xref: /freebsd/contrib/llvm-project/openmp/runtime/src/kmp_tasking.cpp (revision 179219ea046f46927d6478d43431e8b541703539)
1 /*
2  * kmp_tasking.cpp -- OpenMP 3.0 tasking support.
3  */
4 
5 //===----------------------------------------------------------------------===//
6 //
7 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
8 // See https://llvm.org/LICENSE.txt for license information.
9 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "kmp.h"
14 #include "kmp_i18n.h"
15 #include "kmp_itt.h"
16 #include "kmp_stats.h"
17 #include "kmp_wait_release.h"
18 #include "kmp_taskdeps.h"
19 
20 #if OMPT_SUPPORT
21 #include "ompt-specific.h"
22 #endif
23 
24 #include "tsan_annotations.h"
25 
26 /* forward declaration */
27 static void __kmp_enable_tasking(kmp_task_team_t *task_team,
28                                  kmp_info_t *this_thr);
29 static void __kmp_alloc_task_deque(kmp_info_t *thread,
30                                    kmp_thread_data_t *thread_data);
31 static int __kmp_realloc_task_threads_data(kmp_info_t *thread,
32                                            kmp_task_team_t *task_team);
33 static void __kmp_bottom_half_finish_proxy(kmp_int32 gtid, kmp_task_t *ptask);
34 
35 #ifdef BUILD_TIED_TASK_STACK
36 
37 //  __kmp_trace_task_stack: print the tied tasks from the task stack in order
38 //  from top do bottom
39 //
40 //  gtid: global thread identifier for thread containing stack
41 //  thread_data: thread data for task team thread containing stack
42 //  threshold: value above which the trace statement triggers
43 //  location: string identifying call site of this function (for trace)
44 static void __kmp_trace_task_stack(kmp_int32 gtid,
45                                    kmp_thread_data_t *thread_data,
46                                    int threshold, char *location) {
47   kmp_task_stack_t *task_stack = &thread_data->td.td_susp_tied_tasks;
48   kmp_taskdata_t **stack_top = task_stack->ts_top;
49   kmp_int32 entries = task_stack->ts_entries;
50   kmp_taskdata_t *tied_task;
51 
52   KA_TRACE(
53       threshold,
54       ("__kmp_trace_task_stack(start): location = %s, gtid = %d, entries = %d, "
55        "first_block = %p, stack_top = %p \n",
56        location, gtid, entries, task_stack->ts_first_block, stack_top));
57 
58   KMP_DEBUG_ASSERT(stack_top != NULL);
59   KMP_DEBUG_ASSERT(entries > 0);
60 
61   while (entries != 0) {
62     KMP_DEBUG_ASSERT(stack_top != &task_stack->ts_first_block.sb_block[0]);
63     // fix up ts_top if we need to pop from previous block
64     if (entries & TASK_STACK_INDEX_MASK == 0) {
65       kmp_stack_block_t *stack_block = (kmp_stack_block_t *)(stack_top);
66 
67       stack_block = stack_block->sb_prev;
68       stack_top = &stack_block->sb_block[TASK_STACK_BLOCK_SIZE];
69     }
70 
71     // finish bookkeeping
72     stack_top--;
73     entries--;
74 
75     tied_task = *stack_top;
76 
77     KMP_DEBUG_ASSERT(tied_task != NULL);
78     KMP_DEBUG_ASSERT(tied_task->td_flags.tasktype == TASK_TIED);
79 
80     KA_TRACE(threshold,
81              ("__kmp_trace_task_stack(%s):             gtid=%d, entry=%d, "
82               "stack_top=%p, tied_task=%p\n",
83               location, gtid, entries, stack_top, tied_task));
84   }
85   KMP_DEBUG_ASSERT(stack_top == &task_stack->ts_first_block.sb_block[0]);
86 
87   KA_TRACE(threshold,
88            ("__kmp_trace_task_stack(exit): location = %s, gtid = %d\n",
89             location, gtid));
90 }
91 
92 //  __kmp_init_task_stack: initialize the task stack for the first time
93 //  after a thread_data structure is created.
94 //  It should not be necessary to do this again (assuming the stack works).
95 //
96 //  gtid: global thread identifier of calling thread
97 //  thread_data: thread data for task team thread containing stack
98 static void __kmp_init_task_stack(kmp_int32 gtid,
99                                   kmp_thread_data_t *thread_data) {
100   kmp_task_stack_t *task_stack = &thread_data->td.td_susp_tied_tasks;
101   kmp_stack_block_t *first_block;
102 
103   // set up the first block of the stack
104   first_block = &task_stack->ts_first_block;
105   task_stack->ts_top = (kmp_taskdata_t **)first_block;
106   memset((void *)first_block, '\0',
107          TASK_STACK_BLOCK_SIZE * sizeof(kmp_taskdata_t *));
108 
109   // initialize the stack to be empty
110   task_stack->ts_entries = TASK_STACK_EMPTY;
111   first_block->sb_next = NULL;
112   first_block->sb_prev = NULL;
113 }
114 
115 //  __kmp_free_task_stack: free the task stack when thread_data is destroyed.
116 //
117 //  gtid: global thread identifier for calling thread
118 //  thread_data: thread info for thread containing stack
119 static void __kmp_free_task_stack(kmp_int32 gtid,
120                                   kmp_thread_data_t *thread_data) {
121   kmp_task_stack_t *task_stack = &thread_data->td.td_susp_tied_tasks;
122   kmp_stack_block_t *stack_block = &task_stack->ts_first_block;
123 
124   KMP_DEBUG_ASSERT(task_stack->ts_entries == TASK_STACK_EMPTY);
125   // free from the second block of the stack
126   while (stack_block != NULL) {
127     kmp_stack_block_t *next_block = (stack_block) ? stack_block->sb_next : NULL;
128 
129     stack_block->sb_next = NULL;
130     stack_block->sb_prev = NULL;
131     if (stack_block != &task_stack->ts_first_block) {
132       __kmp_thread_free(thread,
133                         stack_block); // free the block, if not the first
134     }
135     stack_block = next_block;
136   }
137   // initialize the stack to be empty
138   task_stack->ts_entries = 0;
139   task_stack->ts_top = NULL;
140 }
141 
142 //  __kmp_push_task_stack: Push the tied task onto the task stack.
143 //     Grow the stack if necessary by allocating another block.
144 //
145 //  gtid: global thread identifier for calling thread
146 //  thread: thread info for thread containing stack
147 //  tied_task: the task to push on the stack
148 static void __kmp_push_task_stack(kmp_int32 gtid, kmp_info_t *thread,
149                                   kmp_taskdata_t *tied_task) {
150   // GEH - need to consider what to do if tt_threads_data not allocated yet
151   kmp_thread_data_t *thread_data =
152       &thread->th.th_task_team->tt.tt_threads_data[__kmp_tid_from_gtid(gtid)];
153   kmp_task_stack_t *task_stack = &thread_data->td.td_susp_tied_tasks;
154 
155   if (tied_task->td_flags.team_serial || tied_task->td_flags.tasking_ser) {
156     return; // Don't push anything on stack if team or team tasks are serialized
157   }
158 
159   KMP_DEBUG_ASSERT(tied_task->td_flags.tasktype == TASK_TIED);
160   KMP_DEBUG_ASSERT(task_stack->ts_top != NULL);
161 
162   KA_TRACE(20,
163            ("__kmp_push_task_stack(enter): GTID: %d; THREAD: %p; TASK: %p\n",
164             gtid, thread, tied_task));
165   // Store entry
166   *(task_stack->ts_top) = tied_task;
167 
168   // Do bookkeeping for next push
169   task_stack->ts_top++;
170   task_stack->ts_entries++;
171 
172   if (task_stack->ts_entries & TASK_STACK_INDEX_MASK == 0) {
173     // Find beginning of this task block
174     kmp_stack_block_t *stack_block =
175         (kmp_stack_block_t *)(task_stack->ts_top - TASK_STACK_BLOCK_SIZE);
176 
177     // Check if we already have a block
178     if (stack_block->sb_next !=
179         NULL) { // reset ts_top to beginning of next block
180       task_stack->ts_top = &stack_block->sb_next->sb_block[0];
181     } else { // Alloc new block and link it up
182       kmp_stack_block_t *new_block = (kmp_stack_block_t *)__kmp_thread_calloc(
183           thread, sizeof(kmp_stack_block_t));
184 
185       task_stack->ts_top = &new_block->sb_block[0];
186       stack_block->sb_next = new_block;
187       new_block->sb_prev = stack_block;
188       new_block->sb_next = NULL;
189 
190       KA_TRACE(
191           30,
192           ("__kmp_push_task_stack(): GTID: %d; TASK: %p; Alloc new block: %p\n",
193            gtid, tied_task, new_block));
194     }
195   }
196   KA_TRACE(20, ("__kmp_push_task_stack(exit): GTID: %d; TASK: %p\n", gtid,
197                 tied_task));
198 }
199 
200 //  __kmp_pop_task_stack: Pop the tied task from the task stack.  Don't return
201 //  the task, just check to make sure it matches the ending task passed in.
202 //
203 //  gtid: global thread identifier for the calling thread
204 //  thread: thread info structure containing stack
205 //  tied_task: the task popped off the stack
206 //  ending_task: the task that is ending (should match popped task)
207 static void __kmp_pop_task_stack(kmp_int32 gtid, kmp_info_t *thread,
208                                  kmp_taskdata_t *ending_task) {
209   // GEH - need to consider what to do if tt_threads_data not allocated yet
210   kmp_thread_data_t *thread_data =
211       &thread->th.th_task_team->tt_threads_data[__kmp_tid_from_gtid(gtid)];
212   kmp_task_stack_t *task_stack = &thread_data->td.td_susp_tied_tasks;
213   kmp_taskdata_t *tied_task;
214 
215   if (ending_task->td_flags.team_serial || ending_task->td_flags.tasking_ser) {
216     // Don't pop anything from stack if team or team tasks are serialized
217     return;
218   }
219 
220   KMP_DEBUG_ASSERT(task_stack->ts_top != NULL);
221   KMP_DEBUG_ASSERT(task_stack->ts_entries > 0);
222 
223   KA_TRACE(20, ("__kmp_pop_task_stack(enter): GTID: %d; THREAD: %p\n", gtid,
224                 thread));
225 
226   // fix up ts_top if we need to pop from previous block
227   if (task_stack->ts_entries & TASK_STACK_INDEX_MASK == 0) {
228     kmp_stack_block_t *stack_block = (kmp_stack_block_t *)(task_stack->ts_top);
229 
230     stack_block = stack_block->sb_prev;
231     task_stack->ts_top = &stack_block->sb_block[TASK_STACK_BLOCK_SIZE];
232   }
233 
234   // finish bookkeeping
235   task_stack->ts_top--;
236   task_stack->ts_entries--;
237 
238   tied_task = *(task_stack->ts_top);
239 
240   KMP_DEBUG_ASSERT(tied_task != NULL);
241   KMP_DEBUG_ASSERT(tied_task->td_flags.tasktype == TASK_TIED);
242   KMP_DEBUG_ASSERT(tied_task == ending_task); // If we built the stack correctly
243 
244   KA_TRACE(20, ("__kmp_pop_task_stack(exit): GTID: %d; TASK: %p\n", gtid,
245                 tied_task));
246   return;
247 }
248 #endif /* BUILD_TIED_TASK_STACK */
249 
250 // returns 1 if new task is allowed to execute, 0 otherwise
251 // checks Task Scheduling constraint (if requested) and
252 // mutexinoutset dependencies if any
253 static bool __kmp_task_is_allowed(int gtid, const kmp_int32 is_constrained,
254                                   const kmp_taskdata_t *tasknew,
255                                   const kmp_taskdata_t *taskcurr) {
256   if (is_constrained && (tasknew->td_flags.tiedness == TASK_TIED)) {
257     // Check if the candidate obeys the Task Scheduling Constraints (TSC)
258     // only descendant of all deferred tied tasks can be scheduled, checking
259     // the last one is enough, as it in turn is the descendant of all others
260     kmp_taskdata_t *current = taskcurr->td_last_tied;
261     KMP_DEBUG_ASSERT(current != NULL);
262     // check if the task is not suspended on barrier
263     if (current->td_flags.tasktype == TASK_EXPLICIT ||
264         current->td_taskwait_thread > 0) { // <= 0 on barrier
265       kmp_int32 level = current->td_level;
266       kmp_taskdata_t *parent = tasknew->td_parent;
267       while (parent != current && parent->td_level > level) {
268         // check generation up to the level of the current task
269         parent = parent->td_parent;
270         KMP_DEBUG_ASSERT(parent != NULL);
271       }
272       if (parent != current)
273         return false;
274     }
275   }
276   // Check mutexinoutset dependencies, acquire locks
277   kmp_depnode_t *node = tasknew->td_depnode;
278   if (UNLIKELY(node && (node->dn.mtx_num_locks > 0))) {
279     for (int i = 0; i < node->dn.mtx_num_locks; ++i) {
280       KMP_DEBUG_ASSERT(node->dn.mtx_locks[i] != NULL);
281       if (__kmp_test_lock(node->dn.mtx_locks[i], gtid))
282         continue;
283       // could not get the lock, release previous locks
284       for (int j = i - 1; j >= 0; --j)
285         __kmp_release_lock(node->dn.mtx_locks[j], gtid);
286       return false;
287     }
288     // negative num_locks means all locks acquired successfully
289     node->dn.mtx_num_locks = -node->dn.mtx_num_locks;
290   }
291   return true;
292 }
293 
294 // __kmp_realloc_task_deque:
295 // Re-allocates a task deque for a particular thread, copies the content from
296 // the old deque and adjusts the necessary data structures relating to the
297 // deque. This operation must be done with the deque_lock being held
298 static void __kmp_realloc_task_deque(kmp_info_t *thread,
299                                      kmp_thread_data_t *thread_data) {
300   kmp_int32 size = TASK_DEQUE_SIZE(thread_data->td);
301   KMP_DEBUG_ASSERT(TCR_4(thread_data->td.td_deque_ntasks) == size);
302   kmp_int32 new_size = 2 * size;
303 
304   KE_TRACE(10, ("__kmp_realloc_task_deque: T#%d reallocating deque[from %d to "
305                 "%d] for thread_data %p\n",
306                 __kmp_gtid_from_thread(thread), size, new_size, thread_data));
307 
308   kmp_taskdata_t **new_deque =
309       (kmp_taskdata_t **)__kmp_allocate(new_size * sizeof(kmp_taskdata_t *));
310 
311   int i, j;
312   for (i = thread_data->td.td_deque_head, j = 0; j < size;
313        i = (i + 1) & TASK_DEQUE_MASK(thread_data->td), j++)
314     new_deque[j] = thread_data->td.td_deque[i];
315 
316   __kmp_free(thread_data->td.td_deque);
317 
318   thread_data->td.td_deque_head = 0;
319   thread_data->td.td_deque_tail = size;
320   thread_data->td.td_deque = new_deque;
321   thread_data->td.td_deque_size = new_size;
322 }
323 
324 //  __kmp_push_task: Add a task to the thread's deque
325 static kmp_int32 __kmp_push_task(kmp_int32 gtid, kmp_task_t *task) {
326   kmp_info_t *thread = __kmp_threads[gtid];
327   kmp_taskdata_t *taskdata = KMP_TASK_TO_TASKDATA(task);
328 
329   // We don't need to map to shadow gtid if it is already hidden helper thread
330   if (taskdata->td_flags.hidden_helper && !KMP_HIDDEN_HELPER_THREAD(gtid)) {
331     gtid = KMP_GTID_TO_SHADOW_GTID(gtid);
332     thread = __kmp_threads[gtid];
333   }
334 
335   kmp_task_team_t *task_team = thread->th.th_task_team;
336   kmp_int32 tid = __kmp_tid_from_gtid(gtid);
337   kmp_thread_data_t *thread_data;
338 
339   KA_TRACE(20,
340            ("__kmp_push_task: T#%d trying to push task %p.\n", gtid, taskdata));
341 
342   if (UNLIKELY(taskdata->td_flags.tiedness == TASK_UNTIED)) {
343     // untied task needs to increment counter so that the task structure is not
344     // freed prematurely
345     kmp_int32 counter = 1 + KMP_ATOMIC_INC(&taskdata->td_untied_count);
346     KMP_DEBUG_USE_VAR(counter);
347     KA_TRACE(
348         20,
349         ("__kmp_push_task: T#%d untied_count (%d) incremented for task %p\n",
350          gtid, counter, taskdata));
351   }
352 
353   // The first check avoids building task_team thread data if serialized
354   if (UNLIKELY(taskdata->td_flags.task_serial)) {
355     KA_TRACE(20, ("__kmp_push_task: T#%d team serialized; returning "
356                   "TASK_NOT_PUSHED for task %p\n",
357                   gtid, taskdata));
358     return TASK_NOT_PUSHED;
359   }
360 
361   // Now that serialized tasks have returned, we can assume that we are not in
362   // immediate exec mode
363   KMP_DEBUG_ASSERT(__kmp_tasking_mode != tskm_immediate_exec);
364   if (UNLIKELY(!KMP_TASKING_ENABLED(task_team))) {
365     __kmp_enable_tasking(task_team, thread);
366   }
367   KMP_DEBUG_ASSERT(TCR_4(task_team->tt.tt_found_tasks) == TRUE);
368   KMP_DEBUG_ASSERT(TCR_PTR(task_team->tt.tt_threads_data) != NULL);
369 
370   // Find tasking deque specific to encountering thread
371   thread_data = &task_team->tt.tt_threads_data[tid];
372 
373   // No lock needed since only owner can allocate. If the task is hidden_helper,
374   // we don't need it either because we have initialized the dequeue for hidden
375   // helper thread data.
376   if (UNLIKELY(thread_data->td.td_deque == NULL)) {
377     __kmp_alloc_task_deque(thread, thread_data);
378   }
379 
380   int locked = 0;
381   // Check if deque is full
382   if (TCR_4(thread_data->td.td_deque_ntasks) >=
383       TASK_DEQUE_SIZE(thread_data->td)) {
384     if (__kmp_enable_task_throttling &&
385         __kmp_task_is_allowed(gtid, __kmp_task_stealing_constraint, taskdata,
386                               thread->th.th_current_task)) {
387       KA_TRACE(20, ("__kmp_push_task: T#%d deque is full; returning "
388                     "TASK_NOT_PUSHED for task %p\n",
389                     gtid, taskdata));
390       return TASK_NOT_PUSHED;
391     } else {
392       __kmp_acquire_bootstrap_lock(&thread_data->td.td_deque_lock);
393       locked = 1;
394       if (TCR_4(thread_data->td.td_deque_ntasks) >=
395           TASK_DEQUE_SIZE(thread_data->td)) {
396         // expand deque to push the task which is not allowed to execute
397         __kmp_realloc_task_deque(thread, thread_data);
398       }
399     }
400   }
401   // Lock the deque for the task push operation
402   if (!locked) {
403     __kmp_acquire_bootstrap_lock(&thread_data->td.td_deque_lock);
404     // Need to recheck as we can get a proxy task from thread outside of OpenMP
405     if (TCR_4(thread_data->td.td_deque_ntasks) >=
406         TASK_DEQUE_SIZE(thread_data->td)) {
407       if (__kmp_enable_task_throttling &&
408           __kmp_task_is_allowed(gtid, __kmp_task_stealing_constraint, taskdata,
409                                 thread->th.th_current_task)) {
410         __kmp_release_bootstrap_lock(&thread_data->td.td_deque_lock);
411         KA_TRACE(20, ("__kmp_push_task: T#%d deque is full on 2nd check; "
412                       "returning TASK_NOT_PUSHED for task %p\n",
413                       gtid, taskdata));
414         return TASK_NOT_PUSHED;
415       } else {
416         // expand deque to push the task which is not allowed to execute
417         __kmp_realloc_task_deque(thread, thread_data);
418       }
419     }
420   }
421   // Must have room since no thread can add tasks but calling thread
422   KMP_DEBUG_ASSERT(TCR_4(thread_data->td.td_deque_ntasks) <
423                    TASK_DEQUE_SIZE(thread_data->td));
424 
425   thread_data->td.td_deque[thread_data->td.td_deque_tail] =
426       taskdata; // Push taskdata
427   // Wrap index.
428   thread_data->td.td_deque_tail =
429       (thread_data->td.td_deque_tail + 1) & TASK_DEQUE_MASK(thread_data->td);
430   TCW_4(thread_data->td.td_deque_ntasks,
431         TCR_4(thread_data->td.td_deque_ntasks) + 1); // Adjust task count
432   KMP_FSYNC_RELEASING(thread->th.th_current_task); // releasing self
433   KMP_FSYNC_RELEASING(taskdata); // releasing child
434   KA_TRACE(20, ("__kmp_push_task: T#%d returning TASK_SUCCESSFULLY_PUSHED: "
435                 "task=%p ntasks=%d head=%u tail=%u\n",
436                 gtid, taskdata, thread_data->td.td_deque_ntasks,
437                 thread_data->td.td_deque_head, thread_data->td.td_deque_tail));
438 
439   __kmp_release_bootstrap_lock(&thread_data->td.td_deque_lock);
440 
441   // Signal one worker thread to execute the task
442   if (taskdata->td_flags.hidden_helper) {
443     // Wake hidden helper threads up if they're sleeping
444     __kmp_hidden_helper_worker_thread_signal();
445   }
446 
447   return TASK_SUCCESSFULLY_PUSHED;
448 }
449 
450 // __kmp_pop_current_task_from_thread: set up current task from called thread
451 // when team ends
452 //
453 // this_thr: thread structure to set current_task in.
454 void __kmp_pop_current_task_from_thread(kmp_info_t *this_thr) {
455   KF_TRACE(10, ("__kmp_pop_current_task_from_thread(enter): T#%d "
456                 "this_thread=%p, curtask=%p, "
457                 "curtask_parent=%p\n",
458                 0, this_thr, this_thr->th.th_current_task,
459                 this_thr->th.th_current_task->td_parent));
460 
461   this_thr->th.th_current_task = this_thr->th.th_current_task->td_parent;
462 
463   KF_TRACE(10, ("__kmp_pop_current_task_from_thread(exit): T#%d "
464                 "this_thread=%p, curtask=%p, "
465                 "curtask_parent=%p\n",
466                 0, this_thr, this_thr->th.th_current_task,
467                 this_thr->th.th_current_task->td_parent));
468 }
469 
470 // __kmp_push_current_task_to_thread: set up current task in called thread for a
471 // new team
472 //
473 // this_thr: thread structure to set up
474 // team: team for implicit task data
475 // tid: thread within team to set up
476 void __kmp_push_current_task_to_thread(kmp_info_t *this_thr, kmp_team_t *team,
477                                        int tid) {
478   // current task of the thread is a parent of the new just created implicit
479   // tasks of new team
480   KF_TRACE(10, ("__kmp_push_current_task_to_thread(enter): T#%d this_thread=%p "
481                 "curtask=%p "
482                 "parent_task=%p\n",
483                 tid, this_thr, this_thr->th.th_current_task,
484                 team->t.t_implicit_task_taskdata[tid].td_parent));
485 
486   KMP_DEBUG_ASSERT(this_thr != NULL);
487 
488   if (tid == 0) {
489     if (this_thr->th.th_current_task != &team->t.t_implicit_task_taskdata[0]) {
490       team->t.t_implicit_task_taskdata[0].td_parent =
491           this_thr->th.th_current_task;
492       this_thr->th.th_current_task = &team->t.t_implicit_task_taskdata[0];
493     }
494   } else {
495     team->t.t_implicit_task_taskdata[tid].td_parent =
496         team->t.t_implicit_task_taskdata[0].td_parent;
497     this_thr->th.th_current_task = &team->t.t_implicit_task_taskdata[tid];
498   }
499 
500   KF_TRACE(10, ("__kmp_push_current_task_to_thread(exit): T#%d this_thread=%p "
501                 "curtask=%p "
502                 "parent_task=%p\n",
503                 tid, this_thr, this_thr->th.th_current_task,
504                 team->t.t_implicit_task_taskdata[tid].td_parent));
505 }
506 
507 // __kmp_task_start: bookkeeping for a task starting execution
508 //
509 // GTID: global thread id of calling thread
510 // task: task starting execution
511 // current_task: task suspending
512 static void __kmp_task_start(kmp_int32 gtid, kmp_task_t *task,
513                              kmp_taskdata_t *current_task) {
514   kmp_taskdata_t *taskdata = KMP_TASK_TO_TASKDATA(task);
515   kmp_info_t *thread = __kmp_threads[gtid];
516 
517   KA_TRACE(10,
518            ("__kmp_task_start(enter): T#%d starting task %p: current_task=%p\n",
519             gtid, taskdata, current_task));
520 
521   KMP_DEBUG_ASSERT(taskdata->td_flags.tasktype == TASK_EXPLICIT);
522 
523   // mark currently executing task as suspended
524   // TODO: GEH - make sure root team implicit task is initialized properly.
525   // KMP_DEBUG_ASSERT( current_task -> td_flags.executing == 1 );
526   current_task->td_flags.executing = 0;
527 
528 // Add task to stack if tied
529 #ifdef BUILD_TIED_TASK_STACK
530   if (taskdata->td_flags.tiedness == TASK_TIED) {
531     __kmp_push_task_stack(gtid, thread, taskdata);
532   }
533 #endif /* BUILD_TIED_TASK_STACK */
534 
535   // mark starting task as executing and as current task
536   thread->th.th_current_task = taskdata;
537 
538   KMP_DEBUG_ASSERT(taskdata->td_flags.started == 0 ||
539                    taskdata->td_flags.tiedness == TASK_UNTIED);
540   KMP_DEBUG_ASSERT(taskdata->td_flags.executing == 0 ||
541                    taskdata->td_flags.tiedness == TASK_UNTIED);
542   taskdata->td_flags.started = 1;
543   taskdata->td_flags.executing = 1;
544   KMP_DEBUG_ASSERT(taskdata->td_flags.complete == 0);
545   KMP_DEBUG_ASSERT(taskdata->td_flags.freed == 0);
546 
547   // GEH TODO: shouldn't we pass some sort of location identifier here?
548   // APT: yes, we will pass location here.
549   // need to store current thread state (in a thread or taskdata structure)
550   // before setting work_state, otherwise wrong state is set after end of task
551 
552   KA_TRACE(10, ("__kmp_task_start(exit): T#%d task=%p\n", gtid, taskdata));
553 
554   return;
555 }
556 
557 #if OMPT_SUPPORT
558 //------------------------------------------------------------------------------
559 // __ompt_task_init:
560 //   Initialize OMPT fields maintained by a task. This will only be called after
561 //   ompt_start_tool, so we already know whether ompt is enabled or not.
562 
563 static inline void __ompt_task_init(kmp_taskdata_t *task, int tid) {
564   // The calls to __ompt_task_init already have the ompt_enabled condition.
565   task->ompt_task_info.task_data.value = 0;
566   task->ompt_task_info.frame.exit_frame = ompt_data_none;
567   task->ompt_task_info.frame.enter_frame = ompt_data_none;
568   task->ompt_task_info.frame.exit_frame_flags = ompt_frame_runtime | ompt_frame_framepointer;
569   task->ompt_task_info.frame.enter_frame_flags = ompt_frame_runtime | ompt_frame_framepointer;
570 }
571 
572 // __ompt_task_start:
573 //   Build and trigger task-begin event
574 static inline void __ompt_task_start(kmp_task_t *task,
575                                      kmp_taskdata_t *current_task,
576                                      kmp_int32 gtid) {
577   kmp_taskdata_t *taskdata = KMP_TASK_TO_TASKDATA(task);
578   ompt_task_status_t status = ompt_task_switch;
579   if (__kmp_threads[gtid]->th.ompt_thread_info.ompt_task_yielded) {
580     status = ompt_task_yield;
581     __kmp_threads[gtid]->th.ompt_thread_info.ompt_task_yielded = 0;
582   }
583   /* let OMPT know that we're about to run this task */
584   if (ompt_enabled.ompt_callback_task_schedule) {
585     ompt_callbacks.ompt_callback(ompt_callback_task_schedule)(
586         &(current_task->ompt_task_info.task_data), status,
587         &(taskdata->ompt_task_info.task_data));
588   }
589   taskdata->ompt_task_info.scheduling_parent = current_task;
590 }
591 
592 // __ompt_task_finish:
593 //   Build and trigger final task-schedule event
594 static inline void __ompt_task_finish(kmp_task_t *task,
595                                       kmp_taskdata_t *resumed_task,
596                                       ompt_task_status_t status) {
597   if (ompt_enabled.ompt_callback_task_schedule) {
598     kmp_taskdata_t *taskdata = KMP_TASK_TO_TASKDATA(task);
599     if (__kmp_omp_cancellation && taskdata->td_taskgroup &&
600         taskdata->td_taskgroup->cancel_request == cancel_taskgroup) {
601       status = ompt_task_cancel;
602     }
603 
604     /* let OMPT know that we're returning to the callee task */
605     ompt_callbacks.ompt_callback(ompt_callback_task_schedule)(
606         &(taskdata->ompt_task_info.task_data), status,
607         (resumed_task ? &(resumed_task->ompt_task_info.task_data) : NULL));
608   }
609 }
610 #endif
611 
612 template <bool ompt>
613 static void __kmpc_omp_task_begin_if0_template(ident_t *loc_ref, kmp_int32 gtid,
614                                                kmp_task_t *task,
615                                                void *frame_address,
616                                                void *return_address) {
617   kmp_taskdata_t *taskdata = KMP_TASK_TO_TASKDATA(task);
618   kmp_taskdata_t *current_task = __kmp_threads[gtid]->th.th_current_task;
619 
620   KA_TRACE(10, ("__kmpc_omp_task_begin_if0(enter): T#%d loc=%p task=%p "
621                 "current_task=%p\n",
622                 gtid, loc_ref, taskdata, current_task));
623 
624   if (taskdata->td_flags.tiedness == TASK_UNTIED) {
625     // untied task needs to increment counter so that the task structure is not
626     // freed prematurely
627     kmp_int32 counter = 1 + KMP_ATOMIC_INC(&taskdata->td_untied_count);
628     KMP_DEBUG_USE_VAR(counter);
629     KA_TRACE(20, ("__kmpc_omp_task_begin_if0: T#%d untied_count (%d) "
630                   "incremented for task %p\n",
631                   gtid, counter, taskdata));
632   }
633 
634   taskdata->td_flags.task_serial =
635       1; // Execute this task immediately, not deferred.
636   __kmp_task_start(gtid, task, current_task);
637 
638 #if OMPT_SUPPORT
639   if (ompt) {
640     if (current_task->ompt_task_info.frame.enter_frame.ptr == NULL) {
641       current_task->ompt_task_info.frame.enter_frame.ptr =
642           taskdata->ompt_task_info.frame.exit_frame.ptr = frame_address;
643       current_task->ompt_task_info.frame.enter_frame_flags =
644           taskdata->ompt_task_info.frame.exit_frame_flags = ompt_frame_application | ompt_frame_framepointer;
645     }
646     if (ompt_enabled.ompt_callback_task_create) {
647       ompt_task_info_t *parent_info = &(current_task->ompt_task_info);
648       ompt_callbacks.ompt_callback(ompt_callback_task_create)(
649           &(parent_info->task_data), &(parent_info->frame),
650           &(taskdata->ompt_task_info.task_data),
651           ompt_task_explicit | TASK_TYPE_DETAILS_FORMAT(taskdata), 0,
652           return_address);
653     }
654     __ompt_task_start(task, current_task, gtid);
655   }
656 #endif // OMPT_SUPPORT
657 
658   KA_TRACE(10, ("__kmpc_omp_task_begin_if0(exit): T#%d loc=%p task=%p,\n", gtid,
659                 loc_ref, taskdata));
660 }
661 
662 #if OMPT_SUPPORT
663 OMPT_NOINLINE
664 static void __kmpc_omp_task_begin_if0_ompt(ident_t *loc_ref, kmp_int32 gtid,
665                                            kmp_task_t *task,
666                                            void *frame_address,
667                                            void *return_address) {
668   __kmpc_omp_task_begin_if0_template<true>(loc_ref, gtid, task, frame_address,
669                                            return_address);
670 }
671 #endif // OMPT_SUPPORT
672 
673 // __kmpc_omp_task_begin_if0: report that a given serialized task has started
674 // execution
675 //
676 // loc_ref: source location information; points to beginning of task block.
677 // gtid: global thread number.
678 // task: task thunk for the started task.
679 void __kmpc_omp_task_begin_if0(ident_t *loc_ref, kmp_int32 gtid,
680                                kmp_task_t *task) {
681 #if OMPT_SUPPORT
682   if (UNLIKELY(ompt_enabled.enabled)) {
683     OMPT_STORE_RETURN_ADDRESS(gtid);
684     __kmpc_omp_task_begin_if0_ompt(loc_ref, gtid, task,
685                                    OMPT_GET_FRAME_ADDRESS(1),
686                                    OMPT_LOAD_RETURN_ADDRESS(gtid));
687     return;
688   }
689 #endif
690   __kmpc_omp_task_begin_if0_template<false>(loc_ref, gtid, task, NULL, NULL);
691 }
692 
693 #ifdef TASK_UNUSED
694 // __kmpc_omp_task_begin: report that a given task has started execution
695 // NEVER GENERATED BY COMPILER, DEPRECATED!!!
696 void __kmpc_omp_task_begin(ident_t *loc_ref, kmp_int32 gtid, kmp_task_t *task) {
697   kmp_taskdata_t *current_task = __kmp_threads[gtid]->th.th_current_task;
698 
699   KA_TRACE(
700       10,
701       ("__kmpc_omp_task_begin(enter): T#%d loc=%p task=%p current_task=%p\n",
702        gtid, loc_ref, KMP_TASK_TO_TASKDATA(task), current_task));
703 
704   __kmp_task_start(gtid, task, current_task);
705 
706   KA_TRACE(10, ("__kmpc_omp_task_begin(exit): T#%d loc=%p task=%p,\n", gtid,
707                 loc_ref, KMP_TASK_TO_TASKDATA(task)));
708   return;
709 }
710 #endif // TASK_UNUSED
711 
712 // __kmp_free_task: free the current task space and the space for shareds
713 //
714 // gtid: Global thread ID of calling thread
715 // taskdata: task to free
716 // thread: thread data structure of caller
717 static void __kmp_free_task(kmp_int32 gtid, kmp_taskdata_t *taskdata,
718                             kmp_info_t *thread) {
719   KA_TRACE(30, ("__kmp_free_task: T#%d freeing data from task %p\n", gtid,
720                 taskdata));
721 
722   // Check to make sure all flags and counters have the correct values
723   KMP_DEBUG_ASSERT(taskdata->td_flags.tasktype == TASK_EXPLICIT);
724   KMP_DEBUG_ASSERT(taskdata->td_flags.executing == 0);
725   KMP_DEBUG_ASSERT(taskdata->td_flags.complete == 1);
726   KMP_DEBUG_ASSERT(taskdata->td_flags.freed == 0);
727   KMP_DEBUG_ASSERT(taskdata->td_allocated_child_tasks == 0 ||
728                    taskdata->td_flags.task_serial == 1);
729   KMP_DEBUG_ASSERT(taskdata->td_incomplete_child_tasks == 0);
730 
731   taskdata->td_flags.freed = 1;
732   ANNOTATE_HAPPENS_BEFORE(taskdata);
733 // deallocate the taskdata and shared variable blocks associated with this task
734 #if USE_FAST_MEMORY
735   __kmp_fast_free(thread, taskdata);
736 #else /* ! USE_FAST_MEMORY */
737   __kmp_thread_free(thread, taskdata);
738 #endif
739   KA_TRACE(20, ("__kmp_free_task: T#%d freed task %p\n", gtid, taskdata));
740 }
741 
742 // __kmp_free_task_and_ancestors: free the current task and ancestors without
743 // children
744 //
745 // gtid: Global thread ID of calling thread
746 // taskdata: task to free
747 // thread: thread data structure of caller
748 static void __kmp_free_task_and_ancestors(kmp_int32 gtid,
749                                           kmp_taskdata_t *taskdata,
750                                           kmp_info_t *thread) {
751   // Proxy tasks must always be allowed to free their parents
752   // because they can be run in background even in serial mode.
753   kmp_int32 team_serial =
754       (taskdata->td_flags.team_serial || taskdata->td_flags.tasking_ser) &&
755       !taskdata->td_flags.proxy;
756   KMP_DEBUG_ASSERT(taskdata->td_flags.tasktype == TASK_EXPLICIT);
757 
758   kmp_int32 children = KMP_ATOMIC_DEC(&taskdata->td_allocated_child_tasks) - 1;
759   KMP_DEBUG_ASSERT(children >= 0);
760 
761   // Now, go up the ancestor tree to see if any ancestors can now be freed.
762   while (children == 0) {
763     kmp_taskdata_t *parent_taskdata = taskdata->td_parent;
764 
765     KA_TRACE(20, ("__kmp_free_task_and_ancestors(enter): T#%d task %p complete "
766                   "and freeing itself\n",
767                   gtid, taskdata));
768 
769     // --- Deallocate my ancestor task ---
770     __kmp_free_task(gtid, taskdata, thread);
771 
772     taskdata = parent_taskdata;
773 
774     if (team_serial)
775       return;
776     // Stop checking ancestors at implicit task instead of walking up ancestor
777     // tree to avoid premature deallocation of ancestors.
778     if (taskdata->td_flags.tasktype == TASK_IMPLICIT) {
779       if (taskdata->td_dephash) { // do we need to cleanup dephash?
780         int children = KMP_ATOMIC_LD_ACQ(&taskdata->td_incomplete_child_tasks);
781         kmp_tasking_flags_t flags_old = taskdata->td_flags;
782         if (children == 0 && flags_old.complete == 1) {
783           kmp_tasking_flags_t flags_new = flags_old;
784           flags_new.complete = 0;
785           if (KMP_COMPARE_AND_STORE_ACQ32(
786                   RCAST(kmp_int32 *, &taskdata->td_flags),
787                   *RCAST(kmp_int32 *, &flags_old),
788                   *RCAST(kmp_int32 *, &flags_new))) {
789             KA_TRACE(100, ("__kmp_free_task_and_ancestors: T#%d cleans "
790                            "dephash of implicit task %p\n",
791                            gtid, taskdata));
792             // cleanup dephash of finished implicit task
793             __kmp_dephash_free_entries(thread, taskdata->td_dephash);
794           }
795         }
796       }
797       return;
798     }
799     // Predecrement simulated by "- 1" calculation
800     children = KMP_ATOMIC_DEC(&taskdata->td_allocated_child_tasks) - 1;
801     KMP_DEBUG_ASSERT(children >= 0);
802   }
803 
804   KA_TRACE(
805       20, ("__kmp_free_task_and_ancestors(exit): T#%d task %p has %d children; "
806            "not freeing it yet\n",
807            gtid, taskdata, children));
808 }
809 
810 // __kmp_task_finish: bookkeeping to do when a task finishes execution
811 //
812 // gtid: global thread ID for calling thread
813 // task: task to be finished
814 // resumed_task: task to be resumed.  (may be NULL if task is serialized)
815 //
816 // template<ompt>: effectively ompt_enabled.enabled!=0
817 // the version with ompt=false is inlined, allowing to optimize away all ompt
818 // code in this case
819 template <bool ompt>
820 static void __kmp_task_finish(kmp_int32 gtid, kmp_task_t *task,
821                               kmp_taskdata_t *resumed_task) {
822   kmp_taskdata_t *taskdata = KMP_TASK_TO_TASKDATA(task);
823   kmp_info_t *thread = __kmp_threads[gtid];
824   kmp_task_team_t *task_team =
825       thread->th.th_task_team; // might be NULL for serial teams...
826   kmp_int32 children = 0;
827 
828   KA_TRACE(10, ("__kmp_task_finish(enter): T#%d finishing task %p and resuming "
829                 "task %p\n",
830                 gtid, taskdata, resumed_task));
831 
832   KMP_DEBUG_ASSERT(taskdata->td_flags.tasktype == TASK_EXPLICIT);
833 
834 // Pop task from stack if tied
835 #ifdef BUILD_TIED_TASK_STACK
836   if (taskdata->td_flags.tiedness == TASK_TIED) {
837     __kmp_pop_task_stack(gtid, thread, taskdata);
838   }
839 #endif /* BUILD_TIED_TASK_STACK */
840 
841   if (UNLIKELY(taskdata->td_flags.tiedness == TASK_UNTIED)) {
842     // untied task needs to check the counter so that the task structure is not
843     // freed prematurely
844     kmp_int32 counter = KMP_ATOMIC_DEC(&taskdata->td_untied_count) - 1;
845     KA_TRACE(
846         20,
847         ("__kmp_task_finish: T#%d untied_count (%d) decremented for task %p\n",
848          gtid, counter, taskdata));
849     if (counter > 0) {
850       // untied task is not done, to be continued possibly by other thread, do
851       // not free it now
852       if (resumed_task == NULL) {
853         KMP_DEBUG_ASSERT(taskdata->td_flags.task_serial);
854         resumed_task = taskdata->td_parent; // In a serialized task, the resumed
855         // task is the parent
856       }
857       thread->th.th_current_task = resumed_task; // restore current_task
858       resumed_task->td_flags.executing = 1; // resume previous task
859       KA_TRACE(10, ("__kmp_task_finish(exit): T#%d partially done task %p, "
860                     "resuming task %p\n",
861                     gtid, taskdata, resumed_task));
862       return;
863     }
864   }
865 
866   // bookkeeping for resuming task:
867   // GEH - note tasking_ser => task_serial
868   KMP_DEBUG_ASSERT(
869       (taskdata->td_flags.tasking_ser || taskdata->td_flags.task_serial) ==
870       taskdata->td_flags.task_serial);
871   if (taskdata->td_flags.task_serial) {
872     if (resumed_task == NULL) {
873       resumed_task = taskdata->td_parent; // In a serialized task, the resumed
874       // task is the parent
875     }
876   } else {
877     KMP_DEBUG_ASSERT(resumed_task !=
878                      NULL); // verify that resumed task is passed as argument
879   }
880 
881   /* If the tasks' destructor thunk flag has been set, we need to invoke the
882      destructor thunk that has been generated by the compiler. The code is
883      placed here, since at this point other tasks might have been released
884      hence overlapping the destructor invocations with some other work in the
885      released tasks.  The OpenMP spec is not specific on when the destructors
886      are invoked, so we should be free to choose. */
887   if (taskdata->td_flags.destructors_thunk) {
888     kmp_routine_entry_t destr_thunk = task->data1.destructors;
889     KMP_ASSERT(destr_thunk);
890     destr_thunk(gtid, task);
891   }
892 
893   KMP_DEBUG_ASSERT(taskdata->td_flags.complete == 0);
894   KMP_DEBUG_ASSERT(taskdata->td_flags.started == 1);
895   KMP_DEBUG_ASSERT(taskdata->td_flags.freed == 0);
896 
897   bool detach = false;
898   if (taskdata->td_flags.detachable == TASK_DETACHABLE) {
899     if (taskdata->td_allow_completion_event.type ==
900         KMP_EVENT_ALLOW_COMPLETION) {
901       // event hasn't been fulfilled yet. Try to detach task.
902       __kmp_acquire_tas_lock(&taskdata->td_allow_completion_event.lock, gtid);
903       if (taskdata->td_allow_completion_event.type ==
904           KMP_EVENT_ALLOW_COMPLETION) {
905         // task finished execution
906         KMP_DEBUG_ASSERT(taskdata->td_flags.executing == 1);
907         taskdata->td_flags.executing = 0; // suspend the finishing task
908 
909 #if OMPT_SUPPORT
910         // For a detached task, which is not completed, we switch back
911         // the omp_fulfill_event signals completion
912         // locking is necessary to avoid a race with ompt_task_late_fulfill
913         if (ompt)
914           __ompt_task_finish(task, resumed_task, ompt_task_detach);
915 #endif
916 
917         // no access to taskdata after this point!
918         // __kmp_fulfill_event might free taskdata at any time from now
919 
920         taskdata->td_flags.proxy = TASK_PROXY; // proxify!
921         detach = true;
922       }
923       __kmp_release_tas_lock(&taskdata->td_allow_completion_event.lock, gtid);
924     }
925   }
926 
927   if (!detach) {
928     taskdata->td_flags.complete = 1; // mark the task as completed
929 
930 #if OMPT_SUPPORT
931     // This is not a detached task, we are done here
932     if (ompt)
933       __ompt_task_finish(task, resumed_task, ompt_task_complete);
934 #endif
935 
936     // Only need to keep track of count if team parallel and tasking not
937     // serialized, or task is detachable and event has already been fulfilled
938     if (!(taskdata->td_flags.team_serial || taskdata->td_flags.tasking_ser) ||
939         taskdata->td_flags.detachable == TASK_DETACHABLE ||
940         taskdata->td_flags.hidden_helper) {
941       // Predecrement simulated by "- 1" calculation
942       children =
943           KMP_ATOMIC_DEC(&taskdata->td_parent->td_incomplete_child_tasks) - 1;
944       KMP_DEBUG_ASSERT(children >= 0);
945       if (taskdata->td_taskgroup)
946         KMP_ATOMIC_DEC(&taskdata->td_taskgroup->count);
947       __kmp_release_deps(gtid, taskdata);
948     } else if (task_team && task_team->tt.tt_found_proxy_tasks) {
949       // if we found proxy tasks there could exist a dependency chain
950       // with the proxy task as origin
951       __kmp_release_deps(gtid, taskdata);
952     }
953     // td_flags.executing must be marked as 0 after __kmp_release_deps has been
954     // called. Othertwise, if a task is executed immediately from the
955     // release_deps code, the flag will be reset to 1 again by this same
956     // function
957     KMP_DEBUG_ASSERT(taskdata->td_flags.executing == 1);
958     taskdata->td_flags.executing = 0; // suspend the finishing task
959   }
960 
961 
962   KA_TRACE(
963       20, ("__kmp_task_finish: T#%d finished task %p, %d incomplete children\n",
964            gtid, taskdata, children));
965 
966   // Free this task and then ancestor tasks if they have no children.
967   // Restore th_current_task first as suggested by John:
968   // johnmc: if an asynchronous inquiry peers into the runtime system
969   // it doesn't see the freed task as the current task.
970   thread->th.th_current_task = resumed_task;
971   if (!detach)
972     __kmp_free_task_and_ancestors(gtid, taskdata, thread);
973 
974   // TODO: GEH - make sure root team implicit task is initialized properly.
975   // KMP_DEBUG_ASSERT( resumed_task->td_flags.executing == 0 );
976   resumed_task->td_flags.executing = 1; // resume previous task
977 
978   KA_TRACE(
979       10, ("__kmp_task_finish(exit): T#%d finished task %p, resuming task %p\n",
980            gtid, taskdata, resumed_task));
981 
982   return;
983 }
984 
985 template <bool ompt>
986 static void __kmpc_omp_task_complete_if0_template(ident_t *loc_ref,
987                                                   kmp_int32 gtid,
988                                                   kmp_task_t *task) {
989   KA_TRACE(10, ("__kmpc_omp_task_complete_if0(enter): T#%d loc=%p task=%p\n",
990                 gtid, loc_ref, KMP_TASK_TO_TASKDATA(task)));
991   __kmp_assert_valid_gtid(gtid);
992   // this routine will provide task to resume
993   __kmp_task_finish<ompt>(gtid, task, NULL);
994 
995   KA_TRACE(10, ("__kmpc_omp_task_complete_if0(exit): T#%d loc=%p task=%p\n",
996                 gtid, loc_ref, KMP_TASK_TO_TASKDATA(task)));
997 
998 #if OMPT_SUPPORT
999   if (ompt) {
1000     ompt_frame_t *ompt_frame;
1001     __ompt_get_task_info_internal(0, NULL, NULL, &ompt_frame, NULL, NULL);
1002     ompt_frame->enter_frame = ompt_data_none;
1003     ompt_frame->enter_frame_flags = ompt_frame_runtime | ompt_frame_framepointer;
1004   }
1005 #endif
1006 
1007   return;
1008 }
1009 
1010 #if OMPT_SUPPORT
1011 OMPT_NOINLINE
1012 void __kmpc_omp_task_complete_if0_ompt(ident_t *loc_ref, kmp_int32 gtid,
1013                                        kmp_task_t *task) {
1014   __kmpc_omp_task_complete_if0_template<true>(loc_ref, gtid, task);
1015 }
1016 #endif // OMPT_SUPPORT
1017 
1018 // __kmpc_omp_task_complete_if0: report that a task has completed execution
1019 //
1020 // loc_ref: source location information; points to end of task block.
1021 // gtid: global thread number.
1022 // task: task thunk for the completed task.
1023 void __kmpc_omp_task_complete_if0(ident_t *loc_ref, kmp_int32 gtid,
1024                                   kmp_task_t *task) {
1025 #if OMPT_SUPPORT
1026   if (UNLIKELY(ompt_enabled.enabled)) {
1027     __kmpc_omp_task_complete_if0_ompt(loc_ref, gtid, task);
1028     return;
1029   }
1030 #endif
1031   __kmpc_omp_task_complete_if0_template<false>(loc_ref, gtid, task);
1032 }
1033 
1034 #ifdef TASK_UNUSED
1035 // __kmpc_omp_task_complete: report that a task has completed execution
1036 // NEVER GENERATED BY COMPILER, DEPRECATED!!!
1037 void __kmpc_omp_task_complete(ident_t *loc_ref, kmp_int32 gtid,
1038                               kmp_task_t *task) {
1039   KA_TRACE(10, ("__kmpc_omp_task_complete(enter): T#%d loc=%p task=%p\n", gtid,
1040                 loc_ref, KMP_TASK_TO_TASKDATA(task)));
1041 
1042   __kmp_task_finish<false>(gtid, task,
1043                            NULL); // Not sure how to find task to resume
1044 
1045   KA_TRACE(10, ("__kmpc_omp_task_complete(exit): T#%d loc=%p task=%p\n", gtid,
1046                 loc_ref, KMP_TASK_TO_TASKDATA(task)));
1047   return;
1048 }
1049 #endif // TASK_UNUSED
1050 
1051 // __kmp_init_implicit_task: Initialize the appropriate fields in the implicit
1052 // task for a given thread
1053 //
1054 // loc_ref:  reference to source location of parallel region
1055 // this_thr:  thread data structure corresponding to implicit task
1056 // team: team for this_thr
1057 // tid: thread id of given thread within team
1058 // set_curr_task: TRUE if need to push current task to thread
1059 // NOTE: Routine does not set up the implicit task ICVS.  This is assumed to
1060 // have already been done elsewhere.
1061 // TODO: Get better loc_ref.  Value passed in may be NULL
1062 void __kmp_init_implicit_task(ident_t *loc_ref, kmp_info_t *this_thr,
1063                               kmp_team_t *team, int tid, int set_curr_task) {
1064   kmp_taskdata_t *task = &team->t.t_implicit_task_taskdata[tid];
1065 
1066   KF_TRACE(
1067       10,
1068       ("__kmp_init_implicit_task(enter): T#:%d team=%p task=%p, reinit=%s\n",
1069        tid, team, task, set_curr_task ? "TRUE" : "FALSE"));
1070 
1071   task->td_task_id = KMP_GEN_TASK_ID();
1072   task->td_team = team;
1073   //    task->td_parent   = NULL;  // fix for CQ230101 (broken parent task info
1074   //    in debugger)
1075   task->td_ident = loc_ref;
1076   task->td_taskwait_ident = NULL;
1077   task->td_taskwait_counter = 0;
1078   task->td_taskwait_thread = 0;
1079 
1080   task->td_flags.tiedness = TASK_TIED;
1081   task->td_flags.tasktype = TASK_IMPLICIT;
1082   task->td_flags.proxy = TASK_FULL;
1083 
1084   // All implicit tasks are executed immediately, not deferred
1085   task->td_flags.task_serial = 1;
1086   task->td_flags.tasking_ser = (__kmp_tasking_mode == tskm_immediate_exec);
1087   task->td_flags.team_serial = (team->t.t_serialized) ? 1 : 0;
1088 
1089   task->td_flags.started = 1;
1090   task->td_flags.executing = 1;
1091   task->td_flags.complete = 0;
1092   task->td_flags.freed = 0;
1093 
1094   task->td_depnode = NULL;
1095   task->td_last_tied = task;
1096   task->td_allow_completion_event.type = KMP_EVENT_UNINITIALIZED;
1097 
1098   if (set_curr_task) { // only do this init first time thread is created
1099     KMP_ATOMIC_ST_REL(&task->td_incomplete_child_tasks, 0);
1100     // Not used: don't need to deallocate implicit task
1101     KMP_ATOMIC_ST_REL(&task->td_allocated_child_tasks, 0);
1102     task->td_taskgroup = NULL; // An implicit task does not have taskgroup
1103     task->td_dephash = NULL;
1104     __kmp_push_current_task_to_thread(this_thr, team, tid);
1105   } else {
1106     KMP_DEBUG_ASSERT(task->td_incomplete_child_tasks == 0);
1107     KMP_DEBUG_ASSERT(task->td_allocated_child_tasks == 0);
1108   }
1109 
1110 #if OMPT_SUPPORT
1111   if (UNLIKELY(ompt_enabled.enabled))
1112     __ompt_task_init(task, tid);
1113 #endif
1114 
1115   KF_TRACE(10, ("__kmp_init_implicit_task(exit): T#:%d team=%p task=%p\n", tid,
1116                 team, task));
1117 }
1118 
1119 // __kmp_finish_implicit_task: Release resources associated to implicit tasks
1120 // at the end of parallel regions. Some resources are kept for reuse in the next
1121 // parallel region.
1122 //
1123 // thread:  thread data structure corresponding to implicit task
1124 void __kmp_finish_implicit_task(kmp_info_t *thread) {
1125   kmp_taskdata_t *task = thread->th.th_current_task;
1126   if (task->td_dephash) {
1127     int children;
1128     task->td_flags.complete = 1;
1129     children = KMP_ATOMIC_LD_ACQ(&task->td_incomplete_child_tasks);
1130     kmp_tasking_flags_t flags_old = task->td_flags;
1131     if (children == 0 && flags_old.complete == 1) {
1132       kmp_tasking_flags_t flags_new = flags_old;
1133       flags_new.complete = 0;
1134       if (KMP_COMPARE_AND_STORE_ACQ32(RCAST(kmp_int32 *, &task->td_flags),
1135                                       *RCAST(kmp_int32 *, &flags_old),
1136                                       *RCAST(kmp_int32 *, &flags_new))) {
1137         KA_TRACE(100, ("__kmp_finish_implicit_task: T#%d cleans "
1138                        "dephash of implicit task %p\n",
1139                        thread->th.th_info.ds.ds_gtid, task));
1140         __kmp_dephash_free_entries(thread, task->td_dephash);
1141       }
1142     }
1143   }
1144 }
1145 
1146 // __kmp_free_implicit_task: Release resources associated to implicit tasks
1147 // when these are destroyed regions
1148 //
1149 // thread:  thread data structure corresponding to implicit task
1150 void __kmp_free_implicit_task(kmp_info_t *thread) {
1151   kmp_taskdata_t *task = thread->th.th_current_task;
1152   if (task && task->td_dephash) {
1153     __kmp_dephash_free(thread, task->td_dephash);
1154     task->td_dephash = NULL;
1155   }
1156 }
1157 
1158 // Round up a size to a power of two specified by val: Used to insert padding
1159 // between structures co-allocated using a single malloc() call
1160 static size_t __kmp_round_up_to_val(size_t size, size_t val) {
1161   if (size & (val - 1)) {
1162     size &= ~(val - 1);
1163     if (size <= KMP_SIZE_T_MAX - val) {
1164       size += val; // Round up if there is no overflow.
1165     }
1166   }
1167   return size;
1168 } // __kmp_round_up_to_va
1169 
1170 // __kmp_task_alloc: Allocate the taskdata and task data structures for a task
1171 //
1172 // loc_ref: source location information
1173 // gtid: global thread number.
1174 // flags: include tiedness & task type (explicit vs. implicit) of the ''new''
1175 // task encountered. Converted from kmp_int32 to kmp_tasking_flags_t in routine.
1176 // sizeof_kmp_task_t:  Size in bytes of kmp_task_t data structure including
1177 // private vars accessed in task.
1178 // sizeof_shareds:  Size in bytes of array of pointers to shared vars accessed
1179 // in task.
1180 // task_entry: Pointer to task code entry point generated by compiler.
1181 // returns: a pointer to the allocated kmp_task_t structure (task).
1182 kmp_task_t *__kmp_task_alloc(ident_t *loc_ref, kmp_int32 gtid,
1183                              kmp_tasking_flags_t *flags,
1184                              size_t sizeof_kmp_task_t, size_t sizeof_shareds,
1185                              kmp_routine_entry_t task_entry) {
1186   kmp_task_t *task;
1187   kmp_taskdata_t *taskdata;
1188   kmp_info_t *thread = __kmp_threads[gtid];
1189   kmp_info_t *encountering_thread = thread;
1190   kmp_team_t *team = thread->th.th_team;
1191   kmp_taskdata_t *parent_task = thread->th.th_current_task;
1192   size_t shareds_offset;
1193 
1194   if (UNLIKELY(!TCR_4(__kmp_init_middle)))
1195     __kmp_middle_initialize();
1196 
1197   if (flags->hidden_helper) {
1198     if (__kmp_enable_hidden_helper) {
1199       if (!TCR_4(__kmp_init_hidden_helper))
1200         __kmp_hidden_helper_initialize();
1201 
1202       // For a hidden helper task encountered by a regular thread, we will push
1203       // the task to the (gtid%__kmp_hidden_helper_threads_num)-th hidden helper
1204       // thread.
1205       if (!KMP_HIDDEN_HELPER_THREAD(gtid)) {
1206         thread = __kmp_threads[KMP_GTID_TO_SHADOW_GTID(gtid)];
1207         // We don't change the parent-child relation for hidden helper task as
1208         // we need that to do per-task-region synchronization.
1209       }
1210     } else {
1211       // If the hidden helper task is not enabled, reset the flag to FALSE.
1212       flags->hidden_helper = FALSE;
1213     }
1214   }
1215 
1216   KA_TRACE(10, ("__kmp_task_alloc(enter): T#%d loc=%p, flags=(0x%x) "
1217                 "sizeof_task=%ld sizeof_shared=%ld entry=%p\n",
1218                 gtid, loc_ref, *((kmp_int32 *)flags), sizeof_kmp_task_t,
1219                 sizeof_shareds, task_entry));
1220 
1221   if (parent_task->td_flags.final) {
1222     if (flags->merged_if0) {
1223     }
1224     flags->final = 1;
1225   }
1226 
1227   if (flags->tiedness == TASK_UNTIED && !team->t.t_serialized) {
1228     // Untied task encountered causes the TSC algorithm to check entire deque of
1229     // the victim thread. If no untied task encountered, then checking the head
1230     // of the deque should be enough.
1231     KMP_CHECK_UPDATE(
1232         encountering_thread->th.th_task_team->tt.tt_untied_task_encountered, 1);
1233   }
1234 
1235   // Detachable tasks are not proxy tasks yet but could be in the future. Doing
1236   // the tasking setup
1237   // when that happens is too late.
1238   if (flags->proxy == TASK_PROXY || flags->detachable == TASK_DETACHABLE ||
1239       flags->hidden_helper) {
1240     if (flags->proxy == TASK_PROXY) {
1241       flags->tiedness = TASK_UNTIED;
1242       flags->merged_if0 = 1;
1243     }
1244     /* are we running in a sequential parallel or tskm_immediate_exec... we need
1245        tasking support enabled */
1246     if ((encountering_thread->th.th_task_team) == NULL) {
1247       /* This should only happen if the team is serialized
1248           setup a task team and propagate it to the thread */
1249       KMP_DEBUG_ASSERT(team->t.t_serialized);
1250       KA_TRACE(30,
1251                ("T#%d creating task team in __kmp_task_alloc for proxy task\n",
1252                 gtid));
1253       __kmp_task_team_setup(
1254           encountering_thread, team,
1255           1); // 1 indicates setup the current team regardless of nthreads
1256       encountering_thread->th.th_task_team =
1257           team->t.t_task_team[encountering_thread->th.th_task_state];
1258     }
1259     kmp_task_team_t *task_team = encountering_thread->th.th_task_team;
1260 
1261     /* tasking must be enabled now as the task might not be pushed */
1262     if (!KMP_TASKING_ENABLED(task_team)) {
1263       KA_TRACE(
1264           30,
1265           ("T#%d enabling tasking in __kmp_task_alloc for proxy task\n", gtid));
1266       __kmp_enable_tasking(task_team, encountering_thread);
1267       kmp_int32 tid = encountering_thread->th.th_info.ds.ds_tid;
1268       kmp_thread_data_t *thread_data = &task_team->tt.tt_threads_data[tid];
1269       // No lock needed since only owner can allocate
1270       if (thread_data->td.td_deque == NULL) {
1271         __kmp_alloc_task_deque(encountering_thread, thread_data);
1272       }
1273     }
1274 
1275     if (flags->proxy == TASK_PROXY &&
1276         task_team->tt.tt_found_proxy_tasks == FALSE)
1277       TCW_4(task_team->tt.tt_found_proxy_tasks, TRUE);
1278     if (flags->hidden_helper &&
1279         task_team->tt.tt_hidden_helper_task_encountered == FALSE)
1280       TCW_4(task_team->tt.tt_hidden_helper_task_encountered, TRUE);
1281   }
1282 
1283   // Calculate shared structure offset including padding after kmp_task_t struct
1284   // to align pointers in shared struct
1285   shareds_offset = sizeof(kmp_taskdata_t) + sizeof_kmp_task_t;
1286   shareds_offset = __kmp_round_up_to_val(shareds_offset, sizeof(void *));
1287 
1288   // Allocate a kmp_taskdata_t block and a kmp_task_t block.
1289   KA_TRACE(30, ("__kmp_task_alloc: T#%d First malloc size: %ld\n", gtid,
1290                 shareds_offset));
1291   KA_TRACE(30, ("__kmp_task_alloc: T#%d Second malloc size: %ld\n", gtid,
1292                 sizeof_shareds));
1293 
1294   // Avoid double allocation here by combining shareds with taskdata
1295 #if USE_FAST_MEMORY
1296   taskdata = (kmp_taskdata_t *)__kmp_fast_allocate(
1297       encountering_thread, shareds_offset + sizeof_shareds);
1298 #else /* ! USE_FAST_MEMORY */
1299   taskdata = (kmp_taskdata_t *)__kmp_thread_malloc(
1300       encountering_thread, shareds_offset + sizeof_shareds);
1301 #endif /* USE_FAST_MEMORY */
1302   ANNOTATE_HAPPENS_AFTER(taskdata);
1303 
1304   task = KMP_TASKDATA_TO_TASK(taskdata);
1305 
1306 // Make sure task & taskdata are aligned appropriately
1307 #if KMP_ARCH_X86 || KMP_ARCH_PPC64 || !KMP_HAVE_QUAD
1308   KMP_DEBUG_ASSERT((((kmp_uintptr_t)taskdata) & (sizeof(double) - 1)) == 0);
1309   KMP_DEBUG_ASSERT((((kmp_uintptr_t)task) & (sizeof(double) - 1)) == 0);
1310 #else
1311   KMP_DEBUG_ASSERT((((kmp_uintptr_t)taskdata) & (sizeof(_Quad) - 1)) == 0);
1312   KMP_DEBUG_ASSERT((((kmp_uintptr_t)task) & (sizeof(_Quad) - 1)) == 0);
1313 #endif
1314   if (sizeof_shareds > 0) {
1315     // Avoid double allocation here by combining shareds with taskdata
1316     task->shareds = &((char *)taskdata)[shareds_offset];
1317     // Make sure shareds struct is aligned to pointer size
1318     KMP_DEBUG_ASSERT((((kmp_uintptr_t)task->shareds) & (sizeof(void *) - 1)) ==
1319                      0);
1320   } else {
1321     task->shareds = NULL;
1322   }
1323   task->routine = task_entry;
1324   task->part_id = 0; // AC: Always start with 0 part id
1325 
1326   taskdata->td_task_id = KMP_GEN_TASK_ID();
1327   taskdata->td_team = thread->th.th_team;
1328   taskdata->td_alloc_thread = encountering_thread;
1329   taskdata->td_parent = parent_task;
1330   taskdata->td_level = parent_task->td_level + 1; // increment nesting level
1331   KMP_ATOMIC_ST_RLX(&taskdata->td_untied_count, 0);
1332   taskdata->td_ident = loc_ref;
1333   taskdata->td_taskwait_ident = NULL;
1334   taskdata->td_taskwait_counter = 0;
1335   taskdata->td_taskwait_thread = 0;
1336   KMP_DEBUG_ASSERT(taskdata->td_parent != NULL);
1337   // avoid copying icvs for proxy tasks
1338   if (flags->proxy == TASK_FULL)
1339     copy_icvs(&taskdata->td_icvs, &taskdata->td_parent->td_icvs);
1340 
1341   taskdata->td_flags.tiedness = flags->tiedness;
1342   taskdata->td_flags.final = flags->final;
1343   taskdata->td_flags.merged_if0 = flags->merged_if0;
1344   taskdata->td_flags.destructors_thunk = flags->destructors_thunk;
1345   taskdata->td_flags.proxy = flags->proxy;
1346   taskdata->td_flags.detachable = flags->detachable;
1347   taskdata->td_flags.hidden_helper = flags->hidden_helper;
1348   taskdata->encountering_gtid = gtid;
1349   taskdata->td_task_team = thread->th.th_task_team;
1350   taskdata->td_size_alloc = shareds_offset + sizeof_shareds;
1351   taskdata->td_flags.tasktype = TASK_EXPLICIT;
1352 
1353   // GEH - TODO: fix this to copy parent task's value of tasking_ser flag
1354   taskdata->td_flags.tasking_ser = (__kmp_tasking_mode == tskm_immediate_exec);
1355 
1356   // GEH - TODO: fix this to copy parent task's value of team_serial flag
1357   taskdata->td_flags.team_serial = (team->t.t_serialized) ? 1 : 0;
1358 
1359   // GEH - Note we serialize the task if the team is serialized to make sure
1360   // implicit parallel region tasks are not left until program termination to
1361   // execute. Also, it helps locality to execute immediately.
1362 
1363   taskdata->td_flags.task_serial =
1364       (parent_task->td_flags.final || taskdata->td_flags.team_serial ||
1365        taskdata->td_flags.tasking_ser || flags->merged_if0);
1366 
1367   taskdata->td_flags.started = 0;
1368   taskdata->td_flags.executing = 0;
1369   taskdata->td_flags.complete = 0;
1370   taskdata->td_flags.freed = 0;
1371 
1372   taskdata->td_flags.native = flags->native;
1373 
1374   KMP_ATOMIC_ST_RLX(&taskdata->td_incomplete_child_tasks, 0);
1375   // start at one because counts current task and children
1376   KMP_ATOMIC_ST_RLX(&taskdata->td_allocated_child_tasks, 1);
1377   taskdata->td_taskgroup =
1378       parent_task->td_taskgroup; // task inherits taskgroup from the parent task
1379   taskdata->td_dephash = NULL;
1380   taskdata->td_depnode = NULL;
1381   if (flags->tiedness == TASK_UNTIED)
1382     taskdata->td_last_tied = NULL; // will be set when the task is scheduled
1383   else
1384     taskdata->td_last_tied = taskdata;
1385   taskdata->td_allow_completion_event.type = KMP_EVENT_UNINITIALIZED;
1386 #if OMPT_SUPPORT
1387   if (UNLIKELY(ompt_enabled.enabled))
1388     __ompt_task_init(taskdata, gtid);
1389 #endif
1390   // Only need to keep track of child task counts if team parallel and tasking
1391   // not serialized or if it is a proxy or detachable or hidden helper task
1392   if (flags->proxy == TASK_PROXY || flags->detachable == TASK_DETACHABLE ||
1393       flags->hidden_helper ||
1394       !(taskdata->td_flags.team_serial || taskdata->td_flags.tasking_ser)) {
1395     KMP_ATOMIC_INC(&parent_task->td_incomplete_child_tasks);
1396     if (parent_task->td_taskgroup)
1397       KMP_ATOMIC_INC(&parent_task->td_taskgroup->count);
1398     // Only need to keep track of allocated child tasks for explicit tasks since
1399     // implicit not deallocated
1400     if (taskdata->td_parent->td_flags.tasktype == TASK_EXPLICIT) {
1401       KMP_ATOMIC_INC(&taskdata->td_parent->td_allocated_child_tasks);
1402     }
1403   }
1404 
1405   if (flags->hidden_helper) {
1406     taskdata->td_flags.task_serial = FALSE;
1407     // Increment the number of hidden helper tasks to be executed
1408     KMP_ATOMIC_INC(&__kmp_unexecuted_hidden_helper_tasks);
1409   }
1410 
1411   KA_TRACE(20, ("__kmp_task_alloc(exit): T#%d created task %p parent=%p\n",
1412                 gtid, taskdata, taskdata->td_parent));
1413   ANNOTATE_HAPPENS_BEFORE(task);
1414 
1415   return task;
1416 }
1417 
1418 kmp_task_t *__kmpc_omp_task_alloc(ident_t *loc_ref, kmp_int32 gtid,
1419                                   kmp_int32 flags, size_t sizeof_kmp_task_t,
1420                                   size_t sizeof_shareds,
1421                                   kmp_routine_entry_t task_entry) {
1422   kmp_task_t *retval;
1423   kmp_tasking_flags_t *input_flags = (kmp_tasking_flags_t *)&flags;
1424   __kmp_assert_valid_gtid(gtid);
1425   input_flags->native = FALSE;
1426 // __kmp_task_alloc() sets up all other runtime flags
1427   KA_TRACE(10, ("__kmpc_omp_task_alloc(enter): T#%d loc=%p, flags=(%s %s %s) "
1428                 "sizeof_task=%ld sizeof_shared=%ld entry=%p\n",
1429                 gtid, loc_ref, input_flags->tiedness ? "tied  " : "untied",
1430                 input_flags->proxy ? "proxy" : "",
1431                 input_flags->detachable ? "detachable" : "", sizeof_kmp_task_t,
1432                 sizeof_shareds, task_entry));
1433 
1434   retval = __kmp_task_alloc(loc_ref, gtid, input_flags, sizeof_kmp_task_t,
1435                             sizeof_shareds, task_entry);
1436 
1437   KA_TRACE(20, ("__kmpc_omp_task_alloc(exit): T#%d retval %p\n", gtid, retval));
1438 
1439   return retval;
1440 }
1441 
1442 kmp_task_t *__kmpc_omp_target_task_alloc(ident_t *loc_ref, kmp_int32 gtid,
1443                                          kmp_int32 flags,
1444                                          size_t sizeof_kmp_task_t,
1445                                          size_t sizeof_shareds,
1446                                          kmp_routine_entry_t task_entry,
1447                                          kmp_int64 device_id) {
1448   if (__kmp_enable_hidden_helper) {
1449     auto &input_flags = reinterpret_cast<kmp_tasking_flags_t &>(flags);
1450     input_flags.hidden_helper = TRUE;
1451   }
1452 
1453   return __kmpc_omp_task_alloc(loc_ref, gtid, flags, sizeof_kmp_task_t,
1454                                sizeof_shareds, task_entry);
1455 }
1456 
1457 /*!
1458 @ingroup TASKING
1459 @param loc_ref location of the original task directive
1460 @param gtid Global Thread ID of encountering thread
1461 @param new_task task thunk allocated by __kmpc_omp_task_alloc() for the ''new
1462 task''
1463 @param naffins Number of affinity items
1464 @param affin_list List of affinity items
1465 @return Returns non-zero if registering affinity information was not successful.
1466  Returns 0 if registration was successful
1467 This entry registers the affinity information attached to a task with the task
1468 thunk structure kmp_taskdata_t.
1469 */
1470 kmp_int32
1471 __kmpc_omp_reg_task_with_affinity(ident_t *loc_ref, kmp_int32 gtid,
1472                                   kmp_task_t *new_task, kmp_int32 naffins,
1473                                   kmp_task_affinity_info_t *affin_list) {
1474   return 0;
1475 }
1476 
1477 //  __kmp_invoke_task: invoke the specified task
1478 //
1479 // gtid: global thread ID of caller
1480 // task: the task to invoke
1481 // current_task: the task to resume after task invocation
1482 static void __kmp_invoke_task(kmp_int32 gtid, kmp_task_t *task,
1483                               kmp_taskdata_t *current_task) {
1484   kmp_taskdata_t *taskdata = KMP_TASK_TO_TASKDATA(task);
1485   kmp_info_t *thread;
1486   int discard = 0 /* false */;
1487   KA_TRACE(
1488       30, ("__kmp_invoke_task(enter): T#%d invoking task %p, current_task=%p\n",
1489            gtid, taskdata, current_task));
1490   KMP_DEBUG_ASSERT(task);
1491   if (UNLIKELY(taskdata->td_flags.proxy == TASK_PROXY &&
1492                taskdata->td_flags.complete == 1)) {
1493     // This is a proxy task that was already completed but it needs to run
1494     // its bottom-half finish
1495     KA_TRACE(
1496         30,
1497         ("__kmp_invoke_task: T#%d running bottom finish for proxy task %p\n",
1498          gtid, taskdata));
1499 
1500     __kmp_bottom_half_finish_proxy(gtid, task);
1501 
1502     KA_TRACE(30, ("__kmp_invoke_task(exit): T#%d completed bottom finish for "
1503                   "proxy task %p, resuming task %p\n",
1504                   gtid, taskdata, current_task));
1505 
1506     return;
1507   }
1508 
1509 #if OMPT_SUPPORT
1510   // For untied tasks, the first task executed only calls __kmpc_omp_task and
1511   // does not execute code.
1512   ompt_thread_info_t oldInfo;
1513   if (UNLIKELY(ompt_enabled.enabled)) {
1514     // Store the threads states and restore them after the task
1515     thread = __kmp_threads[gtid];
1516     oldInfo = thread->th.ompt_thread_info;
1517     thread->th.ompt_thread_info.wait_id = 0;
1518     thread->th.ompt_thread_info.state = (thread->th.th_team_serialized)
1519                                             ? ompt_state_work_serial
1520                                             : ompt_state_work_parallel;
1521     taskdata->ompt_task_info.frame.exit_frame.ptr = OMPT_GET_FRAME_ADDRESS(0);
1522   }
1523 #endif
1524 
1525   // Decreament the counter of hidden helper tasks to be executed
1526   if (taskdata->td_flags.hidden_helper) {
1527     // Hidden helper tasks can only be executed by hidden helper threads
1528     KMP_ASSERT(KMP_HIDDEN_HELPER_THREAD(gtid));
1529     KMP_ATOMIC_DEC(&__kmp_unexecuted_hidden_helper_tasks);
1530   }
1531 
1532   // Proxy tasks are not handled by the runtime
1533   if (taskdata->td_flags.proxy != TASK_PROXY) {
1534     ANNOTATE_HAPPENS_AFTER(task);
1535     __kmp_task_start(gtid, task, current_task); // OMPT only if not discarded
1536   }
1537 
1538   // TODO: cancel tasks if the parallel region has also been cancelled
1539   // TODO: check if this sequence can be hoisted above __kmp_task_start
1540   // if cancellation has been enabled for this run ...
1541   if (UNLIKELY(__kmp_omp_cancellation)) {
1542     thread = __kmp_threads[gtid];
1543     kmp_team_t *this_team = thread->th.th_team;
1544     kmp_taskgroup_t *taskgroup = taskdata->td_taskgroup;
1545     if ((taskgroup && taskgroup->cancel_request) ||
1546         (this_team->t.t_cancel_request == cancel_parallel)) {
1547 #if OMPT_SUPPORT && OMPT_OPTIONAL
1548       ompt_data_t *task_data;
1549       if (UNLIKELY(ompt_enabled.ompt_callback_cancel)) {
1550         __ompt_get_task_info_internal(0, NULL, &task_data, NULL, NULL, NULL);
1551         ompt_callbacks.ompt_callback(ompt_callback_cancel)(
1552             task_data,
1553             ((taskgroup && taskgroup->cancel_request) ? ompt_cancel_taskgroup
1554                                                       : ompt_cancel_parallel) |
1555                 ompt_cancel_discarded_task,
1556             NULL);
1557       }
1558 #endif
1559       KMP_COUNT_BLOCK(TASK_cancelled);
1560       // this task belongs to a task group and we need to cancel it
1561       discard = 1 /* true */;
1562     }
1563   }
1564 
1565   // Invoke the task routine and pass in relevant data.
1566   // Thunks generated by gcc take a different argument list.
1567   if (!discard) {
1568     if (taskdata->td_flags.tiedness == TASK_UNTIED) {
1569       taskdata->td_last_tied = current_task->td_last_tied;
1570       KMP_DEBUG_ASSERT(taskdata->td_last_tied);
1571     }
1572 #if KMP_STATS_ENABLED
1573     KMP_COUNT_BLOCK(TASK_executed);
1574     switch (KMP_GET_THREAD_STATE()) {
1575     case FORK_JOIN_BARRIER:
1576       KMP_PUSH_PARTITIONED_TIMER(OMP_task_join_bar);
1577       break;
1578     case PLAIN_BARRIER:
1579       KMP_PUSH_PARTITIONED_TIMER(OMP_task_plain_bar);
1580       break;
1581     case TASKYIELD:
1582       KMP_PUSH_PARTITIONED_TIMER(OMP_task_taskyield);
1583       break;
1584     case TASKWAIT:
1585       KMP_PUSH_PARTITIONED_TIMER(OMP_task_taskwait);
1586       break;
1587     case TASKGROUP:
1588       KMP_PUSH_PARTITIONED_TIMER(OMP_task_taskgroup);
1589       break;
1590     default:
1591       KMP_PUSH_PARTITIONED_TIMER(OMP_task_immediate);
1592       break;
1593     }
1594 #endif // KMP_STATS_ENABLED
1595 
1596 // OMPT task begin
1597 #if OMPT_SUPPORT
1598     if (UNLIKELY(ompt_enabled.enabled))
1599       __ompt_task_start(task, current_task, gtid);
1600 #endif
1601 
1602 #if USE_ITT_BUILD && USE_ITT_NOTIFY
1603     kmp_uint64 cur_time;
1604     kmp_int32 kmp_itt_count_task =
1605         __kmp_forkjoin_frames_mode == 3 && !taskdata->td_flags.task_serial &&
1606         current_task->td_flags.tasktype == TASK_IMPLICIT;
1607     if (kmp_itt_count_task) {
1608       thread = __kmp_threads[gtid];
1609       // Time outer level explicit task on barrier for adjusting imbalance time
1610       if (thread->th.th_bar_arrive_time)
1611         cur_time = __itt_get_timestamp();
1612       else
1613         kmp_itt_count_task = 0; // thread is not on a barrier - skip timing
1614     }
1615     KMP_FSYNC_ACQUIRED(taskdata); // acquired self (new task)
1616 #endif
1617 
1618 #ifdef KMP_GOMP_COMPAT
1619     if (taskdata->td_flags.native) {
1620       ((void (*)(void *))(*(task->routine)))(task->shareds);
1621     } else
1622 #endif /* KMP_GOMP_COMPAT */
1623     {
1624       (*(task->routine))(gtid, task);
1625     }
1626     KMP_POP_PARTITIONED_TIMER();
1627 
1628 #if USE_ITT_BUILD && USE_ITT_NOTIFY
1629     if (kmp_itt_count_task) {
1630       // Barrier imbalance - adjust arrive time with the task duration
1631       thread->th.th_bar_arrive_time += (__itt_get_timestamp() - cur_time);
1632     }
1633     KMP_FSYNC_CANCEL(taskdata); // destroy self (just executed)
1634     KMP_FSYNC_RELEASING(taskdata->td_parent); // releasing parent
1635 #endif
1636 
1637   }
1638 
1639   // Proxy tasks are not handled by the runtime
1640   if (taskdata->td_flags.proxy != TASK_PROXY) {
1641     ANNOTATE_HAPPENS_BEFORE(taskdata->td_parent);
1642 #if OMPT_SUPPORT
1643     if (UNLIKELY(ompt_enabled.enabled)) {
1644       thread->th.ompt_thread_info = oldInfo;
1645       if (taskdata->td_flags.tiedness == TASK_TIED) {
1646         taskdata->ompt_task_info.frame.exit_frame = ompt_data_none;
1647       }
1648       __kmp_task_finish<true>(gtid, task, current_task);
1649     } else
1650 #endif
1651       __kmp_task_finish<false>(gtid, task, current_task);
1652   }
1653 
1654   KA_TRACE(
1655       30,
1656       ("__kmp_invoke_task(exit): T#%d completed task %p, resuming task %p\n",
1657        gtid, taskdata, current_task));
1658   return;
1659 }
1660 
1661 // __kmpc_omp_task_parts: Schedule a thread-switchable task for execution
1662 //
1663 // loc_ref: location of original task pragma (ignored)
1664 // gtid: Global Thread ID of encountering thread
1665 // new_task: task thunk allocated by __kmp_omp_task_alloc() for the ''new task''
1666 // Returns:
1667 //    TASK_CURRENT_NOT_QUEUED (0) if did not suspend and queue current task to
1668 //    be resumed later.
1669 //    TASK_CURRENT_QUEUED (1) if suspended and queued the current task to be
1670 //    resumed later.
1671 kmp_int32 __kmpc_omp_task_parts(ident_t *loc_ref, kmp_int32 gtid,
1672                                 kmp_task_t *new_task) {
1673   kmp_taskdata_t *new_taskdata = KMP_TASK_TO_TASKDATA(new_task);
1674 
1675   KA_TRACE(10, ("__kmpc_omp_task_parts(enter): T#%d loc=%p task=%p\n", gtid,
1676                 loc_ref, new_taskdata));
1677 
1678 #if OMPT_SUPPORT
1679   kmp_taskdata_t *parent;
1680   if (UNLIKELY(ompt_enabled.enabled)) {
1681     parent = new_taskdata->td_parent;
1682     if (ompt_enabled.ompt_callback_task_create) {
1683       ompt_data_t task_data = ompt_data_none;
1684       ompt_callbacks.ompt_callback(ompt_callback_task_create)(
1685           parent ? &(parent->ompt_task_info.task_data) : &task_data,
1686           parent ? &(parent->ompt_task_info.frame) : NULL,
1687           &(new_taskdata->ompt_task_info.task_data), ompt_task_explicit, 0,
1688           OMPT_GET_RETURN_ADDRESS(0));
1689     }
1690   }
1691 #endif
1692 
1693   /* Should we execute the new task or queue it? For now, let's just always try
1694      to queue it.  If the queue fills up, then we'll execute it.  */
1695 
1696   if (__kmp_push_task(gtid, new_task) == TASK_NOT_PUSHED) // if cannot defer
1697   { // Execute this task immediately
1698     kmp_taskdata_t *current_task = __kmp_threads[gtid]->th.th_current_task;
1699     new_taskdata->td_flags.task_serial = 1;
1700     __kmp_invoke_task(gtid, new_task, current_task);
1701   }
1702 
1703   KA_TRACE(
1704       10,
1705       ("__kmpc_omp_task_parts(exit): T#%d returning TASK_CURRENT_NOT_QUEUED: "
1706        "loc=%p task=%p, return: TASK_CURRENT_NOT_QUEUED\n",
1707        gtid, loc_ref, new_taskdata));
1708 
1709   ANNOTATE_HAPPENS_BEFORE(new_task);
1710 #if OMPT_SUPPORT
1711   if (UNLIKELY(ompt_enabled.enabled)) {
1712     parent->ompt_task_info.frame.enter_frame = ompt_data_none;
1713   }
1714 #endif
1715   return TASK_CURRENT_NOT_QUEUED;
1716 }
1717 
1718 // __kmp_omp_task: Schedule a non-thread-switchable task for execution
1719 //
1720 // gtid: Global Thread ID of encountering thread
1721 // new_task:non-thread-switchable task thunk allocated by __kmp_omp_task_alloc()
1722 // serialize_immediate: if TRUE then if the task is executed immediately its
1723 // execution will be serialized
1724 // Returns:
1725 //    TASK_CURRENT_NOT_QUEUED (0) if did not suspend and queue current task to
1726 //    be resumed later.
1727 //    TASK_CURRENT_QUEUED (1) if suspended and queued the current task to be
1728 //    resumed later.
1729 kmp_int32 __kmp_omp_task(kmp_int32 gtid, kmp_task_t *new_task,
1730                          bool serialize_immediate) {
1731   kmp_taskdata_t *new_taskdata = KMP_TASK_TO_TASKDATA(new_task);
1732 
1733   /* Should we execute the new task or queue it? For now, let's just always try
1734      to queue it.  If the queue fills up, then we'll execute it.  */
1735   if (new_taskdata->td_flags.proxy == TASK_PROXY ||
1736       __kmp_push_task(gtid, new_task) == TASK_NOT_PUSHED) // if cannot defer
1737   { // Execute this task immediately
1738     kmp_taskdata_t *current_task = __kmp_threads[gtid]->th.th_current_task;
1739     if (serialize_immediate)
1740       new_taskdata->td_flags.task_serial = 1;
1741     __kmp_invoke_task(gtid, new_task, current_task);
1742   }
1743 
1744   ANNOTATE_HAPPENS_BEFORE(new_task);
1745   return TASK_CURRENT_NOT_QUEUED;
1746 }
1747 
1748 // __kmpc_omp_task: Wrapper around __kmp_omp_task to schedule a
1749 // non-thread-switchable task from the parent thread only!
1750 //
1751 // loc_ref: location of original task pragma (ignored)
1752 // gtid: Global Thread ID of encountering thread
1753 // new_task: non-thread-switchable task thunk allocated by
1754 // __kmp_omp_task_alloc()
1755 // Returns:
1756 //    TASK_CURRENT_NOT_QUEUED (0) if did not suspend and queue current task to
1757 //    be resumed later.
1758 //    TASK_CURRENT_QUEUED (1) if suspended and queued the current task to be
1759 //    resumed later.
1760 kmp_int32 __kmpc_omp_task(ident_t *loc_ref, kmp_int32 gtid,
1761                           kmp_task_t *new_task) {
1762   kmp_int32 res;
1763   KMP_SET_THREAD_STATE_BLOCK(EXPLICIT_TASK);
1764 
1765 #if KMP_DEBUG || OMPT_SUPPORT
1766   kmp_taskdata_t *new_taskdata = KMP_TASK_TO_TASKDATA(new_task);
1767 #endif
1768   KA_TRACE(10, ("__kmpc_omp_task(enter): T#%d loc=%p task=%p\n", gtid, loc_ref,
1769                 new_taskdata));
1770   __kmp_assert_valid_gtid(gtid);
1771 
1772 #if OMPT_SUPPORT
1773   kmp_taskdata_t *parent = NULL;
1774   if (UNLIKELY(ompt_enabled.enabled)) {
1775     if (!new_taskdata->td_flags.started) {
1776       OMPT_STORE_RETURN_ADDRESS(gtid);
1777       parent = new_taskdata->td_parent;
1778       if (!parent->ompt_task_info.frame.enter_frame.ptr) {
1779         parent->ompt_task_info.frame.enter_frame.ptr = OMPT_GET_FRAME_ADDRESS(0);
1780       }
1781       if (ompt_enabled.ompt_callback_task_create) {
1782         ompt_data_t task_data = ompt_data_none;
1783         ompt_callbacks.ompt_callback(ompt_callback_task_create)(
1784             parent ? &(parent->ompt_task_info.task_data) : &task_data,
1785             parent ? &(parent->ompt_task_info.frame) : NULL,
1786             &(new_taskdata->ompt_task_info.task_data),
1787             ompt_task_explicit | TASK_TYPE_DETAILS_FORMAT(new_taskdata), 0,
1788             OMPT_LOAD_RETURN_ADDRESS(gtid));
1789       }
1790     } else {
1791       // We are scheduling the continuation of an UNTIED task.
1792       // Scheduling back to the parent task.
1793       __ompt_task_finish(new_task,
1794                          new_taskdata->ompt_task_info.scheduling_parent,
1795                          ompt_task_switch);
1796       new_taskdata->ompt_task_info.frame.exit_frame = ompt_data_none;
1797     }
1798   }
1799 #endif
1800 
1801   res = __kmp_omp_task(gtid, new_task, true);
1802 
1803   KA_TRACE(10, ("__kmpc_omp_task(exit): T#%d returning "
1804                 "TASK_CURRENT_NOT_QUEUED: loc=%p task=%p\n",
1805                 gtid, loc_ref, new_taskdata));
1806 #if OMPT_SUPPORT
1807   if (UNLIKELY(ompt_enabled.enabled && parent != NULL)) {
1808     parent->ompt_task_info.frame.enter_frame = ompt_data_none;
1809   }
1810 #endif
1811   return res;
1812 }
1813 
1814 // __kmp_omp_taskloop_task: Wrapper around __kmp_omp_task to schedule
1815 // a taskloop task with the correct OMPT return address
1816 //
1817 // loc_ref: location of original task pragma (ignored)
1818 // gtid: Global Thread ID of encountering thread
1819 // new_task: non-thread-switchable task thunk allocated by
1820 // __kmp_omp_task_alloc()
1821 // codeptr_ra: return address for OMPT callback
1822 // Returns:
1823 //    TASK_CURRENT_NOT_QUEUED (0) if did not suspend and queue current task to
1824 //    be resumed later.
1825 //    TASK_CURRENT_QUEUED (1) if suspended and queued the current task to be
1826 //    resumed later.
1827 kmp_int32 __kmp_omp_taskloop_task(ident_t *loc_ref, kmp_int32 gtid,
1828                                   kmp_task_t *new_task, void *codeptr_ra) {
1829   kmp_int32 res;
1830   KMP_SET_THREAD_STATE_BLOCK(EXPLICIT_TASK);
1831 
1832 #if KMP_DEBUG || OMPT_SUPPORT
1833   kmp_taskdata_t *new_taskdata = KMP_TASK_TO_TASKDATA(new_task);
1834 #endif
1835   KA_TRACE(10, ("__kmpc_omp_task(enter): T#%d loc=%p task=%p\n", gtid, loc_ref,
1836                 new_taskdata));
1837 
1838 #if OMPT_SUPPORT
1839   kmp_taskdata_t *parent = NULL;
1840   if (UNLIKELY(ompt_enabled.enabled && !new_taskdata->td_flags.started)) {
1841     parent = new_taskdata->td_parent;
1842     if (!parent->ompt_task_info.frame.enter_frame.ptr)
1843       parent->ompt_task_info.frame.enter_frame.ptr = OMPT_GET_FRAME_ADDRESS(0);
1844     if (ompt_enabled.ompt_callback_task_create) {
1845       ompt_data_t task_data = ompt_data_none;
1846       ompt_callbacks.ompt_callback(ompt_callback_task_create)(
1847           parent ? &(parent->ompt_task_info.task_data) : &task_data,
1848           parent ? &(parent->ompt_task_info.frame) : NULL,
1849           &(new_taskdata->ompt_task_info.task_data),
1850           ompt_task_explicit | TASK_TYPE_DETAILS_FORMAT(new_taskdata), 0,
1851           codeptr_ra);
1852     }
1853   }
1854 #endif
1855 
1856   res = __kmp_omp_task(gtid, new_task, true);
1857 
1858   KA_TRACE(10, ("__kmpc_omp_task(exit): T#%d returning "
1859                 "TASK_CURRENT_NOT_QUEUED: loc=%p task=%p\n",
1860                 gtid, loc_ref, new_taskdata));
1861 #if OMPT_SUPPORT
1862   if (UNLIKELY(ompt_enabled.enabled && parent != NULL)) {
1863     parent->ompt_task_info.frame.enter_frame = ompt_data_none;
1864   }
1865 #endif
1866   return res;
1867 }
1868 
1869 template <bool ompt>
1870 static kmp_int32 __kmpc_omp_taskwait_template(ident_t *loc_ref, kmp_int32 gtid,
1871                                               void *frame_address,
1872                                               void *return_address) {
1873   kmp_taskdata_t *taskdata;
1874   kmp_info_t *thread;
1875   int thread_finished = FALSE;
1876   KMP_SET_THREAD_STATE_BLOCK(TASKWAIT);
1877 
1878   KA_TRACE(10, ("__kmpc_omp_taskwait(enter): T#%d loc=%p\n", gtid, loc_ref));
1879   __kmp_assert_valid_gtid(gtid);
1880 
1881   if (__kmp_tasking_mode != tskm_immediate_exec) {
1882     thread = __kmp_threads[gtid];
1883     taskdata = thread->th.th_current_task;
1884 
1885 #if OMPT_SUPPORT && OMPT_OPTIONAL
1886     ompt_data_t *my_task_data;
1887     ompt_data_t *my_parallel_data;
1888 
1889     if (ompt) {
1890       my_task_data = &(taskdata->ompt_task_info.task_data);
1891       my_parallel_data = OMPT_CUR_TEAM_DATA(thread);
1892 
1893       taskdata->ompt_task_info.frame.enter_frame.ptr = frame_address;
1894 
1895       if (ompt_enabled.ompt_callback_sync_region) {
1896         ompt_callbacks.ompt_callback(ompt_callback_sync_region)(
1897             ompt_sync_region_taskwait, ompt_scope_begin, my_parallel_data,
1898             my_task_data, return_address);
1899       }
1900 
1901       if (ompt_enabled.ompt_callback_sync_region_wait) {
1902         ompt_callbacks.ompt_callback(ompt_callback_sync_region_wait)(
1903             ompt_sync_region_taskwait, ompt_scope_begin, my_parallel_data,
1904             my_task_data, return_address);
1905       }
1906     }
1907 #endif // OMPT_SUPPORT && OMPT_OPTIONAL
1908 
1909 // Debugger: The taskwait is active. Store location and thread encountered the
1910 // taskwait.
1911 #if USE_ITT_BUILD
1912 // Note: These values are used by ITT events as well.
1913 #endif /* USE_ITT_BUILD */
1914     taskdata->td_taskwait_counter += 1;
1915     taskdata->td_taskwait_ident = loc_ref;
1916     taskdata->td_taskwait_thread = gtid + 1;
1917 
1918 #if USE_ITT_BUILD
1919     void *itt_sync_obj = __kmp_itt_taskwait_object(gtid);
1920     if (UNLIKELY(itt_sync_obj != NULL))
1921       __kmp_itt_taskwait_starting(gtid, itt_sync_obj);
1922 #endif /* USE_ITT_BUILD */
1923 
1924     bool must_wait =
1925         !taskdata->td_flags.team_serial && !taskdata->td_flags.final;
1926 
1927     must_wait = must_wait || (thread->th.th_task_team != NULL &&
1928                               thread->th.th_task_team->tt.tt_found_proxy_tasks);
1929     // If hidden helper thread is encountered, we must enable wait here.
1930     must_wait =
1931         must_wait ||
1932         (__kmp_enable_hidden_helper && thread->th.th_task_team != NULL &&
1933          thread->th.th_task_team->tt.tt_hidden_helper_task_encountered);
1934 
1935     if (must_wait) {
1936       kmp_flag_32<false, false> flag(
1937           RCAST(std::atomic<kmp_uint32> *,
1938                 &(taskdata->td_incomplete_child_tasks)),
1939           0U);
1940       while (KMP_ATOMIC_LD_ACQ(&taskdata->td_incomplete_child_tasks) != 0) {
1941         flag.execute_tasks(thread, gtid, FALSE,
1942                            &thread_finished USE_ITT_BUILD_ARG(itt_sync_obj),
1943                            __kmp_task_stealing_constraint);
1944       }
1945     }
1946 #if USE_ITT_BUILD
1947     if (UNLIKELY(itt_sync_obj != NULL))
1948       __kmp_itt_taskwait_finished(gtid, itt_sync_obj);
1949     KMP_FSYNC_ACQUIRED(taskdata); // acquire self - sync with children
1950 #endif /* USE_ITT_BUILD */
1951 
1952     // Debugger:  The taskwait is completed. Location remains, but thread is
1953     // negated.
1954     taskdata->td_taskwait_thread = -taskdata->td_taskwait_thread;
1955 
1956 #if OMPT_SUPPORT && OMPT_OPTIONAL
1957     if (ompt) {
1958       if (ompt_enabled.ompt_callback_sync_region_wait) {
1959         ompt_callbacks.ompt_callback(ompt_callback_sync_region_wait)(
1960             ompt_sync_region_taskwait, ompt_scope_end, my_parallel_data,
1961             my_task_data, return_address);
1962       }
1963       if (ompt_enabled.ompt_callback_sync_region) {
1964         ompt_callbacks.ompt_callback(ompt_callback_sync_region)(
1965             ompt_sync_region_taskwait, ompt_scope_end, my_parallel_data,
1966             my_task_data, return_address);
1967       }
1968       taskdata->ompt_task_info.frame.enter_frame = ompt_data_none;
1969     }
1970 #endif // OMPT_SUPPORT && OMPT_OPTIONAL
1971 
1972     ANNOTATE_HAPPENS_AFTER(taskdata);
1973   }
1974 
1975   KA_TRACE(10, ("__kmpc_omp_taskwait(exit): T#%d task %p finished waiting, "
1976                 "returning TASK_CURRENT_NOT_QUEUED\n",
1977                 gtid, taskdata));
1978 
1979   return TASK_CURRENT_NOT_QUEUED;
1980 }
1981 
1982 #if OMPT_SUPPORT && OMPT_OPTIONAL
1983 OMPT_NOINLINE
1984 static kmp_int32 __kmpc_omp_taskwait_ompt(ident_t *loc_ref, kmp_int32 gtid,
1985                                           void *frame_address,
1986                                           void *return_address) {
1987   return __kmpc_omp_taskwait_template<true>(loc_ref, gtid, frame_address,
1988                                             return_address);
1989 }
1990 #endif // OMPT_SUPPORT && OMPT_OPTIONAL
1991 
1992 // __kmpc_omp_taskwait: Wait until all tasks generated by the current task are
1993 // complete
1994 kmp_int32 __kmpc_omp_taskwait(ident_t *loc_ref, kmp_int32 gtid) {
1995 #if OMPT_SUPPORT && OMPT_OPTIONAL
1996   if (UNLIKELY(ompt_enabled.enabled)) {
1997     OMPT_STORE_RETURN_ADDRESS(gtid);
1998     return __kmpc_omp_taskwait_ompt(loc_ref, gtid, OMPT_GET_FRAME_ADDRESS(0),
1999                                     OMPT_LOAD_RETURN_ADDRESS(gtid));
2000   }
2001 #endif
2002   return __kmpc_omp_taskwait_template<false>(loc_ref, gtid, NULL, NULL);
2003 }
2004 
2005 // __kmpc_omp_taskyield: switch to a different task
2006 kmp_int32 __kmpc_omp_taskyield(ident_t *loc_ref, kmp_int32 gtid, int end_part) {
2007   kmp_taskdata_t *taskdata;
2008   kmp_info_t *thread;
2009   int thread_finished = FALSE;
2010 
2011   KMP_COUNT_BLOCK(OMP_TASKYIELD);
2012   KMP_SET_THREAD_STATE_BLOCK(TASKYIELD);
2013 
2014   KA_TRACE(10, ("__kmpc_omp_taskyield(enter): T#%d loc=%p end_part = %d\n",
2015                 gtid, loc_ref, end_part));
2016   __kmp_assert_valid_gtid(gtid);
2017 
2018   if (__kmp_tasking_mode != tskm_immediate_exec && __kmp_init_parallel) {
2019     thread = __kmp_threads[gtid];
2020     taskdata = thread->th.th_current_task;
2021 // Should we model this as a task wait or not?
2022 // Debugger: The taskwait is active. Store location and thread encountered the
2023 // taskwait.
2024 #if USE_ITT_BUILD
2025 // Note: These values are used by ITT events as well.
2026 #endif /* USE_ITT_BUILD */
2027     taskdata->td_taskwait_counter += 1;
2028     taskdata->td_taskwait_ident = loc_ref;
2029     taskdata->td_taskwait_thread = gtid + 1;
2030 
2031 #if USE_ITT_BUILD
2032     void *itt_sync_obj = __kmp_itt_taskwait_object(gtid);
2033     if (UNLIKELY(itt_sync_obj != NULL))
2034       __kmp_itt_taskwait_starting(gtid, itt_sync_obj);
2035 #endif /* USE_ITT_BUILD */
2036     if (!taskdata->td_flags.team_serial) {
2037       kmp_task_team_t *task_team = thread->th.th_task_team;
2038       if (task_team != NULL) {
2039         if (KMP_TASKING_ENABLED(task_team)) {
2040 #if OMPT_SUPPORT
2041           if (UNLIKELY(ompt_enabled.enabled))
2042             thread->th.ompt_thread_info.ompt_task_yielded = 1;
2043 #endif
2044           __kmp_execute_tasks_32(
2045               thread, gtid, (kmp_flag_32<> *)NULL, FALSE,
2046               &thread_finished USE_ITT_BUILD_ARG(itt_sync_obj),
2047               __kmp_task_stealing_constraint);
2048 #if OMPT_SUPPORT
2049           if (UNLIKELY(ompt_enabled.enabled))
2050             thread->th.ompt_thread_info.ompt_task_yielded = 0;
2051 #endif
2052         }
2053       }
2054     }
2055 #if USE_ITT_BUILD
2056     if (UNLIKELY(itt_sync_obj != NULL))
2057       __kmp_itt_taskwait_finished(gtid, itt_sync_obj);
2058 #endif /* USE_ITT_BUILD */
2059 
2060     // Debugger:  The taskwait is completed. Location remains, but thread is
2061     // negated.
2062     taskdata->td_taskwait_thread = -taskdata->td_taskwait_thread;
2063   }
2064 
2065   KA_TRACE(10, ("__kmpc_omp_taskyield(exit): T#%d task %p resuming, "
2066                 "returning TASK_CURRENT_NOT_QUEUED\n",
2067                 gtid, taskdata));
2068 
2069   return TASK_CURRENT_NOT_QUEUED;
2070 }
2071 
2072 // Task Reduction implementation
2073 //
2074 // Note: initial implementation didn't take into account the possibility
2075 // to specify omp_orig for initializer of the UDR (user defined reduction).
2076 // Corrected implementation takes into account the omp_orig object.
2077 // Compiler is free to use old implementation if omp_orig is not specified.
2078 
2079 /*!
2080 @ingroup BASIC_TYPES
2081 @{
2082 */
2083 
2084 /*!
2085 Flags for special info per task reduction item.
2086 */
2087 typedef struct kmp_taskred_flags {
2088   /*! 1 - use lazy alloc/init (e.g. big objects, #tasks < #threads) */
2089   unsigned lazy_priv : 1;
2090   unsigned reserved31 : 31;
2091 } kmp_taskred_flags_t;
2092 
2093 /*!
2094 Internal struct for reduction data item related info set up by compiler.
2095 */
2096 typedef struct kmp_task_red_input {
2097   void *reduce_shar; /**< shared between tasks item to reduce into */
2098   size_t reduce_size; /**< size of data item in bytes */
2099   // three compiler-generated routines (init, fini are optional):
2100   void *reduce_init; /**< data initialization routine (single parameter) */
2101   void *reduce_fini; /**< data finalization routine */
2102   void *reduce_comb; /**< data combiner routine */
2103   kmp_taskred_flags_t flags; /**< flags for additional info from compiler */
2104 } kmp_task_red_input_t;
2105 
2106 /*!
2107 Internal struct for reduction data item related info saved by the library.
2108 */
2109 typedef struct kmp_taskred_data {
2110   void *reduce_shar; /**< shared between tasks item to reduce into */
2111   size_t reduce_size; /**< size of data item */
2112   kmp_taskred_flags_t flags; /**< flags for additional info from compiler */
2113   void *reduce_priv; /**< array of thread specific items */
2114   void *reduce_pend; /**< end of private data for faster comparison op */
2115   // three compiler-generated routines (init, fini are optional):
2116   void *reduce_comb; /**< data combiner routine */
2117   void *reduce_init; /**< data initialization routine (two parameters) */
2118   void *reduce_fini; /**< data finalization routine */
2119   void *reduce_orig; /**< original item (can be used in UDR initializer) */
2120 } kmp_taskred_data_t;
2121 
2122 /*!
2123 Internal struct for reduction data item related info set up by compiler.
2124 
2125 New interface: added reduce_orig field to provide omp_orig for UDR initializer.
2126 */
2127 typedef struct kmp_taskred_input {
2128   void *reduce_shar; /**< shared between tasks item to reduce into */
2129   void *reduce_orig; /**< original reduction item used for initialization */
2130   size_t reduce_size; /**< size of data item */
2131   // three compiler-generated routines (init, fini are optional):
2132   void *reduce_init; /**< data initialization routine (two parameters) */
2133   void *reduce_fini; /**< data finalization routine */
2134   void *reduce_comb; /**< data combiner routine */
2135   kmp_taskred_flags_t flags; /**< flags for additional info from compiler */
2136 } kmp_taskred_input_t;
2137 /*!
2138 @}
2139 */
2140 
2141 template <typename T> void __kmp_assign_orig(kmp_taskred_data_t &item, T &src);
2142 template <>
2143 void __kmp_assign_orig<kmp_task_red_input_t>(kmp_taskred_data_t &item,
2144                                              kmp_task_red_input_t &src) {
2145   item.reduce_orig = NULL;
2146 }
2147 template <>
2148 void __kmp_assign_orig<kmp_taskred_input_t>(kmp_taskred_data_t &item,
2149                                             kmp_taskred_input_t &src) {
2150   if (src.reduce_orig != NULL) {
2151     item.reduce_orig = src.reduce_orig;
2152   } else {
2153     item.reduce_orig = src.reduce_shar;
2154   } // non-NULL reduce_orig means new interface used
2155 }
2156 
2157 template <typename T> void __kmp_call_init(kmp_taskred_data_t &item, size_t j);
2158 template <>
2159 void __kmp_call_init<kmp_task_red_input_t>(kmp_taskred_data_t &item,
2160                                            size_t offset) {
2161   ((void (*)(void *))item.reduce_init)((char *)(item.reduce_priv) + offset);
2162 }
2163 template <>
2164 void __kmp_call_init<kmp_taskred_input_t>(kmp_taskred_data_t &item,
2165                                           size_t offset) {
2166   ((void (*)(void *, void *))item.reduce_init)(
2167       (char *)(item.reduce_priv) + offset, item.reduce_orig);
2168 }
2169 
2170 template <typename T>
2171 void *__kmp_task_reduction_init(int gtid, int num, T *data) {
2172   __kmp_assert_valid_gtid(gtid);
2173   kmp_info_t *thread = __kmp_threads[gtid];
2174   kmp_taskgroup_t *tg = thread->th.th_current_task->td_taskgroup;
2175   kmp_uint32 nth = thread->th.th_team_nproc;
2176   kmp_taskred_data_t *arr;
2177 
2178   // check input data just in case
2179   KMP_ASSERT(tg != NULL);
2180   KMP_ASSERT(data != NULL);
2181   KMP_ASSERT(num > 0);
2182   if (nth == 1) {
2183     KA_TRACE(10, ("__kmpc_task_reduction_init: T#%d, tg %p, exiting nth=1\n",
2184                   gtid, tg));
2185     return (void *)tg;
2186   }
2187   KA_TRACE(10, ("__kmpc_task_reduction_init: T#%d, taskgroup %p, #items %d\n",
2188                 gtid, tg, num));
2189   arr = (kmp_taskred_data_t *)__kmp_thread_malloc(
2190       thread, num * sizeof(kmp_taskred_data_t));
2191   for (int i = 0; i < num; ++i) {
2192     size_t size = data[i].reduce_size - 1;
2193     // round the size up to cache line per thread-specific item
2194     size += CACHE_LINE - size % CACHE_LINE;
2195     KMP_ASSERT(data[i].reduce_comb != NULL); // combiner is mandatory
2196     arr[i].reduce_shar = data[i].reduce_shar;
2197     arr[i].reduce_size = size;
2198     arr[i].flags = data[i].flags;
2199     arr[i].reduce_comb = data[i].reduce_comb;
2200     arr[i].reduce_init = data[i].reduce_init;
2201     arr[i].reduce_fini = data[i].reduce_fini;
2202     __kmp_assign_orig<T>(arr[i], data[i]);
2203     if (!arr[i].flags.lazy_priv) {
2204       // allocate cache-line aligned block and fill it with zeros
2205       arr[i].reduce_priv = __kmp_allocate(nth * size);
2206       arr[i].reduce_pend = (char *)(arr[i].reduce_priv) + nth * size;
2207       if (arr[i].reduce_init != NULL) {
2208         // initialize all thread-specific items
2209         for (size_t j = 0; j < nth; ++j) {
2210           __kmp_call_init<T>(arr[i], j * size);
2211         }
2212       }
2213     } else {
2214       // only allocate space for pointers now,
2215       // objects will be lazily allocated/initialized if/when requested
2216       // note that __kmp_allocate zeroes the allocated memory
2217       arr[i].reduce_priv = __kmp_allocate(nth * sizeof(void *));
2218     }
2219   }
2220   tg->reduce_data = (void *)arr;
2221   tg->reduce_num_data = num;
2222   return (void *)tg;
2223 }
2224 
2225 /*!
2226 @ingroup TASKING
2227 @param gtid      Global thread ID
2228 @param num       Number of data items to reduce
2229 @param data      Array of data for reduction
2230 @return The taskgroup identifier
2231 
2232 Initialize task reduction for the taskgroup.
2233 
2234 Note: this entry supposes the optional compiler-generated initializer routine
2235 has single parameter - pointer to object to be initialized. That means
2236 the reduction either does not use omp_orig object, or the omp_orig is accessible
2237 without help of the runtime library.
2238 */
2239 void *__kmpc_task_reduction_init(int gtid, int num, void *data) {
2240   return __kmp_task_reduction_init(gtid, num, (kmp_task_red_input_t *)data);
2241 }
2242 
2243 /*!
2244 @ingroup TASKING
2245 @param gtid      Global thread ID
2246 @param num       Number of data items to reduce
2247 @param data      Array of data for reduction
2248 @return The taskgroup identifier
2249 
2250 Initialize task reduction for the taskgroup.
2251 
2252 Note: this entry supposes the optional compiler-generated initializer routine
2253 has two parameters, pointer to object to be initialized and pointer to omp_orig
2254 */
2255 void *__kmpc_taskred_init(int gtid, int num, void *data) {
2256   return __kmp_task_reduction_init(gtid, num, (kmp_taskred_input_t *)data);
2257 }
2258 
2259 // Copy task reduction data (except for shared pointers).
2260 template <typename T>
2261 void __kmp_task_reduction_init_copy(kmp_info_t *thr, int num, T *data,
2262                                     kmp_taskgroup_t *tg, void *reduce_data) {
2263   kmp_taskred_data_t *arr;
2264   KA_TRACE(20, ("__kmp_task_reduction_init_copy: Th %p, init taskgroup %p,"
2265                 " from data %p\n",
2266                 thr, tg, reduce_data));
2267   arr = (kmp_taskred_data_t *)__kmp_thread_malloc(
2268       thr, num * sizeof(kmp_taskred_data_t));
2269   // threads will share private copies, thunk routines, sizes, flags, etc.:
2270   KMP_MEMCPY(arr, reduce_data, num * sizeof(kmp_taskred_data_t));
2271   for (int i = 0; i < num; ++i) {
2272     arr[i].reduce_shar = data[i].reduce_shar; // init unique shared pointers
2273   }
2274   tg->reduce_data = (void *)arr;
2275   tg->reduce_num_data = num;
2276 }
2277 
2278 /*!
2279 @ingroup TASKING
2280 @param gtid    Global thread ID
2281 @param tskgrp  The taskgroup ID (optional)
2282 @param data    Shared location of the item
2283 @return The pointer to per-thread data
2284 
2285 Get thread-specific location of data item
2286 */
2287 void *__kmpc_task_reduction_get_th_data(int gtid, void *tskgrp, void *data) {
2288   __kmp_assert_valid_gtid(gtid);
2289   kmp_info_t *thread = __kmp_threads[gtid];
2290   kmp_int32 nth = thread->th.th_team_nproc;
2291   if (nth == 1)
2292     return data; // nothing to do
2293 
2294   kmp_taskgroup_t *tg = (kmp_taskgroup_t *)tskgrp;
2295   if (tg == NULL)
2296     tg = thread->th.th_current_task->td_taskgroup;
2297   KMP_ASSERT(tg != NULL);
2298   kmp_taskred_data_t *arr = (kmp_taskred_data_t *)(tg->reduce_data);
2299   kmp_int32 num = tg->reduce_num_data;
2300   kmp_int32 tid = thread->th.th_info.ds.ds_tid;
2301 
2302   KMP_ASSERT(data != NULL);
2303   while (tg != NULL) {
2304     for (int i = 0; i < num; ++i) {
2305       if (!arr[i].flags.lazy_priv) {
2306         if (data == arr[i].reduce_shar ||
2307             (data >= arr[i].reduce_priv && data < arr[i].reduce_pend))
2308           return (char *)(arr[i].reduce_priv) + tid * arr[i].reduce_size;
2309       } else {
2310         // check shared location first
2311         void **p_priv = (void **)(arr[i].reduce_priv);
2312         if (data == arr[i].reduce_shar)
2313           goto found;
2314         // check if we get some thread specific location as parameter
2315         for (int j = 0; j < nth; ++j)
2316           if (data == p_priv[j])
2317             goto found;
2318         continue; // not found, continue search
2319       found:
2320         if (p_priv[tid] == NULL) {
2321           // allocate thread specific object lazily
2322           p_priv[tid] = __kmp_allocate(arr[i].reduce_size);
2323           if (arr[i].reduce_init != NULL) {
2324             if (arr[i].reduce_orig != NULL) { // new interface
2325               ((void (*)(void *, void *))arr[i].reduce_init)(
2326                   p_priv[tid], arr[i].reduce_orig);
2327             } else { // old interface (single parameter)
2328               ((void (*)(void *))arr[i].reduce_init)(p_priv[tid]);
2329             }
2330           }
2331         }
2332         return p_priv[tid];
2333       }
2334     }
2335     tg = tg->parent;
2336     arr = (kmp_taskred_data_t *)(tg->reduce_data);
2337     num = tg->reduce_num_data;
2338   }
2339   KMP_ASSERT2(0, "Unknown task reduction item");
2340   return NULL; // ERROR, this line never executed
2341 }
2342 
2343 // Finalize task reduction.
2344 // Called from __kmpc_end_taskgroup()
2345 static void __kmp_task_reduction_fini(kmp_info_t *th, kmp_taskgroup_t *tg) {
2346   kmp_int32 nth = th->th.th_team_nproc;
2347   KMP_DEBUG_ASSERT(nth > 1); // should not be called if nth == 1
2348   kmp_taskred_data_t *arr = (kmp_taskred_data_t *)tg->reduce_data;
2349   kmp_int32 num = tg->reduce_num_data;
2350   for (int i = 0; i < num; ++i) {
2351     void *sh_data = arr[i].reduce_shar;
2352     void (*f_fini)(void *) = (void (*)(void *))(arr[i].reduce_fini);
2353     void (*f_comb)(void *, void *) =
2354         (void (*)(void *, void *))(arr[i].reduce_comb);
2355     if (!arr[i].flags.lazy_priv) {
2356       void *pr_data = arr[i].reduce_priv;
2357       size_t size = arr[i].reduce_size;
2358       for (int j = 0; j < nth; ++j) {
2359         void *priv_data = (char *)pr_data + j * size;
2360         f_comb(sh_data, priv_data); // combine results
2361         if (f_fini)
2362           f_fini(priv_data); // finalize if needed
2363       }
2364     } else {
2365       void **pr_data = (void **)(arr[i].reduce_priv);
2366       for (int j = 0; j < nth; ++j) {
2367         if (pr_data[j] != NULL) {
2368           f_comb(sh_data, pr_data[j]); // combine results
2369           if (f_fini)
2370             f_fini(pr_data[j]); // finalize if needed
2371           __kmp_free(pr_data[j]);
2372         }
2373       }
2374     }
2375     __kmp_free(arr[i].reduce_priv);
2376   }
2377   __kmp_thread_free(th, arr);
2378   tg->reduce_data = NULL;
2379   tg->reduce_num_data = 0;
2380 }
2381 
2382 // Cleanup task reduction data for parallel or worksharing,
2383 // do not touch task private data other threads still working with.
2384 // Called from __kmpc_end_taskgroup()
2385 static void __kmp_task_reduction_clean(kmp_info_t *th, kmp_taskgroup_t *tg) {
2386   __kmp_thread_free(th, tg->reduce_data);
2387   tg->reduce_data = NULL;
2388   tg->reduce_num_data = 0;
2389 }
2390 
2391 template <typename T>
2392 void *__kmp_task_reduction_modifier_init(ident_t *loc, int gtid, int is_ws,
2393                                          int num, T *data) {
2394   __kmp_assert_valid_gtid(gtid);
2395   kmp_info_t *thr = __kmp_threads[gtid];
2396   kmp_int32 nth = thr->th.th_team_nproc;
2397   __kmpc_taskgroup(loc, gtid); // form new taskgroup first
2398   if (nth == 1) {
2399     KA_TRACE(10,
2400              ("__kmpc_reduction_modifier_init: T#%d, tg %p, exiting nth=1\n",
2401               gtid, thr->th.th_current_task->td_taskgroup));
2402     return (void *)thr->th.th_current_task->td_taskgroup;
2403   }
2404   kmp_team_t *team = thr->th.th_team;
2405   void *reduce_data;
2406   kmp_taskgroup_t *tg;
2407   reduce_data = KMP_ATOMIC_LD_RLX(&team->t.t_tg_reduce_data[is_ws]);
2408   if (reduce_data == NULL &&
2409       __kmp_atomic_compare_store(&team->t.t_tg_reduce_data[is_ws], reduce_data,
2410                                  (void *)1)) {
2411     // single thread enters this block to initialize common reduction data
2412     KMP_DEBUG_ASSERT(reduce_data == NULL);
2413     // first initialize own data, then make a copy other threads can use
2414     tg = (kmp_taskgroup_t *)__kmp_task_reduction_init<T>(gtid, num, data);
2415     reduce_data = __kmp_thread_malloc(thr, num * sizeof(kmp_taskred_data_t));
2416     KMP_MEMCPY(reduce_data, tg->reduce_data, num * sizeof(kmp_taskred_data_t));
2417     // fini counters should be 0 at this point
2418     KMP_DEBUG_ASSERT(KMP_ATOMIC_LD_RLX(&team->t.t_tg_fini_counter[0]) == 0);
2419     KMP_DEBUG_ASSERT(KMP_ATOMIC_LD_RLX(&team->t.t_tg_fini_counter[1]) == 0);
2420     KMP_ATOMIC_ST_REL(&team->t.t_tg_reduce_data[is_ws], reduce_data);
2421   } else {
2422     while (
2423         (reduce_data = KMP_ATOMIC_LD_ACQ(&team->t.t_tg_reduce_data[is_ws])) ==
2424         (void *)1) { // wait for task reduction initialization
2425       KMP_CPU_PAUSE();
2426     }
2427     KMP_DEBUG_ASSERT(reduce_data > (void *)1); // should be valid pointer here
2428     tg = thr->th.th_current_task->td_taskgroup;
2429     __kmp_task_reduction_init_copy<T>(thr, num, data, tg, reduce_data);
2430   }
2431   return tg;
2432 }
2433 
2434 /*!
2435 @ingroup TASKING
2436 @param loc       Source location info
2437 @param gtid      Global thread ID
2438 @param is_ws     Is 1 if the reduction is for worksharing, 0 otherwise
2439 @param num       Number of data items to reduce
2440 @param data      Array of data for reduction
2441 @return The taskgroup identifier
2442 
2443 Initialize task reduction for a parallel or worksharing.
2444 
2445 Note: this entry supposes the optional compiler-generated initializer routine
2446 has single parameter - pointer to object to be initialized. That means
2447 the reduction either does not use omp_orig object, or the omp_orig is accessible
2448 without help of the runtime library.
2449 */
2450 void *__kmpc_task_reduction_modifier_init(ident_t *loc, int gtid, int is_ws,
2451                                           int num, void *data) {
2452   return __kmp_task_reduction_modifier_init(loc, gtid, is_ws, num,
2453                                             (kmp_task_red_input_t *)data);
2454 }
2455 
2456 /*!
2457 @ingroup TASKING
2458 @param loc       Source location info
2459 @param gtid      Global thread ID
2460 @param is_ws     Is 1 if the reduction is for worksharing, 0 otherwise
2461 @param num       Number of data items to reduce
2462 @param data      Array of data for reduction
2463 @return The taskgroup identifier
2464 
2465 Initialize task reduction for a parallel or worksharing.
2466 
2467 Note: this entry supposes the optional compiler-generated initializer routine
2468 has two parameters, pointer to object to be initialized and pointer to omp_orig
2469 */
2470 void *__kmpc_taskred_modifier_init(ident_t *loc, int gtid, int is_ws, int num,
2471                                    void *data) {
2472   return __kmp_task_reduction_modifier_init(loc, gtid, is_ws, num,
2473                                             (kmp_taskred_input_t *)data);
2474 }
2475 
2476 /*!
2477 @ingroup TASKING
2478 @param loc       Source location info
2479 @param gtid      Global thread ID
2480 @param is_ws     Is 1 if the reduction is for worksharing, 0 otherwise
2481 
2482 Finalize task reduction for a parallel or worksharing.
2483 */
2484 void __kmpc_task_reduction_modifier_fini(ident_t *loc, int gtid, int is_ws) {
2485   __kmpc_end_taskgroup(loc, gtid);
2486 }
2487 
2488 // __kmpc_taskgroup: Start a new taskgroup
2489 void __kmpc_taskgroup(ident_t *loc, int gtid) {
2490   __kmp_assert_valid_gtid(gtid);
2491   kmp_info_t *thread = __kmp_threads[gtid];
2492   kmp_taskdata_t *taskdata = thread->th.th_current_task;
2493   kmp_taskgroup_t *tg_new =
2494       (kmp_taskgroup_t *)__kmp_thread_malloc(thread, sizeof(kmp_taskgroup_t));
2495   KA_TRACE(10, ("__kmpc_taskgroup: T#%d loc=%p group=%p\n", gtid, loc, tg_new));
2496   KMP_ATOMIC_ST_RLX(&tg_new->count, 0);
2497   KMP_ATOMIC_ST_RLX(&tg_new->cancel_request, cancel_noreq);
2498   tg_new->parent = taskdata->td_taskgroup;
2499   tg_new->reduce_data = NULL;
2500   tg_new->reduce_num_data = 0;
2501   taskdata->td_taskgroup = tg_new;
2502 
2503 #if OMPT_SUPPORT && OMPT_OPTIONAL
2504   if (UNLIKELY(ompt_enabled.ompt_callback_sync_region)) {
2505     void *codeptr = OMPT_LOAD_RETURN_ADDRESS(gtid);
2506     if (!codeptr)
2507       codeptr = OMPT_GET_RETURN_ADDRESS(0);
2508     kmp_team_t *team = thread->th.th_team;
2509     ompt_data_t my_task_data = taskdata->ompt_task_info.task_data;
2510     // FIXME: I think this is wrong for lwt!
2511     ompt_data_t my_parallel_data = team->t.ompt_team_info.parallel_data;
2512 
2513     ompt_callbacks.ompt_callback(ompt_callback_sync_region)(
2514         ompt_sync_region_taskgroup, ompt_scope_begin, &(my_parallel_data),
2515         &(my_task_data), codeptr);
2516   }
2517 #endif
2518 }
2519 
2520 // __kmpc_end_taskgroup: Wait until all tasks generated by the current task
2521 //                       and its descendants are complete
2522 void __kmpc_end_taskgroup(ident_t *loc, int gtid) {
2523   __kmp_assert_valid_gtid(gtid);
2524   kmp_info_t *thread = __kmp_threads[gtid];
2525   kmp_taskdata_t *taskdata = thread->th.th_current_task;
2526   kmp_taskgroup_t *taskgroup = taskdata->td_taskgroup;
2527   int thread_finished = FALSE;
2528 
2529 #if OMPT_SUPPORT && OMPT_OPTIONAL
2530   kmp_team_t *team;
2531   ompt_data_t my_task_data;
2532   ompt_data_t my_parallel_data;
2533   void *codeptr;
2534   if (UNLIKELY(ompt_enabled.enabled)) {
2535     team = thread->th.th_team;
2536     my_task_data = taskdata->ompt_task_info.task_data;
2537     // FIXME: I think this is wrong for lwt!
2538     my_parallel_data = team->t.ompt_team_info.parallel_data;
2539     codeptr = OMPT_LOAD_RETURN_ADDRESS(gtid);
2540     if (!codeptr)
2541       codeptr = OMPT_GET_RETURN_ADDRESS(0);
2542   }
2543 #endif
2544 
2545   KA_TRACE(10, ("__kmpc_end_taskgroup(enter): T#%d loc=%p\n", gtid, loc));
2546   KMP_DEBUG_ASSERT(taskgroup != NULL);
2547   KMP_SET_THREAD_STATE_BLOCK(TASKGROUP);
2548 
2549   if (__kmp_tasking_mode != tskm_immediate_exec) {
2550     // mark task as waiting not on a barrier
2551     taskdata->td_taskwait_counter += 1;
2552     taskdata->td_taskwait_ident = loc;
2553     taskdata->td_taskwait_thread = gtid + 1;
2554 #if USE_ITT_BUILD
2555     // For ITT the taskgroup wait is similar to taskwait until we need to
2556     // distinguish them
2557     void *itt_sync_obj = __kmp_itt_taskwait_object(gtid);
2558     if (UNLIKELY(itt_sync_obj != NULL))
2559       __kmp_itt_taskwait_starting(gtid, itt_sync_obj);
2560 #endif /* USE_ITT_BUILD */
2561 
2562 #if OMPT_SUPPORT && OMPT_OPTIONAL
2563     if (UNLIKELY(ompt_enabled.ompt_callback_sync_region_wait)) {
2564       ompt_callbacks.ompt_callback(ompt_callback_sync_region_wait)(
2565           ompt_sync_region_taskgroup, ompt_scope_begin, &(my_parallel_data),
2566           &(my_task_data), codeptr);
2567     }
2568 #endif
2569 
2570     if (!taskdata->td_flags.team_serial ||
2571         (thread->th.th_task_team != NULL &&
2572          thread->th.th_task_team->tt.tt_found_proxy_tasks)) {
2573       kmp_flag_32<false, false> flag(
2574           RCAST(std::atomic<kmp_uint32> *, &(taskgroup->count)), 0U);
2575       while (KMP_ATOMIC_LD_ACQ(&taskgroup->count) != 0) {
2576         flag.execute_tasks(thread, gtid, FALSE,
2577                            &thread_finished USE_ITT_BUILD_ARG(itt_sync_obj),
2578                            __kmp_task_stealing_constraint);
2579       }
2580     }
2581     taskdata->td_taskwait_thread = -taskdata->td_taskwait_thread; // end waiting
2582 
2583 #if OMPT_SUPPORT && OMPT_OPTIONAL
2584     if (UNLIKELY(ompt_enabled.ompt_callback_sync_region_wait)) {
2585       ompt_callbacks.ompt_callback(ompt_callback_sync_region_wait)(
2586           ompt_sync_region_taskgroup, ompt_scope_end, &(my_parallel_data),
2587           &(my_task_data), codeptr);
2588     }
2589 #endif
2590 
2591 #if USE_ITT_BUILD
2592     if (UNLIKELY(itt_sync_obj != NULL))
2593       __kmp_itt_taskwait_finished(gtid, itt_sync_obj);
2594     KMP_FSYNC_ACQUIRED(taskdata); // acquire self - sync with descendants
2595 #endif /* USE_ITT_BUILD */
2596   }
2597   KMP_DEBUG_ASSERT(taskgroup->count == 0);
2598 
2599   if (taskgroup->reduce_data != NULL) { // need to reduce?
2600     int cnt;
2601     void *reduce_data;
2602     kmp_team_t *t = thread->th.th_team;
2603     kmp_taskred_data_t *arr = (kmp_taskred_data_t *)taskgroup->reduce_data;
2604     // check if <priv> data of the first reduction variable shared for the team
2605     void *priv0 = arr[0].reduce_priv;
2606     if ((reduce_data = KMP_ATOMIC_LD_ACQ(&t->t.t_tg_reduce_data[0])) != NULL &&
2607         ((kmp_taskred_data_t *)reduce_data)[0].reduce_priv == priv0) {
2608       // finishing task reduction on parallel
2609       cnt = KMP_ATOMIC_INC(&t->t.t_tg_fini_counter[0]);
2610       if (cnt == thread->th.th_team_nproc - 1) {
2611         // we are the last thread passing __kmpc_reduction_modifier_fini()
2612         // finalize task reduction:
2613         __kmp_task_reduction_fini(thread, taskgroup);
2614         // cleanup fields in the team structure:
2615         // TODO: is relaxed store enough here (whole barrier should follow)?
2616         __kmp_thread_free(thread, reduce_data);
2617         KMP_ATOMIC_ST_REL(&t->t.t_tg_reduce_data[0], NULL);
2618         KMP_ATOMIC_ST_REL(&t->t.t_tg_fini_counter[0], 0);
2619       } else {
2620         // we are not the last thread passing __kmpc_reduction_modifier_fini(),
2621         // so do not finalize reduction, just clean own copy of the data
2622         __kmp_task_reduction_clean(thread, taskgroup);
2623       }
2624     } else if ((reduce_data = KMP_ATOMIC_LD_ACQ(&t->t.t_tg_reduce_data[1])) !=
2625                    NULL &&
2626                ((kmp_taskred_data_t *)reduce_data)[0].reduce_priv == priv0) {
2627       // finishing task reduction on worksharing
2628       cnt = KMP_ATOMIC_INC(&t->t.t_tg_fini_counter[1]);
2629       if (cnt == thread->th.th_team_nproc - 1) {
2630         // we are the last thread passing __kmpc_reduction_modifier_fini()
2631         __kmp_task_reduction_fini(thread, taskgroup);
2632         // cleanup fields in team structure:
2633         // TODO: is relaxed store enough here (whole barrier should follow)?
2634         __kmp_thread_free(thread, reduce_data);
2635         KMP_ATOMIC_ST_REL(&t->t.t_tg_reduce_data[1], NULL);
2636         KMP_ATOMIC_ST_REL(&t->t.t_tg_fini_counter[1], 0);
2637       } else {
2638         // we are not the last thread passing __kmpc_reduction_modifier_fini(),
2639         // so do not finalize reduction, just clean own copy of the data
2640         __kmp_task_reduction_clean(thread, taskgroup);
2641       }
2642     } else {
2643       // finishing task reduction on taskgroup
2644       __kmp_task_reduction_fini(thread, taskgroup);
2645     }
2646   }
2647   // Restore parent taskgroup for the current task
2648   taskdata->td_taskgroup = taskgroup->parent;
2649   __kmp_thread_free(thread, taskgroup);
2650 
2651   KA_TRACE(10, ("__kmpc_end_taskgroup(exit): T#%d task %p finished waiting\n",
2652                 gtid, taskdata));
2653   ANNOTATE_HAPPENS_AFTER(taskdata);
2654 
2655 #if OMPT_SUPPORT && OMPT_OPTIONAL
2656   if (UNLIKELY(ompt_enabled.ompt_callback_sync_region)) {
2657     ompt_callbacks.ompt_callback(ompt_callback_sync_region)(
2658         ompt_sync_region_taskgroup, ompt_scope_end, &(my_parallel_data),
2659         &(my_task_data), codeptr);
2660   }
2661 #endif
2662 }
2663 
2664 // __kmp_remove_my_task: remove a task from my own deque
2665 static kmp_task_t *__kmp_remove_my_task(kmp_info_t *thread, kmp_int32 gtid,
2666                                         kmp_task_team_t *task_team,
2667                                         kmp_int32 is_constrained) {
2668   kmp_task_t *task;
2669   kmp_taskdata_t *taskdata;
2670   kmp_thread_data_t *thread_data;
2671   kmp_uint32 tail;
2672 
2673   KMP_DEBUG_ASSERT(__kmp_tasking_mode != tskm_immediate_exec);
2674   KMP_DEBUG_ASSERT(task_team->tt.tt_threads_data !=
2675                    NULL); // Caller should check this condition
2676 
2677   thread_data = &task_team->tt.tt_threads_data[__kmp_tid_from_gtid(gtid)];
2678 
2679   KA_TRACE(10, ("__kmp_remove_my_task(enter): T#%d ntasks=%d head=%u tail=%u\n",
2680                 gtid, thread_data->td.td_deque_ntasks,
2681                 thread_data->td.td_deque_head, thread_data->td.td_deque_tail));
2682 
2683   if (TCR_4(thread_data->td.td_deque_ntasks) == 0) {
2684     KA_TRACE(10,
2685              ("__kmp_remove_my_task(exit #1): T#%d No tasks to remove: "
2686               "ntasks=%d head=%u tail=%u\n",
2687               gtid, thread_data->td.td_deque_ntasks,
2688               thread_data->td.td_deque_head, thread_data->td.td_deque_tail));
2689     return NULL;
2690   }
2691 
2692   __kmp_acquire_bootstrap_lock(&thread_data->td.td_deque_lock);
2693 
2694   if (TCR_4(thread_data->td.td_deque_ntasks) == 0) {
2695     __kmp_release_bootstrap_lock(&thread_data->td.td_deque_lock);
2696     KA_TRACE(10,
2697              ("__kmp_remove_my_task(exit #2): T#%d No tasks to remove: "
2698               "ntasks=%d head=%u tail=%u\n",
2699               gtid, thread_data->td.td_deque_ntasks,
2700               thread_data->td.td_deque_head, thread_data->td.td_deque_tail));
2701     return NULL;
2702   }
2703 
2704   tail = (thread_data->td.td_deque_tail - 1) &
2705          TASK_DEQUE_MASK(thread_data->td); // Wrap index.
2706   taskdata = thread_data->td.td_deque[tail];
2707 
2708   if (!__kmp_task_is_allowed(gtid, is_constrained, taskdata,
2709                              thread->th.th_current_task)) {
2710     // The TSC does not allow to steal victim task
2711     __kmp_release_bootstrap_lock(&thread_data->td.td_deque_lock);
2712     KA_TRACE(10,
2713              ("__kmp_remove_my_task(exit #3): T#%d TSC blocks tail task: "
2714               "ntasks=%d head=%u tail=%u\n",
2715               gtid, thread_data->td.td_deque_ntasks,
2716               thread_data->td.td_deque_head, thread_data->td.td_deque_tail));
2717     return NULL;
2718   }
2719 
2720   thread_data->td.td_deque_tail = tail;
2721   TCW_4(thread_data->td.td_deque_ntasks, thread_data->td.td_deque_ntasks - 1);
2722 
2723   __kmp_release_bootstrap_lock(&thread_data->td.td_deque_lock);
2724 
2725   KA_TRACE(10, ("__kmp_remove_my_task(exit #4): T#%d task %p removed: "
2726                 "ntasks=%d head=%u tail=%u\n",
2727                 gtid, taskdata, thread_data->td.td_deque_ntasks,
2728                 thread_data->td.td_deque_head, thread_data->td.td_deque_tail));
2729 
2730   task = KMP_TASKDATA_TO_TASK(taskdata);
2731   return task;
2732 }
2733 
2734 // __kmp_steal_task: remove a task from another thread's deque
2735 // Assume that calling thread has already checked existence of
2736 // task_team thread_data before calling this routine.
2737 static kmp_task_t *__kmp_steal_task(kmp_info_t *victim_thr, kmp_int32 gtid,
2738                                     kmp_task_team_t *task_team,
2739                                     std::atomic<kmp_int32> *unfinished_threads,
2740                                     int *thread_finished,
2741                                     kmp_int32 is_constrained) {
2742   kmp_task_t *task;
2743   kmp_taskdata_t *taskdata;
2744   kmp_taskdata_t *current;
2745   kmp_thread_data_t *victim_td, *threads_data;
2746   kmp_int32 target;
2747   kmp_int32 victim_tid;
2748 
2749   KMP_DEBUG_ASSERT(__kmp_tasking_mode != tskm_immediate_exec);
2750 
2751   threads_data = task_team->tt.tt_threads_data;
2752   KMP_DEBUG_ASSERT(threads_data != NULL); // Caller should check this condition
2753 
2754   victim_tid = victim_thr->th.th_info.ds.ds_tid;
2755   victim_td = &threads_data[victim_tid];
2756 
2757   KA_TRACE(10, ("__kmp_steal_task(enter): T#%d try to steal from T#%d: "
2758                 "task_team=%p ntasks=%d head=%u tail=%u\n",
2759                 gtid, __kmp_gtid_from_thread(victim_thr), task_team,
2760                 victim_td->td.td_deque_ntasks, victim_td->td.td_deque_head,
2761                 victim_td->td.td_deque_tail));
2762 
2763   if (TCR_4(victim_td->td.td_deque_ntasks) == 0) {
2764     KA_TRACE(10, ("__kmp_steal_task(exit #1): T#%d could not steal from T#%d: "
2765                   "task_team=%p ntasks=%d head=%u tail=%u\n",
2766                   gtid, __kmp_gtid_from_thread(victim_thr), task_team,
2767                   victim_td->td.td_deque_ntasks, victim_td->td.td_deque_head,
2768                   victim_td->td.td_deque_tail));
2769     return NULL;
2770   }
2771 
2772   __kmp_acquire_bootstrap_lock(&victim_td->td.td_deque_lock);
2773 
2774   int ntasks = TCR_4(victim_td->td.td_deque_ntasks);
2775   // Check again after we acquire the lock
2776   if (ntasks == 0) {
2777     __kmp_release_bootstrap_lock(&victim_td->td.td_deque_lock);
2778     KA_TRACE(10, ("__kmp_steal_task(exit #2): T#%d could not steal from T#%d: "
2779                   "task_team=%p ntasks=%d head=%u tail=%u\n",
2780                   gtid, __kmp_gtid_from_thread(victim_thr), task_team, ntasks,
2781                   victim_td->td.td_deque_head, victim_td->td.td_deque_tail));
2782     return NULL;
2783   }
2784 
2785   KMP_DEBUG_ASSERT(victim_td->td.td_deque != NULL);
2786   current = __kmp_threads[gtid]->th.th_current_task;
2787   taskdata = victim_td->td.td_deque[victim_td->td.td_deque_head];
2788   if (__kmp_task_is_allowed(gtid, is_constrained, taskdata, current)) {
2789     // Bump head pointer and Wrap.
2790     victim_td->td.td_deque_head =
2791         (victim_td->td.td_deque_head + 1) & TASK_DEQUE_MASK(victim_td->td);
2792   } else {
2793     if (!task_team->tt.tt_untied_task_encountered) {
2794       // The TSC does not allow to steal victim task
2795       __kmp_release_bootstrap_lock(&victim_td->td.td_deque_lock);
2796       KA_TRACE(10, ("__kmp_steal_task(exit #3): T#%d could not steal from "
2797                     "T#%d: task_team=%p ntasks=%d head=%u tail=%u\n",
2798                     gtid, __kmp_gtid_from_thread(victim_thr), task_team, ntasks,
2799                     victim_td->td.td_deque_head, victim_td->td.td_deque_tail));
2800       return NULL;
2801     }
2802     int i;
2803     // walk through victim's deque trying to steal any task
2804     target = victim_td->td.td_deque_head;
2805     taskdata = NULL;
2806     for (i = 1; i < ntasks; ++i) {
2807       target = (target + 1) & TASK_DEQUE_MASK(victim_td->td);
2808       taskdata = victim_td->td.td_deque[target];
2809       if (__kmp_task_is_allowed(gtid, is_constrained, taskdata, current)) {
2810         break; // found victim task
2811       } else {
2812         taskdata = NULL;
2813       }
2814     }
2815     if (taskdata == NULL) {
2816       // No appropriate candidate to steal found
2817       __kmp_release_bootstrap_lock(&victim_td->td.td_deque_lock);
2818       KA_TRACE(10, ("__kmp_steal_task(exit #4): T#%d could not steal from "
2819                     "T#%d: task_team=%p ntasks=%d head=%u tail=%u\n",
2820                     gtid, __kmp_gtid_from_thread(victim_thr), task_team, ntasks,
2821                     victim_td->td.td_deque_head, victim_td->td.td_deque_tail));
2822       return NULL;
2823     }
2824     int prev = target;
2825     for (i = i + 1; i < ntasks; ++i) {
2826       // shift remaining tasks in the deque left by 1
2827       target = (target + 1) & TASK_DEQUE_MASK(victim_td->td);
2828       victim_td->td.td_deque[prev] = victim_td->td.td_deque[target];
2829       prev = target;
2830     }
2831     KMP_DEBUG_ASSERT(
2832         victim_td->td.td_deque_tail ==
2833         (kmp_uint32)((target + 1) & TASK_DEQUE_MASK(victim_td->td)));
2834     victim_td->td.td_deque_tail = target; // tail -= 1 (wrapped))
2835   }
2836   if (*thread_finished) {
2837     // We need to un-mark this victim as a finished victim.  This must be done
2838     // before releasing the lock, or else other threads (starting with the
2839     // master victim) might be prematurely released from the barrier!!!
2840     kmp_int32 count;
2841 
2842     count = KMP_ATOMIC_INC(unfinished_threads);
2843 
2844     KA_TRACE(
2845         20,
2846         ("__kmp_steal_task: T#%d inc unfinished_threads to %d: task_team=%p\n",
2847          gtid, count + 1, task_team));
2848 
2849     *thread_finished = FALSE;
2850   }
2851   TCW_4(victim_td->td.td_deque_ntasks, ntasks - 1);
2852 
2853   __kmp_release_bootstrap_lock(&victim_td->td.td_deque_lock);
2854 
2855   KMP_COUNT_BLOCK(TASK_stolen);
2856   KA_TRACE(10,
2857            ("__kmp_steal_task(exit #5): T#%d stole task %p from T#%d: "
2858             "task_team=%p ntasks=%d head=%u tail=%u\n",
2859             gtid, taskdata, __kmp_gtid_from_thread(victim_thr), task_team,
2860             ntasks, victim_td->td.td_deque_head, victim_td->td.td_deque_tail));
2861 
2862   task = KMP_TASKDATA_TO_TASK(taskdata);
2863   return task;
2864 }
2865 
2866 // __kmp_execute_tasks_template: Choose and execute tasks until either the
2867 // condition is statisfied (return true) or there are none left (return false).
2868 //
2869 // final_spin is TRUE if this is the spin at the release barrier.
2870 // thread_finished indicates whether the thread is finished executing all
2871 // the tasks it has on its deque, and is at the release barrier.
2872 // spinner is the location on which to spin.
2873 // spinner == NULL means only execute a single task and return.
2874 // checker is the value to check to terminate the spin.
2875 template <class C>
2876 static inline int __kmp_execute_tasks_template(
2877     kmp_info_t *thread, kmp_int32 gtid, C *flag, int final_spin,
2878     int *thread_finished USE_ITT_BUILD_ARG(void *itt_sync_obj),
2879     kmp_int32 is_constrained) {
2880   kmp_task_team_t *task_team = thread->th.th_task_team;
2881   kmp_thread_data_t *threads_data;
2882   kmp_task_t *task;
2883   kmp_info_t *other_thread;
2884   kmp_taskdata_t *current_task = thread->th.th_current_task;
2885   std::atomic<kmp_int32> *unfinished_threads;
2886   kmp_int32 nthreads, victim_tid = -2, use_own_tasks = 1, new_victim = 0,
2887                       tid = thread->th.th_info.ds.ds_tid;
2888 
2889   KMP_DEBUG_ASSERT(__kmp_tasking_mode != tskm_immediate_exec);
2890   KMP_DEBUG_ASSERT(thread == __kmp_threads[gtid]);
2891 
2892   if (task_team == NULL || current_task == NULL)
2893     return FALSE;
2894 
2895   KA_TRACE(15, ("__kmp_execute_tasks_template(enter): T#%d final_spin=%d "
2896                 "*thread_finished=%d\n",
2897                 gtid, final_spin, *thread_finished));
2898 
2899   thread->th.th_reap_state = KMP_NOT_SAFE_TO_REAP;
2900   threads_data = (kmp_thread_data_t *)TCR_PTR(task_team->tt.tt_threads_data);
2901 
2902   KMP_DEBUG_ASSERT(threads_data != NULL);
2903 
2904   nthreads = task_team->tt.tt_nproc;
2905   unfinished_threads = &(task_team->tt.tt_unfinished_threads);
2906   KMP_DEBUG_ASSERT(nthreads > 1 || task_team->tt.tt_found_proxy_tasks ||
2907                    task_team->tt.tt_hidden_helper_task_encountered);
2908   KMP_DEBUG_ASSERT(*unfinished_threads >= 0);
2909 
2910   while (1) { // Outer loop keeps trying to find tasks in case of single thread
2911     // getting tasks from target constructs
2912     while (1) { // Inner loop to find a task and execute it
2913       task = NULL;
2914       if (use_own_tasks) { // check on own queue first
2915         task = __kmp_remove_my_task(thread, gtid, task_team, is_constrained);
2916       }
2917       if ((task == NULL) && (nthreads > 1)) { // Steal a task
2918         int asleep = 1;
2919         use_own_tasks = 0;
2920         // Try to steal from the last place I stole from successfully.
2921         if (victim_tid == -2) { // haven't stolen anything yet
2922           victim_tid = threads_data[tid].td.td_deque_last_stolen;
2923           if (victim_tid !=
2924               -1) // if we have a last stolen from victim, get the thread
2925             other_thread = threads_data[victim_tid].td.td_thr;
2926         }
2927         if (victim_tid != -1) { // found last victim
2928           asleep = 0;
2929         } else if (!new_victim) { // no recent steals and we haven't already
2930           // used a new victim; select a random thread
2931           do { // Find a different thread to steal work from.
2932             // Pick a random thread. Initial plan was to cycle through all the
2933             // threads, and only return if we tried to steal from every thread,
2934             // and failed.  Arch says that's not such a great idea.
2935             victim_tid = __kmp_get_random(thread) % (nthreads - 1);
2936             if (victim_tid >= tid) {
2937               ++victim_tid; // Adjusts random distribution to exclude self
2938             }
2939             // Found a potential victim
2940             other_thread = threads_data[victim_tid].td.td_thr;
2941             // There is a slight chance that __kmp_enable_tasking() did not wake
2942             // up all threads waiting at the barrier.  If victim is sleeping,
2943             // then wake it up. Since we were going to pay the cache miss
2944             // penalty for referencing another thread's kmp_info_t struct
2945             // anyway,
2946             // the check shouldn't cost too much performance at this point. In
2947             // extra barrier mode, tasks do not sleep at the separate tasking
2948             // barrier, so this isn't a problem.
2949             asleep = 0;
2950             if ((__kmp_tasking_mode == tskm_task_teams) &&
2951                 (__kmp_dflt_blocktime != KMP_MAX_BLOCKTIME) &&
2952                 (TCR_PTR(CCAST(void *, other_thread->th.th_sleep_loc)) !=
2953                  NULL)) {
2954               asleep = 1;
2955               __kmp_null_resume_wrapper(__kmp_gtid_from_thread(other_thread),
2956                                         other_thread->th.th_sleep_loc);
2957               // A sleeping thread should not have any tasks on it's queue.
2958               // There is a slight possibility that it resumes, steals a task
2959               // from another thread, which spawns more tasks, all in the time
2960               // that it takes this thread to check => don't write an assertion
2961               // that the victim's queue is empty.  Try stealing from a
2962               // different thread.
2963             }
2964           } while (asleep);
2965         }
2966 
2967         if (!asleep) {
2968           // We have a victim to try to steal from
2969           task = __kmp_steal_task(other_thread, gtid, task_team,
2970                                   unfinished_threads, thread_finished,
2971                                   is_constrained);
2972         }
2973         if (task != NULL) { // set last stolen to victim
2974           if (threads_data[tid].td.td_deque_last_stolen != victim_tid) {
2975             threads_data[tid].td.td_deque_last_stolen = victim_tid;
2976             // The pre-refactored code did not try more than 1 successful new
2977             // vicitm, unless the last one generated more local tasks;
2978             // new_victim keeps track of this
2979             new_victim = 1;
2980           }
2981         } else { // No tasks found; unset last_stolen
2982           KMP_CHECK_UPDATE(threads_data[tid].td.td_deque_last_stolen, -1);
2983           victim_tid = -2; // no successful victim found
2984         }
2985       }
2986 
2987       if (task == NULL)
2988         break; // break out of tasking loop
2989 
2990 // Found a task; execute it
2991 #if USE_ITT_BUILD && USE_ITT_NOTIFY
2992       if (__itt_sync_create_ptr || KMP_ITT_DEBUG) {
2993         if (itt_sync_obj == NULL) { // we are at fork barrier where we could not
2994           // get the object reliably
2995           itt_sync_obj = __kmp_itt_barrier_object(gtid, bs_forkjoin_barrier);
2996         }
2997         __kmp_itt_task_starting(itt_sync_obj);
2998       }
2999 #endif /* USE_ITT_BUILD && USE_ITT_NOTIFY */
3000       __kmp_invoke_task(gtid, task, current_task);
3001 #if USE_ITT_BUILD
3002       if (itt_sync_obj != NULL)
3003         __kmp_itt_task_finished(itt_sync_obj);
3004 #endif /* USE_ITT_BUILD */
3005       // If this thread is only partway through the barrier and the condition is
3006       // met, then return now, so that the barrier gather/release pattern can
3007       // proceed. If this thread is in the last spin loop in the barrier,
3008       // waiting to be released, we know that the termination condition will not
3009       // be satisfied, so don't waste any cycles checking it.
3010       if (flag == NULL || (!final_spin && flag->done_check())) {
3011         KA_TRACE(
3012             15,
3013             ("__kmp_execute_tasks_template: T#%d spin condition satisfied\n",
3014              gtid));
3015         return TRUE;
3016       }
3017       if (thread->th.th_task_team == NULL) {
3018         break;
3019       }
3020       KMP_YIELD(__kmp_library == library_throughput); // Yield before next task
3021       // If execution of a stolen task results in more tasks being placed on our
3022       // run queue, reset use_own_tasks
3023       if (!use_own_tasks && TCR_4(threads_data[tid].td.td_deque_ntasks) != 0) {
3024         KA_TRACE(20, ("__kmp_execute_tasks_template: T#%d stolen task spawned "
3025                       "other tasks, restart\n",
3026                       gtid));
3027         use_own_tasks = 1;
3028         new_victim = 0;
3029       }
3030     }
3031 
3032     // The task source has been exhausted. If in final spin loop of barrier,
3033     // check if termination condition is satisfied. The work queue may be empty
3034     // but there might be proxy tasks still executing.
3035     if (final_spin &&
3036         KMP_ATOMIC_LD_ACQ(&current_task->td_incomplete_child_tasks) == 0) {
3037       // First, decrement the #unfinished threads, if that has not already been
3038       // done.  This decrement might be to the spin location, and result in the
3039       // termination condition being satisfied.
3040       if (!*thread_finished) {
3041         kmp_int32 count;
3042 
3043         count = KMP_ATOMIC_DEC(unfinished_threads) - 1;
3044         KA_TRACE(20, ("__kmp_execute_tasks_template: T#%d dec "
3045                       "unfinished_threads to %d task_team=%p\n",
3046                       gtid, count, task_team));
3047         *thread_finished = TRUE;
3048       }
3049 
3050       // It is now unsafe to reference thread->th.th_team !!!
3051       // Decrementing task_team->tt.tt_unfinished_threads can allow the master
3052       // thread to pass through the barrier, where it might reset each thread's
3053       // th.th_team field for the next parallel region. If we can steal more
3054       // work, we know that this has not happened yet.
3055       if (flag != NULL && flag->done_check()) {
3056         KA_TRACE(
3057             15,
3058             ("__kmp_execute_tasks_template: T#%d spin condition satisfied\n",
3059              gtid));
3060         return TRUE;
3061       }
3062     }
3063 
3064     // If this thread's task team is NULL, master has recognized that there are
3065     // no more tasks; bail out
3066     if (thread->th.th_task_team == NULL) {
3067       KA_TRACE(15,
3068                ("__kmp_execute_tasks_template: T#%d no more tasks\n", gtid));
3069       return FALSE;
3070     }
3071 
3072     // We could be getting tasks from target constructs; if this is the only
3073     // thread, keep trying to execute tasks from own queue
3074     if (nthreads == 1 &&
3075         KMP_ATOMIC_LD_ACQ(&current_task->td_incomplete_child_tasks))
3076       use_own_tasks = 1;
3077     else {
3078       KA_TRACE(15,
3079                ("__kmp_execute_tasks_template: T#%d can't find work\n", gtid));
3080       return FALSE;
3081     }
3082   }
3083 }
3084 
3085 template <bool C, bool S>
3086 int __kmp_execute_tasks_32(
3087     kmp_info_t *thread, kmp_int32 gtid, kmp_flag_32<C, S> *flag, int final_spin,
3088     int *thread_finished USE_ITT_BUILD_ARG(void *itt_sync_obj),
3089     kmp_int32 is_constrained) {
3090   return __kmp_execute_tasks_template(
3091       thread, gtid, flag, final_spin,
3092       thread_finished USE_ITT_BUILD_ARG(itt_sync_obj), is_constrained);
3093 }
3094 
3095 template <bool C, bool S>
3096 int __kmp_execute_tasks_64(
3097     kmp_info_t *thread, kmp_int32 gtid, kmp_flag_64<C, S> *flag, int final_spin,
3098     int *thread_finished USE_ITT_BUILD_ARG(void *itt_sync_obj),
3099     kmp_int32 is_constrained) {
3100   return __kmp_execute_tasks_template(
3101       thread, gtid, flag, final_spin,
3102       thread_finished USE_ITT_BUILD_ARG(itt_sync_obj), is_constrained);
3103 }
3104 
3105 int __kmp_execute_tasks_oncore(
3106     kmp_info_t *thread, kmp_int32 gtid, kmp_flag_oncore *flag, int final_spin,
3107     int *thread_finished USE_ITT_BUILD_ARG(void *itt_sync_obj),
3108     kmp_int32 is_constrained) {
3109   return __kmp_execute_tasks_template(
3110       thread, gtid, flag, final_spin,
3111       thread_finished USE_ITT_BUILD_ARG(itt_sync_obj), is_constrained);
3112 }
3113 
3114 template int
3115 __kmp_execute_tasks_32<false, false>(kmp_info_t *, kmp_int32,
3116                                      kmp_flag_32<false, false> *, int,
3117                                      int *USE_ITT_BUILD_ARG(void *), kmp_int32);
3118 
3119 template int __kmp_execute_tasks_64<false, true>(kmp_info_t *, kmp_int32,
3120                                                  kmp_flag_64<false, true> *,
3121                                                  int,
3122                                                  int *USE_ITT_BUILD_ARG(void *),
3123                                                  kmp_int32);
3124 
3125 template int __kmp_execute_tasks_64<true, false>(kmp_info_t *, kmp_int32,
3126                                                  kmp_flag_64<true, false> *,
3127                                                  int,
3128                                                  int *USE_ITT_BUILD_ARG(void *),
3129                                                  kmp_int32);
3130 
3131 // __kmp_enable_tasking: Allocate task team and resume threads sleeping at the
3132 // next barrier so they can assist in executing enqueued tasks.
3133 // First thread in allocates the task team atomically.
3134 static void __kmp_enable_tasking(kmp_task_team_t *task_team,
3135                                  kmp_info_t *this_thr) {
3136   kmp_thread_data_t *threads_data;
3137   int nthreads, i, is_init_thread;
3138 
3139   KA_TRACE(10, ("__kmp_enable_tasking(enter): T#%d\n",
3140                 __kmp_gtid_from_thread(this_thr)));
3141 
3142   KMP_DEBUG_ASSERT(task_team != NULL);
3143   KMP_DEBUG_ASSERT(this_thr->th.th_team != NULL);
3144 
3145   nthreads = task_team->tt.tt_nproc;
3146   KMP_DEBUG_ASSERT(nthreads > 0);
3147   KMP_DEBUG_ASSERT(nthreads == this_thr->th.th_team->t.t_nproc);
3148 
3149   // Allocate or increase the size of threads_data if necessary
3150   is_init_thread = __kmp_realloc_task_threads_data(this_thr, task_team);
3151 
3152   if (!is_init_thread) {
3153     // Some other thread already set up the array.
3154     KA_TRACE(
3155         20,
3156         ("__kmp_enable_tasking(exit): T#%d: threads array already set up.\n",
3157          __kmp_gtid_from_thread(this_thr)));
3158     return;
3159   }
3160   threads_data = (kmp_thread_data_t *)TCR_PTR(task_team->tt.tt_threads_data);
3161   KMP_DEBUG_ASSERT(threads_data != NULL);
3162 
3163   if (__kmp_tasking_mode == tskm_task_teams &&
3164       (__kmp_dflt_blocktime != KMP_MAX_BLOCKTIME)) {
3165     // Release any threads sleeping at the barrier, so that they can steal
3166     // tasks and execute them.  In extra barrier mode, tasks do not sleep
3167     // at the separate tasking barrier, so this isn't a problem.
3168     for (i = 0; i < nthreads; i++) {
3169       volatile void *sleep_loc;
3170       kmp_info_t *thread = threads_data[i].td.td_thr;
3171 
3172       if (i == this_thr->th.th_info.ds.ds_tid) {
3173         continue;
3174       }
3175       // Since we haven't locked the thread's suspend mutex lock at this
3176       // point, there is a small window where a thread might be putting
3177       // itself to sleep, but hasn't set the th_sleep_loc field yet.
3178       // To work around this, __kmp_execute_tasks_template() periodically checks
3179       // see if other threads are sleeping (using the same random mechanism that
3180       // is used for task stealing) and awakens them if they are.
3181       if ((sleep_loc = TCR_PTR(CCAST(void *, thread->th.th_sleep_loc))) !=
3182           NULL) {
3183         KF_TRACE(50, ("__kmp_enable_tasking: T#%d waking up thread T#%d\n",
3184                       __kmp_gtid_from_thread(this_thr),
3185                       __kmp_gtid_from_thread(thread)));
3186         __kmp_null_resume_wrapper(__kmp_gtid_from_thread(thread), sleep_loc);
3187       } else {
3188         KF_TRACE(50, ("__kmp_enable_tasking: T#%d don't wake up thread T#%d\n",
3189                       __kmp_gtid_from_thread(this_thr),
3190                       __kmp_gtid_from_thread(thread)));
3191       }
3192     }
3193   }
3194 
3195   KA_TRACE(10, ("__kmp_enable_tasking(exit): T#%d\n",
3196                 __kmp_gtid_from_thread(this_thr)));
3197 }
3198 
3199 /* // TODO: Check the comment consistency
3200  * Utility routines for "task teams".  A task team (kmp_task_t) is kind of
3201  * like a shadow of the kmp_team_t data struct, with a different lifetime.
3202  * After a child * thread checks into a barrier and calls __kmp_release() from
3203  * the particular variant of __kmp_<barrier_kind>_barrier_gather(), it can no
3204  * longer assume that the kmp_team_t structure is intact (at any moment, the
3205  * master thread may exit the barrier code and free the team data structure,
3206  * and return the threads to the thread pool).
3207  *
3208  * This does not work with the tasking code, as the thread is still
3209  * expected to participate in the execution of any tasks that may have been
3210  * spawned my a member of the team, and the thread still needs access to all
3211  * to each thread in the team, so that it can steal work from it.
3212  *
3213  * Enter the existence of the kmp_task_team_t struct.  It employs a reference
3214  * counting mechanism, and is allocated by the master thread before calling
3215  * __kmp_<barrier_kind>_release, and then is release by the last thread to
3216  * exit __kmp_<barrier_kind>_release at the next barrier.  I.e. the lifetimes
3217  * of the kmp_task_team_t structs for consecutive barriers can overlap
3218  * (and will, unless the master thread is the last thread to exit the barrier
3219  * release phase, which is not typical). The existence of such a struct is
3220  * useful outside the context of tasking.
3221  *
3222  * We currently use the existence of the threads array as an indicator that
3223  * tasks were spawned since the last barrier.  If the structure is to be
3224  * useful outside the context of tasking, then this will have to change, but
3225  * not setting the field minimizes the performance impact of tasking on
3226  * barriers, when no explicit tasks were spawned (pushed, actually).
3227  */
3228 
3229 static kmp_task_team_t *__kmp_free_task_teams =
3230     NULL; // Free list for task_team data structures
3231 // Lock for task team data structures
3232 kmp_bootstrap_lock_t __kmp_task_team_lock =
3233     KMP_BOOTSTRAP_LOCK_INITIALIZER(__kmp_task_team_lock);
3234 
3235 // __kmp_alloc_task_deque:
3236 // Allocates a task deque for a particular thread, and initialize the necessary
3237 // data structures relating to the deque.  This only happens once per thread
3238 // per task team since task teams are recycled. No lock is needed during
3239 // allocation since each thread allocates its own deque.
3240 static void __kmp_alloc_task_deque(kmp_info_t *thread,
3241                                    kmp_thread_data_t *thread_data) {
3242   __kmp_init_bootstrap_lock(&thread_data->td.td_deque_lock);
3243   KMP_DEBUG_ASSERT(thread_data->td.td_deque == NULL);
3244 
3245   // Initialize last stolen task field to "none"
3246   thread_data->td.td_deque_last_stolen = -1;
3247 
3248   KMP_DEBUG_ASSERT(TCR_4(thread_data->td.td_deque_ntasks) == 0);
3249   KMP_DEBUG_ASSERT(thread_data->td.td_deque_head == 0);
3250   KMP_DEBUG_ASSERT(thread_data->td.td_deque_tail == 0);
3251 
3252   KE_TRACE(
3253       10,
3254       ("__kmp_alloc_task_deque: T#%d allocating deque[%d] for thread_data %p\n",
3255        __kmp_gtid_from_thread(thread), INITIAL_TASK_DEQUE_SIZE, thread_data));
3256   // Allocate space for task deque, and zero the deque
3257   // Cannot use __kmp_thread_calloc() because threads not around for
3258   // kmp_reap_task_team( ).
3259   thread_data->td.td_deque = (kmp_taskdata_t **)__kmp_allocate(
3260       INITIAL_TASK_DEQUE_SIZE * sizeof(kmp_taskdata_t *));
3261   thread_data->td.td_deque_size = INITIAL_TASK_DEQUE_SIZE;
3262 }
3263 
3264 // __kmp_free_task_deque:
3265 // Deallocates a task deque for a particular thread. Happens at library
3266 // deallocation so don't need to reset all thread data fields.
3267 static void __kmp_free_task_deque(kmp_thread_data_t *thread_data) {
3268   if (thread_data->td.td_deque != NULL) {
3269     __kmp_acquire_bootstrap_lock(&thread_data->td.td_deque_lock);
3270     TCW_4(thread_data->td.td_deque_ntasks, 0);
3271     __kmp_free(thread_data->td.td_deque);
3272     thread_data->td.td_deque = NULL;
3273     __kmp_release_bootstrap_lock(&thread_data->td.td_deque_lock);
3274   }
3275 
3276 #ifdef BUILD_TIED_TASK_STACK
3277   // GEH: Figure out what to do here for td_susp_tied_tasks
3278   if (thread_data->td.td_susp_tied_tasks.ts_entries != TASK_STACK_EMPTY) {
3279     __kmp_free_task_stack(__kmp_thread_from_gtid(gtid), thread_data);
3280   }
3281 #endif // BUILD_TIED_TASK_STACK
3282 }
3283 
3284 // __kmp_realloc_task_threads_data:
3285 // Allocates a threads_data array for a task team, either by allocating an
3286 // initial array or enlarging an existing array.  Only the first thread to get
3287 // the lock allocs or enlarges the array and re-initializes the array elements.
3288 // That thread returns "TRUE", the rest return "FALSE".
3289 // Assumes that the new array size is given by task_team -> tt.tt_nproc.
3290 // The current size is given by task_team -> tt.tt_max_threads.
3291 static int __kmp_realloc_task_threads_data(kmp_info_t *thread,
3292                                            kmp_task_team_t *task_team) {
3293   kmp_thread_data_t **threads_data_p;
3294   kmp_int32 nthreads, maxthreads;
3295   int is_init_thread = FALSE;
3296 
3297   if (TCR_4(task_team->tt.tt_found_tasks)) {
3298     // Already reallocated and initialized.
3299     return FALSE;
3300   }
3301 
3302   threads_data_p = &task_team->tt.tt_threads_data;
3303   nthreads = task_team->tt.tt_nproc;
3304   maxthreads = task_team->tt.tt_max_threads;
3305 
3306   // All threads must lock when they encounter the first task of the implicit
3307   // task region to make sure threads_data fields are (re)initialized before
3308   // used.
3309   __kmp_acquire_bootstrap_lock(&task_team->tt.tt_threads_lock);
3310 
3311   if (!TCR_4(task_team->tt.tt_found_tasks)) {
3312     // first thread to enable tasking
3313     kmp_team_t *team = thread->th.th_team;
3314     int i;
3315 
3316     is_init_thread = TRUE;
3317     if (maxthreads < nthreads) {
3318 
3319       if (*threads_data_p != NULL) {
3320         kmp_thread_data_t *old_data = *threads_data_p;
3321         kmp_thread_data_t *new_data = NULL;
3322 
3323         KE_TRACE(
3324             10,
3325             ("__kmp_realloc_task_threads_data: T#%d reallocating "
3326              "threads data for task_team %p, new_size = %d, old_size = %d\n",
3327              __kmp_gtid_from_thread(thread), task_team, nthreads, maxthreads));
3328         // Reallocate threads_data to have more elements than current array
3329         // Cannot use __kmp_thread_realloc() because threads not around for
3330         // kmp_reap_task_team( ).  Note all new array entries are initialized
3331         // to zero by __kmp_allocate().
3332         new_data = (kmp_thread_data_t *)__kmp_allocate(
3333             nthreads * sizeof(kmp_thread_data_t));
3334         // copy old data to new data
3335         KMP_MEMCPY_S((void *)new_data, nthreads * sizeof(kmp_thread_data_t),
3336                      (void *)old_data, maxthreads * sizeof(kmp_thread_data_t));
3337 
3338 #ifdef BUILD_TIED_TASK_STACK
3339         // GEH: Figure out if this is the right thing to do
3340         for (i = maxthreads; i < nthreads; i++) {
3341           kmp_thread_data_t *thread_data = &(*threads_data_p)[i];
3342           __kmp_init_task_stack(__kmp_gtid_from_thread(thread), thread_data);
3343         }
3344 #endif // BUILD_TIED_TASK_STACK
3345         // Install the new data and free the old data
3346         (*threads_data_p) = new_data;
3347         __kmp_free(old_data);
3348       } else {
3349         KE_TRACE(10, ("__kmp_realloc_task_threads_data: T#%d allocating "
3350                       "threads data for task_team %p, size = %d\n",
3351                       __kmp_gtid_from_thread(thread), task_team, nthreads));
3352         // Make the initial allocate for threads_data array, and zero entries
3353         // Cannot use __kmp_thread_calloc() because threads not around for
3354         // kmp_reap_task_team( ).
3355         ANNOTATE_IGNORE_WRITES_BEGIN();
3356         *threads_data_p = (kmp_thread_data_t *)__kmp_allocate(
3357             nthreads * sizeof(kmp_thread_data_t));
3358         ANNOTATE_IGNORE_WRITES_END();
3359 #ifdef BUILD_TIED_TASK_STACK
3360         // GEH: Figure out if this is the right thing to do
3361         for (i = 0; i < nthreads; i++) {
3362           kmp_thread_data_t *thread_data = &(*threads_data_p)[i];
3363           __kmp_init_task_stack(__kmp_gtid_from_thread(thread), thread_data);
3364         }
3365 #endif // BUILD_TIED_TASK_STACK
3366       }
3367       task_team->tt.tt_max_threads = nthreads;
3368     } else {
3369       // If array has (more than) enough elements, go ahead and use it
3370       KMP_DEBUG_ASSERT(*threads_data_p != NULL);
3371     }
3372 
3373     // initialize threads_data pointers back to thread_info structures
3374     for (i = 0; i < nthreads; i++) {
3375       kmp_thread_data_t *thread_data = &(*threads_data_p)[i];
3376       thread_data->td.td_thr = team->t.t_threads[i];
3377 
3378       if (thread_data->td.td_deque_last_stolen >= nthreads) {
3379         // The last stolen field survives across teams / barrier, and the number
3380         // of threads may have changed.  It's possible (likely?) that a new
3381         // parallel region will exhibit the same behavior as previous region.
3382         thread_data->td.td_deque_last_stolen = -1;
3383       }
3384     }
3385 
3386     KMP_MB();
3387     TCW_SYNC_4(task_team->tt.tt_found_tasks, TRUE);
3388   }
3389 
3390   __kmp_release_bootstrap_lock(&task_team->tt.tt_threads_lock);
3391   return is_init_thread;
3392 }
3393 
3394 // __kmp_free_task_threads_data:
3395 // Deallocates a threads_data array for a task team, including any attached
3396 // tasking deques.  Only occurs at library shutdown.
3397 static void __kmp_free_task_threads_data(kmp_task_team_t *task_team) {
3398   __kmp_acquire_bootstrap_lock(&task_team->tt.tt_threads_lock);
3399   if (task_team->tt.tt_threads_data != NULL) {
3400     int i;
3401     for (i = 0; i < task_team->tt.tt_max_threads; i++) {
3402       __kmp_free_task_deque(&task_team->tt.tt_threads_data[i]);
3403     }
3404     __kmp_free(task_team->tt.tt_threads_data);
3405     task_team->tt.tt_threads_data = NULL;
3406   }
3407   __kmp_release_bootstrap_lock(&task_team->tt.tt_threads_lock);
3408 }
3409 
3410 // __kmp_allocate_task_team:
3411 // Allocates a task team associated with a specific team, taking it from
3412 // the global task team free list if possible.  Also initializes data
3413 // structures.
3414 static kmp_task_team_t *__kmp_allocate_task_team(kmp_info_t *thread,
3415                                                  kmp_team_t *team) {
3416   kmp_task_team_t *task_team = NULL;
3417   int nthreads;
3418 
3419   KA_TRACE(20, ("__kmp_allocate_task_team: T#%d entering; team = %p\n",
3420                 (thread ? __kmp_gtid_from_thread(thread) : -1), team));
3421 
3422   if (TCR_PTR(__kmp_free_task_teams) != NULL) {
3423     // Take a task team from the task team pool
3424     __kmp_acquire_bootstrap_lock(&__kmp_task_team_lock);
3425     if (__kmp_free_task_teams != NULL) {
3426       task_team = __kmp_free_task_teams;
3427       TCW_PTR(__kmp_free_task_teams, task_team->tt.tt_next);
3428       task_team->tt.tt_next = NULL;
3429     }
3430     __kmp_release_bootstrap_lock(&__kmp_task_team_lock);
3431   }
3432 
3433   if (task_team == NULL) {
3434     KE_TRACE(10, ("__kmp_allocate_task_team: T#%d allocating "
3435                   "task team for team %p\n",
3436                   __kmp_gtid_from_thread(thread), team));
3437     // Allocate a new task team if one is not available. Cannot use
3438     // __kmp_thread_malloc because threads not around for kmp_reap_task_team.
3439     task_team = (kmp_task_team_t *)__kmp_allocate(sizeof(kmp_task_team_t));
3440     __kmp_init_bootstrap_lock(&task_team->tt.tt_threads_lock);
3441 #if USE_ITT_BUILD && USE_ITT_NOTIFY && KMP_DEBUG
3442     // suppress race conditions detection on synchronization flags in debug mode
3443     // this helps to analyze library internals eliminating false positives
3444     __itt_suppress_mark_range(
3445         __itt_suppress_range, __itt_suppress_threading_errors,
3446         &task_team->tt.tt_found_tasks, sizeof(task_team->tt.tt_found_tasks));
3447     __itt_suppress_mark_range(__itt_suppress_range,
3448                               __itt_suppress_threading_errors,
3449                               CCAST(kmp_uint32 *, &task_team->tt.tt_active),
3450                               sizeof(task_team->tt.tt_active));
3451 #endif /* USE_ITT_BUILD && USE_ITT_NOTIFY && KMP_DEBUG */
3452     // Note: __kmp_allocate zeroes returned memory, othewise we would need:
3453     // task_team->tt.tt_threads_data = NULL;
3454     // task_team->tt.tt_max_threads = 0;
3455     // task_team->tt.tt_next = NULL;
3456   }
3457 
3458   TCW_4(task_team->tt.tt_found_tasks, FALSE);
3459   TCW_4(task_team->tt.tt_found_proxy_tasks, FALSE);
3460   task_team->tt.tt_nproc = nthreads = team->t.t_nproc;
3461 
3462   KMP_ATOMIC_ST_REL(&task_team->tt.tt_unfinished_threads, nthreads);
3463   TCW_4(task_team->tt.tt_hidden_helper_task_encountered, FALSE);
3464   TCW_4(task_team->tt.tt_active, TRUE);
3465 
3466   KA_TRACE(20, ("__kmp_allocate_task_team: T#%d exiting; task_team = %p "
3467                 "unfinished_threads init'd to %d\n",
3468                 (thread ? __kmp_gtid_from_thread(thread) : -1), task_team,
3469                 KMP_ATOMIC_LD_RLX(&task_team->tt.tt_unfinished_threads)));
3470   return task_team;
3471 }
3472 
3473 // __kmp_free_task_team:
3474 // Frees the task team associated with a specific thread, and adds it
3475 // to the global task team free list.
3476 void __kmp_free_task_team(kmp_info_t *thread, kmp_task_team_t *task_team) {
3477   KA_TRACE(20, ("__kmp_free_task_team: T#%d task_team = %p\n",
3478                 thread ? __kmp_gtid_from_thread(thread) : -1, task_team));
3479 
3480   // Put task team back on free list
3481   __kmp_acquire_bootstrap_lock(&__kmp_task_team_lock);
3482 
3483   KMP_DEBUG_ASSERT(task_team->tt.tt_next == NULL);
3484   task_team->tt.tt_next = __kmp_free_task_teams;
3485   TCW_PTR(__kmp_free_task_teams, task_team);
3486 
3487   __kmp_release_bootstrap_lock(&__kmp_task_team_lock);
3488 }
3489 
3490 // __kmp_reap_task_teams:
3491 // Free all the task teams on the task team free list.
3492 // Should only be done during library shutdown.
3493 // Cannot do anything that needs a thread structure or gtid since they are
3494 // already gone.
3495 void __kmp_reap_task_teams(void) {
3496   kmp_task_team_t *task_team;
3497 
3498   if (TCR_PTR(__kmp_free_task_teams) != NULL) {
3499     // Free all task_teams on the free list
3500     __kmp_acquire_bootstrap_lock(&__kmp_task_team_lock);
3501     while ((task_team = __kmp_free_task_teams) != NULL) {
3502       __kmp_free_task_teams = task_team->tt.tt_next;
3503       task_team->tt.tt_next = NULL;
3504 
3505       // Free threads_data if necessary
3506       if (task_team->tt.tt_threads_data != NULL) {
3507         __kmp_free_task_threads_data(task_team);
3508       }
3509       __kmp_free(task_team);
3510     }
3511     __kmp_release_bootstrap_lock(&__kmp_task_team_lock);
3512   }
3513 }
3514 
3515 // __kmp_wait_to_unref_task_teams:
3516 // Some threads could still be in the fork barrier release code, possibly
3517 // trying to steal tasks.  Wait for each thread to unreference its task team.
3518 void __kmp_wait_to_unref_task_teams(void) {
3519   kmp_info_t *thread;
3520   kmp_uint32 spins;
3521   int done;
3522 
3523   KMP_INIT_YIELD(spins);
3524 
3525   for (;;) {
3526     done = TRUE;
3527 
3528     // TODO: GEH - this may be is wrong because some sync would be necessary
3529     // in case threads are added to the pool during the traversal. Need to
3530     // verify that lock for thread pool is held when calling this routine.
3531     for (thread = CCAST(kmp_info_t *, __kmp_thread_pool); thread != NULL;
3532          thread = thread->th.th_next_pool) {
3533 #if KMP_OS_WINDOWS
3534       DWORD exit_val;
3535 #endif
3536       if (TCR_PTR(thread->th.th_task_team) == NULL) {
3537         KA_TRACE(10, ("__kmp_wait_to_unref_task_team: T#%d task_team == NULL\n",
3538                       __kmp_gtid_from_thread(thread)));
3539         continue;
3540       }
3541 #if KMP_OS_WINDOWS
3542       // TODO: GEH - add this check for Linux* OS / OS X* as well?
3543       if (!__kmp_is_thread_alive(thread, &exit_val)) {
3544         thread->th.th_task_team = NULL;
3545         continue;
3546       }
3547 #endif
3548 
3549       done = FALSE; // Because th_task_team pointer is not NULL for this thread
3550 
3551       KA_TRACE(10, ("__kmp_wait_to_unref_task_team: Waiting for T#%d to "
3552                     "unreference task_team\n",
3553                     __kmp_gtid_from_thread(thread)));
3554 
3555       if (__kmp_dflt_blocktime != KMP_MAX_BLOCKTIME) {
3556         volatile void *sleep_loc;
3557         // If the thread is sleeping, awaken it.
3558         if ((sleep_loc = TCR_PTR(CCAST(void *, thread->th.th_sleep_loc))) !=
3559             NULL) {
3560           KA_TRACE(
3561               10,
3562               ("__kmp_wait_to_unref_task_team: T#%d waking up thread T#%d\n",
3563                __kmp_gtid_from_thread(thread), __kmp_gtid_from_thread(thread)));
3564           __kmp_null_resume_wrapper(__kmp_gtid_from_thread(thread), sleep_loc);
3565         }
3566       }
3567     }
3568     if (done) {
3569       break;
3570     }
3571 
3572     // If oversubscribed or have waited a bit, yield.
3573     KMP_YIELD_OVERSUB_ELSE_SPIN(spins);
3574   }
3575 }
3576 
3577 // __kmp_task_team_setup:  Create a task_team for the current team, but use
3578 // an already created, unused one if it already exists.
3579 void __kmp_task_team_setup(kmp_info_t *this_thr, kmp_team_t *team, int always) {
3580   KMP_DEBUG_ASSERT(__kmp_tasking_mode != tskm_immediate_exec);
3581 
3582   // If this task_team hasn't been created yet, allocate it. It will be used in
3583   // the region after the next.
3584   // If it exists, it is the current task team and shouldn't be touched yet as
3585   // it may still be in use.
3586   if (team->t.t_task_team[this_thr->th.th_task_state] == NULL &&
3587       (always || team->t.t_nproc > 1)) {
3588     team->t.t_task_team[this_thr->th.th_task_state] =
3589         __kmp_allocate_task_team(this_thr, team);
3590     KA_TRACE(20, ("__kmp_task_team_setup: Master T#%d created new task_team %p "
3591                   "for team %d at parity=%d\n",
3592                   __kmp_gtid_from_thread(this_thr),
3593                   team->t.t_task_team[this_thr->th.th_task_state],
3594                   ((team != NULL) ? team->t.t_id : -1),
3595                   this_thr->th.th_task_state));
3596   }
3597 
3598   // After threads exit the release, they will call sync, and then point to this
3599   // other task_team; make sure it is allocated and properly initialized. As
3600   // threads spin in the barrier release phase, they will continue to use the
3601   // previous task_team struct(above), until they receive the signal to stop
3602   // checking for tasks (they can't safely reference the kmp_team_t struct,
3603   // which could be reallocated by the master thread). No task teams are formed
3604   // for serialized teams.
3605   if (team->t.t_nproc > 1) {
3606     int other_team = 1 - this_thr->th.th_task_state;
3607     if (team->t.t_task_team[other_team] == NULL) { // setup other team as well
3608       team->t.t_task_team[other_team] =
3609           __kmp_allocate_task_team(this_thr, team);
3610       KA_TRACE(20, ("__kmp_task_team_setup: Master T#%d created second new "
3611                     "task_team %p for team %d at parity=%d\n",
3612                     __kmp_gtid_from_thread(this_thr),
3613                     team->t.t_task_team[other_team],
3614                     ((team != NULL) ? team->t.t_id : -1), other_team));
3615     } else { // Leave the old task team struct in place for the upcoming region;
3616       // adjust as needed
3617       kmp_task_team_t *task_team = team->t.t_task_team[other_team];
3618       if (!task_team->tt.tt_active ||
3619           team->t.t_nproc != task_team->tt.tt_nproc) {
3620         TCW_4(task_team->tt.tt_nproc, team->t.t_nproc);
3621         TCW_4(task_team->tt.tt_found_tasks, FALSE);
3622         TCW_4(task_team->tt.tt_found_proxy_tasks, FALSE);
3623         KMP_ATOMIC_ST_REL(&task_team->tt.tt_unfinished_threads,
3624                           team->t.t_nproc);
3625         TCW_4(task_team->tt.tt_active, TRUE);
3626       }
3627       // if team size has changed, the first thread to enable tasking will
3628       // realloc threads_data if necessary
3629       KA_TRACE(20, ("__kmp_task_team_setup: Master T#%d reset next task_team "
3630                     "%p for team %d at parity=%d\n",
3631                     __kmp_gtid_from_thread(this_thr),
3632                     team->t.t_task_team[other_team],
3633                     ((team != NULL) ? team->t.t_id : -1), other_team));
3634     }
3635   }
3636 
3637   // For regular thread, task enabling should be called when the task is going
3638   // to be pushed to a dequeue. However, for the hidden helper thread, we need
3639   // it ahead of time so that some operations can be performed without race
3640   // condition.
3641   if (this_thr == __kmp_hidden_helper_main_thread) {
3642     for (int i = 0; i < 2; ++i) {
3643       kmp_task_team_t *task_team = team->t.t_task_team[i];
3644       if (KMP_TASKING_ENABLED(task_team)) {
3645         continue;
3646       }
3647       __kmp_enable_tasking(task_team, this_thr);
3648       for (int j = 0; j < task_team->tt.tt_nproc; ++j) {
3649         kmp_thread_data_t *thread_data = &task_team->tt.tt_threads_data[j];
3650         if (thread_data->td.td_deque == NULL) {
3651           __kmp_alloc_task_deque(__kmp_hidden_helper_threads[j], thread_data);
3652         }
3653       }
3654     }
3655   }
3656 }
3657 
3658 // __kmp_task_team_sync: Propagation of task team data from team to threads
3659 // which happens just after the release phase of a team barrier.  This may be
3660 // called by any thread, but only for teams with # threads > 1.
3661 void __kmp_task_team_sync(kmp_info_t *this_thr, kmp_team_t *team) {
3662   KMP_DEBUG_ASSERT(__kmp_tasking_mode != tskm_immediate_exec);
3663 
3664   // Toggle the th_task_state field, to switch which task_team this thread
3665   // refers to
3666   this_thr->th.th_task_state = (kmp_uint8)(1 - this_thr->th.th_task_state);
3667 
3668   // It is now safe to propagate the task team pointer from the team struct to
3669   // the current thread.
3670   TCW_PTR(this_thr->th.th_task_team,
3671           team->t.t_task_team[this_thr->th.th_task_state]);
3672   KA_TRACE(20,
3673            ("__kmp_task_team_sync: Thread T#%d task team switched to task_team "
3674             "%p from Team #%d (parity=%d)\n",
3675             __kmp_gtid_from_thread(this_thr), this_thr->th.th_task_team,
3676             ((team != NULL) ? team->t.t_id : -1), this_thr->th.th_task_state));
3677 }
3678 
3679 // __kmp_task_team_wait: Master thread waits for outstanding tasks after the
3680 // barrier gather phase. Only called by master thread if #threads in team > 1 or
3681 // if proxy tasks were created.
3682 //
3683 // wait is a flag that defaults to 1 (see kmp.h), but waiting can be turned off
3684 // by passing in 0 optionally as the last argument. When wait is zero, master
3685 // thread does not wait for unfinished_threads to reach 0.
3686 void __kmp_task_team_wait(
3687     kmp_info_t *this_thr,
3688     kmp_team_t *team USE_ITT_BUILD_ARG(void *itt_sync_obj), int wait) {
3689   kmp_task_team_t *task_team = team->t.t_task_team[this_thr->th.th_task_state];
3690 
3691   KMP_DEBUG_ASSERT(__kmp_tasking_mode != tskm_immediate_exec);
3692   KMP_DEBUG_ASSERT(task_team == this_thr->th.th_task_team);
3693 
3694   if ((task_team != NULL) && KMP_TASKING_ENABLED(task_team)) {
3695     if (wait) {
3696       KA_TRACE(20, ("__kmp_task_team_wait: Master T#%d waiting for all tasks "
3697                     "(for unfinished_threads to reach 0) on task_team = %p\n",
3698                     __kmp_gtid_from_thread(this_thr), task_team));
3699       // Worker threads may have dropped through to release phase, but could
3700       // still be executing tasks. Wait here for tasks to complete. To avoid
3701       // memory contention, only master thread checks termination condition.
3702       kmp_flag_32<false, false> flag(
3703           RCAST(std::atomic<kmp_uint32> *,
3704                 &task_team->tt.tt_unfinished_threads),
3705           0U);
3706       flag.wait(this_thr, TRUE USE_ITT_BUILD_ARG(itt_sync_obj));
3707     }
3708     // Deactivate the old task team, so that the worker threads will stop
3709     // referencing it while spinning.
3710     KA_TRACE(
3711         20,
3712         ("__kmp_task_team_wait: Master T#%d deactivating task_team %p: "
3713          "setting active to false, setting local and team's pointer to NULL\n",
3714          __kmp_gtid_from_thread(this_thr), task_team));
3715     KMP_DEBUG_ASSERT(task_team->tt.tt_nproc > 1 ||
3716                      task_team->tt.tt_found_proxy_tasks == TRUE);
3717     TCW_SYNC_4(task_team->tt.tt_found_proxy_tasks, FALSE);
3718     KMP_CHECK_UPDATE(task_team->tt.tt_untied_task_encountered, 0);
3719     TCW_SYNC_4(task_team->tt.tt_active, FALSE);
3720     KMP_MB();
3721 
3722     TCW_PTR(this_thr->th.th_task_team, NULL);
3723   }
3724 }
3725 
3726 // __kmp_tasking_barrier:
3727 // This routine is called only when __kmp_tasking_mode == tskm_extra_barrier.
3728 // Internal function to execute all tasks prior to a regular barrier or a join
3729 // barrier. It is a full barrier itself, which unfortunately turns regular
3730 // barriers into double barriers and join barriers into 1 1/2 barriers.
3731 void __kmp_tasking_barrier(kmp_team_t *team, kmp_info_t *thread, int gtid) {
3732   std::atomic<kmp_uint32> *spin = RCAST(
3733       std::atomic<kmp_uint32> *,
3734       &team->t.t_task_team[thread->th.th_task_state]->tt.tt_unfinished_threads);
3735   int flag = FALSE;
3736   KMP_DEBUG_ASSERT(__kmp_tasking_mode == tskm_extra_barrier);
3737 
3738 #if USE_ITT_BUILD
3739   KMP_FSYNC_SPIN_INIT(spin, NULL);
3740 #endif /* USE_ITT_BUILD */
3741   kmp_flag_32<false, false> spin_flag(spin, 0U);
3742   while (!spin_flag.execute_tasks(thread, gtid, TRUE,
3743                                   &flag USE_ITT_BUILD_ARG(NULL), 0)) {
3744 #if USE_ITT_BUILD
3745     // TODO: What about itt_sync_obj??
3746     KMP_FSYNC_SPIN_PREPARE(RCAST(void *, spin));
3747 #endif /* USE_ITT_BUILD */
3748 
3749     if (TCR_4(__kmp_global.g.g_done)) {
3750       if (__kmp_global.g.g_abort)
3751         __kmp_abort_thread();
3752       break;
3753     }
3754     KMP_YIELD(TRUE);
3755   }
3756 #if USE_ITT_BUILD
3757   KMP_FSYNC_SPIN_ACQUIRED(RCAST(void *, spin));
3758 #endif /* USE_ITT_BUILD */
3759 }
3760 
3761 // __kmp_give_task puts a task into a given thread queue if:
3762 //  - the queue for that thread was created
3763 //  - there's space in that queue
3764 // Because of this, __kmp_push_task needs to check if there's space after
3765 // getting the lock
3766 static bool __kmp_give_task(kmp_info_t *thread, kmp_int32 tid, kmp_task_t *task,
3767                             kmp_int32 pass) {
3768   kmp_taskdata_t *taskdata = KMP_TASK_TO_TASKDATA(task);
3769   kmp_task_team_t *task_team = taskdata->td_task_team;
3770 
3771   KA_TRACE(20, ("__kmp_give_task: trying to give task %p to thread %d.\n",
3772                 taskdata, tid));
3773 
3774   // If task_team is NULL something went really bad...
3775   KMP_DEBUG_ASSERT(task_team != NULL);
3776 
3777   bool result = false;
3778   kmp_thread_data_t *thread_data = &task_team->tt.tt_threads_data[tid];
3779 
3780   if (thread_data->td.td_deque == NULL) {
3781     // There's no queue in this thread, go find another one
3782     // We're guaranteed that at least one thread has a queue
3783     KA_TRACE(30,
3784              ("__kmp_give_task: thread %d has no queue while giving task %p.\n",
3785               tid, taskdata));
3786     return result;
3787   }
3788 
3789   if (TCR_4(thread_data->td.td_deque_ntasks) >=
3790       TASK_DEQUE_SIZE(thread_data->td)) {
3791     KA_TRACE(
3792         30,
3793         ("__kmp_give_task: queue is full while giving task %p to thread %d.\n",
3794          taskdata, tid));
3795 
3796     // if this deque is bigger than the pass ratio give a chance to another
3797     // thread
3798     if (TASK_DEQUE_SIZE(thread_data->td) / INITIAL_TASK_DEQUE_SIZE >= pass)
3799       return result;
3800 
3801     __kmp_acquire_bootstrap_lock(&thread_data->td.td_deque_lock);
3802     if (TCR_4(thread_data->td.td_deque_ntasks) >=
3803         TASK_DEQUE_SIZE(thread_data->td)) {
3804       // expand deque to push the task which is not allowed to execute
3805       __kmp_realloc_task_deque(thread, thread_data);
3806     }
3807 
3808   } else {
3809 
3810     __kmp_acquire_bootstrap_lock(&thread_data->td.td_deque_lock);
3811 
3812     if (TCR_4(thread_data->td.td_deque_ntasks) >=
3813         TASK_DEQUE_SIZE(thread_data->td)) {
3814       KA_TRACE(30, ("__kmp_give_task: queue is full while giving task %p to "
3815                     "thread %d.\n",
3816                     taskdata, tid));
3817 
3818       // if this deque is bigger than the pass ratio give a chance to another
3819       // thread
3820       if (TASK_DEQUE_SIZE(thread_data->td) / INITIAL_TASK_DEQUE_SIZE >= pass)
3821         goto release_and_exit;
3822 
3823       __kmp_realloc_task_deque(thread, thread_data);
3824     }
3825   }
3826 
3827   // lock is held here, and there is space in the deque
3828 
3829   thread_data->td.td_deque[thread_data->td.td_deque_tail] = taskdata;
3830   // Wrap index.
3831   thread_data->td.td_deque_tail =
3832       (thread_data->td.td_deque_tail + 1) & TASK_DEQUE_MASK(thread_data->td);
3833   TCW_4(thread_data->td.td_deque_ntasks,
3834         TCR_4(thread_data->td.td_deque_ntasks) + 1);
3835 
3836   result = true;
3837   KA_TRACE(30, ("__kmp_give_task: successfully gave task %p to thread %d.\n",
3838                 taskdata, tid));
3839 
3840 release_and_exit:
3841   __kmp_release_bootstrap_lock(&thread_data->td.td_deque_lock);
3842 
3843   return result;
3844 }
3845 
3846 /* The finish of the proxy tasks is divided in two pieces:
3847     - the top half is the one that can be done from a thread outside the team
3848     - the bottom half must be run from a thread within the team
3849 
3850    In order to run the bottom half the task gets queued back into one of the
3851    threads of the team. Once the td_incomplete_child_task counter of the parent
3852    is decremented the threads can leave the barriers. So, the bottom half needs
3853    to be queued before the counter is decremented. The top half is therefore
3854    divided in two parts:
3855     - things that can be run before queuing the bottom half
3856     - things that must be run after queuing the bottom half
3857 
3858    This creates a second race as the bottom half can free the task before the
3859    second top half is executed. To avoid this we use the
3860    td_incomplete_child_task of the proxy task to synchronize the top and bottom
3861    half. */
3862 static void __kmp_first_top_half_finish_proxy(kmp_taskdata_t *taskdata) {
3863   KMP_DEBUG_ASSERT(taskdata->td_flags.tasktype == TASK_EXPLICIT);
3864   KMP_DEBUG_ASSERT(taskdata->td_flags.proxy == TASK_PROXY);
3865   KMP_DEBUG_ASSERT(taskdata->td_flags.complete == 0);
3866   KMP_DEBUG_ASSERT(taskdata->td_flags.freed == 0);
3867 
3868   taskdata->td_flags.complete = 1; // mark the task as completed
3869 
3870   if (taskdata->td_taskgroup)
3871     KMP_ATOMIC_DEC(&taskdata->td_taskgroup->count);
3872 
3873   // Create an imaginary children for this task so the bottom half cannot
3874   // release the task before we have completed the second top half
3875   KMP_ATOMIC_INC(&taskdata->td_incomplete_child_tasks);
3876 }
3877 
3878 static void __kmp_second_top_half_finish_proxy(kmp_taskdata_t *taskdata) {
3879   kmp_int32 children = 0;
3880 
3881   // Predecrement simulated by "- 1" calculation
3882   children =
3883       KMP_ATOMIC_DEC(&taskdata->td_parent->td_incomplete_child_tasks) - 1;
3884   KMP_DEBUG_ASSERT(children >= 0);
3885 
3886   // Remove the imaginary children
3887   KMP_ATOMIC_DEC(&taskdata->td_incomplete_child_tasks);
3888 }
3889 
3890 static void __kmp_bottom_half_finish_proxy(kmp_int32 gtid, kmp_task_t *ptask) {
3891   kmp_taskdata_t *taskdata = KMP_TASK_TO_TASKDATA(ptask);
3892   kmp_info_t *thread = __kmp_threads[gtid];
3893 
3894   KMP_DEBUG_ASSERT(taskdata->td_flags.proxy == TASK_PROXY);
3895   KMP_DEBUG_ASSERT(taskdata->td_flags.complete ==
3896                    1); // top half must run before bottom half
3897 
3898   // We need to wait to make sure the top half is finished
3899   // Spinning here should be ok as this should happen quickly
3900   while (KMP_ATOMIC_LD_ACQ(&taskdata->td_incomplete_child_tasks) > 0)
3901     ;
3902 
3903   __kmp_release_deps(gtid, taskdata);
3904   __kmp_free_task_and_ancestors(gtid, taskdata, thread);
3905 }
3906 
3907 /*!
3908 @ingroup TASKING
3909 @param gtid Global Thread ID of encountering thread
3910 @param ptask Task which execution is completed
3911 
3912 Execute the completion of a proxy task from a thread of that is part of the
3913 team. Run first and bottom halves directly.
3914 */
3915 void __kmpc_proxy_task_completed(kmp_int32 gtid, kmp_task_t *ptask) {
3916   KMP_DEBUG_ASSERT(ptask != NULL);
3917   kmp_taskdata_t *taskdata = KMP_TASK_TO_TASKDATA(ptask);
3918   KA_TRACE(
3919       10, ("__kmp_proxy_task_completed(enter): T#%d proxy task %p completing\n",
3920            gtid, taskdata));
3921   __kmp_assert_valid_gtid(gtid);
3922   KMP_DEBUG_ASSERT(taskdata->td_flags.proxy == TASK_PROXY);
3923 
3924   __kmp_first_top_half_finish_proxy(taskdata);
3925   __kmp_second_top_half_finish_proxy(taskdata);
3926   __kmp_bottom_half_finish_proxy(gtid, ptask);
3927 
3928   KA_TRACE(10,
3929            ("__kmp_proxy_task_completed(exit): T#%d proxy task %p completing\n",
3930             gtid, taskdata));
3931 }
3932 
3933 /*!
3934 @ingroup TASKING
3935 @param ptask Task which execution is completed
3936 
3937 Execute the completion of a proxy task from a thread that could not belong to
3938 the team.
3939 */
3940 void __kmpc_proxy_task_completed_ooo(kmp_task_t *ptask) {
3941   KMP_DEBUG_ASSERT(ptask != NULL);
3942   kmp_taskdata_t *taskdata = KMP_TASK_TO_TASKDATA(ptask);
3943 
3944   KA_TRACE(
3945       10,
3946       ("__kmp_proxy_task_completed_ooo(enter): proxy task completing ooo %p\n",
3947        taskdata));
3948 
3949   KMP_DEBUG_ASSERT(taskdata->td_flags.proxy == TASK_PROXY);
3950 
3951   __kmp_first_top_half_finish_proxy(taskdata);
3952 
3953   // Enqueue task to complete bottom half completion from a thread within the
3954   // corresponding team
3955   kmp_team_t *team = taskdata->td_team;
3956   kmp_int32 nthreads = team->t.t_nproc;
3957   kmp_info_t *thread;
3958 
3959   // This should be similar to start_k = __kmp_get_random( thread ) % nthreads
3960   // but we cannot use __kmp_get_random here
3961   kmp_int32 start_k = 0;
3962   kmp_int32 pass = 1;
3963   kmp_int32 k = start_k;
3964 
3965   do {
3966     // For now we're just linearly trying to find a thread
3967     thread = team->t.t_threads[k];
3968     k = (k + 1) % nthreads;
3969 
3970     // we did a full pass through all the threads
3971     if (k == start_k)
3972       pass = pass << 1;
3973 
3974   } while (!__kmp_give_task(thread, k, ptask, pass));
3975 
3976   __kmp_second_top_half_finish_proxy(taskdata);
3977 
3978   KA_TRACE(
3979       10,
3980       ("__kmp_proxy_task_completed_ooo(exit): proxy task completing ooo %p\n",
3981        taskdata));
3982 }
3983 
3984 kmp_event_t *__kmpc_task_allow_completion_event(ident_t *loc_ref, int gtid,
3985                                                 kmp_task_t *task) {
3986   kmp_taskdata_t *td = KMP_TASK_TO_TASKDATA(task);
3987   if (td->td_allow_completion_event.type == KMP_EVENT_UNINITIALIZED) {
3988     td->td_allow_completion_event.type = KMP_EVENT_ALLOW_COMPLETION;
3989     td->td_allow_completion_event.ed.task = task;
3990     __kmp_init_tas_lock(&td->td_allow_completion_event.lock);
3991   }
3992   return &td->td_allow_completion_event;
3993 }
3994 
3995 void __kmp_fulfill_event(kmp_event_t *event) {
3996   if (event->type == KMP_EVENT_ALLOW_COMPLETION) {
3997     kmp_task_t *ptask = event->ed.task;
3998     kmp_taskdata_t *taskdata = KMP_TASK_TO_TASKDATA(ptask);
3999     bool detached = false;
4000     int gtid = __kmp_get_gtid();
4001 
4002     // The associated task might have completed or could be completing at this
4003     // point.
4004     // We need to take the lock to avoid races
4005     __kmp_acquire_tas_lock(&event->lock, gtid);
4006     if (taskdata->td_flags.proxy == TASK_PROXY) {
4007       detached = true;
4008     } else {
4009 #if OMPT_SUPPORT
4010       // The OMPT event must occur under mutual exclusion,
4011       // otherwise the tool might access ptask after free
4012       if (UNLIKELY(ompt_enabled.enabled))
4013         __ompt_task_finish(ptask, NULL, ompt_task_early_fulfill);
4014 #endif
4015     }
4016     event->type = KMP_EVENT_UNINITIALIZED;
4017     __kmp_release_tas_lock(&event->lock, gtid);
4018 
4019     if (detached) {
4020 #if OMPT_SUPPORT
4021       // We free ptask afterwards and know the task is finished,
4022       // so locking is not necessary
4023       if (UNLIKELY(ompt_enabled.enabled))
4024         __ompt_task_finish(ptask, NULL, ompt_task_late_fulfill);
4025 #endif
4026       // If the task detached complete the proxy task
4027       if (gtid >= 0) {
4028         kmp_team_t *team = taskdata->td_team;
4029         kmp_info_t *thread = __kmp_get_thread();
4030         if (thread->th.th_team == team) {
4031           __kmpc_proxy_task_completed(gtid, ptask);
4032           return;
4033         }
4034       }
4035 
4036       // fallback
4037       __kmpc_proxy_task_completed_ooo(ptask);
4038     }
4039   }
4040 }
4041 
4042 // __kmp_task_dup_alloc: Allocate the taskdata and make a copy of source task
4043 // for taskloop
4044 //
4045 // thread:   allocating thread
4046 // task_src: pointer to source task to be duplicated
4047 // returns:  a pointer to the allocated kmp_task_t structure (task).
4048 kmp_task_t *__kmp_task_dup_alloc(kmp_info_t *thread, kmp_task_t *task_src) {
4049   kmp_task_t *task;
4050   kmp_taskdata_t *taskdata;
4051   kmp_taskdata_t *taskdata_src = KMP_TASK_TO_TASKDATA(task_src);
4052   kmp_taskdata_t *parent_task = taskdata_src->td_parent; // same parent task
4053   size_t shareds_offset;
4054   size_t task_size;
4055 
4056   KA_TRACE(10, ("__kmp_task_dup_alloc(enter): Th %p, source task %p\n", thread,
4057                 task_src));
4058   KMP_DEBUG_ASSERT(taskdata_src->td_flags.proxy ==
4059                    TASK_FULL); // it should not be proxy task
4060   KMP_DEBUG_ASSERT(taskdata_src->td_flags.tasktype == TASK_EXPLICIT);
4061   task_size = taskdata_src->td_size_alloc;
4062 
4063   // Allocate a kmp_taskdata_t block and a kmp_task_t block.
4064   KA_TRACE(30, ("__kmp_task_dup_alloc: Th %p, malloc size %ld\n", thread,
4065                 task_size));
4066 #if USE_FAST_MEMORY
4067   taskdata = (kmp_taskdata_t *)__kmp_fast_allocate(thread, task_size);
4068 #else
4069   taskdata = (kmp_taskdata_t *)__kmp_thread_malloc(thread, task_size);
4070 #endif /* USE_FAST_MEMORY */
4071   KMP_MEMCPY(taskdata, taskdata_src, task_size);
4072 
4073   task = KMP_TASKDATA_TO_TASK(taskdata);
4074 
4075   // Initialize new task (only specific fields not affected by memcpy)
4076   taskdata->td_task_id = KMP_GEN_TASK_ID();
4077   if (task->shareds != NULL) { // need setup shareds pointer
4078     shareds_offset = (char *)task_src->shareds - (char *)taskdata_src;
4079     task->shareds = &((char *)taskdata)[shareds_offset];
4080     KMP_DEBUG_ASSERT((((kmp_uintptr_t)task->shareds) & (sizeof(void *) - 1)) ==
4081                      0);
4082   }
4083   taskdata->td_alloc_thread = thread;
4084   taskdata->td_parent = parent_task;
4085   // task inherits the taskgroup from the parent task
4086   taskdata->td_taskgroup = parent_task->td_taskgroup;
4087   // tied task needs to initialize the td_last_tied at creation,
4088   // untied one does this when it is scheduled for execution
4089   if (taskdata->td_flags.tiedness == TASK_TIED)
4090     taskdata->td_last_tied = taskdata;
4091 
4092   // Only need to keep track of child task counts if team parallel and tasking
4093   // not serialized
4094   if (!(taskdata->td_flags.team_serial || taskdata->td_flags.tasking_ser)) {
4095     KMP_ATOMIC_INC(&parent_task->td_incomplete_child_tasks);
4096     if (parent_task->td_taskgroup)
4097       KMP_ATOMIC_INC(&parent_task->td_taskgroup->count);
4098     // Only need to keep track of allocated child tasks for explicit tasks since
4099     // implicit not deallocated
4100     if (taskdata->td_parent->td_flags.tasktype == TASK_EXPLICIT)
4101       KMP_ATOMIC_INC(&taskdata->td_parent->td_allocated_child_tasks);
4102   }
4103 
4104   KA_TRACE(20,
4105            ("__kmp_task_dup_alloc(exit): Th %p, created task %p, parent=%p\n",
4106             thread, taskdata, taskdata->td_parent));
4107 #if OMPT_SUPPORT
4108   if (UNLIKELY(ompt_enabled.enabled))
4109     __ompt_task_init(taskdata, thread->th.th_info.ds.ds_gtid);
4110 #endif
4111   return task;
4112 }
4113 
4114 // Routine optionally generated by the compiler for setting the lastprivate flag
4115 // and calling needed constructors for private/firstprivate objects
4116 // (used to form taskloop tasks from pattern task)
4117 // Parameters: dest task, src task, lastprivate flag.
4118 typedef void (*p_task_dup_t)(kmp_task_t *, kmp_task_t *, kmp_int32);
4119 
4120 KMP_BUILD_ASSERT(sizeof(long) == 4 || sizeof(long) == 8);
4121 
4122 // class to encapsulate manipulating loop bounds in a taskloop task.
4123 // this abstracts away the Intel vs GOMP taskloop interface for setting/getting
4124 // the loop bound variables.
4125 class kmp_taskloop_bounds_t {
4126   kmp_task_t *task;
4127   const kmp_taskdata_t *taskdata;
4128   size_t lower_offset;
4129   size_t upper_offset;
4130 
4131 public:
4132   kmp_taskloop_bounds_t(kmp_task_t *_task, kmp_uint64 *lb, kmp_uint64 *ub)
4133       : task(_task), taskdata(KMP_TASK_TO_TASKDATA(task)),
4134         lower_offset((char *)lb - (char *)task),
4135         upper_offset((char *)ub - (char *)task) {
4136     KMP_DEBUG_ASSERT((char *)lb > (char *)_task);
4137     KMP_DEBUG_ASSERT((char *)ub > (char *)_task);
4138   }
4139   kmp_taskloop_bounds_t(kmp_task_t *_task, const kmp_taskloop_bounds_t &bounds)
4140       : task(_task), taskdata(KMP_TASK_TO_TASKDATA(_task)),
4141         lower_offset(bounds.lower_offset), upper_offset(bounds.upper_offset) {}
4142   size_t get_lower_offset() const { return lower_offset; }
4143   size_t get_upper_offset() const { return upper_offset; }
4144   kmp_uint64 get_lb() const {
4145     kmp_int64 retval;
4146 #if defined(KMP_GOMP_COMPAT)
4147     // Intel task just returns the lower bound normally
4148     if (!taskdata->td_flags.native) {
4149       retval = *(kmp_int64 *)((char *)task + lower_offset);
4150     } else {
4151       // GOMP task has to take into account the sizeof(long)
4152       if (taskdata->td_size_loop_bounds == 4) {
4153         kmp_int32 *lb = RCAST(kmp_int32 *, task->shareds);
4154         retval = (kmp_int64)*lb;
4155       } else {
4156         kmp_int64 *lb = RCAST(kmp_int64 *, task->shareds);
4157         retval = (kmp_int64)*lb;
4158       }
4159     }
4160 #else
4161     retval = *(kmp_int64 *)((char *)task + lower_offset);
4162 #endif // defined(KMP_GOMP_COMPAT)
4163     return retval;
4164   }
4165   kmp_uint64 get_ub() const {
4166     kmp_int64 retval;
4167 #if defined(KMP_GOMP_COMPAT)
4168     // Intel task just returns the upper bound normally
4169     if (!taskdata->td_flags.native) {
4170       retval = *(kmp_int64 *)((char *)task + upper_offset);
4171     } else {
4172       // GOMP task has to take into account the sizeof(long)
4173       if (taskdata->td_size_loop_bounds == 4) {
4174         kmp_int32 *ub = RCAST(kmp_int32 *, task->shareds) + 1;
4175         retval = (kmp_int64)*ub;
4176       } else {
4177         kmp_int64 *ub = RCAST(kmp_int64 *, task->shareds) + 1;
4178         retval = (kmp_int64)*ub;
4179       }
4180     }
4181 #else
4182     retval = *(kmp_int64 *)((char *)task + upper_offset);
4183 #endif // defined(KMP_GOMP_COMPAT)
4184     return retval;
4185   }
4186   void set_lb(kmp_uint64 lb) {
4187 #if defined(KMP_GOMP_COMPAT)
4188     // Intel task just sets the lower bound normally
4189     if (!taskdata->td_flags.native) {
4190       *(kmp_uint64 *)((char *)task + lower_offset) = lb;
4191     } else {
4192       // GOMP task has to take into account the sizeof(long)
4193       if (taskdata->td_size_loop_bounds == 4) {
4194         kmp_uint32 *lower = RCAST(kmp_uint32 *, task->shareds);
4195         *lower = (kmp_uint32)lb;
4196       } else {
4197         kmp_uint64 *lower = RCAST(kmp_uint64 *, task->shareds);
4198         *lower = (kmp_uint64)lb;
4199       }
4200     }
4201 #else
4202     *(kmp_uint64 *)((char *)task + lower_offset) = lb;
4203 #endif // defined(KMP_GOMP_COMPAT)
4204   }
4205   void set_ub(kmp_uint64 ub) {
4206 #if defined(KMP_GOMP_COMPAT)
4207     // Intel task just sets the upper bound normally
4208     if (!taskdata->td_flags.native) {
4209       *(kmp_uint64 *)((char *)task + upper_offset) = ub;
4210     } else {
4211       // GOMP task has to take into account the sizeof(long)
4212       if (taskdata->td_size_loop_bounds == 4) {
4213         kmp_uint32 *upper = RCAST(kmp_uint32 *, task->shareds) + 1;
4214         *upper = (kmp_uint32)ub;
4215       } else {
4216         kmp_uint64 *upper = RCAST(kmp_uint64 *, task->shareds) + 1;
4217         *upper = (kmp_uint64)ub;
4218       }
4219     }
4220 #else
4221     *(kmp_uint64 *)((char *)task + upper_offset) = ub;
4222 #endif // defined(KMP_GOMP_COMPAT)
4223   }
4224 };
4225 
4226 // __kmp_taskloop_linear: Start tasks of the taskloop linearly
4227 //
4228 // loc        Source location information
4229 // gtid       Global thread ID
4230 // task       Pattern task, exposes the loop iteration range
4231 // lb         Pointer to loop lower bound in task structure
4232 // ub         Pointer to loop upper bound in task structure
4233 // st         Loop stride
4234 // ub_glob    Global upper bound (used for lastprivate check)
4235 // num_tasks  Number of tasks to execute
4236 // grainsize  Number of loop iterations per task
4237 // extras     Number of chunks with grainsize+1 iterations
4238 // last_chunk Reduction of grainsize for last task
4239 // tc         Iterations count
4240 // task_dup   Tasks duplication routine
4241 // codeptr_ra Return address for OMPT events
4242 void __kmp_taskloop_linear(ident_t *loc, int gtid, kmp_task_t *task,
4243                            kmp_uint64 *lb, kmp_uint64 *ub, kmp_int64 st,
4244                            kmp_uint64 ub_glob, kmp_uint64 num_tasks,
4245                            kmp_uint64 grainsize, kmp_uint64 extras,
4246                            kmp_int64 last_chunk, kmp_uint64 tc,
4247 #if OMPT_SUPPORT
4248                            void *codeptr_ra,
4249 #endif
4250                            void *task_dup) {
4251   KMP_COUNT_BLOCK(OMP_TASKLOOP);
4252   KMP_TIME_PARTITIONED_BLOCK(OMP_taskloop_scheduling);
4253   p_task_dup_t ptask_dup = (p_task_dup_t)task_dup;
4254   // compiler provides global bounds here
4255   kmp_taskloop_bounds_t task_bounds(task, lb, ub);
4256   kmp_uint64 lower = task_bounds.get_lb();
4257   kmp_uint64 upper = task_bounds.get_ub();
4258   kmp_uint64 i;
4259   kmp_info_t *thread = __kmp_threads[gtid];
4260   kmp_taskdata_t *current_task = thread->th.th_current_task;
4261   kmp_task_t *next_task;
4262   kmp_int32 lastpriv = 0;
4263 
4264   KMP_DEBUG_ASSERT(
4265       tc == num_tasks * grainsize + (last_chunk < 0 ? last_chunk : extras));
4266   KMP_DEBUG_ASSERT(num_tasks > extras);
4267   KMP_DEBUG_ASSERT(num_tasks > 0);
4268   KA_TRACE(20, ("__kmp_taskloop_linear: T#%d: %lld tasks, grainsize %lld, "
4269                 "extras %lld, last_chunk %lld, i=%lld,%lld(%d)%lld, dup %p\n",
4270                 gtid, num_tasks, grainsize, extras, last_chunk, lower, upper,
4271                 ub_glob, st, task_dup));
4272 
4273   // Launch num_tasks tasks, assign grainsize iterations each task
4274   for (i = 0; i < num_tasks; ++i) {
4275     kmp_uint64 chunk_minus_1;
4276     if (extras == 0) {
4277       chunk_minus_1 = grainsize - 1;
4278     } else {
4279       chunk_minus_1 = grainsize;
4280       --extras; // first extras iterations get bigger chunk (grainsize+1)
4281     }
4282     upper = lower + st * chunk_minus_1;
4283     if (upper > *ub) {
4284       upper = *ub;
4285     }
4286     if (i == num_tasks - 1) {
4287       // schedule the last task, set lastprivate flag if needed
4288       if (st == 1) { // most common case
4289         KMP_DEBUG_ASSERT(upper == *ub);
4290         if (upper == ub_glob)
4291           lastpriv = 1;
4292       } else if (st > 0) { // positive loop stride
4293         KMP_DEBUG_ASSERT((kmp_uint64)st > *ub - upper);
4294         if ((kmp_uint64)st > ub_glob - upper)
4295           lastpriv = 1;
4296       } else { // negative loop stride
4297         KMP_DEBUG_ASSERT(upper + st < *ub);
4298         if (upper - ub_glob < (kmp_uint64)(-st))
4299           lastpriv = 1;
4300       }
4301     }
4302     next_task = __kmp_task_dup_alloc(thread, task); // allocate new task
4303     kmp_taskdata_t *next_taskdata = KMP_TASK_TO_TASKDATA(next_task);
4304     kmp_taskloop_bounds_t next_task_bounds =
4305         kmp_taskloop_bounds_t(next_task, task_bounds);
4306 
4307     // adjust task-specific bounds
4308     next_task_bounds.set_lb(lower);
4309     if (next_taskdata->td_flags.native) {
4310       next_task_bounds.set_ub(upper + (st > 0 ? 1 : -1));
4311     } else {
4312       next_task_bounds.set_ub(upper);
4313     }
4314     if (ptask_dup != NULL) // set lastprivate flag, construct firstprivates,
4315                            // etc.
4316       ptask_dup(next_task, task, lastpriv);
4317     KA_TRACE(40,
4318              ("__kmp_taskloop_linear: T#%d; task #%llu: task %p: lower %lld, "
4319               "upper %lld stride %lld, (offsets %p %p)\n",
4320               gtid, i, next_task, lower, upper, st,
4321               next_task_bounds.get_lower_offset(),
4322               next_task_bounds.get_upper_offset()));
4323 #if OMPT_SUPPORT
4324     __kmp_omp_taskloop_task(NULL, gtid, next_task,
4325                            codeptr_ra); // schedule new task
4326 #else
4327     __kmp_omp_task(gtid, next_task, true); // schedule new task
4328 #endif
4329     lower = upper + st; // adjust lower bound for the next iteration
4330   }
4331   // free the pattern task and exit
4332   __kmp_task_start(gtid, task, current_task); // make internal bookkeeping
4333   // do not execute the pattern task, just do internal bookkeeping
4334   __kmp_task_finish<false>(gtid, task, current_task);
4335 }
4336 
4337 // Structure to keep taskloop parameters for auxiliary task
4338 // kept in the shareds of the task structure.
4339 typedef struct __taskloop_params {
4340   kmp_task_t *task;
4341   kmp_uint64 *lb;
4342   kmp_uint64 *ub;
4343   void *task_dup;
4344   kmp_int64 st;
4345   kmp_uint64 ub_glob;
4346   kmp_uint64 num_tasks;
4347   kmp_uint64 grainsize;
4348   kmp_uint64 extras;
4349   kmp_int64 last_chunk;
4350   kmp_uint64 tc;
4351   kmp_uint64 num_t_min;
4352 #if OMPT_SUPPORT
4353   void *codeptr_ra;
4354 #endif
4355 } __taskloop_params_t;
4356 
4357 void __kmp_taskloop_recur(ident_t *, int, kmp_task_t *, kmp_uint64 *,
4358                           kmp_uint64 *, kmp_int64, kmp_uint64, kmp_uint64,
4359                           kmp_uint64, kmp_uint64, kmp_int64, kmp_uint64,
4360                           kmp_uint64,
4361 #if OMPT_SUPPORT
4362                           void *,
4363 #endif
4364                           void *);
4365 
4366 // Execute part of the taskloop submitted as a task.
4367 int __kmp_taskloop_task(int gtid, void *ptask) {
4368   __taskloop_params_t *p =
4369       (__taskloop_params_t *)((kmp_task_t *)ptask)->shareds;
4370   kmp_task_t *task = p->task;
4371   kmp_uint64 *lb = p->lb;
4372   kmp_uint64 *ub = p->ub;
4373   void *task_dup = p->task_dup;
4374   //  p_task_dup_t ptask_dup = (p_task_dup_t)task_dup;
4375   kmp_int64 st = p->st;
4376   kmp_uint64 ub_glob = p->ub_glob;
4377   kmp_uint64 num_tasks = p->num_tasks;
4378   kmp_uint64 grainsize = p->grainsize;
4379   kmp_uint64 extras = p->extras;
4380   kmp_int64 last_chunk = p->last_chunk;
4381   kmp_uint64 tc = p->tc;
4382   kmp_uint64 num_t_min = p->num_t_min;
4383 #if OMPT_SUPPORT
4384   void *codeptr_ra = p->codeptr_ra;
4385 #endif
4386 #if KMP_DEBUG
4387   kmp_taskdata_t *taskdata = KMP_TASK_TO_TASKDATA(task);
4388   KMP_DEBUG_ASSERT(task != NULL);
4389   KA_TRACE(20,
4390            ("__kmp_taskloop_task: T#%d, task %p: %lld tasks, grainsize"
4391             " %lld, extras %lld, last_chunk %lld, i=%lld,%lld(%d), dup %p\n",
4392             gtid, taskdata, num_tasks, grainsize, extras, last_chunk, *lb, *ub,
4393             st, task_dup));
4394 #endif
4395   KMP_DEBUG_ASSERT(num_tasks * 2 + 1 > num_t_min);
4396   if (num_tasks > num_t_min)
4397     __kmp_taskloop_recur(NULL, gtid, task, lb, ub, st, ub_glob, num_tasks,
4398                          grainsize, extras, last_chunk, tc, num_t_min,
4399 #if OMPT_SUPPORT
4400                          codeptr_ra,
4401 #endif
4402                          task_dup);
4403   else
4404     __kmp_taskloop_linear(NULL, gtid, task, lb, ub, st, ub_glob, num_tasks,
4405                           grainsize, extras, last_chunk, tc,
4406 #if OMPT_SUPPORT
4407                           codeptr_ra,
4408 #endif
4409                           task_dup);
4410 
4411   KA_TRACE(40, ("__kmp_taskloop_task(exit): T#%d\n", gtid));
4412   return 0;
4413 }
4414 
4415 // Schedule part of the taskloop as a task,
4416 // execute the rest of the taskloop.
4417 //
4418 // loc        Source location information
4419 // gtid       Global thread ID
4420 // task       Pattern task, exposes the loop iteration range
4421 // lb         Pointer to loop lower bound in task structure
4422 // ub         Pointer to loop upper bound in task structure
4423 // st         Loop stride
4424 // ub_glob    Global upper bound (used for lastprivate check)
4425 // num_tasks  Number of tasks to execute
4426 // grainsize  Number of loop iterations per task
4427 // extras     Number of chunks with grainsize+1 iterations
4428 // last_chunk Reduction of grainsize for last task
4429 // tc         Iterations count
4430 // num_t_min  Threshold to launch tasks recursively
4431 // task_dup   Tasks duplication routine
4432 // codeptr_ra Return address for OMPT events
4433 void __kmp_taskloop_recur(ident_t *loc, int gtid, kmp_task_t *task,
4434                           kmp_uint64 *lb, kmp_uint64 *ub, kmp_int64 st,
4435                           kmp_uint64 ub_glob, kmp_uint64 num_tasks,
4436                           kmp_uint64 grainsize, kmp_uint64 extras,
4437                           kmp_int64 last_chunk, kmp_uint64 tc,
4438                           kmp_uint64 num_t_min,
4439 #if OMPT_SUPPORT
4440                           void *codeptr_ra,
4441 #endif
4442                           void *task_dup) {
4443   kmp_taskdata_t *taskdata = KMP_TASK_TO_TASKDATA(task);
4444   KMP_DEBUG_ASSERT(task != NULL);
4445   KMP_DEBUG_ASSERT(num_tasks > num_t_min);
4446   KA_TRACE(20,
4447            ("__kmp_taskloop_recur: T#%d, task %p: %lld tasks, grainsize"
4448             " %lld, extras %lld, last_chunk %lld, i=%lld,%lld(%d), dup %p\n",
4449             gtid, taskdata, num_tasks, grainsize, extras, last_chunk, *lb, *ub,
4450             st, task_dup));
4451   p_task_dup_t ptask_dup = (p_task_dup_t)task_dup;
4452   kmp_uint64 lower = *lb;
4453   kmp_info_t *thread = __kmp_threads[gtid];
4454   //  kmp_taskdata_t *current_task = thread->th.th_current_task;
4455   kmp_task_t *next_task;
4456   size_t lower_offset =
4457       (char *)lb - (char *)task; // remember offset of lb in the task structure
4458   size_t upper_offset =
4459       (char *)ub - (char *)task; // remember offset of ub in the task structure
4460 
4461   KMP_DEBUG_ASSERT(
4462       tc == num_tasks * grainsize + (last_chunk < 0 ? last_chunk : extras));
4463   KMP_DEBUG_ASSERT(num_tasks > extras);
4464   KMP_DEBUG_ASSERT(num_tasks > 0);
4465 
4466   // split the loop in two halves
4467   kmp_uint64 lb1, ub0, tc0, tc1, ext0, ext1;
4468   kmp_int64 last_chunk0 = 0, last_chunk1 = 0;
4469   kmp_uint64 gr_size0 = grainsize;
4470   kmp_uint64 n_tsk0 = num_tasks >> 1; // num_tasks/2 to execute
4471   kmp_uint64 n_tsk1 = num_tasks - n_tsk0; // to schedule as a task
4472   if (last_chunk < 0) {
4473     ext0 = ext1 = 0;
4474     last_chunk1 = last_chunk;
4475     tc0 = grainsize * n_tsk0;
4476     tc1 = tc - tc0;
4477   } else if (n_tsk0 <= extras) {
4478     gr_size0++; // integrate extras into grainsize
4479     ext0 = 0; // no extra iters in 1st half
4480     ext1 = extras - n_tsk0; // remaining extras
4481     tc0 = gr_size0 * n_tsk0;
4482     tc1 = tc - tc0;
4483   } else { // n_tsk0 > extras
4484     ext1 = 0; // no extra iters in 2nd half
4485     ext0 = extras;
4486     tc1 = grainsize * n_tsk1;
4487     tc0 = tc - tc1;
4488   }
4489   ub0 = lower + st * (tc0 - 1);
4490   lb1 = ub0 + st;
4491 
4492   // create pattern task for 2nd half of the loop
4493   next_task = __kmp_task_dup_alloc(thread, task); // duplicate the task
4494   // adjust lower bound (upper bound is not changed) for the 2nd half
4495   *(kmp_uint64 *)((char *)next_task + lower_offset) = lb1;
4496   if (ptask_dup != NULL) // construct firstprivates, etc.
4497     ptask_dup(next_task, task, 0);
4498   *ub = ub0; // adjust upper bound for the 1st half
4499 
4500   // create auxiliary task for 2nd half of the loop
4501   // make sure new task has same parent task as the pattern task
4502   kmp_taskdata_t *current_task = thread->th.th_current_task;
4503   thread->th.th_current_task = taskdata->td_parent;
4504   kmp_task_t *new_task =
4505       __kmpc_omp_task_alloc(loc, gtid, 1, 3 * sizeof(void *),
4506                             sizeof(__taskloop_params_t), &__kmp_taskloop_task);
4507   // restore current task
4508   thread->th.th_current_task = current_task;
4509   __taskloop_params_t *p = (__taskloop_params_t *)new_task->shareds;
4510   p->task = next_task;
4511   p->lb = (kmp_uint64 *)((char *)next_task + lower_offset);
4512   p->ub = (kmp_uint64 *)((char *)next_task + upper_offset);
4513   p->task_dup = task_dup;
4514   p->st = st;
4515   p->ub_glob = ub_glob;
4516   p->num_tasks = n_tsk1;
4517   p->grainsize = grainsize;
4518   p->extras = ext1;
4519   p->last_chunk = last_chunk1;
4520   p->tc = tc1;
4521   p->num_t_min = num_t_min;
4522 #if OMPT_SUPPORT
4523   p->codeptr_ra = codeptr_ra;
4524 #endif
4525 
4526 #if OMPT_SUPPORT
4527   // schedule new task with correct return address for OMPT events
4528   __kmp_omp_taskloop_task(NULL, gtid, new_task, codeptr_ra);
4529 #else
4530   __kmp_omp_task(gtid, new_task, true); // schedule new task
4531 #endif
4532 
4533   // execute the 1st half of current subrange
4534   if (n_tsk0 > num_t_min)
4535     __kmp_taskloop_recur(loc, gtid, task, lb, ub, st, ub_glob, n_tsk0, gr_size0,
4536                          ext0, last_chunk0, tc0, num_t_min,
4537 #if OMPT_SUPPORT
4538                          codeptr_ra,
4539 #endif
4540                          task_dup);
4541   else
4542     __kmp_taskloop_linear(loc, gtid, task, lb, ub, st, ub_glob, n_tsk0,
4543                           gr_size0, ext0, last_chunk0, tc0,
4544 #if OMPT_SUPPORT
4545                           codeptr_ra,
4546 #endif
4547                           task_dup);
4548 
4549   KA_TRACE(40, ("__kmp_taskloop_recur(exit): T#%d\n", gtid));
4550 }
4551 
4552 static void __kmp_taskloop(ident_t *loc, int gtid, kmp_task_t *task, int if_val,
4553                            kmp_uint64 *lb, kmp_uint64 *ub, kmp_int64 st,
4554                            int nogroup, int sched, kmp_uint64 grainsize,
4555                            int modifier, void *task_dup) {
4556   kmp_taskdata_t *taskdata = KMP_TASK_TO_TASKDATA(task);
4557   KMP_DEBUG_ASSERT(task != NULL);
4558   if (nogroup == 0) {
4559 #if OMPT_SUPPORT && OMPT_OPTIONAL
4560     OMPT_STORE_RETURN_ADDRESS(gtid);
4561 #endif
4562     __kmpc_taskgroup(loc, gtid);
4563   }
4564 
4565   // =========================================================================
4566   // calculate loop parameters
4567   kmp_taskloop_bounds_t task_bounds(task, lb, ub);
4568   kmp_uint64 tc;
4569   // compiler provides global bounds here
4570   kmp_uint64 lower = task_bounds.get_lb();
4571   kmp_uint64 upper = task_bounds.get_ub();
4572   kmp_uint64 ub_glob = upper; // global upper used to calc lastprivate flag
4573   kmp_uint64 num_tasks = 0, extras = 0;
4574   kmp_int64 last_chunk =
4575       0; // reduce grainsize of last task by last_chunk in strict mode
4576   kmp_uint64 num_tasks_min = __kmp_taskloop_min_tasks;
4577   kmp_info_t *thread = __kmp_threads[gtid];
4578   kmp_taskdata_t *current_task = thread->th.th_current_task;
4579 
4580   KA_TRACE(20, ("__kmp_taskloop: T#%d, task %p, lb %lld, ub %lld, st %lld, "
4581                 "grain %llu(%d, %d), dup %p\n",
4582                 gtid, taskdata, lower, upper, st, grainsize, sched, modifier,
4583                 task_dup));
4584 
4585   // compute trip count
4586   if (st == 1) { // most common case
4587     tc = upper - lower + 1;
4588   } else if (st < 0) {
4589     tc = (lower - upper) / (-st) + 1;
4590   } else { // st > 0
4591     tc = (upper - lower) / st + 1;
4592   }
4593   if (tc == 0) {
4594     KA_TRACE(20, ("__kmp_taskloop(exit): T#%d zero-trip loop\n", gtid));
4595     // free the pattern task and exit
4596     __kmp_task_start(gtid, task, current_task);
4597     // do not execute anything for zero-trip loop
4598     __kmp_task_finish<false>(gtid, task, current_task);
4599     return;
4600   }
4601 
4602 #if OMPT_SUPPORT && OMPT_OPTIONAL
4603   ompt_team_info_t *team_info = __ompt_get_teaminfo(0, NULL);
4604   ompt_task_info_t *task_info = __ompt_get_task_info_object(0);
4605   if (ompt_enabled.ompt_callback_work) {
4606     ompt_callbacks.ompt_callback(ompt_callback_work)(
4607         ompt_work_taskloop, ompt_scope_begin, &(team_info->parallel_data),
4608         &(task_info->task_data), tc, OMPT_GET_RETURN_ADDRESS(0));
4609   }
4610 #endif
4611 
4612   if (num_tasks_min == 0)
4613     // TODO: can we choose better default heuristic?
4614     num_tasks_min =
4615         KMP_MIN(thread->th.th_team_nproc * 10, INITIAL_TASK_DEQUE_SIZE);
4616 
4617   // compute num_tasks/grainsize based on the input provided
4618   switch (sched) {
4619   case 0: // no schedule clause specified, we can choose the default
4620     // let's try to schedule (team_size*10) tasks
4621     grainsize = thread->th.th_team_nproc * 10;
4622     KMP_FALLTHROUGH();
4623   case 2: // num_tasks provided
4624     if (grainsize > tc) {
4625       num_tasks = tc; // too big num_tasks requested, adjust values
4626       grainsize = 1;
4627       extras = 0;
4628     } else {
4629       num_tasks = grainsize;
4630       grainsize = tc / num_tasks;
4631       extras = tc % num_tasks;
4632     }
4633     break;
4634   case 1: // grainsize provided
4635     if (grainsize > tc) {
4636       num_tasks = 1;
4637       grainsize = tc; // too big grainsize requested, adjust values
4638       extras = 0;
4639     } else {
4640       if (modifier) {
4641         num_tasks = (tc + grainsize - 1) / grainsize;
4642         last_chunk = tc - (num_tasks * grainsize);
4643         extras = 0;
4644       } else {
4645         num_tasks = tc / grainsize;
4646         // adjust grainsize for balanced distribution of iterations
4647         grainsize = tc / num_tasks;
4648         extras = tc % num_tasks;
4649       }
4650     }
4651     break;
4652   default:
4653     KMP_ASSERT2(0, "unknown scheduling of taskloop");
4654   }
4655 
4656   KMP_DEBUG_ASSERT(
4657       tc == num_tasks * grainsize + (last_chunk < 0 ? last_chunk : extras));
4658   KMP_DEBUG_ASSERT(num_tasks > extras);
4659   KMP_DEBUG_ASSERT(num_tasks > 0);
4660   // =========================================================================
4661 
4662   // check if clause value first
4663   // Also require GOMP_taskloop to reduce to linear (taskdata->td_flags.native)
4664   if (if_val == 0) { // if(0) specified, mark task as serial
4665     taskdata->td_flags.task_serial = 1;
4666     taskdata->td_flags.tiedness = TASK_TIED; // AC: serial task cannot be untied
4667     // always start serial tasks linearly
4668     __kmp_taskloop_linear(loc, gtid, task, lb, ub, st, ub_glob, num_tasks,
4669                           grainsize, extras, last_chunk, tc,
4670 #if OMPT_SUPPORT
4671                           OMPT_GET_RETURN_ADDRESS(0),
4672 #endif
4673                           task_dup);
4674     // !taskdata->td_flags.native => currently force linear spawning of tasks
4675     // for GOMP_taskloop
4676   } else if (num_tasks > num_tasks_min && !taskdata->td_flags.native) {
4677     KA_TRACE(20, ("__kmp_taskloop: T#%d, go recursive: tc %llu, #tasks %llu"
4678                   "(%lld), grain %llu, extras %llu, last_chunk %lld\n",
4679                   gtid, tc, num_tasks, num_tasks_min, grainsize, extras,
4680                   last_chunk));
4681     __kmp_taskloop_recur(loc, gtid, task, lb, ub, st, ub_glob, num_tasks,
4682                          grainsize, extras, last_chunk, tc, num_tasks_min,
4683 #if OMPT_SUPPORT
4684                          OMPT_GET_RETURN_ADDRESS(0),
4685 #endif
4686                          task_dup);
4687   } else {
4688     KA_TRACE(20, ("__kmp_taskloop: T#%d, go linear: tc %llu, #tasks %llu"
4689                   "(%lld), grain %llu, extras %llu, last_chunk %lld\n",
4690                   gtid, tc, num_tasks, num_tasks_min, grainsize, extras,
4691                   last_chunk));
4692     __kmp_taskloop_linear(loc, gtid, task, lb, ub, st, ub_glob, num_tasks,
4693                           grainsize, extras, last_chunk, tc,
4694 #if OMPT_SUPPORT
4695                           OMPT_GET_RETURN_ADDRESS(0),
4696 #endif
4697                           task_dup);
4698   }
4699 
4700 #if OMPT_SUPPORT && OMPT_OPTIONAL
4701   if (ompt_enabled.ompt_callback_work) {
4702     ompt_callbacks.ompt_callback(ompt_callback_work)(
4703         ompt_work_taskloop, ompt_scope_end, &(team_info->parallel_data),
4704         &(task_info->task_data), tc, OMPT_GET_RETURN_ADDRESS(0));
4705   }
4706 #endif
4707 
4708   if (nogroup == 0) {
4709 #if OMPT_SUPPORT && OMPT_OPTIONAL
4710     OMPT_STORE_RETURN_ADDRESS(gtid);
4711 #endif
4712     __kmpc_end_taskgroup(loc, gtid);
4713   }
4714   KA_TRACE(20, ("__kmp_taskloop(exit): T#%d\n", gtid));
4715 }
4716 
4717 /*!
4718 @ingroup TASKING
4719 @param loc       Source location information
4720 @param gtid      Global thread ID
4721 @param task      Task structure
4722 @param if_val    Value of the if clause
4723 @param lb        Pointer to loop lower bound in task structure
4724 @param ub        Pointer to loop upper bound in task structure
4725 @param st        Loop stride
4726 @param nogroup   Flag, 1 if nogroup clause specified, 0 otherwise
4727 @param sched     Schedule specified 0/1/2 for none/grainsize/num_tasks
4728 @param grainsize Schedule value if specified
4729 @param task_dup  Tasks duplication routine
4730 
4731 Execute the taskloop construct.
4732 */
4733 void __kmpc_taskloop(ident_t *loc, int gtid, kmp_task_t *task, int if_val,
4734                      kmp_uint64 *lb, kmp_uint64 *ub, kmp_int64 st, int nogroup,
4735                      int sched, kmp_uint64 grainsize, void *task_dup) {
4736   __kmp_assert_valid_gtid(gtid);
4737   KA_TRACE(20, ("__kmpc_taskloop(enter): T#%d\n", gtid));
4738   __kmp_taskloop(loc, gtid, task, if_val, lb, ub, st, nogroup, sched, grainsize,
4739                  0, task_dup);
4740   KA_TRACE(20, ("__kmpc_taskloop(exit): T#%d\n", gtid));
4741 }
4742 
4743 /*!
4744 @ingroup TASKING
4745 @param loc       Source location information
4746 @param gtid      Global thread ID
4747 @param task      Task structure
4748 @param if_val    Value of the if clause
4749 @param lb        Pointer to loop lower bound in task structure
4750 @param ub        Pointer to loop upper bound in task structure
4751 @param st        Loop stride
4752 @param nogroup   Flag, 1 if nogroup clause specified, 0 otherwise
4753 @param sched     Schedule specified 0/1/2 for none/grainsize/num_tasks
4754 @param grainsize Schedule value if specified
4755 @param modifer   Modifier 'strict' for sched, 1 if present, 0 otherwise
4756 @param task_dup  Tasks duplication routine
4757 
4758 Execute the taskloop construct.
4759 */
4760 void __kmpc_taskloop_5(ident_t *loc, int gtid, kmp_task_t *task, int if_val,
4761                        kmp_uint64 *lb, kmp_uint64 *ub, kmp_int64 st,
4762                        int nogroup, int sched, kmp_uint64 grainsize,
4763                        int modifier, void *task_dup) {
4764   __kmp_assert_valid_gtid(gtid);
4765   KA_TRACE(20, ("__kmpc_taskloop_5(enter): T#%d\n", gtid));
4766   __kmp_taskloop(loc, gtid, task, if_val, lb, ub, st, nogroup, sched, grainsize,
4767                  modifier, task_dup);
4768   KA_TRACE(20, ("__kmpc_taskloop_5(exit): T#%d\n", gtid));
4769 }
4770