1 /* 2 * kmp_tasking.cpp -- OpenMP 3.0 tasking support. 3 */ 4 5 //===----------------------------------------------------------------------===// 6 // 7 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 8 // See https://llvm.org/LICENSE.txt for license information. 9 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "kmp.h" 14 #include "kmp_i18n.h" 15 #include "kmp_itt.h" 16 #include "kmp_stats.h" 17 #include "kmp_wait_release.h" 18 #include "kmp_taskdeps.h" 19 20 #if OMPT_SUPPORT 21 #include "ompt-specific.h" 22 #endif 23 24 #include "tsan_annotations.h" 25 26 /* forward declaration */ 27 static void __kmp_enable_tasking(kmp_task_team_t *task_team, 28 kmp_info_t *this_thr); 29 static void __kmp_alloc_task_deque(kmp_info_t *thread, 30 kmp_thread_data_t *thread_data); 31 static int __kmp_realloc_task_threads_data(kmp_info_t *thread, 32 kmp_task_team_t *task_team); 33 static void __kmp_bottom_half_finish_proxy(kmp_int32 gtid, kmp_task_t *ptask); 34 35 #ifdef BUILD_TIED_TASK_STACK 36 37 // __kmp_trace_task_stack: print the tied tasks from the task stack in order 38 // from top do bottom 39 // 40 // gtid: global thread identifier for thread containing stack 41 // thread_data: thread data for task team thread containing stack 42 // threshold: value above which the trace statement triggers 43 // location: string identifying call site of this function (for trace) 44 static void __kmp_trace_task_stack(kmp_int32 gtid, 45 kmp_thread_data_t *thread_data, 46 int threshold, char *location) { 47 kmp_task_stack_t *task_stack = &thread_data->td.td_susp_tied_tasks; 48 kmp_taskdata_t **stack_top = task_stack->ts_top; 49 kmp_int32 entries = task_stack->ts_entries; 50 kmp_taskdata_t *tied_task; 51 52 KA_TRACE( 53 threshold, 54 ("__kmp_trace_task_stack(start): location = %s, gtid = %d, entries = %d, " 55 "first_block = %p, stack_top = %p \n", 56 location, gtid, entries, task_stack->ts_first_block, stack_top)); 57 58 KMP_DEBUG_ASSERT(stack_top != NULL); 59 KMP_DEBUG_ASSERT(entries > 0); 60 61 while (entries != 0) { 62 KMP_DEBUG_ASSERT(stack_top != &task_stack->ts_first_block.sb_block[0]); 63 // fix up ts_top if we need to pop from previous block 64 if (entries & TASK_STACK_INDEX_MASK == 0) { 65 kmp_stack_block_t *stack_block = (kmp_stack_block_t *)(stack_top); 66 67 stack_block = stack_block->sb_prev; 68 stack_top = &stack_block->sb_block[TASK_STACK_BLOCK_SIZE]; 69 } 70 71 // finish bookkeeping 72 stack_top--; 73 entries--; 74 75 tied_task = *stack_top; 76 77 KMP_DEBUG_ASSERT(tied_task != NULL); 78 KMP_DEBUG_ASSERT(tied_task->td_flags.tasktype == TASK_TIED); 79 80 KA_TRACE(threshold, 81 ("__kmp_trace_task_stack(%s): gtid=%d, entry=%d, " 82 "stack_top=%p, tied_task=%p\n", 83 location, gtid, entries, stack_top, tied_task)); 84 } 85 KMP_DEBUG_ASSERT(stack_top == &task_stack->ts_first_block.sb_block[0]); 86 87 KA_TRACE(threshold, 88 ("__kmp_trace_task_stack(exit): location = %s, gtid = %d\n", 89 location, gtid)); 90 } 91 92 // __kmp_init_task_stack: initialize the task stack for the first time 93 // after a thread_data structure is created. 94 // It should not be necessary to do this again (assuming the stack works). 95 // 96 // gtid: global thread identifier of calling thread 97 // thread_data: thread data for task team thread containing stack 98 static void __kmp_init_task_stack(kmp_int32 gtid, 99 kmp_thread_data_t *thread_data) { 100 kmp_task_stack_t *task_stack = &thread_data->td.td_susp_tied_tasks; 101 kmp_stack_block_t *first_block; 102 103 // set up the first block of the stack 104 first_block = &task_stack->ts_first_block; 105 task_stack->ts_top = (kmp_taskdata_t **)first_block; 106 memset((void *)first_block, '\0', 107 TASK_STACK_BLOCK_SIZE * sizeof(kmp_taskdata_t *)); 108 109 // initialize the stack to be empty 110 task_stack->ts_entries = TASK_STACK_EMPTY; 111 first_block->sb_next = NULL; 112 first_block->sb_prev = NULL; 113 } 114 115 // __kmp_free_task_stack: free the task stack when thread_data is destroyed. 116 // 117 // gtid: global thread identifier for calling thread 118 // thread_data: thread info for thread containing stack 119 static void __kmp_free_task_stack(kmp_int32 gtid, 120 kmp_thread_data_t *thread_data) { 121 kmp_task_stack_t *task_stack = &thread_data->td.td_susp_tied_tasks; 122 kmp_stack_block_t *stack_block = &task_stack->ts_first_block; 123 124 KMP_DEBUG_ASSERT(task_stack->ts_entries == TASK_STACK_EMPTY); 125 // free from the second block of the stack 126 while (stack_block != NULL) { 127 kmp_stack_block_t *next_block = (stack_block) ? stack_block->sb_next : NULL; 128 129 stack_block->sb_next = NULL; 130 stack_block->sb_prev = NULL; 131 if (stack_block != &task_stack->ts_first_block) { 132 __kmp_thread_free(thread, 133 stack_block); // free the block, if not the first 134 } 135 stack_block = next_block; 136 } 137 // initialize the stack to be empty 138 task_stack->ts_entries = 0; 139 task_stack->ts_top = NULL; 140 } 141 142 // __kmp_push_task_stack: Push the tied task onto the task stack. 143 // Grow the stack if necessary by allocating another block. 144 // 145 // gtid: global thread identifier for calling thread 146 // thread: thread info for thread containing stack 147 // tied_task: the task to push on the stack 148 static void __kmp_push_task_stack(kmp_int32 gtid, kmp_info_t *thread, 149 kmp_taskdata_t *tied_task) { 150 // GEH - need to consider what to do if tt_threads_data not allocated yet 151 kmp_thread_data_t *thread_data = 152 &thread->th.th_task_team->tt.tt_threads_data[__kmp_tid_from_gtid(gtid)]; 153 kmp_task_stack_t *task_stack = &thread_data->td.td_susp_tied_tasks; 154 155 if (tied_task->td_flags.team_serial || tied_task->td_flags.tasking_ser) { 156 return; // Don't push anything on stack if team or team tasks are serialized 157 } 158 159 KMP_DEBUG_ASSERT(tied_task->td_flags.tasktype == TASK_TIED); 160 KMP_DEBUG_ASSERT(task_stack->ts_top != NULL); 161 162 KA_TRACE(20, 163 ("__kmp_push_task_stack(enter): GTID: %d; THREAD: %p; TASK: %p\n", 164 gtid, thread, tied_task)); 165 // Store entry 166 *(task_stack->ts_top) = tied_task; 167 168 // Do bookkeeping for next push 169 task_stack->ts_top++; 170 task_stack->ts_entries++; 171 172 if (task_stack->ts_entries & TASK_STACK_INDEX_MASK == 0) { 173 // Find beginning of this task block 174 kmp_stack_block_t *stack_block = 175 (kmp_stack_block_t *)(task_stack->ts_top - TASK_STACK_BLOCK_SIZE); 176 177 // Check if we already have a block 178 if (stack_block->sb_next != 179 NULL) { // reset ts_top to beginning of next block 180 task_stack->ts_top = &stack_block->sb_next->sb_block[0]; 181 } else { // Alloc new block and link it up 182 kmp_stack_block_t *new_block = (kmp_stack_block_t *)__kmp_thread_calloc( 183 thread, sizeof(kmp_stack_block_t)); 184 185 task_stack->ts_top = &new_block->sb_block[0]; 186 stack_block->sb_next = new_block; 187 new_block->sb_prev = stack_block; 188 new_block->sb_next = NULL; 189 190 KA_TRACE( 191 30, 192 ("__kmp_push_task_stack(): GTID: %d; TASK: %p; Alloc new block: %p\n", 193 gtid, tied_task, new_block)); 194 } 195 } 196 KA_TRACE(20, ("__kmp_push_task_stack(exit): GTID: %d; TASK: %p\n", gtid, 197 tied_task)); 198 } 199 200 // __kmp_pop_task_stack: Pop the tied task from the task stack. Don't return 201 // the task, just check to make sure it matches the ending task passed in. 202 // 203 // gtid: global thread identifier for the calling thread 204 // thread: thread info structure containing stack 205 // tied_task: the task popped off the stack 206 // ending_task: the task that is ending (should match popped task) 207 static void __kmp_pop_task_stack(kmp_int32 gtid, kmp_info_t *thread, 208 kmp_taskdata_t *ending_task) { 209 // GEH - need to consider what to do if tt_threads_data not allocated yet 210 kmp_thread_data_t *thread_data = 211 &thread->th.th_task_team->tt_threads_data[__kmp_tid_from_gtid(gtid)]; 212 kmp_task_stack_t *task_stack = &thread_data->td.td_susp_tied_tasks; 213 kmp_taskdata_t *tied_task; 214 215 if (ending_task->td_flags.team_serial || ending_task->td_flags.tasking_ser) { 216 // Don't pop anything from stack if team or team tasks are serialized 217 return; 218 } 219 220 KMP_DEBUG_ASSERT(task_stack->ts_top != NULL); 221 KMP_DEBUG_ASSERT(task_stack->ts_entries > 0); 222 223 KA_TRACE(20, ("__kmp_pop_task_stack(enter): GTID: %d; THREAD: %p\n", gtid, 224 thread)); 225 226 // fix up ts_top if we need to pop from previous block 227 if (task_stack->ts_entries & TASK_STACK_INDEX_MASK == 0) { 228 kmp_stack_block_t *stack_block = (kmp_stack_block_t *)(task_stack->ts_top); 229 230 stack_block = stack_block->sb_prev; 231 task_stack->ts_top = &stack_block->sb_block[TASK_STACK_BLOCK_SIZE]; 232 } 233 234 // finish bookkeeping 235 task_stack->ts_top--; 236 task_stack->ts_entries--; 237 238 tied_task = *(task_stack->ts_top); 239 240 KMP_DEBUG_ASSERT(tied_task != NULL); 241 KMP_DEBUG_ASSERT(tied_task->td_flags.tasktype == TASK_TIED); 242 KMP_DEBUG_ASSERT(tied_task == ending_task); // If we built the stack correctly 243 244 KA_TRACE(20, ("__kmp_pop_task_stack(exit): GTID: %d; TASK: %p\n", gtid, 245 tied_task)); 246 return; 247 } 248 #endif /* BUILD_TIED_TASK_STACK */ 249 250 // returns 1 if new task is allowed to execute, 0 otherwise 251 // checks Task Scheduling constraint (if requested) and 252 // mutexinoutset dependencies if any 253 static bool __kmp_task_is_allowed(int gtid, const kmp_int32 is_constrained, 254 const kmp_taskdata_t *tasknew, 255 const kmp_taskdata_t *taskcurr) { 256 if (is_constrained && (tasknew->td_flags.tiedness == TASK_TIED)) { 257 // Check if the candidate obeys the Task Scheduling Constraints (TSC) 258 // only descendant of all deferred tied tasks can be scheduled, checking 259 // the last one is enough, as it in turn is the descendant of all others 260 kmp_taskdata_t *current = taskcurr->td_last_tied; 261 KMP_DEBUG_ASSERT(current != NULL); 262 // check if the task is not suspended on barrier 263 if (current->td_flags.tasktype == TASK_EXPLICIT || 264 current->td_taskwait_thread > 0) { // <= 0 on barrier 265 kmp_int32 level = current->td_level; 266 kmp_taskdata_t *parent = tasknew->td_parent; 267 while (parent != current && parent->td_level > level) { 268 // check generation up to the level of the current task 269 parent = parent->td_parent; 270 KMP_DEBUG_ASSERT(parent != NULL); 271 } 272 if (parent != current) 273 return false; 274 } 275 } 276 // Check mutexinoutset dependencies, acquire locks 277 kmp_depnode_t *node = tasknew->td_depnode; 278 if (UNLIKELY(node && (node->dn.mtx_num_locks > 0))) { 279 for (int i = 0; i < node->dn.mtx_num_locks; ++i) { 280 KMP_DEBUG_ASSERT(node->dn.mtx_locks[i] != NULL); 281 if (__kmp_test_lock(node->dn.mtx_locks[i], gtid)) 282 continue; 283 // could not get the lock, release previous locks 284 for (int j = i - 1; j >= 0; --j) 285 __kmp_release_lock(node->dn.mtx_locks[j], gtid); 286 return false; 287 } 288 // negative num_locks means all locks acquired successfully 289 node->dn.mtx_num_locks = -node->dn.mtx_num_locks; 290 } 291 return true; 292 } 293 294 // __kmp_realloc_task_deque: 295 // Re-allocates a task deque for a particular thread, copies the content from 296 // the old deque and adjusts the necessary data structures relating to the 297 // deque. This operation must be done with the deque_lock being held 298 static void __kmp_realloc_task_deque(kmp_info_t *thread, 299 kmp_thread_data_t *thread_data) { 300 kmp_int32 size = TASK_DEQUE_SIZE(thread_data->td); 301 KMP_DEBUG_ASSERT(TCR_4(thread_data->td.td_deque_ntasks) == size); 302 kmp_int32 new_size = 2 * size; 303 304 KE_TRACE(10, ("__kmp_realloc_task_deque: T#%d reallocating deque[from %d to " 305 "%d] for thread_data %p\n", 306 __kmp_gtid_from_thread(thread), size, new_size, thread_data)); 307 308 kmp_taskdata_t **new_deque = 309 (kmp_taskdata_t **)__kmp_allocate(new_size * sizeof(kmp_taskdata_t *)); 310 311 int i, j; 312 for (i = thread_data->td.td_deque_head, j = 0; j < size; 313 i = (i + 1) & TASK_DEQUE_MASK(thread_data->td), j++) 314 new_deque[j] = thread_data->td.td_deque[i]; 315 316 __kmp_free(thread_data->td.td_deque); 317 318 thread_data->td.td_deque_head = 0; 319 thread_data->td.td_deque_tail = size; 320 thread_data->td.td_deque = new_deque; 321 thread_data->td.td_deque_size = new_size; 322 } 323 324 // __kmp_push_task: Add a task to the thread's deque 325 static kmp_int32 __kmp_push_task(kmp_int32 gtid, kmp_task_t *task) { 326 kmp_info_t *thread = __kmp_threads[gtid]; 327 kmp_taskdata_t *taskdata = KMP_TASK_TO_TASKDATA(task); 328 329 // We don't need to map to shadow gtid if it is already hidden helper thread 330 if (taskdata->td_flags.hidden_helper && !KMP_HIDDEN_HELPER_THREAD(gtid)) { 331 gtid = KMP_GTID_TO_SHADOW_GTID(gtid); 332 thread = __kmp_threads[gtid]; 333 } 334 335 kmp_task_team_t *task_team = thread->th.th_task_team; 336 kmp_int32 tid = __kmp_tid_from_gtid(gtid); 337 kmp_thread_data_t *thread_data; 338 339 KA_TRACE(20, 340 ("__kmp_push_task: T#%d trying to push task %p.\n", gtid, taskdata)); 341 342 if (UNLIKELY(taskdata->td_flags.tiedness == TASK_UNTIED)) { 343 // untied task needs to increment counter so that the task structure is not 344 // freed prematurely 345 kmp_int32 counter = 1 + KMP_ATOMIC_INC(&taskdata->td_untied_count); 346 KMP_DEBUG_USE_VAR(counter); 347 KA_TRACE( 348 20, 349 ("__kmp_push_task: T#%d untied_count (%d) incremented for task %p\n", 350 gtid, counter, taskdata)); 351 } 352 353 // The first check avoids building task_team thread data if serialized 354 if (UNLIKELY(taskdata->td_flags.task_serial)) { 355 KA_TRACE(20, ("__kmp_push_task: T#%d team serialized; returning " 356 "TASK_NOT_PUSHED for task %p\n", 357 gtid, taskdata)); 358 return TASK_NOT_PUSHED; 359 } 360 361 // Now that serialized tasks have returned, we can assume that we are not in 362 // immediate exec mode 363 KMP_DEBUG_ASSERT(__kmp_tasking_mode != tskm_immediate_exec); 364 if (UNLIKELY(!KMP_TASKING_ENABLED(task_team))) { 365 __kmp_enable_tasking(task_team, thread); 366 } 367 KMP_DEBUG_ASSERT(TCR_4(task_team->tt.tt_found_tasks) == TRUE); 368 KMP_DEBUG_ASSERT(TCR_PTR(task_team->tt.tt_threads_data) != NULL); 369 370 // Find tasking deque specific to encountering thread 371 thread_data = &task_team->tt.tt_threads_data[tid]; 372 373 // No lock needed since only owner can allocate. If the task is hidden_helper, 374 // we don't need it either because we have initialized the dequeue for hidden 375 // helper thread data. 376 if (UNLIKELY(thread_data->td.td_deque == NULL)) { 377 __kmp_alloc_task_deque(thread, thread_data); 378 } 379 380 int locked = 0; 381 // Check if deque is full 382 if (TCR_4(thread_data->td.td_deque_ntasks) >= 383 TASK_DEQUE_SIZE(thread_data->td)) { 384 if (__kmp_enable_task_throttling && 385 __kmp_task_is_allowed(gtid, __kmp_task_stealing_constraint, taskdata, 386 thread->th.th_current_task)) { 387 KA_TRACE(20, ("__kmp_push_task: T#%d deque is full; returning " 388 "TASK_NOT_PUSHED for task %p\n", 389 gtid, taskdata)); 390 return TASK_NOT_PUSHED; 391 } else { 392 __kmp_acquire_bootstrap_lock(&thread_data->td.td_deque_lock); 393 locked = 1; 394 if (TCR_4(thread_data->td.td_deque_ntasks) >= 395 TASK_DEQUE_SIZE(thread_data->td)) { 396 // expand deque to push the task which is not allowed to execute 397 __kmp_realloc_task_deque(thread, thread_data); 398 } 399 } 400 } 401 // Lock the deque for the task push operation 402 if (!locked) { 403 __kmp_acquire_bootstrap_lock(&thread_data->td.td_deque_lock); 404 // Need to recheck as we can get a proxy task from thread outside of OpenMP 405 if (TCR_4(thread_data->td.td_deque_ntasks) >= 406 TASK_DEQUE_SIZE(thread_data->td)) { 407 if (__kmp_enable_task_throttling && 408 __kmp_task_is_allowed(gtid, __kmp_task_stealing_constraint, taskdata, 409 thread->th.th_current_task)) { 410 __kmp_release_bootstrap_lock(&thread_data->td.td_deque_lock); 411 KA_TRACE(20, ("__kmp_push_task: T#%d deque is full on 2nd check; " 412 "returning TASK_NOT_PUSHED for task %p\n", 413 gtid, taskdata)); 414 return TASK_NOT_PUSHED; 415 } else { 416 // expand deque to push the task which is not allowed to execute 417 __kmp_realloc_task_deque(thread, thread_data); 418 } 419 } 420 } 421 // Must have room since no thread can add tasks but calling thread 422 KMP_DEBUG_ASSERT(TCR_4(thread_data->td.td_deque_ntasks) < 423 TASK_DEQUE_SIZE(thread_data->td)); 424 425 thread_data->td.td_deque[thread_data->td.td_deque_tail] = 426 taskdata; // Push taskdata 427 // Wrap index. 428 thread_data->td.td_deque_tail = 429 (thread_data->td.td_deque_tail + 1) & TASK_DEQUE_MASK(thread_data->td); 430 TCW_4(thread_data->td.td_deque_ntasks, 431 TCR_4(thread_data->td.td_deque_ntasks) + 1); // Adjust task count 432 KMP_FSYNC_RELEASING(thread->th.th_current_task); // releasing self 433 KMP_FSYNC_RELEASING(taskdata); // releasing child 434 KA_TRACE(20, ("__kmp_push_task: T#%d returning TASK_SUCCESSFULLY_PUSHED: " 435 "task=%p ntasks=%d head=%u tail=%u\n", 436 gtid, taskdata, thread_data->td.td_deque_ntasks, 437 thread_data->td.td_deque_head, thread_data->td.td_deque_tail)); 438 439 __kmp_release_bootstrap_lock(&thread_data->td.td_deque_lock); 440 441 // Signal one worker thread to execute the task 442 if (taskdata->td_flags.hidden_helper) { 443 // Wake hidden helper threads up if they're sleeping 444 __kmp_hidden_helper_worker_thread_signal(); 445 } 446 447 return TASK_SUCCESSFULLY_PUSHED; 448 } 449 450 // __kmp_pop_current_task_from_thread: set up current task from called thread 451 // when team ends 452 // 453 // this_thr: thread structure to set current_task in. 454 void __kmp_pop_current_task_from_thread(kmp_info_t *this_thr) { 455 KF_TRACE(10, ("__kmp_pop_current_task_from_thread(enter): T#%d " 456 "this_thread=%p, curtask=%p, " 457 "curtask_parent=%p\n", 458 0, this_thr, this_thr->th.th_current_task, 459 this_thr->th.th_current_task->td_parent)); 460 461 this_thr->th.th_current_task = this_thr->th.th_current_task->td_parent; 462 463 KF_TRACE(10, ("__kmp_pop_current_task_from_thread(exit): T#%d " 464 "this_thread=%p, curtask=%p, " 465 "curtask_parent=%p\n", 466 0, this_thr, this_thr->th.th_current_task, 467 this_thr->th.th_current_task->td_parent)); 468 } 469 470 // __kmp_push_current_task_to_thread: set up current task in called thread for a 471 // new team 472 // 473 // this_thr: thread structure to set up 474 // team: team for implicit task data 475 // tid: thread within team to set up 476 void __kmp_push_current_task_to_thread(kmp_info_t *this_thr, kmp_team_t *team, 477 int tid) { 478 // current task of the thread is a parent of the new just created implicit 479 // tasks of new team 480 KF_TRACE(10, ("__kmp_push_current_task_to_thread(enter): T#%d this_thread=%p " 481 "curtask=%p " 482 "parent_task=%p\n", 483 tid, this_thr, this_thr->th.th_current_task, 484 team->t.t_implicit_task_taskdata[tid].td_parent)); 485 486 KMP_DEBUG_ASSERT(this_thr != NULL); 487 488 if (tid == 0) { 489 if (this_thr->th.th_current_task != &team->t.t_implicit_task_taskdata[0]) { 490 team->t.t_implicit_task_taskdata[0].td_parent = 491 this_thr->th.th_current_task; 492 this_thr->th.th_current_task = &team->t.t_implicit_task_taskdata[0]; 493 } 494 } else { 495 team->t.t_implicit_task_taskdata[tid].td_parent = 496 team->t.t_implicit_task_taskdata[0].td_parent; 497 this_thr->th.th_current_task = &team->t.t_implicit_task_taskdata[tid]; 498 } 499 500 KF_TRACE(10, ("__kmp_push_current_task_to_thread(exit): T#%d this_thread=%p " 501 "curtask=%p " 502 "parent_task=%p\n", 503 tid, this_thr, this_thr->th.th_current_task, 504 team->t.t_implicit_task_taskdata[tid].td_parent)); 505 } 506 507 // __kmp_task_start: bookkeeping for a task starting execution 508 // 509 // GTID: global thread id of calling thread 510 // task: task starting execution 511 // current_task: task suspending 512 static void __kmp_task_start(kmp_int32 gtid, kmp_task_t *task, 513 kmp_taskdata_t *current_task) { 514 kmp_taskdata_t *taskdata = KMP_TASK_TO_TASKDATA(task); 515 kmp_info_t *thread = __kmp_threads[gtid]; 516 517 KA_TRACE(10, 518 ("__kmp_task_start(enter): T#%d starting task %p: current_task=%p\n", 519 gtid, taskdata, current_task)); 520 521 KMP_DEBUG_ASSERT(taskdata->td_flags.tasktype == TASK_EXPLICIT); 522 523 // mark currently executing task as suspended 524 // TODO: GEH - make sure root team implicit task is initialized properly. 525 // KMP_DEBUG_ASSERT( current_task -> td_flags.executing == 1 ); 526 current_task->td_flags.executing = 0; 527 528 // Add task to stack if tied 529 #ifdef BUILD_TIED_TASK_STACK 530 if (taskdata->td_flags.tiedness == TASK_TIED) { 531 __kmp_push_task_stack(gtid, thread, taskdata); 532 } 533 #endif /* BUILD_TIED_TASK_STACK */ 534 535 // mark starting task as executing and as current task 536 thread->th.th_current_task = taskdata; 537 538 KMP_DEBUG_ASSERT(taskdata->td_flags.started == 0 || 539 taskdata->td_flags.tiedness == TASK_UNTIED); 540 KMP_DEBUG_ASSERT(taskdata->td_flags.executing == 0 || 541 taskdata->td_flags.tiedness == TASK_UNTIED); 542 taskdata->td_flags.started = 1; 543 taskdata->td_flags.executing = 1; 544 KMP_DEBUG_ASSERT(taskdata->td_flags.complete == 0); 545 KMP_DEBUG_ASSERT(taskdata->td_flags.freed == 0); 546 547 // GEH TODO: shouldn't we pass some sort of location identifier here? 548 // APT: yes, we will pass location here. 549 // need to store current thread state (in a thread or taskdata structure) 550 // before setting work_state, otherwise wrong state is set after end of task 551 552 KA_TRACE(10, ("__kmp_task_start(exit): T#%d task=%p\n", gtid, taskdata)); 553 554 return; 555 } 556 557 #if OMPT_SUPPORT 558 //------------------------------------------------------------------------------ 559 // __ompt_task_init: 560 // Initialize OMPT fields maintained by a task. This will only be called after 561 // ompt_start_tool, so we already know whether ompt is enabled or not. 562 563 static inline void __ompt_task_init(kmp_taskdata_t *task, int tid) { 564 // The calls to __ompt_task_init already have the ompt_enabled condition. 565 task->ompt_task_info.task_data.value = 0; 566 task->ompt_task_info.frame.exit_frame = ompt_data_none; 567 task->ompt_task_info.frame.enter_frame = ompt_data_none; 568 task->ompt_task_info.frame.exit_frame_flags = ompt_frame_runtime | ompt_frame_framepointer; 569 task->ompt_task_info.frame.enter_frame_flags = ompt_frame_runtime | ompt_frame_framepointer; 570 } 571 572 // __ompt_task_start: 573 // Build and trigger task-begin event 574 static inline void __ompt_task_start(kmp_task_t *task, 575 kmp_taskdata_t *current_task, 576 kmp_int32 gtid) { 577 kmp_taskdata_t *taskdata = KMP_TASK_TO_TASKDATA(task); 578 ompt_task_status_t status = ompt_task_switch; 579 if (__kmp_threads[gtid]->th.ompt_thread_info.ompt_task_yielded) { 580 status = ompt_task_yield; 581 __kmp_threads[gtid]->th.ompt_thread_info.ompt_task_yielded = 0; 582 } 583 /* let OMPT know that we're about to run this task */ 584 if (ompt_enabled.ompt_callback_task_schedule) { 585 ompt_callbacks.ompt_callback(ompt_callback_task_schedule)( 586 &(current_task->ompt_task_info.task_data), status, 587 &(taskdata->ompt_task_info.task_data)); 588 } 589 taskdata->ompt_task_info.scheduling_parent = current_task; 590 } 591 592 // __ompt_task_finish: 593 // Build and trigger final task-schedule event 594 static inline void __ompt_task_finish(kmp_task_t *task, 595 kmp_taskdata_t *resumed_task, 596 ompt_task_status_t status) { 597 if (ompt_enabled.ompt_callback_task_schedule) { 598 kmp_taskdata_t *taskdata = KMP_TASK_TO_TASKDATA(task); 599 if (__kmp_omp_cancellation && taskdata->td_taskgroup && 600 taskdata->td_taskgroup->cancel_request == cancel_taskgroup) { 601 status = ompt_task_cancel; 602 } 603 604 /* let OMPT know that we're returning to the callee task */ 605 ompt_callbacks.ompt_callback(ompt_callback_task_schedule)( 606 &(taskdata->ompt_task_info.task_data), status, 607 (resumed_task ? &(resumed_task->ompt_task_info.task_data) : NULL)); 608 } 609 } 610 #endif 611 612 template <bool ompt> 613 static void __kmpc_omp_task_begin_if0_template(ident_t *loc_ref, kmp_int32 gtid, 614 kmp_task_t *task, 615 void *frame_address, 616 void *return_address) { 617 kmp_taskdata_t *taskdata = KMP_TASK_TO_TASKDATA(task); 618 kmp_taskdata_t *current_task = __kmp_threads[gtid]->th.th_current_task; 619 620 KA_TRACE(10, ("__kmpc_omp_task_begin_if0(enter): T#%d loc=%p task=%p " 621 "current_task=%p\n", 622 gtid, loc_ref, taskdata, current_task)); 623 624 if (taskdata->td_flags.tiedness == TASK_UNTIED) { 625 // untied task needs to increment counter so that the task structure is not 626 // freed prematurely 627 kmp_int32 counter = 1 + KMP_ATOMIC_INC(&taskdata->td_untied_count); 628 KMP_DEBUG_USE_VAR(counter); 629 KA_TRACE(20, ("__kmpc_omp_task_begin_if0: T#%d untied_count (%d) " 630 "incremented for task %p\n", 631 gtid, counter, taskdata)); 632 } 633 634 taskdata->td_flags.task_serial = 635 1; // Execute this task immediately, not deferred. 636 __kmp_task_start(gtid, task, current_task); 637 638 #if OMPT_SUPPORT 639 if (ompt) { 640 if (current_task->ompt_task_info.frame.enter_frame.ptr == NULL) { 641 current_task->ompt_task_info.frame.enter_frame.ptr = 642 taskdata->ompt_task_info.frame.exit_frame.ptr = frame_address; 643 current_task->ompt_task_info.frame.enter_frame_flags = 644 taskdata->ompt_task_info.frame.exit_frame_flags = ompt_frame_application | ompt_frame_framepointer; 645 } 646 if (ompt_enabled.ompt_callback_task_create) { 647 ompt_task_info_t *parent_info = &(current_task->ompt_task_info); 648 ompt_callbacks.ompt_callback(ompt_callback_task_create)( 649 &(parent_info->task_data), &(parent_info->frame), 650 &(taskdata->ompt_task_info.task_data), 651 ompt_task_explicit | TASK_TYPE_DETAILS_FORMAT(taskdata), 0, 652 return_address); 653 } 654 __ompt_task_start(task, current_task, gtid); 655 } 656 #endif // OMPT_SUPPORT 657 658 KA_TRACE(10, ("__kmpc_omp_task_begin_if0(exit): T#%d loc=%p task=%p,\n", gtid, 659 loc_ref, taskdata)); 660 } 661 662 #if OMPT_SUPPORT 663 OMPT_NOINLINE 664 static void __kmpc_omp_task_begin_if0_ompt(ident_t *loc_ref, kmp_int32 gtid, 665 kmp_task_t *task, 666 void *frame_address, 667 void *return_address) { 668 __kmpc_omp_task_begin_if0_template<true>(loc_ref, gtid, task, frame_address, 669 return_address); 670 } 671 #endif // OMPT_SUPPORT 672 673 // __kmpc_omp_task_begin_if0: report that a given serialized task has started 674 // execution 675 // 676 // loc_ref: source location information; points to beginning of task block. 677 // gtid: global thread number. 678 // task: task thunk for the started task. 679 void __kmpc_omp_task_begin_if0(ident_t *loc_ref, kmp_int32 gtid, 680 kmp_task_t *task) { 681 #if OMPT_SUPPORT 682 if (UNLIKELY(ompt_enabled.enabled)) { 683 OMPT_STORE_RETURN_ADDRESS(gtid); 684 __kmpc_omp_task_begin_if0_ompt(loc_ref, gtid, task, 685 OMPT_GET_FRAME_ADDRESS(1), 686 OMPT_LOAD_RETURN_ADDRESS(gtid)); 687 return; 688 } 689 #endif 690 __kmpc_omp_task_begin_if0_template<false>(loc_ref, gtid, task, NULL, NULL); 691 } 692 693 #ifdef TASK_UNUSED 694 // __kmpc_omp_task_begin: report that a given task has started execution 695 // NEVER GENERATED BY COMPILER, DEPRECATED!!! 696 void __kmpc_omp_task_begin(ident_t *loc_ref, kmp_int32 gtid, kmp_task_t *task) { 697 kmp_taskdata_t *current_task = __kmp_threads[gtid]->th.th_current_task; 698 699 KA_TRACE( 700 10, 701 ("__kmpc_omp_task_begin(enter): T#%d loc=%p task=%p current_task=%p\n", 702 gtid, loc_ref, KMP_TASK_TO_TASKDATA(task), current_task)); 703 704 __kmp_task_start(gtid, task, current_task); 705 706 KA_TRACE(10, ("__kmpc_omp_task_begin(exit): T#%d loc=%p task=%p,\n", gtid, 707 loc_ref, KMP_TASK_TO_TASKDATA(task))); 708 return; 709 } 710 #endif // TASK_UNUSED 711 712 // __kmp_free_task: free the current task space and the space for shareds 713 // 714 // gtid: Global thread ID of calling thread 715 // taskdata: task to free 716 // thread: thread data structure of caller 717 static void __kmp_free_task(kmp_int32 gtid, kmp_taskdata_t *taskdata, 718 kmp_info_t *thread) { 719 KA_TRACE(30, ("__kmp_free_task: T#%d freeing data from task %p\n", gtid, 720 taskdata)); 721 722 // Check to make sure all flags and counters have the correct values 723 KMP_DEBUG_ASSERT(taskdata->td_flags.tasktype == TASK_EXPLICIT); 724 KMP_DEBUG_ASSERT(taskdata->td_flags.executing == 0); 725 KMP_DEBUG_ASSERT(taskdata->td_flags.complete == 1); 726 KMP_DEBUG_ASSERT(taskdata->td_flags.freed == 0); 727 KMP_DEBUG_ASSERT(taskdata->td_allocated_child_tasks == 0 || 728 taskdata->td_flags.task_serial == 1); 729 KMP_DEBUG_ASSERT(taskdata->td_incomplete_child_tasks == 0); 730 731 taskdata->td_flags.freed = 1; 732 ANNOTATE_HAPPENS_BEFORE(taskdata); 733 // deallocate the taskdata and shared variable blocks associated with this task 734 #if USE_FAST_MEMORY 735 __kmp_fast_free(thread, taskdata); 736 #else /* ! USE_FAST_MEMORY */ 737 __kmp_thread_free(thread, taskdata); 738 #endif 739 KA_TRACE(20, ("__kmp_free_task: T#%d freed task %p\n", gtid, taskdata)); 740 } 741 742 // __kmp_free_task_and_ancestors: free the current task and ancestors without 743 // children 744 // 745 // gtid: Global thread ID of calling thread 746 // taskdata: task to free 747 // thread: thread data structure of caller 748 static void __kmp_free_task_and_ancestors(kmp_int32 gtid, 749 kmp_taskdata_t *taskdata, 750 kmp_info_t *thread) { 751 // Proxy tasks must always be allowed to free their parents 752 // because they can be run in background even in serial mode. 753 kmp_int32 team_serial = 754 (taskdata->td_flags.team_serial || taskdata->td_flags.tasking_ser) && 755 !taskdata->td_flags.proxy; 756 KMP_DEBUG_ASSERT(taskdata->td_flags.tasktype == TASK_EXPLICIT); 757 758 kmp_int32 children = KMP_ATOMIC_DEC(&taskdata->td_allocated_child_tasks) - 1; 759 KMP_DEBUG_ASSERT(children >= 0); 760 761 // Now, go up the ancestor tree to see if any ancestors can now be freed. 762 while (children == 0) { 763 kmp_taskdata_t *parent_taskdata = taskdata->td_parent; 764 765 KA_TRACE(20, ("__kmp_free_task_and_ancestors(enter): T#%d task %p complete " 766 "and freeing itself\n", 767 gtid, taskdata)); 768 769 // --- Deallocate my ancestor task --- 770 __kmp_free_task(gtid, taskdata, thread); 771 772 taskdata = parent_taskdata; 773 774 if (team_serial) 775 return; 776 // Stop checking ancestors at implicit task instead of walking up ancestor 777 // tree to avoid premature deallocation of ancestors. 778 if (taskdata->td_flags.tasktype == TASK_IMPLICIT) { 779 if (taskdata->td_dephash) { // do we need to cleanup dephash? 780 int children = KMP_ATOMIC_LD_ACQ(&taskdata->td_incomplete_child_tasks); 781 kmp_tasking_flags_t flags_old = taskdata->td_flags; 782 if (children == 0 && flags_old.complete == 1) { 783 kmp_tasking_flags_t flags_new = flags_old; 784 flags_new.complete = 0; 785 if (KMP_COMPARE_AND_STORE_ACQ32( 786 RCAST(kmp_int32 *, &taskdata->td_flags), 787 *RCAST(kmp_int32 *, &flags_old), 788 *RCAST(kmp_int32 *, &flags_new))) { 789 KA_TRACE(100, ("__kmp_free_task_and_ancestors: T#%d cleans " 790 "dephash of implicit task %p\n", 791 gtid, taskdata)); 792 // cleanup dephash of finished implicit task 793 __kmp_dephash_free_entries(thread, taskdata->td_dephash); 794 } 795 } 796 } 797 return; 798 } 799 // Predecrement simulated by "- 1" calculation 800 children = KMP_ATOMIC_DEC(&taskdata->td_allocated_child_tasks) - 1; 801 KMP_DEBUG_ASSERT(children >= 0); 802 } 803 804 KA_TRACE( 805 20, ("__kmp_free_task_and_ancestors(exit): T#%d task %p has %d children; " 806 "not freeing it yet\n", 807 gtid, taskdata, children)); 808 } 809 810 // __kmp_task_finish: bookkeeping to do when a task finishes execution 811 // 812 // gtid: global thread ID for calling thread 813 // task: task to be finished 814 // resumed_task: task to be resumed. (may be NULL if task is serialized) 815 // 816 // template<ompt>: effectively ompt_enabled.enabled!=0 817 // the version with ompt=false is inlined, allowing to optimize away all ompt 818 // code in this case 819 template <bool ompt> 820 static void __kmp_task_finish(kmp_int32 gtid, kmp_task_t *task, 821 kmp_taskdata_t *resumed_task) { 822 kmp_taskdata_t *taskdata = KMP_TASK_TO_TASKDATA(task); 823 kmp_info_t *thread = __kmp_threads[gtid]; 824 kmp_task_team_t *task_team = 825 thread->th.th_task_team; // might be NULL for serial teams... 826 kmp_int32 children = 0; 827 828 KA_TRACE(10, ("__kmp_task_finish(enter): T#%d finishing task %p and resuming " 829 "task %p\n", 830 gtid, taskdata, resumed_task)); 831 832 KMP_DEBUG_ASSERT(taskdata->td_flags.tasktype == TASK_EXPLICIT); 833 834 // Pop task from stack if tied 835 #ifdef BUILD_TIED_TASK_STACK 836 if (taskdata->td_flags.tiedness == TASK_TIED) { 837 __kmp_pop_task_stack(gtid, thread, taskdata); 838 } 839 #endif /* BUILD_TIED_TASK_STACK */ 840 841 if (UNLIKELY(taskdata->td_flags.tiedness == TASK_UNTIED)) { 842 // untied task needs to check the counter so that the task structure is not 843 // freed prematurely 844 kmp_int32 counter = KMP_ATOMIC_DEC(&taskdata->td_untied_count) - 1; 845 KA_TRACE( 846 20, 847 ("__kmp_task_finish: T#%d untied_count (%d) decremented for task %p\n", 848 gtid, counter, taskdata)); 849 if (counter > 0) { 850 // untied task is not done, to be continued possibly by other thread, do 851 // not free it now 852 if (resumed_task == NULL) { 853 KMP_DEBUG_ASSERT(taskdata->td_flags.task_serial); 854 resumed_task = taskdata->td_parent; // In a serialized task, the resumed 855 // task is the parent 856 } 857 thread->th.th_current_task = resumed_task; // restore current_task 858 resumed_task->td_flags.executing = 1; // resume previous task 859 KA_TRACE(10, ("__kmp_task_finish(exit): T#%d partially done task %p, " 860 "resuming task %p\n", 861 gtid, taskdata, resumed_task)); 862 return; 863 } 864 } 865 866 // bookkeeping for resuming task: 867 // GEH - note tasking_ser => task_serial 868 KMP_DEBUG_ASSERT( 869 (taskdata->td_flags.tasking_ser || taskdata->td_flags.task_serial) == 870 taskdata->td_flags.task_serial); 871 if (taskdata->td_flags.task_serial) { 872 if (resumed_task == NULL) { 873 resumed_task = taskdata->td_parent; // In a serialized task, the resumed 874 // task is the parent 875 } 876 } else { 877 KMP_DEBUG_ASSERT(resumed_task != 878 NULL); // verify that resumed task is passed as argument 879 } 880 881 /* If the tasks' destructor thunk flag has been set, we need to invoke the 882 destructor thunk that has been generated by the compiler. The code is 883 placed here, since at this point other tasks might have been released 884 hence overlapping the destructor invocations with some other work in the 885 released tasks. The OpenMP spec is not specific on when the destructors 886 are invoked, so we should be free to choose. */ 887 if (taskdata->td_flags.destructors_thunk) { 888 kmp_routine_entry_t destr_thunk = task->data1.destructors; 889 KMP_ASSERT(destr_thunk); 890 destr_thunk(gtid, task); 891 } 892 893 KMP_DEBUG_ASSERT(taskdata->td_flags.complete == 0); 894 KMP_DEBUG_ASSERT(taskdata->td_flags.started == 1); 895 KMP_DEBUG_ASSERT(taskdata->td_flags.freed == 0); 896 897 bool detach = false; 898 if (taskdata->td_flags.detachable == TASK_DETACHABLE) { 899 if (taskdata->td_allow_completion_event.type == 900 KMP_EVENT_ALLOW_COMPLETION) { 901 // event hasn't been fulfilled yet. Try to detach task. 902 __kmp_acquire_tas_lock(&taskdata->td_allow_completion_event.lock, gtid); 903 if (taskdata->td_allow_completion_event.type == 904 KMP_EVENT_ALLOW_COMPLETION) { 905 // task finished execution 906 KMP_DEBUG_ASSERT(taskdata->td_flags.executing == 1); 907 taskdata->td_flags.executing = 0; // suspend the finishing task 908 909 #if OMPT_SUPPORT 910 // For a detached task, which is not completed, we switch back 911 // the omp_fulfill_event signals completion 912 // locking is necessary to avoid a race with ompt_task_late_fulfill 913 if (ompt) 914 __ompt_task_finish(task, resumed_task, ompt_task_detach); 915 #endif 916 917 // no access to taskdata after this point! 918 // __kmp_fulfill_event might free taskdata at any time from now 919 920 taskdata->td_flags.proxy = TASK_PROXY; // proxify! 921 detach = true; 922 } 923 __kmp_release_tas_lock(&taskdata->td_allow_completion_event.lock, gtid); 924 } 925 } 926 927 if (!detach) { 928 taskdata->td_flags.complete = 1; // mark the task as completed 929 930 #if OMPT_SUPPORT 931 // This is not a detached task, we are done here 932 if (ompt) 933 __ompt_task_finish(task, resumed_task, ompt_task_complete); 934 #endif 935 936 // Only need to keep track of count if team parallel and tasking not 937 // serialized, or task is detachable and event has already been fulfilled 938 if (!(taskdata->td_flags.team_serial || taskdata->td_flags.tasking_ser) || 939 taskdata->td_flags.detachable == TASK_DETACHABLE || 940 taskdata->td_flags.hidden_helper) { 941 // Predecrement simulated by "- 1" calculation 942 children = 943 KMP_ATOMIC_DEC(&taskdata->td_parent->td_incomplete_child_tasks) - 1; 944 KMP_DEBUG_ASSERT(children >= 0); 945 if (taskdata->td_taskgroup) 946 KMP_ATOMIC_DEC(&taskdata->td_taskgroup->count); 947 __kmp_release_deps(gtid, taskdata); 948 } else if (task_team && task_team->tt.tt_found_proxy_tasks) { 949 // if we found proxy tasks there could exist a dependency chain 950 // with the proxy task as origin 951 __kmp_release_deps(gtid, taskdata); 952 } 953 // td_flags.executing must be marked as 0 after __kmp_release_deps has been 954 // called. Othertwise, if a task is executed immediately from the 955 // release_deps code, the flag will be reset to 1 again by this same 956 // function 957 KMP_DEBUG_ASSERT(taskdata->td_flags.executing == 1); 958 taskdata->td_flags.executing = 0; // suspend the finishing task 959 } 960 961 962 KA_TRACE( 963 20, ("__kmp_task_finish: T#%d finished task %p, %d incomplete children\n", 964 gtid, taskdata, children)); 965 966 // Free this task and then ancestor tasks if they have no children. 967 // Restore th_current_task first as suggested by John: 968 // johnmc: if an asynchronous inquiry peers into the runtime system 969 // it doesn't see the freed task as the current task. 970 thread->th.th_current_task = resumed_task; 971 if (!detach) 972 __kmp_free_task_and_ancestors(gtid, taskdata, thread); 973 974 // TODO: GEH - make sure root team implicit task is initialized properly. 975 // KMP_DEBUG_ASSERT( resumed_task->td_flags.executing == 0 ); 976 resumed_task->td_flags.executing = 1; // resume previous task 977 978 KA_TRACE( 979 10, ("__kmp_task_finish(exit): T#%d finished task %p, resuming task %p\n", 980 gtid, taskdata, resumed_task)); 981 982 return; 983 } 984 985 template <bool ompt> 986 static void __kmpc_omp_task_complete_if0_template(ident_t *loc_ref, 987 kmp_int32 gtid, 988 kmp_task_t *task) { 989 KA_TRACE(10, ("__kmpc_omp_task_complete_if0(enter): T#%d loc=%p task=%p\n", 990 gtid, loc_ref, KMP_TASK_TO_TASKDATA(task))); 991 __kmp_assert_valid_gtid(gtid); 992 // this routine will provide task to resume 993 __kmp_task_finish<ompt>(gtid, task, NULL); 994 995 KA_TRACE(10, ("__kmpc_omp_task_complete_if0(exit): T#%d loc=%p task=%p\n", 996 gtid, loc_ref, KMP_TASK_TO_TASKDATA(task))); 997 998 #if OMPT_SUPPORT 999 if (ompt) { 1000 ompt_frame_t *ompt_frame; 1001 __ompt_get_task_info_internal(0, NULL, NULL, &ompt_frame, NULL, NULL); 1002 ompt_frame->enter_frame = ompt_data_none; 1003 ompt_frame->enter_frame_flags = ompt_frame_runtime | ompt_frame_framepointer; 1004 } 1005 #endif 1006 1007 return; 1008 } 1009 1010 #if OMPT_SUPPORT 1011 OMPT_NOINLINE 1012 void __kmpc_omp_task_complete_if0_ompt(ident_t *loc_ref, kmp_int32 gtid, 1013 kmp_task_t *task) { 1014 __kmpc_omp_task_complete_if0_template<true>(loc_ref, gtid, task); 1015 } 1016 #endif // OMPT_SUPPORT 1017 1018 // __kmpc_omp_task_complete_if0: report that a task has completed execution 1019 // 1020 // loc_ref: source location information; points to end of task block. 1021 // gtid: global thread number. 1022 // task: task thunk for the completed task. 1023 void __kmpc_omp_task_complete_if0(ident_t *loc_ref, kmp_int32 gtid, 1024 kmp_task_t *task) { 1025 #if OMPT_SUPPORT 1026 if (UNLIKELY(ompt_enabled.enabled)) { 1027 __kmpc_omp_task_complete_if0_ompt(loc_ref, gtid, task); 1028 return; 1029 } 1030 #endif 1031 __kmpc_omp_task_complete_if0_template<false>(loc_ref, gtid, task); 1032 } 1033 1034 #ifdef TASK_UNUSED 1035 // __kmpc_omp_task_complete: report that a task has completed execution 1036 // NEVER GENERATED BY COMPILER, DEPRECATED!!! 1037 void __kmpc_omp_task_complete(ident_t *loc_ref, kmp_int32 gtid, 1038 kmp_task_t *task) { 1039 KA_TRACE(10, ("__kmpc_omp_task_complete(enter): T#%d loc=%p task=%p\n", gtid, 1040 loc_ref, KMP_TASK_TO_TASKDATA(task))); 1041 1042 __kmp_task_finish<false>(gtid, task, 1043 NULL); // Not sure how to find task to resume 1044 1045 KA_TRACE(10, ("__kmpc_omp_task_complete(exit): T#%d loc=%p task=%p\n", gtid, 1046 loc_ref, KMP_TASK_TO_TASKDATA(task))); 1047 return; 1048 } 1049 #endif // TASK_UNUSED 1050 1051 // __kmp_init_implicit_task: Initialize the appropriate fields in the implicit 1052 // task for a given thread 1053 // 1054 // loc_ref: reference to source location of parallel region 1055 // this_thr: thread data structure corresponding to implicit task 1056 // team: team for this_thr 1057 // tid: thread id of given thread within team 1058 // set_curr_task: TRUE if need to push current task to thread 1059 // NOTE: Routine does not set up the implicit task ICVS. This is assumed to 1060 // have already been done elsewhere. 1061 // TODO: Get better loc_ref. Value passed in may be NULL 1062 void __kmp_init_implicit_task(ident_t *loc_ref, kmp_info_t *this_thr, 1063 kmp_team_t *team, int tid, int set_curr_task) { 1064 kmp_taskdata_t *task = &team->t.t_implicit_task_taskdata[tid]; 1065 1066 KF_TRACE( 1067 10, 1068 ("__kmp_init_implicit_task(enter): T#:%d team=%p task=%p, reinit=%s\n", 1069 tid, team, task, set_curr_task ? "TRUE" : "FALSE")); 1070 1071 task->td_task_id = KMP_GEN_TASK_ID(); 1072 task->td_team = team; 1073 // task->td_parent = NULL; // fix for CQ230101 (broken parent task info 1074 // in debugger) 1075 task->td_ident = loc_ref; 1076 task->td_taskwait_ident = NULL; 1077 task->td_taskwait_counter = 0; 1078 task->td_taskwait_thread = 0; 1079 1080 task->td_flags.tiedness = TASK_TIED; 1081 task->td_flags.tasktype = TASK_IMPLICIT; 1082 task->td_flags.proxy = TASK_FULL; 1083 1084 // All implicit tasks are executed immediately, not deferred 1085 task->td_flags.task_serial = 1; 1086 task->td_flags.tasking_ser = (__kmp_tasking_mode == tskm_immediate_exec); 1087 task->td_flags.team_serial = (team->t.t_serialized) ? 1 : 0; 1088 1089 task->td_flags.started = 1; 1090 task->td_flags.executing = 1; 1091 task->td_flags.complete = 0; 1092 task->td_flags.freed = 0; 1093 1094 task->td_depnode = NULL; 1095 task->td_last_tied = task; 1096 task->td_allow_completion_event.type = KMP_EVENT_UNINITIALIZED; 1097 1098 if (set_curr_task) { // only do this init first time thread is created 1099 KMP_ATOMIC_ST_REL(&task->td_incomplete_child_tasks, 0); 1100 // Not used: don't need to deallocate implicit task 1101 KMP_ATOMIC_ST_REL(&task->td_allocated_child_tasks, 0); 1102 task->td_taskgroup = NULL; // An implicit task does not have taskgroup 1103 task->td_dephash = NULL; 1104 __kmp_push_current_task_to_thread(this_thr, team, tid); 1105 } else { 1106 KMP_DEBUG_ASSERT(task->td_incomplete_child_tasks == 0); 1107 KMP_DEBUG_ASSERT(task->td_allocated_child_tasks == 0); 1108 } 1109 1110 #if OMPT_SUPPORT 1111 if (UNLIKELY(ompt_enabled.enabled)) 1112 __ompt_task_init(task, tid); 1113 #endif 1114 1115 KF_TRACE(10, ("__kmp_init_implicit_task(exit): T#:%d team=%p task=%p\n", tid, 1116 team, task)); 1117 } 1118 1119 // __kmp_finish_implicit_task: Release resources associated to implicit tasks 1120 // at the end of parallel regions. Some resources are kept for reuse in the next 1121 // parallel region. 1122 // 1123 // thread: thread data structure corresponding to implicit task 1124 void __kmp_finish_implicit_task(kmp_info_t *thread) { 1125 kmp_taskdata_t *task = thread->th.th_current_task; 1126 if (task->td_dephash) { 1127 int children; 1128 task->td_flags.complete = 1; 1129 children = KMP_ATOMIC_LD_ACQ(&task->td_incomplete_child_tasks); 1130 kmp_tasking_flags_t flags_old = task->td_flags; 1131 if (children == 0 && flags_old.complete == 1) { 1132 kmp_tasking_flags_t flags_new = flags_old; 1133 flags_new.complete = 0; 1134 if (KMP_COMPARE_AND_STORE_ACQ32(RCAST(kmp_int32 *, &task->td_flags), 1135 *RCAST(kmp_int32 *, &flags_old), 1136 *RCAST(kmp_int32 *, &flags_new))) { 1137 KA_TRACE(100, ("__kmp_finish_implicit_task: T#%d cleans " 1138 "dephash of implicit task %p\n", 1139 thread->th.th_info.ds.ds_gtid, task)); 1140 __kmp_dephash_free_entries(thread, task->td_dephash); 1141 } 1142 } 1143 } 1144 } 1145 1146 // __kmp_free_implicit_task: Release resources associated to implicit tasks 1147 // when these are destroyed regions 1148 // 1149 // thread: thread data structure corresponding to implicit task 1150 void __kmp_free_implicit_task(kmp_info_t *thread) { 1151 kmp_taskdata_t *task = thread->th.th_current_task; 1152 if (task && task->td_dephash) { 1153 __kmp_dephash_free(thread, task->td_dephash); 1154 task->td_dephash = NULL; 1155 } 1156 } 1157 1158 // Round up a size to a power of two specified by val: Used to insert padding 1159 // between structures co-allocated using a single malloc() call 1160 static size_t __kmp_round_up_to_val(size_t size, size_t val) { 1161 if (size & (val - 1)) { 1162 size &= ~(val - 1); 1163 if (size <= KMP_SIZE_T_MAX - val) { 1164 size += val; // Round up if there is no overflow. 1165 } 1166 } 1167 return size; 1168 } // __kmp_round_up_to_va 1169 1170 // __kmp_task_alloc: Allocate the taskdata and task data structures for a task 1171 // 1172 // loc_ref: source location information 1173 // gtid: global thread number. 1174 // flags: include tiedness & task type (explicit vs. implicit) of the ''new'' 1175 // task encountered. Converted from kmp_int32 to kmp_tasking_flags_t in routine. 1176 // sizeof_kmp_task_t: Size in bytes of kmp_task_t data structure including 1177 // private vars accessed in task. 1178 // sizeof_shareds: Size in bytes of array of pointers to shared vars accessed 1179 // in task. 1180 // task_entry: Pointer to task code entry point generated by compiler. 1181 // returns: a pointer to the allocated kmp_task_t structure (task). 1182 kmp_task_t *__kmp_task_alloc(ident_t *loc_ref, kmp_int32 gtid, 1183 kmp_tasking_flags_t *flags, 1184 size_t sizeof_kmp_task_t, size_t sizeof_shareds, 1185 kmp_routine_entry_t task_entry) { 1186 kmp_task_t *task; 1187 kmp_taskdata_t *taskdata; 1188 kmp_info_t *thread = __kmp_threads[gtid]; 1189 kmp_info_t *encountering_thread = thread; 1190 kmp_team_t *team = thread->th.th_team; 1191 kmp_taskdata_t *parent_task = thread->th.th_current_task; 1192 size_t shareds_offset; 1193 1194 if (UNLIKELY(!TCR_4(__kmp_init_middle))) 1195 __kmp_middle_initialize(); 1196 1197 if (flags->hidden_helper) { 1198 if (__kmp_enable_hidden_helper) { 1199 if (!TCR_4(__kmp_init_hidden_helper)) 1200 __kmp_hidden_helper_initialize(); 1201 1202 // For a hidden helper task encountered by a regular thread, we will push 1203 // the task to the (gtid%__kmp_hidden_helper_threads_num)-th hidden helper 1204 // thread. 1205 if (!KMP_HIDDEN_HELPER_THREAD(gtid)) { 1206 thread = __kmp_threads[KMP_GTID_TO_SHADOW_GTID(gtid)]; 1207 // We don't change the parent-child relation for hidden helper task as 1208 // we need that to do per-task-region synchronization. 1209 } 1210 } else { 1211 // If the hidden helper task is not enabled, reset the flag to FALSE. 1212 flags->hidden_helper = FALSE; 1213 } 1214 } 1215 1216 KA_TRACE(10, ("__kmp_task_alloc(enter): T#%d loc=%p, flags=(0x%x) " 1217 "sizeof_task=%ld sizeof_shared=%ld entry=%p\n", 1218 gtid, loc_ref, *((kmp_int32 *)flags), sizeof_kmp_task_t, 1219 sizeof_shareds, task_entry)); 1220 1221 if (parent_task->td_flags.final) { 1222 if (flags->merged_if0) { 1223 } 1224 flags->final = 1; 1225 } 1226 1227 if (flags->tiedness == TASK_UNTIED && !team->t.t_serialized) { 1228 // Untied task encountered causes the TSC algorithm to check entire deque of 1229 // the victim thread. If no untied task encountered, then checking the head 1230 // of the deque should be enough. 1231 KMP_CHECK_UPDATE( 1232 encountering_thread->th.th_task_team->tt.tt_untied_task_encountered, 1); 1233 } 1234 1235 // Detachable tasks are not proxy tasks yet but could be in the future. Doing 1236 // the tasking setup 1237 // when that happens is too late. 1238 if (flags->proxy == TASK_PROXY || flags->detachable == TASK_DETACHABLE || 1239 flags->hidden_helper) { 1240 if (flags->proxy == TASK_PROXY) { 1241 flags->tiedness = TASK_UNTIED; 1242 flags->merged_if0 = 1; 1243 } 1244 /* are we running in a sequential parallel or tskm_immediate_exec... we need 1245 tasking support enabled */ 1246 if ((encountering_thread->th.th_task_team) == NULL) { 1247 /* This should only happen if the team is serialized 1248 setup a task team and propagate it to the thread */ 1249 KMP_DEBUG_ASSERT(team->t.t_serialized); 1250 KA_TRACE(30, 1251 ("T#%d creating task team in __kmp_task_alloc for proxy task\n", 1252 gtid)); 1253 __kmp_task_team_setup( 1254 encountering_thread, team, 1255 1); // 1 indicates setup the current team regardless of nthreads 1256 encountering_thread->th.th_task_team = 1257 team->t.t_task_team[encountering_thread->th.th_task_state]; 1258 } 1259 kmp_task_team_t *task_team = encountering_thread->th.th_task_team; 1260 1261 /* tasking must be enabled now as the task might not be pushed */ 1262 if (!KMP_TASKING_ENABLED(task_team)) { 1263 KA_TRACE( 1264 30, 1265 ("T#%d enabling tasking in __kmp_task_alloc for proxy task\n", gtid)); 1266 __kmp_enable_tasking(task_team, encountering_thread); 1267 kmp_int32 tid = encountering_thread->th.th_info.ds.ds_tid; 1268 kmp_thread_data_t *thread_data = &task_team->tt.tt_threads_data[tid]; 1269 // No lock needed since only owner can allocate 1270 if (thread_data->td.td_deque == NULL) { 1271 __kmp_alloc_task_deque(encountering_thread, thread_data); 1272 } 1273 } 1274 1275 if (flags->proxy == TASK_PROXY && 1276 task_team->tt.tt_found_proxy_tasks == FALSE) 1277 TCW_4(task_team->tt.tt_found_proxy_tasks, TRUE); 1278 if (flags->hidden_helper && 1279 task_team->tt.tt_hidden_helper_task_encountered == FALSE) 1280 TCW_4(task_team->tt.tt_hidden_helper_task_encountered, TRUE); 1281 } 1282 1283 // Calculate shared structure offset including padding after kmp_task_t struct 1284 // to align pointers in shared struct 1285 shareds_offset = sizeof(kmp_taskdata_t) + sizeof_kmp_task_t; 1286 shareds_offset = __kmp_round_up_to_val(shareds_offset, sizeof(void *)); 1287 1288 // Allocate a kmp_taskdata_t block and a kmp_task_t block. 1289 KA_TRACE(30, ("__kmp_task_alloc: T#%d First malloc size: %ld\n", gtid, 1290 shareds_offset)); 1291 KA_TRACE(30, ("__kmp_task_alloc: T#%d Second malloc size: %ld\n", gtid, 1292 sizeof_shareds)); 1293 1294 // Avoid double allocation here by combining shareds with taskdata 1295 #if USE_FAST_MEMORY 1296 taskdata = (kmp_taskdata_t *)__kmp_fast_allocate( 1297 encountering_thread, shareds_offset + sizeof_shareds); 1298 #else /* ! USE_FAST_MEMORY */ 1299 taskdata = (kmp_taskdata_t *)__kmp_thread_malloc( 1300 encountering_thread, shareds_offset + sizeof_shareds); 1301 #endif /* USE_FAST_MEMORY */ 1302 ANNOTATE_HAPPENS_AFTER(taskdata); 1303 1304 task = KMP_TASKDATA_TO_TASK(taskdata); 1305 1306 // Make sure task & taskdata are aligned appropriately 1307 #if KMP_ARCH_X86 || KMP_ARCH_PPC64 || !KMP_HAVE_QUAD 1308 KMP_DEBUG_ASSERT((((kmp_uintptr_t)taskdata) & (sizeof(double) - 1)) == 0); 1309 KMP_DEBUG_ASSERT((((kmp_uintptr_t)task) & (sizeof(double) - 1)) == 0); 1310 #else 1311 KMP_DEBUG_ASSERT((((kmp_uintptr_t)taskdata) & (sizeof(_Quad) - 1)) == 0); 1312 KMP_DEBUG_ASSERT((((kmp_uintptr_t)task) & (sizeof(_Quad) - 1)) == 0); 1313 #endif 1314 if (sizeof_shareds > 0) { 1315 // Avoid double allocation here by combining shareds with taskdata 1316 task->shareds = &((char *)taskdata)[shareds_offset]; 1317 // Make sure shareds struct is aligned to pointer size 1318 KMP_DEBUG_ASSERT((((kmp_uintptr_t)task->shareds) & (sizeof(void *) - 1)) == 1319 0); 1320 } else { 1321 task->shareds = NULL; 1322 } 1323 task->routine = task_entry; 1324 task->part_id = 0; // AC: Always start with 0 part id 1325 1326 taskdata->td_task_id = KMP_GEN_TASK_ID(); 1327 taskdata->td_team = thread->th.th_team; 1328 taskdata->td_alloc_thread = encountering_thread; 1329 taskdata->td_parent = parent_task; 1330 taskdata->td_level = parent_task->td_level + 1; // increment nesting level 1331 KMP_ATOMIC_ST_RLX(&taskdata->td_untied_count, 0); 1332 taskdata->td_ident = loc_ref; 1333 taskdata->td_taskwait_ident = NULL; 1334 taskdata->td_taskwait_counter = 0; 1335 taskdata->td_taskwait_thread = 0; 1336 KMP_DEBUG_ASSERT(taskdata->td_parent != NULL); 1337 // avoid copying icvs for proxy tasks 1338 if (flags->proxy == TASK_FULL) 1339 copy_icvs(&taskdata->td_icvs, &taskdata->td_parent->td_icvs); 1340 1341 taskdata->td_flags.tiedness = flags->tiedness; 1342 taskdata->td_flags.final = flags->final; 1343 taskdata->td_flags.merged_if0 = flags->merged_if0; 1344 taskdata->td_flags.destructors_thunk = flags->destructors_thunk; 1345 taskdata->td_flags.proxy = flags->proxy; 1346 taskdata->td_flags.detachable = flags->detachable; 1347 taskdata->td_flags.hidden_helper = flags->hidden_helper; 1348 taskdata->encountering_gtid = gtid; 1349 taskdata->td_task_team = thread->th.th_task_team; 1350 taskdata->td_size_alloc = shareds_offset + sizeof_shareds; 1351 taskdata->td_flags.tasktype = TASK_EXPLICIT; 1352 1353 // GEH - TODO: fix this to copy parent task's value of tasking_ser flag 1354 taskdata->td_flags.tasking_ser = (__kmp_tasking_mode == tskm_immediate_exec); 1355 1356 // GEH - TODO: fix this to copy parent task's value of team_serial flag 1357 taskdata->td_flags.team_serial = (team->t.t_serialized) ? 1 : 0; 1358 1359 // GEH - Note we serialize the task if the team is serialized to make sure 1360 // implicit parallel region tasks are not left until program termination to 1361 // execute. Also, it helps locality to execute immediately. 1362 1363 taskdata->td_flags.task_serial = 1364 (parent_task->td_flags.final || taskdata->td_flags.team_serial || 1365 taskdata->td_flags.tasking_ser || flags->merged_if0); 1366 1367 taskdata->td_flags.started = 0; 1368 taskdata->td_flags.executing = 0; 1369 taskdata->td_flags.complete = 0; 1370 taskdata->td_flags.freed = 0; 1371 1372 taskdata->td_flags.native = flags->native; 1373 1374 KMP_ATOMIC_ST_RLX(&taskdata->td_incomplete_child_tasks, 0); 1375 // start at one because counts current task and children 1376 KMP_ATOMIC_ST_RLX(&taskdata->td_allocated_child_tasks, 1); 1377 taskdata->td_taskgroup = 1378 parent_task->td_taskgroup; // task inherits taskgroup from the parent task 1379 taskdata->td_dephash = NULL; 1380 taskdata->td_depnode = NULL; 1381 if (flags->tiedness == TASK_UNTIED) 1382 taskdata->td_last_tied = NULL; // will be set when the task is scheduled 1383 else 1384 taskdata->td_last_tied = taskdata; 1385 taskdata->td_allow_completion_event.type = KMP_EVENT_UNINITIALIZED; 1386 #if OMPT_SUPPORT 1387 if (UNLIKELY(ompt_enabled.enabled)) 1388 __ompt_task_init(taskdata, gtid); 1389 #endif 1390 // Only need to keep track of child task counts if team parallel and tasking 1391 // not serialized or if it is a proxy or detachable or hidden helper task 1392 if (flags->proxy == TASK_PROXY || flags->detachable == TASK_DETACHABLE || 1393 flags->hidden_helper || 1394 !(taskdata->td_flags.team_serial || taskdata->td_flags.tasking_ser)) { 1395 KMP_ATOMIC_INC(&parent_task->td_incomplete_child_tasks); 1396 if (parent_task->td_taskgroup) 1397 KMP_ATOMIC_INC(&parent_task->td_taskgroup->count); 1398 // Only need to keep track of allocated child tasks for explicit tasks since 1399 // implicit not deallocated 1400 if (taskdata->td_parent->td_flags.tasktype == TASK_EXPLICIT) { 1401 KMP_ATOMIC_INC(&taskdata->td_parent->td_allocated_child_tasks); 1402 } 1403 } 1404 1405 if (flags->hidden_helper) { 1406 taskdata->td_flags.task_serial = FALSE; 1407 // Increment the number of hidden helper tasks to be executed 1408 KMP_ATOMIC_INC(&__kmp_unexecuted_hidden_helper_tasks); 1409 } 1410 1411 KA_TRACE(20, ("__kmp_task_alloc(exit): T#%d created task %p parent=%p\n", 1412 gtid, taskdata, taskdata->td_parent)); 1413 ANNOTATE_HAPPENS_BEFORE(task); 1414 1415 return task; 1416 } 1417 1418 kmp_task_t *__kmpc_omp_task_alloc(ident_t *loc_ref, kmp_int32 gtid, 1419 kmp_int32 flags, size_t sizeof_kmp_task_t, 1420 size_t sizeof_shareds, 1421 kmp_routine_entry_t task_entry) { 1422 kmp_task_t *retval; 1423 kmp_tasking_flags_t *input_flags = (kmp_tasking_flags_t *)&flags; 1424 __kmp_assert_valid_gtid(gtid); 1425 input_flags->native = FALSE; 1426 // __kmp_task_alloc() sets up all other runtime flags 1427 KA_TRACE(10, ("__kmpc_omp_task_alloc(enter): T#%d loc=%p, flags=(%s %s %s) " 1428 "sizeof_task=%ld sizeof_shared=%ld entry=%p\n", 1429 gtid, loc_ref, input_flags->tiedness ? "tied " : "untied", 1430 input_flags->proxy ? "proxy" : "", 1431 input_flags->detachable ? "detachable" : "", sizeof_kmp_task_t, 1432 sizeof_shareds, task_entry)); 1433 1434 retval = __kmp_task_alloc(loc_ref, gtid, input_flags, sizeof_kmp_task_t, 1435 sizeof_shareds, task_entry); 1436 1437 KA_TRACE(20, ("__kmpc_omp_task_alloc(exit): T#%d retval %p\n", gtid, retval)); 1438 1439 return retval; 1440 } 1441 1442 kmp_task_t *__kmpc_omp_target_task_alloc(ident_t *loc_ref, kmp_int32 gtid, 1443 kmp_int32 flags, 1444 size_t sizeof_kmp_task_t, 1445 size_t sizeof_shareds, 1446 kmp_routine_entry_t task_entry, 1447 kmp_int64 device_id) { 1448 if (__kmp_enable_hidden_helper) { 1449 auto &input_flags = reinterpret_cast<kmp_tasking_flags_t &>(flags); 1450 input_flags.hidden_helper = TRUE; 1451 } 1452 1453 return __kmpc_omp_task_alloc(loc_ref, gtid, flags, sizeof_kmp_task_t, 1454 sizeof_shareds, task_entry); 1455 } 1456 1457 /*! 1458 @ingroup TASKING 1459 @param loc_ref location of the original task directive 1460 @param gtid Global Thread ID of encountering thread 1461 @param new_task task thunk allocated by __kmpc_omp_task_alloc() for the ''new 1462 task'' 1463 @param naffins Number of affinity items 1464 @param affin_list List of affinity items 1465 @return Returns non-zero if registering affinity information was not successful. 1466 Returns 0 if registration was successful 1467 This entry registers the affinity information attached to a task with the task 1468 thunk structure kmp_taskdata_t. 1469 */ 1470 kmp_int32 1471 __kmpc_omp_reg_task_with_affinity(ident_t *loc_ref, kmp_int32 gtid, 1472 kmp_task_t *new_task, kmp_int32 naffins, 1473 kmp_task_affinity_info_t *affin_list) { 1474 return 0; 1475 } 1476 1477 // __kmp_invoke_task: invoke the specified task 1478 // 1479 // gtid: global thread ID of caller 1480 // task: the task to invoke 1481 // current_task: the task to resume after task invocation 1482 static void __kmp_invoke_task(kmp_int32 gtid, kmp_task_t *task, 1483 kmp_taskdata_t *current_task) { 1484 kmp_taskdata_t *taskdata = KMP_TASK_TO_TASKDATA(task); 1485 kmp_info_t *thread; 1486 int discard = 0 /* false */; 1487 KA_TRACE( 1488 30, ("__kmp_invoke_task(enter): T#%d invoking task %p, current_task=%p\n", 1489 gtid, taskdata, current_task)); 1490 KMP_DEBUG_ASSERT(task); 1491 if (UNLIKELY(taskdata->td_flags.proxy == TASK_PROXY && 1492 taskdata->td_flags.complete == 1)) { 1493 // This is a proxy task that was already completed but it needs to run 1494 // its bottom-half finish 1495 KA_TRACE( 1496 30, 1497 ("__kmp_invoke_task: T#%d running bottom finish for proxy task %p\n", 1498 gtid, taskdata)); 1499 1500 __kmp_bottom_half_finish_proxy(gtid, task); 1501 1502 KA_TRACE(30, ("__kmp_invoke_task(exit): T#%d completed bottom finish for " 1503 "proxy task %p, resuming task %p\n", 1504 gtid, taskdata, current_task)); 1505 1506 return; 1507 } 1508 1509 #if OMPT_SUPPORT 1510 // For untied tasks, the first task executed only calls __kmpc_omp_task and 1511 // does not execute code. 1512 ompt_thread_info_t oldInfo; 1513 if (UNLIKELY(ompt_enabled.enabled)) { 1514 // Store the threads states and restore them after the task 1515 thread = __kmp_threads[gtid]; 1516 oldInfo = thread->th.ompt_thread_info; 1517 thread->th.ompt_thread_info.wait_id = 0; 1518 thread->th.ompt_thread_info.state = (thread->th.th_team_serialized) 1519 ? ompt_state_work_serial 1520 : ompt_state_work_parallel; 1521 taskdata->ompt_task_info.frame.exit_frame.ptr = OMPT_GET_FRAME_ADDRESS(0); 1522 } 1523 #endif 1524 1525 // Decreament the counter of hidden helper tasks to be executed 1526 if (taskdata->td_flags.hidden_helper) { 1527 // Hidden helper tasks can only be executed by hidden helper threads 1528 KMP_ASSERT(KMP_HIDDEN_HELPER_THREAD(gtid)); 1529 KMP_ATOMIC_DEC(&__kmp_unexecuted_hidden_helper_tasks); 1530 } 1531 1532 // Proxy tasks are not handled by the runtime 1533 if (taskdata->td_flags.proxy != TASK_PROXY) { 1534 ANNOTATE_HAPPENS_AFTER(task); 1535 __kmp_task_start(gtid, task, current_task); // OMPT only if not discarded 1536 } 1537 1538 // TODO: cancel tasks if the parallel region has also been cancelled 1539 // TODO: check if this sequence can be hoisted above __kmp_task_start 1540 // if cancellation has been enabled for this run ... 1541 if (UNLIKELY(__kmp_omp_cancellation)) { 1542 thread = __kmp_threads[gtid]; 1543 kmp_team_t *this_team = thread->th.th_team; 1544 kmp_taskgroup_t *taskgroup = taskdata->td_taskgroup; 1545 if ((taskgroup && taskgroup->cancel_request) || 1546 (this_team->t.t_cancel_request == cancel_parallel)) { 1547 #if OMPT_SUPPORT && OMPT_OPTIONAL 1548 ompt_data_t *task_data; 1549 if (UNLIKELY(ompt_enabled.ompt_callback_cancel)) { 1550 __ompt_get_task_info_internal(0, NULL, &task_data, NULL, NULL, NULL); 1551 ompt_callbacks.ompt_callback(ompt_callback_cancel)( 1552 task_data, 1553 ((taskgroup && taskgroup->cancel_request) ? ompt_cancel_taskgroup 1554 : ompt_cancel_parallel) | 1555 ompt_cancel_discarded_task, 1556 NULL); 1557 } 1558 #endif 1559 KMP_COUNT_BLOCK(TASK_cancelled); 1560 // this task belongs to a task group and we need to cancel it 1561 discard = 1 /* true */; 1562 } 1563 } 1564 1565 // Invoke the task routine and pass in relevant data. 1566 // Thunks generated by gcc take a different argument list. 1567 if (!discard) { 1568 if (taskdata->td_flags.tiedness == TASK_UNTIED) { 1569 taskdata->td_last_tied = current_task->td_last_tied; 1570 KMP_DEBUG_ASSERT(taskdata->td_last_tied); 1571 } 1572 #if KMP_STATS_ENABLED 1573 KMP_COUNT_BLOCK(TASK_executed); 1574 switch (KMP_GET_THREAD_STATE()) { 1575 case FORK_JOIN_BARRIER: 1576 KMP_PUSH_PARTITIONED_TIMER(OMP_task_join_bar); 1577 break; 1578 case PLAIN_BARRIER: 1579 KMP_PUSH_PARTITIONED_TIMER(OMP_task_plain_bar); 1580 break; 1581 case TASKYIELD: 1582 KMP_PUSH_PARTITIONED_TIMER(OMP_task_taskyield); 1583 break; 1584 case TASKWAIT: 1585 KMP_PUSH_PARTITIONED_TIMER(OMP_task_taskwait); 1586 break; 1587 case TASKGROUP: 1588 KMP_PUSH_PARTITIONED_TIMER(OMP_task_taskgroup); 1589 break; 1590 default: 1591 KMP_PUSH_PARTITIONED_TIMER(OMP_task_immediate); 1592 break; 1593 } 1594 #endif // KMP_STATS_ENABLED 1595 1596 // OMPT task begin 1597 #if OMPT_SUPPORT 1598 if (UNLIKELY(ompt_enabled.enabled)) 1599 __ompt_task_start(task, current_task, gtid); 1600 #endif 1601 1602 #if USE_ITT_BUILD && USE_ITT_NOTIFY 1603 kmp_uint64 cur_time; 1604 kmp_int32 kmp_itt_count_task = 1605 __kmp_forkjoin_frames_mode == 3 && !taskdata->td_flags.task_serial && 1606 current_task->td_flags.tasktype == TASK_IMPLICIT; 1607 if (kmp_itt_count_task) { 1608 thread = __kmp_threads[gtid]; 1609 // Time outer level explicit task on barrier for adjusting imbalance time 1610 if (thread->th.th_bar_arrive_time) 1611 cur_time = __itt_get_timestamp(); 1612 else 1613 kmp_itt_count_task = 0; // thread is not on a barrier - skip timing 1614 } 1615 KMP_FSYNC_ACQUIRED(taskdata); // acquired self (new task) 1616 #endif 1617 1618 #ifdef KMP_GOMP_COMPAT 1619 if (taskdata->td_flags.native) { 1620 ((void (*)(void *))(*(task->routine)))(task->shareds); 1621 } else 1622 #endif /* KMP_GOMP_COMPAT */ 1623 { 1624 (*(task->routine))(gtid, task); 1625 } 1626 KMP_POP_PARTITIONED_TIMER(); 1627 1628 #if USE_ITT_BUILD && USE_ITT_NOTIFY 1629 if (kmp_itt_count_task) { 1630 // Barrier imbalance - adjust arrive time with the task duration 1631 thread->th.th_bar_arrive_time += (__itt_get_timestamp() - cur_time); 1632 } 1633 KMP_FSYNC_CANCEL(taskdata); // destroy self (just executed) 1634 KMP_FSYNC_RELEASING(taskdata->td_parent); // releasing parent 1635 #endif 1636 1637 } 1638 1639 // Proxy tasks are not handled by the runtime 1640 if (taskdata->td_flags.proxy != TASK_PROXY) { 1641 ANNOTATE_HAPPENS_BEFORE(taskdata->td_parent); 1642 #if OMPT_SUPPORT 1643 if (UNLIKELY(ompt_enabled.enabled)) { 1644 thread->th.ompt_thread_info = oldInfo; 1645 if (taskdata->td_flags.tiedness == TASK_TIED) { 1646 taskdata->ompt_task_info.frame.exit_frame = ompt_data_none; 1647 } 1648 __kmp_task_finish<true>(gtid, task, current_task); 1649 } else 1650 #endif 1651 __kmp_task_finish<false>(gtid, task, current_task); 1652 } 1653 1654 KA_TRACE( 1655 30, 1656 ("__kmp_invoke_task(exit): T#%d completed task %p, resuming task %p\n", 1657 gtid, taskdata, current_task)); 1658 return; 1659 } 1660 1661 // __kmpc_omp_task_parts: Schedule a thread-switchable task for execution 1662 // 1663 // loc_ref: location of original task pragma (ignored) 1664 // gtid: Global Thread ID of encountering thread 1665 // new_task: task thunk allocated by __kmp_omp_task_alloc() for the ''new task'' 1666 // Returns: 1667 // TASK_CURRENT_NOT_QUEUED (0) if did not suspend and queue current task to 1668 // be resumed later. 1669 // TASK_CURRENT_QUEUED (1) if suspended and queued the current task to be 1670 // resumed later. 1671 kmp_int32 __kmpc_omp_task_parts(ident_t *loc_ref, kmp_int32 gtid, 1672 kmp_task_t *new_task) { 1673 kmp_taskdata_t *new_taskdata = KMP_TASK_TO_TASKDATA(new_task); 1674 1675 KA_TRACE(10, ("__kmpc_omp_task_parts(enter): T#%d loc=%p task=%p\n", gtid, 1676 loc_ref, new_taskdata)); 1677 1678 #if OMPT_SUPPORT 1679 kmp_taskdata_t *parent; 1680 if (UNLIKELY(ompt_enabled.enabled)) { 1681 parent = new_taskdata->td_parent; 1682 if (ompt_enabled.ompt_callback_task_create) { 1683 ompt_data_t task_data = ompt_data_none; 1684 ompt_callbacks.ompt_callback(ompt_callback_task_create)( 1685 parent ? &(parent->ompt_task_info.task_data) : &task_data, 1686 parent ? &(parent->ompt_task_info.frame) : NULL, 1687 &(new_taskdata->ompt_task_info.task_data), ompt_task_explicit, 0, 1688 OMPT_GET_RETURN_ADDRESS(0)); 1689 } 1690 } 1691 #endif 1692 1693 /* Should we execute the new task or queue it? For now, let's just always try 1694 to queue it. If the queue fills up, then we'll execute it. */ 1695 1696 if (__kmp_push_task(gtid, new_task) == TASK_NOT_PUSHED) // if cannot defer 1697 { // Execute this task immediately 1698 kmp_taskdata_t *current_task = __kmp_threads[gtid]->th.th_current_task; 1699 new_taskdata->td_flags.task_serial = 1; 1700 __kmp_invoke_task(gtid, new_task, current_task); 1701 } 1702 1703 KA_TRACE( 1704 10, 1705 ("__kmpc_omp_task_parts(exit): T#%d returning TASK_CURRENT_NOT_QUEUED: " 1706 "loc=%p task=%p, return: TASK_CURRENT_NOT_QUEUED\n", 1707 gtid, loc_ref, new_taskdata)); 1708 1709 ANNOTATE_HAPPENS_BEFORE(new_task); 1710 #if OMPT_SUPPORT 1711 if (UNLIKELY(ompt_enabled.enabled)) { 1712 parent->ompt_task_info.frame.enter_frame = ompt_data_none; 1713 } 1714 #endif 1715 return TASK_CURRENT_NOT_QUEUED; 1716 } 1717 1718 // __kmp_omp_task: Schedule a non-thread-switchable task for execution 1719 // 1720 // gtid: Global Thread ID of encountering thread 1721 // new_task:non-thread-switchable task thunk allocated by __kmp_omp_task_alloc() 1722 // serialize_immediate: if TRUE then if the task is executed immediately its 1723 // execution will be serialized 1724 // Returns: 1725 // TASK_CURRENT_NOT_QUEUED (0) if did not suspend and queue current task to 1726 // be resumed later. 1727 // TASK_CURRENT_QUEUED (1) if suspended and queued the current task to be 1728 // resumed later. 1729 kmp_int32 __kmp_omp_task(kmp_int32 gtid, kmp_task_t *new_task, 1730 bool serialize_immediate) { 1731 kmp_taskdata_t *new_taskdata = KMP_TASK_TO_TASKDATA(new_task); 1732 1733 /* Should we execute the new task or queue it? For now, let's just always try 1734 to queue it. If the queue fills up, then we'll execute it. */ 1735 if (new_taskdata->td_flags.proxy == TASK_PROXY || 1736 __kmp_push_task(gtid, new_task) == TASK_NOT_PUSHED) // if cannot defer 1737 { // Execute this task immediately 1738 kmp_taskdata_t *current_task = __kmp_threads[gtid]->th.th_current_task; 1739 if (serialize_immediate) 1740 new_taskdata->td_flags.task_serial = 1; 1741 __kmp_invoke_task(gtid, new_task, current_task); 1742 } 1743 1744 ANNOTATE_HAPPENS_BEFORE(new_task); 1745 return TASK_CURRENT_NOT_QUEUED; 1746 } 1747 1748 // __kmpc_omp_task: Wrapper around __kmp_omp_task to schedule a 1749 // non-thread-switchable task from the parent thread only! 1750 // 1751 // loc_ref: location of original task pragma (ignored) 1752 // gtid: Global Thread ID of encountering thread 1753 // new_task: non-thread-switchable task thunk allocated by 1754 // __kmp_omp_task_alloc() 1755 // Returns: 1756 // TASK_CURRENT_NOT_QUEUED (0) if did not suspend and queue current task to 1757 // be resumed later. 1758 // TASK_CURRENT_QUEUED (1) if suspended and queued the current task to be 1759 // resumed later. 1760 kmp_int32 __kmpc_omp_task(ident_t *loc_ref, kmp_int32 gtid, 1761 kmp_task_t *new_task) { 1762 kmp_int32 res; 1763 KMP_SET_THREAD_STATE_BLOCK(EXPLICIT_TASK); 1764 1765 #if KMP_DEBUG || OMPT_SUPPORT 1766 kmp_taskdata_t *new_taskdata = KMP_TASK_TO_TASKDATA(new_task); 1767 #endif 1768 KA_TRACE(10, ("__kmpc_omp_task(enter): T#%d loc=%p task=%p\n", gtid, loc_ref, 1769 new_taskdata)); 1770 __kmp_assert_valid_gtid(gtid); 1771 1772 #if OMPT_SUPPORT 1773 kmp_taskdata_t *parent = NULL; 1774 if (UNLIKELY(ompt_enabled.enabled)) { 1775 if (!new_taskdata->td_flags.started) { 1776 OMPT_STORE_RETURN_ADDRESS(gtid); 1777 parent = new_taskdata->td_parent; 1778 if (!parent->ompt_task_info.frame.enter_frame.ptr) { 1779 parent->ompt_task_info.frame.enter_frame.ptr = OMPT_GET_FRAME_ADDRESS(0); 1780 } 1781 if (ompt_enabled.ompt_callback_task_create) { 1782 ompt_data_t task_data = ompt_data_none; 1783 ompt_callbacks.ompt_callback(ompt_callback_task_create)( 1784 parent ? &(parent->ompt_task_info.task_data) : &task_data, 1785 parent ? &(parent->ompt_task_info.frame) : NULL, 1786 &(new_taskdata->ompt_task_info.task_data), 1787 ompt_task_explicit | TASK_TYPE_DETAILS_FORMAT(new_taskdata), 0, 1788 OMPT_LOAD_RETURN_ADDRESS(gtid)); 1789 } 1790 } else { 1791 // We are scheduling the continuation of an UNTIED task. 1792 // Scheduling back to the parent task. 1793 __ompt_task_finish(new_task, 1794 new_taskdata->ompt_task_info.scheduling_parent, 1795 ompt_task_switch); 1796 new_taskdata->ompt_task_info.frame.exit_frame = ompt_data_none; 1797 } 1798 } 1799 #endif 1800 1801 res = __kmp_omp_task(gtid, new_task, true); 1802 1803 KA_TRACE(10, ("__kmpc_omp_task(exit): T#%d returning " 1804 "TASK_CURRENT_NOT_QUEUED: loc=%p task=%p\n", 1805 gtid, loc_ref, new_taskdata)); 1806 #if OMPT_SUPPORT 1807 if (UNLIKELY(ompt_enabled.enabled && parent != NULL)) { 1808 parent->ompt_task_info.frame.enter_frame = ompt_data_none; 1809 } 1810 #endif 1811 return res; 1812 } 1813 1814 // __kmp_omp_taskloop_task: Wrapper around __kmp_omp_task to schedule 1815 // a taskloop task with the correct OMPT return address 1816 // 1817 // loc_ref: location of original task pragma (ignored) 1818 // gtid: Global Thread ID of encountering thread 1819 // new_task: non-thread-switchable task thunk allocated by 1820 // __kmp_omp_task_alloc() 1821 // codeptr_ra: return address for OMPT callback 1822 // Returns: 1823 // TASK_CURRENT_NOT_QUEUED (0) if did not suspend and queue current task to 1824 // be resumed later. 1825 // TASK_CURRENT_QUEUED (1) if suspended and queued the current task to be 1826 // resumed later. 1827 kmp_int32 __kmp_omp_taskloop_task(ident_t *loc_ref, kmp_int32 gtid, 1828 kmp_task_t *new_task, void *codeptr_ra) { 1829 kmp_int32 res; 1830 KMP_SET_THREAD_STATE_BLOCK(EXPLICIT_TASK); 1831 1832 #if KMP_DEBUG || OMPT_SUPPORT 1833 kmp_taskdata_t *new_taskdata = KMP_TASK_TO_TASKDATA(new_task); 1834 #endif 1835 KA_TRACE(10, ("__kmpc_omp_task(enter): T#%d loc=%p task=%p\n", gtid, loc_ref, 1836 new_taskdata)); 1837 1838 #if OMPT_SUPPORT 1839 kmp_taskdata_t *parent = NULL; 1840 if (UNLIKELY(ompt_enabled.enabled && !new_taskdata->td_flags.started)) { 1841 parent = new_taskdata->td_parent; 1842 if (!parent->ompt_task_info.frame.enter_frame.ptr) 1843 parent->ompt_task_info.frame.enter_frame.ptr = OMPT_GET_FRAME_ADDRESS(0); 1844 if (ompt_enabled.ompt_callback_task_create) { 1845 ompt_data_t task_data = ompt_data_none; 1846 ompt_callbacks.ompt_callback(ompt_callback_task_create)( 1847 parent ? &(parent->ompt_task_info.task_data) : &task_data, 1848 parent ? &(parent->ompt_task_info.frame) : NULL, 1849 &(new_taskdata->ompt_task_info.task_data), 1850 ompt_task_explicit | TASK_TYPE_DETAILS_FORMAT(new_taskdata), 0, 1851 codeptr_ra); 1852 } 1853 } 1854 #endif 1855 1856 res = __kmp_omp_task(gtid, new_task, true); 1857 1858 KA_TRACE(10, ("__kmpc_omp_task(exit): T#%d returning " 1859 "TASK_CURRENT_NOT_QUEUED: loc=%p task=%p\n", 1860 gtid, loc_ref, new_taskdata)); 1861 #if OMPT_SUPPORT 1862 if (UNLIKELY(ompt_enabled.enabled && parent != NULL)) { 1863 parent->ompt_task_info.frame.enter_frame = ompt_data_none; 1864 } 1865 #endif 1866 return res; 1867 } 1868 1869 template <bool ompt> 1870 static kmp_int32 __kmpc_omp_taskwait_template(ident_t *loc_ref, kmp_int32 gtid, 1871 void *frame_address, 1872 void *return_address) { 1873 kmp_taskdata_t *taskdata; 1874 kmp_info_t *thread; 1875 int thread_finished = FALSE; 1876 KMP_SET_THREAD_STATE_BLOCK(TASKWAIT); 1877 1878 KA_TRACE(10, ("__kmpc_omp_taskwait(enter): T#%d loc=%p\n", gtid, loc_ref)); 1879 __kmp_assert_valid_gtid(gtid); 1880 1881 if (__kmp_tasking_mode != tskm_immediate_exec) { 1882 thread = __kmp_threads[gtid]; 1883 taskdata = thread->th.th_current_task; 1884 1885 #if OMPT_SUPPORT && OMPT_OPTIONAL 1886 ompt_data_t *my_task_data; 1887 ompt_data_t *my_parallel_data; 1888 1889 if (ompt) { 1890 my_task_data = &(taskdata->ompt_task_info.task_data); 1891 my_parallel_data = OMPT_CUR_TEAM_DATA(thread); 1892 1893 taskdata->ompt_task_info.frame.enter_frame.ptr = frame_address; 1894 1895 if (ompt_enabled.ompt_callback_sync_region) { 1896 ompt_callbacks.ompt_callback(ompt_callback_sync_region)( 1897 ompt_sync_region_taskwait, ompt_scope_begin, my_parallel_data, 1898 my_task_data, return_address); 1899 } 1900 1901 if (ompt_enabled.ompt_callback_sync_region_wait) { 1902 ompt_callbacks.ompt_callback(ompt_callback_sync_region_wait)( 1903 ompt_sync_region_taskwait, ompt_scope_begin, my_parallel_data, 1904 my_task_data, return_address); 1905 } 1906 } 1907 #endif // OMPT_SUPPORT && OMPT_OPTIONAL 1908 1909 // Debugger: The taskwait is active. Store location and thread encountered the 1910 // taskwait. 1911 #if USE_ITT_BUILD 1912 // Note: These values are used by ITT events as well. 1913 #endif /* USE_ITT_BUILD */ 1914 taskdata->td_taskwait_counter += 1; 1915 taskdata->td_taskwait_ident = loc_ref; 1916 taskdata->td_taskwait_thread = gtid + 1; 1917 1918 #if USE_ITT_BUILD 1919 void *itt_sync_obj = __kmp_itt_taskwait_object(gtid); 1920 if (UNLIKELY(itt_sync_obj != NULL)) 1921 __kmp_itt_taskwait_starting(gtid, itt_sync_obj); 1922 #endif /* USE_ITT_BUILD */ 1923 1924 bool must_wait = 1925 !taskdata->td_flags.team_serial && !taskdata->td_flags.final; 1926 1927 must_wait = must_wait || (thread->th.th_task_team != NULL && 1928 thread->th.th_task_team->tt.tt_found_proxy_tasks); 1929 // If hidden helper thread is encountered, we must enable wait here. 1930 must_wait = 1931 must_wait || 1932 (__kmp_enable_hidden_helper && thread->th.th_task_team != NULL && 1933 thread->th.th_task_team->tt.tt_hidden_helper_task_encountered); 1934 1935 if (must_wait) { 1936 kmp_flag_32<false, false> flag( 1937 RCAST(std::atomic<kmp_uint32> *, 1938 &(taskdata->td_incomplete_child_tasks)), 1939 0U); 1940 while (KMP_ATOMIC_LD_ACQ(&taskdata->td_incomplete_child_tasks) != 0) { 1941 flag.execute_tasks(thread, gtid, FALSE, 1942 &thread_finished USE_ITT_BUILD_ARG(itt_sync_obj), 1943 __kmp_task_stealing_constraint); 1944 } 1945 } 1946 #if USE_ITT_BUILD 1947 if (UNLIKELY(itt_sync_obj != NULL)) 1948 __kmp_itt_taskwait_finished(gtid, itt_sync_obj); 1949 KMP_FSYNC_ACQUIRED(taskdata); // acquire self - sync with children 1950 #endif /* USE_ITT_BUILD */ 1951 1952 // Debugger: The taskwait is completed. Location remains, but thread is 1953 // negated. 1954 taskdata->td_taskwait_thread = -taskdata->td_taskwait_thread; 1955 1956 #if OMPT_SUPPORT && OMPT_OPTIONAL 1957 if (ompt) { 1958 if (ompt_enabled.ompt_callback_sync_region_wait) { 1959 ompt_callbacks.ompt_callback(ompt_callback_sync_region_wait)( 1960 ompt_sync_region_taskwait, ompt_scope_end, my_parallel_data, 1961 my_task_data, return_address); 1962 } 1963 if (ompt_enabled.ompt_callback_sync_region) { 1964 ompt_callbacks.ompt_callback(ompt_callback_sync_region)( 1965 ompt_sync_region_taskwait, ompt_scope_end, my_parallel_data, 1966 my_task_data, return_address); 1967 } 1968 taskdata->ompt_task_info.frame.enter_frame = ompt_data_none; 1969 } 1970 #endif // OMPT_SUPPORT && OMPT_OPTIONAL 1971 1972 ANNOTATE_HAPPENS_AFTER(taskdata); 1973 } 1974 1975 KA_TRACE(10, ("__kmpc_omp_taskwait(exit): T#%d task %p finished waiting, " 1976 "returning TASK_CURRENT_NOT_QUEUED\n", 1977 gtid, taskdata)); 1978 1979 return TASK_CURRENT_NOT_QUEUED; 1980 } 1981 1982 #if OMPT_SUPPORT && OMPT_OPTIONAL 1983 OMPT_NOINLINE 1984 static kmp_int32 __kmpc_omp_taskwait_ompt(ident_t *loc_ref, kmp_int32 gtid, 1985 void *frame_address, 1986 void *return_address) { 1987 return __kmpc_omp_taskwait_template<true>(loc_ref, gtid, frame_address, 1988 return_address); 1989 } 1990 #endif // OMPT_SUPPORT && OMPT_OPTIONAL 1991 1992 // __kmpc_omp_taskwait: Wait until all tasks generated by the current task are 1993 // complete 1994 kmp_int32 __kmpc_omp_taskwait(ident_t *loc_ref, kmp_int32 gtid) { 1995 #if OMPT_SUPPORT && OMPT_OPTIONAL 1996 if (UNLIKELY(ompt_enabled.enabled)) { 1997 OMPT_STORE_RETURN_ADDRESS(gtid); 1998 return __kmpc_omp_taskwait_ompt(loc_ref, gtid, OMPT_GET_FRAME_ADDRESS(0), 1999 OMPT_LOAD_RETURN_ADDRESS(gtid)); 2000 } 2001 #endif 2002 return __kmpc_omp_taskwait_template<false>(loc_ref, gtid, NULL, NULL); 2003 } 2004 2005 // __kmpc_omp_taskyield: switch to a different task 2006 kmp_int32 __kmpc_omp_taskyield(ident_t *loc_ref, kmp_int32 gtid, int end_part) { 2007 kmp_taskdata_t *taskdata; 2008 kmp_info_t *thread; 2009 int thread_finished = FALSE; 2010 2011 KMP_COUNT_BLOCK(OMP_TASKYIELD); 2012 KMP_SET_THREAD_STATE_BLOCK(TASKYIELD); 2013 2014 KA_TRACE(10, ("__kmpc_omp_taskyield(enter): T#%d loc=%p end_part = %d\n", 2015 gtid, loc_ref, end_part)); 2016 __kmp_assert_valid_gtid(gtid); 2017 2018 if (__kmp_tasking_mode != tskm_immediate_exec && __kmp_init_parallel) { 2019 thread = __kmp_threads[gtid]; 2020 taskdata = thread->th.th_current_task; 2021 // Should we model this as a task wait or not? 2022 // Debugger: The taskwait is active. Store location and thread encountered the 2023 // taskwait. 2024 #if USE_ITT_BUILD 2025 // Note: These values are used by ITT events as well. 2026 #endif /* USE_ITT_BUILD */ 2027 taskdata->td_taskwait_counter += 1; 2028 taskdata->td_taskwait_ident = loc_ref; 2029 taskdata->td_taskwait_thread = gtid + 1; 2030 2031 #if USE_ITT_BUILD 2032 void *itt_sync_obj = __kmp_itt_taskwait_object(gtid); 2033 if (UNLIKELY(itt_sync_obj != NULL)) 2034 __kmp_itt_taskwait_starting(gtid, itt_sync_obj); 2035 #endif /* USE_ITT_BUILD */ 2036 if (!taskdata->td_flags.team_serial) { 2037 kmp_task_team_t *task_team = thread->th.th_task_team; 2038 if (task_team != NULL) { 2039 if (KMP_TASKING_ENABLED(task_team)) { 2040 #if OMPT_SUPPORT 2041 if (UNLIKELY(ompt_enabled.enabled)) 2042 thread->th.ompt_thread_info.ompt_task_yielded = 1; 2043 #endif 2044 __kmp_execute_tasks_32( 2045 thread, gtid, (kmp_flag_32<> *)NULL, FALSE, 2046 &thread_finished USE_ITT_BUILD_ARG(itt_sync_obj), 2047 __kmp_task_stealing_constraint); 2048 #if OMPT_SUPPORT 2049 if (UNLIKELY(ompt_enabled.enabled)) 2050 thread->th.ompt_thread_info.ompt_task_yielded = 0; 2051 #endif 2052 } 2053 } 2054 } 2055 #if USE_ITT_BUILD 2056 if (UNLIKELY(itt_sync_obj != NULL)) 2057 __kmp_itt_taskwait_finished(gtid, itt_sync_obj); 2058 #endif /* USE_ITT_BUILD */ 2059 2060 // Debugger: The taskwait is completed. Location remains, but thread is 2061 // negated. 2062 taskdata->td_taskwait_thread = -taskdata->td_taskwait_thread; 2063 } 2064 2065 KA_TRACE(10, ("__kmpc_omp_taskyield(exit): T#%d task %p resuming, " 2066 "returning TASK_CURRENT_NOT_QUEUED\n", 2067 gtid, taskdata)); 2068 2069 return TASK_CURRENT_NOT_QUEUED; 2070 } 2071 2072 // Task Reduction implementation 2073 // 2074 // Note: initial implementation didn't take into account the possibility 2075 // to specify omp_orig for initializer of the UDR (user defined reduction). 2076 // Corrected implementation takes into account the omp_orig object. 2077 // Compiler is free to use old implementation if omp_orig is not specified. 2078 2079 /*! 2080 @ingroup BASIC_TYPES 2081 @{ 2082 */ 2083 2084 /*! 2085 Flags for special info per task reduction item. 2086 */ 2087 typedef struct kmp_taskred_flags { 2088 /*! 1 - use lazy alloc/init (e.g. big objects, #tasks < #threads) */ 2089 unsigned lazy_priv : 1; 2090 unsigned reserved31 : 31; 2091 } kmp_taskred_flags_t; 2092 2093 /*! 2094 Internal struct for reduction data item related info set up by compiler. 2095 */ 2096 typedef struct kmp_task_red_input { 2097 void *reduce_shar; /**< shared between tasks item to reduce into */ 2098 size_t reduce_size; /**< size of data item in bytes */ 2099 // three compiler-generated routines (init, fini are optional): 2100 void *reduce_init; /**< data initialization routine (single parameter) */ 2101 void *reduce_fini; /**< data finalization routine */ 2102 void *reduce_comb; /**< data combiner routine */ 2103 kmp_taskred_flags_t flags; /**< flags for additional info from compiler */ 2104 } kmp_task_red_input_t; 2105 2106 /*! 2107 Internal struct for reduction data item related info saved by the library. 2108 */ 2109 typedef struct kmp_taskred_data { 2110 void *reduce_shar; /**< shared between tasks item to reduce into */ 2111 size_t reduce_size; /**< size of data item */ 2112 kmp_taskred_flags_t flags; /**< flags for additional info from compiler */ 2113 void *reduce_priv; /**< array of thread specific items */ 2114 void *reduce_pend; /**< end of private data for faster comparison op */ 2115 // three compiler-generated routines (init, fini are optional): 2116 void *reduce_comb; /**< data combiner routine */ 2117 void *reduce_init; /**< data initialization routine (two parameters) */ 2118 void *reduce_fini; /**< data finalization routine */ 2119 void *reduce_orig; /**< original item (can be used in UDR initializer) */ 2120 } kmp_taskred_data_t; 2121 2122 /*! 2123 Internal struct for reduction data item related info set up by compiler. 2124 2125 New interface: added reduce_orig field to provide omp_orig for UDR initializer. 2126 */ 2127 typedef struct kmp_taskred_input { 2128 void *reduce_shar; /**< shared between tasks item to reduce into */ 2129 void *reduce_orig; /**< original reduction item used for initialization */ 2130 size_t reduce_size; /**< size of data item */ 2131 // three compiler-generated routines (init, fini are optional): 2132 void *reduce_init; /**< data initialization routine (two parameters) */ 2133 void *reduce_fini; /**< data finalization routine */ 2134 void *reduce_comb; /**< data combiner routine */ 2135 kmp_taskred_flags_t flags; /**< flags for additional info from compiler */ 2136 } kmp_taskred_input_t; 2137 /*! 2138 @} 2139 */ 2140 2141 template <typename T> void __kmp_assign_orig(kmp_taskred_data_t &item, T &src); 2142 template <> 2143 void __kmp_assign_orig<kmp_task_red_input_t>(kmp_taskred_data_t &item, 2144 kmp_task_red_input_t &src) { 2145 item.reduce_orig = NULL; 2146 } 2147 template <> 2148 void __kmp_assign_orig<kmp_taskred_input_t>(kmp_taskred_data_t &item, 2149 kmp_taskred_input_t &src) { 2150 if (src.reduce_orig != NULL) { 2151 item.reduce_orig = src.reduce_orig; 2152 } else { 2153 item.reduce_orig = src.reduce_shar; 2154 } // non-NULL reduce_orig means new interface used 2155 } 2156 2157 template <typename T> void __kmp_call_init(kmp_taskred_data_t &item, size_t j); 2158 template <> 2159 void __kmp_call_init<kmp_task_red_input_t>(kmp_taskred_data_t &item, 2160 size_t offset) { 2161 ((void (*)(void *))item.reduce_init)((char *)(item.reduce_priv) + offset); 2162 } 2163 template <> 2164 void __kmp_call_init<kmp_taskred_input_t>(kmp_taskred_data_t &item, 2165 size_t offset) { 2166 ((void (*)(void *, void *))item.reduce_init)( 2167 (char *)(item.reduce_priv) + offset, item.reduce_orig); 2168 } 2169 2170 template <typename T> 2171 void *__kmp_task_reduction_init(int gtid, int num, T *data) { 2172 __kmp_assert_valid_gtid(gtid); 2173 kmp_info_t *thread = __kmp_threads[gtid]; 2174 kmp_taskgroup_t *tg = thread->th.th_current_task->td_taskgroup; 2175 kmp_uint32 nth = thread->th.th_team_nproc; 2176 kmp_taskred_data_t *arr; 2177 2178 // check input data just in case 2179 KMP_ASSERT(tg != NULL); 2180 KMP_ASSERT(data != NULL); 2181 KMP_ASSERT(num > 0); 2182 if (nth == 1) { 2183 KA_TRACE(10, ("__kmpc_task_reduction_init: T#%d, tg %p, exiting nth=1\n", 2184 gtid, tg)); 2185 return (void *)tg; 2186 } 2187 KA_TRACE(10, ("__kmpc_task_reduction_init: T#%d, taskgroup %p, #items %d\n", 2188 gtid, tg, num)); 2189 arr = (kmp_taskred_data_t *)__kmp_thread_malloc( 2190 thread, num * sizeof(kmp_taskred_data_t)); 2191 for (int i = 0; i < num; ++i) { 2192 size_t size = data[i].reduce_size - 1; 2193 // round the size up to cache line per thread-specific item 2194 size += CACHE_LINE - size % CACHE_LINE; 2195 KMP_ASSERT(data[i].reduce_comb != NULL); // combiner is mandatory 2196 arr[i].reduce_shar = data[i].reduce_shar; 2197 arr[i].reduce_size = size; 2198 arr[i].flags = data[i].flags; 2199 arr[i].reduce_comb = data[i].reduce_comb; 2200 arr[i].reduce_init = data[i].reduce_init; 2201 arr[i].reduce_fini = data[i].reduce_fini; 2202 __kmp_assign_orig<T>(arr[i], data[i]); 2203 if (!arr[i].flags.lazy_priv) { 2204 // allocate cache-line aligned block and fill it with zeros 2205 arr[i].reduce_priv = __kmp_allocate(nth * size); 2206 arr[i].reduce_pend = (char *)(arr[i].reduce_priv) + nth * size; 2207 if (arr[i].reduce_init != NULL) { 2208 // initialize all thread-specific items 2209 for (size_t j = 0; j < nth; ++j) { 2210 __kmp_call_init<T>(arr[i], j * size); 2211 } 2212 } 2213 } else { 2214 // only allocate space for pointers now, 2215 // objects will be lazily allocated/initialized if/when requested 2216 // note that __kmp_allocate zeroes the allocated memory 2217 arr[i].reduce_priv = __kmp_allocate(nth * sizeof(void *)); 2218 } 2219 } 2220 tg->reduce_data = (void *)arr; 2221 tg->reduce_num_data = num; 2222 return (void *)tg; 2223 } 2224 2225 /*! 2226 @ingroup TASKING 2227 @param gtid Global thread ID 2228 @param num Number of data items to reduce 2229 @param data Array of data for reduction 2230 @return The taskgroup identifier 2231 2232 Initialize task reduction for the taskgroup. 2233 2234 Note: this entry supposes the optional compiler-generated initializer routine 2235 has single parameter - pointer to object to be initialized. That means 2236 the reduction either does not use omp_orig object, or the omp_orig is accessible 2237 without help of the runtime library. 2238 */ 2239 void *__kmpc_task_reduction_init(int gtid, int num, void *data) { 2240 return __kmp_task_reduction_init(gtid, num, (kmp_task_red_input_t *)data); 2241 } 2242 2243 /*! 2244 @ingroup TASKING 2245 @param gtid Global thread ID 2246 @param num Number of data items to reduce 2247 @param data Array of data for reduction 2248 @return The taskgroup identifier 2249 2250 Initialize task reduction for the taskgroup. 2251 2252 Note: this entry supposes the optional compiler-generated initializer routine 2253 has two parameters, pointer to object to be initialized and pointer to omp_orig 2254 */ 2255 void *__kmpc_taskred_init(int gtid, int num, void *data) { 2256 return __kmp_task_reduction_init(gtid, num, (kmp_taskred_input_t *)data); 2257 } 2258 2259 // Copy task reduction data (except for shared pointers). 2260 template <typename T> 2261 void __kmp_task_reduction_init_copy(kmp_info_t *thr, int num, T *data, 2262 kmp_taskgroup_t *tg, void *reduce_data) { 2263 kmp_taskred_data_t *arr; 2264 KA_TRACE(20, ("__kmp_task_reduction_init_copy: Th %p, init taskgroup %p," 2265 " from data %p\n", 2266 thr, tg, reduce_data)); 2267 arr = (kmp_taskred_data_t *)__kmp_thread_malloc( 2268 thr, num * sizeof(kmp_taskred_data_t)); 2269 // threads will share private copies, thunk routines, sizes, flags, etc.: 2270 KMP_MEMCPY(arr, reduce_data, num * sizeof(kmp_taskred_data_t)); 2271 for (int i = 0; i < num; ++i) { 2272 arr[i].reduce_shar = data[i].reduce_shar; // init unique shared pointers 2273 } 2274 tg->reduce_data = (void *)arr; 2275 tg->reduce_num_data = num; 2276 } 2277 2278 /*! 2279 @ingroup TASKING 2280 @param gtid Global thread ID 2281 @param tskgrp The taskgroup ID (optional) 2282 @param data Shared location of the item 2283 @return The pointer to per-thread data 2284 2285 Get thread-specific location of data item 2286 */ 2287 void *__kmpc_task_reduction_get_th_data(int gtid, void *tskgrp, void *data) { 2288 __kmp_assert_valid_gtid(gtid); 2289 kmp_info_t *thread = __kmp_threads[gtid]; 2290 kmp_int32 nth = thread->th.th_team_nproc; 2291 if (nth == 1) 2292 return data; // nothing to do 2293 2294 kmp_taskgroup_t *tg = (kmp_taskgroup_t *)tskgrp; 2295 if (tg == NULL) 2296 tg = thread->th.th_current_task->td_taskgroup; 2297 KMP_ASSERT(tg != NULL); 2298 kmp_taskred_data_t *arr = (kmp_taskred_data_t *)(tg->reduce_data); 2299 kmp_int32 num = tg->reduce_num_data; 2300 kmp_int32 tid = thread->th.th_info.ds.ds_tid; 2301 2302 KMP_ASSERT(data != NULL); 2303 while (tg != NULL) { 2304 for (int i = 0; i < num; ++i) { 2305 if (!arr[i].flags.lazy_priv) { 2306 if (data == arr[i].reduce_shar || 2307 (data >= arr[i].reduce_priv && data < arr[i].reduce_pend)) 2308 return (char *)(arr[i].reduce_priv) + tid * arr[i].reduce_size; 2309 } else { 2310 // check shared location first 2311 void **p_priv = (void **)(arr[i].reduce_priv); 2312 if (data == arr[i].reduce_shar) 2313 goto found; 2314 // check if we get some thread specific location as parameter 2315 for (int j = 0; j < nth; ++j) 2316 if (data == p_priv[j]) 2317 goto found; 2318 continue; // not found, continue search 2319 found: 2320 if (p_priv[tid] == NULL) { 2321 // allocate thread specific object lazily 2322 p_priv[tid] = __kmp_allocate(arr[i].reduce_size); 2323 if (arr[i].reduce_init != NULL) { 2324 if (arr[i].reduce_orig != NULL) { // new interface 2325 ((void (*)(void *, void *))arr[i].reduce_init)( 2326 p_priv[tid], arr[i].reduce_orig); 2327 } else { // old interface (single parameter) 2328 ((void (*)(void *))arr[i].reduce_init)(p_priv[tid]); 2329 } 2330 } 2331 } 2332 return p_priv[tid]; 2333 } 2334 } 2335 tg = tg->parent; 2336 arr = (kmp_taskred_data_t *)(tg->reduce_data); 2337 num = tg->reduce_num_data; 2338 } 2339 KMP_ASSERT2(0, "Unknown task reduction item"); 2340 return NULL; // ERROR, this line never executed 2341 } 2342 2343 // Finalize task reduction. 2344 // Called from __kmpc_end_taskgroup() 2345 static void __kmp_task_reduction_fini(kmp_info_t *th, kmp_taskgroup_t *tg) { 2346 kmp_int32 nth = th->th.th_team_nproc; 2347 KMP_DEBUG_ASSERT(nth > 1); // should not be called if nth == 1 2348 kmp_taskred_data_t *arr = (kmp_taskred_data_t *)tg->reduce_data; 2349 kmp_int32 num = tg->reduce_num_data; 2350 for (int i = 0; i < num; ++i) { 2351 void *sh_data = arr[i].reduce_shar; 2352 void (*f_fini)(void *) = (void (*)(void *))(arr[i].reduce_fini); 2353 void (*f_comb)(void *, void *) = 2354 (void (*)(void *, void *))(arr[i].reduce_comb); 2355 if (!arr[i].flags.lazy_priv) { 2356 void *pr_data = arr[i].reduce_priv; 2357 size_t size = arr[i].reduce_size; 2358 for (int j = 0; j < nth; ++j) { 2359 void *priv_data = (char *)pr_data + j * size; 2360 f_comb(sh_data, priv_data); // combine results 2361 if (f_fini) 2362 f_fini(priv_data); // finalize if needed 2363 } 2364 } else { 2365 void **pr_data = (void **)(arr[i].reduce_priv); 2366 for (int j = 0; j < nth; ++j) { 2367 if (pr_data[j] != NULL) { 2368 f_comb(sh_data, pr_data[j]); // combine results 2369 if (f_fini) 2370 f_fini(pr_data[j]); // finalize if needed 2371 __kmp_free(pr_data[j]); 2372 } 2373 } 2374 } 2375 __kmp_free(arr[i].reduce_priv); 2376 } 2377 __kmp_thread_free(th, arr); 2378 tg->reduce_data = NULL; 2379 tg->reduce_num_data = 0; 2380 } 2381 2382 // Cleanup task reduction data for parallel or worksharing, 2383 // do not touch task private data other threads still working with. 2384 // Called from __kmpc_end_taskgroup() 2385 static void __kmp_task_reduction_clean(kmp_info_t *th, kmp_taskgroup_t *tg) { 2386 __kmp_thread_free(th, tg->reduce_data); 2387 tg->reduce_data = NULL; 2388 tg->reduce_num_data = 0; 2389 } 2390 2391 template <typename T> 2392 void *__kmp_task_reduction_modifier_init(ident_t *loc, int gtid, int is_ws, 2393 int num, T *data) { 2394 __kmp_assert_valid_gtid(gtid); 2395 kmp_info_t *thr = __kmp_threads[gtid]; 2396 kmp_int32 nth = thr->th.th_team_nproc; 2397 __kmpc_taskgroup(loc, gtid); // form new taskgroup first 2398 if (nth == 1) { 2399 KA_TRACE(10, 2400 ("__kmpc_reduction_modifier_init: T#%d, tg %p, exiting nth=1\n", 2401 gtid, thr->th.th_current_task->td_taskgroup)); 2402 return (void *)thr->th.th_current_task->td_taskgroup; 2403 } 2404 kmp_team_t *team = thr->th.th_team; 2405 void *reduce_data; 2406 kmp_taskgroup_t *tg; 2407 reduce_data = KMP_ATOMIC_LD_RLX(&team->t.t_tg_reduce_data[is_ws]); 2408 if (reduce_data == NULL && 2409 __kmp_atomic_compare_store(&team->t.t_tg_reduce_data[is_ws], reduce_data, 2410 (void *)1)) { 2411 // single thread enters this block to initialize common reduction data 2412 KMP_DEBUG_ASSERT(reduce_data == NULL); 2413 // first initialize own data, then make a copy other threads can use 2414 tg = (kmp_taskgroup_t *)__kmp_task_reduction_init<T>(gtid, num, data); 2415 reduce_data = __kmp_thread_malloc(thr, num * sizeof(kmp_taskred_data_t)); 2416 KMP_MEMCPY(reduce_data, tg->reduce_data, num * sizeof(kmp_taskred_data_t)); 2417 // fini counters should be 0 at this point 2418 KMP_DEBUG_ASSERT(KMP_ATOMIC_LD_RLX(&team->t.t_tg_fini_counter[0]) == 0); 2419 KMP_DEBUG_ASSERT(KMP_ATOMIC_LD_RLX(&team->t.t_tg_fini_counter[1]) == 0); 2420 KMP_ATOMIC_ST_REL(&team->t.t_tg_reduce_data[is_ws], reduce_data); 2421 } else { 2422 while ( 2423 (reduce_data = KMP_ATOMIC_LD_ACQ(&team->t.t_tg_reduce_data[is_ws])) == 2424 (void *)1) { // wait for task reduction initialization 2425 KMP_CPU_PAUSE(); 2426 } 2427 KMP_DEBUG_ASSERT(reduce_data > (void *)1); // should be valid pointer here 2428 tg = thr->th.th_current_task->td_taskgroup; 2429 __kmp_task_reduction_init_copy<T>(thr, num, data, tg, reduce_data); 2430 } 2431 return tg; 2432 } 2433 2434 /*! 2435 @ingroup TASKING 2436 @param loc Source location info 2437 @param gtid Global thread ID 2438 @param is_ws Is 1 if the reduction is for worksharing, 0 otherwise 2439 @param num Number of data items to reduce 2440 @param data Array of data for reduction 2441 @return The taskgroup identifier 2442 2443 Initialize task reduction for a parallel or worksharing. 2444 2445 Note: this entry supposes the optional compiler-generated initializer routine 2446 has single parameter - pointer to object to be initialized. That means 2447 the reduction either does not use omp_orig object, or the omp_orig is accessible 2448 without help of the runtime library. 2449 */ 2450 void *__kmpc_task_reduction_modifier_init(ident_t *loc, int gtid, int is_ws, 2451 int num, void *data) { 2452 return __kmp_task_reduction_modifier_init(loc, gtid, is_ws, num, 2453 (kmp_task_red_input_t *)data); 2454 } 2455 2456 /*! 2457 @ingroup TASKING 2458 @param loc Source location info 2459 @param gtid Global thread ID 2460 @param is_ws Is 1 if the reduction is for worksharing, 0 otherwise 2461 @param num Number of data items to reduce 2462 @param data Array of data for reduction 2463 @return The taskgroup identifier 2464 2465 Initialize task reduction for a parallel or worksharing. 2466 2467 Note: this entry supposes the optional compiler-generated initializer routine 2468 has two parameters, pointer to object to be initialized and pointer to omp_orig 2469 */ 2470 void *__kmpc_taskred_modifier_init(ident_t *loc, int gtid, int is_ws, int num, 2471 void *data) { 2472 return __kmp_task_reduction_modifier_init(loc, gtid, is_ws, num, 2473 (kmp_taskred_input_t *)data); 2474 } 2475 2476 /*! 2477 @ingroup TASKING 2478 @param loc Source location info 2479 @param gtid Global thread ID 2480 @param is_ws Is 1 if the reduction is for worksharing, 0 otherwise 2481 2482 Finalize task reduction for a parallel or worksharing. 2483 */ 2484 void __kmpc_task_reduction_modifier_fini(ident_t *loc, int gtid, int is_ws) { 2485 __kmpc_end_taskgroup(loc, gtid); 2486 } 2487 2488 // __kmpc_taskgroup: Start a new taskgroup 2489 void __kmpc_taskgroup(ident_t *loc, int gtid) { 2490 __kmp_assert_valid_gtid(gtid); 2491 kmp_info_t *thread = __kmp_threads[gtid]; 2492 kmp_taskdata_t *taskdata = thread->th.th_current_task; 2493 kmp_taskgroup_t *tg_new = 2494 (kmp_taskgroup_t *)__kmp_thread_malloc(thread, sizeof(kmp_taskgroup_t)); 2495 KA_TRACE(10, ("__kmpc_taskgroup: T#%d loc=%p group=%p\n", gtid, loc, tg_new)); 2496 KMP_ATOMIC_ST_RLX(&tg_new->count, 0); 2497 KMP_ATOMIC_ST_RLX(&tg_new->cancel_request, cancel_noreq); 2498 tg_new->parent = taskdata->td_taskgroup; 2499 tg_new->reduce_data = NULL; 2500 tg_new->reduce_num_data = 0; 2501 taskdata->td_taskgroup = tg_new; 2502 2503 #if OMPT_SUPPORT && OMPT_OPTIONAL 2504 if (UNLIKELY(ompt_enabled.ompt_callback_sync_region)) { 2505 void *codeptr = OMPT_LOAD_RETURN_ADDRESS(gtid); 2506 if (!codeptr) 2507 codeptr = OMPT_GET_RETURN_ADDRESS(0); 2508 kmp_team_t *team = thread->th.th_team; 2509 ompt_data_t my_task_data = taskdata->ompt_task_info.task_data; 2510 // FIXME: I think this is wrong for lwt! 2511 ompt_data_t my_parallel_data = team->t.ompt_team_info.parallel_data; 2512 2513 ompt_callbacks.ompt_callback(ompt_callback_sync_region)( 2514 ompt_sync_region_taskgroup, ompt_scope_begin, &(my_parallel_data), 2515 &(my_task_data), codeptr); 2516 } 2517 #endif 2518 } 2519 2520 // __kmpc_end_taskgroup: Wait until all tasks generated by the current task 2521 // and its descendants are complete 2522 void __kmpc_end_taskgroup(ident_t *loc, int gtid) { 2523 __kmp_assert_valid_gtid(gtid); 2524 kmp_info_t *thread = __kmp_threads[gtid]; 2525 kmp_taskdata_t *taskdata = thread->th.th_current_task; 2526 kmp_taskgroup_t *taskgroup = taskdata->td_taskgroup; 2527 int thread_finished = FALSE; 2528 2529 #if OMPT_SUPPORT && OMPT_OPTIONAL 2530 kmp_team_t *team; 2531 ompt_data_t my_task_data; 2532 ompt_data_t my_parallel_data; 2533 void *codeptr; 2534 if (UNLIKELY(ompt_enabled.enabled)) { 2535 team = thread->th.th_team; 2536 my_task_data = taskdata->ompt_task_info.task_data; 2537 // FIXME: I think this is wrong for lwt! 2538 my_parallel_data = team->t.ompt_team_info.parallel_data; 2539 codeptr = OMPT_LOAD_RETURN_ADDRESS(gtid); 2540 if (!codeptr) 2541 codeptr = OMPT_GET_RETURN_ADDRESS(0); 2542 } 2543 #endif 2544 2545 KA_TRACE(10, ("__kmpc_end_taskgroup(enter): T#%d loc=%p\n", gtid, loc)); 2546 KMP_DEBUG_ASSERT(taskgroup != NULL); 2547 KMP_SET_THREAD_STATE_BLOCK(TASKGROUP); 2548 2549 if (__kmp_tasking_mode != tskm_immediate_exec) { 2550 // mark task as waiting not on a barrier 2551 taskdata->td_taskwait_counter += 1; 2552 taskdata->td_taskwait_ident = loc; 2553 taskdata->td_taskwait_thread = gtid + 1; 2554 #if USE_ITT_BUILD 2555 // For ITT the taskgroup wait is similar to taskwait until we need to 2556 // distinguish them 2557 void *itt_sync_obj = __kmp_itt_taskwait_object(gtid); 2558 if (UNLIKELY(itt_sync_obj != NULL)) 2559 __kmp_itt_taskwait_starting(gtid, itt_sync_obj); 2560 #endif /* USE_ITT_BUILD */ 2561 2562 #if OMPT_SUPPORT && OMPT_OPTIONAL 2563 if (UNLIKELY(ompt_enabled.ompt_callback_sync_region_wait)) { 2564 ompt_callbacks.ompt_callback(ompt_callback_sync_region_wait)( 2565 ompt_sync_region_taskgroup, ompt_scope_begin, &(my_parallel_data), 2566 &(my_task_data), codeptr); 2567 } 2568 #endif 2569 2570 if (!taskdata->td_flags.team_serial || 2571 (thread->th.th_task_team != NULL && 2572 thread->th.th_task_team->tt.tt_found_proxy_tasks)) { 2573 kmp_flag_32<false, false> flag( 2574 RCAST(std::atomic<kmp_uint32> *, &(taskgroup->count)), 0U); 2575 while (KMP_ATOMIC_LD_ACQ(&taskgroup->count) != 0) { 2576 flag.execute_tasks(thread, gtid, FALSE, 2577 &thread_finished USE_ITT_BUILD_ARG(itt_sync_obj), 2578 __kmp_task_stealing_constraint); 2579 } 2580 } 2581 taskdata->td_taskwait_thread = -taskdata->td_taskwait_thread; // end waiting 2582 2583 #if OMPT_SUPPORT && OMPT_OPTIONAL 2584 if (UNLIKELY(ompt_enabled.ompt_callback_sync_region_wait)) { 2585 ompt_callbacks.ompt_callback(ompt_callback_sync_region_wait)( 2586 ompt_sync_region_taskgroup, ompt_scope_end, &(my_parallel_data), 2587 &(my_task_data), codeptr); 2588 } 2589 #endif 2590 2591 #if USE_ITT_BUILD 2592 if (UNLIKELY(itt_sync_obj != NULL)) 2593 __kmp_itt_taskwait_finished(gtid, itt_sync_obj); 2594 KMP_FSYNC_ACQUIRED(taskdata); // acquire self - sync with descendants 2595 #endif /* USE_ITT_BUILD */ 2596 } 2597 KMP_DEBUG_ASSERT(taskgroup->count == 0); 2598 2599 if (taskgroup->reduce_data != NULL) { // need to reduce? 2600 int cnt; 2601 void *reduce_data; 2602 kmp_team_t *t = thread->th.th_team; 2603 kmp_taskred_data_t *arr = (kmp_taskred_data_t *)taskgroup->reduce_data; 2604 // check if <priv> data of the first reduction variable shared for the team 2605 void *priv0 = arr[0].reduce_priv; 2606 if ((reduce_data = KMP_ATOMIC_LD_ACQ(&t->t.t_tg_reduce_data[0])) != NULL && 2607 ((kmp_taskred_data_t *)reduce_data)[0].reduce_priv == priv0) { 2608 // finishing task reduction on parallel 2609 cnt = KMP_ATOMIC_INC(&t->t.t_tg_fini_counter[0]); 2610 if (cnt == thread->th.th_team_nproc - 1) { 2611 // we are the last thread passing __kmpc_reduction_modifier_fini() 2612 // finalize task reduction: 2613 __kmp_task_reduction_fini(thread, taskgroup); 2614 // cleanup fields in the team structure: 2615 // TODO: is relaxed store enough here (whole barrier should follow)? 2616 __kmp_thread_free(thread, reduce_data); 2617 KMP_ATOMIC_ST_REL(&t->t.t_tg_reduce_data[0], NULL); 2618 KMP_ATOMIC_ST_REL(&t->t.t_tg_fini_counter[0], 0); 2619 } else { 2620 // we are not the last thread passing __kmpc_reduction_modifier_fini(), 2621 // so do not finalize reduction, just clean own copy of the data 2622 __kmp_task_reduction_clean(thread, taskgroup); 2623 } 2624 } else if ((reduce_data = KMP_ATOMIC_LD_ACQ(&t->t.t_tg_reduce_data[1])) != 2625 NULL && 2626 ((kmp_taskred_data_t *)reduce_data)[0].reduce_priv == priv0) { 2627 // finishing task reduction on worksharing 2628 cnt = KMP_ATOMIC_INC(&t->t.t_tg_fini_counter[1]); 2629 if (cnt == thread->th.th_team_nproc - 1) { 2630 // we are the last thread passing __kmpc_reduction_modifier_fini() 2631 __kmp_task_reduction_fini(thread, taskgroup); 2632 // cleanup fields in team structure: 2633 // TODO: is relaxed store enough here (whole barrier should follow)? 2634 __kmp_thread_free(thread, reduce_data); 2635 KMP_ATOMIC_ST_REL(&t->t.t_tg_reduce_data[1], NULL); 2636 KMP_ATOMIC_ST_REL(&t->t.t_tg_fini_counter[1], 0); 2637 } else { 2638 // we are not the last thread passing __kmpc_reduction_modifier_fini(), 2639 // so do not finalize reduction, just clean own copy of the data 2640 __kmp_task_reduction_clean(thread, taskgroup); 2641 } 2642 } else { 2643 // finishing task reduction on taskgroup 2644 __kmp_task_reduction_fini(thread, taskgroup); 2645 } 2646 } 2647 // Restore parent taskgroup for the current task 2648 taskdata->td_taskgroup = taskgroup->parent; 2649 __kmp_thread_free(thread, taskgroup); 2650 2651 KA_TRACE(10, ("__kmpc_end_taskgroup(exit): T#%d task %p finished waiting\n", 2652 gtid, taskdata)); 2653 ANNOTATE_HAPPENS_AFTER(taskdata); 2654 2655 #if OMPT_SUPPORT && OMPT_OPTIONAL 2656 if (UNLIKELY(ompt_enabled.ompt_callback_sync_region)) { 2657 ompt_callbacks.ompt_callback(ompt_callback_sync_region)( 2658 ompt_sync_region_taskgroup, ompt_scope_end, &(my_parallel_data), 2659 &(my_task_data), codeptr); 2660 } 2661 #endif 2662 } 2663 2664 // __kmp_remove_my_task: remove a task from my own deque 2665 static kmp_task_t *__kmp_remove_my_task(kmp_info_t *thread, kmp_int32 gtid, 2666 kmp_task_team_t *task_team, 2667 kmp_int32 is_constrained) { 2668 kmp_task_t *task; 2669 kmp_taskdata_t *taskdata; 2670 kmp_thread_data_t *thread_data; 2671 kmp_uint32 tail; 2672 2673 KMP_DEBUG_ASSERT(__kmp_tasking_mode != tskm_immediate_exec); 2674 KMP_DEBUG_ASSERT(task_team->tt.tt_threads_data != 2675 NULL); // Caller should check this condition 2676 2677 thread_data = &task_team->tt.tt_threads_data[__kmp_tid_from_gtid(gtid)]; 2678 2679 KA_TRACE(10, ("__kmp_remove_my_task(enter): T#%d ntasks=%d head=%u tail=%u\n", 2680 gtid, thread_data->td.td_deque_ntasks, 2681 thread_data->td.td_deque_head, thread_data->td.td_deque_tail)); 2682 2683 if (TCR_4(thread_data->td.td_deque_ntasks) == 0) { 2684 KA_TRACE(10, 2685 ("__kmp_remove_my_task(exit #1): T#%d No tasks to remove: " 2686 "ntasks=%d head=%u tail=%u\n", 2687 gtid, thread_data->td.td_deque_ntasks, 2688 thread_data->td.td_deque_head, thread_data->td.td_deque_tail)); 2689 return NULL; 2690 } 2691 2692 __kmp_acquire_bootstrap_lock(&thread_data->td.td_deque_lock); 2693 2694 if (TCR_4(thread_data->td.td_deque_ntasks) == 0) { 2695 __kmp_release_bootstrap_lock(&thread_data->td.td_deque_lock); 2696 KA_TRACE(10, 2697 ("__kmp_remove_my_task(exit #2): T#%d No tasks to remove: " 2698 "ntasks=%d head=%u tail=%u\n", 2699 gtid, thread_data->td.td_deque_ntasks, 2700 thread_data->td.td_deque_head, thread_data->td.td_deque_tail)); 2701 return NULL; 2702 } 2703 2704 tail = (thread_data->td.td_deque_tail - 1) & 2705 TASK_DEQUE_MASK(thread_data->td); // Wrap index. 2706 taskdata = thread_data->td.td_deque[tail]; 2707 2708 if (!__kmp_task_is_allowed(gtid, is_constrained, taskdata, 2709 thread->th.th_current_task)) { 2710 // The TSC does not allow to steal victim task 2711 __kmp_release_bootstrap_lock(&thread_data->td.td_deque_lock); 2712 KA_TRACE(10, 2713 ("__kmp_remove_my_task(exit #3): T#%d TSC blocks tail task: " 2714 "ntasks=%d head=%u tail=%u\n", 2715 gtid, thread_data->td.td_deque_ntasks, 2716 thread_data->td.td_deque_head, thread_data->td.td_deque_tail)); 2717 return NULL; 2718 } 2719 2720 thread_data->td.td_deque_tail = tail; 2721 TCW_4(thread_data->td.td_deque_ntasks, thread_data->td.td_deque_ntasks - 1); 2722 2723 __kmp_release_bootstrap_lock(&thread_data->td.td_deque_lock); 2724 2725 KA_TRACE(10, ("__kmp_remove_my_task(exit #4): T#%d task %p removed: " 2726 "ntasks=%d head=%u tail=%u\n", 2727 gtid, taskdata, thread_data->td.td_deque_ntasks, 2728 thread_data->td.td_deque_head, thread_data->td.td_deque_tail)); 2729 2730 task = KMP_TASKDATA_TO_TASK(taskdata); 2731 return task; 2732 } 2733 2734 // __kmp_steal_task: remove a task from another thread's deque 2735 // Assume that calling thread has already checked existence of 2736 // task_team thread_data before calling this routine. 2737 static kmp_task_t *__kmp_steal_task(kmp_info_t *victim_thr, kmp_int32 gtid, 2738 kmp_task_team_t *task_team, 2739 std::atomic<kmp_int32> *unfinished_threads, 2740 int *thread_finished, 2741 kmp_int32 is_constrained) { 2742 kmp_task_t *task; 2743 kmp_taskdata_t *taskdata; 2744 kmp_taskdata_t *current; 2745 kmp_thread_data_t *victim_td, *threads_data; 2746 kmp_int32 target; 2747 kmp_int32 victim_tid; 2748 2749 KMP_DEBUG_ASSERT(__kmp_tasking_mode != tskm_immediate_exec); 2750 2751 threads_data = task_team->tt.tt_threads_data; 2752 KMP_DEBUG_ASSERT(threads_data != NULL); // Caller should check this condition 2753 2754 victim_tid = victim_thr->th.th_info.ds.ds_tid; 2755 victim_td = &threads_data[victim_tid]; 2756 2757 KA_TRACE(10, ("__kmp_steal_task(enter): T#%d try to steal from T#%d: " 2758 "task_team=%p ntasks=%d head=%u tail=%u\n", 2759 gtid, __kmp_gtid_from_thread(victim_thr), task_team, 2760 victim_td->td.td_deque_ntasks, victim_td->td.td_deque_head, 2761 victim_td->td.td_deque_tail)); 2762 2763 if (TCR_4(victim_td->td.td_deque_ntasks) == 0) { 2764 KA_TRACE(10, ("__kmp_steal_task(exit #1): T#%d could not steal from T#%d: " 2765 "task_team=%p ntasks=%d head=%u tail=%u\n", 2766 gtid, __kmp_gtid_from_thread(victim_thr), task_team, 2767 victim_td->td.td_deque_ntasks, victim_td->td.td_deque_head, 2768 victim_td->td.td_deque_tail)); 2769 return NULL; 2770 } 2771 2772 __kmp_acquire_bootstrap_lock(&victim_td->td.td_deque_lock); 2773 2774 int ntasks = TCR_4(victim_td->td.td_deque_ntasks); 2775 // Check again after we acquire the lock 2776 if (ntasks == 0) { 2777 __kmp_release_bootstrap_lock(&victim_td->td.td_deque_lock); 2778 KA_TRACE(10, ("__kmp_steal_task(exit #2): T#%d could not steal from T#%d: " 2779 "task_team=%p ntasks=%d head=%u tail=%u\n", 2780 gtid, __kmp_gtid_from_thread(victim_thr), task_team, ntasks, 2781 victim_td->td.td_deque_head, victim_td->td.td_deque_tail)); 2782 return NULL; 2783 } 2784 2785 KMP_DEBUG_ASSERT(victim_td->td.td_deque != NULL); 2786 current = __kmp_threads[gtid]->th.th_current_task; 2787 taskdata = victim_td->td.td_deque[victim_td->td.td_deque_head]; 2788 if (__kmp_task_is_allowed(gtid, is_constrained, taskdata, current)) { 2789 // Bump head pointer and Wrap. 2790 victim_td->td.td_deque_head = 2791 (victim_td->td.td_deque_head + 1) & TASK_DEQUE_MASK(victim_td->td); 2792 } else { 2793 if (!task_team->tt.tt_untied_task_encountered) { 2794 // The TSC does not allow to steal victim task 2795 __kmp_release_bootstrap_lock(&victim_td->td.td_deque_lock); 2796 KA_TRACE(10, ("__kmp_steal_task(exit #3): T#%d could not steal from " 2797 "T#%d: task_team=%p ntasks=%d head=%u tail=%u\n", 2798 gtid, __kmp_gtid_from_thread(victim_thr), task_team, ntasks, 2799 victim_td->td.td_deque_head, victim_td->td.td_deque_tail)); 2800 return NULL; 2801 } 2802 int i; 2803 // walk through victim's deque trying to steal any task 2804 target = victim_td->td.td_deque_head; 2805 taskdata = NULL; 2806 for (i = 1; i < ntasks; ++i) { 2807 target = (target + 1) & TASK_DEQUE_MASK(victim_td->td); 2808 taskdata = victim_td->td.td_deque[target]; 2809 if (__kmp_task_is_allowed(gtid, is_constrained, taskdata, current)) { 2810 break; // found victim task 2811 } else { 2812 taskdata = NULL; 2813 } 2814 } 2815 if (taskdata == NULL) { 2816 // No appropriate candidate to steal found 2817 __kmp_release_bootstrap_lock(&victim_td->td.td_deque_lock); 2818 KA_TRACE(10, ("__kmp_steal_task(exit #4): T#%d could not steal from " 2819 "T#%d: task_team=%p ntasks=%d head=%u tail=%u\n", 2820 gtid, __kmp_gtid_from_thread(victim_thr), task_team, ntasks, 2821 victim_td->td.td_deque_head, victim_td->td.td_deque_tail)); 2822 return NULL; 2823 } 2824 int prev = target; 2825 for (i = i + 1; i < ntasks; ++i) { 2826 // shift remaining tasks in the deque left by 1 2827 target = (target + 1) & TASK_DEQUE_MASK(victim_td->td); 2828 victim_td->td.td_deque[prev] = victim_td->td.td_deque[target]; 2829 prev = target; 2830 } 2831 KMP_DEBUG_ASSERT( 2832 victim_td->td.td_deque_tail == 2833 (kmp_uint32)((target + 1) & TASK_DEQUE_MASK(victim_td->td))); 2834 victim_td->td.td_deque_tail = target; // tail -= 1 (wrapped)) 2835 } 2836 if (*thread_finished) { 2837 // We need to un-mark this victim as a finished victim. This must be done 2838 // before releasing the lock, or else other threads (starting with the 2839 // master victim) might be prematurely released from the barrier!!! 2840 kmp_int32 count; 2841 2842 count = KMP_ATOMIC_INC(unfinished_threads); 2843 2844 KA_TRACE( 2845 20, 2846 ("__kmp_steal_task: T#%d inc unfinished_threads to %d: task_team=%p\n", 2847 gtid, count + 1, task_team)); 2848 2849 *thread_finished = FALSE; 2850 } 2851 TCW_4(victim_td->td.td_deque_ntasks, ntasks - 1); 2852 2853 __kmp_release_bootstrap_lock(&victim_td->td.td_deque_lock); 2854 2855 KMP_COUNT_BLOCK(TASK_stolen); 2856 KA_TRACE(10, 2857 ("__kmp_steal_task(exit #5): T#%d stole task %p from T#%d: " 2858 "task_team=%p ntasks=%d head=%u tail=%u\n", 2859 gtid, taskdata, __kmp_gtid_from_thread(victim_thr), task_team, 2860 ntasks, victim_td->td.td_deque_head, victim_td->td.td_deque_tail)); 2861 2862 task = KMP_TASKDATA_TO_TASK(taskdata); 2863 return task; 2864 } 2865 2866 // __kmp_execute_tasks_template: Choose and execute tasks until either the 2867 // condition is statisfied (return true) or there are none left (return false). 2868 // 2869 // final_spin is TRUE if this is the spin at the release barrier. 2870 // thread_finished indicates whether the thread is finished executing all 2871 // the tasks it has on its deque, and is at the release barrier. 2872 // spinner is the location on which to spin. 2873 // spinner == NULL means only execute a single task and return. 2874 // checker is the value to check to terminate the spin. 2875 template <class C> 2876 static inline int __kmp_execute_tasks_template( 2877 kmp_info_t *thread, kmp_int32 gtid, C *flag, int final_spin, 2878 int *thread_finished USE_ITT_BUILD_ARG(void *itt_sync_obj), 2879 kmp_int32 is_constrained) { 2880 kmp_task_team_t *task_team = thread->th.th_task_team; 2881 kmp_thread_data_t *threads_data; 2882 kmp_task_t *task; 2883 kmp_info_t *other_thread; 2884 kmp_taskdata_t *current_task = thread->th.th_current_task; 2885 std::atomic<kmp_int32> *unfinished_threads; 2886 kmp_int32 nthreads, victim_tid = -2, use_own_tasks = 1, new_victim = 0, 2887 tid = thread->th.th_info.ds.ds_tid; 2888 2889 KMP_DEBUG_ASSERT(__kmp_tasking_mode != tskm_immediate_exec); 2890 KMP_DEBUG_ASSERT(thread == __kmp_threads[gtid]); 2891 2892 if (task_team == NULL || current_task == NULL) 2893 return FALSE; 2894 2895 KA_TRACE(15, ("__kmp_execute_tasks_template(enter): T#%d final_spin=%d " 2896 "*thread_finished=%d\n", 2897 gtid, final_spin, *thread_finished)); 2898 2899 thread->th.th_reap_state = KMP_NOT_SAFE_TO_REAP; 2900 threads_data = (kmp_thread_data_t *)TCR_PTR(task_team->tt.tt_threads_data); 2901 2902 KMP_DEBUG_ASSERT(threads_data != NULL); 2903 2904 nthreads = task_team->tt.tt_nproc; 2905 unfinished_threads = &(task_team->tt.tt_unfinished_threads); 2906 KMP_DEBUG_ASSERT(nthreads > 1 || task_team->tt.tt_found_proxy_tasks || 2907 task_team->tt.tt_hidden_helper_task_encountered); 2908 KMP_DEBUG_ASSERT(*unfinished_threads >= 0); 2909 2910 while (1) { // Outer loop keeps trying to find tasks in case of single thread 2911 // getting tasks from target constructs 2912 while (1) { // Inner loop to find a task and execute it 2913 task = NULL; 2914 if (use_own_tasks) { // check on own queue first 2915 task = __kmp_remove_my_task(thread, gtid, task_team, is_constrained); 2916 } 2917 if ((task == NULL) && (nthreads > 1)) { // Steal a task 2918 int asleep = 1; 2919 use_own_tasks = 0; 2920 // Try to steal from the last place I stole from successfully. 2921 if (victim_tid == -2) { // haven't stolen anything yet 2922 victim_tid = threads_data[tid].td.td_deque_last_stolen; 2923 if (victim_tid != 2924 -1) // if we have a last stolen from victim, get the thread 2925 other_thread = threads_data[victim_tid].td.td_thr; 2926 } 2927 if (victim_tid != -1) { // found last victim 2928 asleep = 0; 2929 } else if (!new_victim) { // no recent steals and we haven't already 2930 // used a new victim; select a random thread 2931 do { // Find a different thread to steal work from. 2932 // Pick a random thread. Initial plan was to cycle through all the 2933 // threads, and only return if we tried to steal from every thread, 2934 // and failed. Arch says that's not such a great idea. 2935 victim_tid = __kmp_get_random(thread) % (nthreads - 1); 2936 if (victim_tid >= tid) { 2937 ++victim_tid; // Adjusts random distribution to exclude self 2938 } 2939 // Found a potential victim 2940 other_thread = threads_data[victim_tid].td.td_thr; 2941 // There is a slight chance that __kmp_enable_tasking() did not wake 2942 // up all threads waiting at the barrier. If victim is sleeping, 2943 // then wake it up. Since we were going to pay the cache miss 2944 // penalty for referencing another thread's kmp_info_t struct 2945 // anyway, 2946 // the check shouldn't cost too much performance at this point. In 2947 // extra barrier mode, tasks do not sleep at the separate tasking 2948 // barrier, so this isn't a problem. 2949 asleep = 0; 2950 if ((__kmp_tasking_mode == tskm_task_teams) && 2951 (__kmp_dflt_blocktime != KMP_MAX_BLOCKTIME) && 2952 (TCR_PTR(CCAST(void *, other_thread->th.th_sleep_loc)) != 2953 NULL)) { 2954 asleep = 1; 2955 __kmp_null_resume_wrapper(__kmp_gtid_from_thread(other_thread), 2956 other_thread->th.th_sleep_loc); 2957 // A sleeping thread should not have any tasks on it's queue. 2958 // There is a slight possibility that it resumes, steals a task 2959 // from another thread, which spawns more tasks, all in the time 2960 // that it takes this thread to check => don't write an assertion 2961 // that the victim's queue is empty. Try stealing from a 2962 // different thread. 2963 } 2964 } while (asleep); 2965 } 2966 2967 if (!asleep) { 2968 // We have a victim to try to steal from 2969 task = __kmp_steal_task(other_thread, gtid, task_team, 2970 unfinished_threads, thread_finished, 2971 is_constrained); 2972 } 2973 if (task != NULL) { // set last stolen to victim 2974 if (threads_data[tid].td.td_deque_last_stolen != victim_tid) { 2975 threads_data[tid].td.td_deque_last_stolen = victim_tid; 2976 // The pre-refactored code did not try more than 1 successful new 2977 // vicitm, unless the last one generated more local tasks; 2978 // new_victim keeps track of this 2979 new_victim = 1; 2980 } 2981 } else { // No tasks found; unset last_stolen 2982 KMP_CHECK_UPDATE(threads_data[tid].td.td_deque_last_stolen, -1); 2983 victim_tid = -2; // no successful victim found 2984 } 2985 } 2986 2987 if (task == NULL) 2988 break; // break out of tasking loop 2989 2990 // Found a task; execute it 2991 #if USE_ITT_BUILD && USE_ITT_NOTIFY 2992 if (__itt_sync_create_ptr || KMP_ITT_DEBUG) { 2993 if (itt_sync_obj == NULL) { // we are at fork barrier where we could not 2994 // get the object reliably 2995 itt_sync_obj = __kmp_itt_barrier_object(gtid, bs_forkjoin_barrier); 2996 } 2997 __kmp_itt_task_starting(itt_sync_obj); 2998 } 2999 #endif /* USE_ITT_BUILD && USE_ITT_NOTIFY */ 3000 __kmp_invoke_task(gtid, task, current_task); 3001 #if USE_ITT_BUILD 3002 if (itt_sync_obj != NULL) 3003 __kmp_itt_task_finished(itt_sync_obj); 3004 #endif /* USE_ITT_BUILD */ 3005 // If this thread is only partway through the barrier and the condition is 3006 // met, then return now, so that the barrier gather/release pattern can 3007 // proceed. If this thread is in the last spin loop in the barrier, 3008 // waiting to be released, we know that the termination condition will not 3009 // be satisfied, so don't waste any cycles checking it. 3010 if (flag == NULL || (!final_spin && flag->done_check())) { 3011 KA_TRACE( 3012 15, 3013 ("__kmp_execute_tasks_template: T#%d spin condition satisfied\n", 3014 gtid)); 3015 return TRUE; 3016 } 3017 if (thread->th.th_task_team == NULL) { 3018 break; 3019 } 3020 KMP_YIELD(__kmp_library == library_throughput); // Yield before next task 3021 // If execution of a stolen task results in more tasks being placed on our 3022 // run queue, reset use_own_tasks 3023 if (!use_own_tasks && TCR_4(threads_data[tid].td.td_deque_ntasks) != 0) { 3024 KA_TRACE(20, ("__kmp_execute_tasks_template: T#%d stolen task spawned " 3025 "other tasks, restart\n", 3026 gtid)); 3027 use_own_tasks = 1; 3028 new_victim = 0; 3029 } 3030 } 3031 3032 // The task source has been exhausted. If in final spin loop of barrier, 3033 // check if termination condition is satisfied. The work queue may be empty 3034 // but there might be proxy tasks still executing. 3035 if (final_spin && 3036 KMP_ATOMIC_LD_ACQ(¤t_task->td_incomplete_child_tasks) == 0) { 3037 // First, decrement the #unfinished threads, if that has not already been 3038 // done. This decrement might be to the spin location, and result in the 3039 // termination condition being satisfied. 3040 if (!*thread_finished) { 3041 kmp_int32 count; 3042 3043 count = KMP_ATOMIC_DEC(unfinished_threads) - 1; 3044 KA_TRACE(20, ("__kmp_execute_tasks_template: T#%d dec " 3045 "unfinished_threads to %d task_team=%p\n", 3046 gtid, count, task_team)); 3047 *thread_finished = TRUE; 3048 } 3049 3050 // It is now unsafe to reference thread->th.th_team !!! 3051 // Decrementing task_team->tt.tt_unfinished_threads can allow the master 3052 // thread to pass through the barrier, where it might reset each thread's 3053 // th.th_team field for the next parallel region. If we can steal more 3054 // work, we know that this has not happened yet. 3055 if (flag != NULL && flag->done_check()) { 3056 KA_TRACE( 3057 15, 3058 ("__kmp_execute_tasks_template: T#%d spin condition satisfied\n", 3059 gtid)); 3060 return TRUE; 3061 } 3062 } 3063 3064 // If this thread's task team is NULL, master has recognized that there are 3065 // no more tasks; bail out 3066 if (thread->th.th_task_team == NULL) { 3067 KA_TRACE(15, 3068 ("__kmp_execute_tasks_template: T#%d no more tasks\n", gtid)); 3069 return FALSE; 3070 } 3071 3072 // We could be getting tasks from target constructs; if this is the only 3073 // thread, keep trying to execute tasks from own queue 3074 if (nthreads == 1 && 3075 KMP_ATOMIC_LD_ACQ(¤t_task->td_incomplete_child_tasks)) 3076 use_own_tasks = 1; 3077 else { 3078 KA_TRACE(15, 3079 ("__kmp_execute_tasks_template: T#%d can't find work\n", gtid)); 3080 return FALSE; 3081 } 3082 } 3083 } 3084 3085 template <bool C, bool S> 3086 int __kmp_execute_tasks_32( 3087 kmp_info_t *thread, kmp_int32 gtid, kmp_flag_32<C, S> *flag, int final_spin, 3088 int *thread_finished USE_ITT_BUILD_ARG(void *itt_sync_obj), 3089 kmp_int32 is_constrained) { 3090 return __kmp_execute_tasks_template( 3091 thread, gtid, flag, final_spin, 3092 thread_finished USE_ITT_BUILD_ARG(itt_sync_obj), is_constrained); 3093 } 3094 3095 template <bool C, bool S> 3096 int __kmp_execute_tasks_64( 3097 kmp_info_t *thread, kmp_int32 gtid, kmp_flag_64<C, S> *flag, int final_spin, 3098 int *thread_finished USE_ITT_BUILD_ARG(void *itt_sync_obj), 3099 kmp_int32 is_constrained) { 3100 return __kmp_execute_tasks_template( 3101 thread, gtid, flag, final_spin, 3102 thread_finished USE_ITT_BUILD_ARG(itt_sync_obj), is_constrained); 3103 } 3104 3105 int __kmp_execute_tasks_oncore( 3106 kmp_info_t *thread, kmp_int32 gtid, kmp_flag_oncore *flag, int final_spin, 3107 int *thread_finished USE_ITT_BUILD_ARG(void *itt_sync_obj), 3108 kmp_int32 is_constrained) { 3109 return __kmp_execute_tasks_template( 3110 thread, gtid, flag, final_spin, 3111 thread_finished USE_ITT_BUILD_ARG(itt_sync_obj), is_constrained); 3112 } 3113 3114 template int 3115 __kmp_execute_tasks_32<false, false>(kmp_info_t *, kmp_int32, 3116 kmp_flag_32<false, false> *, int, 3117 int *USE_ITT_BUILD_ARG(void *), kmp_int32); 3118 3119 template int __kmp_execute_tasks_64<false, true>(kmp_info_t *, kmp_int32, 3120 kmp_flag_64<false, true> *, 3121 int, 3122 int *USE_ITT_BUILD_ARG(void *), 3123 kmp_int32); 3124 3125 template int __kmp_execute_tasks_64<true, false>(kmp_info_t *, kmp_int32, 3126 kmp_flag_64<true, false> *, 3127 int, 3128 int *USE_ITT_BUILD_ARG(void *), 3129 kmp_int32); 3130 3131 // __kmp_enable_tasking: Allocate task team and resume threads sleeping at the 3132 // next barrier so they can assist in executing enqueued tasks. 3133 // First thread in allocates the task team atomically. 3134 static void __kmp_enable_tasking(kmp_task_team_t *task_team, 3135 kmp_info_t *this_thr) { 3136 kmp_thread_data_t *threads_data; 3137 int nthreads, i, is_init_thread; 3138 3139 KA_TRACE(10, ("__kmp_enable_tasking(enter): T#%d\n", 3140 __kmp_gtid_from_thread(this_thr))); 3141 3142 KMP_DEBUG_ASSERT(task_team != NULL); 3143 KMP_DEBUG_ASSERT(this_thr->th.th_team != NULL); 3144 3145 nthreads = task_team->tt.tt_nproc; 3146 KMP_DEBUG_ASSERT(nthreads > 0); 3147 KMP_DEBUG_ASSERT(nthreads == this_thr->th.th_team->t.t_nproc); 3148 3149 // Allocate or increase the size of threads_data if necessary 3150 is_init_thread = __kmp_realloc_task_threads_data(this_thr, task_team); 3151 3152 if (!is_init_thread) { 3153 // Some other thread already set up the array. 3154 KA_TRACE( 3155 20, 3156 ("__kmp_enable_tasking(exit): T#%d: threads array already set up.\n", 3157 __kmp_gtid_from_thread(this_thr))); 3158 return; 3159 } 3160 threads_data = (kmp_thread_data_t *)TCR_PTR(task_team->tt.tt_threads_data); 3161 KMP_DEBUG_ASSERT(threads_data != NULL); 3162 3163 if (__kmp_tasking_mode == tskm_task_teams && 3164 (__kmp_dflt_blocktime != KMP_MAX_BLOCKTIME)) { 3165 // Release any threads sleeping at the barrier, so that they can steal 3166 // tasks and execute them. In extra barrier mode, tasks do not sleep 3167 // at the separate tasking barrier, so this isn't a problem. 3168 for (i = 0; i < nthreads; i++) { 3169 volatile void *sleep_loc; 3170 kmp_info_t *thread = threads_data[i].td.td_thr; 3171 3172 if (i == this_thr->th.th_info.ds.ds_tid) { 3173 continue; 3174 } 3175 // Since we haven't locked the thread's suspend mutex lock at this 3176 // point, there is a small window where a thread might be putting 3177 // itself to sleep, but hasn't set the th_sleep_loc field yet. 3178 // To work around this, __kmp_execute_tasks_template() periodically checks 3179 // see if other threads are sleeping (using the same random mechanism that 3180 // is used for task stealing) and awakens them if they are. 3181 if ((sleep_loc = TCR_PTR(CCAST(void *, thread->th.th_sleep_loc))) != 3182 NULL) { 3183 KF_TRACE(50, ("__kmp_enable_tasking: T#%d waking up thread T#%d\n", 3184 __kmp_gtid_from_thread(this_thr), 3185 __kmp_gtid_from_thread(thread))); 3186 __kmp_null_resume_wrapper(__kmp_gtid_from_thread(thread), sleep_loc); 3187 } else { 3188 KF_TRACE(50, ("__kmp_enable_tasking: T#%d don't wake up thread T#%d\n", 3189 __kmp_gtid_from_thread(this_thr), 3190 __kmp_gtid_from_thread(thread))); 3191 } 3192 } 3193 } 3194 3195 KA_TRACE(10, ("__kmp_enable_tasking(exit): T#%d\n", 3196 __kmp_gtid_from_thread(this_thr))); 3197 } 3198 3199 /* // TODO: Check the comment consistency 3200 * Utility routines for "task teams". A task team (kmp_task_t) is kind of 3201 * like a shadow of the kmp_team_t data struct, with a different lifetime. 3202 * After a child * thread checks into a barrier and calls __kmp_release() from 3203 * the particular variant of __kmp_<barrier_kind>_barrier_gather(), it can no 3204 * longer assume that the kmp_team_t structure is intact (at any moment, the 3205 * master thread may exit the barrier code and free the team data structure, 3206 * and return the threads to the thread pool). 3207 * 3208 * This does not work with the tasking code, as the thread is still 3209 * expected to participate in the execution of any tasks that may have been 3210 * spawned my a member of the team, and the thread still needs access to all 3211 * to each thread in the team, so that it can steal work from it. 3212 * 3213 * Enter the existence of the kmp_task_team_t struct. It employs a reference 3214 * counting mechanism, and is allocated by the master thread before calling 3215 * __kmp_<barrier_kind>_release, and then is release by the last thread to 3216 * exit __kmp_<barrier_kind>_release at the next barrier. I.e. the lifetimes 3217 * of the kmp_task_team_t structs for consecutive barriers can overlap 3218 * (and will, unless the master thread is the last thread to exit the barrier 3219 * release phase, which is not typical). The existence of such a struct is 3220 * useful outside the context of tasking. 3221 * 3222 * We currently use the existence of the threads array as an indicator that 3223 * tasks were spawned since the last barrier. If the structure is to be 3224 * useful outside the context of tasking, then this will have to change, but 3225 * not setting the field minimizes the performance impact of tasking on 3226 * barriers, when no explicit tasks were spawned (pushed, actually). 3227 */ 3228 3229 static kmp_task_team_t *__kmp_free_task_teams = 3230 NULL; // Free list for task_team data structures 3231 // Lock for task team data structures 3232 kmp_bootstrap_lock_t __kmp_task_team_lock = 3233 KMP_BOOTSTRAP_LOCK_INITIALIZER(__kmp_task_team_lock); 3234 3235 // __kmp_alloc_task_deque: 3236 // Allocates a task deque for a particular thread, and initialize the necessary 3237 // data structures relating to the deque. This only happens once per thread 3238 // per task team since task teams are recycled. No lock is needed during 3239 // allocation since each thread allocates its own deque. 3240 static void __kmp_alloc_task_deque(kmp_info_t *thread, 3241 kmp_thread_data_t *thread_data) { 3242 __kmp_init_bootstrap_lock(&thread_data->td.td_deque_lock); 3243 KMP_DEBUG_ASSERT(thread_data->td.td_deque == NULL); 3244 3245 // Initialize last stolen task field to "none" 3246 thread_data->td.td_deque_last_stolen = -1; 3247 3248 KMP_DEBUG_ASSERT(TCR_4(thread_data->td.td_deque_ntasks) == 0); 3249 KMP_DEBUG_ASSERT(thread_data->td.td_deque_head == 0); 3250 KMP_DEBUG_ASSERT(thread_data->td.td_deque_tail == 0); 3251 3252 KE_TRACE( 3253 10, 3254 ("__kmp_alloc_task_deque: T#%d allocating deque[%d] for thread_data %p\n", 3255 __kmp_gtid_from_thread(thread), INITIAL_TASK_DEQUE_SIZE, thread_data)); 3256 // Allocate space for task deque, and zero the deque 3257 // Cannot use __kmp_thread_calloc() because threads not around for 3258 // kmp_reap_task_team( ). 3259 thread_data->td.td_deque = (kmp_taskdata_t **)__kmp_allocate( 3260 INITIAL_TASK_DEQUE_SIZE * sizeof(kmp_taskdata_t *)); 3261 thread_data->td.td_deque_size = INITIAL_TASK_DEQUE_SIZE; 3262 } 3263 3264 // __kmp_free_task_deque: 3265 // Deallocates a task deque for a particular thread. Happens at library 3266 // deallocation so don't need to reset all thread data fields. 3267 static void __kmp_free_task_deque(kmp_thread_data_t *thread_data) { 3268 if (thread_data->td.td_deque != NULL) { 3269 __kmp_acquire_bootstrap_lock(&thread_data->td.td_deque_lock); 3270 TCW_4(thread_data->td.td_deque_ntasks, 0); 3271 __kmp_free(thread_data->td.td_deque); 3272 thread_data->td.td_deque = NULL; 3273 __kmp_release_bootstrap_lock(&thread_data->td.td_deque_lock); 3274 } 3275 3276 #ifdef BUILD_TIED_TASK_STACK 3277 // GEH: Figure out what to do here for td_susp_tied_tasks 3278 if (thread_data->td.td_susp_tied_tasks.ts_entries != TASK_STACK_EMPTY) { 3279 __kmp_free_task_stack(__kmp_thread_from_gtid(gtid), thread_data); 3280 } 3281 #endif // BUILD_TIED_TASK_STACK 3282 } 3283 3284 // __kmp_realloc_task_threads_data: 3285 // Allocates a threads_data array for a task team, either by allocating an 3286 // initial array or enlarging an existing array. Only the first thread to get 3287 // the lock allocs or enlarges the array and re-initializes the array elements. 3288 // That thread returns "TRUE", the rest return "FALSE". 3289 // Assumes that the new array size is given by task_team -> tt.tt_nproc. 3290 // The current size is given by task_team -> tt.tt_max_threads. 3291 static int __kmp_realloc_task_threads_data(kmp_info_t *thread, 3292 kmp_task_team_t *task_team) { 3293 kmp_thread_data_t **threads_data_p; 3294 kmp_int32 nthreads, maxthreads; 3295 int is_init_thread = FALSE; 3296 3297 if (TCR_4(task_team->tt.tt_found_tasks)) { 3298 // Already reallocated and initialized. 3299 return FALSE; 3300 } 3301 3302 threads_data_p = &task_team->tt.tt_threads_data; 3303 nthreads = task_team->tt.tt_nproc; 3304 maxthreads = task_team->tt.tt_max_threads; 3305 3306 // All threads must lock when they encounter the first task of the implicit 3307 // task region to make sure threads_data fields are (re)initialized before 3308 // used. 3309 __kmp_acquire_bootstrap_lock(&task_team->tt.tt_threads_lock); 3310 3311 if (!TCR_4(task_team->tt.tt_found_tasks)) { 3312 // first thread to enable tasking 3313 kmp_team_t *team = thread->th.th_team; 3314 int i; 3315 3316 is_init_thread = TRUE; 3317 if (maxthreads < nthreads) { 3318 3319 if (*threads_data_p != NULL) { 3320 kmp_thread_data_t *old_data = *threads_data_p; 3321 kmp_thread_data_t *new_data = NULL; 3322 3323 KE_TRACE( 3324 10, 3325 ("__kmp_realloc_task_threads_data: T#%d reallocating " 3326 "threads data for task_team %p, new_size = %d, old_size = %d\n", 3327 __kmp_gtid_from_thread(thread), task_team, nthreads, maxthreads)); 3328 // Reallocate threads_data to have more elements than current array 3329 // Cannot use __kmp_thread_realloc() because threads not around for 3330 // kmp_reap_task_team( ). Note all new array entries are initialized 3331 // to zero by __kmp_allocate(). 3332 new_data = (kmp_thread_data_t *)__kmp_allocate( 3333 nthreads * sizeof(kmp_thread_data_t)); 3334 // copy old data to new data 3335 KMP_MEMCPY_S((void *)new_data, nthreads * sizeof(kmp_thread_data_t), 3336 (void *)old_data, maxthreads * sizeof(kmp_thread_data_t)); 3337 3338 #ifdef BUILD_TIED_TASK_STACK 3339 // GEH: Figure out if this is the right thing to do 3340 for (i = maxthreads; i < nthreads; i++) { 3341 kmp_thread_data_t *thread_data = &(*threads_data_p)[i]; 3342 __kmp_init_task_stack(__kmp_gtid_from_thread(thread), thread_data); 3343 } 3344 #endif // BUILD_TIED_TASK_STACK 3345 // Install the new data and free the old data 3346 (*threads_data_p) = new_data; 3347 __kmp_free(old_data); 3348 } else { 3349 KE_TRACE(10, ("__kmp_realloc_task_threads_data: T#%d allocating " 3350 "threads data for task_team %p, size = %d\n", 3351 __kmp_gtid_from_thread(thread), task_team, nthreads)); 3352 // Make the initial allocate for threads_data array, and zero entries 3353 // Cannot use __kmp_thread_calloc() because threads not around for 3354 // kmp_reap_task_team( ). 3355 ANNOTATE_IGNORE_WRITES_BEGIN(); 3356 *threads_data_p = (kmp_thread_data_t *)__kmp_allocate( 3357 nthreads * sizeof(kmp_thread_data_t)); 3358 ANNOTATE_IGNORE_WRITES_END(); 3359 #ifdef BUILD_TIED_TASK_STACK 3360 // GEH: Figure out if this is the right thing to do 3361 for (i = 0; i < nthreads; i++) { 3362 kmp_thread_data_t *thread_data = &(*threads_data_p)[i]; 3363 __kmp_init_task_stack(__kmp_gtid_from_thread(thread), thread_data); 3364 } 3365 #endif // BUILD_TIED_TASK_STACK 3366 } 3367 task_team->tt.tt_max_threads = nthreads; 3368 } else { 3369 // If array has (more than) enough elements, go ahead and use it 3370 KMP_DEBUG_ASSERT(*threads_data_p != NULL); 3371 } 3372 3373 // initialize threads_data pointers back to thread_info structures 3374 for (i = 0; i < nthreads; i++) { 3375 kmp_thread_data_t *thread_data = &(*threads_data_p)[i]; 3376 thread_data->td.td_thr = team->t.t_threads[i]; 3377 3378 if (thread_data->td.td_deque_last_stolen >= nthreads) { 3379 // The last stolen field survives across teams / barrier, and the number 3380 // of threads may have changed. It's possible (likely?) that a new 3381 // parallel region will exhibit the same behavior as previous region. 3382 thread_data->td.td_deque_last_stolen = -1; 3383 } 3384 } 3385 3386 KMP_MB(); 3387 TCW_SYNC_4(task_team->tt.tt_found_tasks, TRUE); 3388 } 3389 3390 __kmp_release_bootstrap_lock(&task_team->tt.tt_threads_lock); 3391 return is_init_thread; 3392 } 3393 3394 // __kmp_free_task_threads_data: 3395 // Deallocates a threads_data array for a task team, including any attached 3396 // tasking deques. Only occurs at library shutdown. 3397 static void __kmp_free_task_threads_data(kmp_task_team_t *task_team) { 3398 __kmp_acquire_bootstrap_lock(&task_team->tt.tt_threads_lock); 3399 if (task_team->tt.tt_threads_data != NULL) { 3400 int i; 3401 for (i = 0; i < task_team->tt.tt_max_threads; i++) { 3402 __kmp_free_task_deque(&task_team->tt.tt_threads_data[i]); 3403 } 3404 __kmp_free(task_team->tt.tt_threads_data); 3405 task_team->tt.tt_threads_data = NULL; 3406 } 3407 __kmp_release_bootstrap_lock(&task_team->tt.tt_threads_lock); 3408 } 3409 3410 // __kmp_allocate_task_team: 3411 // Allocates a task team associated with a specific team, taking it from 3412 // the global task team free list if possible. Also initializes data 3413 // structures. 3414 static kmp_task_team_t *__kmp_allocate_task_team(kmp_info_t *thread, 3415 kmp_team_t *team) { 3416 kmp_task_team_t *task_team = NULL; 3417 int nthreads; 3418 3419 KA_TRACE(20, ("__kmp_allocate_task_team: T#%d entering; team = %p\n", 3420 (thread ? __kmp_gtid_from_thread(thread) : -1), team)); 3421 3422 if (TCR_PTR(__kmp_free_task_teams) != NULL) { 3423 // Take a task team from the task team pool 3424 __kmp_acquire_bootstrap_lock(&__kmp_task_team_lock); 3425 if (__kmp_free_task_teams != NULL) { 3426 task_team = __kmp_free_task_teams; 3427 TCW_PTR(__kmp_free_task_teams, task_team->tt.tt_next); 3428 task_team->tt.tt_next = NULL; 3429 } 3430 __kmp_release_bootstrap_lock(&__kmp_task_team_lock); 3431 } 3432 3433 if (task_team == NULL) { 3434 KE_TRACE(10, ("__kmp_allocate_task_team: T#%d allocating " 3435 "task team for team %p\n", 3436 __kmp_gtid_from_thread(thread), team)); 3437 // Allocate a new task team if one is not available. Cannot use 3438 // __kmp_thread_malloc because threads not around for kmp_reap_task_team. 3439 task_team = (kmp_task_team_t *)__kmp_allocate(sizeof(kmp_task_team_t)); 3440 __kmp_init_bootstrap_lock(&task_team->tt.tt_threads_lock); 3441 #if USE_ITT_BUILD && USE_ITT_NOTIFY && KMP_DEBUG 3442 // suppress race conditions detection on synchronization flags in debug mode 3443 // this helps to analyze library internals eliminating false positives 3444 __itt_suppress_mark_range( 3445 __itt_suppress_range, __itt_suppress_threading_errors, 3446 &task_team->tt.tt_found_tasks, sizeof(task_team->tt.tt_found_tasks)); 3447 __itt_suppress_mark_range(__itt_suppress_range, 3448 __itt_suppress_threading_errors, 3449 CCAST(kmp_uint32 *, &task_team->tt.tt_active), 3450 sizeof(task_team->tt.tt_active)); 3451 #endif /* USE_ITT_BUILD && USE_ITT_NOTIFY && KMP_DEBUG */ 3452 // Note: __kmp_allocate zeroes returned memory, othewise we would need: 3453 // task_team->tt.tt_threads_data = NULL; 3454 // task_team->tt.tt_max_threads = 0; 3455 // task_team->tt.tt_next = NULL; 3456 } 3457 3458 TCW_4(task_team->tt.tt_found_tasks, FALSE); 3459 TCW_4(task_team->tt.tt_found_proxy_tasks, FALSE); 3460 task_team->tt.tt_nproc = nthreads = team->t.t_nproc; 3461 3462 KMP_ATOMIC_ST_REL(&task_team->tt.tt_unfinished_threads, nthreads); 3463 TCW_4(task_team->tt.tt_hidden_helper_task_encountered, FALSE); 3464 TCW_4(task_team->tt.tt_active, TRUE); 3465 3466 KA_TRACE(20, ("__kmp_allocate_task_team: T#%d exiting; task_team = %p " 3467 "unfinished_threads init'd to %d\n", 3468 (thread ? __kmp_gtid_from_thread(thread) : -1), task_team, 3469 KMP_ATOMIC_LD_RLX(&task_team->tt.tt_unfinished_threads))); 3470 return task_team; 3471 } 3472 3473 // __kmp_free_task_team: 3474 // Frees the task team associated with a specific thread, and adds it 3475 // to the global task team free list. 3476 void __kmp_free_task_team(kmp_info_t *thread, kmp_task_team_t *task_team) { 3477 KA_TRACE(20, ("__kmp_free_task_team: T#%d task_team = %p\n", 3478 thread ? __kmp_gtid_from_thread(thread) : -1, task_team)); 3479 3480 // Put task team back on free list 3481 __kmp_acquire_bootstrap_lock(&__kmp_task_team_lock); 3482 3483 KMP_DEBUG_ASSERT(task_team->tt.tt_next == NULL); 3484 task_team->tt.tt_next = __kmp_free_task_teams; 3485 TCW_PTR(__kmp_free_task_teams, task_team); 3486 3487 __kmp_release_bootstrap_lock(&__kmp_task_team_lock); 3488 } 3489 3490 // __kmp_reap_task_teams: 3491 // Free all the task teams on the task team free list. 3492 // Should only be done during library shutdown. 3493 // Cannot do anything that needs a thread structure or gtid since they are 3494 // already gone. 3495 void __kmp_reap_task_teams(void) { 3496 kmp_task_team_t *task_team; 3497 3498 if (TCR_PTR(__kmp_free_task_teams) != NULL) { 3499 // Free all task_teams on the free list 3500 __kmp_acquire_bootstrap_lock(&__kmp_task_team_lock); 3501 while ((task_team = __kmp_free_task_teams) != NULL) { 3502 __kmp_free_task_teams = task_team->tt.tt_next; 3503 task_team->tt.tt_next = NULL; 3504 3505 // Free threads_data if necessary 3506 if (task_team->tt.tt_threads_data != NULL) { 3507 __kmp_free_task_threads_data(task_team); 3508 } 3509 __kmp_free(task_team); 3510 } 3511 __kmp_release_bootstrap_lock(&__kmp_task_team_lock); 3512 } 3513 } 3514 3515 // __kmp_wait_to_unref_task_teams: 3516 // Some threads could still be in the fork barrier release code, possibly 3517 // trying to steal tasks. Wait for each thread to unreference its task team. 3518 void __kmp_wait_to_unref_task_teams(void) { 3519 kmp_info_t *thread; 3520 kmp_uint32 spins; 3521 int done; 3522 3523 KMP_INIT_YIELD(spins); 3524 3525 for (;;) { 3526 done = TRUE; 3527 3528 // TODO: GEH - this may be is wrong because some sync would be necessary 3529 // in case threads are added to the pool during the traversal. Need to 3530 // verify that lock for thread pool is held when calling this routine. 3531 for (thread = CCAST(kmp_info_t *, __kmp_thread_pool); thread != NULL; 3532 thread = thread->th.th_next_pool) { 3533 #if KMP_OS_WINDOWS 3534 DWORD exit_val; 3535 #endif 3536 if (TCR_PTR(thread->th.th_task_team) == NULL) { 3537 KA_TRACE(10, ("__kmp_wait_to_unref_task_team: T#%d task_team == NULL\n", 3538 __kmp_gtid_from_thread(thread))); 3539 continue; 3540 } 3541 #if KMP_OS_WINDOWS 3542 // TODO: GEH - add this check for Linux* OS / OS X* as well? 3543 if (!__kmp_is_thread_alive(thread, &exit_val)) { 3544 thread->th.th_task_team = NULL; 3545 continue; 3546 } 3547 #endif 3548 3549 done = FALSE; // Because th_task_team pointer is not NULL for this thread 3550 3551 KA_TRACE(10, ("__kmp_wait_to_unref_task_team: Waiting for T#%d to " 3552 "unreference task_team\n", 3553 __kmp_gtid_from_thread(thread))); 3554 3555 if (__kmp_dflt_blocktime != KMP_MAX_BLOCKTIME) { 3556 volatile void *sleep_loc; 3557 // If the thread is sleeping, awaken it. 3558 if ((sleep_loc = TCR_PTR(CCAST(void *, thread->th.th_sleep_loc))) != 3559 NULL) { 3560 KA_TRACE( 3561 10, 3562 ("__kmp_wait_to_unref_task_team: T#%d waking up thread T#%d\n", 3563 __kmp_gtid_from_thread(thread), __kmp_gtid_from_thread(thread))); 3564 __kmp_null_resume_wrapper(__kmp_gtid_from_thread(thread), sleep_loc); 3565 } 3566 } 3567 } 3568 if (done) { 3569 break; 3570 } 3571 3572 // If oversubscribed or have waited a bit, yield. 3573 KMP_YIELD_OVERSUB_ELSE_SPIN(spins); 3574 } 3575 } 3576 3577 // __kmp_task_team_setup: Create a task_team for the current team, but use 3578 // an already created, unused one if it already exists. 3579 void __kmp_task_team_setup(kmp_info_t *this_thr, kmp_team_t *team, int always) { 3580 KMP_DEBUG_ASSERT(__kmp_tasking_mode != tskm_immediate_exec); 3581 3582 // If this task_team hasn't been created yet, allocate it. It will be used in 3583 // the region after the next. 3584 // If it exists, it is the current task team and shouldn't be touched yet as 3585 // it may still be in use. 3586 if (team->t.t_task_team[this_thr->th.th_task_state] == NULL && 3587 (always || team->t.t_nproc > 1)) { 3588 team->t.t_task_team[this_thr->th.th_task_state] = 3589 __kmp_allocate_task_team(this_thr, team); 3590 KA_TRACE(20, ("__kmp_task_team_setup: Master T#%d created new task_team %p " 3591 "for team %d at parity=%d\n", 3592 __kmp_gtid_from_thread(this_thr), 3593 team->t.t_task_team[this_thr->th.th_task_state], 3594 ((team != NULL) ? team->t.t_id : -1), 3595 this_thr->th.th_task_state)); 3596 } 3597 3598 // After threads exit the release, they will call sync, and then point to this 3599 // other task_team; make sure it is allocated and properly initialized. As 3600 // threads spin in the barrier release phase, they will continue to use the 3601 // previous task_team struct(above), until they receive the signal to stop 3602 // checking for tasks (they can't safely reference the kmp_team_t struct, 3603 // which could be reallocated by the master thread). No task teams are formed 3604 // for serialized teams. 3605 if (team->t.t_nproc > 1) { 3606 int other_team = 1 - this_thr->th.th_task_state; 3607 if (team->t.t_task_team[other_team] == NULL) { // setup other team as well 3608 team->t.t_task_team[other_team] = 3609 __kmp_allocate_task_team(this_thr, team); 3610 KA_TRACE(20, ("__kmp_task_team_setup: Master T#%d created second new " 3611 "task_team %p for team %d at parity=%d\n", 3612 __kmp_gtid_from_thread(this_thr), 3613 team->t.t_task_team[other_team], 3614 ((team != NULL) ? team->t.t_id : -1), other_team)); 3615 } else { // Leave the old task team struct in place for the upcoming region; 3616 // adjust as needed 3617 kmp_task_team_t *task_team = team->t.t_task_team[other_team]; 3618 if (!task_team->tt.tt_active || 3619 team->t.t_nproc != task_team->tt.tt_nproc) { 3620 TCW_4(task_team->tt.tt_nproc, team->t.t_nproc); 3621 TCW_4(task_team->tt.tt_found_tasks, FALSE); 3622 TCW_4(task_team->tt.tt_found_proxy_tasks, FALSE); 3623 KMP_ATOMIC_ST_REL(&task_team->tt.tt_unfinished_threads, 3624 team->t.t_nproc); 3625 TCW_4(task_team->tt.tt_active, TRUE); 3626 } 3627 // if team size has changed, the first thread to enable tasking will 3628 // realloc threads_data if necessary 3629 KA_TRACE(20, ("__kmp_task_team_setup: Master T#%d reset next task_team " 3630 "%p for team %d at parity=%d\n", 3631 __kmp_gtid_from_thread(this_thr), 3632 team->t.t_task_team[other_team], 3633 ((team != NULL) ? team->t.t_id : -1), other_team)); 3634 } 3635 } 3636 3637 // For regular thread, task enabling should be called when the task is going 3638 // to be pushed to a dequeue. However, for the hidden helper thread, we need 3639 // it ahead of time so that some operations can be performed without race 3640 // condition. 3641 if (this_thr == __kmp_hidden_helper_main_thread) { 3642 for (int i = 0; i < 2; ++i) { 3643 kmp_task_team_t *task_team = team->t.t_task_team[i]; 3644 if (KMP_TASKING_ENABLED(task_team)) { 3645 continue; 3646 } 3647 __kmp_enable_tasking(task_team, this_thr); 3648 for (int j = 0; j < task_team->tt.tt_nproc; ++j) { 3649 kmp_thread_data_t *thread_data = &task_team->tt.tt_threads_data[j]; 3650 if (thread_data->td.td_deque == NULL) { 3651 __kmp_alloc_task_deque(__kmp_hidden_helper_threads[j], thread_data); 3652 } 3653 } 3654 } 3655 } 3656 } 3657 3658 // __kmp_task_team_sync: Propagation of task team data from team to threads 3659 // which happens just after the release phase of a team barrier. This may be 3660 // called by any thread, but only for teams with # threads > 1. 3661 void __kmp_task_team_sync(kmp_info_t *this_thr, kmp_team_t *team) { 3662 KMP_DEBUG_ASSERT(__kmp_tasking_mode != tskm_immediate_exec); 3663 3664 // Toggle the th_task_state field, to switch which task_team this thread 3665 // refers to 3666 this_thr->th.th_task_state = (kmp_uint8)(1 - this_thr->th.th_task_state); 3667 3668 // It is now safe to propagate the task team pointer from the team struct to 3669 // the current thread. 3670 TCW_PTR(this_thr->th.th_task_team, 3671 team->t.t_task_team[this_thr->th.th_task_state]); 3672 KA_TRACE(20, 3673 ("__kmp_task_team_sync: Thread T#%d task team switched to task_team " 3674 "%p from Team #%d (parity=%d)\n", 3675 __kmp_gtid_from_thread(this_thr), this_thr->th.th_task_team, 3676 ((team != NULL) ? team->t.t_id : -1), this_thr->th.th_task_state)); 3677 } 3678 3679 // __kmp_task_team_wait: Master thread waits for outstanding tasks after the 3680 // barrier gather phase. Only called by master thread if #threads in team > 1 or 3681 // if proxy tasks were created. 3682 // 3683 // wait is a flag that defaults to 1 (see kmp.h), but waiting can be turned off 3684 // by passing in 0 optionally as the last argument. When wait is zero, master 3685 // thread does not wait for unfinished_threads to reach 0. 3686 void __kmp_task_team_wait( 3687 kmp_info_t *this_thr, 3688 kmp_team_t *team USE_ITT_BUILD_ARG(void *itt_sync_obj), int wait) { 3689 kmp_task_team_t *task_team = team->t.t_task_team[this_thr->th.th_task_state]; 3690 3691 KMP_DEBUG_ASSERT(__kmp_tasking_mode != tskm_immediate_exec); 3692 KMP_DEBUG_ASSERT(task_team == this_thr->th.th_task_team); 3693 3694 if ((task_team != NULL) && KMP_TASKING_ENABLED(task_team)) { 3695 if (wait) { 3696 KA_TRACE(20, ("__kmp_task_team_wait: Master T#%d waiting for all tasks " 3697 "(for unfinished_threads to reach 0) on task_team = %p\n", 3698 __kmp_gtid_from_thread(this_thr), task_team)); 3699 // Worker threads may have dropped through to release phase, but could 3700 // still be executing tasks. Wait here for tasks to complete. To avoid 3701 // memory contention, only master thread checks termination condition. 3702 kmp_flag_32<false, false> flag( 3703 RCAST(std::atomic<kmp_uint32> *, 3704 &task_team->tt.tt_unfinished_threads), 3705 0U); 3706 flag.wait(this_thr, TRUE USE_ITT_BUILD_ARG(itt_sync_obj)); 3707 } 3708 // Deactivate the old task team, so that the worker threads will stop 3709 // referencing it while spinning. 3710 KA_TRACE( 3711 20, 3712 ("__kmp_task_team_wait: Master T#%d deactivating task_team %p: " 3713 "setting active to false, setting local and team's pointer to NULL\n", 3714 __kmp_gtid_from_thread(this_thr), task_team)); 3715 KMP_DEBUG_ASSERT(task_team->tt.tt_nproc > 1 || 3716 task_team->tt.tt_found_proxy_tasks == TRUE); 3717 TCW_SYNC_4(task_team->tt.tt_found_proxy_tasks, FALSE); 3718 KMP_CHECK_UPDATE(task_team->tt.tt_untied_task_encountered, 0); 3719 TCW_SYNC_4(task_team->tt.tt_active, FALSE); 3720 KMP_MB(); 3721 3722 TCW_PTR(this_thr->th.th_task_team, NULL); 3723 } 3724 } 3725 3726 // __kmp_tasking_barrier: 3727 // This routine is called only when __kmp_tasking_mode == tskm_extra_barrier. 3728 // Internal function to execute all tasks prior to a regular barrier or a join 3729 // barrier. It is a full barrier itself, which unfortunately turns regular 3730 // barriers into double barriers and join barriers into 1 1/2 barriers. 3731 void __kmp_tasking_barrier(kmp_team_t *team, kmp_info_t *thread, int gtid) { 3732 std::atomic<kmp_uint32> *spin = RCAST( 3733 std::atomic<kmp_uint32> *, 3734 &team->t.t_task_team[thread->th.th_task_state]->tt.tt_unfinished_threads); 3735 int flag = FALSE; 3736 KMP_DEBUG_ASSERT(__kmp_tasking_mode == tskm_extra_barrier); 3737 3738 #if USE_ITT_BUILD 3739 KMP_FSYNC_SPIN_INIT(spin, NULL); 3740 #endif /* USE_ITT_BUILD */ 3741 kmp_flag_32<false, false> spin_flag(spin, 0U); 3742 while (!spin_flag.execute_tasks(thread, gtid, TRUE, 3743 &flag USE_ITT_BUILD_ARG(NULL), 0)) { 3744 #if USE_ITT_BUILD 3745 // TODO: What about itt_sync_obj?? 3746 KMP_FSYNC_SPIN_PREPARE(RCAST(void *, spin)); 3747 #endif /* USE_ITT_BUILD */ 3748 3749 if (TCR_4(__kmp_global.g.g_done)) { 3750 if (__kmp_global.g.g_abort) 3751 __kmp_abort_thread(); 3752 break; 3753 } 3754 KMP_YIELD(TRUE); 3755 } 3756 #if USE_ITT_BUILD 3757 KMP_FSYNC_SPIN_ACQUIRED(RCAST(void *, spin)); 3758 #endif /* USE_ITT_BUILD */ 3759 } 3760 3761 // __kmp_give_task puts a task into a given thread queue if: 3762 // - the queue for that thread was created 3763 // - there's space in that queue 3764 // Because of this, __kmp_push_task needs to check if there's space after 3765 // getting the lock 3766 static bool __kmp_give_task(kmp_info_t *thread, kmp_int32 tid, kmp_task_t *task, 3767 kmp_int32 pass) { 3768 kmp_taskdata_t *taskdata = KMP_TASK_TO_TASKDATA(task); 3769 kmp_task_team_t *task_team = taskdata->td_task_team; 3770 3771 KA_TRACE(20, ("__kmp_give_task: trying to give task %p to thread %d.\n", 3772 taskdata, tid)); 3773 3774 // If task_team is NULL something went really bad... 3775 KMP_DEBUG_ASSERT(task_team != NULL); 3776 3777 bool result = false; 3778 kmp_thread_data_t *thread_data = &task_team->tt.tt_threads_data[tid]; 3779 3780 if (thread_data->td.td_deque == NULL) { 3781 // There's no queue in this thread, go find another one 3782 // We're guaranteed that at least one thread has a queue 3783 KA_TRACE(30, 3784 ("__kmp_give_task: thread %d has no queue while giving task %p.\n", 3785 tid, taskdata)); 3786 return result; 3787 } 3788 3789 if (TCR_4(thread_data->td.td_deque_ntasks) >= 3790 TASK_DEQUE_SIZE(thread_data->td)) { 3791 KA_TRACE( 3792 30, 3793 ("__kmp_give_task: queue is full while giving task %p to thread %d.\n", 3794 taskdata, tid)); 3795 3796 // if this deque is bigger than the pass ratio give a chance to another 3797 // thread 3798 if (TASK_DEQUE_SIZE(thread_data->td) / INITIAL_TASK_DEQUE_SIZE >= pass) 3799 return result; 3800 3801 __kmp_acquire_bootstrap_lock(&thread_data->td.td_deque_lock); 3802 if (TCR_4(thread_data->td.td_deque_ntasks) >= 3803 TASK_DEQUE_SIZE(thread_data->td)) { 3804 // expand deque to push the task which is not allowed to execute 3805 __kmp_realloc_task_deque(thread, thread_data); 3806 } 3807 3808 } else { 3809 3810 __kmp_acquire_bootstrap_lock(&thread_data->td.td_deque_lock); 3811 3812 if (TCR_4(thread_data->td.td_deque_ntasks) >= 3813 TASK_DEQUE_SIZE(thread_data->td)) { 3814 KA_TRACE(30, ("__kmp_give_task: queue is full while giving task %p to " 3815 "thread %d.\n", 3816 taskdata, tid)); 3817 3818 // if this deque is bigger than the pass ratio give a chance to another 3819 // thread 3820 if (TASK_DEQUE_SIZE(thread_data->td) / INITIAL_TASK_DEQUE_SIZE >= pass) 3821 goto release_and_exit; 3822 3823 __kmp_realloc_task_deque(thread, thread_data); 3824 } 3825 } 3826 3827 // lock is held here, and there is space in the deque 3828 3829 thread_data->td.td_deque[thread_data->td.td_deque_tail] = taskdata; 3830 // Wrap index. 3831 thread_data->td.td_deque_tail = 3832 (thread_data->td.td_deque_tail + 1) & TASK_DEQUE_MASK(thread_data->td); 3833 TCW_4(thread_data->td.td_deque_ntasks, 3834 TCR_4(thread_data->td.td_deque_ntasks) + 1); 3835 3836 result = true; 3837 KA_TRACE(30, ("__kmp_give_task: successfully gave task %p to thread %d.\n", 3838 taskdata, tid)); 3839 3840 release_and_exit: 3841 __kmp_release_bootstrap_lock(&thread_data->td.td_deque_lock); 3842 3843 return result; 3844 } 3845 3846 /* The finish of the proxy tasks is divided in two pieces: 3847 - the top half is the one that can be done from a thread outside the team 3848 - the bottom half must be run from a thread within the team 3849 3850 In order to run the bottom half the task gets queued back into one of the 3851 threads of the team. Once the td_incomplete_child_task counter of the parent 3852 is decremented the threads can leave the barriers. So, the bottom half needs 3853 to be queued before the counter is decremented. The top half is therefore 3854 divided in two parts: 3855 - things that can be run before queuing the bottom half 3856 - things that must be run after queuing the bottom half 3857 3858 This creates a second race as the bottom half can free the task before the 3859 second top half is executed. To avoid this we use the 3860 td_incomplete_child_task of the proxy task to synchronize the top and bottom 3861 half. */ 3862 static void __kmp_first_top_half_finish_proxy(kmp_taskdata_t *taskdata) { 3863 KMP_DEBUG_ASSERT(taskdata->td_flags.tasktype == TASK_EXPLICIT); 3864 KMP_DEBUG_ASSERT(taskdata->td_flags.proxy == TASK_PROXY); 3865 KMP_DEBUG_ASSERT(taskdata->td_flags.complete == 0); 3866 KMP_DEBUG_ASSERT(taskdata->td_flags.freed == 0); 3867 3868 taskdata->td_flags.complete = 1; // mark the task as completed 3869 3870 if (taskdata->td_taskgroup) 3871 KMP_ATOMIC_DEC(&taskdata->td_taskgroup->count); 3872 3873 // Create an imaginary children for this task so the bottom half cannot 3874 // release the task before we have completed the second top half 3875 KMP_ATOMIC_INC(&taskdata->td_incomplete_child_tasks); 3876 } 3877 3878 static void __kmp_second_top_half_finish_proxy(kmp_taskdata_t *taskdata) { 3879 kmp_int32 children = 0; 3880 3881 // Predecrement simulated by "- 1" calculation 3882 children = 3883 KMP_ATOMIC_DEC(&taskdata->td_parent->td_incomplete_child_tasks) - 1; 3884 KMP_DEBUG_ASSERT(children >= 0); 3885 3886 // Remove the imaginary children 3887 KMP_ATOMIC_DEC(&taskdata->td_incomplete_child_tasks); 3888 } 3889 3890 static void __kmp_bottom_half_finish_proxy(kmp_int32 gtid, kmp_task_t *ptask) { 3891 kmp_taskdata_t *taskdata = KMP_TASK_TO_TASKDATA(ptask); 3892 kmp_info_t *thread = __kmp_threads[gtid]; 3893 3894 KMP_DEBUG_ASSERT(taskdata->td_flags.proxy == TASK_PROXY); 3895 KMP_DEBUG_ASSERT(taskdata->td_flags.complete == 3896 1); // top half must run before bottom half 3897 3898 // We need to wait to make sure the top half is finished 3899 // Spinning here should be ok as this should happen quickly 3900 while (KMP_ATOMIC_LD_ACQ(&taskdata->td_incomplete_child_tasks) > 0) 3901 ; 3902 3903 __kmp_release_deps(gtid, taskdata); 3904 __kmp_free_task_and_ancestors(gtid, taskdata, thread); 3905 } 3906 3907 /*! 3908 @ingroup TASKING 3909 @param gtid Global Thread ID of encountering thread 3910 @param ptask Task which execution is completed 3911 3912 Execute the completion of a proxy task from a thread of that is part of the 3913 team. Run first and bottom halves directly. 3914 */ 3915 void __kmpc_proxy_task_completed(kmp_int32 gtid, kmp_task_t *ptask) { 3916 KMP_DEBUG_ASSERT(ptask != NULL); 3917 kmp_taskdata_t *taskdata = KMP_TASK_TO_TASKDATA(ptask); 3918 KA_TRACE( 3919 10, ("__kmp_proxy_task_completed(enter): T#%d proxy task %p completing\n", 3920 gtid, taskdata)); 3921 __kmp_assert_valid_gtid(gtid); 3922 KMP_DEBUG_ASSERT(taskdata->td_flags.proxy == TASK_PROXY); 3923 3924 __kmp_first_top_half_finish_proxy(taskdata); 3925 __kmp_second_top_half_finish_proxy(taskdata); 3926 __kmp_bottom_half_finish_proxy(gtid, ptask); 3927 3928 KA_TRACE(10, 3929 ("__kmp_proxy_task_completed(exit): T#%d proxy task %p completing\n", 3930 gtid, taskdata)); 3931 } 3932 3933 /*! 3934 @ingroup TASKING 3935 @param ptask Task which execution is completed 3936 3937 Execute the completion of a proxy task from a thread that could not belong to 3938 the team. 3939 */ 3940 void __kmpc_proxy_task_completed_ooo(kmp_task_t *ptask) { 3941 KMP_DEBUG_ASSERT(ptask != NULL); 3942 kmp_taskdata_t *taskdata = KMP_TASK_TO_TASKDATA(ptask); 3943 3944 KA_TRACE( 3945 10, 3946 ("__kmp_proxy_task_completed_ooo(enter): proxy task completing ooo %p\n", 3947 taskdata)); 3948 3949 KMP_DEBUG_ASSERT(taskdata->td_flags.proxy == TASK_PROXY); 3950 3951 __kmp_first_top_half_finish_proxy(taskdata); 3952 3953 // Enqueue task to complete bottom half completion from a thread within the 3954 // corresponding team 3955 kmp_team_t *team = taskdata->td_team; 3956 kmp_int32 nthreads = team->t.t_nproc; 3957 kmp_info_t *thread; 3958 3959 // This should be similar to start_k = __kmp_get_random( thread ) % nthreads 3960 // but we cannot use __kmp_get_random here 3961 kmp_int32 start_k = 0; 3962 kmp_int32 pass = 1; 3963 kmp_int32 k = start_k; 3964 3965 do { 3966 // For now we're just linearly trying to find a thread 3967 thread = team->t.t_threads[k]; 3968 k = (k + 1) % nthreads; 3969 3970 // we did a full pass through all the threads 3971 if (k == start_k) 3972 pass = pass << 1; 3973 3974 } while (!__kmp_give_task(thread, k, ptask, pass)); 3975 3976 __kmp_second_top_half_finish_proxy(taskdata); 3977 3978 KA_TRACE( 3979 10, 3980 ("__kmp_proxy_task_completed_ooo(exit): proxy task completing ooo %p\n", 3981 taskdata)); 3982 } 3983 3984 kmp_event_t *__kmpc_task_allow_completion_event(ident_t *loc_ref, int gtid, 3985 kmp_task_t *task) { 3986 kmp_taskdata_t *td = KMP_TASK_TO_TASKDATA(task); 3987 if (td->td_allow_completion_event.type == KMP_EVENT_UNINITIALIZED) { 3988 td->td_allow_completion_event.type = KMP_EVENT_ALLOW_COMPLETION; 3989 td->td_allow_completion_event.ed.task = task; 3990 __kmp_init_tas_lock(&td->td_allow_completion_event.lock); 3991 } 3992 return &td->td_allow_completion_event; 3993 } 3994 3995 void __kmp_fulfill_event(kmp_event_t *event) { 3996 if (event->type == KMP_EVENT_ALLOW_COMPLETION) { 3997 kmp_task_t *ptask = event->ed.task; 3998 kmp_taskdata_t *taskdata = KMP_TASK_TO_TASKDATA(ptask); 3999 bool detached = false; 4000 int gtid = __kmp_get_gtid(); 4001 4002 // The associated task might have completed or could be completing at this 4003 // point. 4004 // We need to take the lock to avoid races 4005 __kmp_acquire_tas_lock(&event->lock, gtid); 4006 if (taskdata->td_flags.proxy == TASK_PROXY) { 4007 detached = true; 4008 } else { 4009 #if OMPT_SUPPORT 4010 // The OMPT event must occur under mutual exclusion, 4011 // otherwise the tool might access ptask after free 4012 if (UNLIKELY(ompt_enabled.enabled)) 4013 __ompt_task_finish(ptask, NULL, ompt_task_early_fulfill); 4014 #endif 4015 } 4016 event->type = KMP_EVENT_UNINITIALIZED; 4017 __kmp_release_tas_lock(&event->lock, gtid); 4018 4019 if (detached) { 4020 #if OMPT_SUPPORT 4021 // We free ptask afterwards and know the task is finished, 4022 // so locking is not necessary 4023 if (UNLIKELY(ompt_enabled.enabled)) 4024 __ompt_task_finish(ptask, NULL, ompt_task_late_fulfill); 4025 #endif 4026 // If the task detached complete the proxy task 4027 if (gtid >= 0) { 4028 kmp_team_t *team = taskdata->td_team; 4029 kmp_info_t *thread = __kmp_get_thread(); 4030 if (thread->th.th_team == team) { 4031 __kmpc_proxy_task_completed(gtid, ptask); 4032 return; 4033 } 4034 } 4035 4036 // fallback 4037 __kmpc_proxy_task_completed_ooo(ptask); 4038 } 4039 } 4040 } 4041 4042 // __kmp_task_dup_alloc: Allocate the taskdata and make a copy of source task 4043 // for taskloop 4044 // 4045 // thread: allocating thread 4046 // task_src: pointer to source task to be duplicated 4047 // returns: a pointer to the allocated kmp_task_t structure (task). 4048 kmp_task_t *__kmp_task_dup_alloc(kmp_info_t *thread, kmp_task_t *task_src) { 4049 kmp_task_t *task; 4050 kmp_taskdata_t *taskdata; 4051 kmp_taskdata_t *taskdata_src = KMP_TASK_TO_TASKDATA(task_src); 4052 kmp_taskdata_t *parent_task = taskdata_src->td_parent; // same parent task 4053 size_t shareds_offset; 4054 size_t task_size; 4055 4056 KA_TRACE(10, ("__kmp_task_dup_alloc(enter): Th %p, source task %p\n", thread, 4057 task_src)); 4058 KMP_DEBUG_ASSERT(taskdata_src->td_flags.proxy == 4059 TASK_FULL); // it should not be proxy task 4060 KMP_DEBUG_ASSERT(taskdata_src->td_flags.tasktype == TASK_EXPLICIT); 4061 task_size = taskdata_src->td_size_alloc; 4062 4063 // Allocate a kmp_taskdata_t block and a kmp_task_t block. 4064 KA_TRACE(30, ("__kmp_task_dup_alloc: Th %p, malloc size %ld\n", thread, 4065 task_size)); 4066 #if USE_FAST_MEMORY 4067 taskdata = (kmp_taskdata_t *)__kmp_fast_allocate(thread, task_size); 4068 #else 4069 taskdata = (kmp_taskdata_t *)__kmp_thread_malloc(thread, task_size); 4070 #endif /* USE_FAST_MEMORY */ 4071 KMP_MEMCPY(taskdata, taskdata_src, task_size); 4072 4073 task = KMP_TASKDATA_TO_TASK(taskdata); 4074 4075 // Initialize new task (only specific fields not affected by memcpy) 4076 taskdata->td_task_id = KMP_GEN_TASK_ID(); 4077 if (task->shareds != NULL) { // need setup shareds pointer 4078 shareds_offset = (char *)task_src->shareds - (char *)taskdata_src; 4079 task->shareds = &((char *)taskdata)[shareds_offset]; 4080 KMP_DEBUG_ASSERT((((kmp_uintptr_t)task->shareds) & (sizeof(void *) - 1)) == 4081 0); 4082 } 4083 taskdata->td_alloc_thread = thread; 4084 taskdata->td_parent = parent_task; 4085 // task inherits the taskgroup from the parent task 4086 taskdata->td_taskgroup = parent_task->td_taskgroup; 4087 // tied task needs to initialize the td_last_tied at creation, 4088 // untied one does this when it is scheduled for execution 4089 if (taskdata->td_flags.tiedness == TASK_TIED) 4090 taskdata->td_last_tied = taskdata; 4091 4092 // Only need to keep track of child task counts if team parallel and tasking 4093 // not serialized 4094 if (!(taskdata->td_flags.team_serial || taskdata->td_flags.tasking_ser)) { 4095 KMP_ATOMIC_INC(&parent_task->td_incomplete_child_tasks); 4096 if (parent_task->td_taskgroup) 4097 KMP_ATOMIC_INC(&parent_task->td_taskgroup->count); 4098 // Only need to keep track of allocated child tasks for explicit tasks since 4099 // implicit not deallocated 4100 if (taskdata->td_parent->td_flags.tasktype == TASK_EXPLICIT) 4101 KMP_ATOMIC_INC(&taskdata->td_parent->td_allocated_child_tasks); 4102 } 4103 4104 KA_TRACE(20, 4105 ("__kmp_task_dup_alloc(exit): Th %p, created task %p, parent=%p\n", 4106 thread, taskdata, taskdata->td_parent)); 4107 #if OMPT_SUPPORT 4108 if (UNLIKELY(ompt_enabled.enabled)) 4109 __ompt_task_init(taskdata, thread->th.th_info.ds.ds_gtid); 4110 #endif 4111 return task; 4112 } 4113 4114 // Routine optionally generated by the compiler for setting the lastprivate flag 4115 // and calling needed constructors for private/firstprivate objects 4116 // (used to form taskloop tasks from pattern task) 4117 // Parameters: dest task, src task, lastprivate flag. 4118 typedef void (*p_task_dup_t)(kmp_task_t *, kmp_task_t *, kmp_int32); 4119 4120 KMP_BUILD_ASSERT(sizeof(long) == 4 || sizeof(long) == 8); 4121 4122 // class to encapsulate manipulating loop bounds in a taskloop task. 4123 // this abstracts away the Intel vs GOMP taskloop interface for setting/getting 4124 // the loop bound variables. 4125 class kmp_taskloop_bounds_t { 4126 kmp_task_t *task; 4127 const kmp_taskdata_t *taskdata; 4128 size_t lower_offset; 4129 size_t upper_offset; 4130 4131 public: 4132 kmp_taskloop_bounds_t(kmp_task_t *_task, kmp_uint64 *lb, kmp_uint64 *ub) 4133 : task(_task), taskdata(KMP_TASK_TO_TASKDATA(task)), 4134 lower_offset((char *)lb - (char *)task), 4135 upper_offset((char *)ub - (char *)task) { 4136 KMP_DEBUG_ASSERT((char *)lb > (char *)_task); 4137 KMP_DEBUG_ASSERT((char *)ub > (char *)_task); 4138 } 4139 kmp_taskloop_bounds_t(kmp_task_t *_task, const kmp_taskloop_bounds_t &bounds) 4140 : task(_task), taskdata(KMP_TASK_TO_TASKDATA(_task)), 4141 lower_offset(bounds.lower_offset), upper_offset(bounds.upper_offset) {} 4142 size_t get_lower_offset() const { return lower_offset; } 4143 size_t get_upper_offset() const { return upper_offset; } 4144 kmp_uint64 get_lb() const { 4145 kmp_int64 retval; 4146 #if defined(KMP_GOMP_COMPAT) 4147 // Intel task just returns the lower bound normally 4148 if (!taskdata->td_flags.native) { 4149 retval = *(kmp_int64 *)((char *)task + lower_offset); 4150 } else { 4151 // GOMP task has to take into account the sizeof(long) 4152 if (taskdata->td_size_loop_bounds == 4) { 4153 kmp_int32 *lb = RCAST(kmp_int32 *, task->shareds); 4154 retval = (kmp_int64)*lb; 4155 } else { 4156 kmp_int64 *lb = RCAST(kmp_int64 *, task->shareds); 4157 retval = (kmp_int64)*lb; 4158 } 4159 } 4160 #else 4161 retval = *(kmp_int64 *)((char *)task + lower_offset); 4162 #endif // defined(KMP_GOMP_COMPAT) 4163 return retval; 4164 } 4165 kmp_uint64 get_ub() const { 4166 kmp_int64 retval; 4167 #if defined(KMP_GOMP_COMPAT) 4168 // Intel task just returns the upper bound normally 4169 if (!taskdata->td_flags.native) { 4170 retval = *(kmp_int64 *)((char *)task + upper_offset); 4171 } else { 4172 // GOMP task has to take into account the sizeof(long) 4173 if (taskdata->td_size_loop_bounds == 4) { 4174 kmp_int32 *ub = RCAST(kmp_int32 *, task->shareds) + 1; 4175 retval = (kmp_int64)*ub; 4176 } else { 4177 kmp_int64 *ub = RCAST(kmp_int64 *, task->shareds) + 1; 4178 retval = (kmp_int64)*ub; 4179 } 4180 } 4181 #else 4182 retval = *(kmp_int64 *)((char *)task + upper_offset); 4183 #endif // defined(KMP_GOMP_COMPAT) 4184 return retval; 4185 } 4186 void set_lb(kmp_uint64 lb) { 4187 #if defined(KMP_GOMP_COMPAT) 4188 // Intel task just sets the lower bound normally 4189 if (!taskdata->td_flags.native) { 4190 *(kmp_uint64 *)((char *)task + lower_offset) = lb; 4191 } else { 4192 // GOMP task has to take into account the sizeof(long) 4193 if (taskdata->td_size_loop_bounds == 4) { 4194 kmp_uint32 *lower = RCAST(kmp_uint32 *, task->shareds); 4195 *lower = (kmp_uint32)lb; 4196 } else { 4197 kmp_uint64 *lower = RCAST(kmp_uint64 *, task->shareds); 4198 *lower = (kmp_uint64)lb; 4199 } 4200 } 4201 #else 4202 *(kmp_uint64 *)((char *)task + lower_offset) = lb; 4203 #endif // defined(KMP_GOMP_COMPAT) 4204 } 4205 void set_ub(kmp_uint64 ub) { 4206 #if defined(KMP_GOMP_COMPAT) 4207 // Intel task just sets the upper bound normally 4208 if (!taskdata->td_flags.native) { 4209 *(kmp_uint64 *)((char *)task + upper_offset) = ub; 4210 } else { 4211 // GOMP task has to take into account the sizeof(long) 4212 if (taskdata->td_size_loop_bounds == 4) { 4213 kmp_uint32 *upper = RCAST(kmp_uint32 *, task->shareds) + 1; 4214 *upper = (kmp_uint32)ub; 4215 } else { 4216 kmp_uint64 *upper = RCAST(kmp_uint64 *, task->shareds) + 1; 4217 *upper = (kmp_uint64)ub; 4218 } 4219 } 4220 #else 4221 *(kmp_uint64 *)((char *)task + upper_offset) = ub; 4222 #endif // defined(KMP_GOMP_COMPAT) 4223 } 4224 }; 4225 4226 // __kmp_taskloop_linear: Start tasks of the taskloop linearly 4227 // 4228 // loc Source location information 4229 // gtid Global thread ID 4230 // task Pattern task, exposes the loop iteration range 4231 // lb Pointer to loop lower bound in task structure 4232 // ub Pointer to loop upper bound in task structure 4233 // st Loop stride 4234 // ub_glob Global upper bound (used for lastprivate check) 4235 // num_tasks Number of tasks to execute 4236 // grainsize Number of loop iterations per task 4237 // extras Number of chunks with grainsize+1 iterations 4238 // last_chunk Reduction of grainsize for last task 4239 // tc Iterations count 4240 // task_dup Tasks duplication routine 4241 // codeptr_ra Return address for OMPT events 4242 void __kmp_taskloop_linear(ident_t *loc, int gtid, kmp_task_t *task, 4243 kmp_uint64 *lb, kmp_uint64 *ub, kmp_int64 st, 4244 kmp_uint64 ub_glob, kmp_uint64 num_tasks, 4245 kmp_uint64 grainsize, kmp_uint64 extras, 4246 kmp_int64 last_chunk, kmp_uint64 tc, 4247 #if OMPT_SUPPORT 4248 void *codeptr_ra, 4249 #endif 4250 void *task_dup) { 4251 KMP_COUNT_BLOCK(OMP_TASKLOOP); 4252 KMP_TIME_PARTITIONED_BLOCK(OMP_taskloop_scheduling); 4253 p_task_dup_t ptask_dup = (p_task_dup_t)task_dup; 4254 // compiler provides global bounds here 4255 kmp_taskloop_bounds_t task_bounds(task, lb, ub); 4256 kmp_uint64 lower = task_bounds.get_lb(); 4257 kmp_uint64 upper = task_bounds.get_ub(); 4258 kmp_uint64 i; 4259 kmp_info_t *thread = __kmp_threads[gtid]; 4260 kmp_taskdata_t *current_task = thread->th.th_current_task; 4261 kmp_task_t *next_task; 4262 kmp_int32 lastpriv = 0; 4263 4264 KMP_DEBUG_ASSERT( 4265 tc == num_tasks * grainsize + (last_chunk < 0 ? last_chunk : extras)); 4266 KMP_DEBUG_ASSERT(num_tasks > extras); 4267 KMP_DEBUG_ASSERT(num_tasks > 0); 4268 KA_TRACE(20, ("__kmp_taskloop_linear: T#%d: %lld tasks, grainsize %lld, " 4269 "extras %lld, last_chunk %lld, i=%lld,%lld(%d)%lld, dup %p\n", 4270 gtid, num_tasks, grainsize, extras, last_chunk, lower, upper, 4271 ub_glob, st, task_dup)); 4272 4273 // Launch num_tasks tasks, assign grainsize iterations each task 4274 for (i = 0; i < num_tasks; ++i) { 4275 kmp_uint64 chunk_minus_1; 4276 if (extras == 0) { 4277 chunk_minus_1 = grainsize - 1; 4278 } else { 4279 chunk_minus_1 = grainsize; 4280 --extras; // first extras iterations get bigger chunk (grainsize+1) 4281 } 4282 upper = lower + st * chunk_minus_1; 4283 if (upper > *ub) { 4284 upper = *ub; 4285 } 4286 if (i == num_tasks - 1) { 4287 // schedule the last task, set lastprivate flag if needed 4288 if (st == 1) { // most common case 4289 KMP_DEBUG_ASSERT(upper == *ub); 4290 if (upper == ub_glob) 4291 lastpriv = 1; 4292 } else if (st > 0) { // positive loop stride 4293 KMP_DEBUG_ASSERT((kmp_uint64)st > *ub - upper); 4294 if ((kmp_uint64)st > ub_glob - upper) 4295 lastpriv = 1; 4296 } else { // negative loop stride 4297 KMP_DEBUG_ASSERT(upper + st < *ub); 4298 if (upper - ub_glob < (kmp_uint64)(-st)) 4299 lastpriv = 1; 4300 } 4301 } 4302 next_task = __kmp_task_dup_alloc(thread, task); // allocate new task 4303 kmp_taskdata_t *next_taskdata = KMP_TASK_TO_TASKDATA(next_task); 4304 kmp_taskloop_bounds_t next_task_bounds = 4305 kmp_taskloop_bounds_t(next_task, task_bounds); 4306 4307 // adjust task-specific bounds 4308 next_task_bounds.set_lb(lower); 4309 if (next_taskdata->td_flags.native) { 4310 next_task_bounds.set_ub(upper + (st > 0 ? 1 : -1)); 4311 } else { 4312 next_task_bounds.set_ub(upper); 4313 } 4314 if (ptask_dup != NULL) // set lastprivate flag, construct firstprivates, 4315 // etc. 4316 ptask_dup(next_task, task, lastpriv); 4317 KA_TRACE(40, 4318 ("__kmp_taskloop_linear: T#%d; task #%llu: task %p: lower %lld, " 4319 "upper %lld stride %lld, (offsets %p %p)\n", 4320 gtid, i, next_task, lower, upper, st, 4321 next_task_bounds.get_lower_offset(), 4322 next_task_bounds.get_upper_offset())); 4323 #if OMPT_SUPPORT 4324 __kmp_omp_taskloop_task(NULL, gtid, next_task, 4325 codeptr_ra); // schedule new task 4326 #else 4327 __kmp_omp_task(gtid, next_task, true); // schedule new task 4328 #endif 4329 lower = upper + st; // adjust lower bound for the next iteration 4330 } 4331 // free the pattern task and exit 4332 __kmp_task_start(gtid, task, current_task); // make internal bookkeeping 4333 // do not execute the pattern task, just do internal bookkeeping 4334 __kmp_task_finish<false>(gtid, task, current_task); 4335 } 4336 4337 // Structure to keep taskloop parameters for auxiliary task 4338 // kept in the shareds of the task structure. 4339 typedef struct __taskloop_params { 4340 kmp_task_t *task; 4341 kmp_uint64 *lb; 4342 kmp_uint64 *ub; 4343 void *task_dup; 4344 kmp_int64 st; 4345 kmp_uint64 ub_glob; 4346 kmp_uint64 num_tasks; 4347 kmp_uint64 grainsize; 4348 kmp_uint64 extras; 4349 kmp_int64 last_chunk; 4350 kmp_uint64 tc; 4351 kmp_uint64 num_t_min; 4352 #if OMPT_SUPPORT 4353 void *codeptr_ra; 4354 #endif 4355 } __taskloop_params_t; 4356 4357 void __kmp_taskloop_recur(ident_t *, int, kmp_task_t *, kmp_uint64 *, 4358 kmp_uint64 *, kmp_int64, kmp_uint64, kmp_uint64, 4359 kmp_uint64, kmp_uint64, kmp_int64, kmp_uint64, 4360 kmp_uint64, 4361 #if OMPT_SUPPORT 4362 void *, 4363 #endif 4364 void *); 4365 4366 // Execute part of the taskloop submitted as a task. 4367 int __kmp_taskloop_task(int gtid, void *ptask) { 4368 __taskloop_params_t *p = 4369 (__taskloop_params_t *)((kmp_task_t *)ptask)->shareds; 4370 kmp_task_t *task = p->task; 4371 kmp_uint64 *lb = p->lb; 4372 kmp_uint64 *ub = p->ub; 4373 void *task_dup = p->task_dup; 4374 // p_task_dup_t ptask_dup = (p_task_dup_t)task_dup; 4375 kmp_int64 st = p->st; 4376 kmp_uint64 ub_glob = p->ub_glob; 4377 kmp_uint64 num_tasks = p->num_tasks; 4378 kmp_uint64 grainsize = p->grainsize; 4379 kmp_uint64 extras = p->extras; 4380 kmp_int64 last_chunk = p->last_chunk; 4381 kmp_uint64 tc = p->tc; 4382 kmp_uint64 num_t_min = p->num_t_min; 4383 #if OMPT_SUPPORT 4384 void *codeptr_ra = p->codeptr_ra; 4385 #endif 4386 #if KMP_DEBUG 4387 kmp_taskdata_t *taskdata = KMP_TASK_TO_TASKDATA(task); 4388 KMP_DEBUG_ASSERT(task != NULL); 4389 KA_TRACE(20, 4390 ("__kmp_taskloop_task: T#%d, task %p: %lld tasks, grainsize" 4391 " %lld, extras %lld, last_chunk %lld, i=%lld,%lld(%d), dup %p\n", 4392 gtid, taskdata, num_tasks, grainsize, extras, last_chunk, *lb, *ub, 4393 st, task_dup)); 4394 #endif 4395 KMP_DEBUG_ASSERT(num_tasks * 2 + 1 > num_t_min); 4396 if (num_tasks > num_t_min) 4397 __kmp_taskloop_recur(NULL, gtid, task, lb, ub, st, ub_glob, num_tasks, 4398 grainsize, extras, last_chunk, tc, num_t_min, 4399 #if OMPT_SUPPORT 4400 codeptr_ra, 4401 #endif 4402 task_dup); 4403 else 4404 __kmp_taskloop_linear(NULL, gtid, task, lb, ub, st, ub_glob, num_tasks, 4405 grainsize, extras, last_chunk, tc, 4406 #if OMPT_SUPPORT 4407 codeptr_ra, 4408 #endif 4409 task_dup); 4410 4411 KA_TRACE(40, ("__kmp_taskloop_task(exit): T#%d\n", gtid)); 4412 return 0; 4413 } 4414 4415 // Schedule part of the taskloop as a task, 4416 // execute the rest of the taskloop. 4417 // 4418 // loc Source location information 4419 // gtid Global thread ID 4420 // task Pattern task, exposes the loop iteration range 4421 // lb Pointer to loop lower bound in task structure 4422 // ub Pointer to loop upper bound in task structure 4423 // st Loop stride 4424 // ub_glob Global upper bound (used for lastprivate check) 4425 // num_tasks Number of tasks to execute 4426 // grainsize Number of loop iterations per task 4427 // extras Number of chunks with grainsize+1 iterations 4428 // last_chunk Reduction of grainsize for last task 4429 // tc Iterations count 4430 // num_t_min Threshold to launch tasks recursively 4431 // task_dup Tasks duplication routine 4432 // codeptr_ra Return address for OMPT events 4433 void __kmp_taskloop_recur(ident_t *loc, int gtid, kmp_task_t *task, 4434 kmp_uint64 *lb, kmp_uint64 *ub, kmp_int64 st, 4435 kmp_uint64 ub_glob, kmp_uint64 num_tasks, 4436 kmp_uint64 grainsize, kmp_uint64 extras, 4437 kmp_int64 last_chunk, kmp_uint64 tc, 4438 kmp_uint64 num_t_min, 4439 #if OMPT_SUPPORT 4440 void *codeptr_ra, 4441 #endif 4442 void *task_dup) { 4443 kmp_taskdata_t *taskdata = KMP_TASK_TO_TASKDATA(task); 4444 KMP_DEBUG_ASSERT(task != NULL); 4445 KMP_DEBUG_ASSERT(num_tasks > num_t_min); 4446 KA_TRACE(20, 4447 ("__kmp_taskloop_recur: T#%d, task %p: %lld tasks, grainsize" 4448 " %lld, extras %lld, last_chunk %lld, i=%lld,%lld(%d), dup %p\n", 4449 gtid, taskdata, num_tasks, grainsize, extras, last_chunk, *lb, *ub, 4450 st, task_dup)); 4451 p_task_dup_t ptask_dup = (p_task_dup_t)task_dup; 4452 kmp_uint64 lower = *lb; 4453 kmp_info_t *thread = __kmp_threads[gtid]; 4454 // kmp_taskdata_t *current_task = thread->th.th_current_task; 4455 kmp_task_t *next_task; 4456 size_t lower_offset = 4457 (char *)lb - (char *)task; // remember offset of lb in the task structure 4458 size_t upper_offset = 4459 (char *)ub - (char *)task; // remember offset of ub in the task structure 4460 4461 KMP_DEBUG_ASSERT( 4462 tc == num_tasks * grainsize + (last_chunk < 0 ? last_chunk : extras)); 4463 KMP_DEBUG_ASSERT(num_tasks > extras); 4464 KMP_DEBUG_ASSERT(num_tasks > 0); 4465 4466 // split the loop in two halves 4467 kmp_uint64 lb1, ub0, tc0, tc1, ext0, ext1; 4468 kmp_int64 last_chunk0 = 0, last_chunk1 = 0; 4469 kmp_uint64 gr_size0 = grainsize; 4470 kmp_uint64 n_tsk0 = num_tasks >> 1; // num_tasks/2 to execute 4471 kmp_uint64 n_tsk1 = num_tasks - n_tsk0; // to schedule as a task 4472 if (last_chunk < 0) { 4473 ext0 = ext1 = 0; 4474 last_chunk1 = last_chunk; 4475 tc0 = grainsize * n_tsk0; 4476 tc1 = tc - tc0; 4477 } else if (n_tsk0 <= extras) { 4478 gr_size0++; // integrate extras into grainsize 4479 ext0 = 0; // no extra iters in 1st half 4480 ext1 = extras - n_tsk0; // remaining extras 4481 tc0 = gr_size0 * n_tsk0; 4482 tc1 = tc - tc0; 4483 } else { // n_tsk0 > extras 4484 ext1 = 0; // no extra iters in 2nd half 4485 ext0 = extras; 4486 tc1 = grainsize * n_tsk1; 4487 tc0 = tc - tc1; 4488 } 4489 ub0 = lower + st * (tc0 - 1); 4490 lb1 = ub0 + st; 4491 4492 // create pattern task for 2nd half of the loop 4493 next_task = __kmp_task_dup_alloc(thread, task); // duplicate the task 4494 // adjust lower bound (upper bound is not changed) for the 2nd half 4495 *(kmp_uint64 *)((char *)next_task + lower_offset) = lb1; 4496 if (ptask_dup != NULL) // construct firstprivates, etc. 4497 ptask_dup(next_task, task, 0); 4498 *ub = ub0; // adjust upper bound for the 1st half 4499 4500 // create auxiliary task for 2nd half of the loop 4501 // make sure new task has same parent task as the pattern task 4502 kmp_taskdata_t *current_task = thread->th.th_current_task; 4503 thread->th.th_current_task = taskdata->td_parent; 4504 kmp_task_t *new_task = 4505 __kmpc_omp_task_alloc(loc, gtid, 1, 3 * sizeof(void *), 4506 sizeof(__taskloop_params_t), &__kmp_taskloop_task); 4507 // restore current task 4508 thread->th.th_current_task = current_task; 4509 __taskloop_params_t *p = (__taskloop_params_t *)new_task->shareds; 4510 p->task = next_task; 4511 p->lb = (kmp_uint64 *)((char *)next_task + lower_offset); 4512 p->ub = (kmp_uint64 *)((char *)next_task + upper_offset); 4513 p->task_dup = task_dup; 4514 p->st = st; 4515 p->ub_glob = ub_glob; 4516 p->num_tasks = n_tsk1; 4517 p->grainsize = grainsize; 4518 p->extras = ext1; 4519 p->last_chunk = last_chunk1; 4520 p->tc = tc1; 4521 p->num_t_min = num_t_min; 4522 #if OMPT_SUPPORT 4523 p->codeptr_ra = codeptr_ra; 4524 #endif 4525 4526 #if OMPT_SUPPORT 4527 // schedule new task with correct return address for OMPT events 4528 __kmp_omp_taskloop_task(NULL, gtid, new_task, codeptr_ra); 4529 #else 4530 __kmp_omp_task(gtid, new_task, true); // schedule new task 4531 #endif 4532 4533 // execute the 1st half of current subrange 4534 if (n_tsk0 > num_t_min) 4535 __kmp_taskloop_recur(loc, gtid, task, lb, ub, st, ub_glob, n_tsk0, gr_size0, 4536 ext0, last_chunk0, tc0, num_t_min, 4537 #if OMPT_SUPPORT 4538 codeptr_ra, 4539 #endif 4540 task_dup); 4541 else 4542 __kmp_taskloop_linear(loc, gtid, task, lb, ub, st, ub_glob, n_tsk0, 4543 gr_size0, ext0, last_chunk0, tc0, 4544 #if OMPT_SUPPORT 4545 codeptr_ra, 4546 #endif 4547 task_dup); 4548 4549 KA_TRACE(40, ("__kmp_taskloop_recur(exit): T#%d\n", gtid)); 4550 } 4551 4552 static void __kmp_taskloop(ident_t *loc, int gtid, kmp_task_t *task, int if_val, 4553 kmp_uint64 *lb, kmp_uint64 *ub, kmp_int64 st, 4554 int nogroup, int sched, kmp_uint64 grainsize, 4555 int modifier, void *task_dup) { 4556 kmp_taskdata_t *taskdata = KMP_TASK_TO_TASKDATA(task); 4557 KMP_DEBUG_ASSERT(task != NULL); 4558 if (nogroup == 0) { 4559 #if OMPT_SUPPORT && OMPT_OPTIONAL 4560 OMPT_STORE_RETURN_ADDRESS(gtid); 4561 #endif 4562 __kmpc_taskgroup(loc, gtid); 4563 } 4564 4565 // ========================================================================= 4566 // calculate loop parameters 4567 kmp_taskloop_bounds_t task_bounds(task, lb, ub); 4568 kmp_uint64 tc; 4569 // compiler provides global bounds here 4570 kmp_uint64 lower = task_bounds.get_lb(); 4571 kmp_uint64 upper = task_bounds.get_ub(); 4572 kmp_uint64 ub_glob = upper; // global upper used to calc lastprivate flag 4573 kmp_uint64 num_tasks = 0, extras = 0; 4574 kmp_int64 last_chunk = 4575 0; // reduce grainsize of last task by last_chunk in strict mode 4576 kmp_uint64 num_tasks_min = __kmp_taskloop_min_tasks; 4577 kmp_info_t *thread = __kmp_threads[gtid]; 4578 kmp_taskdata_t *current_task = thread->th.th_current_task; 4579 4580 KA_TRACE(20, ("__kmp_taskloop: T#%d, task %p, lb %lld, ub %lld, st %lld, " 4581 "grain %llu(%d, %d), dup %p\n", 4582 gtid, taskdata, lower, upper, st, grainsize, sched, modifier, 4583 task_dup)); 4584 4585 // compute trip count 4586 if (st == 1) { // most common case 4587 tc = upper - lower + 1; 4588 } else if (st < 0) { 4589 tc = (lower - upper) / (-st) + 1; 4590 } else { // st > 0 4591 tc = (upper - lower) / st + 1; 4592 } 4593 if (tc == 0) { 4594 KA_TRACE(20, ("__kmp_taskloop(exit): T#%d zero-trip loop\n", gtid)); 4595 // free the pattern task and exit 4596 __kmp_task_start(gtid, task, current_task); 4597 // do not execute anything for zero-trip loop 4598 __kmp_task_finish<false>(gtid, task, current_task); 4599 return; 4600 } 4601 4602 #if OMPT_SUPPORT && OMPT_OPTIONAL 4603 ompt_team_info_t *team_info = __ompt_get_teaminfo(0, NULL); 4604 ompt_task_info_t *task_info = __ompt_get_task_info_object(0); 4605 if (ompt_enabled.ompt_callback_work) { 4606 ompt_callbacks.ompt_callback(ompt_callback_work)( 4607 ompt_work_taskloop, ompt_scope_begin, &(team_info->parallel_data), 4608 &(task_info->task_data), tc, OMPT_GET_RETURN_ADDRESS(0)); 4609 } 4610 #endif 4611 4612 if (num_tasks_min == 0) 4613 // TODO: can we choose better default heuristic? 4614 num_tasks_min = 4615 KMP_MIN(thread->th.th_team_nproc * 10, INITIAL_TASK_DEQUE_SIZE); 4616 4617 // compute num_tasks/grainsize based on the input provided 4618 switch (sched) { 4619 case 0: // no schedule clause specified, we can choose the default 4620 // let's try to schedule (team_size*10) tasks 4621 grainsize = thread->th.th_team_nproc * 10; 4622 KMP_FALLTHROUGH(); 4623 case 2: // num_tasks provided 4624 if (grainsize > tc) { 4625 num_tasks = tc; // too big num_tasks requested, adjust values 4626 grainsize = 1; 4627 extras = 0; 4628 } else { 4629 num_tasks = grainsize; 4630 grainsize = tc / num_tasks; 4631 extras = tc % num_tasks; 4632 } 4633 break; 4634 case 1: // grainsize provided 4635 if (grainsize > tc) { 4636 num_tasks = 1; 4637 grainsize = tc; // too big grainsize requested, adjust values 4638 extras = 0; 4639 } else { 4640 if (modifier) { 4641 num_tasks = (tc + grainsize - 1) / grainsize; 4642 last_chunk = tc - (num_tasks * grainsize); 4643 extras = 0; 4644 } else { 4645 num_tasks = tc / grainsize; 4646 // adjust grainsize for balanced distribution of iterations 4647 grainsize = tc / num_tasks; 4648 extras = tc % num_tasks; 4649 } 4650 } 4651 break; 4652 default: 4653 KMP_ASSERT2(0, "unknown scheduling of taskloop"); 4654 } 4655 4656 KMP_DEBUG_ASSERT( 4657 tc == num_tasks * grainsize + (last_chunk < 0 ? last_chunk : extras)); 4658 KMP_DEBUG_ASSERT(num_tasks > extras); 4659 KMP_DEBUG_ASSERT(num_tasks > 0); 4660 // ========================================================================= 4661 4662 // check if clause value first 4663 // Also require GOMP_taskloop to reduce to linear (taskdata->td_flags.native) 4664 if (if_val == 0) { // if(0) specified, mark task as serial 4665 taskdata->td_flags.task_serial = 1; 4666 taskdata->td_flags.tiedness = TASK_TIED; // AC: serial task cannot be untied 4667 // always start serial tasks linearly 4668 __kmp_taskloop_linear(loc, gtid, task, lb, ub, st, ub_glob, num_tasks, 4669 grainsize, extras, last_chunk, tc, 4670 #if OMPT_SUPPORT 4671 OMPT_GET_RETURN_ADDRESS(0), 4672 #endif 4673 task_dup); 4674 // !taskdata->td_flags.native => currently force linear spawning of tasks 4675 // for GOMP_taskloop 4676 } else if (num_tasks > num_tasks_min && !taskdata->td_flags.native) { 4677 KA_TRACE(20, ("__kmp_taskloop: T#%d, go recursive: tc %llu, #tasks %llu" 4678 "(%lld), grain %llu, extras %llu, last_chunk %lld\n", 4679 gtid, tc, num_tasks, num_tasks_min, grainsize, extras, 4680 last_chunk)); 4681 __kmp_taskloop_recur(loc, gtid, task, lb, ub, st, ub_glob, num_tasks, 4682 grainsize, extras, last_chunk, tc, num_tasks_min, 4683 #if OMPT_SUPPORT 4684 OMPT_GET_RETURN_ADDRESS(0), 4685 #endif 4686 task_dup); 4687 } else { 4688 KA_TRACE(20, ("__kmp_taskloop: T#%d, go linear: tc %llu, #tasks %llu" 4689 "(%lld), grain %llu, extras %llu, last_chunk %lld\n", 4690 gtid, tc, num_tasks, num_tasks_min, grainsize, extras, 4691 last_chunk)); 4692 __kmp_taskloop_linear(loc, gtid, task, lb, ub, st, ub_glob, num_tasks, 4693 grainsize, extras, last_chunk, tc, 4694 #if OMPT_SUPPORT 4695 OMPT_GET_RETURN_ADDRESS(0), 4696 #endif 4697 task_dup); 4698 } 4699 4700 #if OMPT_SUPPORT && OMPT_OPTIONAL 4701 if (ompt_enabled.ompt_callback_work) { 4702 ompt_callbacks.ompt_callback(ompt_callback_work)( 4703 ompt_work_taskloop, ompt_scope_end, &(team_info->parallel_data), 4704 &(task_info->task_data), tc, OMPT_GET_RETURN_ADDRESS(0)); 4705 } 4706 #endif 4707 4708 if (nogroup == 0) { 4709 #if OMPT_SUPPORT && OMPT_OPTIONAL 4710 OMPT_STORE_RETURN_ADDRESS(gtid); 4711 #endif 4712 __kmpc_end_taskgroup(loc, gtid); 4713 } 4714 KA_TRACE(20, ("__kmp_taskloop(exit): T#%d\n", gtid)); 4715 } 4716 4717 /*! 4718 @ingroup TASKING 4719 @param loc Source location information 4720 @param gtid Global thread ID 4721 @param task Task structure 4722 @param if_val Value of the if clause 4723 @param lb Pointer to loop lower bound in task structure 4724 @param ub Pointer to loop upper bound in task structure 4725 @param st Loop stride 4726 @param nogroup Flag, 1 if nogroup clause specified, 0 otherwise 4727 @param sched Schedule specified 0/1/2 for none/grainsize/num_tasks 4728 @param grainsize Schedule value if specified 4729 @param task_dup Tasks duplication routine 4730 4731 Execute the taskloop construct. 4732 */ 4733 void __kmpc_taskloop(ident_t *loc, int gtid, kmp_task_t *task, int if_val, 4734 kmp_uint64 *lb, kmp_uint64 *ub, kmp_int64 st, int nogroup, 4735 int sched, kmp_uint64 grainsize, void *task_dup) { 4736 __kmp_assert_valid_gtid(gtid); 4737 KA_TRACE(20, ("__kmpc_taskloop(enter): T#%d\n", gtid)); 4738 __kmp_taskloop(loc, gtid, task, if_val, lb, ub, st, nogroup, sched, grainsize, 4739 0, task_dup); 4740 KA_TRACE(20, ("__kmpc_taskloop(exit): T#%d\n", gtid)); 4741 } 4742 4743 /*! 4744 @ingroup TASKING 4745 @param loc Source location information 4746 @param gtid Global thread ID 4747 @param task Task structure 4748 @param if_val Value of the if clause 4749 @param lb Pointer to loop lower bound in task structure 4750 @param ub Pointer to loop upper bound in task structure 4751 @param st Loop stride 4752 @param nogroup Flag, 1 if nogroup clause specified, 0 otherwise 4753 @param sched Schedule specified 0/1/2 for none/grainsize/num_tasks 4754 @param grainsize Schedule value if specified 4755 @param modifer Modifier 'strict' for sched, 1 if present, 0 otherwise 4756 @param task_dup Tasks duplication routine 4757 4758 Execute the taskloop construct. 4759 */ 4760 void __kmpc_taskloop_5(ident_t *loc, int gtid, kmp_task_t *task, int if_val, 4761 kmp_uint64 *lb, kmp_uint64 *ub, kmp_int64 st, 4762 int nogroup, int sched, kmp_uint64 grainsize, 4763 int modifier, void *task_dup) { 4764 __kmp_assert_valid_gtid(gtid); 4765 KA_TRACE(20, ("__kmpc_taskloop_5(enter): T#%d\n", gtid)); 4766 __kmp_taskloop(loc, gtid, task, if_val, lb, ub, st, nogroup, sched, grainsize, 4767 modifier, task_dup); 4768 KA_TRACE(20, ("__kmpc_taskloop_5(exit): T#%d\n", gtid)); 4769 } 4770