xref: /freebsd/contrib/llvm-project/openmp/runtime/src/kmp_runtime.cpp (revision d4eeb02986980bf33dd56c41ceb9fc5f180c0d47)
1 /*
2  * kmp_runtime.cpp -- KPTS runtime support library
3  */
4 
5 //===----------------------------------------------------------------------===//
6 //
7 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
8 // See https://llvm.org/LICENSE.txt for license information.
9 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "kmp.h"
14 #include "kmp_affinity.h"
15 #include "kmp_atomic.h"
16 #include "kmp_environment.h"
17 #include "kmp_error.h"
18 #include "kmp_i18n.h"
19 #include "kmp_io.h"
20 #include "kmp_itt.h"
21 #include "kmp_settings.h"
22 #include "kmp_stats.h"
23 #include "kmp_str.h"
24 #include "kmp_wait_release.h"
25 #include "kmp_wrapper_getpid.h"
26 #include "kmp_dispatch.h"
27 #if KMP_USE_HIER_SCHED
28 #include "kmp_dispatch_hier.h"
29 #endif
30 
31 #if OMPT_SUPPORT
32 #include "ompt-specific.h"
33 #endif
34 #if OMPD_SUPPORT
35 #include "ompd-specific.h"
36 #endif
37 
38 #if OMP_PROFILING_SUPPORT
39 #include "llvm/Support/TimeProfiler.h"
40 static char *ProfileTraceFile = nullptr;
41 #endif
42 
43 /* these are temporary issues to be dealt with */
44 #define KMP_USE_PRCTL 0
45 
46 #if KMP_OS_WINDOWS
47 #include <process.h>
48 #endif
49 
50 #if KMP_OS_WINDOWS
51 // windows does not need include files as it doesn't use shared memory
52 #else
53 #include <sys/mman.h>
54 #include <sys/stat.h>
55 #include <fcntl.h>
56 #define SHM_SIZE 1024
57 #endif
58 
59 #if defined(KMP_GOMP_COMPAT)
60 char const __kmp_version_alt_comp[] =
61     KMP_VERSION_PREFIX "alternative compiler support: yes";
62 #endif /* defined(KMP_GOMP_COMPAT) */
63 
64 char const __kmp_version_omp_api[] =
65     KMP_VERSION_PREFIX "API version: 5.0 (201611)";
66 
67 #ifdef KMP_DEBUG
68 char const __kmp_version_lock[] =
69     KMP_VERSION_PREFIX "lock type: run time selectable";
70 #endif /* KMP_DEBUG */
71 
72 #define KMP_MIN(x, y) ((x) < (y) ? (x) : (y))
73 
74 /* ------------------------------------------------------------------------ */
75 
76 #if KMP_USE_MONITOR
77 kmp_info_t __kmp_monitor;
78 #endif
79 
80 /* Forward declarations */
81 
82 void __kmp_cleanup(void);
83 
84 static void __kmp_initialize_info(kmp_info_t *, kmp_team_t *, int tid,
85                                   int gtid);
86 static void __kmp_initialize_team(kmp_team_t *team, int new_nproc,
87                                   kmp_internal_control_t *new_icvs,
88                                   ident_t *loc);
89 #if KMP_AFFINITY_SUPPORTED
90 static void __kmp_partition_places(kmp_team_t *team,
91                                    int update_master_only = 0);
92 #endif
93 static void __kmp_do_serial_initialize(void);
94 void __kmp_fork_barrier(int gtid, int tid);
95 void __kmp_join_barrier(int gtid);
96 void __kmp_setup_icv_copy(kmp_team_t *team, int new_nproc,
97                           kmp_internal_control_t *new_icvs, ident_t *loc);
98 
99 #ifdef USE_LOAD_BALANCE
100 static int __kmp_load_balance_nproc(kmp_root_t *root, int set_nproc);
101 #endif
102 
103 static int __kmp_expand_threads(int nNeed);
104 #if KMP_OS_WINDOWS
105 static int __kmp_unregister_root_other_thread(int gtid);
106 #endif
107 static void __kmp_reap_thread(kmp_info_t *thread, int is_root);
108 kmp_info_t *__kmp_thread_pool_insert_pt = NULL;
109 
110 void __kmp_resize_dist_barrier(kmp_team_t *team, int old_nthreads,
111                                int new_nthreads);
112 void __kmp_add_threads_to_team(kmp_team_t *team, int new_nthreads);
113 
114 /* Calculate the identifier of the current thread */
115 /* fast (and somewhat portable) way to get unique identifier of executing
116    thread. Returns KMP_GTID_DNE if we haven't been assigned a gtid. */
117 int __kmp_get_global_thread_id() {
118   int i;
119   kmp_info_t **other_threads;
120   size_t stack_data;
121   char *stack_addr;
122   size_t stack_size;
123   char *stack_base;
124 
125   KA_TRACE(
126       1000,
127       ("*** __kmp_get_global_thread_id: entering, nproc=%d  all_nproc=%d\n",
128        __kmp_nth, __kmp_all_nth));
129 
130   /* JPH - to handle the case where __kmpc_end(0) is called immediately prior to
131      a parallel region, made it return KMP_GTID_DNE to force serial_initialize
132      by caller. Had to handle KMP_GTID_DNE at all call-sites, or else guarantee
133      __kmp_init_gtid for this to work. */
134 
135   if (!TCR_4(__kmp_init_gtid))
136     return KMP_GTID_DNE;
137 
138 #ifdef KMP_TDATA_GTID
139   if (TCR_4(__kmp_gtid_mode) >= 3) {
140     KA_TRACE(1000, ("*** __kmp_get_global_thread_id: using TDATA\n"));
141     return __kmp_gtid;
142   }
143 #endif
144   if (TCR_4(__kmp_gtid_mode) >= 2) {
145     KA_TRACE(1000, ("*** __kmp_get_global_thread_id: using keyed TLS\n"));
146     return __kmp_gtid_get_specific();
147   }
148   KA_TRACE(1000, ("*** __kmp_get_global_thread_id: using internal alg.\n"));
149 
150   stack_addr = (char *)&stack_data;
151   other_threads = __kmp_threads;
152 
153   /* ATT: The code below is a source of potential bugs due to unsynchronized
154      access to __kmp_threads array. For example:
155      1. Current thread loads other_threads[i] to thr and checks it, it is
156         non-NULL.
157      2. Current thread is suspended by OS.
158      3. Another thread unregisters and finishes (debug versions of free()
159         may fill memory with something like 0xEF).
160      4. Current thread is resumed.
161      5. Current thread reads junk from *thr.
162      TODO: Fix it.  --ln  */
163 
164   for (i = 0; i < __kmp_threads_capacity; i++) {
165 
166     kmp_info_t *thr = (kmp_info_t *)TCR_SYNC_PTR(other_threads[i]);
167     if (!thr)
168       continue;
169 
170     stack_size = (size_t)TCR_PTR(thr->th.th_info.ds.ds_stacksize);
171     stack_base = (char *)TCR_PTR(thr->th.th_info.ds.ds_stackbase);
172 
173     /* stack grows down -- search through all of the active threads */
174 
175     if (stack_addr <= stack_base) {
176       size_t stack_diff = stack_base - stack_addr;
177 
178       if (stack_diff <= stack_size) {
179         /* The only way we can be closer than the allocated */
180         /* stack size is if we are running on this thread. */
181         KMP_DEBUG_ASSERT(__kmp_gtid_get_specific() == i);
182         return i;
183       }
184     }
185   }
186 
187   /* get specific to try and determine our gtid */
188   KA_TRACE(1000,
189            ("*** __kmp_get_global_thread_id: internal alg. failed to find "
190             "thread, using TLS\n"));
191   i = __kmp_gtid_get_specific();
192 
193   /*fprintf( stderr, "=== %d\n", i );  */ /* GROO */
194 
195   /* if we havn't been assigned a gtid, then return code */
196   if (i < 0)
197     return i;
198 
199   /* dynamically updated stack window for uber threads to avoid get_specific
200      call */
201   if (!TCR_4(other_threads[i]->th.th_info.ds.ds_stackgrow)) {
202     KMP_FATAL(StackOverflow, i);
203   }
204 
205   stack_base = (char *)other_threads[i]->th.th_info.ds.ds_stackbase;
206   if (stack_addr > stack_base) {
207     TCW_PTR(other_threads[i]->th.th_info.ds.ds_stackbase, stack_addr);
208     TCW_PTR(other_threads[i]->th.th_info.ds.ds_stacksize,
209             other_threads[i]->th.th_info.ds.ds_stacksize + stack_addr -
210                 stack_base);
211   } else {
212     TCW_PTR(other_threads[i]->th.th_info.ds.ds_stacksize,
213             stack_base - stack_addr);
214   }
215 
216   /* Reprint stack bounds for ubermaster since they have been refined */
217   if (__kmp_storage_map) {
218     char *stack_end = (char *)other_threads[i]->th.th_info.ds.ds_stackbase;
219     char *stack_beg = stack_end - other_threads[i]->th.th_info.ds.ds_stacksize;
220     __kmp_print_storage_map_gtid(i, stack_beg, stack_end,
221                                  other_threads[i]->th.th_info.ds.ds_stacksize,
222                                  "th_%d stack (refinement)", i);
223   }
224   return i;
225 }
226 
227 int __kmp_get_global_thread_id_reg() {
228   int gtid;
229 
230   if (!__kmp_init_serial) {
231     gtid = KMP_GTID_DNE;
232   } else
233 #ifdef KMP_TDATA_GTID
234       if (TCR_4(__kmp_gtid_mode) >= 3) {
235     KA_TRACE(1000, ("*** __kmp_get_global_thread_id_reg: using TDATA\n"));
236     gtid = __kmp_gtid;
237   } else
238 #endif
239       if (TCR_4(__kmp_gtid_mode) >= 2) {
240     KA_TRACE(1000, ("*** __kmp_get_global_thread_id_reg: using keyed TLS\n"));
241     gtid = __kmp_gtid_get_specific();
242   } else {
243     KA_TRACE(1000,
244              ("*** __kmp_get_global_thread_id_reg: using internal alg.\n"));
245     gtid = __kmp_get_global_thread_id();
246   }
247 
248   /* we must be a new uber master sibling thread */
249   if (gtid == KMP_GTID_DNE) {
250     KA_TRACE(10,
251              ("__kmp_get_global_thread_id_reg: Encountered new root thread. "
252               "Registering a new gtid.\n"));
253     __kmp_acquire_bootstrap_lock(&__kmp_initz_lock);
254     if (!__kmp_init_serial) {
255       __kmp_do_serial_initialize();
256       gtid = __kmp_gtid_get_specific();
257     } else {
258       gtid = __kmp_register_root(FALSE);
259     }
260     __kmp_release_bootstrap_lock(&__kmp_initz_lock);
261     /*__kmp_printf( "+++ %d\n", gtid ); */ /* GROO */
262   }
263 
264   KMP_DEBUG_ASSERT(gtid >= 0);
265 
266   return gtid;
267 }
268 
269 /* caller must hold forkjoin_lock */
270 void __kmp_check_stack_overlap(kmp_info_t *th) {
271   int f;
272   char *stack_beg = NULL;
273   char *stack_end = NULL;
274   int gtid;
275 
276   KA_TRACE(10, ("__kmp_check_stack_overlap: called\n"));
277   if (__kmp_storage_map) {
278     stack_end = (char *)th->th.th_info.ds.ds_stackbase;
279     stack_beg = stack_end - th->th.th_info.ds.ds_stacksize;
280 
281     gtid = __kmp_gtid_from_thread(th);
282 
283     if (gtid == KMP_GTID_MONITOR) {
284       __kmp_print_storage_map_gtid(
285           gtid, stack_beg, stack_end, th->th.th_info.ds.ds_stacksize,
286           "th_%s stack (%s)", "mon",
287           (th->th.th_info.ds.ds_stackgrow) ? "initial" : "actual");
288     } else {
289       __kmp_print_storage_map_gtid(
290           gtid, stack_beg, stack_end, th->th.th_info.ds.ds_stacksize,
291           "th_%d stack (%s)", gtid,
292           (th->th.th_info.ds.ds_stackgrow) ? "initial" : "actual");
293     }
294   }
295 
296   /* No point in checking ubermaster threads since they use refinement and
297    * cannot overlap */
298   gtid = __kmp_gtid_from_thread(th);
299   if (__kmp_env_checks == TRUE && !KMP_UBER_GTID(gtid)) {
300     KA_TRACE(10,
301              ("__kmp_check_stack_overlap: performing extensive checking\n"));
302     if (stack_beg == NULL) {
303       stack_end = (char *)th->th.th_info.ds.ds_stackbase;
304       stack_beg = stack_end - th->th.th_info.ds.ds_stacksize;
305     }
306 
307     for (f = 0; f < __kmp_threads_capacity; f++) {
308       kmp_info_t *f_th = (kmp_info_t *)TCR_SYNC_PTR(__kmp_threads[f]);
309 
310       if (f_th && f_th != th) {
311         char *other_stack_end =
312             (char *)TCR_PTR(f_th->th.th_info.ds.ds_stackbase);
313         char *other_stack_beg =
314             other_stack_end - (size_t)TCR_PTR(f_th->th.th_info.ds.ds_stacksize);
315         if ((stack_beg > other_stack_beg && stack_beg < other_stack_end) ||
316             (stack_end > other_stack_beg && stack_end < other_stack_end)) {
317 
318           /* Print the other stack values before the abort */
319           if (__kmp_storage_map)
320             __kmp_print_storage_map_gtid(
321                 -1, other_stack_beg, other_stack_end,
322                 (size_t)TCR_PTR(f_th->th.th_info.ds.ds_stacksize),
323                 "th_%d stack (overlapped)", __kmp_gtid_from_thread(f_th));
324 
325           __kmp_fatal(KMP_MSG(StackOverlap), KMP_HNT(ChangeStackLimit),
326                       __kmp_msg_null);
327         }
328       }
329     }
330   }
331   KA_TRACE(10, ("__kmp_check_stack_overlap: returning\n"));
332 }
333 
334 /* ------------------------------------------------------------------------ */
335 
336 void __kmp_infinite_loop(void) {
337   static int done = FALSE;
338 
339   while (!done) {
340     KMP_YIELD(TRUE);
341   }
342 }
343 
344 #define MAX_MESSAGE 512
345 
346 void __kmp_print_storage_map_gtid(int gtid, void *p1, void *p2, size_t size,
347                                   char const *format, ...) {
348   char buffer[MAX_MESSAGE];
349   va_list ap;
350 
351   va_start(ap, format);
352   KMP_SNPRINTF(buffer, sizeof(buffer), "OMP storage map: %p %p%8lu %s\n", p1,
353                p2, (unsigned long)size, format);
354   __kmp_acquire_bootstrap_lock(&__kmp_stdio_lock);
355   __kmp_vprintf(kmp_err, buffer, ap);
356 #if KMP_PRINT_DATA_PLACEMENT
357   int node;
358   if (gtid >= 0) {
359     if (p1 <= p2 && (char *)p2 - (char *)p1 == size) {
360       if (__kmp_storage_map_verbose) {
361         node = __kmp_get_host_node(p1);
362         if (node < 0) /* doesn't work, so don't try this next time */
363           __kmp_storage_map_verbose = FALSE;
364         else {
365           char *last;
366           int lastNode;
367           int localProc = __kmp_get_cpu_from_gtid(gtid);
368 
369           const int page_size = KMP_GET_PAGE_SIZE();
370 
371           p1 = (void *)((size_t)p1 & ~((size_t)page_size - 1));
372           p2 = (void *)(((size_t)p2 - 1) & ~((size_t)page_size - 1));
373           if (localProc >= 0)
374             __kmp_printf_no_lock("  GTID %d localNode %d\n", gtid,
375                                  localProc >> 1);
376           else
377             __kmp_printf_no_lock("  GTID %d\n", gtid);
378 #if KMP_USE_PRCTL
379           /* The more elaborate format is disabled for now because of the prctl
380            * hanging bug. */
381           do {
382             last = p1;
383             lastNode = node;
384             /* This loop collates adjacent pages with the same host node. */
385             do {
386               (char *)p1 += page_size;
387             } while (p1 <= p2 && (node = __kmp_get_host_node(p1)) == lastNode);
388             __kmp_printf_no_lock("    %p-%p memNode %d\n", last, (char *)p1 - 1,
389                                  lastNode);
390           } while (p1 <= p2);
391 #else
392           __kmp_printf_no_lock("    %p-%p memNode %d\n", p1,
393                                (char *)p1 + (page_size - 1),
394                                __kmp_get_host_node(p1));
395           if (p1 < p2) {
396             __kmp_printf_no_lock("    %p-%p memNode %d\n", p2,
397                                  (char *)p2 + (page_size - 1),
398                                  __kmp_get_host_node(p2));
399           }
400 #endif
401         }
402       }
403     } else
404       __kmp_printf_no_lock("  %s\n", KMP_I18N_STR(StorageMapWarning));
405   }
406 #endif /* KMP_PRINT_DATA_PLACEMENT */
407   __kmp_release_bootstrap_lock(&__kmp_stdio_lock);
408 }
409 
410 void __kmp_warn(char const *format, ...) {
411   char buffer[MAX_MESSAGE];
412   va_list ap;
413 
414   if (__kmp_generate_warnings == kmp_warnings_off) {
415     return;
416   }
417 
418   va_start(ap, format);
419 
420   KMP_SNPRINTF(buffer, sizeof(buffer), "OMP warning: %s\n", format);
421   __kmp_acquire_bootstrap_lock(&__kmp_stdio_lock);
422   __kmp_vprintf(kmp_err, buffer, ap);
423   __kmp_release_bootstrap_lock(&__kmp_stdio_lock);
424 
425   va_end(ap);
426 }
427 
428 void __kmp_abort_process() {
429   // Later threads may stall here, but that's ok because abort() will kill them.
430   __kmp_acquire_bootstrap_lock(&__kmp_exit_lock);
431 
432   if (__kmp_debug_buf) {
433     __kmp_dump_debug_buffer();
434   }
435 
436   if (KMP_OS_WINDOWS) {
437     // Let other threads know of abnormal termination and prevent deadlock
438     // if abort happened during library initialization or shutdown
439     __kmp_global.g.g_abort = SIGABRT;
440 
441     /* On Windows* OS by default abort() causes pop-up error box, which stalls
442        nightly testing. Unfortunately, we cannot reliably suppress pop-up error
443        boxes. _set_abort_behavior() works well, but this function is not
444        available in VS7 (this is not problem for DLL, but it is a problem for
445        static OpenMP RTL). SetErrorMode (and so, timelimit utility) does not
446        help, at least in some versions of MS C RTL.
447 
448        It seems following sequence is the only way to simulate abort() and
449        avoid pop-up error box. */
450     raise(SIGABRT);
451     _exit(3); // Just in case, if signal ignored, exit anyway.
452   } else {
453     __kmp_unregister_library();
454     abort();
455   }
456 
457   __kmp_infinite_loop();
458   __kmp_release_bootstrap_lock(&__kmp_exit_lock);
459 
460 } // __kmp_abort_process
461 
462 void __kmp_abort_thread(void) {
463   // TODO: Eliminate g_abort global variable and this function.
464   // In case of abort just call abort(), it will kill all the threads.
465   __kmp_infinite_loop();
466 } // __kmp_abort_thread
467 
468 /* Print out the storage map for the major kmp_info_t thread data structures
469    that are allocated together. */
470 
471 static void __kmp_print_thread_storage_map(kmp_info_t *thr, int gtid) {
472   __kmp_print_storage_map_gtid(gtid, thr, thr + 1, sizeof(kmp_info_t), "th_%d",
473                                gtid);
474 
475   __kmp_print_storage_map_gtid(gtid, &thr->th.th_info, &thr->th.th_team,
476                                sizeof(kmp_desc_t), "th_%d.th_info", gtid);
477 
478   __kmp_print_storage_map_gtid(gtid, &thr->th.th_local, &thr->th.th_pri_head,
479                                sizeof(kmp_local_t), "th_%d.th_local", gtid);
480 
481   __kmp_print_storage_map_gtid(
482       gtid, &thr->th.th_bar[0], &thr->th.th_bar[bs_last_barrier],
483       sizeof(kmp_balign_t) * bs_last_barrier, "th_%d.th_bar", gtid);
484 
485   __kmp_print_storage_map_gtid(gtid, &thr->th.th_bar[bs_plain_barrier],
486                                &thr->th.th_bar[bs_plain_barrier + 1],
487                                sizeof(kmp_balign_t), "th_%d.th_bar[plain]",
488                                gtid);
489 
490   __kmp_print_storage_map_gtid(gtid, &thr->th.th_bar[bs_forkjoin_barrier],
491                                &thr->th.th_bar[bs_forkjoin_barrier + 1],
492                                sizeof(kmp_balign_t), "th_%d.th_bar[forkjoin]",
493                                gtid);
494 
495 #if KMP_FAST_REDUCTION_BARRIER
496   __kmp_print_storage_map_gtid(gtid, &thr->th.th_bar[bs_reduction_barrier],
497                                &thr->th.th_bar[bs_reduction_barrier + 1],
498                                sizeof(kmp_balign_t), "th_%d.th_bar[reduction]",
499                                gtid);
500 #endif // KMP_FAST_REDUCTION_BARRIER
501 }
502 
503 /* Print out the storage map for the major kmp_team_t team data structures
504    that are allocated together. */
505 
506 static void __kmp_print_team_storage_map(const char *header, kmp_team_t *team,
507                                          int team_id, int num_thr) {
508   int num_disp_buff = team->t.t_max_nproc > 1 ? __kmp_dispatch_num_buffers : 2;
509   __kmp_print_storage_map_gtid(-1, team, team + 1, sizeof(kmp_team_t), "%s_%d",
510                                header, team_id);
511 
512   __kmp_print_storage_map_gtid(-1, &team->t.t_bar[0],
513                                &team->t.t_bar[bs_last_barrier],
514                                sizeof(kmp_balign_team_t) * bs_last_barrier,
515                                "%s_%d.t_bar", header, team_id);
516 
517   __kmp_print_storage_map_gtid(-1, &team->t.t_bar[bs_plain_barrier],
518                                &team->t.t_bar[bs_plain_barrier + 1],
519                                sizeof(kmp_balign_team_t), "%s_%d.t_bar[plain]",
520                                header, team_id);
521 
522   __kmp_print_storage_map_gtid(-1, &team->t.t_bar[bs_forkjoin_barrier],
523                                &team->t.t_bar[bs_forkjoin_barrier + 1],
524                                sizeof(kmp_balign_team_t),
525                                "%s_%d.t_bar[forkjoin]", header, team_id);
526 
527 #if KMP_FAST_REDUCTION_BARRIER
528   __kmp_print_storage_map_gtid(-1, &team->t.t_bar[bs_reduction_barrier],
529                                &team->t.t_bar[bs_reduction_barrier + 1],
530                                sizeof(kmp_balign_team_t),
531                                "%s_%d.t_bar[reduction]", header, team_id);
532 #endif // KMP_FAST_REDUCTION_BARRIER
533 
534   __kmp_print_storage_map_gtid(
535       -1, &team->t.t_dispatch[0], &team->t.t_dispatch[num_thr],
536       sizeof(kmp_disp_t) * num_thr, "%s_%d.t_dispatch", header, team_id);
537 
538   __kmp_print_storage_map_gtid(
539       -1, &team->t.t_threads[0], &team->t.t_threads[num_thr],
540       sizeof(kmp_info_t *) * num_thr, "%s_%d.t_threads", header, team_id);
541 
542   __kmp_print_storage_map_gtid(-1, &team->t.t_disp_buffer[0],
543                                &team->t.t_disp_buffer[num_disp_buff],
544                                sizeof(dispatch_shared_info_t) * num_disp_buff,
545                                "%s_%d.t_disp_buffer", header, team_id);
546 }
547 
548 static void __kmp_init_allocator() {
549   __kmp_init_memkind();
550   __kmp_init_target_mem();
551 }
552 static void __kmp_fini_allocator() { __kmp_fini_memkind(); }
553 
554 /* ------------------------------------------------------------------------ */
555 
556 #if KMP_DYNAMIC_LIB
557 #if KMP_OS_WINDOWS
558 
559 BOOL WINAPI DllMain(HINSTANCE hInstDLL, DWORD fdwReason, LPVOID lpReserved) {
560   //__kmp_acquire_bootstrap_lock( &__kmp_initz_lock );
561 
562   switch (fdwReason) {
563 
564   case DLL_PROCESS_ATTACH:
565     KA_TRACE(10, ("DllMain: PROCESS_ATTACH\n"));
566 
567     return TRUE;
568 
569   case DLL_PROCESS_DETACH:
570     KA_TRACE(10, ("DllMain: PROCESS_DETACH T#%d\n", __kmp_gtid_get_specific()));
571 
572     // According to Windows* documentation for DllMain entry point:
573     // for DLL_PROCESS_DETACH, lpReserved is used for telling the difference:
574     //   lpReserved == NULL when FreeLibrary() is called,
575     //   lpReserved != NULL when the process is terminated.
576     // When FreeLibrary() is called, worker threads remain alive. So the
577     // runtime's state is consistent and executing proper shutdown is OK.
578     // When the process is terminated, worker threads have exited or been
579     // forcefully terminated by the OS and only the shutdown thread remains.
580     // This can leave the runtime in an inconsistent state.
581     // Hence, only attempt proper cleanup when FreeLibrary() is called.
582     // Otherwise, rely on OS to reclaim resources.
583     if (lpReserved == NULL)
584       __kmp_internal_end_library(__kmp_gtid_get_specific());
585 
586     return TRUE;
587 
588   case DLL_THREAD_ATTACH:
589     KA_TRACE(10, ("DllMain: THREAD_ATTACH\n"));
590 
591     /* if we want to register new siblings all the time here call
592      * __kmp_get_gtid(); */
593     return TRUE;
594 
595   case DLL_THREAD_DETACH:
596     KA_TRACE(10, ("DllMain: THREAD_DETACH T#%d\n", __kmp_gtid_get_specific()));
597 
598     __kmp_internal_end_thread(__kmp_gtid_get_specific());
599     return TRUE;
600   }
601 
602   return TRUE;
603 }
604 
605 #endif /* KMP_OS_WINDOWS */
606 #endif /* KMP_DYNAMIC_LIB */
607 
608 /* __kmp_parallel_deo -- Wait until it's our turn. */
609 void __kmp_parallel_deo(int *gtid_ref, int *cid_ref, ident_t *loc_ref) {
610   int gtid = *gtid_ref;
611 #ifdef BUILD_PARALLEL_ORDERED
612   kmp_team_t *team = __kmp_team_from_gtid(gtid);
613 #endif /* BUILD_PARALLEL_ORDERED */
614 
615   if (__kmp_env_consistency_check) {
616     if (__kmp_threads[gtid]->th.th_root->r.r_active)
617 #if KMP_USE_DYNAMIC_LOCK
618       __kmp_push_sync(gtid, ct_ordered_in_parallel, loc_ref, NULL, 0);
619 #else
620       __kmp_push_sync(gtid, ct_ordered_in_parallel, loc_ref, NULL);
621 #endif
622   }
623 #ifdef BUILD_PARALLEL_ORDERED
624   if (!team->t.t_serialized) {
625     KMP_MB();
626     KMP_WAIT(&team->t.t_ordered.dt.t_value, __kmp_tid_from_gtid(gtid), KMP_EQ,
627              NULL);
628     KMP_MB();
629   }
630 #endif /* BUILD_PARALLEL_ORDERED */
631 }
632 
633 /* __kmp_parallel_dxo -- Signal the next task. */
634 void __kmp_parallel_dxo(int *gtid_ref, int *cid_ref, ident_t *loc_ref) {
635   int gtid = *gtid_ref;
636 #ifdef BUILD_PARALLEL_ORDERED
637   int tid = __kmp_tid_from_gtid(gtid);
638   kmp_team_t *team = __kmp_team_from_gtid(gtid);
639 #endif /* BUILD_PARALLEL_ORDERED */
640 
641   if (__kmp_env_consistency_check) {
642     if (__kmp_threads[gtid]->th.th_root->r.r_active)
643       __kmp_pop_sync(gtid, ct_ordered_in_parallel, loc_ref);
644   }
645 #ifdef BUILD_PARALLEL_ORDERED
646   if (!team->t.t_serialized) {
647     KMP_MB(); /* Flush all pending memory write invalidates.  */
648 
649     /* use the tid of the next thread in this team */
650     /* TODO replace with general release procedure */
651     team->t.t_ordered.dt.t_value = ((tid + 1) % team->t.t_nproc);
652 
653     KMP_MB(); /* Flush all pending memory write invalidates.  */
654   }
655 #endif /* BUILD_PARALLEL_ORDERED */
656 }
657 
658 /* ------------------------------------------------------------------------ */
659 /* The BARRIER for a SINGLE process section is always explicit   */
660 
661 int __kmp_enter_single(int gtid, ident_t *id_ref, int push_ws) {
662   int status;
663   kmp_info_t *th;
664   kmp_team_t *team;
665 
666   if (!TCR_4(__kmp_init_parallel))
667     __kmp_parallel_initialize();
668   __kmp_resume_if_soft_paused();
669 
670   th = __kmp_threads[gtid];
671   team = th->th.th_team;
672   status = 0;
673 
674   th->th.th_ident = id_ref;
675 
676   if (team->t.t_serialized) {
677     status = 1;
678   } else {
679     kmp_int32 old_this = th->th.th_local.this_construct;
680 
681     ++th->th.th_local.this_construct;
682     /* try to set team count to thread count--success means thread got the
683        single block */
684     /* TODO: Should this be acquire or release? */
685     if (team->t.t_construct == old_this) {
686       status = __kmp_atomic_compare_store_acq(&team->t.t_construct, old_this,
687                                               th->th.th_local.this_construct);
688     }
689 #if USE_ITT_BUILD
690     if (__itt_metadata_add_ptr && __kmp_forkjoin_frames_mode == 3 &&
691         KMP_MASTER_GTID(gtid) && th->th.th_teams_microtask == NULL &&
692         team->t.t_active_level == 1) {
693       // Only report metadata by primary thread of active team at level 1
694       __kmp_itt_metadata_single(id_ref);
695     }
696 #endif /* USE_ITT_BUILD */
697   }
698 
699   if (__kmp_env_consistency_check) {
700     if (status && push_ws) {
701       __kmp_push_workshare(gtid, ct_psingle, id_ref);
702     } else {
703       __kmp_check_workshare(gtid, ct_psingle, id_ref);
704     }
705   }
706 #if USE_ITT_BUILD
707   if (status) {
708     __kmp_itt_single_start(gtid);
709   }
710 #endif /* USE_ITT_BUILD */
711   return status;
712 }
713 
714 void __kmp_exit_single(int gtid) {
715 #if USE_ITT_BUILD
716   __kmp_itt_single_end(gtid);
717 #endif /* USE_ITT_BUILD */
718   if (__kmp_env_consistency_check)
719     __kmp_pop_workshare(gtid, ct_psingle, NULL);
720 }
721 
722 /* determine if we can go parallel or must use a serialized parallel region and
723  * how many threads we can use
724  * set_nproc is the number of threads requested for the team
725  * returns 0 if we should serialize or only use one thread,
726  * otherwise the number of threads to use
727  * The forkjoin lock is held by the caller. */
728 static int __kmp_reserve_threads(kmp_root_t *root, kmp_team_t *parent_team,
729                                  int master_tid, int set_nthreads,
730                                  int enter_teams) {
731   int capacity;
732   int new_nthreads;
733   KMP_DEBUG_ASSERT(__kmp_init_serial);
734   KMP_DEBUG_ASSERT(root && parent_team);
735   kmp_info_t *this_thr = parent_team->t.t_threads[master_tid];
736 
737   // If dyn-var is set, dynamically adjust the number of desired threads,
738   // according to the method specified by dynamic_mode.
739   new_nthreads = set_nthreads;
740   if (!get__dynamic_2(parent_team, master_tid)) {
741     ;
742   }
743 #ifdef USE_LOAD_BALANCE
744   else if (__kmp_global.g.g_dynamic_mode == dynamic_load_balance) {
745     new_nthreads = __kmp_load_balance_nproc(root, set_nthreads);
746     if (new_nthreads == 1) {
747       KC_TRACE(10, ("__kmp_reserve_threads: T#%d load balance reduced "
748                     "reservation to 1 thread\n",
749                     master_tid));
750       return 1;
751     }
752     if (new_nthreads < set_nthreads) {
753       KC_TRACE(10, ("__kmp_reserve_threads: T#%d load balance reduced "
754                     "reservation to %d threads\n",
755                     master_tid, new_nthreads));
756     }
757   }
758 #endif /* USE_LOAD_BALANCE */
759   else if (__kmp_global.g.g_dynamic_mode == dynamic_thread_limit) {
760     new_nthreads = __kmp_avail_proc - __kmp_nth +
761                    (root->r.r_active ? 1 : root->r.r_hot_team->t.t_nproc);
762     if (new_nthreads <= 1) {
763       KC_TRACE(10, ("__kmp_reserve_threads: T#%d thread limit reduced "
764                     "reservation to 1 thread\n",
765                     master_tid));
766       return 1;
767     }
768     if (new_nthreads < set_nthreads) {
769       KC_TRACE(10, ("__kmp_reserve_threads: T#%d thread limit reduced "
770                     "reservation to %d threads\n",
771                     master_tid, new_nthreads));
772     } else {
773       new_nthreads = set_nthreads;
774     }
775   } else if (__kmp_global.g.g_dynamic_mode == dynamic_random) {
776     if (set_nthreads > 2) {
777       new_nthreads = __kmp_get_random(parent_team->t.t_threads[master_tid]);
778       new_nthreads = (new_nthreads % set_nthreads) + 1;
779       if (new_nthreads == 1) {
780         KC_TRACE(10, ("__kmp_reserve_threads: T#%d dynamic random reduced "
781                       "reservation to 1 thread\n",
782                       master_tid));
783         return 1;
784       }
785       if (new_nthreads < set_nthreads) {
786         KC_TRACE(10, ("__kmp_reserve_threads: T#%d dynamic random reduced "
787                       "reservation to %d threads\n",
788                       master_tid, new_nthreads));
789       }
790     }
791   } else {
792     KMP_ASSERT(0);
793   }
794 
795   // Respect KMP_ALL_THREADS/KMP_DEVICE_THREAD_LIMIT.
796   if (__kmp_nth + new_nthreads -
797           (root->r.r_active ? 1 : root->r.r_hot_team->t.t_nproc) >
798       __kmp_max_nth) {
799     int tl_nthreads = __kmp_max_nth - __kmp_nth +
800                       (root->r.r_active ? 1 : root->r.r_hot_team->t.t_nproc);
801     if (tl_nthreads <= 0) {
802       tl_nthreads = 1;
803     }
804 
805     // If dyn-var is false, emit a 1-time warning.
806     if (!get__dynamic_2(parent_team, master_tid) && (!__kmp_reserve_warn)) {
807       __kmp_reserve_warn = 1;
808       __kmp_msg(kmp_ms_warning,
809                 KMP_MSG(CantFormThrTeam, set_nthreads, tl_nthreads),
810                 KMP_HNT(Unset_ALL_THREADS), __kmp_msg_null);
811     }
812     if (tl_nthreads == 1) {
813       KC_TRACE(10, ("__kmp_reserve_threads: T#%d KMP_DEVICE_THREAD_LIMIT "
814                     "reduced reservation to 1 thread\n",
815                     master_tid));
816       return 1;
817     }
818     KC_TRACE(10, ("__kmp_reserve_threads: T#%d KMP_DEVICE_THREAD_LIMIT reduced "
819                   "reservation to %d threads\n",
820                   master_tid, tl_nthreads));
821     new_nthreads = tl_nthreads;
822   }
823 
824   // Respect OMP_THREAD_LIMIT
825   int cg_nthreads = this_thr->th.th_cg_roots->cg_nthreads;
826   int max_cg_threads = this_thr->th.th_cg_roots->cg_thread_limit;
827   if (cg_nthreads + new_nthreads -
828           (root->r.r_active ? 1 : root->r.r_hot_team->t.t_nproc) >
829       max_cg_threads) {
830     int tl_nthreads = max_cg_threads - cg_nthreads +
831                       (root->r.r_active ? 1 : root->r.r_hot_team->t.t_nproc);
832     if (tl_nthreads <= 0) {
833       tl_nthreads = 1;
834     }
835 
836     // If dyn-var is false, emit a 1-time warning.
837     if (!get__dynamic_2(parent_team, master_tid) && (!__kmp_reserve_warn)) {
838       __kmp_reserve_warn = 1;
839       __kmp_msg(kmp_ms_warning,
840                 KMP_MSG(CantFormThrTeam, set_nthreads, tl_nthreads),
841                 KMP_HNT(Unset_ALL_THREADS), __kmp_msg_null);
842     }
843     if (tl_nthreads == 1) {
844       KC_TRACE(10, ("__kmp_reserve_threads: T#%d OMP_THREAD_LIMIT "
845                     "reduced reservation to 1 thread\n",
846                     master_tid));
847       return 1;
848     }
849     KC_TRACE(10, ("__kmp_reserve_threads: T#%d OMP_THREAD_LIMIT reduced "
850                   "reservation to %d threads\n",
851                   master_tid, tl_nthreads));
852     new_nthreads = tl_nthreads;
853   }
854 
855   // Check if the threads array is large enough, or needs expanding.
856   // See comment in __kmp_register_root() about the adjustment if
857   // __kmp_threads[0] == NULL.
858   capacity = __kmp_threads_capacity;
859   if (TCR_PTR(__kmp_threads[0]) == NULL) {
860     --capacity;
861   }
862   // If it is not for initializing the hidden helper team, we need to take
863   // __kmp_hidden_helper_threads_num out of the capacity because it is included
864   // in __kmp_threads_capacity.
865   if (__kmp_enable_hidden_helper && !TCR_4(__kmp_init_hidden_helper_threads)) {
866     capacity -= __kmp_hidden_helper_threads_num;
867   }
868   if (__kmp_nth + new_nthreads -
869           (root->r.r_active ? 1 : root->r.r_hot_team->t.t_nproc) >
870       capacity) {
871     // Expand the threads array.
872     int slotsRequired = __kmp_nth + new_nthreads -
873                         (root->r.r_active ? 1 : root->r.r_hot_team->t.t_nproc) -
874                         capacity;
875     int slotsAdded = __kmp_expand_threads(slotsRequired);
876     if (slotsAdded < slotsRequired) {
877       // The threads array was not expanded enough.
878       new_nthreads -= (slotsRequired - slotsAdded);
879       KMP_ASSERT(new_nthreads >= 1);
880 
881       // If dyn-var is false, emit a 1-time warning.
882       if (!get__dynamic_2(parent_team, master_tid) && (!__kmp_reserve_warn)) {
883         __kmp_reserve_warn = 1;
884         if (__kmp_tp_cached) {
885           __kmp_msg(kmp_ms_warning,
886                     KMP_MSG(CantFormThrTeam, set_nthreads, new_nthreads),
887                     KMP_HNT(Set_ALL_THREADPRIVATE, __kmp_tp_capacity),
888                     KMP_HNT(PossibleSystemLimitOnThreads), __kmp_msg_null);
889         } else {
890           __kmp_msg(kmp_ms_warning,
891                     KMP_MSG(CantFormThrTeam, set_nthreads, new_nthreads),
892                     KMP_HNT(SystemLimitOnThreads), __kmp_msg_null);
893         }
894       }
895     }
896   }
897 
898 #ifdef KMP_DEBUG
899   if (new_nthreads == 1) {
900     KC_TRACE(10,
901              ("__kmp_reserve_threads: T#%d serializing team after reclaiming "
902               "dead roots and rechecking; requested %d threads\n",
903               __kmp_get_gtid(), set_nthreads));
904   } else {
905     KC_TRACE(10, ("__kmp_reserve_threads: T#%d allocating %d threads; requested"
906                   " %d threads\n",
907                   __kmp_get_gtid(), new_nthreads, set_nthreads));
908   }
909 #endif // KMP_DEBUG
910   return new_nthreads;
911 }
912 
913 /* Allocate threads from the thread pool and assign them to the new team. We are
914    assured that there are enough threads available, because we checked on that
915    earlier within critical section forkjoin */
916 static void __kmp_fork_team_threads(kmp_root_t *root, kmp_team_t *team,
917                                     kmp_info_t *master_th, int master_gtid,
918                                     int fork_teams_workers) {
919   int i;
920   int use_hot_team;
921 
922   KA_TRACE(10, ("__kmp_fork_team_threads: new_nprocs = %d\n", team->t.t_nproc));
923   KMP_DEBUG_ASSERT(master_gtid == __kmp_get_gtid());
924   KMP_MB();
925 
926   /* first, let's setup the primary thread */
927   master_th->th.th_info.ds.ds_tid = 0;
928   master_th->th.th_team = team;
929   master_th->th.th_team_nproc = team->t.t_nproc;
930   master_th->th.th_team_master = master_th;
931   master_th->th.th_team_serialized = FALSE;
932   master_th->th.th_dispatch = &team->t.t_dispatch[0];
933 
934 /* make sure we are not the optimized hot team */
935 #if KMP_NESTED_HOT_TEAMS
936   use_hot_team = 0;
937   kmp_hot_team_ptr_t *hot_teams = master_th->th.th_hot_teams;
938   if (hot_teams) { // hot teams array is not allocated if
939     // KMP_HOT_TEAMS_MAX_LEVEL=0
940     int level = team->t.t_active_level - 1; // index in array of hot teams
941     if (master_th->th.th_teams_microtask) { // are we inside the teams?
942       if (master_th->th.th_teams_size.nteams > 1) {
943         ++level; // level was not increased in teams construct for
944         // team_of_masters
945       }
946       if (team->t.t_pkfn != (microtask_t)__kmp_teams_master &&
947           master_th->th.th_teams_level == team->t.t_level) {
948         ++level; // level was not increased in teams construct for
949         // team_of_workers before the parallel
950       } // team->t.t_level will be increased inside parallel
951     }
952     if (level < __kmp_hot_teams_max_level) {
953       if (hot_teams[level].hot_team) {
954         // hot team has already been allocated for given level
955         KMP_DEBUG_ASSERT(hot_teams[level].hot_team == team);
956         use_hot_team = 1; // the team is ready to use
957       } else {
958         use_hot_team = 0; // AC: threads are not allocated yet
959         hot_teams[level].hot_team = team; // remember new hot team
960         hot_teams[level].hot_team_nth = team->t.t_nproc;
961       }
962     } else {
963       use_hot_team = 0;
964     }
965   }
966 #else
967   use_hot_team = team == root->r.r_hot_team;
968 #endif
969   if (!use_hot_team) {
970 
971     /* install the primary thread */
972     team->t.t_threads[0] = master_th;
973     __kmp_initialize_info(master_th, team, 0, master_gtid);
974 
975     /* now, install the worker threads */
976     for (i = 1; i < team->t.t_nproc; i++) {
977 
978       /* fork or reallocate a new thread and install it in team */
979       kmp_info_t *thr = __kmp_allocate_thread(root, team, i);
980       team->t.t_threads[i] = thr;
981       KMP_DEBUG_ASSERT(thr);
982       KMP_DEBUG_ASSERT(thr->th.th_team == team);
983       /* align team and thread arrived states */
984       KA_TRACE(20, ("__kmp_fork_team_threads: T#%d(%d:%d) init arrived "
985                     "T#%d(%d:%d) join =%llu, plain=%llu\n",
986                     __kmp_gtid_from_tid(0, team), team->t.t_id, 0,
987                     __kmp_gtid_from_tid(i, team), team->t.t_id, i,
988                     team->t.t_bar[bs_forkjoin_barrier].b_arrived,
989                     team->t.t_bar[bs_plain_barrier].b_arrived));
990       thr->th.th_teams_microtask = master_th->th.th_teams_microtask;
991       thr->th.th_teams_level = master_th->th.th_teams_level;
992       thr->th.th_teams_size = master_th->th.th_teams_size;
993       { // Initialize threads' barrier data.
994         int b;
995         kmp_balign_t *balign = team->t.t_threads[i]->th.th_bar;
996         for (b = 0; b < bs_last_barrier; ++b) {
997           balign[b].bb.b_arrived = team->t.t_bar[b].b_arrived;
998           KMP_DEBUG_ASSERT(balign[b].bb.wait_flag != KMP_BARRIER_PARENT_FLAG);
999 #if USE_DEBUGGER
1000           balign[b].bb.b_worker_arrived = team->t.t_bar[b].b_team_arrived;
1001 #endif
1002         }
1003       }
1004     }
1005 
1006 #if KMP_AFFINITY_SUPPORTED
1007     // Do not partition the places list for teams construct workers who
1008     // haven't actually been forked to do real work yet. This partitioning
1009     // will take place in the parallel region nested within the teams construct.
1010     if (!fork_teams_workers) {
1011       __kmp_partition_places(team);
1012     }
1013 #endif
1014   }
1015 
1016   if (__kmp_display_affinity && team->t.t_display_affinity != 1) {
1017     for (i = 0; i < team->t.t_nproc; i++) {
1018       kmp_info_t *thr = team->t.t_threads[i];
1019       if (thr->th.th_prev_num_threads != team->t.t_nproc ||
1020           thr->th.th_prev_level != team->t.t_level) {
1021         team->t.t_display_affinity = 1;
1022         break;
1023       }
1024     }
1025   }
1026 
1027   KMP_MB();
1028 }
1029 
1030 #if KMP_ARCH_X86 || KMP_ARCH_X86_64
1031 // Propagate any changes to the floating point control registers out to the team
1032 // We try to avoid unnecessary writes to the relevant cache line in the team
1033 // structure, so we don't make changes unless they are needed.
1034 inline static void propagateFPControl(kmp_team_t *team) {
1035   if (__kmp_inherit_fp_control) {
1036     kmp_int16 x87_fpu_control_word;
1037     kmp_uint32 mxcsr;
1038 
1039     // Get primary thread's values of FPU control flags (both X87 and vector)
1040     __kmp_store_x87_fpu_control_word(&x87_fpu_control_word);
1041     __kmp_store_mxcsr(&mxcsr);
1042     mxcsr &= KMP_X86_MXCSR_MASK;
1043 
1044     // There is no point looking at t_fp_control_saved here.
1045     // If it is TRUE, we still have to update the values if they are different
1046     // from those we now have. If it is FALSE we didn't save anything yet, but
1047     // our objective is the same. We have to ensure that the values in the team
1048     // are the same as those we have.
1049     // So, this code achieves what we need whether or not t_fp_control_saved is
1050     // true. By checking whether the value needs updating we avoid unnecessary
1051     // writes that would put the cache-line into a written state, causing all
1052     // threads in the team to have to read it again.
1053     KMP_CHECK_UPDATE(team->t.t_x87_fpu_control_word, x87_fpu_control_word);
1054     KMP_CHECK_UPDATE(team->t.t_mxcsr, mxcsr);
1055     // Although we don't use this value, other code in the runtime wants to know
1056     // whether it should restore them. So we must ensure it is correct.
1057     KMP_CHECK_UPDATE(team->t.t_fp_control_saved, TRUE);
1058   } else {
1059     // Similarly here. Don't write to this cache-line in the team structure
1060     // unless we have to.
1061     KMP_CHECK_UPDATE(team->t.t_fp_control_saved, FALSE);
1062   }
1063 }
1064 
1065 // Do the opposite, setting the hardware registers to the updated values from
1066 // the team.
1067 inline static void updateHWFPControl(kmp_team_t *team) {
1068   if (__kmp_inherit_fp_control && team->t.t_fp_control_saved) {
1069     // Only reset the fp control regs if they have been changed in the team.
1070     // the parallel region that we are exiting.
1071     kmp_int16 x87_fpu_control_word;
1072     kmp_uint32 mxcsr;
1073     __kmp_store_x87_fpu_control_word(&x87_fpu_control_word);
1074     __kmp_store_mxcsr(&mxcsr);
1075     mxcsr &= KMP_X86_MXCSR_MASK;
1076 
1077     if (team->t.t_x87_fpu_control_word != x87_fpu_control_word) {
1078       __kmp_clear_x87_fpu_status_word();
1079       __kmp_load_x87_fpu_control_word(&team->t.t_x87_fpu_control_word);
1080     }
1081 
1082     if (team->t.t_mxcsr != mxcsr) {
1083       __kmp_load_mxcsr(&team->t.t_mxcsr);
1084     }
1085   }
1086 }
1087 #else
1088 #define propagateFPControl(x) ((void)0)
1089 #define updateHWFPControl(x) ((void)0)
1090 #endif /* KMP_ARCH_X86 || KMP_ARCH_X86_64 */
1091 
1092 static void __kmp_alloc_argv_entries(int argc, kmp_team_t *team,
1093                                      int realloc); // forward declaration
1094 
1095 /* Run a parallel region that has been serialized, so runs only in a team of the
1096    single primary thread. */
1097 void __kmp_serialized_parallel(ident_t *loc, kmp_int32 global_tid) {
1098   kmp_info_t *this_thr;
1099   kmp_team_t *serial_team;
1100 
1101   KC_TRACE(10, ("__kmpc_serialized_parallel: called by T#%d\n", global_tid));
1102 
1103   /* Skip all this code for autopar serialized loops since it results in
1104      unacceptable overhead */
1105   if (loc != NULL && (loc->flags & KMP_IDENT_AUTOPAR))
1106     return;
1107 
1108   if (!TCR_4(__kmp_init_parallel))
1109     __kmp_parallel_initialize();
1110   __kmp_resume_if_soft_paused();
1111 
1112   this_thr = __kmp_threads[global_tid];
1113   serial_team = this_thr->th.th_serial_team;
1114 
1115   /* utilize the serialized team held by this thread */
1116   KMP_DEBUG_ASSERT(serial_team);
1117   KMP_MB();
1118 
1119   if (__kmp_tasking_mode != tskm_immediate_exec) {
1120     KMP_DEBUG_ASSERT(
1121         this_thr->th.th_task_team ==
1122         this_thr->th.th_team->t.t_task_team[this_thr->th.th_task_state]);
1123     KMP_DEBUG_ASSERT(serial_team->t.t_task_team[this_thr->th.th_task_state] ==
1124                      NULL);
1125     KA_TRACE(20, ("__kmpc_serialized_parallel: T#%d pushing task_team %p / "
1126                   "team %p, new task_team = NULL\n",
1127                   global_tid, this_thr->th.th_task_team, this_thr->th.th_team));
1128     this_thr->th.th_task_team = NULL;
1129   }
1130 
1131   kmp_proc_bind_t proc_bind = this_thr->th.th_set_proc_bind;
1132   if (this_thr->th.th_current_task->td_icvs.proc_bind == proc_bind_false) {
1133     proc_bind = proc_bind_false;
1134   } else if (proc_bind == proc_bind_default) {
1135     // No proc_bind clause was specified, so use the current value
1136     // of proc-bind-var for this parallel region.
1137     proc_bind = this_thr->th.th_current_task->td_icvs.proc_bind;
1138   }
1139   // Reset for next parallel region
1140   this_thr->th.th_set_proc_bind = proc_bind_default;
1141 
1142 #if OMPT_SUPPORT
1143   ompt_data_t ompt_parallel_data = ompt_data_none;
1144   void *codeptr = OMPT_LOAD_RETURN_ADDRESS(global_tid);
1145   if (ompt_enabled.enabled &&
1146       this_thr->th.ompt_thread_info.state != ompt_state_overhead) {
1147 
1148     ompt_task_info_t *parent_task_info;
1149     parent_task_info = OMPT_CUR_TASK_INFO(this_thr);
1150 
1151     parent_task_info->frame.enter_frame.ptr = OMPT_GET_FRAME_ADDRESS(0);
1152     if (ompt_enabled.ompt_callback_parallel_begin) {
1153       int team_size = 1;
1154 
1155       ompt_callbacks.ompt_callback(ompt_callback_parallel_begin)(
1156           &(parent_task_info->task_data), &(parent_task_info->frame),
1157           &ompt_parallel_data, team_size,
1158           ompt_parallel_invoker_program | ompt_parallel_team, codeptr);
1159     }
1160   }
1161 #endif // OMPT_SUPPORT
1162 
1163   if (this_thr->th.th_team != serial_team) {
1164     // Nested level will be an index in the nested nthreads array
1165     int level = this_thr->th.th_team->t.t_level;
1166 
1167     if (serial_team->t.t_serialized) {
1168       /* this serial team was already used
1169          TODO increase performance by making this locks more specific */
1170       kmp_team_t *new_team;
1171 
1172       __kmp_acquire_bootstrap_lock(&__kmp_forkjoin_lock);
1173 
1174       new_team =
1175           __kmp_allocate_team(this_thr->th.th_root, 1, 1,
1176 #if OMPT_SUPPORT
1177                               ompt_parallel_data,
1178 #endif
1179                               proc_bind, &this_thr->th.th_current_task->td_icvs,
1180                               0 USE_NESTED_HOT_ARG(NULL));
1181       __kmp_release_bootstrap_lock(&__kmp_forkjoin_lock);
1182       KMP_ASSERT(new_team);
1183 
1184       /* setup new serialized team and install it */
1185       new_team->t.t_threads[0] = this_thr;
1186       new_team->t.t_parent = this_thr->th.th_team;
1187       serial_team = new_team;
1188       this_thr->th.th_serial_team = serial_team;
1189 
1190       KF_TRACE(
1191           10,
1192           ("__kmpc_serialized_parallel: T#%d allocated new serial team %p\n",
1193            global_tid, serial_team));
1194 
1195       /* TODO the above breaks the requirement that if we run out of resources,
1196          then we can still guarantee that serialized teams are ok, since we may
1197          need to allocate a new one */
1198     } else {
1199       KF_TRACE(
1200           10,
1201           ("__kmpc_serialized_parallel: T#%d reusing cached serial team %p\n",
1202            global_tid, serial_team));
1203     }
1204 
1205     /* we have to initialize this serial team */
1206     KMP_DEBUG_ASSERT(serial_team->t.t_threads);
1207     KMP_DEBUG_ASSERT(serial_team->t.t_threads[0] == this_thr);
1208     KMP_DEBUG_ASSERT(this_thr->th.th_team != serial_team);
1209     serial_team->t.t_ident = loc;
1210     serial_team->t.t_serialized = 1;
1211     serial_team->t.t_nproc = 1;
1212     serial_team->t.t_parent = this_thr->th.th_team;
1213     serial_team->t.t_sched.sched = this_thr->th.th_team->t.t_sched.sched;
1214     this_thr->th.th_team = serial_team;
1215     serial_team->t.t_master_tid = this_thr->th.th_info.ds.ds_tid;
1216 
1217     KF_TRACE(10, ("__kmpc_serialized_parallel: T#%d curtask=%p\n", global_tid,
1218                   this_thr->th.th_current_task));
1219     KMP_ASSERT(this_thr->th.th_current_task->td_flags.executing == 1);
1220     this_thr->th.th_current_task->td_flags.executing = 0;
1221 
1222     __kmp_push_current_task_to_thread(this_thr, serial_team, 0);
1223 
1224     /* TODO: GEH: do ICVs work for nested serialized teams? Don't we need an
1225        implicit task for each serialized task represented by
1226        team->t.t_serialized? */
1227     copy_icvs(&this_thr->th.th_current_task->td_icvs,
1228               &this_thr->th.th_current_task->td_parent->td_icvs);
1229 
1230     // Thread value exists in the nested nthreads array for the next nested
1231     // level
1232     if (__kmp_nested_nth.used && (level + 1 < __kmp_nested_nth.used)) {
1233       this_thr->th.th_current_task->td_icvs.nproc =
1234           __kmp_nested_nth.nth[level + 1];
1235     }
1236 
1237     if (__kmp_nested_proc_bind.used &&
1238         (level + 1 < __kmp_nested_proc_bind.used)) {
1239       this_thr->th.th_current_task->td_icvs.proc_bind =
1240           __kmp_nested_proc_bind.bind_types[level + 1];
1241     }
1242 
1243 #if USE_DEBUGGER
1244     serial_team->t.t_pkfn = (microtask_t)(~0); // For the debugger.
1245 #endif
1246     this_thr->th.th_info.ds.ds_tid = 0;
1247 
1248     /* set thread cache values */
1249     this_thr->th.th_team_nproc = 1;
1250     this_thr->th.th_team_master = this_thr;
1251     this_thr->th.th_team_serialized = 1;
1252 
1253     serial_team->t.t_level = serial_team->t.t_parent->t.t_level + 1;
1254     serial_team->t.t_active_level = serial_team->t.t_parent->t.t_active_level;
1255     serial_team->t.t_def_allocator = this_thr->th.th_def_allocator; // save
1256 
1257     propagateFPControl(serial_team);
1258 
1259     /* check if we need to allocate dispatch buffers stack */
1260     KMP_DEBUG_ASSERT(serial_team->t.t_dispatch);
1261     if (!serial_team->t.t_dispatch->th_disp_buffer) {
1262       serial_team->t.t_dispatch->th_disp_buffer =
1263           (dispatch_private_info_t *)__kmp_allocate(
1264               sizeof(dispatch_private_info_t));
1265     }
1266     this_thr->th.th_dispatch = serial_team->t.t_dispatch;
1267 
1268     KMP_MB();
1269 
1270   } else {
1271     /* this serialized team is already being used,
1272      * that's fine, just add another nested level */
1273     KMP_DEBUG_ASSERT(this_thr->th.th_team == serial_team);
1274     KMP_DEBUG_ASSERT(serial_team->t.t_threads);
1275     KMP_DEBUG_ASSERT(serial_team->t.t_threads[0] == this_thr);
1276     ++serial_team->t.t_serialized;
1277     this_thr->th.th_team_serialized = serial_team->t.t_serialized;
1278 
1279     // Nested level will be an index in the nested nthreads array
1280     int level = this_thr->th.th_team->t.t_level;
1281     // Thread value exists in the nested nthreads array for the next nested
1282     // level
1283     if (__kmp_nested_nth.used && (level + 1 < __kmp_nested_nth.used)) {
1284       this_thr->th.th_current_task->td_icvs.nproc =
1285           __kmp_nested_nth.nth[level + 1];
1286     }
1287     serial_team->t.t_level++;
1288     KF_TRACE(10, ("__kmpc_serialized_parallel: T#%d increasing nesting level "
1289                   "of serial team %p to %d\n",
1290                   global_tid, serial_team, serial_team->t.t_level));
1291 
1292     /* allocate/push dispatch buffers stack */
1293     KMP_DEBUG_ASSERT(serial_team->t.t_dispatch);
1294     {
1295       dispatch_private_info_t *disp_buffer =
1296           (dispatch_private_info_t *)__kmp_allocate(
1297               sizeof(dispatch_private_info_t));
1298       disp_buffer->next = serial_team->t.t_dispatch->th_disp_buffer;
1299       serial_team->t.t_dispatch->th_disp_buffer = disp_buffer;
1300     }
1301     this_thr->th.th_dispatch = serial_team->t.t_dispatch;
1302 
1303     KMP_MB();
1304   }
1305   KMP_CHECK_UPDATE(serial_team->t.t_cancel_request, cancel_noreq);
1306 
1307   // Perform the display affinity functionality for
1308   // serialized parallel regions
1309   if (__kmp_display_affinity) {
1310     if (this_thr->th.th_prev_level != serial_team->t.t_level ||
1311         this_thr->th.th_prev_num_threads != 1) {
1312       // NULL means use the affinity-format-var ICV
1313       __kmp_aux_display_affinity(global_tid, NULL);
1314       this_thr->th.th_prev_level = serial_team->t.t_level;
1315       this_thr->th.th_prev_num_threads = 1;
1316     }
1317   }
1318 
1319   if (__kmp_env_consistency_check)
1320     __kmp_push_parallel(global_tid, NULL);
1321 #if OMPT_SUPPORT
1322   serial_team->t.ompt_team_info.master_return_address = codeptr;
1323   if (ompt_enabled.enabled &&
1324       this_thr->th.ompt_thread_info.state != ompt_state_overhead) {
1325     OMPT_CUR_TASK_INFO(this_thr)->frame.exit_frame.ptr =
1326         OMPT_GET_FRAME_ADDRESS(0);
1327 
1328     ompt_lw_taskteam_t lw_taskteam;
1329     __ompt_lw_taskteam_init(&lw_taskteam, this_thr, global_tid,
1330                             &ompt_parallel_data, codeptr);
1331 
1332     __ompt_lw_taskteam_link(&lw_taskteam, this_thr, 1);
1333     // don't use lw_taskteam after linking. content was swaped
1334 
1335     /* OMPT implicit task begin */
1336     if (ompt_enabled.ompt_callback_implicit_task) {
1337       ompt_callbacks.ompt_callback(ompt_callback_implicit_task)(
1338           ompt_scope_begin, OMPT_CUR_TEAM_DATA(this_thr),
1339           OMPT_CUR_TASK_DATA(this_thr), 1, __kmp_tid_from_gtid(global_tid),
1340           ompt_task_implicit); // TODO: Can this be ompt_task_initial?
1341       OMPT_CUR_TASK_INFO(this_thr)->thread_num =
1342           __kmp_tid_from_gtid(global_tid);
1343     }
1344 
1345     /* OMPT state */
1346     this_thr->th.ompt_thread_info.state = ompt_state_work_parallel;
1347     OMPT_CUR_TASK_INFO(this_thr)->frame.exit_frame.ptr =
1348         OMPT_GET_FRAME_ADDRESS(0);
1349   }
1350 #endif
1351 }
1352 
1353 /* most of the work for a fork */
1354 /* return true if we really went parallel, false if serialized */
1355 int __kmp_fork_call(ident_t *loc, int gtid,
1356                     enum fork_context_e call_context, // Intel, GNU, ...
1357                     kmp_int32 argc, microtask_t microtask, launch_t invoker,
1358                     kmp_va_list ap) {
1359   void **argv;
1360   int i;
1361   int master_tid;
1362   int master_this_cons;
1363   kmp_team_t *team;
1364   kmp_team_t *parent_team;
1365   kmp_info_t *master_th;
1366   kmp_root_t *root;
1367   int nthreads;
1368   int master_active;
1369   int master_set_numthreads;
1370   int level;
1371   int active_level;
1372   int teams_level;
1373 #if KMP_NESTED_HOT_TEAMS
1374   kmp_hot_team_ptr_t **p_hot_teams;
1375 #endif
1376   { // KMP_TIME_BLOCK
1377     KMP_TIME_DEVELOPER_PARTITIONED_BLOCK(KMP_fork_call);
1378     KMP_COUNT_VALUE(OMP_PARALLEL_args, argc);
1379 
1380     KA_TRACE(20, ("__kmp_fork_call: enter T#%d\n", gtid));
1381     if (__kmp_stkpadding > 0 && __kmp_root[gtid] != NULL) {
1382       /* Some systems prefer the stack for the root thread(s) to start with */
1383       /* some gap from the parent stack to prevent false sharing. */
1384       void *dummy = KMP_ALLOCA(__kmp_stkpadding);
1385       /* These 2 lines below are so this does not get optimized out */
1386       if (__kmp_stkpadding > KMP_MAX_STKPADDING)
1387         __kmp_stkpadding += (short)((kmp_int64)dummy);
1388     }
1389 
1390     /* initialize if needed */
1391     KMP_DEBUG_ASSERT(
1392         __kmp_init_serial); // AC: potentially unsafe, not in sync with shutdown
1393     if (!TCR_4(__kmp_init_parallel))
1394       __kmp_parallel_initialize();
1395     __kmp_resume_if_soft_paused();
1396 
1397     /* setup current data */
1398     master_th = __kmp_threads[gtid]; // AC: potentially unsafe, not in sync with
1399     // shutdown
1400     parent_team = master_th->th.th_team;
1401     master_tid = master_th->th.th_info.ds.ds_tid;
1402     master_this_cons = master_th->th.th_local.this_construct;
1403     root = master_th->th.th_root;
1404     master_active = root->r.r_active;
1405     master_set_numthreads = master_th->th.th_set_nproc;
1406 
1407 #if OMPT_SUPPORT
1408     ompt_data_t ompt_parallel_data = ompt_data_none;
1409     ompt_data_t *parent_task_data;
1410     ompt_frame_t *ompt_frame;
1411     ompt_data_t *implicit_task_data;
1412     void *return_address = NULL;
1413 
1414     if (ompt_enabled.enabled) {
1415       __ompt_get_task_info_internal(0, NULL, &parent_task_data, &ompt_frame,
1416                                     NULL, NULL);
1417       return_address = OMPT_LOAD_RETURN_ADDRESS(gtid);
1418     }
1419 #endif
1420 
1421     // Assign affinity to root thread if it hasn't happened yet
1422     __kmp_assign_root_init_mask();
1423 
1424     // Nested level will be an index in the nested nthreads array
1425     level = parent_team->t.t_level;
1426     // used to launch non-serial teams even if nested is not allowed
1427     active_level = parent_team->t.t_active_level;
1428     // needed to check nesting inside the teams
1429     teams_level = master_th->th.th_teams_level;
1430 #if KMP_NESTED_HOT_TEAMS
1431     p_hot_teams = &master_th->th.th_hot_teams;
1432     if (*p_hot_teams == NULL && __kmp_hot_teams_max_level > 0) {
1433       *p_hot_teams = (kmp_hot_team_ptr_t *)__kmp_allocate(
1434           sizeof(kmp_hot_team_ptr_t) * __kmp_hot_teams_max_level);
1435       (*p_hot_teams)[0].hot_team = root->r.r_hot_team;
1436       // it is either actual or not needed (when active_level > 0)
1437       (*p_hot_teams)[0].hot_team_nth = 1;
1438     }
1439 #endif
1440 
1441 #if OMPT_SUPPORT
1442     if (ompt_enabled.enabled) {
1443       if (ompt_enabled.ompt_callback_parallel_begin) {
1444         int team_size = master_set_numthreads
1445                             ? master_set_numthreads
1446                             : get__nproc_2(parent_team, master_tid);
1447         int flags = OMPT_INVOKER(call_context) |
1448                     ((microtask == (microtask_t)__kmp_teams_master)
1449                          ? ompt_parallel_league
1450                          : ompt_parallel_team);
1451         ompt_callbacks.ompt_callback(ompt_callback_parallel_begin)(
1452             parent_task_data, ompt_frame, &ompt_parallel_data, team_size, flags,
1453             return_address);
1454       }
1455       master_th->th.ompt_thread_info.state = ompt_state_overhead;
1456     }
1457 #endif
1458 
1459     master_th->th.th_ident = loc;
1460 
1461     if (master_th->th.th_teams_microtask && ap &&
1462         microtask != (microtask_t)__kmp_teams_master && level == teams_level) {
1463       // AC: This is start of parallel that is nested inside teams construct.
1464       // The team is actual (hot), all workers are ready at the fork barrier.
1465       // No lock needed to initialize the team a bit, then free workers.
1466       parent_team->t.t_ident = loc;
1467       __kmp_alloc_argv_entries(argc, parent_team, TRUE);
1468       parent_team->t.t_argc = argc;
1469       argv = (void **)parent_team->t.t_argv;
1470       for (i = argc - 1; i >= 0; --i)
1471         *argv++ = va_arg(kmp_va_deref(ap), void *);
1472       // Increment our nested depth levels, but not increase the serialization
1473       if (parent_team == master_th->th.th_serial_team) {
1474         // AC: we are in serialized parallel
1475         __kmpc_serialized_parallel(loc, gtid);
1476         KMP_DEBUG_ASSERT(parent_team->t.t_serialized > 1);
1477 
1478         if (call_context == fork_context_gnu) {
1479           // AC: need to decrement t_serialized for enquiry functions to work
1480           // correctly, will restore at join time
1481           parent_team->t.t_serialized--;
1482           return TRUE;
1483         }
1484 
1485 #if OMPD_SUPPORT
1486         parent_team->t.t_pkfn = microtask;
1487 #endif
1488 
1489 #if OMPT_SUPPORT
1490         void *dummy;
1491         void **exit_frame_p;
1492 
1493         ompt_lw_taskteam_t lw_taskteam;
1494 
1495         if (ompt_enabled.enabled) {
1496           __ompt_lw_taskteam_init(&lw_taskteam, master_th, gtid,
1497                                   &ompt_parallel_data, return_address);
1498           exit_frame_p = &(lw_taskteam.ompt_task_info.frame.exit_frame.ptr);
1499 
1500           __ompt_lw_taskteam_link(&lw_taskteam, master_th, 0);
1501           // don't use lw_taskteam after linking. content was swaped
1502 
1503           /* OMPT implicit task begin */
1504           implicit_task_data = OMPT_CUR_TASK_DATA(master_th);
1505           if (ompt_enabled.ompt_callback_implicit_task) {
1506             OMPT_CUR_TASK_INFO(master_th)->thread_num =
1507                 __kmp_tid_from_gtid(gtid);
1508             ompt_callbacks.ompt_callback(ompt_callback_implicit_task)(
1509                 ompt_scope_begin, OMPT_CUR_TEAM_DATA(master_th),
1510                 implicit_task_data, 1,
1511                 OMPT_CUR_TASK_INFO(master_th)->thread_num, ompt_task_implicit);
1512           }
1513 
1514           /* OMPT state */
1515           master_th->th.ompt_thread_info.state = ompt_state_work_parallel;
1516         } else {
1517           exit_frame_p = &dummy;
1518         }
1519 #endif
1520         // AC: need to decrement t_serialized for enquiry functions to work
1521         // correctly, will restore at join time
1522         parent_team->t.t_serialized--;
1523 
1524         {
1525           KMP_TIME_PARTITIONED_BLOCK(OMP_parallel);
1526           KMP_SET_THREAD_STATE_BLOCK(IMPLICIT_TASK);
1527           __kmp_invoke_microtask(microtask, gtid, 0, argc, parent_team->t.t_argv
1528 #if OMPT_SUPPORT
1529                                  ,
1530                                  exit_frame_p
1531 #endif
1532           );
1533         }
1534 
1535 #if OMPT_SUPPORT
1536         if (ompt_enabled.enabled) {
1537           *exit_frame_p = NULL;
1538           OMPT_CUR_TASK_INFO(master_th)->frame.exit_frame = ompt_data_none;
1539           if (ompt_enabled.ompt_callback_implicit_task) {
1540             ompt_callbacks.ompt_callback(ompt_callback_implicit_task)(
1541                 ompt_scope_end, NULL, implicit_task_data, 1,
1542                 OMPT_CUR_TASK_INFO(master_th)->thread_num, ompt_task_implicit);
1543           }
1544           ompt_parallel_data = *OMPT_CUR_TEAM_DATA(master_th);
1545           __ompt_lw_taskteam_unlink(master_th);
1546           if (ompt_enabled.ompt_callback_parallel_end) {
1547             ompt_callbacks.ompt_callback(ompt_callback_parallel_end)(
1548                 &ompt_parallel_data, OMPT_CUR_TASK_DATA(master_th),
1549                 OMPT_INVOKER(call_context) | ompt_parallel_team,
1550                 return_address);
1551           }
1552           master_th->th.ompt_thread_info.state = ompt_state_overhead;
1553         }
1554 #endif
1555         return TRUE;
1556       }
1557 
1558       parent_team->t.t_pkfn = microtask;
1559       parent_team->t.t_invoke = invoker;
1560       KMP_ATOMIC_INC(&root->r.r_in_parallel);
1561       parent_team->t.t_active_level++;
1562       parent_team->t.t_level++;
1563       parent_team->t.t_def_allocator = master_th->th.th_def_allocator; // save
1564 
1565 #if OMPT_SUPPORT
1566       if (ompt_enabled.enabled) {
1567         ompt_lw_taskteam_t lw_taskteam;
1568         __ompt_lw_taskteam_init(&lw_taskteam, master_th, gtid,
1569                                 &ompt_parallel_data, return_address);
1570         __ompt_lw_taskteam_link(&lw_taskteam, master_th, 1, true);
1571       }
1572 #endif
1573 
1574       /* Change number of threads in the team if requested */
1575       if (master_set_numthreads) { // The parallel has num_threads clause
1576         if (master_set_numthreads <= master_th->th.th_teams_size.nth) {
1577           // AC: only can reduce number of threads dynamically, can't increase
1578           kmp_info_t **other_threads = parent_team->t.t_threads;
1579           // NOTE: if using distributed barrier, we need to run this code block
1580           // even when the team size appears not to have changed from the max.
1581           int old_proc = master_th->th.th_teams_size.nth;
1582           if (__kmp_barrier_release_pattern[bs_forkjoin_barrier] ==
1583               bp_dist_bar) {
1584             __kmp_resize_dist_barrier(parent_team, old_proc,
1585                                       master_set_numthreads);
1586             __kmp_add_threads_to_team(parent_team, master_set_numthreads);
1587           }
1588           parent_team->t.t_nproc = master_set_numthreads;
1589           for (i = 0; i < master_set_numthreads; ++i) {
1590             other_threads[i]->th.th_team_nproc = master_set_numthreads;
1591           }
1592         }
1593         // Keep extra threads hot in the team for possible next parallels
1594         master_th->th.th_set_nproc = 0;
1595       }
1596 
1597 #if USE_DEBUGGER
1598       if (__kmp_debugging) { // Let debugger override number of threads.
1599         int nth = __kmp_omp_num_threads(loc);
1600         if (nth > 0) { // 0 means debugger doesn't want to change num threads
1601           master_set_numthreads = nth;
1602         }
1603       }
1604 #endif
1605 
1606       // Figure out the proc_bind policy for the nested parallel within teams
1607       kmp_proc_bind_t proc_bind = master_th->th.th_set_proc_bind;
1608       // proc_bind_default means don't update
1609       kmp_proc_bind_t proc_bind_icv = proc_bind_default;
1610       if (master_th->th.th_current_task->td_icvs.proc_bind == proc_bind_false) {
1611         proc_bind = proc_bind_false;
1612       } else {
1613         // No proc_bind clause specified; use current proc-bind-var
1614         if (proc_bind == proc_bind_default) {
1615           proc_bind = master_th->th.th_current_task->td_icvs.proc_bind;
1616         }
1617         /* else: The proc_bind policy was specified explicitly on parallel
1618            clause.
1619            This overrides proc-bind-var for this parallel region, but does not
1620            change proc-bind-var. */
1621         // Figure the value of proc-bind-var for the child threads.
1622         if ((level + 1 < __kmp_nested_proc_bind.used) &&
1623             (__kmp_nested_proc_bind.bind_types[level + 1] !=
1624              master_th->th.th_current_task->td_icvs.proc_bind)) {
1625           proc_bind_icv = __kmp_nested_proc_bind.bind_types[level + 1];
1626         }
1627       }
1628       KMP_CHECK_UPDATE(parent_team->t.t_proc_bind, proc_bind);
1629       // Need to change the bind-var ICV to correct value for each implicit task
1630       if (proc_bind_icv != proc_bind_default &&
1631           master_th->th.th_current_task->td_icvs.proc_bind != proc_bind_icv) {
1632         kmp_info_t **other_threads = parent_team->t.t_threads;
1633         for (i = 0; i < master_th->th.th_team_nproc; ++i) {
1634           other_threads[i]->th.th_current_task->td_icvs.proc_bind =
1635               proc_bind_icv;
1636         }
1637       }
1638       // Reset for next parallel region
1639       master_th->th.th_set_proc_bind = proc_bind_default;
1640 
1641 #if USE_ITT_BUILD && USE_ITT_NOTIFY
1642       if (((__itt_frame_submit_v3_ptr && __itt_get_timestamp_ptr) ||
1643            KMP_ITT_DEBUG) &&
1644           __kmp_forkjoin_frames_mode == 3 &&
1645           parent_team->t.t_active_level == 1 // only report frames at level 1
1646           && master_th->th.th_teams_size.nteams == 1) {
1647         kmp_uint64 tmp_time = __itt_get_timestamp();
1648         master_th->th.th_frame_time = tmp_time;
1649         parent_team->t.t_region_time = tmp_time;
1650       }
1651       if (__itt_stack_caller_create_ptr) {
1652         KMP_DEBUG_ASSERT(parent_team->t.t_stack_id == NULL);
1653         // create new stack stitching id before entering fork barrier
1654         parent_team->t.t_stack_id = __kmp_itt_stack_caller_create();
1655       }
1656 #endif /* USE_ITT_BUILD && USE_ITT_NOTIFY */
1657 #if KMP_AFFINITY_SUPPORTED
1658       __kmp_partition_places(parent_team);
1659 #endif
1660 
1661       KF_TRACE(10, ("__kmp_fork_call: before internal fork: root=%p, team=%p, "
1662                     "master_th=%p, gtid=%d\n",
1663                     root, parent_team, master_th, gtid));
1664       __kmp_internal_fork(loc, gtid, parent_team);
1665       KF_TRACE(10, ("__kmp_fork_call: after internal fork: root=%p, team=%p, "
1666                     "master_th=%p, gtid=%d\n",
1667                     root, parent_team, master_th, gtid));
1668 
1669       if (call_context == fork_context_gnu)
1670         return TRUE;
1671 
1672       /* Invoke microtask for PRIMARY thread */
1673       KA_TRACE(20, ("__kmp_fork_call: T#%d(%d:0) invoke microtask = %p\n", gtid,
1674                     parent_team->t.t_id, parent_team->t.t_pkfn));
1675 
1676       if (!parent_team->t.t_invoke(gtid)) {
1677         KMP_ASSERT2(0, "cannot invoke microtask for PRIMARY thread");
1678       }
1679       KA_TRACE(20, ("__kmp_fork_call: T#%d(%d:0) done microtask = %p\n", gtid,
1680                     parent_team->t.t_id, parent_team->t.t_pkfn));
1681       KMP_MB(); /* Flush all pending memory write invalidates.  */
1682 
1683       KA_TRACE(20, ("__kmp_fork_call: parallel exit T#%d\n", gtid));
1684 
1685       return TRUE;
1686     } // Parallel closely nested in teams construct
1687 
1688 #if KMP_DEBUG
1689     if (__kmp_tasking_mode != tskm_immediate_exec) {
1690       KMP_DEBUG_ASSERT(master_th->th.th_task_team ==
1691                        parent_team->t.t_task_team[master_th->th.th_task_state]);
1692     }
1693 #endif
1694 
1695     // Need this to happen before we determine the number of threads, not while
1696     // we are allocating the team
1697     //__kmp_push_current_task_to_thread(master_th, parent_team, 0);
1698     int enter_teams = 0;
1699     if (parent_team->t.t_active_level >=
1700         master_th->th.th_current_task->td_icvs.max_active_levels) {
1701       nthreads = 1;
1702     } else {
1703       enter_teams = ((ap == NULL && active_level == 0) ||
1704                      (ap && teams_level > 0 && teams_level == level));
1705       nthreads = master_set_numthreads
1706                      ? master_set_numthreads
1707                      // TODO: get nproc directly from current task
1708                      : get__nproc_2(parent_team, master_tid);
1709       // Check if we need to take forkjoin lock? (no need for serialized
1710       // parallel out of teams construct). This code moved here from
1711       // __kmp_reserve_threads() to speedup nested serialized parallels.
1712       if (nthreads > 1) {
1713         if ((get__max_active_levels(master_th) == 1 &&
1714              (root->r.r_in_parallel && !enter_teams)) ||
1715             (__kmp_library == library_serial)) {
1716           KC_TRACE(10, ("__kmp_fork_call: T#%d serializing team; requested %d"
1717                         " threads\n",
1718                         gtid, nthreads));
1719           nthreads = 1;
1720         }
1721       }
1722       if (nthreads > 1) {
1723         /* determine how many new threads we can use */
1724         __kmp_acquire_bootstrap_lock(&__kmp_forkjoin_lock);
1725         /* AC: If we execute teams from parallel region (on host), then teams
1726            should be created but each can only have 1 thread if nesting is
1727            disabled. If teams called from serial region, then teams and their
1728            threads should be created regardless of the nesting setting. */
1729         nthreads = __kmp_reserve_threads(root, parent_team, master_tid,
1730                                          nthreads, enter_teams);
1731         if (nthreads == 1) {
1732           // Free lock for single thread execution here; for multi-thread
1733           // execution it will be freed later after team of threads created
1734           // and initialized
1735           __kmp_release_bootstrap_lock(&__kmp_forkjoin_lock);
1736         }
1737       }
1738     }
1739     KMP_DEBUG_ASSERT(nthreads > 0);
1740 
1741     // If we temporarily changed the set number of threads then restore it now
1742     master_th->th.th_set_nproc = 0;
1743 
1744     /* create a serialized parallel region? */
1745     if (nthreads == 1) {
1746 /* josh todo: hypothetical question: what do we do for OS X*? */
1747 #if KMP_OS_LINUX &&                                                            \
1748     (KMP_ARCH_X86 || KMP_ARCH_X86_64 || KMP_ARCH_ARM || KMP_ARCH_AARCH64)
1749       void *args[argc];
1750 #else
1751       void **args = (void **)KMP_ALLOCA(argc * sizeof(void *));
1752 #endif /* KMP_OS_LINUX && ( KMP_ARCH_X86 || KMP_ARCH_X86_64 || KMP_ARCH_ARM || \
1753           KMP_ARCH_AARCH64) */
1754 
1755       KA_TRACE(20,
1756                ("__kmp_fork_call: T#%d serializing parallel region\n", gtid));
1757 
1758       __kmpc_serialized_parallel(loc, gtid);
1759 
1760 #if OMPD_SUPPORT
1761       master_th->th.th_serial_team->t.t_pkfn = microtask;
1762 #endif
1763 
1764       if (call_context == fork_context_intel) {
1765         /* TODO this sucks, use the compiler itself to pass args! :) */
1766         master_th->th.th_serial_team->t.t_ident = loc;
1767         if (!ap) {
1768           // revert change made in __kmpc_serialized_parallel()
1769           master_th->th.th_serial_team->t.t_level--;
1770           // Get args from parent team for teams construct
1771 
1772 #if OMPT_SUPPORT
1773           void *dummy;
1774           void **exit_frame_p;
1775           ompt_task_info_t *task_info;
1776 
1777           ompt_lw_taskteam_t lw_taskteam;
1778 
1779           if (ompt_enabled.enabled) {
1780             __ompt_lw_taskteam_init(&lw_taskteam, master_th, gtid,
1781                                     &ompt_parallel_data, return_address);
1782 
1783             __ompt_lw_taskteam_link(&lw_taskteam, master_th, 0);
1784             // don't use lw_taskteam after linking. content was swaped
1785 
1786             task_info = OMPT_CUR_TASK_INFO(master_th);
1787             exit_frame_p = &(task_info->frame.exit_frame.ptr);
1788             if (ompt_enabled.ompt_callback_implicit_task) {
1789               OMPT_CUR_TASK_INFO(master_th)->thread_num =
1790                   __kmp_tid_from_gtid(gtid);
1791               ompt_callbacks.ompt_callback(ompt_callback_implicit_task)(
1792                   ompt_scope_begin, OMPT_CUR_TEAM_DATA(master_th),
1793                   &(task_info->task_data), 1,
1794                   OMPT_CUR_TASK_INFO(master_th)->thread_num,
1795                   ompt_task_implicit);
1796             }
1797 
1798             /* OMPT state */
1799             master_th->th.ompt_thread_info.state = ompt_state_work_parallel;
1800           } else {
1801             exit_frame_p = &dummy;
1802           }
1803 #endif
1804 
1805           {
1806             KMP_TIME_PARTITIONED_BLOCK(OMP_parallel);
1807             KMP_SET_THREAD_STATE_BLOCK(IMPLICIT_TASK);
1808             __kmp_invoke_microtask(microtask, gtid, 0, argc,
1809                                    parent_team->t.t_argv
1810 #if OMPT_SUPPORT
1811                                    ,
1812                                    exit_frame_p
1813 #endif
1814             );
1815           }
1816 
1817 #if OMPT_SUPPORT
1818           if (ompt_enabled.enabled) {
1819             *exit_frame_p = NULL;
1820             if (ompt_enabled.ompt_callback_implicit_task) {
1821               ompt_callbacks.ompt_callback(ompt_callback_implicit_task)(
1822                   ompt_scope_end, NULL, &(task_info->task_data), 1,
1823                   OMPT_CUR_TASK_INFO(master_th)->thread_num,
1824                   ompt_task_implicit);
1825             }
1826             ompt_parallel_data = *OMPT_CUR_TEAM_DATA(master_th);
1827             __ompt_lw_taskteam_unlink(master_th);
1828             if (ompt_enabled.ompt_callback_parallel_end) {
1829               ompt_callbacks.ompt_callback(ompt_callback_parallel_end)(
1830                   &ompt_parallel_data, parent_task_data,
1831                   OMPT_INVOKER(call_context) | ompt_parallel_team,
1832                   return_address);
1833             }
1834             master_th->th.ompt_thread_info.state = ompt_state_overhead;
1835           }
1836 #endif
1837         } else if (microtask == (microtask_t)__kmp_teams_master) {
1838           KMP_DEBUG_ASSERT(master_th->th.th_team ==
1839                            master_th->th.th_serial_team);
1840           team = master_th->th.th_team;
1841           // team->t.t_pkfn = microtask;
1842           team->t.t_invoke = invoker;
1843           __kmp_alloc_argv_entries(argc, team, TRUE);
1844           team->t.t_argc = argc;
1845           argv = (void **)team->t.t_argv;
1846           if (ap) {
1847             for (i = argc - 1; i >= 0; --i)
1848               *argv++ = va_arg(kmp_va_deref(ap), void *);
1849           } else {
1850             for (i = 0; i < argc; ++i)
1851               // Get args from parent team for teams construct
1852               argv[i] = parent_team->t.t_argv[i];
1853           }
1854           // AC: revert change made in __kmpc_serialized_parallel()
1855           //     because initial code in teams should have level=0
1856           team->t.t_level--;
1857           // AC: call special invoker for outer "parallel" of teams construct
1858           invoker(gtid);
1859 #if OMPT_SUPPORT
1860           if (ompt_enabled.enabled) {
1861             ompt_task_info_t *task_info = OMPT_CUR_TASK_INFO(master_th);
1862             if (ompt_enabled.ompt_callback_implicit_task) {
1863               ompt_callbacks.ompt_callback(ompt_callback_implicit_task)(
1864                   ompt_scope_end, NULL, &(task_info->task_data), 0,
1865                   OMPT_CUR_TASK_INFO(master_th)->thread_num, ompt_task_initial);
1866             }
1867             if (ompt_enabled.ompt_callback_parallel_end) {
1868               ompt_callbacks.ompt_callback(ompt_callback_parallel_end)(
1869                   &ompt_parallel_data, parent_task_data,
1870                   OMPT_INVOKER(call_context) | ompt_parallel_league,
1871                   return_address);
1872             }
1873             master_th->th.ompt_thread_info.state = ompt_state_overhead;
1874           }
1875 #endif
1876         } else {
1877           argv = args;
1878           for (i = argc - 1; i >= 0; --i)
1879             *argv++ = va_arg(kmp_va_deref(ap), void *);
1880           KMP_MB();
1881 
1882 #if OMPT_SUPPORT
1883           void *dummy;
1884           void **exit_frame_p;
1885           ompt_task_info_t *task_info;
1886 
1887           ompt_lw_taskteam_t lw_taskteam;
1888 
1889           if (ompt_enabled.enabled) {
1890             __ompt_lw_taskteam_init(&lw_taskteam, master_th, gtid,
1891                                     &ompt_parallel_data, return_address);
1892             __ompt_lw_taskteam_link(&lw_taskteam, master_th, 0);
1893             // don't use lw_taskteam after linking. content was swaped
1894             task_info = OMPT_CUR_TASK_INFO(master_th);
1895             exit_frame_p = &(task_info->frame.exit_frame.ptr);
1896 
1897             /* OMPT implicit task begin */
1898             implicit_task_data = OMPT_CUR_TASK_DATA(master_th);
1899             if (ompt_enabled.ompt_callback_implicit_task) {
1900               ompt_callbacks.ompt_callback(ompt_callback_implicit_task)(
1901                   ompt_scope_begin, OMPT_CUR_TEAM_DATA(master_th),
1902                   implicit_task_data, 1, __kmp_tid_from_gtid(gtid),
1903                   ompt_task_implicit);
1904               OMPT_CUR_TASK_INFO(master_th)->thread_num =
1905                   __kmp_tid_from_gtid(gtid);
1906             }
1907 
1908             /* OMPT state */
1909             master_th->th.ompt_thread_info.state = ompt_state_work_parallel;
1910           } else {
1911             exit_frame_p = &dummy;
1912           }
1913 #endif
1914 
1915           {
1916             KMP_TIME_PARTITIONED_BLOCK(OMP_parallel);
1917             KMP_SET_THREAD_STATE_BLOCK(IMPLICIT_TASK);
1918             __kmp_invoke_microtask(microtask, gtid, 0, argc, args
1919 #if OMPT_SUPPORT
1920                                    ,
1921                                    exit_frame_p
1922 #endif
1923             );
1924           }
1925 
1926 #if OMPT_SUPPORT
1927           if (ompt_enabled.enabled) {
1928             *exit_frame_p = NULL;
1929             if (ompt_enabled.ompt_callback_implicit_task) {
1930               ompt_callbacks.ompt_callback(ompt_callback_implicit_task)(
1931                   ompt_scope_end, NULL, &(task_info->task_data), 1,
1932                   OMPT_CUR_TASK_INFO(master_th)->thread_num,
1933                   ompt_task_implicit);
1934             }
1935 
1936             ompt_parallel_data = *OMPT_CUR_TEAM_DATA(master_th);
1937             __ompt_lw_taskteam_unlink(master_th);
1938             if (ompt_enabled.ompt_callback_parallel_end) {
1939               ompt_callbacks.ompt_callback(ompt_callback_parallel_end)(
1940                   &ompt_parallel_data, parent_task_data,
1941                   OMPT_INVOKER(call_context) | ompt_parallel_team,
1942                   return_address);
1943             }
1944             master_th->th.ompt_thread_info.state = ompt_state_overhead;
1945           }
1946 #endif
1947         }
1948       } else if (call_context == fork_context_gnu) {
1949 #if OMPT_SUPPORT
1950         ompt_lw_taskteam_t lwt;
1951         __ompt_lw_taskteam_init(&lwt, master_th, gtid, &ompt_parallel_data,
1952                                 return_address);
1953 
1954         lwt.ompt_task_info.frame.exit_frame = ompt_data_none;
1955         __ompt_lw_taskteam_link(&lwt, master_th, 1);
1956 // don't use lw_taskteam after linking. content was swaped
1957 #endif
1958 
1959         // we were called from GNU native code
1960         KA_TRACE(20, ("__kmp_fork_call: T#%d serial exit\n", gtid));
1961         return FALSE;
1962       } else {
1963         KMP_ASSERT2(call_context < fork_context_last,
1964                     "__kmp_fork_call: unknown fork_context parameter");
1965       }
1966 
1967       KA_TRACE(20, ("__kmp_fork_call: T#%d serial exit\n", gtid));
1968       KMP_MB();
1969       return FALSE;
1970     } // if (nthreads == 1)
1971 
1972     // GEH: only modify the executing flag in the case when not serialized
1973     //      serialized case is handled in kmpc_serialized_parallel
1974     KF_TRACE(10, ("__kmp_fork_call: parent_team_aclevel=%d, master_th=%p, "
1975                   "curtask=%p, curtask_max_aclevel=%d\n",
1976                   parent_team->t.t_active_level, master_th,
1977                   master_th->th.th_current_task,
1978                   master_th->th.th_current_task->td_icvs.max_active_levels));
1979     // TODO: GEH - cannot do this assertion because root thread not set up as
1980     // executing
1981     // KMP_ASSERT( master_th->th.th_current_task->td_flags.executing == 1 );
1982     master_th->th.th_current_task->td_flags.executing = 0;
1983 
1984     if (!master_th->th.th_teams_microtask || level > teams_level) {
1985       /* Increment our nested depth level */
1986       KMP_ATOMIC_INC(&root->r.r_in_parallel);
1987     }
1988 
1989     // See if we need to make a copy of the ICVs.
1990     int nthreads_icv = master_th->th.th_current_task->td_icvs.nproc;
1991     if ((level + 1 < __kmp_nested_nth.used) &&
1992         (__kmp_nested_nth.nth[level + 1] != nthreads_icv)) {
1993       nthreads_icv = __kmp_nested_nth.nth[level + 1];
1994     } else {
1995       nthreads_icv = 0; // don't update
1996     }
1997 
1998     // Figure out the proc_bind_policy for the new team.
1999     kmp_proc_bind_t proc_bind = master_th->th.th_set_proc_bind;
2000     // proc_bind_default means don't update
2001     kmp_proc_bind_t proc_bind_icv = proc_bind_default;
2002     if (master_th->th.th_current_task->td_icvs.proc_bind == proc_bind_false) {
2003       proc_bind = proc_bind_false;
2004     } else {
2005       // No proc_bind clause specified; use current proc-bind-var for this
2006       // parallel region
2007       if (proc_bind == proc_bind_default) {
2008         proc_bind = master_th->th.th_current_task->td_icvs.proc_bind;
2009       }
2010       // Have teams construct take proc_bind value from KMP_TEAMS_PROC_BIND
2011       if (master_th->th.th_teams_microtask &&
2012           microtask == (microtask_t)__kmp_teams_master) {
2013         proc_bind = __kmp_teams_proc_bind;
2014       }
2015       /* else: The proc_bind policy was specified explicitly on parallel clause.
2016          This overrides proc-bind-var for this parallel region, but does not
2017          change proc-bind-var. */
2018       // Figure the value of proc-bind-var for the child threads.
2019       if ((level + 1 < __kmp_nested_proc_bind.used) &&
2020           (__kmp_nested_proc_bind.bind_types[level + 1] !=
2021            master_th->th.th_current_task->td_icvs.proc_bind)) {
2022         // Do not modify the proc bind icv for the two teams construct forks
2023         // They just let the proc bind icv pass through
2024         if (!master_th->th.th_teams_microtask ||
2025             !(microtask == (microtask_t)__kmp_teams_master || ap == NULL))
2026           proc_bind_icv = __kmp_nested_proc_bind.bind_types[level + 1];
2027       }
2028     }
2029 
2030     // Reset for next parallel region
2031     master_th->th.th_set_proc_bind = proc_bind_default;
2032 
2033     if ((nthreads_icv > 0) || (proc_bind_icv != proc_bind_default)) {
2034       kmp_internal_control_t new_icvs;
2035       copy_icvs(&new_icvs, &master_th->th.th_current_task->td_icvs);
2036       new_icvs.next = NULL;
2037       if (nthreads_icv > 0) {
2038         new_icvs.nproc = nthreads_icv;
2039       }
2040       if (proc_bind_icv != proc_bind_default) {
2041         new_icvs.proc_bind = proc_bind_icv;
2042       }
2043 
2044       /* allocate a new parallel team */
2045       KF_TRACE(10, ("__kmp_fork_call: before __kmp_allocate_team\n"));
2046       team = __kmp_allocate_team(root, nthreads, nthreads,
2047 #if OMPT_SUPPORT
2048                                  ompt_parallel_data,
2049 #endif
2050                                  proc_bind, &new_icvs,
2051                                  argc USE_NESTED_HOT_ARG(master_th));
2052       if (__kmp_barrier_release_pattern[bs_forkjoin_barrier] == bp_dist_bar)
2053         copy_icvs((kmp_internal_control_t *)team->t.b->team_icvs, &new_icvs);
2054     } else {
2055       /* allocate a new parallel team */
2056       KF_TRACE(10, ("__kmp_fork_call: before __kmp_allocate_team\n"));
2057       team = __kmp_allocate_team(root, nthreads, nthreads,
2058 #if OMPT_SUPPORT
2059                                  ompt_parallel_data,
2060 #endif
2061                                  proc_bind,
2062                                  &master_th->th.th_current_task->td_icvs,
2063                                  argc USE_NESTED_HOT_ARG(master_th));
2064       if (__kmp_barrier_release_pattern[bs_forkjoin_barrier] == bp_dist_bar)
2065         copy_icvs((kmp_internal_control_t *)team->t.b->team_icvs,
2066                   &master_th->th.th_current_task->td_icvs);
2067     }
2068     KF_TRACE(
2069         10, ("__kmp_fork_call: after __kmp_allocate_team - team = %p\n", team));
2070 
2071     /* setup the new team */
2072     KMP_CHECK_UPDATE(team->t.t_master_tid, master_tid);
2073     KMP_CHECK_UPDATE(team->t.t_master_this_cons, master_this_cons);
2074     KMP_CHECK_UPDATE(team->t.t_ident, loc);
2075     KMP_CHECK_UPDATE(team->t.t_parent, parent_team);
2076     KMP_CHECK_UPDATE_SYNC(team->t.t_pkfn, microtask);
2077 #if OMPT_SUPPORT
2078     KMP_CHECK_UPDATE_SYNC(team->t.ompt_team_info.master_return_address,
2079                           return_address);
2080 #endif
2081     KMP_CHECK_UPDATE(team->t.t_invoke, invoker); // TODO move to root, maybe
2082     // TODO: parent_team->t.t_level == INT_MAX ???
2083     if (!master_th->th.th_teams_microtask || level > teams_level) {
2084       int new_level = parent_team->t.t_level + 1;
2085       KMP_CHECK_UPDATE(team->t.t_level, new_level);
2086       new_level = parent_team->t.t_active_level + 1;
2087       KMP_CHECK_UPDATE(team->t.t_active_level, new_level);
2088     } else {
2089       // AC: Do not increase parallel level at start of the teams construct
2090       int new_level = parent_team->t.t_level;
2091       KMP_CHECK_UPDATE(team->t.t_level, new_level);
2092       new_level = parent_team->t.t_active_level;
2093       KMP_CHECK_UPDATE(team->t.t_active_level, new_level);
2094     }
2095     kmp_r_sched_t new_sched = get__sched_2(parent_team, master_tid);
2096     // set primary thread's schedule as new run-time schedule
2097     KMP_CHECK_UPDATE(team->t.t_sched.sched, new_sched.sched);
2098 
2099     KMP_CHECK_UPDATE(team->t.t_cancel_request, cancel_noreq);
2100     KMP_CHECK_UPDATE(team->t.t_def_allocator, master_th->th.th_def_allocator);
2101 
2102     // Update the floating point rounding in the team if required.
2103     propagateFPControl(team);
2104 #if OMPD_SUPPORT
2105     if (ompd_state & OMPD_ENABLE_BP)
2106       ompd_bp_parallel_begin();
2107 #endif
2108 
2109     if (__kmp_tasking_mode != tskm_immediate_exec) {
2110       // Set primary thread's task team to team's task team. Unless this is hot
2111       // team, it should be NULL.
2112       KMP_DEBUG_ASSERT(master_th->th.th_task_team ==
2113                        parent_team->t.t_task_team[master_th->th.th_task_state]);
2114       KA_TRACE(20, ("__kmp_fork_call: Primary T#%d pushing task_team %p / team "
2115                     "%p, new task_team %p / team %p\n",
2116                     __kmp_gtid_from_thread(master_th),
2117                     master_th->th.th_task_team, parent_team,
2118                     team->t.t_task_team[master_th->th.th_task_state], team));
2119 
2120       if (active_level || master_th->th.th_task_team) {
2121         // Take a memo of primary thread's task_state
2122         KMP_DEBUG_ASSERT(master_th->th.th_task_state_memo_stack);
2123         if (master_th->th.th_task_state_top >=
2124             master_th->th.th_task_state_stack_sz) { // increase size
2125           kmp_uint32 new_size = 2 * master_th->th.th_task_state_stack_sz;
2126           kmp_uint8 *old_stack, *new_stack;
2127           kmp_uint32 i;
2128           new_stack = (kmp_uint8 *)__kmp_allocate(new_size);
2129           for (i = 0; i < master_th->th.th_task_state_stack_sz; ++i) {
2130             new_stack[i] = master_th->th.th_task_state_memo_stack[i];
2131           }
2132           for (i = master_th->th.th_task_state_stack_sz; i < new_size;
2133                ++i) { // zero-init rest of stack
2134             new_stack[i] = 0;
2135           }
2136           old_stack = master_th->th.th_task_state_memo_stack;
2137           master_th->th.th_task_state_memo_stack = new_stack;
2138           master_th->th.th_task_state_stack_sz = new_size;
2139           __kmp_free(old_stack);
2140         }
2141         // Store primary thread's task_state on stack
2142         master_th->th
2143             .th_task_state_memo_stack[master_th->th.th_task_state_top] =
2144             master_th->th.th_task_state;
2145         master_th->th.th_task_state_top++;
2146 #if KMP_NESTED_HOT_TEAMS
2147         if (master_th->th.th_hot_teams &&
2148             active_level < __kmp_hot_teams_max_level &&
2149             team == master_th->th.th_hot_teams[active_level].hot_team) {
2150           // Restore primary thread's nested state if nested hot team
2151           master_th->th.th_task_state =
2152               master_th->th
2153                   .th_task_state_memo_stack[master_th->th.th_task_state_top];
2154         } else {
2155 #endif
2156           master_th->th.th_task_state = 0;
2157 #if KMP_NESTED_HOT_TEAMS
2158         }
2159 #endif
2160       }
2161 #if !KMP_NESTED_HOT_TEAMS
2162       KMP_DEBUG_ASSERT((master_th->th.th_task_team == NULL) ||
2163                        (team == root->r.r_hot_team));
2164 #endif
2165     }
2166 
2167     KA_TRACE(
2168         20,
2169         ("__kmp_fork_call: T#%d(%d:%d)->(%d:0) created a team of %d threads\n",
2170          gtid, parent_team->t.t_id, team->t.t_master_tid, team->t.t_id,
2171          team->t.t_nproc));
2172     KMP_DEBUG_ASSERT(team != root->r.r_hot_team ||
2173                      (team->t.t_master_tid == 0 &&
2174                       (team->t.t_parent == root->r.r_root_team ||
2175                        team->t.t_parent->t.t_serialized)));
2176     KMP_MB();
2177 
2178     /* now, setup the arguments */
2179     argv = (void **)team->t.t_argv;
2180     if (ap) {
2181       for (i = argc - 1; i >= 0; --i) {
2182         void *new_argv = va_arg(kmp_va_deref(ap), void *);
2183         KMP_CHECK_UPDATE(*argv, new_argv);
2184         argv++;
2185       }
2186     } else {
2187       for (i = 0; i < argc; ++i) {
2188         // Get args from parent team for teams construct
2189         KMP_CHECK_UPDATE(argv[i], team->t.t_parent->t.t_argv[i]);
2190       }
2191     }
2192 
2193     /* now actually fork the threads */
2194     KMP_CHECK_UPDATE(team->t.t_master_active, master_active);
2195     if (!root->r.r_active) // Only do assignment if it prevents cache ping-pong
2196       root->r.r_active = TRUE;
2197 
2198     __kmp_fork_team_threads(root, team, master_th, gtid, !ap);
2199     __kmp_setup_icv_copy(team, nthreads,
2200                          &master_th->th.th_current_task->td_icvs, loc);
2201 
2202 #if OMPT_SUPPORT
2203     master_th->th.ompt_thread_info.state = ompt_state_work_parallel;
2204 #endif
2205 
2206     __kmp_release_bootstrap_lock(&__kmp_forkjoin_lock);
2207 
2208 #if USE_ITT_BUILD
2209     if (team->t.t_active_level == 1 // only report frames at level 1
2210         && !master_th->th.th_teams_microtask) { // not in teams construct
2211 #if USE_ITT_NOTIFY
2212       if ((__itt_frame_submit_v3_ptr || KMP_ITT_DEBUG) &&
2213           (__kmp_forkjoin_frames_mode == 3 ||
2214            __kmp_forkjoin_frames_mode == 1)) {
2215         kmp_uint64 tmp_time = 0;
2216         if (__itt_get_timestamp_ptr)
2217           tmp_time = __itt_get_timestamp();
2218         // Internal fork - report frame begin
2219         master_th->th.th_frame_time = tmp_time;
2220         if (__kmp_forkjoin_frames_mode == 3)
2221           team->t.t_region_time = tmp_time;
2222       } else
2223 // only one notification scheme (either "submit" or "forking/joined", not both)
2224 #endif /* USE_ITT_NOTIFY */
2225           if ((__itt_frame_begin_v3_ptr || KMP_ITT_DEBUG) &&
2226               __kmp_forkjoin_frames && !__kmp_forkjoin_frames_mode) {
2227         // Mark start of "parallel" region for Intel(R) VTune(TM) analyzer.
2228         __kmp_itt_region_forking(gtid, team->t.t_nproc, 0);
2229       }
2230     }
2231 #endif /* USE_ITT_BUILD */
2232 
2233     /* now go on and do the work */
2234     KMP_DEBUG_ASSERT(team == __kmp_threads[gtid]->th.th_team);
2235     KMP_MB();
2236     KF_TRACE(10,
2237              ("__kmp_internal_fork : root=%p, team=%p, master_th=%p, gtid=%d\n",
2238               root, team, master_th, gtid));
2239 
2240 #if USE_ITT_BUILD
2241     if (__itt_stack_caller_create_ptr) {
2242       // create new stack stitching id before entering fork barrier
2243       if (!enter_teams) {
2244         KMP_DEBUG_ASSERT(team->t.t_stack_id == NULL);
2245         team->t.t_stack_id = __kmp_itt_stack_caller_create();
2246       } else if (parent_team->t.t_serialized) {
2247         // keep stack stitching id in the serialized parent_team;
2248         // current team will be used for parallel inside the teams;
2249         // if parent_team is active, then it already keeps stack stitching id
2250         // for the league of teams
2251         KMP_DEBUG_ASSERT(parent_team->t.t_stack_id == NULL);
2252         parent_team->t.t_stack_id = __kmp_itt_stack_caller_create();
2253       }
2254     }
2255 #endif /* USE_ITT_BUILD */
2256 
2257     // AC: skip __kmp_internal_fork at teams construct, let only primary
2258     // threads execute
2259     if (ap) {
2260       __kmp_internal_fork(loc, gtid, team);
2261       KF_TRACE(10, ("__kmp_internal_fork : after : root=%p, team=%p, "
2262                     "master_th=%p, gtid=%d\n",
2263                     root, team, master_th, gtid));
2264     }
2265 
2266     if (call_context == fork_context_gnu) {
2267       KA_TRACE(20, ("__kmp_fork_call: parallel exit T#%d\n", gtid));
2268       return TRUE;
2269     }
2270 
2271     /* Invoke microtask for PRIMARY thread */
2272     KA_TRACE(20, ("__kmp_fork_call: T#%d(%d:0) invoke microtask = %p\n", gtid,
2273                   team->t.t_id, team->t.t_pkfn));
2274   } // END of timer KMP_fork_call block
2275 
2276 #if KMP_STATS_ENABLED
2277   // If beginning a teams construct, then change thread state
2278   stats_state_e previous_state = KMP_GET_THREAD_STATE();
2279   if (!ap) {
2280     KMP_SET_THREAD_STATE(stats_state_e::TEAMS_REGION);
2281   }
2282 #endif
2283 
2284   if (!team->t.t_invoke(gtid)) {
2285     KMP_ASSERT2(0, "cannot invoke microtask for PRIMARY thread");
2286   }
2287 
2288 #if KMP_STATS_ENABLED
2289   // If was beginning of a teams construct, then reset thread state
2290   if (!ap) {
2291     KMP_SET_THREAD_STATE(previous_state);
2292   }
2293 #endif
2294 
2295   KA_TRACE(20, ("__kmp_fork_call: T#%d(%d:0) done microtask = %p\n", gtid,
2296                 team->t.t_id, team->t.t_pkfn));
2297   KMP_MB(); /* Flush all pending memory write invalidates.  */
2298 
2299   KA_TRACE(20, ("__kmp_fork_call: parallel exit T#%d\n", gtid));
2300 #if OMPT_SUPPORT
2301   if (ompt_enabled.enabled) {
2302     master_th->th.ompt_thread_info.state = ompt_state_overhead;
2303   }
2304 #endif
2305 
2306   return TRUE;
2307 }
2308 
2309 #if OMPT_SUPPORT
2310 static inline void __kmp_join_restore_state(kmp_info_t *thread,
2311                                             kmp_team_t *team) {
2312   // restore state outside the region
2313   thread->th.ompt_thread_info.state =
2314       ((team->t.t_serialized) ? ompt_state_work_serial
2315                               : ompt_state_work_parallel);
2316 }
2317 
2318 static inline void __kmp_join_ompt(int gtid, kmp_info_t *thread,
2319                                    kmp_team_t *team, ompt_data_t *parallel_data,
2320                                    int flags, void *codeptr) {
2321   ompt_task_info_t *task_info = __ompt_get_task_info_object(0);
2322   if (ompt_enabled.ompt_callback_parallel_end) {
2323     ompt_callbacks.ompt_callback(ompt_callback_parallel_end)(
2324         parallel_data, &(task_info->task_data), flags, codeptr);
2325   }
2326 
2327   task_info->frame.enter_frame = ompt_data_none;
2328   __kmp_join_restore_state(thread, team);
2329 }
2330 #endif
2331 
2332 void __kmp_join_call(ident_t *loc, int gtid
2333 #if OMPT_SUPPORT
2334                      ,
2335                      enum fork_context_e fork_context
2336 #endif
2337                      ,
2338                      int exit_teams) {
2339   KMP_TIME_DEVELOPER_PARTITIONED_BLOCK(KMP_join_call);
2340   kmp_team_t *team;
2341   kmp_team_t *parent_team;
2342   kmp_info_t *master_th;
2343   kmp_root_t *root;
2344   int master_active;
2345 
2346   KA_TRACE(20, ("__kmp_join_call: enter T#%d\n", gtid));
2347 
2348   /* setup current data */
2349   master_th = __kmp_threads[gtid];
2350   root = master_th->th.th_root;
2351   team = master_th->th.th_team;
2352   parent_team = team->t.t_parent;
2353 
2354   master_th->th.th_ident = loc;
2355 
2356 #if OMPT_SUPPORT
2357   void *team_microtask = (void *)team->t.t_pkfn;
2358   // For GOMP interface with serialized parallel, need the
2359   // __kmpc_end_serialized_parallel to call hooks for OMPT end-implicit-task
2360   // and end-parallel events.
2361   if (ompt_enabled.enabled &&
2362       !(team->t.t_serialized && fork_context == fork_context_gnu)) {
2363     master_th->th.ompt_thread_info.state = ompt_state_overhead;
2364   }
2365 #endif
2366 
2367 #if KMP_DEBUG
2368   if (__kmp_tasking_mode != tskm_immediate_exec && !exit_teams) {
2369     KA_TRACE(20, ("__kmp_join_call: T#%d, old team = %p old task_team = %p, "
2370                   "th_task_team = %p\n",
2371                   __kmp_gtid_from_thread(master_th), team,
2372                   team->t.t_task_team[master_th->th.th_task_state],
2373                   master_th->th.th_task_team));
2374     KMP_DEBUG_ASSERT(master_th->th.th_task_team ==
2375                      team->t.t_task_team[master_th->th.th_task_state]);
2376   }
2377 #endif
2378 
2379   if (team->t.t_serialized) {
2380     if (master_th->th.th_teams_microtask) {
2381       // We are in teams construct
2382       int level = team->t.t_level;
2383       int tlevel = master_th->th.th_teams_level;
2384       if (level == tlevel) {
2385         // AC: we haven't incremented it earlier at start of teams construct,
2386         //     so do it here - at the end of teams construct
2387         team->t.t_level++;
2388       } else if (level == tlevel + 1) {
2389         // AC: we are exiting parallel inside teams, need to increment
2390         // serialization in order to restore it in the next call to
2391         // __kmpc_end_serialized_parallel
2392         team->t.t_serialized++;
2393       }
2394     }
2395     __kmpc_end_serialized_parallel(loc, gtid);
2396 
2397 #if OMPT_SUPPORT
2398     if (ompt_enabled.enabled) {
2399       __kmp_join_restore_state(master_th, parent_team);
2400     }
2401 #endif
2402 
2403     return;
2404   }
2405 
2406   master_active = team->t.t_master_active;
2407 
2408   if (!exit_teams) {
2409     // AC: No barrier for internal teams at exit from teams construct.
2410     //     But there is barrier for external team (league).
2411     __kmp_internal_join(loc, gtid, team);
2412 #if USE_ITT_BUILD
2413     if (__itt_stack_caller_create_ptr) {
2414       KMP_DEBUG_ASSERT(team->t.t_stack_id != NULL);
2415       // destroy the stack stitching id after join barrier
2416       __kmp_itt_stack_caller_destroy((__itt_caller)team->t.t_stack_id);
2417       team->t.t_stack_id = NULL;
2418     }
2419 #endif
2420   } else {
2421     master_th->th.th_task_state =
2422         0; // AC: no tasking in teams (out of any parallel)
2423 #if USE_ITT_BUILD
2424     if (__itt_stack_caller_create_ptr && parent_team->t.t_serialized) {
2425       KMP_DEBUG_ASSERT(parent_team->t.t_stack_id != NULL);
2426       // destroy the stack stitching id on exit from the teams construct
2427       // if parent_team is active, then the id will be destroyed later on
2428       // by master of the league of teams
2429       __kmp_itt_stack_caller_destroy((__itt_caller)parent_team->t.t_stack_id);
2430       parent_team->t.t_stack_id = NULL;
2431     }
2432 #endif
2433 
2434     if (team->t.t_nproc > 1 &&
2435         __kmp_barrier_gather_pattern[bs_forkjoin_barrier] == bp_dist_bar) {
2436       team->t.b->update_num_threads(team->t.t_nproc);
2437       __kmp_add_threads_to_team(team, team->t.t_nproc);
2438     }
2439   }
2440 
2441   KMP_MB();
2442 
2443 #if OMPT_SUPPORT
2444   ompt_data_t *parallel_data = &(team->t.ompt_team_info.parallel_data);
2445   void *codeptr = team->t.ompt_team_info.master_return_address;
2446 #endif
2447 
2448 #if USE_ITT_BUILD
2449   // Mark end of "parallel" region for Intel(R) VTune(TM) analyzer.
2450   if (team->t.t_active_level == 1 &&
2451       (!master_th->th.th_teams_microtask || /* not in teams construct */
2452        master_th->th.th_teams_size.nteams == 1)) {
2453     master_th->th.th_ident = loc;
2454     // only one notification scheme (either "submit" or "forking/joined", not
2455     // both)
2456     if ((__itt_frame_submit_v3_ptr || KMP_ITT_DEBUG) &&
2457         __kmp_forkjoin_frames_mode == 3)
2458       __kmp_itt_frame_submit(gtid, team->t.t_region_time,
2459                              master_th->th.th_frame_time, 0, loc,
2460                              master_th->th.th_team_nproc, 1);
2461     else if ((__itt_frame_end_v3_ptr || KMP_ITT_DEBUG) &&
2462              !__kmp_forkjoin_frames_mode && __kmp_forkjoin_frames)
2463       __kmp_itt_region_joined(gtid);
2464   } // active_level == 1
2465 #endif /* USE_ITT_BUILD */
2466 
2467 #if KMP_AFFINITY_SUPPORTED
2468   if (!exit_teams) {
2469     // Restore master thread's partition.
2470     master_th->th.th_first_place = team->t.t_first_place;
2471     master_th->th.th_last_place = team->t.t_last_place;
2472   }
2473 #endif // KMP_AFFINITY_SUPPORTED
2474 
2475   if (master_th->th.th_teams_microtask && !exit_teams &&
2476       team->t.t_pkfn != (microtask_t)__kmp_teams_master &&
2477       team->t.t_level == master_th->th.th_teams_level + 1) {
2478 // AC: We need to leave the team structure intact at the end of parallel
2479 // inside the teams construct, so that at the next parallel same (hot) team
2480 // works, only adjust nesting levels
2481 #if OMPT_SUPPORT
2482     ompt_data_t ompt_parallel_data = ompt_data_none;
2483     if (ompt_enabled.enabled) {
2484       ompt_task_info_t *task_info = __ompt_get_task_info_object(0);
2485       if (ompt_enabled.ompt_callback_implicit_task) {
2486         int ompt_team_size = team->t.t_nproc;
2487         ompt_callbacks.ompt_callback(ompt_callback_implicit_task)(
2488             ompt_scope_end, NULL, &(task_info->task_data), ompt_team_size,
2489             OMPT_CUR_TASK_INFO(master_th)->thread_num, ompt_task_implicit);
2490       }
2491       task_info->frame.exit_frame = ompt_data_none;
2492       task_info->task_data = ompt_data_none;
2493       ompt_parallel_data = *OMPT_CUR_TEAM_DATA(master_th);
2494       __ompt_lw_taskteam_unlink(master_th);
2495     }
2496 #endif
2497     /* Decrement our nested depth level */
2498     team->t.t_level--;
2499     team->t.t_active_level--;
2500     KMP_ATOMIC_DEC(&root->r.r_in_parallel);
2501 
2502     // Restore number of threads in the team if needed. This code relies on
2503     // the proper adjustment of th_teams_size.nth after the fork in
2504     // __kmp_teams_master on each teams primary thread in the case that
2505     // __kmp_reserve_threads reduced it.
2506     if (master_th->th.th_team_nproc < master_th->th.th_teams_size.nth) {
2507       int old_num = master_th->th.th_team_nproc;
2508       int new_num = master_th->th.th_teams_size.nth;
2509       kmp_info_t **other_threads = team->t.t_threads;
2510       team->t.t_nproc = new_num;
2511       for (int i = 0; i < old_num; ++i) {
2512         other_threads[i]->th.th_team_nproc = new_num;
2513       }
2514       // Adjust states of non-used threads of the team
2515       for (int i = old_num; i < new_num; ++i) {
2516         // Re-initialize thread's barrier data.
2517         KMP_DEBUG_ASSERT(other_threads[i]);
2518         kmp_balign_t *balign = other_threads[i]->th.th_bar;
2519         for (int b = 0; b < bs_last_barrier; ++b) {
2520           balign[b].bb.b_arrived = team->t.t_bar[b].b_arrived;
2521           KMP_DEBUG_ASSERT(balign[b].bb.wait_flag != KMP_BARRIER_PARENT_FLAG);
2522 #if USE_DEBUGGER
2523           balign[b].bb.b_worker_arrived = team->t.t_bar[b].b_team_arrived;
2524 #endif
2525         }
2526         if (__kmp_tasking_mode != tskm_immediate_exec) {
2527           // Synchronize thread's task state
2528           other_threads[i]->th.th_task_state = master_th->th.th_task_state;
2529         }
2530       }
2531     }
2532 
2533 #if OMPT_SUPPORT
2534     if (ompt_enabled.enabled) {
2535       __kmp_join_ompt(gtid, master_th, parent_team, &ompt_parallel_data,
2536                       OMPT_INVOKER(fork_context) | ompt_parallel_team, codeptr);
2537     }
2538 #endif
2539 
2540     return;
2541   }
2542 
2543   /* do cleanup and restore the parent team */
2544   master_th->th.th_info.ds.ds_tid = team->t.t_master_tid;
2545   master_th->th.th_local.this_construct = team->t.t_master_this_cons;
2546 
2547   master_th->th.th_dispatch = &parent_team->t.t_dispatch[team->t.t_master_tid];
2548 
2549   /* jc: The following lock has instructions with REL and ACQ semantics,
2550      separating the parallel user code called in this parallel region
2551      from the serial user code called after this function returns. */
2552   __kmp_acquire_bootstrap_lock(&__kmp_forkjoin_lock);
2553 
2554   if (!master_th->th.th_teams_microtask ||
2555       team->t.t_level > master_th->th.th_teams_level) {
2556     /* Decrement our nested depth level */
2557     KMP_ATOMIC_DEC(&root->r.r_in_parallel);
2558   }
2559   KMP_DEBUG_ASSERT(root->r.r_in_parallel >= 0);
2560 
2561 #if OMPT_SUPPORT
2562   if (ompt_enabled.enabled) {
2563     ompt_task_info_t *task_info = __ompt_get_task_info_object(0);
2564     if (ompt_enabled.ompt_callback_implicit_task) {
2565       int flags = (team_microtask == (void *)__kmp_teams_master)
2566                       ? ompt_task_initial
2567                       : ompt_task_implicit;
2568       int ompt_team_size = (flags == ompt_task_initial) ? 0 : team->t.t_nproc;
2569       ompt_callbacks.ompt_callback(ompt_callback_implicit_task)(
2570           ompt_scope_end, NULL, &(task_info->task_data), ompt_team_size,
2571           OMPT_CUR_TASK_INFO(master_th)->thread_num, flags);
2572     }
2573     task_info->frame.exit_frame = ompt_data_none;
2574     task_info->task_data = ompt_data_none;
2575   }
2576 #endif
2577 
2578   KF_TRACE(10, ("__kmp_join_call1: T#%d, this_thread=%p team=%p\n", 0,
2579                 master_th, team));
2580   __kmp_pop_current_task_from_thread(master_th);
2581 
2582   master_th->th.th_def_allocator = team->t.t_def_allocator;
2583 
2584 #if OMPD_SUPPORT
2585   if (ompd_state & OMPD_ENABLE_BP)
2586     ompd_bp_parallel_end();
2587 #endif
2588   updateHWFPControl(team);
2589 
2590   if (root->r.r_active != master_active)
2591     root->r.r_active = master_active;
2592 
2593   __kmp_free_team(root, team USE_NESTED_HOT_ARG(
2594                             master_th)); // this will free worker threads
2595 
2596   /* this race was fun to find. make sure the following is in the critical
2597      region otherwise assertions may fail occasionally since the old team may be
2598      reallocated and the hierarchy appears inconsistent. it is actually safe to
2599      run and won't cause any bugs, but will cause those assertion failures. it's
2600      only one deref&assign so might as well put this in the critical region */
2601   master_th->th.th_team = parent_team;
2602   master_th->th.th_team_nproc = parent_team->t.t_nproc;
2603   master_th->th.th_team_master = parent_team->t.t_threads[0];
2604   master_th->th.th_team_serialized = parent_team->t.t_serialized;
2605 
2606   /* restore serialized team, if need be */
2607   if (parent_team->t.t_serialized &&
2608       parent_team != master_th->th.th_serial_team &&
2609       parent_team != root->r.r_root_team) {
2610     __kmp_free_team(root,
2611                     master_th->th.th_serial_team USE_NESTED_HOT_ARG(NULL));
2612     master_th->th.th_serial_team = parent_team;
2613   }
2614 
2615   if (__kmp_tasking_mode != tskm_immediate_exec) {
2616     if (master_th->th.th_task_state_top >
2617         0) { // Restore task state from memo stack
2618       KMP_DEBUG_ASSERT(master_th->th.th_task_state_memo_stack);
2619       // Remember primary thread's state if we re-use this nested hot team
2620       master_th->th.th_task_state_memo_stack[master_th->th.th_task_state_top] =
2621           master_th->th.th_task_state;
2622       --master_th->th.th_task_state_top; // pop
2623       // Now restore state at this level
2624       master_th->th.th_task_state =
2625           master_th->th
2626               .th_task_state_memo_stack[master_th->th.th_task_state_top];
2627     }
2628     // Copy the task team from the parent team to the primary thread
2629     master_th->th.th_task_team =
2630         parent_team->t.t_task_team[master_th->th.th_task_state];
2631     KA_TRACE(20,
2632              ("__kmp_join_call: Primary T#%d restoring task_team %p, team %p\n",
2633               __kmp_gtid_from_thread(master_th), master_th->th.th_task_team,
2634               parent_team));
2635   }
2636 
2637   // TODO: GEH - cannot do this assertion because root thread not set up as
2638   // executing
2639   // KMP_ASSERT( master_th->th.th_current_task->td_flags.executing == 0 );
2640   master_th->th.th_current_task->td_flags.executing = 1;
2641 
2642   __kmp_release_bootstrap_lock(&__kmp_forkjoin_lock);
2643 
2644 #if OMPT_SUPPORT
2645   int flags =
2646       OMPT_INVOKER(fork_context) |
2647       ((team_microtask == (void *)__kmp_teams_master) ? ompt_parallel_league
2648                                                       : ompt_parallel_team);
2649   if (ompt_enabled.enabled) {
2650     __kmp_join_ompt(gtid, master_th, parent_team, parallel_data, flags,
2651                     codeptr);
2652   }
2653 #endif
2654 
2655   KMP_MB();
2656   KA_TRACE(20, ("__kmp_join_call: exit T#%d\n", gtid));
2657 }
2658 
2659 /* Check whether we should push an internal control record onto the
2660    serial team stack.  If so, do it.  */
2661 void __kmp_save_internal_controls(kmp_info_t *thread) {
2662 
2663   if (thread->th.th_team != thread->th.th_serial_team) {
2664     return;
2665   }
2666   if (thread->th.th_team->t.t_serialized > 1) {
2667     int push = 0;
2668 
2669     if (thread->th.th_team->t.t_control_stack_top == NULL) {
2670       push = 1;
2671     } else {
2672       if (thread->th.th_team->t.t_control_stack_top->serial_nesting_level !=
2673           thread->th.th_team->t.t_serialized) {
2674         push = 1;
2675       }
2676     }
2677     if (push) { /* push a record on the serial team's stack */
2678       kmp_internal_control_t *control =
2679           (kmp_internal_control_t *)__kmp_allocate(
2680               sizeof(kmp_internal_control_t));
2681 
2682       copy_icvs(control, &thread->th.th_current_task->td_icvs);
2683 
2684       control->serial_nesting_level = thread->th.th_team->t.t_serialized;
2685 
2686       control->next = thread->th.th_team->t.t_control_stack_top;
2687       thread->th.th_team->t.t_control_stack_top = control;
2688     }
2689   }
2690 }
2691 
2692 /* Changes set_nproc */
2693 void __kmp_set_num_threads(int new_nth, int gtid) {
2694   kmp_info_t *thread;
2695   kmp_root_t *root;
2696 
2697   KF_TRACE(10, ("__kmp_set_num_threads: new __kmp_nth = %d\n", new_nth));
2698   KMP_DEBUG_ASSERT(__kmp_init_serial);
2699 
2700   if (new_nth < 1)
2701     new_nth = 1;
2702   else if (new_nth > __kmp_max_nth)
2703     new_nth = __kmp_max_nth;
2704 
2705   KMP_COUNT_VALUE(OMP_set_numthreads, new_nth);
2706   thread = __kmp_threads[gtid];
2707   if (thread->th.th_current_task->td_icvs.nproc == new_nth)
2708     return; // nothing to do
2709 
2710   __kmp_save_internal_controls(thread);
2711 
2712   set__nproc(thread, new_nth);
2713 
2714   // If this omp_set_num_threads() call will cause the hot team size to be
2715   // reduced (in the absence of a num_threads clause), then reduce it now,
2716   // rather than waiting for the next parallel region.
2717   root = thread->th.th_root;
2718   if (__kmp_init_parallel && (!root->r.r_active) &&
2719       (root->r.r_hot_team->t.t_nproc > new_nth)
2720 #if KMP_NESTED_HOT_TEAMS
2721       && __kmp_hot_teams_max_level && !__kmp_hot_teams_mode
2722 #endif
2723   ) {
2724     kmp_team_t *hot_team = root->r.r_hot_team;
2725     int f;
2726 
2727     __kmp_acquire_bootstrap_lock(&__kmp_forkjoin_lock);
2728 
2729     if (__kmp_barrier_release_pattern[bs_forkjoin_barrier] == bp_dist_bar) {
2730       __kmp_resize_dist_barrier(hot_team, hot_team->t.t_nproc, new_nth);
2731     }
2732     // Release the extra threads we don't need any more.
2733     for (f = new_nth; f < hot_team->t.t_nproc; f++) {
2734       KMP_DEBUG_ASSERT(hot_team->t.t_threads[f] != NULL);
2735       if (__kmp_tasking_mode != tskm_immediate_exec) {
2736         // When decreasing team size, threads no longer in the team should unref
2737         // task team.
2738         hot_team->t.t_threads[f]->th.th_task_team = NULL;
2739       }
2740       __kmp_free_thread(hot_team->t.t_threads[f]);
2741       hot_team->t.t_threads[f] = NULL;
2742     }
2743     hot_team->t.t_nproc = new_nth;
2744 #if KMP_NESTED_HOT_TEAMS
2745     if (thread->th.th_hot_teams) {
2746       KMP_DEBUG_ASSERT(hot_team == thread->th.th_hot_teams[0].hot_team);
2747       thread->th.th_hot_teams[0].hot_team_nth = new_nth;
2748     }
2749 #endif
2750 
2751     if (__kmp_barrier_release_pattern[bs_forkjoin_barrier] == bp_dist_bar) {
2752       hot_team->t.b->update_num_threads(new_nth);
2753       __kmp_add_threads_to_team(hot_team, new_nth);
2754     }
2755 
2756     __kmp_release_bootstrap_lock(&__kmp_forkjoin_lock);
2757 
2758     // Update the t_nproc field in the threads that are still active.
2759     for (f = 0; f < new_nth; f++) {
2760       KMP_DEBUG_ASSERT(hot_team->t.t_threads[f] != NULL);
2761       hot_team->t.t_threads[f]->th.th_team_nproc = new_nth;
2762     }
2763     // Special flag in case omp_set_num_threads() call
2764     hot_team->t.t_size_changed = -1;
2765   }
2766 }
2767 
2768 /* Changes max_active_levels */
2769 void __kmp_set_max_active_levels(int gtid, int max_active_levels) {
2770   kmp_info_t *thread;
2771 
2772   KF_TRACE(10, ("__kmp_set_max_active_levels: new max_active_levels for thread "
2773                 "%d = (%d)\n",
2774                 gtid, max_active_levels));
2775   KMP_DEBUG_ASSERT(__kmp_init_serial);
2776 
2777   // validate max_active_levels
2778   if (max_active_levels < 0) {
2779     KMP_WARNING(ActiveLevelsNegative, max_active_levels);
2780     // We ignore this call if the user has specified a negative value.
2781     // The current setting won't be changed. The last valid setting will be
2782     // used. A warning will be issued (if warnings are allowed as controlled by
2783     // the KMP_WARNINGS env var).
2784     KF_TRACE(10, ("__kmp_set_max_active_levels: the call is ignored: new "
2785                   "max_active_levels for thread %d = (%d)\n",
2786                   gtid, max_active_levels));
2787     return;
2788   }
2789   if (max_active_levels <= KMP_MAX_ACTIVE_LEVELS_LIMIT) {
2790     // it's OK, the max_active_levels is within the valid range: [ 0;
2791     // KMP_MAX_ACTIVE_LEVELS_LIMIT ]
2792     // We allow a zero value. (implementation defined behavior)
2793   } else {
2794     KMP_WARNING(ActiveLevelsExceedLimit, max_active_levels,
2795                 KMP_MAX_ACTIVE_LEVELS_LIMIT);
2796     max_active_levels = KMP_MAX_ACTIVE_LEVELS_LIMIT;
2797     // Current upper limit is MAX_INT. (implementation defined behavior)
2798     // If the input exceeds the upper limit, we correct the input to be the
2799     // upper limit. (implementation defined behavior)
2800     // Actually, the flow should never get here until we use MAX_INT limit.
2801   }
2802   KF_TRACE(10, ("__kmp_set_max_active_levels: after validation: new "
2803                 "max_active_levels for thread %d = (%d)\n",
2804                 gtid, max_active_levels));
2805 
2806   thread = __kmp_threads[gtid];
2807 
2808   __kmp_save_internal_controls(thread);
2809 
2810   set__max_active_levels(thread, max_active_levels);
2811 }
2812 
2813 /* Gets max_active_levels */
2814 int __kmp_get_max_active_levels(int gtid) {
2815   kmp_info_t *thread;
2816 
2817   KF_TRACE(10, ("__kmp_get_max_active_levels: thread %d\n", gtid));
2818   KMP_DEBUG_ASSERT(__kmp_init_serial);
2819 
2820   thread = __kmp_threads[gtid];
2821   KMP_DEBUG_ASSERT(thread->th.th_current_task);
2822   KF_TRACE(10, ("__kmp_get_max_active_levels: thread %d, curtask=%p, "
2823                 "curtask_maxaclevel=%d\n",
2824                 gtid, thread->th.th_current_task,
2825                 thread->th.th_current_task->td_icvs.max_active_levels));
2826   return thread->th.th_current_task->td_icvs.max_active_levels;
2827 }
2828 
2829 // nteams-var per-device ICV
2830 void __kmp_set_num_teams(int num_teams) {
2831   if (num_teams > 0)
2832     __kmp_nteams = num_teams;
2833 }
2834 int __kmp_get_max_teams(void) { return __kmp_nteams; }
2835 // teams-thread-limit-var per-device ICV
2836 void __kmp_set_teams_thread_limit(int limit) {
2837   if (limit > 0)
2838     __kmp_teams_thread_limit = limit;
2839 }
2840 int __kmp_get_teams_thread_limit(void) { return __kmp_teams_thread_limit; }
2841 
2842 KMP_BUILD_ASSERT(sizeof(kmp_sched_t) == sizeof(int));
2843 KMP_BUILD_ASSERT(sizeof(enum sched_type) == sizeof(int));
2844 
2845 /* Changes def_sched_var ICV values (run-time schedule kind and chunk) */
2846 void __kmp_set_schedule(int gtid, kmp_sched_t kind, int chunk) {
2847   kmp_info_t *thread;
2848   kmp_sched_t orig_kind;
2849   //    kmp_team_t *team;
2850 
2851   KF_TRACE(10, ("__kmp_set_schedule: new schedule for thread %d = (%d, %d)\n",
2852                 gtid, (int)kind, chunk));
2853   KMP_DEBUG_ASSERT(__kmp_init_serial);
2854 
2855   // Check if the kind parameter is valid, correct if needed.
2856   // Valid parameters should fit in one of two intervals - standard or extended:
2857   //       <lower>, <valid>, <upper_std>, <lower_ext>, <valid>, <upper>
2858   // 2008-01-25: 0,  1 - 4,       5,         100,     101 - 102, 103
2859   orig_kind = kind;
2860   kind = __kmp_sched_without_mods(kind);
2861 
2862   if (kind <= kmp_sched_lower || kind >= kmp_sched_upper ||
2863       (kind <= kmp_sched_lower_ext && kind >= kmp_sched_upper_std)) {
2864     // TODO: Hint needs attention in case we change the default schedule.
2865     __kmp_msg(kmp_ms_warning, KMP_MSG(ScheduleKindOutOfRange, kind),
2866               KMP_HNT(DefaultScheduleKindUsed, "static, no chunk"),
2867               __kmp_msg_null);
2868     kind = kmp_sched_default;
2869     chunk = 0; // ignore chunk value in case of bad kind
2870   }
2871 
2872   thread = __kmp_threads[gtid];
2873 
2874   __kmp_save_internal_controls(thread);
2875 
2876   if (kind < kmp_sched_upper_std) {
2877     if (kind == kmp_sched_static && chunk < KMP_DEFAULT_CHUNK) {
2878       // differ static chunked vs. unchunked:  chunk should be invalid to
2879       // indicate unchunked schedule (which is the default)
2880       thread->th.th_current_task->td_icvs.sched.r_sched_type = kmp_sch_static;
2881     } else {
2882       thread->th.th_current_task->td_icvs.sched.r_sched_type =
2883           __kmp_sch_map[kind - kmp_sched_lower - 1];
2884     }
2885   } else {
2886     //    __kmp_sch_map[ kind - kmp_sched_lower_ext + kmp_sched_upper_std -
2887     //    kmp_sched_lower - 2 ];
2888     thread->th.th_current_task->td_icvs.sched.r_sched_type =
2889         __kmp_sch_map[kind - kmp_sched_lower_ext + kmp_sched_upper_std -
2890                       kmp_sched_lower - 2];
2891   }
2892   __kmp_sched_apply_mods_intkind(
2893       orig_kind, &(thread->th.th_current_task->td_icvs.sched.r_sched_type));
2894   if (kind == kmp_sched_auto || chunk < 1) {
2895     // ignore parameter chunk for schedule auto
2896     thread->th.th_current_task->td_icvs.sched.chunk = KMP_DEFAULT_CHUNK;
2897   } else {
2898     thread->th.th_current_task->td_icvs.sched.chunk = chunk;
2899   }
2900 }
2901 
2902 /* Gets def_sched_var ICV values */
2903 void __kmp_get_schedule(int gtid, kmp_sched_t *kind, int *chunk) {
2904   kmp_info_t *thread;
2905   enum sched_type th_type;
2906 
2907   KF_TRACE(10, ("__kmp_get_schedule: thread %d\n", gtid));
2908   KMP_DEBUG_ASSERT(__kmp_init_serial);
2909 
2910   thread = __kmp_threads[gtid];
2911 
2912   th_type = thread->th.th_current_task->td_icvs.sched.r_sched_type;
2913   switch (SCHEDULE_WITHOUT_MODIFIERS(th_type)) {
2914   case kmp_sch_static:
2915   case kmp_sch_static_greedy:
2916   case kmp_sch_static_balanced:
2917     *kind = kmp_sched_static;
2918     __kmp_sched_apply_mods_stdkind(kind, th_type);
2919     *chunk = 0; // chunk was not set, try to show this fact via zero value
2920     return;
2921   case kmp_sch_static_chunked:
2922     *kind = kmp_sched_static;
2923     break;
2924   case kmp_sch_dynamic_chunked:
2925     *kind = kmp_sched_dynamic;
2926     break;
2927   case kmp_sch_guided_chunked:
2928   case kmp_sch_guided_iterative_chunked:
2929   case kmp_sch_guided_analytical_chunked:
2930     *kind = kmp_sched_guided;
2931     break;
2932   case kmp_sch_auto:
2933     *kind = kmp_sched_auto;
2934     break;
2935   case kmp_sch_trapezoidal:
2936     *kind = kmp_sched_trapezoidal;
2937     break;
2938 #if KMP_STATIC_STEAL_ENABLED
2939   case kmp_sch_static_steal:
2940     *kind = kmp_sched_static_steal;
2941     break;
2942 #endif
2943   default:
2944     KMP_FATAL(UnknownSchedulingType, th_type);
2945   }
2946 
2947   __kmp_sched_apply_mods_stdkind(kind, th_type);
2948   *chunk = thread->th.th_current_task->td_icvs.sched.chunk;
2949 }
2950 
2951 int __kmp_get_ancestor_thread_num(int gtid, int level) {
2952 
2953   int ii, dd;
2954   kmp_team_t *team;
2955   kmp_info_t *thr;
2956 
2957   KF_TRACE(10, ("__kmp_get_ancestor_thread_num: thread %d %d\n", gtid, level));
2958   KMP_DEBUG_ASSERT(__kmp_init_serial);
2959 
2960   // validate level
2961   if (level == 0)
2962     return 0;
2963   if (level < 0)
2964     return -1;
2965   thr = __kmp_threads[gtid];
2966   team = thr->th.th_team;
2967   ii = team->t.t_level;
2968   if (level > ii)
2969     return -1;
2970 
2971   if (thr->th.th_teams_microtask) {
2972     // AC: we are in teams region where multiple nested teams have same level
2973     int tlevel = thr->th.th_teams_level; // the level of the teams construct
2974     if (level <=
2975         tlevel) { // otherwise usual algorithm works (will not touch the teams)
2976       KMP_DEBUG_ASSERT(ii >= tlevel);
2977       // AC: As we need to pass by the teams league, we need to artificially
2978       // increase ii
2979       if (ii == tlevel) {
2980         ii += 2; // three teams have same level
2981       } else {
2982         ii++; // two teams have same level
2983       }
2984     }
2985   }
2986 
2987   if (ii == level)
2988     return __kmp_tid_from_gtid(gtid);
2989 
2990   dd = team->t.t_serialized;
2991   level++;
2992   while (ii > level) {
2993     for (dd = team->t.t_serialized; (dd > 0) && (ii > level); dd--, ii--) {
2994     }
2995     if ((team->t.t_serialized) && (!dd)) {
2996       team = team->t.t_parent;
2997       continue;
2998     }
2999     if (ii > level) {
3000       team = team->t.t_parent;
3001       dd = team->t.t_serialized;
3002       ii--;
3003     }
3004   }
3005 
3006   return (dd > 1) ? (0) : (team->t.t_master_tid);
3007 }
3008 
3009 int __kmp_get_team_size(int gtid, int level) {
3010 
3011   int ii, dd;
3012   kmp_team_t *team;
3013   kmp_info_t *thr;
3014 
3015   KF_TRACE(10, ("__kmp_get_team_size: thread %d %d\n", gtid, level));
3016   KMP_DEBUG_ASSERT(__kmp_init_serial);
3017 
3018   // validate level
3019   if (level == 0)
3020     return 1;
3021   if (level < 0)
3022     return -1;
3023   thr = __kmp_threads[gtid];
3024   team = thr->th.th_team;
3025   ii = team->t.t_level;
3026   if (level > ii)
3027     return -1;
3028 
3029   if (thr->th.th_teams_microtask) {
3030     // AC: we are in teams region where multiple nested teams have same level
3031     int tlevel = thr->th.th_teams_level; // the level of the teams construct
3032     if (level <=
3033         tlevel) { // otherwise usual algorithm works (will not touch the teams)
3034       KMP_DEBUG_ASSERT(ii >= tlevel);
3035       // AC: As we need to pass by the teams league, we need to artificially
3036       // increase ii
3037       if (ii == tlevel) {
3038         ii += 2; // three teams have same level
3039       } else {
3040         ii++; // two teams have same level
3041       }
3042     }
3043   }
3044 
3045   while (ii > level) {
3046     for (dd = team->t.t_serialized; (dd > 0) && (ii > level); dd--, ii--) {
3047     }
3048     if (team->t.t_serialized && (!dd)) {
3049       team = team->t.t_parent;
3050       continue;
3051     }
3052     if (ii > level) {
3053       team = team->t.t_parent;
3054       ii--;
3055     }
3056   }
3057 
3058   return team->t.t_nproc;
3059 }
3060 
3061 kmp_r_sched_t __kmp_get_schedule_global() {
3062   // This routine created because pairs (__kmp_sched, __kmp_chunk) and
3063   // (__kmp_static, __kmp_guided) may be changed by kmp_set_defaults
3064   // independently. So one can get the updated schedule here.
3065 
3066   kmp_r_sched_t r_sched;
3067 
3068   // create schedule from 4 globals: __kmp_sched, __kmp_chunk, __kmp_static,
3069   // __kmp_guided. __kmp_sched should keep original value, so that user can set
3070   // KMP_SCHEDULE multiple times, and thus have different run-time schedules in
3071   // different roots (even in OMP 2.5)
3072   enum sched_type s = SCHEDULE_WITHOUT_MODIFIERS(__kmp_sched);
3073   enum sched_type sched_modifiers = SCHEDULE_GET_MODIFIERS(__kmp_sched);
3074   if (s == kmp_sch_static) {
3075     // replace STATIC with more detailed schedule (balanced or greedy)
3076     r_sched.r_sched_type = __kmp_static;
3077   } else if (s == kmp_sch_guided_chunked) {
3078     // replace GUIDED with more detailed schedule (iterative or analytical)
3079     r_sched.r_sched_type = __kmp_guided;
3080   } else { // (STATIC_CHUNKED), or (DYNAMIC_CHUNKED), or other
3081     r_sched.r_sched_type = __kmp_sched;
3082   }
3083   SCHEDULE_SET_MODIFIERS(r_sched.r_sched_type, sched_modifiers);
3084 
3085   if (__kmp_chunk < KMP_DEFAULT_CHUNK) {
3086     // __kmp_chunk may be wrong here (if it was not ever set)
3087     r_sched.chunk = KMP_DEFAULT_CHUNK;
3088   } else {
3089     r_sched.chunk = __kmp_chunk;
3090   }
3091 
3092   return r_sched;
3093 }
3094 
3095 /* Allocate (realloc == FALSE) * or reallocate (realloc == TRUE)
3096    at least argc number of *t_argv entries for the requested team. */
3097 static void __kmp_alloc_argv_entries(int argc, kmp_team_t *team, int realloc) {
3098 
3099   KMP_DEBUG_ASSERT(team);
3100   if (!realloc || argc > team->t.t_max_argc) {
3101 
3102     KA_TRACE(100, ("__kmp_alloc_argv_entries: team %d: needed entries=%d, "
3103                    "current entries=%d\n",
3104                    team->t.t_id, argc, (realloc) ? team->t.t_max_argc : 0));
3105     /* if previously allocated heap space for args, free them */
3106     if (realloc && team->t.t_argv != &team->t.t_inline_argv[0])
3107       __kmp_free((void *)team->t.t_argv);
3108 
3109     if (argc <= KMP_INLINE_ARGV_ENTRIES) {
3110       /* use unused space in the cache line for arguments */
3111       team->t.t_max_argc = KMP_INLINE_ARGV_ENTRIES;
3112       KA_TRACE(100, ("__kmp_alloc_argv_entries: team %d: inline allocate %d "
3113                      "argv entries\n",
3114                      team->t.t_id, team->t.t_max_argc));
3115       team->t.t_argv = &team->t.t_inline_argv[0];
3116       if (__kmp_storage_map) {
3117         __kmp_print_storage_map_gtid(
3118             -1, &team->t.t_inline_argv[0],
3119             &team->t.t_inline_argv[KMP_INLINE_ARGV_ENTRIES],
3120             (sizeof(void *) * KMP_INLINE_ARGV_ENTRIES), "team_%d.t_inline_argv",
3121             team->t.t_id);
3122       }
3123     } else {
3124       /* allocate space for arguments in the heap */
3125       team->t.t_max_argc = (argc <= (KMP_MIN_MALLOC_ARGV_ENTRIES >> 1))
3126                                ? KMP_MIN_MALLOC_ARGV_ENTRIES
3127                                : 2 * argc;
3128       KA_TRACE(100, ("__kmp_alloc_argv_entries: team %d: dynamic allocate %d "
3129                      "argv entries\n",
3130                      team->t.t_id, team->t.t_max_argc));
3131       team->t.t_argv =
3132           (void **)__kmp_page_allocate(sizeof(void *) * team->t.t_max_argc);
3133       if (__kmp_storage_map) {
3134         __kmp_print_storage_map_gtid(-1, &team->t.t_argv[0],
3135                                      &team->t.t_argv[team->t.t_max_argc],
3136                                      sizeof(void *) * team->t.t_max_argc,
3137                                      "team_%d.t_argv", team->t.t_id);
3138       }
3139     }
3140   }
3141 }
3142 
3143 static void __kmp_allocate_team_arrays(kmp_team_t *team, int max_nth) {
3144   int i;
3145   int num_disp_buff = max_nth > 1 ? __kmp_dispatch_num_buffers : 2;
3146   team->t.t_threads =
3147       (kmp_info_t **)__kmp_allocate(sizeof(kmp_info_t *) * max_nth);
3148   team->t.t_disp_buffer = (dispatch_shared_info_t *)__kmp_allocate(
3149       sizeof(dispatch_shared_info_t) * num_disp_buff);
3150   team->t.t_dispatch =
3151       (kmp_disp_t *)__kmp_allocate(sizeof(kmp_disp_t) * max_nth);
3152   team->t.t_implicit_task_taskdata =
3153       (kmp_taskdata_t *)__kmp_allocate(sizeof(kmp_taskdata_t) * max_nth);
3154   team->t.t_max_nproc = max_nth;
3155 
3156   /* setup dispatch buffers */
3157   for (i = 0; i < num_disp_buff; ++i) {
3158     team->t.t_disp_buffer[i].buffer_index = i;
3159     team->t.t_disp_buffer[i].doacross_buf_idx = i;
3160   }
3161 }
3162 
3163 static void __kmp_free_team_arrays(kmp_team_t *team) {
3164   /* Note: this does not free the threads in t_threads (__kmp_free_threads) */
3165   int i;
3166   for (i = 0; i < team->t.t_max_nproc; ++i) {
3167     if (team->t.t_dispatch[i].th_disp_buffer != NULL) {
3168       __kmp_free(team->t.t_dispatch[i].th_disp_buffer);
3169       team->t.t_dispatch[i].th_disp_buffer = NULL;
3170     }
3171   }
3172 #if KMP_USE_HIER_SCHED
3173   __kmp_dispatch_free_hierarchies(team);
3174 #endif
3175   __kmp_free(team->t.t_threads);
3176   __kmp_free(team->t.t_disp_buffer);
3177   __kmp_free(team->t.t_dispatch);
3178   __kmp_free(team->t.t_implicit_task_taskdata);
3179   team->t.t_threads = NULL;
3180   team->t.t_disp_buffer = NULL;
3181   team->t.t_dispatch = NULL;
3182   team->t.t_implicit_task_taskdata = 0;
3183 }
3184 
3185 static void __kmp_reallocate_team_arrays(kmp_team_t *team, int max_nth) {
3186   kmp_info_t **oldThreads = team->t.t_threads;
3187 
3188   __kmp_free(team->t.t_disp_buffer);
3189   __kmp_free(team->t.t_dispatch);
3190   __kmp_free(team->t.t_implicit_task_taskdata);
3191   __kmp_allocate_team_arrays(team, max_nth);
3192 
3193   KMP_MEMCPY(team->t.t_threads, oldThreads,
3194              team->t.t_nproc * sizeof(kmp_info_t *));
3195 
3196   __kmp_free(oldThreads);
3197 }
3198 
3199 static kmp_internal_control_t __kmp_get_global_icvs(void) {
3200 
3201   kmp_r_sched_t r_sched =
3202       __kmp_get_schedule_global(); // get current state of scheduling globals
3203 
3204   KMP_DEBUG_ASSERT(__kmp_nested_proc_bind.used > 0);
3205 
3206   kmp_internal_control_t g_icvs = {
3207     0, // int serial_nesting_level; //corresponds to value of th_team_serialized
3208     (kmp_int8)__kmp_global.g.g_dynamic, // internal control for dynamic
3209     // adjustment of threads (per thread)
3210     (kmp_int8)__kmp_env_blocktime, // int bt_set; //internal control for
3211     // whether blocktime is explicitly set
3212     __kmp_dflt_blocktime, // int blocktime; //internal control for blocktime
3213 #if KMP_USE_MONITOR
3214     __kmp_bt_intervals, // int bt_intervals; //internal control for blocktime
3215 // intervals
3216 #endif
3217     __kmp_dflt_team_nth, // int nproc; //internal control for # of threads for
3218     // next parallel region (per thread)
3219     // (use a max ub on value if __kmp_parallel_initialize not called yet)
3220     __kmp_cg_max_nth, // int thread_limit;
3221     __kmp_dflt_max_active_levels, // int max_active_levels; //internal control
3222     // for max_active_levels
3223     r_sched, // kmp_r_sched_t sched; //internal control for runtime schedule
3224     // {sched,chunk} pair
3225     __kmp_nested_proc_bind.bind_types[0],
3226     __kmp_default_device,
3227     NULL // struct kmp_internal_control *next;
3228   };
3229 
3230   return g_icvs;
3231 }
3232 
3233 static kmp_internal_control_t __kmp_get_x_global_icvs(const kmp_team_t *team) {
3234 
3235   kmp_internal_control_t gx_icvs;
3236   gx_icvs.serial_nesting_level =
3237       0; // probably =team->t.t_serial like in save_inter_controls
3238   copy_icvs(&gx_icvs, &team->t.t_threads[0]->th.th_current_task->td_icvs);
3239   gx_icvs.next = NULL;
3240 
3241   return gx_icvs;
3242 }
3243 
3244 static void __kmp_initialize_root(kmp_root_t *root) {
3245   int f;
3246   kmp_team_t *root_team;
3247   kmp_team_t *hot_team;
3248   int hot_team_max_nth;
3249   kmp_r_sched_t r_sched =
3250       __kmp_get_schedule_global(); // get current state of scheduling globals
3251   kmp_internal_control_t r_icvs = __kmp_get_global_icvs();
3252   KMP_DEBUG_ASSERT(root);
3253   KMP_ASSERT(!root->r.r_begin);
3254 
3255   /* setup the root state structure */
3256   __kmp_init_lock(&root->r.r_begin_lock);
3257   root->r.r_begin = FALSE;
3258   root->r.r_active = FALSE;
3259   root->r.r_in_parallel = 0;
3260   root->r.r_blocktime = __kmp_dflt_blocktime;
3261 #if KMP_AFFINITY_SUPPORTED
3262   root->r.r_affinity_assigned = FALSE;
3263 #endif
3264 
3265   /* setup the root team for this task */
3266   /* allocate the root team structure */
3267   KF_TRACE(10, ("__kmp_initialize_root: before root_team\n"));
3268 
3269   root_team =
3270       __kmp_allocate_team(root,
3271                           1, // new_nproc
3272                           1, // max_nproc
3273 #if OMPT_SUPPORT
3274                           ompt_data_none, // root parallel id
3275 #endif
3276                           __kmp_nested_proc_bind.bind_types[0], &r_icvs,
3277                           0 // argc
3278                           USE_NESTED_HOT_ARG(NULL) // primary thread is unknown
3279                           );
3280 #if USE_DEBUGGER
3281   // Non-NULL value should be assigned to make the debugger display the root
3282   // team.
3283   TCW_SYNC_PTR(root_team->t.t_pkfn, (microtask_t)(~0));
3284 #endif
3285 
3286   KF_TRACE(10, ("__kmp_initialize_root: after root_team = %p\n", root_team));
3287 
3288   root->r.r_root_team = root_team;
3289   root_team->t.t_control_stack_top = NULL;
3290 
3291   /* initialize root team */
3292   root_team->t.t_threads[0] = NULL;
3293   root_team->t.t_nproc = 1;
3294   root_team->t.t_serialized = 1;
3295   // TODO???: root_team->t.t_max_active_levels = __kmp_dflt_max_active_levels;
3296   root_team->t.t_sched.sched = r_sched.sched;
3297   KA_TRACE(
3298       20,
3299       ("__kmp_initialize_root: init root team %d arrived: join=%u, plain=%u\n",
3300        root_team->t.t_id, KMP_INIT_BARRIER_STATE, KMP_INIT_BARRIER_STATE));
3301 
3302   /* setup the  hot team for this task */
3303   /* allocate the hot team structure */
3304   KF_TRACE(10, ("__kmp_initialize_root: before hot_team\n"));
3305 
3306   hot_team =
3307       __kmp_allocate_team(root,
3308                           1, // new_nproc
3309                           __kmp_dflt_team_nth_ub * 2, // max_nproc
3310 #if OMPT_SUPPORT
3311                           ompt_data_none, // root parallel id
3312 #endif
3313                           __kmp_nested_proc_bind.bind_types[0], &r_icvs,
3314                           0 // argc
3315                           USE_NESTED_HOT_ARG(NULL) // primary thread is unknown
3316                           );
3317   KF_TRACE(10, ("__kmp_initialize_root: after hot_team = %p\n", hot_team));
3318 
3319   root->r.r_hot_team = hot_team;
3320   root_team->t.t_control_stack_top = NULL;
3321 
3322   /* first-time initialization */
3323   hot_team->t.t_parent = root_team;
3324 
3325   /* initialize hot team */
3326   hot_team_max_nth = hot_team->t.t_max_nproc;
3327   for (f = 0; f < hot_team_max_nth; ++f) {
3328     hot_team->t.t_threads[f] = NULL;
3329   }
3330   hot_team->t.t_nproc = 1;
3331   // TODO???: hot_team->t.t_max_active_levels = __kmp_dflt_max_active_levels;
3332   hot_team->t.t_sched.sched = r_sched.sched;
3333   hot_team->t.t_size_changed = 0;
3334 }
3335 
3336 #ifdef KMP_DEBUG
3337 
3338 typedef struct kmp_team_list_item {
3339   kmp_team_p const *entry;
3340   struct kmp_team_list_item *next;
3341 } kmp_team_list_item_t;
3342 typedef kmp_team_list_item_t *kmp_team_list_t;
3343 
3344 static void __kmp_print_structure_team_accum( // Add team to list of teams.
3345     kmp_team_list_t list, // List of teams.
3346     kmp_team_p const *team // Team to add.
3347 ) {
3348 
3349   // List must terminate with item where both entry and next are NULL.
3350   // Team is added to the list only once.
3351   // List is sorted in ascending order by team id.
3352   // Team id is *not* a key.
3353 
3354   kmp_team_list_t l;
3355 
3356   KMP_DEBUG_ASSERT(list != NULL);
3357   if (team == NULL) {
3358     return;
3359   }
3360 
3361   __kmp_print_structure_team_accum(list, team->t.t_parent);
3362   __kmp_print_structure_team_accum(list, team->t.t_next_pool);
3363 
3364   // Search list for the team.
3365   l = list;
3366   while (l->next != NULL && l->entry != team) {
3367     l = l->next;
3368   }
3369   if (l->next != NULL) {
3370     return; // Team has been added before, exit.
3371   }
3372 
3373   // Team is not found. Search list again for insertion point.
3374   l = list;
3375   while (l->next != NULL && l->entry->t.t_id <= team->t.t_id) {
3376     l = l->next;
3377   }
3378 
3379   // Insert team.
3380   {
3381     kmp_team_list_item_t *item = (kmp_team_list_item_t *)KMP_INTERNAL_MALLOC(
3382         sizeof(kmp_team_list_item_t));
3383     *item = *l;
3384     l->entry = team;
3385     l->next = item;
3386   }
3387 }
3388 
3389 static void __kmp_print_structure_team(char const *title, kmp_team_p const *team
3390 
3391 ) {
3392   __kmp_printf("%s", title);
3393   if (team != NULL) {
3394     __kmp_printf("%2x %p\n", team->t.t_id, team);
3395   } else {
3396     __kmp_printf(" - (nil)\n");
3397   }
3398 }
3399 
3400 static void __kmp_print_structure_thread(char const *title,
3401                                          kmp_info_p const *thread) {
3402   __kmp_printf("%s", title);
3403   if (thread != NULL) {
3404     __kmp_printf("%2d %p\n", thread->th.th_info.ds.ds_gtid, thread);
3405   } else {
3406     __kmp_printf(" - (nil)\n");
3407   }
3408 }
3409 
3410 void __kmp_print_structure(void) {
3411 
3412   kmp_team_list_t list;
3413 
3414   // Initialize list of teams.
3415   list =
3416       (kmp_team_list_item_t *)KMP_INTERNAL_MALLOC(sizeof(kmp_team_list_item_t));
3417   list->entry = NULL;
3418   list->next = NULL;
3419 
3420   __kmp_printf("\n------------------------------\nGlobal Thread "
3421                "Table\n------------------------------\n");
3422   {
3423     int gtid;
3424     for (gtid = 0; gtid < __kmp_threads_capacity; ++gtid) {
3425       __kmp_printf("%2d", gtid);
3426       if (__kmp_threads != NULL) {
3427         __kmp_printf(" %p", __kmp_threads[gtid]);
3428       }
3429       if (__kmp_root != NULL) {
3430         __kmp_printf(" %p", __kmp_root[gtid]);
3431       }
3432       __kmp_printf("\n");
3433     }
3434   }
3435 
3436   // Print out __kmp_threads array.
3437   __kmp_printf("\n------------------------------\nThreads\n--------------------"
3438                "----------\n");
3439   if (__kmp_threads != NULL) {
3440     int gtid;
3441     for (gtid = 0; gtid < __kmp_threads_capacity; ++gtid) {
3442       kmp_info_t const *thread = __kmp_threads[gtid];
3443       if (thread != NULL) {
3444         __kmp_printf("GTID %2d %p:\n", gtid, thread);
3445         __kmp_printf("    Our Root:        %p\n", thread->th.th_root);
3446         __kmp_print_structure_team("    Our Team:     ", thread->th.th_team);
3447         __kmp_print_structure_team("    Serial Team:  ",
3448                                    thread->th.th_serial_team);
3449         __kmp_printf("    Threads:      %2d\n", thread->th.th_team_nproc);
3450         __kmp_print_structure_thread("    Primary:      ",
3451                                      thread->th.th_team_master);
3452         __kmp_printf("    Serialized?:  %2d\n", thread->th.th_team_serialized);
3453         __kmp_printf("    Set NProc:    %2d\n", thread->th.th_set_nproc);
3454         __kmp_printf("    Set Proc Bind: %2d\n", thread->th.th_set_proc_bind);
3455         __kmp_print_structure_thread("    Next in pool: ",
3456                                      thread->th.th_next_pool);
3457         __kmp_printf("\n");
3458         __kmp_print_structure_team_accum(list, thread->th.th_team);
3459         __kmp_print_structure_team_accum(list, thread->th.th_serial_team);
3460       }
3461     }
3462   } else {
3463     __kmp_printf("Threads array is not allocated.\n");
3464   }
3465 
3466   // Print out __kmp_root array.
3467   __kmp_printf("\n------------------------------\nUbers\n----------------------"
3468                "--------\n");
3469   if (__kmp_root != NULL) {
3470     int gtid;
3471     for (gtid = 0; gtid < __kmp_threads_capacity; ++gtid) {
3472       kmp_root_t const *root = __kmp_root[gtid];
3473       if (root != NULL) {
3474         __kmp_printf("GTID %2d %p:\n", gtid, root);
3475         __kmp_print_structure_team("    Root Team:    ", root->r.r_root_team);
3476         __kmp_print_structure_team("    Hot Team:     ", root->r.r_hot_team);
3477         __kmp_print_structure_thread("    Uber Thread:  ",
3478                                      root->r.r_uber_thread);
3479         __kmp_printf("    Active?:      %2d\n", root->r.r_active);
3480         __kmp_printf("    In Parallel:  %2d\n",
3481                      KMP_ATOMIC_LD_RLX(&root->r.r_in_parallel));
3482         __kmp_printf("\n");
3483         __kmp_print_structure_team_accum(list, root->r.r_root_team);
3484         __kmp_print_structure_team_accum(list, root->r.r_hot_team);
3485       }
3486     }
3487   } else {
3488     __kmp_printf("Ubers array is not allocated.\n");
3489   }
3490 
3491   __kmp_printf("\n------------------------------\nTeams\n----------------------"
3492                "--------\n");
3493   while (list->next != NULL) {
3494     kmp_team_p const *team = list->entry;
3495     int i;
3496     __kmp_printf("Team %2x %p:\n", team->t.t_id, team);
3497     __kmp_print_structure_team("    Parent Team:      ", team->t.t_parent);
3498     __kmp_printf("    Primary TID:      %2d\n", team->t.t_master_tid);
3499     __kmp_printf("    Max threads:      %2d\n", team->t.t_max_nproc);
3500     __kmp_printf("    Levels of serial: %2d\n", team->t.t_serialized);
3501     __kmp_printf("    Number threads:   %2d\n", team->t.t_nproc);
3502     for (i = 0; i < team->t.t_nproc; ++i) {
3503       __kmp_printf("    Thread %2d:      ", i);
3504       __kmp_print_structure_thread("", team->t.t_threads[i]);
3505     }
3506     __kmp_print_structure_team("    Next in pool:     ", team->t.t_next_pool);
3507     __kmp_printf("\n");
3508     list = list->next;
3509   }
3510 
3511   // Print out __kmp_thread_pool and __kmp_team_pool.
3512   __kmp_printf("\n------------------------------\nPools\n----------------------"
3513                "--------\n");
3514   __kmp_print_structure_thread("Thread pool:          ",
3515                                CCAST(kmp_info_t *, __kmp_thread_pool));
3516   __kmp_print_structure_team("Team pool:            ",
3517                              CCAST(kmp_team_t *, __kmp_team_pool));
3518   __kmp_printf("\n");
3519 
3520   // Free team list.
3521   while (list != NULL) {
3522     kmp_team_list_item_t *item = list;
3523     list = list->next;
3524     KMP_INTERNAL_FREE(item);
3525   }
3526 }
3527 
3528 #endif
3529 
3530 //---------------------------------------------------------------------------
3531 //  Stuff for per-thread fast random number generator
3532 //  Table of primes
3533 static const unsigned __kmp_primes[] = {
3534     0x9e3779b1, 0xffe6cc59, 0x2109f6dd, 0x43977ab5, 0xba5703f5, 0xb495a877,
3535     0xe1626741, 0x79695e6b, 0xbc98c09f, 0xd5bee2b3, 0x287488f9, 0x3af18231,
3536     0x9677cd4d, 0xbe3a6929, 0xadc6a877, 0xdcf0674b, 0xbe4d6fe9, 0x5f15e201,
3537     0x99afc3fd, 0xf3f16801, 0xe222cfff, 0x24ba5fdb, 0x0620452d, 0x79f149e3,
3538     0xc8b93f49, 0x972702cd, 0xb07dd827, 0x6c97d5ed, 0x085a3d61, 0x46eb5ea7,
3539     0x3d9910ed, 0x2e687b5b, 0x29609227, 0x6eb081f1, 0x0954c4e1, 0x9d114db9,
3540     0x542acfa9, 0xb3e6bd7b, 0x0742d917, 0xe9f3ffa7, 0x54581edb, 0xf2480f45,
3541     0x0bb9288f, 0xef1affc7, 0x85fa0ca7, 0x3ccc14db, 0xe6baf34b, 0x343377f7,
3542     0x5ca19031, 0xe6d9293b, 0xf0a9f391, 0x5d2e980b, 0xfc411073, 0xc3749363,
3543     0xb892d829, 0x3549366b, 0x629750ad, 0xb98294e5, 0x892d9483, 0xc235baf3,
3544     0x3d2402a3, 0x6bdef3c9, 0xbec333cd, 0x40c9520f};
3545 
3546 //---------------------------------------------------------------------------
3547 //  __kmp_get_random: Get a random number using a linear congruential method.
3548 unsigned short __kmp_get_random(kmp_info_t *thread) {
3549   unsigned x = thread->th.th_x;
3550   unsigned short r = (unsigned short)(x >> 16);
3551 
3552   thread->th.th_x = x * thread->th.th_a + 1;
3553 
3554   KA_TRACE(30, ("__kmp_get_random: THREAD: %d, RETURN: %u\n",
3555                 thread->th.th_info.ds.ds_tid, r));
3556 
3557   return r;
3558 }
3559 //--------------------------------------------------------
3560 // __kmp_init_random: Initialize a random number generator
3561 void __kmp_init_random(kmp_info_t *thread) {
3562   unsigned seed = thread->th.th_info.ds.ds_tid;
3563 
3564   thread->th.th_a =
3565       __kmp_primes[seed % (sizeof(__kmp_primes) / sizeof(__kmp_primes[0]))];
3566   thread->th.th_x = (seed + 1) * thread->th.th_a + 1;
3567   KA_TRACE(30,
3568            ("__kmp_init_random: THREAD: %u; A: %u\n", seed, thread->th.th_a));
3569 }
3570 
3571 #if KMP_OS_WINDOWS
3572 /* reclaim array entries for root threads that are already dead, returns number
3573  * reclaimed */
3574 static int __kmp_reclaim_dead_roots(void) {
3575   int i, r = 0;
3576 
3577   for (i = 0; i < __kmp_threads_capacity; ++i) {
3578     if (KMP_UBER_GTID(i) &&
3579         !__kmp_still_running((kmp_info_t *)TCR_SYNC_PTR(__kmp_threads[i])) &&
3580         !__kmp_root[i]
3581              ->r.r_active) { // AC: reclaim only roots died in non-active state
3582       r += __kmp_unregister_root_other_thread(i);
3583     }
3584   }
3585   return r;
3586 }
3587 #endif
3588 
3589 /* This function attempts to create free entries in __kmp_threads and
3590    __kmp_root, and returns the number of free entries generated.
3591 
3592    For Windows* OS static library, the first mechanism used is to reclaim array
3593    entries for root threads that are already dead.
3594 
3595    On all platforms, expansion is attempted on the arrays __kmp_threads_ and
3596    __kmp_root, with appropriate update to __kmp_threads_capacity. Array
3597    capacity is increased by doubling with clipping to __kmp_tp_capacity, if
3598    threadprivate cache array has been created. Synchronization with
3599    __kmpc_threadprivate_cached is done using __kmp_tp_cached_lock.
3600 
3601    After any dead root reclamation, if the clipping value allows array expansion
3602    to result in the generation of a total of nNeed free slots, the function does
3603    that expansion. If not, nothing is done beyond the possible initial root
3604    thread reclamation.
3605 
3606    If any argument is negative, the behavior is undefined. */
3607 static int __kmp_expand_threads(int nNeed) {
3608   int added = 0;
3609   int minimumRequiredCapacity;
3610   int newCapacity;
3611   kmp_info_t **newThreads;
3612   kmp_root_t **newRoot;
3613 
3614   // All calls to __kmp_expand_threads should be under __kmp_forkjoin_lock, so
3615   // resizing __kmp_threads does not need additional protection if foreign
3616   // threads are present
3617 
3618 #if KMP_OS_WINDOWS && !KMP_DYNAMIC_LIB
3619   /* only for Windows static library */
3620   /* reclaim array entries for root threads that are already dead */
3621   added = __kmp_reclaim_dead_roots();
3622 
3623   if (nNeed) {
3624     nNeed -= added;
3625     if (nNeed < 0)
3626       nNeed = 0;
3627   }
3628 #endif
3629   if (nNeed <= 0)
3630     return added;
3631 
3632   // Note that __kmp_threads_capacity is not bounded by __kmp_max_nth. If
3633   // __kmp_max_nth is set to some value less than __kmp_sys_max_nth by the
3634   // user via KMP_DEVICE_THREAD_LIMIT, then __kmp_threads_capacity may become
3635   // > __kmp_max_nth in one of two ways:
3636   //
3637   // 1) The initialization thread (gtid = 0) exits.  __kmp_threads[0]
3638   //    may not be reused by another thread, so we may need to increase
3639   //    __kmp_threads_capacity to __kmp_max_nth + 1.
3640   //
3641   // 2) New foreign root(s) are encountered.  We always register new foreign
3642   //    roots. This may cause a smaller # of threads to be allocated at
3643   //    subsequent parallel regions, but the worker threads hang around (and
3644   //    eventually go to sleep) and need slots in the __kmp_threads[] array.
3645   //
3646   // Anyway, that is the reason for moving the check to see if
3647   // __kmp_max_nth was exceeded into __kmp_reserve_threads()
3648   // instead of having it performed here. -BB
3649 
3650   KMP_DEBUG_ASSERT(__kmp_sys_max_nth >= __kmp_threads_capacity);
3651 
3652   /* compute expansion headroom to check if we can expand */
3653   if (__kmp_sys_max_nth - __kmp_threads_capacity < nNeed) {
3654     /* possible expansion too small -- give up */
3655     return added;
3656   }
3657   minimumRequiredCapacity = __kmp_threads_capacity + nNeed;
3658 
3659   newCapacity = __kmp_threads_capacity;
3660   do {
3661     newCapacity = newCapacity <= (__kmp_sys_max_nth >> 1) ? (newCapacity << 1)
3662                                                           : __kmp_sys_max_nth;
3663   } while (newCapacity < minimumRequiredCapacity);
3664   newThreads = (kmp_info_t **)__kmp_allocate(
3665       (sizeof(kmp_info_t *) + sizeof(kmp_root_t *)) * newCapacity + CACHE_LINE);
3666   newRoot =
3667       (kmp_root_t **)((char *)newThreads + sizeof(kmp_info_t *) * newCapacity);
3668   KMP_MEMCPY(newThreads, __kmp_threads,
3669              __kmp_threads_capacity * sizeof(kmp_info_t *));
3670   KMP_MEMCPY(newRoot, __kmp_root,
3671              __kmp_threads_capacity * sizeof(kmp_root_t *));
3672 
3673   kmp_info_t **temp_threads = __kmp_threads;
3674   *(kmp_info_t * *volatile *)&__kmp_threads = newThreads;
3675   *(kmp_root_t * *volatile *)&__kmp_root = newRoot;
3676   __kmp_free(temp_threads);
3677   added += newCapacity - __kmp_threads_capacity;
3678   *(volatile int *)&__kmp_threads_capacity = newCapacity;
3679 
3680   if (newCapacity > __kmp_tp_capacity) {
3681     __kmp_acquire_bootstrap_lock(&__kmp_tp_cached_lock);
3682     if (__kmp_tp_cached && newCapacity > __kmp_tp_capacity) {
3683       __kmp_threadprivate_resize_cache(newCapacity);
3684     } else { // increase __kmp_tp_capacity to correspond with kmp_threads size
3685       *(volatile int *)&__kmp_tp_capacity = newCapacity;
3686     }
3687     __kmp_release_bootstrap_lock(&__kmp_tp_cached_lock);
3688   }
3689 
3690   return added;
3691 }
3692 
3693 /* Register the current thread as a root thread and obtain our gtid. We must
3694    have the __kmp_initz_lock held at this point. Argument TRUE only if are the
3695    thread that calls from __kmp_do_serial_initialize() */
3696 int __kmp_register_root(int initial_thread) {
3697   kmp_info_t *root_thread;
3698   kmp_root_t *root;
3699   int gtid;
3700   int capacity;
3701   __kmp_acquire_bootstrap_lock(&__kmp_forkjoin_lock);
3702   KA_TRACE(20, ("__kmp_register_root: entered\n"));
3703   KMP_MB();
3704 
3705   /* 2007-03-02:
3706      If initial thread did not invoke OpenMP RTL yet, and this thread is not an
3707      initial one, "__kmp_all_nth >= __kmp_threads_capacity" condition does not
3708      work as expected -- it may return false (that means there is at least one
3709      empty slot in __kmp_threads array), but it is possible the only free slot
3710      is #0, which is reserved for initial thread and so cannot be used for this
3711      one. Following code workarounds this bug.
3712 
3713      However, right solution seems to be not reserving slot #0 for initial
3714      thread because:
3715      (1) there is no magic in slot #0,
3716      (2) we cannot detect initial thread reliably (the first thread which does
3717         serial initialization may be not a real initial thread).
3718   */
3719   capacity = __kmp_threads_capacity;
3720   if (!initial_thread && TCR_PTR(__kmp_threads[0]) == NULL) {
3721     --capacity;
3722   }
3723 
3724   // If it is not for initializing the hidden helper team, we need to take
3725   // __kmp_hidden_helper_threads_num out of the capacity because it is included
3726   // in __kmp_threads_capacity.
3727   if (__kmp_enable_hidden_helper && !TCR_4(__kmp_init_hidden_helper_threads)) {
3728     capacity -= __kmp_hidden_helper_threads_num;
3729   }
3730 
3731   /* see if there are too many threads */
3732   if (__kmp_all_nth >= capacity && !__kmp_expand_threads(1)) {
3733     if (__kmp_tp_cached) {
3734       __kmp_fatal(KMP_MSG(CantRegisterNewThread),
3735                   KMP_HNT(Set_ALL_THREADPRIVATE, __kmp_tp_capacity),
3736                   KMP_HNT(PossibleSystemLimitOnThreads), __kmp_msg_null);
3737     } else {
3738       __kmp_fatal(KMP_MSG(CantRegisterNewThread), KMP_HNT(SystemLimitOnThreads),
3739                   __kmp_msg_null);
3740     }
3741   }
3742 
3743   // When hidden helper task is enabled, __kmp_threads is organized as follows:
3744   // 0: initial thread, also a regular OpenMP thread.
3745   // [1, __kmp_hidden_helper_threads_num]: slots for hidden helper threads.
3746   // [__kmp_hidden_helper_threads_num + 1, __kmp_threads_capacity): slots for
3747   // regular OpenMP threads.
3748   if (TCR_4(__kmp_init_hidden_helper_threads)) {
3749     // Find an available thread slot for hidden helper thread. Slots for hidden
3750     // helper threads start from 1 to __kmp_hidden_helper_threads_num.
3751     for (gtid = 1; TCR_PTR(__kmp_threads[gtid]) != NULL &&
3752                    gtid <= __kmp_hidden_helper_threads_num;
3753          gtid++)
3754       ;
3755     KMP_ASSERT(gtid <= __kmp_hidden_helper_threads_num);
3756     KA_TRACE(1, ("__kmp_register_root: found slot in threads array for "
3757                  "hidden helper thread: T#%d\n",
3758                  gtid));
3759   } else {
3760     /* find an available thread slot */
3761     // Don't reassign the zero slot since we need that to only be used by
3762     // initial thread. Slots for hidden helper threads should also be skipped.
3763     if (initial_thread && TCR_PTR(__kmp_threads[0]) == NULL) {
3764       gtid = 0;
3765     } else {
3766       for (gtid = __kmp_hidden_helper_threads_num + 1;
3767            TCR_PTR(__kmp_threads[gtid]) != NULL; gtid++)
3768         ;
3769     }
3770     KA_TRACE(
3771         1, ("__kmp_register_root: found slot in threads array: T#%d\n", gtid));
3772     KMP_ASSERT(gtid < __kmp_threads_capacity);
3773   }
3774 
3775   /* update global accounting */
3776   __kmp_all_nth++;
3777   TCW_4(__kmp_nth, __kmp_nth + 1);
3778 
3779   // if __kmp_adjust_gtid_mode is set, then we use method #1 (sp search) for low
3780   // numbers of procs, and method #2 (keyed API call) for higher numbers.
3781   if (__kmp_adjust_gtid_mode) {
3782     if (__kmp_all_nth >= __kmp_tls_gtid_min) {
3783       if (TCR_4(__kmp_gtid_mode) != 2) {
3784         TCW_4(__kmp_gtid_mode, 2);
3785       }
3786     } else {
3787       if (TCR_4(__kmp_gtid_mode) != 1) {
3788         TCW_4(__kmp_gtid_mode, 1);
3789       }
3790     }
3791   }
3792 
3793 #ifdef KMP_ADJUST_BLOCKTIME
3794   /* Adjust blocktime to zero if necessary            */
3795   /* Middle initialization might not have occurred yet */
3796   if (!__kmp_env_blocktime && (__kmp_avail_proc > 0)) {
3797     if (__kmp_nth > __kmp_avail_proc) {
3798       __kmp_zero_bt = TRUE;
3799     }
3800   }
3801 #endif /* KMP_ADJUST_BLOCKTIME */
3802 
3803   /* setup this new hierarchy */
3804   if (!(root = __kmp_root[gtid])) {
3805     root = __kmp_root[gtid] = (kmp_root_t *)__kmp_allocate(sizeof(kmp_root_t));
3806     KMP_DEBUG_ASSERT(!root->r.r_root_team);
3807   }
3808 
3809 #if KMP_STATS_ENABLED
3810   // Initialize stats as soon as possible (right after gtid assignment).
3811   __kmp_stats_thread_ptr = __kmp_stats_list->push_back(gtid);
3812   __kmp_stats_thread_ptr->startLife();
3813   KMP_SET_THREAD_STATE(SERIAL_REGION);
3814   KMP_INIT_PARTITIONED_TIMERS(OMP_serial);
3815 #endif
3816   __kmp_initialize_root(root);
3817 
3818   /* setup new root thread structure */
3819   if (root->r.r_uber_thread) {
3820     root_thread = root->r.r_uber_thread;
3821   } else {
3822     root_thread = (kmp_info_t *)__kmp_allocate(sizeof(kmp_info_t));
3823     if (__kmp_storage_map) {
3824       __kmp_print_thread_storage_map(root_thread, gtid);
3825     }
3826     root_thread->th.th_info.ds.ds_gtid = gtid;
3827 #if OMPT_SUPPORT
3828     root_thread->th.ompt_thread_info.thread_data = ompt_data_none;
3829 #endif
3830     root_thread->th.th_root = root;
3831     if (__kmp_env_consistency_check) {
3832       root_thread->th.th_cons = __kmp_allocate_cons_stack(gtid);
3833     }
3834 #if USE_FAST_MEMORY
3835     __kmp_initialize_fast_memory(root_thread);
3836 #endif /* USE_FAST_MEMORY */
3837 
3838 #if KMP_USE_BGET
3839     KMP_DEBUG_ASSERT(root_thread->th.th_local.bget_data == NULL);
3840     __kmp_initialize_bget(root_thread);
3841 #endif
3842     __kmp_init_random(root_thread); // Initialize random number generator
3843   }
3844 
3845   /* setup the serial team held in reserve by the root thread */
3846   if (!root_thread->th.th_serial_team) {
3847     kmp_internal_control_t r_icvs = __kmp_get_global_icvs();
3848     KF_TRACE(10, ("__kmp_register_root: before serial_team\n"));
3849     root_thread->th.th_serial_team = __kmp_allocate_team(
3850         root, 1, 1,
3851 #if OMPT_SUPPORT
3852         ompt_data_none, // root parallel id
3853 #endif
3854         proc_bind_default, &r_icvs, 0 USE_NESTED_HOT_ARG(NULL));
3855   }
3856   KMP_ASSERT(root_thread->th.th_serial_team);
3857   KF_TRACE(10, ("__kmp_register_root: after serial_team = %p\n",
3858                 root_thread->th.th_serial_team));
3859 
3860   /* drop root_thread into place */
3861   TCW_SYNC_PTR(__kmp_threads[gtid], root_thread);
3862 
3863   root->r.r_root_team->t.t_threads[0] = root_thread;
3864   root->r.r_hot_team->t.t_threads[0] = root_thread;
3865   root_thread->th.th_serial_team->t.t_threads[0] = root_thread;
3866   // AC: the team created in reserve, not for execution (it is unused for now).
3867   root_thread->th.th_serial_team->t.t_serialized = 0;
3868   root->r.r_uber_thread = root_thread;
3869 
3870   /* initialize the thread, get it ready to go */
3871   __kmp_initialize_info(root_thread, root->r.r_root_team, 0, gtid);
3872   TCW_4(__kmp_init_gtid, TRUE);
3873 
3874   /* prepare the primary thread for get_gtid() */
3875   __kmp_gtid_set_specific(gtid);
3876 
3877 #if USE_ITT_BUILD
3878   __kmp_itt_thread_name(gtid);
3879 #endif /* USE_ITT_BUILD */
3880 
3881 #ifdef KMP_TDATA_GTID
3882   __kmp_gtid = gtid;
3883 #endif
3884   __kmp_create_worker(gtid, root_thread, __kmp_stksize);
3885   KMP_DEBUG_ASSERT(__kmp_gtid_get_specific() == gtid);
3886 
3887   KA_TRACE(20, ("__kmp_register_root: T#%d init T#%d(%d:%d) arrived: join=%u, "
3888                 "plain=%u\n",
3889                 gtid, __kmp_gtid_from_tid(0, root->r.r_hot_team),
3890                 root->r.r_hot_team->t.t_id, 0, KMP_INIT_BARRIER_STATE,
3891                 KMP_INIT_BARRIER_STATE));
3892   { // Initialize barrier data.
3893     int b;
3894     for (b = 0; b < bs_last_barrier; ++b) {
3895       root_thread->th.th_bar[b].bb.b_arrived = KMP_INIT_BARRIER_STATE;
3896 #if USE_DEBUGGER
3897       root_thread->th.th_bar[b].bb.b_worker_arrived = 0;
3898 #endif
3899     }
3900   }
3901   KMP_DEBUG_ASSERT(root->r.r_hot_team->t.t_bar[bs_forkjoin_barrier].b_arrived ==
3902                    KMP_INIT_BARRIER_STATE);
3903 
3904 #if KMP_AFFINITY_SUPPORTED
3905   root_thread->th.th_current_place = KMP_PLACE_UNDEFINED;
3906   root_thread->th.th_new_place = KMP_PLACE_UNDEFINED;
3907   root_thread->th.th_first_place = KMP_PLACE_UNDEFINED;
3908   root_thread->th.th_last_place = KMP_PLACE_UNDEFINED;
3909 #endif /* KMP_AFFINITY_SUPPORTED */
3910   root_thread->th.th_def_allocator = __kmp_def_allocator;
3911   root_thread->th.th_prev_level = 0;
3912   root_thread->th.th_prev_num_threads = 1;
3913 
3914   kmp_cg_root_t *tmp = (kmp_cg_root_t *)__kmp_allocate(sizeof(kmp_cg_root_t));
3915   tmp->cg_root = root_thread;
3916   tmp->cg_thread_limit = __kmp_cg_max_nth;
3917   tmp->cg_nthreads = 1;
3918   KA_TRACE(100, ("__kmp_register_root: Thread %p created node %p with"
3919                  " cg_nthreads init to 1\n",
3920                  root_thread, tmp));
3921   tmp->up = NULL;
3922   root_thread->th.th_cg_roots = tmp;
3923 
3924   __kmp_root_counter++;
3925 
3926 #if OMPT_SUPPORT
3927   if (!initial_thread && ompt_enabled.enabled) {
3928 
3929     kmp_info_t *root_thread = ompt_get_thread();
3930 
3931     ompt_set_thread_state(root_thread, ompt_state_overhead);
3932 
3933     if (ompt_enabled.ompt_callback_thread_begin) {
3934       ompt_callbacks.ompt_callback(ompt_callback_thread_begin)(
3935           ompt_thread_initial, __ompt_get_thread_data_internal());
3936     }
3937     ompt_data_t *task_data;
3938     ompt_data_t *parallel_data;
3939     __ompt_get_task_info_internal(0, NULL, &task_data, NULL, &parallel_data,
3940                                   NULL);
3941     if (ompt_enabled.ompt_callback_implicit_task) {
3942       ompt_callbacks.ompt_callback(ompt_callback_implicit_task)(
3943           ompt_scope_begin, parallel_data, task_data, 1, 1, ompt_task_initial);
3944     }
3945 
3946     ompt_set_thread_state(root_thread, ompt_state_work_serial);
3947   }
3948 #endif
3949 #if OMPD_SUPPORT
3950   if (ompd_state & OMPD_ENABLE_BP)
3951     ompd_bp_thread_begin();
3952 #endif
3953 
3954   KMP_MB();
3955   __kmp_release_bootstrap_lock(&__kmp_forkjoin_lock);
3956 
3957   return gtid;
3958 }
3959 
3960 #if KMP_NESTED_HOT_TEAMS
3961 static int __kmp_free_hot_teams(kmp_root_t *root, kmp_info_t *thr, int level,
3962                                 const int max_level) {
3963   int i, n, nth;
3964   kmp_hot_team_ptr_t *hot_teams = thr->th.th_hot_teams;
3965   if (!hot_teams || !hot_teams[level].hot_team) {
3966     return 0;
3967   }
3968   KMP_DEBUG_ASSERT(level < max_level);
3969   kmp_team_t *team = hot_teams[level].hot_team;
3970   nth = hot_teams[level].hot_team_nth;
3971   n = nth - 1; // primary thread is not freed
3972   if (level < max_level - 1) {
3973     for (i = 0; i < nth; ++i) {
3974       kmp_info_t *th = team->t.t_threads[i];
3975       n += __kmp_free_hot_teams(root, th, level + 1, max_level);
3976       if (i > 0 && th->th.th_hot_teams) {
3977         __kmp_free(th->th.th_hot_teams);
3978         th->th.th_hot_teams = NULL;
3979       }
3980     }
3981   }
3982   __kmp_free_team(root, team, NULL);
3983   return n;
3984 }
3985 #endif
3986 
3987 // Resets a root thread and clear its root and hot teams.
3988 // Returns the number of __kmp_threads entries directly and indirectly freed.
3989 static int __kmp_reset_root(int gtid, kmp_root_t *root) {
3990   kmp_team_t *root_team = root->r.r_root_team;
3991   kmp_team_t *hot_team = root->r.r_hot_team;
3992   int n = hot_team->t.t_nproc;
3993   int i;
3994 
3995   KMP_DEBUG_ASSERT(!root->r.r_active);
3996 
3997   root->r.r_root_team = NULL;
3998   root->r.r_hot_team = NULL;
3999   // __kmp_free_team() does not free hot teams, so we have to clear r_hot_team
4000   // before call to __kmp_free_team().
4001   __kmp_free_team(root, root_team USE_NESTED_HOT_ARG(NULL));
4002 #if KMP_NESTED_HOT_TEAMS
4003   if (__kmp_hot_teams_max_level >
4004       0) { // need to free nested hot teams and their threads if any
4005     for (i = 0; i < hot_team->t.t_nproc; ++i) {
4006       kmp_info_t *th = hot_team->t.t_threads[i];
4007       if (__kmp_hot_teams_max_level > 1) {
4008         n += __kmp_free_hot_teams(root, th, 1, __kmp_hot_teams_max_level);
4009       }
4010       if (th->th.th_hot_teams) {
4011         __kmp_free(th->th.th_hot_teams);
4012         th->th.th_hot_teams = NULL;
4013       }
4014     }
4015   }
4016 #endif
4017   __kmp_free_team(root, hot_team USE_NESTED_HOT_ARG(NULL));
4018 
4019   // Before we can reap the thread, we need to make certain that all other
4020   // threads in the teams that had this root as ancestor have stopped trying to
4021   // steal tasks.
4022   if (__kmp_tasking_mode != tskm_immediate_exec) {
4023     __kmp_wait_to_unref_task_teams();
4024   }
4025 
4026 #if KMP_OS_WINDOWS
4027   /* Close Handle of root duplicated in __kmp_create_worker (tr #62919) */
4028   KA_TRACE(
4029       10, ("__kmp_reset_root: free handle, th = %p, handle = %" KMP_UINTPTR_SPEC
4030            "\n",
4031            (LPVOID) & (root->r.r_uber_thread->th),
4032            root->r.r_uber_thread->th.th_info.ds.ds_thread));
4033   __kmp_free_handle(root->r.r_uber_thread->th.th_info.ds.ds_thread);
4034 #endif /* KMP_OS_WINDOWS */
4035 
4036 #if OMPD_SUPPORT
4037   if (ompd_state & OMPD_ENABLE_BP)
4038     ompd_bp_thread_end();
4039 #endif
4040 
4041 #if OMPT_SUPPORT
4042   ompt_data_t *task_data;
4043   ompt_data_t *parallel_data;
4044   __ompt_get_task_info_internal(0, NULL, &task_data, NULL, &parallel_data,
4045                                 NULL);
4046   if (ompt_enabled.ompt_callback_implicit_task) {
4047     ompt_callbacks.ompt_callback(ompt_callback_implicit_task)(
4048         ompt_scope_end, parallel_data, task_data, 0, 1, ompt_task_initial);
4049   }
4050   if (ompt_enabled.ompt_callback_thread_end) {
4051     ompt_callbacks.ompt_callback(ompt_callback_thread_end)(
4052         &(root->r.r_uber_thread->th.ompt_thread_info.thread_data));
4053   }
4054 #endif
4055 
4056   TCW_4(__kmp_nth,
4057         __kmp_nth - 1); // __kmp_reap_thread will decrement __kmp_all_nth.
4058   i = root->r.r_uber_thread->th.th_cg_roots->cg_nthreads--;
4059   KA_TRACE(100, ("__kmp_reset_root: Thread %p decrement cg_nthreads on node %p"
4060                  " to %d\n",
4061                  root->r.r_uber_thread, root->r.r_uber_thread->th.th_cg_roots,
4062                  root->r.r_uber_thread->th.th_cg_roots->cg_nthreads));
4063   if (i == 1) {
4064     // need to free contention group structure
4065     KMP_DEBUG_ASSERT(root->r.r_uber_thread ==
4066                      root->r.r_uber_thread->th.th_cg_roots->cg_root);
4067     KMP_DEBUG_ASSERT(root->r.r_uber_thread->th.th_cg_roots->up == NULL);
4068     __kmp_free(root->r.r_uber_thread->th.th_cg_roots);
4069     root->r.r_uber_thread->th.th_cg_roots = NULL;
4070   }
4071   __kmp_reap_thread(root->r.r_uber_thread, 1);
4072 
4073   // We canot put root thread to __kmp_thread_pool, so we have to reap it
4074   // instead of freeing.
4075   root->r.r_uber_thread = NULL;
4076   /* mark root as no longer in use */
4077   root->r.r_begin = FALSE;
4078 
4079   return n;
4080 }
4081 
4082 void __kmp_unregister_root_current_thread(int gtid) {
4083   KA_TRACE(1, ("__kmp_unregister_root_current_thread: enter T#%d\n", gtid));
4084   /* this lock should be ok, since unregister_root_current_thread is never
4085      called during an abort, only during a normal close. furthermore, if you
4086      have the forkjoin lock, you should never try to get the initz lock */
4087   __kmp_acquire_bootstrap_lock(&__kmp_forkjoin_lock);
4088   if (TCR_4(__kmp_global.g.g_done) || !__kmp_init_serial) {
4089     KC_TRACE(10, ("__kmp_unregister_root_current_thread: already finished, "
4090                   "exiting T#%d\n",
4091                   gtid));
4092     __kmp_release_bootstrap_lock(&__kmp_forkjoin_lock);
4093     return;
4094   }
4095   kmp_root_t *root = __kmp_root[gtid];
4096 
4097   KMP_DEBUG_ASSERT(__kmp_threads && __kmp_threads[gtid]);
4098   KMP_ASSERT(KMP_UBER_GTID(gtid));
4099   KMP_ASSERT(root == __kmp_threads[gtid]->th.th_root);
4100   KMP_ASSERT(root->r.r_active == FALSE);
4101 
4102   KMP_MB();
4103 
4104   kmp_info_t *thread = __kmp_threads[gtid];
4105   kmp_team_t *team = thread->th.th_team;
4106   kmp_task_team_t *task_team = thread->th.th_task_team;
4107 
4108   // we need to wait for the proxy tasks before finishing the thread
4109   if (task_team != NULL && (task_team->tt.tt_found_proxy_tasks ||
4110                             task_team->tt.tt_hidden_helper_task_encountered)) {
4111 #if OMPT_SUPPORT
4112     // the runtime is shutting down so we won't report any events
4113     thread->th.ompt_thread_info.state = ompt_state_undefined;
4114 #endif
4115     __kmp_task_team_wait(thread, team USE_ITT_BUILD_ARG(NULL));
4116   }
4117 
4118   __kmp_reset_root(gtid, root);
4119 
4120   KMP_MB();
4121   KC_TRACE(10,
4122            ("__kmp_unregister_root_current_thread: T#%d unregistered\n", gtid));
4123 
4124   __kmp_release_bootstrap_lock(&__kmp_forkjoin_lock);
4125 }
4126 
4127 #if KMP_OS_WINDOWS
4128 /* __kmp_forkjoin_lock must be already held
4129    Unregisters a root thread that is not the current thread.  Returns the number
4130    of __kmp_threads entries freed as a result. */
4131 static int __kmp_unregister_root_other_thread(int gtid) {
4132   kmp_root_t *root = __kmp_root[gtid];
4133   int r;
4134 
4135   KA_TRACE(1, ("__kmp_unregister_root_other_thread: enter T#%d\n", gtid));
4136   KMP_DEBUG_ASSERT(__kmp_threads && __kmp_threads[gtid]);
4137   KMP_ASSERT(KMP_UBER_GTID(gtid));
4138   KMP_ASSERT(root == __kmp_threads[gtid]->th.th_root);
4139   KMP_ASSERT(root->r.r_active == FALSE);
4140 
4141   r = __kmp_reset_root(gtid, root);
4142   KC_TRACE(10,
4143            ("__kmp_unregister_root_other_thread: T#%d unregistered\n", gtid));
4144   return r;
4145 }
4146 #endif
4147 
4148 #if KMP_DEBUG
4149 void __kmp_task_info() {
4150 
4151   kmp_int32 gtid = __kmp_entry_gtid();
4152   kmp_int32 tid = __kmp_tid_from_gtid(gtid);
4153   kmp_info_t *this_thr = __kmp_threads[gtid];
4154   kmp_team_t *steam = this_thr->th.th_serial_team;
4155   kmp_team_t *team = this_thr->th.th_team;
4156 
4157   __kmp_printf(
4158       "__kmp_task_info: gtid=%d tid=%d t_thread=%p team=%p steam=%p curtask=%p "
4159       "ptask=%p\n",
4160       gtid, tid, this_thr, team, steam, this_thr->th.th_current_task,
4161       team->t.t_implicit_task_taskdata[tid].td_parent);
4162 }
4163 #endif // KMP_DEBUG
4164 
4165 /* TODO optimize with one big memclr, take out what isn't needed, split
4166    responsibility to workers as much as possible, and delay initialization of
4167    features as much as possible  */
4168 static void __kmp_initialize_info(kmp_info_t *this_thr, kmp_team_t *team,
4169                                   int tid, int gtid) {
4170   /* this_thr->th.th_info.ds.ds_gtid is setup in
4171      kmp_allocate_thread/create_worker.
4172      this_thr->th.th_serial_team is setup in __kmp_allocate_thread */
4173   KMP_DEBUG_ASSERT(this_thr != NULL);
4174   KMP_DEBUG_ASSERT(this_thr->th.th_serial_team);
4175   KMP_DEBUG_ASSERT(team);
4176   KMP_DEBUG_ASSERT(team->t.t_threads);
4177   KMP_DEBUG_ASSERT(team->t.t_dispatch);
4178   kmp_info_t *master = team->t.t_threads[0];
4179   KMP_DEBUG_ASSERT(master);
4180   KMP_DEBUG_ASSERT(master->th.th_root);
4181 
4182   KMP_MB();
4183 
4184   TCW_SYNC_PTR(this_thr->th.th_team, team);
4185 
4186   this_thr->th.th_info.ds.ds_tid = tid;
4187   this_thr->th.th_set_nproc = 0;
4188   if (__kmp_tasking_mode != tskm_immediate_exec)
4189     // When tasking is possible, threads are not safe to reap until they are
4190     // done tasking; this will be set when tasking code is exited in wait
4191     this_thr->th.th_reap_state = KMP_NOT_SAFE_TO_REAP;
4192   else // no tasking --> always safe to reap
4193     this_thr->th.th_reap_state = KMP_SAFE_TO_REAP;
4194   this_thr->th.th_set_proc_bind = proc_bind_default;
4195 #if KMP_AFFINITY_SUPPORTED
4196   this_thr->th.th_new_place = this_thr->th.th_current_place;
4197 #endif
4198   this_thr->th.th_root = master->th.th_root;
4199 
4200   /* setup the thread's cache of the team structure */
4201   this_thr->th.th_team_nproc = team->t.t_nproc;
4202   this_thr->th.th_team_master = master;
4203   this_thr->th.th_team_serialized = team->t.t_serialized;
4204 
4205   KMP_DEBUG_ASSERT(team->t.t_implicit_task_taskdata);
4206 
4207   KF_TRACE(10, ("__kmp_initialize_info1: T#%d:%d this_thread=%p curtask=%p\n",
4208                 tid, gtid, this_thr, this_thr->th.th_current_task));
4209 
4210   __kmp_init_implicit_task(this_thr->th.th_team_master->th.th_ident, this_thr,
4211                            team, tid, TRUE);
4212 
4213   KF_TRACE(10, ("__kmp_initialize_info2: T#%d:%d this_thread=%p curtask=%p\n",
4214                 tid, gtid, this_thr, this_thr->th.th_current_task));
4215   // TODO: Initialize ICVs from parent; GEH - isn't that already done in
4216   // __kmp_initialize_team()?
4217 
4218   /* TODO no worksharing in speculative threads */
4219   this_thr->th.th_dispatch = &team->t.t_dispatch[tid];
4220 
4221   this_thr->th.th_local.this_construct = 0;
4222 
4223   if (!this_thr->th.th_pri_common) {
4224     this_thr->th.th_pri_common =
4225         (struct common_table *)__kmp_allocate(sizeof(struct common_table));
4226     if (__kmp_storage_map) {
4227       __kmp_print_storage_map_gtid(
4228           gtid, this_thr->th.th_pri_common, this_thr->th.th_pri_common + 1,
4229           sizeof(struct common_table), "th_%d.th_pri_common\n", gtid);
4230     }
4231     this_thr->th.th_pri_head = NULL;
4232   }
4233 
4234   if (this_thr != master && // Primary thread's CG root is initialized elsewhere
4235       this_thr->th.th_cg_roots != master->th.th_cg_roots) { // CG root not set
4236     // Make new thread's CG root same as primary thread's
4237     KMP_DEBUG_ASSERT(master->th.th_cg_roots);
4238     kmp_cg_root_t *tmp = this_thr->th.th_cg_roots;
4239     if (tmp) {
4240       // worker changes CG, need to check if old CG should be freed
4241       int i = tmp->cg_nthreads--;
4242       KA_TRACE(100, ("__kmp_initialize_info: Thread %p decrement cg_nthreads"
4243                      " on node %p of thread %p to %d\n",
4244                      this_thr, tmp, tmp->cg_root, tmp->cg_nthreads));
4245       if (i == 1) {
4246         __kmp_free(tmp); // last thread left CG --> free it
4247       }
4248     }
4249     this_thr->th.th_cg_roots = master->th.th_cg_roots;
4250     // Increment new thread's CG root's counter to add the new thread
4251     this_thr->th.th_cg_roots->cg_nthreads++;
4252     KA_TRACE(100, ("__kmp_initialize_info: Thread %p increment cg_nthreads on"
4253                    " node %p of thread %p to %d\n",
4254                    this_thr, this_thr->th.th_cg_roots,
4255                    this_thr->th.th_cg_roots->cg_root,
4256                    this_thr->th.th_cg_roots->cg_nthreads));
4257     this_thr->th.th_current_task->td_icvs.thread_limit =
4258         this_thr->th.th_cg_roots->cg_thread_limit;
4259   }
4260 
4261   /* Initialize dynamic dispatch */
4262   {
4263     volatile kmp_disp_t *dispatch = this_thr->th.th_dispatch;
4264     // Use team max_nproc since this will never change for the team.
4265     size_t disp_size =
4266         sizeof(dispatch_private_info_t) *
4267         (team->t.t_max_nproc == 1 ? 1 : __kmp_dispatch_num_buffers);
4268     KD_TRACE(10, ("__kmp_initialize_info: T#%d max_nproc: %d\n", gtid,
4269                   team->t.t_max_nproc));
4270     KMP_ASSERT(dispatch);
4271     KMP_DEBUG_ASSERT(team->t.t_dispatch);
4272     KMP_DEBUG_ASSERT(dispatch == &team->t.t_dispatch[tid]);
4273 
4274     dispatch->th_disp_index = 0;
4275     dispatch->th_doacross_buf_idx = 0;
4276     if (!dispatch->th_disp_buffer) {
4277       dispatch->th_disp_buffer =
4278           (dispatch_private_info_t *)__kmp_allocate(disp_size);
4279 
4280       if (__kmp_storage_map) {
4281         __kmp_print_storage_map_gtid(
4282             gtid, &dispatch->th_disp_buffer[0],
4283             &dispatch->th_disp_buffer[team->t.t_max_nproc == 1
4284                                           ? 1
4285                                           : __kmp_dispatch_num_buffers],
4286             disp_size,
4287             "th_%d.th_dispatch.th_disp_buffer "
4288             "(team_%d.t_dispatch[%d].th_disp_buffer)",
4289             gtid, team->t.t_id, gtid);
4290       }
4291     } else {
4292       memset(&dispatch->th_disp_buffer[0], '\0', disp_size);
4293     }
4294 
4295     dispatch->th_dispatch_pr_current = 0;
4296     dispatch->th_dispatch_sh_current = 0;
4297 
4298     dispatch->th_deo_fcn = 0; /* ORDERED     */
4299     dispatch->th_dxo_fcn = 0; /* END ORDERED */
4300   }
4301 
4302   this_thr->th.th_next_pool = NULL;
4303 
4304   if (!this_thr->th.th_task_state_memo_stack) {
4305     size_t i;
4306     this_thr->th.th_task_state_memo_stack =
4307         (kmp_uint8 *)__kmp_allocate(4 * sizeof(kmp_uint8));
4308     this_thr->th.th_task_state_top = 0;
4309     this_thr->th.th_task_state_stack_sz = 4;
4310     for (i = 0; i < this_thr->th.th_task_state_stack_sz;
4311          ++i) // zero init the stack
4312       this_thr->th.th_task_state_memo_stack[i] = 0;
4313   }
4314 
4315   KMP_DEBUG_ASSERT(!this_thr->th.th_spin_here);
4316   KMP_DEBUG_ASSERT(this_thr->th.th_next_waiting == 0);
4317 
4318   KMP_MB();
4319 }
4320 
4321 /* allocate a new thread for the requesting team. this is only called from
4322    within a forkjoin critical section. we will first try to get an available
4323    thread from the thread pool. if none is available, we will fork a new one
4324    assuming we are able to create a new one. this should be assured, as the
4325    caller should check on this first. */
4326 kmp_info_t *__kmp_allocate_thread(kmp_root_t *root, kmp_team_t *team,
4327                                   int new_tid) {
4328   kmp_team_t *serial_team;
4329   kmp_info_t *new_thr;
4330   int new_gtid;
4331 
4332   KA_TRACE(20, ("__kmp_allocate_thread: T#%d\n", __kmp_get_gtid()));
4333   KMP_DEBUG_ASSERT(root && team);
4334 #if !KMP_NESTED_HOT_TEAMS
4335   KMP_DEBUG_ASSERT(KMP_MASTER_GTID(__kmp_get_gtid()));
4336 #endif
4337   KMP_MB();
4338 
4339   /* first, try to get one from the thread pool */
4340   if (__kmp_thread_pool) {
4341     new_thr = CCAST(kmp_info_t *, __kmp_thread_pool);
4342     __kmp_thread_pool = (volatile kmp_info_t *)new_thr->th.th_next_pool;
4343     if (new_thr == __kmp_thread_pool_insert_pt) {
4344       __kmp_thread_pool_insert_pt = NULL;
4345     }
4346     TCW_4(new_thr->th.th_in_pool, FALSE);
4347     __kmp_suspend_initialize_thread(new_thr);
4348     __kmp_lock_suspend_mx(new_thr);
4349     if (new_thr->th.th_active_in_pool == TRUE) {
4350       KMP_DEBUG_ASSERT(new_thr->th.th_active == TRUE);
4351       KMP_ATOMIC_DEC(&__kmp_thread_pool_active_nth);
4352       new_thr->th.th_active_in_pool = FALSE;
4353     }
4354     __kmp_unlock_suspend_mx(new_thr);
4355 
4356     KA_TRACE(20, ("__kmp_allocate_thread: T#%d using thread T#%d\n",
4357                   __kmp_get_gtid(), new_thr->th.th_info.ds.ds_gtid));
4358     KMP_ASSERT(!new_thr->th.th_team);
4359     KMP_DEBUG_ASSERT(__kmp_nth < __kmp_threads_capacity);
4360 
4361     /* setup the thread structure */
4362     __kmp_initialize_info(new_thr, team, new_tid,
4363                           new_thr->th.th_info.ds.ds_gtid);
4364     KMP_DEBUG_ASSERT(new_thr->th.th_serial_team);
4365 
4366     TCW_4(__kmp_nth, __kmp_nth + 1);
4367 
4368     new_thr->th.th_task_state = 0;
4369     new_thr->th.th_task_state_top = 0;
4370     new_thr->th.th_task_state_stack_sz = 4;
4371 
4372     if (__kmp_barrier_gather_pattern[bs_forkjoin_barrier] == bp_dist_bar) {
4373       // Make sure pool thread has transitioned to waiting on own thread struct
4374       KMP_DEBUG_ASSERT(new_thr->th.th_used_in_team.load() == 0);
4375       // Thread activated in __kmp_allocate_team when increasing team size
4376     }
4377 
4378 #ifdef KMP_ADJUST_BLOCKTIME
4379     /* Adjust blocktime back to zero if necessary */
4380     /* Middle initialization might not have occurred yet */
4381     if (!__kmp_env_blocktime && (__kmp_avail_proc > 0)) {
4382       if (__kmp_nth > __kmp_avail_proc) {
4383         __kmp_zero_bt = TRUE;
4384       }
4385     }
4386 #endif /* KMP_ADJUST_BLOCKTIME */
4387 
4388 #if KMP_DEBUG
4389     // If thread entered pool via __kmp_free_thread, wait_flag should !=
4390     // KMP_BARRIER_PARENT_FLAG.
4391     int b;
4392     kmp_balign_t *balign = new_thr->th.th_bar;
4393     for (b = 0; b < bs_last_barrier; ++b)
4394       KMP_DEBUG_ASSERT(balign[b].bb.wait_flag != KMP_BARRIER_PARENT_FLAG);
4395 #endif
4396 
4397     KF_TRACE(10, ("__kmp_allocate_thread: T#%d using thread %p T#%d\n",
4398                   __kmp_get_gtid(), new_thr, new_thr->th.th_info.ds.ds_gtid));
4399 
4400     KMP_MB();
4401     return new_thr;
4402   }
4403 
4404   /* no, well fork a new one */
4405   KMP_ASSERT(__kmp_nth == __kmp_all_nth);
4406   KMP_ASSERT(__kmp_all_nth < __kmp_threads_capacity);
4407 
4408 #if KMP_USE_MONITOR
4409   // If this is the first worker thread the RTL is creating, then also
4410   // launch the monitor thread.  We try to do this as early as possible.
4411   if (!TCR_4(__kmp_init_monitor)) {
4412     __kmp_acquire_bootstrap_lock(&__kmp_monitor_lock);
4413     if (!TCR_4(__kmp_init_monitor)) {
4414       KF_TRACE(10, ("before __kmp_create_monitor\n"));
4415       TCW_4(__kmp_init_monitor, 1);
4416       __kmp_create_monitor(&__kmp_monitor);
4417       KF_TRACE(10, ("after __kmp_create_monitor\n"));
4418 #if KMP_OS_WINDOWS
4419       // AC: wait until monitor has started. This is a fix for CQ232808.
4420       // The reason is that if the library is loaded/unloaded in a loop with
4421       // small (parallel) work in between, then there is high probability that
4422       // monitor thread started after the library shutdown. At shutdown it is
4423       // too late to cope with the problem, because when the primary thread is
4424       // in DllMain (process detach) the monitor has no chances to start (it is
4425       // blocked), and primary thread has no means to inform the monitor that
4426       // the library has gone, because all the memory which the monitor can
4427       // access is going to be released/reset.
4428       while (TCR_4(__kmp_init_monitor) < 2) {
4429         KMP_YIELD(TRUE);
4430       }
4431       KF_TRACE(10, ("after monitor thread has started\n"));
4432 #endif
4433     }
4434     __kmp_release_bootstrap_lock(&__kmp_monitor_lock);
4435   }
4436 #endif
4437 
4438   KMP_MB();
4439 
4440   {
4441     int new_start_gtid = TCR_4(__kmp_init_hidden_helper_threads)
4442                              ? 1
4443                              : __kmp_hidden_helper_threads_num + 1;
4444 
4445     for (new_gtid = new_start_gtid; TCR_PTR(__kmp_threads[new_gtid]) != NULL;
4446          ++new_gtid) {
4447       KMP_DEBUG_ASSERT(new_gtid < __kmp_threads_capacity);
4448     }
4449 
4450     if (TCR_4(__kmp_init_hidden_helper_threads)) {
4451       KMP_DEBUG_ASSERT(new_gtid <= __kmp_hidden_helper_threads_num);
4452     }
4453   }
4454 
4455   /* allocate space for it. */
4456   new_thr = (kmp_info_t *)__kmp_allocate(sizeof(kmp_info_t));
4457 
4458   TCW_SYNC_PTR(__kmp_threads[new_gtid], new_thr);
4459 
4460 #if USE_ITT_BUILD && USE_ITT_NOTIFY && KMP_DEBUG
4461   // suppress race conditions detection on synchronization flags in debug mode
4462   // this helps to analyze library internals eliminating false positives
4463   __itt_suppress_mark_range(
4464       __itt_suppress_range, __itt_suppress_threading_errors,
4465       &new_thr->th.th_sleep_loc, sizeof(new_thr->th.th_sleep_loc));
4466   __itt_suppress_mark_range(
4467       __itt_suppress_range, __itt_suppress_threading_errors,
4468       &new_thr->th.th_reap_state, sizeof(new_thr->th.th_reap_state));
4469 #if KMP_OS_WINDOWS
4470   __itt_suppress_mark_range(
4471       __itt_suppress_range, __itt_suppress_threading_errors,
4472       &new_thr->th.th_suspend_init, sizeof(new_thr->th.th_suspend_init));
4473 #else
4474   __itt_suppress_mark_range(__itt_suppress_range,
4475                             __itt_suppress_threading_errors,
4476                             &new_thr->th.th_suspend_init_count,
4477                             sizeof(new_thr->th.th_suspend_init_count));
4478 #endif
4479   // TODO: check if we need to also suppress b_arrived flags
4480   __itt_suppress_mark_range(__itt_suppress_range,
4481                             __itt_suppress_threading_errors,
4482                             CCAST(kmp_uint64 *, &new_thr->th.th_bar[0].bb.b_go),
4483                             sizeof(new_thr->th.th_bar[0].bb.b_go));
4484   __itt_suppress_mark_range(__itt_suppress_range,
4485                             __itt_suppress_threading_errors,
4486                             CCAST(kmp_uint64 *, &new_thr->th.th_bar[1].bb.b_go),
4487                             sizeof(new_thr->th.th_bar[1].bb.b_go));
4488   __itt_suppress_mark_range(__itt_suppress_range,
4489                             __itt_suppress_threading_errors,
4490                             CCAST(kmp_uint64 *, &new_thr->th.th_bar[2].bb.b_go),
4491                             sizeof(new_thr->th.th_bar[2].bb.b_go));
4492 #endif /* USE_ITT_BUILD && USE_ITT_NOTIFY && KMP_DEBUG */
4493   if (__kmp_storage_map) {
4494     __kmp_print_thread_storage_map(new_thr, new_gtid);
4495   }
4496 
4497   // add the reserve serialized team, initialized from the team's primary thread
4498   {
4499     kmp_internal_control_t r_icvs = __kmp_get_x_global_icvs(team);
4500     KF_TRACE(10, ("__kmp_allocate_thread: before th_serial/serial_team\n"));
4501     new_thr->th.th_serial_team = serial_team =
4502         (kmp_team_t *)__kmp_allocate_team(root, 1, 1,
4503 #if OMPT_SUPPORT
4504                                           ompt_data_none, // root parallel id
4505 #endif
4506                                           proc_bind_default, &r_icvs,
4507                                           0 USE_NESTED_HOT_ARG(NULL));
4508   }
4509   KMP_ASSERT(serial_team);
4510   serial_team->t.t_serialized = 0; // AC: the team created in reserve, not for
4511   // execution (it is unused for now).
4512   serial_team->t.t_threads[0] = new_thr;
4513   KF_TRACE(10,
4514            ("__kmp_allocate_thread: after th_serial/serial_team : new_thr=%p\n",
4515             new_thr));
4516 
4517   /* setup the thread structures */
4518   __kmp_initialize_info(new_thr, team, new_tid, new_gtid);
4519 
4520 #if USE_FAST_MEMORY
4521   __kmp_initialize_fast_memory(new_thr);
4522 #endif /* USE_FAST_MEMORY */
4523 
4524 #if KMP_USE_BGET
4525   KMP_DEBUG_ASSERT(new_thr->th.th_local.bget_data == NULL);
4526   __kmp_initialize_bget(new_thr);
4527 #endif
4528 
4529   __kmp_init_random(new_thr); // Initialize random number generator
4530 
4531   /* Initialize these only once when thread is grabbed for a team allocation */
4532   KA_TRACE(20,
4533            ("__kmp_allocate_thread: T#%d init go fork=%u, plain=%u\n",
4534             __kmp_get_gtid(), KMP_INIT_BARRIER_STATE, KMP_INIT_BARRIER_STATE));
4535 
4536   int b;
4537   kmp_balign_t *balign = new_thr->th.th_bar;
4538   for (b = 0; b < bs_last_barrier; ++b) {
4539     balign[b].bb.b_go = KMP_INIT_BARRIER_STATE;
4540     balign[b].bb.team = NULL;
4541     balign[b].bb.wait_flag = KMP_BARRIER_NOT_WAITING;
4542     balign[b].bb.use_oncore_barrier = 0;
4543   }
4544 
4545   TCW_PTR(new_thr->th.th_sleep_loc, NULL);
4546   new_thr->th.th_sleep_loc_type = flag_unset;
4547 
4548   new_thr->th.th_spin_here = FALSE;
4549   new_thr->th.th_next_waiting = 0;
4550 #if KMP_OS_UNIX
4551   new_thr->th.th_blocking = false;
4552 #endif
4553 
4554 #if KMP_AFFINITY_SUPPORTED
4555   new_thr->th.th_current_place = KMP_PLACE_UNDEFINED;
4556   new_thr->th.th_new_place = KMP_PLACE_UNDEFINED;
4557   new_thr->th.th_first_place = KMP_PLACE_UNDEFINED;
4558   new_thr->th.th_last_place = KMP_PLACE_UNDEFINED;
4559 #endif
4560   new_thr->th.th_def_allocator = __kmp_def_allocator;
4561   new_thr->th.th_prev_level = 0;
4562   new_thr->th.th_prev_num_threads = 1;
4563 
4564   TCW_4(new_thr->th.th_in_pool, FALSE);
4565   new_thr->th.th_active_in_pool = FALSE;
4566   TCW_4(new_thr->th.th_active, TRUE);
4567 
4568   /* adjust the global counters */
4569   __kmp_all_nth++;
4570   __kmp_nth++;
4571 
4572   // if __kmp_adjust_gtid_mode is set, then we use method #1 (sp search) for low
4573   // numbers of procs, and method #2 (keyed API call) for higher numbers.
4574   if (__kmp_adjust_gtid_mode) {
4575     if (__kmp_all_nth >= __kmp_tls_gtid_min) {
4576       if (TCR_4(__kmp_gtid_mode) != 2) {
4577         TCW_4(__kmp_gtid_mode, 2);
4578       }
4579     } else {
4580       if (TCR_4(__kmp_gtid_mode) != 1) {
4581         TCW_4(__kmp_gtid_mode, 1);
4582       }
4583     }
4584   }
4585 
4586 #ifdef KMP_ADJUST_BLOCKTIME
4587   /* Adjust blocktime back to zero if necessary       */
4588   /* Middle initialization might not have occurred yet */
4589   if (!__kmp_env_blocktime && (__kmp_avail_proc > 0)) {
4590     if (__kmp_nth > __kmp_avail_proc) {
4591       __kmp_zero_bt = TRUE;
4592     }
4593   }
4594 #endif /* KMP_ADJUST_BLOCKTIME */
4595 
4596   /* actually fork it and create the new worker thread */
4597   KF_TRACE(
4598       10, ("__kmp_allocate_thread: before __kmp_create_worker: %p\n", new_thr));
4599   __kmp_create_worker(new_gtid, new_thr, __kmp_stksize);
4600   KF_TRACE(10,
4601            ("__kmp_allocate_thread: after __kmp_create_worker: %p\n", new_thr));
4602 
4603   KA_TRACE(20, ("__kmp_allocate_thread: T#%d forked T#%d\n", __kmp_get_gtid(),
4604                 new_gtid));
4605   KMP_MB();
4606   return new_thr;
4607 }
4608 
4609 /* Reinitialize team for reuse.
4610    The hot team code calls this case at every fork barrier, so EPCC barrier
4611    test are extremely sensitive to changes in it, esp. writes to the team
4612    struct, which cause a cache invalidation in all threads.
4613    IF YOU TOUCH THIS ROUTINE, RUN EPCC C SYNCBENCH ON A BIG-IRON MACHINE!!! */
4614 static void __kmp_reinitialize_team(kmp_team_t *team,
4615                                     kmp_internal_control_t *new_icvs,
4616                                     ident_t *loc) {
4617   KF_TRACE(10, ("__kmp_reinitialize_team: enter this_thread=%p team=%p\n",
4618                 team->t.t_threads[0], team));
4619   KMP_DEBUG_ASSERT(team && new_icvs);
4620   KMP_DEBUG_ASSERT((!TCR_4(__kmp_init_parallel)) || new_icvs->nproc);
4621   KMP_CHECK_UPDATE(team->t.t_ident, loc);
4622 
4623   KMP_CHECK_UPDATE(team->t.t_id, KMP_GEN_TEAM_ID());
4624   // Copy ICVs to the primary thread's implicit taskdata
4625   __kmp_init_implicit_task(loc, team->t.t_threads[0], team, 0, FALSE);
4626   copy_icvs(&team->t.t_implicit_task_taskdata[0].td_icvs, new_icvs);
4627 
4628   KF_TRACE(10, ("__kmp_reinitialize_team: exit this_thread=%p team=%p\n",
4629                 team->t.t_threads[0], team));
4630 }
4631 
4632 /* Initialize the team data structure.
4633    This assumes the t_threads and t_max_nproc are already set.
4634    Also, we don't touch the arguments */
4635 static void __kmp_initialize_team(kmp_team_t *team, int new_nproc,
4636                                   kmp_internal_control_t *new_icvs,
4637                                   ident_t *loc) {
4638   KF_TRACE(10, ("__kmp_initialize_team: enter: team=%p\n", team));
4639 
4640   /* verify */
4641   KMP_DEBUG_ASSERT(team);
4642   KMP_DEBUG_ASSERT(new_nproc <= team->t.t_max_nproc);
4643   KMP_DEBUG_ASSERT(team->t.t_threads);
4644   KMP_MB();
4645 
4646   team->t.t_master_tid = 0; /* not needed */
4647   /* team->t.t_master_bar;        not needed */
4648   team->t.t_serialized = new_nproc > 1 ? 0 : 1;
4649   team->t.t_nproc = new_nproc;
4650 
4651   /* team->t.t_parent     = NULL; TODO not needed & would mess up hot team */
4652   team->t.t_next_pool = NULL;
4653   /* memset( team->t.t_threads, 0, sizeof(kmp_info_t*)*new_nproc ); would mess
4654    * up hot team */
4655 
4656   TCW_SYNC_PTR(team->t.t_pkfn, NULL); /* not needed */
4657   team->t.t_invoke = NULL; /* not needed */
4658 
4659   // TODO???: team->t.t_max_active_levels       = new_max_active_levels;
4660   team->t.t_sched.sched = new_icvs->sched.sched;
4661 
4662 #if KMP_ARCH_X86 || KMP_ARCH_X86_64
4663   team->t.t_fp_control_saved = FALSE; /* not needed */
4664   team->t.t_x87_fpu_control_word = 0; /* not needed */
4665   team->t.t_mxcsr = 0; /* not needed */
4666 #endif /* KMP_ARCH_X86 || KMP_ARCH_X86_64 */
4667 
4668   team->t.t_construct = 0;
4669 
4670   team->t.t_ordered.dt.t_value = 0;
4671   team->t.t_master_active = FALSE;
4672 
4673 #ifdef KMP_DEBUG
4674   team->t.t_copypriv_data = NULL; /* not necessary, but nice for debugging */
4675 #endif
4676 #if KMP_OS_WINDOWS
4677   team->t.t_copyin_counter = 0; /* for barrier-free copyin implementation */
4678 #endif
4679 
4680   team->t.t_control_stack_top = NULL;
4681 
4682   __kmp_reinitialize_team(team, new_icvs, loc);
4683 
4684   KMP_MB();
4685   KF_TRACE(10, ("__kmp_initialize_team: exit: team=%p\n", team));
4686 }
4687 
4688 #if (KMP_OS_LINUX || KMP_OS_FREEBSD) && KMP_AFFINITY_SUPPORTED
4689 /* Sets full mask for thread and returns old mask, no changes to structures. */
4690 static void
4691 __kmp_set_thread_affinity_mask_full_tmp(kmp_affin_mask_t *old_mask) {
4692   if (KMP_AFFINITY_CAPABLE()) {
4693     int status;
4694     if (old_mask != NULL) {
4695       status = __kmp_get_system_affinity(old_mask, TRUE);
4696       int error = errno;
4697       if (status != 0) {
4698         __kmp_fatal(KMP_MSG(ChangeThreadAffMaskError), KMP_ERR(error),
4699                     __kmp_msg_null);
4700       }
4701     }
4702     __kmp_set_system_affinity(__kmp_affin_fullMask, TRUE);
4703   }
4704 }
4705 #endif
4706 
4707 #if KMP_AFFINITY_SUPPORTED
4708 
4709 // __kmp_partition_places() is the heart of the OpenMP 4.0 affinity mechanism.
4710 // It calculates the worker + primary thread's partition based upon the parent
4711 // thread's partition, and binds each worker to a thread in their partition.
4712 // The primary thread's partition should already include its current binding.
4713 static void __kmp_partition_places(kmp_team_t *team, int update_master_only) {
4714   // Do not partition places for the hidden helper team
4715   if (KMP_HIDDEN_HELPER_TEAM(team))
4716     return;
4717   // Copy the primary thread's place partition to the team struct
4718   kmp_info_t *master_th = team->t.t_threads[0];
4719   KMP_DEBUG_ASSERT(master_th != NULL);
4720   kmp_proc_bind_t proc_bind = team->t.t_proc_bind;
4721   int first_place = master_th->th.th_first_place;
4722   int last_place = master_th->th.th_last_place;
4723   int masters_place = master_th->th.th_current_place;
4724   team->t.t_first_place = first_place;
4725   team->t.t_last_place = last_place;
4726 
4727   KA_TRACE(20, ("__kmp_partition_places: enter: proc_bind = %d T#%d(%d:0) "
4728                 "bound to place %d partition = [%d,%d]\n",
4729                 proc_bind, __kmp_gtid_from_thread(team->t.t_threads[0]),
4730                 team->t.t_id, masters_place, first_place, last_place));
4731 
4732   switch (proc_bind) {
4733 
4734   case proc_bind_default:
4735     // Serial teams might have the proc_bind policy set to proc_bind_default.
4736     // Not an issue -- we don't rebind primary thread for any proc_bind policy.
4737     KMP_DEBUG_ASSERT(team->t.t_nproc == 1);
4738     break;
4739 
4740   case proc_bind_primary: {
4741     int f;
4742     int n_th = team->t.t_nproc;
4743     for (f = 1; f < n_th; f++) {
4744       kmp_info_t *th = team->t.t_threads[f];
4745       KMP_DEBUG_ASSERT(th != NULL);
4746       th->th.th_first_place = first_place;
4747       th->th.th_last_place = last_place;
4748       th->th.th_new_place = masters_place;
4749       if (__kmp_display_affinity && masters_place != th->th.th_current_place &&
4750           team->t.t_display_affinity != 1) {
4751         team->t.t_display_affinity = 1;
4752       }
4753 
4754       KA_TRACE(100, ("__kmp_partition_places: primary: T#%d(%d:%d) place %d "
4755                      "partition = [%d,%d]\n",
4756                      __kmp_gtid_from_thread(team->t.t_threads[f]), team->t.t_id,
4757                      f, masters_place, first_place, last_place));
4758     }
4759   } break;
4760 
4761   case proc_bind_close: {
4762     int f;
4763     int n_th = team->t.t_nproc;
4764     int n_places;
4765     if (first_place <= last_place) {
4766       n_places = last_place - first_place + 1;
4767     } else {
4768       n_places = __kmp_affinity_num_masks - first_place + last_place + 1;
4769     }
4770     if (n_th <= n_places) {
4771       int place = masters_place;
4772       for (f = 1; f < n_th; f++) {
4773         kmp_info_t *th = team->t.t_threads[f];
4774         KMP_DEBUG_ASSERT(th != NULL);
4775 
4776         if (place == last_place) {
4777           place = first_place;
4778         } else if (place == (int)(__kmp_affinity_num_masks - 1)) {
4779           place = 0;
4780         } else {
4781           place++;
4782         }
4783         th->th.th_first_place = first_place;
4784         th->th.th_last_place = last_place;
4785         th->th.th_new_place = place;
4786         if (__kmp_display_affinity && place != th->th.th_current_place &&
4787             team->t.t_display_affinity != 1) {
4788           team->t.t_display_affinity = 1;
4789         }
4790 
4791         KA_TRACE(100, ("__kmp_partition_places: close: T#%d(%d:%d) place %d "
4792                        "partition = [%d,%d]\n",
4793                        __kmp_gtid_from_thread(team->t.t_threads[f]),
4794                        team->t.t_id, f, place, first_place, last_place));
4795       }
4796     } else {
4797       int S, rem, gap, s_count;
4798       S = n_th / n_places;
4799       s_count = 0;
4800       rem = n_th - (S * n_places);
4801       gap = rem > 0 ? n_places / rem : n_places;
4802       int place = masters_place;
4803       int gap_ct = gap;
4804       for (f = 0; f < n_th; f++) {
4805         kmp_info_t *th = team->t.t_threads[f];
4806         KMP_DEBUG_ASSERT(th != NULL);
4807 
4808         th->th.th_first_place = first_place;
4809         th->th.th_last_place = last_place;
4810         th->th.th_new_place = place;
4811         if (__kmp_display_affinity && place != th->th.th_current_place &&
4812             team->t.t_display_affinity != 1) {
4813           team->t.t_display_affinity = 1;
4814         }
4815         s_count++;
4816 
4817         if ((s_count == S) && rem && (gap_ct == gap)) {
4818           // do nothing, add an extra thread to place on next iteration
4819         } else if ((s_count == S + 1) && rem && (gap_ct == gap)) {
4820           // we added an extra thread to this place; move to next place
4821           if (place == last_place) {
4822             place = first_place;
4823           } else if (place == (int)(__kmp_affinity_num_masks - 1)) {
4824             place = 0;
4825           } else {
4826             place++;
4827           }
4828           s_count = 0;
4829           gap_ct = 1;
4830           rem--;
4831         } else if (s_count == S) { // place full; don't add extra
4832           if (place == last_place) {
4833             place = first_place;
4834           } else if (place == (int)(__kmp_affinity_num_masks - 1)) {
4835             place = 0;
4836           } else {
4837             place++;
4838           }
4839           gap_ct++;
4840           s_count = 0;
4841         }
4842 
4843         KA_TRACE(100,
4844                  ("__kmp_partition_places: close: T#%d(%d:%d) place %d "
4845                   "partition = [%d,%d]\n",
4846                   __kmp_gtid_from_thread(team->t.t_threads[f]), team->t.t_id, f,
4847                   th->th.th_new_place, first_place, last_place));
4848       }
4849       KMP_DEBUG_ASSERT(place == masters_place);
4850     }
4851   } break;
4852 
4853   case proc_bind_spread: {
4854     int f;
4855     int n_th = team->t.t_nproc;
4856     int n_places;
4857     int thidx;
4858     if (first_place <= last_place) {
4859       n_places = last_place - first_place + 1;
4860     } else {
4861       n_places = __kmp_affinity_num_masks - first_place + last_place + 1;
4862     }
4863     if (n_th <= n_places) {
4864       int place = -1;
4865 
4866       if (n_places != static_cast<int>(__kmp_affinity_num_masks)) {
4867         int S = n_places / n_th;
4868         int s_count, rem, gap, gap_ct;
4869 
4870         place = masters_place;
4871         rem = n_places - n_th * S;
4872         gap = rem ? n_th / rem : 1;
4873         gap_ct = gap;
4874         thidx = n_th;
4875         if (update_master_only == 1)
4876           thidx = 1;
4877         for (f = 0; f < thidx; f++) {
4878           kmp_info_t *th = team->t.t_threads[f];
4879           KMP_DEBUG_ASSERT(th != NULL);
4880 
4881           th->th.th_first_place = place;
4882           th->th.th_new_place = place;
4883           if (__kmp_display_affinity && place != th->th.th_current_place &&
4884               team->t.t_display_affinity != 1) {
4885             team->t.t_display_affinity = 1;
4886           }
4887           s_count = 1;
4888           while (s_count < S) {
4889             if (place == last_place) {
4890               place = first_place;
4891             } else if (place == (int)(__kmp_affinity_num_masks - 1)) {
4892               place = 0;
4893             } else {
4894               place++;
4895             }
4896             s_count++;
4897           }
4898           if (rem && (gap_ct == gap)) {
4899             if (place == last_place) {
4900               place = first_place;
4901             } else if (place == (int)(__kmp_affinity_num_masks - 1)) {
4902               place = 0;
4903             } else {
4904               place++;
4905             }
4906             rem--;
4907             gap_ct = 0;
4908           }
4909           th->th.th_last_place = place;
4910           gap_ct++;
4911 
4912           if (place == last_place) {
4913             place = first_place;
4914           } else if (place == (int)(__kmp_affinity_num_masks - 1)) {
4915             place = 0;
4916           } else {
4917             place++;
4918           }
4919 
4920           KA_TRACE(100,
4921                    ("__kmp_partition_places: spread: T#%d(%d:%d) place %d "
4922                     "partition = [%d,%d], __kmp_affinity_num_masks: %u\n",
4923                     __kmp_gtid_from_thread(team->t.t_threads[f]), team->t.t_id,
4924                     f, th->th.th_new_place, th->th.th_first_place,
4925                     th->th.th_last_place, __kmp_affinity_num_masks));
4926         }
4927       } else {
4928         /* Having uniform space of available computation places I can create
4929            T partitions of round(P/T) size and put threads into the first
4930            place of each partition. */
4931         double current = static_cast<double>(masters_place);
4932         double spacing =
4933             (static_cast<double>(n_places + 1) / static_cast<double>(n_th));
4934         int first, last;
4935         kmp_info_t *th;
4936 
4937         thidx = n_th + 1;
4938         if (update_master_only == 1)
4939           thidx = 1;
4940         for (f = 0; f < thidx; f++) {
4941           first = static_cast<int>(current);
4942           last = static_cast<int>(current + spacing) - 1;
4943           KMP_DEBUG_ASSERT(last >= first);
4944           if (first >= n_places) {
4945             if (masters_place) {
4946               first -= n_places;
4947               last -= n_places;
4948               if (first == (masters_place + 1)) {
4949                 KMP_DEBUG_ASSERT(f == n_th);
4950                 first--;
4951               }
4952               if (last == masters_place) {
4953                 KMP_DEBUG_ASSERT(f == (n_th - 1));
4954                 last--;
4955               }
4956             } else {
4957               KMP_DEBUG_ASSERT(f == n_th);
4958               first = 0;
4959               last = 0;
4960             }
4961           }
4962           if (last >= n_places) {
4963             last = (n_places - 1);
4964           }
4965           place = first;
4966           current += spacing;
4967           if (f < n_th) {
4968             KMP_DEBUG_ASSERT(0 <= first);
4969             KMP_DEBUG_ASSERT(n_places > first);
4970             KMP_DEBUG_ASSERT(0 <= last);
4971             KMP_DEBUG_ASSERT(n_places > last);
4972             KMP_DEBUG_ASSERT(last_place >= first_place);
4973             th = team->t.t_threads[f];
4974             KMP_DEBUG_ASSERT(th);
4975             th->th.th_first_place = first;
4976             th->th.th_new_place = place;
4977             th->th.th_last_place = last;
4978             if (__kmp_display_affinity && place != th->th.th_current_place &&
4979                 team->t.t_display_affinity != 1) {
4980               team->t.t_display_affinity = 1;
4981             }
4982             KA_TRACE(100,
4983                      ("__kmp_partition_places: spread: T#%d(%d:%d) place %d "
4984                       "partition = [%d,%d], spacing = %.4f\n",
4985                       __kmp_gtid_from_thread(team->t.t_threads[f]),
4986                       team->t.t_id, f, th->th.th_new_place,
4987                       th->th.th_first_place, th->th.th_last_place, spacing));
4988           }
4989         }
4990       }
4991       KMP_DEBUG_ASSERT(update_master_only || place == masters_place);
4992     } else {
4993       int S, rem, gap, s_count;
4994       S = n_th / n_places;
4995       s_count = 0;
4996       rem = n_th - (S * n_places);
4997       gap = rem > 0 ? n_places / rem : n_places;
4998       int place = masters_place;
4999       int gap_ct = gap;
5000       thidx = n_th;
5001       if (update_master_only == 1)
5002         thidx = 1;
5003       for (f = 0; f < thidx; f++) {
5004         kmp_info_t *th = team->t.t_threads[f];
5005         KMP_DEBUG_ASSERT(th != NULL);
5006 
5007         th->th.th_first_place = place;
5008         th->th.th_last_place = place;
5009         th->th.th_new_place = place;
5010         if (__kmp_display_affinity && place != th->th.th_current_place &&
5011             team->t.t_display_affinity != 1) {
5012           team->t.t_display_affinity = 1;
5013         }
5014         s_count++;
5015 
5016         if ((s_count == S) && rem && (gap_ct == gap)) {
5017           // do nothing, add an extra thread to place on next iteration
5018         } else if ((s_count == S + 1) && rem && (gap_ct == gap)) {
5019           // we added an extra thread to this place; move on to next place
5020           if (place == last_place) {
5021             place = first_place;
5022           } else if (place == (int)(__kmp_affinity_num_masks - 1)) {
5023             place = 0;
5024           } else {
5025             place++;
5026           }
5027           s_count = 0;
5028           gap_ct = 1;
5029           rem--;
5030         } else if (s_count == S) { // place is full; don't add extra thread
5031           if (place == last_place) {
5032             place = first_place;
5033           } else if (place == (int)(__kmp_affinity_num_masks - 1)) {
5034             place = 0;
5035           } else {
5036             place++;
5037           }
5038           gap_ct++;
5039           s_count = 0;
5040         }
5041 
5042         KA_TRACE(100, ("__kmp_partition_places: spread: T#%d(%d:%d) place %d "
5043                        "partition = [%d,%d]\n",
5044                        __kmp_gtid_from_thread(team->t.t_threads[f]),
5045                        team->t.t_id, f, th->th.th_new_place,
5046                        th->th.th_first_place, th->th.th_last_place));
5047       }
5048       KMP_DEBUG_ASSERT(update_master_only || place == masters_place);
5049     }
5050   } break;
5051 
5052   default:
5053     break;
5054   }
5055 
5056   KA_TRACE(20, ("__kmp_partition_places: exit T#%d\n", team->t.t_id));
5057 }
5058 
5059 #endif // KMP_AFFINITY_SUPPORTED
5060 
5061 /* allocate a new team data structure to use.  take one off of the free pool if
5062    available */
5063 kmp_team_t *
5064 __kmp_allocate_team(kmp_root_t *root, int new_nproc, int max_nproc,
5065 #if OMPT_SUPPORT
5066                     ompt_data_t ompt_parallel_data,
5067 #endif
5068                     kmp_proc_bind_t new_proc_bind,
5069                     kmp_internal_control_t *new_icvs,
5070                     int argc USE_NESTED_HOT_ARG(kmp_info_t *master)) {
5071   KMP_TIME_DEVELOPER_PARTITIONED_BLOCK(KMP_allocate_team);
5072   int f;
5073   kmp_team_t *team;
5074   int use_hot_team = !root->r.r_active;
5075   int level = 0;
5076   int do_place_partition = 1;
5077 
5078   KA_TRACE(20, ("__kmp_allocate_team: called\n"));
5079   KMP_DEBUG_ASSERT(new_nproc >= 1 && argc >= 0);
5080   KMP_DEBUG_ASSERT(max_nproc >= new_nproc);
5081   KMP_MB();
5082 
5083 #if KMP_NESTED_HOT_TEAMS
5084   kmp_hot_team_ptr_t *hot_teams;
5085   if (master) {
5086     team = master->th.th_team;
5087     level = team->t.t_active_level;
5088     if (master->th.th_teams_microtask) { // in teams construct?
5089       if (master->th.th_teams_size.nteams > 1 &&
5090           ( // #teams > 1
5091               team->t.t_pkfn ==
5092                   (microtask_t)__kmp_teams_master || // inner fork of the teams
5093               master->th.th_teams_level <
5094                   team->t.t_level)) { // or nested parallel inside the teams
5095         ++level; // not increment if #teams==1, or for outer fork of the teams;
5096         // increment otherwise
5097       }
5098       // Do not perform the place partition if inner fork of the teams
5099       // Wait until nested parallel region encountered inside teams construct
5100       if ((master->th.th_teams_size.nteams == 1 &&
5101            master->th.th_teams_level >= team->t.t_level) ||
5102           (team->t.t_pkfn == (microtask_t)__kmp_teams_master))
5103         do_place_partition = 0;
5104     }
5105     hot_teams = master->th.th_hot_teams;
5106     if (level < __kmp_hot_teams_max_level && hot_teams &&
5107         hot_teams[level].hot_team) {
5108       // hot team has already been allocated for given level
5109       use_hot_team = 1;
5110     } else {
5111       use_hot_team = 0;
5112     }
5113   } else {
5114     // check we won't access uninitialized hot_teams, just in case
5115     KMP_DEBUG_ASSERT(new_nproc == 1);
5116   }
5117 #endif
5118   // Optimization to use a "hot" team
5119   if (use_hot_team && new_nproc > 1) {
5120     KMP_DEBUG_ASSERT(new_nproc <= max_nproc);
5121 #if KMP_NESTED_HOT_TEAMS
5122     team = hot_teams[level].hot_team;
5123 #else
5124     team = root->r.r_hot_team;
5125 #endif
5126 #if KMP_DEBUG
5127     if (__kmp_tasking_mode != tskm_immediate_exec) {
5128       KA_TRACE(20, ("__kmp_allocate_team: hot team task_team[0] = %p "
5129                     "task_team[1] = %p before reinit\n",
5130                     team->t.t_task_team[0], team->t.t_task_team[1]));
5131     }
5132 #endif
5133 
5134     if (team->t.t_nproc != new_nproc &&
5135         __kmp_barrier_release_pattern[bs_forkjoin_barrier] == bp_dist_bar) {
5136       // Distributed barrier may need a resize
5137       int old_nthr = team->t.t_nproc;
5138       __kmp_resize_dist_barrier(team, old_nthr, new_nproc);
5139     }
5140 
5141     // If not doing the place partition, then reset the team's proc bind
5142     // to indicate that partitioning of all threads still needs to take place
5143     if (do_place_partition == 0)
5144       team->t.t_proc_bind = proc_bind_default;
5145     // Has the number of threads changed?
5146     /* Let's assume the most common case is that the number of threads is
5147        unchanged, and put that case first. */
5148     if (team->t.t_nproc == new_nproc) { // Check changes in number of threads
5149       KA_TRACE(20, ("__kmp_allocate_team: reusing hot team\n"));
5150       // This case can mean that omp_set_num_threads() was called and the hot
5151       // team size was already reduced, so we check the special flag
5152       if (team->t.t_size_changed == -1) {
5153         team->t.t_size_changed = 1;
5154       } else {
5155         KMP_CHECK_UPDATE(team->t.t_size_changed, 0);
5156       }
5157 
5158       // TODO???: team->t.t_max_active_levels = new_max_active_levels;
5159       kmp_r_sched_t new_sched = new_icvs->sched;
5160       // set primary thread's schedule as new run-time schedule
5161       KMP_CHECK_UPDATE(team->t.t_sched.sched, new_sched.sched);
5162 
5163       __kmp_reinitialize_team(team, new_icvs,
5164                               root->r.r_uber_thread->th.th_ident);
5165 
5166       KF_TRACE(10, ("__kmp_allocate_team2: T#%d, this_thread=%p team=%p\n", 0,
5167                     team->t.t_threads[0], team));
5168       __kmp_push_current_task_to_thread(team->t.t_threads[0], team, 0);
5169 
5170 #if KMP_AFFINITY_SUPPORTED
5171       if ((team->t.t_size_changed == 0) &&
5172           (team->t.t_proc_bind == new_proc_bind)) {
5173         if (new_proc_bind == proc_bind_spread) {
5174           if (do_place_partition) {
5175             // add flag to update only master for spread
5176             __kmp_partition_places(team, 1);
5177           }
5178         }
5179         KA_TRACE(200, ("__kmp_allocate_team: reusing hot team #%d bindings: "
5180                        "proc_bind = %d, partition = [%d,%d]\n",
5181                        team->t.t_id, new_proc_bind, team->t.t_first_place,
5182                        team->t.t_last_place));
5183       } else {
5184         if (do_place_partition) {
5185           KMP_CHECK_UPDATE(team->t.t_proc_bind, new_proc_bind);
5186           __kmp_partition_places(team);
5187         }
5188       }
5189 #else
5190       KMP_CHECK_UPDATE(team->t.t_proc_bind, new_proc_bind);
5191 #endif /* KMP_AFFINITY_SUPPORTED */
5192     } else if (team->t.t_nproc > new_nproc) {
5193       KA_TRACE(20,
5194                ("__kmp_allocate_team: decreasing hot team thread count to %d\n",
5195                 new_nproc));
5196 
5197       team->t.t_size_changed = 1;
5198       if (__kmp_barrier_release_pattern[bs_forkjoin_barrier] == bp_dist_bar) {
5199         // Barrier size already reduced earlier in this function
5200         // Activate team threads via th_used_in_team
5201         __kmp_add_threads_to_team(team, new_nproc);
5202       }
5203 #if KMP_NESTED_HOT_TEAMS
5204       if (__kmp_hot_teams_mode == 0) {
5205         // AC: saved number of threads should correspond to team's value in this
5206         // mode, can be bigger in mode 1, when hot team has threads in reserve
5207         KMP_DEBUG_ASSERT(hot_teams[level].hot_team_nth == team->t.t_nproc);
5208         hot_teams[level].hot_team_nth = new_nproc;
5209 #endif // KMP_NESTED_HOT_TEAMS
5210         /* release the extra threads we don't need any more */
5211         for (f = new_nproc; f < team->t.t_nproc; f++) {
5212           KMP_DEBUG_ASSERT(team->t.t_threads[f]);
5213           if (__kmp_tasking_mode != tskm_immediate_exec) {
5214             // When decreasing team size, threads no longer in the team should
5215             // unref task team.
5216             team->t.t_threads[f]->th.th_task_team = NULL;
5217           }
5218           __kmp_free_thread(team->t.t_threads[f]);
5219           team->t.t_threads[f] = NULL;
5220         }
5221 #if KMP_NESTED_HOT_TEAMS
5222       } // (__kmp_hot_teams_mode == 0)
5223       else {
5224         // When keeping extra threads in team, switch threads to wait on own
5225         // b_go flag
5226         for (f = new_nproc; f < team->t.t_nproc; ++f) {
5227           KMP_DEBUG_ASSERT(team->t.t_threads[f]);
5228           kmp_balign_t *balign = team->t.t_threads[f]->th.th_bar;
5229           for (int b = 0; b < bs_last_barrier; ++b) {
5230             if (balign[b].bb.wait_flag == KMP_BARRIER_PARENT_FLAG) {
5231               balign[b].bb.wait_flag = KMP_BARRIER_SWITCH_TO_OWN_FLAG;
5232             }
5233             KMP_CHECK_UPDATE(balign[b].bb.leaf_kids, 0);
5234           }
5235         }
5236       }
5237 #endif // KMP_NESTED_HOT_TEAMS
5238       team->t.t_nproc = new_nproc;
5239       // TODO???: team->t.t_max_active_levels = new_max_active_levels;
5240       KMP_CHECK_UPDATE(team->t.t_sched.sched, new_icvs->sched.sched);
5241       __kmp_reinitialize_team(team, new_icvs,
5242                               root->r.r_uber_thread->th.th_ident);
5243 
5244       // Update remaining threads
5245       for (f = 0; f < new_nproc; ++f) {
5246         team->t.t_threads[f]->th.th_team_nproc = new_nproc;
5247       }
5248 
5249       // restore the current task state of the primary thread: should be the
5250       // implicit task
5251       KF_TRACE(10, ("__kmp_allocate_team: T#%d, this_thread=%p team=%p\n", 0,
5252                     team->t.t_threads[0], team));
5253 
5254       __kmp_push_current_task_to_thread(team->t.t_threads[0], team, 0);
5255 
5256 #ifdef KMP_DEBUG
5257       for (f = 0; f < team->t.t_nproc; f++) {
5258         KMP_DEBUG_ASSERT(team->t.t_threads[f] &&
5259                          team->t.t_threads[f]->th.th_team_nproc ==
5260                              team->t.t_nproc);
5261       }
5262 #endif
5263 
5264       if (do_place_partition) {
5265         KMP_CHECK_UPDATE(team->t.t_proc_bind, new_proc_bind);
5266 #if KMP_AFFINITY_SUPPORTED
5267         __kmp_partition_places(team);
5268 #endif
5269       }
5270     } else { // team->t.t_nproc < new_nproc
5271 #if (KMP_OS_LINUX || KMP_OS_FREEBSD) && KMP_AFFINITY_SUPPORTED
5272       kmp_affin_mask_t *old_mask;
5273       if (KMP_AFFINITY_CAPABLE()) {
5274         KMP_CPU_ALLOC(old_mask);
5275       }
5276 #endif
5277 
5278       KA_TRACE(20,
5279                ("__kmp_allocate_team: increasing hot team thread count to %d\n",
5280                 new_nproc));
5281       int old_nproc = team->t.t_nproc; // save old value and use to update only
5282       team->t.t_size_changed = 1;
5283 
5284 #if KMP_NESTED_HOT_TEAMS
5285       int avail_threads = hot_teams[level].hot_team_nth;
5286       if (new_nproc < avail_threads)
5287         avail_threads = new_nproc;
5288       kmp_info_t **other_threads = team->t.t_threads;
5289       for (f = team->t.t_nproc; f < avail_threads; ++f) {
5290         // Adjust barrier data of reserved threads (if any) of the team
5291         // Other data will be set in __kmp_initialize_info() below.
5292         int b;
5293         kmp_balign_t *balign = other_threads[f]->th.th_bar;
5294         for (b = 0; b < bs_last_barrier; ++b) {
5295           balign[b].bb.b_arrived = team->t.t_bar[b].b_arrived;
5296           KMP_DEBUG_ASSERT(balign[b].bb.wait_flag != KMP_BARRIER_PARENT_FLAG);
5297 #if USE_DEBUGGER
5298           balign[b].bb.b_worker_arrived = team->t.t_bar[b].b_team_arrived;
5299 #endif
5300         }
5301       }
5302       if (hot_teams[level].hot_team_nth >= new_nproc) {
5303         // we have all needed threads in reserve, no need to allocate any
5304         // this only possible in mode 1, cannot have reserved threads in mode 0
5305         KMP_DEBUG_ASSERT(__kmp_hot_teams_mode == 1);
5306         team->t.t_nproc = new_nproc; // just get reserved threads involved
5307       } else {
5308         // We may have some threads in reserve, but not enough;
5309         // get reserved threads involved if any.
5310         team->t.t_nproc = hot_teams[level].hot_team_nth;
5311         hot_teams[level].hot_team_nth = new_nproc; // adjust hot team max size
5312 #endif // KMP_NESTED_HOT_TEAMS
5313         if (team->t.t_max_nproc < new_nproc) {
5314           /* reallocate larger arrays */
5315           __kmp_reallocate_team_arrays(team, new_nproc);
5316           __kmp_reinitialize_team(team, new_icvs, NULL);
5317         }
5318 
5319 #if (KMP_OS_LINUX || KMP_OS_FREEBSD) && KMP_AFFINITY_SUPPORTED
5320         /* Temporarily set full mask for primary thread before creation of
5321            workers. The reason is that workers inherit the affinity from the
5322            primary thread, so if a lot of workers are created on the single
5323            core quickly, they don't get a chance to set their own affinity for
5324            a long time. */
5325         __kmp_set_thread_affinity_mask_full_tmp(old_mask);
5326 #endif
5327 
5328         /* allocate new threads for the hot team */
5329         for (f = team->t.t_nproc; f < new_nproc; f++) {
5330           kmp_info_t *new_worker = __kmp_allocate_thread(root, team, f);
5331           KMP_DEBUG_ASSERT(new_worker);
5332           team->t.t_threads[f] = new_worker;
5333 
5334           KA_TRACE(20,
5335                    ("__kmp_allocate_team: team %d init T#%d arrived: "
5336                     "join=%llu, plain=%llu\n",
5337                     team->t.t_id, __kmp_gtid_from_tid(f, team), team->t.t_id, f,
5338                     team->t.t_bar[bs_forkjoin_barrier].b_arrived,
5339                     team->t.t_bar[bs_plain_barrier].b_arrived));
5340 
5341           { // Initialize barrier data for new threads.
5342             int b;
5343             kmp_balign_t *balign = new_worker->th.th_bar;
5344             for (b = 0; b < bs_last_barrier; ++b) {
5345               balign[b].bb.b_arrived = team->t.t_bar[b].b_arrived;
5346               KMP_DEBUG_ASSERT(balign[b].bb.wait_flag !=
5347                                KMP_BARRIER_PARENT_FLAG);
5348 #if USE_DEBUGGER
5349               balign[b].bb.b_worker_arrived = team->t.t_bar[b].b_team_arrived;
5350 #endif
5351             }
5352           }
5353         }
5354 
5355 #if (KMP_OS_LINUX || KMP_OS_FREEBSD) && KMP_AFFINITY_SUPPORTED
5356         if (KMP_AFFINITY_CAPABLE()) {
5357           /* Restore initial primary thread's affinity mask */
5358           __kmp_set_system_affinity(old_mask, TRUE);
5359           KMP_CPU_FREE(old_mask);
5360         }
5361 #endif
5362 #if KMP_NESTED_HOT_TEAMS
5363       } // end of check of t_nproc vs. new_nproc vs. hot_team_nth
5364 #endif // KMP_NESTED_HOT_TEAMS
5365       if (__kmp_barrier_release_pattern[bs_forkjoin_barrier] == bp_dist_bar) {
5366         // Barrier size already increased earlier in this function
5367         // Activate team threads via th_used_in_team
5368         __kmp_add_threads_to_team(team, new_nproc);
5369       }
5370       /* make sure everyone is syncronized */
5371       // new threads below
5372       __kmp_initialize_team(team, new_nproc, new_icvs,
5373                             root->r.r_uber_thread->th.th_ident);
5374 
5375       /* reinitialize the threads */
5376       KMP_DEBUG_ASSERT(team->t.t_nproc == new_nproc);
5377       for (f = 0; f < team->t.t_nproc; ++f)
5378         __kmp_initialize_info(team->t.t_threads[f], team, f,
5379                               __kmp_gtid_from_tid(f, team));
5380 
5381       if (level) { // set th_task_state for new threads in nested hot team
5382         // __kmp_initialize_info() no longer zeroes th_task_state, so we should
5383         // only need to set the th_task_state for the new threads. th_task_state
5384         // for primary thread will not be accurate until after this in
5385         // __kmp_fork_call(), so we look to the primary thread's memo_stack to
5386         // get the correct value.
5387         for (f = old_nproc; f < team->t.t_nproc; ++f)
5388           team->t.t_threads[f]->th.th_task_state =
5389               team->t.t_threads[0]->th.th_task_state_memo_stack[level];
5390       } else { // set th_task_state for new threads in non-nested hot team
5391         // copy primary thread's state
5392         kmp_uint8 old_state = team->t.t_threads[0]->th.th_task_state;
5393         for (f = old_nproc; f < team->t.t_nproc; ++f)
5394           team->t.t_threads[f]->th.th_task_state = old_state;
5395       }
5396 
5397 #ifdef KMP_DEBUG
5398       for (f = 0; f < team->t.t_nproc; ++f) {
5399         KMP_DEBUG_ASSERT(team->t.t_threads[f] &&
5400                          team->t.t_threads[f]->th.th_team_nproc ==
5401                              team->t.t_nproc);
5402       }
5403 #endif
5404 
5405       if (do_place_partition) {
5406         KMP_CHECK_UPDATE(team->t.t_proc_bind, new_proc_bind);
5407 #if KMP_AFFINITY_SUPPORTED
5408         __kmp_partition_places(team);
5409 #endif
5410       }
5411     } // Check changes in number of threads
5412 
5413     kmp_info_t *master = team->t.t_threads[0];
5414     if (master->th.th_teams_microtask) {
5415       for (f = 1; f < new_nproc; ++f) {
5416         // propagate teams construct specific info to workers
5417         kmp_info_t *thr = team->t.t_threads[f];
5418         thr->th.th_teams_microtask = master->th.th_teams_microtask;
5419         thr->th.th_teams_level = master->th.th_teams_level;
5420         thr->th.th_teams_size = master->th.th_teams_size;
5421       }
5422     }
5423 #if KMP_NESTED_HOT_TEAMS
5424     if (level) {
5425       // Sync barrier state for nested hot teams, not needed for outermost hot
5426       // team.
5427       for (f = 1; f < new_nproc; ++f) {
5428         kmp_info_t *thr = team->t.t_threads[f];
5429         int b;
5430         kmp_balign_t *balign = thr->th.th_bar;
5431         for (b = 0; b < bs_last_barrier; ++b) {
5432           balign[b].bb.b_arrived = team->t.t_bar[b].b_arrived;
5433           KMP_DEBUG_ASSERT(balign[b].bb.wait_flag != KMP_BARRIER_PARENT_FLAG);
5434 #if USE_DEBUGGER
5435           balign[b].bb.b_worker_arrived = team->t.t_bar[b].b_team_arrived;
5436 #endif
5437         }
5438       }
5439     }
5440 #endif // KMP_NESTED_HOT_TEAMS
5441 
5442     /* reallocate space for arguments if necessary */
5443     __kmp_alloc_argv_entries(argc, team, TRUE);
5444     KMP_CHECK_UPDATE(team->t.t_argc, argc);
5445     // The hot team re-uses the previous task team,
5446     // if untouched during the previous release->gather phase.
5447 
5448     KF_TRACE(10, (" hot_team = %p\n", team));
5449 
5450 #if KMP_DEBUG
5451     if (__kmp_tasking_mode != tskm_immediate_exec) {
5452       KA_TRACE(20, ("__kmp_allocate_team: hot team task_team[0] = %p "
5453                     "task_team[1] = %p after reinit\n",
5454                     team->t.t_task_team[0], team->t.t_task_team[1]));
5455     }
5456 #endif
5457 
5458 #if OMPT_SUPPORT
5459     __ompt_team_assign_id(team, ompt_parallel_data);
5460 #endif
5461 
5462     KMP_MB();
5463 
5464     return team;
5465   }
5466 
5467   /* next, let's try to take one from the team pool */
5468   KMP_MB();
5469   for (team = CCAST(kmp_team_t *, __kmp_team_pool); (team);) {
5470     /* TODO: consider resizing undersized teams instead of reaping them, now
5471        that we have a resizing mechanism */
5472     if (team->t.t_max_nproc >= max_nproc) {
5473       /* take this team from the team pool */
5474       __kmp_team_pool = team->t.t_next_pool;
5475 
5476       if (max_nproc > 1 &&
5477           __kmp_barrier_gather_pattern[bs_forkjoin_barrier] == bp_dist_bar) {
5478         if (!team->t.b) { // Allocate barrier structure
5479           team->t.b = distributedBarrier::allocate(__kmp_dflt_team_nth_ub);
5480         }
5481       }
5482 
5483       /* setup the team for fresh use */
5484       __kmp_initialize_team(team, new_nproc, new_icvs, NULL);
5485 
5486       KA_TRACE(20, ("__kmp_allocate_team: setting task_team[0] %p and "
5487                     "task_team[1] %p to NULL\n",
5488                     &team->t.t_task_team[0], &team->t.t_task_team[1]));
5489       team->t.t_task_team[0] = NULL;
5490       team->t.t_task_team[1] = NULL;
5491 
5492       /* reallocate space for arguments if necessary */
5493       __kmp_alloc_argv_entries(argc, team, TRUE);
5494       KMP_CHECK_UPDATE(team->t.t_argc, argc);
5495 
5496       KA_TRACE(
5497           20, ("__kmp_allocate_team: team %d init arrived: join=%u, plain=%u\n",
5498                team->t.t_id, KMP_INIT_BARRIER_STATE, KMP_INIT_BARRIER_STATE));
5499       { // Initialize barrier data.
5500         int b;
5501         for (b = 0; b < bs_last_barrier; ++b) {
5502           team->t.t_bar[b].b_arrived = KMP_INIT_BARRIER_STATE;
5503 #if USE_DEBUGGER
5504           team->t.t_bar[b].b_master_arrived = 0;
5505           team->t.t_bar[b].b_team_arrived = 0;
5506 #endif
5507         }
5508       }
5509 
5510       team->t.t_proc_bind = new_proc_bind;
5511 
5512       KA_TRACE(20, ("__kmp_allocate_team: using team from pool %d.\n",
5513                     team->t.t_id));
5514 
5515 #if OMPT_SUPPORT
5516       __ompt_team_assign_id(team, ompt_parallel_data);
5517 #endif
5518 
5519       KMP_MB();
5520 
5521       return team;
5522     }
5523 
5524     /* reap team if it is too small, then loop back and check the next one */
5525     // not sure if this is wise, but, will be redone during the hot-teams
5526     // rewrite.
5527     /* TODO: Use technique to find the right size hot-team, don't reap them */
5528     team = __kmp_reap_team(team);
5529     __kmp_team_pool = team;
5530   }
5531 
5532   /* nothing available in the pool, no matter, make a new team! */
5533   KMP_MB();
5534   team = (kmp_team_t *)__kmp_allocate(sizeof(kmp_team_t));
5535 
5536   /* and set it up */
5537   team->t.t_max_nproc = max_nproc;
5538   if (max_nproc > 1 &&
5539       __kmp_barrier_gather_pattern[bs_forkjoin_barrier] == bp_dist_bar) {
5540     // Allocate barrier structure
5541     team->t.b = distributedBarrier::allocate(__kmp_dflt_team_nth_ub);
5542   }
5543 
5544   /* NOTE well, for some reason allocating one big buffer and dividing it up
5545      seems to really hurt performance a lot on the P4, so, let's not use this */
5546   __kmp_allocate_team_arrays(team, max_nproc);
5547 
5548   KA_TRACE(20, ("__kmp_allocate_team: making a new team\n"));
5549   __kmp_initialize_team(team, new_nproc, new_icvs, NULL);
5550 
5551   KA_TRACE(20, ("__kmp_allocate_team: setting task_team[0] %p and task_team[1] "
5552                 "%p to NULL\n",
5553                 &team->t.t_task_team[0], &team->t.t_task_team[1]));
5554   team->t.t_task_team[0] = NULL; // to be removed, as __kmp_allocate zeroes
5555   // memory, no need to duplicate
5556   team->t.t_task_team[1] = NULL; // to be removed, as __kmp_allocate zeroes
5557   // memory, no need to duplicate
5558 
5559   if (__kmp_storage_map) {
5560     __kmp_print_team_storage_map("team", team, team->t.t_id, new_nproc);
5561   }
5562 
5563   /* allocate space for arguments */
5564   __kmp_alloc_argv_entries(argc, team, FALSE);
5565   team->t.t_argc = argc;
5566 
5567   KA_TRACE(20,
5568            ("__kmp_allocate_team: team %d init arrived: join=%u, plain=%u\n",
5569             team->t.t_id, KMP_INIT_BARRIER_STATE, KMP_INIT_BARRIER_STATE));
5570   { // Initialize barrier data.
5571     int b;
5572     for (b = 0; b < bs_last_barrier; ++b) {
5573       team->t.t_bar[b].b_arrived = KMP_INIT_BARRIER_STATE;
5574 #if USE_DEBUGGER
5575       team->t.t_bar[b].b_master_arrived = 0;
5576       team->t.t_bar[b].b_team_arrived = 0;
5577 #endif
5578     }
5579   }
5580 
5581   team->t.t_proc_bind = new_proc_bind;
5582 
5583 #if OMPT_SUPPORT
5584   __ompt_team_assign_id(team, ompt_parallel_data);
5585   team->t.ompt_serialized_team_info = NULL;
5586 #endif
5587 
5588   KMP_MB();
5589 
5590   KA_TRACE(20, ("__kmp_allocate_team: done creating a new team %d.\n",
5591                 team->t.t_id));
5592 
5593   return team;
5594 }
5595 
5596 /* TODO implement hot-teams at all levels */
5597 /* TODO implement lazy thread release on demand (disband request) */
5598 
5599 /* free the team.  return it to the team pool.  release all the threads
5600  * associated with it */
5601 void __kmp_free_team(kmp_root_t *root,
5602                      kmp_team_t *team USE_NESTED_HOT_ARG(kmp_info_t *master)) {
5603   int f;
5604   KA_TRACE(20, ("__kmp_free_team: T#%d freeing team %d\n", __kmp_get_gtid(),
5605                 team->t.t_id));
5606 
5607   /* verify state */
5608   KMP_DEBUG_ASSERT(root);
5609   KMP_DEBUG_ASSERT(team);
5610   KMP_DEBUG_ASSERT(team->t.t_nproc <= team->t.t_max_nproc);
5611   KMP_DEBUG_ASSERT(team->t.t_threads);
5612 
5613   int use_hot_team = team == root->r.r_hot_team;
5614 #if KMP_NESTED_HOT_TEAMS
5615   int level;
5616   if (master) {
5617     level = team->t.t_active_level - 1;
5618     if (master->th.th_teams_microtask) { // in teams construct?
5619       if (master->th.th_teams_size.nteams > 1) {
5620         ++level; // level was not increased in teams construct for
5621         // team_of_masters
5622       }
5623       if (team->t.t_pkfn != (microtask_t)__kmp_teams_master &&
5624           master->th.th_teams_level == team->t.t_level) {
5625         ++level; // level was not increased in teams construct for
5626         // team_of_workers before the parallel
5627       } // team->t.t_level will be increased inside parallel
5628     }
5629 #if KMP_DEBUG
5630     kmp_hot_team_ptr_t *hot_teams = master->th.th_hot_teams;
5631 #endif
5632     if (level < __kmp_hot_teams_max_level) {
5633       KMP_DEBUG_ASSERT(team == hot_teams[level].hot_team);
5634       use_hot_team = 1;
5635     }
5636   }
5637 #endif // KMP_NESTED_HOT_TEAMS
5638 
5639   /* team is done working */
5640   TCW_SYNC_PTR(team->t.t_pkfn,
5641                NULL); // Important for Debugging Support Library.
5642 #if KMP_OS_WINDOWS
5643   team->t.t_copyin_counter = 0; // init counter for possible reuse
5644 #endif
5645   // Do not reset pointer to parent team to NULL for hot teams.
5646 
5647   /* if we are non-hot team, release our threads */
5648   if (!use_hot_team) {
5649     if (__kmp_tasking_mode != tskm_immediate_exec) {
5650       // Wait for threads to reach reapable state
5651       for (f = 1; f < team->t.t_nproc; ++f) {
5652         KMP_DEBUG_ASSERT(team->t.t_threads[f]);
5653         kmp_info_t *th = team->t.t_threads[f];
5654         volatile kmp_uint32 *state = &th->th.th_reap_state;
5655         while (*state != KMP_SAFE_TO_REAP) {
5656 #if KMP_OS_WINDOWS
5657           // On Windows a thread can be killed at any time, check this
5658           DWORD ecode;
5659           if (!__kmp_is_thread_alive(th, &ecode)) {
5660             *state = KMP_SAFE_TO_REAP; // reset the flag for dead thread
5661             break;
5662           }
5663 #endif
5664           // first check if thread is sleeping
5665           kmp_flag_64<> fl(&th->th.th_bar[bs_forkjoin_barrier].bb.b_go, th);
5666           if (fl.is_sleeping())
5667             fl.resume(__kmp_gtid_from_thread(th));
5668           KMP_CPU_PAUSE();
5669         }
5670       }
5671 
5672       // Delete task teams
5673       int tt_idx;
5674       for (tt_idx = 0; tt_idx < 2; ++tt_idx) {
5675         kmp_task_team_t *task_team = team->t.t_task_team[tt_idx];
5676         if (task_team != NULL) {
5677           for (f = 0; f < team->t.t_nproc; ++f) { // threads unref task teams
5678             KMP_DEBUG_ASSERT(team->t.t_threads[f]);
5679             team->t.t_threads[f]->th.th_task_team = NULL;
5680           }
5681           KA_TRACE(
5682               20,
5683               ("__kmp_free_team: T#%d deactivating task_team %p on team %d\n",
5684                __kmp_get_gtid(), task_team, team->t.t_id));
5685 #if KMP_NESTED_HOT_TEAMS
5686           __kmp_free_task_team(master, task_team);
5687 #endif
5688           team->t.t_task_team[tt_idx] = NULL;
5689         }
5690       }
5691     }
5692 
5693     // Reset pointer to parent team only for non-hot teams.
5694     team->t.t_parent = NULL;
5695     team->t.t_level = 0;
5696     team->t.t_active_level = 0;
5697 
5698     /* free the worker threads */
5699     for (f = 1; f < team->t.t_nproc; ++f) {
5700       KMP_DEBUG_ASSERT(team->t.t_threads[f]);
5701       if (__kmp_barrier_gather_pattern[bs_forkjoin_barrier] == bp_dist_bar) {
5702         KMP_COMPARE_AND_STORE_ACQ32(&(team->t.t_threads[f]->th.th_used_in_team),
5703                                     1, 2);
5704       }
5705       __kmp_free_thread(team->t.t_threads[f]);
5706     }
5707 
5708     if (__kmp_barrier_gather_pattern[bs_forkjoin_barrier] == bp_dist_bar) {
5709       if (team->t.b) {
5710         // wake up thread at old location
5711         team->t.b->go_release();
5712         if (__kmp_dflt_blocktime != KMP_MAX_BLOCKTIME) {
5713           for (f = 1; f < team->t.t_nproc; ++f) {
5714             if (team->t.b->sleep[f].sleep) {
5715               __kmp_atomic_resume_64(
5716                   team->t.t_threads[f]->th.th_info.ds.ds_gtid,
5717                   (kmp_atomic_flag_64<> *)NULL);
5718             }
5719           }
5720         }
5721         // Wait for threads to be removed from team
5722         for (int f = 1; f < team->t.t_nproc; ++f) {
5723           while (team->t.t_threads[f]->th.th_used_in_team.load() != 0)
5724             KMP_CPU_PAUSE();
5725         }
5726       }
5727     }
5728 
5729     for (f = 1; f < team->t.t_nproc; ++f) {
5730       team->t.t_threads[f] = NULL;
5731     }
5732 
5733     if (team->t.t_max_nproc > 1 &&
5734         __kmp_barrier_gather_pattern[bs_forkjoin_barrier] == bp_dist_bar) {
5735       distributedBarrier::deallocate(team->t.b);
5736       team->t.b = NULL;
5737     }
5738     /* put the team back in the team pool */
5739     /* TODO limit size of team pool, call reap_team if pool too large */
5740     team->t.t_next_pool = CCAST(kmp_team_t *, __kmp_team_pool);
5741     __kmp_team_pool = (volatile kmp_team_t *)team;
5742   } else { // Check if team was created for primary threads in teams construct
5743     // See if first worker is a CG root
5744     KMP_DEBUG_ASSERT(team->t.t_threads[1] &&
5745                      team->t.t_threads[1]->th.th_cg_roots);
5746     if (team->t.t_threads[1]->th.th_cg_roots->cg_root == team->t.t_threads[1]) {
5747       // Clean up the CG root nodes on workers so that this team can be re-used
5748       for (f = 1; f < team->t.t_nproc; ++f) {
5749         kmp_info_t *thr = team->t.t_threads[f];
5750         KMP_DEBUG_ASSERT(thr && thr->th.th_cg_roots &&
5751                          thr->th.th_cg_roots->cg_root == thr);
5752         // Pop current CG root off list
5753         kmp_cg_root_t *tmp = thr->th.th_cg_roots;
5754         thr->th.th_cg_roots = tmp->up;
5755         KA_TRACE(100, ("__kmp_free_team: Thread %p popping node %p and moving"
5756                        " up to node %p. cg_nthreads was %d\n",
5757                        thr, tmp, thr->th.th_cg_roots, tmp->cg_nthreads));
5758         int i = tmp->cg_nthreads--;
5759         if (i == 1) {
5760           __kmp_free(tmp); // free CG if we are the last thread in it
5761         }
5762         // Restore current task's thread_limit from CG root
5763         if (thr->th.th_cg_roots)
5764           thr->th.th_current_task->td_icvs.thread_limit =
5765               thr->th.th_cg_roots->cg_thread_limit;
5766       }
5767     }
5768   }
5769 
5770   KMP_MB();
5771 }
5772 
5773 /* reap the team.  destroy it, reclaim all its resources and free its memory */
5774 kmp_team_t *__kmp_reap_team(kmp_team_t *team) {
5775   kmp_team_t *next_pool = team->t.t_next_pool;
5776 
5777   KMP_DEBUG_ASSERT(team);
5778   KMP_DEBUG_ASSERT(team->t.t_dispatch);
5779   KMP_DEBUG_ASSERT(team->t.t_disp_buffer);
5780   KMP_DEBUG_ASSERT(team->t.t_threads);
5781   KMP_DEBUG_ASSERT(team->t.t_argv);
5782 
5783   /* TODO clean the threads that are a part of this? */
5784 
5785   /* free stuff */
5786   __kmp_free_team_arrays(team);
5787   if (team->t.t_argv != &team->t.t_inline_argv[0])
5788     __kmp_free((void *)team->t.t_argv);
5789   __kmp_free(team);
5790 
5791   KMP_MB();
5792   return next_pool;
5793 }
5794 
5795 // Free the thread.  Don't reap it, just place it on the pool of available
5796 // threads.
5797 //
5798 // Changes for Quad issue 527845: We need a predictable OMP tid <-> gtid
5799 // binding for the affinity mechanism to be useful.
5800 //
5801 // Now, we always keep the free list (__kmp_thread_pool) sorted by gtid.
5802 // However, we want to avoid a potential performance problem by always
5803 // scanning through the list to find the correct point at which to insert
5804 // the thread (potential N**2 behavior).  To do this we keep track of the
5805 // last place a thread struct was inserted (__kmp_thread_pool_insert_pt).
5806 // With single-level parallelism, threads will always be added to the tail
5807 // of the list, kept track of by __kmp_thread_pool_insert_pt.  With nested
5808 // parallelism, all bets are off and we may need to scan through the entire
5809 // free list.
5810 //
5811 // This change also has a potentially large performance benefit, for some
5812 // applications.  Previously, as threads were freed from the hot team, they
5813 // would be placed back on the free list in inverse order.  If the hot team
5814 // grew back to it's original size, then the freed thread would be placed
5815 // back on the hot team in reverse order.  This could cause bad cache
5816 // locality problems on programs where the size of the hot team regularly
5817 // grew and shrunk.
5818 //
5819 // Now, for single-level parallelism, the OMP tid is always == gtid.
5820 void __kmp_free_thread(kmp_info_t *this_th) {
5821   int gtid;
5822   kmp_info_t **scan;
5823 
5824   KA_TRACE(20, ("__kmp_free_thread: T#%d putting T#%d back on free pool.\n",
5825                 __kmp_get_gtid(), this_th->th.th_info.ds.ds_gtid));
5826 
5827   KMP_DEBUG_ASSERT(this_th);
5828 
5829   // When moving thread to pool, switch thread to wait on own b_go flag, and
5830   // uninitialized (NULL team).
5831   int b;
5832   kmp_balign_t *balign = this_th->th.th_bar;
5833   for (b = 0; b < bs_last_barrier; ++b) {
5834     if (balign[b].bb.wait_flag == KMP_BARRIER_PARENT_FLAG)
5835       balign[b].bb.wait_flag = KMP_BARRIER_SWITCH_TO_OWN_FLAG;
5836     balign[b].bb.team = NULL;
5837     balign[b].bb.leaf_kids = 0;
5838   }
5839   this_th->th.th_task_state = 0;
5840   this_th->th.th_reap_state = KMP_SAFE_TO_REAP;
5841 
5842   /* put thread back on the free pool */
5843   TCW_PTR(this_th->th.th_team, NULL);
5844   TCW_PTR(this_th->th.th_root, NULL);
5845   TCW_PTR(this_th->th.th_dispatch, NULL); /* NOT NEEDED */
5846 
5847   while (this_th->th.th_cg_roots) {
5848     this_th->th.th_cg_roots->cg_nthreads--;
5849     KA_TRACE(100, ("__kmp_free_thread: Thread %p decrement cg_nthreads on node"
5850                    " %p of thread  %p to %d\n",
5851                    this_th, this_th->th.th_cg_roots,
5852                    this_th->th.th_cg_roots->cg_root,
5853                    this_th->th.th_cg_roots->cg_nthreads));
5854     kmp_cg_root_t *tmp = this_th->th.th_cg_roots;
5855     if (tmp->cg_root == this_th) { // Thread is a cg_root
5856       KMP_DEBUG_ASSERT(tmp->cg_nthreads == 0);
5857       KA_TRACE(
5858           5, ("__kmp_free_thread: Thread %p freeing node %p\n", this_th, tmp));
5859       this_th->th.th_cg_roots = tmp->up;
5860       __kmp_free(tmp);
5861     } else { // Worker thread
5862       if (tmp->cg_nthreads == 0) { // last thread leaves contention group
5863         __kmp_free(tmp);
5864       }
5865       this_th->th.th_cg_roots = NULL;
5866       break;
5867     }
5868   }
5869 
5870   /* If the implicit task assigned to this thread can be used by other threads
5871    * -> multiple threads can share the data and try to free the task at
5872    * __kmp_reap_thread at exit. This duplicate use of the task data can happen
5873    * with higher probability when hot team is disabled but can occurs even when
5874    * the hot team is enabled */
5875   __kmp_free_implicit_task(this_th);
5876   this_th->th.th_current_task = NULL;
5877 
5878   // If the __kmp_thread_pool_insert_pt is already past the new insert
5879   // point, then we need to re-scan the entire list.
5880   gtid = this_th->th.th_info.ds.ds_gtid;
5881   if (__kmp_thread_pool_insert_pt != NULL) {
5882     KMP_DEBUG_ASSERT(__kmp_thread_pool != NULL);
5883     if (__kmp_thread_pool_insert_pt->th.th_info.ds.ds_gtid > gtid) {
5884       __kmp_thread_pool_insert_pt = NULL;
5885     }
5886   }
5887 
5888   // Scan down the list to find the place to insert the thread.
5889   // scan is the address of a link in the list, possibly the address of
5890   // __kmp_thread_pool itself.
5891   //
5892   // In the absence of nested parallelism, the for loop will have 0 iterations.
5893   if (__kmp_thread_pool_insert_pt != NULL) {
5894     scan = &(__kmp_thread_pool_insert_pt->th.th_next_pool);
5895   } else {
5896     scan = CCAST(kmp_info_t **, &__kmp_thread_pool);
5897   }
5898   for (; (*scan != NULL) && ((*scan)->th.th_info.ds.ds_gtid < gtid);
5899        scan = &((*scan)->th.th_next_pool))
5900     ;
5901 
5902   // Insert the new element on the list, and set __kmp_thread_pool_insert_pt
5903   // to its address.
5904   TCW_PTR(this_th->th.th_next_pool, *scan);
5905   __kmp_thread_pool_insert_pt = *scan = this_th;
5906   KMP_DEBUG_ASSERT((this_th->th.th_next_pool == NULL) ||
5907                    (this_th->th.th_info.ds.ds_gtid <
5908                     this_th->th.th_next_pool->th.th_info.ds.ds_gtid));
5909   TCW_4(this_th->th.th_in_pool, TRUE);
5910   __kmp_suspend_initialize_thread(this_th);
5911   __kmp_lock_suspend_mx(this_th);
5912   if (this_th->th.th_active == TRUE) {
5913     KMP_ATOMIC_INC(&__kmp_thread_pool_active_nth);
5914     this_th->th.th_active_in_pool = TRUE;
5915   }
5916 #if KMP_DEBUG
5917   else {
5918     KMP_DEBUG_ASSERT(this_th->th.th_active_in_pool == FALSE);
5919   }
5920 #endif
5921   __kmp_unlock_suspend_mx(this_th);
5922 
5923   TCW_4(__kmp_nth, __kmp_nth - 1);
5924 
5925 #ifdef KMP_ADJUST_BLOCKTIME
5926   /* Adjust blocktime back to user setting or default if necessary */
5927   /* Middle initialization might never have occurred                */
5928   if (!__kmp_env_blocktime && (__kmp_avail_proc > 0)) {
5929     KMP_DEBUG_ASSERT(__kmp_avail_proc > 0);
5930     if (__kmp_nth <= __kmp_avail_proc) {
5931       __kmp_zero_bt = FALSE;
5932     }
5933   }
5934 #endif /* KMP_ADJUST_BLOCKTIME */
5935 
5936   KMP_MB();
5937 }
5938 
5939 /* ------------------------------------------------------------------------ */
5940 
5941 void *__kmp_launch_thread(kmp_info_t *this_thr) {
5942 #if OMP_PROFILING_SUPPORT
5943   ProfileTraceFile = getenv("LIBOMPTARGET_PROFILE");
5944   // TODO: add a configuration option for time granularity
5945   if (ProfileTraceFile)
5946     llvm::timeTraceProfilerInitialize(500 /* us */, "libomptarget");
5947 #endif
5948 
5949   int gtid = this_thr->th.th_info.ds.ds_gtid;
5950   /*    void                 *stack_data;*/
5951   kmp_team_t **volatile pteam;
5952 
5953   KMP_MB();
5954   KA_TRACE(10, ("__kmp_launch_thread: T#%d start\n", gtid));
5955 
5956   if (__kmp_env_consistency_check) {
5957     this_thr->th.th_cons = __kmp_allocate_cons_stack(gtid); // ATT: Memory leak?
5958   }
5959 
5960 #if OMPD_SUPPORT
5961   if (ompd_state & OMPD_ENABLE_BP)
5962     ompd_bp_thread_begin();
5963 #endif
5964 
5965 #if OMPT_SUPPORT
5966   ompt_data_t *thread_data = nullptr;
5967   if (ompt_enabled.enabled) {
5968     thread_data = &(this_thr->th.ompt_thread_info.thread_data);
5969     *thread_data = ompt_data_none;
5970 
5971     this_thr->th.ompt_thread_info.state = ompt_state_overhead;
5972     this_thr->th.ompt_thread_info.wait_id = 0;
5973     this_thr->th.ompt_thread_info.idle_frame = OMPT_GET_FRAME_ADDRESS(0);
5974     this_thr->th.ompt_thread_info.parallel_flags = 0;
5975     if (ompt_enabled.ompt_callback_thread_begin) {
5976       ompt_callbacks.ompt_callback(ompt_callback_thread_begin)(
5977           ompt_thread_worker, thread_data);
5978     }
5979     this_thr->th.ompt_thread_info.state = ompt_state_idle;
5980   }
5981 #endif
5982 
5983   /* This is the place where threads wait for work */
5984   while (!TCR_4(__kmp_global.g.g_done)) {
5985     KMP_DEBUG_ASSERT(this_thr == __kmp_threads[gtid]);
5986     KMP_MB();
5987 
5988     /* wait for work to do */
5989     KA_TRACE(20, ("__kmp_launch_thread: T#%d waiting for work\n", gtid));
5990 
5991     /* No tid yet since not part of a team */
5992     __kmp_fork_barrier(gtid, KMP_GTID_DNE);
5993 
5994 #if OMPT_SUPPORT
5995     if (ompt_enabled.enabled) {
5996       this_thr->th.ompt_thread_info.state = ompt_state_overhead;
5997     }
5998 #endif
5999 
6000     pteam = &this_thr->th.th_team;
6001 
6002     /* have we been allocated? */
6003     if (TCR_SYNC_PTR(*pteam) && !TCR_4(__kmp_global.g.g_done)) {
6004       /* we were just woken up, so run our new task */
6005       if (TCR_SYNC_PTR((*pteam)->t.t_pkfn) != NULL) {
6006         int rc;
6007         KA_TRACE(20,
6008                  ("__kmp_launch_thread: T#%d(%d:%d) invoke microtask = %p\n",
6009                   gtid, (*pteam)->t.t_id, __kmp_tid_from_gtid(gtid),
6010                   (*pteam)->t.t_pkfn));
6011 
6012         updateHWFPControl(*pteam);
6013 
6014 #if OMPT_SUPPORT
6015         if (ompt_enabled.enabled) {
6016           this_thr->th.ompt_thread_info.state = ompt_state_work_parallel;
6017         }
6018 #endif
6019 
6020         rc = (*pteam)->t.t_invoke(gtid);
6021         KMP_ASSERT(rc);
6022 
6023         KMP_MB();
6024         KA_TRACE(20, ("__kmp_launch_thread: T#%d(%d:%d) done microtask = %p\n",
6025                       gtid, (*pteam)->t.t_id, __kmp_tid_from_gtid(gtid),
6026                       (*pteam)->t.t_pkfn));
6027       }
6028 #if OMPT_SUPPORT
6029       if (ompt_enabled.enabled) {
6030         /* no frame set while outside task */
6031         __ompt_get_task_info_object(0)->frame.exit_frame = ompt_data_none;
6032 
6033         this_thr->th.ompt_thread_info.state = ompt_state_overhead;
6034       }
6035 #endif
6036       /* join barrier after parallel region */
6037       __kmp_join_barrier(gtid);
6038     }
6039   }
6040   TCR_SYNC_PTR((intptr_t)__kmp_global.g.g_done);
6041 
6042 #if OMPD_SUPPORT
6043   if (ompd_state & OMPD_ENABLE_BP)
6044     ompd_bp_thread_end();
6045 #endif
6046 
6047 #if OMPT_SUPPORT
6048   if (ompt_enabled.ompt_callback_thread_end) {
6049     ompt_callbacks.ompt_callback(ompt_callback_thread_end)(thread_data);
6050   }
6051 #endif
6052 
6053   this_thr->th.th_task_team = NULL;
6054   /* run the destructors for the threadprivate data for this thread */
6055   __kmp_common_destroy_gtid(gtid);
6056 
6057   KA_TRACE(10, ("__kmp_launch_thread: T#%d done\n", gtid));
6058   KMP_MB();
6059 
6060 #if OMP_PROFILING_SUPPORT
6061   llvm::timeTraceProfilerFinishThread();
6062 #endif
6063   return this_thr;
6064 }
6065 
6066 /* ------------------------------------------------------------------------ */
6067 
6068 void __kmp_internal_end_dest(void *specific_gtid) {
6069   // Make sure no significant bits are lost
6070   int gtid;
6071   __kmp_type_convert((kmp_intptr_t)specific_gtid - 1, &gtid);
6072 
6073   KA_TRACE(30, ("__kmp_internal_end_dest: T#%d\n", gtid));
6074   /* NOTE: the gtid is stored as gitd+1 in the thread-local-storage
6075    * this is because 0 is reserved for the nothing-stored case */
6076 
6077   __kmp_internal_end_thread(gtid);
6078 }
6079 
6080 #if KMP_OS_UNIX && KMP_DYNAMIC_LIB
6081 
6082 __attribute__((destructor)) void __kmp_internal_end_dtor(void) {
6083   __kmp_internal_end_atexit();
6084 }
6085 
6086 #endif
6087 
6088 /* [Windows] josh: when the atexit handler is called, there may still be more
6089    than one thread alive */
6090 void __kmp_internal_end_atexit(void) {
6091   KA_TRACE(30, ("__kmp_internal_end_atexit\n"));
6092   /* [Windows]
6093      josh: ideally, we want to completely shutdown the library in this atexit
6094      handler, but stat code that depends on thread specific data for gtid fails
6095      because that data becomes unavailable at some point during the shutdown, so
6096      we call __kmp_internal_end_thread instead. We should eventually remove the
6097      dependency on __kmp_get_specific_gtid in the stat code and use
6098      __kmp_internal_end_library to cleanly shutdown the library.
6099 
6100      // TODO: Can some of this comment about GVS be removed?
6101      I suspect that the offending stat code is executed when the calling thread
6102      tries to clean up a dead root thread's data structures, resulting in GVS
6103      code trying to close the GVS structures for that thread, but since the stat
6104      code uses __kmp_get_specific_gtid to get the gtid with the assumption that
6105      the calling thread is cleaning up itself instead of another thread, it get
6106      confused. This happens because allowing a thread to unregister and cleanup
6107      another thread is a recent modification for addressing an issue.
6108      Based on the current design (20050722), a thread may end up
6109      trying to unregister another thread only if thread death does not trigger
6110      the calling of __kmp_internal_end_thread.  For Linux* OS, there is the
6111      thread specific data destructor function to detect thread death. For
6112      Windows dynamic, there is DllMain(THREAD_DETACH). For Windows static, there
6113      is nothing.  Thus, the workaround is applicable only for Windows static
6114      stat library. */
6115   __kmp_internal_end_library(-1);
6116 #if KMP_OS_WINDOWS
6117   __kmp_close_console();
6118 #endif
6119 }
6120 
6121 static void __kmp_reap_thread(kmp_info_t *thread, int is_root) {
6122   // It is assumed __kmp_forkjoin_lock is acquired.
6123 
6124   int gtid;
6125 
6126   KMP_DEBUG_ASSERT(thread != NULL);
6127 
6128   gtid = thread->th.th_info.ds.ds_gtid;
6129 
6130   if (!is_root) {
6131     if (__kmp_dflt_blocktime != KMP_MAX_BLOCKTIME) {
6132       /* Assume the threads are at the fork barrier here */
6133       KA_TRACE(
6134           20, ("__kmp_reap_thread: releasing T#%d from fork barrier for reap\n",
6135                gtid));
6136       if (__kmp_barrier_gather_pattern[bs_forkjoin_barrier] == bp_dist_bar) {
6137         while (
6138             !KMP_COMPARE_AND_STORE_ACQ32(&(thread->th.th_used_in_team), 0, 3))
6139           KMP_CPU_PAUSE();
6140         __kmp_resume_32(gtid, (kmp_flag_32<false, false> *)NULL);
6141       } else {
6142         /* Need release fence here to prevent seg faults for tree forkjoin
6143            barrier (GEH) */
6144         kmp_flag_64<> flag(&thread->th.th_bar[bs_forkjoin_barrier].bb.b_go,
6145                            thread);
6146         __kmp_release_64(&flag);
6147       }
6148     }
6149 
6150     // Terminate OS thread.
6151     __kmp_reap_worker(thread);
6152 
6153     // The thread was killed asynchronously.  If it was actively
6154     // spinning in the thread pool, decrement the global count.
6155     //
6156     // There is a small timing hole here - if the worker thread was just waking
6157     // up after sleeping in the pool, had reset it's th_active_in_pool flag but
6158     // not decremented the global counter __kmp_thread_pool_active_nth yet, then
6159     // the global counter might not get updated.
6160     //
6161     // Currently, this can only happen as the library is unloaded,
6162     // so there are no harmful side effects.
6163     if (thread->th.th_active_in_pool) {
6164       thread->th.th_active_in_pool = FALSE;
6165       KMP_ATOMIC_DEC(&__kmp_thread_pool_active_nth);
6166       KMP_DEBUG_ASSERT(__kmp_thread_pool_active_nth >= 0);
6167     }
6168   }
6169 
6170   __kmp_free_implicit_task(thread);
6171 
6172 // Free the fast memory for tasking
6173 #if USE_FAST_MEMORY
6174   __kmp_free_fast_memory(thread);
6175 #endif /* USE_FAST_MEMORY */
6176 
6177   __kmp_suspend_uninitialize_thread(thread);
6178 
6179   KMP_DEBUG_ASSERT(__kmp_threads[gtid] == thread);
6180   TCW_SYNC_PTR(__kmp_threads[gtid], NULL);
6181 
6182   --__kmp_all_nth;
6183   // __kmp_nth was decremented when thread is added to the pool.
6184 
6185 #ifdef KMP_ADJUST_BLOCKTIME
6186   /* Adjust blocktime back to user setting or default if necessary */
6187   /* Middle initialization might never have occurred                */
6188   if (!__kmp_env_blocktime && (__kmp_avail_proc > 0)) {
6189     KMP_DEBUG_ASSERT(__kmp_avail_proc > 0);
6190     if (__kmp_nth <= __kmp_avail_proc) {
6191       __kmp_zero_bt = FALSE;
6192     }
6193   }
6194 #endif /* KMP_ADJUST_BLOCKTIME */
6195 
6196   /* free the memory being used */
6197   if (__kmp_env_consistency_check) {
6198     if (thread->th.th_cons) {
6199       __kmp_free_cons_stack(thread->th.th_cons);
6200       thread->th.th_cons = NULL;
6201     }
6202   }
6203 
6204   if (thread->th.th_pri_common != NULL) {
6205     __kmp_free(thread->th.th_pri_common);
6206     thread->th.th_pri_common = NULL;
6207   }
6208 
6209   if (thread->th.th_task_state_memo_stack != NULL) {
6210     __kmp_free(thread->th.th_task_state_memo_stack);
6211     thread->th.th_task_state_memo_stack = NULL;
6212   }
6213 
6214 #if KMP_USE_BGET
6215   if (thread->th.th_local.bget_data != NULL) {
6216     __kmp_finalize_bget(thread);
6217   }
6218 #endif
6219 
6220 #if KMP_AFFINITY_SUPPORTED
6221   if (thread->th.th_affin_mask != NULL) {
6222     KMP_CPU_FREE(thread->th.th_affin_mask);
6223     thread->th.th_affin_mask = NULL;
6224   }
6225 #endif /* KMP_AFFINITY_SUPPORTED */
6226 
6227 #if KMP_USE_HIER_SCHED
6228   if (thread->th.th_hier_bar_data != NULL) {
6229     __kmp_free(thread->th.th_hier_bar_data);
6230     thread->th.th_hier_bar_data = NULL;
6231   }
6232 #endif
6233 
6234   __kmp_reap_team(thread->th.th_serial_team);
6235   thread->th.th_serial_team = NULL;
6236   __kmp_free(thread);
6237 
6238   KMP_MB();
6239 
6240 } // __kmp_reap_thread
6241 
6242 static void __kmp_itthash_clean(kmp_info_t *th) {
6243 #if USE_ITT_NOTIFY
6244   if (__kmp_itt_region_domains.count > 0) {
6245     for (int i = 0; i < KMP_MAX_FRAME_DOMAINS; ++i) {
6246       kmp_itthash_entry_t *bucket = __kmp_itt_region_domains.buckets[i];
6247       while (bucket) {
6248         kmp_itthash_entry_t *next = bucket->next_in_bucket;
6249         __kmp_thread_free(th, bucket);
6250         bucket = next;
6251       }
6252     }
6253   }
6254   if (__kmp_itt_barrier_domains.count > 0) {
6255     for (int i = 0; i < KMP_MAX_FRAME_DOMAINS; ++i) {
6256       kmp_itthash_entry_t *bucket = __kmp_itt_barrier_domains.buckets[i];
6257       while (bucket) {
6258         kmp_itthash_entry_t *next = bucket->next_in_bucket;
6259         __kmp_thread_free(th, bucket);
6260         bucket = next;
6261       }
6262     }
6263   }
6264 #endif
6265 }
6266 
6267 static void __kmp_internal_end(void) {
6268   int i;
6269 
6270   /* First, unregister the library */
6271   __kmp_unregister_library();
6272 
6273 #if KMP_OS_WINDOWS
6274   /* In Win static library, we can't tell when a root actually dies, so we
6275      reclaim the data structures for any root threads that have died but not
6276      unregistered themselves, in order to shut down cleanly.
6277      In Win dynamic library we also can't tell when a thread dies.  */
6278   __kmp_reclaim_dead_roots(); // AC: moved here to always clean resources of
6279 // dead roots
6280 #endif
6281 
6282   for (i = 0; i < __kmp_threads_capacity; i++)
6283     if (__kmp_root[i])
6284       if (__kmp_root[i]->r.r_active)
6285         break;
6286   KMP_MB(); /* Flush all pending memory write invalidates.  */
6287   TCW_SYNC_4(__kmp_global.g.g_done, TRUE);
6288 
6289   if (i < __kmp_threads_capacity) {
6290 #if KMP_USE_MONITOR
6291     // 2009-09-08 (lev): Other alive roots found. Why do we kill the monitor??
6292     KMP_MB(); /* Flush all pending memory write invalidates.  */
6293 
6294     // Need to check that monitor was initialized before reaping it. If we are
6295     // called form __kmp_atfork_child (which sets __kmp_init_parallel = 0), then
6296     // __kmp_monitor will appear to contain valid data, but it is only valid in
6297     // the parent process, not the child.
6298     // New behavior (201008): instead of keying off of the flag
6299     // __kmp_init_parallel, the monitor thread creation is keyed off
6300     // of the new flag __kmp_init_monitor.
6301     __kmp_acquire_bootstrap_lock(&__kmp_monitor_lock);
6302     if (TCR_4(__kmp_init_monitor)) {
6303       __kmp_reap_monitor(&__kmp_monitor);
6304       TCW_4(__kmp_init_monitor, 0);
6305     }
6306     __kmp_release_bootstrap_lock(&__kmp_monitor_lock);
6307     KA_TRACE(10, ("__kmp_internal_end: monitor reaped\n"));
6308 #endif // KMP_USE_MONITOR
6309   } else {
6310 /* TODO move this to cleanup code */
6311 #ifdef KMP_DEBUG
6312     /* make sure that everything has properly ended */
6313     for (i = 0; i < __kmp_threads_capacity; i++) {
6314       if (__kmp_root[i]) {
6315         //                    KMP_ASSERT( ! KMP_UBER_GTID( i ) );         // AC:
6316         //                    there can be uber threads alive here
6317         KMP_ASSERT(!__kmp_root[i]->r.r_active); // TODO: can they be active?
6318       }
6319     }
6320 #endif
6321 
6322     KMP_MB();
6323 
6324     // Reap the worker threads.
6325     // This is valid for now, but be careful if threads are reaped sooner.
6326     while (__kmp_thread_pool != NULL) { // Loop thru all the thread in the pool.
6327       // Get the next thread from the pool.
6328       kmp_info_t *thread = CCAST(kmp_info_t *, __kmp_thread_pool);
6329       __kmp_thread_pool = thread->th.th_next_pool;
6330       // Reap it.
6331       KMP_DEBUG_ASSERT(thread->th.th_reap_state == KMP_SAFE_TO_REAP);
6332       thread->th.th_next_pool = NULL;
6333       thread->th.th_in_pool = FALSE;
6334       __kmp_reap_thread(thread, 0);
6335     }
6336     __kmp_thread_pool_insert_pt = NULL;
6337 
6338     // Reap teams.
6339     while (__kmp_team_pool != NULL) { // Loop thru all the teams in the pool.
6340       // Get the next team from the pool.
6341       kmp_team_t *team = CCAST(kmp_team_t *, __kmp_team_pool);
6342       __kmp_team_pool = team->t.t_next_pool;
6343       // Reap it.
6344       team->t.t_next_pool = NULL;
6345       __kmp_reap_team(team);
6346     }
6347 
6348     __kmp_reap_task_teams();
6349 
6350 #if KMP_OS_UNIX
6351     // Threads that are not reaped should not access any resources since they
6352     // are going to be deallocated soon, so the shutdown sequence should wait
6353     // until all threads either exit the final spin-waiting loop or begin
6354     // sleeping after the given blocktime.
6355     for (i = 0; i < __kmp_threads_capacity; i++) {
6356       kmp_info_t *thr = __kmp_threads[i];
6357       while (thr && KMP_ATOMIC_LD_ACQ(&thr->th.th_blocking))
6358         KMP_CPU_PAUSE();
6359     }
6360 #endif
6361 
6362     for (i = 0; i < __kmp_threads_capacity; ++i) {
6363       // TBD: Add some checking...
6364       // Something like KMP_DEBUG_ASSERT( __kmp_thread[ i ] == NULL );
6365     }
6366 
6367     /* Make sure all threadprivate destructors get run by joining with all
6368        worker threads before resetting this flag */
6369     TCW_SYNC_4(__kmp_init_common, FALSE);
6370 
6371     KA_TRACE(10, ("__kmp_internal_end: all workers reaped\n"));
6372     KMP_MB();
6373 
6374 #if KMP_USE_MONITOR
6375     // See note above: One of the possible fixes for CQ138434 / CQ140126
6376     //
6377     // FIXME: push both code fragments down and CSE them?
6378     // push them into __kmp_cleanup() ?
6379     __kmp_acquire_bootstrap_lock(&__kmp_monitor_lock);
6380     if (TCR_4(__kmp_init_monitor)) {
6381       __kmp_reap_monitor(&__kmp_monitor);
6382       TCW_4(__kmp_init_monitor, 0);
6383     }
6384     __kmp_release_bootstrap_lock(&__kmp_monitor_lock);
6385     KA_TRACE(10, ("__kmp_internal_end: monitor reaped\n"));
6386 #endif
6387   } /* else !__kmp_global.t_active */
6388   TCW_4(__kmp_init_gtid, FALSE);
6389   KMP_MB(); /* Flush all pending memory write invalidates.  */
6390 
6391   __kmp_cleanup();
6392 #if OMPT_SUPPORT
6393   ompt_fini();
6394 #endif
6395 }
6396 
6397 void __kmp_internal_end_library(int gtid_req) {
6398   /* if we have already cleaned up, don't try again, it wouldn't be pretty */
6399   /* this shouldn't be a race condition because __kmp_internal_end() is the
6400      only place to clear __kmp_serial_init */
6401   /* we'll check this later too, after we get the lock */
6402   // 2009-09-06: We do not set g_abort without setting g_done. This check looks
6403   // redundant, because the next check will work in any case.
6404   if (__kmp_global.g.g_abort) {
6405     KA_TRACE(11, ("__kmp_internal_end_library: abort, exiting\n"));
6406     /* TODO abort? */
6407     return;
6408   }
6409   if (TCR_4(__kmp_global.g.g_done) || !__kmp_init_serial) {
6410     KA_TRACE(10, ("__kmp_internal_end_library: already finished\n"));
6411     return;
6412   }
6413 
6414   // If hidden helper team has been initialized, we need to deinit it
6415   if (TCR_4(__kmp_init_hidden_helper) &&
6416       !TCR_4(__kmp_hidden_helper_team_done)) {
6417     TCW_SYNC_4(__kmp_hidden_helper_team_done, TRUE);
6418     // First release the main thread to let it continue its work
6419     __kmp_hidden_helper_main_thread_release();
6420     // Wait until the hidden helper team has been destroyed
6421     __kmp_hidden_helper_threads_deinitz_wait();
6422   }
6423 
6424   KMP_MB(); /* Flush all pending memory write invalidates.  */
6425   /* find out who we are and what we should do */
6426   {
6427     int gtid = (gtid_req >= 0) ? gtid_req : __kmp_gtid_get_specific();
6428     KA_TRACE(
6429         10, ("__kmp_internal_end_library: enter T#%d  (%d)\n", gtid, gtid_req));
6430     if (gtid == KMP_GTID_SHUTDOWN) {
6431       KA_TRACE(10, ("__kmp_internal_end_library: !__kmp_init_runtime, system "
6432                     "already shutdown\n"));
6433       return;
6434     } else if (gtid == KMP_GTID_MONITOR) {
6435       KA_TRACE(10, ("__kmp_internal_end_library: monitor thread, gtid not "
6436                     "registered, or system shutdown\n"));
6437       return;
6438     } else if (gtid == KMP_GTID_DNE) {
6439       KA_TRACE(10, ("__kmp_internal_end_library: gtid not registered or system "
6440                     "shutdown\n"));
6441       /* we don't know who we are, but we may still shutdown the library */
6442     } else if (KMP_UBER_GTID(gtid)) {
6443       /* unregister ourselves as an uber thread.  gtid is no longer valid */
6444       if (__kmp_root[gtid]->r.r_active) {
6445         __kmp_global.g.g_abort = -1;
6446         TCW_SYNC_4(__kmp_global.g.g_done, TRUE);
6447         __kmp_unregister_library();
6448         KA_TRACE(10,
6449                  ("__kmp_internal_end_library: root still active, abort T#%d\n",
6450                   gtid));
6451         return;
6452       } else {
6453         __kmp_itthash_clean(__kmp_threads[gtid]);
6454         KA_TRACE(
6455             10,
6456             ("__kmp_internal_end_library: unregistering sibling T#%d\n", gtid));
6457         __kmp_unregister_root_current_thread(gtid);
6458       }
6459     } else {
6460 /* worker threads may call this function through the atexit handler, if they
6461  * call exit() */
6462 /* For now, skip the usual subsequent processing and just dump the debug buffer.
6463    TODO: do a thorough shutdown instead */
6464 #ifdef DUMP_DEBUG_ON_EXIT
6465       if (__kmp_debug_buf)
6466         __kmp_dump_debug_buffer();
6467 #endif
6468       // added unregister library call here when we switch to shm linux
6469       // if we don't, it will leave lots of files in /dev/shm
6470       // cleanup shared memory file before exiting.
6471       __kmp_unregister_library();
6472       return;
6473     }
6474   }
6475   /* synchronize the termination process */
6476   __kmp_acquire_bootstrap_lock(&__kmp_initz_lock);
6477 
6478   /* have we already finished */
6479   if (__kmp_global.g.g_abort) {
6480     KA_TRACE(10, ("__kmp_internal_end_library: abort, exiting\n"));
6481     /* TODO abort? */
6482     __kmp_release_bootstrap_lock(&__kmp_initz_lock);
6483     return;
6484   }
6485   if (TCR_4(__kmp_global.g.g_done) || !__kmp_init_serial) {
6486     __kmp_release_bootstrap_lock(&__kmp_initz_lock);
6487     return;
6488   }
6489 
6490   /* We need this lock to enforce mutex between this reading of
6491      __kmp_threads_capacity and the writing by __kmp_register_root.
6492      Alternatively, we can use a counter of roots that is atomically updated by
6493      __kmp_get_global_thread_id_reg, __kmp_do_serial_initialize and
6494      __kmp_internal_end_*.  */
6495   __kmp_acquire_bootstrap_lock(&__kmp_forkjoin_lock);
6496 
6497   /* now we can safely conduct the actual termination */
6498   __kmp_internal_end();
6499 
6500   __kmp_release_bootstrap_lock(&__kmp_forkjoin_lock);
6501   __kmp_release_bootstrap_lock(&__kmp_initz_lock);
6502 
6503   KA_TRACE(10, ("__kmp_internal_end_library: exit\n"));
6504 
6505 #ifdef DUMP_DEBUG_ON_EXIT
6506   if (__kmp_debug_buf)
6507     __kmp_dump_debug_buffer();
6508 #endif
6509 
6510 #if KMP_OS_WINDOWS
6511   __kmp_close_console();
6512 #endif
6513 
6514   __kmp_fini_allocator();
6515 
6516 } // __kmp_internal_end_library
6517 
6518 void __kmp_internal_end_thread(int gtid_req) {
6519   int i;
6520 
6521   /* if we have already cleaned up, don't try again, it wouldn't be pretty */
6522   /* this shouldn't be a race condition because __kmp_internal_end() is the
6523    * only place to clear __kmp_serial_init */
6524   /* we'll check this later too, after we get the lock */
6525   // 2009-09-06: We do not set g_abort without setting g_done. This check looks
6526   // redundant, because the next check will work in any case.
6527   if (__kmp_global.g.g_abort) {
6528     KA_TRACE(11, ("__kmp_internal_end_thread: abort, exiting\n"));
6529     /* TODO abort? */
6530     return;
6531   }
6532   if (TCR_4(__kmp_global.g.g_done) || !__kmp_init_serial) {
6533     KA_TRACE(10, ("__kmp_internal_end_thread: already finished\n"));
6534     return;
6535   }
6536 
6537   // If hidden helper team has been initialized, we need to deinit it
6538   if (TCR_4(__kmp_init_hidden_helper) &&
6539       !TCR_4(__kmp_hidden_helper_team_done)) {
6540     TCW_SYNC_4(__kmp_hidden_helper_team_done, TRUE);
6541     // First release the main thread to let it continue its work
6542     __kmp_hidden_helper_main_thread_release();
6543     // Wait until the hidden helper team has been destroyed
6544     __kmp_hidden_helper_threads_deinitz_wait();
6545   }
6546 
6547   KMP_MB(); /* Flush all pending memory write invalidates.  */
6548 
6549   /* find out who we are and what we should do */
6550   {
6551     int gtid = (gtid_req >= 0) ? gtid_req : __kmp_gtid_get_specific();
6552     KA_TRACE(10,
6553              ("__kmp_internal_end_thread: enter T#%d  (%d)\n", gtid, gtid_req));
6554     if (gtid == KMP_GTID_SHUTDOWN) {
6555       KA_TRACE(10, ("__kmp_internal_end_thread: !__kmp_init_runtime, system "
6556                     "already shutdown\n"));
6557       return;
6558     } else if (gtid == KMP_GTID_MONITOR) {
6559       KA_TRACE(10, ("__kmp_internal_end_thread: monitor thread, gtid not "
6560                     "registered, or system shutdown\n"));
6561       return;
6562     } else if (gtid == KMP_GTID_DNE) {
6563       KA_TRACE(10, ("__kmp_internal_end_thread: gtid not registered or system "
6564                     "shutdown\n"));
6565       return;
6566       /* we don't know who we are */
6567     } else if (KMP_UBER_GTID(gtid)) {
6568       /* unregister ourselves as an uber thread.  gtid is no longer valid */
6569       if (__kmp_root[gtid]->r.r_active) {
6570         __kmp_global.g.g_abort = -1;
6571         TCW_SYNC_4(__kmp_global.g.g_done, TRUE);
6572         KA_TRACE(10,
6573                  ("__kmp_internal_end_thread: root still active, abort T#%d\n",
6574                   gtid));
6575         return;
6576       } else {
6577         KA_TRACE(10, ("__kmp_internal_end_thread: unregistering sibling T#%d\n",
6578                       gtid));
6579         __kmp_unregister_root_current_thread(gtid);
6580       }
6581     } else {
6582       /* just a worker thread, let's leave */
6583       KA_TRACE(10, ("__kmp_internal_end_thread: worker thread T#%d\n", gtid));
6584 
6585       if (gtid >= 0) {
6586         __kmp_threads[gtid]->th.th_task_team = NULL;
6587       }
6588 
6589       KA_TRACE(10,
6590                ("__kmp_internal_end_thread: worker thread done, exiting T#%d\n",
6591                 gtid));
6592       return;
6593     }
6594   }
6595 #if KMP_DYNAMIC_LIB
6596   if (__kmp_pause_status != kmp_hard_paused)
6597   // AC: lets not shutdown the dynamic library at the exit of uber thread,
6598   // because we will better shutdown later in the library destructor.
6599   {
6600     KA_TRACE(10, ("__kmp_internal_end_thread: exiting T#%d\n", gtid_req));
6601     return;
6602   }
6603 #endif
6604   /* synchronize the termination process */
6605   __kmp_acquire_bootstrap_lock(&__kmp_initz_lock);
6606 
6607   /* have we already finished */
6608   if (__kmp_global.g.g_abort) {
6609     KA_TRACE(10, ("__kmp_internal_end_thread: abort, exiting\n"));
6610     /* TODO abort? */
6611     __kmp_release_bootstrap_lock(&__kmp_initz_lock);
6612     return;
6613   }
6614   if (TCR_4(__kmp_global.g.g_done) || !__kmp_init_serial) {
6615     __kmp_release_bootstrap_lock(&__kmp_initz_lock);
6616     return;
6617   }
6618 
6619   /* We need this lock to enforce mutex between this reading of
6620      __kmp_threads_capacity and the writing by __kmp_register_root.
6621      Alternatively, we can use a counter of roots that is atomically updated by
6622      __kmp_get_global_thread_id_reg, __kmp_do_serial_initialize and
6623      __kmp_internal_end_*.  */
6624 
6625   /* should we finish the run-time?  are all siblings done? */
6626   __kmp_acquire_bootstrap_lock(&__kmp_forkjoin_lock);
6627 
6628   for (i = 0; i < __kmp_threads_capacity; ++i) {
6629     if (KMP_UBER_GTID(i)) {
6630       KA_TRACE(
6631           10,
6632           ("__kmp_internal_end_thread: remaining sibling task: gtid==%d\n", i));
6633       __kmp_release_bootstrap_lock(&__kmp_forkjoin_lock);
6634       __kmp_release_bootstrap_lock(&__kmp_initz_lock);
6635       return;
6636     }
6637   }
6638 
6639   /* now we can safely conduct the actual termination */
6640 
6641   __kmp_internal_end();
6642 
6643   __kmp_release_bootstrap_lock(&__kmp_forkjoin_lock);
6644   __kmp_release_bootstrap_lock(&__kmp_initz_lock);
6645 
6646   KA_TRACE(10, ("__kmp_internal_end_thread: exit T#%d\n", gtid_req));
6647 
6648 #ifdef DUMP_DEBUG_ON_EXIT
6649   if (__kmp_debug_buf)
6650     __kmp_dump_debug_buffer();
6651 #endif
6652 } // __kmp_internal_end_thread
6653 
6654 // -----------------------------------------------------------------------------
6655 // Library registration stuff.
6656 
6657 static long __kmp_registration_flag = 0;
6658 // Random value used to indicate library initialization.
6659 static char *__kmp_registration_str = NULL;
6660 // Value to be saved in env var __KMP_REGISTERED_LIB_<pid>.
6661 
6662 static inline char *__kmp_reg_status_name() {
6663 /* On RHEL 3u5 if linked statically, getpid() returns different values in
6664    each thread. If registration and unregistration go in different threads
6665    (omp_misc_other_root_exit.cpp test case), the name of registered_lib_env
6666    env var can not be found, because the name will contain different pid. */
6667 // macOS* complains about name being too long with additional getuid()
6668 #if KMP_OS_UNIX && !KMP_OS_DARWIN && KMP_DYNAMIC_LIB
6669   return __kmp_str_format("__KMP_REGISTERED_LIB_%d_%d", (int)getpid(),
6670                           (int)getuid());
6671 #else
6672   return __kmp_str_format("__KMP_REGISTERED_LIB_%d", (int)getpid());
6673 #endif
6674 } // __kmp_reg_status_get
6675 
6676 void __kmp_register_library_startup(void) {
6677 
6678   char *name = __kmp_reg_status_name(); // Name of the environment variable.
6679   int done = 0;
6680   union {
6681     double dtime;
6682     long ltime;
6683   } time;
6684 #if KMP_ARCH_X86 || KMP_ARCH_X86_64
6685   __kmp_initialize_system_tick();
6686 #endif
6687   __kmp_read_system_time(&time.dtime);
6688   __kmp_registration_flag = 0xCAFE0000L | (time.ltime & 0x0000FFFFL);
6689   __kmp_registration_str =
6690       __kmp_str_format("%p-%lx-%s", &__kmp_registration_flag,
6691                        __kmp_registration_flag, KMP_LIBRARY_FILE);
6692 
6693   KA_TRACE(50, ("__kmp_register_library_startup: %s=\"%s\"\n", name,
6694                 __kmp_registration_str));
6695 
6696   while (!done) {
6697 
6698     char *value = NULL; // Actual value of the environment variable.
6699 
6700 #if defined(KMP_USE_SHM)
6701     char *shm_name = __kmp_str_format("/%s", name);
6702     int shm_preexist = 0;
6703     char *data1;
6704     int fd1 = shm_open(shm_name, O_CREAT | O_EXCL | O_RDWR, 0666);
6705     if ((fd1 == -1) && (errno == EEXIST)) {
6706       // file didn't open because it already exists.
6707       // try opening existing file
6708       fd1 = shm_open(shm_name, O_RDWR, 0666);
6709       if (fd1 == -1) { // file didn't open
6710         // error out here
6711         __kmp_fatal(KMP_MSG(FunctionError, "Can't open SHM"), KMP_ERR(0),
6712                     __kmp_msg_null);
6713       } else {
6714         // able to open existing file
6715         shm_preexist = 1;
6716       }
6717     } else if (fd1 == -1) { // SHM didn't open; it was due to error other than
6718       // already exists.
6719       // error out here.
6720       __kmp_fatal(KMP_MSG(FunctionError, "Can't open SHM2"), KMP_ERR(errno),
6721                   __kmp_msg_null);
6722     }
6723     if (shm_preexist == 0) {
6724       // we created SHM now set size
6725       if (ftruncate(fd1, SHM_SIZE) == -1) {
6726         // error occured setting size;
6727         __kmp_fatal(KMP_MSG(FunctionError, "Can't set size of SHM"),
6728                     KMP_ERR(errno), __kmp_msg_null);
6729       }
6730     }
6731     data1 =
6732         (char *)mmap(0, SHM_SIZE, PROT_READ | PROT_WRITE, MAP_SHARED, fd1, 0);
6733     if (data1 == MAP_FAILED) {
6734       // failed to map shared memory
6735       __kmp_fatal(KMP_MSG(FunctionError, "Can't map SHM"), KMP_ERR(errno),
6736                   __kmp_msg_null);
6737     }
6738     if (shm_preexist == 0) { // set data to SHM, set value
6739       KMP_STRCPY_S(data1, SHM_SIZE, __kmp_registration_str);
6740     }
6741     // Read value from either what we just wrote or existing file.
6742     value = __kmp_str_format("%s", data1); // read value from SHM
6743     munmap(data1, SHM_SIZE);
6744     close(fd1);
6745 #else // Windows and unix with static library
6746     // Set environment variable, but do not overwrite if it is exist.
6747     __kmp_env_set(name, __kmp_registration_str, 0);
6748     // read value to see if it got set
6749     value = __kmp_env_get(name);
6750 #endif
6751 
6752     if (value != NULL && strcmp(value, __kmp_registration_str) == 0) {
6753       done = 1; // Ok, environment variable set successfully, exit the loop.
6754     } else {
6755       // Oops. Write failed. Another copy of OpenMP RTL is in memory.
6756       // Check whether it alive or dead.
6757       int neighbor = 0; // 0 -- unknown status, 1 -- alive, 2 -- dead.
6758       char *tail = value;
6759       char *flag_addr_str = NULL;
6760       char *flag_val_str = NULL;
6761       char const *file_name = NULL;
6762       __kmp_str_split(tail, '-', &flag_addr_str, &tail);
6763       __kmp_str_split(tail, '-', &flag_val_str, &tail);
6764       file_name = tail;
6765       if (tail != NULL) {
6766         unsigned long *flag_addr = 0;
6767         unsigned long flag_val = 0;
6768         KMP_SSCANF(flag_addr_str, "%p", RCAST(void **, &flag_addr));
6769         KMP_SSCANF(flag_val_str, "%lx", &flag_val);
6770         if (flag_addr != 0 && flag_val != 0 && strcmp(file_name, "") != 0) {
6771           // First, check whether environment-encoded address is mapped into
6772           // addr space.
6773           // If so, dereference it to see if it still has the right value.
6774           if (__kmp_is_address_mapped(flag_addr) && *flag_addr == flag_val) {
6775             neighbor = 1;
6776           } else {
6777             // If not, then we know the other copy of the library is no longer
6778             // running.
6779             neighbor = 2;
6780           }
6781         }
6782       }
6783       switch (neighbor) {
6784       case 0: // Cannot parse environment variable -- neighbor status unknown.
6785         // Assume it is the incompatible format of future version of the
6786         // library. Assume the other library is alive.
6787         // WARN( ... ); // TODO: Issue a warning.
6788         file_name = "unknown library";
6789         KMP_FALLTHROUGH();
6790       // Attention! Falling to the next case. That's intentional.
6791       case 1: { // Neighbor is alive.
6792         // Check it is allowed.
6793         char *duplicate_ok = __kmp_env_get("KMP_DUPLICATE_LIB_OK");
6794         if (!__kmp_str_match_true(duplicate_ok)) {
6795           // That's not allowed. Issue fatal error.
6796           __kmp_fatal(KMP_MSG(DuplicateLibrary, KMP_LIBRARY_FILE, file_name),
6797                       KMP_HNT(DuplicateLibrary), __kmp_msg_null);
6798         }
6799         KMP_INTERNAL_FREE(duplicate_ok);
6800         __kmp_duplicate_library_ok = 1;
6801         done = 1; // Exit the loop.
6802       } break;
6803       case 2: { // Neighbor is dead.
6804 
6805 #if defined(KMP_USE_SHM)
6806         // close shared memory.
6807         shm_unlink(shm_name); // this removes file in /dev/shm
6808 #else
6809         // Clear the variable and try to register library again.
6810         __kmp_env_unset(name);
6811 #endif
6812       } break;
6813       default: {
6814         KMP_DEBUG_ASSERT(0);
6815       } break;
6816       }
6817     }
6818     KMP_INTERNAL_FREE((void *)value);
6819 #if defined(KMP_USE_SHM)
6820     KMP_INTERNAL_FREE((void *)shm_name);
6821 #endif
6822   } // while
6823   KMP_INTERNAL_FREE((void *)name);
6824 
6825 } // func __kmp_register_library_startup
6826 
6827 void __kmp_unregister_library(void) {
6828 
6829   char *name = __kmp_reg_status_name();
6830   char *value = NULL;
6831 
6832 #if defined(KMP_USE_SHM)
6833   char *shm_name = __kmp_str_format("/%s", name);
6834   int fd1 = shm_open(shm_name, O_RDONLY, 0666);
6835   if (fd1 == -1) {
6836     // file did not open. return.
6837     return;
6838   }
6839   char *data1 = (char *)mmap(0, SHM_SIZE, PROT_READ, MAP_SHARED, fd1, 0);
6840   if (data1 != MAP_FAILED) {
6841     value = __kmp_str_format("%s", data1); // read value from SHM
6842     munmap(data1, SHM_SIZE);
6843   }
6844   close(fd1);
6845 #else
6846   value = __kmp_env_get(name);
6847 #endif
6848 
6849   KMP_DEBUG_ASSERT(__kmp_registration_flag != 0);
6850   KMP_DEBUG_ASSERT(__kmp_registration_str != NULL);
6851   if (value != NULL && strcmp(value, __kmp_registration_str) == 0) {
6852 //  Ok, this is our variable. Delete it.
6853 #if defined(KMP_USE_SHM)
6854     shm_unlink(shm_name); // this removes file in /dev/shm
6855 #else
6856     __kmp_env_unset(name);
6857 #endif
6858   }
6859 
6860 #if defined(KMP_USE_SHM)
6861   KMP_INTERNAL_FREE(shm_name);
6862 #endif
6863 
6864   KMP_INTERNAL_FREE(__kmp_registration_str);
6865   KMP_INTERNAL_FREE(value);
6866   KMP_INTERNAL_FREE(name);
6867 
6868   __kmp_registration_flag = 0;
6869   __kmp_registration_str = NULL;
6870 
6871 } // __kmp_unregister_library
6872 
6873 // End of Library registration stuff.
6874 // -----------------------------------------------------------------------------
6875 
6876 #if KMP_MIC_SUPPORTED
6877 
6878 static void __kmp_check_mic_type() {
6879   kmp_cpuid_t cpuid_state = {0};
6880   kmp_cpuid_t *cs_p = &cpuid_state;
6881   __kmp_x86_cpuid(1, 0, cs_p);
6882   // We don't support mic1 at the moment
6883   if ((cs_p->eax & 0xff0) == 0xB10) {
6884     __kmp_mic_type = mic2;
6885   } else if ((cs_p->eax & 0xf0ff0) == 0x50670) {
6886     __kmp_mic_type = mic3;
6887   } else {
6888     __kmp_mic_type = non_mic;
6889   }
6890 }
6891 
6892 #endif /* KMP_MIC_SUPPORTED */
6893 
6894 #if KMP_HAVE_UMWAIT
6895 static void __kmp_user_level_mwait_init() {
6896   struct kmp_cpuid buf;
6897   __kmp_x86_cpuid(7, 0, &buf);
6898   __kmp_waitpkg_enabled = ((buf.ecx >> 5) & 1);
6899   __kmp_umwait_enabled = __kmp_waitpkg_enabled && __kmp_user_level_mwait;
6900   __kmp_tpause_enabled = __kmp_waitpkg_enabled && (__kmp_tpause_state > 0);
6901   KF_TRACE(30, ("__kmp_user_level_mwait_init: __kmp_umwait_enabled = %d\n",
6902                 __kmp_umwait_enabled));
6903 }
6904 #elif KMP_HAVE_MWAIT
6905 #ifndef AT_INTELPHIUSERMWAIT
6906 // Spurious, non-existent value that should always fail to return anything.
6907 // Will be replaced with the correct value when we know that.
6908 #define AT_INTELPHIUSERMWAIT 10000
6909 #endif
6910 // getauxval() function is available in RHEL7 and SLES12. If a system with an
6911 // earlier OS is used to build the RTL, we'll use the following internal
6912 // function when the entry is not found.
6913 unsigned long getauxval(unsigned long) KMP_WEAK_ATTRIBUTE_EXTERNAL;
6914 unsigned long getauxval(unsigned long) { return 0; }
6915 
6916 static void __kmp_user_level_mwait_init() {
6917   // When getauxval() and correct value of AT_INTELPHIUSERMWAIT are available
6918   // use them to find if the user-level mwait is enabled. Otherwise, forcibly
6919   // set __kmp_mwait_enabled=TRUE on Intel MIC if the environment variable
6920   // KMP_USER_LEVEL_MWAIT was set to TRUE.
6921   if (__kmp_mic_type == mic3) {
6922     unsigned long res = getauxval(AT_INTELPHIUSERMWAIT);
6923     if ((res & 0x1) || __kmp_user_level_mwait) {
6924       __kmp_mwait_enabled = TRUE;
6925       if (__kmp_user_level_mwait) {
6926         KMP_INFORM(EnvMwaitWarn);
6927       }
6928     } else {
6929       __kmp_mwait_enabled = FALSE;
6930     }
6931   }
6932   KF_TRACE(30, ("__kmp_user_level_mwait_init: __kmp_mic_type = %d, "
6933                 "__kmp_mwait_enabled = %d\n",
6934                 __kmp_mic_type, __kmp_mwait_enabled));
6935 }
6936 #endif /* KMP_HAVE_UMWAIT */
6937 
6938 static void __kmp_do_serial_initialize(void) {
6939   int i, gtid;
6940   size_t size;
6941 
6942   KA_TRACE(10, ("__kmp_do_serial_initialize: enter\n"));
6943 
6944   KMP_DEBUG_ASSERT(sizeof(kmp_int32) == 4);
6945   KMP_DEBUG_ASSERT(sizeof(kmp_uint32) == 4);
6946   KMP_DEBUG_ASSERT(sizeof(kmp_int64) == 8);
6947   KMP_DEBUG_ASSERT(sizeof(kmp_uint64) == 8);
6948   KMP_DEBUG_ASSERT(sizeof(kmp_intptr_t) == sizeof(void *));
6949 
6950 #if OMPT_SUPPORT
6951   ompt_pre_init();
6952 #endif
6953 #if OMPD_SUPPORT
6954   __kmp_env_dump();
6955   ompd_init();
6956 #endif
6957 
6958   __kmp_validate_locks();
6959 
6960   /* Initialize internal memory allocator */
6961   __kmp_init_allocator();
6962 
6963   /* Register the library startup via an environment variable and check to see
6964      whether another copy of the library is already registered. */
6965 
6966   __kmp_register_library_startup();
6967 
6968   /* TODO reinitialization of library */
6969   if (TCR_4(__kmp_global.g.g_done)) {
6970     KA_TRACE(10, ("__kmp_do_serial_initialize: reinitialization of library\n"));
6971   }
6972 
6973   __kmp_global.g.g_abort = 0;
6974   TCW_SYNC_4(__kmp_global.g.g_done, FALSE);
6975 
6976 /* initialize the locks */
6977 #if KMP_USE_ADAPTIVE_LOCKS
6978 #if KMP_DEBUG_ADAPTIVE_LOCKS
6979   __kmp_init_speculative_stats();
6980 #endif
6981 #endif
6982 #if KMP_STATS_ENABLED
6983   __kmp_stats_init();
6984 #endif
6985   __kmp_init_lock(&__kmp_global_lock);
6986   __kmp_init_queuing_lock(&__kmp_dispatch_lock);
6987   __kmp_init_lock(&__kmp_debug_lock);
6988   __kmp_init_atomic_lock(&__kmp_atomic_lock);
6989   __kmp_init_atomic_lock(&__kmp_atomic_lock_1i);
6990   __kmp_init_atomic_lock(&__kmp_atomic_lock_2i);
6991   __kmp_init_atomic_lock(&__kmp_atomic_lock_4i);
6992   __kmp_init_atomic_lock(&__kmp_atomic_lock_4r);
6993   __kmp_init_atomic_lock(&__kmp_atomic_lock_8i);
6994   __kmp_init_atomic_lock(&__kmp_atomic_lock_8r);
6995   __kmp_init_atomic_lock(&__kmp_atomic_lock_8c);
6996   __kmp_init_atomic_lock(&__kmp_atomic_lock_10r);
6997   __kmp_init_atomic_lock(&__kmp_atomic_lock_16r);
6998   __kmp_init_atomic_lock(&__kmp_atomic_lock_16c);
6999   __kmp_init_atomic_lock(&__kmp_atomic_lock_20c);
7000   __kmp_init_atomic_lock(&__kmp_atomic_lock_32c);
7001   __kmp_init_bootstrap_lock(&__kmp_forkjoin_lock);
7002   __kmp_init_bootstrap_lock(&__kmp_exit_lock);
7003 #if KMP_USE_MONITOR
7004   __kmp_init_bootstrap_lock(&__kmp_monitor_lock);
7005 #endif
7006   __kmp_init_bootstrap_lock(&__kmp_tp_cached_lock);
7007 
7008   /* conduct initialization and initial setup of configuration */
7009 
7010   __kmp_runtime_initialize();
7011 
7012 #if KMP_MIC_SUPPORTED
7013   __kmp_check_mic_type();
7014 #endif
7015 
7016 // Some global variable initialization moved here from kmp_env_initialize()
7017 #ifdef KMP_DEBUG
7018   kmp_diag = 0;
7019 #endif
7020   __kmp_abort_delay = 0;
7021 
7022   // From __kmp_init_dflt_team_nth()
7023   /* assume the entire machine will be used */
7024   __kmp_dflt_team_nth_ub = __kmp_xproc;
7025   if (__kmp_dflt_team_nth_ub < KMP_MIN_NTH) {
7026     __kmp_dflt_team_nth_ub = KMP_MIN_NTH;
7027   }
7028   if (__kmp_dflt_team_nth_ub > __kmp_sys_max_nth) {
7029     __kmp_dflt_team_nth_ub = __kmp_sys_max_nth;
7030   }
7031   __kmp_max_nth = __kmp_sys_max_nth;
7032   __kmp_cg_max_nth = __kmp_sys_max_nth;
7033   __kmp_teams_max_nth = __kmp_xproc; // set a "reasonable" default
7034   if (__kmp_teams_max_nth > __kmp_sys_max_nth) {
7035     __kmp_teams_max_nth = __kmp_sys_max_nth;
7036   }
7037 
7038   // Three vars below moved here from __kmp_env_initialize() "KMP_BLOCKTIME"
7039   // part
7040   __kmp_dflt_blocktime = KMP_DEFAULT_BLOCKTIME;
7041 #if KMP_USE_MONITOR
7042   __kmp_monitor_wakeups =
7043       KMP_WAKEUPS_FROM_BLOCKTIME(__kmp_dflt_blocktime, __kmp_monitor_wakeups);
7044   __kmp_bt_intervals =
7045       KMP_INTERVALS_FROM_BLOCKTIME(__kmp_dflt_blocktime, __kmp_monitor_wakeups);
7046 #endif
7047   // From "KMP_LIBRARY" part of __kmp_env_initialize()
7048   __kmp_library = library_throughput;
7049   // From KMP_SCHEDULE initialization
7050   __kmp_static = kmp_sch_static_balanced;
7051 // AC: do not use analytical here, because it is non-monotonous
7052 //__kmp_guided = kmp_sch_guided_iterative_chunked;
7053 //__kmp_auto = kmp_sch_guided_analytical_chunked; // AC: it is the default, no
7054 // need to repeat assignment
7055 // Barrier initialization. Moved here from __kmp_env_initialize() Barrier branch
7056 // bit control and barrier method control parts
7057 #if KMP_FAST_REDUCTION_BARRIER
7058 #define kmp_reduction_barrier_gather_bb ((int)1)
7059 #define kmp_reduction_barrier_release_bb ((int)1)
7060 #define kmp_reduction_barrier_gather_pat __kmp_barrier_gather_pat_dflt
7061 #define kmp_reduction_barrier_release_pat __kmp_barrier_release_pat_dflt
7062 #endif // KMP_FAST_REDUCTION_BARRIER
7063   for (i = bs_plain_barrier; i < bs_last_barrier; i++) {
7064     __kmp_barrier_gather_branch_bits[i] = __kmp_barrier_gather_bb_dflt;
7065     __kmp_barrier_release_branch_bits[i] = __kmp_barrier_release_bb_dflt;
7066     __kmp_barrier_gather_pattern[i] = __kmp_barrier_gather_pat_dflt;
7067     __kmp_barrier_release_pattern[i] = __kmp_barrier_release_pat_dflt;
7068 #if KMP_FAST_REDUCTION_BARRIER
7069     if (i == bs_reduction_barrier) { // tested and confirmed on ALTIX only (
7070       // lin_64 ): hyper,1
7071       __kmp_barrier_gather_branch_bits[i] = kmp_reduction_barrier_gather_bb;
7072       __kmp_barrier_release_branch_bits[i] = kmp_reduction_barrier_release_bb;
7073       __kmp_barrier_gather_pattern[i] = kmp_reduction_barrier_gather_pat;
7074       __kmp_barrier_release_pattern[i] = kmp_reduction_barrier_release_pat;
7075     }
7076 #endif // KMP_FAST_REDUCTION_BARRIER
7077   }
7078 #if KMP_FAST_REDUCTION_BARRIER
7079 #undef kmp_reduction_barrier_release_pat
7080 #undef kmp_reduction_barrier_gather_pat
7081 #undef kmp_reduction_barrier_release_bb
7082 #undef kmp_reduction_barrier_gather_bb
7083 #endif // KMP_FAST_REDUCTION_BARRIER
7084 #if KMP_MIC_SUPPORTED
7085   if (__kmp_mic_type == mic2) { // KNC
7086     // AC: plane=3,2, forkjoin=2,1 are optimal for 240 threads on KNC
7087     __kmp_barrier_gather_branch_bits[bs_plain_barrier] = 3; // plain gather
7088     __kmp_barrier_release_branch_bits[bs_forkjoin_barrier] =
7089         1; // forkjoin release
7090     __kmp_barrier_gather_pattern[bs_forkjoin_barrier] = bp_hierarchical_bar;
7091     __kmp_barrier_release_pattern[bs_forkjoin_barrier] = bp_hierarchical_bar;
7092   }
7093 #if KMP_FAST_REDUCTION_BARRIER
7094   if (__kmp_mic_type == mic2) { // KNC
7095     __kmp_barrier_gather_pattern[bs_reduction_barrier] = bp_hierarchical_bar;
7096     __kmp_barrier_release_pattern[bs_reduction_barrier] = bp_hierarchical_bar;
7097   }
7098 #endif // KMP_FAST_REDUCTION_BARRIER
7099 #endif // KMP_MIC_SUPPORTED
7100 
7101 // From KMP_CHECKS initialization
7102 #ifdef KMP_DEBUG
7103   __kmp_env_checks = TRUE; /* development versions have the extra checks */
7104 #else
7105   __kmp_env_checks = FALSE; /* port versions do not have the extra checks */
7106 #endif
7107 
7108   // From "KMP_FOREIGN_THREADS_THREADPRIVATE" initialization
7109   __kmp_foreign_tp = TRUE;
7110 
7111   __kmp_global.g.g_dynamic = FALSE;
7112   __kmp_global.g.g_dynamic_mode = dynamic_default;
7113 
7114   __kmp_init_nesting_mode();
7115 
7116   __kmp_env_initialize(NULL);
7117 
7118 #if KMP_HAVE_MWAIT || KMP_HAVE_UMWAIT
7119   __kmp_user_level_mwait_init();
7120 #endif
7121 // Print all messages in message catalog for testing purposes.
7122 #ifdef KMP_DEBUG
7123   char const *val = __kmp_env_get("KMP_DUMP_CATALOG");
7124   if (__kmp_str_match_true(val)) {
7125     kmp_str_buf_t buffer;
7126     __kmp_str_buf_init(&buffer);
7127     __kmp_i18n_dump_catalog(&buffer);
7128     __kmp_printf("%s", buffer.str);
7129     __kmp_str_buf_free(&buffer);
7130   }
7131   __kmp_env_free(&val);
7132 #endif
7133 
7134   __kmp_threads_capacity =
7135       __kmp_initial_threads_capacity(__kmp_dflt_team_nth_ub);
7136   // Moved here from __kmp_env_initialize() "KMP_ALL_THREADPRIVATE" part
7137   __kmp_tp_capacity = __kmp_default_tp_capacity(
7138       __kmp_dflt_team_nth_ub, __kmp_max_nth, __kmp_allThreadsSpecified);
7139 
7140   // If the library is shut down properly, both pools must be NULL. Just in
7141   // case, set them to NULL -- some memory may leak, but subsequent code will
7142   // work even if pools are not freed.
7143   KMP_DEBUG_ASSERT(__kmp_thread_pool == NULL);
7144   KMP_DEBUG_ASSERT(__kmp_thread_pool_insert_pt == NULL);
7145   KMP_DEBUG_ASSERT(__kmp_team_pool == NULL);
7146   __kmp_thread_pool = NULL;
7147   __kmp_thread_pool_insert_pt = NULL;
7148   __kmp_team_pool = NULL;
7149 
7150   /* Allocate all of the variable sized records */
7151   /* NOTE: __kmp_threads_capacity entries are allocated, but the arrays are
7152    * expandable */
7153   /* Since allocation is cache-aligned, just add extra padding at the end */
7154   size =
7155       (sizeof(kmp_info_t *) + sizeof(kmp_root_t *)) * __kmp_threads_capacity +
7156       CACHE_LINE;
7157   __kmp_threads = (kmp_info_t **)__kmp_allocate(size);
7158   __kmp_root = (kmp_root_t **)((char *)__kmp_threads +
7159                                sizeof(kmp_info_t *) * __kmp_threads_capacity);
7160 
7161   /* init thread counts */
7162   KMP_DEBUG_ASSERT(__kmp_all_nth ==
7163                    0); // Asserts fail if the library is reinitializing and
7164   KMP_DEBUG_ASSERT(__kmp_nth == 0); // something was wrong in termination.
7165   __kmp_all_nth = 0;
7166   __kmp_nth = 0;
7167 
7168   /* setup the uber master thread and hierarchy */
7169   gtid = __kmp_register_root(TRUE);
7170   KA_TRACE(10, ("__kmp_do_serial_initialize  T#%d\n", gtid));
7171   KMP_ASSERT(KMP_UBER_GTID(gtid));
7172   KMP_ASSERT(KMP_INITIAL_GTID(gtid));
7173 
7174   KMP_MB(); /* Flush all pending memory write invalidates.  */
7175 
7176   __kmp_common_initialize();
7177 
7178 #if KMP_OS_UNIX
7179   /* invoke the child fork handler */
7180   __kmp_register_atfork();
7181 #endif
7182 
7183 #if !KMP_DYNAMIC_LIB
7184   {
7185     /* Invoke the exit handler when the program finishes, only for static
7186        library. For dynamic library, we already have _fini and DllMain. */
7187     int rc = atexit(__kmp_internal_end_atexit);
7188     if (rc != 0) {
7189       __kmp_fatal(KMP_MSG(FunctionError, "atexit()"), KMP_ERR(rc),
7190                   __kmp_msg_null);
7191     }
7192   }
7193 #endif
7194 
7195 #if KMP_HANDLE_SIGNALS
7196 #if KMP_OS_UNIX
7197   /* NOTE: make sure that this is called before the user installs their own
7198      signal handlers so that the user handlers are called first. this way they
7199      can return false, not call our handler, avoid terminating the library, and
7200      continue execution where they left off. */
7201   __kmp_install_signals(FALSE);
7202 #endif /* KMP_OS_UNIX */
7203 #if KMP_OS_WINDOWS
7204   __kmp_install_signals(TRUE);
7205 #endif /* KMP_OS_WINDOWS */
7206 #endif
7207 
7208   /* we have finished the serial initialization */
7209   __kmp_init_counter++;
7210 
7211   __kmp_init_serial = TRUE;
7212 
7213   if (__kmp_settings) {
7214     __kmp_env_print();
7215   }
7216 
7217   if (__kmp_display_env || __kmp_display_env_verbose) {
7218     __kmp_env_print_2();
7219   }
7220 
7221 #if OMPT_SUPPORT
7222   ompt_post_init();
7223 #endif
7224 
7225   KMP_MB();
7226 
7227   KA_TRACE(10, ("__kmp_do_serial_initialize: exit\n"));
7228 }
7229 
7230 void __kmp_serial_initialize(void) {
7231   if (__kmp_init_serial) {
7232     return;
7233   }
7234   __kmp_acquire_bootstrap_lock(&__kmp_initz_lock);
7235   if (__kmp_init_serial) {
7236     __kmp_release_bootstrap_lock(&__kmp_initz_lock);
7237     return;
7238   }
7239   __kmp_do_serial_initialize();
7240   __kmp_release_bootstrap_lock(&__kmp_initz_lock);
7241 }
7242 
7243 static void __kmp_do_middle_initialize(void) {
7244   int i, j;
7245   int prev_dflt_team_nth;
7246 
7247   if (!__kmp_init_serial) {
7248     __kmp_do_serial_initialize();
7249   }
7250 
7251   KA_TRACE(10, ("__kmp_middle_initialize: enter\n"));
7252 
7253   // Save the previous value for the __kmp_dflt_team_nth so that
7254   // we can avoid some reinitialization if it hasn't changed.
7255   prev_dflt_team_nth = __kmp_dflt_team_nth;
7256 
7257 #if KMP_AFFINITY_SUPPORTED
7258   // __kmp_affinity_initialize() will try to set __kmp_ncores to the
7259   // number of cores on the machine.
7260   __kmp_affinity_initialize();
7261 
7262 #endif /* KMP_AFFINITY_SUPPORTED */
7263 
7264   KMP_ASSERT(__kmp_xproc > 0);
7265   if (__kmp_avail_proc == 0) {
7266     __kmp_avail_proc = __kmp_xproc;
7267   }
7268 
7269   // If there were empty places in num_threads list (OMP_NUM_THREADS=,,2,3),
7270   // correct them now
7271   j = 0;
7272   while ((j < __kmp_nested_nth.used) && !__kmp_nested_nth.nth[j]) {
7273     __kmp_nested_nth.nth[j] = __kmp_dflt_team_nth = __kmp_dflt_team_nth_ub =
7274         __kmp_avail_proc;
7275     j++;
7276   }
7277 
7278   if (__kmp_dflt_team_nth == 0) {
7279 #ifdef KMP_DFLT_NTH_CORES
7280     // Default #threads = #cores
7281     __kmp_dflt_team_nth = __kmp_ncores;
7282     KA_TRACE(20, ("__kmp_middle_initialize: setting __kmp_dflt_team_nth = "
7283                   "__kmp_ncores (%d)\n",
7284                   __kmp_dflt_team_nth));
7285 #else
7286     // Default #threads = #available OS procs
7287     __kmp_dflt_team_nth = __kmp_avail_proc;
7288     KA_TRACE(20, ("__kmp_middle_initialize: setting __kmp_dflt_team_nth = "
7289                   "__kmp_avail_proc(%d)\n",
7290                   __kmp_dflt_team_nth));
7291 #endif /* KMP_DFLT_NTH_CORES */
7292   }
7293 
7294   if (__kmp_dflt_team_nth < KMP_MIN_NTH) {
7295     __kmp_dflt_team_nth = KMP_MIN_NTH;
7296   }
7297   if (__kmp_dflt_team_nth > __kmp_sys_max_nth) {
7298     __kmp_dflt_team_nth = __kmp_sys_max_nth;
7299   }
7300 
7301   if (__kmp_nesting_mode > 0)
7302     __kmp_set_nesting_mode_threads();
7303 
7304   // There's no harm in continuing if the following check fails,
7305   // but it indicates an error in the previous logic.
7306   KMP_DEBUG_ASSERT(__kmp_dflt_team_nth <= __kmp_dflt_team_nth_ub);
7307 
7308   if (__kmp_dflt_team_nth != prev_dflt_team_nth) {
7309     // Run through the __kmp_threads array and set the num threads icv for each
7310     // root thread that is currently registered with the RTL (which has not
7311     // already explicitly set its nthreads-var with a call to
7312     // omp_set_num_threads()).
7313     for (i = 0; i < __kmp_threads_capacity; i++) {
7314       kmp_info_t *thread = __kmp_threads[i];
7315       if (thread == NULL)
7316         continue;
7317       if (thread->th.th_current_task->td_icvs.nproc != 0)
7318         continue;
7319 
7320       set__nproc(__kmp_threads[i], __kmp_dflt_team_nth);
7321     }
7322   }
7323   KA_TRACE(
7324       20,
7325       ("__kmp_middle_initialize: final value for __kmp_dflt_team_nth = %d\n",
7326        __kmp_dflt_team_nth));
7327 
7328 #ifdef KMP_ADJUST_BLOCKTIME
7329   /* Adjust blocktime to zero if necessary  now that __kmp_avail_proc is set */
7330   if (!__kmp_env_blocktime && (__kmp_avail_proc > 0)) {
7331     KMP_DEBUG_ASSERT(__kmp_avail_proc > 0);
7332     if (__kmp_nth > __kmp_avail_proc) {
7333       __kmp_zero_bt = TRUE;
7334     }
7335   }
7336 #endif /* KMP_ADJUST_BLOCKTIME */
7337 
7338   /* we have finished middle initialization */
7339   TCW_SYNC_4(__kmp_init_middle, TRUE);
7340 
7341   KA_TRACE(10, ("__kmp_do_middle_initialize: exit\n"));
7342 }
7343 
7344 void __kmp_middle_initialize(void) {
7345   if (__kmp_init_middle) {
7346     return;
7347   }
7348   __kmp_acquire_bootstrap_lock(&__kmp_initz_lock);
7349   if (__kmp_init_middle) {
7350     __kmp_release_bootstrap_lock(&__kmp_initz_lock);
7351     return;
7352   }
7353   __kmp_do_middle_initialize();
7354   __kmp_release_bootstrap_lock(&__kmp_initz_lock);
7355 }
7356 
7357 void __kmp_parallel_initialize(void) {
7358   int gtid = __kmp_entry_gtid(); // this might be a new root
7359 
7360   /* synchronize parallel initialization (for sibling) */
7361   if (TCR_4(__kmp_init_parallel))
7362     return;
7363   __kmp_acquire_bootstrap_lock(&__kmp_initz_lock);
7364   if (TCR_4(__kmp_init_parallel)) {
7365     __kmp_release_bootstrap_lock(&__kmp_initz_lock);
7366     return;
7367   }
7368 
7369   /* TODO reinitialization after we have already shut down */
7370   if (TCR_4(__kmp_global.g.g_done)) {
7371     KA_TRACE(
7372         10,
7373         ("__kmp_parallel_initialize: attempt to init while shutting down\n"));
7374     __kmp_infinite_loop();
7375   }
7376 
7377   /* jc: The lock __kmp_initz_lock is already held, so calling
7378      __kmp_serial_initialize would cause a deadlock.  So we call
7379      __kmp_do_serial_initialize directly. */
7380   if (!__kmp_init_middle) {
7381     __kmp_do_middle_initialize();
7382   }
7383   __kmp_assign_root_init_mask();
7384   __kmp_resume_if_hard_paused();
7385 
7386   /* begin initialization */
7387   KA_TRACE(10, ("__kmp_parallel_initialize: enter\n"));
7388   KMP_ASSERT(KMP_UBER_GTID(gtid));
7389 
7390 #if KMP_ARCH_X86 || KMP_ARCH_X86_64
7391   // Save the FP control regs.
7392   // Worker threads will set theirs to these values at thread startup.
7393   __kmp_store_x87_fpu_control_word(&__kmp_init_x87_fpu_control_word);
7394   __kmp_store_mxcsr(&__kmp_init_mxcsr);
7395   __kmp_init_mxcsr &= KMP_X86_MXCSR_MASK;
7396 #endif /* KMP_ARCH_X86 || KMP_ARCH_X86_64 */
7397 
7398 #if KMP_OS_UNIX
7399 #if KMP_HANDLE_SIGNALS
7400   /*  must be after __kmp_serial_initialize  */
7401   __kmp_install_signals(TRUE);
7402 #endif
7403 #endif
7404 
7405   __kmp_suspend_initialize();
7406 
7407 #if defined(USE_LOAD_BALANCE)
7408   if (__kmp_global.g.g_dynamic_mode == dynamic_default) {
7409     __kmp_global.g.g_dynamic_mode = dynamic_load_balance;
7410   }
7411 #else
7412   if (__kmp_global.g.g_dynamic_mode == dynamic_default) {
7413     __kmp_global.g.g_dynamic_mode = dynamic_thread_limit;
7414   }
7415 #endif
7416 
7417   if (__kmp_version) {
7418     __kmp_print_version_2();
7419   }
7420 
7421   /* we have finished parallel initialization */
7422   TCW_SYNC_4(__kmp_init_parallel, TRUE);
7423 
7424   KMP_MB();
7425   KA_TRACE(10, ("__kmp_parallel_initialize: exit\n"));
7426 
7427   __kmp_release_bootstrap_lock(&__kmp_initz_lock);
7428 }
7429 
7430 void __kmp_hidden_helper_initialize() {
7431   if (TCR_4(__kmp_init_hidden_helper))
7432     return;
7433 
7434   // __kmp_parallel_initialize is required before we initialize hidden helper
7435   if (!TCR_4(__kmp_init_parallel))
7436     __kmp_parallel_initialize();
7437 
7438   // Double check. Note that this double check should not be placed before
7439   // __kmp_parallel_initialize as it will cause dead lock.
7440   __kmp_acquire_bootstrap_lock(&__kmp_initz_lock);
7441   if (TCR_4(__kmp_init_hidden_helper)) {
7442     __kmp_release_bootstrap_lock(&__kmp_initz_lock);
7443     return;
7444   }
7445 
7446   // Set the count of hidden helper tasks to be executed to zero
7447   KMP_ATOMIC_ST_REL(&__kmp_unexecuted_hidden_helper_tasks, 0);
7448 
7449   // Set the global variable indicating that we're initializing hidden helper
7450   // team/threads
7451   TCW_SYNC_4(__kmp_init_hidden_helper_threads, TRUE);
7452 
7453   // Platform independent initialization
7454   __kmp_do_initialize_hidden_helper_threads();
7455 
7456   // Wait here for the finish of initialization of hidden helper teams
7457   __kmp_hidden_helper_threads_initz_wait();
7458 
7459   // We have finished hidden helper initialization
7460   TCW_SYNC_4(__kmp_init_hidden_helper, TRUE);
7461 
7462   __kmp_release_bootstrap_lock(&__kmp_initz_lock);
7463 }
7464 
7465 /* ------------------------------------------------------------------------ */
7466 
7467 void __kmp_run_before_invoked_task(int gtid, int tid, kmp_info_t *this_thr,
7468                                    kmp_team_t *team) {
7469   kmp_disp_t *dispatch;
7470 
7471   KMP_MB();
7472 
7473   /* none of the threads have encountered any constructs, yet. */
7474   this_thr->th.th_local.this_construct = 0;
7475 #if KMP_CACHE_MANAGE
7476   KMP_CACHE_PREFETCH(&this_thr->th.th_bar[bs_forkjoin_barrier].bb.b_arrived);
7477 #endif /* KMP_CACHE_MANAGE */
7478   dispatch = (kmp_disp_t *)TCR_PTR(this_thr->th.th_dispatch);
7479   KMP_DEBUG_ASSERT(dispatch);
7480   KMP_DEBUG_ASSERT(team->t.t_dispatch);
7481   // KMP_DEBUG_ASSERT( this_thr->th.th_dispatch == &team->t.t_dispatch[
7482   // this_thr->th.th_info.ds.ds_tid ] );
7483 
7484   dispatch->th_disp_index = 0; /* reset the dispatch buffer counter */
7485   dispatch->th_doacross_buf_idx = 0; // reset doacross dispatch buffer counter
7486   if (__kmp_env_consistency_check)
7487     __kmp_push_parallel(gtid, team->t.t_ident);
7488 
7489   KMP_MB(); /* Flush all pending memory write invalidates.  */
7490 }
7491 
7492 void __kmp_run_after_invoked_task(int gtid, int tid, kmp_info_t *this_thr,
7493                                   kmp_team_t *team) {
7494   if (__kmp_env_consistency_check)
7495     __kmp_pop_parallel(gtid, team->t.t_ident);
7496 
7497   __kmp_finish_implicit_task(this_thr);
7498 }
7499 
7500 int __kmp_invoke_task_func(int gtid) {
7501   int rc;
7502   int tid = __kmp_tid_from_gtid(gtid);
7503   kmp_info_t *this_thr = __kmp_threads[gtid];
7504   kmp_team_t *team = this_thr->th.th_team;
7505 
7506   __kmp_run_before_invoked_task(gtid, tid, this_thr, team);
7507 #if USE_ITT_BUILD
7508   if (__itt_stack_caller_create_ptr) {
7509     // inform ittnotify about entering user's code
7510     if (team->t.t_stack_id != NULL) {
7511       __kmp_itt_stack_callee_enter((__itt_caller)team->t.t_stack_id);
7512     } else {
7513       KMP_DEBUG_ASSERT(team->t.t_parent->t.t_stack_id != NULL);
7514       __kmp_itt_stack_callee_enter(
7515           (__itt_caller)team->t.t_parent->t.t_stack_id);
7516     }
7517   }
7518 #endif /* USE_ITT_BUILD */
7519 #if INCLUDE_SSC_MARKS
7520   SSC_MARK_INVOKING();
7521 #endif
7522 
7523 #if OMPT_SUPPORT
7524   void *dummy;
7525   void **exit_frame_p;
7526   ompt_data_t *my_task_data;
7527   ompt_data_t *my_parallel_data;
7528   int ompt_team_size;
7529 
7530   if (ompt_enabled.enabled) {
7531     exit_frame_p = &(team->t.t_implicit_task_taskdata[tid]
7532                          .ompt_task_info.frame.exit_frame.ptr);
7533   } else {
7534     exit_frame_p = &dummy;
7535   }
7536 
7537   my_task_data =
7538       &(team->t.t_implicit_task_taskdata[tid].ompt_task_info.task_data);
7539   my_parallel_data = &(team->t.ompt_team_info.parallel_data);
7540   if (ompt_enabled.ompt_callback_implicit_task) {
7541     ompt_team_size = team->t.t_nproc;
7542     ompt_callbacks.ompt_callback(ompt_callback_implicit_task)(
7543         ompt_scope_begin, my_parallel_data, my_task_data, ompt_team_size,
7544         __kmp_tid_from_gtid(gtid), ompt_task_implicit);
7545     OMPT_CUR_TASK_INFO(this_thr)->thread_num = __kmp_tid_from_gtid(gtid);
7546   }
7547 #endif
7548 
7549 #if KMP_STATS_ENABLED
7550   stats_state_e previous_state = KMP_GET_THREAD_STATE();
7551   if (previous_state == stats_state_e::TEAMS_REGION) {
7552     KMP_PUSH_PARTITIONED_TIMER(OMP_teams);
7553   } else {
7554     KMP_PUSH_PARTITIONED_TIMER(OMP_parallel);
7555   }
7556   KMP_SET_THREAD_STATE(IMPLICIT_TASK);
7557 #endif
7558 
7559   rc = __kmp_invoke_microtask((microtask_t)TCR_SYNC_PTR(team->t.t_pkfn), gtid,
7560                               tid, (int)team->t.t_argc, (void **)team->t.t_argv
7561 #if OMPT_SUPPORT
7562                               ,
7563                               exit_frame_p
7564 #endif
7565   );
7566 #if OMPT_SUPPORT
7567   *exit_frame_p = NULL;
7568   this_thr->th.ompt_thread_info.parallel_flags |= ompt_parallel_team;
7569 #endif
7570 
7571 #if KMP_STATS_ENABLED
7572   if (previous_state == stats_state_e::TEAMS_REGION) {
7573     KMP_SET_THREAD_STATE(previous_state);
7574   }
7575   KMP_POP_PARTITIONED_TIMER();
7576 #endif
7577 
7578 #if USE_ITT_BUILD
7579   if (__itt_stack_caller_create_ptr) {
7580     // inform ittnotify about leaving user's code
7581     if (team->t.t_stack_id != NULL) {
7582       __kmp_itt_stack_callee_leave((__itt_caller)team->t.t_stack_id);
7583     } else {
7584       KMP_DEBUG_ASSERT(team->t.t_parent->t.t_stack_id != NULL);
7585       __kmp_itt_stack_callee_leave(
7586           (__itt_caller)team->t.t_parent->t.t_stack_id);
7587     }
7588   }
7589 #endif /* USE_ITT_BUILD */
7590   __kmp_run_after_invoked_task(gtid, tid, this_thr, team);
7591 
7592   return rc;
7593 }
7594 
7595 void __kmp_teams_master(int gtid) {
7596   // This routine is called by all primary threads in teams construct
7597   kmp_info_t *thr = __kmp_threads[gtid];
7598   kmp_team_t *team = thr->th.th_team;
7599   ident_t *loc = team->t.t_ident;
7600   thr->th.th_set_nproc = thr->th.th_teams_size.nth;
7601   KMP_DEBUG_ASSERT(thr->th.th_teams_microtask);
7602   KMP_DEBUG_ASSERT(thr->th.th_set_nproc);
7603   KA_TRACE(20, ("__kmp_teams_master: T#%d, Tid %d, microtask %p\n", gtid,
7604                 __kmp_tid_from_gtid(gtid), thr->th.th_teams_microtask));
7605 
7606   // This thread is a new CG root.  Set up the proper variables.
7607   kmp_cg_root_t *tmp = (kmp_cg_root_t *)__kmp_allocate(sizeof(kmp_cg_root_t));
7608   tmp->cg_root = thr; // Make thr the CG root
7609   // Init to thread limit stored when league primary threads were forked
7610   tmp->cg_thread_limit = thr->th.th_current_task->td_icvs.thread_limit;
7611   tmp->cg_nthreads = 1; // Init counter to one active thread, this one
7612   KA_TRACE(100, ("__kmp_teams_master: Thread %p created node %p and init"
7613                  " cg_nthreads to 1\n",
7614                  thr, tmp));
7615   tmp->up = thr->th.th_cg_roots;
7616   thr->th.th_cg_roots = tmp;
7617 
7618 // Launch league of teams now, but not let workers execute
7619 // (they hang on fork barrier until next parallel)
7620 #if INCLUDE_SSC_MARKS
7621   SSC_MARK_FORKING();
7622 #endif
7623   __kmp_fork_call(loc, gtid, fork_context_intel, team->t.t_argc,
7624                   (microtask_t)thr->th.th_teams_microtask, // "wrapped" task
7625                   VOLATILE_CAST(launch_t) __kmp_invoke_task_func, NULL);
7626 #if INCLUDE_SSC_MARKS
7627   SSC_MARK_JOINING();
7628 #endif
7629   // If the team size was reduced from the limit, set it to the new size
7630   if (thr->th.th_team_nproc < thr->th.th_teams_size.nth)
7631     thr->th.th_teams_size.nth = thr->th.th_team_nproc;
7632   // AC: last parameter "1" eliminates join barrier which won't work because
7633   // worker threads are in a fork barrier waiting for more parallel regions
7634   __kmp_join_call(loc, gtid
7635 #if OMPT_SUPPORT
7636                   ,
7637                   fork_context_intel
7638 #endif
7639                   ,
7640                   1);
7641 }
7642 
7643 int __kmp_invoke_teams_master(int gtid) {
7644   kmp_info_t *this_thr = __kmp_threads[gtid];
7645   kmp_team_t *team = this_thr->th.th_team;
7646 #if KMP_DEBUG
7647   if (!__kmp_threads[gtid]->th.th_team->t.t_serialized)
7648     KMP_DEBUG_ASSERT((void *)__kmp_threads[gtid]->th.th_team->t.t_pkfn ==
7649                      (void *)__kmp_teams_master);
7650 #endif
7651   __kmp_run_before_invoked_task(gtid, 0, this_thr, team);
7652 #if OMPT_SUPPORT
7653   int tid = __kmp_tid_from_gtid(gtid);
7654   ompt_data_t *task_data =
7655       &team->t.t_implicit_task_taskdata[tid].ompt_task_info.task_data;
7656   ompt_data_t *parallel_data = &team->t.ompt_team_info.parallel_data;
7657   if (ompt_enabled.ompt_callback_implicit_task) {
7658     ompt_callbacks.ompt_callback(ompt_callback_implicit_task)(
7659         ompt_scope_begin, parallel_data, task_data, team->t.t_nproc, tid,
7660         ompt_task_initial);
7661     OMPT_CUR_TASK_INFO(this_thr)->thread_num = tid;
7662   }
7663 #endif
7664   __kmp_teams_master(gtid);
7665 #if OMPT_SUPPORT
7666   this_thr->th.ompt_thread_info.parallel_flags |= ompt_parallel_league;
7667 #endif
7668   __kmp_run_after_invoked_task(gtid, 0, this_thr, team);
7669   return 1;
7670 }
7671 
7672 /* this sets the requested number of threads for the next parallel region
7673    encountered by this team. since this should be enclosed in the forkjoin
7674    critical section it should avoid race conditions with asymmetrical nested
7675    parallelism */
7676 
7677 void __kmp_push_num_threads(ident_t *id, int gtid, int num_threads) {
7678   kmp_info_t *thr = __kmp_threads[gtid];
7679 
7680   if (num_threads > 0)
7681     thr->th.th_set_nproc = num_threads;
7682 }
7683 
7684 static void __kmp_push_thread_limit(kmp_info_t *thr, int num_teams,
7685                                     int num_threads) {
7686   KMP_DEBUG_ASSERT(thr);
7687   // Remember the number of threads for inner parallel regions
7688   if (!TCR_4(__kmp_init_middle))
7689     __kmp_middle_initialize(); // get internal globals calculated
7690   __kmp_assign_root_init_mask();
7691   KMP_DEBUG_ASSERT(__kmp_avail_proc);
7692   KMP_DEBUG_ASSERT(__kmp_dflt_team_nth);
7693 
7694   if (num_threads == 0) {
7695     if (__kmp_teams_thread_limit > 0) {
7696       num_threads = __kmp_teams_thread_limit;
7697     } else {
7698       num_threads = __kmp_avail_proc / num_teams;
7699     }
7700     // adjust num_threads w/o warning as it is not user setting
7701     // num_threads = min(num_threads, nthreads-var, thread-limit-var)
7702     // no thread_limit clause specified -  do not change thread-limit-var ICV
7703     if (num_threads > __kmp_dflt_team_nth) {
7704       num_threads = __kmp_dflt_team_nth; // honor nthreads-var ICV
7705     }
7706     if (num_threads > thr->th.th_current_task->td_icvs.thread_limit) {
7707       num_threads = thr->th.th_current_task->td_icvs.thread_limit;
7708     } // prevent team size to exceed thread-limit-var
7709     if (num_teams * num_threads > __kmp_teams_max_nth) {
7710       num_threads = __kmp_teams_max_nth / num_teams;
7711     }
7712     if (num_threads == 0) {
7713       num_threads = 1;
7714     }
7715   } else {
7716     if (num_threads < 0) {
7717       __kmp_msg(kmp_ms_warning, KMP_MSG(CantFormThrTeam, num_threads, 1),
7718                 __kmp_msg_null);
7719       num_threads = 1;
7720     }
7721     // This thread will be the primary thread of the league primary threads
7722     // Store new thread limit; old limit is saved in th_cg_roots list
7723     thr->th.th_current_task->td_icvs.thread_limit = num_threads;
7724     // num_threads = min(num_threads, nthreads-var)
7725     if (num_threads > __kmp_dflt_team_nth) {
7726       num_threads = __kmp_dflt_team_nth; // honor nthreads-var ICV
7727     }
7728     if (num_teams * num_threads > __kmp_teams_max_nth) {
7729       int new_threads = __kmp_teams_max_nth / num_teams;
7730       if (new_threads == 0) {
7731         new_threads = 1;
7732       }
7733       if (new_threads != num_threads) {
7734         if (!__kmp_reserve_warn) { // user asked for too many threads
7735           __kmp_reserve_warn = 1; // conflicts with KMP_TEAMS_THREAD_LIMIT
7736           __kmp_msg(kmp_ms_warning,
7737                     KMP_MSG(CantFormThrTeam, num_threads, new_threads),
7738                     KMP_HNT(Unset_ALL_THREADS), __kmp_msg_null);
7739         }
7740       }
7741       num_threads = new_threads;
7742     }
7743   }
7744   thr->th.th_teams_size.nth = num_threads;
7745 }
7746 
7747 /* this sets the requested number of teams for the teams region and/or
7748    the number of threads for the next parallel region encountered  */
7749 void __kmp_push_num_teams(ident_t *id, int gtid, int num_teams,
7750                           int num_threads) {
7751   kmp_info_t *thr = __kmp_threads[gtid];
7752   if (num_teams < 0) {
7753     // OpenMP specification requires requested values to be positive,
7754     // but people can send us any value, so we'd better check
7755     __kmp_msg(kmp_ms_warning, KMP_MSG(NumTeamsNotPositive, num_teams, 1),
7756               __kmp_msg_null);
7757     num_teams = 1;
7758   }
7759   if (num_teams == 0) {
7760     if (__kmp_nteams > 0) {
7761       num_teams = __kmp_nteams;
7762     } else {
7763       num_teams = 1; // default number of teams is 1.
7764     }
7765   }
7766   if (num_teams > __kmp_teams_max_nth) { // if too many teams requested?
7767     if (!__kmp_reserve_warn) {
7768       __kmp_reserve_warn = 1;
7769       __kmp_msg(kmp_ms_warning,
7770                 KMP_MSG(CantFormThrTeam, num_teams, __kmp_teams_max_nth),
7771                 KMP_HNT(Unset_ALL_THREADS), __kmp_msg_null);
7772     }
7773     num_teams = __kmp_teams_max_nth;
7774   }
7775   // Set number of teams (number of threads in the outer "parallel" of the
7776   // teams)
7777   thr->th.th_set_nproc = thr->th.th_teams_size.nteams = num_teams;
7778 
7779   __kmp_push_thread_limit(thr, num_teams, num_threads);
7780 }
7781 
7782 /* This sets the requested number of teams for the teams region and/or
7783    the number of threads for the next parallel region encountered  */
7784 void __kmp_push_num_teams_51(ident_t *id, int gtid, int num_teams_lb,
7785                              int num_teams_ub, int num_threads) {
7786   kmp_info_t *thr = __kmp_threads[gtid];
7787   KMP_DEBUG_ASSERT(num_teams_lb >= 0 && num_teams_ub >= 0);
7788   KMP_DEBUG_ASSERT(num_teams_ub >= num_teams_lb);
7789   KMP_DEBUG_ASSERT(num_threads >= 0);
7790 
7791   if (num_teams_lb > num_teams_ub) {
7792     __kmp_fatal(KMP_MSG(FailedToCreateTeam, num_teams_lb, num_teams_ub),
7793                 KMP_HNT(SetNewBound, __kmp_teams_max_nth), __kmp_msg_null);
7794   }
7795 
7796   int num_teams = 1; // defalt number of teams is 1.
7797 
7798   if (num_teams_lb == 0 && num_teams_ub > 0)
7799     num_teams_lb = num_teams_ub;
7800 
7801   if (num_teams_lb == 0 && num_teams_ub == 0) { // no num_teams clause
7802     num_teams = (__kmp_nteams > 0) ? __kmp_nteams : num_teams;
7803     if (num_teams > __kmp_teams_max_nth) {
7804       if (!__kmp_reserve_warn) {
7805         __kmp_reserve_warn = 1;
7806         __kmp_msg(kmp_ms_warning,
7807                   KMP_MSG(CantFormThrTeam, num_teams, __kmp_teams_max_nth),
7808                   KMP_HNT(Unset_ALL_THREADS), __kmp_msg_null);
7809       }
7810       num_teams = __kmp_teams_max_nth;
7811     }
7812   } else if (num_teams_lb == num_teams_ub) { // requires exact number of teams
7813     num_teams = num_teams_ub;
7814   } else { // num_teams_lb <= num_teams <= num_teams_ub
7815     if (num_threads <= 0) {
7816       if (num_teams_ub > __kmp_teams_max_nth) {
7817         num_teams = num_teams_lb;
7818       } else {
7819         num_teams = num_teams_ub;
7820       }
7821     } else {
7822       num_teams = (num_threads > __kmp_teams_max_nth)
7823                       ? num_teams
7824                       : __kmp_teams_max_nth / num_threads;
7825       if (num_teams < num_teams_lb) {
7826         num_teams = num_teams_lb;
7827       } else if (num_teams > num_teams_ub) {
7828         num_teams = num_teams_ub;
7829       }
7830     }
7831   }
7832   // Set number of teams (number of threads in the outer "parallel" of the
7833   // teams)
7834   thr->th.th_set_nproc = thr->th.th_teams_size.nteams = num_teams;
7835 
7836   __kmp_push_thread_limit(thr, num_teams, num_threads);
7837 }
7838 
7839 // Set the proc_bind var to use in the following parallel region.
7840 void __kmp_push_proc_bind(ident_t *id, int gtid, kmp_proc_bind_t proc_bind) {
7841   kmp_info_t *thr = __kmp_threads[gtid];
7842   thr->th.th_set_proc_bind = proc_bind;
7843 }
7844 
7845 /* Launch the worker threads into the microtask. */
7846 
7847 void __kmp_internal_fork(ident_t *id, int gtid, kmp_team_t *team) {
7848   kmp_info_t *this_thr = __kmp_threads[gtid];
7849 
7850 #ifdef KMP_DEBUG
7851   int f;
7852 #endif /* KMP_DEBUG */
7853 
7854   KMP_DEBUG_ASSERT(team);
7855   KMP_DEBUG_ASSERT(this_thr->th.th_team == team);
7856   KMP_ASSERT(KMP_MASTER_GTID(gtid));
7857   KMP_MB(); /* Flush all pending memory write invalidates.  */
7858 
7859   team->t.t_construct = 0; /* no single directives seen yet */
7860   team->t.t_ordered.dt.t_value =
7861       0; /* thread 0 enters the ordered section first */
7862 
7863   /* Reset the identifiers on the dispatch buffer */
7864   KMP_DEBUG_ASSERT(team->t.t_disp_buffer);
7865   if (team->t.t_max_nproc > 1) {
7866     int i;
7867     for (i = 0; i < __kmp_dispatch_num_buffers; ++i) {
7868       team->t.t_disp_buffer[i].buffer_index = i;
7869       team->t.t_disp_buffer[i].doacross_buf_idx = i;
7870     }
7871   } else {
7872     team->t.t_disp_buffer[0].buffer_index = 0;
7873     team->t.t_disp_buffer[0].doacross_buf_idx = 0;
7874   }
7875 
7876   KMP_MB(); /* Flush all pending memory write invalidates.  */
7877   KMP_ASSERT(this_thr->th.th_team == team);
7878 
7879 #ifdef KMP_DEBUG
7880   for (f = 0; f < team->t.t_nproc; f++) {
7881     KMP_DEBUG_ASSERT(team->t.t_threads[f] &&
7882                      team->t.t_threads[f]->th.th_team_nproc == team->t.t_nproc);
7883   }
7884 #endif /* KMP_DEBUG */
7885 
7886   /* release the worker threads so they may begin working */
7887   __kmp_fork_barrier(gtid, 0);
7888 }
7889 
7890 void __kmp_internal_join(ident_t *id, int gtid, kmp_team_t *team) {
7891   kmp_info_t *this_thr = __kmp_threads[gtid];
7892 
7893   KMP_DEBUG_ASSERT(team);
7894   KMP_DEBUG_ASSERT(this_thr->th.th_team == team);
7895   KMP_ASSERT(KMP_MASTER_GTID(gtid));
7896   KMP_MB(); /* Flush all pending memory write invalidates.  */
7897 
7898   /* Join barrier after fork */
7899 
7900 #ifdef KMP_DEBUG
7901   if (__kmp_threads[gtid] &&
7902       __kmp_threads[gtid]->th.th_team_nproc != team->t.t_nproc) {
7903     __kmp_printf("GTID: %d, __kmp_threads[%d]=%p\n", gtid, gtid,
7904                  __kmp_threads[gtid]);
7905     __kmp_printf("__kmp_threads[%d]->th.th_team_nproc=%d, TEAM: %p, "
7906                  "team->t.t_nproc=%d\n",
7907                  gtid, __kmp_threads[gtid]->th.th_team_nproc, team,
7908                  team->t.t_nproc);
7909     __kmp_print_structure();
7910   }
7911   KMP_DEBUG_ASSERT(__kmp_threads[gtid] &&
7912                    __kmp_threads[gtid]->th.th_team_nproc == team->t.t_nproc);
7913 #endif /* KMP_DEBUG */
7914 
7915   __kmp_join_barrier(gtid); /* wait for everyone */
7916 #if OMPT_SUPPORT
7917   if (ompt_enabled.enabled &&
7918       this_thr->th.ompt_thread_info.state == ompt_state_wait_barrier_implicit) {
7919     int ds_tid = this_thr->th.th_info.ds.ds_tid;
7920     ompt_data_t *task_data = OMPT_CUR_TASK_DATA(this_thr);
7921     this_thr->th.ompt_thread_info.state = ompt_state_overhead;
7922 #if OMPT_OPTIONAL
7923     void *codeptr = NULL;
7924     if (KMP_MASTER_TID(ds_tid) &&
7925         (ompt_callbacks.ompt_callback(ompt_callback_sync_region_wait) ||
7926          ompt_callbacks.ompt_callback(ompt_callback_sync_region)))
7927       codeptr = OMPT_CUR_TEAM_INFO(this_thr)->master_return_address;
7928 
7929     if (ompt_enabled.ompt_callback_sync_region_wait) {
7930       ompt_callbacks.ompt_callback(ompt_callback_sync_region_wait)(
7931           ompt_sync_region_barrier_implicit, ompt_scope_end, NULL, task_data,
7932           codeptr);
7933     }
7934     if (ompt_enabled.ompt_callback_sync_region) {
7935       ompt_callbacks.ompt_callback(ompt_callback_sync_region)(
7936           ompt_sync_region_barrier_implicit, ompt_scope_end, NULL, task_data,
7937           codeptr);
7938     }
7939 #endif
7940     if (!KMP_MASTER_TID(ds_tid) && ompt_enabled.ompt_callback_implicit_task) {
7941       ompt_callbacks.ompt_callback(ompt_callback_implicit_task)(
7942           ompt_scope_end, NULL, task_data, 0, ds_tid,
7943           ompt_task_implicit); // TODO: Can this be ompt_task_initial?
7944     }
7945   }
7946 #endif
7947 
7948   KMP_MB(); /* Flush all pending memory write invalidates.  */
7949   KMP_ASSERT(this_thr->th.th_team == team);
7950 }
7951 
7952 /* ------------------------------------------------------------------------ */
7953 
7954 #ifdef USE_LOAD_BALANCE
7955 
7956 // Return the worker threads actively spinning in the hot team, if we
7957 // are at the outermost level of parallelism.  Otherwise, return 0.
7958 static int __kmp_active_hot_team_nproc(kmp_root_t *root) {
7959   int i;
7960   int retval;
7961   kmp_team_t *hot_team;
7962 
7963   if (root->r.r_active) {
7964     return 0;
7965   }
7966   hot_team = root->r.r_hot_team;
7967   if (__kmp_dflt_blocktime == KMP_MAX_BLOCKTIME) {
7968     return hot_team->t.t_nproc - 1; // Don't count primary thread
7969   }
7970 
7971   // Skip the primary thread - it is accounted for elsewhere.
7972   retval = 0;
7973   for (i = 1; i < hot_team->t.t_nproc; i++) {
7974     if (hot_team->t.t_threads[i]->th.th_active) {
7975       retval++;
7976     }
7977   }
7978   return retval;
7979 }
7980 
7981 // Perform an automatic adjustment to the number of
7982 // threads used by the next parallel region.
7983 static int __kmp_load_balance_nproc(kmp_root_t *root, int set_nproc) {
7984   int retval;
7985   int pool_active;
7986   int hot_team_active;
7987   int team_curr_active;
7988   int system_active;
7989 
7990   KB_TRACE(20, ("__kmp_load_balance_nproc: called root:%p set_nproc:%d\n", root,
7991                 set_nproc));
7992   KMP_DEBUG_ASSERT(root);
7993   KMP_DEBUG_ASSERT(root->r.r_root_team->t.t_threads[0]
7994                        ->th.th_current_task->td_icvs.dynamic == TRUE);
7995   KMP_DEBUG_ASSERT(set_nproc > 1);
7996 
7997   if (set_nproc == 1) {
7998     KB_TRACE(20, ("__kmp_load_balance_nproc: serial execution.\n"));
7999     return 1;
8000   }
8001 
8002   // Threads that are active in the thread pool, active in the hot team for this
8003   // particular root (if we are at the outer par level), and the currently
8004   // executing thread (to become the primary thread) are available to add to the
8005   // new team, but are currently contributing to the system load, and must be
8006   // accounted for.
8007   pool_active = __kmp_thread_pool_active_nth;
8008   hot_team_active = __kmp_active_hot_team_nproc(root);
8009   team_curr_active = pool_active + hot_team_active + 1;
8010 
8011   // Check the system load.
8012   system_active = __kmp_get_load_balance(__kmp_avail_proc + team_curr_active);
8013   KB_TRACE(30, ("__kmp_load_balance_nproc: system active = %d pool active = %d "
8014                 "hot team active = %d\n",
8015                 system_active, pool_active, hot_team_active));
8016 
8017   if (system_active < 0) {
8018     // There was an error reading the necessary info from /proc, so use the
8019     // thread limit algorithm instead. Once we set __kmp_global.g.g_dynamic_mode
8020     // = dynamic_thread_limit, we shouldn't wind up getting back here.
8021     __kmp_global.g.g_dynamic_mode = dynamic_thread_limit;
8022     KMP_WARNING(CantLoadBalUsing, "KMP_DYNAMIC_MODE=thread limit");
8023 
8024     // Make this call behave like the thread limit algorithm.
8025     retval = __kmp_avail_proc - __kmp_nth +
8026              (root->r.r_active ? 1 : root->r.r_hot_team->t.t_nproc);
8027     if (retval > set_nproc) {
8028       retval = set_nproc;
8029     }
8030     if (retval < KMP_MIN_NTH) {
8031       retval = KMP_MIN_NTH;
8032     }
8033 
8034     KB_TRACE(20, ("__kmp_load_balance_nproc: thread limit exit. retval:%d\n",
8035                   retval));
8036     return retval;
8037   }
8038 
8039   // There is a slight delay in the load balance algorithm in detecting new
8040   // running procs. The real system load at this instant should be at least as
8041   // large as the #active omp thread that are available to add to the team.
8042   if (system_active < team_curr_active) {
8043     system_active = team_curr_active;
8044   }
8045   retval = __kmp_avail_proc - system_active + team_curr_active;
8046   if (retval > set_nproc) {
8047     retval = set_nproc;
8048   }
8049   if (retval < KMP_MIN_NTH) {
8050     retval = KMP_MIN_NTH;
8051   }
8052 
8053   KB_TRACE(20, ("__kmp_load_balance_nproc: exit. retval:%d\n", retval));
8054   return retval;
8055 } // __kmp_load_balance_nproc()
8056 
8057 #endif /* USE_LOAD_BALANCE */
8058 
8059 /* ------------------------------------------------------------------------ */
8060 
8061 /* NOTE: this is called with the __kmp_init_lock held */
8062 void __kmp_cleanup(void) {
8063   int f;
8064 
8065   KA_TRACE(10, ("__kmp_cleanup: enter\n"));
8066 
8067   if (TCR_4(__kmp_init_parallel)) {
8068 #if KMP_HANDLE_SIGNALS
8069     __kmp_remove_signals();
8070 #endif
8071     TCW_4(__kmp_init_parallel, FALSE);
8072   }
8073 
8074   if (TCR_4(__kmp_init_middle)) {
8075 #if KMP_AFFINITY_SUPPORTED
8076     __kmp_affinity_uninitialize();
8077 #endif /* KMP_AFFINITY_SUPPORTED */
8078     __kmp_cleanup_hierarchy();
8079     TCW_4(__kmp_init_middle, FALSE);
8080   }
8081 
8082   KA_TRACE(10, ("__kmp_cleanup: go serial cleanup\n"));
8083 
8084   if (__kmp_init_serial) {
8085     __kmp_runtime_destroy();
8086     __kmp_init_serial = FALSE;
8087   }
8088 
8089   __kmp_cleanup_threadprivate_caches();
8090 
8091   for (f = 0; f < __kmp_threads_capacity; f++) {
8092     if (__kmp_root[f] != NULL) {
8093       __kmp_free(__kmp_root[f]);
8094       __kmp_root[f] = NULL;
8095     }
8096   }
8097   __kmp_free(__kmp_threads);
8098   // __kmp_threads and __kmp_root were allocated at once, as single block, so
8099   // there is no need in freeing __kmp_root.
8100   __kmp_threads = NULL;
8101   __kmp_root = NULL;
8102   __kmp_threads_capacity = 0;
8103 
8104 #if KMP_USE_DYNAMIC_LOCK
8105   __kmp_cleanup_indirect_user_locks();
8106 #else
8107   __kmp_cleanup_user_locks();
8108 #endif
8109 #if OMPD_SUPPORT
8110   if (ompd_state) {
8111     __kmp_free(ompd_env_block);
8112     ompd_env_block = NULL;
8113     ompd_env_block_size = 0;
8114   }
8115 #endif
8116 
8117 #if KMP_AFFINITY_SUPPORTED
8118   KMP_INTERNAL_FREE(CCAST(char *, __kmp_cpuinfo_file));
8119   __kmp_cpuinfo_file = NULL;
8120 #endif /* KMP_AFFINITY_SUPPORTED */
8121 
8122 #if KMP_USE_ADAPTIVE_LOCKS
8123 #if KMP_DEBUG_ADAPTIVE_LOCKS
8124   __kmp_print_speculative_stats();
8125 #endif
8126 #endif
8127   KMP_INTERNAL_FREE(__kmp_nested_nth.nth);
8128   __kmp_nested_nth.nth = NULL;
8129   __kmp_nested_nth.size = 0;
8130   __kmp_nested_nth.used = 0;
8131   KMP_INTERNAL_FREE(__kmp_nested_proc_bind.bind_types);
8132   __kmp_nested_proc_bind.bind_types = NULL;
8133   __kmp_nested_proc_bind.size = 0;
8134   __kmp_nested_proc_bind.used = 0;
8135   if (__kmp_affinity_format) {
8136     KMP_INTERNAL_FREE(__kmp_affinity_format);
8137     __kmp_affinity_format = NULL;
8138   }
8139 
8140   __kmp_i18n_catclose();
8141 
8142 #if KMP_USE_HIER_SCHED
8143   __kmp_hier_scheds.deallocate();
8144 #endif
8145 
8146 #if KMP_STATS_ENABLED
8147   __kmp_stats_fini();
8148 #endif
8149 
8150   KA_TRACE(10, ("__kmp_cleanup: exit\n"));
8151 }
8152 
8153 /* ------------------------------------------------------------------------ */
8154 
8155 int __kmp_ignore_mppbeg(void) {
8156   char *env;
8157 
8158   if ((env = getenv("KMP_IGNORE_MPPBEG")) != NULL) {
8159     if (__kmp_str_match_false(env))
8160       return FALSE;
8161   }
8162   // By default __kmpc_begin() is no-op.
8163   return TRUE;
8164 }
8165 
8166 int __kmp_ignore_mppend(void) {
8167   char *env;
8168 
8169   if ((env = getenv("KMP_IGNORE_MPPEND")) != NULL) {
8170     if (__kmp_str_match_false(env))
8171       return FALSE;
8172   }
8173   // By default __kmpc_end() is no-op.
8174   return TRUE;
8175 }
8176 
8177 void __kmp_internal_begin(void) {
8178   int gtid;
8179   kmp_root_t *root;
8180 
8181   /* this is a very important step as it will register new sibling threads
8182      and assign these new uber threads a new gtid */
8183   gtid = __kmp_entry_gtid();
8184   root = __kmp_threads[gtid]->th.th_root;
8185   KMP_ASSERT(KMP_UBER_GTID(gtid));
8186 
8187   if (root->r.r_begin)
8188     return;
8189   __kmp_acquire_lock(&root->r.r_begin_lock, gtid);
8190   if (root->r.r_begin) {
8191     __kmp_release_lock(&root->r.r_begin_lock, gtid);
8192     return;
8193   }
8194 
8195   root->r.r_begin = TRUE;
8196 
8197   __kmp_release_lock(&root->r.r_begin_lock, gtid);
8198 }
8199 
8200 /* ------------------------------------------------------------------------ */
8201 
8202 void __kmp_user_set_library(enum library_type arg) {
8203   int gtid;
8204   kmp_root_t *root;
8205   kmp_info_t *thread;
8206 
8207   /* first, make sure we are initialized so we can get our gtid */
8208 
8209   gtid = __kmp_entry_gtid();
8210   thread = __kmp_threads[gtid];
8211 
8212   root = thread->th.th_root;
8213 
8214   KA_TRACE(20, ("__kmp_user_set_library: enter T#%d, arg: %d, %d\n", gtid, arg,
8215                 library_serial));
8216   if (root->r.r_in_parallel) { /* Must be called in serial section of top-level
8217                                   thread */
8218     KMP_WARNING(SetLibraryIncorrectCall);
8219     return;
8220   }
8221 
8222   switch (arg) {
8223   case library_serial:
8224     thread->th.th_set_nproc = 0;
8225     set__nproc(thread, 1);
8226     break;
8227   case library_turnaround:
8228     thread->th.th_set_nproc = 0;
8229     set__nproc(thread, __kmp_dflt_team_nth ? __kmp_dflt_team_nth
8230                                            : __kmp_dflt_team_nth_ub);
8231     break;
8232   case library_throughput:
8233     thread->th.th_set_nproc = 0;
8234     set__nproc(thread, __kmp_dflt_team_nth ? __kmp_dflt_team_nth
8235                                            : __kmp_dflt_team_nth_ub);
8236     break;
8237   default:
8238     KMP_FATAL(UnknownLibraryType, arg);
8239   }
8240 
8241   __kmp_aux_set_library(arg);
8242 }
8243 
8244 void __kmp_aux_set_stacksize(size_t arg) {
8245   if (!__kmp_init_serial)
8246     __kmp_serial_initialize();
8247 
8248 #if KMP_OS_DARWIN
8249   if (arg & (0x1000 - 1)) {
8250     arg &= ~(0x1000 - 1);
8251     if (arg + 0x1000) /* check for overflow if we round up */
8252       arg += 0x1000;
8253   }
8254 #endif
8255   __kmp_acquire_bootstrap_lock(&__kmp_initz_lock);
8256 
8257   /* only change the default stacksize before the first parallel region */
8258   if (!TCR_4(__kmp_init_parallel)) {
8259     size_t value = arg; /* argument is in bytes */
8260 
8261     if (value < __kmp_sys_min_stksize)
8262       value = __kmp_sys_min_stksize;
8263     else if (value > KMP_MAX_STKSIZE)
8264       value = KMP_MAX_STKSIZE;
8265 
8266     __kmp_stksize = value;
8267 
8268     __kmp_env_stksize = TRUE; /* was KMP_STACKSIZE specified? */
8269   }
8270 
8271   __kmp_release_bootstrap_lock(&__kmp_initz_lock);
8272 }
8273 
8274 /* set the behaviour of the runtime library */
8275 /* TODO this can cause some odd behaviour with sibling parallelism... */
8276 void __kmp_aux_set_library(enum library_type arg) {
8277   __kmp_library = arg;
8278 
8279   switch (__kmp_library) {
8280   case library_serial: {
8281     KMP_INFORM(LibraryIsSerial);
8282   } break;
8283   case library_turnaround:
8284     if (__kmp_use_yield == 1 && !__kmp_use_yield_exp_set)
8285       __kmp_use_yield = 2; // only yield when oversubscribed
8286     break;
8287   case library_throughput:
8288     if (__kmp_dflt_blocktime == KMP_MAX_BLOCKTIME)
8289       __kmp_dflt_blocktime = 200;
8290     break;
8291   default:
8292     KMP_FATAL(UnknownLibraryType, arg);
8293   }
8294 }
8295 
8296 /* Getting team information common for all team API */
8297 // Returns NULL if not in teams construct
8298 static kmp_team_t *__kmp_aux_get_team_info(int &teams_serialized) {
8299   kmp_info_t *thr = __kmp_entry_thread();
8300   teams_serialized = 0;
8301   if (thr->th.th_teams_microtask) {
8302     kmp_team_t *team = thr->th.th_team;
8303     int tlevel = thr->th.th_teams_level; // the level of the teams construct
8304     int ii = team->t.t_level;
8305     teams_serialized = team->t.t_serialized;
8306     int level = tlevel + 1;
8307     KMP_DEBUG_ASSERT(ii >= tlevel);
8308     while (ii > level) {
8309       for (teams_serialized = team->t.t_serialized;
8310            (teams_serialized > 0) && (ii > level); teams_serialized--, ii--) {
8311       }
8312       if (team->t.t_serialized && (!teams_serialized)) {
8313         team = team->t.t_parent;
8314         continue;
8315       }
8316       if (ii > level) {
8317         team = team->t.t_parent;
8318         ii--;
8319       }
8320     }
8321     return team;
8322   }
8323   return NULL;
8324 }
8325 
8326 int __kmp_aux_get_team_num() {
8327   int serialized;
8328   kmp_team_t *team = __kmp_aux_get_team_info(serialized);
8329   if (team) {
8330     if (serialized > 1) {
8331       return 0; // teams region is serialized ( 1 team of 1 thread ).
8332     } else {
8333       return team->t.t_master_tid;
8334     }
8335   }
8336   return 0;
8337 }
8338 
8339 int __kmp_aux_get_num_teams() {
8340   int serialized;
8341   kmp_team_t *team = __kmp_aux_get_team_info(serialized);
8342   if (team) {
8343     if (serialized > 1) {
8344       return 1;
8345     } else {
8346       return team->t.t_parent->t.t_nproc;
8347     }
8348   }
8349   return 1;
8350 }
8351 
8352 /* ------------------------------------------------------------------------ */
8353 
8354 /*
8355  * Affinity Format Parser
8356  *
8357  * Field is in form of: %[[[0].]size]type
8358  * % and type are required (%% means print a literal '%')
8359  * type is either single char or long name surrounded by {},
8360  * e.g., N or {num_threads}
8361  * 0 => leading zeros
8362  * . => right justified when size is specified
8363  * by default output is left justified
8364  * size is the *minimum* field length
8365  * All other characters are printed as is
8366  *
8367  * Available field types:
8368  * L {thread_level}      - omp_get_level()
8369  * n {thread_num}        - omp_get_thread_num()
8370  * h {host}              - name of host machine
8371  * P {process_id}        - process id (integer)
8372  * T {thread_identifier} - native thread identifier (integer)
8373  * N {num_threads}       - omp_get_num_threads()
8374  * A {ancestor_tnum}     - omp_get_ancestor_thread_num(omp_get_level()-1)
8375  * a {thread_affinity}   - comma separated list of integers or integer ranges
8376  *                         (values of affinity mask)
8377  *
8378  * Implementation-specific field types can be added
8379  * If a type is unknown, print "undefined"
8380  */
8381 
8382 // Structure holding the short name, long name, and corresponding data type
8383 // for snprintf.  A table of these will represent the entire valid keyword
8384 // field types.
8385 typedef struct kmp_affinity_format_field_t {
8386   char short_name; // from spec e.g., L -> thread level
8387   const char *long_name; // from spec thread_level -> thread level
8388   char field_format; // data type for snprintf (typically 'd' or 's'
8389   // for integer or string)
8390 } kmp_affinity_format_field_t;
8391 
8392 static const kmp_affinity_format_field_t __kmp_affinity_format_table[] = {
8393 #if KMP_AFFINITY_SUPPORTED
8394     {'A', "thread_affinity", 's'},
8395 #endif
8396     {'t', "team_num", 'd'},
8397     {'T', "num_teams", 'd'},
8398     {'L', "nesting_level", 'd'},
8399     {'n', "thread_num", 'd'},
8400     {'N', "num_threads", 'd'},
8401     {'a', "ancestor_tnum", 'd'},
8402     {'H', "host", 's'},
8403     {'P', "process_id", 'd'},
8404     {'i', "native_thread_id", 'd'}};
8405 
8406 // Return the number of characters it takes to hold field
8407 static int __kmp_aux_capture_affinity_field(int gtid, const kmp_info_t *th,
8408                                             const char **ptr,
8409                                             kmp_str_buf_t *field_buffer) {
8410   int rc, format_index, field_value;
8411   const char *width_left, *width_right;
8412   bool pad_zeros, right_justify, parse_long_name, found_valid_name;
8413   static const int FORMAT_SIZE = 20;
8414   char format[FORMAT_SIZE] = {0};
8415   char absolute_short_name = 0;
8416 
8417   KMP_DEBUG_ASSERT(gtid >= 0);
8418   KMP_DEBUG_ASSERT(th);
8419   KMP_DEBUG_ASSERT(**ptr == '%');
8420   KMP_DEBUG_ASSERT(field_buffer);
8421 
8422   __kmp_str_buf_clear(field_buffer);
8423 
8424   // Skip the initial %
8425   (*ptr)++;
8426 
8427   // Check for %% first
8428   if (**ptr == '%') {
8429     __kmp_str_buf_cat(field_buffer, "%", 1);
8430     (*ptr)++; // skip over the second %
8431     return 1;
8432   }
8433 
8434   // Parse field modifiers if they are present
8435   pad_zeros = false;
8436   if (**ptr == '0') {
8437     pad_zeros = true;
8438     (*ptr)++; // skip over 0
8439   }
8440   right_justify = false;
8441   if (**ptr == '.') {
8442     right_justify = true;
8443     (*ptr)++; // skip over .
8444   }
8445   // Parse width of field: [width_left, width_right)
8446   width_left = width_right = NULL;
8447   if (**ptr >= '0' && **ptr <= '9') {
8448     width_left = *ptr;
8449     SKIP_DIGITS(*ptr);
8450     width_right = *ptr;
8451   }
8452 
8453   // Create the format for KMP_SNPRINTF based on flags parsed above
8454   format_index = 0;
8455   format[format_index++] = '%';
8456   if (!right_justify)
8457     format[format_index++] = '-';
8458   if (pad_zeros)
8459     format[format_index++] = '0';
8460   if (width_left && width_right) {
8461     int i = 0;
8462     // Only allow 8 digit number widths.
8463     // This also prevents overflowing format variable
8464     while (i < 8 && width_left < width_right) {
8465       format[format_index++] = *width_left;
8466       width_left++;
8467       i++;
8468     }
8469   }
8470 
8471   // Parse a name (long or short)
8472   // Canonicalize the name into absolute_short_name
8473   found_valid_name = false;
8474   parse_long_name = (**ptr == '{');
8475   if (parse_long_name)
8476     (*ptr)++; // skip initial left brace
8477   for (size_t i = 0; i < sizeof(__kmp_affinity_format_table) /
8478                              sizeof(__kmp_affinity_format_table[0]);
8479        ++i) {
8480     char short_name = __kmp_affinity_format_table[i].short_name;
8481     const char *long_name = __kmp_affinity_format_table[i].long_name;
8482     char field_format = __kmp_affinity_format_table[i].field_format;
8483     if (parse_long_name) {
8484       size_t length = KMP_STRLEN(long_name);
8485       if (strncmp(*ptr, long_name, length) == 0) {
8486         found_valid_name = true;
8487         (*ptr) += length; // skip the long name
8488       }
8489     } else if (**ptr == short_name) {
8490       found_valid_name = true;
8491       (*ptr)++; // skip the short name
8492     }
8493     if (found_valid_name) {
8494       format[format_index++] = field_format;
8495       format[format_index++] = '\0';
8496       absolute_short_name = short_name;
8497       break;
8498     }
8499   }
8500   if (parse_long_name) {
8501     if (**ptr != '}') {
8502       absolute_short_name = 0;
8503     } else {
8504       (*ptr)++; // skip over the right brace
8505     }
8506   }
8507 
8508   // Attempt to fill the buffer with the requested
8509   // value using snprintf within __kmp_str_buf_print()
8510   switch (absolute_short_name) {
8511   case 't':
8512     rc = __kmp_str_buf_print(field_buffer, format, __kmp_aux_get_team_num());
8513     break;
8514   case 'T':
8515     rc = __kmp_str_buf_print(field_buffer, format, __kmp_aux_get_num_teams());
8516     break;
8517   case 'L':
8518     rc = __kmp_str_buf_print(field_buffer, format, th->th.th_team->t.t_level);
8519     break;
8520   case 'n':
8521     rc = __kmp_str_buf_print(field_buffer, format, __kmp_tid_from_gtid(gtid));
8522     break;
8523   case 'H': {
8524     static const int BUFFER_SIZE = 256;
8525     char buf[BUFFER_SIZE];
8526     __kmp_expand_host_name(buf, BUFFER_SIZE);
8527     rc = __kmp_str_buf_print(field_buffer, format, buf);
8528   } break;
8529   case 'P':
8530     rc = __kmp_str_buf_print(field_buffer, format, getpid());
8531     break;
8532   case 'i':
8533     rc = __kmp_str_buf_print(field_buffer, format, __kmp_gettid());
8534     break;
8535   case 'N':
8536     rc = __kmp_str_buf_print(field_buffer, format, th->th.th_team->t.t_nproc);
8537     break;
8538   case 'a':
8539     field_value =
8540         __kmp_get_ancestor_thread_num(gtid, th->th.th_team->t.t_level - 1);
8541     rc = __kmp_str_buf_print(field_buffer, format, field_value);
8542     break;
8543 #if KMP_AFFINITY_SUPPORTED
8544   case 'A': {
8545     kmp_str_buf_t buf;
8546     __kmp_str_buf_init(&buf);
8547     __kmp_affinity_str_buf_mask(&buf, th->th.th_affin_mask);
8548     rc = __kmp_str_buf_print(field_buffer, format, buf.str);
8549     __kmp_str_buf_free(&buf);
8550   } break;
8551 #endif
8552   default:
8553     // According to spec, If an implementation does not have info for field
8554     // type, then "undefined" is printed
8555     rc = __kmp_str_buf_print(field_buffer, "%s", "undefined");
8556     // Skip the field
8557     if (parse_long_name) {
8558       SKIP_TOKEN(*ptr);
8559       if (**ptr == '}')
8560         (*ptr)++;
8561     } else {
8562       (*ptr)++;
8563     }
8564   }
8565 
8566   KMP_ASSERT(format_index <= FORMAT_SIZE);
8567   return rc;
8568 }
8569 
8570 /*
8571  * Return number of characters needed to hold the affinity string
8572  * (not including null byte character)
8573  * The resultant string is printed to buffer, which the caller can then
8574  * handle afterwards
8575  */
8576 size_t __kmp_aux_capture_affinity(int gtid, const char *format,
8577                                   kmp_str_buf_t *buffer) {
8578   const char *parse_ptr;
8579   size_t retval;
8580   const kmp_info_t *th;
8581   kmp_str_buf_t field;
8582 
8583   KMP_DEBUG_ASSERT(buffer);
8584   KMP_DEBUG_ASSERT(gtid >= 0);
8585 
8586   __kmp_str_buf_init(&field);
8587   __kmp_str_buf_clear(buffer);
8588 
8589   th = __kmp_threads[gtid];
8590   retval = 0;
8591 
8592   // If format is NULL or zero-length string, then we use
8593   // affinity-format-var ICV
8594   parse_ptr = format;
8595   if (parse_ptr == NULL || *parse_ptr == '\0') {
8596     parse_ptr = __kmp_affinity_format;
8597   }
8598   KMP_DEBUG_ASSERT(parse_ptr);
8599 
8600   while (*parse_ptr != '\0') {
8601     // Parse a field
8602     if (*parse_ptr == '%') {
8603       // Put field in the buffer
8604       int rc = __kmp_aux_capture_affinity_field(gtid, th, &parse_ptr, &field);
8605       __kmp_str_buf_catbuf(buffer, &field);
8606       retval += rc;
8607     } else {
8608       // Put literal character in buffer
8609       __kmp_str_buf_cat(buffer, parse_ptr, 1);
8610       retval++;
8611       parse_ptr++;
8612     }
8613   }
8614   __kmp_str_buf_free(&field);
8615   return retval;
8616 }
8617 
8618 // Displays the affinity string to stdout
8619 void __kmp_aux_display_affinity(int gtid, const char *format) {
8620   kmp_str_buf_t buf;
8621   __kmp_str_buf_init(&buf);
8622   __kmp_aux_capture_affinity(gtid, format, &buf);
8623   __kmp_fprintf(kmp_out, "%s" KMP_END_OF_LINE, buf.str);
8624   __kmp_str_buf_free(&buf);
8625 }
8626 
8627 /* ------------------------------------------------------------------------ */
8628 
8629 void __kmp_aux_set_blocktime(int arg, kmp_info_t *thread, int tid) {
8630   int blocktime = arg; /* argument is in milliseconds */
8631 #if KMP_USE_MONITOR
8632   int bt_intervals;
8633 #endif
8634   kmp_int8 bt_set;
8635 
8636   __kmp_save_internal_controls(thread);
8637 
8638   /* Normalize and set blocktime for the teams */
8639   if (blocktime < KMP_MIN_BLOCKTIME)
8640     blocktime = KMP_MIN_BLOCKTIME;
8641   else if (blocktime > KMP_MAX_BLOCKTIME)
8642     blocktime = KMP_MAX_BLOCKTIME;
8643 
8644   set__blocktime_team(thread->th.th_team, tid, blocktime);
8645   set__blocktime_team(thread->th.th_serial_team, 0, blocktime);
8646 
8647 #if KMP_USE_MONITOR
8648   /* Calculate and set blocktime intervals for the teams */
8649   bt_intervals = KMP_INTERVALS_FROM_BLOCKTIME(blocktime, __kmp_monitor_wakeups);
8650 
8651   set__bt_intervals_team(thread->th.th_team, tid, bt_intervals);
8652   set__bt_intervals_team(thread->th.th_serial_team, 0, bt_intervals);
8653 #endif
8654 
8655   /* Set whether blocktime has been set to "TRUE" */
8656   bt_set = TRUE;
8657 
8658   set__bt_set_team(thread->th.th_team, tid, bt_set);
8659   set__bt_set_team(thread->th.th_serial_team, 0, bt_set);
8660 #if KMP_USE_MONITOR
8661   KF_TRACE(10, ("kmp_set_blocktime: T#%d(%d:%d), blocktime=%d, "
8662                 "bt_intervals=%d, monitor_updates=%d\n",
8663                 __kmp_gtid_from_tid(tid, thread->th.th_team),
8664                 thread->th.th_team->t.t_id, tid, blocktime, bt_intervals,
8665                 __kmp_monitor_wakeups));
8666 #else
8667   KF_TRACE(10, ("kmp_set_blocktime: T#%d(%d:%d), blocktime=%d\n",
8668                 __kmp_gtid_from_tid(tid, thread->th.th_team),
8669                 thread->th.th_team->t.t_id, tid, blocktime));
8670 #endif
8671 }
8672 
8673 void __kmp_aux_set_defaults(char const *str, size_t len) {
8674   if (!__kmp_init_serial) {
8675     __kmp_serial_initialize();
8676   }
8677   __kmp_env_initialize(str);
8678 
8679   if (__kmp_settings || __kmp_display_env || __kmp_display_env_verbose) {
8680     __kmp_env_print();
8681   }
8682 } // __kmp_aux_set_defaults
8683 
8684 /* ------------------------------------------------------------------------ */
8685 /* internal fast reduction routines */
8686 
8687 PACKED_REDUCTION_METHOD_T
8688 __kmp_determine_reduction_method(
8689     ident_t *loc, kmp_int32 global_tid, kmp_int32 num_vars, size_t reduce_size,
8690     void *reduce_data, void (*reduce_func)(void *lhs_data, void *rhs_data),
8691     kmp_critical_name *lck) {
8692 
8693   // Default reduction method: critical construct ( lck != NULL, like in current
8694   // PAROPT )
8695   // If ( reduce_data!=NULL && reduce_func!=NULL ): the tree-reduction method
8696   // can be selected by RTL
8697   // If loc->flags contains KMP_IDENT_ATOMIC_REDUCE, the atomic reduce method
8698   // can be selected by RTL
8699   // Finally, it's up to OpenMP RTL to make a decision on which method to select
8700   // among generated by PAROPT.
8701 
8702   PACKED_REDUCTION_METHOD_T retval;
8703 
8704   int team_size;
8705 
8706   KMP_DEBUG_ASSERT(loc); // it would be nice to test ( loc != 0 )
8707   KMP_DEBUG_ASSERT(lck); // it would be nice to test ( lck != 0 )
8708 
8709 #define FAST_REDUCTION_ATOMIC_METHOD_GENERATED                                 \
8710   ((loc->flags & (KMP_IDENT_ATOMIC_REDUCE)) == (KMP_IDENT_ATOMIC_REDUCE))
8711 #define FAST_REDUCTION_TREE_METHOD_GENERATED ((reduce_data) && (reduce_func))
8712 
8713   retval = critical_reduce_block;
8714 
8715   // another choice of getting a team size (with 1 dynamic deference) is slower
8716   team_size = __kmp_get_team_num_threads(global_tid);
8717   if (team_size == 1) {
8718 
8719     retval = empty_reduce_block;
8720 
8721   } else {
8722 
8723     int atomic_available = FAST_REDUCTION_ATOMIC_METHOD_GENERATED;
8724 
8725 #if KMP_ARCH_X86_64 || KMP_ARCH_PPC64 || KMP_ARCH_AARCH64 ||                   \
8726     KMP_ARCH_MIPS64 || KMP_ARCH_RISCV64
8727 
8728 #if KMP_OS_LINUX || KMP_OS_DRAGONFLY || KMP_OS_FREEBSD || KMP_OS_NETBSD ||     \
8729     KMP_OS_OPENBSD || KMP_OS_WINDOWS || KMP_OS_DARWIN || KMP_OS_HURD
8730 
8731     int teamsize_cutoff = 4;
8732 
8733 #if KMP_MIC_SUPPORTED
8734     if (__kmp_mic_type != non_mic) {
8735       teamsize_cutoff = 8;
8736     }
8737 #endif
8738     int tree_available = FAST_REDUCTION_TREE_METHOD_GENERATED;
8739     if (tree_available) {
8740       if (team_size <= teamsize_cutoff) {
8741         if (atomic_available) {
8742           retval = atomic_reduce_block;
8743         }
8744       } else {
8745         retval = TREE_REDUCE_BLOCK_WITH_REDUCTION_BARRIER;
8746       }
8747     } else if (atomic_available) {
8748       retval = atomic_reduce_block;
8749     }
8750 #else
8751 #error "Unknown or unsupported OS"
8752 #endif // KMP_OS_LINUX || KMP_OS_DRAGONFLY || KMP_OS_FREEBSD || KMP_OS_NETBSD ||
8753        // KMP_OS_OPENBSD || KMP_OS_WINDOWS || KMP_OS_DARWIN || KMP_OS_HURD
8754 
8755 #elif KMP_ARCH_X86 || KMP_ARCH_ARM || KMP_ARCH_AARCH || KMP_ARCH_MIPS
8756 
8757 #if KMP_OS_LINUX || KMP_OS_FREEBSD || KMP_OS_WINDOWS || KMP_OS_HURD
8758 
8759     // basic tuning
8760 
8761     if (atomic_available) {
8762       if (num_vars <= 2) { // && ( team_size <= 8 ) due to false-sharing ???
8763         retval = atomic_reduce_block;
8764       }
8765     } // otherwise: use critical section
8766 
8767 #elif KMP_OS_DARWIN
8768 
8769     int tree_available = FAST_REDUCTION_TREE_METHOD_GENERATED;
8770     if (atomic_available && (num_vars <= 3)) {
8771       retval = atomic_reduce_block;
8772     } else if (tree_available) {
8773       if ((reduce_size > (9 * sizeof(kmp_real64))) &&
8774           (reduce_size < (2000 * sizeof(kmp_real64)))) {
8775         retval = TREE_REDUCE_BLOCK_WITH_PLAIN_BARRIER;
8776       }
8777     } // otherwise: use critical section
8778 
8779 #else
8780 #error "Unknown or unsupported OS"
8781 #endif
8782 
8783 #else
8784 #error "Unknown or unsupported architecture"
8785 #endif
8786   }
8787 
8788   // KMP_FORCE_REDUCTION
8789 
8790   // If the team is serialized (team_size == 1), ignore the forced reduction
8791   // method and stay with the unsynchronized method (empty_reduce_block)
8792   if (__kmp_force_reduction_method != reduction_method_not_defined &&
8793       team_size != 1) {
8794 
8795     PACKED_REDUCTION_METHOD_T forced_retval = critical_reduce_block;
8796 
8797     int atomic_available, tree_available;
8798 
8799     switch ((forced_retval = __kmp_force_reduction_method)) {
8800     case critical_reduce_block:
8801       KMP_ASSERT(lck); // lck should be != 0
8802       break;
8803 
8804     case atomic_reduce_block:
8805       atomic_available = FAST_REDUCTION_ATOMIC_METHOD_GENERATED;
8806       if (!atomic_available) {
8807         KMP_WARNING(RedMethodNotSupported, "atomic");
8808         forced_retval = critical_reduce_block;
8809       }
8810       break;
8811 
8812     case tree_reduce_block:
8813       tree_available = FAST_REDUCTION_TREE_METHOD_GENERATED;
8814       if (!tree_available) {
8815         KMP_WARNING(RedMethodNotSupported, "tree");
8816         forced_retval = critical_reduce_block;
8817       } else {
8818 #if KMP_FAST_REDUCTION_BARRIER
8819         forced_retval = TREE_REDUCE_BLOCK_WITH_REDUCTION_BARRIER;
8820 #endif
8821       }
8822       break;
8823 
8824     default:
8825       KMP_ASSERT(0); // "unsupported method specified"
8826     }
8827 
8828     retval = forced_retval;
8829   }
8830 
8831   KA_TRACE(10, ("reduction method selected=%08x\n", retval));
8832 
8833 #undef FAST_REDUCTION_TREE_METHOD_GENERATED
8834 #undef FAST_REDUCTION_ATOMIC_METHOD_GENERATED
8835 
8836   return (retval);
8837 }
8838 // this function is for testing set/get/determine reduce method
8839 kmp_int32 __kmp_get_reduce_method(void) {
8840   return ((__kmp_entry_thread()->th.th_local.packed_reduction_method) >> 8);
8841 }
8842 
8843 // Soft pause sets up threads to ignore blocktime and just go to sleep.
8844 // Spin-wait code checks __kmp_pause_status and reacts accordingly.
8845 void __kmp_soft_pause() { __kmp_pause_status = kmp_soft_paused; }
8846 
8847 // Hard pause shuts down the runtime completely.  Resume happens naturally when
8848 // OpenMP is used subsequently.
8849 void __kmp_hard_pause() {
8850   __kmp_pause_status = kmp_hard_paused;
8851   __kmp_internal_end_thread(-1);
8852 }
8853 
8854 // Soft resume sets __kmp_pause_status, and wakes up all threads.
8855 void __kmp_resume_if_soft_paused() {
8856   if (__kmp_pause_status == kmp_soft_paused) {
8857     __kmp_pause_status = kmp_not_paused;
8858 
8859     for (int gtid = 1; gtid < __kmp_threads_capacity; ++gtid) {
8860       kmp_info_t *thread = __kmp_threads[gtid];
8861       if (thread) { // Wake it if sleeping
8862         kmp_flag_64<> fl(&thread->th.th_bar[bs_forkjoin_barrier].bb.b_go,
8863                          thread);
8864         if (fl.is_sleeping())
8865           fl.resume(gtid);
8866         else if (__kmp_try_suspend_mx(thread)) { // got suspend lock
8867           __kmp_unlock_suspend_mx(thread); // unlock it; it won't sleep
8868         } else { // thread holds the lock and may sleep soon
8869           do { // until either the thread sleeps, or we can get the lock
8870             if (fl.is_sleeping()) {
8871               fl.resume(gtid);
8872               break;
8873             } else if (__kmp_try_suspend_mx(thread)) {
8874               __kmp_unlock_suspend_mx(thread);
8875               break;
8876             }
8877           } while (1);
8878         }
8879       }
8880     }
8881   }
8882 }
8883 
8884 // This function is called via __kmpc_pause_resource. Returns 0 if successful.
8885 // TODO: add warning messages
8886 int __kmp_pause_resource(kmp_pause_status_t level) {
8887   if (level == kmp_not_paused) { // requesting resume
8888     if (__kmp_pause_status == kmp_not_paused) {
8889       // error message about runtime not being paused, so can't resume
8890       return 1;
8891     } else {
8892       KMP_DEBUG_ASSERT(__kmp_pause_status == kmp_soft_paused ||
8893                        __kmp_pause_status == kmp_hard_paused);
8894       __kmp_pause_status = kmp_not_paused;
8895       return 0;
8896     }
8897   } else if (level == kmp_soft_paused) { // requesting soft pause
8898     if (__kmp_pause_status != kmp_not_paused) {
8899       // error message about already being paused
8900       return 1;
8901     } else {
8902       __kmp_soft_pause();
8903       return 0;
8904     }
8905   } else if (level == kmp_hard_paused) { // requesting hard pause
8906     if (__kmp_pause_status != kmp_not_paused) {
8907       // error message about already being paused
8908       return 1;
8909     } else {
8910       __kmp_hard_pause();
8911       return 0;
8912     }
8913   } else {
8914     // error message about invalid level
8915     return 1;
8916   }
8917 }
8918 
8919 void __kmp_omp_display_env(int verbose) {
8920   __kmp_acquire_bootstrap_lock(&__kmp_initz_lock);
8921   if (__kmp_init_serial == 0)
8922     __kmp_do_serial_initialize();
8923   __kmp_display_env_impl(!verbose, verbose);
8924   __kmp_release_bootstrap_lock(&__kmp_initz_lock);
8925 }
8926 
8927 // The team size is changing, so distributed barrier must be modified
8928 void __kmp_resize_dist_barrier(kmp_team_t *team, int old_nthreads,
8929                                int new_nthreads) {
8930   KMP_DEBUG_ASSERT(__kmp_barrier_release_pattern[bs_forkjoin_barrier] ==
8931                    bp_dist_bar);
8932   kmp_info_t **other_threads = team->t.t_threads;
8933 
8934   // We want all the workers to stop waiting on the barrier while we adjust the
8935   // size of the team.
8936   for (int f = 1; f < old_nthreads; ++f) {
8937     KMP_DEBUG_ASSERT(other_threads[f] != NULL);
8938     // Ignore threads that are already inactive or not present in the team
8939     if (team->t.t_threads[f]->th.th_used_in_team.load() == 0) {
8940       // teams construct causes thread_limit to get passed in, and some of
8941       // those could be inactive; just ignore them
8942       continue;
8943     }
8944     // If thread is transitioning still to in_use state, wait for it
8945     if (team->t.t_threads[f]->th.th_used_in_team.load() == 3) {
8946       while (team->t.t_threads[f]->th.th_used_in_team.load() == 3)
8947         KMP_CPU_PAUSE();
8948     }
8949     // The thread should be in_use now
8950     KMP_DEBUG_ASSERT(team->t.t_threads[f]->th.th_used_in_team.load() == 1);
8951     // Transition to unused state
8952     team->t.t_threads[f]->th.th_used_in_team.store(2);
8953     KMP_DEBUG_ASSERT(team->t.t_threads[f]->th.th_used_in_team.load() == 2);
8954   }
8955   // Release all the workers
8956   kmp_uint64 new_value; // new value for go
8957   new_value = team->t.b->go_release();
8958 
8959   KMP_MFENCE();
8960 
8961   // Workers should see transition status 2 and move to 0; but may need to be
8962   // woken up first
8963   size_t my_go_index;
8964   int count = old_nthreads - 1;
8965   while (count > 0) {
8966     count = old_nthreads - 1;
8967     for (int f = 1; f < old_nthreads; ++f) {
8968       my_go_index = f / team->t.b->threads_per_go;
8969       if (other_threads[f]->th.th_used_in_team.load() != 0) {
8970         if (__kmp_dflt_blocktime != KMP_MAX_BLOCKTIME) { // Wake up the workers
8971           kmp_atomic_flag_64<> *flag = (kmp_atomic_flag_64<> *)CCAST(
8972               void *, other_threads[f]->th.th_sleep_loc);
8973           __kmp_atomic_resume_64(other_threads[f]->th.th_info.ds.ds_gtid, flag);
8974         }
8975       } else {
8976         KMP_DEBUG_ASSERT(team->t.t_threads[f]->th.th_used_in_team.load() == 0);
8977         count--;
8978       }
8979     }
8980   }
8981   // Now update the barrier size
8982   team->t.b->update_num_threads(new_nthreads);
8983   team->t.b->go_reset();
8984 }
8985 
8986 void __kmp_add_threads_to_team(kmp_team_t *team, int new_nthreads) {
8987   // Add the threads back to the team
8988   KMP_DEBUG_ASSERT(team);
8989   // Threads were paused and pointed at th_used_in_team temporarily during a
8990   // resize of the team. We're going to set th_used_in_team to 3 to indicate to
8991   // the thread that it should transition itself back into the team. Then, if
8992   // blocktime isn't infinite, the thread could be sleeping, so we send a resume
8993   // to wake it up.
8994   for (int f = 1; f < new_nthreads; ++f) {
8995     KMP_DEBUG_ASSERT(team->t.t_threads[f]);
8996     KMP_COMPARE_AND_STORE_ACQ32(&(team->t.t_threads[f]->th.th_used_in_team), 0,
8997                                 3);
8998     if (__kmp_dflt_blocktime != KMP_MAX_BLOCKTIME) { // Wake up sleeping threads
8999       __kmp_resume_32(team->t.t_threads[f]->th.th_info.ds.ds_gtid,
9000                       (kmp_flag_32<false, false> *)NULL);
9001     }
9002   }
9003   // The threads should be transitioning to the team; when they are done, they
9004   // should have set th_used_in_team to 1. This loop forces master to wait until
9005   // all threads have moved into the team and are waiting in the barrier.
9006   int count = new_nthreads - 1;
9007   while (count > 0) {
9008     count = new_nthreads - 1;
9009     for (int f = 1; f < new_nthreads; ++f) {
9010       if (team->t.t_threads[f]->th.th_used_in_team.load() == 1) {
9011         count--;
9012       }
9013     }
9014   }
9015 }
9016 
9017 // Globals and functions for hidden helper task
9018 kmp_info_t **__kmp_hidden_helper_threads;
9019 kmp_info_t *__kmp_hidden_helper_main_thread;
9020 std::atomic<kmp_int32> __kmp_unexecuted_hidden_helper_tasks;
9021 #if KMP_OS_LINUX
9022 kmp_int32 __kmp_hidden_helper_threads_num = 8;
9023 kmp_int32 __kmp_enable_hidden_helper = TRUE;
9024 #else
9025 kmp_int32 __kmp_hidden_helper_threads_num = 0;
9026 kmp_int32 __kmp_enable_hidden_helper = FALSE;
9027 #endif
9028 
9029 namespace {
9030 std::atomic<kmp_int32> __kmp_hit_hidden_helper_threads_num;
9031 
9032 void __kmp_hidden_helper_wrapper_fn(int *gtid, int *, ...) {
9033   // This is an explicit synchronization on all hidden helper threads in case
9034   // that when a regular thread pushes a hidden helper task to one hidden
9035   // helper thread, the thread has not been awaken once since they're released
9036   // by the main thread after creating the team.
9037   KMP_ATOMIC_INC(&__kmp_hit_hidden_helper_threads_num);
9038   while (KMP_ATOMIC_LD_ACQ(&__kmp_hit_hidden_helper_threads_num) !=
9039          __kmp_hidden_helper_threads_num)
9040     ;
9041 
9042   // If main thread, then wait for signal
9043   if (__kmpc_master(nullptr, *gtid)) {
9044     // First, unset the initial state and release the initial thread
9045     TCW_4(__kmp_init_hidden_helper_threads, FALSE);
9046     __kmp_hidden_helper_initz_release();
9047     __kmp_hidden_helper_main_thread_wait();
9048     // Now wake up all worker threads
9049     for (int i = 1; i < __kmp_hit_hidden_helper_threads_num; ++i) {
9050       __kmp_hidden_helper_worker_thread_signal();
9051     }
9052   }
9053 }
9054 } // namespace
9055 
9056 void __kmp_hidden_helper_threads_initz_routine() {
9057   // Create a new root for hidden helper team/threads
9058   const int gtid = __kmp_register_root(TRUE);
9059   __kmp_hidden_helper_main_thread = __kmp_threads[gtid];
9060   __kmp_hidden_helper_threads = &__kmp_threads[gtid];
9061   __kmp_hidden_helper_main_thread->th.th_set_nproc =
9062       __kmp_hidden_helper_threads_num;
9063 
9064   KMP_ATOMIC_ST_REL(&__kmp_hit_hidden_helper_threads_num, 0);
9065 
9066   __kmpc_fork_call(nullptr, 0, __kmp_hidden_helper_wrapper_fn);
9067 
9068   // Set the initialization flag to FALSE
9069   TCW_SYNC_4(__kmp_init_hidden_helper, FALSE);
9070 
9071   __kmp_hidden_helper_threads_deinitz_release();
9072 }
9073 
9074 /* Nesting Mode:
9075    Set via KMP_NESTING_MODE, which takes an integer.
9076    Note: we skip duplicate topology levels, and skip levels with only
9077       one entity.
9078    KMP_NESTING_MODE=0 is the default, and doesn't use nesting mode.
9079    KMP_NESTING_MODE=1 sets as many nesting levels as there are distinct levels
9080       in the topology, and initializes the number of threads at each of those
9081       levels to the number of entities at each level, respectively, below the
9082       entity at the parent level.
9083    KMP_NESTING_MODE=N, where N>1, attempts to create up to N nesting levels,
9084       but starts with nesting OFF -- max-active-levels-var is 1 -- and requires
9085       the user to turn nesting on explicitly. This is an even more experimental
9086       option to this experimental feature, and may change or go away in the
9087       future.
9088 */
9089 
9090 // Allocate space to store nesting levels
9091 void __kmp_init_nesting_mode() {
9092   int levels = KMP_HW_LAST;
9093   __kmp_nesting_mode_nlevels = levels;
9094   __kmp_nesting_nth_level = (int *)KMP_INTERNAL_MALLOC(levels * sizeof(int));
9095   for (int i = 0; i < levels; ++i)
9096     __kmp_nesting_nth_level[i] = 0;
9097   if (__kmp_nested_nth.size < levels) {
9098     __kmp_nested_nth.nth =
9099         (int *)KMP_INTERNAL_REALLOC(__kmp_nested_nth.nth, levels * sizeof(int));
9100     __kmp_nested_nth.size = levels;
9101   }
9102 }
9103 
9104 // Set # threads for top levels of nesting; must be called after topology set
9105 void __kmp_set_nesting_mode_threads() {
9106   kmp_info_t *thread = __kmp_threads[__kmp_entry_gtid()];
9107 
9108   if (__kmp_nesting_mode == 1)
9109     __kmp_nesting_mode_nlevels = KMP_MAX_ACTIVE_LEVELS_LIMIT;
9110   else if (__kmp_nesting_mode > 1)
9111     __kmp_nesting_mode_nlevels = __kmp_nesting_mode;
9112 
9113   if (__kmp_topology) { // use topology info
9114     int loc, hw_level;
9115     for (loc = 0, hw_level = 0; hw_level < __kmp_topology->get_depth() &&
9116                                 loc < __kmp_nesting_mode_nlevels;
9117          loc++, hw_level++) {
9118       __kmp_nesting_nth_level[loc] = __kmp_topology->get_ratio(hw_level);
9119       if (__kmp_nesting_nth_level[loc] == 1)
9120         loc--;
9121     }
9122     // Make sure all cores are used
9123     if (__kmp_nesting_mode > 1 && loc > 1) {
9124       int core_level = __kmp_topology->get_level(KMP_HW_CORE);
9125       int num_cores = __kmp_topology->get_count(core_level);
9126       int upper_levels = 1;
9127       for (int level = 0; level < loc - 1; ++level)
9128         upper_levels *= __kmp_nesting_nth_level[level];
9129       if (upper_levels * __kmp_nesting_nth_level[loc - 1] < num_cores)
9130         __kmp_nesting_nth_level[loc - 1] =
9131             num_cores / __kmp_nesting_nth_level[loc - 2];
9132     }
9133     __kmp_nesting_mode_nlevels = loc;
9134     __kmp_nested_nth.used = __kmp_nesting_mode_nlevels;
9135   } else { // no topology info available; provide a reasonable guesstimation
9136     if (__kmp_avail_proc >= 4) {
9137       __kmp_nesting_nth_level[0] = __kmp_avail_proc / 2;
9138       __kmp_nesting_nth_level[1] = 2;
9139       __kmp_nesting_mode_nlevels = 2;
9140     } else {
9141       __kmp_nesting_nth_level[0] = __kmp_avail_proc;
9142       __kmp_nesting_mode_nlevels = 1;
9143     }
9144     __kmp_nested_nth.used = __kmp_nesting_mode_nlevels;
9145   }
9146   for (int i = 0; i < __kmp_nesting_mode_nlevels; ++i) {
9147     __kmp_nested_nth.nth[i] = __kmp_nesting_nth_level[i];
9148   }
9149   set__nproc(thread, __kmp_nesting_nth_level[0]);
9150   if (__kmp_nesting_mode > 1 && __kmp_nesting_mode_nlevels > __kmp_nesting_mode)
9151     __kmp_nesting_mode_nlevels = __kmp_nesting_mode;
9152   if (get__max_active_levels(thread) > 1) {
9153     // if max levels was set, set nesting mode levels to same
9154     __kmp_nesting_mode_nlevels = get__max_active_levels(thread);
9155   }
9156   if (__kmp_nesting_mode == 1) // turn on nesting for this case only
9157     set__max_active_levels(thread, __kmp_nesting_mode_nlevels);
9158 }
9159