1 /* 2 * kmp_tasking.cpp -- OpenMP 3.0 tasking support. 3 */ 4 5 //===----------------------------------------------------------------------===// 6 // 7 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 8 // See https://llvm.org/LICENSE.txt for license information. 9 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "kmp.h" 14 #include "kmp_i18n.h" 15 #include "kmp_itt.h" 16 #include "kmp_stats.h" 17 #include "kmp_wait_release.h" 18 #include "kmp_taskdeps.h" 19 20 #if OMPT_SUPPORT 21 #include "ompt-specific.h" 22 #endif 23 24 #if ENABLE_LIBOMPTARGET 25 static void (*tgt_target_nowait_query)(void **); 26 27 void __kmp_init_target_task() { 28 *(void **)(&tgt_target_nowait_query) = KMP_DLSYM("__tgt_target_nowait_query"); 29 } 30 #endif 31 32 /* forward declaration */ 33 static void __kmp_enable_tasking(kmp_task_team_t *task_team, 34 kmp_info_t *this_thr); 35 static void __kmp_alloc_task_deque(kmp_info_t *thread, 36 kmp_thread_data_t *thread_data); 37 static int __kmp_realloc_task_threads_data(kmp_info_t *thread, 38 kmp_task_team_t *task_team); 39 static void __kmp_bottom_half_finish_proxy(kmp_int32 gtid, kmp_task_t *ptask); 40 #if OMPX_TASKGRAPH 41 static kmp_tdg_info_t *__kmp_find_tdg(kmp_int32 tdg_id); 42 int __kmp_taskloop_task(int gtid, void *ptask); 43 #endif 44 45 #ifdef BUILD_TIED_TASK_STACK 46 47 // __kmp_trace_task_stack: print the tied tasks from the task stack in order 48 // from top do bottom 49 // 50 // gtid: global thread identifier for thread containing stack 51 // thread_data: thread data for task team thread containing stack 52 // threshold: value above which the trace statement triggers 53 // location: string identifying call site of this function (for trace) 54 static void __kmp_trace_task_stack(kmp_int32 gtid, 55 kmp_thread_data_t *thread_data, 56 int threshold, char *location) { 57 kmp_task_stack_t *task_stack = &thread_data->td.td_susp_tied_tasks; 58 kmp_taskdata_t **stack_top = task_stack->ts_top; 59 kmp_int32 entries = task_stack->ts_entries; 60 kmp_taskdata_t *tied_task; 61 62 KA_TRACE( 63 threshold, 64 ("__kmp_trace_task_stack(start): location = %s, gtid = %d, entries = %d, " 65 "first_block = %p, stack_top = %p \n", 66 location, gtid, entries, task_stack->ts_first_block, stack_top)); 67 68 KMP_DEBUG_ASSERT(stack_top != NULL); 69 KMP_DEBUG_ASSERT(entries > 0); 70 71 while (entries != 0) { 72 KMP_DEBUG_ASSERT(stack_top != &task_stack->ts_first_block.sb_block[0]); 73 // fix up ts_top if we need to pop from previous block 74 if (entries & TASK_STACK_INDEX_MASK == 0) { 75 kmp_stack_block_t *stack_block = (kmp_stack_block_t *)(stack_top); 76 77 stack_block = stack_block->sb_prev; 78 stack_top = &stack_block->sb_block[TASK_STACK_BLOCK_SIZE]; 79 } 80 81 // finish bookkeeping 82 stack_top--; 83 entries--; 84 85 tied_task = *stack_top; 86 87 KMP_DEBUG_ASSERT(tied_task != NULL); 88 KMP_DEBUG_ASSERT(tied_task->td_flags.tasktype == TASK_TIED); 89 90 KA_TRACE(threshold, 91 ("__kmp_trace_task_stack(%s): gtid=%d, entry=%d, " 92 "stack_top=%p, tied_task=%p\n", 93 location, gtid, entries, stack_top, tied_task)); 94 } 95 KMP_DEBUG_ASSERT(stack_top == &task_stack->ts_first_block.sb_block[0]); 96 97 KA_TRACE(threshold, 98 ("__kmp_trace_task_stack(exit): location = %s, gtid = %d\n", 99 location, gtid)); 100 } 101 102 // __kmp_init_task_stack: initialize the task stack for the first time 103 // after a thread_data structure is created. 104 // It should not be necessary to do this again (assuming the stack works). 105 // 106 // gtid: global thread identifier of calling thread 107 // thread_data: thread data for task team thread containing stack 108 static void __kmp_init_task_stack(kmp_int32 gtid, 109 kmp_thread_data_t *thread_data) { 110 kmp_task_stack_t *task_stack = &thread_data->td.td_susp_tied_tasks; 111 kmp_stack_block_t *first_block; 112 113 // set up the first block of the stack 114 first_block = &task_stack->ts_first_block; 115 task_stack->ts_top = (kmp_taskdata_t **)first_block; 116 memset((void *)first_block, '\0', 117 TASK_STACK_BLOCK_SIZE * sizeof(kmp_taskdata_t *)); 118 119 // initialize the stack to be empty 120 task_stack->ts_entries = TASK_STACK_EMPTY; 121 first_block->sb_next = NULL; 122 first_block->sb_prev = NULL; 123 } 124 125 // __kmp_free_task_stack: free the task stack when thread_data is destroyed. 126 // 127 // gtid: global thread identifier for calling thread 128 // thread_data: thread info for thread containing stack 129 static void __kmp_free_task_stack(kmp_int32 gtid, 130 kmp_thread_data_t *thread_data) { 131 kmp_task_stack_t *task_stack = &thread_data->td.td_susp_tied_tasks; 132 kmp_stack_block_t *stack_block = &task_stack->ts_first_block; 133 134 KMP_DEBUG_ASSERT(task_stack->ts_entries == TASK_STACK_EMPTY); 135 // free from the second block of the stack 136 while (stack_block != NULL) { 137 kmp_stack_block_t *next_block = (stack_block) ? stack_block->sb_next : NULL; 138 139 stack_block->sb_next = NULL; 140 stack_block->sb_prev = NULL; 141 if (stack_block != &task_stack->ts_first_block) { 142 __kmp_thread_free(thread, 143 stack_block); // free the block, if not the first 144 } 145 stack_block = next_block; 146 } 147 // initialize the stack to be empty 148 task_stack->ts_entries = 0; 149 task_stack->ts_top = NULL; 150 } 151 152 // __kmp_push_task_stack: Push the tied task onto the task stack. 153 // Grow the stack if necessary by allocating another block. 154 // 155 // gtid: global thread identifier for calling thread 156 // thread: thread info for thread containing stack 157 // tied_task: the task to push on the stack 158 static void __kmp_push_task_stack(kmp_int32 gtid, kmp_info_t *thread, 159 kmp_taskdata_t *tied_task) { 160 // GEH - need to consider what to do if tt_threads_data not allocated yet 161 kmp_thread_data_t *thread_data = 162 &thread->th.th_task_team->tt.tt_threads_data[__kmp_tid_from_gtid(gtid)]; 163 kmp_task_stack_t *task_stack = &thread_data->td.td_susp_tied_tasks; 164 165 if (tied_task->td_flags.team_serial || tied_task->td_flags.tasking_ser) { 166 return; // Don't push anything on stack if team or team tasks are serialized 167 } 168 169 KMP_DEBUG_ASSERT(tied_task->td_flags.tasktype == TASK_TIED); 170 KMP_DEBUG_ASSERT(task_stack->ts_top != NULL); 171 172 KA_TRACE(20, 173 ("__kmp_push_task_stack(enter): GTID: %d; THREAD: %p; TASK: %p\n", 174 gtid, thread, tied_task)); 175 // Store entry 176 *(task_stack->ts_top) = tied_task; 177 178 // Do bookkeeping for next push 179 task_stack->ts_top++; 180 task_stack->ts_entries++; 181 182 if (task_stack->ts_entries & TASK_STACK_INDEX_MASK == 0) { 183 // Find beginning of this task block 184 kmp_stack_block_t *stack_block = 185 (kmp_stack_block_t *)(task_stack->ts_top - TASK_STACK_BLOCK_SIZE); 186 187 // Check if we already have a block 188 if (stack_block->sb_next != 189 NULL) { // reset ts_top to beginning of next block 190 task_stack->ts_top = &stack_block->sb_next->sb_block[0]; 191 } else { // Alloc new block and link it up 192 kmp_stack_block_t *new_block = (kmp_stack_block_t *)__kmp_thread_calloc( 193 thread, sizeof(kmp_stack_block_t)); 194 195 task_stack->ts_top = &new_block->sb_block[0]; 196 stack_block->sb_next = new_block; 197 new_block->sb_prev = stack_block; 198 new_block->sb_next = NULL; 199 200 KA_TRACE( 201 30, 202 ("__kmp_push_task_stack(): GTID: %d; TASK: %p; Alloc new block: %p\n", 203 gtid, tied_task, new_block)); 204 } 205 } 206 KA_TRACE(20, ("__kmp_push_task_stack(exit): GTID: %d; TASK: %p\n", gtid, 207 tied_task)); 208 } 209 210 // __kmp_pop_task_stack: Pop the tied task from the task stack. Don't return 211 // the task, just check to make sure it matches the ending task passed in. 212 // 213 // gtid: global thread identifier for the calling thread 214 // thread: thread info structure containing stack 215 // tied_task: the task popped off the stack 216 // ending_task: the task that is ending (should match popped task) 217 static void __kmp_pop_task_stack(kmp_int32 gtid, kmp_info_t *thread, 218 kmp_taskdata_t *ending_task) { 219 // GEH - need to consider what to do if tt_threads_data not allocated yet 220 kmp_thread_data_t *thread_data = 221 &thread->th.th_task_team->tt_threads_data[__kmp_tid_from_gtid(gtid)]; 222 kmp_task_stack_t *task_stack = &thread_data->td.td_susp_tied_tasks; 223 kmp_taskdata_t *tied_task; 224 225 if (ending_task->td_flags.team_serial || ending_task->td_flags.tasking_ser) { 226 // Don't pop anything from stack if team or team tasks are serialized 227 return; 228 } 229 230 KMP_DEBUG_ASSERT(task_stack->ts_top != NULL); 231 KMP_DEBUG_ASSERT(task_stack->ts_entries > 0); 232 233 KA_TRACE(20, ("__kmp_pop_task_stack(enter): GTID: %d; THREAD: %p\n", gtid, 234 thread)); 235 236 // fix up ts_top if we need to pop from previous block 237 if (task_stack->ts_entries & TASK_STACK_INDEX_MASK == 0) { 238 kmp_stack_block_t *stack_block = (kmp_stack_block_t *)(task_stack->ts_top); 239 240 stack_block = stack_block->sb_prev; 241 task_stack->ts_top = &stack_block->sb_block[TASK_STACK_BLOCK_SIZE]; 242 } 243 244 // finish bookkeeping 245 task_stack->ts_top--; 246 task_stack->ts_entries--; 247 248 tied_task = *(task_stack->ts_top); 249 250 KMP_DEBUG_ASSERT(tied_task != NULL); 251 KMP_DEBUG_ASSERT(tied_task->td_flags.tasktype == TASK_TIED); 252 KMP_DEBUG_ASSERT(tied_task == ending_task); // If we built the stack correctly 253 254 KA_TRACE(20, ("__kmp_pop_task_stack(exit): GTID: %d; TASK: %p\n", gtid, 255 tied_task)); 256 return; 257 } 258 #endif /* BUILD_TIED_TASK_STACK */ 259 260 // returns 1 if new task is allowed to execute, 0 otherwise 261 // checks Task Scheduling constraint (if requested) and 262 // mutexinoutset dependencies if any 263 static bool __kmp_task_is_allowed(int gtid, const kmp_int32 is_constrained, 264 const kmp_taskdata_t *tasknew, 265 const kmp_taskdata_t *taskcurr) { 266 if (is_constrained && (tasknew->td_flags.tiedness == TASK_TIED)) { 267 // Check if the candidate obeys the Task Scheduling Constraints (TSC) 268 // only descendant of all deferred tied tasks can be scheduled, checking 269 // the last one is enough, as it in turn is the descendant of all others 270 kmp_taskdata_t *current = taskcurr->td_last_tied; 271 KMP_DEBUG_ASSERT(current != NULL); 272 // check if the task is not suspended on barrier 273 if (current->td_flags.tasktype == TASK_EXPLICIT || 274 current->td_taskwait_thread > 0) { // <= 0 on barrier 275 kmp_int32 level = current->td_level; 276 kmp_taskdata_t *parent = tasknew->td_parent; 277 while (parent != current && parent->td_level > level) { 278 // check generation up to the level of the current task 279 parent = parent->td_parent; 280 KMP_DEBUG_ASSERT(parent != NULL); 281 } 282 if (parent != current) 283 return false; 284 } 285 } 286 // Check mutexinoutset dependencies, acquire locks 287 kmp_depnode_t *node = tasknew->td_depnode; 288 #if OMPX_TASKGRAPH 289 if (!tasknew->is_taskgraph && UNLIKELY(node && (node->dn.mtx_num_locks > 0))) { 290 #else 291 if (UNLIKELY(node && (node->dn.mtx_num_locks > 0))) { 292 #endif 293 for (int i = 0; i < node->dn.mtx_num_locks; ++i) { 294 KMP_DEBUG_ASSERT(node->dn.mtx_locks[i] != NULL); 295 if (__kmp_test_lock(node->dn.mtx_locks[i], gtid)) 296 continue; 297 // could not get the lock, release previous locks 298 for (int j = i - 1; j >= 0; --j) 299 __kmp_release_lock(node->dn.mtx_locks[j], gtid); 300 return false; 301 } 302 // negative num_locks means all locks acquired successfully 303 node->dn.mtx_num_locks = -node->dn.mtx_num_locks; 304 } 305 return true; 306 } 307 308 // __kmp_realloc_task_deque: 309 // Re-allocates a task deque for a particular thread, copies the content from 310 // the old deque and adjusts the necessary data structures relating to the 311 // deque. This operation must be done with the deque_lock being held 312 static void __kmp_realloc_task_deque(kmp_info_t *thread, 313 kmp_thread_data_t *thread_data) { 314 kmp_int32 size = TASK_DEQUE_SIZE(thread_data->td); 315 KMP_DEBUG_ASSERT(TCR_4(thread_data->td.td_deque_ntasks) == size); 316 kmp_int32 new_size = 2 * size; 317 318 KE_TRACE(10, ("__kmp_realloc_task_deque: T#%d reallocating deque[from %d to " 319 "%d] for thread_data %p\n", 320 __kmp_gtid_from_thread(thread), size, new_size, thread_data)); 321 322 kmp_taskdata_t **new_deque = 323 (kmp_taskdata_t **)__kmp_allocate(new_size * sizeof(kmp_taskdata_t *)); 324 325 int i, j; 326 for (i = thread_data->td.td_deque_head, j = 0; j < size; 327 i = (i + 1) & TASK_DEQUE_MASK(thread_data->td), j++) 328 new_deque[j] = thread_data->td.td_deque[i]; 329 330 __kmp_free(thread_data->td.td_deque); 331 332 thread_data->td.td_deque_head = 0; 333 thread_data->td.td_deque_tail = size; 334 thread_data->td.td_deque = new_deque; 335 thread_data->td.td_deque_size = new_size; 336 } 337 338 static kmp_task_pri_t *__kmp_alloc_task_pri_list() { 339 kmp_task_pri_t *l = (kmp_task_pri_t *)__kmp_allocate(sizeof(kmp_task_pri_t)); 340 kmp_thread_data_t *thread_data = &l->td; 341 __kmp_init_bootstrap_lock(&thread_data->td.td_deque_lock); 342 thread_data->td.td_deque_last_stolen = -1; 343 KE_TRACE(20, ("__kmp_alloc_task_pri_list: T#%d allocating deque[%d] " 344 "for thread_data %p\n", 345 __kmp_get_gtid(), INITIAL_TASK_DEQUE_SIZE, thread_data)); 346 thread_data->td.td_deque = (kmp_taskdata_t **)__kmp_allocate( 347 INITIAL_TASK_DEQUE_SIZE * sizeof(kmp_taskdata_t *)); 348 thread_data->td.td_deque_size = INITIAL_TASK_DEQUE_SIZE; 349 return l; 350 } 351 352 // The function finds the deque of priority tasks with given priority, or 353 // allocates a new deque and put it into sorted (high -> low) list of deques. 354 // Deques of non-default priority tasks are shared between all threads in team, 355 // as opposed to per-thread deques of tasks with default priority. 356 // The function is called under the lock task_team->tt.tt_task_pri_lock. 357 static kmp_thread_data_t * 358 __kmp_get_priority_deque_data(kmp_task_team_t *task_team, kmp_int32 pri) { 359 kmp_thread_data_t *thread_data; 360 kmp_task_pri_t *lst = task_team->tt.tt_task_pri_list; 361 if (lst->priority == pri) { 362 // Found queue of tasks with given priority. 363 thread_data = &lst->td; 364 } else if (lst->priority < pri) { 365 // All current priority queues contain tasks with lower priority. 366 // Allocate new one for given priority tasks. 367 kmp_task_pri_t *list = __kmp_alloc_task_pri_list(); 368 thread_data = &list->td; 369 list->priority = pri; 370 list->next = lst; 371 task_team->tt.tt_task_pri_list = list; 372 } else { // task_team->tt.tt_task_pri_list->priority > pri 373 kmp_task_pri_t *next_queue = lst->next; 374 while (next_queue && next_queue->priority > pri) { 375 lst = next_queue; 376 next_queue = lst->next; 377 } 378 // lst->priority > pri && (next == NULL || pri >= next->priority) 379 if (next_queue == NULL) { 380 // No queue with pri priority, need to allocate new one. 381 kmp_task_pri_t *list = __kmp_alloc_task_pri_list(); 382 thread_data = &list->td; 383 list->priority = pri; 384 list->next = NULL; 385 lst->next = list; 386 } else if (next_queue->priority == pri) { 387 // Found queue of tasks with given priority. 388 thread_data = &next_queue->td; 389 } else { // lst->priority > pri > next->priority 390 // insert newly allocated between existed queues 391 kmp_task_pri_t *list = __kmp_alloc_task_pri_list(); 392 thread_data = &list->td; 393 list->priority = pri; 394 list->next = next_queue; 395 lst->next = list; 396 } 397 } 398 return thread_data; 399 } 400 401 // __kmp_push_priority_task: Add a task to the team's priority task deque 402 static kmp_int32 __kmp_push_priority_task(kmp_int32 gtid, kmp_info_t *thread, 403 kmp_taskdata_t *taskdata, 404 kmp_task_team_t *task_team, 405 kmp_int32 pri) { 406 kmp_thread_data_t *thread_data = NULL; 407 KA_TRACE(20, 408 ("__kmp_push_priority_task: T#%d trying to push task %p, pri %d.\n", 409 gtid, taskdata, pri)); 410 411 // Find task queue specific to priority value 412 kmp_task_pri_t *lst = task_team->tt.tt_task_pri_list; 413 if (UNLIKELY(lst == NULL)) { 414 __kmp_acquire_bootstrap_lock(&task_team->tt.tt_task_pri_lock); 415 if (task_team->tt.tt_task_pri_list == NULL) { 416 // List of queues is still empty, allocate one. 417 kmp_task_pri_t *list = __kmp_alloc_task_pri_list(); 418 thread_data = &list->td; 419 list->priority = pri; 420 list->next = NULL; 421 task_team->tt.tt_task_pri_list = list; 422 } else { 423 // Other thread initialized a queue. Check if it fits and get thread_data. 424 thread_data = __kmp_get_priority_deque_data(task_team, pri); 425 } 426 __kmp_release_bootstrap_lock(&task_team->tt.tt_task_pri_lock); 427 } else { 428 if (lst->priority == pri) { 429 // Found queue of tasks with given priority. 430 thread_data = &lst->td; 431 } else { 432 __kmp_acquire_bootstrap_lock(&task_team->tt.tt_task_pri_lock); 433 thread_data = __kmp_get_priority_deque_data(task_team, pri); 434 __kmp_release_bootstrap_lock(&task_team->tt.tt_task_pri_lock); 435 } 436 } 437 KMP_DEBUG_ASSERT(thread_data); 438 439 __kmp_acquire_bootstrap_lock(&thread_data->td.td_deque_lock); 440 // Check if deque is full 441 if (TCR_4(thread_data->td.td_deque_ntasks) >= 442 TASK_DEQUE_SIZE(thread_data->td)) { 443 if (__kmp_enable_task_throttling && 444 __kmp_task_is_allowed(gtid, __kmp_task_stealing_constraint, taskdata, 445 thread->th.th_current_task)) { 446 __kmp_release_bootstrap_lock(&thread_data->td.td_deque_lock); 447 KA_TRACE(20, ("__kmp_push_priority_task: T#%d deque is full; returning " 448 "TASK_NOT_PUSHED for task %p\n", 449 gtid, taskdata)); 450 return TASK_NOT_PUSHED; 451 } else { 452 // expand deque to push the task which is not allowed to execute 453 __kmp_realloc_task_deque(thread, thread_data); 454 } 455 } 456 KMP_DEBUG_ASSERT(TCR_4(thread_data->td.td_deque_ntasks) < 457 TASK_DEQUE_SIZE(thread_data->td)); 458 // Push taskdata. 459 thread_data->td.td_deque[thread_data->td.td_deque_tail] = taskdata; 460 // Wrap index. 461 thread_data->td.td_deque_tail = 462 (thread_data->td.td_deque_tail + 1) & TASK_DEQUE_MASK(thread_data->td); 463 TCW_4(thread_data->td.td_deque_ntasks, 464 TCR_4(thread_data->td.td_deque_ntasks) + 1); // Adjust task count 465 KMP_FSYNC_RELEASING(thread->th.th_current_task); // releasing self 466 KMP_FSYNC_RELEASING(taskdata); // releasing child 467 KA_TRACE(20, ("__kmp_push_priority_task: T#%d returning " 468 "TASK_SUCCESSFULLY_PUSHED: task=%p ntasks=%d head=%u tail=%u\n", 469 gtid, taskdata, thread_data->td.td_deque_ntasks, 470 thread_data->td.td_deque_head, thread_data->td.td_deque_tail)); 471 __kmp_release_bootstrap_lock(&thread_data->td.td_deque_lock); 472 task_team->tt.tt_num_task_pri++; // atomic inc 473 return TASK_SUCCESSFULLY_PUSHED; 474 } 475 476 // __kmp_push_task: Add a task to the thread's deque 477 static kmp_int32 __kmp_push_task(kmp_int32 gtid, kmp_task_t *task) { 478 kmp_info_t *thread = __kmp_threads[gtid]; 479 kmp_taskdata_t *taskdata = KMP_TASK_TO_TASKDATA(task); 480 481 // If we encounter a hidden helper task, and the current thread is not a 482 // hidden helper thread, we have to give the task to any hidden helper thread 483 // starting from its shadow one. 484 if (UNLIKELY(taskdata->td_flags.hidden_helper && 485 !KMP_HIDDEN_HELPER_THREAD(gtid))) { 486 kmp_int32 shadow_gtid = KMP_GTID_TO_SHADOW_GTID(gtid); 487 __kmpc_give_task(task, __kmp_tid_from_gtid(shadow_gtid)); 488 // Signal the hidden helper threads. 489 __kmp_hidden_helper_worker_thread_signal(); 490 return TASK_SUCCESSFULLY_PUSHED; 491 } 492 493 kmp_task_team_t *task_team = thread->th.th_task_team; 494 kmp_int32 tid = __kmp_tid_from_gtid(gtid); 495 kmp_thread_data_t *thread_data; 496 497 KA_TRACE(20, 498 ("__kmp_push_task: T#%d trying to push task %p.\n", gtid, taskdata)); 499 500 if (UNLIKELY(taskdata->td_flags.tiedness == TASK_UNTIED)) { 501 // untied task needs to increment counter so that the task structure is not 502 // freed prematurely 503 kmp_int32 counter = 1 + KMP_ATOMIC_INC(&taskdata->td_untied_count); 504 KMP_DEBUG_USE_VAR(counter); 505 KA_TRACE( 506 20, 507 ("__kmp_push_task: T#%d untied_count (%d) incremented for task %p\n", 508 gtid, counter, taskdata)); 509 } 510 511 // The first check avoids building task_team thread data if serialized 512 if (UNLIKELY(taskdata->td_flags.task_serial)) { 513 KA_TRACE(20, ("__kmp_push_task: T#%d team serialized; returning " 514 "TASK_NOT_PUSHED for task %p\n", 515 gtid, taskdata)); 516 return TASK_NOT_PUSHED; 517 } 518 519 // Now that serialized tasks have returned, we can assume that we are not in 520 // immediate exec mode 521 KMP_DEBUG_ASSERT(__kmp_tasking_mode != tskm_immediate_exec); 522 if (UNLIKELY(!KMP_TASKING_ENABLED(task_team))) { 523 __kmp_enable_tasking(task_team, thread); 524 } 525 KMP_DEBUG_ASSERT(TCR_4(task_team->tt.tt_found_tasks) == TRUE); 526 KMP_DEBUG_ASSERT(TCR_PTR(task_team->tt.tt_threads_data) != NULL); 527 528 if (taskdata->td_flags.priority_specified && task->data2.priority > 0 && 529 __kmp_max_task_priority > 0) { 530 int pri = KMP_MIN(task->data2.priority, __kmp_max_task_priority); 531 return __kmp_push_priority_task(gtid, thread, taskdata, task_team, pri); 532 } 533 534 // Find tasking deque specific to encountering thread 535 thread_data = &task_team->tt.tt_threads_data[tid]; 536 537 // No lock needed since only owner can allocate. If the task is hidden_helper, 538 // we don't need it either because we have initialized the dequeue for hidden 539 // helper thread data. 540 if (UNLIKELY(thread_data->td.td_deque == NULL)) { 541 __kmp_alloc_task_deque(thread, thread_data); 542 } 543 544 int locked = 0; 545 // Check if deque is full 546 if (TCR_4(thread_data->td.td_deque_ntasks) >= 547 TASK_DEQUE_SIZE(thread_data->td)) { 548 if (__kmp_enable_task_throttling && 549 __kmp_task_is_allowed(gtid, __kmp_task_stealing_constraint, taskdata, 550 thread->th.th_current_task)) { 551 KA_TRACE(20, ("__kmp_push_task: T#%d deque is full; returning " 552 "TASK_NOT_PUSHED for task %p\n", 553 gtid, taskdata)); 554 return TASK_NOT_PUSHED; 555 } else { 556 __kmp_acquire_bootstrap_lock(&thread_data->td.td_deque_lock); 557 locked = 1; 558 if (TCR_4(thread_data->td.td_deque_ntasks) >= 559 TASK_DEQUE_SIZE(thread_data->td)) { 560 // expand deque to push the task which is not allowed to execute 561 __kmp_realloc_task_deque(thread, thread_data); 562 } 563 } 564 } 565 // Lock the deque for the task push operation 566 if (!locked) { 567 __kmp_acquire_bootstrap_lock(&thread_data->td.td_deque_lock); 568 // Need to recheck as we can get a proxy task from thread outside of OpenMP 569 if (TCR_4(thread_data->td.td_deque_ntasks) >= 570 TASK_DEQUE_SIZE(thread_data->td)) { 571 if (__kmp_enable_task_throttling && 572 __kmp_task_is_allowed(gtid, __kmp_task_stealing_constraint, taskdata, 573 thread->th.th_current_task)) { 574 __kmp_release_bootstrap_lock(&thread_data->td.td_deque_lock); 575 KA_TRACE(20, ("__kmp_push_task: T#%d deque is full on 2nd check; " 576 "returning TASK_NOT_PUSHED for task %p\n", 577 gtid, taskdata)); 578 return TASK_NOT_PUSHED; 579 } else { 580 // expand deque to push the task which is not allowed to execute 581 __kmp_realloc_task_deque(thread, thread_data); 582 } 583 } 584 } 585 // Must have room since no thread can add tasks but calling thread 586 KMP_DEBUG_ASSERT(TCR_4(thread_data->td.td_deque_ntasks) < 587 TASK_DEQUE_SIZE(thread_data->td)); 588 589 thread_data->td.td_deque[thread_data->td.td_deque_tail] = 590 taskdata; // Push taskdata 591 // Wrap index. 592 thread_data->td.td_deque_tail = 593 (thread_data->td.td_deque_tail + 1) & TASK_DEQUE_MASK(thread_data->td); 594 TCW_4(thread_data->td.td_deque_ntasks, 595 TCR_4(thread_data->td.td_deque_ntasks) + 1); // Adjust task count 596 KMP_FSYNC_RELEASING(thread->th.th_current_task); // releasing self 597 KMP_FSYNC_RELEASING(taskdata); // releasing child 598 KA_TRACE(20, ("__kmp_push_task: T#%d returning TASK_SUCCESSFULLY_PUSHED: " 599 "task=%p ntasks=%d head=%u tail=%u\n", 600 gtid, taskdata, thread_data->td.td_deque_ntasks, 601 thread_data->td.td_deque_head, thread_data->td.td_deque_tail)); 602 603 __kmp_release_bootstrap_lock(&thread_data->td.td_deque_lock); 604 605 return TASK_SUCCESSFULLY_PUSHED; 606 } 607 608 // __kmp_pop_current_task_from_thread: set up current task from called thread 609 // when team ends 610 // 611 // this_thr: thread structure to set current_task in. 612 void __kmp_pop_current_task_from_thread(kmp_info_t *this_thr) { 613 KF_TRACE(10, ("__kmp_pop_current_task_from_thread(enter): T#%d " 614 "this_thread=%p, curtask=%p, " 615 "curtask_parent=%p\n", 616 0, this_thr, this_thr->th.th_current_task, 617 this_thr->th.th_current_task->td_parent)); 618 619 this_thr->th.th_current_task = this_thr->th.th_current_task->td_parent; 620 621 KF_TRACE(10, ("__kmp_pop_current_task_from_thread(exit): T#%d " 622 "this_thread=%p, curtask=%p, " 623 "curtask_parent=%p\n", 624 0, this_thr, this_thr->th.th_current_task, 625 this_thr->th.th_current_task->td_parent)); 626 } 627 628 // __kmp_push_current_task_to_thread: set up current task in called thread for a 629 // new team 630 // 631 // this_thr: thread structure to set up 632 // team: team for implicit task data 633 // tid: thread within team to set up 634 void __kmp_push_current_task_to_thread(kmp_info_t *this_thr, kmp_team_t *team, 635 int tid) { 636 // current task of the thread is a parent of the new just created implicit 637 // tasks of new team 638 KF_TRACE(10, ("__kmp_push_current_task_to_thread(enter): T#%d this_thread=%p " 639 "curtask=%p " 640 "parent_task=%p\n", 641 tid, this_thr, this_thr->th.th_current_task, 642 team->t.t_implicit_task_taskdata[tid].td_parent)); 643 644 KMP_DEBUG_ASSERT(this_thr != NULL); 645 646 if (tid == 0) { 647 if (this_thr->th.th_current_task != &team->t.t_implicit_task_taskdata[0]) { 648 team->t.t_implicit_task_taskdata[0].td_parent = 649 this_thr->th.th_current_task; 650 this_thr->th.th_current_task = &team->t.t_implicit_task_taskdata[0]; 651 } 652 } else { 653 team->t.t_implicit_task_taskdata[tid].td_parent = 654 team->t.t_implicit_task_taskdata[0].td_parent; 655 this_thr->th.th_current_task = &team->t.t_implicit_task_taskdata[tid]; 656 } 657 658 KF_TRACE(10, ("__kmp_push_current_task_to_thread(exit): T#%d this_thread=%p " 659 "curtask=%p " 660 "parent_task=%p\n", 661 tid, this_thr, this_thr->th.th_current_task, 662 team->t.t_implicit_task_taskdata[tid].td_parent)); 663 } 664 665 // __kmp_task_start: bookkeeping for a task starting execution 666 // 667 // GTID: global thread id of calling thread 668 // task: task starting execution 669 // current_task: task suspending 670 static void __kmp_task_start(kmp_int32 gtid, kmp_task_t *task, 671 kmp_taskdata_t *current_task) { 672 kmp_taskdata_t *taskdata = KMP_TASK_TO_TASKDATA(task); 673 kmp_info_t *thread = __kmp_threads[gtid]; 674 675 KA_TRACE(10, 676 ("__kmp_task_start(enter): T#%d starting task %p: current_task=%p\n", 677 gtid, taskdata, current_task)); 678 679 KMP_DEBUG_ASSERT(taskdata->td_flags.tasktype == TASK_EXPLICIT); 680 681 // mark currently executing task as suspended 682 // TODO: GEH - make sure root team implicit task is initialized properly. 683 // KMP_DEBUG_ASSERT( current_task -> td_flags.executing == 1 ); 684 current_task->td_flags.executing = 0; 685 686 // Add task to stack if tied 687 #ifdef BUILD_TIED_TASK_STACK 688 if (taskdata->td_flags.tiedness == TASK_TIED) { 689 __kmp_push_task_stack(gtid, thread, taskdata); 690 } 691 #endif /* BUILD_TIED_TASK_STACK */ 692 693 // mark starting task as executing and as current task 694 thread->th.th_current_task = taskdata; 695 696 KMP_DEBUG_ASSERT(taskdata->td_flags.started == 0 || 697 taskdata->td_flags.tiedness == TASK_UNTIED); 698 KMP_DEBUG_ASSERT(taskdata->td_flags.executing == 0 || 699 taskdata->td_flags.tiedness == TASK_UNTIED); 700 taskdata->td_flags.started = 1; 701 taskdata->td_flags.executing = 1; 702 KMP_DEBUG_ASSERT(taskdata->td_flags.complete == 0); 703 KMP_DEBUG_ASSERT(taskdata->td_flags.freed == 0); 704 705 // GEH TODO: shouldn't we pass some sort of location identifier here? 706 // APT: yes, we will pass location here. 707 // need to store current thread state (in a thread or taskdata structure) 708 // before setting work_state, otherwise wrong state is set after end of task 709 710 KA_TRACE(10, ("__kmp_task_start(exit): T#%d task=%p\n", gtid, taskdata)); 711 712 return; 713 } 714 715 #if OMPT_SUPPORT 716 //------------------------------------------------------------------------------ 717 // __ompt_task_init: 718 // Initialize OMPT fields maintained by a task. This will only be called after 719 // ompt_start_tool, so we already know whether ompt is enabled or not. 720 721 static inline void __ompt_task_init(kmp_taskdata_t *task, int tid) { 722 // The calls to __ompt_task_init already have the ompt_enabled condition. 723 task->ompt_task_info.task_data.value = 0; 724 task->ompt_task_info.frame.exit_frame = ompt_data_none; 725 task->ompt_task_info.frame.enter_frame = ompt_data_none; 726 task->ompt_task_info.frame.exit_frame_flags = 727 ompt_frame_runtime | ompt_frame_framepointer; 728 task->ompt_task_info.frame.enter_frame_flags = 729 ompt_frame_runtime | ompt_frame_framepointer; 730 task->ompt_task_info.dispatch_chunk.start = 0; 731 task->ompt_task_info.dispatch_chunk.iterations = 0; 732 } 733 734 // __ompt_task_start: 735 // Build and trigger task-begin event 736 static inline void __ompt_task_start(kmp_task_t *task, 737 kmp_taskdata_t *current_task, 738 kmp_int32 gtid) { 739 kmp_taskdata_t *taskdata = KMP_TASK_TO_TASKDATA(task); 740 ompt_task_status_t status = ompt_task_switch; 741 if (__kmp_threads[gtid]->th.ompt_thread_info.ompt_task_yielded) { 742 status = ompt_task_yield; 743 __kmp_threads[gtid]->th.ompt_thread_info.ompt_task_yielded = 0; 744 } 745 /* let OMPT know that we're about to run this task */ 746 if (ompt_enabled.ompt_callback_task_schedule) { 747 ompt_callbacks.ompt_callback(ompt_callback_task_schedule)( 748 &(current_task->ompt_task_info.task_data), status, 749 &(taskdata->ompt_task_info.task_data)); 750 } 751 taskdata->ompt_task_info.scheduling_parent = current_task; 752 } 753 754 // __ompt_task_finish: 755 // Build and trigger final task-schedule event 756 static inline void __ompt_task_finish(kmp_task_t *task, 757 kmp_taskdata_t *resumed_task, 758 ompt_task_status_t status) { 759 if (ompt_enabled.ompt_callback_task_schedule) { 760 kmp_taskdata_t *taskdata = KMP_TASK_TO_TASKDATA(task); 761 if (__kmp_omp_cancellation && taskdata->td_taskgroup && 762 taskdata->td_taskgroup->cancel_request == cancel_taskgroup) { 763 status = ompt_task_cancel; 764 } 765 766 /* let OMPT know that we're returning to the callee task */ 767 ompt_callbacks.ompt_callback(ompt_callback_task_schedule)( 768 &(taskdata->ompt_task_info.task_data), status, 769 (resumed_task ? &(resumed_task->ompt_task_info.task_data) : NULL)); 770 } 771 } 772 #endif 773 774 template <bool ompt> 775 static void __kmpc_omp_task_begin_if0_template(ident_t *loc_ref, kmp_int32 gtid, 776 kmp_task_t *task, 777 void *frame_address, 778 void *return_address) { 779 kmp_taskdata_t *taskdata = KMP_TASK_TO_TASKDATA(task); 780 kmp_taskdata_t *current_task = __kmp_threads[gtid]->th.th_current_task; 781 782 KA_TRACE(10, ("__kmpc_omp_task_begin_if0(enter): T#%d loc=%p task=%p " 783 "current_task=%p\n", 784 gtid, loc_ref, taskdata, current_task)); 785 786 if (UNLIKELY(taskdata->td_flags.tiedness == TASK_UNTIED)) { 787 // untied task needs to increment counter so that the task structure is not 788 // freed prematurely 789 kmp_int32 counter = 1 + KMP_ATOMIC_INC(&taskdata->td_untied_count); 790 KMP_DEBUG_USE_VAR(counter); 791 KA_TRACE(20, ("__kmpc_omp_task_begin_if0: T#%d untied_count (%d) " 792 "incremented for task %p\n", 793 gtid, counter, taskdata)); 794 } 795 796 taskdata->td_flags.task_serial = 797 1; // Execute this task immediately, not deferred. 798 __kmp_task_start(gtid, task, current_task); 799 800 #if OMPT_SUPPORT 801 if (ompt) { 802 if (current_task->ompt_task_info.frame.enter_frame.ptr == NULL) { 803 current_task->ompt_task_info.frame.enter_frame.ptr = 804 taskdata->ompt_task_info.frame.exit_frame.ptr = frame_address; 805 current_task->ompt_task_info.frame.enter_frame_flags = 806 taskdata->ompt_task_info.frame.exit_frame_flags = 807 ompt_frame_application | ompt_frame_framepointer; 808 } 809 if (ompt_enabled.ompt_callback_task_create) { 810 ompt_task_info_t *parent_info = &(current_task->ompt_task_info); 811 ompt_callbacks.ompt_callback(ompt_callback_task_create)( 812 &(parent_info->task_data), &(parent_info->frame), 813 &(taskdata->ompt_task_info.task_data), 814 ompt_task_explicit | TASK_TYPE_DETAILS_FORMAT(taskdata), 0, 815 return_address); 816 } 817 __ompt_task_start(task, current_task, gtid); 818 } 819 #endif // OMPT_SUPPORT 820 821 KA_TRACE(10, ("__kmpc_omp_task_begin_if0(exit): T#%d loc=%p task=%p,\n", gtid, 822 loc_ref, taskdata)); 823 } 824 825 #if OMPT_SUPPORT 826 OMPT_NOINLINE 827 static void __kmpc_omp_task_begin_if0_ompt(ident_t *loc_ref, kmp_int32 gtid, 828 kmp_task_t *task, 829 void *frame_address, 830 void *return_address) { 831 __kmpc_omp_task_begin_if0_template<true>(loc_ref, gtid, task, frame_address, 832 return_address); 833 } 834 #endif // OMPT_SUPPORT 835 836 // __kmpc_omp_task_begin_if0: report that a given serialized task has started 837 // execution 838 // 839 // loc_ref: source location information; points to beginning of task block. 840 // gtid: global thread number. 841 // task: task thunk for the started task. 842 #ifdef __s390x__ 843 // This is required for OMPT_GET_FRAME_ADDRESS(1) to compile on s390x. 844 // In order for it to work correctly, the caller also needs to be compiled with 845 // backchain. If a caller is compiled without backchain, 846 // OMPT_GET_FRAME_ADDRESS(1) will produce an incorrect value, but will not 847 // crash. 848 __attribute__((target("backchain"))) 849 #endif 850 void __kmpc_omp_task_begin_if0(ident_t *loc_ref, kmp_int32 gtid, 851 kmp_task_t *task) { 852 #if OMPT_SUPPORT 853 if (UNLIKELY(ompt_enabled.enabled)) { 854 OMPT_STORE_RETURN_ADDRESS(gtid); 855 __kmpc_omp_task_begin_if0_ompt(loc_ref, gtid, task, 856 OMPT_GET_FRAME_ADDRESS(1), 857 OMPT_LOAD_RETURN_ADDRESS(gtid)); 858 return; 859 } 860 #endif 861 __kmpc_omp_task_begin_if0_template<false>(loc_ref, gtid, task, NULL, NULL); 862 } 863 864 #ifdef TASK_UNUSED 865 // __kmpc_omp_task_begin: report that a given task has started execution 866 // NEVER GENERATED BY COMPILER, DEPRECATED!!! 867 void __kmpc_omp_task_begin(ident_t *loc_ref, kmp_int32 gtid, kmp_task_t *task) { 868 kmp_taskdata_t *current_task = __kmp_threads[gtid]->th.th_current_task; 869 870 KA_TRACE( 871 10, 872 ("__kmpc_omp_task_begin(enter): T#%d loc=%p task=%p current_task=%p\n", 873 gtid, loc_ref, KMP_TASK_TO_TASKDATA(task), current_task)); 874 875 __kmp_task_start(gtid, task, current_task); 876 877 KA_TRACE(10, ("__kmpc_omp_task_begin(exit): T#%d loc=%p task=%p,\n", gtid, 878 loc_ref, KMP_TASK_TO_TASKDATA(task))); 879 return; 880 } 881 #endif // TASK_UNUSED 882 883 // __kmp_free_task: free the current task space and the space for shareds 884 // 885 // gtid: Global thread ID of calling thread 886 // taskdata: task to free 887 // thread: thread data structure of caller 888 static void __kmp_free_task(kmp_int32 gtid, kmp_taskdata_t *taskdata, 889 kmp_info_t *thread) { 890 KA_TRACE(30, ("__kmp_free_task: T#%d freeing data from task %p\n", gtid, 891 taskdata)); 892 893 // Check to make sure all flags and counters have the correct values 894 KMP_DEBUG_ASSERT(taskdata->td_flags.tasktype == TASK_EXPLICIT); 895 KMP_DEBUG_ASSERT(taskdata->td_flags.executing == 0); 896 KMP_DEBUG_ASSERT(taskdata->td_flags.complete == 1); 897 KMP_DEBUG_ASSERT(taskdata->td_flags.freed == 0); 898 KMP_DEBUG_ASSERT(taskdata->td_allocated_child_tasks == 0 || 899 taskdata->td_flags.task_serial == 1); 900 KMP_DEBUG_ASSERT(taskdata->td_incomplete_child_tasks == 0); 901 kmp_task_t *task = KMP_TASKDATA_TO_TASK(taskdata); 902 // Clear data to not be re-used later by mistake. 903 task->data1.destructors = NULL; 904 task->data2.priority = 0; 905 906 taskdata->td_flags.freed = 1; 907 #if OMPX_TASKGRAPH 908 // do not free tasks in taskgraph 909 if (!taskdata->is_taskgraph) { 910 #endif 911 // deallocate the taskdata and shared variable blocks associated with this task 912 #if USE_FAST_MEMORY 913 __kmp_fast_free(thread, taskdata); 914 #else /* ! USE_FAST_MEMORY */ 915 __kmp_thread_free(thread, taskdata); 916 #endif 917 #if OMPX_TASKGRAPH 918 } else { 919 taskdata->td_flags.complete = 0; 920 taskdata->td_flags.started = 0; 921 taskdata->td_flags.freed = 0; 922 taskdata->td_flags.executing = 0; 923 taskdata->td_flags.task_serial = 924 (taskdata->td_parent->td_flags.final || 925 taskdata->td_flags.team_serial || taskdata->td_flags.tasking_ser); 926 927 // taskdata->td_allow_completion_event.pending_events_count = 1; 928 KMP_ATOMIC_ST_RLX(&taskdata->td_untied_count, 0); 929 KMP_ATOMIC_ST_RLX(&taskdata->td_incomplete_child_tasks, 0); 930 // start at one because counts current task and children 931 KMP_ATOMIC_ST_RLX(&taskdata->td_allocated_child_tasks, 1); 932 } 933 #endif 934 935 KA_TRACE(20, ("__kmp_free_task: T#%d freed task %p\n", gtid, taskdata)); 936 } 937 938 // __kmp_free_task_and_ancestors: free the current task and ancestors without 939 // children 940 // 941 // gtid: Global thread ID of calling thread 942 // taskdata: task to free 943 // thread: thread data structure of caller 944 static void __kmp_free_task_and_ancestors(kmp_int32 gtid, 945 kmp_taskdata_t *taskdata, 946 kmp_info_t *thread) { 947 // Proxy tasks must always be allowed to free their parents 948 // because they can be run in background even in serial mode. 949 kmp_int32 team_serial = 950 (taskdata->td_flags.team_serial || taskdata->td_flags.tasking_ser) && 951 !taskdata->td_flags.proxy; 952 KMP_DEBUG_ASSERT(taskdata->td_flags.tasktype == TASK_EXPLICIT); 953 954 kmp_int32 children = KMP_ATOMIC_DEC(&taskdata->td_allocated_child_tasks) - 1; 955 KMP_DEBUG_ASSERT(children >= 0); 956 957 // Now, go up the ancestor tree to see if any ancestors can now be freed. 958 while (children == 0) { 959 kmp_taskdata_t *parent_taskdata = taskdata->td_parent; 960 961 KA_TRACE(20, ("__kmp_free_task_and_ancestors(enter): T#%d task %p complete " 962 "and freeing itself\n", 963 gtid, taskdata)); 964 965 // --- Deallocate my ancestor task --- 966 __kmp_free_task(gtid, taskdata, thread); 967 968 taskdata = parent_taskdata; 969 970 if (team_serial) 971 return; 972 // Stop checking ancestors at implicit task instead of walking up ancestor 973 // tree to avoid premature deallocation of ancestors. 974 if (taskdata->td_flags.tasktype == TASK_IMPLICIT) { 975 if (taskdata->td_dephash) { // do we need to cleanup dephash? 976 int children = KMP_ATOMIC_LD_ACQ(&taskdata->td_incomplete_child_tasks); 977 kmp_tasking_flags_t flags_old = taskdata->td_flags; 978 if (children == 0 && flags_old.complete == 1) { 979 kmp_tasking_flags_t flags_new = flags_old; 980 flags_new.complete = 0; 981 if (KMP_COMPARE_AND_STORE_ACQ32( 982 RCAST(kmp_int32 *, &taskdata->td_flags), 983 *RCAST(kmp_int32 *, &flags_old), 984 *RCAST(kmp_int32 *, &flags_new))) { 985 KA_TRACE(100, ("__kmp_free_task_and_ancestors: T#%d cleans " 986 "dephash of implicit task %p\n", 987 gtid, taskdata)); 988 // cleanup dephash of finished implicit task 989 __kmp_dephash_free_entries(thread, taskdata->td_dephash); 990 } 991 } 992 } 993 return; 994 } 995 // Predecrement simulated by "- 1" calculation 996 children = KMP_ATOMIC_DEC(&taskdata->td_allocated_child_tasks) - 1; 997 KMP_DEBUG_ASSERT(children >= 0); 998 } 999 1000 KA_TRACE( 1001 20, ("__kmp_free_task_and_ancestors(exit): T#%d task %p has %d children; " 1002 "not freeing it yet\n", 1003 gtid, taskdata, children)); 1004 } 1005 1006 // Only need to keep track of child task counts if any of the following: 1007 // 1. team parallel and tasking not serialized; 1008 // 2. it is a proxy or detachable or hidden helper task 1009 // 3. the children counter of its parent task is greater than 0. 1010 // The reason for the 3rd one is for serialized team that found detached task, 1011 // hidden helper task, T. In this case, the execution of T is still deferred, 1012 // and it is also possible that a regular task depends on T. In this case, if we 1013 // don't track the children, task synchronization will be broken. 1014 static bool __kmp_track_children_task(kmp_taskdata_t *taskdata) { 1015 kmp_tasking_flags_t flags = taskdata->td_flags; 1016 bool ret = !(flags.team_serial || flags.tasking_ser); 1017 ret = ret || flags.proxy == TASK_PROXY || 1018 flags.detachable == TASK_DETACHABLE || flags.hidden_helper; 1019 ret = ret || 1020 KMP_ATOMIC_LD_ACQ(&taskdata->td_parent->td_incomplete_child_tasks) > 0; 1021 #if OMPX_TASKGRAPH 1022 if (taskdata->td_taskgroup && taskdata->is_taskgraph) 1023 ret = ret || KMP_ATOMIC_LD_ACQ(&taskdata->td_taskgroup->count) > 0; 1024 #endif 1025 return ret; 1026 } 1027 1028 // __kmp_task_finish: bookkeeping to do when a task finishes execution 1029 // 1030 // gtid: global thread ID for calling thread 1031 // task: task to be finished 1032 // resumed_task: task to be resumed. (may be NULL if task is serialized) 1033 // 1034 // template<ompt>: effectively ompt_enabled.enabled!=0 1035 // the version with ompt=false is inlined, allowing to optimize away all ompt 1036 // code in this case 1037 template <bool ompt> 1038 static void __kmp_task_finish(kmp_int32 gtid, kmp_task_t *task, 1039 kmp_taskdata_t *resumed_task) { 1040 kmp_taskdata_t *taskdata = KMP_TASK_TO_TASKDATA(task); 1041 kmp_info_t *thread = __kmp_threads[gtid]; 1042 kmp_task_team_t *task_team = 1043 thread->th.th_task_team; // might be NULL for serial teams... 1044 #if OMPX_TASKGRAPH 1045 // to avoid seg fault when we need to access taskdata->td_flags after free when using vanilla taskloop 1046 bool is_taskgraph; 1047 #endif 1048 #if KMP_DEBUG 1049 kmp_int32 children = 0; 1050 #endif 1051 KA_TRACE(10, ("__kmp_task_finish(enter): T#%d finishing task %p and resuming " 1052 "task %p\n", 1053 gtid, taskdata, resumed_task)); 1054 1055 KMP_DEBUG_ASSERT(taskdata->td_flags.tasktype == TASK_EXPLICIT); 1056 1057 #if OMPX_TASKGRAPH 1058 is_taskgraph = taskdata->is_taskgraph; 1059 #endif 1060 1061 // Pop task from stack if tied 1062 #ifdef BUILD_TIED_TASK_STACK 1063 if (taskdata->td_flags.tiedness == TASK_TIED) { 1064 __kmp_pop_task_stack(gtid, thread, taskdata); 1065 } 1066 #endif /* BUILD_TIED_TASK_STACK */ 1067 1068 if (UNLIKELY(taskdata->td_flags.tiedness == TASK_UNTIED)) { 1069 // untied task needs to check the counter so that the task structure is not 1070 // freed prematurely 1071 kmp_int32 counter = KMP_ATOMIC_DEC(&taskdata->td_untied_count) - 1; 1072 KA_TRACE( 1073 20, 1074 ("__kmp_task_finish: T#%d untied_count (%d) decremented for task %p\n", 1075 gtid, counter, taskdata)); 1076 if (counter > 0) { 1077 // untied task is not done, to be continued possibly by other thread, do 1078 // not free it now 1079 if (resumed_task == NULL) { 1080 KMP_DEBUG_ASSERT(taskdata->td_flags.task_serial); 1081 resumed_task = taskdata->td_parent; // In a serialized task, the resumed 1082 // task is the parent 1083 } 1084 thread->th.th_current_task = resumed_task; // restore current_task 1085 resumed_task->td_flags.executing = 1; // resume previous task 1086 KA_TRACE(10, ("__kmp_task_finish(exit): T#%d partially done task %p, " 1087 "resuming task %p\n", 1088 gtid, taskdata, resumed_task)); 1089 return; 1090 } 1091 } 1092 1093 // bookkeeping for resuming task: 1094 // GEH - note tasking_ser => task_serial 1095 KMP_DEBUG_ASSERT( 1096 (taskdata->td_flags.tasking_ser || taskdata->td_flags.task_serial) == 1097 taskdata->td_flags.task_serial); 1098 if (taskdata->td_flags.task_serial) { 1099 if (resumed_task == NULL) { 1100 resumed_task = taskdata->td_parent; // In a serialized task, the resumed 1101 // task is the parent 1102 } 1103 } else { 1104 KMP_DEBUG_ASSERT(resumed_task != 1105 NULL); // verify that resumed task is passed as argument 1106 } 1107 1108 /* If the tasks' destructor thunk flag has been set, we need to invoke the 1109 destructor thunk that has been generated by the compiler. The code is 1110 placed here, since at this point other tasks might have been released 1111 hence overlapping the destructor invocations with some other work in the 1112 released tasks. The OpenMP spec is not specific on when the destructors 1113 are invoked, so we should be free to choose. */ 1114 if (UNLIKELY(taskdata->td_flags.destructors_thunk)) { 1115 kmp_routine_entry_t destr_thunk = task->data1.destructors; 1116 KMP_ASSERT(destr_thunk); 1117 destr_thunk(gtid, task); 1118 } 1119 1120 KMP_DEBUG_ASSERT(taskdata->td_flags.complete == 0); 1121 KMP_DEBUG_ASSERT(taskdata->td_flags.started == 1); 1122 KMP_DEBUG_ASSERT(taskdata->td_flags.freed == 0); 1123 1124 bool completed = true; 1125 if (UNLIKELY(taskdata->td_flags.detachable == TASK_DETACHABLE)) { 1126 if (taskdata->td_allow_completion_event.type == 1127 KMP_EVENT_ALLOW_COMPLETION) { 1128 // event hasn't been fulfilled yet. Try to detach task. 1129 __kmp_acquire_tas_lock(&taskdata->td_allow_completion_event.lock, gtid); 1130 if (taskdata->td_allow_completion_event.type == 1131 KMP_EVENT_ALLOW_COMPLETION) { 1132 // task finished execution 1133 KMP_DEBUG_ASSERT(taskdata->td_flags.executing == 1); 1134 taskdata->td_flags.executing = 0; // suspend the finishing task 1135 1136 #if OMPT_SUPPORT 1137 // For a detached task, which is not completed, we switch back 1138 // the omp_fulfill_event signals completion 1139 // locking is necessary to avoid a race with ompt_task_late_fulfill 1140 if (ompt) 1141 __ompt_task_finish(task, resumed_task, ompt_task_detach); 1142 #endif 1143 1144 // no access to taskdata after this point! 1145 // __kmp_fulfill_event might free taskdata at any time from now 1146 1147 taskdata->td_flags.proxy = TASK_PROXY; // proxify! 1148 completed = false; 1149 } 1150 __kmp_release_tas_lock(&taskdata->td_allow_completion_event.lock, gtid); 1151 } 1152 } 1153 1154 // Tasks with valid target async handles must be re-enqueued. 1155 if (taskdata->td_target_data.async_handle != NULL) { 1156 // Note: no need to translate gtid to its shadow. If the current thread is a 1157 // hidden helper one, then the gtid is already correct. Otherwise, hidden 1158 // helper threads are disabled, and gtid refers to a OpenMP thread. 1159 __kmpc_give_task(task, __kmp_tid_from_gtid(gtid)); 1160 if (KMP_HIDDEN_HELPER_THREAD(gtid)) 1161 __kmp_hidden_helper_worker_thread_signal(); 1162 completed = false; 1163 } 1164 1165 if (completed) { 1166 taskdata->td_flags.complete = 1; // mark the task as completed 1167 #if OMPX_TASKGRAPH 1168 taskdata->td_flags.onced = 1; // mark the task as ran once already 1169 #endif 1170 1171 #if OMPT_SUPPORT 1172 // This is not a detached task, we are done here 1173 if (ompt) 1174 __ompt_task_finish(task, resumed_task, ompt_task_complete); 1175 #endif 1176 // TODO: What would be the balance between the conditions in the function 1177 // and an atomic operation? 1178 if (__kmp_track_children_task(taskdata)) { 1179 __kmp_release_deps(gtid, taskdata); 1180 // Predecrement simulated by "- 1" calculation 1181 #if KMP_DEBUG 1182 children = -1 + 1183 #endif 1184 KMP_ATOMIC_DEC(&taskdata->td_parent->td_incomplete_child_tasks); 1185 KMP_DEBUG_ASSERT(children >= 0); 1186 #if OMPX_TASKGRAPH 1187 if (taskdata->td_taskgroup && !taskdata->is_taskgraph) 1188 #else 1189 if (taskdata->td_taskgroup) 1190 #endif 1191 KMP_ATOMIC_DEC(&taskdata->td_taskgroup->count); 1192 } else if (task_team && (task_team->tt.tt_found_proxy_tasks || 1193 task_team->tt.tt_hidden_helper_task_encountered)) { 1194 // if we found proxy or hidden helper tasks there could exist a dependency 1195 // chain with the proxy task as origin 1196 __kmp_release_deps(gtid, taskdata); 1197 } 1198 // td_flags.executing must be marked as 0 after __kmp_release_deps has been 1199 // called. Othertwise, if a task is executed immediately from the 1200 // release_deps code, the flag will be reset to 1 again by this same 1201 // function 1202 KMP_DEBUG_ASSERT(taskdata->td_flags.executing == 1); 1203 taskdata->td_flags.executing = 0; // suspend the finishing task 1204 1205 // Decrement the counter of hidden helper tasks to be executed. 1206 if (taskdata->td_flags.hidden_helper) { 1207 // Hidden helper tasks can only be executed by hidden helper threads. 1208 KMP_ASSERT(KMP_HIDDEN_HELPER_THREAD(gtid)); 1209 KMP_ATOMIC_DEC(&__kmp_unexecuted_hidden_helper_tasks); 1210 } 1211 } 1212 1213 KA_TRACE( 1214 20, ("__kmp_task_finish: T#%d finished task %p, %d incomplete children\n", 1215 gtid, taskdata, children)); 1216 1217 // Free this task and then ancestor tasks if they have no children. 1218 // Restore th_current_task first as suggested by John: 1219 // johnmc: if an asynchronous inquiry peers into the runtime system 1220 // it doesn't see the freed task as the current task. 1221 thread->th.th_current_task = resumed_task; 1222 if (completed) 1223 __kmp_free_task_and_ancestors(gtid, taskdata, thread); 1224 1225 // TODO: GEH - make sure root team implicit task is initialized properly. 1226 // KMP_DEBUG_ASSERT( resumed_task->td_flags.executing == 0 ); 1227 resumed_task->td_flags.executing = 1; // resume previous task 1228 1229 #if OMPX_TASKGRAPH 1230 if (is_taskgraph && __kmp_track_children_task(taskdata) && 1231 taskdata->td_taskgroup) { 1232 // TDG: we only release taskgroup barrier here because 1233 // free_task_and_ancestors will call 1234 // __kmp_free_task, which resets all task parameters such as 1235 // taskdata->started, etc. If we release the barrier earlier, these 1236 // parameters could be read before being reset. This is not an issue for 1237 // non-TDG implementation because we never reuse a task(data) structure 1238 KMP_ATOMIC_DEC(&taskdata->td_taskgroup->count); 1239 } 1240 #endif 1241 1242 KA_TRACE( 1243 10, ("__kmp_task_finish(exit): T#%d finished task %p, resuming task %p\n", 1244 gtid, taskdata, resumed_task)); 1245 1246 return; 1247 } 1248 1249 template <bool ompt> 1250 static void __kmpc_omp_task_complete_if0_template(ident_t *loc_ref, 1251 kmp_int32 gtid, 1252 kmp_task_t *task) { 1253 KA_TRACE(10, ("__kmpc_omp_task_complete_if0(enter): T#%d loc=%p task=%p\n", 1254 gtid, loc_ref, KMP_TASK_TO_TASKDATA(task))); 1255 KMP_DEBUG_ASSERT(gtid >= 0); 1256 // this routine will provide task to resume 1257 __kmp_task_finish<ompt>(gtid, task, NULL); 1258 1259 KA_TRACE(10, ("__kmpc_omp_task_complete_if0(exit): T#%d loc=%p task=%p\n", 1260 gtid, loc_ref, KMP_TASK_TO_TASKDATA(task))); 1261 1262 #if OMPT_SUPPORT 1263 if (ompt) { 1264 ompt_frame_t *ompt_frame; 1265 __ompt_get_task_info_internal(0, NULL, NULL, &ompt_frame, NULL, NULL); 1266 ompt_frame->enter_frame = ompt_data_none; 1267 ompt_frame->enter_frame_flags = 1268 ompt_frame_runtime | ompt_frame_framepointer; 1269 } 1270 #endif 1271 1272 return; 1273 } 1274 1275 #if OMPT_SUPPORT 1276 OMPT_NOINLINE 1277 void __kmpc_omp_task_complete_if0_ompt(ident_t *loc_ref, kmp_int32 gtid, 1278 kmp_task_t *task) { 1279 __kmpc_omp_task_complete_if0_template<true>(loc_ref, gtid, task); 1280 } 1281 #endif // OMPT_SUPPORT 1282 1283 // __kmpc_omp_task_complete_if0: report that a task has completed execution 1284 // 1285 // loc_ref: source location information; points to end of task block. 1286 // gtid: global thread number. 1287 // task: task thunk for the completed task. 1288 void __kmpc_omp_task_complete_if0(ident_t *loc_ref, kmp_int32 gtid, 1289 kmp_task_t *task) { 1290 #if OMPT_SUPPORT 1291 if (UNLIKELY(ompt_enabled.enabled)) { 1292 __kmpc_omp_task_complete_if0_ompt(loc_ref, gtid, task); 1293 return; 1294 } 1295 #endif 1296 __kmpc_omp_task_complete_if0_template<false>(loc_ref, gtid, task); 1297 } 1298 1299 #ifdef TASK_UNUSED 1300 // __kmpc_omp_task_complete: report that a task has completed execution 1301 // NEVER GENERATED BY COMPILER, DEPRECATED!!! 1302 void __kmpc_omp_task_complete(ident_t *loc_ref, kmp_int32 gtid, 1303 kmp_task_t *task) { 1304 KA_TRACE(10, ("__kmpc_omp_task_complete(enter): T#%d loc=%p task=%p\n", gtid, 1305 loc_ref, KMP_TASK_TO_TASKDATA(task))); 1306 1307 __kmp_task_finish<false>(gtid, task, 1308 NULL); // Not sure how to find task to resume 1309 1310 KA_TRACE(10, ("__kmpc_omp_task_complete(exit): T#%d loc=%p task=%p\n", gtid, 1311 loc_ref, KMP_TASK_TO_TASKDATA(task))); 1312 return; 1313 } 1314 #endif // TASK_UNUSED 1315 1316 // __kmp_init_implicit_task: Initialize the appropriate fields in the implicit 1317 // task for a given thread 1318 // 1319 // loc_ref: reference to source location of parallel region 1320 // this_thr: thread data structure corresponding to implicit task 1321 // team: team for this_thr 1322 // tid: thread id of given thread within team 1323 // set_curr_task: TRUE if need to push current task to thread 1324 // NOTE: Routine does not set up the implicit task ICVS. This is assumed to 1325 // have already been done elsewhere. 1326 // TODO: Get better loc_ref. Value passed in may be NULL 1327 void __kmp_init_implicit_task(ident_t *loc_ref, kmp_info_t *this_thr, 1328 kmp_team_t *team, int tid, int set_curr_task) { 1329 kmp_taskdata_t *task = &team->t.t_implicit_task_taskdata[tid]; 1330 1331 KF_TRACE( 1332 10, 1333 ("__kmp_init_implicit_task(enter): T#:%d team=%p task=%p, reinit=%s\n", 1334 tid, team, task, set_curr_task ? "TRUE" : "FALSE")); 1335 1336 task->td_task_id = KMP_GEN_TASK_ID(); 1337 task->td_team = team; 1338 // task->td_parent = NULL; // fix for CQ230101 (broken parent task info 1339 // in debugger) 1340 task->td_ident = loc_ref; 1341 task->td_taskwait_ident = NULL; 1342 task->td_taskwait_counter = 0; 1343 task->td_taskwait_thread = 0; 1344 1345 task->td_flags.tiedness = TASK_TIED; 1346 task->td_flags.tasktype = TASK_IMPLICIT; 1347 task->td_flags.proxy = TASK_FULL; 1348 1349 // All implicit tasks are executed immediately, not deferred 1350 task->td_flags.task_serial = 1; 1351 task->td_flags.tasking_ser = (__kmp_tasking_mode == tskm_immediate_exec); 1352 task->td_flags.team_serial = (team->t.t_serialized) ? 1 : 0; 1353 1354 task->td_flags.started = 1; 1355 task->td_flags.executing = 1; 1356 task->td_flags.complete = 0; 1357 task->td_flags.freed = 0; 1358 #if OMPX_TASKGRAPH 1359 task->td_flags.onced = 0; 1360 #endif 1361 1362 task->td_depnode = NULL; 1363 task->td_last_tied = task; 1364 task->td_allow_completion_event.type = KMP_EVENT_UNINITIALIZED; 1365 1366 if (set_curr_task) { // only do this init first time thread is created 1367 KMP_ATOMIC_ST_REL(&task->td_incomplete_child_tasks, 0); 1368 // Not used: don't need to deallocate implicit task 1369 KMP_ATOMIC_ST_REL(&task->td_allocated_child_tasks, 0); 1370 task->td_taskgroup = NULL; // An implicit task does not have taskgroup 1371 task->td_dephash = NULL; 1372 __kmp_push_current_task_to_thread(this_thr, team, tid); 1373 } else { 1374 KMP_DEBUG_ASSERT(task->td_incomplete_child_tasks == 0); 1375 KMP_DEBUG_ASSERT(task->td_allocated_child_tasks == 0); 1376 } 1377 1378 #if OMPT_SUPPORT 1379 if (UNLIKELY(ompt_enabled.enabled)) 1380 __ompt_task_init(task, tid); 1381 #endif 1382 1383 KF_TRACE(10, ("__kmp_init_implicit_task(exit): T#:%d team=%p task=%p\n", tid, 1384 team, task)); 1385 } 1386 1387 // __kmp_finish_implicit_task: Release resources associated to implicit tasks 1388 // at the end of parallel regions. Some resources are kept for reuse in the next 1389 // parallel region. 1390 // 1391 // thread: thread data structure corresponding to implicit task 1392 void __kmp_finish_implicit_task(kmp_info_t *thread) { 1393 kmp_taskdata_t *task = thread->th.th_current_task; 1394 if (task->td_dephash) { 1395 int children; 1396 task->td_flags.complete = 1; 1397 #if OMPX_TASKGRAPH 1398 task->td_flags.onced = 1; 1399 #endif 1400 children = KMP_ATOMIC_LD_ACQ(&task->td_incomplete_child_tasks); 1401 kmp_tasking_flags_t flags_old = task->td_flags; 1402 if (children == 0 && flags_old.complete == 1) { 1403 kmp_tasking_flags_t flags_new = flags_old; 1404 flags_new.complete = 0; 1405 if (KMP_COMPARE_AND_STORE_ACQ32(RCAST(kmp_int32 *, &task->td_flags), 1406 *RCAST(kmp_int32 *, &flags_old), 1407 *RCAST(kmp_int32 *, &flags_new))) { 1408 KA_TRACE(100, ("__kmp_finish_implicit_task: T#%d cleans " 1409 "dephash of implicit task %p\n", 1410 thread->th.th_info.ds.ds_gtid, task)); 1411 __kmp_dephash_free_entries(thread, task->td_dephash); 1412 } 1413 } 1414 } 1415 } 1416 1417 // __kmp_free_implicit_task: Release resources associated to implicit tasks 1418 // when these are destroyed regions 1419 // 1420 // thread: thread data structure corresponding to implicit task 1421 void __kmp_free_implicit_task(kmp_info_t *thread) { 1422 kmp_taskdata_t *task = thread->th.th_current_task; 1423 if (task && task->td_dephash) { 1424 __kmp_dephash_free(thread, task->td_dephash); 1425 task->td_dephash = NULL; 1426 } 1427 } 1428 1429 // Round up a size to a power of two specified by val: Used to insert padding 1430 // between structures co-allocated using a single malloc() call 1431 static size_t __kmp_round_up_to_val(size_t size, size_t val) { 1432 if (size & (val - 1)) { 1433 size &= ~(val - 1); 1434 if (size <= KMP_SIZE_T_MAX - val) { 1435 size += val; // Round up if there is no overflow. 1436 } 1437 } 1438 return size; 1439 } // __kmp_round_up_to_va 1440 1441 // __kmp_task_alloc: Allocate the taskdata and task data structures for a task 1442 // 1443 // loc_ref: source location information 1444 // gtid: global thread number. 1445 // flags: include tiedness & task type (explicit vs. implicit) of the ''new'' 1446 // task encountered. Converted from kmp_int32 to kmp_tasking_flags_t in routine. 1447 // sizeof_kmp_task_t: Size in bytes of kmp_task_t data structure including 1448 // private vars accessed in task. 1449 // sizeof_shareds: Size in bytes of array of pointers to shared vars accessed 1450 // in task. 1451 // task_entry: Pointer to task code entry point generated by compiler. 1452 // returns: a pointer to the allocated kmp_task_t structure (task). 1453 kmp_task_t *__kmp_task_alloc(ident_t *loc_ref, kmp_int32 gtid, 1454 kmp_tasking_flags_t *flags, 1455 size_t sizeof_kmp_task_t, size_t sizeof_shareds, 1456 kmp_routine_entry_t task_entry) { 1457 kmp_task_t *task; 1458 kmp_taskdata_t *taskdata; 1459 kmp_info_t *thread = __kmp_threads[gtid]; 1460 kmp_team_t *team = thread->th.th_team; 1461 kmp_taskdata_t *parent_task = thread->th.th_current_task; 1462 size_t shareds_offset; 1463 1464 if (UNLIKELY(!TCR_4(__kmp_init_middle))) 1465 __kmp_middle_initialize(); 1466 1467 if (flags->hidden_helper) { 1468 if (__kmp_enable_hidden_helper) { 1469 if (!TCR_4(__kmp_init_hidden_helper)) 1470 __kmp_hidden_helper_initialize(); 1471 } else { 1472 // If the hidden helper task is not enabled, reset the flag to FALSE. 1473 flags->hidden_helper = FALSE; 1474 } 1475 } 1476 1477 KA_TRACE(10, ("__kmp_task_alloc(enter): T#%d loc=%p, flags=(0x%x) " 1478 "sizeof_task=%ld sizeof_shared=%ld entry=%p\n", 1479 gtid, loc_ref, *((kmp_int32 *)flags), sizeof_kmp_task_t, 1480 sizeof_shareds, task_entry)); 1481 1482 KMP_DEBUG_ASSERT(parent_task); 1483 if (parent_task->td_flags.final) { 1484 if (flags->merged_if0) { 1485 } 1486 flags->final = 1; 1487 } 1488 1489 if (flags->tiedness == TASK_UNTIED && !team->t.t_serialized) { 1490 // Untied task encountered causes the TSC algorithm to check entire deque of 1491 // the victim thread. If no untied task encountered, then checking the head 1492 // of the deque should be enough. 1493 KMP_CHECK_UPDATE(thread->th.th_task_team->tt.tt_untied_task_encountered, 1); 1494 } 1495 1496 // Detachable tasks are not proxy tasks yet but could be in the future. Doing 1497 // the tasking setup 1498 // when that happens is too late. 1499 if (UNLIKELY(flags->proxy == TASK_PROXY || 1500 flags->detachable == TASK_DETACHABLE || flags->hidden_helper)) { 1501 if (flags->proxy == TASK_PROXY) { 1502 flags->tiedness = TASK_UNTIED; 1503 flags->merged_if0 = 1; 1504 } 1505 /* are we running in a sequential parallel or tskm_immediate_exec... we need 1506 tasking support enabled */ 1507 if ((thread->th.th_task_team) == NULL) { 1508 /* This should only happen if the team is serialized 1509 setup a task team and propagate it to the thread */ 1510 KMP_DEBUG_ASSERT(team->t.t_serialized); 1511 KA_TRACE(30, 1512 ("T#%d creating task team in __kmp_task_alloc for proxy task\n", 1513 gtid)); 1514 // 1 indicates setup the current team regardless of nthreads 1515 __kmp_task_team_setup(thread, team, 1); 1516 thread->th.th_task_team = team->t.t_task_team[thread->th.th_task_state]; 1517 } 1518 kmp_task_team_t *task_team = thread->th.th_task_team; 1519 1520 /* tasking must be enabled now as the task might not be pushed */ 1521 if (!KMP_TASKING_ENABLED(task_team)) { 1522 KA_TRACE( 1523 30, 1524 ("T#%d enabling tasking in __kmp_task_alloc for proxy task\n", gtid)); 1525 __kmp_enable_tasking(task_team, thread); 1526 kmp_int32 tid = thread->th.th_info.ds.ds_tid; 1527 kmp_thread_data_t *thread_data = &task_team->tt.tt_threads_data[tid]; 1528 // No lock needed since only owner can allocate 1529 if (thread_data->td.td_deque == NULL) { 1530 __kmp_alloc_task_deque(thread, thread_data); 1531 } 1532 } 1533 1534 if ((flags->proxy == TASK_PROXY || flags->detachable == TASK_DETACHABLE) && 1535 task_team->tt.tt_found_proxy_tasks == FALSE) 1536 TCW_4(task_team->tt.tt_found_proxy_tasks, TRUE); 1537 if (flags->hidden_helper && 1538 task_team->tt.tt_hidden_helper_task_encountered == FALSE) 1539 TCW_4(task_team->tt.tt_hidden_helper_task_encountered, TRUE); 1540 } 1541 1542 // Calculate shared structure offset including padding after kmp_task_t struct 1543 // to align pointers in shared struct 1544 shareds_offset = sizeof(kmp_taskdata_t) + sizeof_kmp_task_t; 1545 shareds_offset = __kmp_round_up_to_val(shareds_offset, sizeof(void *)); 1546 1547 // Allocate a kmp_taskdata_t block and a kmp_task_t block. 1548 KA_TRACE(30, ("__kmp_task_alloc: T#%d First malloc size: %ld\n", gtid, 1549 shareds_offset)); 1550 KA_TRACE(30, ("__kmp_task_alloc: T#%d Second malloc size: %ld\n", gtid, 1551 sizeof_shareds)); 1552 1553 // Avoid double allocation here by combining shareds with taskdata 1554 #if USE_FAST_MEMORY 1555 taskdata = (kmp_taskdata_t *)__kmp_fast_allocate(thread, shareds_offset + 1556 sizeof_shareds); 1557 #else /* ! USE_FAST_MEMORY */ 1558 taskdata = (kmp_taskdata_t *)__kmp_thread_malloc(thread, shareds_offset + 1559 sizeof_shareds); 1560 #endif /* USE_FAST_MEMORY */ 1561 1562 task = KMP_TASKDATA_TO_TASK(taskdata); 1563 1564 // Make sure task & taskdata are aligned appropriately 1565 #if KMP_ARCH_X86 || KMP_ARCH_PPC64 || KMP_ARCH_S390X || !KMP_HAVE_QUAD 1566 KMP_DEBUG_ASSERT((((kmp_uintptr_t)taskdata) & (sizeof(double) - 1)) == 0); 1567 KMP_DEBUG_ASSERT((((kmp_uintptr_t)task) & (sizeof(double) - 1)) == 0); 1568 #else 1569 KMP_DEBUG_ASSERT((((kmp_uintptr_t)taskdata) & (sizeof(_Quad) - 1)) == 0); 1570 KMP_DEBUG_ASSERT((((kmp_uintptr_t)task) & (sizeof(_Quad) - 1)) == 0); 1571 #endif 1572 if (sizeof_shareds > 0) { 1573 // Avoid double allocation here by combining shareds with taskdata 1574 task->shareds = &((char *)taskdata)[shareds_offset]; 1575 // Make sure shareds struct is aligned to pointer size 1576 KMP_DEBUG_ASSERT((((kmp_uintptr_t)task->shareds) & (sizeof(void *) - 1)) == 1577 0); 1578 } else { 1579 task->shareds = NULL; 1580 } 1581 task->routine = task_entry; 1582 task->part_id = 0; // AC: Always start with 0 part id 1583 1584 taskdata->td_task_id = KMP_GEN_TASK_ID(); 1585 taskdata->td_team = thread->th.th_team; 1586 taskdata->td_alloc_thread = thread; 1587 taskdata->td_parent = parent_task; 1588 taskdata->td_level = parent_task->td_level + 1; // increment nesting level 1589 KMP_ATOMIC_ST_RLX(&taskdata->td_untied_count, 0); 1590 taskdata->td_ident = loc_ref; 1591 taskdata->td_taskwait_ident = NULL; 1592 taskdata->td_taskwait_counter = 0; 1593 taskdata->td_taskwait_thread = 0; 1594 KMP_DEBUG_ASSERT(taskdata->td_parent != NULL); 1595 // avoid copying icvs for proxy tasks 1596 if (flags->proxy == TASK_FULL) 1597 copy_icvs(&taskdata->td_icvs, &taskdata->td_parent->td_icvs); 1598 1599 taskdata->td_flags = *flags; 1600 taskdata->td_task_team = thread->th.th_task_team; 1601 taskdata->td_size_alloc = shareds_offset + sizeof_shareds; 1602 taskdata->td_flags.tasktype = TASK_EXPLICIT; 1603 // If it is hidden helper task, we need to set the team and task team 1604 // correspondingly. 1605 if (flags->hidden_helper) { 1606 kmp_info_t *shadow_thread = __kmp_threads[KMP_GTID_TO_SHADOW_GTID(gtid)]; 1607 taskdata->td_team = shadow_thread->th.th_team; 1608 taskdata->td_task_team = shadow_thread->th.th_task_team; 1609 } 1610 1611 // GEH - TODO: fix this to copy parent task's value of tasking_ser flag 1612 taskdata->td_flags.tasking_ser = (__kmp_tasking_mode == tskm_immediate_exec); 1613 1614 // GEH - TODO: fix this to copy parent task's value of team_serial flag 1615 taskdata->td_flags.team_serial = (team->t.t_serialized) ? 1 : 0; 1616 1617 // GEH - Note we serialize the task if the team is serialized to make sure 1618 // implicit parallel region tasks are not left until program termination to 1619 // execute. Also, it helps locality to execute immediately. 1620 1621 taskdata->td_flags.task_serial = 1622 (parent_task->td_flags.final || taskdata->td_flags.team_serial || 1623 taskdata->td_flags.tasking_ser || flags->merged_if0); 1624 1625 taskdata->td_flags.started = 0; 1626 taskdata->td_flags.executing = 0; 1627 taskdata->td_flags.complete = 0; 1628 taskdata->td_flags.freed = 0; 1629 #if OMPX_TASKGRAPH 1630 taskdata->td_flags.onced = 0; 1631 #endif 1632 KMP_ATOMIC_ST_RLX(&taskdata->td_incomplete_child_tasks, 0); 1633 // start at one because counts current task and children 1634 KMP_ATOMIC_ST_RLX(&taskdata->td_allocated_child_tasks, 1); 1635 taskdata->td_taskgroup = 1636 parent_task->td_taskgroup; // task inherits taskgroup from the parent task 1637 taskdata->td_dephash = NULL; 1638 taskdata->td_depnode = NULL; 1639 taskdata->td_target_data.async_handle = NULL; 1640 if (flags->tiedness == TASK_UNTIED) 1641 taskdata->td_last_tied = NULL; // will be set when the task is scheduled 1642 else 1643 taskdata->td_last_tied = taskdata; 1644 taskdata->td_allow_completion_event.type = KMP_EVENT_UNINITIALIZED; 1645 #if OMPT_SUPPORT 1646 if (UNLIKELY(ompt_enabled.enabled)) 1647 __ompt_task_init(taskdata, gtid); 1648 #endif 1649 // TODO: What would be the balance between the conditions in the function and 1650 // an atomic operation? 1651 if (__kmp_track_children_task(taskdata)) { 1652 KMP_ATOMIC_INC(&parent_task->td_incomplete_child_tasks); 1653 if (parent_task->td_taskgroup) 1654 KMP_ATOMIC_INC(&parent_task->td_taskgroup->count); 1655 // Only need to keep track of allocated child tasks for explicit tasks since 1656 // implicit not deallocated 1657 if (taskdata->td_parent->td_flags.tasktype == TASK_EXPLICIT) { 1658 KMP_ATOMIC_INC(&taskdata->td_parent->td_allocated_child_tasks); 1659 } 1660 if (flags->hidden_helper) { 1661 taskdata->td_flags.task_serial = FALSE; 1662 // Increment the number of hidden helper tasks to be executed 1663 KMP_ATOMIC_INC(&__kmp_unexecuted_hidden_helper_tasks); 1664 } 1665 } 1666 1667 #if OMPX_TASKGRAPH 1668 kmp_tdg_info_t *tdg = __kmp_find_tdg(__kmp_curr_tdg_idx); 1669 if (tdg && __kmp_tdg_is_recording(tdg->tdg_status) && 1670 (task_entry != (kmp_routine_entry_t)__kmp_taskloop_task)) { 1671 taskdata->is_taskgraph = 1; 1672 taskdata->tdg = __kmp_global_tdgs[__kmp_curr_tdg_idx]; 1673 taskdata->td_task_id = KMP_ATOMIC_INC(&__kmp_tdg_task_id); 1674 } 1675 #endif 1676 KA_TRACE(20, ("__kmp_task_alloc(exit): T#%d created task %p parent=%p\n", 1677 gtid, taskdata, taskdata->td_parent)); 1678 1679 return task; 1680 } 1681 1682 kmp_task_t *__kmpc_omp_task_alloc(ident_t *loc_ref, kmp_int32 gtid, 1683 kmp_int32 flags, size_t sizeof_kmp_task_t, 1684 size_t sizeof_shareds, 1685 kmp_routine_entry_t task_entry) { 1686 kmp_task_t *retval; 1687 kmp_tasking_flags_t *input_flags = (kmp_tasking_flags_t *)&flags; 1688 __kmp_assert_valid_gtid(gtid); 1689 input_flags->native = FALSE; 1690 // __kmp_task_alloc() sets up all other runtime flags 1691 KA_TRACE(10, ("__kmpc_omp_task_alloc(enter): T#%d loc=%p, flags=(%s %s %s) " 1692 "sizeof_task=%ld sizeof_shared=%ld entry=%p\n", 1693 gtid, loc_ref, input_flags->tiedness ? "tied " : "untied", 1694 input_flags->proxy ? "proxy" : "", 1695 input_flags->detachable ? "detachable" : "", sizeof_kmp_task_t, 1696 sizeof_shareds, task_entry)); 1697 1698 retval = __kmp_task_alloc(loc_ref, gtid, input_flags, sizeof_kmp_task_t, 1699 sizeof_shareds, task_entry); 1700 1701 KA_TRACE(20, ("__kmpc_omp_task_alloc(exit): T#%d retval %p\n", gtid, retval)); 1702 1703 return retval; 1704 } 1705 1706 kmp_task_t *__kmpc_omp_target_task_alloc(ident_t *loc_ref, kmp_int32 gtid, 1707 kmp_int32 flags, 1708 size_t sizeof_kmp_task_t, 1709 size_t sizeof_shareds, 1710 kmp_routine_entry_t task_entry, 1711 kmp_int64 device_id) { 1712 auto &input_flags = reinterpret_cast<kmp_tasking_flags_t &>(flags); 1713 // target task is untied defined in the specification 1714 input_flags.tiedness = TASK_UNTIED; 1715 1716 if (__kmp_enable_hidden_helper) 1717 input_flags.hidden_helper = TRUE; 1718 1719 return __kmpc_omp_task_alloc(loc_ref, gtid, flags, sizeof_kmp_task_t, 1720 sizeof_shareds, task_entry); 1721 } 1722 1723 /*! 1724 @ingroup TASKING 1725 @param loc_ref location of the original task directive 1726 @param gtid Global Thread ID of encountering thread 1727 @param new_task task thunk allocated by __kmpc_omp_task_alloc() for the ''new 1728 task'' 1729 @param naffins Number of affinity items 1730 @param affin_list List of affinity items 1731 @return Returns non-zero if registering affinity information was not successful. 1732 Returns 0 if registration was successful 1733 This entry registers the affinity information attached to a task with the task 1734 thunk structure kmp_taskdata_t. 1735 */ 1736 kmp_int32 1737 __kmpc_omp_reg_task_with_affinity(ident_t *loc_ref, kmp_int32 gtid, 1738 kmp_task_t *new_task, kmp_int32 naffins, 1739 kmp_task_affinity_info_t *affin_list) { 1740 return 0; 1741 } 1742 1743 // __kmp_invoke_task: invoke the specified task 1744 // 1745 // gtid: global thread ID of caller 1746 // task: the task to invoke 1747 // current_task: the task to resume after task invocation 1748 #ifdef __s390x__ 1749 __attribute__((target("backchain"))) 1750 #endif 1751 static void 1752 __kmp_invoke_task(kmp_int32 gtid, kmp_task_t *task, 1753 kmp_taskdata_t *current_task) { 1754 kmp_taskdata_t *taskdata = KMP_TASK_TO_TASKDATA(task); 1755 kmp_info_t *thread; 1756 int discard = 0 /* false */; 1757 KA_TRACE( 1758 30, ("__kmp_invoke_task(enter): T#%d invoking task %p, current_task=%p\n", 1759 gtid, taskdata, current_task)); 1760 KMP_DEBUG_ASSERT(task); 1761 if (UNLIKELY(taskdata->td_flags.proxy == TASK_PROXY && 1762 taskdata->td_flags.complete == 1)) { 1763 // This is a proxy task that was already completed but it needs to run 1764 // its bottom-half finish 1765 KA_TRACE( 1766 30, 1767 ("__kmp_invoke_task: T#%d running bottom finish for proxy task %p\n", 1768 gtid, taskdata)); 1769 1770 __kmp_bottom_half_finish_proxy(gtid, task); 1771 1772 KA_TRACE(30, ("__kmp_invoke_task(exit): T#%d completed bottom finish for " 1773 "proxy task %p, resuming task %p\n", 1774 gtid, taskdata, current_task)); 1775 1776 return; 1777 } 1778 1779 #if OMPT_SUPPORT 1780 // For untied tasks, the first task executed only calls __kmpc_omp_task and 1781 // does not execute code. 1782 ompt_thread_info_t oldInfo; 1783 if (UNLIKELY(ompt_enabled.enabled)) { 1784 // Store the threads states and restore them after the task 1785 thread = __kmp_threads[gtid]; 1786 oldInfo = thread->th.ompt_thread_info; 1787 thread->th.ompt_thread_info.wait_id = 0; 1788 thread->th.ompt_thread_info.state = (thread->th.th_team_serialized) 1789 ? ompt_state_work_serial 1790 : ompt_state_work_parallel; 1791 taskdata->ompt_task_info.frame.exit_frame.ptr = OMPT_GET_FRAME_ADDRESS(0); 1792 } 1793 #endif 1794 1795 // Proxy tasks are not handled by the runtime 1796 if (taskdata->td_flags.proxy != TASK_PROXY) { 1797 __kmp_task_start(gtid, task, current_task); // OMPT only if not discarded 1798 } 1799 1800 // TODO: cancel tasks if the parallel region has also been cancelled 1801 // TODO: check if this sequence can be hoisted above __kmp_task_start 1802 // if cancellation has been enabled for this run ... 1803 if (UNLIKELY(__kmp_omp_cancellation)) { 1804 thread = __kmp_threads[gtid]; 1805 kmp_team_t *this_team = thread->th.th_team; 1806 kmp_taskgroup_t *taskgroup = taskdata->td_taskgroup; 1807 if ((taskgroup && taskgroup->cancel_request) || 1808 (this_team->t.t_cancel_request == cancel_parallel)) { 1809 #if OMPT_SUPPORT && OMPT_OPTIONAL 1810 ompt_data_t *task_data; 1811 if (UNLIKELY(ompt_enabled.ompt_callback_cancel)) { 1812 __ompt_get_task_info_internal(0, NULL, &task_data, NULL, NULL, NULL); 1813 ompt_callbacks.ompt_callback(ompt_callback_cancel)( 1814 task_data, 1815 ((taskgroup && taskgroup->cancel_request) ? ompt_cancel_taskgroup 1816 : ompt_cancel_parallel) | 1817 ompt_cancel_discarded_task, 1818 NULL); 1819 } 1820 #endif 1821 KMP_COUNT_BLOCK(TASK_cancelled); 1822 // this task belongs to a task group and we need to cancel it 1823 discard = 1 /* true */; 1824 } 1825 } 1826 1827 // Invoke the task routine and pass in relevant data. 1828 // Thunks generated by gcc take a different argument list. 1829 if (!discard) { 1830 if (taskdata->td_flags.tiedness == TASK_UNTIED) { 1831 taskdata->td_last_tied = current_task->td_last_tied; 1832 KMP_DEBUG_ASSERT(taskdata->td_last_tied); 1833 } 1834 #if KMP_STATS_ENABLED 1835 KMP_COUNT_BLOCK(TASK_executed); 1836 switch (KMP_GET_THREAD_STATE()) { 1837 case FORK_JOIN_BARRIER: 1838 KMP_PUSH_PARTITIONED_TIMER(OMP_task_join_bar); 1839 break; 1840 case PLAIN_BARRIER: 1841 KMP_PUSH_PARTITIONED_TIMER(OMP_task_plain_bar); 1842 break; 1843 case TASKYIELD: 1844 KMP_PUSH_PARTITIONED_TIMER(OMP_task_taskyield); 1845 break; 1846 case TASKWAIT: 1847 KMP_PUSH_PARTITIONED_TIMER(OMP_task_taskwait); 1848 break; 1849 case TASKGROUP: 1850 KMP_PUSH_PARTITIONED_TIMER(OMP_task_taskgroup); 1851 break; 1852 default: 1853 KMP_PUSH_PARTITIONED_TIMER(OMP_task_immediate); 1854 break; 1855 } 1856 #endif // KMP_STATS_ENABLED 1857 1858 // OMPT task begin 1859 #if OMPT_SUPPORT 1860 if (UNLIKELY(ompt_enabled.enabled)) 1861 __ompt_task_start(task, current_task, gtid); 1862 #endif 1863 #if OMPT_SUPPORT && OMPT_OPTIONAL 1864 if (UNLIKELY(ompt_enabled.ompt_callback_dispatch && 1865 taskdata->ompt_task_info.dispatch_chunk.iterations > 0)) { 1866 ompt_data_t instance = ompt_data_none; 1867 instance.ptr = &(taskdata->ompt_task_info.dispatch_chunk); 1868 ompt_team_info_t *team_info = __ompt_get_teaminfo(0, NULL); 1869 ompt_callbacks.ompt_callback(ompt_callback_dispatch)( 1870 &(team_info->parallel_data), &(taskdata->ompt_task_info.task_data), 1871 ompt_dispatch_taskloop_chunk, instance); 1872 taskdata->ompt_task_info.dispatch_chunk = {0, 0}; 1873 } 1874 #endif // OMPT_SUPPORT && OMPT_OPTIONAL 1875 1876 #if OMPD_SUPPORT 1877 if (ompd_state & OMPD_ENABLE_BP) 1878 ompd_bp_task_begin(); 1879 #endif 1880 1881 #if USE_ITT_BUILD && USE_ITT_NOTIFY 1882 kmp_uint64 cur_time; 1883 kmp_int32 kmp_itt_count_task = 1884 __kmp_forkjoin_frames_mode == 3 && !taskdata->td_flags.task_serial && 1885 current_task->td_flags.tasktype == TASK_IMPLICIT; 1886 if (kmp_itt_count_task) { 1887 thread = __kmp_threads[gtid]; 1888 // Time outer level explicit task on barrier for adjusting imbalance time 1889 if (thread->th.th_bar_arrive_time) 1890 cur_time = __itt_get_timestamp(); 1891 else 1892 kmp_itt_count_task = 0; // thread is not on a barrier - skip timing 1893 } 1894 KMP_FSYNC_ACQUIRED(taskdata); // acquired self (new task) 1895 #endif 1896 1897 #if ENABLE_LIBOMPTARGET 1898 if (taskdata->td_target_data.async_handle != NULL) { 1899 // If we have a valid target async handle, that means that we have already 1900 // executed the task routine once. We must query for the handle completion 1901 // instead of re-executing the routine. 1902 KMP_ASSERT(tgt_target_nowait_query); 1903 tgt_target_nowait_query(&taskdata->td_target_data.async_handle); 1904 } else 1905 #endif 1906 if (task->routine != NULL) { 1907 #ifdef KMP_GOMP_COMPAT 1908 if (taskdata->td_flags.native) { 1909 ((void (*)(void *))(*(task->routine)))(task->shareds); 1910 } else 1911 #endif /* KMP_GOMP_COMPAT */ 1912 { 1913 (*(task->routine))(gtid, task); 1914 } 1915 } 1916 KMP_POP_PARTITIONED_TIMER(); 1917 1918 #if USE_ITT_BUILD && USE_ITT_NOTIFY 1919 if (kmp_itt_count_task) { 1920 // Barrier imbalance - adjust arrive time with the task duration 1921 thread->th.th_bar_arrive_time += (__itt_get_timestamp() - cur_time); 1922 } 1923 KMP_FSYNC_CANCEL(taskdata); // destroy self (just executed) 1924 KMP_FSYNC_RELEASING(taskdata->td_parent); // releasing parent 1925 #endif 1926 } 1927 1928 #if OMPD_SUPPORT 1929 if (ompd_state & OMPD_ENABLE_BP) 1930 ompd_bp_task_end(); 1931 #endif 1932 1933 // Proxy tasks are not handled by the runtime 1934 if (taskdata->td_flags.proxy != TASK_PROXY) { 1935 #if OMPT_SUPPORT 1936 if (UNLIKELY(ompt_enabled.enabled)) { 1937 thread->th.ompt_thread_info = oldInfo; 1938 if (taskdata->td_flags.tiedness == TASK_TIED) { 1939 taskdata->ompt_task_info.frame.exit_frame = ompt_data_none; 1940 } 1941 __kmp_task_finish<true>(gtid, task, current_task); 1942 } else 1943 #endif 1944 __kmp_task_finish<false>(gtid, task, current_task); 1945 } 1946 1947 KA_TRACE( 1948 30, 1949 ("__kmp_invoke_task(exit): T#%d completed task %p, resuming task %p\n", 1950 gtid, taskdata, current_task)); 1951 return; 1952 } 1953 1954 // __kmpc_omp_task_parts: Schedule a thread-switchable task for execution 1955 // 1956 // loc_ref: location of original task pragma (ignored) 1957 // gtid: Global Thread ID of encountering thread 1958 // new_task: task thunk allocated by __kmp_omp_task_alloc() for the ''new task'' 1959 // Returns: 1960 // TASK_CURRENT_NOT_QUEUED (0) if did not suspend and queue current task to 1961 // be resumed later. 1962 // TASK_CURRENT_QUEUED (1) if suspended and queued the current task to be 1963 // resumed later. 1964 kmp_int32 __kmpc_omp_task_parts(ident_t *loc_ref, kmp_int32 gtid, 1965 kmp_task_t *new_task) { 1966 kmp_taskdata_t *new_taskdata = KMP_TASK_TO_TASKDATA(new_task); 1967 1968 KA_TRACE(10, ("__kmpc_omp_task_parts(enter): T#%d loc=%p task=%p\n", gtid, 1969 loc_ref, new_taskdata)); 1970 1971 #if OMPT_SUPPORT 1972 kmp_taskdata_t *parent; 1973 if (UNLIKELY(ompt_enabled.enabled)) { 1974 parent = new_taskdata->td_parent; 1975 if (ompt_enabled.ompt_callback_task_create) { 1976 ompt_callbacks.ompt_callback(ompt_callback_task_create)( 1977 &(parent->ompt_task_info.task_data), &(parent->ompt_task_info.frame), 1978 &(new_taskdata->ompt_task_info.task_data), ompt_task_explicit, 0, 1979 OMPT_GET_RETURN_ADDRESS(0)); 1980 } 1981 } 1982 #endif 1983 1984 /* Should we execute the new task or queue it? For now, let's just always try 1985 to queue it. If the queue fills up, then we'll execute it. */ 1986 1987 if (__kmp_push_task(gtid, new_task) == TASK_NOT_PUSHED) // if cannot defer 1988 { // Execute this task immediately 1989 kmp_taskdata_t *current_task = __kmp_threads[gtid]->th.th_current_task; 1990 new_taskdata->td_flags.task_serial = 1; 1991 __kmp_invoke_task(gtid, new_task, current_task); 1992 } 1993 1994 KA_TRACE( 1995 10, 1996 ("__kmpc_omp_task_parts(exit): T#%d returning TASK_CURRENT_NOT_QUEUED: " 1997 "loc=%p task=%p, return: TASK_CURRENT_NOT_QUEUED\n", 1998 gtid, loc_ref, new_taskdata)); 1999 2000 #if OMPT_SUPPORT 2001 if (UNLIKELY(ompt_enabled.enabled)) { 2002 parent->ompt_task_info.frame.enter_frame = ompt_data_none; 2003 } 2004 #endif 2005 return TASK_CURRENT_NOT_QUEUED; 2006 } 2007 2008 // __kmp_omp_task: Schedule a non-thread-switchable task for execution 2009 // 2010 // gtid: Global Thread ID of encountering thread 2011 // new_task:non-thread-switchable task thunk allocated by __kmp_omp_task_alloc() 2012 // serialize_immediate: if TRUE then if the task is executed immediately its 2013 // execution will be serialized 2014 // Returns: 2015 // TASK_CURRENT_NOT_QUEUED (0) if did not suspend and queue current task to 2016 // be resumed later. 2017 // TASK_CURRENT_QUEUED (1) if suspended and queued the current task to be 2018 // resumed later. 2019 kmp_int32 __kmp_omp_task(kmp_int32 gtid, kmp_task_t *new_task, 2020 bool serialize_immediate) { 2021 kmp_taskdata_t *new_taskdata = KMP_TASK_TO_TASKDATA(new_task); 2022 2023 #if OMPX_TASKGRAPH 2024 if (new_taskdata->is_taskgraph && 2025 __kmp_tdg_is_recording(new_taskdata->tdg->tdg_status)) { 2026 kmp_tdg_info_t *tdg = new_taskdata->tdg; 2027 // extend the record_map if needed 2028 if (new_taskdata->td_task_id >= new_taskdata->tdg->map_size) { 2029 __kmp_acquire_bootstrap_lock(&tdg->graph_lock); 2030 // map_size could have been updated by another thread if recursive 2031 // taskloop 2032 if (new_taskdata->td_task_id >= tdg->map_size) { 2033 kmp_uint old_size = tdg->map_size; 2034 kmp_uint new_size = old_size * 2; 2035 kmp_node_info_t *old_record = tdg->record_map; 2036 kmp_node_info_t *new_record = (kmp_node_info_t *)__kmp_allocate( 2037 new_size * sizeof(kmp_node_info_t)); 2038 2039 KMP_MEMCPY(new_record, old_record, old_size * sizeof(kmp_node_info_t)); 2040 tdg->record_map = new_record; 2041 2042 __kmp_free(old_record); 2043 2044 for (kmp_int i = old_size; i < new_size; i++) { 2045 kmp_int32 *successorsList = (kmp_int32 *)__kmp_allocate( 2046 __kmp_successors_size * sizeof(kmp_int32)); 2047 new_record[i].task = nullptr; 2048 new_record[i].successors = successorsList; 2049 new_record[i].nsuccessors = 0; 2050 new_record[i].npredecessors = 0; 2051 new_record[i].successors_size = __kmp_successors_size; 2052 KMP_ATOMIC_ST_REL(&new_record[i].npredecessors_counter, 0); 2053 } 2054 // update the size at the end, so that we avoid other 2055 // threads use old_record while map_size is already updated 2056 tdg->map_size = new_size; 2057 } 2058 __kmp_release_bootstrap_lock(&tdg->graph_lock); 2059 } 2060 // record a task 2061 if (tdg->record_map[new_taskdata->td_task_id].task == nullptr) { 2062 tdg->record_map[new_taskdata->td_task_id].task = new_task; 2063 tdg->record_map[new_taskdata->td_task_id].parent_task = 2064 new_taskdata->td_parent; 2065 KMP_ATOMIC_INC(&tdg->num_tasks); 2066 } 2067 } 2068 #endif 2069 2070 /* Should we execute the new task or queue it? For now, let's just always try 2071 to queue it. If the queue fills up, then we'll execute it. */ 2072 if (new_taskdata->td_flags.proxy == TASK_PROXY || 2073 __kmp_push_task(gtid, new_task) == TASK_NOT_PUSHED) // if cannot defer 2074 { // Execute this task immediately 2075 kmp_taskdata_t *current_task = __kmp_threads[gtid]->th.th_current_task; 2076 if (serialize_immediate) 2077 new_taskdata->td_flags.task_serial = 1; 2078 __kmp_invoke_task(gtid, new_task, current_task); 2079 } else if (__kmp_dflt_blocktime != KMP_MAX_BLOCKTIME && 2080 __kmp_wpolicy_passive) { 2081 kmp_info_t *this_thr = __kmp_threads[gtid]; 2082 kmp_team_t *team = this_thr->th.th_team; 2083 kmp_int32 nthreads = this_thr->th.th_team_nproc; 2084 for (int i = 0; i < nthreads; ++i) { 2085 kmp_info_t *thread = team->t.t_threads[i]; 2086 if (thread == this_thr) 2087 continue; 2088 if (thread->th.th_sleep_loc != NULL) { 2089 __kmp_null_resume_wrapper(thread); 2090 break; // awake one thread at a time 2091 } 2092 } 2093 } 2094 return TASK_CURRENT_NOT_QUEUED; 2095 } 2096 2097 // __kmpc_omp_task: Wrapper around __kmp_omp_task to schedule a 2098 // non-thread-switchable task from the parent thread only! 2099 // 2100 // loc_ref: location of original task pragma (ignored) 2101 // gtid: Global Thread ID of encountering thread 2102 // new_task: non-thread-switchable task thunk allocated by 2103 // __kmp_omp_task_alloc() 2104 // Returns: 2105 // TASK_CURRENT_NOT_QUEUED (0) if did not suspend and queue current task to 2106 // be resumed later. 2107 // TASK_CURRENT_QUEUED (1) if suspended and queued the current task to be 2108 // resumed later. 2109 kmp_int32 __kmpc_omp_task(ident_t *loc_ref, kmp_int32 gtid, 2110 kmp_task_t *new_task) { 2111 kmp_int32 res; 2112 KMP_SET_THREAD_STATE_BLOCK(EXPLICIT_TASK); 2113 2114 #if KMP_DEBUG || OMPT_SUPPORT 2115 kmp_taskdata_t *new_taskdata = KMP_TASK_TO_TASKDATA(new_task); 2116 #endif 2117 KA_TRACE(10, ("__kmpc_omp_task(enter): T#%d loc=%p task=%p\n", gtid, loc_ref, 2118 new_taskdata)); 2119 __kmp_assert_valid_gtid(gtid); 2120 2121 #if OMPT_SUPPORT 2122 kmp_taskdata_t *parent = NULL; 2123 if (UNLIKELY(ompt_enabled.enabled)) { 2124 if (!new_taskdata->td_flags.started) { 2125 OMPT_STORE_RETURN_ADDRESS(gtid); 2126 parent = new_taskdata->td_parent; 2127 if (!parent->ompt_task_info.frame.enter_frame.ptr) { 2128 parent->ompt_task_info.frame.enter_frame.ptr = 2129 OMPT_GET_FRAME_ADDRESS(0); 2130 } 2131 if (ompt_enabled.ompt_callback_task_create) { 2132 ompt_callbacks.ompt_callback(ompt_callback_task_create)( 2133 &(parent->ompt_task_info.task_data), 2134 &(parent->ompt_task_info.frame), 2135 &(new_taskdata->ompt_task_info.task_data), 2136 ompt_task_explicit | TASK_TYPE_DETAILS_FORMAT(new_taskdata), 0, 2137 OMPT_LOAD_RETURN_ADDRESS(gtid)); 2138 } 2139 } else { 2140 // We are scheduling the continuation of an UNTIED task. 2141 // Scheduling back to the parent task. 2142 __ompt_task_finish(new_task, 2143 new_taskdata->ompt_task_info.scheduling_parent, 2144 ompt_task_switch); 2145 new_taskdata->ompt_task_info.frame.exit_frame = ompt_data_none; 2146 } 2147 } 2148 #endif 2149 2150 res = __kmp_omp_task(gtid, new_task, true); 2151 2152 KA_TRACE(10, ("__kmpc_omp_task(exit): T#%d returning " 2153 "TASK_CURRENT_NOT_QUEUED: loc=%p task=%p\n", 2154 gtid, loc_ref, new_taskdata)); 2155 #if OMPT_SUPPORT 2156 if (UNLIKELY(ompt_enabled.enabled && parent != NULL)) { 2157 parent->ompt_task_info.frame.enter_frame = ompt_data_none; 2158 } 2159 #endif 2160 return res; 2161 } 2162 2163 // __kmp_omp_taskloop_task: Wrapper around __kmp_omp_task to schedule 2164 // a taskloop task with the correct OMPT return address 2165 // 2166 // loc_ref: location of original task pragma (ignored) 2167 // gtid: Global Thread ID of encountering thread 2168 // new_task: non-thread-switchable task thunk allocated by 2169 // __kmp_omp_task_alloc() 2170 // codeptr_ra: return address for OMPT callback 2171 // Returns: 2172 // TASK_CURRENT_NOT_QUEUED (0) if did not suspend and queue current task to 2173 // be resumed later. 2174 // TASK_CURRENT_QUEUED (1) if suspended and queued the current task to be 2175 // resumed later. 2176 kmp_int32 __kmp_omp_taskloop_task(ident_t *loc_ref, kmp_int32 gtid, 2177 kmp_task_t *new_task, void *codeptr_ra) { 2178 kmp_int32 res; 2179 KMP_SET_THREAD_STATE_BLOCK(EXPLICIT_TASK); 2180 2181 #if KMP_DEBUG || OMPT_SUPPORT 2182 kmp_taskdata_t *new_taskdata = KMP_TASK_TO_TASKDATA(new_task); 2183 #endif 2184 KA_TRACE(10, ("__kmpc_omp_task(enter): T#%d loc=%p task=%p\n", gtid, loc_ref, 2185 new_taskdata)); 2186 2187 #if OMPT_SUPPORT 2188 kmp_taskdata_t *parent = NULL; 2189 if (UNLIKELY(ompt_enabled.enabled && !new_taskdata->td_flags.started)) { 2190 parent = new_taskdata->td_parent; 2191 if (!parent->ompt_task_info.frame.enter_frame.ptr) 2192 parent->ompt_task_info.frame.enter_frame.ptr = OMPT_GET_FRAME_ADDRESS(0); 2193 if (ompt_enabled.ompt_callback_task_create) { 2194 ompt_callbacks.ompt_callback(ompt_callback_task_create)( 2195 &(parent->ompt_task_info.task_data), &(parent->ompt_task_info.frame), 2196 &(new_taskdata->ompt_task_info.task_data), 2197 ompt_task_explicit | TASK_TYPE_DETAILS_FORMAT(new_taskdata), 0, 2198 codeptr_ra); 2199 } 2200 } 2201 #endif 2202 2203 res = __kmp_omp_task(gtid, new_task, true); 2204 2205 KA_TRACE(10, ("__kmpc_omp_task(exit): T#%d returning " 2206 "TASK_CURRENT_NOT_QUEUED: loc=%p task=%p\n", 2207 gtid, loc_ref, new_taskdata)); 2208 #if OMPT_SUPPORT 2209 if (UNLIKELY(ompt_enabled.enabled && parent != NULL)) { 2210 parent->ompt_task_info.frame.enter_frame = ompt_data_none; 2211 } 2212 #endif 2213 return res; 2214 } 2215 2216 template <bool ompt> 2217 static kmp_int32 __kmpc_omp_taskwait_template(ident_t *loc_ref, kmp_int32 gtid, 2218 void *frame_address, 2219 void *return_address) { 2220 kmp_taskdata_t *taskdata = nullptr; 2221 kmp_info_t *thread; 2222 int thread_finished = FALSE; 2223 KMP_SET_THREAD_STATE_BLOCK(TASKWAIT); 2224 2225 KA_TRACE(10, ("__kmpc_omp_taskwait(enter): T#%d loc=%p\n", gtid, loc_ref)); 2226 KMP_DEBUG_ASSERT(gtid >= 0); 2227 2228 if (__kmp_tasking_mode != tskm_immediate_exec) { 2229 thread = __kmp_threads[gtid]; 2230 taskdata = thread->th.th_current_task; 2231 2232 #if OMPT_SUPPORT && OMPT_OPTIONAL 2233 ompt_data_t *my_task_data; 2234 ompt_data_t *my_parallel_data; 2235 2236 if (ompt) { 2237 my_task_data = &(taskdata->ompt_task_info.task_data); 2238 my_parallel_data = OMPT_CUR_TEAM_DATA(thread); 2239 2240 taskdata->ompt_task_info.frame.enter_frame.ptr = frame_address; 2241 2242 if (ompt_enabled.ompt_callback_sync_region) { 2243 ompt_callbacks.ompt_callback(ompt_callback_sync_region)( 2244 ompt_sync_region_taskwait, ompt_scope_begin, my_parallel_data, 2245 my_task_data, return_address); 2246 } 2247 2248 if (ompt_enabled.ompt_callback_sync_region_wait) { 2249 ompt_callbacks.ompt_callback(ompt_callback_sync_region_wait)( 2250 ompt_sync_region_taskwait, ompt_scope_begin, my_parallel_data, 2251 my_task_data, return_address); 2252 } 2253 } 2254 #endif // OMPT_SUPPORT && OMPT_OPTIONAL 2255 2256 // Debugger: The taskwait is active. Store location and thread encountered the 2257 // taskwait. 2258 #if USE_ITT_BUILD 2259 // Note: These values are used by ITT events as well. 2260 #endif /* USE_ITT_BUILD */ 2261 taskdata->td_taskwait_counter += 1; 2262 taskdata->td_taskwait_ident = loc_ref; 2263 taskdata->td_taskwait_thread = gtid + 1; 2264 2265 #if USE_ITT_BUILD 2266 void *itt_sync_obj = NULL; 2267 #if USE_ITT_NOTIFY 2268 KMP_ITT_TASKWAIT_STARTING(itt_sync_obj); 2269 #endif /* USE_ITT_NOTIFY */ 2270 #endif /* USE_ITT_BUILD */ 2271 2272 bool must_wait = 2273 !taskdata->td_flags.team_serial && !taskdata->td_flags.final; 2274 2275 must_wait = must_wait || (thread->th.th_task_team != NULL && 2276 thread->th.th_task_team->tt.tt_found_proxy_tasks); 2277 // If hidden helper thread is encountered, we must enable wait here. 2278 must_wait = 2279 must_wait || 2280 (__kmp_enable_hidden_helper && thread->th.th_task_team != NULL && 2281 thread->th.th_task_team->tt.tt_hidden_helper_task_encountered); 2282 2283 if (must_wait) { 2284 kmp_flag_32<false, false> flag( 2285 RCAST(std::atomic<kmp_uint32> *, 2286 &(taskdata->td_incomplete_child_tasks)), 2287 0U); 2288 while (KMP_ATOMIC_LD_ACQ(&taskdata->td_incomplete_child_tasks) != 0) { 2289 flag.execute_tasks(thread, gtid, FALSE, 2290 &thread_finished USE_ITT_BUILD_ARG(itt_sync_obj), 2291 __kmp_task_stealing_constraint); 2292 } 2293 } 2294 #if USE_ITT_BUILD 2295 KMP_ITT_TASKWAIT_FINISHED(itt_sync_obj); 2296 KMP_FSYNC_ACQUIRED(taskdata); // acquire self - sync with children 2297 #endif /* USE_ITT_BUILD */ 2298 2299 // Debugger: The taskwait is completed. Location remains, but thread is 2300 // negated. 2301 taskdata->td_taskwait_thread = -taskdata->td_taskwait_thread; 2302 2303 #if OMPT_SUPPORT && OMPT_OPTIONAL 2304 if (ompt) { 2305 if (ompt_enabled.ompt_callback_sync_region_wait) { 2306 ompt_callbacks.ompt_callback(ompt_callback_sync_region_wait)( 2307 ompt_sync_region_taskwait, ompt_scope_end, my_parallel_data, 2308 my_task_data, return_address); 2309 } 2310 if (ompt_enabled.ompt_callback_sync_region) { 2311 ompt_callbacks.ompt_callback(ompt_callback_sync_region)( 2312 ompt_sync_region_taskwait, ompt_scope_end, my_parallel_data, 2313 my_task_data, return_address); 2314 } 2315 taskdata->ompt_task_info.frame.enter_frame = ompt_data_none; 2316 } 2317 #endif // OMPT_SUPPORT && OMPT_OPTIONAL 2318 } 2319 2320 KA_TRACE(10, ("__kmpc_omp_taskwait(exit): T#%d task %p finished waiting, " 2321 "returning TASK_CURRENT_NOT_QUEUED\n", 2322 gtid, taskdata)); 2323 2324 return TASK_CURRENT_NOT_QUEUED; 2325 } 2326 2327 #if OMPT_SUPPORT && OMPT_OPTIONAL 2328 OMPT_NOINLINE 2329 static kmp_int32 __kmpc_omp_taskwait_ompt(ident_t *loc_ref, kmp_int32 gtid, 2330 void *frame_address, 2331 void *return_address) { 2332 return __kmpc_omp_taskwait_template<true>(loc_ref, gtid, frame_address, 2333 return_address); 2334 } 2335 #endif // OMPT_SUPPORT && OMPT_OPTIONAL 2336 2337 // __kmpc_omp_taskwait: Wait until all tasks generated by the current task are 2338 // complete 2339 kmp_int32 __kmpc_omp_taskwait(ident_t *loc_ref, kmp_int32 gtid) { 2340 #if OMPT_SUPPORT && OMPT_OPTIONAL 2341 if (UNLIKELY(ompt_enabled.enabled)) { 2342 OMPT_STORE_RETURN_ADDRESS(gtid); 2343 return __kmpc_omp_taskwait_ompt(loc_ref, gtid, OMPT_GET_FRAME_ADDRESS(0), 2344 OMPT_LOAD_RETURN_ADDRESS(gtid)); 2345 } 2346 #endif 2347 return __kmpc_omp_taskwait_template<false>(loc_ref, gtid, NULL, NULL); 2348 } 2349 2350 // __kmpc_omp_taskyield: switch to a different task 2351 kmp_int32 __kmpc_omp_taskyield(ident_t *loc_ref, kmp_int32 gtid, int end_part) { 2352 kmp_taskdata_t *taskdata = NULL; 2353 kmp_info_t *thread; 2354 int thread_finished = FALSE; 2355 2356 KMP_COUNT_BLOCK(OMP_TASKYIELD); 2357 KMP_SET_THREAD_STATE_BLOCK(TASKYIELD); 2358 2359 KA_TRACE(10, ("__kmpc_omp_taskyield(enter): T#%d loc=%p end_part = %d\n", 2360 gtid, loc_ref, end_part)); 2361 __kmp_assert_valid_gtid(gtid); 2362 2363 if (__kmp_tasking_mode != tskm_immediate_exec && __kmp_init_parallel) { 2364 thread = __kmp_threads[gtid]; 2365 taskdata = thread->th.th_current_task; 2366 // Should we model this as a task wait or not? 2367 // Debugger: The taskwait is active. Store location and thread encountered the 2368 // taskwait. 2369 #if USE_ITT_BUILD 2370 // Note: These values are used by ITT events as well. 2371 #endif /* USE_ITT_BUILD */ 2372 taskdata->td_taskwait_counter += 1; 2373 taskdata->td_taskwait_ident = loc_ref; 2374 taskdata->td_taskwait_thread = gtid + 1; 2375 2376 #if USE_ITT_BUILD 2377 void *itt_sync_obj = NULL; 2378 #if USE_ITT_NOTIFY 2379 KMP_ITT_TASKWAIT_STARTING(itt_sync_obj); 2380 #endif /* USE_ITT_NOTIFY */ 2381 #endif /* USE_ITT_BUILD */ 2382 if (!taskdata->td_flags.team_serial) { 2383 kmp_task_team_t *task_team = thread->th.th_task_team; 2384 if (task_team != NULL) { 2385 if (KMP_TASKING_ENABLED(task_team)) { 2386 #if OMPT_SUPPORT 2387 if (UNLIKELY(ompt_enabled.enabled)) 2388 thread->th.ompt_thread_info.ompt_task_yielded = 1; 2389 #endif 2390 __kmp_execute_tasks_32( 2391 thread, gtid, (kmp_flag_32<> *)NULL, FALSE, 2392 &thread_finished USE_ITT_BUILD_ARG(itt_sync_obj), 2393 __kmp_task_stealing_constraint); 2394 #if OMPT_SUPPORT 2395 if (UNLIKELY(ompt_enabled.enabled)) 2396 thread->th.ompt_thread_info.ompt_task_yielded = 0; 2397 #endif 2398 } 2399 } 2400 } 2401 #if USE_ITT_BUILD 2402 KMP_ITT_TASKWAIT_FINISHED(itt_sync_obj); 2403 #endif /* USE_ITT_BUILD */ 2404 2405 // Debugger: The taskwait is completed. Location remains, but thread is 2406 // negated. 2407 taskdata->td_taskwait_thread = -taskdata->td_taskwait_thread; 2408 } 2409 2410 KA_TRACE(10, ("__kmpc_omp_taskyield(exit): T#%d task %p resuming, " 2411 "returning TASK_CURRENT_NOT_QUEUED\n", 2412 gtid, taskdata)); 2413 2414 return TASK_CURRENT_NOT_QUEUED; 2415 } 2416 2417 // Task Reduction implementation 2418 // 2419 // Note: initial implementation didn't take into account the possibility 2420 // to specify omp_orig for initializer of the UDR (user defined reduction). 2421 // Corrected implementation takes into account the omp_orig object. 2422 // Compiler is free to use old implementation if omp_orig is not specified. 2423 2424 /*! 2425 @ingroup BASIC_TYPES 2426 @{ 2427 */ 2428 2429 /*! 2430 Flags for special info per task reduction item. 2431 */ 2432 typedef struct kmp_taskred_flags { 2433 /*! 1 - use lazy alloc/init (e.g. big objects, num tasks < num threads) */ 2434 unsigned lazy_priv : 1; 2435 unsigned reserved31 : 31; 2436 } kmp_taskred_flags_t; 2437 2438 /*! 2439 Internal struct for reduction data item related info set up by compiler. 2440 */ 2441 typedef struct kmp_task_red_input { 2442 void *reduce_shar; /**< shared between tasks item to reduce into */ 2443 size_t reduce_size; /**< size of data item in bytes */ 2444 // three compiler-generated routines (init, fini are optional): 2445 void *reduce_init; /**< data initialization routine (single parameter) */ 2446 void *reduce_fini; /**< data finalization routine */ 2447 void *reduce_comb; /**< data combiner routine */ 2448 kmp_taskred_flags_t flags; /**< flags for additional info from compiler */ 2449 } kmp_task_red_input_t; 2450 2451 /*! 2452 Internal struct for reduction data item related info saved by the library. 2453 */ 2454 typedef struct kmp_taskred_data { 2455 void *reduce_shar; /**< shared between tasks item to reduce into */ 2456 size_t reduce_size; /**< size of data item */ 2457 kmp_taskred_flags_t flags; /**< flags for additional info from compiler */ 2458 void *reduce_priv; /**< array of thread specific items */ 2459 void *reduce_pend; /**< end of private data for faster comparison op */ 2460 // three compiler-generated routines (init, fini are optional): 2461 void *reduce_comb; /**< data combiner routine */ 2462 void *reduce_init; /**< data initialization routine (two parameters) */ 2463 void *reduce_fini; /**< data finalization routine */ 2464 void *reduce_orig; /**< original item (can be used in UDR initializer) */ 2465 } kmp_taskred_data_t; 2466 2467 /*! 2468 Internal struct for reduction data item related info set up by compiler. 2469 2470 New interface: added reduce_orig field to provide omp_orig for UDR initializer. 2471 */ 2472 typedef struct kmp_taskred_input { 2473 void *reduce_shar; /**< shared between tasks item to reduce into */ 2474 void *reduce_orig; /**< original reduction item used for initialization */ 2475 size_t reduce_size; /**< size of data item */ 2476 // three compiler-generated routines (init, fini are optional): 2477 void *reduce_init; /**< data initialization routine (two parameters) */ 2478 void *reduce_fini; /**< data finalization routine */ 2479 void *reduce_comb; /**< data combiner routine */ 2480 kmp_taskred_flags_t flags; /**< flags for additional info from compiler */ 2481 } kmp_taskred_input_t; 2482 /*! 2483 @} 2484 */ 2485 2486 template <typename T> void __kmp_assign_orig(kmp_taskred_data_t &item, T &src); 2487 template <> 2488 void __kmp_assign_orig<kmp_task_red_input_t>(kmp_taskred_data_t &item, 2489 kmp_task_red_input_t &src) { 2490 item.reduce_orig = NULL; 2491 } 2492 template <> 2493 void __kmp_assign_orig<kmp_taskred_input_t>(kmp_taskred_data_t &item, 2494 kmp_taskred_input_t &src) { 2495 if (src.reduce_orig != NULL) { 2496 item.reduce_orig = src.reduce_orig; 2497 } else { 2498 item.reduce_orig = src.reduce_shar; 2499 } // non-NULL reduce_orig means new interface used 2500 } 2501 2502 template <typename T> void __kmp_call_init(kmp_taskred_data_t &item, size_t j); 2503 template <> 2504 void __kmp_call_init<kmp_task_red_input_t>(kmp_taskred_data_t &item, 2505 size_t offset) { 2506 ((void (*)(void *))item.reduce_init)((char *)(item.reduce_priv) + offset); 2507 } 2508 template <> 2509 void __kmp_call_init<kmp_taskred_input_t>(kmp_taskred_data_t &item, 2510 size_t offset) { 2511 ((void (*)(void *, void *))item.reduce_init)( 2512 (char *)(item.reduce_priv) + offset, item.reduce_orig); 2513 } 2514 2515 template <typename T> 2516 void *__kmp_task_reduction_init(int gtid, int num, T *data) { 2517 __kmp_assert_valid_gtid(gtid); 2518 kmp_info_t *thread = __kmp_threads[gtid]; 2519 kmp_taskgroup_t *tg = thread->th.th_current_task->td_taskgroup; 2520 kmp_uint32 nth = thread->th.th_team_nproc; 2521 kmp_taskred_data_t *arr; 2522 2523 // check input data just in case 2524 KMP_ASSERT(tg != NULL); 2525 KMP_ASSERT(data != NULL); 2526 KMP_ASSERT(num > 0); 2527 if (nth == 1 && !__kmp_enable_hidden_helper) { 2528 KA_TRACE(10, ("__kmpc_task_reduction_init: T#%d, tg %p, exiting nth=1\n", 2529 gtid, tg)); 2530 return (void *)tg; 2531 } 2532 KA_TRACE(10, ("__kmpc_task_reduction_init: T#%d, taskgroup %p, #items %d\n", 2533 gtid, tg, num)); 2534 arr = (kmp_taskred_data_t *)__kmp_thread_malloc( 2535 thread, num * sizeof(kmp_taskred_data_t)); 2536 for (int i = 0; i < num; ++i) { 2537 size_t size = data[i].reduce_size - 1; 2538 // round the size up to cache line per thread-specific item 2539 size += CACHE_LINE - size % CACHE_LINE; 2540 KMP_ASSERT(data[i].reduce_comb != NULL); // combiner is mandatory 2541 arr[i].reduce_shar = data[i].reduce_shar; 2542 arr[i].reduce_size = size; 2543 arr[i].flags = data[i].flags; 2544 arr[i].reduce_comb = data[i].reduce_comb; 2545 arr[i].reduce_init = data[i].reduce_init; 2546 arr[i].reduce_fini = data[i].reduce_fini; 2547 __kmp_assign_orig<T>(arr[i], data[i]); 2548 if (!arr[i].flags.lazy_priv) { 2549 // allocate cache-line aligned block and fill it with zeros 2550 arr[i].reduce_priv = __kmp_allocate(nth * size); 2551 arr[i].reduce_pend = (char *)(arr[i].reduce_priv) + nth * size; 2552 if (arr[i].reduce_init != NULL) { 2553 // initialize all thread-specific items 2554 for (size_t j = 0; j < nth; ++j) { 2555 __kmp_call_init<T>(arr[i], j * size); 2556 } 2557 } 2558 } else { 2559 // only allocate space for pointers now, 2560 // objects will be lazily allocated/initialized if/when requested 2561 // note that __kmp_allocate zeroes the allocated memory 2562 arr[i].reduce_priv = __kmp_allocate(nth * sizeof(void *)); 2563 } 2564 } 2565 tg->reduce_data = (void *)arr; 2566 tg->reduce_num_data = num; 2567 return (void *)tg; 2568 } 2569 2570 /*! 2571 @ingroup TASKING 2572 @param gtid Global thread ID 2573 @param num Number of data items to reduce 2574 @param data Array of data for reduction 2575 @return The taskgroup identifier 2576 2577 Initialize task reduction for the taskgroup. 2578 2579 Note: this entry supposes the optional compiler-generated initializer routine 2580 has single parameter - pointer to object to be initialized. That means 2581 the reduction either does not use omp_orig object, or the omp_orig is accessible 2582 without help of the runtime library. 2583 */ 2584 void *__kmpc_task_reduction_init(int gtid, int num, void *data) { 2585 #if OMPX_TASKGRAPH 2586 kmp_tdg_info_t *tdg = __kmp_find_tdg(__kmp_curr_tdg_idx); 2587 if (tdg && __kmp_tdg_is_recording(tdg->tdg_status)) { 2588 kmp_tdg_info_t *this_tdg = __kmp_global_tdgs[__kmp_curr_tdg_idx]; 2589 this_tdg->rec_taskred_data = 2590 __kmp_allocate(sizeof(kmp_task_red_input_t) * num); 2591 this_tdg->rec_num_taskred = num; 2592 KMP_MEMCPY(this_tdg->rec_taskred_data, data, 2593 sizeof(kmp_task_red_input_t) * num); 2594 } 2595 #endif 2596 return __kmp_task_reduction_init(gtid, num, (kmp_task_red_input_t *)data); 2597 } 2598 2599 /*! 2600 @ingroup TASKING 2601 @param gtid Global thread ID 2602 @param num Number of data items to reduce 2603 @param data Array of data for reduction 2604 @return The taskgroup identifier 2605 2606 Initialize task reduction for the taskgroup. 2607 2608 Note: this entry supposes the optional compiler-generated initializer routine 2609 has two parameters, pointer to object to be initialized and pointer to omp_orig 2610 */ 2611 void *__kmpc_taskred_init(int gtid, int num, void *data) { 2612 #if OMPX_TASKGRAPH 2613 kmp_tdg_info_t *tdg = __kmp_find_tdg(__kmp_curr_tdg_idx); 2614 if (tdg && __kmp_tdg_is_recording(tdg->tdg_status)) { 2615 kmp_tdg_info_t *this_tdg = __kmp_global_tdgs[__kmp_curr_tdg_idx]; 2616 this_tdg->rec_taskred_data = 2617 __kmp_allocate(sizeof(kmp_task_red_input_t) * num); 2618 this_tdg->rec_num_taskred = num; 2619 KMP_MEMCPY(this_tdg->rec_taskred_data, data, 2620 sizeof(kmp_task_red_input_t) * num); 2621 } 2622 #endif 2623 return __kmp_task_reduction_init(gtid, num, (kmp_taskred_input_t *)data); 2624 } 2625 2626 // Copy task reduction data (except for shared pointers). 2627 template <typename T> 2628 void __kmp_task_reduction_init_copy(kmp_info_t *thr, int num, T *data, 2629 kmp_taskgroup_t *tg, void *reduce_data) { 2630 kmp_taskred_data_t *arr; 2631 KA_TRACE(20, ("__kmp_task_reduction_init_copy: Th %p, init taskgroup %p," 2632 " from data %p\n", 2633 thr, tg, reduce_data)); 2634 arr = (kmp_taskred_data_t *)__kmp_thread_malloc( 2635 thr, num * sizeof(kmp_taskred_data_t)); 2636 // threads will share private copies, thunk routines, sizes, flags, etc.: 2637 KMP_MEMCPY(arr, reduce_data, num * sizeof(kmp_taskred_data_t)); 2638 for (int i = 0; i < num; ++i) { 2639 arr[i].reduce_shar = data[i].reduce_shar; // init unique shared pointers 2640 } 2641 tg->reduce_data = (void *)arr; 2642 tg->reduce_num_data = num; 2643 } 2644 2645 /*! 2646 @ingroup TASKING 2647 @param gtid Global thread ID 2648 @param tskgrp The taskgroup ID (optional) 2649 @param data Shared location of the item 2650 @return The pointer to per-thread data 2651 2652 Get thread-specific location of data item 2653 */ 2654 void *__kmpc_task_reduction_get_th_data(int gtid, void *tskgrp, void *data) { 2655 __kmp_assert_valid_gtid(gtid); 2656 kmp_info_t *thread = __kmp_threads[gtid]; 2657 kmp_int32 nth = thread->th.th_team_nproc; 2658 if (nth == 1) 2659 return data; // nothing to do 2660 2661 kmp_taskgroup_t *tg = (kmp_taskgroup_t *)tskgrp; 2662 if (tg == NULL) 2663 tg = thread->th.th_current_task->td_taskgroup; 2664 KMP_ASSERT(tg != NULL); 2665 kmp_taskred_data_t *arr = (kmp_taskred_data_t *)(tg->reduce_data); 2666 kmp_int32 num = tg->reduce_num_data; 2667 kmp_int32 tid = thread->th.th_info.ds.ds_tid; 2668 2669 #if OMPX_TASKGRAPH 2670 if ((thread->th.th_current_task->is_taskgraph) && 2671 (!__kmp_tdg_is_recording( 2672 __kmp_global_tdgs[__kmp_curr_tdg_idx]->tdg_status))) { 2673 tg = thread->th.th_current_task->td_taskgroup; 2674 KMP_ASSERT(tg != NULL); 2675 KMP_ASSERT(tg->reduce_data != NULL); 2676 arr = (kmp_taskred_data_t *)(tg->reduce_data); 2677 num = tg->reduce_num_data; 2678 } 2679 #endif 2680 2681 KMP_ASSERT(data != NULL); 2682 while (tg != NULL) { 2683 for (int i = 0; i < num; ++i) { 2684 if (!arr[i].flags.lazy_priv) { 2685 if (data == arr[i].reduce_shar || 2686 (data >= arr[i].reduce_priv && data < arr[i].reduce_pend)) 2687 return (char *)(arr[i].reduce_priv) + tid * arr[i].reduce_size; 2688 } else { 2689 // check shared location first 2690 void **p_priv = (void **)(arr[i].reduce_priv); 2691 if (data == arr[i].reduce_shar) 2692 goto found; 2693 // check if we get some thread specific location as parameter 2694 for (int j = 0; j < nth; ++j) 2695 if (data == p_priv[j]) 2696 goto found; 2697 continue; // not found, continue search 2698 found: 2699 if (p_priv[tid] == NULL) { 2700 // allocate thread specific object lazily 2701 p_priv[tid] = __kmp_allocate(arr[i].reduce_size); 2702 if (arr[i].reduce_init != NULL) { 2703 if (arr[i].reduce_orig != NULL) { // new interface 2704 ((void (*)(void *, void *))arr[i].reduce_init)( 2705 p_priv[tid], arr[i].reduce_orig); 2706 } else { // old interface (single parameter) 2707 ((void (*)(void *))arr[i].reduce_init)(p_priv[tid]); 2708 } 2709 } 2710 } 2711 return p_priv[tid]; 2712 } 2713 } 2714 KMP_ASSERT(tg->parent); 2715 tg = tg->parent; 2716 arr = (kmp_taskred_data_t *)(tg->reduce_data); 2717 num = tg->reduce_num_data; 2718 } 2719 KMP_ASSERT2(0, "Unknown task reduction item"); 2720 return NULL; // ERROR, this line never executed 2721 } 2722 2723 // Finalize task reduction. 2724 // Called from __kmpc_end_taskgroup() 2725 static void __kmp_task_reduction_fini(kmp_info_t *th, kmp_taskgroup_t *tg) { 2726 kmp_int32 nth = th->th.th_team_nproc; 2727 KMP_DEBUG_ASSERT( 2728 nth > 1 || 2729 __kmp_enable_hidden_helper); // should not be called if nth == 1 unless we 2730 // are using hidden helper threads 2731 kmp_taskred_data_t *arr = (kmp_taskred_data_t *)tg->reduce_data; 2732 kmp_int32 num = tg->reduce_num_data; 2733 for (int i = 0; i < num; ++i) { 2734 void *sh_data = arr[i].reduce_shar; 2735 void (*f_fini)(void *) = (void (*)(void *))(arr[i].reduce_fini); 2736 void (*f_comb)(void *, void *) = 2737 (void (*)(void *, void *))(arr[i].reduce_comb); 2738 if (!arr[i].flags.lazy_priv) { 2739 void *pr_data = arr[i].reduce_priv; 2740 size_t size = arr[i].reduce_size; 2741 for (int j = 0; j < nth; ++j) { 2742 void *priv_data = (char *)pr_data + j * size; 2743 f_comb(sh_data, priv_data); // combine results 2744 if (f_fini) 2745 f_fini(priv_data); // finalize if needed 2746 } 2747 } else { 2748 void **pr_data = (void **)(arr[i].reduce_priv); 2749 for (int j = 0; j < nth; ++j) { 2750 if (pr_data[j] != NULL) { 2751 f_comb(sh_data, pr_data[j]); // combine results 2752 if (f_fini) 2753 f_fini(pr_data[j]); // finalize if needed 2754 __kmp_free(pr_data[j]); 2755 } 2756 } 2757 } 2758 __kmp_free(arr[i].reduce_priv); 2759 } 2760 __kmp_thread_free(th, arr); 2761 tg->reduce_data = NULL; 2762 tg->reduce_num_data = 0; 2763 } 2764 2765 // Cleanup task reduction data for parallel or worksharing, 2766 // do not touch task private data other threads still working with. 2767 // Called from __kmpc_end_taskgroup() 2768 static void __kmp_task_reduction_clean(kmp_info_t *th, kmp_taskgroup_t *tg) { 2769 __kmp_thread_free(th, tg->reduce_data); 2770 tg->reduce_data = NULL; 2771 tg->reduce_num_data = 0; 2772 } 2773 2774 template <typename T> 2775 void *__kmp_task_reduction_modifier_init(ident_t *loc, int gtid, int is_ws, 2776 int num, T *data) { 2777 __kmp_assert_valid_gtid(gtid); 2778 kmp_info_t *thr = __kmp_threads[gtid]; 2779 kmp_int32 nth = thr->th.th_team_nproc; 2780 __kmpc_taskgroup(loc, gtid); // form new taskgroup first 2781 if (nth == 1) { 2782 KA_TRACE(10, 2783 ("__kmpc_reduction_modifier_init: T#%d, tg %p, exiting nth=1\n", 2784 gtid, thr->th.th_current_task->td_taskgroup)); 2785 return (void *)thr->th.th_current_task->td_taskgroup; 2786 } 2787 kmp_team_t *team = thr->th.th_team; 2788 void *reduce_data; 2789 kmp_taskgroup_t *tg; 2790 reduce_data = KMP_ATOMIC_LD_RLX(&team->t.t_tg_reduce_data[is_ws]); 2791 if (reduce_data == NULL && 2792 __kmp_atomic_compare_store(&team->t.t_tg_reduce_data[is_ws], reduce_data, 2793 (void *)1)) { 2794 // single thread enters this block to initialize common reduction data 2795 KMP_DEBUG_ASSERT(reduce_data == NULL); 2796 // first initialize own data, then make a copy other threads can use 2797 tg = (kmp_taskgroup_t *)__kmp_task_reduction_init<T>(gtid, num, data); 2798 reduce_data = __kmp_thread_malloc(thr, num * sizeof(kmp_taskred_data_t)); 2799 KMP_MEMCPY(reduce_data, tg->reduce_data, num * sizeof(kmp_taskred_data_t)); 2800 // fini counters should be 0 at this point 2801 KMP_DEBUG_ASSERT(KMP_ATOMIC_LD_RLX(&team->t.t_tg_fini_counter[0]) == 0); 2802 KMP_DEBUG_ASSERT(KMP_ATOMIC_LD_RLX(&team->t.t_tg_fini_counter[1]) == 0); 2803 KMP_ATOMIC_ST_REL(&team->t.t_tg_reduce_data[is_ws], reduce_data); 2804 } else { 2805 while ( 2806 (reduce_data = KMP_ATOMIC_LD_ACQ(&team->t.t_tg_reduce_data[is_ws])) == 2807 (void *)1) { // wait for task reduction initialization 2808 KMP_CPU_PAUSE(); 2809 } 2810 KMP_DEBUG_ASSERT(reduce_data > (void *)1); // should be valid pointer here 2811 tg = thr->th.th_current_task->td_taskgroup; 2812 __kmp_task_reduction_init_copy<T>(thr, num, data, tg, reduce_data); 2813 } 2814 return tg; 2815 } 2816 2817 /*! 2818 @ingroup TASKING 2819 @param loc Source location info 2820 @param gtid Global thread ID 2821 @param is_ws Is 1 if the reduction is for worksharing, 0 otherwise 2822 @param num Number of data items to reduce 2823 @param data Array of data for reduction 2824 @return The taskgroup identifier 2825 2826 Initialize task reduction for a parallel or worksharing. 2827 2828 Note: this entry supposes the optional compiler-generated initializer routine 2829 has single parameter - pointer to object to be initialized. That means 2830 the reduction either does not use omp_orig object, or the omp_orig is accessible 2831 without help of the runtime library. 2832 */ 2833 void *__kmpc_task_reduction_modifier_init(ident_t *loc, int gtid, int is_ws, 2834 int num, void *data) { 2835 return __kmp_task_reduction_modifier_init(loc, gtid, is_ws, num, 2836 (kmp_task_red_input_t *)data); 2837 } 2838 2839 /*! 2840 @ingroup TASKING 2841 @param loc Source location info 2842 @param gtid Global thread ID 2843 @param is_ws Is 1 if the reduction is for worksharing, 0 otherwise 2844 @param num Number of data items to reduce 2845 @param data Array of data for reduction 2846 @return The taskgroup identifier 2847 2848 Initialize task reduction for a parallel or worksharing. 2849 2850 Note: this entry supposes the optional compiler-generated initializer routine 2851 has two parameters, pointer to object to be initialized and pointer to omp_orig 2852 */ 2853 void *__kmpc_taskred_modifier_init(ident_t *loc, int gtid, int is_ws, int num, 2854 void *data) { 2855 return __kmp_task_reduction_modifier_init(loc, gtid, is_ws, num, 2856 (kmp_taskred_input_t *)data); 2857 } 2858 2859 /*! 2860 @ingroup TASKING 2861 @param loc Source location info 2862 @param gtid Global thread ID 2863 @param is_ws Is 1 if the reduction is for worksharing, 0 otherwise 2864 2865 Finalize task reduction for a parallel or worksharing. 2866 */ 2867 void __kmpc_task_reduction_modifier_fini(ident_t *loc, int gtid, int is_ws) { 2868 __kmpc_end_taskgroup(loc, gtid); 2869 } 2870 2871 // __kmpc_taskgroup: Start a new taskgroup 2872 void __kmpc_taskgroup(ident_t *loc, int gtid) { 2873 __kmp_assert_valid_gtid(gtid); 2874 kmp_info_t *thread = __kmp_threads[gtid]; 2875 kmp_taskdata_t *taskdata = thread->th.th_current_task; 2876 kmp_taskgroup_t *tg_new = 2877 (kmp_taskgroup_t *)__kmp_thread_malloc(thread, sizeof(kmp_taskgroup_t)); 2878 KA_TRACE(10, ("__kmpc_taskgroup: T#%d loc=%p group=%p\n", gtid, loc, tg_new)); 2879 KMP_ATOMIC_ST_RLX(&tg_new->count, 0); 2880 KMP_ATOMIC_ST_RLX(&tg_new->cancel_request, cancel_noreq); 2881 tg_new->parent = taskdata->td_taskgroup; 2882 tg_new->reduce_data = NULL; 2883 tg_new->reduce_num_data = 0; 2884 tg_new->gomp_data = NULL; 2885 taskdata->td_taskgroup = tg_new; 2886 2887 #if OMPT_SUPPORT && OMPT_OPTIONAL 2888 if (UNLIKELY(ompt_enabled.ompt_callback_sync_region)) { 2889 void *codeptr = OMPT_LOAD_RETURN_ADDRESS(gtid); 2890 if (!codeptr) 2891 codeptr = OMPT_GET_RETURN_ADDRESS(0); 2892 kmp_team_t *team = thread->th.th_team; 2893 ompt_data_t my_task_data = taskdata->ompt_task_info.task_data; 2894 // FIXME: I think this is wrong for lwt! 2895 ompt_data_t my_parallel_data = team->t.ompt_team_info.parallel_data; 2896 2897 ompt_callbacks.ompt_callback(ompt_callback_sync_region)( 2898 ompt_sync_region_taskgroup, ompt_scope_begin, &(my_parallel_data), 2899 &(my_task_data), codeptr); 2900 } 2901 #endif 2902 } 2903 2904 // __kmpc_end_taskgroup: Wait until all tasks generated by the current task 2905 // and its descendants are complete 2906 void __kmpc_end_taskgroup(ident_t *loc, int gtid) { 2907 __kmp_assert_valid_gtid(gtid); 2908 kmp_info_t *thread = __kmp_threads[gtid]; 2909 kmp_taskdata_t *taskdata = thread->th.th_current_task; 2910 kmp_taskgroup_t *taskgroup = taskdata->td_taskgroup; 2911 int thread_finished = FALSE; 2912 2913 #if OMPT_SUPPORT && OMPT_OPTIONAL 2914 kmp_team_t *team; 2915 ompt_data_t my_task_data; 2916 ompt_data_t my_parallel_data; 2917 void *codeptr = nullptr; 2918 if (UNLIKELY(ompt_enabled.enabled)) { 2919 team = thread->th.th_team; 2920 my_task_data = taskdata->ompt_task_info.task_data; 2921 // FIXME: I think this is wrong for lwt! 2922 my_parallel_data = team->t.ompt_team_info.parallel_data; 2923 codeptr = OMPT_LOAD_RETURN_ADDRESS(gtid); 2924 if (!codeptr) 2925 codeptr = OMPT_GET_RETURN_ADDRESS(0); 2926 } 2927 #endif 2928 2929 KA_TRACE(10, ("__kmpc_end_taskgroup(enter): T#%d loc=%p\n", gtid, loc)); 2930 KMP_DEBUG_ASSERT(taskgroup != NULL); 2931 KMP_SET_THREAD_STATE_BLOCK(TASKGROUP); 2932 2933 if (__kmp_tasking_mode != tskm_immediate_exec) { 2934 // mark task as waiting not on a barrier 2935 taskdata->td_taskwait_counter += 1; 2936 taskdata->td_taskwait_ident = loc; 2937 taskdata->td_taskwait_thread = gtid + 1; 2938 #if USE_ITT_BUILD 2939 // For ITT the taskgroup wait is similar to taskwait until we need to 2940 // distinguish them 2941 void *itt_sync_obj = NULL; 2942 #if USE_ITT_NOTIFY 2943 KMP_ITT_TASKWAIT_STARTING(itt_sync_obj); 2944 #endif /* USE_ITT_NOTIFY */ 2945 #endif /* USE_ITT_BUILD */ 2946 2947 #if OMPT_SUPPORT && OMPT_OPTIONAL 2948 if (UNLIKELY(ompt_enabled.ompt_callback_sync_region_wait)) { 2949 ompt_callbacks.ompt_callback(ompt_callback_sync_region_wait)( 2950 ompt_sync_region_taskgroup, ompt_scope_begin, &(my_parallel_data), 2951 &(my_task_data), codeptr); 2952 } 2953 #endif 2954 2955 if (!taskdata->td_flags.team_serial || 2956 (thread->th.th_task_team != NULL && 2957 (thread->th.th_task_team->tt.tt_found_proxy_tasks || 2958 thread->th.th_task_team->tt.tt_hidden_helper_task_encountered))) { 2959 kmp_flag_32<false, false> flag( 2960 RCAST(std::atomic<kmp_uint32> *, &(taskgroup->count)), 0U); 2961 while (KMP_ATOMIC_LD_ACQ(&taskgroup->count) != 0) { 2962 flag.execute_tasks(thread, gtid, FALSE, 2963 &thread_finished USE_ITT_BUILD_ARG(itt_sync_obj), 2964 __kmp_task_stealing_constraint); 2965 } 2966 } 2967 taskdata->td_taskwait_thread = -taskdata->td_taskwait_thread; // end waiting 2968 2969 #if OMPT_SUPPORT && OMPT_OPTIONAL 2970 if (UNLIKELY(ompt_enabled.ompt_callback_sync_region_wait)) { 2971 ompt_callbacks.ompt_callback(ompt_callback_sync_region_wait)( 2972 ompt_sync_region_taskgroup, ompt_scope_end, &(my_parallel_data), 2973 &(my_task_data), codeptr); 2974 } 2975 #endif 2976 2977 #if USE_ITT_BUILD 2978 KMP_ITT_TASKWAIT_FINISHED(itt_sync_obj); 2979 KMP_FSYNC_ACQUIRED(taskdata); // acquire self - sync with descendants 2980 #endif /* USE_ITT_BUILD */ 2981 } 2982 KMP_DEBUG_ASSERT(taskgroup->count == 0); 2983 2984 if (taskgroup->reduce_data != NULL && 2985 !taskgroup->gomp_data) { // need to reduce? 2986 int cnt; 2987 void *reduce_data; 2988 kmp_team_t *t = thread->th.th_team; 2989 kmp_taskred_data_t *arr = (kmp_taskred_data_t *)taskgroup->reduce_data; 2990 // check if <priv> data of the first reduction variable shared for the team 2991 void *priv0 = arr[0].reduce_priv; 2992 if ((reduce_data = KMP_ATOMIC_LD_ACQ(&t->t.t_tg_reduce_data[0])) != NULL && 2993 ((kmp_taskred_data_t *)reduce_data)[0].reduce_priv == priv0) { 2994 // finishing task reduction on parallel 2995 cnt = KMP_ATOMIC_INC(&t->t.t_tg_fini_counter[0]); 2996 if (cnt == thread->th.th_team_nproc - 1) { 2997 // we are the last thread passing __kmpc_reduction_modifier_fini() 2998 // finalize task reduction: 2999 __kmp_task_reduction_fini(thread, taskgroup); 3000 // cleanup fields in the team structure: 3001 // TODO: is relaxed store enough here (whole barrier should follow)? 3002 __kmp_thread_free(thread, reduce_data); 3003 KMP_ATOMIC_ST_REL(&t->t.t_tg_reduce_data[0], NULL); 3004 KMP_ATOMIC_ST_REL(&t->t.t_tg_fini_counter[0], 0); 3005 } else { 3006 // we are not the last thread passing __kmpc_reduction_modifier_fini(), 3007 // so do not finalize reduction, just clean own copy of the data 3008 __kmp_task_reduction_clean(thread, taskgroup); 3009 } 3010 } else if ((reduce_data = KMP_ATOMIC_LD_ACQ(&t->t.t_tg_reduce_data[1])) != 3011 NULL && 3012 ((kmp_taskred_data_t *)reduce_data)[0].reduce_priv == priv0) { 3013 // finishing task reduction on worksharing 3014 cnt = KMP_ATOMIC_INC(&t->t.t_tg_fini_counter[1]); 3015 if (cnt == thread->th.th_team_nproc - 1) { 3016 // we are the last thread passing __kmpc_reduction_modifier_fini() 3017 __kmp_task_reduction_fini(thread, taskgroup); 3018 // cleanup fields in team structure: 3019 // TODO: is relaxed store enough here (whole barrier should follow)? 3020 __kmp_thread_free(thread, reduce_data); 3021 KMP_ATOMIC_ST_REL(&t->t.t_tg_reduce_data[1], NULL); 3022 KMP_ATOMIC_ST_REL(&t->t.t_tg_fini_counter[1], 0); 3023 } else { 3024 // we are not the last thread passing __kmpc_reduction_modifier_fini(), 3025 // so do not finalize reduction, just clean own copy of the data 3026 __kmp_task_reduction_clean(thread, taskgroup); 3027 } 3028 } else { 3029 // finishing task reduction on taskgroup 3030 __kmp_task_reduction_fini(thread, taskgroup); 3031 } 3032 } 3033 // Restore parent taskgroup for the current task 3034 taskdata->td_taskgroup = taskgroup->parent; 3035 __kmp_thread_free(thread, taskgroup); 3036 3037 KA_TRACE(10, ("__kmpc_end_taskgroup(exit): T#%d task %p finished waiting\n", 3038 gtid, taskdata)); 3039 3040 #if OMPT_SUPPORT && OMPT_OPTIONAL 3041 if (UNLIKELY(ompt_enabled.ompt_callback_sync_region)) { 3042 ompt_callbacks.ompt_callback(ompt_callback_sync_region)( 3043 ompt_sync_region_taskgroup, ompt_scope_end, &(my_parallel_data), 3044 &(my_task_data), codeptr); 3045 } 3046 #endif 3047 } 3048 3049 static kmp_task_t *__kmp_get_priority_task(kmp_int32 gtid, 3050 kmp_task_team_t *task_team, 3051 kmp_int32 is_constrained) { 3052 kmp_task_t *task = NULL; 3053 kmp_taskdata_t *taskdata; 3054 kmp_taskdata_t *current; 3055 kmp_thread_data_t *thread_data; 3056 int ntasks = task_team->tt.tt_num_task_pri; 3057 if (ntasks == 0) { 3058 KA_TRACE( 3059 20, ("__kmp_get_priority_task(exit #1): T#%d No tasks to get\n", gtid)); 3060 return NULL; 3061 } 3062 do { 3063 // decrement num_tasks to "reserve" one task to get for execution 3064 if (__kmp_atomic_compare_store(&task_team->tt.tt_num_task_pri, ntasks, 3065 ntasks - 1)) 3066 break; 3067 ntasks = task_team->tt.tt_num_task_pri; 3068 } while (ntasks > 0); 3069 if (ntasks == 0) { 3070 KA_TRACE(20, ("__kmp_get_priority_task(exit #2): T#%d No tasks to get\n", 3071 __kmp_get_gtid())); 3072 return NULL; 3073 } 3074 // We got a "ticket" to get a "reserved" priority task 3075 int deque_ntasks; 3076 kmp_task_pri_t *list = task_team->tt.tt_task_pri_list; 3077 do { 3078 KMP_ASSERT(list != NULL); 3079 thread_data = &list->td; 3080 __kmp_acquire_bootstrap_lock(&thread_data->td.td_deque_lock); 3081 deque_ntasks = thread_data->td.td_deque_ntasks; 3082 if (deque_ntasks == 0) { 3083 __kmp_release_bootstrap_lock(&thread_data->td.td_deque_lock); 3084 KA_TRACE(20, ("__kmp_get_priority_task: T#%d No tasks to get from %p\n", 3085 __kmp_get_gtid(), thread_data)); 3086 list = list->next; 3087 } 3088 } while (deque_ntasks == 0); 3089 KMP_DEBUG_ASSERT(deque_ntasks); 3090 int target = thread_data->td.td_deque_head; 3091 current = __kmp_threads[gtid]->th.th_current_task; 3092 taskdata = thread_data->td.td_deque[target]; 3093 if (__kmp_task_is_allowed(gtid, is_constrained, taskdata, current)) { 3094 // Bump head pointer and Wrap. 3095 thread_data->td.td_deque_head = 3096 (target + 1) & TASK_DEQUE_MASK(thread_data->td); 3097 } else { 3098 if (!task_team->tt.tt_untied_task_encountered) { 3099 // The TSC does not allow to steal victim task 3100 __kmp_release_bootstrap_lock(&thread_data->td.td_deque_lock); 3101 KA_TRACE(20, ("__kmp_get_priority_task(exit #3): T#%d could not get task " 3102 "from %p: task_team=%p ntasks=%d head=%u tail=%u\n", 3103 gtid, thread_data, task_team, deque_ntasks, target, 3104 thread_data->td.td_deque_tail)); 3105 task_team->tt.tt_num_task_pri++; // atomic inc, restore value 3106 return NULL; 3107 } 3108 int i; 3109 // walk through the deque trying to steal any task 3110 taskdata = NULL; 3111 for (i = 1; i < deque_ntasks; ++i) { 3112 target = (target + 1) & TASK_DEQUE_MASK(thread_data->td); 3113 taskdata = thread_data->td.td_deque[target]; 3114 if (__kmp_task_is_allowed(gtid, is_constrained, taskdata, current)) { 3115 break; // found task to execute 3116 } else { 3117 taskdata = NULL; 3118 } 3119 } 3120 if (taskdata == NULL) { 3121 // No appropriate candidate found to execute 3122 __kmp_release_bootstrap_lock(&thread_data->td.td_deque_lock); 3123 KA_TRACE( 3124 10, ("__kmp_get_priority_task(exit #4): T#%d could not get task from " 3125 "%p: task_team=%p ntasks=%d head=%u tail=%u\n", 3126 gtid, thread_data, task_team, deque_ntasks, 3127 thread_data->td.td_deque_head, thread_data->td.td_deque_tail)); 3128 task_team->tt.tt_num_task_pri++; // atomic inc, restore value 3129 return NULL; 3130 } 3131 int prev = target; 3132 for (i = i + 1; i < deque_ntasks; ++i) { 3133 // shift remaining tasks in the deque left by 1 3134 target = (target + 1) & TASK_DEQUE_MASK(thread_data->td); 3135 thread_data->td.td_deque[prev] = thread_data->td.td_deque[target]; 3136 prev = target; 3137 } 3138 KMP_DEBUG_ASSERT( 3139 thread_data->td.td_deque_tail == 3140 (kmp_uint32)((target + 1) & TASK_DEQUE_MASK(thread_data->td))); 3141 thread_data->td.td_deque_tail = target; // tail -= 1 (wrapped)) 3142 } 3143 thread_data->td.td_deque_ntasks = deque_ntasks - 1; 3144 __kmp_release_bootstrap_lock(&thread_data->td.td_deque_lock); 3145 task = KMP_TASKDATA_TO_TASK(taskdata); 3146 return task; 3147 } 3148 3149 // __kmp_remove_my_task: remove a task from my own deque 3150 static kmp_task_t *__kmp_remove_my_task(kmp_info_t *thread, kmp_int32 gtid, 3151 kmp_task_team_t *task_team, 3152 kmp_int32 is_constrained) { 3153 kmp_task_t *task; 3154 kmp_taskdata_t *taskdata; 3155 kmp_thread_data_t *thread_data; 3156 kmp_uint32 tail; 3157 3158 KMP_DEBUG_ASSERT(__kmp_tasking_mode != tskm_immediate_exec); 3159 KMP_DEBUG_ASSERT(task_team->tt.tt_threads_data != 3160 NULL); // Caller should check this condition 3161 3162 thread_data = &task_team->tt.tt_threads_data[__kmp_tid_from_gtid(gtid)]; 3163 3164 KA_TRACE(10, ("__kmp_remove_my_task(enter): T#%d ntasks=%d head=%u tail=%u\n", 3165 gtid, thread_data->td.td_deque_ntasks, 3166 thread_data->td.td_deque_head, thread_data->td.td_deque_tail)); 3167 3168 if (TCR_4(thread_data->td.td_deque_ntasks) == 0) { 3169 KA_TRACE(10, 3170 ("__kmp_remove_my_task(exit #1): T#%d No tasks to remove: " 3171 "ntasks=%d head=%u tail=%u\n", 3172 gtid, thread_data->td.td_deque_ntasks, 3173 thread_data->td.td_deque_head, thread_data->td.td_deque_tail)); 3174 return NULL; 3175 } 3176 3177 __kmp_acquire_bootstrap_lock(&thread_data->td.td_deque_lock); 3178 3179 if (TCR_4(thread_data->td.td_deque_ntasks) == 0) { 3180 __kmp_release_bootstrap_lock(&thread_data->td.td_deque_lock); 3181 KA_TRACE(10, 3182 ("__kmp_remove_my_task(exit #2): T#%d No tasks to remove: " 3183 "ntasks=%d head=%u tail=%u\n", 3184 gtid, thread_data->td.td_deque_ntasks, 3185 thread_data->td.td_deque_head, thread_data->td.td_deque_tail)); 3186 return NULL; 3187 } 3188 3189 tail = (thread_data->td.td_deque_tail - 1) & 3190 TASK_DEQUE_MASK(thread_data->td); // Wrap index. 3191 taskdata = thread_data->td.td_deque[tail]; 3192 3193 if (!__kmp_task_is_allowed(gtid, is_constrained, taskdata, 3194 thread->th.th_current_task)) { 3195 // The TSC does not allow to steal victim task 3196 __kmp_release_bootstrap_lock(&thread_data->td.td_deque_lock); 3197 KA_TRACE(10, 3198 ("__kmp_remove_my_task(exit #3): T#%d TSC blocks tail task: " 3199 "ntasks=%d head=%u tail=%u\n", 3200 gtid, thread_data->td.td_deque_ntasks, 3201 thread_data->td.td_deque_head, thread_data->td.td_deque_tail)); 3202 return NULL; 3203 } 3204 3205 thread_data->td.td_deque_tail = tail; 3206 TCW_4(thread_data->td.td_deque_ntasks, thread_data->td.td_deque_ntasks - 1); 3207 3208 __kmp_release_bootstrap_lock(&thread_data->td.td_deque_lock); 3209 3210 KA_TRACE(10, ("__kmp_remove_my_task(exit #4): T#%d task %p removed: " 3211 "ntasks=%d head=%u tail=%u\n", 3212 gtid, taskdata, thread_data->td.td_deque_ntasks, 3213 thread_data->td.td_deque_head, thread_data->td.td_deque_tail)); 3214 3215 task = KMP_TASKDATA_TO_TASK(taskdata); 3216 return task; 3217 } 3218 3219 // __kmp_steal_task: remove a task from another thread's deque 3220 // Assume that calling thread has already checked existence of 3221 // task_team thread_data before calling this routine. 3222 static kmp_task_t *__kmp_steal_task(kmp_info_t *victim_thr, kmp_int32 gtid, 3223 kmp_task_team_t *task_team, 3224 std::atomic<kmp_int32> *unfinished_threads, 3225 int *thread_finished, 3226 kmp_int32 is_constrained) { 3227 kmp_task_t *task; 3228 kmp_taskdata_t *taskdata; 3229 kmp_taskdata_t *current; 3230 kmp_thread_data_t *victim_td, *threads_data; 3231 kmp_int32 target; 3232 kmp_int32 victim_tid; 3233 3234 KMP_DEBUG_ASSERT(__kmp_tasking_mode != tskm_immediate_exec); 3235 3236 threads_data = task_team->tt.tt_threads_data; 3237 KMP_DEBUG_ASSERT(threads_data != NULL); // Caller should check this condition 3238 3239 victim_tid = victim_thr->th.th_info.ds.ds_tid; 3240 victim_td = &threads_data[victim_tid]; 3241 3242 KA_TRACE(10, ("__kmp_steal_task(enter): T#%d try to steal from T#%d: " 3243 "task_team=%p ntasks=%d head=%u tail=%u\n", 3244 gtid, __kmp_gtid_from_thread(victim_thr), task_team, 3245 victim_td->td.td_deque_ntasks, victim_td->td.td_deque_head, 3246 victim_td->td.td_deque_tail)); 3247 3248 if (TCR_4(victim_td->td.td_deque_ntasks) == 0) { 3249 KA_TRACE(10, ("__kmp_steal_task(exit #1): T#%d could not steal from T#%d: " 3250 "task_team=%p ntasks=%d head=%u tail=%u\n", 3251 gtid, __kmp_gtid_from_thread(victim_thr), task_team, 3252 victim_td->td.td_deque_ntasks, victim_td->td.td_deque_head, 3253 victim_td->td.td_deque_tail)); 3254 return NULL; 3255 } 3256 3257 __kmp_acquire_bootstrap_lock(&victim_td->td.td_deque_lock); 3258 3259 int ntasks = TCR_4(victim_td->td.td_deque_ntasks); 3260 // Check again after we acquire the lock 3261 if (ntasks == 0) { 3262 __kmp_release_bootstrap_lock(&victim_td->td.td_deque_lock); 3263 KA_TRACE(10, ("__kmp_steal_task(exit #2): T#%d could not steal from T#%d: " 3264 "task_team=%p ntasks=%d head=%u tail=%u\n", 3265 gtid, __kmp_gtid_from_thread(victim_thr), task_team, ntasks, 3266 victim_td->td.td_deque_head, victim_td->td.td_deque_tail)); 3267 return NULL; 3268 } 3269 3270 KMP_DEBUG_ASSERT(victim_td->td.td_deque != NULL); 3271 current = __kmp_threads[gtid]->th.th_current_task; 3272 taskdata = victim_td->td.td_deque[victim_td->td.td_deque_head]; 3273 if (__kmp_task_is_allowed(gtid, is_constrained, taskdata, current)) { 3274 // Bump head pointer and Wrap. 3275 victim_td->td.td_deque_head = 3276 (victim_td->td.td_deque_head + 1) & TASK_DEQUE_MASK(victim_td->td); 3277 } else { 3278 if (!task_team->tt.tt_untied_task_encountered) { 3279 // The TSC does not allow to steal victim task 3280 __kmp_release_bootstrap_lock(&victim_td->td.td_deque_lock); 3281 KA_TRACE(10, ("__kmp_steal_task(exit #3): T#%d could not steal from " 3282 "T#%d: task_team=%p ntasks=%d head=%u tail=%u\n", 3283 gtid, __kmp_gtid_from_thread(victim_thr), task_team, ntasks, 3284 victim_td->td.td_deque_head, victim_td->td.td_deque_tail)); 3285 return NULL; 3286 } 3287 int i; 3288 // walk through victim's deque trying to steal any task 3289 target = victim_td->td.td_deque_head; 3290 taskdata = NULL; 3291 for (i = 1; i < ntasks; ++i) { 3292 target = (target + 1) & TASK_DEQUE_MASK(victim_td->td); 3293 taskdata = victim_td->td.td_deque[target]; 3294 if (__kmp_task_is_allowed(gtid, is_constrained, taskdata, current)) { 3295 break; // found victim task 3296 } else { 3297 taskdata = NULL; 3298 } 3299 } 3300 if (taskdata == NULL) { 3301 // No appropriate candidate to steal found 3302 __kmp_release_bootstrap_lock(&victim_td->td.td_deque_lock); 3303 KA_TRACE(10, ("__kmp_steal_task(exit #4): T#%d could not steal from " 3304 "T#%d: task_team=%p ntasks=%d head=%u tail=%u\n", 3305 gtid, __kmp_gtid_from_thread(victim_thr), task_team, ntasks, 3306 victim_td->td.td_deque_head, victim_td->td.td_deque_tail)); 3307 return NULL; 3308 } 3309 int prev = target; 3310 for (i = i + 1; i < ntasks; ++i) { 3311 // shift remaining tasks in the deque left by 1 3312 target = (target + 1) & TASK_DEQUE_MASK(victim_td->td); 3313 victim_td->td.td_deque[prev] = victim_td->td.td_deque[target]; 3314 prev = target; 3315 } 3316 KMP_DEBUG_ASSERT( 3317 victim_td->td.td_deque_tail == 3318 (kmp_uint32)((target + 1) & TASK_DEQUE_MASK(victim_td->td))); 3319 victim_td->td.td_deque_tail = target; // tail -= 1 (wrapped)) 3320 } 3321 if (*thread_finished) { 3322 // We need to un-mark this victim as a finished victim. This must be done 3323 // before releasing the lock, or else other threads (starting with the 3324 // primary thread victim) might be prematurely released from the barrier!!! 3325 #if KMP_DEBUG 3326 kmp_int32 count = 3327 #endif 3328 KMP_ATOMIC_INC(unfinished_threads); 3329 KA_TRACE( 3330 20, 3331 ("__kmp_steal_task: T#%d inc unfinished_threads to %d: task_team=%p\n", 3332 gtid, count + 1, task_team)); 3333 *thread_finished = FALSE; 3334 } 3335 TCW_4(victim_td->td.td_deque_ntasks, ntasks - 1); 3336 3337 __kmp_release_bootstrap_lock(&victim_td->td.td_deque_lock); 3338 3339 KMP_COUNT_BLOCK(TASK_stolen); 3340 KA_TRACE(10, 3341 ("__kmp_steal_task(exit #5): T#%d stole task %p from T#%d: " 3342 "task_team=%p ntasks=%d head=%u tail=%u\n", 3343 gtid, taskdata, __kmp_gtid_from_thread(victim_thr), task_team, 3344 ntasks, victim_td->td.td_deque_head, victim_td->td.td_deque_tail)); 3345 3346 task = KMP_TASKDATA_TO_TASK(taskdata); 3347 return task; 3348 } 3349 3350 // __kmp_execute_tasks_template: Choose and execute tasks until either the 3351 // condition is statisfied (return true) or there are none left (return false). 3352 // 3353 // final_spin is TRUE if this is the spin at the release barrier. 3354 // thread_finished indicates whether the thread is finished executing all 3355 // the tasks it has on its deque, and is at the release barrier. 3356 // spinner is the location on which to spin. 3357 // spinner == NULL means only execute a single task and return. 3358 // checker is the value to check to terminate the spin. 3359 template <class C> 3360 static inline int __kmp_execute_tasks_template( 3361 kmp_info_t *thread, kmp_int32 gtid, C *flag, int final_spin, 3362 int *thread_finished USE_ITT_BUILD_ARG(void *itt_sync_obj), 3363 kmp_int32 is_constrained) { 3364 kmp_task_team_t *task_team = thread->th.th_task_team; 3365 kmp_thread_data_t *threads_data; 3366 kmp_task_t *task; 3367 kmp_info_t *other_thread; 3368 kmp_taskdata_t *current_task = thread->th.th_current_task; 3369 std::atomic<kmp_int32> *unfinished_threads; 3370 kmp_int32 nthreads, victim_tid = -2, use_own_tasks = 1, new_victim = 0, 3371 tid = thread->th.th_info.ds.ds_tid; 3372 3373 KMP_DEBUG_ASSERT(__kmp_tasking_mode != tskm_immediate_exec); 3374 KMP_DEBUG_ASSERT(thread == __kmp_threads[gtid]); 3375 3376 if (task_team == NULL || current_task == NULL) 3377 return FALSE; 3378 3379 KA_TRACE(15, ("__kmp_execute_tasks_template(enter): T#%d final_spin=%d " 3380 "*thread_finished=%d\n", 3381 gtid, final_spin, *thread_finished)); 3382 3383 thread->th.th_reap_state = KMP_NOT_SAFE_TO_REAP; 3384 threads_data = (kmp_thread_data_t *)TCR_PTR(task_team->tt.tt_threads_data); 3385 3386 KMP_DEBUG_ASSERT(threads_data != NULL); 3387 3388 nthreads = task_team->tt.tt_nproc; 3389 unfinished_threads = &(task_team->tt.tt_unfinished_threads); 3390 KMP_DEBUG_ASSERT(nthreads > 1 || task_team->tt.tt_found_proxy_tasks || 3391 task_team->tt.tt_hidden_helper_task_encountered); 3392 KMP_DEBUG_ASSERT(*unfinished_threads >= 0); 3393 3394 while (1) { // Outer loop keeps trying to find tasks in case of single thread 3395 // getting tasks from target constructs 3396 while (1) { // Inner loop to find a task and execute it 3397 task = NULL; 3398 if (task_team->tt.tt_num_task_pri) { // get priority task first 3399 task = __kmp_get_priority_task(gtid, task_team, is_constrained); 3400 } 3401 if (task == NULL && use_own_tasks) { // check own queue next 3402 task = __kmp_remove_my_task(thread, gtid, task_team, is_constrained); 3403 } 3404 if ((task == NULL) && (nthreads > 1)) { // Steal a task finally 3405 int asleep = 1; 3406 use_own_tasks = 0; 3407 // Try to steal from the last place I stole from successfully. 3408 if (victim_tid == -2) { // haven't stolen anything yet 3409 victim_tid = threads_data[tid].td.td_deque_last_stolen; 3410 if (victim_tid != 3411 -1) // if we have a last stolen from victim, get the thread 3412 other_thread = threads_data[victim_tid].td.td_thr; 3413 } 3414 if (victim_tid != -1) { // found last victim 3415 asleep = 0; 3416 } else if (!new_victim) { // no recent steals and we haven't already 3417 // used a new victim; select a random thread 3418 do { // Find a different thread to steal work from. 3419 // Pick a random thread. Initial plan was to cycle through all the 3420 // threads, and only return if we tried to steal from every thread, 3421 // and failed. Arch says that's not such a great idea. 3422 victim_tid = __kmp_get_random(thread) % (nthreads - 1); 3423 if (victim_tid >= tid) { 3424 ++victim_tid; // Adjusts random distribution to exclude self 3425 } 3426 // Found a potential victim 3427 other_thread = threads_data[victim_tid].td.td_thr; 3428 // There is a slight chance that __kmp_enable_tasking() did not wake 3429 // up all threads waiting at the barrier. If victim is sleeping, 3430 // then wake it up. Since we were going to pay the cache miss 3431 // penalty for referencing another thread's kmp_info_t struct 3432 // anyway, 3433 // the check shouldn't cost too much performance at this point. In 3434 // extra barrier mode, tasks do not sleep at the separate tasking 3435 // barrier, so this isn't a problem. 3436 asleep = 0; 3437 if ((__kmp_tasking_mode == tskm_task_teams) && 3438 (__kmp_dflt_blocktime != KMP_MAX_BLOCKTIME) && 3439 (TCR_PTR(CCAST(void *, other_thread->th.th_sleep_loc)) != 3440 NULL)) { 3441 asleep = 1; 3442 __kmp_null_resume_wrapper(other_thread); 3443 // A sleeping thread should not have any tasks on it's queue. 3444 // There is a slight possibility that it resumes, steals a task 3445 // from another thread, which spawns more tasks, all in the time 3446 // that it takes this thread to check => don't write an assertion 3447 // that the victim's queue is empty. Try stealing from a 3448 // different thread. 3449 } 3450 } while (asleep); 3451 } 3452 3453 if (!asleep) { 3454 // We have a victim to try to steal from 3455 task = __kmp_steal_task(other_thread, gtid, task_team, 3456 unfinished_threads, thread_finished, 3457 is_constrained); 3458 } 3459 if (task != NULL) { // set last stolen to victim 3460 if (threads_data[tid].td.td_deque_last_stolen != victim_tid) { 3461 threads_data[tid].td.td_deque_last_stolen = victim_tid; 3462 // The pre-refactored code did not try more than 1 successful new 3463 // vicitm, unless the last one generated more local tasks; 3464 // new_victim keeps track of this 3465 new_victim = 1; 3466 } 3467 } else { // No tasks found; unset last_stolen 3468 KMP_CHECK_UPDATE(threads_data[tid].td.td_deque_last_stolen, -1); 3469 victim_tid = -2; // no successful victim found 3470 } 3471 } 3472 3473 if (task == NULL) 3474 break; // break out of tasking loop 3475 3476 // Found a task; execute it 3477 #if USE_ITT_BUILD && USE_ITT_NOTIFY 3478 if (__itt_sync_create_ptr || KMP_ITT_DEBUG) { 3479 if (itt_sync_obj == NULL) { // we are at fork barrier where we could not 3480 // get the object reliably 3481 itt_sync_obj = __kmp_itt_barrier_object(gtid, bs_forkjoin_barrier); 3482 } 3483 __kmp_itt_task_starting(itt_sync_obj); 3484 } 3485 #endif /* USE_ITT_BUILD && USE_ITT_NOTIFY */ 3486 __kmp_invoke_task(gtid, task, current_task); 3487 #if USE_ITT_BUILD 3488 if (itt_sync_obj != NULL) 3489 __kmp_itt_task_finished(itt_sync_obj); 3490 #endif /* USE_ITT_BUILD */ 3491 // If this thread is only partway through the barrier and the condition is 3492 // met, then return now, so that the barrier gather/release pattern can 3493 // proceed. If this thread is in the last spin loop in the barrier, 3494 // waiting to be released, we know that the termination condition will not 3495 // be satisfied, so don't waste any cycles checking it. 3496 if (flag == NULL || (!final_spin && flag->done_check())) { 3497 KA_TRACE( 3498 15, 3499 ("__kmp_execute_tasks_template: T#%d spin condition satisfied\n", 3500 gtid)); 3501 return TRUE; 3502 } 3503 if (thread->th.th_task_team == NULL) { 3504 break; 3505 } 3506 KMP_YIELD(__kmp_library == library_throughput); // Yield before next task 3507 // If execution of a stolen task results in more tasks being placed on our 3508 // run queue, reset use_own_tasks 3509 if (!use_own_tasks && TCR_4(threads_data[tid].td.td_deque_ntasks) != 0) { 3510 KA_TRACE(20, ("__kmp_execute_tasks_template: T#%d stolen task spawned " 3511 "other tasks, restart\n", 3512 gtid)); 3513 use_own_tasks = 1; 3514 new_victim = 0; 3515 } 3516 } 3517 3518 // The task source has been exhausted. If in final spin loop of barrier, 3519 // check if termination condition is satisfied. The work queue may be empty 3520 // but there might be proxy tasks still executing. 3521 if (final_spin && 3522 KMP_ATOMIC_LD_ACQ(¤t_task->td_incomplete_child_tasks) == 0) { 3523 // First, decrement the #unfinished threads, if that has not already been 3524 // done. This decrement might be to the spin location, and result in the 3525 // termination condition being satisfied. 3526 if (!*thread_finished) { 3527 #if KMP_DEBUG 3528 kmp_int32 count = -1 + 3529 #endif 3530 KMP_ATOMIC_DEC(unfinished_threads); 3531 KA_TRACE(20, ("__kmp_execute_tasks_template: T#%d dec " 3532 "unfinished_threads to %d task_team=%p\n", 3533 gtid, count, task_team)); 3534 *thread_finished = TRUE; 3535 } 3536 3537 // It is now unsafe to reference thread->th.th_team !!! 3538 // Decrementing task_team->tt.tt_unfinished_threads can allow the primary 3539 // thread to pass through the barrier, where it might reset each thread's 3540 // th.th_team field for the next parallel region. If we can steal more 3541 // work, we know that this has not happened yet. 3542 if (flag != NULL && flag->done_check()) { 3543 KA_TRACE( 3544 15, 3545 ("__kmp_execute_tasks_template: T#%d spin condition satisfied\n", 3546 gtid)); 3547 return TRUE; 3548 } 3549 } 3550 3551 // If this thread's task team is NULL, primary thread has recognized that 3552 // there are no more tasks; bail out 3553 if (thread->th.th_task_team == NULL) { 3554 KA_TRACE(15, 3555 ("__kmp_execute_tasks_template: T#%d no more tasks\n", gtid)); 3556 return FALSE; 3557 } 3558 3559 // Check the flag again to see if it has already done in case to be trapped 3560 // into infinite loop when a if0 task depends on a hidden helper task 3561 // outside any parallel region. Detached tasks are not impacted in this case 3562 // because the only thread executing this function has to execute the proxy 3563 // task so it is in another code path that has the same check. 3564 if (flag == NULL || (!final_spin && flag->done_check())) { 3565 KA_TRACE(15, 3566 ("__kmp_execute_tasks_template: T#%d spin condition satisfied\n", 3567 gtid)); 3568 return TRUE; 3569 } 3570 3571 // We could be getting tasks from target constructs; if this is the only 3572 // thread, keep trying to execute tasks from own queue 3573 if (nthreads == 1 && 3574 KMP_ATOMIC_LD_ACQ(¤t_task->td_incomplete_child_tasks)) 3575 use_own_tasks = 1; 3576 else { 3577 KA_TRACE(15, 3578 ("__kmp_execute_tasks_template: T#%d can't find work\n", gtid)); 3579 return FALSE; 3580 } 3581 } 3582 } 3583 3584 template <bool C, bool S> 3585 int __kmp_execute_tasks_32( 3586 kmp_info_t *thread, kmp_int32 gtid, kmp_flag_32<C, S> *flag, int final_spin, 3587 int *thread_finished USE_ITT_BUILD_ARG(void *itt_sync_obj), 3588 kmp_int32 is_constrained) { 3589 return __kmp_execute_tasks_template( 3590 thread, gtid, flag, final_spin, 3591 thread_finished USE_ITT_BUILD_ARG(itt_sync_obj), is_constrained); 3592 } 3593 3594 template <bool C, bool S> 3595 int __kmp_execute_tasks_64( 3596 kmp_info_t *thread, kmp_int32 gtid, kmp_flag_64<C, S> *flag, int final_spin, 3597 int *thread_finished USE_ITT_BUILD_ARG(void *itt_sync_obj), 3598 kmp_int32 is_constrained) { 3599 return __kmp_execute_tasks_template( 3600 thread, gtid, flag, final_spin, 3601 thread_finished USE_ITT_BUILD_ARG(itt_sync_obj), is_constrained); 3602 } 3603 3604 template <bool C, bool S> 3605 int __kmp_atomic_execute_tasks_64( 3606 kmp_info_t *thread, kmp_int32 gtid, kmp_atomic_flag_64<C, S> *flag, 3607 int final_spin, int *thread_finished USE_ITT_BUILD_ARG(void *itt_sync_obj), 3608 kmp_int32 is_constrained) { 3609 return __kmp_execute_tasks_template( 3610 thread, gtid, flag, final_spin, 3611 thread_finished USE_ITT_BUILD_ARG(itt_sync_obj), is_constrained); 3612 } 3613 3614 int __kmp_execute_tasks_oncore( 3615 kmp_info_t *thread, kmp_int32 gtid, kmp_flag_oncore *flag, int final_spin, 3616 int *thread_finished USE_ITT_BUILD_ARG(void *itt_sync_obj), 3617 kmp_int32 is_constrained) { 3618 return __kmp_execute_tasks_template( 3619 thread, gtid, flag, final_spin, 3620 thread_finished USE_ITT_BUILD_ARG(itt_sync_obj), is_constrained); 3621 } 3622 3623 template int 3624 __kmp_execute_tasks_32<false, false>(kmp_info_t *, kmp_int32, 3625 kmp_flag_32<false, false> *, int, 3626 int *USE_ITT_BUILD_ARG(void *), kmp_int32); 3627 3628 template int __kmp_execute_tasks_64<false, true>(kmp_info_t *, kmp_int32, 3629 kmp_flag_64<false, true> *, 3630 int, 3631 int *USE_ITT_BUILD_ARG(void *), 3632 kmp_int32); 3633 3634 template int __kmp_execute_tasks_64<true, false>(kmp_info_t *, kmp_int32, 3635 kmp_flag_64<true, false> *, 3636 int, 3637 int *USE_ITT_BUILD_ARG(void *), 3638 kmp_int32); 3639 3640 template int __kmp_atomic_execute_tasks_64<false, true>( 3641 kmp_info_t *, kmp_int32, kmp_atomic_flag_64<false, true> *, int, 3642 int *USE_ITT_BUILD_ARG(void *), kmp_int32); 3643 3644 template int __kmp_atomic_execute_tasks_64<true, false>( 3645 kmp_info_t *, kmp_int32, kmp_atomic_flag_64<true, false> *, int, 3646 int *USE_ITT_BUILD_ARG(void *), kmp_int32); 3647 3648 // __kmp_enable_tasking: Allocate task team and resume threads sleeping at the 3649 // next barrier so they can assist in executing enqueued tasks. 3650 // First thread in allocates the task team atomically. 3651 static void __kmp_enable_tasking(kmp_task_team_t *task_team, 3652 kmp_info_t *this_thr) { 3653 kmp_thread_data_t *threads_data; 3654 int nthreads, i, is_init_thread; 3655 3656 KA_TRACE(10, ("__kmp_enable_tasking(enter): T#%d\n", 3657 __kmp_gtid_from_thread(this_thr))); 3658 3659 KMP_DEBUG_ASSERT(task_team != NULL); 3660 KMP_DEBUG_ASSERT(this_thr->th.th_team != NULL); 3661 3662 nthreads = task_team->tt.tt_nproc; 3663 KMP_DEBUG_ASSERT(nthreads > 0); 3664 KMP_DEBUG_ASSERT(nthreads == this_thr->th.th_team->t.t_nproc); 3665 3666 // Allocate or increase the size of threads_data if necessary 3667 is_init_thread = __kmp_realloc_task_threads_data(this_thr, task_team); 3668 3669 if (!is_init_thread) { 3670 // Some other thread already set up the array. 3671 KA_TRACE( 3672 20, 3673 ("__kmp_enable_tasking(exit): T#%d: threads array already set up.\n", 3674 __kmp_gtid_from_thread(this_thr))); 3675 return; 3676 } 3677 threads_data = (kmp_thread_data_t *)TCR_PTR(task_team->tt.tt_threads_data); 3678 KMP_DEBUG_ASSERT(threads_data != NULL); 3679 3680 if (__kmp_tasking_mode == tskm_task_teams && 3681 (__kmp_dflt_blocktime != KMP_MAX_BLOCKTIME)) { 3682 // Release any threads sleeping at the barrier, so that they can steal 3683 // tasks and execute them. In extra barrier mode, tasks do not sleep 3684 // at the separate tasking barrier, so this isn't a problem. 3685 for (i = 0; i < nthreads; i++) { 3686 void *sleep_loc; 3687 kmp_info_t *thread = threads_data[i].td.td_thr; 3688 3689 if (i == this_thr->th.th_info.ds.ds_tid) { 3690 continue; 3691 } 3692 // Since we haven't locked the thread's suspend mutex lock at this 3693 // point, there is a small window where a thread might be putting 3694 // itself to sleep, but hasn't set the th_sleep_loc field yet. 3695 // To work around this, __kmp_execute_tasks_template() periodically checks 3696 // see if other threads are sleeping (using the same random mechanism that 3697 // is used for task stealing) and awakens them if they are. 3698 if ((sleep_loc = TCR_PTR(CCAST(void *, thread->th.th_sleep_loc))) != 3699 NULL) { 3700 KF_TRACE(50, ("__kmp_enable_tasking: T#%d waking up thread T#%d\n", 3701 __kmp_gtid_from_thread(this_thr), 3702 __kmp_gtid_from_thread(thread))); 3703 __kmp_null_resume_wrapper(thread); 3704 } else { 3705 KF_TRACE(50, ("__kmp_enable_tasking: T#%d don't wake up thread T#%d\n", 3706 __kmp_gtid_from_thread(this_thr), 3707 __kmp_gtid_from_thread(thread))); 3708 } 3709 } 3710 } 3711 3712 KA_TRACE(10, ("__kmp_enable_tasking(exit): T#%d\n", 3713 __kmp_gtid_from_thread(this_thr))); 3714 } 3715 3716 /* // TODO: Check the comment consistency 3717 * Utility routines for "task teams". A task team (kmp_task_t) is kind of 3718 * like a shadow of the kmp_team_t data struct, with a different lifetime. 3719 * After a child * thread checks into a barrier and calls __kmp_release() from 3720 * the particular variant of __kmp_<barrier_kind>_barrier_gather(), it can no 3721 * longer assume that the kmp_team_t structure is intact (at any moment, the 3722 * primary thread may exit the barrier code and free the team data structure, 3723 * and return the threads to the thread pool). 3724 * 3725 * This does not work with the tasking code, as the thread is still 3726 * expected to participate in the execution of any tasks that may have been 3727 * spawned my a member of the team, and the thread still needs access to all 3728 * to each thread in the team, so that it can steal work from it. 3729 * 3730 * Enter the existence of the kmp_task_team_t struct. It employs a reference 3731 * counting mechanism, and is allocated by the primary thread before calling 3732 * __kmp_<barrier_kind>_release, and then is release by the last thread to 3733 * exit __kmp_<barrier_kind>_release at the next barrier. I.e. the lifetimes 3734 * of the kmp_task_team_t structs for consecutive barriers can overlap 3735 * (and will, unless the primary thread is the last thread to exit the barrier 3736 * release phase, which is not typical). The existence of such a struct is 3737 * useful outside the context of tasking. 3738 * 3739 * We currently use the existence of the threads array as an indicator that 3740 * tasks were spawned since the last barrier. If the structure is to be 3741 * useful outside the context of tasking, then this will have to change, but 3742 * not setting the field minimizes the performance impact of tasking on 3743 * barriers, when no explicit tasks were spawned (pushed, actually). 3744 */ 3745 3746 static kmp_task_team_t *__kmp_free_task_teams = 3747 NULL; // Free list for task_team data structures 3748 // Lock for task team data structures 3749 kmp_bootstrap_lock_t __kmp_task_team_lock = 3750 KMP_BOOTSTRAP_LOCK_INITIALIZER(__kmp_task_team_lock); 3751 3752 // __kmp_alloc_task_deque: 3753 // Allocates a task deque for a particular thread, and initialize the necessary 3754 // data structures relating to the deque. This only happens once per thread 3755 // per task team since task teams are recycled. No lock is needed during 3756 // allocation since each thread allocates its own deque. 3757 static void __kmp_alloc_task_deque(kmp_info_t *thread, 3758 kmp_thread_data_t *thread_data) { 3759 __kmp_init_bootstrap_lock(&thread_data->td.td_deque_lock); 3760 KMP_DEBUG_ASSERT(thread_data->td.td_deque == NULL); 3761 3762 // Initialize last stolen task field to "none" 3763 thread_data->td.td_deque_last_stolen = -1; 3764 3765 KMP_DEBUG_ASSERT(TCR_4(thread_data->td.td_deque_ntasks) == 0); 3766 KMP_DEBUG_ASSERT(thread_data->td.td_deque_head == 0); 3767 KMP_DEBUG_ASSERT(thread_data->td.td_deque_tail == 0); 3768 3769 KE_TRACE( 3770 10, 3771 ("__kmp_alloc_task_deque: T#%d allocating deque[%d] for thread_data %p\n", 3772 __kmp_gtid_from_thread(thread), INITIAL_TASK_DEQUE_SIZE, thread_data)); 3773 // Allocate space for task deque, and zero the deque 3774 // Cannot use __kmp_thread_calloc() because threads not around for 3775 // kmp_reap_task_team( ). 3776 thread_data->td.td_deque = (kmp_taskdata_t **)__kmp_allocate( 3777 INITIAL_TASK_DEQUE_SIZE * sizeof(kmp_taskdata_t *)); 3778 thread_data->td.td_deque_size = INITIAL_TASK_DEQUE_SIZE; 3779 } 3780 3781 // __kmp_free_task_deque: 3782 // Deallocates a task deque for a particular thread. Happens at library 3783 // deallocation so don't need to reset all thread data fields. 3784 static void __kmp_free_task_deque(kmp_thread_data_t *thread_data) { 3785 if (thread_data->td.td_deque != NULL) { 3786 __kmp_acquire_bootstrap_lock(&thread_data->td.td_deque_lock); 3787 TCW_4(thread_data->td.td_deque_ntasks, 0); 3788 __kmp_free(thread_data->td.td_deque); 3789 thread_data->td.td_deque = NULL; 3790 __kmp_release_bootstrap_lock(&thread_data->td.td_deque_lock); 3791 } 3792 3793 #ifdef BUILD_TIED_TASK_STACK 3794 // GEH: Figure out what to do here for td_susp_tied_tasks 3795 if (thread_data->td.td_susp_tied_tasks.ts_entries != TASK_STACK_EMPTY) { 3796 __kmp_free_task_stack(__kmp_thread_from_gtid(gtid), thread_data); 3797 } 3798 #endif // BUILD_TIED_TASK_STACK 3799 } 3800 3801 // __kmp_realloc_task_threads_data: 3802 // Allocates a threads_data array for a task team, either by allocating an 3803 // initial array or enlarging an existing array. Only the first thread to get 3804 // the lock allocs or enlarges the array and re-initializes the array elements. 3805 // That thread returns "TRUE", the rest return "FALSE". 3806 // Assumes that the new array size is given by task_team -> tt.tt_nproc. 3807 // The current size is given by task_team -> tt.tt_max_threads. 3808 static int __kmp_realloc_task_threads_data(kmp_info_t *thread, 3809 kmp_task_team_t *task_team) { 3810 kmp_thread_data_t **threads_data_p; 3811 kmp_int32 nthreads, maxthreads; 3812 int is_init_thread = FALSE; 3813 3814 if (TCR_4(task_team->tt.tt_found_tasks)) { 3815 // Already reallocated and initialized. 3816 return FALSE; 3817 } 3818 3819 threads_data_p = &task_team->tt.tt_threads_data; 3820 nthreads = task_team->tt.tt_nproc; 3821 maxthreads = task_team->tt.tt_max_threads; 3822 3823 // All threads must lock when they encounter the first task of the implicit 3824 // task region to make sure threads_data fields are (re)initialized before 3825 // used. 3826 __kmp_acquire_bootstrap_lock(&task_team->tt.tt_threads_lock); 3827 3828 if (!TCR_4(task_team->tt.tt_found_tasks)) { 3829 // first thread to enable tasking 3830 kmp_team_t *team = thread->th.th_team; 3831 int i; 3832 3833 is_init_thread = TRUE; 3834 if (maxthreads < nthreads) { 3835 3836 if (*threads_data_p != NULL) { 3837 kmp_thread_data_t *old_data = *threads_data_p; 3838 kmp_thread_data_t *new_data = NULL; 3839 3840 KE_TRACE( 3841 10, 3842 ("__kmp_realloc_task_threads_data: T#%d reallocating " 3843 "threads data for task_team %p, new_size = %d, old_size = %d\n", 3844 __kmp_gtid_from_thread(thread), task_team, nthreads, maxthreads)); 3845 // Reallocate threads_data to have more elements than current array 3846 // Cannot use __kmp_thread_realloc() because threads not around for 3847 // kmp_reap_task_team( ). Note all new array entries are initialized 3848 // to zero by __kmp_allocate(). 3849 new_data = (kmp_thread_data_t *)__kmp_allocate( 3850 nthreads * sizeof(kmp_thread_data_t)); 3851 // copy old data to new data 3852 KMP_MEMCPY_S((void *)new_data, nthreads * sizeof(kmp_thread_data_t), 3853 (void *)old_data, maxthreads * sizeof(kmp_thread_data_t)); 3854 3855 #ifdef BUILD_TIED_TASK_STACK 3856 // GEH: Figure out if this is the right thing to do 3857 for (i = maxthreads; i < nthreads; i++) { 3858 kmp_thread_data_t *thread_data = &(*threads_data_p)[i]; 3859 __kmp_init_task_stack(__kmp_gtid_from_thread(thread), thread_data); 3860 } 3861 #endif // BUILD_TIED_TASK_STACK 3862 // Install the new data and free the old data 3863 (*threads_data_p) = new_data; 3864 __kmp_free(old_data); 3865 } else { 3866 KE_TRACE(10, ("__kmp_realloc_task_threads_data: T#%d allocating " 3867 "threads data for task_team %p, size = %d\n", 3868 __kmp_gtid_from_thread(thread), task_team, nthreads)); 3869 // Make the initial allocate for threads_data array, and zero entries 3870 // Cannot use __kmp_thread_calloc() because threads not around for 3871 // kmp_reap_task_team( ). 3872 *threads_data_p = (kmp_thread_data_t *)__kmp_allocate( 3873 nthreads * sizeof(kmp_thread_data_t)); 3874 #ifdef BUILD_TIED_TASK_STACK 3875 // GEH: Figure out if this is the right thing to do 3876 for (i = 0; i < nthreads; i++) { 3877 kmp_thread_data_t *thread_data = &(*threads_data_p)[i]; 3878 __kmp_init_task_stack(__kmp_gtid_from_thread(thread), thread_data); 3879 } 3880 #endif // BUILD_TIED_TASK_STACK 3881 } 3882 task_team->tt.tt_max_threads = nthreads; 3883 } else { 3884 // If array has (more than) enough elements, go ahead and use it 3885 KMP_DEBUG_ASSERT(*threads_data_p != NULL); 3886 } 3887 3888 // initialize threads_data pointers back to thread_info structures 3889 for (i = 0; i < nthreads; i++) { 3890 kmp_thread_data_t *thread_data = &(*threads_data_p)[i]; 3891 thread_data->td.td_thr = team->t.t_threads[i]; 3892 3893 if (thread_data->td.td_deque_last_stolen >= nthreads) { 3894 // The last stolen field survives across teams / barrier, and the number 3895 // of threads may have changed. It's possible (likely?) that a new 3896 // parallel region will exhibit the same behavior as previous region. 3897 thread_data->td.td_deque_last_stolen = -1; 3898 } 3899 } 3900 3901 KMP_MB(); 3902 TCW_SYNC_4(task_team->tt.tt_found_tasks, TRUE); 3903 } 3904 3905 __kmp_release_bootstrap_lock(&task_team->tt.tt_threads_lock); 3906 return is_init_thread; 3907 } 3908 3909 // __kmp_free_task_threads_data: 3910 // Deallocates a threads_data array for a task team, including any attached 3911 // tasking deques. Only occurs at library shutdown. 3912 static void __kmp_free_task_threads_data(kmp_task_team_t *task_team) { 3913 __kmp_acquire_bootstrap_lock(&task_team->tt.tt_threads_lock); 3914 if (task_team->tt.tt_threads_data != NULL) { 3915 int i; 3916 for (i = 0; i < task_team->tt.tt_max_threads; i++) { 3917 __kmp_free_task_deque(&task_team->tt.tt_threads_data[i]); 3918 } 3919 __kmp_free(task_team->tt.tt_threads_data); 3920 task_team->tt.tt_threads_data = NULL; 3921 } 3922 __kmp_release_bootstrap_lock(&task_team->tt.tt_threads_lock); 3923 } 3924 3925 // __kmp_free_task_pri_list: 3926 // Deallocates tasking deques used for priority tasks. 3927 // Only occurs at library shutdown. 3928 static void __kmp_free_task_pri_list(kmp_task_team_t *task_team) { 3929 __kmp_acquire_bootstrap_lock(&task_team->tt.tt_task_pri_lock); 3930 if (task_team->tt.tt_task_pri_list != NULL) { 3931 kmp_task_pri_t *list = task_team->tt.tt_task_pri_list; 3932 while (list != NULL) { 3933 kmp_task_pri_t *next = list->next; 3934 __kmp_free_task_deque(&list->td); 3935 __kmp_free(list); 3936 list = next; 3937 } 3938 task_team->tt.tt_task_pri_list = NULL; 3939 } 3940 __kmp_release_bootstrap_lock(&task_team->tt.tt_task_pri_lock); 3941 } 3942 3943 // __kmp_allocate_task_team: 3944 // Allocates a task team associated with a specific team, taking it from 3945 // the global task team free list if possible. Also initializes data 3946 // structures. 3947 static kmp_task_team_t *__kmp_allocate_task_team(kmp_info_t *thread, 3948 kmp_team_t *team) { 3949 kmp_task_team_t *task_team = NULL; 3950 int nthreads; 3951 3952 KA_TRACE(20, ("__kmp_allocate_task_team: T#%d entering; team = %p\n", 3953 (thread ? __kmp_gtid_from_thread(thread) : -1), team)); 3954 3955 if (TCR_PTR(__kmp_free_task_teams) != NULL) { 3956 // Take a task team from the task team pool 3957 __kmp_acquire_bootstrap_lock(&__kmp_task_team_lock); 3958 if (__kmp_free_task_teams != NULL) { 3959 task_team = __kmp_free_task_teams; 3960 TCW_PTR(__kmp_free_task_teams, task_team->tt.tt_next); 3961 task_team->tt.tt_next = NULL; 3962 } 3963 __kmp_release_bootstrap_lock(&__kmp_task_team_lock); 3964 } 3965 3966 if (task_team == NULL) { 3967 KE_TRACE(10, ("__kmp_allocate_task_team: T#%d allocating " 3968 "task team for team %p\n", 3969 __kmp_gtid_from_thread(thread), team)); 3970 // Allocate a new task team if one is not available. Cannot use 3971 // __kmp_thread_malloc because threads not around for kmp_reap_task_team. 3972 task_team = (kmp_task_team_t *)__kmp_allocate(sizeof(kmp_task_team_t)); 3973 __kmp_init_bootstrap_lock(&task_team->tt.tt_threads_lock); 3974 __kmp_init_bootstrap_lock(&task_team->tt.tt_task_pri_lock); 3975 #if USE_ITT_BUILD && USE_ITT_NOTIFY && KMP_DEBUG 3976 // suppress race conditions detection on synchronization flags in debug mode 3977 // this helps to analyze library internals eliminating false positives 3978 __itt_suppress_mark_range( 3979 __itt_suppress_range, __itt_suppress_threading_errors, 3980 &task_team->tt.tt_found_tasks, sizeof(task_team->tt.tt_found_tasks)); 3981 __itt_suppress_mark_range(__itt_suppress_range, 3982 __itt_suppress_threading_errors, 3983 CCAST(kmp_uint32 *, &task_team->tt.tt_active), 3984 sizeof(task_team->tt.tt_active)); 3985 #endif /* USE_ITT_BUILD && USE_ITT_NOTIFY && KMP_DEBUG */ 3986 // Note: __kmp_allocate zeroes returned memory, othewise we would need: 3987 // task_team->tt.tt_threads_data = NULL; 3988 // task_team->tt.tt_max_threads = 0; 3989 // task_team->tt.tt_next = NULL; 3990 } 3991 3992 TCW_4(task_team->tt.tt_found_tasks, FALSE); 3993 TCW_4(task_team->tt.tt_found_proxy_tasks, FALSE); 3994 TCW_4(task_team->tt.tt_hidden_helper_task_encountered, FALSE); 3995 task_team->tt.tt_nproc = nthreads = team->t.t_nproc; 3996 3997 KMP_ATOMIC_ST_REL(&task_team->tt.tt_unfinished_threads, nthreads); 3998 TCW_4(task_team->tt.tt_hidden_helper_task_encountered, FALSE); 3999 TCW_4(task_team->tt.tt_active, TRUE); 4000 4001 KA_TRACE(20, ("__kmp_allocate_task_team: T#%d exiting; task_team = %p " 4002 "unfinished_threads init'd to %d\n", 4003 (thread ? __kmp_gtid_from_thread(thread) : -1), task_team, 4004 KMP_ATOMIC_LD_RLX(&task_team->tt.tt_unfinished_threads))); 4005 return task_team; 4006 } 4007 4008 // __kmp_free_task_team: 4009 // Frees the task team associated with a specific thread, and adds it 4010 // to the global task team free list. 4011 void __kmp_free_task_team(kmp_info_t *thread, kmp_task_team_t *task_team) { 4012 KA_TRACE(20, ("__kmp_free_task_team: T#%d task_team = %p\n", 4013 thread ? __kmp_gtid_from_thread(thread) : -1, task_team)); 4014 4015 // Put task team back on free list 4016 __kmp_acquire_bootstrap_lock(&__kmp_task_team_lock); 4017 4018 KMP_DEBUG_ASSERT(task_team->tt.tt_next == NULL); 4019 task_team->tt.tt_next = __kmp_free_task_teams; 4020 TCW_PTR(__kmp_free_task_teams, task_team); 4021 4022 __kmp_release_bootstrap_lock(&__kmp_task_team_lock); 4023 } 4024 4025 // __kmp_reap_task_teams: 4026 // Free all the task teams on the task team free list. 4027 // Should only be done during library shutdown. 4028 // Cannot do anything that needs a thread structure or gtid since they are 4029 // already gone. 4030 void __kmp_reap_task_teams(void) { 4031 kmp_task_team_t *task_team; 4032 4033 if (TCR_PTR(__kmp_free_task_teams) != NULL) { 4034 // Free all task_teams on the free list 4035 __kmp_acquire_bootstrap_lock(&__kmp_task_team_lock); 4036 while ((task_team = __kmp_free_task_teams) != NULL) { 4037 __kmp_free_task_teams = task_team->tt.tt_next; 4038 task_team->tt.tt_next = NULL; 4039 4040 // Free threads_data if necessary 4041 if (task_team->tt.tt_threads_data != NULL) { 4042 __kmp_free_task_threads_data(task_team); 4043 } 4044 if (task_team->tt.tt_task_pri_list != NULL) { 4045 __kmp_free_task_pri_list(task_team); 4046 } 4047 __kmp_free(task_team); 4048 } 4049 __kmp_release_bootstrap_lock(&__kmp_task_team_lock); 4050 } 4051 } 4052 4053 // __kmp_wait_to_unref_task_teams: 4054 // Some threads could still be in the fork barrier release code, possibly 4055 // trying to steal tasks. Wait for each thread to unreference its task team. 4056 void __kmp_wait_to_unref_task_teams(void) { 4057 kmp_info_t *thread; 4058 kmp_uint32 spins; 4059 kmp_uint64 time; 4060 int done; 4061 4062 KMP_INIT_YIELD(spins); 4063 KMP_INIT_BACKOFF(time); 4064 4065 for (;;) { 4066 done = TRUE; 4067 4068 // TODO: GEH - this may be is wrong because some sync would be necessary 4069 // in case threads are added to the pool during the traversal. Need to 4070 // verify that lock for thread pool is held when calling this routine. 4071 for (thread = CCAST(kmp_info_t *, __kmp_thread_pool); thread != NULL; 4072 thread = thread->th.th_next_pool) { 4073 #if KMP_OS_WINDOWS 4074 DWORD exit_val; 4075 #endif 4076 if (TCR_PTR(thread->th.th_task_team) == NULL) { 4077 KA_TRACE(10, ("__kmp_wait_to_unref_task_team: T#%d task_team == NULL\n", 4078 __kmp_gtid_from_thread(thread))); 4079 continue; 4080 } 4081 #if KMP_OS_WINDOWS 4082 // TODO: GEH - add this check for Linux* OS / OS X* as well? 4083 if (!__kmp_is_thread_alive(thread, &exit_val)) { 4084 thread->th.th_task_team = NULL; 4085 continue; 4086 } 4087 #endif 4088 4089 done = FALSE; // Because th_task_team pointer is not NULL for this thread 4090 4091 KA_TRACE(10, ("__kmp_wait_to_unref_task_team: Waiting for T#%d to " 4092 "unreference task_team\n", 4093 __kmp_gtid_from_thread(thread))); 4094 4095 if (__kmp_dflt_blocktime != KMP_MAX_BLOCKTIME) { 4096 void *sleep_loc; 4097 // If the thread is sleeping, awaken it. 4098 if ((sleep_loc = TCR_PTR(CCAST(void *, thread->th.th_sleep_loc))) != 4099 NULL) { 4100 KA_TRACE( 4101 10, 4102 ("__kmp_wait_to_unref_task_team: T#%d waking up thread T#%d\n", 4103 __kmp_gtid_from_thread(thread), __kmp_gtid_from_thread(thread))); 4104 __kmp_null_resume_wrapper(thread); 4105 } 4106 } 4107 } 4108 if (done) { 4109 break; 4110 } 4111 4112 // If oversubscribed or have waited a bit, yield. 4113 KMP_YIELD_OVERSUB_ELSE_SPIN(spins, time); 4114 } 4115 } 4116 4117 void __kmp_shift_task_state_stack(kmp_info_t *this_thr, kmp_uint8 value) { 4118 // Shift values from th_task_state_top+1 to task_state_stack_sz 4119 if (this_thr->th.th_task_state_top + 1 >= 4120 this_thr->th.th_task_state_stack_sz) { // increase size 4121 kmp_uint32 new_size = 2 * this_thr->th.th_task_state_stack_sz; 4122 kmp_uint8 *old_stack, *new_stack; 4123 kmp_uint32 i; 4124 new_stack = (kmp_uint8 *)__kmp_allocate(new_size); 4125 for (i = 0; i <= this_thr->th.th_task_state_top; ++i) { 4126 new_stack[i] = this_thr->th.th_task_state_memo_stack[i]; 4127 } 4128 // If we need to reallocate do the shift at the same time. 4129 for (; i < this_thr->th.th_task_state_stack_sz; ++i) { 4130 new_stack[i + 1] = this_thr->th.th_task_state_memo_stack[i]; 4131 } 4132 for (i = this_thr->th.th_task_state_stack_sz; i < new_size; 4133 ++i) { // zero-init rest of stack 4134 new_stack[i] = 0; 4135 } 4136 old_stack = this_thr->th.th_task_state_memo_stack; 4137 this_thr->th.th_task_state_memo_stack = new_stack; 4138 this_thr->th.th_task_state_stack_sz = new_size; 4139 __kmp_free(old_stack); 4140 } else { 4141 kmp_uint8 *end; 4142 kmp_uint32 i; 4143 4144 end = &this_thr->th 4145 .th_task_state_memo_stack[this_thr->th.th_task_state_stack_sz]; 4146 4147 for (i = this_thr->th.th_task_state_stack_sz - 1; 4148 i > this_thr->th.th_task_state_top; i--, end--) 4149 end[0] = end[-1]; 4150 } 4151 this_thr->th.th_task_state_memo_stack[this_thr->th.th_task_state_top + 1] = 4152 value; 4153 } 4154 4155 // __kmp_task_team_setup: Create a task_team for the current team, but use 4156 // an already created, unused one if it already exists. 4157 void __kmp_task_team_setup(kmp_info_t *this_thr, kmp_team_t *team, int always) { 4158 KMP_DEBUG_ASSERT(__kmp_tasking_mode != tskm_immediate_exec); 4159 4160 // If this task_team hasn't been created yet, allocate it. It will be used in 4161 // the region after the next. 4162 // If it exists, it is the current task team and shouldn't be touched yet as 4163 // it may still be in use. 4164 if (team->t.t_task_team[this_thr->th.th_task_state] == NULL && 4165 (always || team->t.t_nproc > 1)) { 4166 team->t.t_task_team[this_thr->th.th_task_state] = 4167 __kmp_allocate_task_team(this_thr, team); 4168 KA_TRACE(20, ("__kmp_task_team_setup: Primary T#%d created new task_team %p" 4169 " for team %d at parity=%d\n", 4170 __kmp_gtid_from_thread(this_thr), 4171 team->t.t_task_team[this_thr->th.th_task_state], team->t.t_id, 4172 this_thr->th.th_task_state)); 4173 } 4174 if (this_thr->th.th_task_state == 1 && always && team->t.t_nproc == 1) { 4175 // fix task state stack to adjust for proxy and helper tasks 4176 KA_TRACE(20, ("__kmp_task_team_setup: Primary T#%d needs to shift stack" 4177 " for team %d at parity=%d\n", 4178 __kmp_gtid_from_thread(this_thr), team->t.t_id, 4179 this_thr->th.th_task_state)); 4180 __kmp_shift_task_state_stack(this_thr, this_thr->th.th_task_state); 4181 } 4182 4183 // After threads exit the release, they will call sync, and then point to this 4184 // other task_team; make sure it is allocated and properly initialized. As 4185 // threads spin in the barrier release phase, they will continue to use the 4186 // previous task_team struct(above), until they receive the signal to stop 4187 // checking for tasks (they can't safely reference the kmp_team_t struct, 4188 // which could be reallocated by the primary thread). No task teams are formed 4189 // for serialized teams. 4190 if (team->t.t_nproc > 1) { 4191 int other_team = 1 - this_thr->th.th_task_state; 4192 KMP_DEBUG_ASSERT(other_team >= 0 && other_team < 2); 4193 if (team->t.t_task_team[other_team] == NULL) { // setup other team as well 4194 team->t.t_task_team[other_team] = 4195 __kmp_allocate_task_team(this_thr, team); 4196 KA_TRACE(20, ("__kmp_task_team_setup: Primary T#%d created second new " 4197 "task_team %p for team %d at parity=%d\n", 4198 __kmp_gtid_from_thread(this_thr), 4199 team->t.t_task_team[other_team], team->t.t_id, other_team)); 4200 } else { // Leave the old task team struct in place for the upcoming region; 4201 // adjust as needed 4202 kmp_task_team_t *task_team = team->t.t_task_team[other_team]; 4203 if (!task_team->tt.tt_active || 4204 team->t.t_nproc != task_team->tt.tt_nproc) { 4205 TCW_4(task_team->tt.tt_nproc, team->t.t_nproc); 4206 TCW_4(task_team->tt.tt_found_tasks, FALSE); 4207 TCW_4(task_team->tt.tt_found_proxy_tasks, FALSE); 4208 TCW_4(task_team->tt.tt_hidden_helper_task_encountered, FALSE); 4209 KMP_ATOMIC_ST_REL(&task_team->tt.tt_unfinished_threads, 4210 team->t.t_nproc); 4211 TCW_4(task_team->tt.tt_active, TRUE); 4212 } 4213 // if team size has changed, the first thread to enable tasking will 4214 // realloc threads_data if necessary 4215 KA_TRACE(20, ("__kmp_task_team_setup: Primary T#%d reset next task_team " 4216 "%p for team %d at parity=%d\n", 4217 __kmp_gtid_from_thread(this_thr), 4218 team->t.t_task_team[other_team], team->t.t_id, other_team)); 4219 } 4220 } 4221 4222 // For regular thread, task enabling should be called when the task is going 4223 // to be pushed to a dequeue. However, for the hidden helper thread, we need 4224 // it ahead of time so that some operations can be performed without race 4225 // condition. 4226 if (this_thr == __kmp_hidden_helper_main_thread) { 4227 for (int i = 0; i < 2; ++i) { 4228 kmp_task_team_t *task_team = team->t.t_task_team[i]; 4229 if (KMP_TASKING_ENABLED(task_team)) { 4230 continue; 4231 } 4232 __kmp_enable_tasking(task_team, this_thr); 4233 for (int j = 0; j < task_team->tt.tt_nproc; ++j) { 4234 kmp_thread_data_t *thread_data = &task_team->tt.tt_threads_data[j]; 4235 if (thread_data->td.td_deque == NULL) { 4236 __kmp_alloc_task_deque(__kmp_hidden_helper_threads[j], thread_data); 4237 } 4238 } 4239 } 4240 } 4241 } 4242 4243 // __kmp_task_team_sync: Propagation of task team data from team to threads 4244 // which happens just after the release phase of a team barrier. This may be 4245 // called by any thread, but only for teams with # threads > 1. 4246 void __kmp_task_team_sync(kmp_info_t *this_thr, kmp_team_t *team) { 4247 KMP_DEBUG_ASSERT(__kmp_tasking_mode != tskm_immediate_exec); 4248 4249 // Toggle the th_task_state field, to switch which task_team this thread 4250 // refers to 4251 this_thr->th.th_task_state = (kmp_uint8)(1 - this_thr->th.th_task_state); 4252 4253 // It is now safe to propagate the task team pointer from the team struct to 4254 // the current thread. 4255 TCW_PTR(this_thr->th.th_task_team, 4256 team->t.t_task_team[this_thr->th.th_task_state]); 4257 KA_TRACE(20, 4258 ("__kmp_task_team_sync: Thread T#%d task team switched to task_team " 4259 "%p from Team #%d (parity=%d)\n", 4260 __kmp_gtid_from_thread(this_thr), this_thr->th.th_task_team, 4261 team->t.t_id, this_thr->th.th_task_state)); 4262 } 4263 4264 // __kmp_task_team_wait: Primary thread waits for outstanding tasks after the 4265 // barrier gather phase. Only called by primary thread if #threads in team > 1 4266 // or if proxy tasks were created. 4267 // 4268 // wait is a flag that defaults to 1 (see kmp.h), but waiting can be turned off 4269 // by passing in 0 optionally as the last argument. When wait is zero, primary 4270 // thread does not wait for unfinished_threads to reach 0. 4271 void __kmp_task_team_wait( 4272 kmp_info_t *this_thr, 4273 kmp_team_t *team USE_ITT_BUILD_ARG(void *itt_sync_obj), int wait) { 4274 kmp_task_team_t *task_team = team->t.t_task_team[this_thr->th.th_task_state]; 4275 4276 KMP_DEBUG_ASSERT(__kmp_tasking_mode != tskm_immediate_exec); 4277 KMP_DEBUG_ASSERT(task_team == this_thr->th.th_task_team); 4278 4279 if ((task_team != NULL) && KMP_TASKING_ENABLED(task_team)) { 4280 if (wait) { 4281 KA_TRACE(20, ("__kmp_task_team_wait: Primary T#%d waiting for all tasks " 4282 "(for unfinished_threads to reach 0) on task_team = %p\n", 4283 __kmp_gtid_from_thread(this_thr), task_team)); 4284 // Worker threads may have dropped through to release phase, but could 4285 // still be executing tasks. Wait here for tasks to complete. To avoid 4286 // memory contention, only primary thread checks termination condition. 4287 kmp_flag_32<false, false> flag( 4288 RCAST(std::atomic<kmp_uint32> *, 4289 &task_team->tt.tt_unfinished_threads), 4290 0U); 4291 flag.wait(this_thr, TRUE USE_ITT_BUILD_ARG(itt_sync_obj)); 4292 } 4293 // Deactivate the old task team, so that the worker threads will stop 4294 // referencing it while spinning. 4295 KA_TRACE( 4296 20, 4297 ("__kmp_task_team_wait: Primary T#%d deactivating task_team %p: " 4298 "setting active to false, setting local and team's pointer to NULL\n", 4299 __kmp_gtid_from_thread(this_thr), task_team)); 4300 KMP_DEBUG_ASSERT(task_team->tt.tt_nproc > 1 || 4301 task_team->tt.tt_found_proxy_tasks == TRUE || 4302 task_team->tt.tt_hidden_helper_task_encountered == TRUE); 4303 TCW_SYNC_4(task_team->tt.tt_found_proxy_tasks, FALSE); 4304 TCW_SYNC_4(task_team->tt.tt_hidden_helper_task_encountered, FALSE); 4305 KMP_CHECK_UPDATE(task_team->tt.tt_untied_task_encountered, 0); 4306 TCW_SYNC_4(task_team->tt.tt_active, FALSE); 4307 KMP_MB(); 4308 4309 TCW_PTR(this_thr->th.th_task_team, NULL); 4310 } 4311 } 4312 4313 // __kmp_tasking_barrier: 4314 // This routine is called only when __kmp_tasking_mode == tskm_extra_barrier. 4315 // Internal function to execute all tasks prior to a regular barrier or a join 4316 // barrier. It is a full barrier itself, which unfortunately turns regular 4317 // barriers into double barriers and join barriers into 1 1/2 barriers. 4318 void __kmp_tasking_barrier(kmp_team_t *team, kmp_info_t *thread, int gtid) { 4319 std::atomic<kmp_uint32> *spin = RCAST( 4320 std::atomic<kmp_uint32> *, 4321 &team->t.t_task_team[thread->th.th_task_state]->tt.tt_unfinished_threads); 4322 int flag = FALSE; 4323 KMP_DEBUG_ASSERT(__kmp_tasking_mode == tskm_extra_barrier); 4324 4325 #if USE_ITT_BUILD 4326 KMP_FSYNC_SPIN_INIT(spin, NULL); 4327 #endif /* USE_ITT_BUILD */ 4328 kmp_flag_32<false, false> spin_flag(spin, 0U); 4329 while (!spin_flag.execute_tasks(thread, gtid, TRUE, 4330 &flag USE_ITT_BUILD_ARG(NULL), 0)) { 4331 #if USE_ITT_BUILD 4332 // TODO: What about itt_sync_obj?? 4333 KMP_FSYNC_SPIN_PREPARE(RCAST(void *, spin)); 4334 #endif /* USE_ITT_BUILD */ 4335 4336 if (TCR_4(__kmp_global.g.g_done)) { 4337 if (__kmp_global.g.g_abort) 4338 __kmp_abort_thread(); 4339 break; 4340 } 4341 KMP_YIELD(TRUE); 4342 } 4343 #if USE_ITT_BUILD 4344 KMP_FSYNC_SPIN_ACQUIRED(RCAST(void *, spin)); 4345 #endif /* USE_ITT_BUILD */ 4346 } 4347 4348 // __kmp_give_task puts a task into a given thread queue if: 4349 // - the queue for that thread was created 4350 // - there's space in that queue 4351 // Because of this, __kmp_push_task needs to check if there's space after 4352 // getting the lock 4353 static bool __kmp_give_task(kmp_info_t *thread, kmp_int32 tid, kmp_task_t *task, 4354 kmp_int32 pass) { 4355 kmp_taskdata_t *taskdata = KMP_TASK_TO_TASKDATA(task); 4356 kmp_task_team_t *task_team = taskdata->td_task_team; 4357 4358 KA_TRACE(20, ("__kmp_give_task: trying to give task %p to thread %d.\n", 4359 taskdata, tid)); 4360 4361 // If task_team is NULL something went really bad... 4362 KMP_DEBUG_ASSERT(task_team != NULL); 4363 4364 bool result = false; 4365 kmp_thread_data_t *thread_data = &task_team->tt.tt_threads_data[tid]; 4366 4367 if (thread_data->td.td_deque == NULL) { 4368 // There's no queue in this thread, go find another one 4369 // We're guaranteed that at least one thread has a queue 4370 KA_TRACE(30, 4371 ("__kmp_give_task: thread %d has no queue while giving task %p.\n", 4372 tid, taskdata)); 4373 return result; 4374 } 4375 4376 if (TCR_4(thread_data->td.td_deque_ntasks) >= 4377 TASK_DEQUE_SIZE(thread_data->td)) { 4378 KA_TRACE( 4379 30, 4380 ("__kmp_give_task: queue is full while giving task %p to thread %d.\n", 4381 taskdata, tid)); 4382 4383 // if this deque is bigger than the pass ratio give a chance to another 4384 // thread 4385 if (TASK_DEQUE_SIZE(thread_data->td) / INITIAL_TASK_DEQUE_SIZE >= pass) 4386 return result; 4387 4388 __kmp_acquire_bootstrap_lock(&thread_data->td.td_deque_lock); 4389 if (TCR_4(thread_data->td.td_deque_ntasks) >= 4390 TASK_DEQUE_SIZE(thread_data->td)) { 4391 // expand deque to push the task which is not allowed to execute 4392 __kmp_realloc_task_deque(thread, thread_data); 4393 } 4394 4395 } else { 4396 4397 __kmp_acquire_bootstrap_lock(&thread_data->td.td_deque_lock); 4398 4399 if (TCR_4(thread_data->td.td_deque_ntasks) >= 4400 TASK_DEQUE_SIZE(thread_data->td)) { 4401 KA_TRACE(30, ("__kmp_give_task: queue is full while giving task %p to " 4402 "thread %d.\n", 4403 taskdata, tid)); 4404 4405 // if this deque is bigger than the pass ratio give a chance to another 4406 // thread 4407 if (TASK_DEQUE_SIZE(thread_data->td) / INITIAL_TASK_DEQUE_SIZE >= pass) 4408 goto release_and_exit; 4409 4410 __kmp_realloc_task_deque(thread, thread_data); 4411 } 4412 } 4413 4414 // lock is held here, and there is space in the deque 4415 4416 thread_data->td.td_deque[thread_data->td.td_deque_tail] = taskdata; 4417 // Wrap index. 4418 thread_data->td.td_deque_tail = 4419 (thread_data->td.td_deque_tail + 1) & TASK_DEQUE_MASK(thread_data->td); 4420 TCW_4(thread_data->td.td_deque_ntasks, 4421 TCR_4(thread_data->td.td_deque_ntasks) + 1); 4422 4423 result = true; 4424 KA_TRACE(30, ("__kmp_give_task: successfully gave task %p to thread %d.\n", 4425 taskdata, tid)); 4426 4427 release_and_exit: 4428 __kmp_release_bootstrap_lock(&thread_data->td.td_deque_lock); 4429 4430 return result; 4431 } 4432 4433 #define PROXY_TASK_FLAG 0x40000000 4434 /* The finish of the proxy tasks is divided in two pieces: 4435 - the top half is the one that can be done from a thread outside the team 4436 - the bottom half must be run from a thread within the team 4437 4438 In order to run the bottom half the task gets queued back into one of the 4439 threads of the team. Once the td_incomplete_child_task counter of the parent 4440 is decremented the threads can leave the barriers. So, the bottom half needs 4441 to be queued before the counter is decremented. The top half is therefore 4442 divided in two parts: 4443 - things that can be run before queuing the bottom half 4444 - things that must be run after queuing the bottom half 4445 4446 This creates a second race as the bottom half can free the task before the 4447 second top half is executed. To avoid this we use the 4448 td_incomplete_child_task of the proxy task to synchronize the top and bottom 4449 half. */ 4450 static void __kmp_first_top_half_finish_proxy(kmp_taskdata_t *taskdata) { 4451 KMP_DEBUG_ASSERT(taskdata->td_flags.tasktype == TASK_EXPLICIT); 4452 KMP_DEBUG_ASSERT(taskdata->td_flags.proxy == TASK_PROXY); 4453 KMP_DEBUG_ASSERT(taskdata->td_flags.complete == 0); 4454 KMP_DEBUG_ASSERT(taskdata->td_flags.freed == 0); 4455 4456 taskdata->td_flags.complete = 1; // mark the task as completed 4457 #if OMPX_TASKGRAPH 4458 taskdata->td_flags.onced = 1; 4459 #endif 4460 4461 if (taskdata->td_taskgroup) 4462 KMP_ATOMIC_DEC(&taskdata->td_taskgroup->count); 4463 4464 // Create an imaginary children for this task so the bottom half cannot 4465 // release the task before we have completed the second top half 4466 KMP_ATOMIC_OR(&taskdata->td_incomplete_child_tasks, PROXY_TASK_FLAG); 4467 } 4468 4469 static void __kmp_second_top_half_finish_proxy(kmp_taskdata_t *taskdata) { 4470 #if KMP_DEBUG 4471 kmp_int32 children = 0; 4472 // Predecrement simulated by "- 1" calculation 4473 children = -1 + 4474 #endif 4475 KMP_ATOMIC_DEC(&taskdata->td_parent->td_incomplete_child_tasks); 4476 KMP_DEBUG_ASSERT(children >= 0); 4477 4478 // Remove the imaginary children 4479 KMP_ATOMIC_AND(&taskdata->td_incomplete_child_tasks, ~PROXY_TASK_FLAG); 4480 } 4481 4482 static void __kmp_bottom_half_finish_proxy(kmp_int32 gtid, kmp_task_t *ptask) { 4483 kmp_taskdata_t *taskdata = KMP_TASK_TO_TASKDATA(ptask); 4484 kmp_info_t *thread = __kmp_threads[gtid]; 4485 4486 KMP_DEBUG_ASSERT(taskdata->td_flags.proxy == TASK_PROXY); 4487 KMP_DEBUG_ASSERT(taskdata->td_flags.complete == 4488 1); // top half must run before bottom half 4489 4490 // We need to wait to make sure the top half is finished 4491 // Spinning here should be ok as this should happen quickly 4492 while ((KMP_ATOMIC_LD_ACQ(&taskdata->td_incomplete_child_tasks) & 4493 PROXY_TASK_FLAG) > 0) 4494 ; 4495 4496 __kmp_release_deps(gtid, taskdata); 4497 __kmp_free_task_and_ancestors(gtid, taskdata, thread); 4498 } 4499 4500 /*! 4501 @ingroup TASKING 4502 @param gtid Global Thread ID of encountering thread 4503 @param ptask Task which execution is completed 4504 4505 Execute the completion of a proxy task from a thread of that is part of the 4506 team. Run first and bottom halves directly. 4507 */ 4508 void __kmpc_proxy_task_completed(kmp_int32 gtid, kmp_task_t *ptask) { 4509 KMP_DEBUG_ASSERT(ptask != NULL); 4510 kmp_taskdata_t *taskdata = KMP_TASK_TO_TASKDATA(ptask); 4511 KA_TRACE( 4512 10, ("__kmp_proxy_task_completed(enter): T#%d proxy task %p completing\n", 4513 gtid, taskdata)); 4514 __kmp_assert_valid_gtid(gtid); 4515 KMP_DEBUG_ASSERT(taskdata->td_flags.proxy == TASK_PROXY); 4516 4517 __kmp_first_top_half_finish_proxy(taskdata); 4518 __kmp_second_top_half_finish_proxy(taskdata); 4519 __kmp_bottom_half_finish_proxy(gtid, ptask); 4520 4521 KA_TRACE(10, 4522 ("__kmp_proxy_task_completed(exit): T#%d proxy task %p completing\n", 4523 gtid, taskdata)); 4524 } 4525 4526 void __kmpc_give_task(kmp_task_t *ptask, kmp_int32 start = 0) { 4527 KMP_DEBUG_ASSERT(ptask != NULL); 4528 kmp_taskdata_t *taskdata = KMP_TASK_TO_TASKDATA(ptask); 4529 4530 // Enqueue task to complete bottom half completion from a thread within the 4531 // corresponding team 4532 kmp_team_t *team = taskdata->td_team; 4533 kmp_int32 nthreads = team->t.t_nproc; 4534 kmp_info_t *thread; 4535 4536 // This should be similar to start_k = __kmp_get_random( thread ) % nthreads 4537 // but we cannot use __kmp_get_random here 4538 kmp_int32 start_k = start % nthreads; 4539 kmp_int32 pass = 1; 4540 kmp_int32 k = start_k; 4541 4542 do { 4543 // For now we're just linearly trying to find a thread 4544 thread = team->t.t_threads[k]; 4545 k = (k + 1) % nthreads; 4546 4547 // we did a full pass through all the threads 4548 if (k == start_k) 4549 pass = pass << 1; 4550 4551 } while (!__kmp_give_task(thread, k, ptask, pass)); 4552 4553 if (__kmp_dflt_blocktime != KMP_MAX_BLOCKTIME && __kmp_wpolicy_passive) { 4554 // awake at least one thread to execute given task 4555 for (int i = 0; i < nthreads; ++i) { 4556 thread = team->t.t_threads[i]; 4557 if (thread->th.th_sleep_loc != NULL) { 4558 __kmp_null_resume_wrapper(thread); 4559 break; 4560 } 4561 } 4562 } 4563 } 4564 4565 /*! 4566 @ingroup TASKING 4567 @param ptask Task which execution is completed 4568 4569 Execute the completion of a proxy task from a thread that could not belong to 4570 the team. 4571 */ 4572 void __kmpc_proxy_task_completed_ooo(kmp_task_t *ptask) { 4573 KMP_DEBUG_ASSERT(ptask != NULL); 4574 kmp_taskdata_t *taskdata = KMP_TASK_TO_TASKDATA(ptask); 4575 4576 KA_TRACE( 4577 10, 4578 ("__kmp_proxy_task_completed_ooo(enter): proxy task completing ooo %p\n", 4579 taskdata)); 4580 4581 KMP_DEBUG_ASSERT(taskdata->td_flags.proxy == TASK_PROXY); 4582 4583 __kmp_first_top_half_finish_proxy(taskdata); 4584 4585 __kmpc_give_task(ptask); 4586 4587 __kmp_second_top_half_finish_proxy(taskdata); 4588 4589 KA_TRACE( 4590 10, 4591 ("__kmp_proxy_task_completed_ooo(exit): proxy task completing ooo %p\n", 4592 taskdata)); 4593 } 4594 4595 kmp_event_t *__kmpc_task_allow_completion_event(ident_t *loc_ref, int gtid, 4596 kmp_task_t *task) { 4597 kmp_taskdata_t *td = KMP_TASK_TO_TASKDATA(task); 4598 if (td->td_allow_completion_event.type == KMP_EVENT_UNINITIALIZED) { 4599 td->td_allow_completion_event.type = KMP_EVENT_ALLOW_COMPLETION; 4600 td->td_allow_completion_event.ed.task = task; 4601 __kmp_init_tas_lock(&td->td_allow_completion_event.lock); 4602 } 4603 return &td->td_allow_completion_event; 4604 } 4605 4606 void __kmp_fulfill_event(kmp_event_t *event) { 4607 if (event->type == KMP_EVENT_ALLOW_COMPLETION) { 4608 kmp_task_t *ptask = event->ed.task; 4609 kmp_taskdata_t *taskdata = KMP_TASK_TO_TASKDATA(ptask); 4610 bool detached = false; 4611 int gtid = __kmp_get_gtid(); 4612 4613 // The associated task might have completed or could be completing at this 4614 // point. 4615 // We need to take the lock to avoid races 4616 __kmp_acquire_tas_lock(&event->lock, gtid); 4617 if (taskdata->td_flags.proxy == TASK_PROXY) { 4618 detached = true; 4619 } else { 4620 #if OMPT_SUPPORT 4621 // The OMPT event must occur under mutual exclusion, 4622 // otherwise the tool might access ptask after free 4623 if (UNLIKELY(ompt_enabled.enabled)) 4624 __ompt_task_finish(ptask, NULL, ompt_task_early_fulfill); 4625 #endif 4626 } 4627 event->type = KMP_EVENT_UNINITIALIZED; 4628 __kmp_release_tas_lock(&event->lock, gtid); 4629 4630 if (detached) { 4631 #if OMPT_SUPPORT 4632 // We free ptask afterwards and know the task is finished, 4633 // so locking is not necessary 4634 if (UNLIKELY(ompt_enabled.enabled)) 4635 __ompt_task_finish(ptask, NULL, ompt_task_late_fulfill); 4636 #endif 4637 // If the task detached complete the proxy task 4638 if (gtid >= 0) { 4639 kmp_team_t *team = taskdata->td_team; 4640 kmp_info_t *thread = __kmp_get_thread(); 4641 if (thread->th.th_team == team) { 4642 __kmpc_proxy_task_completed(gtid, ptask); 4643 return; 4644 } 4645 } 4646 4647 // fallback 4648 __kmpc_proxy_task_completed_ooo(ptask); 4649 } 4650 } 4651 } 4652 4653 // __kmp_task_dup_alloc: Allocate the taskdata and make a copy of source task 4654 // for taskloop 4655 // 4656 // thread: allocating thread 4657 // task_src: pointer to source task to be duplicated 4658 // taskloop_recur: used only when dealing with taskgraph, 4659 // indicating whether we need to update task->td_task_id 4660 // returns: a pointer to the allocated kmp_task_t structure (task). 4661 kmp_task_t *__kmp_task_dup_alloc(kmp_info_t *thread, kmp_task_t *task_src 4662 #if OMPX_TASKGRAPH 4663 , int taskloop_recur 4664 #endif 4665 ) { 4666 kmp_task_t *task; 4667 kmp_taskdata_t *taskdata; 4668 kmp_taskdata_t *taskdata_src = KMP_TASK_TO_TASKDATA(task_src); 4669 kmp_taskdata_t *parent_task = taskdata_src->td_parent; // same parent task 4670 size_t shareds_offset; 4671 size_t task_size; 4672 4673 KA_TRACE(10, ("__kmp_task_dup_alloc(enter): Th %p, source task %p\n", thread, 4674 task_src)); 4675 KMP_DEBUG_ASSERT(taskdata_src->td_flags.proxy == 4676 TASK_FULL); // it should not be proxy task 4677 KMP_DEBUG_ASSERT(taskdata_src->td_flags.tasktype == TASK_EXPLICIT); 4678 task_size = taskdata_src->td_size_alloc; 4679 4680 // Allocate a kmp_taskdata_t block and a kmp_task_t block. 4681 KA_TRACE(30, ("__kmp_task_dup_alloc: Th %p, malloc size %ld\n", thread, 4682 task_size)); 4683 #if USE_FAST_MEMORY 4684 taskdata = (kmp_taskdata_t *)__kmp_fast_allocate(thread, task_size); 4685 #else 4686 taskdata = (kmp_taskdata_t *)__kmp_thread_malloc(thread, task_size); 4687 #endif /* USE_FAST_MEMORY */ 4688 KMP_MEMCPY(taskdata, taskdata_src, task_size); 4689 4690 task = KMP_TASKDATA_TO_TASK(taskdata); 4691 4692 // Initialize new task (only specific fields not affected by memcpy) 4693 #if OMPX_TASKGRAPH 4694 if (!taskdata->is_taskgraph || taskloop_recur) 4695 taskdata->td_task_id = KMP_GEN_TASK_ID(); 4696 else if (taskdata->is_taskgraph && 4697 __kmp_tdg_is_recording(taskdata_src->tdg->tdg_status)) 4698 taskdata->td_task_id = KMP_ATOMIC_INC(&__kmp_tdg_task_id); 4699 #else 4700 taskdata->td_task_id = KMP_GEN_TASK_ID(); 4701 #endif 4702 if (task->shareds != NULL) { // need setup shareds pointer 4703 shareds_offset = (char *)task_src->shareds - (char *)taskdata_src; 4704 task->shareds = &((char *)taskdata)[shareds_offset]; 4705 KMP_DEBUG_ASSERT((((kmp_uintptr_t)task->shareds) & (sizeof(void *) - 1)) == 4706 0); 4707 } 4708 taskdata->td_alloc_thread = thread; 4709 taskdata->td_parent = parent_task; 4710 // task inherits the taskgroup from the parent task 4711 taskdata->td_taskgroup = parent_task->td_taskgroup; 4712 // tied task needs to initialize the td_last_tied at creation, 4713 // untied one does this when it is scheduled for execution 4714 if (taskdata->td_flags.tiedness == TASK_TIED) 4715 taskdata->td_last_tied = taskdata; 4716 4717 // Only need to keep track of child task counts if team parallel and tasking 4718 // not serialized 4719 if (!(taskdata->td_flags.team_serial || taskdata->td_flags.tasking_ser)) { 4720 KMP_ATOMIC_INC(&parent_task->td_incomplete_child_tasks); 4721 if (parent_task->td_taskgroup) 4722 KMP_ATOMIC_INC(&parent_task->td_taskgroup->count); 4723 // Only need to keep track of allocated child tasks for explicit tasks since 4724 // implicit not deallocated 4725 if (taskdata->td_parent->td_flags.tasktype == TASK_EXPLICIT) 4726 KMP_ATOMIC_INC(&taskdata->td_parent->td_allocated_child_tasks); 4727 } 4728 4729 KA_TRACE(20, 4730 ("__kmp_task_dup_alloc(exit): Th %p, created task %p, parent=%p\n", 4731 thread, taskdata, taskdata->td_parent)); 4732 #if OMPT_SUPPORT 4733 if (UNLIKELY(ompt_enabled.enabled)) 4734 __ompt_task_init(taskdata, thread->th.th_info.ds.ds_gtid); 4735 #endif 4736 return task; 4737 } 4738 4739 // Routine optionally generated by the compiler for setting the lastprivate flag 4740 // and calling needed constructors for private/firstprivate objects 4741 // (used to form taskloop tasks from pattern task) 4742 // Parameters: dest task, src task, lastprivate flag. 4743 typedef void (*p_task_dup_t)(kmp_task_t *, kmp_task_t *, kmp_int32); 4744 4745 KMP_BUILD_ASSERT(sizeof(long) == 4 || sizeof(long) == 8); 4746 4747 // class to encapsulate manipulating loop bounds in a taskloop task. 4748 // this abstracts away the Intel vs GOMP taskloop interface for setting/getting 4749 // the loop bound variables. 4750 class kmp_taskloop_bounds_t { 4751 kmp_task_t *task; 4752 const kmp_taskdata_t *taskdata; 4753 size_t lower_offset; 4754 size_t upper_offset; 4755 4756 public: 4757 kmp_taskloop_bounds_t(kmp_task_t *_task, kmp_uint64 *lb, kmp_uint64 *ub) 4758 : task(_task), taskdata(KMP_TASK_TO_TASKDATA(task)), 4759 lower_offset((char *)lb - (char *)task), 4760 upper_offset((char *)ub - (char *)task) { 4761 KMP_DEBUG_ASSERT((char *)lb > (char *)_task); 4762 KMP_DEBUG_ASSERT((char *)ub > (char *)_task); 4763 } 4764 kmp_taskloop_bounds_t(kmp_task_t *_task, const kmp_taskloop_bounds_t &bounds) 4765 : task(_task), taskdata(KMP_TASK_TO_TASKDATA(_task)), 4766 lower_offset(bounds.lower_offset), upper_offset(bounds.upper_offset) {} 4767 size_t get_lower_offset() const { return lower_offset; } 4768 size_t get_upper_offset() const { return upper_offset; } 4769 kmp_uint64 get_lb() const { 4770 kmp_int64 retval; 4771 #if defined(KMP_GOMP_COMPAT) 4772 // Intel task just returns the lower bound normally 4773 if (!taskdata->td_flags.native) { 4774 retval = *(kmp_int64 *)((char *)task + lower_offset); 4775 } else { 4776 // GOMP task has to take into account the sizeof(long) 4777 if (taskdata->td_size_loop_bounds == 4) { 4778 kmp_int32 *lb = RCAST(kmp_int32 *, task->shareds); 4779 retval = (kmp_int64)*lb; 4780 } else { 4781 kmp_int64 *lb = RCAST(kmp_int64 *, task->shareds); 4782 retval = (kmp_int64)*lb; 4783 } 4784 } 4785 #else 4786 (void)taskdata; 4787 retval = *(kmp_int64 *)((char *)task + lower_offset); 4788 #endif // defined(KMP_GOMP_COMPAT) 4789 return retval; 4790 } 4791 kmp_uint64 get_ub() const { 4792 kmp_int64 retval; 4793 #if defined(KMP_GOMP_COMPAT) 4794 // Intel task just returns the upper bound normally 4795 if (!taskdata->td_flags.native) { 4796 retval = *(kmp_int64 *)((char *)task + upper_offset); 4797 } else { 4798 // GOMP task has to take into account the sizeof(long) 4799 if (taskdata->td_size_loop_bounds == 4) { 4800 kmp_int32 *ub = RCAST(kmp_int32 *, task->shareds) + 1; 4801 retval = (kmp_int64)*ub; 4802 } else { 4803 kmp_int64 *ub = RCAST(kmp_int64 *, task->shareds) + 1; 4804 retval = (kmp_int64)*ub; 4805 } 4806 } 4807 #else 4808 retval = *(kmp_int64 *)((char *)task + upper_offset); 4809 #endif // defined(KMP_GOMP_COMPAT) 4810 return retval; 4811 } 4812 void set_lb(kmp_uint64 lb) { 4813 #if defined(KMP_GOMP_COMPAT) 4814 // Intel task just sets the lower bound normally 4815 if (!taskdata->td_flags.native) { 4816 *(kmp_uint64 *)((char *)task + lower_offset) = lb; 4817 } else { 4818 // GOMP task has to take into account the sizeof(long) 4819 if (taskdata->td_size_loop_bounds == 4) { 4820 kmp_uint32 *lower = RCAST(kmp_uint32 *, task->shareds); 4821 *lower = (kmp_uint32)lb; 4822 } else { 4823 kmp_uint64 *lower = RCAST(kmp_uint64 *, task->shareds); 4824 *lower = (kmp_uint64)lb; 4825 } 4826 } 4827 #else 4828 *(kmp_uint64 *)((char *)task + lower_offset) = lb; 4829 #endif // defined(KMP_GOMP_COMPAT) 4830 } 4831 void set_ub(kmp_uint64 ub) { 4832 #if defined(KMP_GOMP_COMPAT) 4833 // Intel task just sets the upper bound normally 4834 if (!taskdata->td_flags.native) { 4835 *(kmp_uint64 *)((char *)task + upper_offset) = ub; 4836 } else { 4837 // GOMP task has to take into account the sizeof(long) 4838 if (taskdata->td_size_loop_bounds == 4) { 4839 kmp_uint32 *upper = RCAST(kmp_uint32 *, task->shareds) + 1; 4840 *upper = (kmp_uint32)ub; 4841 } else { 4842 kmp_uint64 *upper = RCAST(kmp_uint64 *, task->shareds) + 1; 4843 *upper = (kmp_uint64)ub; 4844 } 4845 } 4846 #else 4847 *(kmp_uint64 *)((char *)task + upper_offset) = ub; 4848 #endif // defined(KMP_GOMP_COMPAT) 4849 } 4850 }; 4851 4852 // __kmp_taskloop_linear: Start tasks of the taskloop linearly 4853 // 4854 // loc Source location information 4855 // gtid Global thread ID 4856 // task Pattern task, exposes the loop iteration range 4857 // lb Pointer to loop lower bound in task structure 4858 // ub Pointer to loop upper bound in task structure 4859 // st Loop stride 4860 // ub_glob Global upper bound (used for lastprivate check) 4861 // num_tasks Number of tasks to execute 4862 // grainsize Number of loop iterations per task 4863 // extras Number of chunks with grainsize+1 iterations 4864 // last_chunk Reduction of grainsize for last task 4865 // tc Iterations count 4866 // task_dup Tasks duplication routine 4867 // codeptr_ra Return address for OMPT events 4868 void __kmp_taskloop_linear(ident_t *loc, int gtid, kmp_task_t *task, 4869 kmp_uint64 *lb, kmp_uint64 *ub, kmp_int64 st, 4870 kmp_uint64 ub_glob, kmp_uint64 num_tasks, 4871 kmp_uint64 grainsize, kmp_uint64 extras, 4872 kmp_int64 last_chunk, kmp_uint64 tc, 4873 #if OMPT_SUPPORT 4874 void *codeptr_ra, 4875 #endif 4876 void *task_dup) { 4877 KMP_COUNT_BLOCK(OMP_TASKLOOP); 4878 KMP_TIME_PARTITIONED_BLOCK(OMP_taskloop_scheduling); 4879 p_task_dup_t ptask_dup = (p_task_dup_t)task_dup; 4880 // compiler provides global bounds here 4881 kmp_taskloop_bounds_t task_bounds(task, lb, ub); 4882 kmp_uint64 lower = task_bounds.get_lb(); 4883 kmp_uint64 upper = task_bounds.get_ub(); 4884 kmp_uint64 i; 4885 kmp_info_t *thread = __kmp_threads[gtid]; 4886 kmp_taskdata_t *current_task = thread->th.th_current_task; 4887 kmp_task_t *next_task; 4888 kmp_int32 lastpriv = 0; 4889 4890 KMP_DEBUG_ASSERT(tc == num_tasks * grainsize + 4891 (last_chunk < 0 ? last_chunk : extras)); 4892 KMP_DEBUG_ASSERT(num_tasks > extras); 4893 KMP_DEBUG_ASSERT(num_tasks > 0); 4894 KA_TRACE(20, ("__kmp_taskloop_linear: T#%d: %lld tasks, grainsize %lld, " 4895 "extras %lld, last_chunk %lld, i=%lld,%lld(%d)%lld, dup %p\n", 4896 gtid, num_tasks, grainsize, extras, last_chunk, lower, upper, 4897 ub_glob, st, task_dup)); 4898 4899 // Launch num_tasks tasks, assign grainsize iterations each task 4900 for (i = 0; i < num_tasks; ++i) { 4901 kmp_uint64 chunk_minus_1; 4902 if (extras == 0) { 4903 chunk_minus_1 = grainsize - 1; 4904 } else { 4905 chunk_minus_1 = grainsize; 4906 --extras; // first extras iterations get bigger chunk (grainsize+1) 4907 } 4908 upper = lower + st * chunk_minus_1; 4909 if (upper > *ub) { 4910 upper = *ub; 4911 } 4912 if (i == num_tasks - 1) { 4913 // schedule the last task, set lastprivate flag if needed 4914 if (st == 1) { // most common case 4915 KMP_DEBUG_ASSERT(upper == *ub); 4916 if (upper == ub_glob) 4917 lastpriv = 1; 4918 } else if (st > 0) { // positive loop stride 4919 KMP_DEBUG_ASSERT((kmp_uint64)st > *ub - upper); 4920 if ((kmp_uint64)st > ub_glob - upper) 4921 lastpriv = 1; 4922 } else { // negative loop stride 4923 KMP_DEBUG_ASSERT(upper + st < *ub); 4924 if (upper - ub_glob < (kmp_uint64)(-st)) 4925 lastpriv = 1; 4926 } 4927 } 4928 4929 #if OMPX_TASKGRAPH 4930 next_task = __kmp_task_dup_alloc(thread, task, /* taskloop_recur */ 0); 4931 #else 4932 next_task = __kmp_task_dup_alloc(thread, task); // allocate new task 4933 #endif 4934 4935 kmp_taskdata_t *next_taskdata = KMP_TASK_TO_TASKDATA(next_task); 4936 kmp_taskloop_bounds_t next_task_bounds = 4937 kmp_taskloop_bounds_t(next_task, task_bounds); 4938 4939 // adjust task-specific bounds 4940 next_task_bounds.set_lb(lower); 4941 if (next_taskdata->td_flags.native) { 4942 next_task_bounds.set_ub(upper + (st > 0 ? 1 : -1)); 4943 } else { 4944 next_task_bounds.set_ub(upper); 4945 } 4946 if (ptask_dup != NULL) // set lastprivate flag, construct firstprivates, 4947 // etc. 4948 ptask_dup(next_task, task, lastpriv); 4949 KA_TRACE(40, 4950 ("__kmp_taskloop_linear: T#%d; task #%llu: task %p: lower %lld, " 4951 "upper %lld stride %lld, (offsets %p %p)\n", 4952 gtid, i, next_task, lower, upper, st, 4953 next_task_bounds.get_lower_offset(), 4954 next_task_bounds.get_upper_offset())); 4955 #if OMPT_SUPPORT 4956 __kmp_omp_taskloop_task(NULL, gtid, next_task, 4957 codeptr_ra); // schedule new task 4958 #if OMPT_OPTIONAL 4959 if (ompt_enabled.ompt_callback_dispatch) { 4960 OMPT_GET_DISPATCH_CHUNK(next_taskdata->ompt_task_info.dispatch_chunk, 4961 lower, upper, st); 4962 } 4963 #endif // OMPT_OPTIONAL 4964 #else 4965 __kmp_omp_task(gtid, next_task, true); // schedule new task 4966 #endif 4967 lower = upper + st; // adjust lower bound for the next iteration 4968 } 4969 // free the pattern task and exit 4970 __kmp_task_start(gtid, task, current_task); // make internal bookkeeping 4971 // do not execute the pattern task, just do internal bookkeeping 4972 __kmp_task_finish<false>(gtid, task, current_task); 4973 } 4974 4975 // Structure to keep taskloop parameters for auxiliary task 4976 // kept in the shareds of the task structure. 4977 typedef struct __taskloop_params { 4978 kmp_task_t *task; 4979 kmp_uint64 *lb; 4980 kmp_uint64 *ub; 4981 void *task_dup; 4982 kmp_int64 st; 4983 kmp_uint64 ub_glob; 4984 kmp_uint64 num_tasks; 4985 kmp_uint64 grainsize; 4986 kmp_uint64 extras; 4987 kmp_int64 last_chunk; 4988 kmp_uint64 tc; 4989 kmp_uint64 num_t_min; 4990 #if OMPT_SUPPORT 4991 void *codeptr_ra; 4992 #endif 4993 } __taskloop_params_t; 4994 4995 void __kmp_taskloop_recur(ident_t *, int, kmp_task_t *, kmp_uint64 *, 4996 kmp_uint64 *, kmp_int64, kmp_uint64, kmp_uint64, 4997 kmp_uint64, kmp_uint64, kmp_int64, kmp_uint64, 4998 kmp_uint64, 4999 #if OMPT_SUPPORT 5000 void *, 5001 #endif 5002 void *); 5003 5004 // Execute part of the taskloop submitted as a task. 5005 int __kmp_taskloop_task(int gtid, void *ptask) { 5006 __taskloop_params_t *p = 5007 (__taskloop_params_t *)((kmp_task_t *)ptask)->shareds; 5008 kmp_task_t *task = p->task; 5009 kmp_uint64 *lb = p->lb; 5010 kmp_uint64 *ub = p->ub; 5011 void *task_dup = p->task_dup; 5012 // p_task_dup_t ptask_dup = (p_task_dup_t)task_dup; 5013 kmp_int64 st = p->st; 5014 kmp_uint64 ub_glob = p->ub_glob; 5015 kmp_uint64 num_tasks = p->num_tasks; 5016 kmp_uint64 grainsize = p->grainsize; 5017 kmp_uint64 extras = p->extras; 5018 kmp_int64 last_chunk = p->last_chunk; 5019 kmp_uint64 tc = p->tc; 5020 kmp_uint64 num_t_min = p->num_t_min; 5021 #if OMPT_SUPPORT 5022 void *codeptr_ra = p->codeptr_ra; 5023 #endif 5024 #if KMP_DEBUG 5025 kmp_taskdata_t *taskdata = KMP_TASK_TO_TASKDATA(task); 5026 KMP_DEBUG_ASSERT(task != NULL); 5027 KA_TRACE(20, 5028 ("__kmp_taskloop_task: T#%d, task %p: %lld tasks, grainsize" 5029 " %lld, extras %lld, last_chunk %lld, i=%lld,%lld(%d), dup %p\n", 5030 gtid, taskdata, num_tasks, grainsize, extras, last_chunk, *lb, *ub, 5031 st, task_dup)); 5032 #endif 5033 KMP_DEBUG_ASSERT(num_tasks * 2 + 1 > num_t_min); 5034 if (num_tasks > num_t_min) 5035 __kmp_taskloop_recur(NULL, gtid, task, lb, ub, st, ub_glob, num_tasks, 5036 grainsize, extras, last_chunk, tc, num_t_min, 5037 #if OMPT_SUPPORT 5038 codeptr_ra, 5039 #endif 5040 task_dup); 5041 else 5042 __kmp_taskloop_linear(NULL, gtid, task, lb, ub, st, ub_glob, num_tasks, 5043 grainsize, extras, last_chunk, tc, 5044 #if OMPT_SUPPORT 5045 codeptr_ra, 5046 #endif 5047 task_dup); 5048 5049 KA_TRACE(40, ("__kmp_taskloop_task(exit): T#%d\n", gtid)); 5050 return 0; 5051 } 5052 5053 // Schedule part of the taskloop as a task, 5054 // execute the rest of the taskloop. 5055 // 5056 // loc Source location information 5057 // gtid Global thread ID 5058 // task Pattern task, exposes the loop iteration range 5059 // lb Pointer to loop lower bound in task structure 5060 // ub Pointer to loop upper bound in task structure 5061 // st Loop stride 5062 // ub_glob Global upper bound (used for lastprivate check) 5063 // num_tasks Number of tasks to execute 5064 // grainsize Number of loop iterations per task 5065 // extras Number of chunks with grainsize+1 iterations 5066 // last_chunk Reduction of grainsize for last task 5067 // tc Iterations count 5068 // num_t_min Threshold to launch tasks recursively 5069 // task_dup Tasks duplication routine 5070 // codeptr_ra Return address for OMPT events 5071 void __kmp_taskloop_recur(ident_t *loc, int gtid, kmp_task_t *task, 5072 kmp_uint64 *lb, kmp_uint64 *ub, kmp_int64 st, 5073 kmp_uint64 ub_glob, kmp_uint64 num_tasks, 5074 kmp_uint64 grainsize, kmp_uint64 extras, 5075 kmp_int64 last_chunk, kmp_uint64 tc, 5076 kmp_uint64 num_t_min, 5077 #if OMPT_SUPPORT 5078 void *codeptr_ra, 5079 #endif 5080 void *task_dup) { 5081 kmp_taskdata_t *taskdata = KMP_TASK_TO_TASKDATA(task); 5082 KMP_DEBUG_ASSERT(task != NULL); 5083 KMP_DEBUG_ASSERT(num_tasks > num_t_min); 5084 KA_TRACE(20, 5085 ("__kmp_taskloop_recur: T#%d, task %p: %lld tasks, grainsize" 5086 " %lld, extras %lld, last_chunk %lld, i=%lld,%lld(%d), dup %p\n", 5087 gtid, taskdata, num_tasks, grainsize, extras, last_chunk, *lb, *ub, 5088 st, task_dup)); 5089 p_task_dup_t ptask_dup = (p_task_dup_t)task_dup; 5090 kmp_uint64 lower = *lb; 5091 kmp_info_t *thread = __kmp_threads[gtid]; 5092 // kmp_taskdata_t *current_task = thread->th.th_current_task; 5093 kmp_task_t *next_task; 5094 size_t lower_offset = 5095 (char *)lb - (char *)task; // remember offset of lb in the task structure 5096 size_t upper_offset = 5097 (char *)ub - (char *)task; // remember offset of ub in the task structure 5098 5099 KMP_DEBUG_ASSERT(tc == num_tasks * grainsize + 5100 (last_chunk < 0 ? last_chunk : extras)); 5101 KMP_DEBUG_ASSERT(num_tasks > extras); 5102 KMP_DEBUG_ASSERT(num_tasks > 0); 5103 5104 // split the loop in two halves 5105 kmp_uint64 lb1, ub0, tc0, tc1, ext0, ext1; 5106 kmp_int64 last_chunk0 = 0, last_chunk1 = 0; 5107 kmp_uint64 gr_size0 = grainsize; 5108 kmp_uint64 n_tsk0 = num_tasks >> 1; // num_tasks/2 to execute 5109 kmp_uint64 n_tsk1 = num_tasks - n_tsk0; // to schedule as a task 5110 if (last_chunk < 0) { 5111 ext0 = ext1 = 0; 5112 last_chunk1 = last_chunk; 5113 tc0 = grainsize * n_tsk0; 5114 tc1 = tc - tc0; 5115 } else if (n_tsk0 <= extras) { 5116 gr_size0++; // integrate extras into grainsize 5117 ext0 = 0; // no extra iters in 1st half 5118 ext1 = extras - n_tsk0; // remaining extras 5119 tc0 = gr_size0 * n_tsk0; 5120 tc1 = tc - tc0; 5121 } else { // n_tsk0 > extras 5122 ext1 = 0; // no extra iters in 2nd half 5123 ext0 = extras; 5124 tc1 = grainsize * n_tsk1; 5125 tc0 = tc - tc1; 5126 } 5127 ub0 = lower + st * (tc0 - 1); 5128 lb1 = ub0 + st; 5129 5130 // create pattern task for 2nd half of the loop 5131 #if OMPX_TASKGRAPH 5132 next_task = __kmp_task_dup_alloc(thread, task, 5133 /* taskloop_recur */ 1); 5134 #else 5135 next_task = __kmp_task_dup_alloc(thread, task); // duplicate the task 5136 #endif 5137 // adjust lower bound (upper bound is not changed) for the 2nd half 5138 *(kmp_uint64 *)((char *)next_task + lower_offset) = lb1; 5139 if (ptask_dup != NULL) // construct firstprivates, etc. 5140 ptask_dup(next_task, task, 0); 5141 *ub = ub0; // adjust upper bound for the 1st half 5142 5143 // create auxiliary task for 2nd half of the loop 5144 // make sure new task has same parent task as the pattern task 5145 kmp_taskdata_t *current_task = thread->th.th_current_task; 5146 thread->th.th_current_task = taskdata->td_parent; 5147 kmp_task_t *new_task = 5148 __kmpc_omp_task_alloc(loc, gtid, 1, 3 * sizeof(void *), 5149 sizeof(__taskloop_params_t), &__kmp_taskloop_task); 5150 // restore current task 5151 thread->th.th_current_task = current_task; 5152 __taskloop_params_t *p = (__taskloop_params_t *)new_task->shareds; 5153 p->task = next_task; 5154 p->lb = (kmp_uint64 *)((char *)next_task + lower_offset); 5155 p->ub = (kmp_uint64 *)((char *)next_task + upper_offset); 5156 p->task_dup = task_dup; 5157 p->st = st; 5158 p->ub_glob = ub_glob; 5159 p->num_tasks = n_tsk1; 5160 p->grainsize = grainsize; 5161 p->extras = ext1; 5162 p->last_chunk = last_chunk1; 5163 p->tc = tc1; 5164 p->num_t_min = num_t_min; 5165 #if OMPT_SUPPORT 5166 p->codeptr_ra = codeptr_ra; 5167 #endif 5168 5169 #if OMPX_TASKGRAPH 5170 kmp_taskdata_t *new_task_data = KMP_TASK_TO_TASKDATA(new_task); 5171 new_task_data->tdg = taskdata->tdg; 5172 new_task_data->is_taskgraph = 0; 5173 #endif 5174 5175 #if OMPT_SUPPORT 5176 // schedule new task with correct return address for OMPT events 5177 __kmp_omp_taskloop_task(NULL, gtid, new_task, codeptr_ra); 5178 #else 5179 __kmp_omp_task(gtid, new_task, true); // schedule new task 5180 #endif 5181 5182 // execute the 1st half of current subrange 5183 if (n_tsk0 > num_t_min) 5184 __kmp_taskloop_recur(loc, gtid, task, lb, ub, st, ub_glob, n_tsk0, gr_size0, 5185 ext0, last_chunk0, tc0, num_t_min, 5186 #if OMPT_SUPPORT 5187 codeptr_ra, 5188 #endif 5189 task_dup); 5190 else 5191 __kmp_taskloop_linear(loc, gtid, task, lb, ub, st, ub_glob, n_tsk0, 5192 gr_size0, ext0, last_chunk0, tc0, 5193 #if OMPT_SUPPORT 5194 codeptr_ra, 5195 #endif 5196 task_dup); 5197 5198 KA_TRACE(40, ("__kmp_taskloop_recur(exit): T#%d\n", gtid)); 5199 } 5200 5201 static void __kmp_taskloop(ident_t *loc, int gtid, kmp_task_t *task, int if_val, 5202 kmp_uint64 *lb, kmp_uint64 *ub, kmp_int64 st, 5203 int nogroup, int sched, kmp_uint64 grainsize, 5204 int modifier, void *task_dup) { 5205 kmp_taskdata_t *taskdata = KMP_TASK_TO_TASKDATA(task); 5206 KMP_DEBUG_ASSERT(task != NULL); 5207 if (nogroup == 0) { 5208 #if OMPT_SUPPORT && OMPT_OPTIONAL 5209 OMPT_STORE_RETURN_ADDRESS(gtid); 5210 #endif 5211 __kmpc_taskgroup(loc, gtid); 5212 } 5213 5214 #if OMPX_TASKGRAPH 5215 KMP_ATOMIC_DEC(&__kmp_tdg_task_id); 5216 #endif 5217 // ========================================================================= 5218 // calculate loop parameters 5219 kmp_taskloop_bounds_t task_bounds(task, lb, ub); 5220 kmp_uint64 tc; 5221 // compiler provides global bounds here 5222 kmp_uint64 lower = task_bounds.get_lb(); 5223 kmp_uint64 upper = task_bounds.get_ub(); 5224 kmp_uint64 ub_glob = upper; // global upper used to calc lastprivate flag 5225 kmp_uint64 num_tasks = 0, extras = 0; 5226 kmp_int64 last_chunk = 5227 0; // reduce grainsize of last task by last_chunk in strict mode 5228 kmp_uint64 num_tasks_min = __kmp_taskloop_min_tasks; 5229 kmp_info_t *thread = __kmp_threads[gtid]; 5230 kmp_taskdata_t *current_task = thread->th.th_current_task; 5231 5232 KA_TRACE(20, ("__kmp_taskloop: T#%d, task %p, lb %lld, ub %lld, st %lld, " 5233 "grain %llu(%d, %d), dup %p\n", 5234 gtid, taskdata, lower, upper, st, grainsize, sched, modifier, 5235 task_dup)); 5236 5237 // compute trip count 5238 if (st == 1) { // most common case 5239 tc = upper - lower + 1; 5240 } else if (st < 0) { 5241 tc = (lower - upper) / (-st) + 1; 5242 } else { // st > 0 5243 tc = (upper - lower) / st + 1; 5244 } 5245 if (tc == 0) { 5246 KA_TRACE(20, ("__kmp_taskloop(exit): T#%d zero-trip loop\n", gtid)); 5247 // free the pattern task and exit 5248 __kmp_task_start(gtid, task, current_task); 5249 // do not execute anything for zero-trip loop 5250 __kmp_task_finish<false>(gtid, task, current_task); 5251 return; 5252 } 5253 5254 #if OMPT_SUPPORT && OMPT_OPTIONAL 5255 ompt_team_info_t *team_info = __ompt_get_teaminfo(0, NULL); 5256 ompt_task_info_t *task_info = __ompt_get_task_info_object(0); 5257 if (ompt_enabled.ompt_callback_work) { 5258 ompt_callbacks.ompt_callback(ompt_callback_work)( 5259 ompt_work_taskloop, ompt_scope_begin, &(team_info->parallel_data), 5260 &(task_info->task_data), tc, OMPT_GET_RETURN_ADDRESS(0)); 5261 } 5262 #endif 5263 5264 if (num_tasks_min == 0) 5265 // TODO: can we choose better default heuristic? 5266 num_tasks_min = 5267 KMP_MIN(thread->th.th_team_nproc * 10, INITIAL_TASK_DEQUE_SIZE); 5268 5269 // compute num_tasks/grainsize based on the input provided 5270 switch (sched) { 5271 case 0: // no schedule clause specified, we can choose the default 5272 // let's try to schedule (team_size*10) tasks 5273 grainsize = thread->th.th_team_nproc * 10; 5274 KMP_FALLTHROUGH(); 5275 case 2: // num_tasks provided 5276 if (grainsize > tc) { 5277 num_tasks = tc; // too big num_tasks requested, adjust values 5278 grainsize = 1; 5279 extras = 0; 5280 } else { 5281 num_tasks = grainsize; 5282 grainsize = tc / num_tasks; 5283 extras = tc % num_tasks; 5284 } 5285 break; 5286 case 1: // grainsize provided 5287 if (grainsize > tc) { 5288 num_tasks = 1; 5289 grainsize = tc; // too big grainsize requested, adjust values 5290 extras = 0; 5291 } else { 5292 if (modifier) { 5293 num_tasks = (tc + grainsize - 1) / grainsize; 5294 last_chunk = tc - (num_tasks * grainsize); 5295 extras = 0; 5296 } else { 5297 num_tasks = tc / grainsize; 5298 // adjust grainsize for balanced distribution of iterations 5299 grainsize = tc / num_tasks; 5300 extras = tc % num_tasks; 5301 } 5302 } 5303 break; 5304 default: 5305 KMP_ASSERT2(0, "unknown scheduling of taskloop"); 5306 } 5307 5308 KMP_DEBUG_ASSERT(tc == num_tasks * grainsize + 5309 (last_chunk < 0 ? last_chunk : extras)); 5310 KMP_DEBUG_ASSERT(num_tasks > extras); 5311 KMP_DEBUG_ASSERT(num_tasks > 0); 5312 // ========================================================================= 5313 5314 // check if clause value first 5315 // Also require GOMP_taskloop to reduce to linear (taskdata->td_flags.native) 5316 if (if_val == 0) { // if(0) specified, mark task as serial 5317 taskdata->td_flags.task_serial = 1; 5318 taskdata->td_flags.tiedness = TASK_TIED; // AC: serial task cannot be untied 5319 // always start serial tasks linearly 5320 __kmp_taskloop_linear(loc, gtid, task, lb, ub, st, ub_glob, num_tasks, 5321 grainsize, extras, last_chunk, tc, 5322 #if OMPT_SUPPORT 5323 OMPT_GET_RETURN_ADDRESS(0), 5324 #endif 5325 task_dup); 5326 // !taskdata->td_flags.native => currently force linear spawning of tasks 5327 // for GOMP_taskloop 5328 } else if (num_tasks > num_tasks_min && !taskdata->td_flags.native) { 5329 KA_TRACE(20, ("__kmp_taskloop: T#%d, go recursive: tc %llu, #tasks %llu" 5330 "(%lld), grain %llu, extras %llu, last_chunk %lld\n", 5331 gtid, tc, num_tasks, num_tasks_min, grainsize, extras, 5332 last_chunk)); 5333 __kmp_taskloop_recur(loc, gtid, task, lb, ub, st, ub_glob, num_tasks, 5334 grainsize, extras, last_chunk, tc, num_tasks_min, 5335 #if OMPT_SUPPORT 5336 OMPT_GET_RETURN_ADDRESS(0), 5337 #endif 5338 task_dup); 5339 } else { 5340 KA_TRACE(20, ("__kmp_taskloop: T#%d, go linear: tc %llu, #tasks %llu" 5341 "(%lld), grain %llu, extras %llu, last_chunk %lld\n", 5342 gtid, tc, num_tasks, num_tasks_min, grainsize, extras, 5343 last_chunk)); 5344 __kmp_taskloop_linear(loc, gtid, task, lb, ub, st, ub_glob, num_tasks, 5345 grainsize, extras, last_chunk, tc, 5346 #if OMPT_SUPPORT 5347 OMPT_GET_RETURN_ADDRESS(0), 5348 #endif 5349 task_dup); 5350 } 5351 5352 #if OMPT_SUPPORT && OMPT_OPTIONAL 5353 if (ompt_enabled.ompt_callback_work) { 5354 ompt_callbacks.ompt_callback(ompt_callback_work)( 5355 ompt_work_taskloop, ompt_scope_end, &(team_info->parallel_data), 5356 &(task_info->task_data), tc, OMPT_GET_RETURN_ADDRESS(0)); 5357 } 5358 #endif 5359 5360 if (nogroup == 0) { 5361 #if OMPT_SUPPORT && OMPT_OPTIONAL 5362 OMPT_STORE_RETURN_ADDRESS(gtid); 5363 #endif 5364 __kmpc_end_taskgroup(loc, gtid); 5365 } 5366 KA_TRACE(20, ("__kmp_taskloop(exit): T#%d\n", gtid)); 5367 } 5368 5369 /*! 5370 @ingroup TASKING 5371 @param loc Source location information 5372 @param gtid Global thread ID 5373 @param task Task structure 5374 @param if_val Value of the if clause 5375 @param lb Pointer to loop lower bound in task structure 5376 @param ub Pointer to loop upper bound in task structure 5377 @param st Loop stride 5378 @param nogroup Flag, 1 if nogroup clause specified, 0 otherwise 5379 @param sched Schedule specified 0/1/2 for none/grainsize/num_tasks 5380 @param grainsize Schedule value if specified 5381 @param task_dup Tasks duplication routine 5382 5383 Execute the taskloop construct. 5384 */ 5385 void __kmpc_taskloop(ident_t *loc, int gtid, kmp_task_t *task, int if_val, 5386 kmp_uint64 *lb, kmp_uint64 *ub, kmp_int64 st, int nogroup, 5387 int sched, kmp_uint64 grainsize, void *task_dup) { 5388 __kmp_assert_valid_gtid(gtid); 5389 KA_TRACE(20, ("__kmpc_taskloop(enter): T#%d\n", gtid)); 5390 __kmp_taskloop(loc, gtid, task, if_val, lb, ub, st, nogroup, sched, grainsize, 5391 0, task_dup); 5392 KA_TRACE(20, ("__kmpc_taskloop(exit): T#%d\n", gtid)); 5393 } 5394 5395 /*! 5396 @ingroup TASKING 5397 @param loc Source location information 5398 @param gtid Global thread ID 5399 @param task Task structure 5400 @param if_val Value of the if clause 5401 @param lb Pointer to loop lower bound in task structure 5402 @param ub Pointer to loop upper bound in task structure 5403 @param st Loop stride 5404 @param nogroup Flag, 1 if nogroup clause specified, 0 otherwise 5405 @param sched Schedule specified 0/1/2 for none/grainsize/num_tasks 5406 @param grainsize Schedule value if specified 5407 @param modifier Modifier 'strict' for sched, 1 if present, 0 otherwise 5408 @param task_dup Tasks duplication routine 5409 5410 Execute the taskloop construct. 5411 */ 5412 void __kmpc_taskloop_5(ident_t *loc, int gtid, kmp_task_t *task, int if_val, 5413 kmp_uint64 *lb, kmp_uint64 *ub, kmp_int64 st, 5414 int nogroup, int sched, kmp_uint64 grainsize, 5415 int modifier, void *task_dup) { 5416 __kmp_assert_valid_gtid(gtid); 5417 KA_TRACE(20, ("__kmpc_taskloop_5(enter): T#%d\n", gtid)); 5418 __kmp_taskloop(loc, gtid, task, if_val, lb, ub, st, nogroup, sched, grainsize, 5419 modifier, task_dup); 5420 KA_TRACE(20, ("__kmpc_taskloop_5(exit): T#%d\n", gtid)); 5421 } 5422 5423 /*! 5424 @ingroup TASKING 5425 @param gtid Global Thread ID of current thread 5426 @return Returns a pointer to the thread's current task async handle. If no task 5427 is present or gtid is invalid, returns NULL. 5428 5429 Acqurires a pointer to the target async handle from the current task. 5430 */ 5431 void **__kmpc_omp_get_target_async_handle_ptr(kmp_int32 gtid) { 5432 if (gtid == KMP_GTID_DNE) 5433 return NULL; 5434 5435 kmp_info_t *thread = __kmp_thread_from_gtid(gtid); 5436 kmp_taskdata_t *taskdata = thread->th.th_current_task; 5437 5438 if (!taskdata) 5439 return NULL; 5440 5441 return &taskdata->td_target_data.async_handle; 5442 } 5443 5444 /*! 5445 @ingroup TASKING 5446 @param gtid Global Thread ID of current thread 5447 @return Returns TRUE if the current task being executed of the given thread has 5448 a task team allocated to it. Otherwise, returns FALSE. 5449 5450 Checks if the current thread has a task team. 5451 */ 5452 bool __kmpc_omp_has_task_team(kmp_int32 gtid) { 5453 if (gtid == KMP_GTID_DNE) 5454 return FALSE; 5455 5456 kmp_info_t *thread = __kmp_thread_from_gtid(gtid); 5457 kmp_taskdata_t *taskdata = thread->th.th_current_task; 5458 5459 if (!taskdata) 5460 return FALSE; 5461 5462 return taskdata->td_task_team != NULL; 5463 } 5464 5465 #if OMPX_TASKGRAPH 5466 // __kmp_find_tdg: identify a TDG through its ID 5467 // gtid: Global Thread ID 5468 // tdg_id: ID of the TDG 5469 // returns: If a TDG corresponding to this ID is found and not 5470 // its initial state, return the pointer to it, otherwise nullptr 5471 static kmp_tdg_info_t *__kmp_find_tdg(kmp_int32 tdg_id) { 5472 kmp_tdg_info_t *res = nullptr; 5473 if (__kmp_max_tdgs == 0) 5474 return res; 5475 5476 if (__kmp_global_tdgs == NULL) 5477 __kmp_global_tdgs = (kmp_tdg_info_t **)__kmp_allocate( 5478 sizeof(kmp_tdg_info_t *) * __kmp_max_tdgs); 5479 5480 if ((__kmp_global_tdgs[tdg_id]) && 5481 (__kmp_global_tdgs[tdg_id]->tdg_status != KMP_TDG_NONE)) 5482 res = __kmp_global_tdgs[tdg_id]; 5483 return res; 5484 } 5485 5486 // __kmp_print_tdg_dot: prints the TDG to a dot file 5487 // tdg: ID of the TDG 5488 void __kmp_print_tdg_dot(kmp_tdg_info_t *tdg) { 5489 kmp_int32 tdg_id = tdg->tdg_id; 5490 KA_TRACE(10, ("__kmp_print_tdg_dot(enter): T#%d tdg_id=%d \n", gtid, tdg_id)); 5491 5492 char file_name[20]; 5493 sprintf(file_name, "tdg_%d.dot", tdg_id); 5494 kmp_safe_raii_file_t tdg_file(file_name, "w"); 5495 5496 kmp_int32 num_tasks = KMP_ATOMIC_LD_RLX(&tdg->num_tasks); 5497 fprintf(tdg_file, 5498 "digraph TDG {\n" 5499 " compound=true\n" 5500 " subgraph cluster {\n" 5501 " label=TDG_%d\n", 5502 tdg_id); 5503 for (kmp_int32 i = 0; i < num_tasks; i++) { 5504 fprintf(tdg_file, " %d[style=bold]\n", i); 5505 } 5506 fprintf(tdg_file, " }\n"); 5507 for (kmp_int32 i = 0; i < num_tasks; i++) { 5508 kmp_int32 nsuccessors = tdg->record_map[i].nsuccessors; 5509 kmp_int32 *successors = tdg->record_map[i].successors; 5510 if (nsuccessors > 0) { 5511 for (kmp_int32 j = 0; j < nsuccessors; j++) 5512 fprintf(tdg_file, " %d -> %d \n", i, successors[j]); 5513 } 5514 } 5515 fprintf(tdg_file, "}"); 5516 KA_TRACE(10, ("__kmp_print_tdg_dot(exit): T#%d tdg_id=%d \n", gtid, tdg_id)); 5517 } 5518 5519 // __kmp_start_record: launch the execution of a previous 5520 // recorded TDG 5521 // gtid: Global Thread ID 5522 // tdg: ID of the TDG 5523 void __kmp_exec_tdg(kmp_int32 gtid, kmp_tdg_info_t *tdg) { 5524 KMP_DEBUG_ASSERT(tdg->tdg_status == KMP_TDG_READY); 5525 KA_TRACE(10, ("__kmp_exec_tdg(enter): T#%d tdg_id=%d num_roots=%d\n", gtid, 5526 tdg->tdg_id, tdg->num_roots)); 5527 kmp_node_info_t *this_record_map = tdg->record_map; 5528 kmp_int32 *this_root_tasks = tdg->root_tasks; 5529 kmp_int32 this_num_roots = tdg->num_roots; 5530 kmp_int32 this_num_tasks = KMP_ATOMIC_LD_RLX(&tdg->num_tasks); 5531 5532 kmp_info_t *thread = __kmp_threads[gtid]; 5533 kmp_taskdata_t *parent_task = thread->th.th_current_task; 5534 5535 if (tdg->rec_taskred_data) { 5536 __kmpc_taskred_init(gtid, tdg->rec_num_taskred, tdg->rec_taskred_data); 5537 } 5538 5539 for (kmp_int32 j = 0; j < this_num_tasks; j++) { 5540 kmp_taskdata_t *td = KMP_TASK_TO_TASKDATA(this_record_map[j].task); 5541 5542 td->td_parent = parent_task; 5543 this_record_map[j].parent_task = parent_task; 5544 5545 kmp_taskgroup_t *parent_taskgroup = 5546 this_record_map[j].parent_task->td_taskgroup; 5547 5548 KMP_ATOMIC_ST_RLX(&this_record_map[j].npredecessors_counter, 5549 this_record_map[j].npredecessors); 5550 KMP_ATOMIC_INC(&this_record_map[j].parent_task->td_incomplete_child_tasks); 5551 5552 if (parent_taskgroup) { 5553 KMP_ATOMIC_INC(&parent_taskgroup->count); 5554 // The taskgroup is different so we must update it 5555 td->td_taskgroup = parent_taskgroup; 5556 } else if (td->td_taskgroup != nullptr) { 5557 // If the parent doesnt have a taskgroup, remove it from the task 5558 td->td_taskgroup = nullptr; 5559 } 5560 if (this_record_map[j].parent_task->td_flags.tasktype == TASK_EXPLICIT) 5561 KMP_ATOMIC_INC(&this_record_map[j].parent_task->td_allocated_child_tasks); 5562 } 5563 5564 for (kmp_int32 j = 0; j < this_num_roots; ++j) { 5565 __kmp_omp_task(gtid, this_record_map[this_root_tasks[j]].task, true); 5566 } 5567 KA_TRACE(10, ("__kmp_exec_tdg(exit): T#%d tdg_id=%d num_roots=%d\n", gtid, 5568 tdg->tdg_id, tdg->num_roots)); 5569 } 5570 5571 // __kmp_start_record: set up a TDG structure and turn the 5572 // recording flag to true 5573 // gtid: Global Thread ID of the encountering thread 5574 // input_flags: Flags associated with the TDG 5575 // tdg_id: ID of the TDG to record 5576 static inline void __kmp_start_record(kmp_int32 gtid, 5577 kmp_taskgraph_flags_t *flags, 5578 kmp_int32 tdg_id) { 5579 kmp_tdg_info_t *tdg = 5580 (kmp_tdg_info_t *)__kmp_allocate(sizeof(kmp_tdg_info_t)); 5581 __kmp_global_tdgs[__kmp_curr_tdg_idx] = tdg; 5582 // Initializing the TDG structure 5583 tdg->tdg_id = tdg_id; 5584 tdg->map_size = INIT_MAPSIZE; 5585 tdg->num_roots = -1; 5586 tdg->root_tasks = nullptr; 5587 tdg->tdg_status = KMP_TDG_RECORDING; 5588 tdg->rec_num_taskred = 0; 5589 tdg->rec_taskred_data = nullptr; 5590 KMP_ATOMIC_ST_RLX(&tdg->num_tasks, 0); 5591 5592 // Initializing the list of nodes in this TDG 5593 kmp_node_info_t *this_record_map = 5594 (kmp_node_info_t *)__kmp_allocate(INIT_MAPSIZE * sizeof(kmp_node_info_t)); 5595 for (kmp_int32 i = 0; i < INIT_MAPSIZE; i++) { 5596 kmp_int32 *successorsList = 5597 (kmp_int32 *)__kmp_allocate(__kmp_successors_size * sizeof(kmp_int32)); 5598 this_record_map[i].task = nullptr; 5599 this_record_map[i].successors = successorsList; 5600 this_record_map[i].nsuccessors = 0; 5601 this_record_map[i].npredecessors = 0; 5602 this_record_map[i].successors_size = __kmp_successors_size; 5603 KMP_ATOMIC_ST_RLX(&this_record_map[i].npredecessors_counter, 0); 5604 } 5605 5606 __kmp_global_tdgs[__kmp_curr_tdg_idx]->record_map = this_record_map; 5607 } 5608 5609 // __kmpc_start_record_task: Wrapper around __kmp_start_record to mark 5610 // the beginning of the record process of a task region 5611 // loc_ref: Location of TDG, not used yet 5612 // gtid: Global Thread ID of the encountering thread 5613 // input_flags: Flags associated with the TDG 5614 // tdg_id: ID of the TDG to record, for now, incremental integer 5615 // returns: 1 if we record, otherwise, 0 5616 kmp_int32 __kmpc_start_record_task(ident_t *loc_ref, kmp_int32 gtid, 5617 kmp_int32 input_flags, kmp_int32 tdg_id) { 5618 5619 kmp_int32 res; 5620 kmp_taskgraph_flags_t *flags = (kmp_taskgraph_flags_t *)&input_flags; 5621 KA_TRACE(10, 5622 ("__kmpc_start_record_task(enter): T#%d loc=%p flags=%d tdg_id=%d\n", 5623 gtid, loc_ref, input_flags, tdg_id)); 5624 5625 if (__kmp_max_tdgs == 0) { 5626 KA_TRACE( 5627 10, 5628 ("__kmpc_start_record_task(abandon): T#%d loc=%p flags=%d tdg_id = %d, " 5629 "__kmp_max_tdgs = 0\n", 5630 gtid, loc_ref, input_flags, tdg_id)); 5631 return 1; 5632 } 5633 5634 __kmpc_taskgroup(loc_ref, gtid); 5635 if (kmp_tdg_info_t *tdg = __kmp_find_tdg(tdg_id)) { 5636 // TODO: use re_record flag 5637 __kmp_exec_tdg(gtid, tdg); 5638 res = 0; 5639 } else { 5640 __kmp_curr_tdg_idx = tdg_id; 5641 KMP_DEBUG_ASSERT(__kmp_curr_tdg_idx < __kmp_max_tdgs); 5642 __kmp_start_record(gtid, flags, tdg_id); 5643 __kmp_num_tdg++; 5644 res = 1; 5645 } 5646 KA_TRACE(10, ("__kmpc_start_record_task(exit): T#%d TDG %d starts to %s\n", 5647 gtid, tdg_id, res ? "record" : "execute")); 5648 return res; 5649 } 5650 5651 // __kmp_end_record: set up a TDG after recording it 5652 // gtid: Global thread ID 5653 // tdg: Pointer to the TDG 5654 void __kmp_end_record(kmp_int32 gtid, kmp_tdg_info_t *tdg) { 5655 // Store roots 5656 kmp_node_info_t *this_record_map = tdg->record_map; 5657 kmp_int32 this_num_tasks = KMP_ATOMIC_LD_RLX(&tdg->num_tasks); 5658 kmp_int32 *this_root_tasks = 5659 (kmp_int32 *)__kmp_allocate(this_num_tasks * sizeof(kmp_int32)); 5660 kmp_int32 this_map_size = tdg->map_size; 5661 kmp_int32 this_num_roots = 0; 5662 kmp_info_t *thread = __kmp_threads[gtid]; 5663 5664 for (kmp_int32 i = 0; i < this_num_tasks; i++) { 5665 if (this_record_map[i].npredecessors == 0) { 5666 this_root_tasks[this_num_roots++] = i; 5667 } 5668 } 5669 5670 // Update with roots info and mapsize 5671 tdg->map_size = this_map_size; 5672 tdg->num_roots = this_num_roots; 5673 tdg->root_tasks = this_root_tasks; 5674 KMP_DEBUG_ASSERT(tdg->tdg_status == KMP_TDG_RECORDING); 5675 tdg->tdg_status = KMP_TDG_READY; 5676 5677 if (thread->th.th_current_task->td_dephash) { 5678 __kmp_dephash_free(thread, thread->th.th_current_task->td_dephash); 5679 thread->th.th_current_task->td_dephash = NULL; 5680 } 5681 5682 // Reset predecessor counter 5683 for (kmp_int32 i = 0; i < this_num_tasks; i++) { 5684 KMP_ATOMIC_ST_RLX(&this_record_map[i].npredecessors_counter, 5685 this_record_map[i].npredecessors); 5686 } 5687 KMP_ATOMIC_ST_RLX(&__kmp_tdg_task_id, 0); 5688 5689 if (__kmp_tdg_dot) 5690 __kmp_print_tdg_dot(tdg); 5691 } 5692 5693 // __kmpc_end_record_task: wrapper around __kmp_end_record to mark 5694 // the end of recording phase 5695 // 5696 // loc_ref: Source location information 5697 // gtid: Global thread ID 5698 // input_flags: Flags attached to the graph 5699 // tdg_id: ID of the TDG just finished recording 5700 void __kmpc_end_record_task(ident_t *loc_ref, kmp_int32 gtid, 5701 kmp_int32 input_flags, kmp_int32 tdg_id) { 5702 kmp_tdg_info_t *tdg = __kmp_find_tdg(tdg_id); 5703 5704 KA_TRACE(10, ("__kmpc_end_record_task(enter): T#%d loc=%p finishes recording" 5705 " tdg=%d with flags=%d\n", 5706 gtid, loc_ref, tdg_id, input_flags)); 5707 if (__kmp_max_tdgs) { 5708 // TODO: use input_flags->nowait 5709 __kmpc_end_taskgroup(loc_ref, gtid); 5710 if (__kmp_tdg_is_recording(tdg->tdg_status)) 5711 __kmp_end_record(gtid, tdg); 5712 } 5713 KA_TRACE(10, ("__kmpc_end_record_task(exit): T#%d loc=%p finished recording" 5714 " tdg=%d, its status is now READY\n", 5715 gtid, loc_ref, tdg_id)); 5716 } 5717 #endif 5718