serial_initialize(); 1361 1362 /* This is necessary to make sure no stale data is left around */ 1363 /* AC: customers complain that we use unsafe routines in the atfork 1364 handler. Mathworks: dlsym() is unsafe. We call dlsym and dlopen 1365 in dynamic_link when check the presence of shared tbbmalloc library. 1366 Suggestion is to make the library initialization lazier, similar 1367 to what done for __kmpc_begin(). */ 1368 // TODO: synchronize all static initializations with regular library 1369 // startup; look at kmp_global.cpp and etc. 1370 //__kmp_internal_begin (); 1371 } 1372 1373 void __kmp_register_atfork(void) { 1374 if (__kmp_need_register_atfork) { 1375 int status = pthread_atfork(__kmp_atfork_prepare, __kmp_atfork_parent, 1376 __kmp_atfork_child); 1377 KMP_CHECK_SYSFAIL("pthread_atfork", status); 1378 __kmp_need_register_atfork = FALSE; 1379 } 1380 } 1381 1382 void __kmp_suspend_initialize(void) { 1383 int status; 1384 status = pthread_mutexattr_init(&__kmp_suspend_mutex_attr); 1385 KMP_CHECK_SYSFAIL("pthread_mutexattr_init", status); 1386 status = pthread_condattr_init(&__kmp_suspend_cond_attr); 1387 KMP_CHECK_SYSFAIL("pthread_condattr_init", status); 1388 } 1389 1390 void __kmp_suspend_initialize_thread(kmp_info_t *th) { 1391 ANNOTATE_HAPPENS_AFTER(&th->th.th_suspend_init_count); 1392 int old_value = KMP_ATOMIC_LD_RLX(&th->th.th_suspend_init_count); 1393 int new_value = __kmp_fork_count + 1; 1394 // Return if already initialized 1395 if (old_value == new_value) 1396 return; 1397 // Wait, then return if being initialized 1398 if (old_value == -1 || 1399 !__kmp_atomic_compare_store(&th->th.th_suspend_init_count, old_value, 1400 -1)) { 1401 while (KMP_ATOMIC_LD_ACQ(&th->th.th_suspend_init_count) != new_value) { 1402 KMP_CPU_PAUSE(); 1403 } 1404 } else { 1405 // Claim to be the initializer and do initializations 1406 int status; 1407 status = pthread_cond_init(&th->th.th_suspend_cv.c_cond, 1408 &__kmp_suspend_cond_attr); 1409 KMP_CHECK_SYSFAIL("pthread_cond_init", status); 1410 status = pthread_mutex_init(&th->th.th_suspend_mx.m_mutex, 1411 &__kmp_suspend_mutex_attr); 1412 KMP_CHECK_SYSFAIL("pthread_mutex_init", status); 1413 KMP_ATOMIC_ST_REL(&th->th.th_suspend_init_count, new_value); 1414 ANNOTATE_HAPPENS_BEFORE(&th->th.th_suspend_init_count); 1415 } 1416 } 1417 1418 void __kmp_suspend_uninitialize_thread(kmp_info_t *th) { 1419 if (KMP_ATOMIC_LD_ACQ(&th->th.th_suspend_init_count) > __kmp_fork_count) { 1420 /* this means we have initialize the suspension pthread objects for this 1421 thread in this instance of the process */ 1422 int status; 1423 1424 status = pthread_cond_destroy(&th->th.th_suspend_cv.c_cond); 1425 if (status != 0 && status != EBUSY) { 1426 KMP_SYSFAIL("pthread_cond_destroy", status); 1427 } 1428 status = pthread_mutex_destroy(&th->th.th_suspend_mx.m_mutex); 1429 if (status != 0 && status != EBUSY) { 1430 KMP_SYSFAIL("pthread_mutex_destroy", status); 1431 } 1432 --th->th.th_suspend_init_count; 1433 KMP_DEBUG_ASSERT(KMP_ATOMIC_LD_RLX(&th->th.th_suspend_init_count) == 1434 __kmp_fork_count); 1435 } 1436 } 1437 1438 // return true if lock obtained, false otherwise 1439 int __kmp_try_suspend_mx(kmp_info_t *th) { 1440 return (pthread_mutex_trylock(&th->th.th_suspend_mx.m_mutex) == 0); 1441 } 1442 1443 void __kmp_lock_suspend_mx(kmp_info_t *th) { 1444 int status = pthread_mutex_lock(&th->th.th_suspend_mx.m_mutex); 1445 KMP_CHECK_SYSFAIL("pthread_mutex_lock", status); 1446 } 1447 1448 void __kmp_unlock_suspend_mx(kmp_info_t *th) { 1449 int status = pthread_mutex_unlock(&th->th.th_suspend_mx.m_mutex); 1450 KMP_CHECK_SYSFAIL("pthread_mutex_unlock", status); 1451 } 1452 1453 /* This routine puts the calling thread to sleep after setting the 1454 sleep bit for the indicated flag variable to true. */ 1455 template <class C> 1456 static inline void __kmp_suspend_template(int th_gtid, C *flag) { 1457 KMP_TIME_DEVELOPER_PARTITIONED_BLOCK(USER_suspend); 1458 kmp_info_t *th = __kmp_threads[th_gtid]; 1459 int status; 1460 typename C::flag_t old_spin; 1461 1462 KF_TRACE(30, ("__kmp_suspend_template: T#%d enter for flag = %p\n", th_gtid, 1463 flag->get())); 1464 1465 __kmp_suspend_initialize_thread(th); 1466 1467 __kmp_lock_suspend_mx(th); 1468 1469 KF_TRACE(10, ("__kmp_suspend_template: T#%d setting sleep bit for spin(%p)\n", 1470 th_gtid, flag->get())); 1471 1472 /* TODO: shouldn't this use release semantics to ensure that 1473 __kmp_suspend_initialize_thread gets called first? */ 1474 old_spin = flag->set_sleeping(); 1475 if (__kmp_dflt_blocktime == KMP_MAX_BLOCKTIME && 1476 __kmp_pause_status != kmp_soft_paused) { 1477 flag->unset_sleeping(); 1478 __kmp_unlock_suspend_mx(th); 1479 return; 1480 } 1481 KF_TRACE(5, ("__kmp_suspend_template: T#%d set sleep bit for spin(%p)==%x," 1482 " was %x\n", 1483 th_gtid, flag->get(), flag->load(), old_spin)); 1484 1485 if (flag->done_check_val(old_spin)) { 1486 old_spin = flag->unset_sleeping(); 1487 KF_TRACE(5, ("__kmp_suspend_template: T#%d false alarm, reset sleep bit " 1488 "for spin(%p)\n", 1489 th_gtid, flag->get())); 1490 } else { 1491 /* Encapsulate in a loop as the documentation states that this may 1492 "with low probability" return when the condition variable has 1493 not been signaled or broadcast */ 1494 int deactivated = FALSE; 1495 TCW_PTR(th->th.th_sleep_loc, (void *)flag); 1496 1497 while (flag->is_sleeping()) { 1498 #ifdef DEBUG_SUSPEND 1499 char buffer[128]; 1500 __kmp_suspend_count++; 1501 __kmp_print_cond(buffer, &th->th.th_suspend_cv); 1502 __kmp_printf("__kmp_suspend_template: suspending T#%d: %s\n", th_gtid, 1503 buffer); 1504 #endif 1505 // Mark the thread as no longer active (only in the first iteration of the 1506 // loop). 1507 if (!deactivated) { 1508 th->th.th_active = FALSE; 1509 if (th->th.th_active_in_pool) { 1510 th->th.th_active_in_pool = FALSE; 1511 KMP_ATOMIC_DEC(&__kmp_thread_pool_active_nth); 1512 KMP_DEBUG_ASSERT(TCR_4(__kmp_thread_pool_active_nth) >= 0); 1513 } 1514 deactivated = TRUE; 1515 } 1516 1517 #if USE_SUSPEND_TIMEOUT 1518 struct timespec now; 1519 struct timeval tval; 1520 int msecs; 1521 1522 status = gettimeofday(&tval, NULL); 1523 KMP_CHECK_SYSFAIL_ERRNO("gettimeofday", status); 1524 TIMEVAL_TO_TIMESPEC(&tval, &now); 1525 1526 msecs = (4 * __kmp_dflt_blocktime) + 200; 1527 now.tv_sec += msecs / 1000; 1528 now.tv_nsec += (msecs % 1000) * 1000; 1529 1530 KF_TRACE(15, ("__kmp_suspend_template: T#%d about to perform " 1531 "pthread_cond_timedwait\n", 1532 th_gtid)); 1533 status = pthread_cond_timedwait(&th->th.th_suspend_cv.c_cond, 1534 &th->th.th_suspend_mx.m_mutex, &now); 1535 #else 1536 KF_TRACE(15, ("__kmp_suspend_template: T#%d about to perform" 1537 " pthread_cond_wait\n", 1538 th_gtid)); 1539 status = pthread_cond_wait(&th->th.th_suspend_cv.c_cond, 1540 &th->th.th_suspend_mx.m_mutex); 1541 #endif // USE_SUSPEND_TIMEOUT 1542 1543 if ((status != 0) && (status != EINTR) && (status != ETIMEDOUT)) { 1544 KMP_SYSFAIL("pthread_cond_wait", status); 1545 } 1546 #ifdef KMP_DEBUG 1547 if (status == ETIMEDOUT) { 1548 if (flag->is_sleeping()) { 1549 KF_TRACE(100, 1550 ("__kmp_suspend_template: T#%d timeout wakeup\n", th_gtid)); 1551 } else { 1552 KF_TRACE(2, ("__kmp_suspend_template: T#%d timeout wakeup, sleep bit " 1553 "not set!\n", 1554 th_gtid)); 1555 } 1556 } else if (flag->is_sleeping()) { 1557 KF_TRACE(100, 1558 ("__kmp_suspend_template: T#%d spurious wakeup\n", th_gtid)); 1559 } 1560 #endif 1561 } // while 1562 1563 // Mark the thread as active again (if it was previous marked as inactive) 1564 if (deactivated) { 1565 th->th.th_active = TRUE; 1566 if (TCR_4(th->th.th_in_pool)) { 1567 KMP_ATOMIC_INC(&__kmp_thread_pool_active_nth); 1568 th->th.th_active_in_pool = TRUE; 1569 } 1570 } 1571 } 1572 #ifdef DEBUG_SUSPEND 1573 { 1574 char buffer[128]; 1575 __kmp_print_cond(buffer, &th->th.th_suspend_cv); 1576 __kmp_printf("__kmp_suspend_template: T#%d has awakened: %s\n", th_gtid, 1577 buffer); 1578 } 1579 #endif 1580 1581 __kmp_unlock_suspend_mx(th); 1582 KF_TRACE(30, ("__kmp_suspend_template: T#%d exit\n", th_gtid)); 1583 } 1584 1585 template <bool C, bool S> 1586 void __kmp_suspend_32(int th_gtid, kmp_flag_32<C, S> *flag) { 1587 __kmp_suspend_template(th_gtid, flag); 1588 } 1589 template <bool C, bool S> 1590 void __kmp_suspend_64(int th_gtid, kmp_flag_64<C, S> *flag) { 1591 __kmp_suspend_template(th_gtid, flag); 1592 } 1593 void __kmp_suspend_oncore(int th_gtid, kmp_flag_oncore *flag) { 1594 __kmp_suspend_template(th_gtid, flag); 1595 } 1596 1597 template void __kmp_suspend_32<false, false>(int, kmp_flag_32<false, false> *); 1598 template void __kmp_suspend_64<false, true>(int, kmp_flag_64<false, true> *); 1599 template void __kmp_suspend_64<true, false>(int, kmp_flag_64<true, false> *); 1600 1601 /* This routine signals the thread specified by target_gtid to wake up 1602 after setting the sleep bit indicated by the flag argument to FALSE. 1603 The target thread must already have called __kmp_suspend_template() */ 1604 template <class C> 1605 static inline void __kmp_resume_template(int target_gtid, C *flag) { 1606 KMP_TIME_DEVELOPER_PARTITIONED_BLOCK(USER_resume); 1607 kmp_info_t *th = __kmp_threads[target_gtid]; 1608 int status; 1609 1610 #ifdef KMP_DEBUG 1611 int gtid = TCR_4(__kmp_init_gtid) ? __kmp_get_gtid() : -1; 1612 #endif 1613 1614 KF_TRACE(30, ("__kmp_resume_template: T#%d wants to wakeup T#%d enter\n", 1615 gtid, target_gtid)); 1616 KMP_DEBUG_ASSERT(gtid != target_gtid); 1617 1618 __kmp_suspend_initialize_thread(th); 1619 1620 __kmp_lock_suspend_mx(th); 1621 1622 if (!flag) { // coming from __kmp_null_resume_wrapper 1623 flag = (C *)CCAST(void *, th->th.th_sleep_loc); 1624 } 1625 1626 // First, check if the flag is null or its type has changed. If so, someone 1627 // else woke it up. 1628 if (!flag || flag->get_type() != flag->get_ptr_type()) { // get_ptr_type 1629 // simply shows what flag was cast to 1630 KF_TRACE(5, ("__kmp_resume_template: T#%d exiting, thread T#%d already " 1631 "awake: flag(%p)\n", 1632 gtid, target_gtid, NULL)); 1633 __kmp_unlock_suspend_mx(th); 1634 return; 1635 } else { // if multiple threads are sleeping, flag should be internally 1636 // referring to a specific thread here 1637 typename C::flag_t old_spin = flag->unset_sleeping(); 1638 if (!flag->is_sleeping_val(old_spin)) { 1639 KF_TRACE(5, ("__kmp_resume_template: T#%d exiting, thread T#%d already " 1640 "awake: flag(%p): " 1641 "%u => %u\n", 1642 gtid, target_gtid, flag->get(), old_spin, flag->load())); 1643 __kmp_unlock_suspend_mx(th); 1644 return; 1645 } 1646 KF_TRACE(5, ("__kmp_resume_template: T#%d about to wakeup T#%d, reset " 1647 "sleep bit for flag's loc(%p): " 1648 "%u => %u\n", 1649 gtid, target_gtid, flag->get(), old_spin, flag->load())); 1650 } 1651 TCW_PTR(th->th.th_sleep_loc, NULL); 1652 1653 #ifdef DEBUG_SUSPEND 1654 { 1655 char buffer[128]; 1656 __kmp_print_cond(buffer, &th->th.th_suspend_cv); 1657 __kmp_printf("__kmp_resume_template: T#%d resuming T#%d: %s\n", gtid, 1658 target_gtid, buffer); 1659 } 1660 #endif 1661 status = pthread_cond_signal(&th->th.th_suspend_cv.c_cond); 1662 KMP_CHECK_SYSFAIL("pthread_cond_signal", status); 1663 __kmp_unlock_suspend_mx(th); 1664 KF_TRACE(30, ("__kmp_resume_template: T#%d exiting after signaling wake up" 1665 " for T#%d\n", 1666 gtid, target_gtid)); 1667 } 1668 1669 template <bool C, bool S> 1670 void __kmp_resume_32(int target_gtid, kmp_flag_32<C, S> *flag) { 1671 __kmp_resume_template(target_gtid, flag); 1672 } 1673 template <bool C, bool S> 1674 void __kmp_resume_64(int target_gtid, kmp_flag_64<C, S> *flag) { 1675 __kmp_resume_template(target_gtid, flag); 1676 } 1677 void __kmp_resume_oncore(int target_gtid, kmp_flag_oncore *flag) { 1678 __kmp_resume_template(target_gtid, flag); 1679 } 1680 1681 template void __kmp_resume_32<false, true>(int, kmp_flag_32<false, true> *); 1682 template void __kmp_resume_64<false, true>(int, kmp_flag_64<false, true> *); 1683 1684 #if KMP_USE_MONITOR 1685 void __kmp_resume_monitor() { 1686 KMP_TIME_DEVELOPER_PARTITIONED_BLOCK(USER_resume); 1687 int status; 1688 #ifdef KMP_DEBUG 1689 int gtid = TCR_4(__kmp_init_gtid) ? __kmp_get_gtid() : -1; 1690 KF_TRACE(30, ("__kmp_resume_monitor: T#%d wants to wakeup T#%d enter\n", gtid, 1691 KMP_GTID_MONITOR)); 1692 KMP_DEBUG_ASSERT(gtid != KMP_GTID_MONITOR); 1693 #endif 1694 status = pthread_mutex_lock(&__kmp_wait_mx.m_mutex); 1695 KMP_CHECK_SYSFAIL("pthread_mutex_lock", status); 1696 #ifdef DEBUG_SUSPEND 1697 { 1698 char buffer[128]; 1699 __kmp_print_cond(buffer, &__kmp_wait_cv.c_cond); 1700 __kmp_printf("__kmp_resume_monitor: T#%d resuming T#%d: %s\n", gtid, 1701 KMP_GTID_MONITOR, buffer); 1702 } 1703 #endif 1704 status = pthread_cond_signal(&__kmp_wait_cv.c_cond); 1705 KMP_CHECK_SYSFAIL("pthread_cond_signal", status); 1706 status = pthread_mutex_unlock(&__kmp_wait_mx.m_mutex); 1707 KMP_CHECK_SYSFAIL("pthread_mutex_unlock", status); 1708 KF_TRACE(30, ("__kmp_resume_monitor: T#%d exiting after signaling wake up" 1709 " for T#%d\n", 1710 gtid, KMP_GTID_MONITOR)); 1711 } 1712 #endif // KMP_USE_MONITOR 1713 1714 void __kmp_yield() { sched_yield(); } 1715 1716 void __kmp_gtid_set_specific(int gtid) { 1717 if (__kmp_init_gtid) { 1718 int status; 1719 status = pthread_setspecific(__kmp_gtid_threadprivate_key, 1720 (void *)(intptr_t)(gtid + 1)); 1721 KMP_CHECK_SYSFAIL("pthread_setspecific", status); 1722 } else { 1723 KA_TRACE(50, ("__kmp_gtid_set_specific: runtime shutdown, returning\n")); 1724 } 1725 } 1726 1727 int __kmp_gtid_get_specific() { 1728 int gtid; 1729 if (!__kmp_init_gtid) { 1730 KA_TRACE(50, ("__kmp_gtid_get_specific: runtime shutdown, returning " 1731 "KMP_GTID_SHUTDOWN\n")); 1732 return KMP_GTID_SHUTDOWN; 1733 } 1734 gtid = (int)(size_t)pthread_getspecific(__kmp_gtid_threadprivate_key); 1735 if (gtid == 0) { 1736 gtid = KMP_GTID_DNE; 1737 } else { 1738 gtid--; 1739 } 1740 KA_TRACE(50, ("__kmp_gtid_get_specific: key:%d gtid:%d\n", 1741 __kmp_gtid_threadprivate_key, gtid)); 1742 return gtid; 1743 } 1744 1745 double __kmp_read_cpu_time(void) { 1746 /*clock_t t;*/ 1747 struct tms buffer; 1748 1749 /*t =*/times(&buffer); 1750 1751 return (double)(buffer.tms_utime + buffer.tms_cutime) / 1752 (double)CLOCKS_PER_SEC; 1753 } 1754 1755 int __kmp_read_system_info(struct kmp_sys_info *info) { 1756 int status; 1757 struct rusage r_usage; 1758 1759 memset(info, 0, sizeof(*info)); 1760 1761 status = getrusage(RUSAGE_SELF, &r_usage); 1762 KMP_CHECK_SYSFAIL_ERRNO("getrusage", status); 1763 1764 // The maximum resident set size utilized (in kilobytes) 1765 info->maxrss = r_usage.ru_maxrss; 1766 // The number of page faults serviced without any I/O 1767 info->minflt = r_usage.ru_minflt; 1768 // The number of page faults serviced that required I/O 1769 info->majflt = r_usage.ru_majflt; 1770 // The number of times a process was "swapped" out of memory 1771 info->nswap = r_usage.ru_nswap; 1772 // The number of times the file system had to perform input 1773 info->inblock = r_usage.ru_inblock; 1774 // The number of times the file system had to perform output 1775 info->oublock = r_usage.ru_oublock; 1776 // The number of times a context switch was voluntarily 1777 info->nvcsw = r_usage.ru_nvcsw; 1778 // The number of times a context switch was forced 1779 info->nivcsw = r_usage.ru_nivcsw; 1780 1781 return (status != 0); 1782 } 1783 1784 void __kmp_read_system_time(double *delta) { 1785 double t_ns; 1786 struct timeval tval; 1787 struct timespec stop; 1788 int status; 1789 1790 status = gettimeofday(&tval, NULL); 1791 KMP_CHECK_SYSFAIL_ERRNO("gettimeofday", status); 1792 TIMEVAL_TO_TIMESPEC(&tval, &stop); 1793 t_ns = (double)(TS2NS(stop) - TS2NS(__kmp_sys_timer_data.start)); 1794 *delta = (t_ns * 1e-9); 1795 } 1796 1797 void __kmp_clear_system_time(void) { 1798 struct timeval tval; 1799 int status; 1800 status = gettimeofday(&tval, NULL); 1801 KMP_CHECK_SYSFAIL_ERRNO("gettimeofday", status); 1802 TIMEVAL_TO_TIMESPEC(&tval, &__kmp_sys_timer_data.start); 1803 } 1804 1805 static int __kmp_get_xproc(void) { 1806 1807 int r = 0; 1808 1809 #if KMP_OS_LINUX || KMP_OS_DRAGONFLY || KMP_OS_FREEBSD || KMP_OS_NETBSD || \ 1810 KMP_OS_OPENBSD || KMP_OS_HURD 1811 1812 __kmp_type_convert(sysconf(_SC_NPROCESSORS_ONLN), &(r)); 1813 1814 #elif KMP_OS_DARWIN 1815 1816 // Bug C77011 High "OpenMP Threads and number of active cores". 1817 1818 // Find the number of available CPUs. 1819 kern_return_t rc; 1820 host_basic_info_data_t info; 1821 mach_msg_type_number_t num = HOST_BASIC_INFO_COUNT; 1822 rc = host_info(mach_host_self(), HOST_BASIC_INFO, (host_info_t)&info, &num); 1823 if (rc == 0 && num == HOST_BASIC_INFO_COUNT) { 1824 // Cannot use KA_TRACE() here because this code works before trace support 1825 // is initialized. 1826 r = info.avail_cpus; 1827 } else { 1828 KMP_WARNING(CantGetNumAvailCPU); 1829 KMP_INFORM(AssumedNumCPU); 1830 } 1831 1832 #else 1833 1834 #error "Unknown or unsupported OS." 1835 1836 #endif 1837 1838 return r > 0 ? r : 2; /* guess value of 2 if OS told us 0 */ 1839 1840 } // __kmp_get_xproc 1841 1842 int __kmp_read_from_file(char const *path, char const *format, ...) { 1843 int result; 1844 va_list args; 1845 1846 va_start(args, format); 1847 FILE *f = fopen(path, "rb"); 1848 if (f == NULL) 1849 return 0; 1850 result = vfscanf(f, format, args); 1851 fclose(f); 1852 1853 return result; 1854 } 1855 1856 void __kmp_runtime_initialize(void) { 1857 int status; 1858 pthread_mutexattr_t mutex_attr; 1859 pthread_condattr_t cond_attr; 1860 1861 if (__kmp_init_runtime) { 1862 return; 1863 } 1864 1865 #if (KMP_ARCH_X86 || KMP_ARCH_X86_64) 1866 if (!__kmp_cpuinfo.initialized) { 1867 __kmp_query_cpuid(&__kmp_cpuinfo); 1868 } 1869 #endif /* KMP_ARCH_X86 || KMP_ARCH_X86_64 */ 1870 1871 __kmp_xproc = __kmp_get_xproc(); 1872 1873 #if ! KMP_32_BIT_ARCH 1874 struct rlimit rlim; 1875 // read stack size of calling thread, save it as default for worker threads; 1876 // this should be done before reading environment variables 1877 status = getrlimit(RLIMIT_STACK, &rlim); 1878 if (status == 0) { // success? 1879 __kmp_stksize = rlim.rlim_cur; 1880 __kmp_check_stksize(&__kmp_stksize); // check value and adjust if needed 1881 } 1882 #endif /* KMP_32_BIT_ARCH */ 1883 1884 if (sysconf(_SC_THREADS)) { 1885 1886 /* Query the maximum number of threads */ 1887 __kmp_type_convert(sysconf(_SC_THREAD_THREADS_MAX), &(__kmp_sys_max_nth)); 1888 if (__kmp_sys_max_nth == -1) { 1889 /* Unlimited threads for NPTL */ 1890 __kmp_sys_max_nth = INT_MAX; 1891 } else if (__kmp_sys_max_nth <= 1) { 1892 /* Can't tell, just use PTHREAD_THREADS_MAX */ 1893 __kmp_sys_max_nth = KMP_MAX_NTH; 1894 } 1895 1896 /* Query the minimum stack size */ 1897 __kmp_sys_min_stksize = sysconf(_SC_THREAD_STACK_MIN); 1898 if (__kmp_sys_min_stksize <= 1) { 1899 __kmp_sys_min_stksize = KMP_MIN_STKSIZE; 1900 } 1901 } 1902 1903 /* Set up minimum number of threads to switch to TLS gtid */ 1904 __kmp_tls_gtid_min = KMP_TLS_GTID_MIN; 1905 1906 status = pthread_key_create(&__kmp_gtid_threadprivate_key, 1907 __kmp_internal_end_dest); 1908 KMP_CHECK_SYSFAIL("pthread_key_create", status); 1909 status = pthread_mutexattr_init(&mutex_attr); 1910 KMP_CHECK_SYSFAIL("pthread_mutexattr_init", status); 1911 status = pthread_mutex_init(&__kmp_wait_mx.m_mutex, &mutex_attr); 1912 KMP_CHECK_SYSFAIL("pthread_mutex_init", status); 1913 status = pthread_condattr_init(&cond_attr); 1914 KMP_CHECK_SYSFAIL("pthread_condattr_init", status); 1915 status = pthread_cond_init(&__kmp_wait_cv.c_cond, &cond_attr); 1916 KMP_CHECK_SYSFAIL("pthread_cond_init", status); 1917 #if USE_ITT_BUILD 1918 __kmp_itt_initialize(); 1919 #endif /* USE_ITT_BUILD */ 1920 1921 __kmp_init_runtime = TRUE; 1922 } 1923 1924 void __kmp_runtime_destroy(void) { 1925 int status; 1926 1927 if (!__kmp_init_runtime) { 1928 return; // Nothing to do. 1929 } 1930 1931 #if USE_ITT_BUILD 1932 __kmp_itt_destroy(); 1933 #endif /* USE_ITT_BUILD */ 1934 1935 status = pthread_key_delete(__kmp_gtid_threadprivate_key); 1936 KMP_CHECK_SYSFAIL("pthread_key_delete", status); 1937 1938 status = pthread_mutex_destroy(&__kmp_wait_mx.m_mutex); 1939 if (status != 0 && status != EBUSY) { 1940 KMP_SYSFAIL("pthread_mutex_destroy", status); 1941 } 1942 status = pthread_cond_destroy(&__kmp_wait_cv.c_cond); 1943 if (status != 0 && status != EBUSY) { 1944 KMP_SYSFAIL("pthread_cond_destroy", status); 1945 } 1946 #if KMP_AFFINITY_SUPPORTED 1947 __kmp_affinity_uninitialize(); 1948 #endif 1949 1950 __kmp_init_runtime = FALSE; 1951 } 1952 1953 /* Put the thread to sleep for a time period */ 1954 /* NOTE: not currently used anywhere */ 1955 void __kmp_thread_sleep(int millis) { sleep((millis + 500) / 1000); } 1956 1957 /* Calculate the elapsed wall clock time for the user */ 1958 void __kmp_elapsed(double *t) { 1959 int status; 1960 #ifdef FIX_SGI_CLOCK 1961 struct timespec ts; 1962 1963 status = clock_gettime(CLOCK_PROCESS_CPUTIME_ID, &ts); 1964 KMP_CHECK_SYSFAIL_ERRNO("clock_gettime", status); 1965 *t = 1966 (double)ts.tv_nsec * (1.0 / (double)KMP_NSEC_PER_SEC) + (double)ts.tv_sec; 1967 #else 1968 struct timeval tv; 1969 1970 status = gettimeofday(&tv, NULL); 1971 KMP_CHECK_SYSFAIL_ERRNO("gettimeofday", status); 1972 *t = 1973 (double)tv.tv_usec * (1.0 / (double)KMP_USEC_PER_SEC) + (double)tv.tv_sec; 1974 #endif 1975 } 1976 1977 /* Calculate the elapsed wall clock tick for the user */ 1978 void __kmp_elapsed_tick(double *t) { *t = 1 / (double)CLOCKS_PER_SEC; } 1979 1980 /* Return the current time stamp in nsec */ 1981 kmp_uint64 __kmp_now_nsec() { 1982 struct timeval t; 1983 gettimeofday(&t, NULL); 1984 kmp_uint64 nsec = (kmp_uint64)KMP_NSEC_PER_SEC * (kmp_uint64)t.tv_sec + 1985 (kmp_uint64)1000 * (kmp_uint64)t.tv_usec; 1986 return nsec; 1987 } 1988 1989 #if KMP_ARCH_X86 || KMP_ARCH_X86_64 1990 /* Measure clock ticks per millisecond */ 1991 void __kmp_initialize_system_tick() { 1992 kmp_uint64 now, nsec2, diff; 1993 kmp_uint64 delay = 100000; // 50~100 usec on most machines. 1994 kmp_uint64 nsec = __kmp_now_nsec(); 1995 kmp_uint64 goal = __kmp_hardware_timestamp() + delay; 1996 while ((now = __kmp_hardware_timestamp()) < goal) 1997 ; 1998 nsec2 = __kmp_now_nsec(); 1999 diff = nsec2 - nsec; 2000 if (diff > 0) { 2001 kmp_uint64 tpms = ((kmp_uint64)1e6 * (delay + (now - goal)) / diff); 2002 if (tpms > 0) 2003 __kmp_ticks_per_msec = tpms; 2004 } 2005 } 2006 #endif 2007 2008 /* Determine whether the given address is mapped into the current address 2009 space. */ 2010 2011 int __kmp_is_address_mapped(void *addr) { 2012 2013 int found = 0; 2014 int rc; 2015 2016 #if KMP_OS_LINUX || KMP_OS_HURD 2017 2018 /* On GNUish OSes, read the /proc/<pid>/maps pseudo-file to get all the address 2019 ranges mapped into the address space. */ 2020 2021 char *name = __kmp_str_format("/proc/%d/maps", getpid()); 2022 FILE *file = NULL; 2023 2024 file = fopen(name, "r"); 2025 KMP_ASSERT(file != NULL); 2026 2027 for (;;) { 2028 2029 void *beginning = NULL; 2030 void *ending = NULL; 2031 char perms[5]; 2032 2033 rc = fscanf(file, "%p-%p %4s %*[^\n]\n", &beginning, &ending, perms); 2034 if (rc == EOF) { 2035 break; 2036 } 2037 KMP_ASSERT(rc == 3 && 2038 KMP_STRLEN(perms) == 4); // Make sure all fields are read. 2039 2040 // Ending address is not included in the region, but beginning is. 2041 if ((addr >= beginning) && (addr < ending)) { 2042 perms[2] = 0; // 3th and 4th character does not matter. 2043 if (strcmp(perms, "rw") == 0) { 2044 // Memory we are looking for should be readable and writable. 2045 found = 1; 2046 } 2047 break; 2048 } 2049 } 2050 2051 // Free resources. 2052 fclose(file); 2053 KMP_INTERNAL_FREE(name); 2054 #elif KMP_OS_FREEBSD 2055 char *buf; 2056 size_t lstsz; 2057 int mib[] = {CTL_KERN, KERN_PROC, KERN_PROC_VMMAP, getpid()}; 2058 rc = sysctl(mib, 4, NULL, &lstsz, NULL, 0); 2059 if (rc < 0) 2060 return 0; 2061 // We pass from number of vm entry's semantic 2062 // to size of whole entry map list. 2063 lstsz = lstsz * 4 / 3; 2064 buf = reinterpret_cast<char *>(kmpc_malloc(lstsz)); 2065 rc = sysctl(mib, 4, buf, &lstsz, NULL, 0); 2066 if (rc < 0) { 2067 kmpc_free(buf); 2068 return 0; 2069 } 2070 2071 char *lw = buf; 2072 char *up = buf + lstsz; 2073 2074 while (lw < up) { 2075 struct kinfo_vmentry *cur = reinterpret_cast<struct kinfo_vmentry *>(lw); 2076 size_t cursz = cur->kve_structsize; 2077 if (cursz == 0) 2078 break; 2079 void *start = reinterpret_cast<void *>(cur->kve_start); 2080 void *end = reinterpret_cast<void *>(cur->kve_end); 2081 // Readable/Writable addresses within current map entry 2082 if ((addr >= start) && (addr < end)) { 2083 if ((cur->kve_protection & KVME_PROT_READ) != 0 && 2084 (cur->kve_protection & KVME_PROT_WRITE) != 0) { 2085 found = 1; 2086 break; 2087 } 2088 } 2089 lw += cursz; 2090 } 2091 kmpc_free(buf); 2092 2093 #elif KMP_OS_DARWIN 2094 2095 /* On OS X*, /proc pseudo filesystem is not available. Try to read memory 2096 using vm interface. */ 2097 2098 int buffer; 2099 vm_size_t count; 2100 rc = vm_read_overwrite( 2101 mach_task_self(), // Task to read memory of. 2102 (vm_address_t)(addr), // Address to read from. 2103 1, // Number of bytes to be read. 2104 (vm_address_t)(&buffer), // Address of buffer to save read bytes in. 2105 &count // Address of var to save number of read bytes in. 2106 ); 2107 if (rc == 0) { 2108 // Memory successfully read. 2109 found = 1; 2110 } 2111 2112 #elif KMP_OS_NETBSD 2113 2114 int mib[5]; 2115 mib[0] = CTL_VM; 2116 mib[1] = VM_PROC; 2117 mib[2] = VM_PROC_MAP; 2118 mib[3] = getpid(); 2119 mib[4] = sizeof(struct kinfo_vmentry); 2120 2121 size_t size; 2122 rc = sysctl(mib, __arraycount(mib), NULL, &size, NULL, 0); 2123 KMP_ASSERT(!rc); 2124 KMP_ASSERT(size); 2125 2126 size = size * 4 / 3; 2127 struct kinfo_vmentry *kiv = (struct kinfo_vmentry *)KMP_INTERNAL_MALLOC(size); 2128 KMP_ASSERT(kiv); 2129 2130 rc = sysctl(mib, __arraycount(mib), kiv, &size, NULL, 0); 2131 KMP_ASSERT(!rc); 2132 KMP_ASSERT(size); 2133 2134 for (size_t i = 0; i < size; i++) { 2135 if (kiv[i].kve_start >= (uint64_t)addr && 2136 kiv[i].kve_end <= (uint64_t)addr) { 2137 found = 1; 2138 break; 2139 } 2140 } 2141 KMP_INTERNAL_FREE(kiv); 2142 #elif KMP_OS_OPENBSD 2143 2144 int mib[3]; 2145 mib[0] = CTL_KERN; 2146 mib[1] = KERN_PROC_VMMAP; 2147 mib[2] = getpid(); 2148 2149 size_t size; 2150 uint64_t end; 2151 rc = sysctl(mib, 3, NULL, &size, NULL, 0); 2152 KMP_ASSERT(!rc); 2153 KMP_ASSERT(size); 2154 end = size; 2155 2156 struct kinfo_vmentry kiv = {.kve_start = 0}; 2157 2158 while ((rc = sysctl(mib, 3, &kiv, &size, NULL, 0)) == 0) { 2159 KMP_ASSERT(size); 2160 if (kiv.kve_end == end) 2161 break; 2162 2163 if (kiv.kve_start >= (uint64_t)addr && kiv.kve_end <= (uint64_t)addr) { 2164 found = 1; 2165 break; 2166 } 2167 kiv.kve_start += 1; 2168 } 2169 #elif KMP_OS_DRAGONFLY 2170 2171 // FIXME(DragonFly): Implement this 2172 found = 1; 2173 2174 #else 2175 2176 #error "Unknown or unsupported OS" 2177 2178 #endif 2179 2180 return found; 2181 2182 } // __kmp_is_address_mapped 2183 2184 #ifdef USE_LOAD_BALANCE 2185 2186 #if KMP_OS_DARWIN || KMP_OS_NETBSD 2187 2188 // The function returns the rounded value of the system load average 2189 // during given time interval which depends on the value of 2190 // __kmp_load_balance_interval variable (default is 60 sec, other values 2191 // may be 300 sec or 900 sec). 2192 // It returns -1 in case of error. 2193 int __kmp_get_load_balance(int max) { 2194 double averages[3]; 2195 int ret_avg = 0; 2196 2197 int res = getloadavg(averages, 3); 2198 2199 // Check __kmp_load_balance_interval to determine which of averages to use. 2200 // getloadavg() may return the number of samples less than requested that is 2201 // less than 3. 2202 if (__kmp_load_balance_interval < 180 && (res >= 1)) { 2203 ret_avg = (int)averages[0]; // 1 min 2204 } else if ((__kmp_load_balance_interval >= 180 && 2205 __kmp_load_balance_interval < 600) && 2206 (res >= 2)) { 2207 ret_avg = (int)averages[1]; // 5 min 2208 } else if ((__kmp_load_balance_interval >= 600) && (res == 3)) { 2209 ret_avg = (int)averages[2]; // 15 min 2210 } else { // Error occurred 2211 return -1; 2212 } 2213 2214 return ret_avg; 2215 } 2216 2217 #else // Linux* OS 2218 2219 // The function returns number of running (not sleeping) threads, or -1 in case 2220 // of error. Error could be reported if Linux* OS kernel too old (without 2221 // "/proc" support). Counting running threads stops if max running threads 2222 // encountered. 2223 int __kmp_get_load_balance(int max) { 2224 static int permanent_error = 0; 2225 static int glb_running_threads = 0; // Saved count of the running threads for 2226 // the thread balance algorithm 2227 static double glb_call_time = 0; /* Thread balance algorithm call time */ 2228 2229 int running_threads = 0; // Number of running threads in the system. 2230 2231 DIR *proc_dir = NULL; // Handle of "/proc/" directory. 2232 struct dirent *proc_entry = NULL; 2233 2234 kmp_str_buf_t task_path; // "/proc/<pid>/task/<tid>/" path. 2235 DIR *task_dir = NULL; // Handle of "/proc/<pid>/task/<tid>/" directory. 2236 struct dirent *task_entry = NULL; 2237 int task_path_fixed_len; 2238 2239 kmp_str_buf_t stat_path; // "/proc/<pid>/task/<tid>/stat" path. 2240 int stat_file = -1; 2241 int stat_path_fixed_len; 2242 2243 int total_processes = 0; // Total number of processes in system. 2244 int total_threads = 0; // Total number of threads in system. 2245 2246 double call_time = 0.0; 2247 2248 __kmp_str_buf_init(&task_path); 2249 __kmp_str_buf_init(&stat_path); 2250 2251 __kmp_elapsed(&call_time); 2252 2253 if (glb_call_time && 2254 (call_time - glb_call_time < __kmp_load_balance_interval)) { 2255 running_threads = glb_running_threads; 2256 goto finish; 2257 } 2258 2259 glb_call_time = call_time; 2260 2261 // Do not spend time on scanning "/proc/" if we have a permanent error. 2262 if (permanent_error) { 2263 running_threads = -1; 2264 goto finish; 2265 } 2266 2267 if (max <= 0) { 2268 max = INT_MAX; 2269 } 2270 2271 // Open "/proc/" directory. 2272 proc_dir = opendir("/proc"); 2273 if (proc_dir == NULL) { 2274 // Cannot open "/prroc/". Probably the kernel does not support it. Return an 2275 // error now and in subsequent calls. 2276 running_threads = -1; 2277 permanent_error = 1; 2278 goto finish; 2279 } 2280 2281 // Initialize fixed part of task_path. This part will not change. 2282 __kmp_str_buf_cat(&task_path, "/proc/", 6); 2283 task_path_fixed_len = task_path.used; // Remember number of used characters. 2284 2285 proc_entry = readdir(proc_dir); 2286 while (proc_entry != NULL) { 2287 // Proc entry is a directory and name starts with a digit. Assume it is a 2288 // process' directory. 2289 if (proc_entry->d_type == DT_DIR && isdigit(proc_entry->d_name[0])) { 2290 2291 ++total_processes; 2292 // Make sure init process is the very first in "/proc", so we can replace 2293 // strcmp( proc_entry->d_name, "1" ) == 0 with simpler total_processes == 2294 // 1. We are going to check that total_processes == 1 => d_name == "1" is 2295 // true (where "=>" is implication). Since C++ does not have => operator, 2296 // let us replace it with its equivalent: a => b == ! a || b. 2297 KMP_DEBUG_ASSERT(total_processes != 1 || 2298 strcmp(proc_entry->d_name, "1") == 0); 2299 2300 // Construct task_path. 2301 task_path.used = task_path_fixed_len; // Reset task_path to "/proc/". 2302 __kmp_str_buf_cat(&task_path, proc_entry->d_name, 2303 KMP_STRLEN(proc_entry->d_name)); 2304 __kmp_str_buf_cat(&task_path, "/task", 5); 2305 2306 task_dir = opendir(task_path.str); 2307 if (task_dir == NULL) { 2308 // Process can finish between reading "/proc/" directory entry and 2309 // opening process' "task/" directory. So, in general case we should not 2310 // complain, but have to skip this process and read the next one. But on 2311 // systems with no "task/" support we will spend lot of time to scan 2312 // "/proc/" tree again and again without any benefit. "init" process 2313 // (its pid is 1) should exist always, so, if we cannot open 2314 // "/proc/1/task/" directory, it means "task/" is not supported by 2315 // kernel. Report an error now and in the future. 2316 if (strcmp(proc_entry->d_name, "1") == 0) { 2317 running_threads = -1; 2318 permanent_error = 1; 2319 goto finish; 2320 } 2321 } else { 2322 // Construct fixed part of stat file path. 2323 __kmp_str_buf_clear(&stat_path); 2324 __kmp_str_buf_cat(&stat_path, task_path.str, task_path.used); 2325 __kmp_str_buf_cat(&stat_path, "/", 1); 2326 stat_path_fixed_len = stat_path.used; 2327 2328 task_entry = readdir(task_dir); 2329 while (task_entry != NULL) { 2330 // It is a directory and name starts with a digit. 2331 if (proc_entry->d_type == DT_DIR && isdigit(task_entry->d_name[0])) { 2332 ++total_threads; 2333 2334 // Construct complete stat file path. Easiest way would be: 2335 // __kmp_str_buf_print( & stat_path, "%s/%s/stat", task_path.str, 2336 // task_entry->d_name ); 2337 // but seriae of __kmp_str_buf_cat works a bit faster. 2338 stat_path.used = 2339 stat_path_fixed_len; // Reset stat path to its fixed part. 2340 __kmp_str_buf_cat(&stat_path, task_entry->d_name, 2341 KMP_STRLEN(task_entry->d_name)); 2342 __kmp_str_buf_cat(&stat_path, "/stat", 5); 2343 2344 // Note: Low-level API (open/read/close) is used. High-level API 2345 // (fopen/fclose) works ~ 30 % slower. 2346 stat_file = open(stat_path.str, O_RDONLY); 2347 if (stat_file == -1) { 2348 // We cannot report an error because task (thread) can terminate 2349 // just before reading this file. 2350 } else { 2351 /* Content of "stat" file looks like: 2352 24285 (program) S ... 2353 2354 It is a single line (if program name does not include funny 2355 symbols). First number is a thread id, then name of executable 2356 file name in paretheses, then state of the thread. We need just 2357 thread state. 2358 2359 Good news: Length of program name is 15 characters max. Longer 2360 names are truncated. 2361 2362 Thus, we need rather short buffer: 15 chars for program name + 2363 2 parenthesis, + 3 spaces + ~7 digits of pid = 37. 2364 2365 Bad news: Program name may contain special symbols like space, 2366 closing parenthesis, or even new line. This makes parsing 2367 "stat" file not 100 % reliable. In case of fanny program names 2368 parsing may fail (report incorrect thread state). 2369 2370 Parsing "status" file looks more promissing (due to different 2371 file structure and escaping special symbols) but reading and 2372 parsing of "status" file works slower. 2373 -- ln 2374 */ 2375 char buffer[65]; 2376 ssize_t len; 2377 len = read(stat_file, buffer, sizeof(buffer) - 1); 2378 if (len >= 0) { 2379 buffer[len] = 0; 2380 // Using scanf: 2381 // sscanf( buffer, "%*d (%*s) %c ", & state ); 2382 // looks very nice, but searching for a closing parenthesis 2383 // works a bit faster. 2384 char *close_parent = strstr(buffer, ") "); 2385 if (close_parent != NULL) { 2386 char state = *(close_parent + 2); 2387 if (state == 'R') { 2388 ++running_threads; 2389 if (running_threads >= max) { 2390 goto finish; 2391 } 2392 } 2393 } 2394 } 2395 close(stat_file); 2396 stat_file = -1; 2397 } 2398 } 2399 task_entry = readdir(task_dir); 2400 } 2401 closedir(task_dir); 2402 task_dir = NULL; 2403 } 2404 } 2405 proc_entry = readdir(proc_dir); 2406 } 2407 2408 // There _might_ be a timing hole where the thread executing this 2409 // code get skipped in the load balance, and running_threads is 0. 2410 // Assert in the debug builds only!!! 2411 KMP_DEBUG_ASSERT(running_threads > 0); 2412 if (running_threads <= 0) { 2413 running_threads = 1; 2414 } 2415 2416 finish: // Clean up and exit. 2417 if (proc_dir != NULL) { 2418 closedir(proc_dir); 2419 } 2420 __kmp_str_buf_free(&task_path); 2421 if (task_dir != NULL) { 2422 closedir(task_dir); 2423 } 2424 __kmp_str_buf_free(&stat_path); 2425 if (stat_file != -1) { 2426 close(stat_file); 2427 } 2428 2429 glb_running_threads = running_threads; 2430 2431 return running_threads; 2432 2433 } // __kmp_get_load_balance 2434 2435 #endif // KMP_OS_DARWIN 2436 2437 #endif // USE_LOAD_BALANCE 2438 2439 #if !(KMP_ARCH_X86 || KMP_ARCH_X86_64 || KMP_MIC || \ 2440 ((KMP_OS_LINUX || KMP_OS_DARWIN) && KMP_ARCH_AARCH64) || \ 2441 KMP_ARCH_PPC64 || KMP_ARCH_RISCV64) 2442 2443 // we really only need the case with 1 argument, because CLANG always build 2444 // a struct of pointers to shared variables referenced in the outlined function 2445 int __kmp_invoke_microtask(microtask_t pkfn, int gtid, int tid, int argc, 2446 void *p_argv[] 2447 #if OMPT_SUPPORT 2448 , 2449 void **exit_frame_ptr 2450 #endif 2451 ) { 2452 #if OMPT_SUPPORT 2453 *exit_frame_ptr = OMPT_GET_FRAME_ADDRESS(0); 2454 #endif 2455 2456 switch (argc) { 2457 default: 2458 fprintf(stderr, "Too many args to microtask: %d!\n", argc); 2459 fflush(stderr); 2460 exit(-1); 2461 case 0: 2462 (*pkfn)(>id, &tid); 2463 break; 2464 case 1: 2465 (*pkfn)(>id, &tid, p_argv[0]); 2466 break; 2467 case 2: 2468 (*pkfn)(>id, &tid, p_argv[0], p_argv[1]); 2469 break; 2470 case 3: 2471 (*pkfn)(>id, &tid, p_argv[0], p_argv[1], p_argv[2]); 2472 break; 2473 case 4: 2474 (*pkfn)(>id, &tid, p_argv[0], p_argv[1], p_argv[2], p_argv[3]); 2475 break; 2476 case 5: 2477 (*pkfn)(>id, &tid, p_argv[0], p_argv[1], p_argv[2], p_argv[3], p_argv[4]); 2478 break; 2479 case 6: 2480 (*pkfn)(>id, &tid, p_argv[0], p_argv[1], p_argv[2], p_argv[3], p_argv[4], 2481 p_argv[5]); 2482 break; 2483 case 7: 2484 (*pkfn)(>id, &tid, p_argv[0], p_argv[1], p_argv[2], p_argv[3], p_argv[4], 2485 p_argv[5], p_argv[6]); 2486 break; 2487 case 8: 2488 (*pkfn)(>id, &tid, p_argv[0], p_argv[1], p_argv[2], p_argv[3], p_argv[4], 2489 p_argv[5], p_argv[6], p_argv[7]); 2490 break; 2491 case 9: 2492 (*pkfn)(>id, &tid, p_argv[0], p_argv[1], p_argv[2], p_argv[3], p_argv[4], 2493 p_argv[5], p_argv[6], p_argv[7], p_argv[8]); 2494 break; 2495 case 10: 2496 (*pkfn)(>id, &tid, p_argv[0], p_argv[1], p_argv[2], p_argv[3], p_argv[4], 2497 p_argv[5], p_argv[6], p_argv[7], p_argv[8], p_argv[9]); 2498 break; 2499 case 11: 2500 (*pkfn)(>id, &tid, p_argv[0], p_argv[1], p_argv[2], p_argv[3], p_argv[4], 2501 p_argv[5], p_argv[6], p_argv[7], p_argv[8], p_argv[9], p_argv[10]); 2502 break; 2503 case 12: 2504 (*pkfn)(>id, &tid, p_argv[0], p_argv[1], p_argv[2], p_argv[3], p_argv[4], 2505 p_argv[5], p_argv[6], p_argv[7], p_argv[8], p_argv[9], p_argv[10], 2506 p_argv[11]); 2507 break; 2508 case 13: 2509 (*pkfn)(>id, &tid, p_argv[0], p_argv[1], p_argv[2], p_argv[3], p_argv[4], 2510 p_argv[5], p_argv[6], p_argv[7], p_argv[8], p_argv[9], p_argv[10], 2511 p_argv[11], p_argv[12]); 2512 break; 2513 case 14: 2514 (*pkfn)(>id, &tid, p_argv[0], p_argv[1], p_argv[2], p_argv[3], p_argv[4], 2515 p_argv[5], p_argv[6], p_argv[7], p_argv[8], p_argv[9], p_argv[10], 2516 p_argv[11], p_argv[12], p_argv[13]); 2517 break; 2518 case 15: 2519 (*pkfn)(>id, &tid, p_argv[0], p_argv[1], p_argv[2], p_argv[3], p_argv[4], 2520 p_argv[5], p_argv[6], p_argv[7], p_argv[8], p_argv[9], p_argv[10], 2521 p_argv[11], p_argv[12], p_argv[13], p_argv[14]); 2522 break; 2523 } 2524 2525 return 1; 2526 } 2527 2528 #endif 2529 2530 // Functions for hidden helper task 2531 namespace { 2532 // Condition variable for initializing hidden helper team 2533 pthread_cond_t hidden_helper_threads_initz_cond_var; 2534 pthread_mutex_t hidden_helper_threads_initz_lock; 2535 volatile int hidden_helper_initz_signaled = FALSE; 2536 2537 // Condition variable for deinitializing hidden helper team 2538 pthread_cond_t hidden_helper_threads_deinitz_cond_var; 2539 pthread_mutex_t hidden_helper_threads_deinitz_lock; 2540 volatile int hidden_helper_deinitz_signaled = FALSE; 2541 2542 // Condition variable for the wrapper function of main thread 2543 pthread_cond_t hidden_helper_main_thread_cond_var; 2544 pthread_mutex_t hidden_helper_main_thread_lock; 2545 volatile int hidden_helper_main_thread_signaled = FALSE; 2546 2547 // Semaphore for worker threads. We don't use condition variable here in case 2548 // that when multiple signals are sent at the same time, only one thread might 2549 // be waken. 2550 sem_t hidden_helper_task_sem; 2551 } // namespace 2552 2553 void __kmp_hidden_helper_worker_thread_wait() { 2554 int status = sem_wait(&hidden_helper_task_sem); 2555 KMP_CHECK_SYSFAIL("sem_wait", status); 2556 } 2557 2558 void __kmp_do_initialize_hidden_helper_threads() { 2559 // Initialize condition variable 2560 int status = 2561 pthread_cond_init(&hidden_helper_threads_initz_cond_var, nullptr); 2562 KMP_CHECK_SYSFAIL("pthread_cond_init", status); 2563 2564 status = pthread_cond_init(&hidden_helper_threads_deinitz_cond_var, nullptr); 2565 KMP_CHECK_SYSFAIL("pthread_cond_init", status); 2566 2567 status = pthread_cond_init(&hidden_helper_main_thread_cond_var, nullptr); 2568 KMP_CHECK_SYSFAIL("pthread_cond_init", status); 2569 2570 status = pthread_mutex_init(&hidden_helper_threads_initz_lock, nullptr); 2571 KMP_CHECK_SYSFAIL("pthread_mutex_init", status); 2572 2573 status = pthread_mutex_init(&hidden_helper_threads_deinitz_lock, nullptr); 2574 KMP_CHECK_SYSFAIL("pthread_mutex_init", status); 2575 2576 status = pthread_mutex_init(&hidden_helper_main_thread_lock, nullptr); 2577 KMP_CHECK_SYSFAIL("pthread_mutex_init", status); 2578 2579 // Initialize the semaphore 2580 status = sem_init(&hidden_helper_task_sem, 0, 0); 2581 KMP_CHECK_SYSFAIL("sem_init", status); 2582 2583 // Create a new thread to finish initialization 2584 pthread_t handle; 2585 status = pthread_create( 2586 &handle, nullptr, 2587 [](void *) -> void * { 2588 __kmp_hidden_helper_threads_initz_routine(); 2589 return nullptr; 2590 }, 2591 nullptr); 2592 KMP_CHECK_SYSFAIL("pthread_create", status); 2593 } 2594 2595 void __kmp_hidden_helper_threads_initz_wait() { 2596 // Initial thread waits here for the completion of the initialization. The 2597 // condition variable will be notified by main thread of hidden helper teams. 2598 int status = pthread_mutex_lock(&hidden_helper_threads_initz_lock); 2599 KMP_CHECK_SYSFAIL("pthread_mutex_lock", status); 2600 2601 if (!TCR_4(hidden_helper_initz_signaled)) { 2602 status = pthread_cond_wait(&hidden_helper_threads_initz_cond_var, 2603 &hidden_helper_threads_initz_lock); 2604 KMP_CHECK_SYSFAIL("pthread_cond_wait", status); 2605 } 2606 2607 status = pthread_mutex_unlock(&hidden_helper_threads_initz_lock); 2608 KMP_CHECK_SYSFAIL("pthread_mutex_unlock", status); 2609 } 2610 2611 void __kmp_hidden_helper_initz_release() { 2612 // After all initialization, reset __kmp_init_hidden_helper_threads to false. 2613 int status = pthread_mutex_lock(&hidden_helper_threads_initz_lock); 2614 KMP_CHECK_SYSFAIL("pthread_mutex_lock", status); 2615 2616 status = pthread_cond_signal(&hidden_helper_threads_initz_cond_var); 2617 KMP_CHECK_SYSFAIL("pthread_cond_wait", status); 2618 2619 TCW_SYNC_4(hidden_helper_initz_signaled, TRUE); 2620 2621 status = pthread_mutex_unlock(&hidden_helper_threads_initz_lock); 2622 KMP_CHECK_SYSFAIL("pthread_mutex_unlock", status); 2623 } 2624 2625 void __kmp_hidden_helper_main_thread_wait() { 2626 // The main thread of hidden helper team will be blocked here. The 2627 // condition variable can only be signal in the destructor of RTL. 2628 int status = pthread_mutex_lock(&hidden_helper_main_thread_lock); 2629 KMP_CHECK_SYSFAIL("pthread_mutex_lock", status); 2630 2631 if (!TCR_4(hidden_helper_main_thread_signaled)) { 2632 status = pthread_cond_wait(&hidden_helper_main_thread_cond_var, 2633 &hidden_helper_main_thread_lock); 2634 KMP_CHECK_SYSFAIL("pthread_cond_wait", status); 2635 } 2636 2637 status = pthread_mutex_unlock(&hidden_helper_main_thread_lock); 2638 KMP_CHECK_SYSFAIL("pthread_mutex_unlock", status); 2639 } 2640 2641 void __kmp_hidden_helper_main_thread_release() { 2642 // The initial thread of OpenMP RTL should call this function to wake up the 2643 // main thread of hidden helper team. 2644 int status = pthread_mutex_lock(&hidden_helper_main_thread_lock); 2645 KMP_CHECK_SYSFAIL("pthread_mutex_lock", status); 2646 2647 status = pthread_cond_signal(&hidden_helper_main_thread_cond_var); 2648 KMP_CHECK_SYSFAIL("pthread_cond_signal", status); 2649 2650 // The hidden helper team is done here 2651 TCW_SYNC_4(hidden_helper_main_thread_signaled, TRUE); 2652 2653 status = pthread_mutex_unlock(&hidden_helper_main_thread_lock); 2654 KMP_CHECK_SYSFAIL("pthread_mutex_unlock", status); 2655 } 2656 2657 void __kmp_hidden_helper_worker_thread_signal() { 2658 int status = sem_post(&hidden_helper_task_sem); 2659 KMP_CHECK_SYSFAIL("sem_post", status); 2660 } 2661 2662 void __kmp_hidden_helper_threads_deinitz_wait() { 2663 // Initial thread waits here for the completion of the deinitialization. The 2664 // condition variable will be notified by main thread of hidden helper teams. 2665 int status = pthread_mutex_lock(&hidden_helper_threads_deinitz_lock); 2666 KMP_CHECK_SYSFAIL("pthread_mutex_lock", status); 2667 2668 if (!TCR_4(hidden_helper_deinitz_signaled)) { 2669 status = pthread_cond_wait(&hidden_helper_threads_deinitz_cond_var, 2670 &hidden_helper_threads_deinitz_lock); 2671 KMP_CHECK_SYSFAIL("pthread_cond_wait", status); 2672 } 2673 2674 status = pthread_mutex_unlock(&hidden_helper_threads_deinitz_lock); 2675 KMP_CHECK_SYSFAIL("pthread_mutex_unlock", status); 2676 } 2677 2678 void __kmp_hidden_helper_threads_deinitz_release() { 2679 int status = pthread_mutex_lock(&hidden_helper_threads_deinitz_lock); 2680 KMP_CHECK_SYSFAIL("pthread_mutex_lock", status); 2681 2682 status = pthread_cond_signal(&hidden_helper_threads_deinitz_cond_var); 2683 KMP_CHECK_SYSFAIL("pthread_cond_wait", status); 2684 2685 TCW_SYNC_4(hidden_helper_deinitz_signaled, TRUE); 2686 2687 status = pthread_mutex_unlock(&hidden_helper_threads_deinitz_lock); 2688 KMP_CHECK_SYSFAIL("pthread_mutex_unlock", status); 2689 } 2690 2691 // end of file // 2692