xref: /freebsd/contrib/llvm-project/openmp/runtime/src/kmp_tasking.cpp (revision 6f63e88c0166ed3e5f2805a9e667c7d24d304cf1)
1 /*
2  * kmp_tasking.cpp -- OpenMP 3.0 tasking support.
3  */
4 
5 //===----------------------------------------------------------------------===//
6 //
7 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
8 // See https://llvm.org/LICENSE.txt for license information.
9 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "kmp.h"
14 #include "kmp_i18n.h"
15 #include "kmp_itt.h"
16 #include "kmp_stats.h"
17 #include "kmp_wait_release.h"
18 #include "kmp_taskdeps.h"
19 
20 #if OMPT_SUPPORT
21 #include "ompt-specific.h"
22 #endif
23 
24 #include "tsan_annotations.h"
25 
26 /* forward declaration */
27 static void __kmp_enable_tasking(kmp_task_team_t *task_team,
28                                  kmp_info_t *this_thr);
29 static void __kmp_alloc_task_deque(kmp_info_t *thread,
30                                    kmp_thread_data_t *thread_data);
31 static int __kmp_realloc_task_threads_data(kmp_info_t *thread,
32                                            kmp_task_team_t *task_team);
33 static void __kmp_bottom_half_finish_proxy(kmp_int32 gtid, kmp_task_t *ptask);
34 
35 #ifdef BUILD_TIED_TASK_STACK
36 
37 //  __kmp_trace_task_stack: print the tied tasks from the task stack in order
38 //  from top do bottom
39 //
40 //  gtid: global thread identifier for thread containing stack
41 //  thread_data: thread data for task team thread containing stack
42 //  threshold: value above which the trace statement triggers
43 //  location: string identifying call site of this function (for trace)
44 static void __kmp_trace_task_stack(kmp_int32 gtid,
45                                    kmp_thread_data_t *thread_data,
46                                    int threshold, char *location) {
47   kmp_task_stack_t *task_stack = &thread_data->td.td_susp_tied_tasks;
48   kmp_taskdata_t **stack_top = task_stack->ts_top;
49   kmp_int32 entries = task_stack->ts_entries;
50   kmp_taskdata_t *tied_task;
51 
52   KA_TRACE(
53       threshold,
54       ("__kmp_trace_task_stack(start): location = %s, gtid = %d, entries = %d, "
55        "first_block = %p, stack_top = %p \n",
56        location, gtid, entries, task_stack->ts_first_block, stack_top));
57 
58   KMP_DEBUG_ASSERT(stack_top != NULL);
59   KMP_DEBUG_ASSERT(entries > 0);
60 
61   while (entries != 0) {
62     KMP_DEBUG_ASSERT(stack_top != &task_stack->ts_first_block.sb_block[0]);
63     // fix up ts_top if we need to pop from previous block
64     if (entries & TASK_STACK_INDEX_MASK == 0) {
65       kmp_stack_block_t *stack_block = (kmp_stack_block_t *)(stack_top);
66 
67       stack_block = stack_block->sb_prev;
68       stack_top = &stack_block->sb_block[TASK_STACK_BLOCK_SIZE];
69     }
70 
71     // finish bookkeeping
72     stack_top--;
73     entries--;
74 
75     tied_task = *stack_top;
76 
77     KMP_DEBUG_ASSERT(tied_task != NULL);
78     KMP_DEBUG_ASSERT(tied_task->td_flags.tasktype == TASK_TIED);
79 
80     KA_TRACE(threshold,
81              ("__kmp_trace_task_stack(%s):             gtid=%d, entry=%d, "
82               "stack_top=%p, tied_task=%p\n",
83               location, gtid, entries, stack_top, tied_task));
84   }
85   KMP_DEBUG_ASSERT(stack_top == &task_stack->ts_first_block.sb_block[0]);
86 
87   KA_TRACE(threshold,
88            ("__kmp_trace_task_stack(exit): location = %s, gtid = %d\n",
89             location, gtid));
90 }
91 
92 //  __kmp_init_task_stack: initialize the task stack for the first time
93 //  after a thread_data structure is created.
94 //  It should not be necessary to do this again (assuming the stack works).
95 //
96 //  gtid: global thread identifier of calling thread
97 //  thread_data: thread data for task team thread containing stack
98 static void __kmp_init_task_stack(kmp_int32 gtid,
99                                   kmp_thread_data_t *thread_data) {
100   kmp_task_stack_t *task_stack = &thread_data->td.td_susp_tied_tasks;
101   kmp_stack_block_t *first_block;
102 
103   // set up the first block of the stack
104   first_block = &task_stack->ts_first_block;
105   task_stack->ts_top = (kmp_taskdata_t **)first_block;
106   memset((void *)first_block, '\0',
107          TASK_STACK_BLOCK_SIZE * sizeof(kmp_taskdata_t *));
108 
109   // initialize the stack to be empty
110   task_stack->ts_entries = TASK_STACK_EMPTY;
111   first_block->sb_next = NULL;
112   first_block->sb_prev = NULL;
113 }
114 
115 //  __kmp_free_task_stack: free the task stack when thread_data is destroyed.
116 //
117 //  gtid: global thread identifier for calling thread
118 //  thread_data: thread info for thread containing stack
119 static void __kmp_free_task_stack(kmp_int32 gtid,
120                                   kmp_thread_data_t *thread_data) {
121   kmp_task_stack_t *task_stack = &thread_data->td.td_susp_tied_tasks;
122   kmp_stack_block_t *stack_block = &task_stack->ts_first_block;
123 
124   KMP_DEBUG_ASSERT(task_stack->ts_entries == TASK_STACK_EMPTY);
125   // free from the second block of the stack
126   while (stack_block != NULL) {
127     kmp_stack_block_t *next_block = (stack_block) ? stack_block->sb_next : NULL;
128 
129     stack_block->sb_next = NULL;
130     stack_block->sb_prev = NULL;
131     if (stack_block != &task_stack->ts_first_block) {
132       __kmp_thread_free(thread,
133                         stack_block); // free the block, if not the first
134     }
135     stack_block = next_block;
136   }
137   // initialize the stack to be empty
138   task_stack->ts_entries = 0;
139   task_stack->ts_top = NULL;
140 }
141 
142 //  __kmp_push_task_stack: Push the tied task onto the task stack.
143 //     Grow the stack if necessary by allocating another block.
144 //
145 //  gtid: global thread identifier for calling thread
146 //  thread: thread info for thread containing stack
147 //  tied_task: the task to push on the stack
148 static void __kmp_push_task_stack(kmp_int32 gtid, kmp_info_t *thread,
149                                   kmp_taskdata_t *tied_task) {
150   // GEH - need to consider what to do if tt_threads_data not allocated yet
151   kmp_thread_data_t *thread_data =
152       &thread->th.th_task_team->tt.tt_threads_data[__kmp_tid_from_gtid(gtid)];
153   kmp_task_stack_t *task_stack = &thread_data->td.td_susp_tied_tasks;
154 
155   if (tied_task->td_flags.team_serial || tied_task->td_flags.tasking_ser) {
156     return; // Don't push anything on stack if team or team tasks are serialized
157   }
158 
159   KMP_DEBUG_ASSERT(tied_task->td_flags.tasktype == TASK_TIED);
160   KMP_DEBUG_ASSERT(task_stack->ts_top != NULL);
161 
162   KA_TRACE(20,
163            ("__kmp_push_task_stack(enter): GTID: %d; THREAD: %p; TASK: %p\n",
164             gtid, thread, tied_task));
165   // Store entry
166   *(task_stack->ts_top) = tied_task;
167 
168   // Do bookkeeping for next push
169   task_stack->ts_top++;
170   task_stack->ts_entries++;
171 
172   if (task_stack->ts_entries & TASK_STACK_INDEX_MASK == 0) {
173     // Find beginning of this task block
174     kmp_stack_block_t *stack_block =
175         (kmp_stack_block_t *)(task_stack->ts_top - TASK_STACK_BLOCK_SIZE);
176 
177     // Check if we already have a block
178     if (stack_block->sb_next !=
179         NULL) { // reset ts_top to beginning of next block
180       task_stack->ts_top = &stack_block->sb_next->sb_block[0];
181     } else { // Alloc new block and link it up
182       kmp_stack_block_t *new_block = (kmp_stack_block_t *)__kmp_thread_calloc(
183           thread, sizeof(kmp_stack_block_t));
184 
185       task_stack->ts_top = &new_block->sb_block[0];
186       stack_block->sb_next = new_block;
187       new_block->sb_prev = stack_block;
188       new_block->sb_next = NULL;
189 
190       KA_TRACE(
191           30,
192           ("__kmp_push_task_stack(): GTID: %d; TASK: %p; Alloc new block: %p\n",
193            gtid, tied_task, new_block));
194     }
195   }
196   KA_TRACE(20, ("__kmp_push_task_stack(exit): GTID: %d; TASK: %p\n", gtid,
197                 tied_task));
198 }
199 
200 //  __kmp_pop_task_stack: Pop the tied task from the task stack.  Don't return
201 //  the task, just check to make sure it matches the ending task passed in.
202 //
203 //  gtid: global thread identifier for the calling thread
204 //  thread: thread info structure containing stack
205 //  tied_task: the task popped off the stack
206 //  ending_task: the task that is ending (should match popped task)
207 static void __kmp_pop_task_stack(kmp_int32 gtid, kmp_info_t *thread,
208                                  kmp_taskdata_t *ending_task) {
209   // GEH - need to consider what to do if tt_threads_data not allocated yet
210   kmp_thread_data_t *thread_data =
211       &thread->th.th_task_team->tt_threads_data[__kmp_tid_from_gtid(gtid)];
212   kmp_task_stack_t *task_stack = &thread_data->td.td_susp_tied_tasks;
213   kmp_taskdata_t *tied_task;
214 
215   if (ending_task->td_flags.team_serial || ending_task->td_flags.tasking_ser) {
216     // Don't pop anything from stack if team or team tasks are serialized
217     return;
218   }
219 
220   KMP_DEBUG_ASSERT(task_stack->ts_top != NULL);
221   KMP_DEBUG_ASSERT(task_stack->ts_entries > 0);
222 
223   KA_TRACE(20, ("__kmp_pop_task_stack(enter): GTID: %d; THREAD: %p\n", gtid,
224                 thread));
225 
226   // fix up ts_top if we need to pop from previous block
227   if (task_stack->ts_entries & TASK_STACK_INDEX_MASK == 0) {
228     kmp_stack_block_t *stack_block = (kmp_stack_block_t *)(task_stack->ts_top);
229 
230     stack_block = stack_block->sb_prev;
231     task_stack->ts_top = &stack_block->sb_block[TASK_STACK_BLOCK_SIZE];
232   }
233 
234   // finish bookkeeping
235   task_stack->ts_top--;
236   task_stack->ts_entries--;
237 
238   tied_task = *(task_stack->ts_top);
239 
240   KMP_DEBUG_ASSERT(tied_task != NULL);
241   KMP_DEBUG_ASSERT(tied_task->td_flags.tasktype == TASK_TIED);
242   KMP_DEBUG_ASSERT(tied_task == ending_task); // If we built the stack correctly
243 
244   KA_TRACE(20, ("__kmp_pop_task_stack(exit): GTID: %d; TASK: %p\n", gtid,
245                 tied_task));
246   return;
247 }
248 #endif /* BUILD_TIED_TASK_STACK */
249 
250 // returns 1 if new task is allowed to execute, 0 otherwise
251 // checks Task Scheduling constraint (if requested) and
252 // mutexinoutset dependencies if any
253 static bool __kmp_task_is_allowed(int gtid, const kmp_int32 is_constrained,
254                                   const kmp_taskdata_t *tasknew,
255                                   const kmp_taskdata_t *taskcurr) {
256   if (is_constrained && (tasknew->td_flags.tiedness == TASK_TIED)) {
257     // Check if the candidate obeys the Task Scheduling Constraints (TSC)
258     // only descendant of all deferred tied tasks can be scheduled, checking
259     // the last one is enough, as it in turn is the descendant of all others
260     kmp_taskdata_t *current = taskcurr->td_last_tied;
261     KMP_DEBUG_ASSERT(current != NULL);
262     // check if the task is not suspended on barrier
263     if (current->td_flags.tasktype == TASK_EXPLICIT ||
264         current->td_taskwait_thread > 0) { // <= 0 on barrier
265       kmp_int32 level = current->td_level;
266       kmp_taskdata_t *parent = tasknew->td_parent;
267       while (parent != current && parent->td_level > level) {
268         // check generation up to the level of the current task
269         parent = parent->td_parent;
270         KMP_DEBUG_ASSERT(parent != NULL);
271       }
272       if (parent != current)
273         return false;
274     }
275   }
276   // Check mutexinoutset dependencies, acquire locks
277   kmp_depnode_t *node = tasknew->td_depnode;
278   if (node && (node->dn.mtx_num_locks > 0)) {
279     for (int i = 0; i < node->dn.mtx_num_locks; ++i) {
280       KMP_DEBUG_ASSERT(node->dn.mtx_locks[i] != NULL);
281       if (__kmp_test_lock(node->dn.mtx_locks[i], gtid))
282         continue;
283       // could not get the lock, release previous locks
284       for (int j = i - 1; j >= 0; --j)
285         __kmp_release_lock(node->dn.mtx_locks[j], gtid);
286       return false;
287     }
288     // negative num_locks means all locks acquired successfully
289     node->dn.mtx_num_locks = -node->dn.mtx_num_locks;
290   }
291   return true;
292 }
293 
294 // __kmp_realloc_task_deque:
295 // Re-allocates a task deque for a particular thread, copies the content from
296 // the old deque and adjusts the necessary data structures relating to the
297 // deque. This operation must be done with the deque_lock being held
298 static void __kmp_realloc_task_deque(kmp_info_t *thread,
299                                      kmp_thread_data_t *thread_data) {
300   kmp_int32 size = TASK_DEQUE_SIZE(thread_data->td);
301   kmp_int32 new_size = 2 * size;
302 
303   KE_TRACE(10, ("__kmp_realloc_task_deque: T#%d reallocating deque[from %d to "
304                 "%d] for thread_data %p\n",
305                 __kmp_gtid_from_thread(thread), size, new_size, thread_data));
306 
307   kmp_taskdata_t **new_deque =
308       (kmp_taskdata_t **)__kmp_allocate(new_size * sizeof(kmp_taskdata_t *));
309 
310   int i, j;
311   for (i = thread_data->td.td_deque_head, j = 0; j < size;
312        i = (i + 1) & TASK_DEQUE_MASK(thread_data->td), j++)
313     new_deque[j] = thread_data->td.td_deque[i];
314 
315   __kmp_free(thread_data->td.td_deque);
316 
317   thread_data->td.td_deque_head = 0;
318   thread_data->td.td_deque_tail = size;
319   thread_data->td.td_deque = new_deque;
320   thread_data->td.td_deque_size = new_size;
321 }
322 
323 //  __kmp_push_task: Add a task to the thread's deque
324 static kmp_int32 __kmp_push_task(kmp_int32 gtid, kmp_task_t *task) {
325   kmp_info_t *thread = __kmp_threads[gtid];
326   kmp_taskdata_t *taskdata = KMP_TASK_TO_TASKDATA(task);
327   kmp_task_team_t *task_team = thread->th.th_task_team;
328   kmp_int32 tid = __kmp_tid_from_gtid(gtid);
329   kmp_thread_data_t *thread_data;
330 
331   KA_TRACE(20,
332            ("__kmp_push_task: T#%d trying to push task %p.\n", gtid, taskdata));
333 
334   if (taskdata->td_flags.tiedness == TASK_UNTIED) {
335     // untied task needs to increment counter so that the task structure is not
336     // freed prematurely
337     kmp_int32 counter = 1 + KMP_ATOMIC_INC(&taskdata->td_untied_count);
338     KMP_DEBUG_USE_VAR(counter);
339     KA_TRACE(
340         20,
341         ("__kmp_push_task: T#%d untied_count (%d) incremented for task %p\n",
342          gtid, counter, taskdata));
343   }
344 
345   // The first check avoids building task_team thread data if serialized
346   if (taskdata->td_flags.task_serial) {
347     KA_TRACE(20, ("__kmp_push_task: T#%d team serialized; returning "
348                   "TASK_NOT_PUSHED for task %p\n",
349                   gtid, taskdata));
350     return TASK_NOT_PUSHED;
351   }
352 
353   // Now that serialized tasks have returned, we can assume that we are not in
354   // immediate exec mode
355   KMP_DEBUG_ASSERT(__kmp_tasking_mode != tskm_immediate_exec);
356   if (!KMP_TASKING_ENABLED(task_team)) {
357     __kmp_enable_tasking(task_team, thread);
358   }
359   KMP_DEBUG_ASSERT(TCR_4(task_team->tt.tt_found_tasks) == TRUE);
360   KMP_DEBUG_ASSERT(TCR_PTR(task_team->tt.tt_threads_data) != NULL);
361 
362   // Find tasking deque specific to encountering thread
363   thread_data = &task_team->tt.tt_threads_data[tid];
364 
365   // No lock needed since only owner can allocate
366   if (thread_data->td.td_deque == NULL) {
367     __kmp_alloc_task_deque(thread, thread_data);
368   }
369 
370   int locked = 0;
371   // Check if deque is full
372   if (TCR_4(thread_data->td.td_deque_ntasks) >=
373       TASK_DEQUE_SIZE(thread_data->td)) {
374     if (__kmp_enable_task_throttling &&
375         __kmp_task_is_allowed(gtid, __kmp_task_stealing_constraint, taskdata,
376                               thread->th.th_current_task)) {
377       KA_TRACE(20, ("__kmp_push_task: T#%d deque is full; returning "
378                     "TASK_NOT_PUSHED for task %p\n",
379                     gtid, taskdata));
380       return TASK_NOT_PUSHED;
381     } else {
382       __kmp_acquire_bootstrap_lock(&thread_data->td.td_deque_lock);
383       locked = 1;
384       // expand deque to push the task which is not allowed to execute
385       __kmp_realloc_task_deque(thread, thread_data);
386     }
387   }
388   // Lock the deque for the task push operation
389   if (!locked) {
390     __kmp_acquire_bootstrap_lock(&thread_data->td.td_deque_lock);
391     // Need to recheck as we can get a proxy task from thread outside of OpenMP
392     if (TCR_4(thread_data->td.td_deque_ntasks) >=
393         TASK_DEQUE_SIZE(thread_data->td)) {
394       if (__kmp_enable_task_throttling &&
395           __kmp_task_is_allowed(gtid, __kmp_task_stealing_constraint, taskdata,
396                                 thread->th.th_current_task)) {
397         __kmp_release_bootstrap_lock(&thread_data->td.td_deque_lock);
398         KA_TRACE(20, ("__kmp_push_task: T#%d deque is full on 2nd check; "
399                       "returning TASK_NOT_PUSHED for task %p\n",
400                       gtid, taskdata));
401         return TASK_NOT_PUSHED;
402       } else {
403         // expand deque to push the task which is not allowed to execute
404         __kmp_realloc_task_deque(thread, thread_data);
405       }
406     }
407   }
408   // Must have room since no thread can add tasks but calling thread
409   KMP_DEBUG_ASSERT(TCR_4(thread_data->td.td_deque_ntasks) <
410                    TASK_DEQUE_SIZE(thread_data->td));
411 
412   thread_data->td.td_deque[thread_data->td.td_deque_tail] =
413       taskdata; // Push taskdata
414   // Wrap index.
415   thread_data->td.td_deque_tail =
416       (thread_data->td.td_deque_tail + 1) & TASK_DEQUE_MASK(thread_data->td);
417   TCW_4(thread_data->td.td_deque_ntasks,
418         TCR_4(thread_data->td.td_deque_ntasks) + 1); // Adjust task count
419 
420   KA_TRACE(20, ("__kmp_push_task: T#%d returning TASK_SUCCESSFULLY_PUSHED: "
421                 "task=%p ntasks=%d head=%u tail=%u\n",
422                 gtid, taskdata, thread_data->td.td_deque_ntasks,
423                 thread_data->td.td_deque_head, thread_data->td.td_deque_tail));
424 
425   __kmp_release_bootstrap_lock(&thread_data->td.td_deque_lock);
426 
427   return TASK_SUCCESSFULLY_PUSHED;
428 }
429 
430 // __kmp_pop_current_task_from_thread: set up current task from called thread
431 // when team ends
432 //
433 // this_thr: thread structure to set current_task in.
434 void __kmp_pop_current_task_from_thread(kmp_info_t *this_thr) {
435   KF_TRACE(10, ("__kmp_pop_current_task_from_thread(enter): T#%d "
436                 "this_thread=%p, curtask=%p, "
437                 "curtask_parent=%p\n",
438                 0, this_thr, this_thr->th.th_current_task,
439                 this_thr->th.th_current_task->td_parent));
440 
441   this_thr->th.th_current_task = this_thr->th.th_current_task->td_parent;
442 
443   KF_TRACE(10, ("__kmp_pop_current_task_from_thread(exit): T#%d "
444                 "this_thread=%p, curtask=%p, "
445                 "curtask_parent=%p\n",
446                 0, this_thr, this_thr->th.th_current_task,
447                 this_thr->th.th_current_task->td_parent));
448 }
449 
450 // __kmp_push_current_task_to_thread: set up current task in called thread for a
451 // new team
452 //
453 // this_thr: thread structure to set up
454 // team: team for implicit task data
455 // tid: thread within team to set up
456 void __kmp_push_current_task_to_thread(kmp_info_t *this_thr, kmp_team_t *team,
457                                        int tid) {
458   // current task of the thread is a parent of the new just created implicit
459   // tasks of new team
460   KF_TRACE(10, ("__kmp_push_current_task_to_thread(enter): T#%d this_thread=%p "
461                 "curtask=%p "
462                 "parent_task=%p\n",
463                 tid, this_thr, this_thr->th.th_current_task,
464                 team->t.t_implicit_task_taskdata[tid].td_parent));
465 
466   KMP_DEBUG_ASSERT(this_thr != NULL);
467 
468   if (tid == 0) {
469     if (this_thr->th.th_current_task != &team->t.t_implicit_task_taskdata[0]) {
470       team->t.t_implicit_task_taskdata[0].td_parent =
471           this_thr->th.th_current_task;
472       this_thr->th.th_current_task = &team->t.t_implicit_task_taskdata[0];
473     }
474   } else {
475     team->t.t_implicit_task_taskdata[tid].td_parent =
476         team->t.t_implicit_task_taskdata[0].td_parent;
477     this_thr->th.th_current_task = &team->t.t_implicit_task_taskdata[tid];
478   }
479 
480   KF_TRACE(10, ("__kmp_push_current_task_to_thread(exit): T#%d this_thread=%p "
481                 "curtask=%p "
482                 "parent_task=%p\n",
483                 tid, this_thr, this_thr->th.th_current_task,
484                 team->t.t_implicit_task_taskdata[tid].td_parent));
485 }
486 
487 // __kmp_task_start: bookkeeping for a task starting execution
488 //
489 // GTID: global thread id of calling thread
490 // task: task starting execution
491 // current_task: task suspending
492 static void __kmp_task_start(kmp_int32 gtid, kmp_task_t *task,
493                              kmp_taskdata_t *current_task) {
494   kmp_taskdata_t *taskdata = KMP_TASK_TO_TASKDATA(task);
495   kmp_info_t *thread = __kmp_threads[gtid];
496 
497   KA_TRACE(10,
498            ("__kmp_task_start(enter): T#%d starting task %p: current_task=%p\n",
499             gtid, taskdata, current_task));
500 
501   KMP_DEBUG_ASSERT(taskdata->td_flags.tasktype == TASK_EXPLICIT);
502 
503   // mark currently executing task as suspended
504   // TODO: GEH - make sure root team implicit task is initialized properly.
505   // KMP_DEBUG_ASSERT( current_task -> td_flags.executing == 1 );
506   current_task->td_flags.executing = 0;
507 
508 // Add task to stack if tied
509 #ifdef BUILD_TIED_TASK_STACK
510   if (taskdata->td_flags.tiedness == TASK_TIED) {
511     __kmp_push_task_stack(gtid, thread, taskdata);
512   }
513 #endif /* BUILD_TIED_TASK_STACK */
514 
515   // mark starting task as executing and as current task
516   thread->th.th_current_task = taskdata;
517 
518   KMP_DEBUG_ASSERT(taskdata->td_flags.started == 0 ||
519                    taskdata->td_flags.tiedness == TASK_UNTIED);
520   KMP_DEBUG_ASSERT(taskdata->td_flags.executing == 0 ||
521                    taskdata->td_flags.tiedness == TASK_UNTIED);
522   taskdata->td_flags.started = 1;
523   taskdata->td_flags.executing = 1;
524   KMP_DEBUG_ASSERT(taskdata->td_flags.complete == 0);
525   KMP_DEBUG_ASSERT(taskdata->td_flags.freed == 0);
526 
527   // GEH TODO: shouldn't we pass some sort of location identifier here?
528   // APT: yes, we will pass location here.
529   // need to store current thread state (in a thread or taskdata structure)
530   // before setting work_state, otherwise wrong state is set after end of task
531 
532   KA_TRACE(10, ("__kmp_task_start(exit): T#%d task=%p\n", gtid, taskdata));
533 
534   return;
535 }
536 
537 #if OMPT_SUPPORT
538 //------------------------------------------------------------------------------
539 // __ompt_task_init:
540 //   Initialize OMPT fields maintained by a task. This will only be called after
541 //   ompt_start_tool, so we already know whether ompt is enabled or not.
542 
543 static inline void __ompt_task_init(kmp_taskdata_t *task, int tid) {
544   // The calls to __ompt_task_init already have the ompt_enabled condition.
545   task->ompt_task_info.task_data.value = 0;
546   task->ompt_task_info.frame.exit_frame = ompt_data_none;
547   task->ompt_task_info.frame.enter_frame = ompt_data_none;
548   task->ompt_task_info.frame.exit_frame_flags = ompt_frame_runtime | ompt_frame_framepointer;
549   task->ompt_task_info.frame.enter_frame_flags = ompt_frame_runtime | ompt_frame_framepointer;
550   task->ompt_task_info.ndeps = 0;
551   task->ompt_task_info.deps = NULL;
552 }
553 
554 // __ompt_task_start:
555 //   Build and trigger task-begin event
556 static inline void __ompt_task_start(kmp_task_t *task,
557                                      kmp_taskdata_t *current_task,
558                                      kmp_int32 gtid) {
559   kmp_taskdata_t *taskdata = KMP_TASK_TO_TASKDATA(task);
560   ompt_task_status_t status = ompt_task_switch;
561   if (__kmp_threads[gtid]->th.ompt_thread_info.ompt_task_yielded) {
562     status = ompt_task_yield;
563     __kmp_threads[gtid]->th.ompt_thread_info.ompt_task_yielded = 0;
564   }
565   /* let OMPT know that we're about to run this task */
566   if (ompt_enabled.ompt_callback_task_schedule) {
567     ompt_callbacks.ompt_callback(ompt_callback_task_schedule)(
568         &(current_task->ompt_task_info.task_data), status,
569         &(taskdata->ompt_task_info.task_data));
570   }
571   taskdata->ompt_task_info.scheduling_parent = current_task;
572 }
573 
574 // __ompt_task_finish:
575 //   Build and trigger final task-schedule event
576 static inline void
577 __ompt_task_finish(kmp_task_t *task, kmp_taskdata_t *resumed_task,
578                    ompt_task_status_t status = ompt_task_complete) {
579   kmp_taskdata_t *taskdata = KMP_TASK_TO_TASKDATA(task);
580   if (__kmp_omp_cancellation && taskdata->td_taskgroup &&
581       taskdata->td_taskgroup->cancel_request == cancel_taskgroup) {
582     status = ompt_task_cancel;
583   }
584 
585   /* let OMPT know that we're returning to the callee task */
586   if (ompt_enabled.ompt_callback_task_schedule) {
587     ompt_callbacks.ompt_callback(ompt_callback_task_schedule)(
588         &(taskdata->ompt_task_info.task_data), status,
589         &((resumed_task ? resumed_task
590                         : (taskdata->ompt_task_info.scheduling_parent
591                                ? taskdata->ompt_task_info.scheduling_parent
592                                : taskdata->td_parent))
593               ->ompt_task_info.task_data));
594   }
595 }
596 #endif
597 
598 template <bool ompt>
599 static void __kmpc_omp_task_begin_if0_template(ident_t *loc_ref, kmp_int32 gtid,
600                                                kmp_task_t *task,
601                                                void *frame_address,
602                                                void *return_address) {
603   kmp_taskdata_t *taskdata = KMP_TASK_TO_TASKDATA(task);
604   kmp_taskdata_t *current_task = __kmp_threads[gtid]->th.th_current_task;
605 
606   KA_TRACE(10, ("__kmpc_omp_task_begin_if0(enter): T#%d loc=%p task=%p "
607                 "current_task=%p\n",
608                 gtid, loc_ref, taskdata, current_task));
609 
610   if (taskdata->td_flags.tiedness == TASK_UNTIED) {
611     // untied task needs to increment counter so that the task structure is not
612     // freed prematurely
613     kmp_int32 counter = 1 + KMP_ATOMIC_INC(&taskdata->td_untied_count);
614     KMP_DEBUG_USE_VAR(counter);
615     KA_TRACE(20, ("__kmpc_omp_task_begin_if0: T#%d untied_count (%d) "
616                   "incremented for task %p\n",
617                   gtid, counter, taskdata));
618   }
619 
620   taskdata->td_flags.task_serial =
621       1; // Execute this task immediately, not deferred.
622   __kmp_task_start(gtid, task, current_task);
623 
624 #if OMPT_SUPPORT
625   if (ompt) {
626     if (current_task->ompt_task_info.frame.enter_frame.ptr == NULL) {
627       current_task->ompt_task_info.frame.enter_frame.ptr =
628           taskdata->ompt_task_info.frame.exit_frame.ptr = frame_address;
629       current_task->ompt_task_info.frame.enter_frame_flags =
630           taskdata->ompt_task_info.frame.exit_frame_flags = ompt_frame_application | ompt_frame_framepointer;
631     }
632     if (ompt_enabled.ompt_callback_task_create) {
633       ompt_task_info_t *parent_info = &(current_task->ompt_task_info);
634       ompt_callbacks.ompt_callback(ompt_callback_task_create)(
635           &(parent_info->task_data), &(parent_info->frame),
636           &(taskdata->ompt_task_info.task_data),
637           ompt_task_explicit | TASK_TYPE_DETAILS_FORMAT(taskdata), 0,
638           return_address);
639     }
640     __ompt_task_start(task, current_task, gtid);
641   }
642 #endif // OMPT_SUPPORT
643 
644   KA_TRACE(10, ("__kmpc_omp_task_begin_if0(exit): T#%d loc=%p task=%p,\n", gtid,
645                 loc_ref, taskdata));
646 }
647 
648 #if OMPT_SUPPORT
649 OMPT_NOINLINE
650 static void __kmpc_omp_task_begin_if0_ompt(ident_t *loc_ref, kmp_int32 gtid,
651                                            kmp_task_t *task,
652                                            void *frame_address,
653                                            void *return_address) {
654   __kmpc_omp_task_begin_if0_template<true>(loc_ref, gtid, task, frame_address,
655                                            return_address);
656 }
657 #endif // OMPT_SUPPORT
658 
659 // __kmpc_omp_task_begin_if0: report that a given serialized task has started
660 // execution
661 //
662 // loc_ref: source location information; points to beginning of task block.
663 // gtid: global thread number.
664 // task: task thunk for the started task.
665 void __kmpc_omp_task_begin_if0(ident_t *loc_ref, kmp_int32 gtid,
666                                kmp_task_t *task) {
667 #if OMPT_SUPPORT
668   if (UNLIKELY(ompt_enabled.enabled)) {
669     OMPT_STORE_RETURN_ADDRESS(gtid);
670     __kmpc_omp_task_begin_if0_ompt(loc_ref, gtid, task,
671                                    OMPT_GET_FRAME_ADDRESS(1),
672                                    OMPT_LOAD_RETURN_ADDRESS(gtid));
673     return;
674   }
675 #endif
676   __kmpc_omp_task_begin_if0_template<false>(loc_ref, gtid, task, NULL, NULL);
677 }
678 
679 #ifdef TASK_UNUSED
680 // __kmpc_omp_task_begin: report that a given task has started execution
681 // NEVER GENERATED BY COMPILER, DEPRECATED!!!
682 void __kmpc_omp_task_begin(ident_t *loc_ref, kmp_int32 gtid, kmp_task_t *task) {
683   kmp_taskdata_t *current_task = __kmp_threads[gtid]->th.th_current_task;
684 
685   KA_TRACE(
686       10,
687       ("__kmpc_omp_task_begin(enter): T#%d loc=%p task=%p current_task=%p\n",
688        gtid, loc_ref, KMP_TASK_TO_TASKDATA(task), current_task));
689 
690   __kmp_task_start(gtid, task, current_task);
691 
692   KA_TRACE(10, ("__kmpc_omp_task_begin(exit): T#%d loc=%p task=%p,\n", gtid,
693                 loc_ref, KMP_TASK_TO_TASKDATA(task)));
694   return;
695 }
696 #endif // TASK_UNUSED
697 
698 // __kmp_free_task: free the current task space and the space for shareds
699 //
700 // gtid: Global thread ID of calling thread
701 // taskdata: task to free
702 // thread: thread data structure of caller
703 static void __kmp_free_task(kmp_int32 gtid, kmp_taskdata_t *taskdata,
704                             kmp_info_t *thread) {
705   KA_TRACE(30, ("__kmp_free_task: T#%d freeing data from task %p\n", gtid,
706                 taskdata));
707 
708   // Check to make sure all flags and counters have the correct values
709   KMP_DEBUG_ASSERT(taskdata->td_flags.tasktype == TASK_EXPLICIT);
710   KMP_DEBUG_ASSERT(taskdata->td_flags.executing == 0);
711   KMP_DEBUG_ASSERT(taskdata->td_flags.complete == 1);
712   KMP_DEBUG_ASSERT(taskdata->td_flags.freed == 0);
713   KMP_DEBUG_ASSERT(taskdata->td_allocated_child_tasks == 0 ||
714                    taskdata->td_flags.task_serial == 1);
715   KMP_DEBUG_ASSERT(taskdata->td_incomplete_child_tasks == 0);
716 
717   taskdata->td_flags.freed = 1;
718   ANNOTATE_HAPPENS_BEFORE(taskdata);
719 // deallocate the taskdata and shared variable blocks associated with this task
720 #if USE_FAST_MEMORY
721   __kmp_fast_free(thread, taskdata);
722 #else /* ! USE_FAST_MEMORY */
723   __kmp_thread_free(thread, taskdata);
724 #endif
725 
726   KA_TRACE(20, ("__kmp_free_task: T#%d freed task %p\n", gtid, taskdata));
727 }
728 
729 // __kmp_free_task_and_ancestors: free the current task and ancestors without
730 // children
731 //
732 // gtid: Global thread ID of calling thread
733 // taskdata: task to free
734 // thread: thread data structure of caller
735 static void __kmp_free_task_and_ancestors(kmp_int32 gtid,
736                                           kmp_taskdata_t *taskdata,
737                                           kmp_info_t *thread) {
738   // Proxy tasks must always be allowed to free their parents
739   // because they can be run in background even in serial mode.
740   kmp_int32 team_serial =
741       (taskdata->td_flags.team_serial || taskdata->td_flags.tasking_ser) &&
742       !taskdata->td_flags.proxy;
743   KMP_DEBUG_ASSERT(taskdata->td_flags.tasktype == TASK_EXPLICIT);
744 
745   kmp_int32 children = KMP_ATOMIC_DEC(&taskdata->td_allocated_child_tasks) - 1;
746   KMP_DEBUG_ASSERT(children >= 0);
747 
748   // Now, go up the ancestor tree to see if any ancestors can now be freed.
749   while (children == 0) {
750     kmp_taskdata_t *parent_taskdata = taskdata->td_parent;
751 
752     KA_TRACE(20, ("__kmp_free_task_and_ancestors(enter): T#%d task %p complete "
753                   "and freeing itself\n",
754                   gtid, taskdata));
755 
756     // --- Deallocate my ancestor task ---
757     __kmp_free_task(gtid, taskdata, thread);
758 
759     taskdata = parent_taskdata;
760 
761     if (team_serial)
762       return;
763     // Stop checking ancestors at implicit task instead of walking up ancestor
764     // tree to avoid premature deallocation of ancestors.
765     if (taskdata->td_flags.tasktype == TASK_IMPLICIT) {
766       if (taskdata->td_dephash) { // do we need to cleanup dephash?
767         int children = KMP_ATOMIC_LD_ACQ(&taskdata->td_incomplete_child_tasks);
768         kmp_tasking_flags_t flags_old = taskdata->td_flags;
769         if (children == 0 && flags_old.complete == 1) {
770           kmp_tasking_flags_t flags_new = flags_old;
771           flags_new.complete = 0;
772           if (KMP_COMPARE_AND_STORE_ACQ32(
773                   RCAST(kmp_int32 *, &taskdata->td_flags),
774                   *RCAST(kmp_int32 *, &flags_old),
775                   *RCAST(kmp_int32 *, &flags_new))) {
776             KA_TRACE(100, ("__kmp_free_task_and_ancestors: T#%d cleans "
777                            "dephash of implicit task %p\n",
778                            gtid, taskdata));
779             // cleanup dephash of finished implicit task
780             __kmp_dephash_free_entries(thread, taskdata->td_dephash);
781           }
782         }
783       }
784       return;
785     }
786     // Predecrement simulated by "- 1" calculation
787     children = KMP_ATOMIC_DEC(&taskdata->td_allocated_child_tasks) - 1;
788     KMP_DEBUG_ASSERT(children >= 0);
789   }
790 
791   KA_TRACE(
792       20, ("__kmp_free_task_and_ancestors(exit): T#%d task %p has %d children; "
793            "not freeing it yet\n",
794            gtid, taskdata, children));
795 }
796 
797 // __kmp_task_finish: bookkeeping to do when a task finishes execution
798 //
799 // gtid: global thread ID for calling thread
800 // task: task to be finished
801 // resumed_task: task to be resumed.  (may be NULL if task is serialized)
802 template <bool ompt>
803 static void __kmp_task_finish(kmp_int32 gtid, kmp_task_t *task,
804                               kmp_taskdata_t *resumed_task) {
805   kmp_taskdata_t *taskdata = KMP_TASK_TO_TASKDATA(task);
806   kmp_info_t *thread = __kmp_threads[gtid];
807   kmp_task_team_t *task_team =
808       thread->th.th_task_team; // might be NULL for serial teams...
809   kmp_int32 children = 0;
810 
811   KA_TRACE(10, ("__kmp_task_finish(enter): T#%d finishing task %p and resuming "
812                 "task %p\n",
813                 gtid, taskdata, resumed_task));
814 
815   KMP_DEBUG_ASSERT(taskdata->td_flags.tasktype == TASK_EXPLICIT);
816 
817 // Pop task from stack if tied
818 #ifdef BUILD_TIED_TASK_STACK
819   if (taskdata->td_flags.tiedness == TASK_TIED) {
820     __kmp_pop_task_stack(gtid, thread, taskdata);
821   }
822 #endif /* BUILD_TIED_TASK_STACK */
823 
824   if (taskdata->td_flags.tiedness == TASK_UNTIED) {
825     // untied task needs to check the counter so that the task structure is not
826     // freed prematurely
827     kmp_int32 counter = KMP_ATOMIC_DEC(&taskdata->td_untied_count) - 1;
828     KA_TRACE(
829         20,
830         ("__kmp_task_finish: T#%d untied_count (%d) decremented for task %p\n",
831          gtid, counter, taskdata));
832     if (counter > 0) {
833       // untied task is not done, to be continued possibly by other thread, do
834       // not free it now
835       if (resumed_task == NULL) {
836         KMP_DEBUG_ASSERT(taskdata->td_flags.task_serial);
837         resumed_task = taskdata->td_parent; // In a serialized task, the resumed
838         // task is the parent
839       }
840       thread->th.th_current_task = resumed_task; // restore current_task
841       resumed_task->td_flags.executing = 1; // resume previous task
842       KA_TRACE(10, ("__kmp_task_finish(exit): T#%d partially done task %p, "
843                     "resuming task %p\n",
844                     gtid, taskdata, resumed_task));
845       return;
846     }
847   }
848 #if OMPT_SUPPORT
849   if (ompt)
850     __ompt_task_finish(task, resumed_task);
851 #endif
852 
853   // Check mutexinoutset dependencies, release locks
854   kmp_depnode_t *node = taskdata->td_depnode;
855   if (node && (node->dn.mtx_num_locks < 0)) {
856     // negative num_locks means all locks were acquired
857     node->dn.mtx_num_locks = -node->dn.mtx_num_locks;
858     for (int i = node->dn.mtx_num_locks - 1; i >= 0; --i) {
859       KMP_DEBUG_ASSERT(node->dn.mtx_locks[i] != NULL);
860       __kmp_release_lock(node->dn.mtx_locks[i], gtid);
861     }
862   }
863 
864   KMP_DEBUG_ASSERT(taskdata->td_flags.complete == 0);
865   bool detach = false;
866   if (taskdata->td_flags.detachable == TASK_DETACHABLE) {
867     if (taskdata->td_allow_completion_event.type ==
868         KMP_EVENT_ALLOW_COMPLETION) {
869       // event hasn't been fulfilled yet. Try to detach task.
870       __kmp_acquire_tas_lock(&taskdata->td_allow_completion_event.lock, gtid);
871       if (taskdata->td_allow_completion_event.type ==
872           KMP_EVENT_ALLOW_COMPLETION) {
873         taskdata->td_flags.proxy = TASK_PROXY; // proxify!
874         detach = true;
875       }
876       __kmp_release_tas_lock(&taskdata->td_allow_completion_event.lock, gtid);
877     }
878   }
879   KMP_DEBUG_ASSERT(taskdata->td_flags.started == 1);
880   KMP_DEBUG_ASSERT(taskdata->td_flags.freed == 0);
881 
882   if (!detach) {
883     taskdata->td_flags.complete = 1; // mark the task as completed
884 
885     // Only need to keep track of count if team parallel and tasking not
886     // serialized
887     if (!(taskdata->td_flags.team_serial || taskdata->td_flags.tasking_ser)) {
888       // Predecrement simulated by "- 1" calculation
889       children =
890           KMP_ATOMIC_DEC(&taskdata->td_parent->td_incomplete_child_tasks) - 1;
891       KMP_DEBUG_ASSERT(children >= 0);
892       if (taskdata->td_taskgroup)
893         KMP_ATOMIC_DEC(&taskdata->td_taskgroup->count);
894       __kmp_release_deps(gtid, taskdata);
895     } else if (task_team && task_team->tt.tt_found_proxy_tasks) {
896       // if we found proxy tasks there could exist a dependency chain
897       // with the proxy task as origin
898       __kmp_release_deps(gtid, taskdata);
899     }
900   }
901 
902   // td_flags.executing must be marked as 0 after __kmp_release_deps has been
903   // called. Othertwise, if a task is executed immediately from the release_deps
904   // code, the flag will be reset to 1 again by this same function
905   KMP_DEBUG_ASSERT(taskdata->td_flags.executing == 1);
906   taskdata->td_flags.executing = 0; // suspend the finishing task
907 
908   KA_TRACE(
909       20, ("__kmp_task_finish: T#%d finished task %p, %d incomplete children\n",
910            gtid, taskdata, children));
911 
912   /* If the tasks' destructor thunk flag has been set, we need to invoke the
913      destructor thunk that has been generated by the compiler. The code is
914      placed here, since at this point other tasks might have been released
915      hence overlapping the destructor invokations with some other work in the
916      released tasks.  The OpenMP spec is not specific on when the destructors
917      are invoked, so we should be free to choose. */
918   if (taskdata->td_flags.destructors_thunk) {
919     kmp_routine_entry_t destr_thunk = task->data1.destructors;
920     KMP_ASSERT(destr_thunk);
921     destr_thunk(gtid, task);
922   }
923 
924   // bookkeeping for resuming task:
925   // GEH - note tasking_ser => task_serial
926   KMP_DEBUG_ASSERT(
927       (taskdata->td_flags.tasking_ser || taskdata->td_flags.task_serial) ==
928       taskdata->td_flags.task_serial);
929   if (taskdata->td_flags.task_serial) {
930     if (resumed_task == NULL) {
931       resumed_task = taskdata->td_parent; // In a serialized task, the resumed
932       // task is the parent
933     }
934   } else {
935     KMP_DEBUG_ASSERT(resumed_task !=
936                      NULL); // verify that resumed task is passed as argument
937   }
938 
939   // Free this task and then ancestor tasks if they have no children.
940   // Restore th_current_task first as suggested by John:
941   // johnmc: if an asynchronous inquiry peers into the runtime system
942   // it doesn't see the freed task as the current task.
943   thread->th.th_current_task = resumed_task;
944   if (!detach)
945     __kmp_free_task_and_ancestors(gtid, taskdata, thread);
946 
947   // TODO: GEH - make sure root team implicit task is initialized properly.
948   // KMP_DEBUG_ASSERT( resumed_task->td_flags.executing == 0 );
949   resumed_task->td_flags.executing = 1; // resume previous task
950 
951   KA_TRACE(
952       10, ("__kmp_task_finish(exit): T#%d finished task %p, resuming task %p\n",
953            gtid, taskdata, resumed_task));
954 
955   return;
956 }
957 
958 template <bool ompt>
959 static void __kmpc_omp_task_complete_if0_template(ident_t *loc_ref,
960                                                   kmp_int32 gtid,
961                                                   kmp_task_t *task) {
962   KA_TRACE(10, ("__kmpc_omp_task_complete_if0(enter): T#%d loc=%p task=%p\n",
963                 gtid, loc_ref, KMP_TASK_TO_TASKDATA(task)));
964   // this routine will provide task to resume
965   __kmp_task_finish<ompt>(gtid, task, NULL);
966 
967   KA_TRACE(10, ("__kmpc_omp_task_complete_if0(exit): T#%d loc=%p task=%p\n",
968                 gtid, loc_ref, KMP_TASK_TO_TASKDATA(task)));
969 
970 #if OMPT_SUPPORT
971   if (ompt) {
972     ompt_frame_t *ompt_frame;
973     __ompt_get_task_info_internal(0, NULL, NULL, &ompt_frame, NULL, NULL);
974     ompt_frame->enter_frame = ompt_data_none;
975     ompt_frame->enter_frame_flags = ompt_frame_runtime | ompt_frame_framepointer;
976   }
977 #endif
978 
979   return;
980 }
981 
982 #if OMPT_SUPPORT
983 OMPT_NOINLINE
984 void __kmpc_omp_task_complete_if0_ompt(ident_t *loc_ref, kmp_int32 gtid,
985                                        kmp_task_t *task) {
986   __kmpc_omp_task_complete_if0_template<true>(loc_ref, gtid, task);
987 }
988 #endif // OMPT_SUPPORT
989 
990 // __kmpc_omp_task_complete_if0: report that a task has completed execution
991 //
992 // loc_ref: source location information; points to end of task block.
993 // gtid: global thread number.
994 // task: task thunk for the completed task.
995 void __kmpc_omp_task_complete_if0(ident_t *loc_ref, kmp_int32 gtid,
996                                   kmp_task_t *task) {
997 #if OMPT_SUPPORT
998   if (UNLIKELY(ompt_enabled.enabled)) {
999     __kmpc_omp_task_complete_if0_ompt(loc_ref, gtid, task);
1000     return;
1001   }
1002 #endif
1003   __kmpc_omp_task_complete_if0_template<false>(loc_ref, gtid, task);
1004 }
1005 
1006 #ifdef TASK_UNUSED
1007 // __kmpc_omp_task_complete: report that a task has completed execution
1008 // NEVER GENERATED BY COMPILER, DEPRECATED!!!
1009 void __kmpc_omp_task_complete(ident_t *loc_ref, kmp_int32 gtid,
1010                               kmp_task_t *task) {
1011   KA_TRACE(10, ("__kmpc_omp_task_complete(enter): T#%d loc=%p task=%p\n", gtid,
1012                 loc_ref, KMP_TASK_TO_TASKDATA(task)));
1013 
1014   __kmp_task_finish<false>(gtid, task,
1015                            NULL); // Not sure how to find task to resume
1016 
1017   KA_TRACE(10, ("__kmpc_omp_task_complete(exit): T#%d loc=%p task=%p\n", gtid,
1018                 loc_ref, KMP_TASK_TO_TASKDATA(task)));
1019   return;
1020 }
1021 #endif // TASK_UNUSED
1022 
1023 // __kmp_init_implicit_task: Initialize the appropriate fields in the implicit
1024 // task for a given thread
1025 //
1026 // loc_ref:  reference to source location of parallel region
1027 // this_thr:  thread data structure corresponding to implicit task
1028 // team: team for this_thr
1029 // tid: thread id of given thread within team
1030 // set_curr_task: TRUE if need to push current task to thread
1031 // NOTE: Routine does not set up the implicit task ICVS.  This is assumed to
1032 // have already been done elsewhere.
1033 // TODO: Get better loc_ref.  Value passed in may be NULL
1034 void __kmp_init_implicit_task(ident_t *loc_ref, kmp_info_t *this_thr,
1035                               kmp_team_t *team, int tid, int set_curr_task) {
1036   kmp_taskdata_t *task = &team->t.t_implicit_task_taskdata[tid];
1037 
1038   KF_TRACE(
1039       10,
1040       ("__kmp_init_implicit_task(enter): T#:%d team=%p task=%p, reinit=%s\n",
1041        tid, team, task, set_curr_task ? "TRUE" : "FALSE"));
1042 
1043   task->td_task_id = KMP_GEN_TASK_ID();
1044   task->td_team = team;
1045   //    task->td_parent   = NULL;  // fix for CQ230101 (broken parent task info
1046   //    in debugger)
1047   task->td_ident = loc_ref;
1048   task->td_taskwait_ident = NULL;
1049   task->td_taskwait_counter = 0;
1050   task->td_taskwait_thread = 0;
1051 
1052   task->td_flags.tiedness = TASK_TIED;
1053   task->td_flags.tasktype = TASK_IMPLICIT;
1054   task->td_flags.proxy = TASK_FULL;
1055 
1056   // All implicit tasks are executed immediately, not deferred
1057   task->td_flags.task_serial = 1;
1058   task->td_flags.tasking_ser = (__kmp_tasking_mode == tskm_immediate_exec);
1059   task->td_flags.team_serial = (team->t.t_serialized) ? 1 : 0;
1060 
1061   task->td_flags.started = 1;
1062   task->td_flags.executing = 1;
1063   task->td_flags.complete = 0;
1064   task->td_flags.freed = 0;
1065 
1066   task->td_depnode = NULL;
1067   task->td_last_tied = task;
1068   task->td_allow_completion_event.type = KMP_EVENT_UNINITIALIZED;
1069 
1070   if (set_curr_task) { // only do this init first time thread is created
1071     KMP_ATOMIC_ST_REL(&task->td_incomplete_child_tasks, 0);
1072     // Not used: don't need to deallocate implicit task
1073     KMP_ATOMIC_ST_REL(&task->td_allocated_child_tasks, 0);
1074     task->td_taskgroup = NULL; // An implicit task does not have taskgroup
1075     task->td_dephash = NULL;
1076     __kmp_push_current_task_to_thread(this_thr, team, tid);
1077   } else {
1078     KMP_DEBUG_ASSERT(task->td_incomplete_child_tasks == 0);
1079     KMP_DEBUG_ASSERT(task->td_allocated_child_tasks == 0);
1080   }
1081 
1082 #if OMPT_SUPPORT
1083   if (UNLIKELY(ompt_enabled.enabled))
1084     __ompt_task_init(task, tid);
1085 #endif
1086 
1087   KF_TRACE(10, ("__kmp_init_implicit_task(exit): T#:%d team=%p task=%p\n", tid,
1088                 team, task));
1089 }
1090 
1091 // __kmp_finish_implicit_task: Release resources associated to implicit tasks
1092 // at the end of parallel regions. Some resources are kept for reuse in the next
1093 // parallel region.
1094 //
1095 // thread:  thread data structure corresponding to implicit task
1096 void __kmp_finish_implicit_task(kmp_info_t *thread) {
1097   kmp_taskdata_t *task = thread->th.th_current_task;
1098   if (task->td_dephash) {
1099     int children;
1100     task->td_flags.complete = 1;
1101     children = KMP_ATOMIC_LD_ACQ(&task->td_incomplete_child_tasks);
1102     kmp_tasking_flags_t flags_old = task->td_flags;
1103     if (children == 0 && flags_old.complete == 1) {
1104       kmp_tasking_flags_t flags_new = flags_old;
1105       flags_new.complete = 0;
1106       if (KMP_COMPARE_AND_STORE_ACQ32(RCAST(kmp_int32 *, &task->td_flags),
1107                                       *RCAST(kmp_int32 *, &flags_old),
1108                                       *RCAST(kmp_int32 *, &flags_new))) {
1109         KA_TRACE(100, ("__kmp_finish_implicit_task: T#%d cleans "
1110                        "dephash of implicit task %p\n",
1111                        thread->th.th_info.ds.ds_gtid, task));
1112         __kmp_dephash_free_entries(thread, task->td_dephash);
1113       }
1114     }
1115   }
1116 }
1117 
1118 // __kmp_free_implicit_task: Release resources associated to implicit tasks
1119 // when these are destroyed regions
1120 //
1121 // thread:  thread data structure corresponding to implicit task
1122 void __kmp_free_implicit_task(kmp_info_t *thread) {
1123   kmp_taskdata_t *task = thread->th.th_current_task;
1124   if (task && task->td_dephash) {
1125     __kmp_dephash_free(thread, task->td_dephash);
1126     task->td_dephash = NULL;
1127   }
1128 }
1129 
1130 // Round up a size to a power of two specified by val: Used to insert padding
1131 // between structures co-allocated using a single malloc() call
1132 static size_t __kmp_round_up_to_val(size_t size, size_t val) {
1133   if (size & (val - 1)) {
1134     size &= ~(val - 1);
1135     if (size <= KMP_SIZE_T_MAX - val) {
1136       size += val; // Round up if there is no overflow.
1137     }
1138   }
1139   return size;
1140 } // __kmp_round_up_to_va
1141 
1142 // __kmp_task_alloc: Allocate the taskdata and task data structures for a task
1143 //
1144 // loc_ref: source location information
1145 // gtid: global thread number.
1146 // flags: include tiedness & task type (explicit vs. implicit) of the ''new''
1147 // task encountered. Converted from kmp_int32 to kmp_tasking_flags_t in routine.
1148 // sizeof_kmp_task_t:  Size in bytes of kmp_task_t data structure including
1149 // private vars accessed in task.
1150 // sizeof_shareds:  Size in bytes of array of pointers to shared vars accessed
1151 // in task.
1152 // task_entry: Pointer to task code entry point generated by compiler.
1153 // returns: a pointer to the allocated kmp_task_t structure (task).
1154 kmp_task_t *__kmp_task_alloc(ident_t *loc_ref, kmp_int32 gtid,
1155                              kmp_tasking_flags_t *flags,
1156                              size_t sizeof_kmp_task_t, size_t sizeof_shareds,
1157                              kmp_routine_entry_t task_entry) {
1158   kmp_task_t *task;
1159   kmp_taskdata_t *taskdata;
1160   kmp_info_t *thread = __kmp_threads[gtid];
1161   kmp_team_t *team = thread->th.th_team;
1162   kmp_taskdata_t *parent_task = thread->th.th_current_task;
1163   size_t shareds_offset;
1164 
1165   if (!TCR_4(__kmp_init_middle))
1166     __kmp_middle_initialize();
1167 
1168   KA_TRACE(10, ("__kmp_task_alloc(enter): T#%d loc=%p, flags=(0x%x) "
1169                 "sizeof_task=%ld sizeof_shared=%ld entry=%p\n",
1170                 gtid, loc_ref, *((kmp_int32 *)flags), sizeof_kmp_task_t,
1171                 sizeof_shareds, task_entry));
1172 
1173   if (parent_task->td_flags.final) {
1174     if (flags->merged_if0) {
1175     }
1176     flags->final = 1;
1177   }
1178   if (flags->tiedness == TASK_UNTIED && !team->t.t_serialized) {
1179     // Untied task encountered causes the TSC algorithm to check entire deque of
1180     // the victim thread. If no untied task encountered, then checking the head
1181     // of the deque should be enough.
1182     KMP_CHECK_UPDATE(thread->th.th_task_team->tt.tt_untied_task_encountered, 1);
1183   }
1184 
1185   // Detachable tasks are not proxy tasks yet but could be in the future. Doing
1186   // the tasking setup
1187   // when that happens is too late.
1188   if (flags->proxy == TASK_PROXY || flags->detachable == TASK_DETACHABLE) {
1189     if (flags->proxy == TASK_PROXY) {
1190       flags->tiedness = TASK_UNTIED;
1191       flags->merged_if0 = 1;
1192     }
1193     /* are we running in a sequential parallel or tskm_immediate_exec... we need
1194        tasking support enabled */
1195     if ((thread->th.th_task_team) == NULL) {
1196       /* This should only happen if the team is serialized
1197           setup a task team and propagate it to the thread */
1198       KMP_DEBUG_ASSERT(team->t.t_serialized);
1199       KA_TRACE(30,
1200                ("T#%d creating task team in __kmp_task_alloc for proxy task\n",
1201                 gtid));
1202       __kmp_task_team_setup(
1203           thread, team,
1204           1); // 1 indicates setup the current team regardless of nthreads
1205       thread->th.th_task_team = team->t.t_task_team[thread->th.th_task_state];
1206     }
1207     kmp_task_team_t *task_team = thread->th.th_task_team;
1208 
1209     /* tasking must be enabled now as the task might not be pushed */
1210     if (!KMP_TASKING_ENABLED(task_team)) {
1211       KA_TRACE(
1212           30,
1213           ("T#%d enabling tasking in __kmp_task_alloc for proxy task\n", gtid));
1214       __kmp_enable_tasking(task_team, thread);
1215       kmp_int32 tid = thread->th.th_info.ds.ds_tid;
1216       kmp_thread_data_t *thread_data = &task_team->tt.tt_threads_data[tid];
1217       // No lock needed since only owner can allocate
1218       if (thread_data->td.td_deque == NULL) {
1219         __kmp_alloc_task_deque(thread, thread_data);
1220       }
1221     }
1222 
1223     if (task_team->tt.tt_found_proxy_tasks == FALSE)
1224       TCW_4(task_team->tt.tt_found_proxy_tasks, TRUE);
1225   }
1226 
1227   // Calculate shared structure offset including padding after kmp_task_t struct
1228   // to align pointers in shared struct
1229   shareds_offset = sizeof(kmp_taskdata_t) + sizeof_kmp_task_t;
1230   shareds_offset = __kmp_round_up_to_val(shareds_offset, sizeof(void *));
1231 
1232   // Allocate a kmp_taskdata_t block and a kmp_task_t block.
1233   KA_TRACE(30, ("__kmp_task_alloc: T#%d First malloc size: %ld\n", gtid,
1234                 shareds_offset));
1235   KA_TRACE(30, ("__kmp_task_alloc: T#%d Second malloc size: %ld\n", gtid,
1236                 sizeof_shareds));
1237 
1238 // Avoid double allocation here by combining shareds with taskdata
1239 #if USE_FAST_MEMORY
1240   taskdata = (kmp_taskdata_t *)__kmp_fast_allocate(thread, shareds_offset +
1241                                                                sizeof_shareds);
1242 #else /* ! USE_FAST_MEMORY */
1243   taskdata = (kmp_taskdata_t *)__kmp_thread_malloc(thread, shareds_offset +
1244                                                                sizeof_shareds);
1245 #endif /* USE_FAST_MEMORY */
1246   ANNOTATE_HAPPENS_AFTER(taskdata);
1247 
1248   task = KMP_TASKDATA_TO_TASK(taskdata);
1249 
1250 // Make sure task & taskdata are aligned appropriately
1251 #if KMP_ARCH_X86 || KMP_ARCH_PPC64 || !KMP_HAVE_QUAD
1252   KMP_DEBUG_ASSERT((((kmp_uintptr_t)taskdata) & (sizeof(double) - 1)) == 0);
1253   KMP_DEBUG_ASSERT((((kmp_uintptr_t)task) & (sizeof(double) - 1)) == 0);
1254 #else
1255   KMP_DEBUG_ASSERT((((kmp_uintptr_t)taskdata) & (sizeof(_Quad) - 1)) == 0);
1256   KMP_DEBUG_ASSERT((((kmp_uintptr_t)task) & (sizeof(_Quad) - 1)) == 0);
1257 #endif
1258   if (sizeof_shareds > 0) {
1259     // Avoid double allocation here by combining shareds with taskdata
1260     task->shareds = &((char *)taskdata)[shareds_offset];
1261     // Make sure shareds struct is aligned to pointer size
1262     KMP_DEBUG_ASSERT((((kmp_uintptr_t)task->shareds) & (sizeof(void *) - 1)) ==
1263                      0);
1264   } else {
1265     task->shareds = NULL;
1266   }
1267   task->routine = task_entry;
1268   task->part_id = 0; // AC: Always start with 0 part id
1269 
1270   taskdata->td_task_id = KMP_GEN_TASK_ID();
1271   taskdata->td_team = team;
1272   taskdata->td_alloc_thread = thread;
1273   taskdata->td_parent = parent_task;
1274   taskdata->td_level = parent_task->td_level + 1; // increment nesting level
1275   KMP_ATOMIC_ST_RLX(&taskdata->td_untied_count, 0);
1276   taskdata->td_ident = loc_ref;
1277   taskdata->td_taskwait_ident = NULL;
1278   taskdata->td_taskwait_counter = 0;
1279   taskdata->td_taskwait_thread = 0;
1280   KMP_DEBUG_ASSERT(taskdata->td_parent != NULL);
1281   // avoid copying icvs for proxy tasks
1282   if (flags->proxy == TASK_FULL)
1283     copy_icvs(&taskdata->td_icvs, &taskdata->td_parent->td_icvs);
1284 
1285   taskdata->td_flags.tiedness = flags->tiedness;
1286   taskdata->td_flags.final = flags->final;
1287   taskdata->td_flags.merged_if0 = flags->merged_if0;
1288   taskdata->td_flags.destructors_thunk = flags->destructors_thunk;
1289   taskdata->td_flags.proxy = flags->proxy;
1290   taskdata->td_flags.detachable = flags->detachable;
1291   taskdata->td_task_team = thread->th.th_task_team;
1292   taskdata->td_size_alloc = shareds_offset + sizeof_shareds;
1293   taskdata->td_flags.tasktype = TASK_EXPLICIT;
1294 
1295   // GEH - TODO: fix this to copy parent task's value of tasking_ser flag
1296   taskdata->td_flags.tasking_ser = (__kmp_tasking_mode == tskm_immediate_exec);
1297 
1298   // GEH - TODO: fix this to copy parent task's value of team_serial flag
1299   taskdata->td_flags.team_serial = (team->t.t_serialized) ? 1 : 0;
1300 
1301   // GEH - Note we serialize the task if the team is serialized to make sure
1302   // implicit parallel region tasks are not left until program termination to
1303   // execute. Also, it helps locality to execute immediately.
1304 
1305   taskdata->td_flags.task_serial =
1306       (parent_task->td_flags.final || taskdata->td_flags.team_serial ||
1307        taskdata->td_flags.tasking_ser);
1308 
1309   taskdata->td_flags.started = 0;
1310   taskdata->td_flags.executing = 0;
1311   taskdata->td_flags.complete = 0;
1312   taskdata->td_flags.freed = 0;
1313 
1314   taskdata->td_flags.native = flags->native;
1315 
1316   KMP_ATOMIC_ST_RLX(&taskdata->td_incomplete_child_tasks, 0);
1317   // start at one because counts current task and children
1318   KMP_ATOMIC_ST_RLX(&taskdata->td_allocated_child_tasks, 1);
1319   taskdata->td_taskgroup =
1320       parent_task->td_taskgroup; // task inherits taskgroup from the parent task
1321   taskdata->td_dephash = NULL;
1322   taskdata->td_depnode = NULL;
1323   if (flags->tiedness == TASK_UNTIED)
1324     taskdata->td_last_tied = NULL; // will be set when the task is scheduled
1325   else
1326     taskdata->td_last_tied = taskdata;
1327   taskdata->td_allow_completion_event.type = KMP_EVENT_UNINITIALIZED;
1328 #if OMPT_SUPPORT
1329   if (UNLIKELY(ompt_enabled.enabled))
1330     __ompt_task_init(taskdata, gtid);
1331 #endif
1332 // Only need to keep track of child task counts if team parallel and tasking not
1333 // serialized or if it is a proxy or detachable task
1334   if (flags->proxy == TASK_PROXY ||
1335       flags->detachable == TASK_DETACHABLE ||
1336       !(taskdata->td_flags.team_serial || taskdata->td_flags.tasking_ser))
1337   {
1338     KMP_ATOMIC_INC(&parent_task->td_incomplete_child_tasks);
1339     if (parent_task->td_taskgroup)
1340       KMP_ATOMIC_INC(&parent_task->td_taskgroup->count);
1341     // Only need to keep track of allocated child tasks for explicit tasks since
1342     // implicit not deallocated
1343     if (taskdata->td_parent->td_flags.tasktype == TASK_EXPLICIT) {
1344       KMP_ATOMIC_INC(&taskdata->td_parent->td_allocated_child_tasks);
1345     }
1346   }
1347 
1348   KA_TRACE(20, ("__kmp_task_alloc(exit): T#%d created task %p parent=%p\n",
1349                 gtid, taskdata, taskdata->td_parent));
1350   ANNOTATE_HAPPENS_BEFORE(task);
1351 
1352   return task;
1353 }
1354 
1355 kmp_task_t *__kmpc_omp_task_alloc(ident_t *loc_ref, kmp_int32 gtid,
1356                                   kmp_int32 flags, size_t sizeof_kmp_task_t,
1357                                   size_t sizeof_shareds,
1358                                   kmp_routine_entry_t task_entry) {
1359   kmp_task_t *retval;
1360   kmp_tasking_flags_t *input_flags = (kmp_tasking_flags_t *)&flags;
1361 
1362   input_flags->native = FALSE;
1363 // __kmp_task_alloc() sets up all other runtime flags
1364 
1365   KA_TRACE(10, ("__kmpc_omp_task_alloc(enter): T#%d loc=%p, flags=(%s %s %s) "
1366                 "sizeof_task=%ld sizeof_shared=%ld entry=%p\n",
1367                 gtid, loc_ref, input_flags->tiedness ? "tied  " : "untied",
1368                 input_flags->proxy ? "proxy" : "",
1369                 input_flags->detachable ? "detachable" : "", sizeof_kmp_task_t,
1370                 sizeof_shareds, task_entry));
1371 
1372   retval = __kmp_task_alloc(loc_ref, gtid, input_flags, sizeof_kmp_task_t,
1373                             sizeof_shareds, task_entry);
1374 
1375   KA_TRACE(20, ("__kmpc_omp_task_alloc(exit): T#%d retval %p\n", gtid, retval));
1376 
1377   return retval;
1378 }
1379 
1380 kmp_task_t *__kmpc_omp_target_task_alloc(ident_t *loc_ref, kmp_int32 gtid,
1381                                          kmp_int32 flags,
1382                                          size_t sizeof_kmp_task_t,
1383                                          size_t sizeof_shareds,
1384                                          kmp_routine_entry_t task_entry,
1385                                          kmp_int64 device_id) {
1386   return __kmpc_omp_task_alloc(loc_ref, gtid, flags, sizeof_kmp_task_t,
1387                                sizeof_shareds, task_entry);
1388 }
1389 
1390 /*!
1391 @ingroup TASKING
1392 @param loc_ref location of the original task directive
1393 @param gtid Global Thread ID of encountering thread
1394 @param new_task task thunk allocated by __kmpc_omp_task_alloc() for the ''new
1395 task''
1396 @param naffins Number of affinity items
1397 @param affin_list List of affinity items
1398 @return Returns non-zero if registering affinity information was not successful.
1399  Returns 0 if registration was successful
1400 This entry registers the affinity information attached to a task with the task
1401 thunk structure kmp_taskdata_t.
1402 */
1403 kmp_int32
1404 __kmpc_omp_reg_task_with_affinity(ident_t *loc_ref, kmp_int32 gtid,
1405                                   kmp_task_t *new_task, kmp_int32 naffins,
1406                                   kmp_task_affinity_info_t *affin_list) {
1407   return 0;
1408 }
1409 
1410 //  __kmp_invoke_task: invoke the specified task
1411 //
1412 // gtid: global thread ID of caller
1413 // task: the task to invoke
1414 // current_task: the task to resume after task invokation
1415 static void __kmp_invoke_task(kmp_int32 gtid, kmp_task_t *task,
1416                               kmp_taskdata_t *current_task) {
1417   kmp_taskdata_t *taskdata = KMP_TASK_TO_TASKDATA(task);
1418   kmp_info_t *thread;
1419   int discard = 0 /* false */;
1420   KA_TRACE(
1421       30, ("__kmp_invoke_task(enter): T#%d invoking task %p, current_task=%p\n",
1422            gtid, taskdata, current_task));
1423   KMP_DEBUG_ASSERT(task);
1424   if (taskdata->td_flags.proxy == TASK_PROXY &&
1425       taskdata->td_flags.complete == 1) {
1426     // This is a proxy task that was already completed but it needs to run
1427     // its bottom-half finish
1428     KA_TRACE(
1429         30,
1430         ("__kmp_invoke_task: T#%d running bottom finish for proxy task %p\n",
1431          gtid, taskdata));
1432 
1433     __kmp_bottom_half_finish_proxy(gtid, task);
1434 
1435     KA_TRACE(30, ("__kmp_invoke_task(exit): T#%d completed bottom finish for "
1436                   "proxy task %p, resuming task %p\n",
1437                   gtid, taskdata, current_task));
1438 
1439     return;
1440   }
1441 
1442 #if OMPT_SUPPORT
1443   // For untied tasks, the first task executed only calls __kmpc_omp_task and
1444   // does not execute code.
1445   ompt_thread_info_t oldInfo;
1446   if (UNLIKELY(ompt_enabled.enabled)) {
1447     // Store the threads states and restore them after the task
1448     thread = __kmp_threads[gtid];
1449     oldInfo = thread->th.ompt_thread_info;
1450     thread->th.ompt_thread_info.wait_id = 0;
1451     thread->th.ompt_thread_info.state = (thread->th.th_team_serialized)
1452                                             ? ompt_state_work_serial
1453                                             : ompt_state_work_parallel;
1454     taskdata->ompt_task_info.frame.exit_frame.ptr = OMPT_GET_FRAME_ADDRESS(0);
1455   }
1456 #endif
1457 
1458   // Proxy tasks are not handled by the runtime
1459   if (taskdata->td_flags.proxy != TASK_PROXY) {
1460     ANNOTATE_HAPPENS_AFTER(task);
1461     __kmp_task_start(gtid, task, current_task); // OMPT only if not discarded
1462   }
1463 
1464   // TODO: cancel tasks if the parallel region has also been cancelled
1465   // TODO: check if this sequence can be hoisted above __kmp_task_start
1466   // if cancellation has been enabled for this run ...
1467   if (__kmp_omp_cancellation) {
1468     thread = __kmp_threads[gtid];
1469     kmp_team_t *this_team = thread->th.th_team;
1470     kmp_taskgroup_t *taskgroup = taskdata->td_taskgroup;
1471     if ((taskgroup && taskgroup->cancel_request) ||
1472         (this_team->t.t_cancel_request == cancel_parallel)) {
1473 #if OMPT_SUPPORT && OMPT_OPTIONAL
1474       ompt_data_t *task_data;
1475       if (UNLIKELY(ompt_enabled.ompt_callback_cancel)) {
1476         __ompt_get_task_info_internal(0, NULL, &task_data, NULL, NULL, NULL);
1477         ompt_callbacks.ompt_callback(ompt_callback_cancel)(
1478             task_data,
1479             ((taskgroup && taskgroup->cancel_request) ? ompt_cancel_taskgroup
1480                                                       : ompt_cancel_parallel) |
1481                 ompt_cancel_discarded_task,
1482             NULL);
1483       }
1484 #endif
1485       KMP_COUNT_BLOCK(TASK_cancelled);
1486       // this task belongs to a task group and we need to cancel it
1487       discard = 1 /* true */;
1488     }
1489   }
1490 
1491   // Invoke the task routine and pass in relevant data.
1492   // Thunks generated by gcc take a different argument list.
1493   if (!discard) {
1494     if (taskdata->td_flags.tiedness == TASK_UNTIED) {
1495       taskdata->td_last_tied = current_task->td_last_tied;
1496       KMP_DEBUG_ASSERT(taskdata->td_last_tied);
1497     }
1498 #if KMP_STATS_ENABLED
1499     KMP_COUNT_BLOCK(TASK_executed);
1500     switch (KMP_GET_THREAD_STATE()) {
1501     case FORK_JOIN_BARRIER:
1502       KMP_PUSH_PARTITIONED_TIMER(OMP_task_join_bar);
1503       break;
1504     case PLAIN_BARRIER:
1505       KMP_PUSH_PARTITIONED_TIMER(OMP_task_plain_bar);
1506       break;
1507     case TASKYIELD:
1508       KMP_PUSH_PARTITIONED_TIMER(OMP_task_taskyield);
1509       break;
1510     case TASKWAIT:
1511       KMP_PUSH_PARTITIONED_TIMER(OMP_task_taskwait);
1512       break;
1513     case TASKGROUP:
1514       KMP_PUSH_PARTITIONED_TIMER(OMP_task_taskgroup);
1515       break;
1516     default:
1517       KMP_PUSH_PARTITIONED_TIMER(OMP_task_immediate);
1518       break;
1519     }
1520 #endif // KMP_STATS_ENABLED
1521 
1522 // OMPT task begin
1523 #if OMPT_SUPPORT
1524     if (UNLIKELY(ompt_enabled.enabled))
1525       __ompt_task_start(task, current_task, gtid);
1526 #endif
1527 
1528 #if USE_ITT_BUILD && USE_ITT_NOTIFY
1529     kmp_uint64 cur_time;
1530     kmp_int32 kmp_itt_count_task =
1531         __kmp_forkjoin_frames_mode == 3 && !taskdata->td_flags.task_serial &&
1532         current_task->td_flags.tasktype == TASK_IMPLICIT;
1533     if (kmp_itt_count_task) {
1534       thread = __kmp_threads[gtid];
1535       // Time outer level explicit task on barrier for adjusting imbalance time
1536       if (thread->th.th_bar_arrive_time)
1537         cur_time = __itt_get_timestamp();
1538       else
1539         kmp_itt_count_task = 0; // thread is not on a barrier - skip timing
1540     }
1541 #endif
1542 
1543 #ifdef KMP_GOMP_COMPAT
1544     if (taskdata->td_flags.native) {
1545       ((void (*)(void *))(*(task->routine)))(task->shareds);
1546     } else
1547 #endif /* KMP_GOMP_COMPAT */
1548     {
1549       (*(task->routine))(gtid, task);
1550     }
1551     KMP_POP_PARTITIONED_TIMER();
1552 
1553 #if USE_ITT_BUILD && USE_ITT_NOTIFY
1554     if (kmp_itt_count_task) {
1555       // Barrier imbalance - adjust arrive time with the task duration
1556       thread->th.th_bar_arrive_time += (__itt_get_timestamp() - cur_time);
1557     }
1558 #endif
1559 
1560   }
1561 
1562 
1563   // Proxy tasks are not handled by the runtime
1564   if (taskdata->td_flags.proxy != TASK_PROXY) {
1565     ANNOTATE_HAPPENS_BEFORE(taskdata->td_parent);
1566 #if OMPT_SUPPORT
1567     if (UNLIKELY(ompt_enabled.enabled)) {
1568       thread->th.ompt_thread_info = oldInfo;
1569       if (taskdata->td_flags.tiedness == TASK_TIED) {
1570         taskdata->ompt_task_info.frame.exit_frame = ompt_data_none;
1571       }
1572       __kmp_task_finish<true>(gtid, task, current_task);
1573     } else
1574 #endif
1575       __kmp_task_finish<false>(gtid, task, current_task);
1576   }
1577 
1578   KA_TRACE(
1579       30,
1580       ("__kmp_invoke_task(exit): T#%d completed task %p, resuming task %p\n",
1581        gtid, taskdata, current_task));
1582   return;
1583 }
1584 
1585 // __kmpc_omp_task_parts: Schedule a thread-switchable task for execution
1586 //
1587 // loc_ref: location of original task pragma (ignored)
1588 // gtid: Global Thread ID of encountering thread
1589 // new_task: task thunk allocated by __kmp_omp_task_alloc() for the ''new task''
1590 // Returns:
1591 //    TASK_CURRENT_NOT_QUEUED (0) if did not suspend and queue current task to
1592 //    be resumed later.
1593 //    TASK_CURRENT_QUEUED (1) if suspended and queued the current task to be
1594 //    resumed later.
1595 kmp_int32 __kmpc_omp_task_parts(ident_t *loc_ref, kmp_int32 gtid,
1596                                 kmp_task_t *new_task) {
1597   kmp_taskdata_t *new_taskdata = KMP_TASK_TO_TASKDATA(new_task);
1598 
1599   KA_TRACE(10, ("__kmpc_omp_task_parts(enter): T#%d loc=%p task=%p\n", gtid,
1600                 loc_ref, new_taskdata));
1601 
1602 #if OMPT_SUPPORT
1603   kmp_taskdata_t *parent;
1604   if (UNLIKELY(ompt_enabled.enabled)) {
1605     parent = new_taskdata->td_parent;
1606     if (ompt_enabled.ompt_callback_task_create) {
1607       ompt_data_t task_data = ompt_data_none;
1608       ompt_callbacks.ompt_callback(ompt_callback_task_create)(
1609           parent ? &(parent->ompt_task_info.task_data) : &task_data,
1610           parent ? &(parent->ompt_task_info.frame) : NULL,
1611           &(new_taskdata->ompt_task_info.task_data), ompt_task_explicit, 0,
1612           OMPT_GET_RETURN_ADDRESS(0));
1613     }
1614   }
1615 #endif
1616 
1617   /* Should we execute the new task or queue it? For now, let's just always try
1618      to queue it.  If the queue fills up, then we'll execute it.  */
1619 
1620   if (__kmp_push_task(gtid, new_task) == TASK_NOT_PUSHED) // if cannot defer
1621   { // Execute this task immediately
1622     kmp_taskdata_t *current_task = __kmp_threads[gtid]->th.th_current_task;
1623     new_taskdata->td_flags.task_serial = 1;
1624     __kmp_invoke_task(gtid, new_task, current_task);
1625   }
1626 
1627   KA_TRACE(
1628       10,
1629       ("__kmpc_omp_task_parts(exit): T#%d returning TASK_CURRENT_NOT_QUEUED: "
1630        "loc=%p task=%p, return: TASK_CURRENT_NOT_QUEUED\n",
1631        gtid, loc_ref, new_taskdata));
1632 
1633   ANNOTATE_HAPPENS_BEFORE(new_task);
1634 #if OMPT_SUPPORT
1635   if (UNLIKELY(ompt_enabled.enabled)) {
1636     parent->ompt_task_info.frame.enter_frame = ompt_data_none;
1637   }
1638 #endif
1639   return TASK_CURRENT_NOT_QUEUED;
1640 }
1641 
1642 // __kmp_omp_task: Schedule a non-thread-switchable task for execution
1643 //
1644 // gtid: Global Thread ID of encountering thread
1645 // new_task:non-thread-switchable task thunk allocated by __kmp_omp_task_alloc()
1646 // serialize_immediate: if TRUE then if the task is executed immediately its
1647 // execution will be serialized
1648 // Returns:
1649 //    TASK_CURRENT_NOT_QUEUED (0) if did not suspend and queue current task to
1650 //    be resumed later.
1651 //    TASK_CURRENT_QUEUED (1) if suspended and queued the current task to be
1652 //    resumed later.
1653 kmp_int32 __kmp_omp_task(kmp_int32 gtid, kmp_task_t *new_task,
1654                          bool serialize_immediate) {
1655   kmp_taskdata_t *new_taskdata = KMP_TASK_TO_TASKDATA(new_task);
1656 
1657   /* Should we execute the new task or queue it? For now, let's just always try
1658      to queue it.  If the queue fills up, then we'll execute it.  */
1659   if (new_taskdata->td_flags.proxy == TASK_PROXY ||
1660       __kmp_push_task(gtid, new_task) == TASK_NOT_PUSHED) // if cannot defer
1661   { // Execute this task immediately
1662     kmp_taskdata_t *current_task = __kmp_threads[gtid]->th.th_current_task;
1663     if (serialize_immediate)
1664       new_taskdata->td_flags.task_serial = 1;
1665     __kmp_invoke_task(gtid, new_task, current_task);
1666   }
1667 
1668   ANNOTATE_HAPPENS_BEFORE(new_task);
1669   return TASK_CURRENT_NOT_QUEUED;
1670 }
1671 
1672 // __kmpc_omp_task: Wrapper around __kmp_omp_task to schedule a
1673 // non-thread-switchable task from the parent thread only!
1674 //
1675 // loc_ref: location of original task pragma (ignored)
1676 // gtid: Global Thread ID of encountering thread
1677 // new_task: non-thread-switchable task thunk allocated by
1678 // __kmp_omp_task_alloc()
1679 // Returns:
1680 //    TASK_CURRENT_NOT_QUEUED (0) if did not suspend and queue current task to
1681 //    be resumed later.
1682 //    TASK_CURRENT_QUEUED (1) if suspended and queued the current task to be
1683 //    resumed later.
1684 kmp_int32 __kmpc_omp_task(ident_t *loc_ref, kmp_int32 gtid,
1685                           kmp_task_t *new_task) {
1686   kmp_int32 res;
1687   KMP_SET_THREAD_STATE_BLOCK(EXPLICIT_TASK);
1688 
1689 #if KMP_DEBUG || OMPT_SUPPORT
1690   kmp_taskdata_t *new_taskdata = KMP_TASK_TO_TASKDATA(new_task);
1691 #endif
1692   KA_TRACE(10, ("__kmpc_omp_task(enter): T#%d loc=%p task=%p\n", gtid, loc_ref,
1693                 new_taskdata));
1694 
1695 #if OMPT_SUPPORT
1696   kmp_taskdata_t *parent = NULL;
1697   if (UNLIKELY(ompt_enabled.enabled)) {
1698     if (!new_taskdata->td_flags.started) {
1699       OMPT_STORE_RETURN_ADDRESS(gtid);
1700       parent = new_taskdata->td_parent;
1701       if (!parent->ompt_task_info.frame.enter_frame.ptr) {
1702         parent->ompt_task_info.frame.enter_frame.ptr = OMPT_GET_FRAME_ADDRESS(0);
1703       }
1704       if (ompt_enabled.ompt_callback_task_create) {
1705         ompt_data_t task_data = ompt_data_none;
1706         ompt_callbacks.ompt_callback(ompt_callback_task_create)(
1707             parent ? &(parent->ompt_task_info.task_data) : &task_data,
1708             parent ? &(parent->ompt_task_info.frame) : NULL,
1709             &(new_taskdata->ompt_task_info.task_data),
1710             ompt_task_explicit | TASK_TYPE_DETAILS_FORMAT(new_taskdata), 0,
1711             OMPT_LOAD_RETURN_ADDRESS(gtid));
1712       }
1713     } else {
1714       // We are scheduling the continuation of an UNTIED task.
1715       // Scheduling back to the parent task.
1716       __ompt_task_finish(new_task,
1717                          new_taskdata->ompt_task_info.scheduling_parent,
1718                          ompt_task_switch);
1719       new_taskdata->ompt_task_info.frame.exit_frame = ompt_data_none;
1720     }
1721   }
1722 #endif
1723 
1724   res = __kmp_omp_task(gtid, new_task, true);
1725 
1726   KA_TRACE(10, ("__kmpc_omp_task(exit): T#%d returning "
1727                 "TASK_CURRENT_NOT_QUEUED: loc=%p task=%p\n",
1728                 gtid, loc_ref, new_taskdata));
1729 #if OMPT_SUPPORT
1730   if (UNLIKELY(ompt_enabled.enabled && parent != NULL)) {
1731     parent->ompt_task_info.frame.enter_frame = ompt_data_none;
1732   }
1733 #endif
1734   return res;
1735 }
1736 
1737 // __kmp_omp_taskloop_task: Wrapper around __kmp_omp_task to schedule
1738 // a taskloop task with the correct OMPT return address
1739 //
1740 // loc_ref: location of original task pragma (ignored)
1741 // gtid: Global Thread ID of encountering thread
1742 // new_task: non-thread-switchable task thunk allocated by
1743 // __kmp_omp_task_alloc()
1744 // codeptr_ra: return address for OMPT callback
1745 // Returns:
1746 //    TASK_CURRENT_NOT_QUEUED (0) if did not suspend and queue current task to
1747 //    be resumed later.
1748 //    TASK_CURRENT_QUEUED (1) if suspended and queued the current task to be
1749 //    resumed later.
1750 kmp_int32 __kmp_omp_taskloop_task(ident_t *loc_ref, kmp_int32 gtid,
1751                                   kmp_task_t *new_task, void *codeptr_ra) {
1752   kmp_int32 res;
1753   KMP_SET_THREAD_STATE_BLOCK(EXPLICIT_TASK);
1754 
1755 #if KMP_DEBUG || OMPT_SUPPORT
1756   kmp_taskdata_t *new_taskdata = KMP_TASK_TO_TASKDATA(new_task);
1757 #endif
1758   KA_TRACE(10, ("__kmpc_omp_task(enter): T#%d loc=%p task=%p\n", gtid, loc_ref,
1759                 new_taskdata));
1760 
1761 #if OMPT_SUPPORT
1762   kmp_taskdata_t *parent = NULL;
1763   if (UNLIKELY(ompt_enabled.enabled && !new_taskdata->td_flags.started)) {
1764     parent = new_taskdata->td_parent;
1765     if (!parent->ompt_task_info.frame.enter_frame.ptr)
1766       parent->ompt_task_info.frame.enter_frame.ptr = OMPT_GET_FRAME_ADDRESS(0);
1767     if (ompt_enabled.ompt_callback_task_create) {
1768       ompt_data_t task_data = ompt_data_none;
1769       ompt_callbacks.ompt_callback(ompt_callback_task_create)(
1770           parent ? &(parent->ompt_task_info.task_data) : &task_data,
1771           parent ? &(parent->ompt_task_info.frame) : NULL,
1772           &(new_taskdata->ompt_task_info.task_data),
1773           ompt_task_explicit | TASK_TYPE_DETAILS_FORMAT(new_taskdata), 0,
1774           codeptr_ra);
1775     }
1776   }
1777 #endif
1778 
1779   res = __kmp_omp_task(gtid, new_task, true);
1780 
1781   KA_TRACE(10, ("__kmpc_omp_task(exit): T#%d returning "
1782                 "TASK_CURRENT_NOT_QUEUED: loc=%p task=%p\n",
1783                 gtid, loc_ref, new_taskdata));
1784 #if OMPT_SUPPORT
1785   if (UNLIKELY(ompt_enabled.enabled && parent != NULL)) {
1786     parent->ompt_task_info.frame.enter_frame = ompt_data_none;
1787   }
1788 #endif
1789   return res;
1790 }
1791 
1792 template <bool ompt>
1793 static kmp_int32 __kmpc_omp_taskwait_template(ident_t *loc_ref, kmp_int32 gtid,
1794                                               void *frame_address,
1795                                               void *return_address) {
1796   kmp_taskdata_t *taskdata;
1797   kmp_info_t *thread;
1798   int thread_finished = FALSE;
1799   KMP_SET_THREAD_STATE_BLOCK(TASKWAIT);
1800 
1801   KA_TRACE(10, ("__kmpc_omp_taskwait(enter): T#%d loc=%p\n", gtid, loc_ref));
1802 
1803   if (__kmp_tasking_mode != tskm_immediate_exec) {
1804     thread = __kmp_threads[gtid];
1805     taskdata = thread->th.th_current_task;
1806 
1807 #if OMPT_SUPPORT && OMPT_OPTIONAL
1808     ompt_data_t *my_task_data;
1809     ompt_data_t *my_parallel_data;
1810 
1811     if (ompt) {
1812       my_task_data = &(taskdata->ompt_task_info.task_data);
1813       my_parallel_data = OMPT_CUR_TEAM_DATA(thread);
1814 
1815       taskdata->ompt_task_info.frame.enter_frame.ptr = frame_address;
1816 
1817       if (ompt_enabled.ompt_callback_sync_region) {
1818         ompt_callbacks.ompt_callback(ompt_callback_sync_region)(
1819             ompt_sync_region_taskwait, ompt_scope_begin, my_parallel_data,
1820             my_task_data, return_address);
1821       }
1822 
1823       if (ompt_enabled.ompt_callback_sync_region_wait) {
1824         ompt_callbacks.ompt_callback(ompt_callback_sync_region_wait)(
1825             ompt_sync_region_taskwait, ompt_scope_begin, my_parallel_data,
1826             my_task_data, return_address);
1827       }
1828     }
1829 #endif // OMPT_SUPPORT && OMPT_OPTIONAL
1830 
1831 // Debugger: The taskwait is active. Store location and thread encountered the
1832 // taskwait.
1833 #if USE_ITT_BUILD
1834 // Note: These values are used by ITT events as well.
1835 #endif /* USE_ITT_BUILD */
1836     taskdata->td_taskwait_counter += 1;
1837     taskdata->td_taskwait_ident = loc_ref;
1838     taskdata->td_taskwait_thread = gtid + 1;
1839 
1840 #if USE_ITT_BUILD
1841     void *itt_sync_obj = __kmp_itt_taskwait_object(gtid);
1842     if (itt_sync_obj != NULL)
1843       __kmp_itt_taskwait_starting(gtid, itt_sync_obj);
1844 #endif /* USE_ITT_BUILD */
1845 
1846     bool must_wait =
1847         !taskdata->td_flags.team_serial && !taskdata->td_flags.final;
1848 
1849     must_wait = must_wait || (thread->th.th_task_team != NULL &&
1850                               thread->th.th_task_team->tt.tt_found_proxy_tasks);
1851     if (must_wait) {
1852       kmp_flag_32 flag(RCAST(std::atomic<kmp_uint32> *,
1853                              &(taskdata->td_incomplete_child_tasks)),
1854                        0U);
1855       while (KMP_ATOMIC_LD_ACQ(&taskdata->td_incomplete_child_tasks) != 0) {
1856         flag.execute_tasks(thread, gtid, FALSE,
1857                            &thread_finished USE_ITT_BUILD_ARG(itt_sync_obj),
1858                            __kmp_task_stealing_constraint);
1859       }
1860     }
1861 #if USE_ITT_BUILD
1862     if (itt_sync_obj != NULL)
1863       __kmp_itt_taskwait_finished(gtid, itt_sync_obj);
1864 #endif /* USE_ITT_BUILD */
1865 
1866     // Debugger:  The taskwait is completed. Location remains, but thread is
1867     // negated.
1868     taskdata->td_taskwait_thread = -taskdata->td_taskwait_thread;
1869 
1870 #if OMPT_SUPPORT && OMPT_OPTIONAL
1871     if (ompt) {
1872       if (ompt_enabled.ompt_callback_sync_region_wait) {
1873         ompt_callbacks.ompt_callback(ompt_callback_sync_region_wait)(
1874             ompt_sync_region_taskwait, ompt_scope_end, my_parallel_data,
1875             my_task_data, return_address);
1876       }
1877       if (ompt_enabled.ompt_callback_sync_region) {
1878         ompt_callbacks.ompt_callback(ompt_callback_sync_region)(
1879             ompt_sync_region_taskwait, ompt_scope_end, my_parallel_data,
1880             my_task_data, return_address);
1881       }
1882       taskdata->ompt_task_info.frame.enter_frame = ompt_data_none;
1883     }
1884 #endif // OMPT_SUPPORT && OMPT_OPTIONAL
1885 
1886     ANNOTATE_HAPPENS_AFTER(taskdata);
1887   }
1888 
1889   KA_TRACE(10, ("__kmpc_omp_taskwait(exit): T#%d task %p finished waiting, "
1890                 "returning TASK_CURRENT_NOT_QUEUED\n",
1891                 gtid, taskdata));
1892 
1893   return TASK_CURRENT_NOT_QUEUED;
1894 }
1895 
1896 #if OMPT_SUPPORT && OMPT_OPTIONAL
1897 OMPT_NOINLINE
1898 static kmp_int32 __kmpc_omp_taskwait_ompt(ident_t *loc_ref, kmp_int32 gtid,
1899                                           void *frame_address,
1900                                           void *return_address) {
1901   return __kmpc_omp_taskwait_template<true>(loc_ref, gtid, frame_address,
1902                                             return_address);
1903 }
1904 #endif // OMPT_SUPPORT && OMPT_OPTIONAL
1905 
1906 // __kmpc_omp_taskwait: Wait until all tasks generated by the current task are
1907 // complete
1908 kmp_int32 __kmpc_omp_taskwait(ident_t *loc_ref, kmp_int32 gtid) {
1909 #if OMPT_SUPPORT && OMPT_OPTIONAL
1910   if (UNLIKELY(ompt_enabled.enabled)) {
1911     OMPT_STORE_RETURN_ADDRESS(gtid);
1912     return __kmpc_omp_taskwait_ompt(loc_ref, gtid, OMPT_GET_FRAME_ADDRESS(0),
1913                                     OMPT_LOAD_RETURN_ADDRESS(gtid));
1914   }
1915 #endif
1916   return __kmpc_omp_taskwait_template<false>(loc_ref, gtid, NULL, NULL);
1917 }
1918 
1919 // __kmpc_omp_taskyield: switch to a different task
1920 kmp_int32 __kmpc_omp_taskyield(ident_t *loc_ref, kmp_int32 gtid, int end_part) {
1921   kmp_taskdata_t *taskdata;
1922   kmp_info_t *thread;
1923   int thread_finished = FALSE;
1924 
1925   KMP_COUNT_BLOCK(OMP_TASKYIELD);
1926   KMP_SET_THREAD_STATE_BLOCK(TASKYIELD);
1927 
1928   KA_TRACE(10, ("__kmpc_omp_taskyield(enter): T#%d loc=%p end_part = %d\n",
1929                 gtid, loc_ref, end_part));
1930 
1931   if (__kmp_tasking_mode != tskm_immediate_exec && __kmp_init_parallel) {
1932     thread = __kmp_threads[gtid];
1933     taskdata = thread->th.th_current_task;
1934 // Should we model this as a task wait or not?
1935 // Debugger: The taskwait is active. Store location and thread encountered the
1936 // taskwait.
1937 #if USE_ITT_BUILD
1938 // Note: These values are used by ITT events as well.
1939 #endif /* USE_ITT_BUILD */
1940     taskdata->td_taskwait_counter += 1;
1941     taskdata->td_taskwait_ident = loc_ref;
1942     taskdata->td_taskwait_thread = gtid + 1;
1943 
1944 #if USE_ITT_BUILD
1945     void *itt_sync_obj = __kmp_itt_taskwait_object(gtid);
1946     if (itt_sync_obj != NULL)
1947       __kmp_itt_taskwait_starting(gtid, itt_sync_obj);
1948 #endif /* USE_ITT_BUILD */
1949     if (!taskdata->td_flags.team_serial) {
1950       kmp_task_team_t *task_team = thread->th.th_task_team;
1951       if (task_team != NULL) {
1952         if (KMP_TASKING_ENABLED(task_team)) {
1953 #if OMPT_SUPPORT
1954           if (UNLIKELY(ompt_enabled.enabled))
1955             thread->th.ompt_thread_info.ompt_task_yielded = 1;
1956 #endif
1957           __kmp_execute_tasks_32(
1958               thread, gtid, NULL, FALSE,
1959               &thread_finished USE_ITT_BUILD_ARG(itt_sync_obj),
1960               __kmp_task_stealing_constraint);
1961 #if OMPT_SUPPORT
1962           if (UNLIKELY(ompt_enabled.enabled))
1963             thread->th.ompt_thread_info.ompt_task_yielded = 0;
1964 #endif
1965         }
1966       }
1967     }
1968 #if USE_ITT_BUILD
1969     if (itt_sync_obj != NULL)
1970       __kmp_itt_taskwait_finished(gtid, itt_sync_obj);
1971 #endif /* USE_ITT_BUILD */
1972 
1973     // Debugger:  The taskwait is completed. Location remains, but thread is
1974     // negated.
1975     taskdata->td_taskwait_thread = -taskdata->td_taskwait_thread;
1976   }
1977 
1978   KA_TRACE(10, ("__kmpc_omp_taskyield(exit): T#%d task %p resuming, "
1979                 "returning TASK_CURRENT_NOT_QUEUED\n",
1980                 gtid, taskdata));
1981 
1982   return TASK_CURRENT_NOT_QUEUED;
1983 }
1984 
1985 // Task Reduction implementation
1986 //
1987 // Note: initial implementation didn't take into account the possibility
1988 // to specify omp_orig for initializer of the UDR (user defined reduction).
1989 // Corrected implementation takes into account the omp_orig object.
1990 // Compiler is free to use old implementation if omp_orig is not specified.
1991 
1992 /*!
1993 @ingroup BASIC_TYPES
1994 @{
1995 */
1996 
1997 /*!
1998 Flags for special info per task reduction item.
1999 */
2000 typedef struct kmp_taskred_flags {
2001   /*! 1 - use lazy alloc/init (e.g. big objects, #tasks < #threads) */
2002   unsigned lazy_priv : 1;
2003   unsigned reserved31 : 31;
2004 } kmp_taskred_flags_t;
2005 
2006 /*!
2007 Internal struct for reduction data item related info set up by compiler.
2008 */
2009 typedef struct kmp_task_red_input {
2010   void *reduce_shar; /**< shared between tasks item to reduce into */
2011   size_t reduce_size; /**< size of data item in bytes */
2012   // three compiler-generated routines (init, fini are optional):
2013   void *reduce_init; /**< data initialization routine (single parameter) */
2014   void *reduce_fini; /**< data finalization routine */
2015   void *reduce_comb; /**< data combiner routine */
2016   kmp_taskred_flags_t flags; /**< flags for additional info from compiler */
2017 } kmp_task_red_input_t;
2018 
2019 /*!
2020 Internal struct for reduction data item related info saved by the library.
2021 */
2022 typedef struct kmp_taskred_data {
2023   void *reduce_shar; /**< shared between tasks item to reduce into */
2024   size_t reduce_size; /**< size of data item */
2025   kmp_taskred_flags_t flags; /**< flags for additional info from compiler */
2026   void *reduce_priv; /**< array of thread specific items */
2027   void *reduce_pend; /**< end of private data for faster comparison op */
2028   // three compiler-generated routines (init, fini are optional):
2029   void *reduce_comb; /**< data combiner routine */
2030   void *reduce_init; /**< data initialization routine (two parameters) */
2031   void *reduce_fini; /**< data finalization routine */
2032   void *reduce_orig; /**< original item (can be used in UDR initializer) */
2033 } kmp_taskred_data_t;
2034 
2035 /*!
2036 Internal struct for reduction data item related info set up by compiler.
2037 
2038 New interface: added reduce_orig field to provide omp_orig for UDR initializer.
2039 */
2040 typedef struct kmp_taskred_input {
2041   void *reduce_shar; /**< shared between tasks item to reduce into */
2042   void *reduce_orig; /**< original reduction item used for initialization */
2043   size_t reduce_size; /**< size of data item */
2044   // three compiler-generated routines (init, fini are optional):
2045   void *reduce_init; /**< data initialization routine (two parameters) */
2046   void *reduce_fini; /**< data finalization routine */
2047   void *reduce_comb; /**< data combiner routine */
2048   kmp_taskred_flags_t flags; /**< flags for additional info from compiler */
2049 } kmp_taskred_input_t;
2050 /*!
2051 @}
2052 */
2053 
2054 template <typename T> void __kmp_assign_orig(kmp_taskred_data_t &item, T &src);
2055 template <>
2056 void __kmp_assign_orig<kmp_task_red_input_t>(kmp_taskred_data_t &item,
2057                                              kmp_task_red_input_t &src) {
2058   item.reduce_orig = NULL;
2059 }
2060 template <>
2061 void __kmp_assign_orig<kmp_taskred_input_t>(kmp_taskred_data_t &item,
2062                                             kmp_taskred_input_t &src) {
2063   if (src.reduce_orig != NULL) {
2064     item.reduce_orig = src.reduce_orig;
2065   } else {
2066     item.reduce_orig = src.reduce_shar;
2067   } // non-NULL reduce_orig means new interface used
2068 }
2069 
2070 template <typename T> void __kmp_call_init(kmp_taskred_data_t &item, int j);
2071 template <>
2072 void __kmp_call_init<kmp_task_red_input_t>(kmp_taskred_data_t &item,
2073                                            int offset) {
2074   ((void (*)(void *))item.reduce_init)((char *)(item.reduce_priv) + offset);
2075 }
2076 template <>
2077 void __kmp_call_init<kmp_taskred_input_t>(kmp_taskred_data_t &item,
2078                                           int offset) {
2079   ((void (*)(void *, void *))item.reduce_init)(
2080       (char *)(item.reduce_priv) + offset, item.reduce_orig);
2081 }
2082 
2083 template <typename T>
2084 void *__kmp_task_reduction_init(int gtid, int num, T *data) {
2085   kmp_info_t *thread = __kmp_threads[gtid];
2086   kmp_taskgroup_t *tg = thread->th.th_current_task->td_taskgroup;
2087   kmp_int32 nth = thread->th.th_team_nproc;
2088   kmp_taskred_data_t *arr;
2089 
2090   // check input data just in case
2091   KMP_ASSERT(tg != NULL);
2092   KMP_ASSERT(data != NULL);
2093   KMP_ASSERT(num > 0);
2094   if (nth == 1) {
2095     KA_TRACE(10, ("__kmpc_task_reduction_init: T#%d, tg %p, exiting nth=1\n",
2096                   gtid, tg));
2097     return (void *)tg;
2098   }
2099   KA_TRACE(10, ("__kmpc_task_reduction_init: T#%d, taskgroup %p, #items %d\n",
2100                 gtid, tg, num));
2101   arr = (kmp_taskred_data_t *)__kmp_thread_malloc(
2102       thread, num * sizeof(kmp_taskred_data_t));
2103   for (int i = 0; i < num; ++i) {
2104     size_t size = data[i].reduce_size - 1;
2105     // round the size up to cache line per thread-specific item
2106     size += CACHE_LINE - size % CACHE_LINE;
2107     KMP_ASSERT(data[i].reduce_comb != NULL); // combiner is mandatory
2108     arr[i].reduce_shar = data[i].reduce_shar;
2109     arr[i].reduce_size = size;
2110     arr[i].flags = data[i].flags;
2111     arr[i].reduce_comb = data[i].reduce_comb;
2112     arr[i].reduce_init = data[i].reduce_init;
2113     arr[i].reduce_fini = data[i].reduce_fini;
2114     __kmp_assign_orig<T>(arr[i], data[i]);
2115     if (!arr[i].flags.lazy_priv) {
2116       // allocate cache-line aligned block and fill it with zeros
2117       arr[i].reduce_priv = __kmp_allocate(nth * size);
2118       arr[i].reduce_pend = (char *)(arr[i].reduce_priv) + nth * size;
2119       if (arr[i].reduce_init != NULL) {
2120         // initialize all thread-specific items
2121         for (int j = 0; j < nth; ++j) {
2122           __kmp_call_init<T>(arr[i], j * size);
2123         }
2124       }
2125     } else {
2126       // only allocate space for pointers now,
2127       // objects will be lazily allocated/initialized if/when requested
2128       // note that __kmp_allocate zeroes the allocated memory
2129       arr[i].reduce_priv = __kmp_allocate(nth * sizeof(void *));
2130     }
2131   }
2132   tg->reduce_data = (void *)arr;
2133   tg->reduce_num_data = num;
2134   return (void *)tg;
2135 }
2136 
2137 /*!
2138 @ingroup TASKING
2139 @param gtid      Global thread ID
2140 @param num       Number of data items to reduce
2141 @param data      Array of data for reduction
2142 @return The taskgroup identifier
2143 
2144 Initialize task reduction for the taskgroup.
2145 
2146 Note: this entry supposes the optional compiler-generated initializer routine
2147 has single parameter - pointer to object to be initialized. That means
2148 the reduction either does not use omp_orig object, or the omp_orig is accessible
2149 without help of the runtime library.
2150 */
2151 void *__kmpc_task_reduction_init(int gtid, int num, void *data) {
2152   return __kmp_task_reduction_init(gtid, num, (kmp_task_red_input_t *)data);
2153 }
2154 
2155 /*!
2156 @ingroup TASKING
2157 @param gtid      Global thread ID
2158 @param num       Number of data items to reduce
2159 @param data      Array of data for reduction
2160 @return The taskgroup identifier
2161 
2162 Initialize task reduction for the taskgroup.
2163 
2164 Note: this entry supposes the optional compiler-generated initializer routine
2165 has two parameters, pointer to object to be initialized and pointer to omp_orig
2166 */
2167 void *__kmpc_taskred_init(int gtid, int num, void *data) {
2168   return __kmp_task_reduction_init(gtid, num, (kmp_taskred_input_t *)data);
2169 }
2170 
2171 // Copy task reduction data (except for shared pointers).
2172 template <typename T>
2173 void __kmp_task_reduction_init_copy(kmp_info_t *thr, int num, T *data,
2174                                     kmp_taskgroup_t *tg, void *reduce_data) {
2175   kmp_taskred_data_t *arr;
2176   KA_TRACE(20, ("__kmp_task_reduction_init_copy: Th %p, init taskgroup %p,"
2177                 " from data %p\n",
2178                 thr, tg, reduce_data));
2179   arr = (kmp_taskred_data_t *)__kmp_thread_malloc(
2180       thr, num * sizeof(kmp_taskred_data_t));
2181   // threads will share private copies, thunk routines, sizes, flags, etc.:
2182   KMP_MEMCPY(arr, reduce_data, num * sizeof(kmp_taskred_data_t));
2183   for (int i = 0; i < num; ++i) {
2184     arr[i].reduce_shar = data[i].reduce_shar; // init unique shared pointers
2185   }
2186   tg->reduce_data = (void *)arr;
2187   tg->reduce_num_data = num;
2188 }
2189 
2190 /*!
2191 @ingroup TASKING
2192 @param gtid    Global thread ID
2193 @param tskgrp  The taskgroup ID (optional)
2194 @param data    Shared location of the item
2195 @return The pointer to per-thread data
2196 
2197 Get thread-specific location of data item
2198 */
2199 void *__kmpc_task_reduction_get_th_data(int gtid, void *tskgrp, void *data) {
2200   kmp_info_t *thread = __kmp_threads[gtid];
2201   kmp_int32 nth = thread->th.th_team_nproc;
2202   if (nth == 1)
2203     return data; // nothing to do
2204 
2205   kmp_taskgroup_t *tg = (kmp_taskgroup_t *)tskgrp;
2206   if (tg == NULL)
2207     tg = thread->th.th_current_task->td_taskgroup;
2208   KMP_ASSERT(tg != NULL);
2209   kmp_taskred_data_t *arr = (kmp_taskred_data_t *)(tg->reduce_data);
2210   kmp_int32 num = tg->reduce_num_data;
2211   kmp_int32 tid = thread->th.th_info.ds.ds_tid;
2212 
2213   KMP_ASSERT(data != NULL);
2214   while (tg != NULL) {
2215     for (int i = 0; i < num; ++i) {
2216       if (!arr[i].flags.lazy_priv) {
2217         if (data == arr[i].reduce_shar ||
2218             (data >= arr[i].reduce_priv && data < arr[i].reduce_pend))
2219           return (char *)(arr[i].reduce_priv) + tid * arr[i].reduce_size;
2220       } else {
2221         // check shared location first
2222         void **p_priv = (void **)(arr[i].reduce_priv);
2223         if (data == arr[i].reduce_shar)
2224           goto found;
2225         // check if we get some thread specific location as parameter
2226         for (int j = 0; j < nth; ++j)
2227           if (data == p_priv[j])
2228             goto found;
2229         continue; // not found, continue search
2230       found:
2231         if (p_priv[tid] == NULL) {
2232           // allocate thread specific object lazily
2233           p_priv[tid] = __kmp_allocate(arr[i].reduce_size);
2234           if (arr[i].reduce_init != NULL) {
2235             if (arr[i].reduce_orig != NULL) { // new interface
2236               ((void (*)(void *, void *))arr[i].reduce_init)(
2237                   p_priv[tid], arr[i].reduce_orig);
2238             } else { // old interface (single parameter)
2239               ((void (*)(void *))arr[i].reduce_init)(p_priv[tid]);
2240             }
2241           }
2242         }
2243         return p_priv[tid];
2244       }
2245     }
2246     tg = tg->parent;
2247     arr = (kmp_taskred_data_t *)(tg->reduce_data);
2248     num = tg->reduce_num_data;
2249   }
2250   KMP_ASSERT2(0, "Unknown task reduction item");
2251   return NULL; // ERROR, this line never executed
2252 }
2253 
2254 // Finalize task reduction.
2255 // Called from __kmpc_end_taskgroup()
2256 static void __kmp_task_reduction_fini(kmp_info_t *th, kmp_taskgroup_t *tg) {
2257   kmp_int32 nth = th->th.th_team_nproc;
2258   KMP_DEBUG_ASSERT(nth > 1); // should not be called if nth == 1
2259   kmp_taskred_data_t *arr = (kmp_taskred_data_t *)tg->reduce_data;
2260   kmp_int32 num = tg->reduce_num_data;
2261   for (int i = 0; i < num; ++i) {
2262     void *sh_data = arr[i].reduce_shar;
2263     void (*f_fini)(void *) = (void (*)(void *))(arr[i].reduce_fini);
2264     void (*f_comb)(void *, void *) =
2265         (void (*)(void *, void *))(arr[i].reduce_comb);
2266     if (!arr[i].flags.lazy_priv) {
2267       void *pr_data = arr[i].reduce_priv;
2268       size_t size = arr[i].reduce_size;
2269       for (int j = 0; j < nth; ++j) {
2270         void *priv_data = (char *)pr_data + j * size;
2271         f_comb(sh_data, priv_data); // combine results
2272         if (f_fini)
2273           f_fini(priv_data); // finalize if needed
2274       }
2275     } else {
2276       void **pr_data = (void **)(arr[i].reduce_priv);
2277       for (int j = 0; j < nth; ++j) {
2278         if (pr_data[j] != NULL) {
2279           f_comb(sh_data, pr_data[j]); // combine results
2280           if (f_fini)
2281             f_fini(pr_data[j]); // finalize if needed
2282           __kmp_free(pr_data[j]);
2283         }
2284       }
2285     }
2286     __kmp_free(arr[i].reduce_priv);
2287   }
2288   __kmp_thread_free(th, arr);
2289   tg->reduce_data = NULL;
2290   tg->reduce_num_data = 0;
2291 }
2292 
2293 // Cleanup task reduction data for parallel or worksharing,
2294 // do not touch task private data other threads still working with.
2295 // Called from __kmpc_end_taskgroup()
2296 static void __kmp_task_reduction_clean(kmp_info_t *th, kmp_taskgroup_t *tg) {
2297   __kmp_thread_free(th, tg->reduce_data);
2298   tg->reduce_data = NULL;
2299   tg->reduce_num_data = 0;
2300 }
2301 
2302 template <typename T>
2303 void *__kmp_task_reduction_modifier_init(ident_t *loc, int gtid, int is_ws,
2304                                          int num, T *data) {
2305   kmp_info_t *thr = __kmp_threads[gtid];
2306   kmp_int32 nth = thr->th.th_team_nproc;
2307   __kmpc_taskgroup(loc, gtid); // form new taskgroup first
2308   if (nth == 1) {
2309     KA_TRACE(10,
2310              ("__kmpc_reduction_modifier_init: T#%d, tg %p, exiting nth=1\n",
2311               gtid, thr->th.th_current_task->td_taskgroup));
2312     return (void *)thr->th.th_current_task->td_taskgroup;
2313   }
2314   kmp_team_t *team = thr->th.th_team;
2315   void *reduce_data;
2316   kmp_taskgroup_t *tg;
2317   reduce_data = KMP_ATOMIC_LD_RLX(&team->t.t_tg_reduce_data[is_ws]);
2318   if (reduce_data == NULL &&
2319       __kmp_atomic_compare_store(&team->t.t_tg_reduce_data[is_ws], reduce_data,
2320                                  (void *)1)) {
2321     // single thread enters this block to initialize common reduction data
2322     KMP_DEBUG_ASSERT(reduce_data == NULL);
2323     // first initialize own data, then make a copy other threads can use
2324     tg = (kmp_taskgroup_t *)__kmp_task_reduction_init<T>(gtid, num, data);
2325     reduce_data = __kmp_thread_malloc(thr, num * sizeof(kmp_taskred_data_t));
2326     KMP_MEMCPY(reduce_data, tg->reduce_data, num * sizeof(kmp_taskred_data_t));
2327     // fini counters should be 0 at this point
2328     KMP_DEBUG_ASSERT(KMP_ATOMIC_LD_RLX(&team->t.t_tg_fini_counter[0]) == 0);
2329     KMP_DEBUG_ASSERT(KMP_ATOMIC_LD_RLX(&team->t.t_tg_fini_counter[1]) == 0);
2330     KMP_ATOMIC_ST_REL(&team->t.t_tg_reduce_data[is_ws], reduce_data);
2331   } else {
2332     while (
2333         (reduce_data = KMP_ATOMIC_LD_ACQ(&team->t.t_tg_reduce_data[is_ws])) ==
2334         (void *)1) { // wait for task reduction initialization
2335       KMP_CPU_PAUSE();
2336     }
2337     KMP_DEBUG_ASSERT(reduce_data > (void *)1); // should be valid pointer here
2338     tg = thr->th.th_current_task->td_taskgroup;
2339     __kmp_task_reduction_init_copy<T>(thr, num, data, tg, reduce_data);
2340   }
2341   return tg;
2342 }
2343 
2344 /*!
2345 @ingroup TASKING
2346 @param loc       Source location info
2347 @param gtid      Global thread ID
2348 @param is_ws     Is 1 if the reduction is for worksharing, 0 otherwise
2349 @param num       Number of data items to reduce
2350 @param data      Array of data for reduction
2351 @return The taskgroup identifier
2352 
2353 Initialize task reduction for a parallel or worksharing.
2354 
2355 Note: this entry supposes the optional compiler-generated initializer routine
2356 has single parameter - pointer to object to be initialized. That means
2357 the reduction either does not use omp_orig object, or the omp_orig is accessible
2358 without help of the runtime library.
2359 */
2360 void *__kmpc_task_reduction_modifier_init(ident_t *loc, int gtid, int is_ws,
2361                                           int num, void *data) {
2362   return __kmp_task_reduction_modifier_init(loc, gtid, is_ws, num,
2363                                             (kmp_task_red_input_t *)data);
2364 }
2365 
2366 /*!
2367 @ingroup TASKING
2368 @param loc       Source location info
2369 @param gtid      Global thread ID
2370 @param is_ws     Is 1 if the reduction is for worksharing, 0 otherwise
2371 @param num       Number of data items to reduce
2372 @param data      Array of data for reduction
2373 @return The taskgroup identifier
2374 
2375 Initialize task reduction for a parallel or worksharing.
2376 
2377 Note: this entry supposes the optional compiler-generated initializer routine
2378 has two parameters, pointer to object to be initialized and pointer to omp_orig
2379 */
2380 void *__kmpc_taskred_modifier_init(ident_t *loc, int gtid, int is_ws, int num,
2381                                    void *data) {
2382   return __kmp_task_reduction_modifier_init(loc, gtid, is_ws, num,
2383                                             (kmp_taskred_input_t *)data);
2384 }
2385 
2386 /*!
2387 @ingroup TASKING
2388 @param loc       Source location info
2389 @param gtid      Global thread ID
2390 @param is_ws     Is 1 if the reduction is for worksharing, 0 otherwise
2391 
2392 Finalize task reduction for a parallel or worksharing.
2393 */
2394 void __kmpc_task_reduction_modifier_fini(ident_t *loc, int gtid, int is_ws) {
2395   __kmpc_end_taskgroup(loc, gtid);
2396 }
2397 
2398 // __kmpc_taskgroup: Start a new taskgroup
2399 void __kmpc_taskgroup(ident_t *loc, int gtid) {
2400   kmp_info_t *thread = __kmp_threads[gtid];
2401   kmp_taskdata_t *taskdata = thread->th.th_current_task;
2402   kmp_taskgroup_t *tg_new =
2403       (kmp_taskgroup_t *)__kmp_thread_malloc(thread, sizeof(kmp_taskgroup_t));
2404   KA_TRACE(10, ("__kmpc_taskgroup: T#%d loc=%p group=%p\n", gtid, loc, tg_new));
2405   KMP_ATOMIC_ST_RLX(&tg_new->count, 0);
2406   KMP_ATOMIC_ST_RLX(&tg_new->cancel_request, cancel_noreq);
2407   tg_new->parent = taskdata->td_taskgroup;
2408   tg_new->reduce_data = NULL;
2409   tg_new->reduce_num_data = 0;
2410   taskdata->td_taskgroup = tg_new;
2411 
2412 #if OMPT_SUPPORT && OMPT_OPTIONAL
2413   if (UNLIKELY(ompt_enabled.ompt_callback_sync_region)) {
2414     void *codeptr = OMPT_LOAD_RETURN_ADDRESS(gtid);
2415     if (!codeptr)
2416       codeptr = OMPT_GET_RETURN_ADDRESS(0);
2417     kmp_team_t *team = thread->th.th_team;
2418     ompt_data_t my_task_data = taskdata->ompt_task_info.task_data;
2419     // FIXME: I think this is wrong for lwt!
2420     ompt_data_t my_parallel_data = team->t.ompt_team_info.parallel_data;
2421 
2422     ompt_callbacks.ompt_callback(ompt_callback_sync_region)(
2423         ompt_sync_region_taskgroup, ompt_scope_begin, &(my_parallel_data),
2424         &(my_task_data), codeptr);
2425   }
2426 #endif
2427 }
2428 
2429 // __kmpc_end_taskgroup: Wait until all tasks generated by the current task
2430 //                       and its descendants are complete
2431 void __kmpc_end_taskgroup(ident_t *loc, int gtid) {
2432   kmp_info_t *thread = __kmp_threads[gtid];
2433   kmp_taskdata_t *taskdata = thread->th.th_current_task;
2434   kmp_taskgroup_t *taskgroup = taskdata->td_taskgroup;
2435   int thread_finished = FALSE;
2436 
2437 #if OMPT_SUPPORT && OMPT_OPTIONAL
2438   kmp_team_t *team;
2439   ompt_data_t my_task_data;
2440   ompt_data_t my_parallel_data;
2441   void *codeptr;
2442   if (UNLIKELY(ompt_enabled.enabled)) {
2443     team = thread->th.th_team;
2444     my_task_data = taskdata->ompt_task_info.task_data;
2445     // FIXME: I think this is wrong for lwt!
2446     my_parallel_data = team->t.ompt_team_info.parallel_data;
2447     codeptr = OMPT_LOAD_RETURN_ADDRESS(gtid);
2448     if (!codeptr)
2449       codeptr = OMPT_GET_RETURN_ADDRESS(0);
2450   }
2451 #endif
2452 
2453   KA_TRACE(10, ("__kmpc_end_taskgroup(enter): T#%d loc=%p\n", gtid, loc));
2454   KMP_DEBUG_ASSERT(taskgroup != NULL);
2455   KMP_SET_THREAD_STATE_BLOCK(TASKGROUP);
2456 
2457   if (__kmp_tasking_mode != tskm_immediate_exec) {
2458     // mark task as waiting not on a barrier
2459     taskdata->td_taskwait_counter += 1;
2460     taskdata->td_taskwait_ident = loc;
2461     taskdata->td_taskwait_thread = gtid + 1;
2462 #if USE_ITT_BUILD
2463     // For ITT the taskgroup wait is similar to taskwait until we need to
2464     // distinguish them
2465     void *itt_sync_obj = __kmp_itt_taskwait_object(gtid);
2466     if (itt_sync_obj != NULL)
2467       __kmp_itt_taskwait_starting(gtid, itt_sync_obj);
2468 #endif /* USE_ITT_BUILD */
2469 
2470 #if OMPT_SUPPORT && OMPT_OPTIONAL
2471     if (UNLIKELY(ompt_enabled.ompt_callback_sync_region_wait)) {
2472       ompt_callbacks.ompt_callback(ompt_callback_sync_region_wait)(
2473           ompt_sync_region_taskgroup, ompt_scope_begin, &(my_parallel_data),
2474           &(my_task_data), codeptr);
2475     }
2476 #endif
2477 
2478     if (!taskdata->td_flags.team_serial ||
2479         (thread->th.th_task_team != NULL &&
2480          thread->th.th_task_team->tt.tt_found_proxy_tasks)) {
2481       kmp_flag_32 flag(RCAST(std::atomic<kmp_uint32> *, &(taskgroup->count)),
2482                        0U);
2483       while (KMP_ATOMIC_LD_ACQ(&taskgroup->count) != 0) {
2484         flag.execute_tasks(thread, gtid, FALSE,
2485                            &thread_finished USE_ITT_BUILD_ARG(itt_sync_obj),
2486                            __kmp_task_stealing_constraint);
2487       }
2488     }
2489     taskdata->td_taskwait_thread = -taskdata->td_taskwait_thread; // end waiting
2490 
2491 #if OMPT_SUPPORT && OMPT_OPTIONAL
2492     if (UNLIKELY(ompt_enabled.ompt_callback_sync_region_wait)) {
2493       ompt_callbacks.ompt_callback(ompt_callback_sync_region_wait)(
2494           ompt_sync_region_taskgroup, ompt_scope_end, &(my_parallel_data),
2495           &(my_task_data), codeptr);
2496     }
2497 #endif
2498 
2499 #if USE_ITT_BUILD
2500     if (itt_sync_obj != NULL)
2501       __kmp_itt_taskwait_finished(gtid, itt_sync_obj);
2502 #endif /* USE_ITT_BUILD */
2503   }
2504   KMP_DEBUG_ASSERT(taskgroup->count == 0);
2505 
2506   if (taskgroup->reduce_data != NULL) { // need to reduce?
2507     int cnt;
2508     void *reduce_data;
2509     kmp_team_t *t = thread->th.th_team;
2510     kmp_taskred_data_t *arr = (kmp_taskred_data_t *)taskgroup->reduce_data;
2511     // check if <priv> data of the first reduction variable shared for the team
2512     void *priv0 = arr[0].reduce_priv;
2513     if ((reduce_data = KMP_ATOMIC_LD_ACQ(&t->t.t_tg_reduce_data[0])) != NULL &&
2514         ((kmp_taskred_data_t *)reduce_data)[0].reduce_priv == priv0) {
2515       // finishing task reduction on parallel
2516       cnt = KMP_ATOMIC_INC(&t->t.t_tg_fini_counter[0]);
2517       if (cnt == thread->th.th_team_nproc - 1) {
2518         // we are the last thread passing __kmpc_reduction_modifier_fini()
2519         // finalize task reduction:
2520         __kmp_task_reduction_fini(thread, taskgroup);
2521         // cleanup fields in the team structure:
2522         // TODO: is relaxed store enough here (whole barrier should follow)?
2523         __kmp_thread_free(thread, reduce_data);
2524         KMP_ATOMIC_ST_REL(&t->t.t_tg_reduce_data[0], NULL);
2525         KMP_ATOMIC_ST_REL(&t->t.t_tg_fini_counter[0], 0);
2526       } else {
2527         // we are not the last thread passing __kmpc_reduction_modifier_fini(),
2528         // so do not finalize reduction, just clean own copy of the data
2529         __kmp_task_reduction_clean(thread, taskgroup);
2530       }
2531     } else if ((reduce_data = KMP_ATOMIC_LD_ACQ(&t->t.t_tg_reduce_data[1])) !=
2532                    NULL &&
2533                ((kmp_taskred_data_t *)reduce_data)[0].reduce_priv == priv0) {
2534       // finishing task reduction on worksharing
2535       cnt = KMP_ATOMIC_INC(&t->t.t_tg_fini_counter[1]);
2536       if (cnt == thread->th.th_team_nproc - 1) {
2537         // we are the last thread passing __kmpc_reduction_modifier_fini()
2538         __kmp_task_reduction_fini(thread, taskgroup);
2539         // cleanup fields in team structure:
2540         // TODO: is relaxed store enough here (whole barrier should follow)?
2541         __kmp_thread_free(thread, reduce_data);
2542         KMP_ATOMIC_ST_REL(&t->t.t_tg_reduce_data[1], NULL);
2543         KMP_ATOMIC_ST_REL(&t->t.t_tg_fini_counter[1], 0);
2544       } else {
2545         // we are not the last thread passing __kmpc_reduction_modifier_fini(),
2546         // so do not finalize reduction, just clean own copy of the data
2547         __kmp_task_reduction_clean(thread, taskgroup);
2548       }
2549     } else {
2550       // finishing task reduction on taskgroup
2551       __kmp_task_reduction_fini(thread, taskgroup);
2552     }
2553   }
2554   // Restore parent taskgroup for the current task
2555   taskdata->td_taskgroup = taskgroup->parent;
2556   __kmp_thread_free(thread, taskgroup);
2557 
2558   KA_TRACE(10, ("__kmpc_end_taskgroup(exit): T#%d task %p finished waiting\n",
2559                 gtid, taskdata));
2560   ANNOTATE_HAPPENS_AFTER(taskdata);
2561 
2562 #if OMPT_SUPPORT && OMPT_OPTIONAL
2563   if (UNLIKELY(ompt_enabled.ompt_callback_sync_region)) {
2564     ompt_callbacks.ompt_callback(ompt_callback_sync_region)(
2565         ompt_sync_region_taskgroup, ompt_scope_end, &(my_parallel_data),
2566         &(my_task_data), codeptr);
2567   }
2568 #endif
2569 }
2570 
2571 // __kmp_remove_my_task: remove a task from my own deque
2572 static kmp_task_t *__kmp_remove_my_task(kmp_info_t *thread, kmp_int32 gtid,
2573                                         kmp_task_team_t *task_team,
2574                                         kmp_int32 is_constrained) {
2575   kmp_task_t *task;
2576   kmp_taskdata_t *taskdata;
2577   kmp_thread_data_t *thread_data;
2578   kmp_uint32 tail;
2579 
2580   KMP_DEBUG_ASSERT(__kmp_tasking_mode != tskm_immediate_exec);
2581   KMP_DEBUG_ASSERT(task_team->tt.tt_threads_data !=
2582                    NULL); // Caller should check this condition
2583 
2584   thread_data = &task_team->tt.tt_threads_data[__kmp_tid_from_gtid(gtid)];
2585 
2586   KA_TRACE(10, ("__kmp_remove_my_task(enter): T#%d ntasks=%d head=%u tail=%u\n",
2587                 gtid, thread_data->td.td_deque_ntasks,
2588                 thread_data->td.td_deque_head, thread_data->td.td_deque_tail));
2589 
2590   if (TCR_4(thread_data->td.td_deque_ntasks) == 0) {
2591     KA_TRACE(10,
2592              ("__kmp_remove_my_task(exit #1): T#%d No tasks to remove: "
2593               "ntasks=%d head=%u tail=%u\n",
2594               gtid, thread_data->td.td_deque_ntasks,
2595               thread_data->td.td_deque_head, thread_data->td.td_deque_tail));
2596     return NULL;
2597   }
2598 
2599   __kmp_acquire_bootstrap_lock(&thread_data->td.td_deque_lock);
2600 
2601   if (TCR_4(thread_data->td.td_deque_ntasks) == 0) {
2602     __kmp_release_bootstrap_lock(&thread_data->td.td_deque_lock);
2603     KA_TRACE(10,
2604              ("__kmp_remove_my_task(exit #2): T#%d No tasks to remove: "
2605               "ntasks=%d head=%u tail=%u\n",
2606               gtid, thread_data->td.td_deque_ntasks,
2607               thread_data->td.td_deque_head, thread_data->td.td_deque_tail));
2608     return NULL;
2609   }
2610 
2611   tail = (thread_data->td.td_deque_tail - 1) &
2612          TASK_DEQUE_MASK(thread_data->td); // Wrap index.
2613   taskdata = thread_data->td.td_deque[tail];
2614 
2615   if (!__kmp_task_is_allowed(gtid, is_constrained, taskdata,
2616                              thread->th.th_current_task)) {
2617     // The TSC does not allow to steal victim task
2618     __kmp_release_bootstrap_lock(&thread_data->td.td_deque_lock);
2619     KA_TRACE(10,
2620              ("__kmp_remove_my_task(exit #3): T#%d TSC blocks tail task: "
2621               "ntasks=%d head=%u tail=%u\n",
2622               gtid, thread_data->td.td_deque_ntasks,
2623               thread_data->td.td_deque_head, thread_data->td.td_deque_tail));
2624     return NULL;
2625   }
2626 
2627   thread_data->td.td_deque_tail = tail;
2628   TCW_4(thread_data->td.td_deque_ntasks, thread_data->td.td_deque_ntasks - 1);
2629 
2630   __kmp_release_bootstrap_lock(&thread_data->td.td_deque_lock);
2631 
2632   KA_TRACE(10, ("__kmp_remove_my_task(exit #4): T#%d task %p removed: "
2633                 "ntasks=%d head=%u tail=%u\n",
2634                 gtid, taskdata, thread_data->td.td_deque_ntasks,
2635                 thread_data->td.td_deque_head, thread_data->td.td_deque_tail));
2636 
2637   task = KMP_TASKDATA_TO_TASK(taskdata);
2638   return task;
2639 }
2640 
2641 // __kmp_steal_task: remove a task from another thread's deque
2642 // Assume that calling thread has already checked existence of
2643 // task_team thread_data before calling this routine.
2644 static kmp_task_t *__kmp_steal_task(kmp_info_t *victim_thr, kmp_int32 gtid,
2645                                     kmp_task_team_t *task_team,
2646                                     std::atomic<kmp_int32> *unfinished_threads,
2647                                     int *thread_finished,
2648                                     kmp_int32 is_constrained) {
2649   kmp_task_t *task;
2650   kmp_taskdata_t *taskdata;
2651   kmp_taskdata_t *current;
2652   kmp_thread_data_t *victim_td, *threads_data;
2653   kmp_int32 target;
2654   kmp_int32 victim_tid;
2655 
2656   KMP_DEBUG_ASSERT(__kmp_tasking_mode != tskm_immediate_exec);
2657 
2658   threads_data = task_team->tt.tt_threads_data;
2659   KMP_DEBUG_ASSERT(threads_data != NULL); // Caller should check this condition
2660 
2661   victim_tid = victim_thr->th.th_info.ds.ds_tid;
2662   victim_td = &threads_data[victim_tid];
2663 
2664   KA_TRACE(10, ("__kmp_steal_task(enter): T#%d try to steal from T#%d: "
2665                 "task_team=%p ntasks=%d head=%u tail=%u\n",
2666                 gtid, __kmp_gtid_from_thread(victim_thr), task_team,
2667                 victim_td->td.td_deque_ntasks, victim_td->td.td_deque_head,
2668                 victim_td->td.td_deque_tail));
2669 
2670   if (TCR_4(victim_td->td.td_deque_ntasks) == 0) {
2671     KA_TRACE(10, ("__kmp_steal_task(exit #1): T#%d could not steal from T#%d: "
2672                   "task_team=%p ntasks=%d head=%u tail=%u\n",
2673                   gtid, __kmp_gtid_from_thread(victim_thr), task_team,
2674                   victim_td->td.td_deque_ntasks, victim_td->td.td_deque_head,
2675                   victim_td->td.td_deque_tail));
2676     return NULL;
2677   }
2678 
2679   __kmp_acquire_bootstrap_lock(&victim_td->td.td_deque_lock);
2680 
2681   int ntasks = TCR_4(victim_td->td.td_deque_ntasks);
2682   // Check again after we acquire the lock
2683   if (ntasks == 0) {
2684     __kmp_release_bootstrap_lock(&victim_td->td.td_deque_lock);
2685     KA_TRACE(10, ("__kmp_steal_task(exit #2): T#%d could not steal from T#%d: "
2686                   "task_team=%p ntasks=%d head=%u tail=%u\n",
2687                   gtid, __kmp_gtid_from_thread(victim_thr), task_team, ntasks,
2688                   victim_td->td.td_deque_head, victim_td->td.td_deque_tail));
2689     return NULL;
2690   }
2691 
2692   KMP_DEBUG_ASSERT(victim_td->td.td_deque != NULL);
2693   current = __kmp_threads[gtid]->th.th_current_task;
2694   taskdata = victim_td->td.td_deque[victim_td->td.td_deque_head];
2695   if (__kmp_task_is_allowed(gtid, is_constrained, taskdata, current)) {
2696     // Bump head pointer and Wrap.
2697     victim_td->td.td_deque_head =
2698         (victim_td->td.td_deque_head + 1) & TASK_DEQUE_MASK(victim_td->td);
2699   } else {
2700     if (!task_team->tt.tt_untied_task_encountered) {
2701       // The TSC does not allow to steal victim task
2702       __kmp_release_bootstrap_lock(&victim_td->td.td_deque_lock);
2703       KA_TRACE(10, ("__kmp_steal_task(exit #3): T#%d could not steal from "
2704                     "T#%d: task_team=%p ntasks=%d head=%u tail=%u\n",
2705                     gtid, __kmp_gtid_from_thread(victim_thr), task_team, ntasks,
2706                     victim_td->td.td_deque_head, victim_td->td.td_deque_tail));
2707       return NULL;
2708     }
2709     int i;
2710     // walk through victim's deque trying to steal any task
2711     target = victim_td->td.td_deque_head;
2712     taskdata = NULL;
2713     for (i = 1; i < ntasks; ++i) {
2714       target = (target + 1) & TASK_DEQUE_MASK(victim_td->td);
2715       taskdata = victim_td->td.td_deque[target];
2716       if (__kmp_task_is_allowed(gtid, is_constrained, taskdata, current)) {
2717         break; // found victim task
2718       } else {
2719         taskdata = NULL;
2720       }
2721     }
2722     if (taskdata == NULL) {
2723       // No appropriate candidate to steal found
2724       __kmp_release_bootstrap_lock(&victim_td->td.td_deque_lock);
2725       KA_TRACE(10, ("__kmp_steal_task(exit #4): T#%d could not steal from "
2726                     "T#%d: task_team=%p ntasks=%d head=%u tail=%u\n",
2727                     gtid, __kmp_gtid_from_thread(victim_thr), task_team, ntasks,
2728                     victim_td->td.td_deque_head, victim_td->td.td_deque_tail));
2729       return NULL;
2730     }
2731     int prev = target;
2732     for (i = i + 1; i < ntasks; ++i) {
2733       // shift remaining tasks in the deque left by 1
2734       target = (target + 1) & TASK_DEQUE_MASK(victim_td->td);
2735       victim_td->td.td_deque[prev] = victim_td->td.td_deque[target];
2736       prev = target;
2737     }
2738     KMP_DEBUG_ASSERT(
2739         victim_td->td.td_deque_tail ==
2740         (kmp_uint32)((target + 1) & TASK_DEQUE_MASK(victim_td->td)));
2741     victim_td->td.td_deque_tail = target; // tail -= 1 (wrapped))
2742   }
2743   if (*thread_finished) {
2744     // We need to un-mark this victim as a finished victim.  This must be done
2745     // before releasing the lock, or else other threads (starting with the
2746     // master victim) might be prematurely released from the barrier!!!
2747     kmp_int32 count;
2748 
2749     count = KMP_ATOMIC_INC(unfinished_threads);
2750 
2751     KA_TRACE(
2752         20,
2753         ("__kmp_steal_task: T#%d inc unfinished_threads to %d: task_team=%p\n",
2754          gtid, count + 1, task_team));
2755 
2756     *thread_finished = FALSE;
2757   }
2758   TCW_4(victim_td->td.td_deque_ntasks, ntasks - 1);
2759 
2760   __kmp_release_bootstrap_lock(&victim_td->td.td_deque_lock);
2761 
2762   KMP_COUNT_BLOCK(TASK_stolen);
2763   KA_TRACE(10,
2764            ("__kmp_steal_task(exit #5): T#%d stole task %p from T#%d: "
2765             "task_team=%p ntasks=%d head=%u tail=%u\n",
2766             gtid, taskdata, __kmp_gtid_from_thread(victim_thr), task_team,
2767             ntasks, victim_td->td.td_deque_head, victim_td->td.td_deque_tail));
2768 
2769   task = KMP_TASKDATA_TO_TASK(taskdata);
2770   return task;
2771 }
2772 
2773 // __kmp_execute_tasks_template: Choose and execute tasks until either the
2774 // condition is statisfied (return true) or there are none left (return false).
2775 //
2776 // final_spin is TRUE if this is the spin at the release barrier.
2777 // thread_finished indicates whether the thread is finished executing all
2778 // the tasks it has on its deque, and is at the release barrier.
2779 // spinner is the location on which to spin.
2780 // spinner == NULL means only execute a single task and return.
2781 // checker is the value to check to terminate the spin.
2782 template <class C>
2783 static inline int __kmp_execute_tasks_template(
2784     kmp_info_t *thread, kmp_int32 gtid, C *flag, int final_spin,
2785     int *thread_finished USE_ITT_BUILD_ARG(void *itt_sync_obj),
2786     kmp_int32 is_constrained) {
2787   kmp_task_team_t *task_team = thread->th.th_task_team;
2788   kmp_thread_data_t *threads_data;
2789   kmp_task_t *task;
2790   kmp_info_t *other_thread;
2791   kmp_taskdata_t *current_task = thread->th.th_current_task;
2792   std::atomic<kmp_int32> *unfinished_threads;
2793   kmp_int32 nthreads, victim_tid = -2, use_own_tasks = 1, new_victim = 0,
2794                       tid = thread->th.th_info.ds.ds_tid;
2795 
2796   KMP_DEBUG_ASSERT(__kmp_tasking_mode != tskm_immediate_exec);
2797   KMP_DEBUG_ASSERT(thread == __kmp_threads[gtid]);
2798 
2799   if (task_team == NULL || current_task == NULL)
2800     return FALSE;
2801 
2802   KA_TRACE(15, ("__kmp_execute_tasks_template(enter): T#%d final_spin=%d "
2803                 "*thread_finished=%d\n",
2804                 gtid, final_spin, *thread_finished));
2805 
2806   thread->th.th_reap_state = KMP_NOT_SAFE_TO_REAP;
2807   threads_data = (kmp_thread_data_t *)TCR_PTR(task_team->tt.tt_threads_data);
2808   KMP_DEBUG_ASSERT(threads_data != NULL);
2809 
2810   nthreads = task_team->tt.tt_nproc;
2811   unfinished_threads = &(task_team->tt.tt_unfinished_threads);
2812   KMP_DEBUG_ASSERT(nthreads > 1 || task_team->tt.tt_found_proxy_tasks);
2813   KMP_DEBUG_ASSERT(*unfinished_threads >= 0);
2814 
2815   while (1) { // Outer loop keeps trying to find tasks in case of single thread
2816     // getting tasks from target constructs
2817     while (1) { // Inner loop to find a task and execute it
2818       task = NULL;
2819       if (use_own_tasks) { // check on own queue first
2820         task = __kmp_remove_my_task(thread, gtid, task_team, is_constrained);
2821       }
2822       if ((task == NULL) && (nthreads > 1)) { // Steal a task
2823         int asleep = 1;
2824         use_own_tasks = 0;
2825         // Try to steal from the last place I stole from successfully.
2826         if (victim_tid == -2) { // haven't stolen anything yet
2827           victim_tid = threads_data[tid].td.td_deque_last_stolen;
2828           if (victim_tid !=
2829               -1) // if we have a last stolen from victim, get the thread
2830             other_thread = threads_data[victim_tid].td.td_thr;
2831         }
2832         if (victim_tid != -1) { // found last victim
2833           asleep = 0;
2834         } else if (!new_victim) { // no recent steals and we haven't already
2835           // used a new victim; select a random thread
2836           do { // Find a different thread to steal work from.
2837             // Pick a random thread. Initial plan was to cycle through all the
2838             // threads, and only return if we tried to steal from every thread,
2839             // and failed.  Arch says that's not such a great idea.
2840             victim_tid = __kmp_get_random(thread) % (nthreads - 1);
2841             if (victim_tid >= tid) {
2842               ++victim_tid; // Adjusts random distribution to exclude self
2843             }
2844             // Found a potential victim
2845             other_thread = threads_data[victim_tid].td.td_thr;
2846             // There is a slight chance that __kmp_enable_tasking() did not wake
2847             // up all threads waiting at the barrier.  If victim is sleeping,
2848             // then wake it up. Since we were going to pay the cache miss
2849             // penalty for referencing another thread's kmp_info_t struct
2850             // anyway,
2851             // the check shouldn't cost too much performance at this point. In
2852             // extra barrier mode, tasks do not sleep at the separate tasking
2853             // barrier, so this isn't a problem.
2854             asleep = 0;
2855             if ((__kmp_tasking_mode == tskm_task_teams) &&
2856                 (__kmp_dflt_blocktime != KMP_MAX_BLOCKTIME) &&
2857                 (TCR_PTR(CCAST(void *, other_thread->th.th_sleep_loc)) !=
2858                  NULL)) {
2859               asleep = 1;
2860               __kmp_null_resume_wrapper(__kmp_gtid_from_thread(other_thread),
2861                                         other_thread->th.th_sleep_loc);
2862               // A sleeping thread should not have any tasks on it's queue.
2863               // There is a slight possibility that it resumes, steals a task
2864               // from another thread, which spawns more tasks, all in the time
2865               // that it takes this thread to check => don't write an assertion
2866               // that the victim's queue is empty.  Try stealing from a
2867               // different thread.
2868             }
2869           } while (asleep);
2870         }
2871 
2872         if (!asleep) {
2873           // We have a victim to try to steal from
2874           task = __kmp_steal_task(other_thread, gtid, task_team,
2875                                   unfinished_threads, thread_finished,
2876                                   is_constrained);
2877         }
2878         if (task != NULL) { // set last stolen to victim
2879           if (threads_data[tid].td.td_deque_last_stolen != victim_tid) {
2880             threads_data[tid].td.td_deque_last_stolen = victim_tid;
2881             // The pre-refactored code did not try more than 1 successful new
2882             // vicitm, unless the last one generated more local tasks;
2883             // new_victim keeps track of this
2884             new_victim = 1;
2885           }
2886         } else { // No tasks found; unset last_stolen
2887           KMP_CHECK_UPDATE(threads_data[tid].td.td_deque_last_stolen, -1);
2888           victim_tid = -2; // no successful victim found
2889         }
2890       }
2891 
2892       if (task == NULL) // break out of tasking loop
2893         break;
2894 
2895 // Found a task; execute it
2896 #if USE_ITT_BUILD && USE_ITT_NOTIFY
2897       if (__itt_sync_create_ptr || KMP_ITT_DEBUG) {
2898         if (itt_sync_obj == NULL) { // we are at fork barrier where we could not
2899           // get the object reliably
2900           itt_sync_obj = __kmp_itt_barrier_object(gtid, bs_forkjoin_barrier);
2901         }
2902         __kmp_itt_task_starting(itt_sync_obj);
2903       }
2904 #endif /* USE_ITT_BUILD && USE_ITT_NOTIFY */
2905       __kmp_invoke_task(gtid, task, current_task);
2906 #if USE_ITT_BUILD
2907       if (itt_sync_obj != NULL)
2908         __kmp_itt_task_finished(itt_sync_obj);
2909 #endif /* USE_ITT_BUILD */
2910       // If this thread is only partway through the barrier and the condition is
2911       // met, then return now, so that the barrier gather/release pattern can
2912       // proceed. If this thread is in the last spin loop in the barrier,
2913       // waiting to be released, we know that the termination condition will not
2914       // be satisified, so don't waste any cycles checking it.
2915       if (flag == NULL || (!final_spin && flag->done_check())) {
2916         KA_TRACE(
2917             15,
2918             ("__kmp_execute_tasks_template: T#%d spin condition satisfied\n",
2919              gtid));
2920         return TRUE;
2921       }
2922       if (thread->th.th_task_team == NULL) {
2923         break;
2924       }
2925       KMP_YIELD(__kmp_library == library_throughput); // Yield before next task
2926       // If execution of a stolen task results in more tasks being placed on our
2927       // run queue, reset use_own_tasks
2928       if (!use_own_tasks && TCR_4(threads_data[tid].td.td_deque_ntasks) != 0) {
2929         KA_TRACE(20, ("__kmp_execute_tasks_template: T#%d stolen task spawned "
2930                       "other tasks, restart\n",
2931                       gtid));
2932         use_own_tasks = 1;
2933         new_victim = 0;
2934       }
2935     }
2936 
2937     // The task source has been exhausted. If in final spin loop of barrier,
2938     // check if termination condition is satisfied. The work queue may be empty
2939     // but there might be proxy tasks still executing.
2940     if (final_spin &&
2941         KMP_ATOMIC_LD_ACQ(&current_task->td_incomplete_child_tasks) == 0) {
2942       // First, decrement the #unfinished threads, if that has not already been
2943       // done.  This decrement might be to the spin location, and result in the
2944       // termination condition being satisfied.
2945       if (!*thread_finished) {
2946         kmp_int32 count;
2947 
2948         count = KMP_ATOMIC_DEC(unfinished_threads) - 1;
2949         KA_TRACE(20, ("__kmp_execute_tasks_template: T#%d dec "
2950                       "unfinished_threads to %d task_team=%p\n",
2951                       gtid, count, task_team));
2952         *thread_finished = TRUE;
2953       }
2954 
2955       // It is now unsafe to reference thread->th.th_team !!!
2956       // Decrementing task_team->tt.tt_unfinished_threads can allow the master
2957       // thread to pass through the barrier, where it might reset each thread's
2958       // th.th_team field for the next parallel region. If we can steal more
2959       // work, we know that this has not happened yet.
2960       if (flag != NULL && flag->done_check()) {
2961         KA_TRACE(
2962             15,
2963             ("__kmp_execute_tasks_template: T#%d spin condition satisfied\n",
2964              gtid));
2965         return TRUE;
2966       }
2967     }
2968 
2969     // If this thread's task team is NULL, master has recognized that there are
2970     // no more tasks; bail out
2971     if (thread->th.th_task_team == NULL) {
2972       KA_TRACE(15,
2973                ("__kmp_execute_tasks_template: T#%d no more tasks\n", gtid));
2974       return FALSE;
2975     }
2976 
2977     // We could be getting tasks from target constructs; if this is the only
2978     // thread, keep trying to execute tasks from own queue
2979     if (nthreads == 1)
2980       use_own_tasks = 1;
2981     else {
2982       KA_TRACE(15,
2983                ("__kmp_execute_tasks_template: T#%d can't find work\n", gtid));
2984       return FALSE;
2985     }
2986   }
2987 }
2988 
2989 int __kmp_execute_tasks_32(
2990     kmp_info_t *thread, kmp_int32 gtid, kmp_flag_32 *flag, int final_spin,
2991     int *thread_finished USE_ITT_BUILD_ARG(void *itt_sync_obj),
2992     kmp_int32 is_constrained) {
2993   return __kmp_execute_tasks_template(
2994       thread, gtid, flag, final_spin,
2995       thread_finished USE_ITT_BUILD_ARG(itt_sync_obj), is_constrained);
2996 }
2997 
2998 int __kmp_execute_tasks_64(
2999     kmp_info_t *thread, kmp_int32 gtid, kmp_flag_64 *flag, int final_spin,
3000     int *thread_finished USE_ITT_BUILD_ARG(void *itt_sync_obj),
3001     kmp_int32 is_constrained) {
3002   return __kmp_execute_tasks_template(
3003       thread, gtid, flag, final_spin,
3004       thread_finished USE_ITT_BUILD_ARG(itt_sync_obj), is_constrained);
3005 }
3006 
3007 int __kmp_execute_tasks_oncore(
3008     kmp_info_t *thread, kmp_int32 gtid, kmp_flag_oncore *flag, int final_spin,
3009     int *thread_finished USE_ITT_BUILD_ARG(void *itt_sync_obj),
3010     kmp_int32 is_constrained) {
3011   return __kmp_execute_tasks_template(
3012       thread, gtid, flag, final_spin,
3013       thread_finished USE_ITT_BUILD_ARG(itt_sync_obj), is_constrained);
3014 }
3015 
3016 // __kmp_enable_tasking: Allocate task team and resume threads sleeping at the
3017 // next barrier so they can assist in executing enqueued tasks.
3018 // First thread in allocates the task team atomically.
3019 static void __kmp_enable_tasking(kmp_task_team_t *task_team,
3020                                  kmp_info_t *this_thr) {
3021   kmp_thread_data_t *threads_data;
3022   int nthreads, i, is_init_thread;
3023 
3024   KA_TRACE(10, ("__kmp_enable_tasking(enter): T#%d\n",
3025                 __kmp_gtid_from_thread(this_thr)));
3026 
3027   KMP_DEBUG_ASSERT(task_team != NULL);
3028   KMP_DEBUG_ASSERT(this_thr->th.th_team != NULL);
3029 
3030   nthreads = task_team->tt.tt_nproc;
3031   KMP_DEBUG_ASSERT(nthreads > 0);
3032   KMP_DEBUG_ASSERT(nthreads == this_thr->th.th_team->t.t_nproc);
3033 
3034   // Allocate or increase the size of threads_data if necessary
3035   is_init_thread = __kmp_realloc_task_threads_data(this_thr, task_team);
3036 
3037   if (!is_init_thread) {
3038     // Some other thread already set up the array.
3039     KA_TRACE(
3040         20,
3041         ("__kmp_enable_tasking(exit): T#%d: threads array already set up.\n",
3042          __kmp_gtid_from_thread(this_thr)));
3043     return;
3044   }
3045   threads_data = (kmp_thread_data_t *)TCR_PTR(task_team->tt.tt_threads_data);
3046   KMP_DEBUG_ASSERT(threads_data != NULL);
3047 
3048   if (__kmp_tasking_mode == tskm_task_teams &&
3049       (__kmp_dflt_blocktime != KMP_MAX_BLOCKTIME)) {
3050     // Release any threads sleeping at the barrier, so that they can steal
3051     // tasks and execute them.  In extra barrier mode, tasks do not sleep
3052     // at the separate tasking barrier, so this isn't a problem.
3053     for (i = 0; i < nthreads; i++) {
3054       volatile void *sleep_loc;
3055       kmp_info_t *thread = threads_data[i].td.td_thr;
3056 
3057       if (i == this_thr->th.th_info.ds.ds_tid) {
3058         continue;
3059       }
3060       // Since we haven't locked the thread's suspend mutex lock at this
3061       // point, there is a small window where a thread might be putting
3062       // itself to sleep, but hasn't set the th_sleep_loc field yet.
3063       // To work around this, __kmp_execute_tasks_template() periodically checks
3064       // see if other threads are sleeping (using the same random mechanism that
3065       // is used for task stealing) and awakens them if they are.
3066       if ((sleep_loc = TCR_PTR(CCAST(void *, thread->th.th_sleep_loc))) !=
3067           NULL) {
3068         KF_TRACE(50, ("__kmp_enable_tasking: T#%d waking up thread T#%d\n",
3069                       __kmp_gtid_from_thread(this_thr),
3070                       __kmp_gtid_from_thread(thread)));
3071         __kmp_null_resume_wrapper(__kmp_gtid_from_thread(thread), sleep_loc);
3072       } else {
3073         KF_TRACE(50, ("__kmp_enable_tasking: T#%d don't wake up thread T#%d\n",
3074                       __kmp_gtid_from_thread(this_thr),
3075                       __kmp_gtid_from_thread(thread)));
3076       }
3077     }
3078   }
3079 
3080   KA_TRACE(10, ("__kmp_enable_tasking(exit): T#%d\n",
3081                 __kmp_gtid_from_thread(this_thr)));
3082 }
3083 
3084 /* // TODO: Check the comment consistency
3085  * Utility routines for "task teams".  A task team (kmp_task_t) is kind of
3086  * like a shadow of the kmp_team_t data struct, with a different lifetime.
3087  * After a child * thread checks into a barrier and calls __kmp_release() from
3088  * the particular variant of __kmp_<barrier_kind>_barrier_gather(), it can no
3089  * longer assume that the kmp_team_t structure is intact (at any moment, the
3090  * master thread may exit the barrier code and free the team data structure,
3091  * and return the threads to the thread pool).
3092  *
3093  * This does not work with the tasking code, as the thread is still
3094  * expected to participate in the execution of any tasks that may have been
3095  * spawned my a member of the team, and the thread still needs access to all
3096  * to each thread in the team, so that it can steal work from it.
3097  *
3098  * Enter the existence of the kmp_task_team_t struct.  It employs a reference
3099  * counting mechanims, and is allocated by the master thread before calling
3100  * __kmp_<barrier_kind>_release, and then is release by the last thread to
3101  * exit __kmp_<barrier_kind>_release at the next barrier.  I.e. the lifetimes
3102  * of the kmp_task_team_t structs for consecutive barriers can overlap
3103  * (and will, unless the master thread is the last thread to exit the barrier
3104  * release phase, which is not typical). The existence of such a struct is
3105  * useful outside the context of tasking.
3106  *
3107  * We currently use the existence of the threads array as an indicator that
3108  * tasks were spawned since the last barrier.  If the structure is to be
3109  * useful outside the context of tasking, then this will have to change, but
3110  * not settting the field minimizes the performance impact of tasking on
3111  * barriers, when no explicit tasks were spawned (pushed, actually).
3112  */
3113 
3114 static kmp_task_team_t *__kmp_free_task_teams =
3115     NULL; // Free list for task_team data structures
3116 // Lock for task team data structures
3117 kmp_bootstrap_lock_t __kmp_task_team_lock =
3118     KMP_BOOTSTRAP_LOCK_INITIALIZER(__kmp_task_team_lock);
3119 
3120 // __kmp_alloc_task_deque:
3121 // Allocates a task deque for a particular thread, and initialize the necessary
3122 // data structures relating to the deque.  This only happens once per thread
3123 // per task team since task teams are recycled. No lock is needed during
3124 // allocation since each thread allocates its own deque.
3125 static void __kmp_alloc_task_deque(kmp_info_t *thread,
3126                                    kmp_thread_data_t *thread_data) {
3127   __kmp_init_bootstrap_lock(&thread_data->td.td_deque_lock);
3128   KMP_DEBUG_ASSERT(thread_data->td.td_deque == NULL);
3129 
3130   // Initialize last stolen task field to "none"
3131   thread_data->td.td_deque_last_stolen = -1;
3132 
3133   KMP_DEBUG_ASSERT(TCR_4(thread_data->td.td_deque_ntasks) == 0);
3134   KMP_DEBUG_ASSERT(thread_data->td.td_deque_head == 0);
3135   KMP_DEBUG_ASSERT(thread_data->td.td_deque_tail == 0);
3136 
3137   KE_TRACE(
3138       10,
3139       ("__kmp_alloc_task_deque: T#%d allocating deque[%d] for thread_data %p\n",
3140        __kmp_gtid_from_thread(thread), INITIAL_TASK_DEQUE_SIZE, thread_data));
3141   // Allocate space for task deque, and zero the deque
3142   // Cannot use __kmp_thread_calloc() because threads not around for
3143   // kmp_reap_task_team( ).
3144   thread_data->td.td_deque = (kmp_taskdata_t **)__kmp_allocate(
3145       INITIAL_TASK_DEQUE_SIZE * sizeof(kmp_taskdata_t *));
3146   thread_data->td.td_deque_size = INITIAL_TASK_DEQUE_SIZE;
3147 }
3148 
3149 // __kmp_free_task_deque:
3150 // Deallocates a task deque for a particular thread. Happens at library
3151 // deallocation so don't need to reset all thread data fields.
3152 static void __kmp_free_task_deque(kmp_thread_data_t *thread_data) {
3153   if (thread_data->td.td_deque != NULL) {
3154     __kmp_acquire_bootstrap_lock(&thread_data->td.td_deque_lock);
3155     TCW_4(thread_data->td.td_deque_ntasks, 0);
3156     __kmp_free(thread_data->td.td_deque);
3157     thread_data->td.td_deque = NULL;
3158     __kmp_release_bootstrap_lock(&thread_data->td.td_deque_lock);
3159   }
3160 
3161 #ifdef BUILD_TIED_TASK_STACK
3162   // GEH: Figure out what to do here for td_susp_tied_tasks
3163   if (thread_data->td.td_susp_tied_tasks.ts_entries != TASK_STACK_EMPTY) {
3164     __kmp_free_task_stack(__kmp_thread_from_gtid(gtid), thread_data);
3165   }
3166 #endif // BUILD_TIED_TASK_STACK
3167 }
3168 
3169 // __kmp_realloc_task_threads_data:
3170 // Allocates a threads_data array for a task team, either by allocating an
3171 // initial array or enlarging an existing array.  Only the first thread to get
3172 // the lock allocs or enlarges the array and re-initializes the array elements.
3173 // That thread returns "TRUE", the rest return "FALSE".
3174 // Assumes that the new array size is given by task_team -> tt.tt_nproc.
3175 // The current size is given by task_team -> tt.tt_max_threads.
3176 static int __kmp_realloc_task_threads_data(kmp_info_t *thread,
3177                                            kmp_task_team_t *task_team) {
3178   kmp_thread_data_t **threads_data_p;
3179   kmp_int32 nthreads, maxthreads;
3180   int is_init_thread = FALSE;
3181 
3182   if (TCR_4(task_team->tt.tt_found_tasks)) {
3183     // Already reallocated and initialized.
3184     return FALSE;
3185   }
3186 
3187   threads_data_p = &task_team->tt.tt_threads_data;
3188   nthreads = task_team->tt.tt_nproc;
3189   maxthreads = task_team->tt.tt_max_threads;
3190 
3191   // All threads must lock when they encounter the first task of the implicit
3192   // task region to make sure threads_data fields are (re)initialized before
3193   // used.
3194   __kmp_acquire_bootstrap_lock(&task_team->tt.tt_threads_lock);
3195 
3196   if (!TCR_4(task_team->tt.tt_found_tasks)) {
3197     // first thread to enable tasking
3198     kmp_team_t *team = thread->th.th_team;
3199     int i;
3200 
3201     is_init_thread = TRUE;
3202     if (maxthreads < nthreads) {
3203 
3204       if (*threads_data_p != NULL) {
3205         kmp_thread_data_t *old_data = *threads_data_p;
3206         kmp_thread_data_t *new_data = NULL;
3207 
3208         KE_TRACE(
3209             10,
3210             ("__kmp_realloc_task_threads_data: T#%d reallocating "
3211              "threads data for task_team %p, new_size = %d, old_size = %d\n",
3212              __kmp_gtid_from_thread(thread), task_team, nthreads, maxthreads));
3213         // Reallocate threads_data to have more elements than current array
3214         // Cannot use __kmp_thread_realloc() because threads not around for
3215         // kmp_reap_task_team( ).  Note all new array entries are initialized
3216         // to zero by __kmp_allocate().
3217         new_data = (kmp_thread_data_t *)__kmp_allocate(
3218             nthreads * sizeof(kmp_thread_data_t));
3219         // copy old data to new data
3220         KMP_MEMCPY_S((void *)new_data, nthreads * sizeof(kmp_thread_data_t),
3221                      (void *)old_data, maxthreads * sizeof(kmp_thread_data_t));
3222 
3223 #ifdef BUILD_TIED_TASK_STACK
3224         // GEH: Figure out if this is the right thing to do
3225         for (i = maxthreads; i < nthreads; i++) {
3226           kmp_thread_data_t *thread_data = &(*threads_data_p)[i];
3227           __kmp_init_task_stack(__kmp_gtid_from_thread(thread), thread_data);
3228         }
3229 #endif // BUILD_TIED_TASK_STACK
3230         // Install the new data and free the old data
3231         (*threads_data_p) = new_data;
3232         __kmp_free(old_data);
3233       } else {
3234         KE_TRACE(10, ("__kmp_realloc_task_threads_data: T#%d allocating "
3235                       "threads data for task_team %p, size = %d\n",
3236                       __kmp_gtid_from_thread(thread), task_team, nthreads));
3237         // Make the initial allocate for threads_data array, and zero entries
3238         // Cannot use __kmp_thread_calloc() because threads not around for
3239         // kmp_reap_task_team( ).
3240         ANNOTATE_IGNORE_WRITES_BEGIN();
3241         *threads_data_p = (kmp_thread_data_t *)__kmp_allocate(
3242             nthreads * sizeof(kmp_thread_data_t));
3243         ANNOTATE_IGNORE_WRITES_END();
3244 #ifdef BUILD_TIED_TASK_STACK
3245         // GEH: Figure out if this is the right thing to do
3246         for (i = 0; i < nthreads; i++) {
3247           kmp_thread_data_t *thread_data = &(*threads_data_p)[i];
3248           __kmp_init_task_stack(__kmp_gtid_from_thread(thread), thread_data);
3249         }
3250 #endif // BUILD_TIED_TASK_STACK
3251       }
3252       task_team->tt.tt_max_threads = nthreads;
3253     } else {
3254       // If array has (more than) enough elements, go ahead and use it
3255       KMP_DEBUG_ASSERT(*threads_data_p != NULL);
3256     }
3257 
3258     // initialize threads_data pointers back to thread_info structures
3259     for (i = 0; i < nthreads; i++) {
3260       kmp_thread_data_t *thread_data = &(*threads_data_p)[i];
3261       thread_data->td.td_thr = team->t.t_threads[i];
3262 
3263       if (thread_data->td.td_deque_last_stolen >= nthreads) {
3264         // The last stolen field survives across teams / barrier, and the number
3265         // of threads may have changed.  It's possible (likely?) that a new
3266         // parallel region will exhibit the same behavior as previous region.
3267         thread_data->td.td_deque_last_stolen = -1;
3268       }
3269     }
3270 
3271     KMP_MB();
3272     TCW_SYNC_4(task_team->tt.tt_found_tasks, TRUE);
3273   }
3274 
3275   __kmp_release_bootstrap_lock(&task_team->tt.tt_threads_lock);
3276   return is_init_thread;
3277 }
3278 
3279 // __kmp_free_task_threads_data:
3280 // Deallocates a threads_data array for a task team, including any attached
3281 // tasking deques.  Only occurs at library shutdown.
3282 static void __kmp_free_task_threads_data(kmp_task_team_t *task_team) {
3283   __kmp_acquire_bootstrap_lock(&task_team->tt.tt_threads_lock);
3284   if (task_team->tt.tt_threads_data != NULL) {
3285     int i;
3286     for (i = 0; i < task_team->tt.tt_max_threads; i++) {
3287       __kmp_free_task_deque(&task_team->tt.tt_threads_data[i]);
3288     }
3289     __kmp_free(task_team->tt.tt_threads_data);
3290     task_team->tt.tt_threads_data = NULL;
3291   }
3292   __kmp_release_bootstrap_lock(&task_team->tt.tt_threads_lock);
3293 }
3294 
3295 // __kmp_allocate_task_team:
3296 // Allocates a task team associated with a specific team, taking it from
3297 // the global task team free list if possible.  Also initializes data
3298 // structures.
3299 static kmp_task_team_t *__kmp_allocate_task_team(kmp_info_t *thread,
3300                                                  kmp_team_t *team) {
3301   kmp_task_team_t *task_team = NULL;
3302   int nthreads;
3303 
3304   KA_TRACE(20, ("__kmp_allocate_task_team: T#%d entering; team = %p\n",
3305                 (thread ? __kmp_gtid_from_thread(thread) : -1), team));
3306 
3307   if (TCR_PTR(__kmp_free_task_teams) != NULL) {
3308     // Take a task team from the task team pool
3309     __kmp_acquire_bootstrap_lock(&__kmp_task_team_lock);
3310     if (__kmp_free_task_teams != NULL) {
3311       task_team = __kmp_free_task_teams;
3312       TCW_PTR(__kmp_free_task_teams, task_team->tt.tt_next);
3313       task_team->tt.tt_next = NULL;
3314     }
3315     __kmp_release_bootstrap_lock(&__kmp_task_team_lock);
3316   }
3317 
3318   if (task_team == NULL) {
3319     KE_TRACE(10, ("__kmp_allocate_task_team: T#%d allocating "
3320                   "task team for team %p\n",
3321                   __kmp_gtid_from_thread(thread), team));
3322     // Allocate a new task team if one is not available.
3323     // Cannot use __kmp_thread_malloc() because threads not around for
3324     // kmp_reap_task_team( ).
3325     task_team = (kmp_task_team_t *)__kmp_allocate(sizeof(kmp_task_team_t));
3326     __kmp_init_bootstrap_lock(&task_team->tt.tt_threads_lock);
3327     // AC: __kmp_allocate zeroes returned memory
3328     // task_team -> tt.tt_threads_data = NULL;
3329     // task_team -> tt.tt_max_threads = 0;
3330     // task_team -> tt.tt_next = NULL;
3331   }
3332 
3333   TCW_4(task_team->tt.tt_found_tasks, FALSE);
3334   TCW_4(task_team->tt.tt_found_proxy_tasks, FALSE);
3335   task_team->tt.tt_nproc = nthreads = team->t.t_nproc;
3336 
3337   KMP_ATOMIC_ST_REL(&task_team->tt.tt_unfinished_threads, nthreads);
3338   TCW_4(task_team->tt.tt_active, TRUE);
3339 
3340   KA_TRACE(20, ("__kmp_allocate_task_team: T#%d exiting; task_team = %p "
3341                 "unfinished_threads init'd to %d\n",
3342                 (thread ? __kmp_gtid_from_thread(thread) : -1), task_team,
3343                 KMP_ATOMIC_LD_RLX(&task_team->tt.tt_unfinished_threads)));
3344   return task_team;
3345 }
3346 
3347 // __kmp_free_task_team:
3348 // Frees the task team associated with a specific thread, and adds it
3349 // to the global task team free list.
3350 void __kmp_free_task_team(kmp_info_t *thread, kmp_task_team_t *task_team) {
3351   KA_TRACE(20, ("__kmp_free_task_team: T#%d task_team = %p\n",
3352                 thread ? __kmp_gtid_from_thread(thread) : -1, task_team));
3353 
3354   // Put task team back on free list
3355   __kmp_acquire_bootstrap_lock(&__kmp_task_team_lock);
3356 
3357   KMP_DEBUG_ASSERT(task_team->tt.tt_next == NULL);
3358   task_team->tt.tt_next = __kmp_free_task_teams;
3359   TCW_PTR(__kmp_free_task_teams, task_team);
3360 
3361   __kmp_release_bootstrap_lock(&__kmp_task_team_lock);
3362 }
3363 
3364 // __kmp_reap_task_teams:
3365 // Free all the task teams on the task team free list.
3366 // Should only be done during library shutdown.
3367 // Cannot do anything that needs a thread structure or gtid since they are
3368 // already gone.
3369 void __kmp_reap_task_teams(void) {
3370   kmp_task_team_t *task_team;
3371 
3372   if (TCR_PTR(__kmp_free_task_teams) != NULL) {
3373     // Free all task_teams on the free list
3374     __kmp_acquire_bootstrap_lock(&__kmp_task_team_lock);
3375     while ((task_team = __kmp_free_task_teams) != NULL) {
3376       __kmp_free_task_teams = task_team->tt.tt_next;
3377       task_team->tt.tt_next = NULL;
3378 
3379       // Free threads_data if necessary
3380       if (task_team->tt.tt_threads_data != NULL) {
3381         __kmp_free_task_threads_data(task_team);
3382       }
3383       __kmp_free(task_team);
3384     }
3385     __kmp_release_bootstrap_lock(&__kmp_task_team_lock);
3386   }
3387 }
3388 
3389 // __kmp_wait_to_unref_task_teams:
3390 // Some threads could still be in the fork barrier release code, possibly
3391 // trying to steal tasks.  Wait for each thread to unreference its task team.
3392 void __kmp_wait_to_unref_task_teams(void) {
3393   kmp_info_t *thread;
3394   kmp_uint32 spins;
3395   int done;
3396 
3397   KMP_INIT_YIELD(spins);
3398 
3399   for (;;) {
3400     done = TRUE;
3401 
3402     // TODO: GEH - this may be is wrong because some sync would be necessary
3403     // in case threads are added to the pool during the traversal. Need to
3404     // verify that lock for thread pool is held when calling this routine.
3405     for (thread = CCAST(kmp_info_t *, __kmp_thread_pool); thread != NULL;
3406          thread = thread->th.th_next_pool) {
3407 #if KMP_OS_WINDOWS
3408       DWORD exit_val;
3409 #endif
3410       if (TCR_PTR(thread->th.th_task_team) == NULL) {
3411         KA_TRACE(10, ("__kmp_wait_to_unref_task_team: T#%d task_team == NULL\n",
3412                       __kmp_gtid_from_thread(thread)));
3413         continue;
3414       }
3415 #if KMP_OS_WINDOWS
3416       // TODO: GEH - add this check for Linux* OS / OS X* as well?
3417       if (!__kmp_is_thread_alive(thread, &exit_val)) {
3418         thread->th.th_task_team = NULL;
3419         continue;
3420       }
3421 #endif
3422 
3423       done = FALSE; // Because th_task_team pointer is not NULL for this thread
3424 
3425       KA_TRACE(10, ("__kmp_wait_to_unref_task_team: Waiting for T#%d to "
3426                     "unreference task_team\n",
3427                     __kmp_gtid_from_thread(thread)));
3428 
3429       if (__kmp_dflt_blocktime != KMP_MAX_BLOCKTIME) {
3430         volatile void *sleep_loc;
3431         // If the thread is sleeping, awaken it.
3432         if ((sleep_loc = TCR_PTR(CCAST(void *, thread->th.th_sleep_loc))) !=
3433             NULL) {
3434           KA_TRACE(
3435               10,
3436               ("__kmp_wait_to_unref_task_team: T#%d waking up thread T#%d\n",
3437                __kmp_gtid_from_thread(thread), __kmp_gtid_from_thread(thread)));
3438           __kmp_null_resume_wrapper(__kmp_gtid_from_thread(thread), sleep_loc);
3439         }
3440       }
3441     }
3442     if (done) {
3443       break;
3444     }
3445 
3446     // If oversubscribed or have waited a bit, yield.
3447     KMP_YIELD_OVERSUB_ELSE_SPIN(spins);
3448   }
3449 }
3450 
3451 // __kmp_task_team_setup:  Create a task_team for the current team, but use
3452 // an already created, unused one if it already exists.
3453 void __kmp_task_team_setup(kmp_info_t *this_thr, kmp_team_t *team, int always) {
3454   KMP_DEBUG_ASSERT(__kmp_tasking_mode != tskm_immediate_exec);
3455 
3456   // If this task_team hasn't been created yet, allocate it. It will be used in
3457   // the region after the next.
3458   // If it exists, it is the current task team and shouldn't be touched yet as
3459   // it may still be in use.
3460   if (team->t.t_task_team[this_thr->th.th_task_state] == NULL &&
3461       (always || team->t.t_nproc > 1)) {
3462     team->t.t_task_team[this_thr->th.th_task_state] =
3463         __kmp_allocate_task_team(this_thr, team);
3464     KA_TRACE(20, ("__kmp_task_team_setup: Master T#%d created new task_team %p "
3465                   "for team %d at parity=%d\n",
3466                   __kmp_gtid_from_thread(this_thr),
3467                   team->t.t_task_team[this_thr->th.th_task_state],
3468                   ((team != NULL) ? team->t.t_id : -1),
3469                   this_thr->th.th_task_state));
3470   }
3471 
3472   // After threads exit the release, they will call sync, and then point to this
3473   // other task_team; make sure it is allocated and properly initialized. As
3474   // threads spin in the barrier release phase, they will continue to use the
3475   // previous task_team struct(above), until they receive the signal to stop
3476   // checking for tasks (they can't safely reference the kmp_team_t struct,
3477   // which could be reallocated by the master thread). No task teams are formed
3478   // for serialized teams.
3479   if (team->t.t_nproc > 1) {
3480     int other_team = 1 - this_thr->th.th_task_state;
3481     if (team->t.t_task_team[other_team] == NULL) { // setup other team as well
3482       team->t.t_task_team[other_team] =
3483           __kmp_allocate_task_team(this_thr, team);
3484       KA_TRACE(20, ("__kmp_task_team_setup: Master T#%d created second new "
3485                     "task_team %p for team %d at parity=%d\n",
3486                     __kmp_gtid_from_thread(this_thr),
3487                     team->t.t_task_team[other_team],
3488                     ((team != NULL) ? team->t.t_id : -1), other_team));
3489     } else { // Leave the old task team struct in place for the upcoming region;
3490       // adjust as needed
3491       kmp_task_team_t *task_team = team->t.t_task_team[other_team];
3492       if (!task_team->tt.tt_active ||
3493           team->t.t_nproc != task_team->tt.tt_nproc) {
3494         TCW_4(task_team->tt.tt_nproc, team->t.t_nproc);
3495         TCW_4(task_team->tt.tt_found_tasks, FALSE);
3496         TCW_4(task_team->tt.tt_found_proxy_tasks, FALSE);
3497         KMP_ATOMIC_ST_REL(&task_team->tt.tt_unfinished_threads,
3498                           team->t.t_nproc);
3499         TCW_4(task_team->tt.tt_active, TRUE);
3500       }
3501       // if team size has changed, the first thread to enable tasking will
3502       // realloc threads_data if necessary
3503       KA_TRACE(20, ("__kmp_task_team_setup: Master T#%d reset next task_team "
3504                     "%p for team %d at parity=%d\n",
3505                     __kmp_gtid_from_thread(this_thr),
3506                     team->t.t_task_team[other_team],
3507                     ((team != NULL) ? team->t.t_id : -1), other_team));
3508     }
3509   }
3510 }
3511 
3512 // __kmp_task_team_sync: Propagation of task team data from team to threads
3513 // which happens just after the release phase of a team barrier.  This may be
3514 // called by any thread, but only for teams with # threads > 1.
3515 void __kmp_task_team_sync(kmp_info_t *this_thr, kmp_team_t *team) {
3516   KMP_DEBUG_ASSERT(__kmp_tasking_mode != tskm_immediate_exec);
3517 
3518   // Toggle the th_task_state field, to switch which task_team this thread
3519   // refers to
3520   this_thr->th.th_task_state = 1 - this_thr->th.th_task_state;
3521   // It is now safe to propagate the task team pointer from the team struct to
3522   // the current thread.
3523   TCW_PTR(this_thr->th.th_task_team,
3524           team->t.t_task_team[this_thr->th.th_task_state]);
3525   KA_TRACE(20,
3526            ("__kmp_task_team_sync: Thread T#%d task team switched to task_team "
3527             "%p from Team #%d (parity=%d)\n",
3528             __kmp_gtid_from_thread(this_thr), this_thr->th.th_task_team,
3529             ((team != NULL) ? team->t.t_id : -1), this_thr->th.th_task_state));
3530 }
3531 
3532 // __kmp_task_team_wait: Master thread waits for outstanding tasks after the
3533 // barrier gather phase. Only called by master thread if #threads in team > 1 or
3534 // if proxy tasks were created.
3535 //
3536 // wait is a flag that defaults to 1 (see kmp.h), but waiting can be turned off
3537 // by passing in 0 optionally as the last argument. When wait is zero, master
3538 // thread does not wait for unfinished_threads to reach 0.
3539 void __kmp_task_team_wait(
3540     kmp_info_t *this_thr,
3541     kmp_team_t *team USE_ITT_BUILD_ARG(void *itt_sync_obj), int wait) {
3542   kmp_task_team_t *task_team = team->t.t_task_team[this_thr->th.th_task_state];
3543 
3544   KMP_DEBUG_ASSERT(__kmp_tasking_mode != tskm_immediate_exec);
3545   KMP_DEBUG_ASSERT(task_team == this_thr->th.th_task_team);
3546 
3547   if ((task_team != NULL) && KMP_TASKING_ENABLED(task_team)) {
3548     if (wait) {
3549       KA_TRACE(20, ("__kmp_task_team_wait: Master T#%d waiting for all tasks "
3550                     "(for unfinished_threads to reach 0) on task_team = %p\n",
3551                     __kmp_gtid_from_thread(this_thr), task_team));
3552       // Worker threads may have dropped through to release phase, but could
3553       // still be executing tasks. Wait here for tasks to complete. To avoid
3554       // memory contention, only master thread checks termination condition.
3555       kmp_flag_32 flag(RCAST(std::atomic<kmp_uint32> *,
3556                              &task_team->tt.tt_unfinished_threads),
3557                        0U);
3558       flag.wait(this_thr, TRUE USE_ITT_BUILD_ARG(itt_sync_obj));
3559     }
3560     // Deactivate the old task team, so that the worker threads will stop
3561     // referencing it while spinning.
3562     KA_TRACE(
3563         20,
3564         ("__kmp_task_team_wait: Master T#%d deactivating task_team %p: "
3565          "setting active to false, setting local and team's pointer to NULL\n",
3566          __kmp_gtid_from_thread(this_thr), task_team));
3567     KMP_DEBUG_ASSERT(task_team->tt.tt_nproc > 1 ||
3568                      task_team->tt.tt_found_proxy_tasks == TRUE);
3569     TCW_SYNC_4(task_team->tt.tt_found_proxy_tasks, FALSE);
3570     KMP_CHECK_UPDATE(task_team->tt.tt_untied_task_encountered, 0);
3571     TCW_SYNC_4(task_team->tt.tt_active, FALSE);
3572     KMP_MB();
3573 
3574     TCW_PTR(this_thr->th.th_task_team, NULL);
3575   }
3576 }
3577 
3578 // __kmp_tasking_barrier:
3579 // This routine may only called when __kmp_tasking_mode == tskm_extra_barrier.
3580 // Internal function to execute all tasks prior to a regular barrier or a join
3581 // barrier. It is a full barrier itself, which unfortunately turns regular
3582 // barriers into double barriers and join barriers into 1 1/2 barriers.
3583 void __kmp_tasking_barrier(kmp_team_t *team, kmp_info_t *thread, int gtid) {
3584   std::atomic<kmp_uint32> *spin = RCAST(
3585       std::atomic<kmp_uint32> *,
3586       &team->t.t_task_team[thread->th.th_task_state]->tt.tt_unfinished_threads);
3587   int flag = FALSE;
3588   KMP_DEBUG_ASSERT(__kmp_tasking_mode == tskm_extra_barrier);
3589 
3590 #if USE_ITT_BUILD
3591   KMP_FSYNC_SPIN_INIT(spin, NULL);
3592 #endif /* USE_ITT_BUILD */
3593   kmp_flag_32 spin_flag(spin, 0U);
3594   while (!spin_flag.execute_tasks(thread, gtid, TRUE,
3595                                   &flag USE_ITT_BUILD_ARG(NULL), 0)) {
3596 #if USE_ITT_BUILD
3597     // TODO: What about itt_sync_obj??
3598     KMP_FSYNC_SPIN_PREPARE(RCAST(void *, spin));
3599 #endif /* USE_ITT_BUILD */
3600 
3601     if (TCR_4(__kmp_global.g.g_done)) {
3602       if (__kmp_global.g.g_abort)
3603         __kmp_abort_thread();
3604       break;
3605     }
3606     KMP_YIELD(TRUE);
3607   }
3608 #if USE_ITT_BUILD
3609   KMP_FSYNC_SPIN_ACQUIRED(RCAST(void *, spin));
3610 #endif /* USE_ITT_BUILD */
3611 }
3612 
3613 // __kmp_give_task puts a task into a given thread queue if:
3614 //  - the queue for that thread was created
3615 //  - there's space in that queue
3616 // Because of this, __kmp_push_task needs to check if there's space after
3617 // getting the lock
3618 static bool __kmp_give_task(kmp_info_t *thread, kmp_int32 tid, kmp_task_t *task,
3619                             kmp_int32 pass) {
3620   kmp_taskdata_t *taskdata = KMP_TASK_TO_TASKDATA(task);
3621   kmp_task_team_t *task_team = taskdata->td_task_team;
3622 
3623   KA_TRACE(20, ("__kmp_give_task: trying to give task %p to thread %d.\n",
3624                 taskdata, tid));
3625 
3626   // If task_team is NULL something went really bad...
3627   KMP_DEBUG_ASSERT(task_team != NULL);
3628 
3629   bool result = false;
3630   kmp_thread_data_t *thread_data = &task_team->tt.tt_threads_data[tid];
3631 
3632   if (thread_data->td.td_deque == NULL) {
3633     // There's no queue in this thread, go find another one
3634     // We're guaranteed that at least one thread has a queue
3635     KA_TRACE(30,
3636              ("__kmp_give_task: thread %d has no queue while giving task %p.\n",
3637               tid, taskdata));
3638     return result;
3639   }
3640 
3641   if (TCR_4(thread_data->td.td_deque_ntasks) >=
3642       TASK_DEQUE_SIZE(thread_data->td)) {
3643     KA_TRACE(
3644         30,
3645         ("__kmp_give_task: queue is full while giving task %p to thread %d.\n",
3646          taskdata, tid));
3647 
3648     // if this deque is bigger than the pass ratio give a chance to another
3649     // thread
3650     if (TASK_DEQUE_SIZE(thread_data->td) / INITIAL_TASK_DEQUE_SIZE >= pass)
3651       return result;
3652 
3653     __kmp_acquire_bootstrap_lock(&thread_data->td.td_deque_lock);
3654     __kmp_realloc_task_deque(thread, thread_data);
3655 
3656   } else {
3657 
3658     __kmp_acquire_bootstrap_lock(&thread_data->td.td_deque_lock);
3659 
3660     if (TCR_4(thread_data->td.td_deque_ntasks) >=
3661         TASK_DEQUE_SIZE(thread_data->td)) {
3662       KA_TRACE(30, ("__kmp_give_task: queue is full while giving task %p to "
3663                     "thread %d.\n",
3664                     taskdata, tid));
3665 
3666       // if this deque is bigger than the pass ratio give a chance to another
3667       // thread
3668       if (TASK_DEQUE_SIZE(thread_data->td) / INITIAL_TASK_DEQUE_SIZE >= pass)
3669         goto release_and_exit;
3670 
3671       __kmp_realloc_task_deque(thread, thread_data);
3672     }
3673   }
3674 
3675   // lock is held here, and there is space in the deque
3676 
3677   thread_data->td.td_deque[thread_data->td.td_deque_tail] = taskdata;
3678   // Wrap index.
3679   thread_data->td.td_deque_tail =
3680       (thread_data->td.td_deque_tail + 1) & TASK_DEQUE_MASK(thread_data->td);
3681   TCW_4(thread_data->td.td_deque_ntasks,
3682         TCR_4(thread_data->td.td_deque_ntasks) + 1);
3683 
3684   result = true;
3685   KA_TRACE(30, ("__kmp_give_task: successfully gave task %p to thread %d.\n",
3686                 taskdata, tid));
3687 
3688 release_and_exit:
3689   __kmp_release_bootstrap_lock(&thread_data->td.td_deque_lock);
3690 
3691   return result;
3692 }
3693 
3694 /* The finish of the proxy tasks is divided in two pieces:
3695     - the top half is the one that can be done from a thread outside the team
3696     - the bottom half must be run from a thread within the team
3697 
3698    In order to run the bottom half the task gets queued back into one of the
3699    threads of the team. Once the td_incomplete_child_task counter of the parent
3700    is decremented the threads can leave the barriers. So, the bottom half needs
3701    to be queued before the counter is decremented. The top half is therefore
3702    divided in two parts:
3703     - things that can be run before queuing the bottom half
3704     - things that must be run after queuing the bottom half
3705 
3706    This creates a second race as the bottom half can free the task before the
3707    second top half is executed. To avoid this we use the
3708    td_incomplete_child_task of the proxy task to synchronize the top and bottom
3709    half. */
3710 static void __kmp_first_top_half_finish_proxy(kmp_taskdata_t *taskdata) {
3711   KMP_DEBUG_ASSERT(taskdata->td_flags.tasktype == TASK_EXPLICIT);
3712   KMP_DEBUG_ASSERT(taskdata->td_flags.proxy == TASK_PROXY);
3713   KMP_DEBUG_ASSERT(taskdata->td_flags.complete == 0);
3714   KMP_DEBUG_ASSERT(taskdata->td_flags.freed == 0);
3715 
3716   taskdata->td_flags.complete = 1; // mark the task as completed
3717 
3718   if (taskdata->td_taskgroup)
3719     KMP_ATOMIC_DEC(&taskdata->td_taskgroup->count);
3720 
3721   // Create an imaginary children for this task so the bottom half cannot
3722   // release the task before we have completed the second top half
3723   KMP_ATOMIC_INC(&taskdata->td_incomplete_child_tasks);
3724 }
3725 
3726 static void __kmp_second_top_half_finish_proxy(kmp_taskdata_t *taskdata) {
3727   kmp_int32 children = 0;
3728 
3729   // Predecrement simulated by "- 1" calculation
3730   children =
3731       KMP_ATOMIC_DEC(&taskdata->td_parent->td_incomplete_child_tasks) - 1;
3732   KMP_DEBUG_ASSERT(children >= 0);
3733 
3734   // Remove the imaginary children
3735   KMP_ATOMIC_DEC(&taskdata->td_incomplete_child_tasks);
3736 }
3737 
3738 static void __kmp_bottom_half_finish_proxy(kmp_int32 gtid, kmp_task_t *ptask) {
3739   kmp_taskdata_t *taskdata = KMP_TASK_TO_TASKDATA(ptask);
3740   kmp_info_t *thread = __kmp_threads[gtid];
3741 
3742   KMP_DEBUG_ASSERT(taskdata->td_flags.proxy == TASK_PROXY);
3743   KMP_DEBUG_ASSERT(taskdata->td_flags.complete ==
3744                    1); // top half must run before bottom half
3745 
3746   // We need to wait to make sure the top half is finished
3747   // Spinning here should be ok as this should happen quickly
3748   while (KMP_ATOMIC_LD_ACQ(&taskdata->td_incomplete_child_tasks) > 0)
3749     ;
3750 
3751   __kmp_release_deps(gtid, taskdata);
3752   __kmp_free_task_and_ancestors(gtid, taskdata, thread);
3753 }
3754 
3755 /*!
3756 @ingroup TASKING
3757 @param gtid Global Thread ID of encountering thread
3758 @param ptask Task which execution is completed
3759 
3760 Execute the completion of a proxy task from a thread of that is part of the
3761 team. Run first and bottom halves directly.
3762 */
3763 void __kmpc_proxy_task_completed(kmp_int32 gtid, kmp_task_t *ptask) {
3764   KMP_DEBUG_ASSERT(ptask != NULL);
3765   kmp_taskdata_t *taskdata = KMP_TASK_TO_TASKDATA(ptask);
3766   KA_TRACE(
3767       10, ("__kmp_proxy_task_completed(enter): T#%d proxy task %p completing\n",
3768            gtid, taskdata));
3769 
3770   KMP_DEBUG_ASSERT(taskdata->td_flags.proxy == TASK_PROXY);
3771 
3772   __kmp_first_top_half_finish_proxy(taskdata);
3773   __kmp_second_top_half_finish_proxy(taskdata);
3774   __kmp_bottom_half_finish_proxy(gtid, ptask);
3775 
3776   KA_TRACE(10,
3777            ("__kmp_proxy_task_completed(exit): T#%d proxy task %p completing\n",
3778             gtid, taskdata));
3779 }
3780 
3781 /*!
3782 @ingroup TASKING
3783 @param ptask Task which execution is completed
3784 
3785 Execute the completion of a proxy task from a thread that could not belong to
3786 the team.
3787 */
3788 void __kmpc_proxy_task_completed_ooo(kmp_task_t *ptask) {
3789   KMP_DEBUG_ASSERT(ptask != NULL);
3790   kmp_taskdata_t *taskdata = KMP_TASK_TO_TASKDATA(ptask);
3791 
3792   KA_TRACE(
3793       10,
3794       ("__kmp_proxy_task_completed_ooo(enter): proxy task completing ooo %p\n",
3795        taskdata));
3796 
3797   KMP_DEBUG_ASSERT(taskdata->td_flags.proxy == TASK_PROXY);
3798 
3799   __kmp_first_top_half_finish_proxy(taskdata);
3800 
3801   // Enqueue task to complete bottom half completion from a thread within the
3802   // corresponding team
3803   kmp_team_t *team = taskdata->td_team;
3804   kmp_int32 nthreads = team->t.t_nproc;
3805   kmp_info_t *thread;
3806 
3807   // This should be similar to start_k = __kmp_get_random( thread ) % nthreads
3808   // but we cannot use __kmp_get_random here
3809   kmp_int32 start_k = 0;
3810   kmp_int32 pass = 1;
3811   kmp_int32 k = start_k;
3812 
3813   do {
3814     // For now we're just linearly trying to find a thread
3815     thread = team->t.t_threads[k];
3816     k = (k + 1) % nthreads;
3817 
3818     // we did a full pass through all the threads
3819     if (k == start_k)
3820       pass = pass << 1;
3821 
3822   } while (!__kmp_give_task(thread, k, ptask, pass));
3823 
3824   __kmp_second_top_half_finish_proxy(taskdata);
3825 
3826   KA_TRACE(
3827       10,
3828       ("__kmp_proxy_task_completed_ooo(exit): proxy task completing ooo %p\n",
3829        taskdata));
3830 }
3831 
3832 kmp_event_t *__kmpc_task_allow_completion_event(ident_t *loc_ref, int gtid,
3833                                                 kmp_task_t *task) {
3834   kmp_taskdata_t *td = KMP_TASK_TO_TASKDATA(task);
3835   if (td->td_allow_completion_event.type == KMP_EVENT_UNINITIALIZED) {
3836     td->td_allow_completion_event.type = KMP_EVENT_ALLOW_COMPLETION;
3837     td->td_allow_completion_event.ed.task = task;
3838     __kmp_init_tas_lock(&td->td_allow_completion_event.lock);
3839   }
3840   return &td->td_allow_completion_event;
3841 }
3842 
3843 void __kmp_fulfill_event(kmp_event_t *event) {
3844   if (event->type == KMP_EVENT_ALLOW_COMPLETION) {
3845     kmp_task_t *ptask = event->ed.task;
3846     kmp_taskdata_t *taskdata = KMP_TASK_TO_TASKDATA(ptask);
3847     bool detached = false;
3848     int gtid = __kmp_get_gtid();
3849 
3850     if (taskdata->td_flags.proxy == TASK_PROXY) {
3851       // The associated task code completed before this call and detached.
3852       detached = true;
3853       event->type = KMP_EVENT_UNINITIALIZED;
3854     } else {
3855       // The associated task has not completed but could be completing at this
3856       // point.
3857       // We need to take the lock to avoid races
3858       __kmp_acquire_tas_lock(&event->lock, gtid);
3859       if (taskdata->td_flags.proxy == TASK_PROXY)
3860         detached = true;
3861       event->type = KMP_EVENT_UNINITIALIZED;
3862       __kmp_release_tas_lock(&event->lock, gtid);
3863     }
3864 
3865     if (detached) {
3866       // If the task detached complete the proxy task
3867       if (gtid >= 0) {
3868         kmp_team_t *team = taskdata->td_team;
3869         kmp_info_t *thread = __kmp_get_thread();
3870         if (thread->th.th_team == team) {
3871           __kmpc_proxy_task_completed(gtid, ptask);
3872           return;
3873         }
3874       }
3875 
3876       // fallback
3877       __kmpc_proxy_task_completed_ooo(ptask);
3878     }
3879   }
3880 }
3881 
3882 // __kmp_task_dup_alloc: Allocate the taskdata and make a copy of source task
3883 // for taskloop
3884 //
3885 // thread:   allocating thread
3886 // task_src: pointer to source task to be duplicated
3887 // returns:  a pointer to the allocated kmp_task_t structure (task).
3888 kmp_task_t *__kmp_task_dup_alloc(kmp_info_t *thread, kmp_task_t *task_src) {
3889   kmp_task_t *task;
3890   kmp_taskdata_t *taskdata;
3891   kmp_taskdata_t *taskdata_src;
3892   kmp_taskdata_t *parent_task = thread->th.th_current_task;
3893   size_t shareds_offset;
3894   size_t task_size;
3895 
3896   KA_TRACE(10, ("__kmp_task_dup_alloc(enter): Th %p, source task %p\n", thread,
3897                 task_src));
3898   taskdata_src = KMP_TASK_TO_TASKDATA(task_src);
3899   KMP_DEBUG_ASSERT(taskdata_src->td_flags.proxy ==
3900                    TASK_FULL); // it should not be proxy task
3901   KMP_DEBUG_ASSERT(taskdata_src->td_flags.tasktype == TASK_EXPLICIT);
3902   task_size = taskdata_src->td_size_alloc;
3903 
3904   // Allocate a kmp_taskdata_t block and a kmp_task_t block.
3905   KA_TRACE(30, ("__kmp_task_dup_alloc: Th %p, malloc size %ld\n", thread,
3906                 task_size));
3907 #if USE_FAST_MEMORY
3908   taskdata = (kmp_taskdata_t *)__kmp_fast_allocate(thread, task_size);
3909 #else
3910   taskdata = (kmp_taskdata_t *)__kmp_thread_malloc(thread, task_size);
3911 #endif /* USE_FAST_MEMORY */
3912   KMP_MEMCPY(taskdata, taskdata_src, task_size);
3913 
3914   task = KMP_TASKDATA_TO_TASK(taskdata);
3915 
3916   // Initialize new task (only specific fields not affected by memcpy)
3917   taskdata->td_task_id = KMP_GEN_TASK_ID();
3918   if (task->shareds != NULL) { // need setup shareds pointer
3919     shareds_offset = (char *)task_src->shareds - (char *)taskdata_src;
3920     task->shareds = &((char *)taskdata)[shareds_offset];
3921     KMP_DEBUG_ASSERT((((kmp_uintptr_t)task->shareds) & (sizeof(void *) - 1)) ==
3922                      0);
3923   }
3924   taskdata->td_alloc_thread = thread;
3925   taskdata->td_parent = parent_task;
3926   taskdata->td_taskgroup =
3927       parent_task
3928           ->td_taskgroup; // task inherits the taskgroup from the parent task
3929 
3930   // Only need to keep track of child task counts if team parallel and tasking
3931   // not serialized
3932   if (!(taskdata->td_flags.team_serial || taskdata->td_flags.tasking_ser)) {
3933     KMP_ATOMIC_INC(&parent_task->td_incomplete_child_tasks);
3934     if (parent_task->td_taskgroup)
3935       KMP_ATOMIC_INC(&parent_task->td_taskgroup->count);
3936     // Only need to keep track of allocated child tasks for explicit tasks since
3937     // implicit not deallocated
3938     if (taskdata->td_parent->td_flags.tasktype == TASK_EXPLICIT)
3939       KMP_ATOMIC_INC(&taskdata->td_parent->td_allocated_child_tasks);
3940   }
3941 
3942   KA_TRACE(20,
3943            ("__kmp_task_dup_alloc(exit): Th %p, created task %p, parent=%p\n",
3944             thread, taskdata, taskdata->td_parent));
3945 #if OMPT_SUPPORT
3946   if (UNLIKELY(ompt_enabled.enabled))
3947     __ompt_task_init(taskdata, thread->th.th_info.ds.ds_gtid);
3948 #endif
3949   return task;
3950 }
3951 
3952 // Routine optionally generated by the compiler for setting the lastprivate flag
3953 // and calling needed constructors for private/firstprivate objects
3954 // (used to form taskloop tasks from pattern task)
3955 // Parameters: dest task, src task, lastprivate flag.
3956 typedef void (*p_task_dup_t)(kmp_task_t *, kmp_task_t *, kmp_int32);
3957 
3958 KMP_BUILD_ASSERT(sizeof(long) == 4 || sizeof(long) == 8);
3959 
3960 // class to encapsulate manipulating loop bounds in a taskloop task.
3961 // this abstracts away the Intel vs GOMP taskloop interface for setting/getting
3962 // the loop bound variables.
3963 class kmp_taskloop_bounds_t {
3964   kmp_task_t *task;
3965   const kmp_taskdata_t *taskdata;
3966   size_t lower_offset;
3967   size_t upper_offset;
3968 
3969 public:
3970   kmp_taskloop_bounds_t(kmp_task_t *_task, kmp_uint64 *lb, kmp_uint64 *ub)
3971       : task(_task), taskdata(KMP_TASK_TO_TASKDATA(task)),
3972         lower_offset((char *)lb - (char *)task),
3973         upper_offset((char *)ub - (char *)task) {
3974     KMP_DEBUG_ASSERT((char *)lb > (char *)_task);
3975     KMP_DEBUG_ASSERT((char *)ub > (char *)_task);
3976   }
3977   kmp_taskloop_bounds_t(kmp_task_t *_task, const kmp_taskloop_bounds_t &bounds)
3978       : task(_task), taskdata(KMP_TASK_TO_TASKDATA(_task)),
3979         lower_offset(bounds.lower_offset), upper_offset(bounds.upper_offset) {}
3980   size_t get_lower_offset() const { return lower_offset; }
3981   size_t get_upper_offset() const { return upper_offset; }
3982   kmp_uint64 get_lb() const {
3983     kmp_int64 retval;
3984 #if defined(KMP_GOMP_COMPAT)
3985     // Intel task just returns the lower bound normally
3986     if (!taskdata->td_flags.native) {
3987       retval = *(kmp_int64 *)((char *)task + lower_offset);
3988     } else {
3989       // GOMP task has to take into account the sizeof(long)
3990       if (taskdata->td_size_loop_bounds == 4) {
3991         kmp_int32 *lb = RCAST(kmp_int32 *, task->shareds);
3992         retval = (kmp_int64)*lb;
3993       } else {
3994         kmp_int64 *lb = RCAST(kmp_int64 *, task->shareds);
3995         retval = (kmp_int64)*lb;
3996       }
3997     }
3998 #else
3999     retval = *(kmp_int64 *)((char *)task + lower_offset);
4000 #endif // defined(KMP_GOMP_COMPAT)
4001     return retval;
4002   }
4003   kmp_uint64 get_ub() const {
4004     kmp_int64 retval;
4005 #if defined(KMP_GOMP_COMPAT)
4006     // Intel task just returns the upper bound normally
4007     if (!taskdata->td_flags.native) {
4008       retval = *(kmp_int64 *)((char *)task + upper_offset);
4009     } else {
4010       // GOMP task has to take into account the sizeof(long)
4011       if (taskdata->td_size_loop_bounds == 4) {
4012         kmp_int32 *ub = RCAST(kmp_int32 *, task->shareds) + 1;
4013         retval = (kmp_int64)*ub;
4014       } else {
4015         kmp_int64 *ub = RCAST(kmp_int64 *, task->shareds) + 1;
4016         retval = (kmp_int64)*ub;
4017       }
4018     }
4019 #else
4020     retval = *(kmp_int64 *)((char *)task + upper_offset);
4021 #endif // defined(KMP_GOMP_COMPAT)
4022     return retval;
4023   }
4024   void set_lb(kmp_uint64 lb) {
4025 #if defined(KMP_GOMP_COMPAT)
4026     // Intel task just sets the lower bound normally
4027     if (!taskdata->td_flags.native) {
4028       *(kmp_uint64 *)((char *)task + lower_offset) = lb;
4029     } else {
4030       // GOMP task has to take into account the sizeof(long)
4031       if (taskdata->td_size_loop_bounds == 4) {
4032         kmp_uint32 *lower = RCAST(kmp_uint32 *, task->shareds);
4033         *lower = (kmp_uint32)lb;
4034       } else {
4035         kmp_uint64 *lower = RCAST(kmp_uint64 *, task->shareds);
4036         *lower = (kmp_uint64)lb;
4037       }
4038     }
4039 #else
4040     *(kmp_uint64 *)((char *)task + lower_offset) = lb;
4041 #endif // defined(KMP_GOMP_COMPAT)
4042   }
4043   void set_ub(kmp_uint64 ub) {
4044 #if defined(KMP_GOMP_COMPAT)
4045     // Intel task just sets the upper bound normally
4046     if (!taskdata->td_flags.native) {
4047       *(kmp_uint64 *)((char *)task + upper_offset) = ub;
4048     } else {
4049       // GOMP task has to take into account the sizeof(long)
4050       if (taskdata->td_size_loop_bounds == 4) {
4051         kmp_uint32 *upper = RCAST(kmp_uint32 *, task->shareds) + 1;
4052         *upper = (kmp_uint32)ub;
4053       } else {
4054         kmp_uint64 *upper = RCAST(kmp_uint64 *, task->shareds) + 1;
4055         *upper = (kmp_uint64)ub;
4056       }
4057     }
4058 #else
4059     *(kmp_uint64 *)((char *)task + upper_offset) = ub;
4060 #endif // defined(KMP_GOMP_COMPAT)
4061   }
4062 };
4063 
4064 // __kmp_taskloop_linear: Start tasks of the taskloop linearly
4065 //
4066 // loc        Source location information
4067 // gtid       Global thread ID
4068 // task       Pattern task, exposes the loop iteration range
4069 // lb         Pointer to loop lower bound in task structure
4070 // ub         Pointer to loop upper bound in task structure
4071 // st         Loop stride
4072 // ub_glob    Global upper bound (used for lastprivate check)
4073 // num_tasks  Number of tasks to execute
4074 // grainsize  Number of loop iterations per task
4075 // extras     Number of chunks with grainsize+1 iterations
4076 // tc         Iterations count
4077 // task_dup   Tasks duplication routine
4078 // codeptr_ra Return address for OMPT events
4079 void __kmp_taskloop_linear(ident_t *loc, int gtid, kmp_task_t *task,
4080                            kmp_uint64 *lb, kmp_uint64 *ub, kmp_int64 st,
4081                            kmp_uint64 ub_glob, kmp_uint64 num_tasks,
4082                            kmp_uint64 grainsize, kmp_uint64 extras,
4083                            kmp_uint64 tc,
4084 #if OMPT_SUPPORT
4085                            void *codeptr_ra,
4086 #endif
4087                            void *task_dup) {
4088   KMP_COUNT_BLOCK(OMP_TASKLOOP);
4089   KMP_TIME_PARTITIONED_BLOCK(OMP_taskloop_scheduling);
4090   p_task_dup_t ptask_dup = (p_task_dup_t)task_dup;
4091   // compiler provides global bounds here
4092   kmp_taskloop_bounds_t task_bounds(task, lb, ub);
4093   kmp_uint64 lower = task_bounds.get_lb();
4094   kmp_uint64 upper = task_bounds.get_ub();
4095   kmp_uint64 i;
4096   kmp_info_t *thread = __kmp_threads[gtid];
4097   kmp_taskdata_t *current_task = thread->th.th_current_task;
4098   kmp_task_t *next_task;
4099   kmp_int32 lastpriv = 0;
4100 
4101   KMP_DEBUG_ASSERT(tc == num_tasks * grainsize + extras);
4102   KMP_DEBUG_ASSERT(num_tasks > extras);
4103   KMP_DEBUG_ASSERT(num_tasks > 0);
4104   KA_TRACE(20, ("__kmp_taskloop_linear: T#%d: %lld tasks, grainsize %lld, "
4105                 "extras %lld, i=%lld,%lld(%d)%lld, dup %p\n",
4106                 gtid, num_tasks, grainsize, extras, lower, upper, ub_glob, st,
4107                 task_dup));
4108 
4109   // Launch num_tasks tasks, assign grainsize iterations each task
4110   for (i = 0; i < num_tasks; ++i) {
4111     kmp_uint64 chunk_minus_1;
4112     if (extras == 0) {
4113       chunk_minus_1 = grainsize - 1;
4114     } else {
4115       chunk_minus_1 = grainsize;
4116       --extras; // first extras iterations get bigger chunk (grainsize+1)
4117     }
4118     upper = lower + st * chunk_minus_1;
4119     if (i == num_tasks - 1) {
4120       // schedule the last task, set lastprivate flag if needed
4121       if (st == 1) { // most common case
4122         KMP_DEBUG_ASSERT(upper == *ub);
4123         if (upper == ub_glob)
4124           lastpriv = 1;
4125       } else if (st > 0) { // positive loop stride
4126         KMP_DEBUG_ASSERT((kmp_uint64)st > *ub - upper);
4127         if ((kmp_uint64)st > ub_glob - upper)
4128           lastpriv = 1;
4129       } else { // negative loop stride
4130         KMP_DEBUG_ASSERT(upper + st < *ub);
4131         if (upper - ub_glob < (kmp_uint64)(-st))
4132           lastpriv = 1;
4133       }
4134     }
4135     next_task = __kmp_task_dup_alloc(thread, task); // allocate new task
4136     kmp_taskdata_t *next_taskdata = KMP_TASK_TO_TASKDATA(next_task);
4137     kmp_taskloop_bounds_t next_task_bounds =
4138         kmp_taskloop_bounds_t(next_task, task_bounds);
4139 
4140     // adjust task-specific bounds
4141     next_task_bounds.set_lb(lower);
4142     if (next_taskdata->td_flags.native) {
4143       next_task_bounds.set_ub(upper + (st > 0 ? 1 : -1));
4144     } else {
4145       next_task_bounds.set_ub(upper);
4146     }
4147     if (ptask_dup != NULL) // set lastprivate flag, construct firstprivates,
4148                            // etc.
4149       ptask_dup(next_task, task, lastpriv);
4150     KA_TRACE(40,
4151              ("__kmp_taskloop_linear: T#%d; task #%llu: task %p: lower %lld, "
4152               "upper %lld stride %lld, (offsets %p %p)\n",
4153               gtid, i, next_task, lower, upper, st,
4154               next_task_bounds.get_lower_offset(),
4155               next_task_bounds.get_upper_offset()));
4156 #if OMPT_SUPPORT
4157     __kmp_omp_taskloop_task(NULL, gtid, next_task,
4158                            codeptr_ra); // schedule new task
4159 #else
4160     __kmp_omp_task(gtid, next_task, true); // schedule new task
4161 #endif
4162     lower = upper + st; // adjust lower bound for the next iteration
4163   }
4164   // free the pattern task and exit
4165   __kmp_task_start(gtid, task, current_task); // make internal bookkeeping
4166   // do not execute the pattern task, just do internal bookkeeping
4167   __kmp_task_finish<false>(gtid, task, current_task);
4168 }
4169 
4170 // Structure to keep taskloop parameters for auxiliary task
4171 // kept in the shareds of the task structure.
4172 typedef struct __taskloop_params {
4173   kmp_task_t *task;
4174   kmp_uint64 *lb;
4175   kmp_uint64 *ub;
4176   void *task_dup;
4177   kmp_int64 st;
4178   kmp_uint64 ub_glob;
4179   kmp_uint64 num_tasks;
4180   kmp_uint64 grainsize;
4181   kmp_uint64 extras;
4182   kmp_uint64 tc;
4183   kmp_uint64 num_t_min;
4184 #if OMPT_SUPPORT
4185   void *codeptr_ra;
4186 #endif
4187 } __taskloop_params_t;
4188 
4189 void __kmp_taskloop_recur(ident_t *, int, kmp_task_t *, kmp_uint64 *,
4190                           kmp_uint64 *, kmp_int64, kmp_uint64, kmp_uint64,
4191                           kmp_uint64, kmp_uint64, kmp_uint64, kmp_uint64,
4192 #if OMPT_SUPPORT
4193                           void *,
4194 #endif
4195                           void *);
4196 
4197 // Execute part of the taskloop submitted as a task.
4198 int __kmp_taskloop_task(int gtid, void *ptask) {
4199   __taskloop_params_t *p =
4200       (__taskloop_params_t *)((kmp_task_t *)ptask)->shareds;
4201   kmp_task_t *task = p->task;
4202   kmp_uint64 *lb = p->lb;
4203   kmp_uint64 *ub = p->ub;
4204   void *task_dup = p->task_dup;
4205   //  p_task_dup_t ptask_dup = (p_task_dup_t)task_dup;
4206   kmp_int64 st = p->st;
4207   kmp_uint64 ub_glob = p->ub_glob;
4208   kmp_uint64 num_tasks = p->num_tasks;
4209   kmp_uint64 grainsize = p->grainsize;
4210   kmp_uint64 extras = p->extras;
4211   kmp_uint64 tc = p->tc;
4212   kmp_uint64 num_t_min = p->num_t_min;
4213 #if OMPT_SUPPORT
4214   void *codeptr_ra = p->codeptr_ra;
4215 #endif
4216 #if KMP_DEBUG
4217   kmp_taskdata_t *taskdata = KMP_TASK_TO_TASKDATA(task);
4218   KMP_DEBUG_ASSERT(task != NULL);
4219   KA_TRACE(20, ("__kmp_taskloop_task: T#%d, task %p: %lld tasks, grainsize"
4220                 " %lld, extras %lld, i=%lld,%lld(%d), dup %p\n",
4221                 gtid, taskdata, num_tasks, grainsize, extras, *lb, *ub, st,
4222                 task_dup));
4223 #endif
4224   KMP_DEBUG_ASSERT(num_tasks * 2 + 1 > num_t_min);
4225   if (num_tasks > num_t_min)
4226     __kmp_taskloop_recur(NULL, gtid, task, lb, ub, st, ub_glob, num_tasks,
4227                          grainsize, extras, tc, num_t_min,
4228 #if OMPT_SUPPORT
4229                          codeptr_ra,
4230 #endif
4231                          task_dup);
4232   else
4233     __kmp_taskloop_linear(NULL, gtid, task, lb, ub, st, ub_glob, num_tasks,
4234                           grainsize, extras, tc,
4235 #if OMPT_SUPPORT
4236                           codeptr_ra,
4237 #endif
4238                           task_dup);
4239 
4240   KA_TRACE(40, ("__kmp_taskloop_task(exit): T#%d\n", gtid));
4241   return 0;
4242 }
4243 
4244 // Schedule part of the taskloop as a task,
4245 // execute the rest of the taskloop.
4246 //
4247 // loc        Source location information
4248 // gtid       Global thread ID
4249 // task       Pattern task, exposes the loop iteration range
4250 // lb         Pointer to loop lower bound in task structure
4251 // ub         Pointer to loop upper bound in task structure
4252 // st         Loop stride
4253 // ub_glob    Global upper bound (used for lastprivate check)
4254 // num_tasks  Number of tasks to execute
4255 // grainsize  Number of loop iterations per task
4256 // extras     Number of chunks with grainsize+1 iterations
4257 // tc         Iterations count
4258 // num_t_min  Threashold to launch tasks recursively
4259 // task_dup   Tasks duplication routine
4260 // codeptr_ra Return address for OMPT events
4261 void __kmp_taskloop_recur(ident_t *loc, int gtid, kmp_task_t *task,
4262                           kmp_uint64 *lb, kmp_uint64 *ub, kmp_int64 st,
4263                           kmp_uint64 ub_glob, kmp_uint64 num_tasks,
4264                           kmp_uint64 grainsize, kmp_uint64 extras,
4265                           kmp_uint64 tc, kmp_uint64 num_t_min,
4266 #if OMPT_SUPPORT
4267                           void *codeptr_ra,
4268 #endif
4269                           void *task_dup) {
4270 #if KMP_DEBUG
4271   kmp_taskdata_t *taskdata = KMP_TASK_TO_TASKDATA(task);
4272   KMP_DEBUG_ASSERT(task != NULL);
4273   KMP_DEBUG_ASSERT(num_tasks > num_t_min);
4274   KA_TRACE(20, ("__kmp_taskloop_recur: T#%d, task %p: %lld tasks, grainsize"
4275                 " %lld, extras %lld, i=%lld,%lld(%d), dup %p\n",
4276                 gtid, taskdata, num_tasks, grainsize, extras, *lb, *ub, st,
4277                 task_dup));
4278 #endif
4279   p_task_dup_t ptask_dup = (p_task_dup_t)task_dup;
4280   kmp_uint64 lower = *lb;
4281   kmp_info_t *thread = __kmp_threads[gtid];
4282   //  kmp_taskdata_t *current_task = thread->th.th_current_task;
4283   kmp_task_t *next_task;
4284   size_t lower_offset =
4285       (char *)lb - (char *)task; // remember offset of lb in the task structure
4286   size_t upper_offset =
4287       (char *)ub - (char *)task; // remember offset of ub in the task structure
4288 
4289   KMP_DEBUG_ASSERT(tc == num_tasks * grainsize + extras);
4290   KMP_DEBUG_ASSERT(num_tasks > extras);
4291   KMP_DEBUG_ASSERT(num_tasks > 0);
4292 
4293   // split the loop in two halves
4294   kmp_uint64 lb1, ub0, tc0, tc1, ext0, ext1;
4295   kmp_uint64 gr_size0 = grainsize;
4296   kmp_uint64 n_tsk0 = num_tasks >> 1; // num_tasks/2 to execute
4297   kmp_uint64 n_tsk1 = num_tasks - n_tsk0; // to schedule as a task
4298   if (n_tsk0 <= extras) {
4299     gr_size0++; // integrate extras into grainsize
4300     ext0 = 0; // no extra iters in 1st half
4301     ext1 = extras - n_tsk0; // remaining extras
4302     tc0 = gr_size0 * n_tsk0;
4303     tc1 = tc - tc0;
4304   } else { // n_tsk0 > extras
4305     ext1 = 0; // no extra iters in 2nd half
4306     ext0 = extras;
4307     tc1 = grainsize * n_tsk1;
4308     tc0 = tc - tc1;
4309   }
4310   ub0 = lower + st * (tc0 - 1);
4311   lb1 = ub0 + st;
4312 
4313   // create pattern task for 2nd half of the loop
4314   next_task = __kmp_task_dup_alloc(thread, task); // duplicate the task
4315   // adjust lower bound (upper bound is not changed) for the 2nd half
4316   *(kmp_uint64 *)((char *)next_task + lower_offset) = lb1;
4317   if (ptask_dup != NULL) // construct firstprivates, etc.
4318     ptask_dup(next_task, task, 0);
4319   *ub = ub0; // adjust upper bound for the 1st half
4320 
4321   // create auxiliary task for 2nd half of the loop
4322   kmp_task_t *new_task =
4323       __kmpc_omp_task_alloc(loc, gtid, 1, 3 * sizeof(void *),
4324                             sizeof(__taskloop_params_t), &__kmp_taskloop_task);
4325   __taskloop_params_t *p = (__taskloop_params_t *)new_task->shareds;
4326   p->task = next_task;
4327   p->lb = (kmp_uint64 *)((char *)next_task + lower_offset);
4328   p->ub = (kmp_uint64 *)((char *)next_task + upper_offset);
4329   p->task_dup = task_dup;
4330   p->st = st;
4331   p->ub_glob = ub_glob;
4332   p->num_tasks = n_tsk1;
4333   p->grainsize = grainsize;
4334   p->extras = ext1;
4335   p->tc = tc1;
4336   p->num_t_min = num_t_min;
4337 #if OMPT_SUPPORT
4338   p->codeptr_ra = codeptr_ra;
4339 #endif
4340 
4341 #if OMPT_SUPPORT
4342   // schedule new task with correct return address for OMPT events
4343   __kmp_omp_taskloop_task(NULL, gtid, new_task, codeptr_ra);
4344 #else
4345   __kmp_omp_task(gtid, new_task, true); // schedule new task
4346 #endif
4347 
4348   // execute the 1st half of current subrange
4349   if (n_tsk0 > num_t_min)
4350     __kmp_taskloop_recur(loc, gtid, task, lb, ub, st, ub_glob, n_tsk0, gr_size0,
4351                          ext0, tc0, num_t_min,
4352 #if OMPT_SUPPORT
4353                          codeptr_ra,
4354 #endif
4355                          task_dup);
4356   else
4357     __kmp_taskloop_linear(loc, gtid, task, lb, ub, st, ub_glob, n_tsk0,
4358                           gr_size0, ext0, tc0,
4359 #if OMPT_SUPPORT
4360                           codeptr_ra,
4361 #endif
4362                           task_dup);
4363 
4364   KA_TRACE(40, ("__kmpc_taskloop_recur(exit): T#%d\n", gtid));
4365 }
4366 
4367 /*!
4368 @ingroup TASKING
4369 @param loc       Source location information
4370 @param gtid      Global thread ID
4371 @param task      Task structure
4372 @param if_val    Value of the if clause
4373 @param lb        Pointer to loop lower bound in task structure
4374 @param ub        Pointer to loop upper bound in task structure
4375 @param st        Loop stride
4376 @param nogroup   Flag, 1 if no taskgroup needs to be added, 0 otherwise
4377 @param sched     Schedule specified 0/1/2 for none/grainsize/num_tasks
4378 @param grainsize Schedule value if specified
4379 @param task_dup  Tasks duplication routine
4380 
4381 Execute the taskloop construct.
4382 */
4383 void __kmpc_taskloop(ident_t *loc, int gtid, kmp_task_t *task, int if_val,
4384                      kmp_uint64 *lb, kmp_uint64 *ub, kmp_int64 st, int nogroup,
4385                      int sched, kmp_uint64 grainsize, void *task_dup) {
4386   kmp_taskdata_t *taskdata = KMP_TASK_TO_TASKDATA(task);
4387   KMP_DEBUG_ASSERT(task != NULL);
4388 
4389   if (nogroup == 0) {
4390 #if OMPT_SUPPORT && OMPT_OPTIONAL
4391     OMPT_STORE_RETURN_ADDRESS(gtid);
4392 #endif
4393     __kmpc_taskgroup(loc, gtid);
4394   }
4395 
4396   // =========================================================================
4397   // calculate loop parameters
4398   kmp_taskloop_bounds_t task_bounds(task, lb, ub);
4399   kmp_uint64 tc;
4400   // compiler provides global bounds here
4401   kmp_uint64 lower = task_bounds.get_lb();
4402   kmp_uint64 upper = task_bounds.get_ub();
4403   kmp_uint64 ub_glob = upper; // global upper used to calc lastprivate flag
4404   kmp_uint64 num_tasks = 0, extras = 0;
4405   kmp_uint64 num_tasks_min = __kmp_taskloop_min_tasks;
4406   kmp_info_t *thread = __kmp_threads[gtid];
4407   kmp_taskdata_t *current_task = thread->th.th_current_task;
4408 
4409   KA_TRACE(20, ("__kmpc_taskloop: T#%d, task %p, lb %lld, ub %lld, st %lld, "
4410                 "grain %llu(%d), dup %p\n",
4411                 gtid, taskdata, lower, upper, st, grainsize, sched, task_dup));
4412 
4413   // compute trip count
4414   if (st == 1) { // most common case
4415     tc = upper - lower + 1;
4416   } else if (st < 0) {
4417     tc = (lower - upper) / (-st) + 1;
4418   } else { // st > 0
4419     tc = (upper - lower) / st + 1;
4420   }
4421   if (tc == 0) {
4422     KA_TRACE(20, ("__kmpc_taskloop(exit): T#%d zero-trip loop\n", gtid));
4423     // free the pattern task and exit
4424     __kmp_task_start(gtid, task, current_task);
4425     // do not execute anything for zero-trip loop
4426     __kmp_task_finish<false>(gtid, task, current_task);
4427     return;
4428   }
4429 
4430 #if OMPT_SUPPORT && OMPT_OPTIONAL
4431   ompt_team_info_t *team_info = __ompt_get_teaminfo(0, NULL);
4432   ompt_task_info_t *task_info = __ompt_get_task_info_object(0);
4433   if (ompt_enabled.ompt_callback_work) {
4434     ompt_callbacks.ompt_callback(ompt_callback_work)(
4435         ompt_work_taskloop, ompt_scope_begin, &(team_info->parallel_data),
4436         &(task_info->task_data), tc, OMPT_GET_RETURN_ADDRESS(0));
4437   }
4438 #endif
4439 
4440   if (num_tasks_min == 0)
4441     // TODO: can we choose better default heuristic?
4442     num_tasks_min =
4443         KMP_MIN(thread->th.th_team_nproc * 10, INITIAL_TASK_DEQUE_SIZE);
4444 
4445   // compute num_tasks/grainsize based on the input provided
4446   switch (sched) {
4447   case 0: // no schedule clause specified, we can choose the default
4448     // let's try to schedule (team_size*10) tasks
4449     grainsize = thread->th.th_team_nproc * 10;
4450     KMP_FALLTHROUGH();
4451   case 2: // num_tasks provided
4452     if (grainsize > tc) {
4453       num_tasks = tc; // too big num_tasks requested, adjust values
4454       grainsize = 1;
4455       extras = 0;
4456     } else {
4457       num_tasks = grainsize;
4458       grainsize = tc / num_tasks;
4459       extras = tc % num_tasks;
4460     }
4461     break;
4462   case 1: // grainsize provided
4463     if (grainsize > tc) {
4464       num_tasks = 1; // too big grainsize requested, adjust values
4465       grainsize = tc;
4466       extras = 0;
4467     } else {
4468       num_tasks = tc / grainsize;
4469       // adjust grainsize for balanced distribution of iterations
4470       grainsize = tc / num_tasks;
4471       extras = tc % num_tasks;
4472     }
4473     break;
4474   default:
4475     KMP_ASSERT2(0, "unknown scheduling of taskloop");
4476   }
4477   KMP_DEBUG_ASSERT(tc == num_tasks * grainsize + extras);
4478   KMP_DEBUG_ASSERT(num_tasks > extras);
4479   KMP_DEBUG_ASSERT(num_tasks > 0);
4480   // =========================================================================
4481 
4482   // check if clause value first
4483   // Also require GOMP_taskloop to reduce to linear (taskdata->td_flags.native)
4484   if (if_val == 0) { // if(0) specified, mark task as serial
4485     taskdata->td_flags.task_serial = 1;
4486     taskdata->td_flags.tiedness = TASK_TIED; // AC: serial task cannot be untied
4487     // always start serial tasks linearly
4488     __kmp_taskloop_linear(loc, gtid, task, lb, ub, st, ub_glob, num_tasks,
4489                           grainsize, extras, tc,
4490 #if OMPT_SUPPORT
4491                           OMPT_GET_RETURN_ADDRESS(0),
4492 #endif
4493                           task_dup);
4494     // !taskdata->td_flags.native => currently force linear spawning of tasks
4495     // for GOMP_taskloop
4496   } else if (num_tasks > num_tasks_min && !taskdata->td_flags.native) {
4497     KA_TRACE(20, ("__kmpc_taskloop: T#%d, go recursive: tc %llu, #tasks %llu"
4498                   "(%lld), grain %llu, extras %llu\n",
4499                   gtid, tc, num_tasks, num_tasks_min, grainsize, extras));
4500     __kmp_taskloop_recur(loc, gtid, task, lb, ub, st, ub_glob, num_tasks,
4501                          grainsize, extras, tc, num_tasks_min,
4502 #if OMPT_SUPPORT
4503                          OMPT_GET_RETURN_ADDRESS(0),
4504 #endif
4505                          task_dup);
4506   } else {
4507     KA_TRACE(20, ("__kmpc_taskloop: T#%d, go linear: tc %llu, #tasks %llu"
4508                   "(%lld), grain %llu, extras %llu\n",
4509                   gtid, tc, num_tasks, num_tasks_min, grainsize, extras));
4510     __kmp_taskloop_linear(loc, gtid, task, lb, ub, st, ub_glob, num_tasks,
4511                           grainsize, extras, tc,
4512 #if OMPT_SUPPORT
4513                           OMPT_GET_RETURN_ADDRESS(0),
4514 #endif
4515                           task_dup);
4516   }
4517 
4518 #if OMPT_SUPPORT && OMPT_OPTIONAL
4519   if (ompt_enabled.ompt_callback_work) {
4520     ompt_callbacks.ompt_callback(ompt_callback_work)(
4521         ompt_work_taskloop, ompt_scope_end, &(team_info->parallel_data),
4522         &(task_info->task_data), tc, OMPT_GET_RETURN_ADDRESS(0));
4523   }
4524 #endif
4525 
4526   if (nogroup == 0) {
4527 #if OMPT_SUPPORT && OMPT_OPTIONAL
4528     OMPT_STORE_RETURN_ADDRESS(gtid);
4529 #endif
4530     __kmpc_end_taskgroup(loc, gtid);
4531   }
4532   KA_TRACE(20, ("__kmpc_taskloop(exit): T#%d\n", gtid));
4533 }
4534