xref: /freebsd/contrib/llvm-project/openmp/runtime/src/kmp_tasking.cpp (revision 357378bbdedf24ce2b90e9bd831af4a9db3ec70a)
1 /*
2  * kmp_tasking.cpp -- OpenMP 3.0 tasking support.
3  */
4 
5 //===----------------------------------------------------------------------===//
6 //
7 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
8 // See https://llvm.org/LICENSE.txt for license information.
9 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "kmp.h"
14 #include "kmp_i18n.h"
15 #include "kmp_itt.h"
16 #include "kmp_stats.h"
17 #include "kmp_wait_release.h"
18 #include "kmp_taskdeps.h"
19 
20 #if OMPT_SUPPORT
21 #include "ompt-specific.h"
22 #endif
23 
24 #if ENABLE_LIBOMPTARGET
25 static void (*tgt_target_nowait_query)(void **);
26 
27 void __kmp_init_target_task() {
28   *(void **)(&tgt_target_nowait_query) = KMP_DLSYM("__tgt_target_nowait_query");
29 }
30 #endif
31 
32 /* forward declaration */
33 static void __kmp_enable_tasking(kmp_task_team_t *task_team,
34                                  kmp_info_t *this_thr);
35 static void __kmp_alloc_task_deque(kmp_info_t *thread,
36                                    kmp_thread_data_t *thread_data);
37 static int __kmp_realloc_task_threads_data(kmp_info_t *thread,
38                                            kmp_task_team_t *task_team);
39 static void __kmp_bottom_half_finish_proxy(kmp_int32 gtid, kmp_task_t *ptask);
40 #if OMPX_TASKGRAPH
41 static kmp_tdg_info_t *__kmp_find_tdg(kmp_int32 tdg_id);
42 int __kmp_taskloop_task(int gtid, void *ptask);
43 #endif
44 
45 #ifdef BUILD_TIED_TASK_STACK
46 
47 //  __kmp_trace_task_stack: print the tied tasks from the task stack in order
48 //  from top do bottom
49 //
50 //  gtid: global thread identifier for thread containing stack
51 //  thread_data: thread data for task team thread containing stack
52 //  threshold: value above which the trace statement triggers
53 //  location: string identifying call site of this function (for trace)
54 static void __kmp_trace_task_stack(kmp_int32 gtid,
55                                    kmp_thread_data_t *thread_data,
56                                    int threshold, char *location) {
57   kmp_task_stack_t *task_stack = &thread_data->td.td_susp_tied_tasks;
58   kmp_taskdata_t **stack_top = task_stack->ts_top;
59   kmp_int32 entries = task_stack->ts_entries;
60   kmp_taskdata_t *tied_task;
61 
62   KA_TRACE(
63       threshold,
64       ("__kmp_trace_task_stack(start): location = %s, gtid = %d, entries = %d, "
65        "first_block = %p, stack_top = %p \n",
66        location, gtid, entries, task_stack->ts_first_block, stack_top));
67 
68   KMP_DEBUG_ASSERT(stack_top != NULL);
69   KMP_DEBUG_ASSERT(entries > 0);
70 
71   while (entries != 0) {
72     KMP_DEBUG_ASSERT(stack_top != &task_stack->ts_first_block.sb_block[0]);
73     // fix up ts_top if we need to pop from previous block
74     if (entries & TASK_STACK_INDEX_MASK == 0) {
75       kmp_stack_block_t *stack_block = (kmp_stack_block_t *)(stack_top);
76 
77       stack_block = stack_block->sb_prev;
78       stack_top = &stack_block->sb_block[TASK_STACK_BLOCK_SIZE];
79     }
80 
81     // finish bookkeeping
82     stack_top--;
83     entries--;
84 
85     tied_task = *stack_top;
86 
87     KMP_DEBUG_ASSERT(tied_task != NULL);
88     KMP_DEBUG_ASSERT(tied_task->td_flags.tasktype == TASK_TIED);
89 
90     KA_TRACE(threshold,
91              ("__kmp_trace_task_stack(%s):             gtid=%d, entry=%d, "
92               "stack_top=%p, tied_task=%p\n",
93               location, gtid, entries, stack_top, tied_task));
94   }
95   KMP_DEBUG_ASSERT(stack_top == &task_stack->ts_first_block.sb_block[0]);
96 
97   KA_TRACE(threshold,
98            ("__kmp_trace_task_stack(exit): location = %s, gtid = %d\n",
99             location, gtid));
100 }
101 
102 //  __kmp_init_task_stack: initialize the task stack for the first time
103 //  after a thread_data structure is created.
104 //  It should not be necessary to do this again (assuming the stack works).
105 //
106 //  gtid: global thread identifier of calling thread
107 //  thread_data: thread data for task team thread containing stack
108 static void __kmp_init_task_stack(kmp_int32 gtid,
109                                   kmp_thread_data_t *thread_data) {
110   kmp_task_stack_t *task_stack = &thread_data->td.td_susp_tied_tasks;
111   kmp_stack_block_t *first_block;
112 
113   // set up the first block of the stack
114   first_block = &task_stack->ts_first_block;
115   task_stack->ts_top = (kmp_taskdata_t **)first_block;
116   memset((void *)first_block, '\0',
117          TASK_STACK_BLOCK_SIZE * sizeof(kmp_taskdata_t *));
118 
119   // initialize the stack to be empty
120   task_stack->ts_entries = TASK_STACK_EMPTY;
121   first_block->sb_next = NULL;
122   first_block->sb_prev = NULL;
123 }
124 
125 //  __kmp_free_task_stack: free the task stack when thread_data is destroyed.
126 //
127 //  gtid: global thread identifier for calling thread
128 //  thread_data: thread info for thread containing stack
129 static void __kmp_free_task_stack(kmp_int32 gtid,
130                                   kmp_thread_data_t *thread_data) {
131   kmp_task_stack_t *task_stack = &thread_data->td.td_susp_tied_tasks;
132   kmp_stack_block_t *stack_block = &task_stack->ts_first_block;
133 
134   KMP_DEBUG_ASSERT(task_stack->ts_entries == TASK_STACK_EMPTY);
135   // free from the second block of the stack
136   while (stack_block != NULL) {
137     kmp_stack_block_t *next_block = (stack_block) ? stack_block->sb_next : NULL;
138 
139     stack_block->sb_next = NULL;
140     stack_block->sb_prev = NULL;
141     if (stack_block != &task_stack->ts_first_block) {
142       __kmp_thread_free(thread,
143                         stack_block); // free the block, if not the first
144     }
145     stack_block = next_block;
146   }
147   // initialize the stack to be empty
148   task_stack->ts_entries = 0;
149   task_stack->ts_top = NULL;
150 }
151 
152 //  __kmp_push_task_stack: Push the tied task onto the task stack.
153 //     Grow the stack if necessary by allocating another block.
154 //
155 //  gtid: global thread identifier for calling thread
156 //  thread: thread info for thread containing stack
157 //  tied_task: the task to push on the stack
158 static void __kmp_push_task_stack(kmp_int32 gtid, kmp_info_t *thread,
159                                   kmp_taskdata_t *tied_task) {
160   // GEH - need to consider what to do if tt_threads_data not allocated yet
161   kmp_thread_data_t *thread_data =
162       &thread->th.th_task_team->tt.tt_threads_data[__kmp_tid_from_gtid(gtid)];
163   kmp_task_stack_t *task_stack = &thread_data->td.td_susp_tied_tasks;
164 
165   if (tied_task->td_flags.team_serial || tied_task->td_flags.tasking_ser) {
166     return; // Don't push anything on stack if team or team tasks are serialized
167   }
168 
169   KMP_DEBUG_ASSERT(tied_task->td_flags.tasktype == TASK_TIED);
170   KMP_DEBUG_ASSERT(task_stack->ts_top != NULL);
171 
172   KA_TRACE(20,
173            ("__kmp_push_task_stack(enter): GTID: %d; THREAD: %p; TASK: %p\n",
174             gtid, thread, tied_task));
175   // Store entry
176   *(task_stack->ts_top) = tied_task;
177 
178   // Do bookkeeping for next push
179   task_stack->ts_top++;
180   task_stack->ts_entries++;
181 
182   if (task_stack->ts_entries & TASK_STACK_INDEX_MASK == 0) {
183     // Find beginning of this task block
184     kmp_stack_block_t *stack_block =
185         (kmp_stack_block_t *)(task_stack->ts_top - TASK_STACK_BLOCK_SIZE);
186 
187     // Check if we already have a block
188     if (stack_block->sb_next !=
189         NULL) { // reset ts_top to beginning of next block
190       task_stack->ts_top = &stack_block->sb_next->sb_block[0];
191     } else { // Alloc new block and link it up
192       kmp_stack_block_t *new_block = (kmp_stack_block_t *)__kmp_thread_calloc(
193           thread, sizeof(kmp_stack_block_t));
194 
195       task_stack->ts_top = &new_block->sb_block[0];
196       stack_block->sb_next = new_block;
197       new_block->sb_prev = stack_block;
198       new_block->sb_next = NULL;
199 
200       KA_TRACE(
201           30,
202           ("__kmp_push_task_stack(): GTID: %d; TASK: %p; Alloc new block: %p\n",
203            gtid, tied_task, new_block));
204     }
205   }
206   KA_TRACE(20, ("__kmp_push_task_stack(exit): GTID: %d; TASK: %p\n", gtid,
207                 tied_task));
208 }
209 
210 //  __kmp_pop_task_stack: Pop the tied task from the task stack.  Don't return
211 //  the task, just check to make sure it matches the ending task passed in.
212 //
213 //  gtid: global thread identifier for the calling thread
214 //  thread: thread info structure containing stack
215 //  tied_task: the task popped off the stack
216 //  ending_task: the task that is ending (should match popped task)
217 static void __kmp_pop_task_stack(kmp_int32 gtid, kmp_info_t *thread,
218                                  kmp_taskdata_t *ending_task) {
219   // GEH - need to consider what to do if tt_threads_data not allocated yet
220   kmp_thread_data_t *thread_data =
221       &thread->th.th_task_team->tt_threads_data[__kmp_tid_from_gtid(gtid)];
222   kmp_task_stack_t *task_stack = &thread_data->td.td_susp_tied_tasks;
223   kmp_taskdata_t *tied_task;
224 
225   if (ending_task->td_flags.team_serial || ending_task->td_flags.tasking_ser) {
226     // Don't pop anything from stack if team or team tasks are serialized
227     return;
228   }
229 
230   KMP_DEBUG_ASSERT(task_stack->ts_top != NULL);
231   KMP_DEBUG_ASSERT(task_stack->ts_entries > 0);
232 
233   KA_TRACE(20, ("__kmp_pop_task_stack(enter): GTID: %d; THREAD: %p\n", gtid,
234                 thread));
235 
236   // fix up ts_top if we need to pop from previous block
237   if (task_stack->ts_entries & TASK_STACK_INDEX_MASK == 0) {
238     kmp_stack_block_t *stack_block = (kmp_stack_block_t *)(task_stack->ts_top);
239 
240     stack_block = stack_block->sb_prev;
241     task_stack->ts_top = &stack_block->sb_block[TASK_STACK_BLOCK_SIZE];
242   }
243 
244   // finish bookkeeping
245   task_stack->ts_top--;
246   task_stack->ts_entries--;
247 
248   tied_task = *(task_stack->ts_top);
249 
250   KMP_DEBUG_ASSERT(tied_task != NULL);
251   KMP_DEBUG_ASSERT(tied_task->td_flags.tasktype == TASK_TIED);
252   KMP_DEBUG_ASSERT(tied_task == ending_task); // If we built the stack correctly
253 
254   KA_TRACE(20, ("__kmp_pop_task_stack(exit): GTID: %d; TASK: %p\n", gtid,
255                 tied_task));
256   return;
257 }
258 #endif /* BUILD_TIED_TASK_STACK */
259 
260 // returns 1 if new task is allowed to execute, 0 otherwise
261 // checks Task Scheduling constraint (if requested) and
262 // mutexinoutset dependencies if any
263 static bool __kmp_task_is_allowed(int gtid, const kmp_int32 is_constrained,
264                                   const kmp_taskdata_t *tasknew,
265                                   const kmp_taskdata_t *taskcurr) {
266   if (is_constrained && (tasknew->td_flags.tiedness == TASK_TIED)) {
267     // Check if the candidate obeys the Task Scheduling Constraints (TSC)
268     // only descendant of all deferred tied tasks can be scheduled, checking
269     // the last one is enough, as it in turn is the descendant of all others
270     kmp_taskdata_t *current = taskcurr->td_last_tied;
271     KMP_DEBUG_ASSERT(current != NULL);
272     // check if the task is not suspended on barrier
273     if (current->td_flags.tasktype == TASK_EXPLICIT ||
274         current->td_taskwait_thread > 0) { // <= 0 on barrier
275       kmp_int32 level = current->td_level;
276       kmp_taskdata_t *parent = tasknew->td_parent;
277       while (parent != current && parent->td_level > level) {
278         // check generation up to the level of the current task
279         parent = parent->td_parent;
280         KMP_DEBUG_ASSERT(parent != NULL);
281       }
282       if (parent != current)
283         return false;
284     }
285   }
286   // Check mutexinoutset dependencies, acquire locks
287   kmp_depnode_t *node = tasknew->td_depnode;
288 #if OMPX_TASKGRAPH
289   if (!tasknew->is_taskgraph && UNLIKELY(node && (node->dn.mtx_num_locks > 0))) {
290 #else
291   if (UNLIKELY(node && (node->dn.mtx_num_locks > 0))) {
292 #endif
293     for (int i = 0; i < node->dn.mtx_num_locks; ++i) {
294       KMP_DEBUG_ASSERT(node->dn.mtx_locks[i] != NULL);
295       if (__kmp_test_lock(node->dn.mtx_locks[i], gtid))
296         continue;
297       // could not get the lock, release previous locks
298       for (int j = i - 1; j >= 0; --j)
299         __kmp_release_lock(node->dn.mtx_locks[j], gtid);
300       return false;
301     }
302     // negative num_locks means all locks acquired successfully
303     node->dn.mtx_num_locks = -node->dn.mtx_num_locks;
304   }
305   return true;
306 }
307 
308 // __kmp_realloc_task_deque:
309 // Re-allocates a task deque for a particular thread, copies the content from
310 // the old deque and adjusts the necessary data structures relating to the
311 // deque. This operation must be done with the deque_lock being held
312 static void __kmp_realloc_task_deque(kmp_info_t *thread,
313                                      kmp_thread_data_t *thread_data) {
314   kmp_int32 size = TASK_DEQUE_SIZE(thread_data->td);
315   KMP_DEBUG_ASSERT(TCR_4(thread_data->td.td_deque_ntasks) == size);
316   kmp_int32 new_size = 2 * size;
317 
318   KE_TRACE(10, ("__kmp_realloc_task_deque: T#%d reallocating deque[from %d to "
319                 "%d] for thread_data %p\n",
320                 __kmp_gtid_from_thread(thread), size, new_size, thread_data));
321 
322   kmp_taskdata_t **new_deque =
323       (kmp_taskdata_t **)__kmp_allocate(new_size * sizeof(kmp_taskdata_t *));
324 
325   int i, j;
326   for (i = thread_data->td.td_deque_head, j = 0; j < size;
327        i = (i + 1) & TASK_DEQUE_MASK(thread_data->td), j++)
328     new_deque[j] = thread_data->td.td_deque[i];
329 
330   __kmp_free(thread_data->td.td_deque);
331 
332   thread_data->td.td_deque_head = 0;
333   thread_data->td.td_deque_tail = size;
334   thread_data->td.td_deque = new_deque;
335   thread_data->td.td_deque_size = new_size;
336 }
337 
338 static kmp_task_pri_t *__kmp_alloc_task_pri_list() {
339   kmp_task_pri_t *l = (kmp_task_pri_t *)__kmp_allocate(sizeof(kmp_task_pri_t));
340   kmp_thread_data_t *thread_data = &l->td;
341   __kmp_init_bootstrap_lock(&thread_data->td.td_deque_lock);
342   thread_data->td.td_deque_last_stolen = -1;
343   KE_TRACE(20, ("__kmp_alloc_task_pri_list: T#%d allocating deque[%d] "
344                 "for thread_data %p\n",
345                 __kmp_get_gtid(), INITIAL_TASK_DEQUE_SIZE, thread_data));
346   thread_data->td.td_deque = (kmp_taskdata_t **)__kmp_allocate(
347       INITIAL_TASK_DEQUE_SIZE * sizeof(kmp_taskdata_t *));
348   thread_data->td.td_deque_size = INITIAL_TASK_DEQUE_SIZE;
349   return l;
350 }
351 
352 // The function finds the deque of priority tasks with given priority, or
353 // allocates a new deque and put it into sorted (high -> low) list of deques.
354 // Deques of non-default priority tasks are shared between all threads in team,
355 // as opposed to per-thread deques of tasks with default priority.
356 // The function is called under the lock task_team->tt.tt_task_pri_lock.
357 static kmp_thread_data_t *
358 __kmp_get_priority_deque_data(kmp_task_team_t *task_team, kmp_int32 pri) {
359   kmp_thread_data_t *thread_data;
360   kmp_task_pri_t *lst = task_team->tt.tt_task_pri_list;
361   if (lst->priority == pri) {
362     // Found queue of tasks with given priority.
363     thread_data = &lst->td;
364   } else if (lst->priority < pri) {
365     // All current priority queues contain tasks with lower priority.
366     // Allocate new one for given priority tasks.
367     kmp_task_pri_t *list = __kmp_alloc_task_pri_list();
368     thread_data = &list->td;
369     list->priority = pri;
370     list->next = lst;
371     task_team->tt.tt_task_pri_list = list;
372   } else { // task_team->tt.tt_task_pri_list->priority > pri
373     kmp_task_pri_t *next_queue = lst->next;
374     while (next_queue && next_queue->priority > pri) {
375       lst = next_queue;
376       next_queue = lst->next;
377     }
378     // lst->priority > pri && (next == NULL || pri >= next->priority)
379     if (next_queue == NULL) {
380       // No queue with pri priority, need to allocate new one.
381       kmp_task_pri_t *list = __kmp_alloc_task_pri_list();
382       thread_data = &list->td;
383       list->priority = pri;
384       list->next = NULL;
385       lst->next = list;
386     } else if (next_queue->priority == pri) {
387       // Found queue of tasks with given priority.
388       thread_data = &next_queue->td;
389     } else { // lst->priority > pri > next->priority
390       // insert newly allocated between existed queues
391       kmp_task_pri_t *list = __kmp_alloc_task_pri_list();
392       thread_data = &list->td;
393       list->priority = pri;
394       list->next = next_queue;
395       lst->next = list;
396     }
397   }
398   return thread_data;
399 }
400 
401 //  __kmp_push_priority_task: Add a task to the team's priority task deque
402 static kmp_int32 __kmp_push_priority_task(kmp_int32 gtid, kmp_info_t *thread,
403                                           kmp_taskdata_t *taskdata,
404                                           kmp_task_team_t *task_team,
405                                           kmp_int32 pri) {
406   kmp_thread_data_t *thread_data = NULL;
407   KA_TRACE(20,
408            ("__kmp_push_priority_task: T#%d trying to push task %p, pri %d.\n",
409             gtid, taskdata, pri));
410 
411   // Find task queue specific to priority value
412   kmp_task_pri_t *lst = task_team->tt.tt_task_pri_list;
413   if (UNLIKELY(lst == NULL)) {
414     __kmp_acquire_bootstrap_lock(&task_team->tt.tt_task_pri_lock);
415     if (task_team->tt.tt_task_pri_list == NULL) {
416       // List of queues is still empty, allocate one.
417       kmp_task_pri_t *list = __kmp_alloc_task_pri_list();
418       thread_data = &list->td;
419       list->priority = pri;
420       list->next = NULL;
421       task_team->tt.tt_task_pri_list = list;
422     } else {
423       // Other thread initialized a queue. Check if it fits and get thread_data.
424       thread_data = __kmp_get_priority_deque_data(task_team, pri);
425     }
426     __kmp_release_bootstrap_lock(&task_team->tt.tt_task_pri_lock);
427   } else {
428     if (lst->priority == pri) {
429       // Found queue of tasks with given priority.
430       thread_data = &lst->td;
431     } else {
432       __kmp_acquire_bootstrap_lock(&task_team->tt.tt_task_pri_lock);
433       thread_data = __kmp_get_priority_deque_data(task_team, pri);
434       __kmp_release_bootstrap_lock(&task_team->tt.tt_task_pri_lock);
435     }
436   }
437   KMP_DEBUG_ASSERT(thread_data);
438 
439   __kmp_acquire_bootstrap_lock(&thread_data->td.td_deque_lock);
440   // Check if deque is full
441   if (TCR_4(thread_data->td.td_deque_ntasks) >=
442       TASK_DEQUE_SIZE(thread_data->td)) {
443     if (__kmp_enable_task_throttling &&
444         __kmp_task_is_allowed(gtid, __kmp_task_stealing_constraint, taskdata,
445                               thread->th.th_current_task)) {
446       __kmp_release_bootstrap_lock(&thread_data->td.td_deque_lock);
447       KA_TRACE(20, ("__kmp_push_priority_task: T#%d deque is full; returning "
448                     "TASK_NOT_PUSHED for task %p\n",
449                     gtid, taskdata));
450       return TASK_NOT_PUSHED;
451     } else {
452       // expand deque to push the task which is not allowed to execute
453       __kmp_realloc_task_deque(thread, thread_data);
454     }
455   }
456   KMP_DEBUG_ASSERT(TCR_4(thread_data->td.td_deque_ntasks) <
457                    TASK_DEQUE_SIZE(thread_data->td));
458   // Push taskdata.
459   thread_data->td.td_deque[thread_data->td.td_deque_tail] = taskdata;
460   // Wrap index.
461   thread_data->td.td_deque_tail =
462       (thread_data->td.td_deque_tail + 1) & TASK_DEQUE_MASK(thread_data->td);
463   TCW_4(thread_data->td.td_deque_ntasks,
464         TCR_4(thread_data->td.td_deque_ntasks) + 1); // Adjust task count
465   KMP_FSYNC_RELEASING(thread->th.th_current_task); // releasing self
466   KMP_FSYNC_RELEASING(taskdata); // releasing child
467   KA_TRACE(20, ("__kmp_push_priority_task: T#%d returning "
468                 "TASK_SUCCESSFULLY_PUSHED: task=%p ntasks=%d head=%u tail=%u\n",
469                 gtid, taskdata, thread_data->td.td_deque_ntasks,
470                 thread_data->td.td_deque_head, thread_data->td.td_deque_tail));
471   __kmp_release_bootstrap_lock(&thread_data->td.td_deque_lock);
472   task_team->tt.tt_num_task_pri++; // atomic inc
473   return TASK_SUCCESSFULLY_PUSHED;
474 }
475 
476 //  __kmp_push_task: Add a task to the thread's deque
477 static kmp_int32 __kmp_push_task(kmp_int32 gtid, kmp_task_t *task) {
478   kmp_info_t *thread = __kmp_threads[gtid];
479   kmp_taskdata_t *taskdata = KMP_TASK_TO_TASKDATA(task);
480 
481   // If we encounter a hidden helper task, and the current thread is not a
482   // hidden helper thread, we have to give the task to any hidden helper thread
483   // starting from its shadow one.
484   if (UNLIKELY(taskdata->td_flags.hidden_helper &&
485                !KMP_HIDDEN_HELPER_THREAD(gtid))) {
486     kmp_int32 shadow_gtid = KMP_GTID_TO_SHADOW_GTID(gtid);
487     __kmpc_give_task(task, __kmp_tid_from_gtid(shadow_gtid));
488     // Signal the hidden helper threads.
489     __kmp_hidden_helper_worker_thread_signal();
490     return TASK_SUCCESSFULLY_PUSHED;
491   }
492 
493   kmp_task_team_t *task_team = thread->th.th_task_team;
494   kmp_int32 tid = __kmp_tid_from_gtid(gtid);
495   kmp_thread_data_t *thread_data;
496 
497   KA_TRACE(20,
498            ("__kmp_push_task: T#%d trying to push task %p.\n", gtid, taskdata));
499 
500   if (UNLIKELY(taskdata->td_flags.tiedness == TASK_UNTIED)) {
501     // untied task needs to increment counter so that the task structure is not
502     // freed prematurely
503     kmp_int32 counter = 1 + KMP_ATOMIC_INC(&taskdata->td_untied_count);
504     KMP_DEBUG_USE_VAR(counter);
505     KA_TRACE(
506         20,
507         ("__kmp_push_task: T#%d untied_count (%d) incremented for task %p\n",
508          gtid, counter, taskdata));
509   }
510 
511   // The first check avoids building task_team thread data if serialized
512   if (UNLIKELY(taskdata->td_flags.task_serial)) {
513     KA_TRACE(20, ("__kmp_push_task: T#%d team serialized; returning "
514                   "TASK_NOT_PUSHED for task %p\n",
515                   gtid, taskdata));
516     return TASK_NOT_PUSHED;
517   }
518 
519   // Now that serialized tasks have returned, we can assume that we are not in
520   // immediate exec mode
521   KMP_DEBUG_ASSERT(__kmp_tasking_mode != tskm_immediate_exec);
522   if (UNLIKELY(!KMP_TASKING_ENABLED(task_team))) {
523     __kmp_enable_tasking(task_team, thread);
524   }
525   KMP_DEBUG_ASSERT(TCR_4(task_team->tt.tt_found_tasks) == TRUE);
526   KMP_DEBUG_ASSERT(TCR_PTR(task_team->tt.tt_threads_data) != NULL);
527 
528   if (taskdata->td_flags.priority_specified && task->data2.priority > 0 &&
529       __kmp_max_task_priority > 0) {
530     int pri = KMP_MIN(task->data2.priority, __kmp_max_task_priority);
531     return __kmp_push_priority_task(gtid, thread, taskdata, task_team, pri);
532   }
533 
534   // Find tasking deque specific to encountering thread
535   thread_data = &task_team->tt.tt_threads_data[tid];
536 
537   // No lock needed since only owner can allocate. If the task is hidden_helper,
538   // we don't need it either because we have initialized the dequeue for hidden
539   // helper thread data.
540   if (UNLIKELY(thread_data->td.td_deque == NULL)) {
541     __kmp_alloc_task_deque(thread, thread_data);
542   }
543 
544   int locked = 0;
545   // Check if deque is full
546   if (TCR_4(thread_data->td.td_deque_ntasks) >=
547       TASK_DEQUE_SIZE(thread_data->td)) {
548     if (__kmp_enable_task_throttling &&
549         __kmp_task_is_allowed(gtid, __kmp_task_stealing_constraint, taskdata,
550                               thread->th.th_current_task)) {
551       KA_TRACE(20, ("__kmp_push_task: T#%d deque is full; returning "
552                     "TASK_NOT_PUSHED for task %p\n",
553                     gtid, taskdata));
554       return TASK_NOT_PUSHED;
555     } else {
556       __kmp_acquire_bootstrap_lock(&thread_data->td.td_deque_lock);
557       locked = 1;
558       if (TCR_4(thread_data->td.td_deque_ntasks) >=
559           TASK_DEQUE_SIZE(thread_data->td)) {
560         // expand deque to push the task which is not allowed to execute
561         __kmp_realloc_task_deque(thread, thread_data);
562       }
563     }
564   }
565   // Lock the deque for the task push operation
566   if (!locked) {
567     __kmp_acquire_bootstrap_lock(&thread_data->td.td_deque_lock);
568     // Need to recheck as we can get a proxy task from thread outside of OpenMP
569     if (TCR_4(thread_data->td.td_deque_ntasks) >=
570         TASK_DEQUE_SIZE(thread_data->td)) {
571       if (__kmp_enable_task_throttling &&
572           __kmp_task_is_allowed(gtid, __kmp_task_stealing_constraint, taskdata,
573                                 thread->th.th_current_task)) {
574         __kmp_release_bootstrap_lock(&thread_data->td.td_deque_lock);
575         KA_TRACE(20, ("__kmp_push_task: T#%d deque is full on 2nd check; "
576                       "returning TASK_NOT_PUSHED for task %p\n",
577                       gtid, taskdata));
578         return TASK_NOT_PUSHED;
579       } else {
580         // expand deque to push the task which is not allowed to execute
581         __kmp_realloc_task_deque(thread, thread_data);
582       }
583     }
584   }
585   // Must have room since no thread can add tasks but calling thread
586   KMP_DEBUG_ASSERT(TCR_4(thread_data->td.td_deque_ntasks) <
587                    TASK_DEQUE_SIZE(thread_data->td));
588 
589   thread_data->td.td_deque[thread_data->td.td_deque_tail] =
590       taskdata; // Push taskdata
591   // Wrap index.
592   thread_data->td.td_deque_tail =
593       (thread_data->td.td_deque_tail + 1) & TASK_DEQUE_MASK(thread_data->td);
594   TCW_4(thread_data->td.td_deque_ntasks,
595         TCR_4(thread_data->td.td_deque_ntasks) + 1); // Adjust task count
596   KMP_FSYNC_RELEASING(thread->th.th_current_task); // releasing self
597   KMP_FSYNC_RELEASING(taskdata); // releasing child
598   KA_TRACE(20, ("__kmp_push_task: T#%d returning TASK_SUCCESSFULLY_PUSHED: "
599                 "task=%p ntasks=%d head=%u tail=%u\n",
600                 gtid, taskdata, thread_data->td.td_deque_ntasks,
601                 thread_data->td.td_deque_head, thread_data->td.td_deque_tail));
602 
603   __kmp_release_bootstrap_lock(&thread_data->td.td_deque_lock);
604 
605   return TASK_SUCCESSFULLY_PUSHED;
606 }
607 
608 // __kmp_pop_current_task_from_thread: set up current task from called thread
609 // when team ends
610 //
611 // this_thr: thread structure to set current_task in.
612 void __kmp_pop_current_task_from_thread(kmp_info_t *this_thr) {
613   KF_TRACE(10, ("__kmp_pop_current_task_from_thread(enter): T#%d "
614                 "this_thread=%p, curtask=%p, "
615                 "curtask_parent=%p\n",
616                 0, this_thr, this_thr->th.th_current_task,
617                 this_thr->th.th_current_task->td_parent));
618 
619   this_thr->th.th_current_task = this_thr->th.th_current_task->td_parent;
620 
621   KF_TRACE(10, ("__kmp_pop_current_task_from_thread(exit): T#%d "
622                 "this_thread=%p, curtask=%p, "
623                 "curtask_parent=%p\n",
624                 0, this_thr, this_thr->th.th_current_task,
625                 this_thr->th.th_current_task->td_parent));
626 }
627 
628 // __kmp_push_current_task_to_thread: set up current task in called thread for a
629 // new team
630 //
631 // this_thr: thread structure to set up
632 // team: team for implicit task data
633 // tid: thread within team to set up
634 void __kmp_push_current_task_to_thread(kmp_info_t *this_thr, kmp_team_t *team,
635                                        int tid) {
636   // current task of the thread is a parent of the new just created implicit
637   // tasks of new team
638   KF_TRACE(10, ("__kmp_push_current_task_to_thread(enter): T#%d this_thread=%p "
639                 "curtask=%p "
640                 "parent_task=%p\n",
641                 tid, this_thr, this_thr->th.th_current_task,
642                 team->t.t_implicit_task_taskdata[tid].td_parent));
643 
644   KMP_DEBUG_ASSERT(this_thr != NULL);
645 
646   if (tid == 0) {
647     if (this_thr->th.th_current_task != &team->t.t_implicit_task_taskdata[0]) {
648       team->t.t_implicit_task_taskdata[0].td_parent =
649           this_thr->th.th_current_task;
650       this_thr->th.th_current_task = &team->t.t_implicit_task_taskdata[0];
651     }
652   } else {
653     team->t.t_implicit_task_taskdata[tid].td_parent =
654         team->t.t_implicit_task_taskdata[0].td_parent;
655     this_thr->th.th_current_task = &team->t.t_implicit_task_taskdata[tid];
656   }
657 
658   KF_TRACE(10, ("__kmp_push_current_task_to_thread(exit): T#%d this_thread=%p "
659                 "curtask=%p "
660                 "parent_task=%p\n",
661                 tid, this_thr, this_thr->th.th_current_task,
662                 team->t.t_implicit_task_taskdata[tid].td_parent));
663 }
664 
665 // __kmp_task_start: bookkeeping for a task starting execution
666 //
667 // GTID: global thread id of calling thread
668 // task: task starting execution
669 // current_task: task suspending
670 static void __kmp_task_start(kmp_int32 gtid, kmp_task_t *task,
671                              kmp_taskdata_t *current_task) {
672   kmp_taskdata_t *taskdata = KMP_TASK_TO_TASKDATA(task);
673   kmp_info_t *thread = __kmp_threads[gtid];
674 
675   KA_TRACE(10,
676            ("__kmp_task_start(enter): T#%d starting task %p: current_task=%p\n",
677             gtid, taskdata, current_task));
678 
679   KMP_DEBUG_ASSERT(taskdata->td_flags.tasktype == TASK_EXPLICIT);
680 
681   // mark currently executing task as suspended
682   // TODO: GEH - make sure root team implicit task is initialized properly.
683   // KMP_DEBUG_ASSERT( current_task -> td_flags.executing == 1 );
684   current_task->td_flags.executing = 0;
685 
686 // Add task to stack if tied
687 #ifdef BUILD_TIED_TASK_STACK
688   if (taskdata->td_flags.tiedness == TASK_TIED) {
689     __kmp_push_task_stack(gtid, thread, taskdata);
690   }
691 #endif /* BUILD_TIED_TASK_STACK */
692 
693   // mark starting task as executing and as current task
694   thread->th.th_current_task = taskdata;
695 
696   KMP_DEBUG_ASSERT(taskdata->td_flags.started == 0 ||
697                    taskdata->td_flags.tiedness == TASK_UNTIED);
698   KMP_DEBUG_ASSERT(taskdata->td_flags.executing == 0 ||
699                    taskdata->td_flags.tiedness == TASK_UNTIED);
700   taskdata->td_flags.started = 1;
701   taskdata->td_flags.executing = 1;
702   KMP_DEBUG_ASSERT(taskdata->td_flags.complete == 0);
703   KMP_DEBUG_ASSERT(taskdata->td_flags.freed == 0);
704 
705   // GEH TODO: shouldn't we pass some sort of location identifier here?
706   // APT: yes, we will pass location here.
707   // need to store current thread state (in a thread or taskdata structure)
708   // before setting work_state, otherwise wrong state is set after end of task
709 
710   KA_TRACE(10, ("__kmp_task_start(exit): T#%d task=%p\n", gtid, taskdata));
711 
712   return;
713 }
714 
715 #if OMPT_SUPPORT
716 //------------------------------------------------------------------------------
717 // __ompt_task_init:
718 //   Initialize OMPT fields maintained by a task. This will only be called after
719 //   ompt_start_tool, so we already know whether ompt is enabled or not.
720 
721 static inline void __ompt_task_init(kmp_taskdata_t *task, int tid) {
722   // The calls to __ompt_task_init already have the ompt_enabled condition.
723   task->ompt_task_info.task_data.value = 0;
724   task->ompt_task_info.frame.exit_frame = ompt_data_none;
725   task->ompt_task_info.frame.enter_frame = ompt_data_none;
726   task->ompt_task_info.frame.exit_frame_flags =
727       ompt_frame_runtime | ompt_frame_framepointer;
728   task->ompt_task_info.frame.enter_frame_flags =
729       ompt_frame_runtime | ompt_frame_framepointer;
730   task->ompt_task_info.dispatch_chunk.start = 0;
731   task->ompt_task_info.dispatch_chunk.iterations = 0;
732 }
733 
734 // __ompt_task_start:
735 //   Build and trigger task-begin event
736 static inline void __ompt_task_start(kmp_task_t *task,
737                                      kmp_taskdata_t *current_task,
738                                      kmp_int32 gtid) {
739   kmp_taskdata_t *taskdata = KMP_TASK_TO_TASKDATA(task);
740   ompt_task_status_t status = ompt_task_switch;
741   if (__kmp_threads[gtid]->th.ompt_thread_info.ompt_task_yielded) {
742     status = ompt_task_yield;
743     __kmp_threads[gtid]->th.ompt_thread_info.ompt_task_yielded = 0;
744   }
745   /* let OMPT know that we're about to run this task */
746   if (ompt_enabled.ompt_callback_task_schedule) {
747     ompt_callbacks.ompt_callback(ompt_callback_task_schedule)(
748         &(current_task->ompt_task_info.task_data), status,
749         &(taskdata->ompt_task_info.task_data));
750   }
751   taskdata->ompt_task_info.scheduling_parent = current_task;
752 }
753 
754 // __ompt_task_finish:
755 //   Build and trigger final task-schedule event
756 static inline void __ompt_task_finish(kmp_task_t *task,
757                                       kmp_taskdata_t *resumed_task,
758                                       ompt_task_status_t status) {
759   if (ompt_enabled.ompt_callback_task_schedule) {
760     kmp_taskdata_t *taskdata = KMP_TASK_TO_TASKDATA(task);
761     if (__kmp_omp_cancellation && taskdata->td_taskgroup &&
762         taskdata->td_taskgroup->cancel_request == cancel_taskgroup) {
763       status = ompt_task_cancel;
764     }
765 
766     /* let OMPT know that we're returning to the callee task */
767     ompt_callbacks.ompt_callback(ompt_callback_task_schedule)(
768         &(taskdata->ompt_task_info.task_data), status,
769         (resumed_task ? &(resumed_task->ompt_task_info.task_data) : NULL));
770   }
771 }
772 #endif
773 
774 template <bool ompt>
775 static void __kmpc_omp_task_begin_if0_template(ident_t *loc_ref, kmp_int32 gtid,
776                                                kmp_task_t *task,
777                                                void *frame_address,
778                                                void *return_address) {
779   kmp_taskdata_t *taskdata = KMP_TASK_TO_TASKDATA(task);
780   kmp_taskdata_t *current_task = __kmp_threads[gtid]->th.th_current_task;
781 
782   KA_TRACE(10, ("__kmpc_omp_task_begin_if0(enter): T#%d loc=%p task=%p "
783                 "current_task=%p\n",
784                 gtid, loc_ref, taskdata, current_task));
785 
786   if (UNLIKELY(taskdata->td_flags.tiedness == TASK_UNTIED)) {
787     // untied task needs to increment counter so that the task structure is not
788     // freed prematurely
789     kmp_int32 counter = 1 + KMP_ATOMIC_INC(&taskdata->td_untied_count);
790     KMP_DEBUG_USE_VAR(counter);
791     KA_TRACE(20, ("__kmpc_omp_task_begin_if0: T#%d untied_count (%d) "
792                   "incremented for task %p\n",
793                   gtid, counter, taskdata));
794   }
795 
796   taskdata->td_flags.task_serial =
797       1; // Execute this task immediately, not deferred.
798   __kmp_task_start(gtid, task, current_task);
799 
800 #if OMPT_SUPPORT
801   if (ompt) {
802     if (current_task->ompt_task_info.frame.enter_frame.ptr == NULL) {
803       current_task->ompt_task_info.frame.enter_frame.ptr =
804           taskdata->ompt_task_info.frame.exit_frame.ptr = frame_address;
805       current_task->ompt_task_info.frame.enter_frame_flags =
806           taskdata->ompt_task_info.frame.exit_frame_flags =
807               ompt_frame_application | ompt_frame_framepointer;
808     }
809     if (ompt_enabled.ompt_callback_task_create) {
810       ompt_task_info_t *parent_info = &(current_task->ompt_task_info);
811       ompt_callbacks.ompt_callback(ompt_callback_task_create)(
812           &(parent_info->task_data), &(parent_info->frame),
813           &(taskdata->ompt_task_info.task_data),
814           ompt_task_explicit | TASK_TYPE_DETAILS_FORMAT(taskdata), 0,
815           return_address);
816     }
817     __ompt_task_start(task, current_task, gtid);
818   }
819 #endif // OMPT_SUPPORT
820 
821   KA_TRACE(10, ("__kmpc_omp_task_begin_if0(exit): T#%d loc=%p task=%p,\n", gtid,
822                 loc_ref, taskdata));
823 }
824 
825 #if OMPT_SUPPORT
826 OMPT_NOINLINE
827 static void __kmpc_omp_task_begin_if0_ompt(ident_t *loc_ref, kmp_int32 gtid,
828                                            kmp_task_t *task,
829                                            void *frame_address,
830                                            void *return_address) {
831   __kmpc_omp_task_begin_if0_template<true>(loc_ref, gtid, task, frame_address,
832                                            return_address);
833 }
834 #endif // OMPT_SUPPORT
835 
836 // __kmpc_omp_task_begin_if0: report that a given serialized task has started
837 // execution
838 //
839 // loc_ref: source location information; points to beginning of task block.
840 // gtid: global thread number.
841 // task: task thunk for the started task.
842 #ifdef __s390x__
843 // This is required for OMPT_GET_FRAME_ADDRESS(1) to compile on s390x.
844 // In order for it to work correctly, the caller also needs to be compiled with
845 // backchain. If a caller is compiled without backchain,
846 // OMPT_GET_FRAME_ADDRESS(1) will produce an incorrect value, but will not
847 // crash.
848 __attribute__((target("backchain")))
849 #endif
850 void __kmpc_omp_task_begin_if0(ident_t *loc_ref, kmp_int32 gtid,
851                                kmp_task_t *task) {
852 #if OMPT_SUPPORT
853   if (UNLIKELY(ompt_enabled.enabled)) {
854     OMPT_STORE_RETURN_ADDRESS(gtid);
855     __kmpc_omp_task_begin_if0_ompt(loc_ref, gtid, task,
856                                    OMPT_GET_FRAME_ADDRESS(1),
857                                    OMPT_LOAD_RETURN_ADDRESS(gtid));
858     return;
859   }
860 #endif
861   __kmpc_omp_task_begin_if0_template<false>(loc_ref, gtid, task, NULL, NULL);
862 }
863 
864 #ifdef TASK_UNUSED
865 // __kmpc_omp_task_begin: report that a given task has started execution
866 // NEVER GENERATED BY COMPILER, DEPRECATED!!!
867 void __kmpc_omp_task_begin(ident_t *loc_ref, kmp_int32 gtid, kmp_task_t *task) {
868   kmp_taskdata_t *current_task = __kmp_threads[gtid]->th.th_current_task;
869 
870   KA_TRACE(
871       10,
872       ("__kmpc_omp_task_begin(enter): T#%d loc=%p task=%p current_task=%p\n",
873        gtid, loc_ref, KMP_TASK_TO_TASKDATA(task), current_task));
874 
875   __kmp_task_start(gtid, task, current_task);
876 
877   KA_TRACE(10, ("__kmpc_omp_task_begin(exit): T#%d loc=%p task=%p,\n", gtid,
878                 loc_ref, KMP_TASK_TO_TASKDATA(task)));
879   return;
880 }
881 #endif // TASK_UNUSED
882 
883 // __kmp_free_task: free the current task space and the space for shareds
884 //
885 // gtid: Global thread ID of calling thread
886 // taskdata: task to free
887 // thread: thread data structure of caller
888 static void __kmp_free_task(kmp_int32 gtid, kmp_taskdata_t *taskdata,
889                             kmp_info_t *thread) {
890   KA_TRACE(30, ("__kmp_free_task: T#%d freeing data from task %p\n", gtid,
891                 taskdata));
892 
893   // Check to make sure all flags and counters have the correct values
894   KMP_DEBUG_ASSERT(taskdata->td_flags.tasktype == TASK_EXPLICIT);
895   KMP_DEBUG_ASSERT(taskdata->td_flags.executing == 0);
896   KMP_DEBUG_ASSERT(taskdata->td_flags.complete == 1);
897   KMP_DEBUG_ASSERT(taskdata->td_flags.freed == 0);
898   KMP_DEBUG_ASSERT(taskdata->td_allocated_child_tasks == 0 ||
899                    taskdata->td_flags.task_serial == 1);
900   KMP_DEBUG_ASSERT(taskdata->td_incomplete_child_tasks == 0);
901   kmp_task_t *task = KMP_TASKDATA_TO_TASK(taskdata);
902   // Clear data to not be re-used later by mistake.
903   task->data1.destructors = NULL;
904   task->data2.priority = 0;
905 
906   taskdata->td_flags.freed = 1;
907 #if OMPX_TASKGRAPH
908   // do not free tasks in taskgraph
909   if (!taskdata->is_taskgraph) {
910 #endif
911 // deallocate the taskdata and shared variable blocks associated with this task
912 #if USE_FAST_MEMORY
913   __kmp_fast_free(thread, taskdata);
914 #else /* ! USE_FAST_MEMORY */
915   __kmp_thread_free(thread, taskdata);
916 #endif
917 #if OMPX_TASKGRAPH
918   } else {
919     taskdata->td_flags.complete = 0;
920     taskdata->td_flags.started = 0;
921     taskdata->td_flags.freed = 0;
922     taskdata->td_flags.executing = 0;
923     taskdata->td_flags.task_serial =
924         (taskdata->td_parent->td_flags.final ||
925           taskdata->td_flags.team_serial || taskdata->td_flags.tasking_ser);
926 
927     // taskdata->td_allow_completion_event.pending_events_count = 1;
928     KMP_ATOMIC_ST_RLX(&taskdata->td_untied_count, 0);
929     KMP_ATOMIC_ST_RLX(&taskdata->td_incomplete_child_tasks, 0);
930     // start at one because counts current task and children
931     KMP_ATOMIC_ST_RLX(&taskdata->td_allocated_child_tasks, 1);
932   }
933 #endif
934 
935   KA_TRACE(20, ("__kmp_free_task: T#%d freed task %p\n", gtid, taskdata));
936 }
937 
938 // __kmp_free_task_and_ancestors: free the current task and ancestors without
939 // children
940 //
941 // gtid: Global thread ID of calling thread
942 // taskdata: task to free
943 // thread: thread data structure of caller
944 static void __kmp_free_task_and_ancestors(kmp_int32 gtid,
945                                           kmp_taskdata_t *taskdata,
946                                           kmp_info_t *thread) {
947   // Proxy tasks must always be allowed to free their parents
948   // because they can be run in background even in serial mode.
949   kmp_int32 team_serial =
950       (taskdata->td_flags.team_serial || taskdata->td_flags.tasking_ser) &&
951       !taskdata->td_flags.proxy;
952   KMP_DEBUG_ASSERT(taskdata->td_flags.tasktype == TASK_EXPLICIT);
953 
954   kmp_int32 children = KMP_ATOMIC_DEC(&taskdata->td_allocated_child_tasks) - 1;
955   KMP_DEBUG_ASSERT(children >= 0);
956 
957   // Now, go up the ancestor tree to see if any ancestors can now be freed.
958   while (children == 0) {
959     kmp_taskdata_t *parent_taskdata = taskdata->td_parent;
960 
961     KA_TRACE(20, ("__kmp_free_task_and_ancestors(enter): T#%d task %p complete "
962                   "and freeing itself\n",
963                   gtid, taskdata));
964 
965     // --- Deallocate my ancestor task ---
966     __kmp_free_task(gtid, taskdata, thread);
967 
968     taskdata = parent_taskdata;
969 
970     if (team_serial)
971       return;
972     // Stop checking ancestors at implicit task instead of walking up ancestor
973     // tree to avoid premature deallocation of ancestors.
974     if (taskdata->td_flags.tasktype == TASK_IMPLICIT) {
975       if (taskdata->td_dephash) { // do we need to cleanup dephash?
976         int children = KMP_ATOMIC_LD_ACQ(&taskdata->td_incomplete_child_tasks);
977         kmp_tasking_flags_t flags_old = taskdata->td_flags;
978         if (children == 0 && flags_old.complete == 1) {
979           kmp_tasking_flags_t flags_new = flags_old;
980           flags_new.complete = 0;
981           if (KMP_COMPARE_AND_STORE_ACQ32(
982                   RCAST(kmp_int32 *, &taskdata->td_flags),
983                   *RCAST(kmp_int32 *, &flags_old),
984                   *RCAST(kmp_int32 *, &flags_new))) {
985             KA_TRACE(100, ("__kmp_free_task_and_ancestors: T#%d cleans "
986                            "dephash of implicit task %p\n",
987                            gtid, taskdata));
988             // cleanup dephash of finished implicit task
989             __kmp_dephash_free_entries(thread, taskdata->td_dephash);
990           }
991         }
992       }
993       return;
994     }
995     // Predecrement simulated by "- 1" calculation
996     children = KMP_ATOMIC_DEC(&taskdata->td_allocated_child_tasks) - 1;
997     KMP_DEBUG_ASSERT(children >= 0);
998   }
999 
1000   KA_TRACE(
1001       20, ("__kmp_free_task_and_ancestors(exit): T#%d task %p has %d children; "
1002            "not freeing it yet\n",
1003            gtid, taskdata, children));
1004 }
1005 
1006 // Only need to keep track of child task counts if any of the following:
1007 // 1. team parallel and tasking not serialized;
1008 // 2. it is a proxy or detachable or hidden helper task
1009 // 3. the children counter of its parent task is greater than 0.
1010 // The reason for the 3rd one is for serialized team that found detached task,
1011 // hidden helper task, T. In this case, the execution of T is still deferred,
1012 // and it is also possible that a regular task depends on T. In this case, if we
1013 // don't track the children, task synchronization will be broken.
1014 static bool __kmp_track_children_task(kmp_taskdata_t *taskdata) {
1015   kmp_tasking_flags_t flags = taskdata->td_flags;
1016   bool ret = !(flags.team_serial || flags.tasking_ser);
1017   ret = ret || flags.proxy == TASK_PROXY ||
1018         flags.detachable == TASK_DETACHABLE || flags.hidden_helper;
1019   ret = ret ||
1020         KMP_ATOMIC_LD_ACQ(&taskdata->td_parent->td_incomplete_child_tasks) > 0;
1021 #if OMPX_TASKGRAPH
1022   if (taskdata->td_taskgroup && taskdata->is_taskgraph)
1023     ret = ret || KMP_ATOMIC_LD_ACQ(&taskdata->td_taskgroup->count) > 0;
1024 #endif
1025   return ret;
1026 }
1027 
1028 // __kmp_task_finish: bookkeeping to do when a task finishes execution
1029 //
1030 // gtid: global thread ID for calling thread
1031 // task: task to be finished
1032 // resumed_task: task to be resumed.  (may be NULL if task is serialized)
1033 //
1034 // template<ompt>: effectively ompt_enabled.enabled!=0
1035 // the version with ompt=false is inlined, allowing to optimize away all ompt
1036 // code in this case
1037 template <bool ompt>
1038 static void __kmp_task_finish(kmp_int32 gtid, kmp_task_t *task,
1039                               kmp_taskdata_t *resumed_task) {
1040   kmp_taskdata_t *taskdata = KMP_TASK_TO_TASKDATA(task);
1041   kmp_info_t *thread = __kmp_threads[gtid];
1042   kmp_task_team_t *task_team =
1043       thread->th.th_task_team; // might be NULL for serial teams...
1044 #if OMPX_TASKGRAPH
1045   // to avoid seg fault when we need to access taskdata->td_flags after free when using vanilla taskloop
1046   bool is_taskgraph;
1047 #endif
1048 #if KMP_DEBUG
1049   kmp_int32 children = 0;
1050 #endif
1051   KA_TRACE(10, ("__kmp_task_finish(enter): T#%d finishing task %p and resuming "
1052                 "task %p\n",
1053                 gtid, taskdata, resumed_task));
1054 
1055   KMP_DEBUG_ASSERT(taskdata->td_flags.tasktype == TASK_EXPLICIT);
1056 
1057 #if OMPX_TASKGRAPH
1058   is_taskgraph = taskdata->is_taskgraph;
1059 #endif
1060 
1061 // Pop task from stack if tied
1062 #ifdef BUILD_TIED_TASK_STACK
1063   if (taskdata->td_flags.tiedness == TASK_TIED) {
1064     __kmp_pop_task_stack(gtid, thread, taskdata);
1065   }
1066 #endif /* BUILD_TIED_TASK_STACK */
1067 
1068   if (UNLIKELY(taskdata->td_flags.tiedness == TASK_UNTIED)) {
1069     // untied task needs to check the counter so that the task structure is not
1070     // freed prematurely
1071     kmp_int32 counter = KMP_ATOMIC_DEC(&taskdata->td_untied_count) - 1;
1072     KA_TRACE(
1073         20,
1074         ("__kmp_task_finish: T#%d untied_count (%d) decremented for task %p\n",
1075          gtid, counter, taskdata));
1076     if (counter > 0) {
1077       // untied task is not done, to be continued possibly by other thread, do
1078       // not free it now
1079       if (resumed_task == NULL) {
1080         KMP_DEBUG_ASSERT(taskdata->td_flags.task_serial);
1081         resumed_task = taskdata->td_parent; // In a serialized task, the resumed
1082         // task is the parent
1083       }
1084       thread->th.th_current_task = resumed_task; // restore current_task
1085       resumed_task->td_flags.executing = 1; // resume previous task
1086       KA_TRACE(10, ("__kmp_task_finish(exit): T#%d partially done task %p, "
1087                     "resuming task %p\n",
1088                     gtid, taskdata, resumed_task));
1089       return;
1090     }
1091   }
1092 
1093   // bookkeeping for resuming task:
1094   // GEH - note tasking_ser => task_serial
1095   KMP_DEBUG_ASSERT(
1096       (taskdata->td_flags.tasking_ser || taskdata->td_flags.task_serial) ==
1097       taskdata->td_flags.task_serial);
1098   if (taskdata->td_flags.task_serial) {
1099     if (resumed_task == NULL) {
1100       resumed_task = taskdata->td_parent; // In a serialized task, the resumed
1101       // task is the parent
1102     }
1103   } else {
1104     KMP_DEBUG_ASSERT(resumed_task !=
1105                      NULL); // verify that resumed task is passed as argument
1106   }
1107 
1108   /* If the tasks' destructor thunk flag has been set, we need to invoke the
1109      destructor thunk that has been generated by the compiler. The code is
1110      placed here, since at this point other tasks might have been released
1111      hence overlapping the destructor invocations with some other work in the
1112      released tasks.  The OpenMP spec is not specific on when the destructors
1113      are invoked, so we should be free to choose. */
1114   if (UNLIKELY(taskdata->td_flags.destructors_thunk)) {
1115     kmp_routine_entry_t destr_thunk = task->data1.destructors;
1116     KMP_ASSERT(destr_thunk);
1117     destr_thunk(gtid, task);
1118   }
1119 
1120   KMP_DEBUG_ASSERT(taskdata->td_flags.complete == 0);
1121   KMP_DEBUG_ASSERT(taskdata->td_flags.started == 1);
1122   KMP_DEBUG_ASSERT(taskdata->td_flags.freed == 0);
1123 
1124   bool completed = true;
1125   if (UNLIKELY(taskdata->td_flags.detachable == TASK_DETACHABLE)) {
1126     if (taskdata->td_allow_completion_event.type ==
1127         KMP_EVENT_ALLOW_COMPLETION) {
1128       // event hasn't been fulfilled yet. Try to detach task.
1129       __kmp_acquire_tas_lock(&taskdata->td_allow_completion_event.lock, gtid);
1130       if (taskdata->td_allow_completion_event.type ==
1131           KMP_EVENT_ALLOW_COMPLETION) {
1132         // task finished execution
1133         KMP_DEBUG_ASSERT(taskdata->td_flags.executing == 1);
1134         taskdata->td_flags.executing = 0; // suspend the finishing task
1135 
1136 #if OMPT_SUPPORT
1137         // For a detached task, which is not completed, we switch back
1138         // the omp_fulfill_event signals completion
1139         // locking is necessary to avoid a race with ompt_task_late_fulfill
1140         if (ompt)
1141           __ompt_task_finish(task, resumed_task, ompt_task_detach);
1142 #endif
1143 
1144         // no access to taskdata after this point!
1145         // __kmp_fulfill_event might free taskdata at any time from now
1146 
1147         taskdata->td_flags.proxy = TASK_PROXY; // proxify!
1148         completed = false;
1149       }
1150       __kmp_release_tas_lock(&taskdata->td_allow_completion_event.lock, gtid);
1151     }
1152   }
1153 
1154   // Tasks with valid target async handles must be re-enqueued.
1155   if (taskdata->td_target_data.async_handle != NULL) {
1156     // Note: no need to translate gtid to its shadow. If the current thread is a
1157     // hidden helper one, then the gtid is already correct. Otherwise, hidden
1158     // helper threads are disabled, and gtid refers to a OpenMP thread.
1159     __kmpc_give_task(task, __kmp_tid_from_gtid(gtid));
1160     if (KMP_HIDDEN_HELPER_THREAD(gtid))
1161       __kmp_hidden_helper_worker_thread_signal();
1162     completed = false;
1163   }
1164 
1165   if (completed) {
1166     taskdata->td_flags.complete = 1; // mark the task as completed
1167 #if OMPX_TASKGRAPH
1168     taskdata->td_flags.onced = 1; // mark the task as ran once already
1169 #endif
1170 
1171 #if OMPT_SUPPORT
1172     // This is not a detached task, we are done here
1173     if (ompt)
1174       __ompt_task_finish(task, resumed_task, ompt_task_complete);
1175 #endif
1176     // TODO: What would be the balance between the conditions in the function
1177     // and an atomic operation?
1178     if (__kmp_track_children_task(taskdata)) {
1179       __kmp_release_deps(gtid, taskdata);
1180       // Predecrement simulated by "- 1" calculation
1181 #if KMP_DEBUG
1182       children = -1 +
1183 #endif
1184           KMP_ATOMIC_DEC(&taskdata->td_parent->td_incomplete_child_tasks);
1185       KMP_DEBUG_ASSERT(children >= 0);
1186 #if OMPX_TASKGRAPH
1187       if (taskdata->td_taskgroup && !taskdata->is_taskgraph)
1188 #else
1189       if (taskdata->td_taskgroup)
1190 #endif
1191         KMP_ATOMIC_DEC(&taskdata->td_taskgroup->count);
1192     } else if (task_team && (task_team->tt.tt_found_proxy_tasks ||
1193                              task_team->tt.tt_hidden_helper_task_encountered)) {
1194       // if we found proxy or hidden helper tasks there could exist a dependency
1195       // chain with the proxy task as origin
1196       __kmp_release_deps(gtid, taskdata);
1197     }
1198     // td_flags.executing must be marked as 0 after __kmp_release_deps has been
1199     // called. Othertwise, if a task is executed immediately from the
1200     // release_deps code, the flag will be reset to 1 again by this same
1201     // function
1202     KMP_DEBUG_ASSERT(taskdata->td_flags.executing == 1);
1203     taskdata->td_flags.executing = 0; // suspend the finishing task
1204 
1205     // Decrement the counter of hidden helper tasks to be executed.
1206     if (taskdata->td_flags.hidden_helper) {
1207       // Hidden helper tasks can only be executed by hidden helper threads.
1208       KMP_ASSERT(KMP_HIDDEN_HELPER_THREAD(gtid));
1209       KMP_ATOMIC_DEC(&__kmp_unexecuted_hidden_helper_tasks);
1210     }
1211   }
1212 
1213   KA_TRACE(
1214       20, ("__kmp_task_finish: T#%d finished task %p, %d incomplete children\n",
1215            gtid, taskdata, children));
1216 
1217   // Free this task and then ancestor tasks if they have no children.
1218   // Restore th_current_task first as suggested by John:
1219   // johnmc: if an asynchronous inquiry peers into the runtime system
1220   // it doesn't see the freed task as the current task.
1221   thread->th.th_current_task = resumed_task;
1222   if (completed)
1223     __kmp_free_task_and_ancestors(gtid, taskdata, thread);
1224 
1225   // TODO: GEH - make sure root team implicit task is initialized properly.
1226   // KMP_DEBUG_ASSERT( resumed_task->td_flags.executing == 0 );
1227   resumed_task->td_flags.executing = 1; // resume previous task
1228 
1229 #if OMPX_TASKGRAPH
1230   if (is_taskgraph && __kmp_track_children_task(taskdata) &&
1231       taskdata->td_taskgroup) {
1232     // TDG: we only release taskgroup barrier here because
1233     // free_task_and_ancestors will call
1234     // __kmp_free_task, which resets all task parameters such as
1235     // taskdata->started, etc. If we release the barrier earlier, these
1236     // parameters could be read before being reset. This is not an issue for
1237     // non-TDG implementation because we never reuse a task(data) structure
1238     KMP_ATOMIC_DEC(&taskdata->td_taskgroup->count);
1239   }
1240 #endif
1241 
1242   KA_TRACE(
1243       10, ("__kmp_task_finish(exit): T#%d finished task %p, resuming task %p\n",
1244            gtid, taskdata, resumed_task));
1245 
1246   return;
1247 }
1248 
1249 template <bool ompt>
1250 static void __kmpc_omp_task_complete_if0_template(ident_t *loc_ref,
1251                                                   kmp_int32 gtid,
1252                                                   kmp_task_t *task) {
1253   KA_TRACE(10, ("__kmpc_omp_task_complete_if0(enter): T#%d loc=%p task=%p\n",
1254                 gtid, loc_ref, KMP_TASK_TO_TASKDATA(task)));
1255   KMP_DEBUG_ASSERT(gtid >= 0);
1256   // this routine will provide task to resume
1257   __kmp_task_finish<ompt>(gtid, task, NULL);
1258 
1259   KA_TRACE(10, ("__kmpc_omp_task_complete_if0(exit): T#%d loc=%p task=%p\n",
1260                 gtid, loc_ref, KMP_TASK_TO_TASKDATA(task)));
1261 
1262 #if OMPT_SUPPORT
1263   if (ompt) {
1264     ompt_frame_t *ompt_frame;
1265     __ompt_get_task_info_internal(0, NULL, NULL, &ompt_frame, NULL, NULL);
1266     ompt_frame->enter_frame = ompt_data_none;
1267     ompt_frame->enter_frame_flags =
1268         ompt_frame_runtime | ompt_frame_framepointer;
1269   }
1270 #endif
1271 
1272   return;
1273 }
1274 
1275 #if OMPT_SUPPORT
1276 OMPT_NOINLINE
1277 void __kmpc_omp_task_complete_if0_ompt(ident_t *loc_ref, kmp_int32 gtid,
1278                                        kmp_task_t *task) {
1279   __kmpc_omp_task_complete_if0_template<true>(loc_ref, gtid, task);
1280 }
1281 #endif // OMPT_SUPPORT
1282 
1283 // __kmpc_omp_task_complete_if0: report that a task has completed execution
1284 //
1285 // loc_ref: source location information; points to end of task block.
1286 // gtid: global thread number.
1287 // task: task thunk for the completed task.
1288 void __kmpc_omp_task_complete_if0(ident_t *loc_ref, kmp_int32 gtid,
1289                                   kmp_task_t *task) {
1290 #if OMPT_SUPPORT
1291   if (UNLIKELY(ompt_enabled.enabled)) {
1292     __kmpc_omp_task_complete_if0_ompt(loc_ref, gtid, task);
1293     return;
1294   }
1295 #endif
1296   __kmpc_omp_task_complete_if0_template<false>(loc_ref, gtid, task);
1297 }
1298 
1299 #ifdef TASK_UNUSED
1300 // __kmpc_omp_task_complete: report that a task has completed execution
1301 // NEVER GENERATED BY COMPILER, DEPRECATED!!!
1302 void __kmpc_omp_task_complete(ident_t *loc_ref, kmp_int32 gtid,
1303                               kmp_task_t *task) {
1304   KA_TRACE(10, ("__kmpc_omp_task_complete(enter): T#%d loc=%p task=%p\n", gtid,
1305                 loc_ref, KMP_TASK_TO_TASKDATA(task)));
1306 
1307   __kmp_task_finish<false>(gtid, task,
1308                            NULL); // Not sure how to find task to resume
1309 
1310   KA_TRACE(10, ("__kmpc_omp_task_complete(exit): T#%d loc=%p task=%p\n", gtid,
1311                 loc_ref, KMP_TASK_TO_TASKDATA(task)));
1312   return;
1313 }
1314 #endif // TASK_UNUSED
1315 
1316 // __kmp_init_implicit_task: Initialize the appropriate fields in the implicit
1317 // task for a given thread
1318 //
1319 // loc_ref:  reference to source location of parallel region
1320 // this_thr:  thread data structure corresponding to implicit task
1321 // team: team for this_thr
1322 // tid: thread id of given thread within team
1323 // set_curr_task: TRUE if need to push current task to thread
1324 // NOTE: Routine does not set up the implicit task ICVS.  This is assumed to
1325 // have already been done elsewhere.
1326 // TODO: Get better loc_ref.  Value passed in may be NULL
1327 void __kmp_init_implicit_task(ident_t *loc_ref, kmp_info_t *this_thr,
1328                               kmp_team_t *team, int tid, int set_curr_task) {
1329   kmp_taskdata_t *task = &team->t.t_implicit_task_taskdata[tid];
1330 
1331   KF_TRACE(
1332       10,
1333       ("__kmp_init_implicit_task(enter): T#:%d team=%p task=%p, reinit=%s\n",
1334        tid, team, task, set_curr_task ? "TRUE" : "FALSE"));
1335 
1336   task->td_task_id = KMP_GEN_TASK_ID();
1337   task->td_team = team;
1338   //    task->td_parent   = NULL;  // fix for CQ230101 (broken parent task info
1339   //    in debugger)
1340   task->td_ident = loc_ref;
1341   task->td_taskwait_ident = NULL;
1342   task->td_taskwait_counter = 0;
1343   task->td_taskwait_thread = 0;
1344 
1345   task->td_flags.tiedness = TASK_TIED;
1346   task->td_flags.tasktype = TASK_IMPLICIT;
1347   task->td_flags.proxy = TASK_FULL;
1348 
1349   // All implicit tasks are executed immediately, not deferred
1350   task->td_flags.task_serial = 1;
1351   task->td_flags.tasking_ser = (__kmp_tasking_mode == tskm_immediate_exec);
1352   task->td_flags.team_serial = (team->t.t_serialized) ? 1 : 0;
1353 
1354   task->td_flags.started = 1;
1355   task->td_flags.executing = 1;
1356   task->td_flags.complete = 0;
1357   task->td_flags.freed = 0;
1358 #if OMPX_TASKGRAPH
1359   task->td_flags.onced = 0;
1360 #endif
1361 
1362   task->td_depnode = NULL;
1363   task->td_last_tied = task;
1364   task->td_allow_completion_event.type = KMP_EVENT_UNINITIALIZED;
1365 
1366   if (set_curr_task) { // only do this init first time thread is created
1367     KMP_ATOMIC_ST_REL(&task->td_incomplete_child_tasks, 0);
1368     // Not used: don't need to deallocate implicit task
1369     KMP_ATOMIC_ST_REL(&task->td_allocated_child_tasks, 0);
1370     task->td_taskgroup = NULL; // An implicit task does not have taskgroup
1371     task->td_dephash = NULL;
1372     __kmp_push_current_task_to_thread(this_thr, team, tid);
1373   } else {
1374     KMP_DEBUG_ASSERT(task->td_incomplete_child_tasks == 0);
1375     KMP_DEBUG_ASSERT(task->td_allocated_child_tasks == 0);
1376   }
1377 
1378 #if OMPT_SUPPORT
1379   if (UNLIKELY(ompt_enabled.enabled))
1380     __ompt_task_init(task, tid);
1381 #endif
1382 
1383   KF_TRACE(10, ("__kmp_init_implicit_task(exit): T#:%d team=%p task=%p\n", tid,
1384                 team, task));
1385 }
1386 
1387 // __kmp_finish_implicit_task: Release resources associated to implicit tasks
1388 // at the end of parallel regions. Some resources are kept for reuse in the next
1389 // parallel region.
1390 //
1391 // thread:  thread data structure corresponding to implicit task
1392 void __kmp_finish_implicit_task(kmp_info_t *thread) {
1393   kmp_taskdata_t *task = thread->th.th_current_task;
1394   if (task->td_dephash) {
1395     int children;
1396     task->td_flags.complete = 1;
1397 #if OMPX_TASKGRAPH
1398     task->td_flags.onced = 1;
1399 #endif
1400     children = KMP_ATOMIC_LD_ACQ(&task->td_incomplete_child_tasks);
1401     kmp_tasking_flags_t flags_old = task->td_flags;
1402     if (children == 0 && flags_old.complete == 1) {
1403       kmp_tasking_flags_t flags_new = flags_old;
1404       flags_new.complete = 0;
1405       if (KMP_COMPARE_AND_STORE_ACQ32(RCAST(kmp_int32 *, &task->td_flags),
1406                                       *RCAST(kmp_int32 *, &flags_old),
1407                                       *RCAST(kmp_int32 *, &flags_new))) {
1408         KA_TRACE(100, ("__kmp_finish_implicit_task: T#%d cleans "
1409                        "dephash of implicit task %p\n",
1410                        thread->th.th_info.ds.ds_gtid, task));
1411         __kmp_dephash_free_entries(thread, task->td_dephash);
1412       }
1413     }
1414   }
1415 }
1416 
1417 // __kmp_free_implicit_task: Release resources associated to implicit tasks
1418 // when these are destroyed regions
1419 //
1420 // thread:  thread data structure corresponding to implicit task
1421 void __kmp_free_implicit_task(kmp_info_t *thread) {
1422   kmp_taskdata_t *task = thread->th.th_current_task;
1423   if (task && task->td_dephash) {
1424     __kmp_dephash_free(thread, task->td_dephash);
1425     task->td_dephash = NULL;
1426   }
1427 }
1428 
1429 // Round up a size to a power of two specified by val: Used to insert padding
1430 // between structures co-allocated using a single malloc() call
1431 static size_t __kmp_round_up_to_val(size_t size, size_t val) {
1432   if (size & (val - 1)) {
1433     size &= ~(val - 1);
1434     if (size <= KMP_SIZE_T_MAX - val) {
1435       size += val; // Round up if there is no overflow.
1436     }
1437   }
1438   return size;
1439 } // __kmp_round_up_to_va
1440 
1441 // __kmp_task_alloc: Allocate the taskdata and task data structures for a task
1442 //
1443 // loc_ref: source location information
1444 // gtid: global thread number.
1445 // flags: include tiedness & task type (explicit vs. implicit) of the ''new''
1446 // task encountered. Converted from kmp_int32 to kmp_tasking_flags_t in routine.
1447 // sizeof_kmp_task_t:  Size in bytes of kmp_task_t data structure including
1448 // private vars accessed in task.
1449 // sizeof_shareds:  Size in bytes of array of pointers to shared vars accessed
1450 // in task.
1451 // task_entry: Pointer to task code entry point generated by compiler.
1452 // returns: a pointer to the allocated kmp_task_t structure (task).
1453 kmp_task_t *__kmp_task_alloc(ident_t *loc_ref, kmp_int32 gtid,
1454                              kmp_tasking_flags_t *flags,
1455                              size_t sizeof_kmp_task_t, size_t sizeof_shareds,
1456                              kmp_routine_entry_t task_entry) {
1457   kmp_task_t *task;
1458   kmp_taskdata_t *taskdata;
1459   kmp_info_t *thread = __kmp_threads[gtid];
1460   kmp_team_t *team = thread->th.th_team;
1461   kmp_taskdata_t *parent_task = thread->th.th_current_task;
1462   size_t shareds_offset;
1463 
1464   if (UNLIKELY(!TCR_4(__kmp_init_middle)))
1465     __kmp_middle_initialize();
1466 
1467   if (flags->hidden_helper) {
1468     if (__kmp_enable_hidden_helper) {
1469       if (!TCR_4(__kmp_init_hidden_helper))
1470         __kmp_hidden_helper_initialize();
1471     } else {
1472       // If the hidden helper task is not enabled, reset the flag to FALSE.
1473       flags->hidden_helper = FALSE;
1474     }
1475   }
1476 
1477   KA_TRACE(10, ("__kmp_task_alloc(enter): T#%d loc=%p, flags=(0x%x) "
1478                 "sizeof_task=%ld sizeof_shared=%ld entry=%p\n",
1479                 gtid, loc_ref, *((kmp_int32 *)flags), sizeof_kmp_task_t,
1480                 sizeof_shareds, task_entry));
1481 
1482   KMP_DEBUG_ASSERT(parent_task);
1483   if (parent_task->td_flags.final) {
1484     if (flags->merged_if0) {
1485     }
1486     flags->final = 1;
1487   }
1488 
1489   if (flags->tiedness == TASK_UNTIED && !team->t.t_serialized) {
1490     // Untied task encountered causes the TSC algorithm to check entire deque of
1491     // the victim thread. If no untied task encountered, then checking the head
1492     // of the deque should be enough.
1493     KMP_CHECK_UPDATE(thread->th.th_task_team->tt.tt_untied_task_encountered, 1);
1494   }
1495 
1496   // Detachable tasks are not proxy tasks yet but could be in the future. Doing
1497   // the tasking setup
1498   // when that happens is too late.
1499   if (UNLIKELY(flags->proxy == TASK_PROXY ||
1500                flags->detachable == TASK_DETACHABLE || flags->hidden_helper)) {
1501     if (flags->proxy == TASK_PROXY) {
1502       flags->tiedness = TASK_UNTIED;
1503       flags->merged_if0 = 1;
1504     }
1505     /* are we running in a sequential parallel or tskm_immediate_exec... we need
1506        tasking support enabled */
1507     if ((thread->th.th_task_team) == NULL) {
1508       /* This should only happen if the team is serialized
1509           setup a task team and propagate it to the thread */
1510       KMP_DEBUG_ASSERT(team->t.t_serialized);
1511       KA_TRACE(30,
1512                ("T#%d creating task team in __kmp_task_alloc for proxy task\n",
1513                 gtid));
1514       // 1 indicates setup the current team regardless of nthreads
1515       __kmp_task_team_setup(thread, team, 1);
1516       thread->th.th_task_team = team->t.t_task_team[thread->th.th_task_state];
1517     }
1518     kmp_task_team_t *task_team = thread->th.th_task_team;
1519 
1520     /* tasking must be enabled now as the task might not be pushed */
1521     if (!KMP_TASKING_ENABLED(task_team)) {
1522       KA_TRACE(
1523           30,
1524           ("T#%d enabling tasking in __kmp_task_alloc for proxy task\n", gtid));
1525       __kmp_enable_tasking(task_team, thread);
1526       kmp_int32 tid = thread->th.th_info.ds.ds_tid;
1527       kmp_thread_data_t *thread_data = &task_team->tt.tt_threads_data[tid];
1528       // No lock needed since only owner can allocate
1529       if (thread_data->td.td_deque == NULL) {
1530         __kmp_alloc_task_deque(thread, thread_data);
1531       }
1532     }
1533 
1534     if ((flags->proxy == TASK_PROXY || flags->detachable == TASK_DETACHABLE) &&
1535         task_team->tt.tt_found_proxy_tasks == FALSE)
1536       TCW_4(task_team->tt.tt_found_proxy_tasks, TRUE);
1537     if (flags->hidden_helper &&
1538         task_team->tt.tt_hidden_helper_task_encountered == FALSE)
1539       TCW_4(task_team->tt.tt_hidden_helper_task_encountered, TRUE);
1540   }
1541 
1542   // Calculate shared structure offset including padding after kmp_task_t struct
1543   // to align pointers in shared struct
1544   shareds_offset = sizeof(kmp_taskdata_t) + sizeof_kmp_task_t;
1545   shareds_offset = __kmp_round_up_to_val(shareds_offset, sizeof(void *));
1546 
1547   // Allocate a kmp_taskdata_t block and a kmp_task_t block.
1548   KA_TRACE(30, ("__kmp_task_alloc: T#%d First malloc size: %ld\n", gtid,
1549                 shareds_offset));
1550   KA_TRACE(30, ("__kmp_task_alloc: T#%d Second malloc size: %ld\n", gtid,
1551                 sizeof_shareds));
1552 
1553   // Avoid double allocation here by combining shareds with taskdata
1554 #if USE_FAST_MEMORY
1555   taskdata = (kmp_taskdata_t *)__kmp_fast_allocate(thread, shareds_offset +
1556                                                                sizeof_shareds);
1557 #else /* ! USE_FAST_MEMORY */
1558   taskdata = (kmp_taskdata_t *)__kmp_thread_malloc(thread, shareds_offset +
1559                                                                sizeof_shareds);
1560 #endif /* USE_FAST_MEMORY */
1561 
1562   task = KMP_TASKDATA_TO_TASK(taskdata);
1563 
1564 // Make sure task & taskdata are aligned appropriately
1565 #if KMP_ARCH_X86 || KMP_ARCH_PPC64 || KMP_ARCH_S390X || !KMP_HAVE_QUAD
1566   KMP_DEBUG_ASSERT((((kmp_uintptr_t)taskdata) & (sizeof(double) - 1)) == 0);
1567   KMP_DEBUG_ASSERT((((kmp_uintptr_t)task) & (sizeof(double) - 1)) == 0);
1568 #else
1569   KMP_DEBUG_ASSERT((((kmp_uintptr_t)taskdata) & (sizeof(_Quad) - 1)) == 0);
1570   KMP_DEBUG_ASSERT((((kmp_uintptr_t)task) & (sizeof(_Quad) - 1)) == 0);
1571 #endif
1572   if (sizeof_shareds > 0) {
1573     // Avoid double allocation here by combining shareds with taskdata
1574     task->shareds = &((char *)taskdata)[shareds_offset];
1575     // Make sure shareds struct is aligned to pointer size
1576     KMP_DEBUG_ASSERT((((kmp_uintptr_t)task->shareds) & (sizeof(void *) - 1)) ==
1577                      0);
1578   } else {
1579     task->shareds = NULL;
1580   }
1581   task->routine = task_entry;
1582   task->part_id = 0; // AC: Always start with 0 part id
1583 
1584   taskdata->td_task_id = KMP_GEN_TASK_ID();
1585   taskdata->td_team = thread->th.th_team;
1586   taskdata->td_alloc_thread = thread;
1587   taskdata->td_parent = parent_task;
1588   taskdata->td_level = parent_task->td_level + 1; // increment nesting level
1589   KMP_ATOMIC_ST_RLX(&taskdata->td_untied_count, 0);
1590   taskdata->td_ident = loc_ref;
1591   taskdata->td_taskwait_ident = NULL;
1592   taskdata->td_taskwait_counter = 0;
1593   taskdata->td_taskwait_thread = 0;
1594   KMP_DEBUG_ASSERT(taskdata->td_parent != NULL);
1595   // avoid copying icvs for proxy tasks
1596   if (flags->proxy == TASK_FULL)
1597     copy_icvs(&taskdata->td_icvs, &taskdata->td_parent->td_icvs);
1598 
1599   taskdata->td_flags = *flags;
1600   taskdata->td_task_team = thread->th.th_task_team;
1601   taskdata->td_size_alloc = shareds_offset + sizeof_shareds;
1602   taskdata->td_flags.tasktype = TASK_EXPLICIT;
1603   // If it is hidden helper task, we need to set the team and task team
1604   // correspondingly.
1605   if (flags->hidden_helper) {
1606     kmp_info_t *shadow_thread = __kmp_threads[KMP_GTID_TO_SHADOW_GTID(gtid)];
1607     taskdata->td_team = shadow_thread->th.th_team;
1608     taskdata->td_task_team = shadow_thread->th.th_task_team;
1609   }
1610 
1611   // GEH - TODO: fix this to copy parent task's value of tasking_ser flag
1612   taskdata->td_flags.tasking_ser = (__kmp_tasking_mode == tskm_immediate_exec);
1613 
1614   // GEH - TODO: fix this to copy parent task's value of team_serial flag
1615   taskdata->td_flags.team_serial = (team->t.t_serialized) ? 1 : 0;
1616 
1617   // GEH - Note we serialize the task if the team is serialized to make sure
1618   // implicit parallel region tasks are not left until program termination to
1619   // execute. Also, it helps locality to execute immediately.
1620 
1621   taskdata->td_flags.task_serial =
1622       (parent_task->td_flags.final || taskdata->td_flags.team_serial ||
1623        taskdata->td_flags.tasking_ser || flags->merged_if0);
1624 
1625   taskdata->td_flags.started = 0;
1626   taskdata->td_flags.executing = 0;
1627   taskdata->td_flags.complete = 0;
1628   taskdata->td_flags.freed = 0;
1629 #if OMPX_TASKGRAPH
1630   taskdata->td_flags.onced = 0;
1631 #endif
1632   KMP_ATOMIC_ST_RLX(&taskdata->td_incomplete_child_tasks, 0);
1633   // start at one because counts current task and children
1634   KMP_ATOMIC_ST_RLX(&taskdata->td_allocated_child_tasks, 1);
1635   taskdata->td_taskgroup =
1636       parent_task->td_taskgroup; // task inherits taskgroup from the parent task
1637   taskdata->td_dephash = NULL;
1638   taskdata->td_depnode = NULL;
1639   taskdata->td_target_data.async_handle = NULL;
1640   if (flags->tiedness == TASK_UNTIED)
1641     taskdata->td_last_tied = NULL; // will be set when the task is scheduled
1642   else
1643     taskdata->td_last_tied = taskdata;
1644   taskdata->td_allow_completion_event.type = KMP_EVENT_UNINITIALIZED;
1645 #if OMPT_SUPPORT
1646   if (UNLIKELY(ompt_enabled.enabled))
1647     __ompt_task_init(taskdata, gtid);
1648 #endif
1649   // TODO: What would be the balance between the conditions in the function and
1650   // an atomic operation?
1651   if (__kmp_track_children_task(taskdata)) {
1652     KMP_ATOMIC_INC(&parent_task->td_incomplete_child_tasks);
1653     if (parent_task->td_taskgroup)
1654       KMP_ATOMIC_INC(&parent_task->td_taskgroup->count);
1655     // Only need to keep track of allocated child tasks for explicit tasks since
1656     // implicit not deallocated
1657     if (taskdata->td_parent->td_flags.tasktype == TASK_EXPLICIT) {
1658       KMP_ATOMIC_INC(&taskdata->td_parent->td_allocated_child_tasks);
1659     }
1660     if (flags->hidden_helper) {
1661       taskdata->td_flags.task_serial = FALSE;
1662       // Increment the number of hidden helper tasks to be executed
1663       KMP_ATOMIC_INC(&__kmp_unexecuted_hidden_helper_tasks);
1664     }
1665   }
1666 
1667 #if OMPX_TASKGRAPH
1668   kmp_tdg_info_t *tdg = __kmp_find_tdg(__kmp_curr_tdg_idx);
1669   if (tdg && __kmp_tdg_is_recording(tdg->tdg_status) &&
1670       (task_entry != (kmp_routine_entry_t)__kmp_taskloop_task)) {
1671     taskdata->is_taskgraph = 1;
1672     taskdata->tdg = __kmp_global_tdgs[__kmp_curr_tdg_idx];
1673     taskdata->td_task_id = KMP_ATOMIC_INC(&__kmp_tdg_task_id);
1674   }
1675 #endif
1676   KA_TRACE(20, ("__kmp_task_alloc(exit): T#%d created task %p parent=%p\n",
1677                 gtid, taskdata, taskdata->td_parent));
1678 
1679   return task;
1680 }
1681 
1682 kmp_task_t *__kmpc_omp_task_alloc(ident_t *loc_ref, kmp_int32 gtid,
1683                                   kmp_int32 flags, size_t sizeof_kmp_task_t,
1684                                   size_t sizeof_shareds,
1685                                   kmp_routine_entry_t task_entry) {
1686   kmp_task_t *retval;
1687   kmp_tasking_flags_t *input_flags = (kmp_tasking_flags_t *)&flags;
1688   __kmp_assert_valid_gtid(gtid);
1689   input_flags->native = FALSE;
1690   // __kmp_task_alloc() sets up all other runtime flags
1691   KA_TRACE(10, ("__kmpc_omp_task_alloc(enter): T#%d loc=%p, flags=(%s %s %s) "
1692                 "sizeof_task=%ld sizeof_shared=%ld entry=%p\n",
1693                 gtid, loc_ref, input_flags->tiedness ? "tied  " : "untied",
1694                 input_flags->proxy ? "proxy" : "",
1695                 input_flags->detachable ? "detachable" : "", sizeof_kmp_task_t,
1696                 sizeof_shareds, task_entry));
1697 
1698   retval = __kmp_task_alloc(loc_ref, gtid, input_flags, sizeof_kmp_task_t,
1699                             sizeof_shareds, task_entry);
1700 
1701   KA_TRACE(20, ("__kmpc_omp_task_alloc(exit): T#%d retval %p\n", gtid, retval));
1702 
1703   return retval;
1704 }
1705 
1706 kmp_task_t *__kmpc_omp_target_task_alloc(ident_t *loc_ref, kmp_int32 gtid,
1707                                          kmp_int32 flags,
1708                                          size_t sizeof_kmp_task_t,
1709                                          size_t sizeof_shareds,
1710                                          kmp_routine_entry_t task_entry,
1711                                          kmp_int64 device_id) {
1712   auto &input_flags = reinterpret_cast<kmp_tasking_flags_t &>(flags);
1713   // target task is untied defined in the specification
1714   input_flags.tiedness = TASK_UNTIED;
1715 
1716   if (__kmp_enable_hidden_helper)
1717     input_flags.hidden_helper = TRUE;
1718 
1719   return __kmpc_omp_task_alloc(loc_ref, gtid, flags, sizeof_kmp_task_t,
1720                                sizeof_shareds, task_entry);
1721 }
1722 
1723 /*!
1724 @ingroup TASKING
1725 @param loc_ref location of the original task directive
1726 @param gtid Global Thread ID of encountering thread
1727 @param new_task task thunk allocated by __kmpc_omp_task_alloc() for the ''new
1728 task''
1729 @param naffins Number of affinity items
1730 @param affin_list List of affinity items
1731 @return Returns non-zero if registering affinity information was not successful.
1732  Returns 0 if registration was successful
1733 This entry registers the affinity information attached to a task with the task
1734 thunk structure kmp_taskdata_t.
1735 */
1736 kmp_int32
1737 __kmpc_omp_reg_task_with_affinity(ident_t *loc_ref, kmp_int32 gtid,
1738                                   kmp_task_t *new_task, kmp_int32 naffins,
1739                                   kmp_task_affinity_info_t *affin_list) {
1740   return 0;
1741 }
1742 
1743 //  __kmp_invoke_task: invoke the specified task
1744 //
1745 // gtid: global thread ID of caller
1746 // task: the task to invoke
1747 // current_task: the task to resume after task invocation
1748 #ifdef __s390x__
1749 __attribute__((target("backchain")))
1750 #endif
1751 static void
1752 __kmp_invoke_task(kmp_int32 gtid, kmp_task_t *task,
1753                   kmp_taskdata_t *current_task) {
1754   kmp_taskdata_t *taskdata = KMP_TASK_TO_TASKDATA(task);
1755   kmp_info_t *thread;
1756   int discard = 0 /* false */;
1757   KA_TRACE(
1758       30, ("__kmp_invoke_task(enter): T#%d invoking task %p, current_task=%p\n",
1759            gtid, taskdata, current_task));
1760   KMP_DEBUG_ASSERT(task);
1761   if (UNLIKELY(taskdata->td_flags.proxy == TASK_PROXY &&
1762                taskdata->td_flags.complete == 1)) {
1763     // This is a proxy task that was already completed but it needs to run
1764     // its bottom-half finish
1765     KA_TRACE(
1766         30,
1767         ("__kmp_invoke_task: T#%d running bottom finish for proxy task %p\n",
1768          gtid, taskdata));
1769 
1770     __kmp_bottom_half_finish_proxy(gtid, task);
1771 
1772     KA_TRACE(30, ("__kmp_invoke_task(exit): T#%d completed bottom finish for "
1773                   "proxy task %p, resuming task %p\n",
1774                   gtid, taskdata, current_task));
1775 
1776     return;
1777   }
1778 
1779 #if OMPT_SUPPORT
1780   // For untied tasks, the first task executed only calls __kmpc_omp_task and
1781   // does not execute code.
1782   ompt_thread_info_t oldInfo;
1783   if (UNLIKELY(ompt_enabled.enabled)) {
1784     // Store the threads states and restore them after the task
1785     thread = __kmp_threads[gtid];
1786     oldInfo = thread->th.ompt_thread_info;
1787     thread->th.ompt_thread_info.wait_id = 0;
1788     thread->th.ompt_thread_info.state = (thread->th.th_team_serialized)
1789                                             ? ompt_state_work_serial
1790                                             : ompt_state_work_parallel;
1791     taskdata->ompt_task_info.frame.exit_frame.ptr = OMPT_GET_FRAME_ADDRESS(0);
1792   }
1793 #endif
1794 
1795   // Proxy tasks are not handled by the runtime
1796   if (taskdata->td_flags.proxy != TASK_PROXY) {
1797     __kmp_task_start(gtid, task, current_task); // OMPT only if not discarded
1798   }
1799 
1800   // TODO: cancel tasks if the parallel region has also been cancelled
1801   // TODO: check if this sequence can be hoisted above __kmp_task_start
1802   // if cancellation has been enabled for this run ...
1803   if (UNLIKELY(__kmp_omp_cancellation)) {
1804     thread = __kmp_threads[gtid];
1805     kmp_team_t *this_team = thread->th.th_team;
1806     kmp_taskgroup_t *taskgroup = taskdata->td_taskgroup;
1807     if ((taskgroup && taskgroup->cancel_request) ||
1808         (this_team->t.t_cancel_request == cancel_parallel)) {
1809 #if OMPT_SUPPORT && OMPT_OPTIONAL
1810       ompt_data_t *task_data;
1811       if (UNLIKELY(ompt_enabled.ompt_callback_cancel)) {
1812         __ompt_get_task_info_internal(0, NULL, &task_data, NULL, NULL, NULL);
1813         ompt_callbacks.ompt_callback(ompt_callback_cancel)(
1814             task_data,
1815             ((taskgroup && taskgroup->cancel_request) ? ompt_cancel_taskgroup
1816                                                       : ompt_cancel_parallel) |
1817                 ompt_cancel_discarded_task,
1818             NULL);
1819       }
1820 #endif
1821       KMP_COUNT_BLOCK(TASK_cancelled);
1822       // this task belongs to a task group and we need to cancel it
1823       discard = 1 /* true */;
1824     }
1825   }
1826 
1827   // Invoke the task routine and pass in relevant data.
1828   // Thunks generated by gcc take a different argument list.
1829   if (!discard) {
1830     if (taskdata->td_flags.tiedness == TASK_UNTIED) {
1831       taskdata->td_last_tied = current_task->td_last_tied;
1832       KMP_DEBUG_ASSERT(taskdata->td_last_tied);
1833     }
1834 #if KMP_STATS_ENABLED
1835     KMP_COUNT_BLOCK(TASK_executed);
1836     switch (KMP_GET_THREAD_STATE()) {
1837     case FORK_JOIN_BARRIER:
1838       KMP_PUSH_PARTITIONED_TIMER(OMP_task_join_bar);
1839       break;
1840     case PLAIN_BARRIER:
1841       KMP_PUSH_PARTITIONED_TIMER(OMP_task_plain_bar);
1842       break;
1843     case TASKYIELD:
1844       KMP_PUSH_PARTITIONED_TIMER(OMP_task_taskyield);
1845       break;
1846     case TASKWAIT:
1847       KMP_PUSH_PARTITIONED_TIMER(OMP_task_taskwait);
1848       break;
1849     case TASKGROUP:
1850       KMP_PUSH_PARTITIONED_TIMER(OMP_task_taskgroup);
1851       break;
1852     default:
1853       KMP_PUSH_PARTITIONED_TIMER(OMP_task_immediate);
1854       break;
1855     }
1856 #endif // KMP_STATS_ENABLED
1857 
1858 // OMPT task begin
1859 #if OMPT_SUPPORT
1860     if (UNLIKELY(ompt_enabled.enabled))
1861       __ompt_task_start(task, current_task, gtid);
1862 #endif
1863 #if OMPT_SUPPORT && OMPT_OPTIONAL
1864     if (UNLIKELY(ompt_enabled.ompt_callback_dispatch &&
1865                  taskdata->ompt_task_info.dispatch_chunk.iterations > 0)) {
1866       ompt_data_t instance = ompt_data_none;
1867       instance.ptr = &(taskdata->ompt_task_info.dispatch_chunk);
1868       ompt_team_info_t *team_info = __ompt_get_teaminfo(0, NULL);
1869       ompt_callbacks.ompt_callback(ompt_callback_dispatch)(
1870           &(team_info->parallel_data), &(taskdata->ompt_task_info.task_data),
1871           ompt_dispatch_taskloop_chunk, instance);
1872       taskdata->ompt_task_info.dispatch_chunk = {0, 0};
1873     }
1874 #endif // OMPT_SUPPORT && OMPT_OPTIONAL
1875 
1876 #if OMPD_SUPPORT
1877     if (ompd_state & OMPD_ENABLE_BP)
1878       ompd_bp_task_begin();
1879 #endif
1880 
1881 #if USE_ITT_BUILD && USE_ITT_NOTIFY
1882     kmp_uint64 cur_time;
1883     kmp_int32 kmp_itt_count_task =
1884         __kmp_forkjoin_frames_mode == 3 && !taskdata->td_flags.task_serial &&
1885         current_task->td_flags.tasktype == TASK_IMPLICIT;
1886     if (kmp_itt_count_task) {
1887       thread = __kmp_threads[gtid];
1888       // Time outer level explicit task on barrier for adjusting imbalance time
1889       if (thread->th.th_bar_arrive_time)
1890         cur_time = __itt_get_timestamp();
1891       else
1892         kmp_itt_count_task = 0; // thread is not on a barrier - skip timing
1893     }
1894     KMP_FSYNC_ACQUIRED(taskdata); // acquired self (new task)
1895 #endif
1896 
1897 #if ENABLE_LIBOMPTARGET
1898     if (taskdata->td_target_data.async_handle != NULL) {
1899       // If we have a valid target async handle, that means that we have already
1900       // executed the task routine once. We must query for the handle completion
1901       // instead of re-executing the routine.
1902       KMP_ASSERT(tgt_target_nowait_query);
1903       tgt_target_nowait_query(&taskdata->td_target_data.async_handle);
1904     } else
1905 #endif
1906     if (task->routine != NULL) {
1907 #ifdef KMP_GOMP_COMPAT
1908       if (taskdata->td_flags.native) {
1909         ((void (*)(void *))(*(task->routine)))(task->shareds);
1910       } else
1911 #endif /* KMP_GOMP_COMPAT */
1912       {
1913         (*(task->routine))(gtid, task);
1914       }
1915     }
1916     KMP_POP_PARTITIONED_TIMER();
1917 
1918 #if USE_ITT_BUILD && USE_ITT_NOTIFY
1919     if (kmp_itt_count_task) {
1920       // Barrier imbalance - adjust arrive time with the task duration
1921       thread->th.th_bar_arrive_time += (__itt_get_timestamp() - cur_time);
1922     }
1923     KMP_FSYNC_CANCEL(taskdata); // destroy self (just executed)
1924     KMP_FSYNC_RELEASING(taskdata->td_parent); // releasing parent
1925 #endif
1926   }
1927 
1928 #if OMPD_SUPPORT
1929   if (ompd_state & OMPD_ENABLE_BP)
1930     ompd_bp_task_end();
1931 #endif
1932 
1933   // Proxy tasks are not handled by the runtime
1934   if (taskdata->td_flags.proxy != TASK_PROXY) {
1935 #if OMPT_SUPPORT
1936     if (UNLIKELY(ompt_enabled.enabled)) {
1937       thread->th.ompt_thread_info = oldInfo;
1938       if (taskdata->td_flags.tiedness == TASK_TIED) {
1939         taskdata->ompt_task_info.frame.exit_frame = ompt_data_none;
1940       }
1941       __kmp_task_finish<true>(gtid, task, current_task);
1942     } else
1943 #endif
1944       __kmp_task_finish<false>(gtid, task, current_task);
1945   }
1946 
1947   KA_TRACE(
1948       30,
1949       ("__kmp_invoke_task(exit): T#%d completed task %p, resuming task %p\n",
1950        gtid, taskdata, current_task));
1951   return;
1952 }
1953 
1954 // __kmpc_omp_task_parts: Schedule a thread-switchable task for execution
1955 //
1956 // loc_ref: location of original task pragma (ignored)
1957 // gtid: Global Thread ID of encountering thread
1958 // new_task: task thunk allocated by __kmp_omp_task_alloc() for the ''new task''
1959 // Returns:
1960 //    TASK_CURRENT_NOT_QUEUED (0) if did not suspend and queue current task to
1961 //    be resumed later.
1962 //    TASK_CURRENT_QUEUED (1) if suspended and queued the current task to be
1963 //    resumed later.
1964 kmp_int32 __kmpc_omp_task_parts(ident_t *loc_ref, kmp_int32 gtid,
1965                                 kmp_task_t *new_task) {
1966   kmp_taskdata_t *new_taskdata = KMP_TASK_TO_TASKDATA(new_task);
1967 
1968   KA_TRACE(10, ("__kmpc_omp_task_parts(enter): T#%d loc=%p task=%p\n", gtid,
1969                 loc_ref, new_taskdata));
1970 
1971 #if OMPT_SUPPORT
1972   kmp_taskdata_t *parent;
1973   if (UNLIKELY(ompt_enabled.enabled)) {
1974     parent = new_taskdata->td_parent;
1975     if (ompt_enabled.ompt_callback_task_create) {
1976       ompt_callbacks.ompt_callback(ompt_callback_task_create)(
1977           &(parent->ompt_task_info.task_data), &(parent->ompt_task_info.frame),
1978           &(new_taskdata->ompt_task_info.task_data), ompt_task_explicit, 0,
1979           OMPT_GET_RETURN_ADDRESS(0));
1980     }
1981   }
1982 #endif
1983 
1984   /* Should we execute the new task or queue it? For now, let's just always try
1985      to queue it.  If the queue fills up, then we'll execute it.  */
1986 
1987   if (__kmp_push_task(gtid, new_task) == TASK_NOT_PUSHED) // if cannot defer
1988   { // Execute this task immediately
1989     kmp_taskdata_t *current_task = __kmp_threads[gtid]->th.th_current_task;
1990     new_taskdata->td_flags.task_serial = 1;
1991     __kmp_invoke_task(gtid, new_task, current_task);
1992   }
1993 
1994   KA_TRACE(
1995       10,
1996       ("__kmpc_omp_task_parts(exit): T#%d returning TASK_CURRENT_NOT_QUEUED: "
1997        "loc=%p task=%p, return: TASK_CURRENT_NOT_QUEUED\n",
1998        gtid, loc_ref, new_taskdata));
1999 
2000 #if OMPT_SUPPORT
2001   if (UNLIKELY(ompt_enabled.enabled)) {
2002     parent->ompt_task_info.frame.enter_frame = ompt_data_none;
2003   }
2004 #endif
2005   return TASK_CURRENT_NOT_QUEUED;
2006 }
2007 
2008 // __kmp_omp_task: Schedule a non-thread-switchable task for execution
2009 //
2010 // gtid: Global Thread ID of encountering thread
2011 // new_task:non-thread-switchable task thunk allocated by __kmp_omp_task_alloc()
2012 // serialize_immediate: if TRUE then if the task is executed immediately its
2013 // execution will be serialized
2014 // Returns:
2015 //    TASK_CURRENT_NOT_QUEUED (0) if did not suspend and queue current task to
2016 //    be resumed later.
2017 //    TASK_CURRENT_QUEUED (1) if suspended and queued the current task to be
2018 //    resumed later.
2019 kmp_int32 __kmp_omp_task(kmp_int32 gtid, kmp_task_t *new_task,
2020                          bool serialize_immediate) {
2021   kmp_taskdata_t *new_taskdata = KMP_TASK_TO_TASKDATA(new_task);
2022 
2023 #if OMPX_TASKGRAPH
2024   if (new_taskdata->is_taskgraph &&
2025       __kmp_tdg_is_recording(new_taskdata->tdg->tdg_status)) {
2026     kmp_tdg_info_t *tdg = new_taskdata->tdg;
2027     // extend the record_map if needed
2028     if (new_taskdata->td_task_id >= new_taskdata->tdg->map_size) {
2029       __kmp_acquire_bootstrap_lock(&tdg->graph_lock);
2030       // map_size could have been updated by another thread if recursive
2031       // taskloop
2032       if (new_taskdata->td_task_id >= tdg->map_size) {
2033         kmp_uint old_size = tdg->map_size;
2034         kmp_uint new_size = old_size * 2;
2035         kmp_node_info_t *old_record = tdg->record_map;
2036         kmp_node_info_t *new_record = (kmp_node_info_t *)__kmp_allocate(
2037             new_size * sizeof(kmp_node_info_t));
2038 
2039         KMP_MEMCPY(new_record, old_record, old_size * sizeof(kmp_node_info_t));
2040         tdg->record_map = new_record;
2041 
2042         __kmp_free(old_record);
2043 
2044         for (kmp_int i = old_size; i < new_size; i++) {
2045           kmp_int32 *successorsList = (kmp_int32 *)__kmp_allocate(
2046               __kmp_successors_size * sizeof(kmp_int32));
2047           new_record[i].task = nullptr;
2048           new_record[i].successors = successorsList;
2049           new_record[i].nsuccessors = 0;
2050           new_record[i].npredecessors = 0;
2051           new_record[i].successors_size = __kmp_successors_size;
2052           KMP_ATOMIC_ST_REL(&new_record[i].npredecessors_counter, 0);
2053         }
2054         // update the size at the end, so that we avoid other
2055         // threads use old_record while map_size is already updated
2056         tdg->map_size = new_size;
2057       }
2058       __kmp_release_bootstrap_lock(&tdg->graph_lock);
2059     }
2060     // record a task
2061     if (tdg->record_map[new_taskdata->td_task_id].task == nullptr) {
2062       tdg->record_map[new_taskdata->td_task_id].task = new_task;
2063       tdg->record_map[new_taskdata->td_task_id].parent_task =
2064           new_taskdata->td_parent;
2065       KMP_ATOMIC_INC(&tdg->num_tasks);
2066     }
2067   }
2068 #endif
2069 
2070   /* Should we execute the new task or queue it? For now, let's just always try
2071      to queue it.  If the queue fills up, then we'll execute it.  */
2072   if (new_taskdata->td_flags.proxy == TASK_PROXY ||
2073       __kmp_push_task(gtid, new_task) == TASK_NOT_PUSHED) // if cannot defer
2074   { // Execute this task immediately
2075     kmp_taskdata_t *current_task = __kmp_threads[gtid]->th.th_current_task;
2076     if (serialize_immediate)
2077       new_taskdata->td_flags.task_serial = 1;
2078     __kmp_invoke_task(gtid, new_task, current_task);
2079   } else if (__kmp_dflt_blocktime != KMP_MAX_BLOCKTIME &&
2080              __kmp_wpolicy_passive) {
2081     kmp_info_t *this_thr = __kmp_threads[gtid];
2082     kmp_team_t *team = this_thr->th.th_team;
2083     kmp_int32 nthreads = this_thr->th.th_team_nproc;
2084     for (int i = 0; i < nthreads; ++i) {
2085       kmp_info_t *thread = team->t.t_threads[i];
2086       if (thread == this_thr)
2087         continue;
2088       if (thread->th.th_sleep_loc != NULL) {
2089         __kmp_null_resume_wrapper(thread);
2090         break; // awake one thread at a time
2091       }
2092     }
2093   }
2094   return TASK_CURRENT_NOT_QUEUED;
2095 }
2096 
2097 // __kmpc_omp_task: Wrapper around __kmp_omp_task to schedule a
2098 // non-thread-switchable task from the parent thread only!
2099 //
2100 // loc_ref: location of original task pragma (ignored)
2101 // gtid: Global Thread ID of encountering thread
2102 // new_task: non-thread-switchable task thunk allocated by
2103 // __kmp_omp_task_alloc()
2104 // Returns:
2105 //    TASK_CURRENT_NOT_QUEUED (0) if did not suspend and queue current task to
2106 //    be resumed later.
2107 //    TASK_CURRENT_QUEUED (1) if suspended and queued the current task to be
2108 //    resumed later.
2109 kmp_int32 __kmpc_omp_task(ident_t *loc_ref, kmp_int32 gtid,
2110                           kmp_task_t *new_task) {
2111   kmp_int32 res;
2112   KMP_SET_THREAD_STATE_BLOCK(EXPLICIT_TASK);
2113 
2114 #if KMP_DEBUG || OMPT_SUPPORT
2115   kmp_taskdata_t *new_taskdata = KMP_TASK_TO_TASKDATA(new_task);
2116 #endif
2117   KA_TRACE(10, ("__kmpc_omp_task(enter): T#%d loc=%p task=%p\n", gtid, loc_ref,
2118                 new_taskdata));
2119   __kmp_assert_valid_gtid(gtid);
2120 
2121 #if OMPT_SUPPORT
2122   kmp_taskdata_t *parent = NULL;
2123   if (UNLIKELY(ompt_enabled.enabled)) {
2124     if (!new_taskdata->td_flags.started) {
2125       OMPT_STORE_RETURN_ADDRESS(gtid);
2126       parent = new_taskdata->td_parent;
2127       if (!parent->ompt_task_info.frame.enter_frame.ptr) {
2128         parent->ompt_task_info.frame.enter_frame.ptr =
2129             OMPT_GET_FRAME_ADDRESS(0);
2130       }
2131       if (ompt_enabled.ompt_callback_task_create) {
2132         ompt_callbacks.ompt_callback(ompt_callback_task_create)(
2133             &(parent->ompt_task_info.task_data),
2134             &(parent->ompt_task_info.frame),
2135             &(new_taskdata->ompt_task_info.task_data),
2136             ompt_task_explicit | TASK_TYPE_DETAILS_FORMAT(new_taskdata), 0,
2137             OMPT_LOAD_RETURN_ADDRESS(gtid));
2138       }
2139     } else {
2140       // We are scheduling the continuation of an UNTIED task.
2141       // Scheduling back to the parent task.
2142       __ompt_task_finish(new_task,
2143                          new_taskdata->ompt_task_info.scheduling_parent,
2144                          ompt_task_switch);
2145       new_taskdata->ompt_task_info.frame.exit_frame = ompt_data_none;
2146     }
2147   }
2148 #endif
2149 
2150   res = __kmp_omp_task(gtid, new_task, true);
2151 
2152   KA_TRACE(10, ("__kmpc_omp_task(exit): T#%d returning "
2153                 "TASK_CURRENT_NOT_QUEUED: loc=%p task=%p\n",
2154                 gtid, loc_ref, new_taskdata));
2155 #if OMPT_SUPPORT
2156   if (UNLIKELY(ompt_enabled.enabled && parent != NULL)) {
2157     parent->ompt_task_info.frame.enter_frame = ompt_data_none;
2158   }
2159 #endif
2160   return res;
2161 }
2162 
2163 // __kmp_omp_taskloop_task: Wrapper around __kmp_omp_task to schedule
2164 // a taskloop task with the correct OMPT return address
2165 //
2166 // loc_ref: location of original task pragma (ignored)
2167 // gtid: Global Thread ID of encountering thread
2168 // new_task: non-thread-switchable task thunk allocated by
2169 // __kmp_omp_task_alloc()
2170 // codeptr_ra: return address for OMPT callback
2171 // Returns:
2172 //    TASK_CURRENT_NOT_QUEUED (0) if did not suspend and queue current task to
2173 //    be resumed later.
2174 //    TASK_CURRENT_QUEUED (1) if suspended and queued the current task to be
2175 //    resumed later.
2176 kmp_int32 __kmp_omp_taskloop_task(ident_t *loc_ref, kmp_int32 gtid,
2177                                   kmp_task_t *new_task, void *codeptr_ra) {
2178   kmp_int32 res;
2179   KMP_SET_THREAD_STATE_BLOCK(EXPLICIT_TASK);
2180 
2181 #if KMP_DEBUG || OMPT_SUPPORT
2182   kmp_taskdata_t *new_taskdata = KMP_TASK_TO_TASKDATA(new_task);
2183 #endif
2184   KA_TRACE(10, ("__kmpc_omp_task(enter): T#%d loc=%p task=%p\n", gtid, loc_ref,
2185                 new_taskdata));
2186 
2187 #if OMPT_SUPPORT
2188   kmp_taskdata_t *parent = NULL;
2189   if (UNLIKELY(ompt_enabled.enabled && !new_taskdata->td_flags.started)) {
2190     parent = new_taskdata->td_parent;
2191     if (!parent->ompt_task_info.frame.enter_frame.ptr)
2192       parent->ompt_task_info.frame.enter_frame.ptr = OMPT_GET_FRAME_ADDRESS(0);
2193     if (ompt_enabled.ompt_callback_task_create) {
2194       ompt_callbacks.ompt_callback(ompt_callback_task_create)(
2195           &(parent->ompt_task_info.task_data), &(parent->ompt_task_info.frame),
2196           &(new_taskdata->ompt_task_info.task_data),
2197           ompt_task_explicit | TASK_TYPE_DETAILS_FORMAT(new_taskdata), 0,
2198           codeptr_ra);
2199     }
2200   }
2201 #endif
2202 
2203   res = __kmp_omp_task(gtid, new_task, true);
2204 
2205   KA_TRACE(10, ("__kmpc_omp_task(exit): T#%d returning "
2206                 "TASK_CURRENT_NOT_QUEUED: loc=%p task=%p\n",
2207                 gtid, loc_ref, new_taskdata));
2208 #if OMPT_SUPPORT
2209   if (UNLIKELY(ompt_enabled.enabled && parent != NULL)) {
2210     parent->ompt_task_info.frame.enter_frame = ompt_data_none;
2211   }
2212 #endif
2213   return res;
2214 }
2215 
2216 template <bool ompt>
2217 static kmp_int32 __kmpc_omp_taskwait_template(ident_t *loc_ref, kmp_int32 gtid,
2218                                               void *frame_address,
2219                                               void *return_address) {
2220   kmp_taskdata_t *taskdata = nullptr;
2221   kmp_info_t *thread;
2222   int thread_finished = FALSE;
2223   KMP_SET_THREAD_STATE_BLOCK(TASKWAIT);
2224 
2225   KA_TRACE(10, ("__kmpc_omp_taskwait(enter): T#%d loc=%p\n", gtid, loc_ref));
2226   KMP_DEBUG_ASSERT(gtid >= 0);
2227 
2228   if (__kmp_tasking_mode != tskm_immediate_exec) {
2229     thread = __kmp_threads[gtid];
2230     taskdata = thread->th.th_current_task;
2231 
2232 #if OMPT_SUPPORT && OMPT_OPTIONAL
2233     ompt_data_t *my_task_data;
2234     ompt_data_t *my_parallel_data;
2235 
2236     if (ompt) {
2237       my_task_data = &(taskdata->ompt_task_info.task_data);
2238       my_parallel_data = OMPT_CUR_TEAM_DATA(thread);
2239 
2240       taskdata->ompt_task_info.frame.enter_frame.ptr = frame_address;
2241 
2242       if (ompt_enabled.ompt_callback_sync_region) {
2243         ompt_callbacks.ompt_callback(ompt_callback_sync_region)(
2244             ompt_sync_region_taskwait, ompt_scope_begin, my_parallel_data,
2245             my_task_data, return_address);
2246       }
2247 
2248       if (ompt_enabled.ompt_callback_sync_region_wait) {
2249         ompt_callbacks.ompt_callback(ompt_callback_sync_region_wait)(
2250             ompt_sync_region_taskwait, ompt_scope_begin, my_parallel_data,
2251             my_task_data, return_address);
2252       }
2253     }
2254 #endif // OMPT_SUPPORT && OMPT_OPTIONAL
2255 
2256 // Debugger: The taskwait is active. Store location and thread encountered the
2257 // taskwait.
2258 #if USE_ITT_BUILD
2259 // Note: These values are used by ITT events as well.
2260 #endif /* USE_ITT_BUILD */
2261     taskdata->td_taskwait_counter += 1;
2262     taskdata->td_taskwait_ident = loc_ref;
2263     taskdata->td_taskwait_thread = gtid + 1;
2264 
2265 #if USE_ITT_BUILD
2266     void *itt_sync_obj = NULL;
2267 #if USE_ITT_NOTIFY
2268     KMP_ITT_TASKWAIT_STARTING(itt_sync_obj);
2269 #endif /* USE_ITT_NOTIFY */
2270 #endif /* USE_ITT_BUILD */
2271 
2272     bool must_wait =
2273         !taskdata->td_flags.team_serial && !taskdata->td_flags.final;
2274 
2275     must_wait = must_wait || (thread->th.th_task_team != NULL &&
2276                               thread->th.th_task_team->tt.tt_found_proxy_tasks);
2277     // If hidden helper thread is encountered, we must enable wait here.
2278     must_wait =
2279         must_wait ||
2280         (__kmp_enable_hidden_helper && thread->th.th_task_team != NULL &&
2281          thread->th.th_task_team->tt.tt_hidden_helper_task_encountered);
2282 
2283     if (must_wait) {
2284       kmp_flag_32<false, false> flag(
2285           RCAST(std::atomic<kmp_uint32> *,
2286                 &(taskdata->td_incomplete_child_tasks)),
2287           0U);
2288       while (KMP_ATOMIC_LD_ACQ(&taskdata->td_incomplete_child_tasks) != 0) {
2289         flag.execute_tasks(thread, gtid, FALSE,
2290                            &thread_finished USE_ITT_BUILD_ARG(itt_sync_obj),
2291                            __kmp_task_stealing_constraint);
2292       }
2293     }
2294 #if USE_ITT_BUILD
2295     KMP_ITT_TASKWAIT_FINISHED(itt_sync_obj);
2296     KMP_FSYNC_ACQUIRED(taskdata); // acquire self - sync with children
2297 #endif /* USE_ITT_BUILD */
2298 
2299     // Debugger:  The taskwait is completed. Location remains, but thread is
2300     // negated.
2301     taskdata->td_taskwait_thread = -taskdata->td_taskwait_thread;
2302 
2303 #if OMPT_SUPPORT && OMPT_OPTIONAL
2304     if (ompt) {
2305       if (ompt_enabled.ompt_callback_sync_region_wait) {
2306         ompt_callbacks.ompt_callback(ompt_callback_sync_region_wait)(
2307             ompt_sync_region_taskwait, ompt_scope_end, my_parallel_data,
2308             my_task_data, return_address);
2309       }
2310       if (ompt_enabled.ompt_callback_sync_region) {
2311         ompt_callbacks.ompt_callback(ompt_callback_sync_region)(
2312             ompt_sync_region_taskwait, ompt_scope_end, my_parallel_data,
2313             my_task_data, return_address);
2314       }
2315       taskdata->ompt_task_info.frame.enter_frame = ompt_data_none;
2316     }
2317 #endif // OMPT_SUPPORT && OMPT_OPTIONAL
2318   }
2319 
2320   KA_TRACE(10, ("__kmpc_omp_taskwait(exit): T#%d task %p finished waiting, "
2321                 "returning TASK_CURRENT_NOT_QUEUED\n",
2322                 gtid, taskdata));
2323 
2324   return TASK_CURRENT_NOT_QUEUED;
2325 }
2326 
2327 #if OMPT_SUPPORT && OMPT_OPTIONAL
2328 OMPT_NOINLINE
2329 static kmp_int32 __kmpc_omp_taskwait_ompt(ident_t *loc_ref, kmp_int32 gtid,
2330                                           void *frame_address,
2331                                           void *return_address) {
2332   return __kmpc_omp_taskwait_template<true>(loc_ref, gtid, frame_address,
2333                                             return_address);
2334 }
2335 #endif // OMPT_SUPPORT && OMPT_OPTIONAL
2336 
2337 // __kmpc_omp_taskwait: Wait until all tasks generated by the current task are
2338 // complete
2339 kmp_int32 __kmpc_omp_taskwait(ident_t *loc_ref, kmp_int32 gtid) {
2340 #if OMPT_SUPPORT && OMPT_OPTIONAL
2341   if (UNLIKELY(ompt_enabled.enabled)) {
2342     OMPT_STORE_RETURN_ADDRESS(gtid);
2343     return __kmpc_omp_taskwait_ompt(loc_ref, gtid, OMPT_GET_FRAME_ADDRESS(0),
2344                                     OMPT_LOAD_RETURN_ADDRESS(gtid));
2345   }
2346 #endif
2347   return __kmpc_omp_taskwait_template<false>(loc_ref, gtid, NULL, NULL);
2348 }
2349 
2350 // __kmpc_omp_taskyield: switch to a different task
2351 kmp_int32 __kmpc_omp_taskyield(ident_t *loc_ref, kmp_int32 gtid, int end_part) {
2352   kmp_taskdata_t *taskdata = NULL;
2353   kmp_info_t *thread;
2354   int thread_finished = FALSE;
2355 
2356   KMP_COUNT_BLOCK(OMP_TASKYIELD);
2357   KMP_SET_THREAD_STATE_BLOCK(TASKYIELD);
2358 
2359   KA_TRACE(10, ("__kmpc_omp_taskyield(enter): T#%d loc=%p end_part = %d\n",
2360                 gtid, loc_ref, end_part));
2361   __kmp_assert_valid_gtid(gtid);
2362 
2363   if (__kmp_tasking_mode != tskm_immediate_exec && __kmp_init_parallel) {
2364     thread = __kmp_threads[gtid];
2365     taskdata = thread->th.th_current_task;
2366 // Should we model this as a task wait or not?
2367 // Debugger: The taskwait is active. Store location and thread encountered the
2368 // taskwait.
2369 #if USE_ITT_BUILD
2370 // Note: These values are used by ITT events as well.
2371 #endif /* USE_ITT_BUILD */
2372     taskdata->td_taskwait_counter += 1;
2373     taskdata->td_taskwait_ident = loc_ref;
2374     taskdata->td_taskwait_thread = gtid + 1;
2375 
2376 #if USE_ITT_BUILD
2377     void *itt_sync_obj = NULL;
2378 #if USE_ITT_NOTIFY
2379     KMP_ITT_TASKWAIT_STARTING(itt_sync_obj);
2380 #endif /* USE_ITT_NOTIFY */
2381 #endif /* USE_ITT_BUILD */
2382     if (!taskdata->td_flags.team_serial) {
2383       kmp_task_team_t *task_team = thread->th.th_task_team;
2384       if (task_team != NULL) {
2385         if (KMP_TASKING_ENABLED(task_team)) {
2386 #if OMPT_SUPPORT
2387           if (UNLIKELY(ompt_enabled.enabled))
2388             thread->th.ompt_thread_info.ompt_task_yielded = 1;
2389 #endif
2390           __kmp_execute_tasks_32(
2391               thread, gtid, (kmp_flag_32<> *)NULL, FALSE,
2392               &thread_finished USE_ITT_BUILD_ARG(itt_sync_obj),
2393               __kmp_task_stealing_constraint);
2394 #if OMPT_SUPPORT
2395           if (UNLIKELY(ompt_enabled.enabled))
2396             thread->th.ompt_thread_info.ompt_task_yielded = 0;
2397 #endif
2398         }
2399       }
2400     }
2401 #if USE_ITT_BUILD
2402     KMP_ITT_TASKWAIT_FINISHED(itt_sync_obj);
2403 #endif /* USE_ITT_BUILD */
2404 
2405     // Debugger:  The taskwait is completed. Location remains, but thread is
2406     // negated.
2407     taskdata->td_taskwait_thread = -taskdata->td_taskwait_thread;
2408   }
2409 
2410   KA_TRACE(10, ("__kmpc_omp_taskyield(exit): T#%d task %p resuming, "
2411                 "returning TASK_CURRENT_NOT_QUEUED\n",
2412                 gtid, taskdata));
2413 
2414   return TASK_CURRENT_NOT_QUEUED;
2415 }
2416 
2417 // Task Reduction implementation
2418 //
2419 // Note: initial implementation didn't take into account the possibility
2420 // to specify omp_orig for initializer of the UDR (user defined reduction).
2421 // Corrected implementation takes into account the omp_orig object.
2422 // Compiler is free to use old implementation if omp_orig is not specified.
2423 
2424 /*!
2425 @ingroup BASIC_TYPES
2426 @{
2427 */
2428 
2429 /*!
2430 Flags for special info per task reduction item.
2431 */
2432 typedef struct kmp_taskred_flags {
2433   /*! 1 - use lazy alloc/init (e.g. big objects, num tasks < num threads) */
2434   unsigned lazy_priv : 1;
2435   unsigned reserved31 : 31;
2436 } kmp_taskred_flags_t;
2437 
2438 /*!
2439 Internal struct for reduction data item related info set up by compiler.
2440 */
2441 typedef struct kmp_task_red_input {
2442   void *reduce_shar; /**< shared between tasks item to reduce into */
2443   size_t reduce_size; /**< size of data item in bytes */
2444   // three compiler-generated routines (init, fini are optional):
2445   void *reduce_init; /**< data initialization routine (single parameter) */
2446   void *reduce_fini; /**< data finalization routine */
2447   void *reduce_comb; /**< data combiner routine */
2448   kmp_taskred_flags_t flags; /**< flags for additional info from compiler */
2449 } kmp_task_red_input_t;
2450 
2451 /*!
2452 Internal struct for reduction data item related info saved by the library.
2453 */
2454 typedef struct kmp_taskred_data {
2455   void *reduce_shar; /**< shared between tasks item to reduce into */
2456   size_t reduce_size; /**< size of data item */
2457   kmp_taskred_flags_t flags; /**< flags for additional info from compiler */
2458   void *reduce_priv; /**< array of thread specific items */
2459   void *reduce_pend; /**< end of private data for faster comparison op */
2460   // three compiler-generated routines (init, fini are optional):
2461   void *reduce_comb; /**< data combiner routine */
2462   void *reduce_init; /**< data initialization routine (two parameters) */
2463   void *reduce_fini; /**< data finalization routine */
2464   void *reduce_orig; /**< original item (can be used in UDR initializer) */
2465 } kmp_taskred_data_t;
2466 
2467 /*!
2468 Internal struct for reduction data item related info set up by compiler.
2469 
2470 New interface: added reduce_orig field to provide omp_orig for UDR initializer.
2471 */
2472 typedef struct kmp_taskred_input {
2473   void *reduce_shar; /**< shared between tasks item to reduce into */
2474   void *reduce_orig; /**< original reduction item used for initialization */
2475   size_t reduce_size; /**< size of data item */
2476   // three compiler-generated routines (init, fini are optional):
2477   void *reduce_init; /**< data initialization routine (two parameters) */
2478   void *reduce_fini; /**< data finalization routine */
2479   void *reduce_comb; /**< data combiner routine */
2480   kmp_taskred_flags_t flags; /**< flags for additional info from compiler */
2481 } kmp_taskred_input_t;
2482 /*!
2483 @}
2484 */
2485 
2486 template <typename T> void __kmp_assign_orig(kmp_taskred_data_t &item, T &src);
2487 template <>
2488 void __kmp_assign_orig<kmp_task_red_input_t>(kmp_taskred_data_t &item,
2489                                              kmp_task_red_input_t &src) {
2490   item.reduce_orig = NULL;
2491 }
2492 template <>
2493 void __kmp_assign_orig<kmp_taskred_input_t>(kmp_taskred_data_t &item,
2494                                             kmp_taskred_input_t &src) {
2495   if (src.reduce_orig != NULL) {
2496     item.reduce_orig = src.reduce_orig;
2497   } else {
2498     item.reduce_orig = src.reduce_shar;
2499   } // non-NULL reduce_orig means new interface used
2500 }
2501 
2502 template <typename T> void __kmp_call_init(kmp_taskred_data_t &item, size_t j);
2503 template <>
2504 void __kmp_call_init<kmp_task_red_input_t>(kmp_taskred_data_t &item,
2505                                            size_t offset) {
2506   ((void (*)(void *))item.reduce_init)((char *)(item.reduce_priv) + offset);
2507 }
2508 template <>
2509 void __kmp_call_init<kmp_taskred_input_t>(kmp_taskred_data_t &item,
2510                                           size_t offset) {
2511   ((void (*)(void *, void *))item.reduce_init)(
2512       (char *)(item.reduce_priv) + offset, item.reduce_orig);
2513 }
2514 
2515 template <typename T>
2516 void *__kmp_task_reduction_init(int gtid, int num, T *data) {
2517   __kmp_assert_valid_gtid(gtid);
2518   kmp_info_t *thread = __kmp_threads[gtid];
2519   kmp_taskgroup_t *tg = thread->th.th_current_task->td_taskgroup;
2520   kmp_uint32 nth = thread->th.th_team_nproc;
2521   kmp_taskred_data_t *arr;
2522 
2523   // check input data just in case
2524   KMP_ASSERT(tg != NULL);
2525   KMP_ASSERT(data != NULL);
2526   KMP_ASSERT(num > 0);
2527   if (nth == 1 && !__kmp_enable_hidden_helper) {
2528     KA_TRACE(10, ("__kmpc_task_reduction_init: T#%d, tg %p, exiting nth=1\n",
2529                   gtid, tg));
2530     return (void *)tg;
2531   }
2532   KA_TRACE(10, ("__kmpc_task_reduction_init: T#%d, taskgroup %p, #items %d\n",
2533                 gtid, tg, num));
2534   arr = (kmp_taskred_data_t *)__kmp_thread_malloc(
2535       thread, num * sizeof(kmp_taskred_data_t));
2536   for (int i = 0; i < num; ++i) {
2537     size_t size = data[i].reduce_size - 1;
2538     // round the size up to cache line per thread-specific item
2539     size += CACHE_LINE - size % CACHE_LINE;
2540     KMP_ASSERT(data[i].reduce_comb != NULL); // combiner is mandatory
2541     arr[i].reduce_shar = data[i].reduce_shar;
2542     arr[i].reduce_size = size;
2543     arr[i].flags = data[i].flags;
2544     arr[i].reduce_comb = data[i].reduce_comb;
2545     arr[i].reduce_init = data[i].reduce_init;
2546     arr[i].reduce_fini = data[i].reduce_fini;
2547     __kmp_assign_orig<T>(arr[i], data[i]);
2548     if (!arr[i].flags.lazy_priv) {
2549       // allocate cache-line aligned block and fill it with zeros
2550       arr[i].reduce_priv = __kmp_allocate(nth * size);
2551       arr[i].reduce_pend = (char *)(arr[i].reduce_priv) + nth * size;
2552       if (arr[i].reduce_init != NULL) {
2553         // initialize all thread-specific items
2554         for (size_t j = 0; j < nth; ++j) {
2555           __kmp_call_init<T>(arr[i], j * size);
2556         }
2557       }
2558     } else {
2559       // only allocate space for pointers now,
2560       // objects will be lazily allocated/initialized if/when requested
2561       // note that __kmp_allocate zeroes the allocated memory
2562       arr[i].reduce_priv = __kmp_allocate(nth * sizeof(void *));
2563     }
2564   }
2565   tg->reduce_data = (void *)arr;
2566   tg->reduce_num_data = num;
2567   return (void *)tg;
2568 }
2569 
2570 /*!
2571 @ingroup TASKING
2572 @param gtid      Global thread ID
2573 @param num       Number of data items to reduce
2574 @param data      Array of data for reduction
2575 @return The taskgroup identifier
2576 
2577 Initialize task reduction for the taskgroup.
2578 
2579 Note: this entry supposes the optional compiler-generated initializer routine
2580 has single parameter - pointer to object to be initialized. That means
2581 the reduction either does not use omp_orig object, or the omp_orig is accessible
2582 without help of the runtime library.
2583 */
2584 void *__kmpc_task_reduction_init(int gtid, int num, void *data) {
2585 #if OMPX_TASKGRAPH
2586   kmp_tdg_info_t *tdg = __kmp_find_tdg(__kmp_curr_tdg_idx);
2587   if (tdg && __kmp_tdg_is_recording(tdg->tdg_status)) {
2588     kmp_tdg_info_t *this_tdg = __kmp_global_tdgs[__kmp_curr_tdg_idx];
2589     this_tdg->rec_taskred_data =
2590         __kmp_allocate(sizeof(kmp_task_red_input_t) * num);
2591     this_tdg->rec_num_taskred = num;
2592     KMP_MEMCPY(this_tdg->rec_taskred_data, data,
2593                sizeof(kmp_task_red_input_t) * num);
2594   }
2595 #endif
2596   return __kmp_task_reduction_init(gtid, num, (kmp_task_red_input_t *)data);
2597 }
2598 
2599 /*!
2600 @ingroup TASKING
2601 @param gtid      Global thread ID
2602 @param num       Number of data items to reduce
2603 @param data      Array of data for reduction
2604 @return The taskgroup identifier
2605 
2606 Initialize task reduction for the taskgroup.
2607 
2608 Note: this entry supposes the optional compiler-generated initializer routine
2609 has two parameters, pointer to object to be initialized and pointer to omp_orig
2610 */
2611 void *__kmpc_taskred_init(int gtid, int num, void *data) {
2612 #if OMPX_TASKGRAPH
2613   kmp_tdg_info_t *tdg = __kmp_find_tdg(__kmp_curr_tdg_idx);
2614   if (tdg && __kmp_tdg_is_recording(tdg->tdg_status)) {
2615     kmp_tdg_info_t *this_tdg = __kmp_global_tdgs[__kmp_curr_tdg_idx];
2616     this_tdg->rec_taskred_data =
2617         __kmp_allocate(sizeof(kmp_task_red_input_t) * num);
2618     this_tdg->rec_num_taskred = num;
2619     KMP_MEMCPY(this_tdg->rec_taskred_data, data,
2620                sizeof(kmp_task_red_input_t) * num);
2621   }
2622 #endif
2623   return __kmp_task_reduction_init(gtid, num, (kmp_taskred_input_t *)data);
2624 }
2625 
2626 // Copy task reduction data (except for shared pointers).
2627 template <typename T>
2628 void __kmp_task_reduction_init_copy(kmp_info_t *thr, int num, T *data,
2629                                     kmp_taskgroup_t *tg, void *reduce_data) {
2630   kmp_taskred_data_t *arr;
2631   KA_TRACE(20, ("__kmp_task_reduction_init_copy: Th %p, init taskgroup %p,"
2632                 " from data %p\n",
2633                 thr, tg, reduce_data));
2634   arr = (kmp_taskred_data_t *)__kmp_thread_malloc(
2635       thr, num * sizeof(kmp_taskred_data_t));
2636   // threads will share private copies, thunk routines, sizes, flags, etc.:
2637   KMP_MEMCPY(arr, reduce_data, num * sizeof(kmp_taskred_data_t));
2638   for (int i = 0; i < num; ++i) {
2639     arr[i].reduce_shar = data[i].reduce_shar; // init unique shared pointers
2640   }
2641   tg->reduce_data = (void *)arr;
2642   tg->reduce_num_data = num;
2643 }
2644 
2645 /*!
2646 @ingroup TASKING
2647 @param gtid    Global thread ID
2648 @param tskgrp  The taskgroup ID (optional)
2649 @param data    Shared location of the item
2650 @return The pointer to per-thread data
2651 
2652 Get thread-specific location of data item
2653 */
2654 void *__kmpc_task_reduction_get_th_data(int gtid, void *tskgrp, void *data) {
2655   __kmp_assert_valid_gtid(gtid);
2656   kmp_info_t *thread = __kmp_threads[gtid];
2657   kmp_int32 nth = thread->th.th_team_nproc;
2658   if (nth == 1)
2659     return data; // nothing to do
2660 
2661   kmp_taskgroup_t *tg = (kmp_taskgroup_t *)tskgrp;
2662   if (tg == NULL)
2663     tg = thread->th.th_current_task->td_taskgroup;
2664   KMP_ASSERT(tg != NULL);
2665   kmp_taskred_data_t *arr = (kmp_taskred_data_t *)(tg->reduce_data);
2666   kmp_int32 num = tg->reduce_num_data;
2667   kmp_int32 tid = thread->th.th_info.ds.ds_tid;
2668 
2669 #if OMPX_TASKGRAPH
2670   if ((thread->th.th_current_task->is_taskgraph) &&
2671       (!__kmp_tdg_is_recording(
2672           __kmp_global_tdgs[__kmp_curr_tdg_idx]->tdg_status))) {
2673     tg = thread->th.th_current_task->td_taskgroup;
2674     KMP_ASSERT(tg != NULL);
2675     KMP_ASSERT(tg->reduce_data != NULL);
2676     arr = (kmp_taskred_data_t *)(tg->reduce_data);
2677     num = tg->reduce_num_data;
2678   }
2679 #endif
2680 
2681   KMP_ASSERT(data != NULL);
2682   while (tg != NULL) {
2683     for (int i = 0; i < num; ++i) {
2684       if (!arr[i].flags.lazy_priv) {
2685         if (data == arr[i].reduce_shar ||
2686             (data >= arr[i].reduce_priv && data < arr[i].reduce_pend))
2687           return (char *)(arr[i].reduce_priv) + tid * arr[i].reduce_size;
2688       } else {
2689         // check shared location first
2690         void **p_priv = (void **)(arr[i].reduce_priv);
2691         if (data == arr[i].reduce_shar)
2692           goto found;
2693         // check if we get some thread specific location as parameter
2694         for (int j = 0; j < nth; ++j)
2695           if (data == p_priv[j])
2696             goto found;
2697         continue; // not found, continue search
2698       found:
2699         if (p_priv[tid] == NULL) {
2700           // allocate thread specific object lazily
2701           p_priv[tid] = __kmp_allocate(arr[i].reduce_size);
2702           if (arr[i].reduce_init != NULL) {
2703             if (arr[i].reduce_orig != NULL) { // new interface
2704               ((void (*)(void *, void *))arr[i].reduce_init)(
2705                   p_priv[tid], arr[i].reduce_orig);
2706             } else { // old interface (single parameter)
2707               ((void (*)(void *))arr[i].reduce_init)(p_priv[tid]);
2708             }
2709           }
2710         }
2711         return p_priv[tid];
2712       }
2713     }
2714     KMP_ASSERT(tg->parent);
2715     tg = tg->parent;
2716     arr = (kmp_taskred_data_t *)(tg->reduce_data);
2717     num = tg->reduce_num_data;
2718   }
2719   KMP_ASSERT2(0, "Unknown task reduction item");
2720   return NULL; // ERROR, this line never executed
2721 }
2722 
2723 // Finalize task reduction.
2724 // Called from __kmpc_end_taskgroup()
2725 static void __kmp_task_reduction_fini(kmp_info_t *th, kmp_taskgroup_t *tg) {
2726   kmp_int32 nth = th->th.th_team_nproc;
2727   KMP_DEBUG_ASSERT(
2728       nth > 1 ||
2729       __kmp_enable_hidden_helper); // should not be called if nth == 1 unless we
2730                                    // are using hidden helper threads
2731   kmp_taskred_data_t *arr = (kmp_taskred_data_t *)tg->reduce_data;
2732   kmp_int32 num = tg->reduce_num_data;
2733   for (int i = 0; i < num; ++i) {
2734     void *sh_data = arr[i].reduce_shar;
2735     void (*f_fini)(void *) = (void (*)(void *))(arr[i].reduce_fini);
2736     void (*f_comb)(void *, void *) =
2737         (void (*)(void *, void *))(arr[i].reduce_comb);
2738     if (!arr[i].flags.lazy_priv) {
2739       void *pr_data = arr[i].reduce_priv;
2740       size_t size = arr[i].reduce_size;
2741       for (int j = 0; j < nth; ++j) {
2742         void *priv_data = (char *)pr_data + j * size;
2743         f_comb(sh_data, priv_data); // combine results
2744         if (f_fini)
2745           f_fini(priv_data); // finalize if needed
2746       }
2747     } else {
2748       void **pr_data = (void **)(arr[i].reduce_priv);
2749       for (int j = 0; j < nth; ++j) {
2750         if (pr_data[j] != NULL) {
2751           f_comb(sh_data, pr_data[j]); // combine results
2752           if (f_fini)
2753             f_fini(pr_data[j]); // finalize if needed
2754           __kmp_free(pr_data[j]);
2755         }
2756       }
2757     }
2758     __kmp_free(arr[i].reduce_priv);
2759   }
2760   __kmp_thread_free(th, arr);
2761   tg->reduce_data = NULL;
2762   tg->reduce_num_data = 0;
2763 }
2764 
2765 // Cleanup task reduction data for parallel or worksharing,
2766 // do not touch task private data other threads still working with.
2767 // Called from __kmpc_end_taskgroup()
2768 static void __kmp_task_reduction_clean(kmp_info_t *th, kmp_taskgroup_t *tg) {
2769   __kmp_thread_free(th, tg->reduce_data);
2770   tg->reduce_data = NULL;
2771   tg->reduce_num_data = 0;
2772 }
2773 
2774 template <typename T>
2775 void *__kmp_task_reduction_modifier_init(ident_t *loc, int gtid, int is_ws,
2776                                          int num, T *data) {
2777   __kmp_assert_valid_gtid(gtid);
2778   kmp_info_t *thr = __kmp_threads[gtid];
2779   kmp_int32 nth = thr->th.th_team_nproc;
2780   __kmpc_taskgroup(loc, gtid); // form new taskgroup first
2781   if (nth == 1) {
2782     KA_TRACE(10,
2783              ("__kmpc_reduction_modifier_init: T#%d, tg %p, exiting nth=1\n",
2784               gtid, thr->th.th_current_task->td_taskgroup));
2785     return (void *)thr->th.th_current_task->td_taskgroup;
2786   }
2787   kmp_team_t *team = thr->th.th_team;
2788   void *reduce_data;
2789   kmp_taskgroup_t *tg;
2790   reduce_data = KMP_ATOMIC_LD_RLX(&team->t.t_tg_reduce_data[is_ws]);
2791   if (reduce_data == NULL &&
2792       __kmp_atomic_compare_store(&team->t.t_tg_reduce_data[is_ws], reduce_data,
2793                                  (void *)1)) {
2794     // single thread enters this block to initialize common reduction data
2795     KMP_DEBUG_ASSERT(reduce_data == NULL);
2796     // first initialize own data, then make a copy other threads can use
2797     tg = (kmp_taskgroup_t *)__kmp_task_reduction_init<T>(gtid, num, data);
2798     reduce_data = __kmp_thread_malloc(thr, num * sizeof(kmp_taskred_data_t));
2799     KMP_MEMCPY(reduce_data, tg->reduce_data, num * sizeof(kmp_taskred_data_t));
2800     // fini counters should be 0 at this point
2801     KMP_DEBUG_ASSERT(KMP_ATOMIC_LD_RLX(&team->t.t_tg_fini_counter[0]) == 0);
2802     KMP_DEBUG_ASSERT(KMP_ATOMIC_LD_RLX(&team->t.t_tg_fini_counter[1]) == 0);
2803     KMP_ATOMIC_ST_REL(&team->t.t_tg_reduce_data[is_ws], reduce_data);
2804   } else {
2805     while (
2806         (reduce_data = KMP_ATOMIC_LD_ACQ(&team->t.t_tg_reduce_data[is_ws])) ==
2807         (void *)1) { // wait for task reduction initialization
2808       KMP_CPU_PAUSE();
2809     }
2810     KMP_DEBUG_ASSERT(reduce_data > (void *)1); // should be valid pointer here
2811     tg = thr->th.th_current_task->td_taskgroup;
2812     __kmp_task_reduction_init_copy<T>(thr, num, data, tg, reduce_data);
2813   }
2814   return tg;
2815 }
2816 
2817 /*!
2818 @ingroup TASKING
2819 @param loc       Source location info
2820 @param gtid      Global thread ID
2821 @param is_ws     Is 1 if the reduction is for worksharing, 0 otherwise
2822 @param num       Number of data items to reduce
2823 @param data      Array of data for reduction
2824 @return The taskgroup identifier
2825 
2826 Initialize task reduction for a parallel or worksharing.
2827 
2828 Note: this entry supposes the optional compiler-generated initializer routine
2829 has single parameter - pointer to object to be initialized. That means
2830 the reduction either does not use omp_orig object, or the omp_orig is accessible
2831 without help of the runtime library.
2832 */
2833 void *__kmpc_task_reduction_modifier_init(ident_t *loc, int gtid, int is_ws,
2834                                           int num, void *data) {
2835   return __kmp_task_reduction_modifier_init(loc, gtid, is_ws, num,
2836                                             (kmp_task_red_input_t *)data);
2837 }
2838 
2839 /*!
2840 @ingroup TASKING
2841 @param loc       Source location info
2842 @param gtid      Global thread ID
2843 @param is_ws     Is 1 if the reduction is for worksharing, 0 otherwise
2844 @param num       Number of data items to reduce
2845 @param data      Array of data for reduction
2846 @return The taskgroup identifier
2847 
2848 Initialize task reduction for a parallel or worksharing.
2849 
2850 Note: this entry supposes the optional compiler-generated initializer routine
2851 has two parameters, pointer to object to be initialized and pointer to omp_orig
2852 */
2853 void *__kmpc_taskred_modifier_init(ident_t *loc, int gtid, int is_ws, int num,
2854                                    void *data) {
2855   return __kmp_task_reduction_modifier_init(loc, gtid, is_ws, num,
2856                                             (kmp_taskred_input_t *)data);
2857 }
2858 
2859 /*!
2860 @ingroup TASKING
2861 @param loc       Source location info
2862 @param gtid      Global thread ID
2863 @param is_ws     Is 1 if the reduction is for worksharing, 0 otherwise
2864 
2865 Finalize task reduction for a parallel or worksharing.
2866 */
2867 void __kmpc_task_reduction_modifier_fini(ident_t *loc, int gtid, int is_ws) {
2868   __kmpc_end_taskgroup(loc, gtid);
2869 }
2870 
2871 // __kmpc_taskgroup: Start a new taskgroup
2872 void __kmpc_taskgroup(ident_t *loc, int gtid) {
2873   __kmp_assert_valid_gtid(gtid);
2874   kmp_info_t *thread = __kmp_threads[gtid];
2875   kmp_taskdata_t *taskdata = thread->th.th_current_task;
2876   kmp_taskgroup_t *tg_new =
2877       (kmp_taskgroup_t *)__kmp_thread_malloc(thread, sizeof(kmp_taskgroup_t));
2878   KA_TRACE(10, ("__kmpc_taskgroup: T#%d loc=%p group=%p\n", gtid, loc, tg_new));
2879   KMP_ATOMIC_ST_RLX(&tg_new->count, 0);
2880   KMP_ATOMIC_ST_RLX(&tg_new->cancel_request, cancel_noreq);
2881   tg_new->parent = taskdata->td_taskgroup;
2882   tg_new->reduce_data = NULL;
2883   tg_new->reduce_num_data = 0;
2884   tg_new->gomp_data = NULL;
2885   taskdata->td_taskgroup = tg_new;
2886 
2887 #if OMPT_SUPPORT && OMPT_OPTIONAL
2888   if (UNLIKELY(ompt_enabled.ompt_callback_sync_region)) {
2889     void *codeptr = OMPT_LOAD_RETURN_ADDRESS(gtid);
2890     if (!codeptr)
2891       codeptr = OMPT_GET_RETURN_ADDRESS(0);
2892     kmp_team_t *team = thread->th.th_team;
2893     ompt_data_t my_task_data = taskdata->ompt_task_info.task_data;
2894     // FIXME: I think this is wrong for lwt!
2895     ompt_data_t my_parallel_data = team->t.ompt_team_info.parallel_data;
2896 
2897     ompt_callbacks.ompt_callback(ompt_callback_sync_region)(
2898         ompt_sync_region_taskgroup, ompt_scope_begin, &(my_parallel_data),
2899         &(my_task_data), codeptr);
2900   }
2901 #endif
2902 }
2903 
2904 // __kmpc_end_taskgroup: Wait until all tasks generated by the current task
2905 //                       and its descendants are complete
2906 void __kmpc_end_taskgroup(ident_t *loc, int gtid) {
2907   __kmp_assert_valid_gtid(gtid);
2908   kmp_info_t *thread = __kmp_threads[gtid];
2909   kmp_taskdata_t *taskdata = thread->th.th_current_task;
2910   kmp_taskgroup_t *taskgroup = taskdata->td_taskgroup;
2911   int thread_finished = FALSE;
2912 
2913 #if OMPT_SUPPORT && OMPT_OPTIONAL
2914   kmp_team_t *team;
2915   ompt_data_t my_task_data;
2916   ompt_data_t my_parallel_data;
2917   void *codeptr = nullptr;
2918   if (UNLIKELY(ompt_enabled.enabled)) {
2919     team = thread->th.th_team;
2920     my_task_data = taskdata->ompt_task_info.task_data;
2921     // FIXME: I think this is wrong for lwt!
2922     my_parallel_data = team->t.ompt_team_info.parallel_data;
2923     codeptr = OMPT_LOAD_RETURN_ADDRESS(gtid);
2924     if (!codeptr)
2925       codeptr = OMPT_GET_RETURN_ADDRESS(0);
2926   }
2927 #endif
2928 
2929   KA_TRACE(10, ("__kmpc_end_taskgroup(enter): T#%d loc=%p\n", gtid, loc));
2930   KMP_DEBUG_ASSERT(taskgroup != NULL);
2931   KMP_SET_THREAD_STATE_BLOCK(TASKGROUP);
2932 
2933   if (__kmp_tasking_mode != tskm_immediate_exec) {
2934     // mark task as waiting not on a barrier
2935     taskdata->td_taskwait_counter += 1;
2936     taskdata->td_taskwait_ident = loc;
2937     taskdata->td_taskwait_thread = gtid + 1;
2938 #if USE_ITT_BUILD
2939     // For ITT the taskgroup wait is similar to taskwait until we need to
2940     // distinguish them
2941     void *itt_sync_obj = NULL;
2942 #if USE_ITT_NOTIFY
2943     KMP_ITT_TASKWAIT_STARTING(itt_sync_obj);
2944 #endif /* USE_ITT_NOTIFY */
2945 #endif /* USE_ITT_BUILD */
2946 
2947 #if OMPT_SUPPORT && OMPT_OPTIONAL
2948     if (UNLIKELY(ompt_enabled.ompt_callback_sync_region_wait)) {
2949       ompt_callbacks.ompt_callback(ompt_callback_sync_region_wait)(
2950           ompt_sync_region_taskgroup, ompt_scope_begin, &(my_parallel_data),
2951           &(my_task_data), codeptr);
2952     }
2953 #endif
2954 
2955     if (!taskdata->td_flags.team_serial ||
2956         (thread->th.th_task_team != NULL &&
2957          (thread->th.th_task_team->tt.tt_found_proxy_tasks ||
2958           thread->th.th_task_team->tt.tt_hidden_helper_task_encountered))) {
2959       kmp_flag_32<false, false> flag(
2960           RCAST(std::atomic<kmp_uint32> *, &(taskgroup->count)), 0U);
2961       while (KMP_ATOMIC_LD_ACQ(&taskgroup->count) != 0) {
2962         flag.execute_tasks(thread, gtid, FALSE,
2963                            &thread_finished USE_ITT_BUILD_ARG(itt_sync_obj),
2964                            __kmp_task_stealing_constraint);
2965       }
2966     }
2967     taskdata->td_taskwait_thread = -taskdata->td_taskwait_thread; // end waiting
2968 
2969 #if OMPT_SUPPORT && OMPT_OPTIONAL
2970     if (UNLIKELY(ompt_enabled.ompt_callback_sync_region_wait)) {
2971       ompt_callbacks.ompt_callback(ompt_callback_sync_region_wait)(
2972           ompt_sync_region_taskgroup, ompt_scope_end, &(my_parallel_data),
2973           &(my_task_data), codeptr);
2974     }
2975 #endif
2976 
2977 #if USE_ITT_BUILD
2978     KMP_ITT_TASKWAIT_FINISHED(itt_sync_obj);
2979     KMP_FSYNC_ACQUIRED(taskdata); // acquire self - sync with descendants
2980 #endif /* USE_ITT_BUILD */
2981   }
2982   KMP_DEBUG_ASSERT(taskgroup->count == 0);
2983 
2984   if (taskgroup->reduce_data != NULL &&
2985       !taskgroup->gomp_data) { // need to reduce?
2986     int cnt;
2987     void *reduce_data;
2988     kmp_team_t *t = thread->th.th_team;
2989     kmp_taskred_data_t *arr = (kmp_taskred_data_t *)taskgroup->reduce_data;
2990     // check if <priv> data of the first reduction variable shared for the team
2991     void *priv0 = arr[0].reduce_priv;
2992     if ((reduce_data = KMP_ATOMIC_LD_ACQ(&t->t.t_tg_reduce_data[0])) != NULL &&
2993         ((kmp_taskred_data_t *)reduce_data)[0].reduce_priv == priv0) {
2994       // finishing task reduction on parallel
2995       cnt = KMP_ATOMIC_INC(&t->t.t_tg_fini_counter[0]);
2996       if (cnt == thread->th.th_team_nproc - 1) {
2997         // we are the last thread passing __kmpc_reduction_modifier_fini()
2998         // finalize task reduction:
2999         __kmp_task_reduction_fini(thread, taskgroup);
3000         // cleanup fields in the team structure:
3001         // TODO: is relaxed store enough here (whole barrier should follow)?
3002         __kmp_thread_free(thread, reduce_data);
3003         KMP_ATOMIC_ST_REL(&t->t.t_tg_reduce_data[0], NULL);
3004         KMP_ATOMIC_ST_REL(&t->t.t_tg_fini_counter[0], 0);
3005       } else {
3006         // we are not the last thread passing __kmpc_reduction_modifier_fini(),
3007         // so do not finalize reduction, just clean own copy of the data
3008         __kmp_task_reduction_clean(thread, taskgroup);
3009       }
3010     } else if ((reduce_data = KMP_ATOMIC_LD_ACQ(&t->t.t_tg_reduce_data[1])) !=
3011                    NULL &&
3012                ((kmp_taskred_data_t *)reduce_data)[0].reduce_priv == priv0) {
3013       // finishing task reduction on worksharing
3014       cnt = KMP_ATOMIC_INC(&t->t.t_tg_fini_counter[1]);
3015       if (cnt == thread->th.th_team_nproc - 1) {
3016         // we are the last thread passing __kmpc_reduction_modifier_fini()
3017         __kmp_task_reduction_fini(thread, taskgroup);
3018         // cleanup fields in team structure:
3019         // TODO: is relaxed store enough here (whole barrier should follow)?
3020         __kmp_thread_free(thread, reduce_data);
3021         KMP_ATOMIC_ST_REL(&t->t.t_tg_reduce_data[1], NULL);
3022         KMP_ATOMIC_ST_REL(&t->t.t_tg_fini_counter[1], 0);
3023       } else {
3024         // we are not the last thread passing __kmpc_reduction_modifier_fini(),
3025         // so do not finalize reduction, just clean own copy of the data
3026         __kmp_task_reduction_clean(thread, taskgroup);
3027       }
3028     } else {
3029       // finishing task reduction on taskgroup
3030       __kmp_task_reduction_fini(thread, taskgroup);
3031     }
3032   }
3033   // Restore parent taskgroup for the current task
3034   taskdata->td_taskgroup = taskgroup->parent;
3035   __kmp_thread_free(thread, taskgroup);
3036 
3037   KA_TRACE(10, ("__kmpc_end_taskgroup(exit): T#%d task %p finished waiting\n",
3038                 gtid, taskdata));
3039 
3040 #if OMPT_SUPPORT && OMPT_OPTIONAL
3041   if (UNLIKELY(ompt_enabled.ompt_callback_sync_region)) {
3042     ompt_callbacks.ompt_callback(ompt_callback_sync_region)(
3043         ompt_sync_region_taskgroup, ompt_scope_end, &(my_parallel_data),
3044         &(my_task_data), codeptr);
3045   }
3046 #endif
3047 }
3048 
3049 static kmp_task_t *__kmp_get_priority_task(kmp_int32 gtid,
3050                                            kmp_task_team_t *task_team,
3051                                            kmp_int32 is_constrained) {
3052   kmp_task_t *task = NULL;
3053   kmp_taskdata_t *taskdata;
3054   kmp_taskdata_t *current;
3055   kmp_thread_data_t *thread_data;
3056   int ntasks = task_team->tt.tt_num_task_pri;
3057   if (ntasks == 0) {
3058     KA_TRACE(
3059         20, ("__kmp_get_priority_task(exit #1): T#%d No tasks to get\n", gtid));
3060     return NULL;
3061   }
3062   do {
3063     // decrement num_tasks to "reserve" one task to get for execution
3064     if (__kmp_atomic_compare_store(&task_team->tt.tt_num_task_pri, ntasks,
3065                                    ntasks - 1))
3066       break;
3067     ntasks = task_team->tt.tt_num_task_pri;
3068   } while (ntasks > 0);
3069   if (ntasks == 0) {
3070     KA_TRACE(20, ("__kmp_get_priority_task(exit #2): T#%d No tasks to get\n",
3071                   __kmp_get_gtid()));
3072     return NULL;
3073   }
3074   // We got a "ticket" to get a "reserved" priority task
3075   int deque_ntasks;
3076   kmp_task_pri_t *list = task_team->tt.tt_task_pri_list;
3077   do {
3078     KMP_ASSERT(list != NULL);
3079     thread_data = &list->td;
3080     __kmp_acquire_bootstrap_lock(&thread_data->td.td_deque_lock);
3081     deque_ntasks = thread_data->td.td_deque_ntasks;
3082     if (deque_ntasks == 0) {
3083       __kmp_release_bootstrap_lock(&thread_data->td.td_deque_lock);
3084       KA_TRACE(20, ("__kmp_get_priority_task: T#%d No tasks to get from %p\n",
3085                     __kmp_get_gtid(), thread_data));
3086       list = list->next;
3087     }
3088   } while (deque_ntasks == 0);
3089   KMP_DEBUG_ASSERT(deque_ntasks);
3090   int target = thread_data->td.td_deque_head;
3091   current = __kmp_threads[gtid]->th.th_current_task;
3092   taskdata = thread_data->td.td_deque[target];
3093   if (__kmp_task_is_allowed(gtid, is_constrained, taskdata, current)) {
3094     // Bump head pointer and Wrap.
3095     thread_data->td.td_deque_head =
3096         (target + 1) & TASK_DEQUE_MASK(thread_data->td);
3097   } else {
3098     if (!task_team->tt.tt_untied_task_encountered) {
3099       // The TSC does not allow to steal victim task
3100       __kmp_release_bootstrap_lock(&thread_data->td.td_deque_lock);
3101       KA_TRACE(20, ("__kmp_get_priority_task(exit #3): T#%d could not get task "
3102                     "from %p: task_team=%p ntasks=%d head=%u tail=%u\n",
3103                     gtid, thread_data, task_team, deque_ntasks, target,
3104                     thread_data->td.td_deque_tail));
3105       task_team->tt.tt_num_task_pri++; // atomic inc, restore value
3106       return NULL;
3107     }
3108     int i;
3109     // walk through the deque trying to steal any task
3110     taskdata = NULL;
3111     for (i = 1; i < deque_ntasks; ++i) {
3112       target = (target + 1) & TASK_DEQUE_MASK(thread_data->td);
3113       taskdata = thread_data->td.td_deque[target];
3114       if (__kmp_task_is_allowed(gtid, is_constrained, taskdata, current)) {
3115         break; // found task to execute
3116       } else {
3117         taskdata = NULL;
3118       }
3119     }
3120     if (taskdata == NULL) {
3121       // No appropriate candidate found to execute
3122       __kmp_release_bootstrap_lock(&thread_data->td.td_deque_lock);
3123       KA_TRACE(
3124           10, ("__kmp_get_priority_task(exit #4): T#%d could not get task from "
3125                "%p: task_team=%p ntasks=%d head=%u tail=%u\n",
3126                gtid, thread_data, task_team, deque_ntasks,
3127                thread_data->td.td_deque_head, thread_data->td.td_deque_tail));
3128       task_team->tt.tt_num_task_pri++; // atomic inc, restore value
3129       return NULL;
3130     }
3131     int prev = target;
3132     for (i = i + 1; i < deque_ntasks; ++i) {
3133       // shift remaining tasks in the deque left by 1
3134       target = (target + 1) & TASK_DEQUE_MASK(thread_data->td);
3135       thread_data->td.td_deque[prev] = thread_data->td.td_deque[target];
3136       prev = target;
3137     }
3138     KMP_DEBUG_ASSERT(
3139         thread_data->td.td_deque_tail ==
3140         (kmp_uint32)((target + 1) & TASK_DEQUE_MASK(thread_data->td)));
3141     thread_data->td.td_deque_tail = target; // tail -= 1 (wrapped))
3142   }
3143   thread_data->td.td_deque_ntasks = deque_ntasks - 1;
3144   __kmp_release_bootstrap_lock(&thread_data->td.td_deque_lock);
3145   task = KMP_TASKDATA_TO_TASK(taskdata);
3146   return task;
3147 }
3148 
3149 // __kmp_remove_my_task: remove a task from my own deque
3150 static kmp_task_t *__kmp_remove_my_task(kmp_info_t *thread, kmp_int32 gtid,
3151                                         kmp_task_team_t *task_team,
3152                                         kmp_int32 is_constrained) {
3153   kmp_task_t *task;
3154   kmp_taskdata_t *taskdata;
3155   kmp_thread_data_t *thread_data;
3156   kmp_uint32 tail;
3157 
3158   KMP_DEBUG_ASSERT(__kmp_tasking_mode != tskm_immediate_exec);
3159   KMP_DEBUG_ASSERT(task_team->tt.tt_threads_data !=
3160                    NULL); // Caller should check this condition
3161 
3162   thread_data = &task_team->tt.tt_threads_data[__kmp_tid_from_gtid(gtid)];
3163 
3164   KA_TRACE(10, ("__kmp_remove_my_task(enter): T#%d ntasks=%d head=%u tail=%u\n",
3165                 gtid, thread_data->td.td_deque_ntasks,
3166                 thread_data->td.td_deque_head, thread_data->td.td_deque_tail));
3167 
3168   if (TCR_4(thread_data->td.td_deque_ntasks) == 0) {
3169     KA_TRACE(10,
3170              ("__kmp_remove_my_task(exit #1): T#%d No tasks to remove: "
3171               "ntasks=%d head=%u tail=%u\n",
3172               gtid, thread_data->td.td_deque_ntasks,
3173               thread_data->td.td_deque_head, thread_data->td.td_deque_tail));
3174     return NULL;
3175   }
3176 
3177   __kmp_acquire_bootstrap_lock(&thread_data->td.td_deque_lock);
3178 
3179   if (TCR_4(thread_data->td.td_deque_ntasks) == 0) {
3180     __kmp_release_bootstrap_lock(&thread_data->td.td_deque_lock);
3181     KA_TRACE(10,
3182              ("__kmp_remove_my_task(exit #2): T#%d No tasks to remove: "
3183               "ntasks=%d head=%u tail=%u\n",
3184               gtid, thread_data->td.td_deque_ntasks,
3185               thread_data->td.td_deque_head, thread_data->td.td_deque_tail));
3186     return NULL;
3187   }
3188 
3189   tail = (thread_data->td.td_deque_tail - 1) &
3190          TASK_DEQUE_MASK(thread_data->td); // Wrap index.
3191   taskdata = thread_data->td.td_deque[tail];
3192 
3193   if (!__kmp_task_is_allowed(gtid, is_constrained, taskdata,
3194                              thread->th.th_current_task)) {
3195     // The TSC does not allow to steal victim task
3196     __kmp_release_bootstrap_lock(&thread_data->td.td_deque_lock);
3197     KA_TRACE(10,
3198              ("__kmp_remove_my_task(exit #3): T#%d TSC blocks tail task: "
3199               "ntasks=%d head=%u tail=%u\n",
3200               gtid, thread_data->td.td_deque_ntasks,
3201               thread_data->td.td_deque_head, thread_data->td.td_deque_tail));
3202     return NULL;
3203   }
3204 
3205   thread_data->td.td_deque_tail = tail;
3206   TCW_4(thread_data->td.td_deque_ntasks, thread_data->td.td_deque_ntasks - 1);
3207 
3208   __kmp_release_bootstrap_lock(&thread_data->td.td_deque_lock);
3209 
3210   KA_TRACE(10, ("__kmp_remove_my_task(exit #4): T#%d task %p removed: "
3211                 "ntasks=%d head=%u tail=%u\n",
3212                 gtid, taskdata, thread_data->td.td_deque_ntasks,
3213                 thread_data->td.td_deque_head, thread_data->td.td_deque_tail));
3214 
3215   task = KMP_TASKDATA_TO_TASK(taskdata);
3216   return task;
3217 }
3218 
3219 // __kmp_steal_task: remove a task from another thread's deque
3220 // Assume that calling thread has already checked existence of
3221 // task_team thread_data before calling this routine.
3222 static kmp_task_t *__kmp_steal_task(kmp_info_t *victim_thr, kmp_int32 gtid,
3223                                     kmp_task_team_t *task_team,
3224                                     std::atomic<kmp_int32> *unfinished_threads,
3225                                     int *thread_finished,
3226                                     kmp_int32 is_constrained) {
3227   kmp_task_t *task;
3228   kmp_taskdata_t *taskdata;
3229   kmp_taskdata_t *current;
3230   kmp_thread_data_t *victim_td, *threads_data;
3231   kmp_int32 target;
3232   kmp_int32 victim_tid;
3233 
3234   KMP_DEBUG_ASSERT(__kmp_tasking_mode != tskm_immediate_exec);
3235 
3236   threads_data = task_team->tt.tt_threads_data;
3237   KMP_DEBUG_ASSERT(threads_data != NULL); // Caller should check this condition
3238 
3239   victim_tid = victim_thr->th.th_info.ds.ds_tid;
3240   victim_td = &threads_data[victim_tid];
3241 
3242   KA_TRACE(10, ("__kmp_steal_task(enter): T#%d try to steal from T#%d: "
3243                 "task_team=%p ntasks=%d head=%u tail=%u\n",
3244                 gtid, __kmp_gtid_from_thread(victim_thr), task_team,
3245                 victim_td->td.td_deque_ntasks, victim_td->td.td_deque_head,
3246                 victim_td->td.td_deque_tail));
3247 
3248   if (TCR_4(victim_td->td.td_deque_ntasks) == 0) {
3249     KA_TRACE(10, ("__kmp_steal_task(exit #1): T#%d could not steal from T#%d: "
3250                   "task_team=%p ntasks=%d head=%u tail=%u\n",
3251                   gtid, __kmp_gtid_from_thread(victim_thr), task_team,
3252                   victim_td->td.td_deque_ntasks, victim_td->td.td_deque_head,
3253                   victim_td->td.td_deque_tail));
3254     return NULL;
3255   }
3256 
3257   __kmp_acquire_bootstrap_lock(&victim_td->td.td_deque_lock);
3258 
3259   int ntasks = TCR_4(victim_td->td.td_deque_ntasks);
3260   // Check again after we acquire the lock
3261   if (ntasks == 0) {
3262     __kmp_release_bootstrap_lock(&victim_td->td.td_deque_lock);
3263     KA_TRACE(10, ("__kmp_steal_task(exit #2): T#%d could not steal from T#%d: "
3264                   "task_team=%p ntasks=%d head=%u tail=%u\n",
3265                   gtid, __kmp_gtid_from_thread(victim_thr), task_team, ntasks,
3266                   victim_td->td.td_deque_head, victim_td->td.td_deque_tail));
3267     return NULL;
3268   }
3269 
3270   KMP_DEBUG_ASSERT(victim_td->td.td_deque != NULL);
3271   current = __kmp_threads[gtid]->th.th_current_task;
3272   taskdata = victim_td->td.td_deque[victim_td->td.td_deque_head];
3273   if (__kmp_task_is_allowed(gtid, is_constrained, taskdata, current)) {
3274     // Bump head pointer and Wrap.
3275     victim_td->td.td_deque_head =
3276         (victim_td->td.td_deque_head + 1) & TASK_DEQUE_MASK(victim_td->td);
3277   } else {
3278     if (!task_team->tt.tt_untied_task_encountered) {
3279       // The TSC does not allow to steal victim task
3280       __kmp_release_bootstrap_lock(&victim_td->td.td_deque_lock);
3281       KA_TRACE(10, ("__kmp_steal_task(exit #3): T#%d could not steal from "
3282                     "T#%d: task_team=%p ntasks=%d head=%u tail=%u\n",
3283                     gtid, __kmp_gtid_from_thread(victim_thr), task_team, ntasks,
3284                     victim_td->td.td_deque_head, victim_td->td.td_deque_tail));
3285       return NULL;
3286     }
3287     int i;
3288     // walk through victim's deque trying to steal any task
3289     target = victim_td->td.td_deque_head;
3290     taskdata = NULL;
3291     for (i = 1; i < ntasks; ++i) {
3292       target = (target + 1) & TASK_DEQUE_MASK(victim_td->td);
3293       taskdata = victim_td->td.td_deque[target];
3294       if (__kmp_task_is_allowed(gtid, is_constrained, taskdata, current)) {
3295         break; // found victim task
3296       } else {
3297         taskdata = NULL;
3298       }
3299     }
3300     if (taskdata == NULL) {
3301       // No appropriate candidate to steal found
3302       __kmp_release_bootstrap_lock(&victim_td->td.td_deque_lock);
3303       KA_TRACE(10, ("__kmp_steal_task(exit #4): T#%d could not steal from "
3304                     "T#%d: task_team=%p ntasks=%d head=%u tail=%u\n",
3305                     gtid, __kmp_gtid_from_thread(victim_thr), task_team, ntasks,
3306                     victim_td->td.td_deque_head, victim_td->td.td_deque_tail));
3307       return NULL;
3308     }
3309     int prev = target;
3310     for (i = i + 1; i < ntasks; ++i) {
3311       // shift remaining tasks in the deque left by 1
3312       target = (target + 1) & TASK_DEQUE_MASK(victim_td->td);
3313       victim_td->td.td_deque[prev] = victim_td->td.td_deque[target];
3314       prev = target;
3315     }
3316     KMP_DEBUG_ASSERT(
3317         victim_td->td.td_deque_tail ==
3318         (kmp_uint32)((target + 1) & TASK_DEQUE_MASK(victim_td->td)));
3319     victim_td->td.td_deque_tail = target; // tail -= 1 (wrapped))
3320   }
3321   if (*thread_finished) {
3322     // We need to un-mark this victim as a finished victim.  This must be done
3323     // before releasing the lock, or else other threads (starting with the
3324     // primary thread victim) might be prematurely released from the barrier!!!
3325 #if KMP_DEBUG
3326     kmp_int32 count =
3327 #endif
3328         KMP_ATOMIC_INC(unfinished_threads);
3329     KA_TRACE(
3330         20,
3331         ("__kmp_steal_task: T#%d inc unfinished_threads to %d: task_team=%p\n",
3332          gtid, count + 1, task_team));
3333     *thread_finished = FALSE;
3334   }
3335   TCW_4(victim_td->td.td_deque_ntasks, ntasks - 1);
3336 
3337   __kmp_release_bootstrap_lock(&victim_td->td.td_deque_lock);
3338 
3339   KMP_COUNT_BLOCK(TASK_stolen);
3340   KA_TRACE(10,
3341            ("__kmp_steal_task(exit #5): T#%d stole task %p from T#%d: "
3342             "task_team=%p ntasks=%d head=%u tail=%u\n",
3343             gtid, taskdata, __kmp_gtid_from_thread(victim_thr), task_team,
3344             ntasks, victim_td->td.td_deque_head, victim_td->td.td_deque_tail));
3345 
3346   task = KMP_TASKDATA_TO_TASK(taskdata);
3347   return task;
3348 }
3349 
3350 // __kmp_execute_tasks_template: Choose and execute tasks until either the
3351 // condition is statisfied (return true) or there are none left (return false).
3352 //
3353 // final_spin is TRUE if this is the spin at the release barrier.
3354 // thread_finished indicates whether the thread is finished executing all
3355 // the tasks it has on its deque, and is at the release barrier.
3356 // spinner is the location on which to spin.
3357 // spinner == NULL means only execute a single task and return.
3358 // checker is the value to check to terminate the spin.
3359 template <class C>
3360 static inline int __kmp_execute_tasks_template(
3361     kmp_info_t *thread, kmp_int32 gtid, C *flag, int final_spin,
3362     int *thread_finished USE_ITT_BUILD_ARG(void *itt_sync_obj),
3363     kmp_int32 is_constrained) {
3364   kmp_task_team_t *task_team = thread->th.th_task_team;
3365   kmp_thread_data_t *threads_data;
3366   kmp_task_t *task;
3367   kmp_info_t *other_thread;
3368   kmp_taskdata_t *current_task = thread->th.th_current_task;
3369   std::atomic<kmp_int32> *unfinished_threads;
3370   kmp_int32 nthreads, victim_tid = -2, use_own_tasks = 1, new_victim = 0,
3371                       tid = thread->th.th_info.ds.ds_tid;
3372 
3373   KMP_DEBUG_ASSERT(__kmp_tasking_mode != tskm_immediate_exec);
3374   KMP_DEBUG_ASSERT(thread == __kmp_threads[gtid]);
3375 
3376   if (task_team == NULL || current_task == NULL)
3377     return FALSE;
3378 
3379   KA_TRACE(15, ("__kmp_execute_tasks_template(enter): T#%d final_spin=%d "
3380                 "*thread_finished=%d\n",
3381                 gtid, final_spin, *thread_finished));
3382 
3383   thread->th.th_reap_state = KMP_NOT_SAFE_TO_REAP;
3384   threads_data = (kmp_thread_data_t *)TCR_PTR(task_team->tt.tt_threads_data);
3385 
3386   KMP_DEBUG_ASSERT(threads_data != NULL);
3387 
3388   nthreads = task_team->tt.tt_nproc;
3389   unfinished_threads = &(task_team->tt.tt_unfinished_threads);
3390   KMP_DEBUG_ASSERT(nthreads > 1 || task_team->tt.tt_found_proxy_tasks ||
3391                    task_team->tt.tt_hidden_helper_task_encountered);
3392   KMP_DEBUG_ASSERT(*unfinished_threads >= 0);
3393 
3394   while (1) { // Outer loop keeps trying to find tasks in case of single thread
3395     // getting tasks from target constructs
3396     while (1) { // Inner loop to find a task and execute it
3397       task = NULL;
3398       if (task_team->tt.tt_num_task_pri) { // get priority task first
3399         task = __kmp_get_priority_task(gtid, task_team, is_constrained);
3400       }
3401       if (task == NULL && use_own_tasks) { // check own queue next
3402         task = __kmp_remove_my_task(thread, gtid, task_team, is_constrained);
3403       }
3404       if ((task == NULL) && (nthreads > 1)) { // Steal a task finally
3405         int asleep = 1;
3406         use_own_tasks = 0;
3407         // Try to steal from the last place I stole from successfully.
3408         if (victim_tid == -2) { // haven't stolen anything yet
3409           victim_tid = threads_data[tid].td.td_deque_last_stolen;
3410           if (victim_tid !=
3411               -1) // if we have a last stolen from victim, get the thread
3412             other_thread = threads_data[victim_tid].td.td_thr;
3413         }
3414         if (victim_tid != -1) { // found last victim
3415           asleep = 0;
3416         } else if (!new_victim) { // no recent steals and we haven't already
3417           // used a new victim; select a random thread
3418           do { // Find a different thread to steal work from.
3419             // Pick a random thread. Initial plan was to cycle through all the
3420             // threads, and only return if we tried to steal from every thread,
3421             // and failed.  Arch says that's not such a great idea.
3422             victim_tid = __kmp_get_random(thread) % (nthreads - 1);
3423             if (victim_tid >= tid) {
3424               ++victim_tid; // Adjusts random distribution to exclude self
3425             }
3426             // Found a potential victim
3427             other_thread = threads_data[victim_tid].td.td_thr;
3428             // There is a slight chance that __kmp_enable_tasking() did not wake
3429             // up all threads waiting at the barrier.  If victim is sleeping,
3430             // then wake it up. Since we were going to pay the cache miss
3431             // penalty for referencing another thread's kmp_info_t struct
3432             // anyway,
3433             // the check shouldn't cost too much performance at this point. In
3434             // extra barrier mode, tasks do not sleep at the separate tasking
3435             // barrier, so this isn't a problem.
3436             asleep = 0;
3437             if ((__kmp_tasking_mode == tskm_task_teams) &&
3438                 (__kmp_dflt_blocktime != KMP_MAX_BLOCKTIME) &&
3439                 (TCR_PTR(CCAST(void *, other_thread->th.th_sleep_loc)) !=
3440                  NULL)) {
3441               asleep = 1;
3442               __kmp_null_resume_wrapper(other_thread);
3443               // A sleeping thread should not have any tasks on it's queue.
3444               // There is a slight possibility that it resumes, steals a task
3445               // from another thread, which spawns more tasks, all in the time
3446               // that it takes this thread to check => don't write an assertion
3447               // that the victim's queue is empty.  Try stealing from a
3448               // different thread.
3449             }
3450           } while (asleep);
3451         }
3452 
3453         if (!asleep) {
3454           // We have a victim to try to steal from
3455           task = __kmp_steal_task(other_thread, gtid, task_team,
3456                                   unfinished_threads, thread_finished,
3457                                   is_constrained);
3458         }
3459         if (task != NULL) { // set last stolen to victim
3460           if (threads_data[tid].td.td_deque_last_stolen != victim_tid) {
3461             threads_data[tid].td.td_deque_last_stolen = victim_tid;
3462             // The pre-refactored code did not try more than 1 successful new
3463             // vicitm, unless the last one generated more local tasks;
3464             // new_victim keeps track of this
3465             new_victim = 1;
3466           }
3467         } else { // No tasks found; unset last_stolen
3468           KMP_CHECK_UPDATE(threads_data[tid].td.td_deque_last_stolen, -1);
3469           victim_tid = -2; // no successful victim found
3470         }
3471       }
3472 
3473       if (task == NULL)
3474         break; // break out of tasking loop
3475 
3476 // Found a task; execute it
3477 #if USE_ITT_BUILD && USE_ITT_NOTIFY
3478       if (__itt_sync_create_ptr || KMP_ITT_DEBUG) {
3479         if (itt_sync_obj == NULL) { // we are at fork barrier where we could not
3480           // get the object reliably
3481           itt_sync_obj = __kmp_itt_barrier_object(gtid, bs_forkjoin_barrier);
3482         }
3483         __kmp_itt_task_starting(itt_sync_obj);
3484       }
3485 #endif /* USE_ITT_BUILD && USE_ITT_NOTIFY */
3486       __kmp_invoke_task(gtid, task, current_task);
3487 #if USE_ITT_BUILD
3488       if (itt_sync_obj != NULL)
3489         __kmp_itt_task_finished(itt_sync_obj);
3490 #endif /* USE_ITT_BUILD */
3491       // If this thread is only partway through the barrier and the condition is
3492       // met, then return now, so that the barrier gather/release pattern can
3493       // proceed. If this thread is in the last spin loop in the barrier,
3494       // waiting to be released, we know that the termination condition will not
3495       // be satisfied, so don't waste any cycles checking it.
3496       if (flag == NULL || (!final_spin && flag->done_check())) {
3497         KA_TRACE(
3498             15,
3499             ("__kmp_execute_tasks_template: T#%d spin condition satisfied\n",
3500              gtid));
3501         return TRUE;
3502       }
3503       if (thread->th.th_task_team == NULL) {
3504         break;
3505       }
3506       KMP_YIELD(__kmp_library == library_throughput); // Yield before next task
3507       // If execution of a stolen task results in more tasks being placed on our
3508       // run queue, reset use_own_tasks
3509       if (!use_own_tasks && TCR_4(threads_data[tid].td.td_deque_ntasks) != 0) {
3510         KA_TRACE(20, ("__kmp_execute_tasks_template: T#%d stolen task spawned "
3511                       "other tasks, restart\n",
3512                       gtid));
3513         use_own_tasks = 1;
3514         new_victim = 0;
3515       }
3516     }
3517 
3518     // The task source has been exhausted. If in final spin loop of barrier,
3519     // check if termination condition is satisfied. The work queue may be empty
3520     // but there might be proxy tasks still executing.
3521     if (final_spin &&
3522         KMP_ATOMIC_LD_ACQ(&current_task->td_incomplete_child_tasks) == 0) {
3523       // First, decrement the #unfinished threads, if that has not already been
3524       // done.  This decrement might be to the spin location, and result in the
3525       // termination condition being satisfied.
3526       if (!*thread_finished) {
3527 #if KMP_DEBUG
3528         kmp_int32 count = -1 +
3529 #endif
3530             KMP_ATOMIC_DEC(unfinished_threads);
3531         KA_TRACE(20, ("__kmp_execute_tasks_template: T#%d dec "
3532                       "unfinished_threads to %d task_team=%p\n",
3533                       gtid, count, task_team));
3534         *thread_finished = TRUE;
3535       }
3536 
3537       // It is now unsafe to reference thread->th.th_team !!!
3538       // Decrementing task_team->tt.tt_unfinished_threads can allow the primary
3539       // thread to pass through the barrier, where it might reset each thread's
3540       // th.th_team field for the next parallel region. If we can steal more
3541       // work, we know that this has not happened yet.
3542       if (flag != NULL && flag->done_check()) {
3543         KA_TRACE(
3544             15,
3545             ("__kmp_execute_tasks_template: T#%d spin condition satisfied\n",
3546              gtid));
3547         return TRUE;
3548       }
3549     }
3550 
3551     // If this thread's task team is NULL, primary thread has recognized that
3552     // there are no more tasks; bail out
3553     if (thread->th.th_task_team == NULL) {
3554       KA_TRACE(15,
3555                ("__kmp_execute_tasks_template: T#%d no more tasks\n", gtid));
3556       return FALSE;
3557     }
3558 
3559     // Check the flag again to see if it has already done in case to be trapped
3560     // into infinite loop when a if0 task depends on a hidden helper task
3561     // outside any parallel region. Detached tasks are not impacted in this case
3562     // because the only thread executing this function has to execute the proxy
3563     // task so it is in another code path that has the same check.
3564     if (flag == NULL || (!final_spin && flag->done_check())) {
3565       KA_TRACE(15,
3566                ("__kmp_execute_tasks_template: T#%d spin condition satisfied\n",
3567                 gtid));
3568       return TRUE;
3569     }
3570 
3571     // We could be getting tasks from target constructs; if this is the only
3572     // thread, keep trying to execute tasks from own queue
3573     if (nthreads == 1 &&
3574         KMP_ATOMIC_LD_ACQ(&current_task->td_incomplete_child_tasks))
3575       use_own_tasks = 1;
3576     else {
3577       KA_TRACE(15,
3578                ("__kmp_execute_tasks_template: T#%d can't find work\n", gtid));
3579       return FALSE;
3580     }
3581   }
3582 }
3583 
3584 template <bool C, bool S>
3585 int __kmp_execute_tasks_32(
3586     kmp_info_t *thread, kmp_int32 gtid, kmp_flag_32<C, S> *flag, int final_spin,
3587     int *thread_finished USE_ITT_BUILD_ARG(void *itt_sync_obj),
3588     kmp_int32 is_constrained) {
3589   return __kmp_execute_tasks_template(
3590       thread, gtid, flag, final_spin,
3591       thread_finished USE_ITT_BUILD_ARG(itt_sync_obj), is_constrained);
3592 }
3593 
3594 template <bool C, bool S>
3595 int __kmp_execute_tasks_64(
3596     kmp_info_t *thread, kmp_int32 gtid, kmp_flag_64<C, S> *flag, int final_spin,
3597     int *thread_finished USE_ITT_BUILD_ARG(void *itt_sync_obj),
3598     kmp_int32 is_constrained) {
3599   return __kmp_execute_tasks_template(
3600       thread, gtid, flag, final_spin,
3601       thread_finished USE_ITT_BUILD_ARG(itt_sync_obj), is_constrained);
3602 }
3603 
3604 template <bool C, bool S>
3605 int __kmp_atomic_execute_tasks_64(
3606     kmp_info_t *thread, kmp_int32 gtid, kmp_atomic_flag_64<C, S> *flag,
3607     int final_spin, int *thread_finished USE_ITT_BUILD_ARG(void *itt_sync_obj),
3608     kmp_int32 is_constrained) {
3609   return __kmp_execute_tasks_template(
3610       thread, gtid, flag, final_spin,
3611       thread_finished USE_ITT_BUILD_ARG(itt_sync_obj), is_constrained);
3612 }
3613 
3614 int __kmp_execute_tasks_oncore(
3615     kmp_info_t *thread, kmp_int32 gtid, kmp_flag_oncore *flag, int final_spin,
3616     int *thread_finished USE_ITT_BUILD_ARG(void *itt_sync_obj),
3617     kmp_int32 is_constrained) {
3618   return __kmp_execute_tasks_template(
3619       thread, gtid, flag, final_spin,
3620       thread_finished USE_ITT_BUILD_ARG(itt_sync_obj), is_constrained);
3621 }
3622 
3623 template int
3624 __kmp_execute_tasks_32<false, false>(kmp_info_t *, kmp_int32,
3625                                      kmp_flag_32<false, false> *, int,
3626                                      int *USE_ITT_BUILD_ARG(void *), kmp_int32);
3627 
3628 template int __kmp_execute_tasks_64<false, true>(kmp_info_t *, kmp_int32,
3629                                                  kmp_flag_64<false, true> *,
3630                                                  int,
3631                                                  int *USE_ITT_BUILD_ARG(void *),
3632                                                  kmp_int32);
3633 
3634 template int __kmp_execute_tasks_64<true, false>(kmp_info_t *, kmp_int32,
3635                                                  kmp_flag_64<true, false> *,
3636                                                  int,
3637                                                  int *USE_ITT_BUILD_ARG(void *),
3638                                                  kmp_int32);
3639 
3640 template int __kmp_atomic_execute_tasks_64<false, true>(
3641     kmp_info_t *, kmp_int32, kmp_atomic_flag_64<false, true> *, int,
3642     int *USE_ITT_BUILD_ARG(void *), kmp_int32);
3643 
3644 template int __kmp_atomic_execute_tasks_64<true, false>(
3645     kmp_info_t *, kmp_int32, kmp_atomic_flag_64<true, false> *, int,
3646     int *USE_ITT_BUILD_ARG(void *), kmp_int32);
3647 
3648 // __kmp_enable_tasking: Allocate task team and resume threads sleeping at the
3649 // next barrier so they can assist in executing enqueued tasks.
3650 // First thread in allocates the task team atomically.
3651 static void __kmp_enable_tasking(kmp_task_team_t *task_team,
3652                                  kmp_info_t *this_thr) {
3653   kmp_thread_data_t *threads_data;
3654   int nthreads, i, is_init_thread;
3655 
3656   KA_TRACE(10, ("__kmp_enable_tasking(enter): T#%d\n",
3657                 __kmp_gtid_from_thread(this_thr)));
3658 
3659   KMP_DEBUG_ASSERT(task_team != NULL);
3660   KMP_DEBUG_ASSERT(this_thr->th.th_team != NULL);
3661 
3662   nthreads = task_team->tt.tt_nproc;
3663   KMP_DEBUG_ASSERT(nthreads > 0);
3664   KMP_DEBUG_ASSERT(nthreads == this_thr->th.th_team->t.t_nproc);
3665 
3666   // Allocate or increase the size of threads_data if necessary
3667   is_init_thread = __kmp_realloc_task_threads_data(this_thr, task_team);
3668 
3669   if (!is_init_thread) {
3670     // Some other thread already set up the array.
3671     KA_TRACE(
3672         20,
3673         ("__kmp_enable_tasking(exit): T#%d: threads array already set up.\n",
3674          __kmp_gtid_from_thread(this_thr)));
3675     return;
3676   }
3677   threads_data = (kmp_thread_data_t *)TCR_PTR(task_team->tt.tt_threads_data);
3678   KMP_DEBUG_ASSERT(threads_data != NULL);
3679 
3680   if (__kmp_tasking_mode == tskm_task_teams &&
3681       (__kmp_dflt_blocktime != KMP_MAX_BLOCKTIME)) {
3682     // Release any threads sleeping at the barrier, so that they can steal
3683     // tasks and execute them.  In extra barrier mode, tasks do not sleep
3684     // at the separate tasking barrier, so this isn't a problem.
3685     for (i = 0; i < nthreads; i++) {
3686       void *sleep_loc;
3687       kmp_info_t *thread = threads_data[i].td.td_thr;
3688 
3689       if (i == this_thr->th.th_info.ds.ds_tid) {
3690         continue;
3691       }
3692       // Since we haven't locked the thread's suspend mutex lock at this
3693       // point, there is a small window where a thread might be putting
3694       // itself to sleep, but hasn't set the th_sleep_loc field yet.
3695       // To work around this, __kmp_execute_tasks_template() periodically checks
3696       // see if other threads are sleeping (using the same random mechanism that
3697       // is used for task stealing) and awakens them if they are.
3698       if ((sleep_loc = TCR_PTR(CCAST(void *, thread->th.th_sleep_loc))) !=
3699           NULL) {
3700         KF_TRACE(50, ("__kmp_enable_tasking: T#%d waking up thread T#%d\n",
3701                       __kmp_gtid_from_thread(this_thr),
3702                       __kmp_gtid_from_thread(thread)));
3703         __kmp_null_resume_wrapper(thread);
3704       } else {
3705         KF_TRACE(50, ("__kmp_enable_tasking: T#%d don't wake up thread T#%d\n",
3706                       __kmp_gtid_from_thread(this_thr),
3707                       __kmp_gtid_from_thread(thread)));
3708       }
3709     }
3710   }
3711 
3712   KA_TRACE(10, ("__kmp_enable_tasking(exit): T#%d\n",
3713                 __kmp_gtid_from_thread(this_thr)));
3714 }
3715 
3716 /* // TODO: Check the comment consistency
3717  * Utility routines for "task teams".  A task team (kmp_task_t) is kind of
3718  * like a shadow of the kmp_team_t data struct, with a different lifetime.
3719  * After a child * thread checks into a barrier and calls __kmp_release() from
3720  * the particular variant of __kmp_<barrier_kind>_barrier_gather(), it can no
3721  * longer assume that the kmp_team_t structure is intact (at any moment, the
3722  * primary thread may exit the barrier code and free the team data structure,
3723  * and return the threads to the thread pool).
3724  *
3725  * This does not work with the tasking code, as the thread is still
3726  * expected to participate in the execution of any tasks that may have been
3727  * spawned my a member of the team, and the thread still needs access to all
3728  * to each thread in the team, so that it can steal work from it.
3729  *
3730  * Enter the existence of the kmp_task_team_t struct.  It employs a reference
3731  * counting mechanism, and is allocated by the primary thread before calling
3732  * __kmp_<barrier_kind>_release, and then is release by the last thread to
3733  * exit __kmp_<barrier_kind>_release at the next barrier.  I.e. the lifetimes
3734  * of the kmp_task_team_t structs for consecutive barriers can overlap
3735  * (and will, unless the primary thread is the last thread to exit the barrier
3736  * release phase, which is not typical). The existence of such a struct is
3737  * useful outside the context of tasking.
3738  *
3739  * We currently use the existence of the threads array as an indicator that
3740  * tasks were spawned since the last barrier.  If the structure is to be
3741  * useful outside the context of tasking, then this will have to change, but
3742  * not setting the field minimizes the performance impact of tasking on
3743  * barriers, when no explicit tasks were spawned (pushed, actually).
3744  */
3745 
3746 static kmp_task_team_t *__kmp_free_task_teams =
3747     NULL; // Free list for task_team data structures
3748 // Lock for task team data structures
3749 kmp_bootstrap_lock_t __kmp_task_team_lock =
3750     KMP_BOOTSTRAP_LOCK_INITIALIZER(__kmp_task_team_lock);
3751 
3752 // __kmp_alloc_task_deque:
3753 // Allocates a task deque for a particular thread, and initialize the necessary
3754 // data structures relating to the deque.  This only happens once per thread
3755 // per task team since task teams are recycled. No lock is needed during
3756 // allocation since each thread allocates its own deque.
3757 static void __kmp_alloc_task_deque(kmp_info_t *thread,
3758                                    kmp_thread_data_t *thread_data) {
3759   __kmp_init_bootstrap_lock(&thread_data->td.td_deque_lock);
3760   KMP_DEBUG_ASSERT(thread_data->td.td_deque == NULL);
3761 
3762   // Initialize last stolen task field to "none"
3763   thread_data->td.td_deque_last_stolen = -1;
3764 
3765   KMP_DEBUG_ASSERT(TCR_4(thread_data->td.td_deque_ntasks) == 0);
3766   KMP_DEBUG_ASSERT(thread_data->td.td_deque_head == 0);
3767   KMP_DEBUG_ASSERT(thread_data->td.td_deque_tail == 0);
3768 
3769   KE_TRACE(
3770       10,
3771       ("__kmp_alloc_task_deque: T#%d allocating deque[%d] for thread_data %p\n",
3772        __kmp_gtid_from_thread(thread), INITIAL_TASK_DEQUE_SIZE, thread_data));
3773   // Allocate space for task deque, and zero the deque
3774   // Cannot use __kmp_thread_calloc() because threads not around for
3775   // kmp_reap_task_team( ).
3776   thread_data->td.td_deque = (kmp_taskdata_t **)__kmp_allocate(
3777       INITIAL_TASK_DEQUE_SIZE * sizeof(kmp_taskdata_t *));
3778   thread_data->td.td_deque_size = INITIAL_TASK_DEQUE_SIZE;
3779 }
3780 
3781 // __kmp_free_task_deque:
3782 // Deallocates a task deque for a particular thread. Happens at library
3783 // deallocation so don't need to reset all thread data fields.
3784 static void __kmp_free_task_deque(kmp_thread_data_t *thread_data) {
3785   if (thread_data->td.td_deque != NULL) {
3786     __kmp_acquire_bootstrap_lock(&thread_data->td.td_deque_lock);
3787     TCW_4(thread_data->td.td_deque_ntasks, 0);
3788     __kmp_free(thread_data->td.td_deque);
3789     thread_data->td.td_deque = NULL;
3790     __kmp_release_bootstrap_lock(&thread_data->td.td_deque_lock);
3791   }
3792 
3793 #ifdef BUILD_TIED_TASK_STACK
3794   // GEH: Figure out what to do here for td_susp_tied_tasks
3795   if (thread_data->td.td_susp_tied_tasks.ts_entries != TASK_STACK_EMPTY) {
3796     __kmp_free_task_stack(__kmp_thread_from_gtid(gtid), thread_data);
3797   }
3798 #endif // BUILD_TIED_TASK_STACK
3799 }
3800 
3801 // __kmp_realloc_task_threads_data:
3802 // Allocates a threads_data array for a task team, either by allocating an
3803 // initial array or enlarging an existing array.  Only the first thread to get
3804 // the lock allocs or enlarges the array and re-initializes the array elements.
3805 // That thread returns "TRUE", the rest return "FALSE".
3806 // Assumes that the new array size is given by task_team -> tt.tt_nproc.
3807 // The current size is given by task_team -> tt.tt_max_threads.
3808 static int __kmp_realloc_task_threads_data(kmp_info_t *thread,
3809                                            kmp_task_team_t *task_team) {
3810   kmp_thread_data_t **threads_data_p;
3811   kmp_int32 nthreads, maxthreads;
3812   int is_init_thread = FALSE;
3813 
3814   if (TCR_4(task_team->tt.tt_found_tasks)) {
3815     // Already reallocated and initialized.
3816     return FALSE;
3817   }
3818 
3819   threads_data_p = &task_team->tt.tt_threads_data;
3820   nthreads = task_team->tt.tt_nproc;
3821   maxthreads = task_team->tt.tt_max_threads;
3822 
3823   // All threads must lock when they encounter the first task of the implicit
3824   // task region to make sure threads_data fields are (re)initialized before
3825   // used.
3826   __kmp_acquire_bootstrap_lock(&task_team->tt.tt_threads_lock);
3827 
3828   if (!TCR_4(task_team->tt.tt_found_tasks)) {
3829     // first thread to enable tasking
3830     kmp_team_t *team = thread->th.th_team;
3831     int i;
3832 
3833     is_init_thread = TRUE;
3834     if (maxthreads < nthreads) {
3835 
3836       if (*threads_data_p != NULL) {
3837         kmp_thread_data_t *old_data = *threads_data_p;
3838         kmp_thread_data_t *new_data = NULL;
3839 
3840         KE_TRACE(
3841             10,
3842             ("__kmp_realloc_task_threads_data: T#%d reallocating "
3843              "threads data for task_team %p, new_size = %d, old_size = %d\n",
3844              __kmp_gtid_from_thread(thread), task_team, nthreads, maxthreads));
3845         // Reallocate threads_data to have more elements than current array
3846         // Cannot use __kmp_thread_realloc() because threads not around for
3847         // kmp_reap_task_team( ).  Note all new array entries are initialized
3848         // to zero by __kmp_allocate().
3849         new_data = (kmp_thread_data_t *)__kmp_allocate(
3850             nthreads * sizeof(kmp_thread_data_t));
3851         // copy old data to new data
3852         KMP_MEMCPY_S((void *)new_data, nthreads * sizeof(kmp_thread_data_t),
3853                      (void *)old_data, maxthreads * sizeof(kmp_thread_data_t));
3854 
3855 #ifdef BUILD_TIED_TASK_STACK
3856         // GEH: Figure out if this is the right thing to do
3857         for (i = maxthreads; i < nthreads; i++) {
3858           kmp_thread_data_t *thread_data = &(*threads_data_p)[i];
3859           __kmp_init_task_stack(__kmp_gtid_from_thread(thread), thread_data);
3860         }
3861 #endif // BUILD_TIED_TASK_STACK
3862        // Install the new data and free the old data
3863         (*threads_data_p) = new_data;
3864         __kmp_free(old_data);
3865       } else {
3866         KE_TRACE(10, ("__kmp_realloc_task_threads_data: T#%d allocating "
3867                       "threads data for task_team %p, size = %d\n",
3868                       __kmp_gtid_from_thread(thread), task_team, nthreads));
3869         // Make the initial allocate for threads_data array, and zero entries
3870         // Cannot use __kmp_thread_calloc() because threads not around for
3871         // kmp_reap_task_team( ).
3872         *threads_data_p = (kmp_thread_data_t *)__kmp_allocate(
3873             nthreads * sizeof(kmp_thread_data_t));
3874 #ifdef BUILD_TIED_TASK_STACK
3875         // GEH: Figure out if this is the right thing to do
3876         for (i = 0; i < nthreads; i++) {
3877           kmp_thread_data_t *thread_data = &(*threads_data_p)[i];
3878           __kmp_init_task_stack(__kmp_gtid_from_thread(thread), thread_data);
3879         }
3880 #endif // BUILD_TIED_TASK_STACK
3881       }
3882       task_team->tt.tt_max_threads = nthreads;
3883     } else {
3884       // If array has (more than) enough elements, go ahead and use it
3885       KMP_DEBUG_ASSERT(*threads_data_p != NULL);
3886     }
3887 
3888     // initialize threads_data pointers back to thread_info structures
3889     for (i = 0; i < nthreads; i++) {
3890       kmp_thread_data_t *thread_data = &(*threads_data_p)[i];
3891       thread_data->td.td_thr = team->t.t_threads[i];
3892 
3893       if (thread_data->td.td_deque_last_stolen >= nthreads) {
3894         // The last stolen field survives across teams / barrier, and the number
3895         // of threads may have changed.  It's possible (likely?) that a new
3896         // parallel region will exhibit the same behavior as previous region.
3897         thread_data->td.td_deque_last_stolen = -1;
3898       }
3899     }
3900 
3901     KMP_MB();
3902     TCW_SYNC_4(task_team->tt.tt_found_tasks, TRUE);
3903   }
3904 
3905   __kmp_release_bootstrap_lock(&task_team->tt.tt_threads_lock);
3906   return is_init_thread;
3907 }
3908 
3909 // __kmp_free_task_threads_data:
3910 // Deallocates a threads_data array for a task team, including any attached
3911 // tasking deques.  Only occurs at library shutdown.
3912 static void __kmp_free_task_threads_data(kmp_task_team_t *task_team) {
3913   __kmp_acquire_bootstrap_lock(&task_team->tt.tt_threads_lock);
3914   if (task_team->tt.tt_threads_data != NULL) {
3915     int i;
3916     for (i = 0; i < task_team->tt.tt_max_threads; i++) {
3917       __kmp_free_task_deque(&task_team->tt.tt_threads_data[i]);
3918     }
3919     __kmp_free(task_team->tt.tt_threads_data);
3920     task_team->tt.tt_threads_data = NULL;
3921   }
3922   __kmp_release_bootstrap_lock(&task_team->tt.tt_threads_lock);
3923 }
3924 
3925 // __kmp_free_task_pri_list:
3926 // Deallocates tasking deques used for priority tasks.
3927 // Only occurs at library shutdown.
3928 static void __kmp_free_task_pri_list(kmp_task_team_t *task_team) {
3929   __kmp_acquire_bootstrap_lock(&task_team->tt.tt_task_pri_lock);
3930   if (task_team->tt.tt_task_pri_list != NULL) {
3931     kmp_task_pri_t *list = task_team->tt.tt_task_pri_list;
3932     while (list != NULL) {
3933       kmp_task_pri_t *next = list->next;
3934       __kmp_free_task_deque(&list->td);
3935       __kmp_free(list);
3936       list = next;
3937     }
3938     task_team->tt.tt_task_pri_list = NULL;
3939   }
3940   __kmp_release_bootstrap_lock(&task_team->tt.tt_task_pri_lock);
3941 }
3942 
3943 // __kmp_allocate_task_team:
3944 // Allocates a task team associated with a specific team, taking it from
3945 // the global task team free list if possible.  Also initializes data
3946 // structures.
3947 static kmp_task_team_t *__kmp_allocate_task_team(kmp_info_t *thread,
3948                                                  kmp_team_t *team) {
3949   kmp_task_team_t *task_team = NULL;
3950   int nthreads;
3951 
3952   KA_TRACE(20, ("__kmp_allocate_task_team: T#%d entering; team = %p\n",
3953                 (thread ? __kmp_gtid_from_thread(thread) : -1), team));
3954 
3955   if (TCR_PTR(__kmp_free_task_teams) != NULL) {
3956     // Take a task team from the task team pool
3957     __kmp_acquire_bootstrap_lock(&__kmp_task_team_lock);
3958     if (__kmp_free_task_teams != NULL) {
3959       task_team = __kmp_free_task_teams;
3960       TCW_PTR(__kmp_free_task_teams, task_team->tt.tt_next);
3961       task_team->tt.tt_next = NULL;
3962     }
3963     __kmp_release_bootstrap_lock(&__kmp_task_team_lock);
3964   }
3965 
3966   if (task_team == NULL) {
3967     KE_TRACE(10, ("__kmp_allocate_task_team: T#%d allocating "
3968                   "task team for team %p\n",
3969                   __kmp_gtid_from_thread(thread), team));
3970     // Allocate a new task team if one is not available. Cannot use
3971     // __kmp_thread_malloc because threads not around for kmp_reap_task_team.
3972     task_team = (kmp_task_team_t *)__kmp_allocate(sizeof(kmp_task_team_t));
3973     __kmp_init_bootstrap_lock(&task_team->tt.tt_threads_lock);
3974     __kmp_init_bootstrap_lock(&task_team->tt.tt_task_pri_lock);
3975 #if USE_ITT_BUILD && USE_ITT_NOTIFY && KMP_DEBUG
3976     // suppress race conditions detection on synchronization flags in debug mode
3977     // this helps to analyze library internals eliminating false positives
3978     __itt_suppress_mark_range(
3979         __itt_suppress_range, __itt_suppress_threading_errors,
3980         &task_team->tt.tt_found_tasks, sizeof(task_team->tt.tt_found_tasks));
3981     __itt_suppress_mark_range(__itt_suppress_range,
3982                               __itt_suppress_threading_errors,
3983                               CCAST(kmp_uint32 *, &task_team->tt.tt_active),
3984                               sizeof(task_team->tt.tt_active));
3985 #endif /* USE_ITT_BUILD && USE_ITT_NOTIFY && KMP_DEBUG */
3986     // Note: __kmp_allocate zeroes returned memory, othewise we would need:
3987     // task_team->tt.tt_threads_data = NULL;
3988     // task_team->tt.tt_max_threads = 0;
3989     // task_team->tt.tt_next = NULL;
3990   }
3991 
3992   TCW_4(task_team->tt.tt_found_tasks, FALSE);
3993   TCW_4(task_team->tt.tt_found_proxy_tasks, FALSE);
3994   TCW_4(task_team->tt.tt_hidden_helper_task_encountered, FALSE);
3995   task_team->tt.tt_nproc = nthreads = team->t.t_nproc;
3996 
3997   KMP_ATOMIC_ST_REL(&task_team->tt.tt_unfinished_threads, nthreads);
3998   TCW_4(task_team->tt.tt_hidden_helper_task_encountered, FALSE);
3999   TCW_4(task_team->tt.tt_active, TRUE);
4000 
4001   KA_TRACE(20, ("__kmp_allocate_task_team: T#%d exiting; task_team = %p "
4002                 "unfinished_threads init'd to %d\n",
4003                 (thread ? __kmp_gtid_from_thread(thread) : -1), task_team,
4004                 KMP_ATOMIC_LD_RLX(&task_team->tt.tt_unfinished_threads)));
4005   return task_team;
4006 }
4007 
4008 // __kmp_free_task_team:
4009 // Frees the task team associated with a specific thread, and adds it
4010 // to the global task team free list.
4011 void __kmp_free_task_team(kmp_info_t *thread, kmp_task_team_t *task_team) {
4012   KA_TRACE(20, ("__kmp_free_task_team: T#%d task_team = %p\n",
4013                 thread ? __kmp_gtid_from_thread(thread) : -1, task_team));
4014 
4015   // Put task team back on free list
4016   __kmp_acquire_bootstrap_lock(&__kmp_task_team_lock);
4017 
4018   KMP_DEBUG_ASSERT(task_team->tt.tt_next == NULL);
4019   task_team->tt.tt_next = __kmp_free_task_teams;
4020   TCW_PTR(__kmp_free_task_teams, task_team);
4021 
4022   __kmp_release_bootstrap_lock(&__kmp_task_team_lock);
4023 }
4024 
4025 // __kmp_reap_task_teams:
4026 // Free all the task teams on the task team free list.
4027 // Should only be done during library shutdown.
4028 // Cannot do anything that needs a thread structure or gtid since they are
4029 // already gone.
4030 void __kmp_reap_task_teams(void) {
4031   kmp_task_team_t *task_team;
4032 
4033   if (TCR_PTR(__kmp_free_task_teams) != NULL) {
4034     // Free all task_teams on the free list
4035     __kmp_acquire_bootstrap_lock(&__kmp_task_team_lock);
4036     while ((task_team = __kmp_free_task_teams) != NULL) {
4037       __kmp_free_task_teams = task_team->tt.tt_next;
4038       task_team->tt.tt_next = NULL;
4039 
4040       // Free threads_data if necessary
4041       if (task_team->tt.tt_threads_data != NULL) {
4042         __kmp_free_task_threads_data(task_team);
4043       }
4044       if (task_team->tt.tt_task_pri_list != NULL) {
4045         __kmp_free_task_pri_list(task_team);
4046       }
4047       __kmp_free(task_team);
4048     }
4049     __kmp_release_bootstrap_lock(&__kmp_task_team_lock);
4050   }
4051 }
4052 
4053 // __kmp_wait_to_unref_task_teams:
4054 // Some threads could still be in the fork barrier release code, possibly
4055 // trying to steal tasks.  Wait for each thread to unreference its task team.
4056 void __kmp_wait_to_unref_task_teams(void) {
4057   kmp_info_t *thread;
4058   kmp_uint32 spins;
4059   kmp_uint64 time;
4060   int done;
4061 
4062   KMP_INIT_YIELD(spins);
4063   KMP_INIT_BACKOFF(time);
4064 
4065   for (;;) {
4066     done = TRUE;
4067 
4068     // TODO: GEH - this may be is wrong because some sync would be necessary
4069     // in case threads are added to the pool during the traversal. Need to
4070     // verify that lock for thread pool is held when calling this routine.
4071     for (thread = CCAST(kmp_info_t *, __kmp_thread_pool); thread != NULL;
4072          thread = thread->th.th_next_pool) {
4073 #if KMP_OS_WINDOWS
4074       DWORD exit_val;
4075 #endif
4076       if (TCR_PTR(thread->th.th_task_team) == NULL) {
4077         KA_TRACE(10, ("__kmp_wait_to_unref_task_team: T#%d task_team == NULL\n",
4078                       __kmp_gtid_from_thread(thread)));
4079         continue;
4080       }
4081 #if KMP_OS_WINDOWS
4082       // TODO: GEH - add this check for Linux* OS / OS X* as well?
4083       if (!__kmp_is_thread_alive(thread, &exit_val)) {
4084         thread->th.th_task_team = NULL;
4085         continue;
4086       }
4087 #endif
4088 
4089       done = FALSE; // Because th_task_team pointer is not NULL for this thread
4090 
4091       KA_TRACE(10, ("__kmp_wait_to_unref_task_team: Waiting for T#%d to "
4092                     "unreference task_team\n",
4093                     __kmp_gtid_from_thread(thread)));
4094 
4095       if (__kmp_dflt_blocktime != KMP_MAX_BLOCKTIME) {
4096         void *sleep_loc;
4097         // If the thread is sleeping, awaken it.
4098         if ((sleep_loc = TCR_PTR(CCAST(void *, thread->th.th_sleep_loc))) !=
4099             NULL) {
4100           KA_TRACE(
4101               10,
4102               ("__kmp_wait_to_unref_task_team: T#%d waking up thread T#%d\n",
4103                __kmp_gtid_from_thread(thread), __kmp_gtid_from_thread(thread)));
4104           __kmp_null_resume_wrapper(thread);
4105         }
4106       }
4107     }
4108     if (done) {
4109       break;
4110     }
4111 
4112     // If oversubscribed or have waited a bit, yield.
4113     KMP_YIELD_OVERSUB_ELSE_SPIN(spins, time);
4114   }
4115 }
4116 
4117 void __kmp_shift_task_state_stack(kmp_info_t *this_thr, kmp_uint8 value) {
4118   // Shift values from th_task_state_top+1 to task_state_stack_sz
4119   if (this_thr->th.th_task_state_top + 1 >=
4120       this_thr->th.th_task_state_stack_sz) { // increase size
4121     kmp_uint32 new_size = 2 * this_thr->th.th_task_state_stack_sz;
4122     kmp_uint8 *old_stack, *new_stack;
4123     kmp_uint32 i;
4124     new_stack = (kmp_uint8 *)__kmp_allocate(new_size);
4125     for (i = 0; i <= this_thr->th.th_task_state_top; ++i) {
4126       new_stack[i] = this_thr->th.th_task_state_memo_stack[i];
4127     }
4128     // If we need to reallocate do the shift at the same time.
4129     for (; i < this_thr->th.th_task_state_stack_sz; ++i) {
4130       new_stack[i + 1] = this_thr->th.th_task_state_memo_stack[i];
4131     }
4132     for (i = this_thr->th.th_task_state_stack_sz; i < new_size;
4133          ++i) { // zero-init rest of stack
4134       new_stack[i] = 0;
4135     }
4136     old_stack = this_thr->th.th_task_state_memo_stack;
4137     this_thr->th.th_task_state_memo_stack = new_stack;
4138     this_thr->th.th_task_state_stack_sz = new_size;
4139     __kmp_free(old_stack);
4140   } else {
4141     kmp_uint8 *end;
4142     kmp_uint32 i;
4143 
4144     end = &this_thr->th
4145                .th_task_state_memo_stack[this_thr->th.th_task_state_stack_sz];
4146 
4147     for (i = this_thr->th.th_task_state_stack_sz - 1;
4148          i > this_thr->th.th_task_state_top; i--, end--)
4149       end[0] = end[-1];
4150   }
4151   this_thr->th.th_task_state_memo_stack[this_thr->th.th_task_state_top + 1] =
4152       value;
4153 }
4154 
4155 // __kmp_task_team_setup:  Create a task_team for the current team, but use
4156 // an already created, unused one if it already exists.
4157 void __kmp_task_team_setup(kmp_info_t *this_thr, kmp_team_t *team, int always) {
4158   KMP_DEBUG_ASSERT(__kmp_tasking_mode != tskm_immediate_exec);
4159 
4160   // If this task_team hasn't been created yet, allocate it. It will be used in
4161   // the region after the next.
4162   // If it exists, it is the current task team and shouldn't be touched yet as
4163   // it may still be in use.
4164   if (team->t.t_task_team[this_thr->th.th_task_state] == NULL &&
4165       (always || team->t.t_nproc > 1)) {
4166     team->t.t_task_team[this_thr->th.th_task_state] =
4167         __kmp_allocate_task_team(this_thr, team);
4168     KA_TRACE(20, ("__kmp_task_team_setup: Primary T#%d created new task_team %p"
4169                   " for team %d at parity=%d\n",
4170                   __kmp_gtid_from_thread(this_thr),
4171                   team->t.t_task_team[this_thr->th.th_task_state], team->t.t_id,
4172                   this_thr->th.th_task_state));
4173   }
4174   if (this_thr->th.th_task_state == 1 && always && team->t.t_nproc == 1) {
4175     // fix task state stack to adjust for proxy and helper tasks
4176     KA_TRACE(20, ("__kmp_task_team_setup: Primary T#%d needs to shift stack"
4177                   " for team %d at parity=%d\n",
4178                   __kmp_gtid_from_thread(this_thr), team->t.t_id,
4179                   this_thr->th.th_task_state));
4180     __kmp_shift_task_state_stack(this_thr, this_thr->th.th_task_state);
4181   }
4182 
4183   // After threads exit the release, they will call sync, and then point to this
4184   // other task_team; make sure it is allocated and properly initialized. As
4185   // threads spin in the barrier release phase, they will continue to use the
4186   // previous task_team struct(above), until they receive the signal to stop
4187   // checking for tasks (they can't safely reference the kmp_team_t struct,
4188   // which could be reallocated by the primary thread). No task teams are formed
4189   // for serialized teams.
4190   if (team->t.t_nproc > 1) {
4191     int other_team = 1 - this_thr->th.th_task_state;
4192     KMP_DEBUG_ASSERT(other_team >= 0 && other_team < 2);
4193     if (team->t.t_task_team[other_team] == NULL) { // setup other team as well
4194       team->t.t_task_team[other_team] =
4195           __kmp_allocate_task_team(this_thr, team);
4196       KA_TRACE(20, ("__kmp_task_team_setup: Primary T#%d created second new "
4197                     "task_team %p for team %d at parity=%d\n",
4198                     __kmp_gtid_from_thread(this_thr),
4199                     team->t.t_task_team[other_team], team->t.t_id, other_team));
4200     } else { // Leave the old task team struct in place for the upcoming region;
4201       // adjust as needed
4202       kmp_task_team_t *task_team = team->t.t_task_team[other_team];
4203       if (!task_team->tt.tt_active ||
4204           team->t.t_nproc != task_team->tt.tt_nproc) {
4205         TCW_4(task_team->tt.tt_nproc, team->t.t_nproc);
4206         TCW_4(task_team->tt.tt_found_tasks, FALSE);
4207         TCW_4(task_team->tt.tt_found_proxy_tasks, FALSE);
4208         TCW_4(task_team->tt.tt_hidden_helper_task_encountered, FALSE);
4209         KMP_ATOMIC_ST_REL(&task_team->tt.tt_unfinished_threads,
4210                           team->t.t_nproc);
4211         TCW_4(task_team->tt.tt_active, TRUE);
4212       }
4213       // if team size has changed, the first thread to enable tasking will
4214       // realloc threads_data if necessary
4215       KA_TRACE(20, ("__kmp_task_team_setup: Primary T#%d reset next task_team "
4216                     "%p for team %d at parity=%d\n",
4217                     __kmp_gtid_from_thread(this_thr),
4218                     team->t.t_task_team[other_team], team->t.t_id, other_team));
4219     }
4220   }
4221 
4222   // For regular thread, task enabling should be called when the task is going
4223   // to be pushed to a dequeue. However, for the hidden helper thread, we need
4224   // it ahead of time so that some operations can be performed without race
4225   // condition.
4226   if (this_thr == __kmp_hidden_helper_main_thread) {
4227     for (int i = 0; i < 2; ++i) {
4228       kmp_task_team_t *task_team = team->t.t_task_team[i];
4229       if (KMP_TASKING_ENABLED(task_team)) {
4230         continue;
4231       }
4232       __kmp_enable_tasking(task_team, this_thr);
4233       for (int j = 0; j < task_team->tt.tt_nproc; ++j) {
4234         kmp_thread_data_t *thread_data = &task_team->tt.tt_threads_data[j];
4235         if (thread_data->td.td_deque == NULL) {
4236           __kmp_alloc_task_deque(__kmp_hidden_helper_threads[j], thread_data);
4237         }
4238       }
4239     }
4240   }
4241 }
4242 
4243 // __kmp_task_team_sync: Propagation of task team data from team to threads
4244 // which happens just after the release phase of a team barrier.  This may be
4245 // called by any thread, but only for teams with # threads > 1.
4246 void __kmp_task_team_sync(kmp_info_t *this_thr, kmp_team_t *team) {
4247   KMP_DEBUG_ASSERT(__kmp_tasking_mode != tskm_immediate_exec);
4248 
4249   // Toggle the th_task_state field, to switch which task_team this thread
4250   // refers to
4251   this_thr->th.th_task_state = (kmp_uint8)(1 - this_thr->th.th_task_state);
4252 
4253   // It is now safe to propagate the task team pointer from the team struct to
4254   // the current thread.
4255   TCW_PTR(this_thr->th.th_task_team,
4256           team->t.t_task_team[this_thr->th.th_task_state]);
4257   KA_TRACE(20,
4258            ("__kmp_task_team_sync: Thread T#%d task team switched to task_team "
4259             "%p from Team #%d (parity=%d)\n",
4260             __kmp_gtid_from_thread(this_thr), this_thr->th.th_task_team,
4261             team->t.t_id, this_thr->th.th_task_state));
4262 }
4263 
4264 // __kmp_task_team_wait: Primary thread waits for outstanding tasks after the
4265 // barrier gather phase. Only called by primary thread if #threads in team > 1
4266 // or if proxy tasks were created.
4267 //
4268 // wait is a flag that defaults to 1 (see kmp.h), but waiting can be turned off
4269 // by passing in 0 optionally as the last argument. When wait is zero, primary
4270 // thread does not wait for unfinished_threads to reach 0.
4271 void __kmp_task_team_wait(
4272     kmp_info_t *this_thr,
4273     kmp_team_t *team USE_ITT_BUILD_ARG(void *itt_sync_obj), int wait) {
4274   kmp_task_team_t *task_team = team->t.t_task_team[this_thr->th.th_task_state];
4275 
4276   KMP_DEBUG_ASSERT(__kmp_tasking_mode != tskm_immediate_exec);
4277   KMP_DEBUG_ASSERT(task_team == this_thr->th.th_task_team);
4278 
4279   if ((task_team != NULL) && KMP_TASKING_ENABLED(task_team)) {
4280     if (wait) {
4281       KA_TRACE(20, ("__kmp_task_team_wait: Primary T#%d waiting for all tasks "
4282                     "(for unfinished_threads to reach 0) on task_team = %p\n",
4283                     __kmp_gtid_from_thread(this_thr), task_team));
4284       // Worker threads may have dropped through to release phase, but could
4285       // still be executing tasks. Wait here for tasks to complete. To avoid
4286       // memory contention, only primary thread checks termination condition.
4287       kmp_flag_32<false, false> flag(
4288           RCAST(std::atomic<kmp_uint32> *,
4289                 &task_team->tt.tt_unfinished_threads),
4290           0U);
4291       flag.wait(this_thr, TRUE USE_ITT_BUILD_ARG(itt_sync_obj));
4292     }
4293     // Deactivate the old task team, so that the worker threads will stop
4294     // referencing it while spinning.
4295     KA_TRACE(
4296         20,
4297         ("__kmp_task_team_wait: Primary T#%d deactivating task_team %p: "
4298          "setting active to false, setting local and team's pointer to NULL\n",
4299          __kmp_gtid_from_thread(this_thr), task_team));
4300     KMP_DEBUG_ASSERT(task_team->tt.tt_nproc > 1 ||
4301                      task_team->tt.tt_found_proxy_tasks == TRUE ||
4302                      task_team->tt.tt_hidden_helper_task_encountered == TRUE);
4303     TCW_SYNC_4(task_team->tt.tt_found_proxy_tasks, FALSE);
4304     TCW_SYNC_4(task_team->tt.tt_hidden_helper_task_encountered, FALSE);
4305     KMP_CHECK_UPDATE(task_team->tt.tt_untied_task_encountered, 0);
4306     TCW_SYNC_4(task_team->tt.tt_active, FALSE);
4307     KMP_MB();
4308 
4309     TCW_PTR(this_thr->th.th_task_team, NULL);
4310   }
4311 }
4312 
4313 // __kmp_tasking_barrier:
4314 // This routine is called only when __kmp_tasking_mode == tskm_extra_barrier.
4315 // Internal function to execute all tasks prior to a regular barrier or a join
4316 // barrier. It is a full barrier itself, which unfortunately turns regular
4317 // barriers into double barriers and join barriers into 1 1/2 barriers.
4318 void __kmp_tasking_barrier(kmp_team_t *team, kmp_info_t *thread, int gtid) {
4319   std::atomic<kmp_uint32> *spin = RCAST(
4320       std::atomic<kmp_uint32> *,
4321       &team->t.t_task_team[thread->th.th_task_state]->tt.tt_unfinished_threads);
4322   int flag = FALSE;
4323   KMP_DEBUG_ASSERT(__kmp_tasking_mode == tskm_extra_barrier);
4324 
4325 #if USE_ITT_BUILD
4326   KMP_FSYNC_SPIN_INIT(spin, NULL);
4327 #endif /* USE_ITT_BUILD */
4328   kmp_flag_32<false, false> spin_flag(spin, 0U);
4329   while (!spin_flag.execute_tasks(thread, gtid, TRUE,
4330                                   &flag USE_ITT_BUILD_ARG(NULL), 0)) {
4331 #if USE_ITT_BUILD
4332     // TODO: What about itt_sync_obj??
4333     KMP_FSYNC_SPIN_PREPARE(RCAST(void *, spin));
4334 #endif /* USE_ITT_BUILD */
4335 
4336     if (TCR_4(__kmp_global.g.g_done)) {
4337       if (__kmp_global.g.g_abort)
4338         __kmp_abort_thread();
4339       break;
4340     }
4341     KMP_YIELD(TRUE);
4342   }
4343 #if USE_ITT_BUILD
4344   KMP_FSYNC_SPIN_ACQUIRED(RCAST(void *, spin));
4345 #endif /* USE_ITT_BUILD */
4346 }
4347 
4348 // __kmp_give_task puts a task into a given thread queue if:
4349 //  - the queue for that thread was created
4350 //  - there's space in that queue
4351 // Because of this, __kmp_push_task needs to check if there's space after
4352 // getting the lock
4353 static bool __kmp_give_task(kmp_info_t *thread, kmp_int32 tid, kmp_task_t *task,
4354                             kmp_int32 pass) {
4355   kmp_taskdata_t *taskdata = KMP_TASK_TO_TASKDATA(task);
4356   kmp_task_team_t *task_team = taskdata->td_task_team;
4357 
4358   KA_TRACE(20, ("__kmp_give_task: trying to give task %p to thread %d.\n",
4359                 taskdata, tid));
4360 
4361   // If task_team is NULL something went really bad...
4362   KMP_DEBUG_ASSERT(task_team != NULL);
4363 
4364   bool result = false;
4365   kmp_thread_data_t *thread_data = &task_team->tt.tt_threads_data[tid];
4366 
4367   if (thread_data->td.td_deque == NULL) {
4368     // There's no queue in this thread, go find another one
4369     // We're guaranteed that at least one thread has a queue
4370     KA_TRACE(30,
4371              ("__kmp_give_task: thread %d has no queue while giving task %p.\n",
4372               tid, taskdata));
4373     return result;
4374   }
4375 
4376   if (TCR_4(thread_data->td.td_deque_ntasks) >=
4377       TASK_DEQUE_SIZE(thread_data->td)) {
4378     KA_TRACE(
4379         30,
4380         ("__kmp_give_task: queue is full while giving task %p to thread %d.\n",
4381          taskdata, tid));
4382 
4383     // if this deque is bigger than the pass ratio give a chance to another
4384     // thread
4385     if (TASK_DEQUE_SIZE(thread_data->td) / INITIAL_TASK_DEQUE_SIZE >= pass)
4386       return result;
4387 
4388     __kmp_acquire_bootstrap_lock(&thread_data->td.td_deque_lock);
4389     if (TCR_4(thread_data->td.td_deque_ntasks) >=
4390         TASK_DEQUE_SIZE(thread_data->td)) {
4391       // expand deque to push the task which is not allowed to execute
4392       __kmp_realloc_task_deque(thread, thread_data);
4393     }
4394 
4395   } else {
4396 
4397     __kmp_acquire_bootstrap_lock(&thread_data->td.td_deque_lock);
4398 
4399     if (TCR_4(thread_data->td.td_deque_ntasks) >=
4400         TASK_DEQUE_SIZE(thread_data->td)) {
4401       KA_TRACE(30, ("__kmp_give_task: queue is full while giving task %p to "
4402                     "thread %d.\n",
4403                     taskdata, tid));
4404 
4405       // if this deque is bigger than the pass ratio give a chance to another
4406       // thread
4407       if (TASK_DEQUE_SIZE(thread_data->td) / INITIAL_TASK_DEQUE_SIZE >= pass)
4408         goto release_and_exit;
4409 
4410       __kmp_realloc_task_deque(thread, thread_data);
4411     }
4412   }
4413 
4414   // lock is held here, and there is space in the deque
4415 
4416   thread_data->td.td_deque[thread_data->td.td_deque_tail] = taskdata;
4417   // Wrap index.
4418   thread_data->td.td_deque_tail =
4419       (thread_data->td.td_deque_tail + 1) & TASK_DEQUE_MASK(thread_data->td);
4420   TCW_4(thread_data->td.td_deque_ntasks,
4421         TCR_4(thread_data->td.td_deque_ntasks) + 1);
4422 
4423   result = true;
4424   KA_TRACE(30, ("__kmp_give_task: successfully gave task %p to thread %d.\n",
4425                 taskdata, tid));
4426 
4427 release_and_exit:
4428   __kmp_release_bootstrap_lock(&thread_data->td.td_deque_lock);
4429 
4430   return result;
4431 }
4432 
4433 #define PROXY_TASK_FLAG 0x40000000
4434 /* The finish of the proxy tasks is divided in two pieces:
4435     - the top half is the one that can be done from a thread outside the team
4436     - the bottom half must be run from a thread within the team
4437 
4438    In order to run the bottom half the task gets queued back into one of the
4439    threads of the team. Once the td_incomplete_child_task counter of the parent
4440    is decremented the threads can leave the barriers. So, the bottom half needs
4441    to be queued before the counter is decremented. The top half is therefore
4442    divided in two parts:
4443     - things that can be run before queuing the bottom half
4444     - things that must be run after queuing the bottom half
4445 
4446    This creates a second race as the bottom half can free the task before the
4447    second top half is executed. To avoid this we use the
4448    td_incomplete_child_task of the proxy task to synchronize the top and bottom
4449    half. */
4450 static void __kmp_first_top_half_finish_proxy(kmp_taskdata_t *taskdata) {
4451   KMP_DEBUG_ASSERT(taskdata->td_flags.tasktype == TASK_EXPLICIT);
4452   KMP_DEBUG_ASSERT(taskdata->td_flags.proxy == TASK_PROXY);
4453   KMP_DEBUG_ASSERT(taskdata->td_flags.complete == 0);
4454   KMP_DEBUG_ASSERT(taskdata->td_flags.freed == 0);
4455 
4456   taskdata->td_flags.complete = 1; // mark the task as completed
4457 #if OMPX_TASKGRAPH
4458   taskdata->td_flags.onced = 1;
4459 #endif
4460 
4461   if (taskdata->td_taskgroup)
4462     KMP_ATOMIC_DEC(&taskdata->td_taskgroup->count);
4463 
4464   // Create an imaginary children for this task so the bottom half cannot
4465   // release the task before we have completed the second top half
4466   KMP_ATOMIC_OR(&taskdata->td_incomplete_child_tasks, PROXY_TASK_FLAG);
4467 }
4468 
4469 static void __kmp_second_top_half_finish_proxy(kmp_taskdata_t *taskdata) {
4470 #if KMP_DEBUG
4471   kmp_int32 children = 0;
4472   // Predecrement simulated by "- 1" calculation
4473   children = -1 +
4474 #endif
4475       KMP_ATOMIC_DEC(&taskdata->td_parent->td_incomplete_child_tasks);
4476   KMP_DEBUG_ASSERT(children >= 0);
4477 
4478   // Remove the imaginary children
4479   KMP_ATOMIC_AND(&taskdata->td_incomplete_child_tasks, ~PROXY_TASK_FLAG);
4480 }
4481 
4482 static void __kmp_bottom_half_finish_proxy(kmp_int32 gtid, kmp_task_t *ptask) {
4483   kmp_taskdata_t *taskdata = KMP_TASK_TO_TASKDATA(ptask);
4484   kmp_info_t *thread = __kmp_threads[gtid];
4485 
4486   KMP_DEBUG_ASSERT(taskdata->td_flags.proxy == TASK_PROXY);
4487   KMP_DEBUG_ASSERT(taskdata->td_flags.complete ==
4488                    1); // top half must run before bottom half
4489 
4490   // We need to wait to make sure the top half is finished
4491   // Spinning here should be ok as this should happen quickly
4492   while ((KMP_ATOMIC_LD_ACQ(&taskdata->td_incomplete_child_tasks) &
4493           PROXY_TASK_FLAG) > 0)
4494     ;
4495 
4496   __kmp_release_deps(gtid, taskdata);
4497   __kmp_free_task_and_ancestors(gtid, taskdata, thread);
4498 }
4499 
4500 /*!
4501 @ingroup TASKING
4502 @param gtid Global Thread ID of encountering thread
4503 @param ptask Task which execution is completed
4504 
4505 Execute the completion of a proxy task from a thread of that is part of the
4506 team. Run first and bottom halves directly.
4507 */
4508 void __kmpc_proxy_task_completed(kmp_int32 gtid, kmp_task_t *ptask) {
4509   KMP_DEBUG_ASSERT(ptask != NULL);
4510   kmp_taskdata_t *taskdata = KMP_TASK_TO_TASKDATA(ptask);
4511   KA_TRACE(
4512       10, ("__kmp_proxy_task_completed(enter): T#%d proxy task %p completing\n",
4513            gtid, taskdata));
4514   __kmp_assert_valid_gtid(gtid);
4515   KMP_DEBUG_ASSERT(taskdata->td_flags.proxy == TASK_PROXY);
4516 
4517   __kmp_first_top_half_finish_proxy(taskdata);
4518   __kmp_second_top_half_finish_proxy(taskdata);
4519   __kmp_bottom_half_finish_proxy(gtid, ptask);
4520 
4521   KA_TRACE(10,
4522            ("__kmp_proxy_task_completed(exit): T#%d proxy task %p completing\n",
4523             gtid, taskdata));
4524 }
4525 
4526 void __kmpc_give_task(kmp_task_t *ptask, kmp_int32 start = 0) {
4527   KMP_DEBUG_ASSERT(ptask != NULL);
4528   kmp_taskdata_t *taskdata = KMP_TASK_TO_TASKDATA(ptask);
4529 
4530   // Enqueue task to complete bottom half completion from a thread within the
4531   // corresponding team
4532   kmp_team_t *team = taskdata->td_team;
4533   kmp_int32 nthreads = team->t.t_nproc;
4534   kmp_info_t *thread;
4535 
4536   // This should be similar to start_k = __kmp_get_random( thread ) % nthreads
4537   // but we cannot use __kmp_get_random here
4538   kmp_int32 start_k = start % nthreads;
4539   kmp_int32 pass = 1;
4540   kmp_int32 k = start_k;
4541 
4542   do {
4543     // For now we're just linearly trying to find a thread
4544     thread = team->t.t_threads[k];
4545     k = (k + 1) % nthreads;
4546 
4547     // we did a full pass through all the threads
4548     if (k == start_k)
4549       pass = pass << 1;
4550 
4551   } while (!__kmp_give_task(thread, k, ptask, pass));
4552 
4553   if (__kmp_dflt_blocktime != KMP_MAX_BLOCKTIME && __kmp_wpolicy_passive) {
4554     // awake at least one thread to execute given task
4555     for (int i = 0; i < nthreads; ++i) {
4556       thread = team->t.t_threads[i];
4557       if (thread->th.th_sleep_loc != NULL) {
4558         __kmp_null_resume_wrapper(thread);
4559         break;
4560       }
4561     }
4562   }
4563 }
4564 
4565 /*!
4566 @ingroup TASKING
4567 @param ptask Task which execution is completed
4568 
4569 Execute the completion of a proxy task from a thread that could not belong to
4570 the team.
4571 */
4572 void __kmpc_proxy_task_completed_ooo(kmp_task_t *ptask) {
4573   KMP_DEBUG_ASSERT(ptask != NULL);
4574   kmp_taskdata_t *taskdata = KMP_TASK_TO_TASKDATA(ptask);
4575 
4576   KA_TRACE(
4577       10,
4578       ("__kmp_proxy_task_completed_ooo(enter): proxy task completing ooo %p\n",
4579        taskdata));
4580 
4581   KMP_DEBUG_ASSERT(taskdata->td_flags.proxy == TASK_PROXY);
4582 
4583   __kmp_first_top_half_finish_proxy(taskdata);
4584 
4585   __kmpc_give_task(ptask);
4586 
4587   __kmp_second_top_half_finish_proxy(taskdata);
4588 
4589   KA_TRACE(
4590       10,
4591       ("__kmp_proxy_task_completed_ooo(exit): proxy task completing ooo %p\n",
4592        taskdata));
4593 }
4594 
4595 kmp_event_t *__kmpc_task_allow_completion_event(ident_t *loc_ref, int gtid,
4596                                                 kmp_task_t *task) {
4597   kmp_taskdata_t *td = KMP_TASK_TO_TASKDATA(task);
4598   if (td->td_allow_completion_event.type == KMP_EVENT_UNINITIALIZED) {
4599     td->td_allow_completion_event.type = KMP_EVENT_ALLOW_COMPLETION;
4600     td->td_allow_completion_event.ed.task = task;
4601     __kmp_init_tas_lock(&td->td_allow_completion_event.lock);
4602   }
4603   return &td->td_allow_completion_event;
4604 }
4605 
4606 void __kmp_fulfill_event(kmp_event_t *event) {
4607   if (event->type == KMP_EVENT_ALLOW_COMPLETION) {
4608     kmp_task_t *ptask = event->ed.task;
4609     kmp_taskdata_t *taskdata = KMP_TASK_TO_TASKDATA(ptask);
4610     bool detached = false;
4611     int gtid = __kmp_get_gtid();
4612 
4613     // The associated task might have completed or could be completing at this
4614     // point.
4615     // We need to take the lock to avoid races
4616     __kmp_acquire_tas_lock(&event->lock, gtid);
4617     if (taskdata->td_flags.proxy == TASK_PROXY) {
4618       detached = true;
4619     } else {
4620 #if OMPT_SUPPORT
4621       // The OMPT event must occur under mutual exclusion,
4622       // otherwise the tool might access ptask after free
4623       if (UNLIKELY(ompt_enabled.enabled))
4624         __ompt_task_finish(ptask, NULL, ompt_task_early_fulfill);
4625 #endif
4626     }
4627     event->type = KMP_EVENT_UNINITIALIZED;
4628     __kmp_release_tas_lock(&event->lock, gtid);
4629 
4630     if (detached) {
4631 #if OMPT_SUPPORT
4632       // We free ptask afterwards and know the task is finished,
4633       // so locking is not necessary
4634       if (UNLIKELY(ompt_enabled.enabled))
4635         __ompt_task_finish(ptask, NULL, ompt_task_late_fulfill);
4636 #endif
4637       // If the task detached complete the proxy task
4638       if (gtid >= 0) {
4639         kmp_team_t *team = taskdata->td_team;
4640         kmp_info_t *thread = __kmp_get_thread();
4641         if (thread->th.th_team == team) {
4642           __kmpc_proxy_task_completed(gtid, ptask);
4643           return;
4644         }
4645       }
4646 
4647       // fallback
4648       __kmpc_proxy_task_completed_ooo(ptask);
4649     }
4650   }
4651 }
4652 
4653 // __kmp_task_dup_alloc: Allocate the taskdata and make a copy of source task
4654 // for taskloop
4655 //
4656 // thread:   allocating thread
4657 // task_src: pointer to source task to be duplicated
4658 // taskloop_recur: used only when dealing with taskgraph,
4659 //      indicating whether we need to update task->td_task_id
4660 // returns:  a pointer to the allocated kmp_task_t structure (task).
4661 kmp_task_t *__kmp_task_dup_alloc(kmp_info_t *thread, kmp_task_t *task_src
4662 #if OMPX_TASKGRAPH
4663                                  , int taskloop_recur
4664 #endif
4665 ) {
4666   kmp_task_t *task;
4667   kmp_taskdata_t *taskdata;
4668   kmp_taskdata_t *taskdata_src = KMP_TASK_TO_TASKDATA(task_src);
4669   kmp_taskdata_t *parent_task = taskdata_src->td_parent; // same parent task
4670   size_t shareds_offset;
4671   size_t task_size;
4672 
4673   KA_TRACE(10, ("__kmp_task_dup_alloc(enter): Th %p, source task %p\n", thread,
4674                 task_src));
4675   KMP_DEBUG_ASSERT(taskdata_src->td_flags.proxy ==
4676                    TASK_FULL); // it should not be proxy task
4677   KMP_DEBUG_ASSERT(taskdata_src->td_flags.tasktype == TASK_EXPLICIT);
4678   task_size = taskdata_src->td_size_alloc;
4679 
4680   // Allocate a kmp_taskdata_t block and a kmp_task_t block.
4681   KA_TRACE(30, ("__kmp_task_dup_alloc: Th %p, malloc size %ld\n", thread,
4682                 task_size));
4683 #if USE_FAST_MEMORY
4684   taskdata = (kmp_taskdata_t *)__kmp_fast_allocate(thread, task_size);
4685 #else
4686   taskdata = (kmp_taskdata_t *)__kmp_thread_malloc(thread, task_size);
4687 #endif /* USE_FAST_MEMORY */
4688   KMP_MEMCPY(taskdata, taskdata_src, task_size);
4689 
4690   task = KMP_TASKDATA_TO_TASK(taskdata);
4691 
4692   // Initialize new task (only specific fields not affected by memcpy)
4693 #if OMPX_TASKGRAPH
4694   if (!taskdata->is_taskgraph || taskloop_recur)
4695     taskdata->td_task_id = KMP_GEN_TASK_ID();
4696   else if (taskdata->is_taskgraph &&
4697            __kmp_tdg_is_recording(taskdata_src->tdg->tdg_status))
4698     taskdata->td_task_id = KMP_ATOMIC_INC(&__kmp_tdg_task_id);
4699 #else
4700   taskdata->td_task_id = KMP_GEN_TASK_ID();
4701 #endif
4702   if (task->shareds != NULL) { // need setup shareds pointer
4703     shareds_offset = (char *)task_src->shareds - (char *)taskdata_src;
4704     task->shareds = &((char *)taskdata)[shareds_offset];
4705     KMP_DEBUG_ASSERT((((kmp_uintptr_t)task->shareds) & (sizeof(void *) - 1)) ==
4706                      0);
4707   }
4708   taskdata->td_alloc_thread = thread;
4709   taskdata->td_parent = parent_task;
4710   // task inherits the taskgroup from the parent task
4711   taskdata->td_taskgroup = parent_task->td_taskgroup;
4712   // tied task needs to initialize the td_last_tied at creation,
4713   // untied one does this when it is scheduled for execution
4714   if (taskdata->td_flags.tiedness == TASK_TIED)
4715     taskdata->td_last_tied = taskdata;
4716 
4717   // Only need to keep track of child task counts if team parallel and tasking
4718   // not serialized
4719   if (!(taskdata->td_flags.team_serial || taskdata->td_flags.tasking_ser)) {
4720     KMP_ATOMIC_INC(&parent_task->td_incomplete_child_tasks);
4721     if (parent_task->td_taskgroup)
4722       KMP_ATOMIC_INC(&parent_task->td_taskgroup->count);
4723     // Only need to keep track of allocated child tasks for explicit tasks since
4724     // implicit not deallocated
4725     if (taskdata->td_parent->td_flags.tasktype == TASK_EXPLICIT)
4726       KMP_ATOMIC_INC(&taskdata->td_parent->td_allocated_child_tasks);
4727   }
4728 
4729   KA_TRACE(20,
4730            ("__kmp_task_dup_alloc(exit): Th %p, created task %p, parent=%p\n",
4731             thread, taskdata, taskdata->td_parent));
4732 #if OMPT_SUPPORT
4733   if (UNLIKELY(ompt_enabled.enabled))
4734     __ompt_task_init(taskdata, thread->th.th_info.ds.ds_gtid);
4735 #endif
4736   return task;
4737 }
4738 
4739 // Routine optionally generated by the compiler for setting the lastprivate flag
4740 // and calling needed constructors for private/firstprivate objects
4741 // (used to form taskloop tasks from pattern task)
4742 // Parameters: dest task, src task, lastprivate flag.
4743 typedef void (*p_task_dup_t)(kmp_task_t *, kmp_task_t *, kmp_int32);
4744 
4745 KMP_BUILD_ASSERT(sizeof(long) == 4 || sizeof(long) == 8);
4746 
4747 // class to encapsulate manipulating loop bounds in a taskloop task.
4748 // this abstracts away the Intel vs GOMP taskloop interface for setting/getting
4749 // the loop bound variables.
4750 class kmp_taskloop_bounds_t {
4751   kmp_task_t *task;
4752   const kmp_taskdata_t *taskdata;
4753   size_t lower_offset;
4754   size_t upper_offset;
4755 
4756 public:
4757   kmp_taskloop_bounds_t(kmp_task_t *_task, kmp_uint64 *lb, kmp_uint64 *ub)
4758       : task(_task), taskdata(KMP_TASK_TO_TASKDATA(task)),
4759         lower_offset((char *)lb - (char *)task),
4760         upper_offset((char *)ub - (char *)task) {
4761     KMP_DEBUG_ASSERT((char *)lb > (char *)_task);
4762     KMP_DEBUG_ASSERT((char *)ub > (char *)_task);
4763   }
4764   kmp_taskloop_bounds_t(kmp_task_t *_task, const kmp_taskloop_bounds_t &bounds)
4765       : task(_task), taskdata(KMP_TASK_TO_TASKDATA(_task)),
4766         lower_offset(bounds.lower_offset), upper_offset(bounds.upper_offset) {}
4767   size_t get_lower_offset() const { return lower_offset; }
4768   size_t get_upper_offset() const { return upper_offset; }
4769   kmp_uint64 get_lb() const {
4770     kmp_int64 retval;
4771 #if defined(KMP_GOMP_COMPAT)
4772     // Intel task just returns the lower bound normally
4773     if (!taskdata->td_flags.native) {
4774       retval = *(kmp_int64 *)((char *)task + lower_offset);
4775     } else {
4776       // GOMP task has to take into account the sizeof(long)
4777       if (taskdata->td_size_loop_bounds == 4) {
4778         kmp_int32 *lb = RCAST(kmp_int32 *, task->shareds);
4779         retval = (kmp_int64)*lb;
4780       } else {
4781         kmp_int64 *lb = RCAST(kmp_int64 *, task->shareds);
4782         retval = (kmp_int64)*lb;
4783       }
4784     }
4785 #else
4786     (void)taskdata;
4787     retval = *(kmp_int64 *)((char *)task + lower_offset);
4788 #endif // defined(KMP_GOMP_COMPAT)
4789     return retval;
4790   }
4791   kmp_uint64 get_ub() const {
4792     kmp_int64 retval;
4793 #if defined(KMP_GOMP_COMPAT)
4794     // Intel task just returns the upper bound normally
4795     if (!taskdata->td_flags.native) {
4796       retval = *(kmp_int64 *)((char *)task + upper_offset);
4797     } else {
4798       // GOMP task has to take into account the sizeof(long)
4799       if (taskdata->td_size_loop_bounds == 4) {
4800         kmp_int32 *ub = RCAST(kmp_int32 *, task->shareds) + 1;
4801         retval = (kmp_int64)*ub;
4802       } else {
4803         kmp_int64 *ub = RCAST(kmp_int64 *, task->shareds) + 1;
4804         retval = (kmp_int64)*ub;
4805       }
4806     }
4807 #else
4808     retval = *(kmp_int64 *)((char *)task + upper_offset);
4809 #endif // defined(KMP_GOMP_COMPAT)
4810     return retval;
4811   }
4812   void set_lb(kmp_uint64 lb) {
4813 #if defined(KMP_GOMP_COMPAT)
4814     // Intel task just sets the lower bound normally
4815     if (!taskdata->td_flags.native) {
4816       *(kmp_uint64 *)((char *)task + lower_offset) = lb;
4817     } else {
4818       // GOMP task has to take into account the sizeof(long)
4819       if (taskdata->td_size_loop_bounds == 4) {
4820         kmp_uint32 *lower = RCAST(kmp_uint32 *, task->shareds);
4821         *lower = (kmp_uint32)lb;
4822       } else {
4823         kmp_uint64 *lower = RCAST(kmp_uint64 *, task->shareds);
4824         *lower = (kmp_uint64)lb;
4825       }
4826     }
4827 #else
4828     *(kmp_uint64 *)((char *)task + lower_offset) = lb;
4829 #endif // defined(KMP_GOMP_COMPAT)
4830   }
4831   void set_ub(kmp_uint64 ub) {
4832 #if defined(KMP_GOMP_COMPAT)
4833     // Intel task just sets the upper bound normally
4834     if (!taskdata->td_flags.native) {
4835       *(kmp_uint64 *)((char *)task + upper_offset) = ub;
4836     } else {
4837       // GOMP task has to take into account the sizeof(long)
4838       if (taskdata->td_size_loop_bounds == 4) {
4839         kmp_uint32 *upper = RCAST(kmp_uint32 *, task->shareds) + 1;
4840         *upper = (kmp_uint32)ub;
4841       } else {
4842         kmp_uint64 *upper = RCAST(kmp_uint64 *, task->shareds) + 1;
4843         *upper = (kmp_uint64)ub;
4844       }
4845     }
4846 #else
4847     *(kmp_uint64 *)((char *)task + upper_offset) = ub;
4848 #endif // defined(KMP_GOMP_COMPAT)
4849   }
4850 };
4851 
4852 // __kmp_taskloop_linear: Start tasks of the taskloop linearly
4853 //
4854 // loc        Source location information
4855 // gtid       Global thread ID
4856 // task       Pattern task, exposes the loop iteration range
4857 // lb         Pointer to loop lower bound in task structure
4858 // ub         Pointer to loop upper bound in task structure
4859 // st         Loop stride
4860 // ub_glob    Global upper bound (used for lastprivate check)
4861 // num_tasks  Number of tasks to execute
4862 // grainsize  Number of loop iterations per task
4863 // extras     Number of chunks with grainsize+1 iterations
4864 // last_chunk Reduction of grainsize for last task
4865 // tc         Iterations count
4866 // task_dup   Tasks duplication routine
4867 // codeptr_ra Return address for OMPT events
4868 void __kmp_taskloop_linear(ident_t *loc, int gtid, kmp_task_t *task,
4869                            kmp_uint64 *lb, kmp_uint64 *ub, kmp_int64 st,
4870                            kmp_uint64 ub_glob, kmp_uint64 num_tasks,
4871                            kmp_uint64 grainsize, kmp_uint64 extras,
4872                            kmp_int64 last_chunk, kmp_uint64 tc,
4873 #if OMPT_SUPPORT
4874                            void *codeptr_ra,
4875 #endif
4876                            void *task_dup) {
4877   KMP_COUNT_BLOCK(OMP_TASKLOOP);
4878   KMP_TIME_PARTITIONED_BLOCK(OMP_taskloop_scheduling);
4879   p_task_dup_t ptask_dup = (p_task_dup_t)task_dup;
4880   // compiler provides global bounds here
4881   kmp_taskloop_bounds_t task_bounds(task, lb, ub);
4882   kmp_uint64 lower = task_bounds.get_lb();
4883   kmp_uint64 upper = task_bounds.get_ub();
4884   kmp_uint64 i;
4885   kmp_info_t *thread = __kmp_threads[gtid];
4886   kmp_taskdata_t *current_task = thread->th.th_current_task;
4887   kmp_task_t *next_task;
4888   kmp_int32 lastpriv = 0;
4889 
4890   KMP_DEBUG_ASSERT(tc == num_tasks * grainsize +
4891                              (last_chunk < 0 ? last_chunk : extras));
4892   KMP_DEBUG_ASSERT(num_tasks > extras);
4893   KMP_DEBUG_ASSERT(num_tasks > 0);
4894   KA_TRACE(20, ("__kmp_taskloop_linear: T#%d: %lld tasks, grainsize %lld, "
4895                 "extras %lld, last_chunk %lld, i=%lld,%lld(%d)%lld, dup %p\n",
4896                 gtid, num_tasks, grainsize, extras, last_chunk, lower, upper,
4897                 ub_glob, st, task_dup));
4898 
4899   // Launch num_tasks tasks, assign grainsize iterations each task
4900   for (i = 0; i < num_tasks; ++i) {
4901     kmp_uint64 chunk_minus_1;
4902     if (extras == 0) {
4903       chunk_minus_1 = grainsize - 1;
4904     } else {
4905       chunk_minus_1 = grainsize;
4906       --extras; // first extras iterations get bigger chunk (grainsize+1)
4907     }
4908     upper = lower + st * chunk_minus_1;
4909     if (upper > *ub) {
4910       upper = *ub;
4911     }
4912     if (i == num_tasks - 1) {
4913       // schedule the last task, set lastprivate flag if needed
4914       if (st == 1) { // most common case
4915         KMP_DEBUG_ASSERT(upper == *ub);
4916         if (upper == ub_glob)
4917           lastpriv = 1;
4918       } else if (st > 0) { // positive loop stride
4919         KMP_DEBUG_ASSERT((kmp_uint64)st > *ub - upper);
4920         if ((kmp_uint64)st > ub_glob - upper)
4921           lastpriv = 1;
4922       } else { // negative loop stride
4923         KMP_DEBUG_ASSERT(upper + st < *ub);
4924         if (upper - ub_glob < (kmp_uint64)(-st))
4925           lastpriv = 1;
4926       }
4927     }
4928 
4929 #if OMPX_TASKGRAPH
4930     next_task = __kmp_task_dup_alloc(thread, task, /* taskloop_recur */ 0);
4931 #else
4932     next_task = __kmp_task_dup_alloc(thread, task); // allocate new task
4933 #endif
4934 
4935     kmp_taskdata_t *next_taskdata = KMP_TASK_TO_TASKDATA(next_task);
4936     kmp_taskloop_bounds_t next_task_bounds =
4937         kmp_taskloop_bounds_t(next_task, task_bounds);
4938 
4939     // adjust task-specific bounds
4940     next_task_bounds.set_lb(lower);
4941     if (next_taskdata->td_flags.native) {
4942       next_task_bounds.set_ub(upper + (st > 0 ? 1 : -1));
4943     } else {
4944       next_task_bounds.set_ub(upper);
4945     }
4946     if (ptask_dup != NULL) // set lastprivate flag, construct firstprivates,
4947                            // etc.
4948       ptask_dup(next_task, task, lastpriv);
4949     KA_TRACE(40,
4950              ("__kmp_taskloop_linear: T#%d; task #%llu: task %p: lower %lld, "
4951               "upper %lld stride %lld, (offsets %p %p)\n",
4952               gtid, i, next_task, lower, upper, st,
4953               next_task_bounds.get_lower_offset(),
4954               next_task_bounds.get_upper_offset()));
4955 #if OMPT_SUPPORT
4956     __kmp_omp_taskloop_task(NULL, gtid, next_task,
4957                             codeptr_ra); // schedule new task
4958 #if OMPT_OPTIONAL
4959     if (ompt_enabled.ompt_callback_dispatch) {
4960       OMPT_GET_DISPATCH_CHUNK(next_taskdata->ompt_task_info.dispatch_chunk,
4961                               lower, upper, st);
4962     }
4963 #endif // OMPT_OPTIONAL
4964 #else
4965     __kmp_omp_task(gtid, next_task, true); // schedule new task
4966 #endif
4967     lower = upper + st; // adjust lower bound for the next iteration
4968   }
4969   // free the pattern task and exit
4970   __kmp_task_start(gtid, task, current_task); // make internal bookkeeping
4971   // do not execute the pattern task, just do internal bookkeeping
4972   __kmp_task_finish<false>(gtid, task, current_task);
4973 }
4974 
4975 // Structure to keep taskloop parameters for auxiliary task
4976 // kept in the shareds of the task structure.
4977 typedef struct __taskloop_params {
4978   kmp_task_t *task;
4979   kmp_uint64 *lb;
4980   kmp_uint64 *ub;
4981   void *task_dup;
4982   kmp_int64 st;
4983   kmp_uint64 ub_glob;
4984   kmp_uint64 num_tasks;
4985   kmp_uint64 grainsize;
4986   kmp_uint64 extras;
4987   kmp_int64 last_chunk;
4988   kmp_uint64 tc;
4989   kmp_uint64 num_t_min;
4990 #if OMPT_SUPPORT
4991   void *codeptr_ra;
4992 #endif
4993 } __taskloop_params_t;
4994 
4995 void __kmp_taskloop_recur(ident_t *, int, kmp_task_t *, kmp_uint64 *,
4996                           kmp_uint64 *, kmp_int64, kmp_uint64, kmp_uint64,
4997                           kmp_uint64, kmp_uint64, kmp_int64, kmp_uint64,
4998                           kmp_uint64,
4999 #if OMPT_SUPPORT
5000                           void *,
5001 #endif
5002                           void *);
5003 
5004 // Execute part of the taskloop submitted as a task.
5005 int __kmp_taskloop_task(int gtid, void *ptask) {
5006   __taskloop_params_t *p =
5007       (__taskloop_params_t *)((kmp_task_t *)ptask)->shareds;
5008   kmp_task_t *task = p->task;
5009   kmp_uint64 *lb = p->lb;
5010   kmp_uint64 *ub = p->ub;
5011   void *task_dup = p->task_dup;
5012   //  p_task_dup_t ptask_dup = (p_task_dup_t)task_dup;
5013   kmp_int64 st = p->st;
5014   kmp_uint64 ub_glob = p->ub_glob;
5015   kmp_uint64 num_tasks = p->num_tasks;
5016   kmp_uint64 grainsize = p->grainsize;
5017   kmp_uint64 extras = p->extras;
5018   kmp_int64 last_chunk = p->last_chunk;
5019   kmp_uint64 tc = p->tc;
5020   kmp_uint64 num_t_min = p->num_t_min;
5021 #if OMPT_SUPPORT
5022   void *codeptr_ra = p->codeptr_ra;
5023 #endif
5024 #if KMP_DEBUG
5025   kmp_taskdata_t *taskdata = KMP_TASK_TO_TASKDATA(task);
5026   KMP_DEBUG_ASSERT(task != NULL);
5027   KA_TRACE(20,
5028            ("__kmp_taskloop_task: T#%d, task %p: %lld tasks, grainsize"
5029             " %lld, extras %lld, last_chunk %lld, i=%lld,%lld(%d), dup %p\n",
5030             gtid, taskdata, num_tasks, grainsize, extras, last_chunk, *lb, *ub,
5031             st, task_dup));
5032 #endif
5033   KMP_DEBUG_ASSERT(num_tasks * 2 + 1 > num_t_min);
5034   if (num_tasks > num_t_min)
5035     __kmp_taskloop_recur(NULL, gtid, task, lb, ub, st, ub_glob, num_tasks,
5036                          grainsize, extras, last_chunk, tc, num_t_min,
5037 #if OMPT_SUPPORT
5038                          codeptr_ra,
5039 #endif
5040                          task_dup);
5041   else
5042     __kmp_taskloop_linear(NULL, gtid, task, lb, ub, st, ub_glob, num_tasks,
5043                           grainsize, extras, last_chunk, tc,
5044 #if OMPT_SUPPORT
5045                           codeptr_ra,
5046 #endif
5047                           task_dup);
5048 
5049   KA_TRACE(40, ("__kmp_taskloop_task(exit): T#%d\n", gtid));
5050   return 0;
5051 }
5052 
5053 // Schedule part of the taskloop as a task,
5054 // execute the rest of the taskloop.
5055 //
5056 // loc        Source location information
5057 // gtid       Global thread ID
5058 // task       Pattern task, exposes the loop iteration range
5059 // lb         Pointer to loop lower bound in task structure
5060 // ub         Pointer to loop upper bound in task structure
5061 // st         Loop stride
5062 // ub_glob    Global upper bound (used for lastprivate check)
5063 // num_tasks  Number of tasks to execute
5064 // grainsize  Number of loop iterations per task
5065 // extras     Number of chunks with grainsize+1 iterations
5066 // last_chunk Reduction of grainsize for last task
5067 // tc         Iterations count
5068 // num_t_min  Threshold to launch tasks recursively
5069 // task_dup   Tasks duplication routine
5070 // codeptr_ra Return address for OMPT events
5071 void __kmp_taskloop_recur(ident_t *loc, int gtid, kmp_task_t *task,
5072                           kmp_uint64 *lb, kmp_uint64 *ub, kmp_int64 st,
5073                           kmp_uint64 ub_glob, kmp_uint64 num_tasks,
5074                           kmp_uint64 grainsize, kmp_uint64 extras,
5075                           kmp_int64 last_chunk, kmp_uint64 tc,
5076                           kmp_uint64 num_t_min,
5077 #if OMPT_SUPPORT
5078                           void *codeptr_ra,
5079 #endif
5080                           void *task_dup) {
5081   kmp_taskdata_t *taskdata = KMP_TASK_TO_TASKDATA(task);
5082   KMP_DEBUG_ASSERT(task != NULL);
5083   KMP_DEBUG_ASSERT(num_tasks > num_t_min);
5084   KA_TRACE(20,
5085            ("__kmp_taskloop_recur: T#%d, task %p: %lld tasks, grainsize"
5086             " %lld, extras %lld, last_chunk %lld, i=%lld,%lld(%d), dup %p\n",
5087             gtid, taskdata, num_tasks, grainsize, extras, last_chunk, *lb, *ub,
5088             st, task_dup));
5089   p_task_dup_t ptask_dup = (p_task_dup_t)task_dup;
5090   kmp_uint64 lower = *lb;
5091   kmp_info_t *thread = __kmp_threads[gtid];
5092   //  kmp_taskdata_t *current_task = thread->th.th_current_task;
5093   kmp_task_t *next_task;
5094   size_t lower_offset =
5095       (char *)lb - (char *)task; // remember offset of lb in the task structure
5096   size_t upper_offset =
5097       (char *)ub - (char *)task; // remember offset of ub in the task structure
5098 
5099   KMP_DEBUG_ASSERT(tc == num_tasks * grainsize +
5100                              (last_chunk < 0 ? last_chunk : extras));
5101   KMP_DEBUG_ASSERT(num_tasks > extras);
5102   KMP_DEBUG_ASSERT(num_tasks > 0);
5103 
5104   // split the loop in two halves
5105   kmp_uint64 lb1, ub0, tc0, tc1, ext0, ext1;
5106   kmp_int64 last_chunk0 = 0, last_chunk1 = 0;
5107   kmp_uint64 gr_size0 = grainsize;
5108   kmp_uint64 n_tsk0 = num_tasks >> 1; // num_tasks/2 to execute
5109   kmp_uint64 n_tsk1 = num_tasks - n_tsk0; // to schedule as a task
5110   if (last_chunk < 0) {
5111     ext0 = ext1 = 0;
5112     last_chunk1 = last_chunk;
5113     tc0 = grainsize * n_tsk0;
5114     tc1 = tc - tc0;
5115   } else if (n_tsk0 <= extras) {
5116     gr_size0++; // integrate extras into grainsize
5117     ext0 = 0; // no extra iters in 1st half
5118     ext1 = extras - n_tsk0; // remaining extras
5119     tc0 = gr_size0 * n_tsk0;
5120     tc1 = tc - tc0;
5121   } else { // n_tsk0 > extras
5122     ext1 = 0; // no extra iters in 2nd half
5123     ext0 = extras;
5124     tc1 = grainsize * n_tsk1;
5125     tc0 = tc - tc1;
5126   }
5127   ub0 = lower + st * (tc0 - 1);
5128   lb1 = ub0 + st;
5129 
5130   // create pattern task for 2nd half of the loop
5131 #if OMPX_TASKGRAPH
5132   next_task = __kmp_task_dup_alloc(thread, task,
5133                                    /* taskloop_recur */ 1);
5134 #else
5135   next_task = __kmp_task_dup_alloc(thread, task); // duplicate the task
5136 #endif
5137   // adjust lower bound (upper bound is not changed) for the 2nd half
5138   *(kmp_uint64 *)((char *)next_task + lower_offset) = lb1;
5139   if (ptask_dup != NULL) // construct firstprivates, etc.
5140     ptask_dup(next_task, task, 0);
5141   *ub = ub0; // adjust upper bound for the 1st half
5142 
5143   // create auxiliary task for 2nd half of the loop
5144   // make sure new task has same parent task as the pattern task
5145   kmp_taskdata_t *current_task = thread->th.th_current_task;
5146   thread->th.th_current_task = taskdata->td_parent;
5147   kmp_task_t *new_task =
5148       __kmpc_omp_task_alloc(loc, gtid, 1, 3 * sizeof(void *),
5149                             sizeof(__taskloop_params_t), &__kmp_taskloop_task);
5150   // restore current task
5151   thread->th.th_current_task = current_task;
5152   __taskloop_params_t *p = (__taskloop_params_t *)new_task->shareds;
5153   p->task = next_task;
5154   p->lb = (kmp_uint64 *)((char *)next_task + lower_offset);
5155   p->ub = (kmp_uint64 *)((char *)next_task + upper_offset);
5156   p->task_dup = task_dup;
5157   p->st = st;
5158   p->ub_glob = ub_glob;
5159   p->num_tasks = n_tsk1;
5160   p->grainsize = grainsize;
5161   p->extras = ext1;
5162   p->last_chunk = last_chunk1;
5163   p->tc = tc1;
5164   p->num_t_min = num_t_min;
5165 #if OMPT_SUPPORT
5166   p->codeptr_ra = codeptr_ra;
5167 #endif
5168 
5169 #if OMPX_TASKGRAPH
5170   kmp_taskdata_t *new_task_data = KMP_TASK_TO_TASKDATA(new_task);
5171   new_task_data->tdg = taskdata->tdg;
5172   new_task_data->is_taskgraph = 0;
5173 #endif
5174 
5175 #if OMPT_SUPPORT
5176   // schedule new task with correct return address for OMPT events
5177   __kmp_omp_taskloop_task(NULL, gtid, new_task, codeptr_ra);
5178 #else
5179   __kmp_omp_task(gtid, new_task, true); // schedule new task
5180 #endif
5181 
5182   // execute the 1st half of current subrange
5183   if (n_tsk0 > num_t_min)
5184     __kmp_taskloop_recur(loc, gtid, task, lb, ub, st, ub_glob, n_tsk0, gr_size0,
5185                          ext0, last_chunk0, tc0, num_t_min,
5186 #if OMPT_SUPPORT
5187                          codeptr_ra,
5188 #endif
5189                          task_dup);
5190   else
5191     __kmp_taskloop_linear(loc, gtid, task, lb, ub, st, ub_glob, n_tsk0,
5192                           gr_size0, ext0, last_chunk0, tc0,
5193 #if OMPT_SUPPORT
5194                           codeptr_ra,
5195 #endif
5196                           task_dup);
5197 
5198   KA_TRACE(40, ("__kmp_taskloop_recur(exit): T#%d\n", gtid));
5199 }
5200 
5201 static void __kmp_taskloop(ident_t *loc, int gtid, kmp_task_t *task, int if_val,
5202                            kmp_uint64 *lb, kmp_uint64 *ub, kmp_int64 st,
5203                            int nogroup, int sched, kmp_uint64 grainsize,
5204                            int modifier, void *task_dup) {
5205   kmp_taskdata_t *taskdata = KMP_TASK_TO_TASKDATA(task);
5206   KMP_DEBUG_ASSERT(task != NULL);
5207   if (nogroup == 0) {
5208 #if OMPT_SUPPORT && OMPT_OPTIONAL
5209     OMPT_STORE_RETURN_ADDRESS(gtid);
5210 #endif
5211     __kmpc_taskgroup(loc, gtid);
5212   }
5213 
5214 #if OMPX_TASKGRAPH
5215   KMP_ATOMIC_DEC(&__kmp_tdg_task_id);
5216 #endif
5217   // =========================================================================
5218   // calculate loop parameters
5219   kmp_taskloop_bounds_t task_bounds(task, lb, ub);
5220   kmp_uint64 tc;
5221   // compiler provides global bounds here
5222   kmp_uint64 lower = task_bounds.get_lb();
5223   kmp_uint64 upper = task_bounds.get_ub();
5224   kmp_uint64 ub_glob = upper; // global upper used to calc lastprivate flag
5225   kmp_uint64 num_tasks = 0, extras = 0;
5226   kmp_int64 last_chunk =
5227       0; // reduce grainsize of last task by last_chunk in strict mode
5228   kmp_uint64 num_tasks_min = __kmp_taskloop_min_tasks;
5229   kmp_info_t *thread = __kmp_threads[gtid];
5230   kmp_taskdata_t *current_task = thread->th.th_current_task;
5231 
5232   KA_TRACE(20, ("__kmp_taskloop: T#%d, task %p, lb %lld, ub %lld, st %lld, "
5233                 "grain %llu(%d, %d), dup %p\n",
5234                 gtid, taskdata, lower, upper, st, grainsize, sched, modifier,
5235                 task_dup));
5236 
5237   // compute trip count
5238   if (st == 1) { // most common case
5239     tc = upper - lower + 1;
5240   } else if (st < 0) {
5241     tc = (lower - upper) / (-st) + 1;
5242   } else { // st > 0
5243     tc = (upper - lower) / st + 1;
5244   }
5245   if (tc == 0) {
5246     KA_TRACE(20, ("__kmp_taskloop(exit): T#%d zero-trip loop\n", gtid));
5247     // free the pattern task and exit
5248     __kmp_task_start(gtid, task, current_task);
5249     // do not execute anything for zero-trip loop
5250     __kmp_task_finish<false>(gtid, task, current_task);
5251     return;
5252   }
5253 
5254 #if OMPT_SUPPORT && OMPT_OPTIONAL
5255   ompt_team_info_t *team_info = __ompt_get_teaminfo(0, NULL);
5256   ompt_task_info_t *task_info = __ompt_get_task_info_object(0);
5257   if (ompt_enabled.ompt_callback_work) {
5258     ompt_callbacks.ompt_callback(ompt_callback_work)(
5259         ompt_work_taskloop, ompt_scope_begin, &(team_info->parallel_data),
5260         &(task_info->task_data), tc, OMPT_GET_RETURN_ADDRESS(0));
5261   }
5262 #endif
5263 
5264   if (num_tasks_min == 0)
5265     // TODO: can we choose better default heuristic?
5266     num_tasks_min =
5267         KMP_MIN(thread->th.th_team_nproc * 10, INITIAL_TASK_DEQUE_SIZE);
5268 
5269   // compute num_tasks/grainsize based on the input provided
5270   switch (sched) {
5271   case 0: // no schedule clause specified, we can choose the default
5272     // let's try to schedule (team_size*10) tasks
5273     grainsize = thread->th.th_team_nproc * 10;
5274     KMP_FALLTHROUGH();
5275   case 2: // num_tasks provided
5276     if (grainsize > tc) {
5277       num_tasks = tc; // too big num_tasks requested, adjust values
5278       grainsize = 1;
5279       extras = 0;
5280     } else {
5281       num_tasks = grainsize;
5282       grainsize = tc / num_tasks;
5283       extras = tc % num_tasks;
5284     }
5285     break;
5286   case 1: // grainsize provided
5287     if (grainsize > tc) {
5288       num_tasks = 1;
5289       grainsize = tc; // too big grainsize requested, adjust values
5290       extras = 0;
5291     } else {
5292       if (modifier) {
5293         num_tasks = (tc + grainsize - 1) / grainsize;
5294         last_chunk = tc - (num_tasks * grainsize);
5295         extras = 0;
5296       } else {
5297         num_tasks = tc / grainsize;
5298         // adjust grainsize for balanced distribution of iterations
5299         grainsize = tc / num_tasks;
5300         extras = tc % num_tasks;
5301       }
5302     }
5303     break;
5304   default:
5305     KMP_ASSERT2(0, "unknown scheduling of taskloop");
5306   }
5307 
5308   KMP_DEBUG_ASSERT(tc == num_tasks * grainsize +
5309                              (last_chunk < 0 ? last_chunk : extras));
5310   KMP_DEBUG_ASSERT(num_tasks > extras);
5311   KMP_DEBUG_ASSERT(num_tasks > 0);
5312   // =========================================================================
5313 
5314   // check if clause value first
5315   // Also require GOMP_taskloop to reduce to linear (taskdata->td_flags.native)
5316   if (if_val == 0) { // if(0) specified, mark task as serial
5317     taskdata->td_flags.task_serial = 1;
5318     taskdata->td_flags.tiedness = TASK_TIED; // AC: serial task cannot be untied
5319     // always start serial tasks linearly
5320     __kmp_taskloop_linear(loc, gtid, task, lb, ub, st, ub_glob, num_tasks,
5321                           grainsize, extras, last_chunk, tc,
5322 #if OMPT_SUPPORT
5323                           OMPT_GET_RETURN_ADDRESS(0),
5324 #endif
5325                           task_dup);
5326     // !taskdata->td_flags.native => currently force linear spawning of tasks
5327     // for GOMP_taskloop
5328   } else if (num_tasks > num_tasks_min && !taskdata->td_flags.native) {
5329     KA_TRACE(20, ("__kmp_taskloop: T#%d, go recursive: tc %llu, #tasks %llu"
5330                   "(%lld), grain %llu, extras %llu, last_chunk %lld\n",
5331                   gtid, tc, num_tasks, num_tasks_min, grainsize, extras,
5332                   last_chunk));
5333     __kmp_taskloop_recur(loc, gtid, task, lb, ub, st, ub_glob, num_tasks,
5334                          grainsize, extras, last_chunk, tc, num_tasks_min,
5335 #if OMPT_SUPPORT
5336                          OMPT_GET_RETURN_ADDRESS(0),
5337 #endif
5338                          task_dup);
5339   } else {
5340     KA_TRACE(20, ("__kmp_taskloop: T#%d, go linear: tc %llu, #tasks %llu"
5341                   "(%lld), grain %llu, extras %llu, last_chunk %lld\n",
5342                   gtid, tc, num_tasks, num_tasks_min, grainsize, extras,
5343                   last_chunk));
5344     __kmp_taskloop_linear(loc, gtid, task, lb, ub, st, ub_glob, num_tasks,
5345                           grainsize, extras, last_chunk, tc,
5346 #if OMPT_SUPPORT
5347                           OMPT_GET_RETURN_ADDRESS(0),
5348 #endif
5349                           task_dup);
5350   }
5351 
5352 #if OMPT_SUPPORT && OMPT_OPTIONAL
5353   if (ompt_enabled.ompt_callback_work) {
5354     ompt_callbacks.ompt_callback(ompt_callback_work)(
5355         ompt_work_taskloop, ompt_scope_end, &(team_info->parallel_data),
5356         &(task_info->task_data), tc, OMPT_GET_RETURN_ADDRESS(0));
5357   }
5358 #endif
5359 
5360   if (nogroup == 0) {
5361 #if OMPT_SUPPORT && OMPT_OPTIONAL
5362     OMPT_STORE_RETURN_ADDRESS(gtid);
5363 #endif
5364     __kmpc_end_taskgroup(loc, gtid);
5365   }
5366   KA_TRACE(20, ("__kmp_taskloop(exit): T#%d\n", gtid));
5367 }
5368 
5369 /*!
5370 @ingroup TASKING
5371 @param loc       Source location information
5372 @param gtid      Global thread ID
5373 @param task      Task structure
5374 @param if_val    Value of the if clause
5375 @param lb        Pointer to loop lower bound in task structure
5376 @param ub        Pointer to loop upper bound in task structure
5377 @param st        Loop stride
5378 @param nogroup   Flag, 1 if nogroup clause specified, 0 otherwise
5379 @param sched     Schedule specified 0/1/2 for none/grainsize/num_tasks
5380 @param grainsize Schedule value if specified
5381 @param task_dup  Tasks duplication routine
5382 
5383 Execute the taskloop construct.
5384 */
5385 void __kmpc_taskloop(ident_t *loc, int gtid, kmp_task_t *task, int if_val,
5386                      kmp_uint64 *lb, kmp_uint64 *ub, kmp_int64 st, int nogroup,
5387                      int sched, kmp_uint64 grainsize, void *task_dup) {
5388   __kmp_assert_valid_gtid(gtid);
5389   KA_TRACE(20, ("__kmpc_taskloop(enter): T#%d\n", gtid));
5390   __kmp_taskloop(loc, gtid, task, if_val, lb, ub, st, nogroup, sched, grainsize,
5391                  0, task_dup);
5392   KA_TRACE(20, ("__kmpc_taskloop(exit): T#%d\n", gtid));
5393 }
5394 
5395 /*!
5396 @ingroup TASKING
5397 @param loc       Source location information
5398 @param gtid      Global thread ID
5399 @param task      Task structure
5400 @param if_val    Value of the if clause
5401 @param lb        Pointer to loop lower bound in task structure
5402 @param ub        Pointer to loop upper bound in task structure
5403 @param st        Loop stride
5404 @param nogroup   Flag, 1 if nogroup clause specified, 0 otherwise
5405 @param sched     Schedule specified 0/1/2 for none/grainsize/num_tasks
5406 @param grainsize Schedule value if specified
5407 @param modifier  Modifier 'strict' for sched, 1 if present, 0 otherwise
5408 @param task_dup  Tasks duplication routine
5409 
5410 Execute the taskloop construct.
5411 */
5412 void __kmpc_taskloop_5(ident_t *loc, int gtid, kmp_task_t *task, int if_val,
5413                        kmp_uint64 *lb, kmp_uint64 *ub, kmp_int64 st,
5414                        int nogroup, int sched, kmp_uint64 grainsize,
5415                        int modifier, void *task_dup) {
5416   __kmp_assert_valid_gtid(gtid);
5417   KA_TRACE(20, ("__kmpc_taskloop_5(enter): T#%d\n", gtid));
5418   __kmp_taskloop(loc, gtid, task, if_val, lb, ub, st, nogroup, sched, grainsize,
5419                  modifier, task_dup);
5420   KA_TRACE(20, ("__kmpc_taskloop_5(exit): T#%d\n", gtid));
5421 }
5422 
5423 /*!
5424 @ingroup TASKING
5425 @param gtid Global Thread ID of current thread
5426 @return Returns a pointer to the thread's current task async handle. If no task
5427 is present or gtid is invalid, returns NULL.
5428 
5429 Acqurires a pointer to the target async handle from the current task.
5430 */
5431 void **__kmpc_omp_get_target_async_handle_ptr(kmp_int32 gtid) {
5432   if (gtid == KMP_GTID_DNE)
5433     return NULL;
5434 
5435   kmp_info_t *thread = __kmp_thread_from_gtid(gtid);
5436   kmp_taskdata_t *taskdata = thread->th.th_current_task;
5437 
5438   if (!taskdata)
5439     return NULL;
5440 
5441   return &taskdata->td_target_data.async_handle;
5442 }
5443 
5444 /*!
5445 @ingroup TASKING
5446 @param gtid Global Thread ID of current thread
5447 @return Returns TRUE if the current task being executed of the given thread has
5448 a task team allocated to it. Otherwise, returns FALSE.
5449 
5450 Checks if the current thread has a task team.
5451 */
5452 bool __kmpc_omp_has_task_team(kmp_int32 gtid) {
5453   if (gtid == KMP_GTID_DNE)
5454     return FALSE;
5455 
5456   kmp_info_t *thread = __kmp_thread_from_gtid(gtid);
5457   kmp_taskdata_t *taskdata = thread->th.th_current_task;
5458 
5459   if (!taskdata)
5460     return FALSE;
5461 
5462   return taskdata->td_task_team != NULL;
5463 }
5464 
5465 #if OMPX_TASKGRAPH
5466 // __kmp_find_tdg: identify a TDG through its ID
5467 // gtid:   Global Thread ID
5468 // tdg_id: ID of the TDG
5469 // returns: If a TDG corresponding to this ID is found and not
5470 // its initial state, return the pointer to it, otherwise nullptr
5471 static kmp_tdg_info_t *__kmp_find_tdg(kmp_int32 tdg_id) {
5472   kmp_tdg_info_t *res = nullptr;
5473   if (__kmp_max_tdgs == 0)
5474     return res;
5475 
5476   if (__kmp_global_tdgs == NULL)
5477     __kmp_global_tdgs = (kmp_tdg_info_t **)__kmp_allocate(
5478         sizeof(kmp_tdg_info_t *) * __kmp_max_tdgs);
5479 
5480   if ((__kmp_global_tdgs[tdg_id]) &&
5481       (__kmp_global_tdgs[tdg_id]->tdg_status != KMP_TDG_NONE))
5482     res = __kmp_global_tdgs[tdg_id];
5483   return res;
5484 }
5485 
5486 // __kmp_print_tdg_dot: prints the TDG to a dot file
5487 // tdg:    ID of the TDG
5488 void __kmp_print_tdg_dot(kmp_tdg_info_t *tdg) {
5489   kmp_int32 tdg_id = tdg->tdg_id;
5490   KA_TRACE(10, ("__kmp_print_tdg_dot(enter): T#%d tdg_id=%d \n", gtid, tdg_id));
5491 
5492   char file_name[20];
5493   sprintf(file_name, "tdg_%d.dot", tdg_id);
5494   kmp_safe_raii_file_t tdg_file(file_name, "w");
5495 
5496   kmp_int32 num_tasks = KMP_ATOMIC_LD_RLX(&tdg->num_tasks);
5497   fprintf(tdg_file,
5498           "digraph TDG {\n"
5499           "   compound=true\n"
5500           "   subgraph cluster {\n"
5501           "      label=TDG_%d\n",
5502           tdg_id);
5503   for (kmp_int32 i = 0; i < num_tasks; i++) {
5504     fprintf(tdg_file, "      %d[style=bold]\n", i);
5505   }
5506   fprintf(tdg_file, "   }\n");
5507   for (kmp_int32 i = 0; i < num_tasks; i++) {
5508     kmp_int32 nsuccessors = tdg->record_map[i].nsuccessors;
5509     kmp_int32 *successors = tdg->record_map[i].successors;
5510     if (nsuccessors > 0) {
5511       for (kmp_int32 j = 0; j < nsuccessors; j++)
5512         fprintf(tdg_file, "   %d -> %d \n", i, successors[j]);
5513     }
5514   }
5515   fprintf(tdg_file, "}");
5516   KA_TRACE(10, ("__kmp_print_tdg_dot(exit): T#%d tdg_id=%d \n", gtid, tdg_id));
5517 }
5518 
5519 // __kmp_start_record: launch the execution of a previous
5520 // recorded TDG
5521 // gtid:   Global Thread ID
5522 // tdg:    ID of the TDG
5523 void __kmp_exec_tdg(kmp_int32 gtid, kmp_tdg_info_t *tdg) {
5524   KMP_DEBUG_ASSERT(tdg->tdg_status == KMP_TDG_READY);
5525   KA_TRACE(10, ("__kmp_exec_tdg(enter): T#%d tdg_id=%d num_roots=%d\n", gtid,
5526                 tdg->tdg_id, tdg->num_roots));
5527   kmp_node_info_t *this_record_map = tdg->record_map;
5528   kmp_int32 *this_root_tasks = tdg->root_tasks;
5529   kmp_int32 this_num_roots = tdg->num_roots;
5530   kmp_int32 this_num_tasks = KMP_ATOMIC_LD_RLX(&tdg->num_tasks);
5531 
5532   kmp_info_t *thread = __kmp_threads[gtid];
5533   kmp_taskdata_t *parent_task = thread->th.th_current_task;
5534 
5535   if (tdg->rec_taskred_data) {
5536     __kmpc_taskred_init(gtid, tdg->rec_num_taskred, tdg->rec_taskred_data);
5537   }
5538 
5539   for (kmp_int32 j = 0; j < this_num_tasks; j++) {
5540     kmp_taskdata_t *td = KMP_TASK_TO_TASKDATA(this_record_map[j].task);
5541 
5542     td->td_parent = parent_task;
5543     this_record_map[j].parent_task = parent_task;
5544 
5545     kmp_taskgroup_t *parent_taskgroup =
5546         this_record_map[j].parent_task->td_taskgroup;
5547 
5548     KMP_ATOMIC_ST_RLX(&this_record_map[j].npredecessors_counter,
5549                       this_record_map[j].npredecessors);
5550     KMP_ATOMIC_INC(&this_record_map[j].parent_task->td_incomplete_child_tasks);
5551 
5552     if (parent_taskgroup) {
5553       KMP_ATOMIC_INC(&parent_taskgroup->count);
5554       // The taskgroup is different so we must update it
5555       td->td_taskgroup = parent_taskgroup;
5556     } else if (td->td_taskgroup != nullptr) {
5557       // If the parent doesnt have a taskgroup, remove it from the task
5558       td->td_taskgroup = nullptr;
5559     }
5560     if (this_record_map[j].parent_task->td_flags.tasktype == TASK_EXPLICIT)
5561       KMP_ATOMIC_INC(&this_record_map[j].parent_task->td_allocated_child_tasks);
5562   }
5563 
5564   for (kmp_int32 j = 0; j < this_num_roots; ++j) {
5565     __kmp_omp_task(gtid, this_record_map[this_root_tasks[j]].task, true);
5566   }
5567   KA_TRACE(10, ("__kmp_exec_tdg(exit): T#%d tdg_id=%d num_roots=%d\n", gtid,
5568                 tdg->tdg_id, tdg->num_roots));
5569 }
5570 
5571 // __kmp_start_record: set up a TDG structure and turn the
5572 // recording flag to true
5573 // gtid:        Global Thread ID of the encountering thread
5574 // input_flags: Flags associated with the TDG
5575 // tdg_id:      ID of the TDG to record
5576 static inline void __kmp_start_record(kmp_int32 gtid,
5577                                       kmp_taskgraph_flags_t *flags,
5578                                       kmp_int32 tdg_id) {
5579   kmp_tdg_info_t *tdg =
5580       (kmp_tdg_info_t *)__kmp_allocate(sizeof(kmp_tdg_info_t));
5581   __kmp_global_tdgs[__kmp_curr_tdg_idx] = tdg;
5582   // Initializing the TDG structure
5583   tdg->tdg_id = tdg_id;
5584   tdg->map_size = INIT_MAPSIZE;
5585   tdg->num_roots = -1;
5586   tdg->root_tasks = nullptr;
5587   tdg->tdg_status = KMP_TDG_RECORDING;
5588   tdg->rec_num_taskred = 0;
5589   tdg->rec_taskred_data = nullptr;
5590   KMP_ATOMIC_ST_RLX(&tdg->num_tasks, 0);
5591 
5592   // Initializing the list of nodes in this TDG
5593   kmp_node_info_t *this_record_map =
5594       (kmp_node_info_t *)__kmp_allocate(INIT_MAPSIZE * sizeof(kmp_node_info_t));
5595   for (kmp_int32 i = 0; i < INIT_MAPSIZE; i++) {
5596     kmp_int32 *successorsList =
5597         (kmp_int32 *)__kmp_allocate(__kmp_successors_size * sizeof(kmp_int32));
5598     this_record_map[i].task = nullptr;
5599     this_record_map[i].successors = successorsList;
5600     this_record_map[i].nsuccessors = 0;
5601     this_record_map[i].npredecessors = 0;
5602     this_record_map[i].successors_size = __kmp_successors_size;
5603     KMP_ATOMIC_ST_RLX(&this_record_map[i].npredecessors_counter, 0);
5604   }
5605 
5606   __kmp_global_tdgs[__kmp_curr_tdg_idx]->record_map = this_record_map;
5607 }
5608 
5609 // __kmpc_start_record_task: Wrapper around __kmp_start_record to mark
5610 // the beginning of the record process of a task region
5611 // loc_ref:     Location of TDG, not used yet
5612 // gtid:        Global Thread ID of the encountering thread
5613 // input_flags: Flags associated with the TDG
5614 // tdg_id:      ID of the TDG to record, for now, incremental integer
5615 // returns:     1 if we record, otherwise, 0
5616 kmp_int32 __kmpc_start_record_task(ident_t *loc_ref, kmp_int32 gtid,
5617                                    kmp_int32 input_flags, kmp_int32 tdg_id) {
5618 
5619   kmp_int32 res;
5620   kmp_taskgraph_flags_t *flags = (kmp_taskgraph_flags_t *)&input_flags;
5621   KA_TRACE(10,
5622            ("__kmpc_start_record_task(enter): T#%d loc=%p flags=%d tdg_id=%d\n",
5623             gtid, loc_ref, input_flags, tdg_id));
5624 
5625   if (__kmp_max_tdgs == 0) {
5626     KA_TRACE(
5627         10,
5628         ("__kmpc_start_record_task(abandon): T#%d loc=%p flags=%d tdg_id = %d, "
5629          "__kmp_max_tdgs = 0\n",
5630          gtid, loc_ref, input_flags, tdg_id));
5631     return 1;
5632   }
5633 
5634   __kmpc_taskgroup(loc_ref, gtid);
5635   if (kmp_tdg_info_t *tdg = __kmp_find_tdg(tdg_id)) {
5636     // TODO: use re_record flag
5637     __kmp_exec_tdg(gtid, tdg);
5638     res = 0;
5639   } else {
5640     __kmp_curr_tdg_idx = tdg_id;
5641     KMP_DEBUG_ASSERT(__kmp_curr_tdg_idx < __kmp_max_tdgs);
5642     __kmp_start_record(gtid, flags, tdg_id);
5643     __kmp_num_tdg++;
5644     res = 1;
5645   }
5646   KA_TRACE(10, ("__kmpc_start_record_task(exit): T#%d TDG %d starts to %s\n",
5647                 gtid, tdg_id, res ? "record" : "execute"));
5648   return res;
5649 }
5650 
5651 // __kmp_end_record: set up a TDG after recording it
5652 // gtid:   Global thread ID
5653 // tdg:    Pointer to the TDG
5654 void __kmp_end_record(kmp_int32 gtid, kmp_tdg_info_t *tdg) {
5655   // Store roots
5656   kmp_node_info_t *this_record_map = tdg->record_map;
5657   kmp_int32 this_num_tasks = KMP_ATOMIC_LD_RLX(&tdg->num_tasks);
5658   kmp_int32 *this_root_tasks =
5659       (kmp_int32 *)__kmp_allocate(this_num_tasks * sizeof(kmp_int32));
5660   kmp_int32 this_map_size = tdg->map_size;
5661   kmp_int32 this_num_roots = 0;
5662   kmp_info_t *thread = __kmp_threads[gtid];
5663 
5664   for (kmp_int32 i = 0; i < this_num_tasks; i++) {
5665     if (this_record_map[i].npredecessors == 0) {
5666       this_root_tasks[this_num_roots++] = i;
5667     }
5668   }
5669 
5670   // Update with roots info and mapsize
5671   tdg->map_size = this_map_size;
5672   tdg->num_roots = this_num_roots;
5673   tdg->root_tasks = this_root_tasks;
5674   KMP_DEBUG_ASSERT(tdg->tdg_status == KMP_TDG_RECORDING);
5675   tdg->tdg_status = KMP_TDG_READY;
5676 
5677   if (thread->th.th_current_task->td_dephash) {
5678     __kmp_dephash_free(thread, thread->th.th_current_task->td_dephash);
5679     thread->th.th_current_task->td_dephash = NULL;
5680   }
5681 
5682   // Reset predecessor counter
5683   for (kmp_int32 i = 0; i < this_num_tasks; i++) {
5684     KMP_ATOMIC_ST_RLX(&this_record_map[i].npredecessors_counter,
5685                       this_record_map[i].npredecessors);
5686   }
5687   KMP_ATOMIC_ST_RLX(&__kmp_tdg_task_id, 0);
5688 
5689   if (__kmp_tdg_dot)
5690     __kmp_print_tdg_dot(tdg);
5691 }
5692 
5693 // __kmpc_end_record_task: wrapper around __kmp_end_record to mark
5694 // the end of recording phase
5695 //
5696 // loc_ref:      Source location information
5697 // gtid:         Global thread ID
5698 // input_flags:  Flags attached to the graph
5699 // tdg_id:       ID of the TDG just finished recording
5700 void __kmpc_end_record_task(ident_t *loc_ref, kmp_int32 gtid,
5701                             kmp_int32 input_flags, kmp_int32 tdg_id) {
5702   kmp_tdg_info_t *tdg = __kmp_find_tdg(tdg_id);
5703 
5704   KA_TRACE(10, ("__kmpc_end_record_task(enter): T#%d loc=%p finishes recording"
5705                 " tdg=%d with flags=%d\n",
5706                 gtid, loc_ref, tdg_id, input_flags));
5707   if (__kmp_max_tdgs) {
5708     // TODO: use input_flags->nowait
5709     __kmpc_end_taskgroup(loc_ref, gtid);
5710     if (__kmp_tdg_is_recording(tdg->tdg_status))
5711       __kmp_end_record(gtid, tdg);
5712   }
5713   KA_TRACE(10, ("__kmpc_end_record_task(exit): T#%d loc=%p finished recording"
5714                 " tdg=%d, its status is now READY\n",
5715                 gtid, loc_ref, tdg_id));
5716 }
5717 #endif
5718