1 /* 2 * kmp_tasking.cpp -- OpenMP 3.0 tasking support. 3 */ 4 5 //===----------------------------------------------------------------------===// 6 // 7 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 8 // See https://llvm.org/LICENSE.txt for license information. 9 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "kmp.h" 14 #include "kmp_i18n.h" 15 #include "kmp_itt.h" 16 #include "kmp_stats.h" 17 #include "kmp_wait_release.h" 18 #include "kmp_taskdeps.h" 19 20 #if OMPT_SUPPORT 21 #include "ompt-specific.h" 22 #endif 23 24 /* forward declaration */ 25 static void __kmp_enable_tasking(kmp_task_team_t *task_team, 26 kmp_info_t *this_thr); 27 static void __kmp_alloc_task_deque(kmp_info_t *thread, 28 kmp_thread_data_t *thread_data); 29 static int __kmp_realloc_task_threads_data(kmp_info_t *thread, 30 kmp_task_team_t *task_team); 31 static void __kmp_bottom_half_finish_proxy(kmp_int32 gtid, kmp_task_t *ptask); 32 33 #ifdef BUILD_TIED_TASK_STACK 34 35 // __kmp_trace_task_stack: print the tied tasks from the task stack in order 36 // from top do bottom 37 // 38 // gtid: global thread identifier for thread containing stack 39 // thread_data: thread data for task team thread containing stack 40 // threshold: value above which the trace statement triggers 41 // location: string identifying call site of this function (for trace) 42 static void __kmp_trace_task_stack(kmp_int32 gtid, 43 kmp_thread_data_t *thread_data, 44 int threshold, char *location) { 45 kmp_task_stack_t *task_stack = &thread_data->td.td_susp_tied_tasks; 46 kmp_taskdata_t **stack_top = task_stack->ts_top; 47 kmp_int32 entries = task_stack->ts_entries; 48 kmp_taskdata_t *tied_task; 49 50 KA_TRACE( 51 threshold, 52 ("__kmp_trace_task_stack(start): location = %s, gtid = %d, entries = %d, " 53 "first_block = %p, stack_top = %p \n", 54 location, gtid, entries, task_stack->ts_first_block, stack_top)); 55 56 KMP_DEBUG_ASSERT(stack_top != NULL); 57 KMP_DEBUG_ASSERT(entries > 0); 58 59 while (entries != 0) { 60 KMP_DEBUG_ASSERT(stack_top != &task_stack->ts_first_block.sb_block[0]); 61 // fix up ts_top if we need to pop from previous block 62 if (entries & TASK_STACK_INDEX_MASK == 0) { 63 kmp_stack_block_t *stack_block = (kmp_stack_block_t *)(stack_top); 64 65 stack_block = stack_block->sb_prev; 66 stack_top = &stack_block->sb_block[TASK_STACK_BLOCK_SIZE]; 67 } 68 69 // finish bookkeeping 70 stack_top--; 71 entries--; 72 73 tied_task = *stack_top; 74 75 KMP_DEBUG_ASSERT(tied_task != NULL); 76 KMP_DEBUG_ASSERT(tied_task->td_flags.tasktype == TASK_TIED); 77 78 KA_TRACE(threshold, 79 ("__kmp_trace_task_stack(%s): gtid=%d, entry=%d, " 80 "stack_top=%p, tied_task=%p\n", 81 location, gtid, entries, stack_top, tied_task)); 82 } 83 KMP_DEBUG_ASSERT(stack_top == &task_stack->ts_first_block.sb_block[0]); 84 85 KA_TRACE(threshold, 86 ("__kmp_trace_task_stack(exit): location = %s, gtid = %d\n", 87 location, gtid)); 88 } 89 90 // __kmp_init_task_stack: initialize the task stack for the first time 91 // after a thread_data structure is created. 92 // It should not be necessary to do this again (assuming the stack works). 93 // 94 // gtid: global thread identifier of calling thread 95 // thread_data: thread data for task team thread containing stack 96 static void __kmp_init_task_stack(kmp_int32 gtid, 97 kmp_thread_data_t *thread_data) { 98 kmp_task_stack_t *task_stack = &thread_data->td.td_susp_tied_tasks; 99 kmp_stack_block_t *first_block; 100 101 // set up the first block of the stack 102 first_block = &task_stack->ts_first_block; 103 task_stack->ts_top = (kmp_taskdata_t **)first_block; 104 memset((void *)first_block, '\0', 105 TASK_STACK_BLOCK_SIZE * sizeof(kmp_taskdata_t *)); 106 107 // initialize the stack to be empty 108 task_stack->ts_entries = TASK_STACK_EMPTY; 109 first_block->sb_next = NULL; 110 first_block->sb_prev = NULL; 111 } 112 113 // __kmp_free_task_stack: free the task stack when thread_data is destroyed. 114 // 115 // gtid: global thread identifier for calling thread 116 // thread_data: thread info for thread containing stack 117 static void __kmp_free_task_stack(kmp_int32 gtid, 118 kmp_thread_data_t *thread_data) { 119 kmp_task_stack_t *task_stack = &thread_data->td.td_susp_tied_tasks; 120 kmp_stack_block_t *stack_block = &task_stack->ts_first_block; 121 122 KMP_DEBUG_ASSERT(task_stack->ts_entries == TASK_STACK_EMPTY); 123 // free from the second block of the stack 124 while (stack_block != NULL) { 125 kmp_stack_block_t *next_block = (stack_block) ? stack_block->sb_next : NULL; 126 127 stack_block->sb_next = NULL; 128 stack_block->sb_prev = NULL; 129 if (stack_block != &task_stack->ts_first_block) { 130 __kmp_thread_free(thread, 131 stack_block); // free the block, if not the first 132 } 133 stack_block = next_block; 134 } 135 // initialize the stack to be empty 136 task_stack->ts_entries = 0; 137 task_stack->ts_top = NULL; 138 } 139 140 // __kmp_push_task_stack: Push the tied task onto the task stack. 141 // Grow the stack if necessary by allocating another block. 142 // 143 // gtid: global thread identifier for calling thread 144 // thread: thread info for thread containing stack 145 // tied_task: the task to push on the stack 146 static void __kmp_push_task_stack(kmp_int32 gtid, kmp_info_t *thread, 147 kmp_taskdata_t *tied_task) { 148 // GEH - need to consider what to do if tt_threads_data not allocated yet 149 kmp_thread_data_t *thread_data = 150 &thread->th.th_task_team->tt.tt_threads_data[__kmp_tid_from_gtid(gtid)]; 151 kmp_task_stack_t *task_stack = &thread_data->td.td_susp_tied_tasks; 152 153 if (tied_task->td_flags.team_serial || tied_task->td_flags.tasking_ser) { 154 return; // Don't push anything on stack if team or team tasks are serialized 155 } 156 157 KMP_DEBUG_ASSERT(tied_task->td_flags.tasktype == TASK_TIED); 158 KMP_DEBUG_ASSERT(task_stack->ts_top != NULL); 159 160 KA_TRACE(20, 161 ("__kmp_push_task_stack(enter): GTID: %d; THREAD: %p; TASK: %p\n", 162 gtid, thread, tied_task)); 163 // Store entry 164 *(task_stack->ts_top) = tied_task; 165 166 // Do bookkeeping for next push 167 task_stack->ts_top++; 168 task_stack->ts_entries++; 169 170 if (task_stack->ts_entries & TASK_STACK_INDEX_MASK == 0) { 171 // Find beginning of this task block 172 kmp_stack_block_t *stack_block = 173 (kmp_stack_block_t *)(task_stack->ts_top - TASK_STACK_BLOCK_SIZE); 174 175 // Check if we already have a block 176 if (stack_block->sb_next != 177 NULL) { // reset ts_top to beginning of next block 178 task_stack->ts_top = &stack_block->sb_next->sb_block[0]; 179 } else { // Alloc new block and link it up 180 kmp_stack_block_t *new_block = (kmp_stack_block_t *)__kmp_thread_calloc( 181 thread, sizeof(kmp_stack_block_t)); 182 183 task_stack->ts_top = &new_block->sb_block[0]; 184 stack_block->sb_next = new_block; 185 new_block->sb_prev = stack_block; 186 new_block->sb_next = NULL; 187 188 KA_TRACE( 189 30, 190 ("__kmp_push_task_stack(): GTID: %d; TASK: %p; Alloc new block: %p\n", 191 gtid, tied_task, new_block)); 192 } 193 } 194 KA_TRACE(20, ("__kmp_push_task_stack(exit): GTID: %d; TASK: %p\n", gtid, 195 tied_task)); 196 } 197 198 // __kmp_pop_task_stack: Pop the tied task from the task stack. Don't return 199 // the task, just check to make sure it matches the ending task passed in. 200 // 201 // gtid: global thread identifier for the calling thread 202 // thread: thread info structure containing stack 203 // tied_task: the task popped off the stack 204 // ending_task: the task that is ending (should match popped task) 205 static void __kmp_pop_task_stack(kmp_int32 gtid, kmp_info_t *thread, 206 kmp_taskdata_t *ending_task) { 207 // GEH - need to consider what to do if tt_threads_data not allocated yet 208 kmp_thread_data_t *thread_data = 209 &thread->th.th_task_team->tt_threads_data[__kmp_tid_from_gtid(gtid)]; 210 kmp_task_stack_t *task_stack = &thread_data->td.td_susp_tied_tasks; 211 kmp_taskdata_t *tied_task; 212 213 if (ending_task->td_flags.team_serial || ending_task->td_flags.tasking_ser) { 214 // Don't pop anything from stack if team or team tasks are serialized 215 return; 216 } 217 218 KMP_DEBUG_ASSERT(task_stack->ts_top != NULL); 219 KMP_DEBUG_ASSERT(task_stack->ts_entries > 0); 220 221 KA_TRACE(20, ("__kmp_pop_task_stack(enter): GTID: %d; THREAD: %p\n", gtid, 222 thread)); 223 224 // fix up ts_top if we need to pop from previous block 225 if (task_stack->ts_entries & TASK_STACK_INDEX_MASK == 0) { 226 kmp_stack_block_t *stack_block = (kmp_stack_block_t *)(task_stack->ts_top); 227 228 stack_block = stack_block->sb_prev; 229 task_stack->ts_top = &stack_block->sb_block[TASK_STACK_BLOCK_SIZE]; 230 } 231 232 // finish bookkeeping 233 task_stack->ts_top--; 234 task_stack->ts_entries--; 235 236 tied_task = *(task_stack->ts_top); 237 238 KMP_DEBUG_ASSERT(tied_task != NULL); 239 KMP_DEBUG_ASSERT(tied_task->td_flags.tasktype == TASK_TIED); 240 KMP_DEBUG_ASSERT(tied_task == ending_task); // If we built the stack correctly 241 242 KA_TRACE(20, ("__kmp_pop_task_stack(exit): GTID: %d; TASK: %p\n", gtid, 243 tied_task)); 244 return; 245 } 246 #endif /* BUILD_TIED_TASK_STACK */ 247 248 // returns 1 if new task is allowed to execute, 0 otherwise 249 // checks Task Scheduling constraint (if requested) and 250 // mutexinoutset dependencies if any 251 static bool __kmp_task_is_allowed(int gtid, const kmp_int32 is_constrained, 252 const kmp_taskdata_t *tasknew, 253 const kmp_taskdata_t *taskcurr) { 254 if (is_constrained && (tasknew->td_flags.tiedness == TASK_TIED)) { 255 // Check if the candidate obeys the Task Scheduling Constraints (TSC) 256 // only descendant of all deferred tied tasks can be scheduled, checking 257 // the last one is enough, as it in turn is the descendant of all others 258 kmp_taskdata_t *current = taskcurr->td_last_tied; 259 KMP_DEBUG_ASSERT(current != NULL); 260 // check if the task is not suspended on barrier 261 if (current->td_flags.tasktype == TASK_EXPLICIT || 262 current->td_taskwait_thread > 0) { // <= 0 on barrier 263 kmp_int32 level = current->td_level; 264 kmp_taskdata_t *parent = tasknew->td_parent; 265 while (parent != current && parent->td_level > level) { 266 // check generation up to the level of the current task 267 parent = parent->td_parent; 268 KMP_DEBUG_ASSERT(parent != NULL); 269 } 270 if (parent != current) 271 return false; 272 } 273 } 274 // Check mutexinoutset dependencies, acquire locks 275 kmp_depnode_t *node = tasknew->td_depnode; 276 if (UNLIKELY(node && (node->dn.mtx_num_locks > 0))) { 277 for (int i = 0; i < node->dn.mtx_num_locks; ++i) { 278 KMP_DEBUG_ASSERT(node->dn.mtx_locks[i] != NULL); 279 if (__kmp_test_lock(node->dn.mtx_locks[i], gtid)) 280 continue; 281 // could not get the lock, release previous locks 282 for (int j = i - 1; j >= 0; --j) 283 __kmp_release_lock(node->dn.mtx_locks[j], gtid); 284 return false; 285 } 286 // negative num_locks means all locks acquired successfully 287 node->dn.mtx_num_locks = -node->dn.mtx_num_locks; 288 } 289 return true; 290 } 291 292 // __kmp_realloc_task_deque: 293 // Re-allocates a task deque for a particular thread, copies the content from 294 // the old deque and adjusts the necessary data structures relating to the 295 // deque. This operation must be done with the deque_lock being held 296 static void __kmp_realloc_task_deque(kmp_info_t *thread, 297 kmp_thread_data_t *thread_data) { 298 kmp_int32 size = TASK_DEQUE_SIZE(thread_data->td); 299 KMP_DEBUG_ASSERT(TCR_4(thread_data->td.td_deque_ntasks) == size); 300 kmp_int32 new_size = 2 * size; 301 302 KE_TRACE(10, ("__kmp_realloc_task_deque: T#%d reallocating deque[from %d to " 303 "%d] for thread_data %p\n", 304 __kmp_gtid_from_thread(thread), size, new_size, thread_data)); 305 306 kmp_taskdata_t **new_deque = 307 (kmp_taskdata_t **)__kmp_allocate(new_size * sizeof(kmp_taskdata_t *)); 308 309 int i, j; 310 for (i = thread_data->td.td_deque_head, j = 0; j < size; 311 i = (i + 1) & TASK_DEQUE_MASK(thread_data->td), j++) 312 new_deque[j] = thread_data->td.td_deque[i]; 313 314 __kmp_free(thread_data->td.td_deque); 315 316 thread_data->td.td_deque_head = 0; 317 thread_data->td.td_deque_tail = size; 318 thread_data->td.td_deque = new_deque; 319 thread_data->td.td_deque_size = new_size; 320 } 321 322 static kmp_task_pri_t *__kmp_alloc_task_pri_list() { 323 kmp_task_pri_t *l = (kmp_task_pri_t *)__kmp_allocate(sizeof(kmp_task_pri_t)); 324 kmp_thread_data_t *thread_data = &l->td; 325 __kmp_init_bootstrap_lock(&thread_data->td.td_deque_lock); 326 thread_data->td.td_deque_last_stolen = -1; 327 KE_TRACE(20, ("__kmp_alloc_task_pri_list: T#%d allocating deque[%d] " 328 "for thread_data %p\n", 329 __kmp_get_gtid(), INITIAL_TASK_DEQUE_SIZE, thread_data)); 330 thread_data->td.td_deque = (kmp_taskdata_t **)__kmp_allocate( 331 INITIAL_TASK_DEQUE_SIZE * sizeof(kmp_taskdata_t *)); 332 thread_data->td.td_deque_size = INITIAL_TASK_DEQUE_SIZE; 333 return l; 334 } 335 336 // The function finds the deque of priority tasks with given priority, or 337 // allocates a new deque and put it into sorted (high -> low) list of deques. 338 // Deques of non-default priority tasks are shared between all threads in team, 339 // as opposed to per-thread deques of tasks with default priority. 340 // The function is called under the lock task_team->tt.tt_task_pri_lock. 341 static kmp_thread_data_t * 342 __kmp_get_priority_deque_data(kmp_task_team_t *task_team, kmp_int32 pri) { 343 kmp_thread_data_t *thread_data; 344 kmp_task_pri_t *lst = task_team->tt.tt_task_pri_list; 345 if (lst->priority == pri) { 346 // Found queue of tasks with given priority. 347 thread_data = &lst->td; 348 } else if (lst->priority < pri) { 349 // All current priority queues contain tasks with lower priority. 350 // Allocate new one for given priority tasks. 351 kmp_task_pri_t *list = __kmp_alloc_task_pri_list(); 352 thread_data = &list->td; 353 list->priority = pri; 354 list->next = lst; 355 task_team->tt.tt_task_pri_list = list; 356 } else { // task_team->tt.tt_task_pri_list->priority > pri 357 kmp_task_pri_t *next_queue = lst->next; 358 while (next_queue && next_queue->priority > pri) { 359 lst = next_queue; 360 next_queue = lst->next; 361 } 362 // lst->priority > pri && (next == NULL || pri >= next->priority) 363 if (next_queue == NULL) { 364 // No queue with pri priority, need to allocate new one. 365 kmp_task_pri_t *list = __kmp_alloc_task_pri_list(); 366 thread_data = &list->td; 367 list->priority = pri; 368 list->next = NULL; 369 lst->next = list; 370 } else if (next_queue->priority == pri) { 371 // Found queue of tasks with given priority. 372 thread_data = &next_queue->td; 373 } else { // lst->priority > pri > next->priority 374 // insert newly allocated between existed queues 375 kmp_task_pri_t *list = __kmp_alloc_task_pri_list(); 376 thread_data = &list->td; 377 list->priority = pri; 378 list->next = next_queue; 379 lst->next = list; 380 } 381 } 382 return thread_data; 383 } 384 385 // __kmp_push_priority_task: Add a task to the team's priority task deque 386 static kmp_int32 __kmp_push_priority_task(kmp_int32 gtid, kmp_info_t *thread, 387 kmp_taskdata_t *taskdata, 388 kmp_task_team_t *task_team, 389 kmp_int32 pri) { 390 kmp_thread_data_t *thread_data = NULL; 391 KA_TRACE(20, 392 ("__kmp_push_priority_task: T#%d trying to push task %p, pri %d.\n", 393 gtid, taskdata, pri)); 394 395 // Find task queue specific to priority value 396 kmp_task_pri_t *lst = task_team->tt.tt_task_pri_list; 397 if (UNLIKELY(lst == NULL)) { 398 __kmp_acquire_bootstrap_lock(&task_team->tt.tt_task_pri_lock); 399 if (task_team->tt.tt_task_pri_list == NULL) { 400 // List of queues is still empty, allocate one. 401 kmp_task_pri_t *list = __kmp_alloc_task_pri_list(); 402 thread_data = &list->td; 403 list->priority = pri; 404 list->next = NULL; 405 task_team->tt.tt_task_pri_list = list; 406 } else { 407 // Other thread initialized a queue. Check if it fits and get thread_data. 408 thread_data = __kmp_get_priority_deque_data(task_team, pri); 409 } 410 __kmp_release_bootstrap_lock(&task_team->tt.tt_task_pri_lock); 411 } else { 412 if (lst->priority == pri) { 413 // Found queue of tasks with given priority. 414 thread_data = &lst->td; 415 } else { 416 __kmp_acquire_bootstrap_lock(&task_team->tt.tt_task_pri_lock); 417 thread_data = __kmp_get_priority_deque_data(task_team, pri); 418 __kmp_release_bootstrap_lock(&task_team->tt.tt_task_pri_lock); 419 } 420 } 421 KMP_DEBUG_ASSERT(thread_data); 422 423 __kmp_acquire_bootstrap_lock(&thread_data->td.td_deque_lock); 424 // Check if deque is full 425 if (TCR_4(thread_data->td.td_deque_ntasks) >= 426 TASK_DEQUE_SIZE(thread_data->td)) { 427 if (__kmp_enable_task_throttling && 428 __kmp_task_is_allowed(gtid, __kmp_task_stealing_constraint, taskdata, 429 thread->th.th_current_task)) { 430 __kmp_release_bootstrap_lock(&thread_data->td.td_deque_lock); 431 KA_TRACE(20, ("__kmp_push_priority_task: T#%d deque is full; returning " 432 "TASK_NOT_PUSHED for task %p\n", 433 gtid, taskdata)); 434 return TASK_NOT_PUSHED; 435 } else { 436 // expand deque to push the task which is not allowed to execute 437 __kmp_realloc_task_deque(thread, thread_data); 438 } 439 } 440 KMP_DEBUG_ASSERT(TCR_4(thread_data->td.td_deque_ntasks) < 441 TASK_DEQUE_SIZE(thread_data->td)); 442 // Push taskdata. 443 thread_data->td.td_deque[thread_data->td.td_deque_tail] = taskdata; 444 // Wrap index. 445 thread_data->td.td_deque_tail = 446 (thread_data->td.td_deque_tail + 1) & TASK_DEQUE_MASK(thread_data->td); 447 TCW_4(thread_data->td.td_deque_ntasks, 448 TCR_4(thread_data->td.td_deque_ntasks) + 1); // Adjust task count 449 KMP_FSYNC_RELEASING(thread->th.th_current_task); // releasing self 450 KMP_FSYNC_RELEASING(taskdata); // releasing child 451 KA_TRACE(20, ("__kmp_push_priority_task: T#%d returning " 452 "TASK_SUCCESSFULLY_PUSHED: task=%p ntasks=%d head=%u tail=%u\n", 453 gtid, taskdata, thread_data->td.td_deque_ntasks, 454 thread_data->td.td_deque_head, thread_data->td.td_deque_tail)); 455 __kmp_release_bootstrap_lock(&thread_data->td.td_deque_lock); 456 task_team->tt.tt_num_task_pri++; // atomic inc 457 return TASK_SUCCESSFULLY_PUSHED; 458 } 459 460 // __kmp_push_task: Add a task to the thread's deque 461 static kmp_int32 __kmp_push_task(kmp_int32 gtid, kmp_task_t *task) { 462 kmp_info_t *thread = __kmp_threads[gtid]; 463 kmp_taskdata_t *taskdata = KMP_TASK_TO_TASKDATA(task); 464 465 // If we encounter a hidden helper task, and the current thread is not a 466 // hidden helper thread, we have to give the task to any hidden helper thread 467 // starting from its shadow one. 468 if (UNLIKELY(taskdata->td_flags.hidden_helper && 469 !KMP_HIDDEN_HELPER_THREAD(gtid))) { 470 kmp_int32 shadow_gtid = KMP_GTID_TO_SHADOW_GTID(gtid); 471 __kmpc_give_task(task, __kmp_tid_from_gtid(shadow_gtid)); 472 // Signal the hidden helper threads. 473 __kmp_hidden_helper_worker_thread_signal(); 474 return TASK_SUCCESSFULLY_PUSHED; 475 } 476 477 kmp_task_team_t *task_team = thread->th.th_task_team; 478 kmp_int32 tid = __kmp_tid_from_gtid(gtid); 479 kmp_thread_data_t *thread_data; 480 481 KA_TRACE(20, 482 ("__kmp_push_task: T#%d trying to push task %p.\n", gtid, taskdata)); 483 484 if (UNLIKELY(taskdata->td_flags.tiedness == TASK_UNTIED)) { 485 // untied task needs to increment counter so that the task structure is not 486 // freed prematurely 487 kmp_int32 counter = 1 + KMP_ATOMIC_INC(&taskdata->td_untied_count); 488 KMP_DEBUG_USE_VAR(counter); 489 KA_TRACE( 490 20, 491 ("__kmp_push_task: T#%d untied_count (%d) incremented for task %p\n", 492 gtid, counter, taskdata)); 493 } 494 495 // The first check avoids building task_team thread data if serialized 496 if (UNLIKELY(taskdata->td_flags.task_serial)) { 497 KA_TRACE(20, ("__kmp_push_task: T#%d team serialized; returning " 498 "TASK_NOT_PUSHED for task %p\n", 499 gtid, taskdata)); 500 return TASK_NOT_PUSHED; 501 } 502 503 // Now that serialized tasks have returned, we can assume that we are not in 504 // immediate exec mode 505 KMP_DEBUG_ASSERT(__kmp_tasking_mode != tskm_immediate_exec); 506 if (UNLIKELY(!KMP_TASKING_ENABLED(task_team))) { 507 __kmp_enable_tasking(task_team, thread); 508 } 509 KMP_DEBUG_ASSERT(TCR_4(task_team->tt.tt_found_tasks) == TRUE); 510 KMP_DEBUG_ASSERT(TCR_PTR(task_team->tt.tt_threads_data) != NULL); 511 512 if (taskdata->td_flags.priority_specified && task->data2.priority > 0 && 513 __kmp_max_task_priority > 0) { 514 int pri = KMP_MIN(task->data2.priority, __kmp_max_task_priority); 515 return __kmp_push_priority_task(gtid, thread, taskdata, task_team, pri); 516 } 517 518 // Find tasking deque specific to encountering thread 519 thread_data = &task_team->tt.tt_threads_data[tid]; 520 521 // No lock needed since only owner can allocate. If the task is hidden_helper, 522 // we don't need it either because we have initialized the dequeue for hidden 523 // helper thread data. 524 if (UNLIKELY(thread_data->td.td_deque == NULL)) { 525 __kmp_alloc_task_deque(thread, thread_data); 526 } 527 528 int locked = 0; 529 // Check if deque is full 530 if (TCR_4(thread_data->td.td_deque_ntasks) >= 531 TASK_DEQUE_SIZE(thread_data->td)) { 532 if (__kmp_enable_task_throttling && 533 __kmp_task_is_allowed(gtid, __kmp_task_stealing_constraint, taskdata, 534 thread->th.th_current_task)) { 535 KA_TRACE(20, ("__kmp_push_task: T#%d deque is full; returning " 536 "TASK_NOT_PUSHED for task %p\n", 537 gtid, taskdata)); 538 return TASK_NOT_PUSHED; 539 } else { 540 __kmp_acquire_bootstrap_lock(&thread_data->td.td_deque_lock); 541 locked = 1; 542 if (TCR_4(thread_data->td.td_deque_ntasks) >= 543 TASK_DEQUE_SIZE(thread_data->td)) { 544 // expand deque to push the task which is not allowed to execute 545 __kmp_realloc_task_deque(thread, thread_data); 546 } 547 } 548 } 549 // Lock the deque for the task push operation 550 if (!locked) { 551 __kmp_acquire_bootstrap_lock(&thread_data->td.td_deque_lock); 552 // Need to recheck as we can get a proxy task from thread outside of OpenMP 553 if (TCR_4(thread_data->td.td_deque_ntasks) >= 554 TASK_DEQUE_SIZE(thread_data->td)) { 555 if (__kmp_enable_task_throttling && 556 __kmp_task_is_allowed(gtid, __kmp_task_stealing_constraint, taskdata, 557 thread->th.th_current_task)) { 558 __kmp_release_bootstrap_lock(&thread_data->td.td_deque_lock); 559 KA_TRACE(20, ("__kmp_push_task: T#%d deque is full on 2nd check; " 560 "returning TASK_NOT_PUSHED for task %p\n", 561 gtid, taskdata)); 562 return TASK_NOT_PUSHED; 563 } else { 564 // expand deque to push the task which is not allowed to execute 565 __kmp_realloc_task_deque(thread, thread_data); 566 } 567 } 568 } 569 // Must have room since no thread can add tasks but calling thread 570 KMP_DEBUG_ASSERT(TCR_4(thread_data->td.td_deque_ntasks) < 571 TASK_DEQUE_SIZE(thread_data->td)); 572 573 thread_data->td.td_deque[thread_data->td.td_deque_tail] = 574 taskdata; // Push taskdata 575 // Wrap index. 576 thread_data->td.td_deque_tail = 577 (thread_data->td.td_deque_tail + 1) & TASK_DEQUE_MASK(thread_data->td); 578 TCW_4(thread_data->td.td_deque_ntasks, 579 TCR_4(thread_data->td.td_deque_ntasks) + 1); // Adjust task count 580 KMP_FSYNC_RELEASING(thread->th.th_current_task); // releasing self 581 KMP_FSYNC_RELEASING(taskdata); // releasing child 582 KA_TRACE(20, ("__kmp_push_task: T#%d returning TASK_SUCCESSFULLY_PUSHED: " 583 "task=%p ntasks=%d head=%u tail=%u\n", 584 gtid, taskdata, thread_data->td.td_deque_ntasks, 585 thread_data->td.td_deque_head, thread_data->td.td_deque_tail)); 586 587 __kmp_release_bootstrap_lock(&thread_data->td.td_deque_lock); 588 589 return TASK_SUCCESSFULLY_PUSHED; 590 } 591 592 // __kmp_pop_current_task_from_thread: set up current task from called thread 593 // when team ends 594 // 595 // this_thr: thread structure to set current_task in. 596 void __kmp_pop_current_task_from_thread(kmp_info_t *this_thr) { 597 KF_TRACE(10, ("__kmp_pop_current_task_from_thread(enter): T#%d " 598 "this_thread=%p, curtask=%p, " 599 "curtask_parent=%p\n", 600 0, this_thr, this_thr->th.th_current_task, 601 this_thr->th.th_current_task->td_parent)); 602 603 this_thr->th.th_current_task = this_thr->th.th_current_task->td_parent; 604 605 KF_TRACE(10, ("__kmp_pop_current_task_from_thread(exit): T#%d " 606 "this_thread=%p, curtask=%p, " 607 "curtask_parent=%p\n", 608 0, this_thr, this_thr->th.th_current_task, 609 this_thr->th.th_current_task->td_parent)); 610 } 611 612 // __kmp_push_current_task_to_thread: set up current task in called thread for a 613 // new team 614 // 615 // this_thr: thread structure to set up 616 // team: team for implicit task data 617 // tid: thread within team to set up 618 void __kmp_push_current_task_to_thread(kmp_info_t *this_thr, kmp_team_t *team, 619 int tid) { 620 // current task of the thread is a parent of the new just created implicit 621 // tasks of new team 622 KF_TRACE(10, ("__kmp_push_current_task_to_thread(enter): T#%d this_thread=%p " 623 "curtask=%p " 624 "parent_task=%p\n", 625 tid, this_thr, this_thr->th.th_current_task, 626 team->t.t_implicit_task_taskdata[tid].td_parent)); 627 628 KMP_DEBUG_ASSERT(this_thr != NULL); 629 630 if (tid == 0) { 631 if (this_thr->th.th_current_task != &team->t.t_implicit_task_taskdata[0]) { 632 team->t.t_implicit_task_taskdata[0].td_parent = 633 this_thr->th.th_current_task; 634 this_thr->th.th_current_task = &team->t.t_implicit_task_taskdata[0]; 635 } 636 } else { 637 team->t.t_implicit_task_taskdata[tid].td_parent = 638 team->t.t_implicit_task_taskdata[0].td_parent; 639 this_thr->th.th_current_task = &team->t.t_implicit_task_taskdata[tid]; 640 } 641 642 KF_TRACE(10, ("__kmp_push_current_task_to_thread(exit): T#%d this_thread=%p " 643 "curtask=%p " 644 "parent_task=%p\n", 645 tid, this_thr, this_thr->th.th_current_task, 646 team->t.t_implicit_task_taskdata[tid].td_parent)); 647 } 648 649 // __kmp_task_start: bookkeeping for a task starting execution 650 // 651 // GTID: global thread id of calling thread 652 // task: task starting execution 653 // current_task: task suspending 654 static void __kmp_task_start(kmp_int32 gtid, kmp_task_t *task, 655 kmp_taskdata_t *current_task) { 656 kmp_taskdata_t *taskdata = KMP_TASK_TO_TASKDATA(task); 657 kmp_info_t *thread = __kmp_threads[gtid]; 658 659 KA_TRACE(10, 660 ("__kmp_task_start(enter): T#%d starting task %p: current_task=%p\n", 661 gtid, taskdata, current_task)); 662 663 KMP_DEBUG_ASSERT(taskdata->td_flags.tasktype == TASK_EXPLICIT); 664 665 // mark currently executing task as suspended 666 // TODO: GEH - make sure root team implicit task is initialized properly. 667 // KMP_DEBUG_ASSERT( current_task -> td_flags.executing == 1 ); 668 current_task->td_flags.executing = 0; 669 670 // Add task to stack if tied 671 #ifdef BUILD_TIED_TASK_STACK 672 if (taskdata->td_flags.tiedness == TASK_TIED) { 673 __kmp_push_task_stack(gtid, thread, taskdata); 674 } 675 #endif /* BUILD_TIED_TASK_STACK */ 676 677 // mark starting task as executing and as current task 678 thread->th.th_current_task = taskdata; 679 680 KMP_DEBUG_ASSERT(taskdata->td_flags.started == 0 || 681 taskdata->td_flags.tiedness == TASK_UNTIED); 682 KMP_DEBUG_ASSERT(taskdata->td_flags.executing == 0 || 683 taskdata->td_flags.tiedness == TASK_UNTIED); 684 taskdata->td_flags.started = 1; 685 taskdata->td_flags.executing = 1; 686 KMP_DEBUG_ASSERT(taskdata->td_flags.complete == 0); 687 KMP_DEBUG_ASSERT(taskdata->td_flags.freed == 0); 688 689 // GEH TODO: shouldn't we pass some sort of location identifier here? 690 // APT: yes, we will pass location here. 691 // need to store current thread state (in a thread or taskdata structure) 692 // before setting work_state, otherwise wrong state is set after end of task 693 694 KA_TRACE(10, ("__kmp_task_start(exit): T#%d task=%p\n", gtid, taskdata)); 695 696 return; 697 } 698 699 #if OMPT_SUPPORT 700 //------------------------------------------------------------------------------ 701 // __ompt_task_init: 702 // Initialize OMPT fields maintained by a task. This will only be called after 703 // ompt_start_tool, so we already know whether ompt is enabled or not. 704 705 static inline void __ompt_task_init(kmp_taskdata_t *task, int tid) { 706 // The calls to __ompt_task_init already have the ompt_enabled condition. 707 task->ompt_task_info.task_data.value = 0; 708 task->ompt_task_info.frame.exit_frame = ompt_data_none; 709 task->ompt_task_info.frame.enter_frame = ompt_data_none; 710 task->ompt_task_info.frame.exit_frame_flags = 711 ompt_frame_runtime | ompt_frame_framepointer; 712 task->ompt_task_info.frame.enter_frame_flags = 713 ompt_frame_runtime | ompt_frame_framepointer; 714 task->ompt_task_info.dispatch_chunk.start = 0; 715 task->ompt_task_info.dispatch_chunk.iterations = 0; 716 } 717 718 // __ompt_task_start: 719 // Build and trigger task-begin event 720 static inline void __ompt_task_start(kmp_task_t *task, 721 kmp_taskdata_t *current_task, 722 kmp_int32 gtid) { 723 kmp_taskdata_t *taskdata = KMP_TASK_TO_TASKDATA(task); 724 ompt_task_status_t status = ompt_task_switch; 725 if (__kmp_threads[gtid]->th.ompt_thread_info.ompt_task_yielded) { 726 status = ompt_task_yield; 727 __kmp_threads[gtid]->th.ompt_thread_info.ompt_task_yielded = 0; 728 } 729 /* let OMPT know that we're about to run this task */ 730 if (ompt_enabled.ompt_callback_task_schedule) { 731 ompt_callbacks.ompt_callback(ompt_callback_task_schedule)( 732 &(current_task->ompt_task_info.task_data), status, 733 &(taskdata->ompt_task_info.task_data)); 734 } 735 taskdata->ompt_task_info.scheduling_parent = current_task; 736 } 737 738 // __ompt_task_finish: 739 // Build and trigger final task-schedule event 740 static inline void __ompt_task_finish(kmp_task_t *task, 741 kmp_taskdata_t *resumed_task, 742 ompt_task_status_t status) { 743 if (ompt_enabled.ompt_callback_task_schedule) { 744 kmp_taskdata_t *taskdata = KMP_TASK_TO_TASKDATA(task); 745 if (__kmp_omp_cancellation && taskdata->td_taskgroup && 746 taskdata->td_taskgroup->cancel_request == cancel_taskgroup) { 747 status = ompt_task_cancel; 748 } 749 750 /* let OMPT know that we're returning to the callee task */ 751 ompt_callbacks.ompt_callback(ompt_callback_task_schedule)( 752 &(taskdata->ompt_task_info.task_data), status, 753 (resumed_task ? &(resumed_task->ompt_task_info.task_data) : NULL)); 754 } 755 } 756 #endif 757 758 template <bool ompt> 759 static void __kmpc_omp_task_begin_if0_template(ident_t *loc_ref, kmp_int32 gtid, 760 kmp_task_t *task, 761 void *frame_address, 762 void *return_address) { 763 kmp_taskdata_t *taskdata = KMP_TASK_TO_TASKDATA(task); 764 kmp_taskdata_t *current_task = __kmp_threads[gtid]->th.th_current_task; 765 766 KA_TRACE(10, ("__kmpc_omp_task_begin_if0(enter): T#%d loc=%p task=%p " 767 "current_task=%p\n", 768 gtid, loc_ref, taskdata, current_task)); 769 770 if (UNLIKELY(taskdata->td_flags.tiedness == TASK_UNTIED)) { 771 // untied task needs to increment counter so that the task structure is not 772 // freed prematurely 773 kmp_int32 counter = 1 + KMP_ATOMIC_INC(&taskdata->td_untied_count); 774 KMP_DEBUG_USE_VAR(counter); 775 KA_TRACE(20, ("__kmpc_omp_task_begin_if0: T#%d untied_count (%d) " 776 "incremented for task %p\n", 777 gtid, counter, taskdata)); 778 } 779 780 taskdata->td_flags.task_serial = 781 1; // Execute this task immediately, not deferred. 782 __kmp_task_start(gtid, task, current_task); 783 784 #if OMPT_SUPPORT 785 if (ompt) { 786 if (current_task->ompt_task_info.frame.enter_frame.ptr == NULL) { 787 current_task->ompt_task_info.frame.enter_frame.ptr = 788 taskdata->ompt_task_info.frame.exit_frame.ptr = frame_address; 789 current_task->ompt_task_info.frame.enter_frame_flags = 790 taskdata->ompt_task_info.frame.exit_frame_flags = 791 ompt_frame_application | ompt_frame_framepointer; 792 } 793 if (ompt_enabled.ompt_callback_task_create) { 794 ompt_task_info_t *parent_info = &(current_task->ompt_task_info); 795 ompt_callbacks.ompt_callback(ompt_callback_task_create)( 796 &(parent_info->task_data), &(parent_info->frame), 797 &(taskdata->ompt_task_info.task_data), 798 ompt_task_explicit | TASK_TYPE_DETAILS_FORMAT(taskdata), 0, 799 return_address); 800 } 801 __ompt_task_start(task, current_task, gtid); 802 } 803 #endif // OMPT_SUPPORT 804 805 KA_TRACE(10, ("__kmpc_omp_task_begin_if0(exit): T#%d loc=%p task=%p,\n", gtid, 806 loc_ref, taskdata)); 807 } 808 809 #if OMPT_SUPPORT 810 OMPT_NOINLINE 811 static void __kmpc_omp_task_begin_if0_ompt(ident_t *loc_ref, kmp_int32 gtid, 812 kmp_task_t *task, 813 void *frame_address, 814 void *return_address) { 815 __kmpc_omp_task_begin_if0_template<true>(loc_ref, gtid, task, frame_address, 816 return_address); 817 } 818 #endif // OMPT_SUPPORT 819 820 // __kmpc_omp_task_begin_if0: report that a given serialized task has started 821 // execution 822 // 823 // loc_ref: source location information; points to beginning of task block. 824 // gtid: global thread number. 825 // task: task thunk for the started task. 826 void __kmpc_omp_task_begin_if0(ident_t *loc_ref, kmp_int32 gtid, 827 kmp_task_t *task) { 828 #if OMPT_SUPPORT 829 if (UNLIKELY(ompt_enabled.enabled)) { 830 OMPT_STORE_RETURN_ADDRESS(gtid); 831 __kmpc_omp_task_begin_if0_ompt(loc_ref, gtid, task, 832 OMPT_GET_FRAME_ADDRESS(1), 833 OMPT_LOAD_RETURN_ADDRESS(gtid)); 834 return; 835 } 836 #endif 837 __kmpc_omp_task_begin_if0_template<false>(loc_ref, gtid, task, NULL, NULL); 838 } 839 840 #ifdef TASK_UNUSED 841 // __kmpc_omp_task_begin: report that a given task has started execution 842 // NEVER GENERATED BY COMPILER, DEPRECATED!!! 843 void __kmpc_omp_task_begin(ident_t *loc_ref, kmp_int32 gtid, kmp_task_t *task) { 844 kmp_taskdata_t *current_task = __kmp_threads[gtid]->th.th_current_task; 845 846 KA_TRACE( 847 10, 848 ("__kmpc_omp_task_begin(enter): T#%d loc=%p task=%p current_task=%p\n", 849 gtid, loc_ref, KMP_TASK_TO_TASKDATA(task), current_task)); 850 851 __kmp_task_start(gtid, task, current_task); 852 853 KA_TRACE(10, ("__kmpc_omp_task_begin(exit): T#%d loc=%p task=%p,\n", gtid, 854 loc_ref, KMP_TASK_TO_TASKDATA(task))); 855 return; 856 } 857 #endif // TASK_UNUSED 858 859 // __kmp_free_task: free the current task space and the space for shareds 860 // 861 // gtid: Global thread ID of calling thread 862 // taskdata: task to free 863 // thread: thread data structure of caller 864 static void __kmp_free_task(kmp_int32 gtid, kmp_taskdata_t *taskdata, 865 kmp_info_t *thread) { 866 KA_TRACE(30, ("__kmp_free_task: T#%d freeing data from task %p\n", gtid, 867 taskdata)); 868 869 // Check to make sure all flags and counters have the correct values 870 KMP_DEBUG_ASSERT(taskdata->td_flags.tasktype == TASK_EXPLICIT); 871 KMP_DEBUG_ASSERT(taskdata->td_flags.executing == 0); 872 KMP_DEBUG_ASSERT(taskdata->td_flags.complete == 1); 873 KMP_DEBUG_ASSERT(taskdata->td_flags.freed == 0); 874 KMP_DEBUG_ASSERT(taskdata->td_allocated_child_tasks == 0 || 875 taskdata->td_flags.task_serial == 1); 876 KMP_DEBUG_ASSERT(taskdata->td_incomplete_child_tasks == 0); 877 kmp_task_t *task = KMP_TASKDATA_TO_TASK(taskdata); 878 // Clear data to not be re-used later by mistake. 879 task->data1.destructors = NULL; 880 task->data2.priority = 0; 881 882 taskdata->td_flags.freed = 1; 883 // deallocate the taskdata and shared variable blocks associated with this task 884 #if USE_FAST_MEMORY 885 __kmp_fast_free(thread, taskdata); 886 #else /* ! USE_FAST_MEMORY */ 887 __kmp_thread_free(thread, taskdata); 888 #endif 889 KA_TRACE(20, ("__kmp_free_task: T#%d freed task %p\n", gtid, taskdata)); 890 } 891 892 // __kmp_free_task_and_ancestors: free the current task and ancestors without 893 // children 894 // 895 // gtid: Global thread ID of calling thread 896 // taskdata: task to free 897 // thread: thread data structure of caller 898 static void __kmp_free_task_and_ancestors(kmp_int32 gtid, 899 kmp_taskdata_t *taskdata, 900 kmp_info_t *thread) { 901 // Proxy tasks must always be allowed to free their parents 902 // because they can be run in background even in serial mode. 903 kmp_int32 team_serial = 904 (taskdata->td_flags.team_serial || taskdata->td_flags.tasking_ser) && 905 !taskdata->td_flags.proxy; 906 KMP_DEBUG_ASSERT(taskdata->td_flags.tasktype == TASK_EXPLICIT); 907 908 kmp_int32 children = KMP_ATOMIC_DEC(&taskdata->td_allocated_child_tasks) - 1; 909 KMP_DEBUG_ASSERT(children >= 0); 910 911 // Now, go up the ancestor tree to see if any ancestors can now be freed. 912 while (children == 0) { 913 kmp_taskdata_t *parent_taskdata = taskdata->td_parent; 914 915 KA_TRACE(20, ("__kmp_free_task_and_ancestors(enter): T#%d task %p complete " 916 "and freeing itself\n", 917 gtid, taskdata)); 918 919 // --- Deallocate my ancestor task --- 920 __kmp_free_task(gtid, taskdata, thread); 921 922 taskdata = parent_taskdata; 923 924 if (team_serial) 925 return; 926 // Stop checking ancestors at implicit task instead of walking up ancestor 927 // tree to avoid premature deallocation of ancestors. 928 if (taskdata->td_flags.tasktype == TASK_IMPLICIT) { 929 if (taskdata->td_dephash) { // do we need to cleanup dephash? 930 int children = KMP_ATOMIC_LD_ACQ(&taskdata->td_incomplete_child_tasks); 931 kmp_tasking_flags_t flags_old = taskdata->td_flags; 932 if (children == 0 && flags_old.complete == 1) { 933 kmp_tasking_flags_t flags_new = flags_old; 934 flags_new.complete = 0; 935 if (KMP_COMPARE_AND_STORE_ACQ32( 936 RCAST(kmp_int32 *, &taskdata->td_flags), 937 *RCAST(kmp_int32 *, &flags_old), 938 *RCAST(kmp_int32 *, &flags_new))) { 939 KA_TRACE(100, ("__kmp_free_task_and_ancestors: T#%d cleans " 940 "dephash of implicit task %p\n", 941 gtid, taskdata)); 942 // cleanup dephash of finished implicit task 943 __kmp_dephash_free_entries(thread, taskdata->td_dephash); 944 } 945 } 946 } 947 return; 948 } 949 // Predecrement simulated by "- 1" calculation 950 children = KMP_ATOMIC_DEC(&taskdata->td_allocated_child_tasks) - 1; 951 KMP_DEBUG_ASSERT(children >= 0); 952 } 953 954 KA_TRACE( 955 20, ("__kmp_free_task_and_ancestors(exit): T#%d task %p has %d children; " 956 "not freeing it yet\n", 957 gtid, taskdata, children)); 958 } 959 960 // Only need to keep track of child task counts if any of the following: 961 // 1. team parallel and tasking not serialized; 962 // 2. it is a proxy or detachable or hidden helper task 963 // 3. the children counter of its parent task is greater than 0. 964 // The reason for the 3rd one is for serialized team that found detached task, 965 // hidden helper task, T. In this case, the execution of T is still deferred, 966 // and it is also possible that a regular task depends on T. In this case, if we 967 // don't track the children, task synchronization will be broken. 968 static bool __kmp_track_children_task(kmp_taskdata_t *taskdata) { 969 kmp_tasking_flags_t flags = taskdata->td_flags; 970 bool ret = !(flags.team_serial || flags.tasking_ser); 971 ret = ret || flags.proxy == TASK_PROXY || 972 flags.detachable == TASK_DETACHABLE || flags.hidden_helper; 973 ret = ret || 974 KMP_ATOMIC_LD_ACQ(&taskdata->td_parent->td_incomplete_child_tasks) > 0; 975 return ret; 976 } 977 978 // __kmp_task_finish: bookkeeping to do when a task finishes execution 979 // 980 // gtid: global thread ID for calling thread 981 // task: task to be finished 982 // resumed_task: task to be resumed. (may be NULL if task is serialized) 983 // 984 // template<ompt>: effectively ompt_enabled.enabled!=0 985 // the version with ompt=false is inlined, allowing to optimize away all ompt 986 // code in this case 987 template <bool ompt> 988 static void __kmp_task_finish(kmp_int32 gtid, kmp_task_t *task, 989 kmp_taskdata_t *resumed_task) { 990 kmp_taskdata_t *taskdata = KMP_TASK_TO_TASKDATA(task); 991 kmp_info_t *thread = __kmp_threads[gtid]; 992 kmp_task_team_t *task_team = 993 thread->th.th_task_team; // might be NULL for serial teams... 994 #if KMP_DEBUG 995 kmp_int32 children = 0; 996 #endif 997 KA_TRACE(10, ("__kmp_task_finish(enter): T#%d finishing task %p and resuming " 998 "task %p\n", 999 gtid, taskdata, resumed_task)); 1000 1001 KMP_DEBUG_ASSERT(taskdata->td_flags.tasktype == TASK_EXPLICIT); 1002 1003 // Pop task from stack if tied 1004 #ifdef BUILD_TIED_TASK_STACK 1005 if (taskdata->td_flags.tiedness == TASK_TIED) { 1006 __kmp_pop_task_stack(gtid, thread, taskdata); 1007 } 1008 #endif /* BUILD_TIED_TASK_STACK */ 1009 1010 if (UNLIKELY(taskdata->td_flags.tiedness == TASK_UNTIED)) { 1011 // untied task needs to check the counter so that the task structure is not 1012 // freed prematurely 1013 kmp_int32 counter = KMP_ATOMIC_DEC(&taskdata->td_untied_count) - 1; 1014 KA_TRACE( 1015 20, 1016 ("__kmp_task_finish: T#%d untied_count (%d) decremented for task %p\n", 1017 gtid, counter, taskdata)); 1018 if (counter > 0) { 1019 // untied task is not done, to be continued possibly by other thread, do 1020 // not free it now 1021 if (resumed_task == NULL) { 1022 KMP_DEBUG_ASSERT(taskdata->td_flags.task_serial); 1023 resumed_task = taskdata->td_parent; // In a serialized task, the resumed 1024 // task is the parent 1025 } 1026 thread->th.th_current_task = resumed_task; // restore current_task 1027 resumed_task->td_flags.executing = 1; // resume previous task 1028 KA_TRACE(10, ("__kmp_task_finish(exit): T#%d partially done task %p, " 1029 "resuming task %p\n", 1030 gtid, taskdata, resumed_task)); 1031 return; 1032 } 1033 } 1034 1035 // bookkeeping for resuming task: 1036 // GEH - note tasking_ser => task_serial 1037 KMP_DEBUG_ASSERT( 1038 (taskdata->td_flags.tasking_ser || taskdata->td_flags.task_serial) == 1039 taskdata->td_flags.task_serial); 1040 if (taskdata->td_flags.task_serial) { 1041 if (resumed_task == NULL) { 1042 resumed_task = taskdata->td_parent; // In a serialized task, the resumed 1043 // task is the parent 1044 } 1045 } else { 1046 KMP_DEBUG_ASSERT(resumed_task != 1047 NULL); // verify that resumed task is passed as argument 1048 } 1049 1050 /* If the tasks' destructor thunk flag has been set, we need to invoke the 1051 destructor thunk that has been generated by the compiler. The code is 1052 placed here, since at this point other tasks might have been released 1053 hence overlapping the destructor invocations with some other work in the 1054 released tasks. The OpenMP spec is not specific on when the destructors 1055 are invoked, so we should be free to choose. */ 1056 if (UNLIKELY(taskdata->td_flags.destructors_thunk)) { 1057 kmp_routine_entry_t destr_thunk = task->data1.destructors; 1058 KMP_ASSERT(destr_thunk); 1059 destr_thunk(gtid, task); 1060 } 1061 1062 KMP_DEBUG_ASSERT(taskdata->td_flags.complete == 0); 1063 KMP_DEBUG_ASSERT(taskdata->td_flags.started == 1); 1064 KMP_DEBUG_ASSERT(taskdata->td_flags.freed == 0); 1065 1066 bool detach = false; 1067 if (UNLIKELY(taskdata->td_flags.detachable == TASK_DETACHABLE)) { 1068 if (taskdata->td_allow_completion_event.type == 1069 KMP_EVENT_ALLOW_COMPLETION) { 1070 // event hasn't been fulfilled yet. Try to detach task. 1071 __kmp_acquire_tas_lock(&taskdata->td_allow_completion_event.lock, gtid); 1072 if (taskdata->td_allow_completion_event.type == 1073 KMP_EVENT_ALLOW_COMPLETION) { 1074 // task finished execution 1075 KMP_DEBUG_ASSERT(taskdata->td_flags.executing == 1); 1076 taskdata->td_flags.executing = 0; // suspend the finishing task 1077 1078 #if OMPT_SUPPORT 1079 // For a detached task, which is not completed, we switch back 1080 // the omp_fulfill_event signals completion 1081 // locking is necessary to avoid a race with ompt_task_late_fulfill 1082 if (ompt) 1083 __ompt_task_finish(task, resumed_task, ompt_task_detach); 1084 #endif 1085 1086 // no access to taskdata after this point! 1087 // __kmp_fulfill_event might free taskdata at any time from now 1088 1089 taskdata->td_flags.proxy = TASK_PROXY; // proxify! 1090 detach = true; 1091 } 1092 __kmp_release_tas_lock(&taskdata->td_allow_completion_event.lock, gtid); 1093 } 1094 } 1095 1096 if (!detach) { 1097 taskdata->td_flags.complete = 1; // mark the task as completed 1098 1099 #if OMPT_SUPPORT 1100 // This is not a detached task, we are done here 1101 if (ompt) 1102 __ompt_task_finish(task, resumed_task, ompt_task_complete); 1103 #endif 1104 // TODO: What would be the balance between the conditions in the function 1105 // and an atomic operation? 1106 if (__kmp_track_children_task(taskdata)) { 1107 __kmp_release_deps(gtid, taskdata); 1108 // Predecrement simulated by "- 1" calculation 1109 #if KMP_DEBUG 1110 children = -1 + 1111 #endif 1112 KMP_ATOMIC_DEC(&taskdata->td_parent->td_incomplete_child_tasks); 1113 KMP_DEBUG_ASSERT(children >= 0); 1114 if (taskdata->td_taskgroup) 1115 KMP_ATOMIC_DEC(&taskdata->td_taskgroup->count); 1116 } else if (task_team && (task_team->tt.tt_found_proxy_tasks || 1117 task_team->tt.tt_hidden_helper_task_encountered)) { 1118 // if we found proxy or hidden helper tasks there could exist a dependency 1119 // chain with the proxy task as origin 1120 __kmp_release_deps(gtid, taskdata); 1121 } 1122 // td_flags.executing must be marked as 0 after __kmp_release_deps has been 1123 // called. Othertwise, if a task is executed immediately from the 1124 // release_deps code, the flag will be reset to 1 again by this same 1125 // function 1126 KMP_DEBUG_ASSERT(taskdata->td_flags.executing == 1); 1127 taskdata->td_flags.executing = 0; // suspend the finishing task 1128 } 1129 1130 KA_TRACE( 1131 20, ("__kmp_task_finish: T#%d finished task %p, %d incomplete children\n", 1132 gtid, taskdata, children)); 1133 1134 // Free this task and then ancestor tasks if they have no children. 1135 // Restore th_current_task first as suggested by John: 1136 // johnmc: if an asynchronous inquiry peers into the runtime system 1137 // it doesn't see the freed task as the current task. 1138 thread->th.th_current_task = resumed_task; 1139 if (!detach) 1140 __kmp_free_task_and_ancestors(gtid, taskdata, thread); 1141 1142 // TODO: GEH - make sure root team implicit task is initialized properly. 1143 // KMP_DEBUG_ASSERT( resumed_task->td_flags.executing == 0 ); 1144 resumed_task->td_flags.executing = 1; // resume previous task 1145 1146 KA_TRACE( 1147 10, ("__kmp_task_finish(exit): T#%d finished task %p, resuming task %p\n", 1148 gtid, taskdata, resumed_task)); 1149 1150 return; 1151 } 1152 1153 template <bool ompt> 1154 static void __kmpc_omp_task_complete_if0_template(ident_t *loc_ref, 1155 kmp_int32 gtid, 1156 kmp_task_t *task) { 1157 KA_TRACE(10, ("__kmpc_omp_task_complete_if0(enter): T#%d loc=%p task=%p\n", 1158 gtid, loc_ref, KMP_TASK_TO_TASKDATA(task))); 1159 KMP_DEBUG_ASSERT(gtid >= 0); 1160 // this routine will provide task to resume 1161 __kmp_task_finish<ompt>(gtid, task, NULL); 1162 1163 KA_TRACE(10, ("__kmpc_omp_task_complete_if0(exit): T#%d loc=%p task=%p\n", 1164 gtid, loc_ref, KMP_TASK_TO_TASKDATA(task))); 1165 1166 #if OMPT_SUPPORT 1167 if (ompt) { 1168 ompt_frame_t *ompt_frame; 1169 __ompt_get_task_info_internal(0, NULL, NULL, &ompt_frame, NULL, NULL); 1170 ompt_frame->enter_frame = ompt_data_none; 1171 ompt_frame->enter_frame_flags = 1172 ompt_frame_runtime | ompt_frame_framepointer; 1173 } 1174 #endif 1175 1176 return; 1177 } 1178 1179 #if OMPT_SUPPORT 1180 OMPT_NOINLINE 1181 void __kmpc_omp_task_complete_if0_ompt(ident_t *loc_ref, kmp_int32 gtid, 1182 kmp_task_t *task) { 1183 __kmpc_omp_task_complete_if0_template<true>(loc_ref, gtid, task); 1184 } 1185 #endif // OMPT_SUPPORT 1186 1187 // __kmpc_omp_task_complete_if0: report that a task has completed execution 1188 // 1189 // loc_ref: source location information; points to end of task block. 1190 // gtid: global thread number. 1191 // task: task thunk for the completed task. 1192 void __kmpc_omp_task_complete_if0(ident_t *loc_ref, kmp_int32 gtid, 1193 kmp_task_t *task) { 1194 #if OMPT_SUPPORT 1195 if (UNLIKELY(ompt_enabled.enabled)) { 1196 __kmpc_omp_task_complete_if0_ompt(loc_ref, gtid, task); 1197 return; 1198 } 1199 #endif 1200 __kmpc_omp_task_complete_if0_template<false>(loc_ref, gtid, task); 1201 } 1202 1203 #ifdef TASK_UNUSED 1204 // __kmpc_omp_task_complete: report that a task has completed execution 1205 // NEVER GENERATED BY COMPILER, DEPRECATED!!! 1206 void __kmpc_omp_task_complete(ident_t *loc_ref, kmp_int32 gtid, 1207 kmp_task_t *task) { 1208 KA_TRACE(10, ("__kmpc_omp_task_complete(enter): T#%d loc=%p task=%p\n", gtid, 1209 loc_ref, KMP_TASK_TO_TASKDATA(task))); 1210 1211 __kmp_task_finish<false>(gtid, task, 1212 NULL); // Not sure how to find task to resume 1213 1214 KA_TRACE(10, ("__kmpc_omp_task_complete(exit): T#%d loc=%p task=%p\n", gtid, 1215 loc_ref, KMP_TASK_TO_TASKDATA(task))); 1216 return; 1217 } 1218 #endif // TASK_UNUSED 1219 1220 // __kmp_init_implicit_task: Initialize the appropriate fields in the implicit 1221 // task for a given thread 1222 // 1223 // loc_ref: reference to source location of parallel region 1224 // this_thr: thread data structure corresponding to implicit task 1225 // team: team for this_thr 1226 // tid: thread id of given thread within team 1227 // set_curr_task: TRUE if need to push current task to thread 1228 // NOTE: Routine does not set up the implicit task ICVS. This is assumed to 1229 // have already been done elsewhere. 1230 // TODO: Get better loc_ref. Value passed in may be NULL 1231 void __kmp_init_implicit_task(ident_t *loc_ref, kmp_info_t *this_thr, 1232 kmp_team_t *team, int tid, int set_curr_task) { 1233 kmp_taskdata_t *task = &team->t.t_implicit_task_taskdata[tid]; 1234 1235 KF_TRACE( 1236 10, 1237 ("__kmp_init_implicit_task(enter): T#:%d team=%p task=%p, reinit=%s\n", 1238 tid, team, task, set_curr_task ? "TRUE" : "FALSE")); 1239 1240 task->td_task_id = KMP_GEN_TASK_ID(); 1241 task->td_team = team; 1242 // task->td_parent = NULL; // fix for CQ230101 (broken parent task info 1243 // in debugger) 1244 task->td_ident = loc_ref; 1245 task->td_taskwait_ident = NULL; 1246 task->td_taskwait_counter = 0; 1247 task->td_taskwait_thread = 0; 1248 1249 task->td_flags.tiedness = TASK_TIED; 1250 task->td_flags.tasktype = TASK_IMPLICIT; 1251 task->td_flags.proxy = TASK_FULL; 1252 1253 // All implicit tasks are executed immediately, not deferred 1254 task->td_flags.task_serial = 1; 1255 task->td_flags.tasking_ser = (__kmp_tasking_mode == tskm_immediate_exec); 1256 task->td_flags.team_serial = (team->t.t_serialized) ? 1 : 0; 1257 1258 task->td_flags.started = 1; 1259 task->td_flags.executing = 1; 1260 task->td_flags.complete = 0; 1261 task->td_flags.freed = 0; 1262 1263 task->td_depnode = NULL; 1264 task->td_last_tied = task; 1265 task->td_allow_completion_event.type = KMP_EVENT_UNINITIALIZED; 1266 1267 if (set_curr_task) { // only do this init first time thread is created 1268 KMP_ATOMIC_ST_REL(&task->td_incomplete_child_tasks, 0); 1269 // Not used: don't need to deallocate implicit task 1270 KMP_ATOMIC_ST_REL(&task->td_allocated_child_tasks, 0); 1271 task->td_taskgroup = NULL; // An implicit task does not have taskgroup 1272 task->td_dephash = NULL; 1273 __kmp_push_current_task_to_thread(this_thr, team, tid); 1274 } else { 1275 KMP_DEBUG_ASSERT(task->td_incomplete_child_tasks == 0); 1276 KMP_DEBUG_ASSERT(task->td_allocated_child_tasks == 0); 1277 } 1278 1279 #if OMPT_SUPPORT 1280 if (UNLIKELY(ompt_enabled.enabled)) 1281 __ompt_task_init(task, tid); 1282 #endif 1283 1284 KF_TRACE(10, ("__kmp_init_implicit_task(exit): T#:%d team=%p task=%p\n", tid, 1285 team, task)); 1286 } 1287 1288 // __kmp_finish_implicit_task: Release resources associated to implicit tasks 1289 // at the end of parallel regions. Some resources are kept for reuse in the next 1290 // parallel region. 1291 // 1292 // thread: thread data structure corresponding to implicit task 1293 void __kmp_finish_implicit_task(kmp_info_t *thread) { 1294 kmp_taskdata_t *task = thread->th.th_current_task; 1295 if (task->td_dephash) { 1296 int children; 1297 task->td_flags.complete = 1; 1298 children = KMP_ATOMIC_LD_ACQ(&task->td_incomplete_child_tasks); 1299 kmp_tasking_flags_t flags_old = task->td_flags; 1300 if (children == 0 && flags_old.complete == 1) { 1301 kmp_tasking_flags_t flags_new = flags_old; 1302 flags_new.complete = 0; 1303 if (KMP_COMPARE_AND_STORE_ACQ32(RCAST(kmp_int32 *, &task->td_flags), 1304 *RCAST(kmp_int32 *, &flags_old), 1305 *RCAST(kmp_int32 *, &flags_new))) { 1306 KA_TRACE(100, ("__kmp_finish_implicit_task: T#%d cleans " 1307 "dephash of implicit task %p\n", 1308 thread->th.th_info.ds.ds_gtid, task)); 1309 __kmp_dephash_free_entries(thread, task->td_dephash); 1310 } 1311 } 1312 } 1313 } 1314 1315 // __kmp_free_implicit_task: Release resources associated to implicit tasks 1316 // when these are destroyed regions 1317 // 1318 // thread: thread data structure corresponding to implicit task 1319 void __kmp_free_implicit_task(kmp_info_t *thread) { 1320 kmp_taskdata_t *task = thread->th.th_current_task; 1321 if (task && task->td_dephash) { 1322 __kmp_dephash_free(thread, task->td_dephash); 1323 task->td_dephash = NULL; 1324 } 1325 } 1326 1327 // Round up a size to a power of two specified by val: Used to insert padding 1328 // between structures co-allocated using a single malloc() call 1329 static size_t __kmp_round_up_to_val(size_t size, size_t val) { 1330 if (size & (val - 1)) { 1331 size &= ~(val - 1); 1332 if (size <= KMP_SIZE_T_MAX - val) { 1333 size += val; // Round up if there is no overflow. 1334 } 1335 } 1336 return size; 1337 } // __kmp_round_up_to_va 1338 1339 // __kmp_task_alloc: Allocate the taskdata and task data structures for a task 1340 // 1341 // loc_ref: source location information 1342 // gtid: global thread number. 1343 // flags: include tiedness & task type (explicit vs. implicit) of the ''new'' 1344 // task encountered. Converted from kmp_int32 to kmp_tasking_flags_t in routine. 1345 // sizeof_kmp_task_t: Size in bytes of kmp_task_t data structure including 1346 // private vars accessed in task. 1347 // sizeof_shareds: Size in bytes of array of pointers to shared vars accessed 1348 // in task. 1349 // task_entry: Pointer to task code entry point generated by compiler. 1350 // returns: a pointer to the allocated kmp_task_t structure (task). 1351 kmp_task_t *__kmp_task_alloc(ident_t *loc_ref, kmp_int32 gtid, 1352 kmp_tasking_flags_t *flags, 1353 size_t sizeof_kmp_task_t, size_t sizeof_shareds, 1354 kmp_routine_entry_t task_entry) { 1355 kmp_task_t *task; 1356 kmp_taskdata_t *taskdata; 1357 kmp_info_t *thread = __kmp_threads[gtid]; 1358 kmp_team_t *team = thread->th.th_team; 1359 kmp_taskdata_t *parent_task = thread->th.th_current_task; 1360 size_t shareds_offset; 1361 1362 if (UNLIKELY(!TCR_4(__kmp_init_middle))) 1363 __kmp_middle_initialize(); 1364 1365 if (flags->hidden_helper) { 1366 if (__kmp_enable_hidden_helper) { 1367 if (!TCR_4(__kmp_init_hidden_helper)) 1368 __kmp_hidden_helper_initialize(); 1369 } else { 1370 // If the hidden helper task is not enabled, reset the flag to FALSE. 1371 flags->hidden_helper = FALSE; 1372 } 1373 } 1374 1375 KA_TRACE(10, ("__kmp_task_alloc(enter): T#%d loc=%p, flags=(0x%x) " 1376 "sizeof_task=%ld sizeof_shared=%ld entry=%p\n", 1377 gtid, loc_ref, *((kmp_int32 *)flags), sizeof_kmp_task_t, 1378 sizeof_shareds, task_entry)); 1379 1380 KMP_DEBUG_ASSERT(parent_task); 1381 if (parent_task->td_flags.final) { 1382 if (flags->merged_if0) { 1383 } 1384 flags->final = 1; 1385 } 1386 1387 if (flags->tiedness == TASK_UNTIED && !team->t.t_serialized) { 1388 // Untied task encountered causes the TSC algorithm to check entire deque of 1389 // the victim thread. If no untied task encountered, then checking the head 1390 // of the deque should be enough. 1391 KMP_CHECK_UPDATE(thread->th.th_task_team->tt.tt_untied_task_encountered, 1); 1392 } 1393 1394 // Detachable tasks are not proxy tasks yet but could be in the future. Doing 1395 // the tasking setup 1396 // when that happens is too late. 1397 if (UNLIKELY(flags->proxy == TASK_PROXY || 1398 flags->detachable == TASK_DETACHABLE || flags->hidden_helper)) { 1399 if (flags->proxy == TASK_PROXY) { 1400 flags->tiedness = TASK_UNTIED; 1401 flags->merged_if0 = 1; 1402 } 1403 /* are we running in a sequential parallel or tskm_immediate_exec... we need 1404 tasking support enabled */ 1405 if ((thread->th.th_task_team) == NULL) { 1406 /* This should only happen if the team is serialized 1407 setup a task team and propagate it to the thread */ 1408 KMP_DEBUG_ASSERT(team->t.t_serialized); 1409 KA_TRACE(30, 1410 ("T#%d creating task team in __kmp_task_alloc for proxy task\n", 1411 gtid)); 1412 // 1 indicates setup the current team regardless of nthreads 1413 __kmp_task_team_setup(thread, team, 1); 1414 thread->th.th_task_team = team->t.t_task_team[thread->th.th_task_state]; 1415 } 1416 kmp_task_team_t *task_team = thread->th.th_task_team; 1417 1418 /* tasking must be enabled now as the task might not be pushed */ 1419 if (!KMP_TASKING_ENABLED(task_team)) { 1420 KA_TRACE( 1421 30, 1422 ("T#%d enabling tasking in __kmp_task_alloc for proxy task\n", gtid)); 1423 __kmp_enable_tasking(task_team, thread); 1424 kmp_int32 tid = thread->th.th_info.ds.ds_tid; 1425 kmp_thread_data_t *thread_data = &task_team->tt.tt_threads_data[tid]; 1426 // No lock needed since only owner can allocate 1427 if (thread_data->td.td_deque == NULL) { 1428 __kmp_alloc_task_deque(thread, thread_data); 1429 } 1430 } 1431 1432 if ((flags->proxy == TASK_PROXY || flags->detachable == TASK_DETACHABLE) && 1433 task_team->tt.tt_found_proxy_tasks == FALSE) 1434 TCW_4(task_team->tt.tt_found_proxy_tasks, TRUE); 1435 if (flags->hidden_helper && 1436 task_team->tt.tt_hidden_helper_task_encountered == FALSE) 1437 TCW_4(task_team->tt.tt_hidden_helper_task_encountered, TRUE); 1438 } 1439 1440 // Calculate shared structure offset including padding after kmp_task_t struct 1441 // to align pointers in shared struct 1442 shareds_offset = sizeof(kmp_taskdata_t) + sizeof_kmp_task_t; 1443 shareds_offset = __kmp_round_up_to_val(shareds_offset, sizeof(void *)); 1444 1445 // Allocate a kmp_taskdata_t block and a kmp_task_t block. 1446 KA_TRACE(30, ("__kmp_task_alloc: T#%d First malloc size: %ld\n", gtid, 1447 shareds_offset)); 1448 KA_TRACE(30, ("__kmp_task_alloc: T#%d Second malloc size: %ld\n", gtid, 1449 sizeof_shareds)); 1450 1451 // Avoid double allocation here by combining shareds with taskdata 1452 #if USE_FAST_MEMORY 1453 taskdata = (kmp_taskdata_t *)__kmp_fast_allocate(thread, shareds_offset + 1454 sizeof_shareds); 1455 #else /* ! USE_FAST_MEMORY */ 1456 taskdata = (kmp_taskdata_t *)__kmp_thread_malloc(thread, shareds_offset + 1457 sizeof_shareds); 1458 #endif /* USE_FAST_MEMORY */ 1459 1460 task = KMP_TASKDATA_TO_TASK(taskdata); 1461 1462 // Make sure task & taskdata are aligned appropriately 1463 #if KMP_ARCH_X86 || KMP_ARCH_PPC64 || !KMP_HAVE_QUAD 1464 KMP_DEBUG_ASSERT((((kmp_uintptr_t)taskdata) & (sizeof(double) - 1)) == 0); 1465 KMP_DEBUG_ASSERT((((kmp_uintptr_t)task) & (sizeof(double) - 1)) == 0); 1466 #else 1467 KMP_DEBUG_ASSERT((((kmp_uintptr_t)taskdata) & (sizeof(_Quad) - 1)) == 0); 1468 KMP_DEBUG_ASSERT((((kmp_uintptr_t)task) & (sizeof(_Quad) - 1)) == 0); 1469 #endif 1470 if (sizeof_shareds > 0) { 1471 // Avoid double allocation here by combining shareds with taskdata 1472 task->shareds = &((char *)taskdata)[shareds_offset]; 1473 // Make sure shareds struct is aligned to pointer size 1474 KMP_DEBUG_ASSERT((((kmp_uintptr_t)task->shareds) & (sizeof(void *) - 1)) == 1475 0); 1476 } else { 1477 task->shareds = NULL; 1478 } 1479 task->routine = task_entry; 1480 task->part_id = 0; // AC: Always start with 0 part id 1481 1482 taskdata->td_task_id = KMP_GEN_TASK_ID(); 1483 taskdata->td_team = thread->th.th_team; 1484 taskdata->td_alloc_thread = thread; 1485 taskdata->td_parent = parent_task; 1486 taskdata->td_level = parent_task->td_level + 1; // increment nesting level 1487 KMP_ATOMIC_ST_RLX(&taskdata->td_untied_count, 0); 1488 taskdata->td_ident = loc_ref; 1489 taskdata->td_taskwait_ident = NULL; 1490 taskdata->td_taskwait_counter = 0; 1491 taskdata->td_taskwait_thread = 0; 1492 KMP_DEBUG_ASSERT(taskdata->td_parent != NULL); 1493 // avoid copying icvs for proxy tasks 1494 if (flags->proxy == TASK_FULL) 1495 copy_icvs(&taskdata->td_icvs, &taskdata->td_parent->td_icvs); 1496 1497 taskdata->td_flags = *flags; 1498 taskdata->td_task_team = thread->th.th_task_team; 1499 taskdata->td_size_alloc = shareds_offset + sizeof_shareds; 1500 taskdata->td_flags.tasktype = TASK_EXPLICIT; 1501 // If it is hidden helper task, we need to set the team and task team 1502 // correspondingly. 1503 if (flags->hidden_helper) { 1504 kmp_info_t *shadow_thread = __kmp_threads[KMP_GTID_TO_SHADOW_GTID(gtid)]; 1505 taskdata->td_team = shadow_thread->th.th_team; 1506 taskdata->td_task_team = shadow_thread->th.th_task_team; 1507 } 1508 1509 // GEH - TODO: fix this to copy parent task's value of tasking_ser flag 1510 taskdata->td_flags.tasking_ser = (__kmp_tasking_mode == tskm_immediate_exec); 1511 1512 // GEH - TODO: fix this to copy parent task's value of team_serial flag 1513 taskdata->td_flags.team_serial = (team->t.t_serialized) ? 1 : 0; 1514 1515 // GEH - Note we serialize the task if the team is serialized to make sure 1516 // implicit parallel region tasks are not left until program termination to 1517 // execute. Also, it helps locality to execute immediately. 1518 1519 taskdata->td_flags.task_serial = 1520 (parent_task->td_flags.final || taskdata->td_flags.team_serial || 1521 taskdata->td_flags.tasking_ser || flags->merged_if0); 1522 1523 taskdata->td_flags.started = 0; 1524 taskdata->td_flags.executing = 0; 1525 taskdata->td_flags.complete = 0; 1526 taskdata->td_flags.freed = 0; 1527 1528 KMP_ATOMIC_ST_RLX(&taskdata->td_incomplete_child_tasks, 0); 1529 // start at one because counts current task and children 1530 KMP_ATOMIC_ST_RLX(&taskdata->td_allocated_child_tasks, 1); 1531 taskdata->td_taskgroup = 1532 parent_task->td_taskgroup; // task inherits taskgroup from the parent task 1533 taskdata->td_dephash = NULL; 1534 taskdata->td_depnode = NULL; 1535 if (flags->tiedness == TASK_UNTIED) 1536 taskdata->td_last_tied = NULL; // will be set when the task is scheduled 1537 else 1538 taskdata->td_last_tied = taskdata; 1539 taskdata->td_allow_completion_event.type = KMP_EVENT_UNINITIALIZED; 1540 #if OMPT_SUPPORT 1541 if (UNLIKELY(ompt_enabled.enabled)) 1542 __ompt_task_init(taskdata, gtid); 1543 #endif 1544 // TODO: What would be the balance between the conditions in the function and 1545 // an atomic operation? 1546 if (__kmp_track_children_task(taskdata)) { 1547 KMP_ATOMIC_INC(&parent_task->td_incomplete_child_tasks); 1548 if (parent_task->td_taskgroup) 1549 KMP_ATOMIC_INC(&parent_task->td_taskgroup->count); 1550 // Only need to keep track of allocated child tasks for explicit tasks since 1551 // implicit not deallocated 1552 if (taskdata->td_parent->td_flags.tasktype == TASK_EXPLICIT) { 1553 KMP_ATOMIC_INC(&taskdata->td_parent->td_allocated_child_tasks); 1554 } 1555 if (flags->hidden_helper) { 1556 taskdata->td_flags.task_serial = FALSE; 1557 // Increment the number of hidden helper tasks to be executed 1558 KMP_ATOMIC_INC(&__kmp_unexecuted_hidden_helper_tasks); 1559 } 1560 } 1561 1562 KA_TRACE(20, ("__kmp_task_alloc(exit): T#%d created task %p parent=%p\n", 1563 gtid, taskdata, taskdata->td_parent)); 1564 1565 return task; 1566 } 1567 1568 kmp_task_t *__kmpc_omp_task_alloc(ident_t *loc_ref, kmp_int32 gtid, 1569 kmp_int32 flags, size_t sizeof_kmp_task_t, 1570 size_t sizeof_shareds, 1571 kmp_routine_entry_t task_entry) { 1572 kmp_task_t *retval; 1573 kmp_tasking_flags_t *input_flags = (kmp_tasking_flags_t *)&flags; 1574 __kmp_assert_valid_gtid(gtid); 1575 input_flags->native = FALSE; 1576 // __kmp_task_alloc() sets up all other runtime flags 1577 KA_TRACE(10, ("__kmpc_omp_task_alloc(enter): T#%d loc=%p, flags=(%s %s %s) " 1578 "sizeof_task=%ld sizeof_shared=%ld entry=%p\n", 1579 gtid, loc_ref, input_flags->tiedness ? "tied " : "untied", 1580 input_flags->proxy ? "proxy" : "", 1581 input_flags->detachable ? "detachable" : "", sizeof_kmp_task_t, 1582 sizeof_shareds, task_entry)); 1583 1584 retval = __kmp_task_alloc(loc_ref, gtid, input_flags, sizeof_kmp_task_t, 1585 sizeof_shareds, task_entry); 1586 1587 KA_TRACE(20, ("__kmpc_omp_task_alloc(exit): T#%d retval %p\n", gtid, retval)); 1588 1589 return retval; 1590 } 1591 1592 kmp_task_t *__kmpc_omp_target_task_alloc(ident_t *loc_ref, kmp_int32 gtid, 1593 kmp_int32 flags, 1594 size_t sizeof_kmp_task_t, 1595 size_t sizeof_shareds, 1596 kmp_routine_entry_t task_entry, 1597 kmp_int64 device_id) { 1598 auto &input_flags = reinterpret_cast<kmp_tasking_flags_t &>(flags); 1599 // target task is untied defined in the specification 1600 input_flags.tiedness = TASK_UNTIED; 1601 1602 if (__kmp_enable_hidden_helper) 1603 input_flags.hidden_helper = TRUE; 1604 1605 return __kmpc_omp_task_alloc(loc_ref, gtid, flags, sizeof_kmp_task_t, 1606 sizeof_shareds, task_entry); 1607 } 1608 1609 /*! 1610 @ingroup TASKING 1611 @param loc_ref location of the original task directive 1612 @param gtid Global Thread ID of encountering thread 1613 @param new_task task thunk allocated by __kmpc_omp_task_alloc() for the ''new 1614 task'' 1615 @param naffins Number of affinity items 1616 @param affin_list List of affinity items 1617 @return Returns non-zero if registering affinity information was not successful. 1618 Returns 0 if registration was successful 1619 This entry registers the affinity information attached to a task with the task 1620 thunk structure kmp_taskdata_t. 1621 */ 1622 kmp_int32 1623 __kmpc_omp_reg_task_with_affinity(ident_t *loc_ref, kmp_int32 gtid, 1624 kmp_task_t *new_task, kmp_int32 naffins, 1625 kmp_task_affinity_info_t *affin_list) { 1626 return 0; 1627 } 1628 1629 // __kmp_invoke_task: invoke the specified task 1630 // 1631 // gtid: global thread ID of caller 1632 // task: the task to invoke 1633 // current_task: the task to resume after task invocation 1634 static void __kmp_invoke_task(kmp_int32 gtid, kmp_task_t *task, 1635 kmp_taskdata_t *current_task) { 1636 kmp_taskdata_t *taskdata = KMP_TASK_TO_TASKDATA(task); 1637 kmp_info_t *thread; 1638 int discard = 0 /* false */; 1639 KA_TRACE( 1640 30, ("__kmp_invoke_task(enter): T#%d invoking task %p, current_task=%p\n", 1641 gtid, taskdata, current_task)); 1642 KMP_DEBUG_ASSERT(task); 1643 if (UNLIKELY(taskdata->td_flags.proxy == TASK_PROXY && 1644 taskdata->td_flags.complete == 1)) { 1645 // This is a proxy task that was already completed but it needs to run 1646 // its bottom-half finish 1647 KA_TRACE( 1648 30, 1649 ("__kmp_invoke_task: T#%d running bottom finish for proxy task %p\n", 1650 gtid, taskdata)); 1651 1652 __kmp_bottom_half_finish_proxy(gtid, task); 1653 1654 KA_TRACE(30, ("__kmp_invoke_task(exit): T#%d completed bottom finish for " 1655 "proxy task %p, resuming task %p\n", 1656 gtid, taskdata, current_task)); 1657 1658 return; 1659 } 1660 1661 #if OMPT_SUPPORT 1662 // For untied tasks, the first task executed only calls __kmpc_omp_task and 1663 // does not execute code. 1664 ompt_thread_info_t oldInfo; 1665 if (UNLIKELY(ompt_enabled.enabled)) { 1666 // Store the threads states and restore them after the task 1667 thread = __kmp_threads[gtid]; 1668 oldInfo = thread->th.ompt_thread_info; 1669 thread->th.ompt_thread_info.wait_id = 0; 1670 thread->th.ompt_thread_info.state = (thread->th.th_team_serialized) 1671 ? ompt_state_work_serial 1672 : ompt_state_work_parallel; 1673 taskdata->ompt_task_info.frame.exit_frame.ptr = OMPT_GET_FRAME_ADDRESS(0); 1674 } 1675 #endif 1676 1677 // Decreament the counter of hidden helper tasks to be executed 1678 if (taskdata->td_flags.hidden_helper) { 1679 // Hidden helper tasks can only be executed by hidden helper threads 1680 KMP_ASSERT(KMP_HIDDEN_HELPER_THREAD(gtid)); 1681 KMP_ATOMIC_DEC(&__kmp_unexecuted_hidden_helper_tasks); 1682 } 1683 1684 // Proxy tasks are not handled by the runtime 1685 if (taskdata->td_flags.proxy != TASK_PROXY) { 1686 __kmp_task_start(gtid, task, current_task); // OMPT only if not discarded 1687 } 1688 1689 // TODO: cancel tasks if the parallel region has also been cancelled 1690 // TODO: check if this sequence can be hoisted above __kmp_task_start 1691 // if cancellation has been enabled for this run ... 1692 if (UNLIKELY(__kmp_omp_cancellation)) { 1693 thread = __kmp_threads[gtid]; 1694 kmp_team_t *this_team = thread->th.th_team; 1695 kmp_taskgroup_t *taskgroup = taskdata->td_taskgroup; 1696 if ((taskgroup && taskgroup->cancel_request) || 1697 (this_team->t.t_cancel_request == cancel_parallel)) { 1698 #if OMPT_SUPPORT && OMPT_OPTIONAL 1699 ompt_data_t *task_data; 1700 if (UNLIKELY(ompt_enabled.ompt_callback_cancel)) { 1701 __ompt_get_task_info_internal(0, NULL, &task_data, NULL, NULL, NULL); 1702 ompt_callbacks.ompt_callback(ompt_callback_cancel)( 1703 task_data, 1704 ((taskgroup && taskgroup->cancel_request) ? ompt_cancel_taskgroup 1705 : ompt_cancel_parallel) | 1706 ompt_cancel_discarded_task, 1707 NULL); 1708 } 1709 #endif 1710 KMP_COUNT_BLOCK(TASK_cancelled); 1711 // this task belongs to a task group and we need to cancel it 1712 discard = 1 /* true */; 1713 } 1714 } 1715 1716 // Invoke the task routine and pass in relevant data. 1717 // Thunks generated by gcc take a different argument list. 1718 if (!discard) { 1719 if (taskdata->td_flags.tiedness == TASK_UNTIED) { 1720 taskdata->td_last_tied = current_task->td_last_tied; 1721 KMP_DEBUG_ASSERT(taskdata->td_last_tied); 1722 } 1723 #if KMP_STATS_ENABLED 1724 KMP_COUNT_BLOCK(TASK_executed); 1725 switch (KMP_GET_THREAD_STATE()) { 1726 case FORK_JOIN_BARRIER: 1727 KMP_PUSH_PARTITIONED_TIMER(OMP_task_join_bar); 1728 break; 1729 case PLAIN_BARRIER: 1730 KMP_PUSH_PARTITIONED_TIMER(OMP_task_plain_bar); 1731 break; 1732 case TASKYIELD: 1733 KMP_PUSH_PARTITIONED_TIMER(OMP_task_taskyield); 1734 break; 1735 case TASKWAIT: 1736 KMP_PUSH_PARTITIONED_TIMER(OMP_task_taskwait); 1737 break; 1738 case TASKGROUP: 1739 KMP_PUSH_PARTITIONED_TIMER(OMP_task_taskgroup); 1740 break; 1741 default: 1742 KMP_PUSH_PARTITIONED_TIMER(OMP_task_immediate); 1743 break; 1744 } 1745 #endif // KMP_STATS_ENABLED 1746 1747 // OMPT task begin 1748 #if OMPT_SUPPORT 1749 if (UNLIKELY(ompt_enabled.enabled)) 1750 __ompt_task_start(task, current_task, gtid); 1751 #endif 1752 #if OMPT_SUPPORT && OMPT_OPTIONAL 1753 if (UNLIKELY(ompt_enabled.ompt_callback_dispatch && 1754 taskdata->ompt_task_info.dispatch_chunk.iterations > 0)) { 1755 ompt_data_t instance = ompt_data_none; 1756 instance.ptr = &(taskdata->ompt_task_info.dispatch_chunk); 1757 ompt_team_info_t *team_info = __ompt_get_teaminfo(0, NULL); 1758 ompt_callbacks.ompt_callback(ompt_callback_dispatch)( 1759 &(team_info->parallel_data), &(taskdata->ompt_task_info.task_data), 1760 ompt_dispatch_taskloop_chunk, instance); 1761 taskdata->ompt_task_info.dispatch_chunk = {0, 0}; 1762 } 1763 #endif // OMPT_SUPPORT && OMPT_OPTIONAL 1764 1765 #if OMPD_SUPPORT 1766 if (ompd_state & OMPD_ENABLE_BP) 1767 ompd_bp_task_begin(); 1768 #endif 1769 1770 #if USE_ITT_BUILD && USE_ITT_NOTIFY 1771 kmp_uint64 cur_time; 1772 kmp_int32 kmp_itt_count_task = 1773 __kmp_forkjoin_frames_mode == 3 && !taskdata->td_flags.task_serial && 1774 current_task->td_flags.tasktype == TASK_IMPLICIT; 1775 if (kmp_itt_count_task) { 1776 thread = __kmp_threads[gtid]; 1777 // Time outer level explicit task on barrier for adjusting imbalance time 1778 if (thread->th.th_bar_arrive_time) 1779 cur_time = __itt_get_timestamp(); 1780 else 1781 kmp_itt_count_task = 0; // thread is not on a barrier - skip timing 1782 } 1783 KMP_FSYNC_ACQUIRED(taskdata); // acquired self (new task) 1784 #endif 1785 1786 if (task->routine != NULL) { 1787 #ifdef KMP_GOMP_COMPAT 1788 if (taskdata->td_flags.native) { 1789 ((void (*)(void *))(*(task->routine)))(task->shareds); 1790 } else 1791 #endif /* KMP_GOMP_COMPAT */ 1792 { 1793 (*(task->routine))(gtid, task); 1794 } 1795 } 1796 KMP_POP_PARTITIONED_TIMER(); 1797 1798 #if USE_ITT_BUILD && USE_ITT_NOTIFY 1799 if (kmp_itt_count_task) { 1800 // Barrier imbalance - adjust arrive time with the task duration 1801 thread->th.th_bar_arrive_time += (__itt_get_timestamp() - cur_time); 1802 } 1803 KMP_FSYNC_CANCEL(taskdata); // destroy self (just executed) 1804 KMP_FSYNC_RELEASING(taskdata->td_parent); // releasing parent 1805 #endif 1806 } 1807 1808 #if OMPD_SUPPORT 1809 if (ompd_state & OMPD_ENABLE_BP) 1810 ompd_bp_task_end(); 1811 #endif 1812 1813 // Proxy tasks are not handled by the runtime 1814 if (taskdata->td_flags.proxy != TASK_PROXY) { 1815 #if OMPT_SUPPORT 1816 if (UNLIKELY(ompt_enabled.enabled)) { 1817 thread->th.ompt_thread_info = oldInfo; 1818 if (taskdata->td_flags.tiedness == TASK_TIED) { 1819 taskdata->ompt_task_info.frame.exit_frame = ompt_data_none; 1820 } 1821 __kmp_task_finish<true>(gtid, task, current_task); 1822 } else 1823 #endif 1824 __kmp_task_finish<false>(gtid, task, current_task); 1825 } 1826 1827 KA_TRACE( 1828 30, 1829 ("__kmp_invoke_task(exit): T#%d completed task %p, resuming task %p\n", 1830 gtid, taskdata, current_task)); 1831 return; 1832 } 1833 1834 // __kmpc_omp_task_parts: Schedule a thread-switchable task for execution 1835 // 1836 // loc_ref: location of original task pragma (ignored) 1837 // gtid: Global Thread ID of encountering thread 1838 // new_task: task thunk allocated by __kmp_omp_task_alloc() for the ''new task'' 1839 // Returns: 1840 // TASK_CURRENT_NOT_QUEUED (0) if did not suspend and queue current task to 1841 // be resumed later. 1842 // TASK_CURRENT_QUEUED (1) if suspended and queued the current task to be 1843 // resumed later. 1844 kmp_int32 __kmpc_omp_task_parts(ident_t *loc_ref, kmp_int32 gtid, 1845 kmp_task_t *new_task) { 1846 kmp_taskdata_t *new_taskdata = KMP_TASK_TO_TASKDATA(new_task); 1847 1848 KA_TRACE(10, ("__kmpc_omp_task_parts(enter): T#%d loc=%p task=%p\n", gtid, 1849 loc_ref, new_taskdata)); 1850 1851 #if OMPT_SUPPORT 1852 kmp_taskdata_t *parent; 1853 if (UNLIKELY(ompt_enabled.enabled)) { 1854 parent = new_taskdata->td_parent; 1855 if (ompt_enabled.ompt_callback_task_create) { 1856 ompt_callbacks.ompt_callback(ompt_callback_task_create)( 1857 &(parent->ompt_task_info.task_data), &(parent->ompt_task_info.frame), 1858 &(new_taskdata->ompt_task_info.task_data), ompt_task_explicit, 0, 1859 OMPT_GET_RETURN_ADDRESS(0)); 1860 } 1861 } 1862 #endif 1863 1864 /* Should we execute the new task or queue it? For now, let's just always try 1865 to queue it. If the queue fills up, then we'll execute it. */ 1866 1867 if (__kmp_push_task(gtid, new_task) == TASK_NOT_PUSHED) // if cannot defer 1868 { // Execute this task immediately 1869 kmp_taskdata_t *current_task = __kmp_threads[gtid]->th.th_current_task; 1870 new_taskdata->td_flags.task_serial = 1; 1871 __kmp_invoke_task(gtid, new_task, current_task); 1872 } 1873 1874 KA_TRACE( 1875 10, 1876 ("__kmpc_omp_task_parts(exit): T#%d returning TASK_CURRENT_NOT_QUEUED: " 1877 "loc=%p task=%p, return: TASK_CURRENT_NOT_QUEUED\n", 1878 gtid, loc_ref, new_taskdata)); 1879 1880 #if OMPT_SUPPORT 1881 if (UNLIKELY(ompt_enabled.enabled)) { 1882 parent->ompt_task_info.frame.enter_frame = ompt_data_none; 1883 } 1884 #endif 1885 return TASK_CURRENT_NOT_QUEUED; 1886 } 1887 1888 // __kmp_omp_task: Schedule a non-thread-switchable task for execution 1889 // 1890 // gtid: Global Thread ID of encountering thread 1891 // new_task:non-thread-switchable task thunk allocated by __kmp_omp_task_alloc() 1892 // serialize_immediate: if TRUE then if the task is executed immediately its 1893 // execution will be serialized 1894 // Returns: 1895 // TASK_CURRENT_NOT_QUEUED (0) if did not suspend and queue current task to 1896 // be resumed later. 1897 // TASK_CURRENT_QUEUED (1) if suspended and queued the current task to be 1898 // resumed later. 1899 kmp_int32 __kmp_omp_task(kmp_int32 gtid, kmp_task_t *new_task, 1900 bool serialize_immediate) { 1901 kmp_taskdata_t *new_taskdata = KMP_TASK_TO_TASKDATA(new_task); 1902 1903 /* Should we execute the new task or queue it? For now, let's just always try 1904 to queue it. If the queue fills up, then we'll execute it. */ 1905 if (new_taskdata->td_flags.proxy == TASK_PROXY || 1906 __kmp_push_task(gtid, new_task) == TASK_NOT_PUSHED) // if cannot defer 1907 { // Execute this task immediately 1908 kmp_taskdata_t *current_task = __kmp_threads[gtid]->th.th_current_task; 1909 if (serialize_immediate) 1910 new_taskdata->td_flags.task_serial = 1; 1911 __kmp_invoke_task(gtid, new_task, current_task); 1912 } else if (__kmp_dflt_blocktime != KMP_MAX_BLOCKTIME && 1913 __kmp_wpolicy_passive) { 1914 kmp_info_t *this_thr = __kmp_threads[gtid]; 1915 kmp_team_t *team = this_thr->th.th_team; 1916 kmp_int32 nthreads = this_thr->th.th_team_nproc; 1917 for (int i = 0; i < nthreads; ++i) { 1918 kmp_info_t *thread = team->t.t_threads[i]; 1919 if (thread == this_thr) 1920 continue; 1921 if (thread->th.th_sleep_loc != NULL) { 1922 __kmp_null_resume_wrapper(thread); 1923 break; // awake one thread at a time 1924 } 1925 } 1926 } 1927 return TASK_CURRENT_NOT_QUEUED; 1928 } 1929 1930 // __kmpc_omp_task: Wrapper around __kmp_omp_task to schedule a 1931 // non-thread-switchable task from the parent thread only! 1932 // 1933 // loc_ref: location of original task pragma (ignored) 1934 // gtid: Global Thread ID of encountering thread 1935 // new_task: non-thread-switchable task thunk allocated by 1936 // __kmp_omp_task_alloc() 1937 // Returns: 1938 // TASK_CURRENT_NOT_QUEUED (0) if did not suspend and queue current task to 1939 // be resumed later. 1940 // TASK_CURRENT_QUEUED (1) if suspended and queued the current task to be 1941 // resumed later. 1942 kmp_int32 __kmpc_omp_task(ident_t *loc_ref, kmp_int32 gtid, 1943 kmp_task_t *new_task) { 1944 kmp_int32 res; 1945 KMP_SET_THREAD_STATE_BLOCK(EXPLICIT_TASK); 1946 1947 #if KMP_DEBUG || OMPT_SUPPORT 1948 kmp_taskdata_t *new_taskdata = KMP_TASK_TO_TASKDATA(new_task); 1949 #endif 1950 KA_TRACE(10, ("__kmpc_omp_task(enter): T#%d loc=%p task=%p\n", gtid, loc_ref, 1951 new_taskdata)); 1952 __kmp_assert_valid_gtid(gtid); 1953 1954 #if OMPT_SUPPORT 1955 kmp_taskdata_t *parent = NULL; 1956 if (UNLIKELY(ompt_enabled.enabled)) { 1957 if (!new_taskdata->td_flags.started) { 1958 OMPT_STORE_RETURN_ADDRESS(gtid); 1959 parent = new_taskdata->td_parent; 1960 if (!parent->ompt_task_info.frame.enter_frame.ptr) { 1961 parent->ompt_task_info.frame.enter_frame.ptr = 1962 OMPT_GET_FRAME_ADDRESS(0); 1963 } 1964 if (ompt_enabled.ompt_callback_task_create) { 1965 ompt_callbacks.ompt_callback(ompt_callback_task_create)( 1966 &(parent->ompt_task_info.task_data), 1967 &(parent->ompt_task_info.frame), 1968 &(new_taskdata->ompt_task_info.task_data), 1969 ompt_task_explicit | TASK_TYPE_DETAILS_FORMAT(new_taskdata), 0, 1970 OMPT_LOAD_RETURN_ADDRESS(gtid)); 1971 } 1972 } else { 1973 // We are scheduling the continuation of an UNTIED task. 1974 // Scheduling back to the parent task. 1975 __ompt_task_finish(new_task, 1976 new_taskdata->ompt_task_info.scheduling_parent, 1977 ompt_task_switch); 1978 new_taskdata->ompt_task_info.frame.exit_frame = ompt_data_none; 1979 } 1980 } 1981 #endif 1982 1983 res = __kmp_omp_task(gtid, new_task, true); 1984 1985 KA_TRACE(10, ("__kmpc_omp_task(exit): T#%d returning " 1986 "TASK_CURRENT_NOT_QUEUED: loc=%p task=%p\n", 1987 gtid, loc_ref, new_taskdata)); 1988 #if OMPT_SUPPORT 1989 if (UNLIKELY(ompt_enabled.enabled && parent != NULL)) { 1990 parent->ompt_task_info.frame.enter_frame = ompt_data_none; 1991 } 1992 #endif 1993 return res; 1994 } 1995 1996 // __kmp_omp_taskloop_task: Wrapper around __kmp_omp_task to schedule 1997 // a taskloop task with the correct OMPT return address 1998 // 1999 // loc_ref: location of original task pragma (ignored) 2000 // gtid: Global Thread ID of encountering thread 2001 // new_task: non-thread-switchable task thunk allocated by 2002 // __kmp_omp_task_alloc() 2003 // codeptr_ra: return address for OMPT callback 2004 // Returns: 2005 // TASK_CURRENT_NOT_QUEUED (0) if did not suspend and queue current task to 2006 // be resumed later. 2007 // TASK_CURRENT_QUEUED (1) if suspended and queued the current task to be 2008 // resumed later. 2009 kmp_int32 __kmp_omp_taskloop_task(ident_t *loc_ref, kmp_int32 gtid, 2010 kmp_task_t *new_task, void *codeptr_ra) { 2011 kmp_int32 res; 2012 KMP_SET_THREAD_STATE_BLOCK(EXPLICIT_TASK); 2013 2014 #if KMP_DEBUG || OMPT_SUPPORT 2015 kmp_taskdata_t *new_taskdata = KMP_TASK_TO_TASKDATA(new_task); 2016 #endif 2017 KA_TRACE(10, ("__kmpc_omp_task(enter): T#%d loc=%p task=%p\n", gtid, loc_ref, 2018 new_taskdata)); 2019 2020 #if OMPT_SUPPORT 2021 kmp_taskdata_t *parent = NULL; 2022 if (UNLIKELY(ompt_enabled.enabled && !new_taskdata->td_flags.started)) { 2023 parent = new_taskdata->td_parent; 2024 if (!parent->ompt_task_info.frame.enter_frame.ptr) 2025 parent->ompt_task_info.frame.enter_frame.ptr = OMPT_GET_FRAME_ADDRESS(0); 2026 if (ompt_enabled.ompt_callback_task_create) { 2027 ompt_callbacks.ompt_callback(ompt_callback_task_create)( 2028 &(parent->ompt_task_info.task_data), &(parent->ompt_task_info.frame), 2029 &(new_taskdata->ompt_task_info.task_data), 2030 ompt_task_explicit | TASK_TYPE_DETAILS_FORMAT(new_taskdata), 0, 2031 codeptr_ra); 2032 } 2033 } 2034 #endif 2035 2036 res = __kmp_omp_task(gtid, new_task, true); 2037 2038 KA_TRACE(10, ("__kmpc_omp_task(exit): T#%d returning " 2039 "TASK_CURRENT_NOT_QUEUED: loc=%p task=%p\n", 2040 gtid, loc_ref, new_taskdata)); 2041 #if OMPT_SUPPORT 2042 if (UNLIKELY(ompt_enabled.enabled && parent != NULL)) { 2043 parent->ompt_task_info.frame.enter_frame = ompt_data_none; 2044 } 2045 #endif 2046 return res; 2047 } 2048 2049 template <bool ompt> 2050 static kmp_int32 __kmpc_omp_taskwait_template(ident_t *loc_ref, kmp_int32 gtid, 2051 void *frame_address, 2052 void *return_address) { 2053 kmp_taskdata_t *taskdata = nullptr; 2054 kmp_info_t *thread; 2055 int thread_finished = FALSE; 2056 KMP_SET_THREAD_STATE_BLOCK(TASKWAIT); 2057 2058 KA_TRACE(10, ("__kmpc_omp_taskwait(enter): T#%d loc=%p\n", gtid, loc_ref)); 2059 KMP_DEBUG_ASSERT(gtid >= 0); 2060 2061 if (__kmp_tasking_mode != tskm_immediate_exec) { 2062 thread = __kmp_threads[gtid]; 2063 taskdata = thread->th.th_current_task; 2064 2065 #if OMPT_SUPPORT && OMPT_OPTIONAL 2066 ompt_data_t *my_task_data; 2067 ompt_data_t *my_parallel_data; 2068 2069 if (ompt) { 2070 my_task_data = &(taskdata->ompt_task_info.task_data); 2071 my_parallel_data = OMPT_CUR_TEAM_DATA(thread); 2072 2073 taskdata->ompt_task_info.frame.enter_frame.ptr = frame_address; 2074 2075 if (ompt_enabled.ompt_callback_sync_region) { 2076 ompt_callbacks.ompt_callback(ompt_callback_sync_region)( 2077 ompt_sync_region_taskwait, ompt_scope_begin, my_parallel_data, 2078 my_task_data, return_address); 2079 } 2080 2081 if (ompt_enabled.ompt_callback_sync_region_wait) { 2082 ompt_callbacks.ompt_callback(ompt_callback_sync_region_wait)( 2083 ompt_sync_region_taskwait, ompt_scope_begin, my_parallel_data, 2084 my_task_data, return_address); 2085 } 2086 } 2087 #endif // OMPT_SUPPORT && OMPT_OPTIONAL 2088 2089 // Debugger: The taskwait is active. Store location and thread encountered the 2090 // taskwait. 2091 #if USE_ITT_BUILD 2092 // Note: These values are used by ITT events as well. 2093 #endif /* USE_ITT_BUILD */ 2094 taskdata->td_taskwait_counter += 1; 2095 taskdata->td_taskwait_ident = loc_ref; 2096 taskdata->td_taskwait_thread = gtid + 1; 2097 2098 #if USE_ITT_BUILD 2099 void *itt_sync_obj = NULL; 2100 #if USE_ITT_NOTIFY 2101 KMP_ITT_TASKWAIT_STARTING(itt_sync_obj); 2102 #endif /* USE_ITT_NOTIFY */ 2103 #endif /* USE_ITT_BUILD */ 2104 2105 bool must_wait = 2106 !taskdata->td_flags.team_serial && !taskdata->td_flags.final; 2107 2108 must_wait = must_wait || (thread->th.th_task_team != NULL && 2109 thread->th.th_task_team->tt.tt_found_proxy_tasks); 2110 // If hidden helper thread is encountered, we must enable wait here. 2111 must_wait = 2112 must_wait || 2113 (__kmp_enable_hidden_helper && thread->th.th_task_team != NULL && 2114 thread->th.th_task_team->tt.tt_hidden_helper_task_encountered); 2115 2116 if (must_wait) { 2117 kmp_flag_32<false, false> flag( 2118 RCAST(std::atomic<kmp_uint32> *, 2119 &(taskdata->td_incomplete_child_tasks)), 2120 0U); 2121 while (KMP_ATOMIC_LD_ACQ(&taskdata->td_incomplete_child_tasks) != 0) { 2122 flag.execute_tasks(thread, gtid, FALSE, 2123 &thread_finished USE_ITT_BUILD_ARG(itt_sync_obj), 2124 __kmp_task_stealing_constraint); 2125 } 2126 } 2127 #if USE_ITT_BUILD 2128 KMP_ITT_TASKWAIT_FINISHED(itt_sync_obj); 2129 KMP_FSYNC_ACQUIRED(taskdata); // acquire self - sync with children 2130 #endif /* USE_ITT_BUILD */ 2131 2132 // Debugger: The taskwait is completed. Location remains, but thread is 2133 // negated. 2134 taskdata->td_taskwait_thread = -taskdata->td_taskwait_thread; 2135 2136 #if OMPT_SUPPORT && OMPT_OPTIONAL 2137 if (ompt) { 2138 if (ompt_enabled.ompt_callback_sync_region_wait) { 2139 ompt_callbacks.ompt_callback(ompt_callback_sync_region_wait)( 2140 ompt_sync_region_taskwait, ompt_scope_end, my_parallel_data, 2141 my_task_data, return_address); 2142 } 2143 if (ompt_enabled.ompt_callback_sync_region) { 2144 ompt_callbacks.ompt_callback(ompt_callback_sync_region)( 2145 ompt_sync_region_taskwait, ompt_scope_end, my_parallel_data, 2146 my_task_data, return_address); 2147 } 2148 taskdata->ompt_task_info.frame.enter_frame = ompt_data_none; 2149 } 2150 #endif // OMPT_SUPPORT && OMPT_OPTIONAL 2151 2152 } 2153 2154 KA_TRACE(10, ("__kmpc_omp_taskwait(exit): T#%d task %p finished waiting, " 2155 "returning TASK_CURRENT_NOT_QUEUED\n", 2156 gtid, taskdata)); 2157 2158 return TASK_CURRENT_NOT_QUEUED; 2159 } 2160 2161 #if OMPT_SUPPORT && OMPT_OPTIONAL 2162 OMPT_NOINLINE 2163 static kmp_int32 __kmpc_omp_taskwait_ompt(ident_t *loc_ref, kmp_int32 gtid, 2164 void *frame_address, 2165 void *return_address) { 2166 return __kmpc_omp_taskwait_template<true>(loc_ref, gtid, frame_address, 2167 return_address); 2168 } 2169 #endif // OMPT_SUPPORT && OMPT_OPTIONAL 2170 2171 // __kmpc_omp_taskwait: Wait until all tasks generated by the current task are 2172 // complete 2173 kmp_int32 __kmpc_omp_taskwait(ident_t *loc_ref, kmp_int32 gtid) { 2174 #if OMPT_SUPPORT && OMPT_OPTIONAL 2175 if (UNLIKELY(ompt_enabled.enabled)) { 2176 OMPT_STORE_RETURN_ADDRESS(gtid); 2177 return __kmpc_omp_taskwait_ompt(loc_ref, gtid, OMPT_GET_FRAME_ADDRESS(0), 2178 OMPT_LOAD_RETURN_ADDRESS(gtid)); 2179 } 2180 #endif 2181 return __kmpc_omp_taskwait_template<false>(loc_ref, gtid, NULL, NULL); 2182 } 2183 2184 // __kmpc_omp_taskyield: switch to a different task 2185 kmp_int32 __kmpc_omp_taskyield(ident_t *loc_ref, kmp_int32 gtid, int end_part) { 2186 kmp_taskdata_t *taskdata = NULL; 2187 kmp_info_t *thread; 2188 int thread_finished = FALSE; 2189 2190 KMP_COUNT_BLOCK(OMP_TASKYIELD); 2191 KMP_SET_THREAD_STATE_BLOCK(TASKYIELD); 2192 2193 KA_TRACE(10, ("__kmpc_omp_taskyield(enter): T#%d loc=%p end_part = %d\n", 2194 gtid, loc_ref, end_part)); 2195 __kmp_assert_valid_gtid(gtid); 2196 2197 if (__kmp_tasking_mode != tskm_immediate_exec && __kmp_init_parallel) { 2198 thread = __kmp_threads[gtid]; 2199 taskdata = thread->th.th_current_task; 2200 // Should we model this as a task wait or not? 2201 // Debugger: The taskwait is active. Store location and thread encountered the 2202 // taskwait. 2203 #if USE_ITT_BUILD 2204 // Note: These values are used by ITT events as well. 2205 #endif /* USE_ITT_BUILD */ 2206 taskdata->td_taskwait_counter += 1; 2207 taskdata->td_taskwait_ident = loc_ref; 2208 taskdata->td_taskwait_thread = gtid + 1; 2209 2210 #if USE_ITT_BUILD 2211 void *itt_sync_obj = NULL; 2212 #if USE_ITT_NOTIFY 2213 KMP_ITT_TASKWAIT_STARTING(itt_sync_obj); 2214 #endif /* USE_ITT_NOTIFY */ 2215 #endif /* USE_ITT_BUILD */ 2216 if (!taskdata->td_flags.team_serial) { 2217 kmp_task_team_t *task_team = thread->th.th_task_team; 2218 if (task_team != NULL) { 2219 if (KMP_TASKING_ENABLED(task_team)) { 2220 #if OMPT_SUPPORT 2221 if (UNLIKELY(ompt_enabled.enabled)) 2222 thread->th.ompt_thread_info.ompt_task_yielded = 1; 2223 #endif 2224 __kmp_execute_tasks_32( 2225 thread, gtid, (kmp_flag_32<> *)NULL, FALSE, 2226 &thread_finished USE_ITT_BUILD_ARG(itt_sync_obj), 2227 __kmp_task_stealing_constraint); 2228 #if OMPT_SUPPORT 2229 if (UNLIKELY(ompt_enabled.enabled)) 2230 thread->th.ompt_thread_info.ompt_task_yielded = 0; 2231 #endif 2232 } 2233 } 2234 } 2235 #if USE_ITT_BUILD 2236 KMP_ITT_TASKWAIT_FINISHED(itt_sync_obj); 2237 #endif /* USE_ITT_BUILD */ 2238 2239 // Debugger: The taskwait is completed. Location remains, but thread is 2240 // negated. 2241 taskdata->td_taskwait_thread = -taskdata->td_taskwait_thread; 2242 } 2243 2244 KA_TRACE(10, ("__kmpc_omp_taskyield(exit): T#%d task %p resuming, " 2245 "returning TASK_CURRENT_NOT_QUEUED\n", 2246 gtid, taskdata)); 2247 2248 return TASK_CURRENT_NOT_QUEUED; 2249 } 2250 2251 // Task Reduction implementation 2252 // 2253 // Note: initial implementation didn't take into account the possibility 2254 // to specify omp_orig for initializer of the UDR (user defined reduction). 2255 // Corrected implementation takes into account the omp_orig object. 2256 // Compiler is free to use old implementation if omp_orig is not specified. 2257 2258 /*! 2259 @ingroup BASIC_TYPES 2260 @{ 2261 */ 2262 2263 /*! 2264 Flags for special info per task reduction item. 2265 */ 2266 typedef struct kmp_taskred_flags { 2267 /*! 1 - use lazy alloc/init (e.g. big objects, num tasks < num threads) */ 2268 unsigned lazy_priv : 1; 2269 unsigned reserved31 : 31; 2270 } kmp_taskred_flags_t; 2271 2272 /*! 2273 Internal struct for reduction data item related info set up by compiler. 2274 */ 2275 typedef struct kmp_task_red_input { 2276 void *reduce_shar; /**< shared between tasks item to reduce into */ 2277 size_t reduce_size; /**< size of data item in bytes */ 2278 // three compiler-generated routines (init, fini are optional): 2279 void *reduce_init; /**< data initialization routine (single parameter) */ 2280 void *reduce_fini; /**< data finalization routine */ 2281 void *reduce_comb; /**< data combiner routine */ 2282 kmp_taskred_flags_t flags; /**< flags for additional info from compiler */ 2283 } kmp_task_red_input_t; 2284 2285 /*! 2286 Internal struct for reduction data item related info saved by the library. 2287 */ 2288 typedef struct kmp_taskred_data { 2289 void *reduce_shar; /**< shared between tasks item to reduce into */ 2290 size_t reduce_size; /**< size of data item */ 2291 kmp_taskred_flags_t flags; /**< flags for additional info from compiler */ 2292 void *reduce_priv; /**< array of thread specific items */ 2293 void *reduce_pend; /**< end of private data for faster comparison op */ 2294 // three compiler-generated routines (init, fini are optional): 2295 void *reduce_comb; /**< data combiner routine */ 2296 void *reduce_init; /**< data initialization routine (two parameters) */ 2297 void *reduce_fini; /**< data finalization routine */ 2298 void *reduce_orig; /**< original item (can be used in UDR initializer) */ 2299 } kmp_taskred_data_t; 2300 2301 /*! 2302 Internal struct for reduction data item related info set up by compiler. 2303 2304 New interface: added reduce_orig field to provide omp_orig for UDR initializer. 2305 */ 2306 typedef struct kmp_taskred_input { 2307 void *reduce_shar; /**< shared between tasks item to reduce into */ 2308 void *reduce_orig; /**< original reduction item used for initialization */ 2309 size_t reduce_size; /**< size of data item */ 2310 // three compiler-generated routines (init, fini are optional): 2311 void *reduce_init; /**< data initialization routine (two parameters) */ 2312 void *reduce_fini; /**< data finalization routine */ 2313 void *reduce_comb; /**< data combiner routine */ 2314 kmp_taskred_flags_t flags; /**< flags for additional info from compiler */ 2315 } kmp_taskred_input_t; 2316 /*! 2317 @} 2318 */ 2319 2320 template <typename T> void __kmp_assign_orig(kmp_taskred_data_t &item, T &src); 2321 template <> 2322 void __kmp_assign_orig<kmp_task_red_input_t>(kmp_taskred_data_t &item, 2323 kmp_task_red_input_t &src) { 2324 item.reduce_orig = NULL; 2325 } 2326 template <> 2327 void __kmp_assign_orig<kmp_taskred_input_t>(kmp_taskred_data_t &item, 2328 kmp_taskred_input_t &src) { 2329 if (src.reduce_orig != NULL) { 2330 item.reduce_orig = src.reduce_orig; 2331 } else { 2332 item.reduce_orig = src.reduce_shar; 2333 } // non-NULL reduce_orig means new interface used 2334 } 2335 2336 template <typename T> void __kmp_call_init(kmp_taskred_data_t &item, size_t j); 2337 template <> 2338 void __kmp_call_init<kmp_task_red_input_t>(kmp_taskred_data_t &item, 2339 size_t offset) { 2340 ((void (*)(void *))item.reduce_init)((char *)(item.reduce_priv) + offset); 2341 } 2342 template <> 2343 void __kmp_call_init<kmp_taskred_input_t>(kmp_taskred_data_t &item, 2344 size_t offset) { 2345 ((void (*)(void *, void *))item.reduce_init)( 2346 (char *)(item.reduce_priv) + offset, item.reduce_orig); 2347 } 2348 2349 template <typename T> 2350 void *__kmp_task_reduction_init(int gtid, int num, T *data) { 2351 __kmp_assert_valid_gtid(gtid); 2352 kmp_info_t *thread = __kmp_threads[gtid]; 2353 kmp_taskgroup_t *tg = thread->th.th_current_task->td_taskgroup; 2354 kmp_uint32 nth = thread->th.th_team_nproc; 2355 kmp_taskred_data_t *arr; 2356 2357 // check input data just in case 2358 KMP_ASSERT(tg != NULL); 2359 KMP_ASSERT(data != NULL); 2360 KMP_ASSERT(num > 0); 2361 if (nth == 1) { 2362 KA_TRACE(10, ("__kmpc_task_reduction_init: T#%d, tg %p, exiting nth=1\n", 2363 gtid, tg)); 2364 return (void *)tg; 2365 } 2366 KA_TRACE(10, ("__kmpc_task_reduction_init: T#%d, taskgroup %p, #items %d\n", 2367 gtid, tg, num)); 2368 arr = (kmp_taskred_data_t *)__kmp_thread_malloc( 2369 thread, num * sizeof(kmp_taskred_data_t)); 2370 for (int i = 0; i < num; ++i) { 2371 size_t size = data[i].reduce_size - 1; 2372 // round the size up to cache line per thread-specific item 2373 size += CACHE_LINE - size % CACHE_LINE; 2374 KMP_ASSERT(data[i].reduce_comb != NULL); // combiner is mandatory 2375 arr[i].reduce_shar = data[i].reduce_shar; 2376 arr[i].reduce_size = size; 2377 arr[i].flags = data[i].flags; 2378 arr[i].reduce_comb = data[i].reduce_comb; 2379 arr[i].reduce_init = data[i].reduce_init; 2380 arr[i].reduce_fini = data[i].reduce_fini; 2381 __kmp_assign_orig<T>(arr[i], data[i]); 2382 if (!arr[i].flags.lazy_priv) { 2383 // allocate cache-line aligned block and fill it with zeros 2384 arr[i].reduce_priv = __kmp_allocate(nth * size); 2385 arr[i].reduce_pend = (char *)(arr[i].reduce_priv) + nth * size; 2386 if (arr[i].reduce_init != NULL) { 2387 // initialize all thread-specific items 2388 for (size_t j = 0; j < nth; ++j) { 2389 __kmp_call_init<T>(arr[i], j * size); 2390 } 2391 } 2392 } else { 2393 // only allocate space for pointers now, 2394 // objects will be lazily allocated/initialized if/when requested 2395 // note that __kmp_allocate zeroes the allocated memory 2396 arr[i].reduce_priv = __kmp_allocate(nth * sizeof(void *)); 2397 } 2398 } 2399 tg->reduce_data = (void *)arr; 2400 tg->reduce_num_data = num; 2401 return (void *)tg; 2402 } 2403 2404 /*! 2405 @ingroup TASKING 2406 @param gtid Global thread ID 2407 @param num Number of data items to reduce 2408 @param data Array of data for reduction 2409 @return The taskgroup identifier 2410 2411 Initialize task reduction for the taskgroup. 2412 2413 Note: this entry supposes the optional compiler-generated initializer routine 2414 has single parameter - pointer to object to be initialized. That means 2415 the reduction either does not use omp_orig object, or the omp_orig is accessible 2416 without help of the runtime library. 2417 */ 2418 void *__kmpc_task_reduction_init(int gtid, int num, void *data) { 2419 return __kmp_task_reduction_init(gtid, num, (kmp_task_red_input_t *)data); 2420 } 2421 2422 /*! 2423 @ingroup TASKING 2424 @param gtid Global thread ID 2425 @param num Number of data items to reduce 2426 @param data Array of data for reduction 2427 @return The taskgroup identifier 2428 2429 Initialize task reduction for the taskgroup. 2430 2431 Note: this entry supposes the optional compiler-generated initializer routine 2432 has two parameters, pointer to object to be initialized and pointer to omp_orig 2433 */ 2434 void *__kmpc_taskred_init(int gtid, int num, void *data) { 2435 return __kmp_task_reduction_init(gtid, num, (kmp_taskred_input_t *)data); 2436 } 2437 2438 // Copy task reduction data (except for shared pointers). 2439 template <typename T> 2440 void __kmp_task_reduction_init_copy(kmp_info_t *thr, int num, T *data, 2441 kmp_taskgroup_t *tg, void *reduce_data) { 2442 kmp_taskred_data_t *arr; 2443 KA_TRACE(20, ("__kmp_task_reduction_init_copy: Th %p, init taskgroup %p," 2444 " from data %p\n", 2445 thr, tg, reduce_data)); 2446 arr = (kmp_taskred_data_t *)__kmp_thread_malloc( 2447 thr, num * sizeof(kmp_taskred_data_t)); 2448 // threads will share private copies, thunk routines, sizes, flags, etc.: 2449 KMP_MEMCPY(arr, reduce_data, num * sizeof(kmp_taskred_data_t)); 2450 for (int i = 0; i < num; ++i) { 2451 arr[i].reduce_shar = data[i].reduce_shar; // init unique shared pointers 2452 } 2453 tg->reduce_data = (void *)arr; 2454 tg->reduce_num_data = num; 2455 } 2456 2457 /*! 2458 @ingroup TASKING 2459 @param gtid Global thread ID 2460 @param tskgrp The taskgroup ID (optional) 2461 @param data Shared location of the item 2462 @return The pointer to per-thread data 2463 2464 Get thread-specific location of data item 2465 */ 2466 void *__kmpc_task_reduction_get_th_data(int gtid, void *tskgrp, void *data) { 2467 __kmp_assert_valid_gtid(gtid); 2468 kmp_info_t *thread = __kmp_threads[gtid]; 2469 kmp_int32 nth = thread->th.th_team_nproc; 2470 if (nth == 1) 2471 return data; // nothing to do 2472 2473 kmp_taskgroup_t *tg = (kmp_taskgroup_t *)tskgrp; 2474 if (tg == NULL) 2475 tg = thread->th.th_current_task->td_taskgroup; 2476 KMP_ASSERT(tg != NULL); 2477 kmp_taskred_data_t *arr = (kmp_taskred_data_t *)(tg->reduce_data); 2478 kmp_int32 num = tg->reduce_num_data; 2479 kmp_int32 tid = thread->th.th_info.ds.ds_tid; 2480 2481 KMP_ASSERT(data != NULL); 2482 while (tg != NULL) { 2483 for (int i = 0; i < num; ++i) { 2484 if (!arr[i].flags.lazy_priv) { 2485 if (data == arr[i].reduce_shar || 2486 (data >= arr[i].reduce_priv && data < arr[i].reduce_pend)) 2487 return (char *)(arr[i].reduce_priv) + tid * arr[i].reduce_size; 2488 } else { 2489 // check shared location first 2490 void **p_priv = (void **)(arr[i].reduce_priv); 2491 if (data == arr[i].reduce_shar) 2492 goto found; 2493 // check if we get some thread specific location as parameter 2494 for (int j = 0; j < nth; ++j) 2495 if (data == p_priv[j]) 2496 goto found; 2497 continue; // not found, continue search 2498 found: 2499 if (p_priv[tid] == NULL) { 2500 // allocate thread specific object lazily 2501 p_priv[tid] = __kmp_allocate(arr[i].reduce_size); 2502 if (arr[i].reduce_init != NULL) { 2503 if (arr[i].reduce_orig != NULL) { // new interface 2504 ((void (*)(void *, void *))arr[i].reduce_init)( 2505 p_priv[tid], arr[i].reduce_orig); 2506 } else { // old interface (single parameter) 2507 ((void (*)(void *))arr[i].reduce_init)(p_priv[tid]); 2508 } 2509 } 2510 } 2511 return p_priv[tid]; 2512 } 2513 } 2514 tg = tg->parent; 2515 arr = (kmp_taskred_data_t *)(tg->reduce_data); 2516 num = tg->reduce_num_data; 2517 } 2518 KMP_ASSERT2(0, "Unknown task reduction item"); 2519 return NULL; // ERROR, this line never executed 2520 } 2521 2522 // Finalize task reduction. 2523 // Called from __kmpc_end_taskgroup() 2524 static void __kmp_task_reduction_fini(kmp_info_t *th, kmp_taskgroup_t *tg) { 2525 kmp_int32 nth = th->th.th_team_nproc; 2526 KMP_DEBUG_ASSERT(nth > 1); // should not be called if nth == 1 2527 kmp_taskred_data_t *arr = (kmp_taskred_data_t *)tg->reduce_data; 2528 kmp_int32 num = tg->reduce_num_data; 2529 for (int i = 0; i < num; ++i) { 2530 void *sh_data = arr[i].reduce_shar; 2531 void (*f_fini)(void *) = (void (*)(void *))(arr[i].reduce_fini); 2532 void (*f_comb)(void *, void *) = 2533 (void (*)(void *, void *))(arr[i].reduce_comb); 2534 if (!arr[i].flags.lazy_priv) { 2535 void *pr_data = arr[i].reduce_priv; 2536 size_t size = arr[i].reduce_size; 2537 for (int j = 0; j < nth; ++j) { 2538 void *priv_data = (char *)pr_data + j * size; 2539 f_comb(sh_data, priv_data); // combine results 2540 if (f_fini) 2541 f_fini(priv_data); // finalize if needed 2542 } 2543 } else { 2544 void **pr_data = (void **)(arr[i].reduce_priv); 2545 for (int j = 0; j < nth; ++j) { 2546 if (pr_data[j] != NULL) { 2547 f_comb(sh_data, pr_data[j]); // combine results 2548 if (f_fini) 2549 f_fini(pr_data[j]); // finalize if needed 2550 __kmp_free(pr_data[j]); 2551 } 2552 } 2553 } 2554 __kmp_free(arr[i].reduce_priv); 2555 } 2556 __kmp_thread_free(th, arr); 2557 tg->reduce_data = NULL; 2558 tg->reduce_num_data = 0; 2559 } 2560 2561 // Cleanup task reduction data for parallel or worksharing, 2562 // do not touch task private data other threads still working with. 2563 // Called from __kmpc_end_taskgroup() 2564 static void __kmp_task_reduction_clean(kmp_info_t *th, kmp_taskgroup_t *tg) { 2565 __kmp_thread_free(th, tg->reduce_data); 2566 tg->reduce_data = NULL; 2567 tg->reduce_num_data = 0; 2568 } 2569 2570 template <typename T> 2571 void *__kmp_task_reduction_modifier_init(ident_t *loc, int gtid, int is_ws, 2572 int num, T *data) { 2573 __kmp_assert_valid_gtid(gtid); 2574 kmp_info_t *thr = __kmp_threads[gtid]; 2575 kmp_int32 nth = thr->th.th_team_nproc; 2576 __kmpc_taskgroup(loc, gtid); // form new taskgroup first 2577 if (nth == 1) { 2578 KA_TRACE(10, 2579 ("__kmpc_reduction_modifier_init: T#%d, tg %p, exiting nth=1\n", 2580 gtid, thr->th.th_current_task->td_taskgroup)); 2581 return (void *)thr->th.th_current_task->td_taskgroup; 2582 } 2583 kmp_team_t *team = thr->th.th_team; 2584 void *reduce_data; 2585 kmp_taskgroup_t *tg; 2586 reduce_data = KMP_ATOMIC_LD_RLX(&team->t.t_tg_reduce_data[is_ws]); 2587 if (reduce_data == NULL && 2588 __kmp_atomic_compare_store(&team->t.t_tg_reduce_data[is_ws], reduce_data, 2589 (void *)1)) { 2590 // single thread enters this block to initialize common reduction data 2591 KMP_DEBUG_ASSERT(reduce_data == NULL); 2592 // first initialize own data, then make a copy other threads can use 2593 tg = (kmp_taskgroup_t *)__kmp_task_reduction_init<T>(gtid, num, data); 2594 reduce_data = __kmp_thread_malloc(thr, num * sizeof(kmp_taskred_data_t)); 2595 KMP_MEMCPY(reduce_data, tg->reduce_data, num * sizeof(kmp_taskred_data_t)); 2596 // fini counters should be 0 at this point 2597 KMP_DEBUG_ASSERT(KMP_ATOMIC_LD_RLX(&team->t.t_tg_fini_counter[0]) == 0); 2598 KMP_DEBUG_ASSERT(KMP_ATOMIC_LD_RLX(&team->t.t_tg_fini_counter[1]) == 0); 2599 KMP_ATOMIC_ST_REL(&team->t.t_tg_reduce_data[is_ws], reduce_data); 2600 } else { 2601 while ( 2602 (reduce_data = KMP_ATOMIC_LD_ACQ(&team->t.t_tg_reduce_data[is_ws])) == 2603 (void *)1) { // wait for task reduction initialization 2604 KMP_CPU_PAUSE(); 2605 } 2606 KMP_DEBUG_ASSERT(reduce_data > (void *)1); // should be valid pointer here 2607 tg = thr->th.th_current_task->td_taskgroup; 2608 __kmp_task_reduction_init_copy<T>(thr, num, data, tg, reduce_data); 2609 } 2610 return tg; 2611 } 2612 2613 /*! 2614 @ingroup TASKING 2615 @param loc Source location info 2616 @param gtid Global thread ID 2617 @param is_ws Is 1 if the reduction is for worksharing, 0 otherwise 2618 @param num Number of data items to reduce 2619 @param data Array of data for reduction 2620 @return The taskgroup identifier 2621 2622 Initialize task reduction for a parallel or worksharing. 2623 2624 Note: this entry supposes the optional compiler-generated initializer routine 2625 has single parameter - pointer to object to be initialized. That means 2626 the reduction either does not use omp_orig object, or the omp_orig is accessible 2627 without help of the runtime library. 2628 */ 2629 void *__kmpc_task_reduction_modifier_init(ident_t *loc, int gtid, int is_ws, 2630 int num, void *data) { 2631 return __kmp_task_reduction_modifier_init(loc, gtid, is_ws, num, 2632 (kmp_task_red_input_t *)data); 2633 } 2634 2635 /*! 2636 @ingroup TASKING 2637 @param loc Source location info 2638 @param gtid Global thread ID 2639 @param is_ws Is 1 if the reduction is for worksharing, 0 otherwise 2640 @param num Number of data items to reduce 2641 @param data Array of data for reduction 2642 @return The taskgroup identifier 2643 2644 Initialize task reduction for a parallel or worksharing. 2645 2646 Note: this entry supposes the optional compiler-generated initializer routine 2647 has two parameters, pointer to object to be initialized and pointer to omp_orig 2648 */ 2649 void *__kmpc_taskred_modifier_init(ident_t *loc, int gtid, int is_ws, int num, 2650 void *data) { 2651 return __kmp_task_reduction_modifier_init(loc, gtid, is_ws, num, 2652 (kmp_taskred_input_t *)data); 2653 } 2654 2655 /*! 2656 @ingroup TASKING 2657 @param loc Source location info 2658 @param gtid Global thread ID 2659 @param is_ws Is 1 if the reduction is for worksharing, 0 otherwise 2660 2661 Finalize task reduction for a parallel or worksharing. 2662 */ 2663 void __kmpc_task_reduction_modifier_fini(ident_t *loc, int gtid, int is_ws) { 2664 __kmpc_end_taskgroup(loc, gtid); 2665 } 2666 2667 // __kmpc_taskgroup: Start a new taskgroup 2668 void __kmpc_taskgroup(ident_t *loc, int gtid) { 2669 __kmp_assert_valid_gtid(gtid); 2670 kmp_info_t *thread = __kmp_threads[gtid]; 2671 kmp_taskdata_t *taskdata = thread->th.th_current_task; 2672 kmp_taskgroup_t *tg_new = 2673 (kmp_taskgroup_t *)__kmp_thread_malloc(thread, sizeof(kmp_taskgroup_t)); 2674 KA_TRACE(10, ("__kmpc_taskgroup: T#%d loc=%p group=%p\n", gtid, loc, tg_new)); 2675 KMP_ATOMIC_ST_RLX(&tg_new->count, 0); 2676 KMP_ATOMIC_ST_RLX(&tg_new->cancel_request, cancel_noreq); 2677 tg_new->parent = taskdata->td_taskgroup; 2678 tg_new->reduce_data = NULL; 2679 tg_new->reduce_num_data = 0; 2680 tg_new->gomp_data = NULL; 2681 taskdata->td_taskgroup = tg_new; 2682 2683 #if OMPT_SUPPORT && OMPT_OPTIONAL 2684 if (UNLIKELY(ompt_enabled.ompt_callback_sync_region)) { 2685 void *codeptr = OMPT_LOAD_RETURN_ADDRESS(gtid); 2686 if (!codeptr) 2687 codeptr = OMPT_GET_RETURN_ADDRESS(0); 2688 kmp_team_t *team = thread->th.th_team; 2689 ompt_data_t my_task_data = taskdata->ompt_task_info.task_data; 2690 // FIXME: I think this is wrong for lwt! 2691 ompt_data_t my_parallel_data = team->t.ompt_team_info.parallel_data; 2692 2693 ompt_callbacks.ompt_callback(ompt_callback_sync_region)( 2694 ompt_sync_region_taskgroup, ompt_scope_begin, &(my_parallel_data), 2695 &(my_task_data), codeptr); 2696 } 2697 #endif 2698 } 2699 2700 // __kmpc_end_taskgroup: Wait until all tasks generated by the current task 2701 // and its descendants are complete 2702 void __kmpc_end_taskgroup(ident_t *loc, int gtid) { 2703 __kmp_assert_valid_gtid(gtid); 2704 kmp_info_t *thread = __kmp_threads[gtid]; 2705 kmp_taskdata_t *taskdata = thread->th.th_current_task; 2706 kmp_taskgroup_t *taskgroup = taskdata->td_taskgroup; 2707 int thread_finished = FALSE; 2708 2709 #if OMPT_SUPPORT && OMPT_OPTIONAL 2710 kmp_team_t *team; 2711 ompt_data_t my_task_data; 2712 ompt_data_t my_parallel_data; 2713 void *codeptr = nullptr; 2714 if (UNLIKELY(ompt_enabled.enabled)) { 2715 team = thread->th.th_team; 2716 my_task_data = taskdata->ompt_task_info.task_data; 2717 // FIXME: I think this is wrong for lwt! 2718 my_parallel_data = team->t.ompt_team_info.parallel_data; 2719 codeptr = OMPT_LOAD_RETURN_ADDRESS(gtid); 2720 if (!codeptr) 2721 codeptr = OMPT_GET_RETURN_ADDRESS(0); 2722 } 2723 #endif 2724 2725 KA_TRACE(10, ("__kmpc_end_taskgroup(enter): T#%d loc=%p\n", gtid, loc)); 2726 KMP_DEBUG_ASSERT(taskgroup != NULL); 2727 KMP_SET_THREAD_STATE_BLOCK(TASKGROUP); 2728 2729 if (__kmp_tasking_mode != tskm_immediate_exec) { 2730 // mark task as waiting not on a barrier 2731 taskdata->td_taskwait_counter += 1; 2732 taskdata->td_taskwait_ident = loc; 2733 taskdata->td_taskwait_thread = gtid + 1; 2734 #if USE_ITT_BUILD 2735 // For ITT the taskgroup wait is similar to taskwait until we need to 2736 // distinguish them 2737 void *itt_sync_obj = NULL; 2738 #if USE_ITT_NOTIFY 2739 KMP_ITT_TASKWAIT_STARTING(itt_sync_obj); 2740 #endif /* USE_ITT_NOTIFY */ 2741 #endif /* USE_ITT_BUILD */ 2742 2743 #if OMPT_SUPPORT && OMPT_OPTIONAL 2744 if (UNLIKELY(ompt_enabled.ompt_callback_sync_region_wait)) { 2745 ompt_callbacks.ompt_callback(ompt_callback_sync_region_wait)( 2746 ompt_sync_region_taskgroup, ompt_scope_begin, &(my_parallel_data), 2747 &(my_task_data), codeptr); 2748 } 2749 #endif 2750 2751 if (!taskdata->td_flags.team_serial || 2752 (thread->th.th_task_team != NULL && 2753 (thread->th.th_task_team->tt.tt_found_proxy_tasks || 2754 thread->th.th_task_team->tt.tt_hidden_helper_task_encountered))) { 2755 kmp_flag_32<false, false> flag( 2756 RCAST(std::atomic<kmp_uint32> *, &(taskgroup->count)), 0U); 2757 while (KMP_ATOMIC_LD_ACQ(&taskgroup->count) != 0) { 2758 flag.execute_tasks(thread, gtid, FALSE, 2759 &thread_finished USE_ITT_BUILD_ARG(itt_sync_obj), 2760 __kmp_task_stealing_constraint); 2761 } 2762 } 2763 taskdata->td_taskwait_thread = -taskdata->td_taskwait_thread; // end waiting 2764 2765 #if OMPT_SUPPORT && OMPT_OPTIONAL 2766 if (UNLIKELY(ompt_enabled.ompt_callback_sync_region_wait)) { 2767 ompt_callbacks.ompt_callback(ompt_callback_sync_region_wait)( 2768 ompt_sync_region_taskgroup, ompt_scope_end, &(my_parallel_data), 2769 &(my_task_data), codeptr); 2770 } 2771 #endif 2772 2773 #if USE_ITT_BUILD 2774 KMP_ITT_TASKWAIT_FINISHED(itt_sync_obj); 2775 KMP_FSYNC_ACQUIRED(taskdata); // acquire self - sync with descendants 2776 #endif /* USE_ITT_BUILD */ 2777 } 2778 KMP_DEBUG_ASSERT(taskgroup->count == 0); 2779 2780 if (taskgroup->reduce_data != NULL && 2781 !taskgroup->gomp_data) { // need to reduce? 2782 int cnt; 2783 void *reduce_data; 2784 kmp_team_t *t = thread->th.th_team; 2785 kmp_taskred_data_t *arr = (kmp_taskred_data_t *)taskgroup->reduce_data; 2786 // check if <priv> data of the first reduction variable shared for the team 2787 void *priv0 = arr[0].reduce_priv; 2788 if ((reduce_data = KMP_ATOMIC_LD_ACQ(&t->t.t_tg_reduce_data[0])) != NULL && 2789 ((kmp_taskred_data_t *)reduce_data)[0].reduce_priv == priv0) { 2790 // finishing task reduction on parallel 2791 cnt = KMP_ATOMIC_INC(&t->t.t_tg_fini_counter[0]); 2792 if (cnt == thread->th.th_team_nproc - 1) { 2793 // we are the last thread passing __kmpc_reduction_modifier_fini() 2794 // finalize task reduction: 2795 __kmp_task_reduction_fini(thread, taskgroup); 2796 // cleanup fields in the team structure: 2797 // TODO: is relaxed store enough here (whole barrier should follow)? 2798 __kmp_thread_free(thread, reduce_data); 2799 KMP_ATOMIC_ST_REL(&t->t.t_tg_reduce_data[0], NULL); 2800 KMP_ATOMIC_ST_REL(&t->t.t_tg_fini_counter[0], 0); 2801 } else { 2802 // we are not the last thread passing __kmpc_reduction_modifier_fini(), 2803 // so do not finalize reduction, just clean own copy of the data 2804 __kmp_task_reduction_clean(thread, taskgroup); 2805 } 2806 } else if ((reduce_data = KMP_ATOMIC_LD_ACQ(&t->t.t_tg_reduce_data[1])) != 2807 NULL && 2808 ((kmp_taskred_data_t *)reduce_data)[0].reduce_priv == priv0) { 2809 // finishing task reduction on worksharing 2810 cnt = KMP_ATOMIC_INC(&t->t.t_tg_fini_counter[1]); 2811 if (cnt == thread->th.th_team_nproc - 1) { 2812 // we are the last thread passing __kmpc_reduction_modifier_fini() 2813 __kmp_task_reduction_fini(thread, taskgroup); 2814 // cleanup fields in team structure: 2815 // TODO: is relaxed store enough here (whole barrier should follow)? 2816 __kmp_thread_free(thread, reduce_data); 2817 KMP_ATOMIC_ST_REL(&t->t.t_tg_reduce_data[1], NULL); 2818 KMP_ATOMIC_ST_REL(&t->t.t_tg_fini_counter[1], 0); 2819 } else { 2820 // we are not the last thread passing __kmpc_reduction_modifier_fini(), 2821 // so do not finalize reduction, just clean own copy of the data 2822 __kmp_task_reduction_clean(thread, taskgroup); 2823 } 2824 } else { 2825 // finishing task reduction on taskgroup 2826 __kmp_task_reduction_fini(thread, taskgroup); 2827 } 2828 } 2829 // Restore parent taskgroup for the current task 2830 taskdata->td_taskgroup = taskgroup->parent; 2831 __kmp_thread_free(thread, taskgroup); 2832 2833 KA_TRACE(10, ("__kmpc_end_taskgroup(exit): T#%d task %p finished waiting\n", 2834 gtid, taskdata)); 2835 2836 #if OMPT_SUPPORT && OMPT_OPTIONAL 2837 if (UNLIKELY(ompt_enabled.ompt_callback_sync_region)) { 2838 ompt_callbacks.ompt_callback(ompt_callback_sync_region)( 2839 ompt_sync_region_taskgroup, ompt_scope_end, &(my_parallel_data), 2840 &(my_task_data), codeptr); 2841 } 2842 #endif 2843 } 2844 2845 static kmp_task_t *__kmp_get_priority_task(kmp_int32 gtid, 2846 kmp_task_team_t *task_team, 2847 kmp_int32 is_constrained) { 2848 kmp_task_t *task = NULL; 2849 kmp_taskdata_t *taskdata; 2850 kmp_taskdata_t *current; 2851 kmp_thread_data_t *thread_data; 2852 int ntasks = task_team->tt.tt_num_task_pri; 2853 if (ntasks == 0) { 2854 KA_TRACE( 2855 20, ("__kmp_get_priority_task(exit #1): T#%d No tasks to get\n", gtid)); 2856 return NULL; 2857 } 2858 do { 2859 // decrement num_tasks to "reserve" one task to get for execution 2860 if (__kmp_atomic_compare_store(&task_team->tt.tt_num_task_pri, ntasks, 2861 ntasks - 1)) 2862 break; 2863 } while (ntasks > 0); 2864 if (ntasks == 0) { 2865 KA_TRACE(20, ("__kmp_get_priority_task(exit #2): T#%d No tasks to get\n", 2866 __kmp_get_gtid())); 2867 return NULL; 2868 } 2869 // We got a "ticket" to get a "reserved" priority task 2870 int deque_ntasks; 2871 kmp_task_pri_t *list = task_team->tt.tt_task_pri_list; 2872 do { 2873 KMP_ASSERT(list != NULL); 2874 thread_data = &list->td; 2875 __kmp_acquire_bootstrap_lock(&thread_data->td.td_deque_lock); 2876 deque_ntasks = thread_data->td.td_deque_ntasks; 2877 if (deque_ntasks == 0) { 2878 __kmp_release_bootstrap_lock(&thread_data->td.td_deque_lock); 2879 KA_TRACE(20, ("__kmp_get_priority_task: T#%d No tasks to get from %p\n", 2880 __kmp_get_gtid(), thread_data)); 2881 list = list->next; 2882 } 2883 } while (deque_ntasks == 0); 2884 KMP_DEBUG_ASSERT(deque_ntasks); 2885 int target = thread_data->td.td_deque_head; 2886 current = __kmp_threads[gtid]->th.th_current_task; 2887 taskdata = thread_data->td.td_deque[target]; 2888 if (__kmp_task_is_allowed(gtid, is_constrained, taskdata, current)) { 2889 // Bump head pointer and Wrap. 2890 thread_data->td.td_deque_head = 2891 (target + 1) & TASK_DEQUE_MASK(thread_data->td); 2892 } else { 2893 if (!task_team->tt.tt_untied_task_encountered) { 2894 // The TSC does not allow to steal victim task 2895 __kmp_release_bootstrap_lock(&thread_data->td.td_deque_lock); 2896 KA_TRACE(20, ("__kmp_get_priority_task(exit #3): T#%d could not get task " 2897 "from %p: task_team=%p ntasks=%d head=%u tail=%u\n", 2898 gtid, thread_data, task_team, deque_ntasks, target, 2899 thread_data->td.td_deque_tail)); 2900 task_team->tt.tt_num_task_pri++; // atomic inc, restore value 2901 return NULL; 2902 } 2903 int i; 2904 // walk through the deque trying to steal any task 2905 taskdata = NULL; 2906 for (i = 1; i < deque_ntasks; ++i) { 2907 target = (target + 1) & TASK_DEQUE_MASK(thread_data->td); 2908 taskdata = thread_data->td.td_deque[target]; 2909 if (__kmp_task_is_allowed(gtid, is_constrained, taskdata, current)) { 2910 break; // found task to execute 2911 } else { 2912 taskdata = NULL; 2913 } 2914 } 2915 if (taskdata == NULL) { 2916 // No appropriate candidate found to execute 2917 __kmp_release_bootstrap_lock(&thread_data->td.td_deque_lock); 2918 KA_TRACE( 2919 10, ("__kmp_get_priority_task(exit #4): T#%d could not get task from " 2920 "%p: task_team=%p ntasks=%d head=%u tail=%u\n", 2921 gtid, thread_data, task_team, deque_ntasks, 2922 thread_data->td.td_deque_head, thread_data->td.td_deque_tail)); 2923 task_team->tt.tt_num_task_pri++; // atomic inc, restore value 2924 return NULL; 2925 } 2926 int prev = target; 2927 for (i = i + 1; i < deque_ntasks; ++i) { 2928 // shift remaining tasks in the deque left by 1 2929 target = (target + 1) & TASK_DEQUE_MASK(thread_data->td); 2930 thread_data->td.td_deque[prev] = thread_data->td.td_deque[target]; 2931 prev = target; 2932 } 2933 KMP_DEBUG_ASSERT( 2934 thread_data->td.td_deque_tail == 2935 (kmp_uint32)((target + 1) & TASK_DEQUE_MASK(thread_data->td))); 2936 thread_data->td.td_deque_tail = target; // tail -= 1 (wrapped)) 2937 } 2938 thread_data->td.td_deque_ntasks = deque_ntasks - 1; 2939 __kmp_release_bootstrap_lock(&thread_data->td.td_deque_lock); 2940 task = KMP_TASKDATA_TO_TASK(taskdata); 2941 return task; 2942 } 2943 2944 // __kmp_remove_my_task: remove a task from my own deque 2945 static kmp_task_t *__kmp_remove_my_task(kmp_info_t *thread, kmp_int32 gtid, 2946 kmp_task_team_t *task_team, 2947 kmp_int32 is_constrained) { 2948 kmp_task_t *task; 2949 kmp_taskdata_t *taskdata; 2950 kmp_thread_data_t *thread_data; 2951 kmp_uint32 tail; 2952 2953 KMP_DEBUG_ASSERT(__kmp_tasking_mode != tskm_immediate_exec); 2954 KMP_DEBUG_ASSERT(task_team->tt.tt_threads_data != 2955 NULL); // Caller should check this condition 2956 2957 thread_data = &task_team->tt.tt_threads_data[__kmp_tid_from_gtid(gtid)]; 2958 2959 KA_TRACE(10, ("__kmp_remove_my_task(enter): T#%d ntasks=%d head=%u tail=%u\n", 2960 gtid, thread_data->td.td_deque_ntasks, 2961 thread_data->td.td_deque_head, thread_data->td.td_deque_tail)); 2962 2963 if (TCR_4(thread_data->td.td_deque_ntasks) == 0) { 2964 KA_TRACE(10, 2965 ("__kmp_remove_my_task(exit #1): T#%d No tasks to remove: " 2966 "ntasks=%d head=%u tail=%u\n", 2967 gtid, thread_data->td.td_deque_ntasks, 2968 thread_data->td.td_deque_head, thread_data->td.td_deque_tail)); 2969 return NULL; 2970 } 2971 2972 __kmp_acquire_bootstrap_lock(&thread_data->td.td_deque_lock); 2973 2974 if (TCR_4(thread_data->td.td_deque_ntasks) == 0) { 2975 __kmp_release_bootstrap_lock(&thread_data->td.td_deque_lock); 2976 KA_TRACE(10, 2977 ("__kmp_remove_my_task(exit #2): T#%d No tasks to remove: " 2978 "ntasks=%d head=%u tail=%u\n", 2979 gtid, thread_data->td.td_deque_ntasks, 2980 thread_data->td.td_deque_head, thread_data->td.td_deque_tail)); 2981 return NULL; 2982 } 2983 2984 tail = (thread_data->td.td_deque_tail - 1) & 2985 TASK_DEQUE_MASK(thread_data->td); // Wrap index. 2986 taskdata = thread_data->td.td_deque[tail]; 2987 2988 if (!__kmp_task_is_allowed(gtid, is_constrained, taskdata, 2989 thread->th.th_current_task)) { 2990 // The TSC does not allow to steal victim task 2991 __kmp_release_bootstrap_lock(&thread_data->td.td_deque_lock); 2992 KA_TRACE(10, 2993 ("__kmp_remove_my_task(exit #3): T#%d TSC blocks tail task: " 2994 "ntasks=%d head=%u tail=%u\n", 2995 gtid, thread_data->td.td_deque_ntasks, 2996 thread_data->td.td_deque_head, thread_data->td.td_deque_tail)); 2997 return NULL; 2998 } 2999 3000 thread_data->td.td_deque_tail = tail; 3001 TCW_4(thread_data->td.td_deque_ntasks, thread_data->td.td_deque_ntasks - 1); 3002 3003 __kmp_release_bootstrap_lock(&thread_data->td.td_deque_lock); 3004 3005 KA_TRACE(10, ("__kmp_remove_my_task(exit #4): T#%d task %p removed: " 3006 "ntasks=%d head=%u tail=%u\n", 3007 gtid, taskdata, thread_data->td.td_deque_ntasks, 3008 thread_data->td.td_deque_head, thread_data->td.td_deque_tail)); 3009 3010 task = KMP_TASKDATA_TO_TASK(taskdata); 3011 return task; 3012 } 3013 3014 // __kmp_steal_task: remove a task from another thread's deque 3015 // Assume that calling thread has already checked existence of 3016 // task_team thread_data before calling this routine. 3017 static kmp_task_t *__kmp_steal_task(kmp_info_t *victim_thr, kmp_int32 gtid, 3018 kmp_task_team_t *task_team, 3019 std::atomic<kmp_int32> *unfinished_threads, 3020 int *thread_finished, 3021 kmp_int32 is_constrained) { 3022 kmp_task_t *task; 3023 kmp_taskdata_t *taskdata; 3024 kmp_taskdata_t *current; 3025 kmp_thread_data_t *victim_td, *threads_data; 3026 kmp_int32 target; 3027 kmp_int32 victim_tid; 3028 3029 KMP_DEBUG_ASSERT(__kmp_tasking_mode != tskm_immediate_exec); 3030 3031 threads_data = task_team->tt.tt_threads_data; 3032 KMP_DEBUG_ASSERT(threads_data != NULL); // Caller should check this condition 3033 3034 victim_tid = victim_thr->th.th_info.ds.ds_tid; 3035 victim_td = &threads_data[victim_tid]; 3036 3037 KA_TRACE(10, ("__kmp_steal_task(enter): T#%d try to steal from T#%d: " 3038 "task_team=%p ntasks=%d head=%u tail=%u\n", 3039 gtid, __kmp_gtid_from_thread(victim_thr), task_team, 3040 victim_td->td.td_deque_ntasks, victim_td->td.td_deque_head, 3041 victim_td->td.td_deque_tail)); 3042 3043 if (TCR_4(victim_td->td.td_deque_ntasks) == 0) { 3044 KA_TRACE(10, ("__kmp_steal_task(exit #1): T#%d could not steal from T#%d: " 3045 "task_team=%p ntasks=%d head=%u tail=%u\n", 3046 gtid, __kmp_gtid_from_thread(victim_thr), task_team, 3047 victim_td->td.td_deque_ntasks, victim_td->td.td_deque_head, 3048 victim_td->td.td_deque_tail)); 3049 return NULL; 3050 } 3051 3052 __kmp_acquire_bootstrap_lock(&victim_td->td.td_deque_lock); 3053 3054 int ntasks = TCR_4(victim_td->td.td_deque_ntasks); 3055 // Check again after we acquire the lock 3056 if (ntasks == 0) { 3057 __kmp_release_bootstrap_lock(&victim_td->td.td_deque_lock); 3058 KA_TRACE(10, ("__kmp_steal_task(exit #2): T#%d could not steal from T#%d: " 3059 "task_team=%p ntasks=%d head=%u tail=%u\n", 3060 gtid, __kmp_gtid_from_thread(victim_thr), task_team, ntasks, 3061 victim_td->td.td_deque_head, victim_td->td.td_deque_tail)); 3062 return NULL; 3063 } 3064 3065 KMP_DEBUG_ASSERT(victim_td->td.td_deque != NULL); 3066 current = __kmp_threads[gtid]->th.th_current_task; 3067 taskdata = victim_td->td.td_deque[victim_td->td.td_deque_head]; 3068 if (__kmp_task_is_allowed(gtid, is_constrained, taskdata, current)) { 3069 // Bump head pointer and Wrap. 3070 victim_td->td.td_deque_head = 3071 (victim_td->td.td_deque_head + 1) & TASK_DEQUE_MASK(victim_td->td); 3072 } else { 3073 if (!task_team->tt.tt_untied_task_encountered) { 3074 // The TSC does not allow to steal victim task 3075 __kmp_release_bootstrap_lock(&victim_td->td.td_deque_lock); 3076 KA_TRACE(10, ("__kmp_steal_task(exit #3): T#%d could not steal from " 3077 "T#%d: task_team=%p ntasks=%d head=%u tail=%u\n", 3078 gtid, __kmp_gtid_from_thread(victim_thr), task_team, ntasks, 3079 victim_td->td.td_deque_head, victim_td->td.td_deque_tail)); 3080 return NULL; 3081 } 3082 int i; 3083 // walk through victim's deque trying to steal any task 3084 target = victim_td->td.td_deque_head; 3085 taskdata = NULL; 3086 for (i = 1; i < ntasks; ++i) { 3087 target = (target + 1) & TASK_DEQUE_MASK(victim_td->td); 3088 taskdata = victim_td->td.td_deque[target]; 3089 if (__kmp_task_is_allowed(gtid, is_constrained, taskdata, current)) { 3090 break; // found victim task 3091 } else { 3092 taskdata = NULL; 3093 } 3094 } 3095 if (taskdata == NULL) { 3096 // No appropriate candidate to steal found 3097 __kmp_release_bootstrap_lock(&victim_td->td.td_deque_lock); 3098 KA_TRACE(10, ("__kmp_steal_task(exit #4): T#%d could not steal from " 3099 "T#%d: task_team=%p ntasks=%d head=%u tail=%u\n", 3100 gtid, __kmp_gtid_from_thread(victim_thr), task_team, ntasks, 3101 victim_td->td.td_deque_head, victim_td->td.td_deque_tail)); 3102 return NULL; 3103 } 3104 int prev = target; 3105 for (i = i + 1; i < ntasks; ++i) { 3106 // shift remaining tasks in the deque left by 1 3107 target = (target + 1) & TASK_DEQUE_MASK(victim_td->td); 3108 victim_td->td.td_deque[prev] = victim_td->td.td_deque[target]; 3109 prev = target; 3110 } 3111 KMP_DEBUG_ASSERT( 3112 victim_td->td.td_deque_tail == 3113 (kmp_uint32)((target + 1) & TASK_DEQUE_MASK(victim_td->td))); 3114 victim_td->td.td_deque_tail = target; // tail -= 1 (wrapped)) 3115 } 3116 if (*thread_finished) { 3117 // We need to un-mark this victim as a finished victim. This must be done 3118 // before releasing the lock, or else other threads (starting with the 3119 // primary thread victim) might be prematurely released from the barrier!!! 3120 #if KMP_DEBUG 3121 kmp_int32 count = 3122 #endif 3123 KMP_ATOMIC_INC(unfinished_threads); 3124 KA_TRACE( 3125 20, 3126 ("__kmp_steal_task: T#%d inc unfinished_threads to %d: task_team=%p\n", 3127 gtid, count + 1, task_team)); 3128 *thread_finished = FALSE; 3129 } 3130 TCW_4(victim_td->td.td_deque_ntasks, ntasks - 1); 3131 3132 __kmp_release_bootstrap_lock(&victim_td->td.td_deque_lock); 3133 3134 KMP_COUNT_BLOCK(TASK_stolen); 3135 KA_TRACE(10, 3136 ("__kmp_steal_task(exit #5): T#%d stole task %p from T#%d: " 3137 "task_team=%p ntasks=%d head=%u tail=%u\n", 3138 gtid, taskdata, __kmp_gtid_from_thread(victim_thr), task_team, 3139 ntasks, victim_td->td.td_deque_head, victim_td->td.td_deque_tail)); 3140 3141 task = KMP_TASKDATA_TO_TASK(taskdata); 3142 return task; 3143 } 3144 3145 // __kmp_execute_tasks_template: Choose and execute tasks until either the 3146 // condition is statisfied (return true) or there are none left (return false). 3147 // 3148 // final_spin is TRUE if this is the spin at the release barrier. 3149 // thread_finished indicates whether the thread is finished executing all 3150 // the tasks it has on its deque, and is at the release barrier. 3151 // spinner is the location on which to spin. 3152 // spinner == NULL means only execute a single task and return. 3153 // checker is the value to check to terminate the spin. 3154 template <class C> 3155 static inline int __kmp_execute_tasks_template( 3156 kmp_info_t *thread, kmp_int32 gtid, C *flag, int final_spin, 3157 int *thread_finished USE_ITT_BUILD_ARG(void *itt_sync_obj), 3158 kmp_int32 is_constrained) { 3159 kmp_task_team_t *task_team = thread->th.th_task_team; 3160 kmp_thread_data_t *threads_data; 3161 kmp_task_t *task; 3162 kmp_info_t *other_thread; 3163 kmp_taskdata_t *current_task = thread->th.th_current_task; 3164 std::atomic<kmp_int32> *unfinished_threads; 3165 kmp_int32 nthreads, victim_tid = -2, use_own_tasks = 1, new_victim = 0, 3166 tid = thread->th.th_info.ds.ds_tid; 3167 3168 KMP_DEBUG_ASSERT(__kmp_tasking_mode != tskm_immediate_exec); 3169 KMP_DEBUG_ASSERT(thread == __kmp_threads[gtid]); 3170 3171 if (task_team == NULL || current_task == NULL) 3172 return FALSE; 3173 3174 KA_TRACE(15, ("__kmp_execute_tasks_template(enter): T#%d final_spin=%d " 3175 "*thread_finished=%d\n", 3176 gtid, final_spin, *thread_finished)); 3177 3178 thread->th.th_reap_state = KMP_NOT_SAFE_TO_REAP; 3179 threads_data = (kmp_thread_data_t *)TCR_PTR(task_team->tt.tt_threads_data); 3180 3181 KMP_DEBUG_ASSERT(threads_data != NULL); 3182 3183 nthreads = task_team->tt.tt_nproc; 3184 unfinished_threads = &(task_team->tt.tt_unfinished_threads); 3185 KMP_DEBUG_ASSERT(nthreads > 1 || task_team->tt.tt_found_proxy_tasks || 3186 task_team->tt.tt_hidden_helper_task_encountered); 3187 KMP_DEBUG_ASSERT(*unfinished_threads >= 0); 3188 3189 while (1) { // Outer loop keeps trying to find tasks in case of single thread 3190 // getting tasks from target constructs 3191 while (1) { // Inner loop to find a task and execute it 3192 task = NULL; 3193 if (task_team->tt.tt_num_task_pri) { // get priority task first 3194 task = __kmp_get_priority_task(gtid, task_team, is_constrained); 3195 } 3196 if (task == NULL && use_own_tasks) { // check own queue next 3197 task = __kmp_remove_my_task(thread, gtid, task_team, is_constrained); 3198 } 3199 if ((task == NULL) && (nthreads > 1)) { // Steal a task finally 3200 int asleep = 1; 3201 use_own_tasks = 0; 3202 // Try to steal from the last place I stole from successfully. 3203 if (victim_tid == -2) { // haven't stolen anything yet 3204 victim_tid = threads_data[tid].td.td_deque_last_stolen; 3205 if (victim_tid != 3206 -1) // if we have a last stolen from victim, get the thread 3207 other_thread = threads_data[victim_tid].td.td_thr; 3208 } 3209 if (victim_tid != -1) { // found last victim 3210 asleep = 0; 3211 } else if (!new_victim) { // no recent steals and we haven't already 3212 // used a new victim; select a random thread 3213 do { // Find a different thread to steal work from. 3214 // Pick a random thread. Initial plan was to cycle through all the 3215 // threads, and only return if we tried to steal from every thread, 3216 // and failed. Arch says that's not such a great idea. 3217 victim_tid = __kmp_get_random(thread) % (nthreads - 1); 3218 if (victim_tid >= tid) { 3219 ++victim_tid; // Adjusts random distribution to exclude self 3220 } 3221 // Found a potential victim 3222 other_thread = threads_data[victim_tid].td.td_thr; 3223 // There is a slight chance that __kmp_enable_tasking() did not wake 3224 // up all threads waiting at the barrier. If victim is sleeping, 3225 // then wake it up. Since we were going to pay the cache miss 3226 // penalty for referencing another thread's kmp_info_t struct 3227 // anyway, 3228 // the check shouldn't cost too much performance at this point. In 3229 // extra barrier mode, tasks do not sleep at the separate tasking 3230 // barrier, so this isn't a problem. 3231 asleep = 0; 3232 if ((__kmp_tasking_mode == tskm_task_teams) && 3233 (__kmp_dflt_blocktime != KMP_MAX_BLOCKTIME) && 3234 (TCR_PTR(CCAST(void *, other_thread->th.th_sleep_loc)) != 3235 NULL)) { 3236 asleep = 1; 3237 __kmp_null_resume_wrapper(other_thread); 3238 // A sleeping thread should not have any tasks on it's queue. 3239 // There is a slight possibility that it resumes, steals a task 3240 // from another thread, which spawns more tasks, all in the time 3241 // that it takes this thread to check => don't write an assertion 3242 // that the victim's queue is empty. Try stealing from a 3243 // different thread. 3244 } 3245 } while (asleep); 3246 } 3247 3248 if (!asleep) { 3249 // We have a victim to try to steal from 3250 task = __kmp_steal_task(other_thread, gtid, task_team, 3251 unfinished_threads, thread_finished, 3252 is_constrained); 3253 } 3254 if (task != NULL) { // set last stolen to victim 3255 if (threads_data[tid].td.td_deque_last_stolen != victim_tid) { 3256 threads_data[tid].td.td_deque_last_stolen = victim_tid; 3257 // The pre-refactored code did not try more than 1 successful new 3258 // vicitm, unless the last one generated more local tasks; 3259 // new_victim keeps track of this 3260 new_victim = 1; 3261 } 3262 } else { // No tasks found; unset last_stolen 3263 KMP_CHECK_UPDATE(threads_data[tid].td.td_deque_last_stolen, -1); 3264 victim_tid = -2; // no successful victim found 3265 } 3266 } 3267 3268 if (task == NULL) 3269 break; // break out of tasking loop 3270 3271 // Found a task; execute it 3272 #if USE_ITT_BUILD && USE_ITT_NOTIFY 3273 if (__itt_sync_create_ptr || KMP_ITT_DEBUG) { 3274 if (itt_sync_obj == NULL) { // we are at fork barrier where we could not 3275 // get the object reliably 3276 itt_sync_obj = __kmp_itt_barrier_object(gtid, bs_forkjoin_barrier); 3277 } 3278 __kmp_itt_task_starting(itt_sync_obj); 3279 } 3280 #endif /* USE_ITT_BUILD && USE_ITT_NOTIFY */ 3281 __kmp_invoke_task(gtid, task, current_task); 3282 #if USE_ITT_BUILD 3283 if (itt_sync_obj != NULL) 3284 __kmp_itt_task_finished(itt_sync_obj); 3285 #endif /* USE_ITT_BUILD */ 3286 // If this thread is only partway through the barrier and the condition is 3287 // met, then return now, so that the barrier gather/release pattern can 3288 // proceed. If this thread is in the last spin loop in the barrier, 3289 // waiting to be released, we know that the termination condition will not 3290 // be satisfied, so don't waste any cycles checking it. 3291 if (flag == NULL || (!final_spin && flag->done_check())) { 3292 KA_TRACE( 3293 15, 3294 ("__kmp_execute_tasks_template: T#%d spin condition satisfied\n", 3295 gtid)); 3296 return TRUE; 3297 } 3298 if (thread->th.th_task_team == NULL) { 3299 break; 3300 } 3301 KMP_YIELD(__kmp_library == library_throughput); // Yield before next task 3302 // If execution of a stolen task results in more tasks being placed on our 3303 // run queue, reset use_own_tasks 3304 if (!use_own_tasks && TCR_4(threads_data[tid].td.td_deque_ntasks) != 0) { 3305 KA_TRACE(20, ("__kmp_execute_tasks_template: T#%d stolen task spawned " 3306 "other tasks, restart\n", 3307 gtid)); 3308 use_own_tasks = 1; 3309 new_victim = 0; 3310 } 3311 } 3312 3313 // The task source has been exhausted. If in final spin loop of barrier, 3314 // check if termination condition is satisfied. The work queue may be empty 3315 // but there might be proxy tasks still executing. 3316 if (final_spin && 3317 KMP_ATOMIC_LD_ACQ(¤t_task->td_incomplete_child_tasks) == 0) { 3318 // First, decrement the #unfinished threads, if that has not already been 3319 // done. This decrement might be to the spin location, and result in the 3320 // termination condition being satisfied. 3321 if (!*thread_finished) { 3322 #if KMP_DEBUG 3323 kmp_int32 count = -1 + 3324 #endif 3325 KMP_ATOMIC_DEC(unfinished_threads); 3326 KA_TRACE(20, ("__kmp_execute_tasks_template: T#%d dec " 3327 "unfinished_threads to %d task_team=%p\n", 3328 gtid, count, task_team)); 3329 *thread_finished = TRUE; 3330 } 3331 3332 // It is now unsafe to reference thread->th.th_team !!! 3333 // Decrementing task_team->tt.tt_unfinished_threads can allow the primary 3334 // thread to pass through the barrier, where it might reset each thread's 3335 // th.th_team field for the next parallel region. If we can steal more 3336 // work, we know that this has not happened yet. 3337 if (flag != NULL && flag->done_check()) { 3338 KA_TRACE( 3339 15, 3340 ("__kmp_execute_tasks_template: T#%d spin condition satisfied\n", 3341 gtid)); 3342 return TRUE; 3343 } 3344 } 3345 3346 // If this thread's task team is NULL, primary thread has recognized that 3347 // there are no more tasks; bail out 3348 if (thread->th.th_task_team == NULL) { 3349 KA_TRACE(15, 3350 ("__kmp_execute_tasks_template: T#%d no more tasks\n", gtid)); 3351 return FALSE; 3352 } 3353 3354 // Check the flag again to see if it has already done in case to be trapped 3355 // into infinite loop when a if0 task depends on a hidden helper task 3356 // outside any parallel region. Detached tasks are not impacted in this case 3357 // because the only thread executing this function has to execute the proxy 3358 // task so it is in another code path that has the same check. 3359 if (flag == NULL || (!final_spin && flag->done_check())) { 3360 KA_TRACE(15, 3361 ("__kmp_execute_tasks_template: T#%d spin condition satisfied\n", 3362 gtid)); 3363 return TRUE; 3364 } 3365 3366 // We could be getting tasks from target constructs; if this is the only 3367 // thread, keep trying to execute tasks from own queue 3368 if (nthreads == 1 && 3369 KMP_ATOMIC_LD_ACQ(¤t_task->td_incomplete_child_tasks)) 3370 use_own_tasks = 1; 3371 else { 3372 KA_TRACE(15, 3373 ("__kmp_execute_tasks_template: T#%d can't find work\n", gtid)); 3374 return FALSE; 3375 } 3376 } 3377 } 3378 3379 template <bool C, bool S> 3380 int __kmp_execute_tasks_32( 3381 kmp_info_t *thread, kmp_int32 gtid, kmp_flag_32<C, S> *flag, int final_spin, 3382 int *thread_finished USE_ITT_BUILD_ARG(void *itt_sync_obj), 3383 kmp_int32 is_constrained) { 3384 return __kmp_execute_tasks_template( 3385 thread, gtid, flag, final_spin, 3386 thread_finished USE_ITT_BUILD_ARG(itt_sync_obj), is_constrained); 3387 } 3388 3389 template <bool C, bool S> 3390 int __kmp_execute_tasks_64( 3391 kmp_info_t *thread, kmp_int32 gtid, kmp_flag_64<C, S> *flag, int final_spin, 3392 int *thread_finished USE_ITT_BUILD_ARG(void *itt_sync_obj), 3393 kmp_int32 is_constrained) { 3394 return __kmp_execute_tasks_template( 3395 thread, gtid, flag, final_spin, 3396 thread_finished USE_ITT_BUILD_ARG(itt_sync_obj), is_constrained); 3397 } 3398 3399 template <bool C, bool S> 3400 int __kmp_atomic_execute_tasks_64( 3401 kmp_info_t *thread, kmp_int32 gtid, kmp_atomic_flag_64<C, S> *flag, 3402 int final_spin, int *thread_finished USE_ITT_BUILD_ARG(void *itt_sync_obj), 3403 kmp_int32 is_constrained) { 3404 return __kmp_execute_tasks_template( 3405 thread, gtid, flag, final_spin, 3406 thread_finished USE_ITT_BUILD_ARG(itt_sync_obj), is_constrained); 3407 } 3408 3409 int __kmp_execute_tasks_oncore( 3410 kmp_info_t *thread, kmp_int32 gtid, kmp_flag_oncore *flag, int final_spin, 3411 int *thread_finished USE_ITT_BUILD_ARG(void *itt_sync_obj), 3412 kmp_int32 is_constrained) { 3413 return __kmp_execute_tasks_template( 3414 thread, gtid, flag, final_spin, 3415 thread_finished USE_ITT_BUILD_ARG(itt_sync_obj), is_constrained); 3416 } 3417 3418 template int 3419 __kmp_execute_tasks_32<false, false>(kmp_info_t *, kmp_int32, 3420 kmp_flag_32<false, false> *, int, 3421 int *USE_ITT_BUILD_ARG(void *), kmp_int32); 3422 3423 template int __kmp_execute_tasks_64<false, true>(kmp_info_t *, kmp_int32, 3424 kmp_flag_64<false, true> *, 3425 int, 3426 int *USE_ITT_BUILD_ARG(void *), 3427 kmp_int32); 3428 3429 template int __kmp_execute_tasks_64<true, false>(kmp_info_t *, kmp_int32, 3430 kmp_flag_64<true, false> *, 3431 int, 3432 int *USE_ITT_BUILD_ARG(void *), 3433 kmp_int32); 3434 3435 template int __kmp_atomic_execute_tasks_64<false, true>( 3436 kmp_info_t *, kmp_int32, kmp_atomic_flag_64<false, true> *, int, 3437 int *USE_ITT_BUILD_ARG(void *), kmp_int32); 3438 3439 template int __kmp_atomic_execute_tasks_64<true, false>( 3440 kmp_info_t *, kmp_int32, kmp_atomic_flag_64<true, false> *, int, 3441 int *USE_ITT_BUILD_ARG(void *), kmp_int32); 3442 3443 // __kmp_enable_tasking: Allocate task team and resume threads sleeping at the 3444 // next barrier so they can assist in executing enqueued tasks. 3445 // First thread in allocates the task team atomically. 3446 static void __kmp_enable_tasking(kmp_task_team_t *task_team, 3447 kmp_info_t *this_thr) { 3448 kmp_thread_data_t *threads_data; 3449 int nthreads, i, is_init_thread; 3450 3451 KA_TRACE(10, ("__kmp_enable_tasking(enter): T#%d\n", 3452 __kmp_gtid_from_thread(this_thr))); 3453 3454 KMP_DEBUG_ASSERT(task_team != NULL); 3455 KMP_DEBUG_ASSERT(this_thr->th.th_team != NULL); 3456 3457 nthreads = task_team->tt.tt_nproc; 3458 KMP_DEBUG_ASSERT(nthreads > 0); 3459 KMP_DEBUG_ASSERT(nthreads == this_thr->th.th_team->t.t_nproc); 3460 3461 // Allocate or increase the size of threads_data if necessary 3462 is_init_thread = __kmp_realloc_task_threads_data(this_thr, task_team); 3463 3464 if (!is_init_thread) { 3465 // Some other thread already set up the array. 3466 KA_TRACE( 3467 20, 3468 ("__kmp_enable_tasking(exit): T#%d: threads array already set up.\n", 3469 __kmp_gtid_from_thread(this_thr))); 3470 return; 3471 } 3472 threads_data = (kmp_thread_data_t *)TCR_PTR(task_team->tt.tt_threads_data); 3473 KMP_DEBUG_ASSERT(threads_data != NULL); 3474 3475 if (__kmp_tasking_mode == tskm_task_teams && 3476 (__kmp_dflt_blocktime != KMP_MAX_BLOCKTIME)) { 3477 // Release any threads sleeping at the barrier, so that they can steal 3478 // tasks and execute them. In extra barrier mode, tasks do not sleep 3479 // at the separate tasking barrier, so this isn't a problem. 3480 for (i = 0; i < nthreads; i++) { 3481 void *sleep_loc; 3482 kmp_info_t *thread = threads_data[i].td.td_thr; 3483 3484 if (i == this_thr->th.th_info.ds.ds_tid) { 3485 continue; 3486 } 3487 // Since we haven't locked the thread's suspend mutex lock at this 3488 // point, there is a small window where a thread might be putting 3489 // itself to sleep, but hasn't set the th_sleep_loc field yet. 3490 // To work around this, __kmp_execute_tasks_template() periodically checks 3491 // see if other threads are sleeping (using the same random mechanism that 3492 // is used for task stealing) and awakens them if they are. 3493 if ((sleep_loc = TCR_PTR(CCAST(void *, thread->th.th_sleep_loc))) != 3494 NULL) { 3495 KF_TRACE(50, ("__kmp_enable_tasking: T#%d waking up thread T#%d\n", 3496 __kmp_gtid_from_thread(this_thr), 3497 __kmp_gtid_from_thread(thread))); 3498 __kmp_null_resume_wrapper(thread); 3499 } else { 3500 KF_TRACE(50, ("__kmp_enable_tasking: T#%d don't wake up thread T#%d\n", 3501 __kmp_gtid_from_thread(this_thr), 3502 __kmp_gtid_from_thread(thread))); 3503 } 3504 } 3505 } 3506 3507 KA_TRACE(10, ("__kmp_enable_tasking(exit): T#%d\n", 3508 __kmp_gtid_from_thread(this_thr))); 3509 } 3510 3511 /* // TODO: Check the comment consistency 3512 * Utility routines for "task teams". A task team (kmp_task_t) is kind of 3513 * like a shadow of the kmp_team_t data struct, with a different lifetime. 3514 * After a child * thread checks into a barrier and calls __kmp_release() from 3515 * the particular variant of __kmp_<barrier_kind>_barrier_gather(), it can no 3516 * longer assume that the kmp_team_t structure is intact (at any moment, the 3517 * primary thread may exit the barrier code and free the team data structure, 3518 * and return the threads to the thread pool). 3519 * 3520 * This does not work with the tasking code, as the thread is still 3521 * expected to participate in the execution of any tasks that may have been 3522 * spawned my a member of the team, and the thread still needs access to all 3523 * to each thread in the team, so that it can steal work from it. 3524 * 3525 * Enter the existence of the kmp_task_team_t struct. It employs a reference 3526 * counting mechanism, and is allocated by the primary thread before calling 3527 * __kmp_<barrier_kind>_release, and then is release by the last thread to 3528 * exit __kmp_<barrier_kind>_release at the next barrier. I.e. the lifetimes 3529 * of the kmp_task_team_t structs for consecutive barriers can overlap 3530 * (and will, unless the primary thread is the last thread to exit the barrier 3531 * release phase, which is not typical). The existence of such a struct is 3532 * useful outside the context of tasking. 3533 * 3534 * We currently use the existence of the threads array as an indicator that 3535 * tasks were spawned since the last barrier. If the structure is to be 3536 * useful outside the context of tasking, then this will have to change, but 3537 * not setting the field minimizes the performance impact of tasking on 3538 * barriers, when no explicit tasks were spawned (pushed, actually). 3539 */ 3540 3541 static kmp_task_team_t *__kmp_free_task_teams = 3542 NULL; // Free list for task_team data structures 3543 // Lock for task team data structures 3544 kmp_bootstrap_lock_t __kmp_task_team_lock = 3545 KMP_BOOTSTRAP_LOCK_INITIALIZER(__kmp_task_team_lock); 3546 3547 // __kmp_alloc_task_deque: 3548 // Allocates a task deque for a particular thread, and initialize the necessary 3549 // data structures relating to the deque. This only happens once per thread 3550 // per task team since task teams are recycled. No lock is needed during 3551 // allocation since each thread allocates its own deque. 3552 static void __kmp_alloc_task_deque(kmp_info_t *thread, 3553 kmp_thread_data_t *thread_data) { 3554 __kmp_init_bootstrap_lock(&thread_data->td.td_deque_lock); 3555 KMP_DEBUG_ASSERT(thread_data->td.td_deque == NULL); 3556 3557 // Initialize last stolen task field to "none" 3558 thread_data->td.td_deque_last_stolen = -1; 3559 3560 KMP_DEBUG_ASSERT(TCR_4(thread_data->td.td_deque_ntasks) == 0); 3561 KMP_DEBUG_ASSERT(thread_data->td.td_deque_head == 0); 3562 KMP_DEBUG_ASSERT(thread_data->td.td_deque_tail == 0); 3563 3564 KE_TRACE( 3565 10, 3566 ("__kmp_alloc_task_deque: T#%d allocating deque[%d] for thread_data %p\n", 3567 __kmp_gtid_from_thread(thread), INITIAL_TASK_DEQUE_SIZE, thread_data)); 3568 // Allocate space for task deque, and zero the deque 3569 // Cannot use __kmp_thread_calloc() because threads not around for 3570 // kmp_reap_task_team( ). 3571 thread_data->td.td_deque = (kmp_taskdata_t **)__kmp_allocate( 3572 INITIAL_TASK_DEQUE_SIZE * sizeof(kmp_taskdata_t *)); 3573 thread_data->td.td_deque_size = INITIAL_TASK_DEQUE_SIZE; 3574 } 3575 3576 // __kmp_free_task_deque: 3577 // Deallocates a task deque for a particular thread. Happens at library 3578 // deallocation so don't need to reset all thread data fields. 3579 static void __kmp_free_task_deque(kmp_thread_data_t *thread_data) { 3580 if (thread_data->td.td_deque != NULL) { 3581 __kmp_acquire_bootstrap_lock(&thread_data->td.td_deque_lock); 3582 TCW_4(thread_data->td.td_deque_ntasks, 0); 3583 __kmp_free(thread_data->td.td_deque); 3584 thread_data->td.td_deque = NULL; 3585 __kmp_release_bootstrap_lock(&thread_data->td.td_deque_lock); 3586 } 3587 3588 #ifdef BUILD_TIED_TASK_STACK 3589 // GEH: Figure out what to do here for td_susp_tied_tasks 3590 if (thread_data->td.td_susp_tied_tasks.ts_entries != TASK_STACK_EMPTY) { 3591 __kmp_free_task_stack(__kmp_thread_from_gtid(gtid), thread_data); 3592 } 3593 #endif // BUILD_TIED_TASK_STACK 3594 } 3595 3596 // __kmp_realloc_task_threads_data: 3597 // Allocates a threads_data array for a task team, either by allocating an 3598 // initial array or enlarging an existing array. Only the first thread to get 3599 // the lock allocs or enlarges the array and re-initializes the array elements. 3600 // That thread returns "TRUE", the rest return "FALSE". 3601 // Assumes that the new array size is given by task_team -> tt.tt_nproc. 3602 // The current size is given by task_team -> tt.tt_max_threads. 3603 static int __kmp_realloc_task_threads_data(kmp_info_t *thread, 3604 kmp_task_team_t *task_team) { 3605 kmp_thread_data_t **threads_data_p; 3606 kmp_int32 nthreads, maxthreads; 3607 int is_init_thread = FALSE; 3608 3609 if (TCR_4(task_team->tt.tt_found_tasks)) { 3610 // Already reallocated and initialized. 3611 return FALSE; 3612 } 3613 3614 threads_data_p = &task_team->tt.tt_threads_data; 3615 nthreads = task_team->tt.tt_nproc; 3616 maxthreads = task_team->tt.tt_max_threads; 3617 3618 // All threads must lock when they encounter the first task of the implicit 3619 // task region to make sure threads_data fields are (re)initialized before 3620 // used. 3621 __kmp_acquire_bootstrap_lock(&task_team->tt.tt_threads_lock); 3622 3623 if (!TCR_4(task_team->tt.tt_found_tasks)) { 3624 // first thread to enable tasking 3625 kmp_team_t *team = thread->th.th_team; 3626 int i; 3627 3628 is_init_thread = TRUE; 3629 if (maxthreads < nthreads) { 3630 3631 if (*threads_data_p != NULL) { 3632 kmp_thread_data_t *old_data = *threads_data_p; 3633 kmp_thread_data_t *new_data = NULL; 3634 3635 KE_TRACE( 3636 10, 3637 ("__kmp_realloc_task_threads_data: T#%d reallocating " 3638 "threads data for task_team %p, new_size = %d, old_size = %d\n", 3639 __kmp_gtid_from_thread(thread), task_team, nthreads, maxthreads)); 3640 // Reallocate threads_data to have more elements than current array 3641 // Cannot use __kmp_thread_realloc() because threads not around for 3642 // kmp_reap_task_team( ). Note all new array entries are initialized 3643 // to zero by __kmp_allocate(). 3644 new_data = (kmp_thread_data_t *)__kmp_allocate( 3645 nthreads * sizeof(kmp_thread_data_t)); 3646 // copy old data to new data 3647 KMP_MEMCPY_S((void *)new_data, nthreads * sizeof(kmp_thread_data_t), 3648 (void *)old_data, maxthreads * sizeof(kmp_thread_data_t)); 3649 3650 #ifdef BUILD_TIED_TASK_STACK 3651 // GEH: Figure out if this is the right thing to do 3652 for (i = maxthreads; i < nthreads; i++) { 3653 kmp_thread_data_t *thread_data = &(*threads_data_p)[i]; 3654 __kmp_init_task_stack(__kmp_gtid_from_thread(thread), thread_data); 3655 } 3656 #endif // BUILD_TIED_TASK_STACK 3657 // Install the new data and free the old data 3658 (*threads_data_p) = new_data; 3659 __kmp_free(old_data); 3660 } else { 3661 KE_TRACE(10, ("__kmp_realloc_task_threads_data: T#%d allocating " 3662 "threads data for task_team %p, size = %d\n", 3663 __kmp_gtid_from_thread(thread), task_team, nthreads)); 3664 // Make the initial allocate for threads_data array, and zero entries 3665 // Cannot use __kmp_thread_calloc() because threads not around for 3666 // kmp_reap_task_team( ). 3667 *threads_data_p = (kmp_thread_data_t *)__kmp_allocate( 3668 nthreads * sizeof(kmp_thread_data_t)); 3669 #ifdef BUILD_TIED_TASK_STACK 3670 // GEH: Figure out if this is the right thing to do 3671 for (i = 0; i < nthreads; i++) { 3672 kmp_thread_data_t *thread_data = &(*threads_data_p)[i]; 3673 __kmp_init_task_stack(__kmp_gtid_from_thread(thread), thread_data); 3674 } 3675 #endif // BUILD_TIED_TASK_STACK 3676 } 3677 task_team->tt.tt_max_threads = nthreads; 3678 } else { 3679 // If array has (more than) enough elements, go ahead and use it 3680 KMP_DEBUG_ASSERT(*threads_data_p != NULL); 3681 } 3682 3683 // initialize threads_data pointers back to thread_info structures 3684 for (i = 0; i < nthreads; i++) { 3685 kmp_thread_data_t *thread_data = &(*threads_data_p)[i]; 3686 thread_data->td.td_thr = team->t.t_threads[i]; 3687 3688 if (thread_data->td.td_deque_last_stolen >= nthreads) { 3689 // The last stolen field survives across teams / barrier, and the number 3690 // of threads may have changed. It's possible (likely?) that a new 3691 // parallel region will exhibit the same behavior as previous region. 3692 thread_data->td.td_deque_last_stolen = -1; 3693 } 3694 } 3695 3696 KMP_MB(); 3697 TCW_SYNC_4(task_team->tt.tt_found_tasks, TRUE); 3698 } 3699 3700 __kmp_release_bootstrap_lock(&task_team->tt.tt_threads_lock); 3701 return is_init_thread; 3702 } 3703 3704 // __kmp_free_task_threads_data: 3705 // Deallocates a threads_data array for a task team, including any attached 3706 // tasking deques. Only occurs at library shutdown. 3707 static void __kmp_free_task_threads_data(kmp_task_team_t *task_team) { 3708 __kmp_acquire_bootstrap_lock(&task_team->tt.tt_threads_lock); 3709 if (task_team->tt.tt_threads_data != NULL) { 3710 int i; 3711 for (i = 0; i < task_team->tt.tt_max_threads; i++) { 3712 __kmp_free_task_deque(&task_team->tt.tt_threads_data[i]); 3713 } 3714 __kmp_free(task_team->tt.tt_threads_data); 3715 task_team->tt.tt_threads_data = NULL; 3716 } 3717 __kmp_release_bootstrap_lock(&task_team->tt.tt_threads_lock); 3718 } 3719 3720 // __kmp_free_task_pri_list: 3721 // Deallocates tasking deques used for priority tasks. 3722 // Only occurs at library shutdown. 3723 static void __kmp_free_task_pri_list(kmp_task_team_t *task_team) { 3724 __kmp_acquire_bootstrap_lock(&task_team->tt.tt_task_pri_lock); 3725 if (task_team->tt.tt_task_pri_list != NULL) { 3726 kmp_task_pri_t *list = task_team->tt.tt_task_pri_list; 3727 while (list != NULL) { 3728 kmp_task_pri_t *next = list->next; 3729 __kmp_free_task_deque(&list->td); 3730 __kmp_free(list); 3731 list = next; 3732 } 3733 task_team->tt.tt_task_pri_list = NULL; 3734 } 3735 __kmp_release_bootstrap_lock(&task_team->tt.tt_task_pri_lock); 3736 } 3737 3738 // __kmp_allocate_task_team: 3739 // Allocates a task team associated with a specific team, taking it from 3740 // the global task team free list if possible. Also initializes data 3741 // structures. 3742 static kmp_task_team_t *__kmp_allocate_task_team(kmp_info_t *thread, 3743 kmp_team_t *team) { 3744 kmp_task_team_t *task_team = NULL; 3745 int nthreads; 3746 3747 KA_TRACE(20, ("__kmp_allocate_task_team: T#%d entering; team = %p\n", 3748 (thread ? __kmp_gtid_from_thread(thread) : -1), team)); 3749 3750 if (TCR_PTR(__kmp_free_task_teams) != NULL) { 3751 // Take a task team from the task team pool 3752 __kmp_acquire_bootstrap_lock(&__kmp_task_team_lock); 3753 if (__kmp_free_task_teams != NULL) { 3754 task_team = __kmp_free_task_teams; 3755 TCW_PTR(__kmp_free_task_teams, task_team->tt.tt_next); 3756 task_team->tt.tt_next = NULL; 3757 } 3758 __kmp_release_bootstrap_lock(&__kmp_task_team_lock); 3759 } 3760 3761 if (task_team == NULL) { 3762 KE_TRACE(10, ("__kmp_allocate_task_team: T#%d allocating " 3763 "task team for team %p\n", 3764 __kmp_gtid_from_thread(thread), team)); 3765 // Allocate a new task team if one is not available. Cannot use 3766 // __kmp_thread_malloc because threads not around for kmp_reap_task_team. 3767 task_team = (kmp_task_team_t *)__kmp_allocate(sizeof(kmp_task_team_t)); 3768 __kmp_init_bootstrap_lock(&task_team->tt.tt_threads_lock); 3769 __kmp_init_bootstrap_lock(&task_team->tt.tt_task_pri_lock); 3770 #if USE_ITT_BUILD && USE_ITT_NOTIFY && KMP_DEBUG 3771 // suppress race conditions detection on synchronization flags in debug mode 3772 // this helps to analyze library internals eliminating false positives 3773 __itt_suppress_mark_range( 3774 __itt_suppress_range, __itt_suppress_threading_errors, 3775 &task_team->tt.tt_found_tasks, sizeof(task_team->tt.tt_found_tasks)); 3776 __itt_suppress_mark_range(__itt_suppress_range, 3777 __itt_suppress_threading_errors, 3778 CCAST(kmp_uint32 *, &task_team->tt.tt_active), 3779 sizeof(task_team->tt.tt_active)); 3780 #endif /* USE_ITT_BUILD && USE_ITT_NOTIFY && KMP_DEBUG */ 3781 // Note: __kmp_allocate zeroes returned memory, othewise we would need: 3782 // task_team->tt.tt_threads_data = NULL; 3783 // task_team->tt.tt_max_threads = 0; 3784 // task_team->tt.tt_next = NULL; 3785 } 3786 3787 TCW_4(task_team->tt.tt_found_tasks, FALSE); 3788 TCW_4(task_team->tt.tt_found_proxy_tasks, FALSE); 3789 TCW_4(task_team->tt.tt_hidden_helper_task_encountered, FALSE); 3790 task_team->tt.tt_nproc = nthreads = team->t.t_nproc; 3791 3792 KMP_ATOMIC_ST_REL(&task_team->tt.tt_unfinished_threads, nthreads); 3793 TCW_4(task_team->tt.tt_hidden_helper_task_encountered, FALSE); 3794 TCW_4(task_team->tt.tt_active, TRUE); 3795 3796 KA_TRACE(20, ("__kmp_allocate_task_team: T#%d exiting; task_team = %p " 3797 "unfinished_threads init'd to %d\n", 3798 (thread ? __kmp_gtid_from_thread(thread) : -1), task_team, 3799 KMP_ATOMIC_LD_RLX(&task_team->tt.tt_unfinished_threads))); 3800 return task_team; 3801 } 3802 3803 // __kmp_free_task_team: 3804 // Frees the task team associated with a specific thread, and adds it 3805 // to the global task team free list. 3806 void __kmp_free_task_team(kmp_info_t *thread, kmp_task_team_t *task_team) { 3807 KA_TRACE(20, ("__kmp_free_task_team: T#%d task_team = %p\n", 3808 thread ? __kmp_gtid_from_thread(thread) : -1, task_team)); 3809 3810 // Put task team back on free list 3811 __kmp_acquire_bootstrap_lock(&__kmp_task_team_lock); 3812 3813 KMP_DEBUG_ASSERT(task_team->tt.tt_next == NULL); 3814 task_team->tt.tt_next = __kmp_free_task_teams; 3815 TCW_PTR(__kmp_free_task_teams, task_team); 3816 3817 __kmp_release_bootstrap_lock(&__kmp_task_team_lock); 3818 } 3819 3820 // __kmp_reap_task_teams: 3821 // Free all the task teams on the task team free list. 3822 // Should only be done during library shutdown. 3823 // Cannot do anything that needs a thread structure or gtid since they are 3824 // already gone. 3825 void __kmp_reap_task_teams(void) { 3826 kmp_task_team_t *task_team; 3827 3828 if (TCR_PTR(__kmp_free_task_teams) != NULL) { 3829 // Free all task_teams on the free list 3830 __kmp_acquire_bootstrap_lock(&__kmp_task_team_lock); 3831 while ((task_team = __kmp_free_task_teams) != NULL) { 3832 __kmp_free_task_teams = task_team->tt.tt_next; 3833 task_team->tt.tt_next = NULL; 3834 3835 // Free threads_data if necessary 3836 if (task_team->tt.tt_threads_data != NULL) { 3837 __kmp_free_task_threads_data(task_team); 3838 } 3839 if (task_team->tt.tt_task_pri_list != NULL) { 3840 __kmp_free_task_pri_list(task_team); 3841 } 3842 __kmp_free(task_team); 3843 } 3844 __kmp_release_bootstrap_lock(&__kmp_task_team_lock); 3845 } 3846 } 3847 3848 // __kmp_wait_to_unref_task_teams: 3849 // Some threads could still be in the fork barrier release code, possibly 3850 // trying to steal tasks. Wait for each thread to unreference its task team. 3851 void __kmp_wait_to_unref_task_teams(void) { 3852 kmp_info_t *thread; 3853 kmp_uint32 spins; 3854 kmp_uint64 time; 3855 int done; 3856 3857 KMP_INIT_YIELD(spins); 3858 KMP_INIT_BACKOFF(time); 3859 3860 for (;;) { 3861 done = TRUE; 3862 3863 // TODO: GEH - this may be is wrong because some sync would be necessary 3864 // in case threads are added to the pool during the traversal. Need to 3865 // verify that lock for thread pool is held when calling this routine. 3866 for (thread = CCAST(kmp_info_t *, __kmp_thread_pool); thread != NULL; 3867 thread = thread->th.th_next_pool) { 3868 #if KMP_OS_WINDOWS 3869 DWORD exit_val; 3870 #endif 3871 if (TCR_PTR(thread->th.th_task_team) == NULL) { 3872 KA_TRACE(10, ("__kmp_wait_to_unref_task_team: T#%d task_team == NULL\n", 3873 __kmp_gtid_from_thread(thread))); 3874 continue; 3875 } 3876 #if KMP_OS_WINDOWS 3877 // TODO: GEH - add this check for Linux* OS / OS X* as well? 3878 if (!__kmp_is_thread_alive(thread, &exit_val)) { 3879 thread->th.th_task_team = NULL; 3880 continue; 3881 } 3882 #endif 3883 3884 done = FALSE; // Because th_task_team pointer is not NULL for this thread 3885 3886 KA_TRACE(10, ("__kmp_wait_to_unref_task_team: Waiting for T#%d to " 3887 "unreference task_team\n", 3888 __kmp_gtid_from_thread(thread))); 3889 3890 if (__kmp_dflt_blocktime != KMP_MAX_BLOCKTIME) { 3891 void *sleep_loc; 3892 // If the thread is sleeping, awaken it. 3893 if ((sleep_loc = TCR_PTR(CCAST(void *, thread->th.th_sleep_loc))) != 3894 NULL) { 3895 KA_TRACE( 3896 10, 3897 ("__kmp_wait_to_unref_task_team: T#%d waking up thread T#%d\n", 3898 __kmp_gtid_from_thread(thread), __kmp_gtid_from_thread(thread))); 3899 __kmp_null_resume_wrapper(thread); 3900 } 3901 } 3902 } 3903 if (done) { 3904 break; 3905 } 3906 3907 // If oversubscribed or have waited a bit, yield. 3908 KMP_YIELD_OVERSUB_ELSE_SPIN(spins, time); 3909 } 3910 } 3911 3912 // __kmp_task_team_setup: Create a task_team for the current team, but use 3913 // an already created, unused one if it already exists. 3914 void __kmp_task_team_setup(kmp_info_t *this_thr, kmp_team_t *team, int always) { 3915 KMP_DEBUG_ASSERT(__kmp_tasking_mode != tskm_immediate_exec); 3916 3917 // If this task_team hasn't been created yet, allocate it. It will be used in 3918 // the region after the next. 3919 // If it exists, it is the current task team and shouldn't be touched yet as 3920 // it may still be in use. 3921 if (team->t.t_task_team[this_thr->th.th_task_state] == NULL && 3922 (always || team->t.t_nproc > 1)) { 3923 team->t.t_task_team[this_thr->th.th_task_state] = 3924 __kmp_allocate_task_team(this_thr, team); 3925 KA_TRACE(20, ("__kmp_task_team_setup: Primary T#%d created new task_team %p" 3926 " for team %d at parity=%d\n", 3927 __kmp_gtid_from_thread(this_thr), 3928 team->t.t_task_team[this_thr->th.th_task_state], team->t.t_id, 3929 this_thr->th.th_task_state)); 3930 } 3931 3932 // After threads exit the release, they will call sync, and then point to this 3933 // other task_team; make sure it is allocated and properly initialized. As 3934 // threads spin in the barrier release phase, they will continue to use the 3935 // previous task_team struct(above), until they receive the signal to stop 3936 // checking for tasks (they can't safely reference the kmp_team_t struct, 3937 // which could be reallocated by the primary thread). No task teams are formed 3938 // for serialized teams. 3939 if (team->t.t_nproc > 1) { 3940 int other_team = 1 - this_thr->th.th_task_state; 3941 KMP_DEBUG_ASSERT(other_team >= 0 && other_team < 2); 3942 if (team->t.t_task_team[other_team] == NULL) { // setup other team as well 3943 team->t.t_task_team[other_team] = 3944 __kmp_allocate_task_team(this_thr, team); 3945 KA_TRACE(20, ("__kmp_task_team_setup: Primary T#%d created second new " 3946 "task_team %p for team %d at parity=%d\n", 3947 __kmp_gtid_from_thread(this_thr), 3948 team->t.t_task_team[other_team], team->t.t_id, other_team)); 3949 } else { // Leave the old task team struct in place for the upcoming region; 3950 // adjust as needed 3951 kmp_task_team_t *task_team = team->t.t_task_team[other_team]; 3952 if (!task_team->tt.tt_active || 3953 team->t.t_nproc != task_team->tt.tt_nproc) { 3954 TCW_4(task_team->tt.tt_nproc, team->t.t_nproc); 3955 TCW_4(task_team->tt.tt_found_tasks, FALSE); 3956 TCW_4(task_team->tt.tt_found_proxy_tasks, FALSE); 3957 TCW_4(task_team->tt.tt_hidden_helper_task_encountered, FALSE); 3958 KMP_ATOMIC_ST_REL(&task_team->tt.tt_unfinished_threads, 3959 team->t.t_nproc); 3960 TCW_4(task_team->tt.tt_active, TRUE); 3961 } 3962 // if team size has changed, the first thread to enable tasking will 3963 // realloc threads_data if necessary 3964 KA_TRACE(20, ("__kmp_task_team_setup: Primary T#%d reset next task_team " 3965 "%p for team %d at parity=%d\n", 3966 __kmp_gtid_from_thread(this_thr), 3967 team->t.t_task_team[other_team], team->t.t_id, other_team)); 3968 } 3969 } 3970 3971 // For regular thread, task enabling should be called when the task is going 3972 // to be pushed to a dequeue. However, for the hidden helper thread, we need 3973 // it ahead of time so that some operations can be performed without race 3974 // condition. 3975 if (this_thr == __kmp_hidden_helper_main_thread) { 3976 for (int i = 0; i < 2; ++i) { 3977 kmp_task_team_t *task_team = team->t.t_task_team[i]; 3978 if (KMP_TASKING_ENABLED(task_team)) { 3979 continue; 3980 } 3981 __kmp_enable_tasking(task_team, this_thr); 3982 for (int j = 0; j < task_team->tt.tt_nproc; ++j) { 3983 kmp_thread_data_t *thread_data = &task_team->tt.tt_threads_data[j]; 3984 if (thread_data->td.td_deque == NULL) { 3985 __kmp_alloc_task_deque(__kmp_hidden_helper_threads[j], thread_data); 3986 } 3987 } 3988 } 3989 } 3990 } 3991 3992 // __kmp_task_team_sync: Propagation of task team data from team to threads 3993 // which happens just after the release phase of a team barrier. This may be 3994 // called by any thread, but only for teams with # threads > 1. 3995 void __kmp_task_team_sync(kmp_info_t *this_thr, kmp_team_t *team) { 3996 KMP_DEBUG_ASSERT(__kmp_tasking_mode != tskm_immediate_exec); 3997 3998 // Toggle the th_task_state field, to switch which task_team this thread 3999 // refers to 4000 this_thr->th.th_task_state = (kmp_uint8)(1 - this_thr->th.th_task_state); 4001 4002 // It is now safe to propagate the task team pointer from the team struct to 4003 // the current thread. 4004 TCW_PTR(this_thr->th.th_task_team, 4005 team->t.t_task_team[this_thr->th.th_task_state]); 4006 KA_TRACE(20, 4007 ("__kmp_task_team_sync: Thread T#%d task team switched to task_team " 4008 "%p from Team #%d (parity=%d)\n", 4009 __kmp_gtid_from_thread(this_thr), this_thr->th.th_task_team, 4010 team->t.t_id, this_thr->th.th_task_state)); 4011 } 4012 4013 // __kmp_task_team_wait: Primary thread waits for outstanding tasks after the 4014 // barrier gather phase. Only called by primary thread if #threads in team > 1 4015 // or if proxy tasks were created. 4016 // 4017 // wait is a flag that defaults to 1 (see kmp.h), but waiting can be turned off 4018 // by passing in 0 optionally as the last argument. When wait is zero, primary 4019 // thread does not wait for unfinished_threads to reach 0. 4020 void __kmp_task_team_wait( 4021 kmp_info_t *this_thr, 4022 kmp_team_t *team USE_ITT_BUILD_ARG(void *itt_sync_obj), int wait) { 4023 kmp_task_team_t *task_team = team->t.t_task_team[this_thr->th.th_task_state]; 4024 4025 KMP_DEBUG_ASSERT(__kmp_tasking_mode != tskm_immediate_exec); 4026 KMP_DEBUG_ASSERT(task_team == this_thr->th.th_task_team); 4027 4028 if ((task_team != NULL) && KMP_TASKING_ENABLED(task_team)) { 4029 if (wait) { 4030 KA_TRACE(20, ("__kmp_task_team_wait: Primary T#%d waiting for all tasks " 4031 "(for unfinished_threads to reach 0) on task_team = %p\n", 4032 __kmp_gtid_from_thread(this_thr), task_team)); 4033 // Worker threads may have dropped through to release phase, but could 4034 // still be executing tasks. Wait here for tasks to complete. To avoid 4035 // memory contention, only primary thread checks termination condition. 4036 kmp_flag_32<false, false> flag( 4037 RCAST(std::atomic<kmp_uint32> *, 4038 &task_team->tt.tt_unfinished_threads), 4039 0U); 4040 flag.wait(this_thr, TRUE USE_ITT_BUILD_ARG(itt_sync_obj)); 4041 } 4042 // Deactivate the old task team, so that the worker threads will stop 4043 // referencing it while spinning. 4044 KA_TRACE( 4045 20, 4046 ("__kmp_task_team_wait: Primary T#%d deactivating task_team %p: " 4047 "setting active to false, setting local and team's pointer to NULL\n", 4048 __kmp_gtid_from_thread(this_thr), task_team)); 4049 KMP_DEBUG_ASSERT(task_team->tt.tt_nproc > 1 || 4050 task_team->tt.tt_found_proxy_tasks == TRUE || 4051 task_team->tt.tt_hidden_helper_task_encountered == TRUE); 4052 TCW_SYNC_4(task_team->tt.tt_found_proxy_tasks, FALSE); 4053 TCW_SYNC_4(task_team->tt.tt_hidden_helper_task_encountered, FALSE); 4054 KMP_CHECK_UPDATE(task_team->tt.tt_untied_task_encountered, 0); 4055 TCW_SYNC_4(task_team->tt.tt_active, FALSE); 4056 KMP_MB(); 4057 4058 TCW_PTR(this_thr->th.th_task_team, NULL); 4059 } 4060 } 4061 4062 // __kmp_tasking_barrier: 4063 // This routine is called only when __kmp_tasking_mode == tskm_extra_barrier. 4064 // Internal function to execute all tasks prior to a regular barrier or a join 4065 // barrier. It is a full barrier itself, which unfortunately turns regular 4066 // barriers into double barriers and join barriers into 1 1/2 barriers. 4067 void __kmp_tasking_barrier(kmp_team_t *team, kmp_info_t *thread, int gtid) { 4068 std::atomic<kmp_uint32> *spin = RCAST( 4069 std::atomic<kmp_uint32> *, 4070 &team->t.t_task_team[thread->th.th_task_state]->tt.tt_unfinished_threads); 4071 int flag = FALSE; 4072 KMP_DEBUG_ASSERT(__kmp_tasking_mode == tskm_extra_barrier); 4073 4074 #if USE_ITT_BUILD 4075 KMP_FSYNC_SPIN_INIT(spin, NULL); 4076 #endif /* USE_ITT_BUILD */ 4077 kmp_flag_32<false, false> spin_flag(spin, 0U); 4078 while (!spin_flag.execute_tasks(thread, gtid, TRUE, 4079 &flag USE_ITT_BUILD_ARG(NULL), 0)) { 4080 #if USE_ITT_BUILD 4081 // TODO: What about itt_sync_obj?? 4082 KMP_FSYNC_SPIN_PREPARE(RCAST(void *, spin)); 4083 #endif /* USE_ITT_BUILD */ 4084 4085 if (TCR_4(__kmp_global.g.g_done)) { 4086 if (__kmp_global.g.g_abort) 4087 __kmp_abort_thread(); 4088 break; 4089 } 4090 KMP_YIELD(TRUE); 4091 } 4092 #if USE_ITT_BUILD 4093 KMP_FSYNC_SPIN_ACQUIRED(RCAST(void *, spin)); 4094 #endif /* USE_ITT_BUILD */ 4095 } 4096 4097 // __kmp_give_task puts a task into a given thread queue if: 4098 // - the queue for that thread was created 4099 // - there's space in that queue 4100 // Because of this, __kmp_push_task needs to check if there's space after 4101 // getting the lock 4102 static bool __kmp_give_task(kmp_info_t *thread, kmp_int32 tid, kmp_task_t *task, 4103 kmp_int32 pass) { 4104 kmp_taskdata_t *taskdata = KMP_TASK_TO_TASKDATA(task); 4105 kmp_task_team_t *task_team = taskdata->td_task_team; 4106 4107 KA_TRACE(20, ("__kmp_give_task: trying to give task %p to thread %d.\n", 4108 taskdata, tid)); 4109 4110 // If task_team is NULL something went really bad... 4111 KMP_DEBUG_ASSERT(task_team != NULL); 4112 4113 bool result = false; 4114 kmp_thread_data_t *thread_data = &task_team->tt.tt_threads_data[tid]; 4115 4116 if (thread_data->td.td_deque == NULL) { 4117 // There's no queue in this thread, go find another one 4118 // We're guaranteed that at least one thread has a queue 4119 KA_TRACE(30, 4120 ("__kmp_give_task: thread %d has no queue while giving task %p.\n", 4121 tid, taskdata)); 4122 return result; 4123 } 4124 4125 if (TCR_4(thread_data->td.td_deque_ntasks) >= 4126 TASK_DEQUE_SIZE(thread_data->td)) { 4127 KA_TRACE( 4128 30, 4129 ("__kmp_give_task: queue is full while giving task %p to thread %d.\n", 4130 taskdata, tid)); 4131 4132 // if this deque is bigger than the pass ratio give a chance to another 4133 // thread 4134 if (TASK_DEQUE_SIZE(thread_data->td) / INITIAL_TASK_DEQUE_SIZE >= pass) 4135 return result; 4136 4137 __kmp_acquire_bootstrap_lock(&thread_data->td.td_deque_lock); 4138 if (TCR_4(thread_data->td.td_deque_ntasks) >= 4139 TASK_DEQUE_SIZE(thread_data->td)) { 4140 // expand deque to push the task which is not allowed to execute 4141 __kmp_realloc_task_deque(thread, thread_data); 4142 } 4143 4144 } else { 4145 4146 __kmp_acquire_bootstrap_lock(&thread_data->td.td_deque_lock); 4147 4148 if (TCR_4(thread_data->td.td_deque_ntasks) >= 4149 TASK_DEQUE_SIZE(thread_data->td)) { 4150 KA_TRACE(30, ("__kmp_give_task: queue is full while giving task %p to " 4151 "thread %d.\n", 4152 taskdata, tid)); 4153 4154 // if this deque is bigger than the pass ratio give a chance to another 4155 // thread 4156 if (TASK_DEQUE_SIZE(thread_data->td) / INITIAL_TASK_DEQUE_SIZE >= pass) 4157 goto release_and_exit; 4158 4159 __kmp_realloc_task_deque(thread, thread_data); 4160 } 4161 } 4162 4163 // lock is held here, and there is space in the deque 4164 4165 thread_data->td.td_deque[thread_data->td.td_deque_tail] = taskdata; 4166 // Wrap index. 4167 thread_data->td.td_deque_tail = 4168 (thread_data->td.td_deque_tail + 1) & TASK_DEQUE_MASK(thread_data->td); 4169 TCW_4(thread_data->td.td_deque_ntasks, 4170 TCR_4(thread_data->td.td_deque_ntasks) + 1); 4171 4172 result = true; 4173 KA_TRACE(30, ("__kmp_give_task: successfully gave task %p to thread %d.\n", 4174 taskdata, tid)); 4175 4176 release_and_exit: 4177 __kmp_release_bootstrap_lock(&thread_data->td.td_deque_lock); 4178 4179 return result; 4180 } 4181 4182 #define PROXY_TASK_FLAG 0x40000000 4183 /* The finish of the proxy tasks is divided in two pieces: 4184 - the top half is the one that can be done from a thread outside the team 4185 - the bottom half must be run from a thread within the team 4186 4187 In order to run the bottom half the task gets queued back into one of the 4188 threads of the team. Once the td_incomplete_child_task counter of the parent 4189 is decremented the threads can leave the barriers. So, the bottom half needs 4190 to be queued before the counter is decremented. The top half is therefore 4191 divided in two parts: 4192 - things that can be run before queuing the bottom half 4193 - things that must be run after queuing the bottom half 4194 4195 This creates a second race as the bottom half can free the task before the 4196 second top half is executed. To avoid this we use the 4197 td_incomplete_child_task of the proxy task to synchronize the top and bottom 4198 half. */ 4199 static void __kmp_first_top_half_finish_proxy(kmp_taskdata_t *taskdata) { 4200 KMP_DEBUG_ASSERT(taskdata->td_flags.tasktype == TASK_EXPLICIT); 4201 KMP_DEBUG_ASSERT(taskdata->td_flags.proxy == TASK_PROXY); 4202 KMP_DEBUG_ASSERT(taskdata->td_flags.complete == 0); 4203 KMP_DEBUG_ASSERT(taskdata->td_flags.freed == 0); 4204 4205 taskdata->td_flags.complete = 1; // mark the task as completed 4206 4207 if (taskdata->td_taskgroup) 4208 KMP_ATOMIC_DEC(&taskdata->td_taskgroup->count); 4209 4210 // Create an imaginary children for this task so the bottom half cannot 4211 // release the task before we have completed the second top half 4212 KMP_ATOMIC_OR(&taskdata->td_incomplete_child_tasks, PROXY_TASK_FLAG); 4213 } 4214 4215 static void __kmp_second_top_half_finish_proxy(kmp_taskdata_t *taskdata) { 4216 #if KMP_DEBUG 4217 kmp_int32 children = 0; 4218 // Predecrement simulated by "- 1" calculation 4219 children = -1 + 4220 #endif 4221 KMP_ATOMIC_DEC(&taskdata->td_parent->td_incomplete_child_tasks); 4222 KMP_DEBUG_ASSERT(children >= 0); 4223 4224 // Remove the imaginary children 4225 KMP_ATOMIC_AND(&taskdata->td_incomplete_child_tasks, ~PROXY_TASK_FLAG); 4226 } 4227 4228 static void __kmp_bottom_half_finish_proxy(kmp_int32 gtid, kmp_task_t *ptask) { 4229 kmp_taskdata_t *taskdata = KMP_TASK_TO_TASKDATA(ptask); 4230 kmp_info_t *thread = __kmp_threads[gtid]; 4231 4232 KMP_DEBUG_ASSERT(taskdata->td_flags.proxy == TASK_PROXY); 4233 KMP_DEBUG_ASSERT(taskdata->td_flags.complete == 4234 1); // top half must run before bottom half 4235 4236 // We need to wait to make sure the top half is finished 4237 // Spinning here should be ok as this should happen quickly 4238 while ((KMP_ATOMIC_LD_ACQ(&taskdata->td_incomplete_child_tasks) & 4239 PROXY_TASK_FLAG) > 0) 4240 ; 4241 4242 __kmp_release_deps(gtid, taskdata); 4243 __kmp_free_task_and_ancestors(gtid, taskdata, thread); 4244 } 4245 4246 /*! 4247 @ingroup TASKING 4248 @param gtid Global Thread ID of encountering thread 4249 @param ptask Task which execution is completed 4250 4251 Execute the completion of a proxy task from a thread of that is part of the 4252 team. Run first and bottom halves directly. 4253 */ 4254 void __kmpc_proxy_task_completed(kmp_int32 gtid, kmp_task_t *ptask) { 4255 KMP_DEBUG_ASSERT(ptask != NULL); 4256 kmp_taskdata_t *taskdata = KMP_TASK_TO_TASKDATA(ptask); 4257 KA_TRACE( 4258 10, ("__kmp_proxy_task_completed(enter): T#%d proxy task %p completing\n", 4259 gtid, taskdata)); 4260 __kmp_assert_valid_gtid(gtid); 4261 KMP_DEBUG_ASSERT(taskdata->td_flags.proxy == TASK_PROXY); 4262 4263 __kmp_first_top_half_finish_proxy(taskdata); 4264 __kmp_second_top_half_finish_proxy(taskdata); 4265 __kmp_bottom_half_finish_proxy(gtid, ptask); 4266 4267 KA_TRACE(10, 4268 ("__kmp_proxy_task_completed(exit): T#%d proxy task %p completing\n", 4269 gtid, taskdata)); 4270 } 4271 4272 void __kmpc_give_task(kmp_task_t *ptask, kmp_int32 start = 0) { 4273 KMP_DEBUG_ASSERT(ptask != NULL); 4274 kmp_taskdata_t *taskdata = KMP_TASK_TO_TASKDATA(ptask); 4275 4276 // Enqueue task to complete bottom half completion from a thread within the 4277 // corresponding team 4278 kmp_team_t *team = taskdata->td_team; 4279 kmp_int32 nthreads = team->t.t_nproc; 4280 kmp_info_t *thread; 4281 4282 // This should be similar to start_k = __kmp_get_random( thread ) % nthreads 4283 // but we cannot use __kmp_get_random here 4284 kmp_int32 start_k = start % nthreads; 4285 kmp_int32 pass = 1; 4286 kmp_int32 k = start_k; 4287 4288 do { 4289 // For now we're just linearly trying to find a thread 4290 thread = team->t.t_threads[k]; 4291 k = (k + 1) % nthreads; 4292 4293 // we did a full pass through all the threads 4294 if (k == start_k) 4295 pass = pass << 1; 4296 4297 } while (!__kmp_give_task(thread, k, ptask, pass)); 4298 4299 if (__kmp_dflt_blocktime != KMP_MAX_BLOCKTIME && __kmp_wpolicy_passive) { 4300 // awake at least one thread to execute given task 4301 for (int i = 0; i < nthreads; ++i) { 4302 thread = team->t.t_threads[i]; 4303 if (thread->th.th_sleep_loc != NULL) { 4304 __kmp_null_resume_wrapper(thread); 4305 break; 4306 } 4307 } 4308 } 4309 } 4310 4311 /*! 4312 @ingroup TASKING 4313 @param ptask Task which execution is completed 4314 4315 Execute the completion of a proxy task from a thread that could not belong to 4316 the team. 4317 */ 4318 void __kmpc_proxy_task_completed_ooo(kmp_task_t *ptask) { 4319 KMP_DEBUG_ASSERT(ptask != NULL); 4320 kmp_taskdata_t *taskdata = KMP_TASK_TO_TASKDATA(ptask); 4321 4322 KA_TRACE( 4323 10, 4324 ("__kmp_proxy_task_completed_ooo(enter): proxy task completing ooo %p\n", 4325 taskdata)); 4326 4327 KMP_DEBUG_ASSERT(taskdata->td_flags.proxy == TASK_PROXY); 4328 4329 __kmp_first_top_half_finish_proxy(taskdata); 4330 4331 __kmpc_give_task(ptask); 4332 4333 __kmp_second_top_half_finish_proxy(taskdata); 4334 4335 KA_TRACE( 4336 10, 4337 ("__kmp_proxy_task_completed_ooo(exit): proxy task completing ooo %p\n", 4338 taskdata)); 4339 } 4340 4341 kmp_event_t *__kmpc_task_allow_completion_event(ident_t *loc_ref, int gtid, 4342 kmp_task_t *task) { 4343 kmp_taskdata_t *td = KMP_TASK_TO_TASKDATA(task); 4344 if (td->td_allow_completion_event.type == KMP_EVENT_UNINITIALIZED) { 4345 td->td_allow_completion_event.type = KMP_EVENT_ALLOW_COMPLETION; 4346 td->td_allow_completion_event.ed.task = task; 4347 __kmp_init_tas_lock(&td->td_allow_completion_event.lock); 4348 } 4349 return &td->td_allow_completion_event; 4350 } 4351 4352 void __kmp_fulfill_event(kmp_event_t *event) { 4353 if (event->type == KMP_EVENT_ALLOW_COMPLETION) { 4354 kmp_task_t *ptask = event->ed.task; 4355 kmp_taskdata_t *taskdata = KMP_TASK_TO_TASKDATA(ptask); 4356 bool detached = false; 4357 int gtid = __kmp_get_gtid(); 4358 4359 // The associated task might have completed or could be completing at this 4360 // point. 4361 // We need to take the lock to avoid races 4362 __kmp_acquire_tas_lock(&event->lock, gtid); 4363 if (taskdata->td_flags.proxy == TASK_PROXY) { 4364 detached = true; 4365 } else { 4366 #if OMPT_SUPPORT 4367 // The OMPT event must occur under mutual exclusion, 4368 // otherwise the tool might access ptask after free 4369 if (UNLIKELY(ompt_enabled.enabled)) 4370 __ompt_task_finish(ptask, NULL, ompt_task_early_fulfill); 4371 #endif 4372 } 4373 event->type = KMP_EVENT_UNINITIALIZED; 4374 __kmp_release_tas_lock(&event->lock, gtid); 4375 4376 if (detached) { 4377 #if OMPT_SUPPORT 4378 // We free ptask afterwards and know the task is finished, 4379 // so locking is not necessary 4380 if (UNLIKELY(ompt_enabled.enabled)) 4381 __ompt_task_finish(ptask, NULL, ompt_task_late_fulfill); 4382 #endif 4383 // If the task detached complete the proxy task 4384 if (gtid >= 0) { 4385 kmp_team_t *team = taskdata->td_team; 4386 kmp_info_t *thread = __kmp_get_thread(); 4387 if (thread->th.th_team == team) { 4388 __kmpc_proxy_task_completed(gtid, ptask); 4389 return; 4390 } 4391 } 4392 4393 // fallback 4394 __kmpc_proxy_task_completed_ooo(ptask); 4395 } 4396 } 4397 } 4398 4399 // __kmp_task_dup_alloc: Allocate the taskdata and make a copy of source task 4400 // for taskloop 4401 // 4402 // thread: allocating thread 4403 // task_src: pointer to source task to be duplicated 4404 // returns: a pointer to the allocated kmp_task_t structure (task). 4405 kmp_task_t *__kmp_task_dup_alloc(kmp_info_t *thread, kmp_task_t *task_src) { 4406 kmp_task_t *task; 4407 kmp_taskdata_t *taskdata; 4408 kmp_taskdata_t *taskdata_src = KMP_TASK_TO_TASKDATA(task_src); 4409 kmp_taskdata_t *parent_task = taskdata_src->td_parent; // same parent task 4410 size_t shareds_offset; 4411 size_t task_size; 4412 4413 KA_TRACE(10, ("__kmp_task_dup_alloc(enter): Th %p, source task %p\n", thread, 4414 task_src)); 4415 KMP_DEBUG_ASSERT(taskdata_src->td_flags.proxy == 4416 TASK_FULL); // it should not be proxy task 4417 KMP_DEBUG_ASSERT(taskdata_src->td_flags.tasktype == TASK_EXPLICIT); 4418 task_size = taskdata_src->td_size_alloc; 4419 4420 // Allocate a kmp_taskdata_t block and a kmp_task_t block. 4421 KA_TRACE(30, ("__kmp_task_dup_alloc: Th %p, malloc size %ld\n", thread, 4422 task_size)); 4423 #if USE_FAST_MEMORY 4424 taskdata = (kmp_taskdata_t *)__kmp_fast_allocate(thread, task_size); 4425 #else 4426 taskdata = (kmp_taskdata_t *)__kmp_thread_malloc(thread, task_size); 4427 #endif /* USE_FAST_MEMORY */ 4428 KMP_MEMCPY(taskdata, taskdata_src, task_size); 4429 4430 task = KMP_TASKDATA_TO_TASK(taskdata); 4431 4432 // Initialize new task (only specific fields not affected by memcpy) 4433 taskdata->td_task_id = KMP_GEN_TASK_ID(); 4434 if (task->shareds != NULL) { // need setup shareds pointer 4435 shareds_offset = (char *)task_src->shareds - (char *)taskdata_src; 4436 task->shareds = &((char *)taskdata)[shareds_offset]; 4437 KMP_DEBUG_ASSERT((((kmp_uintptr_t)task->shareds) & (sizeof(void *) - 1)) == 4438 0); 4439 } 4440 taskdata->td_alloc_thread = thread; 4441 taskdata->td_parent = parent_task; 4442 // task inherits the taskgroup from the parent task 4443 taskdata->td_taskgroup = parent_task->td_taskgroup; 4444 // tied task needs to initialize the td_last_tied at creation, 4445 // untied one does this when it is scheduled for execution 4446 if (taskdata->td_flags.tiedness == TASK_TIED) 4447 taskdata->td_last_tied = taskdata; 4448 4449 // Only need to keep track of child task counts if team parallel and tasking 4450 // not serialized 4451 if (!(taskdata->td_flags.team_serial || taskdata->td_flags.tasking_ser)) { 4452 KMP_ATOMIC_INC(&parent_task->td_incomplete_child_tasks); 4453 if (parent_task->td_taskgroup) 4454 KMP_ATOMIC_INC(&parent_task->td_taskgroup->count); 4455 // Only need to keep track of allocated child tasks for explicit tasks since 4456 // implicit not deallocated 4457 if (taskdata->td_parent->td_flags.tasktype == TASK_EXPLICIT) 4458 KMP_ATOMIC_INC(&taskdata->td_parent->td_allocated_child_tasks); 4459 } 4460 4461 KA_TRACE(20, 4462 ("__kmp_task_dup_alloc(exit): Th %p, created task %p, parent=%p\n", 4463 thread, taskdata, taskdata->td_parent)); 4464 #if OMPT_SUPPORT 4465 if (UNLIKELY(ompt_enabled.enabled)) 4466 __ompt_task_init(taskdata, thread->th.th_info.ds.ds_gtid); 4467 #endif 4468 return task; 4469 } 4470 4471 // Routine optionally generated by the compiler for setting the lastprivate flag 4472 // and calling needed constructors for private/firstprivate objects 4473 // (used to form taskloop tasks from pattern task) 4474 // Parameters: dest task, src task, lastprivate flag. 4475 typedef void (*p_task_dup_t)(kmp_task_t *, kmp_task_t *, kmp_int32); 4476 4477 KMP_BUILD_ASSERT(sizeof(long) == 4 || sizeof(long) == 8); 4478 4479 // class to encapsulate manipulating loop bounds in a taskloop task. 4480 // this abstracts away the Intel vs GOMP taskloop interface for setting/getting 4481 // the loop bound variables. 4482 class kmp_taskloop_bounds_t { 4483 kmp_task_t *task; 4484 const kmp_taskdata_t *taskdata; 4485 size_t lower_offset; 4486 size_t upper_offset; 4487 4488 public: 4489 kmp_taskloop_bounds_t(kmp_task_t *_task, kmp_uint64 *lb, kmp_uint64 *ub) 4490 : task(_task), taskdata(KMP_TASK_TO_TASKDATA(task)), 4491 lower_offset((char *)lb - (char *)task), 4492 upper_offset((char *)ub - (char *)task) { 4493 KMP_DEBUG_ASSERT((char *)lb > (char *)_task); 4494 KMP_DEBUG_ASSERT((char *)ub > (char *)_task); 4495 } 4496 kmp_taskloop_bounds_t(kmp_task_t *_task, const kmp_taskloop_bounds_t &bounds) 4497 : task(_task), taskdata(KMP_TASK_TO_TASKDATA(_task)), 4498 lower_offset(bounds.lower_offset), upper_offset(bounds.upper_offset) {} 4499 size_t get_lower_offset() const { return lower_offset; } 4500 size_t get_upper_offset() const { return upper_offset; } 4501 kmp_uint64 get_lb() const { 4502 kmp_int64 retval; 4503 #if defined(KMP_GOMP_COMPAT) 4504 // Intel task just returns the lower bound normally 4505 if (!taskdata->td_flags.native) { 4506 retval = *(kmp_int64 *)((char *)task + lower_offset); 4507 } else { 4508 // GOMP task has to take into account the sizeof(long) 4509 if (taskdata->td_size_loop_bounds == 4) { 4510 kmp_int32 *lb = RCAST(kmp_int32 *, task->shareds); 4511 retval = (kmp_int64)*lb; 4512 } else { 4513 kmp_int64 *lb = RCAST(kmp_int64 *, task->shareds); 4514 retval = (kmp_int64)*lb; 4515 } 4516 } 4517 #else 4518 (void)taskdata; 4519 retval = *(kmp_int64 *)((char *)task + lower_offset); 4520 #endif // defined(KMP_GOMP_COMPAT) 4521 return retval; 4522 } 4523 kmp_uint64 get_ub() const { 4524 kmp_int64 retval; 4525 #if defined(KMP_GOMP_COMPAT) 4526 // Intel task just returns the upper bound normally 4527 if (!taskdata->td_flags.native) { 4528 retval = *(kmp_int64 *)((char *)task + upper_offset); 4529 } else { 4530 // GOMP task has to take into account the sizeof(long) 4531 if (taskdata->td_size_loop_bounds == 4) { 4532 kmp_int32 *ub = RCAST(kmp_int32 *, task->shareds) + 1; 4533 retval = (kmp_int64)*ub; 4534 } else { 4535 kmp_int64 *ub = RCAST(kmp_int64 *, task->shareds) + 1; 4536 retval = (kmp_int64)*ub; 4537 } 4538 } 4539 #else 4540 retval = *(kmp_int64 *)((char *)task + upper_offset); 4541 #endif // defined(KMP_GOMP_COMPAT) 4542 return retval; 4543 } 4544 void set_lb(kmp_uint64 lb) { 4545 #if defined(KMP_GOMP_COMPAT) 4546 // Intel task just sets the lower bound normally 4547 if (!taskdata->td_flags.native) { 4548 *(kmp_uint64 *)((char *)task + lower_offset) = lb; 4549 } else { 4550 // GOMP task has to take into account the sizeof(long) 4551 if (taskdata->td_size_loop_bounds == 4) { 4552 kmp_uint32 *lower = RCAST(kmp_uint32 *, task->shareds); 4553 *lower = (kmp_uint32)lb; 4554 } else { 4555 kmp_uint64 *lower = RCAST(kmp_uint64 *, task->shareds); 4556 *lower = (kmp_uint64)lb; 4557 } 4558 } 4559 #else 4560 *(kmp_uint64 *)((char *)task + lower_offset) = lb; 4561 #endif // defined(KMP_GOMP_COMPAT) 4562 } 4563 void set_ub(kmp_uint64 ub) { 4564 #if defined(KMP_GOMP_COMPAT) 4565 // Intel task just sets the upper bound normally 4566 if (!taskdata->td_flags.native) { 4567 *(kmp_uint64 *)((char *)task + upper_offset) = ub; 4568 } else { 4569 // GOMP task has to take into account the sizeof(long) 4570 if (taskdata->td_size_loop_bounds == 4) { 4571 kmp_uint32 *upper = RCAST(kmp_uint32 *, task->shareds) + 1; 4572 *upper = (kmp_uint32)ub; 4573 } else { 4574 kmp_uint64 *upper = RCAST(kmp_uint64 *, task->shareds) + 1; 4575 *upper = (kmp_uint64)ub; 4576 } 4577 } 4578 #else 4579 *(kmp_uint64 *)((char *)task + upper_offset) = ub; 4580 #endif // defined(KMP_GOMP_COMPAT) 4581 } 4582 }; 4583 4584 // __kmp_taskloop_linear: Start tasks of the taskloop linearly 4585 // 4586 // loc Source location information 4587 // gtid Global thread ID 4588 // task Pattern task, exposes the loop iteration range 4589 // lb Pointer to loop lower bound in task structure 4590 // ub Pointer to loop upper bound in task structure 4591 // st Loop stride 4592 // ub_glob Global upper bound (used for lastprivate check) 4593 // num_tasks Number of tasks to execute 4594 // grainsize Number of loop iterations per task 4595 // extras Number of chunks with grainsize+1 iterations 4596 // last_chunk Reduction of grainsize for last task 4597 // tc Iterations count 4598 // task_dup Tasks duplication routine 4599 // codeptr_ra Return address for OMPT events 4600 void __kmp_taskloop_linear(ident_t *loc, int gtid, kmp_task_t *task, 4601 kmp_uint64 *lb, kmp_uint64 *ub, kmp_int64 st, 4602 kmp_uint64 ub_glob, kmp_uint64 num_tasks, 4603 kmp_uint64 grainsize, kmp_uint64 extras, 4604 kmp_int64 last_chunk, kmp_uint64 tc, 4605 #if OMPT_SUPPORT 4606 void *codeptr_ra, 4607 #endif 4608 void *task_dup) { 4609 KMP_COUNT_BLOCK(OMP_TASKLOOP); 4610 KMP_TIME_PARTITIONED_BLOCK(OMP_taskloop_scheduling); 4611 p_task_dup_t ptask_dup = (p_task_dup_t)task_dup; 4612 // compiler provides global bounds here 4613 kmp_taskloop_bounds_t task_bounds(task, lb, ub); 4614 kmp_uint64 lower = task_bounds.get_lb(); 4615 kmp_uint64 upper = task_bounds.get_ub(); 4616 kmp_uint64 i; 4617 kmp_info_t *thread = __kmp_threads[gtid]; 4618 kmp_taskdata_t *current_task = thread->th.th_current_task; 4619 kmp_task_t *next_task; 4620 kmp_int32 lastpriv = 0; 4621 4622 KMP_DEBUG_ASSERT(tc == num_tasks * grainsize + 4623 (last_chunk < 0 ? last_chunk : extras)); 4624 KMP_DEBUG_ASSERT(num_tasks > extras); 4625 KMP_DEBUG_ASSERT(num_tasks > 0); 4626 KA_TRACE(20, ("__kmp_taskloop_linear: T#%d: %lld tasks, grainsize %lld, " 4627 "extras %lld, last_chunk %lld, i=%lld,%lld(%d)%lld, dup %p\n", 4628 gtid, num_tasks, grainsize, extras, last_chunk, lower, upper, 4629 ub_glob, st, task_dup)); 4630 4631 // Launch num_tasks tasks, assign grainsize iterations each task 4632 for (i = 0; i < num_tasks; ++i) { 4633 kmp_uint64 chunk_minus_1; 4634 if (extras == 0) { 4635 chunk_minus_1 = grainsize - 1; 4636 } else { 4637 chunk_minus_1 = grainsize; 4638 --extras; // first extras iterations get bigger chunk (grainsize+1) 4639 } 4640 upper = lower + st * chunk_minus_1; 4641 if (upper > *ub) { 4642 upper = *ub; 4643 } 4644 if (i == num_tasks - 1) { 4645 // schedule the last task, set lastprivate flag if needed 4646 if (st == 1) { // most common case 4647 KMP_DEBUG_ASSERT(upper == *ub); 4648 if (upper == ub_glob) 4649 lastpriv = 1; 4650 } else if (st > 0) { // positive loop stride 4651 KMP_DEBUG_ASSERT((kmp_uint64)st > *ub - upper); 4652 if ((kmp_uint64)st > ub_glob - upper) 4653 lastpriv = 1; 4654 } else { // negative loop stride 4655 KMP_DEBUG_ASSERT(upper + st < *ub); 4656 if (upper - ub_glob < (kmp_uint64)(-st)) 4657 lastpriv = 1; 4658 } 4659 } 4660 next_task = __kmp_task_dup_alloc(thread, task); // allocate new task 4661 kmp_taskdata_t *next_taskdata = KMP_TASK_TO_TASKDATA(next_task); 4662 kmp_taskloop_bounds_t next_task_bounds = 4663 kmp_taskloop_bounds_t(next_task, task_bounds); 4664 4665 // adjust task-specific bounds 4666 next_task_bounds.set_lb(lower); 4667 if (next_taskdata->td_flags.native) { 4668 next_task_bounds.set_ub(upper + (st > 0 ? 1 : -1)); 4669 } else { 4670 next_task_bounds.set_ub(upper); 4671 } 4672 if (ptask_dup != NULL) // set lastprivate flag, construct firstprivates, 4673 // etc. 4674 ptask_dup(next_task, task, lastpriv); 4675 KA_TRACE(40, 4676 ("__kmp_taskloop_linear: T#%d; task #%llu: task %p: lower %lld, " 4677 "upper %lld stride %lld, (offsets %p %p)\n", 4678 gtid, i, next_task, lower, upper, st, 4679 next_task_bounds.get_lower_offset(), 4680 next_task_bounds.get_upper_offset())); 4681 #if OMPT_SUPPORT 4682 __kmp_omp_taskloop_task(NULL, gtid, next_task, 4683 codeptr_ra); // schedule new task 4684 #if OMPT_OPTIONAL 4685 if (ompt_enabled.ompt_callback_dispatch) { 4686 OMPT_GET_DISPATCH_CHUNK(next_taskdata->ompt_task_info.dispatch_chunk, 4687 lower, upper, st); 4688 } 4689 #endif // OMPT_OPTIONAL 4690 #else 4691 __kmp_omp_task(gtid, next_task, true); // schedule new task 4692 #endif 4693 lower = upper + st; // adjust lower bound for the next iteration 4694 } 4695 // free the pattern task and exit 4696 __kmp_task_start(gtid, task, current_task); // make internal bookkeeping 4697 // do not execute the pattern task, just do internal bookkeeping 4698 __kmp_task_finish<false>(gtid, task, current_task); 4699 } 4700 4701 // Structure to keep taskloop parameters for auxiliary task 4702 // kept in the shareds of the task structure. 4703 typedef struct __taskloop_params { 4704 kmp_task_t *task; 4705 kmp_uint64 *lb; 4706 kmp_uint64 *ub; 4707 void *task_dup; 4708 kmp_int64 st; 4709 kmp_uint64 ub_glob; 4710 kmp_uint64 num_tasks; 4711 kmp_uint64 grainsize; 4712 kmp_uint64 extras; 4713 kmp_int64 last_chunk; 4714 kmp_uint64 tc; 4715 kmp_uint64 num_t_min; 4716 #if OMPT_SUPPORT 4717 void *codeptr_ra; 4718 #endif 4719 } __taskloop_params_t; 4720 4721 void __kmp_taskloop_recur(ident_t *, int, kmp_task_t *, kmp_uint64 *, 4722 kmp_uint64 *, kmp_int64, kmp_uint64, kmp_uint64, 4723 kmp_uint64, kmp_uint64, kmp_int64, kmp_uint64, 4724 kmp_uint64, 4725 #if OMPT_SUPPORT 4726 void *, 4727 #endif 4728 void *); 4729 4730 // Execute part of the taskloop submitted as a task. 4731 int __kmp_taskloop_task(int gtid, void *ptask) { 4732 __taskloop_params_t *p = 4733 (__taskloop_params_t *)((kmp_task_t *)ptask)->shareds; 4734 kmp_task_t *task = p->task; 4735 kmp_uint64 *lb = p->lb; 4736 kmp_uint64 *ub = p->ub; 4737 void *task_dup = p->task_dup; 4738 // p_task_dup_t ptask_dup = (p_task_dup_t)task_dup; 4739 kmp_int64 st = p->st; 4740 kmp_uint64 ub_glob = p->ub_glob; 4741 kmp_uint64 num_tasks = p->num_tasks; 4742 kmp_uint64 grainsize = p->grainsize; 4743 kmp_uint64 extras = p->extras; 4744 kmp_int64 last_chunk = p->last_chunk; 4745 kmp_uint64 tc = p->tc; 4746 kmp_uint64 num_t_min = p->num_t_min; 4747 #if OMPT_SUPPORT 4748 void *codeptr_ra = p->codeptr_ra; 4749 #endif 4750 #if KMP_DEBUG 4751 kmp_taskdata_t *taskdata = KMP_TASK_TO_TASKDATA(task); 4752 KMP_DEBUG_ASSERT(task != NULL); 4753 KA_TRACE(20, 4754 ("__kmp_taskloop_task: T#%d, task %p: %lld tasks, grainsize" 4755 " %lld, extras %lld, last_chunk %lld, i=%lld,%lld(%d), dup %p\n", 4756 gtid, taskdata, num_tasks, grainsize, extras, last_chunk, *lb, *ub, 4757 st, task_dup)); 4758 #endif 4759 KMP_DEBUG_ASSERT(num_tasks * 2 + 1 > num_t_min); 4760 if (num_tasks > num_t_min) 4761 __kmp_taskloop_recur(NULL, gtid, task, lb, ub, st, ub_glob, num_tasks, 4762 grainsize, extras, last_chunk, tc, num_t_min, 4763 #if OMPT_SUPPORT 4764 codeptr_ra, 4765 #endif 4766 task_dup); 4767 else 4768 __kmp_taskloop_linear(NULL, gtid, task, lb, ub, st, ub_glob, num_tasks, 4769 grainsize, extras, last_chunk, tc, 4770 #if OMPT_SUPPORT 4771 codeptr_ra, 4772 #endif 4773 task_dup); 4774 4775 KA_TRACE(40, ("__kmp_taskloop_task(exit): T#%d\n", gtid)); 4776 return 0; 4777 } 4778 4779 // Schedule part of the taskloop as a task, 4780 // execute the rest of the taskloop. 4781 // 4782 // loc Source location information 4783 // gtid Global thread ID 4784 // task Pattern task, exposes the loop iteration range 4785 // lb Pointer to loop lower bound in task structure 4786 // ub Pointer to loop upper bound in task structure 4787 // st Loop stride 4788 // ub_glob Global upper bound (used for lastprivate check) 4789 // num_tasks Number of tasks to execute 4790 // grainsize Number of loop iterations per task 4791 // extras Number of chunks with grainsize+1 iterations 4792 // last_chunk Reduction of grainsize for last task 4793 // tc Iterations count 4794 // num_t_min Threshold to launch tasks recursively 4795 // task_dup Tasks duplication routine 4796 // codeptr_ra Return address for OMPT events 4797 void __kmp_taskloop_recur(ident_t *loc, int gtid, kmp_task_t *task, 4798 kmp_uint64 *lb, kmp_uint64 *ub, kmp_int64 st, 4799 kmp_uint64 ub_glob, kmp_uint64 num_tasks, 4800 kmp_uint64 grainsize, kmp_uint64 extras, 4801 kmp_int64 last_chunk, kmp_uint64 tc, 4802 kmp_uint64 num_t_min, 4803 #if OMPT_SUPPORT 4804 void *codeptr_ra, 4805 #endif 4806 void *task_dup) { 4807 kmp_taskdata_t *taskdata = KMP_TASK_TO_TASKDATA(task); 4808 KMP_DEBUG_ASSERT(task != NULL); 4809 KMP_DEBUG_ASSERT(num_tasks > num_t_min); 4810 KA_TRACE(20, 4811 ("__kmp_taskloop_recur: T#%d, task %p: %lld tasks, grainsize" 4812 " %lld, extras %lld, last_chunk %lld, i=%lld,%lld(%d), dup %p\n", 4813 gtid, taskdata, num_tasks, grainsize, extras, last_chunk, *lb, *ub, 4814 st, task_dup)); 4815 p_task_dup_t ptask_dup = (p_task_dup_t)task_dup; 4816 kmp_uint64 lower = *lb; 4817 kmp_info_t *thread = __kmp_threads[gtid]; 4818 // kmp_taskdata_t *current_task = thread->th.th_current_task; 4819 kmp_task_t *next_task; 4820 size_t lower_offset = 4821 (char *)lb - (char *)task; // remember offset of lb in the task structure 4822 size_t upper_offset = 4823 (char *)ub - (char *)task; // remember offset of ub in the task structure 4824 4825 KMP_DEBUG_ASSERT(tc == num_tasks * grainsize + 4826 (last_chunk < 0 ? last_chunk : extras)); 4827 KMP_DEBUG_ASSERT(num_tasks > extras); 4828 KMP_DEBUG_ASSERT(num_tasks > 0); 4829 4830 // split the loop in two halves 4831 kmp_uint64 lb1, ub0, tc0, tc1, ext0, ext1; 4832 kmp_int64 last_chunk0 = 0, last_chunk1 = 0; 4833 kmp_uint64 gr_size0 = grainsize; 4834 kmp_uint64 n_tsk0 = num_tasks >> 1; // num_tasks/2 to execute 4835 kmp_uint64 n_tsk1 = num_tasks - n_tsk0; // to schedule as a task 4836 if (last_chunk < 0) { 4837 ext0 = ext1 = 0; 4838 last_chunk1 = last_chunk; 4839 tc0 = grainsize * n_tsk0; 4840 tc1 = tc - tc0; 4841 } else if (n_tsk0 <= extras) { 4842 gr_size0++; // integrate extras into grainsize 4843 ext0 = 0; // no extra iters in 1st half 4844 ext1 = extras - n_tsk0; // remaining extras 4845 tc0 = gr_size0 * n_tsk0; 4846 tc1 = tc - tc0; 4847 } else { // n_tsk0 > extras 4848 ext1 = 0; // no extra iters in 2nd half 4849 ext0 = extras; 4850 tc1 = grainsize * n_tsk1; 4851 tc0 = tc - tc1; 4852 } 4853 ub0 = lower + st * (tc0 - 1); 4854 lb1 = ub0 + st; 4855 4856 // create pattern task for 2nd half of the loop 4857 next_task = __kmp_task_dup_alloc(thread, task); // duplicate the task 4858 // adjust lower bound (upper bound is not changed) for the 2nd half 4859 *(kmp_uint64 *)((char *)next_task + lower_offset) = lb1; 4860 if (ptask_dup != NULL) // construct firstprivates, etc. 4861 ptask_dup(next_task, task, 0); 4862 *ub = ub0; // adjust upper bound for the 1st half 4863 4864 // create auxiliary task for 2nd half of the loop 4865 // make sure new task has same parent task as the pattern task 4866 kmp_taskdata_t *current_task = thread->th.th_current_task; 4867 thread->th.th_current_task = taskdata->td_parent; 4868 kmp_task_t *new_task = 4869 __kmpc_omp_task_alloc(loc, gtid, 1, 3 * sizeof(void *), 4870 sizeof(__taskloop_params_t), &__kmp_taskloop_task); 4871 // restore current task 4872 thread->th.th_current_task = current_task; 4873 __taskloop_params_t *p = (__taskloop_params_t *)new_task->shareds; 4874 p->task = next_task; 4875 p->lb = (kmp_uint64 *)((char *)next_task + lower_offset); 4876 p->ub = (kmp_uint64 *)((char *)next_task + upper_offset); 4877 p->task_dup = task_dup; 4878 p->st = st; 4879 p->ub_glob = ub_glob; 4880 p->num_tasks = n_tsk1; 4881 p->grainsize = grainsize; 4882 p->extras = ext1; 4883 p->last_chunk = last_chunk1; 4884 p->tc = tc1; 4885 p->num_t_min = num_t_min; 4886 #if OMPT_SUPPORT 4887 p->codeptr_ra = codeptr_ra; 4888 #endif 4889 4890 #if OMPT_SUPPORT 4891 // schedule new task with correct return address for OMPT events 4892 __kmp_omp_taskloop_task(NULL, gtid, new_task, codeptr_ra); 4893 #else 4894 __kmp_omp_task(gtid, new_task, true); // schedule new task 4895 #endif 4896 4897 // execute the 1st half of current subrange 4898 if (n_tsk0 > num_t_min) 4899 __kmp_taskloop_recur(loc, gtid, task, lb, ub, st, ub_glob, n_tsk0, gr_size0, 4900 ext0, last_chunk0, tc0, num_t_min, 4901 #if OMPT_SUPPORT 4902 codeptr_ra, 4903 #endif 4904 task_dup); 4905 else 4906 __kmp_taskloop_linear(loc, gtid, task, lb, ub, st, ub_glob, n_tsk0, 4907 gr_size0, ext0, last_chunk0, tc0, 4908 #if OMPT_SUPPORT 4909 codeptr_ra, 4910 #endif 4911 task_dup); 4912 4913 KA_TRACE(40, ("__kmp_taskloop_recur(exit): T#%d\n", gtid)); 4914 } 4915 4916 static void __kmp_taskloop(ident_t *loc, int gtid, kmp_task_t *task, int if_val, 4917 kmp_uint64 *lb, kmp_uint64 *ub, kmp_int64 st, 4918 int nogroup, int sched, kmp_uint64 grainsize, 4919 int modifier, void *task_dup) { 4920 kmp_taskdata_t *taskdata = KMP_TASK_TO_TASKDATA(task); 4921 KMP_DEBUG_ASSERT(task != NULL); 4922 if (nogroup == 0) { 4923 #if OMPT_SUPPORT && OMPT_OPTIONAL 4924 OMPT_STORE_RETURN_ADDRESS(gtid); 4925 #endif 4926 __kmpc_taskgroup(loc, gtid); 4927 } 4928 4929 // ========================================================================= 4930 // calculate loop parameters 4931 kmp_taskloop_bounds_t task_bounds(task, lb, ub); 4932 kmp_uint64 tc; 4933 // compiler provides global bounds here 4934 kmp_uint64 lower = task_bounds.get_lb(); 4935 kmp_uint64 upper = task_bounds.get_ub(); 4936 kmp_uint64 ub_glob = upper; // global upper used to calc lastprivate flag 4937 kmp_uint64 num_tasks = 0, extras = 0; 4938 kmp_int64 last_chunk = 4939 0; // reduce grainsize of last task by last_chunk in strict mode 4940 kmp_uint64 num_tasks_min = __kmp_taskloop_min_tasks; 4941 kmp_info_t *thread = __kmp_threads[gtid]; 4942 kmp_taskdata_t *current_task = thread->th.th_current_task; 4943 4944 KA_TRACE(20, ("__kmp_taskloop: T#%d, task %p, lb %lld, ub %lld, st %lld, " 4945 "grain %llu(%d, %d), dup %p\n", 4946 gtid, taskdata, lower, upper, st, grainsize, sched, modifier, 4947 task_dup)); 4948 4949 // compute trip count 4950 if (st == 1) { // most common case 4951 tc = upper - lower + 1; 4952 } else if (st < 0) { 4953 tc = (lower - upper) / (-st) + 1; 4954 } else { // st > 0 4955 tc = (upper - lower) / st + 1; 4956 } 4957 if (tc == 0) { 4958 KA_TRACE(20, ("__kmp_taskloop(exit): T#%d zero-trip loop\n", gtid)); 4959 // free the pattern task and exit 4960 __kmp_task_start(gtid, task, current_task); 4961 // do not execute anything for zero-trip loop 4962 __kmp_task_finish<false>(gtid, task, current_task); 4963 return; 4964 } 4965 4966 #if OMPT_SUPPORT && OMPT_OPTIONAL 4967 ompt_team_info_t *team_info = __ompt_get_teaminfo(0, NULL); 4968 ompt_task_info_t *task_info = __ompt_get_task_info_object(0); 4969 if (ompt_enabled.ompt_callback_work) { 4970 ompt_callbacks.ompt_callback(ompt_callback_work)( 4971 ompt_work_taskloop, ompt_scope_begin, &(team_info->parallel_data), 4972 &(task_info->task_data), tc, OMPT_GET_RETURN_ADDRESS(0)); 4973 } 4974 #endif 4975 4976 if (num_tasks_min == 0) 4977 // TODO: can we choose better default heuristic? 4978 num_tasks_min = 4979 KMP_MIN(thread->th.th_team_nproc * 10, INITIAL_TASK_DEQUE_SIZE); 4980 4981 // compute num_tasks/grainsize based on the input provided 4982 switch (sched) { 4983 case 0: // no schedule clause specified, we can choose the default 4984 // let's try to schedule (team_size*10) tasks 4985 grainsize = thread->th.th_team_nproc * 10; 4986 KMP_FALLTHROUGH(); 4987 case 2: // num_tasks provided 4988 if (grainsize > tc) { 4989 num_tasks = tc; // too big num_tasks requested, adjust values 4990 grainsize = 1; 4991 extras = 0; 4992 } else { 4993 num_tasks = grainsize; 4994 grainsize = tc / num_tasks; 4995 extras = tc % num_tasks; 4996 } 4997 break; 4998 case 1: // grainsize provided 4999 if (grainsize > tc) { 5000 num_tasks = 1; 5001 grainsize = tc; // too big grainsize requested, adjust values 5002 extras = 0; 5003 } else { 5004 if (modifier) { 5005 num_tasks = (tc + grainsize - 1) / grainsize; 5006 last_chunk = tc - (num_tasks * grainsize); 5007 extras = 0; 5008 } else { 5009 num_tasks = tc / grainsize; 5010 // adjust grainsize for balanced distribution of iterations 5011 grainsize = tc / num_tasks; 5012 extras = tc % num_tasks; 5013 } 5014 } 5015 break; 5016 default: 5017 KMP_ASSERT2(0, "unknown scheduling of taskloop"); 5018 } 5019 5020 KMP_DEBUG_ASSERT(tc == num_tasks * grainsize + 5021 (last_chunk < 0 ? last_chunk : extras)); 5022 KMP_DEBUG_ASSERT(num_tasks > extras); 5023 KMP_DEBUG_ASSERT(num_tasks > 0); 5024 // ========================================================================= 5025 5026 // check if clause value first 5027 // Also require GOMP_taskloop to reduce to linear (taskdata->td_flags.native) 5028 if (if_val == 0) { // if(0) specified, mark task as serial 5029 taskdata->td_flags.task_serial = 1; 5030 taskdata->td_flags.tiedness = TASK_TIED; // AC: serial task cannot be untied 5031 // always start serial tasks linearly 5032 __kmp_taskloop_linear(loc, gtid, task, lb, ub, st, ub_glob, num_tasks, 5033 grainsize, extras, last_chunk, tc, 5034 #if OMPT_SUPPORT 5035 OMPT_GET_RETURN_ADDRESS(0), 5036 #endif 5037 task_dup); 5038 // !taskdata->td_flags.native => currently force linear spawning of tasks 5039 // for GOMP_taskloop 5040 } else if (num_tasks > num_tasks_min && !taskdata->td_flags.native) { 5041 KA_TRACE(20, ("__kmp_taskloop: T#%d, go recursive: tc %llu, #tasks %llu" 5042 "(%lld), grain %llu, extras %llu, last_chunk %lld\n", 5043 gtid, tc, num_tasks, num_tasks_min, grainsize, extras, 5044 last_chunk)); 5045 __kmp_taskloop_recur(loc, gtid, task, lb, ub, st, ub_glob, num_tasks, 5046 grainsize, extras, last_chunk, tc, num_tasks_min, 5047 #if OMPT_SUPPORT 5048 OMPT_GET_RETURN_ADDRESS(0), 5049 #endif 5050 task_dup); 5051 } else { 5052 KA_TRACE(20, ("__kmp_taskloop: T#%d, go linear: tc %llu, #tasks %llu" 5053 "(%lld), grain %llu, extras %llu, last_chunk %lld\n", 5054 gtid, tc, num_tasks, num_tasks_min, grainsize, extras, 5055 last_chunk)); 5056 __kmp_taskloop_linear(loc, gtid, task, lb, ub, st, ub_glob, num_tasks, 5057 grainsize, extras, last_chunk, tc, 5058 #if OMPT_SUPPORT 5059 OMPT_GET_RETURN_ADDRESS(0), 5060 #endif 5061 task_dup); 5062 } 5063 5064 #if OMPT_SUPPORT && OMPT_OPTIONAL 5065 if (ompt_enabled.ompt_callback_work) { 5066 ompt_callbacks.ompt_callback(ompt_callback_work)( 5067 ompt_work_taskloop, ompt_scope_end, &(team_info->parallel_data), 5068 &(task_info->task_data), tc, OMPT_GET_RETURN_ADDRESS(0)); 5069 } 5070 #endif 5071 5072 if (nogroup == 0) { 5073 #if OMPT_SUPPORT && OMPT_OPTIONAL 5074 OMPT_STORE_RETURN_ADDRESS(gtid); 5075 #endif 5076 __kmpc_end_taskgroup(loc, gtid); 5077 } 5078 KA_TRACE(20, ("__kmp_taskloop(exit): T#%d\n", gtid)); 5079 } 5080 5081 /*! 5082 @ingroup TASKING 5083 @param loc Source location information 5084 @param gtid Global thread ID 5085 @param task Task structure 5086 @param if_val Value of the if clause 5087 @param lb Pointer to loop lower bound in task structure 5088 @param ub Pointer to loop upper bound in task structure 5089 @param st Loop stride 5090 @param nogroup Flag, 1 if nogroup clause specified, 0 otherwise 5091 @param sched Schedule specified 0/1/2 for none/grainsize/num_tasks 5092 @param grainsize Schedule value if specified 5093 @param task_dup Tasks duplication routine 5094 5095 Execute the taskloop construct. 5096 */ 5097 void __kmpc_taskloop(ident_t *loc, int gtid, kmp_task_t *task, int if_val, 5098 kmp_uint64 *lb, kmp_uint64 *ub, kmp_int64 st, int nogroup, 5099 int sched, kmp_uint64 grainsize, void *task_dup) { 5100 __kmp_assert_valid_gtid(gtid); 5101 KA_TRACE(20, ("__kmpc_taskloop(enter): T#%d\n", gtid)); 5102 __kmp_taskloop(loc, gtid, task, if_val, lb, ub, st, nogroup, sched, grainsize, 5103 0, task_dup); 5104 KA_TRACE(20, ("__kmpc_taskloop(exit): T#%d\n", gtid)); 5105 } 5106 5107 /*! 5108 @ingroup TASKING 5109 @param loc Source location information 5110 @param gtid Global thread ID 5111 @param task Task structure 5112 @param if_val Value of the if clause 5113 @param lb Pointer to loop lower bound in task structure 5114 @param ub Pointer to loop upper bound in task structure 5115 @param st Loop stride 5116 @param nogroup Flag, 1 if nogroup clause specified, 0 otherwise 5117 @param sched Schedule specified 0/1/2 for none/grainsize/num_tasks 5118 @param grainsize Schedule value if specified 5119 @param modifier Modifier 'strict' for sched, 1 if present, 0 otherwise 5120 @param task_dup Tasks duplication routine 5121 5122 Execute the taskloop construct. 5123 */ 5124 void __kmpc_taskloop_5(ident_t *loc, int gtid, kmp_task_t *task, int if_val, 5125 kmp_uint64 *lb, kmp_uint64 *ub, kmp_int64 st, 5126 int nogroup, int sched, kmp_uint64 grainsize, 5127 int modifier, void *task_dup) { 5128 __kmp_assert_valid_gtid(gtid); 5129 KA_TRACE(20, ("__kmpc_taskloop_5(enter): T#%d\n", gtid)); 5130 __kmp_taskloop(loc, gtid, task, if_val, lb, ub, st, nogroup, sched, grainsize, 5131 modifier, task_dup); 5132 KA_TRACE(20, ("__kmpc_taskloop_5(exit): T#%d\n", gtid)); 5133 } 5134