1 /* 2 * kmp_tasking.cpp -- OpenMP 3.0 tasking support. 3 */ 4 5 //===----------------------------------------------------------------------===// 6 // 7 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 8 // See https://llvm.org/LICENSE.txt for license information. 9 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "kmp.h" 14 #include "kmp_i18n.h" 15 #include "kmp_itt.h" 16 #include "kmp_stats.h" 17 #include "kmp_wait_release.h" 18 #include "kmp_taskdeps.h" 19 20 #if OMPT_SUPPORT 21 #include "ompt-specific.h" 22 #endif 23 24 #if ENABLE_LIBOMPTARGET 25 static void (*tgt_target_nowait_query)(void **); 26 27 void __kmp_init_target_task() { 28 *(void **)(&tgt_target_nowait_query) = KMP_DLSYM("__tgt_target_nowait_query"); 29 } 30 #endif 31 32 /* forward declaration */ 33 static void __kmp_enable_tasking(kmp_task_team_t *task_team, 34 kmp_info_t *this_thr); 35 static void __kmp_alloc_task_deque(kmp_info_t *thread, 36 kmp_thread_data_t *thread_data); 37 static int __kmp_realloc_task_threads_data(kmp_info_t *thread, 38 kmp_task_team_t *task_team); 39 static void __kmp_bottom_half_finish_proxy(kmp_int32 gtid, kmp_task_t *ptask); 40 #if OMPX_TASKGRAPH 41 static kmp_tdg_info_t *__kmp_find_tdg(kmp_int32 tdg_id); 42 int __kmp_taskloop_task(int gtid, void *ptask); 43 #endif 44 45 #ifdef BUILD_TIED_TASK_STACK 46 47 // __kmp_trace_task_stack: print the tied tasks from the task stack in order 48 // from top do bottom 49 // 50 // gtid: global thread identifier for thread containing stack 51 // thread_data: thread data for task team thread containing stack 52 // threshold: value above which the trace statement triggers 53 // location: string identifying call site of this function (for trace) 54 static void __kmp_trace_task_stack(kmp_int32 gtid, 55 kmp_thread_data_t *thread_data, 56 int threshold, char *location) { 57 kmp_task_stack_t *task_stack = &thread_data->td.td_susp_tied_tasks; 58 kmp_taskdata_t **stack_top = task_stack->ts_top; 59 kmp_int32 entries = task_stack->ts_entries; 60 kmp_taskdata_t *tied_task; 61 62 KA_TRACE( 63 threshold, 64 ("__kmp_trace_task_stack(start): location = %s, gtid = %d, entries = %d, " 65 "first_block = %p, stack_top = %p \n", 66 location, gtid, entries, task_stack->ts_first_block, stack_top)); 67 68 KMP_DEBUG_ASSERT(stack_top != NULL); 69 KMP_DEBUG_ASSERT(entries > 0); 70 71 while (entries != 0) { 72 KMP_DEBUG_ASSERT(stack_top != &task_stack->ts_first_block.sb_block[0]); 73 // fix up ts_top if we need to pop from previous block 74 if (entries & TASK_STACK_INDEX_MASK == 0) { 75 kmp_stack_block_t *stack_block = (kmp_stack_block_t *)(stack_top); 76 77 stack_block = stack_block->sb_prev; 78 stack_top = &stack_block->sb_block[TASK_STACK_BLOCK_SIZE]; 79 } 80 81 // finish bookkeeping 82 stack_top--; 83 entries--; 84 85 tied_task = *stack_top; 86 87 KMP_DEBUG_ASSERT(tied_task != NULL); 88 KMP_DEBUG_ASSERT(tied_task->td_flags.tasktype == TASK_TIED); 89 90 KA_TRACE(threshold, 91 ("__kmp_trace_task_stack(%s): gtid=%d, entry=%d, " 92 "stack_top=%p, tied_task=%p\n", 93 location, gtid, entries, stack_top, tied_task)); 94 } 95 KMP_DEBUG_ASSERT(stack_top == &task_stack->ts_first_block.sb_block[0]); 96 97 KA_TRACE(threshold, 98 ("__kmp_trace_task_stack(exit): location = %s, gtid = %d\n", 99 location, gtid)); 100 } 101 102 // __kmp_init_task_stack: initialize the task stack for the first time 103 // after a thread_data structure is created. 104 // It should not be necessary to do this again (assuming the stack works). 105 // 106 // gtid: global thread identifier of calling thread 107 // thread_data: thread data for task team thread containing stack 108 static void __kmp_init_task_stack(kmp_int32 gtid, 109 kmp_thread_data_t *thread_data) { 110 kmp_task_stack_t *task_stack = &thread_data->td.td_susp_tied_tasks; 111 kmp_stack_block_t *first_block; 112 113 // set up the first block of the stack 114 first_block = &task_stack->ts_first_block; 115 task_stack->ts_top = (kmp_taskdata_t **)first_block; 116 memset((void *)first_block, '\0', 117 TASK_STACK_BLOCK_SIZE * sizeof(kmp_taskdata_t *)); 118 119 // initialize the stack to be empty 120 task_stack->ts_entries = TASK_STACK_EMPTY; 121 first_block->sb_next = NULL; 122 first_block->sb_prev = NULL; 123 } 124 125 // __kmp_free_task_stack: free the task stack when thread_data is destroyed. 126 // 127 // gtid: global thread identifier for calling thread 128 // thread_data: thread info for thread containing stack 129 static void __kmp_free_task_stack(kmp_int32 gtid, 130 kmp_thread_data_t *thread_data) { 131 kmp_task_stack_t *task_stack = &thread_data->td.td_susp_tied_tasks; 132 kmp_stack_block_t *stack_block = &task_stack->ts_first_block; 133 134 KMP_DEBUG_ASSERT(task_stack->ts_entries == TASK_STACK_EMPTY); 135 // free from the second block of the stack 136 while (stack_block != NULL) { 137 kmp_stack_block_t *next_block = (stack_block) ? stack_block->sb_next : NULL; 138 139 stack_block->sb_next = NULL; 140 stack_block->sb_prev = NULL; 141 if (stack_block != &task_stack->ts_first_block) { 142 __kmp_thread_free(thread, 143 stack_block); // free the block, if not the first 144 } 145 stack_block = next_block; 146 } 147 // initialize the stack to be empty 148 task_stack->ts_entries = 0; 149 task_stack->ts_top = NULL; 150 } 151 152 // __kmp_push_task_stack: Push the tied task onto the task stack. 153 // Grow the stack if necessary by allocating another block. 154 // 155 // gtid: global thread identifier for calling thread 156 // thread: thread info for thread containing stack 157 // tied_task: the task to push on the stack 158 static void __kmp_push_task_stack(kmp_int32 gtid, kmp_info_t *thread, 159 kmp_taskdata_t *tied_task) { 160 // GEH - need to consider what to do if tt_threads_data not allocated yet 161 kmp_thread_data_t *thread_data = 162 &thread->th.th_task_team->tt.tt_threads_data[__kmp_tid_from_gtid(gtid)]; 163 kmp_task_stack_t *task_stack = &thread_data->td.td_susp_tied_tasks; 164 165 if (tied_task->td_flags.team_serial || tied_task->td_flags.tasking_ser) { 166 return; // Don't push anything on stack if team or team tasks are serialized 167 } 168 169 KMP_DEBUG_ASSERT(tied_task->td_flags.tasktype == TASK_TIED); 170 KMP_DEBUG_ASSERT(task_stack->ts_top != NULL); 171 172 KA_TRACE(20, 173 ("__kmp_push_task_stack(enter): GTID: %d; THREAD: %p; TASK: %p\n", 174 gtid, thread, tied_task)); 175 // Store entry 176 *(task_stack->ts_top) = tied_task; 177 178 // Do bookkeeping for next push 179 task_stack->ts_top++; 180 task_stack->ts_entries++; 181 182 if (task_stack->ts_entries & TASK_STACK_INDEX_MASK == 0) { 183 // Find beginning of this task block 184 kmp_stack_block_t *stack_block = 185 (kmp_stack_block_t *)(task_stack->ts_top - TASK_STACK_BLOCK_SIZE); 186 187 // Check if we already have a block 188 if (stack_block->sb_next != 189 NULL) { // reset ts_top to beginning of next block 190 task_stack->ts_top = &stack_block->sb_next->sb_block[0]; 191 } else { // Alloc new block and link it up 192 kmp_stack_block_t *new_block = (kmp_stack_block_t *)__kmp_thread_calloc( 193 thread, sizeof(kmp_stack_block_t)); 194 195 task_stack->ts_top = &new_block->sb_block[0]; 196 stack_block->sb_next = new_block; 197 new_block->sb_prev = stack_block; 198 new_block->sb_next = NULL; 199 200 KA_TRACE( 201 30, 202 ("__kmp_push_task_stack(): GTID: %d; TASK: %p; Alloc new block: %p\n", 203 gtid, tied_task, new_block)); 204 } 205 } 206 KA_TRACE(20, ("__kmp_push_task_stack(exit): GTID: %d; TASK: %p\n", gtid, 207 tied_task)); 208 } 209 210 // __kmp_pop_task_stack: Pop the tied task from the task stack. Don't return 211 // the task, just check to make sure it matches the ending task passed in. 212 // 213 // gtid: global thread identifier for the calling thread 214 // thread: thread info structure containing stack 215 // tied_task: the task popped off the stack 216 // ending_task: the task that is ending (should match popped task) 217 static void __kmp_pop_task_stack(kmp_int32 gtid, kmp_info_t *thread, 218 kmp_taskdata_t *ending_task) { 219 // GEH - need to consider what to do if tt_threads_data not allocated yet 220 kmp_thread_data_t *thread_data = 221 &thread->th.th_task_team->tt_threads_data[__kmp_tid_from_gtid(gtid)]; 222 kmp_task_stack_t *task_stack = &thread_data->td.td_susp_tied_tasks; 223 kmp_taskdata_t *tied_task; 224 225 if (ending_task->td_flags.team_serial || ending_task->td_flags.tasking_ser) { 226 // Don't pop anything from stack if team or team tasks are serialized 227 return; 228 } 229 230 KMP_DEBUG_ASSERT(task_stack->ts_top != NULL); 231 KMP_DEBUG_ASSERT(task_stack->ts_entries > 0); 232 233 KA_TRACE(20, ("__kmp_pop_task_stack(enter): GTID: %d; THREAD: %p\n", gtid, 234 thread)); 235 236 // fix up ts_top if we need to pop from previous block 237 if (task_stack->ts_entries & TASK_STACK_INDEX_MASK == 0) { 238 kmp_stack_block_t *stack_block = (kmp_stack_block_t *)(task_stack->ts_top); 239 240 stack_block = stack_block->sb_prev; 241 task_stack->ts_top = &stack_block->sb_block[TASK_STACK_BLOCK_SIZE]; 242 } 243 244 // finish bookkeeping 245 task_stack->ts_top--; 246 task_stack->ts_entries--; 247 248 tied_task = *(task_stack->ts_top); 249 250 KMP_DEBUG_ASSERT(tied_task != NULL); 251 KMP_DEBUG_ASSERT(tied_task->td_flags.tasktype == TASK_TIED); 252 KMP_DEBUG_ASSERT(tied_task == ending_task); // If we built the stack correctly 253 254 KA_TRACE(20, ("__kmp_pop_task_stack(exit): GTID: %d; TASK: %p\n", gtid, 255 tied_task)); 256 return; 257 } 258 #endif /* BUILD_TIED_TASK_STACK */ 259 260 // returns 1 if new task is allowed to execute, 0 otherwise 261 // checks Task Scheduling constraint (if requested) and 262 // mutexinoutset dependencies if any 263 static bool __kmp_task_is_allowed(int gtid, const kmp_int32 is_constrained, 264 const kmp_taskdata_t *tasknew, 265 const kmp_taskdata_t *taskcurr) { 266 if (is_constrained && (tasknew->td_flags.tiedness == TASK_TIED)) { 267 // Check if the candidate obeys the Task Scheduling Constraints (TSC) 268 // only descendant of all deferred tied tasks can be scheduled, checking 269 // the last one is enough, as it in turn is the descendant of all others 270 kmp_taskdata_t *current = taskcurr->td_last_tied; 271 KMP_DEBUG_ASSERT(current != NULL); 272 // check if the task is not suspended on barrier 273 if (current->td_flags.tasktype == TASK_EXPLICIT || 274 current->td_taskwait_thread > 0) { // <= 0 on barrier 275 kmp_int32 level = current->td_level; 276 kmp_taskdata_t *parent = tasknew->td_parent; 277 while (parent != current && parent->td_level > level) { 278 // check generation up to the level of the current task 279 parent = parent->td_parent; 280 KMP_DEBUG_ASSERT(parent != NULL); 281 } 282 if (parent != current) 283 return false; 284 } 285 } 286 // Check mutexinoutset dependencies, acquire locks 287 kmp_depnode_t *node = tasknew->td_depnode; 288 #if OMPX_TASKGRAPH 289 if (!tasknew->is_taskgraph && UNLIKELY(node && (node->dn.mtx_num_locks > 0))) { 290 #else 291 if (UNLIKELY(node && (node->dn.mtx_num_locks > 0))) { 292 #endif 293 for (int i = 0; i < node->dn.mtx_num_locks; ++i) { 294 KMP_DEBUG_ASSERT(node->dn.mtx_locks[i] != NULL); 295 if (__kmp_test_lock(node->dn.mtx_locks[i], gtid)) 296 continue; 297 // could not get the lock, release previous locks 298 for (int j = i - 1; j >= 0; --j) 299 __kmp_release_lock(node->dn.mtx_locks[j], gtid); 300 return false; 301 } 302 // negative num_locks means all locks acquired successfully 303 node->dn.mtx_num_locks = -node->dn.mtx_num_locks; 304 } 305 return true; 306 } 307 308 // __kmp_realloc_task_deque: 309 // Re-allocates a task deque for a particular thread, copies the content from 310 // the old deque and adjusts the necessary data structures relating to the 311 // deque. This operation must be done with the deque_lock being held 312 static void __kmp_realloc_task_deque(kmp_info_t *thread, 313 kmp_thread_data_t *thread_data) { 314 kmp_int32 size = TASK_DEQUE_SIZE(thread_data->td); 315 KMP_DEBUG_ASSERT(TCR_4(thread_data->td.td_deque_ntasks) == size); 316 kmp_int32 new_size = 2 * size; 317 318 KE_TRACE(10, ("__kmp_realloc_task_deque: T#%d reallocating deque[from %d to " 319 "%d] for thread_data %p\n", 320 __kmp_gtid_from_thread(thread), size, new_size, thread_data)); 321 322 kmp_taskdata_t **new_deque = 323 (kmp_taskdata_t **)__kmp_allocate(new_size * sizeof(kmp_taskdata_t *)); 324 325 int i, j; 326 for (i = thread_data->td.td_deque_head, j = 0; j < size; 327 i = (i + 1) & TASK_DEQUE_MASK(thread_data->td), j++) 328 new_deque[j] = thread_data->td.td_deque[i]; 329 330 __kmp_free(thread_data->td.td_deque); 331 332 thread_data->td.td_deque_head = 0; 333 thread_data->td.td_deque_tail = size; 334 thread_data->td.td_deque = new_deque; 335 thread_data->td.td_deque_size = new_size; 336 } 337 338 static kmp_task_pri_t *__kmp_alloc_task_pri_list() { 339 kmp_task_pri_t *l = (kmp_task_pri_t *)__kmp_allocate(sizeof(kmp_task_pri_t)); 340 kmp_thread_data_t *thread_data = &l->td; 341 __kmp_init_bootstrap_lock(&thread_data->td.td_deque_lock); 342 thread_data->td.td_deque_last_stolen = -1; 343 KE_TRACE(20, ("__kmp_alloc_task_pri_list: T#%d allocating deque[%d] " 344 "for thread_data %p\n", 345 __kmp_get_gtid(), INITIAL_TASK_DEQUE_SIZE, thread_data)); 346 thread_data->td.td_deque = (kmp_taskdata_t **)__kmp_allocate( 347 INITIAL_TASK_DEQUE_SIZE * sizeof(kmp_taskdata_t *)); 348 thread_data->td.td_deque_size = INITIAL_TASK_DEQUE_SIZE; 349 return l; 350 } 351 352 // The function finds the deque of priority tasks with given priority, or 353 // allocates a new deque and put it into sorted (high -> low) list of deques. 354 // Deques of non-default priority tasks are shared between all threads in team, 355 // as opposed to per-thread deques of tasks with default priority. 356 // The function is called under the lock task_team->tt.tt_task_pri_lock. 357 static kmp_thread_data_t * 358 __kmp_get_priority_deque_data(kmp_task_team_t *task_team, kmp_int32 pri) { 359 kmp_thread_data_t *thread_data; 360 kmp_task_pri_t *lst = task_team->tt.tt_task_pri_list; 361 if (lst->priority == pri) { 362 // Found queue of tasks with given priority. 363 thread_data = &lst->td; 364 } else if (lst->priority < pri) { 365 // All current priority queues contain tasks with lower priority. 366 // Allocate new one for given priority tasks. 367 kmp_task_pri_t *list = __kmp_alloc_task_pri_list(); 368 thread_data = &list->td; 369 list->priority = pri; 370 list->next = lst; 371 task_team->tt.tt_task_pri_list = list; 372 } else { // task_team->tt.tt_task_pri_list->priority > pri 373 kmp_task_pri_t *next_queue = lst->next; 374 while (next_queue && next_queue->priority > pri) { 375 lst = next_queue; 376 next_queue = lst->next; 377 } 378 // lst->priority > pri && (next == NULL || pri >= next->priority) 379 if (next_queue == NULL) { 380 // No queue with pri priority, need to allocate new one. 381 kmp_task_pri_t *list = __kmp_alloc_task_pri_list(); 382 thread_data = &list->td; 383 list->priority = pri; 384 list->next = NULL; 385 lst->next = list; 386 } else if (next_queue->priority == pri) { 387 // Found queue of tasks with given priority. 388 thread_data = &next_queue->td; 389 } else { // lst->priority > pri > next->priority 390 // insert newly allocated between existed queues 391 kmp_task_pri_t *list = __kmp_alloc_task_pri_list(); 392 thread_data = &list->td; 393 list->priority = pri; 394 list->next = next_queue; 395 lst->next = list; 396 } 397 } 398 return thread_data; 399 } 400 401 // __kmp_push_priority_task: Add a task to the team's priority task deque 402 static kmp_int32 __kmp_push_priority_task(kmp_int32 gtid, kmp_info_t *thread, 403 kmp_taskdata_t *taskdata, 404 kmp_task_team_t *task_team, 405 kmp_int32 pri) { 406 kmp_thread_data_t *thread_data = NULL; 407 KA_TRACE(20, 408 ("__kmp_push_priority_task: T#%d trying to push task %p, pri %d.\n", 409 gtid, taskdata, pri)); 410 411 // Find task queue specific to priority value 412 kmp_task_pri_t *lst = task_team->tt.tt_task_pri_list; 413 if (UNLIKELY(lst == NULL)) { 414 __kmp_acquire_bootstrap_lock(&task_team->tt.tt_task_pri_lock); 415 if (task_team->tt.tt_task_pri_list == NULL) { 416 // List of queues is still empty, allocate one. 417 kmp_task_pri_t *list = __kmp_alloc_task_pri_list(); 418 thread_data = &list->td; 419 list->priority = pri; 420 list->next = NULL; 421 task_team->tt.tt_task_pri_list = list; 422 } else { 423 // Other thread initialized a queue. Check if it fits and get thread_data. 424 thread_data = __kmp_get_priority_deque_data(task_team, pri); 425 } 426 __kmp_release_bootstrap_lock(&task_team->tt.tt_task_pri_lock); 427 } else { 428 if (lst->priority == pri) { 429 // Found queue of tasks with given priority. 430 thread_data = &lst->td; 431 } else { 432 __kmp_acquire_bootstrap_lock(&task_team->tt.tt_task_pri_lock); 433 thread_data = __kmp_get_priority_deque_data(task_team, pri); 434 __kmp_release_bootstrap_lock(&task_team->tt.tt_task_pri_lock); 435 } 436 } 437 KMP_DEBUG_ASSERT(thread_data); 438 439 __kmp_acquire_bootstrap_lock(&thread_data->td.td_deque_lock); 440 // Check if deque is full 441 if (TCR_4(thread_data->td.td_deque_ntasks) >= 442 TASK_DEQUE_SIZE(thread_data->td)) { 443 if (__kmp_enable_task_throttling && 444 __kmp_task_is_allowed(gtid, __kmp_task_stealing_constraint, taskdata, 445 thread->th.th_current_task)) { 446 __kmp_release_bootstrap_lock(&thread_data->td.td_deque_lock); 447 KA_TRACE(20, ("__kmp_push_priority_task: T#%d deque is full; returning " 448 "TASK_NOT_PUSHED for task %p\n", 449 gtid, taskdata)); 450 return TASK_NOT_PUSHED; 451 } else { 452 // expand deque to push the task which is not allowed to execute 453 __kmp_realloc_task_deque(thread, thread_data); 454 } 455 } 456 KMP_DEBUG_ASSERT(TCR_4(thread_data->td.td_deque_ntasks) < 457 TASK_DEQUE_SIZE(thread_data->td)); 458 // Push taskdata. 459 thread_data->td.td_deque[thread_data->td.td_deque_tail] = taskdata; 460 // Wrap index. 461 thread_data->td.td_deque_tail = 462 (thread_data->td.td_deque_tail + 1) & TASK_DEQUE_MASK(thread_data->td); 463 TCW_4(thread_data->td.td_deque_ntasks, 464 TCR_4(thread_data->td.td_deque_ntasks) + 1); // Adjust task count 465 KMP_FSYNC_RELEASING(thread->th.th_current_task); // releasing self 466 KMP_FSYNC_RELEASING(taskdata); // releasing child 467 KA_TRACE(20, ("__kmp_push_priority_task: T#%d returning " 468 "TASK_SUCCESSFULLY_PUSHED: task=%p ntasks=%d head=%u tail=%u\n", 469 gtid, taskdata, thread_data->td.td_deque_ntasks, 470 thread_data->td.td_deque_head, thread_data->td.td_deque_tail)); 471 __kmp_release_bootstrap_lock(&thread_data->td.td_deque_lock); 472 task_team->tt.tt_num_task_pri++; // atomic inc 473 return TASK_SUCCESSFULLY_PUSHED; 474 } 475 476 // __kmp_push_task: Add a task to the thread's deque 477 static kmp_int32 __kmp_push_task(kmp_int32 gtid, kmp_task_t *task) { 478 kmp_info_t *thread = __kmp_threads[gtid]; 479 kmp_taskdata_t *taskdata = KMP_TASK_TO_TASKDATA(task); 480 481 // If we encounter a hidden helper task, and the current thread is not a 482 // hidden helper thread, we have to give the task to any hidden helper thread 483 // starting from its shadow one. 484 if (UNLIKELY(taskdata->td_flags.hidden_helper && 485 !KMP_HIDDEN_HELPER_THREAD(gtid))) { 486 kmp_int32 shadow_gtid = KMP_GTID_TO_SHADOW_GTID(gtid); 487 __kmpc_give_task(task, __kmp_tid_from_gtid(shadow_gtid)); 488 // Signal the hidden helper threads. 489 __kmp_hidden_helper_worker_thread_signal(); 490 return TASK_SUCCESSFULLY_PUSHED; 491 } 492 493 kmp_task_team_t *task_team = thread->th.th_task_team; 494 kmp_int32 tid = __kmp_tid_from_gtid(gtid); 495 kmp_thread_data_t *thread_data; 496 497 KA_TRACE(20, 498 ("__kmp_push_task: T#%d trying to push task %p.\n", gtid, taskdata)); 499 500 if (UNLIKELY(taskdata->td_flags.tiedness == TASK_UNTIED)) { 501 // untied task needs to increment counter so that the task structure is not 502 // freed prematurely 503 kmp_int32 counter = 1 + KMP_ATOMIC_INC(&taskdata->td_untied_count); 504 KMP_DEBUG_USE_VAR(counter); 505 KA_TRACE( 506 20, 507 ("__kmp_push_task: T#%d untied_count (%d) incremented for task %p\n", 508 gtid, counter, taskdata)); 509 } 510 511 // The first check avoids building task_team thread data if serialized 512 if (UNLIKELY(taskdata->td_flags.task_serial)) { 513 KA_TRACE(20, ("__kmp_push_task: T#%d team serialized; returning " 514 "TASK_NOT_PUSHED for task %p\n", 515 gtid, taskdata)); 516 return TASK_NOT_PUSHED; 517 } 518 519 // Now that serialized tasks have returned, we can assume that we are not in 520 // immediate exec mode 521 KMP_DEBUG_ASSERT(__kmp_tasking_mode != tskm_immediate_exec); 522 if (UNLIKELY(!KMP_TASKING_ENABLED(task_team))) { 523 __kmp_enable_tasking(task_team, thread); 524 } 525 KMP_DEBUG_ASSERT(TCR_4(task_team->tt.tt_found_tasks) == TRUE); 526 KMP_DEBUG_ASSERT(TCR_PTR(task_team->tt.tt_threads_data) != NULL); 527 528 if (taskdata->td_flags.priority_specified && task->data2.priority > 0 && 529 __kmp_max_task_priority > 0) { 530 int pri = KMP_MIN(task->data2.priority, __kmp_max_task_priority); 531 return __kmp_push_priority_task(gtid, thread, taskdata, task_team, pri); 532 } 533 534 // Find tasking deque specific to encountering thread 535 thread_data = &task_team->tt.tt_threads_data[tid]; 536 537 // No lock needed since only owner can allocate. If the task is hidden_helper, 538 // we don't need it either because we have initialized the dequeue for hidden 539 // helper thread data. 540 if (UNLIKELY(thread_data->td.td_deque == NULL)) { 541 __kmp_alloc_task_deque(thread, thread_data); 542 } 543 544 int locked = 0; 545 // Check if deque is full 546 if (TCR_4(thread_data->td.td_deque_ntasks) >= 547 TASK_DEQUE_SIZE(thread_data->td)) { 548 if (__kmp_enable_task_throttling && 549 __kmp_task_is_allowed(gtid, __kmp_task_stealing_constraint, taskdata, 550 thread->th.th_current_task)) { 551 KA_TRACE(20, ("__kmp_push_task: T#%d deque is full; returning " 552 "TASK_NOT_PUSHED for task %p\n", 553 gtid, taskdata)); 554 return TASK_NOT_PUSHED; 555 } else { 556 __kmp_acquire_bootstrap_lock(&thread_data->td.td_deque_lock); 557 locked = 1; 558 if (TCR_4(thread_data->td.td_deque_ntasks) >= 559 TASK_DEQUE_SIZE(thread_data->td)) { 560 // expand deque to push the task which is not allowed to execute 561 __kmp_realloc_task_deque(thread, thread_data); 562 } 563 } 564 } 565 // Lock the deque for the task push operation 566 if (!locked) { 567 __kmp_acquire_bootstrap_lock(&thread_data->td.td_deque_lock); 568 // Need to recheck as we can get a proxy task from thread outside of OpenMP 569 if (TCR_4(thread_data->td.td_deque_ntasks) >= 570 TASK_DEQUE_SIZE(thread_data->td)) { 571 if (__kmp_enable_task_throttling && 572 __kmp_task_is_allowed(gtid, __kmp_task_stealing_constraint, taskdata, 573 thread->th.th_current_task)) { 574 __kmp_release_bootstrap_lock(&thread_data->td.td_deque_lock); 575 KA_TRACE(20, ("__kmp_push_task: T#%d deque is full on 2nd check; " 576 "returning TASK_NOT_PUSHED for task %p\n", 577 gtid, taskdata)); 578 return TASK_NOT_PUSHED; 579 } else { 580 // expand deque to push the task which is not allowed to execute 581 __kmp_realloc_task_deque(thread, thread_data); 582 } 583 } 584 } 585 // Must have room since no thread can add tasks but calling thread 586 KMP_DEBUG_ASSERT(TCR_4(thread_data->td.td_deque_ntasks) < 587 TASK_DEQUE_SIZE(thread_data->td)); 588 589 thread_data->td.td_deque[thread_data->td.td_deque_tail] = 590 taskdata; // Push taskdata 591 // Wrap index. 592 thread_data->td.td_deque_tail = 593 (thread_data->td.td_deque_tail + 1) & TASK_DEQUE_MASK(thread_data->td); 594 TCW_4(thread_data->td.td_deque_ntasks, 595 TCR_4(thread_data->td.td_deque_ntasks) + 1); // Adjust task count 596 KMP_FSYNC_RELEASING(thread->th.th_current_task); // releasing self 597 KMP_FSYNC_RELEASING(taskdata); // releasing child 598 KA_TRACE(20, ("__kmp_push_task: T#%d returning TASK_SUCCESSFULLY_PUSHED: " 599 "task=%p ntasks=%d head=%u tail=%u\n", 600 gtid, taskdata, thread_data->td.td_deque_ntasks, 601 thread_data->td.td_deque_head, thread_data->td.td_deque_tail)); 602 603 __kmp_release_bootstrap_lock(&thread_data->td.td_deque_lock); 604 605 return TASK_SUCCESSFULLY_PUSHED; 606 } 607 608 // __kmp_pop_current_task_from_thread: set up current task from called thread 609 // when team ends 610 // 611 // this_thr: thread structure to set current_task in. 612 void __kmp_pop_current_task_from_thread(kmp_info_t *this_thr) { 613 KF_TRACE(10, ("__kmp_pop_current_task_from_thread(enter): T#%d " 614 "this_thread=%p, curtask=%p, " 615 "curtask_parent=%p\n", 616 0, this_thr, this_thr->th.th_current_task, 617 this_thr->th.th_current_task->td_parent)); 618 619 this_thr->th.th_current_task = this_thr->th.th_current_task->td_parent; 620 621 KF_TRACE(10, ("__kmp_pop_current_task_from_thread(exit): T#%d " 622 "this_thread=%p, curtask=%p, " 623 "curtask_parent=%p\n", 624 0, this_thr, this_thr->th.th_current_task, 625 this_thr->th.th_current_task->td_parent)); 626 } 627 628 // __kmp_push_current_task_to_thread: set up current task in called thread for a 629 // new team 630 // 631 // this_thr: thread structure to set up 632 // team: team for implicit task data 633 // tid: thread within team to set up 634 void __kmp_push_current_task_to_thread(kmp_info_t *this_thr, kmp_team_t *team, 635 int tid) { 636 // current task of the thread is a parent of the new just created implicit 637 // tasks of new team 638 KF_TRACE(10, ("__kmp_push_current_task_to_thread(enter): T#%d this_thread=%p " 639 "curtask=%p " 640 "parent_task=%p\n", 641 tid, this_thr, this_thr->th.th_current_task, 642 team->t.t_implicit_task_taskdata[tid].td_parent)); 643 644 KMP_DEBUG_ASSERT(this_thr != NULL); 645 646 if (tid == 0) { 647 if (this_thr->th.th_current_task != &team->t.t_implicit_task_taskdata[0]) { 648 team->t.t_implicit_task_taskdata[0].td_parent = 649 this_thr->th.th_current_task; 650 this_thr->th.th_current_task = &team->t.t_implicit_task_taskdata[0]; 651 } 652 } else { 653 team->t.t_implicit_task_taskdata[tid].td_parent = 654 team->t.t_implicit_task_taskdata[0].td_parent; 655 this_thr->th.th_current_task = &team->t.t_implicit_task_taskdata[tid]; 656 } 657 658 KF_TRACE(10, ("__kmp_push_current_task_to_thread(exit): T#%d this_thread=%p " 659 "curtask=%p " 660 "parent_task=%p\n", 661 tid, this_thr, this_thr->th.th_current_task, 662 team->t.t_implicit_task_taskdata[tid].td_parent)); 663 } 664 665 // __kmp_task_start: bookkeeping for a task starting execution 666 // 667 // GTID: global thread id of calling thread 668 // task: task starting execution 669 // current_task: task suspending 670 static void __kmp_task_start(kmp_int32 gtid, kmp_task_t *task, 671 kmp_taskdata_t *current_task) { 672 kmp_taskdata_t *taskdata = KMP_TASK_TO_TASKDATA(task); 673 kmp_info_t *thread = __kmp_threads[gtid]; 674 675 KA_TRACE(10, 676 ("__kmp_task_start(enter): T#%d starting task %p: current_task=%p\n", 677 gtid, taskdata, current_task)); 678 679 KMP_DEBUG_ASSERT(taskdata->td_flags.tasktype == TASK_EXPLICIT); 680 681 // mark currently executing task as suspended 682 // TODO: GEH - make sure root team implicit task is initialized properly. 683 // KMP_DEBUG_ASSERT( current_task -> td_flags.executing == 1 ); 684 current_task->td_flags.executing = 0; 685 686 // Add task to stack if tied 687 #ifdef BUILD_TIED_TASK_STACK 688 if (taskdata->td_flags.tiedness == TASK_TIED) { 689 __kmp_push_task_stack(gtid, thread, taskdata); 690 } 691 #endif /* BUILD_TIED_TASK_STACK */ 692 693 // mark starting task as executing and as current task 694 thread->th.th_current_task = taskdata; 695 696 KMP_DEBUG_ASSERT(taskdata->td_flags.started == 0 || 697 taskdata->td_flags.tiedness == TASK_UNTIED); 698 KMP_DEBUG_ASSERT(taskdata->td_flags.executing == 0 || 699 taskdata->td_flags.tiedness == TASK_UNTIED); 700 taskdata->td_flags.started = 1; 701 taskdata->td_flags.executing = 1; 702 KMP_DEBUG_ASSERT(taskdata->td_flags.complete == 0); 703 KMP_DEBUG_ASSERT(taskdata->td_flags.freed == 0); 704 705 // GEH TODO: shouldn't we pass some sort of location identifier here? 706 // APT: yes, we will pass location here. 707 // need to store current thread state (in a thread or taskdata structure) 708 // before setting work_state, otherwise wrong state is set after end of task 709 710 KA_TRACE(10, ("__kmp_task_start(exit): T#%d task=%p\n", gtid, taskdata)); 711 712 return; 713 } 714 715 #if OMPT_SUPPORT 716 //------------------------------------------------------------------------------ 717 // __ompt_task_init: 718 // Initialize OMPT fields maintained by a task. This will only be called after 719 // ompt_start_tool, so we already know whether ompt is enabled or not. 720 721 static inline void __ompt_task_init(kmp_taskdata_t *task, int tid) { 722 // The calls to __ompt_task_init already have the ompt_enabled condition. 723 task->ompt_task_info.task_data.value = 0; 724 task->ompt_task_info.frame.exit_frame = ompt_data_none; 725 task->ompt_task_info.frame.enter_frame = ompt_data_none; 726 task->ompt_task_info.frame.exit_frame_flags = 727 ompt_frame_runtime | ompt_frame_framepointer; 728 task->ompt_task_info.frame.enter_frame_flags = 729 ompt_frame_runtime | ompt_frame_framepointer; 730 task->ompt_task_info.dispatch_chunk.start = 0; 731 task->ompt_task_info.dispatch_chunk.iterations = 0; 732 } 733 734 // __ompt_task_start: 735 // Build and trigger task-begin event 736 static inline void __ompt_task_start(kmp_task_t *task, 737 kmp_taskdata_t *current_task, 738 kmp_int32 gtid) { 739 kmp_taskdata_t *taskdata = KMP_TASK_TO_TASKDATA(task); 740 ompt_task_status_t status = ompt_task_switch; 741 if (__kmp_threads[gtid]->th.ompt_thread_info.ompt_task_yielded) { 742 status = ompt_task_yield; 743 __kmp_threads[gtid]->th.ompt_thread_info.ompt_task_yielded = 0; 744 } 745 /* let OMPT know that we're about to run this task */ 746 if (ompt_enabled.ompt_callback_task_schedule) { 747 ompt_callbacks.ompt_callback(ompt_callback_task_schedule)( 748 &(current_task->ompt_task_info.task_data), status, 749 &(taskdata->ompt_task_info.task_data)); 750 } 751 taskdata->ompt_task_info.scheduling_parent = current_task; 752 } 753 754 // __ompt_task_finish: 755 // Build and trigger final task-schedule event 756 static inline void __ompt_task_finish(kmp_task_t *task, 757 kmp_taskdata_t *resumed_task, 758 ompt_task_status_t status) { 759 if (ompt_enabled.ompt_callback_task_schedule) { 760 kmp_taskdata_t *taskdata = KMP_TASK_TO_TASKDATA(task); 761 if (__kmp_omp_cancellation && taskdata->td_taskgroup && 762 taskdata->td_taskgroup->cancel_request == cancel_taskgroup) { 763 status = ompt_task_cancel; 764 } 765 766 /* let OMPT know that we're returning to the callee task */ 767 ompt_callbacks.ompt_callback(ompt_callback_task_schedule)( 768 &(taskdata->ompt_task_info.task_data), status, 769 (resumed_task ? &(resumed_task->ompt_task_info.task_data) : NULL)); 770 } 771 } 772 #endif 773 774 template <bool ompt> 775 static void __kmpc_omp_task_begin_if0_template(ident_t *loc_ref, kmp_int32 gtid, 776 kmp_task_t *task, 777 void *frame_address, 778 void *return_address) { 779 kmp_taskdata_t *taskdata = KMP_TASK_TO_TASKDATA(task); 780 kmp_taskdata_t *current_task = __kmp_threads[gtid]->th.th_current_task; 781 782 KA_TRACE(10, ("__kmpc_omp_task_begin_if0(enter): T#%d loc=%p task=%p " 783 "current_task=%p\n", 784 gtid, loc_ref, taskdata, current_task)); 785 786 if (UNLIKELY(taskdata->td_flags.tiedness == TASK_UNTIED)) { 787 // untied task needs to increment counter so that the task structure is not 788 // freed prematurely 789 kmp_int32 counter = 1 + KMP_ATOMIC_INC(&taskdata->td_untied_count); 790 KMP_DEBUG_USE_VAR(counter); 791 KA_TRACE(20, ("__kmpc_omp_task_begin_if0: T#%d untied_count (%d) " 792 "incremented for task %p\n", 793 gtid, counter, taskdata)); 794 } 795 796 taskdata->td_flags.task_serial = 797 1; // Execute this task immediately, not deferred. 798 __kmp_task_start(gtid, task, current_task); 799 800 #if OMPT_SUPPORT 801 if (ompt) { 802 if (current_task->ompt_task_info.frame.enter_frame.ptr == NULL) { 803 current_task->ompt_task_info.frame.enter_frame.ptr = 804 taskdata->ompt_task_info.frame.exit_frame.ptr = frame_address; 805 current_task->ompt_task_info.frame.enter_frame_flags = 806 taskdata->ompt_task_info.frame.exit_frame_flags = 807 ompt_frame_application | ompt_frame_framepointer; 808 } 809 if (ompt_enabled.ompt_callback_task_create) { 810 ompt_task_info_t *parent_info = &(current_task->ompt_task_info); 811 ompt_callbacks.ompt_callback(ompt_callback_task_create)( 812 &(parent_info->task_data), &(parent_info->frame), 813 &(taskdata->ompt_task_info.task_data), 814 TASK_TYPE_DETAILS_FORMAT(taskdata), 0, return_address); 815 } 816 __ompt_task_start(task, current_task, gtid); 817 } 818 #endif // OMPT_SUPPORT 819 820 KA_TRACE(10, ("__kmpc_omp_task_begin_if0(exit): T#%d loc=%p task=%p,\n", gtid, 821 loc_ref, taskdata)); 822 } 823 824 #if OMPT_SUPPORT 825 OMPT_NOINLINE 826 static void __kmpc_omp_task_begin_if0_ompt(ident_t *loc_ref, kmp_int32 gtid, 827 kmp_task_t *task, 828 void *frame_address, 829 void *return_address) { 830 __kmpc_omp_task_begin_if0_template<true>(loc_ref, gtid, task, frame_address, 831 return_address); 832 } 833 #endif // OMPT_SUPPORT 834 835 // __kmpc_omp_task_begin_if0: report that a given serialized task has started 836 // execution 837 // 838 // loc_ref: source location information; points to beginning of task block. 839 // gtid: global thread number. 840 // task: task thunk for the started task. 841 #ifdef __s390x__ 842 // This is required for OMPT_GET_FRAME_ADDRESS(1) to compile on s390x. 843 // In order for it to work correctly, the caller also needs to be compiled with 844 // backchain. If a caller is compiled without backchain, 845 // OMPT_GET_FRAME_ADDRESS(1) will produce an incorrect value, but will not 846 // crash. 847 __attribute__((target("backchain"))) 848 #endif 849 void __kmpc_omp_task_begin_if0(ident_t *loc_ref, kmp_int32 gtid, 850 kmp_task_t *task) { 851 #if OMPT_SUPPORT 852 if (UNLIKELY(ompt_enabled.enabled)) { 853 OMPT_STORE_RETURN_ADDRESS(gtid); 854 __kmpc_omp_task_begin_if0_ompt(loc_ref, gtid, task, 855 OMPT_GET_FRAME_ADDRESS(1), 856 OMPT_LOAD_RETURN_ADDRESS(gtid)); 857 return; 858 } 859 #endif 860 __kmpc_omp_task_begin_if0_template<false>(loc_ref, gtid, task, NULL, NULL); 861 } 862 863 #ifdef TASK_UNUSED 864 // __kmpc_omp_task_begin: report that a given task has started execution 865 // NEVER GENERATED BY COMPILER, DEPRECATED!!! 866 void __kmpc_omp_task_begin(ident_t *loc_ref, kmp_int32 gtid, kmp_task_t *task) { 867 kmp_taskdata_t *current_task = __kmp_threads[gtid]->th.th_current_task; 868 869 KA_TRACE( 870 10, 871 ("__kmpc_omp_task_begin(enter): T#%d loc=%p task=%p current_task=%p\n", 872 gtid, loc_ref, KMP_TASK_TO_TASKDATA(task), current_task)); 873 874 __kmp_task_start(gtid, task, current_task); 875 876 KA_TRACE(10, ("__kmpc_omp_task_begin(exit): T#%d loc=%p task=%p,\n", gtid, 877 loc_ref, KMP_TASK_TO_TASKDATA(task))); 878 return; 879 } 880 #endif // TASK_UNUSED 881 882 // __kmp_free_task: free the current task space and the space for shareds 883 // 884 // gtid: Global thread ID of calling thread 885 // taskdata: task to free 886 // thread: thread data structure of caller 887 static void __kmp_free_task(kmp_int32 gtid, kmp_taskdata_t *taskdata, 888 kmp_info_t *thread) { 889 KA_TRACE(30, ("__kmp_free_task: T#%d freeing data from task %p\n", gtid, 890 taskdata)); 891 892 // Check to make sure all flags and counters have the correct values 893 KMP_DEBUG_ASSERT(taskdata->td_flags.tasktype == TASK_EXPLICIT); 894 KMP_DEBUG_ASSERT(taskdata->td_flags.executing == 0); 895 KMP_DEBUG_ASSERT(taskdata->td_flags.complete == 1); 896 KMP_DEBUG_ASSERT(taskdata->td_flags.freed == 0); 897 KMP_DEBUG_ASSERT(taskdata->td_allocated_child_tasks == 0 || 898 taskdata->td_flags.task_serial == 1); 899 KMP_DEBUG_ASSERT(taskdata->td_incomplete_child_tasks == 0); 900 kmp_task_t *task = KMP_TASKDATA_TO_TASK(taskdata); 901 // Clear data to not be re-used later by mistake. 902 task->data1.destructors = NULL; 903 task->data2.priority = 0; 904 905 taskdata->td_flags.freed = 1; 906 #if OMPX_TASKGRAPH 907 // do not free tasks in taskgraph 908 if (!taskdata->is_taskgraph) { 909 #endif 910 // deallocate the taskdata and shared variable blocks associated with this task 911 #if USE_FAST_MEMORY 912 __kmp_fast_free(thread, taskdata); 913 #else /* ! USE_FAST_MEMORY */ 914 __kmp_thread_free(thread, taskdata); 915 #endif 916 #if OMPX_TASKGRAPH 917 } else { 918 taskdata->td_flags.complete = 0; 919 taskdata->td_flags.started = 0; 920 taskdata->td_flags.freed = 0; 921 taskdata->td_flags.executing = 0; 922 taskdata->td_flags.task_serial = 923 (taskdata->td_parent->td_flags.final || 924 taskdata->td_flags.team_serial || taskdata->td_flags.tasking_ser); 925 926 // taskdata->td_allow_completion_event.pending_events_count = 1; 927 KMP_ATOMIC_ST_RLX(&taskdata->td_untied_count, 0); 928 KMP_ATOMIC_ST_RLX(&taskdata->td_incomplete_child_tasks, 0); 929 // start at one because counts current task and children 930 KMP_ATOMIC_ST_RLX(&taskdata->td_allocated_child_tasks, 1); 931 } 932 #endif 933 934 KA_TRACE(20, ("__kmp_free_task: T#%d freed task %p\n", gtid, taskdata)); 935 } 936 937 // __kmp_free_task_and_ancestors: free the current task and ancestors without 938 // children 939 // 940 // gtid: Global thread ID of calling thread 941 // taskdata: task to free 942 // thread: thread data structure of caller 943 static void __kmp_free_task_and_ancestors(kmp_int32 gtid, 944 kmp_taskdata_t *taskdata, 945 kmp_info_t *thread) { 946 // Proxy tasks must always be allowed to free their parents 947 // because they can be run in background even in serial mode. 948 kmp_int32 team_serial = 949 (taskdata->td_flags.team_serial || taskdata->td_flags.tasking_ser) && 950 !taskdata->td_flags.proxy; 951 KMP_DEBUG_ASSERT(taskdata->td_flags.tasktype == TASK_EXPLICIT); 952 953 kmp_int32 children = KMP_ATOMIC_DEC(&taskdata->td_allocated_child_tasks) - 1; 954 KMP_DEBUG_ASSERT(children >= 0); 955 956 // Now, go up the ancestor tree to see if any ancestors can now be freed. 957 while (children == 0) { 958 kmp_taskdata_t *parent_taskdata = taskdata->td_parent; 959 960 KA_TRACE(20, ("__kmp_free_task_and_ancestors(enter): T#%d task %p complete " 961 "and freeing itself\n", 962 gtid, taskdata)); 963 964 // --- Deallocate my ancestor task --- 965 __kmp_free_task(gtid, taskdata, thread); 966 967 taskdata = parent_taskdata; 968 969 if (team_serial) 970 return; 971 // Stop checking ancestors at implicit task instead of walking up ancestor 972 // tree to avoid premature deallocation of ancestors. 973 if (taskdata->td_flags.tasktype == TASK_IMPLICIT) { 974 if (taskdata->td_dephash) { // do we need to cleanup dephash? 975 int children = KMP_ATOMIC_LD_ACQ(&taskdata->td_incomplete_child_tasks); 976 kmp_tasking_flags_t flags_old = taskdata->td_flags; 977 if (children == 0 && flags_old.complete == 1) { 978 kmp_tasking_flags_t flags_new = flags_old; 979 flags_new.complete = 0; 980 if (KMP_COMPARE_AND_STORE_ACQ32( 981 RCAST(kmp_int32 *, &taskdata->td_flags), 982 *RCAST(kmp_int32 *, &flags_old), 983 *RCAST(kmp_int32 *, &flags_new))) { 984 KA_TRACE(100, ("__kmp_free_task_and_ancestors: T#%d cleans " 985 "dephash of implicit task %p\n", 986 gtid, taskdata)); 987 // cleanup dephash of finished implicit task 988 __kmp_dephash_free_entries(thread, taskdata->td_dephash); 989 } 990 } 991 } 992 return; 993 } 994 // Predecrement simulated by "- 1" calculation 995 children = KMP_ATOMIC_DEC(&taskdata->td_allocated_child_tasks) - 1; 996 KMP_DEBUG_ASSERT(children >= 0); 997 } 998 999 KA_TRACE( 1000 20, ("__kmp_free_task_and_ancestors(exit): T#%d task %p has %d children; " 1001 "not freeing it yet\n", 1002 gtid, taskdata, children)); 1003 } 1004 1005 // Only need to keep track of child task counts if any of the following: 1006 // 1. team parallel and tasking not serialized; 1007 // 2. it is a proxy or detachable or hidden helper task 1008 // 3. the children counter of its parent task is greater than 0. 1009 // The reason for the 3rd one is for serialized team that found detached task, 1010 // hidden helper task, T. In this case, the execution of T is still deferred, 1011 // and it is also possible that a regular task depends on T. In this case, if we 1012 // don't track the children, task synchronization will be broken. 1013 static bool __kmp_track_children_task(kmp_taskdata_t *taskdata) { 1014 kmp_tasking_flags_t flags = taskdata->td_flags; 1015 bool ret = !(flags.team_serial || flags.tasking_ser); 1016 ret = ret || flags.proxy == TASK_PROXY || 1017 flags.detachable == TASK_DETACHABLE || flags.hidden_helper; 1018 ret = ret || 1019 KMP_ATOMIC_LD_ACQ(&taskdata->td_parent->td_incomplete_child_tasks) > 0; 1020 #if OMPX_TASKGRAPH 1021 if (taskdata->td_taskgroup && taskdata->is_taskgraph) 1022 ret = ret || KMP_ATOMIC_LD_ACQ(&taskdata->td_taskgroup->count) > 0; 1023 #endif 1024 return ret; 1025 } 1026 1027 // __kmp_task_finish: bookkeeping to do when a task finishes execution 1028 // 1029 // gtid: global thread ID for calling thread 1030 // task: task to be finished 1031 // resumed_task: task to be resumed. (may be NULL if task is serialized) 1032 // 1033 // template<ompt>: effectively ompt_enabled.enabled!=0 1034 // the version with ompt=false is inlined, allowing to optimize away all ompt 1035 // code in this case 1036 template <bool ompt> 1037 static void __kmp_task_finish(kmp_int32 gtid, kmp_task_t *task, 1038 kmp_taskdata_t *resumed_task) { 1039 kmp_taskdata_t *taskdata = KMP_TASK_TO_TASKDATA(task); 1040 kmp_info_t *thread = __kmp_threads[gtid]; 1041 kmp_task_team_t *task_team = 1042 thread->th.th_task_team; // might be NULL for serial teams... 1043 #if OMPX_TASKGRAPH 1044 // to avoid seg fault when we need to access taskdata->td_flags after free when using vanilla taskloop 1045 bool is_taskgraph; 1046 #endif 1047 #if KMP_DEBUG 1048 kmp_int32 children = 0; 1049 #endif 1050 KA_TRACE(10, ("__kmp_task_finish(enter): T#%d finishing task %p and resuming " 1051 "task %p\n", 1052 gtid, taskdata, resumed_task)); 1053 1054 KMP_DEBUG_ASSERT(taskdata->td_flags.tasktype == TASK_EXPLICIT); 1055 1056 #if OMPX_TASKGRAPH 1057 is_taskgraph = taskdata->is_taskgraph; 1058 #endif 1059 1060 // Pop task from stack if tied 1061 #ifdef BUILD_TIED_TASK_STACK 1062 if (taskdata->td_flags.tiedness == TASK_TIED) { 1063 __kmp_pop_task_stack(gtid, thread, taskdata); 1064 } 1065 #endif /* BUILD_TIED_TASK_STACK */ 1066 1067 if (UNLIKELY(taskdata->td_flags.tiedness == TASK_UNTIED)) { 1068 // untied task needs to check the counter so that the task structure is not 1069 // freed prematurely 1070 kmp_int32 counter = KMP_ATOMIC_DEC(&taskdata->td_untied_count) - 1; 1071 KA_TRACE( 1072 20, 1073 ("__kmp_task_finish: T#%d untied_count (%d) decremented for task %p\n", 1074 gtid, counter, taskdata)); 1075 if (counter > 0) { 1076 // untied task is not done, to be continued possibly by other thread, do 1077 // not free it now 1078 if (resumed_task == NULL) { 1079 KMP_DEBUG_ASSERT(taskdata->td_flags.task_serial); 1080 resumed_task = taskdata->td_parent; // In a serialized task, the resumed 1081 // task is the parent 1082 } 1083 thread->th.th_current_task = resumed_task; // restore current_task 1084 resumed_task->td_flags.executing = 1; // resume previous task 1085 KA_TRACE(10, ("__kmp_task_finish(exit): T#%d partially done task %p, " 1086 "resuming task %p\n", 1087 gtid, taskdata, resumed_task)); 1088 return; 1089 } 1090 } 1091 1092 // bookkeeping for resuming task: 1093 // GEH - note tasking_ser => task_serial 1094 KMP_DEBUG_ASSERT( 1095 (taskdata->td_flags.tasking_ser || taskdata->td_flags.task_serial) == 1096 taskdata->td_flags.task_serial); 1097 if (taskdata->td_flags.task_serial) { 1098 if (resumed_task == NULL) { 1099 resumed_task = taskdata->td_parent; // In a serialized task, the resumed 1100 // task is the parent 1101 } 1102 } else { 1103 KMP_DEBUG_ASSERT(resumed_task != 1104 NULL); // verify that resumed task is passed as argument 1105 } 1106 1107 /* If the tasks' destructor thunk flag has been set, we need to invoke the 1108 destructor thunk that has been generated by the compiler. The code is 1109 placed here, since at this point other tasks might have been released 1110 hence overlapping the destructor invocations with some other work in the 1111 released tasks. The OpenMP spec is not specific on when the destructors 1112 are invoked, so we should be free to choose. */ 1113 if (UNLIKELY(taskdata->td_flags.destructors_thunk)) { 1114 kmp_routine_entry_t destr_thunk = task->data1.destructors; 1115 KMP_ASSERT(destr_thunk); 1116 destr_thunk(gtid, task); 1117 } 1118 1119 KMP_DEBUG_ASSERT(taskdata->td_flags.complete == 0); 1120 KMP_DEBUG_ASSERT(taskdata->td_flags.started == 1); 1121 KMP_DEBUG_ASSERT(taskdata->td_flags.freed == 0); 1122 1123 bool completed = true; 1124 if (UNLIKELY(taskdata->td_flags.detachable == TASK_DETACHABLE)) { 1125 if (taskdata->td_allow_completion_event.type == 1126 KMP_EVENT_ALLOW_COMPLETION) { 1127 // event hasn't been fulfilled yet. Try to detach task. 1128 __kmp_acquire_tas_lock(&taskdata->td_allow_completion_event.lock, gtid); 1129 if (taskdata->td_allow_completion_event.type == 1130 KMP_EVENT_ALLOW_COMPLETION) { 1131 // task finished execution 1132 KMP_DEBUG_ASSERT(taskdata->td_flags.executing == 1); 1133 taskdata->td_flags.executing = 0; // suspend the finishing task 1134 1135 #if OMPT_SUPPORT 1136 // For a detached task, which is not completed, we switch back 1137 // the omp_fulfill_event signals completion 1138 // locking is necessary to avoid a race with ompt_task_late_fulfill 1139 if (ompt) 1140 __ompt_task_finish(task, resumed_task, ompt_task_detach); 1141 #endif 1142 1143 // no access to taskdata after this point! 1144 // __kmp_fulfill_event might free taskdata at any time from now 1145 1146 taskdata->td_flags.proxy = TASK_PROXY; // proxify! 1147 completed = false; 1148 } 1149 __kmp_release_tas_lock(&taskdata->td_allow_completion_event.lock, gtid); 1150 } 1151 } 1152 1153 // Tasks with valid target async handles must be re-enqueued. 1154 if (taskdata->td_target_data.async_handle != NULL) { 1155 // Note: no need to translate gtid to its shadow. If the current thread is a 1156 // hidden helper one, then the gtid is already correct. Otherwise, hidden 1157 // helper threads are disabled, and gtid refers to a OpenMP thread. 1158 #if OMPT_SUPPORT 1159 if (ompt) { 1160 __ompt_task_finish(task, resumed_task, ompt_task_switch); 1161 } 1162 #endif 1163 __kmpc_give_task(task, __kmp_tid_from_gtid(gtid)); 1164 if (KMP_HIDDEN_HELPER_THREAD(gtid)) 1165 __kmp_hidden_helper_worker_thread_signal(); 1166 completed = false; 1167 } 1168 1169 if (completed) { 1170 taskdata->td_flags.complete = 1; // mark the task as completed 1171 #if OMPX_TASKGRAPH 1172 taskdata->td_flags.onced = 1; // mark the task as ran once already 1173 #endif 1174 1175 #if OMPT_SUPPORT 1176 // This is not a detached task, we are done here 1177 if (ompt) 1178 __ompt_task_finish(task, resumed_task, ompt_task_complete); 1179 #endif 1180 // TODO: What would be the balance between the conditions in the function 1181 // and an atomic operation? 1182 if (__kmp_track_children_task(taskdata)) { 1183 __kmp_release_deps(gtid, taskdata); 1184 // Predecrement simulated by "- 1" calculation 1185 #if KMP_DEBUG 1186 children = -1 + 1187 #endif 1188 KMP_ATOMIC_DEC(&taskdata->td_parent->td_incomplete_child_tasks); 1189 KMP_DEBUG_ASSERT(children >= 0); 1190 #if OMPX_TASKGRAPH 1191 if (taskdata->td_taskgroup && !taskdata->is_taskgraph) 1192 #else 1193 if (taskdata->td_taskgroup) 1194 #endif 1195 KMP_ATOMIC_DEC(&taskdata->td_taskgroup->count); 1196 } else if (task_team && (task_team->tt.tt_found_proxy_tasks || 1197 task_team->tt.tt_hidden_helper_task_encountered)) { 1198 // if we found proxy or hidden helper tasks there could exist a dependency 1199 // chain with the proxy task as origin 1200 __kmp_release_deps(gtid, taskdata); 1201 } 1202 // td_flags.executing must be marked as 0 after __kmp_release_deps has been 1203 // called. Othertwise, if a task is executed immediately from the 1204 // release_deps code, the flag will be reset to 1 again by this same 1205 // function 1206 KMP_DEBUG_ASSERT(taskdata->td_flags.executing == 1); 1207 taskdata->td_flags.executing = 0; // suspend the finishing task 1208 1209 // Decrement the counter of hidden helper tasks to be executed. 1210 if (taskdata->td_flags.hidden_helper) { 1211 // Hidden helper tasks can only be executed by hidden helper threads. 1212 KMP_ASSERT(KMP_HIDDEN_HELPER_THREAD(gtid)); 1213 KMP_ATOMIC_DEC(&__kmp_unexecuted_hidden_helper_tasks); 1214 } 1215 } 1216 1217 KA_TRACE( 1218 20, ("__kmp_task_finish: T#%d finished task %p, %d incomplete children\n", 1219 gtid, taskdata, children)); 1220 1221 // Free this task and then ancestor tasks if they have no children. 1222 // Restore th_current_task first as suggested by John: 1223 // johnmc: if an asynchronous inquiry peers into the runtime system 1224 // it doesn't see the freed task as the current task. 1225 thread->th.th_current_task = resumed_task; 1226 if (completed) 1227 __kmp_free_task_and_ancestors(gtid, taskdata, thread); 1228 1229 // TODO: GEH - make sure root team implicit task is initialized properly. 1230 // KMP_DEBUG_ASSERT( resumed_task->td_flags.executing == 0 ); 1231 resumed_task->td_flags.executing = 1; // resume previous task 1232 1233 #if OMPX_TASKGRAPH 1234 if (is_taskgraph && __kmp_track_children_task(taskdata) && 1235 taskdata->td_taskgroup) { 1236 // TDG: we only release taskgroup barrier here because 1237 // free_task_and_ancestors will call 1238 // __kmp_free_task, which resets all task parameters such as 1239 // taskdata->started, etc. If we release the barrier earlier, these 1240 // parameters could be read before being reset. This is not an issue for 1241 // non-TDG implementation because we never reuse a task(data) structure 1242 KMP_ATOMIC_DEC(&taskdata->td_taskgroup->count); 1243 } 1244 #endif 1245 1246 KA_TRACE( 1247 10, ("__kmp_task_finish(exit): T#%d finished task %p, resuming task %p\n", 1248 gtid, taskdata, resumed_task)); 1249 1250 return; 1251 } 1252 1253 template <bool ompt> 1254 static void __kmpc_omp_task_complete_if0_template(ident_t *loc_ref, 1255 kmp_int32 gtid, 1256 kmp_task_t *task) { 1257 KA_TRACE(10, ("__kmpc_omp_task_complete_if0(enter): T#%d loc=%p task=%p\n", 1258 gtid, loc_ref, KMP_TASK_TO_TASKDATA(task))); 1259 KMP_DEBUG_ASSERT(gtid >= 0); 1260 // this routine will provide task to resume 1261 __kmp_task_finish<ompt>(gtid, task, NULL); 1262 1263 KA_TRACE(10, ("__kmpc_omp_task_complete_if0(exit): T#%d loc=%p task=%p\n", 1264 gtid, loc_ref, KMP_TASK_TO_TASKDATA(task))); 1265 1266 #if OMPT_SUPPORT 1267 if (ompt) { 1268 ompt_frame_t *ompt_frame; 1269 __ompt_get_task_info_internal(0, NULL, NULL, &ompt_frame, NULL, NULL); 1270 ompt_frame->enter_frame = ompt_data_none; 1271 ompt_frame->enter_frame_flags = 1272 ompt_frame_runtime | ompt_frame_framepointer; 1273 } 1274 #endif 1275 1276 return; 1277 } 1278 1279 #if OMPT_SUPPORT 1280 OMPT_NOINLINE 1281 void __kmpc_omp_task_complete_if0_ompt(ident_t *loc_ref, kmp_int32 gtid, 1282 kmp_task_t *task) { 1283 __kmpc_omp_task_complete_if0_template<true>(loc_ref, gtid, task); 1284 } 1285 #endif // OMPT_SUPPORT 1286 1287 // __kmpc_omp_task_complete_if0: report that a task has completed execution 1288 // 1289 // loc_ref: source location information; points to end of task block. 1290 // gtid: global thread number. 1291 // task: task thunk for the completed task. 1292 void __kmpc_omp_task_complete_if0(ident_t *loc_ref, kmp_int32 gtid, 1293 kmp_task_t *task) { 1294 #if OMPT_SUPPORT 1295 if (UNLIKELY(ompt_enabled.enabled)) { 1296 __kmpc_omp_task_complete_if0_ompt(loc_ref, gtid, task); 1297 return; 1298 } 1299 #endif 1300 __kmpc_omp_task_complete_if0_template<false>(loc_ref, gtid, task); 1301 } 1302 1303 #ifdef TASK_UNUSED 1304 // __kmpc_omp_task_complete: report that a task has completed execution 1305 // NEVER GENERATED BY COMPILER, DEPRECATED!!! 1306 void __kmpc_omp_task_complete(ident_t *loc_ref, kmp_int32 gtid, 1307 kmp_task_t *task) { 1308 KA_TRACE(10, ("__kmpc_omp_task_complete(enter): T#%d loc=%p task=%p\n", gtid, 1309 loc_ref, KMP_TASK_TO_TASKDATA(task))); 1310 1311 __kmp_task_finish<false>(gtid, task, 1312 NULL); // Not sure how to find task to resume 1313 1314 KA_TRACE(10, ("__kmpc_omp_task_complete(exit): T#%d loc=%p task=%p\n", gtid, 1315 loc_ref, KMP_TASK_TO_TASKDATA(task))); 1316 return; 1317 } 1318 #endif // TASK_UNUSED 1319 1320 // __kmp_init_implicit_task: Initialize the appropriate fields in the implicit 1321 // task for a given thread 1322 // 1323 // loc_ref: reference to source location of parallel region 1324 // this_thr: thread data structure corresponding to implicit task 1325 // team: team for this_thr 1326 // tid: thread id of given thread within team 1327 // set_curr_task: TRUE if need to push current task to thread 1328 // NOTE: Routine does not set up the implicit task ICVS. This is assumed to 1329 // have already been done elsewhere. 1330 // TODO: Get better loc_ref. Value passed in may be NULL 1331 void __kmp_init_implicit_task(ident_t *loc_ref, kmp_info_t *this_thr, 1332 kmp_team_t *team, int tid, int set_curr_task) { 1333 kmp_taskdata_t *task = &team->t.t_implicit_task_taskdata[tid]; 1334 1335 KF_TRACE( 1336 10, 1337 ("__kmp_init_implicit_task(enter): T#:%d team=%p task=%p, reinit=%s\n", 1338 tid, team, task, set_curr_task ? "TRUE" : "FALSE")); 1339 1340 task->td_task_id = KMP_GEN_TASK_ID(); 1341 task->td_team = team; 1342 // task->td_parent = NULL; // fix for CQ230101 (broken parent task info 1343 // in debugger) 1344 task->td_ident = loc_ref; 1345 task->td_taskwait_ident = NULL; 1346 task->td_taskwait_counter = 0; 1347 task->td_taskwait_thread = 0; 1348 1349 task->td_flags.tiedness = TASK_TIED; 1350 task->td_flags.tasktype = TASK_IMPLICIT; 1351 task->td_flags.proxy = TASK_FULL; 1352 1353 // All implicit tasks are executed immediately, not deferred 1354 task->td_flags.task_serial = 1; 1355 task->td_flags.tasking_ser = (__kmp_tasking_mode == tskm_immediate_exec); 1356 task->td_flags.team_serial = (team->t.t_serialized) ? 1 : 0; 1357 1358 task->td_flags.started = 1; 1359 task->td_flags.executing = 1; 1360 task->td_flags.complete = 0; 1361 task->td_flags.freed = 0; 1362 #if OMPX_TASKGRAPH 1363 task->td_flags.onced = 0; 1364 #endif 1365 1366 task->td_depnode = NULL; 1367 task->td_last_tied = task; 1368 task->td_allow_completion_event.type = KMP_EVENT_UNINITIALIZED; 1369 1370 if (set_curr_task) { // only do this init first time thread is created 1371 KMP_ATOMIC_ST_REL(&task->td_incomplete_child_tasks, 0); 1372 // Not used: don't need to deallocate implicit task 1373 KMP_ATOMIC_ST_REL(&task->td_allocated_child_tasks, 0); 1374 task->td_taskgroup = NULL; // An implicit task does not have taskgroup 1375 task->td_dephash = NULL; 1376 __kmp_push_current_task_to_thread(this_thr, team, tid); 1377 } else { 1378 KMP_DEBUG_ASSERT(task->td_incomplete_child_tasks == 0); 1379 KMP_DEBUG_ASSERT(task->td_allocated_child_tasks == 0); 1380 } 1381 1382 #if OMPT_SUPPORT 1383 if (UNLIKELY(ompt_enabled.enabled)) 1384 __ompt_task_init(task, tid); 1385 #endif 1386 1387 KF_TRACE(10, ("__kmp_init_implicit_task(exit): T#:%d team=%p task=%p\n", tid, 1388 team, task)); 1389 } 1390 1391 // __kmp_finish_implicit_task: Release resources associated to implicit tasks 1392 // at the end of parallel regions. Some resources are kept for reuse in the next 1393 // parallel region. 1394 // 1395 // thread: thread data structure corresponding to implicit task 1396 void __kmp_finish_implicit_task(kmp_info_t *thread) { 1397 kmp_taskdata_t *task = thread->th.th_current_task; 1398 if (task->td_dephash) { 1399 int children; 1400 task->td_flags.complete = 1; 1401 #if OMPX_TASKGRAPH 1402 task->td_flags.onced = 1; 1403 #endif 1404 children = KMP_ATOMIC_LD_ACQ(&task->td_incomplete_child_tasks); 1405 kmp_tasking_flags_t flags_old = task->td_flags; 1406 if (children == 0 && flags_old.complete == 1) { 1407 kmp_tasking_flags_t flags_new = flags_old; 1408 flags_new.complete = 0; 1409 if (KMP_COMPARE_AND_STORE_ACQ32(RCAST(kmp_int32 *, &task->td_flags), 1410 *RCAST(kmp_int32 *, &flags_old), 1411 *RCAST(kmp_int32 *, &flags_new))) { 1412 KA_TRACE(100, ("__kmp_finish_implicit_task: T#%d cleans " 1413 "dephash of implicit task %p\n", 1414 thread->th.th_info.ds.ds_gtid, task)); 1415 __kmp_dephash_free_entries(thread, task->td_dephash); 1416 } 1417 } 1418 } 1419 } 1420 1421 // __kmp_free_implicit_task: Release resources associated to implicit tasks 1422 // when these are destroyed regions 1423 // 1424 // thread: thread data structure corresponding to implicit task 1425 void __kmp_free_implicit_task(kmp_info_t *thread) { 1426 kmp_taskdata_t *task = thread->th.th_current_task; 1427 if (task && task->td_dephash) { 1428 __kmp_dephash_free(thread, task->td_dephash); 1429 task->td_dephash = NULL; 1430 } 1431 } 1432 1433 // Round up a size to a power of two specified by val: Used to insert padding 1434 // between structures co-allocated using a single malloc() call 1435 static size_t __kmp_round_up_to_val(size_t size, size_t val) { 1436 if (size & (val - 1)) { 1437 size &= ~(val - 1); 1438 if (size <= KMP_SIZE_T_MAX - val) { 1439 size += val; // Round up if there is no overflow. 1440 } 1441 } 1442 return size; 1443 } // __kmp_round_up_to_va 1444 1445 // __kmp_task_alloc: Allocate the taskdata and task data structures for a task 1446 // 1447 // loc_ref: source location information 1448 // gtid: global thread number. 1449 // flags: include tiedness & task type (explicit vs. implicit) of the ''new'' 1450 // task encountered. Converted from kmp_int32 to kmp_tasking_flags_t in routine. 1451 // sizeof_kmp_task_t: Size in bytes of kmp_task_t data structure including 1452 // private vars accessed in task. 1453 // sizeof_shareds: Size in bytes of array of pointers to shared vars accessed 1454 // in task. 1455 // task_entry: Pointer to task code entry point generated by compiler. 1456 // returns: a pointer to the allocated kmp_task_t structure (task). 1457 kmp_task_t *__kmp_task_alloc(ident_t *loc_ref, kmp_int32 gtid, 1458 kmp_tasking_flags_t *flags, 1459 size_t sizeof_kmp_task_t, size_t sizeof_shareds, 1460 kmp_routine_entry_t task_entry) { 1461 kmp_task_t *task; 1462 kmp_taskdata_t *taskdata; 1463 kmp_info_t *thread = __kmp_threads[gtid]; 1464 kmp_team_t *team = thread->th.th_team; 1465 kmp_taskdata_t *parent_task = thread->th.th_current_task; 1466 size_t shareds_offset; 1467 1468 if (UNLIKELY(!TCR_4(__kmp_init_middle))) 1469 __kmp_middle_initialize(); 1470 1471 if (flags->hidden_helper) { 1472 if (__kmp_enable_hidden_helper) { 1473 if (!TCR_4(__kmp_init_hidden_helper)) 1474 __kmp_hidden_helper_initialize(); 1475 } else { 1476 // If the hidden helper task is not enabled, reset the flag to FALSE. 1477 flags->hidden_helper = FALSE; 1478 } 1479 } 1480 1481 KA_TRACE(10, ("__kmp_task_alloc(enter): T#%d loc=%p, flags=(0x%x) " 1482 "sizeof_task=%ld sizeof_shared=%ld entry=%p\n", 1483 gtid, loc_ref, *((kmp_int32 *)flags), sizeof_kmp_task_t, 1484 sizeof_shareds, task_entry)); 1485 1486 KMP_DEBUG_ASSERT(parent_task); 1487 if (parent_task->td_flags.final) { 1488 if (flags->merged_if0) { 1489 } 1490 flags->final = 1; 1491 } 1492 1493 if (flags->tiedness == TASK_UNTIED && !team->t.t_serialized) { 1494 // Untied task encountered causes the TSC algorithm to check entire deque of 1495 // the victim thread. If no untied task encountered, then checking the head 1496 // of the deque should be enough. 1497 KMP_CHECK_UPDATE(thread->th.th_task_team->tt.tt_untied_task_encountered, 1); 1498 } 1499 1500 // Detachable tasks are not proxy tasks yet but could be in the future. Doing 1501 // the tasking setup 1502 // when that happens is too late. 1503 if (UNLIKELY(flags->proxy == TASK_PROXY || 1504 flags->detachable == TASK_DETACHABLE || flags->hidden_helper)) { 1505 if (flags->proxy == TASK_PROXY) { 1506 flags->tiedness = TASK_UNTIED; 1507 flags->merged_if0 = 1; 1508 } 1509 /* are we running in a sequential parallel or tskm_immediate_exec... we need 1510 tasking support enabled */ 1511 if ((thread->th.th_task_team) == NULL) { 1512 /* This should only happen if the team is serialized 1513 setup a task team and propagate it to the thread */ 1514 KMP_DEBUG_ASSERT(team->t.t_serialized); 1515 KA_TRACE(30, 1516 ("T#%d creating task team in __kmp_task_alloc for proxy task\n", 1517 gtid)); 1518 __kmp_task_team_setup(thread, team); 1519 thread->th.th_task_team = team->t.t_task_team[thread->th.th_task_state]; 1520 } 1521 kmp_task_team_t *task_team = thread->th.th_task_team; 1522 1523 /* tasking must be enabled now as the task might not be pushed */ 1524 if (!KMP_TASKING_ENABLED(task_team)) { 1525 KA_TRACE( 1526 30, 1527 ("T#%d enabling tasking in __kmp_task_alloc for proxy task\n", gtid)); 1528 __kmp_enable_tasking(task_team, thread); 1529 kmp_int32 tid = thread->th.th_info.ds.ds_tid; 1530 kmp_thread_data_t *thread_data = &task_team->tt.tt_threads_data[tid]; 1531 // No lock needed since only owner can allocate 1532 if (thread_data->td.td_deque == NULL) { 1533 __kmp_alloc_task_deque(thread, thread_data); 1534 } 1535 } 1536 1537 if ((flags->proxy == TASK_PROXY || flags->detachable == TASK_DETACHABLE) && 1538 task_team->tt.tt_found_proxy_tasks == FALSE) 1539 TCW_4(task_team->tt.tt_found_proxy_tasks, TRUE); 1540 if (flags->hidden_helper && 1541 task_team->tt.tt_hidden_helper_task_encountered == FALSE) 1542 TCW_4(task_team->tt.tt_hidden_helper_task_encountered, TRUE); 1543 } 1544 1545 // Calculate shared structure offset including padding after kmp_task_t struct 1546 // to align pointers in shared struct 1547 shareds_offset = sizeof(kmp_taskdata_t) + sizeof_kmp_task_t; 1548 shareds_offset = __kmp_round_up_to_val(shareds_offset, sizeof(void *)); 1549 1550 // Allocate a kmp_taskdata_t block and a kmp_task_t block. 1551 KA_TRACE(30, ("__kmp_task_alloc: T#%d First malloc size: %ld\n", gtid, 1552 shareds_offset)); 1553 KA_TRACE(30, ("__kmp_task_alloc: T#%d Second malloc size: %ld\n", gtid, 1554 sizeof_shareds)); 1555 1556 // Avoid double allocation here by combining shareds with taskdata 1557 #if USE_FAST_MEMORY 1558 taskdata = (kmp_taskdata_t *)__kmp_fast_allocate(thread, shareds_offset + 1559 sizeof_shareds); 1560 #else /* ! USE_FAST_MEMORY */ 1561 taskdata = (kmp_taskdata_t *)__kmp_thread_malloc(thread, shareds_offset + 1562 sizeof_shareds); 1563 #endif /* USE_FAST_MEMORY */ 1564 1565 task = KMP_TASKDATA_TO_TASK(taskdata); 1566 1567 // Make sure task & taskdata are aligned appropriately 1568 #if KMP_ARCH_X86 || KMP_ARCH_PPC64 || KMP_ARCH_S390X || !KMP_HAVE_QUAD 1569 KMP_DEBUG_ASSERT((((kmp_uintptr_t)taskdata) & (sizeof(double) - 1)) == 0); 1570 KMP_DEBUG_ASSERT((((kmp_uintptr_t)task) & (sizeof(double) - 1)) == 0); 1571 #else 1572 KMP_DEBUG_ASSERT((((kmp_uintptr_t)taskdata) & (sizeof(_Quad) - 1)) == 0); 1573 KMP_DEBUG_ASSERT((((kmp_uintptr_t)task) & (sizeof(_Quad) - 1)) == 0); 1574 #endif 1575 if (sizeof_shareds > 0) { 1576 // Avoid double allocation here by combining shareds with taskdata 1577 task->shareds = &((char *)taskdata)[shareds_offset]; 1578 // Make sure shareds struct is aligned to pointer size 1579 KMP_DEBUG_ASSERT((((kmp_uintptr_t)task->shareds) & (sizeof(void *) - 1)) == 1580 0); 1581 } else { 1582 task->shareds = NULL; 1583 } 1584 task->routine = task_entry; 1585 task->part_id = 0; // AC: Always start with 0 part id 1586 1587 taskdata->td_task_id = KMP_GEN_TASK_ID(); 1588 taskdata->td_team = thread->th.th_team; 1589 taskdata->td_alloc_thread = thread; 1590 taskdata->td_parent = parent_task; 1591 taskdata->td_level = parent_task->td_level + 1; // increment nesting level 1592 KMP_ATOMIC_ST_RLX(&taskdata->td_untied_count, 0); 1593 taskdata->td_ident = loc_ref; 1594 taskdata->td_taskwait_ident = NULL; 1595 taskdata->td_taskwait_counter = 0; 1596 taskdata->td_taskwait_thread = 0; 1597 KMP_DEBUG_ASSERT(taskdata->td_parent != NULL); 1598 // avoid copying icvs for proxy tasks 1599 if (flags->proxy == TASK_FULL) 1600 copy_icvs(&taskdata->td_icvs, &taskdata->td_parent->td_icvs); 1601 1602 taskdata->td_flags = *flags; 1603 taskdata->td_task_team = thread->th.th_task_team; 1604 taskdata->td_size_alloc = shareds_offset + sizeof_shareds; 1605 taskdata->td_flags.tasktype = TASK_EXPLICIT; 1606 // If it is hidden helper task, we need to set the team and task team 1607 // correspondingly. 1608 if (flags->hidden_helper) { 1609 kmp_info_t *shadow_thread = __kmp_threads[KMP_GTID_TO_SHADOW_GTID(gtid)]; 1610 taskdata->td_team = shadow_thread->th.th_team; 1611 taskdata->td_task_team = shadow_thread->th.th_task_team; 1612 } 1613 1614 // GEH - TODO: fix this to copy parent task's value of tasking_ser flag 1615 taskdata->td_flags.tasking_ser = (__kmp_tasking_mode == tskm_immediate_exec); 1616 1617 // GEH - TODO: fix this to copy parent task's value of team_serial flag 1618 taskdata->td_flags.team_serial = (team->t.t_serialized) ? 1 : 0; 1619 1620 // GEH - Note we serialize the task if the team is serialized to make sure 1621 // implicit parallel region tasks are not left until program termination to 1622 // execute. Also, it helps locality to execute immediately. 1623 1624 taskdata->td_flags.task_serial = 1625 (parent_task->td_flags.final || taskdata->td_flags.team_serial || 1626 taskdata->td_flags.tasking_ser || flags->merged_if0); 1627 1628 taskdata->td_flags.started = 0; 1629 taskdata->td_flags.executing = 0; 1630 taskdata->td_flags.complete = 0; 1631 taskdata->td_flags.freed = 0; 1632 #if OMPX_TASKGRAPH 1633 taskdata->td_flags.onced = 0; 1634 #endif 1635 KMP_ATOMIC_ST_RLX(&taskdata->td_incomplete_child_tasks, 0); 1636 // start at one because counts current task and children 1637 KMP_ATOMIC_ST_RLX(&taskdata->td_allocated_child_tasks, 1); 1638 taskdata->td_taskgroup = 1639 parent_task->td_taskgroup; // task inherits taskgroup from the parent task 1640 taskdata->td_dephash = NULL; 1641 taskdata->td_depnode = NULL; 1642 taskdata->td_target_data.async_handle = NULL; 1643 if (flags->tiedness == TASK_UNTIED) 1644 taskdata->td_last_tied = NULL; // will be set when the task is scheduled 1645 else 1646 taskdata->td_last_tied = taskdata; 1647 taskdata->td_allow_completion_event.type = KMP_EVENT_UNINITIALIZED; 1648 #if OMPT_SUPPORT 1649 if (UNLIKELY(ompt_enabled.enabled)) 1650 __ompt_task_init(taskdata, gtid); 1651 #endif 1652 // TODO: What would be the balance between the conditions in the function and 1653 // an atomic operation? 1654 if (__kmp_track_children_task(taskdata)) { 1655 KMP_ATOMIC_INC(&parent_task->td_incomplete_child_tasks); 1656 if (parent_task->td_taskgroup) 1657 KMP_ATOMIC_INC(&parent_task->td_taskgroup->count); 1658 // Only need to keep track of allocated child tasks for explicit tasks since 1659 // implicit not deallocated 1660 if (taskdata->td_parent->td_flags.tasktype == TASK_EXPLICIT) { 1661 KMP_ATOMIC_INC(&taskdata->td_parent->td_allocated_child_tasks); 1662 } 1663 if (flags->hidden_helper) { 1664 taskdata->td_flags.task_serial = FALSE; 1665 // Increment the number of hidden helper tasks to be executed 1666 KMP_ATOMIC_INC(&__kmp_unexecuted_hidden_helper_tasks); 1667 } 1668 } 1669 1670 #if OMPX_TASKGRAPH 1671 kmp_tdg_info_t *tdg = __kmp_find_tdg(__kmp_curr_tdg_idx); 1672 if (tdg && __kmp_tdg_is_recording(tdg->tdg_status) && 1673 (task_entry != (kmp_routine_entry_t)__kmp_taskloop_task)) { 1674 taskdata->is_taskgraph = 1; 1675 taskdata->tdg = __kmp_global_tdgs[__kmp_curr_tdg_idx]; 1676 taskdata->td_task_id = KMP_ATOMIC_INC(&__kmp_tdg_task_id); 1677 } 1678 #endif 1679 KA_TRACE(20, ("__kmp_task_alloc(exit): T#%d created task %p parent=%p\n", 1680 gtid, taskdata, taskdata->td_parent)); 1681 1682 return task; 1683 } 1684 1685 kmp_task_t *__kmpc_omp_task_alloc(ident_t *loc_ref, kmp_int32 gtid, 1686 kmp_int32 flags, size_t sizeof_kmp_task_t, 1687 size_t sizeof_shareds, 1688 kmp_routine_entry_t task_entry) { 1689 kmp_task_t *retval; 1690 kmp_tasking_flags_t *input_flags = (kmp_tasking_flags_t *)&flags; 1691 __kmp_assert_valid_gtid(gtid); 1692 input_flags->native = FALSE; 1693 // __kmp_task_alloc() sets up all other runtime flags 1694 KA_TRACE(10, ("__kmpc_omp_task_alloc(enter): T#%d loc=%p, flags=(%s %s %s) " 1695 "sizeof_task=%ld sizeof_shared=%ld entry=%p\n", 1696 gtid, loc_ref, input_flags->tiedness ? "tied " : "untied", 1697 input_flags->proxy ? "proxy" : "", 1698 input_flags->detachable ? "detachable" : "", sizeof_kmp_task_t, 1699 sizeof_shareds, task_entry)); 1700 1701 retval = __kmp_task_alloc(loc_ref, gtid, input_flags, sizeof_kmp_task_t, 1702 sizeof_shareds, task_entry); 1703 1704 KA_TRACE(20, ("__kmpc_omp_task_alloc(exit): T#%d retval %p\n", gtid, retval)); 1705 1706 return retval; 1707 } 1708 1709 kmp_task_t *__kmpc_omp_target_task_alloc(ident_t *loc_ref, kmp_int32 gtid, 1710 kmp_int32 flags, 1711 size_t sizeof_kmp_task_t, 1712 size_t sizeof_shareds, 1713 kmp_routine_entry_t task_entry, 1714 kmp_int64 device_id) { 1715 auto &input_flags = reinterpret_cast<kmp_tasking_flags_t &>(flags); 1716 // target task is untied defined in the specification 1717 input_flags.tiedness = TASK_UNTIED; 1718 input_flags.target = 1; 1719 1720 if (__kmp_enable_hidden_helper) 1721 input_flags.hidden_helper = TRUE; 1722 1723 return __kmpc_omp_task_alloc(loc_ref, gtid, flags, sizeof_kmp_task_t, 1724 sizeof_shareds, task_entry); 1725 } 1726 1727 /*! 1728 @ingroup TASKING 1729 @param loc_ref location of the original task directive 1730 @param gtid Global Thread ID of encountering thread 1731 @param new_task task thunk allocated by __kmpc_omp_task_alloc() for the ''new 1732 task'' 1733 @param naffins Number of affinity items 1734 @param affin_list List of affinity items 1735 @return Returns non-zero if registering affinity information was not successful. 1736 Returns 0 if registration was successful 1737 This entry registers the affinity information attached to a task with the task 1738 thunk structure kmp_taskdata_t. 1739 */ 1740 kmp_int32 1741 __kmpc_omp_reg_task_with_affinity(ident_t *loc_ref, kmp_int32 gtid, 1742 kmp_task_t *new_task, kmp_int32 naffins, 1743 kmp_task_affinity_info_t *affin_list) { 1744 return 0; 1745 } 1746 1747 // __kmp_invoke_task: invoke the specified task 1748 // 1749 // gtid: global thread ID of caller 1750 // task: the task to invoke 1751 // current_task: the task to resume after task invocation 1752 #ifdef __s390x__ 1753 __attribute__((target("backchain"))) 1754 #endif 1755 static void 1756 __kmp_invoke_task(kmp_int32 gtid, kmp_task_t *task, 1757 kmp_taskdata_t *current_task) { 1758 kmp_taskdata_t *taskdata = KMP_TASK_TO_TASKDATA(task); 1759 kmp_info_t *thread; 1760 int discard = 0 /* false */; 1761 KA_TRACE( 1762 30, ("__kmp_invoke_task(enter): T#%d invoking task %p, current_task=%p\n", 1763 gtid, taskdata, current_task)); 1764 KMP_DEBUG_ASSERT(task); 1765 if (UNLIKELY(taskdata->td_flags.proxy == TASK_PROXY && 1766 taskdata->td_flags.complete == 1)) { 1767 // This is a proxy task that was already completed but it needs to run 1768 // its bottom-half finish 1769 KA_TRACE( 1770 30, 1771 ("__kmp_invoke_task: T#%d running bottom finish for proxy task %p\n", 1772 gtid, taskdata)); 1773 1774 __kmp_bottom_half_finish_proxy(gtid, task); 1775 1776 KA_TRACE(30, ("__kmp_invoke_task(exit): T#%d completed bottom finish for " 1777 "proxy task %p, resuming task %p\n", 1778 gtid, taskdata, current_task)); 1779 1780 return; 1781 } 1782 1783 #if OMPT_SUPPORT 1784 // For untied tasks, the first task executed only calls __kmpc_omp_task and 1785 // does not execute code. 1786 ompt_thread_info_t oldInfo; 1787 if (UNLIKELY(ompt_enabled.enabled)) { 1788 // Store the threads states and restore them after the task 1789 thread = __kmp_threads[gtid]; 1790 oldInfo = thread->th.ompt_thread_info; 1791 thread->th.ompt_thread_info.wait_id = 0; 1792 thread->th.ompt_thread_info.state = (thread->th.th_team_serialized) 1793 ? ompt_state_work_serial 1794 : ompt_state_work_parallel; 1795 taskdata->ompt_task_info.frame.exit_frame.ptr = OMPT_GET_FRAME_ADDRESS(0); 1796 } 1797 #endif 1798 1799 // Proxy tasks are not handled by the runtime 1800 if (taskdata->td_flags.proxy != TASK_PROXY) { 1801 __kmp_task_start(gtid, task, current_task); // OMPT only if not discarded 1802 } 1803 1804 // TODO: cancel tasks if the parallel region has also been cancelled 1805 // TODO: check if this sequence can be hoisted above __kmp_task_start 1806 // if cancellation has been enabled for this run ... 1807 if (UNLIKELY(__kmp_omp_cancellation)) { 1808 thread = __kmp_threads[gtid]; 1809 kmp_team_t *this_team = thread->th.th_team; 1810 kmp_taskgroup_t *taskgroup = taskdata->td_taskgroup; 1811 if ((taskgroup && taskgroup->cancel_request) || 1812 (this_team->t.t_cancel_request == cancel_parallel)) { 1813 #if OMPT_SUPPORT && OMPT_OPTIONAL 1814 ompt_data_t *task_data; 1815 if (UNLIKELY(ompt_enabled.ompt_callback_cancel)) { 1816 __ompt_get_task_info_internal(0, NULL, &task_data, NULL, NULL, NULL); 1817 ompt_callbacks.ompt_callback(ompt_callback_cancel)( 1818 task_data, 1819 ((taskgroup && taskgroup->cancel_request) ? ompt_cancel_taskgroup 1820 : ompt_cancel_parallel) | 1821 ompt_cancel_discarded_task, 1822 NULL); 1823 } 1824 #endif 1825 KMP_COUNT_BLOCK(TASK_cancelled); 1826 // this task belongs to a task group and we need to cancel it 1827 discard = 1 /* true */; 1828 } 1829 } 1830 1831 // Invoke the task routine and pass in relevant data. 1832 // Thunks generated by gcc take a different argument list. 1833 if (!discard) { 1834 if (taskdata->td_flags.tiedness == TASK_UNTIED) { 1835 taskdata->td_last_tied = current_task->td_last_tied; 1836 KMP_DEBUG_ASSERT(taskdata->td_last_tied); 1837 } 1838 #if KMP_STATS_ENABLED 1839 KMP_COUNT_BLOCK(TASK_executed); 1840 switch (KMP_GET_THREAD_STATE()) { 1841 case FORK_JOIN_BARRIER: 1842 KMP_PUSH_PARTITIONED_TIMER(OMP_task_join_bar); 1843 break; 1844 case PLAIN_BARRIER: 1845 KMP_PUSH_PARTITIONED_TIMER(OMP_task_plain_bar); 1846 break; 1847 case TASKYIELD: 1848 KMP_PUSH_PARTITIONED_TIMER(OMP_task_taskyield); 1849 break; 1850 case TASKWAIT: 1851 KMP_PUSH_PARTITIONED_TIMER(OMP_task_taskwait); 1852 break; 1853 case TASKGROUP: 1854 KMP_PUSH_PARTITIONED_TIMER(OMP_task_taskgroup); 1855 break; 1856 default: 1857 KMP_PUSH_PARTITIONED_TIMER(OMP_task_immediate); 1858 break; 1859 } 1860 #endif // KMP_STATS_ENABLED 1861 1862 // OMPT task begin 1863 #if OMPT_SUPPORT 1864 if (UNLIKELY(ompt_enabled.enabled)) 1865 __ompt_task_start(task, current_task, gtid); 1866 #endif 1867 #if OMPT_SUPPORT && OMPT_OPTIONAL 1868 if (UNLIKELY(ompt_enabled.ompt_callback_dispatch && 1869 taskdata->ompt_task_info.dispatch_chunk.iterations > 0)) { 1870 ompt_data_t instance = ompt_data_none; 1871 instance.ptr = &(taskdata->ompt_task_info.dispatch_chunk); 1872 ompt_team_info_t *team_info = __ompt_get_teaminfo(0, NULL); 1873 ompt_callbacks.ompt_callback(ompt_callback_dispatch)( 1874 &(team_info->parallel_data), &(taskdata->ompt_task_info.task_data), 1875 ompt_dispatch_taskloop_chunk, instance); 1876 taskdata->ompt_task_info.dispatch_chunk = {0, 0}; 1877 } 1878 #endif // OMPT_SUPPORT && OMPT_OPTIONAL 1879 1880 #if OMPD_SUPPORT 1881 if (ompd_state & OMPD_ENABLE_BP) 1882 ompd_bp_task_begin(); 1883 #endif 1884 1885 #if USE_ITT_BUILD && USE_ITT_NOTIFY 1886 kmp_uint64 cur_time; 1887 kmp_int32 kmp_itt_count_task = 1888 __kmp_forkjoin_frames_mode == 3 && !taskdata->td_flags.task_serial && 1889 current_task->td_flags.tasktype == TASK_IMPLICIT; 1890 if (kmp_itt_count_task) { 1891 thread = __kmp_threads[gtid]; 1892 // Time outer level explicit task on barrier for adjusting imbalance time 1893 if (thread->th.th_bar_arrive_time) 1894 cur_time = __itt_get_timestamp(); 1895 else 1896 kmp_itt_count_task = 0; // thread is not on a barrier - skip timing 1897 } 1898 KMP_FSYNC_ACQUIRED(taskdata); // acquired self (new task) 1899 #endif 1900 1901 #if ENABLE_LIBOMPTARGET 1902 if (taskdata->td_target_data.async_handle != NULL) { 1903 // If we have a valid target async handle, that means that we have already 1904 // executed the task routine once. We must query for the handle completion 1905 // instead of re-executing the routine. 1906 KMP_ASSERT(tgt_target_nowait_query); 1907 tgt_target_nowait_query(&taskdata->td_target_data.async_handle); 1908 } else 1909 #endif 1910 if (task->routine != NULL) { 1911 #ifdef KMP_GOMP_COMPAT 1912 if (taskdata->td_flags.native) { 1913 ((void (*)(void *))(*(task->routine)))(task->shareds); 1914 } else 1915 #endif /* KMP_GOMP_COMPAT */ 1916 { 1917 (*(task->routine))(gtid, task); 1918 } 1919 } 1920 KMP_POP_PARTITIONED_TIMER(); 1921 1922 #if USE_ITT_BUILD && USE_ITT_NOTIFY 1923 if (kmp_itt_count_task) { 1924 // Barrier imbalance - adjust arrive time with the task duration 1925 thread->th.th_bar_arrive_time += (__itt_get_timestamp() - cur_time); 1926 } 1927 KMP_FSYNC_CANCEL(taskdata); // destroy self (just executed) 1928 KMP_FSYNC_RELEASING(taskdata->td_parent); // releasing parent 1929 #endif 1930 } 1931 1932 #if OMPD_SUPPORT 1933 if (ompd_state & OMPD_ENABLE_BP) 1934 ompd_bp_task_end(); 1935 #endif 1936 1937 // Proxy tasks are not handled by the runtime 1938 if (taskdata->td_flags.proxy != TASK_PROXY) { 1939 #if OMPT_SUPPORT 1940 if (UNLIKELY(ompt_enabled.enabled)) { 1941 thread->th.ompt_thread_info = oldInfo; 1942 if (taskdata->td_flags.tiedness == TASK_TIED) { 1943 taskdata->ompt_task_info.frame.exit_frame = ompt_data_none; 1944 } 1945 __kmp_task_finish<true>(gtid, task, current_task); 1946 } else 1947 #endif 1948 __kmp_task_finish<false>(gtid, task, current_task); 1949 } 1950 #if OMPT_SUPPORT 1951 else if (UNLIKELY(ompt_enabled.enabled && taskdata->td_flags.target)) { 1952 __ompt_task_finish(task, current_task, ompt_task_switch); 1953 } 1954 #endif 1955 1956 KA_TRACE( 1957 30, 1958 ("__kmp_invoke_task(exit): T#%d completed task %p, resuming task %p\n", 1959 gtid, taskdata, current_task)); 1960 return; 1961 } 1962 1963 // __kmpc_omp_task_parts: Schedule a thread-switchable task for execution 1964 // 1965 // loc_ref: location of original task pragma (ignored) 1966 // gtid: Global Thread ID of encountering thread 1967 // new_task: task thunk allocated by __kmp_omp_task_alloc() for the ''new task'' 1968 // Returns: 1969 // TASK_CURRENT_NOT_QUEUED (0) if did not suspend and queue current task to 1970 // be resumed later. 1971 // TASK_CURRENT_QUEUED (1) if suspended and queued the current task to be 1972 // resumed later. 1973 kmp_int32 __kmpc_omp_task_parts(ident_t *loc_ref, kmp_int32 gtid, 1974 kmp_task_t *new_task) { 1975 kmp_taskdata_t *new_taskdata = KMP_TASK_TO_TASKDATA(new_task); 1976 1977 KA_TRACE(10, ("__kmpc_omp_task_parts(enter): T#%d loc=%p task=%p\n", gtid, 1978 loc_ref, new_taskdata)); 1979 1980 #if OMPT_SUPPORT 1981 kmp_taskdata_t *parent; 1982 if (UNLIKELY(ompt_enabled.enabled)) { 1983 parent = new_taskdata->td_parent; 1984 if (ompt_enabled.ompt_callback_task_create) { 1985 ompt_callbacks.ompt_callback(ompt_callback_task_create)( 1986 &(parent->ompt_task_info.task_data), &(parent->ompt_task_info.frame), 1987 &(new_taskdata->ompt_task_info.task_data), 1988 TASK_TYPE_DETAILS_FORMAT(new_taskdata), 0, 1989 OMPT_GET_RETURN_ADDRESS(0)); 1990 } 1991 } 1992 #endif 1993 1994 /* Should we execute the new task or queue it? For now, let's just always try 1995 to queue it. If the queue fills up, then we'll execute it. */ 1996 1997 if (__kmp_push_task(gtid, new_task) == TASK_NOT_PUSHED) // if cannot defer 1998 { // Execute this task immediately 1999 kmp_taskdata_t *current_task = __kmp_threads[gtid]->th.th_current_task; 2000 new_taskdata->td_flags.task_serial = 1; 2001 __kmp_invoke_task(gtid, new_task, current_task); 2002 } 2003 2004 KA_TRACE( 2005 10, 2006 ("__kmpc_omp_task_parts(exit): T#%d returning TASK_CURRENT_NOT_QUEUED: " 2007 "loc=%p task=%p, return: TASK_CURRENT_NOT_QUEUED\n", 2008 gtid, loc_ref, new_taskdata)); 2009 2010 #if OMPT_SUPPORT 2011 if (UNLIKELY(ompt_enabled.enabled)) { 2012 parent->ompt_task_info.frame.enter_frame = ompt_data_none; 2013 } 2014 #endif 2015 return TASK_CURRENT_NOT_QUEUED; 2016 } 2017 2018 // __kmp_omp_task: Schedule a non-thread-switchable task for execution 2019 // 2020 // gtid: Global Thread ID of encountering thread 2021 // new_task:non-thread-switchable task thunk allocated by __kmp_omp_task_alloc() 2022 // serialize_immediate: if TRUE then if the task is executed immediately its 2023 // execution will be serialized 2024 // Returns: 2025 // TASK_CURRENT_NOT_QUEUED (0) if did not suspend and queue current task to 2026 // be resumed later. 2027 // TASK_CURRENT_QUEUED (1) if suspended and queued the current task to be 2028 // resumed later. 2029 kmp_int32 __kmp_omp_task(kmp_int32 gtid, kmp_task_t *new_task, 2030 bool serialize_immediate) { 2031 kmp_taskdata_t *new_taskdata = KMP_TASK_TO_TASKDATA(new_task); 2032 2033 #if OMPX_TASKGRAPH 2034 if (new_taskdata->is_taskgraph && 2035 __kmp_tdg_is_recording(new_taskdata->tdg->tdg_status)) { 2036 kmp_tdg_info_t *tdg = new_taskdata->tdg; 2037 // extend the record_map if needed 2038 if (new_taskdata->td_task_id >= new_taskdata->tdg->map_size) { 2039 __kmp_acquire_bootstrap_lock(&tdg->graph_lock); 2040 // map_size could have been updated by another thread if recursive 2041 // taskloop 2042 if (new_taskdata->td_task_id >= tdg->map_size) { 2043 kmp_uint old_size = tdg->map_size; 2044 kmp_uint new_size = old_size * 2; 2045 kmp_node_info_t *old_record = tdg->record_map; 2046 kmp_node_info_t *new_record = (kmp_node_info_t *)__kmp_allocate( 2047 new_size * sizeof(kmp_node_info_t)); 2048 2049 KMP_MEMCPY(new_record, old_record, old_size * sizeof(kmp_node_info_t)); 2050 tdg->record_map = new_record; 2051 2052 __kmp_free(old_record); 2053 2054 for (kmp_int i = old_size; i < new_size; i++) { 2055 kmp_int32 *successorsList = (kmp_int32 *)__kmp_allocate( 2056 __kmp_successors_size * sizeof(kmp_int32)); 2057 new_record[i].task = nullptr; 2058 new_record[i].successors = successorsList; 2059 new_record[i].nsuccessors = 0; 2060 new_record[i].npredecessors = 0; 2061 new_record[i].successors_size = __kmp_successors_size; 2062 KMP_ATOMIC_ST_REL(&new_record[i].npredecessors_counter, 0); 2063 } 2064 // update the size at the end, so that we avoid other 2065 // threads use old_record while map_size is already updated 2066 tdg->map_size = new_size; 2067 } 2068 __kmp_release_bootstrap_lock(&tdg->graph_lock); 2069 } 2070 // record a task 2071 if (tdg->record_map[new_taskdata->td_task_id].task == nullptr) { 2072 tdg->record_map[new_taskdata->td_task_id].task = new_task; 2073 tdg->record_map[new_taskdata->td_task_id].parent_task = 2074 new_taskdata->td_parent; 2075 KMP_ATOMIC_INC(&tdg->num_tasks); 2076 } 2077 } 2078 #endif 2079 2080 /* Should we execute the new task or queue it? For now, let's just always try 2081 to queue it. If the queue fills up, then we'll execute it. */ 2082 if (new_taskdata->td_flags.proxy == TASK_PROXY || 2083 __kmp_push_task(gtid, new_task) == TASK_NOT_PUSHED) // if cannot defer 2084 { // Execute this task immediately 2085 kmp_taskdata_t *current_task = __kmp_threads[gtid]->th.th_current_task; 2086 if (serialize_immediate) 2087 new_taskdata->td_flags.task_serial = 1; 2088 __kmp_invoke_task(gtid, new_task, current_task); 2089 } else if (__kmp_dflt_blocktime != KMP_MAX_BLOCKTIME && 2090 __kmp_wpolicy_passive) { 2091 kmp_info_t *this_thr = __kmp_threads[gtid]; 2092 kmp_team_t *team = this_thr->th.th_team; 2093 kmp_int32 nthreads = this_thr->th.th_team_nproc; 2094 for (int i = 0; i < nthreads; ++i) { 2095 kmp_info_t *thread = team->t.t_threads[i]; 2096 if (thread == this_thr) 2097 continue; 2098 if (thread->th.th_sleep_loc != NULL) { 2099 __kmp_null_resume_wrapper(thread); 2100 break; // awake one thread at a time 2101 } 2102 } 2103 } 2104 return TASK_CURRENT_NOT_QUEUED; 2105 } 2106 2107 // __kmpc_omp_task: Wrapper around __kmp_omp_task to schedule a 2108 // non-thread-switchable task from the parent thread only! 2109 // 2110 // loc_ref: location of original task pragma (ignored) 2111 // gtid: Global Thread ID of encountering thread 2112 // new_task: non-thread-switchable task thunk allocated by 2113 // __kmp_omp_task_alloc() 2114 // Returns: 2115 // TASK_CURRENT_NOT_QUEUED (0) if did not suspend and queue current task to 2116 // be resumed later. 2117 // TASK_CURRENT_QUEUED (1) if suspended and queued the current task to be 2118 // resumed later. 2119 kmp_int32 __kmpc_omp_task(ident_t *loc_ref, kmp_int32 gtid, 2120 kmp_task_t *new_task) { 2121 kmp_int32 res; 2122 KMP_SET_THREAD_STATE_BLOCK(EXPLICIT_TASK); 2123 2124 #if KMP_DEBUG || OMPT_SUPPORT 2125 kmp_taskdata_t *new_taskdata = KMP_TASK_TO_TASKDATA(new_task); 2126 #endif 2127 KA_TRACE(10, ("__kmpc_omp_task(enter): T#%d loc=%p task=%p\n", gtid, loc_ref, 2128 new_taskdata)); 2129 __kmp_assert_valid_gtid(gtid); 2130 2131 #if OMPT_SUPPORT 2132 kmp_taskdata_t *parent = NULL; 2133 if (UNLIKELY(ompt_enabled.enabled)) { 2134 if (!new_taskdata->td_flags.started) { 2135 OMPT_STORE_RETURN_ADDRESS(gtid); 2136 parent = new_taskdata->td_parent; 2137 if (!parent->ompt_task_info.frame.enter_frame.ptr) { 2138 parent->ompt_task_info.frame.enter_frame.ptr = 2139 OMPT_GET_FRAME_ADDRESS(0); 2140 } 2141 if (ompt_enabled.ompt_callback_task_create) { 2142 ompt_callbacks.ompt_callback(ompt_callback_task_create)( 2143 &(parent->ompt_task_info.task_data), 2144 &(parent->ompt_task_info.frame), 2145 &(new_taskdata->ompt_task_info.task_data), 2146 TASK_TYPE_DETAILS_FORMAT(new_taskdata), 0, 2147 OMPT_LOAD_RETURN_ADDRESS(gtid)); 2148 } 2149 } else { 2150 // We are scheduling the continuation of an UNTIED task. 2151 // Scheduling back to the parent task. 2152 __ompt_task_finish(new_task, 2153 new_taskdata->ompt_task_info.scheduling_parent, 2154 ompt_task_switch); 2155 new_taskdata->ompt_task_info.frame.exit_frame = ompt_data_none; 2156 } 2157 } 2158 #endif 2159 2160 res = __kmp_omp_task(gtid, new_task, true); 2161 2162 KA_TRACE(10, ("__kmpc_omp_task(exit): T#%d returning " 2163 "TASK_CURRENT_NOT_QUEUED: loc=%p task=%p\n", 2164 gtid, loc_ref, new_taskdata)); 2165 #if OMPT_SUPPORT 2166 if (UNLIKELY(ompt_enabled.enabled && parent != NULL)) { 2167 parent->ompt_task_info.frame.enter_frame = ompt_data_none; 2168 } 2169 #endif 2170 return res; 2171 } 2172 2173 // __kmp_omp_taskloop_task: Wrapper around __kmp_omp_task to schedule 2174 // a taskloop task with the correct OMPT return address 2175 // 2176 // loc_ref: location of original task pragma (ignored) 2177 // gtid: Global Thread ID of encountering thread 2178 // new_task: non-thread-switchable task thunk allocated by 2179 // __kmp_omp_task_alloc() 2180 // codeptr_ra: return address for OMPT callback 2181 // Returns: 2182 // TASK_CURRENT_NOT_QUEUED (0) if did not suspend and queue current task to 2183 // be resumed later. 2184 // TASK_CURRENT_QUEUED (1) if suspended and queued the current task to be 2185 // resumed later. 2186 kmp_int32 __kmp_omp_taskloop_task(ident_t *loc_ref, kmp_int32 gtid, 2187 kmp_task_t *new_task, void *codeptr_ra) { 2188 kmp_int32 res; 2189 KMP_SET_THREAD_STATE_BLOCK(EXPLICIT_TASK); 2190 2191 #if KMP_DEBUG || OMPT_SUPPORT 2192 kmp_taskdata_t *new_taskdata = KMP_TASK_TO_TASKDATA(new_task); 2193 #endif 2194 KA_TRACE(10, ("__kmpc_omp_task(enter): T#%d loc=%p task=%p\n", gtid, loc_ref, 2195 new_taskdata)); 2196 2197 #if OMPT_SUPPORT 2198 kmp_taskdata_t *parent = NULL; 2199 if (UNLIKELY(ompt_enabled.enabled && !new_taskdata->td_flags.started)) { 2200 parent = new_taskdata->td_parent; 2201 if (!parent->ompt_task_info.frame.enter_frame.ptr) 2202 parent->ompt_task_info.frame.enter_frame.ptr = OMPT_GET_FRAME_ADDRESS(0); 2203 if (ompt_enabled.ompt_callback_task_create) { 2204 ompt_callbacks.ompt_callback(ompt_callback_task_create)( 2205 &(parent->ompt_task_info.task_data), &(parent->ompt_task_info.frame), 2206 &(new_taskdata->ompt_task_info.task_data), 2207 TASK_TYPE_DETAILS_FORMAT(new_taskdata), 0, codeptr_ra); 2208 } 2209 } 2210 #endif 2211 2212 res = __kmp_omp_task(gtid, new_task, true); 2213 2214 KA_TRACE(10, ("__kmpc_omp_task(exit): T#%d returning " 2215 "TASK_CURRENT_NOT_QUEUED: loc=%p task=%p\n", 2216 gtid, loc_ref, new_taskdata)); 2217 #if OMPT_SUPPORT 2218 if (UNLIKELY(ompt_enabled.enabled && parent != NULL)) { 2219 parent->ompt_task_info.frame.enter_frame = ompt_data_none; 2220 } 2221 #endif 2222 return res; 2223 } 2224 2225 template <bool ompt> 2226 static kmp_int32 __kmpc_omp_taskwait_template(ident_t *loc_ref, kmp_int32 gtid, 2227 void *frame_address, 2228 void *return_address) { 2229 kmp_taskdata_t *taskdata = nullptr; 2230 kmp_info_t *thread; 2231 int thread_finished = FALSE; 2232 KMP_SET_THREAD_STATE_BLOCK(TASKWAIT); 2233 2234 KA_TRACE(10, ("__kmpc_omp_taskwait(enter): T#%d loc=%p\n", gtid, loc_ref)); 2235 KMP_DEBUG_ASSERT(gtid >= 0); 2236 2237 if (__kmp_tasking_mode != tskm_immediate_exec) { 2238 thread = __kmp_threads[gtid]; 2239 taskdata = thread->th.th_current_task; 2240 2241 #if OMPT_SUPPORT && OMPT_OPTIONAL 2242 ompt_data_t *my_task_data; 2243 ompt_data_t *my_parallel_data; 2244 2245 if (ompt) { 2246 my_task_data = &(taskdata->ompt_task_info.task_data); 2247 my_parallel_data = OMPT_CUR_TEAM_DATA(thread); 2248 2249 taskdata->ompt_task_info.frame.enter_frame.ptr = frame_address; 2250 2251 if (ompt_enabled.ompt_callback_sync_region) { 2252 ompt_callbacks.ompt_callback(ompt_callback_sync_region)( 2253 ompt_sync_region_taskwait, ompt_scope_begin, my_parallel_data, 2254 my_task_data, return_address); 2255 } 2256 2257 if (ompt_enabled.ompt_callback_sync_region_wait) { 2258 ompt_callbacks.ompt_callback(ompt_callback_sync_region_wait)( 2259 ompt_sync_region_taskwait, ompt_scope_begin, my_parallel_data, 2260 my_task_data, return_address); 2261 } 2262 } 2263 #endif // OMPT_SUPPORT && OMPT_OPTIONAL 2264 2265 // Debugger: The taskwait is active. Store location and thread encountered the 2266 // taskwait. 2267 #if USE_ITT_BUILD 2268 // Note: These values are used by ITT events as well. 2269 #endif /* USE_ITT_BUILD */ 2270 taskdata->td_taskwait_counter += 1; 2271 taskdata->td_taskwait_ident = loc_ref; 2272 taskdata->td_taskwait_thread = gtid + 1; 2273 2274 #if USE_ITT_BUILD 2275 void *itt_sync_obj = NULL; 2276 #if USE_ITT_NOTIFY 2277 KMP_ITT_TASKWAIT_STARTING(itt_sync_obj); 2278 #endif /* USE_ITT_NOTIFY */ 2279 #endif /* USE_ITT_BUILD */ 2280 2281 bool must_wait = 2282 !taskdata->td_flags.team_serial && !taskdata->td_flags.final; 2283 2284 must_wait = must_wait || (thread->th.th_task_team != NULL && 2285 thread->th.th_task_team->tt.tt_found_proxy_tasks); 2286 // If hidden helper thread is encountered, we must enable wait here. 2287 must_wait = 2288 must_wait || 2289 (__kmp_enable_hidden_helper && thread->th.th_task_team != NULL && 2290 thread->th.th_task_team->tt.tt_hidden_helper_task_encountered); 2291 2292 if (must_wait) { 2293 kmp_flag_32<false, false> flag( 2294 RCAST(std::atomic<kmp_uint32> *, 2295 &(taskdata->td_incomplete_child_tasks)), 2296 0U); 2297 while (KMP_ATOMIC_LD_ACQ(&taskdata->td_incomplete_child_tasks) != 0) { 2298 flag.execute_tasks(thread, gtid, FALSE, 2299 &thread_finished USE_ITT_BUILD_ARG(itt_sync_obj), 2300 __kmp_task_stealing_constraint); 2301 } 2302 } 2303 #if USE_ITT_BUILD 2304 KMP_ITT_TASKWAIT_FINISHED(itt_sync_obj); 2305 KMP_FSYNC_ACQUIRED(taskdata); // acquire self - sync with children 2306 #endif /* USE_ITT_BUILD */ 2307 2308 // Debugger: The taskwait is completed. Location remains, but thread is 2309 // negated. 2310 taskdata->td_taskwait_thread = -taskdata->td_taskwait_thread; 2311 2312 #if OMPT_SUPPORT && OMPT_OPTIONAL 2313 if (ompt) { 2314 if (ompt_enabled.ompt_callback_sync_region_wait) { 2315 ompt_callbacks.ompt_callback(ompt_callback_sync_region_wait)( 2316 ompt_sync_region_taskwait, ompt_scope_end, my_parallel_data, 2317 my_task_data, return_address); 2318 } 2319 if (ompt_enabled.ompt_callback_sync_region) { 2320 ompt_callbacks.ompt_callback(ompt_callback_sync_region)( 2321 ompt_sync_region_taskwait, ompt_scope_end, my_parallel_data, 2322 my_task_data, return_address); 2323 } 2324 taskdata->ompt_task_info.frame.enter_frame = ompt_data_none; 2325 } 2326 #endif // OMPT_SUPPORT && OMPT_OPTIONAL 2327 } 2328 2329 KA_TRACE(10, ("__kmpc_omp_taskwait(exit): T#%d task %p finished waiting, " 2330 "returning TASK_CURRENT_NOT_QUEUED\n", 2331 gtid, taskdata)); 2332 2333 return TASK_CURRENT_NOT_QUEUED; 2334 } 2335 2336 #if OMPT_SUPPORT && OMPT_OPTIONAL 2337 OMPT_NOINLINE 2338 static kmp_int32 __kmpc_omp_taskwait_ompt(ident_t *loc_ref, kmp_int32 gtid, 2339 void *frame_address, 2340 void *return_address) { 2341 return __kmpc_omp_taskwait_template<true>(loc_ref, gtid, frame_address, 2342 return_address); 2343 } 2344 #endif // OMPT_SUPPORT && OMPT_OPTIONAL 2345 2346 // __kmpc_omp_taskwait: Wait until all tasks generated by the current task are 2347 // complete 2348 kmp_int32 __kmpc_omp_taskwait(ident_t *loc_ref, kmp_int32 gtid) { 2349 #if OMPT_SUPPORT && OMPT_OPTIONAL 2350 if (UNLIKELY(ompt_enabled.enabled)) { 2351 OMPT_STORE_RETURN_ADDRESS(gtid); 2352 return __kmpc_omp_taskwait_ompt(loc_ref, gtid, OMPT_GET_FRAME_ADDRESS(0), 2353 OMPT_LOAD_RETURN_ADDRESS(gtid)); 2354 } 2355 #endif 2356 return __kmpc_omp_taskwait_template<false>(loc_ref, gtid, NULL, NULL); 2357 } 2358 2359 // __kmpc_omp_taskyield: switch to a different task 2360 kmp_int32 __kmpc_omp_taskyield(ident_t *loc_ref, kmp_int32 gtid, int end_part) { 2361 kmp_taskdata_t *taskdata = NULL; 2362 kmp_info_t *thread; 2363 int thread_finished = FALSE; 2364 2365 KMP_COUNT_BLOCK(OMP_TASKYIELD); 2366 KMP_SET_THREAD_STATE_BLOCK(TASKYIELD); 2367 2368 KA_TRACE(10, ("__kmpc_omp_taskyield(enter): T#%d loc=%p end_part = %d\n", 2369 gtid, loc_ref, end_part)); 2370 __kmp_assert_valid_gtid(gtid); 2371 2372 if (__kmp_tasking_mode != tskm_immediate_exec && __kmp_init_parallel) { 2373 thread = __kmp_threads[gtid]; 2374 taskdata = thread->th.th_current_task; 2375 // Should we model this as a task wait or not? 2376 // Debugger: The taskwait is active. Store location and thread encountered the 2377 // taskwait. 2378 #if USE_ITT_BUILD 2379 // Note: These values are used by ITT events as well. 2380 #endif /* USE_ITT_BUILD */ 2381 taskdata->td_taskwait_counter += 1; 2382 taskdata->td_taskwait_ident = loc_ref; 2383 taskdata->td_taskwait_thread = gtid + 1; 2384 2385 #if USE_ITT_BUILD 2386 void *itt_sync_obj = NULL; 2387 #if USE_ITT_NOTIFY 2388 KMP_ITT_TASKWAIT_STARTING(itt_sync_obj); 2389 #endif /* USE_ITT_NOTIFY */ 2390 #endif /* USE_ITT_BUILD */ 2391 if (!taskdata->td_flags.team_serial) { 2392 kmp_task_team_t *task_team = thread->th.th_task_team; 2393 if (task_team != NULL) { 2394 if (KMP_TASKING_ENABLED(task_team)) { 2395 #if OMPT_SUPPORT 2396 if (UNLIKELY(ompt_enabled.enabled)) 2397 thread->th.ompt_thread_info.ompt_task_yielded = 1; 2398 #endif 2399 __kmp_execute_tasks_32( 2400 thread, gtid, (kmp_flag_32<> *)NULL, FALSE, 2401 &thread_finished USE_ITT_BUILD_ARG(itt_sync_obj), 2402 __kmp_task_stealing_constraint); 2403 #if OMPT_SUPPORT 2404 if (UNLIKELY(ompt_enabled.enabled)) 2405 thread->th.ompt_thread_info.ompt_task_yielded = 0; 2406 #endif 2407 } 2408 } 2409 } 2410 #if USE_ITT_BUILD 2411 KMP_ITT_TASKWAIT_FINISHED(itt_sync_obj); 2412 #endif /* USE_ITT_BUILD */ 2413 2414 // Debugger: The taskwait is completed. Location remains, but thread is 2415 // negated. 2416 taskdata->td_taskwait_thread = -taskdata->td_taskwait_thread; 2417 } 2418 2419 KA_TRACE(10, ("__kmpc_omp_taskyield(exit): T#%d task %p resuming, " 2420 "returning TASK_CURRENT_NOT_QUEUED\n", 2421 gtid, taskdata)); 2422 2423 return TASK_CURRENT_NOT_QUEUED; 2424 } 2425 2426 // Task Reduction implementation 2427 // 2428 // Note: initial implementation didn't take into account the possibility 2429 // to specify omp_orig for initializer of the UDR (user defined reduction). 2430 // Corrected implementation takes into account the omp_orig object. 2431 // Compiler is free to use old implementation if omp_orig is not specified. 2432 2433 /*! 2434 @ingroup BASIC_TYPES 2435 @{ 2436 */ 2437 2438 /*! 2439 Flags for special info per task reduction item. 2440 */ 2441 typedef struct kmp_taskred_flags { 2442 /*! 1 - use lazy alloc/init (e.g. big objects, num tasks < num threads) */ 2443 unsigned lazy_priv : 1; 2444 unsigned reserved31 : 31; 2445 } kmp_taskred_flags_t; 2446 2447 /*! 2448 Internal struct for reduction data item related info set up by compiler. 2449 */ 2450 typedef struct kmp_task_red_input { 2451 void *reduce_shar; /**< shared between tasks item to reduce into */ 2452 size_t reduce_size; /**< size of data item in bytes */ 2453 // three compiler-generated routines (init, fini are optional): 2454 void *reduce_init; /**< data initialization routine (single parameter) */ 2455 void *reduce_fini; /**< data finalization routine */ 2456 void *reduce_comb; /**< data combiner routine */ 2457 kmp_taskred_flags_t flags; /**< flags for additional info from compiler */ 2458 } kmp_task_red_input_t; 2459 2460 /*! 2461 Internal struct for reduction data item related info saved by the library. 2462 */ 2463 typedef struct kmp_taskred_data { 2464 void *reduce_shar; /**< shared between tasks item to reduce into */ 2465 size_t reduce_size; /**< size of data item */ 2466 kmp_taskred_flags_t flags; /**< flags for additional info from compiler */ 2467 void *reduce_priv; /**< array of thread specific items */ 2468 void *reduce_pend; /**< end of private data for faster comparison op */ 2469 // three compiler-generated routines (init, fini are optional): 2470 void *reduce_comb; /**< data combiner routine */ 2471 void *reduce_init; /**< data initialization routine (two parameters) */ 2472 void *reduce_fini; /**< data finalization routine */ 2473 void *reduce_orig; /**< original item (can be used in UDR initializer) */ 2474 } kmp_taskred_data_t; 2475 2476 /*! 2477 Internal struct for reduction data item related info set up by compiler. 2478 2479 New interface: added reduce_orig field to provide omp_orig for UDR initializer. 2480 */ 2481 typedef struct kmp_taskred_input { 2482 void *reduce_shar; /**< shared between tasks item to reduce into */ 2483 void *reduce_orig; /**< original reduction item used for initialization */ 2484 size_t reduce_size; /**< size of data item */ 2485 // three compiler-generated routines (init, fini are optional): 2486 void *reduce_init; /**< data initialization routine (two parameters) */ 2487 void *reduce_fini; /**< data finalization routine */ 2488 void *reduce_comb; /**< data combiner routine */ 2489 kmp_taskred_flags_t flags; /**< flags for additional info from compiler */ 2490 } kmp_taskred_input_t; 2491 /*! 2492 @} 2493 */ 2494 2495 template <typename T> void __kmp_assign_orig(kmp_taskred_data_t &item, T &src); 2496 template <> 2497 void __kmp_assign_orig<kmp_task_red_input_t>(kmp_taskred_data_t &item, 2498 kmp_task_red_input_t &src) { 2499 item.reduce_orig = NULL; 2500 } 2501 template <> 2502 void __kmp_assign_orig<kmp_taskred_input_t>(kmp_taskred_data_t &item, 2503 kmp_taskred_input_t &src) { 2504 if (src.reduce_orig != NULL) { 2505 item.reduce_orig = src.reduce_orig; 2506 } else { 2507 item.reduce_orig = src.reduce_shar; 2508 } // non-NULL reduce_orig means new interface used 2509 } 2510 2511 template <typename T> void __kmp_call_init(kmp_taskred_data_t &item, size_t j); 2512 template <> 2513 void __kmp_call_init<kmp_task_red_input_t>(kmp_taskred_data_t &item, 2514 size_t offset) { 2515 ((void (*)(void *))item.reduce_init)((char *)(item.reduce_priv) + offset); 2516 } 2517 template <> 2518 void __kmp_call_init<kmp_taskred_input_t>(kmp_taskred_data_t &item, 2519 size_t offset) { 2520 ((void (*)(void *, void *))item.reduce_init)( 2521 (char *)(item.reduce_priv) + offset, item.reduce_orig); 2522 } 2523 2524 template <typename T> 2525 void *__kmp_task_reduction_init(int gtid, int num, T *data) { 2526 __kmp_assert_valid_gtid(gtid); 2527 kmp_info_t *thread = __kmp_threads[gtid]; 2528 kmp_taskgroup_t *tg = thread->th.th_current_task->td_taskgroup; 2529 kmp_uint32 nth = thread->th.th_team_nproc; 2530 kmp_taskred_data_t *arr; 2531 2532 // check input data just in case 2533 KMP_ASSERT(tg != NULL); 2534 KMP_ASSERT(data != NULL); 2535 KMP_ASSERT(num > 0); 2536 if (nth == 1 && !__kmp_enable_hidden_helper) { 2537 KA_TRACE(10, ("__kmpc_task_reduction_init: T#%d, tg %p, exiting nth=1\n", 2538 gtid, tg)); 2539 return (void *)tg; 2540 } 2541 KA_TRACE(10, ("__kmpc_task_reduction_init: T#%d, taskgroup %p, #items %d\n", 2542 gtid, tg, num)); 2543 arr = (kmp_taskred_data_t *)__kmp_thread_malloc( 2544 thread, num * sizeof(kmp_taskred_data_t)); 2545 for (int i = 0; i < num; ++i) { 2546 size_t size = data[i].reduce_size - 1; 2547 // round the size up to cache line per thread-specific item 2548 size += CACHE_LINE - size % CACHE_LINE; 2549 KMP_ASSERT(data[i].reduce_comb != NULL); // combiner is mandatory 2550 arr[i].reduce_shar = data[i].reduce_shar; 2551 arr[i].reduce_size = size; 2552 arr[i].flags = data[i].flags; 2553 arr[i].reduce_comb = data[i].reduce_comb; 2554 arr[i].reduce_init = data[i].reduce_init; 2555 arr[i].reduce_fini = data[i].reduce_fini; 2556 __kmp_assign_orig<T>(arr[i], data[i]); 2557 if (!arr[i].flags.lazy_priv) { 2558 // allocate cache-line aligned block and fill it with zeros 2559 arr[i].reduce_priv = __kmp_allocate(nth * size); 2560 arr[i].reduce_pend = (char *)(arr[i].reduce_priv) + nth * size; 2561 if (arr[i].reduce_init != NULL) { 2562 // initialize all thread-specific items 2563 for (size_t j = 0; j < nth; ++j) { 2564 __kmp_call_init<T>(arr[i], j * size); 2565 } 2566 } 2567 } else { 2568 // only allocate space for pointers now, 2569 // objects will be lazily allocated/initialized if/when requested 2570 // note that __kmp_allocate zeroes the allocated memory 2571 arr[i].reduce_priv = __kmp_allocate(nth * sizeof(void *)); 2572 } 2573 } 2574 tg->reduce_data = (void *)arr; 2575 tg->reduce_num_data = num; 2576 return (void *)tg; 2577 } 2578 2579 /*! 2580 @ingroup TASKING 2581 @param gtid Global thread ID 2582 @param num Number of data items to reduce 2583 @param data Array of data for reduction 2584 @return The taskgroup identifier 2585 2586 Initialize task reduction for the taskgroup. 2587 2588 Note: this entry supposes the optional compiler-generated initializer routine 2589 has single parameter - pointer to object to be initialized. That means 2590 the reduction either does not use omp_orig object, or the omp_orig is accessible 2591 without help of the runtime library. 2592 */ 2593 void *__kmpc_task_reduction_init(int gtid, int num, void *data) { 2594 #if OMPX_TASKGRAPH 2595 kmp_tdg_info_t *tdg = __kmp_find_tdg(__kmp_curr_tdg_idx); 2596 if (tdg && __kmp_tdg_is_recording(tdg->tdg_status)) { 2597 kmp_tdg_info_t *this_tdg = __kmp_global_tdgs[__kmp_curr_tdg_idx]; 2598 this_tdg->rec_taskred_data = 2599 __kmp_allocate(sizeof(kmp_task_red_input_t) * num); 2600 this_tdg->rec_num_taskred = num; 2601 KMP_MEMCPY(this_tdg->rec_taskred_data, data, 2602 sizeof(kmp_task_red_input_t) * num); 2603 } 2604 #endif 2605 return __kmp_task_reduction_init(gtid, num, (kmp_task_red_input_t *)data); 2606 } 2607 2608 /*! 2609 @ingroup TASKING 2610 @param gtid Global thread ID 2611 @param num Number of data items to reduce 2612 @param data Array of data for reduction 2613 @return The taskgroup identifier 2614 2615 Initialize task reduction for the taskgroup. 2616 2617 Note: this entry supposes the optional compiler-generated initializer routine 2618 has two parameters, pointer to object to be initialized and pointer to omp_orig 2619 */ 2620 void *__kmpc_taskred_init(int gtid, int num, void *data) { 2621 #if OMPX_TASKGRAPH 2622 kmp_tdg_info_t *tdg = __kmp_find_tdg(__kmp_curr_tdg_idx); 2623 if (tdg && __kmp_tdg_is_recording(tdg->tdg_status)) { 2624 kmp_tdg_info_t *this_tdg = __kmp_global_tdgs[__kmp_curr_tdg_idx]; 2625 this_tdg->rec_taskred_data = 2626 __kmp_allocate(sizeof(kmp_task_red_input_t) * num); 2627 this_tdg->rec_num_taskred = num; 2628 KMP_MEMCPY(this_tdg->rec_taskred_data, data, 2629 sizeof(kmp_task_red_input_t) * num); 2630 } 2631 #endif 2632 return __kmp_task_reduction_init(gtid, num, (kmp_taskred_input_t *)data); 2633 } 2634 2635 // Copy task reduction data (except for shared pointers). 2636 template <typename T> 2637 void __kmp_task_reduction_init_copy(kmp_info_t *thr, int num, T *data, 2638 kmp_taskgroup_t *tg, void *reduce_data) { 2639 kmp_taskred_data_t *arr; 2640 KA_TRACE(20, ("__kmp_task_reduction_init_copy: Th %p, init taskgroup %p," 2641 " from data %p\n", 2642 thr, tg, reduce_data)); 2643 arr = (kmp_taskred_data_t *)__kmp_thread_malloc( 2644 thr, num * sizeof(kmp_taskred_data_t)); 2645 // threads will share private copies, thunk routines, sizes, flags, etc.: 2646 KMP_MEMCPY(arr, reduce_data, num * sizeof(kmp_taskred_data_t)); 2647 for (int i = 0; i < num; ++i) { 2648 arr[i].reduce_shar = data[i].reduce_shar; // init unique shared pointers 2649 } 2650 tg->reduce_data = (void *)arr; 2651 tg->reduce_num_data = num; 2652 } 2653 2654 /*! 2655 @ingroup TASKING 2656 @param gtid Global thread ID 2657 @param tskgrp The taskgroup ID (optional) 2658 @param data Shared location of the item 2659 @return The pointer to per-thread data 2660 2661 Get thread-specific location of data item 2662 */ 2663 void *__kmpc_task_reduction_get_th_data(int gtid, void *tskgrp, void *data) { 2664 __kmp_assert_valid_gtid(gtid); 2665 kmp_info_t *thread = __kmp_threads[gtid]; 2666 kmp_int32 nth = thread->th.th_team_nproc; 2667 if (nth == 1) 2668 return data; // nothing to do 2669 2670 kmp_taskgroup_t *tg = (kmp_taskgroup_t *)tskgrp; 2671 if (tg == NULL) 2672 tg = thread->th.th_current_task->td_taskgroup; 2673 KMP_ASSERT(tg != NULL); 2674 kmp_taskred_data_t *arr; 2675 kmp_int32 num; 2676 kmp_int32 tid = thread->th.th_info.ds.ds_tid; 2677 2678 #if OMPX_TASKGRAPH 2679 if ((thread->th.th_current_task->is_taskgraph) && 2680 (!__kmp_tdg_is_recording( 2681 __kmp_global_tdgs[__kmp_curr_tdg_idx]->tdg_status))) { 2682 tg = thread->th.th_current_task->td_taskgroup; 2683 KMP_ASSERT(tg != NULL); 2684 KMP_ASSERT(tg->reduce_data != NULL); 2685 arr = (kmp_taskred_data_t *)(tg->reduce_data); 2686 num = tg->reduce_num_data; 2687 } 2688 #endif 2689 2690 KMP_ASSERT(data != NULL); 2691 while (tg != NULL) { 2692 arr = (kmp_taskred_data_t *)(tg->reduce_data); 2693 num = tg->reduce_num_data; 2694 for (int i = 0; i < num; ++i) { 2695 if (!arr[i].flags.lazy_priv) { 2696 if (data == arr[i].reduce_shar || 2697 (data >= arr[i].reduce_priv && data < arr[i].reduce_pend)) 2698 return (char *)(arr[i].reduce_priv) + tid * arr[i].reduce_size; 2699 } else { 2700 // check shared location first 2701 void **p_priv = (void **)(arr[i].reduce_priv); 2702 if (data == arr[i].reduce_shar) 2703 goto found; 2704 // check if we get some thread specific location as parameter 2705 for (int j = 0; j < nth; ++j) 2706 if (data == p_priv[j]) 2707 goto found; 2708 continue; // not found, continue search 2709 found: 2710 if (p_priv[tid] == NULL) { 2711 // allocate thread specific object lazily 2712 p_priv[tid] = __kmp_allocate(arr[i].reduce_size); 2713 if (arr[i].reduce_init != NULL) { 2714 if (arr[i].reduce_orig != NULL) { // new interface 2715 ((void (*)(void *, void *))arr[i].reduce_init)( 2716 p_priv[tid], arr[i].reduce_orig); 2717 } else { // old interface (single parameter) 2718 ((void (*)(void *))arr[i].reduce_init)(p_priv[tid]); 2719 } 2720 } 2721 } 2722 return p_priv[tid]; 2723 } 2724 } 2725 KMP_ASSERT(tg->parent); 2726 tg = tg->parent; 2727 } 2728 KMP_ASSERT2(0, "Unknown task reduction item"); 2729 return NULL; // ERROR, this line never executed 2730 } 2731 2732 // Finalize task reduction. 2733 // Called from __kmpc_end_taskgroup() 2734 static void __kmp_task_reduction_fini(kmp_info_t *th, kmp_taskgroup_t *tg) { 2735 kmp_int32 nth = th->th.th_team_nproc; 2736 KMP_DEBUG_ASSERT( 2737 nth > 1 || 2738 __kmp_enable_hidden_helper); // should not be called if nth == 1 unless we 2739 // are using hidden helper threads 2740 kmp_taskred_data_t *arr = (kmp_taskred_data_t *)tg->reduce_data; 2741 kmp_int32 num = tg->reduce_num_data; 2742 for (int i = 0; i < num; ++i) { 2743 void *sh_data = arr[i].reduce_shar; 2744 void (*f_fini)(void *) = (void (*)(void *))(arr[i].reduce_fini); 2745 void (*f_comb)(void *, void *) = 2746 (void (*)(void *, void *))(arr[i].reduce_comb); 2747 if (!arr[i].flags.lazy_priv) { 2748 void *pr_data = arr[i].reduce_priv; 2749 size_t size = arr[i].reduce_size; 2750 for (int j = 0; j < nth; ++j) { 2751 void *priv_data = (char *)pr_data + j * size; 2752 f_comb(sh_data, priv_data); // combine results 2753 if (f_fini) 2754 f_fini(priv_data); // finalize if needed 2755 } 2756 } else { 2757 void **pr_data = (void **)(arr[i].reduce_priv); 2758 for (int j = 0; j < nth; ++j) { 2759 if (pr_data[j] != NULL) { 2760 f_comb(sh_data, pr_data[j]); // combine results 2761 if (f_fini) 2762 f_fini(pr_data[j]); // finalize if needed 2763 __kmp_free(pr_data[j]); 2764 } 2765 } 2766 } 2767 __kmp_free(arr[i].reduce_priv); 2768 } 2769 __kmp_thread_free(th, arr); 2770 tg->reduce_data = NULL; 2771 tg->reduce_num_data = 0; 2772 } 2773 2774 // Cleanup task reduction data for parallel or worksharing, 2775 // do not touch task private data other threads still working with. 2776 // Called from __kmpc_end_taskgroup() 2777 static void __kmp_task_reduction_clean(kmp_info_t *th, kmp_taskgroup_t *tg) { 2778 __kmp_thread_free(th, tg->reduce_data); 2779 tg->reduce_data = NULL; 2780 tg->reduce_num_data = 0; 2781 } 2782 2783 template <typename T> 2784 void *__kmp_task_reduction_modifier_init(ident_t *loc, int gtid, int is_ws, 2785 int num, T *data) { 2786 __kmp_assert_valid_gtid(gtid); 2787 kmp_info_t *thr = __kmp_threads[gtid]; 2788 kmp_int32 nth = thr->th.th_team_nproc; 2789 __kmpc_taskgroup(loc, gtid); // form new taskgroup first 2790 if (nth == 1) { 2791 KA_TRACE(10, 2792 ("__kmpc_reduction_modifier_init: T#%d, tg %p, exiting nth=1\n", 2793 gtid, thr->th.th_current_task->td_taskgroup)); 2794 return (void *)thr->th.th_current_task->td_taskgroup; 2795 } 2796 kmp_team_t *team = thr->th.th_team; 2797 void *reduce_data; 2798 kmp_taskgroup_t *tg; 2799 reduce_data = KMP_ATOMIC_LD_RLX(&team->t.t_tg_reduce_data[is_ws]); 2800 if (reduce_data == NULL && 2801 __kmp_atomic_compare_store(&team->t.t_tg_reduce_data[is_ws], reduce_data, 2802 (void *)1)) { 2803 // single thread enters this block to initialize common reduction data 2804 KMP_DEBUG_ASSERT(reduce_data == NULL); 2805 // first initialize own data, then make a copy other threads can use 2806 tg = (kmp_taskgroup_t *)__kmp_task_reduction_init<T>(gtid, num, data); 2807 reduce_data = __kmp_thread_malloc(thr, num * sizeof(kmp_taskred_data_t)); 2808 KMP_MEMCPY(reduce_data, tg->reduce_data, num * sizeof(kmp_taskred_data_t)); 2809 // fini counters should be 0 at this point 2810 KMP_DEBUG_ASSERT(KMP_ATOMIC_LD_RLX(&team->t.t_tg_fini_counter[0]) == 0); 2811 KMP_DEBUG_ASSERT(KMP_ATOMIC_LD_RLX(&team->t.t_tg_fini_counter[1]) == 0); 2812 KMP_ATOMIC_ST_REL(&team->t.t_tg_reduce_data[is_ws], reduce_data); 2813 } else { 2814 while ( 2815 (reduce_data = KMP_ATOMIC_LD_ACQ(&team->t.t_tg_reduce_data[is_ws])) == 2816 (void *)1) { // wait for task reduction initialization 2817 KMP_CPU_PAUSE(); 2818 } 2819 KMP_DEBUG_ASSERT(reduce_data > (void *)1); // should be valid pointer here 2820 tg = thr->th.th_current_task->td_taskgroup; 2821 __kmp_task_reduction_init_copy<T>(thr, num, data, tg, reduce_data); 2822 } 2823 return tg; 2824 } 2825 2826 /*! 2827 @ingroup TASKING 2828 @param loc Source location info 2829 @param gtid Global thread ID 2830 @param is_ws Is 1 if the reduction is for worksharing, 0 otherwise 2831 @param num Number of data items to reduce 2832 @param data Array of data for reduction 2833 @return The taskgroup identifier 2834 2835 Initialize task reduction for a parallel or worksharing. 2836 2837 Note: this entry supposes the optional compiler-generated initializer routine 2838 has single parameter - pointer to object to be initialized. That means 2839 the reduction either does not use omp_orig object, or the omp_orig is accessible 2840 without help of the runtime library. 2841 */ 2842 void *__kmpc_task_reduction_modifier_init(ident_t *loc, int gtid, int is_ws, 2843 int num, void *data) { 2844 return __kmp_task_reduction_modifier_init(loc, gtid, is_ws, num, 2845 (kmp_task_red_input_t *)data); 2846 } 2847 2848 /*! 2849 @ingroup TASKING 2850 @param loc Source location info 2851 @param gtid Global thread ID 2852 @param is_ws Is 1 if the reduction is for worksharing, 0 otherwise 2853 @param num Number of data items to reduce 2854 @param data Array of data for reduction 2855 @return The taskgroup identifier 2856 2857 Initialize task reduction for a parallel or worksharing. 2858 2859 Note: this entry supposes the optional compiler-generated initializer routine 2860 has two parameters, pointer to object to be initialized and pointer to omp_orig 2861 */ 2862 void *__kmpc_taskred_modifier_init(ident_t *loc, int gtid, int is_ws, int num, 2863 void *data) { 2864 return __kmp_task_reduction_modifier_init(loc, gtid, is_ws, num, 2865 (kmp_taskred_input_t *)data); 2866 } 2867 2868 /*! 2869 @ingroup TASKING 2870 @param loc Source location info 2871 @param gtid Global thread ID 2872 @param is_ws Is 1 if the reduction is for worksharing, 0 otherwise 2873 2874 Finalize task reduction for a parallel or worksharing. 2875 */ 2876 void __kmpc_task_reduction_modifier_fini(ident_t *loc, int gtid, int is_ws) { 2877 __kmpc_end_taskgroup(loc, gtid); 2878 } 2879 2880 // __kmpc_taskgroup: Start a new taskgroup 2881 void __kmpc_taskgroup(ident_t *loc, int gtid) { 2882 __kmp_assert_valid_gtid(gtid); 2883 kmp_info_t *thread = __kmp_threads[gtid]; 2884 kmp_taskdata_t *taskdata = thread->th.th_current_task; 2885 kmp_taskgroup_t *tg_new = 2886 (kmp_taskgroup_t *)__kmp_thread_malloc(thread, sizeof(kmp_taskgroup_t)); 2887 KA_TRACE(10, ("__kmpc_taskgroup: T#%d loc=%p group=%p\n", gtid, loc, tg_new)); 2888 KMP_ATOMIC_ST_RLX(&tg_new->count, 0); 2889 KMP_ATOMIC_ST_RLX(&tg_new->cancel_request, cancel_noreq); 2890 tg_new->parent = taskdata->td_taskgroup; 2891 tg_new->reduce_data = NULL; 2892 tg_new->reduce_num_data = 0; 2893 tg_new->gomp_data = NULL; 2894 taskdata->td_taskgroup = tg_new; 2895 2896 #if OMPT_SUPPORT && OMPT_OPTIONAL 2897 if (UNLIKELY(ompt_enabled.ompt_callback_sync_region)) { 2898 void *codeptr = OMPT_LOAD_RETURN_ADDRESS(gtid); 2899 if (!codeptr) 2900 codeptr = OMPT_GET_RETURN_ADDRESS(0); 2901 kmp_team_t *team = thread->th.th_team; 2902 ompt_data_t my_task_data = taskdata->ompt_task_info.task_data; 2903 // FIXME: I think this is wrong for lwt! 2904 ompt_data_t my_parallel_data = team->t.ompt_team_info.parallel_data; 2905 2906 ompt_callbacks.ompt_callback(ompt_callback_sync_region)( 2907 ompt_sync_region_taskgroup, ompt_scope_begin, &(my_parallel_data), 2908 &(my_task_data), codeptr); 2909 } 2910 #endif 2911 } 2912 2913 // __kmpc_end_taskgroup: Wait until all tasks generated by the current task 2914 // and its descendants are complete 2915 void __kmpc_end_taskgroup(ident_t *loc, int gtid) { 2916 __kmp_assert_valid_gtid(gtid); 2917 kmp_info_t *thread = __kmp_threads[gtid]; 2918 kmp_taskdata_t *taskdata = thread->th.th_current_task; 2919 kmp_taskgroup_t *taskgroup = taskdata->td_taskgroup; 2920 int thread_finished = FALSE; 2921 2922 #if OMPT_SUPPORT && OMPT_OPTIONAL 2923 kmp_team_t *team; 2924 ompt_data_t my_task_data; 2925 ompt_data_t my_parallel_data; 2926 void *codeptr = nullptr; 2927 if (UNLIKELY(ompt_enabled.enabled)) { 2928 team = thread->th.th_team; 2929 my_task_data = taskdata->ompt_task_info.task_data; 2930 // FIXME: I think this is wrong for lwt! 2931 my_parallel_data = team->t.ompt_team_info.parallel_data; 2932 codeptr = OMPT_LOAD_RETURN_ADDRESS(gtid); 2933 if (!codeptr) 2934 codeptr = OMPT_GET_RETURN_ADDRESS(0); 2935 } 2936 #endif 2937 2938 KA_TRACE(10, ("__kmpc_end_taskgroup(enter): T#%d loc=%p\n", gtid, loc)); 2939 KMP_DEBUG_ASSERT(taskgroup != NULL); 2940 KMP_SET_THREAD_STATE_BLOCK(TASKGROUP); 2941 2942 if (__kmp_tasking_mode != tskm_immediate_exec) { 2943 // mark task as waiting not on a barrier 2944 taskdata->td_taskwait_counter += 1; 2945 taskdata->td_taskwait_ident = loc; 2946 taskdata->td_taskwait_thread = gtid + 1; 2947 #if USE_ITT_BUILD 2948 // For ITT the taskgroup wait is similar to taskwait until we need to 2949 // distinguish them 2950 void *itt_sync_obj = NULL; 2951 #if USE_ITT_NOTIFY 2952 KMP_ITT_TASKWAIT_STARTING(itt_sync_obj); 2953 #endif /* USE_ITT_NOTIFY */ 2954 #endif /* USE_ITT_BUILD */ 2955 2956 #if OMPT_SUPPORT && OMPT_OPTIONAL 2957 if (UNLIKELY(ompt_enabled.ompt_callback_sync_region_wait)) { 2958 ompt_callbacks.ompt_callback(ompt_callback_sync_region_wait)( 2959 ompt_sync_region_taskgroup, ompt_scope_begin, &(my_parallel_data), 2960 &(my_task_data), codeptr); 2961 } 2962 #endif 2963 2964 if (!taskdata->td_flags.team_serial || 2965 (thread->th.th_task_team != NULL && 2966 (thread->th.th_task_team->tt.tt_found_proxy_tasks || 2967 thread->th.th_task_team->tt.tt_hidden_helper_task_encountered))) { 2968 kmp_flag_32<false, false> flag( 2969 RCAST(std::atomic<kmp_uint32> *, &(taskgroup->count)), 0U); 2970 while (KMP_ATOMIC_LD_ACQ(&taskgroup->count) != 0) { 2971 flag.execute_tasks(thread, gtid, FALSE, 2972 &thread_finished USE_ITT_BUILD_ARG(itt_sync_obj), 2973 __kmp_task_stealing_constraint); 2974 } 2975 } 2976 taskdata->td_taskwait_thread = -taskdata->td_taskwait_thread; // end waiting 2977 2978 #if OMPT_SUPPORT && OMPT_OPTIONAL 2979 if (UNLIKELY(ompt_enabled.ompt_callback_sync_region_wait)) { 2980 ompt_callbacks.ompt_callback(ompt_callback_sync_region_wait)( 2981 ompt_sync_region_taskgroup, ompt_scope_end, &(my_parallel_data), 2982 &(my_task_data), codeptr); 2983 } 2984 #endif 2985 2986 #if USE_ITT_BUILD 2987 KMP_ITT_TASKWAIT_FINISHED(itt_sync_obj); 2988 KMP_FSYNC_ACQUIRED(taskdata); // acquire self - sync with descendants 2989 #endif /* USE_ITT_BUILD */ 2990 } 2991 KMP_DEBUG_ASSERT(taskgroup->count == 0); 2992 2993 if (taskgroup->reduce_data != NULL && 2994 !taskgroup->gomp_data) { // need to reduce? 2995 int cnt; 2996 void *reduce_data; 2997 kmp_team_t *t = thread->th.th_team; 2998 kmp_taskred_data_t *arr = (kmp_taskred_data_t *)taskgroup->reduce_data; 2999 // check if <priv> data of the first reduction variable shared for the team 3000 void *priv0 = arr[0].reduce_priv; 3001 if ((reduce_data = KMP_ATOMIC_LD_ACQ(&t->t.t_tg_reduce_data[0])) != NULL && 3002 ((kmp_taskred_data_t *)reduce_data)[0].reduce_priv == priv0) { 3003 // finishing task reduction on parallel 3004 cnt = KMP_ATOMIC_INC(&t->t.t_tg_fini_counter[0]); 3005 if (cnt == thread->th.th_team_nproc - 1) { 3006 // we are the last thread passing __kmpc_reduction_modifier_fini() 3007 // finalize task reduction: 3008 __kmp_task_reduction_fini(thread, taskgroup); 3009 // cleanup fields in the team structure: 3010 // TODO: is relaxed store enough here (whole barrier should follow)? 3011 __kmp_thread_free(thread, reduce_data); 3012 KMP_ATOMIC_ST_REL(&t->t.t_tg_reduce_data[0], NULL); 3013 KMP_ATOMIC_ST_REL(&t->t.t_tg_fini_counter[0], 0); 3014 } else { 3015 // we are not the last thread passing __kmpc_reduction_modifier_fini(), 3016 // so do not finalize reduction, just clean own copy of the data 3017 __kmp_task_reduction_clean(thread, taskgroup); 3018 } 3019 } else if ((reduce_data = KMP_ATOMIC_LD_ACQ(&t->t.t_tg_reduce_data[1])) != 3020 NULL && 3021 ((kmp_taskred_data_t *)reduce_data)[0].reduce_priv == priv0) { 3022 // finishing task reduction on worksharing 3023 cnt = KMP_ATOMIC_INC(&t->t.t_tg_fini_counter[1]); 3024 if (cnt == thread->th.th_team_nproc - 1) { 3025 // we are the last thread passing __kmpc_reduction_modifier_fini() 3026 __kmp_task_reduction_fini(thread, taskgroup); 3027 // cleanup fields in team structure: 3028 // TODO: is relaxed store enough here (whole barrier should follow)? 3029 __kmp_thread_free(thread, reduce_data); 3030 KMP_ATOMIC_ST_REL(&t->t.t_tg_reduce_data[1], NULL); 3031 KMP_ATOMIC_ST_REL(&t->t.t_tg_fini_counter[1], 0); 3032 } else { 3033 // we are not the last thread passing __kmpc_reduction_modifier_fini(), 3034 // so do not finalize reduction, just clean own copy of the data 3035 __kmp_task_reduction_clean(thread, taskgroup); 3036 } 3037 } else { 3038 // finishing task reduction on taskgroup 3039 __kmp_task_reduction_fini(thread, taskgroup); 3040 } 3041 } 3042 // Restore parent taskgroup for the current task 3043 taskdata->td_taskgroup = taskgroup->parent; 3044 __kmp_thread_free(thread, taskgroup); 3045 3046 KA_TRACE(10, ("__kmpc_end_taskgroup(exit): T#%d task %p finished waiting\n", 3047 gtid, taskdata)); 3048 3049 #if OMPT_SUPPORT && OMPT_OPTIONAL 3050 if (UNLIKELY(ompt_enabled.ompt_callback_sync_region)) { 3051 ompt_callbacks.ompt_callback(ompt_callback_sync_region)( 3052 ompt_sync_region_taskgroup, ompt_scope_end, &(my_parallel_data), 3053 &(my_task_data), codeptr); 3054 } 3055 #endif 3056 } 3057 3058 static kmp_task_t *__kmp_get_priority_task(kmp_int32 gtid, 3059 kmp_task_team_t *task_team, 3060 kmp_int32 is_constrained) { 3061 kmp_task_t *task = NULL; 3062 kmp_taskdata_t *taskdata; 3063 kmp_taskdata_t *current; 3064 kmp_thread_data_t *thread_data; 3065 int ntasks = task_team->tt.tt_num_task_pri; 3066 if (ntasks == 0) { 3067 KA_TRACE( 3068 20, ("__kmp_get_priority_task(exit #1): T#%d No tasks to get\n", gtid)); 3069 return NULL; 3070 } 3071 do { 3072 // decrement num_tasks to "reserve" one task to get for execution 3073 if (__kmp_atomic_compare_store(&task_team->tt.tt_num_task_pri, ntasks, 3074 ntasks - 1)) 3075 break; 3076 ntasks = task_team->tt.tt_num_task_pri; 3077 } while (ntasks > 0); 3078 if (ntasks == 0) { 3079 KA_TRACE(20, ("__kmp_get_priority_task(exit #2): T#%d No tasks to get\n", 3080 __kmp_get_gtid())); 3081 return NULL; 3082 } 3083 // We got a "ticket" to get a "reserved" priority task 3084 int deque_ntasks; 3085 kmp_task_pri_t *list = task_team->tt.tt_task_pri_list; 3086 do { 3087 KMP_ASSERT(list != NULL); 3088 thread_data = &list->td; 3089 __kmp_acquire_bootstrap_lock(&thread_data->td.td_deque_lock); 3090 deque_ntasks = thread_data->td.td_deque_ntasks; 3091 if (deque_ntasks == 0) { 3092 __kmp_release_bootstrap_lock(&thread_data->td.td_deque_lock); 3093 KA_TRACE(20, ("__kmp_get_priority_task: T#%d No tasks to get from %p\n", 3094 __kmp_get_gtid(), thread_data)); 3095 list = list->next; 3096 } 3097 } while (deque_ntasks == 0); 3098 KMP_DEBUG_ASSERT(deque_ntasks); 3099 int target = thread_data->td.td_deque_head; 3100 current = __kmp_threads[gtid]->th.th_current_task; 3101 taskdata = thread_data->td.td_deque[target]; 3102 if (__kmp_task_is_allowed(gtid, is_constrained, taskdata, current)) { 3103 // Bump head pointer and Wrap. 3104 thread_data->td.td_deque_head = 3105 (target + 1) & TASK_DEQUE_MASK(thread_data->td); 3106 } else { 3107 if (!task_team->tt.tt_untied_task_encountered) { 3108 // The TSC does not allow to steal victim task 3109 __kmp_release_bootstrap_lock(&thread_data->td.td_deque_lock); 3110 KA_TRACE(20, ("__kmp_get_priority_task(exit #3): T#%d could not get task " 3111 "from %p: task_team=%p ntasks=%d head=%u tail=%u\n", 3112 gtid, thread_data, task_team, deque_ntasks, target, 3113 thread_data->td.td_deque_tail)); 3114 task_team->tt.tt_num_task_pri++; // atomic inc, restore value 3115 return NULL; 3116 } 3117 int i; 3118 // walk through the deque trying to steal any task 3119 taskdata = NULL; 3120 for (i = 1; i < deque_ntasks; ++i) { 3121 target = (target + 1) & TASK_DEQUE_MASK(thread_data->td); 3122 taskdata = thread_data->td.td_deque[target]; 3123 if (__kmp_task_is_allowed(gtid, is_constrained, taskdata, current)) { 3124 break; // found task to execute 3125 } else { 3126 taskdata = NULL; 3127 } 3128 } 3129 if (taskdata == NULL) { 3130 // No appropriate candidate found to execute 3131 __kmp_release_bootstrap_lock(&thread_data->td.td_deque_lock); 3132 KA_TRACE( 3133 10, ("__kmp_get_priority_task(exit #4): T#%d could not get task from " 3134 "%p: task_team=%p ntasks=%d head=%u tail=%u\n", 3135 gtid, thread_data, task_team, deque_ntasks, 3136 thread_data->td.td_deque_head, thread_data->td.td_deque_tail)); 3137 task_team->tt.tt_num_task_pri++; // atomic inc, restore value 3138 return NULL; 3139 } 3140 int prev = target; 3141 for (i = i + 1; i < deque_ntasks; ++i) { 3142 // shift remaining tasks in the deque left by 1 3143 target = (target + 1) & TASK_DEQUE_MASK(thread_data->td); 3144 thread_data->td.td_deque[prev] = thread_data->td.td_deque[target]; 3145 prev = target; 3146 } 3147 KMP_DEBUG_ASSERT( 3148 thread_data->td.td_deque_tail == 3149 (kmp_uint32)((target + 1) & TASK_DEQUE_MASK(thread_data->td))); 3150 thread_data->td.td_deque_tail = target; // tail -= 1 (wrapped)) 3151 } 3152 thread_data->td.td_deque_ntasks = deque_ntasks - 1; 3153 __kmp_release_bootstrap_lock(&thread_data->td.td_deque_lock); 3154 task = KMP_TASKDATA_TO_TASK(taskdata); 3155 return task; 3156 } 3157 3158 // __kmp_remove_my_task: remove a task from my own deque 3159 static kmp_task_t *__kmp_remove_my_task(kmp_info_t *thread, kmp_int32 gtid, 3160 kmp_task_team_t *task_team, 3161 kmp_int32 is_constrained) { 3162 kmp_task_t *task; 3163 kmp_taskdata_t *taskdata; 3164 kmp_thread_data_t *thread_data; 3165 kmp_uint32 tail; 3166 3167 KMP_DEBUG_ASSERT(__kmp_tasking_mode != tskm_immediate_exec); 3168 KMP_DEBUG_ASSERT(task_team->tt.tt_threads_data != 3169 NULL); // Caller should check this condition 3170 3171 thread_data = &task_team->tt.tt_threads_data[__kmp_tid_from_gtid(gtid)]; 3172 3173 KA_TRACE(10, ("__kmp_remove_my_task(enter): T#%d ntasks=%d head=%u tail=%u\n", 3174 gtid, thread_data->td.td_deque_ntasks, 3175 thread_data->td.td_deque_head, thread_data->td.td_deque_tail)); 3176 3177 if (TCR_4(thread_data->td.td_deque_ntasks) == 0) { 3178 KA_TRACE(10, 3179 ("__kmp_remove_my_task(exit #1): T#%d No tasks to remove: " 3180 "ntasks=%d head=%u tail=%u\n", 3181 gtid, thread_data->td.td_deque_ntasks, 3182 thread_data->td.td_deque_head, thread_data->td.td_deque_tail)); 3183 return NULL; 3184 } 3185 3186 __kmp_acquire_bootstrap_lock(&thread_data->td.td_deque_lock); 3187 3188 if (TCR_4(thread_data->td.td_deque_ntasks) == 0) { 3189 __kmp_release_bootstrap_lock(&thread_data->td.td_deque_lock); 3190 KA_TRACE(10, 3191 ("__kmp_remove_my_task(exit #2): T#%d No tasks to remove: " 3192 "ntasks=%d head=%u tail=%u\n", 3193 gtid, thread_data->td.td_deque_ntasks, 3194 thread_data->td.td_deque_head, thread_data->td.td_deque_tail)); 3195 return NULL; 3196 } 3197 3198 tail = (thread_data->td.td_deque_tail - 1) & 3199 TASK_DEQUE_MASK(thread_data->td); // Wrap index. 3200 taskdata = thread_data->td.td_deque[tail]; 3201 3202 if (!__kmp_task_is_allowed(gtid, is_constrained, taskdata, 3203 thread->th.th_current_task)) { 3204 // The TSC does not allow to steal victim task 3205 __kmp_release_bootstrap_lock(&thread_data->td.td_deque_lock); 3206 KA_TRACE(10, 3207 ("__kmp_remove_my_task(exit #3): T#%d TSC blocks tail task: " 3208 "ntasks=%d head=%u tail=%u\n", 3209 gtid, thread_data->td.td_deque_ntasks, 3210 thread_data->td.td_deque_head, thread_data->td.td_deque_tail)); 3211 return NULL; 3212 } 3213 3214 thread_data->td.td_deque_tail = tail; 3215 TCW_4(thread_data->td.td_deque_ntasks, thread_data->td.td_deque_ntasks - 1); 3216 3217 __kmp_release_bootstrap_lock(&thread_data->td.td_deque_lock); 3218 3219 KA_TRACE(10, ("__kmp_remove_my_task(exit #4): T#%d task %p removed: " 3220 "ntasks=%d head=%u tail=%u\n", 3221 gtid, taskdata, thread_data->td.td_deque_ntasks, 3222 thread_data->td.td_deque_head, thread_data->td.td_deque_tail)); 3223 3224 task = KMP_TASKDATA_TO_TASK(taskdata); 3225 return task; 3226 } 3227 3228 // __kmp_steal_task: remove a task from another thread's deque 3229 // Assume that calling thread has already checked existence of 3230 // task_team thread_data before calling this routine. 3231 static kmp_task_t *__kmp_steal_task(kmp_int32 victim_tid, kmp_int32 gtid, 3232 kmp_task_team_t *task_team, 3233 std::atomic<kmp_int32> *unfinished_threads, 3234 int *thread_finished, 3235 kmp_int32 is_constrained) { 3236 kmp_task_t *task; 3237 kmp_taskdata_t *taskdata; 3238 kmp_taskdata_t *current; 3239 kmp_thread_data_t *victim_td, *threads_data; 3240 kmp_int32 target; 3241 kmp_info_t *victim_thr; 3242 3243 KMP_DEBUG_ASSERT(__kmp_tasking_mode != tskm_immediate_exec); 3244 3245 threads_data = task_team->tt.tt_threads_data; 3246 KMP_DEBUG_ASSERT(threads_data != NULL); // Caller should check this condition 3247 KMP_DEBUG_ASSERT(victim_tid >= 0); 3248 KMP_DEBUG_ASSERT(victim_tid < task_team->tt.tt_nproc); 3249 3250 victim_td = &threads_data[victim_tid]; 3251 victim_thr = victim_td->td.td_thr; 3252 (void)victim_thr; // Use in TRACE messages which aren't always enabled. 3253 3254 KA_TRACE(10, ("__kmp_steal_task(enter): T#%d try to steal from T#%d: " 3255 "task_team=%p ntasks=%d head=%u tail=%u\n", 3256 gtid, __kmp_gtid_from_thread(victim_thr), task_team, 3257 victim_td->td.td_deque_ntasks, victim_td->td.td_deque_head, 3258 victim_td->td.td_deque_tail)); 3259 3260 if (TCR_4(victim_td->td.td_deque_ntasks) == 0) { 3261 KA_TRACE(10, ("__kmp_steal_task(exit #1): T#%d could not steal from T#%d: " 3262 "task_team=%p ntasks=%d head=%u tail=%u\n", 3263 gtid, __kmp_gtid_from_thread(victim_thr), task_team, 3264 victim_td->td.td_deque_ntasks, victim_td->td.td_deque_head, 3265 victim_td->td.td_deque_tail)); 3266 return NULL; 3267 } 3268 3269 __kmp_acquire_bootstrap_lock(&victim_td->td.td_deque_lock); 3270 3271 int ntasks = TCR_4(victim_td->td.td_deque_ntasks); 3272 // Check again after we acquire the lock 3273 if (ntasks == 0) { 3274 __kmp_release_bootstrap_lock(&victim_td->td.td_deque_lock); 3275 KA_TRACE(10, ("__kmp_steal_task(exit #2): T#%d could not steal from T#%d: " 3276 "task_team=%p ntasks=%d head=%u tail=%u\n", 3277 gtid, __kmp_gtid_from_thread(victim_thr), task_team, ntasks, 3278 victim_td->td.td_deque_head, victim_td->td.td_deque_tail)); 3279 return NULL; 3280 } 3281 3282 KMP_DEBUG_ASSERT(victim_td->td.td_deque != NULL); 3283 current = __kmp_threads[gtid]->th.th_current_task; 3284 taskdata = victim_td->td.td_deque[victim_td->td.td_deque_head]; 3285 if (__kmp_task_is_allowed(gtid, is_constrained, taskdata, current)) { 3286 // Bump head pointer and Wrap. 3287 victim_td->td.td_deque_head = 3288 (victim_td->td.td_deque_head + 1) & TASK_DEQUE_MASK(victim_td->td); 3289 } else { 3290 if (!task_team->tt.tt_untied_task_encountered) { 3291 // The TSC does not allow to steal victim task 3292 __kmp_release_bootstrap_lock(&victim_td->td.td_deque_lock); 3293 KA_TRACE(10, ("__kmp_steal_task(exit #3): T#%d could not steal from " 3294 "T#%d: task_team=%p ntasks=%d head=%u tail=%u\n", 3295 gtid, __kmp_gtid_from_thread(victim_thr), task_team, ntasks, 3296 victim_td->td.td_deque_head, victim_td->td.td_deque_tail)); 3297 return NULL; 3298 } 3299 int i; 3300 // walk through victim's deque trying to steal any task 3301 target = victim_td->td.td_deque_head; 3302 taskdata = NULL; 3303 for (i = 1; i < ntasks; ++i) { 3304 target = (target + 1) & TASK_DEQUE_MASK(victim_td->td); 3305 taskdata = victim_td->td.td_deque[target]; 3306 if (__kmp_task_is_allowed(gtid, is_constrained, taskdata, current)) { 3307 break; // found victim task 3308 } else { 3309 taskdata = NULL; 3310 } 3311 } 3312 if (taskdata == NULL) { 3313 // No appropriate candidate to steal found 3314 __kmp_release_bootstrap_lock(&victim_td->td.td_deque_lock); 3315 KA_TRACE(10, ("__kmp_steal_task(exit #4): T#%d could not steal from " 3316 "T#%d: task_team=%p ntasks=%d head=%u tail=%u\n", 3317 gtid, __kmp_gtid_from_thread(victim_thr), task_team, ntasks, 3318 victim_td->td.td_deque_head, victim_td->td.td_deque_tail)); 3319 return NULL; 3320 } 3321 int prev = target; 3322 for (i = i + 1; i < ntasks; ++i) { 3323 // shift remaining tasks in the deque left by 1 3324 target = (target + 1) & TASK_DEQUE_MASK(victim_td->td); 3325 victim_td->td.td_deque[prev] = victim_td->td.td_deque[target]; 3326 prev = target; 3327 } 3328 KMP_DEBUG_ASSERT( 3329 victim_td->td.td_deque_tail == 3330 (kmp_uint32)((target + 1) & TASK_DEQUE_MASK(victim_td->td))); 3331 victim_td->td.td_deque_tail = target; // tail -= 1 (wrapped)) 3332 } 3333 if (*thread_finished) { 3334 // We need to un-mark this victim as a finished victim. This must be done 3335 // before releasing the lock, or else other threads (starting with the 3336 // primary thread victim) might be prematurely released from the barrier!!! 3337 #if KMP_DEBUG 3338 kmp_int32 count = 3339 #endif 3340 KMP_ATOMIC_INC(unfinished_threads); 3341 KA_TRACE( 3342 20, 3343 ("__kmp_steal_task: T#%d inc unfinished_threads to %d: task_team=%p\n", 3344 gtid, count + 1, task_team)); 3345 *thread_finished = FALSE; 3346 } 3347 TCW_4(victim_td->td.td_deque_ntasks, ntasks - 1); 3348 3349 __kmp_release_bootstrap_lock(&victim_td->td.td_deque_lock); 3350 3351 KMP_COUNT_BLOCK(TASK_stolen); 3352 KA_TRACE(10, 3353 ("__kmp_steal_task(exit #5): T#%d stole task %p from T#%d: " 3354 "task_team=%p ntasks=%d head=%u tail=%u\n", 3355 gtid, taskdata, __kmp_gtid_from_thread(victim_thr), task_team, 3356 ntasks, victim_td->td.td_deque_head, victim_td->td.td_deque_tail)); 3357 3358 task = KMP_TASKDATA_TO_TASK(taskdata); 3359 return task; 3360 } 3361 3362 // __kmp_execute_tasks_template: Choose and execute tasks until either the 3363 // condition is statisfied (return true) or there are none left (return false). 3364 // 3365 // final_spin is TRUE if this is the spin at the release barrier. 3366 // thread_finished indicates whether the thread is finished executing all 3367 // the tasks it has on its deque, and is at the release barrier. 3368 // spinner is the location on which to spin. 3369 // spinner == NULL means only execute a single task and return. 3370 // checker is the value to check to terminate the spin. 3371 template <class C> 3372 static inline int __kmp_execute_tasks_template( 3373 kmp_info_t *thread, kmp_int32 gtid, C *flag, int final_spin, 3374 int *thread_finished USE_ITT_BUILD_ARG(void *itt_sync_obj), 3375 kmp_int32 is_constrained) { 3376 kmp_task_team_t *task_team = thread->th.th_task_team; 3377 kmp_thread_data_t *threads_data; 3378 kmp_task_t *task; 3379 kmp_info_t *other_thread; 3380 kmp_taskdata_t *current_task = thread->th.th_current_task; 3381 std::atomic<kmp_int32> *unfinished_threads; 3382 kmp_int32 nthreads, victim_tid = -2, use_own_tasks = 1, new_victim = 0, 3383 tid = thread->th.th_info.ds.ds_tid; 3384 3385 KMP_DEBUG_ASSERT(__kmp_tasking_mode != tskm_immediate_exec); 3386 KMP_DEBUG_ASSERT(thread == __kmp_threads[gtid]); 3387 3388 if (task_team == NULL || current_task == NULL) 3389 return FALSE; 3390 3391 KA_TRACE(15, ("__kmp_execute_tasks_template(enter): T#%d final_spin=%d " 3392 "*thread_finished=%d\n", 3393 gtid, final_spin, *thread_finished)); 3394 3395 thread->th.th_reap_state = KMP_NOT_SAFE_TO_REAP; 3396 threads_data = (kmp_thread_data_t *)TCR_PTR(task_team->tt.tt_threads_data); 3397 3398 KMP_DEBUG_ASSERT(threads_data != NULL); 3399 3400 nthreads = task_team->tt.tt_nproc; 3401 unfinished_threads = &(task_team->tt.tt_unfinished_threads); 3402 KMP_DEBUG_ASSERT(*unfinished_threads >= 0); 3403 3404 while (1) { // Outer loop keeps trying to find tasks in case of single thread 3405 // getting tasks from target constructs 3406 while (1) { // Inner loop to find a task and execute it 3407 task = NULL; 3408 if (task_team->tt.tt_num_task_pri) { // get priority task first 3409 task = __kmp_get_priority_task(gtid, task_team, is_constrained); 3410 } 3411 if (task == NULL && use_own_tasks) { // check own queue next 3412 task = __kmp_remove_my_task(thread, gtid, task_team, is_constrained); 3413 } 3414 if ((task == NULL) && (nthreads > 1)) { // Steal a task finally 3415 int asleep = 1; 3416 use_own_tasks = 0; 3417 // Try to steal from the last place I stole from successfully. 3418 if (victim_tid == -2) { // haven't stolen anything yet 3419 victim_tid = threads_data[tid].td.td_deque_last_stolen; 3420 if (victim_tid != 3421 -1) // if we have a last stolen from victim, get the thread 3422 other_thread = threads_data[victim_tid].td.td_thr; 3423 } 3424 if (victim_tid != -1) { // found last victim 3425 asleep = 0; 3426 } else if (!new_victim) { // no recent steals and we haven't already 3427 // used a new victim; select a random thread 3428 do { // Find a different thread to steal work from. 3429 // Pick a random thread. Initial plan was to cycle through all the 3430 // threads, and only return if we tried to steal from every thread, 3431 // and failed. Arch says that's not such a great idea. 3432 victim_tid = __kmp_get_random(thread) % (nthreads - 1); 3433 if (victim_tid >= tid) { 3434 ++victim_tid; // Adjusts random distribution to exclude self 3435 } 3436 // Found a potential victim 3437 other_thread = threads_data[victim_tid].td.td_thr; 3438 // There is a slight chance that __kmp_enable_tasking() did not wake 3439 // up all threads waiting at the barrier. If victim is sleeping, 3440 // then wake it up. Since we were going to pay the cache miss 3441 // penalty for referencing another thread's kmp_info_t struct 3442 // anyway, 3443 // the check shouldn't cost too much performance at this point. In 3444 // extra barrier mode, tasks do not sleep at the separate tasking 3445 // barrier, so this isn't a problem. 3446 asleep = 0; 3447 if ((__kmp_tasking_mode == tskm_task_teams) && 3448 (__kmp_dflt_blocktime != KMP_MAX_BLOCKTIME) && 3449 (TCR_PTR(CCAST(void *, other_thread->th.th_sleep_loc)) != 3450 NULL)) { 3451 asleep = 1; 3452 __kmp_null_resume_wrapper(other_thread); 3453 // A sleeping thread should not have any tasks on it's queue. 3454 // There is a slight possibility that it resumes, steals a task 3455 // from another thread, which spawns more tasks, all in the time 3456 // that it takes this thread to check => don't write an assertion 3457 // that the victim's queue is empty. Try stealing from a 3458 // different thread. 3459 } 3460 } while (asleep); 3461 } 3462 3463 if (!asleep) { 3464 // We have a victim to try to steal from 3465 task = 3466 __kmp_steal_task(victim_tid, gtid, task_team, unfinished_threads, 3467 thread_finished, is_constrained); 3468 } 3469 if (task != NULL) { // set last stolen to victim 3470 if (threads_data[tid].td.td_deque_last_stolen != victim_tid) { 3471 threads_data[tid].td.td_deque_last_stolen = victim_tid; 3472 // The pre-refactored code did not try more than 1 successful new 3473 // vicitm, unless the last one generated more local tasks; 3474 // new_victim keeps track of this 3475 new_victim = 1; 3476 } 3477 } else { // No tasks found; unset last_stolen 3478 KMP_CHECK_UPDATE(threads_data[tid].td.td_deque_last_stolen, -1); 3479 victim_tid = -2; // no successful victim found 3480 } 3481 } 3482 3483 if (task == NULL) 3484 break; // break out of tasking loop 3485 3486 // Found a task; execute it 3487 #if USE_ITT_BUILD && USE_ITT_NOTIFY 3488 if (__itt_sync_create_ptr || KMP_ITT_DEBUG) { 3489 if (itt_sync_obj == NULL) { // we are at fork barrier where we could not 3490 // get the object reliably 3491 itt_sync_obj = __kmp_itt_barrier_object(gtid, bs_forkjoin_barrier); 3492 } 3493 __kmp_itt_task_starting(itt_sync_obj); 3494 } 3495 #endif /* USE_ITT_BUILD && USE_ITT_NOTIFY */ 3496 __kmp_invoke_task(gtid, task, current_task); 3497 #if USE_ITT_BUILD 3498 if (itt_sync_obj != NULL) 3499 __kmp_itt_task_finished(itt_sync_obj); 3500 #endif /* USE_ITT_BUILD */ 3501 // If this thread is only partway through the barrier and the condition is 3502 // met, then return now, so that the barrier gather/release pattern can 3503 // proceed. If this thread is in the last spin loop in the barrier, 3504 // waiting to be released, we know that the termination condition will not 3505 // be satisfied, so don't waste any cycles checking it. 3506 if (flag == NULL || (!final_spin && flag->done_check())) { 3507 KA_TRACE( 3508 15, 3509 ("__kmp_execute_tasks_template: T#%d spin condition satisfied\n", 3510 gtid)); 3511 return TRUE; 3512 } 3513 if (thread->th.th_task_team == NULL) { 3514 break; 3515 } 3516 KMP_YIELD(__kmp_library == library_throughput); // Yield before next task 3517 // If execution of a stolen task results in more tasks being placed on our 3518 // run queue, reset use_own_tasks 3519 if (!use_own_tasks && TCR_4(threads_data[tid].td.td_deque_ntasks) != 0) { 3520 KA_TRACE(20, ("__kmp_execute_tasks_template: T#%d stolen task spawned " 3521 "other tasks, restart\n", 3522 gtid)); 3523 use_own_tasks = 1; 3524 new_victim = 0; 3525 } 3526 } 3527 3528 // The task source has been exhausted. If in final spin loop of barrier, 3529 // check if termination condition is satisfied. The work queue may be empty 3530 // but there might be proxy tasks still executing. 3531 if (final_spin && 3532 KMP_ATOMIC_LD_ACQ(¤t_task->td_incomplete_child_tasks) == 0) { 3533 // First, decrement the #unfinished threads, if that has not already been 3534 // done. This decrement might be to the spin location, and result in the 3535 // termination condition being satisfied. 3536 if (!*thread_finished) { 3537 #if KMP_DEBUG 3538 kmp_int32 count = -1 + 3539 #endif 3540 KMP_ATOMIC_DEC(unfinished_threads); 3541 KA_TRACE(20, ("__kmp_execute_tasks_template: T#%d dec " 3542 "unfinished_threads to %d task_team=%p\n", 3543 gtid, count, task_team)); 3544 *thread_finished = TRUE; 3545 } 3546 3547 // It is now unsafe to reference thread->th.th_team !!! 3548 // Decrementing task_team->tt.tt_unfinished_threads can allow the primary 3549 // thread to pass through the barrier, where it might reset each thread's 3550 // th.th_team field for the next parallel region. If we can steal more 3551 // work, we know that this has not happened yet. 3552 if (flag != NULL && flag->done_check()) { 3553 KA_TRACE( 3554 15, 3555 ("__kmp_execute_tasks_template: T#%d spin condition satisfied\n", 3556 gtid)); 3557 return TRUE; 3558 } 3559 } 3560 3561 // If this thread's task team is NULL, primary thread has recognized that 3562 // there are no more tasks; bail out 3563 if (thread->th.th_task_team == NULL) { 3564 KA_TRACE(15, 3565 ("__kmp_execute_tasks_template: T#%d no more tasks\n", gtid)); 3566 return FALSE; 3567 } 3568 3569 // Check the flag again to see if it has already done in case to be trapped 3570 // into infinite loop when a if0 task depends on a hidden helper task 3571 // outside any parallel region. Detached tasks are not impacted in this case 3572 // because the only thread executing this function has to execute the proxy 3573 // task so it is in another code path that has the same check. 3574 if (flag == NULL || (!final_spin && flag->done_check())) { 3575 KA_TRACE(15, 3576 ("__kmp_execute_tasks_template: T#%d spin condition satisfied\n", 3577 gtid)); 3578 return TRUE; 3579 } 3580 3581 // We could be getting tasks from target constructs; if this is the only 3582 // thread, keep trying to execute tasks from own queue 3583 if (nthreads == 1 && 3584 KMP_ATOMIC_LD_ACQ(¤t_task->td_incomplete_child_tasks)) 3585 use_own_tasks = 1; 3586 else { 3587 KA_TRACE(15, 3588 ("__kmp_execute_tasks_template: T#%d can't find work\n", gtid)); 3589 return FALSE; 3590 } 3591 } 3592 } 3593 3594 template <bool C, bool S> 3595 int __kmp_execute_tasks_32( 3596 kmp_info_t *thread, kmp_int32 gtid, kmp_flag_32<C, S> *flag, int final_spin, 3597 int *thread_finished USE_ITT_BUILD_ARG(void *itt_sync_obj), 3598 kmp_int32 is_constrained) { 3599 return __kmp_execute_tasks_template( 3600 thread, gtid, flag, final_spin, 3601 thread_finished USE_ITT_BUILD_ARG(itt_sync_obj), is_constrained); 3602 } 3603 3604 template <bool C, bool S> 3605 int __kmp_execute_tasks_64( 3606 kmp_info_t *thread, kmp_int32 gtid, kmp_flag_64<C, S> *flag, int final_spin, 3607 int *thread_finished USE_ITT_BUILD_ARG(void *itt_sync_obj), 3608 kmp_int32 is_constrained) { 3609 return __kmp_execute_tasks_template( 3610 thread, gtid, flag, final_spin, 3611 thread_finished USE_ITT_BUILD_ARG(itt_sync_obj), is_constrained); 3612 } 3613 3614 template <bool C, bool S> 3615 int __kmp_atomic_execute_tasks_64( 3616 kmp_info_t *thread, kmp_int32 gtid, kmp_atomic_flag_64<C, S> *flag, 3617 int final_spin, int *thread_finished USE_ITT_BUILD_ARG(void *itt_sync_obj), 3618 kmp_int32 is_constrained) { 3619 return __kmp_execute_tasks_template( 3620 thread, gtid, flag, final_spin, 3621 thread_finished USE_ITT_BUILD_ARG(itt_sync_obj), is_constrained); 3622 } 3623 3624 int __kmp_execute_tasks_oncore( 3625 kmp_info_t *thread, kmp_int32 gtid, kmp_flag_oncore *flag, int final_spin, 3626 int *thread_finished USE_ITT_BUILD_ARG(void *itt_sync_obj), 3627 kmp_int32 is_constrained) { 3628 return __kmp_execute_tasks_template( 3629 thread, gtid, flag, final_spin, 3630 thread_finished USE_ITT_BUILD_ARG(itt_sync_obj), is_constrained); 3631 } 3632 3633 template int 3634 __kmp_execute_tasks_32<false, false>(kmp_info_t *, kmp_int32, 3635 kmp_flag_32<false, false> *, int, 3636 int *USE_ITT_BUILD_ARG(void *), kmp_int32); 3637 3638 template int __kmp_execute_tasks_64<false, true>(kmp_info_t *, kmp_int32, 3639 kmp_flag_64<false, true> *, 3640 int, 3641 int *USE_ITT_BUILD_ARG(void *), 3642 kmp_int32); 3643 3644 template int __kmp_execute_tasks_64<true, false>(kmp_info_t *, kmp_int32, 3645 kmp_flag_64<true, false> *, 3646 int, 3647 int *USE_ITT_BUILD_ARG(void *), 3648 kmp_int32); 3649 3650 template int __kmp_atomic_execute_tasks_64<false, true>( 3651 kmp_info_t *, kmp_int32, kmp_atomic_flag_64<false, true> *, int, 3652 int *USE_ITT_BUILD_ARG(void *), kmp_int32); 3653 3654 template int __kmp_atomic_execute_tasks_64<true, false>( 3655 kmp_info_t *, kmp_int32, kmp_atomic_flag_64<true, false> *, int, 3656 int *USE_ITT_BUILD_ARG(void *), kmp_int32); 3657 3658 // __kmp_enable_tasking: Allocate task team and resume threads sleeping at the 3659 // next barrier so they can assist in executing enqueued tasks. 3660 // First thread in allocates the task team atomically. 3661 static void __kmp_enable_tasking(kmp_task_team_t *task_team, 3662 kmp_info_t *this_thr) { 3663 kmp_thread_data_t *threads_data; 3664 int nthreads, i, is_init_thread; 3665 3666 KA_TRACE(10, ("__kmp_enable_tasking(enter): T#%d\n", 3667 __kmp_gtid_from_thread(this_thr))); 3668 3669 KMP_DEBUG_ASSERT(task_team != NULL); 3670 KMP_DEBUG_ASSERT(this_thr->th.th_team != NULL); 3671 3672 nthreads = task_team->tt.tt_nproc; 3673 KMP_DEBUG_ASSERT(nthreads > 0); 3674 KMP_DEBUG_ASSERT(nthreads == this_thr->th.th_team->t.t_nproc); 3675 3676 // Allocate or increase the size of threads_data if necessary 3677 is_init_thread = __kmp_realloc_task_threads_data(this_thr, task_team); 3678 3679 if (!is_init_thread) { 3680 // Some other thread already set up the array. 3681 KA_TRACE( 3682 20, 3683 ("__kmp_enable_tasking(exit): T#%d: threads array already set up.\n", 3684 __kmp_gtid_from_thread(this_thr))); 3685 return; 3686 } 3687 threads_data = (kmp_thread_data_t *)TCR_PTR(task_team->tt.tt_threads_data); 3688 KMP_DEBUG_ASSERT(threads_data != NULL); 3689 3690 if (__kmp_tasking_mode == tskm_task_teams && 3691 (__kmp_dflt_blocktime != KMP_MAX_BLOCKTIME)) { 3692 // Release any threads sleeping at the barrier, so that they can steal 3693 // tasks and execute them. In extra barrier mode, tasks do not sleep 3694 // at the separate tasking barrier, so this isn't a problem. 3695 for (i = 0; i < nthreads; i++) { 3696 void *sleep_loc; 3697 kmp_info_t *thread = threads_data[i].td.td_thr; 3698 3699 if (i == this_thr->th.th_info.ds.ds_tid) { 3700 continue; 3701 } 3702 // Since we haven't locked the thread's suspend mutex lock at this 3703 // point, there is a small window where a thread might be putting 3704 // itself to sleep, but hasn't set the th_sleep_loc field yet. 3705 // To work around this, __kmp_execute_tasks_template() periodically checks 3706 // see if other threads are sleeping (using the same random mechanism that 3707 // is used for task stealing) and awakens them if they are. 3708 if ((sleep_loc = TCR_PTR(CCAST(void *, thread->th.th_sleep_loc))) != 3709 NULL) { 3710 KF_TRACE(50, ("__kmp_enable_tasking: T#%d waking up thread T#%d\n", 3711 __kmp_gtid_from_thread(this_thr), 3712 __kmp_gtid_from_thread(thread))); 3713 __kmp_null_resume_wrapper(thread); 3714 } else { 3715 KF_TRACE(50, ("__kmp_enable_tasking: T#%d don't wake up thread T#%d\n", 3716 __kmp_gtid_from_thread(this_thr), 3717 __kmp_gtid_from_thread(thread))); 3718 } 3719 } 3720 } 3721 3722 KA_TRACE(10, ("__kmp_enable_tasking(exit): T#%d\n", 3723 __kmp_gtid_from_thread(this_thr))); 3724 } 3725 3726 /* // TODO: Check the comment consistency 3727 * Utility routines for "task teams". A task team (kmp_task_t) is kind of 3728 * like a shadow of the kmp_team_t data struct, with a different lifetime. 3729 * After a child * thread checks into a barrier and calls __kmp_release() from 3730 * the particular variant of __kmp_<barrier_kind>_barrier_gather(), it can no 3731 * longer assume that the kmp_team_t structure is intact (at any moment, the 3732 * primary thread may exit the barrier code and free the team data structure, 3733 * and return the threads to the thread pool). 3734 * 3735 * This does not work with the tasking code, as the thread is still 3736 * expected to participate in the execution of any tasks that may have been 3737 * spawned my a member of the team, and the thread still needs access to all 3738 * to each thread in the team, so that it can steal work from it. 3739 * 3740 * Enter the existence of the kmp_task_team_t struct. It employs a reference 3741 * counting mechanism, and is allocated by the primary thread before calling 3742 * __kmp_<barrier_kind>_release, and then is release by the last thread to 3743 * exit __kmp_<barrier_kind>_release at the next barrier. I.e. the lifetimes 3744 * of the kmp_task_team_t structs for consecutive barriers can overlap 3745 * (and will, unless the primary thread is the last thread to exit the barrier 3746 * release phase, which is not typical). The existence of such a struct is 3747 * useful outside the context of tasking. 3748 * 3749 * We currently use the existence of the threads array as an indicator that 3750 * tasks were spawned since the last barrier. If the structure is to be 3751 * useful outside the context of tasking, then this will have to change, but 3752 * not setting the field minimizes the performance impact of tasking on 3753 * barriers, when no explicit tasks were spawned (pushed, actually). 3754 */ 3755 3756 static kmp_task_team_t *__kmp_free_task_teams = 3757 NULL; // Free list for task_team data structures 3758 // Lock for task team data structures 3759 kmp_bootstrap_lock_t __kmp_task_team_lock = 3760 KMP_BOOTSTRAP_LOCK_INITIALIZER(__kmp_task_team_lock); 3761 3762 // __kmp_alloc_task_deque: 3763 // Allocates a task deque for a particular thread, and initialize the necessary 3764 // data structures relating to the deque. This only happens once per thread 3765 // per task team since task teams are recycled. No lock is needed during 3766 // allocation since each thread allocates its own deque. 3767 static void __kmp_alloc_task_deque(kmp_info_t *thread, 3768 kmp_thread_data_t *thread_data) { 3769 __kmp_init_bootstrap_lock(&thread_data->td.td_deque_lock); 3770 KMP_DEBUG_ASSERT(thread_data->td.td_deque == NULL); 3771 3772 // Initialize last stolen task field to "none" 3773 thread_data->td.td_deque_last_stolen = -1; 3774 3775 KMP_DEBUG_ASSERT(TCR_4(thread_data->td.td_deque_ntasks) == 0); 3776 KMP_DEBUG_ASSERT(thread_data->td.td_deque_head == 0); 3777 KMP_DEBUG_ASSERT(thread_data->td.td_deque_tail == 0); 3778 3779 KE_TRACE( 3780 10, 3781 ("__kmp_alloc_task_deque: T#%d allocating deque[%d] for thread_data %p\n", 3782 __kmp_gtid_from_thread(thread), INITIAL_TASK_DEQUE_SIZE, thread_data)); 3783 // Allocate space for task deque, and zero the deque 3784 // Cannot use __kmp_thread_calloc() because threads not around for 3785 // kmp_reap_task_team( ). 3786 thread_data->td.td_deque = (kmp_taskdata_t **)__kmp_allocate( 3787 INITIAL_TASK_DEQUE_SIZE * sizeof(kmp_taskdata_t *)); 3788 thread_data->td.td_deque_size = INITIAL_TASK_DEQUE_SIZE; 3789 } 3790 3791 // __kmp_free_task_deque: 3792 // Deallocates a task deque for a particular thread. Happens at library 3793 // deallocation so don't need to reset all thread data fields. 3794 static void __kmp_free_task_deque(kmp_thread_data_t *thread_data) { 3795 if (thread_data->td.td_deque != NULL) { 3796 __kmp_acquire_bootstrap_lock(&thread_data->td.td_deque_lock); 3797 TCW_4(thread_data->td.td_deque_ntasks, 0); 3798 __kmp_free(thread_data->td.td_deque); 3799 thread_data->td.td_deque = NULL; 3800 __kmp_release_bootstrap_lock(&thread_data->td.td_deque_lock); 3801 } 3802 3803 #ifdef BUILD_TIED_TASK_STACK 3804 // GEH: Figure out what to do here for td_susp_tied_tasks 3805 if (thread_data->td.td_susp_tied_tasks.ts_entries != TASK_STACK_EMPTY) { 3806 __kmp_free_task_stack(__kmp_thread_from_gtid(gtid), thread_data); 3807 } 3808 #endif // BUILD_TIED_TASK_STACK 3809 } 3810 3811 // __kmp_realloc_task_threads_data: 3812 // Allocates a threads_data array for a task team, either by allocating an 3813 // initial array or enlarging an existing array. Only the first thread to get 3814 // the lock allocs or enlarges the array and re-initializes the array elements. 3815 // That thread returns "TRUE", the rest return "FALSE". 3816 // Assumes that the new array size is given by task_team -> tt.tt_nproc. 3817 // The current size is given by task_team -> tt.tt_max_threads. 3818 static int __kmp_realloc_task_threads_data(kmp_info_t *thread, 3819 kmp_task_team_t *task_team) { 3820 kmp_thread_data_t **threads_data_p; 3821 kmp_int32 nthreads, maxthreads; 3822 int is_init_thread = FALSE; 3823 3824 if (TCR_4(task_team->tt.tt_found_tasks)) { 3825 // Already reallocated and initialized. 3826 return FALSE; 3827 } 3828 3829 threads_data_p = &task_team->tt.tt_threads_data; 3830 nthreads = task_team->tt.tt_nproc; 3831 maxthreads = task_team->tt.tt_max_threads; 3832 3833 // All threads must lock when they encounter the first task of the implicit 3834 // task region to make sure threads_data fields are (re)initialized before 3835 // used. 3836 __kmp_acquire_bootstrap_lock(&task_team->tt.tt_threads_lock); 3837 3838 if (!TCR_4(task_team->tt.tt_found_tasks)) { 3839 // first thread to enable tasking 3840 kmp_team_t *team = thread->th.th_team; 3841 int i; 3842 3843 is_init_thread = TRUE; 3844 if (maxthreads < nthreads) { 3845 3846 if (*threads_data_p != NULL) { 3847 kmp_thread_data_t *old_data = *threads_data_p; 3848 kmp_thread_data_t *new_data = NULL; 3849 3850 KE_TRACE( 3851 10, 3852 ("__kmp_realloc_task_threads_data: T#%d reallocating " 3853 "threads data for task_team %p, new_size = %d, old_size = %d\n", 3854 __kmp_gtid_from_thread(thread), task_team, nthreads, maxthreads)); 3855 // Reallocate threads_data to have more elements than current array 3856 // Cannot use __kmp_thread_realloc() because threads not around for 3857 // kmp_reap_task_team( ). Note all new array entries are initialized 3858 // to zero by __kmp_allocate(). 3859 new_data = (kmp_thread_data_t *)__kmp_allocate( 3860 nthreads * sizeof(kmp_thread_data_t)); 3861 // copy old data to new data 3862 KMP_MEMCPY_S((void *)new_data, nthreads * sizeof(kmp_thread_data_t), 3863 (void *)old_data, maxthreads * sizeof(kmp_thread_data_t)); 3864 3865 #ifdef BUILD_TIED_TASK_STACK 3866 // GEH: Figure out if this is the right thing to do 3867 for (i = maxthreads; i < nthreads; i++) { 3868 kmp_thread_data_t *thread_data = &(*threads_data_p)[i]; 3869 __kmp_init_task_stack(__kmp_gtid_from_thread(thread), thread_data); 3870 } 3871 #endif // BUILD_TIED_TASK_STACK 3872 // Install the new data and free the old data 3873 (*threads_data_p) = new_data; 3874 __kmp_free(old_data); 3875 } else { 3876 KE_TRACE(10, ("__kmp_realloc_task_threads_data: T#%d allocating " 3877 "threads data for task_team %p, size = %d\n", 3878 __kmp_gtid_from_thread(thread), task_team, nthreads)); 3879 // Make the initial allocate for threads_data array, and zero entries 3880 // Cannot use __kmp_thread_calloc() because threads not around for 3881 // kmp_reap_task_team( ). 3882 *threads_data_p = (kmp_thread_data_t *)__kmp_allocate( 3883 nthreads * sizeof(kmp_thread_data_t)); 3884 #ifdef BUILD_TIED_TASK_STACK 3885 // GEH: Figure out if this is the right thing to do 3886 for (i = 0; i < nthreads; i++) { 3887 kmp_thread_data_t *thread_data = &(*threads_data_p)[i]; 3888 __kmp_init_task_stack(__kmp_gtid_from_thread(thread), thread_data); 3889 } 3890 #endif // BUILD_TIED_TASK_STACK 3891 } 3892 task_team->tt.tt_max_threads = nthreads; 3893 } else { 3894 // If array has (more than) enough elements, go ahead and use it 3895 KMP_DEBUG_ASSERT(*threads_data_p != NULL); 3896 } 3897 3898 // initialize threads_data pointers back to thread_info structures 3899 for (i = 0; i < nthreads; i++) { 3900 kmp_thread_data_t *thread_data = &(*threads_data_p)[i]; 3901 thread_data->td.td_thr = team->t.t_threads[i]; 3902 3903 if (thread_data->td.td_deque_last_stolen >= nthreads) { 3904 // The last stolen field survives across teams / barrier, and the number 3905 // of threads may have changed. It's possible (likely?) that a new 3906 // parallel region will exhibit the same behavior as previous region. 3907 thread_data->td.td_deque_last_stolen = -1; 3908 } 3909 } 3910 3911 KMP_MB(); 3912 TCW_SYNC_4(task_team->tt.tt_found_tasks, TRUE); 3913 } 3914 3915 __kmp_release_bootstrap_lock(&task_team->tt.tt_threads_lock); 3916 return is_init_thread; 3917 } 3918 3919 // __kmp_free_task_threads_data: 3920 // Deallocates a threads_data array for a task team, including any attached 3921 // tasking deques. Only occurs at library shutdown. 3922 static void __kmp_free_task_threads_data(kmp_task_team_t *task_team) { 3923 __kmp_acquire_bootstrap_lock(&task_team->tt.tt_threads_lock); 3924 if (task_team->tt.tt_threads_data != NULL) { 3925 int i; 3926 for (i = 0; i < task_team->tt.tt_max_threads; i++) { 3927 __kmp_free_task_deque(&task_team->tt.tt_threads_data[i]); 3928 } 3929 __kmp_free(task_team->tt.tt_threads_data); 3930 task_team->tt.tt_threads_data = NULL; 3931 } 3932 __kmp_release_bootstrap_lock(&task_team->tt.tt_threads_lock); 3933 } 3934 3935 // __kmp_free_task_pri_list: 3936 // Deallocates tasking deques used for priority tasks. 3937 // Only occurs at library shutdown. 3938 static void __kmp_free_task_pri_list(kmp_task_team_t *task_team) { 3939 __kmp_acquire_bootstrap_lock(&task_team->tt.tt_task_pri_lock); 3940 if (task_team->tt.tt_task_pri_list != NULL) { 3941 kmp_task_pri_t *list = task_team->tt.tt_task_pri_list; 3942 while (list != NULL) { 3943 kmp_task_pri_t *next = list->next; 3944 __kmp_free_task_deque(&list->td); 3945 __kmp_free(list); 3946 list = next; 3947 } 3948 task_team->tt.tt_task_pri_list = NULL; 3949 } 3950 __kmp_release_bootstrap_lock(&task_team->tt.tt_task_pri_lock); 3951 } 3952 3953 static inline void __kmp_task_team_init(kmp_task_team_t *task_team, 3954 kmp_team_t *team) { 3955 int team_nth = team->t.t_nproc; 3956 // Only need to init if task team is isn't active or team size changed 3957 if (!task_team->tt.tt_active || team_nth != task_team->tt.tt_nproc) { 3958 TCW_4(task_team->tt.tt_found_tasks, FALSE); 3959 TCW_4(task_team->tt.tt_found_proxy_tasks, FALSE); 3960 TCW_4(task_team->tt.tt_hidden_helper_task_encountered, FALSE); 3961 TCW_4(task_team->tt.tt_nproc, team_nth); 3962 KMP_ATOMIC_ST_REL(&task_team->tt.tt_unfinished_threads, team_nth); 3963 TCW_4(task_team->tt.tt_active, TRUE); 3964 } 3965 } 3966 3967 // __kmp_allocate_task_team: 3968 // Allocates a task team associated with a specific team, taking it from 3969 // the global task team free list if possible. Also initializes data 3970 // structures. 3971 static kmp_task_team_t *__kmp_allocate_task_team(kmp_info_t *thread, 3972 kmp_team_t *team) { 3973 kmp_task_team_t *task_team = NULL; 3974 3975 KA_TRACE(20, ("__kmp_allocate_task_team: T#%d entering; team = %p\n", 3976 (thread ? __kmp_gtid_from_thread(thread) : -1), team)); 3977 3978 if (TCR_PTR(__kmp_free_task_teams) != NULL) { 3979 // Take a task team from the task team pool 3980 __kmp_acquire_bootstrap_lock(&__kmp_task_team_lock); 3981 if (__kmp_free_task_teams != NULL) { 3982 task_team = __kmp_free_task_teams; 3983 TCW_PTR(__kmp_free_task_teams, task_team->tt.tt_next); 3984 task_team->tt.tt_next = NULL; 3985 } 3986 __kmp_release_bootstrap_lock(&__kmp_task_team_lock); 3987 } 3988 3989 if (task_team == NULL) { 3990 KE_TRACE(10, ("__kmp_allocate_task_team: T#%d allocating " 3991 "task team for team %p\n", 3992 __kmp_gtid_from_thread(thread), team)); 3993 // Allocate a new task team if one is not available. Cannot use 3994 // __kmp_thread_malloc because threads not around for kmp_reap_task_team. 3995 task_team = (kmp_task_team_t *)__kmp_allocate(sizeof(kmp_task_team_t)); 3996 __kmp_init_bootstrap_lock(&task_team->tt.tt_threads_lock); 3997 __kmp_init_bootstrap_lock(&task_team->tt.tt_task_pri_lock); 3998 #if USE_ITT_BUILD && USE_ITT_NOTIFY && KMP_DEBUG 3999 // suppress race conditions detection on synchronization flags in debug mode 4000 // this helps to analyze library internals eliminating false positives 4001 __itt_suppress_mark_range( 4002 __itt_suppress_range, __itt_suppress_threading_errors, 4003 &task_team->tt.tt_found_tasks, sizeof(task_team->tt.tt_found_tasks)); 4004 __itt_suppress_mark_range(__itt_suppress_range, 4005 __itt_suppress_threading_errors, 4006 CCAST(kmp_uint32 *, &task_team->tt.tt_active), 4007 sizeof(task_team->tt.tt_active)); 4008 #endif /* USE_ITT_BUILD && USE_ITT_NOTIFY && KMP_DEBUG */ 4009 // Note: __kmp_allocate zeroes returned memory, othewise we would need: 4010 // task_team->tt.tt_threads_data = NULL; 4011 // task_team->tt.tt_max_threads = 0; 4012 // task_team->tt.tt_next = NULL; 4013 } 4014 4015 __kmp_task_team_init(task_team, team); 4016 4017 KA_TRACE(20, ("__kmp_allocate_task_team: T#%d exiting; task_team = %p " 4018 "unfinished_threads init'd to %d\n", 4019 (thread ? __kmp_gtid_from_thread(thread) : -1), task_team, 4020 KMP_ATOMIC_LD_RLX(&task_team->tt.tt_unfinished_threads))); 4021 return task_team; 4022 } 4023 4024 // __kmp_free_task_team: 4025 // Frees the task team associated with a specific thread, and adds it 4026 // to the global task team free list. 4027 void __kmp_free_task_team(kmp_info_t *thread, kmp_task_team_t *task_team) { 4028 KA_TRACE(20, ("__kmp_free_task_team: T#%d task_team = %p\n", 4029 thread ? __kmp_gtid_from_thread(thread) : -1, task_team)); 4030 4031 // Put task team back on free list 4032 __kmp_acquire_bootstrap_lock(&__kmp_task_team_lock); 4033 4034 KMP_DEBUG_ASSERT(task_team->tt.tt_next == NULL); 4035 task_team->tt.tt_next = __kmp_free_task_teams; 4036 TCW_PTR(__kmp_free_task_teams, task_team); 4037 4038 __kmp_release_bootstrap_lock(&__kmp_task_team_lock); 4039 } 4040 4041 // __kmp_reap_task_teams: 4042 // Free all the task teams on the task team free list. 4043 // Should only be done during library shutdown. 4044 // Cannot do anything that needs a thread structure or gtid since they are 4045 // already gone. 4046 void __kmp_reap_task_teams(void) { 4047 kmp_task_team_t *task_team; 4048 4049 if (TCR_PTR(__kmp_free_task_teams) != NULL) { 4050 // Free all task_teams on the free list 4051 __kmp_acquire_bootstrap_lock(&__kmp_task_team_lock); 4052 while ((task_team = __kmp_free_task_teams) != NULL) { 4053 __kmp_free_task_teams = task_team->tt.tt_next; 4054 task_team->tt.tt_next = NULL; 4055 4056 // Free threads_data if necessary 4057 if (task_team->tt.tt_threads_data != NULL) { 4058 __kmp_free_task_threads_data(task_team); 4059 } 4060 if (task_team->tt.tt_task_pri_list != NULL) { 4061 __kmp_free_task_pri_list(task_team); 4062 } 4063 __kmp_free(task_team); 4064 } 4065 __kmp_release_bootstrap_lock(&__kmp_task_team_lock); 4066 } 4067 } 4068 4069 // View the array of two task team pointers as a pair of pointers: 4070 // 1) a single task_team pointer 4071 // 2) next pointer for stack 4072 // Serial teams can create a stack of task teams for nested serial teams. 4073 void __kmp_push_task_team_node(kmp_info_t *thread, kmp_team_t *team) { 4074 KMP_DEBUG_ASSERT(team->t.t_nproc == 1); 4075 kmp_task_team_list_t *current = 4076 (kmp_task_team_list_t *)(&team->t.t_task_team[0]); 4077 kmp_task_team_list_t *node = 4078 (kmp_task_team_list_t *)__kmp_allocate(sizeof(kmp_task_team_list_t)); 4079 node->task_team = current->task_team; 4080 node->next = current->next; 4081 thread->th.th_task_team = current->task_team = NULL; 4082 current->next = node; 4083 } 4084 4085 // Serial team pops a task team off the stack 4086 void __kmp_pop_task_team_node(kmp_info_t *thread, kmp_team_t *team) { 4087 KMP_DEBUG_ASSERT(team->t.t_nproc == 1); 4088 kmp_task_team_list_t *current = 4089 (kmp_task_team_list_t *)(&team->t.t_task_team[0]); 4090 if (current->task_team) { 4091 __kmp_free_task_team(thread, current->task_team); 4092 } 4093 kmp_task_team_list_t *next = current->next; 4094 if (next) { 4095 current->task_team = next->task_team; 4096 current->next = next->next; 4097 KMP_DEBUG_ASSERT(next != current); 4098 __kmp_free(next); 4099 thread->th.th_task_team = current->task_team; 4100 } 4101 } 4102 4103 // __kmp_wait_to_unref_task_teams: 4104 // Some threads could still be in the fork barrier release code, possibly 4105 // trying to steal tasks. Wait for each thread to unreference its task team. 4106 void __kmp_wait_to_unref_task_teams(void) { 4107 kmp_info_t *thread; 4108 kmp_uint32 spins; 4109 kmp_uint64 time; 4110 int done; 4111 4112 KMP_INIT_YIELD(spins); 4113 KMP_INIT_BACKOFF(time); 4114 4115 for (;;) { 4116 done = TRUE; 4117 4118 // TODO: GEH - this may be is wrong because some sync would be necessary 4119 // in case threads are added to the pool during the traversal. Need to 4120 // verify that lock for thread pool is held when calling this routine. 4121 for (thread = CCAST(kmp_info_t *, __kmp_thread_pool); thread != NULL; 4122 thread = thread->th.th_next_pool) { 4123 #if KMP_OS_WINDOWS 4124 DWORD exit_val; 4125 #endif 4126 if (TCR_PTR(thread->th.th_task_team) == NULL) { 4127 KA_TRACE(10, ("__kmp_wait_to_unref_task_team: T#%d task_team == NULL\n", 4128 __kmp_gtid_from_thread(thread))); 4129 continue; 4130 } 4131 #if KMP_OS_WINDOWS 4132 // TODO: GEH - add this check for Linux* OS / OS X* as well? 4133 if (!__kmp_is_thread_alive(thread, &exit_val)) { 4134 thread->th.th_task_team = NULL; 4135 continue; 4136 } 4137 #endif 4138 4139 done = FALSE; // Because th_task_team pointer is not NULL for this thread 4140 4141 KA_TRACE(10, ("__kmp_wait_to_unref_task_team: Waiting for T#%d to " 4142 "unreference task_team\n", 4143 __kmp_gtid_from_thread(thread))); 4144 4145 if (__kmp_dflt_blocktime != KMP_MAX_BLOCKTIME) { 4146 void *sleep_loc; 4147 // If the thread is sleeping, awaken it. 4148 if ((sleep_loc = TCR_PTR(CCAST(void *, thread->th.th_sleep_loc))) != 4149 NULL) { 4150 KA_TRACE( 4151 10, 4152 ("__kmp_wait_to_unref_task_team: T#%d waking up thread T#%d\n", 4153 __kmp_gtid_from_thread(thread), __kmp_gtid_from_thread(thread))); 4154 __kmp_null_resume_wrapper(thread); 4155 } 4156 } 4157 } 4158 if (done) { 4159 break; 4160 } 4161 4162 // If oversubscribed or have waited a bit, yield. 4163 KMP_YIELD_OVERSUB_ELSE_SPIN(spins, time); 4164 } 4165 } 4166 4167 // __kmp_task_team_setup: Create a task_team for the current team, but use 4168 // an already created, unused one if it already exists. 4169 void __kmp_task_team_setup(kmp_info_t *this_thr, kmp_team_t *team) { 4170 KMP_DEBUG_ASSERT(__kmp_tasking_mode != tskm_immediate_exec); 4171 4172 // For the serial and root teams, setup the first task team pointer to point 4173 // to task team. The other pointer is a stack of task teams from previous 4174 // serial levels. 4175 if (team == this_thr->th.th_serial_team || 4176 team == this_thr->th.th_root->r.r_root_team) { 4177 KMP_DEBUG_ASSERT(team->t.t_nproc == 1); 4178 if (team->t.t_task_team[0] == NULL) { 4179 team->t.t_task_team[0] = __kmp_allocate_task_team(this_thr, team); 4180 KA_TRACE( 4181 20, ("__kmp_task_team_setup: Primary T#%d created new task_team %p" 4182 " for serial/root team %p\n", 4183 __kmp_gtid_from_thread(this_thr), team->t.t_task_team[0], team)); 4184 4185 } else 4186 __kmp_task_team_init(team->t.t_task_team[0], team); 4187 return; 4188 } 4189 4190 // If this task_team hasn't been created yet, allocate it. It will be used in 4191 // the region after the next. 4192 // If it exists, it is the current task team and shouldn't be touched yet as 4193 // it may still be in use. 4194 if (team->t.t_task_team[this_thr->th.th_task_state] == NULL) { 4195 team->t.t_task_team[this_thr->th.th_task_state] = 4196 __kmp_allocate_task_team(this_thr, team); 4197 KA_TRACE(20, ("__kmp_task_team_setup: Primary T#%d created new task_team %p" 4198 " for team %d at parity=%d\n", 4199 __kmp_gtid_from_thread(this_thr), 4200 team->t.t_task_team[this_thr->th.th_task_state], team->t.t_id, 4201 this_thr->th.th_task_state)); 4202 } 4203 4204 // After threads exit the release, they will call sync, and then point to this 4205 // other task_team; make sure it is allocated and properly initialized. As 4206 // threads spin in the barrier release phase, they will continue to use the 4207 // previous task_team struct(above), until they receive the signal to stop 4208 // checking for tasks (they can't safely reference the kmp_team_t struct, 4209 // which could be reallocated by the primary thread). 4210 int other_team = 1 - this_thr->th.th_task_state; 4211 KMP_DEBUG_ASSERT(other_team >= 0 && other_team < 2); 4212 if (team->t.t_task_team[other_team] == NULL) { // setup other team as well 4213 team->t.t_task_team[other_team] = __kmp_allocate_task_team(this_thr, team); 4214 KA_TRACE(20, ("__kmp_task_team_setup: Primary T#%d created second new " 4215 "task_team %p for team %d at parity=%d\n", 4216 __kmp_gtid_from_thread(this_thr), 4217 team->t.t_task_team[other_team], team->t.t_id, other_team)); 4218 } else { // Leave the old task team struct in place for the upcoming region; 4219 // adjust as needed 4220 kmp_task_team_t *task_team = team->t.t_task_team[other_team]; 4221 __kmp_task_team_init(task_team, team); 4222 // if team size has changed, the first thread to enable tasking will 4223 // realloc threads_data if necessary 4224 KA_TRACE(20, ("__kmp_task_team_setup: Primary T#%d reset next task_team " 4225 "%p for team %d at parity=%d\n", 4226 __kmp_gtid_from_thread(this_thr), 4227 team->t.t_task_team[other_team], team->t.t_id, other_team)); 4228 } 4229 4230 // For regular thread, task enabling should be called when the task is going 4231 // to be pushed to a dequeue. However, for the hidden helper thread, we need 4232 // it ahead of time so that some operations can be performed without race 4233 // condition. 4234 if (this_thr == __kmp_hidden_helper_main_thread) { 4235 for (int i = 0; i < 2; ++i) { 4236 kmp_task_team_t *task_team = team->t.t_task_team[i]; 4237 if (KMP_TASKING_ENABLED(task_team)) { 4238 continue; 4239 } 4240 __kmp_enable_tasking(task_team, this_thr); 4241 for (int j = 0; j < task_team->tt.tt_nproc; ++j) { 4242 kmp_thread_data_t *thread_data = &task_team->tt.tt_threads_data[j]; 4243 if (thread_data->td.td_deque == NULL) { 4244 __kmp_alloc_task_deque(__kmp_hidden_helper_threads[j], thread_data); 4245 } 4246 } 4247 } 4248 } 4249 } 4250 4251 // __kmp_task_team_sync: Propagation of task team data from team to threads 4252 // which happens just after the release phase of a team barrier. This may be 4253 // called by any thread. This is not called for serial or root teams. 4254 void __kmp_task_team_sync(kmp_info_t *this_thr, kmp_team_t *team) { 4255 KMP_DEBUG_ASSERT(__kmp_tasking_mode != tskm_immediate_exec); 4256 KMP_DEBUG_ASSERT(team != this_thr->th.th_serial_team); 4257 KMP_DEBUG_ASSERT(team != this_thr->th.th_root->r.r_root_team); 4258 4259 // Toggle the th_task_state field, to switch which task_team this thread 4260 // refers to 4261 this_thr->th.th_task_state = (kmp_uint8)(1 - this_thr->th.th_task_state); 4262 4263 // It is now safe to propagate the task team pointer from the team struct to 4264 // the current thread. 4265 TCW_PTR(this_thr->th.th_task_team, 4266 team->t.t_task_team[this_thr->th.th_task_state]); 4267 KA_TRACE(20, 4268 ("__kmp_task_team_sync: Thread T#%d task team switched to task_team " 4269 "%p from Team #%d (parity=%d)\n", 4270 __kmp_gtid_from_thread(this_thr), this_thr->th.th_task_team, 4271 team->t.t_id, this_thr->th.th_task_state)); 4272 } 4273 4274 // __kmp_task_team_wait: Primary thread waits for outstanding tasks after the 4275 // barrier gather phase. Only called by the primary thread. 4276 // 4277 // wait is a flag that defaults to 1 (see kmp.h), but waiting can be turned off 4278 // by passing in 0 optionally as the last argument. When wait is zero, primary 4279 // thread does not wait for unfinished_threads to reach 0. 4280 void __kmp_task_team_wait( 4281 kmp_info_t *this_thr, 4282 kmp_team_t *team USE_ITT_BUILD_ARG(void *itt_sync_obj), int wait) { 4283 kmp_task_team_t *task_team = team->t.t_task_team[this_thr->th.th_task_state]; 4284 4285 KMP_DEBUG_ASSERT(__kmp_tasking_mode != tskm_immediate_exec); 4286 KMP_DEBUG_ASSERT(task_team == this_thr->th.th_task_team); 4287 4288 if ((task_team != NULL) && KMP_TASKING_ENABLED(task_team)) { 4289 if (wait) { 4290 KA_TRACE(20, ("__kmp_task_team_wait: Primary T#%d waiting for all tasks " 4291 "(for unfinished_threads to reach 0) on task_team = %p\n", 4292 __kmp_gtid_from_thread(this_thr), task_team)); 4293 // Worker threads may have dropped through to release phase, but could 4294 // still be executing tasks. Wait here for tasks to complete. To avoid 4295 // memory contention, only primary thread checks termination condition. 4296 kmp_flag_32<false, false> flag( 4297 RCAST(std::atomic<kmp_uint32> *, 4298 &task_team->tt.tt_unfinished_threads), 4299 0U); 4300 flag.wait(this_thr, TRUE USE_ITT_BUILD_ARG(itt_sync_obj)); 4301 } 4302 // Deactivate the old task team, so that the worker threads will stop 4303 // referencing it while spinning. 4304 KA_TRACE( 4305 20, 4306 ("__kmp_task_team_wait: Primary T#%d deactivating task_team %p: " 4307 "setting active to false, setting local and team's pointer to NULL\n", 4308 __kmp_gtid_from_thread(this_thr), task_team)); 4309 TCW_SYNC_4(task_team->tt.tt_found_proxy_tasks, FALSE); 4310 TCW_SYNC_4(task_team->tt.tt_hidden_helper_task_encountered, FALSE); 4311 KMP_CHECK_UPDATE(task_team->tt.tt_untied_task_encountered, 0); 4312 TCW_SYNC_4(task_team->tt.tt_active, FALSE); 4313 KMP_MB(); 4314 4315 TCW_PTR(this_thr->th.th_task_team, NULL); 4316 } 4317 } 4318 4319 // __kmp_tasking_barrier: 4320 // This routine is called only when __kmp_tasking_mode == tskm_extra_barrier. 4321 // Internal function to execute all tasks prior to a regular barrier or a join 4322 // barrier. It is a full barrier itself, which unfortunately turns regular 4323 // barriers into double barriers and join barriers into 1 1/2 barriers. 4324 void __kmp_tasking_barrier(kmp_team_t *team, kmp_info_t *thread, int gtid) { 4325 std::atomic<kmp_uint32> *spin = RCAST( 4326 std::atomic<kmp_uint32> *, 4327 &team->t.t_task_team[thread->th.th_task_state]->tt.tt_unfinished_threads); 4328 int flag = FALSE; 4329 KMP_DEBUG_ASSERT(__kmp_tasking_mode == tskm_extra_barrier); 4330 4331 #if USE_ITT_BUILD 4332 KMP_FSYNC_SPIN_INIT(spin, NULL); 4333 #endif /* USE_ITT_BUILD */ 4334 kmp_flag_32<false, false> spin_flag(spin, 0U); 4335 while (!spin_flag.execute_tasks(thread, gtid, TRUE, 4336 &flag USE_ITT_BUILD_ARG(NULL), 0)) { 4337 #if USE_ITT_BUILD 4338 // TODO: What about itt_sync_obj?? 4339 KMP_FSYNC_SPIN_PREPARE(RCAST(void *, spin)); 4340 #endif /* USE_ITT_BUILD */ 4341 4342 if (TCR_4(__kmp_global.g.g_done)) { 4343 if (__kmp_global.g.g_abort) 4344 __kmp_abort_thread(); 4345 break; 4346 } 4347 KMP_YIELD(TRUE); 4348 } 4349 #if USE_ITT_BUILD 4350 KMP_FSYNC_SPIN_ACQUIRED(RCAST(void *, spin)); 4351 #endif /* USE_ITT_BUILD */ 4352 } 4353 4354 // __kmp_give_task puts a task into a given thread queue if: 4355 // - the queue for that thread was created 4356 // - there's space in that queue 4357 // Because of this, __kmp_push_task needs to check if there's space after 4358 // getting the lock 4359 static bool __kmp_give_task(kmp_info_t *thread, kmp_int32 tid, kmp_task_t *task, 4360 kmp_int32 pass) { 4361 kmp_taskdata_t *taskdata = KMP_TASK_TO_TASKDATA(task); 4362 kmp_task_team_t *task_team = taskdata->td_task_team; 4363 4364 KA_TRACE(20, ("__kmp_give_task: trying to give task %p to thread %d.\n", 4365 taskdata, tid)); 4366 4367 // If task_team is NULL something went really bad... 4368 KMP_DEBUG_ASSERT(task_team != NULL); 4369 4370 bool result = false; 4371 kmp_thread_data_t *thread_data = &task_team->tt.tt_threads_data[tid]; 4372 4373 if (thread_data->td.td_deque == NULL) { 4374 // There's no queue in this thread, go find another one 4375 // We're guaranteed that at least one thread has a queue 4376 KA_TRACE(30, 4377 ("__kmp_give_task: thread %d has no queue while giving task %p.\n", 4378 tid, taskdata)); 4379 return result; 4380 } 4381 4382 if (TCR_4(thread_data->td.td_deque_ntasks) >= 4383 TASK_DEQUE_SIZE(thread_data->td)) { 4384 KA_TRACE( 4385 30, 4386 ("__kmp_give_task: queue is full while giving task %p to thread %d.\n", 4387 taskdata, tid)); 4388 4389 // if this deque is bigger than the pass ratio give a chance to another 4390 // thread 4391 if (TASK_DEQUE_SIZE(thread_data->td) / INITIAL_TASK_DEQUE_SIZE >= pass) 4392 return result; 4393 4394 __kmp_acquire_bootstrap_lock(&thread_data->td.td_deque_lock); 4395 if (TCR_4(thread_data->td.td_deque_ntasks) >= 4396 TASK_DEQUE_SIZE(thread_data->td)) { 4397 // expand deque to push the task which is not allowed to execute 4398 __kmp_realloc_task_deque(thread, thread_data); 4399 } 4400 4401 } else { 4402 4403 __kmp_acquire_bootstrap_lock(&thread_data->td.td_deque_lock); 4404 4405 if (TCR_4(thread_data->td.td_deque_ntasks) >= 4406 TASK_DEQUE_SIZE(thread_data->td)) { 4407 KA_TRACE(30, ("__kmp_give_task: queue is full while giving task %p to " 4408 "thread %d.\n", 4409 taskdata, tid)); 4410 4411 // if this deque is bigger than the pass ratio give a chance to another 4412 // thread 4413 if (TASK_DEQUE_SIZE(thread_data->td) / INITIAL_TASK_DEQUE_SIZE >= pass) 4414 goto release_and_exit; 4415 4416 __kmp_realloc_task_deque(thread, thread_data); 4417 } 4418 } 4419 4420 // lock is held here, and there is space in the deque 4421 4422 thread_data->td.td_deque[thread_data->td.td_deque_tail] = taskdata; 4423 // Wrap index. 4424 thread_data->td.td_deque_tail = 4425 (thread_data->td.td_deque_tail + 1) & TASK_DEQUE_MASK(thread_data->td); 4426 TCW_4(thread_data->td.td_deque_ntasks, 4427 TCR_4(thread_data->td.td_deque_ntasks) + 1); 4428 4429 result = true; 4430 KA_TRACE(30, ("__kmp_give_task: successfully gave task %p to thread %d.\n", 4431 taskdata, tid)); 4432 4433 release_and_exit: 4434 __kmp_release_bootstrap_lock(&thread_data->td.td_deque_lock); 4435 4436 return result; 4437 } 4438 4439 #define PROXY_TASK_FLAG 0x40000000 4440 /* The finish of the proxy tasks is divided in two pieces: 4441 - the top half is the one that can be done from a thread outside the team 4442 - the bottom half must be run from a thread within the team 4443 4444 In order to run the bottom half the task gets queued back into one of the 4445 threads of the team. Once the td_incomplete_child_task counter of the parent 4446 is decremented the threads can leave the barriers. So, the bottom half needs 4447 to be queued before the counter is decremented. The top half is therefore 4448 divided in two parts: 4449 - things that can be run before queuing the bottom half 4450 - things that must be run after queuing the bottom half 4451 4452 This creates a second race as the bottom half can free the task before the 4453 second top half is executed. To avoid this we use the 4454 td_incomplete_child_task of the proxy task to synchronize the top and bottom 4455 half. */ 4456 static void __kmp_first_top_half_finish_proxy(kmp_taskdata_t *taskdata) { 4457 KMP_DEBUG_ASSERT(taskdata->td_flags.tasktype == TASK_EXPLICIT); 4458 KMP_DEBUG_ASSERT(taskdata->td_flags.proxy == TASK_PROXY); 4459 KMP_DEBUG_ASSERT(taskdata->td_flags.complete == 0); 4460 KMP_DEBUG_ASSERT(taskdata->td_flags.freed == 0); 4461 4462 taskdata->td_flags.complete = 1; // mark the task as completed 4463 #if OMPX_TASKGRAPH 4464 taskdata->td_flags.onced = 1; 4465 #endif 4466 4467 if (taskdata->td_taskgroup) 4468 KMP_ATOMIC_DEC(&taskdata->td_taskgroup->count); 4469 4470 // Create an imaginary children for this task so the bottom half cannot 4471 // release the task before we have completed the second top half 4472 KMP_ATOMIC_OR(&taskdata->td_incomplete_child_tasks, PROXY_TASK_FLAG); 4473 } 4474 4475 static void __kmp_second_top_half_finish_proxy(kmp_taskdata_t *taskdata) { 4476 #if KMP_DEBUG 4477 kmp_int32 children = 0; 4478 // Predecrement simulated by "- 1" calculation 4479 children = -1 + 4480 #endif 4481 KMP_ATOMIC_DEC(&taskdata->td_parent->td_incomplete_child_tasks); 4482 KMP_DEBUG_ASSERT(children >= 0); 4483 4484 // Remove the imaginary children 4485 KMP_ATOMIC_AND(&taskdata->td_incomplete_child_tasks, ~PROXY_TASK_FLAG); 4486 } 4487 4488 static void __kmp_bottom_half_finish_proxy(kmp_int32 gtid, kmp_task_t *ptask) { 4489 kmp_taskdata_t *taskdata = KMP_TASK_TO_TASKDATA(ptask); 4490 kmp_info_t *thread = __kmp_threads[gtid]; 4491 4492 KMP_DEBUG_ASSERT(taskdata->td_flags.proxy == TASK_PROXY); 4493 KMP_DEBUG_ASSERT(taskdata->td_flags.complete == 4494 1); // top half must run before bottom half 4495 4496 // We need to wait to make sure the top half is finished 4497 // Spinning here should be ok as this should happen quickly 4498 while ((KMP_ATOMIC_LD_ACQ(&taskdata->td_incomplete_child_tasks) & 4499 PROXY_TASK_FLAG) > 0) 4500 ; 4501 4502 __kmp_release_deps(gtid, taskdata); 4503 __kmp_free_task_and_ancestors(gtid, taskdata, thread); 4504 } 4505 4506 /*! 4507 @ingroup TASKING 4508 @param gtid Global Thread ID of encountering thread 4509 @param ptask Task which execution is completed 4510 4511 Execute the completion of a proxy task from a thread of that is part of the 4512 team. Run first and bottom halves directly. 4513 */ 4514 void __kmpc_proxy_task_completed(kmp_int32 gtid, kmp_task_t *ptask) { 4515 KMP_DEBUG_ASSERT(ptask != NULL); 4516 kmp_taskdata_t *taskdata = KMP_TASK_TO_TASKDATA(ptask); 4517 KA_TRACE( 4518 10, ("__kmp_proxy_task_completed(enter): T#%d proxy task %p completing\n", 4519 gtid, taskdata)); 4520 __kmp_assert_valid_gtid(gtid); 4521 KMP_DEBUG_ASSERT(taskdata->td_flags.proxy == TASK_PROXY); 4522 4523 __kmp_first_top_half_finish_proxy(taskdata); 4524 __kmp_second_top_half_finish_proxy(taskdata); 4525 __kmp_bottom_half_finish_proxy(gtid, ptask); 4526 4527 KA_TRACE(10, 4528 ("__kmp_proxy_task_completed(exit): T#%d proxy task %p completing\n", 4529 gtid, taskdata)); 4530 } 4531 4532 void __kmpc_give_task(kmp_task_t *ptask, kmp_int32 start = 0) { 4533 KMP_DEBUG_ASSERT(ptask != NULL); 4534 kmp_taskdata_t *taskdata = KMP_TASK_TO_TASKDATA(ptask); 4535 4536 // Enqueue task to complete bottom half completion from a thread within the 4537 // corresponding team 4538 kmp_team_t *team = taskdata->td_team; 4539 kmp_int32 nthreads = team->t.t_nproc; 4540 kmp_info_t *thread; 4541 4542 // This should be similar to start_k = __kmp_get_random( thread ) % nthreads 4543 // but we cannot use __kmp_get_random here 4544 kmp_int32 start_k = start % nthreads; 4545 kmp_int32 pass = 1; 4546 kmp_int32 k = start_k; 4547 4548 do { 4549 // For now we're just linearly trying to find a thread 4550 thread = team->t.t_threads[k]; 4551 k = (k + 1) % nthreads; 4552 4553 // we did a full pass through all the threads 4554 if (k == start_k) 4555 pass = pass << 1; 4556 4557 } while (!__kmp_give_task(thread, k, ptask, pass)); 4558 4559 if (__kmp_dflt_blocktime != KMP_MAX_BLOCKTIME && __kmp_wpolicy_passive) { 4560 // awake at least one thread to execute given task 4561 for (int i = 0; i < nthreads; ++i) { 4562 thread = team->t.t_threads[i]; 4563 if (thread->th.th_sleep_loc != NULL) { 4564 __kmp_null_resume_wrapper(thread); 4565 break; 4566 } 4567 } 4568 } 4569 } 4570 4571 /*! 4572 @ingroup TASKING 4573 @param ptask Task which execution is completed 4574 4575 Execute the completion of a proxy task from a thread that could not belong to 4576 the team. 4577 */ 4578 void __kmpc_proxy_task_completed_ooo(kmp_task_t *ptask) { 4579 KMP_DEBUG_ASSERT(ptask != NULL); 4580 kmp_taskdata_t *taskdata = KMP_TASK_TO_TASKDATA(ptask); 4581 4582 KA_TRACE( 4583 10, 4584 ("__kmp_proxy_task_completed_ooo(enter): proxy task completing ooo %p\n", 4585 taskdata)); 4586 4587 KMP_DEBUG_ASSERT(taskdata->td_flags.proxy == TASK_PROXY); 4588 4589 __kmp_first_top_half_finish_proxy(taskdata); 4590 4591 __kmpc_give_task(ptask); 4592 4593 __kmp_second_top_half_finish_proxy(taskdata); 4594 4595 KA_TRACE( 4596 10, 4597 ("__kmp_proxy_task_completed_ooo(exit): proxy task completing ooo %p\n", 4598 taskdata)); 4599 } 4600 4601 kmp_event_t *__kmpc_task_allow_completion_event(ident_t *loc_ref, int gtid, 4602 kmp_task_t *task) { 4603 kmp_taskdata_t *td = KMP_TASK_TO_TASKDATA(task); 4604 if (td->td_allow_completion_event.type == KMP_EVENT_UNINITIALIZED) { 4605 td->td_allow_completion_event.type = KMP_EVENT_ALLOW_COMPLETION; 4606 td->td_allow_completion_event.ed.task = task; 4607 __kmp_init_tas_lock(&td->td_allow_completion_event.lock); 4608 } 4609 return &td->td_allow_completion_event; 4610 } 4611 4612 void __kmp_fulfill_event(kmp_event_t *event) { 4613 if (event->type == KMP_EVENT_ALLOW_COMPLETION) { 4614 kmp_task_t *ptask = event->ed.task; 4615 kmp_taskdata_t *taskdata = KMP_TASK_TO_TASKDATA(ptask); 4616 bool detached = false; 4617 int gtid = __kmp_get_gtid(); 4618 4619 // The associated task might have completed or could be completing at this 4620 // point. 4621 // We need to take the lock to avoid races 4622 __kmp_acquire_tas_lock(&event->lock, gtid); 4623 if (taskdata->td_flags.proxy == TASK_PROXY) { 4624 detached = true; 4625 } else { 4626 #if OMPT_SUPPORT 4627 // The OMPT event must occur under mutual exclusion, 4628 // otherwise the tool might access ptask after free 4629 if (UNLIKELY(ompt_enabled.enabled)) 4630 __ompt_task_finish(ptask, NULL, ompt_task_early_fulfill); 4631 #endif 4632 } 4633 event->type = KMP_EVENT_UNINITIALIZED; 4634 __kmp_release_tas_lock(&event->lock, gtid); 4635 4636 if (detached) { 4637 #if OMPT_SUPPORT 4638 // We free ptask afterwards and know the task is finished, 4639 // so locking is not necessary 4640 if (UNLIKELY(ompt_enabled.enabled)) 4641 __ompt_task_finish(ptask, NULL, ompt_task_late_fulfill); 4642 #endif 4643 // If the task detached complete the proxy task 4644 if (gtid >= 0) { 4645 kmp_team_t *team = taskdata->td_team; 4646 kmp_info_t *thread = __kmp_get_thread(); 4647 if (thread->th.th_team == team) { 4648 __kmpc_proxy_task_completed(gtid, ptask); 4649 return; 4650 } 4651 } 4652 4653 // fallback 4654 __kmpc_proxy_task_completed_ooo(ptask); 4655 } 4656 } 4657 } 4658 4659 // __kmp_task_dup_alloc: Allocate the taskdata and make a copy of source task 4660 // for taskloop 4661 // 4662 // thread: allocating thread 4663 // task_src: pointer to source task to be duplicated 4664 // taskloop_recur: used only when dealing with taskgraph, 4665 // indicating whether we need to update task->td_task_id 4666 // returns: a pointer to the allocated kmp_task_t structure (task). 4667 kmp_task_t *__kmp_task_dup_alloc(kmp_info_t *thread, kmp_task_t *task_src 4668 #if OMPX_TASKGRAPH 4669 , int taskloop_recur 4670 #endif 4671 ) { 4672 kmp_task_t *task; 4673 kmp_taskdata_t *taskdata; 4674 kmp_taskdata_t *taskdata_src = KMP_TASK_TO_TASKDATA(task_src); 4675 kmp_taskdata_t *parent_task = taskdata_src->td_parent; // same parent task 4676 size_t shareds_offset; 4677 size_t task_size; 4678 4679 KA_TRACE(10, ("__kmp_task_dup_alloc(enter): Th %p, source task %p\n", thread, 4680 task_src)); 4681 KMP_DEBUG_ASSERT(taskdata_src->td_flags.proxy == 4682 TASK_FULL); // it should not be proxy task 4683 KMP_DEBUG_ASSERT(taskdata_src->td_flags.tasktype == TASK_EXPLICIT); 4684 task_size = taskdata_src->td_size_alloc; 4685 4686 // Allocate a kmp_taskdata_t block and a kmp_task_t block. 4687 KA_TRACE(30, ("__kmp_task_dup_alloc: Th %p, malloc size %ld\n", thread, 4688 task_size)); 4689 #if USE_FAST_MEMORY 4690 taskdata = (kmp_taskdata_t *)__kmp_fast_allocate(thread, task_size); 4691 #else 4692 taskdata = (kmp_taskdata_t *)__kmp_thread_malloc(thread, task_size); 4693 #endif /* USE_FAST_MEMORY */ 4694 KMP_MEMCPY(taskdata, taskdata_src, task_size); 4695 4696 task = KMP_TASKDATA_TO_TASK(taskdata); 4697 4698 // Initialize new task (only specific fields not affected by memcpy) 4699 #if OMPX_TASKGRAPH 4700 if (!taskdata->is_taskgraph || taskloop_recur) 4701 taskdata->td_task_id = KMP_GEN_TASK_ID(); 4702 else if (taskdata->is_taskgraph && 4703 __kmp_tdg_is_recording(taskdata_src->tdg->tdg_status)) 4704 taskdata->td_task_id = KMP_ATOMIC_INC(&__kmp_tdg_task_id); 4705 #else 4706 taskdata->td_task_id = KMP_GEN_TASK_ID(); 4707 #endif 4708 if (task->shareds != NULL) { // need setup shareds pointer 4709 shareds_offset = (char *)task_src->shareds - (char *)taskdata_src; 4710 task->shareds = &((char *)taskdata)[shareds_offset]; 4711 KMP_DEBUG_ASSERT((((kmp_uintptr_t)task->shareds) & (sizeof(void *) - 1)) == 4712 0); 4713 } 4714 taskdata->td_alloc_thread = thread; 4715 taskdata->td_parent = parent_task; 4716 // task inherits the taskgroup from the parent task 4717 taskdata->td_taskgroup = parent_task->td_taskgroup; 4718 // tied task needs to initialize the td_last_tied at creation, 4719 // untied one does this when it is scheduled for execution 4720 if (taskdata->td_flags.tiedness == TASK_TIED) 4721 taskdata->td_last_tied = taskdata; 4722 4723 // Only need to keep track of child task counts if team parallel and tasking 4724 // not serialized 4725 if (!(taskdata->td_flags.team_serial || taskdata->td_flags.tasking_ser)) { 4726 KMP_ATOMIC_INC(&parent_task->td_incomplete_child_tasks); 4727 if (parent_task->td_taskgroup) 4728 KMP_ATOMIC_INC(&parent_task->td_taskgroup->count); 4729 // Only need to keep track of allocated child tasks for explicit tasks since 4730 // implicit not deallocated 4731 if (taskdata->td_parent->td_flags.tasktype == TASK_EXPLICIT) 4732 KMP_ATOMIC_INC(&taskdata->td_parent->td_allocated_child_tasks); 4733 } 4734 4735 KA_TRACE(20, 4736 ("__kmp_task_dup_alloc(exit): Th %p, created task %p, parent=%p\n", 4737 thread, taskdata, taskdata->td_parent)); 4738 #if OMPT_SUPPORT 4739 if (UNLIKELY(ompt_enabled.enabled)) 4740 __ompt_task_init(taskdata, thread->th.th_info.ds.ds_gtid); 4741 #endif 4742 return task; 4743 } 4744 4745 // Routine optionally generated by the compiler for setting the lastprivate flag 4746 // and calling needed constructors for private/firstprivate objects 4747 // (used to form taskloop tasks from pattern task) 4748 // Parameters: dest task, src task, lastprivate flag. 4749 typedef void (*p_task_dup_t)(kmp_task_t *, kmp_task_t *, kmp_int32); 4750 4751 KMP_BUILD_ASSERT(sizeof(long) == 4 || sizeof(long) == 8); 4752 4753 // class to encapsulate manipulating loop bounds in a taskloop task. 4754 // this abstracts away the Intel vs GOMP taskloop interface for setting/getting 4755 // the loop bound variables. 4756 class kmp_taskloop_bounds_t { 4757 kmp_task_t *task; 4758 const kmp_taskdata_t *taskdata; 4759 size_t lower_offset; 4760 size_t upper_offset; 4761 4762 public: 4763 kmp_taskloop_bounds_t(kmp_task_t *_task, kmp_uint64 *lb, kmp_uint64 *ub) 4764 : task(_task), taskdata(KMP_TASK_TO_TASKDATA(task)), 4765 lower_offset((char *)lb - (char *)task), 4766 upper_offset((char *)ub - (char *)task) { 4767 KMP_DEBUG_ASSERT((char *)lb > (char *)_task); 4768 KMP_DEBUG_ASSERT((char *)ub > (char *)_task); 4769 } 4770 kmp_taskloop_bounds_t(kmp_task_t *_task, const kmp_taskloop_bounds_t &bounds) 4771 : task(_task), taskdata(KMP_TASK_TO_TASKDATA(_task)), 4772 lower_offset(bounds.lower_offset), upper_offset(bounds.upper_offset) {} 4773 size_t get_lower_offset() const { return lower_offset; } 4774 size_t get_upper_offset() const { return upper_offset; } 4775 kmp_uint64 get_lb() const { 4776 kmp_int64 retval; 4777 #if defined(KMP_GOMP_COMPAT) 4778 // Intel task just returns the lower bound normally 4779 if (!taskdata->td_flags.native) { 4780 retval = *(kmp_int64 *)((char *)task + lower_offset); 4781 } else { 4782 // GOMP task has to take into account the sizeof(long) 4783 if (taskdata->td_size_loop_bounds == 4) { 4784 kmp_int32 *lb = RCAST(kmp_int32 *, task->shareds); 4785 retval = (kmp_int64)*lb; 4786 } else { 4787 kmp_int64 *lb = RCAST(kmp_int64 *, task->shareds); 4788 retval = (kmp_int64)*lb; 4789 } 4790 } 4791 #else 4792 (void)taskdata; 4793 retval = *(kmp_int64 *)((char *)task + lower_offset); 4794 #endif // defined(KMP_GOMP_COMPAT) 4795 return retval; 4796 } 4797 kmp_uint64 get_ub() const { 4798 kmp_int64 retval; 4799 #if defined(KMP_GOMP_COMPAT) 4800 // Intel task just returns the upper bound normally 4801 if (!taskdata->td_flags.native) { 4802 retval = *(kmp_int64 *)((char *)task + upper_offset); 4803 } else { 4804 // GOMP task has to take into account the sizeof(long) 4805 if (taskdata->td_size_loop_bounds == 4) { 4806 kmp_int32 *ub = RCAST(kmp_int32 *, task->shareds) + 1; 4807 retval = (kmp_int64)*ub; 4808 } else { 4809 kmp_int64 *ub = RCAST(kmp_int64 *, task->shareds) + 1; 4810 retval = (kmp_int64)*ub; 4811 } 4812 } 4813 #else 4814 retval = *(kmp_int64 *)((char *)task + upper_offset); 4815 #endif // defined(KMP_GOMP_COMPAT) 4816 return retval; 4817 } 4818 void set_lb(kmp_uint64 lb) { 4819 #if defined(KMP_GOMP_COMPAT) 4820 // Intel task just sets the lower bound normally 4821 if (!taskdata->td_flags.native) { 4822 *(kmp_uint64 *)((char *)task + lower_offset) = lb; 4823 } else { 4824 // GOMP task has to take into account the sizeof(long) 4825 if (taskdata->td_size_loop_bounds == 4) { 4826 kmp_uint32 *lower = RCAST(kmp_uint32 *, task->shareds); 4827 *lower = (kmp_uint32)lb; 4828 } else { 4829 kmp_uint64 *lower = RCAST(kmp_uint64 *, task->shareds); 4830 *lower = (kmp_uint64)lb; 4831 } 4832 } 4833 #else 4834 *(kmp_uint64 *)((char *)task + lower_offset) = lb; 4835 #endif // defined(KMP_GOMP_COMPAT) 4836 } 4837 void set_ub(kmp_uint64 ub) { 4838 #if defined(KMP_GOMP_COMPAT) 4839 // Intel task just sets the upper bound normally 4840 if (!taskdata->td_flags.native) { 4841 *(kmp_uint64 *)((char *)task + upper_offset) = ub; 4842 } else { 4843 // GOMP task has to take into account the sizeof(long) 4844 if (taskdata->td_size_loop_bounds == 4) { 4845 kmp_uint32 *upper = RCAST(kmp_uint32 *, task->shareds) + 1; 4846 *upper = (kmp_uint32)ub; 4847 } else { 4848 kmp_uint64 *upper = RCAST(kmp_uint64 *, task->shareds) + 1; 4849 *upper = (kmp_uint64)ub; 4850 } 4851 } 4852 #else 4853 *(kmp_uint64 *)((char *)task + upper_offset) = ub; 4854 #endif // defined(KMP_GOMP_COMPAT) 4855 } 4856 }; 4857 4858 // __kmp_taskloop_linear: Start tasks of the taskloop linearly 4859 // 4860 // loc Source location information 4861 // gtid Global thread ID 4862 // task Pattern task, exposes the loop iteration range 4863 // lb Pointer to loop lower bound in task structure 4864 // ub Pointer to loop upper bound in task structure 4865 // st Loop stride 4866 // ub_glob Global upper bound (used for lastprivate check) 4867 // num_tasks Number of tasks to execute 4868 // grainsize Number of loop iterations per task 4869 // extras Number of chunks with grainsize+1 iterations 4870 // last_chunk Reduction of grainsize for last task 4871 // tc Iterations count 4872 // task_dup Tasks duplication routine 4873 // codeptr_ra Return address for OMPT events 4874 void __kmp_taskloop_linear(ident_t *loc, int gtid, kmp_task_t *task, 4875 kmp_uint64 *lb, kmp_uint64 *ub, kmp_int64 st, 4876 kmp_uint64 ub_glob, kmp_uint64 num_tasks, 4877 kmp_uint64 grainsize, kmp_uint64 extras, 4878 kmp_int64 last_chunk, kmp_uint64 tc, 4879 #if OMPT_SUPPORT 4880 void *codeptr_ra, 4881 #endif 4882 void *task_dup) { 4883 KMP_COUNT_BLOCK(OMP_TASKLOOP); 4884 KMP_TIME_PARTITIONED_BLOCK(OMP_taskloop_scheduling); 4885 p_task_dup_t ptask_dup = (p_task_dup_t)task_dup; 4886 // compiler provides global bounds here 4887 kmp_taskloop_bounds_t task_bounds(task, lb, ub); 4888 kmp_uint64 lower = task_bounds.get_lb(); 4889 kmp_uint64 upper = task_bounds.get_ub(); 4890 kmp_uint64 i; 4891 kmp_info_t *thread = __kmp_threads[gtid]; 4892 kmp_taskdata_t *current_task = thread->th.th_current_task; 4893 kmp_task_t *next_task; 4894 kmp_int32 lastpriv = 0; 4895 4896 KMP_DEBUG_ASSERT(tc == num_tasks * grainsize + 4897 (last_chunk < 0 ? last_chunk : extras)); 4898 KMP_DEBUG_ASSERT(num_tasks > extras); 4899 KMP_DEBUG_ASSERT(num_tasks > 0); 4900 KA_TRACE(20, ("__kmp_taskloop_linear: T#%d: %lld tasks, grainsize %lld, " 4901 "extras %lld, last_chunk %lld, i=%lld,%lld(%d)%lld, dup %p\n", 4902 gtid, num_tasks, grainsize, extras, last_chunk, lower, upper, 4903 ub_glob, st, task_dup)); 4904 4905 // Launch num_tasks tasks, assign grainsize iterations each task 4906 for (i = 0; i < num_tasks; ++i) { 4907 kmp_uint64 chunk_minus_1; 4908 if (extras == 0) { 4909 chunk_minus_1 = grainsize - 1; 4910 } else { 4911 chunk_minus_1 = grainsize; 4912 --extras; // first extras iterations get bigger chunk (grainsize+1) 4913 } 4914 upper = lower + st * chunk_minus_1; 4915 if (upper > *ub) { 4916 upper = *ub; 4917 } 4918 if (i == num_tasks - 1) { 4919 // schedule the last task, set lastprivate flag if needed 4920 if (st == 1) { // most common case 4921 KMP_DEBUG_ASSERT(upper == *ub); 4922 if (upper == ub_glob) 4923 lastpriv = 1; 4924 } else if (st > 0) { // positive loop stride 4925 KMP_DEBUG_ASSERT((kmp_uint64)st > *ub - upper); 4926 if ((kmp_uint64)st > ub_glob - upper) 4927 lastpriv = 1; 4928 } else { // negative loop stride 4929 KMP_DEBUG_ASSERT(upper + st < *ub); 4930 if (upper - ub_glob < (kmp_uint64)(-st)) 4931 lastpriv = 1; 4932 } 4933 } 4934 4935 #if OMPX_TASKGRAPH 4936 next_task = __kmp_task_dup_alloc(thread, task, /* taskloop_recur */ 0); 4937 #else 4938 next_task = __kmp_task_dup_alloc(thread, task); // allocate new task 4939 #endif 4940 4941 kmp_taskdata_t *next_taskdata = KMP_TASK_TO_TASKDATA(next_task); 4942 kmp_taskloop_bounds_t next_task_bounds = 4943 kmp_taskloop_bounds_t(next_task, task_bounds); 4944 4945 // adjust task-specific bounds 4946 next_task_bounds.set_lb(lower); 4947 if (next_taskdata->td_flags.native) { 4948 next_task_bounds.set_ub(upper + (st > 0 ? 1 : -1)); 4949 } else { 4950 next_task_bounds.set_ub(upper); 4951 } 4952 if (ptask_dup != NULL) // set lastprivate flag, construct firstprivates, 4953 // etc. 4954 ptask_dup(next_task, task, lastpriv); 4955 KA_TRACE(40, 4956 ("__kmp_taskloop_linear: T#%d; task #%llu: task %p: lower %lld, " 4957 "upper %lld stride %lld, (offsets %p %p)\n", 4958 gtid, i, next_task, lower, upper, st, 4959 next_task_bounds.get_lower_offset(), 4960 next_task_bounds.get_upper_offset())); 4961 #if OMPT_SUPPORT 4962 __kmp_omp_taskloop_task(NULL, gtid, next_task, 4963 codeptr_ra); // schedule new task 4964 #if OMPT_OPTIONAL 4965 if (ompt_enabled.ompt_callback_dispatch) { 4966 OMPT_GET_DISPATCH_CHUNK(next_taskdata->ompt_task_info.dispatch_chunk, 4967 lower, upper, st); 4968 } 4969 #endif // OMPT_OPTIONAL 4970 #else 4971 __kmp_omp_task(gtid, next_task, true); // schedule new task 4972 #endif 4973 lower = upper + st; // adjust lower bound for the next iteration 4974 } 4975 // free the pattern task and exit 4976 __kmp_task_start(gtid, task, current_task); // make internal bookkeeping 4977 // do not execute the pattern task, just do internal bookkeeping 4978 __kmp_task_finish<false>(gtid, task, current_task); 4979 } 4980 4981 // Structure to keep taskloop parameters for auxiliary task 4982 // kept in the shareds of the task structure. 4983 typedef struct __taskloop_params { 4984 kmp_task_t *task; 4985 kmp_uint64 *lb; 4986 kmp_uint64 *ub; 4987 void *task_dup; 4988 kmp_int64 st; 4989 kmp_uint64 ub_glob; 4990 kmp_uint64 num_tasks; 4991 kmp_uint64 grainsize; 4992 kmp_uint64 extras; 4993 kmp_int64 last_chunk; 4994 kmp_uint64 tc; 4995 kmp_uint64 num_t_min; 4996 #if OMPT_SUPPORT 4997 void *codeptr_ra; 4998 #endif 4999 } __taskloop_params_t; 5000 5001 void __kmp_taskloop_recur(ident_t *, int, kmp_task_t *, kmp_uint64 *, 5002 kmp_uint64 *, kmp_int64, kmp_uint64, kmp_uint64, 5003 kmp_uint64, kmp_uint64, kmp_int64, kmp_uint64, 5004 kmp_uint64, 5005 #if OMPT_SUPPORT 5006 void *, 5007 #endif 5008 void *); 5009 5010 // Execute part of the taskloop submitted as a task. 5011 int __kmp_taskloop_task(int gtid, void *ptask) { 5012 __taskloop_params_t *p = 5013 (__taskloop_params_t *)((kmp_task_t *)ptask)->shareds; 5014 kmp_task_t *task = p->task; 5015 kmp_uint64 *lb = p->lb; 5016 kmp_uint64 *ub = p->ub; 5017 void *task_dup = p->task_dup; 5018 // p_task_dup_t ptask_dup = (p_task_dup_t)task_dup; 5019 kmp_int64 st = p->st; 5020 kmp_uint64 ub_glob = p->ub_glob; 5021 kmp_uint64 num_tasks = p->num_tasks; 5022 kmp_uint64 grainsize = p->grainsize; 5023 kmp_uint64 extras = p->extras; 5024 kmp_int64 last_chunk = p->last_chunk; 5025 kmp_uint64 tc = p->tc; 5026 kmp_uint64 num_t_min = p->num_t_min; 5027 #if OMPT_SUPPORT 5028 void *codeptr_ra = p->codeptr_ra; 5029 #endif 5030 #if KMP_DEBUG 5031 kmp_taskdata_t *taskdata = KMP_TASK_TO_TASKDATA(task); 5032 KMP_DEBUG_ASSERT(task != NULL); 5033 KA_TRACE(20, 5034 ("__kmp_taskloop_task: T#%d, task %p: %lld tasks, grainsize" 5035 " %lld, extras %lld, last_chunk %lld, i=%lld,%lld(%d), dup %p\n", 5036 gtid, taskdata, num_tasks, grainsize, extras, last_chunk, *lb, *ub, 5037 st, task_dup)); 5038 #endif 5039 KMP_DEBUG_ASSERT(num_tasks * 2 + 1 > num_t_min); 5040 if (num_tasks > num_t_min) 5041 __kmp_taskloop_recur(NULL, gtid, task, lb, ub, st, ub_glob, num_tasks, 5042 grainsize, extras, last_chunk, tc, num_t_min, 5043 #if OMPT_SUPPORT 5044 codeptr_ra, 5045 #endif 5046 task_dup); 5047 else 5048 __kmp_taskloop_linear(NULL, gtid, task, lb, ub, st, ub_glob, num_tasks, 5049 grainsize, extras, last_chunk, tc, 5050 #if OMPT_SUPPORT 5051 codeptr_ra, 5052 #endif 5053 task_dup); 5054 5055 KA_TRACE(40, ("__kmp_taskloop_task(exit): T#%d\n", gtid)); 5056 return 0; 5057 } 5058 5059 // Schedule part of the taskloop as a task, 5060 // execute the rest of the taskloop. 5061 // 5062 // loc Source location information 5063 // gtid Global thread ID 5064 // task Pattern task, exposes the loop iteration range 5065 // lb Pointer to loop lower bound in task structure 5066 // ub Pointer to loop upper bound in task structure 5067 // st Loop stride 5068 // ub_glob Global upper bound (used for lastprivate check) 5069 // num_tasks Number of tasks to execute 5070 // grainsize Number of loop iterations per task 5071 // extras Number of chunks with grainsize+1 iterations 5072 // last_chunk Reduction of grainsize for last task 5073 // tc Iterations count 5074 // num_t_min Threshold to launch tasks recursively 5075 // task_dup Tasks duplication routine 5076 // codeptr_ra Return address for OMPT events 5077 void __kmp_taskloop_recur(ident_t *loc, int gtid, kmp_task_t *task, 5078 kmp_uint64 *lb, kmp_uint64 *ub, kmp_int64 st, 5079 kmp_uint64 ub_glob, kmp_uint64 num_tasks, 5080 kmp_uint64 grainsize, kmp_uint64 extras, 5081 kmp_int64 last_chunk, kmp_uint64 tc, 5082 kmp_uint64 num_t_min, 5083 #if OMPT_SUPPORT 5084 void *codeptr_ra, 5085 #endif 5086 void *task_dup) { 5087 kmp_taskdata_t *taskdata = KMP_TASK_TO_TASKDATA(task); 5088 KMP_DEBUG_ASSERT(task != NULL); 5089 KMP_DEBUG_ASSERT(num_tasks > num_t_min); 5090 KA_TRACE(20, 5091 ("__kmp_taskloop_recur: T#%d, task %p: %lld tasks, grainsize" 5092 " %lld, extras %lld, last_chunk %lld, i=%lld,%lld(%d), dup %p\n", 5093 gtid, taskdata, num_tasks, grainsize, extras, last_chunk, *lb, *ub, 5094 st, task_dup)); 5095 p_task_dup_t ptask_dup = (p_task_dup_t)task_dup; 5096 kmp_uint64 lower = *lb; 5097 kmp_info_t *thread = __kmp_threads[gtid]; 5098 // kmp_taskdata_t *current_task = thread->th.th_current_task; 5099 kmp_task_t *next_task; 5100 size_t lower_offset = 5101 (char *)lb - (char *)task; // remember offset of lb in the task structure 5102 size_t upper_offset = 5103 (char *)ub - (char *)task; // remember offset of ub in the task structure 5104 5105 KMP_DEBUG_ASSERT(tc == num_tasks * grainsize + 5106 (last_chunk < 0 ? last_chunk : extras)); 5107 KMP_DEBUG_ASSERT(num_tasks > extras); 5108 KMP_DEBUG_ASSERT(num_tasks > 0); 5109 5110 // split the loop in two halves 5111 kmp_uint64 lb1, ub0, tc0, tc1, ext0, ext1; 5112 kmp_int64 last_chunk0 = 0, last_chunk1 = 0; 5113 kmp_uint64 gr_size0 = grainsize; 5114 kmp_uint64 n_tsk0 = num_tasks >> 1; // num_tasks/2 to execute 5115 kmp_uint64 n_tsk1 = num_tasks - n_tsk0; // to schedule as a task 5116 if (last_chunk < 0) { 5117 ext0 = ext1 = 0; 5118 last_chunk1 = last_chunk; 5119 tc0 = grainsize * n_tsk0; 5120 tc1 = tc - tc0; 5121 } else if (n_tsk0 <= extras) { 5122 gr_size0++; // integrate extras into grainsize 5123 ext0 = 0; // no extra iters in 1st half 5124 ext1 = extras - n_tsk0; // remaining extras 5125 tc0 = gr_size0 * n_tsk0; 5126 tc1 = tc - tc0; 5127 } else { // n_tsk0 > extras 5128 ext1 = 0; // no extra iters in 2nd half 5129 ext0 = extras; 5130 tc1 = grainsize * n_tsk1; 5131 tc0 = tc - tc1; 5132 } 5133 ub0 = lower + st * (tc0 - 1); 5134 lb1 = ub0 + st; 5135 5136 // create pattern task for 2nd half of the loop 5137 #if OMPX_TASKGRAPH 5138 next_task = __kmp_task_dup_alloc(thread, task, 5139 /* taskloop_recur */ 1); 5140 #else 5141 next_task = __kmp_task_dup_alloc(thread, task); // duplicate the task 5142 #endif 5143 // adjust lower bound (upper bound is not changed) for the 2nd half 5144 *(kmp_uint64 *)((char *)next_task + lower_offset) = lb1; 5145 if (ptask_dup != NULL) // construct firstprivates, etc. 5146 ptask_dup(next_task, task, 0); 5147 *ub = ub0; // adjust upper bound for the 1st half 5148 5149 // create auxiliary task for 2nd half of the loop 5150 // make sure new task has same parent task as the pattern task 5151 kmp_taskdata_t *current_task = thread->th.th_current_task; 5152 thread->th.th_current_task = taskdata->td_parent; 5153 kmp_task_t *new_task = 5154 __kmpc_omp_task_alloc(loc, gtid, 1, 3 * sizeof(void *), 5155 sizeof(__taskloop_params_t), &__kmp_taskloop_task); 5156 // restore current task 5157 thread->th.th_current_task = current_task; 5158 __taskloop_params_t *p = (__taskloop_params_t *)new_task->shareds; 5159 p->task = next_task; 5160 p->lb = (kmp_uint64 *)((char *)next_task + lower_offset); 5161 p->ub = (kmp_uint64 *)((char *)next_task + upper_offset); 5162 p->task_dup = task_dup; 5163 p->st = st; 5164 p->ub_glob = ub_glob; 5165 p->num_tasks = n_tsk1; 5166 p->grainsize = grainsize; 5167 p->extras = ext1; 5168 p->last_chunk = last_chunk1; 5169 p->tc = tc1; 5170 p->num_t_min = num_t_min; 5171 #if OMPT_SUPPORT 5172 p->codeptr_ra = codeptr_ra; 5173 #endif 5174 5175 #if OMPX_TASKGRAPH 5176 kmp_taskdata_t *new_task_data = KMP_TASK_TO_TASKDATA(new_task); 5177 new_task_data->tdg = taskdata->tdg; 5178 new_task_data->is_taskgraph = 0; 5179 #endif 5180 5181 #if OMPT_SUPPORT 5182 // schedule new task with correct return address for OMPT events 5183 __kmp_omp_taskloop_task(NULL, gtid, new_task, codeptr_ra); 5184 #else 5185 __kmp_omp_task(gtid, new_task, true); // schedule new task 5186 #endif 5187 5188 // execute the 1st half of current subrange 5189 if (n_tsk0 > num_t_min) 5190 __kmp_taskloop_recur(loc, gtid, task, lb, ub, st, ub_glob, n_tsk0, gr_size0, 5191 ext0, last_chunk0, tc0, num_t_min, 5192 #if OMPT_SUPPORT 5193 codeptr_ra, 5194 #endif 5195 task_dup); 5196 else 5197 __kmp_taskloop_linear(loc, gtid, task, lb, ub, st, ub_glob, n_tsk0, 5198 gr_size0, ext0, last_chunk0, tc0, 5199 #if OMPT_SUPPORT 5200 codeptr_ra, 5201 #endif 5202 task_dup); 5203 5204 KA_TRACE(40, ("__kmp_taskloop_recur(exit): T#%d\n", gtid)); 5205 } 5206 5207 static void __kmp_taskloop(ident_t *loc, int gtid, kmp_task_t *task, int if_val, 5208 kmp_uint64 *lb, kmp_uint64 *ub, kmp_int64 st, 5209 int nogroup, int sched, kmp_uint64 grainsize, 5210 int modifier, void *task_dup) { 5211 kmp_taskdata_t *taskdata = KMP_TASK_TO_TASKDATA(task); 5212 KMP_DEBUG_ASSERT(task != NULL); 5213 if (nogroup == 0) { 5214 #if OMPT_SUPPORT && OMPT_OPTIONAL 5215 OMPT_STORE_RETURN_ADDRESS(gtid); 5216 #endif 5217 __kmpc_taskgroup(loc, gtid); 5218 } 5219 5220 #if OMPX_TASKGRAPH 5221 KMP_ATOMIC_DEC(&__kmp_tdg_task_id); 5222 #endif 5223 // ========================================================================= 5224 // calculate loop parameters 5225 kmp_taskloop_bounds_t task_bounds(task, lb, ub); 5226 kmp_uint64 tc; 5227 // compiler provides global bounds here 5228 kmp_uint64 lower = task_bounds.get_lb(); 5229 kmp_uint64 upper = task_bounds.get_ub(); 5230 kmp_uint64 ub_glob = upper; // global upper used to calc lastprivate flag 5231 kmp_uint64 num_tasks = 0, extras = 0; 5232 kmp_int64 last_chunk = 5233 0; // reduce grainsize of last task by last_chunk in strict mode 5234 kmp_uint64 num_tasks_min = __kmp_taskloop_min_tasks; 5235 kmp_info_t *thread = __kmp_threads[gtid]; 5236 kmp_taskdata_t *current_task = thread->th.th_current_task; 5237 5238 KA_TRACE(20, ("__kmp_taskloop: T#%d, task %p, lb %lld, ub %lld, st %lld, " 5239 "grain %llu(%d, %d), dup %p\n", 5240 gtid, taskdata, lower, upper, st, grainsize, sched, modifier, 5241 task_dup)); 5242 5243 // compute trip count 5244 if (st == 1) { // most common case 5245 tc = upper - lower + 1; 5246 } else if (st < 0) { 5247 tc = (lower - upper) / (-st) + 1; 5248 } else { // st > 0 5249 tc = (upper - lower) / st + 1; 5250 } 5251 if (tc == 0) { 5252 KA_TRACE(20, ("__kmp_taskloop(exit): T#%d zero-trip loop\n", gtid)); 5253 // free the pattern task and exit 5254 __kmp_task_start(gtid, task, current_task); 5255 // do not execute anything for zero-trip loop 5256 __kmp_task_finish<false>(gtid, task, current_task); 5257 return; 5258 } 5259 5260 #if OMPT_SUPPORT && OMPT_OPTIONAL 5261 ompt_team_info_t *team_info = __ompt_get_teaminfo(0, NULL); 5262 ompt_task_info_t *task_info = __ompt_get_task_info_object(0); 5263 if (ompt_enabled.ompt_callback_work) { 5264 ompt_callbacks.ompt_callback(ompt_callback_work)( 5265 ompt_work_taskloop, ompt_scope_begin, &(team_info->parallel_data), 5266 &(task_info->task_data), tc, OMPT_GET_RETURN_ADDRESS(0)); 5267 } 5268 #endif 5269 5270 if (num_tasks_min == 0) 5271 // TODO: can we choose better default heuristic? 5272 num_tasks_min = 5273 KMP_MIN(thread->th.th_team_nproc * 10, INITIAL_TASK_DEQUE_SIZE); 5274 5275 // compute num_tasks/grainsize based on the input provided 5276 switch (sched) { 5277 case 0: // no schedule clause specified, we can choose the default 5278 // let's try to schedule (team_size*10) tasks 5279 grainsize = thread->th.th_team_nproc * 10; 5280 KMP_FALLTHROUGH(); 5281 case 2: // num_tasks provided 5282 if (grainsize > tc) { 5283 num_tasks = tc; // too big num_tasks requested, adjust values 5284 grainsize = 1; 5285 extras = 0; 5286 } else { 5287 num_tasks = grainsize; 5288 grainsize = tc / num_tasks; 5289 extras = tc % num_tasks; 5290 } 5291 break; 5292 case 1: // grainsize provided 5293 if (grainsize > tc) { 5294 num_tasks = 1; 5295 grainsize = tc; // too big grainsize requested, adjust values 5296 extras = 0; 5297 } else { 5298 if (modifier) { 5299 num_tasks = (tc + grainsize - 1) / grainsize; 5300 last_chunk = tc - (num_tasks * grainsize); 5301 extras = 0; 5302 } else { 5303 num_tasks = tc / grainsize; 5304 // adjust grainsize for balanced distribution of iterations 5305 grainsize = tc / num_tasks; 5306 extras = tc % num_tasks; 5307 } 5308 } 5309 break; 5310 default: 5311 KMP_ASSERT2(0, "unknown scheduling of taskloop"); 5312 } 5313 5314 KMP_DEBUG_ASSERT(tc == num_tasks * grainsize + 5315 (last_chunk < 0 ? last_chunk : extras)); 5316 KMP_DEBUG_ASSERT(num_tasks > extras); 5317 KMP_DEBUG_ASSERT(num_tasks > 0); 5318 // ========================================================================= 5319 5320 // check if clause value first 5321 // Also require GOMP_taskloop to reduce to linear (taskdata->td_flags.native) 5322 if (if_val == 0) { // if(0) specified, mark task as serial 5323 taskdata->td_flags.task_serial = 1; 5324 taskdata->td_flags.tiedness = TASK_TIED; // AC: serial task cannot be untied 5325 // always start serial tasks linearly 5326 __kmp_taskloop_linear(loc, gtid, task, lb, ub, st, ub_glob, num_tasks, 5327 grainsize, extras, last_chunk, tc, 5328 #if OMPT_SUPPORT 5329 OMPT_GET_RETURN_ADDRESS(0), 5330 #endif 5331 task_dup); 5332 // !taskdata->td_flags.native => currently force linear spawning of tasks 5333 // for GOMP_taskloop 5334 } else if (num_tasks > num_tasks_min && !taskdata->td_flags.native) { 5335 KA_TRACE(20, ("__kmp_taskloop: T#%d, go recursive: tc %llu, #tasks %llu" 5336 "(%lld), grain %llu, extras %llu, last_chunk %lld\n", 5337 gtid, tc, num_tasks, num_tasks_min, grainsize, extras, 5338 last_chunk)); 5339 __kmp_taskloop_recur(loc, gtid, task, lb, ub, st, ub_glob, num_tasks, 5340 grainsize, extras, last_chunk, tc, num_tasks_min, 5341 #if OMPT_SUPPORT 5342 OMPT_GET_RETURN_ADDRESS(0), 5343 #endif 5344 task_dup); 5345 } else { 5346 KA_TRACE(20, ("__kmp_taskloop: T#%d, go linear: tc %llu, #tasks %llu" 5347 "(%lld), grain %llu, extras %llu, last_chunk %lld\n", 5348 gtid, tc, num_tasks, num_tasks_min, grainsize, extras, 5349 last_chunk)); 5350 __kmp_taskloop_linear(loc, gtid, task, lb, ub, st, ub_glob, num_tasks, 5351 grainsize, extras, last_chunk, tc, 5352 #if OMPT_SUPPORT 5353 OMPT_GET_RETURN_ADDRESS(0), 5354 #endif 5355 task_dup); 5356 } 5357 5358 #if OMPT_SUPPORT && OMPT_OPTIONAL 5359 if (ompt_enabled.ompt_callback_work) { 5360 ompt_callbacks.ompt_callback(ompt_callback_work)( 5361 ompt_work_taskloop, ompt_scope_end, &(team_info->parallel_data), 5362 &(task_info->task_data), tc, OMPT_GET_RETURN_ADDRESS(0)); 5363 } 5364 #endif 5365 5366 if (nogroup == 0) { 5367 #if OMPT_SUPPORT && OMPT_OPTIONAL 5368 OMPT_STORE_RETURN_ADDRESS(gtid); 5369 #endif 5370 __kmpc_end_taskgroup(loc, gtid); 5371 } 5372 KA_TRACE(20, ("__kmp_taskloop(exit): T#%d\n", gtid)); 5373 } 5374 5375 /*! 5376 @ingroup TASKING 5377 @param loc Source location information 5378 @param gtid Global thread ID 5379 @param task Task structure 5380 @param if_val Value of the if clause 5381 @param lb Pointer to loop lower bound in task structure 5382 @param ub Pointer to loop upper bound in task structure 5383 @param st Loop stride 5384 @param nogroup Flag, 1 if nogroup clause specified, 0 otherwise 5385 @param sched Schedule specified 0/1/2 for none/grainsize/num_tasks 5386 @param grainsize Schedule value if specified 5387 @param task_dup Tasks duplication routine 5388 5389 Execute the taskloop construct. 5390 */ 5391 void __kmpc_taskloop(ident_t *loc, int gtid, kmp_task_t *task, int if_val, 5392 kmp_uint64 *lb, kmp_uint64 *ub, kmp_int64 st, int nogroup, 5393 int sched, kmp_uint64 grainsize, void *task_dup) { 5394 __kmp_assert_valid_gtid(gtid); 5395 KA_TRACE(20, ("__kmpc_taskloop(enter): T#%d\n", gtid)); 5396 __kmp_taskloop(loc, gtid, task, if_val, lb, ub, st, nogroup, sched, grainsize, 5397 0, task_dup); 5398 KA_TRACE(20, ("__kmpc_taskloop(exit): T#%d\n", gtid)); 5399 } 5400 5401 /*! 5402 @ingroup TASKING 5403 @param loc Source location information 5404 @param gtid Global thread ID 5405 @param task Task structure 5406 @param if_val Value of the if clause 5407 @param lb Pointer to loop lower bound in task structure 5408 @param ub Pointer to loop upper bound in task structure 5409 @param st Loop stride 5410 @param nogroup Flag, 1 if nogroup clause specified, 0 otherwise 5411 @param sched Schedule specified 0/1/2 for none/grainsize/num_tasks 5412 @param grainsize Schedule value if specified 5413 @param modifier Modifier 'strict' for sched, 1 if present, 0 otherwise 5414 @param task_dup Tasks duplication routine 5415 5416 Execute the taskloop construct. 5417 */ 5418 void __kmpc_taskloop_5(ident_t *loc, int gtid, kmp_task_t *task, int if_val, 5419 kmp_uint64 *lb, kmp_uint64 *ub, kmp_int64 st, 5420 int nogroup, int sched, kmp_uint64 grainsize, 5421 int modifier, void *task_dup) { 5422 __kmp_assert_valid_gtid(gtid); 5423 KA_TRACE(20, ("__kmpc_taskloop_5(enter): T#%d\n", gtid)); 5424 __kmp_taskloop(loc, gtid, task, if_val, lb, ub, st, nogroup, sched, grainsize, 5425 modifier, task_dup); 5426 KA_TRACE(20, ("__kmpc_taskloop_5(exit): T#%d\n", gtid)); 5427 } 5428 5429 /*! 5430 @ingroup TASKING 5431 @param gtid Global Thread ID of current thread 5432 @return Returns a pointer to the thread's current task async handle. If no task 5433 is present or gtid is invalid, returns NULL. 5434 5435 Acqurires a pointer to the target async handle from the current task. 5436 */ 5437 void **__kmpc_omp_get_target_async_handle_ptr(kmp_int32 gtid) { 5438 if (gtid == KMP_GTID_DNE) 5439 return NULL; 5440 5441 kmp_info_t *thread = __kmp_thread_from_gtid(gtid); 5442 kmp_taskdata_t *taskdata = thread->th.th_current_task; 5443 5444 if (!taskdata) 5445 return NULL; 5446 5447 return &taskdata->td_target_data.async_handle; 5448 } 5449 5450 /*! 5451 @ingroup TASKING 5452 @param gtid Global Thread ID of current thread 5453 @return Returns TRUE if the current task being executed of the given thread has 5454 a task team allocated to it. Otherwise, returns FALSE. 5455 5456 Checks if the current thread has a task team. 5457 */ 5458 bool __kmpc_omp_has_task_team(kmp_int32 gtid) { 5459 if (gtid == KMP_GTID_DNE) 5460 return FALSE; 5461 5462 kmp_info_t *thread = __kmp_thread_from_gtid(gtid); 5463 kmp_taskdata_t *taskdata = thread->th.th_current_task; 5464 5465 if (!taskdata) 5466 return FALSE; 5467 5468 return taskdata->td_task_team != NULL; 5469 } 5470 5471 #if OMPX_TASKGRAPH 5472 // __kmp_find_tdg: identify a TDG through its ID 5473 // gtid: Global Thread ID 5474 // tdg_id: ID of the TDG 5475 // returns: If a TDG corresponding to this ID is found and not 5476 // its initial state, return the pointer to it, otherwise nullptr 5477 static kmp_tdg_info_t *__kmp_find_tdg(kmp_int32 tdg_id) { 5478 kmp_tdg_info_t *res = nullptr; 5479 if (__kmp_max_tdgs == 0) 5480 return res; 5481 5482 if (__kmp_global_tdgs == NULL) 5483 __kmp_global_tdgs = (kmp_tdg_info_t **)__kmp_allocate( 5484 sizeof(kmp_tdg_info_t *) * __kmp_max_tdgs); 5485 5486 if ((__kmp_global_tdgs[tdg_id]) && 5487 (__kmp_global_tdgs[tdg_id]->tdg_status != KMP_TDG_NONE)) 5488 res = __kmp_global_tdgs[tdg_id]; 5489 return res; 5490 } 5491 5492 // __kmp_print_tdg_dot: prints the TDG to a dot file 5493 // tdg: ID of the TDG 5494 void __kmp_print_tdg_dot(kmp_tdg_info_t *tdg) { 5495 kmp_int32 tdg_id = tdg->tdg_id; 5496 KA_TRACE(10, ("__kmp_print_tdg_dot(enter): T#%d tdg_id=%d \n", gtid, tdg_id)); 5497 5498 char file_name[20]; 5499 sprintf(file_name, "tdg_%d.dot", tdg_id); 5500 kmp_safe_raii_file_t tdg_file(file_name, "w"); 5501 5502 kmp_int32 num_tasks = KMP_ATOMIC_LD_RLX(&tdg->num_tasks); 5503 fprintf(tdg_file, 5504 "digraph TDG {\n" 5505 " compound=true\n" 5506 " subgraph cluster {\n" 5507 " label=TDG_%d\n", 5508 tdg_id); 5509 for (kmp_int32 i = 0; i < num_tasks; i++) { 5510 fprintf(tdg_file, " %d[style=bold]\n", i); 5511 } 5512 fprintf(tdg_file, " }\n"); 5513 for (kmp_int32 i = 0; i < num_tasks; i++) { 5514 kmp_int32 nsuccessors = tdg->record_map[i].nsuccessors; 5515 kmp_int32 *successors = tdg->record_map[i].successors; 5516 if (nsuccessors > 0) { 5517 for (kmp_int32 j = 0; j < nsuccessors; j++) 5518 fprintf(tdg_file, " %d -> %d \n", i, successors[j]); 5519 } 5520 } 5521 fprintf(tdg_file, "}"); 5522 KA_TRACE(10, ("__kmp_print_tdg_dot(exit): T#%d tdg_id=%d \n", gtid, tdg_id)); 5523 } 5524 5525 // __kmp_start_record: launch the execution of a previous 5526 // recorded TDG 5527 // gtid: Global Thread ID 5528 // tdg: ID of the TDG 5529 void __kmp_exec_tdg(kmp_int32 gtid, kmp_tdg_info_t *tdg) { 5530 KMP_DEBUG_ASSERT(tdg->tdg_status == KMP_TDG_READY); 5531 KA_TRACE(10, ("__kmp_exec_tdg(enter): T#%d tdg_id=%d num_roots=%d\n", gtid, 5532 tdg->tdg_id, tdg->num_roots)); 5533 kmp_node_info_t *this_record_map = tdg->record_map; 5534 kmp_int32 *this_root_tasks = tdg->root_tasks; 5535 kmp_int32 this_num_roots = tdg->num_roots; 5536 kmp_int32 this_num_tasks = KMP_ATOMIC_LD_RLX(&tdg->num_tasks); 5537 5538 kmp_info_t *thread = __kmp_threads[gtid]; 5539 kmp_taskdata_t *parent_task = thread->th.th_current_task; 5540 5541 if (tdg->rec_taskred_data) { 5542 __kmpc_taskred_init(gtid, tdg->rec_num_taskred, tdg->rec_taskred_data); 5543 } 5544 5545 for (kmp_int32 j = 0; j < this_num_tasks; j++) { 5546 kmp_taskdata_t *td = KMP_TASK_TO_TASKDATA(this_record_map[j].task); 5547 5548 td->td_parent = parent_task; 5549 this_record_map[j].parent_task = parent_task; 5550 5551 kmp_taskgroup_t *parent_taskgroup = 5552 this_record_map[j].parent_task->td_taskgroup; 5553 5554 KMP_ATOMIC_ST_RLX(&this_record_map[j].npredecessors_counter, 5555 this_record_map[j].npredecessors); 5556 KMP_ATOMIC_INC(&this_record_map[j].parent_task->td_incomplete_child_tasks); 5557 5558 if (parent_taskgroup) { 5559 KMP_ATOMIC_INC(&parent_taskgroup->count); 5560 // The taskgroup is different so we must update it 5561 td->td_taskgroup = parent_taskgroup; 5562 } else if (td->td_taskgroup != nullptr) { 5563 // If the parent doesnt have a taskgroup, remove it from the task 5564 td->td_taskgroup = nullptr; 5565 } 5566 if (this_record_map[j].parent_task->td_flags.tasktype == TASK_EXPLICIT) 5567 KMP_ATOMIC_INC(&this_record_map[j].parent_task->td_allocated_child_tasks); 5568 } 5569 5570 for (kmp_int32 j = 0; j < this_num_roots; ++j) { 5571 __kmp_omp_task(gtid, this_record_map[this_root_tasks[j]].task, true); 5572 } 5573 KA_TRACE(10, ("__kmp_exec_tdg(exit): T#%d tdg_id=%d num_roots=%d\n", gtid, 5574 tdg->tdg_id, tdg->num_roots)); 5575 } 5576 5577 // __kmp_start_record: set up a TDG structure and turn the 5578 // recording flag to true 5579 // gtid: Global Thread ID of the encountering thread 5580 // input_flags: Flags associated with the TDG 5581 // tdg_id: ID of the TDG to record 5582 static inline void __kmp_start_record(kmp_int32 gtid, 5583 kmp_taskgraph_flags_t *flags, 5584 kmp_int32 tdg_id) { 5585 kmp_tdg_info_t *tdg = 5586 (kmp_tdg_info_t *)__kmp_allocate(sizeof(kmp_tdg_info_t)); 5587 __kmp_global_tdgs[__kmp_curr_tdg_idx] = tdg; 5588 // Initializing the TDG structure 5589 tdg->tdg_id = tdg_id; 5590 tdg->map_size = INIT_MAPSIZE; 5591 tdg->num_roots = -1; 5592 tdg->root_tasks = nullptr; 5593 tdg->tdg_status = KMP_TDG_RECORDING; 5594 tdg->rec_num_taskred = 0; 5595 tdg->rec_taskred_data = nullptr; 5596 KMP_ATOMIC_ST_RLX(&tdg->num_tasks, 0); 5597 5598 // Initializing the list of nodes in this TDG 5599 kmp_node_info_t *this_record_map = 5600 (kmp_node_info_t *)__kmp_allocate(INIT_MAPSIZE * sizeof(kmp_node_info_t)); 5601 for (kmp_int32 i = 0; i < INIT_MAPSIZE; i++) { 5602 kmp_int32 *successorsList = 5603 (kmp_int32 *)__kmp_allocate(__kmp_successors_size * sizeof(kmp_int32)); 5604 this_record_map[i].task = nullptr; 5605 this_record_map[i].successors = successorsList; 5606 this_record_map[i].nsuccessors = 0; 5607 this_record_map[i].npredecessors = 0; 5608 this_record_map[i].successors_size = __kmp_successors_size; 5609 KMP_ATOMIC_ST_RLX(&this_record_map[i].npredecessors_counter, 0); 5610 } 5611 5612 __kmp_global_tdgs[__kmp_curr_tdg_idx]->record_map = this_record_map; 5613 } 5614 5615 // __kmpc_start_record_task: Wrapper around __kmp_start_record to mark 5616 // the beginning of the record process of a task region 5617 // loc_ref: Location of TDG, not used yet 5618 // gtid: Global Thread ID of the encountering thread 5619 // input_flags: Flags associated with the TDG 5620 // tdg_id: ID of the TDG to record, for now, incremental integer 5621 // returns: 1 if we record, otherwise, 0 5622 kmp_int32 __kmpc_start_record_task(ident_t *loc_ref, kmp_int32 gtid, 5623 kmp_int32 input_flags, kmp_int32 tdg_id) { 5624 5625 kmp_int32 res; 5626 kmp_taskgraph_flags_t *flags = (kmp_taskgraph_flags_t *)&input_flags; 5627 KA_TRACE(10, 5628 ("__kmpc_start_record_task(enter): T#%d loc=%p flags=%d tdg_id=%d\n", 5629 gtid, loc_ref, input_flags, tdg_id)); 5630 5631 if (__kmp_max_tdgs == 0) { 5632 KA_TRACE( 5633 10, 5634 ("__kmpc_start_record_task(abandon): T#%d loc=%p flags=%d tdg_id = %d, " 5635 "__kmp_max_tdgs = 0\n", 5636 gtid, loc_ref, input_flags, tdg_id)); 5637 return 1; 5638 } 5639 5640 __kmpc_taskgroup(loc_ref, gtid); 5641 if (kmp_tdg_info_t *tdg = __kmp_find_tdg(tdg_id)) { 5642 // TODO: use re_record flag 5643 __kmp_exec_tdg(gtid, tdg); 5644 res = 0; 5645 } else { 5646 __kmp_curr_tdg_idx = tdg_id; 5647 KMP_DEBUG_ASSERT(__kmp_curr_tdg_idx < __kmp_max_tdgs); 5648 __kmp_start_record(gtid, flags, tdg_id); 5649 __kmp_num_tdg++; 5650 res = 1; 5651 } 5652 KA_TRACE(10, ("__kmpc_start_record_task(exit): T#%d TDG %d starts to %s\n", 5653 gtid, tdg_id, res ? "record" : "execute")); 5654 return res; 5655 } 5656 5657 // __kmp_end_record: set up a TDG after recording it 5658 // gtid: Global thread ID 5659 // tdg: Pointer to the TDG 5660 void __kmp_end_record(kmp_int32 gtid, kmp_tdg_info_t *tdg) { 5661 // Store roots 5662 kmp_node_info_t *this_record_map = tdg->record_map; 5663 kmp_int32 this_num_tasks = KMP_ATOMIC_LD_RLX(&tdg->num_tasks); 5664 kmp_int32 *this_root_tasks = 5665 (kmp_int32 *)__kmp_allocate(this_num_tasks * sizeof(kmp_int32)); 5666 kmp_int32 this_map_size = tdg->map_size; 5667 kmp_int32 this_num_roots = 0; 5668 kmp_info_t *thread = __kmp_threads[gtid]; 5669 5670 for (kmp_int32 i = 0; i < this_num_tasks; i++) { 5671 if (this_record_map[i].npredecessors == 0) { 5672 this_root_tasks[this_num_roots++] = i; 5673 } 5674 } 5675 5676 // Update with roots info and mapsize 5677 tdg->map_size = this_map_size; 5678 tdg->num_roots = this_num_roots; 5679 tdg->root_tasks = this_root_tasks; 5680 KMP_DEBUG_ASSERT(tdg->tdg_status == KMP_TDG_RECORDING); 5681 tdg->tdg_status = KMP_TDG_READY; 5682 5683 if (thread->th.th_current_task->td_dephash) { 5684 __kmp_dephash_free(thread, thread->th.th_current_task->td_dephash); 5685 thread->th.th_current_task->td_dephash = NULL; 5686 } 5687 5688 // Reset predecessor counter 5689 for (kmp_int32 i = 0; i < this_num_tasks; i++) { 5690 KMP_ATOMIC_ST_RLX(&this_record_map[i].npredecessors_counter, 5691 this_record_map[i].npredecessors); 5692 } 5693 KMP_ATOMIC_ST_RLX(&__kmp_tdg_task_id, 0); 5694 5695 if (__kmp_tdg_dot) 5696 __kmp_print_tdg_dot(tdg); 5697 } 5698 5699 // __kmpc_end_record_task: wrapper around __kmp_end_record to mark 5700 // the end of recording phase 5701 // 5702 // loc_ref: Source location information 5703 // gtid: Global thread ID 5704 // input_flags: Flags attached to the graph 5705 // tdg_id: ID of the TDG just finished recording 5706 void __kmpc_end_record_task(ident_t *loc_ref, kmp_int32 gtid, 5707 kmp_int32 input_flags, kmp_int32 tdg_id) { 5708 kmp_tdg_info_t *tdg = __kmp_find_tdg(tdg_id); 5709 5710 KA_TRACE(10, ("__kmpc_end_record_task(enter): T#%d loc=%p finishes recording" 5711 " tdg=%d with flags=%d\n", 5712 gtid, loc_ref, tdg_id, input_flags)); 5713 if (__kmp_max_tdgs) { 5714 // TODO: use input_flags->nowait 5715 __kmpc_end_taskgroup(loc_ref, gtid); 5716 if (__kmp_tdg_is_recording(tdg->tdg_status)) 5717 __kmp_end_record(gtid, tdg); 5718 } 5719 KA_TRACE(10, ("__kmpc_end_record_task(exit): T#%d loc=%p finished recording" 5720 " tdg=%d, its status is now READY\n", 5721 gtid, loc_ref, tdg_id)); 5722 } 5723 #endif 5724