1 /* 2 * kmp_wait_release.h -- Wait/Release implementation 3 */ 4 5 //===----------------------------------------------------------------------===// 6 // 7 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 8 // See https://llvm.org/LICENSE.txt for license information. 9 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 10 // 11 //===----------------------------------------------------------------------===// 12 13 #ifndef KMP_WAIT_RELEASE_H 14 #define KMP_WAIT_RELEASE_H 15 16 #include "kmp.h" 17 #include "kmp_itt.h" 18 #include "kmp_stats.h" 19 #if OMPT_SUPPORT 20 #include "ompt-specific.h" 21 #endif 22 23 /*! 24 @defgroup WAIT_RELEASE Wait/Release operations 25 26 The definitions and functions here implement the lowest level thread 27 synchronizations of suspending a thread and awaking it. They are used to build 28 higher level operations such as barriers and fork/join. 29 */ 30 31 /*! 32 @ingroup WAIT_RELEASE 33 @{ 34 */ 35 36 struct flag_properties { 37 unsigned int type : 16; 38 unsigned int reserved : 16; 39 }; 40 41 template <enum flag_type FlagType> struct flag_traits {}; 42 43 template <> struct flag_traits<flag32> { 44 typedef kmp_uint32 flag_t; 45 static const flag_type t = flag32; 46 static inline flag_t tcr(flag_t f) { return TCR_4(f); } 47 static inline flag_t test_then_add4(volatile flag_t *f) { 48 return KMP_TEST_THEN_ADD4_32(RCAST(volatile kmp_int32 *, f)); 49 } 50 static inline flag_t test_then_or(volatile flag_t *f, flag_t v) { 51 return KMP_TEST_THEN_OR32(f, v); 52 } 53 static inline flag_t test_then_and(volatile flag_t *f, flag_t v) { 54 return KMP_TEST_THEN_AND32(f, v); 55 } 56 }; 57 58 template <> struct flag_traits<atomic_flag64> { 59 typedef kmp_uint64 flag_t; 60 static const flag_type t = atomic_flag64; 61 static inline flag_t tcr(flag_t f) { return TCR_8(f); } 62 static inline flag_t test_then_add4(volatile flag_t *f) { 63 return KMP_TEST_THEN_ADD4_64(RCAST(volatile kmp_int64 *, f)); 64 } 65 static inline flag_t test_then_or(volatile flag_t *f, flag_t v) { 66 return KMP_TEST_THEN_OR64(f, v); 67 } 68 static inline flag_t test_then_and(volatile flag_t *f, flag_t v) { 69 return KMP_TEST_THEN_AND64(f, v); 70 } 71 }; 72 73 template <> struct flag_traits<flag64> { 74 typedef kmp_uint64 flag_t; 75 static const flag_type t = flag64; 76 static inline flag_t tcr(flag_t f) { return TCR_8(f); } 77 static inline flag_t test_then_add4(volatile flag_t *f) { 78 return KMP_TEST_THEN_ADD4_64(RCAST(volatile kmp_int64 *, f)); 79 } 80 static inline flag_t test_then_or(volatile flag_t *f, flag_t v) { 81 return KMP_TEST_THEN_OR64(f, v); 82 } 83 static inline flag_t test_then_and(volatile flag_t *f, flag_t v) { 84 return KMP_TEST_THEN_AND64(f, v); 85 } 86 }; 87 88 template <> struct flag_traits<flag_oncore> { 89 typedef kmp_uint64 flag_t; 90 static const flag_type t = flag_oncore; 91 static inline flag_t tcr(flag_t f) { return TCR_8(f); } 92 static inline flag_t test_then_add4(volatile flag_t *f) { 93 return KMP_TEST_THEN_ADD4_64(RCAST(volatile kmp_int64 *, f)); 94 } 95 static inline flag_t test_then_or(volatile flag_t *f, flag_t v) { 96 return KMP_TEST_THEN_OR64(f, v); 97 } 98 static inline flag_t test_then_and(volatile flag_t *f, flag_t v) { 99 return KMP_TEST_THEN_AND64(f, v); 100 } 101 }; 102 103 /*! Base class for all flags */ 104 template <flag_type FlagType> class kmp_flag { 105 protected: 106 flag_properties t; /**< "Type" of the flag in loc */ 107 kmp_info_t *waiting_threads[1]; /**< Threads sleeping on this thread. */ 108 kmp_uint32 num_waiting_threads; /**< #threads sleeping on this thread. */ 109 std::atomic<bool> *sleepLoc; 110 111 public: 112 typedef flag_traits<FlagType> traits_type; 113 kmp_flag() : t({FlagType, 0U}), num_waiting_threads(0), sleepLoc(nullptr) {} 114 kmp_flag(int nwaiters) 115 : t({FlagType, 0U}), num_waiting_threads(nwaiters), sleepLoc(nullptr) {} 116 kmp_flag(std::atomic<bool> *sloc) 117 : t({FlagType, 0U}), num_waiting_threads(0), sleepLoc(sloc) {} 118 /*! @result the flag_type */ 119 flag_type get_type() { return (flag_type)(t.type); } 120 121 /*! param i in index into waiting_threads 122 * @result the thread that is waiting at index i */ 123 kmp_info_t *get_waiter(kmp_uint32 i) { 124 KMP_DEBUG_ASSERT(i < num_waiting_threads); 125 return waiting_threads[i]; 126 } 127 /*! @result num_waiting_threads */ 128 kmp_uint32 get_num_waiters() { return num_waiting_threads; } 129 /*! @param thr in the thread which is now waiting 130 * Insert a waiting thread at index 0. */ 131 void set_waiter(kmp_info_t *thr) { 132 waiting_threads[0] = thr; 133 num_waiting_threads = 1; 134 } 135 enum barrier_type get_bt() { return bs_last_barrier; } 136 }; 137 138 /*! Base class for wait/release volatile flag */ 139 template <typename PtrType, flag_type FlagType, bool Sleepable> 140 class kmp_flag_native : public kmp_flag<FlagType> { 141 protected: 142 volatile PtrType *loc; 143 PtrType checker; /**< When flag==checker, it has been released. */ 144 typedef flag_traits<FlagType> traits_type; 145 146 public: 147 typedef PtrType flag_t; 148 kmp_flag_native(volatile PtrType *p) : kmp_flag<FlagType>(), loc(p) {} 149 kmp_flag_native(volatile PtrType *p, kmp_info_t *thr) 150 : kmp_flag<FlagType>(1), loc(p) { 151 this->waiting_threads[0] = thr; 152 } 153 kmp_flag_native(volatile PtrType *p, PtrType c) 154 : kmp_flag<FlagType>(), loc(p), checker(c) {} 155 kmp_flag_native(volatile PtrType *p, PtrType c, std::atomic<bool> *sloc) 156 : kmp_flag<FlagType>(sloc), loc(p), checker(c) {} 157 virtual ~kmp_flag_native() {} 158 void *operator new(size_t size) { return __kmp_allocate(size); } 159 void operator delete(void *p) { __kmp_free(p); } 160 volatile PtrType *get() { return loc; } 161 void *get_void_p() { return RCAST(void *, CCAST(PtrType *, loc)); } 162 void set(volatile PtrType *new_loc) { loc = new_loc; } 163 PtrType load() { return *loc; } 164 void store(PtrType val) { *loc = val; } 165 /*! @result true if the flag object has been released. */ 166 virtual bool done_check() { 167 if (Sleepable && !(this->sleepLoc)) 168 return (traits_type::tcr(*(this->get())) & ~KMP_BARRIER_SLEEP_STATE) == 169 checker; 170 else 171 return traits_type::tcr(*(this->get())) == checker; 172 } 173 /*! @param old_loc in old value of flag 174 * @result true if the flag's old value indicates it was released. */ 175 virtual bool done_check_val(PtrType old_loc) { return old_loc == checker; } 176 /*! @result true if the flag object is not yet released. 177 * Used in __kmp_wait_template like: 178 * @code 179 * while (flag.notdone_check()) { pause(); } 180 * @endcode */ 181 virtual bool notdone_check() { 182 return traits_type::tcr(*(this->get())) != checker; 183 } 184 /*! @result Actual flag value before release was applied. 185 * Trigger all waiting threads to run by modifying flag to release state. */ 186 void internal_release() { 187 (void)traits_type::test_then_add4((volatile PtrType *)this->get()); 188 } 189 /*! @result Actual flag value before sleep bit(s) set. 190 * Notes that there is at least one thread sleeping on the flag by setting 191 * sleep bit(s). */ 192 PtrType set_sleeping() { 193 if (this->sleepLoc) { 194 this->sleepLoc->store(true); 195 return *(this->get()); 196 } 197 return traits_type::test_then_or((volatile PtrType *)this->get(), 198 KMP_BARRIER_SLEEP_STATE); 199 } 200 /*! @result Actual flag value before sleep bit(s) cleared. 201 * Notes that there are no longer threads sleeping on the flag by clearing 202 * sleep bit(s). */ 203 void unset_sleeping() { 204 if (this->sleepLoc) { 205 this->sleepLoc->store(false); 206 return; 207 } 208 traits_type::test_then_and((volatile PtrType *)this->get(), 209 ~KMP_BARRIER_SLEEP_STATE); 210 } 211 /*! @param old_loc in old value of flag 212 * Test if there are threads sleeping on the flag's old value in old_loc. */ 213 bool is_sleeping_val(PtrType old_loc) { 214 if (this->sleepLoc) 215 return this->sleepLoc->load(); 216 return old_loc & KMP_BARRIER_SLEEP_STATE; 217 } 218 /*! Test whether there are threads sleeping on the flag. */ 219 bool is_sleeping() { 220 if (this->sleepLoc) 221 return this->sleepLoc->load(); 222 return is_sleeping_val(*(this->get())); 223 } 224 bool is_any_sleeping() { 225 if (this->sleepLoc) 226 return this->sleepLoc->load(); 227 return is_sleeping_val(*(this->get())); 228 } 229 kmp_uint8 *get_stolen() { return NULL; } 230 }; 231 232 /*! Base class for wait/release atomic flag */ 233 template <typename PtrType, flag_type FlagType, bool Sleepable> 234 class kmp_flag_atomic : public kmp_flag<FlagType> { 235 protected: 236 std::atomic<PtrType> *loc; /**< Pointer to flag location to wait on */ 237 PtrType checker; /**< Flag == checker means it has been released. */ 238 public: 239 typedef flag_traits<FlagType> traits_type; 240 typedef PtrType flag_t; 241 kmp_flag_atomic(std::atomic<PtrType> *p) : kmp_flag<FlagType>(), loc(p) {} 242 kmp_flag_atomic(std::atomic<PtrType> *p, kmp_info_t *thr) 243 : kmp_flag<FlagType>(1), loc(p) { 244 this->waiting_threads[0] = thr; 245 } 246 kmp_flag_atomic(std::atomic<PtrType> *p, PtrType c) 247 : kmp_flag<FlagType>(), loc(p), checker(c) {} 248 kmp_flag_atomic(std::atomic<PtrType> *p, PtrType c, std::atomic<bool> *sloc) 249 : kmp_flag<FlagType>(sloc), loc(p), checker(c) {} 250 /*! @result the pointer to the actual flag */ 251 std::atomic<PtrType> *get() { return loc; } 252 /*! @result void* pointer to the actual flag */ 253 void *get_void_p() { return RCAST(void *, loc); } 254 /*! @param new_loc in set loc to point at new_loc */ 255 void set(std::atomic<PtrType> *new_loc) { loc = new_loc; } 256 /*! @result flag value */ 257 PtrType load() { return loc->load(std::memory_order_acquire); } 258 /*! @param val the new flag value to be stored */ 259 void store(PtrType val) { loc->store(val, std::memory_order_release); } 260 /*! @result true if the flag object has been released. */ 261 bool done_check() { 262 if (Sleepable && !(this->sleepLoc)) 263 return (this->load() & ~KMP_BARRIER_SLEEP_STATE) == checker; 264 else 265 return this->load() == checker; 266 } 267 /*! @param old_loc in old value of flag 268 * @result true if the flag's old value indicates it was released. */ 269 bool done_check_val(PtrType old_loc) { return old_loc == checker; } 270 /*! @result true if the flag object is not yet released. 271 * Used in __kmp_wait_template like: 272 * @code 273 * while (flag.notdone_check()) { pause(); } 274 * @endcode */ 275 bool notdone_check() { return this->load() != checker; } 276 /*! @result Actual flag value before release was applied. 277 * Trigger all waiting threads to run by modifying flag to release state. */ 278 void internal_release() { KMP_ATOMIC_ADD(this->get(), 4); } 279 /*! @result Actual flag value before sleep bit(s) set. 280 * Notes that there is at least one thread sleeping on the flag by setting 281 * sleep bit(s). */ 282 PtrType set_sleeping() { 283 if (this->sleepLoc) { 284 this->sleepLoc->store(true); 285 return *(this->get()); 286 } 287 return KMP_ATOMIC_OR(this->get(), KMP_BARRIER_SLEEP_STATE); 288 } 289 /*! @result Actual flag value before sleep bit(s) cleared. 290 * Notes that there are no longer threads sleeping on the flag by clearing 291 * sleep bit(s). */ 292 void unset_sleeping() { 293 if (this->sleepLoc) { 294 this->sleepLoc->store(false); 295 return; 296 } 297 KMP_ATOMIC_AND(this->get(), ~KMP_BARRIER_SLEEP_STATE); 298 } 299 /*! @param old_loc in old value of flag 300 * Test whether there are threads sleeping on flag's old value in old_loc. */ 301 bool is_sleeping_val(PtrType old_loc) { 302 if (this->sleepLoc) 303 return this->sleepLoc->load(); 304 return old_loc & KMP_BARRIER_SLEEP_STATE; 305 } 306 /*! Test whether there are threads sleeping on the flag. */ 307 bool is_sleeping() { 308 if (this->sleepLoc) 309 return this->sleepLoc->load(); 310 return is_sleeping_val(this->load()); 311 } 312 bool is_any_sleeping() { 313 if (this->sleepLoc) 314 return this->sleepLoc->load(); 315 return is_sleeping_val(this->load()); 316 } 317 kmp_uint8 *get_stolen() { return NULL; } 318 }; 319 320 #if OMPT_SUPPORT 321 OMPT_NOINLINE 322 static void __ompt_implicit_task_end(kmp_info_t *this_thr, 323 ompt_state_t ompt_state, 324 ompt_data_t *tId) { 325 int ds_tid = this_thr->th.th_info.ds.ds_tid; 326 if (ompt_state == ompt_state_wait_barrier_implicit) { 327 this_thr->th.ompt_thread_info.state = ompt_state_overhead; 328 #if OMPT_OPTIONAL 329 void *codeptr = NULL; 330 if (ompt_enabled.ompt_callback_sync_region_wait) { 331 ompt_callbacks.ompt_callback(ompt_callback_sync_region_wait)( 332 ompt_sync_region_barrier_implicit, ompt_scope_end, NULL, tId, 333 codeptr); 334 } 335 if (ompt_enabled.ompt_callback_sync_region) { 336 ompt_callbacks.ompt_callback(ompt_callback_sync_region)( 337 ompt_sync_region_barrier_implicit, ompt_scope_end, NULL, tId, 338 codeptr); 339 } 340 #endif 341 if (!KMP_MASTER_TID(ds_tid)) { 342 if (ompt_enabled.ompt_callback_implicit_task) { 343 int flags = this_thr->th.ompt_thread_info.parallel_flags; 344 flags = (flags & ompt_parallel_league) ? ompt_task_initial 345 : ompt_task_implicit; 346 ompt_callbacks.ompt_callback(ompt_callback_implicit_task)( 347 ompt_scope_end, NULL, tId, 0, ds_tid, flags); 348 } 349 // return to idle state 350 this_thr->th.ompt_thread_info.state = ompt_state_idle; 351 } else { 352 this_thr->th.ompt_thread_info.state = ompt_state_overhead; 353 } 354 } 355 } 356 #endif 357 358 /* Spin wait loop that first does pause/yield, then sleep. A thread that calls 359 __kmp_wait_* must make certain that another thread calls __kmp_release 360 to wake it back up to prevent deadlocks! 361 362 NOTE: We may not belong to a team at this point. */ 363 template <class C, bool final_spin, bool Cancellable = false, 364 bool Sleepable = true> 365 static inline bool 366 __kmp_wait_template(kmp_info_t *this_thr, 367 C *flag USE_ITT_BUILD_ARG(void *itt_sync_obj)) { 368 #if USE_ITT_BUILD && USE_ITT_NOTIFY 369 volatile void *spin = flag->get(); 370 #endif 371 kmp_uint32 spins; 372 int th_gtid; 373 int tasks_completed = FALSE; 374 #if !KMP_USE_MONITOR 375 kmp_uint64 poll_count; 376 kmp_uint64 hibernate_goal; 377 #else 378 kmp_uint32 hibernate; 379 #endif 380 kmp_uint64 time; 381 382 KMP_FSYNC_SPIN_INIT(spin, NULL); 383 if (flag->done_check()) { 384 KMP_FSYNC_SPIN_ACQUIRED(CCAST(void *, spin)); 385 return false; 386 } 387 th_gtid = this_thr->th.th_info.ds.ds_gtid; 388 if (Cancellable) { 389 kmp_team_t *team = this_thr->th.th_team; 390 if (team && team->t.t_cancel_request == cancel_parallel) 391 return true; 392 } 393 #if KMP_OS_UNIX 394 if (final_spin) 395 KMP_ATOMIC_ST_REL(&this_thr->th.th_blocking, true); 396 #endif 397 KA_TRACE(20, 398 ("__kmp_wait_sleep: T#%d waiting for flag(%p)\n", th_gtid, flag)); 399 #if KMP_STATS_ENABLED 400 stats_state_e thread_state = KMP_GET_THREAD_STATE(); 401 #endif 402 403 /* OMPT Behavior: 404 THIS function is called from 405 __kmp_barrier (2 times) (implicit or explicit barrier in parallel regions) 406 these have join / fork behavior 407 408 In these cases, we don't change the state or trigger events in THIS 409 function. 410 Events are triggered in the calling code (__kmp_barrier): 411 412 state := ompt_state_overhead 413 barrier-begin 414 barrier-wait-begin 415 state := ompt_state_wait_barrier 416 call join-barrier-implementation (finally arrive here) 417 {} 418 call fork-barrier-implementation (finally arrive here) 419 {} 420 state := ompt_state_overhead 421 barrier-wait-end 422 barrier-end 423 state := ompt_state_work_parallel 424 425 426 __kmp_fork_barrier (after thread creation, before executing implicit task) 427 call fork-barrier-implementation (finally arrive here) 428 {} // worker arrive here with state = ompt_state_idle 429 430 431 __kmp_join_barrier (implicit barrier at end of parallel region) 432 state := ompt_state_barrier_implicit 433 barrier-begin 434 barrier-wait-begin 435 call join-barrier-implementation (finally arrive here 436 final_spin=FALSE) 437 { 438 } 439 __kmp_fork_barrier (implicit barrier at end of parallel region) 440 call fork-barrier-implementation (finally arrive here final_spin=TRUE) 441 442 Worker after task-team is finished: 443 barrier-wait-end 444 barrier-end 445 implicit-task-end 446 idle-begin 447 state := ompt_state_idle 448 449 Before leaving, if state = ompt_state_idle 450 idle-end 451 state := ompt_state_overhead 452 */ 453 #if OMPT_SUPPORT 454 ompt_state_t ompt_entry_state; 455 ompt_data_t *tId; 456 if (ompt_enabled.enabled) { 457 ompt_entry_state = this_thr->th.ompt_thread_info.state; 458 if (!final_spin || ompt_entry_state != ompt_state_wait_barrier_implicit || 459 KMP_MASTER_TID(this_thr->th.th_info.ds.ds_tid)) { 460 ompt_lw_taskteam_t *team = NULL; 461 if (this_thr->th.th_team) 462 team = this_thr->th.th_team->t.ompt_serialized_team_info; 463 if (team) { 464 tId = &(team->ompt_task_info.task_data); 465 } else { 466 tId = OMPT_CUR_TASK_DATA(this_thr); 467 } 468 } else { 469 tId = &(this_thr->th.ompt_thread_info.task_data); 470 } 471 if (final_spin && (__kmp_tasking_mode == tskm_immediate_exec || 472 this_thr->th.th_task_team == NULL)) { 473 // implicit task is done. Either no taskqueue, or task-team finished 474 __ompt_implicit_task_end(this_thr, ompt_entry_state, tId); 475 } 476 } 477 #endif 478 479 KMP_INIT_YIELD(spins); // Setup for waiting 480 KMP_INIT_BACKOFF(time); 481 482 if (__kmp_dflt_blocktime != KMP_MAX_BLOCKTIME || 483 __kmp_pause_status == kmp_soft_paused) { 484 #if KMP_USE_MONITOR 485 // The worker threads cannot rely on the team struct existing at this point. 486 // Use the bt values cached in the thread struct instead. 487 #ifdef KMP_ADJUST_BLOCKTIME 488 if (__kmp_pause_status == kmp_soft_paused || 489 (__kmp_zero_bt && !this_thr->th.th_team_bt_set)) 490 // Force immediate suspend if not set by user and more threads than 491 // available procs 492 hibernate = 0; 493 else 494 hibernate = this_thr->th.th_team_bt_intervals; 495 #else 496 hibernate = this_thr->th.th_team_bt_intervals; 497 #endif /* KMP_ADJUST_BLOCKTIME */ 498 499 /* If the blocktime is nonzero, we want to make sure that we spin wait for 500 the entirety of the specified #intervals, plus up to one interval more. 501 This increment make certain that this thread doesn't go to sleep too 502 soon. */ 503 if (hibernate != 0) 504 hibernate++; 505 506 // Add in the current time value. 507 hibernate += TCR_4(__kmp_global.g.g_time.dt.t_value); 508 KF_TRACE(20, ("__kmp_wait_sleep: T#%d now=%d, hibernate=%d, intervals=%d\n", 509 th_gtid, __kmp_global.g.g_time.dt.t_value, hibernate, 510 hibernate - __kmp_global.g.g_time.dt.t_value)); 511 #else 512 if (__kmp_pause_status == kmp_soft_paused) { 513 // Force immediate suspend 514 hibernate_goal = KMP_NOW(); 515 } else 516 hibernate_goal = KMP_NOW() + this_thr->th.th_team_bt_intervals; 517 poll_count = 0; 518 (void)poll_count; 519 #endif // KMP_USE_MONITOR 520 } 521 522 KMP_MB(); 523 524 // Main wait spin loop 525 while (flag->notdone_check()) { 526 kmp_task_team_t *task_team = NULL; 527 if (__kmp_tasking_mode != tskm_immediate_exec) { 528 task_team = this_thr->th.th_task_team; 529 /* If the thread's task team pointer is NULL, it means one of 3 things: 530 1) A newly-created thread is first being released by 531 __kmp_fork_barrier(), and its task team has not been set up yet. 532 2) All tasks have been executed to completion. 533 3) Tasking is off for this region. This could be because we are in a 534 serialized region (perhaps the outer one), or else tasking was manually 535 disabled (KMP_TASKING=0). */ 536 if (task_team != NULL) { 537 if (TCR_SYNC_4(task_team->tt.tt_active)) { 538 if (KMP_TASKING_ENABLED(task_team)) { 539 flag->execute_tasks( 540 this_thr, th_gtid, final_spin, 541 &tasks_completed USE_ITT_BUILD_ARG(itt_sync_obj), 0); 542 } else 543 this_thr->th.th_reap_state = KMP_SAFE_TO_REAP; 544 } else { 545 KMP_DEBUG_ASSERT(!KMP_MASTER_TID(this_thr->th.th_info.ds.ds_tid)); 546 #if OMPT_SUPPORT 547 // task-team is done now, other cases should be catched above 548 if (final_spin && ompt_enabled.enabled) 549 __ompt_implicit_task_end(this_thr, ompt_entry_state, tId); 550 #endif 551 this_thr->th.th_task_team = NULL; 552 this_thr->th.th_reap_state = KMP_SAFE_TO_REAP; 553 } 554 } else { 555 this_thr->th.th_reap_state = KMP_SAFE_TO_REAP; 556 } // if 557 } // if 558 559 KMP_FSYNC_SPIN_PREPARE(CCAST(void *, spin)); 560 if (TCR_4(__kmp_global.g.g_done)) { 561 if (__kmp_global.g.g_abort) 562 __kmp_abort_thread(); 563 break; 564 } 565 566 // If we are oversubscribed, or have waited a bit (and 567 // KMP_LIBRARY=throughput), then yield 568 KMP_YIELD_OVERSUB_ELSE_SPIN(spins, time); 569 570 #if KMP_STATS_ENABLED 571 // Check if thread has been signalled to idle state 572 // This indicates that the logical "join-barrier" has finished 573 if (this_thr->th.th_stats->isIdle() && 574 KMP_GET_THREAD_STATE() == FORK_JOIN_BARRIER) { 575 KMP_SET_THREAD_STATE(IDLE); 576 KMP_PUSH_PARTITIONED_TIMER(OMP_idle); 577 } 578 #endif 579 // Check if the barrier surrounding this wait loop has been cancelled 580 if (Cancellable) { 581 kmp_team_t *team = this_thr->th.th_team; 582 if (team && team->t.t_cancel_request == cancel_parallel) 583 break; 584 } 585 586 // For hidden helper thread, if task_team is nullptr, it means the main 587 // thread has not released the barrier. We cannot wait here because once the 588 // main thread releases all children barriers, all hidden helper threads are 589 // still sleeping. This leads to a problem that following configuration, 590 // such as task team sync, will not be performed such that this thread does 591 // not have task team. Usually it is not bad. However, a corner case is, 592 // when the first task encountered is an untied task, the check in 593 // __kmp_task_alloc will crash because it uses the task team pointer without 594 // checking whether it is nullptr. It is probably under some kind of 595 // assumption. 596 if (task_team && KMP_HIDDEN_HELPER_WORKER_THREAD(th_gtid) && 597 !TCR_4(__kmp_hidden_helper_team_done)) { 598 // If there is still hidden helper tasks to be executed, the hidden helper 599 // thread will not enter a waiting status. 600 if (KMP_ATOMIC_LD_ACQ(&__kmp_unexecuted_hidden_helper_tasks) == 0) { 601 __kmp_hidden_helper_worker_thread_wait(); 602 } 603 continue; 604 } 605 606 // Don't suspend if KMP_BLOCKTIME is set to "infinite" 607 if (__kmp_dflt_blocktime == KMP_MAX_BLOCKTIME && 608 __kmp_pause_status != kmp_soft_paused) 609 continue; 610 611 // Don't suspend if there is a likelihood of new tasks being spawned. 612 if ((task_team != NULL) && TCR_4(task_team->tt.tt_found_tasks)) 613 continue; 614 615 #if KMP_USE_MONITOR 616 // If we have waited a bit more, fall asleep 617 if (TCR_4(__kmp_global.g.g_time.dt.t_value) < hibernate) 618 continue; 619 #else 620 if (KMP_BLOCKING(hibernate_goal, poll_count++)) 621 continue; 622 #endif 623 // Don't suspend if wait loop designated non-sleepable 624 // in template parameters 625 if (!Sleepable) 626 continue; 627 628 if (__kmp_dflt_blocktime == KMP_MAX_BLOCKTIME && 629 __kmp_pause_status != kmp_soft_paused) 630 continue; 631 632 #if KMP_HAVE_MWAIT || KMP_HAVE_UMWAIT 633 if (__kmp_mwait_enabled || __kmp_umwait_enabled) { 634 KF_TRACE(50, ("__kmp_wait_sleep: T#%d using monitor/mwait\n", th_gtid)); 635 flag->mwait(th_gtid); 636 } else { 637 #endif 638 KF_TRACE(50, ("__kmp_wait_sleep: T#%d suspend time reached\n", th_gtid)); 639 #if KMP_OS_UNIX 640 if (final_spin) 641 KMP_ATOMIC_ST_REL(&this_thr->th.th_blocking, false); 642 #endif 643 flag->suspend(th_gtid); 644 #if KMP_OS_UNIX 645 if (final_spin) 646 KMP_ATOMIC_ST_REL(&this_thr->th.th_blocking, true); 647 #endif 648 #if KMP_HAVE_MWAIT || KMP_HAVE_UMWAIT 649 } 650 #endif 651 652 if (TCR_4(__kmp_global.g.g_done)) { 653 if (__kmp_global.g.g_abort) 654 __kmp_abort_thread(); 655 break; 656 } else if (__kmp_tasking_mode != tskm_immediate_exec && 657 this_thr->th.th_reap_state == KMP_SAFE_TO_REAP) { 658 this_thr->th.th_reap_state = KMP_NOT_SAFE_TO_REAP; 659 } 660 // TODO: If thread is done with work and times out, disband/free 661 } 662 663 #if OMPT_SUPPORT 664 ompt_state_t ompt_exit_state = this_thr->th.ompt_thread_info.state; 665 if (ompt_enabled.enabled && ompt_exit_state != ompt_state_undefined) { 666 #if OMPT_OPTIONAL 667 if (final_spin) { 668 __ompt_implicit_task_end(this_thr, ompt_exit_state, tId); 669 ompt_exit_state = this_thr->th.ompt_thread_info.state; 670 } 671 #endif 672 if (ompt_exit_state == ompt_state_idle) { 673 this_thr->th.ompt_thread_info.state = ompt_state_overhead; 674 } 675 } 676 #endif 677 #if KMP_STATS_ENABLED 678 // If we were put into idle state, pop that off the state stack 679 if (KMP_GET_THREAD_STATE() == IDLE) { 680 KMP_POP_PARTITIONED_TIMER(); 681 KMP_SET_THREAD_STATE(thread_state); 682 this_thr->th.th_stats->resetIdleFlag(); 683 } 684 #endif 685 686 #if KMP_OS_UNIX 687 if (final_spin) 688 KMP_ATOMIC_ST_REL(&this_thr->th.th_blocking, false); 689 #endif 690 KMP_FSYNC_SPIN_ACQUIRED(CCAST(void *, spin)); 691 if (Cancellable) { 692 kmp_team_t *team = this_thr->th.th_team; 693 if (team && team->t.t_cancel_request == cancel_parallel) { 694 if (tasks_completed) { 695 // undo the previous decrement of unfinished_threads so that the 696 // thread can decrement at the join barrier with no problem 697 kmp_task_team_t *task_team = this_thr->th.th_task_team; 698 std::atomic<kmp_int32> *unfinished_threads = 699 &(task_team->tt.tt_unfinished_threads); 700 KMP_ATOMIC_INC(unfinished_threads); 701 } 702 return true; 703 } 704 } 705 return false; 706 } 707 708 #if KMP_HAVE_MWAIT || KMP_HAVE_UMWAIT 709 // Set up a monitor on the flag variable causing the calling thread to wait in 710 // a less active state until the flag variable is modified. 711 template <class C> 712 static inline void __kmp_mwait_template(int th_gtid, C *flag) { 713 KMP_TIME_DEVELOPER_PARTITIONED_BLOCK(USER_mwait); 714 kmp_info_t *th = __kmp_threads[th_gtid]; 715 716 KF_TRACE(30, ("__kmp_mwait_template: T#%d enter for flag = %p\n", th_gtid, 717 flag->get())); 718 719 // User-level mwait is available 720 KMP_DEBUG_ASSERT(__kmp_mwait_enabled || __kmp_umwait_enabled); 721 722 __kmp_suspend_initialize_thread(th); 723 __kmp_lock_suspend_mx(th); 724 725 volatile void *spin = flag->get(); 726 void *cacheline = (void *)(kmp_uintptr_t(spin) & ~(CACHE_LINE - 1)); 727 728 if (!flag->done_check()) { 729 // Mark thread as no longer active 730 th->th.th_active = FALSE; 731 if (th->th.th_active_in_pool) { 732 th->th.th_active_in_pool = FALSE; 733 KMP_ATOMIC_DEC(&__kmp_thread_pool_active_nth); 734 KMP_DEBUG_ASSERT(TCR_4(__kmp_thread_pool_active_nth) >= 0); 735 } 736 flag->set_sleeping(); 737 KF_TRACE(50, ("__kmp_mwait_template: T#%d calling monitor\n", th_gtid)); 738 #if KMP_HAVE_UMWAIT 739 if (__kmp_umwait_enabled) { 740 __kmp_umonitor(cacheline); 741 } 742 #elif KMP_HAVE_MWAIT 743 if (__kmp_mwait_enabled) { 744 __kmp_mm_monitor(cacheline, 0, 0); 745 } 746 #endif 747 // To avoid a race, check flag between 'monitor' and 'mwait'. A write to 748 // the address could happen after the last time we checked and before 749 // monitoring started, in which case monitor can't detect the change. 750 if (flag->done_check()) 751 flag->unset_sleeping(); 752 else { 753 // if flag changes here, wake-up happens immediately 754 TCW_PTR(th->th.th_sleep_loc, (void *)flag); 755 th->th.th_sleep_loc_type = flag->get_type(); 756 __kmp_unlock_suspend_mx(th); 757 KF_TRACE(50, ("__kmp_mwait_template: T#%d calling mwait\n", th_gtid)); 758 #if KMP_HAVE_UMWAIT 759 if (__kmp_umwait_enabled) { 760 __kmp_umwait(1, 100); // to do: enable ctrl via hints, backoff counter 761 } 762 #elif KMP_HAVE_MWAIT 763 if (__kmp_mwait_enabled) { 764 __kmp_mm_mwait(0, __kmp_mwait_hints); 765 } 766 #endif 767 KF_TRACE(50, ("__kmp_mwait_template: T#%d mwait done\n", th_gtid)); 768 __kmp_lock_suspend_mx(th); 769 // Clean up sleep info; doesn't matter how/why this thread stopped waiting 770 if (flag->is_sleeping()) 771 flag->unset_sleeping(); 772 TCW_PTR(th->th.th_sleep_loc, NULL); 773 th->th.th_sleep_loc_type = flag_unset; 774 } 775 // Mark thread as active again 776 th->th.th_active = TRUE; 777 if (TCR_4(th->th.th_in_pool)) { 778 KMP_ATOMIC_INC(&__kmp_thread_pool_active_nth); 779 th->th.th_active_in_pool = TRUE; 780 } 781 } // Drop out to main wait loop to check flag, handle tasks, etc. 782 __kmp_unlock_suspend_mx(th); 783 KF_TRACE(30, ("__kmp_mwait_template: T#%d exit\n", th_gtid)); 784 } 785 #endif // KMP_HAVE_MWAIT || KMP_HAVE_UMWAIT 786 787 /* Release any threads specified as waiting on the flag by releasing the flag 788 and resume the waiting thread if indicated by the sleep bit(s). A thread that 789 calls __kmp_wait_template must call this function to wake up the potentially 790 sleeping thread and prevent deadlocks! */ 791 template <class C> static inline void __kmp_release_template(C *flag) { 792 #ifdef KMP_DEBUG 793 int gtid = TCR_4(__kmp_init_gtid) ? __kmp_get_gtid() : -1; 794 #endif 795 KF_TRACE(20, ("__kmp_release: T#%d releasing flag(%x)\n", gtid, flag->get())); 796 KMP_DEBUG_ASSERT(flag->get()); 797 KMP_FSYNC_RELEASING(flag->get_void_p()); 798 799 flag->internal_release(); 800 801 KF_TRACE(100, ("__kmp_release: T#%d set new spin=%d\n", gtid, flag->get(), 802 flag->load())); 803 804 if (__kmp_dflt_blocktime != KMP_MAX_BLOCKTIME) { 805 // Only need to check sleep stuff if infinite block time not set. 806 // Are *any* threads waiting on flag sleeping? 807 if (flag->is_any_sleeping()) { 808 for (unsigned int i = 0; i < flag->get_num_waiters(); ++i) { 809 // if sleeping waiter exists at i, sets current_waiter to i inside flag 810 kmp_info_t *waiter = flag->get_waiter(i); 811 if (waiter) { 812 int wait_gtid = waiter->th.th_info.ds.ds_gtid; 813 // Wake up thread if needed 814 KF_TRACE(50, ("__kmp_release: T#%d waking up thread T#%d since sleep " 815 "flag(%p) set\n", 816 gtid, wait_gtid, flag->get())); 817 flag->resume(wait_gtid); // unsets flag's current_waiter when done 818 } 819 } 820 } 821 } 822 } 823 824 template <bool Cancellable, bool Sleepable> 825 class kmp_flag_32 : public kmp_flag_atomic<kmp_uint32, flag32, Sleepable> { 826 public: 827 kmp_flag_32(std::atomic<kmp_uint32> *p) 828 : kmp_flag_atomic<kmp_uint32, flag32, Sleepable>(p) {} 829 kmp_flag_32(std::atomic<kmp_uint32> *p, kmp_info_t *thr) 830 : kmp_flag_atomic<kmp_uint32, flag32, Sleepable>(p, thr) {} 831 kmp_flag_32(std::atomic<kmp_uint32> *p, kmp_uint32 c) 832 : kmp_flag_atomic<kmp_uint32, flag32, Sleepable>(p, c) {} 833 void suspend(int th_gtid) { __kmp_suspend_32(th_gtid, this); } 834 #if KMP_HAVE_MWAIT || KMP_HAVE_UMWAIT 835 void mwait(int th_gtid) { __kmp_mwait_32(th_gtid, this); } 836 #endif 837 void resume(int th_gtid) { __kmp_resume_32(th_gtid, this); } 838 int execute_tasks(kmp_info_t *this_thr, kmp_int32 gtid, int final_spin, 839 int *thread_finished USE_ITT_BUILD_ARG(void *itt_sync_obj), 840 kmp_int32 is_constrained) { 841 return __kmp_execute_tasks_32( 842 this_thr, gtid, this, final_spin, 843 thread_finished USE_ITT_BUILD_ARG(itt_sync_obj), is_constrained); 844 } 845 bool wait(kmp_info_t *this_thr, 846 int final_spin USE_ITT_BUILD_ARG(void *itt_sync_obj)) { 847 if (final_spin) 848 return __kmp_wait_template<kmp_flag_32, TRUE, Cancellable, Sleepable>( 849 this_thr, this USE_ITT_BUILD_ARG(itt_sync_obj)); 850 else 851 return __kmp_wait_template<kmp_flag_32, FALSE, Cancellable, Sleepable>( 852 this_thr, this USE_ITT_BUILD_ARG(itt_sync_obj)); 853 } 854 void release() { __kmp_release_template(this); } 855 flag_type get_ptr_type() { return flag32; } 856 }; 857 858 template <bool Cancellable, bool Sleepable> 859 class kmp_flag_64 : public kmp_flag_native<kmp_uint64, flag64, Sleepable> { 860 public: 861 kmp_flag_64(volatile kmp_uint64 *p) 862 : kmp_flag_native<kmp_uint64, flag64, Sleepable>(p) {} 863 kmp_flag_64(volatile kmp_uint64 *p, kmp_info_t *thr) 864 : kmp_flag_native<kmp_uint64, flag64, Sleepable>(p, thr) {} 865 kmp_flag_64(volatile kmp_uint64 *p, kmp_uint64 c) 866 : kmp_flag_native<kmp_uint64, flag64, Sleepable>(p, c) {} 867 kmp_flag_64(volatile kmp_uint64 *p, kmp_uint64 c, std::atomic<bool> *loc) 868 : kmp_flag_native<kmp_uint64, flag64, Sleepable>(p, c, loc) {} 869 void suspend(int th_gtid) { __kmp_suspend_64(th_gtid, this); } 870 #if KMP_HAVE_MWAIT || KMP_HAVE_UMWAIT 871 void mwait(int th_gtid) { __kmp_mwait_64(th_gtid, this); } 872 #endif 873 void resume(int th_gtid) { __kmp_resume_64(th_gtid, this); } 874 int execute_tasks(kmp_info_t *this_thr, kmp_int32 gtid, int final_spin, 875 int *thread_finished USE_ITT_BUILD_ARG(void *itt_sync_obj), 876 kmp_int32 is_constrained) { 877 return __kmp_execute_tasks_64( 878 this_thr, gtid, this, final_spin, 879 thread_finished USE_ITT_BUILD_ARG(itt_sync_obj), is_constrained); 880 } 881 bool wait(kmp_info_t *this_thr, 882 int final_spin USE_ITT_BUILD_ARG(void *itt_sync_obj)) { 883 if (final_spin) 884 return __kmp_wait_template<kmp_flag_64, TRUE, Cancellable, Sleepable>( 885 this_thr, this USE_ITT_BUILD_ARG(itt_sync_obj)); 886 else 887 return __kmp_wait_template<kmp_flag_64, FALSE, Cancellable, Sleepable>( 888 this_thr, this USE_ITT_BUILD_ARG(itt_sync_obj)); 889 } 890 void release() { __kmp_release_template(this); } 891 flag_type get_ptr_type() { return flag64; } 892 }; 893 894 template <bool Cancellable, bool Sleepable> 895 class kmp_atomic_flag_64 896 : public kmp_flag_atomic<kmp_uint64, atomic_flag64, Sleepable> { 897 public: 898 kmp_atomic_flag_64(std::atomic<kmp_uint64> *p) 899 : kmp_flag_atomic<kmp_uint64, atomic_flag64, Sleepable>(p) {} 900 kmp_atomic_flag_64(std::atomic<kmp_uint64> *p, kmp_info_t *thr) 901 : kmp_flag_atomic<kmp_uint64, atomic_flag64, Sleepable>(p, thr) {} 902 kmp_atomic_flag_64(std::atomic<kmp_uint64> *p, kmp_uint64 c) 903 : kmp_flag_atomic<kmp_uint64, atomic_flag64, Sleepable>(p, c) {} 904 kmp_atomic_flag_64(std::atomic<kmp_uint64> *p, kmp_uint64 c, 905 std::atomic<bool> *loc) 906 : kmp_flag_atomic<kmp_uint64, atomic_flag64, Sleepable>(p, c, loc) {} 907 void suspend(int th_gtid) { __kmp_atomic_suspend_64(th_gtid, this); } 908 void mwait(int th_gtid) { __kmp_atomic_mwait_64(th_gtid, this); } 909 void resume(int th_gtid) { __kmp_atomic_resume_64(th_gtid, this); } 910 int execute_tasks(kmp_info_t *this_thr, kmp_int32 gtid, int final_spin, 911 int *thread_finished USE_ITT_BUILD_ARG(void *itt_sync_obj), 912 kmp_int32 is_constrained) { 913 return __kmp_atomic_execute_tasks_64( 914 this_thr, gtid, this, final_spin, 915 thread_finished USE_ITT_BUILD_ARG(itt_sync_obj), is_constrained); 916 } 917 bool wait(kmp_info_t *this_thr, 918 int final_spin USE_ITT_BUILD_ARG(void *itt_sync_obj)) { 919 if (final_spin) 920 return __kmp_wait_template<kmp_atomic_flag_64, TRUE, Cancellable, 921 Sleepable>( 922 this_thr, this USE_ITT_BUILD_ARG(itt_sync_obj)); 923 else 924 return __kmp_wait_template<kmp_atomic_flag_64, FALSE, Cancellable, 925 Sleepable>( 926 this_thr, this USE_ITT_BUILD_ARG(itt_sync_obj)); 927 } 928 void release() { __kmp_release_template(this); } 929 flag_type get_ptr_type() { return atomic_flag64; } 930 }; 931 932 // Hierarchical 64-bit on-core barrier instantiation 933 class kmp_flag_oncore : public kmp_flag_native<kmp_uint64, flag_oncore, false> { 934 kmp_uint32 offset; /**< Portion of flag of interest for an operation. */ 935 bool flag_switch; /**< Indicates a switch in flag location. */ 936 enum barrier_type bt; /**< Barrier type. */ 937 kmp_info_t *this_thr; /**< Thread to redirect to different flag location. */ 938 #if USE_ITT_BUILD 939 void *itt_sync_obj; /**< ITT object to pass to new flag location. */ 940 #endif 941 unsigned char &byteref(volatile kmp_uint64 *loc, size_t offset) { 942 return (RCAST(unsigned char *, CCAST(kmp_uint64 *, loc)))[offset]; 943 } 944 945 public: 946 kmp_flag_oncore(volatile kmp_uint64 *p) 947 : kmp_flag_native<kmp_uint64, flag_oncore, false>(p), flag_switch(false) { 948 } 949 kmp_flag_oncore(volatile kmp_uint64 *p, kmp_uint32 idx) 950 : kmp_flag_native<kmp_uint64, flag_oncore, false>(p), offset(idx), 951 flag_switch(false), 952 bt(bs_last_barrier) USE_ITT_BUILD_ARG(itt_sync_obj(nullptr)) {} 953 kmp_flag_oncore(volatile kmp_uint64 *p, kmp_uint64 c, kmp_uint32 idx, 954 enum barrier_type bar_t, 955 kmp_info_t *thr USE_ITT_BUILD_ARG(void *itt)) 956 : kmp_flag_native<kmp_uint64, flag_oncore, false>(p, c), offset(idx), 957 flag_switch(false), bt(bar_t), 958 this_thr(thr) USE_ITT_BUILD_ARG(itt_sync_obj(itt)) {} 959 virtual ~kmp_flag_oncore() override {} 960 void *operator new(size_t size) { return __kmp_allocate(size); } 961 void operator delete(void *p) { __kmp_free(p); } 962 bool done_check_val(kmp_uint64 old_loc) override { 963 return byteref(&old_loc, offset) == checker; 964 } 965 bool done_check() override { return done_check_val(*get()); } 966 bool notdone_check() override { 967 // Calculate flag_switch 968 if (this_thr->th.th_bar[bt].bb.wait_flag == KMP_BARRIER_SWITCH_TO_OWN_FLAG) 969 flag_switch = true; 970 if (byteref(get(), offset) != 1 && !flag_switch) 971 return true; 972 else if (flag_switch) { 973 this_thr->th.th_bar[bt].bb.wait_flag = KMP_BARRIER_SWITCHING; 974 kmp_flag_64<> flag(&this_thr->th.th_bar[bt].bb.b_go, 975 (kmp_uint64)KMP_BARRIER_STATE_BUMP); 976 __kmp_wait_64(this_thr, &flag, TRUE USE_ITT_BUILD_ARG(itt_sync_obj)); 977 } 978 return false; 979 } 980 void internal_release() { 981 // Other threads can write their own bytes simultaneously. 982 if (__kmp_dflt_blocktime == KMP_MAX_BLOCKTIME) { 983 byteref(get(), offset) = 1; 984 } else { 985 kmp_uint64 mask = 0; 986 byteref(&mask, offset) = 1; 987 KMP_TEST_THEN_OR64(get(), mask); 988 } 989 } 990 void wait(kmp_info_t *this_thr, int final_spin) { 991 if (final_spin) 992 __kmp_wait_template<kmp_flag_oncore, TRUE>( 993 this_thr, this USE_ITT_BUILD_ARG(itt_sync_obj)); 994 else 995 __kmp_wait_template<kmp_flag_oncore, FALSE>( 996 this_thr, this USE_ITT_BUILD_ARG(itt_sync_obj)); 997 } 998 void release() { __kmp_release_template(this); } 999 void suspend(int th_gtid) { __kmp_suspend_oncore(th_gtid, this); } 1000 #if KMP_HAVE_MWAIT || KMP_HAVE_UMWAIT 1001 void mwait(int th_gtid) { __kmp_mwait_oncore(th_gtid, this); } 1002 #endif 1003 void resume(int th_gtid) { __kmp_resume_oncore(th_gtid, this); } 1004 int execute_tasks(kmp_info_t *this_thr, kmp_int32 gtid, int final_spin, 1005 int *thread_finished USE_ITT_BUILD_ARG(void *itt_sync_obj), 1006 kmp_int32 is_constrained) { 1007 #if OMPD_SUPPORT 1008 int ret = __kmp_execute_tasks_oncore( 1009 this_thr, gtid, this, final_spin, 1010 thread_finished USE_ITT_BUILD_ARG(itt_sync_obj), is_constrained); 1011 if (ompd_state & OMPD_ENABLE_BP) 1012 ompd_bp_task_end(); 1013 return ret; 1014 #else 1015 return __kmp_execute_tasks_oncore( 1016 this_thr, gtid, this, final_spin, 1017 thread_finished USE_ITT_BUILD_ARG(itt_sync_obj), is_constrained); 1018 #endif 1019 } 1020 enum barrier_type get_bt() { return bt; } 1021 flag_type get_ptr_type() { return flag_oncore; } 1022 }; 1023 1024 static inline void __kmp_null_resume_wrapper(kmp_info_t *thr) { 1025 int gtid = __kmp_gtid_from_thread(thr); 1026 void *flag = CCAST(void *, thr->th.th_sleep_loc); 1027 flag_type type = thr->th.th_sleep_loc_type; 1028 if (!flag) 1029 return; 1030 // Attempt to wake up a thread: examine its type and call appropriate template 1031 switch (type) { 1032 case flag32: 1033 __kmp_resume_32(gtid, RCAST(kmp_flag_32<> *, flag)); 1034 break; 1035 case flag64: 1036 __kmp_resume_64(gtid, RCAST(kmp_flag_64<> *, flag)); 1037 break; 1038 case atomic_flag64: 1039 __kmp_atomic_resume_64(gtid, RCAST(kmp_atomic_flag_64<> *, flag)); 1040 break; 1041 case flag_oncore: 1042 __kmp_resume_oncore(gtid, RCAST(kmp_flag_oncore *, flag)); 1043 break; 1044 #ifdef KMP_DEBUG 1045 case flag_unset: 1046 KF_TRACE(100, ("__kmp_null_resume_wrapper: flag type %d is unset\n", type)); 1047 break; 1048 default: 1049 KF_TRACE(100, ("__kmp_null_resume_wrapper: flag type %d does not match any " 1050 "known flag type\n", 1051 type)); 1052 #endif 1053 } 1054 } 1055 1056 /*! 1057 @} 1058 */ 1059 1060 #endif // KMP_WAIT_RELEASE_H 1061