xref: /freebsd/contrib/llvm-project/openmp/runtime/src/kmp_tasking.cpp (revision 0eae32dcef82f6f06de6419a0d623d7def0cc8f6)
1 /*
2  * kmp_tasking.cpp -- OpenMP 3.0 tasking support.
3  */
4 
5 //===----------------------------------------------------------------------===//
6 //
7 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
8 // See https://llvm.org/LICENSE.txt for license information.
9 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "kmp.h"
14 #include "kmp_i18n.h"
15 #include "kmp_itt.h"
16 #include "kmp_stats.h"
17 #include "kmp_wait_release.h"
18 #include "kmp_taskdeps.h"
19 
20 #if OMPT_SUPPORT
21 #include "ompt-specific.h"
22 #endif
23 
24 /* forward declaration */
25 static void __kmp_enable_tasking(kmp_task_team_t *task_team,
26                                  kmp_info_t *this_thr);
27 static void __kmp_alloc_task_deque(kmp_info_t *thread,
28                                    kmp_thread_data_t *thread_data);
29 static int __kmp_realloc_task_threads_data(kmp_info_t *thread,
30                                            kmp_task_team_t *task_team);
31 static void __kmp_bottom_half_finish_proxy(kmp_int32 gtid, kmp_task_t *ptask);
32 
33 #ifdef BUILD_TIED_TASK_STACK
34 
35 //  __kmp_trace_task_stack: print the tied tasks from the task stack in order
36 //  from top do bottom
37 //
38 //  gtid: global thread identifier for thread containing stack
39 //  thread_data: thread data for task team thread containing stack
40 //  threshold: value above which the trace statement triggers
41 //  location: string identifying call site of this function (for trace)
42 static void __kmp_trace_task_stack(kmp_int32 gtid,
43                                    kmp_thread_data_t *thread_data,
44                                    int threshold, char *location) {
45   kmp_task_stack_t *task_stack = &thread_data->td.td_susp_tied_tasks;
46   kmp_taskdata_t **stack_top = task_stack->ts_top;
47   kmp_int32 entries = task_stack->ts_entries;
48   kmp_taskdata_t *tied_task;
49 
50   KA_TRACE(
51       threshold,
52       ("__kmp_trace_task_stack(start): location = %s, gtid = %d, entries = %d, "
53        "first_block = %p, stack_top = %p \n",
54        location, gtid, entries, task_stack->ts_first_block, stack_top));
55 
56   KMP_DEBUG_ASSERT(stack_top != NULL);
57   KMP_DEBUG_ASSERT(entries > 0);
58 
59   while (entries != 0) {
60     KMP_DEBUG_ASSERT(stack_top != &task_stack->ts_first_block.sb_block[0]);
61     // fix up ts_top if we need to pop from previous block
62     if (entries & TASK_STACK_INDEX_MASK == 0) {
63       kmp_stack_block_t *stack_block = (kmp_stack_block_t *)(stack_top);
64 
65       stack_block = stack_block->sb_prev;
66       stack_top = &stack_block->sb_block[TASK_STACK_BLOCK_SIZE];
67     }
68 
69     // finish bookkeeping
70     stack_top--;
71     entries--;
72 
73     tied_task = *stack_top;
74 
75     KMP_DEBUG_ASSERT(tied_task != NULL);
76     KMP_DEBUG_ASSERT(tied_task->td_flags.tasktype == TASK_TIED);
77 
78     KA_TRACE(threshold,
79              ("__kmp_trace_task_stack(%s):             gtid=%d, entry=%d, "
80               "stack_top=%p, tied_task=%p\n",
81               location, gtid, entries, stack_top, tied_task));
82   }
83   KMP_DEBUG_ASSERT(stack_top == &task_stack->ts_first_block.sb_block[0]);
84 
85   KA_TRACE(threshold,
86            ("__kmp_trace_task_stack(exit): location = %s, gtid = %d\n",
87             location, gtid));
88 }
89 
90 //  __kmp_init_task_stack: initialize the task stack for the first time
91 //  after a thread_data structure is created.
92 //  It should not be necessary to do this again (assuming the stack works).
93 //
94 //  gtid: global thread identifier of calling thread
95 //  thread_data: thread data for task team thread containing stack
96 static void __kmp_init_task_stack(kmp_int32 gtid,
97                                   kmp_thread_data_t *thread_data) {
98   kmp_task_stack_t *task_stack = &thread_data->td.td_susp_tied_tasks;
99   kmp_stack_block_t *first_block;
100 
101   // set up the first block of the stack
102   first_block = &task_stack->ts_first_block;
103   task_stack->ts_top = (kmp_taskdata_t **)first_block;
104   memset((void *)first_block, '\0',
105          TASK_STACK_BLOCK_SIZE * sizeof(kmp_taskdata_t *));
106 
107   // initialize the stack to be empty
108   task_stack->ts_entries = TASK_STACK_EMPTY;
109   first_block->sb_next = NULL;
110   first_block->sb_prev = NULL;
111 }
112 
113 //  __kmp_free_task_stack: free the task stack when thread_data is destroyed.
114 //
115 //  gtid: global thread identifier for calling thread
116 //  thread_data: thread info for thread containing stack
117 static void __kmp_free_task_stack(kmp_int32 gtid,
118                                   kmp_thread_data_t *thread_data) {
119   kmp_task_stack_t *task_stack = &thread_data->td.td_susp_tied_tasks;
120   kmp_stack_block_t *stack_block = &task_stack->ts_first_block;
121 
122   KMP_DEBUG_ASSERT(task_stack->ts_entries == TASK_STACK_EMPTY);
123   // free from the second block of the stack
124   while (stack_block != NULL) {
125     kmp_stack_block_t *next_block = (stack_block) ? stack_block->sb_next : NULL;
126 
127     stack_block->sb_next = NULL;
128     stack_block->sb_prev = NULL;
129     if (stack_block != &task_stack->ts_first_block) {
130       __kmp_thread_free(thread,
131                         stack_block); // free the block, if not the first
132     }
133     stack_block = next_block;
134   }
135   // initialize the stack to be empty
136   task_stack->ts_entries = 0;
137   task_stack->ts_top = NULL;
138 }
139 
140 //  __kmp_push_task_stack: Push the tied task onto the task stack.
141 //     Grow the stack if necessary by allocating another block.
142 //
143 //  gtid: global thread identifier for calling thread
144 //  thread: thread info for thread containing stack
145 //  tied_task: the task to push on the stack
146 static void __kmp_push_task_stack(kmp_int32 gtid, kmp_info_t *thread,
147                                   kmp_taskdata_t *tied_task) {
148   // GEH - need to consider what to do if tt_threads_data not allocated yet
149   kmp_thread_data_t *thread_data =
150       &thread->th.th_task_team->tt.tt_threads_data[__kmp_tid_from_gtid(gtid)];
151   kmp_task_stack_t *task_stack = &thread_data->td.td_susp_tied_tasks;
152 
153   if (tied_task->td_flags.team_serial || tied_task->td_flags.tasking_ser) {
154     return; // Don't push anything on stack if team or team tasks are serialized
155   }
156 
157   KMP_DEBUG_ASSERT(tied_task->td_flags.tasktype == TASK_TIED);
158   KMP_DEBUG_ASSERT(task_stack->ts_top != NULL);
159 
160   KA_TRACE(20,
161            ("__kmp_push_task_stack(enter): GTID: %d; THREAD: %p; TASK: %p\n",
162             gtid, thread, tied_task));
163   // Store entry
164   *(task_stack->ts_top) = tied_task;
165 
166   // Do bookkeeping for next push
167   task_stack->ts_top++;
168   task_stack->ts_entries++;
169 
170   if (task_stack->ts_entries & TASK_STACK_INDEX_MASK == 0) {
171     // Find beginning of this task block
172     kmp_stack_block_t *stack_block =
173         (kmp_stack_block_t *)(task_stack->ts_top - TASK_STACK_BLOCK_SIZE);
174 
175     // Check if we already have a block
176     if (stack_block->sb_next !=
177         NULL) { // reset ts_top to beginning of next block
178       task_stack->ts_top = &stack_block->sb_next->sb_block[0];
179     } else { // Alloc new block and link it up
180       kmp_stack_block_t *new_block = (kmp_stack_block_t *)__kmp_thread_calloc(
181           thread, sizeof(kmp_stack_block_t));
182 
183       task_stack->ts_top = &new_block->sb_block[0];
184       stack_block->sb_next = new_block;
185       new_block->sb_prev = stack_block;
186       new_block->sb_next = NULL;
187 
188       KA_TRACE(
189           30,
190           ("__kmp_push_task_stack(): GTID: %d; TASK: %p; Alloc new block: %p\n",
191            gtid, tied_task, new_block));
192     }
193   }
194   KA_TRACE(20, ("__kmp_push_task_stack(exit): GTID: %d; TASK: %p\n", gtid,
195                 tied_task));
196 }
197 
198 //  __kmp_pop_task_stack: Pop the tied task from the task stack.  Don't return
199 //  the task, just check to make sure it matches the ending task passed in.
200 //
201 //  gtid: global thread identifier for the calling thread
202 //  thread: thread info structure containing stack
203 //  tied_task: the task popped off the stack
204 //  ending_task: the task that is ending (should match popped task)
205 static void __kmp_pop_task_stack(kmp_int32 gtid, kmp_info_t *thread,
206                                  kmp_taskdata_t *ending_task) {
207   // GEH - need to consider what to do if tt_threads_data not allocated yet
208   kmp_thread_data_t *thread_data =
209       &thread->th.th_task_team->tt_threads_data[__kmp_tid_from_gtid(gtid)];
210   kmp_task_stack_t *task_stack = &thread_data->td.td_susp_tied_tasks;
211   kmp_taskdata_t *tied_task;
212 
213   if (ending_task->td_flags.team_serial || ending_task->td_flags.tasking_ser) {
214     // Don't pop anything from stack if team or team tasks are serialized
215     return;
216   }
217 
218   KMP_DEBUG_ASSERT(task_stack->ts_top != NULL);
219   KMP_DEBUG_ASSERT(task_stack->ts_entries > 0);
220 
221   KA_TRACE(20, ("__kmp_pop_task_stack(enter): GTID: %d; THREAD: %p\n", gtid,
222                 thread));
223 
224   // fix up ts_top if we need to pop from previous block
225   if (task_stack->ts_entries & TASK_STACK_INDEX_MASK == 0) {
226     kmp_stack_block_t *stack_block = (kmp_stack_block_t *)(task_stack->ts_top);
227 
228     stack_block = stack_block->sb_prev;
229     task_stack->ts_top = &stack_block->sb_block[TASK_STACK_BLOCK_SIZE];
230   }
231 
232   // finish bookkeeping
233   task_stack->ts_top--;
234   task_stack->ts_entries--;
235 
236   tied_task = *(task_stack->ts_top);
237 
238   KMP_DEBUG_ASSERT(tied_task != NULL);
239   KMP_DEBUG_ASSERT(tied_task->td_flags.tasktype == TASK_TIED);
240   KMP_DEBUG_ASSERT(tied_task == ending_task); // If we built the stack correctly
241 
242   KA_TRACE(20, ("__kmp_pop_task_stack(exit): GTID: %d; TASK: %p\n", gtid,
243                 tied_task));
244   return;
245 }
246 #endif /* BUILD_TIED_TASK_STACK */
247 
248 // returns 1 if new task is allowed to execute, 0 otherwise
249 // checks Task Scheduling constraint (if requested) and
250 // mutexinoutset dependencies if any
251 static bool __kmp_task_is_allowed(int gtid, const kmp_int32 is_constrained,
252                                   const kmp_taskdata_t *tasknew,
253                                   const kmp_taskdata_t *taskcurr) {
254   if (is_constrained && (tasknew->td_flags.tiedness == TASK_TIED)) {
255     // Check if the candidate obeys the Task Scheduling Constraints (TSC)
256     // only descendant of all deferred tied tasks can be scheduled, checking
257     // the last one is enough, as it in turn is the descendant of all others
258     kmp_taskdata_t *current = taskcurr->td_last_tied;
259     KMP_DEBUG_ASSERT(current != NULL);
260     // check if the task is not suspended on barrier
261     if (current->td_flags.tasktype == TASK_EXPLICIT ||
262         current->td_taskwait_thread > 0) { // <= 0 on barrier
263       kmp_int32 level = current->td_level;
264       kmp_taskdata_t *parent = tasknew->td_parent;
265       while (parent != current && parent->td_level > level) {
266         // check generation up to the level of the current task
267         parent = parent->td_parent;
268         KMP_DEBUG_ASSERT(parent != NULL);
269       }
270       if (parent != current)
271         return false;
272     }
273   }
274   // Check mutexinoutset dependencies, acquire locks
275   kmp_depnode_t *node = tasknew->td_depnode;
276   if (UNLIKELY(node && (node->dn.mtx_num_locks > 0))) {
277     for (int i = 0; i < node->dn.mtx_num_locks; ++i) {
278       KMP_DEBUG_ASSERT(node->dn.mtx_locks[i] != NULL);
279       if (__kmp_test_lock(node->dn.mtx_locks[i], gtid))
280         continue;
281       // could not get the lock, release previous locks
282       for (int j = i - 1; j >= 0; --j)
283         __kmp_release_lock(node->dn.mtx_locks[j], gtid);
284       return false;
285     }
286     // negative num_locks means all locks acquired successfully
287     node->dn.mtx_num_locks = -node->dn.mtx_num_locks;
288   }
289   return true;
290 }
291 
292 // __kmp_realloc_task_deque:
293 // Re-allocates a task deque for a particular thread, copies the content from
294 // the old deque and adjusts the necessary data structures relating to the
295 // deque. This operation must be done with the deque_lock being held
296 static void __kmp_realloc_task_deque(kmp_info_t *thread,
297                                      kmp_thread_data_t *thread_data) {
298   kmp_int32 size = TASK_DEQUE_SIZE(thread_data->td);
299   KMP_DEBUG_ASSERT(TCR_4(thread_data->td.td_deque_ntasks) == size);
300   kmp_int32 new_size = 2 * size;
301 
302   KE_TRACE(10, ("__kmp_realloc_task_deque: T#%d reallocating deque[from %d to "
303                 "%d] for thread_data %p\n",
304                 __kmp_gtid_from_thread(thread), size, new_size, thread_data));
305 
306   kmp_taskdata_t **new_deque =
307       (kmp_taskdata_t **)__kmp_allocate(new_size * sizeof(kmp_taskdata_t *));
308 
309   int i, j;
310   for (i = thread_data->td.td_deque_head, j = 0; j < size;
311        i = (i + 1) & TASK_DEQUE_MASK(thread_data->td), j++)
312     new_deque[j] = thread_data->td.td_deque[i];
313 
314   __kmp_free(thread_data->td.td_deque);
315 
316   thread_data->td.td_deque_head = 0;
317   thread_data->td.td_deque_tail = size;
318   thread_data->td.td_deque = new_deque;
319   thread_data->td.td_deque_size = new_size;
320 }
321 
322 //  __kmp_push_task: Add a task to the thread's deque
323 static kmp_int32 __kmp_push_task(kmp_int32 gtid, kmp_task_t *task) {
324   kmp_info_t *thread = __kmp_threads[gtid];
325   kmp_taskdata_t *taskdata = KMP_TASK_TO_TASKDATA(task);
326 
327   // If we encounter a hidden helper task, and the current thread is not a
328   // hidden helper thread, we have to give the task to any hidden helper thread
329   // starting from its shadow one.
330   if (UNLIKELY(taskdata->td_flags.hidden_helper &&
331                !KMP_HIDDEN_HELPER_THREAD(gtid))) {
332     kmp_int32 shadow_gtid = KMP_GTID_TO_SHADOW_GTID(gtid);
333     __kmpc_give_task(task, __kmp_tid_from_gtid(shadow_gtid));
334     // Signal the hidden helper threads.
335     __kmp_hidden_helper_worker_thread_signal();
336     return TASK_SUCCESSFULLY_PUSHED;
337   }
338 
339   kmp_task_team_t *task_team = thread->th.th_task_team;
340   kmp_int32 tid = __kmp_tid_from_gtid(gtid);
341   kmp_thread_data_t *thread_data;
342 
343   KA_TRACE(20,
344            ("__kmp_push_task: T#%d trying to push task %p.\n", gtid, taskdata));
345 
346   if (UNLIKELY(taskdata->td_flags.tiedness == TASK_UNTIED)) {
347     // untied task needs to increment counter so that the task structure is not
348     // freed prematurely
349     kmp_int32 counter = 1 + KMP_ATOMIC_INC(&taskdata->td_untied_count);
350     KMP_DEBUG_USE_VAR(counter);
351     KA_TRACE(
352         20,
353         ("__kmp_push_task: T#%d untied_count (%d) incremented for task %p\n",
354          gtid, counter, taskdata));
355   }
356 
357   // The first check avoids building task_team thread data if serialized
358   if (UNLIKELY(taskdata->td_flags.task_serial)) {
359     KA_TRACE(20, ("__kmp_push_task: T#%d team serialized; returning "
360                   "TASK_NOT_PUSHED for task %p\n",
361                   gtid, taskdata));
362     return TASK_NOT_PUSHED;
363   }
364 
365   // Now that serialized tasks have returned, we can assume that we are not in
366   // immediate exec mode
367   KMP_DEBUG_ASSERT(__kmp_tasking_mode != tskm_immediate_exec);
368   if (UNLIKELY(!KMP_TASKING_ENABLED(task_team))) {
369     __kmp_enable_tasking(task_team, thread);
370   }
371   KMP_DEBUG_ASSERT(TCR_4(task_team->tt.tt_found_tasks) == TRUE);
372   KMP_DEBUG_ASSERT(TCR_PTR(task_team->tt.tt_threads_data) != NULL);
373 
374   // Find tasking deque specific to encountering thread
375   thread_data = &task_team->tt.tt_threads_data[tid];
376 
377   // No lock needed since only owner can allocate. If the task is hidden_helper,
378   // we don't need it either because we have initialized the dequeue for hidden
379   // helper thread data.
380   if (UNLIKELY(thread_data->td.td_deque == NULL)) {
381     __kmp_alloc_task_deque(thread, thread_data);
382   }
383 
384   int locked = 0;
385   // Check if deque is full
386   if (TCR_4(thread_data->td.td_deque_ntasks) >=
387       TASK_DEQUE_SIZE(thread_data->td)) {
388     if (__kmp_enable_task_throttling &&
389         __kmp_task_is_allowed(gtid, __kmp_task_stealing_constraint, taskdata,
390                               thread->th.th_current_task)) {
391       KA_TRACE(20, ("__kmp_push_task: T#%d deque is full; returning "
392                     "TASK_NOT_PUSHED for task %p\n",
393                     gtid, taskdata));
394       return TASK_NOT_PUSHED;
395     } else {
396       __kmp_acquire_bootstrap_lock(&thread_data->td.td_deque_lock);
397       locked = 1;
398       if (TCR_4(thread_data->td.td_deque_ntasks) >=
399           TASK_DEQUE_SIZE(thread_data->td)) {
400         // expand deque to push the task which is not allowed to execute
401         __kmp_realloc_task_deque(thread, thread_data);
402       }
403     }
404   }
405   // Lock the deque for the task push operation
406   if (!locked) {
407     __kmp_acquire_bootstrap_lock(&thread_data->td.td_deque_lock);
408     // Need to recheck as we can get a proxy task from thread outside of OpenMP
409     if (TCR_4(thread_data->td.td_deque_ntasks) >=
410         TASK_DEQUE_SIZE(thread_data->td)) {
411       if (__kmp_enable_task_throttling &&
412           __kmp_task_is_allowed(gtid, __kmp_task_stealing_constraint, taskdata,
413                                 thread->th.th_current_task)) {
414         __kmp_release_bootstrap_lock(&thread_data->td.td_deque_lock);
415         KA_TRACE(20, ("__kmp_push_task: T#%d deque is full on 2nd check; "
416                       "returning TASK_NOT_PUSHED for task %p\n",
417                       gtid, taskdata));
418         return TASK_NOT_PUSHED;
419       } else {
420         // expand deque to push the task which is not allowed to execute
421         __kmp_realloc_task_deque(thread, thread_data);
422       }
423     }
424   }
425   // Must have room since no thread can add tasks but calling thread
426   KMP_DEBUG_ASSERT(TCR_4(thread_data->td.td_deque_ntasks) <
427                    TASK_DEQUE_SIZE(thread_data->td));
428 
429   thread_data->td.td_deque[thread_data->td.td_deque_tail] =
430       taskdata; // Push taskdata
431   // Wrap index.
432   thread_data->td.td_deque_tail =
433       (thread_data->td.td_deque_tail + 1) & TASK_DEQUE_MASK(thread_data->td);
434   TCW_4(thread_data->td.td_deque_ntasks,
435         TCR_4(thread_data->td.td_deque_ntasks) + 1); // Adjust task count
436   KMP_FSYNC_RELEASING(thread->th.th_current_task); // releasing self
437   KMP_FSYNC_RELEASING(taskdata); // releasing child
438   KA_TRACE(20, ("__kmp_push_task: T#%d returning TASK_SUCCESSFULLY_PUSHED: "
439                 "task=%p ntasks=%d head=%u tail=%u\n",
440                 gtid, taskdata, thread_data->td.td_deque_ntasks,
441                 thread_data->td.td_deque_head, thread_data->td.td_deque_tail));
442 
443   __kmp_release_bootstrap_lock(&thread_data->td.td_deque_lock);
444 
445   return TASK_SUCCESSFULLY_PUSHED;
446 }
447 
448 // __kmp_pop_current_task_from_thread: set up current task from called thread
449 // when team ends
450 //
451 // this_thr: thread structure to set current_task in.
452 void __kmp_pop_current_task_from_thread(kmp_info_t *this_thr) {
453   KF_TRACE(10, ("__kmp_pop_current_task_from_thread(enter): T#%d "
454                 "this_thread=%p, curtask=%p, "
455                 "curtask_parent=%p\n",
456                 0, this_thr, this_thr->th.th_current_task,
457                 this_thr->th.th_current_task->td_parent));
458 
459   this_thr->th.th_current_task = this_thr->th.th_current_task->td_parent;
460 
461   KF_TRACE(10, ("__kmp_pop_current_task_from_thread(exit): T#%d "
462                 "this_thread=%p, curtask=%p, "
463                 "curtask_parent=%p\n",
464                 0, this_thr, this_thr->th.th_current_task,
465                 this_thr->th.th_current_task->td_parent));
466 }
467 
468 // __kmp_push_current_task_to_thread: set up current task in called thread for a
469 // new team
470 //
471 // this_thr: thread structure to set up
472 // team: team for implicit task data
473 // tid: thread within team to set up
474 void __kmp_push_current_task_to_thread(kmp_info_t *this_thr, kmp_team_t *team,
475                                        int tid) {
476   // current task of the thread is a parent of the new just created implicit
477   // tasks of new team
478   KF_TRACE(10, ("__kmp_push_current_task_to_thread(enter): T#%d this_thread=%p "
479                 "curtask=%p "
480                 "parent_task=%p\n",
481                 tid, this_thr, this_thr->th.th_current_task,
482                 team->t.t_implicit_task_taskdata[tid].td_parent));
483 
484   KMP_DEBUG_ASSERT(this_thr != NULL);
485 
486   if (tid == 0) {
487     if (this_thr->th.th_current_task != &team->t.t_implicit_task_taskdata[0]) {
488       team->t.t_implicit_task_taskdata[0].td_parent =
489           this_thr->th.th_current_task;
490       this_thr->th.th_current_task = &team->t.t_implicit_task_taskdata[0];
491     }
492   } else {
493     team->t.t_implicit_task_taskdata[tid].td_parent =
494         team->t.t_implicit_task_taskdata[0].td_parent;
495     this_thr->th.th_current_task = &team->t.t_implicit_task_taskdata[tid];
496   }
497 
498   KF_TRACE(10, ("__kmp_push_current_task_to_thread(exit): T#%d this_thread=%p "
499                 "curtask=%p "
500                 "parent_task=%p\n",
501                 tid, this_thr, this_thr->th.th_current_task,
502                 team->t.t_implicit_task_taskdata[tid].td_parent));
503 }
504 
505 // __kmp_task_start: bookkeeping for a task starting execution
506 //
507 // GTID: global thread id of calling thread
508 // task: task starting execution
509 // current_task: task suspending
510 static void __kmp_task_start(kmp_int32 gtid, kmp_task_t *task,
511                              kmp_taskdata_t *current_task) {
512   kmp_taskdata_t *taskdata = KMP_TASK_TO_TASKDATA(task);
513   kmp_info_t *thread = __kmp_threads[gtid];
514 
515   KA_TRACE(10,
516            ("__kmp_task_start(enter): T#%d starting task %p: current_task=%p\n",
517             gtid, taskdata, current_task));
518 
519   KMP_DEBUG_ASSERT(taskdata->td_flags.tasktype == TASK_EXPLICIT);
520 
521   // mark currently executing task as suspended
522   // TODO: GEH - make sure root team implicit task is initialized properly.
523   // KMP_DEBUG_ASSERT( current_task -> td_flags.executing == 1 );
524   current_task->td_flags.executing = 0;
525 
526 // Add task to stack if tied
527 #ifdef BUILD_TIED_TASK_STACK
528   if (taskdata->td_flags.tiedness == TASK_TIED) {
529     __kmp_push_task_stack(gtid, thread, taskdata);
530   }
531 #endif /* BUILD_TIED_TASK_STACK */
532 
533   // mark starting task as executing and as current task
534   thread->th.th_current_task = taskdata;
535 
536   KMP_DEBUG_ASSERT(taskdata->td_flags.started == 0 ||
537                    taskdata->td_flags.tiedness == TASK_UNTIED);
538   KMP_DEBUG_ASSERT(taskdata->td_flags.executing == 0 ||
539                    taskdata->td_flags.tiedness == TASK_UNTIED);
540   taskdata->td_flags.started = 1;
541   taskdata->td_flags.executing = 1;
542   KMP_DEBUG_ASSERT(taskdata->td_flags.complete == 0);
543   KMP_DEBUG_ASSERT(taskdata->td_flags.freed == 0);
544 
545   // GEH TODO: shouldn't we pass some sort of location identifier here?
546   // APT: yes, we will pass location here.
547   // need to store current thread state (in a thread or taskdata structure)
548   // before setting work_state, otherwise wrong state is set after end of task
549 
550   KA_TRACE(10, ("__kmp_task_start(exit): T#%d task=%p\n", gtid, taskdata));
551 
552   return;
553 }
554 
555 #if OMPT_SUPPORT
556 //------------------------------------------------------------------------------
557 // __ompt_task_init:
558 //   Initialize OMPT fields maintained by a task. This will only be called after
559 //   ompt_start_tool, so we already know whether ompt is enabled or not.
560 
561 static inline void __ompt_task_init(kmp_taskdata_t *task, int tid) {
562   // The calls to __ompt_task_init already have the ompt_enabled condition.
563   task->ompt_task_info.task_data.value = 0;
564   task->ompt_task_info.frame.exit_frame = ompt_data_none;
565   task->ompt_task_info.frame.enter_frame = ompt_data_none;
566   task->ompt_task_info.frame.exit_frame_flags =
567       ompt_frame_runtime | ompt_frame_framepointer;
568   task->ompt_task_info.frame.enter_frame_flags =
569       ompt_frame_runtime | ompt_frame_framepointer;
570 }
571 
572 // __ompt_task_start:
573 //   Build and trigger task-begin event
574 static inline void __ompt_task_start(kmp_task_t *task,
575                                      kmp_taskdata_t *current_task,
576                                      kmp_int32 gtid) {
577   kmp_taskdata_t *taskdata = KMP_TASK_TO_TASKDATA(task);
578   ompt_task_status_t status = ompt_task_switch;
579   if (__kmp_threads[gtid]->th.ompt_thread_info.ompt_task_yielded) {
580     status = ompt_task_yield;
581     __kmp_threads[gtid]->th.ompt_thread_info.ompt_task_yielded = 0;
582   }
583   /* let OMPT know that we're about to run this task */
584   if (ompt_enabled.ompt_callback_task_schedule) {
585     ompt_callbacks.ompt_callback(ompt_callback_task_schedule)(
586         &(current_task->ompt_task_info.task_data), status,
587         &(taskdata->ompt_task_info.task_data));
588   }
589   taskdata->ompt_task_info.scheduling_parent = current_task;
590 }
591 
592 // __ompt_task_finish:
593 //   Build and trigger final task-schedule event
594 static inline void __ompt_task_finish(kmp_task_t *task,
595                                       kmp_taskdata_t *resumed_task,
596                                       ompt_task_status_t status) {
597   if (ompt_enabled.ompt_callback_task_schedule) {
598     kmp_taskdata_t *taskdata = KMP_TASK_TO_TASKDATA(task);
599     if (__kmp_omp_cancellation && taskdata->td_taskgroup &&
600         taskdata->td_taskgroup->cancel_request == cancel_taskgroup) {
601       status = ompt_task_cancel;
602     }
603 
604     /* let OMPT know that we're returning to the callee task */
605     ompt_callbacks.ompt_callback(ompt_callback_task_schedule)(
606         &(taskdata->ompt_task_info.task_data), status,
607         (resumed_task ? &(resumed_task->ompt_task_info.task_data) : NULL));
608   }
609 }
610 #endif
611 
612 template <bool ompt>
613 static void __kmpc_omp_task_begin_if0_template(ident_t *loc_ref, kmp_int32 gtid,
614                                                kmp_task_t *task,
615                                                void *frame_address,
616                                                void *return_address) {
617   kmp_taskdata_t *taskdata = KMP_TASK_TO_TASKDATA(task);
618   kmp_taskdata_t *current_task = __kmp_threads[gtid]->th.th_current_task;
619 
620   KA_TRACE(10, ("__kmpc_omp_task_begin_if0(enter): T#%d loc=%p task=%p "
621                 "current_task=%p\n",
622                 gtid, loc_ref, taskdata, current_task));
623 
624   if (UNLIKELY(taskdata->td_flags.tiedness == TASK_UNTIED)) {
625     // untied task needs to increment counter so that the task structure is not
626     // freed prematurely
627     kmp_int32 counter = 1 + KMP_ATOMIC_INC(&taskdata->td_untied_count);
628     KMP_DEBUG_USE_VAR(counter);
629     KA_TRACE(20, ("__kmpc_omp_task_begin_if0: T#%d untied_count (%d) "
630                   "incremented for task %p\n",
631                   gtid, counter, taskdata));
632   }
633 
634   taskdata->td_flags.task_serial =
635       1; // Execute this task immediately, not deferred.
636   __kmp_task_start(gtid, task, current_task);
637 
638 #if OMPT_SUPPORT
639   if (ompt) {
640     if (current_task->ompt_task_info.frame.enter_frame.ptr == NULL) {
641       current_task->ompt_task_info.frame.enter_frame.ptr =
642           taskdata->ompt_task_info.frame.exit_frame.ptr = frame_address;
643       current_task->ompt_task_info.frame.enter_frame_flags =
644           taskdata->ompt_task_info.frame.exit_frame_flags =
645               ompt_frame_application | ompt_frame_framepointer;
646     }
647     if (ompt_enabled.ompt_callback_task_create) {
648       ompt_task_info_t *parent_info = &(current_task->ompt_task_info);
649       ompt_callbacks.ompt_callback(ompt_callback_task_create)(
650           &(parent_info->task_data), &(parent_info->frame),
651           &(taskdata->ompt_task_info.task_data),
652           ompt_task_explicit | TASK_TYPE_DETAILS_FORMAT(taskdata), 0,
653           return_address);
654     }
655     __ompt_task_start(task, current_task, gtid);
656   }
657 #endif // OMPT_SUPPORT
658 
659   KA_TRACE(10, ("__kmpc_omp_task_begin_if0(exit): T#%d loc=%p task=%p,\n", gtid,
660                 loc_ref, taskdata));
661 }
662 
663 #if OMPT_SUPPORT
664 OMPT_NOINLINE
665 static void __kmpc_omp_task_begin_if0_ompt(ident_t *loc_ref, kmp_int32 gtid,
666                                            kmp_task_t *task,
667                                            void *frame_address,
668                                            void *return_address) {
669   __kmpc_omp_task_begin_if0_template<true>(loc_ref, gtid, task, frame_address,
670                                            return_address);
671 }
672 #endif // OMPT_SUPPORT
673 
674 // __kmpc_omp_task_begin_if0: report that a given serialized task has started
675 // execution
676 //
677 // loc_ref: source location information; points to beginning of task block.
678 // gtid: global thread number.
679 // task: task thunk for the started task.
680 void __kmpc_omp_task_begin_if0(ident_t *loc_ref, kmp_int32 gtid,
681                                kmp_task_t *task) {
682 #if OMPT_SUPPORT
683   if (UNLIKELY(ompt_enabled.enabled)) {
684     OMPT_STORE_RETURN_ADDRESS(gtid);
685     __kmpc_omp_task_begin_if0_ompt(loc_ref, gtid, task,
686                                    OMPT_GET_FRAME_ADDRESS(1),
687                                    OMPT_LOAD_RETURN_ADDRESS(gtid));
688     return;
689   }
690 #endif
691   __kmpc_omp_task_begin_if0_template<false>(loc_ref, gtid, task, NULL, NULL);
692 }
693 
694 #ifdef TASK_UNUSED
695 // __kmpc_omp_task_begin: report that a given task has started execution
696 // NEVER GENERATED BY COMPILER, DEPRECATED!!!
697 void __kmpc_omp_task_begin(ident_t *loc_ref, kmp_int32 gtid, kmp_task_t *task) {
698   kmp_taskdata_t *current_task = __kmp_threads[gtid]->th.th_current_task;
699 
700   KA_TRACE(
701       10,
702       ("__kmpc_omp_task_begin(enter): T#%d loc=%p task=%p current_task=%p\n",
703        gtid, loc_ref, KMP_TASK_TO_TASKDATA(task), current_task));
704 
705   __kmp_task_start(gtid, task, current_task);
706 
707   KA_TRACE(10, ("__kmpc_omp_task_begin(exit): T#%d loc=%p task=%p,\n", gtid,
708                 loc_ref, KMP_TASK_TO_TASKDATA(task)));
709   return;
710 }
711 #endif // TASK_UNUSED
712 
713 // __kmp_free_task: free the current task space and the space for shareds
714 //
715 // gtid: Global thread ID of calling thread
716 // taskdata: task to free
717 // thread: thread data structure of caller
718 static void __kmp_free_task(kmp_int32 gtid, kmp_taskdata_t *taskdata,
719                             kmp_info_t *thread) {
720   KA_TRACE(30, ("__kmp_free_task: T#%d freeing data from task %p\n", gtid,
721                 taskdata));
722 
723   // Check to make sure all flags and counters have the correct values
724   KMP_DEBUG_ASSERT(taskdata->td_flags.tasktype == TASK_EXPLICIT);
725   KMP_DEBUG_ASSERT(taskdata->td_flags.executing == 0);
726   KMP_DEBUG_ASSERT(taskdata->td_flags.complete == 1);
727   KMP_DEBUG_ASSERT(taskdata->td_flags.freed == 0);
728   KMP_DEBUG_ASSERT(taskdata->td_allocated_child_tasks == 0 ||
729                    taskdata->td_flags.task_serial == 1);
730   KMP_DEBUG_ASSERT(taskdata->td_incomplete_child_tasks == 0);
731 
732   taskdata->td_flags.freed = 1;
733 // deallocate the taskdata and shared variable blocks associated with this task
734 #if USE_FAST_MEMORY
735   __kmp_fast_free(thread, taskdata);
736 #else /* ! USE_FAST_MEMORY */
737   __kmp_thread_free(thread, taskdata);
738 #endif
739   KA_TRACE(20, ("__kmp_free_task: T#%d freed task %p\n", gtid, taskdata));
740 }
741 
742 // __kmp_free_task_and_ancestors: free the current task and ancestors without
743 // children
744 //
745 // gtid: Global thread ID of calling thread
746 // taskdata: task to free
747 // thread: thread data structure of caller
748 static void __kmp_free_task_and_ancestors(kmp_int32 gtid,
749                                           kmp_taskdata_t *taskdata,
750                                           kmp_info_t *thread) {
751   // Proxy tasks must always be allowed to free their parents
752   // because they can be run in background even in serial mode.
753   kmp_int32 team_serial =
754       (taskdata->td_flags.team_serial || taskdata->td_flags.tasking_ser) &&
755       !taskdata->td_flags.proxy;
756   KMP_DEBUG_ASSERT(taskdata->td_flags.tasktype == TASK_EXPLICIT);
757 
758   kmp_int32 children = KMP_ATOMIC_DEC(&taskdata->td_allocated_child_tasks) - 1;
759   KMP_DEBUG_ASSERT(children >= 0);
760 
761   // Now, go up the ancestor tree to see if any ancestors can now be freed.
762   while (children == 0) {
763     kmp_taskdata_t *parent_taskdata = taskdata->td_parent;
764 
765     KA_TRACE(20, ("__kmp_free_task_and_ancestors(enter): T#%d task %p complete "
766                   "and freeing itself\n",
767                   gtid, taskdata));
768 
769     // --- Deallocate my ancestor task ---
770     __kmp_free_task(gtid, taskdata, thread);
771 
772     taskdata = parent_taskdata;
773 
774     if (team_serial)
775       return;
776     // Stop checking ancestors at implicit task instead of walking up ancestor
777     // tree to avoid premature deallocation of ancestors.
778     if (taskdata->td_flags.tasktype == TASK_IMPLICIT) {
779       if (taskdata->td_dephash) { // do we need to cleanup dephash?
780         int children = KMP_ATOMIC_LD_ACQ(&taskdata->td_incomplete_child_tasks);
781         kmp_tasking_flags_t flags_old = taskdata->td_flags;
782         if (children == 0 && flags_old.complete == 1) {
783           kmp_tasking_flags_t flags_new = flags_old;
784           flags_new.complete = 0;
785           if (KMP_COMPARE_AND_STORE_ACQ32(
786                   RCAST(kmp_int32 *, &taskdata->td_flags),
787                   *RCAST(kmp_int32 *, &flags_old),
788                   *RCAST(kmp_int32 *, &flags_new))) {
789             KA_TRACE(100, ("__kmp_free_task_and_ancestors: T#%d cleans "
790                            "dephash of implicit task %p\n",
791                            gtid, taskdata));
792             // cleanup dephash of finished implicit task
793             __kmp_dephash_free_entries(thread, taskdata->td_dephash);
794           }
795         }
796       }
797       return;
798     }
799     // Predecrement simulated by "- 1" calculation
800     children = KMP_ATOMIC_DEC(&taskdata->td_allocated_child_tasks) - 1;
801     KMP_DEBUG_ASSERT(children >= 0);
802   }
803 
804   KA_TRACE(
805       20, ("__kmp_free_task_and_ancestors(exit): T#%d task %p has %d children; "
806            "not freeing it yet\n",
807            gtid, taskdata, children));
808 }
809 
810 // Only need to keep track of child task counts if any of the following:
811 // 1. team parallel and tasking not serialized;
812 // 2. it is a proxy or detachable or hidden helper task
813 // 3. the children counter of its parent task is greater than 0.
814 // The reason for the 3rd one is for serialized team that found detached task,
815 // hidden helper task, T. In this case, the execution of T is still deferred,
816 // and it is also possible that a regular task depends on T. In this case, if we
817 // don't track the children, task synchronization will be broken.
818 static bool __kmp_track_children_task(kmp_taskdata_t *taskdata) {
819   kmp_tasking_flags_t flags = taskdata->td_flags;
820   bool ret = !(flags.team_serial || flags.tasking_ser);
821   ret = ret || flags.proxy == TASK_PROXY ||
822         flags.detachable == TASK_DETACHABLE || flags.hidden_helper;
823   ret = ret ||
824         KMP_ATOMIC_LD_ACQ(&taskdata->td_parent->td_incomplete_child_tasks) > 0;
825   return ret;
826 }
827 
828 // __kmp_task_finish: bookkeeping to do when a task finishes execution
829 //
830 // gtid: global thread ID for calling thread
831 // task: task to be finished
832 // resumed_task: task to be resumed.  (may be NULL if task is serialized)
833 //
834 // template<ompt>: effectively ompt_enabled.enabled!=0
835 // the version with ompt=false is inlined, allowing to optimize away all ompt
836 // code in this case
837 template <bool ompt>
838 static void __kmp_task_finish(kmp_int32 gtid, kmp_task_t *task,
839                               kmp_taskdata_t *resumed_task) {
840   kmp_taskdata_t *taskdata = KMP_TASK_TO_TASKDATA(task);
841   kmp_info_t *thread = __kmp_threads[gtid];
842   kmp_task_team_t *task_team =
843       thread->th.th_task_team; // might be NULL for serial teams...
844 #if KMP_DEBUG
845   kmp_int32 children = 0;
846 #endif
847   KA_TRACE(10, ("__kmp_task_finish(enter): T#%d finishing task %p and resuming "
848                 "task %p\n",
849                 gtid, taskdata, resumed_task));
850 
851   KMP_DEBUG_ASSERT(taskdata->td_flags.tasktype == TASK_EXPLICIT);
852 
853 // Pop task from stack if tied
854 #ifdef BUILD_TIED_TASK_STACK
855   if (taskdata->td_flags.tiedness == TASK_TIED) {
856     __kmp_pop_task_stack(gtid, thread, taskdata);
857   }
858 #endif /* BUILD_TIED_TASK_STACK */
859 
860   if (UNLIKELY(taskdata->td_flags.tiedness == TASK_UNTIED)) {
861     // untied task needs to check the counter so that the task structure is not
862     // freed prematurely
863     kmp_int32 counter = KMP_ATOMIC_DEC(&taskdata->td_untied_count) - 1;
864     KA_TRACE(
865         20,
866         ("__kmp_task_finish: T#%d untied_count (%d) decremented for task %p\n",
867          gtid, counter, taskdata));
868     if (counter > 0) {
869       // untied task is not done, to be continued possibly by other thread, do
870       // not free it now
871       if (resumed_task == NULL) {
872         KMP_DEBUG_ASSERT(taskdata->td_flags.task_serial);
873         resumed_task = taskdata->td_parent; // In a serialized task, the resumed
874         // task is the parent
875       }
876       thread->th.th_current_task = resumed_task; // restore current_task
877       resumed_task->td_flags.executing = 1; // resume previous task
878       KA_TRACE(10, ("__kmp_task_finish(exit): T#%d partially done task %p, "
879                     "resuming task %p\n",
880                     gtid, taskdata, resumed_task));
881       return;
882     }
883   }
884 
885   // bookkeeping for resuming task:
886   // GEH - note tasking_ser => task_serial
887   KMP_DEBUG_ASSERT(
888       (taskdata->td_flags.tasking_ser || taskdata->td_flags.task_serial) ==
889       taskdata->td_flags.task_serial);
890   if (taskdata->td_flags.task_serial) {
891     if (resumed_task == NULL) {
892       resumed_task = taskdata->td_parent; // In a serialized task, the resumed
893       // task is the parent
894     }
895   } else {
896     KMP_DEBUG_ASSERT(resumed_task !=
897                      NULL); // verify that resumed task is passed as argument
898   }
899 
900   /* If the tasks' destructor thunk flag has been set, we need to invoke the
901      destructor thunk that has been generated by the compiler. The code is
902      placed here, since at this point other tasks might have been released
903      hence overlapping the destructor invocations with some other work in the
904      released tasks.  The OpenMP spec is not specific on when the destructors
905      are invoked, so we should be free to choose. */
906   if (UNLIKELY(taskdata->td_flags.destructors_thunk)) {
907     kmp_routine_entry_t destr_thunk = task->data1.destructors;
908     KMP_ASSERT(destr_thunk);
909     destr_thunk(gtid, task);
910   }
911 
912   KMP_DEBUG_ASSERT(taskdata->td_flags.complete == 0);
913   KMP_DEBUG_ASSERT(taskdata->td_flags.started == 1);
914   KMP_DEBUG_ASSERT(taskdata->td_flags.freed == 0);
915 
916   bool detach = false;
917   if (UNLIKELY(taskdata->td_flags.detachable == TASK_DETACHABLE)) {
918     if (taskdata->td_allow_completion_event.type ==
919         KMP_EVENT_ALLOW_COMPLETION) {
920       // event hasn't been fulfilled yet. Try to detach task.
921       __kmp_acquire_tas_lock(&taskdata->td_allow_completion_event.lock, gtid);
922       if (taskdata->td_allow_completion_event.type ==
923           KMP_EVENT_ALLOW_COMPLETION) {
924         // task finished execution
925         KMP_DEBUG_ASSERT(taskdata->td_flags.executing == 1);
926         taskdata->td_flags.executing = 0; // suspend the finishing task
927 
928 #if OMPT_SUPPORT
929         // For a detached task, which is not completed, we switch back
930         // the omp_fulfill_event signals completion
931         // locking is necessary to avoid a race with ompt_task_late_fulfill
932         if (ompt)
933           __ompt_task_finish(task, resumed_task, ompt_task_detach);
934 #endif
935 
936         // no access to taskdata after this point!
937         // __kmp_fulfill_event might free taskdata at any time from now
938 
939         taskdata->td_flags.proxy = TASK_PROXY; // proxify!
940         detach = true;
941       }
942       __kmp_release_tas_lock(&taskdata->td_allow_completion_event.lock, gtid);
943     }
944   }
945 
946   if (!detach) {
947     taskdata->td_flags.complete = 1; // mark the task as completed
948 
949 #if OMPT_SUPPORT
950     // This is not a detached task, we are done here
951     if (ompt)
952       __ompt_task_finish(task, resumed_task, ompt_task_complete);
953 #endif
954     // TODO: What would be the balance between the conditions in the function
955     // and an atomic operation?
956     if (__kmp_track_children_task(taskdata)) {
957       __kmp_release_deps(gtid, taskdata);
958       // Predecrement simulated by "- 1" calculation
959 #if KMP_DEBUG
960       children = -1 +
961 #endif
962           KMP_ATOMIC_DEC(&taskdata->td_parent->td_incomplete_child_tasks);
963       KMP_DEBUG_ASSERT(children >= 0);
964       if (taskdata->td_taskgroup)
965         KMP_ATOMIC_DEC(&taskdata->td_taskgroup->count);
966     } else if (task_team && (task_team->tt.tt_found_proxy_tasks ||
967                              task_team->tt.tt_hidden_helper_task_encountered)) {
968       // if we found proxy or hidden helper tasks there could exist a dependency
969       // chain with the proxy task as origin
970       __kmp_release_deps(gtid, taskdata);
971     }
972     // td_flags.executing must be marked as 0 after __kmp_release_deps has been
973     // called. Othertwise, if a task is executed immediately from the
974     // release_deps code, the flag will be reset to 1 again by this same
975     // function
976     KMP_DEBUG_ASSERT(taskdata->td_flags.executing == 1);
977     taskdata->td_flags.executing = 0; // suspend the finishing task
978   }
979 
980   KA_TRACE(
981       20, ("__kmp_task_finish: T#%d finished task %p, %d incomplete children\n",
982            gtid, taskdata, children));
983 
984   // Free this task and then ancestor tasks if they have no children.
985   // Restore th_current_task first as suggested by John:
986   // johnmc: if an asynchronous inquiry peers into the runtime system
987   // it doesn't see the freed task as the current task.
988   thread->th.th_current_task = resumed_task;
989   if (!detach)
990     __kmp_free_task_and_ancestors(gtid, taskdata, thread);
991 
992   // TODO: GEH - make sure root team implicit task is initialized properly.
993   // KMP_DEBUG_ASSERT( resumed_task->td_flags.executing == 0 );
994   resumed_task->td_flags.executing = 1; // resume previous task
995 
996   KA_TRACE(
997       10, ("__kmp_task_finish(exit): T#%d finished task %p, resuming task %p\n",
998            gtid, taskdata, resumed_task));
999 
1000   return;
1001 }
1002 
1003 template <bool ompt>
1004 static void __kmpc_omp_task_complete_if0_template(ident_t *loc_ref,
1005                                                   kmp_int32 gtid,
1006                                                   kmp_task_t *task) {
1007   KA_TRACE(10, ("__kmpc_omp_task_complete_if0(enter): T#%d loc=%p task=%p\n",
1008                 gtid, loc_ref, KMP_TASK_TO_TASKDATA(task)));
1009   KMP_DEBUG_ASSERT(gtid >= 0);
1010   // this routine will provide task to resume
1011   __kmp_task_finish<ompt>(gtid, task, NULL);
1012 
1013   KA_TRACE(10, ("__kmpc_omp_task_complete_if0(exit): T#%d loc=%p task=%p\n",
1014                 gtid, loc_ref, KMP_TASK_TO_TASKDATA(task)));
1015 
1016 #if OMPT_SUPPORT
1017   if (ompt) {
1018     ompt_frame_t *ompt_frame;
1019     __ompt_get_task_info_internal(0, NULL, NULL, &ompt_frame, NULL, NULL);
1020     ompt_frame->enter_frame = ompt_data_none;
1021     ompt_frame->enter_frame_flags =
1022         ompt_frame_runtime | ompt_frame_framepointer;
1023   }
1024 #endif
1025 
1026   return;
1027 }
1028 
1029 #if OMPT_SUPPORT
1030 OMPT_NOINLINE
1031 void __kmpc_omp_task_complete_if0_ompt(ident_t *loc_ref, kmp_int32 gtid,
1032                                        kmp_task_t *task) {
1033   __kmpc_omp_task_complete_if0_template<true>(loc_ref, gtid, task);
1034 }
1035 #endif // OMPT_SUPPORT
1036 
1037 // __kmpc_omp_task_complete_if0: report that a task has completed execution
1038 //
1039 // loc_ref: source location information; points to end of task block.
1040 // gtid: global thread number.
1041 // task: task thunk for the completed task.
1042 void __kmpc_omp_task_complete_if0(ident_t *loc_ref, kmp_int32 gtid,
1043                                   kmp_task_t *task) {
1044 #if OMPT_SUPPORT
1045   if (UNLIKELY(ompt_enabled.enabled)) {
1046     __kmpc_omp_task_complete_if0_ompt(loc_ref, gtid, task);
1047     return;
1048   }
1049 #endif
1050   __kmpc_omp_task_complete_if0_template<false>(loc_ref, gtid, task);
1051 }
1052 
1053 #ifdef TASK_UNUSED
1054 // __kmpc_omp_task_complete: report that a task has completed execution
1055 // NEVER GENERATED BY COMPILER, DEPRECATED!!!
1056 void __kmpc_omp_task_complete(ident_t *loc_ref, kmp_int32 gtid,
1057                               kmp_task_t *task) {
1058   KA_TRACE(10, ("__kmpc_omp_task_complete(enter): T#%d loc=%p task=%p\n", gtid,
1059                 loc_ref, KMP_TASK_TO_TASKDATA(task)));
1060 
1061   __kmp_task_finish<false>(gtid, task,
1062                            NULL); // Not sure how to find task to resume
1063 
1064   KA_TRACE(10, ("__kmpc_omp_task_complete(exit): T#%d loc=%p task=%p\n", gtid,
1065                 loc_ref, KMP_TASK_TO_TASKDATA(task)));
1066   return;
1067 }
1068 #endif // TASK_UNUSED
1069 
1070 // __kmp_init_implicit_task: Initialize the appropriate fields in the implicit
1071 // task for a given thread
1072 //
1073 // loc_ref:  reference to source location of parallel region
1074 // this_thr:  thread data structure corresponding to implicit task
1075 // team: team for this_thr
1076 // tid: thread id of given thread within team
1077 // set_curr_task: TRUE if need to push current task to thread
1078 // NOTE: Routine does not set up the implicit task ICVS.  This is assumed to
1079 // have already been done elsewhere.
1080 // TODO: Get better loc_ref.  Value passed in may be NULL
1081 void __kmp_init_implicit_task(ident_t *loc_ref, kmp_info_t *this_thr,
1082                               kmp_team_t *team, int tid, int set_curr_task) {
1083   kmp_taskdata_t *task = &team->t.t_implicit_task_taskdata[tid];
1084 
1085   KF_TRACE(
1086       10,
1087       ("__kmp_init_implicit_task(enter): T#:%d team=%p task=%p, reinit=%s\n",
1088        tid, team, task, set_curr_task ? "TRUE" : "FALSE"));
1089 
1090   task->td_task_id = KMP_GEN_TASK_ID();
1091   task->td_team = team;
1092   //    task->td_parent   = NULL;  // fix for CQ230101 (broken parent task info
1093   //    in debugger)
1094   task->td_ident = loc_ref;
1095   task->td_taskwait_ident = NULL;
1096   task->td_taskwait_counter = 0;
1097   task->td_taskwait_thread = 0;
1098 
1099   task->td_flags.tiedness = TASK_TIED;
1100   task->td_flags.tasktype = TASK_IMPLICIT;
1101   task->td_flags.proxy = TASK_FULL;
1102 
1103   // All implicit tasks are executed immediately, not deferred
1104   task->td_flags.task_serial = 1;
1105   task->td_flags.tasking_ser = (__kmp_tasking_mode == tskm_immediate_exec);
1106   task->td_flags.team_serial = (team->t.t_serialized) ? 1 : 0;
1107 
1108   task->td_flags.started = 1;
1109   task->td_flags.executing = 1;
1110   task->td_flags.complete = 0;
1111   task->td_flags.freed = 0;
1112 
1113   task->td_depnode = NULL;
1114   task->td_last_tied = task;
1115   task->td_allow_completion_event.type = KMP_EVENT_UNINITIALIZED;
1116 
1117   if (set_curr_task) { // only do this init first time thread is created
1118     KMP_ATOMIC_ST_REL(&task->td_incomplete_child_tasks, 0);
1119     // Not used: don't need to deallocate implicit task
1120     KMP_ATOMIC_ST_REL(&task->td_allocated_child_tasks, 0);
1121     task->td_taskgroup = NULL; // An implicit task does not have taskgroup
1122     task->td_dephash = NULL;
1123     __kmp_push_current_task_to_thread(this_thr, team, tid);
1124   } else {
1125     KMP_DEBUG_ASSERT(task->td_incomplete_child_tasks == 0);
1126     KMP_DEBUG_ASSERT(task->td_allocated_child_tasks == 0);
1127   }
1128 
1129 #if OMPT_SUPPORT
1130   if (UNLIKELY(ompt_enabled.enabled))
1131     __ompt_task_init(task, tid);
1132 #endif
1133 
1134   KF_TRACE(10, ("__kmp_init_implicit_task(exit): T#:%d team=%p task=%p\n", tid,
1135                 team, task));
1136 }
1137 
1138 // __kmp_finish_implicit_task: Release resources associated to implicit tasks
1139 // at the end of parallel regions. Some resources are kept for reuse in the next
1140 // parallel region.
1141 //
1142 // thread:  thread data structure corresponding to implicit task
1143 void __kmp_finish_implicit_task(kmp_info_t *thread) {
1144   kmp_taskdata_t *task = thread->th.th_current_task;
1145   if (task->td_dephash) {
1146     int children;
1147     task->td_flags.complete = 1;
1148     children = KMP_ATOMIC_LD_ACQ(&task->td_incomplete_child_tasks);
1149     kmp_tasking_flags_t flags_old = task->td_flags;
1150     if (children == 0 && flags_old.complete == 1) {
1151       kmp_tasking_flags_t flags_new = flags_old;
1152       flags_new.complete = 0;
1153       if (KMP_COMPARE_AND_STORE_ACQ32(RCAST(kmp_int32 *, &task->td_flags),
1154                                       *RCAST(kmp_int32 *, &flags_old),
1155                                       *RCAST(kmp_int32 *, &flags_new))) {
1156         KA_TRACE(100, ("__kmp_finish_implicit_task: T#%d cleans "
1157                        "dephash of implicit task %p\n",
1158                        thread->th.th_info.ds.ds_gtid, task));
1159         __kmp_dephash_free_entries(thread, task->td_dephash);
1160       }
1161     }
1162   }
1163 }
1164 
1165 // __kmp_free_implicit_task: Release resources associated to implicit tasks
1166 // when these are destroyed regions
1167 //
1168 // thread:  thread data structure corresponding to implicit task
1169 void __kmp_free_implicit_task(kmp_info_t *thread) {
1170   kmp_taskdata_t *task = thread->th.th_current_task;
1171   if (task && task->td_dephash) {
1172     __kmp_dephash_free(thread, task->td_dephash);
1173     task->td_dephash = NULL;
1174   }
1175 }
1176 
1177 // Round up a size to a power of two specified by val: Used to insert padding
1178 // between structures co-allocated using a single malloc() call
1179 static size_t __kmp_round_up_to_val(size_t size, size_t val) {
1180   if (size & (val - 1)) {
1181     size &= ~(val - 1);
1182     if (size <= KMP_SIZE_T_MAX - val) {
1183       size += val; // Round up if there is no overflow.
1184     }
1185   }
1186   return size;
1187 } // __kmp_round_up_to_va
1188 
1189 // __kmp_task_alloc: Allocate the taskdata and task data structures for a task
1190 //
1191 // loc_ref: source location information
1192 // gtid: global thread number.
1193 // flags: include tiedness & task type (explicit vs. implicit) of the ''new''
1194 // task encountered. Converted from kmp_int32 to kmp_tasking_flags_t in routine.
1195 // sizeof_kmp_task_t:  Size in bytes of kmp_task_t data structure including
1196 // private vars accessed in task.
1197 // sizeof_shareds:  Size in bytes of array of pointers to shared vars accessed
1198 // in task.
1199 // task_entry: Pointer to task code entry point generated by compiler.
1200 // returns: a pointer to the allocated kmp_task_t structure (task).
1201 kmp_task_t *__kmp_task_alloc(ident_t *loc_ref, kmp_int32 gtid,
1202                              kmp_tasking_flags_t *flags,
1203                              size_t sizeof_kmp_task_t, size_t sizeof_shareds,
1204                              kmp_routine_entry_t task_entry) {
1205   kmp_task_t *task;
1206   kmp_taskdata_t *taskdata;
1207   kmp_info_t *thread = __kmp_threads[gtid];
1208   kmp_team_t *team = thread->th.th_team;
1209   kmp_taskdata_t *parent_task = thread->th.th_current_task;
1210   size_t shareds_offset;
1211 
1212   if (UNLIKELY(!TCR_4(__kmp_init_middle)))
1213     __kmp_middle_initialize();
1214 
1215   if (flags->hidden_helper) {
1216     if (__kmp_enable_hidden_helper) {
1217       if (!TCR_4(__kmp_init_hidden_helper))
1218         __kmp_hidden_helper_initialize();
1219     } else {
1220       // If the hidden helper task is not enabled, reset the flag to FALSE.
1221       flags->hidden_helper = FALSE;
1222     }
1223   }
1224 
1225   KA_TRACE(10, ("__kmp_task_alloc(enter): T#%d loc=%p, flags=(0x%x) "
1226                 "sizeof_task=%ld sizeof_shared=%ld entry=%p\n",
1227                 gtid, loc_ref, *((kmp_int32 *)flags), sizeof_kmp_task_t,
1228                 sizeof_shareds, task_entry));
1229 
1230   KMP_DEBUG_ASSERT(parent_task);
1231   if (parent_task->td_flags.final) {
1232     if (flags->merged_if0) {
1233     }
1234     flags->final = 1;
1235   }
1236 
1237   if (flags->tiedness == TASK_UNTIED && !team->t.t_serialized) {
1238     // Untied task encountered causes the TSC algorithm to check entire deque of
1239     // the victim thread. If no untied task encountered, then checking the head
1240     // of the deque should be enough.
1241     KMP_CHECK_UPDATE(thread->th.th_task_team->tt.tt_untied_task_encountered, 1);
1242   }
1243 
1244   // Detachable tasks are not proxy tasks yet but could be in the future. Doing
1245   // the tasking setup
1246   // when that happens is too late.
1247   if (UNLIKELY(flags->proxy == TASK_PROXY ||
1248                flags->detachable == TASK_DETACHABLE || flags->hidden_helper)) {
1249     if (flags->proxy == TASK_PROXY) {
1250       flags->tiedness = TASK_UNTIED;
1251       flags->merged_if0 = 1;
1252     }
1253     /* are we running in a sequential parallel or tskm_immediate_exec... we need
1254        tasking support enabled */
1255     if ((thread->th.th_task_team) == NULL) {
1256       /* This should only happen if the team is serialized
1257           setup a task team and propagate it to the thread */
1258       KMP_DEBUG_ASSERT(team->t.t_serialized);
1259       KA_TRACE(30,
1260                ("T#%d creating task team in __kmp_task_alloc for proxy task\n",
1261                 gtid));
1262       // 1 indicates setup the current team regardless of nthreads
1263       __kmp_task_team_setup(thread, team, 1);
1264       thread->th.th_task_team = team->t.t_task_team[thread->th.th_task_state];
1265     }
1266     kmp_task_team_t *task_team = thread->th.th_task_team;
1267 
1268     /* tasking must be enabled now as the task might not be pushed */
1269     if (!KMP_TASKING_ENABLED(task_team)) {
1270       KA_TRACE(
1271           30,
1272           ("T#%d enabling tasking in __kmp_task_alloc for proxy task\n", gtid));
1273       __kmp_enable_tasking(task_team, thread);
1274       kmp_int32 tid = thread->th.th_info.ds.ds_tid;
1275       kmp_thread_data_t *thread_data = &task_team->tt.tt_threads_data[tid];
1276       // No lock needed since only owner can allocate
1277       if (thread_data->td.td_deque == NULL) {
1278         __kmp_alloc_task_deque(thread, thread_data);
1279       }
1280     }
1281 
1282     if ((flags->proxy == TASK_PROXY || flags->detachable == TASK_DETACHABLE) &&
1283         task_team->tt.tt_found_proxy_tasks == FALSE)
1284       TCW_4(task_team->tt.tt_found_proxy_tasks, TRUE);
1285     if (flags->hidden_helper &&
1286         task_team->tt.tt_hidden_helper_task_encountered == FALSE)
1287       TCW_4(task_team->tt.tt_hidden_helper_task_encountered, TRUE);
1288   }
1289 
1290   // Calculate shared structure offset including padding after kmp_task_t struct
1291   // to align pointers in shared struct
1292   shareds_offset = sizeof(kmp_taskdata_t) + sizeof_kmp_task_t;
1293   shareds_offset = __kmp_round_up_to_val(shareds_offset, sizeof(void *));
1294 
1295   // Allocate a kmp_taskdata_t block and a kmp_task_t block.
1296   KA_TRACE(30, ("__kmp_task_alloc: T#%d First malloc size: %ld\n", gtid,
1297                 shareds_offset));
1298   KA_TRACE(30, ("__kmp_task_alloc: T#%d Second malloc size: %ld\n", gtid,
1299                 sizeof_shareds));
1300 
1301   // Avoid double allocation here by combining shareds with taskdata
1302 #if USE_FAST_MEMORY
1303   taskdata = (kmp_taskdata_t *)__kmp_fast_allocate(thread, shareds_offset +
1304                                                                sizeof_shareds);
1305 #else /* ! USE_FAST_MEMORY */
1306   taskdata = (kmp_taskdata_t *)__kmp_thread_malloc(thread, shareds_offset +
1307                                                                sizeof_shareds);
1308 #endif /* USE_FAST_MEMORY */
1309 
1310   task = KMP_TASKDATA_TO_TASK(taskdata);
1311 
1312 // Make sure task & taskdata are aligned appropriately
1313 #if KMP_ARCH_X86 || KMP_ARCH_PPC64 || !KMP_HAVE_QUAD
1314   KMP_DEBUG_ASSERT((((kmp_uintptr_t)taskdata) & (sizeof(double) - 1)) == 0);
1315   KMP_DEBUG_ASSERT((((kmp_uintptr_t)task) & (sizeof(double) - 1)) == 0);
1316 #else
1317   KMP_DEBUG_ASSERT((((kmp_uintptr_t)taskdata) & (sizeof(_Quad) - 1)) == 0);
1318   KMP_DEBUG_ASSERT((((kmp_uintptr_t)task) & (sizeof(_Quad) - 1)) == 0);
1319 #endif
1320   if (sizeof_shareds > 0) {
1321     // Avoid double allocation here by combining shareds with taskdata
1322     task->shareds = &((char *)taskdata)[shareds_offset];
1323     // Make sure shareds struct is aligned to pointer size
1324     KMP_DEBUG_ASSERT((((kmp_uintptr_t)task->shareds) & (sizeof(void *) - 1)) ==
1325                      0);
1326   } else {
1327     task->shareds = NULL;
1328   }
1329   task->routine = task_entry;
1330   task->part_id = 0; // AC: Always start with 0 part id
1331 
1332   taskdata->td_task_id = KMP_GEN_TASK_ID();
1333   taskdata->td_team = thread->th.th_team;
1334   taskdata->td_alloc_thread = thread;
1335   taskdata->td_parent = parent_task;
1336   taskdata->td_level = parent_task->td_level + 1; // increment nesting level
1337   KMP_ATOMIC_ST_RLX(&taskdata->td_untied_count, 0);
1338   taskdata->td_ident = loc_ref;
1339   taskdata->td_taskwait_ident = NULL;
1340   taskdata->td_taskwait_counter = 0;
1341   taskdata->td_taskwait_thread = 0;
1342   KMP_DEBUG_ASSERT(taskdata->td_parent != NULL);
1343   // avoid copying icvs for proxy tasks
1344   if (flags->proxy == TASK_FULL)
1345     copy_icvs(&taskdata->td_icvs, &taskdata->td_parent->td_icvs);
1346 
1347   taskdata->td_flags = *flags;
1348   taskdata->td_task_team = thread->th.th_task_team;
1349   taskdata->td_size_alloc = shareds_offset + sizeof_shareds;
1350   taskdata->td_flags.tasktype = TASK_EXPLICIT;
1351   // If it is hidden helper task, we need to set the team and task team
1352   // correspondingly.
1353   if (flags->hidden_helper) {
1354     kmp_info_t *shadow_thread = __kmp_threads[KMP_GTID_TO_SHADOW_GTID(gtid)];
1355     taskdata->td_team = shadow_thread->th.th_team;
1356     taskdata->td_task_team = shadow_thread->th.th_task_team;
1357   }
1358 
1359   // GEH - TODO: fix this to copy parent task's value of tasking_ser flag
1360   taskdata->td_flags.tasking_ser = (__kmp_tasking_mode == tskm_immediate_exec);
1361 
1362   // GEH - TODO: fix this to copy parent task's value of team_serial flag
1363   taskdata->td_flags.team_serial = (team->t.t_serialized) ? 1 : 0;
1364 
1365   // GEH - Note we serialize the task if the team is serialized to make sure
1366   // implicit parallel region tasks are not left until program termination to
1367   // execute. Also, it helps locality to execute immediately.
1368 
1369   taskdata->td_flags.task_serial =
1370       (parent_task->td_flags.final || taskdata->td_flags.team_serial ||
1371        taskdata->td_flags.tasking_ser || flags->merged_if0);
1372 
1373   taskdata->td_flags.started = 0;
1374   taskdata->td_flags.executing = 0;
1375   taskdata->td_flags.complete = 0;
1376   taskdata->td_flags.freed = 0;
1377 
1378   KMP_ATOMIC_ST_RLX(&taskdata->td_incomplete_child_tasks, 0);
1379   // start at one because counts current task and children
1380   KMP_ATOMIC_ST_RLX(&taskdata->td_allocated_child_tasks, 1);
1381   taskdata->td_taskgroup =
1382       parent_task->td_taskgroup; // task inherits taskgroup from the parent task
1383   taskdata->td_dephash = NULL;
1384   taskdata->td_depnode = NULL;
1385   if (flags->tiedness == TASK_UNTIED)
1386     taskdata->td_last_tied = NULL; // will be set when the task is scheduled
1387   else
1388     taskdata->td_last_tied = taskdata;
1389   taskdata->td_allow_completion_event.type = KMP_EVENT_UNINITIALIZED;
1390 #if OMPT_SUPPORT
1391   if (UNLIKELY(ompt_enabled.enabled))
1392     __ompt_task_init(taskdata, gtid);
1393 #endif
1394   // TODO: What would be the balance between the conditions in the function and
1395   // an atomic operation?
1396   if (__kmp_track_children_task(taskdata)) {
1397     KMP_ATOMIC_INC(&parent_task->td_incomplete_child_tasks);
1398     if (parent_task->td_taskgroup)
1399       KMP_ATOMIC_INC(&parent_task->td_taskgroup->count);
1400     // Only need to keep track of allocated child tasks for explicit tasks since
1401     // implicit not deallocated
1402     if (taskdata->td_parent->td_flags.tasktype == TASK_EXPLICIT) {
1403       KMP_ATOMIC_INC(&taskdata->td_parent->td_allocated_child_tasks);
1404     }
1405     if (flags->hidden_helper) {
1406       taskdata->td_flags.task_serial = FALSE;
1407       // Increment the number of hidden helper tasks to be executed
1408       KMP_ATOMIC_INC(&__kmp_unexecuted_hidden_helper_tasks);
1409     }
1410   }
1411 
1412   KA_TRACE(20, ("__kmp_task_alloc(exit): T#%d created task %p parent=%p\n",
1413                 gtid, taskdata, taskdata->td_parent));
1414 
1415   return task;
1416 }
1417 
1418 kmp_task_t *__kmpc_omp_task_alloc(ident_t *loc_ref, kmp_int32 gtid,
1419                                   kmp_int32 flags, size_t sizeof_kmp_task_t,
1420                                   size_t sizeof_shareds,
1421                                   kmp_routine_entry_t task_entry) {
1422   kmp_task_t *retval;
1423   kmp_tasking_flags_t *input_flags = (kmp_tasking_flags_t *)&flags;
1424   __kmp_assert_valid_gtid(gtid);
1425   input_flags->native = FALSE;
1426   // __kmp_task_alloc() sets up all other runtime flags
1427   KA_TRACE(10, ("__kmpc_omp_task_alloc(enter): T#%d loc=%p, flags=(%s %s %s) "
1428                 "sizeof_task=%ld sizeof_shared=%ld entry=%p\n",
1429                 gtid, loc_ref, input_flags->tiedness ? "tied  " : "untied",
1430                 input_flags->proxy ? "proxy" : "",
1431                 input_flags->detachable ? "detachable" : "", sizeof_kmp_task_t,
1432                 sizeof_shareds, task_entry));
1433 
1434   retval = __kmp_task_alloc(loc_ref, gtid, input_flags, sizeof_kmp_task_t,
1435                             sizeof_shareds, task_entry);
1436 
1437   KA_TRACE(20, ("__kmpc_omp_task_alloc(exit): T#%d retval %p\n", gtid, retval));
1438 
1439   return retval;
1440 }
1441 
1442 kmp_task_t *__kmpc_omp_target_task_alloc(ident_t *loc_ref, kmp_int32 gtid,
1443                                          kmp_int32 flags,
1444                                          size_t sizeof_kmp_task_t,
1445                                          size_t sizeof_shareds,
1446                                          kmp_routine_entry_t task_entry,
1447                                          kmp_int64 device_id) {
1448   auto &input_flags = reinterpret_cast<kmp_tasking_flags_t &>(flags);
1449   // target task is untied defined in the specification
1450   input_flags.tiedness = TASK_UNTIED;
1451 
1452   if (__kmp_enable_hidden_helper)
1453     input_flags.hidden_helper = TRUE;
1454 
1455   return __kmpc_omp_task_alloc(loc_ref, gtid, flags, sizeof_kmp_task_t,
1456                                sizeof_shareds, task_entry);
1457 }
1458 
1459 /*!
1460 @ingroup TASKING
1461 @param loc_ref location of the original task directive
1462 @param gtid Global Thread ID of encountering thread
1463 @param new_task task thunk allocated by __kmpc_omp_task_alloc() for the ''new
1464 task''
1465 @param naffins Number of affinity items
1466 @param affin_list List of affinity items
1467 @return Returns non-zero if registering affinity information was not successful.
1468  Returns 0 if registration was successful
1469 This entry registers the affinity information attached to a task with the task
1470 thunk structure kmp_taskdata_t.
1471 */
1472 kmp_int32
1473 __kmpc_omp_reg_task_with_affinity(ident_t *loc_ref, kmp_int32 gtid,
1474                                   kmp_task_t *new_task, kmp_int32 naffins,
1475                                   kmp_task_affinity_info_t *affin_list) {
1476   return 0;
1477 }
1478 
1479 //  __kmp_invoke_task: invoke the specified task
1480 //
1481 // gtid: global thread ID of caller
1482 // task: the task to invoke
1483 // current_task: the task to resume after task invocation
1484 static void __kmp_invoke_task(kmp_int32 gtid, kmp_task_t *task,
1485                               kmp_taskdata_t *current_task) {
1486   kmp_taskdata_t *taskdata = KMP_TASK_TO_TASKDATA(task);
1487   kmp_info_t *thread;
1488   int discard = 0 /* false */;
1489   KA_TRACE(
1490       30, ("__kmp_invoke_task(enter): T#%d invoking task %p, current_task=%p\n",
1491            gtid, taskdata, current_task));
1492   KMP_DEBUG_ASSERT(task);
1493   if (UNLIKELY(taskdata->td_flags.proxy == TASK_PROXY &&
1494                taskdata->td_flags.complete == 1)) {
1495     // This is a proxy task that was already completed but it needs to run
1496     // its bottom-half finish
1497     KA_TRACE(
1498         30,
1499         ("__kmp_invoke_task: T#%d running bottom finish for proxy task %p\n",
1500          gtid, taskdata));
1501 
1502     __kmp_bottom_half_finish_proxy(gtid, task);
1503 
1504     KA_TRACE(30, ("__kmp_invoke_task(exit): T#%d completed bottom finish for "
1505                   "proxy task %p, resuming task %p\n",
1506                   gtid, taskdata, current_task));
1507 
1508     return;
1509   }
1510 
1511 #if OMPT_SUPPORT
1512   // For untied tasks, the first task executed only calls __kmpc_omp_task and
1513   // does not execute code.
1514   ompt_thread_info_t oldInfo;
1515   if (UNLIKELY(ompt_enabled.enabled)) {
1516     // Store the threads states and restore them after the task
1517     thread = __kmp_threads[gtid];
1518     oldInfo = thread->th.ompt_thread_info;
1519     thread->th.ompt_thread_info.wait_id = 0;
1520     thread->th.ompt_thread_info.state = (thread->th.th_team_serialized)
1521                                             ? ompt_state_work_serial
1522                                             : ompt_state_work_parallel;
1523     taskdata->ompt_task_info.frame.exit_frame.ptr = OMPT_GET_FRAME_ADDRESS(0);
1524   }
1525 #endif
1526 
1527   // Decreament the counter of hidden helper tasks to be executed
1528   if (taskdata->td_flags.hidden_helper) {
1529     // Hidden helper tasks can only be executed by hidden helper threads
1530     KMP_ASSERT(KMP_HIDDEN_HELPER_THREAD(gtid));
1531     KMP_ATOMIC_DEC(&__kmp_unexecuted_hidden_helper_tasks);
1532   }
1533 
1534   // Proxy tasks are not handled by the runtime
1535   if (taskdata->td_flags.proxy != TASK_PROXY) {
1536     __kmp_task_start(gtid, task, current_task); // OMPT only if not discarded
1537   }
1538 
1539   // TODO: cancel tasks if the parallel region has also been cancelled
1540   // TODO: check if this sequence can be hoisted above __kmp_task_start
1541   // if cancellation has been enabled for this run ...
1542   if (UNLIKELY(__kmp_omp_cancellation)) {
1543     thread = __kmp_threads[gtid];
1544     kmp_team_t *this_team = thread->th.th_team;
1545     kmp_taskgroup_t *taskgroup = taskdata->td_taskgroup;
1546     if ((taskgroup && taskgroup->cancel_request) ||
1547         (this_team->t.t_cancel_request == cancel_parallel)) {
1548 #if OMPT_SUPPORT && OMPT_OPTIONAL
1549       ompt_data_t *task_data;
1550       if (UNLIKELY(ompt_enabled.ompt_callback_cancel)) {
1551         __ompt_get_task_info_internal(0, NULL, &task_data, NULL, NULL, NULL);
1552         ompt_callbacks.ompt_callback(ompt_callback_cancel)(
1553             task_data,
1554             ((taskgroup && taskgroup->cancel_request) ? ompt_cancel_taskgroup
1555                                                       : ompt_cancel_parallel) |
1556                 ompt_cancel_discarded_task,
1557             NULL);
1558       }
1559 #endif
1560       KMP_COUNT_BLOCK(TASK_cancelled);
1561       // this task belongs to a task group and we need to cancel it
1562       discard = 1 /* true */;
1563     }
1564   }
1565 
1566   // Invoke the task routine and pass in relevant data.
1567   // Thunks generated by gcc take a different argument list.
1568   if (!discard) {
1569     if (taskdata->td_flags.tiedness == TASK_UNTIED) {
1570       taskdata->td_last_tied = current_task->td_last_tied;
1571       KMP_DEBUG_ASSERT(taskdata->td_last_tied);
1572     }
1573 #if KMP_STATS_ENABLED
1574     KMP_COUNT_BLOCK(TASK_executed);
1575     switch (KMP_GET_THREAD_STATE()) {
1576     case FORK_JOIN_BARRIER:
1577       KMP_PUSH_PARTITIONED_TIMER(OMP_task_join_bar);
1578       break;
1579     case PLAIN_BARRIER:
1580       KMP_PUSH_PARTITIONED_TIMER(OMP_task_plain_bar);
1581       break;
1582     case TASKYIELD:
1583       KMP_PUSH_PARTITIONED_TIMER(OMP_task_taskyield);
1584       break;
1585     case TASKWAIT:
1586       KMP_PUSH_PARTITIONED_TIMER(OMP_task_taskwait);
1587       break;
1588     case TASKGROUP:
1589       KMP_PUSH_PARTITIONED_TIMER(OMP_task_taskgroup);
1590       break;
1591     default:
1592       KMP_PUSH_PARTITIONED_TIMER(OMP_task_immediate);
1593       break;
1594     }
1595 #endif // KMP_STATS_ENABLED
1596 
1597 // OMPT task begin
1598 #if OMPT_SUPPORT
1599     if (UNLIKELY(ompt_enabled.enabled))
1600       __ompt_task_start(task, current_task, gtid);
1601 #endif
1602 
1603 #if OMPD_SUPPORT
1604     if (ompd_state & OMPD_ENABLE_BP)
1605       ompd_bp_task_begin();
1606 #endif
1607 
1608 #if USE_ITT_BUILD && USE_ITT_NOTIFY
1609     kmp_uint64 cur_time;
1610     kmp_int32 kmp_itt_count_task =
1611         __kmp_forkjoin_frames_mode == 3 && !taskdata->td_flags.task_serial &&
1612         current_task->td_flags.tasktype == TASK_IMPLICIT;
1613     if (kmp_itt_count_task) {
1614       thread = __kmp_threads[gtid];
1615       // Time outer level explicit task on barrier for adjusting imbalance time
1616       if (thread->th.th_bar_arrive_time)
1617         cur_time = __itt_get_timestamp();
1618       else
1619         kmp_itt_count_task = 0; // thread is not on a barrier - skip timing
1620     }
1621     KMP_FSYNC_ACQUIRED(taskdata); // acquired self (new task)
1622 #endif
1623 
1624     if (task->routine != NULL) {
1625 #ifdef KMP_GOMP_COMPAT
1626       if (taskdata->td_flags.native) {
1627         ((void (*)(void *))(*(task->routine)))(task->shareds);
1628       } else
1629 #endif /* KMP_GOMP_COMPAT */
1630       {
1631         (*(task->routine))(gtid, task);
1632       }
1633     }
1634     KMP_POP_PARTITIONED_TIMER();
1635 
1636 #if USE_ITT_BUILD && USE_ITT_NOTIFY
1637     if (kmp_itt_count_task) {
1638       // Barrier imbalance - adjust arrive time with the task duration
1639       thread->th.th_bar_arrive_time += (__itt_get_timestamp() - cur_time);
1640     }
1641     KMP_FSYNC_CANCEL(taskdata); // destroy self (just executed)
1642     KMP_FSYNC_RELEASING(taskdata->td_parent); // releasing parent
1643 #endif
1644   }
1645 
1646 #if OMPD_SUPPORT
1647   if (ompd_state & OMPD_ENABLE_BP)
1648     ompd_bp_task_end();
1649 #endif
1650 
1651   // Proxy tasks are not handled by the runtime
1652   if (taskdata->td_flags.proxy != TASK_PROXY) {
1653 #if OMPT_SUPPORT
1654     if (UNLIKELY(ompt_enabled.enabled)) {
1655       thread->th.ompt_thread_info = oldInfo;
1656       if (taskdata->td_flags.tiedness == TASK_TIED) {
1657         taskdata->ompt_task_info.frame.exit_frame = ompt_data_none;
1658       }
1659       __kmp_task_finish<true>(gtid, task, current_task);
1660     } else
1661 #endif
1662       __kmp_task_finish<false>(gtid, task, current_task);
1663   }
1664 
1665   KA_TRACE(
1666       30,
1667       ("__kmp_invoke_task(exit): T#%d completed task %p, resuming task %p\n",
1668        gtid, taskdata, current_task));
1669   return;
1670 }
1671 
1672 // __kmpc_omp_task_parts: Schedule a thread-switchable task for execution
1673 //
1674 // loc_ref: location of original task pragma (ignored)
1675 // gtid: Global Thread ID of encountering thread
1676 // new_task: task thunk allocated by __kmp_omp_task_alloc() for the ''new task''
1677 // Returns:
1678 //    TASK_CURRENT_NOT_QUEUED (0) if did not suspend and queue current task to
1679 //    be resumed later.
1680 //    TASK_CURRENT_QUEUED (1) if suspended and queued the current task to be
1681 //    resumed later.
1682 kmp_int32 __kmpc_omp_task_parts(ident_t *loc_ref, kmp_int32 gtid,
1683                                 kmp_task_t *new_task) {
1684   kmp_taskdata_t *new_taskdata = KMP_TASK_TO_TASKDATA(new_task);
1685 
1686   KA_TRACE(10, ("__kmpc_omp_task_parts(enter): T#%d loc=%p task=%p\n", gtid,
1687                 loc_ref, new_taskdata));
1688 
1689 #if OMPT_SUPPORT
1690   kmp_taskdata_t *parent;
1691   if (UNLIKELY(ompt_enabled.enabled)) {
1692     parent = new_taskdata->td_parent;
1693     if (ompt_enabled.ompt_callback_task_create) {
1694       ompt_callbacks.ompt_callback(ompt_callback_task_create)(
1695           &(parent->ompt_task_info.task_data), &(parent->ompt_task_info.frame),
1696           &(new_taskdata->ompt_task_info.task_data), ompt_task_explicit, 0,
1697           OMPT_GET_RETURN_ADDRESS(0));
1698     }
1699   }
1700 #endif
1701 
1702   /* Should we execute the new task or queue it? For now, let's just always try
1703      to queue it.  If the queue fills up, then we'll execute it.  */
1704 
1705   if (__kmp_push_task(gtid, new_task) == TASK_NOT_PUSHED) // if cannot defer
1706   { // Execute this task immediately
1707     kmp_taskdata_t *current_task = __kmp_threads[gtid]->th.th_current_task;
1708     new_taskdata->td_flags.task_serial = 1;
1709     __kmp_invoke_task(gtid, new_task, current_task);
1710   }
1711 
1712   KA_TRACE(
1713       10,
1714       ("__kmpc_omp_task_parts(exit): T#%d returning TASK_CURRENT_NOT_QUEUED: "
1715        "loc=%p task=%p, return: TASK_CURRENT_NOT_QUEUED\n",
1716        gtid, loc_ref, new_taskdata));
1717 
1718 #if OMPT_SUPPORT
1719   if (UNLIKELY(ompt_enabled.enabled)) {
1720     parent->ompt_task_info.frame.enter_frame = ompt_data_none;
1721   }
1722 #endif
1723   return TASK_CURRENT_NOT_QUEUED;
1724 }
1725 
1726 // __kmp_omp_task: Schedule a non-thread-switchable task for execution
1727 //
1728 // gtid: Global Thread ID of encountering thread
1729 // new_task:non-thread-switchable task thunk allocated by __kmp_omp_task_alloc()
1730 // serialize_immediate: if TRUE then if the task is executed immediately its
1731 // execution will be serialized
1732 // Returns:
1733 //    TASK_CURRENT_NOT_QUEUED (0) if did not suspend and queue current task to
1734 //    be resumed later.
1735 //    TASK_CURRENT_QUEUED (1) if suspended and queued the current task to be
1736 //    resumed later.
1737 kmp_int32 __kmp_omp_task(kmp_int32 gtid, kmp_task_t *new_task,
1738                          bool serialize_immediate) {
1739   kmp_taskdata_t *new_taskdata = KMP_TASK_TO_TASKDATA(new_task);
1740 
1741   /* Should we execute the new task or queue it? For now, let's just always try
1742      to queue it.  If the queue fills up, then we'll execute it.  */
1743   if (new_taskdata->td_flags.proxy == TASK_PROXY ||
1744       __kmp_push_task(gtid, new_task) == TASK_NOT_PUSHED) // if cannot defer
1745   { // Execute this task immediately
1746     kmp_taskdata_t *current_task = __kmp_threads[gtid]->th.th_current_task;
1747     if (serialize_immediate)
1748       new_taskdata->td_flags.task_serial = 1;
1749     __kmp_invoke_task(gtid, new_task, current_task);
1750   }
1751 
1752   return TASK_CURRENT_NOT_QUEUED;
1753 }
1754 
1755 // __kmpc_omp_task: Wrapper around __kmp_omp_task to schedule a
1756 // non-thread-switchable task from the parent thread only!
1757 //
1758 // loc_ref: location of original task pragma (ignored)
1759 // gtid: Global Thread ID of encountering thread
1760 // new_task: non-thread-switchable task thunk allocated by
1761 // __kmp_omp_task_alloc()
1762 // Returns:
1763 //    TASK_CURRENT_NOT_QUEUED (0) if did not suspend and queue current task to
1764 //    be resumed later.
1765 //    TASK_CURRENT_QUEUED (1) if suspended and queued the current task to be
1766 //    resumed later.
1767 kmp_int32 __kmpc_omp_task(ident_t *loc_ref, kmp_int32 gtid,
1768                           kmp_task_t *new_task) {
1769   kmp_int32 res;
1770   KMP_SET_THREAD_STATE_BLOCK(EXPLICIT_TASK);
1771 
1772 #if KMP_DEBUG || OMPT_SUPPORT
1773   kmp_taskdata_t *new_taskdata = KMP_TASK_TO_TASKDATA(new_task);
1774 #endif
1775   KA_TRACE(10, ("__kmpc_omp_task(enter): T#%d loc=%p task=%p\n", gtid, loc_ref,
1776                 new_taskdata));
1777   __kmp_assert_valid_gtid(gtid);
1778 
1779 #if OMPT_SUPPORT
1780   kmp_taskdata_t *parent = NULL;
1781   if (UNLIKELY(ompt_enabled.enabled)) {
1782     if (!new_taskdata->td_flags.started) {
1783       OMPT_STORE_RETURN_ADDRESS(gtid);
1784       parent = new_taskdata->td_parent;
1785       if (!parent->ompt_task_info.frame.enter_frame.ptr) {
1786         parent->ompt_task_info.frame.enter_frame.ptr =
1787             OMPT_GET_FRAME_ADDRESS(0);
1788       }
1789       if (ompt_enabled.ompt_callback_task_create) {
1790         ompt_callbacks.ompt_callback(ompt_callback_task_create)(
1791             &(parent->ompt_task_info.task_data),
1792             &(parent->ompt_task_info.frame),
1793             &(new_taskdata->ompt_task_info.task_data),
1794             ompt_task_explicit | TASK_TYPE_DETAILS_FORMAT(new_taskdata), 0,
1795             OMPT_LOAD_RETURN_ADDRESS(gtid));
1796       }
1797     } else {
1798       // We are scheduling the continuation of an UNTIED task.
1799       // Scheduling back to the parent task.
1800       __ompt_task_finish(new_task,
1801                          new_taskdata->ompt_task_info.scheduling_parent,
1802                          ompt_task_switch);
1803       new_taskdata->ompt_task_info.frame.exit_frame = ompt_data_none;
1804     }
1805   }
1806 #endif
1807 
1808   res = __kmp_omp_task(gtid, new_task, true);
1809 
1810   KA_TRACE(10, ("__kmpc_omp_task(exit): T#%d returning "
1811                 "TASK_CURRENT_NOT_QUEUED: loc=%p task=%p\n",
1812                 gtid, loc_ref, new_taskdata));
1813 #if OMPT_SUPPORT
1814   if (UNLIKELY(ompt_enabled.enabled && parent != NULL)) {
1815     parent->ompt_task_info.frame.enter_frame = ompt_data_none;
1816   }
1817 #endif
1818   return res;
1819 }
1820 
1821 // __kmp_omp_taskloop_task: Wrapper around __kmp_omp_task to schedule
1822 // a taskloop task with the correct OMPT return address
1823 //
1824 // loc_ref: location of original task pragma (ignored)
1825 // gtid: Global Thread ID of encountering thread
1826 // new_task: non-thread-switchable task thunk allocated by
1827 // __kmp_omp_task_alloc()
1828 // codeptr_ra: return address for OMPT callback
1829 // Returns:
1830 //    TASK_CURRENT_NOT_QUEUED (0) if did not suspend and queue current task to
1831 //    be resumed later.
1832 //    TASK_CURRENT_QUEUED (1) if suspended and queued the current task to be
1833 //    resumed later.
1834 kmp_int32 __kmp_omp_taskloop_task(ident_t *loc_ref, kmp_int32 gtid,
1835                                   kmp_task_t *new_task, void *codeptr_ra) {
1836   kmp_int32 res;
1837   KMP_SET_THREAD_STATE_BLOCK(EXPLICIT_TASK);
1838 
1839 #if KMP_DEBUG || OMPT_SUPPORT
1840   kmp_taskdata_t *new_taskdata = KMP_TASK_TO_TASKDATA(new_task);
1841 #endif
1842   KA_TRACE(10, ("__kmpc_omp_task(enter): T#%d loc=%p task=%p\n", gtid, loc_ref,
1843                 new_taskdata));
1844 
1845 #if OMPT_SUPPORT
1846   kmp_taskdata_t *parent = NULL;
1847   if (UNLIKELY(ompt_enabled.enabled && !new_taskdata->td_flags.started)) {
1848     parent = new_taskdata->td_parent;
1849     if (!parent->ompt_task_info.frame.enter_frame.ptr)
1850       parent->ompt_task_info.frame.enter_frame.ptr = OMPT_GET_FRAME_ADDRESS(0);
1851     if (ompt_enabled.ompt_callback_task_create) {
1852       ompt_callbacks.ompt_callback(ompt_callback_task_create)(
1853           &(parent->ompt_task_info.task_data), &(parent->ompt_task_info.frame),
1854           &(new_taskdata->ompt_task_info.task_data),
1855           ompt_task_explicit | TASK_TYPE_DETAILS_FORMAT(new_taskdata), 0,
1856           codeptr_ra);
1857     }
1858   }
1859 #endif
1860 
1861   res = __kmp_omp_task(gtid, new_task, true);
1862 
1863   KA_TRACE(10, ("__kmpc_omp_task(exit): T#%d returning "
1864                 "TASK_CURRENT_NOT_QUEUED: loc=%p task=%p\n",
1865                 gtid, loc_ref, new_taskdata));
1866 #if OMPT_SUPPORT
1867   if (UNLIKELY(ompt_enabled.enabled && parent != NULL)) {
1868     parent->ompt_task_info.frame.enter_frame = ompt_data_none;
1869   }
1870 #endif
1871   return res;
1872 }
1873 
1874 template <bool ompt>
1875 static kmp_int32 __kmpc_omp_taskwait_template(ident_t *loc_ref, kmp_int32 gtid,
1876                                               void *frame_address,
1877                                               void *return_address) {
1878   kmp_taskdata_t *taskdata = nullptr;
1879   kmp_info_t *thread;
1880   int thread_finished = FALSE;
1881   KMP_SET_THREAD_STATE_BLOCK(TASKWAIT);
1882 
1883   KA_TRACE(10, ("__kmpc_omp_taskwait(enter): T#%d loc=%p\n", gtid, loc_ref));
1884   KMP_DEBUG_ASSERT(gtid >= 0);
1885 
1886   if (__kmp_tasking_mode != tskm_immediate_exec) {
1887     thread = __kmp_threads[gtid];
1888     taskdata = thread->th.th_current_task;
1889 
1890 #if OMPT_SUPPORT && OMPT_OPTIONAL
1891     ompt_data_t *my_task_data;
1892     ompt_data_t *my_parallel_data;
1893 
1894     if (ompt) {
1895       my_task_data = &(taskdata->ompt_task_info.task_data);
1896       my_parallel_data = OMPT_CUR_TEAM_DATA(thread);
1897 
1898       taskdata->ompt_task_info.frame.enter_frame.ptr = frame_address;
1899 
1900       if (ompt_enabled.ompt_callback_sync_region) {
1901         ompt_callbacks.ompt_callback(ompt_callback_sync_region)(
1902             ompt_sync_region_taskwait, ompt_scope_begin, my_parallel_data,
1903             my_task_data, return_address);
1904       }
1905 
1906       if (ompt_enabled.ompt_callback_sync_region_wait) {
1907         ompt_callbacks.ompt_callback(ompt_callback_sync_region_wait)(
1908             ompt_sync_region_taskwait, ompt_scope_begin, my_parallel_data,
1909             my_task_data, return_address);
1910       }
1911     }
1912 #endif // OMPT_SUPPORT && OMPT_OPTIONAL
1913 
1914 // Debugger: The taskwait is active. Store location and thread encountered the
1915 // taskwait.
1916 #if USE_ITT_BUILD
1917 // Note: These values are used by ITT events as well.
1918 #endif /* USE_ITT_BUILD */
1919     taskdata->td_taskwait_counter += 1;
1920     taskdata->td_taskwait_ident = loc_ref;
1921     taskdata->td_taskwait_thread = gtid + 1;
1922 
1923 #if USE_ITT_BUILD
1924     void *itt_sync_obj = NULL;
1925 #if USE_ITT_NOTIFY
1926     KMP_ITT_TASKWAIT_STARTING(itt_sync_obj);
1927 #endif /* USE_ITT_NOTIFY */
1928 #endif /* USE_ITT_BUILD */
1929 
1930     bool must_wait =
1931         !taskdata->td_flags.team_serial && !taskdata->td_flags.final;
1932 
1933     must_wait = must_wait || (thread->th.th_task_team != NULL &&
1934                               thread->th.th_task_team->tt.tt_found_proxy_tasks);
1935     // If hidden helper thread is encountered, we must enable wait here.
1936     must_wait =
1937         must_wait ||
1938         (__kmp_enable_hidden_helper && thread->th.th_task_team != NULL &&
1939          thread->th.th_task_team->tt.tt_hidden_helper_task_encountered);
1940 
1941     if (must_wait) {
1942       kmp_flag_32<false, false> flag(
1943           RCAST(std::atomic<kmp_uint32> *,
1944                 &(taskdata->td_incomplete_child_tasks)),
1945           0U);
1946       while (KMP_ATOMIC_LD_ACQ(&taskdata->td_incomplete_child_tasks) != 0) {
1947         flag.execute_tasks(thread, gtid, FALSE,
1948                            &thread_finished USE_ITT_BUILD_ARG(itt_sync_obj),
1949                            __kmp_task_stealing_constraint);
1950       }
1951     }
1952 #if USE_ITT_BUILD
1953     KMP_ITT_TASKWAIT_FINISHED(itt_sync_obj);
1954     KMP_FSYNC_ACQUIRED(taskdata); // acquire self - sync with children
1955 #endif /* USE_ITT_BUILD */
1956 
1957     // Debugger:  The taskwait is completed. Location remains, but thread is
1958     // negated.
1959     taskdata->td_taskwait_thread = -taskdata->td_taskwait_thread;
1960 
1961 #if OMPT_SUPPORT && OMPT_OPTIONAL
1962     if (ompt) {
1963       if (ompt_enabled.ompt_callback_sync_region_wait) {
1964         ompt_callbacks.ompt_callback(ompt_callback_sync_region_wait)(
1965             ompt_sync_region_taskwait, ompt_scope_end, my_parallel_data,
1966             my_task_data, return_address);
1967       }
1968       if (ompt_enabled.ompt_callback_sync_region) {
1969         ompt_callbacks.ompt_callback(ompt_callback_sync_region)(
1970             ompt_sync_region_taskwait, ompt_scope_end, my_parallel_data,
1971             my_task_data, return_address);
1972       }
1973       taskdata->ompt_task_info.frame.enter_frame = ompt_data_none;
1974     }
1975 #endif // OMPT_SUPPORT && OMPT_OPTIONAL
1976 
1977   }
1978 
1979   KA_TRACE(10, ("__kmpc_omp_taskwait(exit): T#%d task %p finished waiting, "
1980                 "returning TASK_CURRENT_NOT_QUEUED\n",
1981                 gtid, taskdata));
1982 
1983   return TASK_CURRENT_NOT_QUEUED;
1984 }
1985 
1986 #if OMPT_SUPPORT && OMPT_OPTIONAL
1987 OMPT_NOINLINE
1988 static kmp_int32 __kmpc_omp_taskwait_ompt(ident_t *loc_ref, kmp_int32 gtid,
1989                                           void *frame_address,
1990                                           void *return_address) {
1991   return __kmpc_omp_taskwait_template<true>(loc_ref, gtid, frame_address,
1992                                             return_address);
1993 }
1994 #endif // OMPT_SUPPORT && OMPT_OPTIONAL
1995 
1996 // __kmpc_omp_taskwait: Wait until all tasks generated by the current task are
1997 // complete
1998 kmp_int32 __kmpc_omp_taskwait(ident_t *loc_ref, kmp_int32 gtid) {
1999 #if OMPT_SUPPORT && OMPT_OPTIONAL
2000   if (UNLIKELY(ompt_enabled.enabled)) {
2001     OMPT_STORE_RETURN_ADDRESS(gtid);
2002     return __kmpc_omp_taskwait_ompt(loc_ref, gtid, OMPT_GET_FRAME_ADDRESS(0),
2003                                     OMPT_LOAD_RETURN_ADDRESS(gtid));
2004   }
2005 #endif
2006   return __kmpc_omp_taskwait_template<false>(loc_ref, gtid, NULL, NULL);
2007 }
2008 
2009 // __kmpc_omp_taskyield: switch to a different task
2010 kmp_int32 __kmpc_omp_taskyield(ident_t *loc_ref, kmp_int32 gtid, int end_part) {
2011   kmp_taskdata_t *taskdata = NULL;
2012   kmp_info_t *thread;
2013   int thread_finished = FALSE;
2014 
2015   KMP_COUNT_BLOCK(OMP_TASKYIELD);
2016   KMP_SET_THREAD_STATE_BLOCK(TASKYIELD);
2017 
2018   KA_TRACE(10, ("__kmpc_omp_taskyield(enter): T#%d loc=%p end_part = %d\n",
2019                 gtid, loc_ref, end_part));
2020   __kmp_assert_valid_gtid(gtid);
2021 
2022   if (__kmp_tasking_mode != tskm_immediate_exec && __kmp_init_parallel) {
2023     thread = __kmp_threads[gtid];
2024     taskdata = thread->th.th_current_task;
2025 // Should we model this as a task wait or not?
2026 // Debugger: The taskwait is active. Store location and thread encountered the
2027 // taskwait.
2028 #if USE_ITT_BUILD
2029 // Note: These values are used by ITT events as well.
2030 #endif /* USE_ITT_BUILD */
2031     taskdata->td_taskwait_counter += 1;
2032     taskdata->td_taskwait_ident = loc_ref;
2033     taskdata->td_taskwait_thread = gtid + 1;
2034 
2035 #if USE_ITT_BUILD
2036     void *itt_sync_obj = NULL;
2037 #if USE_ITT_NOTIFY
2038     KMP_ITT_TASKWAIT_STARTING(itt_sync_obj);
2039 #endif /* USE_ITT_NOTIFY */
2040 #endif /* USE_ITT_BUILD */
2041     if (!taskdata->td_flags.team_serial) {
2042       kmp_task_team_t *task_team = thread->th.th_task_team;
2043       if (task_team != NULL) {
2044         if (KMP_TASKING_ENABLED(task_team)) {
2045 #if OMPT_SUPPORT
2046           if (UNLIKELY(ompt_enabled.enabled))
2047             thread->th.ompt_thread_info.ompt_task_yielded = 1;
2048 #endif
2049           __kmp_execute_tasks_32(
2050               thread, gtid, (kmp_flag_32<> *)NULL, FALSE,
2051               &thread_finished USE_ITT_BUILD_ARG(itt_sync_obj),
2052               __kmp_task_stealing_constraint);
2053 #if OMPT_SUPPORT
2054           if (UNLIKELY(ompt_enabled.enabled))
2055             thread->th.ompt_thread_info.ompt_task_yielded = 0;
2056 #endif
2057         }
2058       }
2059     }
2060 #if USE_ITT_BUILD
2061     KMP_ITT_TASKWAIT_FINISHED(itt_sync_obj);
2062 #endif /* USE_ITT_BUILD */
2063 
2064     // Debugger:  The taskwait is completed. Location remains, but thread is
2065     // negated.
2066     taskdata->td_taskwait_thread = -taskdata->td_taskwait_thread;
2067   }
2068 
2069   KA_TRACE(10, ("__kmpc_omp_taskyield(exit): T#%d task %p resuming, "
2070                 "returning TASK_CURRENT_NOT_QUEUED\n",
2071                 gtid, taskdata));
2072 
2073   return TASK_CURRENT_NOT_QUEUED;
2074 }
2075 
2076 // Task Reduction implementation
2077 //
2078 // Note: initial implementation didn't take into account the possibility
2079 // to specify omp_orig for initializer of the UDR (user defined reduction).
2080 // Corrected implementation takes into account the omp_orig object.
2081 // Compiler is free to use old implementation if omp_orig is not specified.
2082 
2083 /*!
2084 @ingroup BASIC_TYPES
2085 @{
2086 */
2087 
2088 /*!
2089 Flags for special info per task reduction item.
2090 */
2091 typedef struct kmp_taskred_flags {
2092   /*! 1 - use lazy alloc/init (e.g. big objects, #tasks < #threads) */
2093   unsigned lazy_priv : 1;
2094   unsigned reserved31 : 31;
2095 } kmp_taskred_flags_t;
2096 
2097 /*!
2098 Internal struct for reduction data item related info set up by compiler.
2099 */
2100 typedef struct kmp_task_red_input {
2101   void *reduce_shar; /**< shared between tasks item to reduce into */
2102   size_t reduce_size; /**< size of data item in bytes */
2103   // three compiler-generated routines (init, fini are optional):
2104   void *reduce_init; /**< data initialization routine (single parameter) */
2105   void *reduce_fini; /**< data finalization routine */
2106   void *reduce_comb; /**< data combiner routine */
2107   kmp_taskred_flags_t flags; /**< flags for additional info from compiler */
2108 } kmp_task_red_input_t;
2109 
2110 /*!
2111 Internal struct for reduction data item related info saved by the library.
2112 */
2113 typedef struct kmp_taskred_data {
2114   void *reduce_shar; /**< shared between tasks item to reduce into */
2115   size_t reduce_size; /**< size of data item */
2116   kmp_taskred_flags_t flags; /**< flags for additional info from compiler */
2117   void *reduce_priv; /**< array of thread specific items */
2118   void *reduce_pend; /**< end of private data for faster comparison op */
2119   // three compiler-generated routines (init, fini are optional):
2120   void *reduce_comb; /**< data combiner routine */
2121   void *reduce_init; /**< data initialization routine (two parameters) */
2122   void *reduce_fini; /**< data finalization routine */
2123   void *reduce_orig; /**< original item (can be used in UDR initializer) */
2124 } kmp_taskred_data_t;
2125 
2126 /*!
2127 Internal struct for reduction data item related info set up by compiler.
2128 
2129 New interface: added reduce_orig field to provide omp_orig for UDR initializer.
2130 */
2131 typedef struct kmp_taskred_input {
2132   void *reduce_shar; /**< shared between tasks item to reduce into */
2133   void *reduce_orig; /**< original reduction item used for initialization */
2134   size_t reduce_size; /**< size of data item */
2135   // three compiler-generated routines (init, fini are optional):
2136   void *reduce_init; /**< data initialization routine (two parameters) */
2137   void *reduce_fini; /**< data finalization routine */
2138   void *reduce_comb; /**< data combiner routine */
2139   kmp_taskred_flags_t flags; /**< flags for additional info from compiler */
2140 } kmp_taskred_input_t;
2141 /*!
2142 @}
2143 */
2144 
2145 template <typename T> void __kmp_assign_orig(kmp_taskred_data_t &item, T &src);
2146 template <>
2147 void __kmp_assign_orig<kmp_task_red_input_t>(kmp_taskred_data_t &item,
2148                                              kmp_task_red_input_t &src) {
2149   item.reduce_orig = NULL;
2150 }
2151 template <>
2152 void __kmp_assign_orig<kmp_taskred_input_t>(kmp_taskred_data_t &item,
2153                                             kmp_taskred_input_t &src) {
2154   if (src.reduce_orig != NULL) {
2155     item.reduce_orig = src.reduce_orig;
2156   } else {
2157     item.reduce_orig = src.reduce_shar;
2158   } // non-NULL reduce_orig means new interface used
2159 }
2160 
2161 template <typename T> void __kmp_call_init(kmp_taskred_data_t &item, size_t j);
2162 template <>
2163 void __kmp_call_init<kmp_task_red_input_t>(kmp_taskred_data_t &item,
2164                                            size_t offset) {
2165   ((void (*)(void *))item.reduce_init)((char *)(item.reduce_priv) + offset);
2166 }
2167 template <>
2168 void __kmp_call_init<kmp_taskred_input_t>(kmp_taskred_data_t &item,
2169                                           size_t offset) {
2170   ((void (*)(void *, void *))item.reduce_init)(
2171       (char *)(item.reduce_priv) + offset, item.reduce_orig);
2172 }
2173 
2174 template <typename T>
2175 void *__kmp_task_reduction_init(int gtid, int num, T *data) {
2176   __kmp_assert_valid_gtid(gtid);
2177   kmp_info_t *thread = __kmp_threads[gtid];
2178   kmp_taskgroup_t *tg = thread->th.th_current_task->td_taskgroup;
2179   kmp_uint32 nth = thread->th.th_team_nproc;
2180   kmp_taskred_data_t *arr;
2181 
2182   // check input data just in case
2183   KMP_ASSERT(tg != NULL);
2184   KMP_ASSERT(data != NULL);
2185   KMP_ASSERT(num > 0);
2186   if (nth == 1) {
2187     KA_TRACE(10, ("__kmpc_task_reduction_init: T#%d, tg %p, exiting nth=1\n",
2188                   gtid, tg));
2189     return (void *)tg;
2190   }
2191   KA_TRACE(10, ("__kmpc_task_reduction_init: T#%d, taskgroup %p, #items %d\n",
2192                 gtid, tg, num));
2193   arr = (kmp_taskred_data_t *)__kmp_thread_malloc(
2194       thread, num * sizeof(kmp_taskred_data_t));
2195   for (int i = 0; i < num; ++i) {
2196     size_t size = data[i].reduce_size - 1;
2197     // round the size up to cache line per thread-specific item
2198     size += CACHE_LINE - size % CACHE_LINE;
2199     KMP_ASSERT(data[i].reduce_comb != NULL); // combiner is mandatory
2200     arr[i].reduce_shar = data[i].reduce_shar;
2201     arr[i].reduce_size = size;
2202     arr[i].flags = data[i].flags;
2203     arr[i].reduce_comb = data[i].reduce_comb;
2204     arr[i].reduce_init = data[i].reduce_init;
2205     arr[i].reduce_fini = data[i].reduce_fini;
2206     __kmp_assign_orig<T>(arr[i], data[i]);
2207     if (!arr[i].flags.lazy_priv) {
2208       // allocate cache-line aligned block and fill it with zeros
2209       arr[i].reduce_priv = __kmp_allocate(nth * size);
2210       arr[i].reduce_pend = (char *)(arr[i].reduce_priv) + nth * size;
2211       if (arr[i].reduce_init != NULL) {
2212         // initialize all thread-specific items
2213         for (size_t j = 0; j < nth; ++j) {
2214           __kmp_call_init<T>(arr[i], j * size);
2215         }
2216       }
2217     } else {
2218       // only allocate space for pointers now,
2219       // objects will be lazily allocated/initialized if/when requested
2220       // note that __kmp_allocate zeroes the allocated memory
2221       arr[i].reduce_priv = __kmp_allocate(nth * sizeof(void *));
2222     }
2223   }
2224   tg->reduce_data = (void *)arr;
2225   tg->reduce_num_data = num;
2226   return (void *)tg;
2227 }
2228 
2229 /*!
2230 @ingroup TASKING
2231 @param gtid      Global thread ID
2232 @param num       Number of data items to reduce
2233 @param data      Array of data for reduction
2234 @return The taskgroup identifier
2235 
2236 Initialize task reduction for the taskgroup.
2237 
2238 Note: this entry supposes the optional compiler-generated initializer routine
2239 has single parameter - pointer to object to be initialized. That means
2240 the reduction either does not use omp_orig object, or the omp_orig is accessible
2241 without help of the runtime library.
2242 */
2243 void *__kmpc_task_reduction_init(int gtid, int num, void *data) {
2244   return __kmp_task_reduction_init(gtid, num, (kmp_task_red_input_t *)data);
2245 }
2246 
2247 /*!
2248 @ingroup TASKING
2249 @param gtid      Global thread ID
2250 @param num       Number of data items to reduce
2251 @param data      Array of data for reduction
2252 @return The taskgroup identifier
2253 
2254 Initialize task reduction for the taskgroup.
2255 
2256 Note: this entry supposes the optional compiler-generated initializer routine
2257 has two parameters, pointer to object to be initialized and pointer to omp_orig
2258 */
2259 void *__kmpc_taskred_init(int gtid, int num, void *data) {
2260   return __kmp_task_reduction_init(gtid, num, (kmp_taskred_input_t *)data);
2261 }
2262 
2263 // Copy task reduction data (except for shared pointers).
2264 template <typename T>
2265 void __kmp_task_reduction_init_copy(kmp_info_t *thr, int num, T *data,
2266                                     kmp_taskgroup_t *tg, void *reduce_data) {
2267   kmp_taskred_data_t *arr;
2268   KA_TRACE(20, ("__kmp_task_reduction_init_copy: Th %p, init taskgroup %p,"
2269                 " from data %p\n",
2270                 thr, tg, reduce_data));
2271   arr = (kmp_taskred_data_t *)__kmp_thread_malloc(
2272       thr, num * sizeof(kmp_taskred_data_t));
2273   // threads will share private copies, thunk routines, sizes, flags, etc.:
2274   KMP_MEMCPY(arr, reduce_data, num * sizeof(kmp_taskred_data_t));
2275   for (int i = 0; i < num; ++i) {
2276     arr[i].reduce_shar = data[i].reduce_shar; // init unique shared pointers
2277   }
2278   tg->reduce_data = (void *)arr;
2279   tg->reduce_num_data = num;
2280 }
2281 
2282 /*!
2283 @ingroup TASKING
2284 @param gtid    Global thread ID
2285 @param tskgrp  The taskgroup ID (optional)
2286 @param data    Shared location of the item
2287 @return The pointer to per-thread data
2288 
2289 Get thread-specific location of data item
2290 */
2291 void *__kmpc_task_reduction_get_th_data(int gtid, void *tskgrp, void *data) {
2292   __kmp_assert_valid_gtid(gtid);
2293   kmp_info_t *thread = __kmp_threads[gtid];
2294   kmp_int32 nth = thread->th.th_team_nproc;
2295   if (nth == 1)
2296     return data; // nothing to do
2297 
2298   kmp_taskgroup_t *tg = (kmp_taskgroup_t *)tskgrp;
2299   if (tg == NULL)
2300     tg = thread->th.th_current_task->td_taskgroup;
2301   KMP_ASSERT(tg != NULL);
2302   kmp_taskred_data_t *arr = (kmp_taskred_data_t *)(tg->reduce_data);
2303   kmp_int32 num = tg->reduce_num_data;
2304   kmp_int32 tid = thread->th.th_info.ds.ds_tid;
2305 
2306   KMP_ASSERT(data != NULL);
2307   while (tg != NULL) {
2308     for (int i = 0; i < num; ++i) {
2309       if (!arr[i].flags.lazy_priv) {
2310         if (data == arr[i].reduce_shar ||
2311             (data >= arr[i].reduce_priv && data < arr[i].reduce_pend))
2312           return (char *)(arr[i].reduce_priv) + tid * arr[i].reduce_size;
2313       } else {
2314         // check shared location first
2315         void **p_priv = (void **)(arr[i].reduce_priv);
2316         if (data == arr[i].reduce_shar)
2317           goto found;
2318         // check if we get some thread specific location as parameter
2319         for (int j = 0; j < nth; ++j)
2320           if (data == p_priv[j])
2321             goto found;
2322         continue; // not found, continue search
2323       found:
2324         if (p_priv[tid] == NULL) {
2325           // allocate thread specific object lazily
2326           p_priv[tid] = __kmp_allocate(arr[i].reduce_size);
2327           if (arr[i].reduce_init != NULL) {
2328             if (arr[i].reduce_orig != NULL) { // new interface
2329               ((void (*)(void *, void *))arr[i].reduce_init)(
2330                   p_priv[tid], arr[i].reduce_orig);
2331             } else { // old interface (single parameter)
2332               ((void (*)(void *))arr[i].reduce_init)(p_priv[tid]);
2333             }
2334           }
2335         }
2336         return p_priv[tid];
2337       }
2338     }
2339     tg = tg->parent;
2340     arr = (kmp_taskred_data_t *)(tg->reduce_data);
2341     num = tg->reduce_num_data;
2342   }
2343   KMP_ASSERT2(0, "Unknown task reduction item");
2344   return NULL; // ERROR, this line never executed
2345 }
2346 
2347 // Finalize task reduction.
2348 // Called from __kmpc_end_taskgroup()
2349 static void __kmp_task_reduction_fini(kmp_info_t *th, kmp_taskgroup_t *tg) {
2350   kmp_int32 nth = th->th.th_team_nproc;
2351   KMP_DEBUG_ASSERT(nth > 1); // should not be called if nth == 1
2352   kmp_taskred_data_t *arr = (kmp_taskred_data_t *)tg->reduce_data;
2353   kmp_int32 num = tg->reduce_num_data;
2354   for (int i = 0; i < num; ++i) {
2355     void *sh_data = arr[i].reduce_shar;
2356     void (*f_fini)(void *) = (void (*)(void *))(arr[i].reduce_fini);
2357     void (*f_comb)(void *, void *) =
2358         (void (*)(void *, void *))(arr[i].reduce_comb);
2359     if (!arr[i].flags.lazy_priv) {
2360       void *pr_data = arr[i].reduce_priv;
2361       size_t size = arr[i].reduce_size;
2362       for (int j = 0; j < nth; ++j) {
2363         void *priv_data = (char *)pr_data + j * size;
2364         f_comb(sh_data, priv_data); // combine results
2365         if (f_fini)
2366           f_fini(priv_data); // finalize if needed
2367       }
2368     } else {
2369       void **pr_data = (void **)(arr[i].reduce_priv);
2370       for (int j = 0; j < nth; ++j) {
2371         if (pr_data[j] != NULL) {
2372           f_comb(sh_data, pr_data[j]); // combine results
2373           if (f_fini)
2374             f_fini(pr_data[j]); // finalize if needed
2375           __kmp_free(pr_data[j]);
2376         }
2377       }
2378     }
2379     __kmp_free(arr[i].reduce_priv);
2380   }
2381   __kmp_thread_free(th, arr);
2382   tg->reduce_data = NULL;
2383   tg->reduce_num_data = 0;
2384 }
2385 
2386 // Cleanup task reduction data for parallel or worksharing,
2387 // do not touch task private data other threads still working with.
2388 // Called from __kmpc_end_taskgroup()
2389 static void __kmp_task_reduction_clean(kmp_info_t *th, kmp_taskgroup_t *tg) {
2390   __kmp_thread_free(th, tg->reduce_data);
2391   tg->reduce_data = NULL;
2392   tg->reduce_num_data = 0;
2393 }
2394 
2395 template <typename T>
2396 void *__kmp_task_reduction_modifier_init(ident_t *loc, int gtid, int is_ws,
2397                                          int num, T *data) {
2398   __kmp_assert_valid_gtid(gtid);
2399   kmp_info_t *thr = __kmp_threads[gtid];
2400   kmp_int32 nth = thr->th.th_team_nproc;
2401   __kmpc_taskgroup(loc, gtid); // form new taskgroup first
2402   if (nth == 1) {
2403     KA_TRACE(10,
2404              ("__kmpc_reduction_modifier_init: T#%d, tg %p, exiting nth=1\n",
2405               gtid, thr->th.th_current_task->td_taskgroup));
2406     return (void *)thr->th.th_current_task->td_taskgroup;
2407   }
2408   kmp_team_t *team = thr->th.th_team;
2409   void *reduce_data;
2410   kmp_taskgroup_t *tg;
2411   reduce_data = KMP_ATOMIC_LD_RLX(&team->t.t_tg_reduce_data[is_ws]);
2412   if (reduce_data == NULL &&
2413       __kmp_atomic_compare_store(&team->t.t_tg_reduce_data[is_ws], reduce_data,
2414                                  (void *)1)) {
2415     // single thread enters this block to initialize common reduction data
2416     KMP_DEBUG_ASSERT(reduce_data == NULL);
2417     // first initialize own data, then make a copy other threads can use
2418     tg = (kmp_taskgroup_t *)__kmp_task_reduction_init<T>(gtid, num, data);
2419     reduce_data = __kmp_thread_malloc(thr, num * sizeof(kmp_taskred_data_t));
2420     KMP_MEMCPY(reduce_data, tg->reduce_data, num * sizeof(kmp_taskred_data_t));
2421     // fini counters should be 0 at this point
2422     KMP_DEBUG_ASSERT(KMP_ATOMIC_LD_RLX(&team->t.t_tg_fini_counter[0]) == 0);
2423     KMP_DEBUG_ASSERT(KMP_ATOMIC_LD_RLX(&team->t.t_tg_fini_counter[1]) == 0);
2424     KMP_ATOMIC_ST_REL(&team->t.t_tg_reduce_data[is_ws], reduce_data);
2425   } else {
2426     while (
2427         (reduce_data = KMP_ATOMIC_LD_ACQ(&team->t.t_tg_reduce_data[is_ws])) ==
2428         (void *)1) { // wait for task reduction initialization
2429       KMP_CPU_PAUSE();
2430     }
2431     KMP_DEBUG_ASSERT(reduce_data > (void *)1); // should be valid pointer here
2432     tg = thr->th.th_current_task->td_taskgroup;
2433     __kmp_task_reduction_init_copy<T>(thr, num, data, tg, reduce_data);
2434   }
2435   return tg;
2436 }
2437 
2438 /*!
2439 @ingroup TASKING
2440 @param loc       Source location info
2441 @param gtid      Global thread ID
2442 @param is_ws     Is 1 if the reduction is for worksharing, 0 otherwise
2443 @param num       Number of data items to reduce
2444 @param data      Array of data for reduction
2445 @return The taskgroup identifier
2446 
2447 Initialize task reduction for a parallel or worksharing.
2448 
2449 Note: this entry supposes the optional compiler-generated initializer routine
2450 has single parameter - pointer to object to be initialized. That means
2451 the reduction either does not use omp_orig object, or the omp_orig is accessible
2452 without help of the runtime library.
2453 */
2454 void *__kmpc_task_reduction_modifier_init(ident_t *loc, int gtid, int is_ws,
2455                                           int num, void *data) {
2456   return __kmp_task_reduction_modifier_init(loc, gtid, is_ws, num,
2457                                             (kmp_task_red_input_t *)data);
2458 }
2459 
2460 /*!
2461 @ingroup TASKING
2462 @param loc       Source location info
2463 @param gtid      Global thread ID
2464 @param is_ws     Is 1 if the reduction is for worksharing, 0 otherwise
2465 @param num       Number of data items to reduce
2466 @param data      Array of data for reduction
2467 @return The taskgroup identifier
2468 
2469 Initialize task reduction for a parallel or worksharing.
2470 
2471 Note: this entry supposes the optional compiler-generated initializer routine
2472 has two parameters, pointer to object to be initialized and pointer to omp_orig
2473 */
2474 void *__kmpc_taskred_modifier_init(ident_t *loc, int gtid, int is_ws, int num,
2475                                    void *data) {
2476   return __kmp_task_reduction_modifier_init(loc, gtid, is_ws, num,
2477                                             (kmp_taskred_input_t *)data);
2478 }
2479 
2480 /*!
2481 @ingroup TASKING
2482 @param loc       Source location info
2483 @param gtid      Global thread ID
2484 @param is_ws     Is 1 if the reduction is for worksharing, 0 otherwise
2485 
2486 Finalize task reduction for a parallel or worksharing.
2487 */
2488 void __kmpc_task_reduction_modifier_fini(ident_t *loc, int gtid, int is_ws) {
2489   __kmpc_end_taskgroup(loc, gtid);
2490 }
2491 
2492 // __kmpc_taskgroup: Start a new taskgroup
2493 void __kmpc_taskgroup(ident_t *loc, int gtid) {
2494   __kmp_assert_valid_gtid(gtid);
2495   kmp_info_t *thread = __kmp_threads[gtid];
2496   kmp_taskdata_t *taskdata = thread->th.th_current_task;
2497   kmp_taskgroup_t *tg_new =
2498       (kmp_taskgroup_t *)__kmp_thread_malloc(thread, sizeof(kmp_taskgroup_t));
2499   KA_TRACE(10, ("__kmpc_taskgroup: T#%d loc=%p group=%p\n", gtid, loc, tg_new));
2500   KMP_ATOMIC_ST_RLX(&tg_new->count, 0);
2501   KMP_ATOMIC_ST_RLX(&tg_new->cancel_request, cancel_noreq);
2502   tg_new->parent = taskdata->td_taskgroup;
2503   tg_new->reduce_data = NULL;
2504   tg_new->reduce_num_data = 0;
2505   tg_new->gomp_data = NULL;
2506   taskdata->td_taskgroup = tg_new;
2507 
2508 #if OMPT_SUPPORT && OMPT_OPTIONAL
2509   if (UNLIKELY(ompt_enabled.ompt_callback_sync_region)) {
2510     void *codeptr = OMPT_LOAD_RETURN_ADDRESS(gtid);
2511     if (!codeptr)
2512       codeptr = OMPT_GET_RETURN_ADDRESS(0);
2513     kmp_team_t *team = thread->th.th_team;
2514     ompt_data_t my_task_data = taskdata->ompt_task_info.task_data;
2515     // FIXME: I think this is wrong for lwt!
2516     ompt_data_t my_parallel_data = team->t.ompt_team_info.parallel_data;
2517 
2518     ompt_callbacks.ompt_callback(ompt_callback_sync_region)(
2519         ompt_sync_region_taskgroup, ompt_scope_begin, &(my_parallel_data),
2520         &(my_task_data), codeptr);
2521   }
2522 #endif
2523 }
2524 
2525 // __kmpc_end_taskgroup: Wait until all tasks generated by the current task
2526 //                       and its descendants are complete
2527 void __kmpc_end_taskgroup(ident_t *loc, int gtid) {
2528   __kmp_assert_valid_gtid(gtid);
2529   kmp_info_t *thread = __kmp_threads[gtid];
2530   kmp_taskdata_t *taskdata = thread->th.th_current_task;
2531   kmp_taskgroup_t *taskgroup = taskdata->td_taskgroup;
2532   int thread_finished = FALSE;
2533 
2534 #if OMPT_SUPPORT && OMPT_OPTIONAL
2535   kmp_team_t *team;
2536   ompt_data_t my_task_data;
2537   ompt_data_t my_parallel_data;
2538   void *codeptr = nullptr;
2539   if (UNLIKELY(ompt_enabled.enabled)) {
2540     team = thread->th.th_team;
2541     my_task_data = taskdata->ompt_task_info.task_data;
2542     // FIXME: I think this is wrong for lwt!
2543     my_parallel_data = team->t.ompt_team_info.parallel_data;
2544     codeptr = OMPT_LOAD_RETURN_ADDRESS(gtid);
2545     if (!codeptr)
2546       codeptr = OMPT_GET_RETURN_ADDRESS(0);
2547   }
2548 #endif
2549 
2550   KA_TRACE(10, ("__kmpc_end_taskgroup(enter): T#%d loc=%p\n", gtid, loc));
2551   KMP_DEBUG_ASSERT(taskgroup != NULL);
2552   KMP_SET_THREAD_STATE_BLOCK(TASKGROUP);
2553 
2554   if (__kmp_tasking_mode != tskm_immediate_exec) {
2555     // mark task as waiting not on a barrier
2556     taskdata->td_taskwait_counter += 1;
2557     taskdata->td_taskwait_ident = loc;
2558     taskdata->td_taskwait_thread = gtid + 1;
2559 #if USE_ITT_BUILD
2560     // For ITT the taskgroup wait is similar to taskwait until we need to
2561     // distinguish them
2562     void *itt_sync_obj = NULL;
2563 #if USE_ITT_NOTIFY
2564     KMP_ITT_TASKWAIT_STARTING(itt_sync_obj);
2565 #endif /* USE_ITT_NOTIFY */
2566 #endif /* USE_ITT_BUILD */
2567 
2568 #if OMPT_SUPPORT && OMPT_OPTIONAL
2569     if (UNLIKELY(ompt_enabled.ompt_callback_sync_region_wait)) {
2570       ompt_callbacks.ompt_callback(ompt_callback_sync_region_wait)(
2571           ompt_sync_region_taskgroup, ompt_scope_begin, &(my_parallel_data),
2572           &(my_task_data), codeptr);
2573     }
2574 #endif
2575 
2576     if (!taskdata->td_flags.team_serial ||
2577         (thread->th.th_task_team != NULL &&
2578          (thread->th.th_task_team->tt.tt_found_proxy_tasks ||
2579           thread->th.th_task_team->tt.tt_hidden_helper_task_encountered))) {
2580       kmp_flag_32<false, false> flag(
2581           RCAST(std::atomic<kmp_uint32> *, &(taskgroup->count)), 0U);
2582       while (KMP_ATOMIC_LD_ACQ(&taskgroup->count) != 0) {
2583         flag.execute_tasks(thread, gtid, FALSE,
2584                            &thread_finished USE_ITT_BUILD_ARG(itt_sync_obj),
2585                            __kmp_task_stealing_constraint);
2586       }
2587     }
2588     taskdata->td_taskwait_thread = -taskdata->td_taskwait_thread; // end waiting
2589 
2590 #if OMPT_SUPPORT && OMPT_OPTIONAL
2591     if (UNLIKELY(ompt_enabled.ompt_callback_sync_region_wait)) {
2592       ompt_callbacks.ompt_callback(ompt_callback_sync_region_wait)(
2593           ompt_sync_region_taskgroup, ompt_scope_end, &(my_parallel_data),
2594           &(my_task_data), codeptr);
2595     }
2596 #endif
2597 
2598 #if USE_ITT_BUILD
2599     KMP_ITT_TASKWAIT_FINISHED(itt_sync_obj);
2600     KMP_FSYNC_ACQUIRED(taskdata); // acquire self - sync with descendants
2601 #endif /* USE_ITT_BUILD */
2602   }
2603   KMP_DEBUG_ASSERT(taskgroup->count == 0);
2604 
2605   if (taskgroup->reduce_data != NULL &&
2606       !taskgroup->gomp_data) { // need to reduce?
2607     int cnt;
2608     void *reduce_data;
2609     kmp_team_t *t = thread->th.th_team;
2610     kmp_taskred_data_t *arr = (kmp_taskred_data_t *)taskgroup->reduce_data;
2611     // check if <priv> data of the first reduction variable shared for the team
2612     void *priv0 = arr[0].reduce_priv;
2613     if ((reduce_data = KMP_ATOMIC_LD_ACQ(&t->t.t_tg_reduce_data[0])) != NULL &&
2614         ((kmp_taskred_data_t *)reduce_data)[0].reduce_priv == priv0) {
2615       // finishing task reduction on parallel
2616       cnt = KMP_ATOMIC_INC(&t->t.t_tg_fini_counter[0]);
2617       if (cnt == thread->th.th_team_nproc - 1) {
2618         // we are the last thread passing __kmpc_reduction_modifier_fini()
2619         // finalize task reduction:
2620         __kmp_task_reduction_fini(thread, taskgroup);
2621         // cleanup fields in the team structure:
2622         // TODO: is relaxed store enough here (whole barrier should follow)?
2623         __kmp_thread_free(thread, reduce_data);
2624         KMP_ATOMIC_ST_REL(&t->t.t_tg_reduce_data[0], NULL);
2625         KMP_ATOMIC_ST_REL(&t->t.t_tg_fini_counter[0], 0);
2626       } else {
2627         // we are not the last thread passing __kmpc_reduction_modifier_fini(),
2628         // so do not finalize reduction, just clean own copy of the data
2629         __kmp_task_reduction_clean(thread, taskgroup);
2630       }
2631     } else if ((reduce_data = KMP_ATOMIC_LD_ACQ(&t->t.t_tg_reduce_data[1])) !=
2632                    NULL &&
2633                ((kmp_taskred_data_t *)reduce_data)[0].reduce_priv == priv0) {
2634       // finishing task reduction on worksharing
2635       cnt = KMP_ATOMIC_INC(&t->t.t_tg_fini_counter[1]);
2636       if (cnt == thread->th.th_team_nproc - 1) {
2637         // we are the last thread passing __kmpc_reduction_modifier_fini()
2638         __kmp_task_reduction_fini(thread, taskgroup);
2639         // cleanup fields in team structure:
2640         // TODO: is relaxed store enough here (whole barrier should follow)?
2641         __kmp_thread_free(thread, reduce_data);
2642         KMP_ATOMIC_ST_REL(&t->t.t_tg_reduce_data[1], NULL);
2643         KMP_ATOMIC_ST_REL(&t->t.t_tg_fini_counter[1], 0);
2644       } else {
2645         // we are not the last thread passing __kmpc_reduction_modifier_fini(),
2646         // so do not finalize reduction, just clean own copy of the data
2647         __kmp_task_reduction_clean(thread, taskgroup);
2648       }
2649     } else {
2650       // finishing task reduction on taskgroup
2651       __kmp_task_reduction_fini(thread, taskgroup);
2652     }
2653   }
2654   // Restore parent taskgroup for the current task
2655   taskdata->td_taskgroup = taskgroup->parent;
2656   __kmp_thread_free(thread, taskgroup);
2657 
2658   KA_TRACE(10, ("__kmpc_end_taskgroup(exit): T#%d task %p finished waiting\n",
2659                 gtid, taskdata));
2660 
2661 #if OMPT_SUPPORT && OMPT_OPTIONAL
2662   if (UNLIKELY(ompt_enabled.ompt_callback_sync_region)) {
2663     ompt_callbacks.ompt_callback(ompt_callback_sync_region)(
2664         ompt_sync_region_taskgroup, ompt_scope_end, &(my_parallel_data),
2665         &(my_task_data), codeptr);
2666   }
2667 #endif
2668 }
2669 
2670 // __kmp_remove_my_task: remove a task from my own deque
2671 static kmp_task_t *__kmp_remove_my_task(kmp_info_t *thread, kmp_int32 gtid,
2672                                         kmp_task_team_t *task_team,
2673                                         kmp_int32 is_constrained) {
2674   kmp_task_t *task;
2675   kmp_taskdata_t *taskdata;
2676   kmp_thread_data_t *thread_data;
2677   kmp_uint32 tail;
2678 
2679   KMP_DEBUG_ASSERT(__kmp_tasking_mode != tskm_immediate_exec);
2680   KMP_DEBUG_ASSERT(task_team->tt.tt_threads_data !=
2681                    NULL); // Caller should check this condition
2682 
2683   thread_data = &task_team->tt.tt_threads_data[__kmp_tid_from_gtid(gtid)];
2684 
2685   KA_TRACE(10, ("__kmp_remove_my_task(enter): T#%d ntasks=%d head=%u tail=%u\n",
2686                 gtid, thread_data->td.td_deque_ntasks,
2687                 thread_data->td.td_deque_head, thread_data->td.td_deque_tail));
2688 
2689   if (TCR_4(thread_data->td.td_deque_ntasks) == 0) {
2690     KA_TRACE(10,
2691              ("__kmp_remove_my_task(exit #1): T#%d No tasks to remove: "
2692               "ntasks=%d head=%u tail=%u\n",
2693               gtid, thread_data->td.td_deque_ntasks,
2694               thread_data->td.td_deque_head, thread_data->td.td_deque_tail));
2695     return NULL;
2696   }
2697 
2698   __kmp_acquire_bootstrap_lock(&thread_data->td.td_deque_lock);
2699 
2700   if (TCR_4(thread_data->td.td_deque_ntasks) == 0) {
2701     __kmp_release_bootstrap_lock(&thread_data->td.td_deque_lock);
2702     KA_TRACE(10,
2703              ("__kmp_remove_my_task(exit #2): T#%d No tasks to remove: "
2704               "ntasks=%d head=%u tail=%u\n",
2705               gtid, thread_data->td.td_deque_ntasks,
2706               thread_data->td.td_deque_head, thread_data->td.td_deque_tail));
2707     return NULL;
2708   }
2709 
2710   tail = (thread_data->td.td_deque_tail - 1) &
2711          TASK_DEQUE_MASK(thread_data->td); // Wrap index.
2712   taskdata = thread_data->td.td_deque[tail];
2713 
2714   if (!__kmp_task_is_allowed(gtid, is_constrained, taskdata,
2715                              thread->th.th_current_task)) {
2716     // The TSC does not allow to steal victim task
2717     __kmp_release_bootstrap_lock(&thread_data->td.td_deque_lock);
2718     KA_TRACE(10,
2719              ("__kmp_remove_my_task(exit #3): T#%d TSC blocks tail task: "
2720               "ntasks=%d head=%u tail=%u\n",
2721               gtid, thread_data->td.td_deque_ntasks,
2722               thread_data->td.td_deque_head, thread_data->td.td_deque_tail));
2723     return NULL;
2724   }
2725 
2726   thread_data->td.td_deque_tail = tail;
2727   TCW_4(thread_data->td.td_deque_ntasks, thread_data->td.td_deque_ntasks - 1);
2728 
2729   __kmp_release_bootstrap_lock(&thread_data->td.td_deque_lock);
2730 
2731   KA_TRACE(10, ("__kmp_remove_my_task(exit #4): T#%d task %p removed: "
2732                 "ntasks=%d head=%u tail=%u\n",
2733                 gtid, taskdata, thread_data->td.td_deque_ntasks,
2734                 thread_data->td.td_deque_head, thread_data->td.td_deque_tail));
2735 
2736   task = KMP_TASKDATA_TO_TASK(taskdata);
2737   return task;
2738 }
2739 
2740 // __kmp_steal_task: remove a task from another thread's deque
2741 // Assume that calling thread has already checked existence of
2742 // task_team thread_data before calling this routine.
2743 static kmp_task_t *__kmp_steal_task(kmp_info_t *victim_thr, kmp_int32 gtid,
2744                                     kmp_task_team_t *task_team,
2745                                     std::atomic<kmp_int32> *unfinished_threads,
2746                                     int *thread_finished,
2747                                     kmp_int32 is_constrained) {
2748   kmp_task_t *task;
2749   kmp_taskdata_t *taskdata;
2750   kmp_taskdata_t *current;
2751   kmp_thread_data_t *victim_td, *threads_data;
2752   kmp_int32 target;
2753   kmp_int32 victim_tid;
2754 
2755   KMP_DEBUG_ASSERT(__kmp_tasking_mode != tskm_immediate_exec);
2756 
2757   threads_data = task_team->tt.tt_threads_data;
2758   KMP_DEBUG_ASSERT(threads_data != NULL); // Caller should check this condition
2759 
2760   victim_tid = victim_thr->th.th_info.ds.ds_tid;
2761   victim_td = &threads_data[victim_tid];
2762 
2763   KA_TRACE(10, ("__kmp_steal_task(enter): T#%d try to steal from T#%d: "
2764                 "task_team=%p ntasks=%d head=%u tail=%u\n",
2765                 gtid, __kmp_gtid_from_thread(victim_thr), task_team,
2766                 victim_td->td.td_deque_ntasks, victim_td->td.td_deque_head,
2767                 victim_td->td.td_deque_tail));
2768 
2769   if (TCR_4(victim_td->td.td_deque_ntasks) == 0) {
2770     KA_TRACE(10, ("__kmp_steal_task(exit #1): T#%d could not steal from T#%d: "
2771                   "task_team=%p ntasks=%d head=%u tail=%u\n",
2772                   gtid, __kmp_gtid_from_thread(victim_thr), task_team,
2773                   victim_td->td.td_deque_ntasks, victim_td->td.td_deque_head,
2774                   victim_td->td.td_deque_tail));
2775     return NULL;
2776   }
2777 
2778   __kmp_acquire_bootstrap_lock(&victim_td->td.td_deque_lock);
2779 
2780   int ntasks = TCR_4(victim_td->td.td_deque_ntasks);
2781   // Check again after we acquire the lock
2782   if (ntasks == 0) {
2783     __kmp_release_bootstrap_lock(&victim_td->td.td_deque_lock);
2784     KA_TRACE(10, ("__kmp_steal_task(exit #2): T#%d could not steal from T#%d: "
2785                   "task_team=%p ntasks=%d head=%u tail=%u\n",
2786                   gtid, __kmp_gtid_from_thread(victim_thr), task_team, ntasks,
2787                   victim_td->td.td_deque_head, victim_td->td.td_deque_tail));
2788     return NULL;
2789   }
2790 
2791   KMP_DEBUG_ASSERT(victim_td->td.td_deque != NULL);
2792   current = __kmp_threads[gtid]->th.th_current_task;
2793   taskdata = victim_td->td.td_deque[victim_td->td.td_deque_head];
2794   if (__kmp_task_is_allowed(gtid, is_constrained, taskdata, current)) {
2795     // Bump head pointer and Wrap.
2796     victim_td->td.td_deque_head =
2797         (victim_td->td.td_deque_head + 1) & TASK_DEQUE_MASK(victim_td->td);
2798   } else {
2799     if (!task_team->tt.tt_untied_task_encountered) {
2800       // The TSC does not allow to steal victim task
2801       __kmp_release_bootstrap_lock(&victim_td->td.td_deque_lock);
2802       KA_TRACE(10, ("__kmp_steal_task(exit #3): T#%d could not steal from "
2803                     "T#%d: task_team=%p ntasks=%d head=%u tail=%u\n",
2804                     gtid, __kmp_gtid_from_thread(victim_thr), task_team, ntasks,
2805                     victim_td->td.td_deque_head, victim_td->td.td_deque_tail));
2806       return NULL;
2807     }
2808     int i;
2809     // walk through victim's deque trying to steal any task
2810     target = victim_td->td.td_deque_head;
2811     taskdata = NULL;
2812     for (i = 1; i < ntasks; ++i) {
2813       target = (target + 1) & TASK_DEQUE_MASK(victim_td->td);
2814       taskdata = victim_td->td.td_deque[target];
2815       if (__kmp_task_is_allowed(gtid, is_constrained, taskdata, current)) {
2816         break; // found victim task
2817       } else {
2818         taskdata = NULL;
2819       }
2820     }
2821     if (taskdata == NULL) {
2822       // No appropriate candidate to steal found
2823       __kmp_release_bootstrap_lock(&victim_td->td.td_deque_lock);
2824       KA_TRACE(10, ("__kmp_steal_task(exit #4): T#%d could not steal from "
2825                     "T#%d: task_team=%p ntasks=%d head=%u tail=%u\n",
2826                     gtid, __kmp_gtid_from_thread(victim_thr), task_team, ntasks,
2827                     victim_td->td.td_deque_head, victim_td->td.td_deque_tail));
2828       return NULL;
2829     }
2830     int prev = target;
2831     for (i = i + 1; i < ntasks; ++i) {
2832       // shift remaining tasks in the deque left by 1
2833       target = (target + 1) & TASK_DEQUE_MASK(victim_td->td);
2834       victim_td->td.td_deque[prev] = victim_td->td.td_deque[target];
2835       prev = target;
2836     }
2837     KMP_DEBUG_ASSERT(
2838         victim_td->td.td_deque_tail ==
2839         (kmp_uint32)((target + 1) & TASK_DEQUE_MASK(victim_td->td)));
2840     victim_td->td.td_deque_tail = target; // tail -= 1 (wrapped))
2841   }
2842   if (*thread_finished) {
2843     // We need to un-mark this victim as a finished victim.  This must be done
2844     // before releasing the lock, or else other threads (starting with the
2845     // primary thread victim) might be prematurely released from the barrier!!!
2846 #if KMP_DEBUG
2847     kmp_int32 count =
2848 #endif
2849         KMP_ATOMIC_INC(unfinished_threads);
2850     KA_TRACE(
2851         20,
2852         ("__kmp_steal_task: T#%d inc unfinished_threads to %d: task_team=%p\n",
2853          gtid, count + 1, task_team));
2854     *thread_finished = FALSE;
2855   }
2856   TCW_4(victim_td->td.td_deque_ntasks, ntasks - 1);
2857 
2858   __kmp_release_bootstrap_lock(&victim_td->td.td_deque_lock);
2859 
2860   KMP_COUNT_BLOCK(TASK_stolen);
2861   KA_TRACE(10,
2862            ("__kmp_steal_task(exit #5): T#%d stole task %p from T#%d: "
2863             "task_team=%p ntasks=%d head=%u tail=%u\n",
2864             gtid, taskdata, __kmp_gtid_from_thread(victim_thr), task_team,
2865             ntasks, victim_td->td.td_deque_head, victim_td->td.td_deque_tail));
2866 
2867   task = KMP_TASKDATA_TO_TASK(taskdata);
2868   return task;
2869 }
2870 
2871 // __kmp_execute_tasks_template: Choose and execute tasks until either the
2872 // condition is statisfied (return true) or there are none left (return false).
2873 //
2874 // final_spin is TRUE if this is the spin at the release barrier.
2875 // thread_finished indicates whether the thread is finished executing all
2876 // the tasks it has on its deque, and is at the release barrier.
2877 // spinner is the location on which to spin.
2878 // spinner == NULL means only execute a single task and return.
2879 // checker is the value to check to terminate the spin.
2880 template <class C>
2881 static inline int __kmp_execute_tasks_template(
2882     kmp_info_t *thread, kmp_int32 gtid, C *flag, int final_spin,
2883     int *thread_finished USE_ITT_BUILD_ARG(void *itt_sync_obj),
2884     kmp_int32 is_constrained) {
2885   kmp_task_team_t *task_team = thread->th.th_task_team;
2886   kmp_thread_data_t *threads_data;
2887   kmp_task_t *task;
2888   kmp_info_t *other_thread;
2889   kmp_taskdata_t *current_task = thread->th.th_current_task;
2890   std::atomic<kmp_int32> *unfinished_threads;
2891   kmp_int32 nthreads, victim_tid = -2, use_own_tasks = 1, new_victim = 0,
2892                       tid = thread->th.th_info.ds.ds_tid;
2893 
2894   KMP_DEBUG_ASSERT(__kmp_tasking_mode != tskm_immediate_exec);
2895   KMP_DEBUG_ASSERT(thread == __kmp_threads[gtid]);
2896 
2897   if (task_team == NULL || current_task == NULL)
2898     return FALSE;
2899 
2900   KA_TRACE(15, ("__kmp_execute_tasks_template(enter): T#%d final_spin=%d "
2901                 "*thread_finished=%d\n",
2902                 gtid, final_spin, *thread_finished));
2903 
2904   thread->th.th_reap_state = KMP_NOT_SAFE_TO_REAP;
2905   threads_data = (kmp_thread_data_t *)TCR_PTR(task_team->tt.tt_threads_data);
2906 
2907   KMP_DEBUG_ASSERT(threads_data != NULL);
2908 
2909   nthreads = task_team->tt.tt_nproc;
2910   unfinished_threads = &(task_team->tt.tt_unfinished_threads);
2911   KMP_DEBUG_ASSERT(nthreads > 1 || task_team->tt.tt_found_proxy_tasks ||
2912                    task_team->tt.tt_hidden_helper_task_encountered);
2913   KMP_DEBUG_ASSERT(*unfinished_threads >= 0);
2914 
2915   while (1) { // Outer loop keeps trying to find tasks in case of single thread
2916     // getting tasks from target constructs
2917     while (1) { // Inner loop to find a task and execute it
2918       task = NULL;
2919       if (use_own_tasks) { // check on own queue first
2920         task = __kmp_remove_my_task(thread, gtid, task_team, is_constrained);
2921       }
2922       if ((task == NULL) && (nthreads > 1)) { // Steal a task
2923         int asleep = 1;
2924         use_own_tasks = 0;
2925         // Try to steal from the last place I stole from successfully.
2926         if (victim_tid == -2) { // haven't stolen anything yet
2927           victim_tid = threads_data[tid].td.td_deque_last_stolen;
2928           if (victim_tid !=
2929               -1) // if we have a last stolen from victim, get the thread
2930             other_thread = threads_data[victim_tid].td.td_thr;
2931         }
2932         if (victim_tid != -1) { // found last victim
2933           asleep = 0;
2934         } else if (!new_victim) { // no recent steals and we haven't already
2935           // used a new victim; select a random thread
2936           do { // Find a different thread to steal work from.
2937             // Pick a random thread. Initial plan was to cycle through all the
2938             // threads, and only return if we tried to steal from every thread,
2939             // and failed.  Arch says that's not such a great idea.
2940             victim_tid = __kmp_get_random(thread) % (nthreads - 1);
2941             if (victim_tid >= tid) {
2942               ++victim_tid; // Adjusts random distribution to exclude self
2943             }
2944             // Found a potential victim
2945             other_thread = threads_data[victim_tid].td.td_thr;
2946             // There is a slight chance that __kmp_enable_tasking() did not wake
2947             // up all threads waiting at the barrier.  If victim is sleeping,
2948             // then wake it up. Since we were going to pay the cache miss
2949             // penalty for referencing another thread's kmp_info_t struct
2950             // anyway,
2951             // the check shouldn't cost too much performance at this point. In
2952             // extra barrier mode, tasks do not sleep at the separate tasking
2953             // barrier, so this isn't a problem.
2954             asleep = 0;
2955             if ((__kmp_tasking_mode == tskm_task_teams) &&
2956                 (__kmp_dflt_blocktime != KMP_MAX_BLOCKTIME) &&
2957                 (TCR_PTR(CCAST(void *, other_thread->th.th_sleep_loc)) !=
2958                  NULL)) {
2959               asleep = 1;
2960               __kmp_null_resume_wrapper(other_thread);
2961               // A sleeping thread should not have any tasks on it's queue.
2962               // There is a slight possibility that it resumes, steals a task
2963               // from another thread, which spawns more tasks, all in the time
2964               // that it takes this thread to check => don't write an assertion
2965               // that the victim's queue is empty.  Try stealing from a
2966               // different thread.
2967             }
2968           } while (asleep);
2969         }
2970 
2971         if (!asleep) {
2972           // We have a victim to try to steal from
2973           task = __kmp_steal_task(other_thread, gtid, task_team,
2974                                   unfinished_threads, thread_finished,
2975                                   is_constrained);
2976         }
2977         if (task != NULL) { // set last stolen to victim
2978           if (threads_data[tid].td.td_deque_last_stolen != victim_tid) {
2979             threads_data[tid].td.td_deque_last_stolen = victim_tid;
2980             // The pre-refactored code did not try more than 1 successful new
2981             // vicitm, unless the last one generated more local tasks;
2982             // new_victim keeps track of this
2983             new_victim = 1;
2984           }
2985         } else { // No tasks found; unset last_stolen
2986           KMP_CHECK_UPDATE(threads_data[tid].td.td_deque_last_stolen, -1);
2987           victim_tid = -2; // no successful victim found
2988         }
2989       }
2990 
2991       if (task == NULL)
2992         break; // break out of tasking loop
2993 
2994 // Found a task; execute it
2995 #if USE_ITT_BUILD && USE_ITT_NOTIFY
2996       if (__itt_sync_create_ptr || KMP_ITT_DEBUG) {
2997         if (itt_sync_obj == NULL) { // we are at fork barrier where we could not
2998           // get the object reliably
2999           itt_sync_obj = __kmp_itt_barrier_object(gtid, bs_forkjoin_barrier);
3000         }
3001         __kmp_itt_task_starting(itt_sync_obj);
3002       }
3003 #endif /* USE_ITT_BUILD && USE_ITT_NOTIFY */
3004       __kmp_invoke_task(gtid, task, current_task);
3005 #if USE_ITT_BUILD
3006       if (itt_sync_obj != NULL)
3007         __kmp_itt_task_finished(itt_sync_obj);
3008 #endif /* USE_ITT_BUILD */
3009       // If this thread is only partway through the barrier and the condition is
3010       // met, then return now, so that the barrier gather/release pattern can
3011       // proceed. If this thread is in the last spin loop in the barrier,
3012       // waiting to be released, we know that the termination condition will not
3013       // be satisfied, so don't waste any cycles checking it.
3014       if (flag == NULL || (!final_spin && flag->done_check())) {
3015         KA_TRACE(
3016             15,
3017             ("__kmp_execute_tasks_template: T#%d spin condition satisfied\n",
3018              gtid));
3019         return TRUE;
3020       }
3021       if (thread->th.th_task_team == NULL) {
3022         break;
3023       }
3024       KMP_YIELD(__kmp_library == library_throughput); // Yield before next task
3025       // If execution of a stolen task results in more tasks being placed on our
3026       // run queue, reset use_own_tasks
3027       if (!use_own_tasks && TCR_4(threads_data[tid].td.td_deque_ntasks) != 0) {
3028         KA_TRACE(20, ("__kmp_execute_tasks_template: T#%d stolen task spawned "
3029                       "other tasks, restart\n",
3030                       gtid));
3031         use_own_tasks = 1;
3032         new_victim = 0;
3033       }
3034     }
3035 
3036     // The task source has been exhausted. If in final spin loop of barrier,
3037     // check if termination condition is satisfied. The work queue may be empty
3038     // but there might be proxy tasks still executing.
3039     if (final_spin &&
3040         KMP_ATOMIC_LD_ACQ(&current_task->td_incomplete_child_tasks) == 0) {
3041       // First, decrement the #unfinished threads, if that has not already been
3042       // done.  This decrement might be to the spin location, and result in the
3043       // termination condition being satisfied.
3044       if (!*thread_finished) {
3045 #if KMP_DEBUG
3046         kmp_int32 count = -1 +
3047 #endif
3048             KMP_ATOMIC_DEC(unfinished_threads);
3049         KA_TRACE(20, ("__kmp_execute_tasks_template: T#%d dec "
3050                       "unfinished_threads to %d task_team=%p\n",
3051                       gtid, count, task_team));
3052         *thread_finished = TRUE;
3053       }
3054 
3055       // It is now unsafe to reference thread->th.th_team !!!
3056       // Decrementing task_team->tt.tt_unfinished_threads can allow the primary
3057       // thread to pass through the barrier, where it might reset each thread's
3058       // th.th_team field for the next parallel region. If we can steal more
3059       // work, we know that this has not happened yet.
3060       if (flag != NULL && flag->done_check()) {
3061         KA_TRACE(
3062             15,
3063             ("__kmp_execute_tasks_template: T#%d spin condition satisfied\n",
3064              gtid));
3065         return TRUE;
3066       }
3067     }
3068 
3069     // If this thread's task team is NULL, primary thread has recognized that
3070     // there are no more tasks; bail out
3071     if (thread->th.th_task_team == NULL) {
3072       KA_TRACE(15,
3073                ("__kmp_execute_tasks_template: T#%d no more tasks\n", gtid));
3074       return FALSE;
3075     }
3076 
3077     // We could be getting tasks from target constructs; if this is the only
3078     // thread, keep trying to execute tasks from own queue
3079     if (nthreads == 1 &&
3080         KMP_ATOMIC_LD_ACQ(&current_task->td_incomplete_child_tasks))
3081       use_own_tasks = 1;
3082     else {
3083       KA_TRACE(15,
3084                ("__kmp_execute_tasks_template: T#%d can't find work\n", gtid));
3085       return FALSE;
3086     }
3087   }
3088 }
3089 
3090 template <bool C, bool S>
3091 int __kmp_execute_tasks_32(
3092     kmp_info_t *thread, kmp_int32 gtid, kmp_flag_32<C, S> *flag, int final_spin,
3093     int *thread_finished USE_ITT_BUILD_ARG(void *itt_sync_obj),
3094     kmp_int32 is_constrained) {
3095   return __kmp_execute_tasks_template(
3096       thread, gtid, flag, final_spin,
3097       thread_finished USE_ITT_BUILD_ARG(itt_sync_obj), is_constrained);
3098 }
3099 
3100 template <bool C, bool S>
3101 int __kmp_execute_tasks_64(
3102     kmp_info_t *thread, kmp_int32 gtid, kmp_flag_64<C, S> *flag, int final_spin,
3103     int *thread_finished USE_ITT_BUILD_ARG(void *itt_sync_obj),
3104     kmp_int32 is_constrained) {
3105   return __kmp_execute_tasks_template(
3106       thread, gtid, flag, final_spin,
3107       thread_finished USE_ITT_BUILD_ARG(itt_sync_obj), is_constrained);
3108 }
3109 
3110 template <bool C, bool S>
3111 int __kmp_atomic_execute_tasks_64(
3112     kmp_info_t *thread, kmp_int32 gtid, kmp_atomic_flag_64<C, S> *flag,
3113     int final_spin, int *thread_finished USE_ITT_BUILD_ARG(void *itt_sync_obj),
3114     kmp_int32 is_constrained) {
3115   return __kmp_execute_tasks_template(
3116       thread, gtid, flag, final_spin,
3117       thread_finished USE_ITT_BUILD_ARG(itt_sync_obj), is_constrained);
3118 }
3119 
3120 int __kmp_execute_tasks_oncore(
3121     kmp_info_t *thread, kmp_int32 gtid, kmp_flag_oncore *flag, int final_spin,
3122     int *thread_finished USE_ITT_BUILD_ARG(void *itt_sync_obj),
3123     kmp_int32 is_constrained) {
3124   return __kmp_execute_tasks_template(
3125       thread, gtid, flag, final_spin,
3126       thread_finished USE_ITT_BUILD_ARG(itt_sync_obj), is_constrained);
3127 }
3128 
3129 template int
3130 __kmp_execute_tasks_32<false, false>(kmp_info_t *, kmp_int32,
3131                                      kmp_flag_32<false, false> *, int,
3132                                      int *USE_ITT_BUILD_ARG(void *), kmp_int32);
3133 
3134 template int __kmp_execute_tasks_64<false, true>(kmp_info_t *, kmp_int32,
3135                                                  kmp_flag_64<false, true> *,
3136                                                  int,
3137                                                  int *USE_ITT_BUILD_ARG(void *),
3138                                                  kmp_int32);
3139 
3140 template int __kmp_execute_tasks_64<true, false>(kmp_info_t *, kmp_int32,
3141                                                  kmp_flag_64<true, false> *,
3142                                                  int,
3143                                                  int *USE_ITT_BUILD_ARG(void *),
3144                                                  kmp_int32);
3145 
3146 template int __kmp_atomic_execute_tasks_64<false, true>(
3147     kmp_info_t *, kmp_int32, kmp_atomic_flag_64<false, true> *, int,
3148     int *USE_ITT_BUILD_ARG(void *), kmp_int32);
3149 
3150 template int __kmp_atomic_execute_tasks_64<true, false>(
3151     kmp_info_t *, kmp_int32, kmp_atomic_flag_64<true, false> *, int,
3152     int *USE_ITT_BUILD_ARG(void *), kmp_int32);
3153 
3154 // __kmp_enable_tasking: Allocate task team and resume threads sleeping at the
3155 // next barrier so they can assist in executing enqueued tasks.
3156 // First thread in allocates the task team atomically.
3157 static void __kmp_enable_tasking(kmp_task_team_t *task_team,
3158                                  kmp_info_t *this_thr) {
3159   kmp_thread_data_t *threads_data;
3160   int nthreads, i, is_init_thread;
3161 
3162   KA_TRACE(10, ("__kmp_enable_tasking(enter): T#%d\n",
3163                 __kmp_gtid_from_thread(this_thr)));
3164 
3165   KMP_DEBUG_ASSERT(task_team != NULL);
3166   KMP_DEBUG_ASSERT(this_thr->th.th_team != NULL);
3167 
3168   nthreads = task_team->tt.tt_nproc;
3169   KMP_DEBUG_ASSERT(nthreads > 0);
3170   KMP_DEBUG_ASSERT(nthreads == this_thr->th.th_team->t.t_nproc);
3171 
3172   // Allocate or increase the size of threads_data if necessary
3173   is_init_thread = __kmp_realloc_task_threads_data(this_thr, task_team);
3174 
3175   if (!is_init_thread) {
3176     // Some other thread already set up the array.
3177     KA_TRACE(
3178         20,
3179         ("__kmp_enable_tasking(exit): T#%d: threads array already set up.\n",
3180          __kmp_gtid_from_thread(this_thr)));
3181     return;
3182   }
3183   threads_data = (kmp_thread_data_t *)TCR_PTR(task_team->tt.tt_threads_data);
3184   KMP_DEBUG_ASSERT(threads_data != NULL);
3185 
3186   if (__kmp_tasking_mode == tskm_task_teams &&
3187       (__kmp_dflt_blocktime != KMP_MAX_BLOCKTIME)) {
3188     // Release any threads sleeping at the barrier, so that they can steal
3189     // tasks and execute them.  In extra barrier mode, tasks do not sleep
3190     // at the separate tasking barrier, so this isn't a problem.
3191     for (i = 0; i < nthreads; i++) {
3192       void *sleep_loc;
3193       kmp_info_t *thread = threads_data[i].td.td_thr;
3194 
3195       if (i == this_thr->th.th_info.ds.ds_tid) {
3196         continue;
3197       }
3198       // Since we haven't locked the thread's suspend mutex lock at this
3199       // point, there is a small window where a thread might be putting
3200       // itself to sleep, but hasn't set the th_sleep_loc field yet.
3201       // To work around this, __kmp_execute_tasks_template() periodically checks
3202       // see if other threads are sleeping (using the same random mechanism that
3203       // is used for task stealing) and awakens them if they are.
3204       if ((sleep_loc = TCR_PTR(CCAST(void *, thread->th.th_sleep_loc))) !=
3205           NULL) {
3206         KF_TRACE(50, ("__kmp_enable_tasking: T#%d waking up thread T#%d\n",
3207                       __kmp_gtid_from_thread(this_thr),
3208                       __kmp_gtid_from_thread(thread)));
3209         __kmp_null_resume_wrapper(thread);
3210       } else {
3211         KF_TRACE(50, ("__kmp_enable_tasking: T#%d don't wake up thread T#%d\n",
3212                       __kmp_gtid_from_thread(this_thr),
3213                       __kmp_gtid_from_thread(thread)));
3214       }
3215     }
3216   }
3217 
3218   KA_TRACE(10, ("__kmp_enable_tasking(exit): T#%d\n",
3219                 __kmp_gtid_from_thread(this_thr)));
3220 }
3221 
3222 /* // TODO: Check the comment consistency
3223  * Utility routines for "task teams".  A task team (kmp_task_t) is kind of
3224  * like a shadow of the kmp_team_t data struct, with a different lifetime.
3225  * After a child * thread checks into a barrier and calls __kmp_release() from
3226  * the particular variant of __kmp_<barrier_kind>_barrier_gather(), it can no
3227  * longer assume that the kmp_team_t structure is intact (at any moment, the
3228  * primary thread may exit the barrier code and free the team data structure,
3229  * and return the threads to the thread pool).
3230  *
3231  * This does not work with the tasking code, as the thread is still
3232  * expected to participate in the execution of any tasks that may have been
3233  * spawned my a member of the team, and the thread still needs access to all
3234  * to each thread in the team, so that it can steal work from it.
3235  *
3236  * Enter the existence of the kmp_task_team_t struct.  It employs a reference
3237  * counting mechanism, and is allocated by the primary thread before calling
3238  * __kmp_<barrier_kind>_release, and then is release by the last thread to
3239  * exit __kmp_<barrier_kind>_release at the next barrier.  I.e. the lifetimes
3240  * of the kmp_task_team_t structs for consecutive barriers can overlap
3241  * (and will, unless the primary thread is the last thread to exit the barrier
3242  * release phase, which is not typical). The existence of such a struct is
3243  * useful outside the context of tasking.
3244  *
3245  * We currently use the existence of the threads array as an indicator that
3246  * tasks were spawned since the last barrier.  If the structure is to be
3247  * useful outside the context of tasking, then this will have to change, but
3248  * not setting the field minimizes the performance impact of tasking on
3249  * barriers, when no explicit tasks were spawned (pushed, actually).
3250  */
3251 
3252 static kmp_task_team_t *__kmp_free_task_teams =
3253     NULL; // Free list for task_team data structures
3254 // Lock for task team data structures
3255 kmp_bootstrap_lock_t __kmp_task_team_lock =
3256     KMP_BOOTSTRAP_LOCK_INITIALIZER(__kmp_task_team_lock);
3257 
3258 // __kmp_alloc_task_deque:
3259 // Allocates a task deque for a particular thread, and initialize the necessary
3260 // data structures relating to the deque.  This only happens once per thread
3261 // per task team since task teams are recycled. No lock is needed during
3262 // allocation since each thread allocates its own deque.
3263 static void __kmp_alloc_task_deque(kmp_info_t *thread,
3264                                    kmp_thread_data_t *thread_data) {
3265   __kmp_init_bootstrap_lock(&thread_data->td.td_deque_lock);
3266   KMP_DEBUG_ASSERT(thread_data->td.td_deque == NULL);
3267 
3268   // Initialize last stolen task field to "none"
3269   thread_data->td.td_deque_last_stolen = -1;
3270 
3271   KMP_DEBUG_ASSERT(TCR_4(thread_data->td.td_deque_ntasks) == 0);
3272   KMP_DEBUG_ASSERT(thread_data->td.td_deque_head == 0);
3273   KMP_DEBUG_ASSERT(thread_data->td.td_deque_tail == 0);
3274 
3275   KE_TRACE(
3276       10,
3277       ("__kmp_alloc_task_deque: T#%d allocating deque[%d] for thread_data %p\n",
3278        __kmp_gtid_from_thread(thread), INITIAL_TASK_DEQUE_SIZE, thread_data));
3279   // Allocate space for task deque, and zero the deque
3280   // Cannot use __kmp_thread_calloc() because threads not around for
3281   // kmp_reap_task_team( ).
3282   thread_data->td.td_deque = (kmp_taskdata_t **)__kmp_allocate(
3283       INITIAL_TASK_DEQUE_SIZE * sizeof(kmp_taskdata_t *));
3284   thread_data->td.td_deque_size = INITIAL_TASK_DEQUE_SIZE;
3285 }
3286 
3287 // __kmp_free_task_deque:
3288 // Deallocates a task deque for a particular thread. Happens at library
3289 // deallocation so don't need to reset all thread data fields.
3290 static void __kmp_free_task_deque(kmp_thread_data_t *thread_data) {
3291   if (thread_data->td.td_deque != NULL) {
3292     __kmp_acquire_bootstrap_lock(&thread_data->td.td_deque_lock);
3293     TCW_4(thread_data->td.td_deque_ntasks, 0);
3294     __kmp_free(thread_data->td.td_deque);
3295     thread_data->td.td_deque = NULL;
3296     __kmp_release_bootstrap_lock(&thread_data->td.td_deque_lock);
3297   }
3298 
3299 #ifdef BUILD_TIED_TASK_STACK
3300   // GEH: Figure out what to do here for td_susp_tied_tasks
3301   if (thread_data->td.td_susp_tied_tasks.ts_entries != TASK_STACK_EMPTY) {
3302     __kmp_free_task_stack(__kmp_thread_from_gtid(gtid), thread_data);
3303   }
3304 #endif // BUILD_TIED_TASK_STACK
3305 }
3306 
3307 // __kmp_realloc_task_threads_data:
3308 // Allocates a threads_data array for a task team, either by allocating an
3309 // initial array or enlarging an existing array.  Only the first thread to get
3310 // the lock allocs or enlarges the array and re-initializes the array elements.
3311 // That thread returns "TRUE", the rest return "FALSE".
3312 // Assumes that the new array size is given by task_team -> tt.tt_nproc.
3313 // The current size is given by task_team -> tt.tt_max_threads.
3314 static int __kmp_realloc_task_threads_data(kmp_info_t *thread,
3315                                            kmp_task_team_t *task_team) {
3316   kmp_thread_data_t **threads_data_p;
3317   kmp_int32 nthreads, maxthreads;
3318   int is_init_thread = FALSE;
3319 
3320   if (TCR_4(task_team->tt.tt_found_tasks)) {
3321     // Already reallocated and initialized.
3322     return FALSE;
3323   }
3324 
3325   threads_data_p = &task_team->tt.tt_threads_data;
3326   nthreads = task_team->tt.tt_nproc;
3327   maxthreads = task_team->tt.tt_max_threads;
3328 
3329   // All threads must lock when they encounter the first task of the implicit
3330   // task region to make sure threads_data fields are (re)initialized before
3331   // used.
3332   __kmp_acquire_bootstrap_lock(&task_team->tt.tt_threads_lock);
3333 
3334   if (!TCR_4(task_team->tt.tt_found_tasks)) {
3335     // first thread to enable tasking
3336     kmp_team_t *team = thread->th.th_team;
3337     int i;
3338 
3339     is_init_thread = TRUE;
3340     if (maxthreads < nthreads) {
3341 
3342       if (*threads_data_p != NULL) {
3343         kmp_thread_data_t *old_data = *threads_data_p;
3344         kmp_thread_data_t *new_data = NULL;
3345 
3346         KE_TRACE(
3347             10,
3348             ("__kmp_realloc_task_threads_data: T#%d reallocating "
3349              "threads data for task_team %p, new_size = %d, old_size = %d\n",
3350              __kmp_gtid_from_thread(thread), task_team, nthreads, maxthreads));
3351         // Reallocate threads_data to have more elements than current array
3352         // Cannot use __kmp_thread_realloc() because threads not around for
3353         // kmp_reap_task_team( ).  Note all new array entries are initialized
3354         // to zero by __kmp_allocate().
3355         new_data = (kmp_thread_data_t *)__kmp_allocate(
3356             nthreads * sizeof(kmp_thread_data_t));
3357         // copy old data to new data
3358         KMP_MEMCPY_S((void *)new_data, nthreads * sizeof(kmp_thread_data_t),
3359                      (void *)old_data, maxthreads * sizeof(kmp_thread_data_t));
3360 
3361 #ifdef BUILD_TIED_TASK_STACK
3362         // GEH: Figure out if this is the right thing to do
3363         for (i = maxthreads; i < nthreads; i++) {
3364           kmp_thread_data_t *thread_data = &(*threads_data_p)[i];
3365           __kmp_init_task_stack(__kmp_gtid_from_thread(thread), thread_data);
3366         }
3367 #endif // BUILD_TIED_TASK_STACK
3368        // Install the new data and free the old data
3369         (*threads_data_p) = new_data;
3370         __kmp_free(old_data);
3371       } else {
3372         KE_TRACE(10, ("__kmp_realloc_task_threads_data: T#%d allocating "
3373                       "threads data for task_team %p, size = %d\n",
3374                       __kmp_gtid_from_thread(thread), task_team, nthreads));
3375         // Make the initial allocate for threads_data array, and zero entries
3376         // Cannot use __kmp_thread_calloc() because threads not around for
3377         // kmp_reap_task_team( ).
3378         *threads_data_p = (kmp_thread_data_t *)__kmp_allocate(
3379             nthreads * sizeof(kmp_thread_data_t));
3380 #ifdef BUILD_TIED_TASK_STACK
3381         // GEH: Figure out if this is the right thing to do
3382         for (i = 0; i < nthreads; i++) {
3383           kmp_thread_data_t *thread_data = &(*threads_data_p)[i];
3384           __kmp_init_task_stack(__kmp_gtid_from_thread(thread), thread_data);
3385         }
3386 #endif // BUILD_TIED_TASK_STACK
3387       }
3388       task_team->tt.tt_max_threads = nthreads;
3389     } else {
3390       // If array has (more than) enough elements, go ahead and use it
3391       KMP_DEBUG_ASSERT(*threads_data_p != NULL);
3392     }
3393 
3394     // initialize threads_data pointers back to thread_info structures
3395     for (i = 0; i < nthreads; i++) {
3396       kmp_thread_data_t *thread_data = &(*threads_data_p)[i];
3397       thread_data->td.td_thr = team->t.t_threads[i];
3398 
3399       if (thread_data->td.td_deque_last_stolen >= nthreads) {
3400         // The last stolen field survives across teams / barrier, and the number
3401         // of threads may have changed.  It's possible (likely?) that a new
3402         // parallel region will exhibit the same behavior as previous region.
3403         thread_data->td.td_deque_last_stolen = -1;
3404       }
3405     }
3406 
3407     KMP_MB();
3408     TCW_SYNC_4(task_team->tt.tt_found_tasks, TRUE);
3409   }
3410 
3411   __kmp_release_bootstrap_lock(&task_team->tt.tt_threads_lock);
3412   return is_init_thread;
3413 }
3414 
3415 // __kmp_free_task_threads_data:
3416 // Deallocates a threads_data array for a task team, including any attached
3417 // tasking deques.  Only occurs at library shutdown.
3418 static void __kmp_free_task_threads_data(kmp_task_team_t *task_team) {
3419   __kmp_acquire_bootstrap_lock(&task_team->tt.tt_threads_lock);
3420   if (task_team->tt.tt_threads_data != NULL) {
3421     int i;
3422     for (i = 0; i < task_team->tt.tt_max_threads; i++) {
3423       __kmp_free_task_deque(&task_team->tt.tt_threads_data[i]);
3424     }
3425     __kmp_free(task_team->tt.tt_threads_data);
3426     task_team->tt.tt_threads_data = NULL;
3427   }
3428   __kmp_release_bootstrap_lock(&task_team->tt.tt_threads_lock);
3429 }
3430 
3431 // __kmp_allocate_task_team:
3432 // Allocates a task team associated with a specific team, taking it from
3433 // the global task team free list if possible.  Also initializes data
3434 // structures.
3435 static kmp_task_team_t *__kmp_allocate_task_team(kmp_info_t *thread,
3436                                                  kmp_team_t *team) {
3437   kmp_task_team_t *task_team = NULL;
3438   int nthreads;
3439 
3440   KA_TRACE(20, ("__kmp_allocate_task_team: T#%d entering; team = %p\n",
3441                 (thread ? __kmp_gtid_from_thread(thread) : -1), team));
3442 
3443   if (TCR_PTR(__kmp_free_task_teams) != NULL) {
3444     // Take a task team from the task team pool
3445     __kmp_acquire_bootstrap_lock(&__kmp_task_team_lock);
3446     if (__kmp_free_task_teams != NULL) {
3447       task_team = __kmp_free_task_teams;
3448       TCW_PTR(__kmp_free_task_teams, task_team->tt.tt_next);
3449       task_team->tt.tt_next = NULL;
3450     }
3451     __kmp_release_bootstrap_lock(&__kmp_task_team_lock);
3452   }
3453 
3454   if (task_team == NULL) {
3455     KE_TRACE(10, ("__kmp_allocate_task_team: T#%d allocating "
3456                   "task team for team %p\n",
3457                   __kmp_gtid_from_thread(thread), team));
3458     // Allocate a new task team if one is not available. Cannot use
3459     // __kmp_thread_malloc because threads not around for kmp_reap_task_team.
3460     task_team = (kmp_task_team_t *)__kmp_allocate(sizeof(kmp_task_team_t));
3461     __kmp_init_bootstrap_lock(&task_team->tt.tt_threads_lock);
3462 #if USE_ITT_BUILD && USE_ITT_NOTIFY && KMP_DEBUG
3463     // suppress race conditions detection on synchronization flags in debug mode
3464     // this helps to analyze library internals eliminating false positives
3465     __itt_suppress_mark_range(
3466         __itt_suppress_range, __itt_suppress_threading_errors,
3467         &task_team->tt.tt_found_tasks, sizeof(task_team->tt.tt_found_tasks));
3468     __itt_suppress_mark_range(__itt_suppress_range,
3469                               __itt_suppress_threading_errors,
3470                               CCAST(kmp_uint32 *, &task_team->tt.tt_active),
3471                               sizeof(task_team->tt.tt_active));
3472 #endif /* USE_ITT_BUILD && USE_ITT_NOTIFY && KMP_DEBUG */
3473     // Note: __kmp_allocate zeroes returned memory, othewise we would need:
3474     // task_team->tt.tt_threads_data = NULL;
3475     // task_team->tt.tt_max_threads = 0;
3476     // task_team->tt.tt_next = NULL;
3477   }
3478 
3479   TCW_4(task_team->tt.tt_found_tasks, FALSE);
3480   TCW_4(task_team->tt.tt_found_proxy_tasks, FALSE);
3481   task_team->tt.tt_nproc = nthreads = team->t.t_nproc;
3482 
3483   KMP_ATOMIC_ST_REL(&task_team->tt.tt_unfinished_threads, nthreads);
3484   TCW_4(task_team->tt.tt_hidden_helper_task_encountered, FALSE);
3485   TCW_4(task_team->tt.tt_active, TRUE);
3486 
3487   KA_TRACE(20, ("__kmp_allocate_task_team: T#%d exiting; task_team = %p "
3488                 "unfinished_threads init'd to %d\n",
3489                 (thread ? __kmp_gtid_from_thread(thread) : -1), task_team,
3490                 KMP_ATOMIC_LD_RLX(&task_team->tt.tt_unfinished_threads)));
3491   return task_team;
3492 }
3493 
3494 // __kmp_free_task_team:
3495 // Frees the task team associated with a specific thread, and adds it
3496 // to the global task team free list.
3497 void __kmp_free_task_team(kmp_info_t *thread, kmp_task_team_t *task_team) {
3498   KA_TRACE(20, ("__kmp_free_task_team: T#%d task_team = %p\n",
3499                 thread ? __kmp_gtid_from_thread(thread) : -1, task_team));
3500 
3501   // Put task team back on free list
3502   __kmp_acquire_bootstrap_lock(&__kmp_task_team_lock);
3503 
3504   KMP_DEBUG_ASSERT(task_team->tt.tt_next == NULL);
3505   task_team->tt.tt_next = __kmp_free_task_teams;
3506   TCW_PTR(__kmp_free_task_teams, task_team);
3507 
3508   __kmp_release_bootstrap_lock(&__kmp_task_team_lock);
3509 }
3510 
3511 // __kmp_reap_task_teams:
3512 // Free all the task teams on the task team free list.
3513 // Should only be done during library shutdown.
3514 // Cannot do anything that needs a thread structure or gtid since they are
3515 // already gone.
3516 void __kmp_reap_task_teams(void) {
3517   kmp_task_team_t *task_team;
3518 
3519   if (TCR_PTR(__kmp_free_task_teams) != NULL) {
3520     // Free all task_teams on the free list
3521     __kmp_acquire_bootstrap_lock(&__kmp_task_team_lock);
3522     while ((task_team = __kmp_free_task_teams) != NULL) {
3523       __kmp_free_task_teams = task_team->tt.tt_next;
3524       task_team->tt.tt_next = NULL;
3525 
3526       // Free threads_data if necessary
3527       if (task_team->tt.tt_threads_data != NULL) {
3528         __kmp_free_task_threads_data(task_team);
3529       }
3530       __kmp_free(task_team);
3531     }
3532     __kmp_release_bootstrap_lock(&__kmp_task_team_lock);
3533   }
3534 }
3535 
3536 // __kmp_wait_to_unref_task_teams:
3537 // Some threads could still be in the fork barrier release code, possibly
3538 // trying to steal tasks.  Wait for each thread to unreference its task team.
3539 void __kmp_wait_to_unref_task_teams(void) {
3540   kmp_info_t *thread;
3541   kmp_uint32 spins;
3542   int done;
3543 
3544   KMP_INIT_YIELD(spins);
3545 
3546   for (;;) {
3547     done = TRUE;
3548 
3549     // TODO: GEH - this may be is wrong because some sync would be necessary
3550     // in case threads are added to the pool during the traversal. Need to
3551     // verify that lock for thread pool is held when calling this routine.
3552     for (thread = CCAST(kmp_info_t *, __kmp_thread_pool); thread != NULL;
3553          thread = thread->th.th_next_pool) {
3554 #if KMP_OS_WINDOWS
3555       DWORD exit_val;
3556 #endif
3557       if (TCR_PTR(thread->th.th_task_team) == NULL) {
3558         KA_TRACE(10, ("__kmp_wait_to_unref_task_team: T#%d task_team == NULL\n",
3559                       __kmp_gtid_from_thread(thread)));
3560         continue;
3561       }
3562 #if KMP_OS_WINDOWS
3563       // TODO: GEH - add this check for Linux* OS / OS X* as well?
3564       if (!__kmp_is_thread_alive(thread, &exit_val)) {
3565         thread->th.th_task_team = NULL;
3566         continue;
3567       }
3568 #endif
3569 
3570       done = FALSE; // Because th_task_team pointer is not NULL for this thread
3571 
3572       KA_TRACE(10, ("__kmp_wait_to_unref_task_team: Waiting for T#%d to "
3573                     "unreference task_team\n",
3574                     __kmp_gtid_from_thread(thread)));
3575 
3576       if (__kmp_dflt_blocktime != KMP_MAX_BLOCKTIME) {
3577         void *sleep_loc;
3578         // If the thread is sleeping, awaken it.
3579         if ((sleep_loc = TCR_PTR(CCAST(void *, thread->th.th_sleep_loc))) !=
3580             NULL) {
3581           KA_TRACE(
3582               10,
3583               ("__kmp_wait_to_unref_task_team: T#%d waking up thread T#%d\n",
3584                __kmp_gtid_from_thread(thread), __kmp_gtid_from_thread(thread)));
3585           __kmp_null_resume_wrapper(thread);
3586         }
3587       }
3588     }
3589     if (done) {
3590       break;
3591     }
3592 
3593     // If oversubscribed or have waited a bit, yield.
3594     KMP_YIELD_OVERSUB_ELSE_SPIN(spins);
3595   }
3596 }
3597 
3598 // __kmp_task_team_setup:  Create a task_team for the current team, but use
3599 // an already created, unused one if it already exists.
3600 void __kmp_task_team_setup(kmp_info_t *this_thr, kmp_team_t *team, int always) {
3601   KMP_DEBUG_ASSERT(__kmp_tasking_mode != tskm_immediate_exec);
3602 
3603   // If this task_team hasn't been created yet, allocate it. It will be used in
3604   // the region after the next.
3605   // If it exists, it is the current task team and shouldn't be touched yet as
3606   // it may still be in use.
3607   if (team->t.t_task_team[this_thr->th.th_task_state] == NULL &&
3608       (always || team->t.t_nproc > 1)) {
3609     team->t.t_task_team[this_thr->th.th_task_state] =
3610         __kmp_allocate_task_team(this_thr, team);
3611     KA_TRACE(20, ("__kmp_task_team_setup: Primary T#%d created new task_team %p"
3612                   " for team %d at parity=%d\n",
3613                   __kmp_gtid_from_thread(this_thr),
3614                   team->t.t_task_team[this_thr->th.th_task_state], team->t.t_id,
3615                   this_thr->th.th_task_state));
3616   }
3617 
3618   // After threads exit the release, they will call sync, and then point to this
3619   // other task_team; make sure it is allocated and properly initialized. As
3620   // threads spin in the barrier release phase, they will continue to use the
3621   // previous task_team struct(above), until they receive the signal to stop
3622   // checking for tasks (they can't safely reference the kmp_team_t struct,
3623   // which could be reallocated by the primary thread). No task teams are formed
3624   // for serialized teams.
3625   if (team->t.t_nproc > 1) {
3626     int other_team = 1 - this_thr->th.th_task_state;
3627     KMP_DEBUG_ASSERT(other_team >= 0 && other_team < 2);
3628     if (team->t.t_task_team[other_team] == NULL) { // setup other team as well
3629       team->t.t_task_team[other_team] =
3630           __kmp_allocate_task_team(this_thr, team);
3631       KA_TRACE(20, ("__kmp_task_team_setup: Primary T#%d created second new "
3632                     "task_team %p for team %d at parity=%d\n",
3633                     __kmp_gtid_from_thread(this_thr),
3634                     team->t.t_task_team[other_team], team->t.t_id, other_team));
3635     } else { // Leave the old task team struct in place for the upcoming region;
3636       // adjust as needed
3637       kmp_task_team_t *task_team = team->t.t_task_team[other_team];
3638       if (!task_team->tt.tt_active ||
3639           team->t.t_nproc != task_team->tt.tt_nproc) {
3640         TCW_4(task_team->tt.tt_nproc, team->t.t_nproc);
3641         TCW_4(task_team->tt.tt_found_tasks, FALSE);
3642         TCW_4(task_team->tt.tt_found_proxy_tasks, FALSE);
3643         KMP_ATOMIC_ST_REL(&task_team->tt.tt_unfinished_threads,
3644                           team->t.t_nproc);
3645         TCW_4(task_team->tt.tt_active, TRUE);
3646       }
3647       // if team size has changed, the first thread to enable tasking will
3648       // realloc threads_data if necessary
3649       KA_TRACE(20, ("__kmp_task_team_setup: Primary T#%d reset next task_team "
3650                     "%p for team %d at parity=%d\n",
3651                     __kmp_gtid_from_thread(this_thr),
3652                     team->t.t_task_team[other_team], team->t.t_id, other_team));
3653     }
3654   }
3655 
3656   // For regular thread, task enabling should be called when the task is going
3657   // to be pushed to a dequeue. However, for the hidden helper thread, we need
3658   // it ahead of time so that some operations can be performed without race
3659   // condition.
3660   if (this_thr == __kmp_hidden_helper_main_thread) {
3661     for (int i = 0; i < 2; ++i) {
3662       kmp_task_team_t *task_team = team->t.t_task_team[i];
3663       if (KMP_TASKING_ENABLED(task_team)) {
3664         continue;
3665       }
3666       __kmp_enable_tasking(task_team, this_thr);
3667       for (int j = 0; j < task_team->tt.tt_nproc; ++j) {
3668         kmp_thread_data_t *thread_data = &task_team->tt.tt_threads_data[j];
3669         if (thread_data->td.td_deque == NULL) {
3670           __kmp_alloc_task_deque(__kmp_hidden_helper_threads[j], thread_data);
3671         }
3672       }
3673     }
3674   }
3675 }
3676 
3677 // __kmp_task_team_sync: Propagation of task team data from team to threads
3678 // which happens just after the release phase of a team barrier.  This may be
3679 // called by any thread, but only for teams with # threads > 1.
3680 void __kmp_task_team_sync(kmp_info_t *this_thr, kmp_team_t *team) {
3681   KMP_DEBUG_ASSERT(__kmp_tasking_mode != tskm_immediate_exec);
3682 
3683   // Toggle the th_task_state field, to switch which task_team this thread
3684   // refers to
3685   this_thr->th.th_task_state = (kmp_uint8)(1 - this_thr->th.th_task_state);
3686 
3687   // It is now safe to propagate the task team pointer from the team struct to
3688   // the current thread.
3689   TCW_PTR(this_thr->th.th_task_team,
3690           team->t.t_task_team[this_thr->th.th_task_state]);
3691   KA_TRACE(20,
3692            ("__kmp_task_team_sync: Thread T#%d task team switched to task_team "
3693             "%p from Team #%d (parity=%d)\n",
3694             __kmp_gtid_from_thread(this_thr), this_thr->th.th_task_team,
3695             team->t.t_id, this_thr->th.th_task_state));
3696 }
3697 
3698 // __kmp_task_team_wait: Primary thread waits for outstanding tasks after the
3699 // barrier gather phase. Only called by primary thread if #threads in team > 1
3700 // or if proxy tasks were created.
3701 //
3702 // wait is a flag that defaults to 1 (see kmp.h), but waiting can be turned off
3703 // by passing in 0 optionally as the last argument. When wait is zero, primary
3704 // thread does not wait for unfinished_threads to reach 0.
3705 void __kmp_task_team_wait(
3706     kmp_info_t *this_thr,
3707     kmp_team_t *team USE_ITT_BUILD_ARG(void *itt_sync_obj), int wait) {
3708   kmp_task_team_t *task_team = team->t.t_task_team[this_thr->th.th_task_state];
3709 
3710   KMP_DEBUG_ASSERT(__kmp_tasking_mode != tskm_immediate_exec);
3711   KMP_DEBUG_ASSERT(task_team == this_thr->th.th_task_team);
3712 
3713   if ((task_team != NULL) && KMP_TASKING_ENABLED(task_team)) {
3714     if (wait) {
3715       KA_TRACE(20, ("__kmp_task_team_wait: Primary T#%d waiting for all tasks "
3716                     "(for unfinished_threads to reach 0) on task_team = %p\n",
3717                     __kmp_gtid_from_thread(this_thr), task_team));
3718       // Worker threads may have dropped through to release phase, but could
3719       // still be executing tasks. Wait here for tasks to complete. To avoid
3720       // memory contention, only primary thread checks termination condition.
3721       kmp_flag_32<false, false> flag(
3722           RCAST(std::atomic<kmp_uint32> *,
3723                 &task_team->tt.tt_unfinished_threads),
3724           0U);
3725       flag.wait(this_thr, TRUE USE_ITT_BUILD_ARG(itt_sync_obj));
3726     }
3727     // Deactivate the old task team, so that the worker threads will stop
3728     // referencing it while spinning.
3729     KA_TRACE(
3730         20,
3731         ("__kmp_task_team_wait: Primary T#%d deactivating task_team %p: "
3732          "setting active to false, setting local and team's pointer to NULL\n",
3733          __kmp_gtid_from_thread(this_thr), task_team));
3734     KMP_DEBUG_ASSERT(task_team->tt.tt_nproc > 1 ||
3735                      task_team->tt.tt_found_proxy_tasks == TRUE);
3736     TCW_SYNC_4(task_team->tt.tt_found_proxy_tasks, FALSE);
3737     KMP_CHECK_UPDATE(task_team->tt.tt_untied_task_encountered, 0);
3738     TCW_SYNC_4(task_team->tt.tt_active, FALSE);
3739     KMP_MB();
3740 
3741     TCW_PTR(this_thr->th.th_task_team, NULL);
3742   }
3743 }
3744 
3745 // __kmp_tasking_barrier:
3746 // This routine is called only when __kmp_tasking_mode == tskm_extra_barrier.
3747 // Internal function to execute all tasks prior to a regular barrier or a join
3748 // barrier. It is a full barrier itself, which unfortunately turns regular
3749 // barriers into double barriers and join barriers into 1 1/2 barriers.
3750 void __kmp_tasking_barrier(kmp_team_t *team, kmp_info_t *thread, int gtid) {
3751   std::atomic<kmp_uint32> *spin = RCAST(
3752       std::atomic<kmp_uint32> *,
3753       &team->t.t_task_team[thread->th.th_task_state]->tt.tt_unfinished_threads);
3754   int flag = FALSE;
3755   KMP_DEBUG_ASSERT(__kmp_tasking_mode == tskm_extra_barrier);
3756 
3757 #if USE_ITT_BUILD
3758   KMP_FSYNC_SPIN_INIT(spin, NULL);
3759 #endif /* USE_ITT_BUILD */
3760   kmp_flag_32<false, false> spin_flag(spin, 0U);
3761   while (!spin_flag.execute_tasks(thread, gtid, TRUE,
3762                                   &flag USE_ITT_BUILD_ARG(NULL), 0)) {
3763 #if USE_ITT_BUILD
3764     // TODO: What about itt_sync_obj??
3765     KMP_FSYNC_SPIN_PREPARE(RCAST(void *, spin));
3766 #endif /* USE_ITT_BUILD */
3767 
3768     if (TCR_4(__kmp_global.g.g_done)) {
3769       if (__kmp_global.g.g_abort)
3770         __kmp_abort_thread();
3771       break;
3772     }
3773     KMP_YIELD(TRUE);
3774   }
3775 #if USE_ITT_BUILD
3776   KMP_FSYNC_SPIN_ACQUIRED(RCAST(void *, spin));
3777 #endif /* USE_ITT_BUILD */
3778 }
3779 
3780 // __kmp_give_task puts a task into a given thread queue if:
3781 //  - the queue for that thread was created
3782 //  - there's space in that queue
3783 // Because of this, __kmp_push_task needs to check if there's space after
3784 // getting the lock
3785 static bool __kmp_give_task(kmp_info_t *thread, kmp_int32 tid, kmp_task_t *task,
3786                             kmp_int32 pass) {
3787   kmp_taskdata_t *taskdata = KMP_TASK_TO_TASKDATA(task);
3788   kmp_task_team_t *task_team = taskdata->td_task_team;
3789 
3790   KA_TRACE(20, ("__kmp_give_task: trying to give task %p to thread %d.\n",
3791                 taskdata, tid));
3792 
3793   // If task_team is NULL something went really bad...
3794   KMP_DEBUG_ASSERT(task_team != NULL);
3795 
3796   bool result = false;
3797   kmp_thread_data_t *thread_data = &task_team->tt.tt_threads_data[tid];
3798 
3799   if (thread_data->td.td_deque == NULL) {
3800     // There's no queue in this thread, go find another one
3801     // We're guaranteed that at least one thread has a queue
3802     KA_TRACE(30,
3803              ("__kmp_give_task: thread %d has no queue while giving task %p.\n",
3804               tid, taskdata));
3805     return result;
3806   }
3807 
3808   if (TCR_4(thread_data->td.td_deque_ntasks) >=
3809       TASK_DEQUE_SIZE(thread_data->td)) {
3810     KA_TRACE(
3811         30,
3812         ("__kmp_give_task: queue is full while giving task %p to thread %d.\n",
3813          taskdata, tid));
3814 
3815     // if this deque is bigger than the pass ratio give a chance to another
3816     // thread
3817     if (TASK_DEQUE_SIZE(thread_data->td) / INITIAL_TASK_DEQUE_SIZE >= pass)
3818       return result;
3819 
3820     __kmp_acquire_bootstrap_lock(&thread_data->td.td_deque_lock);
3821     if (TCR_4(thread_data->td.td_deque_ntasks) >=
3822         TASK_DEQUE_SIZE(thread_data->td)) {
3823       // expand deque to push the task which is not allowed to execute
3824       __kmp_realloc_task_deque(thread, thread_data);
3825     }
3826 
3827   } else {
3828 
3829     __kmp_acquire_bootstrap_lock(&thread_data->td.td_deque_lock);
3830 
3831     if (TCR_4(thread_data->td.td_deque_ntasks) >=
3832         TASK_DEQUE_SIZE(thread_data->td)) {
3833       KA_TRACE(30, ("__kmp_give_task: queue is full while giving task %p to "
3834                     "thread %d.\n",
3835                     taskdata, tid));
3836 
3837       // if this deque is bigger than the pass ratio give a chance to another
3838       // thread
3839       if (TASK_DEQUE_SIZE(thread_data->td) / INITIAL_TASK_DEQUE_SIZE >= pass)
3840         goto release_and_exit;
3841 
3842       __kmp_realloc_task_deque(thread, thread_data);
3843     }
3844   }
3845 
3846   // lock is held here, and there is space in the deque
3847 
3848   thread_data->td.td_deque[thread_data->td.td_deque_tail] = taskdata;
3849   // Wrap index.
3850   thread_data->td.td_deque_tail =
3851       (thread_data->td.td_deque_tail + 1) & TASK_DEQUE_MASK(thread_data->td);
3852   TCW_4(thread_data->td.td_deque_ntasks,
3853         TCR_4(thread_data->td.td_deque_ntasks) + 1);
3854 
3855   result = true;
3856   KA_TRACE(30, ("__kmp_give_task: successfully gave task %p to thread %d.\n",
3857                 taskdata, tid));
3858 
3859 release_and_exit:
3860   __kmp_release_bootstrap_lock(&thread_data->td.td_deque_lock);
3861 
3862   return result;
3863 }
3864 
3865 #define PROXY_TASK_FLAG 0x40000000
3866 /* The finish of the proxy tasks is divided in two pieces:
3867     - the top half is the one that can be done from a thread outside the team
3868     - the bottom half must be run from a thread within the team
3869 
3870    In order to run the bottom half the task gets queued back into one of the
3871    threads of the team. Once the td_incomplete_child_task counter of the parent
3872    is decremented the threads can leave the barriers. So, the bottom half needs
3873    to be queued before the counter is decremented. The top half is therefore
3874    divided in two parts:
3875     - things that can be run before queuing the bottom half
3876     - things that must be run after queuing the bottom half
3877 
3878    This creates a second race as the bottom half can free the task before the
3879    second top half is executed. To avoid this we use the
3880    td_incomplete_child_task of the proxy task to synchronize the top and bottom
3881    half. */
3882 static void __kmp_first_top_half_finish_proxy(kmp_taskdata_t *taskdata) {
3883   KMP_DEBUG_ASSERT(taskdata->td_flags.tasktype == TASK_EXPLICIT);
3884   KMP_DEBUG_ASSERT(taskdata->td_flags.proxy == TASK_PROXY);
3885   KMP_DEBUG_ASSERT(taskdata->td_flags.complete == 0);
3886   KMP_DEBUG_ASSERT(taskdata->td_flags.freed == 0);
3887 
3888   taskdata->td_flags.complete = 1; // mark the task as completed
3889 
3890   if (taskdata->td_taskgroup)
3891     KMP_ATOMIC_DEC(&taskdata->td_taskgroup->count);
3892 
3893   // Create an imaginary children for this task so the bottom half cannot
3894   // release the task before we have completed the second top half
3895   KMP_ATOMIC_OR(&taskdata->td_incomplete_child_tasks, PROXY_TASK_FLAG);
3896 }
3897 
3898 static void __kmp_second_top_half_finish_proxy(kmp_taskdata_t *taskdata) {
3899 #if KMP_DEBUG
3900   kmp_int32 children = 0;
3901   // Predecrement simulated by "- 1" calculation
3902   children = -1 +
3903 #endif
3904       KMP_ATOMIC_DEC(&taskdata->td_parent->td_incomplete_child_tasks);
3905   KMP_DEBUG_ASSERT(children >= 0);
3906 
3907   // Remove the imaginary children
3908   KMP_ATOMIC_AND(&taskdata->td_incomplete_child_tasks, ~PROXY_TASK_FLAG);
3909 }
3910 
3911 static void __kmp_bottom_half_finish_proxy(kmp_int32 gtid, kmp_task_t *ptask) {
3912   kmp_taskdata_t *taskdata = KMP_TASK_TO_TASKDATA(ptask);
3913   kmp_info_t *thread = __kmp_threads[gtid];
3914 
3915   KMP_DEBUG_ASSERT(taskdata->td_flags.proxy == TASK_PROXY);
3916   KMP_DEBUG_ASSERT(taskdata->td_flags.complete ==
3917                    1); // top half must run before bottom half
3918 
3919   // We need to wait to make sure the top half is finished
3920   // Spinning here should be ok as this should happen quickly
3921   while ((KMP_ATOMIC_LD_ACQ(&taskdata->td_incomplete_child_tasks) &
3922           PROXY_TASK_FLAG) > 0)
3923     ;
3924 
3925   __kmp_release_deps(gtid, taskdata);
3926   __kmp_free_task_and_ancestors(gtid, taskdata, thread);
3927 }
3928 
3929 /*!
3930 @ingroup TASKING
3931 @param gtid Global Thread ID of encountering thread
3932 @param ptask Task which execution is completed
3933 
3934 Execute the completion of a proxy task from a thread of that is part of the
3935 team. Run first and bottom halves directly.
3936 */
3937 void __kmpc_proxy_task_completed(kmp_int32 gtid, kmp_task_t *ptask) {
3938   KMP_DEBUG_ASSERT(ptask != NULL);
3939   kmp_taskdata_t *taskdata = KMP_TASK_TO_TASKDATA(ptask);
3940   KA_TRACE(
3941       10, ("__kmp_proxy_task_completed(enter): T#%d proxy task %p completing\n",
3942            gtid, taskdata));
3943   __kmp_assert_valid_gtid(gtid);
3944   KMP_DEBUG_ASSERT(taskdata->td_flags.proxy == TASK_PROXY);
3945 
3946   __kmp_first_top_half_finish_proxy(taskdata);
3947   __kmp_second_top_half_finish_proxy(taskdata);
3948   __kmp_bottom_half_finish_proxy(gtid, ptask);
3949 
3950   KA_TRACE(10,
3951            ("__kmp_proxy_task_completed(exit): T#%d proxy task %p completing\n",
3952             gtid, taskdata));
3953 }
3954 
3955 void __kmpc_give_task(kmp_task_t *ptask, kmp_int32 start = 0) {
3956   KMP_DEBUG_ASSERT(ptask != NULL);
3957   kmp_taskdata_t *taskdata = KMP_TASK_TO_TASKDATA(ptask);
3958 
3959   // Enqueue task to complete bottom half completion from a thread within the
3960   // corresponding team
3961   kmp_team_t *team = taskdata->td_team;
3962   kmp_int32 nthreads = team->t.t_nproc;
3963   kmp_info_t *thread;
3964 
3965   // This should be similar to start_k = __kmp_get_random( thread ) % nthreads
3966   // but we cannot use __kmp_get_random here
3967   kmp_int32 start_k = start % nthreads;
3968   kmp_int32 pass = 1;
3969   kmp_int32 k = start_k;
3970 
3971   do {
3972     // For now we're just linearly trying to find a thread
3973     thread = team->t.t_threads[k];
3974     k = (k + 1) % nthreads;
3975 
3976     // we did a full pass through all the threads
3977     if (k == start_k)
3978       pass = pass << 1;
3979 
3980   } while (!__kmp_give_task(thread, k, ptask, pass));
3981 }
3982 
3983 /*!
3984 @ingroup TASKING
3985 @param ptask Task which execution is completed
3986 
3987 Execute the completion of a proxy task from a thread that could not belong to
3988 the team.
3989 */
3990 void __kmpc_proxy_task_completed_ooo(kmp_task_t *ptask) {
3991   KMP_DEBUG_ASSERT(ptask != NULL);
3992   kmp_taskdata_t *taskdata = KMP_TASK_TO_TASKDATA(ptask);
3993 
3994   KA_TRACE(
3995       10,
3996       ("__kmp_proxy_task_completed_ooo(enter): proxy task completing ooo %p\n",
3997        taskdata));
3998 
3999   KMP_DEBUG_ASSERT(taskdata->td_flags.proxy == TASK_PROXY);
4000 
4001   __kmp_first_top_half_finish_proxy(taskdata);
4002 
4003   __kmpc_give_task(ptask);
4004 
4005   __kmp_second_top_half_finish_proxy(taskdata);
4006 
4007   KA_TRACE(
4008       10,
4009       ("__kmp_proxy_task_completed_ooo(exit): proxy task completing ooo %p\n",
4010        taskdata));
4011 }
4012 
4013 kmp_event_t *__kmpc_task_allow_completion_event(ident_t *loc_ref, int gtid,
4014                                                 kmp_task_t *task) {
4015   kmp_taskdata_t *td = KMP_TASK_TO_TASKDATA(task);
4016   if (td->td_allow_completion_event.type == KMP_EVENT_UNINITIALIZED) {
4017     td->td_allow_completion_event.type = KMP_EVENT_ALLOW_COMPLETION;
4018     td->td_allow_completion_event.ed.task = task;
4019     __kmp_init_tas_lock(&td->td_allow_completion_event.lock);
4020   }
4021   return &td->td_allow_completion_event;
4022 }
4023 
4024 void __kmp_fulfill_event(kmp_event_t *event) {
4025   if (event->type == KMP_EVENT_ALLOW_COMPLETION) {
4026     kmp_task_t *ptask = event->ed.task;
4027     kmp_taskdata_t *taskdata = KMP_TASK_TO_TASKDATA(ptask);
4028     bool detached = false;
4029     int gtid = __kmp_get_gtid();
4030 
4031     // The associated task might have completed or could be completing at this
4032     // point.
4033     // We need to take the lock to avoid races
4034     __kmp_acquire_tas_lock(&event->lock, gtid);
4035     if (taskdata->td_flags.proxy == TASK_PROXY) {
4036       detached = true;
4037     } else {
4038 #if OMPT_SUPPORT
4039       // The OMPT event must occur under mutual exclusion,
4040       // otherwise the tool might access ptask after free
4041       if (UNLIKELY(ompt_enabled.enabled))
4042         __ompt_task_finish(ptask, NULL, ompt_task_early_fulfill);
4043 #endif
4044     }
4045     event->type = KMP_EVENT_UNINITIALIZED;
4046     __kmp_release_tas_lock(&event->lock, gtid);
4047 
4048     if (detached) {
4049 #if OMPT_SUPPORT
4050       // We free ptask afterwards and know the task is finished,
4051       // so locking is not necessary
4052       if (UNLIKELY(ompt_enabled.enabled))
4053         __ompt_task_finish(ptask, NULL, ompt_task_late_fulfill);
4054 #endif
4055       // If the task detached complete the proxy task
4056       if (gtid >= 0) {
4057         kmp_team_t *team = taskdata->td_team;
4058         kmp_info_t *thread = __kmp_get_thread();
4059         if (thread->th.th_team == team) {
4060           __kmpc_proxy_task_completed(gtid, ptask);
4061           return;
4062         }
4063       }
4064 
4065       // fallback
4066       __kmpc_proxy_task_completed_ooo(ptask);
4067     }
4068   }
4069 }
4070 
4071 // __kmp_task_dup_alloc: Allocate the taskdata and make a copy of source task
4072 // for taskloop
4073 //
4074 // thread:   allocating thread
4075 // task_src: pointer to source task to be duplicated
4076 // returns:  a pointer to the allocated kmp_task_t structure (task).
4077 kmp_task_t *__kmp_task_dup_alloc(kmp_info_t *thread, kmp_task_t *task_src) {
4078   kmp_task_t *task;
4079   kmp_taskdata_t *taskdata;
4080   kmp_taskdata_t *taskdata_src = KMP_TASK_TO_TASKDATA(task_src);
4081   kmp_taskdata_t *parent_task = taskdata_src->td_parent; // same parent task
4082   size_t shareds_offset;
4083   size_t task_size;
4084 
4085   KA_TRACE(10, ("__kmp_task_dup_alloc(enter): Th %p, source task %p\n", thread,
4086                 task_src));
4087   KMP_DEBUG_ASSERT(taskdata_src->td_flags.proxy ==
4088                    TASK_FULL); // it should not be proxy task
4089   KMP_DEBUG_ASSERT(taskdata_src->td_flags.tasktype == TASK_EXPLICIT);
4090   task_size = taskdata_src->td_size_alloc;
4091 
4092   // Allocate a kmp_taskdata_t block and a kmp_task_t block.
4093   KA_TRACE(30, ("__kmp_task_dup_alloc: Th %p, malloc size %ld\n", thread,
4094                 task_size));
4095 #if USE_FAST_MEMORY
4096   taskdata = (kmp_taskdata_t *)__kmp_fast_allocate(thread, task_size);
4097 #else
4098   taskdata = (kmp_taskdata_t *)__kmp_thread_malloc(thread, task_size);
4099 #endif /* USE_FAST_MEMORY */
4100   KMP_MEMCPY(taskdata, taskdata_src, task_size);
4101 
4102   task = KMP_TASKDATA_TO_TASK(taskdata);
4103 
4104   // Initialize new task (only specific fields not affected by memcpy)
4105   taskdata->td_task_id = KMP_GEN_TASK_ID();
4106   if (task->shareds != NULL) { // need setup shareds pointer
4107     shareds_offset = (char *)task_src->shareds - (char *)taskdata_src;
4108     task->shareds = &((char *)taskdata)[shareds_offset];
4109     KMP_DEBUG_ASSERT((((kmp_uintptr_t)task->shareds) & (sizeof(void *) - 1)) ==
4110                      0);
4111   }
4112   taskdata->td_alloc_thread = thread;
4113   taskdata->td_parent = parent_task;
4114   // task inherits the taskgroup from the parent task
4115   taskdata->td_taskgroup = parent_task->td_taskgroup;
4116   // tied task needs to initialize the td_last_tied at creation,
4117   // untied one does this when it is scheduled for execution
4118   if (taskdata->td_flags.tiedness == TASK_TIED)
4119     taskdata->td_last_tied = taskdata;
4120 
4121   // Only need to keep track of child task counts if team parallel and tasking
4122   // not serialized
4123   if (!(taskdata->td_flags.team_serial || taskdata->td_flags.tasking_ser)) {
4124     KMP_ATOMIC_INC(&parent_task->td_incomplete_child_tasks);
4125     if (parent_task->td_taskgroup)
4126       KMP_ATOMIC_INC(&parent_task->td_taskgroup->count);
4127     // Only need to keep track of allocated child tasks for explicit tasks since
4128     // implicit not deallocated
4129     if (taskdata->td_parent->td_flags.tasktype == TASK_EXPLICIT)
4130       KMP_ATOMIC_INC(&taskdata->td_parent->td_allocated_child_tasks);
4131   }
4132 
4133   KA_TRACE(20,
4134            ("__kmp_task_dup_alloc(exit): Th %p, created task %p, parent=%p\n",
4135             thread, taskdata, taskdata->td_parent));
4136 #if OMPT_SUPPORT
4137   if (UNLIKELY(ompt_enabled.enabled))
4138     __ompt_task_init(taskdata, thread->th.th_info.ds.ds_gtid);
4139 #endif
4140   return task;
4141 }
4142 
4143 // Routine optionally generated by the compiler for setting the lastprivate flag
4144 // and calling needed constructors for private/firstprivate objects
4145 // (used to form taskloop tasks from pattern task)
4146 // Parameters: dest task, src task, lastprivate flag.
4147 typedef void (*p_task_dup_t)(kmp_task_t *, kmp_task_t *, kmp_int32);
4148 
4149 KMP_BUILD_ASSERT(sizeof(long) == 4 || sizeof(long) == 8);
4150 
4151 // class to encapsulate manipulating loop bounds in a taskloop task.
4152 // this abstracts away the Intel vs GOMP taskloop interface for setting/getting
4153 // the loop bound variables.
4154 class kmp_taskloop_bounds_t {
4155   kmp_task_t *task;
4156   const kmp_taskdata_t *taskdata;
4157   size_t lower_offset;
4158   size_t upper_offset;
4159 
4160 public:
4161   kmp_taskloop_bounds_t(kmp_task_t *_task, kmp_uint64 *lb, kmp_uint64 *ub)
4162       : task(_task), taskdata(KMP_TASK_TO_TASKDATA(task)),
4163         lower_offset((char *)lb - (char *)task),
4164         upper_offset((char *)ub - (char *)task) {
4165     KMP_DEBUG_ASSERT((char *)lb > (char *)_task);
4166     KMP_DEBUG_ASSERT((char *)ub > (char *)_task);
4167   }
4168   kmp_taskloop_bounds_t(kmp_task_t *_task, const kmp_taskloop_bounds_t &bounds)
4169       : task(_task), taskdata(KMP_TASK_TO_TASKDATA(_task)),
4170         lower_offset(bounds.lower_offset), upper_offset(bounds.upper_offset) {}
4171   size_t get_lower_offset() const { return lower_offset; }
4172   size_t get_upper_offset() const { return upper_offset; }
4173   kmp_uint64 get_lb() const {
4174     kmp_int64 retval;
4175 #if defined(KMP_GOMP_COMPAT)
4176     // Intel task just returns the lower bound normally
4177     if (!taskdata->td_flags.native) {
4178       retval = *(kmp_int64 *)((char *)task + lower_offset);
4179     } else {
4180       // GOMP task has to take into account the sizeof(long)
4181       if (taskdata->td_size_loop_bounds == 4) {
4182         kmp_int32 *lb = RCAST(kmp_int32 *, task->shareds);
4183         retval = (kmp_int64)*lb;
4184       } else {
4185         kmp_int64 *lb = RCAST(kmp_int64 *, task->shareds);
4186         retval = (kmp_int64)*lb;
4187       }
4188     }
4189 #else
4190     (void)taskdata;
4191     retval = *(kmp_int64 *)((char *)task + lower_offset);
4192 #endif // defined(KMP_GOMP_COMPAT)
4193     return retval;
4194   }
4195   kmp_uint64 get_ub() const {
4196     kmp_int64 retval;
4197 #if defined(KMP_GOMP_COMPAT)
4198     // Intel task just returns the upper bound normally
4199     if (!taskdata->td_flags.native) {
4200       retval = *(kmp_int64 *)((char *)task + upper_offset);
4201     } else {
4202       // GOMP task has to take into account the sizeof(long)
4203       if (taskdata->td_size_loop_bounds == 4) {
4204         kmp_int32 *ub = RCAST(kmp_int32 *, task->shareds) + 1;
4205         retval = (kmp_int64)*ub;
4206       } else {
4207         kmp_int64 *ub = RCAST(kmp_int64 *, task->shareds) + 1;
4208         retval = (kmp_int64)*ub;
4209       }
4210     }
4211 #else
4212     retval = *(kmp_int64 *)((char *)task + upper_offset);
4213 #endif // defined(KMP_GOMP_COMPAT)
4214     return retval;
4215   }
4216   void set_lb(kmp_uint64 lb) {
4217 #if defined(KMP_GOMP_COMPAT)
4218     // Intel task just sets the lower bound normally
4219     if (!taskdata->td_flags.native) {
4220       *(kmp_uint64 *)((char *)task + lower_offset) = lb;
4221     } else {
4222       // GOMP task has to take into account the sizeof(long)
4223       if (taskdata->td_size_loop_bounds == 4) {
4224         kmp_uint32 *lower = RCAST(kmp_uint32 *, task->shareds);
4225         *lower = (kmp_uint32)lb;
4226       } else {
4227         kmp_uint64 *lower = RCAST(kmp_uint64 *, task->shareds);
4228         *lower = (kmp_uint64)lb;
4229       }
4230     }
4231 #else
4232     *(kmp_uint64 *)((char *)task + lower_offset) = lb;
4233 #endif // defined(KMP_GOMP_COMPAT)
4234   }
4235   void set_ub(kmp_uint64 ub) {
4236 #if defined(KMP_GOMP_COMPAT)
4237     // Intel task just sets the upper bound normally
4238     if (!taskdata->td_flags.native) {
4239       *(kmp_uint64 *)((char *)task + upper_offset) = ub;
4240     } else {
4241       // GOMP task has to take into account the sizeof(long)
4242       if (taskdata->td_size_loop_bounds == 4) {
4243         kmp_uint32 *upper = RCAST(kmp_uint32 *, task->shareds) + 1;
4244         *upper = (kmp_uint32)ub;
4245       } else {
4246         kmp_uint64 *upper = RCAST(kmp_uint64 *, task->shareds) + 1;
4247         *upper = (kmp_uint64)ub;
4248       }
4249     }
4250 #else
4251     *(kmp_uint64 *)((char *)task + upper_offset) = ub;
4252 #endif // defined(KMP_GOMP_COMPAT)
4253   }
4254 };
4255 
4256 // __kmp_taskloop_linear: Start tasks of the taskloop linearly
4257 //
4258 // loc        Source location information
4259 // gtid       Global thread ID
4260 // task       Pattern task, exposes the loop iteration range
4261 // lb         Pointer to loop lower bound in task structure
4262 // ub         Pointer to loop upper bound in task structure
4263 // st         Loop stride
4264 // ub_glob    Global upper bound (used for lastprivate check)
4265 // num_tasks  Number of tasks to execute
4266 // grainsize  Number of loop iterations per task
4267 // extras     Number of chunks with grainsize+1 iterations
4268 // last_chunk Reduction of grainsize for last task
4269 // tc         Iterations count
4270 // task_dup   Tasks duplication routine
4271 // codeptr_ra Return address for OMPT events
4272 void __kmp_taskloop_linear(ident_t *loc, int gtid, kmp_task_t *task,
4273                            kmp_uint64 *lb, kmp_uint64 *ub, kmp_int64 st,
4274                            kmp_uint64 ub_glob, kmp_uint64 num_tasks,
4275                            kmp_uint64 grainsize, kmp_uint64 extras,
4276                            kmp_int64 last_chunk, kmp_uint64 tc,
4277 #if OMPT_SUPPORT
4278                            void *codeptr_ra,
4279 #endif
4280                            void *task_dup) {
4281   KMP_COUNT_BLOCK(OMP_TASKLOOP);
4282   KMP_TIME_PARTITIONED_BLOCK(OMP_taskloop_scheduling);
4283   p_task_dup_t ptask_dup = (p_task_dup_t)task_dup;
4284   // compiler provides global bounds here
4285   kmp_taskloop_bounds_t task_bounds(task, lb, ub);
4286   kmp_uint64 lower = task_bounds.get_lb();
4287   kmp_uint64 upper = task_bounds.get_ub();
4288   kmp_uint64 i;
4289   kmp_info_t *thread = __kmp_threads[gtid];
4290   kmp_taskdata_t *current_task = thread->th.th_current_task;
4291   kmp_task_t *next_task;
4292   kmp_int32 lastpriv = 0;
4293 
4294   KMP_DEBUG_ASSERT(tc == num_tasks * grainsize +
4295                              (last_chunk < 0 ? last_chunk : extras));
4296   KMP_DEBUG_ASSERT(num_tasks > extras);
4297   KMP_DEBUG_ASSERT(num_tasks > 0);
4298   KA_TRACE(20, ("__kmp_taskloop_linear: T#%d: %lld tasks, grainsize %lld, "
4299                 "extras %lld, last_chunk %lld, i=%lld,%lld(%d)%lld, dup %p\n",
4300                 gtid, num_tasks, grainsize, extras, last_chunk, lower, upper,
4301                 ub_glob, st, task_dup));
4302 
4303   // Launch num_tasks tasks, assign grainsize iterations each task
4304   for (i = 0; i < num_tasks; ++i) {
4305     kmp_uint64 chunk_minus_1;
4306     if (extras == 0) {
4307       chunk_minus_1 = grainsize - 1;
4308     } else {
4309       chunk_minus_1 = grainsize;
4310       --extras; // first extras iterations get bigger chunk (grainsize+1)
4311     }
4312     upper = lower + st * chunk_minus_1;
4313     if (upper > *ub) {
4314       upper = *ub;
4315     }
4316     if (i == num_tasks - 1) {
4317       // schedule the last task, set lastprivate flag if needed
4318       if (st == 1) { // most common case
4319         KMP_DEBUG_ASSERT(upper == *ub);
4320         if (upper == ub_glob)
4321           lastpriv = 1;
4322       } else if (st > 0) { // positive loop stride
4323         KMP_DEBUG_ASSERT((kmp_uint64)st > *ub - upper);
4324         if ((kmp_uint64)st > ub_glob - upper)
4325           lastpriv = 1;
4326       } else { // negative loop stride
4327         KMP_DEBUG_ASSERT(upper + st < *ub);
4328         if (upper - ub_glob < (kmp_uint64)(-st))
4329           lastpriv = 1;
4330       }
4331     }
4332     next_task = __kmp_task_dup_alloc(thread, task); // allocate new task
4333     kmp_taskdata_t *next_taskdata = KMP_TASK_TO_TASKDATA(next_task);
4334     kmp_taskloop_bounds_t next_task_bounds =
4335         kmp_taskloop_bounds_t(next_task, task_bounds);
4336 
4337     // adjust task-specific bounds
4338     next_task_bounds.set_lb(lower);
4339     if (next_taskdata->td_flags.native) {
4340       next_task_bounds.set_ub(upper + (st > 0 ? 1 : -1));
4341     } else {
4342       next_task_bounds.set_ub(upper);
4343     }
4344     if (ptask_dup != NULL) // set lastprivate flag, construct firstprivates,
4345                            // etc.
4346       ptask_dup(next_task, task, lastpriv);
4347     KA_TRACE(40,
4348              ("__kmp_taskloop_linear: T#%d; task #%llu: task %p: lower %lld, "
4349               "upper %lld stride %lld, (offsets %p %p)\n",
4350               gtid, i, next_task, lower, upper, st,
4351               next_task_bounds.get_lower_offset(),
4352               next_task_bounds.get_upper_offset()));
4353 #if OMPT_SUPPORT
4354     __kmp_omp_taskloop_task(NULL, gtid, next_task,
4355                             codeptr_ra); // schedule new task
4356 #else
4357     __kmp_omp_task(gtid, next_task, true); // schedule new task
4358 #endif
4359     lower = upper + st; // adjust lower bound for the next iteration
4360   }
4361   // free the pattern task and exit
4362   __kmp_task_start(gtid, task, current_task); // make internal bookkeeping
4363   // do not execute the pattern task, just do internal bookkeeping
4364   __kmp_task_finish<false>(gtid, task, current_task);
4365 }
4366 
4367 // Structure to keep taskloop parameters for auxiliary task
4368 // kept in the shareds of the task structure.
4369 typedef struct __taskloop_params {
4370   kmp_task_t *task;
4371   kmp_uint64 *lb;
4372   kmp_uint64 *ub;
4373   void *task_dup;
4374   kmp_int64 st;
4375   kmp_uint64 ub_glob;
4376   kmp_uint64 num_tasks;
4377   kmp_uint64 grainsize;
4378   kmp_uint64 extras;
4379   kmp_int64 last_chunk;
4380   kmp_uint64 tc;
4381   kmp_uint64 num_t_min;
4382 #if OMPT_SUPPORT
4383   void *codeptr_ra;
4384 #endif
4385 } __taskloop_params_t;
4386 
4387 void __kmp_taskloop_recur(ident_t *, int, kmp_task_t *, kmp_uint64 *,
4388                           kmp_uint64 *, kmp_int64, kmp_uint64, kmp_uint64,
4389                           kmp_uint64, kmp_uint64, kmp_int64, kmp_uint64,
4390                           kmp_uint64,
4391 #if OMPT_SUPPORT
4392                           void *,
4393 #endif
4394                           void *);
4395 
4396 // Execute part of the taskloop submitted as a task.
4397 int __kmp_taskloop_task(int gtid, void *ptask) {
4398   __taskloop_params_t *p =
4399       (__taskloop_params_t *)((kmp_task_t *)ptask)->shareds;
4400   kmp_task_t *task = p->task;
4401   kmp_uint64 *lb = p->lb;
4402   kmp_uint64 *ub = p->ub;
4403   void *task_dup = p->task_dup;
4404   //  p_task_dup_t ptask_dup = (p_task_dup_t)task_dup;
4405   kmp_int64 st = p->st;
4406   kmp_uint64 ub_glob = p->ub_glob;
4407   kmp_uint64 num_tasks = p->num_tasks;
4408   kmp_uint64 grainsize = p->grainsize;
4409   kmp_uint64 extras = p->extras;
4410   kmp_int64 last_chunk = p->last_chunk;
4411   kmp_uint64 tc = p->tc;
4412   kmp_uint64 num_t_min = p->num_t_min;
4413 #if OMPT_SUPPORT
4414   void *codeptr_ra = p->codeptr_ra;
4415 #endif
4416 #if KMP_DEBUG
4417   kmp_taskdata_t *taskdata = KMP_TASK_TO_TASKDATA(task);
4418   KMP_DEBUG_ASSERT(task != NULL);
4419   KA_TRACE(20,
4420            ("__kmp_taskloop_task: T#%d, task %p: %lld tasks, grainsize"
4421             " %lld, extras %lld, last_chunk %lld, i=%lld,%lld(%d), dup %p\n",
4422             gtid, taskdata, num_tasks, grainsize, extras, last_chunk, *lb, *ub,
4423             st, task_dup));
4424 #endif
4425   KMP_DEBUG_ASSERT(num_tasks * 2 + 1 > num_t_min);
4426   if (num_tasks > num_t_min)
4427     __kmp_taskloop_recur(NULL, gtid, task, lb, ub, st, ub_glob, num_tasks,
4428                          grainsize, extras, last_chunk, tc, num_t_min,
4429 #if OMPT_SUPPORT
4430                          codeptr_ra,
4431 #endif
4432                          task_dup);
4433   else
4434     __kmp_taskloop_linear(NULL, gtid, task, lb, ub, st, ub_glob, num_tasks,
4435                           grainsize, extras, last_chunk, tc,
4436 #if OMPT_SUPPORT
4437                           codeptr_ra,
4438 #endif
4439                           task_dup);
4440 
4441   KA_TRACE(40, ("__kmp_taskloop_task(exit): T#%d\n", gtid));
4442   return 0;
4443 }
4444 
4445 // Schedule part of the taskloop as a task,
4446 // execute the rest of the taskloop.
4447 //
4448 // loc        Source location information
4449 // gtid       Global thread ID
4450 // task       Pattern task, exposes the loop iteration range
4451 // lb         Pointer to loop lower bound in task structure
4452 // ub         Pointer to loop upper bound in task structure
4453 // st         Loop stride
4454 // ub_glob    Global upper bound (used for lastprivate check)
4455 // num_tasks  Number of tasks to execute
4456 // grainsize  Number of loop iterations per task
4457 // extras     Number of chunks with grainsize+1 iterations
4458 // last_chunk Reduction of grainsize for last task
4459 // tc         Iterations count
4460 // num_t_min  Threshold to launch tasks recursively
4461 // task_dup   Tasks duplication routine
4462 // codeptr_ra Return address for OMPT events
4463 void __kmp_taskloop_recur(ident_t *loc, int gtid, kmp_task_t *task,
4464                           kmp_uint64 *lb, kmp_uint64 *ub, kmp_int64 st,
4465                           kmp_uint64 ub_glob, kmp_uint64 num_tasks,
4466                           kmp_uint64 grainsize, kmp_uint64 extras,
4467                           kmp_int64 last_chunk, kmp_uint64 tc,
4468                           kmp_uint64 num_t_min,
4469 #if OMPT_SUPPORT
4470                           void *codeptr_ra,
4471 #endif
4472                           void *task_dup) {
4473   kmp_taskdata_t *taskdata = KMP_TASK_TO_TASKDATA(task);
4474   KMP_DEBUG_ASSERT(task != NULL);
4475   KMP_DEBUG_ASSERT(num_tasks > num_t_min);
4476   KA_TRACE(20,
4477            ("__kmp_taskloop_recur: T#%d, task %p: %lld tasks, grainsize"
4478             " %lld, extras %lld, last_chunk %lld, i=%lld,%lld(%d), dup %p\n",
4479             gtid, taskdata, num_tasks, grainsize, extras, last_chunk, *lb, *ub,
4480             st, task_dup));
4481   p_task_dup_t ptask_dup = (p_task_dup_t)task_dup;
4482   kmp_uint64 lower = *lb;
4483   kmp_info_t *thread = __kmp_threads[gtid];
4484   //  kmp_taskdata_t *current_task = thread->th.th_current_task;
4485   kmp_task_t *next_task;
4486   size_t lower_offset =
4487       (char *)lb - (char *)task; // remember offset of lb in the task structure
4488   size_t upper_offset =
4489       (char *)ub - (char *)task; // remember offset of ub in the task structure
4490 
4491   KMP_DEBUG_ASSERT(tc == num_tasks * grainsize +
4492                              (last_chunk < 0 ? last_chunk : extras));
4493   KMP_DEBUG_ASSERT(num_tasks > extras);
4494   KMP_DEBUG_ASSERT(num_tasks > 0);
4495 
4496   // split the loop in two halves
4497   kmp_uint64 lb1, ub0, tc0, tc1, ext0, ext1;
4498   kmp_int64 last_chunk0 = 0, last_chunk1 = 0;
4499   kmp_uint64 gr_size0 = grainsize;
4500   kmp_uint64 n_tsk0 = num_tasks >> 1; // num_tasks/2 to execute
4501   kmp_uint64 n_tsk1 = num_tasks - n_tsk0; // to schedule as a task
4502   if (last_chunk < 0) {
4503     ext0 = ext1 = 0;
4504     last_chunk1 = last_chunk;
4505     tc0 = grainsize * n_tsk0;
4506     tc1 = tc - tc0;
4507   } else if (n_tsk0 <= extras) {
4508     gr_size0++; // integrate extras into grainsize
4509     ext0 = 0; // no extra iters in 1st half
4510     ext1 = extras - n_tsk0; // remaining extras
4511     tc0 = gr_size0 * n_tsk0;
4512     tc1 = tc - tc0;
4513   } else { // n_tsk0 > extras
4514     ext1 = 0; // no extra iters in 2nd half
4515     ext0 = extras;
4516     tc1 = grainsize * n_tsk1;
4517     tc0 = tc - tc1;
4518   }
4519   ub0 = lower + st * (tc0 - 1);
4520   lb1 = ub0 + st;
4521 
4522   // create pattern task for 2nd half of the loop
4523   next_task = __kmp_task_dup_alloc(thread, task); // duplicate the task
4524   // adjust lower bound (upper bound is not changed) for the 2nd half
4525   *(kmp_uint64 *)((char *)next_task + lower_offset) = lb1;
4526   if (ptask_dup != NULL) // construct firstprivates, etc.
4527     ptask_dup(next_task, task, 0);
4528   *ub = ub0; // adjust upper bound for the 1st half
4529 
4530   // create auxiliary task for 2nd half of the loop
4531   // make sure new task has same parent task as the pattern task
4532   kmp_taskdata_t *current_task = thread->th.th_current_task;
4533   thread->th.th_current_task = taskdata->td_parent;
4534   kmp_task_t *new_task =
4535       __kmpc_omp_task_alloc(loc, gtid, 1, 3 * sizeof(void *),
4536                             sizeof(__taskloop_params_t), &__kmp_taskloop_task);
4537   // restore current task
4538   thread->th.th_current_task = current_task;
4539   __taskloop_params_t *p = (__taskloop_params_t *)new_task->shareds;
4540   p->task = next_task;
4541   p->lb = (kmp_uint64 *)((char *)next_task + lower_offset);
4542   p->ub = (kmp_uint64 *)((char *)next_task + upper_offset);
4543   p->task_dup = task_dup;
4544   p->st = st;
4545   p->ub_glob = ub_glob;
4546   p->num_tasks = n_tsk1;
4547   p->grainsize = grainsize;
4548   p->extras = ext1;
4549   p->last_chunk = last_chunk1;
4550   p->tc = tc1;
4551   p->num_t_min = num_t_min;
4552 #if OMPT_SUPPORT
4553   p->codeptr_ra = codeptr_ra;
4554 #endif
4555 
4556 #if OMPT_SUPPORT
4557   // schedule new task with correct return address for OMPT events
4558   __kmp_omp_taskloop_task(NULL, gtid, new_task, codeptr_ra);
4559 #else
4560   __kmp_omp_task(gtid, new_task, true); // schedule new task
4561 #endif
4562 
4563   // execute the 1st half of current subrange
4564   if (n_tsk0 > num_t_min)
4565     __kmp_taskloop_recur(loc, gtid, task, lb, ub, st, ub_glob, n_tsk0, gr_size0,
4566                          ext0, last_chunk0, tc0, num_t_min,
4567 #if OMPT_SUPPORT
4568                          codeptr_ra,
4569 #endif
4570                          task_dup);
4571   else
4572     __kmp_taskloop_linear(loc, gtid, task, lb, ub, st, ub_glob, n_tsk0,
4573                           gr_size0, ext0, last_chunk0, tc0,
4574 #if OMPT_SUPPORT
4575                           codeptr_ra,
4576 #endif
4577                           task_dup);
4578 
4579   KA_TRACE(40, ("__kmp_taskloop_recur(exit): T#%d\n", gtid));
4580 }
4581 
4582 static void __kmp_taskloop(ident_t *loc, int gtid, kmp_task_t *task, int if_val,
4583                            kmp_uint64 *lb, kmp_uint64 *ub, kmp_int64 st,
4584                            int nogroup, int sched, kmp_uint64 grainsize,
4585                            int modifier, void *task_dup) {
4586   kmp_taskdata_t *taskdata = KMP_TASK_TO_TASKDATA(task);
4587   KMP_DEBUG_ASSERT(task != NULL);
4588   if (nogroup == 0) {
4589 #if OMPT_SUPPORT && OMPT_OPTIONAL
4590     OMPT_STORE_RETURN_ADDRESS(gtid);
4591 #endif
4592     __kmpc_taskgroup(loc, gtid);
4593   }
4594 
4595   // =========================================================================
4596   // calculate loop parameters
4597   kmp_taskloop_bounds_t task_bounds(task, lb, ub);
4598   kmp_uint64 tc;
4599   // compiler provides global bounds here
4600   kmp_uint64 lower = task_bounds.get_lb();
4601   kmp_uint64 upper = task_bounds.get_ub();
4602   kmp_uint64 ub_glob = upper; // global upper used to calc lastprivate flag
4603   kmp_uint64 num_tasks = 0, extras = 0;
4604   kmp_int64 last_chunk =
4605       0; // reduce grainsize of last task by last_chunk in strict mode
4606   kmp_uint64 num_tasks_min = __kmp_taskloop_min_tasks;
4607   kmp_info_t *thread = __kmp_threads[gtid];
4608   kmp_taskdata_t *current_task = thread->th.th_current_task;
4609 
4610   KA_TRACE(20, ("__kmp_taskloop: T#%d, task %p, lb %lld, ub %lld, st %lld, "
4611                 "grain %llu(%d, %d), dup %p\n",
4612                 gtid, taskdata, lower, upper, st, grainsize, sched, modifier,
4613                 task_dup));
4614 
4615   // compute trip count
4616   if (st == 1) { // most common case
4617     tc = upper - lower + 1;
4618   } else if (st < 0) {
4619     tc = (lower - upper) / (-st) + 1;
4620   } else { // st > 0
4621     tc = (upper - lower) / st + 1;
4622   }
4623   if (tc == 0) {
4624     KA_TRACE(20, ("__kmp_taskloop(exit): T#%d zero-trip loop\n", gtid));
4625     // free the pattern task and exit
4626     __kmp_task_start(gtid, task, current_task);
4627     // do not execute anything for zero-trip loop
4628     __kmp_task_finish<false>(gtid, task, current_task);
4629     return;
4630   }
4631 
4632 #if OMPT_SUPPORT && OMPT_OPTIONAL
4633   ompt_team_info_t *team_info = __ompt_get_teaminfo(0, NULL);
4634   ompt_task_info_t *task_info = __ompt_get_task_info_object(0);
4635   if (ompt_enabled.ompt_callback_work) {
4636     ompt_callbacks.ompt_callback(ompt_callback_work)(
4637         ompt_work_taskloop, ompt_scope_begin, &(team_info->parallel_data),
4638         &(task_info->task_data), tc, OMPT_GET_RETURN_ADDRESS(0));
4639   }
4640 #endif
4641 
4642   if (num_tasks_min == 0)
4643     // TODO: can we choose better default heuristic?
4644     num_tasks_min =
4645         KMP_MIN(thread->th.th_team_nproc * 10, INITIAL_TASK_DEQUE_SIZE);
4646 
4647   // compute num_tasks/grainsize based on the input provided
4648   switch (sched) {
4649   case 0: // no schedule clause specified, we can choose the default
4650     // let's try to schedule (team_size*10) tasks
4651     grainsize = thread->th.th_team_nproc * 10;
4652     KMP_FALLTHROUGH();
4653   case 2: // num_tasks provided
4654     if (grainsize > tc) {
4655       num_tasks = tc; // too big num_tasks requested, adjust values
4656       grainsize = 1;
4657       extras = 0;
4658     } else {
4659       num_tasks = grainsize;
4660       grainsize = tc / num_tasks;
4661       extras = tc % num_tasks;
4662     }
4663     break;
4664   case 1: // grainsize provided
4665     if (grainsize > tc) {
4666       num_tasks = 1;
4667       grainsize = tc; // too big grainsize requested, adjust values
4668       extras = 0;
4669     } else {
4670       if (modifier) {
4671         num_tasks = (tc + grainsize - 1) / grainsize;
4672         last_chunk = tc - (num_tasks * grainsize);
4673         extras = 0;
4674       } else {
4675         num_tasks = tc / grainsize;
4676         // adjust grainsize for balanced distribution of iterations
4677         grainsize = tc / num_tasks;
4678         extras = tc % num_tasks;
4679       }
4680     }
4681     break;
4682   default:
4683     KMP_ASSERT2(0, "unknown scheduling of taskloop");
4684   }
4685 
4686   KMP_DEBUG_ASSERT(tc == num_tasks * grainsize +
4687                              (last_chunk < 0 ? last_chunk : extras));
4688   KMP_DEBUG_ASSERT(num_tasks > extras);
4689   KMP_DEBUG_ASSERT(num_tasks > 0);
4690   // =========================================================================
4691 
4692   // check if clause value first
4693   // Also require GOMP_taskloop to reduce to linear (taskdata->td_flags.native)
4694   if (if_val == 0) { // if(0) specified, mark task as serial
4695     taskdata->td_flags.task_serial = 1;
4696     taskdata->td_flags.tiedness = TASK_TIED; // AC: serial task cannot be untied
4697     // always start serial tasks linearly
4698     __kmp_taskloop_linear(loc, gtid, task, lb, ub, st, ub_glob, num_tasks,
4699                           grainsize, extras, last_chunk, tc,
4700 #if OMPT_SUPPORT
4701                           OMPT_GET_RETURN_ADDRESS(0),
4702 #endif
4703                           task_dup);
4704     // !taskdata->td_flags.native => currently force linear spawning of tasks
4705     // for GOMP_taskloop
4706   } else if (num_tasks > num_tasks_min && !taskdata->td_flags.native) {
4707     KA_TRACE(20, ("__kmp_taskloop: T#%d, go recursive: tc %llu, #tasks %llu"
4708                   "(%lld), grain %llu, extras %llu, last_chunk %lld\n",
4709                   gtid, tc, num_tasks, num_tasks_min, grainsize, extras,
4710                   last_chunk));
4711     __kmp_taskloop_recur(loc, gtid, task, lb, ub, st, ub_glob, num_tasks,
4712                          grainsize, extras, last_chunk, tc, num_tasks_min,
4713 #if OMPT_SUPPORT
4714                          OMPT_GET_RETURN_ADDRESS(0),
4715 #endif
4716                          task_dup);
4717   } else {
4718     KA_TRACE(20, ("__kmp_taskloop: T#%d, go linear: tc %llu, #tasks %llu"
4719                   "(%lld), grain %llu, extras %llu, last_chunk %lld\n",
4720                   gtid, tc, num_tasks, num_tasks_min, grainsize, extras,
4721                   last_chunk));
4722     __kmp_taskloop_linear(loc, gtid, task, lb, ub, st, ub_glob, num_tasks,
4723                           grainsize, extras, last_chunk, tc,
4724 #if OMPT_SUPPORT
4725                           OMPT_GET_RETURN_ADDRESS(0),
4726 #endif
4727                           task_dup);
4728   }
4729 
4730 #if OMPT_SUPPORT && OMPT_OPTIONAL
4731   if (ompt_enabled.ompt_callback_work) {
4732     ompt_callbacks.ompt_callback(ompt_callback_work)(
4733         ompt_work_taskloop, ompt_scope_end, &(team_info->parallel_data),
4734         &(task_info->task_data), tc, OMPT_GET_RETURN_ADDRESS(0));
4735   }
4736 #endif
4737 
4738   if (nogroup == 0) {
4739 #if OMPT_SUPPORT && OMPT_OPTIONAL
4740     OMPT_STORE_RETURN_ADDRESS(gtid);
4741 #endif
4742     __kmpc_end_taskgroup(loc, gtid);
4743   }
4744   KA_TRACE(20, ("__kmp_taskloop(exit): T#%d\n", gtid));
4745 }
4746 
4747 /*!
4748 @ingroup TASKING
4749 @param loc       Source location information
4750 @param gtid      Global thread ID
4751 @param task      Task structure
4752 @param if_val    Value of the if clause
4753 @param lb        Pointer to loop lower bound in task structure
4754 @param ub        Pointer to loop upper bound in task structure
4755 @param st        Loop stride
4756 @param nogroup   Flag, 1 if nogroup clause specified, 0 otherwise
4757 @param sched     Schedule specified 0/1/2 for none/grainsize/num_tasks
4758 @param grainsize Schedule value if specified
4759 @param task_dup  Tasks duplication routine
4760 
4761 Execute the taskloop construct.
4762 */
4763 void __kmpc_taskloop(ident_t *loc, int gtid, kmp_task_t *task, int if_val,
4764                      kmp_uint64 *lb, kmp_uint64 *ub, kmp_int64 st, int nogroup,
4765                      int sched, kmp_uint64 grainsize, void *task_dup) {
4766   __kmp_assert_valid_gtid(gtid);
4767   KA_TRACE(20, ("__kmpc_taskloop(enter): T#%d\n", gtid));
4768   __kmp_taskloop(loc, gtid, task, if_val, lb, ub, st, nogroup, sched, grainsize,
4769                  0, task_dup);
4770   KA_TRACE(20, ("__kmpc_taskloop(exit): T#%d\n", gtid));
4771 }
4772 
4773 /*!
4774 @ingroup TASKING
4775 @param loc       Source location information
4776 @param gtid      Global thread ID
4777 @param task      Task structure
4778 @param if_val    Value of the if clause
4779 @param lb        Pointer to loop lower bound in task structure
4780 @param ub        Pointer to loop upper bound in task structure
4781 @param st        Loop stride
4782 @param nogroup   Flag, 1 if nogroup clause specified, 0 otherwise
4783 @param sched     Schedule specified 0/1/2 for none/grainsize/num_tasks
4784 @param grainsize Schedule value if specified
4785 @param modifer   Modifier 'strict' for sched, 1 if present, 0 otherwise
4786 @param task_dup  Tasks duplication routine
4787 
4788 Execute the taskloop construct.
4789 */
4790 void __kmpc_taskloop_5(ident_t *loc, int gtid, kmp_task_t *task, int if_val,
4791                        kmp_uint64 *lb, kmp_uint64 *ub, kmp_int64 st,
4792                        int nogroup, int sched, kmp_uint64 grainsize,
4793                        int modifier, void *task_dup) {
4794   __kmp_assert_valid_gtid(gtid);
4795   KA_TRACE(20, ("__kmpc_taskloop_5(enter): T#%d\n", gtid));
4796   __kmp_taskloop(loc, gtid, task, if_val, lb, ub, st, nogroup, sched, grainsize,
4797                  modifier, task_dup);
4798   KA_TRACE(20, ("__kmpc_taskloop_5(exit): T#%d\n", gtid));
4799 }
4800