xref: /freebsd/contrib/llvm-project/openmp/runtime/src/kmp_tasking.cpp (revision 3dd5524264095ed8612c28908e13f80668eff2f9)
1 /*
2  * kmp_tasking.cpp -- OpenMP 3.0 tasking support.
3  */
4 
5 //===----------------------------------------------------------------------===//
6 //
7 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
8 // See https://llvm.org/LICENSE.txt for license information.
9 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "kmp.h"
14 #include "kmp_i18n.h"
15 #include "kmp_itt.h"
16 #include "kmp_stats.h"
17 #include "kmp_wait_release.h"
18 #include "kmp_taskdeps.h"
19 
20 #if OMPT_SUPPORT
21 #include "ompt-specific.h"
22 #endif
23 
24 /* forward declaration */
25 static void __kmp_enable_tasking(kmp_task_team_t *task_team,
26                                  kmp_info_t *this_thr);
27 static void __kmp_alloc_task_deque(kmp_info_t *thread,
28                                    kmp_thread_data_t *thread_data);
29 static int __kmp_realloc_task_threads_data(kmp_info_t *thread,
30                                            kmp_task_team_t *task_team);
31 static void __kmp_bottom_half_finish_proxy(kmp_int32 gtid, kmp_task_t *ptask);
32 
33 #ifdef BUILD_TIED_TASK_STACK
34 
35 //  __kmp_trace_task_stack: print the tied tasks from the task stack in order
36 //  from top do bottom
37 //
38 //  gtid: global thread identifier for thread containing stack
39 //  thread_data: thread data for task team thread containing stack
40 //  threshold: value above which the trace statement triggers
41 //  location: string identifying call site of this function (for trace)
42 static void __kmp_trace_task_stack(kmp_int32 gtid,
43                                    kmp_thread_data_t *thread_data,
44                                    int threshold, char *location) {
45   kmp_task_stack_t *task_stack = &thread_data->td.td_susp_tied_tasks;
46   kmp_taskdata_t **stack_top = task_stack->ts_top;
47   kmp_int32 entries = task_stack->ts_entries;
48   kmp_taskdata_t *tied_task;
49 
50   KA_TRACE(
51       threshold,
52       ("__kmp_trace_task_stack(start): location = %s, gtid = %d, entries = %d, "
53        "first_block = %p, stack_top = %p \n",
54        location, gtid, entries, task_stack->ts_first_block, stack_top));
55 
56   KMP_DEBUG_ASSERT(stack_top != NULL);
57   KMP_DEBUG_ASSERT(entries > 0);
58 
59   while (entries != 0) {
60     KMP_DEBUG_ASSERT(stack_top != &task_stack->ts_first_block.sb_block[0]);
61     // fix up ts_top if we need to pop from previous block
62     if (entries & TASK_STACK_INDEX_MASK == 0) {
63       kmp_stack_block_t *stack_block = (kmp_stack_block_t *)(stack_top);
64 
65       stack_block = stack_block->sb_prev;
66       stack_top = &stack_block->sb_block[TASK_STACK_BLOCK_SIZE];
67     }
68 
69     // finish bookkeeping
70     stack_top--;
71     entries--;
72 
73     tied_task = *stack_top;
74 
75     KMP_DEBUG_ASSERT(tied_task != NULL);
76     KMP_DEBUG_ASSERT(tied_task->td_flags.tasktype == TASK_TIED);
77 
78     KA_TRACE(threshold,
79              ("__kmp_trace_task_stack(%s):             gtid=%d, entry=%d, "
80               "stack_top=%p, tied_task=%p\n",
81               location, gtid, entries, stack_top, tied_task));
82   }
83   KMP_DEBUG_ASSERT(stack_top == &task_stack->ts_first_block.sb_block[0]);
84 
85   KA_TRACE(threshold,
86            ("__kmp_trace_task_stack(exit): location = %s, gtid = %d\n",
87             location, gtid));
88 }
89 
90 //  __kmp_init_task_stack: initialize the task stack for the first time
91 //  after a thread_data structure is created.
92 //  It should not be necessary to do this again (assuming the stack works).
93 //
94 //  gtid: global thread identifier of calling thread
95 //  thread_data: thread data for task team thread containing stack
96 static void __kmp_init_task_stack(kmp_int32 gtid,
97                                   kmp_thread_data_t *thread_data) {
98   kmp_task_stack_t *task_stack = &thread_data->td.td_susp_tied_tasks;
99   kmp_stack_block_t *first_block;
100 
101   // set up the first block of the stack
102   first_block = &task_stack->ts_first_block;
103   task_stack->ts_top = (kmp_taskdata_t **)first_block;
104   memset((void *)first_block, '\0',
105          TASK_STACK_BLOCK_SIZE * sizeof(kmp_taskdata_t *));
106 
107   // initialize the stack to be empty
108   task_stack->ts_entries = TASK_STACK_EMPTY;
109   first_block->sb_next = NULL;
110   first_block->sb_prev = NULL;
111 }
112 
113 //  __kmp_free_task_stack: free the task stack when thread_data is destroyed.
114 //
115 //  gtid: global thread identifier for calling thread
116 //  thread_data: thread info for thread containing stack
117 static void __kmp_free_task_stack(kmp_int32 gtid,
118                                   kmp_thread_data_t *thread_data) {
119   kmp_task_stack_t *task_stack = &thread_data->td.td_susp_tied_tasks;
120   kmp_stack_block_t *stack_block = &task_stack->ts_first_block;
121 
122   KMP_DEBUG_ASSERT(task_stack->ts_entries == TASK_STACK_EMPTY);
123   // free from the second block of the stack
124   while (stack_block != NULL) {
125     kmp_stack_block_t *next_block = (stack_block) ? stack_block->sb_next : NULL;
126 
127     stack_block->sb_next = NULL;
128     stack_block->sb_prev = NULL;
129     if (stack_block != &task_stack->ts_first_block) {
130       __kmp_thread_free(thread,
131                         stack_block); // free the block, if not the first
132     }
133     stack_block = next_block;
134   }
135   // initialize the stack to be empty
136   task_stack->ts_entries = 0;
137   task_stack->ts_top = NULL;
138 }
139 
140 //  __kmp_push_task_stack: Push the tied task onto the task stack.
141 //     Grow the stack if necessary by allocating another block.
142 //
143 //  gtid: global thread identifier for calling thread
144 //  thread: thread info for thread containing stack
145 //  tied_task: the task to push on the stack
146 static void __kmp_push_task_stack(kmp_int32 gtid, kmp_info_t *thread,
147                                   kmp_taskdata_t *tied_task) {
148   // GEH - need to consider what to do if tt_threads_data not allocated yet
149   kmp_thread_data_t *thread_data =
150       &thread->th.th_task_team->tt.tt_threads_data[__kmp_tid_from_gtid(gtid)];
151   kmp_task_stack_t *task_stack = &thread_data->td.td_susp_tied_tasks;
152 
153   if (tied_task->td_flags.team_serial || tied_task->td_flags.tasking_ser) {
154     return; // Don't push anything on stack if team or team tasks are serialized
155   }
156 
157   KMP_DEBUG_ASSERT(tied_task->td_flags.tasktype == TASK_TIED);
158   KMP_DEBUG_ASSERT(task_stack->ts_top != NULL);
159 
160   KA_TRACE(20,
161            ("__kmp_push_task_stack(enter): GTID: %d; THREAD: %p; TASK: %p\n",
162             gtid, thread, tied_task));
163   // Store entry
164   *(task_stack->ts_top) = tied_task;
165 
166   // Do bookkeeping for next push
167   task_stack->ts_top++;
168   task_stack->ts_entries++;
169 
170   if (task_stack->ts_entries & TASK_STACK_INDEX_MASK == 0) {
171     // Find beginning of this task block
172     kmp_stack_block_t *stack_block =
173         (kmp_stack_block_t *)(task_stack->ts_top - TASK_STACK_BLOCK_SIZE);
174 
175     // Check if we already have a block
176     if (stack_block->sb_next !=
177         NULL) { // reset ts_top to beginning of next block
178       task_stack->ts_top = &stack_block->sb_next->sb_block[0];
179     } else { // Alloc new block and link it up
180       kmp_stack_block_t *new_block = (kmp_stack_block_t *)__kmp_thread_calloc(
181           thread, sizeof(kmp_stack_block_t));
182 
183       task_stack->ts_top = &new_block->sb_block[0];
184       stack_block->sb_next = new_block;
185       new_block->sb_prev = stack_block;
186       new_block->sb_next = NULL;
187 
188       KA_TRACE(
189           30,
190           ("__kmp_push_task_stack(): GTID: %d; TASK: %p; Alloc new block: %p\n",
191            gtid, tied_task, new_block));
192     }
193   }
194   KA_TRACE(20, ("__kmp_push_task_stack(exit): GTID: %d; TASK: %p\n", gtid,
195                 tied_task));
196 }
197 
198 //  __kmp_pop_task_stack: Pop the tied task from the task stack.  Don't return
199 //  the task, just check to make sure it matches the ending task passed in.
200 //
201 //  gtid: global thread identifier for the calling thread
202 //  thread: thread info structure containing stack
203 //  tied_task: the task popped off the stack
204 //  ending_task: the task that is ending (should match popped task)
205 static void __kmp_pop_task_stack(kmp_int32 gtid, kmp_info_t *thread,
206                                  kmp_taskdata_t *ending_task) {
207   // GEH - need to consider what to do if tt_threads_data not allocated yet
208   kmp_thread_data_t *thread_data =
209       &thread->th.th_task_team->tt_threads_data[__kmp_tid_from_gtid(gtid)];
210   kmp_task_stack_t *task_stack = &thread_data->td.td_susp_tied_tasks;
211   kmp_taskdata_t *tied_task;
212 
213   if (ending_task->td_flags.team_serial || ending_task->td_flags.tasking_ser) {
214     // Don't pop anything from stack if team or team tasks are serialized
215     return;
216   }
217 
218   KMP_DEBUG_ASSERT(task_stack->ts_top != NULL);
219   KMP_DEBUG_ASSERT(task_stack->ts_entries > 0);
220 
221   KA_TRACE(20, ("__kmp_pop_task_stack(enter): GTID: %d; THREAD: %p\n", gtid,
222                 thread));
223 
224   // fix up ts_top if we need to pop from previous block
225   if (task_stack->ts_entries & TASK_STACK_INDEX_MASK == 0) {
226     kmp_stack_block_t *stack_block = (kmp_stack_block_t *)(task_stack->ts_top);
227 
228     stack_block = stack_block->sb_prev;
229     task_stack->ts_top = &stack_block->sb_block[TASK_STACK_BLOCK_SIZE];
230   }
231 
232   // finish bookkeeping
233   task_stack->ts_top--;
234   task_stack->ts_entries--;
235 
236   tied_task = *(task_stack->ts_top);
237 
238   KMP_DEBUG_ASSERT(tied_task != NULL);
239   KMP_DEBUG_ASSERT(tied_task->td_flags.tasktype == TASK_TIED);
240   KMP_DEBUG_ASSERT(tied_task == ending_task); // If we built the stack correctly
241 
242   KA_TRACE(20, ("__kmp_pop_task_stack(exit): GTID: %d; TASK: %p\n", gtid,
243                 tied_task));
244   return;
245 }
246 #endif /* BUILD_TIED_TASK_STACK */
247 
248 // returns 1 if new task is allowed to execute, 0 otherwise
249 // checks Task Scheduling constraint (if requested) and
250 // mutexinoutset dependencies if any
251 static bool __kmp_task_is_allowed(int gtid, const kmp_int32 is_constrained,
252                                   const kmp_taskdata_t *tasknew,
253                                   const kmp_taskdata_t *taskcurr) {
254   if (is_constrained && (tasknew->td_flags.tiedness == TASK_TIED)) {
255     // Check if the candidate obeys the Task Scheduling Constraints (TSC)
256     // only descendant of all deferred tied tasks can be scheduled, checking
257     // the last one is enough, as it in turn is the descendant of all others
258     kmp_taskdata_t *current = taskcurr->td_last_tied;
259     KMP_DEBUG_ASSERT(current != NULL);
260     // check if the task is not suspended on barrier
261     if (current->td_flags.tasktype == TASK_EXPLICIT ||
262         current->td_taskwait_thread > 0) { // <= 0 on barrier
263       kmp_int32 level = current->td_level;
264       kmp_taskdata_t *parent = tasknew->td_parent;
265       while (parent != current && parent->td_level > level) {
266         // check generation up to the level of the current task
267         parent = parent->td_parent;
268         KMP_DEBUG_ASSERT(parent != NULL);
269       }
270       if (parent != current)
271         return false;
272     }
273   }
274   // Check mutexinoutset dependencies, acquire locks
275   kmp_depnode_t *node = tasknew->td_depnode;
276   if (UNLIKELY(node && (node->dn.mtx_num_locks > 0))) {
277     for (int i = 0; i < node->dn.mtx_num_locks; ++i) {
278       KMP_DEBUG_ASSERT(node->dn.mtx_locks[i] != NULL);
279       if (__kmp_test_lock(node->dn.mtx_locks[i], gtid))
280         continue;
281       // could not get the lock, release previous locks
282       for (int j = i - 1; j >= 0; --j)
283         __kmp_release_lock(node->dn.mtx_locks[j], gtid);
284       return false;
285     }
286     // negative num_locks means all locks acquired successfully
287     node->dn.mtx_num_locks = -node->dn.mtx_num_locks;
288   }
289   return true;
290 }
291 
292 // __kmp_realloc_task_deque:
293 // Re-allocates a task deque for a particular thread, copies the content from
294 // the old deque and adjusts the necessary data structures relating to the
295 // deque. This operation must be done with the deque_lock being held
296 static void __kmp_realloc_task_deque(kmp_info_t *thread,
297                                      kmp_thread_data_t *thread_data) {
298   kmp_int32 size = TASK_DEQUE_SIZE(thread_data->td);
299   KMP_DEBUG_ASSERT(TCR_4(thread_data->td.td_deque_ntasks) == size);
300   kmp_int32 new_size = 2 * size;
301 
302   KE_TRACE(10, ("__kmp_realloc_task_deque: T#%d reallocating deque[from %d to "
303                 "%d] for thread_data %p\n",
304                 __kmp_gtid_from_thread(thread), size, new_size, thread_data));
305 
306   kmp_taskdata_t **new_deque =
307       (kmp_taskdata_t **)__kmp_allocate(new_size * sizeof(kmp_taskdata_t *));
308 
309   int i, j;
310   for (i = thread_data->td.td_deque_head, j = 0; j < size;
311        i = (i + 1) & TASK_DEQUE_MASK(thread_data->td), j++)
312     new_deque[j] = thread_data->td.td_deque[i];
313 
314   __kmp_free(thread_data->td.td_deque);
315 
316   thread_data->td.td_deque_head = 0;
317   thread_data->td.td_deque_tail = size;
318   thread_data->td.td_deque = new_deque;
319   thread_data->td.td_deque_size = new_size;
320 }
321 
322 static kmp_task_pri_t *__kmp_alloc_task_pri_list() {
323   kmp_task_pri_t *l = (kmp_task_pri_t *)__kmp_allocate(sizeof(kmp_task_pri_t));
324   kmp_thread_data_t *thread_data = &l->td;
325   __kmp_init_bootstrap_lock(&thread_data->td.td_deque_lock);
326   thread_data->td.td_deque_last_stolen = -1;
327   KE_TRACE(20, ("__kmp_alloc_task_pri_list: T#%d allocating deque[%d] "
328                 "for thread_data %p\n",
329                 __kmp_get_gtid(), INITIAL_TASK_DEQUE_SIZE, thread_data));
330   thread_data->td.td_deque = (kmp_taskdata_t **)__kmp_allocate(
331       INITIAL_TASK_DEQUE_SIZE * sizeof(kmp_taskdata_t *));
332   thread_data->td.td_deque_size = INITIAL_TASK_DEQUE_SIZE;
333   return l;
334 }
335 
336 // The function finds the deque of priority tasks with given priority, or
337 // allocates a new deque and put it into sorted (high -> low) list of deques.
338 // Deques of non-default priority tasks are shared between all threads in team,
339 // as opposed to per-thread deques of tasks with default priority.
340 // The function is called under the lock task_team->tt.tt_task_pri_lock.
341 static kmp_thread_data_t *
342 __kmp_get_priority_deque_data(kmp_task_team_t *task_team, kmp_int32 pri) {
343   kmp_thread_data_t *thread_data;
344   kmp_task_pri_t *lst = task_team->tt.tt_task_pri_list;
345   if (lst->priority == pri) {
346     // Found queue of tasks with given priority.
347     thread_data = &lst->td;
348   } else if (lst->priority < pri) {
349     // All current priority queues contain tasks with lower priority.
350     // Allocate new one for given priority tasks.
351     kmp_task_pri_t *list = __kmp_alloc_task_pri_list();
352     thread_data = &list->td;
353     list->priority = pri;
354     list->next = lst;
355     task_team->tt.tt_task_pri_list = list;
356   } else { // task_team->tt.tt_task_pri_list->priority > pri
357     kmp_task_pri_t *next_queue = lst->next;
358     while (next_queue && next_queue->priority > pri) {
359       lst = next_queue;
360       next_queue = lst->next;
361     }
362     // lst->priority > pri && (next == NULL || pri >= next->priority)
363     if (next_queue == NULL) {
364       // No queue with pri priority, need to allocate new one.
365       kmp_task_pri_t *list = __kmp_alloc_task_pri_list();
366       thread_data = &list->td;
367       list->priority = pri;
368       list->next = NULL;
369       lst->next = list;
370     } else if (next_queue->priority == pri) {
371       // Found queue of tasks with given priority.
372       thread_data = &next_queue->td;
373     } else { // lst->priority > pri > next->priority
374       // insert newly allocated between existed queues
375       kmp_task_pri_t *list = __kmp_alloc_task_pri_list();
376       thread_data = &list->td;
377       list->priority = pri;
378       list->next = next_queue;
379       lst->next = list;
380     }
381   }
382   return thread_data;
383 }
384 
385 //  __kmp_push_priority_task: Add a task to the team's priority task deque
386 static kmp_int32 __kmp_push_priority_task(kmp_int32 gtid, kmp_info_t *thread,
387                                           kmp_taskdata_t *taskdata,
388                                           kmp_task_team_t *task_team,
389                                           kmp_int32 pri) {
390   kmp_thread_data_t *thread_data = NULL;
391   KA_TRACE(20,
392            ("__kmp_push_priority_task: T#%d trying to push task %p, pri %d.\n",
393             gtid, taskdata, pri));
394 
395   // Find task queue specific to priority value
396   kmp_task_pri_t *lst = task_team->tt.tt_task_pri_list;
397   if (UNLIKELY(lst == NULL)) {
398     __kmp_acquire_bootstrap_lock(&task_team->tt.tt_task_pri_lock);
399     if (task_team->tt.tt_task_pri_list == NULL) {
400       // List of queues is still empty, allocate one.
401       kmp_task_pri_t *list = __kmp_alloc_task_pri_list();
402       thread_data = &list->td;
403       list->priority = pri;
404       list->next = NULL;
405       task_team->tt.tt_task_pri_list = list;
406     } else {
407       // Other thread initialized a queue. Check if it fits and get thread_data.
408       thread_data = __kmp_get_priority_deque_data(task_team, pri);
409     }
410     __kmp_release_bootstrap_lock(&task_team->tt.tt_task_pri_lock);
411   } else {
412     if (lst->priority == pri) {
413       // Found queue of tasks with given priority.
414       thread_data = &lst->td;
415     } else {
416       __kmp_acquire_bootstrap_lock(&task_team->tt.tt_task_pri_lock);
417       thread_data = __kmp_get_priority_deque_data(task_team, pri);
418       __kmp_release_bootstrap_lock(&task_team->tt.tt_task_pri_lock);
419     }
420   }
421   KMP_DEBUG_ASSERT(thread_data);
422 
423   __kmp_acquire_bootstrap_lock(&thread_data->td.td_deque_lock);
424   // Check if deque is full
425   if (TCR_4(thread_data->td.td_deque_ntasks) >=
426       TASK_DEQUE_SIZE(thread_data->td)) {
427     if (__kmp_enable_task_throttling &&
428         __kmp_task_is_allowed(gtid, __kmp_task_stealing_constraint, taskdata,
429                               thread->th.th_current_task)) {
430       __kmp_release_bootstrap_lock(&thread_data->td.td_deque_lock);
431       KA_TRACE(20, ("__kmp_push_priority_task: T#%d deque is full; returning "
432                     "TASK_NOT_PUSHED for task %p\n",
433                     gtid, taskdata));
434       return TASK_NOT_PUSHED;
435     } else {
436       // expand deque to push the task which is not allowed to execute
437       __kmp_realloc_task_deque(thread, thread_data);
438     }
439   }
440   KMP_DEBUG_ASSERT(TCR_4(thread_data->td.td_deque_ntasks) <
441                    TASK_DEQUE_SIZE(thread_data->td));
442   // Push taskdata.
443   thread_data->td.td_deque[thread_data->td.td_deque_tail] = taskdata;
444   // Wrap index.
445   thread_data->td.td_deque_tail =
446       (thread_data->td.td_deque_tail + 1) & TASK_DEQUE_MASK(thread_data->td);
447   TCW_4(thread_data->td.td_deque_ntasks,
448         TCR_4(thread_data->td.td_deque_ntasks) + 1); // Adjust task count
449   KMP_FSYNC_RELEASING(thread->th.th_current_task); // releasing self
450   KMP_FSYNC_RELEASING(taskdata); // releasing child
451   KA_TRACE(20, ("__kmp_push_priority_task: T#%d returning "
452                 "TASK_SUCCESSFULLY_PUSHED: task=%p ntasks=%d head=%u tail=%u\n",
453                 gtid, taskdata, thread_data->td.td_deque_ntasks,
454                 thread_data->td.td_deque_head, thread_data->td.td_deque_tail));
455   __kmp_release_bootstrap_lock(&thread_data->td.td_deque_lock);
456   task_team->tt.tt_num_task_pri++; // atomic inc
457   return TASK_SUCCESSFULLY_PUSHED;
458 }
459 
460 //  __kmp_push_task: Add a task to the thread's deque
461 static kmp_int32 __kmp_push_task(kmp_int32 gtid, kmp_task_t *task) {
462   kmp_info_t *thread = __kmp_threads[gtid];
463   kmp_taskdata_t *taskdata = KMP_TASK_TO_TASKDATA(task);
464 
465   // If we encounter a hidden helper task, and the current thread is not a
466   // hidden helper thread, we have to give the task to any hidden helper thread
467   // starting from its shadow one.
468   if (UNLIKELY(taskdata->td_flags.hidden_helper &&
469                !KMP_HIDDEN_HELPER_THREAD(gtid))) {
470     kmp_int32 shadow_gtid = KMP_GTID_TO_SHADOW_GTID(gtid);
471     __kmpc_give_task(task, __kmp_tid_from_gtid(shadow_gtid));
472     // Signal the hidden helper threads.
473     __kmp_hidden_helper_worker_thread_signal();
474     return TASK_SUCCESSFULLY_PUSHED;
475   }
476 
477   kmp_task_team_t *task_team = thread->th.th_task_team;
478   kmp_int32 tid = __kmp_tid_from_gtid(gtid);
479   kmp_thread_data_t *thread_data;
480 
481   KA_TRACE(20,
482            ("__kmp_push_task: T#%d trying to push task %p.\n", gtid, taskdata));
483 
484   if (UNLIKELY(taskdata->td_flags.tiedness == TASK_UNTIED)) {
485     // untied task needs to increment counter so that the task structure is not
486     // freed prematurely
487     kmp_int32 counter = 1 + KMP_ATOMIC_INC(&taskdata->td_untied_count);
488     KMP_DEBUG_USE_VAR(counter);
489     KA_TRACE(
490         20,
491         ("__kmp_push_task: T#%d untied_count (%d) incremented for task %p\n",
492          gtid, counter, taskdata));
493   }
494 
495   // The first check avoids building task_team thread data if serialized
496   if (UNLIKELY(taskdata->td_flags.task_serial)) {
497     KA_TRACE(20, ("__kmp_push_task: T#%d team serialized; returning "
498                   "TASK_NOT_PUSHED for task %p\n",
499                   gtid, taskdata));
500     return TASK_NOT_PUSHED;
501   }
502 
503   // Now that serialized tasks have returned, we can assume that we are not in
504   // immediate exec mode
505   KMP_DEBUG_ASSERT(__kmp_tasking_mode != tskm_immediate_exec);
506   if (UNLIKELY(!KMP_TASKING_ENABLED(task_team))) {
507     __kmp_enable_tasking(task_team, thread);
508   }
509   KMP_DEBUG_ASSERT(TCR_4(task_team->tt.tt_found_tasks) == TRUE);
510   KMP_DEBUG_ASSERT(TCR_PTR(task_team->tt.tt_threads_data) != NULL);
511 
512   if (taskdata->td_flags.priority_specified && task->data2.priority > 0 &&
513       __kmp_max_task_priority > 0) {
514     int pri = KMP_MIN(task->data2.priority, __kmp_max_task_priority);
515     return __kmp_push_priority_task(gtid, thread, taskdata, task_team, pri);
516   }
517 
518   // Find tasking deque specific to encountering thread
519   thread_data = &task_team->tt.tt_threads_data[tid];
520 
521   // No lock needed since only owner can allocate. If the task is hidden_helper,
522   // we don't need it either because we have initialized the dequeue for hidden
523   // helper thread data.
524   if (UNLIKELY(thread_data->td.td_deque == NULL)) {
525     __kmp_alloc_task_deque(thread, thread_data);
526   }
527 
528   int locked = 0;
529   // Check if deque is full
530   if (TCR_4(thread_data->td.td_deque_ntasks) >=
531       TASK_DEQUE_SIZE(thread_data->td)) {
532     if (__kmp_enable_task_throttling &&
533         __kmp_task_is_allowed(gtid, __kmp_task_stealing_constraint, taskdata,
534                               thread->th.th_current_task)) {
535       KA_TRACE(20, ("__kmp_push_task: T#%d deque is full; returning "
536                     "TASK_NOT_PUSHED for task %p\n",
537                     gtid, taskdata));
538       return TASK_NOT_PUSHED;
539     } else {
540       __kmp_acquire_bootstrap_lock(&thread_data->td.td_deque_lock);
541       locked = 1;
542       if (TCR_4(thread_data->td.td_deque_ntasks) >=
543           TASK_DEQUE_SIZE(thread_data->td)) {
544         // expand deque to push the task which is not allowed to execute
545         __kmp_realloc_task_deque(thread, thread_data);
546       }
547     }
548   }
549   // Lock the deque for the task push operation
550   if (!locked) {
551     __kmp_acquire_bootstrap_lock(&thread_data->td.td_deque_lock);
552     // Need to recheck as we can get a proxy task from thread outside of OpenMP
553     if (TCR_4(thread_data->td.td_deque_ntasks) >=
554         TASK_DEQUE_SIZE(thread_data->td)) {
555       if (__kmp_enable_task_throttling &&
556           __kmp_task_is_allowed(gtid, __kmp_task_stealing_constraint, taskdata,
557                                 thread->th.th_current_task)) {
558         __kmp_release_bootstrap_lock(&thread_data->td.td_deque_lock);
559         KA_TRACE(20, ("__kmp_push_task: T#%d deque is full on 2nd check; "
560                       "returning TASK_NOT_PUSHED for task %p\n",
561                       gtid, taskdata));
562         return TASK_NOT_PUSHED;
563       } else {
564         // expand deque to push the task which is not allowed to execute
565         __kmp_realloc_task_deque(thread, thread_data);
566       }
567     }
568   }
569   // Must have room since no thread can add tasks but calling thread
570   KMP_DEBUG_ASSERT(TCR_4(thread_data->td.td_deque_ntasks) <
571                    TASK_DEQUE_SIZE(thread_data->td));
572 
573   thread_data->td.td_deque[thread_data->td.td_deque_tail] =
574       taskdata; // Push taskdata
575   // Wrap index.
576   thread_data->td.td_deque_tail =
577       (thread_data->td.td_deque_tail + 1) & TASK_DEQUE_MASK(thread_data->td);
578   TCW_4(thread_data->td.td_deque_ntasks,
579         TCR_4(thread_data->td.td_deque_ntasks) + 1); // Adjust task count
580   KMP_FSYNC_RELEASING(thread->th.th_current_task); // releasing self
581   KMP_FSYNC_RELEASING(taskdata); // releasing child
582   KA_TRACE(20, ("__kmp_push_task: T#%d returning TASK_SUCCESSFULLY_PUSHED: "
583                 "task=%p ntasks=%d head=%u tail=%u\n",
584                 gtid, taskdata, thread_data->td.td_deque_ntasks,
585                 thread_data->td.td_deque_head, thread_data->td.td_deque_tail));
586 
587   __kmp_release_bootstrap_lock(&thread_data->td.td_deque_lock);
588 
589   return TASK_SUCCESSFULLY_PUSHED;
590 }
591 
592 // __kmp_pop_current_task_from_thread: set up current task from called thread
593 // when team ends
594 //
595 // this_thr: thread structure to set current_task in.
596 void __kmp_pop_current_task_from_thread(kmp_info_t *this_thr) {
597   KF_TRACE(10, ("__kmp_pop_current_task_from_thread(enter): T#%d "
598                 "this_thread=%p, curtask=%p, "
599                 "curtask_parent=%p\n",
600                 0, this_thr, this_thr->th.th_current_task,
601                 this_thr->th.th_current_task->td_parent));
602 
603   this_thr->th.th_current_task = this_thr->th.th_current_task->td_parent;
604 
605   KF_TRACE(10, ("__kmp_pop_current_task_from_thread(exit): T#%d "
606                 "this_thread=%p, curtask=%p, "
607                 "curtask_parent=%p\n",
608                 0, this_thr, this_thr->th.th_current_task,
609                 this_thr->th.th_current_task->td_parent));
610 }
611 
612 // __kmp_push_current_task_to_thread: set up current task in called thread for a
613 // new team
614 //
615 // this_thr: thread structure to set up
616 // team: team for implicit task data
617 // tid: thread within team to set up
618 void __kmp_push_current_task_to_thread(kmp_info_t *this_thr, kmp_team_t *team,
619                                        int tid) {
620   // current task of the thread is a parent of the new just created implicit
621   // tasks of new team
622   KF_TRACE(10, ("__kmp_push_current_task_to_thread(enter): T#%d this_thread=%p "
623                 "curtask=%p "
624                 "parent_task=%p\n",
625                 tid, this_thr, this_thr->th.th_current_task,
626                 team->t.t_implicit_task_taskdata[tid].td_parent));
627 
628   KMP_DEBUG_ASSERT(this_thr != NULL);
629 
630   if (tid == 0) {
631     if (this_thr->th.th_current_task != &team->t.t_implicit_task_taskdata[0]) {
632       team->t.t_implicit_task_taskdata[0].td_parent =
633           this_thr->th.th_current_task;
634       this_thr->th.th_current_task = &team->t.t_implicit_task_taskdata[0];
635     }
636   } else {
637     team->t.t_implicit_task_taskdata[tid].td_parent =
638         team->t.t_implicit_task_taskdata[0].td_parent;
639     this_thr->th.th_current_task = &team->t.t_implicit_task_taskdata[tid];
640   }
641 
642   KF_TRACE(10, ("__kmp_push_current_task_to_thread(exit): T#%d this_thread=%p "
643                 "curtask=%p "
644                 "parent_task=%p\n",
645                 tid, this_thr, this_thr->th.th_current_task,
646                 team->t.t_implicit_task_taskdata[tid].td_parent));
647 }
648 
649 // __kmp_task_start: bookkeeping for a task starting execution
650 //
651 // GTID: global thread id of calling thread
652 // task: task starting execution
653 // current_task: task suspending
654 static void __kmp_task_start(kmp_int32 gtid, kmp_task_t *task,
655                              kmp_taskdata_t *current_task) {
656   kmp_taskdata_t *taskdata = KMP_TASK_TO_TASKDATA(task);
657   kmp_info_t *thread = __kmp_threads[gtid];
658 
659   KA_TRACE(10,
660            ("__kmp_task_start(enter): T#%d starting task %p: current_task=%p\n",
661             gtid, taskdata, current_task));
662 
663   KMP_DEBUG_ASSERT(taskdata->td_flags.tasktype == TASK_EXPLICIT);
664 
665   // mark currently executing task as suspended
666   // TODO: GEH - make sure root team implicit task is initialized properly.
667   // KMP_DEBUG_ASSERT( current_task -> td_flags.executing == 1 );
668   current_task->td_flags.executing = 0;
669 
670 // Add task to stack if tied
671 #ifdef BUILD_TIED_TASK_STACK
672   if (taskdata->td_flags.tiedness == TASK_TIED) {
673     __kmp_push_task_stack(gtid, thread, taskdata);
674   }
675 #endif /* BUILD_TIED_TASK_STACK */
676 
677   // mark starting task as executing and as current task
678   thread->th.th_current_task = taskdata;
679 
680   KMP_DEBUG_ASSERT(taskdata->td_flags.started == 0 ||
681                    taskdata->td_flags.tiedness == TASK_UNTIED);
682   KMP_DEBUG_ASSERT(taskdata->td_flags.executing == 0 ||
683                    taskdata->td_flags.tiedness == TASK_UNTIED);
684   taskdata->td_flags.started = 1;
685   taskdata->td_flags.executing = 1;
686   KMP_DEBUG_ASSERT(taskdata->td_flags.complete == 0);
687   KMP_DEBUG_ASSERT(taskdata->td_flags.freed == 0);
688 
689   // GEH TODO: shouldn't we pass some sort of location identifier here?
690   // APT: yes, we will pass location here.
691   // need to store current thread state (in a thread or taskdata structure)
692   // before setting work_state, otherwise wrong state is set after end of task
693 
694   KA_TRACE(10, ("__kmp_task_start(exit): T#%d task=%p\n", gtid, taskdata));
695 
696   return;
697 }
698 
699 #if OMPT_SUPPORT
700 //------------------------------------------------------------------------------
701 // __ompt_task_init:
702 //   Initialize OMPT fields maintained by a task. This will only be called after
703 //   ompt_start_tool, so we already know whether ompt is enabled or not.
704 
705 static inline void __ompt_task_init(kmp_taskdata_t *task, int tid) {
706   // The calls to __ompt_task_init already have the ompt_enabled condition.
707   task->ompt_task_info.task_data.value = 0;
708   task->ompt_task_info.frame.exit_frame = ompt_data_none;
709   task->ompt_task_info.frame.enter_frame = ompt_data_none;
710   task->ompt_task_info.frame.exit_frame_flags =
711       ompt_frame_runtime | ompt_frame_framepointer;
712   task->ompt_task_info.frame.enter_frame_flags =
713       ompt_frame_runtime | ompt_frame_framepointer;
714   task->ompt_task_info.dispatch_chunk.start = 0;
715   task->ompt_task_info.dispatch_chunk.iterations = 0;
716 }
717 
718 // __ompt_task_start:
719 //   Build and trigger task-begin event
720 static inline void __ompt_task_start(kmp_task_t *task,
721                                      kmp_taskdata_t *current_task,
722                                      kmp_int32 gtid) {
723   kmp_taskdata_t *taskdata = KMP_TASK_TO_TASKDATA(task);
724   ompt_task_status_t status = ompt_task_switch;
725   if (__kmp_threads[gtid]->th.ompt_thread_info.ompt_task_yielded) {
726     status = ompt_task_yield;
727     __kmp_threads[gtid]->th.ompt_thread_info.ompt_task_yielded = 0;
728   }
729   /* let OMPT know that we're about to run this task */
730   if (ompt_enabled.ompt_callback_task_schedule) {
731     ompt_callbacks.ompt_callback(ompt_callback_task_schedule)(
732         &(current_task->ompt_task_info.task_data), status,
733         &(taskdata->ompt_task_info.task_data));
734   }
735   taskdata->ompt_task_info.scheduling_parent = current_task;
736 }
737 
738 // __ompt_task_finish:
739 //   Build and trigger final task-schedule event
740 static inline void __ompt_task_finish(kmp_task_t *task,
741                                       kmp_taskdata_t *resumed_task,
742                                       ompt_task_status_t status) {
743   if (ompt_enabled.ompt_callback_task_schedule) {
744     kmp_taskdata_t *taskdata = KMP_TASK_TO_TASKDATA(task);
745     if (__kmp_omp_cancellation && taskdata->td_taskgroup &&
746         taskdata->td_taskgroup->cancel_request == cancel_taskgroup) {
747       status = ompt_task_cancel;
748     }
749 
750     /* let OMPT know that we're returning to the callee task */
751     ompt_callbacks.ompt_callback(ompt_callback_task_schedule)(
752         &(taskdata->ompt_task_info.task_data), status,
753         (resumed_task ? &(resumed_task->ompt_task_info.task_data) : NULL));
754   }
755 }
756 #endif
757 
758 template <bool ompt>
759 static void __kmpc_omp_task_begin_if0_template(ident_t *loc_ref, kmp_int32 gtid,
760                                                kmp_task_t *task,
761                                                void *frame_address,
762                                                void *return_address) {
763   kmp_taskdata_t *taskdata = KMP_TASK_TO_TASKDATA(task);
764   kmp_taskdata_t *current_task = __kmp_threads[gtid]->th.th_current_task;
765 
766   KA_TRACE(10, ("__kmpc_omp_task_begin_if0(enter): T#%d loc=%p task=%p "
767                 "current_task=%p\n",
768                 gtid, loc_ref, taskdata, current_task));
769 
770   if (UNLIKELY(taskdata->td_flags.tiedness == TASK_UNTIED)) {
771     // untied task needs to increment counter so that the task structure is not
772     // freed prematurely
773     kmp_int32 counter = 1 + KMP_ATOMIC_INC(&taskdata->td_untied_count);
774     KMP_DEBUG_USE_VAR(counter);
775     KA_TRACE(20, ("__kmpc_omp_task_begin_if0: T#%d untied_count (%d) "
776                   "incremented for task %p\n",
777                   gtid, counter, taskdata));
778   }
779 
780   taskdata->td_flags.task_serial =
781       1; // Execute this task immediately, not deferred.
782   __kmp_task_start(gtid, task, current_task);
783 
784 #if OMPT_SUPPORT
785   if (ompt) {
786     if (current_task->ompt_task_info.frame.enter_frame.ptr == NULL) {
787       current_task->ompt_task_info.frame.enter_frame.ptr =
788           taskdata->ompt_task_info.frame.exit_frame.ptr = frame_address;
789       current_task->ompt_task_info.frame.enter_frame_flags =
790           taskdata->ompt_task_info.frame.exit_frame_flags =
791               ompt_frame_application | ompt_frame_framepointer;
792     }
793     if (ompt_enabled.ompt_callback_task_create) {
794       ompt_task_info_t *parent_info = &(current_task->ompt_task_info);
795       ompt_callbacks.ompt_callback(ompt_callback_task_create)(
796           &(parent_info->task_data), &(parent_info->frame),
797           &(taskdata->ompt_task_info.task_data),
798           ompt_task_explicit | TASK_TYPE_DETAILS_FORMAT(taskdata), 0,
799           return_address);
800     }
801     __ompt_task_start(task, current_task, gtid);
802   }
803 #endif // OMPT_SUPPORT
804 
805   KA_TRACE(10, ("__kmpc_omp_task_begin_if0(exit): T#%d loc=%p task=%p,\n", gtid,
806                 loc_ref, taskdata));
807 }
808 
809 #if OMPT_SUPPORT
810 OMPT_NOINLINE
811 static void __kmpc_omp_task_begin_if0_ompt(ident_t *loc_ref, kmp_int32 gtid,
812                                            kmp_task_t *task,
813                                            void *frame_address,
814                                            void *return_address) {
815   __kmpc_omp_task_begin_if0_template<true>(loc_ref, gtid, task, frame_address,
816                                            return_address);
817 }
818 #endif // OMPT_SUPPORT
819 
820 // __kmpc_omp_task_begin_if0: report that a given serialized task has started
821 // execution
822 //
823 // loc_ref: source location information; points to beginning of task block.
824 // gtid: global thread number.
825 // task: task thunk for the started task.
826 void __kmpc_omp_task_begin_if0(ident_t *loc_ref, kmp_int32 gtid,
827                                kmp_task_t *task) {
828 #if OMPT_SUPPORT
829   if (UNLIKELY(ompt_enabled.enabled)) {
830     OMPT_STORE_RETURN_ADDRESS(gtid);
831     __kmpc_omp_task_begin_if0_ompt(loc_ref, gtid, task,
832                                    OMPT_GET_FRAME_ADDRESS(1),
833                                    OMPT_LOAD_RETURN_ADDRESS(gtid));
834     return;
835   }
836 #endif
837   __kmpc_omp_task_begin_if0_template<false>(loc_ref, gtid, task, NULL, NULL);
838 }
839 
840 #ifdef TASK_UNUSED
841 // __kmpc_omp_task_begin: report that a given task has started execution
842 // NEVER GENERATED BY COMPILER, DEPRECATED!!!
843 void __kmpc_omp_task_begin(ident_t *loc_ref, kmp_int32 gtid, kmp_task_t *task) {
844   kmp_taskdata_t *current_task = __kmp_threads[gtid]->th.th_current_task;
845 
846   KA_TRACE(
847       10,
848       ("__kmpc_omp_task_begin(enter): T#%d loc=%p task=%p current_task=%p\n",
849        gtid, loc_ref, KMP_TASK_TO_TASKDATA(task), current_task));
850 
851   __kmp_task_start(gtid, task, current_task);
852 
853   KA_TRACE(10, ("__kmpc_omp_task_begin(exit): T#%d loc=%p task=%p,\n", gtid,
854                 loc_ref, KMP_TASK_TO_TASKDATA(task)));
855   return;
856 }
857 #endif // TASK_UNUSED
858 
859 // __kmp_free_task: free the current task space and the space for shareds
860 //
861 // gtid: Global thread ID of calling thread
862 // taskdata: task to free
863 // thread: thread data structure of caller
864 static void __kmp_free_task(kmp_int32 gtid, kmp_taskdata_t *taskdata,
865                             kmp_info_t *thread) {
866   KA_TRACE(30, ("__kmp_free_task: T#%d freeing data from task %p\n", gtid,
867                 taskdata));
868 
869   // Check to make sure all flags and counters have the correct values
870   KMP_DEBUG_ASSERT(taskdata->td_flags.tasktype == TASK_EXPLICIT);
871   KMP_DEBUG_ASSERT(taskdata->td_flags.executing == 0);
872   KMP_DEBUG_ASSERT(taskdata->td_flags.complete == 1);
873   KMP_DEBUG_ASSERT(taskdata->td_flags.freed == 0);
874   KMP_DEBUG_ASSERT(taskdata->td_allocated_child_tasks == 0 ||
875                    taskdata->td_flags.task_serial == 1);
876   KMP_DEBUG_ASSERT(taskdata->td_incomplete_child_tasks == 0);
877   kmp_task_t *task = KMP_TASKDATA_TO_TASK(taskdata);
878   // Clear data to not be re-used later by mistake.
879   task->data1.destructors = NULL;
880   task->data2.priority = 0;
881 
882   taskdata->td_flags.freed = 1;
883 // deallocate the taskdata and shared variable blocks associated with this task
884 #if USE_FAST_MEMORY
885   __kmp_fast_free(thread, taskdata);
886 #else /* ! USE_FAST_MEMORY */
887   __kmp_thread_free(thread, taskdata);
888 #endif
889   KA_TRACE(20, ("__kmp_free_task: T#%d freed task %p\n", gtid, taskdata));
890 }
891 
892 // __kmp_free_task_and_ancestors: free the current task and ancestors without
893 // children
894 //
895 // gtid: Global thread ID of calling thread
896 // taskdata: task to free
897 // thread: thread data structure of caller
898 static void __kmp_free_task_and_ancestors(kmp_int32 gtid,
899                                           kmp_taskdata_t *taskdata,
900                                           kmp_info_t *thread) {
901   // Proxy tasks must always be allowed to free their parents
902   // because they can be run in background even in serial mode.
903   kmp_int32 team_serial =
904       (taskdata->td_flags.team_serial || taskdata->td_flags.tasking_ser) &&
905       !taskdata->td_flags.proxy;
906   KMP_DEBUG_ASSERT(taskdata->td_flags.tasktype == TASK_EXPLICIT);
907 
908   kmp_int32 children = KMP_ATOMIC_DEC(&taskdata->td_allocated_child_tasks) - 1;
909   KMP_DEBUG_ASSERT(children >= 0);
910 
911   // Now, go up the ancestor tree to see if any ancestors can now be freed.
912   while (children == 0) {
913     kmp_taskdata_t *parent_taskdata = taskdata->td_parent;
914 
915     KA_TRACE(20, ("__kmp_free_task_and_ancestors(enter): T#%d task %p complete "
916                   "and freeing itself\n",
917                   gtid, taskdata));
918 
919     // --- Deallocate my ancestor task ---
920     __kmp_free_task(gtid, taskdata, thread);
921 
922     taskdata = parent_taskdata;
923 
924     if (team_serial)
925       return;
926     // Stop checking ancestors at implicit task instead of walking up ancestor
927     // tree to avoid premature deallocation of ancestors.
928     if (taskdata->td_flags.tasktype == TASK_IMPLICIT) {
929       if (taskdata->td_dephash) { // do we need to cleanup dephash?
930         int children = KMP_ATOMIC_LD_ACQ(&taskdata->td_incomplete_child_tasks);
931         kmp_tasking_flags_t flags_old = taskdata->td_flags;
932         if (children == 0 && flags_old.complete == 1) {
933           kmp_tasking_flags_t flags_new = flags_old;
934           flags_new.complete = 0;
935           if (KMP_COMPARE_AND_STORE_ACQ32(
936                   RCAST(kmp_int32 *, &taskdata->td_flags),
937                   *RCAST(kmp_int32 *, &flags_old),
938                   *RCAST(kmp_int32 *, &flags_new))) {
939             KA_TRACE(100, ("__kmp_free_task_and_ancestors: T#%d cleans "
940                            "dephash of implicit task %p\n",
941                            gtid, taskdata));
942             // cleanup dephash of finished implicit task
943             __kmp_dephash_free_entries(thread, taskdata->td_dephash);
944           }
945         }
946       }
947       return;
948     }
949     // Predecrement simulated by "- 1" calculation
950     children = KMP_ATOMIC_DEC(&taskdata->td_allocated_child_tasks) - 1;
951     KMP_DEBUG_ASSERT(children >= 0);
952   }
953 
954   KA_TRACE(
955       20, ("__kmp_free_task_and_ancestors(exit): T#%d task %p has %d children; "
956            "not freeing it yet\n",
957            gtid, taskdata, children));
958 }
959 
960 // Only need to keep track of child task counts if any of the following:
961 // 1. team parallel and tasking not serialized;
962 // 2. it is a proxy or detachable or hidden helper task
963 // 3. the children counter of its parent task is greater than 0.
964 // The reason for the 3rd one is for serialized team that found detached task,
965 // hidden helper task, T. In this case, the execution of T is still deferred,
966 // and it is also possible that a regular task depends on T. In this case, if we
967 // don't track the children, task synchronization will be broken.
968 static bool __kmp_track_children_task(kmp_taskdata_t *taskdata) {
969   kmp_tasking_flags_t flags = taskdata->td_flags;
970   bool ret = !(flags.team_serial || flags.tasking_ser);
971   ret = ret || flags.proxy == TASK_PROXY ||
972         flags.detachable == TASK_DETACHABLE || flags.hidden_helper;
973   ret = ret ||
974         KMP_ATOMIC_LD_ACQ(&taskdata->td_parent->td_incomplete_child_tasks) > 0;
975   return ret;
976 }
977 
978 // __kmp_task_finish: bookkeeping to do when a task finishes execution
979 //
980 // gtid: global thread ID for calling thread
981 // task: task to be finished
982 // resumed_task: task to be resumed.  (may be NULL if task is serialized)
983 //
984 // template<ompt>: effectively ompt_enabled.enabled!=0
985 // the version with ompt=false is inlined, allowing to optimize away all ompt
986 // code in this case
987 template <bool ompt>
988 static void __kmp_task_finish(kmp_int32 gtid, kmp_task_t *task,
989                               kmp_taskdata_t *resumed_task) {
990   kmp_taskdata_t *taskdata = KMP_TASK_TO_TASKDATA(task);
991   kmp_info_t *thread = __kmp_threads[gtid];
992   kmp_task_team_t *task_team =
993       thread->th.th_task_team; // might be NULL for serial teams...
994 #if KMP_DEBUG
995   kmp_int32 children = 0;
996 #endif
997   KA_TRACE(10, ("__kmp_task_finish(enter): T#%d finishing task %p and resuming "
998                 "task %p\n",
999                 gtid, taskdata, resumed_task));
1000 
1001   KMP_DEBUG_ASSERT(taskdata->td_flags.tasktype == TASK_EXPLICIT);
1002 
1003 // Pop task from stack if tied
1004 #ifdef BUILD_TIED_TASK_STACK
1005   if (taskdata->td_flags.tiedness == TASK_TIED) {
1006     __kmp_pop_task_stack(gtid, thread, taskdata);
1007   }
1008 #endif /* BUILD_TIED_TASK_STACK */
1009 
1010   if (UNLIKELY(taskdata->td_flags.tiedness == TASK_UNTIED)) {
1011     // untied task needs to check the counter so that the task structure is not
1012     // freed prematurely
1013     kmp_int32 counter = KMP_ATOMIC_DEC(&taskdata->td_untied_count) - 1;
1014     KA_TRACE(
1015         20,
1016         ("__kmp_task_finish: T#%d untied_count (%d) decremented for task %p\n",
1017          gtid, counter, taskdata));
1018     if (counter > 0) {
1019       // untied task is not done, to be continued possibly by other thread, do
1020       // not free it now
1021       if (resumed_task == NULL) {
1022         KMP_DEBUG_ASSERT(taskdata->td_flags.task_serial);
1023         resumed_task = taskdata->td_parent; // In a serialized task, the resumed
1024         // task is the parent
1025       }
1026       thread->th.th_current_task = resumed_task; // restore current_task
1027       resumed_task->td_flags.executing = 1; // resume previous task
1028       KA_TRACE(10, ("__kmp_task_finish(exit): T#%d partially done task %p, "
1029                     "resuming task %p\n",
1030                     gtid, taskdata, resumed_task));
1031       return;
1032     }
1033   }
1034 
1035   // bookkeeping for resuming task:
1036   // GEH - note tasking_ser => task_serial
1037   KMP_DEBUG_ASSERT(
1038       (taskdata->td_flags.tasking_ser || taskdata->td_flags.task_serial) ==
1039       taskdata->td_flags.task_serial);
1040   if (taskdata->td_flags.task_serial) {
1041     if (resumed_task == NULL) {
1042       resumed_task = taskdata->td_parent; // In a serialized task, the resumed
1043       // task is the parent
1044     }
1045   } else {
1046     KMP_DEBUG_ASSERT(resumed_task !=
1047                      NULL); // verify that resumed task is passed as argument
1048   }
1049 
1050   /* If the tasks' destructor thunk flag has been set, we need to invoke the
1051      destructor thunk that has been generated by the compiler. The code is
1052      placed here, since at this point other tasks might have been released
1053      hence overlapping the destructor invocations with some other work in the
1054      released tasks.  The OpenMP spec is not specific on when the destructors
1055      are invoked, so we should be free to choose. */
1056   if (UNLIKELY(taskdata->td_flags.destructors_thunk)) {
1057     kmp_routine_entry_t destr_thunk = task->data1.destructors;
1058     KMP_ASSERT(destr_thunk);
1059     destr_thunk(gtid, task);
1060   }
1061 
1062   KMP_DEBUG_ASSERT(taskdata->td_flags.complete == 0);
1063   KMP_DEBUG_ASSERT(taskdata->td_flags.started == 1);
1064   KMP_DEBUG_ASSERT(taskdata->td_flags.freed == 0);
1065 
1066   bool detach = false;
1067   if (UNLIKELY(taskdata->td_flags.detachable == TASK_DETACHABLE)) {
1068     if (taskdata->td_allow_completion_event.type ==
1069         KMP_EVENT_ALLOW_COMPLETION) {
1070       // event hasn't been fulfilled yet. Try to detach task.
1071       __kmp_acquire_tas_lock(&taskdata->td_allow_completion_event.lock, gtid);
1072       if (taskdata->td_allow_completion_event.type ==
1073           KMP_EVENT_ALLOW_COMPLETION) {
1074         // task finished execution
1075         KMP_DEBUG_ASSERT(taskdata->td_flags.executing == 1);
1076         taskdata->td_flags.executing = 0; // suspend the finishing task
1077 
1078 #if OMPT_SUPPORT
1079         // For a detached task, which is not completed, we switch back
1080         // the omp_fulfill_event signals completion
1081         // locking is necessary to avoid a race with ompt_task_late_fulfill
1082         if (ompt)
1083           __ompt_task_finish(task, resumed_task, ompt_task_detach);
1084 #endif
1085 
1086         // no access to taskdata after this point!
1087         // __kmp_fulfill_event might free taskdata at any time from now
1088 
1089         taskdata->td_flags.proxy = TASK_PROXY; // proxify!
1090         detach = true;
1091       }
1092       __kmp_release_tas_lock(&taskdata->td_allow_completion_event.lock, gtid);
1093     }
1094   }
1095 
1096   if (!detach) {
1097     taskdata->td_flags.complete = 1; // mark the task as completed
1098 
1099 #if OMPT_SUPPORT
1100     // This is not a detached task, we are done here
1101     if (ompt)
1102       __ompt_task_finish(task, resumed_task, ompt_task_complete);
1103 #endif
1104     // TODO: What would be the balance between the conditions in the function
1105     // and an atomic operation?
1106     if (__kmp_track_children_task(taskdata)) {
1107       __kmp_release_deps(gtid, taskdata);
1108       // Predecrement simulated by "- 1" calculation
1109 #if KMP_DEBUG
1110       children = -1 +
1111 #endif
1112           KMP_ATOMIC_DEC(&taskdata->td_parent->td_incomplete_child_tasks);
1113       KMP_DEBUG_ASSERT(children >= 0);
1114       if (taskdata->td_taskgroup)
1115         KMP_ATOMIC_DEC(&taskdata->td_taskgroup->count);
1116     } else if (task_team && (task_team->tt.tt_found_proxy_tasks ||
1117                              task_team->tt.tt_hidden_helper_task_encountered)) {
1118       // if we found proxy or hidden helper tasks there could exist a dependency
1119       // chain with the proxy task as origin
1120       __kmp_release_deps(gtid, taskdata);
1121     }
1122     // td_flags.executing must be marked as 0 after __kmp_release_deps has been
1123     // called. Othertwise, if a task is executed immediately from the
1124     // release_deps code, the flag will be reset to 1 again by this same
1125     // function
1126     KMP_DEBUG_ASSERT(taskdata->td_flags.executing == 1);
1127     taskdata->td_flags.executing = 0; // suspend the finishing task
1128   }
1129 
1130   KA_TRACE(
1131       20, ("__kmp_task_finish: T#%d finished task %p, %d incomplete children\n",
1132            gtid, taskdata, children));
1133 
1134   // Free this task and then ancestor tasks if they have no children.
1135   // Restore th_current_task first as suggested by John:
1136   // johnmc: if an asynchronous inquiry peers into the runtime system
1137   // it doesn't see the freed task as the current task.
1138   thread->th.th_current_task = resumed_task;
1139   if (!detach)
1140     __kmp_free_task_and_ancestors(gtid, taskdata, thread);
1141 
1142   // TODO: GEH - make sure root team implicit task is initialized properly.
1143   // KMP_DEBUG_ASSERT( resumed_task->td_flags.executing == 0 );
1144   resumed_task->td_flags.executing = 1; // resume previous task
1145 
1146   KA_TRACE(
1147       10, ("__kmp_task_finish(exit): T#%d finished task %p, resuming task %p\n",
1148            gtid, taskdata, resumed_task));
1149 
1150   return;
1151 }
1152 
1153 template <bool ompt>
1154 static void __kmpc_omp_task_complete_if0_template(ident_t *loc_ref,
1155                                                   kmp_int32 gtid,
1156                                                   kmp_task_t *task) {
1157   KA_TRACE(10, ("__kmpc_omp_task_complete_if0(enter): T#%d loc=%p task=%p\n",
1158                 gtid, loc_ref, KMP_TASK_TO_TASKDATA(task)));
1159   KMP_DEBUG_ASSERT(gtid >= 0);
1160   // this routine will provide task to resume
1161   __kmp_task_finish<ompt>(gtid, task, NULL);
1162 
1163   KA_TRACE(10, ("__kmpc_omp_task_complete_if0(exit): T#%d loc=%p task=%p\n",
1164                 gtid, loc_ref, KMP_TASK_TO_TASKDATA(task)));
1165 
1166 #if OMPT_SUPPORT
1167   if (ompt) {
1168     ompt_frame_t *ompt_frame;
1169     __ompt_get_task_info_internal(0, NULL, NULL, &ompt_frame, NULL, NULL);
1170     ompt_frame->enter_frame = ompt_data_none;
1171     ompt_frame->enter_frame_flags =
1172         ompt_frame_runtime | ompt_frame_framepointer;
1173   }
1174 #endif
1175 
1176   return;
1177 }
1178 
1179 #if OMPT_SUPPORT
1180 OMPT_NOINLINE
1181 void __kmpc_omp_task_complete_if0_ompt(ident_t *loc_ref, kmp_int32 gtid,
1182                                        kmp_task_t *task) {
1183   __kmpc_omp_task_complete_if0_template<true>(loc_ref, gtid, task);
1184 }
1185 #endif // OMPT_SUPPORT
1186 
1187 // __kmpc_omp_task_complete_if0: report that a task has completed execution
1188 //
1189 // loc_ref: source location information; points to end of task block.
1190 // gtid: global thread number.
1191 // task: task thunk for the completed task.
1192 void __kmpc_omp_task_complete_if0(ident_t *loc_ref, kmp_int32 gtid,
1193                                   kmp_task_t *task) {
1194 #if OMPT_SUPPORT
1195   if (UNLIKELY(ompt_enabled.enabled)) {
1196     __kmpc_omp_task_complete_if0_ompt(loc_ref, gtid, task);
1197     return;
1198   }
1199 #endif
1200   __kmpc_omp_task_complete_if0_template<false>(loc_ref, gtid, task);
1201 }
1202 
1203 #ifdef TASK_UNUSED
1204 // __kmpc_omp_task_complete: report that a task has completed execution
1205 // NEVER GENERATED BY COMPILER, DEPRECATED!!!
1206 void __kmpc_omp_task_complete(ident_t *loc_ref, kmp_int32 gtid,
1207                               kmp_task_t *task) {
1208   KA_TRACE(10, ("__kmpc_omp_task_complete(enter): T#%d loc=%p task=%p\n", gtid,
1209                 loc_ref, KMP_TASK_TO_TASKDATA(task)));
1210 
1211   __kmp_task_finish<false>(gtid, task,
1212                            NULL); // Not sure how to find task to resume
1213 
1214   KA_TRACE(10, ("__kmpc_omp_task_complete(exit): T#%d loc=%p task=%p\n", gtid,
1215                 loc_ref, KMP_TASK_TO_TASKDATA(task)));
1216   return;
1217 }
1218 #endif // TASK_UNUSED
1219 
1220 // __kmp_init_implicit_task: Initialize the appropriate fields in the implicit
1221 // task for a given thread
1222 //
1223 // loc_ref:  reference to source location of parallel region
1224 // this_thr:  thread data structure corresponding to implicit task
1225 // team: team for this_thr
1226 // tid: thread id of given thread within team
1227 // set_curr_task: TRUE if need to push current task to thread
1228 // NOTE: Routine does not set up the implicit task ICVS.  This is assumed to
1229 // have already been done elsewhere.
1230 // TODO: Get better loc_ref.  Value passed in may be NULL
1231 void __kmp_init_implicit_task(ident_t *loc_ref, kmp_info_t *this_thr,
1232                               kmp_team_t *team, int tid, int set_curr_task) {
1233   kmp_taskdata_t *task = &team->t.t_implicit_task_taskdata[tid];
1234 
1235   KF_TRACE(
1236       10,
1237       ("__kmp_init_implicit_task(enter): T#:%d team=%p task=%p, reinit=%s\n",
1238        tid, team, task, set_curr_task ? "TRUE" : "FALSE"));
1239 
1240   task->td_task_id = KMP_GEN_TASK_ID();
1241   task->td_team = team;
1242   //    task->td_parent   = NULL;  // fix for CQ230101 (broken parent task info
1243   //    in debugger)
1244   task->td_ident = loc_ref;
1245   task->td_taskwait_ident = NULL;
1246   task->td_taskwait_counter = 0;
1247   task->td_taskwait_thread = 0;
1248 
1249   task->td_flags.tiedness = TASK_TIED;
1250   task->td_flags.tasktype = TASK_IMPLICIT;
1251   task->td_flags.proxy = TASK_FULL;
1252 
1253   // All implicit tasks are executed immediately, not deferred
1254   task->td_flags.task_serial = 1;
1255   task->td_flags.tasking_ser = (__kmp_tasking_mode == tskm_immediate_exec);
1256   task->td_flags.team_serial = (team->t.t_serialized) ? 1 : 0;
1257 
1258   task->td_flags.started = 1;
1259   task->td_flags.executing = 1;
1260   task->td_flags.complete = 0;
1261   task->td_flags.freed = 0;
1262 
1263   task->td_depnode = NULL;
1264   task->td_last_tied = task;
1265   task->td_allow_completion_event.type = KMP_EVENT_UNINITIALIZED;
1266 
1267   if (set_curr_task) { // only do this init first time thread is created
1268     KMP_ATOMIC_ST_REL(&task->td_incomplete_child_tasks, 0);
1269     // Not used: don't need to deallocate implicit task
1270     KMP_ATOMIC_ST_REL(&task->td_allocated_child_tasks, 0);
1271     task->td_taskgroup = NULL; // An implicit task does not have taskgroup
1272     task->td_dephash = NULL;
1273     __kmp_push_current_task_to_thread(this_thr, team, tid);
1274   } else {
1275     KMP_DEBUG_ASSERT(task->td_incomplete_child_tasks == 0);
1276     KMP_DEBUG_ASSERT(task->td_allocated_child_tasks == 0);
1277   }
1278 
1279 #if OMPT_SUPPORT
1280   if (UNLIKELY(ompt_enabled.enabled))
1281     __ompt_task_init(task, tid);
1282 #endif
1283 
1284   KF_TRACE(10, ("__kmp_init_implicit_task(exit): T#:%d team=%p task=%p\n", tid,
1285                 team, task));
1286 }
1287 
1288 // __kmp_finish_implicit_task: Release resources associated to implicit tasks
1289 // at the end of parallel regions. Some resources are kept for reuse in the next
1290 // parallel region.
1291 //
1292 // thread:  thread data structure corresponding to implicit task
1293 void __kmp_finish_implicit_task(kmp_info_t *thread) {
1294   kmp_taskdata_t *task = thread->th.th_current_task;
1295   if (task->td_dephash) {
1296     int children;
1297     task->td_flags.complete = 1;
1298     children = KMP_ATOMIC_LD_ACQ(&task->td_incomplete_child_tasks);
1299     kmp_tasking_flags_t flags_old = task->td_flags;
1300     if (children == 0 && flags_old.complete == 1) {
1301       kmp_tasking_flags_t flags_new = flags_old;
1302       flags_new.complete = 0;
1303       if (KMP_COMPARE_AND_STORE_ACQ32(RCAST(kmp_int32 *, &task->td_flags),
1304                                       *RCAST(kmp_int32 *, &flags_old),
1305                                       *RCAST(kmp_int32 *, &flags_new))) {
1306         KA_TRACE(100, ("__kmp_finish_implicit_task: T#%d cleans "
1307                        "dephash of implicit task %p\n",
1308                        thread->th.th_info.ds.ds_gtid, task));
1309         __kmp_dephash_free_entries(thread, task->td_dephash);
1310       }
1311     }
1312   }
1313 }
1314 
1315 // __kmp_free_implicit_task: Release resources associated to implicit tasks
1316 // when these are destroyed regions
1317 //
1318 // thread:  thread data structure corresponding to implicit task
1319 void __kmp_free_implicit_task(kmp_info_t *thread) {
1320   kmp_taskdata_t *task = thread->th.th_current_task;
1321   if (task && task->td_dephash) {
1322     __kmp_dephash_free(thread, task->td_dephash);
1323     task->td_dephash = NULL;
1324   }
1325 }
1326 
1327 // Round up a size to a power of two specified by val: Used to insert padding
1328 // between structures co-allocated using a single malloc() call
1329 static size_t __kmp_round_up_to_val(size_t size, size_t val) {
1330   if (size & (val - 1)) {
1331     size &= ~(val - 1);
1332     if (size <= KMP_SIZE_T_MAX - val) {
1333       size += val; // Round up if there is no overflow.
1334     }
1335   }
1336   return size;
1337 } // __kmp_round_up_to_va
1338 
1339 // __kmp_task_alloc: Allocate the taskdata and task data structures for a task
1340 //
1341 // loc_ref: source location information
1342 // gtid: global thread number.
1343 // flags: include tiedness & task type (explicit vs. implicit) of the ''new''
1344 // task encountered. Converted from kmp_int32 to kmp_tasking_flags_t in routine.
1345 // sizeof_kmp_task_t:  Size in bytes of kmp_task_t data structure including
1346 // private vars accessed in task.
1347 // sizeof_shareds:  Size in bytes of array of pointers to shared vars accessed
1348 // in task.
1349 // task_entry: Pointer to task code entry point generated by compiler.
1350 // returns: a pointer to the allocated kmp_task_t structure (task).
1351 kmp_task_t *__kmp_task_alloc(ident_t *loc_ref, kmp_int32 gtid,
1352                              kmp_tasking_flags_t *flags,
1353                              size_t sizeof_kmp_task_t, size_t sizeof_shareds,
1354                              kmp_routine_entry_t task_entry) {
1355   kmp_task_t *task;
1356   kmp_taskdata_t *taskdata;
1357   kmp_info_t *thread = __kmp_threads[gtid];
1358   kmp_team_t *team = thread->th.th_team;
1359   kmp_taskdata_t *parent_task = thread->th.th_current_task;
1360   size_t shareds_offset;
1361 
1362   if (UNLIKELY(!TCR_4(__kmp_init_middle)))
1363     __kmp_middle_initialize();
1364 
1365   if (flags->hidden_helper) {
1366     if (__kmp_enable_hidden_helper) {
1367       if (!TCR_4(__kmp_init_hidden_helper))
1368         __kmp_hidden_helper_initialize();
1369     } else {
1370       // If the hidden helper task is not enabled, reset the flag to FALSE.
1371       flags->hidden_helper = FALSE;
1372     }
1373   }
1374 
1375   KA_TRACE(10, ("__kmp_task_alloc(enter): T#%d loc=%p, flags=(0x%x) "
1376                 "sizeof_task=%ld sizeof_shared=%ld entry=%p\n",
1377                 gtid, loc_ref, *((kmp_int32 *)flags), sizeof_kmp_task_t,
1378                 sizeof_shareds, task_entry));
1379 
1380   KMP_DEBUG_ASSERT(parent_task);
1381   if (parent_task->td_flags.final) {
1382     if (flags->merged_if0) {
1383     }
1384     flags->final = 1;
1385   }
1386 
1387   if (flags->tiedness == TASK_UNTIED && !team->t.t_serialized) {
1388     // Untied task encountered causes the TSC algorithm to check entire deque of
1389     // the victim thread. If no untied task encountered, then checking the head
1390     // of the deque should be enough.
1391     KMP_CHECK_UPDATE(thread->th.th_task_team->tt.tt_untied_task_encountered, 1);
1392   }
1393 
1394   // Detachable tasks are not proxy tasks yet but could be in the future. Doing
1395   // the tasking setup
1396   // when that happens is too late.
1397   if (UNLIKELY(flags->proxy == TASK_PROXY ||
1398                flags->detachable == TASK_DETACHABLE || flags->hidden_helper)) {
1399     if (flags->proxy == TASK_PROXY) {
1400       flags->tiedness = TASK_UNTIED;
1401       flags->merged_if0 = 1;
1402     }
1403     /* are we running in a sequential parallel or tskm_immediate_exec... we need
1404        tasking support enabled */
1405     if ((thread->th.th_task_team) == NULL) {
1406       /* This should only happen if the team is serialized
1407           setup a task team and propagate it to the thread */
1408       KMP_DEBUG_ASSERT(team->t.t_serialized);
1409       KA_TRACE(30,
1410                ("T#%d creating task team in __kmp_task_alloc for proxy task\n",
1411                 gtid));
1412       // 1 indicates setup the current team regardless of nthreads
1413       __kmp_task_team_setup(thread, team, 1);
1414       thread->th.th_task_team = team->t.t_task_team[thread->th.th_task_state];
1415     }
1416     kmp_task_team_t *task_team = thread->th.th_task_team;
1417 
1418     /* tasking must be enabled now as the task might not be pushed */
1419     if (!KMP_TASKING_ENABLED(task_team)) {
1420       KA_TRACE(
1421           30,
1422           ("T#%d enabling tasking in __kmp_task_alloc for proxy task\n", gtid));
1423       __kmp_enable_tasking(task_team, thread);
1424       kmp_int32 tid = thread->th.th_info.ds.ds_tid;
1425       kmp_thread_data_t *thread_data = &task_team->tt.tt_threads_data[tid];
1426       // No lock needed since only owner can allocate
1427       if (thread_data->td.td_deque == NULL) {
1428         __kmp_alloc_task_deque(thread, thread_data);
1429       }
1430     }
1431 
1432     if ((flags->proxy == TASK_PROXY || flags->detachable == TASK_DETACHABLE) &&
1433         task_team->tt.tt_found_proxy_tasks == FALSE)
1434       TCW_4(task_team->tt.tt_found_proxy_tasks, TRUE);
1435     if (flags->hidden_helper &&
1436         task_team->tt.tt_hidden_helper_task_encountered == FALSE)
1437       TCW_4(task_team->tt.tt_hidden_helper_task_encountered, TRUE);
1438   }
1439 
1440   // Calculate shared structure offset including padding after kmp_task_t struct
1441   // to align pointers in shared struct
1442   shareds_offset = sizeof(kmp_taskdata_t) + sizeof_kmp_task_t;
1443   shareds_offset = __kmp_round_up_to_val(shareds_offset, sizeof(void *));
1444 
1445   // Allocate a kmp_taskdata_t block and a kmp_task_t block.
1446   KA_TRACE(30, ("__kmp_task_alloc: T#%d First malloc size: %ld\n", gtid,
1447                 shareds_offset));
1448   KA_TRACE(30, ("__kmp_task_alloc: T#%d Second malloc size: %ld\n", gtid,
1449                 sizeof_shareds));
1450 
1451   // Avoid double allocation here by combining shareds with taskdata
1452 #if USE_FAST_MEMORY
1453   taskdata = (kmp_taskdata_t *)__kmp_fast_allocate(thread, shareds_offset +
1454                                                                sizeof_shareds);
1455 #else /* ! USE_FAST_MEMORY */
1456   taskdata = (kmp_taskdata_t *)__kmp_thread_malloc(thread, shareds_offset +
1457                                                                sizeof_shareds);
1458 #endif /* USE_FAST_MEMORY */
1459 
1460   task = KMP_TASKDATA_TO_TASK(taskdata);
1461 
1462 // Make sure task & taskdata are aligned appropriately
1463 #if KMP_ARCH_X86 || KMP_ARCH_PPC64 || !KMP_HAVE_QUAD
1464   KMP_DEBUG_ASSERT((((kmp_uintptr_t)taskdata) & (sizeof(double) - 1)) == 0);
1465   KMP_DEBUG_ASSERT((((kmp_uintptr_t)task) & (sizeof(double) - 1)) == 0);
1466 #else
1467   KMP_DEBUG_ASSERT((((kmp_uintptr_t)taskdata) & (sizeof(_Quad) - 1)) == 0);
1468   KMP_DEBUG_ASSERT((((kmp_uintptr_t)task) & (sizeof(_Quad) - 1)) == 0);
1469 #endif
1470   if (sizeof_shareds > 0) {
1471     // Avoid double allocation here by combining shareds with taskdata
1472     task->shareds = &((char *)taskdata)[shareds_offset];
1473     // Make sure shareds struct is aligned to pointer size
1474     KMP_DEBUG_ASSERT((((kmp_uintptr_t)task->shareds) & (sizeof(void *) - 1)) ==
1475                      0);
1476   } else {
1477     task->shareds = NULL;
1478   }
1479   task->routine = task_entry;
1480   task->part_id = 0; // AC: Always start with 0 part id
1481 
1482   taskdata->td_task_id = KMP_GEN_TASK_ID();
1483   taskdata->td_team = thread->th.th_team;
1484   taskdata->td_alloc_thread = thread;
1485   taskdata->td_parent = parent_task;
1486   taskdata->td_level = parent_task->td_level + 1; // increment nesting level
1487   KMP_ATOMIC_ST_RLX(&taskdata->td_untied_count, 0);
1488   taskdata->td_ident = loc_ref;
1489   taskdata->td_taskwait_ident = NULL;
1490   taskdata->td_taskwait_counter = 0;
1491   taskdata->td_taskwait_thread = 0;
1492   KMP_DEBUG_ASSERT(taskdata->td_parent != NULL);
1493   // avoid copying icvs for proxy tasks
1494   if (flags->proxy == TASK_FULL)
1495     copy_icvs(&taskdata->td_icvs, &taskdata->td_parent->td_icvs);
1496 
1497   taskdata->td_flags = *flags;
1498   taskdata->td_task_team = thread->th.th_task_team;
1499   taskdata->td_size_alloc = shareds_offset + sizeof_shareds;
1500   taskdata->td_flags.tasktype = TASK_EXPLICIT;
1501   // If it is hidden helper task, we need to set the team and task team
1502   // correspondingly.
1503   if (flags->hidden_helper) {
1504     kmp_info_t *shadow_thread = __kmp_threads[KMP_GTID_TO_SHADOW_GTID(gtid)];
1505     taskdata->td_team = shadow_thread->th.th_team;
1506     taskdata->td_task_team = shadow_thread->th.th_task_team;
1507   }
1508 
1509   // GEH - TODO: fix this to copy parent task's value of tasking_ser flag
1510   taskdata->td_flags.tasking_ser = (__kmp_tasking_mode == tskm_immediate_exec);
1511 
1512   // GEH - TODO: fix this to copy parent task's value of team_serial flag
1513   taskdata->td_flags.team_serial = (team->t.t_serialized) ? 1 : 0;
1514 
1515   // GEH - Note we serialize the task if the team is serialized to make sure
1516   // implicit parallel region tasks are not left until program termination to
1517   // execute. Also, it helps locality to execute immediately.
1518 
1519   taskdata->td_flags.task_serial =
1520       (parent_task->td_flags.final || taskdata->td_flags.team_serial ||
1521        taskdata->td_flags.tasking_ser || flags->merged_if0);
1522 
1523   taskdata->td_flags.started = 0;
1524   taskdata->td_flags.executing = 0;
1525   taskdata->td_flags.complete = 0;
1526   taskdata->td_flags.freed = 0;
1527 
1528   KMP_ATOMIC_ST_RLX(&taskdata->td_incomplete_child_tasks, 0);
1529   // start at one because counts current task and children
1530   KMP_ATOMIC_ST_RLX(&taskdata->td_allocated_child_tasks, 1);
1531   taskdata->td_taskgroup =
1532       parent_task->td_taskgroup; // task inherits taskgroup from the parent task
1533   taskdata->td_dephash = NULL;
1534   taskdata->td_depnode = NULL;
1535   if (flags->tiedness == TASK_UNTIED)
1536     taskdata->td_last_tied = NULL; // will be set when the task is scheduled
1537   else
1538     taskdata->td_last_tied = taskdata;
1539   taskdata->td_allow_completion_event.type = KMP_EVENT_UNINITIALIZED;
1540 #if OMPT_SUPPORT
1541   if (UNLIKELY(ompt_enabled.enabled))
1542     __ompt_task_init(taskdata, gtid);
1543 #endif
1544   // TODO: What would be the balance between the conditions in the function and
1545   // an atomic operation?
1546   if (__kmp_track_children_task(taskdata)) {
1547     KMP_ATOMIC_INC(&parent_task->td_incomplete_child_tasks);
1548     if (parent_task->td_taskgroup)
1549       KMP_ATOMIC_INC(&parent_task->td_taskgroup->count);
1550     // Only need to keep track of allocated child tasks for explicit tasks since
1551     // implicit not deallocated
1552     if (taskdata->td_parent->td_flags.tasktype == TASK_EXPLICIT) {
1553       KMP_ATOMIC_INC(&taskdata->td_parent->td_allocated_child_tasks);
1554     }
1555     if (flags->hidden_helper) {
1556       taskdata->td_flags.task_serial = FALSE;
1557       // Increment the number of hidden helper tasks to be executed
1558       KMP_ATOMIC_INC(&__kmp_unexecuted_hidden_helper_tasks);
1559     }
1560   }
1561 
1562   KA_TRACE(20, ("__kmp_task_alloc(exit): T#%d created task %p parent=%p\n",
1563                 gtid, taskdata, taskdata->td_parent));
1564 
1565   return task;
1566 }
1567 
1568 kmp_task_t *__kmpc_omp_task_alloc(ident_t *loc_ref, kmp_int32 gtid,
1569                                   kmp_int32 flags, size_t sizeof_kmp_task_t,
1570                                   size_t sizeof_shareds,
1571                                   kmp_routine_entry_t task_entry) {
1572   kmp_task_t *retval;
1573   kmp_tasking_flags_t *input_flags = (kmp_tasking_flags_t *)&flags;
1574   __kmp_assert_valid_gtid(gtid);
1575   input_flags->native = FALSE;
1576   // __kmp_task_alloc() sets up all other runtime flags
1577   KA_TRACE(10, ("__kmpc_omp_task_alloc(enter): T#%d loc=%p, flags=(%s %s %s) "
1578                 "sizeof_task=%ld sizeof_shared=%ld entry=%p\n",
1579                 gtid, loc_ref, input_flags->tiedness ? "tied  " : "untied",
1580                 input_flags->proxy ? "proxy" : "",
1581                 input_flags->detachable ? "detachable" : "", sizeof_kmp_task_t,
1582                 sizeof_shareds, task_entry));
1583 
1584   retval = __kmp_task_alloc(loc_ref, gtid, input_flags, sizeof_kmp_task_t,
1585                             sizeof_shareds, task_entry);
1586 
1587   KA_TRACE(20, ("__kmpc_omp_task_alloc(exit): T#%d retval %p\n", gtid, retval));
1588 
1589   return retval;
1590 }
1591 
1592 kmp_task_t *__kmpc_omp_target_task_alloc(ident_t *loc_ref, kmp_int32 gtid,
1593                                          kmp_int32 flags,
1594                                          size_t sizeof_kmp_task_t,
1595                                          size_t sizeof_shareds,
1596                                          kmp_routine_entry_t task_entry,
1597                                          kmp_int64 device_id) {
1598   auto &input_flags = reinterpret_cast<kmp_tasking_flags_t &>(flags);
1599   // target task is untied defined in the specification
1600   input_flags.tiedness = TASK_UNTIED;
1601 
1602   if (__kmp_enable_hidden_helper)
1603     input_flags.hidden_helper = TRUE;
1604 
1605   return __kmpc_omp_task_alloc(loc_ref, gtid, flags, sizeof_kmp_task_t,
1606                                sizeof_shareds, task_entry);
1607 }
1608 
1609 /*!
1610 @ingroup TASKING
1611 @param loc_ref location of the original task directive
1612 @param gtid Global Thread ID of encountering thread
1613 @param new_task task thunk allocated by __kmpc_omp_task_alloc() for the ''new
1614 task''
1615 @param naffins Number of affinity items
1616 @param affin_list List of affinity items
1617 @return Returns non-zero if registering affinity information was not successful.
1618  Returns 0 if registration was successful
1619 This entry registers the affinity information attached to a task with the task
1620 thunk structure kmp_taskdata_t.
1621 */
1622 kmp_int32
1623 __kmpc_omp_reg_task_with_affinity(ident_t *loc_ref, kmp_int32 gtid,
1624                                   kmp_task_t *new_task, kmp_int32 naffins,
1625                                   kmp_task_affinity_info_t *affin_list) {
1626   return 0;
1627 }
1628 
1629 //  __kmp_invoke_task: invoke the specified task
1630 //
1631 // gtid: global thread ID of caller
1632 // task: the task to invoke
1633 // current_task: the task to resume after task invocation
1634 static void __kmp_invoke_task(kmp_int32 gtid, kmp_task_t *task,
1635                               kmp_taskdata_t *current_task) {
1636   kmp_taskdata_t *taskdata = KMP_TASK_TO_TASKDATA(task);
1637   kmp_info_t *thread;
1638   int discard = 0 /* false */;
1639   KA_TRACE(
1640       30, ("__kmp_invoke_task(enter): T#%d invoking task %p, current_task=%p\n",
1641            gtid, taskdata, current_task));
1642   KMP_DEBUG_ASSERT(task);
1643   if (UNLIKELY(taskdata->td_flags.proxy == TASK_PROXY &&
1644                taskdata->td_flags.complete == 1)) {
1645     // This is a proxy task that was already completed but it needs to run
1646     // its bottom-half finish
1647     KA_TRACE(
1648         30,
1649         ("__kmp_invoke_task: T#%d running bottom finish for proxy task %p\n",
1650          gtid, taskdata));
1651 
1652     __kmp_bottom_half_finish_proxy(gtid, task);
1653 
1654     KA_TRACE(30, ("__kmp_invoke_task(exit): T#%d completed bottom finish for "
1655                   "proxy task %p, resuming task %p\n",
1656                   gtid, taskdata, current_task));
1657 
1658     return;
1659   }
1660 
1661 #if OMPT_SUPPORT
1662   // For untied tasks, the first task executed only calls __kmpc_omp_task and
1663   // does not execute code.
1664   ompt_thread_info_t oldInfo;
1665   if (UNLIKELY(ompt_enabled.enabled)) {
1666     // Store the threads states and restore them after the task
1667     thread = __kmp_threads[gtid];
1668     oldInfo = thread->th.ompt_thread_info;
1669     thread->th.ompt_thread_info.wait_id = 0;
1670     thread->th.ompt_thread_info.state = (thread->th.th_team_serialized)
1671                                             ? ompt_state_work_serial
1672                                             : ompt_state_work_parallel;
1673     taskdata->ompt_task_info.frame.exit_frame.ptr = OMPT_GET_FRAME_ADDRESS(0);
1674   }
1675 #endif
1676 
1677   // Decreament the counter of hidden helper tasks to be executed
1678   if (taskdata->td_flags.hidden_helper) {
1679     // Hidden helper tasks can only be executed by hidden helper threads
1680     KMP_ASSERT(KMP_HIDDEN_HELPER_THREAD(gtid));
1681     KMP_ATOMIC_DEC(&__kmp_unexecuted_hidden_helper_tasks);
1682   }
1683 
1684   // Proxy tasks are not handled by the runtime
1685   if (taskdata->td_flags.proxy != TASK_PROXY) {
1686     __kmp_task_start(gtid, task, current_task); // OMPT only if not discarded
1687   }
1688 
1689   // TODO: cancel tasks if the parallel region has also been cancelled
1690   // TODO: check if this sequence can be hoisted above __kmp_task_start
1691   // if cancellation has been enabled for this run ...
1692   if (UNLIKELY(__kmp_omp_cancellation)) {
1693     thread = __kmp_threads[gtid];
1694     kmp_team_t *this_team = thread->th.th_team;
1695     kmp_taskgroup_t *taskgroup = taskdata->td_taskgroup;
1696     if ((taskgroup && taskgroup->cancel_request) ||
1697         (this_team->t.t_cancel_request == cancel_parallel)) {
1698 #if OMPT_SUPPORT && OMPT_OPTIONAL
1699       ompt_data_t *task_data;
1700       if (UNLIKELY(ompt_enabled.ompt_callback_cancel)) {
1701         __ompt_get_task_info_internal(0, NULL, &task_data, NULL, NULL, NULL);
1702         ompt_callbacks.ompt_callback(ompt_callback_cancel)(
1703             task_data,
1704             ((taskgroup && taskgroup->cancel_request) ? ompt_cancel_taskgroup
1705                                                       : ompt_cancel_parallel) |
1706                 ompt_cancel_discarded_task,
1707             NULL);
1708       }
1709 #endif
1710       KMP_COUNT_BLOCK(TASK_cancelled);
1711       // this task belongs to a task group and we need to cancel it
1712       discard = 1 /* true */;
1713     }
1714   }
1715 
1716   // Invoke the task routine and pass in relevant data.
1717   // Thunks generated by gcc take a different argument list.
1718   if (!discard) {
1719     if (taskdata->td_flags.tiedness == TASK_UNTIED) {
1720       taskdata->td_last_tied = current_task->td_last_tied;
1721       KMP_DEBUG_ASSERT(taskdata->td_last_tied);
1722     }
1723 #if KMP_STATS_ENABLED
1724     KMP_COUNT_BLOCK(TASK_executed);
1725     switch (KMP_GET_THREAD_STATE()) {
1726     case FORK_JOIN_BARRIER:
1727       KMP_PUSH_PARTITIONED_TIMER(OMP_task_join_bar);
1728       break;
1729     case PLAIN_BARRIER:
1730       KMP_PUSH_PARTITIONED_TIMER(OMP_task_plain_bar);
1731       break;
1732     case TASKYIELD:
1733       KMP_PUSH_PARTITIONED_TIMER(OMP_task_taskyield);
1734       break;
1735     case TASKWAIT:
1736       KMP_PUSH_PARTITIONED_TIMER(OMP_task_taskwait);
1737       break;
1738     case TASKGROUP:
1739       KMP_PUSH_PARTITIONED_TIMER(OMP_task_taskgroup);
1740       break;
1741     default:
1742       KMP_PUSH_PARTITIONED_TIMER(OMP_task_immediate);
1743       break;
1744     }
1745 #endif // KMP_STATS_ENABLED
1746 
1747 // OMPT task begin
1748 #if OMPT_SUPPORT
1749     if (UNLIKELY(ompt_enabled.enabled))
1750       __ompt_task_start(task, current_task, gtid);
1751 #endif
1752 #if OMPT_SUPPORT && OMPT_OPTIONAL
1753     if (UNLIKELY(ompt_enabled.ompt_callback_dispatch &&
1754                  taskdata->ompt_task_info.dispatch_chunk.iterations > 0)) {
1755       ompt_data_t instance = ompt_data_none;
1756       instance.ptr = &(taskdata->ompt_task_info.dispatch_chunk);
1757       ompt_team_info_t *team_info = __ompt_get_teaminfo(0, NULL);
1758       ompt_callbacks.ompt_callback(ompt_callback_dispatch)(
1759           &(team_info->parallel_data), &(taskdata->ompt_task_info.task_data),
1760           ompt_dispatch_taskloop_chunk, instance);
1761       taskdata->ompt_task_info.dispatch_chunk = {0, 0};
1762     }
1763 #endif // OMPT_SUPPORT && OMPT_OPTIONAL
1764 
1765 #if OMPD_SUPPORT
1766     if (ompd_state & OMPD_ENABLE_BP)
1767       ompd_bp_task_begin();
1768 #endif
1769 
1770 #if USE_ITT_BUILD && USE_ITT_NOTIFY
1771     kmp_uint64 cur_time;
1772     kmp_int32 kmp_itt_count_task =
1773         __kmp_forkjoin_frames_mode == 3 && !taskdata->td_flags.task_serial &&
1774         current_task->td_flags.tasktype == TASK_IMPLICIT;
1775     if (kmp_itt_count_task) {
1776       thread = __kmp_threads[gtid];
1777       // Time outer level explicit task on barrier for adjusting imbalance time
1778       if (thread->th.th_bar_arrive_time)
1779         cur_time = __itt_get_timestamp();
1780       else
1781         kmp_itt_count_task = 0; // thread is not on a barrier - skip timing
1782     }
1783     KMP_FSYNC_ACQUIRED(taskdata); // acquired self (new task)
1784 #endif
1785 
1786     if (task->routine != NULL) {
1787 #ifdef KMP_GOMP_COMPAT
1788       if (taskdata->td_flags.native) {
1789         ((void (*)(void *))(*(task->routine)))(task->shareds);
1790       } else
1791 #endif /* KMP_GOMP_COMPAT */
1792       {
1793         (*(task->routine))(gtid, task);
1794       }
1795     }
1796     KMP_POP_PARTITIONED_TIMER();
1797 
1798 #if USE_ITT_BUILD && USE_ITT_NOTIFY
1799     if (kmp_itt_count_task) {
1800       // Barrier imbalance - adjust arrive time with the task duration
1801       thread->th.th_bar_arrive_time += (__itt_get_timestamp() - cur_time);
1802     }
1803     KMP_FSYNC_CANCEL(taskdata); // destroy self (just executed)
1804     KMP_FSYNC_RELEASING(taskdata->td_parent); // releasing parent
1805 #endif
1806   }
1807 
1808 #if OMPD_SUPPORT
1809   if (ompd_state & OMPD_ENABLE_BP)
1810     ompd_bp_task_end();
1811 #endif
1812 
1813   // Proxy tasks are not handled by the runtime
1814   if (taskdata->td_flags.proxy != TASK_PROXY) {
1815 #if OMPT_SUPPORT
1816     if (UNLIKELY(ompt_enabled.enabled)) {
1817       thread->th.ompt_thread_info = oldInfo;
1818       if (taskdata->td_flags.tiedness == TASK_TIED) {
1819         taskdata->ompt_task_info.frame.exit_frame = ompt_data_none;
1820       }
1821       __kmp_task_finish<true>(gtid, task, current_task);
1822     } else
1823 #endif
1824       __kmp_task_finish<false>(gtid, task, current_task);
1825   }
1826 
1827   KA_TRACE(
1828       30,
1829       ("__kmp_invoke_task(exit): T#%d completed task %p, resuming task %p\n",
1830        gtid, taskdata, current_task));
1831   return;
1832 }
1833 
1834 // __kmpc_omp_task_parts: Schedule a thread-switchable task for execution
1835 //
1836 // loc_ref: location of original task pragma (ignored)
1837 // gtid: Global Thread ID of encountering thread
1838 // new_task: task thunk allocated by __kmp_omp_task_alloc() for the ''new task''
1839 // Returns:
1840 //    TASK_CURRENT_NOT_QUEUED (0) if did not suspend and queue current task to
1841 //    be resumed later.
1842 //    TASK_CURRENT_QUEUED (1) if suspended and queued the current task to be
1843 //    resumed later.
1844 kmp_int32 __kmpc_omp_task_parts(ident_t *loc_ref, kmp_int32 gtid,
1845                                 kmp_task_t *new_task) {
1846   kmp_taskdata_t *new_taskdata = KMP_TASK_TO_TASKDATA(new_task);
1847 
1848   KA_TRACE(10, ("__kmpc_omp_task_parts(enter): T#%d loc=%p task=%p\n", gtid,
1849                 loc_ref, new_taskdata));
1850 
1851 #if OMPT_SUPPORT
1852   kmp_taskdata_t *parent;
1853   if (UNLIKELY(ompt_enabled.enabled)) {
1854     parent = new_taskdata->td_parent;
1855     if (ompt_enabled.ompt_callback_task_create) {
1856       ompt_callbacks.ompt_callback(ompt_callback_task_create)(
1857           &(parent->ompt_task_info.task_data), &(parent->ompt_task_info.frame),
1858           &(new_taskdata->ompt_task_info.task_data), ompt_task_explicit, 0,
1859           OMPT_GET_RETURN_ADDRESS(0));
1860     }
1861   }
1862 #endif
1863 
1864   /* Should we execute the new task or queue it? For now, let's just always try
1865      to queue it.  If the queue fills up, then we'll execute it.  */
1866 
1867   if (__kmp_push_task(gtid, new_task) == TASK_NOT_PUSHED) // if cannot defer
1868   { // Execute this task immediately
1869     kmp_taskdata_t *current_task = __kmp_threads[gtid]->th.th_current_task;
1870     new_taskdata->td_flags.task_serial = 1;
1871     __kmp_invoke_task(gtid, new_task, current_task);
1872   }
1873 
1874   KA_TRACE(
1875       10,
1876       ("__kmpc_omp_task_parts(exit): T#%d returning TASK_CURRENT_NOT_QUEUED: "
1877        "loc=%p task=%p, return: TASK_CURRENT_NOT_QUEUED\n",
1878        gtid, loc_ref, new_taskdata));
1879 
1880 #if OMPT_SUPPORT
1881   if (UNLIKELY(ompt_enabled.enabled)) {
1882     parent->ompt_task_info.frame.enter_frame = ompt_data_none;
1883   }
1884 #endif
1885   return TASK_CURRENT_NOT_QUEUED;
1886 }
1887 
1888 // __kmp_omp_task: Schedule a non-thread-switchable task for execution
1889 //
1890 // gtid: Global Thread ID of encountering thread
1891 // new_task:non-thread-switchable task thunk allocated by __kmp_omp_task_alloc()
1892 // serialize_immediate: if TRUE then if the task is executed immediately its
1893 // execution will be serialized
1894 // Returns:
1895 //    TASK_CURRENT_NOT_QUEUED (0) if did not suspend and queue current task to
1896 //    be resumed later.
1897 //    TASK_CURRENT_QUEUED (1) if suspended and queued the current task to be
1898 //    resumed later.
1899 kmp_int32 __kmp_omp_task(kmp_int32 gtid, kmp_task_t *new_task,
1900                          bool serialize_immediate) {
1901   kmp_taskdata_t *new_taskdata = KMP_TASK_TO_TASKDATA(new_task);
1902 
1903   /* Should we execute the new task or queue it? For now, let's just always try
1904      to queue it.  If the queue fills up, then we'll execute it.  */
1905   if (new_taskdata->td_flags.proxy == TASK_PROXY ||
1906       __kmp_push_task(gtid, new_task) == TASK_NOT_PUSHED) // if cannot defer
1907   { // Execute this task immediately
1908     kmp_taskdata_t *current_task = __kmp_threads[gtid]->th.th_current_task;
1909     if (serialize_immediate)
1910       new_taskdata->td_flags.task_serial = 1;
1911     __kmp_invoke_task(gtid, new_task, current_task);
1912   } else if (__kmp_dflt_blocktime != KMP_MAX_BLOCKTIME &&
1913              __kmp_wpolicy_passive) {
1914     kmp_info_t *this_thr = __kmp_threads[gtid];
1915     kmp_team_t *team = this_thr->th.th_team;
1916     kmp_int32 nthreads = this_thr->th.th_team_nproc;
1917     for (int i = 0; i < nthreads; ++i) {
1918       kmp_info_t *thread = team->t.t_threads[i];
1919       if (thread == this_thr)
1920         continue;
1921       if (thread->th.th_sleep_loc != NULL) {
1922         __kmp_null_resume_wrapper(thread);
1923         break; // awake one thread at a time
1924       }
1925     }
1926   }
1927   return TASK_CURRENT_NOT_QUEUED;
1928 }
1929 
1930 // __kmpc_omp_task: Wrapper around __kmp_omp_task to schedule a
1931 // non-thread-switchable task from the parent thread only!
1932 //
1933 // loc_ref: location of original task pragma (ignored)
1934 // gtid: Global Thread ID of encountering thread
1935 // new_task: non-thread-switchable task thunk allocated by
1936 // __kmp_omp_task_alloc()
1937 // Returns:
1938 //    TASK_CURRENT_NOT_QUEUED (0) if did not suspend and queue current task to
1939 //    be resumed later.
1940 //    TASK_CURRENT_QUEUED (1) if suspended and queued the current task to be
1941 //    resumed later.
1942 kmp_int32 __kmpc_omp_task(ident_t *loc_ref, kmp_int32 gtid,
1943                           kmp_task_t *new_task) {
1944   kmp_int32 res;
1945   KMP_SET_THREAD_STATE_BLOCK(EXPLICIT_TASK);
1946 
1947 #if KMP_DEBUG || OMPT_SUPPORT
1948   kmp_taskdata_t *new_taskdata = KMP_TASK_TO_TASKDATA(new_task);
1949 #endif
1950   KA_TRACE(10, ("__kmpc_omp_task(enter): T#%d loc=%p task=%p\n", gtid, loc_ref,
1951                 new_taskdata));
1952   __kmp_assert_valid_gtid(gtid);
1953 
1954 #if OMPT_SUPPORT
1955   kmp_taskdata_t *parent = NULL;
1956   if (UNLIKELY(ompt_enabled.enabled)) {
1957     if (!new_taskdata->td_flags.started) {
1958       OMPT_STORE_RETURN_ADDRESS(gtid);
1959       parent = new_taskdata->td_parent;
1960       if (!parent->ompt_task_info.frame.enter_frame.ptr) {
1961         parent->ompt_task_info.frame.enter_frame.ptr =
1962             OMPT_GET_FRAME_ADDRESS(0);
1963       }
1964       if (ompt_enabled.ompt_callback_task_create) {
1965         ompt_callbacks.ompt_callback(ompt_callback_task_create)(
1966             &(parent->ompt_task_info.task_data),
1967             &(parent->ompt_task_info.frame),
1968             &(new_taskdata->ompt_task_info.task_data),
1969             ompt_task_explicit | TASK_TYPE_DETAILS_FORMAT(new_taskdata), 0,
1970             OMPT_LOAD_RETURN_ADDRESS(gtid));
1971       }
1972     } else {
1973       // We are scheduling the continuation of an UNTIED task.
1974       // Scheduling back to the parent task.
1975       __ompt_task_finish(new_task,
1976                          new_taskdata->ompt_task_info.scheduling_parent,
1977                          ompt_task_switch);
1978       new_taskdata->ompt_task_info.frame.exit_frame = ompt_data_none;
1979     }
1980   }
1981 #endif
1982 
1983   res = __kmp_omp_task(gtid, new_task, true);
1984 
1985   KA_TRACE(10, ("__kmpc_omp_task(exit): T#%d returning "
1986                 "TASK_CURRENT_NOT_QUEUED: loc=%p task=%p\n",
1987                 gtid, loc_ref, new_taskdata));
1988 #if OMPT_SUPPORT
1989   if (UNLIKELY(ompt_enabled.enabled && parent != NULL)) {
1990     parent->ompt_task_info.frame.enter_frame = ompt_data_none;
1991   }
1992 #endif
1993   return res;
1994 }
1995 
1996 // __kmp_omp_taskloop_task: Wrapper around __kmp_omp_task to schedule
1997 // a taskloop task with the correct OMPT return address
1998 //
1999 // loc_ref: location of original task pragma (ignored)
2000 // gtid: Global Thread ID of encountering thread
2001 // new_task: non-thread-switchable task thunk allocated by
2002 // __kmp_omp_task_alloc()
2003 // codeptr_ra: return address for OMPT callback
2004 // Returns:
2005 //    TASK_CURRENT_NOT_QUEUED (0) if did not suspend and queue current task to
2006 //    be resumed later.
2007 //    TASK_CURRENT_QUEUED (1) if suspended and queued the current task to be
2008 //    resumed later.
2009 kmp_int32 __kmp_omp_taskloop_task(ident_t *loc_ref, kmp_int32 gtid,
2010                                   kmp_task_t *new_task, void *codeptr_ra) {
2011   kmp_int32 res;
2012   KMP_SET_THREAD_STATE_BLOCK(EXPLICIT_TASK);
2013 
2014 #if KMP_DEBUG || OMPT_SUPPORT
2015   kmp_taskdata_t *new_taskdata = KMP_TASK_TO_TASKDATA(new_task);
2016 #endif
2017   KA_TRACE(10, ("__kmpc_omp_task(enter): T#%d loc=%p task=%p\n", gtid, loc_ref,
2018                 new_taskdata));
2019 
2020 #if OMPT_SUPPORT
2021   kmp_taskdata_t *parent = NULL;
2022   if (UNLIKELY(ompt_enabled.enabled && !new_taskdata->td_flags.started)) {
2023     parent = new_taskdata->td_parent;
2024     if (!parent->ompt_task_info.frame.enter_frame.ptr)
2025       parent->ompt_task_info.frame.enter_frame.ptr = OMPT_GET_FRAME_ADDRESS(0);
2026     if (ompt_enabled.ompt_callback_task_create) {
2027       ompt_callbacks.ompt_callback(ompt_callback_task_create)(
2028           &(parent->ompt_task_info.task_data), &(parent->ompt_task_info.frame),
2029           &(new_taskdata->ompt_task_info.task_data),
2030           ompt_task_explicit | TASK_TYPE_DETAILS_FORMAT(new_taskdata), 0,
2031           codeptr_ra);
2032     }
2033   }
2034 #endif
2035 
2036   res = __kmp_omp_task(gtid, new_task, true);
2037 
2038   KA_TRACE(10, ("__kmpc_omp_task(exit): T#%d returning "
2039                 "TASK_CURRENT_NOT_QUEUED: loc=%p task=%p\n",
2040                 gtid, loc_ref, new_taskdata));
2041 #if OMPT_SUPPORT
2042   if (UNLIKELY(ompt_enabled.enabled && parent != NULL)) {
2043     parent->ompt_task_info.frame.enter_frame = ompt_data_none;
2044   }
2045 #endif
2046   return res;
2047 }
2048 
2049 template <bool ompt>
2050 static kmp_int32 __kmpc_omp_taskwait_template(ident_t *loc_ref, kmp_int32 gtid,
2051                                               void *frame_address,
2052                                               void *return_address) {
2053   kmp_taskdata_t *taskdata = nullptr;
2054   kmp_info_t *thread;
2055   int thread_finished = FALSE;
2056   KMP_SET_THREAD_STATE_BLOCK(TASKWAIT);
2057 
2058   KA_TRACE(10, ("__kmpc_omp_taskwait(enter): T#%d loc=%p\n", gtid, loc_ref));
2059   KMP_DEBUG_ASSERT(gtid >= 0);
2060 
2061   if (__kmp_tasking_mode != tskm_immediate_exec) {
2062     thread = __kmp_threads[gtid];
2063     taskdata = thread->th.th_current_task;
2064 
2065 #if OMPT_SUPPORT && OMPT_OPTIONAL
2066     ompt_data_t *my_task_data;
2067     ompt_data_t *my_parallel_data;
2068 
2069     if (ompt) {
2070       my_task_data = &(taskdata->ompt_task_info.task_data);
2071       my_parallel_data = OMPT_CUR_TEAM_DATA(thread);
2072 
2073       taskdata->ompt_task_info.frame.enter_frame.ptr = frame_address;
2074 
2075       if (ompt_enabled.ompt_callback_sync_region) {
2076         ompt_callbacks.ompt_callback(ompt_callback_sync_region)(
2077             ompt_sync_region_taskwait, ompt_scope_begin, my_parallel_data,
2078             my_task_data, return_address);
2079       }
2080 
2081       if (ompt_enabled.ompt_callback_sync_region_wait) {
2082         ompt_callbacks.ompt_callback(ompt_callback_sync_region_wait)(
2083             ompt_sync_region_taskwait, ompt_scope_begin, my_parallel_data,
2084             my_task_data, return_address);
2085       }
2086     }
2087 #endif // OMPT_SUPPORT && OMPT_OPTIONAL
2088 
2089 // Debugger: The taskwait is active. Store location and thread encountered the
2090 // taskwait.
2091 #if USE_ITT_BUILD
2092 // Note: These values are used by ITT events as well.
2093 #endif /* USE_ITT_BUILD */
2094     taskdata->td_taskwait_counter += 1;
2095     taskdata->td_taskwait_ident = loc_ref;
2096     taskdata->td_taskwait_thread = gtid + 1;
2097 
2098 #if USE_ITT_BUILD
2099     void *itt_sync_obj = NULL;
2100 #if USE_ITT_NOTIFY
2101     KMP_ITT_TASKWAIT_STARTING(itt_sync_obj);
2102 #endif /* USE_ITT_NOTIFY */
2103 #endif /* USE_ITT_BUILD */
2104 
2105     bool must_wait =
2106         !taskdata->td_flags.team_serial && !taskdata->td_flags.final;
2107 
2108     must_wait = must_wait || (thread->th.th_task_team != NULL &&
2109                               thread->th.th_task_team->tt.tt_found_proxy_tasks);
2110     // If hidden helper thread is encountered, we must enable wait here.
2111     must_wait =
2112         must_wait ||
2113         (__kmp_enable_hidden_helper && thread->th.th_task_team != NULL &&
2114          thread->th.th_task_team->tt.tt_hidden_helper_task_encountered);
2115 
2116     if (must_wait) {
2117       kmp_flag_32<false, false> flag(
2118           RCAST(std::atomic<kmp_uint32> *,
2119                 &(taskdata->td_incomplete_child_tasks)),
2120           0U);
2121       while (KMP_ATOMIC_LD_ACQ(&taskdata->td_incomplete_child_tasks) != 0) {
2122         flag.execute_tasks(thread, gtid, FALSE,
2123                            &thread_finished USE_ITT_BUILD_ARG(itt_sync_obj),
2124                            __kmp_task_stealing_constraint);
2125       }
2126     }
2127 #if USE_ITT_BUILD
2128     KMP_ITT_TASKWAIT_FINISHED(itt_sync_obj);
2129     KMP_FSYNC_ACQUIRED(taskdata); // acquire self - sync with children
2130 #endif /* USE_ITT_BUILD */
2131 
2132     // Debugger:  The taskwait is completed. Location remains, but thread is
2133     // negated.
2134     taskdata->td_taskwait_thread = -taskdata->td_taskwait_thread;
2135 
2136 #if OMPT_SUPPORT && OMPT_OPTIONAL
2137     if (ompt) {
2138       if (ompt_enabled.ompt_callback_sync_region_wait) {
2139         ompt_callbacks.ompt_callback(ompt_callback_sync_region_wait)(
2140             ompt_sync_region_taskwait, ompt_scope_end, my_parallel_data,
2141             my_task_data, return_address);
2142       }
2143       if (ompt_enabled.ompt_callback_sync_region) {
2144         ompt_callbacks.ompt_callback(ompt_callback_sync_region)(
2145             ompt_sync_region_taskwait, ompt_scope_end, my_parallel_data,
2146             my_task_data, return_address);
2147       }
2148       taskdata->ompt_task_info.frame.enter_frame = ompt_data_none;
2149     }
2150 #endif // OMPT_SUPPORT && OMPT_OPTIONAL
2151 
2152   }
2153 
2154   KA_TRACE(10, ("__kmpc_omp_taskwait(exit): T#%d task %p finished waiting, "
2155                 "returning TASK_CURRENT_NOT_QUEUED\n",
2156                 gtid, taskdata));
2157 
2158   return TASK_CURRENT_NOT_QUEUED;
2159 }
2160 
2161 #if OMPT_SUPPORT && OMPT_OPTIONAL
2162 OMPT_NOINLINE
2163 static kmp_int32 __kmpc_omp_taskwait_ompt(ident_t *loc_ref, kmp_int32 gtid,
2164                                           void *frame_address,
2165                                           void *return_address) {
2166   return __kmpc_omp_taskwait_template<true>(loc_ref, gtid, frame_address,
2167                                             return_address);
2168 }
2169 #endif // OMPT_SUPPORT && OMPT_OPTIONAL
2170 
2171 // __kmpc_omp_taskwait: Wait until all tasks generated by the current task are
2172 // complete
2173 kmp_int32 __kmpc_omp_taskwait(ident_t *loc_ref, kmp_int32 gtid) {
2174 #if OMPT_SUPPORT && OMPT_OPTIONAL
2175   if (UNLIKELY(ompt_enabled.enabled)) {
2176     OMPT_STORE_RETURN_ADDRESS(gtid);
2177     return __kmpc_omp_taskwait_ompt(loc_ref, gtid, OMPT_GET_FRAME_ADDRESS(0),
2178                                     OMPT_LOAD_RETURN_ADDRESS(gtid));
2179   }
2180 #endif
2181   return __kmpc_omp_taskwait_template<false>(loc_ref, gtid, NULL, NULL);
2182 }
2183 
2184 // __kmpc_omp_taskyield: switch to a different task
2185 kmp_int32 __kmpc_omp_taskyield(ident_t *loc_ref, kmp_int32 gtid, int end_part) {
2186   kmp_taskdata_t *taskdata = NULL;
2187   kmp_info_t *thread;
2188   int thread_finished = FALSE;
2189 
2190   KMP_COUNT_BLOCK(OMP_TASKYIELD);
2191   KMP_SET_THREAD_STATE_BLOCK(TASKYIELD);
2192 
2193   KA_TRACE(10, ("__kmpc_omp_taskyield(enter): T#%d loc=%p end_part = %d\n",
2194                 gtid, loc_ref, end_part));
2195   __kmp_assert_valid_gtid(gtid);
2196 
2197   if (__kmp_tasking_mode != tskm_immediate_exec && __kmp_init_parallel) {
2198     thread = __kmp_threads[gtid];
2199     taskdata = thread->th.th_current_task;
2200 // Should we model this as a task wait or not?
2201 // Debugger: The taskwait is active. Store location and thread encountered the
2202 // taskwait.
2203 #if USE_ITT_BUILD
2204 // Note: These values are used by ITT events as well.
2205 #endif /* USE_ITT_BUILD */
2206     taskdata->td_taskwait_counter += 1;
2207     taskdata->td_taskwait_ident = loc_ref;
2208     taskdata->td_taskwait_thread = gtid + 1;
2209 
2210 #if USE_ITT_BUILD
2211     void *itt_sync_obj = NULL;
2212 #if USE_ITT_NOTIFY
2213     KMP_ITT_TASKWAIT_STARTING(itt_sync_obj);
2214 #endif /* USE_ITT_NOTIFY */
2215 #endif /* USE_ITT_BUILD */
2216     if (!taskdata->td_flags.team_serial) {
2217       kmp_task_team_t *task_team = thread->th.th_task_team;
2218       if (task_team != NULL) {
2219         if (KMP_TASKING_ENABLED(task_team)) {
2220 #if OMPT_SUPPORT
2221           if (UNLIKELY(ompt_enabled.enabled))
2222             thread->th.ompt_thread_info.ompt_task_yielded = 1;
2223 #endif
2224           __kmp_execute_tasks_32(
2225               thread, gtid, (kmp_flag_32<> *)NULL, FALSE,
2226               &thread_finished USE_ITT_BUILD_ARG(itt_sync_obj),
2227               __kmp_task_stealing_constraint);
2228 #if OMPT_SUPPORT
2229           if (UNLIKELY(ompt_enabled.enabled))
2230             thread->th.ompt_thread_info.ompt_task_yielded = 0;
2231 #endif
2232         }
2233       }
2234     }
2235 #if USE_ITT_BUILD
2236     KMP_ITT_TASKWAIT_FINISHED(itt_sync_obj);
2237 #endif /* USE_ITT_BUILD */
2238 
2239     // Debugger:  The taskwait is completed. Location remains, but thread is
2240     // negated.
2241     taskdata->td_taskwait_thread = -taskdata->td_taskwait_thread;
2242   }
2243 
2244   KA_TRACE(10, ("__kmpc_omp_taskyield(exit): T#%d task %p resuming, "
2245                 "returning TASK_CURRENT_NOT_QUEUED\n",
2246                 gtid, taskdata));
2247 
2248   return TASK_CURRENT_NOT_QUEUED;
2249 }
2250 
2251 // Task Reduction implementation
2252 //
2253 // Note: initial implementation didn't take into account the possibility
2254 // to specify omp_orig for initializer of the UDR (user defined reduction).
2255 // Corrected implementation takes into account the omp_orig object.
2256 // Compiler is free to use old implementation if omp_orig is not specified.
2257 
2258 /*!
2259 @ingroup BASIC_TYPES
2260 @{
2261 */
2262 
2263 /*!
2264 Flags for special info per task reduction item.
2265 */
2266 typedef struct kmp_taskred_flags {
2267   /*! 1 - use lazy alloc/init (e.g. big objects, num tasks < num threads) */
2268   unsigned lazy_priv : 1;
2269   unsigned reserved31 : 31;
2270 } kmp_taskred_flags_t;
2271 
2272 /*!
2273 Internal struct for reduction data item related info set up by compiler.
2274 */
2275 typedef struct kmp_task_red_input {
2276   void *reduce_shar; /**< shared between tasks item to reduce into */
2277   size_t reduce_size; /**< size of data item in bytes */
2278   // three compiler-generated routines (init, fini are optional):
2279   void *reduce_init; /**< data initialization routine (single parameter) */
2280   void *reduce_fini; /**< data finalization routine */
2281   void *reduce_comb; /**< data combiner routine */
2282   kmp_taskred_flags_t flags; /**< flags for additional info from compiler */
2283 } kmp_task_red_input_t;
2284 
2285 /*!
2286 Internal struct for reduction data item related info saved by the library.
2287 */
2288 typedef struct kmp_taskred_data {
2289   void *reduce_shar; /**< shared between tasks item to reduce into */
2290   size_t reduce_size; /**< size of data item */
2291   kmp_taskred_flags_t flags; /**< flags for additional info from compiler */
2292   void *reduce_priv; /**< array of thread specific items */
2293   void *reduce_pend; /**< end of private data for faster comparison op */
2294   // three compiler-generated routines (init, fini are optional):
2295   void *reduce_comb; /**< data combiner routine */
2296   void *reduce_init; /**< data initialization routine (two parameters) */
2297   void *reduce_fini; /**< data finalization routine */
2298   void *reduce_orig; /**< original item (can be used in UDR initializer) */
2299 } kmp_taskred_data_t;
2300 
2301 /*!
2302 Internal struct for reduction data item related info set up by compiler.
2303 
2304 New interface: added reduce_orig field to provide omp_orig for UDR initializer.
2305 */
2306 typedef struct kmp_taskred_input {
2307   void *reduce_shar; /**< shared between tasks item to reduce into */
2308   void *reduce_orig; /**< original reduction item used for initialization */
2309   size_t reduce_size; /**< size of data item */
2310   // three compiler-generated routines (init, fini are optional):
2311   void *reduce_init; /**< data initialization routine (two parameters) */
2312   void *reduce_fini; /**< data finalization routine */
2313   void *reduce_comb; /**< data combiner routine */
2314   kmp_taskred_flags_t flags; /**< flags for additional info from compiler */
2315 } kmp_taskred_input_t;
2316 /*!
2317 @}
2318 */
2319 
2320 template <typename T> void __kmp_assign_orig(kmp_taskred_data_t &item, T &src);
2321 template <>
2322 void __kmp_assign_orig<kmp_task_red_input_t>(kmp_taskred_data_t &item,
2323                                              kmp_task_red_input_t &src) {
2324   item.reduce_orig = NULL;
2325 }
2326 template <>
2327 void __kmp_assign_orig<kmp_taskred_input_t>(kmp_taskred_data_t &item,
2328                                             kmp_taskred_input_t &src) {
2329   if (src.reduce_orig != NULL) {
2330     item.reduce_orig = src.reduce_orig;
2331   } else {
2332     item.reduce_orig = src.reduce_shar;
2333   } // non-NULL reduce_orig means new interface used
2334 }
2335 
2336 template <typename T> void __kmp_call_init(kmp_taskred_data_t &item, size_t j);
2337 template <>
2338 void __kmp_call_init<kmp_task_red_input_t>(kmp_taskred_data_t &item,
2339                                            size_t offset) {
2340   ((void (*)(void *))item.reduce_init)((char *)(item.reduce_priv) + offset);
2341 }
2342 template <>
2343 void __kmp_call_init<kmp_taskred_input_t>(kmp_taskred_data_t &item,
2344                                           size_t offset) {
2345   ((void (*)(void *, void *))item.reduce_init)(
2346       (char *)(item.reduce_priv) + offset, item.reduce_orig);
2347 }
2348 
2349 template <typename T>
2350 void *__kmp_task_reduction_init(int gtid, int num, T *data) {
2351   __kmp_assert_valid_gtid(gtid);
2352   kmp_info_t *thread = __kmp_threads[gtid];
2353   kmp_taskgroup_t *tg = thread->th.th_current_task->td_taskgroup;
2354   kmp_uint32 nth = thread->th.th_team_nproc;
2355   kmp_taskred_data_t *arr;
2356 
2357   // check input data just in case
2358   KMP_ASSERT(tg != NULL);
2359   KMP_ASSERT(data != NULL);
2360   KMP_ASSERT(num > 0);
2361   if (nth == 1) {
2362     KA_TRACE(10, ("__kmpc_task_reduction_init: T#%d, tg %p, exiting nth=1\n",
2363                   gtid, tg));
2364     return (void *)tg;
2365   }
2366   KA_TRACE(10, ("__kmpc_task_reduction_init: T#%d, taskgroup %p, #items %d\n",
2367                 gtid, tg, num));
2368   arr = (kmp_taskred_data_t *)__kmp_thread_malloc(
2369       thread, num * sizeof(kmp_taskred_data_t));
2370   for (int i = 0; i < num; ++i) {
2371     size_t size = data[i].reduce_size - 1;
2372     // round the size up to cache line per thread-specific item
2373     size += CACHE_LINE - size % CACHE_LINE;
2374     KMP_ASSERT(data[i].reduce_comb != NULL); // combiner is mandatory
2375     arr[i].reduce_shar = data[i].reduce_shar;
2376     arr[i].reduce_size = size;
2377     arr[i].flags = data[i].flags;
2378     arr[i].reduce_comb = data[i].reduce_comb;
2379     arr[i].reduce_init = data[i].reduce_init;
2380     arr[i].reduce_fini = data[i].reduce_fini;
2381     __kmp_assign_orig<T>(arr[i], data[i]);
2382     if (!arr[i].flags.lazy_priv) {
2383       // allocate cache-line aligned block and fill it with zeros
2384       arr[i].reduce_priv = __kmp_allocate(nth * size);
2385       arr[i].reduce_pend = (char *)(arr[i].reduce_priv) + nth * size;
2386       if (arr[i].reduce_init != NULL) {
2387         // initialize all thread-specific items
2388         for (size_t j = 0; j < nth; ++j) {
2389           __kmp_call_init<T>(arr[i], j * size);
2390         }
2391       }
2392     } else {
2393       // only allocate space for pointers now,
2394       // objects will be lazily allocated/initialized if/when requested
2395       // note that __kmp_allocate zeroes the allocated memory
2396       arr[i].reduce_priv = __kmp_allocate(nth * sizeof(void *));
2397     }
2398   }
2399   tg->reduce_data = (void *)arr;
2400   tg->reduce_num_data = num;
2401   return (void *)tg;
2402 }
2403 
2404 /*!
2405 @ingroup TASKING
2406 @param gtid      Global thread ID
2407 @param num       Number of data items to reduce
2408 @param data      Array of data for reduction
2409 @return The taskgroup identifier
2410 
2411 Initialize task reduction for the taskgroup.
2412 
2413 Note: this entry supposes the optional compiler-generated initializer routine
2414 has single parameter - pointer to object to be initialized. That means
2415 the reduction either does not use omp_orig object, or the omp_orig is accessible
2416 without help of the runtime library.
2417 */
2418 void *__kmpc_task_reduction_init(int gtid, int num, void *data) {
2419   return __kmp_task_reduction_init(gtid, num, (kmp_task_red_input_t *)data);
2420 }
2421 
2422 /*!
2423 @ingroup TASKING
2424 @param gtid      Global thread ID
2425 @param num       Number of data items to reduce
2426 @param data      Array of data for reduction
2427 @return The taskgroup identifier
2428 
2429 Initialize task reduction for the taskgroup.
2430 
2431 Note: this entry supposes the optional compiler-generated initializer routine
2432 has two parameters, pointer to object to be initialized and pointer to omp_orig
2433 */
2434 void *__kmpc_taskred_init(int gtid, int num, void *data) {
2435   return __kmp_task_reduction_init(gtid, num, (kmp_taskred_input_t *)data);
2436 }
2437 
2438 // Copy task reduction data (except for shared pointers).
2439 template <typename T>
2440 void __kmp_task_reduction_init_copy(kmp_info_t *thr, int num, T *data,
2441                                     kmp_taskgroup_t *tg, void *reduce_data) {
2442   kmp_taskred_data_t *arr;
2443   KA_TRACE(20, ("__kmp_task_reduction_init_copy: Th %p, init taskgroup %p,"
2444                 " from data %p\n",
2445                 thr, tg, reduce_data));
2446   arr = (kmp_taskred_data_t *)__kmp_thread_malloc(
2447       thr, num * sizeof(kmp_taskred_data_t));
2448   // threads will share private copies, thunk routines, sizes, flags, etc.:
2449   KMP_MEMCPY(arr, reduce_data, num * sizeof(kmp_taskred_data_t));
2450   for (int i = 0; i < num; ++i) {
2451     arr[i].reduce_shar = data[i].reduce_shar; // init unique shared pointers
2452   }
2453   tg->reduce_data = (void *)arr;
2454   tg->reduce_num_data = num;
2455 }
2456 
2457 /*!
2458 @ingroup TASKING
2459 @param gtid    Global thread ID
2460 @param tskgrp  The taskgroup ID (optional)
2461 @param data    Shared location of the item
2462 @return The pointer to per-thread data
2463 
2464 Get thread-specific location of data item
2465 */
2466 void *__kmpc_task_reduction_get_th_data(int gtid, void *tskgrp, void *data) {
2467   __kmp_assert_valid_gtid(gtid);
2468   kmp_info_t *thread = __kmp_threads[gtid];
2469   kmp_int32 nth = thread->th.th_team_nproc;
2470   if (nth == 1)
2471     return data; // nothing to do
2472 
2473   kmp_taskgroup_t *tg = (kmp_taskgroup_t *)tskgrp;
2474   if (tg == NULL)
2475     tg = thread->th.th_current_task->td_taskgroup;
2476   KMP_ASSERT(tg != NULL);
2477   kmp_taskred_data_t *arr = (kmp_taskred_data_t *)(tg->reduce_data);
2478   kmp_int32 num = tg->reduce_num_data;
2479   kmp_int32 tid = thread->th.th_info.ds.ds_tid;
2480 
2481   KMP_ASSERT(data != NULL);
2482   while (tg != NULL) {
2483     for (int i = 0; i < num; ++i) {
2484       if (!arr[i].flags.lazy_priv) {
2485         if (data == arr[i].reduce_shar ||
2486             (data >= arr[i].reduce_priv && data < arr[i].reduce_pend))
2487           return (char *)(arr[i].reduce_priv) + tid * arr[i].reduce_size;
2488       } else {
2489         // check shared location first
2490         void **p_priv = (void **)(arr[i].reduce_priv);
2491         if (data == arr[i].reduce_shar)
2492           goto found;
2493         // check if we get some thread specific location as parameter
2494         for (int j = 0; j < nth; ++j)
2495           if (data == p_priv[j])
2496             goto found;
2497         continue; // not found, continue search
2498       found:
2499         if (p_priv[tid] == NULL) {
2500           // allocate thread specific object lazily
2501           p_priv[tid] = __kmp_allocate(arr[i].reduce_size);
2502           if (arr[i].reduce_init != NULL) {
2503             if (arr[i].reduce_orig != NULL) { // new interface
2504               ((void (*)(void *, void *))arr[i].reduce_init)(
2505                   p_priv[tid], arr[i].reduce_orig);
2506             } else { // old interface (single parameter)
2507               ((void (*)(void *))arr[i].reduce_init)(p_priv[tid]);
2508             }
2509           }
2510         }
2511         return p_priv[tid];
2512       }
2513     }
2514     tg = tg->parent;
2515     arr = (kmp_taskred_data_t *)(tg->reduce_data);
2516     num = tg->reduce_num_data;
2517   }
2518   KMP_ASSERT2(0, "Unknown task reduction item");
2519   return NULL; // ERROR, this line never executed
2520 }
2521 
2522 // Finalize task reduction.
2523 // Called from __kmpc_end_taskgroup()
2524 static void __kmp_task_reduction_fini(kmp_info_t *th, kmp_taskgroup_t *tg) {
2525   kmp_int32 nth = th->th.th_team_nproc;
2526   KMP_DEBUG_ASSERT(nth > 1); // should not be called if nth == 1
2527   kmp_taskred_data_t *arr = (kmp_taskred_data_t *)tg->reduce_data;
2528   kmp_int32 num = tg->reduce_num_data;
2529   for (int i = 0; i < num; ++i) {
2530     void *sh_data = arr[i].reduce_shar;
2531     void (*f_fini)(void *) = (void (*)(void *))(arr[i].reduce_fini);
2532     void (*f_comb)(void *, void *) =
2533         (void (*)(void *, void *))(arr[i].reduce_comb);
2534     if (!arr[i].flags.lazy_priv) {
2535       void *pr_data = arr[i].reduce_priv;
2536       size_t size = arr[i].reduce_size;
2537       for (int j = 0; j < nth; ++j) {
2538         void *priv_data = (char *)pr_data + j * size;
2539         f_comb(sh_data, priv_data); // combine results
2540         if (f_fini)
2541           f_fini(priv_data); // finalize if needed
2542       }
2543     } else {
2544       void **pr_data = (void **)(arr[i].reduce_priv);
2545       for (int j = 0; j < nth; ++j) {
2546         if (pr_data[j] != NULL) {
2547           f_comb(sh_data, pr_data[j]); // combine results
2548           if (f_fini)
2549             f_fini(pr_data[j]); // finalize if needed
2550           __kmp_free(pr_data[j]);
2551         }
2552       }
2553     }
2554     __kmp_free(arr[i].reduce_priv);
2555   }
2556   __kmp_thread_free(th, arr);
2557   tg->reduce_data = NULL;
2558   tg->reduce_num_data = 0;
2559 }
2560 
2561 // Cleanup task reduction data for parallel or worksharing,
2562 // do not touch task private data other threads still working with.
2563 // Called from __kmpc_end_taskgroup()
2564 static void __kmp_task_reduction_clean(kmp_info_t *th, kmp_taskgroup_t *tg) {
2565   __kmp_thread_free(th, tg->reduce_data);
2566   tg->reduce_data = NULL;
2567   tg->reduce_num_data = 0;
2568 }
2569 
2570 template <typename T>
2571 void *__kmp_task_reduction_modifier_init(ident_t *loc, int gtid, int is_ws,
2572                                          int num, T *data) {
2573   __kmp_assert_valid_gtid(gtid);
2574   kmp_info_t *thr = __kmp_threads[gtid];
2575   kmp_int32 nth = thr->th.th_team_nproc;
2576   __kmpc_taskgroup(loc, gtid); // form new taskgroup first
2577   if (nth == 1) {
2578     KA_TRACE(10,
2579              ("__kmpc_reduction_modifier_init: T#%d, tg %p, exiting nth=1\n",
2580               gtid, thr->th.th_current_task->td_taskgroup));
2581     return (void *)thr->th.th_current_task->td_taskgroup;
2582   }
2583   kmp_team_t *team = thr->th.th_team;
2584   void *reduce_data;
2585   kmp_taskgroup_t *tg;
2586   reduce_data = KMP_ATOMIC_LD_RLX(&team->t.t_tg_reduce_data[is_ws]);
2587   if (reduce_data == NULL &&
2588       __kmp_atomic_compare_store(&team->t.t_tg_reduce_data[is_ws], reduce_data,
2589                                  (void *)1)) {
2590     // single thread enters this block to initialize common reduction data
2591     KMP_DEBUG_ASSERT(reduce_data == NULL);
2592     // first initialize own data, then make a copy other threads can use
2593     tg = (kmp_taskgroup_t *)__kmp_task_reduction_init<T>(gtid, num, data);
2594     reduce_data = __kmp_thread_malloc(thr, num * sizeof(kmp_taskred_data_t));
2595     KMP_MEMCPY(reduce_data, tg->reduce_data, num * sizeof(kmp_taskred_data_t));
2596     // fini counters should be 0 at this point
2597     KMP_DEBUG_ASSERT(KMP_ATOMIC_LD_RLX(&team->t.t_tg_fini_counter[0]) == 0);
2598     KMP_DEBUG_ASSERT(KMP_ATOMIC_LD_RLX(&team->t.t_tg_fini_counter[1]) == 0);
2599     KMP_ATOMIC_ST_REL(&team->t.t_tg_reduce_data[is_ws], reduce_data);
2600   } else {
2601     while (
2602         (reduce_data = KMP_ATOMIC_LD_ACQ(&team->t.t_tg_reduce_data[is_ws])) ==
2603         (void *)1) { // wait for task reduction initialization
2604       KMP_CPU_PAUSE();
2605     }
2606     KMP_DEBUG_ASSERT(reduce_data > (void *)1); // should be valid pointer here
2607     tg = thr->th.th_current_task->td_taskgroup;
2608     __kmp_task_reduction_init_copy<T>(thr, num, data, tg, reduce_data);
2609   }
2610   return tg;
2611 }
2612 
2613 /*!
2614 @ingroup TASKING
2615 @param loc       Source location info
2616 @param gtid      Global thread ID
2617 @param is_ws     Is 1 if the reduction is for worksharing, 0 otherwise
2618 @param num       Number of data items to reduce
2619 @param data      Array of data for reduction
2620 @return The taskgroup identifier
2621 
2622 Initialize task reduction for a parallel or worksharing.
2623 
2624 Note: this entry supposes the optional compiler-generated initializer routine
2625 has single parameter - pointer to object to be initialized. That means
2626 the reduction either does not use omp_orig object, or the omp_orig is accessible
2627 without help of the runtime library.
2628 */
2629 void *__kmpc_task_reduction_modifier_init(ident_t *loc, int gtid, int is_ws,
2630                                           int num, void *data) {
2631   return __kmp_task_reduction_modifier_init(loc, gtid, is_ws, num,
2632                                             (kmp_task_red_input_t *)data);
2633 }
2634 
2635 /*!
2636 @ingroup TASKING
2637 @param loc       Source location info
2638 @param gtid      Global thread ID
2639 @param is_ws     Is 1 if the reduction is for worksharing, 0 otherwise
2640 @param num       Number of data items to reduce
2641 @param data      Array of data for reduction
2642 @return The taskgroup identifier
2643 
2644 Initialize task reduction for a parallel or worksharing.
2645 
2646 Note: this entry supposes the optional compiler-generated initializer routine
2647 has two parameters, pointer to object to be initialized and pointer to omp_orig
2648 */
2649 void *__kmpc_taskred_modifier_init(ident_t *loc, int gtid, int is_ws, int num,
2650                                    void *data) {
2651   return __kmp_task_reduction_modifier_init(loc, gtid, is_ws, num,
2652                                             (kmp_taskred_input_t *)data);
2653 }
2654 
2655 /*!
2656 @ingroup TASKING
2657 @param loc       Source location info
2658 @param gtid      Global thread ID
2659 @param is_ws     Is 1 if the reduction is for worksharing, 0 otherwise
2660 
2661 Finalize task reduction for a parallel or worksharing.
2662 */
2663 void __kmpc_task_reduction_modifier_fini(ident_t *loc, int gtid, int is_ws) {
2664   __kmpc_end_taskgroup(loc, gtid);
2665 }
2666 
2667 // __kmpc_taskgroup: Start a new taskgroup
2668 void __kmpc_taskgroup(ident_t *loc, int gtid) {
2669   __kmp_assert_valid_gtid(gtid);
2670   kmp_info_t *thread = __kmp_threads[gtid];
2671   kmp_taskdata_t *taskdata = thread->th.th_current_task;
2672   kmp_taskgroup_t *tg_new =
2673       (kmp_taskgroup_t *)__kmp_thread_malloc(thread, sizeof(kmp_taskgroup_t));
2674   KA_TRACE(10, ("__kmpc_taskgroup: T#%d loc=%p group=%p\n", gtid, loc, tg_new));
2675   KMP_ATOMIC_ST_RLX(&tg_new->count, 0);
2676   KMP_ATOMIC_ST_RLX(&tg_new->cancel_request, cancel_noreq);
2677   tg_new->parent = taskdata->td_taskgroup;
2678   tg_new->reduce_data = NULL;
2679   tg_new->reduce_num_data = 0;
2680   tg_new->gomp_data = NULL;
2681   taskdata->td_taskgroup = tg_new;
2682 
2683 #if OMPT_SUPPORT && OMPT_OPTIONAL
2684   if (UNLIKELY(ompt_enabled.ompt_callback_sync_region)) {
2685     void *codeptr = OMPT_LOAD_RETURN_ADDRESS(gtid);
2686     if (!codeptr)
2687       codeptr = OMPT_GET_RETURN_ADDRESS(0);
2688     kmp_team_t *team = thread->th.th_team;
2689     ompt_data_t my_task_data = taskdata->ompt_task_info.task_data;
2690     // FIXME: I think this is wrong for lwt!
2691     ompt_data_t my_parallel_data = team->t.ompt_team_info.parallel_data;
2692 
2693     ompt_callbacks.ompt_callback(ompt_callback_sync_region)(
2694         ompt_sync_region_taskgroup, ompt_scope_begin, &(my_parallel_data),
2695         &(my_task_data), codeptr);
2696   }
2697 #endif
2698 }
2699 
2700 // __kmpc_end_taskgroup: Wait until all tasks generated by the current task
2701 //                       and its descendants are complete
2702 void __kmpc_end_taskgroup(ident_t *loc, int gtid) {
2703   __kmp_assert_valid_gtid(gtid);
2704   kmp_info_t *thread = __kmp_threads[gtid];
2705   kmp_taskdata_t *taskdata = thread->th.th_current_task;
2706   kmp_taskgroup_t *taskgroup = taskdata->td_taskgroup;
2707   int thread_finished = FALSE;
2708 
2709 #if OMPT_SUPPORT && OMPT_OPTIONAL
2710   kmp_team_t *team;
2711   ompt_data_t my_task_data;
2712   ompt_data_t my_parallel_data;
2713   void *codeptr = nullptr;
2714   if (UNLIKELY(ompt_enabled.enabled)) {
2715     team = thread->th.th_team;
2716     my_task_data = taskdata->ompt_task_info.task_data;
2717     // FIXME: I think this is wrong for lwt!
2718     my_parallel_data = team->t.ompt_team_info.parallel_data;
2719     codeptr = OMPT_LOAD_RETURN_ADDRESS(gtid);
2720     if (!codeptr)
2721       codeptr = OMPT_GET_RETURN_ADDRESS(0);
2722   }
2723 #endif
2724 
2725   KA_TRACE(10, ("__kmpc_end_taskgroup(enter): T#%d loc=%p\n", gtid, loc));
2726   KMP_DEBUG_ASSERT(taskgroup != NULL);
2727   KMP_SET_THREAD_STATE_BLOCK(TASKGROUP);
2728 
2729   if (__kmp_tasking_mode != tskm_immediate_exec) {
2730     // mark task as waiting not on a barrier
2731     taskdata->td_taskwait_counter += 1;
2732     taskdata->td_taskwait_ident = loc;
2733     taskdata->td_taskwait_thread = gtid + 1;
2734 #if USE_ITT_BUILD
2735     // For ITT the taskgroup wait is similar to taskwait until we need to
2736     // distinguish them
2737     void *itt_sync_obj = NULL;
2738 #if USE_ITT_NOTIFY
2739     KMP_ITT_TASKWAIT_STARTING(itt_sync_obj);
2740 #endif /* USE_ITT_NOTIFY */
2741 #endif /* USE_ITT_BUILD */
2742 
2743 #if OMPT_SUPPORT && OMPT_OPTIONAL
2744     if (UNLIKELY(ompt_enabled.ompt_callback_sync_region_wait)) {
2745       ompt_callbacks.ompt_callback(ompt_callback_sync_region_wait)(
2746           ompt_sync_region_taskgroup, ompt_scope_begin, &(my_parallel_data),
2747           &(my_task_data), codeptr);
2748     }
2749 #endif
2750 
2751     if (!taskdata->td_flags.team_serial ||
2752         (thread->th.th_task_team != NULL &&
2753          (thread->th.th_task_team->tt.tt_found_proxy_tasks ||
2754           thread->th.th_task_team->tt.tt_hidden_helper_task_encountered))) {
2755       kmp_flag_32<false, false> flag(
2756           RCAST(std::atomic<kmp_uint32> *, &(taskgroup->count)), 0U);
2757       while (KMP_ATOMIC_LD_ACQ(&taskgroup->count) != 0) {
2758         flag.execute_tasks(thread, gtid, FALSE,
2759                            &thread_finished USE_ITT_BUILD_ARG(itt_sync_obj),
2760                            __kmp_task_stealing_constraint);
2761       }
2762     }
2763     taskdata->td_taskwait_thread = -taskdata->td_taskwait_thread; // end waiting
2764 
2765 #if OMPT_SUPPORT && OMPT_OPTIONAL
2766     if (UNLIKELY(ompt_enabled.ompt_callback_sync_region_wait)) {
2767       ompt_callbacks.ompt_callback(ompt_callback_sync_region_wait)(
2768           ompt_sync_region_taskgroup, ompt_scope_end, &(my_parallel_data),
2769           &(my_task_data), codeptr);
2770     }
2771 #endif
2772 
2773 #if USE_ITT_BUILD
2774     KMP_ITT_TASKWAIT_FINISHED(itt_sync_obj);
2775     KMP_FSYNC_ACQUIRED(taskdata); // acquire self - sync with descendants
2776 #endif /* USE_ITT_BUILD */
2777   }
2778   KMP_DEBUG_ASSERT(taskgroup->count == 0);
2779 
2780   if (taskgroup->reduce_data != NULL &&
2781       !taskgroup->gomp_data) { // need to reduce?
2782     int cnt;
2783     void *reduce_data;
2784     kmp_team_t *t = thread->th.th_team;
2785     kmp_taskred_data_t *arr = (kmp_taskred_data_t *)taskgroup->reduce_data;
2786     // check if <priv> data of the first reduction variable shared for the team
2787     void *priv0 = arr[0].reduce_priv;
2788     if ((reduce_data = KMP_ATOMIC_LD_ACQ(&t->t.t_tg_reduce_data[0])) != NULL &&
2789         ((kmp_taskred_data_t *)reduce_data)[0].reduce_priv == priv0) {
2790       // finishing task reduction on parallel
2791       cnt = KMP_ATOMIC_INC(&t->t.t_tg_fini_counter[0]);
2792       if (cnt == thread->th.th_team_nproc - 1) {
2793         // we are the last thread passing __kmpc_reduction_modifier_fini()
2794         // finalize task reduction:
2795         __kmp_task_reduction_fini(thread, taskgroup);
2796         // cleanup fields in the team structure:
2797         // TODO: is relaxed store enough here (whole barrier should follow)?
2798         __kmp_thread_free(thread, reduce_data);
2799         KMP_ATOMIC_ST_REL(&t->t.t_tg_reduce_data[0], NULL);
2800         KMP_ATOMIC_ST_REL(&t->t.t_tg_fini_counter[0], 0);
2801       } else {
2802         // we are not the last thread passing __kmpc_reduction_modifier_fini(),
2803         // so do not finalize reduction, just clean own copy of the data
2804         __kmp_task_reduction_clean(thread, taskgroup);
2805       }
2806     } else if ((reduce_data = KMP_ATOMIC_LD_ACQ(&t->t.t_tg_reduce_data[1])) !=
2807                    NULL &&
2808                ((kmp_taskred_data_t *)reduce_data)[0].reduce_priv == priv0) {
2809       // finishing task reduction on worksharing
2810       cnt = KMP_ATOMIC_INC(&t->t.t_tg_fini_counter[1]);
2811       if (cnt == thread->th.th_team_nproc - 1) {
2812         // we are the last thread passing __kmpc_reduction_modifier_fini()
2813         __kmp_task_reduction_fini(thread, taskgroup);
2814         // cleanup fields in team structure:
2815         // TODO: is relaxed store enough here (whole barrier should follow)?
2816         __kmp_thread_free(thread, reduce_data);
2817         KMP_ATOMIC_ST_REL(&t->t.t_tg_reduce_data[1], NULL);
2818         KMP_ATOMIC_ST_REL(&t->t.t_tg_fini_counter[1], 0);
2819       } else {
2820         // we are not the last thread passing __kmpc_reduction_modifier_fini(),
2821         // so do not finalize reduction, just clean own copy of the data
2822         __kmp_task_reduction_clean(thread, taskgroup);
2823       }
2824     } else {
2825       // finishing task reduction on taskgroup
2826       __kmp_task_reduction_fini(thread, taskgroup);
2827     }
2828   }
2829   // Restore parent taskgroup for the current task
2830   taskdata->td_taskgroup = taskgroup->parent;
2831   __kmp_thread_free(thread, taskgroup);
2832 
2833   KA_TRACE(10, ("__kmpc_end_taskgroup(exit): T#%d task %p finished waiting\n",
2834                 gtid, taskdata));
2835 
2836 #if OMPT_SUPPORT && OMPT_OPTIONAL
2837   if (UNLIKELY(ompt_enabled.ompt_callback_sync_region)) {
2838     ompt_callbacks.ompt_callback(ompt_callback_sync_region)(
2839         ompt_sync_region_taskgroup, ompt_scope_end, &(my_parallel_data),
2840         &(my_task_data), codeptr);
2841   }
2842 #endif
2843 }
2844 
2845 static kmp_task_t *__kmp_get_priority_task(kmp_int32 gtid,
2846                                            kmp_task_team_t *task_team,
2847                                            kmp_int32 is_constrained) {
2848   kmp_task_t *task = NULL;
2849   kmp_taskdata_t *taskdata;
2850   kmp_taskdata_t *current;
2851   kmp_thread_data_t *thread_data;
2852   int ntasks = task_team->tt.tt_num_task_pri;
2853   if (ntasks == 0) {
2854     KA_TRACE(
2855         20, ("__kmp_get_priority_task(exit #1): T#%d No tasks to get\n", gtid));
2856     return NULL;
2857   }
2858   do {
2859     // decrement num_tasks to "reserve" one task to get for execution
2860     if (__kmp_atomic_compare_store(&task_team->tt.tt_num_task_pri, ntasks,
2861                                    ntasks - 1))
2862       break;
2863   } while (ntasks > 0);
2864   if (ntasks == 0) {
2865     KA_TRACE(20, ("__kmp_get_priority_task(exit #2): T#%d No tasks to get\n",
2866                   __kmp_get_gtid()));
2867     return NULL;
2868   }
2869   // We got a "ticket" to get a "reserved" priority task
2870   int deque_ntasks;
2871   kmp_task_pri_t *list = task_team->tt.tt_task_pri_list;
2872   do {
2873     KMP_ASSERT(list != NULL);
2874     thread_data = &list->td;
2875     __kmp_acquire_bootstrap_lock(&thread_data->td.td_deque_lock);
2876     deque_ntasks = thread_data->td.td_deque_ntasks;
2877     if (deque_ntasks == 0) {
2878       __kmp_release_bootstrap_lock(&thread_data->td.td_deque_lock);
2879       KA_TRACE(20, ("__kmp_get_priority_task: T#%d No tasks to get from %p\n",
2880                     __kmp_get_gtid(), thread_data));
2881       list = list->next;
2882     }
2883   } while (deque_ntasks == 0);
2884   KMP_DEBUG_ASSERT(deque_ntasks);
2885   int target = thread_data->td.td_deque_head;
2886   current = __kmp_threads[gtid]->th.th_current_task;
2887   taskdata = thread_data->td.td_deque[target];
2888   if (__kmp_task_is_allowed(gtid, is_constrained, taskdata, current)) {
2889     // Bump head pointer and Wrap.
2890     thread_data->td.td_deque_head =
2891         (target + 1) & TASK_DEQUE_MASK(thread_data->td);
2892   } else {
2893     if (!task_team->tt.tt_untied_task_encountered) {
2894       // The TSC does not allow to steal victim task
2895       __kmp_release_bootstrap_lock(&thread_data->td.td_deque_lock);
2896       KA_TRACE(20, ("__kmp_get_priority_task(exit #3): T#%d could not get task "
2897                     "from %p: task_team=%p ntasks=%d head=%u tail=%u\n",
2898                     gtid, thread_data, task_team, deque_ntasks, target,
2899                     thread_data->td.td_deque_tail));
2900       task_team->tt.tt_num_task_pri++; // atomic inc, restore value
2901       return NULL;
2902     }
2903     int i;
2904     // walk through the deque trying to steal any task
2905     taskdata = NULL;
2906     for (i = 1; i < deque_ntasks; ++i) {
2907       target = (target + 1) & TASK_DEQUE_MASK(thread_data->td);
2908       taskdata = thread_data->td.td_deque[target];
2909       if (__kmp_task_is_allowed(gtid, is_constrained, taskdata, current)) {
2910         break; // found task to execute
2911       } else {
2912         taskdata = NULL;
2913       }
2914     }
2915     if (taskdata == NULL) {
2916       // No appropriate candidate found to execute
2917       __kmp_release_bootstrap_lock(&thread_data->td.td_deque_lock);
2918       KA_TRACE(
2919           10, ("__kmp_get_priority_task(exit #4): T#%d could not get task from "
2920                "%p: task_team=%p ntasks=%d head=%u tail=%u\n",
2921                gtid, thread_data, task_team, deque_ntasks,
2922                thread_data->td.td_deque_head, thread_data->td.td_deque_tail));
2923       task_team->tt.tt_num_task_pri++; // atomic inc, restore value
2924       return NULL;
2925     }
2926     int prev = target;
2927     for (i = i + 1; i < deque_ntasks; ++i) {
2928       // shift remaining tasks in the deque left by 1
2929       target = (target + 1) & TASK_DEQUE_MASK(thread_data->td);
2930       thread_data->td.td_deque[prev] = thread_data->td.td_deque[target];
2931       prev = target;
2932     }
2933     KMP_DEBUG_ASSERT(
2934         thread_data->td.td_deque_tail ==
2935         (kmp_uint32)((target + 1) & TASK_DEQUE_MASK(thread_data->td)));
2936     thread_data->td.td_deque_tail = target; // tail -= 1 (wrapped))
2937   }
2938   thread_data->td.td_deque_ntasks = deque_ntasks - 1;
2939   __kmp_release_bootstrap_lock(&thread_data->td.td_deque_lock);
2940   task = KMP_TASKDATA_TO_TASK(taskdata);
2941   return task;
2942 }
2943 
2944 // __kmp_remove_my_task: remove a task from my own deque
2945 static kmp_task_t *__kmp_remove_my_task(kmp_info_t *thread, kmp_int32 gtid,
2946                                         kmp_task_team_t *task_team,
2947                                         kmp_int32 is_constrained) {
2948   kmp_task_t *task;
2949   kmp_taskdata_t *taskdata;
2950   kmp_thread_data_t *thread_data;
2951   kmp_uint32 tail;
2952 
2953   KMP_DEBUG_ASSERT(__kmp_tasking_mode != tskm_immediate_exec);
2954   KMP_DEBUG_ASSERT(task_team->tt.tt_threads_data !=
2955                    NULL); // Caller should check this condition
2956 
2957   thread_data = &task_team->tt.tt_threads_data[__kmp_tid_from_gtid(gtid)];
2958 
2959   KA_TRACE(10, ("__kmp_remove_my_task(enter): T#%d ntasks=%d head=%u tail=%u\n",
2960                 gtid, thread_data->td.td_deque_ntasks,
2961                 thread_data->td.td_deque_head, thread_data->td.td_deque_tail));
2962 
2963   if (TCR_4(thread_data->td.td_deque_ntasks) == 0) {
2964     KA_TRACE(10,
2965              ("__kmp_remove_my_task(exit #1): T#%d No tasks to remove: "
2966               "ntasks=%d head=%u tail=%u\n",
2967               gtid, thread_data->td.td_deque_ntasks,
2968               thread_data->td.td_deque_head, thread_data->td.td_deque_tail));
2969     return NULL;
2970   }
2971 
2972   __kmp_acquire_bootstrap_lock(&thread_data->td.td_deque_lock);
2973 
2974   if (TCR_4(thread_data->td.td_deque_ntasks) == 0) {
2975     __kmp_release_bootstrap_lock(&thread_data->td.td_deque_lock);
2976     KA_TRACE(10,
2977              ("__kmp_remove_my_task(exit #2): T#%d No tasks to remove: "
2978               "ntasks=%d head=%u tail=%u\n",
2979               gtid, thread_data->td.td_deque_ntasks,
2980               thread_data->td.td_deque_head, thread_data->td.td_deque_tail));
2981     return NULL;
2982   }
2983 
2984   tail = (thread_data->td.td_deque_tail - 1) &
2985          TASK_DEQUE_MASK(thread_data->td); // Wrap index.
2986   taskdata = thread_data->td.td_deque[tail];
2987 
2988   if (!__kmp_task_is_allowed(gtid, is_constrained, taskdata,
2989                              thread->th.th_current_task)) {
2990     // The TSC does not allow to steal victim task
2991     __kmp_release_bootstrap_lock(&thread_data->td.td_deque_lock);
2992     KA_TRACE(10,
2993              ("__kmp_remove_my_task(exit #3): T#%d TSC blocks tail task: "
2994               "ntasks=%d head=%u tail=%u\n",
2995               gtid, thread_data->td.td_deque_ntasks,
2996               thread_data->td.td_deque_head, thread_data->td.td_deque_tail));
2997     return NULL;
2998   }
2999 
3000   thread_data->td.td_deque_tail = tail;
3001   TCW_4(thread_data->td.td_deque_ntasks, thread_data->td.td_deque_ntasks - 1);
3002 
3003   __kmp_release_bootstrap_lock(&thread_data->td.td_deque_lock);
3004 
3005   KA_TRACE(10, ("__kmp_remove_my_task(exit #4): T#%d task %p removed: "
3006                 "ntasks=%d head=%u tail=%u\n",
3007                 gtid, taskdata, thread_data->td.td_deque_ntasks,
3008                 thread_data->td.td_deque_head, thread_data->td.td_deque_tail));
3009 
3010   task = KMP_TASKDATA_TO_TASK(taskdata);
3011   return task;
3012 }
3013 
3014 // __kmp_steal_task: remove a task from another thread's deque
3015 // Assume that calling thread has already checked existence of
3016 // task_team thread_data before calling this routine.
3017 static kmp_task_t *__kmp_steal_task(kmp_info_t *victim_thr, kmp_int32 gtid,
3018                                     kmp_task_team_t *task_team,
3019                                     std::atomic<kmp_int32> *unfinished_threads,
3020                                     int *thread_finished,
3021                                     kmp_int32 is_constrained) {
3022   kmp_task_t *task;
3023   kmp_taskdata_t *taskdata;
3024   kmp_taskdata_t *current;
3025   kmp_thread_data_t *victim_td, *threads_data;
3026   kmp_int32 target;
3027   kmp_int32 victim_tid;
3028 
3029   KMP_DEBUG_ASSERT(__kmp_tasking_mode != tskm_immediate_exec);
3030 
3031   threads_data = task_team->tt.tt_threads_data;
3032   KMP_DEBUG_ASSERT(threads_data != NULL); // Caller should check this condition
3033 
3034   victim_tid = victim_thr->th.th_info.ds.ds_tid;
3035   victim_td = &threads_data[victim_tid];
3036 
3037   KA_TRACE(10, ("__kmp_steal_task(enter): T#%d try to steal from T#%d: "
3038                 "task_team=%p ntasks=%d head=%u tail=%u\n",
3039                 gtid, __kmp_gtid_from_thread(victim_thr), task_team,
3040                 victim_td->td.td_deque_ntasks, victim_td->td.td_deque_head,
3041                 victim_td->td.td_deque_tail));
3042 
3043   if (TCR_4(victim_td->td.td_deque_ntasks) == 0) {
3044     KA_TRACE(10, ("__kmp_steal_task(exit #1): T#%d could not steal from T#%d: "
3045                   "task_team=%p ntasks=%d head=%u tail=%u\n",
3046                   gtid, __kmp_gtid_from_thread(victim_thr), task_team,
3047                   victim_td->td.td_deque_ntasks, victim_td->td.td_deque_head,
3048                   victim_td->td.td_deque_tail));
3049     return NULL;
3050   }
3051 
3052   __kmp_acquire_bootstrap_lock(&victim_td->td.td_deque_lock);
3053 
3054   int ntasks = TCR_4(victim_td->td.td_deque_ntasks);
3055   // Check again after we acquire the lock
3056   if (ntasks == 0) {
3057     __kmp_release_bootstrap_lock(&victim_td->td.td_deque_lock);
3058     KA_TRACE(10, ("__kmp_steal_task(exit #2): T#%d could not steal from T#%d: "
3059                   "task_team=%p ntasks=%d head=%u tail=%u\n",
3060                   gtid, __kmp_gtid_from_thread(victim_thr), task_team, ntasks,
3061                   victim_td->td.td_deque_head, victim_td->td.td_deque_tail));
3062     return NULL;
3063   }
3064 
3065   KMP_DEBUG_ASSERT(victim_td->td.td_deque != NULL);
3066   current = __kmp_threads[gtid]->th.th_current_task;
3067   taskdata = victim_td->td.td_deque[victim_td->td.td_deque_head];
3068   if (__kmp_task_is_allowed(gtid, is_constrained, taskdata, current)) {
3069     // Bump head pointer and Wrap.
3070     victim_td->td.td_deque_head =
3071         (victim_td->td.td_deque_head + 1) & TASK_DEQUE_MASK(victim_td->td);
3072   } else {
3073     if (!task_team->tt.tt_untied_task_encountered) {
3074       // The TSC does not allow to steal victim task
3075       __kmp_release_bootstrap_lock(&victim_td->td.td_deque_lock);
3076       KA_TRACE(10, ("__kmp_steal_task(exit #3): T#%d could not steal from "
3077                     "T#%d: task_team=%p ntasks=%d head=%u tail=%u\n",
3078                     gtid, __kmp_gtid_from_thread(victim_thr), task_team, ntasks,
3079                     victim_td->td.td_deque_head, victim_td->td.td_deque_tail));
3080       return NULL;
3081     }
3082     int i;
3083     // walk through victim's deque trying to steal any task
3084     target = victim_td->td.td_deque_head;
3085     taskdata = NULL;
3086     for (i = 1; i < ntasks; ++i) {
3087       target = (target + 1) & TASK_DEQUE_MASK(victim_td->td);
3088       taskdata = victim_td->td.td_deque[target];
3089       if (__kmp_task_is_allowed(gtid, is_constrained, taskdata, current)) {
3090         break; // found victim task
3091       } else {
3092         taskdata = NULL;
3093       }
3094     }
3095     if (taskdata == NULL) {
3096       // No appropriate candidate to steal found
3097       __kmp_release_bootstrap_lock(&victim_td->td.td_deque_lock);
3098       KA_TRACE(10, ("__kmp_steal_task(exit #4): T#%d could not steal from "
3099                     "T#%d: task_team=%p ntasks=%d head=%u tail=%u\n",
3100                     gtid, __kmp_gtid_from_thread(victim_thr), task_team, ntasks,
3101                     victim_td->td.td_deque_head, victim_td->td.td_deque_tail));
3102       return NULL;
3103     }
3104     int prev = target;
3105     for (i = i + 1; i < ntasks; ++i) {
3106       // shift remaining tasks in the deque left by 1
3107       target = (target + 1) & TASK_DEQUE_MASK(victim_td->td);
3108       victim_td->td.td_deque[prev] = victim_td->td.td_deque[target];
3109       prev = target;
3110     }
3111     KMP_DEBUG_ASSERT(
3112         victim_td->td.td_deque_tail ==
3113         (kmp_uint32)((target + 1) & TASK_DEQUE_MASK(victim_td->td)));
3114     victim_td->td.td_deque_tail = target; // tail -= 1 (wrapped))
3115   }
3116   if (*thread_finished) {
3117     // We need to un-mark this victim as a finished victim.  This must be done
3118     // before releasing the lock, or else other threads (starting with the
3119     // primary thread victim) might be prematurely released from the barrier!!!
3120 #if KMP_DEBUG
3121     kmp_int32 count =
3122 #endif
3123         KMP_ATOMIC_INC(unfinished_threads);
3124     KA_TRACE(
3125         20,
3126         ("__kmp_steal_task: T#%d inc unfinished_threads to %d: task_team=%p\n",
3127          gtid, count + 1, task_team));
3128     *thread_finished = FALSE;
3129   }
3130   TCW_4(victim_td->td.td_deque_ntasks, ntasks - 1);
3131 
3132   __kmp_release_bootstrap_lock(&victim_td->td.td_deque_lock);
3133 
3134   KMP_COUNT_BLOCK(TASK_stolen);
3135   KA_TRACE(10,
3136            ("__kmp_steal_task(exit #5): T#%d stole task %p from T#%d: "
3137             "task_team=%p ntasks=%d head=%u tail=%u\n",
3138             gtid, taskdata, __kmp_gtid_from_thread(victim_thr), task_team,
3139             ntasks, victim_td->td.td_deque_head, victim_td->td.td_deque_tail));
3140 
3141   task = KMP_TASKDATA_TO_TASK(taskdata);
3142   return task;
3143 }
3144 
3145 // __kmp_execute_tasks_template: Choose and execute tasks until either the
3146 // condition is statisfied (return true) or there are none left (return false).
3147 //
3148 // final_spin is TRUE if this is the spin at the release barrier.
3149 // thread_finished indicates whether the thread is finished executing all
3150 // the tasks it has on its deque, and is at the release barrier.
3151 // spinner is the location on which to spin.
3152 // spinner == NULL means only execute a single task and return.
3153 // checker is the value to check to terminate the spin.
3154 template <class C>
3155 static inline int __kmp_execute_tasks_template(
3156     kmp_info_t *thread, kmp_int32 gtid, C *flag, int final_spin,
3157     int *thread_finished USE_ITT_BUILD_ARG(void *itt_sync_obj),
3158     kmp_int32 is_constrained) {
3159   kmp_task_team_t *task_team = thread->th.th_task_team;
3160   kmp_thread_data_t *threads_data;
3161   kmp_task_t *task;
3162   kmp_info_t *other_thread;
3163   kmp_taskdata_t *current_task = thread->th.th_current_task;
3164   std::atomic<kmp_int32> *unfinished_threads;
3165   kmp_int32 nthreads, victim_tid = -2, use_own_tasks = 1, new_victim = 0,
3166                       tid = thread->th.th_info.ds.ds_tid;
3167 
3168   KMP_DEBUG_ASSERT(__kmp_tasking_mode != tskm_immediate_exec);
3169   KMP_DEBUG_ASSERT(thread == __kmp_threads[gtid]);
3170 
3171   if (task_team == NULL || current_task == NULL)
3172     return FALSE;
3173 
3174   KA_TRACE(15, ("__kmp_execute_tasks_template(enter): T#%d final_spin=%d "
3175                 "*thread_finished=%d\n",
3176                 gtid, final_spin, *thread_finished));
3177 
3178   thread->th.th_reap_state = KMP_NOT_SAFE_TO_REAP;
3179   threads_data = (kmp_thread_data_t *)TCR_PTR(task_team->tt.tt_threads_data);
3180 
3181   KMP_DEBUG_ASSERT(threads_data != NULL);
3182 
3183   nthreads = task_team->tt.tt_nproc;
3184   unfinished_threads = &(task_team->tt.tt_unfinished_threads);
3185   KMP_DEBUG_ASSERT(nthreads > 1 || task_team->tt.tt_found_proxy_tasks ||
3186                    task_team->tt.tt_hidden_helper_task_encountered);
3187   KMP_DEBUG_ASSERT(*unfinished_threads >= 0);
3188 
3189   while (1) { // Outer loop keeps trying to find tasks in case of single thread
3190     // getting tasks from target constructs
3191     while (1) { // Inner loop to find a task and execute it
3192       task = NULL;
3193       if (task_team->tt.tt_num_task_pri) { // get priority task first
3194         task = __kmp_get_priority_task(gtid, task_team, is_constrained);
3195       }
3196       if (task == NULL && use_own_tasks) { // check own queue next
3197         task = __kmp_remove_my_task(thread, gtid, task_team, is_constrained);
3198       }
3199       if ((task == NULL) && (nthreads > 1)) { // Steal a task finally
3200         int asleep = 1;
3201         use_own_tasks = 0;
3202         // Try to steal from the last place I stole from successfully.
3203         if (victim_tid == -2) { // haven't stolen anything yet
3204           victim_tid = threads_data[tid].td.td_deque_last_stolen;
3205           if (victim_tid !=
3206               -1) // if we have a last stolen from victim, get the thread
3207             other_thread = threads_data[victim_tid].td.td_thr;
3208         }
3209         if (victim_tid != -1) { // found last victim
3210           asleep = 0;
3211         } else if (!new_victim) { // no recent steals and we haven't already
3212           // used a new victim; select a random thread
3213           do { // Find a different thread to steal work from.
3214             // Pick a random thread. Initial plan was to cycle through all the
3215             // threads, and only return if we tried to steal from every thread,
3216             // and failed.  Arch says that's not such a great idea.
3217             victim_tid = __kmp_get_random(thread) % (nthreads - 1);
3218             if (victim_tid >= tid) {
3219               ++victim_tid; // Adjusts random distribution to exclude self
3220             }
3221             // Found a potential victim
3222             other_thread = threads_data[victim_tid].td.td_thr;
3223             // There is a slight chance that __kmp_enable_tasking() did not wake
3224             // up all threads waiting at the barrier.  If victim is sleeping,
3225             // then wake it up. Since we were going to pay the cache miss
3226             // penalty for referencing another thread's kmp_info_t struct
3227             // anyway,
3228             // the check shouldn't cost too much performance at this point. In
3229             // extra barrier mode, tasks do not sleep at the separate tasking
3230             // barrier, so this isn't a problem.
3231             asleep = 0;
3232             if ((__kmp_tasking_mode == tskm_task_teams) &&
3233                 (__kmp_dflt_blocktime != KMP_MAX_BLOCKTIME) &&
3234                 (TCR_PTR(CCAST(void *, other_thread->th.th_sleep_loc)) !=
3235                  NULL)) {
3236               asleep = 1;
3237               __kmp_null_resume_wrapper(other_thread);
3238               // A sleeping thread should not have any tasks on it's queue.
3239               // There is a slight possibility that it resumes, steals a task
3240               // from another thread, which spawns more tasks, all in the time
3241               // that it takes this thread to check => don't write an assertion
3242               // that the victim's queue is empty.  Try stealing from a
3243               // different thread.
3244             }
3245           } while (asleep);
3246         }
3247 
3248         if (!asleep) {
3249           // We have a victim to try to steal from
3250           task = __kmp_steal_task(other_thread, gtid, task_team,
3251                                   unfinished_threads, thread_finished,
3252                                   is_constrained);
3253         }
3254         if (task != NULL) { // set last stolen to victim
3255           if (threads_data[tid].td.td_deque_last_stolen != victim_tid) {
3256             threads_data[tid].td.td_deque_last_stolen = victim_tid;
3257             // The pre-refactored code did not try more than 1 successful new
3258             // vicitm, unless the last one generated more local tasks;
3259             // new_victim keeps track of this
3260             new_victim = 1;
3261           }
3262         } else { // No tasks found; unset last_stolen
3263           KMP_CHECK_UPDATE(threads_data[tid].td.td_deque_last_stolen, -1);
3264           victim_tid = -2; // no successful victim found
3265         }
3266       }
3267 
3268       if (task == NULL)
3269         break; // break out of tasking loop
3270 
3271 // Found a task; execute it
3272 #if USE_ITT_BUILD && USE_ITT_NOTIFY
3273       if (__itt_sync_create_ptr || KMP_ITT_DEBUG) {
3274         if (itt_sync_obj == NULL) { // we are at fork barrier where we could not
3275           // get the object reliably
3276           itt_sync_obj = __kmp_itt_barrier_object(gtid, bs_forkjoin_barrier);
3277         }
3278         __kmp_itt_task_starting(itt_sync_obj);
3279       }
3280 #endif /* USE_ITT_BUILD && USE_ITT_NOTIFY */
3281       __kmp_invoke_task(gtid, task, current_task);
3282 #if USE_ITT_BUILD
3283       if (itt_sync_obj != NULL)
3284         __kmp_itt_task_finished(itt_sync_obj);
3285 #endif /* USE_ITT_BUILD */
3286       // If this thread is only partway through the barrier and the condition is
3287       // met, then return now, so that the barrier gather/release pattern can
3288       // proceed. If this thread is in the last spin loop in the barrier,
3289       // waiting to be released, we know that the termination condition will not
3290       // be satisfied, so don't waste any cycles checking it.
3291       if (flag == NULL || (!final_spin && flag->done_check())) {
3292         KA_TRACE(
3293             15,
3294             ("__kmp_execute_tasks_template: T#%d spin condition satisfied\n",
3295              gtid));
3296         return TRUE;
3297       }
3298       if (thread->th.th_task_team == NULL) {
3299         break;
3300       }
3301       KMP_YIELD(__kmp_library == library_throughput); // Yield before next task
3302       // If execution of a stolen task results in more tasks being placed on our
3303       // run queue, reset use_own_tasks
3304       if (!use_own_tasks && TCR_4(threads_data[tid].td.td_deque_ntasks) != 0) {
3305         KA_TRACE(20, ("__kmp_execute_tasks_template: T#%d stolen task spawned "
3306                       "other tasks, restart\n",
3307                       gtid));
3308         use_own_tasks = 1;
3309         new_victim = 0;
3310       }
3311     }
3312 
3313     // The task source has been exhausted. If in final spin loop of barrier,
3314     // check if termination condition is satisfied. The work queue may be empty
3315     // but there might be proxy tasks still executing.
3316     if (final_spin &&
3317         KMP_ATOMIC_LD_ACQ(&current_task->td_incomplete_child_tasks) == 0) {
3318       // First, decrement the #unfinished threads, if that has not already been
3319       // done.  This decrement might be to the spin location, and result in the
3320       // termination condition being satisfied.
3321       if (!*thread_finished) {
3322 #if KMP_DEBUG
3323         kmp_int32 count = -1 +
3324 #endif
3325             KMP_ATOMIC_DEC(unfinished_threads);
3326         KA_TRACE(20, ("__kmp_execute_tasks_template: T#%d dec "
3327                       "unfinished_threads to %d task_team=%p\n",
3328                       gtid, count, task_team));
3329         *thread_finished = TRUE;
3330       }
3331 
3332       // It is now unsafe to reference thread->th.th_team !!!
3333       // Decrementing task_team->tt.tt_unfinished_threads can allow the primary
3334       // thread to pass through the barrier, where it might reset each thread's
3335       // th.th_team field for the next parallel region. If we can steal more
3336       // work, we know that this has not happened yet.
3337       if (flag != NULL && flag->done_check()) {
3338         KA_TRACE(
3339             15,
3340             ("__kmp_execute_tasks_template: T#%d spin condition satisfied\n",
3341              gtid));
3342         return TRUE;
3343       }
3344     }
3345 
3346     // If this thread's task team is NULL, primary thread has recognized that
3347     // there are no more tasks; bail out
3348     if (thread->th.th_task_team == NULL) {
3349       KA_TRACE(15,
3350                ("__kmp_execute_tasks_template: T#%d no more tasks\n", gtid));
3351       return FALSE;
3352     }
3353 
3354     // Check the flag again to see if it has already done in case to be trapped
3355     // into infinite loop when a if0 task depends on a hidden helper task
3356     // outside any parallel region. Detached tasks are not impacted in this case
3357     // because the only thread executing this function has to execute the proxy
3358     // task so it is in another code path that has the same check.
3359     if (flag == NULL || (!final_spin && flag->done_check())) {
3360       KA_TRACE(15,
3361                ("__kmp_execute_tasks_template: T#%d spin condition satisfied\n",
3362                 gtid));
3363       return TRUE;
3364     }
3365 
3366     // We could be getting tasks from target constructs; if this is the only
3367     // thread, keep trying to execute tasks from own queue
3368     if (nthreads == 1 &&
3369         KMP_ATOMIC_LD_ACQ(&current_task->td_incomplete_child_tasks))
3370       use_own_tasks = 1;
3371     else {
3372       KA_TRACE(15,
3373                ("__kmp_execute_tasks_template: T#%d can't find work\n", gtid));
3374       return FALSE;
3375     }
3376   }
3377 }
3378 
3379 template <bool C, bool S>
3380 int __kmp_execute_tasks_32(
3381     kmp_info_t *thread, kmp_int32 gtid, kmp_flag_32<C, S> *flag, int final_spin,
3382     int *thread_finished USE_ITT_BUILD_ARG(void *itt_sync_obj),
3383     kmp_int32 is_constrained) {
3384   return __kmp_execute_tasks_template(
3385       thread, gtid, flag, final_spin,
3386       thread_finished USE_ITT_BUILD_ARG(itt_sync_obj), is_constrained);
3387 }
3388 
3389 template <bool C, bool S>
3390 int __kmp_execute_tasks_64(
3391     kmp_info_t *thread, kmp_int32 gtid, kmp_flag_64<C, S> *flag, int final_spin,
3392     int *thread_finished USE_ITT_BUILD_ARG(void *itt_sync_obj),
3393     kmp_int32 is_constrained) {
3394   return __kmp_execute_tasks_template(
3395       thread, gtid, flag, final_spin,
3396       thread_finished USE_ITT_BUILD_ARG(itt_sync_obj), is_constrained);
3397 }
3398 
3399 template <bool C, bool S>
3400 int __kmp_atomic_execute_tasks_64(
3401     kmp_info_t *thread, kmp_int32 gtid, kmp_atomic_flag_64<C, S> *flag,
3402     int final_spin, int *thread_finished USE_ITT_BUILD_ARG(void *itt_sync_obj),
3403     kmp_int32 is_constrained) {
3404   return __kmp_execute_tasks_template(
3405       thread, gtid, flag, final_spin,
3406       thread_finished USE_ITT_BUILD_ARG(itt_sync_obj), is_constrained);
3407 }
3408 
3409 int __kmp_execute_tasks_oncore(
3410     kmp_info_t *thread, kmp_int32 gtid, kmp_flag_oncore *flag, int final_spin,
3411     int *thread_finished USE_ITT_BUILD_ARG(void *itt_sync_obj),
3412     kmp_int32 is_constrained) {
3413   return __kmp_execute_tasks_template(
3414       thread, gtid, flag, final_spin,
3415       thread_finished USE_ITT_BUILD_ARG(itt_sync_obj), is_constrained);
3416 }
3417 
3418 template int
3419 __kmp_execute_tasks_32<false, false>(kmp_info_t *, kmp_int32,
3420                                      kmp_flag_32<false, false> *, int,
3421                                      int *USE_ITT_BUILD_ARG(void *), kmp_int32);
3422 
3423 template int __kmp_execute_tasks_64<false, true>(kmp_info_t *, kmp_int32,
3424                                                  kmp_flag_64<false, true> *,
3425                                                  int,
3426                                                  int *USE_ITT_BUILD_ARG(void *),
3427                                                  kmp_int32);
3428 
3429 template int __kmp_execute_tasks_64<true, false>(kmp_info_t *, kmp_int32,
3430                                                  kmp_flag_64<true, false> *,
3431                                                  int,
3432                                                  int *USE_ITT_BUILD_ARG(void *),
3433                                                  kmp_int32);
3434 
3435 template int __kmp_atomic_execute_tasks_64<false, true>(
3436     kmp_info_t *, kmp_int32, kmp_atomic_flag_64<false, true> *, int,
3437     int *USE_ITT_BUILD_ARG(void *), kmp_int32);
3438 
3439 template int __kmp_atomic_execute_tasks_64<true, false>(
3440     kmp_info_t *, kmp_int32, kmp_atomic_flag_64<true, false> *, int,
3441     int *USE_ITT_BUILD_ARG(void *), kmp_int32);
3442 
3443 // __kmp_enable_tasking: Allocate task team and resume threads sleeping at the
3444 // next barrier so they can assist in executing enqueued tasks.
3445 // First thread in allocates the task team atomically.
3446 static void __kmp_enable_tasking(kmp_task_team_t *task_team,
3447                                  kmp_info_t *this_thr) {
3448   kmp_thread_data_t *threads_data;
3449   int nthreads, i, is_init_thread;
3450 
3451   KA_TRACE(10, ("__kmp_enable_tasking(enter): T#%d\n",
3452                 __kmp_gtid_from_thread(this_thr)));
3453 
3454   KMP_DEBUG_ASSERT(task_team != NULL);
3455   KMP_DEBUG_ASSERT(this_thr->th.th_team != NULL);
3456 
3457   nthreads = task_team->tt.tt_nproc;
3458   KMP_DEBUG_ASSERT(nthreads > 0);
3459   KMP_DEBUG_ASSERT(nthreads == this_thr->th.th_team->t.t_nproc);
3460 
3461   // Allocate or increase the size of threads_data if necessary
3462   is_init_thread = __kmp_realloc_task_threads_data(this_thr, task_team);
3463 
3464   if (!is_init_thread) {
3465     // Some other thread already set up the array.
3466     KA_TRACE(
3467         20,
3468         ("__kmp_enable_tasking(exit): T#%d: threads array already set up.\n",
3469          __kmp_gtid_from_thread(this_thr)));
3470     return;
3471   }
3472   threads_data = (kmp_thread_data_t *)TCR_PTR(task_team->tt.tt_threads_data);
3473   KMP_DEBUG_ASSERT(threads_data != NULL);
3474 
3475   if (__kmp_tasking_mode == tskm_task_teams &&
3476       (__kmp_dflt_blocktime != KMP_MAX_BLOCKTIME)) {
3477     // Release any threads sleeping at the barrier, so that they can steal
3478     // tasks and execute them.  In extra barrier mode, tasks do not sleep
3479     // at the separate tasking barrier, so this isn't a problem.
3480     for (i = 0; i < nthreads; i++) {
3481       void *sleep_loc;
3482       kmp_info_t *thread = threads_data[i].td.td_thr;
3483 
3484       if (i == this_thr->th.th_info.ds.ds_tid) {
3485         continue;
3486       }
3487       // Since we haven't locked the thread's suspend mutex lock at this
3488       // point, there is a small window where a thread might be putting
3489       // itself to sleep, but hasn't set the th_sleep_loc field yet.
3490       // To work around this, __kmp_execute_tasks_template() periodically checks
3491       // see if other threads are sleeping (using the same random mechanism that
3492       // is used for task stealing) and awakens them if they are.
3493       if ((sleep_loc = TCR_PTR(CCAST(void *, thread->th.th_sleep_loc))) !=
3494           NULL) {
3495         KF_TRACE(50, ("__kmp_enable_tasking: T#%d waking up thread T#%d\n",
3496                       __kmp_gtid_from_thread(this_thr),
3497                       __kmp_gtid_from_thread(thread)));
3498         __kmp_null_resume_wrapper(thread);
3499       } else {
3500         KF_TRACE(50, ("__kmp_enable_tasking: T#%d don't wake up thread T#%d\n",
3501                       __kmp_gtid_from_thread(this_thr),
3502                       __kmp_gtid_from_thread(thread)));
3503       }
3504     }
3505   }
3506 
3507   KA_TRACE(10, ("__kmp_enable_tasking(exit): T#%d\n",
3508                 __kmp_gtid_from_thread(this_thr)));
3509 }
3510 
3511 /* // TODO: Check the comment consistency
3512  * Utility routines for "task teams".  A task team (kmp_task_t) is kind of
3513  * like a shadow of the kmp_team_t data struct, with a different lifetime.
3514  * After a child * thread checks into a barrier and calls __kmp_release() from
3515  * the particular variant of __kmp_<barrier_kind>_barrier_gather(), it can no
3516  * longer assume that the kmp_team_t structure is intact (at any moment, the
3517  * primary thread may exit the barrier code and free the team data structure,
3518  * and return the threads to the thread pool).
3519  *
3520  * This does not work with the tasking code, as the thread is still
3521  * expected to participate in the execution of any tasks that may have been
3522  * spawned my a member of the team, and the thread still needs access to all
3523  * to each thread in the team, so that it can steal work from it.
3524  *
3525  * Enter the existence of the kmp_task_team_t struct.  It employs a reference
3526  * counting mechanism, and is allocated by the primary thread before calling
3527  * __kmp_<barrier_kind>_release, and then is release by the last thread to
3528  * exit __kmp_<barrier_kind>_release at the next barrier.  I.e. the lifetimes
3529  * of the kmp_task_team_t structs for consecutive barriers can overlap
3530  * (and will, unless the primary thread is the last thread to exit the barrier
3531  * release phase, which is not typical). The existence of such a struct is
3532  * useful outside the context of tasking.
3533  *
3534  * We currently use the existence of the threads array as an indicator that
3535  * tasks were spawned since the last barrier.  If the structure is to be
3536  * useful outside the context of tasking, then this will have to change, but
3537  * not setting the field minimizes the performance impact of tasking on
3538  * barriers, when no explicit tasks were spawned (pushed, actually).
3539  */
3540 
3541 static kmp_task_team_t *__kmp_free_task_teams =
3542     NULL; // Free list for task_team data structures
3543 // Lock for task team data structures
3544 kmp_bootstrap_lock_t __kmp_task_team_lock =
3545     KMP_BOOTSTRAP_LOCK_INITIALIZER(__kmp_task_team_lock);
3546 
3547 // __kmp_alloc_task_deque:
3548 // Allocates a task deque for a particular thread, and initialize the necessary
3549 // data structures relating to the deque.  This only happens once per thread
3550 // per task team since task teams are recycled. No lock is needed during
3551 // allocation since each thread allocates its own deque.
3552 static void __kmp_alloc_task_deque(kmp_info_t *thread,
3553                                    kmp_thread_data_t *thread_data) {
3554   __kmp_init_bootstrap_lock(&thread_data->td.td_deque_lock);
3555   KMP_DEBUG_ASSERT(thread_data->td.td_deque == NULL);
3556 
3557   // Initialize last stolen task field to "none"
3558   thread_data->td.td_deque_last_stolen = -1;
3559 
3560   KMP_DEBUG_ASSERT(TCR_4(thread_data->td.td_deque_ntasks) == 0);
3561   KMP_DEBUG_ASSERT(thread_data->td.td_deque_head == 0);
3562   KMP_DEBUG_ASSERT(thread_data->td.td_deque_tail == 0);
3563 
3564   KE_TRACE(
3565       10,
3566       ("__kmp_alloc_task_deque: T#%d allocating deque[%d] for thread_data %p\n",
3567        __kmp_gtid_from_thread(thread), INITIAL_TASK_DEQUE_SIZE, thread_data));
3568   // Allocate space for task deque, and zero the deque
3569   // Cannot use __kmp_thread_calloc() because threads not around for
3570   // kmp_reap_task_team( ).
3571   thread_data->td.td_deque = (kmp_taskdata_t **)__kmp_allocate(
3572       INITIAL_TASK_DEQUE_SIZE * sizeof(kmp_taskdata_t *));
3573   thread_data->td.td_deque_size = INITIAL_TASK_DEQUE_SIZE;
3574 }
3575 
3576 // __kmp_free_task_deque:
3577 // Deallocates a task deque for a particular thread. Happens at library
3578 // deallocation so don't need to reset all thread data fields.
3579 static void __kmp_free_task_deque(kmp_thread_data_t *thread_data) {
3580   if (thread_data->td.td_deque != NULL) {
3581     __kmp_acquire_bootstrap_lock(&thread_data->td.td_deque_lock);
3582     TCW_4(thread_data->td.td_deque_ntasks, 0);
3583     __kmp_free(thread_data->td.td_deque);
3584     thread_data->td.td_deque = NULL;
3585     __kmp_release_bootstrap_lock(&thread_data->td.td_deque_lock);
3586   }
3587 
3588 #ifdef BUILD_TIED_TASK_STACK
3589   // GEH: Figure out what to do here for td_susp_tied_tasks
3590   if (thread_data->td.td_susp_tied_tasks.ts_entries != TASK_STACK_EMPTY) {
3591     __kmp_free_task_stack(__kmp_thread_from_gtid(gtid), thread_data);
3592   }
3593 #endif // BUILD_TIED_TASK_STACK
3594 }
3595 
3596 // __kmp_realloc_task_threads_data:
3597 // Allocates a threads_data array for a task team, either by allocating an
3598 // initial array or enlarging an existing array.  Only the first thread to get
3599 // the lock allocs or enlarges the array and re-initializes the array elements.
3600 // That thread returns "TRUE", the rest return "FALSE".
3601 // Assumes that the new array size is given by task_team -> tt.tt_nproc.
3602 // The current size is given by task_team -> tt.tt_max_threads.
3603 static int __kmp_realloc_task_threads_data(kmp_info_t *thread,
3604                                            kmp_task_team_t *task_team) {
3605   kmp_thread_data_t **threads_data_p;
3606   kmp_int32 nthreads, maxthreads;
3607   int is_init_thread = FALSE;
3608 
3609   if (TCR_4(task_team->tt.tt_found_tasks)) {
3610     // Already reallocated and initialized.
3611     return FALSE;
3612   }
3613 
3614   threads_data_p = &task_team->tt.tt_threads_data;
3615   nthreads = task_team->tt.tt_nproc;
3616   maxthreads = task_team->tt.tt_max_threads;
3617 
3618   // All threads must lock when they encounter the first task of the implicit
3619   // task region to make sure threads_data fields are (re)initialized before
3620   // used.
3621   __kmp_acquire_bootstrap_lock(&task_team->tt.tt_threads_lock);
3622 
3623   if (!TCR_4(task_team->tt.tt_found_tasks)) {
3624     // first thread to enable tasking
3625     kmp_team_t *team = thread->th.th_team;
3626     int i;
3627 
3628     is_init_thread = TRUE;
3629     if (maxthreads < nthreads) {
3630 
3631       if (*threads_data_p != NULL) {
3632         kmp_thread_data_t *old_data = *threads_data_p;
3633         kmp_thread_data_t *new_data = NULL;
3634 
3635         KE_TRACE(
3636             10,
3637             ("__kmp_realloc_task_threads_data: T#%d reallocating "
3638              "threads data for task_team %p, new_size = %d, old_size = %d\n",
3639              __kmp_gtid_from_thread(thread), task_team, nthreads, maxthreads));
3640         // Reallocate threads_data to have more elements than current array
3641         // Cannot use __kmp_thread_realloc() because threads not around for
3642         // kmp_reap_task_team( ).  Note all new array entries are initialized
3643         // to zero by __kmp_allocate().
3644         new_data = (kmp_thread_data_t *)__kmp_allocate(
3645             nthreads * sizeof(kmp_thread_data_t));
3646         // copy old data to new data
3647         KMP_MEMCPY_S((void *)new_data, nthreads * sizeof(kmp_thread_data_t),
3648                      (void *)old_data, maxthreads * sizeof(kmp_thread_data_t));
3649 
3650 #ifdef BUILD_TIED_TASK_STACK
3651         // GEH: Figure out if this is the right thing to do
3652         for (i = maxthreads; i < nthreads; i++) {
3653           kmp_thread_data_t *thread_data = &(*threads_data_p)[i];
3654           __kmp_init_task_stack(__kmp_gtid_from_thread(thread), thread_data);
3655         }
3656 #endif // BUILD_TIED_TASK_STACK
3657        // Install the new data and free the old data
3658         (*threads_data_p) = new_data;
3659         __kmp_free(old_data);
3660       } else {
3661         KE_TRACE(10, ("__kmp_realloc_task_threads_data: T#%d allocating "
3662                       "threads data for task_team %p, size = %d\n",
3663                       __kmp_gtid_from_thread(thread), task_team, nthreads));
3664         // Make the initial allocate for threads_data array, and zero entries
3665         // Cannot use __kmp_thread_calloc() because threads not around for
3666         // kmp_reap_task_team( ).
3667         *threads_data_p = (kmp_thread_data_t *)__kmp_allocate(
3668             nthreads * sizeof(kmp_thread_data_t));
3669 #ifdef BUILD_TIED_TASK_STACK
3670         // GEH: Figure out if this is the right thing to do
3671         for (i = 0; i < nthreads; i++) {
3672           kmp_thread_data_t *thread_data = &(*threads_data_p)[i];
3673           __kmp_init_task_stack(__kmp_gtid_from_thread(thread), thread_data);
3674         }
3675 #endif // BUILD_TIED_TASK_STACK
3676       }
3677       task_team->tt.tt_max_threads = nthreads;
3678     } else {
3679       // If array has (more than) enough elements, go ahead and use it
3680       KMP_DEBUG_ASSERT(*threads_data_p != NULL);
3681     }
3682 
3683     // initialize threads_data pointers back to thread_info structures
3684     for (i = 0; i < nthreads; i++) {
3685       kmp_thread_data_t *thread_data = &(*threads_data_p)[i];
3686       thread_data->td.td_thr = team->t.t_threads[i];
3687 
3688       if (thread_data->td.td_deque_last_stolen >= nthreads) {
3689         // The last stolen field survives across teams / barrier, and the number
3690         // of threads may have changed.  It's possible (likely?) that a new
3691         // parallel region will exhibit the same behavior as previous region.
3692         thread_data->td.td_deque_last_stolen = -1;
3693       }
3694     }
3695 
3696     KMP_MB();
3697     TCW_SYNC_4(task_team->tt.tt_found_tasks, TRUE);
3698   }
3699 
3700   __kmp_release_bootstrap_lock(&task_team->tt.tt_threads_lock);
3701   return is_init_thread;
3702 }
3703 
3704 // __kmp_free_task_threads_data:
3705 // Deallocates a threads_data array for a task team, including any attached
3706 // tasking deques.  Only occurs at library shutdown.
3707 static void __kmp_free_task_threads_data(kmp_task_team_t *task_team) {
3708   __kmp_acquire_bootstrap_lock(&task_team->tt.tt_threads_lock);
3709   if (task_team->tt.tt_threads_data != NULL) {
3710     int i;
3711     for (i = 0; i < task_team->tt.tt_max_threads; i++) {
3712       __kmp_free_task_deque(&task_team->tt.tt_threads_data[i]);
3713     }
3714     __kmp_free(task_team->tt.tt_threads_data);
3715     task_team->tt.tt_threads_data = NULL;
3716   }
3717   __kmp_release_bootstrap_lock(&task_team->tt.tt_threads_lock);
3718 }
3719 
3720 // __kmp_free_task_pri_list:
3721 // Deallocates tasking deques used for priority tasks.
3722 // Only occurs at library shutdown.
3723 static void __kmp_free_task_pri_list(kmp_task_team_t *task_team) {
3724   __kmp_acquire_bootstrap_lock(&task_team->tt.tt_task_pri_lock);
3725   if (task_team->tt.tt_task_pri_list != NULL) {
3726     kmp_task_pri_t *list = task_team->tt.tt_task_pri_list;
3727     while (list != NULL) {
3728       kmp_task_pri_t *next = list->next;
3729       __kmp_free_task_deque(&list->td);
3730       __kmp_free(list);
3731       list = next;
3732     }
3733     task_team->tt.tt_task_pri_list = NULL;
3734   }
3735   __kmp_release_bootstrap_lock(&task_team->tt.tt_task_pri_lock);
3736 }
3737 
3738 // __kmp_allocate_task_team:
3739 // Allocates a task team associated with a specific team, taking it from
3740 // the global task team free list if possible.  Also initializes data
3741 // structures.
3742 static kmp_task_team_t *__kmp_allocate_task_team(kmp_info_t *thread,
3743                                                  kmp_team_t *team) {
3744   kmp_task_team_t *task_team = NULL;
3745   int nthreads;
3746 
3747   KA_TRACE(20, ("__kmp_allocate_task_team: T#%d entering; team = %p\n",
3748                 (thread ? __kmp_gtid_from_thread(thread) : -1), team));
3749 
3750   if (TCR_PTR(__kmp_free_task_teams) != NULL) {
3751     // Take a task team from the task team pool
3752     __kmp_acquire_bootstrap_lock(&__kmp_task_team_lock);
3753     if (__kmp_free_task_teams != NULL) {
3754       task_team = __kmp_free_task_teams;
3755       TCW_PTR(__kmp_free_task_teams, task_team->tt.tt_next);
3756       task_team->tt.tt_next = NULL;
3757     }
3758     __kmp_release_bootstrap_lock(&__kmp_task_team_lock);
3759   }
3760 
3761   if (task_team == NULL) {
3762     KE_TRACE(10, ("__kmp_allocate_task_team: T#%d allocating "
3763                   "task team for team %p\n",
3764                   __kmp_gtid_from_thread(thread), team));
3765     // Allocate a new task team if one is not available. Cannot use
3766     // __kmp_thread_malloc because threads not around for kmp_reap_task_team.
3767     task_team = (kmp_task_team_t *)__kmp_allocate(sizeof(kmp_task_team_t));
3768     __kmp_init_bootstrap_lock(&task_team->tt.tt_threads_lock);
3769     __kmp_init_bootstrap_lock(&task_team->tt.tt_task_pri_lock);
3770 #if USE_ITT_BUILD && USE_ITT_NOTIFY && KMP_DEBUG
3771     // suppress race conditions detection on synchronization flags in debug mode
3772     // this helps to analyze library internals eliminating false positives
3773     __itt_suppress_mark_range(
3774         __itt_suppress_range, __itt_suppress_threading_errors,
3775         &task_team->tt.tt_found_tasks, sizeof(task_team->tt.tt_found_tasks));
3776     __itt_suppress_mark_range(__itt_suppress_range,
3777                               __itt_suppress_threading_errors,
3778                               CCAST(kmp_uint32 *, &task_team->tt.tt_active),
3779                               sizeof(task_team->tt.tt_active));
3780 #endif /* USE_ITT_BUILD && USE_ITT_NOTIFY && KMP_DEBUG */
3781     // Note: __kmp_allocate zeroes returned memory, othewise we would need:
3782     // task_team->tt.tt_threads_data = NULL;
3783     // task_team->tt.tt_max_threads = 0;
3784     // task_team->tt.tt_next = NULL;
3785   }
3786 
3787   TCW_4(task_team->tt.tt_found_tasks, FALSE);
3788   TCW_4(task_team->tt.tt_found_proxy_tasks, FALSE);
3789   TCW_4(task_team->tt.tt_hidden_helper_task_encountered, FALSE);
3790   task_team->tt.tt_nproc = nthreads = team->t.t_nproc;
3791 
3792   KMP_ATOMIC_ST_REL(&task_team->tt.tt_unfinished_threads, nthreads);
3793   TCW_4(task_team->tt.tt_hidden_helper_task_encountered, FALSE);
3794   TCW_4(task_team->tt.tt_active, TRUE);
3795 
3796   KA_TRACE(20, ("__kmp_allocate_task_team: T#%d exiting; task_team = %p "
3797                 "unfinished_threads init'd to %d\n",
3798                 (thread ? __kmp_gtid_from_thread(thread) : -1), task_team,
3799                 KMP_ATOMIC_LD_RLX(&task_team->tt.tt_unfinished_threads)));
3800   return task_team;
3801 }
3802 
3803 // __kmp_free_task_team:
3804 // Frees the task team associated with a specific thread, and adds it
3805 // to the global task team free list.
3806 void __kmp_free_task_team(kmp_info_t *thread, kmp_task_team_t *task_team) {
3807   KA_TRACE(20, ("__kmp_free_task_team: T#%d task_team = %p\n",
3808                 thread ? __kmp_gtid_from_thread(thread) : -1, task_team));
3809 
3810   // Put task team back on free list
3811   __kmp_acquire_bootstrap_lock(&__kmp_task_team_lock);
3812 
3813   KMP_DEBUG_ASSERT(task_team->tt.tt_next == NULL);
3814   task_team->tt.tt_next = __kmp_free_task_teams;
3815   TCW_PTR(__kmp_free_task_teams, task_team);
3816 
3817   __kmp_release_bootstrap_lock(&__kmp_task_team_lock);
3818 }
3819 
3820 // __kmp_reap_task_teams:
3821 // Free all the task teams on the task team free list.
3822 // Should only be done during library shutdown.
3823 // Cannot do anything that needs a thread structure or gtid since they are
3824 // already gone.
3825 void __kmp_reap_task_teams(void) {
3826   kmp_task_team_t *task_team;
3827 
3828   if (TCR_PTR(__kmp_free_task_teams) != NULL) {
3829     // Free all task_teams on the free list
3830     __kmp_acquire_bootstrap_lock(&__kmp_task_team_lock);
3831     while ((task_team = __kmp_free_task_teams) != NULL) {
3832       __kmp_free_task_teams = task_team->tt.tt_next;
3833       task_team->tt.tt_next = NULL;
3834 
3835       // Free threads_data if necessary
3836       if (task_team->tt.tt_threads_data != NULL) {
3837         __kmp_free_task_threads_data(task_team);
3838       }
3839       if (task_team->tt.tt_task_pri_list != NULL) {
3840         __kmp_free_task_pri_list(task_team);
3841       }
3842       __kmp_free(task_team);
3843     }
3844     __kmp_release_bootstrap_lock(&__kmp_task_team_lock);
3845   }
3846 }
3847 
3848 // __kmp_wait_to_unref_task_teams:
3849 // Some threads could still be in the fork barrier release code, possibly
3850 // trying to steal tasks.  Wait for each thread to unreference its task team.
3851 void __kmp_wait_to_unref_task_teams(void) {
3852   kmp_info_t *thread;
3853   kmp_uint32 spins;
3854   kmp_uint64 time;
3855   int done;
3856 
3857   KMP_INIT_YIELD(spins);
3858   KMP_INIT_BACKOFF(time);
3859 
3860   for (;;) {
3861     done = TRUE;
3862 
3863     // TODO: GEH - this may be is wrong because some sync would be necessary
3864     // in case threads are added to the pool during the traversal. Need to
3865     // verify that lock for thread pool is held when calling this routine.
3866     for (thread = CCAST(kmp_info_t *, __kmp_thread_pool); thread != NULL;
3867          thread = thread->th.th_next_pool) {
3868 #if KMP_OS_WINDOWS
3869       DWORD exit_val;
3870 #endif
3871       if (TCR_PTR(thread->th.th_task_team) == NULL) {
3872         KA_TRACE(10, ("__kmp_wait_to_unref_task_team: T#%d task_team == NULL\n",
3873                       __kmp_gtid_from_thread(thread)));
3874         continue;
3875       }
3876 #if KMP_OS_WINDOWS
3877       // TODO: GEH - add this check for Linux* OS / OS X* as well?
3878       if (!__kmp_is_thread_alive(thread, &exit_val)) {
3879         thread->th.th_task_team = NULL;
3880         continue;
3881       }
3882 #endif
3883 
3884       done = FALSE; // Because th_task_team pointer is not NULL for this thread
3885 
3886       KA_TRACE(10, ("__kmp_wait_to_unref_task_team: Waiting for T#%d to "
3887                     "unreference task_team\n",
3888                     __kmp_gtid_from_thread(thread)));
3889 
3890       if (__kmp_dflt_blocktime != KMP_MAX_BLOCKTIME) {
3891         void *sleep_loc;
3892         // If the thread is sleeping, awaken it.
3893         if ((sleep_loc = TCR_PTR(CCAST(void *, thread->th.th_sleep_loc))) !=
3894             NULL) {
3895           KA_TRACE(
3896               10,
3897               ("__kmp_wait_to_unref_task_team: T#%d waking up thread T#%d\n",
3898                __kmp_gtid_from_thread(thread), __kmp_gtid_from_thread(thread)));
3899           __kmp_null_resume_wrapper(thread);
3900         }
3901       }
3902     }
3903     if (done) {
3904       break;
3905     }
3906 
3907     // If oversubscribed or have waited a bit, yield.
3908     KMP_YIELD_OVERSUB_ELSE_SPIN(spins, time);
3909   }
3910 }
3911 
3912 // __kmp_task_team_setup:  Create a task_team for the current team, but use
3913 // an already created, unused one if it already exists.
3914 void __kmp_task_team_setup(kmp_info_t *this_thr, kmp_team_t *team, int always) {
3915   KMP_DEBUG_ASSERT(__kmp_tasking_mode != tskm_immediate_exec);
3916 
3917   // If this task_team hasn't been created yet, allocate it. It will be used in
3918   // the region after the next.
3919   // If it exists, it is the current task team and shouldn't be touched yet as
3920   // it may still be in use.
3921   if (team->t.t_task_team[this_thr->th.th_task_state] == NULL &&
3922       (always || team->t.t_nproc > 1)) {
3923     team->t.t_task_team[this_thr->th.th_task_state] =
3924         __kmp_allocate_task_team(this_thr, team);
3925     KA_TRACE(20, ("__kmp_task_team_setup: Primary T#%d created new task_team %p"
3926                   " for team %d at parity=%d\n",
3927                   __kmp_gtid_from_thread(this_thr),
3928                   team->t.t_task_team[this_thr->th.th_task_state], team->t.t_id,
3929                   this_thr->th.th_task_state));
3930   }
3931 
3932   // After threads exit the release, they will call sync, and then point to this
3933   // other task_team; make sure it is allocated and properly initialized. As
3934   // threads spin in the barrier release phase, they will continue to use the
3935   // previous task_team struct(above), until they receive the signal to stop
3936   // checking for tasks (they can't safely reference the kmp_team_t struct,
3937   // which could be reallocated by the primary thread). No task teams are formed
3938   // for serialized teams.
3939   if (team->t.t_nproc > 1) {
3940     int other_team = 1 - this_thr->th.th_task_state;
3941     KMP_DEBUG_ASSERT(other_team >= 0 && other_team < 2);
3942     if (team->t.t_task_team[other_team] == NULL) { // setup other team as well
3943       team->t.t_task_team[other_team] =
3944           __kmp_allocate_task_team(this_thr, team);
3945       KA_TRACE(20, ("__kmp_task_team_setup: Primary T#%d created second new "
3946                     "task_team %p for team %d at parity=%d\n",
3947                     __kmp_gtid_from_thread(this_thr),
3948                     team->t.t_task_team[other_team], team->t.t_id, other_team));
3949     } else { // Leave the old task team struct in place for the upcoming region;
3950       // adjust as needed
3951       kmp_task_team_t *task_team = team->t.t_task_team[other_team];
3952       if (!task_team->tt.tt_active ||
3953           team->t.t_nproc != task_team->tt.tt_nproc) {
3954         TCW_4(task_team->tt.tt_nproc, team->t.t_nproc);
3955         TCW_4(task_team->tt.tt_found_tasks, FALSE);
3956         TCW_4(task_team->tt.tt_found_proxy_tasks, FALSE);
3957         TCW_4(task_team->tt.tt_hidden_helper_task_encountered, FALSE);
3958         KMP_ATOMIC_ST_REL(&task_team->tt.tt_unfinished_threads,
3959                           team->t.t_nproc);
3960         TCW_4(task_team->tt.tt_active, TRUE);
3961       }
3962       // if team size has changed, the first thread to enable tasking will
3963       // realloc threads_data if necessary
3964       KA_TRACE(20, ("__kmp_task_team_setup: Primary T#%d reset next task_team "
3965                     "%p for team %d at parity=%d\n",
3966                     __kmp_gtid_from_thread(this_thr),
3967                     team->t.t_task_team[other_team], team->t.t_id, other_team));
3968     }
3969   }
3970 
3971   // For regular thread, task enabling should be called when the task is going
3972   // to be pushed to a dequeue. However, for the hidden helper thread, we need
3973   // it ahead of time so that some operations can be performed without race
3974   // condition.
3975   if (this_thr == __kmp_hidden_helper_main_thread) {
3976     for (int i = 0; i < 2; ++i) {
3977       kmp_task_team_t *task_team = team->t.t_task_team[i];
3978       if (KMP_TASKING_ENABLED(task_team)) {
3979         continue;
3980       }
3981       __kmp_enable_tasking(task_team, this_thr);
3982       for (int j = 0; j < task_team->tt.tt_nproc; ++j) {
3983         kmp_thread_data_t *thread_data = &task_team->tt.tt_threads_data[j];
3984         if (thread_data->td.td_deque == NULL) {
3985           __kmp_alloc_task_deque(__kmp_hidden_helper_threads[j], thread_data);
3986         }
3987       }
3988     }
3989   }
3990 }
3991 
3992 // __kmp_task_team_sync: Propagation of task team data from team to threads
3993 // which happens just after the release phase of a team barrier.  This may be
3994 // called by any thread, but only for teams with # threads > 1.
3995 void __kmp_task_team_sync(kmp_info_t *this_thr, kmp_team_t *team) {
3996   KMP_DEBUG_ASSERT(__kmp_tasking_mode != tskm_immediate_exec);
3997 
3998   // Toggle the th_task_state field, to switch which task_team this thread
3999   // refers to
4000   this_thr->th.th_task_state = (kmp_uint8)(1 - this_thr->th.th_task_state);
4001 
4002   // It is now safe to propagate the task team pointer from the team struct to
4003   // the current thread.
4004   TCW_PTR(this_thr->th.th_task_team,
4005           team->t.t_task_team[this_thr->th.th_task_state]);
4006   KA_TRACE(20,
4007            ("__kmp_task_team_sync: Thread T#%d task team switched to task_team "
4008             "%p from Team #%d (parity=%d)\n",
4009             __kmp_gtid_from_thread(this_thr), this_thr->th.th_task_team,
4010             team->t.t_id, this_thr->th.th_task_state));
4011 }
4012 
4013 // __kmp_task_team_wait: Primary thread waits for outstanding tasks after the
4014 // barrier gather phase. Only called by primary thread if #threads in team > 1
4015 // or if proxy tasks were created.
4016 //
4017 // wait is a flag that defaults to 1 (see kmp.h), but waiting can be turned off
4018 // by passing in 0 optionally as the last argument. When wait is zero, primary
4019 // thread does not wait for unfinished_threads to reach 0.
4020 void __kmp_task_team_wait(
4021     kmp_info_t *this_thr,
4022     kmp_team_t *team USE_ITT_BUILD_ARG(void *itt_sync_obj), int wait) {
4023   kmp_task_team_t *task_team = team->t.t_task_team[this_thr->th.th_task_state];
4024 
4025   KMP_DEBUG_ASSERT(__kmp_tasking_mode != tskm_immediate_exec);
4026   KMP_DEBUG_ASSERT(task_team == this_thr->th.th_task_team);
4027 
4028   if ((task_team != NULL) && KMP_TASKING_ENABLED(task_team)) {
4029     if (wait) {
4030       KA_TRACE(20, ("__kmp_task_team_wait: Primary T#%d waiting for all tasks "
4031                     "(for unfinished_threads to reach 0) on task_team = %p\n",
4032                     __kmp_gtid_from_thread(this_thr), task_team));
4033       // Worker threads may have dropped through to release phase, but could
4034       // still be executing tasks. Wait here for tasks to complete. To avoid
4035       // memory contention, only primary thread checks termination condition.
4036       kmp_flag_32<false, false> flag(
4037           RCAST(std::atomic<kmp_uint32> *,
4038                 &task_team->tt.tt_unfinished_threads),
4039           0U);
4040       flag.wait(this_thr, TRUE USE_ITT_BUILD_ARG(itt_sync_obj));
4041     }
4042     // Deactivate the old task team, so that the worker threads will stop
4043     // referencing it while spinning.
4044     KA_TRACE(
4045         20,
4046         ("__kmp_task_team_wait: Primary T#%d deactivating task_team %p: "
4047          "setting active to false, setting local and team's pointer to NULL\n",
4048          __kmp_gtid_from_thread(this_thr), task_team));
4049     KMP_DEBUG_ASSERT(task_team->tt.tt_nproc > 1 ||
4050                      task_team->tt.tt_found_proxy_tasks == TRUE ||
4051                      task_team->tt.tt_hidden_helper_task_encountered == TRUE);
4052     TCW_SYNC_4(task_team->tt.tt_found_proxy_tasks, FALSE);
4053     TCW_SYNC_4(task_team->tt.tt_hidden_helper_task_encountered, FALSE);
4054     KMP_CHECK_UPDATE(task_team->tt.tt_untied_task_encountered, 0);
4055     TCW_SYNC_4(task_team->tt.tt_active, FALSE);
4056     KMP_MB();
4057 
4058     TCW_PTR(this_thr->th.th_task_team, NULL);
4059   }
4060 }
4061 
4062 // __kmp_tasking_barrier:
4063 // This routine is called only when __kmp_tasking_mode == tskm_extra_barrier.
4064 // Internal function to execute all tasks prior to a regular barrier or a join
4065 // barrier. It is a full barrier itself, which unfortunately turns regular
4066 // barriers into double barriers and join barriers into 1 1/2 barriers.
4067 void __kmp_tasking_barrier(kmp_team_t *team, kmp_info_t *thread, int gtid) {
4068   std::atomic<kmp_uint32> *spin = RCAST(
4069       std::atomic<kmp_uint32> *,
4070       &team->t.t_task_team[thread->th.th_task_state]->tt.tt_unfinished_threads);
4071   int flag = FALSE;
4072   KMP_DEBUG_ASSERT(__kmp_tasking_mode == tskm_extra_barrier);
4073 
4074 #if USE_ITT_BUILD
4075   KMP_FSYNC_SPIN_INIT(spin, NULL);
4076 #endif /* USE_ITT_BUILD */
4077   kmp_flag_32<false, false> spin_flag(spin, 0U);
4078   while (!spin_flag.execute_tasks(thread, gtid, TRUE,
4079                                   &flag USE_ITT_BUILD_ARG(NULL), 0)) {
4080 #if USE_ITT_BUILD
4081     // TODO: What about itt_sync_obj??
4082     KMP_FSYNC_SPIN_PREPARE(RCAST(void *, spin));
4083 #endif /* USE_ITT_BUILD */
4084 
4085     if (TCR_4(__kmp_global.g.g_done)) {
4086       if (__kmp_global.g.g_abort)
4087         __kmp_abort_thread();
4088       break;
4089     }
4090     KMP_YIELD(TRUE);
4091   }
4092 #if USE_ITT_BUILD
4093   KMP_FSYNC_SPIN_ACQUIRED(RCAST(void *, spin));
4094 #endif /* USE_ITT_BUILD */
4095 }
4096 
4097 // __kmp_give_task puts a task into a given thread queue if:
4098 //  - the queue for that thread was created
4099 //  - there's space in that queue
4100 // Because of this, __kmp_push_task needs to check if there's space after
4101 // getting the lock
4102 static bool __kmp_give_task(kmp_info_t *thread, kmp_int32 tid, kmp_task_t *task,
4103                             kmp_int32 pass) {
4104   kmp_taskdata_t *taskdata = KMP_TASK_TO_TASKDATA(task);
4105   kmp_task_team_t *task_team = taskdata->td_task_team;
4106 
4107   KA_TRACE(20, ("__kmp_give_task: trying to give task %p to thread %d.\n",
4108                 taskdata, tid));
4109 
4110   // If task_team is NULL something went really bad...
4111   KMP_DEBUG_ASSERT(task_team != NULL);
4112 
4113   bool result = false;
4114   kmp_thread_data_t *thread_data = &task_team->tt.tt_threads_data[tid];
4115 
4116   if (thread_data->td.td_deque == NULL) {
4117     // There's no queue in this thread, go find another one
4118     // We're guaranteed that at least one thread has a queue
4119     KA_TRACE(30,
4120              ("__kmp_give_task: thread %d has no queue while giving task %p.\n",
4121               tid, taskdata));
4122     return result;
4123   }
4124 
4125   if (TCR_4(thread_data->td.td_deque_ntasks) >=
4126       TASK_DEQUE_SIZE(thread_data->td)) {
4127     KA_TRACE(
4128         30,
4129         ("__kmp_give_task: queue is full while giving task %p to thread %d.\n",
4130          taskdata, tid));
4131 
4132     // if this deque is bigger than the pass ratio give a chance to another
4133     // thread
4134     if (TASK_DEQUE_SIZE(thread_data->td) / INITIAL_TASK_DEQUE_SIZE >= pass)
4135       return result;
4136 
4137     __kmp_acquire_bootstrap_lock(&thread_data->td.td_deque_lock);
4138     if (TCR_4(thread_data->td.td_deque_ntasks) >=
4139         TASK_DEQUE_SIZE(thread_data->td)) {
4140       // expand deque to push the task which is not allowed to execute
4141       __kmp_realloc_task_deque(thread, thread_data);
4142     }
4143 
4144   } else {
4145 
4146     __kmp_acquire_bootstrap_lock(&thread_data->td.td_deque_lock);
4147 
4148     if (TCR_4(thread_data->td.td_deque_ntasks) >=
4149         TASK_DEQUE_SIZE(thread_data->td)) {
4150       KA_TRACE(30, ("__kmp_give_task: queue is full while giving task %p to "
4151                     "thread %d.\n",
4152                     taskdata, tid));
4153 
4154       // if this deque is bigger than the pass ratio give a chance to another
4155       // thread
4156       if (TASK_DEQUE_SIZE(thread_data->td) / INITIAL_TASK_DEQUE_SIZE >= pass)
4157         goto release_and_exit;
4158 
4159       __kmp_realloc_task_deque(thread, thread_data);
4160     }
4161   }
4162 
4163   // lock is held here, and there is space in the deque
4164 
4165   thread_data->td.td_deque[thread_data->td.td_deque_tail] = taskdata;
4166   // Wrap index.
4167   thread_data->td.td_deque_tail =
4168       (thread_data->td.td_deque_tail + 1) & TASK_DEQUE_MASK(thread_data->td);
4169   TCW_4(thread_data->td.td_deque_ntasks,
4170         TCR_4(thread_data->td.td_deque_ntasks) + 1);
4171 
4172   result = true;
4173   KA_TRACE(30, ("__kmp_give_task: successfully gave task %p to thread %d.\n",
4174                 taskdata, tid));
4175 
4176 release_and_exit:
4177   __kmp_release_bootstrap_lock(&thread_data->td.td_deque_lock);
4178 
4179   return result;
4180 }
4181 
4182 #define PROXY_TASK_FLAG 0x40000000
4183 /* The finish of the proxy tasks is divided in two pieces:
4184     - the top half is the one that can be done from a thread outside the team
4185     - the bottom half must be run from a thread within the team
4186 
4187    In order to run the bottom half the task gets queued back into one of the
4188    threads of the team. Once the td_incomplete_child_task counter of the parent
4189    is decremented the threads can leave the barriers. So, the bottom half needs
4190    to be queued before the counter is decremented. The top half is therefore
4191    divided in two parts:
4192     - things that can be run before queuing the bottom half
4193     - things that must be run after queuing the bottom half
4194 
4195    This creates a second race as the bottom half can free the task before the
4196    second top half is executed. To avoid this we use the
4197    td_incomplete_child_task of the proxy task to synchronize the top and bottom
4198    half. */
4199 static void __kmp_first_top_half_finish_proxy(kmp_taskdata_t *taskdata) {
4200   KMP_DEBUG_ASSERT(taskdata->td_flags.tasktype == TASK_EXPLICIT);
4201   KMP_DEBUG_ASSERT(taskdata->td_flags.proxy == TASK_PROXY);
4202   KMP_DEBUG_ASSERT(taskdata->td_flags.complete == 0);
4203   KMP_DEBUG_ASSERT(taskdata->td_flags.freed == 0);
4204 
4205   taskdata->td_flags.complete = 1; // mark the task as completed
4206 
4207   if (taskdata->td_taskgroup)
4208     KMP_ATOMIC_DEC(&taskdata->td_taskgroup->count);
4209 
4210   // Create an imaginary children for this task so the bottom half cannot
4211   // release the task before we have completed the second top half
4212   KMP_ATOMIC_OR(&taskdata->td_incomplete_child_tasks, PROXY_TASK_FLAG);
4213 }
4214 
4215 static void __kmp_second_top_half_finish_proxy(kmp_taskdata_t *taskdata) {
4216 #if KMP_DEBUG
4217   kmp_int32 children = 0;
4218   // Predecrement simulated by "- 1" calculation
4219   children = -1 +
4220 #endif
4221       KMP_ATOMIC_DEC(&taskdata->td_parent->td_incomplete_child_tasks);
4222   KMP_DEBUG_ASSERT(children >= 0);
4223 
4224   // Remove the imaginary children
4225   KMP_ATOMIC_AND(&taskdata->td_incomplete_child_tasks, ~PROXY_TASK_FLAG);
4226 }
4227 
4228 static void __kmp_bottom_half_finish_proxy(kmp_int32 gtid, kmp_task_t *ptask) {
4229   kmp_taskdata_t *taskdata = KMP_TASK_TO_TASKDATA(ptask);
4230   kmp_info_t *thread = __kmp_threads[gtid];
4231 
4232   KMP_DEBUG_ASSERT(taskdata->td_flags.proxy == TASK_PROXY);
4233   KMP_DEBUG_ASSERT(taskdata->td_flags.complete ==
4234                    1); // top half must run before bottom half
4235 
4236   // We need to wait to make sure the top half is finished
4237   // Spinning here should be ok as this should happen quickly
4238   while ((KMP_ATOMIC_LD_ACQ(&taskdata->td_incomplete_child_tasks) &
4239           PROXY_TASK_FLAG) > 0)
4240     ;
4241 
4242   __kmp_release_deps(gtid, taskdata);
4243   __kmp_free_task_and_ancestors(gtid, taskdata, thread);
4244 }
4245 
4246 /*!
4247 @ingroup TASKING
4248 @param gtid Global Thread ID of encountering thread
4249 @param ptask Task which execution is completed
4250 
4251 Execute the completion of a proxy task from a thread of that is part of the
4252 team. Run first and bottom halves directly.
4253 */
4254 void __kmpc_proxy_task_completed(kmp_int32 gtid, kmp_task_t *ptask) {
4255   KMP_DEBUG_ASSERT(ptask != NULL);
4256   kmp_taskdata_t *taskdata = KMP_TASK_TO_TASKDATA(ptask);
4257   KA_TRACE(
4258       10, ("__kmp_proxy_task_completed(enter): T#%d proxy task %p completing\n",
4259            gtid, taskdata));
4260   __kmp_assert_valid_gtid(gtid);
4261   KMP_DEBUG_ASSERT(taskdata->td_flags.proxy == TASK_PROXY);
4262 
4263   __kmp_first_top_half_finish_proxy(taskdata);
4264   __kmp_second_top_half_finish_proxy(taskdata);
4265   __kmp_bottom_half_finish_proxy(gtid, ptask);
4266 
4267   KA_TRACE(10,
4268            ("__kmp_proxy_task_completed(exit): T#%d proxy task %p completing\n",
4269             gtid, taskdata));
4270 }
4271 
4272 void __kmpc_give_task(kmp_task_t *ptask, kmp_int32 start = 0) {
4273   KMP_DEBUG_ASSERT(ptask != NULL);
4274   kmp_taskdata_t *taskdata = KMP_TASK_TO_TASKDATA(ptask);
4275 
4276   // Enqueue task to complete bottom half completion from a thread within the
4277   // corresponding team
4278   kmp_team_t *team = taskdata->td_team;
4279   kmp_int32 nthreads = team->t.t_nproc;
4280   kmp_info_t *thread;
4281 
4282   // This should be similar to start_k = __kmp_get_random( thread ) % nthreads
4283   // but we cannot use __kmp_get_random here
4284   kmp_int32 start_k = start % nthreads;
4285   kmp_int32 pass = 1;
4286   kmp_int32 k = start_k;
4287 
4288   do {
4289     // For now we're just linearly trying to find a thread
4290     thread = team->t.t_threads[k];
4291     k = (k + 1) % nthreads;
4292 
4293     // we did a full pass through all the threads
4294     if (k == start_k)
4295       pass = pass << 1;
4296 
4297   } while (!__kmp_give_task(thread, k, ptask, pass));
4298 
4299   if (__kmp_dflt_blocktime != KMP_MAX_BLOCKTIME && __kmp_wpolicy_passive) {
4300     // awake at least one thread to execute given task
4301     for (int i = 0; i < nthreads; ++i) {
4302       thread = team->t.t_threads[i];
4303       if (thread->th.th_sleep_loc != NULL) {
4304         __kmp_null_resume_wrapper(thread);
4305         break;
4306       }
4307     }
4308   }
4309 }
4310 
4311 /*!
4312 @ingroup TASKING
4313 @param ptask Task which execution is completed
4314 
4315 Execute the completion of a proxy task from a thread that could not belong to
4316 the team.
4317 */
4318 void __kmpc_proxy_task_completed_ooo(kmp_task_t *ptask) {
4319   KMP_DEBUG_ASSERT(ptask != NULL);
4320   kmp_taskdata_t *taskdata = KMP_TASK_TO_TASKDATA(ptask);
4321 
4322   KA_TRACE(
4323       10,
4324       ("__kmp_proxy_task_completed_ooo(enter): proxy task completing ooo %p\n",
4325        taskdata));
4326 
4327   KMP_DEBUG_ASSERT(taskdata->td_flags.proxy == TASK_PROXY);
4328 
4329   __kmp_first_top_half_finish_proxy(taskdata);
4330 
4331   __kmpc_give_task(ptask);
4332 
4333   __kmp_second_top_half_finish_proxy(taskdata);
4334 
4335   KA_TRACE(
4336       10,
4337       ("__kmp_proxy_task_completed_ooo(exit): proxy task completing ooo %p\n",
4338        taskdata));
4339 }
4340 
4341 kmp_event_t *__kmpc_task_allow_completion_event(ident_t *loc_ref, int gtid,
4342                                                 kmp_task_t *task) {
4343   kmp_taskdata_t *td = KMP_TASK_TO_TASKDATA(task);
4344   if (td->td_allow_completion_event.type == KMP_EVENT_UNINITIALIZED) {
4345     td->td_allow_completion_event.type = KMP_EVENT_ALLOW_COMPLETION;
4346     td->td_allow_completion_event.ed.task = task;
4347     __kmp_init_tas_lock(&td->td_allow_completion_event.lock);
4348   }
4349   return &td->td_allow_completion_event;
4350 }
4351 
4352 void __kmp_fulfill_event(kmp_event_t *event) {
4353   if (event->type == KMP_EVENT_ALLOW_COMPLETION) {
4354     kmp_task_t *ptask = event->ed.task;
4355     kmp_taskdata_t *taskdata = KMP_TASK_TO_TASKDATA(ptask);
4356     bool detached = false;
4357     int gtid = __kmp_get_gtid();
4358 
4359     // The associated task might have completed or could be completing at this
4360     // point.
4361     // We need to take the lock to avoid races
4362     __kmp_acquire_tas_lock(&event->lock, gtid);
4363     if (taskdata->td_flags.proxy == TASK_PROXY) {
4364       detached = true;
4365     } else {
4366 #if OMPT_SUPPORT
4367       // The OMPT event must occur under mutual exclusion,
4368       // otherwise the tool might access ptask after free
4369       if (UNLIKELY(ompt_enabled.enabled))
4370         __ompt_task_finish(ptask, NULL, ompt_task_early_fulfill);
4371 #endif
4372     }
4373     event->type = KMP_EVENT_UNINITIALIZED;
4374     __kmp_release_tas_lock(&event->lock, gtid);
4375 
4376     if (detached) {
4377 #if OMPT_SUPPORT
4378       // We free ptask afterwards and know the task is finished,
4379       // so locking is not necessary
4380       if (UNLIKELY(ompt_enabled.enabled))
4381         __ompt_task_finish(ptask, NULL, ompt_task_late_fulfill);
4382 #endif
4383       // If the task detached complete the proxy task
4384       if (gtid >= 0) {
4385         kmp_team_t *team = taskdata->td_team;
4386         kmp_info_t *thread = __kmp_get_thread();
4387         if (thread->th.th_team == team) {
4388           __kmpc_proxy_task_completed(gtid, ptask);
4389           return;
4390         }
4391       }
4392 
4393       // fallback
4394       __kmpc_proxy_task_completed_ooo(ptask);
4395     }
4396   }
4397 }
4398 
4399 // __kmp_task_dup_alloc: Allocate the taskdata and make a copy of source task
4400 // for taskloop
4401 //
4402 // thread:   allocating thread
4403 // task_src: pointer to source task to be duplicated
4404 // returns:  a pointer to the allocated kmp_task_t structure (task).
4405 kmp_task_t *__kmp_task_dup_alloc(kmp_info_t *thread, kmp_task_t *task_src) {
4406   kmp_task_t *task;
4407   kmp_taskdata_t *taskdata;
4408   kmp_taskdata_t *taskdata_src = KMP_TASK_TO_TASKDATA(task_src);
4409   kmp_taskdata_t *parent_task = taskdata_src->td_parent; // same parent task
4410   size_t shareds_offset;
4411   size_t task_size;
4412 
4413   KA_TRACE(10, ("__kmp_task_dup_alloc(enter): Th %p, source task %p\n", thread,
4414                 task_src));
4415   KMP_DEBUG_ASSERT(taskdata_src->td_flags.proxy ==
4416                    TASK_FULL); // it should not be proxy task
4417   KMP_DEBUG_ASSERT(taskdata_src->td_flags.tasktype == TASK_EXPLICIT);
4418   task_size = taskdata_src->td_size_alloc;
4419 
4420   // Allocate a kmp_taskdata_t block and a kmp_task_t block.
4421   KA_TRACE(30, ("__kmp_task_dup_alloc: Th %p, malloc size %ld\n", thread,
4422                 task_size));
4423 #if USE_FAST_MEMORY
4424   taskdata = (kmp_taskdata_t *)__kmp_fast_allocate(thread, task_size);
4425 #else
4426   taskdata = (kmp_taskdata_t *)__kmp_thread_malloc(thread, task_size);
4427 #endif /* USE_FAST_MEMORY */
4428   KMP_MEMCPY(taskdata, taskdata_src, task_size);
4429 
4430   task = KMP_TASKDATA_TO_TASK(taskdata);
4431 
4432   // Initialize new task (only specific fields not affected by memcpy)
4433   taskdata->td_task_id = KMP_GEN_TASK_ID();
4434   if (task->shareds != NULL) { // need setup shareds pointer
4435     shareds_offset = (char *)task_src->shareds - (char *)taskdata_src;
4436     task->shareds = &((char *)taskdata)[shareds_offset];
4437     KMP_DEBUG_ASSERT((((kmp_uintptr_t)task->shareds) & (sizeof(void *) - 1)) ==
4438                      0);
4439   }
4440   taskdata->td_alloc_thread = thread;
4441   taskdata->td_parent = parent_task;
4442   // task inherits the taskgroup from the parent task
4443   taskdata->td_taskgroup = parent_task->td_taskgroup;
4444   // tied task needs to initialize the td_last_tied at creation,
4445   // untied one does this when it is scheduled for execution
4446   if (taskdata->td_flags.tiedness == TASK_TIED)
4447     taskdata->td_last_tied = taskdata;
4448 
4449   // Only need to keep track of child task counts if team parallel and tasking
4450   // not serialized
4451   if (!(taskdata->td_flags.team_serial || taskdata->td_flags.tasking_ser)) {
4452     KMP_ATOMIC_INC(&parent_task->td_incomplete_child_tasks);
4453     if (parent_task->td_taskgroup)
4454       KMP_ATOMIC_INC(&parent_task->td_taskgroup->count);
4455     // Only need to keep track of allocated child tasks for explicit tasks since
4456     // implicit not deallocated
4457     if (taskdata->td_parent->td_flags.tasktype == TASK_EXPLICIT)
4458       KMP_ATOMIC_INC(&taskdata->td_parent->td_allocated_child_tasks);
4459   }
4460 
4461   KA_TRACE(20,
4462            ("__kmp_task_dup_alloc(exit): Th %p, created task %p, parent=%p\n",
4463             thread, taskdata, taskdata->td_parent));
4464 #if OMPT_SUPPORT
4465   if (UNLIKELY(ompt_enabled.enabled))
4466     __ompt_task_init(taskdata, thread->th.th_info.ds.ds_gtid);
4467 #endif
4468   return task;
4469 }
4470 
4471 // Routine optionally generated by the compiler for setting the lastprivate flag
4472 // and calling needed constructors for private/firstprivate objects
4473 // (used to form taskloop tasks from pattern task)
4474 // Parameters: dest task, src task, lastprivate flag.
4475 typedef void (*p_task_dup_t)(kmp_task_t *, kmp_task_t *, kmp_int32);
4476 
4477 KMP_BUILD_ASSERT(sizeof(long) == 4 || sizeof(long) == 8);
4478 
4479 // class to encapsulate manipulating loop bounds in a taskloop task.
4480 // this abstracts away the Intel vs GOMP taskloop interface for setting/getting
4481 // the loop bound variables.
4482 class kmp_taskloop_bounds_t {
4483   kmp_task_t *task;
4484   const kmp_taskdata_t *taskdata;
4485   size_t lower_offset;
4486   size_t upper_offset;
4487 
4488 public:
4489   kmp_taskloop_bounds_t(kmp_task_t *_task, kmp_uint64 *lb, kmp_uint64 *ub)
4490       : task(_task), taskdata(KMP_TASK_TO_TASKDATA(task)),
4491         lower_offset((char *)lb - (char *)task),
4492         upper_offset((char *)ub - (char *)task) {
4493     KMP_DEBUG_ASSERT((char *)lb > (char *)_task);
4494     KMP_DEBUG_ASSERT((char *)ub > (char *)_task);
4495   }
4496   kmp_taskloop_bounds_t(kmp_task_t *_task, const kmp_taskloop_bounds_t &bounds)
4497       : task(_task), taskdata(KMP_TASK_TO_TASKDATA(_task)),
4498         lower_offset(bounds.lower_offset), upper_offset(bounds.upper_offset) {}
4499   size_t get_lower_offset() const { return lower_offset; }
4500   size_t get_upper_offset() const { return upper_offset; }
4501   kmp_uint64 get_lb() const {
4502     kmp_int64 retval;
4503 #if defined(KMP_GOMP_COMPAT)
4504     // Intel task just returns the lower bound normally
4505     if (!taskdata->td_flags.native) {
4506       retval = *(kmp_int64 *)((char *)task + lower_offset);
4507     } else {
4508       // GOMP task has to take into account the sizeof(long)
4509       if (taskdata->td_size_loop_bounds == 4) {
4510         kmp_int32 *lb = RCAST(kmp_int32 *, task->shareds);
4511         retval = (kmp_int64)*lb;
4512       } else {
4513         kmp_int64 *lb = RCAST(kmp_int64 *, task->shareds);
4514         retval = (kmp_int64)*lb;
4515       }
4516     }
4517 #else
4518     (void)taskdata;
4519     retval = *(kmp_int64 *)((char *)task + lower_offset);
4520 #endif // defined(KMP_GOMP_COMPAT)
4521     return retval;
4522   }
4523   kmp_uint64 get_ub() const {
4524     kmp_int64 retval;
4525 #if defined(KMP_GOMP_COMPAT)
4526     // Intel task just returns the upper bound normally
4527     if (!taskdata->td_flags.native) {
4528       retval = *(kmp_int64 *)((char *)task + upper_offset);
4529     } else {
4530       // GOMP task has to take into account the sizeof(long)
4531       if (taskdata->td_size_loop_bounds == 4) {
4532         kmp_int32 *ub = RCAST(kmp_int32 *, task->shareds) + 1;
4533         retval = (kmp_int64)*ub;
4534       } else {
4535         kmp_int64 *ub = RCAST(kmp_int64 *, task->shareds) + 1;
4536         retval = (kmp_int64)*ub;
4537       }
4538     }
4539 #else
4540     retval = *(kmp_int64 *)((char *)task + upper_offset);
4541 #endif // defined(KMP_GOMP_COMPAT)
4542     return retval;
4543   }
4544   void set_lb(kmp_uint64 lb) {
4545 #if defined(KMP_GOMP_COMPAT)
4546     // Intel task just sets the lower bound normally
4547     if (!taskdata->td_flags.native) {
4548       *(kmp_uint64 *)((char *)task + lower_offset) = lb;
4549     } else {
4550       // GOMP task has to take into account the sizeof(long)
4551       if (taskdata->td_size_loop_bounds == 4) {
4552         kmp_uint32 *lower = RCAST(kmp_uint32 *, task->shareds);
4553         *lower = (kmp_uint32)lb;
4554       } else {
4555         kmp_uint64 *lower = RCAST(kmp_uint64 *, task->shareds);
4556         *lower = (kmp_uint64)lb;
4557       }
4558     }
4559 #else
4560     *(kmp_uint64 *)((char *)task + lower_offset) = lb;
4561 #endif // defined(KMP_GOMP_COMPAT)
4562   }
4563   void set_ub(kmp_uint64 ub) {
4564 #if defined(KMP_GOMP_COMPAT)
4565     // Intel task just sets the upper bound normally
4566     if (!taskdata->td_flags.native) {
4567       *(kmp_uint64 *)((char *)task + upper_offset) = ub;
4568     } else {
4569       // GOMP task has to take into account the sizeof(long)
4570       if (taskdata->td_size_loop_bounds == 4) {
4571         kmp_uint32 *upper = RCAST(kmp_uint32 *, task->shareds) + 1;
4572         *upper = (kmp_uint32)ub;
4573       } else {
4574         kmp_uint64 *upper = RCAST(kmp_uint64 *, task->shareds) + 1;
4575         *upper = (kmp_uint64)ub;
4576       }
4577     }
4578 #else
4579     *(kmp_uint64 *)((char *)task + upper_offset) = ub;
4580 #endif // defined(KMP_GOMP_COMPAT)
4581   }
4582 };
4583 
4584 // __kmp_taskloop_linear: Start tasks of the taskloop linearly
4585 //
4586 // loc        Source location information
4587 // gtid       Global thread ID
4588 // task       Pattern task, exposes the loop iteration range
4589 // lb         Pointer to loop lower bound in task structure
4590 // ub         Pointer to loop upper bound in task structure
4591 // st         Loop stride
4592 // ub_glob    Global upper bound (used for lastprivate check)
4593 // num_tasks  Number of tasks to execute
4594 // grainsize  Number of loop iterations per task
4595 // extras     Number of chunks with grainsize+1 iterations
4596 // last_chunk Reduction of grainsize for last task
4597 // tc         Iterations count
4598 // task_dup   Tasks duplication routine
4599 // codeptr_ra Return address for OMPT events
4600 void __kmp_taskloop_linear(ident_t *loc, int gtid, kmp_task_t *task,
4601                            kmp_uint64 *lb, kmp_uint64 *ub, kmp_int64 st,
4602                            kmp_uint64 ub_glob, kmp_uint64 num_tasks,
4603                            kmp_uint64 grainsize, kmp_uint64 extras,
4604                            kmp_int64 last_chunk, kmp_uint64 tc,
4605 #if OMPT_SUPPORT
4606                            void *codeptr_ra,
4607 #endif
4608                            void *task_dup) {
4609   KMP_COUNT_BLOCK(OMP_TASKLOOP);
4610   KMP_TIME_PARTITIONED_BLOCK(OMP_taskloop_scheduling);
4611   p_task_dup_t ptask_dup = (p_task_dup_t)task_dup;
4612   // compiler provides global bounds here
4613   kmp_taskloop_bounds_t task_bounds(task, lb, ub);
4614   kmp_uint64 lower = task_bounds.get_lb();
4615   kmp_uint64 upper = task_bounds.get_ub();
4616   kmp_uint64 i;
4617   kmp_info_t *thread = __kmp_threads[gtid];
4618   kmp_taskdata_t *current_task = thread->th.th_current_task;
4619   kmp_task_t *next_task;
4620   kmp_int32 lastpriv = 0;
4621 
4622   KMP_DEBUG_ASSERT(tc == num_tasks * grainsize +
4623                              (last_chunk < 0 ? last_chunk : extras));
4624   KMP_DEBUG_ASSERT(num_tasks > extras);
4625   KMP_DEBUG_ASSERT(num_tasks > 0);
4626   KA_TRACE(20, ("__kmp_taskloop_linear: T#%d: %lld tasks, grainsize %lld, "
4627                 "extras %lld, last_chunk %lld, i=%lld,%lld(%d)%lld, dup %p\n",
4628                 gtid, num_tasks, grainsize, extras, last_chunk, lower, upper,
4629                 ub_glob, st, task_dup));
4630 
4631   // Launch num_tasks tasks, assign grainsize iterations each task
4632   for (i = 0; i < num_tasks; ++i) {
4633     kmp_uint64 chunk_minus_1;
4634     if (extras == 0) {
4635       chunk_minus_1 = grainsize - 1;
4636     } else {
4637       chunk_minus_1 = grainsize;
4638       --extras; // first extras iterations get bigger chunk (grainsize+1)
4639     }
4640     upper = lower + st * chunk_minus_1;
4641     if (upper > *ub) {
4642       upper = *ub;
4643     }
4644     if (i == num_tasks - 1) {
4645       // schedule the last task, set lastprivate flag if needed
4646       if (st == 1) { // most common case
4647         KMP_DEBUG_ASSERT(upper == *ub);
4648         if (upper == ub_glob)
4649           lastpriv = 1;
4650       } else if (st > 0) { // positive loop stride
4651         KMP_DEBUG_ASSERT((kmp_uint64)st > *ub - upper);
4652         if ((kmp_uint64)st > ub_glob - upper)
4653           lastpriv = 1;
4654       } else { // negative loop stride
4655         KMP_DEBUG_ASSERT(upper + st < *ub);
4656         if (upper - ub_glob < (kmp_uint64)(-st))
4657           lastpriv = 1;
4658       }
4659     }
4660     next_task = __kmp_task_dup_alloc(thread, task); // allocate new task
4661     kmp_taskdata_t *next_taskdata = KMP_TASK_TO_TASKDATA(next_task);
4662     kmp_taskloop_bounds_t next_task_bounds =
4663         kmp_taskloop_bounds_t(next_task, task_bounds);
4664 
4665     // adjust task-specific bounds
4666     next_task_bounds.set_lb(lower);
4667     if (next_taskdata->td_flags.native) {
4668       next_task_bounds.set_ub(upper + (st > 0 ? 1 : -1));
4669     } else {
4670       next_task_bounds.set_ub(upper);
4671     }
4672     if (ptask_dup != NULL) // set lastprivate flag, construct firstprivates,
4673                            // etc.
4674       ptask_dup(next_task, task, lastpriv);
4675     KA_TRACE(40,
4676              ("__kmp_taskloop_linear: T#%d; task #%llu: task %p: lower %lld, "
4677               "upper %lld stride %lld, (offsets %p %p)\n",
4678               gtid, i, next_task, lower, upper, st,
4679               next_task_bounds.get_lower_offset(),
4680               next_task_bounds.get_upper_offset()));
4681 #if OMPT_SUPPORT
4682     __kmp_omp_taskloop_task(NULL, gtid, next_task,
4683                             codeptr_ra); // schedule new task
4684 #if OMPT_OPTIONAL
4685     if (ompt_enabled.ompt_callback_dispatch) {
4686       OMPT_GET_DISPATCH_CHUNK(next_taskdata->ompt_task_info.dispatch_chunk,
4687                               lower, upper, st);
4688     }
4689 #endif // OMPT_OPTIONAL
4690 #else
4691     __kmp_omp_task(gtid, next_task, true); // schedule new task
4692 #endif
4693     lower = upper + st; // adjust lower bound for the next iteration
4694   }
4695   // free the pattern task and exit
4696   __kmp_task_start(gtid, task, current_task); // make internal bookkeeping
4697   // do not execute the pattern task, just do internal bookkeeping
4698   __kmp_task_finish<false>(gtid, task, current_task);
4699 }
4700 
4701 // Structure to keep taskloop parameters for auxiliary task
4702 // kept in the shareds of the task structure.
4703 typedef struct __taskloop_params {
4704   kmp_task_t *task;
4705   kmp_uint64 *lb;
4706   kmp_uint64 *ub;
4707   void *task_dup;
4708   kmp_int64 st;
4709   kmp_uint64 ub_glob;
4710   kmp_uint64 num_tasks;
4711   kmp_uint64 grainsize;
4712   kmp_uint64 extras;
4713   kmp_int64 last_chunk;
4714   kmp_uint64 tc;
4715   kmp_uint64 num_t_min;
4716 #if OMPT_SUPPORT
4717   void *codeptr_ra;
4718 #endif
4719 } __taskloop_params_t;
4720 
4721 void __kmp_taskloop_recur(ident_t *, int, kmp_task_t *, kmp_uint64 *,
4722                           kmp_uint64 *, kmp_int64, kmp_uint64, kmp_uint64,
4723                           kmp_uint64, kmp_uint64, kmp_int64, kmp_uint64,
4724                           kmp_uint64,
4725 #if OMPT_SUPPORT
4726                           void *,
4727 #endif
4728                           void *);
4729 
4730 // Execute part of the taskloop submitted as a task.
4731 int __kmp_taskloop_task(int gtid, void *ptask) {
4732   __taskloop_params_t *p =
4733       (__taskloop_params_t *)((kmp_task_t *)ptask)->shareds;
4734   kmp_task_t *task = p->task;
4735   kmp_uint64 *lb = p->lb;
4736   kmp_uint64 *ub = p->ub;
4737   void *task_dup = p->task_dup;
4738   //  p_task_dup_t ptask_dup = (p_task_dup_t)task_dup;
4739   kmp_int64 st = p->st;
4740   kmp_uint64 ub_glob = p->ub_glob;
4741   kmp_uint64 num_tasks = p->num_tasks;
4742   kmp_uint64 grainsize = p->grainsize;
4743   kmp_uint64 extras = p->extras;
4744   kmp_int64 last_chunk = p->last_chunk;
4745   kmp_uint64 tc = p->tc;
4746   kmp_uint64 num_t_min = p->num_t_min;
4747 #if OMPT_SUPPORT
4748   void *codeptr_ra = p->codeptr_ra;
4749 #endif
4750 #if KMP_DEBUG
4751   kmp_taskdata_t *taskdata = KMP_TASK_TO_TASKDATA(task);
4752   KMP_DEBUG_ASSERT(task != NULL);
4753   KA_TRACE(20,
4754            ("__kmp_taskloop_task: T#%d, task %p: %lld tasks, grainsize"
4755             " %lld, extras %lld, last_chunk %lld, i=%lld,%lld(%d), dup %p\n",
4756             gtid, taskdata, num_tasks, grainsize, extras, last_chunk, *lb, *ub,
4757             st, task_dup));
4758 #endif
4759   KMP_DEBUG_ASSERT(num_tasks * 2 + 1 > num_t_min);
4760   if (num_tasks > num_t_min)
4761     __kmp_taskloop_recur(NULL, gtid, task, lb, ub, st, ub_glob, num_tasks,
4762                          grainsize, extras, last_chunk, tc, num_t_min,
4763 #if OMPT_SUPPORT
4764                          codeptr_ra,
4765 #endif
4766                          task_dup);
4767   else
4768     __kmp_taskloop_linear(NULL, gtid, task, lb, ub, st, ub_glob, num_tasks,
4769                           grainsize, extras, last_chunk, tc,
4770 #if OMPT_SUPPORT
4771                           codeptr_ra,
4772 #endif
4773                           task_dup);
4774 
4775   KA_TRACE(40, ("__kmp_taskloop_task(exit): T#%d\n", gtid));
4776   return 0;
4777 }
4778 
4779 // Schedule part of the taskloop as a task,
4780 // execute the rest of the taskloop.
4781 //
4782 // loc        Source location information
4783 // gtid       Global thread ID
4784 // task       Pattern task, exposes the loop iteration range
4785 // lb         Pointer to loop lower bound in task structure
4786 // ub         Pointer to loop upper bound in task structure
4787 // st         Loop stride
4788 // ub_glob    Global upper bound (used for lastprivate check)
4789 // num_tasks  Number of tasks to execute
4790 // grainsize  Number of loop iterations per task
4791 // extras     Number of chunks with grainsize+1 iterations
4792 // last_chunk Reduction of grainsize for last task
4793 // tc         Iterations count
4794 // num_t_min  Threshold to launch tasks recursively
4795 // task_dup   Tasks duplication routine
4796 // codeptr_ra Return address for OMPT events
4797 void __kmp_taskloop_recur(ident_t *loc, int gtid, kmp_task_t *task,
4798                           kmp_uint64 *lb, kmp_uint64 *ub, kmp_int64 st,
4799                           kmp_uint64 ub_glob, kmp_uint64 num_tasks,
4800                           kmp_uint64 grainsize, kmp_uint64 extras,
4801                           kmp_int64 last_chunk, kmp_uint64 tc,
4802                           kmp_uint64 num_t_min,
4803 #if OMPT_SUPPORT
4804                           void *codeptr_ra,
4805 #endif
4806                           void *task_dup) {
4807   kmp_taskdata_t *taskdata = KMP_TASK_TO_TASKDATA(task);
4808   KMP_DEBUG_ASSERT(task != NULL);
4809   KMP_DEBUG_ASSERT(num_tasks > num_t_min);
4810   KA_TRACE(20,
4811            ("__kmp_taskloop_recur: T#%d, task %p: %lld tasks, grainsize"
4812             " %lld, extras %lld, last_chunk %lld, i=%lld,%lld(%d), dup %p\n",
4813             gtid, taskdata, num_tasks, grainsize, extras, last_chunk, *lb, *ub,
4814             st, task_dup));
4815   p_task_dup_t ptask_dup = (p_task_dup_t)task_dup;
4816   kmp_uint64 lower = *lb;
4817   kmp_info_t *thread = __kmp_threads[gtid];
4818   //  kmp_taskdata_t *current_task = thread->th.th_current_task;
4819   kmp_task_t *next_task;
4820   size_t lower_offset =
4821       (char *)lb - (char *)task; // remember offset of lb in the task structure
4822   size_t upper_offset =
4823       (char *)ub - (char *)task; // remember offset of ub in the task structure
4824 
4825   KMP_DEBUG_ASSERT(tc == num_tasks * grainsize +
4826                              (last_chunk < 0 ? last_chunk : extras));
4827   KMP_DEBUG_ASSERT(num_tasks > extras);
4828   KMP_DEBUG_ASSERT(num_tasks > 0);
4829 
4830   // split the loop in two halves
4831   kmp_uint64 lb1, ub0, tc0, tc1, ext0, ext1;
4832   kmp_int64 last_chunk0 = 0, last_chunk1 = 0;
4833   kmp_uint64 gr_size0 = grainsize;
4834   kmp_uint64 n_tsk0 = num_tasks >> 1; // num_tasks/2 to execute
4835   kmp_uint64 n_tsk1 = num_tasks - n_tsk0; // to schedule as a task
4836   if (last_chunk < 0) {
4837     ext0 = ext1 = 0;
4838     last_chunk1 = last_chunk;
4839     tc0 = grainsize * n_tsk0;
4840     tc1 = tc - tc0;
4841   } else if (n_tsk0 <= extras) {
4842     gr_size0++; // integrate extras into grainsize
4843     ext0 = 0; // no extra iters in 1st half
4844     ext1 = extras - n_tsk0; // remaining extras
4845     tc0 = gr_size0 * n_tsk0;
4846     tc1 = tc - tc0;
4847   } else { // n_tsk0 > extras
4848     ext1 = 0; // no extra iters in 2nd half
4849     ext0 = extras;
4850     tc1 = grainsize * n_tsk1;
4851     tc0 = tc - tc1;
4852   }
4853   ub0 = lower + st * (tc0 - 1);
4854   lb1 = ub0 + st;
4855 
4856   // create pattern task for 2nd half of the loop
4857   next_task = __kmp_task_dup_alloc(thread, task); // duplicate the task
4858   // adjust lower bound (upper bound is not changed) for the 2nd half
4859   *(kmp_uint64 *)((char *)next_task + lower_offset) = lb1;
4860   if (ptask_dup != NULL) // construct firstprivates, etc.
4861     ptask_dup(next_task, task, 0);
4862   *ub = ub0; // adjust upper bound for the 1st half
4863 
4864   // create auxiliary task for 2nd half of the loop
4865   // make sure new task has same parent task as the pattern task
4866   kmp_taskdata_t *current_task = thread->th.th_current_task;
4867   thread->th.th_current_task = taskdata->td_parent;
4868   kmp_task_t *new_task =
4869       __kmpc_omp_task_alloc(loc, gtid, 1, 3 * sizeof(void *),
4870                             sizeof(__taskloop_params_t), &__kmp_taskloop_task);
4871   // restore current task
4872   thread->th.th_current_task = current_task;
4873   __taskloop_params_t *p = (__taskloop_params_t *)new_task->shareds;
4874   p->task = next_task;
4875   p->lb = (kmp_uint64 *)((char *)next_task + lower_offset);
4876   p->ub = (kmp_uint64 *)((char *)next_task + upper_offset);
4877   p->task_dup = task_dup;
4878   p->st = st;
4879   p->ub_glob = ub_glob;
4880   p->num_tasks = n_tsk1;
4881   p->grainsize = grainsize;
4882   p->extras = ext1;
4883   p->last_chunk = last_chunk1;
4884   p->tc = tc1;
4885   p->num_t_min = num_t_min;
4886 #if OMPT_SUPPORT
4887   p->codeptr_ra = codeptr_ra;
4888 #endif
4889 
4890 #if OMPT_SUPPORT
4891   // schedule new task with correct return address for OMPT events
4892   __kmp_omp_taskloop_task(NULL, gtid, new_task, codeptr_ra);
4893 #else
4894   __kmp_omp_task(gtid, new_task, true); // schedule new task
4895 #endif
4896 
4897   // execute the 1st half of current subrange
4898   if (n_tsk0 > num_t_min)
4899     __kmp_taskloop_recur(loc, gtid, task, lb, ub, st, ub_glob, n_tsk0, gr_size0,
4900                          ext0, last_chunk0, tc0, num_t_min,
4901 #if OMPT_SUPPORT
4902                          codeptr_ra,
4903 #endif
4904                          task_dup);
4905   else
4906     __kmp_taskloop_linear(loc, gtid, task, lb, ub, st, ub_glob, n_tsk0,
4907                           gr_size0, ext0, last_chunk0, tc0,
4908 #if OMPT_SUPPORT
4909                           codeptr_ra,
4910 #endif
4911                           task_dup);
4912 
4913   KA_TRACE(40, ("__kmp_taskloop_recur(exit): T#%d\n", gtid));
4914 }
4915 
4916 static void __kmp_taskloop(ident_t *loc, int gtid, kmp_task_t *task, int if_val,
4917                            kmp_uint64 *lb, kmp_uint64 *ub, kmp_int64 st,
4918                            int nogroup, int sched, kmp_uint64 grainsize,
4919                            int modifier, void *task_dup) {
4920   kmp_taskdata_t *taskdata = KMP_TASK_TO_TASKDATA(task);
4921   KMP_DEBUG_ASSERT(task != NULL);
4922   if (nogroup == 0) {
4923 #if OMPT_SUPPORT && OMPT_OPTIONAL
4924     OMPT_STORE_RETURN_ADDRESS(gtid);
4925 #endif
4926     __kmpc_taskgroup(loc, gtid);
4927   }
4928 
4929   // =========================================================================
4930   // calculate loop parameters
4931   kmp_taskloop_bounds_t task_bounds(task, lb, ub);
4932   kmp_uint64 tc;
4933   // compiler provides global bounds here
4934   kmp_uint64 lower = task_bounds.get_lb();
4935   kmp_uint64 upper = task_bounds.get_ub();
4936   kmp_uint64 ub_glob = upper; // global upper used to calc lastprivate flag
4937   kmp_uint64 num_tasks = 0, extras = 0;
4938   kmp_int64 last_chunk =
4939       0; // reduce grainsize of last task by last_chunk in strict mode
4940   kmp_uint64 num_tasks_min = __kmp_taskloop_min_tasks;
4941   kmp_info_t *thread = __kmp_threads[gtid];
4942   kmp_taskdata_t *current_task = thread->th.th_current_task;
4943 
4944   KA_TRACE(20, ("__kmp_taskloop: T#%d, task %p, lb %lld, ub %lld, st %lld, "
4945                 "grain %llu(%d, %d), dup %p\n",
4946                 gtid, taskdata, lower, upper, st, grainsize, sched, modifier,
4947                 task_dup));
4948 
4949   // compute trip count
4950   if (st == 1) { // most common case
4951     tc = upper - lower + 1;
4952   } else if (st < 0) {
4953     tc = (lower - upper) / (-st) + 1;
4954   } else { // st > 0
4955     tc = (upper - lower) / st + 1;
4956   }
4957   if (tc == 0) {
4958     KA_TRACE(20, ("__kmp_taskloop(exit): T#%d zero-trip loop\n", gtid));
4959     // free the pattern task and exit
4960     __kmp_task_start(gtid, task, current_task);
4961     // do not execute anything for zero-trip loop
4962     __kmp_task_finish<false>(gtid, task, current_task);
4963     return;
4964   }
4965 
4966 #if OMPT_SUPPORT && OMPT_OPTIONAL
4967   ompt_team_info_t *team_info = __ompt_get_teaminfo(0, NULL);
4968   ompt_task_info_t *task_info = __ompt_get_task_info_object(0);
4969   if (ompt_enabled.ompt_callback_work) {
4970     ompt_callbacks.ompt_callback(ompt_callback_work)(
4971         ompt_work_taskloop, ompt_scope_begin, &(team_info->parallel_data),
4972         &(task_info->task_data), tc, OMPT_GET_RETURN_ADDRESS(0));
4973   }
4974 #endif
4975 
4976   if (num_tasks_min == 0)
4977     // TODO: can we choose better default heuristic?
4978     num_tasks_min =
4979         KMP_MIN(thread->th.th_team_nproc * 10, INITIAL_TASK_DEQUE_SIZE);
4980 
4981   // compute num_tasks/grainsize based on the input provided
4982   switch (sched) {
4983   case 0: // no schedule clause specified, we can choose the default
4984     // let's try to schedule (team_size*10) tasks
4985     grainsize = thread->th.th_team_nproc * 10;
4986     KMP_FALLTHROUGH();
4987   case 2: // num_tasks provided
4988     if (grainsize > tc) {
4989       num_tasks = tc; // too big num_tasks requested, adjust values
4990       grainsize = 1;
4991       extras = 0;
4992     } else {
4993       num_tasks = grainsize;
4994       grainsize = tc / num_tasks;
4995       extras = tc % num_tasks;
4996     }
4997     break;
4998   case 1: // grainsize provided
4999     if (grainsize > tc) {
5000       num_tasks = 1;
5001       grainsize = tc; // too big grainsize requested, adjust values
5002       extras = 0;
5003     } else {
5004       if (modifier) {
5005         num_tasks = (tc + grainsize - 1) / grainsize;
5006         last_chunk = tc - (num_tasks * grainsize);
5007         extras = 0;
5008       } else {
5009         num_tasks = tc / grainsize;
5010         // adjust grainsize for balanced distribution of iterations
5011         grainsize = tc / num_tasks;
5012         extras = tc % num_tasks;
5013       }
5014     }
5015     break;
5016   default:
5017     KMP_ASSERT2(0, "unknown scheduling of taskloop");
5018   }
5019 
5020   KMP_DEBUG_ASSERT(tc == num_tasks * grainsize +
5021                              (last_chunk < 0 ? last_chunk : extras));
5022   KMP_DEBUG_ASSERT(num_tasks > extras);
5023   KMP_DEBUG_ASSERT(num_tasks > 0);
5024   // =========================================================================
5025 
5026   // check if clause value first
5027   // Also require GOMP_taskloop to reduce to linear (taskdata->td_flags.native)
5028   if (if_val == 0) { // if(0) specified, mark task as serial
5029     taskdata->td_flags.task_serial = 1;
5030     taskdata->td_flags.tiedness = TASK_TIED; // AC: serial task cannot be untied
5031     // always start serial tasks linearly
5032     __kmp_taskloop_linear(loc, gtid, task, lb, ub, st, ub_glob, num_tasks,
5033                           grainsize, extras, last_chunk, tc,
5034 #if OMPT_SUPPORT
5035                           OMPT_GET_RETURN_ADDRESS(0),
5036 #endif
5037                           task_dup);
5038     // !taskdata->td_flags.native => currently force linear spawning of tasks
5039     // for GOMP_taskloop
5040   } else if (num_tasks > num_tasks_min && !taskdata->td_flags.native) {
5041     KA_TRACE(20, ("__kmp_taskloop: T#%d, go recursive: tc %llu, #tasks %llu"
5042                   "(%lld), grain %llu, extras %llu, last_chunk %lld\n",
5043                   gtid, tc, num_tasks, num_tasks_min, grainsize, extras,
5044                   last_chunk));
5045     __kmp_taskloop_recur(loc, gtid, task, lb, ub, st, ub_glob, num_tasks,
5046                          grainsize, extras, last_chunk, tc, num_tasks_min,
5047 #if OMPT_SUPPORT
5048                          OMPT_GET_RETURN_ADDRESS(0),
5049 #endif
5050                          task_dup);
5051   } else {
5052     KA_TRACE(20, ("__kmp_taskloop: T#%d, go linear: tc %llu, #tasks %llu"
5053                   "(%lld), grain %llu, extras %llu, last_chunk %lld\n",
5054                   gtid, tc, num_tasks, num_tasks_min, grainsize, extras,
5055                   last_chunk));
5056     __kmp_taskloop_linear(loc, gtid, task, lb, ub, st, ub_glob, num_tasks,
5057                           grainsize, extras, last_chunk, tc,
5058 #if OMPT_SUPPORT
5059                           OMPT_GET_RETURN_ADDRESS(0),
5060 #endif
5061                           task_dup);
5062   }
5063 
5064 #if OMPT_SUPPORT && OMPT_OPTIONAL
5065   if (ompt_enabled.ompt_callback_work) {
5066     ompt_callbacks.ompt_callback(ompt_callback_work)(
5067         ompt_work_taskloop, ompt_scope_end, &(team_info->parallel_data),
5068         &(task_info->task_data), tc, OMPT_GET_RETURN_ADDRESS(0));
5069   }
5070 #endif
5071 
5072   if (nogroup == 0) {
5073 #if OMPT_SUPPORT && OMPT_OPTIONAL
5074     OMPT_STORE_RETURN_ADDRESS(gtid);
5075 #endif
5076     __kmpc_end_taskgroup(loc, gtid);
5077   }
5078   KA_TRACE(20, ("__kmp_taskloop(exit): T#%d\n", gtid));
5079 }
5080 
5081 /*!
5082 @ingroup TASKING
5083 @param loc       Source location information
5084 @param gtid      Global thread ID
5085 @param task      Task structure
5086 @param if_val    Value of the if clause
5087 @param lb        Pointer to loop lower bound in task structure
5088 @param ub        Pointer to loop upper bound in task structure
5089 @param st        Loop stride
5090 @param nogroup   Flag, 1 if nogroup clause specified, 0 otherwise
5091 @param sched     Schedule specified 0/1/2 for none/grainsize/num_tasks
5092 @param grainsize Schedule value if specified
5093 @param task_dup  Tasks duplication routine
5094 
5095 Execute the taskloop construct.
5096 */
5097 void __kmpc_taskloop(ident_t *loc, int gtid, kmp_task_t *task, int if_val,
5098                      kmp_uint64 *lb, kmp_uint64 *ub, kmp_int64 st, int nogroup,
5099                      int sched, kmp_uint64 grainsize, void *task_dup) {
5100   __kmp_assert_valid_gtid(gtid);
5101   KA_TRACE(20, ("__kmpc_taskloop(enter): T#%d\n", gtid));
5102   __kmp_taskloop(loc, gtid, task, if_val, lb, ub, st, nogroup, sched, grainsize,
5103                  0, task_dup);
5104   KA_TRACE(20, ("__kmpc_taskloop(exit): T#%d\n", gtid));
5105 }
5106 
5107 /*!
5108 @ingroup TASKING
5109 @param loc       Source location information
5110 @param gtid      Global thread ID
5111 @param task      Task structure
5112 @param if_val    Value of the if clause
5113 @param lb        Pointer to loop lower bound in task structure
5114 @param ub        Pointer to loop upper bound in task structure
5115 @param st        Loop stride
5116 @param nogroup   Flag, 1 if nogroup clause specified, 0 otherwise
5117 @param sched     Schedule specified 0/1/2 for none/grainsize/num_tasks
5118 @param grainsize Schedule value if specified
5119 @param modifier  Modifier 'strict' for sched, 1 if present, 0 otherwise
5120 @param task_dup  Tasks duplication routine
5121 
5122 Execute the taskloop construct.
5123 */
5124 void __kmpc_taskloop_5(ident_t *loc, int gtid, kmp_task_t *task, int if_val,
5125                        kmp_uint64 *lb, kmp_uint64 *ub, kmp_int64 st,
5126                        int nogroup, int sched, kmp_uint64 grainsize,
5127                        int modifier, void *task_dup) {
5128   __kmp_assert_valid_gtid(gtid);
5129   KA_TRACE(20, ("__kmpc_taskloop_5(enter): T#%d\n", gtid));
5130   __kmp_taskloop(loc, gtid, task, if_val, lb, ub, st, nogroup, sched, grainsize,
5131                  modifier, task_dup);
5132   KA_TRACE(20, ("__kmpc_taskloop_5(exit): T#%d\n", gtid));
5133 }
5134