1 #ifndef KMP_STATS_H 2 #define KMP_STATS_H 3 4 /** @file kmp_stats.h 5 * Functions for collecting statistics. 6 */ 7 8 //===----------------------------------------------------------------------===// 9 // 10 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 11 // See https://llvm.org/LICENSE.txt for license information. 12 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 13 // 14 //===----------------------------------------------------------------------===// 15 16 #include "kmp_config.h" 17 #include "kmp_debug.h" 18 19 #if KMP_STATS_ENABLED 20 /* Statistics accumulator. 21 Accumulates number of samples and computes min, max, mean, standard deviation 22 on the fly. 23 24 Online variance calculation algorithm from 25 http://en.wikipedia.org/wiki/Algorithms_for_calculating_variance#On-line_algorithm 26 */ 27 28 #include "kmp_stats_timing.h" 29 #include <limits> 30 #include <math.h> 31 #include <new> // placement new 32 #include <stdint.h> 33 #include <string> 34 #include <vector> 35 36 /* Enable developer statistics here if you want them. They are more detailed 37 than is useful for application characterisation and are intended for the 38 runtime library developer. */ 39 #define KMP_DEVELOPER_STATS 0 40 41 /* Enable/Disable histogram output */ 42 #define KMP_STATS_HIST 0 43 44 /*! 45 * @ingroup STATS_GATHERING 46 * \brief flags to describe the statistic (timer or counter) 47 * 48 */ 49 enum stats_flags_e { 50 noTotal = 1 << 0, //!< do not show a TOTAL_aggregation for this statistic 51 onlyInMaster = 1 << 1, //!< statistic is valid only for master 52 noUnits = 1 << 2, //!< statistic doesn't need units printed next to it 53 notInMaster = 1 << 3, //!< statistic is valid only for non-master threads 54 logEvent = 1 << 4 //!< statistic can be logged on the event timeline when 55 //! KMP_STATS_EVENTS is on (valid only for timers) 56 }; 57 58 /*! 59 * @ingroup STATS_GATHERING 60 * \brief the states which a thread can be in 61 * 62 */ 63 enum stats_state_e { 64 IDLE, 65 SERIAL_REGION, 66 FORK_JOIN_BARRIER, 67 PLAIN_BARRIER, 68 TASKWAIT, 69 TASKYIELD, 70 TASKGROUP, 71 IMPLICIT_TASK, 72 EXPLICIT_TASK, 73 TEAMS_REGION 74 }; 75 76 /*! 77 * \brief Add new counters under KMP_FOREACH_COUNTER() macro in kmp_stats.h 78 * 79 * @param macro a user defined macro that takes three arguments - 80 * macro(COUNTER_NAME, flags, arg) 81 * @param arg a user defined argument to send to the user defined macro 82 * 83 * \details A counter counts the occurrence of some event. Each thread 84 * accumulates its own count, at the end of execution the counts are aggregated 85 * treating each thread as a separate measurement. (Unless onlyInMaster is set, 86 * in which case there's only a single measurement). The min,mean,max are 87 * therefore the values for the threads. Adding the counter here and then 88 * putting a KMP_BLOCK_COUNTER(name) at the point you want to count is all you 89 * need to do. All of the tables and printing is generated from this macro. 90 * Format is "macro(name, flags, arg)" 91 * 92 * @ingroup STATS_GATHERING 93 */ 94 // clang-format off 95 #define KMP_FOREACH_COUNTER(macro, arg) \ 96 macro(OMP_PARALLEL,stats_flags_e::onlyInMaster|stats_flags_e::noTotal,arg) \ 97 macro(OMP_NESTED_PARALLEL, 0, arg) \ 98 macro(OMP_LOOP_STATIC, 0, arg) \ 99 macro(OMP_LOOP_STATIC_STEAL, 0, arg) \ 100 macro(OMP_LOOP_DYNAMIC, 0, arg) \ 101 macro(OMP_DISTRIBUTE, 0, arg) \ 102 macro(OMP_BARRIER, 0, arg) \ 103 macro(OMP_CRITICAL, 0, arg) \ 104 macro(OMP_SINGLE, 0, arg) \ 105 macro(OMP_MASTER, 0, arg) \ 106 macro(OMP_TEAMS, 0, arg) \ 107 macro(OMP_set_lock, 0, arg) \ 108 macro(OMP_test_lock, 0, arg) \ 109 macro(REDUCE_wait, 0, arg) \ 110 macro(REDUCE_nowait, 0, arg) \ 111 macro(OMP_TASKYIELD, 0, arg) \ 112 macro(OMP_TASKLOOP, 0, arg) \ 113 macro(TASK_executed, 0, arg) \ 114 macro(TASK_cancelled, 0, arg) \ 115 macro(TASK_stolen, 0, arg) 116 // clang-format on 117 118 /*! 119 * \brief Add new timers under KMP_FOREACH_TIMER() macro in kmp_stats.h 120 * 121 * @param macro a user defined macro that takes three arguments - 122 * macro(TIMER_NAME, flags, arg) 123 * @param arg a user defined argument to send to the user defined macro 124 * 125 * \details A timer collects multiple samples of some count in each thread and 126 * then finally aggregates all of the samples from all of the threads. For most 127 * timers the printing code also provides an aggregation over the thread totals. 128 * These are printed as TOTAL_foo. The count is normally a time (in ticks), 129 * hence the name "timer". (But can be any value, so we use this for "number of 130 * arguments passed to fork" as well). For timers the threads are not 131 * significant, it's the individual observations that count, so the statistics 132 * are at that level. Format is "macro(name, flags, arg)" 133 * 134 * @ingroup STATS_GATHERING2 135 */ 136 // clang-format off 137 #define KMP_FOREACH_TIMER(macro, arg) \ 138 macro (OMP_worker_thread_life, stats_flags_e::logEvent, arg) \ 139 macro (OMP_parallel, stats_flags_e::logEvent, arg) \ 140 macro (OMP_parallel_overhead, stats_flags_e::logEvent, arg) \ 141 macro (OMP_teams, stats_flags_e::logEvent, arg) \ 142 macro (OMP_teams_overhead, stats_flags_e::logEvent, arg) \ 143 macro (OMP_loop_static, 0, arg) \ 144 macro (OMP_loop_static_scheduling, 0, arg) \ 145 macro (OMP_loop_dynamic, 0, arg) \ 146 macro (OMP_loop_dynamic_scheduling, 0, arg) \ 147 macro (OMP_distribute, 0, arg) \ 148 macro (OMP_distribute_scheduling, 0, arg) \ 149 macro (OMP_critical, 0, arg) \ 150 macro (OMP_critical_wait, 0, arg) \ 151 macro (OMP_single, 0, arg) \ 152 macro (OMP_master, 0, arg) \ 153 macro (OMP_task_immediate, 0, arg) \ 154 macro (OMP_task_taskwait, 0, arg) \ 155 macro (OMP_task_taskyield, 0, arg) \ 156 macro (OMP_task_taskgroup, 0, arg) \ 157 macro (OMP_task_join_bar, 0, arg) \ 158 macro (OMP_task_plain_bar, 0, arg) \ 159 macro (OMP_taskloop_scheduling, 0, arg) \ 160 macro (OMP_plain_barrier, stats_flags_e::logEvent, arg) \ 161 macro (OMP_idle, stats_flags_e::logEvent, arg) \ 162 macro (OMP_fork_barrier, stats_flags_e::logEvent, arg) \ 163 macro (OMP_join_barrier, stats_flags_e::logEvent, arg) \ 164 macro (OMP_serial, stats_flags_e::logEvent, arg) \ 165 macro (OMP_set_numthreads, stats_flags_e::noUnits | stats_flags_e::noTotal, \ 166 arg) \ 167 macro (OMP_PARALLEL_args, stats_flags_e::noUnits | stats_flags_e::noTotal, \ 168 arg) \ 169 macro (OMP_loop_static_iterations, \ 170 stats_flags_e::noUnits | stats_flags_e::noTotal, arg) \ 171 macro (OMP_loop_static_total_iterations, \ 172 stats_flags_e::noUnits | stats_flags_e::noTotal, arg) \ 173 macro (OMP_loop_dynamic_iterations, \ 174 stats_flags_e::noUnits | stats_flags_e::noTotal, arg) \ 175 macro (OMP_loop_dynamic_total_iterations, \ 176 stats_flags_e::noUnits | stats_flags_e::noTotal, arg) \ 177 macro (OMP_distribute_iterations, \ 178 stats_flags_e::noUnits | stats_flags_e::noTotal, arg) \ 179 KMP_FOREACH_DEVELOPER_TIMER(macro, arg) 180 // clang-format on 181 182 // OMP_worker_thread_life -- Time from thread becoming an OpenMP thread (either 183 // initializing OpenMP or being created by a master) 184 // until the thread is destroyed 185 // OMP_parallel -- Time thread spends executing work directly 186 // within a #pragma omp parallel 187 // OMP_parallel_overhead -- Time thread spends setting up a parallel region 188 // OMP_loop_static -- Time thread spends executing loop iterations from 189 // a statically scheduled loop 190 // OMP_loop_static_scheduling -- Time thread spends scheduling loop iterations 191 // from a statically scheduled loop 192 // OMP_loop_dynamic -- Time thread spends executing loop iterations from 193 // a dynamically scheduled loop 194 // OMP_loop_dynamic_scheduling -- Time thread spends scheduling loop iterations 195 // from a dynamically scheduled loop 196 // OMP_critical -- Time thread spends executing critical section 197 // OMP_critical_wait -- Time thread spends waiting to enter 198 // a critcal seciton 199 // OMP_single -- Time spent executing a "single" region 200 // OMP_master -- Time spent executing a "master" region 201 // OMP_task_immediate -- Time spent executing non-deferred tasks 202 // OMP_task_taskwait -- Time spent executing tasks inside a taskwait 203 // construct 204 // OMP_task_taskyield -- Time spent executing tasks inside a taskyield 205 // construct 206 // OMP_task_taskgroup -- Time spent executing tasks inside a taskygroup 207 // construct 208 // OMP_task_join_bar -- Time spent executing tasks inside a join barrier 209 // OMP_task_plain_bar -- Time spent executing tasks inside a barrier 210 // construct 211 // OMP_taskloop_scheduling -- Time spent scheduling tasks inside a taskloop 212 // construct 213 // OMP_plain_barrier -- Time spent in a #pragma omp barrier construct or 214 // inside implicit barrier at end of worksharing 215 // construct 216 // OMP_idle -- Time worker threads spend waiting for next 217 // parallel region 218 // OMP_fork_barrier -- Time spent in a the fork barrier surrounding a 219 // parallel region 220 // OMP_join_barrier -- Time spent in a the join barrier surrounding a 221 // parallel region 222 // OMP_serial -- Time thread zero spends executing serial code 223 // OMP_set_numthreads -- Values passed to omp_set_num_threads 224 // OMP_PARALLEL_args -- Number of arguments passed to a parallel region 225 // OMP_loop_static_iterations -- Number of iterations thread is assigned for 226 // statically scheduled loops 227 // OMP_loop_dynamic_iterations -- Number of iterations thread is assigned for 228 // dynamically scheduled loops 229 230 #if (KMP_DEVELOPER_STATS) 231 // Timers which are of interest to runtime library developers, not end users. 232 // These have to be explicitly enabled in addition to the other stats. 233 234 // KMP_fork_barrier -- time in __kmp_fork_barrier 235 // KMP_join_barrier -- time in __kmp_join_barrier 236 // KMP_barrier -- time in __kmp_barrier 237 // KMP_end_split_barrier -- time in __kmp_end_split_barrier 238 // KMP_setup_icv_copy -- time in __kmp_setup_icv_copy 239 // KMP_icv_copy -- start/stop timer for any ICV copying 240 // KMP_linear_gather -- time in __kmp_linear_barrier_gather 241 // KMP_linear_release -- time in __kmp_linear_barrier_release 242 // KMP_tree_gather -- time in __kmp_tree_barrier_gather 243 // KMP_tree_release -- time in __kmp_tree_barrier_release 244 // KMP_hyper_gather -- time in __kmp_hyper_barrier_gather 245 // KMP_hyper_release -- time in __kmp_hyper_barrier_release 246 // clang-format off 247 #define KMP_FOREACH_DEVELOPER_TIMER(macro, arg) \ 248 macro(KMP_fork_call, 0, arg) \ 249 macro(KMP_join_call, 0, arg) \ 250 macro(KMP_end_split_barrier, 0, arg) \ 251 macro(KMP_hier_gather, 0, arg) \ 252 macro(KMP_hier_release, 0, arg) \ 253 macro(KMP_hyper_gather, 0, arg) \ 254 macro(KMP_hyper_release, 0, arg) \ 255 macro(KMP_linear_gather, 0, arg) \ 256 macro(KMP_linear_release, 0, arg) \ 257 macro(KMP_tree_gather, 0, arg) \ 258 macro(KMP_tree_release, 0, arg) \ 259 macro(USER_resume, 0, arg) \ 260 macro(USER_suspend, 0, arg) \ 261 macro(KMP_allocate_team, 0, arg) \ 262 macro(KMP_setup_icv_copy, 0, arg) \ 263 macro(USER_icv_copy, 0, arg) \ 264 macro (FOR_static_steal_stolen, \ 265 stats_flags_e::noUnits | stats_flags_e::noTotal, arg) \ 266 macro (FOR_static_steal_chunks, \ 267 stats_flags_e::noUnits | stats_flags_e::noTotal, arg) 268 #else 269 #define KMP_FOREACH_DEVELOPER_TIMER(macro, arg) 270 #endif 271 // clang-format on 272 273 /*! 274 * \brief Add new explicit timers under KMP_FOREACH_EXPLICIT_TIMER() macro. 275 * 276 * @param macro a user defined macro that takes three arguments - 277 * macro(TIMER_NAME, flags, arg) 278 * @param arg a user defined argument to send to the user defined macro 279 * 280 * \warning YOU MUST HAVE THE SAME NAMED TIMER UNDER KMP_FOREACH_TIMER() OR ELSE 281 * BAD THINGS WILL HAPPEN! 282 * 283 * \details Explicit timers are ones where we need to allocate a timer itself 284 * (as well as the accumulated timing statistics). We allocate these on a 285 * per-thread basis, and explicitly start and stop them. Block timers just 286 * allocate the timer itself on the stack, and use the destructor to notice 287 * block exit; they don't need to be defined here. The name here should be the 288 * same as that of a timer above. 289 * 290 * @ingroup STATS_GATHERING 291 */ 292 #define KMP_FOREACH_EXPLICIT_TIMER(macro, arg) KMP_FOREACH_TIMER(macro, arg) 293 294 #define ENUMERATE(name, ignore, prefix) prefix##name, 295 enum timer_e { KMP_FOREACH_TIMER(ENUMERATE, TIMER_) TIMER_LAST }; 296 297 enum explicit_timer_e { 298 KMP_FOREACH_EXPLICIT_TIMER(ENUMERATE, EXPLICIT_TIMER_) EXPLICIT_TIMER_LAST 299 }; 300 301 enum counter_e { KMP_FOREACH_COUNTER(ENUMERATE, COUNTER_) COUNTER_LAST }; 302 #undef ENUMERATE 303 304 /* 305 * A logarithmic histogram. It accumulates the number of values in each power of 306 * ten bin. So 1<=x<10, 10<=x<100, ... 307 * Mostly useful where we have some big outliers and want to see information 308 * about them. 309 */ 310 class logHistogram { 311 enum { 312 numBins = 31, /* Number of powers of 10. If this changes you need to change 313 * the initializer for binMax */ 314 315 /* 316 * If you want to use this to analyse values that may be less than 1, (for 317 * instance times in s), then the logOffset gives you negative powers. 318 * In our case here, we're just looking at times in ticks, or counts, so we 319 * can never see values with magnitude < 1 (other than zero), so we can set 320 * it to 0. As above change the initializer if you change this. 321 */ 322 logOffset = 0 323 }; 324 uint32_t KMP_ALIGN_CACHE zeroCount; 325 struct { 326 uint32_t count; 327 double total; 328 } bins[numBins]; 329 330 static double binMax[numBins]; 331 332 #ifdef KMP_DEBUG 333 uint64_t _total; 334 335 void check() const { 336 uint64_t t = zeroCount; 337 for (int i = 0; i < numBins; i++) 338 t += bins[i].count; 339 KMP_DEBUG_ASSERT(t == _total); 340 } 341 #else 342 void check() const {} 343 #endif 344 345 public: 346 logHistogram() { reset(); } 347 348 logHistogram(logHistogram const &o) { 349 for (int i = 0; i < numBins; i++) 350 bins[i] = o.bins[i]; 351 #ifdef KMP_DEBUG 352 _total = o._total; 353 #endif 354 } 355 356 void reset() { 357 zeroCount = 0; 358 for (int i = 0; i < numBins; i++) { 359 bins[i].count = 0; 360 bins[i].total = 0; 361 } 362 363 #ifdef KMP_DEBUG 364 _total = 0; 365 #endif 366 } 367 uint32_t count(int b) const { return bins[b + logOffset].count; } 368 double total(int b) const { return bins[b + logOffset].total; } 369 static uint32_t findBin(double sample); 370 371 logHistogram &operator+=(logHistogram const &o) { 372 zeroCount += o.zeroCount; 373 for (int i = 0; i < numBins; i++) { 374 bins[i].count += o.bins[i].count; 375 bins[i].total += o.bins[i].total; 376 } 377 #ifdef KMP_DEBUG 378 _total += o._total; 379 check(); 380 #endif 381 382 return *this; 383 } 384 385 void addSample(double sample); 386 int minBin() const; 387 int maxBin() const; 388 389 std::string format(char) const; 390 }; 391 392 class statistic { 393 double KMP_ALIGN_CACHE minVal; 394 double maxVal; 395 double meanVal; 396 double m2; 397 uint64_t sampleCount; 398 double offset; 399 bool collectingHist; 400 logHistogram hist; 401 402 public: 403 statistic(bool doHist = bool(KMP_STATS_HIST)) { 404 reset(); 405 collectingHist = doHist; 406 } 407 statistic(statistic const &o) 408 : minVal(o.minVal), maxVal(o.maxVal), meanVal(o.meanVal), m2(o.m2), 409 sampleCount(o.sampleCount), offset(o.offset), 410 collectingHist(o.collectingHist), hist(o.hist) {} 411 statistic(double minv, double maxv, double meanv, uint64_t sc, double sd) 412 : minVal(minv), maxVal(maxv), meanVal(meanv), m2(sd * sd * sc), 413 sampleCount(sc), offset(0.0), collectingHist(false) {} 414 bool haveHist() const { return collectingHist; } 415 double getMin() const { return minVal; } 416 double getMean() const { return meanVal; } 417 double getMax() const { return maxVal; } 418 uint64_t getCount() const { return sampleCount; } 419 double getSD() const { return sqrt(m2 / sampleCount); } 420 double getTotal() const { return sampleCount * meanVal; } 421 logHistogram const *getHist() const { return &hist; } 422 void setOffset(double d) { offset = d; } 423 424 void reset() { 425 minVal = std::numeric_limits<double>::max(); 426 maxVal = -minVal; 427 meanVal = 0.0; 428 m2 = 0.0; 429 sampleCount = 0; 430 offset = 0.0; 431 hist.reset(); 432 } 433 void addSample(double sample); 434 void scale(double factor); 435 void scaleDown(double f) { scale(1. / f); } 436 void forceCount(uint64_t count) { sampleCount = count; } 437 statistic &operator+=(statistic const &other); 438 439 std::string format(char unit, bool total = false) const; 440 std::string formatHist(char unit) const { return hist.format(unit); } 441 }; 442 443 struct statInfo { 444 const char *name; 445 uint32_t flags; 446 }; 447 448 class timeStat : public statistic { 449 static statInfo timerInfo[]; 450 451 public: 452 timeStat() : statistic() {} 453 static const char *name(timer_e e) { return timerInfo[e].name; } 454 static bool noTotal(timer_e e) { 455 return timerInfo[e].flags & stats_flags_e::noTotal; 456 } 457 static bool masterOnly(timer_e e) { 458 return timerInfo[e].flags & stats_flags_e::onlyInMaster; 459 } 460 static bool workerOnly(timer_e e) { 461 return timerInfo[e].flags & stats_flags_e::notInMaster; 462 } 463 static bool noUnits(timer_e e) { 464 return timerInfo[e].flags & stats_flags_e::noUnits; 465 } 466 static bool logEvent(timer_e e) { 467 return timerInfo[e].flags & stats_flags_e::logEvent; 468 } 469 static void clearEventFlags() { 470 for (int i = 0; i < TIMER_LAST; i++) { 471 timerInfo[i].flags &= (~(stats_flags_e::logEvent)); 472 } 473 } 474 }; 475 476 // Where we need explicitly to start and end the timer, this version can be used 477 // Since these timers normally aren't nicely scoped, so don't have a good place 478 // to live on the stack of the thread, they're more work to use. 479 class explicitTimer { 480 timeStat *stat; 481 timer_e timerEnumValue; 482 tsc_tick_count startTime; 483 tsc_tick_count pauseStartTime; 484 tsc_tick_count::tsc_interval_t totalPauseTime; 485 486 public: 487 explicitTimer(timeStat *s, timer_e te) 488 : stat(s), timerEnumValue(te), startTime(), pauseStartTime(0), 489 totalPauseTime() {} 490 491 // void setStat(timeStat *s) { stat = s; } 492 void start(tsc_tick_count tick); 493 void pause(tsc_tick_count tick) { pauseStartTime = tick; } 494 void resume(tsc_tick_count tick) { 495 totalPauseTime += (tick - pauseStartTime); 496 } 497 void stop(tsc_tick_count tick, kmp_stats_list *stats_ptr = nullptr); 498 void reset() { 499 startTime = 0; 500 pauseStartTime = 0; 501 totalPauseTime = 0; 502 } 503 timer_e get_type() const { return timerEnumValue; } 504 }; 505 506 // Where you need to partition a threads clock ticks into separate states 507 // e.g., a partitionedTimers class with two timers of EXECUTING_TASK, and 508 // DOING_NOTHING would render these conditions: 509 // time(EXECUTING_TASK) + time(DOING_NOTHING) = total time thread is alive 510 // No clock tick in the EXECUTING_TASK is a member of DOING_NOTHING and vice 511 // versa 512 class partitionedTimers { 513 private: 514 std::vector<explicitTimer> timer_stack; 515 516 public: 517 partitionedTimers(); 518 void init(explicitTimer timer); 519 void exchange(explicitTimer timer); 520 void push(explicitTimer timer); 521 void pop(); 522 void windup(); 523 }; 524 525 // Special wrapper around the partioned timers to aid timing code blocks 526 // It avoids the need to have an explicit end, leaving the scope suffices. 527 class blockPartitionedTimer { 528 partitionedTimers *part_timers; 529 530 public: 531 blockPartitionedTimer(partitionedTimers *pt, explicitTimer timer) 532 : part_timers(pt) { 533 part_timers->push(timer); 534 } 535 ~blockPartitionedTimer() { part_timers->pop(); } 536 }; 537 538 // Special wrapper around the thread state to aid in keeping state in code 539 // blocks It avoids the need to have an explicit end, leaving the scope 540 // suffices. 541 class blockThreadState { 542 stats_state_e *state_pointer; 543 stats_state_e old_state; 544 545 public: 546 blockThreadState(stats_state_e *thread_state_pointer, stats_state_e new_state) 547 : state_pointer(thread_state_pointer), old_state(*thread_state_pointer) { 548 *state_pointer = new_state; 549 } 550 ~blockThreadState() { *state_pointer = old_state; } 551 }; 552 553 // If all you want is a count, then you can use this... 554 // The individual per-thread counts will be aggregated into a statistic at 555 // program exit. 556 class counter { 557 uint64_t value; 558 static const statInfo counterInfo[]; 559 560 public: 561 counter() : value(0) {} 562 void increment() { value++; } 563 uint64_t getValue() const { return value; } 564 void reset() { value = 0; } 565 static const char *name(counter_e e) { return counterInfo[e].name; } 566 static bool masterOnly(counter_e e) { 567 return counterInfo[e].flags & stats_flags_e::onlyInMaster; 568 } 569 }; 570 571 /* **************************************************************** 572 Class to implement an event 573 574 There are four components to an event: start time, stop time 575 nest_level, and timer_name. 576 The start and stop time should be obvious (recorded in clock ticks). 577 The nest_level relates to the bar width in the timeline graph. 578 The timer_name is used to determine which timer event triggered this event. 579 580 the interface to this class is through four read-only operations: 581 1) getStart() -- returns the start time as 64 bit integer 582 2) getStop() -- returns the stop time as 64 bit integer 583 3) getNestLevel() -- returns the nest level of the event 584 4) getTimerName() -- returns the timer name that triggered event 585 586 *MORE ON NEST_LEVEL* 587 The nest level is used in the bar graph that represents the timeline. 588 Its main purpose is for showing how events are nested inside eachother. 589 For example, say events, A, B, and C are recorded. If the timeline 590 looks like this: 591 592 Begin -------------------------------------------------------------> Time 593 | | | | | | 594 A B C C B A 595 start start start end end end 596 597 Then A, B, C will have a nest level of 1, 2, 3 respectively. 598 These values are then used to calculate the barwidth so you can 599 see that inside A, B has occurred, and inside B, C has occurred. 600 Currently, this is shown with A's bar width being larger than B's 601 bar width, and B's bar width being larger than C's bar width. 602 603 **************************************************************** */ 604 class kmp_stats_event { 605 uint64_t start; 606 uint64_t stop; 607 int nest_level; 608 timer_e timer_name; 609 610 public: 611 kmp_stats_event() 612 : start(0), stop(0), nest_level(0), timer_name(TIMER_LAST) {} 613 kmp_stats_event(uint64_t strt, uint64_t stp, int nst, timer_e nme) 614 : start(strt), stop(stp), nest_level(nst), timer_name(nme) {} 615 inline uint64_t getStart() const { return start; } 616 inline uint64_t getStop() const { return stop; } 617 inline int getNestLevel() const { return nest_level; } 618 inline timer_e getTimerName() const { return timer_name; } 619 }; 620 621 /* **************************************************************** 622 Class to implement a dynamically expandable array of events 623 624 --------------------------------------------------------- 625 | event 1 | event 2 | event 3 | event 4 | ... | event N | 626 --------------------------------------------------------- 627 628 An event is pushed onto the back of this array at every 629 explicitTimer->stop() call. The event records the thread #, 630 start time, stop time, and nest level related to the bar width. 631 632 The event vector starts at size INIT_SIZE and grows (doubles in size) 633 if needed. An implication of this behavior is that log(N) 634 reallocations are needed (where N is number of events). If you want 635 to avoid reallocations, then set INIT_SIZE to a large value. 636 637 the interface to this class is through six operations: 638 1) reset() -- sets the internal_size back to 0 but does not deallocate any 639 memory 640 2) size() -- returns the number of valid elements in the vector 641 3) push_back(start, stop, nest, timer_name) -- pushes an event onto 642 the back of the array 643 4) deallocate() -- frees all memory associated with the vector 644 5) sort() -- sorts the vector by start time 645 6) operator[index] or at(index) -- returns event reference at that index 646 **************************************************************** */ 647 class kmp_stats_event_vector { 648 kmp_stats_event *events; 649 int internal_size; 650 int allocated_size; 651 static const int INIT_SIZE = 1024; 652 653 public: 654 kmp_stats_event_vector() { 655 events = 656 (kmp_stats_event *)__kmp_allocate(sizeof(kmp_stats_event) * INIT_SIZE); 657 internal_size = 0; 658 allocated_size = INIT_SIZE; 659 } 660 ~kmp_stats_event_vector() {} 661 inline void reset() { internal_size = 0; } 662 inline int size() const { return internal_size; } 663 void push_back(uint64_t start_time, uint64_t stop_time, int nest_level, 664 timer_e name) { 665 int i; 666 if (internal_size == allocated_size) { 667 kmp_stats_event *tmp = (kmp_stats_event *)__kmp_allocate( 668 sizeof(kmp_stats_event) * allocated_size * 2); 669 for (i = 0; i < internal_size; i++) 670 tmp[i] = events[i]; 671 __kmp_free(events); 672 events = tmp; 673 allocated_size *= 2; 674 } 675 events[internal_size] = 676 kmp_stats_event(start_time, stop_time, nest_level, name); 677 internal_size++; 678 return; 679 } 680 void deallocate(); 681 void sort(); 682 const kmp_stats_event &operator[](int index) const { return events[index]; } 683 kmp_stats_event &operator[](int index) { return events[index]; } 684 const kmp_stats_event &at(int index) const { return events[index]; } 685 kmp_stats_event &at(int index) { return events[index]; } 686 }; 687 688 /* **************************************************************** 689 Class to implement a doubly-linked, circular, statistics list 690 691 |---| ---> |---| ---> |---| ---> |---| ---> ... next 692 | | | | | | | | 693 |---| <--- |---| <--- |---| <--- |---| <--- ... prev 694 Sentinel first second third 695 Node node node node 696 697 The Sentinel Node is the user handle on the list. 698 The first node corresponds to thread 0's statistics. 699 The second node corresponds to thread 1's statistics and so on... 700 701 Each node has a _timers, _counters, and _explicitTimers array to hold that 702 thread's statistics. The _explicitTimers point to the correct _timer and 703 update its statistics at every stop() call. The explicitTimers' pointers are 704 set up in the constructor. Each node also has an event vector to hold that 705 thread's timing events. The event vector expands as necessary and records 706 the start-stop times for each timer. 707 708 The nestLevel variable is for plotting events and is related 709 to the bar width in the timeline graph. 710 711 Every thread will have a thread local pointer to its node in 712 the list. The sentinel node is used by the master thread to 713 store "dummy" statistics before __kmp_create_worker() is called. 714 **************************************************************** */ 715 class kmp_stats_list { 716 int gtid; 717 timeStat _timers[TIMER_LAST + 1]; 718 counter _counters[COUNTER_LAST + 1]; 719 explicitTimer thread_life_timer; 720 partitionedTimers _partitionedTimers; 721 int _nestLevel; // one per thread 722 kmp_stats_event_vector _event_vector; 723 kmp_stats_list *next; 724 kmp_stats_list *prev; 725 stats_state_e state; 726 int thread_is_idle_flag; 727 728 public: 729 kmp_stats_list() 730 : thread_life_timer(&_timers[TIMER_OMP_worker_thread_life], 731 TIMER_OMP_worker_thread_life), 732 _nestLevel(0), _event_vector(), next(this), prev(this), state(IDLE), 733 thread_is_idle_flag(0) {} 734 ~kmp_stats_list() {} 735 inline timeStat *getTimer(timer_e idx) { return &_timers[idx]; } 736 inline counter *getCounter(counter_e idx) { return &_counters[idx]; } 737 inline partitionedTimers *getPartitionedTimers() { 738 return &_partitionedTimers; 739 } 740 inline timeStat *getTimers() { return _timers; } 741 inline counter *getCounters() { return _counters; } 742 inline kmp_stats_event_vector &getEventVector() { return _event_vector; } 743 inline void startLife() { thread_life_timer.start(tsc_tick_count::now()); } 744 inline void endLife() { thread_life_timer.stop(tsc_tick_count::now(), this); } 745 inline void resetEventVector() { _event_vector.reset(); } 746 inline void incrementNestValue() { _nestLevel++; } 747 inline int getNestValue() { return _nestLevel; } 748 inline void decrementNestValue() { _nestLevel--; } 749 inline int getGtid() const { return gtid; } 750 inline void setGtid(int newgtid) { gtid = newgtid; } 751 inline void setState(stats_state_e newstate) { state = newstate; } 752 inline stats_state_e getState() const { return state; } 753 inline stats_state_e *getStatePointer() { return &state; } 754 inline bool isIdle() { return thread_is_idle_flag == 1; } 755 inline void setIdleFlag() { thread_is_idle_flag = 1; } 756 inline void resetIdleFlag() { thread_is_idle_flag = 0; } 757 kmp_stats_list *push_back(int gtid); // returns newly created list node 758 inline void push_event(uint64_t start_time, uint64_t stop_time, 759 int nest_level, timer_e name) { 760 _event_vector.push_back(start_time, stop_time, nest_level, name); 761 } 762 void deallocate(); 763 class iterator; 764 kmp_stats_list::iterator begin(); 765 kmp_stats_list::iterator end(); 766 int size(); 767 class iterator { 768 kmp_stats_list *ptr; 769 friend kmp_stats_list::iterator kmp_stats_list::begin(); 770 friend kmp_stats_list::iterator kmp_stats_list::end(); 771 772 public: 773 iterator(); 774 ~iterator(); 775 iterator operator++(); 776 iterator operator++(int dummy); 777 iterator operator--(); 778 iterator operator--(int dummy); 779 bool operator!=(const iterator &rhs); 780 bool operator==(const iterator &rhs); 781 kmp_stats_list *operator*() const; // dereference operator 782 }; 783 }; 784 785 /* **************************************************************** 786 Class to encapsulate all output functions and the environment variables 787 788 This module holds filenames for various outputs (normal stats, events, plot 789 file), as well as coloring information for the plot file. 790 791 The filenames and flags variables are read from environment variables. 792 These are read once by the constructor of the global variable 793 __kmp_stats_output which calls init(). 794 795 During this init() call, event flags for the timeStat::timerInfo[] global 796 array are cleared if KMP_STATS_EVENTS is not true (on, 1, yes). 797 798 The only interface function that is public is outputStats(heading). This 799 function should print out everything it needs to, either to files or stderr, 800 depending on the environment variables described below 801 802 ENVIRONMENT VARIABLES: 803 KMP_STATS_FILE -- if set, all statistics (not events) will be printed to this 804 file, otherwise, print to stderr 805 KMP_STATS_THREADS -- if set to "on", then will print per thread statistics to 806 either KMP_STATS_FILE or stderr 807 KMP_STATS_PLOT_FILE -- if set, print the ploticus plot file to this filename, 808 otherwise, the plot file is sent to "events.plt" 809 KMP_STATS_EVENTS -- if set to "on", then log events, otherwise, don't log 810 events 811 KMP_STATS_EVENTS_FILE -- if set, all events are outputted to this file, 812 otherwise, output is sent to "events.dat" 813 **************************************************************** */ 814 class kmp_stats_output_module { 815 816 public: 817 struct rgb_color { 818 float r; 819 float g; 820 float b; 821 }; 822 823 private: 824 std::string outputFileName; 825 static const char *eventsFileName; 826 static const char *plotFileName; 827 static int printPerThreadFlag; 828 static int printPerThreadEventsFlag; 829 static const rgb_color globalColorArray[]; 830 static rgb_color timerColorInfo[]; 831 832 void init(); 833 static void setupEventColors(); 834 static void printPloticusFile(); 835 static void printHeaderInfo(FILE *statsOut); 836 static void printTimerStats(FILE *statsOut, statistic const *theStats, 837 statistic const *totalStats); 838 static void printCounterStats(FILE *statsOut, statistic const *theStats); 839 static void printCounters(FILE *statsOut, counter const *theCounters); 840 static void printEvents(FILE *eventsOut, kmp_stats_event_vector *theEvents, 841 int gtid); 842 static rgb_color getEventColor(timer_e e) { return timerColorInfo[e]; } 843 static void windupExplicitTimers(); 844 bool eventPrintingEnabled() const { return printPerThreadEventsFlag; } 845 846 public: 847 kmp_stats_output_module() { init(); } 848 void outputStats(const char *heading); 849 }; 850 851 #ifdef __cplusplus 852 extern "C" { 853 #endif 854 void __kmp_stats_init(); 855 void __kmp_stats_fini(); 856 void __kmp_reset_stats(); 857 void __kmp_output_stats(const char *); 858 void __kmp_accumulate_stats_at_exit(void); 859 // thread local pointer to stats node within list 860 extern KMP_THREAD_LOCAL kmp_stats_list *__kmp_stats_thread_ptr; 861 // head to stats list. 862 extern kmp_stats_list *__kmp_stats_list; 863 // lock for __kmp_stats_list 864 extern kmp_tas_lock_t __kmp_stats_lock; 865 // reference start time 866 extern tsc_tick_count __kmp_stats_start_time; 867 // interface to output 868 extern kmp_stats_output_module __kmp_stats_output; 869 870 #ifdef __cplusplus 871 } 872 #endif 873 874 // Simple, standard interfaces that drop out completely if stats aren't enabled 875 876 /*! 877 * \brief Adds value to specified timer (name). 878 * 879 * @param name timer name as specified under the KMP_FOREACH_TIMER() macro 880 * @param value double precision sample value to add to statistics for the timer 881 * 882 * \details Use KMP_COUNT_VALUE(name, value) macro to add a particular value to 883 * a timer statistics. 884 * 885 * @ingroup STATS_GATHERING 886 */ 887 #define KMP_COUNT_VALUE(name, value) \ 888 __kmp_stats_thread_ptr->getTimer(TIMER_##name)->addSample(value) 889 890 /*! 891 * \brief Increments specified counter (name). 892 * 893 * @param name counter name as specified under the KMP_FOREACH_COUNTER() macro 894 * 895 * \details Use KMP_COUNT_BLOCK(name, value) macro to increment a statistics 896 * counter for the executing thread. 897 * 898 * @ingroup STATS_GATHERING 899 */ 900 #define KMP_COUNT_BLOCK(name) \ 901 __kmp_stats_thread_ptr->getCounter(COUNTER_##name)->increment() 902 903 /*! 904 * \brief Outputs the current thread statistics and reset them. 905 * 906 * @param heading_string heading put above the final stats output 907 * 908 * \details Explicitly stops all timers and outputs all stats. Environment 909 * variable, `OMPTB_STATSFILE=filename`, can be used to output the stats to a 910 * filename instead of stderr. Environment variable, 911 * `OMPTB_STATSTHREADS=true|undefined`, can be used to output thread specific 912 * stats. For now the `OMPTB_STATSTHREADS` environment variable can either be 913 * defined with any value, which will print out thread specific stats, or it can 914 * be undefined (not specified in the environment) and thread specific stats 915 * won't be printed. It should be noted that all statistics are reset when this 916 * macro is called. 917 * 918 * @ingroup STATS_GATHERING 919 */ 920 #define KMP_OUTPUT_STATS(heading_string) __kmp_output_stats(heading_string) 921 922 /*! 923 * \brief Initializes the paritioned timers to begin with name. 924 * 925 * @param name timer which you want this thread to begin with 926 * 927 * @ingroup STATS_GATHERING 928 */ 929 #define KMP_INIT_PARTITIONED_TIMERS(name) \ 930 __kmp_stats_thread_ptr->getPartitionedTimers()->init(explicitTimer( \ 931 __kmp_stats_thread_ptr->getTimer(TIMER_##name), TIMER_##name)) 932 933 #define KMP_TIME_PARTITIONED_BLOCK(name) \ 934 blockPartitionedTimer __PBLOCKTIME__( \ 935 __kmp_stats_thread_ptr->getPartitionedTimers(), \ 936 explicitTimer(__kmp_stats_thread_ptr->getTimer(TIMER_##name), \ 937 TIMER_##name)) 938 939 #define KMP_PUSH_PARTITIONED_TIMER(name) \ 940 __kmp_stats_thread_ptr->getPartitionedTimers()->push(explicitTimer( \ 941 __kmp_stats_thread_ptr->getTimer(TIMER_##name), TIMER_##name)) 942 943 #define KMP_POP_PARTITIONED_TIMER() \ 944 __kmp_stats_thread_ptr->getPartitionedTimers()->pop() 945 946 #define KMP_EXCHANGE_PARTITIONED_TIMER(name) \ 947 __kmp_stats_thread_ptr->getPartitionedTimers()->exchange(explicitTimer( \ 948 __kmp_stats_thread_ptr->getTimer(TIMER_##name), TIMER_##name)) 949 950 #define KMP_SET_THREAD_STATE(state_name) \ 951 __kmp_stats_thread_ptr->setState(state_name) 952 953 #define KMP_GET_THREAD_STATE() __kmp_stats_thread_ptr->getState() 954 955 #define KMP_SET_THREAD_STATE_BLOCK(state_name) \ 956 blockThreadState __BTHREADSTATE__(__kmp_stats_thread_ptr->getStatePointer(), \ 957 state_name) 958 959 /*! 960 * \brief resets all stats (counters to 0, timers to 0 elapsed ticks) 961 * 962 * \details Reset all stats for all threads. 963 * 964 * @ingroup STATS_GATHERING 965 */ 966 #define KMP_RESET_STATS() __kmp_reset_stats() 967 968 #if (KMP_DEVELOPER_STATS) 969 #define KMP_COUNT_DEVELOPER_VALUE(n, v) KMP_COUNT_VALUE(n, v) 970 #define KMP_COUNT_DEVELOPER_BLOCK(n) KMP_COUNT_BLOCK(n) 971 #define KMP_TIME_DEVELOPER_PARTITIONED_BLOCK(n) KMP_TIME_PARTITIONED_BLOCK(n) 972 #define KMP_PUSH_DEVELOPER_PARTITIONED_TIMER(n) KMP_PUSH_PARTITIONED_TIMER(n) 973 #define KMP_POP_DEVELOPER_PARTITIONED_TIMER(n) KMP_POP_PARTITIONED_TIMER(n) 974 #define KMP_EXCHANGE_DEVELOPER_PARTITIONED_TIMER(n) \ 975 KMP_EXCHANGE_PARTITIONED_TIMER(n) 976 #else 977 // Null definitions 978 #define KMP_COUNT_DEVELOPER_VALUE(n, v) ((void)0) 979 #define KMP_COUNT_DEVELOPER_BLOCK(n) ((void)0) 980 #define KMP_TIME_DEVELOPER_PARTITIONED_BLOCK(n) ((void)0) 981 #define KMP_PUSH_DEVELOPER_PARTITIONED_TIMER(n) ((void)0) 982 #define KMP_POP_DEVELOPER_PARTITIONED_TIMER(n) ((void)0) 983 #define KMP_EXCHANGE_DEVELOPER_PARTITIONED_TIMER(n) ((void)0) 984 #endif 985 986 #else // KMP_STATS_ENABLED 987 988 // Null definitions 989 #define KMP_COUNT_VALUE(n, v) ((void)0) 990 #define KMP_COUNT_BLOCK(n) ((void)0) 991 992 #define KMP_OUTPUT_STATS(heading_string) ((void)0) 993 #define KMP_RESET_STATS() ((void)0) 994 995 #define KMP_COUNT_DEVELOPER_VALUE(n, v) ((void)0) 996 #define KMP_COUNT_DEVELOPER_BLOCK(n) ((void)0) 997 #define KMP_TIME_DEVELOPER_PARTITIONED_BLOCK(n) ((void)0) 998 #define KMP_PUSH_DEVELOPER_PARTITIONED_TIMER(n) ((void)0) 999 #define KMP_POP_DEVELOPER_PARTITIONED_TIMER(n) ((void)0) 1000 #define KMP_EXCHANGE_DEVELOPER_PARTITIONED_TIMER(n) ((void)0) 1001 #define KMP_INIT_PARTITIONED_TIMERS(name) ((void)0) 1002 #define KMP_TIME_PARTITIONED_BLOCK(name) ((void)0) 1003 #define KMP_PUSH_PARTITIONED_TIMER(name) ((void)0) 1004 #define KMP_POP_PARTITIONED_TIMER() ((void)0) 1005 #define KMP_SET_THREAD_STATE(state_name) ((void)0) 1006 #define KMP_GET_THREAD_STATE() ((void)0) 1007 #define KMP_SET_THREAD_STATE_BLOCK(state_name) ((void)0) 1008 #endif // KMP_STATS_ENABLED 1009 1010 #endif // KMP_STATS_H 1011