1 /* 2 * kmp_wait_release.h -- Wait/Release implementation 3 */ 4 5 //===----------------------------------------------------------------------===// 6 // 7 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 8 // See https://llvm.org/LICENSE.txt for license information. 9 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 10 // 11 //===----------------------------------------------------------------------===// 12 13 #ifndef KMP_WAIT_RELEASE_H 14 #define KMP_WAIT_RELEASE_H 15 16 #include "kmp.h" 17 #include "kmp_itt.h" 18 #include "kmp_stats.h" 19 #if OMPT_SUPPORT 20 #include "ompt-specific.h" 21 #endif 22 23 /*! 24 @defgroup WAIT_RELEASE Wait/Release operations 25 26 The definitions and functions here implement the lowest level thread 27 synchronizations of suspending a thread and awaking it. They are used to build 28 higher level operations such as barriers and fork/join. 29 */ 30 31 /*! 32 @ingroup WAIT_RELEASE 33 @{ 34 */ 35 36 struct flag_properties { 37 unsigned int type : 16; 38 unsigned int reserved : 16; 39 }; 40 41 template <enum flag_type FlagType> struct flag_traits {}; 42 43 template <> struct flag_traits<flag32> { 44 typedef kmp_uint32 flag_t; 45 static const flag_type t = flag32; 46 static inline flag_t tcr(flag_t f) { return TCR_4(f); } 47 static inline flag_t test_then_add4(volatile flag_t *f) { 48 return KMP_TEST_THEN_ADD4_32(RCAST(volatile kmp_int32 *, f)); 49 } 50 static inline flag_t test_then_or(volatile flag_t *f, flag_t v) { 51 return KMP_TEST_THEN_OR32(f, v); 52 } 53 static inline flag_t test_then_and(volatile flag_t *f, flag_t v) { 54 return KMP_TEST_THEN_AND32(f, v); 55 } 56 }; 57 58 template <> struct flag_traits<atomic_flag64> { 59 typedef kmp_uint64 flag_t; 60 static const flag_type t = atomic_flag64; 61 static inline flag_t tcr(flag_t f) { return TCR_8(f); } 62 static inline flag_t test_then_add4(volatile flag_t *f) { 63 return KMP_TEST_THEN_ADD4_64(RCAST(volatile kmp_int64 *, f)); 64 } 65 static inline flag_t test_then_or(volatile flag_t *f, flag_t v) { 66 return KMP_TEST_THEN_OR64(f, v); 67 } 68 static inline flag_t test_then_and(volatile flag_t *f, flag_t v) { 69 return KMP_TEST_THEN_AND64(f, v); 70 } 71 }; 72 73 template <> struct flag_traits<flag64> { 74 typedef kmp_uint64 flag_t; 75 static const flag_type t = flag64; 76 static inline flag_t tcr(flag_t f) { return TCR_8(f); } 77 static inline flag_t test_then_add4(volatile flag_t *f) { 78 return KMP_TEST_THEN_ADD4_64(RCAST(volatile kmp_int64 *, f)); 79 } 80 static inline flag_t test_then_or(volatile flag_t *f, flag_t v) { 81 return KMP_TEST_THEN_OR64(f, v); 82 } 83 static inline flag_t test_then_and(volatile flag_t *f, flag_t v) { 84 return KMP_TEST_THEN_AND64(f, v); 85 } 86 }; 87 88 template <> struct flag_traits<flag_oncore> { 89 typedef kmp_uint64 flag_t; 90 static const flag_type t = flag_oncore; 91 static inline flag_t tcr(flag_t f) { return TCR_8(f); } 92 static inline flag_t test_then_add4(volatile flag_t *f) { 93 return KMP_TEST_THEN_ADD4_64(RCAST(volatile kmp_int64 *, f)); 94 } 95 static inline flag_t test_then_or(volatile flag_t *f, flag_t v) { 96 return KMP_TEST_THEN_OR64(f, v); 97 } 98 static inline flag_t test_then_and(volatile flag_t *f, flag_t v) { 99 return KMP_TEST_THEN_AND64(f, v); 100 } 101 }; 102 103 /*! Base class for all flags */ 104 template <flag_type FlagType> class kmp_flag { 105 protected: 106 flag_properties t; /**< "Type" of the flag in loc */ 107 kmp_info_t *waiting_threads[1]; /**< Threads sleeping on this thread. */ 108 kmp_uint32 num_waiting_threads; /**< Num threads sleeping on this thread. */ 109 std::atomic<bool> *sleepLoc; 110 111 public: 112 typedef flag_traits<FlagType> traits_type; 113 kmp_flag() : t({FlagType, 0U}), num_waiting_threads(0), sleepLoc(nullptr) {} 114 kmp_flag(int nwaiters) 115 : t({FlagType, 0U}), num_waiting_threads(nwaiters), sleepLoc(nullptr) {} 116 kmp_flag(std::atomic<bool> *sloc) 117 : t({FlagType, 0U}), num_waiting_threads(0), sleepLoc(sloc) {} 118 /*! @result the flag_type */ 119 flag_type get_type() { return (flag_type)(t.type); } 120 121 /*! param i in index into waiting_threads 122 * @result the thread that is waiting at index i */ 123 kmp_info_t *get_waiter(kmp_uint32 i) { 124 KMP_DEBUG_ASSERT(i < num_waiting_threads); 125 return waiting_threads[i]; 126 } 127 /*! @result num_waiting_threads */ 128 kmp_uint32 get_num_waiters() { return num_waiting_threads; } 129 /*! @param thr in the thread which is now waiting 130 * Insert a waiting thread at index 0. */ 131 void set_waiter(kmp_info_t *thr) { 132 waiting_threads[0] = thr; 133 num_waiting_threads = 1; 134 } 135 enum barrier_type get_bt() { return bs_last_barrier; } 136 }; 137 138 /*! Base class for wait/release volatile flag */ 139 template <typename PtrType, flag_type FlagType, bool Sleepable> 140 class kmp_flag_native : public kmp_flag<FlagType> { 141 protected: 142 volatile PtrType *loc; 143 PtrType checker; /**< When flag==checker, it has been released. */ 144 typedef flag_traits<FlagType> traits_type; 145 146 public: 147 typedef PtrType flag_t; 148 kmp_flag_native(volatile PtrType *p) : kmp_flag<FlagType>(), loc(p) {} 149 kmp_flag_native(volatile PtrType *p, kmp_info_t *thr) 150 : kmp_flag<FlagType>(1), loc(p) { 151 this->waiting_threads[0] = thr; 152 } 153 kmp_flag_native(volatile PtrType *p, PtrType c) 154 : kmp_flag<FlagType>(), loc(p), checker(c) {} 155 kmp_flag_native(volatile PtrType *p, PtrType c, std::atomic<bool> *sloc) 156 : kmp_flag<FlagType>(sloc), loc(p), checker(c) {} 157 virtual ~kmp_flag_native() {} 158 void *operator new(size_t size) { return __kmp_allocate(size); } 159 void operator delete(void *p) { __kmp_free(p); } 160 volatile PtrType *get() { return loc; } 161 void *get_void_p() { return RCAST(void *, CCAST(PtrType *, loc)); } 162 void set(volatile PtrType *new_loc) { loc = new_loc; } 163 PtrType load() { return *loc; } 164 void store(PtrType val) { *loc = val; } 165 /*! @result true if the flag object has been released. */ 166 virtual bool done_check() { 167 if (Sleepable && !(this->sleepLoc)) 168 return (traits_type::tcr(*(this->get())) & ~KMP_BARRIER_SLEEP_STATE) == 169 checker; 170 else 171 return traits_type::tcr(*(this->get())) == checker; 172 } 173 /*! @param old_loc in old value of flag 174 * @result true if the flag's old value indicates it was released. */ 175 virtual bool done_check_val(PtrType old_loc) { return old_loc == checker; } 176 /*! @result true if the flag object is not yet released. 177 * Used in __kmp_wait_template like: 178 * @code 179 * while (flag.notdone_check()) { pause(); } 180 * @endcode */ 181 virtual bool notdone_check() { 182 return traits_type::tcr(*(this->get())) != checker; 183 } 184 /*! @result Actual flag value before release was applied. 185 * Trigger all waiting threads to run by modifying flag to release state. */ 186 void internal_release() { 187 (void)traits_type::test_then_add4((volatile PtrType *)this->get()); 188 } 189 /*! @result Actual flag value before sleep bit(s) set. 190 * Notes that there is at least one thread sleeping on the flag by setting 191 * sleep bit(s). */ 192 PtrType set_sleeping() { 193 if (this->sleepLoc) { 194 this->sleepLoc->store(true); 195 return *(this->get()); 196 } 197 return traits_type::test_then_or((volatile PtrType *)this->get(), 198 KMP_BARRIER_SLEEP_STATE); 199 } 200 /*! @result Actual flag value before sleep bit(s) cleared. 201 * Notes that there are no longer threads sleeping on the flag by clearing 202 * sleep bit(s). */ 203 void unset_sleeping() { 204 if (this->sleepLoc) { 205 this->sleepLoc->store(false); 206 return; 207 } 208 traits_type::test_then_and((volatile PtrType *)this->get(), 209 ~KMP_BARRIER_SLEEP_STATE); 210 } 211 /*! @param old_loc in old value of flag 212 * Test if there are threads sleeping on the flag's old value in old_loc. */ 213 bool is_sleeping_val(PtrType old_loc) { 214 if (this->sleepLoc) 215 return this->sleepLoc->load(); 216 return old_loc & KMP_BARRIER_SLEEP_STATE; 217 } 218 /*! Test whether there are threads sleeping on the flag. */ 219 bool is_sleeping() { 220 if (this->sleepLoc) 221 return this->sleepLoc->load(); 222 return is_sleeping_val(*(this->get())); 223 } 224 bool is_any_sleeping() { 225 if (this->sleepLoc) 226 return this->sleepLoc->load(); 227 return is_sleeping_val(*(this->get())); 228 } 229 kmp_uint8 *get_stolen() { return NULL; } 230 }; 231 232 /*! Base class for wait/release atomic flag */ 233 template <typename PtrType, flag_type FlagType, bool Sleepable> 234 class kmp_flag_atomic : public kmp_flag<FlagType> { 235 protected: 236 std::atomic<PtrType> *loc; /**< Pointer to flag location to wait on */ 237 PtrType checker; /**< Flag == checker means it has been released. */ 238 public: 239 typedef flag_traits<FlagType> traits_type; 240 typedef PtrType flag_t; 241 kmp_flag_atomic(std::atomic<PtrType> *p) : kmp_flag<FlagType>(), loc(p) {} 242 kmp_flag_atomic(std::atomic<PtrType> *p, kmp_info_t *thr) 243 : kmp_flag<FlagType>(1), loc(p) { 244 this->waiting_threads[0] = thr; 245 } 246 kmp_flag_atomic(std::atomic<PtrType> *p, PtrType c) 247 : kmp_flag<FlagType>(), loc(p), checker(c) {} 248 kmp_flag_atomic(std::atomic<PtrType> *p, PtrType c, std::atomic<bool> *sloc) 249 : kmp_flag<FlagType>(sloc), loc(p), checker(c) {} 250 /*! @result the pointer to the actual flag */ 251 std::atomic<PtrType> *get() { return loc; } 252 /*! @result void* pointer to the actual flag */ 253 void *get_void_p() { return RCAST(void *, loc); } 254 /*! @param new_loc in set loc to point at new_loc */ 255 void set(std::atomic<PtrType> *new_loc) { loc = new_loc; } 256 /*! @result flag value */ 257 PtrType load() { return loc->load(std::memory_order_acquire); } 258 /*! @param val the new flag value to be stored */ 259 void store(PtrType val) { loc->store(val, std::memory_order_release); } 260 /*! @result true if the flag object has been released. */ 261 bool done_check() { 262 if (Sleepable && !(this->sleepLoc)) 263 return (this->load() & ~KMP_BARRIER_SLEEP_STATE) == checker; 264 else 265 return this->load() == checker; 266 } 267 /*! @param old_loc in old value of flag 268 * @result true if the flag's old value indicates it was released. */ 269 bool done_check_val(PtrType old_loc) { return old_loc == checker; } 270 /*! @result true if the flag object is not yet released. 271 * Used in __kmp_wait_template like: 272 * @code 273 * while (flag.notdone_check()) { pause(); } 274 * @endcode */ 275 bool notdone_check() { return this->load() != checker; } 276 /*! @result Actual flag value before release was applied. 277 * Trigger all waiting threads to run by modifying flag to release state. */ 278 void internal_release() { KMP_ATOMIC_ADD(this->get(), 4); } 279 /*! @result Actual flag value before sleep bit(s) set. 280 * Notes that there is at least one thread sleeping on the flag by setting 281 * sleep bit(s). */ 282 PtrType set_sleeping() { 283 if (this->sleepLoc) { 284 this->sleepLoc->store(true); 285 return *(this->get()); 286 } 287 return KMP_ATOMIC_OR(this->get(), KMP_BARRIER_SLEEP_STATE); 288 } 289 /*! @result Actual flag value before sleep bit(s) cleared. 290 * Notes that there are no longer threads sleeping on the flag by clearing 291 * sleep bit(s). */ 292 void unset_sleeping() { 293 if (this->sleepLoc) { 294 this->sleepLoc->store(false); 295 return; 296 } 297 KMP_ATOMIC_AND(this->get(), ~KMP_BARRIER_SLEEP_STATE); 298 } 299 /*! @param old_loc in old value of flag 300 * Test whether there are threads sleeping on flag's old value in old_loc. */ 301 bool is_sleeping_val(PtrType old_loc) { 302 if (this->sleepLoc) 303 return this->sleepLoc->load(); 304 return old_loc & KMP_BARRIER_SLEEP_STATE; 305 } 306 /*! Test whether there are threads sleeping on the flag. */ 307 bool is_sleeping() { 308 if (this->sleepLoc) 309 return this->sleepLoc->load(); 310 return is_sleeping_val(this->load()); 311 } 312 bool is_any_sleeping() { 313 if (this->sleepLoc) 314 return this->sleepLoc->load(); 315 return is_sleeping_val(this->load()); 316 } 317 kmp_uint8 *get_stolen() { return NULL; } 318 }; 319 320 #if OMPT_SUPPORT 321 OMPT_NOINLINE 322 static void __ompt_implicit_task_end(kmp_info_t *this_thr, 323 ompt_state_t ompt_state, 324 ompt_data_t *tId) { 325 int ds_tid = this_thr->th.th_info.ds.ds_tid; 326 if (ompt_state == ompt_state_wait_barrier_implicit) { 327 this_thr->th.ompt_thread_info.state = ompt_state_overhead; 328 #if OMPT_OPTIONAL 329 void *codeptr = NULL; 330 if (ompt_enabled.ompt_callback_sync_region_wait) { 331 ompt_callbacks.ompt_callback(ompt_callback_sync_region_wait)( 332 ompt_sync_region_barrier_implicit, ompt_scope_end, NULL, tId, 333 codeptr); 334 } 335 if (ompt_enabled.ompt_callback_sync_region) { 336 ompt_callbacks.ompt_callback(ompt_callback_sync_region)( 337 ompt_sync_region_barrier_implicit, ompt_scope_end, NULL, tId, 338 codeptr); 339 } 340 #endif 341 if (!KMP_MASTER_TID(ds_tid)) { 342 if (ompt_enabled.ompt_callback_implicit_task) { 343 int flags = this_thr->th.ompt_thread_info.parallel_flags; 344 flags = (flags & ompt_parallel_league) ? ompt_task_initial 345 : ompt_task_implicit; 346 ompt_callbacks.ompt_callback(ompt_callback_implicit_task)( 347 ompt_scope_end, NULL, tId, 0, ds_tid, flags); 348 } 349 // return to idle state 350 this_thr->th.ompt_thread_info.state = ompt_state_idle; 351 } else { 352 this_thr->th.ompt_thread_info.state = ompt_state_overhead; 353 } 354 } 355 } 356 #endif 357 358 /* Spin wait loop that first does pause/yield, then sleep. A thread that calls 359 __kmp_wait_* must make certain that another thread calls __kmp_release 360 to wake it back up to prevent deadlocks! 361 362 NOTE: We may not belong to a team at this point. */ 363 template <class C, bool final_spin, bool Cancellable = false, 364 bool Sleepable = true> 365 static inline bool 366 __kmp_wait_template(kmp_info_t *this_thr, 367 C *flag USE_ITT_BUILD_ARG(void *itt_sync_obj)) { 368 #if USE_ITT_BUILD && USE_ITT_NOTIFY 369 volatile void *spin = flag->get(); 370 #endif 371 kmp_uint32 spins; 372 int th_gtid; 373 int tasks_completed = FALSE; 374 #if !KMP_USE_MONITOR 375 kmp_uint64 poll_count; 376 kmp_uint64 hibernate_goal; 377 #else 378 kmp_uint32 hibernate; 379 #endif 380 kmp_uint64 time; 381 382 KMP_FSYNC_SPIN_INIT(spin, NULL); 383 if (flag->done_check()) { 384 KMP_FSYNC_SPIN_ACQUIRED(CCAST(void *, spin)); 385 return false; 386 } 387 th_gtid = this_thr->th.th_info.ds.ds_gtid; 388 if (Cancellable) { 389 kmp_team_t *team = this_thr->th.th_team; 390 if (team && team->t.t_cancel_request == cancel_parallel) 391 return true; 392 } 393 #if KMP_OS_UNIX 394 if (final_spin) 395 KMP_ATOMIC_ST_REL(&this_thr->th.th_blocking, true); 396 #endif 397 KA_TRACE(20, 398 ("__kmp_wait_sleep: T#%d waiting for flag(%p)\n", th_gtid, flag)); 399 #if KMP_STATS_ENABLED 400 stats_state_e thread_state = KMP_GET_THREAD_STATE(); 401 #endif 402 403 /* OMPT Behavior: 404 THIS function is called from 405 __kmp_barrier (2 times) (implicit or explicit barrier in parallel regions) 406 these have join / fork behavior 407 408 In these cases, we don't change the state or trigger events in THIS 409 function. 410 Events are triggered in the calling code (__kmp_barrier): 411 412 state := ompt_state_overhead 413 barrier-begin 414 barrier-wait-begin 415 state := ompt_state_wait_barrier 416 call join-barrier-implementation (finally arrive here) 417 {} 418 call fork-barrier-implementation (finally arrive here) 419 {} 420 state := ompt_state_overhead 421 barrier-wait-end 422 barrier-end 423 state := ompt_state_work_parallel 424 425 426 __kmp_fork_barrier (after thread creation, before executing implicit task) 427 call fork-barrier-implementation (finally arrive here) 428 {} // worker arrive here with state = ompt_state_idle 429 430 431 __kmp_join_barrier (implicit barrier at end of parallel region) 432 state := ompt_state_barrier_implicit 433 barrier-begin 434 barrier-wait-begin 435 call join-barrier-implementation (finally arrive here 436 final_spin=FALSE) 437 { 438 } 439 __kmp_fork_barrier (implicit barrier at end of parallel region) 440 call fork-barrier-implementation (finally arrive here final_spin=TRUE) 441 442 Worker after task-team is finished: 443 barrier-wait-end 444 barrier-end 445 implicit-task-end 446 idle-begin 447 state := ompt_state_idle 448 449 Before leaving, if state = ompt_state_idle 450 idle-end 451 state := ompt_state_overhead 452 */ 453 #if OMPT_SUPPORT 454 ompt_state_t ompt_entry_state; 455 ompt_data_t *tId; 456 if (ompt_enabled.enabled) { 457 ompt_entry_state = this_thr->th.ompt_thread_info.state; 458 if (!final_spin || ompt_entry_state != ompt_state_wait_barrier_implicit || 459 KMP_MASTER_TID(this_thr->th.th_info.ds.ds_tid)) { 460 ompt_lw_taskteam_t *team = NULL; 461 if (this_thr->th.th_team) 462 team = this_thr->th.th_team->t.ompt_serialized_team_info; 463 if (team) { 464 tId = &(team->ompt_task_info.task_data); 465 } else { 466 tId = OMPT_CUR_TASK_DATA(this_thr); 467 } 468 } else { 469 tId = &(this_thr->th.ompt_thread_info.task_data); 470 } 471 if (final_spin && (__kmp_tasking_mode == tskm_immediate_exec || 472 this_thr->th.th_task_team == NULL)) { 473 // implicit task is done. Either no taskqueue, or task-team finished 474 __ompt_implicit_task_end(this_thr, ompt_entry_state, tId); 475 } 476 } 477 #endif 478 479 KMP_INIT_YIELD(spins); // Setup for waiting 480 KMP_INIT_BACKOFF(time); 481 482 if (__kmp_dflt_blocktime != KMP_MAX_BLOCKTIME || 483 __kmp_pause_status == kmp_soft_paused) { 484 #if KMP_USE_MONITOR 485 // The worker threads cannot rely on the team struct existing at this point. 486 // Use the bt values cached in the thread struct instead. 487 #ifdef KMP_ADJUST_BLOCKTIME 488 if (__kmp_pause_status == kmp_soft_paused || 489 (__kmp_zero_bt && !this_thr->th.th_team_bt_set)) 490 // Force immediate suspend if not set by user and more threads than 491 // available procs 492 hibernate = 0; 493 else 494 hibernate = this_thr->th.th_team_bt_intervals; 495 #else 496 hibernate = this_thr->th.th_team_bt_intervals; 497 #endif /* KMP_ADJUST_BLOCKTIME */ 498 499 /* If the blocktime is nonzero, we want to make sure that we spin wait for 500 the entirety of the specified #intervals, plus up to one interval more. 501 This increment make certain that this thread doesn't go to sleep too 502 soon. */ 503 if (hibernate != 0) 504 hibernate++; 505 506 // Add in the current time value. 507 hibernate += TCR_4(__kmp_global.g.g_time.dt.t_value); 508 KF_TRACE(20, ("__kmp_wait_sleep: T#%d now=%d, hibernate=%d, intervals=%d\n", 509 th_gtid, __kmp_global.g.g_time.dt.t_value, hibernate, 510 hibernate - __kmp_global.g.g_time.dt.t_value)); 511 #else 512 if (__kmp_pause_status == kmp_soft_paused) { 513 // Force immediate suspend 514 hibernate_goal = KMP_NOW(); 515 } else 516 hibernate_goal = KMP_NOW() + this_thr->th.th_team_bt_intervals; 517 poll_count = 0; 518 (void)poll_count; 519 #endif // KMP_USE_MONITOR 520 } 521 522 KMP_MB(); 523 524 // Main wait spin loop 525 while (flag->notdone_check()) { 526 kmp_task_team_t *task_team = NULL; 527 if (__kmp_tasking_mode != tskm_immediate_exec) { 528 task_team = this_thr->th.th_task_team; 529 /* If the thread's task team pointer is NULL, it means one of 3 things: 530 1) A newly-created thread is first being released by 531 __kmp_fork_barrier(), and its task team has not been set up yet. 532 2) All tasks have been executed to completion. 533 3) Tasking is off for this region. This could be because we are in a 534 serialized region (perhaps the outer one), or else tasking was manually 535 disabled (KMP_TASKING=0). */ 536 if (task_team != NULL) { 537 if (TCR_SYNC_4(task_team->tt.tt_active)) { 538 if (KMP_TASKING_ENABLED(task_team)) { 539 flag->execute_tasks( 540 this_thr, th_gtid, final_spin, 541 &tasks_completed USE_ITT_BUILD_ARG(itt_sync_obj), 0); 542 } else 543 this_thr->th.th_reap_state = KMP_SAFE_TO_REAP; 544 } else { 545 KMP_DEBUG_ASSERT(!KMP_MASTER_TID(this_thr->th.th_info.ds.ds_tid)); 546 #if OMPT_SUPPORT 547 // task-team is done now, other cases should be catched above 548 if (final_spin && ompt_enabled.enabled) 549 __ompt_implicit_task_end(this_thr, ompt_entry_state, tId); 550 #endif 551 this_thr->th.th_task_team = NULL; 552 this_thr->th.th_reap_state = KMP_SAFE_TO_REAP; 553 } 554 } else { 555 this_thr->th.th_reap_state = KMP_SAFE_TO_REAP; 556 } // if 557 } // if 558 559 KMP_FSYNC_SPIN_PREPARE(CCAST(void *, spin)); 560 if (TCR_4(__kmp_global.g.g_done)) { 561 if (__kmp_global.g.g_abort) 562 __kmp_abort_thread(); 563 break; 564 } 565 566 // If we are oversubscribed, or have waited a bit (and 567 // KMP_LIBRARY=throughput), then yield 568 KMP_YIELD_OVERSUB_ELSE_SPIN(spins, time); 569 570 #if KMP_STATS_ENABLED 571 // Check if thread has been signalled to idle state 572 // This indicates that the logical "join-barrier" has finished 573 if (this_thr->th.th_stats->isIdle() && 574 KMP_GET_THREAD_STATE() == FORK_JOIN_BARRIER) { 575 KMP_SET_THREAD_STATE(IDLE); 576 KMP_PUSH_PARTITIONED_TIMER(OMP_idle); 577 } 578 #endif 579 // Check if the barrier surrounding this wait loop has been cancelled 580 if (Cancellable) { 581 kmp_team_t *team = this_thr->th.th_team; 582 if (team && team->t.t_cancel_request == cancel_parallel) 583 break; 584 } 585 586 // For hidden helper thread, if task_team is nullptr, it means the main 587 // thread has not released the barrier. We cannot wait here because once the 588 // main thread releases all children barriers, all hidden helper threads are 589 // still sleeping. This leads to a problem that following configuration, 590 // such as task team sync, will not be performed such that this thread does 591 // not have task team. Usually it is not bad. However, a corner case is, 592 // when the first task encountered is an untied task, the check in 593 // __kmp_task_alloc will crash because it uses the task team pointer without 594 // checking whether it is nullptr. It is probably under some kind of 595 // assumption. 596 if (task_team && KMP_HIDDEN_HELPER_WORKER_THREAD(th_gtid) && 597 !TCR_4(__kmp_hidden_helper_team_done)) { 598 // If there is still hidden helper tasks to be executed, the hidden helper 599 // thread will not enter a waiting status. 600 if (KMP_ATOMIC_LD_ACQ(&__kmp_unexecuted_hidden_helper_tasks) == 0) { 601 __kmp_hidden_helper_worker_thread_wait(); 602 } 603 continue; 604 } 605 606 // Don't suspend if KMP_BLOCKTIME is set to "infinite" 607 if (__kmp_dflt_blocktime == KMP_MAX_BLOCKTIME && 608 __kmp_pause_status != kmp_soft_paused) 609 continue; 610 611 // Don't suspend if there is a likelihood of new tasks being spawned. 612 if (task_team != NULL && TCR_4(task_team->tt.tt_found_tasks) && 613 !__kmp_wpolicy_passive) 614 continue; 615 616 #if KMP_USE_MONITOR 617 // If we have waited a bit more, fall asleep 618 if (TCR_4(__kmp_global.g.g_time.dt.t_value) < hibernate) 619 continue; 620 #else 621 if (KMP_BLOCKING(hibernate_goal, poll_count++)) 622 continue; 623 #endif 624 // Don't suspend if wait loop designated non-sleepable 625 // in template parameters 626 if (!Sleepable) 627 continue; 628 629 #if KMP_HAVE_MWAIT || KMP_HAVE_UMWAIT 630 if (__kmp_mwait_enabled || __kmp_umwait_enabled) { 631 KF_TRACE(50, ("__kmp_wait_sleep: T#%d using monitor/mwait\n", th_gtid)); 632 flag->mwait(th_gtid); 633 } else { 634 #endif 635 KF_TRACE(50, ("__kmp_wait_sleep: T#%d suspend time reached\n", th_gtid)); 636 #if KMP_OS_UNIX 637 if (final_spin) 638 KMP_ATOMIC_ST_REL(&this_thr->th.th_blocking, false); 639 #endif 640 flag->suspend(th_gtid); 641 #if KMP_OS_UNIX 642 if (final_spin) 643 KMP_ATOMIC_ST_REL(&this_thr->th.th_blocking, true); 644 #endif 645 #if KMP_HAVE_MWAIT || KMP_HAVE_UMWAIT 646 } 647 #endif 648 649 if (TCR_4(__kmp_global.g.g_done)) { 650 if (__kmp_global.g.g_abort) 651 __kmp_abort_thread(); 652 break; 653 } else if (__kmp_tasking_mode != tskm_immediate_exec && 654 this_thr->th.th_reap_state == KMP_SAFE_TO_REAP) { 655 this_thr->th.th_reap_state = KMP_NOT_SAFE_TO_REAP; 656 } 657 // TODO: If thread is done with work and times out, disband/free 658 } 659 660 #if OMPT_SUPPORT 661 ompt_state_t ompt_exit_state = this_thr->th.ompt_thread_info.state; 662 if (ompt_enabled.enabled && ompt_exit_state != ompt_state_undefined) { 663 #if OMPT_OPTIONAL 664 if (final_spin) { 665 __ompt_implicit_task_end(this_thr, ompt_exit_state, tId); 666 ompt_exit_state = this_thr->th.ompt_thread_info.state; 667 } 668 #endif 669 if (ompt_exit_state == ompt_state_idle) { 670 this_thr->th.ompt_thread_info.state = ompt_state_overhead; 671 } 672 } 673 #endif 674 #if KMP_STATS_ENABLED 675 // If we were put into idle state, pop that off the state stack 676 if (KMP_GET_THREAD_STATE() == IDLE) { 677 KMP_POP_PARTITIONED_TIMER(); 678 KMP_SET_THREAD_STATE(thread_state); 679 this_thr->th.th_stats->resetIdleFlag(); 680 } 681 #endif 682 683 #if KMP_OS_UNIX 684 if (final_spin) 685 KMP_ATOMIC_ST_REL(&this_thr->th.th_blocking, false); 686 #endif 687 KMP_FSYNC_SPIN_ACQUIRED(CCAST(void *, spin)); 688 if (Cancellable) { 689 kmp_team_t *team = this_thr->th.th_team; 690 if (team && team->t.t_cancel_request == cancel_parallel) { 691 if (tasks_completed) { 692 // undo the previous decrement of unfinished_threads so that the 693 // thread can decrement at the join barrier with no problem 694 kmp_task_team_t *task_team = this_thr->th.th_task_team; 695 std::atomic<kmp_int32> *unfinished_threads = 696 &(task_team->tt.tt_unfinished_threads); 697 KMP_ATOMIC_INC(unfinished_threads); 698 } 699 return true; 700 } 701 } 702 return false; 703 } 704 705 #if KMP_HAVE_MWAIT || KMP_HAVE_UMWAIT 706 // Set up a monitor on the flag variable causing the calling thread to wait in 707 // a less active state until the flag variable is modified. 708 template <class C> 709 static inline void __kmp_mwait_template(int th_gtid, C *flag) { 710 KMP_TIME_DEVELOPER_PARTITIONED_BLOCK(USER_mwait); 711 kmp_info_t *th = __kmp_threads[th_gtid]; 712 713 KF_TRACE(30, ("__kmp_mwait_template: T#%d enter for flag = %p\n", th_gtid, 714 flag->get())); 715 716 // User-level mwait is available 717 KMP_DEBUG_ASSERT(__kmp_mwait_enabled || __kmp_umwait_enabled); 718 719 __kmp_suspend_initialize_thread(th); 720 __kmp_lock_suspend_mx(th); 721 722 volatile void *spin = flag->get(); 723 void *cacheline = (void *)(kmp_uintptr_t(spin) & ~(CACHE_LINE - 1)); 724 725 if (!flag->done_check()) { 726 // Mark thread as no longer active 727 th->th.th_active = FALSE; 728 if (th->th.th_active_in_pool) { 729 th->th.th_active_in_pool = FALSE; 730 KMP_ATOMIC_DEC(&__kmp_thread_pool_active_nth); 731 KMP_DEBUG_ASSERT(TCR_4(__kmp_thread_pool_active_nth) >= 0); 732 } 733 flag->set_sleeping(); 734 KF_TRACE(50, ("__kmp_mwait_template: T#%d calling monitor\n", th_gtid)); 735 #if KMP_HAVE_UMWAIT 736 if (__kmp_umwait_enabled) { 737 __kmp_umonitor(cacheline); 738 } 739 #elif KMP_HAVE_MWAIT 740 if (__kmp_mwait_enabled) { 741 __kmp_mm_monitor(cacheline, 0, 0); 742 } 743 #endif 744 // To avoid a race, check flag between 'monitor' and 'mwait'. A write to 745 // the address could happen after the last time we checked and before 746 // monitoring started, in which case monitor can't detect the change. 747 if (flag->done_check()) 748 flag->unset_sleeping(); 749 else { 750 // if flag changes here, wake-up happens immediately 751 TCW_PTR(th->th.th_sleep_loc, (void *)flag); 752 th->th.th_sleep_loc_type = flag->get_type(); 753 __kmp_unlock_suspend_mx(th); 754 KF_TRACE(50, ("__kmp_mwait_template: T#%d calling mwait\n", th_gtid)); 755 #if KMP_HAVE_UMWAIT 756 if (__kmp_umwait_enabled) { 757 __kmp_umwait(1, 100); // to do: enable ctrl via hints, backoff counter 758 } 759 #elif KMP_HAVE_MWAIT 760 if (__kmp_mwait_enabled) { 761 __kmp_mm_mwait(0, __kmp_mwait_hints); 762 } 763 #endif 764 KF_TRACE(50, ("__kmp_mwait_template: T#%d mwait done\n", th_gtid)); 765 __kmp_lock_suspend_mx(th); 766 // Clean up sleep info; doesn't matter how/why this thread stopped waiting 767 if (flag->is_sleeping()) 768 flag->unset_sleeping(); 769 TCW_PTR(th->th.th_sleep_loc, NULL); 770 th->th.th_sleep_loc_type = flag_unset; 771 } 772 // Mark thread as active again 773 th->th.th_active = TRUE; 774 if (TCR_4(th->th.th_in_pool)) { 775 KMP_ATOMIC_INC(&__kmp_thread_pool_active_nth); 776 th->th.th_active_in_pool = TRUE; 777 } 778 } // Drop out to main wait loop to check flag, handle tasks, etc. 779 __kmp_unlock_suspend_mx(th); 780 KF_TRACE(30, ("__kmp_mwait_template: T#%d exit\n", th_gtid)); 781 } 782 #endif // KMP_HAVE_MWAIT || KMP_HAVE_UMWAIT 783 784 /* Release any threads specified as waiting on the flag by releasing the flag 785 and resume the waiting thread if indicated by the sleep bit(s). A thread that 786 calls __kmp_wait_template must call this function to wake up the potentially 787 sleeping thread and prevent deadlocks! */ 788 template <class C> static inline void __kmp_release_template(C *flag) { 789 #ifdef KMP_DEBUG 790 int gtid = TCR_4(__kmp_init_gtid) ? __kmp_get_gtid() : -1; 791 #endif 792 KF_TRACE(20, ("__kmp_release: T#%d releasing flag(%x)\n", gtid, flag->get())); 793 KMP_DEBUG_ASSERT(flag->get()); 794 KMP_FSYNC_RELEASING(flag->get_void_p()); 795 796 flag->internal_release(); 797 798 KF_TRACE(100, ("__kmp_release: T#%d set new spin=%d\n", gtid, flag->get(), 799 flag->load())); 800 801 if (__kmp_dflt_blocktime != KMP_MAX_BLOCKTIME) { 802 // Only need to check sleep stuff if infinite block time not set. 803 // Are *any* threads waiting on flag sleeping? 804 if (flag->is_any_sleeping()) { 805 for (unsigned int i = 0; i < flag->get_num_waiters(); ++i) { 806 // if sleeping waiter exists at i, sets current_waiter to i inside flag 807 kmp_info_t *waiter = flag->get_waiter(i); 808 if (waiter) { 809 int wait_gtid = waiter->th.th_info.ds.ds_gtid; 810 // Wake up thread if needed 811 KF_TRACE(50, ("__kmp_release: T#%d waking up thread T#%d since sleep " 812 "flag(%p) set\n", 813 gtid, wait_gtid, flag->get())); 814 flag->resume(wait_gtid); // unsets flag's current_waiter when done 815 } 816 } 817 } 818 } 819 } 820 821 template <bool Cancellable, bool Sleepable> 822 class kmp_flag_32 : public kmp_flag_atomic<kmp_uint32, flag32, Sleepable> { 823 public: 824 kmp_flag_32(std::atomic<kmp_uint32> *p) 825 : kmp_flag_atomic<kmp_uint32, flag32, Sleepable>(p) {} 826 kmp_flag_32(std::atomic<kmp_uint32> *p, kmp_info_t *thr) 827 : kmp_flag_atomic<kmp_uint32, flag32, Sleepable>(p, thr) {} 828 kmp_flag_32(std::atomic<kmp_uint32> *p, kmp_uint32 c) 829 : kmp_flag_atomic<kmp_uint32, flag32, Sleepable>(p, c) {} 830 void suspend(int th_gtid) { __kmp_suspend_32(th_gtid, this); } 831 #if KMP_HAVE_MWAIT || KMP_HAVE_UMWAIT 832 void mwait(int th_gtid) { __kmp_mwait_32(th_gtid, this); } 833 #endif 834 void resume(int th_gtid) { __kmp_resume_32(th_gtid, this); } 835 int execute_tasks(kmp_info_t *this_thr, kmp_int32 gtid, int final_spin, 836 int *thread_finished USE_ITT_BUILD_ARG(void *itt_sync_obj), 837 kmp_int32 is_constrained) { 838 return __kmp_execute_tasks_32( 839 this_thr, gtid, this, final_spin, 840 thread_finished USE_ITT_BUILD_ARG(itt_sync_obj), is_constrained); 841 } 842 bool wait(kmp_info_t *this_thr, 843 int final_spin USE_ITT_BUILD_ARG(void *itt_sync_obj)) { 844 if (final_spin) 845 return __kmp_wait_template<kmp_flag_32, TRUE, Cancellable, Sleepable>( 846 this_thr, this USE_ITT_BUILD_ARG(itt_sync_obj)); 847 else 848 return __kmp_wait_template<kmp_flag_32, FALSE, Cancellable, Sleepable>( 849 this_thr, this USE_ITT_BUILD_ARG(itt_sync_obj)); 850 } 851 void release() { __kmp_release_template(this); } 852 flag_type get_ptr_type() { return flag32; } 853 }; 854 855 template <bool Cancellable, bool Sleepable> 856 class kmp_flag_64 : public kmp_flag_native<kmp_uint64, flag64, Sleepable> { 857 public: 858 kmp_flag_64(volatile kmp_uint64 *p) 859 : kmp_flag_native<kmp_uint64, flag64, Sleepable>(p) {} 860 kmp_flag_64(volatile kmp_uint64 *p, kmp_info_t *thr) 861 : kmp_flag_native<kmp_uint64, flag64, Sleepable>(p, thr) {} 862 kmp_flag_64(volatile kmp_uint64 *p, kmp_uint64 c) 863 : kmp_flag_native<kmp_uint64, flag64, Sleepable>(p, c) {} 864 kmp_flag_64(volatile kmp_uint64 *p, kmp_uint64 c, std::atomic<bool> *loc) 865 : kmp_flag_native<kmp_uint64, flag64, Sleepable>(p, c, loc) {} 866 void suspend(int th_gtid) { __kmp_suspend_64(th_gtid, this); } 867 #if KMP_HAVE_MWAIT || KMP_HAVE_UMWAIT 868 void mwait(int th_gtid) { __kmp_mwait_64(th_gtid, this); } 869 #endif 870 void resume(int th_gtid) { __kmp_resume_64(th_gtid, this); } 871 int execute_tasks(kmp_info_t *this_thr, kmp_int32 gtid, int final_spin, 872 int *thread_finished USE_ITT_BUILD_ARG(void *itt_sync_obj), 873 kmp_int32 is_constrained) { 874 return __kmp_execute_tasks_64( 875 this_thr, gtid, this, final_spin, 876 thread_finished USE_ITT_BUILD_ARG(itt_sync_obj), is_constrained); 877 } 878 bool wait(kmp_info_t *this_thr, 879 int final_spin USE_ITT_BUILD_ARG(void *itt_sync_obj)) { 880 if (final_spin) 881 return __kmp_wait_template<kmp_flag_64, TRUE, Cancellable, Sleepable>( 882 this_thr, this USE_ITT_BUILD_ARG(itt_sync_obj)); 883 else 884 return __kmp_wait_template<kmp_flag_64, FALSE, Cancellable, Sleepable>( 885 this_thr, this USE_ITT_BUILD_ARG(itt_sync_obj)); 886 } 887 void release() { __kmp_release_template(this); } 888 flag_type get_ptr_type() { return flag64; } 889 }; 890 891 template <bool Cancellable, bool Sleepable> 892 class kmp_atomic_flag_64 893 : public kmp_flag_atomic<kmp_uint64, atomic_flag64, Sleepable> { 894 public: 895 kmp_atomic_flag_64(std::atomic<kmp_uint64> *p) 896 : kmp_flag_atomic<kmp_uint64, atomic_flag64, Sleepable>(p) {} 897 kmp_atomic_flag_64(std::atomic<kmp_uint64> *p, kmp_info_t *thr) 898 : kmp_flag_atomic<kmp_uint64, atomic_flag64, Sleepable>(p, thr) {} 899 kmp_atomic_flag_64(std::atomic<kmp_uint64> *p, kmp_uint64 c) 900 : kmp_flag_atomic<kmp_uint64, atomic_flag64, Sleepable>(p, c) {} 901 kmp_atomic_flag_64(std::atomic<kmp_uint64> *p, kmp_uint64 c, 902 std::atomic<bool> *loc) 903 : kmp_flag_atomic<kmp_uint64, atomic_flag64, Sleepable>(p, c, loc) {} 904 void suspend(int th_gtid) { __kmp_atomic_suspend_64(th_gtid, this); } 905 void mwait(int th_gtid) { __kmp_atomic_mwait_64(th_gtid, this); } 906 void resume(int th_gtid) { __kmp_atomic_resume_64(th_gtid, this); } 907 int execute_tasks(kmp_info_t *this_thr, kmp_int32 gtid, int final_spin, 908 int *thread_finished USE_ITT_BUILD_ARG(void *itt_sync_obj), 909 kmp_int32 is_constrained) { 910 return __kmp_atomic_execute_tasks_64( 911 this_thr, gtid, this, final_spin, 912 thread_finished USE_ITT_BUILD_ARG(itt_sync_obj), is_constrained); 913 } 914 bool wait(kmp_info_t *this_thr, 915 int final_spin USE_ITT_BUILD_ARG(void *itt_sync_obj)) { 916 if (final_spin) 917 return __kmp_wait_template<kmp_atomic_flag_64, TRUE, Cancellable, 918 Sleepable>( 919 this_thr, this USE_ITT_BUILD_ARG(itt_sync_obj)); 920 else 921 return __kmp_wait_template<kmp_atomic_flag_64, FALSE, Cancellable, 922 Sleepable>( 923 this_thr, this USE_ITT_BUILD_ARG(itt_sync_obj)); 924 } 925 void release() { __kmp_release_template(this); } 926 flag_type get_ptr_type() { return atomic_flag64; } 927 }; 928 929 // Hierarchical 64-bit on-core barrier instantiation 930 class kmp_flag_oncore : public kmp_flag_native<kmp_uint64, flag_oncore, false> { 931 kmp_uint32 offset; /**< Portion of flag of interest for an operation. */ 932 bool flag_switch; /**< Indicates a switch in flag location. */ 933 enum barrier_type bt; /**< Barrier type. */ 934 kmp_info_t *this_thr; /**< Thread to redirect to different flag location. */ 935 #if USE_ITT_BUILD 936 void *itt_sync_obj; /**< ITT object to pass to new flag location. */ 937 #endif 938 unsigned char &byteref(volatile kmp_uint64 *loc, size_t offset) { 939 return (RCAST(unsigned char *, CCAST(kmp_uint64 *, loc)))[offset]; 940 } 941 942 public: 943 kmp_flag_oncore(volatile kmp_uint64 *p) 944 : kmp_flag_native<kmp_uint64, flag_oncore, false>(p), flag_switch(false) { 945 } 946 kmp_flag_oncore(volatile kmp_uint64 *p, kmp_uint32 idx) 947 : kmp_flag_native<kmp_uint64, flag_oncore, false>(p), offset(idx), 948 flag_switch(false), 949 bt(bs_last_barrier) USE_ITT_BUILD_ARG(itt_sync_obj(nullptr)) {} 950 kmp_flag_oncore(volatile kmp_uint64 *p, kmp_uint64 c, kmp_uint32 idx, 951 enum barrier_type bar_t, 952 kmp_info_t *thr USE_ITT_BUILD_ARG(void *itt)) 953 : kmp_flag_native<kmp_uint64, flag_oncore, false>(p, c), offset(idx), 954 flag_switch(false), bt(bar_t), 955 this_thr(thr) USE_ITT_BUILD_ARG(itt_sync_obj(itt)) {} 956 virtual ~kmp_flag_oncore() override {} 957 void *operator new(size_t size) { return __kmp_allocate(size); } 958 void operator delete(void *p) { __kmp_free(p); } 959 bool done_check_val(kmp_uint64 old_loc) override { 960 return byteref(&old_loc, offset) == checker; 961 } 962 bool done_check() override { return done_check_val(*get()); } 963 bool notdone_check() override { 964 // Calculate flag_switch 965 if (this_thr->th.th_bar[bt].bb.wait_flag == KMP_BARRIER_SWITCH_TO_OWN_FLAG) 966 flag_switch = true; 967 if (byteref(get(), offset) != 1 && !flag_switch) 968 return true; 969 else if (flag_switch) { 970 this_thr->th.th_bar[bt].bb.wait_flag = KMP_BARRIER_SWITCHING; 971 kmp_flag_64<> flag(&this_thr->th.th_bar[bt].bb.b_go, 972 (kmp_uint64)KMP_BARRIER_STATE_BUMP); 973 __kmp_wait_64(this_thr, &flag, TRUE USE_ITT_BUILD_ARG(itt_sync_obj)); 974 } 975 return false; 976 } 977 void internal_release() { 978 // Other threads can write their own bytes simultaneously. 979 if (__kmp_dflt_blocktime == KMP_MAX_BLOCKTIME) { 980 byteref(get(), offset) = 1; 981 } else { 982 kmp_uint64 mask = 0; 983 byteref(&mask, offset) = 1; 984 KMP_TEST_THEN_OR64(get(), mask); 985 } 986 } 987 void wait(kmp_info_t *this_thr, int final_spin) { 988 if (final_spin) 989 __kmp_wait_template<kmp_flag_oncore, TRUE>( 990 this_thr, this USE_ITT_BUILD_ARG(itt_sync_obj)); 991 else 992 __kmp_wait_template<kmp_flag_oncore, FALSE>( 993 this_thr, this USE_ITT_BUILD_ARG(itt_sync_obj)); 994 } 995 void release() { __kmp_release_template(this); } 996 void suspend(int th_gtid) { __kmp_suspend_oncore(th_gtid, this); } 997 #if KMP_HAVE_MWAIT || KMP_HAVE_UMWAIT 998 void mwait(int th_gtid) { __kmp_mwait_oncore(th_gtid, this); } 999 #endif 1000 void resume(int th_gtid) { __kmp_resume_oncore(th_gtid, this); } 1001 int execute_tasks(kmp_info_t *this_thr, kmp_int32 gtid, int final_spin, 1002 int *thread_finished USE_ITT_BUILD_ARG(void *itt_sync_obj), 1003 kmp_int32 is_constrained) { 1004 #if OMPD_SUPPORT 1005 int ret = __kmp_execute_tasks_oncore( 1006 this_thr, gtid, this, final_spin, 1007 thread_finished USE_ITT_BUILD_ARG(itt_sync_obj), is_constrained); 1008 if (ompd_state & OMPD_ENABLE_BP) 1009 ompd_bp_task_end(); 1010 return ret; 1011 #else 1012 return __kmp_execute_tasks_oncore( 1013 this_thr, gtid, this, final_spin, 1014 thread_finished USE_ITT_BUILD_ARG(itt_sync_obj), is_constrained); 1015 #endif 1016 } 1017 enum barrier_type get_bt() { return bt; } 1018 flag_type get_ptr_type() { return flag_oncore; } 1019 }; 1020 1021 static inline void __kmp_null_resume_wrapper(kmp_info_t *thr) { 1022 int gtid = __kmp_gtid_from_thread(thr); 1023 void *flag = CCAST(void *, thr->th.th_sleep_loc); 1024 flag_type type = thr->th.th_sleep_loc_type; 1025 if (!flag) 1026 return; 1027 // Attempt to wake up a thread: examine its type and call appropriate template 1028 switch (type) { 1029 case flag32: 1030 __kmp_resume_32(gtid, RCAST(kmp_flag_32<> *, flag)); 1031 break; 1032 case flag64: 1033 __kmp_resume_64(gtid, RCAST(kmp_flag_64<> *, flag)); 1034 break; 1035 case atomic_flag64: 1036 __kmp_atomic_resume_64(gtid, RCAST(kmp_atomic_flag_64<> *, flag)); 1037 break; 1038 case flag_oncore: 1039 __kmp_resume_oncore(gtid, RCAST(kmp_flag_oncore *, flag)); 1040 break; 1041 #ifdef KMP_DEBUG 1042 case flag_unset: 1043 KF_TRACE(100, ("__kmp_null_resume_wrapper: flag type %d is unset\n", type)); 1044 break; 1045 default: 1046 KF_TRACE(100, ("__kmp_null_resume_wrapper: flag type %d does not match any " 1047 "known flag type\n", 1048 type)); 1049 #endif 1050 } 1051 } 1052 1053 /*! 1054 @} 1055 */ 1056 1057 #endif // KMP_WAIT_RELEASE_H 1058