xref: /freebsd/contrib/llvm-project/openmp/runtime/src/kmp_stats.h (revision 92b14858b44dc4b3b57154a10e9de1b39d791e41)
1 #ifndef KMP_STATS_H
2 #define KMP_STATS_H
3 
4 /** @file kmp_stats.h
5  * Functions for collecting statistics.
6  */
7 
8 //===----------------------------------------------------------------------===//
9 //
10 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
11 // See https://llvm.org/LICENSE.txt for license information.
12 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
13 //
14 //===----------------------------------------------------------------------===//
15 
16 #include "kmp_config.h"
17 #include "kmp_debug.h"
18 
19 #if KMP_STATS_ENABLED
20 /* Statistics accumulator.
21    Accumulates number of samples and computes min, max, mean, standard deviation
22    on the fly.
23 
24    Online variance calculation algorithm from
25    http://en.wikipedia.org/wiki/Algorithms_for_calculating_variance#On-line_algorithm
26  */
27 
28 #include "kmp_stats_timing.h"
29 #include <limits>
30 #include <math.h>
31 #include <new> // placement new
32 #include <stdint.h>
33 #include <string>
34 #include <vector>
35 
36 /* Enable developer statistics here if you want them. They are more detailed
37    than is useful for application characterisation and are intended for the
38    runtime library developer. */
39 #define KMP_DEVELOPER_STATS 0
40 
41 /* Enable/Disable histogram output */
42 #define KMP_STATS_HIST 0
43 
44 /*!
45  * @ingroup STATS_GATHERING
46  * \brief flags to describe the statistic (timer or counter)
47  *
48  */
49 enum stats_flags_e {
50   noTotal = 1 << 0, //!< do not show a TOTAL_aggregation for this statistic
51   onlyInMaster = 1 << 1, //!< statistic is valid only for master
52   noUnits = 1 << 2, //!< statistic doesn't need units printed next to it
53   notInMaster = 1 << 3, //!< statistic is valid only for non-master threads
54   logEvent = 1 << 4 //!< statistic can be logged on the event timeline when
55   //! KMP_STATS_EVENTS is on (valid only for timers)
56 };
57 
58 /*!
59  * @ingroup STATS_GATHERING
60  * \brief the states which a thread can be in
61  *
62  */
63 enum stats_state_e {
64   IDLE,
65   SERIAL_REGION,
66   FORK_JOIN_BARRIER,
67   PLAIN_BARRIER,
68   TASKWAIT,
69   TASKYIELD,
70   TASKGROUP,
71   IMPLICIT_TASK,
72   EXPLICIT_TASK,
73   TEAMS_REGION
74 };
75 
76 /*!
77  * \brief Add new counters under KMP_FOREACH_COUNTER() macro in kmp_stats.h
78  *
79  * @param macro a user defined macro that takes three arguments -
80  * macro(COUNTER_NAME, flags, arg)
81  * @param arg a user defined argument to send to the user defined macro
82  *
83  * \details A counter counts the occurrence of some event. Each thread
84  * accumulates its own count, at the end of execution the counts are aggregated
85  * treating each thread as a separate measurement. (Unless onlyInMaster is set,
86  * in which case there's only a single measurement). The min,mean,max are
87  * therefore the values for the threads. Adding the counter here and then
88  * putting a KMP_BLOCK_COUNTER(name) at the point you want to count is all you
89  * need to do. All of the tables and printing is generated from this macro.
90  * Format is "macro(name, flags, arg)"
91  *
92  * @ingroup STATS_GATHERING
93  */
94 // clang-format off
95 #define KMP_FOREACH_COUNTER(macro, arg)                                        \
96   macro(OMP_PARALLEL,stats_flags_e::onlyInMaster|stats_flags_e::noTotal,arg)   \
97   macro(OMP_NESTED_PARALLEL, 0, arg)                                           \
98   macro(OMP_LOOP_STATIC, 0, arg)                                               \
99   macro(OMP_LOOP_STATIC_STEAL, 0, arg)                                         \
100   macro(OMP_LOOP_DYNAMIC, 0, arg)                                              \
101   macro(OMP_DISTRIBUTE, 0, arg)                                                \
102   macro(OMP_BARRIER, 0, arg)                                                   \
103   macro(OMP_CRITICAL, 0, arg)                                                  \
104   macro(OMP_SINGLE, 0, arg)                                                    \
105   macro(OMP_MASTER, 0, arg)                                                    \
106   macro(OMP_TEAMS, 0, arg)                                                     \
107   macro(OMP_set_lock, 0, arg)                                                  \
108   macro(OMP_test_lock, 0, arg)                                                 \
109   macro(REDUCE_wait, 0, arg)                                                   \
110   macro(REDUCE_nowait, 0, arg)                                                 \
111   macro(OMP_TASKYIELD, 0, arg)                                                 \
112   macro(OMP_TASKLOOP, 0, arg)                                                  \
113   macro(TASK_executed, 0, arg)                                                 \
114   macro(TASK_cancelled, 0, arg)                                                \
115   macro(TASK_stolen, 0, arg)
116 // clang-format on
117 
118 /*!
119  * \brief Add new timers under KMP_FOREACH_TIMER() macro in kmp_stats.h
120  *
121  * @param macro a user defined macro that takes three arguments -
122  * macro(TIMER_NAME, flags, arg)
123  * @param arg a user defined argument to send to the user defined macro
124  *
125  * \details A timer collects multiple samples of some count in each thread and
126  * then finally aggregates all of the samples from all of the threads. For most
127  * timers the printing code also provides an aggregation over the thread totals.
128  * These are printed as TOTAL_foo. The count is normally a time (in ticks),
129  * hence the name "timer". (But can be any value, so we use this for "number of
130  * arguments passed to fork" as well). For timers the threads are not
131  * significant, it's the individual observations that count, so the statistics
132  * are at that level. Format is "macro(name, flags, arg)"
133  *
134  * @ingroup STATS_GATHERING2
135  */
136 // clang-format off
137 #define KMP_FOREACH_TIMER(macro, arg)                                          \
138   macro (OMP_worker_thread_life, stats_flags_e::logEvent, arg)                 \
139   macro (OMP_parallel, stats_flags_e::logEvent, arg)                           \
140   macro (OMP_parallel_overhead, stats_flags_e::logEvent, arg)                  \
141   macro (OMP_teams, stats_flags_e::logEvent, arg)                              \
142   macro (OMP_teams_overhead, stats_flags_e::logEvent, arg)                     \
143   macro (OMP_loop_static, 0, arg)                                              \
144   macro (OMP_loop_static_scheduling, 0, arg)                                   \
145   macro (OMP_loop_dynamic, 0, arg)                                             \
146   macro (OMP_loop_dynamic_scheduling, 0, arg)                                  \
147   macro (OMP_distribute, 0, arg)                                               \
148   macro (OMP_distribute_scheduling, 0, arg)                                    \
149   macro (OMP_critical, 0, arg)                                                 \
150   macro (OMP_critical_wait, 0, arg)                                            \
151   macro (OMP_single, 0, arg)                                                   \
152   macro (OMP_master, 0, arg)                                                   \
153   macro (OMP_task_immediate, 0, arg)                                           \
154   macro (OMP_task_taskwait, 0, arg)                                            \
155   macro (OMP_task_taskyield, 0, arg)                                           \
156   macro (OMP_task_taskgroup, 0, arg)                                           \
157   macro (OMP_task_join_bar, 0, arg)                                            \
158   macro (OMP_task_plain_bar, 0, arg)                                           \
159   macro (OMP_taskloop_scheduling, 0, arg)                                      \
160   macro (OMP_plain_barrier, stats_flags_e::logEvent, arg)                      \
161   macro (OMP_idle, stats_flags_e::logEvent, arg)                               \
162   macro (OMP_fork_barrier, stats_flags_e::logEvent, arg)                       \
163   macro (OMP_join_barrier, stats_flags_e::logEvent, arg)                       \
164   macro (OMP_serial, stats_flags_e::logEvent, arg)                             \
165   macro (OMP_set_numthreads, stats_flags_e::noUnits | stats_flags_e::noTotal,  \
166          arg)                                                                  \
167   macro (OMP_PARALLEL_args, stats_flags_e::noUnits | stats_flags_e::noTotal,   \
168          arg)                                                                  \
169   macro (OMP_loop_static_iterations,                                           \
170          stats_flags_e::noUnits | stats_flags_e::noTotal, arg)                 \
171   macro (OMP_loop_static_total_iterations,                                     \
172          stats_flags_e::noUnits | stats_flags_e::noTotal, arg)                 \
173   macro (OMP_loop_dynamic_iterations,                                          \
174          stats_flags_e::noUnits | stats_flags_e::noTotal, arg)                 \
175   macro (OMP_loop_dynamic_total_iterations,                                    \
176          stats_flags_e::noUnits | stats_flags_e::noTotal, arg)                 \
177   macro (OMP_distribute_iterations,                                            \
178          stats_flags_e::noUnits | stats_flags_e::noTotal, arg)                 \
179   KMP_FOREACH_DEVELOPER_TIMER(macro, arg)
180 // clang-format on
181 
182 // OMP_worker_thread_life -- Time from thread becoming an OpenMP thread (either
183 //                           initializing OpenMP or being created by a master)
184 //                           until the thread is destroyed
185 // OMP_parallel           -- Time thread spends executing work directly
186 //                           within a #pragma omp parallel
187 // OMP_parallel_overhead  -- Time thread spends setting up a parallel region
188 // OMP_loop_static        -- Time thread spends executing loop iterations from
189 //                           a statically scheduled loop
190 // OMP_loop_static_scheduling -- Time thread spends scheduling loop iterations
191 //                               from a statically scheduled loop
192 // OMP_loop_dynamic       -- Time thread spends executing loop iterations from
193 //                           a dynamically scheduled loop
194 // OMP_loop_dynamic_scheduling -- Time thread spends scheduling loop iterations
195 //                                from a dynamically scheduled loop
196 // OMP_critical           -- Time thread spends executing critical section
197 // OMP_critical_wait      -- Time thread spends waiting to enter
198 //                           a critcal seciton
199 // OMP_single             -- Time spent executing a "single" region
200 // OMP_master             -- Time spent executing a "master" region
201 // OMP_task_immediate     -- Time spent executing non-deferred tasks
202 // OMP_task_taskwait      -- Time spent executing tasks inside a taskwait
203 //                           construct
204 // OMP_task_taskyield     -- Time spent executing tasks inside a taskyield
205 //                           construct
206 // OMP_task_taskgroup     -- Time spent executing tasks inside a taskygroup
207 //                           construct
208 // OMP_task_join_bar      -- Time spent executing tasks inside a join barrier
209 // OMP_task_plain_bar     -- Time spent executing tasks inside a barrier
210 //                           construct
211 // OMP_taskloop_scheduling -- Time spent scheduling tasks inside a taskloop
212 //                            construct
213 // OMP_plain_barrier      -- Time spent in a #pragma omp barrier construct or
214 //                           inside implicit barrier at end of worksharing
215 //                           construct
216 // OMP_idle               -- Time worker threads spend waiting for next
217 //                           parallel region
218 // OMP_fork_barrier       -- Time spent in a the fork barrier surrounding a
219 //                           parallel region
220 // OMP_join_barrier       -- Time spent in a the join barrier surrounding a
221 //                           parallel region
222 // OMP_serial             -- Time thread zero spends executing serial code
223 // OMP_set_numthreads     -- Values passed to omp_set_num_threads
224 // OMP_PARALLEL_args      -- Number of arguments passed to a parallel region
225 // OMP_loop_static_iterations -- Number of iterations thread is assigned for
226 //                               statically scheduled loops
227 // OMP_loop_dynamic_iterations -- Number of iterations thread is assigned for
228 //                                dynamically scheduled loops
229 
230 #if (KMP_DEVELOPER_STATS)
231 // Timers which are of interest to runtime library developers, not end users.
232 // These have to be explicitly enabled in addition to the other stats.
233 
234 // KMP_fork_barrier       -- time in __kmp_fork_barrier
235 // KMP_join_barrier       -- time in __kmp_join_barrier
236 // KMP_barrier            -- time in __kmp_barrier
237 // KMP_end_split_barrier  -- time in __kmp_end_split_barrier
238 // KMP_setup_icv_copy     -- time in __kmp_setup_icv_copy
239 // KMP_icv_copy           -- start/stop timer for any ICV copying
240 // KMP_linear_gather      -- time in __kmp_linear_barrier_gather
241 // KMP_linear_release     -- time in __kmp_linear_barrier_release
242 // KMP_tree_gather        -- time in __kmp_tree_barrier_gather
243 // KMP_tree_release       -- time in __kmp_tree_barrier_release
244 // KMP_hyper_gather       -- time in __kmp_hyper_barrier_gather
245 // KMP_hyper_release      -- time in __kmp_hyper_barrier_release
246 // clang-format off
247 #define KMP_FOREACH_DEVELOPER_TIMER(macro, arg)                                \
248   macro(KMP_fork_call, 0, arg)                                                 \
249   macro(KMP_join_call, 0, arg)                                                 \
250   macro(KMP_end_split_barrier, 0, arg)                                         \
251   macro(KMP_hier_gather, 0, arg)                                               \
252   macro(KMP_hier_release, 0, arg)                                              \
253   macro(KMP_hyper_gather, 0, arg)                                              \
254   macro(KMP_hyper_release, 0, arg)                                             \
255   macro(KMP_linear_gather, 0, arg)                                             \
256   macro(KMP_linear_release, 0, arg)                                            \
257   macro(KMP_tree_gather, 0, arg)                                               \
258   macro(KMP_tree_release, 0, arg)                                              \
259   macro(USER_resume, 0, arg)                                                   \
260   macro(USER_suspend, 0, arg)                                                  \
261   macro(KMP_allocate_team, 0, arg)                                             \
262   macro(KMP_setup_icv_copy, 0, arg)                                            \
263   macro(USER_icv_copy, 0, arg)                                                 \
264   macro (FOR_static_steal_stolen,                                              \
265          stats_flags_e::noUnits | stats_flags_e::noTotal, arg)                 \
266   macro (FOR_static_steal_chunks,                                              \
267          stats_flags_e::noUnits | stats_flags_e::noTotal, arg)
268 #else
269 #define KMP_FOREACH_DEVELOPER_TIMER(macro, arg)
270 #endif
271 // clang-format on
272 
273 /*!
274  * \brief Add new explicit timers under KMP_FOREACH_EXPLICIT_TIMER() macro.
275  *
276  * @param macro a user defined macro that takes three arguments -
277  * macro(TIMER_NAME, flags, arg)
278  * @param arg a user defined argument to send to the user defined macro
279  *
280  * \warning YOU MUST HAVE THE SAME NAMED TIMER UNDER KMP_FOREACH_TIMER() OR ELSE
281  * BAD THINGS WILL HAPPEN!
282  *
283  * \details Explicit timers are ones where we need to allocate a timer itself
284  * (as well as the accumulated timing statistics). We allocate these on a
285  * per-thread basis, and explicitly start and stop them. Block timers just
286  * allocate the timer itself on the stack, and use the destructor to notice
287  * block exit; they don't need to be defined here. The name here should be the
288  * same as that of a timer above.
289  *
290  * @ingroup STATS_GATHERING
291 */
292 #define KMP_FOREACH_EXPLICIT_TIMER(macro, arg) KMP_FOREACH_TIMER(macro, arg)
293 
294 #define ENUMERATE(name, ignore, prefix) prefix##name,
295 enum timer_e { KMP_FOREACH_TIMER(ENUMERATE, TIMER_) TIMER_LAST };
296 
297 enum explicit_timer_e {
298   KMP_FOREACH_EXPLICIT_TIMER(ENUMERATE, EXPLICIT_TIMER_) EXPLICIT_TIMER_LAST
299 };
300 
301 enum counter_e { KMP_FOREACH_COUNTER(ENUMERATE, COUNTER_) COUNTER_LAST };
302 #undef ENUMERATE
303 
304 /*
305  * A logarithmic histogram. It accumulates the number of values in each power of
306  * ten bin.  So 1<=x<10, 10<=x<100, ...
307  * Mostly useful where we have some big outliers and want to see information
308  * about them.
309  */
310 class logHistogram {
311   enum {
312     numBins = 31, /* Number of powers of 10. If this changes you need to change
313                    * the initializer for binMax */
314 
315     /*
316      * If you want to use this to analyse values that may be less than 1, (for
317      * instance times in s), then the logOffset gives you negative powers.
318      * In our case here, we're just looking at times in ticks, or counts, so we
319      * can never see values with magnitude < 1 (other than zero), so we can set
320      * it to 0.  As above change the initializer if you change this.
321      */
322     logOffset = 0
323   };
324   uint32_t KMP_ALIGN_CACHE zeroCount;
325   struct {
326     uint32_t count;
327     double total;
328   } bins[numBins];
329 
330   static double binMax[numBins];
331 
332 #ifdef KMP_DEBUG
333   uint64_t _total;
334 
335   void check() const {
336     uint64_t t = zeroCount;
337     for (int i = 0; i < numBins; i++)
338       t += bins[i].count;
339     KMP_DEBUG_ASSERT(t == _total);
340   }
341 #else
342   void check() const {}
343 #endif
344 
345 public:
346   logHistogram() { reset(); }
347 
348   logHistogram(logHistogram const &o) {
349     for (int i = 0; i < numBins; i++)
350       bins[i] = o.bins[i];
351 #ifdef KMP_DEBUG
352     _total = o._total;
353 #endif
354   }
355 
356   void reset() {
357     zeroCount = 0;
358     for (int i = 0; i < numBins; i++) {
359       bins[i].count = 0;
360       bins[i].total = 0;
361     }
362 
363 #ifdef KMP_DEBUG
364     _total = 0;
365 #endif
366   }
367   uint32_t count(int b) const { return bins[b + logOffset].count; }
368   double total(int b) const { return bins[b + logOffset].total; }
369   static uint32_t findBin(double sample);
370 
371   logHistogram &operator+=(logHistogram const &o) {
372     zeroCount += o.zeroCount;
373     for (int i = 0; i < numBins; i++) {
374       bins[i].count += o.bins[i].count;
375       bins[i].total += o.bins[i].total;
376     }
377 #ifdef KMP_DEBUG
378     _total += o._total;
379     check();
380 #endif
381 
382     return *this;
383   }
384 
385   void addSample(double sample);
386   int minBin() const;
387   int maxBin() const;
388 
389   std::string format(char) const;
390 };
391 
392 class statistic {
393   double KMP_ALIGN_CACHE minVal;
394   double maxVal;
395   double meanVal;
396   double m2;
397   uint64_t sampleCount;
398   double offset;
399   bool collectingHist;
400   logHistogram hist;
401 
402 public:
403   statistic(bool doHist = bool(KMP_STATS_HIST)) {
404     reset();
405     collectingHist = doHist;
406   }
407   statistic(statistic const &o)
408       : minVal(o.minVal), maxVal(o.maxVal), meanVal(o.meanVal), m2(o.m2),
409         sampleCount(o.sampleCount), offset(o.offset),
410         collectingHist(o.collectingHist), hist(o.hist) {}
411   statistic(double minv, double maxv, double meanv, uint64_t sc, double sd)
412       : minVal(minv), maxVal(maxv), meanVal(meanv), m2(sd * sd * sc),
413         sampleCount(sc), offset(0.0), collectingHist(false) {}
414   bool haveHist() const { return collectingHist; }
415   double getMin() const { return minVal; }
416   double getMean() const { return meanVal; }
417   double getMax() const { return maxVal; }
418   uint64_t getCount() const { return sampleCount; }
419   double getSD() const { return sqrt(m2 / sampleCount); }
420   double getTotal() const { return sampleCount * meanVal; }
421   logHistogram const *getHist() const { return &hist; }
422   void setOffset(double d) { offset = d; }
423 
424   void reset() {
425     minVal = std::numeric_limits<double>::max();
426     maxVal = -minVal;
427     meanVal = 0.0;
428     m2 = 0.0;
429     sampleCount = 0;
430     offset = 0.0;
431     hist.reset();
432   }
433   void addSample(double sample);
434   void scale(double factor);
435   void scaleDown(double f) { scale(1. / f); }
436   void forceCount(uint64_t count) { sampleCount = count; }
437   statistic &operator+=(statistic const &other);
438 
439   std::string format(char unit, bool total = false) const;
440   std::string formatHist(char unit) const { return hist.format(unit); }
441 };
442 
443 struct statInfo {
444   const char *name;
445   uint32_t flags;
446 };
447 
448 class timeStat : public statistic {
449   static statInfo timerInfo[];
450 
451 public:
452   timeStat() : statistic() {}
453   static const char *name(timer_e e) { return timerInfo[e].name; }
454   static bool noTotal(timer_e e) {
455     return timerInfo[e].flags & stats_flags_e::noTotal;
456   }
457   static bool masterOnly(timer_e e) {
458     return timerInfo[e].flags & stats_flags_e::onlyInMaster;
459   }
460   static bool workerOnly(timer_e e) {
461     return timerInfo[e].flags & stats_flags_e::notInMaster;
462   }
463   static bool noUnits(timer_e e) {
464     return timerInfo[e].flags & stats_flags_e::noUnits;
465   }
466   static bool logEvent(timer_e e) {
467     return timerInfo[e].flags & stats_flags_e::logEvent;
468   }
469   static void clearEventFlags() {
470     for (int i = 0; i < TIMER_LAST; i++) {
471       timerInfo[i].flags &= (~(stats_flags_e::logEvent));
472     }
473   }
474 };
475 
476 // Where we need explicitly to start and end the timer, this version can be used
477 // Since these timers normally aren't nicely scoped, so don't have a good place
478 // to live on the stack of the thread, they're more work to use.
479 class explicitTimer {
480   timeStat *stat;
481   timer_e timerEnumValue;
482   tsc_tick_count startTime;
483   tsc_tick_count pauseStartTime;
484   tsc_tick_count::tsc_interval_t totalPauseTime;
485 
486 public:
487   explicitTimer(timeStat *s, timer_e te)
488       : stat(s), timerEnumValue(te), startTime(), pauseStartTime(0),
489         totalPauseTime() {}
490 
491   // void setStat(timeStat *s) { stat = s; }
492   void start(tsc_tick_count tick);
493   void pause(tsc_tick_count tick) { pauseStartTime = tick; }
494   void resume(tsc_tick_count tick) {
495     totalPauseTime += (tick - pauseStartTime);
496   }
497   void stop(tsc_tick_count tick, kmp_stats_list *stats_ptr = nullptr);
498   void reset() {
499     startTime = 0;
500     pauseStartTime = 0;
501     totalPauseTime = 0;
502   }
503   timer_e get_type() const { return timerEnumValue; }
504 };
505 
506 // Where you need to partition a threads clock ticks into separate states
507 // e.g., a partitionedTimers class with two timers of EXECUTING_TASK, and
508 // DOING_NOTHING would render these conditions:
509 // time(EXECUTING_TASK) + time(DOING_NOTHING) = total time thread is alive
510 // No clock tick in the EXECUTING_TASK is a member of DOING_NOTHING and vice
511 // versa
512 class partitionedTimers {
513 private:
514   std::vector<explicitTimer> timer_stack;
515 
516 public:
517   partitionedTimers();
518   void init(explicitTimer timer);
519   void exchange(explicitTimer timer);
520   void push(explicitTimer timer);
521   void pop();
522   void windup();
523 };
524 
525 // Special wrapper around the partioned timers to aid timing code blocks
526 // It avoids the need to have an explicit end, leaving the scope suffices.
527 class blockPartitionedTimer {
528   partitionedTimers *part_timers;
529 
530 public:
531   blockPartitionedTimer(partitionedTimers *pt, explicitTimer timer)
532       : part_timers(pt) {
533     part_timers->push(timer);
534   }
535   ~blockPartitionedTimer() { part_timers->pop(); }
536 };
537 
538 // Special wrapper around the thread state to aid in keeping state in code
539 // blocks It avoids the need to have an explicit end, leaving the scope
540 // suffices.
541 class blockThreadState {
542   stats_state_e *state_pointer;
543   stats_state_e old_state;
544 
545 public:
546   blockThreadState(stats_state_e *thread_state_pointer, stats_state_e new_state)
547       : state_pointer(thread_state_pointer), old_state(*thread_state_pointer) {
548     *state_pointer = new_state;
549   }
550   ~blockThreadState() { *state_pointer = old_state; }
551 };
552 
553 // If all you want is a count, then you can use this...
554 // The individual per-thread counts will be aggregated into a statistic at
555 // program exit.
556 class counter {
557   uint64_t value;
558   static const statInfo counterInfo[];
559 
560 public:
561   counter() : value(0) {}
562   void increment() { value++; }
563   uint64_t getValue() const { return value; }
564   void reset() { value = 0; }
565   static const char *name(counter_e e) { return counterInfo[e].name; }
566   static bool masterOnly(counter_e e) {
567     return counterInfo[e].flags & stats_flags_e::onlyInMaster;
568   }
569 };
570 
571 /* ****************************************************************
572     Class to implement an event
573 
574     There are four components to an event: start time, stop time
575     nest_level, and timer_name.
576     The start and stop time should be obvious (recorded in clock ticks).
577     The nest_level relates to the bar width in the timeline graph.
578     The timer_name is used to determine which timer event triggered this event.
579 
580     the interface to this class is through four read-only operations:
581     1) getStart()     -- returns the start time as 64 bit integer
582     2) getStop()      -- returns the stop time as 64 bit integer
583     3) getNestLevel() -- returns the nest level of the event
584     4) getTimerName() -- returns the timer name that triggered event
585 
586     *MORE ON NEST_LEVEL*
587     The nest level is used in the bar graph that represents the timeline.
588     Its main purpose is for showing how events are nested inside eachother.
589     For example, say events, A, B, and C are recorded.  If the timeline
590     looks like this:
591 
592 Begin -------------------------------------------------------------> Time
593          |    |          |        |          |              |
594          A    B          C        C          B              A
595        start start     start     end        end            end
596 
597        Then A, B, C will have a nest level of 1, 2, 3 respectively.
598        These values are then used to calculate the barwidth so you can
599        see that inside A, B has occurred, and inside B, C has occurred.
600        Currently, this is shown with A's bar width being larger than B's
601        bar width, and B's bar width being larger than C's bar width.
602 
603 **************************************************************** */
604 class kmp_stats_event {
605   uint64_t start;
606   uint64_t stop;
607   int nest_level;
608   timer_e timer_name;
609 
610 public:
611   kmp_stats_event()
612       : start(0), stop(0), nest_level(0), timer_name(TIMER_LAST) {}
613   kmp_stats_event(uint64_t strt, uint64_t stp, int nst, timer_e nme)
614       : start(strt), stop(stp), nest_level(nst), timer_name(nme) {}
615   inline uint64_t getStart() const { return start; }
616   inline uint64_t getStop() const { return stop; }
617   inline int getNestLevel() const { return nest_level; }
618   inline timer_e getTimerName() const { return timer_name; }
619 };
620 
621 /* ****************************************************************
622     Class to implement a dynamically expandable array of events
623 
624     ---------------------------------------------------------
625     | event 1 | event 2 | event 3 | event 4 | ... | event N |
626     ---------------------------------------------------------
627 
628     An event is pushed onto the back of this array at every
629     explicitTimer->stop() call.  The event records the thread #,
630     start time, stop time, and nest level related to the bar width.
631 
632     The event vector starts at size INIT_SIZE and grows (doubles in size)
633     if needed.  An implication of this behavior is that log(N)
634     reallocations are needed (where N is number of events).  If you want
635     to avoid reallocations, then set INIT_SIZE to a large value.
636 
637     the interface to this class is through six operations:
638     1) reset() -- sets the internal_size back to 0 but does not deallocate any
639        memory
640     2) size()  -- returns the number of valid elements in the vector
641     3) push_back(start, stop, nest, timer_name) -- pushes an event onto
642        the back of the array
643     4) deallocate() -- frees all memory associated with the vector
644     5) sort() -- sorts the vector by start time
645     6) operator[index] or at(index) -- returns event reference at that index
646 **************************************************************** */
647 class kmp_stats_event_vector {
648   kmp_stats_event *events;
649   int internal_size;
650   int allocated_size;
651   static const int INIT_SIZE = 1024;
652 
653 public:
654   kmp_stats_event_vector() {
655     events =
656         (kmp_stats_event *)__kmp_allocate(sizeof(kmp_stats_event) * INIT_SIZE);
657     internal_size = 0;
658     allocated_size = INIT_SIZE;
659   }
660   ~kmp_stats_event_vector() {}
661   inline void reset() { internal_size = 0; }
662   inline int size() const { return internal_size; }
663   void push_back(uint64_t start_time, uint64_t stop_time, int nest_level,
664                  timer_e name) {
665     int i;
666     if (internal_size == allocated_size) {
667       kmp_stats_event *tmp = (kmp_stats_event *)__kmp_allocate(
668           sizeof(kmp_stats_event) * allocated_size * 2);
669       for (i = 0; i < internal_size; i++)
670         tmp[i] = events[i];
671       __kmp_free(events);
672       events = tmp;
673       allocated_size *= 2;
674     }
675     events[internal_size] =
676         kmp_stats_event(start_time, stop_time, nest_level, name);
677     internal_size++;
678     return;
679   }
680   void deallocate();
681   void sort();
682   const kmp_stats_event &operator[](int index) const { return events[index]; }
683   kmp_stats_event &operator[](int index) { return events[index]; }
684   const kmp_stats_event &at(int index) const { return events[index]; }
685   kmp_stats_event &at(int index) { return events[index]; }
686 };
687 
688 /* ****************************************************************
689     Class to implement a doubly-linked, circular, statistics list
690 
691     |---| ---> |---| ---> |---| ---> |---| ---> ... next
692     |   |      |   |      |   |      |   |
693     |---| <--- |---| <--- |---| <--- |---| <--- ... prev
694     Sentinel   first      second     third
695     Node       node       node       node
696 
697     The Sentinel Node is the user handle on the list.
698     The first node corresponds to thread 0's statistics.
699     The second node corresponds to thread 1's statistics and so on...
700 
701     Each node has a _timers, _counters, and _explicitTimers array to hold that
702     thread's statistics. The _explicitTimers point to the correct _timer and
703     update its statistics at every stop() call. The explicitTimers' pointers are
704     set up in the constructor. Each node also has an event vector to hold that
705     thread's timing events. The event vector expands as necessary and records
706     the start-stop times for each timer.
707 
708     The nestLevel variable is for plotting events and is related
709     to the bar width in the timeline graph.
710 
711     Every thread will have a thread local pointer to its node in
712     the list.  The sentinel node is used by the master thread to
713     store "dummy" statistics before __kmp_create_worker() is called.
714 **************************************************************** */
715 class kmp_stats_list {
716   int gtid;
717   timeStat _timers[TIMER_LAST + 1];
718   counter _counters[COUNTER_LAST + 1];
719   explicitTimer thread_life_timer;
720   partitionedTimers _partitionedTimers;
721   int _nestLevel; // one per thread
722   kmp_stats_event_vector _event_vector;
723   kmp_stats_list *next;
724   kmp_stats_list *prev;
725   stats_state_e state;
726   int thread_is_idle_flag;
727 
728 public:
729   kmp_stats_list()
730       : thread_life_timer(&_timers[TIMER_OMP_worker_thread_life],
731                           TIMER_OMP_worker_thread_life),
732         _nestLevel(0), _event_vector(), next(this), prev(this), state(IDLE),
733         thread_is_idle_flag(0) {}
734   ~kmp_stats_list() {}
735   inline timeStat *getTimer(timer_e idx) { return &_timers[idx]; }
736   inline counter *getCounter(counter_e idx) { return &_counters[idx]; }
737   inline partitionedTimers *getPartitionedTimers() {
738     return &_partitionedTimers;
739   }
740   inline timeStat *getTimers() { return _timers; }
741   inline counter *getCounters() { return _counters; }
742   inline kmp_stats_event_vector &getEventVector() { return _event_vector; }
743   inline void startLife() { thread_life_timer.start(tsc_tick_count::now()); }
744   inline void endLife() { thread_life_timer.stop(tsc_tick_count::now(), this); }
745   inline void resetEventVector() { _event_vector.reset(); }
746   inline void incrementNestValue() { _nestLevel++; }
747   inline int getNestValue() { return _nestLevel; }
748   inline void decrementNestValue() { _nestLevel--; }
749   inline int getGtid() const { return gtid; }
750   inline void setGtid(int newgtid) { gtid = newgtid; }
751   inline void setState(stats_state_e newstate) { state = newstate; }
752   inline stats_state_e getState() const { return state; }
753   inline stats_state_e *getStatePointer() { return &state; }
754   inline bool isIdle() { return thread_is_idle_flag == 1; }
755   inline void setIdleFlag() { thread_is_idle_flag = 1; }
756   inline void resetIdleFlag() { thread_is_idle_flag = 0; }
757   kmp_stats_list *push_back(int gtid); // returns newly created list node
758   inline void push_event(uint64_t start_time, uint64_t stop_time,
759                          int nest_level, timer_e name) {
760     _event_vector.push_back(start_time, stop_time, nest_level, name);
761   }
762   void deallocate();
763   class iterator;
764   kmp_stats_list::iterator begin();
765   kmp_stats_list::iterator end();
766   int size();
767   class iterator {
768     kmp_stats_list *ptr;
769     friend kmp_stats_list::iterator kmp_stats_list::begin();
770     friend kmp_stats_list::iterator kmp_stats_list::end();
771 
772   public:
773     iterator();
774     ~iterator();
775     iterator operator++();
776     iterator operator++(int dummy);
777     iterator operator--();
778     iterator operator--(int dummy);
779     bool operator!=(const iterator &rhs);
780     bool operator==(const iterator &rhs);
781     kmp_stats_list *operator*() const; // dereference operator
782   };
783 };
784 
785 /* ****************************************************************
786    Class to encapsulate all output functions and the environment variables
787 
788    This module holds filenames for various outputs (normal stats, events, plot
789    file), as well as coloring information for the plot file.
790 
791    The filenames and flags variables are read from environment variables.
792    These are read once by the constructor of the global variable
793    __kmp_stats_output which calls init().
794 
795    During this init() call, event flags for the timeStat::timerInfo[] global
796    array are cleared if KMP_STATS_EVENTS is not true (on, 1, yes).
797 
798    The only interface function that is public is outputStats(heading).  This
799    function should print out everything it needs to, either to files or stderr,
800    depending on the environment variables described below
801 
802    ENVIRONMENT VARIABLES:
803    KMP_STATS_FILE -- if set, all statistics (not events) will be printed to this
804                      file, otherwise, print to stderr
805    KMP_STATS_THREADS -- if set to "on", then will print per thread statistics to
806                         either KMP_STATS_FILE or stderr
807    KMP_STATS_PLOT_FILE -- if set, print the ploticus plot file to this filename,
808                           otherwise, the plot file is sent to "events.plt"
809    KMP_STATS_EVENTS -- if set to "on", then log events, otherwise, don't log
810                        events
811    KMP_STATS_EVENTS_FILE -- if set, all events are outputted to this file,
812                             otherwise, output is sent to "events.dat"
813 **************************************************************** */
814 class kmp_stats_output_module {
815 
816 public:
817   struct rgb_color {
818     float r;
819     float g;
820     float b;
821   };
822 
823 private:
824   std::string outputFileName;
825   static const char *eventsFileName;
826   static const char *plotFileName;
827   static int printPerThreadFlag;
828   static int printPerThreadEventsFlag;
829   static const rgb_color globalColorArray[];
830   static rgb_color timerColorInfo[];
831 
832   void init();
833   static void setupEventColors();
834   static void printPloticusFile();
835   static void printHeaderInfo(FILE *statsOut);
836   static void printTimerStats(FILE *statsOut, statistic const *theStats,
837                               statistic const *totalStats);
838   static void printCounterStats(FILE *statsOut, statistic const *theStats);
839   static void printCounters(FILE *statsOut, counter const *theCounters);
840   static void printEvents(FILE *eventsOut, kmp_stats_event_vector *theEvents,
841                           int gtid);
842   static rgb_color getEventColor(timer_e e) { return timerColorInfo[e]; }
843   static void windupExplicitTimers();
844   bool eventPrintingEnabled() const { return printPerThreadEventsFlag; }
845 
846 public:
847   kmp_stats_output_module() { init(); }
848   void outputStats(const char *heading);
849 };
850 
851 #ifdef __cplusplus
852 extern "C" {
853 #endif
854 void __kmp_stats_init();
855 void __kmp_stats_fini();
856 void __kmp_reset_stats();
857 void __kmp_output_stats(const char *);
858 void __kmp_accumulate_stats_at_exit(void);
859 // thread local pointer to stats node within list
860 extern KMP_THREAD_LOCAL kmp_stats_list *__kmp_stats_thread_ptr;
861 // head to stats list.
862 extern kmp_stats_list *__kmp_stats_list;
863 // lock for __kmp_stats_list
864 extern kmp_tas_lock_t __kmp_stats_lock;
865 // reference start time
866 extern tsc_tick_count __kmp_stats_start_time;
867 // interface to output
868 extern kmp_stats_output_module __kmp_stats_output;
869 
870 #ifdef __cplusplus
871 }
872 #endif
873 
874 // Simple, standard interfaces that drop out completely if stats aren't enabled
875 
876 /*!
877  * \brief Adds value to specified timer (name).
878  *
879  * @param name timer name as specified under the KMP_FOREACH_TIMER() macro
880  * @param value double precision sample value to add to statistics for the timer
881  *
882  * \details Use KMP_COUNT_VALUE(name, value) macro to add a particular value to
883  * a timer statistics.
884  *
885  * @ingroup STATS_GATHERING
886 */
887 #define KMP_COUNT_VALUE(name, value)                                           \
888   __kmp_stats_thread_ptr->getTimer(TIMER_##name)->addSample(value)
889 
890 /*!
891  * \brief Increments specified counter (name).
892  *
893  * @param name counter name as specified under the KMP_FOREACH_COUNTER() macro
894  *
895  * \details Use KMP_COUNT_BLOCK(name, value) macro to increment a statistics
896  * counter for the executing thread.
897  *
898  * @ingroup STATS_GATHERING
899 */
900 #define KMP_COUNT_BLOCK(name)                                                  \
901   __kmp_stats_thread_ptr->getCounter(COUNTER_##name)->increment()
902 
903 /*!
904  * \brief Outputs the current thread statistics and reset them.
905  *
906  * @param heading_string heading put above the final stats output
907  *
908  * \details Explicitly stops all timers and outputs all stats. Environment
909  * variable, `OMPTB_STATSFILE=filename`, can be used to output the stats to a
910  * filename instead of stderr. Environment variable,
911  * `OMPTB_STATSTHREADS=true|undefined`, can be used to output thread specific
912  * stats. For now the `OMPTB_STATSTHREADS` environment variable can either be
913  * defined with any value, which will print out thread specific stats, or it can
914  * be undefined (not specified in the environment) and thread specific stats
915  * won't be printed. It should be noted that all statistics are reset when this
916  * macro is called.
917  *
918  * @ingroup STATS_GATHERING
919 */
920 #define KMP_OUTPUT_STATS(heading_string) __kmp_output_stats(heading_string)
921 
922 /*!
923  * \brief Initializes the paritioned timers to begin with name.
924  *
925  * @param name timer which you want this thread to begin with
926  *
927  * @ingroup STATS_GATHERING
928 */
929 #define KMP_INIT_PARTITIONED_TIMERS(name)                                      \
930   __kmp_stats_thread_ptr->getPartitionedTimers()->init(explicitTimer(          \
931       __kmp_stats_thread_ptr->getTimer(TIMER_##name), TIMER_##name))
932 
933 #define KMP_TIME_PARTITIONED_BLOCK(name)                                       \
934   blockPartitionedTimer __PBLOCKTIME__(                                        \
935       __kmp_stats_thread_ptr->getPartitionedTimers(),                          \
936       explicitTimer(__kmp_stats_thread_ptr->getTimer(TIMER_##name),            \
937                     TIMER_##name))
938 
939 #define KMP_PUSH_PARTITIONED_TIMER(name)                                       \
940   __kmp_stats_thread_ptr->getPartitionedTimers()->push(explicitTimer(          \
941       __kmp_stats_thread_ptr->getTimer(TIMER_##name), TIMER_##name))
942 
943 #define KMP_POP_PARTITIONED_TIMER()                                            \
944   __kmp_stats_thread_ptr->getPartitionedTimers()->pop()
945 
946 #define KMP_EXCHANGE_PARTITIONED_TIMER(name)                                   \
947   __kmp_stats_thread_ptr->getPartitionedTimers()->exchange(explicitTimer(      \
948       __kmp_stats_thread_ptr->getTimer(TIMER_##name), TIMER_##name))
949 
950 #define KMP_SET_THREAD_STATE(state_name)                                       \
951   __kmp_stats_thread_ptr->setState(state_name)
952 
953 #define KMP_GET_THREAD_STATE() __kmp_stats_thread_ptr->getState()
954 
955 #define KMP_SET_THREAD_STATE_BLOCK(state_name)                                 \
956   blockThreadState __BTHREADSTATE__(__kmp_stats_thread_ptr->getStatePointer(), \
957                                     state_name)
958 
959 /*!
960  * \brief resets all stats (counters to 0, timers to 0 elapsed ticks)
961  *
962  * \details Reset all stats for all threads.
963  *
964  * @ingroup STATS_GATHERING
965 */
966 #define KMP_RESET_STATS() __kmp_reset_stats()
967 
968 #if (KMP_DEVELOPER_STATS)
969 #define KMP_COUNT_DEVELOPER_VALUE(n, v) KMP_COUNT_VALUE(n, v)
970 #define KMP_COUNT_DEVELOPER_BLOCK(n) KMP_COUNT_BLOCK(n)
971 #define KMP_TIME_DEVELOPER_PARTITIONED_BLOCK(n) KMP_TIME_PARTITIONED_BLOCK(n)
972 #define KMP_PUSH_DEVELOPER_PARTITIONED_TIMER(n) KMP_PUSH_PARTITIONED_TIMER(n)
973 #define KMP_POP_DEVELOPER_PARTITIONED_TIMER(n) KMP_POP_PARTITIONED_TIMER(n)
974 #define KMP_EXCHANGE_DEVELOPER_PARTITIONED_TIMER(n)                            \
975   KMP_EXCHANGE_PARTITIONED_TIMER(n)
976 #else
977 // Null definitions
978 #define KMP_COUNT_DEVELOPER_VALUE(n, v) ((void)0)
979 #define KMP_COUNT_DEVELOPER_BLOCK(n) ((void)0)
980 #define KMP_TIME_DEVELOPER_PARTITIONED_BLOCK(n) ((void)0)
981 #define KMP_PUSH_DEVELOPER_PARTITIONED_TIMER(n) ((void)0)
982 #define KMP_POP_DEVELOPER_PARTITIONED_TIMER(n) ((void)0)
983 #define KMP_EXCHANGE_DEVELOPER_PARTITIONED_TIMER(n) ((void)0)
984 #endif
985 
986 #else // KMP_STATS_ENABLED
987 
988 // Null definitions
989 #define KMP_COUNT_VALUE(n, v) ((void)0)
990 #define KMP_COUNT_BLOCK(n) ((void)0)
991 
992 #define KMP_OUTPUT_STATS(heading_string) ((void)0)
993 #define KMP_RESET_STATS() ((void)0)
994 
995 #define KMP_COUNT_DEVELOPER_VALUE(n, v) ((void)0)
996 #define KMP_COUNT_DEVELOPER_BLOCK(n) ((void)0)
997 #define KMP_TIME_DEVELOPER_PARTITIONED_BLOCK(n) ((void)0)
998 #define KMP_PUSH_DEVELOPER_PARTITIONED_TIMER(n) ((void)0)
999 #define KMP_POP_DEVELOPER_PARTITIONED_TIMER(n) ((void)0)
1000 #define KMP_EXCHANGE_DEVELOPER_PARTITIONED_TIMER(n) ((void)0)
1001 #define KMP_INIT_PARTITIONED_TIMERS(name) ((void)0)
1002 #define KMP_TIME_PARTITIONED_BLOCK(name) ((void)0)
1003 #define KMP_PUSH_PARTITIONED_TIMER(name) ((void)0)
1004 #define KMP_POP_PARTITIONED_TIMER() ((void)0)
1005 #define KMP_SET_THREAD_STATE(state_name) ((void)0)
1006 #define KMP_GET_THREAD_STATE() ((void)0)
1007 #define KMP_SET_THREAD_STATE_BLOCK(state_name) ((void)0)
1008 #endif // KMP_STATS_ENABLED
1009 
1010 #endif // KMP_STATS_H
1011