1 /* 2 * kmp_tasking.cpp -- OpenMP 3.0 tasking support. 3 */ 4 5 //===----------------------------------------------------------------------===// 6 // 7 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 8 // See https://llvm.org/LICENSE.txt for license information. 9 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "kmp.h" 14 #include "kmp_i18n.h" 15 #include "kmp_itt.h" 16 #include "kmp_stats.h" 17 #include "kmp_wait_release.h" 18 #include "kmp_taskdeps.h" 19 20 #if OMPT_SUPPORT 21 #include "ompt-specific.h" 22 #endif 23 24 #include "tsan_annotations.h" 25 26 /* forward declaration */ 27 static void __kmp_enable_tasking(kmp_task_team_t *task_team, 28 kmp_info_t *this_thr); 29 static void __kmp_alloc_task_deque(kmp_info_t *thread, 30 kmp_thread_data_t *thread_data); 31 static int __kmp_realloc_task_threads_data(kmp_info_t *thread, 32 kmp_task_team_t *task_team); 33 static void __kmp_bottom_half_finish_proxy(kmp_int32 gtid, kmp_task_t *ptask); 34 35 #ifdef BUILD_TIED_TASK_STACK 36 37 // __kmp_trace_task_stack: print the tied tasks from the task stack in order 38 // from top do bottom 39 // 40 // gtid: global thread identifier for thread containing stack 41 // thread_data: thread data for task team thread containing stack 42 // threshold: value above which the trace statement triggers 43 // location: string identifying call site of this function (for trace) 44 static void __kmp_trace_task_stack(kmp_int32 gtid, 45 kmp_thread_data_t *thread_data, 46 int threshold, char *location) { 47 kmp_task_stack_t *task_stack = &thread_data->td.td_susp_tied_tasks; 48 kmp_taskdata_t **stack_top = task_stack->ts_top; 49 kmp_int32 entries = task_stack->ts_entries; 50 kmp_taskdata_t *tied_task; 51 52 KA_TRACE( 53 threshold, 54 ("__kmp_trace_task_stack(start): location = %s, gtid = %d, entries = %d, " 55 "first_block = %p, stack_top = %p \n", 56 location, gtid, entries, task_stack->ts_first_block, stack_top)); 57 58 KMP_DEBUG_ASSERT(stack_top != NULL); 59 KMP_DEBUG_ASSERT(entries > 0); 60 61 while (entries != 0) { 62 KMP_DEBUG_ASSERT(stack_top != &task_stack->ts_first_block.sb_block[0]); 63 // fix up ts_top if we need to pop from previous block 64 if (entries & TASK_STACK_INDEX_MASK == 0) { 65 kmp_stack_block_t *stack_block = (kmp_stack_block_t *)(stack_top); 66 67 stack_block = stack_block->sb_prev; 68 stack_top = &stack_block->sb_block[TASK_STACK_BLOCK_SIZE]; 69 } 70 71 // finish bookkeeping 72 stack_top--; 73 entries--; 74 75 tied_task = *stack_top; 76 77 KMP_DEBUG_ASSERT(tied_task != NULL); 78 KMP_DEBUG_ASSERT(tied_task->td_flags.tasktype == TASK_TIED); 79 80 KA_TRACE(threshold, 81 ("__kmp_trace_task_stack(%s): gtid=%d, entry=%d, " 82 "stack_top=%p, tied_task=%p\n", 83 location, gtid, entries, stack_top, tied_task)); 84 } 85 KMP_DEBUG_ASSERT(stack_top == &task_stack->ts_first_block.sb_block[0]); 86 87 KA_TRACE(threshold, 88 ("__kmp_trace_task_stack(exit): location = %s, gtid = %d\n", 89 location, gtid)); 90 } 91 92 // __kmp_init_task_stack: initialize the task stack for the first time 93 // after a thread_data structure is created. 94 // It should not be necessary to do this again (assuming the stack works). 95 // 96 // gtid: global thread identifier of calling thread 97 // thread_data: thread data for task team thread containing stack 98 static void __kmp_init_task_stack(kmp_int32 gtid, 99 kmp_thread_data_t *thread_data) { 100 kmp_task_stack_t *task_stack = &thread_data->td.td_susp_tied_tasks; 101 kmp_stack_block_t *first_block; 102 103 // set up the first block of the stack 104 first_block = &task_stack->ts_first_block; 105 task_stack->ts_top = (kmp_taskdata_t **)first_block; 106 memset((void *)first_block, '\0', 107 TASK_STACK_BLOCK_SIZE * sizeof(kmp_taskdata_t *)); 108 109 // initialize the stack to be empty 110 task_stack->ts_entries = TASK_STACK_EMPTY; 111 first_block->sb_next = NULL; 112 first_block->sb_prev = NULL; 113 } 114 115 // __kmp_free_task_stack: free the task stack when thread_data is destroyed. 116 // 117 // gtid: global thread identifier for calling thread 118 // thread_data: thread info for thread containing stack 119 static void __kmp_free_task_stack(kmp_int32 gtid, 120 kmp_thread_data_t *thread_data) { 121 kmp_task_stack_t *task_stack = &thread_data->td.td_susp_tied_tasks; 122 kmp_stack_block_t *stack_block = &task_stack->ts_first_block; 123 124 KMP_DEBUG_ASSERT(task_stack->ts_entries == TASK_STACK_EMPTY); 125 // free from the second block of the stack 126 while (stack_block != NULL) { 127 kmp_stack_block_t *next_block = (stack_block) ? stack_block->sb_next : NULL; 128 129 stack_block->sb_next = NULL; 130 stack_block->sb_prev = NULL; 131 if (stack_block != &task_stack->ts_first_block) { 132 __kmp_thread_free(thread, 133 stack_block); // free the block, if not the first 134 } 135 stack_block = next_block; 136 } 137 // initialize the stack to be empty 138 task_stack->ts_entries = 0; 139 task_stack->ts_top = NULL; 140 } 141 142 // __kmp_push_task_stack: Push the tied task onto the task stack. 143 // Grow the stack if necessary by allocating another block. 144 // 145 // gtid: global thread identifier for calling thread 146 // thread: thread info for thread containing stack 147 // tied_task: the task to push on the stack 148 static void __kmp_push_task_stack(kmp_int32 gtid, kmp_info_t *thread, 149 kmp_taskdata_t *tied_task) { 150 // GEH - need to consider what to do if tt_threads_data not allocated yet 151 kmp_thread_data_t *thread_data = 152 &thread->th.th_task_team->tt.tt_threads_data[__kmp_tid_from_gtid(gtid)]; 153 kmp_task_stack_t *task_stack = &thread_data->td.td_susp_tied_tasks; 154 155 if (tied_task->td_flags.team_serial || tied_task->td_flags.tasking_ser) { 156 return; // Don't push anything on stack if team or team tasks are serialized 157 } 158 159 KMP_DEBUG_ASSERT(tied_task->td_flags.tasktype == TASK_TIED); 160 KMP_DEBUG_ASSERT(task_stack->ts_top != NULL); 161 162 KA_TRACE(20, 163 ("__kmp_push_task_stack(enter): GTID: %d; THREAD: %p; TASK: %p\n", 164 gtid, thread, tied_task)); 165 // Store entry 166 *(task_stack->ts_top) = tied_task; 167 168 // Do bookkeeping for next push 169 task_stack->ts_top++; 170 task_stack->ts_entries++; 171 172 if (task_stack->ts_entries & TASK_STACK_INDEX_MASK == 0) { 173 // Find beginning of this task block 174 kmp_stack_block_t *stack_block = 175 (kmp_stack_block_t *)(task_stack->ts_top - TASK_STACK_BLOCK_SIZE); 176 177 // Check if we already have a block 178 if (stack_block->sb_next != 179 NULL) { // reset ts_top to beginning of next block 180 task_stack->ts_top = &stack_block->sb_next->sb_block[0]; 181 } else { // Alloc new block and link it up 182 kmp_stack_block_t *new_block = (kmp_stack_block_t *)__kmp_thread_calloc( 183 thread, sizeof(kmp_stack_block_t)); 184 185 task_stack->ts_top = &new_block->sb_block[0]; 186 stack_block->sb_next = new_block; 187 new_block->sb_prev = stack_block; 188 new_block->sb_next = NULL; 189 190 KA_TRACE( 191 30, 192 ("__kmp_push_task_stack(): GTID: %d; TASK: %p; Alloc new block: %p\n", 193 gtid, tied_task, new_block)); 194 } 195 } 196 KA_TRACE(20, ("__kmp_push_task_stack(exit): GTID: %d; TASK: %p\n", gtid, 197 tied_task)); 198 } 199 200 // __kmp_pop_task_stack: Pop the tied task from the task stack. Don't return 201 // the task, just check to make sure it matches the ending task passed in. 202 // 203 // gtid: global thread identifier for the calling thread 204 // thread: thread info structure containing stack 205 // tied_task: the task popped off the stack 206 // ending_task: the task that is ending (should match popped task) 207 static void __kmp_pop_task_stack(kmp_int32 gtid, kmp_info_t *thread, 208 kmp_taskdata_t *ending_task) { 209 // GEH - need to consider what to do if tt_threads_data not allocated yet 210 kmp_thread_data_t *thread_data = 211 &thread->th.th_task_team->tt_threads_data[__kmp_tid_from_gtid(gtid)]; 212 kmp_task_stack_t *task_stack = &thread_data->td.td_susp_tied_tasks; 213 kmp_taskdata_t *tied_task; 214 215 if (ending_task->td_flags.team_serial || ending_task->td_flags.tasking_ser) { 216 // Don't pop anything from stack if team or team tasks are serialized 217 return; 218 } 219 220 KMP_DEBUG_ASSERT(task_stack->ts_top != NULL); 221 KMP_DEBUG_ASSERT(task_stack->ts_entries > 0); 222 223 KA_TRACE(20, ("__kmp_pop_task_stack(enter): GTID: %d; THREAD: %p\n", gtid, 224 thread)); 225 226 // fix up ts_top if we need to pop from previous block 227 if (task_stack->ts_entries & TASK_STACK_INDEX_MASK == 0) { 228 kmp_stack_block_t *stack_block = (kmp_stack_block_t *)(task_stack->ts_top); 229 230 stack_block = stack_block->sb_prev; 231 task_stack->ts_top = &stack_block->sb_block[TASK_STACK_BLOCK_SIZE]; 232 } 233 234 // finish bookkeeping 235 task_stack->ts_top--; 236 task_stack->ts_entries--; 237 238 tied_task = *(task_stack->ts_top); 239 240 KMP_DEBUG_ASSERT(tied_task != NULL); 241 KMP_DEBUG_ASSERT(tied_task->td_flags.tasktype == TASK_TIED); 242 KMP_DEBUG_ASSERT(tied_task == ending_task); // If we built the stack correctly 243 244 KA_TRACE(20, ("__kmp_pop_task_stack(exit): GTID: %d; TASK: %p\n", gtid, 245 tied_task)); 246 return; 247 } 248 #endif /* BUILD_TIED_TASK_STACK */ 249 250 // returns 1 if new task is allowed to execute, 0 otherwise 251 // checks Task Scheduling constraint (if requested) and 252 // mutexinoutset dependencies if any 253 static bool __kmp_task_is_allowed(int gtid, const kmp_int32 is_constrained, 254 const kmp_taskdata_t *tasknew, 255 const kmp_taskdata_t *taskcurr) { 256 if (is_constrained && (tasknew->td_flags.tiedness == TASK_TIED)) { 257 // Check if the candidate obeys the Task Scheduling Constraints (TSC) 258 // only descendant of all deferred tied tasks can be scheduled, checking 259 // the last one is enough, as it in turn is the descendant of all others 260 kmp_taskdata_t *current = taskcurr->td_last_tied; 261 KMP_DEBUG_ASSERT(current != NULL); 262 // check if the task is not suspended on barrier 263 if (current->td_flags.tasktype == TASK_EXPLICIT || 264 current->td_taskwait_thread > 0) { // <= 0 on barrier 265 kmp_int32 level = current->td_level; 266 kmp_taskdata_t *parent = tasknew->td_parent; 267 while (parent != current && parent->td_level > level) { 268 // check generation up to the level of the current task 269 parent = parent->td_parent; 270 KMP_DEBUG_ASSERT(parent != NULL); 271 } 272 if (parent != current) 273 return false; 274 } 275 } 276 // Check mutexinoutset dependencies, acquire locks 277 kmp_depnode_t *node = tasknew->td_depnode; 278 if (node && (node->dn.mtx_num_locks > 0)) { 279 for (int i = 0; i < node->dn.mtx_num_locks; ++i) { 280 KMP_DEBUG_ASSERT(node->dn.mtx_locks[i] != NULL); 281 if (__kmp_test_lock(node->dn.mtx_locks[i], gtid)) 282 continue; 283 // could not get the lock, release previous locks 284 for (int j = i - 1; j >= 0; --j) 285 __kmp_release_lock(node->dn.mtx_locks[j], gtid); 286 return false; 287 } 288 // negative num_locks means all locks acquired successfully 289 node->dn.mtx_num_locks = -node->dn.mtx_num_locks; 290 } 291 return true; 292 } 293 294 // __kmp_realloc_task_deque: 295 // Re-allocates a task deque for a particular thread, copies the content from 296 // the old deque and adjusts the necessary data structures relating to the 297 // deque. This operation must be done with the deque_lock being held 298 static void __kmp_realloc_task_deque(kmp_info_t *thread, 299 kmp_thread_data_t *thread_data) { 300 kmp_int32 size = TASK_DEQUE_SIZE(thread_data->td); 301 KMP_DEBUG_ASSERT(TCR_4(thread_data->td.td_deque_ntasks) == size); 302 kmp_int32 new_size = 2 * size; 303 304 KE_TRACE(10, ("__kmp_realloc_task_deque: T#%d reallocating deque[from %d to " 305 "%d] for thread_data %p\n", 306 __kmp_gtid_from_thread(thread), size, new_size, thread_data)); 307 308 kmp_taskdata_t **new_deque = 309 (kmp_taskdata_t **)__kmp_allocate(new_size * sizeof(kmp_taskdata_t *)); 310 311 int i, j; 312 for (i = thread_data->td.td_deque_head, j = 0; j < size; 313 i = (i + 1) & TASK_DEQUE_MASK(thread_data->td), j++) 314 new_deque[j] = thread_data->td.td_deque[i]; 315 316 __kmp_free(thread_data->td.td_deque); 317 318 thread_data->td.td_deque_head = 0; 319 thread_data->td.td_deque_tail = size; 320 thread_data->td.td_deque = new_deque; 321 thread_data->td.td_deque_size = new_size; 322 } 323 324 // __kmp_push_task: Add a task to the thread's deque 325 static kmp_int32 __kmp_push_task(kmp_int32 gtid, kmp_task_t *task) { 326 kmp_info_t *thread = __kmp_threads[gtid]; 327 kmp_taskdata_t *taskdata = KMP_TASK_TO_TASKDATA(task); 328 kmp_task_team_t *task_team = thread->th.th_task_team; 329 kmp_int32 tid = __kmp_tid_from_gtid(gtid); 330 kmp_thread_data_t *thread_data; 331 332 KA_TRACE(20, 333 ("__kmp_push_task: T#%d trying to push task %p.\n", gtid, taskdata)); 334 335 if (taskdata->td_flags.tiedness == TASK_UNTIED) { 336 // untied task needs to increment counter so that the task structure is not 337 // freed prematurely 338 kmp_int32 counter = 1 + KMP_ATOMIC_INC(&taskdata->td_untied_count); 339 KMP_DEBUG_USE_VAR(counter); 340 KA_TRACE( 341 20, 342 ("__kmp_push_task: T#%d untied_count (%d) incremented for task %p\n", 343 gtid, counter, taskdata)); 344 } 345 346 // The first check avoids building task_team thread data if serialized 347 if (taskdata->td_flags.task_serial) { 348 KA_TRACE(20, ("__kmp_push_task: T#%d team serialized; returning " 349 "TASK_NOT_PUSHED for task %p\n", 350 gtid, taskdata)); 351 return TASK_NOT_PUSHED; 352 } 353 354 // Now that serialized tasks have returned, we can assume that we are not in 355 // immediate exec mode 356 KMP_DEBUG_ASSERT(__kmp_tasking_mode != tskm_immediate_exec); 357 if (!KMP_TASKING_ENABLED(task_team)) { 358 __kmp_enable_tasking(task_team, thread); 359 } 360 KMP_DEBUG_ASSERT(TCR_4(task_team->tt.tt_found_tasks) == TRUE); 361 KMP_DEBUG_ASSERT(TCR_PTR(task_team->tt.tt_threads_data) != NULL); 362 363 // Find tasking deque specific to encountering thread 364 thread_data = &task_team->tt.tt_threads_data[tid]; 365 366 // No lock needed since only owner can allocate 367 if (thread_data->td.td_deque == NULL) { 368 __kmp_alloc_task_deque(thread, thread_data); 369 } 370 371 int locked = 0; 372 // Check if deque is full 373 if (TCR_4(thread_data->td.td_deque_ntasks) >= 374 TASK_DEQUE_SIZE(thread_data->td)) { 375 if (__kmp_enable_task_throttling && 376 __kmp_task_is_allowed(gtid, __kmp_task_stealing_constraint, taskdata, 377 thread->th.th_current_task)) { 378 KA_TRACE(20, ("__kmp_push_task: T#%d deque is full; returning " 379 "TASK_NOT_PUSHED for task %p\n", 380 gtid, taskdata)); 381 return TASK_NOT_PUSHED; 382 } else { 383 __kmp_acquire_bootstrap_lock(&thread_data->td.td_deque_lock); 384 locked = 1; 385 if (TCR_4(thread_data->td.td_deque_ntasks) >= 386 TASK_DEQUE_SIZE(thread_data->td)) { 387 // expand deque to push the task which is not allowed to execute 388 __kmp_realloc_task_deque(thread, thread_data); 389 } 390 } 391 } 392 // Lock the deque for the task push operation 393 if (!locked) { 394 __kmp_acquire_bootstrap_lock(&thread_data->td.td_deque_lock); 395 // Need to recheck as we can get a proxy task from thread outside of OpenMP 396 if (TCR_4(thread_data->td.td_deque_ntasks) >= 397 TASK_DEQUE_SIZE(thread_data->td)) { 398 if (__kmp_enable_task_throttling && 399 __kmp_task_is_allowed(gtid, __kmp_task_stealing_constraint, taskdata, 400 thread->th.th_current_task)) { 401 __kmp_release_bootstrap_lock(&thread_data->td.td_deque_lock); 402 KA_TRACE(20, ("__kmp_push_task: T#%d deque is full on 2nd check; " 403 "returning TASK_NOT_PUSHED for task %p\n", 404 gtid, taskdata)); 405 return TASK_NOT_PUSHED; 406 } else { 407 // expand deque to push the task which is not allowed to execute 408 __kmp_realloc_task_deque(thread, thread_data); 409 } 410 } 411 } 412 // Must have room since no thread can add tasks but calling thread 413 KMP_DEBUG_ASSERT(TCR_4(thread_data->td.td_deque_ntasks) < 414 TASK_DEQUE_SIZE(thread_data->td)); 415 416 thread_data->td.td_deque[thread_data->td.td_deque_tail] = 417 taskdata; // Push taskdata 418 // Wrap index. 419 thread_data->td.td_deque_tail = 420 (thread_data->td.td_deque_tail + 1) & TASK_DEQUE_MASK(thread_data->td); 421 TCW_4(thread_data->td.td_deque_ntasks, 422 TCR_4(thread_data->td.td_deque_ntasks) + 1); // Adjust task count 423 424 KA_TRACE(20, ("__kmp_push_task: T#%d returning TASK_SUCCESSFULLY_PUSHED: " 425 "task=%p ntasks=%d head=%u tail=%u\n", 426 gtid, taskdata, thread_data->td.td_deque_ntasks, 427 thread_data->td.td_deque_head, thread_data->td.td_deque_tail)); 428 429 __kmp_release_bootstrap_lock(&thread_data->td.td_deque_lock); 430 431 return TASK_SUCCESSFULLY_PUSHED; 432 } 433 434 // __kmp_pop_current_task_from_thread: set up current task from called thread 435 // when team ends 436 // 437 // this_thr: thread structure to set current_task in. 438 void __kmp_pop_current_task_from_thread(kmp_info_t *this_thr) { 439 KF_TRACE(10, ("__kmp_pop_current_task_from_thread(enter): T#%d " 440 "this_thread=%p, curtask=%p, " 441 "curtask_parent=%p\n", 442 0, this_thr, this_thr->th.th_current_task, 443 this_thr->th.th_current_task->td_parent)); 444 445 this_thr->th.th_current_task = this_thr->th.th_current_task->td_parent; 446 447 KF_TRACE(10, ("__kmp_pop_current_task_from_thread(exit): T#%d " 448 "this_thread=%p, curtask=%p, " 449 "curtask_parent=%p\n", 450 0, this_thr, this_thr->th.th_current_task, 451 this_thr->th.th_current_task->td_parent)); 452 } 453 454 // __kmp_push_current_task_to_thread: set up current task in called thread for a 455 // new team 456 // 457 // this_thr: thread structure to set up 458 // team: team for implicit task data 459 // tid: thread within team to set up 460 void __kmp_push_current_task_to_thread(kmp_info_t *this_thr, kmp_team_t *team, 461 int tid) { 462 // current task of the thread is a parent of the new just created implicit 463 // tasks of new team 464 KF_TRACE(10, ("__kmp_push_current_task_to_thread(enter): T#%d this_thread=%p " 465 "curtask=%p " 466 "parent_task=%p\n", 467 tid, this_thr, this_thr->th.th_current_task, 468 team->t.t_implicit_task_taskdata[tid].td_parent)); 469 470 KMP_DEBUG_ASSERT(this_thr != NULL); 471 472 if (tid == 0) { 473 if (this_thr->th.th_current_task != &team->t.t_implicit_task_taskdata[0]) { 474 team->t.t_implicit_task_taskdata[0].td_parent = 475 this_thr->th.th_current_task; 476 this_thr->th.th_current_task = &team->t.t_implicit_task_taskdata[0]; 477 } 478 } else { 479 team->t.t_implicit_task_taskdata[tid].td_parent = 480 team->t.t_implicit_task_taskdata[0].td_parent; 481 this_thr->th.th_current_task = &team->t.t_implicit_task_taskdata[tid]; 482 } 483 484 KF_TRACE(10, ("__kmp_push_current_task_to_thread(exit): T#%d this_thread=%p " 485 "curtask=%p " 486 "parent_task=%p\n", 487 tid, this_thr, this_thr->th.th_current_task, 488 team->t.t_implicit_task_taskdata[tid].td_parent)); 489 } 490 491 // __kmp_task_start: bookkeeping for a task starting execution 492 // 493 // GTID: global thread id of calling thread 494 // task: task starting execution 495 // current_task: task suspending 496 static void __kmp_task_start(kmp_int32 gtid, kmp_task_t *task, 497 kmp_taskdata_t *current_task) { 498 kmp_taskdata_t *taskdata = KMP_TASK_TO_TASKDATA(task); 499 kmp_info_t *thread = __kmp_threads[gtid]; 500 501 KA_TRACE(10, 502 ("__kmp_task_start(enter): T#%d starting task %p: current_task=%p\n", 503 gtid, taskdata, current_task)); 504 505 KMP_DEBUG_ASSERT(taskdata->td_flags.tasktype == TASK_EXPLICIT); 506 507 // mark currently executing task as suspended 508 // TODO: GEH - make sure root team implicit task is initialized properly. 509 // KMP_DEBUG_ASSERT( current_task -> td_flags.executing == 1 ); 510 current_task->td_flags.executing = 0; 511 512 // Add task to stack if tied 513 #ifdef BUILD_TIED_TASK_STACK 514 if (taskdata->td_flags.tiedness == TASK_TIED) { 515 __kmp_push_task_stack(gtid, thread, taskdata); 516 } 517 #endif /* BUILD_TIED_TASK_STACK */ 518 519 // mark starting task as executing and as current task 520 thread->th.th_current_task = taskdata; 521 522 KMP_DEBUG_ASSERT(taskdata->td_flags.started == 0 || 523 taskdata->td_flags.tiedness == TASK_UNTIED); 524 KMP_DEBUG_ASSERT(taskdata->td_flags.executing == 0 || 525 taskdata->td_flags.tiedness == TASK_UNTIED); 526 taskdata->td_flags.started = 1; 527 taskdata->td_flags.executing = 1; 528 KMP_DEBUG_ASSERT(taskdata->td_flags.complete == 0); 529 KMP_DEBUG_ASSERT(taskdata->td_flags.freed == 0); 530 531 // GEH TODO: shouldn't we pass some sort of location identifier here? 532 // APT: yes, we will pass location here. 533 // need to store current thread state (in a thread or taskdata structure) 534 // before setting work_state, otherwise wrong state is set after end of task 535 536 KA_TRACE(10, ("__kmp_task_start(exit): T#%d task=%p\n", gtid, taskdata)); 537 538 return; 539 } 540 541 #if OMPT_SUPPORT 542 //------------------------------------------------------------------------------ 543 // __ompt_task_init: 544 // Initialize OMPT fields maintained by a task. This will only be called after 545 // ompt_start_tool, so we already know whether ompt is enabled or not. 546 547 static inline void __ompt_task_init(kmp_taskdata_t *task, int tid) { 548 // The calls to __ompt_task_init already have the ompt_enabled condition. 549 task->ompt_task_info.task_data.value = 0; 550 task->ompt_task_info.frame.exit_frame = ompt_data_none; 551 task->ompt_task_info.frame.enter_frame = ompt_data_none; 552 task->ompt_task_info.frame.exit_frame_flags = ompt_frame_runtime | ompt_frame_framepointer; 553 task->ompt_task_info.frame.enter_frame_flags = ompt_frame_runtime | ompt_frame_framepointer; 554 } 555 556 // __ompt_task_start: 557 // Build and trigger task-begin event 558 static inline void __ompt_task_start(kmp_task_t *task, 559 kmp_taskdata_t *current_task, 560 kmp_int32 gtid) { 561 kmp_taskdata_t *taskdata = KMP_TASK_TO_TASKDATA(task); 562 ompt_task_status_t status = ompt_task_switch; 563 if (__kmp_threads[gtid]->th.ompt_thread_info.ompt_task_yielded) { 564 status = ompt_task_yield; 565 __kmp_threads[gtid]->th.ompt_thread_info.ompt_task_yielded = 0; 566 } 567 /* let OMPT know that we're about to run this task */ 568 if (ompt_enabled.ompt_callback_task_schedule) { 569 ompt_callbacks.ompt_callback(ompt_callback_task_schedule)( 570 &(current_task->ompt_task_info.task_data), status, 571 &(taskdata->ompt_task_info.task_data)); 572 } 573 taskdata->ompt_task_info.scheduling_parent = current_task; 574 } 575 576 // __ompt_task_finish: 577 // Build and trigger final task-schedule event 578 static inline void __ompt_task_finish(kmp_task_t *task, 579 kmp_taskdata_t *resumed_task, 580 ompt_task_status_t status) { 581 if (ompt_enabled.ompt_callback_task_schedule) { 582 kmp_taskdata_t *taskdata = KMP_TASK_TO_TASKDATA(task); 583 if (__kmp_omp_cancellation && taskdata->td_taskgroup && 584 taskdata->td_taskgroup->cancel_request == cancel_taskgroup) { 585 status = ompt_task_cancel; 586 } 587 588 /* let OMPT know that we're returning to the callee task */ 589 ompt_callbacks.ompt_callback(ompt_callback_task_schedule)( 590 &(taskdata->ompt_task_info.task_data), status, 591 (resumed_task ? &(resumed_task->ompt_task_info.task_data) : NULL)); 592 } 593 } 594 #endif 595 596 template <bool ompt> 597 static void __kmpc_omp_task_begin_if0_template(ident_t *loc_ref, kmp_int32 gtid, 598 kmp_task_t *task, 599 void *frame_address, 600 void *return_address) { 601 kmp_taskdata_t *taskdata = KMP_TASK_TO_TASKDATA(task); 602 kmp_taskdata_t *current_task = __kmp_threads[gtid]->th.th_current_task; 603 604 KA_TRACE(10, ("__kmpc_omp_task_begin_if0(enter): T#%d loc=%p task=%p " 605 "current_task=%p\n", 606 gtid, loc_ref, taskdata, current_task)); 607 608 if (taskdata->td_flags.tiedness == TASK_UNTIED) { 609 // untied task needs to increment counter so that the task structure is not 610 // freed prematurely 611 kmp_int32 counter = 1 + KMP_ATOMIC_INC(&taskdata->td_untied_count); 612 KMP_DEBUG_USE_VAR(counter); 613 KA_TRACE(20, ("__kmpc_omp_task_begin_if0: T#%d untied_count (%d) " 614 "incremented for task %p\n", 615 gtid, counter, taskdata)); 616 } 617 618 taskdata->td_flags.task_serial = 619 1; // Execute this task immediately, not deferred. 620 __kmp_task_start(gtid, task, current_task); 621 622 #if OMPT_SUPPORT 623 if (ompt) { 624 if (current_task->ompt_task_info.frame.enter_frame.ptr == NULL) { 625 current_task->ompt_task_info.frame.enter_frame.ptr = 626 taskdata->ompt_task_info.frame.exit_frame.ptr = frame_address; 627 current_task->ompt_task_info.frame.enter_frame_flags = 628 taskdata->ompt_task_info.frame.exit_frame_flags = ompt_frame_application | ompt_frame_framepointer; 629 } 630 if (ompt_enabled.ompt_callback_task_create) { 631 ompt_task_info_t *parent_info = &(current_task->ompt_task_info); 632 ompt_callbacks.ompt_callback(ompt_callback_task_create)( 633 &(parent_info->task_data), &(parent_info->frame), 634 &(taskdata->ompt_task_info.task_data), 635 ompt_task_explicit | TASK_TYPE_DETAILS_FORMAT(taskdata), 0, 636 return_address); 637 } 638 __ompt_task_start(task, current_task, gtid); 639 } 640 #endif // OMPT_SUPPORT 641 642 KA_TRACE(10, ("__kmpc_omp_task_begin_if0(exit): T#%d loc=%p task=%p,\n", gtid, 643 loc_ref, taskdata)); 644 } 645 646 #if OMPT_SUPPORT 647 OMPT_NOINLINE 648 static void __kmpc_omp_task_begin_if0_ompt(ident_t *loc_ref, kmp_int32 gtid, 649 kmp_task_t *task, 650 void *frame_address, 651 void *return_address) { 652 __kmpc_omp_task_begin_if0_template<true>(loc_ref, gtid, task, frame_address, 653 return_address); 654 } 655 #endif // OMPT_SUPPORT 656 657 // __kmpc_omp_task_begin_if0: report that a given serialized task has started 658 // execution 659 // 660 // loc_ref: source location information; points to beginning of task block. 661 // gtid: global thread number. 662 // task: task thunk for the started task. 663 void __kmpc_omp_task_begin_if0(ident_t *loc_ref, kmp_int32 gtid, 664 kmp_task_t *task) { 665 #if OMPT_SUPPORT 666 if (UNLIKELY(ompt_enabled.enabled)) { 667 OMPT_STORE_RETURN_ADDRESS(gtid); 668 __kmpc_omp_task_begin_if0_ompt(loc_ref, gtid, task, 669 OMPT_GET_FRAME_ADDRESS(1), 670 OMPT_LOAD_RETURN_ADDRESS(gtid)); 671 return; 672 } 673 #endif 674 __kmpc_omp_task_begin_if0_template<false>(loc_ref, gtid, task, NULL, NULL); 675 } 676 677 #ifdef TASK_UNUSED 678 // __kmpc_omp_task_begin: report that a given task has started execution 679 // NEVER GENERATED BY COMPILER, DEPRECATED!!! 680 void __kmpc_omp_task_begin(ident_t *loc_ref, kmp_int32 gtid, kmp_task_t *task) { 681 kmp_taskdata_t *current_task = __kmp_threads[gtid]->th.th_current_task; 682 683 KA_TRACE( 684 10, 685 ("__kmpc_omp_task_begin(enter): T#%d loc=%p task=%p current_task=%p\n", 686 gtid, loc_ref, KMP_TASK_TO_TASKDATA(task), current_task)); 687 688 __kmp_task_start(gtid, task, current_task); 689 690 KA_TRACE(10, ("__kmpc_omp_task_begin(exit): T#%d loc=%p task=%p,\n", gtid, 691 loc_ref, KMP_TASK_TO_TASKDATA(task))); 692 return; 693 } 694 #endif // TASK_UNUSED 695 696 // __kmp_free_task: free the current task space and the space for shareds 697 // 698 // gtid: Global thread ID of calling thread 699 // taskdata: task to free 700 // thread: thread data structure of caller 701 static void __kmp_free_task(kmp_int32 gtid, kmp_taskdata_t *taskdata, 702 kmp_info_t *thread) { 703 KA_TRACE(30, ("__kmp_free_task: T#%d freeing data from task %p\n", gtid, 704 taskdata)); 705 706 // Check to make sure all flags and counters have the correct values 707 KMP_DEBUG_ASSERT(taskdata->td_flags.tasktype == TASK_EXPLICIT); 708 KMP_DEBUG_ASSERT(taskdata->td_flags.executing == 0); 709 KMP_DEBUG_ASSERT(taskdata->td_flags.complete == 1); 710 KMP_DEBUG_ASSERT(taskdata->td_flags.freed == 0); 711 KMP_DEBUG_ASSERT(taskdata->td_allocated_child_tasks == 0 || 712 taskdata->td_flags.task_serial == 1); 713 KMP_DEBUG_ASSERT(taskdata->td_incomplete_child_tasks == 0); 714 715 taskdata->td_flags.freed = 1; 716 ANNOTATE_HAPPENS_BEFORE(taskdata); 717 // deallocate the taskdata and shared variable blocks associated with this task 718 #if USE_FAST_MEMORY 719 __kmp_fast_free(thread, taskdata); 720 #else /* ! USE_FAST_MEMORY */ 721 __kmp_thread_free(thread, taskdata); 722 #endif 723 724 KA_TRACE(20, ("__kmp_free_task: T#%d freed task %p\n", gtid, taskdata)); 725 } 726 727 // __kmp_free_task_and_ancestors: free the current task and ancestors without 728 // children 729 // 730 // gtid: Global thread ID of calling thread 731 // taskdata: task to free 732 // thread: thread data structure of caller 733 static void __kmp_free_task_and_ancestors(kmp_int32 gtid, 734 kmp_taskdata_t *taskdata, 735 kmp_info_t *thread) { 736 // Proxy tasks must always be allowed to free their parents 737 // because they can be run in background even in serial mode. 738 kmp_int32 team_serial = 739 (taskdata->td_flags.team_serial || taskdata->td_flags.tasking_ser) && 740 !taskdata->td_flags.proxy; 741 KMP_DEBUG_ASSERT(taskdata->td_flags.tasktype == TASK_EXPLICIT); 742 743 kmp_int32 children = KMP_ATOMIC_DEC(&taskdata->td_allocated_child_tasks) - 1; 744 KMP_DEBUG_ASSERT(children >= 0); 745 746 // Now, go up the ancestor tree to see if any ancestors can now be freed. 747 while (children == 0) { 748 kmp_taskdata_t *parent_taskdata = taskdata->td_parent; 749 750 KA_TRACE(20, ("__kmp_free_task_and_ancestors(enter): T#%d task %p complete " 751 "and freeing itself\n", 752 gtid, taskdata)); 753 754 // --- Deallocate my ancestor task --- 755 __kmp_free_task(gtid, taskdata, thread); 756 757 taskdata = parent_taskdata; 758 759 if (team_serial) 760 return; 761 // Stop checking ancestors at implicit task instead of walking up ancestor 762 // tree to avoid premature deallocation of ancestors. 763 if (taskdata->td_flags.tasktype == TASK_IMPLICIT) { 764 if (taskdata->td_dephash) { // do we need to cleanup dephash? 765 int children = KMP_ATOMIC_LD_ACQ(&taskdata->td_incomplete_child_tasks); 766 kmp_tasking_flags_t flags_old = taskdata->td_flags; 767 if (children == 0 && flags_old.complete == 1) { 768 kmp_tasking_flags_t flags_new = flags_old; 769 flags_new.complete = 0; 770 if (KMP_COMPARE_AND_STORE_ACQ32( 771 RCAST(kmp_int32 *, &taskdata->td_flags), 772 *RCAST(kmp_int32 *, &flags_old), 773 *RCAST(kmp_int32 *, &flags_new))) { 774 KA_TRACE(100, ("__kmp_free_task_and_ancestors: T#%d cleans " 775 "dephash of implicit task %p\n", 776 gtid, taskdata)); 777 // cleanup dephash of finished implicit task 778 __kmp_dephash_free_entries(thread, taskdata->td_dephash); 779 } 780 } 781 } 782 return; 783 } 784 // Predecrement simulated by "- 1" calculation 785 children = KMP_ATOMIC_DEC(&taskdata->td_allocated_child_tasks) - 1; 786 KMP_DEBUG_ASSERT(children >= 0); 787 } 788 789 KA_TRACE( 790 20, ("__kmp_free_task_and_ancestors(exit): T#%d task %p has %d children; " 791 "not freeing it yet\n", 792 gtid, taskdata, children)); 793 } 794 795 // __kmp_task_finish: bookkeeping to do when a task finishes execution 796 // 797 // gtid: global thread ID for calling thread 798 // task: task to be finished 799 // resumed_task: task to be resumed. (may be NULL if task is serialized) 800 // 801 // template<ompt>: effectively ompt_enabled.enabled!=0 802 // the version with ompt=false is inlined, allowing to optimize away all ompt 803 // code in this case 804 template <bool ompt> 805 static void __kmp_task_finish(kmp_int32 gtid, kmp_task_t *task, 806 kmp_taskdata_t *resumed_task) { 807 kmp_taskdata_t *taskdata = KMP_TASK_TO_TASKDATA(task); 808 kmp_info_t *thread = __kmp_threads[gtid]; 809 kmp_task_team_t *task_team = 810 thread->th.th_task_team; // might be NULL for serial teams... 811 kmp_int32 children = 0; 812 813 KA_TRACE(10, ("__kmp_task_finish(enter): T#%d finishing task %p and resuming " 814 "task %p\n", 815 gtid, taskdata, resumed_task)); 816 817 KMP_DEBUG_ASSERT(taskdata->td_flags.tasktype == TASK_EXPLICIT); 818 819 // Pop task from stack if tied 820 #ifdef BUILD_TIED_TASK_STACK 821 if (taskdata->td_flags.tiedness == TASK_TIED) { 822 __kmp_pop_task_stack(gtid, thread, taskdata); 823 } 824 #endif /* BUILD_TIED_TASK_STACK */ 825 826 if (taskdata->td_flags.tiedness == TASK_UNTIED) { 827 // untied task needs to check the counter so that the task structure is not 828 // freed prematurely 829 kmp_int32 counter = KMP_ATOMIC_DEC(&taskdata->td_untied_count) - 1; 830 KA_TRACE( 831 20, 832 ("__kmp_task_finish: T#%d untied_count (%d) decremented for task %p\n", 833 gtid, counter, taskdata)); 834 if (counter > 0) { 835 // untied task is not done, to be continued possibly by other thread, do 836 // not free it now 837 if (resumed_task == NULL) { 838 KMP_DEBUG_ASSERT(taskdata->td_flags.task_serial); 839 resumed_task = taskdata->td_parent; // In a serialized task, the resumed 840 // task is the parent 841 } 842 thread->th.th_current_task = resumed_task; // restore current_task 843 resumed_task->td_flags.executing = 1; // resume previous task 844 KA_TRACE(10, ("__kmp_task_finish(exit): T#%d partially done task %p, " 845 "resuming task %p\n", 846 gtid, taskdata, resumed_task)); 847 return; 848 } 849 } 850 851 // Check mutexinoutset dependencies, release locks 852 kmp_depnode_t *node = taskdata->td_depnode; 853 if (node && (node->dn.mtx_num_locks < 0)) { 854 // negative num_locks means all locks were acquired 855 node->dn.mtx_num_locks = -node->dn.mtx_num_locks; 856 for (int i = node->dn.mtx_num_locks - 1; i >= 0; --i) { 857 KMP_DEBUG_ASSERT(node->dn.mtx_locks[i] != NULL); 858 __kmp_release_lock(node->dn.mtx_locks[i], gtid); 859 } 860 } 861 862 // bookkeeping for resuming task: 863 // GEH - note tasking_ser => task_serial 864 KMP_DEBUG_ASSERT( 865 (taskdata->td_flags.tasking_ser || taskdata->td_flags.task_serial) == 866 taskdata->td_flags.task_serial); 867 if (taskdata->td_flags.task_serial) { 868 if (resumed_task == NULL) { 869 resumed_task = taskdata->td_parent; // In a serialized task, the resumed 870 // task is the parent 871 } 872 } else { 873 KMP_DEBUG_ASSERT(resumed_task != 874 NULL); // verify that resumed task is passed as argument 875 } 876 877 /* If the tasks' destructor thunk flag has been set, we need to invoke the 878 destructor thunk that has been generated by the compiler. The code is 879 placed here, since at this point other tasks might have been released 880 hence overlapping the destructor invocations with some other work in the 881 released tasks. The OpenMP spec is not specific on when the destructors 882 are invoked, so we should be free to choose. */ 883 if (taskdata->td_flags.destructors_thunk) { 884 kmp_routine_entry_t destr_thunk = task->data1.destructors; 885 KMP_ASSERT(destr_thunk); 886 destr_thunk(gtid, task); 887 } 888 889 KMP_DEBUG_ASSERT(taskdata->td_flags.complete == 0); 890 KMP_DEBUG_ASSERT(taskdata->td_flags.started == 1); 891 KMP_DEBUG_ASSERT(taskdata->td_flags.freed == 0); 892 893 bool detach = false; 894 if (taskdata->td_flags.detachable == TASK_DETACHABLE) { 895 if (taskdata->td_allow_completion_event.type == 896 KMP_EVENT_ALLOW_COMPLETION) { 897 // event hasn't been fulfilled yet. Try to detach task. 898 __kmp_acquire_tas_lock(&taskdata->td_allow_completion_event.lock, gtid); 899 if (taskdata->td_allow_completion_event.type == 900 KMP_EVENT_ALLOW_COMPLETION) { 901 // task finished execution 902 KMP_DEBUG_ASSERT(taskdata->td_flags.executing == 1); 903 taskdata->td_flags.executing = 0; // suspend the finishing task 904 905 #if OMPT_SUPPORT 906 // For a detached task, which is not completed, we switch back 907 // the omp_fulfill_event signals completion 908 // locking is necessary to avoid a race with ompt_task_late_fulfill 909 if (ompt) 910 __ompt_task_finish(task, resumed_task, ompt_task_detach); 911 #endif 912 913 // no access to taskdata after this point! 914 // __kmp_fulfill_event might free taskdata at any time from now 915 916 taskdata->td_flags.proxy = TASK_PROXY; // proxify! 917 detach = true; 918 } 919 __kmp_release_tas_lock(&taskdata->td_allow_completion_event.lock, gtid); 920 } 921 } 922 923 if (!detach) { 924 taskdata->td_flags.complete = 1; // mark the task as completed 925 926 #if OMPT_SUPPORT 927 // This is not a detached task, we are done here 928 if (ompt) 929 __ompt_task_finish(task, resumed_task, ompt_task_complete); 930 #endif 931 932 // Only need to keep track of count if team parallel and tasking not 933 // serialized, or task is detachable and event has already been fulfilled 934 if (!(taskdata->td_flags.team_serial || taskdata->td_flags.tasking_ser) || 935 taskdata->td_flags.detachable == TASK_DETACHABLE) { 936 // Predecrement simulated by "- 1" calculation 937 children = 938 KMP_ATOMIC_DEC(&taskdata->td_parent->td_incomplete_child_tasks) - 1; 939 KMP_DEBUG_ASSERT(children >= 0); 940 if (taskdata->td_taskgroup) 941 KMP_ATOMIC_DEC(&taskdata->td_taskgroup->count); 942 __kmp_release_deps(gtid, taskdata); 943 } else if (task_team && task_team->tt.tt_found_proxy_tasks) { 944 // if we found proxy tasks there could exist a dependency chain 945 // with the proxy task as origin 946 __kmp_release_deps(gtid, taskdata); 947 } 948 // td_flags.executing must be marked as 0 after __kmp_release_deps has been 949 // called. Othertwise, if a task is executed immediately from the 950 // release_deps code, the flag will be reset to 1 again by this same 951 // function 952 KMP_DEBUG_ASSERT(taskdata->td_flags.executing == 1); 953 taskdata->td_flags.executing = 0; // suspend the finishing task 954 } 955 956 957 KA_TRACE( 958 20, ("__kmp_task_finish: T#%d finished task %p, %d incomplete children\n", 959 gtid, taskdata, children)); 960 961 // Free this task and then ancestor tasks if they have no children. 962 // Restore th_current_task first as suggested by John: 963 // johnmc: if an asynchronous inquiry peers into the runtime system 964 // it doesn't see the freed task as the current task. 965 thread->th.th_current_task = resumed_task; 966 if (!detach) 967 __kmp_free_task_and_ancestors(gtid, taskdata, thread); 968 969 // TODO: GEH - make sure root team implicit task is initialized properly. 970 // KMP_DEBUG_ASSERT( resumed_task->td_flags.executing == 0 ); 971 resumed_task->td_flags.executing = 1; // resume previous task 972 973 KA_TRACE( 974 10, ("__kmp_task_finish(exit): T#%d finished task %p, resuming task %p\n", 975 gtid, taskdata, resumed_task)); 976 977 return; 978 } 979 980 template <bool ompt> 981 static void __kmpc_omp_task_complete_if0_template(ident_t *loc_ref, 982 kmp_int32 gtid, 983 kmp_task_t *task) { 984 KA_TRACE(10, ("__kmpc_omp_task_complete_if0(enter): T#%d loc=%p task=%p\n", 985 gtid, loc_ref, KMP_TASK_TO_TASKDATA(task))); 986 // this routine will provide task to resume 987 __kmp_task_finish<ompt>(gtid, task, NULL); 988 989 KA_TRACE(10, ("__kmpc_omp_task_complete_if0(exit): T#%d loc=%p task=%p\n", 990 gtid, loc_ref, KMP_TASK_TO_TASKDATA(task))); 991 992 #if OMPT_SUPPORT 993 if (ompt) { 994 ompt_frame_t *ompt_frame; 995 __ompt_get_task_info_internal(0, NULL, NULL, &ompt_frame, NULL, NULL); 996 ompt_frame->enter_frame = ompt_data_none; 997 ompt_frame->enter_frame_flags = ompt_frame_runtime | ompt_frame_framepointer; 998 } 999 #endif 1000 1001 return; 1002 } 1003 1004 #if OMPT_SUPPORT 1005 OMPT_NOINLINE 1006 void __kmpc_omp_task_complete_if0_ompt(ident_t *loc_ref, kmp_int32 gtid, 1007 kmp_task_t *task) { 1008 __kmpc_omp_task_complete_if0_template<true>(loc_ref, gtid, task); 1009 } 1010 #endif // OMPT_SUPPORT 1011 1012 // __kmpc_omp_task_complete_if0: report that a task has completed execution 1013 // 1014 // loc_ref: source location information; points to end of task block. 1015 // gtid: global thread number. 1016 // task: task thunk for the completed task. 1017 void __kmpc_omp_task_complete_if0(ident_t *loc_ref, kmp_int32 gtid, 1018 kmp_task_t *task) { 1019 #if OMPT_SUPPORT 1020 if (UNLIKELY(ompt_enabled.enabled)) { 1021 __kmpc_omp_task_complete_if0_ompt(loc_ref, gtid, task); 1022 return; 1023 } 1024 #endif 1025 __kmpc_omp_task_complete_if0_template<false>(loc_ref, gtid, task); 1026 } 1027 1028 #ifdef TASK_UNUSED 1029 // __kmpc_omp_task_complete: report that a task has completed execution 1030 // NEVER GENERATED BY COMPILER, DEPRECATED!!! 1031 void __kmpc_omp_task_complete(ident_t *loc_ref, kmp_int32 gtid, 1032 kmp_task_t *task) { 1033 KA_TRACE(10, ("__kmpc_omp_task_complete(enter): T#%d loc=%p task=%p\n", gtid, 1034 loc_ref, KMP_TASK_TO_TASKDATA(task))); 1035 1036 __kmp_task_finish<false>(gtid, task, 1037 NULL); // Not sure how to find task to resume 1038 1039 KA_TRACE(10, ("__kmpc_omp_task_complete(exit): T#%d loc=%p task=%p\n", gtid, 1040 loc_ref, KMP_TASK_TO_TASKDATA(task))); 1041 return; 1042 } 1043 #endif // TASK_UNUSED 1044 1045 // __kmp_init_implicit_task: Initialize the appropriate fields in the implicit 1046 // task for a given thread 1047 // 1048 // loc_ref: reference to source location of parallel region 1049 // this_thr: thread data structure corresponding to implicit task 1050 // team: team for this_thr 1051 // tid: thread id of given thread within team 1052 // set_curr_task: TRUE if need to push current task to thread 1053 // NOTE: Routine does not set up the implicit task ICVS. This is assumed to 1054 // have already been done elsewhere. 1055 // TODO: Get better loc_ref. Value passed in may be NULL 1056 void __kmp_init_implicit_task(ident_t *loc_ref, kmp_info_t *this_thr, 1057 kmp_team_t *team, int tid, int set_curr_task) { 1058 kmp_taskdata_t *task = &team->t.t_implicit_task_taskdata[tid]; 1059 1060 KF_TRACE( 1061 10, 1062 ("__kmp_init_implicit_task(enter): T#:%d team=%p task=%p, reinit=%s\n", 1063 tid, team, task, set_curr_task ? "TRUE" : "FALSE")); 1064 1065 task->td_task_id = KMP_GEN_TASK_ID(); 1066 task->td_team = team; 1067 // task->td_parent = NULL; // fix for CQ230101 (broken parent task info 1068 // in debugger) 1069 task->td_ident = loc_ref; 1070 task->td_taskwait_ident = NULL; 1071 task->td_taskwait_counter = 0; 1072 task->td_taskwait_thread = 0; 1073 1074 task->td_flags.tiedness = TASK_TIED; 1075 task->td_flags.tasktype = TASK_IMPLICIT; 1076 task->td_flags.proxy = TASK_FULL; 1077 1078 // All implicit tasks are executed immediately, not deferred 1079 task->td_flags.task_serial = 1; 1080 task->td_flags.tasking_ser = (__kmp_tasking_mode == tskm_immediate_exec); 1081 task->td_flags.team_serial = (team->t.t_serialized) ? 1 : 0; 1082 1083 task->td_flags.started = 1; 1084 task->td_flags.executing = 1; 1085 task->td_flags.complete = 0; 1086 task->td_flags.freed = 0; 1087 1088 task->td_depnode = NULL; 1089 task->td_last_tied = task; 1090 task->td_allow_completion_event.type = KMP_EVENT_UNINITIALIZED; 1091 1092 if (set_curr_task) { // only do this init first time thread is created 1093 KMP_ATOMIC_ST_REL(&task->td_incomplete_child_tasks, 0); 1094 // Not used: don't need to deallocate implicit task 1095 KMP_ATOMIC_ST_REL(&task->td_allocated_child_tasks, 0); 1096 task->td_taskgroup = NULL; // An implicit task does not have taskgroup 1097 task->td_dephash = NULL; 1098 __kmp_push_current_task_to_thread(this_thr, team, tid); 1099 } else { 1100 KMP_DEBUG_ASSERT(task->td_incomplete_child_tasks == 0); 1101 KMP_DEBUG_ASSERT(task->td_allocated_child_tasks == 0); 1102 } 1103 1104 #if OMPT_SUPPORT 1105 if (UNLIKELY(ompt_enabled.enabled)) 1106 __ompt_task_init(task, tid); 1107 #endif 1108 1109 KF_TRACE(10, ("__kmp_init_implicit_task(exit): T#:%d team=%p task=%p\n", tid, 1110 team, task)); 1111 } 1112 1113 // __kmp_finish_implicit_task: Release resources associated to implicit tasks 1114 // at the end of parallel regions. Some resources are kept for reuse in the next 1115 // parallel region. 1116 // 1117 // thread: thread data structure corresponding to implicit task 1118 void __kmp_finish_implicit_task(kmp_info_t *thread) { 1119 kmp_taskdata_t *task = thread->th.th_current_task; 1120 if (task->td_dephash) { 1121 int children; 1122 task->td_flags.complete = 1; 1123 children = KMP_ATOMIC_LD_ACQ(&task->td_incomplete_child_tasks); 1124 kmp_tasking_flags_t flags_old = task->td_flags; 1125 if (children == 0 && flags_old.complete == 1) { 1126 kmp_tasking_flags_t flags_new = flags_old; 1127 flags_new.complete = 0; 1128 if (KMP_COMPARE_AND_STORE_ACQ32(RCAST(kmp_int32 *, &task->td_flags), 1129 *RCAST(kmp_int32 *, &flags_old), 1130 *RCAST(kmp_int32 *, &flags_new))) { 1131 KA_TRACE(100, ("__kmp_finish_implicit_task: T#%d cleans " 1132 "dephash of implicit task %p\n", 1133 thread->th.th_info.ds.ds_gtid, task)); 1134 __kmp_dephash_free_entries(thread, task->td_dephash); 1135 } 1136 } 1137 } 1138 } 1139 1140 // __kmp_free_implicit_task: Release resources associated to implicit tasks 1141 // when these are destroyed regions 1142 // 1143 // thread: thread data structure corresponding to implicit task 1144 void __kmp_free_implicit_task(kmp_info_t *thread) { 1145 kmp_taskdata_t *task = thread->th.th_current_task; 1146 if (task && task->td_dephash) { 1147 __kmp_dephash_free(thread, task->td_dephash); 1148 task->td_dephash = NULL; 1149 } 1150 } 1151 1152 // Round up a size to a power of two specified by val: Used to insert padding 1153 // between structures co-allocated using a single malloc() call 1154 static size_t __kmp_round_up_to_val(size_t size, size_t val) { 1155 if (size & (val - 1)) { 1156 size &= ~(val - 1); 1157 if (size <= KMP_SIZE_T_MAX - val) { 1158 size += val; // Round up if there is no overflow. 1159 } 1160 } 1161 return size; 1162 } // __kmp_round_up_to_va 1163 1164 // __kmp_task_alloc: Allocate the taskdata and task data structures for a task 1165 // 1166 // loc_ref: source location information 1167 // gtid: global thread number. 1168 // flags: include tiedness & task type (explicit vs. implicit) of the ''new'' 1169 // task encountered. Converted from kmp_int32 to kmp_tasking_flags_t in routine. 1170 // sizeof_kmp_task_t: Size in bytes of kmp_task_t data structure including 1171 // private vars accessed in task. 1172 // sizeof_shareds: Size in bytes of array of pointers to shared vars accessed 1173 // in task. 1174 // task_entry: Pointer to task code entry point generated by compiler. 1175 // returns: a pointer to the allocated kmp_task_t structure (task). 1176 kmp_task_t *__kmp_task_alloc(ident_t *loc_ref, kmp_int32 gtid, 1177 kmp_tasking_flags_t *flags, 1178 size_t sizeof_kmp_task_t, size_t sizeof_shareds, 1179 kmp_routine_entry_t task_entry) { 1180 kmp_task_t *task; 1181 kmp_taskdata_t *taskdata; 1182 kmp_info_t *thread = __kmp_threads[gtid]; 1183 kmp_team_t *team = thread->th.th_team; 1184 kmp_taskdata_t *parent_task = thread->th.th_current_task; 1185 size_t shareds_offset; 1186 1187 if (!TCR_4(__kmp_init_middle)) 1188 __kmp_middle_initialize(); 1189 1190 KA_TRACE(10, ("__kmp_task_alloc(enter): T#%d loc=%p, flags=(0x%x) " 1191 "sizeof_task=%ld sizeof_shared=%ld entry=%p\n", 1192 gtid, loc_ref, *((kmp_int32 *)flags), sizeof_kmp_task_t, 1193 sizeof_shareds, task_entry)); 1194 1195 if (parent_task->td_flags.final) { 1196 if (flags->merged_if0) { 1197 } 1198 flags->final = 1; 1199 } 1200 if (flags->tiedness == TASK_UNTIED && !team->t.t_serialized) { 1201 // Untied task encountered causes the TSC algorithm to check entire deque of 1202 // the victim thread. If no untied task encountered, then checking the head 1203 // of the deque should be enough. 1204 KMP_CHECK_UPDATE(thread->th.th_task_team->tt.tt_untied_task_encountered, 1); 1205 } 1206 1207 // Detachable tasks are not proxy tasks yet but could be in the future. Doing 1208 // the tasking setup 1209 // when that happens is too late. 1210 if (flags->proxy == TASK_PROXY || flags->detachable == TASK_DETACHABLE) { 1211 if (flags->proxy == TASK_PROXY) { 1212 flags->tiedness = TASK_UNTIED; 1213 flags->merged_if0 = 1; 1214 } 1215 /* are we running in a sequential parallel or tskm_immediate_exec... we need 1216 tasking support enabled */ 1217 if ((thread->th.th_task_team) == NULL) { 1218 /* This should only happen if the team is serialized 1219 setup a task team and propagate it to the thread */ 1220 KMP_DEBUG_ASSERT(team->t.t_serialized); 1221 KA_TRACE(30, 1222 ("T#%d creating task team in __kmp_task_alloc for proxy task\n", 1223 gtid)); 1224 __kmp_task_team_setup( 1225 thread, team, 1226 1); // 1 indicates setup the current team regardless of nthreads 1227 thread->th.th_task_team = team->t.t_task_team[thread->th.th_task_state]; 1228 } 1229 kmp_task_team_t *task_team = thread->th.th_task_team; 1230 1231 /* tasking must be enabled now as the task might not be pushed */ 1232 if (!KMP_TASKING_ENABLED(task_team)) { 1233 KA_TRACE( 1234 30, 1235 ("T#%d enabling tasking in __kmp_task_alloc for proxy task\n", gtid)); 1236 __kmp_enable_tasking(task_team, thread); 1237 kmp_int32 tid = thread->th.th_info.ds.ds_tid; 1238 kmp_thread_data_t *thread_data = &task_team->tt.tt_threads_data[tid]; 1239 // No lock needed since only owner can allocate 1240 if (thread_data->td.td_deque == NULL) { 1241 __kmp_alloc_task_deque(thread, thread_data); 1242 } 1243 } 1244 1245 if (task_team->tt.tt_found_proxy_tasks == FALSE) 1246 TCW_4(task_team->tt.tt_found_proxy_tasks, TRUE); 1247 } 1248 1249 // Calculate shared structure offset including padding after kmp_task_t struct 1250 // to align pointers in shared struct 1251 shareds_offset = sizeof(kmp_taskdata_t) + sizeof_kmp_task_t; 1252 shareds_offset = __kmp_round_up_to_val(shareds_offset, sizeof(void *)); 1253 1254 // Allocate a kmp_taskdata_t block and a kmp_task_t block. 1255 KA_TRACE(30, ("__kmp_task_alloc: T#%d First malloc size: %ld\n", gtid, 1256 shareds_offset)); 1257 KA_TRACE(30, ("__kmp_task_alloc: T#%d Second malloc size: %ld\n", gtid, 1258 sizeof_shareds)); 1259 1260 // Avoid double allocation here by combining shareds with taskdata 1261 #if USE_FAST_MEMORY 1262 taskdata = (kmp_taskdata_t *)__kmp_fast_allocate(thread, shareds_offset + 1263 sizeof_shareds); 1264 #else /* ! USE_FAST_MEMORY */ 1265 taskdata = (kmp_taskdata_t *)__kmp_thread_malloc(thread, shareds_offset + 1266 sizeof_shareds); 1267 #endif /* USE_FAST_MEMORY */ 1268 ANNOTATE_HAPPENS_AFTER(taskdata); 1269 1270 task = KMP_TASKDATA_TO_TASK(taskdata); 1271 1272 // Make sure task & taskdata are aligned appropriately 1273 #if KMP_ARCH_X86 || KMP_ARCH_PPC64 || !KMP_HAVE_QUAD 1274 KMP_DEBUG_ASSERT((((kmp_uintptr_t)taskdata) & (sizeof(double) - 1)) == 0); 1275 KMP_DEBUG_ASSERT((((kmp_uintptr_t)task) & (sizeof(double) - 1)) == 0); 1276 #else 1277 KMP_DEBUG_ASSERT((((kmp_uintptr_t)taskdata) & (sizeof(_Quad) - 1)) == 0); 1278 KMP_DEBUG_ASSERT((((kmp_uintptr_t)task) & (sizeof(_Quad) - 1)) == 0); 1279 #endif 1280 if (sizeof_shareds > 0) { 1281 // Avoid double allocation here by combining shareds with taskdata 1282 task->shareds = &((char *)taskdata)[shareds_offset]; 1283 // Make sure shareds struct is aligned to pointer size 1284 KMP_DEBUG_ASSERT((((kmp_uintptr_t)task->shareds) & (sizeof(void *) - 1)) == 1285 0); 1286 } else { 1287 task->shareds = NULL; 1288 } 1289 task->routine = task_entry; 1290 task->part_id = 0; // AC: Always start with 0 part id 1291 1292 taskdata->td_task_id = KMP_GEN_TASK_ID(); 1293 taskdata->td_team = team; 1294 taskdata->td_alloc_thread = thread; 1295 taskdata->td_parent = parent_task; 1296 taskdata->td_level = parent_task->td_level + 1; // increment nesting level 1297 KMP_ATOMIC_ST_RLX(&taskdata->td_untied_count, 0); 1298 taskdata->td_ident = loc_ref; 1299 taskdata->td_taskwait_ident = NULL; 1300 taskdata->td_taskwait_counter = 0; 1301 taskdata->td_taskwait_thread = 0; 1302 KMP_DEBUG_ASSERT(taskdata->td_parent != NULL); 1303 // avoid copying icvs for proxy tasks 1304 if (flags->proxy == TASK_FULL) 1305 copy_icvs(&taskdata->td_icvs, &taskdata->td_parent->td_icvs); 1306 1307 taskdata->td_flags.tiedness = flags->tiedness; 1308 taskdata->td_flags.final = flags->final; 1309 taskdata->td_flags.merged_if0 = flags->merged_if0; 1310 taskdata->td_flags.destructors_thunk = flags->destructors_thunk; 1311 taskdata->td_flags.proxy = flags->proxy; 1312 taskdata->td_flags.detachable = flags->detachable; 1313 taskdata->td_task_team = thread->th.th_task_team; 1314 taskdata->td_size_alloc = shareds_offset + sizeof_shareds; 1315 taskdata->td_flags.tasktype = TASK_EXPLICIT; 1316 1317 // GEH - TODO: fix this to copy parent task's value of tasking_ser flag 1318 taskdata->td_flags.tasking_ser = (__kmp_tasking_mode == tskm_immediate_exec); 1319 1320 // GEH - TODO: fix this to copy parent task's value of team_serial flag 1321 taskdata->td_flags.team_serial = (team->t.t_serialized) ? 1 : 0; 1322 1323 // GEH - Note we serialize the task if the team is serialized to make sure 1324 // implicit parallel region tasks are not left until program termination to 1325 // execute. Also, it helps locality to execute immediately. 1326 1327 taskdata->td_flags.task_serial = 1328 (parent_task->td_flags.final || taskdata->td_flags.team_serial || 1329 taskdata->td_flags.tasking_ser || flags->merged_if0); 1330 1331 taskdata->td_flags.started = 0; 1332 taskdata->td_flags.executing = 0; 1333 taskdata->td_flags.complete = 0; 1334 taskdata->td_flags.freed = 0; 1335 1336 taskdata->td_flags.native = flags->native; 1337 1338 KMP_ATOMIC_ST_RLX(&taskdata->td_incomplete_child_tasks, 0); 1339 // start at one because counts current task and children 1340 KMP_ATOMIC_ST_RLX(&taskdata->td_allocated_child_tasks, 1); 1341 taskdata->td_taskgroup = 1342 parent_task->td_taskgroup; // task inherits taskgroup from the parent task 1343 taskdata->td_dephash = NULL; 1344 taskdata->td_depnode = NULL; 1345 if (flags->tiedness == TASK_UNTIED) 1346 taskdata->td_last_tied = NULL; // will be set when the task is scheduled 1347 else 1348 taskdata->td_last_tied = taskdata; 1349 taskdata->td_allow_completion_event.type = KMP_EVENT_UNINITIALIZED; 1350 #if OMPT_SUPPORT 1351 if (UNLIKELY(ompt_enabled.enabled)) 1352 __ompt_task_init(taskdata, gtid); 1353 #endif 1354 // Only need to keep track of child task counts if team parallel and tasking not 1355 // serialized or if it is a proxy or detachable task 1356 if (flags->proxy == TASK_PROXY || 1357 flags->detachable == TASK_DETACHABLE || 1358 !(taskdata->td_flags.team_serial || taskdata->td_flags.tasking_ser)) 1359 { 1360 KMP_ATOMIC_INC(&parent_task->td_incomplete_child_tasks); 1361 if (parent_task->td_taskgroup) 1362 KMP_ATOMIC_INC(&parent_task->td_taskgroup->count); 1363 // Only need to keep track of allocated child tasks for explicit tasks since 1364 // implicit not deallocated 1365 if (taskdata->td_parent->td_flags.tasktype == TASK_EXPLICIT) { 1366 KMP_ATOMIC_INC(&taskdata->td_parent->td_allocated_child_tasks); 1367 } 1368 } 1369 1370 KA_TRACE(20, ("__kmp_task_alloc(exit): T#%d created task %p parent=%p\n", 1371 gtid, taskdata, taskdata->td_parent)); 1372 ANNOTATE_HAPPENS_BEFORE(task); 1373 1374 return task; 1375 } 1376 1377 kmp_task_t *__kmpc_omp_task_alloc(ident_t *loc_ref, kmp_int32 gtid, 1378 kmp_int32 flags, size_t sizeof_kmp_task_t, 1379 size_t sizeof_shareds, 1380 kmp_routine_entry_t task_entry) { 1381 kmp_task_t *retval; 1382 kmp_tasking_flags_t *input_flags = (kmp_tasking_flags_t *)&flags; 1383 1384 input_flags->native = FALSE; 1385 // __kmp_task_alloc() sets up all other runtime flags 1386 1387 KA_TRACE(10, ("__kmpc_omp_task_alloc(enter): T#%d loc=%p, flags=(%s %s %s) " 1388 "sizeof_task=%ld sizeof_shared=%ld entry=%p\n", 1389 gtid, loc_ref, input_flags->tiedness ? "tied " : "untied", 1390 input_flags->proxy ? "proxy" : "", 1391 input_flags->detachable ? "detachable" : "", sizeof_kmp_task_t, 1392 sizeof_shareds, task_entry)); 1393 1394 retval = __kmp_task_alloc(loc_ref, gtid, input_flags, sizeof_kmp_task_t, 1395 sizeof_shareds, task_entry); 1396 1397 KA_TRACE(20, ("__kmpc_omp_task_alloc(exit): T#%d retval %p\n", gtid, retval)); 1398 1399 return retval; 1400 } 1401 1402 kmp_task_t *__kmpc_omp_target_task_alloc(ident_t *loc_ref, kmp_int32 gtid, 1403 kmp_int32 flags, 1404 size_t sizeof_kmp_task_t, 1405 size_t sizeof_shareds, 1406 kmp_routine_entry_t task_entry, 1407 kmp_int64 device_id) { 1408 return __kmpc_omp_task_alloc(loc_ref, gtid, flags, sizeof_kmp_task_t, 1409 sizeof_shareds, task_entry); 1410 } 1411 1412 /*! 1413 @ingroup TASKING 1414 @param loc_ref location of the original task directive 1415 @param gtid Global Thread ID of encountering thread 1416 @param new_task task thunk allocated by __kmpc_omp_task_alloc() for the ''new 1417 task'' 1418 @param naffins Number of affinity items 1419 @param affin_list List of affinity items 1420 @return Returns non-zero if registering affinity information was not successful. 1421 Returns 0 if registration was successful 1422 This entry registers the affinity information attached to a task with the task 1423 thunk structure kmp_taskdata_t. 1424 */ 1425 kmp_int32 1426 __kmpc_omp_reg_task_with_affinity(ident_t *loc_ref, kmp_int32 gtid, 1427 kmp_task_t *new_task, kmp_int32 naffins, 1428 kmp_task_affinity_info_t *affin_list) { 1429 return 0; 1430 } 1431 1432 // __kmp_invoke_task: invoke the specified task 1433 // 1434 // gtid: global thread ID of caller 1435 // task: the task to invoke 1436 // current_task: the task to resume after task invocation 1437 static void __kmp_invoke_task(kmp_int32 gtid, kmp_task_t *task, 1438 kmp_taskdata_t *current_task) { 1439 kmp_taskdata_t *taskdata = KMP_TASK_TO_TASKDATA(task); 1440 kmp_info_t *thread; 1441 int discard = 0 /* false */; 1442 KA_TRACE( 1443 30, ("__kmp_invoke_task(enter): T#%d invoking task %p, current_task=%p\n", 1444 gtid, taskdata, current_task)); 1445 KMP_DEBUG_ASSERT(task); 1446 if (taskdata->td_flags.proxy == TASK_PROXY && 1447 taskdata->td_flags.complete == 1) { 1448 // This is a proxy task that was already completed but it needs to run 1449 // its bottom-half finish 1450 KA_TRACE( 1451 30, 1452 ("__kmp_invoke_task: T#%d running bottom finish for proxy task %p\n", 1453 gtid, taskdata)); 1454 1455 __kmp_bottom_half_finish_proxy(gtid, task); 1456 1457 KA_TRACE(30, ("__kmp_invoke_task(exit): T#%d completed bottom finish for " 1458 "proxy task %p, resuming task %p\n", 1459 gtid, taskdata, current_task)); 1460 1461 return; 1462 } 1463 1464 #if OMPT_SUPPORT 1465 // For untied tasks, the first task executed only calls __kmpc_omp_task and 1466 // does not execute code. 1467 ompt_thread_info_t oldInfo; 1468 if (UNLIKELY(ompt_enabled.enabled)) { 1469 // Store the threads states and restore them after the task 1470 thread = __kmp_threads[gtid]; 1471 oldInfo = thread->th.ompt_thread_info; 1472 thread->th.ompt_thread_info.wait_id = 0; 1473 thread->th.ompt_thread_info.state = (thread->th.th_team_serialized) 1474 ? ompt_state_work_serial 1475 : ompt_state_work_parallel; 1476 taskdata->ompt_task_info.frame.exit_frame.ptr = OMPT_GET_FRAME_ADDRESS(0); 1477 } 1478 #endif 1479 1480 // Proxy tasks are not handled by the runtime 1481 if (taskdata->td_flags.proxy != TASK_PROXY) { 1482 ANNOTATE_HAPPENS_AFTER(task); 1483 __kmp_task_start(gtid, task, current_task); // OMPT only if not discarded 1484 } 1485 1486 // TODO: cancel tasks if the parallel region has also been cancelled 1487 // TODO: check if this sequence can be hoisted above __kmp_task_start 1488 // if cancellation has been enabled for this run ... 1489 if (__kmp_omp_cancellation) { 1490 thread = __kmp_threads[gtid]; 1491 kmp_team_t *this_team = thread->th.th_team; 1492 kmp_taskgroup_t *taskgroup = taskdata->td_taskgroup; 1493 if ((taskgroup && taskgroup->cancel_request) || 1494 (this_team->t.t_cancel_request == cancel_parallel)) { 1495 #if OMPT_SUPPORT && OMPT_OPTIONAL 1496 ompt_data_t *task_data; 1497 if (UNLIKELY(ompt_enabled.ompt_callback_cancel)) { 1498 __ompt_get_task_info_internal(0, NULL, &task_data, NULL, NULL, NULL); 1499 ompt_callbacks.ompt_callback(ompt_callback_cancel)( 1500 task_data, 1501 ((taskgroup && taskgroup->cancel_request) ? ompt_cancel_taskgroup 1502 : ompt_cancel_parallel) | 1503 ompt_cancel_discarded_task, 1504 NULL); 1505 } 1506 #endif 1507 KMP_COUNT_BLOCK(TASK_cancelled); 1508 // this task belongs to a task group and we need to cancel it 1509 discard = 1 /* true */; 1510 } 1511 } 1512 1513 // Invoke the task routine and pass in relevant data. 1514 // Thunks generated by gcc take a different argument list. 1515 if (!discard) { 1516 if (taskdata->td_flags.tiedness == TASK_UNTIED) { 1517 taskdata->td_last_tied = current_task->td_last_tied; 1518 KMP_DEBUG_ASSERT(taskdata->td_last_tied); 1519 } 1520 #if KMP_STATS_ENABLED 1521 KMP_COUNT_BLOCK(TASK_executed); 1522 switch (KMP_GET_THREAD_STATE()) { 1523 case FORK_JOIN_BARRIER: 1524 KMP_PUSH_PARTITIONED_TIMER(OMP_task_join_bar); 1525 break; 1526 case PLAIN_BARRIER: 1527 KMP_PUSH_PARTITIONED_TIMER(OMP_task_plain_bar); 1528 break; 1529 case TASKYIELD: 1530 KMP_PUSH_PARTITIONED_TIMER(OMP_task_taskyield); 1531 break; 1532 case TASKWAIT: 1533 KMP_PUSH_PARTITIONED_TIMER(OMP_task_taskwait); 1534 break; 1535 case TASKGROUP: 1536 KMP_PUSH_PARTITIONED_TIMER(OMP_task_taskgroup); 1537 break; 1538 default: 1539 KMP_PUSH_PARTITIONED_TIMER(OMP_task_immediate); 1540 break; 1541 } 1542 #endif // KMP_STATS_ENABLED 1543 1544 // OMPT task begin 1545 #if OMPT_SUPPORT 1546 if (UNLIKELY(ompt_enabled.enabled)) 1547 __ompt_task_start(task, current_task, gtid); 1548 #endif 1549 1550 #if USE_ITT_BUILD && USE_ITT_NOTIFY 1551 kmp_uint64 cur_time; 1552 kmp_int32 kmp_itt_count_task = 1553 __kmp_forkjoin_frames_mode == 3 && !taskdata->td_flags.task_serial && 1554 current_task->td_flags.tasktype == TASK_IMPLICIT; 1555 if (kmp_itt_count_task) { 1556 thread = __kmp_threads[gtid]; 1557 // Time outer level explicit task on barrier for adjusting imbalance time 1558 if (thread->th.th_bar_arrive_time) 1559 cur_time = __itt_get_timestamp(); 1560 else 1561 kmp_itt_count_task = 0; // thread is not on a barrier - skip timing 1562 } 1563 #endif 1564 1565 #ifdef KMP_GOMP_COMPAT 1566 if (taskdata->td_flags.native) { 1567 ((void (*)(void *))(*(task->routine)))(task->shareds); 1568 } else 1569 #endif /* KMP_GOMP_COMPAT */ 1570 { 1571 (*(task->routine))(gtid, task); 1572 } 1573 KMP_POP_PARTITIONED_TIMER(); 1574 1575 #if USE_ITT_BUILD && USE_ITT_NOTIFY 1576 if (kmp_itt_count_task) { 1577 // Barrier imbalance - adjust arrive time with the task duration 1578 thread->th.th_bar_arrive_time += (__itt_get_timestamp() - cur_time); 1579 } 1580 #endif 1581 1582 } 1583 1584 1585 // Proxy tasks are not handled by the runtime 1586 if (taskdata->td_flags.proxy != TASK_PROXY) { 1587 ANNOTATE_HAPPENS_BEFORE(taskdata->td_parent); 1588 #if OMPT_SUPPORT 1589 if (UNLIKELY(ompt_enabled.enabled)) { 1590 thread->th.ompt_thread_info = oldInfo; 1591 if (taskdata->td_flags.tiedness == TASK_TIED) { 1592 taskdata->ompt_task_info.frame.exit_frame = ompt_data_none; 1593 } 1594 __kmp_task_finish<true>(gtid, task, current_task); 1595 } else 1596 #endif 1597 __kmp_task_finish<false>(gtid, task, current_task); 1598 } 1599 1600 KA_TRACE( 1601 30, 1602 ("__kmp_invoke_task(exit): T#%d completed task %p, resuming task %p\n", 1603 gtid, taskdata, current_task)); 1604 return; 1605 } 1606 1607 // __kmpc_omp_task_parts: Schedule a thread-switchable task for execution 1608 // 1609 // loc_ref: location of original task pragma (ignored) 1610 // gtid: Global Thread ID of encountering thread 1611 // new_task: task thunk allocated by __kmp_omp_task_alloc() for the ''new task'' 1612 // Returns: 1613 // TASK_CURRENT_NOT_QUEUED (0) if did not suspend and queue current task to 1614 // be resumed later. 1615 // TASK_CURRENT_QUEUED (1) if suspended and queued the current task to be 1616 // resumed later. 1617 kmp_int32 __kmpc_omp_task_parts(ident_t *loc_ref, kmp_int32 gtid, 1618 kmp_task_t *new_task) { 1619 kmp_taskdata_t *new_taskdata = KMP_TASK_TO_TASKDATA(new_task); 1620 1621 KA_TRACE(10, ("__kmpc_omp_task_parts(enter): T#%d loc=%p task=%p\n", gtid, 1622 loc_ref, new_taskdata)); 1623 1624 #if OMPT_SUPPORT 1625 kmp_taskdata_t *parent; 1626 if (UNLIKELY(ompt_enabled.enabled)) { 1627 parent = new_taskdata->td_parent; 1628 if (ompt_enabled.ompt_callback_task_create) { 1629 ompt_data_t task_data = ompt_data_none; 1630 ompt_callbacks.ompt_callback(ompt_callback_task_create)( 1631 parent ? &(parent->ompt_task_info.task_data) : &task_data, 1632 parent ? &(parent->ompt_task_info.frame) : NULL, 1633 &(new_taskdata->ompt_task_info.task_data), ompt_task_explicit, 0, 1634 OMPT_GET_RETURN_ADDRESS(0)); 1635 } 1636 } 1637 #endif 1638 1639 /* Should we execute the new task or queue it? For now, let's just always try 1640 to queue it. If the queue fills up, then we'll execute it. */ 1641 1642 if (__kmp_push_task(gtid, new_task) == TASK_NOT_PUSHED) // if cannot defer 1643 { // Execute this task immediately 1644 kmp_taskdata_t *current_task = __kmp_threads[gtid]->th.th_current_task; 1645 new_taskdata->td_flags.task_serial = 1; 1646 __kmp_invoke_task(gtid, new_task, current_task); 1647 } 1648 1649 KA_TRACE( 1650 10, 1651 ("__kmpc_omp_task_parts(exit): T#%d returning TASK_CURRENT_NOT_QUEUED: " 1652 "loc=%p task=%p, return: TASK_CURRENT_NOT_QUEUED\n", 1653 gtid, loc_ref, new_taskdata)); 1654 1655 ANNOTATE_HAPPENS_BEFORE(new_task); 1656 #if OMPT_SUPPORT 1657 if (UNLIKELY(ompt_enabled.enabled)) { 1658 parent->ompt_task_info.frame.enter_frame = ompt_data_none; 1659 } 1660 #endif 1661 return TASK_CURRENT_NOT_QUEUED; 1662 } 1663 1664 // __kmp_omp_task: Schedule a non-thread-switchable task for execution 1665 // 1666 // gtid: Global Thread ID of encountering thread 1667 // new_task:non-thread-switchable task thunk allocated by __kmp_omp_task_alloc() 1668 // serialize_immediate: if TRUE then if the task is executed immediately its 1669 // execution will be serialized 1670 // Returns: 1671 // TASK_CURRENT_NOT_QUEUED (0) if did not suspend and queue current task to 1672 // be resumed later. 1673 // TASK_CURRENT_QUEUED (1) if suspended and queued the current task to be 1674 // resumed later. 1675 kmp_int32 __kmp_omp_task(kmp_int32 gtid, kmp_task_t *new_task, 1676 bool serialize_immediate) { 1677 kmp_taskdata_t *new_taskdata = KMP_TASK_TO_TASKDATA(new_task); 1678 1679 /* Should we execute the new task or queue it? For now, let's just always try 1680 to queue it. If the queue fills up, then we'll execute it. */ 1681 if (new_taskdata->td_flags.proxy == TASK_PROXY || 1682 __kmp_push_task(gtid, new_task) == TASK_NOT_PUSHED) // if cannot defer 1683 { // Execute this task immediately 1684 kmp_taskdata_t *current_task = __kmp_threads[gtid]->th.th_current_task; 1685 if (serialize_immediate) 1686 new_taskdata->td_flags.task_serial = 1; 1687 __kmp_invoke_task(gtid, new_task, current_task); 1688 } 1689 1690 ANNOTATE_HAPPENS_BEFORE(new_task); 1691 return TASK_CURRENT_NOT_QUEUED; 1692 } 1693 1694 // __kmpc_omp_task: Wrapper around __kmp_omp_task to schedule a 1695 // non-thread-switchable task from the parent thread only! 1696 // 1697 // loc_ref: location of original task pragma (ignored) 1698 // gtid: Global Thread ID of encountering thread 1699 // new_task: non-thread-switchable task thunk allocated by 1700 // __kmp_omp_task_alloc() 1701 // Returns: 1702 // TASK_CURRENT_NOT_QUEUED (0) if did not suspend and queue current task to 1703 // be resumed later. 1704 // TASK_CURRENT_QUEUED (1) if suspended and queued the current task to be 1705 // resumed later. 1706 kmp_int32 __kmpc_omp_task(ident_t *loc_ref, kmp_int32 gtid, 1707 kmp_task_t *new_task) { 1708 kmp_int32 res; 1709 KMP_SET_THREAD_STATE_BLOCK(EXPLICIT_TASK); 1710 1711 #if KMP_DEBUG || OMPT_SUPPORT 1712 kmp_taskdata_t *new_taskdata = KMP_TASK_TO_TASKDATA(new_task); 1713 #endif 1714 KA_TRACE(10, ("__kmpc_omp_task(enter): T#%d loc=%p task=%p\n", gtid, loc_ref, 1715 new_taskdata)); 1716 1717 #if OMPT_SUPPORT 1718 kmp_taskdata_t *parent = NULL; 1719 if (UNLIKELY(ompt_enabled.enabled)) { 1720 if (!new_taskdata->td_flags.started) { 1721 OMPT_STORE_RETURN_ADDRESS(gtid); 1722 parent = new_taskdata->td_parent; 1723 if (!parent->ompt_task_info.frame.enter_frame.ptr) { 1724 parent->ompt_task_info.frame.enter_frame.ptr = OMPT_GET_FRAME_ADDRESS(0); 1725 } 1726 if (ompt_enabled.ompt_callback_task_create) { 1727 ompt_data_t task_data = ompt_data_none; 1728 ompt_callbacks.ompt_callback(ompt_callback_task_create)( 1729 parent ? &(parent->ompt_task_info.task_data) : &task_data, 1730 parent ? &(parent->ompt_task_info.frame) : NULL, 1731 &(new_taskdata->ompt_task_info.task_data), 1732 ompt_task_explicit | TASK_TYPE_DETAILS_FORMAT(new_taskdata), 0, 1733 OMPT_LOAD_RETURN_ADDRESS(gtid)); 1734 } 1735 } else { 1736 // We are scheduling the continuation of an UNTIED task. 1737 // Scheduling back to the parent task. 1738 __ompt_task_finish(new_task, 1739 new_taskdata->ompt_task_info.scheduling_parent, 1740 ompt_task_switch); 1741 new_taskdata->ompt_task_info.frame.exit_frame = ompt_data_none; 1742 } 1743 } 1744 #endif 1745 1746 res = __kmp_omp_task(gtid, new_task, true); 1747 1748 KA_TRACE(10, ("__kmpc_omp_task(exit): T#%d returning " 1749 "TASK_CURRENT_NOT_QUEUED: loc=%p task=%p\n", 1750 gtid, loc_ref, new_taskdata)); 1751 #if OMPT_SUPPORT 1752 if (UNLIKELY(ompt_enabled.enabled && parent != NULL)) { 1753 parent->ompt_task_info.frame.enter_frame = ompt_data_none; 1754 } 1755 #endif 1756 return res; 1757 } 1758 1759 // __kmp_omp_taskloop_task: Wrapper around __kmp_omp_task to schedule 1760 // a taskloop task with the correct OMPT return address 1761 // 1762 // loc_ref: location of original task pragma (ignored) 1763 // gtid: Global Thread ID of encountering thread 1764 // new_task: non-thread-switchable task thunk allocated by 1765 // __kmp_omp_task_alloc() 1766 // codeptr_ra: return address for OMPT callback 1767 // Returns: 1768 // TASK_CURRENT_NOT_QUEUED (0) if did not suspend and queue current task to 1769 // be resumed later. 1770 // TASK_CURRENT_QUEUED (1) if suspended and queued the current task to be 1771 // resumed later. 1772 kmp_int32 __kmp_omp_taskloop_task(ident_t *loc_ref, kmp_int32 gtid, 1773 kmp_task_t *new_task, void *codeptr_ra) { 1774 kmp_int32 res; 1775 KMP_SET_THREAD_STATE_BLOCK(EXPLICIT_TASK); 1776 1777 #if KMP_DEBUG || OMPT_SUPPORT 1778 kmp_taskdata_t *new_taskdata = KMP_TASK_TO_TASKDATA(new_task); 1779 #endif 1780 KA_TRACE(10, ("__kmpc_omp_task(enter): T#%d loc=%p task=%p\n", gtid, loc_ref, 1781 new_taskdata)); 1782 1783 #if OMPT_SUPPORT 1784 kmp_taskdata_t *parent = NULL; 1785 if (UNLIKELY(ompt_enabled.enabled && !new_taskdata->td_flags.started)) { 1786 parent = new_taskdata->td_parent; 1787 if (!parent->ompt_task_info.frame.enter_frame.ptr) 1788 parent->ompt_task_info.frame.enter_frame.ptr = OMPT_GET_FRAME_ADDRESS(0); 1789 if (ompt_enabled.ompt_callback_task_create) { 1790 ompt_data_t task_data = ompt_data_none; 1791 ompt_callbacks.ompt_callback(ompt_callback_task_create)( 1792 parent ? &(parent->ompt_task_info.task_data) : &task_data, 1793 parent ? &(parent->ompt_task_info.frame) : NULL, 1794 &(new_taskdata->ompt_task_info.task_data), 1795 ompt_task_explicit | TASK_TYPE_DETAILS_FORMAT(new_taskdata), 0, 1796 codeptr_ra); 1797 } 1798 } 1799 #endif 1800 1801 res = __kmp_omp_task(gtid, new_task, true); 1802 1803 KA_TRACE(10, ("__kmpc_omp_task(exit): T#%d returning " 1804 "TASK_CURRENT_NOT_QUEUED: loc=%p task=%p\n", 1805 gtid, loc_ref, new_taskdata)); 1806 #if OMPT_SUPPORT 1807 if (UNLIKELY(ompt_enabled.enabled && parent != NULL)) { 1808 parent->ompt_task_info.frame.enter_frame = ompt_data_none; 1809 } 1810 #endif 1811 return res; 1812 } 1813 1814 template <bool ompt> 1815 static kmp_int32 __kmpc_omp_taskwait_template(ident_t *loc_ref, kmp_int32 gtid, 1816 void *frame_address, 1817 void *return_address) { 1818 kmp_taskdata_t *taskdata; 1819 kmp_info_t *thread; 1820 int thread_finished = FALSE; 1821 KMP_SET_THREAD_STATE_BLOCK(TASKWAIT); 1822 1823 KA_TRACE(10, ("__kmpc_omp_taskwait(enter): T#%d loc=%p\n", gtid, loc_ref)); 1824 1825 if (__kmp_tasking_mode != tskm_immediate_exec) { 1826 thread = __kmp_threads[gtid]; 1827 taskdata = thread->th.th_current_task; 1828 1829 #if OMPT_SUPPORT && OMPT_OPTIONAL 1830 ompt_data_t *my_task_data; 1831 ompt_data_t *my_parallel_data; 1832 1833 if (ompt) { 1834 my_task_data = &(taskdata->ompt_task_info.task_data); 1835 my_parallel_data = OMPT_CUR_TEAM_DATA(thread); 1836 1837 taskdata->ompt_task_info.frame.enter_frame.ptr = frame_address; 1838 1839 if (ompt_enabled.ompt_callback_sync_region) { 1840 ompt_callbacks.ompt_callback(ompt_callback_sync_region)( 1841 ompt_sync_region_taskwait, ompt_scope_begin, my_parallel_data, 1842 my_task_data, return_address); 1843 } 1844 1845 if (ompt_enabled.ompt_callback_sync_region_wait) { 1846 ompt_callbacks.ompt_callback(ompt_callback_sync_region_wait)( 1847 ompt_sync_region_taskwait, ompt_scope_begin, my_parallel_data, 1848 my_task_data, return_address); 1849 } 1850 } 1851 #endif // OMPT_SUPPORT && OMPT_OPTIONAL 1852 1853 // Debugger: The taskwait is active. Store location and thread encountered the 1854 // taskwait. 1855 #if USE_ITT_BUILD 1856 // Note: These values are used by ITT events as well. 1857 #endif /* USE_ITT_BUILD */ 1858 taskdata->td_taskwait_counter += 1; 1859 taskdata->td_taskwait_ident = loc_ref; 1860 taskdata->td_taskwait_thread = gtid + 1; 1861 1862 #if USE_ITT_BUILD 1863 void *itt_sync_obj = __kmp_itt_taskwait_object(gtid); 1864 if (itt_sync_obj != NULL) 1865 __kmp_itt_taskwait_starting(gtid, itt_sync_obj); 1866 #endif /* USE_ITT_BUILD */ 1867 1868 bool must_wait = 1869 !taskdata->td_flags.team_serial && !taskdata->td_flags.final; 1870 1871 must_wait = must_wait || (thread->th.th_task_team != NULL && 1872 thread->th.th_task_team->tt.tt_found_proxy_tasks); 1873 if (must_wait) { 1874 kmp_flag_32 flag(RCAST(std::atomic<kmp_uint32> *, 1875 &(taskdata->td_incomplete_child_tasks)), 1876 0U); 1877 while (KMP_ATOMIC_LD_ACQ(&taskdata->td_incomplete_child_tasks) != 0) { 1878 flag.execute_tasks(thread, gtid, FALSE, 1879 &thread_finished USE_ITT_BUILD_ARG(itt_sync_obj), 1880 __kmp_task_stealing_constraint); 1881 } 1882 } 1883 #if USE_ITT_BUILD 1884 if (itt_sync_obj != NULL) 1885 __kmp_itt_taskwait_finished(gtid, itt_sync_obj); 1886 #endif /* USE_ITT_BUILD */ 1887 1888 // Debugger: The taskwait is completed. Location remains, but thread is 1889 // negated. 1890 taskdata->td_taskwait_thread = -taskdata->td_taskwait_thread; 1891 1892 #if OMPT_SUPPORT && OMPT_OPTIONAL 1893 if (ompt) { 1894 if (ompt_enabled.ompt_callback_sync_region_wait) { 1895 ompt_callbacks.ompt_callback(ompt_callback_sync_region_wait)( 1896 ompt_sync_region_taskwait, ompt_scope_end, my_parallel_data, 1897 my_task_data, return_address); 1898 } 1899 if (ompt_enabled.ompt_callback_sync_region) { 1900 ompt_callbacks.ompt_callback(ompt_callback_sync_region)( 1901 ompt_sync_region_taskwait, ompt_scope_end, my_parallel_data, 1902 my_task_data, return_address); 1903 } 1904 taskdata->ompt_task_info.frame.enter_frame = ompt_data_none; 1905 } 1906 #endif // OMPT_SUPPORT && OMPT_OPTIONAL 1907 1908 ANNOTATE_HAPPENS_AFTER(taskdata); 1909 } 1910 1911 KA_TRACE(10, ("__kmpc_omp_taskwait(exit): T#%d task %p finished waiting, " 1912 "returning TASK_CURRENT_NOT_QUEUED\n", 1913 gtid, taskdata)); 1914 1915 return TASK_CURRENT_NOT_QUEUED; 1916 } 1917 1918 #if OMPT_SUPPORT && OMPT_OPTIONAL 1919 OMPT_NOINLINE 1920 static kmp_int32 __kmpc_omp_taskwait_ompt(ident_t *loc_ref, kmp_int32 gtid, 1921 void *frame_address, 1922 void *return_address) { 1923 return __kmpc_omp_taskwait_template<true>(loc_ref, gtid, frame_address, 1924 return_address); 1925 } 1926 #endif // OMPT_SUPPORT && OMPT_OPTIONAL 1927 1928 // __kmpc_omp_taskwait: Wait until all tasks generated by the current task are 1929 // complete 1930 kmp_int32 __kmpc_omp_taskwait(ident_t *loc_ref, kmp_int32 gtid) { 1931 #if OMPT_SUPPORT && OMPT_OPTIONAL 1932 if (UNLIKELY(ompt_enabled.enabled)) { 1933 OMPT_STORE_RETURN_ADDRESS(gtid); 1934 return __kmpc_omp_taskwait_ompt(loc_ref, gtid, OMPT_GET_FRAME_ADDRESS(0), 1935 OMPT_LOAD_RETURN_ADDRESS(gtid)); 1936 } 1937 #endif 1938 return __kmpc_omp_taskwait_template<false>(loc_ref, gtid, NULL, NULL); 1939 } 1940 1941 // __kmpc_omp_taskyield: switch to a different task 1942 kmp_int32 __kmpc_omp_taskyield(ident_t *loc_ref, kmp_int32 gtid, int end_part) { 1943 kmp_taskdata_t *taskdata; 1944 kmp_info_t *thread; 1945 int thread_finished = FALSE; 1946 1947 KMP_COUNT_BLOCK(OMP_TASKYIELD); 1948 KMP_SET_THREAD_STATE_BLOCK(TASKYIELD); 1949 1950 KA_TRACE(10, ("__kmpc_omp_taskyield(enter): T#%d loc=%p end_part = %d\n", 1951 gtid, loc_ref, end_part)); 1952 1953 if (__kmp_tasking_mode != tskm_immediate_exec && __kmp_init_parallel) { 1954 thread = __kmp_threads[gtid]; 1955 taskdata = thread->th.th_current_task; 1956 // Should we model this as a task wait or not? 1957 // Debugger: The taskwait is active. Store location and thread encountered the 1958 // taskwait. 1959 #if USE_ITT_BUILD 1960 // Note: These values are used by ITT events as well. 1961 #endif /* USE_ITT_BUILD */ 1962 taskdata->td_taskwait_counter += 1; 1963 taskdata->td_taskwait_ident = loc_ref; 1964 taskdata->td_taskwait_thread = gtid + 1; 1965 1966 #if USE_ITT_BUILD 1967 void *itt_sync_obj = __kmp_itt_taskwait_object(gtid); 1968 if (itt_sync_obj != NULL) 1969 __kmp_itt_taskwait_starting(gtid, itt_sync_obj); 1970 #endif /* USE_ITT_BUILD */ 1971 if (!taskdata->td_flags.team_serial) { 1972 kmp_task_team_t *task_team = thread->th.th_task_team; 1973 if (task_team != NULL) { 1974 if (KMP_TASKING_ENABLED(task_team)) { 1975 #if OMPT_SUPPORT 1976 if (UNLIKELY(ompt_enabled.enabled)) 1977 thread->th.ompt_thread_info.ompt_task_yielded = 1; 1978 #endif 1979 __kmp_execute_tasks_32( 1980 thread, gtid, NULL, FALSE, 1981 &thread_finished USE_ITT_BUILD_ARG(itt_sync_obj), 1982 __kmp_task_stealing_constraint); 1983 #if OMPT_SUPPORT 1984 if (UNLIKELY(ompt_enabled.enabled)) 1985 thread->th.ompt_thread_info.ompt_task_yielded = 0; 1986 #endif 1987 } 1988 } 1989 } 1990 #if USE_ITT_BUILD 1991 if (itt_sync_obj != NULL) 1992 __kmp_itt_taskwait_finished(gtid, itt_sync_obj); 1993 #endif /* USE_ITT_BUILD */ 1994 1995 // Debugger: The taskwait is completed. Location remains, but thread is 1996 // negated. 1997 taskdata->td_taskwait_thread = -taskdata->td_taskwait_thread; 1998 } 1999 2000 KA_TRACE(10, ("__kmpc_omp_taskyield(exit): T#%d task %p resuming, " 2001 "returning TASK_CURRENT_NOT_QUEUED\n", 2002 gtid, taskdata)); 2003 2004 return TASK_CURRENT_NOT_QUEUED; 2005 } 2006 2007 // Task Reduction implementation 2008 // 2009 // Note: initial implementation didn't take into account the possibility 2010 // to specify omp_orig for initializer of the UDR (user defined reduction). 2011 // Corrected implementation takes into account the omp_orig object. 2012 // Compiler is free to use old implementation if omp_orig is not specified. 2013 2014 /*! 2015 @ingroup BASIC_TYPES 2016 @{ 2017 */ 2018 2019 /*! 2020 Flags for special info per task reduction item. 2021 */ 2022 typedef struct kmp_taskred_flags { 2023 /*! 1 - use lazy alloc/init (e.g. big objects, #tasks < #threads) */ 2024 unsigned lazy_priv : 1; 2025 unsigned reserved31 : 31; 2026 } kmp_taskred_flags_t; 2027 2028 /*! 2029 Internal struct for reduction data item related info set up by compiler. 2030 */ 2031 typedef struct kmp_task_red_input { 2032 void *reduce_shar; /**< shared between tasks item to reduce into */ 2033 size_t reduce_size; /**< size of data item in bytes */ 2034 // three compiler-generated routines (init, fini are optional): 2035 void *reduce_init; /**< data initialization routine (single parameter) */ 2036 void *reduce_fini; /**< data finalization routine */ 2037 void *reduce_comb; /**< data combiner routine */ 2038 kmp_taskred_flags_t flags; /**< flags for additional info from compiler */ 2039 } kmp_task_red_input_t; 2040 2041 /*! 2042 Internal struct for reduction data item related info saved by the library. 2043 */ 2044 typedef struct kmp_taskred_data { 2045 void *reduce_shar; /**< shared between tasks item to reduce into */ 2046 size_t reduce_size; /**< size of data item */ 2047 kmp_taskred_flags_t flags; /**< flags for additional info from compiler */ 2048 void *reduce_priv; /**< array of thread specific items */ 2049 void *reduce_pend; /**< end of private data for faster comparison op */ 2050 // three compiler-generated routines (init, fini are optional): 2051 void *reduce_comb; /**< data combiner routine */ 2052 void *reduce_init; /**< data initialization routine (two parameters) */ 2053 void *reduce_fini; /**< data finalization routine */ 2054 void *reduce_orig; /**< original item (can be used in UDR initializer) */ 2055 } kmp_taskred_data_t; 2056 2057 /*! 2058 Internal struct for reduction data item related info set up by compiler. 2059 2060 New interface: added reduce_orig field to provide omp_orig for UDR initializer. 2061 */ 2062 typedef struct kmp_taskred_input { 2063 void *reduce_shar; /**< shared between tasks item to reduce into */ 2064 void *reduce_orig; /**< original reduction item used for initialization */ 2065 size_t reduce_size; /**< size of data item */ 2066 // three compiler-generated routines (init, fini are optional): 2067 void *reduce_init; /**< data initialization routine (two parameters) */ 2068 void *reduce_fini; /**< data finalization routine */ 2069 void *reduce_comb; /**< data combiner routine */ 2070 kmp_taskred_flags_t flags; /**< flags for additional info from compiler */ 2071 } kmp_taskred_input_t; 2072 /*! 2073 @} 2074 */ 2075 2076 template <typename T> void __kmp_assign_orig(kmp_taskred_data_t &item, T &src); 2077 template <> 2078 void __kmp_assign_orig<kmp_task_red_input_t>(kmp_taskred_data_t &item, 2079 kmp_task_red_input_t &src) { 2080 item.reduce_orig = NULL; 2081 } 2082 template <> 2083 void __kmp_assign_orig<kmp_taskred_input_t>(kmp_taskred_data_t &item, 2084 kmp_taskred_input_t &src) { 2085 if (src.reduce_orig != NULL) { 2086 item.reduce_orig = src.reduce_orig; 2087 } else { 2088 item.reduce_orig = src.reduce_shar; 2089 } // non-NULL reduce_orig means new interface used 2090 } 2091 2092 template <typename T> void __kmp_call_init(kmp_taskred_data_t &item, int j); 2093 template <> 2094 void __kmp_call_init<kmp_task_red_input_t>(kmp_taskred_data_t &item, 2095 int offset) { 2096 ((void (*)(void *))item.reduce_init)((char *)(item.reduce_priv) + offset); 2097 } 2098 template <> 2099 void __kmp_call_init<kmp_taskred_input_t>(kmp_taskred_data_t &item, 2100 int offset) { 2101 ((void (*)(void *, void *))item.reduce_init)( 2102 (char *)(item.reduce_priv) + offset, item.reduce_orig); 2103 } 2104 2105 template <typename T> 2106 void *__kmp_task_reduction_init(int gtid, int num, T *data) { 2107 kmp_info_t *thread = __kmp_threads[gtid]; 2108 kmp_taskgroup_t *tg = thread->th.th_current_task->td_taskgroup; 2109 kmp_int32 nth = thread->th.th_team_nproc; 2110 kmp_taskred_data_t *arr; 2111 2112 // check input data just in case 2113 KMP_ASSERT(tg != NULL); 2114 KMP_ASSERT(data != NULL); 2115 KMP_ASSERT(num > 0); 2116 if (nth == 1) { 2117 KA_TRACE(10, ("__kmpc_task_reduction_init: T#%d, tg %p, exiting nth=1\n", 2118 gtid, tg)); 2119 return (void *)tg; 2120 } 2121 KA_TRACE(10, ("__kmpc_task_reduction_init: T#%d, taskgroup %p, #items %d\n", 2122 gtid, tg, num)); 2123 arr = (kmp_taskred_data_t *)__kmp_thread_malloc( 2124 thread, num * sizeof(kmp_taskred_data_t)); 2125 for (int i = 0; i < num; ++i) { 2126 size_t size = data[i].reduce_size - 1; 2127 // round the size up to cache line per thread-specific item 2128 size += CACHE_LINE - size % CACHE_LINE; 2129 KMP_ASSERT(data[i].reduce_comb != NULL); // combiner is mandatory 2130 arr[i].reduce_shar = data[i].reduce_shar; 2131 arr[i].reduce_size = size; 2132 arr[i].flags = data[i].flags; 2133 arr[i].reduce_comb = data[i].reduce_comb; 2134 arr[i].reduce_init = data[i].reduce_init; 2135 arr[i].reduce_fini = data[i].reduce_fini; 2136 __kmp_assign_orig<T>(arr[i], data[i]); 2137 if (!arr[i].flags.lazy_priv) { 2138 // allocate cache-line aligned block and fill it with zeros 2139 arr[i].reduce_priv = __kmp_allocate(nth * size); 2140 arr[i].reduce_pend = (char *)(arr[i].reduce_priv) + nth * size; 2141 if (arr[i].reduce_init != NULL) { 2142 // initialize all thread-specific items 2143 for (int j = 0; j < nth; ++j) { 2144 __kmp_call_init<T>(arr[i], j * size); 2145 } 2146 } 2147 } else { 2148 // only allocate space for pointers now, 2149 // objects will be lazily allocated/initialized if/when requested 2150 // note that __kmp_allocate zeroes the allocated memory 2151 arr[i].reduce_priv = __kmp_allocate(nth * sizeof(void *)); 2152 } 2153 } 2154 tg->reduce_data = (void *)arr; 2155 tg->reduce_num_data = num; 2156 return (void *)tg; 2157 } 2158 2159 /*! 2160 @ingroup TASKING 2161 @param gtid Global thread ID 2162 @param num Number of data items to reduce 2163 @param data Array of data for reduction 2164 @return The taskgroup identifier 2165 2166 Initialize task reduction for the taskgroup. 2167 2168 Note: this entry supposes the optional compiler-generated initializer routine 2169 has single parameter - pointer to object to be initialized. That means 2170 the reduction either does not use omp_orig object, or the omp_orig is accessible 2171 without help of the runtime library. 2172 */ 2173 void *__kmpc_task_reduction_init(int gtid, int num, void *data) { 2174 return __kmp_task_reduction_init(gtid, num, (kmp_task_red_input_t *)data); 2175 } 2176 2177 /*! 2178 @ingroup TASKING 2179 @param gtid Global thread ID 2180 @param num Number of data items to reduce 2181 @param data Array of data for reduction 2182 @return The taskgroup identifier 2183 2184 Initialize task reduction for the taskgroup. 2185 2186 Note: this entry supposes the optional compiler-generated initializer routine 2187 has two parameters, pointer to object to be initialized and pointer to omp_orig 2188 */ 2189 void *__kmpc_taskred_init(int gtid, int num, void *data) { 2190 return __kmp_task_reduction_init(gtid, num, (kmp_taskred_input_t *)data); 2191 } 2192 2193 // Copy task reduction data (except for shared pointers). 2194 template <typename T> 2195 void __kmp_task_reduction_init_copy(kmp_info_t *thr, int num, T *data, 2196 kmp_taskgroup_t *tg, void *reduce_data) { 2197 kmp_taskred_data_t *arr; 2198 KA_TRACE(20, ("__kmp_task_reduction_init_copy: Th %p, init taskgroup %p," 2199 " from data %p\n", 2200 thr, tg, reduce_data)); 2201 arr = (kmp_taskred_data_t *)__kmp_thread_malloc( 2202 thr, num * sizeof(kmp_taskred_data_t)); 2203 // threads will share private copies, thunk routines, sizes, flags, etc.: 2204 KMP_MEMCPY(arr, reduce_data, num * sizeof(kmp_taskred_data_t)); 2205 for (int i = 0; i < num; ++i) { 2206 arr[i].reduce_shar = data[i].reduce_shar; // init unique shared pointers 2207 } 2208 tg->reduce_data = (void *)arr; 2209 tg->reduce_num_data = num; 2210 } 2211 2212 /*! 2213 @ingroup TASKING 2214 @param gtid Global thread ID 2215 @param tskgrp The taskgroup ID (optional) 2216 @param data Shared location of the item 2217 @return The pointer to per-thread data 2218 2219 Get thread-specific location of data item 2220 */ 2221 void *__kmpc_task_reduction_get_th_data(int gtid, void *tskgrp, void *data) { 2222 kmp_info_t *thread = __kmp_threads[gtid]; 2223 kmp_int32 nth = thread->th.th_team_nproc; 2224 if (nth == 1) 2225 return data; // nothing to do 2226 2227 kmp_taskgroup_t *tg = (kmp_taskgroup_t *)tskgrp; 2228 if (tg == NULL) 2229 tg = thread->th.th_current_task->td_taskgroup; 2230 KMP_ASSERT(tg != NULL); 2231 kmp_taskred_data_t *arr = (kmp_taskred_data_t *)(tg->reduce_data); 2232 kmp_int32 num = tg->reduce_num_data; 2233 kmp_int32 tid = thread->th.th_info.ds.ds_tid; 2234 2235 KMP_ASSERT(data != NULL); 2236 while (tg != NULL) { 2237 for (int i = 0; i < num; ++i) { 2238 if (!arr[i].flags.lazy_priv) { 2239 if (data == arr[i].reduce_shar || 2240 (data >= arr[i].reduce_priv && data < arr[i].reduce_pend)) 2241 return (char *)(arr[i].reduce_priv) + tid * arr[i].reduce_size; 2242 } else { 2243 // check shared location first 2244 void **p_priv = (void **)(arr[i].reduce_priv); 2245 if (data == arr[i].reduce_shar) 2246 goto found; 2247 // check if we get some thread specific location as parameter 2248 for (int j = 0; j < nth; ++j) 2249 if (data == p_priv[j]) 2250 goto found; 2251 continue; // not found, continue search 2252 found: 2253 if (p_priv[tid] == NULL) { 2254 // allocate thread specific object lazily 2255 p_priv[tid] = __kmp_allocate(arr[i].reduce_size); 2256 if (arr[i].reduce_init != NULL) { 2257 if (arr[i].reduce_orig != NULL) { // new interface 2258 ((void (*)(void *, void *))arr[i].reduce_init)( 2259 p_priv[tid], arr[i].reduce_orig); 2260 } else { // old interface (single parameter) 2261 ((void (*)(void *))arr[i].reduce_init)(p_priv[tid]); 2262 } 2263 } 2264 } 2265 return p_priv[tid]; 2266 } 2267 } 2268 tg = tg->parent; 2269 arr = (kmp_taskred_data_t *)(tg->reduce_data); 2270 num = tg->reduce_num_data; 2271 } 2272 KMP_ASSERT2(0, "Unknown task reduction item"); 2273 return NULL; // ERROR, this line never executed 2274 } 2275 2276 // Finalize task reduction. 2277 // Called from __kmpc_end_taskgroup() 2278 static void __kmp_task_reduction_fini(kmp_info_t *th, kmp_taskgroup_t *tg) { 2279 kmp_int32 nth = th->th.th_team_nproc; 2280 KMP_DEBUG_ASSERT(nth > 1); // should not be called if nth == 1 2281 kmp_taskred_data_t *arr = (kmp_taskred_data_t *)tg->reduce_data; 2282 kmp_int32 num = tg->reduce_num_data; 2283 for (int i = 0; i < num; ++i) { 2284 void *sh_data = arr[i].reduce_shar; 2285 void (*f_fini)(void *) = (void (*)(void *))(arr[i].reduce_fini); 2286 void (*f_comb)(void *, void *) = 2287 (void (*)(void *, void *))(arr[i].reduce_comb); 2288 if (!arr[i].flags.lazy_priv) { 2289 void *pr_data = arr[i].reduce_priv; 2290 size_t size = arr[i].reduce_size; 2291 for (int j = 0; j < nth; ++j) { 2292 void *priv_data = (char *)pr_data + j * size; 2293 f_comb(sh_data, priv_data); // combine results 2294 if (f_fini) 2295 f_fini(priv_data); // finalize if needed 2296 } 2297 } else { 2298 void **pr_data = (void **)(arr[i].reduce_priv); 2299 for (int j = 0; j < nth; ++j) { 2300 if (pr_data[j] != NULL) { 2301 f_comb(sh_data, pr_data[j]); // combine results 2302 if (f_fini) 2303 f_fini(pr_data[j]); // finalize if needed 2304 __kmp_free(pr_data[j]); 2305 } 2306 } 2307 } 2308 __kmp_free(arr[i].reduce_priv); 2309 } 2310 __kmp_thread_free(th, arr); 2311 tg->reduce_data = NULL; 2312 tg->reduce_num_data = 0; 2313 } 2314 2315 // Cleanup task reduction data for parallel or worksharing, 2316 // do not touch task private data other threads still working with. 2317 // Called from __kmpc_end_taskgroup() 2318 static void __kmp_task_reduction_clean(kmp_info_t *th, kmp_taskgroup_t *tg) { 2319 __kmp_thread_free(th, tg->reduce_data); 2320 tg->reduce_data = NULL; 2321 tg->reduce_num_data = 0; 2322 } 2323 2324 template <typename T> 2325 void *__kmp_task_reduction_modifier_init(ident_t *loc, int gtid, int is_ws, 2326 int num, T *data) { 2327 kmp_info_t *thr = __kmp_threads[gtid]; 2328 kmp_int32 nth = thr->th.th_team_nproc; 2329 __kmpc_taskgroup(loc, gtid); // form new taskgroup first 2330 if (nth == 1) { 2331 KA_TRACE(10, 2332 ("__kmpc_reduction_modifier_init: T#%d, tg %p, exiting nth=1\n", 2333 gtid, thr->th.th_current_task->td_taskgroup)); 2334 return (void *)thr->th.th_current_task->td_taskgroup; 2335 } 2336 kmp_team_t *team = thr->th.th_team; 2337 void *reduce_data; 2338 kmp_taskgroup_t *tg; 2339 reduce_data = KMP_ATOMIC_LD_RLX(&team->t.t_tg_reduce_data[is_ws]); 2340 if (reduce_data == NULL && 2341 __kmp_atomic_compare_store(&team->t.t_tg_reduce_data[is_ws], reduce_data, 2342 (void *)1)) { 2343 // single thread enters this block to initialize common reduction data 2344 KMP_DEBUG_ASSERT(reduce_data == NULL); 2345 // first initialize own data, then make a copy other threads can use 2346 tg = (kmp_taskgroup_t *)__kmp_task_reduction_init<T>(gtid, num, data); 2347 reduce_data = __kmp_thread_malloc(thr, num * sizeof(kmp_taskred_data_t)); 2348 KMP_MEMCPY(reduce_data, tg->reduce_data, num * sizeof(kmp_taskred_data_t)); 2349 // fini counters should be 0 at this point 2350 KMP_DEBUG_ASSERT(KMP_ATOMIC_LD_RLX(&team->t.t_tg_fini_counter[0]) == 0); 2351 KMP_DEBUG_ASSERT(KMP_ATOMIC_LD_RLX(&team->t.t_tg_fini_counter[1]) == 0); 2352 KMP_ATOMIC_ST_REL(&team->t.t_tg_reduce_data[is_ws], reduce_data); 2353 } else { 2354 while ( 2355 (reduce_data = KMP_ATOMIC_LD_ACQ(&team->t.t_tg_reduce_data[is_ws])) == 2356 (void *)1) { // wait for task reduction initialization 2357 KMP_CPU_PAUSE(); 2358 } 2359 KMP_DEBUG_ASSERT(reduce_data > (void *)1); // should be valid pointer here 2360 tg = thr->th.th_current_task->td_taskgroup; 2361 __kmp_task_reduction_init_copy<T>(thr, num, data, tg, reduce_data); 2362 } 2363 return tg; 2364 } 2365 2366 /*! 2367 @ingroup TASKING 2368 @param loc Source location info 2369 @param gtid Global thread ID 2370 @param is_ws Is 1 if the reduction is for worksharing, 0 otherwise 2371 @param num Number of data items to reduce 2372 @param data Array of data for reduction 2373 @return The taskgroup identifier 2374 2375 Initialize task reduction for a parallel or worksharing. 2376 2377 Note: this entry supposes the optional compiler-generated initializer routine 2378 has single parameter - pointer to object to be initialized. That means 2379 the reduction either does not use omp_orig object, or the omp_orig is accessible 2380 without help of the runtime library. 2381 */ 2382 void *__kmpc_task_reduction_modifier_init(ident_t *loc, int gtid, int is_ws, 2383 int num, void *data) { 2384 return __kmp_task_reduction_modifier_init(loc, gtid, is_ws, num, 2385 (kmp_task_red_input_t *)data); 2386 } 2387 2388 /*! 2389 @ingroup TASKING 2390 @param loc Source location info 2391 @param gtid Global thread ID 2392 @param is_ws Is 1 if the reduction is for worksharing, 0 otherwise 2393 @param num Number of data items to reduce 2394 @param data Array of data for reduction 2395 @return The taskgroup identifier 2396 2397 Initialize task reduction for a parallel or worksharing. 2398 2399 Note: this entry supposes the optional compiler-generated initializer routine 2400 has two parameters, pointer to object to be initialized and pointer to omp_orig 2401 */ 2402 void *__kmpc_taskred_modifier_init(ident_t *loc, int gtid, int is_ws, int num, 2403 void *data) { 2404 return __kmp_task_reduction_modifier_init(loc, gtid, is_ws, num, 2405 (kmp_taskred_input_t *)data); 2406 } 2407 2408 /*! 2409 @ingroup TASKING 2410 @param loc Source location info 2411 @param gtid Global thread ID 2412 @param is_ws Is 1 if the reduction is for worksharing, 0 otherwise 2413 2414 Finalize task reduction for a parallel or worksharing. 2415 */ 2416 void __kmpc_task_reduction_modifier_fini(ident_t *loc, int gtid, int is_ws) { 2417 __kmpc_end_taskgroup(loc, gtid); 2418 } 2419 2420 // __kmpc_taskgroup: Start a new taskgroup 2421 void __kmpc_taskgroup(ident_t *loc, int gtid) { 2422 kmp_info_t *thread = __kmp_threads[gtid]; 2423 kmp_taskdata_t *taskdata = thread->th.th_current_task; 2424 kmp_taskgroup_t *tg_new = 2425 (kmp_taskgroup_t *)__kmp_thread_malloc(thread, sizeof(kmp_taskgroup_t)); 2426 KA_TRACE(10, ("__kmpc_taskgroup: T#%d loc=%p group=%p\n", gtid, loc, tg_new)); 2427 KMP_ATOMIC_ST_RLX(&tg_new->count, 0); 2428 KMP_ATOMIC_ST_RLX(&tg_new->cancel_request, cancel_noreq); 2429 tg_new->parent = taskdata->td_taskgroup; 2430 tg_new->reduce_data = NULL; 2431 tg_new->reduce_num_data = 0; 2432 taskdata->td_taskgroup = tg_new; 2433 2434 #if OMPT_SUPPORT && OMPT_OPTIONAL 2435 if (UNLIKELY(ompt_enabled.ompt_callback_sync_region)) { 2436 void *codeptr = OMPT_LOAD_RETURN_ADDRESS(gtid); 2437 if (!codeptr) 2438 codeptr = OMPT_GET_RETURN_ADDRESS(0); 2439 kmp_team_t *team = thread->th.th_team; 2440 ompt_data_t my_task_data = taskdata->ompt_task_info.task_data; 2441 // FIXME: I think this is wrong for lwt! 2442 ompt_data_t my_parallel_data = team->t.ompt_team_info.parallel_data; 2443 2444 ompt_callbacks.ompt_callback(ompt_callback_sync_region)( 2445 ompt_sync_region_taskgroup, ompt_scope_begin, &(my_parallel_data), 2446 &(my_task_data), codeptr); 2447 } 2448 #endif 2449 } 2450 2451 // __kmpc_end_taskgroup: Wait until all tasks generated by the current task 2452 // and its descendants are complete 2453 void __kmpc_end_taskgroup(ident_t *loc, int gtid) { 2454 kmp_info_t *thread = __kmp_threads[gtid]; 2455 kmp_taskdata_t *taskdata = thread->th.th_current_task; 2456 kmp_taskgroup_t *taskgroup = taskdata->td_taskgroup; 2457 int thread_finished = FALSE; 2458 2459 #if OMPT_SUPPORT && OMPT_OPTIONAL 2460 kmp_team_t *team; 2461 ompt_data_t my_task_data; 2462 ompt_data_t my_parallel_data; 2463 void *codeptr; 2464 if (UNLIKELY(ompt_enabled.enabled)) { 2465 team = thread->th.th_team; 2466 my_task_data = taskdata->ompt_task_info.task_data; 2467 // FIXME: I think this is wrong for lwt! 2468 my_parallel_data = team->t.ompt_team_info.parallel_data; 2469 codeptr = OMPT_LOAD_RETURN_ADDRESS(gtid); 2470 if (!codeptr) 2471 codeptr = OMPT_GET_RETURN_ADDRESS(0); 2472 } 2473 #endif 2474 2475 KA_TRACE(10, ("__kmpc_end_taskgroup(enter): T#%d loc=%p\n", gtid, loc)); 2476 KMP_DEBUG_ASSERT(taskgroup != NULL); 2477 KMP_SET_THREAD_STATE_BLOCK(TASKGROUP); 2478 2479 if (__kmp_tasking_mode != tskm_immediate_exec) { 2480 // mark task as waiting not on a barrier 2481 taskdata->td_taskwait_counter += 1; 2482 taskdata->td_taskwait_ident = loc; 2483 taskdata->td_taskwait_thread = gtid + 1; 2484 #if USE_ITT_BUILD 2485 // For ITT the taskgroup wait is similar to taskwait until we need to 2486 // distinguish them 2487 void *itt_sync_obj = __kmp_itt_taskwait_object(gtid); 2488 if (itt_sync_obj != NULL) 2489 __kmp_itt_taskwait_starting(gtid, itt_sync_obj); 2490 #endif /* USE_ITT_BUILD */ 2491 2492 #if OMPT_SUPPORT && OMPT_OPTIONAL 2493 if (UNLIKELY(ompt_enabled.ompt_callback_sync_region_wait)) { 2494 ompt_callbacks.ompt_callback(ompt_callback_sync_region_wait)( 2495 ompt_sync_region_taskgroup, ompt_scope_begin, &(my_parallel_data), 2496 &(my_task_data), codeptr); 2497 } 2498 #endif 2499 2500 if (!taskdata->td_flags.team_serial || 2501 (thread->th.th_task_team != NULL && 2502 thread->th.th_task_team->tt.tt_found_proxy_tasks)) { 2503 kmp_flag_32 flag(RCAST(std::atomic<kmp_uint32> *, &(taskgroup->count)), 2504 0U); 2505 while (KMP_ATOMIC_LD_ACQ(&taskgroup->count) != 0) { 2506 flag.execute_tasks(thread, gtid, FALSE, 2507 &thread_finished USE_ITT_BUILD_ARG(itt_sync_obj), 2508 __kmp_task_stealing_constraint); 2509 } 2510 } 2511 taskdata->td_taskwait_thread = -taskdata->td_taskwait_thread; // end waiting 2512 2513 #if OMPT_SUPPORT && OMPT_OPTIONAL 2514 if (UNLIKELY(ompt_enabled.ompt_callback_sync_region_wait)) { 2515 ompt_callbacks.ompt_callback(ompt_callback_sync_region_wait)( 2516 ompt_sync_region_taskgroup, ompt_scope_end, &(my_parallel_data), 2517 &(my_task_data), codeptr); 2518 } 2519 #endif 2520 2521 #if USE_ITT_BUILD 2522 if (itt_sync_obj != NULL) 2523 __kmp_itt_taskwait_finished(gtid, itt_sync_obj); 2524 #endif /* USE_ITT_BUILD */ 2525 } 2526 KMP_DEBUG_ASSERT(taskgroup->count == 0); 2527 2528 if (taskgroup->reduce_data != NULL) { // need to reduce? 2529 int cnt; 2530 void *reduce_data; 2531 kmp_team_t *t = thread->th.th_team; 2532 kmp_taskred_data_t *arr = (kmp_taskred_data_t *)taskgroup->reduce_data; 2533 // check if <priv> data of the first reduction variable shared for the team 2534 void *priv0 = arr[0].reduce_priv; 2535 if ((reduce_data = KMP_ATOMIC_LD_ACQ(&t->t.t_tg_reduce_data[0])) != NULL && 2536 ((kmp_taskred_data_t *)reduce_data)[0].reduce_priv == priv0) { 2537 // finishing task reduction on parallel 2538 cnt = KMP_ATOMIC_INC(&t->t.t_tg_fini_counter[0]); 2539 if (cnt == thread->th.th_team_nproc - 1) { 2540 // we are the last thread passing __kmpc_reduction_modifier_fini() 2541 // finalize task reduction: 2542 __kmp_task_reduction_fini(thread, taskgroup); 2543 // cleanup fields in the team structure: 2544 // TODO: is relaxed store enough here (whole barrier should follow)? 2545 __kmp_thread_free(thread, reduce_data); 2546 KMP_ATOMIC_ST_REL(&t->t.t_tg_reduce_data[0], NULL); 2547 KMP_ATOMIC_ST_REL(&t->t.t_tg_fini_counter[0], 0); 2548 } else { 2549 // we are not the last thread passing __kmpc_reduction_modifier_fini(), 2550 // so do not finalize reduction, just clean own copy of the data 2551 __kmp_task_reduction_clean(thread, taskgroup); 2552 } 2553 } else if ((reduce_data = KMP_ATOMIC_LD_ACQ(&t->t.t_tg_reduce_data[1])) != 2554 NULL && 2555 ((kmp_taskred_data_t *)reduce_data)[0].reduce_priv == priv0) { 2556 // finishing task reduction on worksharing 2557 cnt = KMP_ATOMIC_INC(&t->t.t_tg_fini_counter[1]); 2558 if (cnt == thread->th.th_team_nproc - 1) { 2559 // we are the last thread passing __kmpc_reduction_modifier_fini() 2560 __kmp_task_reduction_fini(thread, taskgroup); 2561 // cleanup fields in team structure: 2562 // TODO: is relaxed store enough here (whole barrier should follow)? 2563 __kmp_thread_free(thread, reduce_data); 2564 KMP_ATOMIC_ST_REL(&t->t.t_tg_reduce_data[1], NULL); 2565 KMP_ATOMIC_ST_REL(&t->t.t_tg_fini_counter[1], 0); 2566 } else { 2567 // we are not the last thread passing __kmpc_reduction_modifier_fini(), 2568 // so do not finalize reduction, just clean own copy of the data 2569 __kmp_task_reduction_clean(thread, taskgroup); 2570 } 2571 } else { 2572 // finishing task reduction on taskgroup 2573 __kmp_task_reduction_fini(thread, taskgroup); 2574 } 2575 } 2576 // Restore parent taskgroup for the current task 2577 taskdata->td_taskgroup = taskgroup->parent; 2578 __kmp_thread_free(thread, taskgroup); 2579 2580 KA_TRACE(10, ("__kmpc_end_taskgroup(exit): T#%d task %p finished waiting\n", 2581 gtid, taskdata)); 2582 ANNOTATE_HAPPENS_AFTER(taskdata); 2583 2584 #if OMPT_SUPPORT && OMPT_OPTIONAL 2585 if (UNLIKELY(ompt_enabled.ompt_callback_sync_region)) { 2586 ompt_callbacks.ompt_callback(ompt_callback_sync_region)( 2587 ompt_sync_region_taskgroup, ompt_scope_end, &(my_parallel_data), 2588 &(my_task_data), codeptr); 2589 } 2590 #endif 2591 } 2592 2593 // __kmp_remove_my_task: remove a task from my own deque 2594 static kmp_task_t *__kmp_remove_my_task(kmp_info_t *thread, kmp_int32 gtid, 2595 kmp_task_team_t *task_team, 2596 kmp_int32 is_constrained) { 2597 kmp_task_t *task; 2598 kmp_taskdata_t *taskdata; 2599 kmp_thread_data_t *thread_data; 2600 kmp_uint32 tail; 2601 2602 KMP_DEBUG_ASSERT(__kmp_tasking_mode != tskm_immediate_exec); 2603 KMP_DEBUG_ASSERT(task_team->tt.tt_threads_data != 2604 NULL); // Caller should check this condition 2605 2606 thread_data = &task_team->tt.tt_threads_data[__kmp_tid_from_gtid(gtid)]; 2607 2608 KA_TRACE(10, ("__kmp_remove_my_task(enter): T#%d ntasks=%d head=%u tail=%u\n", 2609 gtid, thread_data->td.td_deque_ntasks, 2610 thread_data->td.td_deque_head, thread_data->td.td_deque_tail)); 2611 2612 if (TCR_4(thread_data->td.td_deque_ntasks) == 0) { 2613 KA_TRACE(10, 2614 ("__kmp_remove_my_task(exit #1): T#%d No tasks to remove: " 2615 "ntasks=%d head=%u tail=%u\n", 2616 gtid, thread_data->td.td_deque_ntasks, 2617 thread_data->td.td_deque_head, thread_data->td.td_deque_tail)); 2618 return NULL; 2619 } 2620 2621 __kmp_acquire_bootstrap_lock(&thread_data->td.td_deque_lock); 2622 2623 if (TCR_4(thread_data->td.td_deque_ntasks) == 0) { 2624 __kmp_release_bootstrap_lock(&thread_data->td.td_deque_lock); 2625 KA_TRACE(10, 2626 ("__kmp_remove_my_task(exit #2): T#%d No tasks to remove: " 2627 "ntasks=%d head=%u tail=%u\n", 2628 gtid, thread_data->td.td_deque_ntasks, 2629 thread_data->td.td_deque_head, thread_data->td.td_deque_tail)); 2630 return NULL; 2631 } 2632 2633 tail = (thread_data->td.td_deque_tail - 1) & 2634 TASK_DEQUE_MASK(thread_data->td); // Wrap index. 2635 taskdata = thread_data->td.td_deque[tail]; 2636 2637 if (!__kmp_task_is_allowed(gtid, is_constrained, taskdata, 2638 thread->th.th_current_task)) { 2639 // The TSC does not allow to steal victim task 2640 __kmp_release_bootstrap_lock(&thread_data->td.td_deque_lock); 2641 KA_TRACE(10, 2642 ("__kmp_remove_my_task(exit #3): T#%d TSC blocks tail task: " 2643 "ntasks=%d head=%u tail=%u\n", 2644 gtid, thread_data->td.td_deque_ntasks, 2645 thread_data->td.td_deque_head, thread_data->td.td_deque_tail)); 2646 return NULL; 2647 } 2648 2649 thread_data->td.td_deque_tail = tail; 2650 TCW_4(thread_data->td.td_deque_ntasks, thread_data->td.td_deque_ntasks - 1); 2651 2652 __kmp_release_bootstrap_lock(&thread_data->td.td_deque_lock); 2653 2654 KA_TRACE(10, ("__kmp_remove_my_task(exit #4): T#%d task %p removed: " 2655 "ntasks=%d head=%u tail=%u\n", 2656 gtid, taskdata, thread_data->td.td_deque_ntasks, 2657 thread_data->td.td_deque_head, thread_data->td.td_deque_tail)); 2658 2659 task = KMP_TASKDATA_TO_TASK(taskdata); 2660 return task; 2661 } 2662 2663 // __kmp_steal_task: remove a task from another thread's deque 2664 // Assume that calling thread has already checked existence of 2665 // task_team thread_data before calling this routine. 2666 static kmp_task_t *__kmp_steal_task(kmp_info_t *victim_thr, kmp_int32 gtid, 2667 kmp_task_team_t *task_team, 2668 std::atomic<kmp_int32> *unfinished_threads, 2669 int *thread_finished, 2670 kmp_int32 is_constrained) { 2671 kmp_task_t *task; 2672 kmp_taskdata_t *taskdata; 2673 kmp_taskdata_t *current; 2674 kmp_thread_data_t *victim_td, *threads_data; 2675 kmp_int32 target; 2676 kmp_int32 victim_tid; 2677 2678 KMP_DEBUG_ASSERT(__kmp_tasking_mode != tskm_immediate_exec); 2679 2680 threads_data = task_team->tt.tt_threads_data; 2681 KMP_DEBUG_ASSERT(threads_data != NULL); // Caller should check this condition 2682 2683 victim_tid = victim_thr->th.th_info.ds.ds_tid; 2684 victim_td = &threads_data[victim_tid]; 2685 2686 KA_TRACE(10, ("__kmp_steal_task(enter): T#%d try to steal from T#%d: " 2687 "task_team=%p ntasks=%d head=%u tail=%u\n", 2688 gtid, __kmp_gtid_from_thread(victim_thr), task_team, 2689 victim_td->td.td_deque_ntasks, victim_td->td.td_deque_head, 2690 victim_td->td.td_deque_tail)); 2691 2692 if (TCR_4(victim_td->td.td_deque_ntasks) == 0) { 2693 KA_TRACE(10, ("__kmp_steal_task(exit #1): T#%d could not steal from T#%d: " 2694 "task_team=%p ntasks=%d head=%u tail=%u\n", 2695 gtid, __kmp_gtid_from_thread(victim_thr), task_team, 2696 victim_td->td.td_deque_ntasks, victim_td->td.td_deque_head, 2697 victim_td->td.td_deque_tail)); 2698 return NULL; 2699 } 2700 2701 __kmp_acquire_bootstrap_lock(&victim_td->td.td_deque_lock); 2702 2703 int ntasks = TCR_4(victim_td->td.td_deque_ntasks); 2704 // Check again after we acquire the lock 2705 if (ntasks == 0) { 2706 __kmp_release_bootstrap_lock(&victim_td->td.td_deque_lock); 2707 KA_TRACE(10, ("__kmp_steal_task(exit #2): T#%d could not steal from T#%d: " 2708 "task_team=%p ntasks=%d head=%u tail=%u\n", 2709 gtid, __kmp_gtid_from_thread(victim_thr), task_team, ntasks, 2710 victim_td->td.td_deque_head, victim_td->td.td_deque_tail)); 2711 return NULL; 2712 } 2713 2714 KMP_DEBUG_ASSERT(victim_td->td.td_deque != NULL); 2715 current = __kmp_threads[gtid]->th.th_current_task; 2716 taskdata = victim_td->td.td_deque[victim_td->td.td_deque_head]; 2717 if (__kmp_task_is_allowed(gtid, is_constrained, taskdata, current)) { 2718 // Bump head pointer and Wrap. 2719 victim_td->td.td_deque_head = 2720 (victim_td->td.td_deque_head + 1) & TASK_DEQUE_MASK(victim_td->td); 2721 } else { 2722 if (!task_team->tt.tt_untied_task_encountered) { 2723 // The TSC does not allow to steal victim task 2724 __kmp_release_bootstrap_lock(&victim_td->td.td_deque_lock); 2725 KA_TRACE(10, ("__kmp_steal_task(exit #3): T#%d could not steal from " 2726 "T#%d: task_team=%p ntasks=%d head=%u tail=%u\n", 2727 gtid, __kmp_gtid_from_thread(victim_thr), task_team, ntasks, 2728 victim_td->td.td_deque_head, victim_td->td.td_deque_tail)); 2729 return NULL; 2730 } 2731 int i; 2732 // walk through victim's deque trying to steal any task 2733 target = victim_td->td.td_deque_head; 2734 taskdata = NULL; 2735 for (i = 1; i < ntasks; ++i) { 2736 target = (target + 1) & TASK_DEQUE_MASK(victim_td->td); 2737 taskdata = victim_td->td.td_deque[target]; 2738 if (__kmp_task_is_allowed(gtid, is_constrained, taskdata, current)) { 2739 break; // found victim task 2740 } else { 2741 taskdata = NULL; 2742 } 2743 } 2744 if (taskdata == NULL) { 2745 // No appropriate candidate to steal found 2746 __kmp_release_bootstrap_lock(&victim_td->td.td_deque_lock); 2747 KA_TRACE(10, ("__kmp_steal_task(exit #4): T#%d could not steal from " 2748 "T#%d: task_team=%p ntasks=%d head=%u tail=%u\n", 2749 gtid, __kmp_gtid_from_thread(victim_thr), task_team, ntasks, 2750 victim_td->td.td_deque_head, victim_td->td.td_deque_tail)); 2751 return NULL; 2752 } 2753 int prev = target; 2754 for (i = i + 1; i < ntasks; ++i) { 2755 // shift remaining tasks in the deque left by 1 2756 target = (target + 1) & TASK_DEQUE_MASK(victim_td->td); 2757 victim_td->td.td_deque[prev] = victim_td->td.td_deque[target]; 2758 prev = target; 2759 } 2760 KMP_DEBUG_ASSERT( 2761 victim_td->td.td_deque_tail == 2762 (kmp_uint32)((target + 1) & TASK_DEQUE_MASK(victim_td->td))); 2763 victim_td->td.td_deque_tail = target; // tail -= 1 (wrapped)) 2764 } 2765 if (*thread_finished) { 2766 // We need to un-mark this victim as a finished victim. This must be done 2767 // before releasing the lock, or else other threads (starting with the 2768 // master victim) might be prematurely released from the barrier!!! 2769 kmp_int32 count; 2770 2771 count = KMP_ATOMIC_INC(unfinished_threads); 2772 2773 KA_TRACE( 2774 20, 2775 ("__kmp_steal_task: T#%d inc unfinished_threads to %d: task_team=%p\n", 2776 gtid, count + 1, task_team)); 2777 2778 *thread_finished = FALSE; 2779 } 2780 TCW_4(victim_td->td.td_deque_ntasks, ntasks - 1); 2781 2782 __kmp_release_bootstrap_lock(&victim_td->td.td_deque_lock); 2783 2784 KMP_COUNT_BLOCK(TASK_stolen); 2785 KA_TRACE(10, 2786 ("__kmp_steal_task(exit #5): T#%d stole task %p from T#%d: " 2787 "task_team=%p ntasks=%d head=%u tail=%u\n", 2788 gtid, taskdata, __kmp_gtid_from_thread(victim_thr), task_team, 2789 ntasks, victim_td->td.td_deque_head, victim_td->td.td_deque_tail)); 2790 2791 task = KMP_TASKDATA_TO_TASK(taskdata); 2792 return task; 2793 } 2794 2795 // __kmp_execute_tasks_template: Choose and execute tasks until either the 2796 // condition is statisfied (return true) or there are none left (return false). 2797 // 2798 // final_spin is TRUE if this is the spin at the release barrier. 2799 // thread_finished indicates whether the thread is finished executing all 2800 // the tasks it has on its deque, and is at the release barrier. 2801 // spinner is the location on which to spin. 2802 // spinner == NULL means only execute a single task and return. 2803 // checker is the value to check to terminate the spin. 2804 template <class C> 2805 static inline int __kmp_execute_tasks_template( 2806 kmp_info_t *thread, kmp_int32 gtid, C *flag, int final_spin, 2807 int *thread_finished USE_ITT_BUILD_ARG(void *itt_sync_obj), 2808 kmp_int32 is_constrained) { 2809 kmp_task_team_t *task_team = thread->th.th_task_team; 2810 kmp_thread_data_t *threads_data; 2811 kmp_task_t *task; 2812 kmp_info_t *other_thread; 2813 kmp_taskdata_t *current_task = thread->th.th_current_task; 2814 std::atomic<kmp_int32> *unfinished_threads; 2815 kmp_int32 nthreads, victim_tid = -2, use_own_tasks = 1, new_victim = 0, 2816 tid = thread->th.th_info.ds.ds_tid; 2817 2818 KMP_DEBUG_ASSERT(__kmp_tasking_mode != tskm_immediate_exec); 2819 KMP_DEBUG_ASSERT(thread == __kmp_threads[gtid]); 2820 2821 if (task_team == NULL || current_task == NULL) 2822 return FALSE; 2823 2824 KA_TRACE(15, ("__kmp_execute_tasks_template(enter): T#%d final_spin=%d " 2825 "*thread_finished=%d\n", 2826 gtid, final_spin, *thread_finished)); 2827 2828 thread->th.th_reap_state = KMP_NOT_SAFE_TO_REAP; 2829 threads_data = (kmp_thread_data_t *)TCR_PTR(task_team->tt.tt_threads_data); 2830 KMP_DEBUG_ASSERT(threads_data != NULL); 2831 2832 nthreads = task_team->tt.tt_nproc; 2833 unfinished_threads = &(task_team->tt.tt_unfinished_threads); 2834 KMP_DEBUG_ASSERT(nthreads > 1 || task_team->tt.tt_found_proxy_tasks); 2835 KMP_DEBUG_ASSERT(*unfinished_threads >= 0); 2836 2837 while (1) { // Outer loop keeps trying to find tasks in case of single thread 2838 // getting tasks from target constructs 2839 while (1) { // Inner loop to find a task and execute it 2840 task = NULL; 2841 if (use_own_tasks) { // check on own queue first 2842 task = __kmp_remove_my_task(thread, gtid, task_team, is_constrained); 2843 } 2844 if ((task == NULL) && (nthreads > 1)) { // Steal a task 2845 int asleep = 1; 2846 use_own_tasks = 0; 2847 // Try to steal from the last place I stole from successfully. 2848 if (victim_tid == -2) { // haven't stolen anything yet 2849 victim_tid = threads_data[tid].td.td_deque_last_stolen; 2850 if (victim_tid != 2851 -1) // if we have a last stolen from victim, get the thread 2852 other_thread = threads_data[victim_tid].td.td_thr; 2853 } 2854 if (victim_tid != -1) { // found last victim 2855 asleep = 0; 2856 } else if (!new_victim) { // no recent steals and we haven't already 2857 // used a new victim; select a random thread 2858 do { // Find a different thread to steal work from. 2859 // Pick a random thread. Initial plan was to cycle through all the 2860 // threads, and only return if we tried to steal from every thread, 2861 // and failed. Arch says that's not such a great idea. 2862 victim_tid = __kmp_get_random(thread) % (nthreads - 1); 2863 if (victim_tid >= tid) { 2864 ++victim_tid; // Adjusts random distribution to exclude self 2865 } 2866 // Found a potential victim 2867 other_thread = threads_data[victim_tid].td.td_thr; 2868 // There is a slight chance that __kmp_enable_tasking() did not wake 2869 // up all threads waiting at the barrier. If victim is sleeping, 2870 // then wake it up. Since we were going to pay the cache miss 2871 // penalty for referencing another thread's kmp_info_t struct 2872 // anyway, 2873 // the check shouldn't cost too much performance at this point. In 2874 // extra barrier mode, tasks do not sleep at the separate tasking 2875 // barrier, so this isn't a problem. 2876 asleep = 0; 2877 if ((__kmp_tasking_mode == tskm_task_teams) && 2878 (__kmp_dflt_blocktime != KMP_MAX_BLOCKTIME) && 2879 (TCR_PTR(CCAST(void *, other_thread->th.th_sleep_loc)) != 2880 NULL)) { 2881 asleep = 1; 2882 __kmp_null_resume_wrapper(__kmp_gtid_from_thread(other_thread), 2883 other_thread->th.th_sleep_loc); 2884 // A sleeping thread should not have any tasks on it's queue. 2885 // There is a slight possibility that it resumes, steals a task 2886 // from another thread, which spawns more tasks, all in the time 2887 // that it takes this thread to check => don't write an assertion 2888 // that the victim's queue is empty. Try stealing from a 2889 // different thread. 2890 } 2891 } while (asleep); 2892 } 2893 2894 if (!asleep) { 2895 // We have a victim to try to steal from 2896 task = __kmp_steal_task(other_thread, gtid, task_team, 2897 unfinished_threads, thread_finished, 2898 is_constrained); 2899 } 2900 if (task != NULL) { // set last stolen to victim 2901 if (threads_data[tid].td.td_deque_last_stolen != victim_tid) { 2902 threads_data[tid].td.td_deque_last_stolen = victim_tid; 2903 // The pre-refactored code did not try more than 1 successful new 2904 // vicitm, unless the last one generated more local tasks; 2905 // new_victim keeps track of this 2906 new_victim = 1; 2907 } 2908 } else { // No tasks found; unset last_stolen 2909 KMP_CHECK_UPDATE(threads_data[tid].td.td_deque_last_stolen, -1); 2910 victim_tid = -2; // no successful victim found 2911 } 2912 } 2913 2914 if (task == NULL) // break out of tasking loop 2915 break; 2916 2917 // Found a task; execute it 2918 #if USE_ITT_BUILD && USE_ITT_NOTIFY 2919 if (__itt_sync_create_ptr || KMP_ITT_DEBUG) { 2920 if (itt_sync_obj == NULL) { // we are at fork barrier where we could not 2921 // get the object reliably 2922 itt_sync_obj = __kmp_itt_barrier_object(gtid, bs_forkjoin_barrier); 2923 } 2924 __kmp_itt_task_starting(itt_sync_obj); 2925 } 2926 #endif /* USE_ITT_BUILD && USE_ITT_NOTIFY */ 2927 __kmp_invoke_task(gtid, task, current_task); 2928 #if USE_ITT_BUILD 2929 if (itt_sync_obj != NULL) 2930 __kmp_itt_task_finished(itt_sync_obj); 2931 #endif /* USE_ITT_BUILD */ 2932 // If this thread is only partway through the barrier and the condition is 2933 // met, then return now, so that the barrier gather/release pattern can 2934 // proceed. If this thread is in the last spin loop in the barrier, 2935 // waiting to be released, we know that the termination condition will not 2936 // be satisfied, so don't waste any cycles checking it. 2937 if (flag == NULL || (!final_spin && flag->done_check())) { 2938 KA_TRACE( 2939 15, 2940 ("__kmp_execute_tasks_template: T#%d spin condition satisfied\n", 2941 gtid)); 2942 return TRUE; 2943 } 2944 if (thread->th.th_task_team == NULL) { 2945 break; 2946 } 2947 KMP_YIELD(__kmp_library == library_throughput); // Yield before next task 2948 // If execution of a stolen task results in more tasks being placed on our 2949 // run queue, reset use_own_tasks 2950 if (!use_own_tasks && TCR_4(threads_data[tid].td.td_deque_ntasks) != 0) { 2951 KA_TRACE(20, ("__kmp_execute_tasks_template: T#%d stolen task spawned " 2952 "other tasks, restart\n", 2953 gtid)); 2954 use_own_tasks = 1; 2955 new_victim = 0; 2956 } 2957 } 2958 2959 // The task source has been exhausted. If in final spin loop of barrier, 2960 // check if termination condition is satisfied. The work queue may be empty 2961 // but there might be proxy tasks still executing. 2962 if (final_spin && 2963 KMP_ATOMIC_LD_ACQ(¤t_task->td_incomplete_child_tasks) == 0) { 2964 // First, decrement the #unfinished threads, if that has not already been 2965 // done. This decrement might be to the spin location, and result in the 2966 // termination condition being satisfied. 2967 if (!*thread_finished) { 2968 kmp_int32 count; 2969 2970 count = KMP_ATOMIC_DEC(unfinished_threads) - 1; 2971 KA_TRACE(20, ("__kmp_execute_tasks_template: T#%d dec " 2972 "unfinished_threads to %d task_team=%p\n", 2973 gtid, count, task_team)); 2974 *thread_finished = TRUE; 2975 } 2976 2977 // It is now unsafe to reference thread->th.th_team !!! 2978 // Decrementing task_team->tt.tt_unfinished_threads can allow the master 2979 // thread to pass through the barrier, where it might reset each thread's 2980 // th.th_team field for the next parallel region. If we can steal more 2981 // work, we know that this has not happened yet. 2982 if (flag != NULL && flag->done_check()) { 2983 KA_TRACE( 2984 15, 2985 ("__kmp_execute_tasks_template: T#%d spin condition satisfied\n", 2986 gtid)); 2987 return TRUE; 2988 } 2989 } 2990 2991 // If this thread's task team is NULL, master has recognized that there are 2992 // no more tasks; bail out 2993 if (thread->th.th_task_team == NULL) { 2994 KA_TRACE(15, 2995 ("__kmp_execute_tasks_template: T#%d no more tasks\n", gtid)); 2996 return FALSE; 2997 } 2998 2999 // We could be getting tasks from target constructs; if this is the only 3000 // thread, keep trying to execute tasks from own queue 3001 if (nthreads == 1) 3002 use_own_tasks = 1; 3003 else { 3004 KA_TRACE(15, 3005 ("__kmp_execute_tasks_template: T#%d can't find work\n", gtid)); 3006 return FALSE; 3007 } 3008 } 3009 } 3010 3011 int __kmp_execute_tasks_32( 3012 kmp_info_t *thread, kmp_int32 gtid, kmp_flag_32 *flag, int final_spin, 3013 int *thread_finished USE_ITT_BUILD_ARG(void *itt_sync_obj), 3014 kmp_int32 is_constrained) { 3015 return __kmp_execute_tasks_template( 3016 thread, gtid, flag, final_spin, 3017 thread_finished USE_ITT_BUILD_ARG(itt_sync_obj), is_constrained); 3018 } 3019 3020 int __kmp_execute_tasks_64( 3021 kmp_info_t *thread, kmp_int32 gtid, kmp_flag_64 *flag, int final_spin, 3022 int *thread_finished USE_ITT_BUILD_ARG(void *itt_sync_obj), 3023 kmp_int32 is_constrained) { 3024 return __kmp_execute_tasks_template( 3025 thread, gtid, flag, final_spin, 3026 thread_finished USE_ITT_BUILD_ARG(itt_sync_obj), is_constrained); 3027 } 3028 3029 int __kmp_execute_tasks_oncore( 3030 kmp_info_t *thread, kmp_int32 gtid, kmp_flag_oncore *flag, int final_spin, 3031 int *thread_finished USE_ITT_BUILD_ARG(void *itt_sync_obj), 3032 kmp_int32 is_constrained) { 3033 return __kmp_execute_tasks_template( 3034 thread, gtid, flag, final_spin, 3035 thread_finished USE_ITT_BUILD_ARG(itt_sync_obj), is_constrained); 3036 } 3037 3038 // __kmp_enable_tasking: Allocate task team and resume threads sleeping at the 3039 // next barrier so they can assist in executing enqueued tasks. 3040 // First thread in allocates the task team atomically. 3041 static void __kmp_enable_tasking(kmp_task_team_t *task_team, 3042 kmp_info_t *this_thr) { 3043 kmp_thread_data_t *threads_data; 3044 int nthreads, i, is_init_thread; 3045 3046 KA_TRACE(10, ("__kmp_enable_tasking(enter): T#%d\n", 3047 __kmp_gtid_from_thread(this_thr))); 3048 3049 KMP_DEBUG_ASSERT(task_team != NULL); 3050 KMP_DEBUG_ASSERT(this_thr->th.th_team != NULL); 3051 3052 nthreads = task_team->tt.tt_nproc; 3053 KMP_DEBUG_ASSERT(nthreads > 0); 3054 KMP_DEBUG_ASSERT(nthreads == this_thr->th.th_team->t.t_nproc); 3055 3056 // Allocate or increase the size of threads_data if necessary 3057 is_init_thread = __kmp_realloc_task_threads_data(this_thr, task_team); 3058 3059 if (!is_init_thread) { 3060 // Some other thread already set up the array. 3061 KA_TRACE( 3062 20, 3063 ("__kmp_enable_tasking(exit): T#%d: threads array already set up.\n", 3064 __kmp_gtid_from_thread(this_thr))); 3065 return; 3066 } 3067 threads_data = (kmp_thread_data_t *)TCR_PTR(task_team->tt.tt_threads_data); 3068 KMP_DEBUG_ASSERT(threads_data != NULL); 3069 3070 if (__kmp_tasking_mode == tskm_task_teams && 3071 (__kmp_dflt_blocktime != KMP_MAX_BLOCKTIME)) { 3072 // Release any threads sleeping at the barrier, so that they can steal 3073 // tasks and execute them. In extra barrier mode, tasks do not sleep 3074 // at the separate tasking barrier, so this isn't a problem. 3075 for (i = 0; i < nthreads; i++) { 3076 volatile void *sleep_loc; 3077 kmp_info_t *thread = threads_data[i].td.td_thr; 3078 3079 if (i == this_thr->th.th_info.ds.ds_tid) { 3080 continue; 3081 } 3082 // Since we haven't locked the thread's suspend mutex lock at this 3083 // point, there is a small window where a thread might be putting 3084 // itself to sleep, but hasn't set the th_sleep_loc field yet. 3085 // To work around this, __kmp_execute_tasks_template() periodically checks 3086 // see if other threads are sleeping (using the same random mechanism that 3087 // is used for task stealing) and awakens them if they are. 3088 if ((sleep_loc = TCR_PTR(CCAST(void *, thread->th.th_sleep_loc))) != 3089 NULL) { 3090 KF_TRACE(50, ("__kmp_enable_tasking: T#%d waking up thread T#%d\n", 3091 __kmp_gtid_from_thread(this_thr), 3092 __kmp_gtid_from_thread(thread))); 3093 __kmp_null_resume_wrapper(__kmp_gtid_from_thread(thread), sleep_loc); 3094 } else { 3095 KF_TRACE(50, ("__kmp_enable_tasking: T#%d don't wake up thread T#%d\n", 3096 __kmp_gtid_from_thread(this_thr), 3097 __kmp_gtid_from_thread(thread))); 3098 } 3099 } 3100 } 3101 3102 KA_TRACE(10, ("__kmp_enable_tasking(exit): T#%d\n", 3103 __kmp_gtid_from_thread(this_thr))); 3104 } 3105 3106 /* // TODO: Check the comment consistency 3107 * Utility routines for "task teams". A task team (kmp_task_t) is kind of 3108 * like a shadow of the kmp_team_t data struct, with a different lifetime. 3109 * After a child * thread checks into a barrier and calls __kmp_release() from 3110 * the particular variant of __kmp_<barrier_kind>_barrier_gather(), it can no 3111 * longer assume that the kmp_team_t structure is intact (at any moment, the 3112 * master thread may exit the barrier code and free the team data structure, 3113 * and return the threads to the thread pool). 3114 * 3115 * This does not work with the tasking code, as the thread is still 3116 * expected to participate in the execution of any tasks that may have been 3117 * spawned my a member of the team, and the thread still needs access to all 3118 * to each thread in the team, so that it can steal work from it. 3119 * 3120 * Enter the existence of the kmp_task_team_t struct. It employs a reference 3121 * counting mechanism, and is allocated by the master thread before calling 3122 * __kmp_<barrier_kind>_release, and then is release by the last thread to 3123 * exit __kmp_<barrier_kind>_release at the next barrier. I.e. the lifetimes 3124 * of the kmp_task_team_t structs for consecutive barriers can overlap 3125 * (and will, unless the master thread is the last thread to exit the barrier 3126 * release phase, which is not typical). The existence of such a struct is 3127 * useful outside the context of tasking. 3128 * 3129 * We currently use the existence of the threads array as an indicator that 3130 * tasks were spawned since the last barrier. If the structure is to be 3131 * useful outside the context of tasking, then this will have to change, but 3132 * not setting the field minimizes the performance impact of tasking on 3133 * barriers, when no explicit tasks were spawned (pushed, actually). 3134 */ 3135 3136 static kmp_task_team_t *__kmp_free_task_teams = 3137 NULL; // Free list for task_team data structures 3138 // Lock for task team data structures 3139 kmp_bootstrap_lock_t __kmp_task_team_lock = 3140 KMP_BOOTSTRAP_LOCK_INITIALIZER(__kmp_task_team_lock); 3141 3142 // __kmp_alloc_task_deque: 3143 // Allocates a task deque for a particular thread, and initialize the necessary 3144 // data structures relating to the deque. This only happens once per thread 3145 // per task team since task teams are recycled. No lock is needed during 3146 // allocation since each thread allocates its own deque. 3147 static void __kmp_alloc_task_deque(kmp_info_t *thread, 3148 kmp_thread_data_t *thread_data) { 3149 __kmp_init_bootstrap_lock(&thread_data->td.td_deque_lock); 3150 KMP_DEBUG_ASSERT(thread_data->td.td_deque == NULL); 3151 3152 // Initialize last stolen task field to "none" 3153 thread_data->td.td_deque_last_stolen = -1; 3154 3155 KMP_DEBUG_ASSERT(TCR_4(thread_data->td.td_deque_ntasks) == 0); 3156 KMP_DEBUG_ASSERT(thread_data->td.td_deque_head == 0); 3157 KMP_DEBUG_ASSERT(thread_data->td.td_deque_tail == 0); 3158 3159 KE_TRACE( 3160 10, 3161 ("__kmp_alloc_task_deque: T#%d allocating deque[%d] for thread_data %p\n", 3162 __kmp_gtid_from_thread(thread), INITIAL_TASK_DEQUE_SIZE, thread_data)); 3163 // Allocate space for task deque, and zero the deque 3164 // Cannot use __kmp_thread_calloc() because threads not around for 3165 // kmp_reap_task_team( ). 3166 thread_data->td.td_deque = (kmp_taskdata_t **)__kmp_allocate( 3167 INITIAL_TASK_DEQUE_SIZE * sizeof(kmp_taskdata_t *)); 3168 thread_data->td.td_deque_size = INITIAL_TASK_DEQUE_SIZE; 3169 } 3170 3171 // __kmp_free_task_deque: 3172 // Deallocates a task deque for a particular thread. Happens at library 3173 // deallocation so don't need to reset all thread data fields. 3174 static void __kmp_free_task_deque(kmp_thread_data_t *thread_data) { 3175 if (thread_data->td.td_deque != NULL) { 3176 __kmp_acquire_bootstrap_lock(&thread_data->td.td_deque_lock); 3177 TCW_4(thread_data->td.td_deque_ntasks, 0); 3178 __kmp_free(thread_data->td.td_deque); 3179 thread_data->td.td_deque = NULL; 3180 __kmp_release_bootstrap_lock(&thread_data->td.td_deque_lock); 3181 } 3182 3183 #ifdef BUILD_TIED_TASK_STACK 3184 // GEH: Figure out what to do here for td_susp_tied_tasks 3185 if (thread_data->td.td_susp_tied_tasks.ts_entries != TASK_STACK_EMPTY) { 3186 __kmp_free_task_stack(__kmp_thread_from_gtid(gtid), thread_data); 3187 } 3188 #endif // BUILD_TIED_TASK_STACK 3189 } 3190 3191 // __kmp_realloc_task_threads_data: 3192 // Allocates a threads_data array for a task team, either by allocating an 3193 // initial array or enlarging an existing array. Only the first thread to get 3194 // the lock allocs or enlarges the array and re-initializes the array elements. 3195 // That thread returns "TRUE", the rest return "FALSE". 3196 // Assumes that the new array size is given by task_team -> tt.tt_nproc. 3197 // The current size is given by task_team -> tt.tt_max_threads. 3198 static int __kmp_realloc_task_threads_data(kmp_info_t *thread, 3199 kmp_task_team_t *task_team) { 3200 kmp_thread_data_t **threads_data_p; 3201 kmp_int32 nthreads, maxthreads; 3202 int is_init_thread = FALSE; 3203 3204 if (TCR_4(task_team->tt.tt_found_tasks)) { 3205 // Already reallocated and initialized. 3206 return FALSE; 3207 } 3208 3209 threads_data_p = &task_team->tt.tt_threads_data; 3210 nthreads = task_team->tt.tt_nproc; 3211 maxthreads = task_team->tt.tt_max_threads; 3212 3213 // All threads must lock when they encounter the first task of the implicit 3214 // task region to make sure threads_data fields are (re)initialized before 3215 // used. 3216 __kmp_acquire_bootstrap_lock(&task_team->tt.tt_threads_lock); 3217 3218 if (!TCR_4(task_team->tt.tt_found_tasks)) { 3219 // first thread to enable tasking 3220 kmp_team_t *team = thread->th.th_team; 3221 int i; 3222 3223 is_init_thread = TRUE; 3224 if (maxthreads < nthreads) { 3225 3226 if (*threads_data_p != NULL) { 3227 kmp_thread_data_t *old_data = *threads_data_p; 3228 kmp_thread_data_t *new_data = NULL; 3229 3230 KE_TRACE( 3231 10, 3232 ("__kmp_realloc_task_threads_data: T#%d reallocating " 3233 "threads data for task_team %p, new_size = %d, old_size = %d\n", 3234 __kmp_gtid_from_thread(thread), task_team, nthreads, maxthreads)); 3235 // Reallocate threads_data to have more elements than current array 3236 // Cannot use __kmp_thread_realloc() because threads not around for 3237 // kmp_reap_task_team( ). Note all new array entries are initialized 3238 // to zero by __kmp_allocate(). 3239 new_data = (kmp_thread_data_t *)__kmp_allocate( 3240 nthreads * sizeof(kmp_thread_data_t)); 3241 // copy old data to new data 3242 KMP_MEMCPY_S((void *)new_data, nthreads * sizeof(kmp_thread_data_t), 3243 (void *)old_data, maxthreads * sizeof(kmp_thread_data_t)); 3244 3245 #ifdef BUILD_TIED_TASK_STACK 3246 // GEH: Figure out if this is the right thing to do 3247 for (i = maxthreads; i < nthreads; i++) { 3248 kmp_thread_data_t *thread_data = &(*threads_data_p)[i]; 3249 __kmp_init_task_stack(__kmp_gtid_from_thread(thread), thread_data); 3250 } 3251 #endif // BUILD_TIED_TASK_STACK 3252 // Install the new data and free the old data 3253 (*threads_data_p) = new_data; 3254 __kmp_free(old_data); 3255 } else { 3256 KE_TRACE(10, ("__kmp_realloc_task_threads_data: T#%d allocating " 3257 "threads data for task_team %p, size = %d\n", 3258 __kmp_gtid_from_thread(thread), task_team, nthreads)); 3259 // Make the initial allocate for threads_data array, and zero entries 3260 // Cannot use __kmp_thread_calloc() because threads not around for 3261 // kmp_reap_task_team( ). 3262 ANNOTATE_IGNORE_WRITES_BEGIN(); 3263 *threads_data_p = (kmp_thread_data_t *)__kmp_allocate( 3264 nthreads * sizeof(kmp_thread_data_t)); 3265 ANNOTATE_IGNORE_WRITES_END(); 3266 #ifdef BUILD_TIED_TASK_STACK 3267 // GEH: Figure out if this is the right thing to do 3268 for (i = 0; i < nthreads; i++) { 3269 kmp_thread_data_t *thread_data = &(*threads_data_p)[i]; 3270 __kmp_init_task_stack(__kmp_gtid_from_thread(thread), thread_data); 3271 } 3272 #endif // BUILD_TIED_TASK_STACK 3273 } 3274 task_team->tt.tt_max_threads = nthreads; 3275 } else { 3276 // If array has (more than) enough elements, go ahead and use it 3277 KMP_DEBUG_ASSERT(*threads_data_p != NULL); 3278 } 3279 3280 // initialize threads_data pointers back to thread_info structures 3281 for (i = 0; i < nthreads; i++) { 3282 kmp_thread_data_t *thread_data = &(*threads_data_p)[i]; 3283 thread_data->td.td_thr = team->t.t_threads[i]; 3284 3285 if (thread_data->td.td_deque_last_stolen >= nthreads) { 3286 // The last stolen field survives across teams / barrier, and the number 3287 // of threads may have changed. It's possible (likely?) that a new 3288 // parallel region will exhibit the same behavior as previous region. 3289 thread_data->td.td_deque_last_stolen = -1; 3290 } 3291 } 3292 3293 KMP_MB(); 3294 TCW_SYNC_4(task_team->tt.tt_found_tasks, TRUE); 3295 } 3296 3297 __kmp_release_bootstrap_lock(&task_team->tt.tt_threads_lock); 3298 return is_init_thread; 3299 } 3300 3301 // __kmp_free_task_threads_data: 3302 // Deallocates a threads_data array for a task team, including any attached 3303 // tasking deques. Only occurs at library shutdown. 3304 static void __kmp_free_task_threads_data(kmp_task_team_t *task_team) { 3305 __kmp_acquire_bootstrap_lock(&task_team->tt.tt_threads_lock); 3306 if (task_team->tt.tt_threads_data != NULL) { 3307 int i; 3308 for (i = 0; i < task_team->tt.tt_max_threads; i++) { 3309 __kmp_free_task_deque(&task_team->tt.tt_threads_data[i]); 3310 } 3311 __kmp_free(task_team->tt.tt_threads_data); 3312 task_team->tt.tt_threads_data = NULL; 3313 } 3314 __kmp_release_bootstrap_lock(&task_team->tt.tt_threads_lock); 3315 } 3316 3317 // __kmp_allocate_task_team: 3318 // Allocates a task team associated with a specific team, taking it from 3319 // the global task team free list if possible. Also initializes data 3320 // structures. 3321 static kmp_task_team_t *__kmp_allocate_task_team(kmp_info_t *thread, 3322 kmp_team_t *team) { 3323 kmp_task_team_t *task_team = NULL; 3324 int nthreads; 3325 3326 KA_TRACE(20, ("__kmp_allocate_task_team: T#%d entering; team = %p\n", 3327 (thread ? __kmp_gtid_from_thread(thread) : -1), team)); 3328 3329 if (TCR_PTR(__kmp_free_task_teams) != NULL) { 3330 // Take a task team from the task team pool 3331 __kmp_acquire_bootstrap_lock(&__kmp_task_team_lock); 3332 if (__kmp_free_task_teams != NULL) { 3333 task_team = __kmp_free_task_teams; 3334 TCW_PTR(__kmp_free_task_teams, task_team->tt.tt_next); 3335 task_team->tt.tt_next = NULL; 3336 } 3337 __kmp_release_bootstrap_lock(&__kmp_task_team_lock); 3338 } 3339 3340 if (task_team == NULL) { 3341 KE_TRACE(10, ("__kmp_allocate_task_team: T#%d allocating " 3342 "task team for team %p\n", 3343 __kmp_gtid_from_thread(thread), team)); 3344 // Allocate a new task team if one is not available. 3345 // Cannot use __kmp_thread_malloc() because threads not around for 3346 // kmp_reap_task_team( ). 3347 task_team = (kmp_task_team_t *)__kmp_allocate(sizeof(kmp_task_team_t)); 3348 __kmp_init_bootstrap_lock(&task_team->tt.tt_threads_lock); 3349 // AC: __kmp_allocate zeroes returned memory 3350 // task_team -> tt.tt_threads_data = NULL; 3351 // task_team -> tt.tt_max_threads = 0; 3352 // task_team -> tt.tt_next = NULL; 3353 } 3354 3355 TCW_4(task_team->tt.tt_found_tasks, FALSE); 3356 TCW_4(task_team->tt.tt_found_proxy_tasks, FALSE); 3357 task_team->tt.tt_nproc = nthreads = team->t.t_nproc; 3358 3359 KMP_ATOMIC_ST_REL(&task_team->tt.tt_unfinished_threads, nthreads); 3360 TCW_4(task_team->tt.tt_active, TRUE); 3361 3362 KA_TRACE(20, ("__kmp_allocate_task_team: T#%d exiting; task_team = %p " 3363 "unfinished_threads init'd to %d\n", 3364 (thread ? __kmp_gtid_from_thread(thread) : -1), task_team, 3365 KMP_ATOMIC_LD_RLX(&task_team->tt.tt_unfinished_threads))); 3366 return task_team; 3367 } 3368 3369 // __kmp_free_task_team: 3370 // Frees the task team associated with a specific thread, and adds it 3371 // to the global task team free list. 3372 void __kmp_free_task_team(kmp_info_t *thread, kmp_task_team_t *task_team) { 3373 KA_TRACE(20, ("__kmp_free_task_team: T#%d task_team = %p\n", 3374 thread ? __kmp_gtid_from_thread(thread) : -1, task_team)); 3375 3376 // Put task team back on free list 3377 __kmp_acquire_bootstrap_lock(&__kmp_task_team_lock); 3378 3379 KMP_DEBUG_ASSERT(task_team->tt.tt_next == NULL); 3380 task_team->tt.tt_next = __kmp_free_task_teams; 3381 TCW_PTR(__kmp_free_task_teams, task_team); 3382 3383 __kmp_release_bootstrap_lock(&__kmp_task_team_lock); 3384 } 3385 3386 // __kmp_reap_task_teams: 3387 // Free all the task teams on the task team free list. 3388 // Should only be done during library shutdown. 3389 // Cannot do anything that needs a thread structure or gtid since they are 3390 // already gone. 3391 void __kmp_reap_task_teams(void) { 3392 kmp_task_team_t *task_team; 3393 3394 if (TCR_PTR(__kmp_free_task_teams) != NULL) { 3395 // Free all task_teams on the free list 3396 __kmp_acquire_bootstrap_lock(&__kmp_task_team_lock); 3397 while ((task_team = __kmp_free_task_teams) != NULL) { 3398 __kmp_free_task_teams = task_team->tt.tt_next; 3399 task_team->tt.tt_next = NULL; 3400 3401 // Free threads_data if necessary 3402 if (task_team->tt.tt_threads_data != NULL) { 3403 __kmp_free_task_threads_data(task_team); 3404 } 3405 __kmp_free(task_team); 3406 } 3407 __kmp_release_bootstrap_lock(&__kmp_task_team_lock); 3408 } 3409 } 3410 3411 // __kmp_wait_to_unref_task_teams: 3412 // Some threads could still be in the fork barrier release code, possibly 3413 // trying to steal tasks. Wait for each thread to unreference its task team. 3414 void __kmp_wait_to_unref_task_teams(void) { 3415 kmp_info_t *thread; 3416 kmp_uint32 spins; 3417 int done; 3418 3419 KMP_INIT_YIELD(spins); 3420 3421 for (;;) { 3422 done = TRUE; 3423 3424 // TODO: GEH - this may be is wrong because some sync would be necessary 3425 // in case threads are added to the pool during the traversal. Need to 3426 // verify that lock for thread pool is held when calling this routine. 3427 for (thread = CCAST(kmp_info_t *, __kmp_thread_pool); thread != NULL; 3428 thread = thread->th.th_next_pool) { 3429 #if KMP_OS_WINDOWS 3430 DWORD exit_val; 3431 #endif 3432 if (TCR_PTR(thread->th.th_task_team) == NULL) { 3433 KA_TRACE(10, ("__kmp_wait_to_unref_task_team: T#%d task_team == NULL\n", 3434 __kmp_gtid_from_thread(thread))); 3435 continue; 3436 } 3437 #if KMP_OS_WINDOWS 3438 // TODO: GEH - add this check for Linux* OS / OS X* as well? 3439 if (!__kmp_is_thread_alive(thread, &exit_val)) { 3440 thread->th.th_task_team = NULL; 3441 continue; 3442 } 3443 #endif 3444 3445 done = FALSE; // Because th_task_team pointer is not NULL for this thread 3446 3447 KA_TRACE(10, ("__kmp_wait_to_unref_task_team: Waiting for T#%d to " 3448 "unreference task_team\n", 3449 __kmp_gtid_from_thread(thread))); 3450 3451 if (__kmp_dflt_blocktime != KMP_MAX_BLOCKTIME) { 3452 volatile void *sleep_loc; 3453 // If the thread is sleeping, awaken it. 3454 if ((sleep_loc = TCR_PTR(CCAST(void *, thread->th.th_sleep_loc))) != 3455 NULL) { 3456 KA_TRACE( 3457 10, 3458 ("__kmp_wait_to_unref_task_team: T#%d waking up thread T#%d\n", 3459 __kmp_gtid_from_thread(thread), __kmp_gtid_from_thread(thread))); 3460 __kmp_null_resume_wrapper(__kmp_gtid_from_thread(thread), sleep_loc); 3461 } 3462 } 3463 } 3464 if (done) { 3465 break; 3466 } 3467 3468 // If oversubscribed or have waited a bit, yield. 3469 KMP_YIELD_OVERSUB_ELSE_SPIN(spins); 3470 } 3471 } 3472 3473 // __kmp_task_team_setup: Create a task_team for the current team, but use 3474 // an already created, unused one if it already exists. 3475 void __kmp_task_team_setup(kmp_info_t *this_thr, kmp_team_t *team, int always) { 3476 KMP_DEBUG_ASSERT(__kmp_tasking_mode != tskm_immediate_exec); 3477 3478 // If this task_team hasn't been created yet, allocate it. It will be used in 3479 // the region after the next. 3480 // If it exists, it is the current task team and shouldn't be touched yet as 3481 // it may still be in use. 3482 if (team->t.t_task_team[this_thr->th.th_task_state] == NULL && 3483 (always || team->t.t_nproc > 1)) { 3484 team->t.t_task_team[this_thr->th.th_task_state] = 3485 __kmp_allocate_task_team(this_thr, team); 3486 KA_TRACE(20, ("__kmp_task_team_setup: Master T#%d created new task_team %p " 3487 "for team %d at parity=%d\n", 3488 __kmp_gtid_from_thread(this_thr), 3489 team->t.t_task_team[this_thr->th.th_task_state], 3490 ((team != NULL) ? team->t.t_id : -1), 3491 this_thr->th.th_task_state)); 3492 } 3493 3494 // After threads exit the release, they will call sync, and then point to this 3495 // other task_team; make sure it is allocated and properly initialized. As 3496 // threads spin in the barrier release phase, they will continue to use the 3497 // previous task_team struct(above), until they receive the signal to stop 3498 // checking for tasks (they can't safely reference the kmp_team_t struct, 3499 // which could be reallocated by the master thread). No task teams are formed 3500 // for serialized teams. 3501 if (team->t.t_nproc > 1) { 3502 int other_team = 1 - this_thr->th.th_task_state; 3503 if (team->t.t_task_team[other_team] == NULL) { // setup other team as well 3504 team->t.t_task_team[other_team] = 3505 __kmp_allocate_task_team(this_thr, team); 3506 KA_TRACE(20, ("__kmp_task_team_setup: Master T#%d created second new " 3507 "task_team %p for team %d at parity=%d\n", 3508 __kmp_gtid_from_thread(this_thr), 3509 team->t.t_task_team[other_team], 3510 ((team != NULL) ? team->t.t_id : -1), other_team)); 3511 } else { // Leave the old task team struct in place for the upcoming region; 3512 // adjust as needed 3513 kmp_task_team_t *task_team = team->t.t_task_team[other_team]; 3514 if (!task_team->tt.tt_active || 3515 team->t.t_nproc != task_team->tt.tt_nproc) { 3516 TCW_4(task_team->tt.tt_nproc, team->t.t_nproc); 3517 TCW_4(task_team->tt.tt_found_tasks, FALSE); 3518 TCW_4(task_team->tt.tt_found_proxy_tasks, FALSE); 3519 KMP_ATOMIC_ST_REL(&task_team->tt.tt_unfinished_threads, 3520 team->t.t_nproc); 3521 TCW_4(task_team->tt.tt_active, TRUE); 3522 } 3523 // if team size has changed, the first thread to enable tasking will 3524 // realloc threads_data if necessary 3525 KA_TRACE(20, ("__kmp_task_team_setup: Master T#%d reset next task_team " 3526 "%p for team %d at parity=%d\n", 3527 __kmp_gtid_from_thread(this_thr), 3528 team->t.t_task_team[other_team], 3529 ((team != NULL) ? team->t.t_id : -1), other_team)); 3530 } 3531 } 3532 } 3533 3534 // __kmp_task_team_sync: Propagation of task team data from team to threads 3535 // which happens just after the release phase of a team barrier. This may be 3536 // called by any thread, but only for teams with # threads > 1. 3537 void __kmp_task_team_sync(kmp_info_t *this_thr, kmp_team_t *team) { 3538 KMP_DEBUG_ASSERT(__kmp_tasking_mode != tskm_immediate_exec); 3539 3540 // Toggle the th_task_state field, to switch which task_team this thread 3541 // refers to 3542 this_thr->th.th_task_state = 1 - this_thr->th.th_task_state; 3543 // It is now safe to propagate the task team pointer from the team struct to 3544 // the current thread. 3545 TCW_PTR(this_thr->th.th_task_team, 3546 team->t.t_task_team[this_thr->th.th_task_state]); 3547 KA_TRACE(20, 3548 ("__kmp_task_team_sync: Thread T#%d task team switched to task_team " 3549 "%p from Team #%d (parity=%d)\n", 3550 __kmp_gtid_from_thread(this_thr), this_thr->th.th_task_team, 3551 ((team != NULL) ? team->t.t_id : -1), this_thr->th.th_task_state)); 3552 } 3553 3554 // __kmp_task_team_wait: Master thread waits for outstanding tasks after the 3555 // barrier gather phase. Only called by master thread if #threads in team > 1 or 3556 // if proxy tasks were created. 3557 // 3558 // wait is a flag that defaults to 1 (see kmp.h), but waiting can be turned off 3559 // by passing in 0 optionally as the last argument. When wait is zero, master 3560 // thread does not wait for unfinished_threads to reach 0. 3561 void __kmp_task_team_wait( 3562 kmp_info_t *this_thr, 3563 kmp_team_t *team USE_ITT_BUILD_ARG(void *itt_sync_obj), int wait) { 3564 kmp_task_team_t *task_team = team->t.t_task_team[this_thr->th.th_task_state]; 3565 3566 KMP_DEBUG_ASSERT(__kmp_tasking_mode != tskm_immediate_exec); 3567 KMP_DEBUG_ASSERT(task_team == this_thr->th.th_task_team); 3568 3569 if ((task_team != NULL) && KMP_TASKING_ENABLED(task_team)) { 3570 if (wait) { 3571 KA_TRACE(20, ("__kmp_task_team_wait: Master T#%d waiting for all tasks " 3572 "(for unfinished_threads to reach 0) on task_team = %p\n", 3573 __kmp_gtid_from_thread(this_thr), task_team)); 3574 // Worker threads may have dropped through to release phase, but could 3575 // still be executing tasks. Wait here for tasks to complete. To avoid 3576 // memory contention, only master thread checks termination condition. 3577 kmp_flag_32 flag(RCAST(std::atomic<kmp_uint32> *, 3578 &task_team->tt.tt_unfinished_threads), 3579 0U); 3580 flag.wait(this_thr, TRUE USE_ITT_BUILD_ARG(itt_sync_obj)); 3581 } 3582 // Deactivate the old task team, so that the worker threads will stop 3583 // referencing it while spinning. 3584 KA_TRACE( 3585 20, 3586 ("__kmp_task_team_wait: Master T#%d deactivating task_team %p: " 3587 "setting active to false, setting local and team's pointer to NULL\n", 3588 __kmp_gtid_from_thread(this_thr), task_team)); 3589 KMP_DEBUG_ASSERT(task_team->tt.tt_nproc > 1 || 3590 task_team->tt.tt_found_proxy_tasks == TRUE); 3591 TCW_SYNC_4(task_team->tt.tt_found_proxy_tasks, FALSE); 3592 KMP_CHECK_UPDATE(task_team->tt.tt_untied_task_encountered, 0); 3593 TCW_SYNC_4(task_team->tt.tt_active, FALSE); 3594 KMP_MB(); 3595 3596 TCW_PTR(this_thr->th.th_task_team, NULL); 3597 } 3598 } 3599 3600 // __kmp_tasking_barrier: 3601 // This routine may only called when __kmp_tasking_mode == tskm_extra_barrier. 3602 // Internal function to execute all tasks prior to a regular barrier or a join 3603 // barrier. It is a full barrier itself, which unfortunately turns regular 3604 // barriers into double barriers and join barriers into 1 1/2 barriers. 3605 void __kmp_tasking_barrier(kmp_team_t *team, kmp_info_t *thread, int gtid) { 3606 std::atomic<kmp_uint32> *spin = RCAST( 3607 std::atomic<kmp_uint32> *, 3608 &team->t.t_task_team[thread->th.th_task_state]->tt.tt_unfinished_threads); 3609 int flag = FALSE; 3610 KMP_DEBUG_ASSERT(__kmp_tasking_mode == tskm_extra_barrier); 3611 3612 #if USE_ITT_BUILD 3613 KMP_FSYNC_SPIN_INIT(spin, NULL); 3614 #endif /* USE_ITT_BUILD */ 3615 kmp_flag_32 spin_flag(spin, 0U); 3616 while (!spin_flag.execute_tasks(thread, gtid, TRUE, 3617 &flag USE_ITT_BUILD_ARG(NULL), 0)) { 3618 #if USE_ITT_BUILD 3619 // TODO: What about itt_sync_obj?? 3620 KMP_FSYNC_SPIN_PREPARE(RCAST(void *, spin)); 3621 #endif /* USE_ITT_BUILD */ 3622 3623 if (TCR_4(__kmp_global.g.g_done)) { 3624 if (__kmp_global.g.g_abort) 3625 __kmp_abort_thread(); 3626 break; 3627 } 3628 KMP_YIELD(TRUE); 3629 } 3630 #if USE_ITT_BUILD 3631 KMP_FSYNC_SPIN_ACQUIRED(RCAST(void *, spin)); 3632 #endif /* USE_ITT_BUILD */ 3633 } 3634 3635 // __kmp_give_task puts a task into a given thread queue if: 3636 // - the queue for that thread was created 3637 // - there's space in that queue 3638 // Because of this, __kmp_push_task needs to check if there's space after 3639 // getting the lock 3640 static bool __kmp_give_task(kmp_info_t *thread, kmp_int32 tid, kmp_task_t *task, 3641 kmp_int32 pass) { 3642 kmp_taskdata_t *taskdata = KMP_TASK_TO_TASKDATA(task); 3643 kmp_task_team_t *task_team = taskdata->td_task_team; 3644 3645 KA_TRACE(20, ("__kmp_give_task: trying to give task %p to thread %d.\n", 3646 taskdata, tid)); 3647 3648 // If task_team is NULL something went really bad... 3649 KMP_DEBUG_ASSERT(task_team != NULL); 3650 3651 bool result = false; 3652 kmp_thread_data_t *thread_data = &task_team->tt.tt_threads_data[tid]; 3653 3654 if (thread_data->td.td_deque == NULL) { 3655 // There's no queue in this thread, go find another one 3656 // We're guaranteed that at least one thread has a queue 3657 KA_TRACE(30, 3658 ("__kmp_give_task: thread %d has no queue while giving task %p.\n", 3659 tid, taskdata)); 3660 return result; 3661 } 3662 3663 if (TCR_4(thread_data->td.td_deque_ntasks) >= 3664 TASK_DEQUE_SIZE(thread_data->td)) { 3665 KA_TRACE( 3666 30, 3667 ("__kmp_give_task: queue is full while giving task %p to thread %d.\n", 3668 taskdata, tid)); 3669 3670 // if this deque is bigger than the pass ratio give a chance to another 3671 // thread 3672 if (TASK_DEQUE_SIZE(thread_data->td) / INITIAL_TASK_DEQUE_SIZE >= pass) 3673 return result; 3674 3675 __kmp_acquire_bootstrap_lock(&thread_data->td.td_deque_lock); 3676 if (TCR_4(thread_data->td.td_deque_ntasks) >= 3677 TASK_DEQUE_SIZE(thread_data->td)) { 3678 // expand deque to push the task which is not allowed to execute 3679 __kmp_realloc_task_deque(thread, thread_data); 3680 } 3681 3682 } else { 3683 3684 __kmp_acquire_bootstrap_lock(&thread_data->td.td_deque_lock); 3685 3686 if (TCR_4(thread_data->td.td_deque_ntasks) >= 3687 TASK_DEQUE_SIZE(thread_data->td)) { 3688 KA_TRACE(30, ("__kmp_give_task: queue is full while giving task %p to " 3689 "thread %d.\n", 3690 taskdata, tid)); 3691 3692 // if this deque is bigger than the pass ratio give a chance to another 3693 // thread 3694 if (TASK_DEQUE_SIZE(thread_data->td) / INITIAL_TASK_DEQUE_SIZE >= pass) 3695 goto release_and_exit; 3696 3697 __kmp_realloc_task_deque(thread, thread_data); 3698 } 3699 } 3700 3701 // lock is held here, and there is space in the deque 3702 3703 thread_data->td.td_deque[thread_data->td.td_deque_tail] = taskdata; 3704 // Wrap index. 3705 thread_data->td.td_deque_tail = 3706 (thread_data->td.td_deque_tail + 1) & TASK_DEQUE_MASK(thread_data->td); 3707 TCW_4(thread_data->td.td_deque_ntasks, 3708 TCR_4(thread_data->td.td_deque_ntasks) + 1); 3709 3710 result = true; 3711 KA_TRACE(30, ("__kmp_give_task: successfully gave task %p to thread %d.\n", 3712 taskdata, tid)); 3713 3714 release_and_exit: 3715 __kmp_release_bootstrap_lock(&thread_data->td.td_deque_lock); 3716 3717 return result; 3718 } 3719 3720 /* The finish of the proxy tasks is divided in two pieces: 3721 - the top half is the one that can be done from a thread outside the team 3722 - the bottom half must be run from a thread within the team 3723 3724 In order to run the bottom half the task gets queued back into one of the 3725 threads of the team. Once the td_incomplete_child_task counter of the parent 3726 is decremented the threads can leave the barriers. So, the bottom half needs 3727 to be queued before the counter is decremented. The top half is therefore 3728 divided in two parts: 3729 - things that can be run before queuing the bottom half 3730 - things that must be run after queuing the bottom half 3731 3732 This creates a second race as the bottom half can free the task before the 3733 second top half is executed. To avoid this we use the 3734 td_incomplete_child_task of the proxy task to synchronize the top and bottom 3735 half. */ 3736 static void __kmp_first_top_half_finish_proxy(kmp_taskdata_t *taskdata) { 3737 KMP_DEBUG_ASSERT(taskdata->td_flags.tasktype == TASK_EXPLICIT); 3738 KMP_DEBUG_ASSERT(taskdata->td_flags.proxy == TASK_PROXY); 3739 KMP_DEBUG_ASSERT(taskdata->td_flags.complete == 0); 3740 KMP_DEBUG_ASSERT(taskdata->td_flags.freed == 0); 3741 3742 taskdata->td_flags.complete = 1; // mark the task as completed 3743 3744 if (taskdata->td_taskgroup) 3745 KMP_ATOMIC_DEC(&taskdata->td_taskgroup->count); 3746 3747 // Create an imaginary children for this task so the bottom half cannot 3748 // release the task before we have completed the second top half 3749 KMP_ATOMIC_INC(&taskdata->td_incomplete_child_tasks); 3750 } 3751 3752 static void __kmp_second_top_half_finish_proxy(kmp_taskdata_t *taskdata) { 3753 kmp_int32 children = 0; 3754 3755 // Predecrement simulated by "- 1" calculation 3756 children = 3757 KMP_ATOMIC_DEC(&taskdata->td_parent->td_incomplete_child_tasks) - 1; 3758 KMP_DEBUG_ASSERT(children >= 0); 3759 3760 // Remove the imaginary children 3761 KMP_ATOMIC_DEC(&taskdata->td_incomplete_child_tasks); 3762 } 3763 3764 static void __kmp_bottom_half_finish_proxy(kmp_int32 gtid, kmp_task_t *ptask) { 3765 kmp_taskdata_t *taskdata = KMP_TASK_TO_TASKDATA(ptask); 3766 kmp_info_t *thread = __kmp_threads[gtid]; 3767 3768 KMP_DEBUG_ASSERT(taskdata->td_flags.proxy == TASK_PROXY); 3769 KMP_DEBUG_ASSERT(taskdata->td_flags.complete == 3770 1); // top half must run before bottom half 3771 3772 // We need to wait to make sure the top half is finished 3773 // Spinning here should be ok as this should happen quickly 3774 while (KMP_ATOMIC_LD_ACQ(&taskdata->td_incomplete_child_tasks) > 0) 3775 ; 3776 3777 __kmp_release_deps(gtid, taskdata); 3778 __kmp_free_task_and_ancestors(gtid, taskdata, thread); 3779 } 3780 3781 /*! 3782 @ingroup TASKING 3783 @param gtid Global Thread ID of encountering thread 3784 @param ptask Task which execution is completed 3785 3786 Execute the completion of a proxy task from a thread of that is part of the 3787 team. Run first and bottom halves directly. 3788 */ 3789 void __kmpc_proxy_task_completed(kmp_int32 gtid, kmp_task_t *ptask) { 3790 KMP_DEBUG_ASSERT(ptask != NULL); 3791 kmp_taskdata_t *taskdata = KMP_TASK_TO_TASKDATA(ptask); 3792 KA_TRACE( 3793 10, ("__kmp_proxy_task_completed(enter): T#%d proxy task %p completing\n", 3794 gtid, taskdata)); 3795 3796 KMP_DEBUG_ASSERT(taskdata->td_flags.proxy == TASK_PROXY); 3797 3798 __kmp_first_top_half_finish_proxy(taskdata); 3799 __kmp_second_top_half_finish_proxy(taskdata); 3800 __kmp_bottom_half_finish_proxy(gtid, ptask); 3801 3802 KA_TRACE(10, 3803 ("__kmp_proxy_task_completed(exit): T#%d proxy task %p completing\n", 3804 gtid, taskdata)); 3805 } 3806 3807 /*! 3808 @ingroup TASKING 3809 @param ptask Task which execution is completed 3810 3811 Execute the completion of a proxy task from a thread that could not belong to 3812 the team. 3813 */ 3814 void __kmpc_proxy_task_completed_ooo(kmp_task_t *ptask) { 3815 KMP_DEBUG_ASSERT(ptask != NULL); 3816 kmp_taskdata_t *taskdata = KMP_TASK_TO_TASKDATA(ptask); 3817 3818 KA_TRACE( 3819 10, 3820 ("__kmp_proxy_task_completed_ooo(enter): proxy task completing ooo %p\n", 3821 taskdata)); 3822 3823 KMP_DEBUG_ASSERT(taskdata->td_flags.proxy == TASK_PROXY); 3824 3825 __kmp_first_top_half_finish_proxy(taskdata); 3826 3827 // Enqueue task to complete bottom half completion from a thread within the 3828 // corresponding team 3829 kmp_team_t *team = taskdata->td_team; 3830 kmp_int32 nthreads = team->t.t_nproc; 3831 kmp_info_t *thread; 3832 3833 // This should be similar to start_k = __kmp_get_random( thread ) % nthreads 3834 // but we cannot use __kmp_get_random here 3835 kmp_int32 start_k = 0; 3836 kmp_int32 pass = 1; 3837 kmp_int32 k = start_k; 3838 3839 do { 3840 // For now we're just linearly trying to find a thread 3841 thread = team->t.t_threads[k]; 3842 k = (k + 1) % nthreads; 3843 3844 // we did a full pass through all the threads 3845 if (k == start_k) 3846 pass = pass << 1; 3847 3848 } while (!__kmp_give_task(thread, k, ptask, pass)); 3849 3850 __kmp_second_top_half_finish_proxy(taskdata); 3851 3852 KA_TRACE( 3853 10, 3854 ("__kmp_proxy_task_completed_ooo(exit): proxy task completing ooo %p\n", 3855 taskdata)); 3856 } 3857 3858 kmp_event_t *__kmpc_task_allow_completion_event(ident_t *loc_ref, int gtid, 3859 kmp_task_t *task) { 3860 kmp_taskdata_t *td = KMP_TASK_TO_TASKDATA(task); 3861 if (td->td_allow_completion_event.type == KMP_EVENT_UNINITIALIZED) { 3862 td->td_allow_completion_event.type = KMP_EVENT_ALLOW_COMPLETION; 3863 td->td_allow_completion_event.ed.task = task; 3864 __kmp_init_tas_lock(&td->td_allow_completion_event.lock); 3865 } 3866 return &td->td_allow_completion_event; 3867 } 3868 3869 void __kmp_fulfill_event(kmp_event_t *event) { 3870 if (event->type == KMP_EVENT_ALLOW_COMPLETION) { 3871 kmp_task_t *ptask = event->ed.task; 3872 kmp_taskdata_t *taskdata = KMP_TASK_TO_TASKDATA(ptask); 3873 bool detached = false; 3874 int gtid = __kmp_get_gtid(); 3875 3876 // The associated task might have completed or could be completing at this 3877 // point. 3878 // We need to take the lock to avoid races 3879 __kmp_acquire_tas_lock(&event->lock, gtid); 3880 if (taskdata->td_flags.proxy == TASK_PROXY) { 3881 detached = true; 3882 } else { 3883 #if OMPT_SUPPORT 3884 // The OMPT event must occur under mutual exclusion, 3885 // otherwise the tool might access ptask after free 3886 if (UNLIKELY(ompt_enabled.enabled)) 3887 __ompt_task_finish(ptask, NULL, ompt_task_early_fulfill); 3888 #endif 3889 } 3890 event->type = KMP_EVENT_UNINITIALIZED; 3891 __kmp_release_tas_lock(&event->lock, gtid); 3892 3893 if (detached) { 3894 #if OMPT_SUPPORT 3895 // We free ptask afterwards and know the task is finished, 3896 // so locking is not necessary 3897 if (UNLIKELY(ompt_enabled.enabled)) 3898 __ompt_task_finish(ptask, NULL, ompt_task_late_fulfill); 3899 #endif 3900 // If the task detached complete the proxy task 3901 if (gtid >= 0) { 3902 kmp_team_t *team = taskdata->td_team; 3903 kmp_info_t *thread = __kmp_get_thread(); 3904 if (thread->th.th_team == team) { 3905 __kmpc_proxy_task_completed(gtid, ptask); 3906 return; 3907 } 3908 } 3909 3910 // fallback 3911 __kmpc_proxy_task_completed_ooo(ptask); 3912 } 3913 } 3914 } 3915 3916 // __kmp_task_dup_alloc: Allocate the taskdata and make a copy of source task 3917 // for taskloop 3918 // 3919 // thread: allocating thread 3920 // task_src: pointer to source task to be duplicated 3921 // returns: a pointer to the allocated kmp_task_t structure (task). 3922 kmp_task_t *__kmp_task_dup_alloc(kmp_info_t *thread, kmp_task_t *task_src) { 3923 kmp_task_t *task; 3924 kmp_taskdata_t *taskdata; 3925 kmp_taskdata_t *taskdata_src = KMP_TASK_TO_TASKDATA(task_src); 3926 kmp_taskdata_t *parent_task = taskdata_src->td_parent; // same parent task 3927 size_t shareds_offset; 3928 size_t task_size; 3929 3930 KA_TRACE(10, ("__kmp_task_dup_alloc(enter): Th %p, source task %p\n", thread, 3931 task_src)); 3932 KMP_DEBUG_ASSERT(taskdata_src->td_flags.proxy == 3933 TASK_FULL); // it should not be proxy task 3934 KMP_DEBUG_ASSERT(taskdata_src->td_flags.tasktype == TASK_EXPLICIT); 3935 task_size = taskdata_src->td_size_alloc; 3936 3937 // Allocate a kmp_taskdata_t block and a kmp_task_t block. 3938 KA_TRACE(30, ("__kmp_task_dup_alloc: Th %p, malloc size %ld\n", thread, 3939 task_size)); 3940 #if USE_FAST_MEMORY 3941 taskdata = (kmp_taskdata_t *)__kmp_fast_allocate(thread, task_size); 3942 #else 3943 taskdata = (kmp_taskdata_t *)__kmp_thread_malloc(thread, task_size); 3944 #endif /* USE_FAST_MEMORY */ 3945 KMP_MEMCPY(taskdata, taskdata_src, task_size); 3946 3947 task = KMP_TASKDATA_TO_TASK(taskdata); 3948 3949 // Initialize new task (only specific fields not affected by memcpy) 3950 taskdata->td_task_id = KMP_GEN_TASK_ID(); 3951 if (task->shareds != NULL) { // need setup shareds pointer 3952 shareds_offset = (char *)task_src->shareds - (char *)taskdata_src; 3953 task->shareds = &((char *)taskdata)[shareds_offset]; 3954 KMP_DEBUG_ASSERT((((kmp_uintptr_t)task->shareds) & (sizeof(void *) - 1)) == 3955 0); 3956 } 3957 taskdata->td_alloc_thread = thread; 3958 taskdata->td_parent = parent_task; 3959 // task inherits the taskgroup from the parent task 3960 taskdata->td_taskgroup = parent_task->td_taskgroup; 3961 // tied task needs to initialize the td_last_tied at creation, 3962 // untied one does this when it is scheduled for execution 3963 if (taskdata->td_flags.tiedness == TASK_TIED) 3964 taskdata->td_last_tied = taskdata; 3965 3966 // Only need to keep track of child task counts if team parallel and tasking 3967 // not serialized 3968 if (!(taskdata->td_flags.team_serial || taskdata->td_flags.tasking_ser)) { 3969 KMP_ATOMIC_INC(&parent_task->td_incomplete_child_tasks); 3970 if (parent_task->td_taskgroup) 3971 KMP_ATOMIC_INC(&parent_task->td_taskgroup->count); 3972 // Only need to keep track of allocated child tasks for explicit tasks since 3973 // implicit not deallocated 3974 if (taskdata->td_parent->td_flags.tasktype == TASK_EXPLICIT) 3975 KMP_ATOMIC_INC(&taskdata->td_parent->td_allocated_child_tasks); 3976 } 3977 3978 KA_TRACE(20, 3979 ("__kmp_task_dup_alloc(exit): Th %p, created task %p, parent=%p\n", 3980 thread, taskdata, taskdata->td_parent)); 3981 #if OMPT_SUPPORT 3982 if (UNLIKELY(ompt_enabled.enabled)) 3983 __ompt_task_init(taskdata, thread->th.th_info.ds.ds_gtid); 3984 #endif 3985 return task; 3986 } 3987 3988 // Routine optionally generated by the compiler for setting the lastprivate flag 3989 // and calling needed constructors for private/firstprivate objects 3990 // (used to form taskloop tasks from pattern task) 3991 // Parameters: dest task, src task, lastprivate flag. 3992 typedef void (*p_task_dup_t)(kmp_task_t *, kmp_task_t *, kmp_int32); 3993 3994 KMP_BUILD_ASSERT(sizeof(long) == 4 || sizeof(long) == 8); 3995 3996 // class to encapsulate manipulating loop bounds in a taskloop task. 3997 // this abstracts away the Intel vs GOMP taskloop interface for setting/getting 3998 // the loop bound variables. 3999 class kmp_taskloop_bounds_t { 4000 kmp_task_t *task; 4001 const kmp_taskdata_t *taskdata; 4002 size_t lower_offset; 4003 size_t upper_offset; 4004 4005 public: 4006 kmp_taskloop_bounds_t(kmp_task_t *_task, kmp_uint64 *lb, kmp_uint64 *ub) 4007 : task(_task), taskdata(KMP_TASK_TO_TASKDATA(task)), 4008 lower_offset((char *)lb - (char *)task), 4009 upper_offset((char *)ub - (char *)task) { 4010 KMP_DEBUG_ASSERT((char *)lb > (char *)_task); 4011 KMP_DEBUG_ASSERT((char *)ub > (char *)_task); 4012 } 4013 kmp_taskloop_bounds_t(kmp_task_t *_task, const kmp_taskloop_bounds_t &bounds) 4014 : task(_task), taskdata(KMP_TASK_TO_TASKDATA(_task)), 4015 lower_offset(bounds.lower_offset), upper_offset(bounds.upper_offset) {} 4016 size_t get_lower_offset() const { return lower_offset; } 4017 size_t get_upper_offset() const { return upper_offset; } 4018 kmp_uint64 get_lb() const { 4019 kmp_int64 retval; 4020 #if defined(KMP_GOMP_COMPAT) 4021 // Intel task just returns the lower bound normally 4022 if (!taskdata->td_flags.native) { 4023 retval = *(kmp_int64 *)((char *)task + lower_offset); 4024 } else { 4025 // GOMP task has to take into account the sizeof(long) 4026 if (taskdata->td_size_loop_bounds == 4) { 4027 kmp_int32 *lb = RCAST(kmp_int32 *, task->shareds); 4028 retval = (kmp_int64)*lb; 4029 } else { 4030 kmp_int64 *lb = RCAST(kmp_int64 *, task->shareds); 4031 retval = (kmp_int64)*lb; 4032 } 4033 } 4034 #else 4035 retval = *(kmp_int64 *)((char *)task + lower_offset); 4036 #endif // defined(KMP_GOMP_COMPAT) 4037 return retval; 4038 } 4039 kmp_uint64 get_ub() const { 4040 kmp_int64 retval; 4041 #if defined(KMP_GOMP_COMPAT) 4042 // Intel task just returns the upper bound normally 4043 if (!taskdata->td_flags.native) { 4044 retval = *(kmp_int64 *)((char *)task + upper_offset); 4045 } else { 4046 // GOMP task has to take into account the sizeof(long) 4047 if (taskdata->td_size_loop_bounds == 4) { 4048 kmp_int32 *ub = RCAST(kmp_int32 *, task->shareds) + 1; 4049 retval = (kmp_int64)*ub; 4050 } else { 4051 kmp_int64 *ub = RCAST(kmp_int64 *, task->shareds) + 1; 4052 retval = (kmp_int64)*ub; 4053 } 4054 } 4055 #else 4056 retval = *(kmp_int64 *)((char *)task + upper_offset); 4057 #endif // defined(KMP_GOMP_COMPAT) 4058 return retval; 4059 } 4060 void set_lb(kmp_uint64 lb) { 4061 #if defined(KMP_GOMP_COMPAT) 4062 // Intel task just sets the lower bound normally 4063 if (!taskdata->td_flags.native) { 4064 *(kmp_uint64 *)((char *)task + lower_offset) = lb; 4065 } else { 4066 // GOMP task has to take into account the sizeof(long) 4067 if (taskdata->td_size_loop_bounds == 4) { 4068 kmp_uint32 *lower = RCAST(kmp_uint32 *, task->shareds); 4069 *lower = (kmp_uint32)lb; 4070 } else { 4071 kmp_uint64 *lower = RCAST(kmp_uint64 *, task->shareds); 4072 *lower = (kmp_uint64)lb; 4073 } 4074 } 4075 #else 4076 *(kmp_uint64 *)((char *)task + lower_offset) = lb; 4077 #endif // defined(KMP_GOMP_COMPAT) 4078 } 4079 void set_ub(kmp_uint64 ub) { 4080 #if defined(KMP_GOMP_COMPAT) 4081 // Intel task just sets the upper bound normally 4082 if (!taskdata->td_flags.native) { 4083 *(kmp_uint64 *)((char *)task + upper_offset) = ub; 4084 } else { 4085 // GOMP task has to take into account the sizeof(long) 4086 if (taskdata->td_size_loop_bounds == 4) { 4087 kmp_uint32 *upper = RCAST(kmp_uint32 *, task->shareds) + 1; 4088 *upper = (kmp_uint32)ub; 4089 } else { 4090 kmp_uint64 *upper = RCAST(kmp_uint64 *, task->shareds) + 1; 4091 *upper = (kmp_uint64)ub; 4092 } 4093 } 4094 #else 4095 *(kmp_uint64 *)((char *)task + upper_offset) = ub; 4096 #endif // defined(KMP_GOMP_COMPAT) 4097 } 4098 }; 4099 4100 // __kmp_taskloop_linear: Start tasks of the taskloop linearly 4101 // 4102 // loc Source location information 4103 // gtid Global thread ID 4104 // task Pattern task, exposes the loop iteration range 4105 // lb Pointer to loop lower bound in task structure 4106 // ub Pointer to loop upper bound in task structure 4107 // st Loop stride 4108 // ub_glob Global upper bound (used for lastprivate check) 4109 // num_tasks Number of tasks to execute 4110 // grainsize Number of loop iterations per task 4111 // extras Number of chunks with grainsize+1 iterations 4112 // tc Iterations count 4113 // task_dup Tasks duplication routine 4114 // codeptr_ra Return address for OMPT events 4115 void __kmp_taskloop_linear(ident_t *loc, int gtid, kmp_task_t *task, 4116 kmp_uint64 *lb, kmp_uint64 *ub, kmp_int64 st, 4117 kmp_uint64 ub_glob, kmp_uint64 num_tasks, 4118 kmp_uint64 grainsize, kmp_uint64 extras, 4119 kmp_uint64 tc, 4120 #if OMPT_SUPPORT 4121 void *codeptr_ra, 4122 #endif 4123 void *task_dup) { 4124 KMP_COUNT_BLOCK(OMP_TASKLOOP); 4125 KMP_TIME_PARTITIONED_BLOCK(OMP_taskloop_scheduling); 4126 p_task_dup_t ptask_dup = (p_task_dup_t)task_dup; 4127 // compiler provides global bounds here 4128 kmp_taskloop_bounds_t task_bounds(task, lb, ub); 4129 kmp_uint64 lower = task_bounds.get_lb(); 4130 kmp_uint64 upper = task_bounds.get_ub(); 4131 kmp_uint64 i; 4132 kmp_info_t *thread = __kmp_threads[gtid]; 4133 kmp_taskdata_t *current_task = thread->th.th_current_task; 4134 kmp_task_t *next_task; 4135 kmp_int32 lastpriv = 0; 4136 4137 KMP_DEBUG_ASSERT(tc == num_tasks * grainsize + extras); 4138 KMP_DEBUG_ASSERT(num_tasks > extras); 4139 KMP_DEBUG_ASSERT(num_tasks > 0); 4140 KA_TRACE(20, ("__kmp_taskloop_linear: T#%d: %lld tasks, grainsize %lld, " 4141 "extras %lld, i=%lld,%lld(%d)%lld, dup %p\n", 4142 gtid, num_tasks, grainsize, extras, lower, upper, ub_glob, st, 4143 task_dup)); 4144 4145 // Launch num_tasks tasks, assign grainsize iterations each task 4146 for (i = 0; i < num_tasks; ++i) { 4147 kmp_uint64 chunk_minus_1; 4148 if (extras == 0) { 4149 chunk_minus_1 = grainsize - 1; 4150 } else { 4151 chunk_minus_1 = grainsize; 4152 --extras; // first extras iterations get bigger chunk (grainsize+1) 4153 } 4154 upper = lower + st * chunk_minus_1; 4155 if (i == num_tasks - 1) { 4156 // schedule the last task, set lastprivate flag if needed 4157 if (st == 1) { // most common case 4158 KMP_DEBUG_ASSERT(upper == *ub); 4159 if (upper == ub_glob) 4160 lastpriv = 1; 4161 } else if (st > 0) { // positive loop stride 4162 KMP_DEBUG_ASSERT((kmp_uint64)st > *ub - upper); 4163 if ((kmp_uint64)st > ub_glob - upper) 4164 lastpriv = 1; 4165 } else { // negative loop stride 4166 KMP_DEBUG_ASSERT(upper + st < *ub); 4167 if (upper - ub_glob < (kmp_uint64)(-st)) 4168 lastpriv = 1; 4169 } 4170 } 4171 next_task = __kmp_task_dup_alloc(thread, task); // allocate new task 4172 kmp_taskdata_t *next_taskdata = KMP_TASK_TO_TASKDATA(next_task); 4173 kmp_taskloop_bounds_t next_task_bounds = 4174 kmp_taskloop_bounds_t(next_task, task_bounds); 4175 4176 // adjust task-specific bounds 4177 next_task_bounds.set_lb(lower); 4178 if (next_taskdata->td_flags.native) { 4179 next_task_bounds.set_ub(upper + (st > 0 ? 1 : -1)); 4180 } else { 4181 next_task_bounds.set_ub(upper); 4182 } 4183 if (ptask_dup != NULL) // set lastprivate flag, construct firstprivates, 4184 // etc. 4185 ptask_dup(next_task, task, lastpriv); 4186 KA_TRACE(40, 4187 ("__kmp_taskloop_linear: T#%d; task #%llu: task %p: lower %lld, " 4188 "upper %lld stride %lld, (offsets %p %p)\n", 4189 gtid, i, next_task, lower, upper, st, 4190 next_task_bounds.get_lower_offset(), 4191 next_task_bounds.get_upper_offset())); 4192 #if OMPT_SUPPORT 4193 __kmp_omp_taskloop_task(NULL, gtid, next_task, 4194 codeptr_ra); // schedule new task 4195 #else 4196 __kmp_omp_task(gtid, next_task, true); // schedule new task 4197 #endif 4198 lower = upper + st; // adjust lower bound for the next iteration 4199 } 4200 // free the pattern task and exit 4201 __kmp_task_start(gtid, task, current_task); // make internal bookkeeping 4202 // do not execute the pattern task, just do internal bookkeeping 4203 __kmp_task_finish<false>(gtid, task, current_task); 4204 } 4205 4206 // Structure to keep taskloop parameters for auxiliary task 4207 // kept in the shareds of the task structure. 4208 typedef struct __taskloop_params { 4209 kmp_task_t *task; 4210 kmp_uint64 *lb; 4211 kmp_uint64 *ub; 4212 void *task_dup; 4213 kmp_int64 st; 4214 kmp_uint64 ub_glob; 4215 kmp_uint64 num_tasks; 4216 kmp_uint64 grainsize; 4217 kmp_uint64 extras; 4218 kmp_uint64 tc; 4219 kmp_uint64 num_t_min; 4220 #if OMPT_SUPPORT 4221 void *codeptr_ra; 4222 #endif 4223 } __taskloop_params_t; 4224 4225 void __kmp_taskloop_recur(ident_t *, int, kmp_task_t *, kmp_uint64 *, 4226 kmp_uint64 *, kmp_int64, kmp_uint64, kmp_uint64, 4227 kmp_uint64, kmp_uint64, kmp_uint64, kmp_uint64, 4228 #if OMPT_SUPPORT 4229 void *, 4230 #endif 4231 void *); 4232 4233 // Execute part of the taskloop submitted as a task. 4234 int __kmp_taskloop_task(int gtid, void *ptask) { 4235 __taskloop_params_t *p = 4236 (__taskloop_params_t *)((kmp_task_t *)ptask)->shareds; 4237 kmp_task_t *task = p->task; 4238 kmp_uint64 *lb = p->lb; 4239 kmp_uint64 *ub = p->ub; 4240 void *task_dup = p->task_dup; 4241 // p_task_dup_t ptask_dup = (p_task_dup_t)task_dup; 4242 kmp_int64 st = p->st; 4243 kmp_uint64 ub_glob = p->ub_glob; 4244 kmp_uint64 num_tasks = p->num_tasks; 4245 kmp_uint64 grainsize = p->grainsize; 4246 kmp_uint64 extras = p->extras; 4247 kmp_uint64 tc = p->tc; 4248 kmp_uint64 num_t_min = p->num_t_min; 4249 #if OMPT_SUPPORT 4250 void *codeptr_ra = p->codeptr_ra; 4251 #endif 4252 #if KMP_DEBUG 4253 kmp_taskdata_t *taskdata = KMP_TASK_TO_TASKDATA(task); 4254 KMP_DEBUG_ASSERT(task != NULL); 4255 KA_TRACE(20, ("__kmp_taskloop_task: T#%d, task %p: %lld tasks, grainsize" 4256 " %lld, extras %lld, i=%lld,%lld(%d), dup %p\n", 4257 gtid, taskdata, num_tasks, grainsize, extras, *lb, *ub, st, 4258 task_dup)); 4259 #endif 4260 KMP_DEBUG_ASSERT(num_tasks * 2 + 1 > num_t_min); 4261 if (num_tasks > num_t_min) 4262 __kmp_taskloop_recur(NULL, gtid, task, lb, ub, st, ub_glob, num_tasks, 4263 grainsize, extras, tc, num_t_min, 4264 #if OMPT_SUPPORT 4265 codeptr_ra, 4266 #endif 4267 task_dup); 4268 else 4269 __kmp_taskloop_linear(NULL, gtid, task, lb, ub, st, ub_glob, num_tasks, 4270 grainsize, extras, tc, 4271 #if OMPT_SUPPORT 4272 codeptr_ra, 4273 #endif 4274 task_dup); 4275 4276 KA_TRACE(40, ("__kmp_taskloop_task(exit): T#%d\n", gtid)); 4277 return 0; 4278 } 4279 4280 // Schedule part of the taskloop as a task, 4281 // execute the rest of the taskloop. 4282 // 4283 // loc Source location information 4284 // gtid Global thread ID 4285 // task Pattern task, exposes the loop iteration range 4286 // lb Pointer to loop lower bound in task structure 4287 // ub Pointer to loop upper bound in task structure 4288 // st Loop stride 4289 // ub_glob Global upper bound (used for lastprivate check) 4290 // num_tasks Number of tasks to execute 4291 // grainsize Number of loop iterations per task 4292 // extras Number of chunks with grainsize+1 iterations 4293 // tc Iterations count 4294 // num_t_min Threshold to launch tasks recursively 4295 // task_dup Tasks duplication routine 4296 // codeptr_ra Return address for OMPT events 4297 void __kmp_taskloop_recur(ident_t *loc, int gtid, kmp_task_t *task, 4298 kmp_uint64 *lb, kmp_uint64 *ub, kmp_int64 st, 4299 kmp_uint64 ub_glob, kmp_uint64 num_tasks, 4300 kmp_uint64 grainsize, kmp_uint64 extras, 4301 kmp_uint64 tc, kmp_uint64 num_t_min, 4302 #if OMPT_SUPPORT 4303 void *codeptr_ra, 4304 #endif 4305 void *task_dup) { 4306 kmp_taskdata_t *taskdata = KMP_TASK_TO_TASKDATA(task); 4307 KMP_DEBUG_ASSERT(task != NULL); 4308 KMP_DEBUG_ASSERT(num_tasks > num_t_min); 4309 KA_TRACE(20, ("__kmp_taskloop_recur: T#%d, task %p: %lld tasks, grainsize" 4310 " %lld, extras %lld, i=%lld,%lld(%d), dup %p\n", 4311 gtid, taskdata, num_tasks, grainsize, extras, *lb, *ub, st, 4312 task_dup)); 4313 p_task_dup_t ptask_dup = (p_task_dup_t)task_dup; 4314 kmp_uint64 lower = *lb; 4315 kmp_info_t *thread = __kmp_threads[gtid]; 4316 // kmp_taskdata_t *current_task = thread->th.th_current_task; 4317 kmp_task_t *next_task; 4318 size_t lower_offset = 4319 (char *)lb - (char *)task; // remember offset of lb in the task structure 4320 size_t upper_offset = 4321 (char *)ub - (char *)task; // remember offset of ub in the task structure 4322 4323 KMP_DEBUG_ASSERT(tc == num_tasks * grainsize + extras); 4324 KMP_DEBUG_ASSERT(num_tasks > extras); 4325 KMP_DEBUG_ASSERT(num_tasks > 0); 4326 4327 // split the loop in two halves 4328 kmp_uint64 lb1, ub0, tc0, tc1, ext0, ext1; 4329 kmp_uint64 gr_size0 = grainsize; 4330 kmp_uint64 n_tsk0 = num_tasks >> 1; // num_tasks/2 to execute 4331 kmp_uint64 n_tsk1 = num_tasks - n_tsk0; // to schedule as a task 4332 if (n_tsk0 <= extras) { 4333 gr_size0++; // integrate extras into grainsize 4334 ext0 = 0; // no extra iters in 1st half 4335 ext1 = extras - n_tsk0; // remaining extras 4336 tc0 = gr_size0 * n_tsk0; 4337 tc1 = tc - tc0; 4338 } else { // n_tsk0 > extras 4339 ext1 = 0; // no extra iters in 2nd half 4340 ext0 = extras; 4341 tc1 = grainsize * n_tsk1; 4342 tc0 = tc - tc1; 4343 } 4344 ub0 = lower + st * (tc0 - 1); 4345 lb1 = ub0 + st; 4346 4347 // create pattern task for 2nd half of the loop 4348 next_task = __kmp_task_dup_alloc(thread, task); // duplicate the task 4349 // adjust lower bound (upper bound is not changed) for the 2nd half 4350 *(kmp_uint64 *)((char *)next_task + lower_offset) = lb1; 4351 if (ptask_dup != NULL) // construct firstprivates, etc. 4352 ptask_dup(next_task, task, 0); 4353 *ub = ub0; // adjust upper bound for the 1st half 4354 4355 // create auxiliary task for 2nd half of the loop 4356 // make sure new task has same parent task as the pattern task 4357 kmp_taskdata_t *current_task = thread->th.th_current_task; 4358 thread->th.th_current_task = taskdata->td_parent; 4359 kmp_task_t *new_task = 4360 __kmpc_omp_task_alloc(loc, gtid, 1, 3 * sizeof(void *), 4361 sizeof(__taskloop_params_t), &__kmp_taskloop_task); 4362 // restore current task 4363 thread->th.th_current_task = current_task; 4364 __taskloop_params_t *p = (__taskloop_params_t *)new_task->shareds; 4365 p->task = next_task; 4366 p->lb = (kmp_uint64 *)((char *)next_task + lower_offset); 4367 p->ub = (kmp_uint64 *)((char *)next_task + upper_offset); 4368 p->task_dup = task_dup; 4369 p->st = st; 4370 p->ub_glob = ub_glob; 4371 p->num_tasks = n_tsk1; 4372 p->grainsize = grainsize; 4373 p->extras = ext1; 4374 p->tc = tc1; 4375 p->num_t_min = num_t_min; 4376 #if OMPT_SUPPORT 4377 p->codeptr_ra = codeptr_ra; 4378 #endif 4379 4380 #if OMPT_SUPPORT 4381 // schedule new task with correct return address for OMPT events 4382 __kmp_omp_taskloop_task(NULL, gtid, new_task, codeptr_ra); 4383 #else 4384 __kmp_omp_task(gtid, new_task, true); // schedule new task 4385 #endif 4386 4387 // execute the 1st half of current subrange 4388 if (n_tsk0 > num_t_min) 4389 __kmp_taskloop_recur(loc, gtid, task, lb, ub, st, ub_glob, n_tsk0, gr_size0, 4390 ext0, tc0, num_t_min, 4391 #if OMPT_SUPPORT 4392 codeptr_ra, 4393 #endif 4394 task_dup); 4395 else 4396 __kmp_taskloop_linear(loc, gtid, task, lb, ub, st, ub_glob, n_tsk0, 4397 gr_size0, ext0, tc0, 4398 #if OMPT_SUPPORT 4399 codeptr_ra, 4400 #endif 4401 task_dup); 4402 4403 KA_TRACE(40, ("__kmpc_taskloop_recur(exit): T#%d\n", gtid)); 4404 } 4405 4406 /*! 4407 @ingroup TASKING 4408 @param loc Source location information 4409 @param gtid Global thread ID 4410 @param task Task structure 4411 @param if_val Value of the if clause 4412 @param lb Pointer to loop lower bound in task structure 4413 @param ub Pointer to loop upper bound in task structure 4414 @param st Loop stride 4415 @param nogroup Flag, 1 if no taskgroup needs to be added, 0 otherwise 4416 @param sched Schedule specified 0/1/2 for none/grainsize/num_tasks 4417 @param grainsize Schedule value if specified 4418 @param task_dup Tasks duplication routine 4419 4420 Execute the taskloop construct. 4421 */ 4422 void __kmpc_taskloop(ident_t *loc, int gtid, kmp_task_t *task, int if_val, 4423 kmp_uint64 *lb, kmp_uint64 *ub, kmp_int64 st, int nogroup, 4424 int sched, kmp_uint64 grainsize, void *task_dup) { 4425 kmp_taskdata_t *taskdata = KMP_TASK_TO_TASKDATA(task); 4426 KMP_DEBUG_ASSERT(task != NULL); 4427 4428 if (nogroup == 0) { 4429 #if OMPT_SUPPORT && OMPT_OPTIONAL 4430 OMPT_STORE_RETURN_ADDRESS(gtid); 4431 #endif 4432 __kmpc_taskgroup(loc, gtid); 4433 } 4434 4435 // ========================================================================= 4436 // calculate loop parameters 4437 kmp_taskloop_bounds_t task_bounds(task, lb, ub); 4438 kmp_uint64 tc; 4439 // compiler provides global bounds here 4440 kmp_uint64 lower = task_bounds.get_lb(); 4441 kmp_uint64 upper = task_bounds.get_ub(); 4442 kmp_uint64 ub_glob = upper; // global upper used to calc lastprivate flag 4443 kmp_uint64 num_tasks = 0, extras = 0; 4444 kmp_uint64 num_tasks_min = __kmp_taskloop_min_tasks; 4445 kmp_info_t *thread = __kmp_threads[gtid]; 4446 kmp_taskdata_t *current_task = thread->th.th_current_task; 4447 4448 KA_TRACE(20, ("__kmpc_taskloop: T#%d, task %p, lb %lld, ub %lld, st %lld, " 4449 "grain %llu(%d), dup %p\n", 4450 gtid, taskdata, lower, upper, st, grainsize, sched, task_dup)); 4451 4452 // compute trip count 4453 if (st == 1) { // most common case 4454 tc = upper - lower + 1; 4455 } else if (st < 0) { 4456 tc = (lower - upper) / (-st) + 1; 4457 } else { // st > 0 4458 tc = (upper - lower) / st + 1; 4459 } 4460 if (tc == 0) { 4461 KA_TRACE(20, ("__kmpc_taskloop(exit): T#%d zero-trip loop\n", gtid)); 4462 // free the pattern task and exit 4463 __kmp_task_start(gtid, task, current_task); 4464 // do not execute anything for zero-trip loop 4465 __kmp_task_finish<false>(gtid, task, current_task); 4466 return; 4467 } 4468 4469 #if OMPT_SUPPORT && OMPT_OPTIONAL 4470 ompt_team_info_t *team_info = __ompt_get_teaminfo(0, NULL); 4471 ompt_task_info_t *task_info = __ompt_get_task_info_object(0); 4472 if (ompt_enabled.ompt_callback_work) { 4473 ompt_callbacks.ompt_callback(ompt_callback_work)( 4474 ompt_work_taskloop, ompt_scope_begin, &(team_info->parallel_data), 4475 &(task_info->task_data), tc, OMPT_GET_RETURN_ADDRESS(0)); 4476 } 4477 #endif 4478 4479 if (num_tasks_min == 0) 4480 // TODO: can we choose better default heuristic? 4481 num_tasks_min = 4482 KMP_MIN(thread->th.th_team_nproc * 10, INITIAL_TASK_DEQUE_SIZE); 4483 4484 // compute num_tasks/grainsize based on the input provided 4485 switch (sched) { 4486 case 0: // no schedule clause specified, we can choose the default 4487 // let's try to schedule (team_size*10) tasks 4488 grainsize = thread->th.th_team_nproc * 10; 4489 KMP_FALLTHROUGH(); 4490 case 2: // num_tasks provided 4491 if (grainsize > tc) { 4492 num_tasks = tc; // too big num_tasks requested, adjust values 4493 grainsize = 1; 4494 extras = 0; 4495 } else { 4496 num_tasks = grainsize; 4497 grainsize = tc / num_tasks; 4498 extras = tc % num_tasks; 4499 } 4500 break; 4501 case 1: // grainsize provided 4502 if (grainsize > tc) { 4503 num_tasks = 1; // too big grainsize requested, adjust values 4504 grainsize = tc; 4505 extras = 0; 4506 } else { 4507 num_tasks = tc / grainsize; 4508 // adjust grainsize for balanced distribution of iterations 4509 grainsize = tc / num_tasks; 4510 extras = tc % num_tasks; 4511 } 4512 break; 4513 default: 4514 KMP_ASSERT2(0, "unknown scheduling of taskloop"); 4515 } 4516 KMP_DEBUG_ASSERT(tc == num_tasks * grainsize + extras); 4517 KMP_DEBUG_ASSERT(num_tasks > extras); 4518 KMP_DEBUG_ASSERT(num_tasks > 0); 4519 // ========================================================================= 4520 4521 // check if clause value first 4522 // Also require GOMP_taskloop to reduce to linear (taskdata->td_flags.native) 4523 if (if_val == 0) { // if(0) specified, mark task as serial 4524 taskdata->td_flags.task_serial = 1; 4525 taskdata->td_flags.tiedness = TASK_TIED; // AC: serial task cannot be untied 4526 // always start serial tasks linearly 4527 __kmp_taskloop_linear(loc, gtid, task, lb, ub, st, ub_glob, num_tasks, 4528 grainsize, extras, tc, 4529 #if OMPT_SUPPORT 4530 OMPT_GET_RETURN_ADDRESS(0), 4531 #endif 4532 task_dup); 4533 // !taskdata->td_flags.native => currently force linear spawning of tasks 4534 // for GOMP_taskloop 4535 } else if (num_tasks > num_tasks_min && !taskdata->td_flags.native) { 4536 KA_TRACE(20, ("__kmpc_taskloop: T#%d, go recursive: tc %llu, #tasks %llu" 4537 "(%lld), grain %llu, extras %llu\n", 4538 gtid, tc, num_tasks, num_tasks_min, grainsize, extras)); 4539 __kmp_taskloop_recur(loc, gtid, task, lb, ub, st, ub_glob, num_tasks, 4540 grainsize, extras, tc, num_tasks_min, 4541 #if OMPT_SUPPORT 4542 OMPT_GET_RETURN_ADDRESS(0), 4543 #endif 4544 task_dup); 4545 } else { 4546 KA_TRACE(20, ("__kmpc_taskloop: T#%d, go linear: tc %llu, #tasks %llu" 4547 "(%lld), grain %llu, extras %llu\n", 4548 gtid, tc, num_tasks, num_tasks_min, grainsize, extras)); 4549 __kmp_taskloop_linear(loc, gtid, task, lb, ub, st, ub_glob, num_tasks, 4550 grainsize, extras, tc, 4551 #if OMPT_SUPPORT 4552 OMPT_GET_RETURN_ADDRESS(0), 4553 #endif 4554 task_dup); 4555 } 4556 4557 #if OMPT_SUPPORT && OMPT_OPTIONAL 4558 if (ompt_enabled.ompt_callback_work) { 4559 ompt_callbacks.ompt_callback(ompt_callback_work)( 4560 ompt_work_taskloop, ompt_scope_end, &(team_info->parallel_data), 4561 &(task_info->task_data), tc, OMPT_GET_RETURN_ADDRESS(0)); 4562 } 4563 #endif 4564 4565 if (nogroup == 0) { 4566 #if OMPT_SUPPORT && OMPT_OPTIONAL 4567 OMPT_STORE_RETURN_ADDRESS(gtid); 4568 #endif 4569 __kmpc_end_taskgroup(loc, gtid); 4570 } 4571 KA_TRACE(20, ("__kmpc_taskloop(exit): T#%d\n", gtid)); 4572 } 4573