1 /* 2 * z_Linux_util.cpp -- platform specific routines. 3 */ 4 5 //===----------------------------------------------------------------------===// 6 // 7 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 8 // See https://llvm.org/LICENSE.txt for license information. 9 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "kmp.h" 14 #include "kmp_affinity.h" 15 #include "kmp_i18n.h" 16 #include "kmp_io.h" 17 #include "kmp_itt.h" 18 #include "kmp_lock.h" 19 #include "kmp_stats.h" 20 #include "kmp_str.h" 21 #include "kmp_wait_release.h" 22 #include "kmp_wrapper_getpid.h" 23 24 #if !KMP_OS_DRAGONFLY && !KMP_OS_FREEBSD && !KMP_OS_NETBSD && !KMP_OS_OPENBSD 25 #include <alloca.h> 26 #endif 27 #include <math.h> // HUGE_VAL. 28 #include <sys/resource.h> 29 #include <sys/syscall.h> 30 #include <sys/time.h> 31 #include <sys/times.h> 32 #include <unistd.h> 33 34 #if KMP_OS_LINUX && !KMP_OS_CNK 35 #include <sys/sysinfo.h> 36 #if KMP_USE_FUTEX 37 // We should really include <futex.h>, but that causes compatibility problems on 38 // different Linux* OS distributions that either require that you include (or 39 // break when you try to include) <pci/types.h>. Since all we need is the two 40 // macros below (which are part of the kernel ABI, so can't change) we just 41 // define the constants here and don't include <futex.h> 42 #ifndef FUTEX_WAIT 43 #define FUTEX_WAIT 0 44 #endif 45 #ifndef FUTEX_WAKE 46 #define FUTEX_WAKE 1 47 #endif 48 #endif 49 #elif KMP_OS_DARWIN 50 #include <mach/mach.h> 51 #include <sys/sysctl.h> 52 #elif KMP_OS_DRAGONFLY || KMP_OS_FREEBSD 53 #include <pthread_np.h> 54 #elif KMP_OS_NETBSD 55 #include <sys/types.h> 56 #include <sys/sysctl.h> 57 #endif 58 59 #include <ctype.h> 60 #include <dirent.h> 61 #include <fcntl.h> 62 63 #include "tsan_annotations.h" 64 65 struct kmp_sys_timer { 66 struct timespec start; 67 }; 68 69 // Convert timespec to nanoseconds. 70 #define TS2NS(timespec) (((timespec).tv_sec * 1e9) + (timespec).tv_nsec) 71 72 static struct kmp_sys_timer __kmp_sys_timer_data; 73 74 #if KMP_HANDLE_SIGNALS 75 typedef void (*sig_func_t)(int); 76 STATIC_EFI2_WORKAROUND struct sigaction __kmp_sighldrs[NSIG]; 77 static sigset_t __kmp_sigset; 78 #endif 79 80 static int __kmp_init_runtime = FALSE; 81 82 static int __kmp_fork_count = 0; 83 84 static pthread_condattr_t __kmp_suspend_cond_attr; 85 static pthread_mutexattr_t __kmp_suspend_mutex_attr; 86 87 static kmp_cond_align_t __kmp_wait_cv; 88 static kmp_mutex_align_t __kmp_wait_mx; 89 90 kmp_uint64 __kmp_ticks_per_msec = 1000000; 91 92 #ifdef DEBUG_SUSPEND 93 static void __kmp_print_cond(char *buffer, kmp_cond_align_t *cond) { 94 KMP_SNPRINTF(buffer, 128, "(cond (lock (%ld, %d)), (descr (%p)))", 95 cond->c_cond.__c_lock.__status, cond->c_cond.__c_lock.__spinlock, 96 cond->c_cond.__c_waiting); 97 } 98 #endif 99 100 #if (KMP_OS_LINUX && KMP_AFFINITY_SUPPORTED) 101 102 /* Affinity support */ 103 104 void __kmp_affinity_bind_thread(int which) { 105 KMP_ASSERT2(KMP_AFFINITY_CAPABLE(), 106 "Illegal set affinity operation when not capable"); 107 108 kmp_affin_mask_t *mask; 109 KMP_CPU_ALLOC_ON_STACK(mask); 110 KMP_CPU_ZERO(mask); 111 KMP_CPU_SET(which, mask); 112 __kmp_set_system_affinity(mask, TRUE); 113 KMP_CPU_FREE_FROM_STACK(mask); 114 } 115 116 /* Determine if we can access affinity functionality on this version of 117 * Linux* OS by checking __NR_sched_{get,set}affinity system calls, and set 118 * __kmp_affin_mask_size to the appropriate value (0 means not capable). */ 119 void __kmp_affinity_determine_capable(const char *env_var) { 120 // Check and see if the OS supports thread affinity. 121 122 #define KMP_CPU_SET_SIZE_LIMIT (1024 * 1024) 123 124 int gCode; 125 int sCode; 126 unsigned char *buf; 127 buf = (unsigned char *)KMP_INTERNAL_MALLOC(KMP_CPU_SET_SIZE_LIMIT); 128 129 // If Linux* OS: 130 // If the syscall fails or returns a suggestion for the size, 131 // then we don't have to search for an appropriate size. 132 gCode = syscall(__NR_sched_getaffinity, 0, KMP_CPU_SET_SIZE_LIMIT, buf); 133 KA_TRACE(30, ("__kmp_affinity_determine_capable: " 134 "initial getaffinity call returned %d errno = %d\n", 135 gCode, errno)); 136 137 // if ((gCode < 0) && (errno == ENOSYS)) 138 if (gCode < 0) { 139 // System call not supported 140 if (__kmp_affinity_verbose || 141 (__kmp_affinity_warnings && (__kmp_affinity_type != affinity_none) && 142 (__kmp_affinity_type != affinity_default) && 143 (__kmp_affinity_type != affinity_disabled))) { 144 int error = errno; 145 kmp_msg_t err_code = KMP_ERR(error); 146 __kmp_msg(kmp_ms_warning, KMP_MSG(GetAffSysCallNotSupported, env_var), 147 err_code, __kmp_msg_null); 148 if (__kmp_generate_warnings == kmp_warnings_off) { 149 __kmp_str_free(&err_code.str); 150 } 151 } 152 KMP_AFFINITY_DISABLE(); 153 KMP_INTERNAL_FREE(buf); 154 return; 155 } 156 if (gCode > 0) { // Linux* OS only 157 // The optimal situation: the OS returns the size of the buffer it expects. 158 // 159 // A verification of correct behavior is that Isetaffinity on a NULL 160 // buffer with the same size fails with errno set to EFAULT. 161 sCode = syscall(__NR_sched_setaffinity, 0, gCode, NULL); 162 KA_TRACE(30, ("__kmp_affinity_determine_capable: " 163 "setaffinity for mask size %d returned %d errno = %d\n", 164 gCode, sCode, errno)); 165 if (sCode < 0) { 166 if (errno == ENOSYS) { 167 if (__kmp_affinity_verbose || 168 (__kmp_affinity_warnings && 169 (__kmp_affinity_type != affinity_none) && 170 (__kmp_affinity_type != affinity_default) && 171 (__kmp_affinity_type != affinity_disabled))) { 172 int error = errno; 173 kmp_msg_t err_code = KMP_ERR(error); 174 __kmp_msg(kmp_ms_warning, KMP_MSG(SetAffSysCallNotSupported, env_var), 175 err_code, __kmp_msg_null); 176 if (__kmp_generate_warnings == kmp_warnings_off) { 177 __kmp_str_free(&err_code.str); 178 } 179 } 180 KMP_AFFINITY_DISABLE(); 181 KMP_INTERNAL_FREE(buf); 182 } 183 if (errno == EFAULT) { 184 KMP_AFFINITY_ENABLE(gCode); 185 KA_TRACE(10, ("__kmp_affinity_determine_capable: " 186 "affinity supported (mask size %d)\n", 187 (int)__kmp_affin_mask_size)); 188 KMP_INTERNAL_FREE(buf); 189 return; 190 } 191 } 192 } 193 194 // Call the getaffinity system call repeatedly with increasing set sizes 195 // until we succeed, or reach an upper bound on the search. 196 KA_TRACE(30, ("__kmp_affinity_determine_capable: " 197 "searching for proper set size\n")); 198 int size; 199 for (size = 1; size <= KMP_CPU_SET_SIZE_LIMIT; size *= 2) { 200 gCode = syscall(__NR_sched_getaffinity, 0, size, buf); 201 KA_TRACE(30, ("__kmp_affinity_determine_capable: " 202 "getaffinity for mask size %d returned %d errno = %d\n", 203 size, gCode, errno)); 204 205 if (gCode < 0) { 206 if (errno == ENOSYS) { 207 // We shouldn't get here 208 KA_TRACE(30, ("__kmp_affinity_determine_capable: " 209 "inconsistent OS call behavior: errno == ENOSYS for mask " 210 "size %d\n", 211 size)); 212 if (__kmp_affinity_verbose || 213 (__kmp_affinity_warnings && 214 (__kmp_affinity_type != affinity_none) && 215 (__kmp_affinity_type != affinity_default) && 216 (__kmp_affinity_type != affinity_disabled))) { 217 int error = errno; 218 kmp_msg_t err_code = KMP_ERR(error); 219 __kmp_msg(kmp_ms_warning, KMP_MSG(GetAffSysCallNotSupported, env_var), 220 err_code, __kmp_msg_null); 221 if (__kmp_generate_warnings == kmp_warnings_off) { 222 __kmp_str_free(&err_code.str); 223 } 224 } 225 KMP_AFFINITY_DISABLE(); 226 KMP_INTERNAL_FREE(buf); 227 return; 228 } 229 continue; 230 } 231 232 sCode = syscall(__NR_sched_setaffinity, 0, gCode, NULL); 233 KA_TRACE(30, ("__kmp_affinity_determine_capable: " 234 "setaffinity for mask size %d returned %d errno = %d\n", 235 gCode, sCode, errno)); 236 if (sCode < 0) { 237 if (errno == ENOSYS) { // Linux* OS only 238 // We shouldn't get here 239 KA_TRACE(30, ("__kmp_affinity_determine_capable: " 240 "inconsistent OS call behavior: errno == ENOSYS for mask " 241 "size %d\n", 242 size)); 243 if (__kmp_affinity_verbose || 244 (__kmp_affinity_warnings && 245 (__kmp_affinity_type != affinity_none) && 246 (__kmp_affinity_type != affinity_default) && 247 (__kmp_affinity_type != affinity_disabled))) { 248 int error = errno; 249 kmp_msg_t err_code = KMP_ERR(error); 250 __kmp_msg(kmp_ms_warning, KMP_MSG(SetAffSysCallNotSupported, env_var), 251 err_code, __kmp_msg_null); 252 if (__kmp_generate_warnings == kmp_warnings_off) { 253 __kmp_str_free(&err_code.str); 254 } 255 } 256 KMP_AFFINITY_DISABLE(); 257 KMP_INTERNAL_FREE(buf); 258 return; 259 } 260 if (errno == EFAULT) { 261 KMP_AFFINITY_ENABLE(gCode); 262 KA_TRACE(10, ("__kmp_affinity_determine_capable: " 263 "affinity supported (mask size %d)\n", 264 (int)__kmp_affin_mask_size)); 265 KMP_INTERNAL_FREE(buf); 266 return; 267 } 268 } 269 } 270 // save uncaught error code 271 // int error = errno; 272 KMP_INTERNAL_FREE(buf); 273 // restore uncaught error code, will be printed at the next KMP_WARNING below 274 // errno = error; 275 276 // Affinity is not supported 277 KMP_AFFINITY_DISABLE(); 278 KA_TRACE(10, ("__kmp_affinity_determine_capable: " 279 "cannot determine mask size - affinity not supported\n")); 280 if (__kmp_affinity_verbose || 281 (__kmp_affinity_warnings && (__kmp_affinity_type != affinity_none) && 282 (__kmp_affinity_type != affinity_default) && 283 (__kmp_affinity_type != affinity_disabled))) { 284 KMP_WARNING(AffCantGetMaskSize, env_var); 285 } 286 } 287 288 #endif // KMP_OS_LINUX && KMP_AFFINITY_SUPPORTED 289 290 #if KMP_USE_FUTEX 291 292 int __kmp_futex_determine_capable() { 293 int loc = 0; 294 int rc = syscall(__NR_futex, &loc, FUTEX_WAKE, 1, NULL, NULL, 0); 295 int retval = (rc == 0) || (errno != ENOSYS); 296 297 KA_TRACE(10, 298 ("__kmp_futex_determine_capable: rc = %d errno = %d\n", rc, errno)); 299 KA_TRACE(10, ("__kmp_futex_determine_capable: futex syscall%s supported\n", 300 retval ? "" : " not")); 301 302 return retval; 303 } 304 305 #endif // KMP_USE_FUTEX 306 307 #if (KMP_ARCH_X86 || KMP_ARCH_X86_64) && (!KMP_ASM_INTRINS) 308 /* Only 32-bit "add-exchange" instruction on IA-32 architecture causes us to 309 use compare_and_store for these routines */ 310 311 kmp_int8 __kmp_test_then_or8(volatile kmp_int8 *p, kmp_int8 d) { 312 kmp_int8 old_value, new_value; 313 314 old_value = TCR_1(*p); 315 new_value = old_value | d; 316 317 while (!KMP_COMPARE_AND_STORE_REL8(p, old_value, new_value)) { 318 KMP_CPU_PAUSE(); 319 old_value = TCR_1(*p); 320 new_value = old_value | d; 321 } 322 return old_value; 323 } 324 325 kmp_int8 __kmp_test_then_and8(volatile kmp_int8 *p, kmp_int8 d) { 326 kmp_int8 old_value, new_value; 327 328 old_value = TCR_1(*p); 329 new_value = old_value & d; 330 331 while (!KMP_COMPARE_AND_STORE_REL8(p, old_value, new_value)) { 332 KMP_CPU_PAUSE(); 333 old_value = TCR_1(*p); 334 new_value = old_value & d; 335 } 336 return old_value; 337 } 338 339 kmp_uint32 __kmp_test_then_or32(volatile kmp_uint32 *p, kmp_uint32 d) { 340 kmp_uint32 old_value, new_value; 341 342 old_value = TCR_4(*p); 343 new_value = old_value | d; 344 345 while (!KMP_COMPARE_AND_STORE_REL32(p, old_value, new_value)) { 346 KMP_CPU_PAUSE(); 347 old_value = TCR_4(*p); 348 new_value = old_value | d; 349 } 350 return old_value; 351 } 352 353 kmp_uint32 __kmp_test_then_and32(volatile kmp_uint32 *p, kmp_uint32 d) { 354 kmp_uint32 old_value, new_value; 355 356 old_value = TCR_4(*p); 357 new_value = old_value & d; 358 359 while (!KMP_COMPARE_AND_STORE_REL32(p, old_value, new_value)) { 360 KMP_CPU_PAUSE(); 361 old_value = TCR_4(*p); 362 new_value = old_value & d; 363 } 364 return old_value; 365 } 366 367 #if KMP_ARCH_X86 368 kmp_int8 __kmp_test_then_add8(volatile kmp_int8 *p, kmp_int8 d) { 369 kmp_int8 old_value, new_value; 370 371 old_value = TCR_1(*p); 372 new_value = old_value + d; 373 374 while (!KMP_COMPARE_AND_STORE_REL8(p, old_value, new_value)) { 375 KMP_CPU_PAUSE(); 376 old_value = TCR_1(*p); 377 new_value = old_value + d; 378 } 379 return old_value; 380 } 381 382 kmp_int64 __kmp_test_then_add64(volatile kmp_int64 *p, kmp_int64 d) { 383 kmp_int64 old_value, new_value; 384 385 old_value = TCR_8(*p); 386 new_value = old_value + d; 387 388 while (!KMP_COMPARE_AND_STORE_REL64(p, old_value, new_value)) { 389 KMP_CPU_PAUSE(); 390 old_value = TCR_8(*p); 391 new_value = old_value + d; 392 } 393 return old_value; 394 } 395 #endif /* KMP_ARCH_X86 */ 396 397 kmp_uint64 __kmp_test_then_or64(volatile kmp_uint64 *p, kmp_uint64 d) { 398 kmp_uint64 old_value, new_value; 399 400 old_value = TCR_8(*p); 401 new_value = old_value | d; 402 while (!KMP_COMPARE_AND_STORE_REL64(p, old_value, new_value)) { 403 KMP_CPU_PAUSE(); 404 old_value = TCR_8(*p); 405 new_value = old_value | d; 406 } 407 return old_value; 408 } 409 410 kmp_uint64 __kmp_test_then_and64(volatile kmp_uint64 *p, kmp_uint64 d) { 411 kmp_uint64 old_value, new_value; 412 413 old_value = TCR_8(*p); 414 new_value = old_value & d; 415 while (!KMP_COMPARE_AND_STORE_REL64(p, old_value, new_value)) { 416 KMP_CPU_PAUSE(); 417 old_value = TCR_8(*p); 418 new_value = old_value & d; 419 } 420 return old_value; 421 } 422 423 #endif /* (KMP_ARCH_X86 || KMP_ARCH_X86_64) && (! KMP_ASM_INTRINS) */ 424 425 void __kmp_terminate_thread(int gtid) { 426 int status; 427 kmp_info_t *th = __kmp_threads[gtid]; 428 429 if (!th) 430 return; 431 432 #ifdef KMP_CANCEL_THREADS 433 KA_TRACE(10, ("__kmp_terminate_thread: kill (%d)\n", gtid)); 434 status = pthread_cancel(th->th.th_info.ds.ds_thread); 435 if (status != 0 && status != ESRCH) { 436 __kmp_fatal(KMP_MSG(CantTerminateWorkerThread), KMP_ERR(status), 437 __kmp_msg_null); 438 } 439 #endif 440 KMP_YIELD(TRUE); 441 } // 442 443 /* Set thread stack info according to values returned by pthread_getattr_np(). 444 If values are unreasonable, assume call failed and use incremental stack 445 refinement method instead. Returns TRUE if the stack parameters could be 446 determined exactly, FALSE if incremental refinement is necessary. */ 447 static kmp_int32 __kmp_set_stack_info(int gtid, kmp_info_t *th) { 448 int stack_data; 449 #if KMP_OS_LINUX || KMP_OS_DRAGONFLY || KMP_OS_FREEBSD || KMP_OS_NETBSD || \ 450 KMP_OS_HURD 451 pthread_attr_t attr; 452 int status; 453 size_t size = 0; 454 void *addr = 0; 455 456 /* Always do incremental stack refinement for ubermaster threads since the 457 initial thread stack range can be reduced by sibling thread creation so 458 pthread_attr_getstack may cause thread gtid aliasing */ 459 if (!KMP_UBER_GTID(gtid)) { 460 461 /* Fetch the real thread attributes */ 462 status = pthread_attr_init(&attr); 463 KMP_CHECK_SYSFAIL("pthread_attr_init", status); 464 #if KMP_OS_DRAGONFLY || KMP_OS_FREEBSD || KMP_OS_NETBSD 465 status = pthread_attr_get_np(pthread_self(), &attr); 466 KMP_CHECK_SYSFAIL("pthread_attr_get_np", status); 467 #else 468 status = pthread_getattr_np(pthread_self(), &attr); 469 KMP_CHECK_SYSFAIL("pthread_getattr_np", status); 470 #endif 471 status = pthread_attr_getstack(&attr, &addr, &size); 472 KMP_CHECK_SYSFAIL("pthread_attr_getstack", status); 473 KA_TRACE(60, 474 ("__kmp_set_stack_info: T#%d pthread_attr_getstack returned size:" 475 " %lu, low addr: %p\n", 476 gtid, size, addr)); 477 status = pthread_attr_destroy(&attr); 478 KMP_CHECK_SYSFAIL("pthread_attr_destroy", status); 479 } 480 481 if (size != 0 && addr != 0) { // was stack parameter determination successful? 482 /* Store the correct base and size */ 483 TCW_PTR(th->th.th_info.ds.ds_stackbase, (((char *)addr) + size)); 484 TCW_PTR(th->th.th_info.ds.ds_stacksize, size); 485 TCW_4(th->th.th_info.ds.ds_stackgrow, FALSE); 486 return TRUE; 487 } 488 #endif /* KMP_OS_LINUX || KMP_OS_DRAGONFLY || KMP_OS_FREEBSD || KMP_OS_NETBSD || 489 KMP_OS_HURD */ 490 /* Use incremental refinement starting from initial conservative estimate */ 491 TCW_PTR(th->th.th_info.ds.ds_stacksize, 0); 492 TCW_PTR(th->th.th_info.ds.ds_stackbase, &stack_data); 493 TCW_4(th->th.th_info.ds.ds_stackgrow, TRUE); 494 return FALSE; 495 } 496 497 static void *__kmp_launch_worker(void *thr) { 498 int status, old_type, old_state; 499 #ifdef KMP_BLOCK_SIGNALS 500 sigset_t new_set, old_set; 501 #endif /* KMP_BLOCK_SIGNALS */ 502 void *exit_val; 503 #if KMP_OS_LINUX || KMP_OS_DRAGONFLY || KMP_OS_FREEBSD || KMP_OS_NETBSD || \ 504 KMP_OS_OPENBSD || KMP_OS_HURD 505 void *volatile padding = 0; 506 #endif 507 int gtid; 508 509 gtid = ((kmp_info_t *)thr)->th.th_info.ds.ds_gtid; 510 __kmp_gtid_set_specific(gtid); 511 #ifdef KMP_TDATA_GTID 512 __kmp_gtid = gtid; 513 #endif 514 #if KMP_STATS_ENABLED 515 // set thread local index to point to thread-specific stats 516 __kmp_stats_thread_ptr = ((kmp_info_t *)thr)->th.th_stats; 517 __kmp_stats_thread_ptr->startLife(); 518 KMP_SET_THREAD_STATE(IDLE); 519 KMP_INIT_PARTITIONED_TIMERS(OMP_idle); 520 #endif 521 522 #if USE_ITT_BUILD 523 __kmp_itt_thread_name(gtid); 524 #endif /* USE_ITT_BUILD */ 525 526 #if KMP_AFFINITY_SUPPORTED 527 __kmp_affinity_set_init_mask(gtid, FALSE); 528 #endif 529 530 #ifdef KMP_CANCEL_THREADS 531 status = pthread_setcanceltype(PTHREAD_CANCEL_ASYNCHRONOUS, &old_type); 532 KMP_CHECK_SYSFAIL("pthread_setcanceltype", status); 533 // josh todo: isn't PTHREAD_CANCEL_ENABLE default for newly-created threads? 534 status = pthread_setcancelstate(PTHREAD_CANCEL_ENABLE, &old_state); 535 KMP_CHECK_SYSFAIL("pthread_setcancelstate", status); 536 #endif 537 538 #if KMP_ARCH_X86 || KMP_ARCH_X86_64 539 // Set FP control regs to be a copy of the parallel initialization thread's. 540 __kmp_clear_x87_fpu_status_word(); 541 __kmp_load_x87_fpu_control_word(&__kmp_init_x87_fpu_control_word); 542 __kmp_load_mxcsr(&__kmp_init_mxcsr); 543 #endif /* KMP_ARCH_X86 || KMP_ARCH_X86_64 */ 544 545 #ifdef KMP_BLOCK_SIGNALS 546 status = sigfillset(&new_set); 547 KMP_CHECK_SYSFAIL_ERRNO("sigfillset", status); 548 status = pthread_sigmask(SIG_BLOCK, &new_set, &old_set); 549 KMP_CHECK_SYSFAIL("pthread_sigmask", status); 550 #endif /* KMP_BLOCK_SIGNALS */ 551 552 #if KMP_OS_LINUX || KMP_OS_DRAGONFLY || KMP_OS_FREEBSD || KMP_OS_NETBSD || \ 553 KMP_OS_OPENBSD 554 if (__kmp_stkoffset > 0 && gtid > 0) { 555 padding = KMP_ALLOCA(gtid * __kmp_stkoffset); 556 } 557 #endif 558 559 KMP_MB(); 560 __kmp_set_stack_info(gtid, (kmp_info_t *)thr); 561 562 __kmp_check_stack_overlap((kmp_info_t *)thr); 563 564 exit_val = __kmp_launch_thread((kmp_info_t *)thr); 565 566 #ifdef KMP_BLOCK_SIGNALS 567 status = pthread_sigmask(SIG_SETMASK, &old_set, NULL); 568 KMP_CHECK_SYSFAIL("pthread_sigmask", status); 569 #endif /* KMP_BLOCK_SIGNALS */ 570 571 return exit_val; 572 } 573 574 #if KMP_USE_MONITOR 575 /* The monitor thread controls all of the threads in the complex */ 576 577 static void *__kmp_launch_monitor(void *thr) { 578 int status, old_type, old_state; 579 #ifdef KMP_BLOCK_SIGNALS 580 sigset_t new_set; 581 #endif /* KMP_BLOCK_SIGNALS */ 582 struct timespec interval; 583 584 KMP_MB(); /* Flush all pending memory write invalidates. */ 585 586 KA_TRACE(10, ("__kmp_launch_monitor: #1 launched\n")); 587 588 /* register us as the monitor thread */ 589 __kmp_gtid_set_specific(KMP_GTID_MONITOR); 590 #ifdef KMP_TDATA_GTID 591 __kmp_gtid = KMP_GTID_MONITOR; 592 #endif 593 594 KMP_MB(); 595 596 #if USE_ITT_BUILD 597 // Instruct Intel(R) Threading Tools to ignore monitor thread. 598 __kmp_itt_thread_ignore(); 599 #endif /* USE_ITT_BUILD */ 600 601 __kmp_set_stack_info(((kmp_info_t *)thr)->th.th_info.ds.ds_gtid, 602 (kmp_info_t *)thr); 603 604 __kmp_check_stack_overlap((kmp_info_t *)thr); 605 606 #ifdef KMP_CANCEL_THREADS 607 status = pthread_setcanceltype(PTHREAD_CANCEL_ASYNCHRONOUS, &old_type); 608 KMP_CHECK_SYSFAIL("pthread_setcanceltype", status); 609 // josh todo: isn't PTHREAD_CANCEL_ENABLE default for newly-created threads? 610 status = pthread_setcancelstate(PTHREAD_CANCEL_ENABLE, &old_state); 611 KMP_CHECK_SYSFAIL("pthread_setcancelstate", status); 612 #endif 613 614 #if KMP_REAL_TIME_FIX 615 // This is a potential fix which allows application with real-time scheduling 616 // policy work. However, decision about the fix is not made yet, so it is 617 // disabled by default. 618 { // Are program started with real-time scheduling policy? 619 int sched = sched_getscheduler(0); 620 if (sched == SCHED_FIFO || sched == SCHED_RR) { 621 // Yes, we are a part of real-time application. Try to increase the 622 // priority of the monitor. 623 struct sched_param param; 624 int max_priority = sched_get_priority_max(sched); 625 int rc; 626 KMP_WARNING(RealTimeSchedNotSupported); 627 sched_getparam(0, ¶m); 628 if (param.sched_priority < max_priority) { 629 param.sched_priority += 1; 630 rc = sched_setscheduler(0, sched, ¶m); 631 if (rc != 0) { 632 int error = errno; 633 kmp_msg_t err_code = KMP_ERR(error); 634 __kmp_msg(kmp_ms_warning, KMP_MSG(CantChangeMonitorPriority), 635 err_code, KMP_MSG(MonitorWillStarve), __kmp_msg_null); 636 if (__kmp_generate_warnings == kmp_warnings_off) { 637 __kmp_str_free(&err_code.str); 638 } 639 } 640 } else { 641 // We cannot abort here, because number of CPUs may be enough for all 642 // the threads, including the monitor thread, so application could 643 // potentially work... 644 __kmp_msg(kmp_ms_warning, KMP_MSG(RunningAtMaxPriority), 645 KMP_MSG(MonitorWillStarve), KMP_HNT(RunningAtMaxPriority), 646 __kmp_msg_null); 647 } 648 } 649 // AC: free thread that waits for monitor started 650 TCW_4(__kmp_global.g.g_time.dt.t_value, 0); 651 } 652 #endif // KMP_REAL_TIME_FIX 653 654 KMP_MB(); /* Flush all pending memory write invalidates. */ 655 656 if (__kmp_monitor_wakeups == 1) { 657 interval.tv_sec = 1; 658 interval.tv_nsec = 0; 659 } else { 660 interval.tv_sec = 0; 661 interval.tv_nsec = (KMP_NSEC_PER_SEC / __kmp_monitor_wakeups); 662 } 663 664 KA_TRACE(10, ("__kmp_launch_monitor: #2 monitor\n")); 665 666 while (!TCR_4(__kmp_global.g.g_done)) { 667 struct timespec now; 668 struct timeval tval; 669 670 /* This thread monitors the state of the system */ 671 672 KA_TRACE(15, ("__kmp_launch_monitor: update\n")); 673 674 status = gettimeofday(&tval, NULL); 675 KMP_CHECK_SYSFAIL_ERRNO("gettimeofday", status); 676 TIMEVAL_TO_TIMESPEC(&tval, &now); 677 678 now.tv_sec += interval.tv_sec; 679 now.tv_nsec += interval.tv_nsec; 680 681 if (now.tv_nsec >= KMP_NSEC_PER_SEC) { 682 now.tv_sec += 1; 683 now.tv_nsec -= KMP_NSEC_PER_SEC; 684 } 685 686 status = pthread_mutex_lock(&__kmp_wait_mx.m_mutex); 687 KMP_CHECK_SYSFAIL("pthread_mutex_lock", status); 688 // AC: the monitor should not fall asleep if g_done has been set 689 if (!TCR_4(__kmp_global.g.g_done)) { // check once more under mutex 690 status = pthread_cond_timedwait(&__kmp_wait_cv.c_cond, 691 &__kmp_wait_mx.m_mutex, &now); 692 if (status != 0) { 693 if (status != ETIMEDOUT && status != EINTR) { 694 KMP_SYSFAIL("pthread_cond_timedwait", status); 695 } 696 } 697 } 698 status = pthread_mutex_unlock(&__kmp_wait_mx.m_mutex); 699 KMP_CHECK_SYSFAIL("pthread_mutex_unlock", status); 700 701 TCW_4(__kmp_global.g.g_time.dt.t_value, 702 TCR_4(__kmp_global.g.g_time.dt.t_value) + 1); 703 704 KMP_MB(); /* Flush all pending memory write invalidates. */ 705 } 706 707 KA_TRACE(10, ("__kmp_launch_monitor: #3 cleanup\n")); 708 709 #ifdef KMP_BLOCK_SIGNALS 710 status = sigfillset(&new_set); 711 KMP_CHECK_SYSFAIL_ERRNO("sigfillset", status); 712 status = pthread_sigmask(SIG_UNBLOCK, &new_set, NULL); 713 KMP_CHECK_SYSFAIL("pthread_sigmask", status); 714 #endif /* KMP_BLOCK_SIGNALS */ 715 716 KA_TRACE(10, ("__kmp_launch_monitor: #4 finished\n")); 717 718 if (__kmp_global.g.g_abort != 0) { 719 /* now we need to terminate the worker threads */ 720 /* the value of t_abort is the signal we caught */ 721 722 int gtid; 723 724 KA_TRACE(10, ("__kmp_launch_monitor: #5 terminate sig=%d\n", 725 __kmp_global.g.g_abort)); 726 727 /* terminate the OpenMP worker threads */ 728 /* TODO this is not valid for sibling threads!! 729 * the uber master might not be 0 anymore.. */ 730 for (gtid = 1; gtid < __kmp_threads_capacity; ++gtid) 731 __kmp_terminate_thread(gtid); 732 733 __kmp_cleanup(); 734 735 KA_TRACE(10, ("__kmp_launch_monitor: #6 raise sig=%d\n", 736 __kmp_global.g.g_abort)); 737 738 if (__kmp_global.g.g_abort > 0) 739 raise(__kmp_global.g.g_abort); 740 } 741 742 KA_TRACE(10, ("__kmp_launch_monitor: #7 exit\n")); 743 744 return thr; 745 } 746 #endif // KMP_USE_MONITOR 747 748 void __kmp_create_worker(int gtid, kmp_info_t *th, size_t stack_size) { 749 pthread_t handle; 750 pthread_attr_t thread_attr; 751 int status; 752 753 th->th.th_info.ds.ds_gtid = gtid; 754 755 #if KMP_STATS_ENABLED 756 // sets up worker thread stats 757 __kmp_acquire_tas_lock(&__kmp_stats_lock, gtid); 758 759 // th->th.th_stats is used to transfer thread-specific stats-pointer to 760 // __kmp_launch_worker. So when thread is created (goes into 761 // __kmp_launch_worker) it will set its thread local pointer to 762 // th->th.th_stats 763 if (!KMP_UBER_GTID(gtid)) { 764 th->th.th_stats = __kmp_stats_list->push_back(gtid); 765 } else { 766 // For root threads, __kmp_stats_thread_ptr is set in __kmp_register_root(), 767 // so set the th->th.th_stats field to it. 768 th->th.th_stats = __kmp_stats_thread_ptr; 769 } 770 __kmp_release_tas_lock(&__kmp_stats_lock, gtid); 771 772 #endif // KMP_STATS_ENABLED 773 774 if (KMP_UBER_GTID(gtid)) { 775 KA_TRACE(10, ("__kmp_create_worker: uber thread (%d)\n", gtid)); 776 th->th.th_info.ds.ds_thread = pthread_self(); 777 __kmp_set_stack_info(gtid, th); 778 __kmp_check_stack_overlap(th); 779 return; 780 } 781 782 KA_TRACE(10, ("__kmp_create_worker: try to create thread (%d)\n", gtid)); 783 784 KMP_MB(); /* Flush all pending memory write invalidates. */ 785 786 #ifdef KMP_THREAD_ATTR 787 status = pthread_attr_init(&thread_attr); 788 if (status != 0) { 789 __kmp_fatal(KMP_MSG(CantInitThreadAttrs), KMP_ERR(status), __kmp_msg_null); 790 } 791 status = pthread_attr_setdetachstate(&thread_attr, PTHREAD_CREATE_JOINABLE); 792 if (status != 0) { 793 __kmp_fatal(KMP_MSG(CantSetWorkerState), KMP_ERR(status), __kmp_msg_null); 794 } 795 796 /* Set stack size for this thread now. 797 The multiple of 2 is there because on some machines, requesting an unusual 798 stacksize causes the thread to have an offset before the dummy alloca() 799 takes place to create the offset. Since we want the user to have a 800 sufficient stacksize AND support a stack offset, we alloca() twice the 801 offset so that the upcoming alloca() does not eliminate any premade offset, 802 and also gives the user the stack space they requested for all threads */ 803 stack_size += gtid * __kmp_stkoffset * 2; 804 805 KA_TRACE(10, ("__kmp_create_worker: T#%d, default stacksize = %lu bytes, " 806 "__kmp_stksize = %lu bytes, final stacksize = %lu bytes\n", 807 gtid, KMP_DEFAULT_STKSIZE, __kmp_stksize, stack_size)); 808 809 #ifdef _POSIX_THREAD_ATTR_STACKSIZE 810 status = pthread_attr_setstacksize(&thread_attr, stack_size); 811 #ifdef KMP_BACKUP_STKSIZE 812 if (status != 0) { 813 if (!__kmp_env_stksize) { 814 stack_size = KMP_BACKUP_STKSIZE + gtid * __kmp_stkoffset; 815 __kmp_stksize = KMP_BACKUP_STKSIZE; 816 KA_TRACE(10, ("__kmp_create_worker: T#%d, default stacksize = %lu bytes, " 817 "__kmp_stksize = %lu bytes, (backup) final stacksize = %lu " 818 "bytes\n", 819 gtid, KMP_DEFAULT_STKSIZE, __kmp_stksize, stack_size)); 820 status = pthread_attr_setstacksize(&thread_attr, stack_size); 821 } 822 } 823 #endif /* KMP_BACKUP_STKSIZE */ 824 if (status != 0) { 825 __kmp_fatal(KMP_MSG(CantSetWorkerStackSize, stack_size), KMP_ERR(status), 826 KMP_HNT(ChangeWorkerStackSize), __kmp_msg_null); 827 } 828 #endif /* _POSIX_THREAD_ATTR_STACKSIZE */ 829 830 #endif /* KMP_THREAD_ATTR */ 831 832 status = 833 pthread_create(&handle, &thread_attr, __kmp_launch_worker, (void *)th); 834 if (status != 0 || !handle) { // ??? Why do we check handle?? 835 #ifdef _POSIX_THREAD_ATTR_STACKSIZE 836 if (status == EINVAL) { 837 __kmp_fatal(KMP_MSG(CantSetWorkerStackSize, stack_size), KMP_ERR(status), 838 KMP_HNT(IncreaseWorkerStackSize), __kmp_msg_null); 839 } 840 if (status == ENOMEM) { 841 __kmp_fatal(KMP_MSG(CantSetWorkerStackSize, stack_size), KMP_ERR(status), 842 KMP_HNT(DecreaseWorkerStackSize), __kmp_msg_null); 843 } 844 #endif /* _POSIX_THREAD_ATTR_STACKSIZE */ 845 if (status == EAGAIN) { 846 __kmp_fatal(KMP_MSG(NoResourcesForWorkerThread), KMP_ERR(status), 847 KMP_HNT(Decrease_NUM_THREADS), __kmp_msg_null); 848 } 849 KMP_SYSFAIL("pthread_create", status); 850 } 851 852 th->th.th_info.ds.ds_thread = handle; 853 854 #ifdef KMP_THREAD_ATTR 855 status = pthread_attr_destroy(&thread_attr); 856 if (status) { 857 kmp_msg_t err_code = KMP_ERR(status); 858 __kmp_msg(kmp_ms_warning, KMP_MSG(CantDestroyThreadAttrs), err_code, 859 __kmp_msg_null); 860 if (__kmp_generate_warnings == kmp_warnings_off) { 861 __kmp_str_free(&err_code.str); 862 } 863 } 864 #endif /* KMP_THREAD_ATTR */ 865 866 KMP_MB(); /* Flush all pending memory write invalidates. */ 867 868 KA_TRACE(10, ("__kmp_create_worker: done creating thread (%d)\n", gtid)); 869 870 } // __kmp_create_worker 871 872 #if KMP_USE_MONITOR 873 void __kmp_create_monitor(kmp_info_t *th) { 874 pthread_t handle; 875 pthread_attr_t thread_attr; 876 size_t size; 877 int status; 878 int auto_adj_size = FALSE; 879 880 if (__kmp_dflt_blocktime == KMP_MAX_BLOCKTIME) { 881 // We don't need monitor thread in case of MAX_BLOCKTIME 882 KA_TRACE(10, ("__kmp_create_monitor: skipping monitor thread because of " 883 "MAX blocktime\n")); 884 th->th.th_info.ds.ds_tid = 0; // this makes reap_monitor no-op 885 th->th.th_info.ds.ds_gtid = 0; 886 return; 887 } 888 KA_TRACE(10, ("__kmp_create_monitor: try to create monitor\n")); 889 890 KMP_MB(); /* Flush all pending memory write invalidates. */ 891 892 th->th.th_info.ds.ds_tid = KMP_GTID_MONITOR; 893 th->th.th_info.ds.ds_gtid = KMP_GTID_MONITOR; 894 #if KMP_REAL_TIME_FIX 895 TCW_4(__kmp_global.g.g_time.dt.t_value, 896 -1); // Will use it for synchronization a bit later. 897 #else 898 TCW_4(__kmp_global.g.g_time.dt.t_value, 0); 899 #endif // KMP_REAL_TIME_FIX 900 901 #ifdef KMP_THREAD_ATTR 902 if (__kmp_monitor_stksize == 0) { 903 __kmp_monitor_stksize = KMP_DEFAULT_MONITOR_STKSIZE; 904 auto_adj_size = TRUE; 905 } 906 status = pthread_attr_init(&thread_attr); 907 if (status != 0) { 908 __kmp_fatal(KMP_MSG(CantInitThreadAttrs), KMP_ERR(status), __kmp_msg_null); 909 } 910 status = pthread_attr_setdetachstate(&thread_attr, PTHREAD_CREATE_JOINABLE); 911 if (status != 0) { 912 __kmp_fatal(KMP_MSG(CantSetMonitorState), KMP_ERR(status), __kmp_msg_null); 913 } 914 915 #ifdef _POSIX_THREAD_ATTR_STACKSIZE 916 status = pthread_attr_getstacksize(&thread_attr, &size); 917 KMP_CHECK_SYSFAIL("pthread_attr_getstacksize", status); 918 #else 919 size = __kmp_sys_min_stksize; 920 #endif /* _POSIX_THREAD_ATTR_STACKSIZE */ 921 #endif /* KMP_THREAD_ATTR */ 922 923 if (__kmp_monitor_stksize == 0) { 924 __kmp_monitor_stksize = KMP_DEFAULT_MONITOR_STKSIZE; 925 } 926 if (__kmp_monitor_stksize < __kmp_sys_min_stksize) { 927 __kmp_monitor_stksize = __kmp_sys_min_stksize; 928 } 929 930 KA_TRACE(10, ("__kmp_create_monitor: default stacksize = %lu bytes," 931 "requested stacksize = %lu bytes\n", 932 size, __kmp_monitor_stksize)); 933 934 retry: 935 936 /* Set stack size for this thread now. */ 937 #ifdef _POSIX_THREAD_ATTR_STACKSIZE 938 KA_TRACE(10, ("__kmp_create_monitor: setting stacksize = %lu bytes,", 939 __kmp_monitor_stksize)); 940 status = pthread_attr_setstacksize(&thread_attr, __kmp_monitor_stksize); 941 if (status != 0) { 942 if (auto_adj_size) { 943 __kmp_monitor_stksize *= 2; 944 goto retry; 945 } 946 kmp_msg_t err_code = KMP_ERR(status); 947 __kmp_msg(kmp_ms_warning, // should this be fatal? BB 948 KMP_MSG(CantSetMonitorStackSize, (long int)__kmp_monitor_stksize), 949 err_code, KMP_HNT(ChangeMonitorStackSize), __kmp_msg_null); 950 if (__kmp_generate_warnings == kmp_warnings_off) { 951 __kmp_str_free(&err_code.str); 952 } 953 } 954 #endif /* _POSIX_THREAD_ATTR_STACKSIZE */ 955 956 status = 957 pthread_create(&handle, &thread_attr, __kmp_launch_monitor, (void *)th); 958 959 if (status != 0) { 960 #ifdef _POSIX_THREAD_ATTR_STACKSIZE 961 if (status == EINVAL) { 962 if (auto_adj_size && (__kmp_monitor_stksize < (size_t)0x40000000)) { 963 __kmp_monitor_stksize *= 2; 964 goto retry; 965 } 966 __kmp_fatal(KMP_MSG(CantSetMonitorStackSize, __kmp_monitor_stksize), 967 KMP_ERR(status), KMP_HNT(IncreaseMonitorStackSize), 968 __kmp_msg_null); 969 } 970 if (status == ENOMEM) { 971 __kmp_fatal(KMP_MSG(CantSetMonitorStackSize, __kmp_monitor_stksize), 972 KMP_ERR(status), KMP_HNT(DecreaseMonitorStackSize), 973 __kmp_msg_null); 974 } 975 #endif /* _POSIX_THREAD_ATTR_STACKSIZE */ 976 if (status == EAGAIN) { 977 __kmp_fatal(KMP_MSG(NoResourcesForMonitorThread), KMP_ERR(status), 978 KMP_HNT(DecreaseNumberOfThreadsInUse), __kmp_msg_null); 979 } 980 KMP_SYSFAIL("pthread_create", status); 981 } 982 983 th->th.th_info.ds.ds_thread = handle; 984 985 #if KMP_REAL_TIME_FIX 986 // Wait for the monitor thread is really started and set its *priority*. 987 KMP_DEBUG_ASSERT(sizeof(kmp_uint32) == 988 sizeof(__kmp_global.g.g_time.dt.t_value)); 989 __kmp_wait_4((kmp_uint32 volatile *)&__kmp_global.g.g_time.dt.t_value, -1, 990 &__kmp_neq_4, NULL); 991 #endif // KMP_REAL_TIME_FIX 992 993 #ifdef KMP_THREAD_ATTR 994 status = pthread_attr_destroy(&thread_attr); 995 if (status != 0) { 996 kmp_msg_t err_code = KMP_ERR(status); 997 __kmp_msg(kmp_ms_warning, KMP_MSG(CantDestroyThreadAttrs), err_code, 998 __kmp_msg_null); 999 if (__kmp_generate_warnings == kmp_warnings_off) { 1000 __kmp_str_free(&err_code.str); 1001 } 1002 } 1003 #endif 1004 1005 KMP_MB(); /* Flush all pending memory write invalidates. */ 1006 1007 KA_TRACE(10, ("__kmp_create_monitor: monitor created %#.8lx\n", 1008 th->th.th_info.ds.ds_thread)); 1009 1010 } // __kmp_create_monitor 1011 #endif // KMP_USE_MONITOR 1012 1013 void __kmp_exit_thread(int exit_status) { 1014 pthread_exit((void *)(intptr_t)exit_status); 1015 } // __kmp_exit_thread 1016 1017 #if KMP_USE_MONITOR 1018 void __kmp_resume_monitor(); 1019 1020 void __kmp_reap_monitor(kmp_info_t *th) { 1021 int status; 1022 void *exit_val; 1023 1024 KA_TRACE(10, ("__kmp_reap_monitor: try to reap monitor thread with handle" 1025 " %#.8lx\n", 1026 th->th.th_info.ds.ds_thread)); 1027 1028 // If monitor has been created, its tid and gtid should be KMP_GTID_MONITOR. 1029 // If both tid and gtid are 0, it means the monitor did not ever start. 1030 // If both tid and gtid are KMP_GTID_DNE, the monitor has been shut down. 1031 KMP_DEBUG_ASSERT(th->th.th_info.ds.ds_tid == th->th.th_info.ds.ds_gtid); 1032 if (th->th.th_info.ds.ds_gtid != KMP_GTID_MONITOR) { 1033 KA_TRACE(10, ("__kmp_reap_monitor: monitor did not start, returning\n")); 1034 return; 1035 } 1036 1037 KMP_MB(); /* Flush all pending memory write invalidates. */ 1038 1039 /* First, check to see whether the monitor thread exists to wake it up. This 1040 is to avoid performance problem when the monitor sleeps during 1041 blocktime-size interval */ 1042 1043 status = pthread_kill(th->th.th_info.ds.ds_thread, 0); 1044 if (status != ESRCH) { 1045 __kmp_resume_monitor(); // Wake up the monitor thread 1046 } 1047 KA_TRACE(10, ("__kmp_reap_monitor: try to join with monitor\n")); 1048 status = pthread_join(th->th.th_info.ds.ds_thread, &exit_val); 1049 if (exit_val != th) { 1050 __kmp_fatal(KMP_MSG(ReapMonitorError), KMP_ERR(status), __kmp_msg_null); 1051 } 1052 1053 th->th.th_info.ds.ds_tid = KMP_GTID_DNE; 1054 th->th.th_info.ds.ds_gtid = KMP_GTID_DNE; 1055 1056 KA_TRACE(10, ("__kmp_reap_monitor: done reaping monitor thread with handle" 1057 " %#.8lx\n", 1058 th->th.th_info.ds.ds_thread)); 1059 1060 KMP_MB(); /* Flush all pending memory write invalidates. */ 1061 } 1062 #endif // KMP_USE_MONITOR 1063 1064 void __kmp_reap_worker(kmp_info_t *th) { 1065 int status; 1066 void *exit_val; 1067 1068 KMP_MB(); /* Flush all pending memory write invalidates. */ 1069 1070 KA_TRACE( 1071 10, ("__kmp_reap_worker: try to reap T#%d\n", th->th.th_info.ds.ds_gtid)); 1072 1073 status = pthread_join(th->th.th_info.ds.ds_thread, &exit_val); 1074 #ifdef KMP_DEBUG 1075 /* Don't expose these to the user until we understand when they trigger */ 1076 if (status != 0) { 1077 __kmp_fatal(KMP_MSG(ReapWorkerError), KMP_ERR(status), __kmp_msg_null); 1078 } 1079 if (exit_val != th) { 1080 KA_TRACE(10, ("__kmp_reap_worker: worker T#%d did not reap properly, " 1081 "exit_val = %p\n", 1082 th->th.th_info.ds.ds_gtid, exit_val)); 1083 } 1084 #endif /* KMP_DEBUG */ 1085 1086 KA_TRACE(10, ("__kmp_reap_worker: done reaping T#%d\n", 1087 th->th.th_info.ds.ds_gtid)); 1088 1089 KMP_MB(); /* Flush all pending memory write invalidates. */ 1090 } 1091 1092 #if KMP_HANDLE_SIGNALS 1093 1094 static void __kmp_null_handler(int signo) { 1095 // Do nothing, for doing SIG_IGN-type actions. 1096 } // __kmp_null_handler 1097 1098 static void __kmp_team_handler(int signo) { 1099 if (__kmp_global.g.g_abort == 0) { 1100 /* Stage 1 signal handler, let's shut down all of the threads */ 1101 #ifdef KMP_DEBUG 1102 __kmp_debug_printf("__kmp_team_handler: caught signal = %d\n", signo); 1103 #endif 1104 switch (signo) { 1105 case SIGHUP: 1106 case SIGINT: 1107 case SIGQUIT: 1108 case SIGILL: 1109 case SIGABRT: 1110 case SIGFPE: 1111 case SIGBUS: 1112 case SIGSEGV: 1113 #ifdef SIGSYS 1114 case SIGSYS: 1115 #endif 1116 case SIGTERM: 1117 if (__kmp_debug_buf) { 1118 __kmp_dump_debug_buffer(); 1119 } 1120 KMP_MB(); // Flush all pending memory write invalidates. 1121 TCW_4(__kmp_global.g.g_abort, signo); 1122 KMP_MB(); // Flush all pending memory write invalidates. 1123 TCW_4(__kmp_global.g.g_done, TRUE); 1124 KMP_MB(); // Flush all pending memory write invalidates. 1125 break; 1126 default: 1127 #ifdef KMP_DEBUG 1128 __kmp_debug_printf("__kmp_team_handler: unknown signal type"); 1129 #endif 1130 break; 1131 } 1132 } 1133 } // __kmp_team_handler 1134 1135 static void __kmp_sigaction(int signum, const struct sigaction *act, 1136 struct sigaction *oldact) { 1137 int rc = sigaction(signum, act, oldact); 1138 KMP_CHECK_SYSFAIL_ERRNO("sigaction", rc); 1139 } 1140 1141 static void __kmp_install_one_handler(int sig, sig_func_t handler_func, 1142 int parallel_init) { 1143 KMP_MB(); // Flush all pending memory write invalidates. 1144 KB_TRACE(60, 1145 ("__kmp_install_one_handler( %d, ..., %d )\n", sig, parallel_init)); 1146 if (parallel_init) { 1147 struct sigaction new_action; 1148 struct sigaction old_action; 1149 new_action.sa_handler = handler_func; 1150 new_action.sa_flags = 0; 1151 sigfillset(&new_action.sa_mask); 1152 __kmp_sigaction(sig, &new_action, &old_action); 1153 if (old_action.sa_handler == __kmp_sighldrs[sig].sa_handler) { 1154 sigaddset(&__kmp_sigset, sig); 1155 } else { 1156 // Restore/keep user's handler if one previously installed. 1157 __kmp_sigaction(sig, &old_action, NULL); 1158 } 1159 } else { 1160 // Save initial/system signal handlers to see if user handlers installed. 1161 __kmp_sigaction(sig, NULL, &__kmp_sighldrs[sig]); 1162 } 1163 KMP_MB(); // Flush all pending memory write invalidates. 1164 } // __kmp_install_one_handler 1165 1166 static void __kmp_remove_one_handler(int sig) { 1167 KB_TRACE(60, ("__kmp_remove_one_handler( %d )\n", sig)); 1168 if (sigismember(&__kmp_sigset, sig)) { 1169 struct sigaction old; 1170 KMP_MB(); // Flush all pending memory write invalidates. 1171 __kmp_sigaction(sig, &__kmp_sighldrs[sig], &old); 1172 if ((old.sa_handler != __kmp_team_handler) && 1173 (old.sa_handler != __kmp_null_handler)) { 1174 // Restore the users signal handler. 1175 KB_TRACE(10, ("__kmp_remove_one_handler: oops, not our handler, " 1176 "restoring: sig=%d\n", 1177 sig)); 1178 __kmp_sigaction(sig, &old, NULL); 1179 } 1180 sigdelset(&__kmp_sigset, sig); 1181 KMP_MB(); // Flush all pending memory write invalidates. 1182 } 1183 } // __kmp_remove_one_handler 1184 1185 void __kmp_install_signals(int parallel_init) { 1186 KB_TRACE(10, ("__kmp_install_signals( %d )\n", parallel_init)); 1187 if (__kmp_handle_signals || !parallel_init) { 1188 // If ! parallel_init, we do not install handlers, just save original 1189 // handlers. Let us do it even __handle_signals is 0. 1190 sigemptyset(&__kmp_sigset); 1191 __kmp_install_one_handler(SIGHUP, __kmp_team_handler, parallel_init); 1192 __kmp_install_one_handler(SIGINT, __kmp_team_handler, parallel_init); 1193 __kmp_install_one_handler(SIGQUIT, __kmp_team_handler, parallel_init); 1194 __kmp_install_one_handler(SIGILL, __kmp_team_handler, parallel_init); 1195 __kmp_install_one_handler(SIGABRT, __kmp_team_handler, parallel_init); 1196 __kmp_install_one_handler(SIGFPE, __kmp_team_handler, parallel_init); 1197 __kmp_install_one_handler(SIGBUS, __kmp_team_handler, parallel_init); 1198 __kmp_install_one_handler(SIGSEGV, __kmp_team_handler, parallel_init); 1199 #ifdef SIGSYS 1200 __kmp_install_one_handler(SIGSYS, __kmp_team_handler, parallel_init); 1201 #endif // SIGSYS 1202 __kmp_install_one_handler(SIGTERM, __kmp_team_handler, parallel_init); 1203 #ifdef SIGPIPE 1204 __kmp_install_one_handler(SIGPIPE, __kmp_team_handler, parallel_init); 1205 #endif // SIGPIPE 1206 } 1207 } // __kmp_install_signals 1208 1209 void __kmp_remove_signals(void) { 1210 int sig; 1211 KB_TRACE(10, ("__kmp_remove_signals()\n")); 1212 for (sig = 1; sig < NSIG; ++sig) { 1213 __kmp_remove_one_handler(sig); 1214 } 1215 } // __kmp_remove_signals 1216 1217 #endif // KMP_HANDLE_SIGNALS 1218 1219 void __kmp_enable(int new_state) { 1220 #ifdef KMP_CANCEL_THREADS 1221 int status, old_state; 1222 status = pthread_setcancelstate(new_state, &old_state); 1223 KMP_CHECK_SYSFAIL("pthread_setcancelstate", status); 1224 KMP_DEBUG_ASSERT(old_state == PTHREAD_CANCEL_DISABLE); 1225 #endif 1226 } 1227 1228 void __kmp_disable(int *old_state) { 1229 #ifdef KMP_CANCEL_THREADS 1230 int status; 1231 status = pthread_setcancelstate(PTHREAD_CANCEL_DISABLE, old_state); 1232 KMP_CHECK_SYSFAIL("pthread_setcancelstate", status); 1233 #endif 1234 } 1235 1236 static void __kmp_atfork_prepare(void) { 1237 __kmp_acquire_bootstrap_lock(&__kmp_initz_lock); 1238 __kmp_acquire_bootstrap_lock(&__kmp_forkjoin_lock); 1239 } 1240 1241 static void __kmp_atfork_parent(void) { 1242 __kmp_release_bootstrap_lock(&__kmp_initz_lock); 1243 __kmp_release_bootstrap_lock(&__kmp_forkjoin_lock); 1244 } 1245 1246 /* Reset the library so execution in the child starts "all over again" with 1247 clean data structures in initial states. Don't worry about freeing memory 1248 allocated by parent, just abandon it to be safe. */ 1249 static void __kmp_atfork_child(void) { 1250 __kmp_release_bootstrap_lock(&__kmp_forkjoin_lock); 1251 /* TODO make sure this is done right for nested/sibling */ 1252 // ATT: Memory leaks are here? TODO: Check it and fix. 1253 /* KMP_ASSERT( 0 ); */ 1254 1255 ++__kmp_fork_count; 1256 1257 #if KMP_AFFINITY_SUPPORTED 1258 #if KMP_OS_LINUX 1259 // reset the affinity in the child to the initial thread 1260 // affinity in the parent 1261 kmp_set_thread_affinity_mask_initial(); 1262 #endif 1263 // Set default not to bind threads tightly in the child (we’re expecting 1264 // over-subscription after the fork and this can improve things for 1265 // scripting languages that use OpenMP inside process-parallel code). 1266 __kmp_affinity_type = affinity_none; 1267 if (__kmp_nested_proc_bind.bind_types != NULL) { 1268 __kmp_nested_proc_bind.bind_types[0] = proc_bind_false; 1269 } 1270 #endif // KMP_AFFINITY_SUPPORTED 1271 1272 __kmp_init_runtime = FALSE; 1273 #if KMP_USE_MONITOR 1274 __kmp_init_monitor = 0; 1275 #endif 1276 __kmp_init_parallel = FALSE; 1277 __kmp_init_middle = FALSE; 1278 __kmp_init_serial = FALSE; 1279 TCW_4(__kmp_init_gtid, FALSE); 1280 __kmp_init_common = FALSE; 1281 1282 TCW_4(__kmp_init_user_locks, FALSE); 1283 #if !KMP_USE_DYNAMIC_LOCK 1284 __kmp_user_lock_table.used = 1; 1285 __kmp_user_lock_table.allocated = 0; 1286 __kmp_user_lock_table.table = NULL; 1287 __kmp_lock_blocks = NULL; 1288 #endif 1289 1290 __kmp_all_nth = 0; 1291 TCW_4(__kmp_nth, 0); 1292 1293 __kmp_thread_pool = NULL; 1294 __kmp_thread_pool_insert_pt = NULL; 1295 __kmp_team_pool = NULL; 1296 1297 /* Must actually zero all the *cache arguments passed to __kmpc_threadprivate 1298 here so threadprivate doesn't use stale data */ 1299 KA_TRACE(10, ("__kmp_atfork_child: checking cache address list %p\n", 1300 __kmp_threadpriv_cache_list)); 1301 1302 while (__kmp_threadpriv_cache_list != NULL) { 1303 1304 if (*__kmp_threadpriv_cache_list->addr != NULL) { 1305 KC_TRACE(50, ("__kmp_atfork_child: zeroing cache at address %p\n", 1306 &(*__kmp_threadpriv_cache_list->addr))); 1307 1308 *__kmp_threadpriv_cache_list->addr = NULL; 1309 } 1310 __kmp_threadpriv_cache_list = __kmp_threadpriv_cache_list->next; 1311 } 1312 1313 __kmp_init_runtime = FALSE; 1314 1315 /* reset statically initialized locks */ 1316 __kmp_init_bootstrap_lock(&__kmp_initz_lock); 1317 __kmp_init_bootstrap_lock(&__kmp_stdio_lock); 1318 __kmp_init_bootstrap_lock(&__kmp_console_lock); 1319 __kmp_init_bootstrap_lock(&__kmp_task_team_lock); 1320 1321 #if USE_ITT_BUILD 1322 __kmp_itt_reset(); // reset ITT's global state 1323 #endif /* USE_ITT_BUILD */ 1324 1325 /* This is necessary to make sure no stale data is left around */ 1326 /* AC: customers complain that we use unsafe routines in the atfork 1327 handler. Mathworks: dlsym() is unsafe. We call dlsym and dlopen 1328 in dynamic_link when check the presence of shared tbbmalloc library. 1329 Suggestion is to make the library initialization lazier, similar 1330 to what done for __kmpc_begin(). */ 1331 // TODO: synchronize all static initializations with regular library 1332 // startup; look at kmp_global.cpp and etc. 1333 //__kmp_internal_begin (); 1334 } 1335 1336 void __kmp_register_atfork(void) { 1337 if (__kmp_need_register_atfork) { 1338 int status = pthread_atfork(__kmp_atfork_prepare, __kmp_atfork_parent, 1339 __kmp_atfork_child); 1340 KMP_CHECK_SYSFAIL("pthread_atfork", status); 1341 __kmp_need_register_atfork = FALSE; 1342 } 1343 } 1344 1345 void __kmp_suspend_initialize(void) { 1346 int status; 1347 status = pthread_mutexattr_init(&__kmp_suspend_mutex_attr); 1348 KMP_CHECK_SYSFAIL("pthread_mutexattr_init", status); 1349 status = pthread_condattr_init(&__kmp_suspend_cond_attr); 1350 KMP_CHECK_SYSFAIL("pthread_condattr_init", status); 1351 } 1352 1353 void __kmp_suspend_initialize_thread(kmp_info_t *th) { 1354 ANNOTATE_HAPPENS_AFTER(&th->th.th_suspend_init_count); 1355 int old_value = KMP_ATOMIC_LD_RLX(&th->th.th_suspend_init_count); 1356 int new_value = __kmp_fork_count + 1; 1357 // Return if already initialized 1358 if (old_value == new_value) 1359 return; 1360 // Wait, then return if being initialized 1361 if (old_value == -1 || 1362 !__kmp_atomic_compare_store(&th->th.th_suspend_init_count, old_value, 1363 -1)) { 1364 while (KMP_ATOMIC_LD_ACQ(&th->th.th_suspend_init_count) != new_value) { 1365 KMP_CPU_PAUSE(); 1366 } 1367 } else { 1368 // Claim to be the initializer and do initializations 1369 int status; 1370 status = pthread_cond_init(&th->th.th_suspend_cv.c_cond, 1371 &__kmp_suspend_cond_attr); 1372 KMP_CHECK_SYSFAIL("pthread_cond_init", status); 1373 status = pthread_mutex_init(&th->th.th_suspend_mx.m_mutex, 1374 &__kmp_suspend_mutex_attr); 1375 KMP_CHECK_SYSFAIL("pthread_mutex_init", status); 1376 KMP_ATOMIC_ST_REL(&th->th.th_suspend_init_count, new_value); 1377 ANNOTATE_HAPPENS_BEFORE(&th->th.th_suspend_init_count); 1378 } 1379 } 1380 1381 void __kmp_suspend_uninitialize_thread(kmp_info_t *th) { 1382 if (KMP_ATOMIC_LD_ACQ(&th->th.th_suspend_init_count) > __kmp_fork_count) { 1383 /* this means we have initialize the suspension pthread objects for this 1384 thread in this instance of the process */ 1385 int status; 1386 1387 status = pthread_cond_destroy(&th->th.th_suspend_cv.c_cond); 1388 if (status != 0 && status != EBUSY) { 1389 KMP_SYSFAIL("pthread_cond_destroy", status); 1390 } 1391 status = pthread_mutex_destroy(&th->th.th_suspend_mx.m_mutex); 1392 if (status != 0 && status != EBUSY) { 1393 KMP_SYSFAIL("pthread_mutex_destroy", status); 1394 } 1395 --th->th.th_suspend_init_count; 1396 KMP_DEBUG_ASSERT(KMP_ATOMIC_LD_RLX(&th->th.th_suspend_init_count) == 1397 __kmp_fork_count); 1398 } 1399 } 1400 1401 // return true if lock obtained, false otherwise 1402 int __kmp_try_suspend_mx(kmp_info_t *th) { 1403 return (pthread_mutex_trylock(&th->th.th_suspend_mx.m_mutex) == 0); 1404 } 1405 1406 void __kmp_lock_suspend_mx(kmp_info_t *th) { 1407 int status = pthread_mutex_lock(&th->th.th_suspend_mx.m_mutex); 1408 KMP_CHECK_SYSFAIL("pthread_mutex_lock", status); 1409 } 1410 1411 void __kmp_unlock_suspend_mx(kmp_info_t *th) { 1412 int status = pthread_mutex_unlock(&th->th.th_suspend_mx.m_mutex); 1413 KMP_CHECK_SYSFAIL("pthread_mutex_unlock", status); 1414 } 1415 1416 /* This routine puts the calling thread to sleep after setting the 1417 sleep bit for the indicated flag variable to true. */ 1418 template <class C> 1419 static inline void __kmp_suspend_template(int th_gtid, C *flag) { 1420 KMP_TIME_DEVELOPER_PARTITIONED_BLOCK(USER_suspend); 1421 kmp_info_t *th = __kmp_threads[th_gtid]; 1422 int status; 1423 typename C::flag_t old_spin; 1424 1425 KF_TRACE(30, ("__kmp_suspend_template: T#%d enter for flag = %p\n", th_gtid, 1426 flag->get())); 1427 1428 __kmp_suspend_initialize_thread(th); 1429 1430 status = pthread_mutex_lock(&th->th.th_suspend_mx.m_mutex); 1431 KMP_CHECK_SYSFAIL("pthread_mutex_lock", status); 1432 1433 KF_TRACE(10, ("__kmp_suspend_template: T#%d setting sleep bit for spin(%p)\n", 1434 th_gtid, flag->get())); 1435 1436 /* TODO: shouldn't this use release semantics to ensure that 1437 __kmp_suspend_initialize_thread gets called first? */ 1438 old_spin = flag->set_sleeping(); 1439 if (__kmp_dflt_blocktime == KMP_MAX_BLOCKTIME && 1440 __kmp_pause_status != kmp_soft_paused) { 1441 flag->unset_sleeping(); 1442 status = pthread_mutex_unlock(&th->th.th_suspend_mx.m_mutex); 1443 KMP_CHECK_SYSFAIL("pthread_mutex_unlock", status); 1444 return; 1445 } 1446 KF_TRACE(5, ("__kmp_suspend_template: T#%d set sleep bit for spin(%p)==%x," 1447 " was %x\n", 1448 th_gtid, flag->get(), flag->load(), old_spin)); 1449 1450 if (flag->done_check_val(old_spin)) { 1451 old_spin = flag->unset_sleeping(); 1452 KF_TRACE(5, ("__kmp_suspend_template: T#%d false alarm, reset sleep bit " 1453 "for spin(%p)\n", 1454 th_gtid, flag->get())); 1455 } else { 1456 /* Encapsulate in a loop as the documentation states that this may 1457 "with low probability" return when the condition variable has 1458 not been signaled or broadcast */ 1459 int deactivated = FALSE; 1460 TCW_PTR(th->th.th_sleep_loc, (void *)flag); 1461 1462 while (flag->is_sleeping()) { 1463 #ifdef DEBUG_SUSPEND 1464 char buffer[128]; 1465 __kmp_suspend_count++; 1466 __kmp_print_cond(buffer, &th->th.th_suspend_cv); 1467 __kmp_printf("__kmp_suspend_template: suspending T#%d: %s\n", th_gtid, 1468 buffer); 1469 #endif 1470 // Mark the thread as no longer active (only in the first iteration of the 1471 // loop). 1472 if (!deactivated) { 1473 th->th.th_active = FALSE; 1474 if (th->th.th_active_in_pool) { 1475 th->th.th_active_in_pool = FALSE; 1476 KMP_ATOMIC_DEC(&__kmp_thread_pool_active_nth); 1477 KMP_DEBUG_ASSERT(TCR_4(__kmp_thread_pool_active_nth) >= 0); 1478 } 1479 deactivated = TRUE; 1480 } 1481 1482 #if USE_SUSPEND_TIMEOUT 1483 struct timespec now; 1484 struct timeval tval; 1485 int msecs; 1486 1487 status = gettimeofday(&tval, NULL); 1488 KMP_CHECK_SYSFAIL_ERRNO("gettimeofday", status); 1489 TIMEVAL_TO_TIMESPEC(&tval, &now); 1490 1491 msecs = (4 * __kmp_dflt_blocktime) + 200; 1492 now.tv_sec += msecs / 1000; 1493 now.tv_nsec += (msecs % 1000) * 1000; 1494 1495 KF_TRACE(15, ("__kmp_suspend_template: T#%d about to perform " 1496 "pthread_cond_timedwait\n", 1497 th_gtid)); 1498 status = pthread_cond_timedwait(&th->th.th_suspend_cv.c_cond, 1499 &th->th.th_suspend_mx.m_mutex, &now); 1500 #else 1501 KF_TRACE(15, ("__kmp_suspend_template: T#%d about to perform" 1502 " pthread_cond_wait\n", 1503 th_gtid)); 1504 status = pthread_cond_wait(&th->th.th_suspend_cv.c_cond, 1505 &th->th.th_suspend_mx.m_mutex); 1506 #endif 1507 1508 if ((status != 0) && (status != EINTR) && (status != ETIMEDOUT)) { 1509 KMP_SYSFAIL("pthread_cond_wait", status); 1510 } 1511 #ifdef KMP_DEBUG 1512 if (status == ETIMEDOUT) { 1513 if (flag->is_sleeping()) { 1514 KF_TRACE(100, 1515 ("__kmp_suspend_template: T#%d timeout wakeup\n", th_gtid)); 1516 } else { 1517 KF_TRACE(2, ("__kmp_suspend_template: T#%d timeout wakeup, sleep bit " 1518 "not set!\n", 1519 th_gtid)); 1520 } 1521 } else if (flag->is_sleeping()) { 1522 KF_TRACE(100, 1523 ("__kmp_suspend_template: T#%d spurious wakeup\n", th_gtid)); 1524 } 1525 #endif 1526 } // while 1527 1528 // Mark the thread as active again (if it was previous marked as inactive) 1529 if (deactivated) { 1530 th->th.th_active = TRUE; 1531 if (TCR_4(th->th.th_in_pool)) { 1532 KMP_ATOMIC_INC(&__kmp_thread_pool_active_nth); 1533 th->th.th_active_in_pool = TRUE; 1534 } 1535 } 1536 } 1537 #ifdef DEBUG_SUSPEND 1538 { 1539 char buffer[128]; 1540 __kmp_print_cond(buffer, &th->th.th_suspend_cv); 1541 __kmp_printf("__kmp_suspend_template: T#%d has awakened: %s\n", th_gtid, 1542 buffer); 1543 } 1544 #endif 1545 1546 status = pthread_mutex_unlock(&th->th.th_suspend_mx.m_mutex); 1547 KMP_CHECK_SYSFAIL("pthread_mutex_unlock", status); 1548 KF_TRACE(30, ("__kmp_suspend_template: T#%d exit\n", th_gtid)); 1549 } 1550 1551 void __kmp_suspend_32(int th_gtid, kmp_flag_32 *flag) { 1552 __kmp_suspend_template(th_gtid, flag); 1553 } 1554 void __kmp_suspend_64(int th_gtid, kmp_flag_64 *flag) { 1555 __kmp_suspend_template(th_gtid, flag); 1556 } 1557 void __kmp_suspend_oncore(int th_gtid, kmp_flag_oncore *flag) { 1558 __kmp_suspend_template(th_gtid, flag); 1559 } 1560 1561 /* This routine signals the thread specified by target_gtid to wake up 1562 after setting the sleep bit indicated by the flag argument to FALSE. 1563 The target thread must already have called __kmp_suspend_template() */ 1564 template <class C> 1565 static inline void __kmp_resume_template(int target_gtid, C *flag) { 1566 KMP_TIME_DEVELOPER_PARTITIONED_BLOCK(USER_resume); 1567 kmp_info_t *th = __kmp_threads[target_gtid]; 1568 int status; 1569 1570 #ifdef KMP_DEBUG 1571 int gtid = TCR_4(__kmp_init_gtid) ? __kmp_get_gtid() : -1; 1572 #endif 1573 1574 KF_TRACE(30, ("__kmp_resume_template: T#%d wants to wakeup T#%d enter\n", 1575 gtid, target_gtid)); 1576 KMP_DEBUG_ASSERT(gtid != target_gtid); 1577 1578 __kmp_suspend_initialize_thread(th); 1579 1580 status = pthread_mutex_lock(&th->th.th_suspend_mx.m_mutex); 1581 KMP_CHECK_SYSFAIL("pthread_mutex_lock", status); 1582 1583 if (!flag) { // coming from __kmp_null_resume_wrapper 1584 flag = (C *)CCAST(void *, th->th.th_sleep_loc); 1585 } 1586 1587 // First, check if the flag is null or its type has changed. If so, someone 1588 // else woke it up. 1589 if (!flag || flag->get_type() != flag->get_ptr_type()) { // get_ptr_type 1590 // simply shows what 1591 // flag was cast to 1592 KF_TRACE(5, ("__kmp_resume_template: T#%d exiting, thread T#%d already " 1593 "awake: flag(%p)\n", 1594 gtid, target_gtid, NULL)); 1595 status = pthread_mutex_unlock(&th->th.th_suspend_mx.m_mutex); 1596 KMP_CHECK_SYSFAIL("pthread_mutex_unlock", status); 1597 return; 1598 } else { // if multiple threads are sleeping, flag should be internally 1599 // referring to a specific thread here 1600 typename C::flag_t old_spin = flag->unset_sleeping(); 1601 if (!flag->is_sleeping_val(old_spin)) { 1602 KF_TRACE(5, ("__kmp_resume_template: T#%d exiting, thread T#%d already " 1603 "awake: flag(%p): " 1604 "%u => %u\n", 1605 gtid, target_gtid, flag->get(), old_spin, flag->load())); 1606 status = pthread_mutex_unlock(&th->th.th_suspend_mx.m_mutex); 1607 KMP_CHECK_SYSFAIL("pthread_mutex_unlock", status); 1608 return; 1609 } 1610 KF_TRACE(5, ("__kmp_resume_template: T#%d about to wakeup T#%d, reset " 1611 "sleep bit for flag's loc(%p): " 1612 "%u => %u\n", 1613 gtid, target_gtid, flag->get(), old_spin, flag->load())); 1614 } 1615 TCW_PTR(th->th.th_sleep_loc, NULL); 1616 1617 #ifdef DEBUG_SUSPEND 1618 { 1619 char buffer[128]; 1620 __kmp_print_cond(buffer, &th->th.th_suspend_cv); 1621 __kmp_printf("__kmp_resume_template: T#%d resuming T#%d: %s\n", gtid, 1622 target_gtid, buffer); 1623 } 1624 #endif 1625 status = pthread_cond_signal(&th->th.th_suspend_cv.c_cond); 1626 KMP_CHECK_SYSFAIL("pthread_cond_signal", status); 1627 status = pthread_mutex_unlock(&th->th.th_suspend_mx.m_mutex); 1628 KMP_CHECK_SYSFAIL("pthread_mutex_unlock", status); 1629 KF_TRACE(30, ("__kmp_resume_template: T#%d exiting after signaling wake up" 1630 " for T#%d\n", 1631 gtid, target_gtid)); 1632 } 1633 1634 void __kmp_resume_32(int target_gtid, kmp_flag_32 *flag) { 1635 __kmp_resume_template(target_gtid, flag); 1636 } 1637 void __kmp_resume_64(int target_gtid, kmp_flag_64 *flag) { 1638 __kmp_resume_template(target_gtid, flag); 1639 } 1640 void __kmp_resume_oncore(int target_gtid, kmp_flag_oncore *flag) { 1641 __kmp_resume_template(target_gtid, flag); 1642 } 1643 1644 #if KMP_USE_MONITOR 1645 void __kmp_resume_monitor() { 1646 KMP_TIME_DEVELOPER_PARTITIONED_BLOCK(USER_resume); 1647 int status; 1648 #ifdef KMP_DEBUG 1649 int gtid = TCR_4(__kmp_init_gtid) ? __kmp_get_gtid() : -1; 1650 KF_TRACE(30, ("__kmp_resume_monitor: T#%d wants to wakeup T#%d enter\n", gtid, 1651 KMP_GTID_MONITOR)); 1652 KMP_DEBUG_ASSERT(gtid != KMP_GTID_MONITOR); 1653 #endif 1654 status = pthread_mutex_lock(&__kmp_wait_mx.m_mutex); 1655 KMP_CHECK_SYSFAIL("pthread_mutex_lock", status); 1656 #ifdef DEBUG_SUSPEND 1657 { 1658 char buffer[128]; 1659 __kmp_print_cond(buffer, &__kmp_wait_cv.c_cond); 1660 __kmp_printf("__kmp_resume_monitor: T#%d resuming T#%d: %s\n", gtid, 1661 KMP_GTID_MONITOR, buffer); 1662 } 1663 #endif 1664 status = pthread_cond_signal(&__kmp_wait_cv.c_cond); 1665 KMP_CHECK_SYSFAIL("pthread_cond_signal", status); 1666 status = pthread_mutex_unlock(&__kmp_wait_mx.m_mutex); 1667 KMP_CHECK_SYSFAIL("pthread_mutex_unlock", status); 1668 KF_TRACE(30, ("__kmp_resume_monitor: T#%d exiting after signaling wake up" 1669 " for T#%d\n", 1670 gtid, KMP_GTID_MONITOR)); 1671 } 1672 #endif // KMP_USE_MONITOR 1673 1674 void __kmp_yield() { sched_yield(); } 1675 1676 void __kmp_gtid_set_specific(int gtid) { 1677 if (__kmp_init_gtid) { 1678 int status; 1679 status = pthread_setspecific(__kmp_gtid_threadprivate_key, 1680 (void *)(intptr_t)(gtid + 1)); 1681 KMP_CHECK_SYSFAIL("pthread_setspecific", status); 1682 } else { 1683 KA_TRACE(50, ("__kmp_gtid_set_specific: runtime shutdown, returning\n")); 1684 } 1685 } 1686 1687 int __kmp_gtid_get_specific() { 1688 int gtid; 1689 if (!__kmp_init_gtid) { 1690 KA_TRACE(50, ("__kmp_gtid_get_specific: runtime shutdown, returning " 1691 "KMP_GTID_SHUTDOWN\n")); 1692 return KMP_GTID_SHUTDOWN; 1693 } 1694 gtid = (int)(size_t)pthread_getspecific(__kmp_gtid_threadprivate_key); 1695 if (gtid == 0) { 1696 gtid = KMP_GTID_DNE; 1697 } else { 1698 gtid--; 1699 } 1700 KA_TRACE(50, ("__kmp_gtid_get_specific: key:%d gtid:%d\n", 1701 __kmp_gtid_threadprivate_key, gtid)); 1702 return gtid; 1703 } 1704 1705 double __kmp_read_cpu_time(void) { 1706 /*clock_t t;*/ 1707 struct tms buffer; 1708 1709 /*t =*/times(&buffer); 1710 1711 return (buffer.tms_utime + buffer.tms_cutime) / (double)CLOCKS_PER_SEC; 1712 } 1713 1714 int __kmp_read_system_info(struct kmp_sys_info *info) { 1715 int status; 1716 struct rusage r_usage; 1717 1718 memset(info, 0, sizeof(*info)); 1719 1720 status = getrusage(RUSAGE_SELF, &r_usage); 1721 KMP_CHECK_SYSFAIL_ERRNO("getrusage", status); 1722 1723 // The maximum resident set size utilized (in kilobytes) 1724 info->maxrss = r_usage.ru_maxrss; 1725 // The number of page faults serviced without any I/O 1726 info->minflt = r_usage.ru_minflt; 1727 // The number of page faults serviced that required I/O 1728 info->majflt = r_usage.ru_majflt; 1729 // The number of times a process was "swapped" out of memory 1730 info->nswap = r_usage.ru_nswap; 1731 // The number of times the file system had to perform input 1732 info->inblock = r_usage.ru_inblock; 1733 // The number of times the file system had to perform output 1734 info->oublock = r_usage.ru_oublock; 1735 // The number of times a context switch was voluntarily 1736 info->nvcsw = r_usage.ru_nvcsw; 1737 // The number of times a context switch was forced 1738 info->nivcsw = r_usage.ru_nivcsw; 1739 1740 return (status != 0); 1741 } 1742 1743 void __kmp_read_system_time(double *delta) { 1744 double t_ns; 1745 struct timeval tval; 1746 struct timespec stop; 1747 int status; 1748 1749 status = gettimeofday(&tval, NULL); 1750 KMP_CHECK_SYSFAIL_ERRNO("gettimeofday", status); 1751 TIMEVAL_TO_TIMESPEC(&tval, &stop); 1752 t_ns = TS2NS(stop) - TS2NS(__kmp_sys_timer_data.start); 1753 *delta = (t_ns * 1e-9); 1754 } 1755 1756 void __kmp_clear_system_time(void) { 1757 struct timeval tval; 1758 int status; 1759 status = gettimeofday(&tval, NULL); 1760 KMP_CHECK_SYSFAIL_ERRNO("gettimeofday", status); 1761 TIMEVAL_TO_TIMESPEC(&tval, &__kmp_sys_timer_data.start); 1762 } 1763 1764 static int __kmp_get_xproc(void) { 1765 1766 int r = 0; 1767 1768 #if KMP_OS_LINUX || KMP_OS_DRAGONFLY || KMP_OS_FREEBSD || KMP_OS_NETBSD || \ 1769 KMP_OS_OPENBSD || KMP_OS_HURD 1770 1771 r = sysconf(_SC_NPROCESSORS_ONLN); 1772 1773 #elif KMP_OS_DARWIN 1774 1775 // Bug C77011 High "OpenMP Threads and number of active cores". 1776 1777 // Find the number of available CPUs. 1778 kern_return_t rc; 1779 host_basic_info_data_t info; 1780 mach_msg_type_number_t num = HOST_BASIC_INFO_COUNT; 1781 rc = host_info(mach_host_self(), HOST_BASIC_INFO, (host_info_t)&info, &num); 1782 if (rc == 0 && num == HOST_BASIC_INFO_COUNT) { 1783 // Cannot use KA_TRACE() here because this code works before trace support 1784 // is initialized. 1785 r = info.avail_cpus; 1786 } else { 1787 KMP_WARNING(CantGetNumAvailCPU); 1788 KMP_INFORM(AssumedNumCPU); 1789 } 1790 1791 #else 1792 1793 #error "Unknown or unsupported OS." 1794 1795 #endif 1796 1797 return r > 0 ? r : 2; /* guess value of 2 if OS told us 0 */ 1798 1799 } // __kmp_get_xproc 1800 1801 int __kmp_read_from_file(char const *path, char const *format, ...) { 1802 int result; 1803 va_list args; 1804 1805 va_start(args, format); 1806 FILE *f = fopen(path, "rb"); 1807 if (f == NULL) 1808 return 0; 1809 result = vfscanf(f, format, args); 1810 fclose(f); 1811 1812 return result; 1813 } 1814 1815 void __kmp_runtime_initialize(void) { 1816 int status; 1817 pthread_mutexattr_t mutex_attr; 1818 pthread_condattr_t cond_attr; 1819 1820 if (__kmp_init_runtime) { 1821 return; 1822 } 1823 1824 #if (KMP_ARCH_X86 || KMP_ARCH_X86_64) 1825 if (!__kmp_cpuinfo.initialized) { 1826 __kmp_query_cpuid(&__kmp_cpuinfo); 1827 } 1828 #endif /* KMP_ARCH_X86 || KMP_ARCH_X86_64 */ 1829 1830 __kmp_xproc = __kmp_get_xproc(); 1831 1832 #if ! KMP_32_BIT_ARCH 1833 struct rlimit rlim; 1834 // read stack size of calling thread, save it as default for worker threads; 1835 // this should be done before reading environment variables 1836 status = getrlimit(RLIMIT_STACK, &rlim); 1837 if (status == 0) { // success? 1838 __kmp_stksize = rlim.rlim_cur; 1839 __kmp_check_stksize(&__kmp_stksize); // check value and adjust if needed 1840 } 1841 #endif /* KMP_32_BIT_ARCH */ 1842 1843 if (sysconf(_SC_THREADS)) { 1844 1845 /* Query the maximum number of threads */ 1846 __kmp_sys_max_nth = sysconf(_SC_THREAD_THREADS_MAX); 1847 if (__kmp_sys_max_nth == -1) { 1848 /* Unlimited threads for NPTL */ 1849 __kmp_sys_max_nth = INT_MAX; 1850 } else if (__kmp_sys_max_nth <= 1) { 1851 /* Can't tell, just use PTHREAD_THREADS_MAX */ 1852 __kmp_sys_max_nth = KMP_MAX_NTH; 1853 } 1854 1855 /* Query the minimum stack size */ 1856 __kmp_sys_min_stksize = sysconf(_SC_THREAD_STACK_MIN); 1857 if (__kmp_sys_min_stksize <= 1) { 1858 __kmp_sys_min_stksize = KMP_MIN_STKSIZE; 1859 } 1860 } 1861 1862 /* Set up minimum number of threads to switch to TLS gtid */ 1863 __kmp_tls_gtid_min = KMP_TLS_GTID_MIN; 1864 1865 status = pthread_key_create(&__kmp_gtid_threadprivate_key, 1866 __kmp_internal_end_dest); 1867 KMP_CHECK_SYSFAIL("pthread_key_create", status); 1868 status = pthread_mutexattr_init(&mutex_attr); 1869 KMP_CHECK_SYSFAIL("pthread_mutexattr_init", status); 1870 status = pthread_mutex_init(&__kmp_wait_mx.m_mutex, &mutex_attr); 1871 KMP_CHECK_SYSFAIL("pthread_mutex_init", status); 1872 status = pthread_condattr_init(&cond_attr); 1873 KMP_CHECK_SYSFAIL("pthread_condattr_init", status); 1874 status = pthread_cond_init(&__kmp_wait_cv.c_cond, &cond_attr); 1875 KMP_CHECK_SYSFAIL("pthread_cond_init", status); 1876 #if USE_ITT_BUILD 1877 __kmp_itt_initialize(); 1878 #endif /* USE_ITT_BUILD */ 1879 1880 __kmp_init_runtime = TRUE; 1881 } 1882 1883 void __kmp_runtime_destroy(void) { 1884 int status; 1885 1886 if (!__kmp_init_runtime) { 1887 return; // Nothing to do. 1888 } 1889 1890 #if USE_ITT_BUILD 1891 __kmp_itt_destroy(); 1892 #endif /* USE_ITT_BUILD */ 1893 1894 status = pthread_key_delete(__kmp_gtid_threadprivate_key); 1895 KMP_CHECK_SYSFAIL("pthread_key_delete", status); 1896 1897 status = pthread_mutex_destroy(&__kmp_wait_mx.m_mutex); 1898 if (status != 0 && status != EBUSY) { 1899 KMP_SYSFAIL("pthread_mutex_destroy", status); 1900 } 1901 status = pthread_cond_destroy(&__kmp_wait_cv.c_cond); 1902 if (status != 0 && status != EBUSY) { 1903 KMP_SYSFAIL("pthread_cond_destroy", status); 1904 } 1905 #if KMP_AFFINITY_SUPPORTED 1906 __kmp_affinity_uninitialize(); 1907 #endif 1908 1909 __kmp_init_runtime = FALSE; 1910 } 1911 1912 /* Put the thread to sleep for a time period */ 1913 /* NOTE: not currently used anywhere */ 1914 void __kmp_thread_sleep(int millis) { sleep((millis + 500) / 1000); } 1915 1916 /* Calculate the elapsed wall clock time for the user */ 1917 void __kmp_elapsed(double *t) { 1918 int status; 1919 #ifdef FIX_SGI_CLOCK 1920 struct timespec ts; 1921 1922 status = clock_gettime(CLOCK_PROCESS_CPUTIME_ID, &ts); 1923 KMP_CHECK_SYSFAIL_ERRNO("clock_gettime", status); 1924 *t = 1925 (double)ts.tv_nsec * (1.0 / (double)KMP_NSEC_PER_SEC) + (double)ts.tv_sec; 1926 #else 1927 struct timeval tv; 1928 1929 status = gettimeofday(&tv, NULL); 1930 KMP_CHECK_SYSFAIL_ERRNO("gettimeofday", status); 1931 *t = 1932 (double)tv.tv_usec * (1.0 / (double)KMP_USEC_PER_SEC) + (double)tv.tv_sec; 1933 #endif 1934 } 1935 1936 /* Calculate the elapsed wall clock tick for the user */ 1937 void __kmp_elapsed_tick(double *t) { *t = 1 / (double)CLOCKS_PER_SEC; } 1938 1939 /* Return the current time stamp in nsec */ 1940 kmp_uint64 __kmp_now_nsec() { 1941 struct timeval t; 1942 gettimeofday(&t, NULL); 1943 kmp_uint64 nsec = (kmp_uint64)KMP_NSEC_PER_SEC * (kmp_uint64)t.tv_sec + 1944 (kmp_uint64)1000 * (kmp_uint64)t.tv_usec; 1945 return nsec; 1946 } 1947 1948 #if KMP_ARCH_X86 || KMP_ARCH_X86_64 1949 /* Measure clock ticks per millisecond */ 1950 void __kmp_initialize_system_tick() { 1951 kmp_uint64 now, nsec2, diff; 1952 kmp_uint64 delay = 100000; // 50~100 usec on most machines. 1953 kmp_uint64 nsec = __kmp_now_nsec(); 1954 kmp_uint64 goal = __kmp_hardware_timestamp() + delay; 1955 while ((now = __kmp_hardware_timestamp()) < goal) 1956 ; 1957 nsec2 = __kmp_now_nsec(); 1958 diff = nsec2 - nsec; 1959 if (diff > 0) { 1960 kmp_uint64 tpms = (kmp_uint64)(1e6 * (delay + (now - goal)) / diff); 1961 if (tpms > 0) 1962 __kmp_ticks_per_msec = tpms; 1963 } 1964 } 1965 #endif 1966 1967 /* Determine whether the given address is mapped into the current address 1968 space. */ 1969 1970 int __kmp_is_address_mapped(void *addr) { 1971 1972 int found = 0; 1973 int rc; 1974 1975 #if KMP_OS_LINUX || KMP_OS_FREEBSD || KMP_OS_HURD 1976 1977 /* On GNUish OSes, read the /proc/<pid>/maps pseudo-file to get all the address 1978 ranges mapped into the address space. */ 1979 1980 char *name = __kmp_str_format("/proc/%d/maps", getpid()); 1981 FILE *file = NULL; 1982 1983 file = fopen(name, "r"); 1984 KMP_ASSERT(file != NULL); 1985 1986 for (;;) { 1987 1988 void *beginning = NULL; 1989 void *ending = NULL; 1990 char perms[5]; 1991 1992 rc = fscanf(file, "%p-%p %4s %*[^\n]\n", &beginning, &ending, perms); 1993 if (rc == EOF) { 1994 break; 1995 } 1996 KMP_ASSERT(rc == 3 && 1997 KMP_STRLEN(perms) == 4); // Make sure all fields are read. 1998 1999 // Ending address is not included in the region, but beginning is. 2000 if ((addr >= beginning) && (addr < ending)) { 2001 perms[2] = 0; // 3th and 4th character does not matter. 2002 if (strcmp(perms, "rw") == 0) { 2003 // Memory we are looking for should be readable and writable. 2004 found = 1; 2005 } 2006 break; 2007 } 2008 } 2009 2010 // Free resources. 2011 fclose(file); 2012 KMP_INTERNAL_FREE(name); 2013 2014 #elif KMP_OS_DARWIN 2015 2016 /* On OS X*, /proc pseudo filesystem is not available. Try to read memory 2017 using vm interface. */ 2018 2019 int buffer; 2020 vm_size_t count; 2021 rc = vm_read_overwrite( 2022 mach_task_self(), // Task to read memory of. 2023 (vm_address_t)(addr), // Address to read from. 2024 1, // Number of bytes to be read. 2025 (vm_address_t)(&buffer), // Address of buffer to save read bytes in. 2026 &count // Address of var to save number of read bytes in. 2027 ); 2028 if (rc == 0) { 2029 // Memory successfully read. 2030 found = 1; 2031 } 2032 2033 #elif KMP_OS_NETBSD 2034 2035 int mib[5]; 2036 mib[0] = CTL_VM; 2037 mib[1] = VM_PROC; 2038 mib[2] = VM_PROC_MAP; 2039 mib[3] = getpid(); 2040 mib[4] = sizeof(struct kinfo_vmentry); 2041 2042 size_t size; 2043 rc = sysctl(mib, __arraycount(mib), NULL, &size, NULL, 0); 2044 KMP_ASSERT(!rc); 2045 KMP_ASSERT(size); 2046 2047 size = size * 4 / 3; 2048 struct kinfo_vmentry *kiv = (struct kinfo_vmentry *)KMP_INTERNAL_MALLOC(size); 2049 KMP_ASSERT(kiv); 2050 2051 rc = sysctl(mib, __arraycount(mib), kiv, &size, NULL, 0); 2052 KMP_ASSERT(!rc); 2053 KMP_ASSERT(size); 2054 2055 for (size_t i = 0; i < size; i++) { 2056 if (kiv[i].kve_start >= (uint64_t)addr && 2057 kiv[i].kve_end <= (uint64_t)addr) { 2058 found = 1; 2059 break; 2060 } 2061 } 2062 KMP_INTERNAL_FREE(kiv); 2063 #elif KMP_OS_DRAGONFLY || KMP_OS_OPENBSD 2064 2065 // FIXME(DragonFly, OpenBSD): Implement this 2066 found = 1; 2067 2068 #else 2069 2070 #error "Unknown or unsupported OS" 2071 2072 #endif 2073 2074 return found; 2075 2076 } // __kmp_is_address_mapped 2077 2078 #ifdef USE_LOAD_BALANCE 2079 2080 #if KMP_OS_DARWIN || KMP_OS_NETBSD 2081 2082 // The function returns the rounded value of the system load average 2083 // during given time interval which depends on the value of 2084 // __kmp_load_balance_interval variable (default is 60 sec, other values 2085 // may be 300 sec or 900 sec). 2086 // It returns -1 in case of error. 2087 int __kmp_get_load_balance(int max) { 2088 double averages[3]; 2089 int ret_avg = 0; 2090 2091 int res = getloadavg(averages, 3); 2092 2093 // Check __kmp_load_balance_interval to determine which of averages to use. 2094 // getloadavg() may return the number of samples less than requested that is 2095 // less than 3. 2096 if (__kmp_load_balance_interval < 180 && (res >= 1)) { 2097 ret_avg = averages[0]; // 1 min 2098 } else if ((__kmp_load_balance_interval >= 180 && 2099 __kmp_load_balance_interval < 600) && 2100 (res >= 2)) { 2101 ret_avg = averages[1]; // 5 min 2102 } else if ((__kmp_load_balance_interval >= 600) && (res == 3)) { 2103 ret_avg = averages[2]; // 15 min 2104 } else { // Error occurred 2105 return -1; 2106 } 2107 2108 return ret_avg; 2109 } 2110 2111 #else // Linux* OS 2112 2113 // The fuction returns number of running (not sleeping) threads, or -1 in case 2114 // of error. Error could be reported if Linux* OS kernel too old (without 2115 // "/proc" support). Counting running threads stops if max running threads 2116 // encountered. 2117 int __kmp_get_load_balance(int max) { 2118 static int permanent_error = 0; 2119 static int glb_running_threads = 0; // Saved count of the running threads for 2120 // the thread balance algortihm 2121 static double glb_call_time = 0; /* Thread balance algorithm call time */ 2122 2123 int running_threads = 0; // Number of running threads in the system. 2124 2125 DIR *proc_dir = NULL; // Handle of "/proc/" directory. 2126 struct dirent *proc_entry = NULL; 2127 2128 kmp_str_buf_t task_path; // "/proc/<pid>/task/<tid>/" path. 2129 DIR *task_dir = NULL; // Handle of "/proc/<pid>/task/<tid>/" directory. 2130 struct dirent *task_entry = NULL; 2131 int task_path_fixed_len; 2132 2133 kmp_str_buf_t stat_path; // "/proc/<pid>/task/<tid>/stat" path. 2134 int stat_file = -1; 2135 int stat_path_fixed_len; 2136 2137 int total_processes = 0; // Total number of processes in system. 2138 int total_threads = 0; // Total number of threads in system. 2139 2140 double call_time = 0.0; 2141 2142 __kmp_str_buf_init(&task_path); 2143 __kmp_str_buf_init(&stat_path); 2144 2145 __kmp_elapsed(&call_time); 2146 2147 if (glb_call_time && 2148 (call_time - glb_call_time < __kmp_load_balance_interval)) { 2149 running_threads = glb_running_threads; 2150 goto finish; 2151 } 2152 2153 glb_call_time = call_time; 2154 2155 // Do not spend time on scanning "/proc/" if we have a permanent error. 2156 if (permanent_error) { 2157 running_threads = -1; 2158 goto finish; 2159 } 2160 2161 if (max <= 0) { 2162 max = INT_MAX; 2163 } 2164 2165 // Open "/proc/" directory. 2166 proc_dir = opendir("/proc"); 2167 if (proc_dir == NULL) { 2168 // Cannot open "/prroc/". Probably the kernel does not support it. Return an 2169 // error now and in subsequent calls. 2170 running_threads = -1; 2171 permanent_error = 1; 2172 goto finish; 2173 } 2174 2175 // Initialize fixed part of task_path. This part will not change. 2176 __kmp_str_buf_cat(&task_path, "/proc/", 6); 2177 task_path_fixed_len = task_path.used; // Remember number of used characters. 2178 2179 proc_entry = readdir(proc_dir); 2180 while (proc_entry != NULL) { 2181 // Proc entry is a directory and name starts with a digit. Assume it is a 2182 // process' directory. 2183 if (proc_entry->d_type == DT_DIR && isdigit(proc_entry->d_name[0])) { 2184 2185 ++total_processes; 2186 // Make sure init process is the very first in "/proc", so we can replace 2187 // strcmp( proc_entry->d_name, "1" ) == 0 with simpler total_processes == 2188 // 1. We are going to check that total_processes == 1 => d_name == "1" is 2189 // true (where "=>" is implication). Since C++ does not have => operator, 2190 // let us replace it with its equivalent: a => b == ! a || b. 2191 KMP_DEBUG_ASSERT(total_processes != 1 || 2192 strcmp(proc_entry->d_name, "1") == 0); 2193 2194 // Construct task_path. 2195 task_path.used = task_path_fixed_len; // Reset task_path to "/proc/". 2196 __kmp_str_buf_cat(&task_path, proc_entry->d_name, 2197 KMP_STRLEN(proc_entry->d_name)); 2198 __kmp_str_buf_cat(&task_path, "/task", 5); 2199 2200 task_dir = opendir(task_path.str); 2201 if (task_dir == NULL) { 2202 // Process can finish between reading "/proc/" directory entry and 2203 // opening process' "task/" directory. So, in general case we should not 2204 // complain, but have to skip this process and read the next one. But on 2205 // systems with no "task/" support we will spend lot of time to scan 2206 // "/proc/" tree again and again without any benefit. "init" process 2207 // (its pid is 1) should exist always, so, if we cannot open 2208 // "/proc/1/task/" directory, it means "task/" is not supported by 2209 // kernel. Report an error now and in the future. 2210 if (strcmp(proc_entry->d_name, "1") == 0) { 2211 running_threads = -1; 2212 permanent_error = 1; 2213 goto finish; 2214 } 2215 } else { 2216 // Construct fixed part of stat file path. 2217 __kmp_str_buf_clear(&stat_path); 2218 __kmp_str_buf_cat(&stat_path, task_path.str, task_path.used); 2219 __kmp_str_buf_cat(&stat_path, "/", 1); 2220 stat_path_fixed_len = stat_path.used; 2221 2222 task_entry = readdir(task_dir); 2223 while (task_entry != NULL) { 2224 // It is a directory and name starts with a digit. 2225 if (proc_entry->d_type == DT_DIR && isdigit(task_entry->d_name[0])) { 2226 ++total_threads; 2227 2228 // Consruct complete stat file path. Easiest way would be: 2229 // __kmp_str_buf_print( & stat_path, "%s/%s/stat", task_path.str, 2230 // task_entry->d_name ); 2231 // but seriae of __kmp_str_buf_cat works a bit faster. 2232 stat_path.used = 2233 stat_path_fixed_len; // Reset stat path to its fixed part. 2234 __kmp_str_buf_cat(&stat_path, task_entry->d_name, 2235 KMP_STRLEN(task_entry->d_name)); 2236 __kmp_str_buf_cat(&stat_path, "/stat", 5); 2237 2238 // Note: Low-level API (open/read/close) is used. High-level API 2239 // (fopen/fclose) works ~ 30 % slower. 2240 stat_file = open(stat_path.str, O_RDONLY); 2241 if (stat_file == -1) { 2242 // We cannot report an error because task (thread) can terminate 2243 // just before reading this file. 2244 } else { 2245 /* Content of "stat" file looks like: 2246 24285 (program) S ... 2247 2248 It is a single line (if program name does not include funny 2249 symbols). First number is a thread id, then name of executable 2250 file name in paretheses, then state of the thread. We need just 2251 thread state. 2252 2253 Good news: Length of program name is 15 characters max. Longer 2254 names are truncated. 2255 2256 Thus, we need rather short buffer: 15 chars for program name + 2257 2 parenthesis, + 3 spaces + ~7 digits of pid = 37. 2258 2259 Bad news: Program name may contain special symbols like space, 2260 closing parenthesis, or even new line. This makes parsing 2261 "stat" file not 100 % reliable. In case of fanny program names 2262 parsing may fail (report incorrect thread state). 2263 2264 Parsing "status" file looks more promissing (due to different 2265 file structure and escaping special symbols) but reading and 2266 parsing of "status" file works slower. 2267 -- ln 2268 */ 2269 char buffer[65]; 2270 int len; 2271 len = read(stat_file, buffer, sizeof(buffer) - 1); 2272 if (len >= 0) { 2273 buffer[len] = 0; 2274 // Using scanf: 2275 // sscanf( buffer, "%*d (%*s) %c ", & state ); 2276 // looks very nice, but searching for a closing parenthesis 2277 // works a bit faster. 2278 char *close_parent = strstr(buffer, ") "); 2279 if (close_parent != NULL) { 2280 char state = *(close_parent + 2); 2281 if (state == 'R') { 2282 ++running_threads; 2283 if (running_threads >= max) { 2284 goto finish; 2285 } 2286 } 2287 } 2288 } 2289 close(stat_file); 2290 stat_file = -1; 2291 } 2292 } 2293 task_entry = readdir(task_dir); 2294 } 2295 closedir(task_dir); 2296 task_dir = NULL; 2297 } 2298 } 2299 proc_entry = readdir(proc_dir); 2300 } 2301 2302 // There _might_ be a timing hole where the thread executing this 2303 // code get skipped in the load balance, and running_threads is 0. 2304 // Assert in the debug builds only!!! 2305 KMP_DEBUG_ASSERT(running_threads > 0); 2306 if (running_threads <= 0) { 2307 running_threads = 1; 2308 } 2309 2310 finish: // Clean up and exit. 2311 if (proc_dir != NULL) { 2312 closedir(proc_dir); 2313 } 2314 __kmp_str_buf_free(&task_path); 2315 if (task_dir != NULL) { 2316 closedir(task_dir); 2317 } 2318 __kmp_str_buf_free(&stat_path); 2319 if (stat_file != -1) { 2320 close(stat_file); 2321 } 2322 2323 glb_running_threads = running_threads; 2324 2325 return running_threads; 2326 2327 } // __kmp_get_load_balance 2328 2329 #endif // KMP_OS_DARWIN 2330 2331 #endif // USE_LOAD_BALANCE 2332 2333 #if !(KMP_ARCH_X86 || KMP_ARCH_X86_64 || KMP_MIC || \ 2334 ((KMP_OS_LINUX || KMP_OS_DARWIN) && KMP_ARCH_AARCH64) || KMP_ARCH_PPC64) 2335 2336 // we really only need the case with 1 argument, because CLANG always build 2337 // a struct of pointers to shared variables referenced in the outlined function 2338 int __kmp_invoke_microtask(microtask_t pkfn, int gtid, int tid, int argc, 2339 void *p_argv[] 2340 #if OMPT_SUPPORT 2341 , 2342 void **exit_frame_ptr 2343 #endif 2344 ) { 2345 #if OMPT_SUPPORT 2346 *exit_frame_ptr = OMPT_GET_FRAME_ADDRESS(0); 2347 #endif 2348 2349 switch (argc) { 2350 default: 2351 fprintf(stderr, "Too many args to microtask: %d!\n", argc); 2352 fflush(stderr); 2353 exit(-1); 2354 case 0: 2355 (*pkfn)(>id, &tid); 2356 break; 2357 case 1: 2358 (*pkfn)(>id, &tid, p_argv[0]); 2359 break; 2360 case 2: 2361 (*pkfn)(>id, &tid, p_argv[0], p_argv[1]); 2362 break; 2363 case 3: 2364 (*pkfn)(>id, &tid, p_argv[0], p_argv[1], p_argv[2]); 2365 break; 2366 case 4: 2367 (*pkfn)(>id, &tid, p_argv[0], p_argv[1], p_argv[2], p_argv[3]); 2368 break; 2369 case 5: 2370 (*pkfn)(>id, &tid, p_argv[0], p_argv[1], p_argv[2], p_argv[3], p_argv[4]); 2371 break; 2372 case 6: 2373 (*pkfn)(>id, &tid, p_argv[0], p_argv[1], p_argv[2], p_argv[3], p_argv[4], 2374 p_argv[5]); 2375 break; 2376 case 7: 2377 (*pkfn)(>id, &tid, p_argv[0], p_argv[1], p_argv[2], p_argv[3], p_argv[4], 2378 p_argv[5], p_argv[6]); 2379 break; 2380 case 8: 2381 (*pkfn)(>id, &tid, p_argv[0], p_argv[1], p_argv[2], p_argv[3], p_argv[4], 2382 p_argv[5], p_argv[6], p_argv[7]); 2383 break; 2384 case 9: 2385 (*pkfn)(>id, &tid, p_argv[0], p_argv[1], p_argv[2], p_argv[3], p_argv[4], 2386 p_argv[5], p_argv[6], p_argv[7], p_argv[8]); 2387 break; 2388 case 10: 2389 (*pkfn)(>id, &tid, p_argv[0], p_argv[1], p_argv[2], p_argv[3], p_argv[4], 2390 p_argv[5], p_argv[6], p_argv[7], p_argv[8], p_argv[9]); 2391 break; 2392 case 11: 2393 (*pkfn)(>id, &tid, p_argv[0], p_argv[1], p_argv[2], p_argv[3], p_argv[4], 2394 p_argv[5], p_argv[6], p_argv[7], p_argv[8], p_argv[9], p_argv[10]); 2395 break; 2396 case 12: 2397 (*pkfn)(>id, &tid, p_argv[0], p_argv[1], p_argv[2], p_argv[3], p_argv[4], 2398 p_argv[5], p_argv[6], p_argv[7], p_argv[8], p_argv[9], p_argv[10], 2399 p_argv[11]); 2400 break; 2401 case 13: 2402 (*pkfn)(>id, &tid, p_argv[0], p_argv[1], p_argv[2], p_argv[3], p_argv[4], 2403 p_argv[5], p_argv[6], p_argv[7], p_argv[8], p_argv[9], p_argv[10], 2404 p_argv[11], p_argv[12]); 2405 break; 2406 case 14: 2407 (*pkfn)(>id, &tid, p_argv[0], p_argv[1], p_argv[2], p_argv[3], p_argv[4], 2408 p_argv[5], p_argv[6], p_argv[7], p_argv[8], p_argv[9], p_argv[10], 2409 p_argv[11], p_argv[12], p_argv[13]); 2410 break; 2411 case 15: 2412 (*pkfn)(>id, &tid, p_argv[0], p_argv[1], p_argv[2], p_argv[3], p_argv[4], 2413 p_argv[5], p_argv[6], p_argv[7], p_argv[8], p_argv[9], p_argv[10], 2414 p_argv[11], p_argv[12], p_argv[13], p_argv[14]); 2415 break; 2416 } 2417 2418 #if OMPT_SUPPORT 2419 *exit_frame_ptr = 0; 2420 #endif 2421 2422 return 1; 2423 } 2424 2425 #endif 2426 2427 // end of file // 2428