1 /* 2 * kmp_runtime.cpp -- KPTS runtime support library 3 */ 4 5 //===----------------------------------------------------------------------===// 6 // 7 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 8 // See https://llvm.org/LICENSE.txt for license information. 9 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "kmp.h" 14 #include "kmp_affinity.h" 15 #include "kmp_atomic.h" 16 #include "kmp_environment.h" 17 #include "kmp_error.h" 18 #include "kmp_i18n.h" 19 #include "kmp_io.h" 20 #include "kmp_itt.h" 21 #include "kmp_settings.h" 22 #include "kmp_stats.h" 23 #include "kmp_str.h" 24 #include "kmp_wait_release.h" 25 #include "kmp_wrapper_getpid.h" 26 #include "kmp_dispatch.h" 27 #if KMP_USE_HIER_SCHED 28 #include "kmp_dispatch_hier.h" 29 #endif 30 31 #if OMPT_SUPPORT 32 #include "ompt-specific.h" 33 #endif 34 35 /* these are temporary issues to be dealt with */ 36 #define KMP_USE_PRCTL 0 37 38 #if KMP_OS_WINDOWS 39 #include <process.h> 40 #endif 41 42 #include "tsan_annotations.h" 43 44 #if defined(KMP_GOMP_COMPAT) 45 char const __kmp_version_alt_comp[] = 46 KMP_VERSION_PREFIX "alternative compiler support: yes"; 47 #endif /* defined(KMP_GOMP_COMPAT) */ 48 49 char const __kmp_version_omp_api[] = 50 KMP_VERSION_PREFIX "API version: 5.0 (201611)"; 51 52 #ifdef KMP_DEBUG 53 char const __kmp_version_lock[] = 54 KMP_VERSION_PREFIX "lock type: run time selectable"; 55 #endif /* KMP_DEBUG */ 56 57 #define KMP_MIN(x, y) ((x) < (y) ? (x) : (y)) 58 59 /* ------------------------------------------------------------------------ */ 60 61 #if KMP_USE_MONITOR 62 kmp_info_t __kmp_monitor; 63 #endif 64 65 /* Forward declarations */ 66 67 void __kmp_cleanup(void); 68 69 static void __kmp_initialize_info(kmp_info_t *, kmp_team_t *, int tid, 70 int gtid); 71 static void __kmp_initialize_team(kmp_team_t *team, int new_nproc, 72 kmp_internal_control_t *new_icvs, 73 ident_t *loc); 74 #if KMP_AFFINITY_SUPPORTED 75 static void __kmp_partition_places(kmp_team_t *team, 76 int update_master_only = 0); 77 #endif 78 static void __kmp_do_serial_initialize(void); 79 void __kmp_fork_barrier(int gtid, int tid); 80 void __kmp_join_barrier(int gtid); 81 void __kmp_setup_icv_copy(kmp_team_t *team, int new_nproc, 82 kmp_internal_control_t *new_icvs, ident_t *loc); 83 84 #ifdef USE_LOAD_BALANCE 85 static int __kmp_load_balance_nproc(kmp_root_t *root, int set_nproc); 86 #endif 87 88 static int __kmp_expand_threads(int nNeed); 89 #if KMP_OS_WINDOWS 90 static int __kmp_unregister_root_other_thread(int gtid); 91 #endif 92 static void __kmp_unregister_library(void); // called by __kmp_internal_end() 93 static void __kmp_reap_thread(kmp_info_t *thread, int is_root); 94 kmp_info_t *__kmp_thread_pool_insert_pt = NULL; 95 96 /* Calculate the identifier of the current thread */ 97 /* fast (and somewhat portable) way to get unique identifier of executing 98 thread. Returns KMP_GTID_DNE if we haven't been assigned a gtid. */ 99 int __kmp_get_global_thread_id() { 100 int i; 101 kmp_info_t **other_threads; 102 size_t stack_data; 103 char *stack_addr; 104 size_t stack_size; 105 char *stack_base; 106 107 KA_TRACE( 108 1000, 109 ("*** __kmp_get_global_thread_id: entering, nproc=%d all_nproc=%d\n", 110 __kmp_nth, __kmp_all_nth)); 111 112 /* JPH - to handle the case where __kmpc_end(0) is called immediately prior to 113 a parallel region, made it return KMP_GTID_DNE to force serial_initialize 114 by caller. Had to handle KMP_GTID_DNE at all call-sites, or else guarantee 115 __kmp_init_gtid for this to work. */ 116 117 if (!TCR_4(__kmp_init_gtid)) 118 return KMP_GTID_DNE; 119 120 #ifdef KMP_TDATA_GTID 121 if (TCR_4(__kmp_gtid_mode) >= 3) { 122 KA_TRACE(1000, ("*** __kmp_get_global_thread_id: using TDATA\n")); 123 return __kmp_gtid; 124 } 125 #endif 126 if (TCR_4(__kmp_gtid_mode) >= 2) { 127 KA_TRACE(1000, ("*** __kmp_get_global_thread_id: using keyed TLS\n")); 128 return __kmp_gtid_get_specific(); 129 } 130 KA_TRACE(1000, ("*** __kmp_get_global_thread_id: using internal alg.\n")); 131 132 stack_addr = (char *)&stack_data; 133 other_threads = __kmp_threads; 134 135 /* ATT: The code below is a source of potential bugs due to unsynchronized 136 access to __kmp_threads array. For example: 137 1. Current thread loads other_threads[i] to thr and checks it, it is 138 non-NULL. 139 2. Current thread is suspended by OS. 140 3. Another thread unregisters and finishes (debug versions of free() 141 may fill memory with something like 0xEF). 142 4. Current thread is resumed. 143 5. Current thread reads junk from *thr. 144 TODO: Fix it. --ln */ 145 146 for (i = 0; i < __kmp_threads_capacity; i++) { 147 148 kmp_info_t *thr = (kmp_info_t *)TCR_SYNC_PTR(other_threads[i]); 149 if (!thr) 150 continue; 151 152 stack_size = (size_t)TCR_PTR(thr->th.th_info.ds.ds_stacksize); 153 stack_base = (char *)TCR_PTR(thr->th.th_info.ds.ds_stackbase); 154 155 /* stack grows down -- search through all of the active threads */ 156 157 if (stack_addr <= stack_base) { 158 size_t stack_diff = stack_base - stack_addr; 159 160 if (stack_diff <= stack_size) { 161 /* The only way we can be closer than the allocated */ 162 /* stack size is if we are running on this thread. */ 163 KMP_DEBUG_ASSERT(__kmp_gtid_get_specific() == i); 164 return i; 165 } 166 } 167 } 168 169 /* get specific to try and determine our gtid */ 170 KA_TRACE(1000, 171 ("*** __kmp_get_global_thread_id: internal alg. failed to find " 172 "thread, using TLS\n")); 173 i = __kmp_gtid_get_specific(); 174 175 /*fprintf( stderr, "=== %d\n", i ); */ /* GROO */ 176 177 /* if we havn't been assigned a gtid, then return code */ 178 if (i < 0) 179 return i; 180 181 /* dynamically updated stack window for uber threads to avoid get_specific 182 call */ 183 if (!TCR_4(other_threads[i]->th.th_info.ds.ds_stackgrow)) { 184 KMP_FATAL(StackOverflow, i); 185 } 186 187 stack_base = (char *)other_threads[i]->th.th_info.ds.ds_stackbase; 188 if (stack_addr > stack_base) { 189 TCW_PTR(other_threads[i]->th.th_info.ds.ds_stackbase, stack_addr); 190 TCW_PTR(other_threads[i]->th.th_info.ds.ds_stacksize, 191 other_threads[i]->th.th_info.ds.ds_stacksize + stack_addr - 192 stack_base); 193 } else { 194 TCW_PTR(other_threads[i]->th.th_info.ds.ds_stacksize, 195 stack_base - stack_addr); 196 } 197 198 /* Reprint stack bounds for ubermaster since they have been refined */ 199 if (__kmp_storage_map) { 200 char *stack_end = (char *)other_threads[i]->th.th_info.ds.ds_stackbase; 201 char *stack_beg = stack_end - other_threads[i]->th.th_info.ds.ds_stacksize; 202 __kmp_print_storage_map_gtid(i, stack_beg, stack_end, 203 other_threads[i]->th.th_info.ds.ds_stacksize, 204 "th_%d stack (refinement)", i); 205 } 206 return i; 207 } 208 209 int __kmp_get_global_thread_id_reg() { 210 int gtid; 211 212 if (!__kmp_init_serial) { 213 gtid = KMP_GTID_DNE; 214 } else 215 #ifdef KMP_TDATA_GTID 216 if (TCR_4(__kmp_gtid_mode) >= 3) { 217 KA_TRACE(1000, ("*** __kmp_get_global_thread_id_reg: using TDATA\n")); 218 gtid = __kmp_gtid; 219 } else 220 #endif 221 if (TCR_4(__kmp_gtid_mode) >= 2) { 222 KA_TRACE(1000, ("*** __kmp_get_global_thread_id_reg: using keyed TLS\n")); 223 gtid = __kmp_gtid_get_specific(); 224 } else { 225 KA_TRACE(1000, 226 ("*** __kmp_get_global_thread_id_reg: using internal alg.\n")); 227 gtid = __kmp_get_global_thread_id(); 228 } 229 230 /* we must be a new uber master sibling thread */ 231 if (gtid == KMP_GTID_DNE) { 232 KA_TRACE(10, 233 ("__kmp_get_global_thread_id_reg: Encountered new root thread. " 234 "Registering a new gtid.\n")); 235 __kmp_acquire_bootstrap_lock(&__kmp_initz_lock); 236 if (!__kmp_init_serial) { 237 __kmp_do_serial_initialize(); 238 gtid = __kmp_gtid_get_specific(); 239 } else { 240 gtid = __kmp_register_root(FALSE); 241 } 242 __kmp_release_bootstrap_lock(&__kmp_initz_lock); 243 /*__kmp_printf( "+++ %d\n", gtid ); */ /* GROO */ 244 } 245 246 KMP_DEBUG_ASSERT(gtid >= 0); 247 248 return gtid; 249 } 250 251 /* caller must hold forkjoin_lock */ 252 void __kmp_check_stack_overlap(kmp_info_t *th) { 253 int f; 254 char *stack_beg = NULL; 255 char *stack_end = NULL; 256 int gtid; 257 258 KA_TRACE(10, ("__kmp_check_stack_overlap: called\n")); 259 if (__kmp_storage_map) { 260 stack_end = (char *)th->th.th_info.ds.ds_stackbase; 261 stack_beg = stack_end - th->th.th_info.ds.ds_stacksize; 262 263 gtid = __kmp_gtid_from_thread(th); 264 265 if (gtid == KMP_GTID_MONITOR) { 266 __kmp_print_storage_map_gtid( 267 gtid, stack_beg, stack_end, th->th.th_info.ds.ds_stacksize, 268 "th_%s stack (%s)", "mon", 269 (th->th.th_info.ds.ds_stackgrow) ? "initial" : "actual"); 270 } else { 271 __kmp_print_storage_map_gtid( 272 gtid, stack_beg, stack_end, th->th.th_info.ds.ds_stacksize, 273 "th_%d stack (%s)", gtid, 274 (th->th.th_info.ds.ds_stackgrow) ? "initial" : "actual"); 275 } 276 } 277 278 /* No point in checking ubermaster threads since they use refinement and 279 * cannot overlap */ 280 gtid = __kmp_gtid_from_thread(th); 281 if (__kmp_env_checks == TRUE && !KMP_UBER_GTID(gtid)) { 282 KA_TRACE(10, 283 ("__kmp_check_stack_overlap: performing extensive checking\n")); 284 if (stack_beg == NULL) { 285 stack_end = (char *)th->th.th_info.ds.ds_stackbase; 286 stack_beg = stack_end - th->th.th_info.ds.ds_stacksize; 287 } 288 289 for (f = 0; f < __kmp_threads_capacity; f++) { 290 kmp_info_t *f_th = (kmp_info_t *)TCR_SYNC_PTR(__kmp_threads[f]); 291 292 if (f_th && f_th != th) { 293 char *other_stack_end = 294 (char *)TCR_PTR(f_th->th.th_info.ds.ds_stackbase); 295 char *other_stack_beg = 296 other_stack_end - (size_t)TCR_PTR(f_th->th.th_info.ds.ds_stacksize); 297 if ((stack_beg > other_stack_beg && stack_beg < other_stack_end) || 298 (stack_end > other_stack_beg && stack_end < other_stack_end)) { 299 300 /* Print the other stack values before the abort */ 301 if (__kmp_storage_map) 302 __kmp_print_storage_map_gtid( 303 -1, other_stack_beg, other_stack_end, 304 (size_t)TCR_PTR(f_th->th.th_info.ds.ds_stacksize), 305 "th_%d stack (overlapped)", __kmp_gtid_from_thread(f_th)); 306 307 __kmp_fatal(KMP_MSG(StackOverlap), KMP_HNT(ChangeStackLimit), 308 __kmp_msg_null); 309 } 310 } 311 } 312 } 313 KA_TRACE(10, ("__kmp_check_stack_overlap: returning\n")); 314 } 315 316 /* ------------------------------------------------------------------------ */ 317 318 void __kmp_infinite_loop(void) { 319 static int done = FALSE; 320 321 while (!done) { 322 KMP_YIELD(TRUE); 323 } 324 } 325 326 #define MAX_MESSAGE 512 327 328 void __kmp_print_storage_map_gtid(int gtid, void *p1, void *p2, size_t size, 329 char const *format, ...) { 330 char buffer[MAX_MESSAGE]; 331 va_list ap; 332 333 va_start(ap, format); 334 KMP_SNPRINTF(buffer, sizeof(buffer), "OMP storage map: %p %p%8lu %s\n", p1, 335 p2, (unsigned long)size, format); 336 __kmp_acquire_bootstrap_lock(&__kmp_stdio_lock); 337 __kmp_vprintf(kmp_err, buffer, ap); 338 #if KMP_PRINT_DATA_PLACEMENT 339 int node; 340 if (gtid >= 0) { 341 if (p1 <= p2 && (char *)p2 - (char *)p1 == size) { 342 if (__kmp_storage_map_verbose) { 343 node = __kmp_get_host_node(p1); 344 if (node < 0) /* doesn't work, so don't try this next time */ 345 __kmp_storage_map_verbose = FALSE; 346 else { 347 char *last; 348 int lastNode; 349 int localProc = __kmp_get_cpu_from_gtid(gtid); 350 351 const int page_size = KMP_GET_PAGE_SIZE(); 352 353 p1 = (void *)((size_t)p1 & ~((size_t)page_size - 1)); 354 p2 = (void *)(((size_t)p2 - 1) & ~((size_t)page_size - 1)); 355 if (localProc >= 0) 356 __kmp_printf_no_lock(" GTID %d localNode %d\n", gtid, 357 localProc >> 1); 358 else 359 __kmp_printf_no_lock(" GTID %d\n", gtid); 360 #if KMP_USE_PRCTL 361 /* The more elaborate format is disabled for now because of the prctl 362 * hanging bug. */ 363 do { 364 last = p1; 365 lastNode = node; 366 /* This loop collates adjacent pages with the same host node. */ 367 do { 368 (char *)p1 += page_size; 369 } while (p1 <= p2 && (node = __kmp_get_host_node(p1)) == lastNode); 370 __kmp_printf_no_lock(" %p-%p memNode %d\n", last, (char *)p1 - 1, 371 lastNode); 372 } while (p1 <= p2); 373 #else 374 __kmp_printf_no_lock(" %p-%p memNode %d\n", p1, 375 (char *)p1 + (page_size - 1), 376 __kmp_get_host_node(p1)); 377 if (p1 < p2) { 378 __kmp_printf_no_lock(" %p-%p memNode %d\n", p2, 379 (char *)p2 + (page_size - 1), 380 __kmp_get_host_node(p2)); 381 } 382 #endif 383 } 384 } 385 } else 386 __kmp_printf_no_lock(" %s\n", KMP_I18N_STR(StorageMapWarning)); 387 } 388 #endif /* KMP_PRINT_DATA_PLACEMENT */ 389 __kmp_release_bootstrap_lock(&__kmp_stdio_lock); 390 } 391 392 void __kmp_warn(char const *format, ...) { 393 char buffer[MAX_MESSAGE]; 394 va_list ap; 395 396 if (__kmp_generate_warnings == kmp_warnings_off) { 397 return; 398 } 399 400 va_start(ap, format); 401 402 KMP_SNPRINTF(buffer, sizeof(buffer), "OMP warning: %s\n", format); 403 __kmp_acquire_bootstrap_lock(&__kmp_stdio_lock); 404 __kmp_vprintf(kmp_err, buffer, ap); 405 __kmp_release_bootstrap_lock(&__kmp_stdio_lock); 406 407 va_end(ap); 408 } 409 410 void __kmp_abort_process() { 411 // Later threads may stall here, but that's ok because abort() will kill them. 412 __kmp_acquire_bootstrap_lock(&__kmp_exit_lock); 413 414 if (__kmp_debug_buf) { 415 __kmp_dump_debug_buffer(); 416 } 417 418 if (KMP_OS_WINDOWS) { 419 // Let other threads know of abnormal termination and prevent deadlock 420 // if abort happened during library initialization or shutdown 421 __kmp_global.g.g_abort = SIGABRT; 422 423 /* On Windows* OS by default abort() causes pop-up error box, which stalls 424 nightly testing. Unfortunately, we cannot reliably suppress pop-up error 425 boxes. _set_abort_behavior() works well, but this function is not 426 available in VS7 (this is not problem for DLL, but it is a problem for 427 static OpenMP RTL). SetErrorMode (and so, timelimit utility) does not 428 help, at least in some versions of MS C RTL. 429 430 It seems following sequence is the only way to simulate abort() and 431 avoid pop-up error box. */ 432 raise(SIGABRT); 433 _exit(3); // Just in case, if signal ignored, exit anyway. 434 } else { 435 abort(); 436 } 437 438 __kmp_infinite_loop(); 439 __kmp_release_bootstrap_lock(&__kmp_exit_lock); 440 441 } // __kmp_abort_process 442 443 void __kmp_abort_thread(void) { 444 // TODO: Eliminate g_abort global variable and this function. 445 // In case of abort just call abort(), it will kill all the threads. 446 __kmp_infinite_loop(); 447 } // __kmp_abort_thread 448 449 /* Print out the storage map for the major kmp_info_t thread data structures 450 that are allocated together. */ 451 452 static void __kmp_print_thread_storage_map(kmp_info_t *thr, int gtid) { 453 __kmp_print_storage_map_gtid(gtid, thr, thr + 1, sizeof(kmp_info_t), "th_%d", 454 gtid); 455 456 __kmp_print_storage_map_gtid(gtid, &thr->th.th_info, &thr->th.th_team, 457 sizeof(kmp_desc_t), "th_%d.th_info", gtid); 458 459 __kmp_print_storage_map_gtid(gtid, &thr->th.th_local, &thr->th.th_pri_head, 460 sizeof(kmp_local_t), "th_%d.th_local", gtid); 461 462 __kmp_print_storage_map_gtid( 463 gtid, &thr->th.th_bar[0], &thr->th.th_bar[bs_last_barrier], 464 sizeof(kmp_balign_t) * bs_last_barrier, "th_%d.th_bar", gtid); 465 466 __kmp_print_storage_map_gtid(gtid, &thr->th.th_bar[bs_plain_barrier], 467 &thr->th.th_bar[bs_plain_barrier + 1], 468 sizeof(kmp_balign_t), "th_%d.th_bar[plain]", 469 gtid); 470 471 __kmp_print_storage_map_gtid(gtid, &thr->th.th_bar[bs_forkjoin_barrier], 472 &thr->th.th_bar[bs_forkjoin_barrier + 1], 473 sizeof(kmp_balign_t), "th_%d.th_bar[forkjoin]", 474 gtid); 475 476 #if KMP_FAST_REDUCTION_BARRIER 477 __kmp_print_storage_map_gtid(gtid, &thr->th.th_bar[bs_reduction_barrier], 478 &thr->th.th_bar[bs_reduction_barrier + 1], 479 sizeof(kmp_balign_t), "th_%d.th_bar[reduction]", 480 gtid); 481 #endif // KMP_FAST_REDUCTION_BARRIER 482 } 483 484 /* Print out the storage map for the major kmp_team_t team data structures 485 that are allocated together. */ 486 487 static void __kmp_print_team_storage_map(const char *header, kmp_team_t *team, 488 int team_id, int num_thr) { 489 int num_disp_buff = team->t.t_max_nproc > 1 ? __kmp_dispatch_num_buffers : 2; 490 __kmp_print_storage_map_gtid(-1, team, team + 1, sizeof(kmp_team_t), "%s_%d", 491 header, team_id); 492 493 __kmp_print_storage_map_gtid(-1, &team->t.t_bar[0], 494 &team->t.t_bar[bs_last_barrier], 495 sizeof(kmp_balign_team_t) * bs_last_barrier, 496 "%s_%d.t_bar", header, team_id); 497 498 __kmp_print_storage_map_gtid(-1, &team->t.t_bar[bs_plain_barrier], 499 &team->t.t_bar[bs_plain_barrier + 1], 500 sizeof(kmp_balign_team_t), "%s_%d.t_bar[plain]", 501 header, team_id); 502 503 __kmp_print_storage_map_gtid(-1, &team->t.t_bar[bs_forkjoin_barrier], 504 &team->t.t_bar[bs_forkjoin_barrier + 1], 505 sizeof(kmp_balign_team_t), 506 "%s_%d.t_bar[forkjoin]", header, team_id); 507 508 #if KMP_FAST_REDUCTION_BARRIER 509 __kmp_print_storage_map_gtid(-1, &team->t.t_bar[bs_reduction_barrier], 510 &team->t.t_bar[bs_reduction_barrier + 1], 511 sizeof(kmp_balign_team_t), 512 "%s_%d.t_bar[reduction]", header, team_id); 513 #endif // KMP_FAST_REDUCTION_BARRIER 514 515 __kmp_print_storage_map_gtid( 516 -1, &team->t.t_dispatch[0], &team->t.t_dispatch[num_thr], 517 sizeof(kmp_disp_t) * num_thr, "%s_%d.t_dispatch", header, team_id); 518 519 __kmp_print_storage_map_gtid( 520 -1, &team->t.t_threads[0], &team->t.t_threads[num_thr], 521 sizeof(kmp_info_t *) * num_thr, "%s_%d.t_threads", header, team_id); 522 523 __kmp_print_storage_map_gtid(-1, &team->t.t_disp_buffer[0], 524 &team->t.t_disp_buffer[num_disp_buff], 525 sizeof(dispatch_shared_info_t) * num_disp_buff, 526 "%s_%d.t_disp_buffer", header, team_id); 527 } 528 529 static void __kmp_init_allocator() { __kmp_init_memkind(); } 530 static void __kmp_fini_allocator() { __kmp_fini_memkind(); } 531 532 /* ------------------------------------------------------------------------ */ 533 534 #if KMP_DYNAMIC_LIB 535 #if KMP_OS_WINDOWS 536 537 static void __kmp_reset_lock(kmp_bootstrap_lock_t *lck) { 538 // TODO: Change to __kmp_break_bootstrap_lock(). 539 __kmp_init_bootstrap_lock(lck); // make the lock released 540 } 541 542 static void __kmp_reset_locks_on_process_detach(int gtid_req) { 543 int i; 544 int thread_count; 545 546 // PROCESS_DETACH is expected to be called by a thread that executes 547 // ProcessExit() or FreeLibrary(). OS terminates other threads (except the one 548 // calling ProcessExit or FreeLibrary). So, it might be safe to access the 549 // __kmp_threads[] without taking the forkjoin_lock. However, in fact, some 550 // threads can be still alive here, although being about to be terminated. The 551 // threads in the array with ds_thread==0 are most suspicious. Actually, it 552 // can be not safe to access the __kmp_threads[]. 553 554 // TODO: does it make sense to check __kmp_roots[] ? 555 556 // Let's check that there are no other alive threads registered with the OMP 557 // lib. 558 while (1) { 559 thread_count = 0; 560 for (i = 0; i < __kmp_threads_capacity; ++i) { 561 if (!__kmp_threads) 562 continue; 563 kmp_info_t *th = __kmp_threads[i]; 564 if (th == NULL) 565 continue; 566 int gtid = th->th.th_info.ds.ds_gtid; 567 if (gtid == gtid_req) 568 continue; 569 if (gtid < 0) 570 continue; 571 DWORD exit_val; 572 int alive = __kmp_is_thread_alive(th, &exit_val); 573 if (alive) { 574 ++thread_count; 575 } 576 } 577 if (thread_count == 0) 578 break; // success 579 } 580 581 // Assume that I'm alone. Now it might be safe to check and reset locks. 582 // __kmp_forkjoin_lock and __kmp_stdio_lock are expected to be reset. 583 __kmp_reset_lock(&__kmp_forkjoin_lock); 584 #ifdef KMP_DEBUG 585 __kmp_reset_lock(&__kmp_stdio_lock); 586 #endif // KMP_DEBUG 587 } 588 589 BOOL WINAPI DllMain(HINSTANCE hInstDLL, DWORD fdwReason, LPVOID lpReserved) { 590 //__kmp_acquire_bootstrap_lock( &__kmp_initz_lock ); 591 592 switch (fdwReason) { 593 594 case DLL_PROCESS_ATTACH: 595 KA_TRACE(10, ("DllMain: PROCESS_ATTACH\n")); 596 597 return TRUE; 598 599 case DLL_PROCESS_DETACH: 600 KA_TRACE(10, ("DllMain: PROCESS_DETACH T#%d\n", __kmp_gtid_get_specific())); 601 602 if (lpReserved != NULL) { 603 // lpReserved is used for telling the difference: 604 // lpReserved == NULL when FreeLibrary() was called, 605 // lpReserved != NULL when the process terminates. 606 // When FreeLibrary() is called, worker threads remain alive. So they will 607 // release the forkjoin lock by themselves. When the process terminates, 608 // worker threads disappear triggering the problem of unreleased forkjoin 609 // lock as described below. 610 611 // A worker thread can take the forkjoin lock. The problem comes up if 612 // that worker thread becomes dead before it releases the forkjoin lock. 613 // The forkjoin lock remains taken, while the thread executing 614 // DllMain()->PROCESS_DETACH->__kmp_internal_end_library() below will try 615 // to take the forkjoin lock and will always fail, so that the application 616 // will never finish [normally]. This scenario is possible if 617 // __kmpc_end() has not been executed. It looks like it's not a corner 618 // case, but common cases: 619 // - the main function was compiled by an alternative compiler; 620 // - the main function was compiled by icl but without /Qopenmp 621 // (application with plugins); 622 // - application terminates by calling C exit(), Fortran CALL EXIT() or 623 // Fortran STOP. 624 // - alive foreign thread prevented __kmpc_end from doing cleanup. 625 // 626 // This is a hack to work around the problem. 627 // TODO: !!! figure out something better. 628 __kmp_reset_locks_on_process_detach(__kmp_gtid_get_specific()); 629 } 630 631 __kmp_internal_end_library(__kmp_gtid_get_specific()); 632 633 return TRUE; 634 635 case DLL_THREAD_ATTACH: 636 KA_TRACE(10, ("DllMain: THREAD_ATTACH\n")); 637 638 /* if we want to register new siblings all the time here call 639 * __kmp_get_gtid(); */ 640 return TRUE; 641 642 case DLL_THREAD_DETACH: 643 KA_TRACE(10, ("DllMain: THREAD_DETACH T#%d\n", __kmp_gtid_get_specific())); 644 645 __kmp_internal_end_thread(__kmp_gtid_get_specific()); 646 return TRUE; 647 } 648 649 return TRUE; 650 } 651 652 #endif /* KMP_OS_WINDOWS */ 653 #endif /* KMP_DYNAMIC_LIB */ 654 655 /* __kmp_parallel_deo -- Wait until it's our turn. */ 656 void __kmp_parallel_deo(int *gtid_ref, int *cid_ref, ident_t *loc_ref) { 657 int gtid = *gtid_ref; 658 #ifdef BUILD_PARALLEL_ORDERED 659 kmp_team_t *team = __kmp_team_from_gtid(gtid); 660 #endif /* BUILD_PARALLEL_ORDERED */ 661 662 if (__kmp_env_consistency_check) { 663 if (__kmp_threads[gtid]->th.th_root->r.r_active) 664 #if KMP_USE_DYNAMIC_LOCK 665 __kmp_push_sync(gtid, ct_ordered_in_parallel, loc_ref, NULL, 0); 666 #else 667 __kmp_push_sync(gtid, ct_ordered_in_parallel, loc_ref, NULL); 668 #endif 669 } 670 #ifdef BUILD_PARALLEL_ORDERED 671 if (!team->t.t_serialized) { 672 KMP_MB(); 673 KMP_WAIT(&team->t.t_ordered.dt.t_value, __kmp_tid_from_gtid(gtid), KMP_EQ, 674 NULL); 675 KMP_MB(); 676 } 677 #endif /* BUILD_PARALLEL_ORDERED */ 678 } 679 680 /* __kmp_parallel_dxo -- Signal the next task. */ 681 void __kmp_parallel_dxo(int *gtid_ref, int *cid_ref, ident_t *loc_ref) { 682 int gtid = *gtid_ref; 683 #ifdef BUILD_PARALLEL_ORDERED 684 int tid = __kmp_tid_from_gtid(gtid); 685 kmp_team_t *team = __kmp_team_from_gtid(gtid); 686 #endif /* BUILD_PARALLEL_ORDERED */ 687 688 if (__kmp_env_consistency_check) { 689 if (__kmp_threads[gtid]->th.th_root->r.r_active) 690 __kmp_pop_sync(gtid, ct_ordered_in_parallel, loc_ref); 691 } 692 #ifdef BUILD_PARALLEL_ORDERED 693 if (!team->t.t_serialized) { 694 KMP_MB(); /* Flush all pending memory write invalidates. */ 695 696 /* use the tid of the next thread in this team */ 697 /* TODO replace with general release procedure */ 698 team->t.t_ordered.dt.t_value = ((tid + 1) % team->t.t_nproc); 699 700 KMP_MB(); /* Flush all pending memory write invalidates. */ 701 } 702 #endif /* BUILD_PARALLEL_ORDERED */ 703 } 704 705 /* ------------------------------------------------------------------------ */ 706 /* The BARRIER for a SINGLE process section is always explicit */ 707 708 int __kmp_enter_single(int gtid, ident_t *id_ref, int push_ws) { 709 int status; 710 kmp_info_t *th; 711 kmp_team_t *team; 712 713 if (!TCR_4(__kmp_init_parallel)) 714 __kmp_parallel_initialize(); 715 __kmp_resume_if_soft_paused(); 716 717 th = __kmp_threads[gtid]; 718 team = th->th.th_team; 719 status = 0; 720 721 th->th.th_ident = id_ref; 722 723 if (team->t.t_serialized) { 724 status = 1; 725 } else { 726 kmp_int32 old_this = th->th.th_local.this_construct; 727 728 ++th->th.th_local.this_construct; 729 /* try to set team count to thread count--success means thread got the 730 single block */ 731 /* TODO: Should this be acquire or release? */ 732 if (team->t.t_construct == old_this) { 733 status = __kmp_atomic_compare_store_acq(&team->t.t_construct, old_this, 734 th->th.th_local.this_construct); 735 } 736 #if USE_ITT_BUILD 737 if (__itt_metadata_add_ptr && __kmp_forkjoin_frames_mode == 3 && 738 KMP_MASTER_GTID(gtid) && th->th.th_teams_microtask == NULL && 739 team->t.t_active_level == 740 1) { // Only report metadata by master of active team at level 1 741 __kmp_itt_metadata_single(id_ref); 742 } 743 #endif /* USE_ITT_BUILD */ 744 } 745 746 if (__kmp_env_consistency_check) { 747 if (status && push_ws) { 748 __kmp_push_workshare(gtid, ct_psingle, id_ref); 749 } else { 750 __kmp_check_workshare(gtid, ct_psingle, id_ref); 751 } 752 } 753 #if USE_ITT_BUILD 754 if (status) { 755 __kmp_itt_single_start(gtid); 756 } 757 #endif /* USE_ITT_BUILD */ 758 return status; 759 } 760 761 void __kmp_exit_single(int gtid) { 762 #if USE_ITT_BUILD 763 __kmp_itt_single_end(gtid); 764 #endif /* USE_ITT_BUILD */ 765 if (__kmp_env_consistency_check) 766 __kmp_pop_workshare(gtid, ct_psingle, NULL); 767 } 768 769 /* determine if we can go parallel or must use a serialized parallel region and 770 * how many threads we can use 771 * set_nproc is the number of threads requested for the team 772 * returns 0 if we should serialize or only use one thread, 773 * otherwise the number of threads to use 774 * The forkjoin lock is held by the caller. */ 775 static int __kmp_reserve_threads(kmp_root_t *root, kmp_team_t *parent_team, 776 int master_tid, int set_nthreads, 777 int enter_teams) { 778 int capacity; 779 int new_nthreads; 780 KMP_DEBUG_ASSERT(__kmp_init_serial); 781 KMP_DEBUG_ASSERT(root && parent_team); 782 kmp_info_t *this_thr = parent_team->t.t_threads[master_tid]; 783 784 // If dyn-var is set, dynamically adjust the number of desired threads, 785 // according to the method specified by dynamic_mode. 786 new_nthreads = set_nthreads; 787 if (!get__dynamic_2(parent_team, master_tid)) { 788 ; 789 } 790 #ifdef USE_LOAD_BALANCE 791 else if (__kmp_global.g.g_dynamic_mode == dynamic_load_balance) { 792 new_nthreads = __kmp_load_balance_nproc(root, set_nthreads); 793 if (new_nthreads == 1) { 794 KC_TRACE(10, ("__kmp_reserve_threads: T#%d load balance reduced " 795 "reservation to 1 thread\n", 796 master_tid)); 797 return 1; 798 } 799 if (new_nthreads < set_nthreads) { 800 KC_TRACE(10, ("__kmp_reserve_threads: T#%d load balance reduced " 801 "reservation to %d threads\n", 802 master_tid, new_nthreads)); 803 } 804 } 805 #endif /* USE_LOAD_BALANCE */ 806 else if (__kmp_global.g.g_dynamic_mode == dynamic_thread_limit) { 807 new_nthreads = __kmp_avail_proc - __kmp_nth + 808 (root->r.r_active ? 1 : root->r.r_hot_team->t.t_nproc); 809 if (new_nthreads <= 1) { 810 KC_TRACE(10, ("__kmp_reserve_threads: T#%d thread limit reduced " 811 "reservation to 1 thread\n", 812 master_tid)); 813 return 1; 814 } 815 if (new_nthreads < set_nthreads) { 816 KC_TRACE(10, ("__kmp_reserve_threads: T#%d thread limit reduced " 817 "reservation to %d threads\n", 818 master_tid, new_nthreads)); 819 } else { 820 new_nthreads = set_nthreads; 821 } 822 } else if (__kmp_global.g.g_dynamic_mode == dynamic_random) { 823 if (set_nthreads > 2) { 824 new_nthreads = __kmp_get_random(parent_team->t.t_threads[master_tid]); 825 new_nthreads = (new_nthreads % set_nthreads) + 1; 826 if (new_nthreads == 1) { 827 KC_TRACE(10, ("__kmp_reserve_threads: T#%d dynamic random reduced " 828 "reservation to 1 thread\n", 829 master_tid)); 830 return 1; 831 } 832 if (new_nthreads < set_nthreads) { 833 KC_TRACE(10, ("__kmp_reserve_threads: T#%d dynamic random reduced " 834 "reservation to %d threads\n", 835 master_tid, new_nthreads)); 836 } 837 } 838 } else { 839 KMP_ASSERT(0); 840 } 841 842 // Respect KMP_ALL_THREADS/KMP_DEVICE_THREAD_LIMIT. 843 if (__kmp_nth + new_nthreads - 844 (root->r.r_active ? 1 : root->r.r_hot_team->t.t_nproc) > 845 __kmp_max_nth) { 846 int tl_nthreads = __kmp_max_nth - __kmp_nth + 847 (root->r.r_active ? 1 : root->r.r_hot_team->t.t_nproc); 848 if (tl_nthreads <= 0) { 849 tl_nthreads = 1; 850 } 851 852 // If dyn-var is false, emit a 1-time warning. 853 if (!get__dynamic_2(parent_team, master_tid) && (!__kmp_reserve_warn)) { 854 __kmp_reserve_warn = 1; 855 __kmp_msg(kmp_ms_warning, 856 KMP_MSG(CantFormThrTeam, set_nthreads, tl_nthreads), 857 KMP_HNT(Unset_ALL_THREADS), __kmp_msg_null); 858 } 859 if (tl_nthreads == 1) { 860 KC_TRACE(10, ("__kmp_reserve_threads: T#%d KMP_DEVICE_THREAD_LIMIT " 861 "reduced reservation to 1 thread\n", 862 master_tid)); 863 return 1; 864 } 865 KC_TRACE(10, ("__kmp_reserve_threads: T#%d KMP_DEVICE_THREAD_LIMIT reduced " 866 "reservation to %d threads\n", 867 master_tid, tl_nthreads)); 868 new_nthreads = tl_nthreads; 869 } 870 871 // Respect OMP_THREAD_LIMIT 872 int cg_nthreads = this_thr->th.th_cg_roots->cg_nthreads; 873 int max_cg_threads = this_thr->th.th_cg_roots->cg_thread_limit; 874 if (cg_nthreads + new_nthreads - 875 (root->r.r_active ? 1 : root->r.r_hot_team->t.t_nproc) > 876 max_cg_threads) { 877 int tl_nthreads = max_cg_threads - cg_nthreads + 878 (root->r.r_active ? 1 : root->r.r_hot_team->t.t_nproc); 879 if (tl_nthreads <= 0) { 880 tl_nthreads = 1; 881 } 882 883 // If dyn-var is false, emit a 1-time warning. 884 if (!get__dynamic_2(parent_team, master_tid) && (!__kmp_reserve_warn)) { 885 __kmp_reserve_warn = 1; 886 __kmp_msg(kmp_ms_warning, 887 KMP_MSG(CantFormThrTeam, set_nthreads, tl_nthreads), 888 KMP_HNT(Unset_ALL_THREADS), __kmp_msg_null); 889 } 890 if (tl_nthreads == 1) { 891 KC_TRACE(10, ("__kmp_reserve_threads: T#%d OMP_THREAD_LIMIT " 892 "reduced reservation to 1 thread\n", 893 master_tid)); 894 return 1; 895 } 896 KC_TRACE(10, ("__kmp_reserve_threads: T#%d OMP_THREAD_LIMIT reduced " 897 "reservation to %d threads\n", 898 master_tid, tl_nthreads)); 899 new_nthreads = tl_nthreads; 900 } 901 902 // Check if the threads array is large enough, or needs expanding. 903 // See comment in __kmp_register_root() about the adjustment if 904 // __kmp_threads[0] == NULL. 905 capacity = __kmp_threads_capacity; 906 if (TCR_PTR(__kmp_threads[0]) == NULL) { 907 --capacity; 908 } 909 if (__kmp_nth + new_nthreads - 910 (root->r.r_active ? 1 : root->r.r_hot_team->t.t_nproc) > 911 capacity) { 912 // Expand the threads array. 913 int slotsRequired = __kmp_nth + new_nthreads - 914 (root->r.r_active ? 1 : root->r.r_hot_team->t.t_nproc) - 915 capacity; 916 int slotsAdded = __kmp_expand_threads(slotsRequired); 917 if (slotsAdded < slotsRequired) { 918 // The threads array was not expanded enough. 919 new_nthreads -= (slotsRequired - slotsAdded); 920 KMP_ASSERT(new_nthreads >= 1); 921 922 // If dyn-var is false, emit a 1-time warning. 923 if (!get__dynamic_2(parent_team, master_tid) && (!__kmp_reserve_warn)) { 924 __kmp_reserve_warn = 1; 925 if (__kmp_tp_cached) { 926 __kmp_msg(kmp_ms_warning, 927 KMP_MSG(CantFormThrTeam, set_nthreads, new_nthreads), 928 KMP_HNT(Set_ALL_THREADPRIVATE, __kmp_tp_capacity), 929 KMP_HNT(PossibleSystemLimitOnThreads), __kmp_msg_null); 930 } else { 931 __kmp_msg(kmp_ms_warning, 932 KMP_MSG(CantFormThrTeam, set_nthreads, new_nthreads), 933 KMP_HNT(SystemLimitOnThreads), __kmp_msg_null); 934 } 935 } 936 } 937 } 938 939 #ifdef KMP_DEBUG 940 if (new_nthreads == 1) { 941 KC_TRACE(10, 942 ("__kmp_reserve_threads: T#%d serializing team after reclaiming " 943 "dead roots and rechecking; requested %d threads\n", 944 __kmp_get_gtid(), set_nthreads)); 945 } else { 946 KC_TRACE(10, ("__kmp_reserve_threads: T#%d allocating %d threads; requested" 947 " %d threads\n", 948 __kmp_get_gtid(), new_nthreads, set_nthreads)); 949 } 950 #endif // KMP_DEBUG 951 return new_nthreads; 952 } 953 954 /* Allocate threads from the thread pool and assign them to the new team. We are 955 assured that there are enough threads available, because we checked on that 956 earlier within critical section forkjoin */ 957 static void __kmp_fork_team_threads(kmp_root_t *root, kmp_team_t *team, 958 kmp_info_t *master_th, int master_gtid) { 959 int i; 960 int use_hot_team; 961 962 KA_TRACE(10, ("__kmp_fork_team_threads: new_nprocs = %d\n", team->t.t_nproc)); 963 KMP_DEBUG_ASSERT(master_gtid == __kmp_get_gtid()); 964 KMP_MB(); 965 966 /* first, let's setup the master thread */ 967 master_th->th.th_info.ds.ds_tid = 0; 968 master_th->th.th_team = team; 969 master_th->th.th_team_nproc = team->t.t_nproc; 970 master_th->th.th_team_master = master_th; 971 master_th->th.th_team_serialized = FALSE; 972 master_th->th.th_dispatch = &team->t.t_dispatch[0]; 973 974 /* make sure we are not the optimized hot team */ 975 #if KMP_NESTED_HOT_TEAMS 976 use_hot_team = 0; 977 kmp_hot_team_ptr_t *hot_teams = master_th->th.th_hot_teams; 978 if (hot_teams) { // hot teams array is not allocated if 979 // KMP_HOT_TEAMS_MAX_LEVEL=0 980 int level = team->t.t_active_level - 1; // index in array of hot teams 981 if (master_th->th.th_teams_microtask) { // are we inside the teams? 982 if (master_th->th.th_teams_size.nteams > 1) { 983 ++level; // level was not increased in teams construct for 984 // team_of_masters 985 } 986 if (team->t.t_pkfn != (microtask_t)__kmp_teams_master && 987 master_th->th.th_teams_level == team->t.t_level) { 988 ++level; // level was not increased in teams construct for 989 // team_of_workers before the parallel 990 } // team->t.t_level will be increased inside parallel 991 } 992 if (level < __kmp_hot_teams_max_level) { 993 if (hot_teams[level].hot_team) { 994 // hot team has already been allocated for given level 995 KMP_DEBUG_ASSERT(hot_teams[level].hot_team == team); 996 use_hot_team = 1; // the team is ready to use 997 } else { 998 use_hot_team = 0; // AC: threads are not allocated yet 999 hot_teams[level].hot_team = team; // remember new hot team 1000 hot_teams[level].hot_team_nth = team->t.t_nproc; 1001 } 1002 } else { 1003 use_hot_team = 0; 1004 } 1005 } 1006 #else 1007 use_hot_team = team == root->r.r_hot_team; 1008 #endif 1009 if (!use_hot_team) { 1010 1011 /* install the master thread */ 1012 team->t.t_threads[0] = master_th; 1013 __kmp_initialize_info(master_th, team, 0, master_gtid); 1014 1015 /* now, install the worker threads */ 1016 for (i = 1; i < team->t.t_nproc; i++) { 1017 1018 /* fork or reallocate a new thread and install it in team */ 1019 kmp_info_t *thr = __kmp_allocate_thread(root, team, i); 1020 team->t.t_threads[i] = thr; 1021 KMP_DEBUG_ASSERT(thr); 1022 KMP_DEBUG_ASSERT(thr->th.th_team == team); 1023 /* align team and thread arrived states */ 1024 KA_TRACE(20, ("__kmp_fork_team_threads: T#%d(%d:%d) init arrived " 1025 "T#%d(%d:%d) join =%llu, plain=%llu\n", 1026 __kmp_gtid_from_tid(0, team), team->t.t_id, 0, 1027 __kmp_gtid_from_tid(i, team), team->t.t_id, i, 1028 team->t.t_bar[bs_forkjoin_barrier].b_arrived, 1029 team->t.t_bar[bs_plain_barrier].b_arrived)); 1030 thr->th.th_teams_microtask = master_th->th.th_teams_microtask; 1031 thr->th.th_teams_level = master_th->th.th_teams_level; 1032 thr->th.th_teams_size = master_th->th.th_teams_size; 1033 { // Initialize threads' barrier data. 1034 int b; 1035 kmp_balign_t *balign = team->t.t_threads[i]->th.th_bar; 1036 for (b = 0; b < bs_last_barrier; ++b) { 1037 balign[b].bb.b_arrived = team->t.t_bar[b].b_arrived; 1038 KMP_DEBUG_ASSERT(balign[b].bb.wait_flag != KMP_BARRIER_PARENT_FLAG); 1039 #if USE_DEBUGGER 1040 balign[b].bb.b_worker_arrived = team->t.t_bar[b].b_team_arrived; 1041 #endif 1042 } 1043 } 1044 } 1045 1046 #if KMP_AFFINITY_SUPPORTED 1047 __kmp_partition_places(team); 1048 #endif 1049 } 1050 1051 if (__kmp_display_affinity && team->t.t_display_affinity != 1) { 1052 for (i = 0; i < team->t.t_nproc; i++) { 1053 kmp_info_t *thr = team->t.t_threads[i]; 1054 if (thr->th.th_prev_num_threads != team->t.t_nproc || 1055 thr->th.th_prev_level != team->t.t_level) { 1056 team->t.t_display_affinity = 1; 1057 break; 1058 } 1059 } 1060 } 1061 1062 KMP_MB(); 1063 } 1064 1065 #if KMP_ARCH_X86 || KMP_ARCH_X86_64 1066 // Propagate any changes to the floating point control registers out to the team 1067 // We try to avoid unnecessary writes to the relevant cache line in the team 1068 // structure, so we don't make changes unless they are needed. 1069 inline static void propagateFPControl(kmp_team_t *team) { 1070 if (__kmp_inherit_fp_control) { 1071 kmp_int16 x87_fpu_control_word; 1072 kmp_uint32 mxcsr; 1073 1074 // Get master values of FPU control flags (both X87 and vector) 1075 __kmp_store_x87_fpu_control_word(&x87_fpu_control_word); 1076 __kmp_store_mxcsr(&mxcsr); 1077 mxcsr &= KMP_X86_MXCSR_MASK; 1078 1079 // There is no point looking at t_fp_control_saved here. 1080 // If it is TRUE, we still have to update the values if they are different 1081 // from those we now have. If it is FALSE we didn't save anything yet, but 1082 // our objective is the same. We have to ensure that the values in the team 1083 // are the same as those we have. 1084 // So, this code achieves what we need whether or not t_fp_control_saved is 1085 // true. By checking whether the value needs updating we avoid unnecessary 1086 // writes that would put the cache-line into a written state, causing all 1087 // threads in the team to have to read it again. 1088 KMP_CHECK_UPDATE(team->t.t_x87_fpu_control_word, x87_fpu_control_word); 1089 KMP_CHECK_UPDATE(team->t.t_mxcsr, mxcsr); 1090 // Although we don't use this value, other code in the runtime wants to know 1091 // whether it should restore them. So we must ensure it is correct. 1092 KMP_CHECK_UPDATE(team->t.t_fp_control_saved, TRUE); 1093 } else { 1094 // Similarly here. Don't write to this cache-line in the team structure 1095 // unless we have to. 1096 KMP_CHECK_UPDATE(team->t.t_fp_control_saved, FALSE); 1097 } 1098 } 1099 1100 // Do the opposite, setting the hardware registers to the updated values from 1101 // the team. 1102 inline static void updateHWFPControl(kmp_team_t *team) { 1103 if (__kmp_inherit_fp_control && team->t.t_fp_control_saved) { 1104 // Only reset the fp control regs if they have been changed in the team. 1105 // the parallel region that we are exiting. 1106 kmp_int16 x87_fpu_control_word; 1107 kmp_uint32 mxcsr; 1108 __kmp_store_x87_fpu_control_word(&x87_fpu_control_word); 1109 __kmp_store_mxcsr(&mxcsr); 1110 mxcsr &= KMP_X86_MXCSR_MASK; 1111 1112 if (team->t.t_x87_fpu_control_word != x87_fpu_control_word) { 1113 __kmp_clear_x87_fpu_status_word(); 1114 __kmp_load_x87_fpu_control_word(&team->t.t_x87_fpu_control_word); 1115 } 1116 1117 if (team->t.t_mxcsr != mxcsr) { 1118 __kmp_load_mxcsr(&team->t.t_mxcsr); 1119 } 1120 } 1121 } 1122 #else 1123 #define propagateFPControl(x) ((void)0) 1124 #define updateHWFPControl(x) ((void)0) 1125 #endif /* KMP_ARCH_X86 || KMP_ARCH_X86_64 */ 1126 1127 static void __kmp_alloc_argv_entries(int argc, kmp_team_t *team, 1128 int realloc); // forward declaration 1129 1130 /* Run a parallel region that has been serialized, so runs only in a team of the 1131 single master thread. */ 1132 void __kmp_serialized_parallel(ident_t *loc, kmp_int32 global_tid) { 1133 kmp_info_t *this_thr; 1134 kmp_team_t *serial_team; 1135 1136 KC_TRACE(10, ("__kmpc_serialized_parallel: called by T#%d\n", global_tid)); 1137 1138 /* Skip all this code for autopar serialized loops since it results in 1139 unacceptable overhead */ 1140 if (loc != NULL && (loc->flags & KMP_IDENT_AUTOPAR)) 1141 return; 1142 1143 if (!TCR_4(__kmp_init_parallel)) 1144 __kmp_parallel_initialize(); 1145 __kmp_resume_if_soft_paused(); 1146 1147 this_thr = __kmp_threads[global_tid]; 1148 serial_team = this_thr->th.th_serial_team; 1149 1150 /* utilize the serialized team held by this thread */ 1151 KMP_DEBUG_ASSERT(serial_team); 1152 KMP_MB(); 1153 1154 if (__kmp_tasking_mode != tskm_immediate_exec) { 1155 KMP_DEBUG_ASSERT( 1156 this_thr->th.th_task_team == 1157 this_thr->th.th_team->t.t_task_team[this_thr->th.th_task_state]); 1158 KMP_DEBUG_ASSERT(serial_team->t.t_task_team[this_thr->th.th_task_state] == 1159 NULL); 1160 KA_TRACE(20, ("__kmpc_serialized_parallel: T#%d pushing task_team %p / " 1161 "team %p, new task_team = NULL\n", 1162 global_tid, this_thr->th.th_task_team, this_thr->th.th_team)); 1163 this_thr->th.th_task_team = NULL; 1164 } 1165 1166 kmp_proc_bind_t proc_bind = this_thr->th.th_set_proc_bind; 1167 if (this_thr->th.th_current_task->td_icvs.proc_bind == proc_bind_false) { 1168 proc_bind = proc_bind_false; 1169 } else if (proc_bind == proc_bind_default) { 1170 // No proc_bind clause was specified, so use the current value 1171 // of proc-bind-var for this parallel region. 1172 proc_bind = this_thr->th.th_current_task->td_icvs.proc_bind; 1173 } 1174 // Reset for next parallel region 1175 this_thr->th.th_set_proc_bind = proc_bind_default; 1176 1177 #if OMPT_SUPPORT 1178 ompt_data_t ompt_parallel_data = ompt_data_none; 1179 ompt_data_t *implicit_task_data; 1180 void *codeptr = OMPT_LOAD_RETURN_ADDRESS(global_tid); 1181 if (ompt_enabled.enabled && 1182 this_thr->th.ompt_thread_info.state != ompt_state_overhead) { 1183 1184 ompt_task_info_t *parent_task_info; 1185 parent_task_info = OMPT_CUR_TASK_INFO(this_thr); 1186 1187 parent_task_info->frame.enter_frame.ptr = OMPT_GET_FRAME_ADDRESS(0); 1188 if (ompt_enabled.ompt_callback_parallel_begin) { 1189 int team_size = 1; 1190 1191 ompt_callbacks.ompt_callback(ompt_callback_parallel_begin)( 1192 &(parent_task_info->task_data), &(parent_task_info->frame), 1193 &ompt_parallel_data, team_size, 1194 ompt_parallel_invoker_program | ompt_parallel_team, codeptr); 1195 } 1196 } 1197 #endif // OMPT_SUPPORT 1198 1199 if (this_thr->th.th_team != serial_team) { 1200 // Nested level will be an index in the nested nthreads array 1201 int level = this_thr->th.th_team->t.t_level; 1202 1203 if (serial_team->t.t_serialized) { 1204 /* this serial team was already used 1205 TODO increase performance by making this locks more specific */ 1206 kmp_team_t *new_team; 1207 1208 __kmp_acquire_bootstrap_lock(&__kmp_forkjoin_lock); 1209 1210 new_team = 1211 __kmp_allocate_team(this_thr->th.th_root, 1, 1, 1212 #if OMPT_SUPPORT 1213 ompt_parallel_data, 1214 #endif 1215 proc_bind, &this_thr->th.th_current_task->td_icvs, 1216 0 USE_NESTED_HOT_ARG(NULL)); 1217 __kmp_release_bootstrap_lock(&__kmp_forkjoin_lock); 1218 KMP_ASSERT(new_team); 1219 1220 /* setup new serialized team and install it */ 1221 new_team->t.t_threads[0] = this_thr; 1222 new_team->t.t_parent = this_thr->th.th_team; 1223 serial_team = new_team; 1224 this_thr->th.th_serial_team = serial_team; 1225 1226 KF_TRACE( 1227 10, 1228 ("__kmpc_serialized_parallel: T#%d allocated new serial team %p\n", 1229 global_tid, serial_team)); 1230 1231 /* TODO the above breaks the requirement that if we run out of resources, 1232 then we can still guarantee that serialized teams are ok, since we may 1233 need to allocate a new one */ 1234 } else { 1235 KF_TRACE( 1236 10, 1237 ("__kmpc_serialized_parallel: T#%d reusing cached serial team %p\n", 1238 global_tid, serial_team)); 1239 } 1240 1241 /* we have to initialize this serial team */ 1242 KMP_DEBUG_ASSERT(serial_team->t.t_threads); 1243 KMP_DEBUG_ASSERT(serial_team->t.t_threads[0] == this_thr); 1244 KMP_DEBUG_ASSERT(this_thr->th.th_team != serial_team); 1245 serial_team->t.t_ident = loc; 1246 serial_team->t.t_serialized = 1; 1247 serial_team->t.t_nproc = 1; 1248 serial_team->t.t_parent = this_thr->th.th_team; 1249 serial_team->t.t_sched.sched = this_thr->th.th_team->t.t_sched.sched; 1250 this_thr->th.th_team = serial_team; 1251 serial_team->t.t_master_tid = this_thr->th.th_info.ds.ds_tid; 1252 1253 KF_TRACE(10, ("__kmpc_serialized_parallel: T#d curtask=%p\n", global_tid, 1254 this_thr->th.th_current_task)); 1255 KMP_ASSERT(this_thr->th.th_current_task->td_flags.executing == 1); 1256 this_thr->th.th_current_task->td_flags.executing = 0; 1257 1258 __kmp_push_current_task_to_thread(this_thr, serial_team, 0); 1259 1260 /* TODO: GEH: do ICVs work for nested serialized teams? Don't we need an 1261 implicit task for each serialized task represented by 1262 team->t.t_serialized? */ 1263 copy_icvs(&this_thr->th.th_current_task->td_icvs, 1264 &this_thr->th.th_current_task->td_parent->td_icvs); 1265 1266 // Thread value exists in the nested nthreads array for the next nested 1267 // level 1268 if (__kmp_nested_nth.used && (level + 1 < __kmp_nested_nth.used)) { 1269 this_thr->th.th_current_task->td_icvs.nproc = 1270 __kmp_nested_nth.nth[level + 1]; 1271 } 1272 1273 if (__kmp_nested_proc_bind.used && 1274 (level + 1 < __kmp_nested_proc_bind.used)) { 1275 this_thr->th.th_current_task->td_icvs.proc_bind = 1276 __kmp_nested_proc_bind.bind_types[level + 1]; 1277 } 1278 1279 #if USE_DEBUGGER 1280 serial_team->t.t_pkfn = (microtask_t)(~0); // For the debugger. 1281 #endif 1282 this_thr->th.th_info.ds.ds_tid = 0; 1283 1284 /* set thread cache values */ 1285 this_thr->th.th_team_nproc = 1; 1286 this_thr->th.th_team_master = this_thr; 1287 this_thr->th.th_team_serialized = 1; 1288 1289 serial_team->t.t_level = serial_team->t.t_parent->t.t_level + 1; 1290 serial_team->t.t_active_level = serial_team->t.t_parent->t.t_active_level; 1291 serial_team->t.t_def_allocator = this_thr->th.th_def_allocator; // save 1292 1293 propagateFPControl(serial_team); 1294 1295 /* check if we need to allocate dispatch buffers stack */ 1296 KMP_DEBUG_ASSERT(serial_team->t.t_dispatch); 1297 if (!serial_team->t.t_dispatch->th_disp_buffer) { 1298 serial_team->t.t_dispatch->th_disp_buffer = 1299 (dispatch_private_info_t *)__kmp_allocate( 1300 sizeof(dispatch_private_info_t)); 1301 } 1302 this_thr->th.th_dispatch = serial_team->t.t_dispatch; 1303 1304 KMP_MB(); 1305 1306 } else { 1307 /* this serialized team is already being used, 1308 * that's fine, just add another nested level */ 1309 KMP_DEBUG_ASSERT(this_thr->th.th_team == serial_team); 1310 KMP_DEBUG_ASSERT(serial_team->t.t_threads); 1311 KMP_DEBUG_ASSERT(serial_team->t.t_threads[0] == this_thr); 1312 ++serial_team->t.t_serialized; 1313 this_thr->th.th_team_serialized = serial_team->t.t_serialized; 1314 1315 // Nested level will be an index in the nested nthreads array 1316 int level = this_thr->th.th_team->t.t_level; 1317 // Thread value exists in the nested nthreads array for the next nested 1318 // level 1319 if (__kmp_nested_nth.used && (level + 1 < __kmp_nested_nth.used)) { 1320 this_thr->th.th_current_task->td_icvs.nproc = 1321 __kmp_nested_nth.nth[level + 1]; 1322 } 1323 serial_team->t.t_level++; 1324 KF_TRACE(10, ("__kmpc_serialized_parallel: T#%d increasing nesting level " 1325 "of serial team %p to %d\n", 1326 global_tid, serial_team, serial_team->t.t_level)); 1327 1328 /* allocate/push dispatch buffers stack */ 1329 KMP_DEBUG_ASSERT(serial_team->t.t_dispatch); 1330 { 1331 dispatch_private_info_t *disp_buffer = 1332 (dispatch_private_info_t *)__kmp_allocate( 1333 sizeof(dispatch_private_info_t)); 1334 disp_buffer->next = serial_team->t.t_dispatch->th_disp_buffer; 1335 serial_team->t.t_dispatch->th_disp_buffer = disp_buffer; 1336 } 1337 this_thr->th.th_dispatch = serial_team->t.t_dispatch; 1338 1339 KMP_MB(); 1340 } 1341 KMP_CHECK_UPDATE(serial_team->t.t_cancel_request, cancel_noreq); 1342 1343 // Perform the display affinity functionality for 1344 // serialized parallel regions 1345 if (__kmp_display_affinity) { 1346 if (this_thr->th.th_prev_level != serial_team->t.t_level || 1347 this_thr->th.th_prev_num_threads != 1) { 1348 // NULL means use the affinity-format-var ICV 1349 __kmp_aux_display_affinity(global_tid, NULL); 1350 this_thr->th.th_prev_level = serial_team->t.t_level; 1351 this_thr->th.th_prev_num_threads = 1; 1352 } 1353 } 1354 1355 if (__kmp_env_consistency_check) 1356 __kmp_push_parallel(global_tid, NULL); 1357 #if OMPT_SUPPORT 1358 serial_team->t.ompt_team_info.master_return_address = codeptr; 1359 if (ompt_enabled.enabled && 1360 this_thr->th.ompt_thread_info.state != ompt_state_overhead) { 1361 OMPT_CUR_TASK_INFO(this_thr)->frame.exit_frame.ptr = OMPT_GET_FRAME_ADDRESS(0); 1362 1363 ompt_lw_taskteam_t lw_taskteam; 1364 __ompt_lw_taskteam_init(&lw_taskteam, this_thr, global_tid, 1365 &ompt_parallel_data, codeptr); 1366 1367 __ompt_lw_taskteam_link(&lw_taskteam, this_thr, 1); 1368 // don't use lw_taskteam after linking. content was swaped 1369 1370 /* OMPT implicit task begin */ 1371 implicit_task_data = OMPT_CUR_TASK_DATA(this_thr); 1372 if (ompt_enabled.ompt_callback_implicit_task) { 1373 ompt_callbacks.ompt_callback(ompt_callback_implicit_task)( 1374 ompt_scope_begin, OMPT_CUR_TEAM_DATA(this_thr), 1375 OMPT_CUR_TASK_DATA(this_thr), 1, __kmp_tid_from_gtid(global_tid), ompt_task_implicit); // TODO: Can this be ompt_task_initial? 1376 OMPT_CUR_TASK_INFO(this_thr) 1377 ->thread_num = __kmp_tid_from_gtid(global_tid); 1378 } 1379 1380 /* OMPT state */ 1381 this_thr->th.ompt_thread_info.state = ompt_state_work_parallel; 1382 OMPT_CUR_TASK_INFO(this_thr)->frame.exit_frame.ptr = OMPT_GET_FRAME_ADDRESS(0); 1383 } 1384 #endif 1385 } 1386 1387 /* most of the work for a fork */ 1388 /* return true if we really went parallel, false if serialized */ 1389 int __kmp_fork_call(ident_t *loc, int gtid, 1390 enum fork_context_e call_context, // Intel, GNU, ... 1391 kmp_int32 argc, microtask_t microtask, launch_t invoker, 1392 kmp_va_list ap) { 1393 void **argv; 1394 int i; 1395 int master_tid; 1396 int master_this_cons; 1397 kmp_team_t *team; 1398 kmp_team_t *parent_team; 1399 kmp_info_t *master_th; 1400 kmp_root_t *root; 1401 int nthreads; 1402 int master_active; 1403 int master_set_numthreads; 1404 int level; 1405 int active_level; 1406 int teams_level; 1407 #if KMP_NESTED_HOT_TEAMS 1408 kmp_hot_team_ptr_t **p_hot_teams; 1409 #endif 1410 { // KMP_TIME_BLOCK 1411 KMP_TIME_DEVELOPER_PARTITIONED_BLOCK(KMP_fork_call); 1412 KMP_COUNT_VALUE(OMP_PARALLEL_args, argc); 1413 1414 KA_TRACE(20, ("__kmp_fork_call: enter T#%d\n", gtid)); 1415 if (__kmp_stkpadding > 0 && __kmp_root[gtid] != NULL) { 1416 /* Some systems prefer the stack for the root thread(s) to start with */ 1417 /* some gap from the parent stack to prevent false sharing. */ 1418 void *dummy = KMP_ALLOCA(__kmp_stkpadding); 1419 /* These 2 lines below are so this does not get optimized out */ 1420 if (__kmp_stkpadding > KMP_MAX_STKPADDING) 1421 __kmp_stkpadding += (short)((kmp_int64)dummy); 1422 } 1423 1424 /* initialize if needed */ 1425 KMP_DEBUG_ASSERT( 1426 __kmp_init_serial); // AC: potentially unsafe, not in sync with shutdown 1427 if (!TCR_4(__kmp_init_parallel)) 1428 __kmp_parallel_initialize(); 1429 __kmp_resume_if_soft_paused(); 1430 1431 /* setup current data */ 1432 master_th = __kmp_threads[gtid]; // AC: potentially unsafe, not in sync with 1433 // shutdown 1434 parent_team = master_th->th.th_team; 1435 master_tid = master_th->th.th_info.ds.ds_tid; 1436 master_this_cons = master_th->th.th_local.this_construct; 1437 root = master_th->th.th_root; 1438 master_active = root->r.r_active; 1439 master_set_numthreads = master_th->th.th_set_nproc; 1440 1441 #if OMPT_SUPPORT 1442 ompt_data_t ompt_parallel_data = ompt_data_none; 1443 ompt_data_t *parent_task_data; 1444 ompt_frame_t *ompt_frame; 1445 ompt_data_t *implicit_task_data; 1446 void *return_address = NULL; 1447 1448 if (ompt_enabled.enabled) { 1449 __ompt_get_task_info_internal(0, NULL, &parent_task_data, &ompt_frame, 1450 NULL, NULL); 1451 return_address = OMPT_LOAD_RETURN_ADDRESS(gtid); 1452 } 1453 #endif 1454 1455 // Nested level will be an index in the nested nthreads array 1456 level = parent_team->t.t_level; 1457 // used to launch non-serial teams even if nested is not allowed 1458 active_level = parent_team->t.t_active_level; 1459 // needed to check nesting inside the teams 1460 teams_level = master_th->th.th_teams_level; 1461 #if KMP_NESTED_HOT_TEAMS 1462 p_hot_teams = &master_th->th.th_hot_teams; 1463 if (*p_hot_teams == NULL && __kmp_hot_teams_max_level > 0) { 1464 *p_hot_teams = (kmp_hot_team_ptr_t *)__kmp_allocate( 1465 sizeof(kmp_hot_team_ptr_t) * __kmp_hot_teams_max_level); 1466 (*p_hot_teams)[0].hot_team = root->r.r_hot_team; 1467 // it is either actual or not needed (when active_level > 0) 1468 (*p_hot_teams)[0].hot_team_nth = 1; 1469 } 1470 #endif 1471 1472 #if OMPT_SUPPORT 1473 if (ompt_enabled.enabled) { 1474 if (ompt_enabled.ompt_callback_parallel_begin) { 1475 int team_size = master_set_numthreads 1476 ? master_set_numthreads 1477 : get__nproc_2(parent_team, master_tid); 1478 int flags = OMPT_INVOKER(call_context) | 1479 ((microtask == (microtask_t)__kmp_teams_master) 1480 ? ompt_parallel_league 1481 : ompt_parallel_team); 1482 ompt_callbacks.ompt_callback(ompt_callback_parallel_begin)( 1483 parent_task_data, ompt_frame, &ompt_parallel_data, team_size, flags, 1484 return_address); 1485 } 1486 master_th->th.ompt_thread_info.state = ompt_state_overhead; 1487 } 1488 #endif 1489 1490 master_th->th.th_ident = loc; 1491 1492 if (master_th->th.th_teams_microtask && ap && 1493 microtask != (microtask_t)__kmp_teams_master && level == teams_level) { 1494 // AC: This is start of parallel that is nested inside teams construct. 1495 // The team is actual (hot), all workers are ready at the fork barrier. 1496 // No lock needed to initialize the team a bit, then free workers. 1497 parent_team->t.t_ident = loc; 1498 __kmp_alloc_argv_entries(argc, parent_team, TRUE); 1499 parent_team->t.t_argc = argc; 1500 argv = (void **)parent_team->t.t_argv; 1501 for (i = argc - 1; i >= 0; --i) 1502 *argv++ = va_arg(kmp_va_deref(ap), void *); 1503 // Increment our nested depth levels, but not increase the serialization 1504 if (parent_team == master_th->th.th_serial_team) { 1505 // AC: we are in serialized parallel 1506 __kmpc_serialized_parallel(loc, gtid); 1507 KMP_DEBUG_ASSERT(parent_team->t.t_serialized > 1); 1508 1509 #if OMPT_SUPPORT 1510 void *dummy; 1511 void **exit_frame_p; 1512 1513 ompt_lw_taskteam_t lw_taskteam; 1514 1515 if (ompt_enabled.enabled) { 1516 __ompt_lw_taskteam_init(&lw_taskteam, master_th, gtid, 1517 &ompt_parallel_data, return_address); 1518 exit_frame_p = &(lw_taskteam.ompt_task_info.frame.exit_frame.ptr); 1519 1520 __ompt_lw_taskteam_link(&lw_taskteam, master_th, 0); 1521 // don't use lw_taskteam after linking. content was swaped 1522 1523 /* OMPT implicit task begin */ 1524 implicit_task_data = OMPT_CUR_TASK_DATA(master_th); 1525 if (ompt_enabled.ompt_callback_implicit_task) { 1526 OMPT_CUR_TASK_INFO(master_th) 1527 ->thread_num = __kmp_tid_from_gtid(gtid); 1528 ompt_callbacks.ompt_callback(ompt_callback_implicit_task)( 1529 ompt_scope_begin, OMPT_CUR_TEAM_DATA(master_th), 1530 implicit_task_data, 1, 1531 OMPT_CUR_TASK_INFO(master_th)->thread_num, ompt_task_implicit); 1532 } 1533 1534 /* OMPT state */ 1535 master_th->th.ompt_thread_info.state = ompt_state_work_parallel; 1536 } else { 1537 exit_frame_p = &dummy; 1538 } 1539 #endif 1540 // AC: need to decrement t_serialized for enquiry functions to work 1541 // correctly, will restore at join time 1542 parent_team->t.t_serialized--; 1543 1544 { 1545 KMP_TIME_PARTITIONED_BLOCK(OMP_parallel); 1546 KMP_SET_THREAD_STATE_BLOCK(IMPLICIT_TASK); 1547 __kmp_invoke_microtask(microtask, gtid, 0, argc, parent_team->t.t_argv 1548 #if OMPT_SUPPORT 1549 , 1550 exit_frame_p 1551 #endif 1552 ); 1553 } 1554 1555 #if OMPT_SUPPORT 1556 if (ompt_enabled.enabled) { 1557 *exit_frame_p = NULL; 1558 OMPT_CUR_TASK_INFO(master_th)->frame.exit_frame = ompt_data_none; 1559 if (ompt_enabled.ompt_callback_implicit_task) { 1560 ompt_callbacks.ompt_callback(ompt_callback_implicit_task)( 1561 ompt_scope_end, NULL, implicit_task_data, 1, 1562 OMPT_CUR_TASK_INFO(master_th)->thread_num, ompt_task_implicit); 1563 } 1564 ompt_parallel_data = *OMPT_CUR_TEAM_DATA(master_th); 1565 __ompt_lw_taskteam_unlink(master_th); 1566 if (ompt_enabled.ompt_callback_parallel_end) { 1567 ompt_callbacks.ompt_callback(ompt_callback_parallel_end)( 1568 &ompt_parallel_data, OMPT_CUR_TASK_DATA(master_th), 1569 OMPT_INVOKER(call_context) | ompt_parallel_team, 1570 return_address); 1571 } 1572 master_th->th.ompt_thread_info.state = ompt_state_overhead; 1573 } 1574 #endif 1575 return TRUE; 1576 } 1577 1578 parent_team->t.t_pkfn = microtask; 1579 parent_team->t.t_invoke = invoker; 1580 KMP_ATOMIC_INC(&root->r.r_in_parallel); 1581 parent_team->t.t_active_level++; 1582 parent_team->t.t_level++; 1583 parent_team->t.t_def_allocator = master_th->th.th_def_allocator; // save 1584 1585 #if OMPT_SUPPORT 1586 if (ompt_enabled.enabled) { 1587 ompt_lw_taskteam_t lw_taskteam; 1588 __ompt_lw_taskteam_init(&lw_taskteam, master_th, gtid, 1589 &ompt_parallel_data, return_address); 1590 __ompt_lw_taskteam_link(&lw_taskteam, master_th, 1, true); 1591 } 1592 #endif 1593 1594 /* Change number of threads in the team if requested */ 1595 if (master_set_numthreads) { // The parallel has num_threads clause 1596 if (master_set_numthreads < master_th->th.th_teams_size.nth) { 1597 // AC: only can reduce number of threads dynamically, can't increase 1598 kmp_info_t **other_threads = parent_team->t.t_threads; 1599 parent_team->t.t_nproc = master_set_numthreads; 1600 for (i = 0; i < master_set_numthreads; ++i) { 1601 other_threads[i]->th.th_team_nproc = master_set_numthreads; 1602 } 1603 // Keep extra threads hot in the team for possible next parallels 1604 } 1605 master_th->th.th_set_nproc = 0; 1606 } 1607 1608 #if USE_DEBUGGER 1609 if (__kmp_debugging) { // Let debugger override number of threads. 1610 int nth = __kmp_omp_num_threads(loc); 1611 if (nth > 0) { // 0 means debugger doesn't want to change num threads 1612 master_set_numthreads = nth; 1613 } 1614 } 1615 #endif 1616 1617 KF_TRACE(10, ("__kmp_fork_call: before internal fork: root=%p, team=%p, " 1618 "master_th=%p, gtid=%d\n", 1619 root, parent_team, master_th, gtid)); 1620 __kmp_internal_fork(loc, gtid, parent_team); 1621 KF_TRACE(10, ("__kmp_fork_call: after internal fork: root=%p, team=%p, " 1622 "master_th=%p, gtid=%d\n", 1623 root, parent_team, master_th, gtid)); 1624 1625 /* Invoke microtask for MASTER thread */ 1626 KA_TRACE(20, ("__kmp_fork_call: T#%d(%d:0) invoke microtask = %p\n", gtid, 1627 parent_team->t.t_id, parent_team->t.t_pkfn)); 1628 1629 if (!parent_team->t.t_invoke(gtid)) { 1630 KMP_ASSERT2(0, "cannot invoke microtask for MASTER thread"); 1631 } 1632 KA_TRACE(20, ("__kmp_fork_call: T#%d(%d:0) done microtask = %p\n", gtid, 1633 parent_team->t.t_id, parent_team->t.t_pkfn)); 1634 KMP_MB(); /* Flush all pending memory write invalidates. */ 1635 1636 KA_TRACE(20, ("__kmp_fork_call: parallel exit T#%d\n", gtid)); 1637 1638 return TRUE; 1639 } // Parallel closely nested in teams construct 1640 1641 #if KMP_DEBUG 1642 if (__kmp_tasking_mode != tskm_immediate_exec) { 1643 KMP_DEBUG_ASSERT(master_th->th.th_task_team == 1644 parent_team->t.t_task_team[master_th->th.th_task_state]); 1645 } 1646 #endif 1647 1648 if (parent_team->t.t_active_level >= 1649 master_th->th.th_current_task->td_icvs.max_active_levels) { 1650 nthreads = 1; 1651 } else { 1652 int enter_teams = ((ap == NULL && active_level == 0) || 1653 (ap && teams_level > 0 && teams_level == level)); 1654 nthreads = 1655 master_set_numthreads 1656 ? master_set_numthreads 1657 : get__nproc_2( 1658 parent_team, 1659 master_tid); // TODO: get nproc directly from current task 1660 1661 // Check if we need to take forkjoin lock? (no need for serialized 1662 // parallel out of teams construct). This code moved here from 1663 // __kmp_reserve_threads() to speedup nested serialized parallels. 1664 if (nthreads > 1) { 1665 if ((get__max_active_levels(master_th) == 1 && 1666 (root->r.r_in_parallel && !enter_teams)) || 1667 (__kmp_library == library_serial)) { 1668 KC_TRACE(10, ("__kmp_fork_call: T#%d serializing team; requested %d" 1669 " threads\n", 1670 gtid, nthreads)); 1671 nthreads = 1; 1672 } 1673 } 1674 if (nthreads > 1) { 1675 /* determine how many new threads we can use */ 1676 __kmp_acquire_bootstrap_lock(&__kmp_forkjoin_lock); 1677 /* AC: If we execute teams from parallel region (on host), then teams 1678 should be created but each can only have 1 thread if nesting is 1679 disabled. If teams called from serial region, then teams and their 1680 threads should be created regardless of the nesting setting. */ 1681 nthreads = __kmp_reserve_threads(root, parent_team, master_tid, 1682 nthreads, enter_teams); 1683 if (nthreads == 1) { 1684 // Free lock for single thread execution here; for multi-thread 1685 // execution it will be freed later after team of threads created 1686 // and initialized 1687 __kmp_release_bootstrap_lock(&__kmp_forkjoin_lock); 1688 } 1689 } 1690 } 1691 KMP_DEBUG_ASSERT(nthreads > 0); 1692 1693 // If we temporarily changed the set number of threads then restore it now 1694 master_th->th.th_set_nproc = 0; 1695 1696 /* create a serialized parallel region? */ 1697 if (nthreads == 1) { 1698 /* josh todo: hypothetical question: what do we do for OS X*? */ 1699 #if KMP_OS_LINUX && \ 1700 (KMP_ARCH_X86 || KMP_ARCH_X86_64 || KMP_ARCH_ARM || KMP_ARCH_AARCH64) 1701 void *args[argc]; 1702 #else 1703 void **args = (void **)KMP_ALLOCA(argc * sizeof(void *)); 1704 #endif /* KMP_OS_LINUX && ( KMP_ARCH_X86 || KMP_ARCH_X86_64 || KMP_ARCH_ARM || \ 1705 KMP_ARCH_AARCH64) */ 1706 1707 KA_TRACE(20, 1708 ("__kmp_fork_call: T#%d serializing parallel region\n", gtid)); 1709 1710 __kmpc_serialized_parallel(loc, gtid); 1711 1712 if (call_context == fork_context_intel) { 1713 /* TODO this sucks, use the compiler itself to pass args! :) */ 1714 master_th->th.th_serial_team->t.t_ident = loc; 1715 if (!ap) { 1716 // revert change made in __kmpc_serialized_parallel() 1717 master_th->th.th_serial_team->t.t_level--; 1718 // Get args from parent team for teams construct 1719 1720 #if OMPT_SUPPORT 1721 void *dummy; 1722 void **exit_frame_p; 1723 ompt_task_info_t *task_info; 1724 1725 ompt_lw_taskteam_t lw_taskteam; 1726 1727 if (ompt_enabled.enabled) { 1728 __ompt_lw_taskteam_init(&lw_taskteam, master_th, gtid, 1729 &ompt_parallel_data, return_address); 1730 1731 __ompt_lw_taskteam_link(&lw_taskteam, master_th, 0); 1732 // don't use lw_taskteam after linking. content was swaped 1733 1734 task_info = OMPT_CUR_TASK_INFO(master_th); 1735 exit_frame_p = &(task_info->frame.exit_frame.ptr); 1736 if (ompt_enabled.ompt_callback_implicit_task) { 1737 OMPT_CUR_TASK_INFO(master_th) 1738 ->thread_num = __kmp_tid_from_gtid(gtid); 1739 ompt_callbacks.ompt_callback(ompt_callback_implicit_task)( 1740 ompt_scope_begin, OMPT_CUR_TEAM_DATA(master_th), 1741 &(task_info->task_data), 1, 1742 OMPT_CUR_TASK_INFO(master_th)->thread_num, 1743 ompt_task_implicit); 1744 } 1745 1746 /* OMPT state */ 1747 master_th->th.ompt_thread_info.state = ompt_state_work_parallel; 1748 } else { 1749 exit_frame_p = &dummy; 1750 } 1751 #endif 1752 1753 { 1754 KMP_TIME_PARTITIONED_BLOCK(OMP_parallel); 1755 KMP_SET_THREAD_STATE_BLOCK(IMPLICIT_TASK); 1756 __kmp_invoke_microtask(microtask, gtid, 0, argc, 1757 parent_team->t.t_argv 1758 #if OMPT_SUPPORT 1759 , 1760 exit_frame_p 1761 #endif 1762 ); 1763 } 1764 1765 #if OMPT_SUPPORT 1766 if (ompt_enabled.enabled) { 1767 *exit_frame_p = NULL; 1768 if (ompt_enabled.ompt_callback_implicit_task) { 1769 ompt_callbacks.ompt_callback(ompt_callback_implicit_task)( 1770 ompt_scope_end, NULL, &(task_info->task_data), 1, 1771 OMPT_CUR_TASK_INFO(master_th)->thread_num, 1772 ompt_task_implicit); 1773 } 1774 ompt_parallel_data = *OMPT_CUR_TEAM_DATA(master_th); 1775 __ompt_lw_taskteam_unlink(master_th); 1776 if (ompt_enabled.ompt_callback_parallel_end) { 1777 ompt_callbacks.ompt_callback(ompt_callback_parallel_end)( 1778 &ompt_parallel_data, parent_task_data, 1779 OMPT_INVOKER(call_context) | ompt_parallel_team, 1780 return_address); 1781 } 1782 master_th->th.ompt_thread_info.state = ompt_state_overhead; 1783 } 1784 #endif 1785 } else if (microtask == (microtask_t)__kmp_teams_master) { 1786 KMP_DEBUG_ASSERT(master_th->th.th_team == 1787 master_th->th.th_serial_team); 1788 team = master_th->th.th_team; 1789 // team->t.t_pkfn = microtask; 1790 team->t.t_invoke = invoker; 1791 __kmp_alloc_argv_entries(argc, team, TRUE); 1792 team->t.t_argc = argc; 1793 argv = (void **)team->t.t_argv; 1794 if (ap) { 1795 for (i = argc - 1; i >= 0; --i) 1796 *argv++ = va_arg(kmp_va_deref(ap), void *); 1797 } else { 1798 for (i = 0; i < argc; ++i) 1799 // Get args from parent team for teams construct 1800 argv[i] = parent_team->t.t_argv[i]; 1801 } 1802 // AC: revert change made in __kmpc_serialized_parallel() 1803 // because initial code in teams should have level=0 1804 team->t.t_level--; 1805 // AC: call special invoker for outer "parallel" of teams construct 1806 invoker(gtid); 1807 #if OMPT_SUPPORT 1808 if (ompt_enabled.enabled) { 1809 ompt_task_info_t *task_info = OMPT_CUR_TASK_INFO(master_th); 1810 if (ompt_enabled.ompt_callback_implicit_task) { 1811 ompt_callbacks.ompt_callback(ompt_callback_implicit_task)( 1812 ompt_scope_end, NULL, &(task_info->task_data), 0, 1813 OMPT_CUR_TASK_INFO(master_th)->thread_num, ompt_task_initial); 1814 } 1815 if (ompt_enabled.ompt_callback_parallel_end) { 1816 ompt_callbacks.ompt_callback(ompt_callback_parallel_end)( 1817 &ompt_parallel_data, parent_task_data, 1818 OMPT_INVOKER(call_context) | ompt_parallel_league, 1819 return_address); 1820 } 1821 master_th->th.ompt_thread_info.state = ompt_state_overhead; 1822 } 1823 #endif 1824 } else { 1825 argv = args; 1826 for (i = argc - 1; i >= 0; --i) 1827 *argv++ = va_arg(kmp_va_deref(ap), void *); 1828 KMP_MB(); 1829 1830 #if OMPT_SUPPORT 1831 void *dummy; 1832 void **exit_frame_p; 1833 ompt_task_info_t *task_info; 1834 1835 ompt_lw_taskteam_t lw_taskteam; 1836 1837 if (ompt_enabled.enabled) { 1838 __ompt_lw_taskteam_init(&lw_taskteam, master_th, gtid, 1839 &ompt_parallel_data, return_address); 1840 __ompt_lw_taskteam_link(&lw_taskteam, master_th, 0); 1841 // don't use lw_taskteam after linking. content was swaped 1842 task_info = OMPT_CUR_TASK_INFO(master_th); 1843 exit_frame_p = &(task_info->frame.exit_frame.ptr); 1844 1845 /* OMPT implicit task begin */ 1846 implicit_task_data = OMPT_CUR_TASK_DATA(master_th); 1847 if (ompt_enabled.ompt_callback_implicit_task) { 1848 ompt_callbacks.ompt_callback(ompt_callback_implicit_task)( 1849 ompt_scope_begin, OMPT_CUR_TEAM_DATA(master_th), 1850 implicit_task_data, 1, __kmp_tid_from_gtid(gtid), 1851 ompt_task_implicit); 1852 OMPT_CUR_TASK_INFO(master_th) 1853 ->thread_num = __kmp_tid_from_gtid(gtid); 1854 } 1855 1856 /* OMPT state */ 1857 master_th->th.ompt_thread_info.state = ompt_state_work_parallel; 1858 } else { 1859 exit_frame_p = &dummy; 1860 } 1861 #endif 1862 1863 { 1864 KMP_TIME_PARTITIONED_BLOCK(OMP_parallel); 1865 KMP_SET_THREAD_STATE_BLOCK(IMPLICIT_TASK); 1866 __kmp_invoke_microtask(microtask, gtid, 0, argc, args 1867 #if OMPT_SUPPORT 1868 , 1869 exit_frame_p 1870 #endif 1871 ); 1872 } 1873 1874 #if OMPT_SUPPORT 1875 if (ompt_enabled.enabled) { 1876 *exit_frame_p = NULL; 1877 if (ompt_enabled.ompt_callback_implicit_task) { 1878 ompt_callbacks.ompt_callback(ompt_callback_implicit_task)( 1879 ompt_scope_end, NULL, &(task_info->task_data), 1, 1880 OMPT_CUR_TASK_INFO(master_th)->thread_num, 1881 ompt_task_implicit); 1882 } 1883 1884 ompt_parallel_data = *OMPT_CUR_TEAM_DATA(master_th); 1885 __ompt_lw_taskteam_unlink(master_th); 1886 if (ompt_enabled.ompt_callback_parallel_end) { 1887 ompt_callbacks.ompt_callback(ompt_callback_parallel_end)( 1888 &ompt_parallel_data, parent_task_data, 1889 OMPT_INVOKER(call_context) | ompt_parallel_team, 1890 return_address); 1891 } 1892 master_th->th.ompt_thread_info.state = ompt_state_overhead; 1893 } 1894 #endif 1895 } 1896 } else if (call_context == fork_context_gnu) { 1897 #if OMPT_SUPPORT 1898 ompt_lw_taskteam_t lwt; 1899 __ompt_lw_taskteam_init(&lwt, master_th, gtid, &ompt_parallel_data, 1900 return_address); 1901 1902 lwt.ompt_task_info.frame.exit_frame = ompt_data_none; 1903 __ompt_lw_taskteam_link(&lwt, master_th, 1); 1904 // don't use lw_taskteam after linking. content was swaped 1905 #endif 1906 1907 // we were called from GNU native code 1908 KA_TRACE(20, ("__kmp_fork_call: T#%d serial exit\n", gtid)); 1909 return FALSE; 1910 } else { 1911 KMP_ASSERT2(call_context < fork_context_last, 1912 "__kmp_fork_call: unknown fork_context parameter"); 1913 } 1914 1915 KA_TRACE(20, ("__kmp_fork_call: T#%d serial exit\n", gtid)); 1916 KMP_MB(); 1917 return FALSE; 1918 } // if (nthreads == 1) 1919 1920 // GEH: only modify the executing flag in the case when not serialized 1921 // serialized case is handled in kmpc_serialized_parallel 1922 KF_TRACE(10, ("__kmp_fork_call: parent_team_aclevel=%d, master_th=%p, " 1923 "curtask=%p, curtask_max_aclevel=%d\n", 1924 parent_team->t.t_active_level, master_th, 1925 master_th->th.th_current_task, 1926 master_th->th.th_current_task->td_icvs.max_active_levels)); 1927 // TODO: GEH - cannot do this assertion because root thread not set up as 1928 // executing 1929 // KMP_ASSERT( master_th->th.th_current_task->td_flags.executing == 1 ); 1930 master_th->th.th_current_task->td_flags.executing = 0; 1931 1932 if (!master_th->th.th_teams_microtask || level > teams_level) { 1933 /* Increment our nested depth level */ 1934 KMP_ATOMIC_INC(&root->r.r_in_parallel); 1935 } 1936 1937 // See if we need to make a copy of the ICVs. 1938 int nthreads_icv = master_th->th.th_current_task->td_icvs.nproc; 1939 if ((level + 1 < __kmp_nested_nth.used) && 1940 (__kmp_nested_nth.nth[level + 1] != nthreads_icv)) { 1941 nthreads_icv = __kmp_nested_nth.nth[level + 1]; 1942 } else { 1943 nthreads_icv = 0; // don't update 1944 } 1945 1946 // Figure out the proc_bind_policy for the new team. 1947 kmp_proc_bind_t proc_bind = master_th->th.th_set_proc_bind; 1948 kmp_proc_bind_t proc_bind_icv = 1949 proc_bind_default; // proc_bind_default means don't update 1950 if (master_th->th.th_current_task->td_icvs.proc_bind == proc_bind_false) { 1951 proc_bind = proc_bind_false; 1952 } else { 1953 if (proc_bind == proc_bind_default) { 1954 // No proc_bind clause specified; use current proc-bind-var for this 1955 // parallel region 1956 proc_bind = master_th->th.th_current_task->td_icvs.proc_bind; 1957 } 1958 /* else: The proc_bind policy was specified explicitly on parallel clause. 1959 This overrides proc-bind-var for this parallel region, but does not 1960 change proc-bind-var. */ 1961 // Figure the value of proc-bind-var for the child threads. 1962 if ((level + 1 < __kmp_nested_proc_bind.used) && 1963 (__kmp_nested_proc_bind.bind_types[level + 1] != 1964 master_th->th.th_current_task->td_icvs.proc_bind)) { 1965 proc_bind_icv = __kmp_nested_proc_bind.bind_types[level + 1]; 1966 } 1967 } 1968 1969 // Reset for next parallel region 1970 master_th->th.th_set_proc_bind = proc_bind_default; 1971 1972 if ((nthreads_icv > 0) || (proc_bind_icv != proc_bind_default)) { 1973 kmp_internal_control_t new_icvs; 1974 copy_icvs(&new_icvs, &master_th->th.th_current_task->td_icvs); 1975 new_icvs.next = NULL; 1976 if (nthreads_icv > 0) { 1977 new_icvs.nproc = nthreads_icv; 1978 } 1979 if (proc_bind_icv != proc_bind_default) { 1980 new_icvs.proc_bind = proc_bind_icv; 1981 } 1982 1983 /* allocate a new parallel team */ 1984 KF_TRACE(10, ("__kmp_fork_call: before __kmp_allocate_team\n")); 1985 team = __kmp_allocate_team(root, nthreads, nthreads, 1986 #if OMPT_SUPPORT 1987 ompt_parallel_data, 1988 #endif 1989 proc_bind, &new_icvs, 1990 argc USE_NESTED_HOT_ARG(master_th)); 1991 } else { 1992 /* allocate a new parallel team */ 1993 KF_TRACE(10, ("__kmp_fork_call: before __kmp_allocate_team\n")); 1994 team = __kmp_allocate_team(root, nthreads, nthreads, 1995 #if OMPT_SUPPORT 1996 ompt_parallel_data, 1997 #endif 1998 proc_bind, 1999 &master_th->th.th_current_task->td_icvs, 2000 argc USE_NESTED_HOT_ARG(master_th)); 2001 } 2002 KF_TRACE( 2003 10, ("__kmp_fork_call: after __kmp_allocate_team - team = %p\n", team)); 2004 2005 /* setup the new team */ 2006 KMP_CHECK_UPDATE(team->t.t_master_tid, master_tid); 2007 KMP_CHECK_UPDATE(team->t.t_master_this_cons, master_this_cons); 2008 KMP_CHECK_UPDATE(team->t.t_ident, loc); 2009 KMP_CHECK_UPDATE(team->t.t_parent, parent_team); 2010 KMP_CHECK_UPDATE_SYNC(team->t.t_pkfn, microtask); 2011 #if OMPT_SUPPORT 2012 KMP_CHECK_UPDATE_SYNC(team->t.ompt_team_info.master_return_address, 2013 return_address); 2014 #endif 2015 KMP_CHECK_UPDATE(team->t.t_invoke, invoker); // TODO move to root, maybe 2016 // TODO: parent_team->t.t_level == INT_MAX ??? 2017 if (!master_th->th.th_teams_microtask || level > teams_level) { 2018 int new_level = parent_team->t.t_level + 1; 2019 KMP_CHECK_UPDATE(team->t.t_level, new_level); 2020 new_level = parent_team->t.t_active_level + 1; 2021 KMP_CHECK_UPDATE(team->t.t_active_level, new_level); 2022 } else { 2023 // AC: Do not increase parallel level at start of the teams construct 2024 int new_level = parent_team->t.t_level; 2025 KMP_CHECK_UPDATE(team->t.t_level, new_level); 2026 new_level = parent_team->t.t_active_level; 2027 KMP_CHECK_UPDATE(team->t.t_active_level, new_level); 2028 } 2029 kmp_r_sched_t new_sched = get__sched_2(parent_team, master_tid); 2030 // set master's schedule as new run-time schedule 2031 KMP_CHECK_UPDATE(team->t.t_sched.sched, new_sched.sched); 2032 2033 KMP_CHECK_UPDATE(team->t.t_cancel_request, cancel_noreq); 2034 KMP_CHECK_UPDATE(team->t.t_def_allocator, master_th->th.th_def_allocator); 2035 2036 // Update the floating point rounding in the team if required. 2037 propagateFPControl(team); 2038 2039 if (__kmp_tasking_mode != tskm_immediate_exec) { 2040 // Set master's task team to team's task team. Unless this is hot team, it 2041 // should be NULL. 2042 KMP_DEBUG_ASSERT(master_th->th.th_task_team == 2043 parent_team->t.t_task_team[master_th->th.th_task_state]); 2044 KA_TRACE(20, ("__kmp_fork_call: Master T#%d pushing task_team %p / team " 2045 "%p, new task_team %p / team %p\n", 2046 __kmp_gtid_from_thread(master_th), 2047 master_th->th.th_task_team, parent_team, 2048 team->t.t_task_team[master_th->th.th_task_state], team)); 2049 2050 if (active_level || master_th->th.th_task_team) { 2051 // Take a memo of master's task_state 2052 KMP_DEBUG_ASSERT(master_th->th.th_task_state_memo_stack); 2053 if (master_th->th.th_task_state_top >= 2054 master_th->th.th_task_state_stack_sz) { // increase size 2055 kmp_uint32 new_size = 2 * master_th->th.th_task_state_stack_sz; 2056 kmp_uint8 *old_stack, *new_stack; 2057 kmp_uint32 i; 2058 new_stack = (kmp_uint8 *)__kmp_allocate(new_size); 2059 for (i = 0; i < master_th->th.th_task_state_stack_sz; ++i) { 2060 new_stack[i] = master_th->th.th_task_state_memo_stack[i]; 2061 } 2062 for (i = master_th->th.th_task_state_stack_sz; i < new_size; 2063 ++i) { // zero-init rest of stack 2064 new_stack[i] = 0; 2065 } 2066 old_stack = master_th->th.th_task_state_memo_stack; 2067 master_th->th.th_task_state_memo_stack = new_stack; 2068 master_th->th.th_task_state_stack_sz = new_size; 2069 __kmp_free(old_stack); 2070 } 2071 // Store master's task_state on stack 2072 master_th->th 2073 .th_task_state_memo_stack[master_th->th.th_task_state_top] = 2074 master_th->th.th_task_state; 2075 master_th->th.th_task_state_top++; 2076 #if KMP_NESTED_HOT_TEAMS 2077 if (master_th->th.th_hot_teams && 2078 active_level < __kmp_hot_teams_max_level && 2079 team == master_th->th.th_hot_teams[active_level].hot_team) { 2080 // Restore master's nested state if nested hot team 2081 master_th->th.th_task_state = 2082 master_th->th 2083 .th_task_state_memo_stack[master_th->th.th_task_state_top]; 2084 } else { 2085 #endif 2086 master_th->th.th_task_state = 0; 2087 #if KMP_NESTED_HOT_TEAMS 2088 } 2089 #endif 2090 } 2091 #if !KMP_NESTED_HOT_TEAMS 2092 KMP_DEBUG_ASSERT((master_th->th.th_task_team == NULL) || 2093 (team == root->r.r_hot_team)); 2094 #endif 2095 } 2096 2097 KA_TRACE( 2098 20, 2099 ("__kmp_fork_call: T#%d(%d:%d)->(%d:0) created a team of %d threads\n", 2100 gtid, parent_team->t.t_id, team->t.t_master_tid, team->t.t_id, 2101 team->t.t_nproc)); 2102 KMP_DEBUG_ASSERT(team != root->r.r_hot_team || 2103 (team->t.t_master_tid == 0 && 2104 (team->t.t_parent == root->r.r_root_team || 2105 team->t.t_parent->t.t_serialized))); 2106 KMP_MB(); 2107 2108 /* now, setup the arguments */ 2109 argv = (void **)team->t.t_argv; 2110 if (ap) { 2111 for (i = argc - 1; i >= 0; --i) { 2112 void *new_argv = va_arg(kmp_va_deref(ap), void *); 2113 KMP_CHECK_UPDATE(*argv, new_argv); 2114 argv++; 2115 } 2116 } else { 2117 for (i = 0; i < argc; ++i) { 2118 // Get args from parent team for teams construct 2119 KMP_CHECK_UPDATE(argv[i], team->t.t_parent->t.t_argv[i]); 2120 } 2121 } 2122 2123 /* now actually fork the threads */ 2124 KMP_CHECK_UPDATE(team->t.t_master_active, master_active); 2125 if (!root->r.r_active) // Only do assignment if it prevents cache ping-pong 2126 root->r.r_active = TRUE; 2127 2128 __kmp_fork_team_threads(root, team, master_th, gtid); 2129 __kmp_setup_icv_copy(team, nthreads, 2130 &master_th->th.th_current_task->td_icvs, loc); 2131 2132 #if OMPT_SUPPORT 2133 master_th->th.ompt_thread_info.state = ompt_state_work_parallel; 2134 #endif 2135 2136 __kmp_release_bootstrap_lock(&__kmp_forkjoin_lock); 2137 2138 #if USE_ITT_BUILD 2139 if (team->t.t_active_level == 1 // only report frames at level 1 2140 && !master_th->th.th_teams_microtask) { // not in teams construct 2141 #if USE_ITT_NOTIFY 2142 if ((__itt_frame_submit_v3_ptr || KMP_ITT_DEBUG) && 2143 (__kmp_forkjoin_frames_mode == 3 || 2144 __kmp_forkjoin_frames_mode == 1)) { 2145 kmp_uint64 tmp_time = 0; 2146 if (__itt_get_timestamp_ptr) 2147 tmp_time = __itt_get_timestamp(); 2148 // Internal fork - report frame begin 2149 master_th->th.th_frame_time = tmp_time; 2150 if (__kmp_forkjoin_frames_mode == 3) 2151 team->t.t_region_time = tmp_time; 2152 } else 2153 // only one notification scheme (either "submit" or "forking/joined", not both) 2154 #endif /* USE_ITT_NOTIFY */ 2155 if ((__itt_frame_begin_v3_ptr || KMP_ITT_DEBUG) && 2156 __kmp_forkjoin_frames && !__kmp_forkjoin_frames_mode) { 2157 // Mark start of "parallel" region for Intel(R) VTune(TM) analyzer. 2158 __kmp_itt_region_forking(gtid, team->t.t_nproc, 0); 2159 } 2160 } 2161 #endif /* USE_ITT_BUILD */ 2162 2163 /* now go on and do the work */ 2164 KMP_DEBUG_ASSERT(team == __kmp_threads[gtid]->th.th_team); 2165 KMP_MB(); 2166 KF_TRACE(10, 2167 ("__kmp_internal_fork : root=%p, team=%p, master_th=%p, gtid=%d\n", 2168 root, team, master_th, gtid)); 2169 2170 #if USE_ITT_BUILD 2171 if (__itt_stack_caller_create_ptr) { 2172 team->t.t_stack_id = 2173 __kmp_itt_stack_caller_create(); // create new stack stitching id 2174 // before entering fork barrier 2175 } 2176 #endif /* USE_ITT_BUILD */ 2177 2178 // AC: skip __kmp_internal_fork at teams construct, let only master 2179 // threads execute 2180 if (ap) { 2181 __kmp_internal_fork(loc, gtid, team); 2182 KF_TRACE(10, ("__kmp_internal_fork : after : root=%p, team=%p, " 2183 "master_th=%p, gtid=%d\n", 2184 root, team, master_th, gtid)); 2185 } 2186 2187 if (call_context == fork_context_gnu) { 2188 KA_TRACE(20, ("__kmp_fork_call: parallel exit T#%d\n", gtid)); 2189 return TRUE; 2190 } 2191 2192 /* Invoke microtask for MASTER thread */ 2193 KA_TRACE(20, ("__kmp_fork_call: T#%d(%d:0) invoke microtask = %p\n", gtid, 2194 team->t.t_id, team->t.t_pkfn)); 2195 } // END of timer KMP_fork_call block 2196 2197 #if KMP_STATS_ENABLED 2198 // If beginning a teams construct, then change thread state 2199 stats_state_e previous_state = KMP_GET_THREAD_STATE(); 2200 if (!ap) { 2201 KMP_SET_THREAD_STATE(stats_state_e::TEAMS_REGION); 2202 } 2203 #endif 2204 2205 if (!team->t.t_invoke(gtid)) { 2206 KMP_ASSERT2(0, "cannot invoke microtask for MASTER thread"); 2207 } 2208 2209 #if KMP_STATS_ENABLED 2210 // If was beginning of a teams construct, then reset thread state 2211 if (!ap) { 2212 KMP_SET_THREAD_STATE(previous_state); 2213 } 2214 #endif 2215 2216 KA_TRACE(20, ("__kmp_fork_call: T#%d(%d:0) done microtask = %p\n", gtid, 2217 team->t.t_id, team->t.t_pkfn)); 2218 KMP_MB(); /* Flush all pending memory write invalidates. */ 2219 2220 KA_TRACE(20, ("__kmp_fork_call: parallel exit T#%d\n", gtid)); 2221 2222 #if OMPT_SUPPORT 2223 if (ompt_enabled.enabled) { 2224 master_th->th.ompt_thread_info.state = ompt_state_overhead; 2225 } 2226 #endif 2227 2228 return TRUE; 2229 } 2230 2231 #if OMPT_SUPPORT 2232 static inline void __kmp_join_restore_state(kmp_info_t *thread, 2233 kmp_team_t *team) { 2234 // restore state outside the region 2235 thread->th.ompt_thread_info.state = 2236 ((team->t.t_serialized) ? ompt_state_work_serial 2237 : ompt_state_work_parallel); 2238 } 2239 2240 static inline void __kmp_join_ompt(int gtid, kmp_info_t *thread, 2241 kmp_team_t *team, ompt_data_t *parallel_data, 2242 int flags, void *codeptr) { 2243 ompt_task_info_t *task_info = __ompt_get_task_info_object(0); 2244 if (ompt_enabled.ompt_callback_parallel_end) { 2245 ompt_callbacks.ompt_callback(ompt_callback_parallel_end)( 2246 parallel_data, &(task_info->task_data), flags, codeptr); 2247 } 2248 2249 task_info->frame.enter_frame = ompt_data_none; 2250 __kmp_join_restore_state(thread, team); 2251 } 2252 #endif 2253 2254 void __kmp_join_call(ident_t *loc, int gtid 2255 #if OMPT_SUPPORT 2256 , 2257 enum fork_context_e fork_context 2258 #endif 2259 , 2260 int exit_teams) { 2261 KMP_TIME_DEVELOPER_PARTITIONED_BLOCK(KMP_join_call); 2262 kmp_team_t *team; 2263 kmp_team_t *parent_team; 2264 kmp_info_t *master_th; 2265 kmp_root_t *root; 2266 int master_active; 2267 2268 KA_TRACE(20, ("__kmp_join_call: enter T#%d\n", gtid)); 2269 2270 /* setup current data */ 2271 master_th = __kmp_threads[gtid]; 2272 root = master_th->th.th_root; 2273 team = master_th->th.th_team; 2274 parent_team = team->t.t_parent; 2275 2276 master_th->th.th_ident = loc; 2277 2278 #if OMPT_SUPPORT 2279 void *team_microtask = (void *)team->t.t_pkfn; 2280 if (ompt_enabled.enabled) { 2281 master_th->th.ompt_thread_info.state = ompt_state_overhead; 2282 } 2283 #endif 2284 2285 #if KMP_DEBUG 2286 if (__kmp_tasking_mode != tskm_immediate_exec && !exit_teams) { 2287 KA_TRACE(20, ("__kmp_join_call: T#%d, old team = %p old task_team = %p, " 2288 "th_task_team = %p\n", 2289 __kmp_gtid_from_thread(master_th), team, 2290 team->t.t_task_team[master_th->th.th_task_state], 2291 master_th->th.th_task_team)); 2292 KMP_DEBUG_ASSERT(master_th->th.th_task_team == 2293 team->t.t_task_team[master_th->th.th_task_state]); 2294 } 2295 #endif 2296 2297 if (team->t.t_serialized) { 2298 if (master_th->th.th_teams_microtask) { 2299 // We are in teams construct 2300 int level = team->t.t_level; 2301 int tlevel = master_th->th.th_teams_level; 2302 if (level == tlevel) { 2303 // AC: we haven't incremented it earlier at start of teams construct, 2304 // so do it here - at the end of teams construct 2305 team->t.t_level++; 2306 } else if (level == tlevel + 1) { 2307 // AC: we are exiting parallel inside teams, need to increment 2308 // serialization in order to restore it in the next call to 2309 // __kmpc_end_serialized_parallel 2310 team->t.t_serialized++; 2311 } 2312 } 2313 __kmpc_end_serialized_parallel(loc, gtid); 2314 2315 #if OMPT_SUPPORT 2316 if (ompt_enabled.enabled) { 2317 __kmp_join_restore_state(master_th, parent_team); 2318 } 2319 #endif 2320 2321 return; 2322 } 2323 2324 master_active = team->t.t_master_active; 2325 2326 if (!exit_teams) { 2327 // AC: No barrier for internal teams at exit from teams construct. 2328 // But there is barrier for external team (league). 2329 __kmp_internal_join(loc, gtid, team); 2330 } else { 2331 master_th->th.th_task_state = 2332 0; // AC: no tasking in teams (out of any parallel) 2333 } 2334 2335 KMP_MB(); 2336 2337 #if OMPT_SUPPORT 2338 ompt_data_t *parallel_data = &(team->t.ompt_team_info.parallel_data); 2339 void *codeptr = team->t.ompt_team_info.master_return_address; 2340 #endif 2341 2342 #if USE_ITT_BUILD 2343 if (__itt_stack_caller_create_ptr) { 2344 __kmp_itt_stack_caller_destroy( 2345 (__itt_caller)team->t 2346 .t_stack_id); // destroy the stack stitching id after join barrier 2347 } 2348 2349 // Mark end of "parallel" region for Intel(R) VTune(TM) analyzer. 2350 if (team->t.t_active_level == 1 && 2351 !master_th->th.th_teams_microtask) { /* not in teams construct */ 2352 master_th->th.th_ident = loc; 2353 // only one notification scheme (either "submit" or "forking/joined", not 2354 // both) 2355 if ((__itt_frame_submit_v3_ptr || KMP_ITT_DEBUG) && 2356 __kmp_forkjoin_frames_mode == 3) 2357 __kmp_itt_frame_submit(gtid, team->t.t_region_time, 2358 master_th->th.th_frame_time, 0, loc, 2359 master_th->th.th_team_nproc, 1); 2360 else if ((__itt_frame_end_v3_ptr || KMP_ITT_DEBUG) && 2361 !__kmp_forkjoin_frames_mode && __kmp_forkjoin_frames) 2362 __kmp_itt_region_joined(gtid); 2363 } // active_level == 1 2364 #endif /* USE_ITT_BUILD */ 2365 2366 if (master_th->th.th_teams_microtask && !exit_teams && 2367 team->t.t_pkfn != (microtask_t)__kmp_teams_master && 2368 team->t.t_level == master_th->th.th_teams_level + 1) { 2369 // AC: We need to leave the team structure intact at the end of parallel 2370 // inside the teams construct, so that at the next parallel same (hot) team 2371 // works, only adjust nesting levels 2372 #if OMPT_SUPPORT 2373 ompt_data_t ompt_parallel_data = ompt_data_none; 2374 if (ompt_enabled.enabled) { 2375 ompt_task_info_t *task_info = __ompt_get_task_info_object(0); 2376 if (ompt_enabled.ompt_callback_implicit_task) { 2377 int ompt_team_size = team->t.t_nproc; 2378 ompt_callbacks.ompt_callback(ompt_callback_implicit_task)( 2379 ompt_scope_end, NULL, &(task_info->task_data), ompt_team_size, 2380 OMPT_CUR_TASK_INFO(master_th)->thread_num, ompt_task_implicit); 2381 } 2382 task_info->frame.exit_frame = ompt_data_none; 2383 task_info->task_data = ompt_data_none; 2384 ompt_parallel_data = *OMPT_CUR_TEAM_DATA(master_th); 2385 __ompt_lw_taskteam_unlink(master_th); 2386 } 2387 #endif 2388 /* Decrement our nested depth level */ 2389 team->t.t_level--; 2390 team->t.t_active_level--; 2391 KMP_ATOMIC_DEC(&root->r.r_in_parallel); 2392 2393 // Restore number of threads in the team if needed. This code relies on 2394 // the proper adjustment of th_teams_size.nth after the fork in 2395 // __kmp_teams_master on each teams master in the case that 2396 // __kmp_reserve_threads reduced it. 2397 if (master_th->th.th_team_nproc < master_th->th.th_teams_size.nth) { 2398 int old_num = master_th->th.th_team_nproc; 2399 int new_num = master_th->th.th_teams_size.nth; 2400 kmp_info_t **other_threads = team->t.t_threads; 2401 team->t.t_nproc = new_num; 2402 for (int i = 0; i < old_num; ++i) { 2403 other_threads[i]->th.th_team_nproc = new_num; 2404 } 2405 // Adjust states of non-used threads of the team 2406 for (int i = old_num; i < new_num; ++i) { 2407 // Re-initialize thread's barrier data. 2408 KMP_DEBUG_ASSERT(other_threads[i]); 2409 kmp_balign_t *balign = other_threads[i]->th.th_bar; 2410 for (int b = 0; b < bs_last_barrier; ++b) { 2411 balign[b].bb.b_arrived = team->t.t_bar[b].b_arrived; 2412 KMP_DEBUG_ASSERT(balign[b].bb.wait_flag != KMP_BARRIER_PARENT_FLAG); 2413 #if USE_DEBUGGER 2414 balign[b].bb.b_worker_arrived = team->t.t_bar[b].b_team_arrived; 2415 #endif 2416 } 2417 if (__kmp_tasking_mode != tskm_immediate_exec) { 2418 // Synchronize thread's task state 2419 other_threads[i]->th.th_task_state = master_th->th.th_task_state; 2420 } 2421 } 2422 } 2423 2424 #if OMPT_SUPPORT 2425 if (ompt_enabled.enabled) { 2426 __kmp_join_ompt(gtid, master_th, parent_team, &ompt_parallel_data, 2427 OMPT_INVOKER(fork_context) | ompt_parallel_team, codeptr); 2428 } 2429 #endif 2430 2431 return; 2432 } 2433 2434 /* do cleanup and restore the parent team */ 2435 master_th->th.th_info.ds.ds_tid = team->t.t_master_tid; 2436 master_th->th.th_local.this_construct = team->t.t_master_this_cons; 2437 2438 master_th->th.th_dispatch = &parent_team->t.t_dispatch[team->t.t_master_tid]; 2439 2440 /* jc: The following lock has instructions with REL and ACQ semantics, 2441 separating the parallel user code called in this parallel region 2442 from the serial user code called after this function returns. */ 2443 __kmp_acquire_bootstrap_lock(&__kmp_forkjoin_lock); 2444 2445 if (!master_th->th.th_teams_microtask || 2446 team->t.t_level > master_th->th.th_teams_level) { 2447 /* Decrement our nested depth level */ 2448 KMP_ATOMIC_DEC(&root->r.r_in_parallel); 2449 } 2450 KMP_DEBUG_ASSERT(root->r.r_in_parallel >= 0); 2451 2452 #if OMPT_SUPPORT 2453 if (ompt_enabled.enabled) { 2454 ompt_task_info_t *task_info = __ompt_get_task_info_object(0); 2455 if (ompt_enabled.ompt_callback_implicit_task) { 2456 int flags = (team_microtask == (void *)__kmp_teams_master) 2457 ? ompt_task_initial 2458 : ompt_task_implicit; 2459 int ompt_team_size = (flags == ompt_task_initial) ? 0 : team->t.t_nproc; 2460 ompt_callbacks.ompt_callback(ompt_callback_implicit_task)( 2461 ompt_scope_end, NULL, &(task_info->task_data), ompt_team_size, 2462 OMPT_CUR_TASK_INFO(master_th)->thread_num, flags); 2463 } 2464 task_info->frame.exit_frame = ompt_data_none; 2465 task_info->task_data = ompt_data_none; 2466 } 2467 #endif 2468 2469 KF_TRACE(10, ("__kmp_join_call1: T#%d, this_thread=%p team=%p\n", 0, 2470 master_th, team)); 2471 __kmp_pop_current_task_from_thread(master_th); 2472 2473 #if KMP_AFFINITY_SUPPORTED 2474 // Restore master thread's partition. 2475 master_th->th.th_first_place = team->t.t_first_place; 2476 master_th->th.th_last_place = team->t.t_last_place; 2477 #endif // KMP_AFFINITY_SUPPORTED 2478 master_th->th.th_def_allocator = team->t.t_def_allocator; 2479 2480 updateHWFPControl(team); 2481 2482 if (root->r.r_active != master_active) 2483 root->r.r_active = master_active; 2484 2485 __kmp_free_team(root, team USE_NESTED_HOT_ARG( 2486 master_th)); // this will free worker threads 2487 2488 /* this race was fun to find. make sure the following is in the critical 2489 region otherwise assertions may fail occasionally since the old team may be 2490 reallocated and the hierarchy appears inconsistent. it is actually safe to 2491 run and won't cause any bugs, but will cause those assertion failures. it's 2492 only one deref&assign so might as well put this in the critical region */ 2493 master_th->th.th_team = parent_team; 2494 master_th->th.th_team_nproc = parent_team->t.t_nproc; 2495 master_th->th.th_team_master = parent_team->t.t_threads[0]; 2496 master_th->th.th_team_serialized = parent_team->t.t_serialized; 2497 2498 /* restore serialized team, if need be */ 2499 if (parent_team->t.t_serialized && 2500 parent_team != master_th->th.th_serial_team && 2501 parent_team != root->r.r_root_team) { 2502 __kmp_free_team(root, 2503 master_th->th.th_serial_team USE_NESTED_HOT_ARG(NULL)); 2504 master_th->th.th_serial_team = parent_team; 2505 } 2506 2507 if (__kmp_tasking_mode != tskm_immediate_exec) { 2508 if (master_th->th.th_task_state_top > 2509 0) { // Restore task state from memo stack 2510 KMP_DEBUG_ASSERT(master_th->th.th_task_state_memo_stack); 2511 // Remember master's state if we re-use this nested hot team 2512 master_th->th.th_task_state_memo_stack[master_th->th.th_task_state_top] = 2513 master_th->th.th_task_state; 2514 --master_th->th.th_task_state_top; // pop 2515 // Now restore state at this level 2516 master_th->th.th_task_state = 2517 master_th->th 2518 .th_task_state_memo_stack[master_th->th.th_task_state_top]; 2519 } 2520 // Copy the task team from the parent team to the master thread 2521 master_th->th.th_task_team = 2522 parent_team->t.t_task_team[master_th->th.th_task_state]; 2523 KA_TRACE(20, 2524 ("__kmp_join_call: Master T#%d restoring task_team %p / team %p\n", 2525 __kmp_gtid_from_thread(master_th), master_th->th.th_task_team, 2526 parent_team)); 2527 } 2528 2529 // TODO: GEH - cannot do this assertion because root thread not set up as 2530 // executing 2531 // KMP_ASSERT( master_th->th.th_current_task->td_flags.executing == 0 ); 2532 master_th->th.th_current_task->td_flags.executing = 1; 2533 2534 __kmp_release_bootstrap_lock(&__kmp_forkjoin_lock); 2535 2536 #if OMPT_SUPPORT 2537 int flags = 2538 OMPT_INVOKER(fork_context) | 2539 ((team_microtask == (void *)__kmp_teams_master) ? ompt_parallel_league 2540 : ompt_parallel_team); 2541 if (ompt_enabled.enabled) { 2542 __kmp_join_ompt(gtid, master_th, parent_team, parallel_data, flags, 2543 codeptr); 2544 } 2545 #endif 2546 2547 KMP_MB(); 2548 KA_TRACE(20, ("__kmp_join_call: exit T#%d\n", gtid)); 2549 } 2550 2551 /* Check whether we should push an internal control record onto the 2552 serial team stack. If so, do it. */ 2553 void __kmp_save_internal_controls(kmp_info_t *thread) { 2554 2555 if (thread->th.th_team != thread->th.th_serial_team) { 2556 return; 2557 } 2558 if (thread->th.th_team->t.t_serialized > 1) { 2559 int push = 0; 2560 2561 if (thread->th.th_team->t.t_control_stack_top == NULL) { 2562 push = 1; 2563 } else { 2564 if (thread->th.th_team->t.t_control_stack_top->serial_nesting_level != 2565 thread->th.th_team->t.t_serialized) { 2566 push = 1; 2567 } 2568 } 2569 if (push) { /* push a record on the serial team's stack */ 2570 kmp_internal_control_t *control = 2571 (kmp_internal_control_t *)__kmp_allocate( 2572 sizeof(kmp_internal_control_t)); 2573 2574 copy_icvs(control, &thread->th.th_current_task->td_icvs); 2575 2576 control->serial_nesting_level = thread->th.th_team->t.t_serialized; 2577 2578 control->next = thread->th.th_team->t.t_control_stack_top; 2579 thread->th.th_team->t.t_control_stack_top = control; 2580 } 2581 } 2582 } 2583 2584 /* Changes set_nproc */ 2585 void __kmp_set_num_threads(int new_nth, int gtid) { 2586 kmp_info_t *thread; 2587 kmp_root_t *root; 2588 2589 KF_TRACE(10, ("__kmp_set_num_threads: new __kmp_nth = %d\n", new_nth)); 2590 KMP_DEBUG_ASSERT(__kmp_init_serial); 2591 2592 if (new_nth < 1) 2593 new_nth = 1; 2594 else if (new_nth > __kmp_max_nth) 2595 new_nth = __kmp_max_nth; 2596 2597 KMP_COUNT_VALUE(OMP_set_numthreads, new_nth); 2598 thread = __kmp_threads[gtid]; 2599 if (thread->th.th_current_task->td_icvs.nproc == new_nth) 2600 return; // nothing to do 2601 2602 __kmp_save_internal_controls(thread); 2603 2604 set__nproc(thread, new_nth); 2605 2606 // If this omp_set_num_threads() call will cause the hot team size to be 2607 // reduced (in the absence of a num_threads clause), then reduce it now, 2608 // rather than waiting for the next parallel region. 2609 root = thread->th.th_root; 2610 if (__kmp_init_parallel && (!root->r.r_active) && 2611 (root->r.r_hot_team->t.t_nproc > new_nth) 2612 #if KMP_NESTED_HOT_TEAMS 2613 && __kmp_hot_teams_max_level && !__kmp_hot_teams_mode 2614 #endif 2615 ) { 2616 kmp_team_t *hot_team = root->r.r_hot_team; 2617 int f; 2618 2619 __kmp_acquire_bootstrap_lock(&__kmp_forkjoin_lock); 2620 2621 // Release the extra threads we don't need any more. 2622 for (f = new_nth; f < hot_team->t.t_nproc; f++) { 2623 KMP_DEBUG_ASSERT(hot_team->t.t_threads[f] != NULL); 2624 if (__kmp_tasking_mode != tskm_immediate_exec) { 2625 // When decreasing team size, threads no longer in the team should unref 2626 // task team. 2627 hot_team->t.t_threads[f]->th.th_task_team = NULL; 2628 } 2629 __kmp_free_thread(hot_team->t.t_threads[f]); 2630 hot_team->t.t_threads[f] = NULL; 2631 } 2632 hot_team->t.t_nproc = new_nth; 2633 #if KMP_NESTED_HOT_TEAMS 2634 if (thread->th.th_hot_teams) { 2635 KMP_DEBUG_ASSERT(hot_team == thread->th.th_hot_teams[0].hot_team); 2636 thread->th.th_hot_teams[0].hot_team_nth = new_nth; 2637 } 2638 #endif 2639 2640 __kmp_release_bootstrap_lock(&__kmp_forkjoin_lock); 2641 2642 // Update the t_nproc field in the threads that are still active. 2643 for (f = 0; f < new_nth; f++) { 2644 KMP_DEBUG_ASSERT(hot_team->t.t_threads[f] != NULL); 2645 hot_team->t.t_threads[f]->th.th_team_nproc = new_nth; 2646 } 2647 // Special flag in case omp_set_num_threads() call 2648 hot_team->t.t_size_changed = -1; 2649 } 2650 } 2651 2652 /* Changes max_active_levels */ 2653 void __kmp_set_max_active_levels(int gtid, int max_active_levels) { 2654 kmp_info_t *thread; 2655 2656 KF_TRACE(10, ("__kmp_set_max_active_levels: new max_active_levels for thread " 2657 "%d = (%d)\n", 2658 gtid, max_active_levels)); 2659 KMP_DEBUG_ASSERT(__kmp_init_serial); 2660 2661 // validate max_active_levels 2662 if (max_active_levels < 0) { 2663 KMP_WARNING(ActiveLevelsNegative, max_active_levels); 2664 // We ignore this call if the user has specified a negative value. 2665 // The current setting won't be changed. The last valid setting will be 2666 // used. A warning will be issued (if warnings are allowed as controlled by 2667 // the KMP_WARNINGS env var). 2668 KF_TRACE(10, ("__kmp_set_max_active_levels: the call is ignored: new " 2669 "max_active_levels for thread %d = (%d)\n", 2670 gtid, max_active_levels)); 2671 return; 2672 } 2673 if (max_active_levels <= KMP_MAX_ACTIVE_LEVELS_LIMIT) { 2674 // it's OK, the max_active_levels is within the valid range: [ 0; 2675 // KMP_MAX_ACTIVE_LEVELS_LIMIT ] 2676 // We allow a zero value. (implementation defined behavior) 2677 } else { 2678 KMP_WARNING(ActiveLevelsExceedLimit, max_active_levels, 2679 KMP_MAX_ACTIVE_LEVELS_LIMIT); 2680 max_active_levels = KMP_MAX_ACTIVE_LEVELS_LIMIT; 2681 // Current upper limit is MAX_INT. (implementation defined behavior) 2682 // If the input exceeds the upper limit, we correct the input to be the 2683 // upper limit. (implementation defined behavior) 2684 // Actually, the flow should never get here until we use MAX_INT limit. 2685 } 2686 KF_TRACE(10, ("__kmp_set_max_active_levels: after validation: new " 2687 "max_active_levels for thread %d = (%d)\n", 2688 gtid, max_active_levels)); 2689 2690 thread = __kmp_threads[gtid]; 2691 2692 __kmp_save_internal_controls(thread); 2693 2694 set__max_active_levels(thread, max_active_levels); 2695 } 2696 2697 /* Gets max_active_levels */ 2698 int __kmp_get_max_active_levels(int gtid) { 2699 kmp_info_t *thread; 2700 2701 KF_TRACE(10, ("__kmp_get_max_active_levels: thread %d\n", gtid)); 2702 KMP_DEBUG_ASSERT(__kmp_init_serial); 2703 2704 thread = __kmp_threads[gtid]; 2705 KMP_DEBUG_ASSERT(thread->th.th_current_task); 2706 KF_TRACE(10, ("__kmp_get_max_active_levels: thread %d, curtask=%p, " 2707 "curtask_maxaclevel=%d\n", 2708 gtid, thread->th.th_current_task, 2709 thread->th.th_current_task->td_icvs.max_active_levels)); 2710 return thread->th.th_current_task->td_icvs.max_active_levels; 2711 } 2712 2713 KMP_BUILD_ASSERT(sizeof(kmp_sched_t) == sizeof(int)); 2714 KMP_BUILD_ASSERT(sizeof(enum sched_type) == sizeof(int)); 2715 2716 /* Changes def_sched_var ICV values (run-time schedule kind and chunk) */ 2717 void __kmp_set_schedule(int gtid, kmp_sched_t kind, int chunk) { 2718 kmp_info_t *thread; 2719 kmp_sched_t orig_kind; 2720 // kmp_team_t *team; 2721 2722 KF_TRACE(10, ("__kmp_set_schedule: new schedule for thread %d = (%d, %d)\n", 2723 gtid, (int)kind, chunk)); 2724 KMP_DEBUG_ASSERT(__kmp_init_serial); 2725 2726 // Check if the kind parameter is valid, correct if needed. 2727 // Valid parameters should fit in one of two intervals - standard or extended: 2728 // <lower>, <valid>, <upper_std>, <lower_ext>, <valid>, <upper> 2729 // 2008-01-25: 0, 1 - 4, 5, 100, 101 - 102, 103 2730 orig_kind = kind; 2731 kind = __kmp_sched_without_mods(kind); 2732 2733 if (kind <= kmp_sched_lower || kind >= kmp_sched_upper || 2734 (kind <= kmp_sched_lower_ext && kind >= kmp_sched_upper_std)) { 2735 // TODO: Hint needs attention in case we change the default schedule. 2736 __kmp_msg(kmp_ms_warning, KMP_MSG(ScheduleKindOutOfRange, kind), 2737 KMP_HNT(DefaultScheduleKindUsed, "static, no chunk"), 2738 __kmp_msg_null); 2739 kind = kmp_sched_default; 2740 chunk = 0; // ignore chunk value in case of bad kind 2741 } 2742 2743 thread = __kmp_threads[gtid]; 2744 2745 __kmp_save_internal_controls(thread); 2746 2747 if (kind < kmp_sched_upper_std) { 2748 if (kind == kmp_sched_static && chunk < KMP_DEFAULT_CHUNK) { 2749 // differ static chunked vs. unchunked: chunk should be invalid to 2750 // indicate unchunked schedule (which is the default) 2751 thread->th.th_current_task->td_icvs.sched.r_sched_type = kmp_sch_static; 2752 } else { 2753 thread->th.th_current_task->td_icvs.sched.r_sched_type = 2754 __kmp_sch_map[kind - kmp_sched_lower - 1]; 2755 } 2756 } else { 2757 // __kmp_sch_map[ kind - kmp_sched_lower_ext + kmp_sched_upper_std - 2758 // kmp_sched_lower - 2 ]; 2759 thread->th.th_current_task->td_icvs.sched.r_sched_type = 2760 __kmp_sch_map[kind - kmp_sched_lower_ext + kmp_sched_upper_std - 2761 kmp_sched_lower - 2]; 2762 } 2763 __kmp_sched_apply_mods_intkind( 2764 orig_kind, &(thread->th.th_current_task->td_icvs.sched.r_sched_type)); 2765 if (kind == kmp_sched_auto || chunk < 1) { 2766 // ignore parameter chunk for schedule auto 2767 thread->th.th_current_task->td_icvs.sched.chunk = KMP_DEFAULT_CHUNK; 2768 } else { 2769 thread->th.th_current_task->td_icvs.sched.chunk = chunk; 2770 } 2771 } 2772 2773 /* Gets def_sched_var ICV values */ 2774 void __kmp_get_schedule(int gtid, kmp_sched_t *kind, int *chunk) { 2775 kmp_info_t *thread; 2776 enum sched_type th_type; 2777 2778 KF_TRACE(10, ("__kmp_get_schedule: thread %d\n", gtid)); 2779 KMP_DEBUG_ASSERT(__kmp_init_serial); 2780 2781 thread = __kmp_threads[gtid]; 2782 2783 th_type = thread->th.th_current_task->td_icvs.sched.r_sched_type; 2784 switch (SCHEDULE_WITHOUT_MODIFIERS(th_type)) { 2785 case kmp_sch_static: 2786 case kmp_sch_static_greedy: 2787 case kmp_sch_static_balanced: 2788 *kind = kmp_sched_static; 2789 __kmp_sched_apply_mods_stdkind(kind, th_type); 2790 *chunk = 0; // chunk was not set, try to show this fact via zero value 2791 return; 2792 case kmp_sch_static_chunked: 2793 *kind = kmp_sched_static; 2794 break; 2795 case kmp_sch_dynamic_chunked: 2796 *kind = kmp_sched_dynamic; 2797 break; 2798 case kmp_sch_guided_chunked: 2799 case kmp_sch_guided_iterative_chunked: 2800 case kmp_sch_guided_analytical_chunked: 2801 *kind = kmp_sched_guided; 2802 break; 2803 case kmp_sch_auto: 2804 *kind = kmp_sched_auto; 2805 break; 2806 case kmp_sch_trapezoidal: 2807 *kind = kmp_sched_trapezoidal; 2808 break; 2809 #if KMP_STATIC_STEAL_ENABLED 2810 case kmp_sch_static_steal: 2811 *kind = kmp_sched_static_steal; 2812 break; 2813 #endif 2814 default: 2815 KMP_FATAL(UnknownSchedulingType, th_type); 2816 } 2817 2818 __kmp_sched_apply_mods_stdkind(kind, th_type); 2819 *chunk = thread->th.th_current_task->td_icvs.sched.chunk; 2820 } 2821 2822 int __kmp_get_ancestor_thread_num(int gtid, int level) { 2823 2824 int ii, dd; 2825 kmp_team_t *team; 2826 kmp_info_t *thr; 2827 2828 KF_TRACE(10, ("__kmp_get_ancestor_thread_num: thread %d %d\n", gtid, level)); 2829 KMP_DEBUG_ASSERT(__kmp_init_serial); 2830 2831 // validate level 2832 if (level == 0) 2833 return 0; 2834 if (level < 0) 2835 return -1; 2836 thr = __kmp_threads[gtid]; 2837 team = thr->th.th_team; 2838 ii = team->t.t_level; 2839 if (level > ii) 2840 return -1; 2841 2842 if (thr->th.th_teams_microtask) { 2843 // AC: we are in teams region where multiple nested teams have same level 2844 int tlevel = thr->th.th_teams_level; // the level of the teams construct 2845 if (level <= 2846 tlevel) { // otherwise usual algorithm works (will not touch the teams) 2847 KMP_DEBUG_ASSERT(ii >= tlevel); 2848 // AC: As we need to pass by the teams league, we need to artificially 2849 // increase ii 2850 if (ii == tlevel) { 2851 ii += 2; // three teams have same level 2852 } else { 2853 ii++; // two teams have same level 2854 } 2855 } 2856 } 2857 2858 if (ii == level) 2859 return __kmp_tid_from_gtid(gtid); 2860 2861 dd = team->t.t_serialized; 2862 level++; 2863 while (ii > level) { 2864 for (dd = team->t.t_serialized; (dd > 0) && (ii > level); dd--, ii--) { 2865 } 2866 if ((team->t.t_serialized) && (!dd)) { 2867 team = team->t.t_parent; 2868 continue; 2869 } 2870 if (ii > level) { 2871 team = team->t.t_parent; 2872 dd = team->t.t_serialized; 2873 ii--; 2874 } 2875 } 2876 2877 return (dd > 1) ? (0) : (team->t.t_master_tid); 2878 } 2879 2880 int __kmp_get_team_size(int gtid, int level) { 2881 2882 int ii, dd; 2883 kmp_team_t *team; 2884 kmp_info_t *thr; 2885 2886 KF_TRACE(10, ("__kmp_get_team_size: thread %d %d\n", gtid, level)); 2887 KMP_DEBUG_ASSERT(__kmp_init_serial); 2888 2889 // validate level 2890 if (level == 0) 2891 return 1; 2892 if (level < 0) 2893 return -1; 2894 thr = __kmp_threads[gtid]; 2895 team = thr->th.th_team; 2896 ii = team->t.t_level; 2897 if (level > ii) 2898 return -1; 2899 2900 if (thr->th.th_teams_microtask) { 2901 // AC: we are in teams region where multiple nested teams have same level 2902 int tlevel = thr->th.th_teams_level; // the level of the teams construct 2903 if (level <= 2904 tlevel) { // otherwise usual algorithm works (will not touch the teams) 2905 KMP_DEBUG_ASSERT(ii >= tlevel); 2906 // AC: As we need to pass by the teams league, we need to artificially 2907 // increase ii 2908 if (ii == tlevel) { 2909 ii += 2; // three teams have same level 2910 } else { 2911 ii++; // two teams have same level 2912 } 2913 } 2914 } 2915 2916 while (ii > level) { 2917 for (dd = team->t.t_serialized; (dd > 0) && (ii > level); dd--, ii--) { 2918 } 2919 if (team->t.t_serialized && (!dd)) { 2920 team = team->t.t_parent; 2921 continue; 2922 } 2923 if (ii > level) { 2924 team = team->t.t_parent; 2925 ii--; 2926 } 2927 } 2928 2929 return team->t.t_nproc; 2930 } 2931 2932 kmp_r_sched_t __kmp_get_schedule_global() { 2933 // This routine created because pairs (__kmp_sched, __kmp_chunk) and 2934 // (__kmp_static, __kmp_guided) may be changed by kmp_set_defaults 2935 // independently. So one can get the updated schedule here. 2936 2937 kmp_r_sched_t r_sched; 2938 2939 // create schedule from 4 globals: __kmp_sched, __kmp_chunk, __kmp_static, 2940 // __kmp_guided. __kmp_sched should keep original value, so that user can set 2941 // KMP_SCHEDULE multiple times, and thus have different run-time schedules in 2942 // different roots (even in OMP 2.5) 2943 enum sched_type s = SCHEDULE_WITHOUT_MODIFIERS(__kmp_sched); 2944 enum sched_type sched_modifiers = SCHEDULE_GET_MODIFIERS(__kmp_sched); 2945 if (s == kmp_sch_static) { 2946 // replace STATIC with more detailed schedule (balanced or greedy) 2947 r_sched.r_sched_type = __kmp_static; 2948 } else if (s == kmp_sch_guided_chunked) { 2949 // replace GUIDED with more detailed schedule (iterative or analytical) 2950 r_sched.r_sched_type = __kmp_guided; 2951 } else { // (STATIC_CHUNKED), or (DYNAMIC_CHUNKED), or other 2952 r_sched.r_sched_type = __kmp_sched; 2953 } 2954 SCHEDULE_SET_MODIFIERS(r_sched.r_sched_type, sched_modifiers); 2955 2956 if (__kmp_chunk < KMP_DEFAULT_CHUNK) { 2957 // __kmp_chunk may be wrong here (if it was not ever set) 2958 r_sched.chunk = KMP_DEFAULT_CHUNK; 2959 } else { 2960 r_sched.chunk = __kmp_chunk; 2961 } 2962 2963 return r_sched; 2964 } 2965 2966 /* Allocate (realloc == FALSE) * or reallocate (realloc == TRUE) 2967 at least argc number of *t_argv entries for the requested team. */ 2968 static void __kmp_alloc_argv_entries(int argc, kmp_team_t *team, int realloc) { 2969 2970 KMP_DEBUG_ASSERT(team); 2971 if (!realloc || argc > team->t.t_max_argc) { 2972 2973 KA_TRACE(100, ("__kmp_alloc_argv_entries: team %d: needed entries=%d, " 2974 "current entries=%d\n", 2975 team->t.t_id, argc, (realloc) ? team->t.t_max_argc : 0)); 2976 /* if previously allocated heap space for args, free them */ 2977 if (realloc && team->t.t_argv != &team->t.t_inline_argv[0]) 2978 __kmp_free((void *)team->t.t_argv); 2979 2980 if (argc <= KMP_INLINE_ARGV_ENTRIES) { 2981 /* use unused space in the cache line for arguments */ 2982 team->t.t_max_argc = KMP_INLINE_ARGV_ENTRIES; 2983 KA_TRACE(100, ("__kmp_alloc_argv_entries: team %d: inline allocate %d " 2984 "argv entries\n", 2985 team->t.t_id, team->t.t_max_argc)); 2986 team->t.t_argv = &team->t.t_inline_argv[0]; 2987 if (__kmp_storage_map) { 2988 __kmp_print_storage_map_gtid( 2989 -1, &team->t.t_inline_argv[0], 2990 &team->t.t_inline_argv[KMP_INLINE_ARGV_ENTRIES], 2991 (sizeof(void *) * KMP_INLINE_ARGV_ENTRIES), "team_%d.t_inline_argv", 2992 team->t.t_id); 2993 } 2994 } else { 2995 /* allocate space for arguments in the heap */ 2996 team->t.t_max_argc = (argc <= (KMP_MIN_MALLOC_ARGV_ENTRIES >> 1)) 2997 ? KMP_MIN_MALLOC_ARGV_ENTRIES 2998 : 2 * argc; 2999 KA_TRACE(100, ("__kmp_alloc_argv_entries: team %d: dynamic allocate %d " 3000 "argv entries\n", 3001 team->t.t_id, team->t.t_max_argc)); 3002 team->t.t_argv = 3003 (void **)__kmp_page_allocate(sizeof(void *) * team->t.t_max_argc); 3004 if (__kmp_storage_map) { 3005 __kmp_print_storage_map_gtid(-1, &team->t.t_argv[0], 3006 &team->t.t_argv[team->t.t_max_argc], 3007 sizeof(void *) * team->t.t_max_argc, 3008 "team_%d.t_argv", team->t.t_id); 3009 } 3010 } 3011 } 3012 } 3013 3014 static void __kmp_allocate_team_arrays(kmp_team_t *team, int max_nth) { 3015 int i; 3016 int num_disp_buff = max_nth > 1 ? __kmp_dispatch_num_buffers : 2; 3017 team->t.t_threads = 3018 (kmp_info_t **)__kmp_allocate(sizeof(kmp_info_t *) * max_nth); 3019 team->t.t_disp_buffer = (dispatch_shared_info_t *)__kmp_allocate( 3020 sizeof(dispatch_shared_info_t) * num_disp_buff); 3021 team->t.t_dispatch = 3022 (kmp_disp_t *)__kmp_allocate(sizeof(kmp_disp_t) * max_nth); 3023 team->t.t_implicit_task_taskdata = 3024 (kmp_taskdata_t *)__kmp_allocate(sizeof(kmp_taskdata_t) * max_nth); 3025 team->t.t_max_nproc = max_nth; 3026 3027 /* setup dispatch buffers */ 3028 for (i = 0; i < num_disp_buff; ++i) { 3029 team->t.t_disp_buffer[i].buffer_index = i; 3030 team->t.t_disp_buffer[i].doacross_buf_idx = i; 3031 } 3032 } 3033 3034 static void __kmp_free_team_arrays(kmp_team_t *team) { 3035 /* Note: this does not free the threads in t_threads (__kmp_free_threads) */ 3036 int i; 3037 for (i = 0; i < team->t.t_max_nproc; ++i) { 3038 if (team->t.t_dispatch[i].th_disp_buffer != NULL) { 3039 __kmp_free(team->t.t_dispatch[i].th_disp_buffer); 3040 team->t.t_dispatch[i].th_disp_buffer = NULL; 3041 } 3042 } 3043 #if KMP_USE_HIER_SCHED 3044 __kmp_dispatch_free_hierarchies(team); 3045 #endif 3046 __kmp_free(team->t.t_threads); 3047 __kmp_free(team->t.t_disp_buffer); 3048 __kmp_free(team->t.t_dispatch); 3049 __kmp_free(team->t.t_implicit_task_taskdata); 3050 team->t.t_threads = NULL; 3051 team->t.t_disp_buffer = NULL; 3052 team->t.t_dispatch = NULL; 3053 team->t.t_implicit_task_taskdata = 0; 3054 } 3055 3056 static void __kmp_reallocate_team_arrays(kmp_team_t *team, int max_nth) { 3057 kmp_info_t **oldThreads = team->t.t_threads; 3058 3059 __kmp_free(team->t.t_disp_buffer); 3060 __kmp_free(team->t.t_dispatch); 3061 __kmp_free(team->t.t_implicit_task_taskdata); 3062 __kmp_allocate_team_arrays(team, max_nth); 3063 3064 KMP_MEMCPY(team->t.t_threads, oldThreads, 3065 team->t.t_nproc * sizeof(kmp_info_t *)); 3066 3067 __kmp_free(oldThreads); 3068 } 3069 3070 static kmp_internal_control_t __kmp_get_global_icvs(void) { 3071 3072 kmp_r_sched_t r_sched = 3073 __kmp_get_schedule_global(); // get current state of scheduling globals 3074 3075 KMP_DEBUG_ASSERT(__kmp_nested_proc_bind.used > 0); 3076 3077 kmp_internal_control_t g_icvs = { 3078 0, // int serial_nesting_level; //corresponds to value of th_team_serialized 3079 (kmp_int8)__kmp_global.g.g_dynamic, // internal control for dynamic 3080 // adjustment of threads (per thread) 3081 (kmp_int8)__kmp_env_blocktime, // int bt_set; //internal control for 3082 // whether blocktime is explicitly set 3083 __kmp_dflt_blocktime, // int blocktime; //internal control for blocktime 3084 #if KMP_USE_MONITOR 3085 __kmp_bt_intervals, // int bt_intervals; //internal control for blocktime 3086 // intervals 3087 #endif 3088 __kmp_dflt_team_nth, // int nproc; //internal control for # of threads for 3089 // next parallel region (per thread) 3090 // (use a max ub on value if __kmp_parallel_initialize not called yet) 3091 __kmp_cg_max_nth, // int thread_limit; 3092 __kmp_dflt_max_active_levels, // int max_active_levels; //internal control 3093 // for max_active_levels 3094 r_sched, // kmp_r_sched_t sched; //internal control for runtime schedule 3095 // {sched,chunk} pair 3096 __kmp_nested_proc_bind.bind_types[0], 3097 __kmp_default_device, 3098 NULL // struct kmp_internal_control *next; 3099 }; 3100 3101 return g_icvs; 3102 } 3103 3104 static kmp_internal_control_t __kmp_get_x_global_icvs(const kmp_team_t *team) { 3105 3106 kmp_internal_control_t gx_icvs; 3107 gx_icvs.serial_nesting_level = 3108 0; // probably =team->t.t_serial like in save_inter_controls 3109 copy_icvs(&gx_icvs, &team->t.t_threads[0]->th.th_current_task->td_icvs); 3110 gx_icvs.next = NULL; 3111 3112 return gx_icvs; 3113 } 3114 3115 static void __kmp_initialize_root(kmp_root_t *root) { 3116 int f; 3117 kmp_team_t *root_team; 3118 kmp_team_t *hot_team; 3119 int hot_team_max_nth; 3120 kmp_r_sched_t r_sched = 3121 __kmp_get_schedule_global(); // get current state of scheduling globals 3122 kmp_internal_control_t r_icvs = __kmp_get_global_icvs(); 3123 KMP_DEBUG_ASSERT(root); 3124 KMP_ASSERT(!root->r.r_begin); 3125 3126 /* setup the root state structure */ 3127 __kmp_init_lock(&root->r.r_begin_lock); 3128 root->r.r_begin = FALSE; 3129 root->r.r_active = FALSE; 3130 root->r.r_in_parallel = 0; 3131 root->r.r_blocktime = __kmp_dflt_blocktime; 3132 3133 /* setup the root team for this task */ 3134 /* allocate the root team structure */ 3135 KF_TRACE(10, ("__kmp_initialize_root: before root_team\n")); 3136 3137 root_team = 3138 __kmp_allocate_team(root, 3139 1, // new_nproc 3140 1, // max_nproc 3141 #if OMPT_SUPPORT 3142 ompt_data_none, // root parallel id 3143 #endif 3144 __kmp_nested_proc_bind.bind_types[0], &r_icvs, 3145 0 // argc 3146 USE_NESTED_HOT_ARG(NULL) // master thread is unknown 3147 ); 3148 #if USE_DEBUGGER 3149 // Non-NULL value should be assigned to make the debugger display the root 3150 // team. 3151 TCW_SYNC_PTR(root_team->t.t_pkfn, (microtask_t)(~0)); 3152 #endif 3153 3154 KF_TRACE(10, ("__kmp_initialize_root: after root_team = %p\n", root_team)); 3155 3156 root->r.r_root_team = root_team; 3157 root_team->t.t_control_stack_top = NULL; 3158 3159 /* initialize root team */ 3160 root_team->t.t_threads[0] = NULL; 3161 root_team->t.t_nproc = 1; 3162 root_team->t.t_serialized = 1; 3163 // TODO???: root_team->t.t_max_active_levels = __kmp_dflt_max_active_levels; 3164 root_team->t.t_sched.sched = r_sched.sched; 3165 KA_TRACE( 3166 20, 3167 ("__kmp_initialize_root: init root team %d arrived: join=%u, plain=%u\n", 3168 root_team->t.t_id, KMP_INIT_BARRIER_STATE, KMP_INIT_BARRIER_STATE)); 3169 3170 /* setup the hot team for this task */ 3171 /* allocate the hot team structure */ 3172 KF_TRACE(10, ("__kmp_initialize_root: before hot_team\n")); 3173 3174 hot_team = 3175 __kmp_allocate_team(root, 3176 1, // new_nproc 3177 __kmp_dflt_team_nth_ub * 2, // max_nproc 3178 #if OMPT_SUPPORT 3179 ompt_data_none, // root parallel id 3180 #endif 3181 __kmp_nested_proc_bind.bind_types[0], &r_icvs, 3182 0 // argc 3183 USE_NESTED_HOT_ARG(NULL) // master thread is unknown 3184 ); 3185 KF_TRACE(10, ("__kmp_initialize_root: after hot_team = %p\n", hot_team)); 3186 3187 root->r.r_hot_team = hot_team; 3188 root_team->t.t_control_stack_top = NULL; 3189 3190 /* first-time initialization */ 3191 hot_team->t.t_parent = root_team; 3192 3193 /* initialize hot team */ 3194 hot_team_max_nth = hot_team->t.t_max_nproc; 3195 for (f = 0; f < hot_team_max_nth; ++f) { 3196 hot_team->t.t_threads[f] = NULL; 3197 } 3198 hot_team->t.t_nproc = 1; 3199 // TODO???: hot_team->t.t_max_active_levels = __kmp_dflt_max_active_levels; 3200 hot_team->t.t_sched.sched = r_sched.sched; 3201 hot_team->t.t_size_changed = 0; 3202 } 3203 3204 #ifdef KMP_DEBUG 3205 3206 typedef struct kmp_team_list_item { 3207 kmp_team_p const *entry; 3208 struct kmp_team_list_item *next; 3209 } kmp_team_list_item_t; 3210 typedef kmp_team_list_item_t *kmp_team_list_t; 3211 3212 static void __kmp_print_structure_team_accum( // Add team to list of teams. 3213 kmp_team_list_t list, // List of teams. 3214 kmp_team_p const *team // Team to add. 3215 ) { 3216 3217 // List must terminate with item where both entry and next are NULL. 3218 // Team is added to the list only once. 3219 // List is sorted in ascending order by team id. 3220 // Team id is *not* a key. 3221 3222 kmp_team_list_t l; 3223 3224 KMP_DEBUG_ASSERT(list != NULL); 3225 if (team == NULL) { 3226 return; 3227 } 3228 3229 __kmp_print_structure_team_accum(list, team->t.t_parent); 3230 __kmp_print_structure_team_accum(list, team->t.t_next_pool); 3231 3232 // Search list for the team. 3233 l = list; 3234 while (l->next != NULL && l->entry != team) { 3235 l = l->next; 3236 } 3237 if (l->next != NULL) { 3238 return; // Team has been added before, exit. 3239 } 3240 3241 // Team is not found. Search list again for insertion point. 3242 l = list; 3243 while (l->next != NULL && l->entry->t.t_id <= team->t.t_id) { 3244 l = l->next; 3245 } 3246 3247 // Insert team. 3248 { 3249 kmp_team_list_item_t *item = (kmp_team_list_item_t *)KMP_INTERNAL_MALLOC( 3250 sizeof(kmp_team_list_item_t)); 3251 *item = *l; 3252 l->entry = team; 3253 l->next = item; 3254 } 3255 } 3256 3257 static void __kmp_print_structure_team(char const *title, kmp_team_p const *team 3258 3259 ) { 3260 __kmp_printf("%s", title); 3261 if (team != NULL) { 3262 __kmp_printf("%2x %p\n", team->t.t_id, team); 3263 } else { 3264 __kmp_printf(" - (nil)\n"); 3265 } 3266 } 3267 3268 static void __kmp_print_structure_thread(char const *title, 3269 kmp_info_p const *thread) { 3270 __kmp_printf("%s", title); 3271 if (thread != NULL) { 3272 __kmp_printf("%2d %p\n", thread->th.th_info.ds.ds_gtid, thread); 3273 } else { 3274 __kmp_printf(" - (nil)\n"); 3275 } 3276 } 3277 3278 void __kmp_print_structure(void) { 3279 3280 kmp_team_list_t list; 3281 3282 // Initialize list of teams. 3283 list = 3284 (kmp_team_list_item_t *)KMP_INTERNAL_MALLOC(sizeof(kmp_team_list_item_t)); 3285 list->entry = NULL; 3286 list->next = NULL; 3287 3288 __kmp_printf("\n------------------------------\nGlobal Thread " 3289 "Table\n------------------------------\n"); 3290 { 3291 int gtid; 3292 for (gtid = 0; gtid < __kmp_threads_capacity; ++gtid) { 3293 __kmp_printf("%2d", gtid); 3294 if (__kmp_threads != NULL) { 3295 __kmp_printf(" %p", __kmp_threads[gtid]); 3296 } 3297 if (__kmp_root != NULL) { 3298 __kmp_printf(" %p", __kmp_root[gtid]); 3299 } 3300 __kmp_printf("\n"); 3301 } 3302 } 3303 3304 // Print out __kmp_threads array. 3305 __kmp_printf("\n------------------------------\nThreads\n--------------------" 3306 "----------\n"); 3307 if (__kmp_threads != NULL) { 3308 int gtid; 3309 for (gtid = 0; gtid < __kmp_threads_capacity; ++gtid) { 3310 kmp_info_t const *thread = __kmp_threads[gtid]; 3311 if (thread != NULL) { 3312 __kmp_printf("GTID %2d %p:\n", gtid, thread); 3313 __kmp_printf(" Our Root: %p\n", thread->th.th_root); 3314 __kmp_print_structure_team(" Our Team: ", thread->th.th_team); 3315 __kmp_print_structure_team(" Serial Team: ", 3316 thread->th.th_serial_team); 3317 __kmp_printf(" Threads: %2d\n", thread->th.th_team_nproc); 3318 __kmp_print_structure_thread(" Master: ", 3319 thread->th.th_team_master); 3320 __kmp_printf(" Serialized?: %2d\n", thread->th.th_team_serialized); 3321 __kmp_printf(" Set NProc: %2d\n", thread->th.th_set_nproc); 3322 __kmp_printf(" Set Proc Bind: %2d\n", thread->th.th_set_proc_bind); 3323 __kmp_print_structure_thread(" Next in pool: ", 3324 thread->th.th_next_pool); 3325 __kmp_printf("\n"); 3326 __kmp_print_structure_team_accum(list, thread->th.th_team); 3327 __kmp_print_structure_team_accum(list, thread->th.th_serial_team); 3328 } 3329 } 3330 } else { 3331 __kmp_printf("Threads array is not allocated.\n"); 3332 } 3333 3334 // Print out __kmp_root array. 3335 __kmp_printf("\n------------------------------\nUbers\n----------------------" 3336 "--------\n"); 3337 if (__kmp_root != NULL) { 3338 int gtid; 3339 for (gtid = 0; gtid < __kmp_threads_capacity; ++gtid) { 3340 kmp_root_t const *root = __kmp_root[gtid]; 3341 if (root != NULL) { 3342 __kmp_printf("GTID %2d %p:\n", gtid, root); 3343 __kmp_print_structure_team(" Root Team: ", root->r.r_root_team); 3344 __kmp_print_structure_team(" Hot Team: ", root->r.r_hot_team); 3345 __kmp_print_structure_thread(" Uber Thread: ", 3346 root->r.r_uber_thread); 3347 __kmp_printf(" Active?: %2d\n", root->r.r_active); 3348 __kmp_printf(" In Parallel: %2d\n", 3349 KMP_ATOMIC_LD_RLX(&root->r.r_in_parallel)); 3350 __kmp_printf("\n"); 3351 __kmp_print_structure_team_accum(list, root->r.r_root_team); 3352 __kmp_print_structure_team_accum(list, root->r.r_hot_team); 3353 } 3354 } 3355 } else { 3356 __kmp_printf("Ubers array is not allocated.\n"); 3357 } 3358 3359 __kmp_printf("\n------------------------------\nTeams\n----------------------" 3360 "--------\n"); 3361 while (list->next != NULL) { 3362 kmp_team_p const *team = list->entry; 3363 int i; 3364 __kmp_printf("Team %2x %p:\n", team->t.t_id, team); 3365 __kmp_print_structure_team(" Parent Team: ", team->t.t_parent); 3366 __kmp_printf(" Master TID: %2d\n", team->t.t_master_tid); 3367 __kmp_printf(" Max threads: %2d\n", team->t.t_max_nproc); 3368 __kmp_printf(" Levels of serial: %2d\n", team->t.t_serialized); 3369 __kmp_printf(" Number threads: %2d\n", team->t.t_nproc); 3370 for (i = 0; i < team->t.t_nproc; ++i) { 3371 __kmp_printf(" Thread %2d: ", i); 3372 __kmp_print_structure_thread("", team->t.t_threads[i]); 3373 } 3374 __kmp_print_structure_team(" Next in pool: ", team->t.t_next_pool); 3375 __kmp_printf("\n"); 3376 list = list->next; 3377 } 3378 3379 // Print out __kmp_thread_pool and __kmp_team_pool. 3380 __kmp_printf("\n------------------------------\nPools\n----------------------" 3381 "--------\n"); 3382 __kmp_print_structure_thread("Thread pool: ", 3383 CCAST(kmp_info_t *, __kmp_thread_pool)); 3384 __kmp_print_structure_team("Team pool: ", 3385 CCAST(kmp_team_t *, __kmp_team_pool)); 3386 __kmp_printf("\n"); 3387 3388 // Free team list. 3389 while (list != NULL) { 3390 kmp_team_list_item_t *item = list; 3391 list = list->next; 3392 KMP_INTERNAL_FREE(item); 3393 } 3394 } 3395 3396 #endif 3397 3398 //--------------------------------------------------------------------------- 3399 // Stuff for per-thread fast random number generator 3400 // Table of primes 3401 static const unsigned __kmp_primes[] = { 3402 0x9e3779b1, 0xffe6cc59, 0x2109f6dd, 0x43977ab5, 0xba5703f5, 0xb495a877, 3403 0xe1626741, 0x79695e6b, 0xbc98c09f, 0xd5bee2b3, 0x287488f9, 0x3af18231, 3404 0x9677cd4d, 0xbe3a6929, 0xadc6a877, 0xdcf0674b, 0xbe4d6fe9, 0x5f15e201, 3405 0x99afc3fd, 0xf3f16801, 0xe222cfff, 0x24ba5fdb, 0x0620452d, 0x79f149e3, 3406 0xc8b93f49, 0x972702cd, 0xb07dd827, 0x6c97d5ed, 0x085a3d61, 0x46eb5ea7, 3407 0x3d9910ed, 0x2e687b5b, 0x29609227, 0x6eb081f1, 0x0954c4e1, 0x9d114db9, 3408 0x542acfa9, 0xb3e6bd7b, 0x0742d917, 0xe9f3ffa7, 0x54581edb, 0xf2480f45, 3409 0x0bb9288f, 0xef1affc7, 0x85fa0ca7, 0x3ccc14db, 0xe6baf34b, 0x343377f7, 3410 0x5ca19031, 0xe6d9293b, 0xf0a9f391, 0x5d2e980b, 0xfc411073, 0xc3749363, 3411 0xb892d829, 0x3549366b, 0x629750ad, 0xb98294e5, 0x892d9483, 0xc235baf3, 3412 0x3d2402a3, 0x6bdef3c9, 0xbec333cd, 0x40c9520f}; 3413 3414 //--------------------------------------------------------------------------- 3415 // __kmp_get_random: Get a random number using a linear congruential method. 3416 unsigned short __kmp_get_random(kmp_info_t *thread) { 3417 unsigned x = thread->th.th_x; 3418 unsigned short r = x >> 16; 3419 3420 thread->th.th_x = x * thread->th.th_a + 1; 3421 3422 KA_TRACE(30, ("__kmp_get_random: THREAD: %d, RETURN: %u\n", 3423 thread->th.th_info.ds.ds_tid, r)); 3424 3425 return r; 3426 } 3427 //-------------------------------------------------------- 3428 // __kmp_init_random: Initialize a random number generator 3429 void __kmp_init_random(kmp_info_t *thread) { 3430 unsigned seed = thread->th.th_info.ds.ds_tid; 3431 3432 thread->th.th_a = 3433 __kmp_primes[seed % (sizeof(__kmp_primes) / sizeof(__kmp_primes[0]))]; 3434 thread->th.th_x = (seed + 1) * thread->th.th_a + 1; 3435 KA_TRACE(30, 3436 ("__kmp_init_random: THREAD: %u; A: %u\n", seed, thread->th.th_a)); 3437 } 3438 3439 #if KMP_OS_WINDOWS 3440 /* reclaim array entries for root threads that are already dead, returns number 3441 * reclaimed */ 3442 static int __kmp_reclaim_dead_roots(void) { 3443 int i, r = 0; 3444 3445 for (i = 0; i < __kmp_threads_capacity; ++i) { 3446 if (KMP_UBER_GTID(i) && 3447 !__kmp_still_running((kmp_info_t *)TCR_SYNC_PTR(__kmp_threads[i])) && 3448 !__kmp_root[i] 3449 ->r.r_active) { // AC: reclaim only roots died in non-active state 3450 r += __kmp_unregister_root_other_thread(i); 3451 } 3452 } 3453 return r; 3454 } 3455 #endif 3456 3457 /* This function attempts to create free entries in __kmp_threads and 3458 __kmp_root, and returns the number of free entries generated. 3459 3460 For Windows* OS static library, the first mechanism used is to reclaim array 3461 entries for root threads that are already dead. 3462 3463 On all platforms, expansion is attempted on the arrays __kmp_threads_ and 3464 __kmp_root, with appropriate update to __kmp_threads_capacity. Array 3465 capacity is increased by doubling with clipping to __kmp_tp_capacity, if 3466 threadprivate cache array has been created. Synchronization with 3467 __kmpc_threadprivate_cached is done using __kmp_tp_cached_lock. 3468 3469 After any dead root reclamation, if the clipping value allows array expansion 3470 to result in the generation of a total of nNeed free slots, the function does 3471 that expansion. If not, nothing is done beyond the possible initial root 3472 thread reclamation. 3473 3474 If any argument is negative, the behavior is undefined. */ 3475 static int __kmp_expand_threads(int nNeed) { 3476 int added = 0; 3477 int minimumRequiredCapacity; 3478 int newCapacity; 3479 kmp_info_t **newThreads; 3480 kmp_root_t **newRoot; 3481 3482 // All calls to __kmp_expand_threads should be under __kmp_forkjoin_lock, so 3483 // resizing __kmp_threads does not need additional protection if foreign 3484 // threads are present 3485 3486 #if KMP_OS_WINDOWS && !KMP_DYNAMIC_LIB 3487 /* only for Windows static library */ 3488 /* reclaim array entries for root threads that are already dead */ 3489 added = __kmp_reclaim_dead_roots(); 3490 3491 if (nNeed) { 3492 nNeed -= added; 3493 if (nNeed < 0) 3494 nNeed = 0; 3495 } 3496 #endif 3497 if (nNeed <= 0) 3498 return added; 3499 3500 // Note that __kmp_threads_capacity is not bounded by __kmp_max_nth. If 3501 // __kmp_max_nth is set to some value less than __kmp_sys_max_nth by the 3502 // user via KMP_DEVICE_THREAD_LIMIT, then __kmp_threads_capacity may become 3503 // > __kmp_max_nth in one of two ways: 3504 // 3505 // 1) The initialization thread (gtid = 0) exits. __kmp_threads[0] 3506 // may not be reused by another thread, so we may need to increase 3507 // __kmp_threads_capacity to __kmp_max_nth + 1. 3508 // 3509 // 2) New foreign root(s) are encountered. We always register new foreign 3510 // roots. This may cause a smaller # of threads to be allocated at 3511 // subsequent parallel regions, but the worker threads hang around (and 3512 // eventually go to sleep) and need slots in the __kmp_threads[] array. 3513 // 3514 // Anyway, that is the reason for moving the check to see if 3515 // __kmp_max_nth was exceeded into __kmp_reserve_threads() 3516 // instead of having it performed here. -BB 3517 3518 KMP_DEBUG_ASSERT(__kmp_sys_max_nth >= __kmp_threads_capacity); 3519 3520 /* compute expansion headroom to check if we can expand */ 3521 if (__kmp_sys_max_nth - __kmp_threads_capacity < nNeed) { 3522 /* possible expansion too small -- give up */ 3523 return added; 3524 } 3525 minimumRequiredCapacity = __kmp_threads_capacity + nNeed; 3526 3527 newCapacity = __kmp_threads_capacity; 3528 do { 3529 newCapacity = newCapacity <= (__kmp_sys_max_nth >> 1) ? (newCapacity << 1) 3530 : __kmp_sys_max_nth; 3531 } while (newCapacity < minimumRequiredCapacity); 3532 newThreads = (kmp_info_t **)__kmp_allocate( 3533 (sizeof(kmp_info_t *) + sizeof(kmp_root_t *)) * newCapacity + CACHE_LINE); 3534 newRoot = 3535 (kmp_root_t **)((char *)newThreads + sizeof(kmp_info_t *) * newCapacity); 3536 KMP_MEMCPY(newThreads, __kmp_threads, 3537 __kmp_threads_capacity * sizeof(kmp_info_t *)); 3538 KMP_MEMCPY(newRoot, __kmp_root, 3539 __kmp_threads_capacity * sizeof(kmp_root_t *)); 3540 3541 kmp_info_t **temp_threads = __kmp_threads; 3542 *(kmp_info_t * *volatile *)&__kmp_threads = newThreads; 3543 *(kmp_root_t * *volatile *)&__kmp_root = newRoot; 3544 __kmp_free(temp_threads); 3545 added += newCapacity - __kmp_threads_capacity; 3546 *(volatile int *)&__kmp_threads_capacity = newCapacity; 3547 3548 if (newCapacity > __kmp_tp_capacity) { 3549 __kmp_acquire_bootstrap_lock(&__kmp_tp_cached_lock); 3550 if (__kmp_tp_cached && newCapacity > __kmp_tp_capacity) { 3551 __kmp_threadprivate_resize_cache(newCapacity); 3552 } else { // increase __kmp_tp_capacity to correspond with kmp_threads size 3553 *(volatile int *)&__kmp_tp_capacity = newCapacity; 3554 } 3555 __kmp_release_bootstrap_lock(&__kmp_tp_cached_lock); 3556 } 3557 3558 return added; 3559 } 3560 3561 /* Register the current thread as a root thread and obtain our gtid. We must 3562 have the __kmp_initz_lock held at this point. Argument TRUE only if are the 3563 thread that calls from __kmp_do_serial_initialize() */ 3564 int __kmp_register_root(int initial_thread) { 3565 kmp_info_t *root_thread; 3566 kmp_root_t *root; 3567 int gtid; 3568 int capacity; 3569 __kmp_acquire_bootstrap_lock(&__kmp_forkjoin_lock); 3570 KA_TRACE(20, ("__kmp_register_root: entered\n")); 3571 KMP_MB(); 3572 3573 /* 2007-03-02: 3574 If initial thread did not invoke OpenMP RTL yet, and this thread is not an 3575 initial one, "__kmp_all_nth >= __kmp_threads_capacity" condition does not 3576 work as expected -- it may return false (that means there is at least one 3577 empty slot in __kmp_threads array), but it is possible the only free slot 3578 is #0, which is reserved for initial thread and so cannot be used for this 3579 one. Following code workarounds this bug. 3580 3581 However, right solution seems to be not reserving slot #0 for initial 3582 thread because: 3583 (1) there is no magic in slot #0, 3584 (2) we cannot detect initial thread reliably (the first thread which does 3585 serial initialization may be not a real initial thread). 3586 */ 3587 capacity = __kmp_threads_capacity; 3588 if (!initial_thread && TCR_PTR(__kmp_threads[0]) == NULL) { 3589 --capacity; 3590 } 3591 3592 /* see if there are too many threads */ 3593 if (__kmp_all_nth >= capacity && !__kmp_expand_threads(1)) { 3594 if (__kmp_tp_cached) { 3595 __kmp_fatal(KMP_MSG(CantRegisterNewThread), 3596 KMP_HNT(Set_ALL_THREADPRIVATE, __kmp_tp_capacity), 3597 KMP_HNT(PossibleSystemLimitOnThreads), __kmp_msg_null); 3598 } else { 3599 __kmp_fatal(KMP_MSG(CantRegisterNewThread), KMP_HNT(SystemLimitOnThreads), 3600 __kmp_msg_null); 3601 } 3602 } 3603 3604 /* find an available thread slot */ 3605 /* Don't reassign the zero slot since we need that to only be used by initial 3606 thread */ 3607 for (gtid = (initial_thread ? 0 : 1); TCR_PTR(__kmp_threads[gtid]) != NULL; 3608 gtid++) 3609 ; 3610 KA_TRACE(1, 3611 ("__kmp_register_root: found slot in threads array: T#%d\n", gtid)); 3612 KMP_ASSERT(gtid < __kmp_threads_capacity); 3613 3614 /* update global accounting */ 3615 __kmp_all_nth++; 3616 TCW_4(__kmp_nth, __kmp_nth + 1); 3617 3618 // if __kmp_adjust_gtid_mode is set, then we use method #1 (sp search) for low 3619 // numbers of procs, and method #2 (keyed API call) for higher numbers. 3620 if (__kmp_adjust_gtid_mode) { 3621 if (__kmp_all_nth >= __kmp_tls_gtid_min) { 3622 if (TCR_4(__kmp_gtid_mode) != 2) { 3623 TCW_4(__kmp_gtid_mode, 2); 3624 } 3625 } else { 3626 if (TCR_4(__kmp_gtid_mode) != 1) { 3627 TCW_4(__kmp_gtid_mode, 1); 3628 } 3629 } 3630 } 3631 3632 #ifdef KMP_ADJUST_BLOCKTIME 3633 /* Adjust blocktime to zero if necessary */ 3634 /* Middle initialization might not have occurred yet */ 3635 if (!__kmp_env_blocktime && (__kmp_avail_proc > 0)) { 3636 if (__kmp_nth > __kmp_avail_proc) { 3637 __kmp_zero_bt = TRUE; 3638 } 3639 } 3640 #endif /* KMP_ADJUST_BLOCKTIME */ 3641 3642 /* setup this new hierarchy */ 3643 if (!(root = __kmp_root[gtid])) { 3644 root = __kmp_root[gtid] = (kmp_root_t *)__kmp_allocate(sizeof(kmp_root_t)); 3645 KMP_DEBUG_ASSERT(!root->r.r_root_team); 3646 } 3647 3648 #if KMP_STATS_ENABLED 3649 // Initialize stats as soon as possible (right after gtid assignment). 3650 __kmp_stats_thread_ptr = __kmp_stats_list->push_back(gtid); 3651 __kmp_stats_thread_ptr->startLife(); 3652 KMP_SET_THREAD_STATE(SERIAL_REGION); 3653 KMP_INIT_PARTITIONED_TIMERS(OMP_serial); 3654 #endif 3655 __kmp_initialize_root(root); 3656 3657 /* setup new root thread structure */ 3658 if (root->r.r_uber_thread) { 3659 root_thread = root->r.r_uber_thread; 3660 } else { 3661 root_thread = (kmp_info_t *)__kmp_allocate(sizeof(kmp_info_t)); 3662 if (__kmp_storage_map) { 3663 __kmp_print_thread_storage_map(root_thread, gtid); 3664 } 3665 root_thread->th.th_info.ds.ds_gtid = gtid; 3666 #if OMPT_SUPPORT 3667 root_thread->th.ompt_thread_info.thread_data = ompt_data_none; 3668 #endif 3669 root_thread->th.th_root = root; 3670 if (__kmp_env_consistency_check) { 3671 root_thread->th.th_cons = __kmp_allocate_cons_stack(gtid); 3672 } 3673 #if USE_FAST_MEMORY 3674 __kmp_initialize_fast_memory(root_thread); 3675 #endif /* USE_FAST_MEMORY */ 3676 3677 #if KMP_USE_BGET 3678 KMP_DEBUG_ASSERT(root_thread->th.th_local.bget_data == NULL); 3679 __kmp_initialize_bget(root_thread); 3680 #endif 3681 __kmp_init_random(root_thread); // Initialize random number generator 3682 } 3683 3684 /* setup the serial team held in reserve by the root thread */ 3685 if (!root_thread->th.th_serial_team) { 3686 kmp_internal_control_t r_icvs = __kmp_get_global_icvs(); 3687 KF_TRACE(10, ("__kmp_register_root: before serial_team\n")); 3688 root_thread->th.th_serial_team = __kmp_allocate_team( 3689 root, 1, 1, 3690 #if OMPT_SUPPORT 3691 ompt_data_none, // root parallel id 3692 #endif 3693 proc_bind_default, &r_icvs, 0 USE_NESTED_HOT_ARG(NULL)); 3694 } 3695 KMP_ASSERT(root_thread->th.th_serial_team); 3696 KF_TRACE(10, ("__kmp_register_root: after serial_team = %p\n", 3697 root_thread->th.th_serial_team)); 3698 3699 /* drop root_thread into place */ 3700 TCW_SYNC_PTR(__kmp_threads[gtid], root_thread); 3701 3702 root->r.r_root_team->t.t_threads[0] = root_thread; 3703 root->r.r_hot_team->t.t_threads[0] = root_thread; 3704 root_thread->th.th_serial_team->t.t_threads[0] = root_thread; 3705 // AC: the team created in reserve, not for execution (it is unused for now). 3706 root_thread->th.th_serial_team->t.t_serialized = 0; 3707 root->r.r_uber_thread = root_thread; 3708 3709 /* initialize the thread, get it ready to go */ 3710 __kmp_initialize_info(root_thread, root->r.r_root_team, 0, gtid); 3711 TCW_4(__kmp_init_gtid, TRUE); 3712 3713 /* prepare the master thread for get_gtid() */ 3714 __kmp_gtid_set_specific(gtid); 3715 3716 #if USE_ITT_BUILD 3717 __kmp_itt_thread_name(gtid); 3718 #endif /* USE_ITT_BUILD */ 3719 3720 #ifdef KMP_TDATA_GTID 3721 __kmp_gtid = gtid; 3722 #endif 3723 __kmp_create_worker(gtid, root_thread, __kmp_stksize); 3724 KMP_DEBUG_ASSERT(__kmp_gtid_get_specific() == gtid); 3725 3726 KA_TRACE(20, ("__kmp_register_root: T#%d init T#%d(%d:%d) arrived: join=%u, " 3727 "plain=%u\n", 3728 gtid, __kmp_gtid_from_tid(0, root->r.r_hot_team), 3729 root->r.r_hot_team->t.t_id, 0, KMP_INIT_BARRIER_STATE, 3730 KMP_INIT_BARRIER_STATE)); 3731 { // Initialize barrier data. 3732 int b; 3733 for (b = 0; b < bs_last_barrier; ++b) { 3734 root_thread->th.th_bar[b].bb.b_arrived = KMP_INIT_BARRIER_STATE; 3735 #if USE_DEBUGGER 3736 root_thread->th.th_bar[b].bb.b_worker_arrived = 0; 3737 #endif 3738 } 3739 } 3740 KMP_DEBUG_ASSERT(root->r.r_hot_team->t.t_bar[bs_forkjoin_barrier].b_arrived == 3741 KMP_INIT_BARRIER_STATE); 3742 3743 #if KMP_AFFINITY_SUPPORTED 3744 root_thread->th.th_current_place = KMP_PLACE_UNDEFINED; 3745 root_thread->th.th_new_place = KMP_PLACE_UNDEFINED; 3746 root_thread->th.th_first_place = KMP_PLACE_UNDEFINED; 3747 root_thread->th.th_last_place = KMP_PLACE_UNDEFINED; 3748 if (TCR_4(__kmp_init_middle)) { 3749 __kmp_affinity_set_init_mask(gtid, TRUE); 3750 } 3751 #endif /* KMP_AFFINITY_SUPPORTED */ 3752 root_thread->th.th_def_allocator = __kmp_def_allocator; 3753 root_thread->th.th_prev_level = 0; 3754 root_thread->th.th_prev_num_threads = 1; 3755 3756 kmp_cg_root_t *tmp = (kmp_cg_root_t *)__kmp_allocate(sizeof(kmp_cg_root_t)); 3757 tmp->cg_root = root_thread; 3758 tmp->cg_thread_limit = __kmp_cg_max_nth; 3759 tmp->cg_nthreads = 1; 3760 KA_TRACE(100, ("__kmp_register_root: Thread %p created node %p with" 3761 " cg_nthreads init to 1\n", 3762 root_thread, tmp)); 3763 tmp->up = NULL; 3764 root_thread->th.th_cg_roots = tmp; 3765 3766 __kmp_root_counter++; 3767 3768 #if OMPT_SUPPORT 3769 if (!initial_thread && ompt_enabled.enabled) { 3770 3771 kmp_info_t *root_thread = ompt_get_thread(); 3772 3773 ompt_set_thread_state(root_thread, ompt_state_overhead); 3774 3775 if (ompt_enabled.ompt_callback_thread_begin) { 3776 ompt_callbacks.ompt_callback(ompt_callback_thread_begin)( 3777 ompt_thread_initial, __ompt_get_thread_data_internal()); 3778 } 3779 ompt_data_t *task_data; 3780 ompt_data_t *parallel_data; 3781 __ompt_get_task_info_internal(0, NULL, &task_data, NULL, ¶llel_data, NULL); 3782 if (ompt_enabled.ompt_callback_implicit_task) { 3783 ompt_callbacks.ompt_callback(ompt_callback_implicit_task)( 3784 ompt_scope_begin, parallel_data, task_data, 1, 1, ompt_task_initial); 3785 } 3786 3787 ompt_set_thread_state(root_thread, ompt_state_work_serial); 3788 } 3789 #endif 3790 3791 KMP_MB(); 3792 __kmp_release_bootstrap_lock(&__kmp_forkjoin_lock); 3793 3794 return gtid; 3795 } 3796 3797 #if KMP_NESTED_HOT_TEAMS 3798 static int __kmp_free_hot_teams(kmp_root_t *root, kmp_info_t *thr, int level, 3799 const int max_level) { 3800 int i, n, nth; 3801 kmp_hot_team_ptr_t *hot_teams = thr->th.th_hot_teams; 3802 if (!hot_teams || !hot_teams[level].hot_team) { 3803 return 0; 3804 } 3805 KMP_DEBUG_ASSERT(level < max_level); 3806 kmp_team_t *team = hot_teams[level].hot_team; 3807 nth = hot_teams[level].hot_team_nth; 3808 n = nth - 1; // master is not freed 3809 if (level < max_level - 1) { 3810 for (i = 0; i < nth; ++i) { 3811 kmp_info_t *th = team->t.t_threads[i]; 3812 n += __kmp_free_hot_teams(root, th, level + 1, max_level); 3813 if (i > 0 && th->th.th_hot_teams) { 3814 __kmp_free(th->th.th_hot_teams); 3815 th->th.th_hot_teams = NULL; 3816 } 3817 } 3818 } 3819 __kmp_free_team(root, team, NULL); 3820 return n; 3821 } 3822 #endif 3823 3824 // Resets a root thread and clear its root and hot teams. 3825 // Returns the number of __kmp_threads entries directly and indirectly freed. 3826 static int __kmp_reset_root(int gtid, kmp_root_t *root) { 3827 kmp_team_t *root_team = root->r.r_root_team; 3828 kmp_team_t *hot_team = root->r.r_hot_team; 3829 int n = hot_team->t.t_nproc; 3830 int i; 3831 3832 KMP_DEBUG_ASSERT(!root->r.r_active); 3833 3834 root->r.r_root_team = NULL; 3835 root->r.r_hot_team = NULL; 3836 // __kmp_free_team() does not free hot teams, so we have to clear r_hot_team 3837 // before call to __kmp_free_team(). 3838 __kmp_free_team(root, root_team USE_NESTED_HOT_ARG(NULL)); 3839 #if KMP_NESTED_HOT_TEAMS 3840 if (__kmp_hot_teams_max_level > 3841 0) { // need to free nested hot teams and their threads if any 3842 for (i = 0; i < hot_team->t.t_nproc; ++i) { 3843 kmp_info_t *th = hot_team->t.t_threads[i]; 3844 if (__kmp_hot_teams_max_level > 1) { 3845 n += __kmp_free_hot_teams(root, th, 1, __kmp_hot_teams_max_level); 3846 } 3847 if (th->th.th_hot_teams) { 3848 __kmp_free(th->th.th_hot_teams); 3849 th->th.th_hot_teams = NULL; 3850 } 3851 } 3852 } 3853 #endif 3854 __kmp_free_team(root, hot_team USE_NESTED_HOT_ARG(NULL)); 3855 3856 // Before we can reap the thread, we need to make certain that all other 3857 // threads in the teams that had this root as ancestor have stopped trying to 3858 // steal tasks. 3859 if (__kmp_tasking_mode != tskm_immediate_exec) { 3860 __kmp_wait_to_unref_task_teams(); 3861 } 3862 3863 #if KMP_OS_WINDOWS 3864 /* Close Handle of root duplicated in __kmp_create_worker (tr #62919) */ 3865 KA_TRACE( 3866 10, ("__kmp_reset_root: free handle, th = %p, handle = %" KMP_UINTPTR_SPEC 3867 "\n", 3868 (LPVOID) & (root->r.r_uber_thread->th), 3869 root->r.r_uber_thread->th.th_info.ds.ds_thread)); 3870 __kmp_free_handle(root->r.r_uber_thread->th.th_info.ds.ds_thread); 3871 #endif /* KMP_OS_WINDOWS */ 3872 3873 #if OMPT_SUPPORT 3874 ompt_data_t *task_data; 3875 ompt_data_t *parallel_data; 3876 __ompt_get_task_info_internal(0, NULL, &task_data, NULL, ¶llel_data, NULL); 3877 if (ompt_enabled.ompt_callback_implicit_task) { 3878 ompt_callbacks.ompt_callback(ompt_callback_implicit_task)( 3879 ompt_scope_end, parallel_data, task_data, 0, 1, ompt_task_initial); 3880 } 3881 if (ompt_enabled.ompt_callback_thread_end) { 3882 ompt_callbacks.ompt_callback(ompt_callback_thread_end)( 3883 &(root->r.r_uber_thread->th.ompt_thread_info.thread_data)); 3884 } 3885 #endif 3886 3887 TCW_4(__kmp_nth, 3888 __kmp_nth - 1); // __kmp_reap_thread will decrement __kmp_all_nth. 3889 i = root->r.r_uber_thread->th.th_cg_roots->cg_nthreads--; 3890 KA_TRACE(100, ("__kmp_reset_root: Thread %p decrement cg_nthreads on node %p" 3891 " to %d\n", 3892 root->r.r_uber_thread, root->r.r_uber_thread->th.th_cg_roots, 3893 root->r.r_uber_thread->th.th_cg_roots->cg_nthreads)); 3894 if (i == 1) { 3895 // need to free contention group structure 3896 KMP_DEBUG_ASSERT(root->r.r_uber_thread == 3897 root->r.r_uber_thread->th.th_cg_roots->cg_root); 3898 KMP_DEBUG_ASSERT(root->r.r_uber_thread->th.th_cg_roots->up == NULL); 3899 __kmp_free(root->r.r_uber_thread->th.th_cg_roots); 3900 root->r.r_uber_thread->th.th_cg_roots = NULL; 3901 } 3902 __kmp_reap_thread(root->r.r_uber_thread, 1); 3903 3904 // We canot put root thread to __kmp_thread_pool, so we have to reap it 3905 // instead of freeing. 3906 root->r.r_uber_thread = NULL; 3907 /* mark root as no longer in use */ 3908 root->r.r_begin = FALSE; 3909 3910 return n; 3911 } 3912 3913 void __kmp_unregister_root_current_thread(int gtid) { 3914 KA_TRACE(1, ("__kmp_unregister_root_current_thread: enter T#%d\n", gtid)); 3915 /* this lock should be ok, since unregister_root_current_thread is never 3916 called during an abort, only during a normal close. furthermore, if you 3917 have the forkjoin lock, you should never try to get the initz lock */ 3918 __kmp_acquire_bootstrap_lock(&__kmp_forkjoin_lock); 3919 if (TCR_4(__kmp_global.g.g_done) || !__kmp_init_serial) { 3920 KC_TRACE(10, ("__kmp_unregister_root_current_thread: already finished, " 3921 "exiting T#%d\n", 3922 gtid)); 3923 __kmp_release_bootstrap_lock(&__kmp_forkjoin_lock); 3924 return; 3925 } 3926 kmp_root_t *root = __kmp_root[gtid]; 3927 3928 KMP_DEBUG_ASSERT(__kmp_threads && __kmp_threads[gtid]); 3929 KMP_ASSERT(KMP_UBER_GTID(gtid)); 3930 KMP_ASSERT(root == __kmp_threads[gtid]->th.th_root); 3931 KMP_ASSERT(root->r.r_active == FALSE); 3932 3933 KMP_MB(); 3934 3935 kmp_info_t *thread = __kmp_threads[gtid]; 3936 kmp_team_t *team = thread->th.th_team; 3937 kmp_task_team_t *task_team = thread->th.th_task_team; 3938 3939 // we need to wait for the proxy tasks before finishing the thread 3940 if (task_team != NULL && task_team->tt.tt_found_proxy_tasks) { 3941 #if OMPT_SUPPORT 3942 // the runtime is shutting down so we won't report any events 3943 thread->th.ompt_thread_info.state = ompt_state_undefined; 3944 #endif 3945 __kmp_task_team_wait(thread, team USE_ITT_BUILD_ARG(NULL)); 3946 } 3947 3948 __kmp_reset_root(gtid, root); 3949 3950 /* free up this thread slot */ 3951 __kmp_gtid_set_specific(KMP_GTID_DNE); 3952 #ifdef KMP_TDATA_GTID 3953 __kmp_gtid = KMP_GTID_DNE; 3954 #endif 3955 3956 KMP_MB(); 3957 KC_TRACE(10, 3958 ("__kmp_unregister_root_current_thread: T#%d unregistered\n", gtid)); 3959 3960 __kmp_release_bootstrap_lock(&__kmp_forkjoin_lock); 3961 } 3962 3963 #if KMP_OS_WINDOWS 3964 /* __kmp_forkjoin_lock must be already held 3965 Unregisters a root thread that is not the current thread. Returns the number 3966 of __kmp_threads entries freed as a result. */ 3967 static int __kmp_unregister_root_other_thread(int gtid) { 3968 kmp_root_t *root = __kmp_root[gtid]; 3969 int r; 3970 3971 KA_TRACE(1, ("__kmp_unregister_root_other_thread: enter T#%d\n", gtid)); 3972 KMP_DEBUG_ASSERT(__kmp_threads && __kmp_threads[gtid]); 3973 KMP_ASSERT(KMP_UBER_GTID(gtid)); 3974 KMP_ASSERT(root == __kmp_threads[gtid]->th.th_root); 3975 KMP_ASSERT(root->r.r_active == FALSE); 3976 3977 r = __kmp_reset_root(gtid, root); 3978 KC_TRACE(10, 3979 ("__kmp_unregister_root_other_thread: T#%d unregistered\n", gtid)); 3980 return r; 3981 } 3982 #endif 3983 3984 #if KMP_DEBUG 3985 void __kmp_task_info() { 3986 3987 kmp_int32 gtid = __kmp_entry_gtid(); 3988 kmp_int32 tid = __kmp_tid_from_gtid(gtid); 3989 kmp_info_t *this_thr = __kmp_threads[gtid]; 3990 kmp_team_t *steam = this_thr->th.th_serial_team; 3991 kmp_team_t *team = this_thr->th.th_team; 3992 3993 __kmp_printf( 3994 "__kmp_task_info: gtid=%d tid=%d t_thread=%p team=%p steam=%p curtask=%p " 3995 "ptask=%p\n", 3996 gtid, tid, this_thr, team, steam, this_thr->th.th_current_task, 3997 team->t.t_implicit_task_taskdata[tid].td_parent); 3998 } 3999 #endif // KMP_DEBUG 4000 4001 /* TODO optimize with one big memclr, take out what isn't needed, split 4002 responsibility to workers as much as possible, and delay initialization of 4003 features as much as possible */ 4004 static void __kmp_initialize_info(kmp_info_t *this_thr, kmp_team_t *team, 4005 int tid, int gtid) { 4006 /* this_thr->th.th_info.ds.ds_gtid is setup in 4007 kmp_allocate_thread/create_worker. 4008 this_thr->th.th_serial_team is setup in __kmp_allocate_thread */ 4009 kmp_info_t *master = team->t.t_threads[0]; 4010 KMP_DEBUG_ASSERT(this_thr != NULL); 4011 KMP_DEBUG_ASSERT(this_thr->th.th_serial_team); 4012 KMP_DEBUG_ASSERT(team); 4013 KMP_DEBUG_ASSERT(team->t.t_threads); 4014 KMP_DEBUG_ASSERT(team->t.t_dispatch); 4015 KMP_DEBUG_ASSERT(master); 4016 KMP_DEBUG_ASSERT(master->th.th_root); 4017 4018 KMP_MB(); 4019 4020 TCW_SYNC_PTR(this_thr->th.th_team, team); 4021 4022 this_thr->th.th_info.ds.ds_tid = tid; 4023 this_thr->th.th_set_nproc = 0; 4024 if (__kmp_tasking_mode != tskm_immediate_exec) 4025 // When tasking is possible, threads are not safe to reap until they are 4026 // done tasking; this will be set when tasking code is exited in wait 4027 this_thr->th.th_reap_state = KMP_NOT_SAFE_TO_REAP; 4028 else // no tasking --> always safe to reap 4029 this_thr->th.th_reap_state = KMP_SAFE_TO_REAP; 4030 this_thr->th.th_set_proc_bind = proc_bind_default; 4031 #if KMP_AFFINITY_SUPPORTED 4032 this_thr->th.th_new_place = this_thr->th.th_current_place; 4033 #endif 4034 this_thr->th.th_root = master->th.th_root; 4035 4036 /* setup the thread's cache of the team structure */ 4037 this_thr->th.th_team_nproc = team->t.t_nproc; 4038 this_thr->th.th_team_master = master; 4039 this_thr->th.th_team_serialized = team->t.t_serialized; 4040 TCW_PTR(this_thr->th.th_sleep_loc, NULL); 4041 4042 KMP_DEBUG_ASSERT(team->t.t_implicit_task_taskdata); 4043 4044 KF_TRACE(10, ("__kmp_initialize_info1: T#%d:%d this_thread=%p curtask=%p\n", 4045 tid, gtid, this_thr, this_thr->th.th_current_task)); 4046 4047 __kmp_init_implicit_task(this_thr->th.th_team_master->th.th_ident, this_thr, 4048 team, tid, TRUE); 4049 4050 KF_TRACE(10, ("__kmp_initialize_info2: T#%d:%d this_thread=%p curtask=%p\n", 4051 tid, gtid, this_thr, this_thr->th.th_current_task)); 4052 // TODO: Initialize ICVs from parent; GEH - isn't that already done in 4053 // __kmp_initialize_team()? 4054 4055 /* TODO no worksharing in speculative threads */ 4056 this_thr->th.th_dispatch = &team->t.t_dispatch[tid]; 4057 4058 this_thr->th.th_local.this_construct = 0; 4059 4060 if (!this_thr->th.th_pri_common) { 4061 this_thr->th.th_pri_common = 4062 (struct common_table *)__kmp_allocate(sizeof(struct common_table)); 4063 if (__kmp_storage_map) { 4064 __kmp_print_storage_map_gtid( 4065 gtid, this_thr->th.th_pri_common, this_thr->th.th_pri_common + 1, 4066 sizeof(struct common_table), "th_%d.th_pri_common\n", gtid); 4067 } 4068 this_thr->th.th_pri_head = NULL; 4069 } 4070 4071 if (this_thr != master && // Master's CG root is initialized elsewhere 4072 this_thr->th.th_cg_roots != master->th.th_cg_roots) { // CG root not set 4073 // Make new thread's CG root same as master's 4074 KMP_DEBUG_ASSERT(master->th.th_cg_roots); 4075 kmp_cg_root_t *tmp = this_thr->th.th_cg_roots; 4076 if (tmp) { 4077 // worker changes CG, need to check if old CG should be freed 4078 int i = tmp->cg_nthreads--; 4079 KA_TRACE(100, ("__kmp_initialize_info: Thread %p decrement cg_nthreads" 4080 " on node %p of thread %p to %d\n", 4081 this_thr, tmp, tmp->cg_root, tmp->cg_nthreads)); 4082 if (i == 1) { 4083 __kmp_free(tmp); // last thread left CG --> free it 4084 } 4085 } 4086 this_thr->th.th_cg_roots = master->th.th_cg_roots; 4087 // Increment new thread's CG root's counter to add the new thread 4088 this_thr->th.th_cg_roots->cg_nthreads++; 4089 KA_TRACE(100, ("__kmp_initialize_info: Thread %p increment cg_nthreads on" 4090 " node %p of thread %p to %d\n", 4091 this_thr, this_thr->th.th_cg_roots, 4092 this_thr->th.th_cg_roots->cg_root, 4093 this_thr->th.th_cg_roots->cg_nthreads)); 4094 this_thr->th.th_current_task->td_icvs.thread_limit = 4095 this_thr->th.th_cg_roots->cg_thread_limit; 4096 } 4097 4098 /* Initialize dynamic dispatch */ 4099 { 4100 volatile kmp_disp_t *dispatch = this_thr->th.th_dispatch; 4101 // Use team max_nproc since this will never change for the team. 4102 size_t disp_size = 4103 sizeof(dispatch_private_info_t) * 4104 (team->t.t_max_nproc == 1 ? 1 : __kmp_dispatch_num_buffers); 4105 KD_TRACE(10, ("__kmp_initialize_info: T#%d max_nproc: %d\n", gtid, 4106 team->t.t_max_nproc)); 4107 KMP_ASSERT(dispatch); 4108 KMP_DEBUG_ASSERT(team->t.t_dispatch); 4109 KMP_DEBUG_ASSERT(dispatch == &team->t.t_dispatch[tid]); 4110 4111 dispatch->th_disp_index = 0; 4112 dispatch->th_doacross_buf_idx = 0; 4113 if (!dispatch->th_disp_buffer) { 4114 dispatch->th_disp_buffer = 4115 (dispatch_private_info_t *)__kmp_allocate(disp_size); 4116 4117 if (__kmp_storage_map) { 4118 __kmp_print_storage_map_gtid( 4119 gtid, &dispatch->th_disp_buffer[0], 4120 &dispatch->th_disp_buffer[team->t.t_max_nproc == 1 4121 ? 1 4122 : __kmp_dispatch_num_buffers], 4123 disp_size, "th_%d.th_dispatch.th_disp_buffer " 4124 "(team_%d.t_dispatch[%d].th_disp_buffer)", 4125 gtid, team->t.t_id, gtid); 4126 } 4127 } else { 4128 memset(&dispatch->th_disp_buffer[0], '\0', disp_size); 4129 } 4130 4131 dispatch->th_dispatch_pr_current = 0; 4132 dispatch->th_dispatch_sh_current = 0; 4133 4134 dispatch->th_deo_fcn = 0; /* ORDERED */ 4135 dispatch->th_dxo_fcn = 0; /* END ORDERED */ 4136 } 4137 4138 this_thr->th.th_next_pool = NULL; 4139 4140 if (!this_thr->th.th_task_state_memo_stack) { 4141 size_t i; 4142 this_thr->th.th_task_state_memo_stack = 4143 (kmp_uint8 *)__kmp_allocate(4 * sizeof(kmp_uint8)); 4144 this_thr->th.th_task_state_top = 0; 4145 this_thr->th.th_task_state_stack_sz = 4; 4146 for (i = 0; i < this_thr->th.th_task_state_stack_sz; 4147 ++i) // zero init the stack 4148 this_thr->th.th_task_state_memo_stack[i] = 0; 4149 } 4150 4151 KMP_DEBUG_ASSERT(!this_thr->th.th_spin_here); 4152 KMP_DEBUG_ASSERT(this_thr->th.th_next_waiting == 0); 4153 4154 KMP_MB(); 4155 } 4156 4157 /* allocate a new thread for the requesting team. this is only called from 4158 within a forkjoin critical section. we will first try to get an available 4159 thread from the thread pool. if none is available, we will fork a new one 4160 assuming we are able to create a new one. this should be assured, as the 4161 caller should check on this first. */ 4162 kmp_info_t *__kmp_allocate_thread(kmp_root_t *root, kmp_team_t *team, 4163 int new_tid) { 4164 kmp_team_t *serial_team; 4165 kmp_info_t *new_thr; 4166 int new_gtid; 4167 4168 KA_TRACE(20, ("__kmp_allocate_thread: T#%d\n", __kmp_get_gtid())); 4169 KMP_DEBUG_ASSERT(root && team); 4170 #if !KMP_NESTED_HOT_TEAMS 4171 KMP_DEBUG_ASSERT(KMP_MASTER_GTID(__kmp_get_gtid())); 4172 #endif 4173 KMP_MB(); 4174 4175 /* first, try to get one from the thread pool */ 4176 if (__kmp_thread_pool) { 4177 new_thr = CCAST(kmp_info_t *, __kmp_thread_pool); 4178 __kmp_thread_pool = (volatile kmp_info_t *)new_thr->th.th_next_pool; 4179 if (new_thr == __kmp_thread_pool_insert_pt) { 4180 __kmp_thread_pool_insert_pt = NULL; 4181 } 4182 TCW_4(new_thr->th.th_in_pool, FALSE); 4183 __kmp_suspend_initialize_thread(new_thr); 4184 __kmp_lock_suspend_mx(new_thr); 4185 if (new_thr->th.th_active_in_pool == TRUE) { 4186 KMP_DEBUG_ASSERT(new_thr->th.th_active == TRUE); 4187 KMP_ATOMIC_DEC(&__kmp_thread_pool_active_nth); 4188 new_thr->th.th_active_in_pool = FALSE; 4189 } 4190 __kmp_unlock_suspend_mx(new_thr); 4191 4192 KA_TRACE(20, ("__kmp_allocate_thread: T#%d using thread T#%d\n", 4193 __kmp_get_gtid(), new_thr->th.th_info.ds.ds_gtid)); 4194 KMP_ASSERT(!new_thr->th.th_team); 4195 KMP_DEBUG_ASSERT(__kmp_nth < __kmp_threads_capacity); 4196 4197 /* setup the thread structure */ 4198 __kmp_initialize_info(new_thr, team, new_tid, 4199 new_thr->th.th_info.ds.ds_gtid); 4200 KMP_DEBUG_ASSERT(new_thr->th.th_serial_team); 4201 4202 TCW_4(__kmp_nth, __kmp_nth + 1); 4203 4204 new_thr->th.th_task_state = 0; 4205 new_thr->th.th_task_state_top = 0; 4206 new_thr->th.th_task_state_stack_sz = 4; 4207 4208 #ifdef KMP_ADJUST_BLOCKTIME 4209 /* Adjust blocktime back to zero if necessary */ 4210 /* Middle initialization might not have occurred yet */ 4211 if (!__kmp_env_blocktime && (__kmp_avail_proc > 0)) { 4212 if (__kmp_nth > __kmp_avail_proc) { 4213 __kmp_zero_bt = TRUE; 4214 } 4215 } 4216 #endif /* KMP_ADJUST_BLOCKTIME */ 4217 4218 #if KMP_DEBUG 4219 // If thread entered pool via __kmp_free_thread, wait_flag should != 4220 // KMP_BARRIER_PARENT_FLAG. 4221 int b; 4222 kmp_balign_t *balign = new_thr->th.th_bar; 4223 for (b = 0; b < bs_last_barrier; ++b) 4224 KMP_DEBUG_ASSERT(balign[b].bb.wait_flag != KMP_BARRIER_PARENT_FLAG); 4225 #endif 4226 4227 KF_TRACE(10, ("__kmp_allocate_thread: T#%d using thread %p T#%d\n", 4228 __kmp_get_gtid(), new_thr, new_thr->th.th_info.ds.ds_gtid)); 4229 4230 KMP_MB(); 4231 return new_thr; 4232 } 4233 4234 /* no, well fork a new one */ 4235 KMP_ASSERT(__kmp_nth == __kmp_all_nth); 4236 KMP_ASSERT(__kmp_all_nth < __kmp_threads_capacity); 4237 4238 #if KMP_USE_MONITOR 4239 // If this is the first worker thread the RTL is creating, then also 4240 // launch the monitor thread. We try to do this as early as possible. 4241 if (!TCR_4(__kmp_init_monitor)) { 4242 __kmp_acquire_bootstrap_lock(&__kmp_monitor_lock); 4243 if (!TCR_4(__kmp_init_monitor)) { 4244 KF_TRACE(10, ("before __kmp_create_monitor\n")); 4245 TCW_4(__kmp_init_monitor, 1); 4246 __kmp_create_monitor(&__kmp_monitor); 4247 KF_TRACE(10, ("after __kmp_create_monitor\n")); 4248 #if KMP_OS_WINDOWS 4249 // AC: wait until monitor has started. This is a fix for CQ232808. 4250 // The reason is that if the library is loaded/unloaded in a loop with 4251 // small (parallel) work in between, then there is high probability that 4252 // monitor thread started after the library shutdown. At shutdown it is 4253 // too late to cope with the problem, because when the master is in 4254 // DllMain (process detach) the monitor has no chances to start (it is 4255 // blocked), and master has no means to inform the monitor that the 4256 // library has gone, because all the memory which the monitor can access 4257 // is going to be released/reset. 4258 while (TCR_4(__kmp_init_monitor) < 2) { 4259 KMP_YIELD(TRUE); 4260 } 4261 KF_TRACE(10, ("after monitor thread has started\n")); 4262 #endif 4263 } 4264 __kmp_release_bootstrap_lock(&__kmp_monitor_lock); 4265 } 4266 #endif 4267 4268 KMP_MB(); 4269 for (new_gtid = 1; TCR_PTR(__kmp_threads[new_gtid]) != NULL; ++new_gtid) { 4270 KMP_DEBUG_ASSERT(new_gtid < __kmp_threads_capacity); 4271 } 4272 4273 /* allocate space for it. */ 4274 new_thr = (kmp_info_t *)__kmp_allocate(sizeof(kmp_info_t)); 4275 4276 TCW_SYNC_PTR(__kmp_threads[new_gtid], new_thr); 4277 4278 if (__kmp_storage_map) { 4279 __kmp_print_thread_storage_map(new_thr, new_gtid); 4280 } 4281 4282 // add the reserve serialized team, initialized from the team's master thread 4283 { 4284 kmp_internal_control_t r_icvs = __kmp_get_x_global_icvs(team); 4285 KF_TRACE(10, ("__kmp_allocate_thread: before th_serial/serial_team\n")); 4286 new_thr->th.th_serial_team = serial_team = 4287 (kmp_team_t *)__kmp_allocate_team(root, 1, 1, 4288 #if OMPT_SUPPORT 4289 ompt_data_none, // root parallel id 4290 #endif 4291 proc_bind_default, &r_icvs, 4292 0 USE_NESTED_HOT_ARG(NULL)); 4293 } 4294 KMP_ASSERT(serial_team); 4295 serial_team->t.t_serialized = 0; // AC: the team created in reserve, not for 4296 // execution (it is unused for now). 4297 serial_team->t.t_threads[0] = new_thr; 4298 KF_TRACE(10, 4299 ("__kmp_allocate_thread: after th_serial/serial_team : new_thr=%p\n", 4300 new_thr)); 4301 4302 /* setup the thread structures */ 4303 __kmp_initialize_info(new_thr, team, new_tid, new_gtid); 4304 4305 #if USE_FAST_MEMORY 4306 __kmp_initialize_fast_memory(new_thr); 4307 #endif /* USE_FAST_MEMORY */ 4308 4309 #if KMP_USE_BGET 4310 KMP_DEBUG_ASSERT(new_thr->th.th_local.bget_data == NULL); 4311 __kmp_initialize_bget(new_thr); 4312 #endif 4313 4314 __kmp_init_random(new_thr); // Initialize random number generator 4315 4316 /* Initialize these only once when thread is grabbed for a team allocation */ 4317 KA_TRACE(20, 4318 ("__kmp_allocate_thread: T#%d init go fork=%u, plain=%u\n", 4319 __kmp_get_gtid(), KMP_INIT_BARRIER_STATE, KMP_INIT_BARRIER_STATE)); 4320 4321 int b; 4322 kmp_balign_t *balign = new_thr->th.th_bar; 4323 for (b = 0; b < bs_last_barrier; ++b) { 4324 balign[b].bb.b_go = KMP_INIT_BARRIER_STATE; 4325 balign[b].bb.team = NULL; 4326 balign[b].bb.wait_flag = KMP_BARRIER_NOT_WAITING; 4327 balign[b].bb.use_oncore_barrier = 0; 4328 } 4329 4330 new_thr->th.th_spin_here = FALSE; 4331 new_thr->th.th_next_waiting = 0; 4332 #if KMP_OS_UNIX 4333 new_thr->th.th_blocking = false; 4334 #endif 4335 4336 #if KMP_AFFINITY_SUPPORTED 4337 new_thr->th.th_current_place = KMP_PLACE_UNDEFINED; 4338 new_thr->th.th_new_place = KMP_PLACE_UNDEFINED; 4339 new_thr->th.th_first_place = KMP_PLACE_UNDEFINED; 4340 new_thr->th.th_last_place = KMP_PLACE_UNDEFINED; 4341 #endif 4342 new_thr->th.th_def_allocator = __kmp_def_allocator; 4343 new_thr->th.th_prev_level = 0; 4344 new_thr->th.th_prev_num_threads = 1; 4345 4346 TCW_4(new_thr->th.th_in_pool, FALSE); 4347 new_thr->th.th_active_in_pool = FALSE; 4348 TCW_4(new_thr->th.th_active, TRUE); 4349 4350 /* adjust the global counters */ 4351 __kmp_all_nth++; 4352 __kmp_nth++; 4353 4354 // if __kmp_adjust_gtid_mode is set, then we use method #1 (sp search) for low 4355 // numbers of procs, and method #2 (keyed API call) for higher numbers. 4356 if (__kmp_adjust_gtid_mode) { 4357 if (__kmp_all_nth >= __kmp_tls_gtid_min) { 4358 if (TCR_4(__kmp_gtid_mode) != 2) { 4359 TCW_4(__kmp_gtid_mode, 2); 4360 } 4361 } else { 4362 if (TCR_4(__kmp_gtid_mode) != 1) { 4363 TCW_4(__kmp_gtid_mode, 1); 4364 } 4365 } 4366 } 4367 4368 #ifdef KMP_ADJUST_BLOCKTIME 4369 /* Adjust blocktime back to zero if necessary */ 4370 /* Middle initialization might not have occurred yet */ 4371 if (!__kmp_env_blocktime && (__kmp_avail_proc > 0)) { 4372 if (__kmp_nth > __kmp_avail_proc) { 4373 __kmp_zero_bt = TRUE; 4374 } 4375 } 4376 #endif /* KMP_ADJUST_BLOCKTIME */ 4377 4378 /* actually fork it and create the new worker thread */ 4379 KF_TRACE( 4380 10, ("__kmp_allocate_thread: before __kmp_create_worker: %p\n", new_thr)); 4381 __kmp_create_worker(new_gtid, new_thr, __kmp_stksize); 4382 KF_TRACE(10, 4383 ("__kmp_allocate_thread: after __kmp_create_worker: %p\n", new_thr)); 4384 4385 KA_TRACE(20, ("__kmp_allocate_thread: T#%d forked T#%d\n", __kmp_get_gtid(), 4386 new_gtid)); 4387 KMP_MB(); 4388 return new_thr; 4389 } 4390 4391 /* Reinitialize team for reuse. 4392 The hot team code calls this case at every fork barrier, so EPCC barrier 4393 test are extremely sensitive to changes in it, esp. writes to the team 4394 struct, which cause a cache invalidation in all threads. 4395 IF YOU TOUCH THIS ROUTINE, RUN EPCC C SYNCBENCH ON A BIG-IRON MACHINE!!! */ 4396 static void __kmp_reinitialize_team(kmp_team_t *team, 4397 kmp_internal_control_t *new_icvs, 4398 ident_t *loc) { 4399 KF_TRACE(10, ("__kmp_reinitialize_team: enter this_thread=%p team=%p\n", 4400 team->t.t_threads[0], team)); 4401 KMP_DEBUG_ASSERT(team && new_icvs); 4402 KMP_DEBUG_ASSERT((!TCR_4(__kmp_init_parallel)) || new_icvs->nproc); 4403 KMP_CHECK_UPDATE(team->t.t_ident, loc); 4404 4405 KMP_CHECK_UPDATE(team->t.t_id, KMP_GEN_TEAM_ID()); 4406 // Copy ICVs to the master thread's implicit taskdata 4407 __kmp_init_implicit_task(loc, team->t.t_threads[0], team, 0, FALSE); 4408 copy_icvs(&team->t.t_implicit_task_taskdata[0].td_icvs, new_icvs); 4409 4410 KF_TRACE(10, ("__kmp_reinitialize_team: exit this_thread=%p team=%p\n", 4411 team->t.t_threads[0], team)); 4412 } 4413 4414 /* Initialize the team data structure. 4415 This assumes the t_threads and t_max_nproc are already set. 4416 Also, we don't touch the arguments */ 4417 static void __kmp_initialize_team(kmp_team_t *team, int new_nproc, 4418 kmp_internal_control_t *new_icvs, 4419 ident_t *loc) { 4420 KF_TRACE(10, ("__kmp_initialize_team: enter: team=%p\n", team)); 4421 4422 /* verify */ 4423 KMP_DEBUG_ASSERT(team); 4424 KMP_DEBUG_ASSERT(new_nproc <= team->t.t_max_nproc); 4425 KMP_DEBUG_ASSERT(team->t.t_threads); 4426 KMP_MB(); 4427 4428 team->t.t_master_tid = 0; /* not needed */ 4429 /* team->t.t_master_bar; not needed */ 4430 team->t.t_serialized = new_nproc > 1 ? 0 : 1; 4431 team->t.t_nproc = new_nproc; 4432 4433 /* team->t.t_parent = NULL; TODO not needed & would mess up hot team */ 4434 team->t.t_next_pool = NULL; 4435 /* memset( team->t.t_threads, 0, sizeof(kmp_info_t*)*new_nproc ); would mess 4436 * up hot team */ 4437 4438 TCW_SYNC_PTR(team->t.t_pkfn, NULL); /* not needed */ 4439 team->t.t_invoke = NULL; /* not needed */ 4440 4441 // TODO???: team->t.t_max_active_levels = new_max_active_levels; 4442 team->t.t_sched.sched = new_icvs->sched.sched; 4443 4444 #if KMP_ARCH_X86 || KMP_ARCH_X86_64 4445 team->t.t_fp_control_saved = FALSE; /* not needed */ 4446 team->t.t_x87_fpu_control_word = 0; /* not needed */ 4447 team->t.t_mxcsr = 0; /* not needed */ 4448 #endif /* KMP_ARCH_X86 || KMP_ARCH_X86_64 */ 4449 4450 team->t.t_construct = 0; 4451 4452 team->t.t_ordered.dt.t_value = 0; 4453 team->t.t_master_active = FALSE; 4454 4455 #ifdef KMP_DEBUG 4456 team->t.t_copypriv_data = NULL; /* not necessary, but nice for debugging */ 4457 #endif 4458 #if KMP_OS_WINDOWS 4459 team->t.t_copyin_counter = 0; /* for barrier-free copyin implementation */ 4460 #endif 4461 4462 team->t.t_control_stack_top = NULL; 4463 4464 __kmp_reinitialize_team(team, new_icvs, loc); 4465 4466 KMP_MB(); 4467 KF_TRACE(10, ("__kmp_initialize_team: exit: team=%p\n", team)); 4468 } 4469 4470 #if (KMP_OS_LINUX || KMP_OS_FREEBSD) && KMP_AFFINITY_SUPPORTED 4471 /* Sets full mask for thread and returns old mask, no changes to structures. */ 4472 static void 4473 __kmp_set_thread_affinity_mask_full_tmp(kmp_affin_mask_t *old_mask) { 4474 if (KMP_AFFINITY_CAPABLE()) { 4475 int status; 4476 if (old_mask != NULL) { 4477 status = __kmp_get_system_affinity(old_mask, TRUE); 4478 int error = errno; 4479 if (status != 0) { 4480 __kmp_fatal(KMP_MSG(ChangeThreadAffMaskError), KMP_ERR(error), 4481 __kmp_msg_null); 4482 } 4483 } 4484 __kmp_set_system_affinity(__kmp_affin_fullMask, TRUE); 4485 } 4486 } 4487 #endif 4488 4489 #if KMP_AFFINITY_SUPPORTED 4490 4491 // __kmp_partition_places() is the heart of the OpenMP 4.0 affinity mechanism. 4492 // It calculates the worker + master thread's partition based upon the parent 4493 // thread's partition, and binds each worker to a thread in their partition. 4494 // The master thread's partition should already include its current binding. 4495 static void __kmp_partition_places(kmp_team_t *team, int update_master_only) { 4496 // Copy the master thread's place partition to the team struct 4497 kmp_info_t *master_th = team->t.t_threads[0]; 4498 KMP_DEBUG_ASSERT(master_th != NULL); 4499 kmp_proc_bind_t proc_bind = team->t.t_proc_bind; 4500 int first_place = master_th->th.th_first_place; 4501 int last_place = master_th->th.th_last_place; 4502 int masters_place = master_th->th.th_current_place; 4503 team->t.t_first_place = first_place; 4504 team->t.t_last_place = last_place; 4505 4506 KA_TRACE(20, ("__kmp_partition_places: enter: proc_bind = %d T#%d(%d:0) " 4507 "bound to place %d partition = [%d,%d]\n", 4508 proc_bind, __kmp_gtid_from_thread(team->t.t_threads[0]), 4509 team->t.t_id, masters_place, first_place, last_place)); 4510 4511 switch (proc_bind) { 4512 4513 case proc_bind_default: 4514 // serial teams might have the proc_bind policy set to proc_bind_default. It 4515 // doesn't matter, as we don't rebind master thread for any proc_bind policy 4516 KMP_DEBUG_ASSERT(team->t.t_nproc == 1); 4517 break; 4518 4519 case proc_bind_master: { 4520 int f; 4521 int n_th = team->t.t_nproc; 4522 for (f = 1; f < n_th; f++) { 4523 kmp_info_t *th = team->t.t_threads[f]; 4524 KMP_DEBUG_ASSERT(th != NULL); 4525 th->th.th_first_place = first_place; 4526 th->th.th_last_place = last_place; 4527 th->th.th_new_place = masters_place; 4528 if (__kmp_display_affinity && masters_place != th->th.th_current_place && 4529 team->t.t_display_affinity != 1) { 4530 team->t.t_display_affinity = 1; 4531 } 4532 4533 KA_TRACE(100, ("__kmp_partition_places: master: T#%d(%d:%d) place %d " 4534 "partition = [%d,%d]\n", 4535 __kmp_gtid_from_thread(team->t.t_threads[f]), team->t.t_id, 4536 f, masters_place, first_place, last_place)); 4537 } 4538 } break; 4539 4540 case proc_bind_close: { 4541 int f; 4542 int n_th = team->t.t_nproc; 4543 int n_places; 4544 if (first_place <= last_place) { 4545 n_places = last_place - first_place + 1; 4546 } else { 4547 n_places = __kmp_affinity_num_masks - first_place + last_place + 1; 4548 } 4549 if (n_th <= n_places) { 4550 int place = masters_place; 4551 for (f = 1; f < n_th; f++) { 4552 kmp_info_t *th = team->t.t_threads[f]; 4553 KMP_DEBUG_ASSERT(th != NULL); 4554 4555 if (place == last_place) { 4556 place = first_place; 4557 } else if (place == (int)(__kmp_affinity_num_masks - 1)) { 4558 place = 0; 4559 } else { 4560 place++; 4561 } 4562 th->th.th_first_place = first_place; 4563 th->th.th_last_place = last_place; 4564 th->th.th_new_place = place; 4565 if (__kmp_display_affinity && place != th->th.th_current_place && 4566 team->t.t_display_affinity != 1) { 4567 team->t.t_display_affinity = 1; 4568 } 4569 4570 KA_TRACE(100, ("__kmp_partition_places: close: T#%d(%d:%d) place %d " 4571 "partition = [%d,%d]\n", 4572 __kmp_gtid_from_thread(team->t.t_threads[f]), 4573 team->t.t_id, f, place, first_place, last_place)); 4574 } 4575 } else { 4576 int S, rem, gap, s_count; 4577 S = n_th / n_places; 4578 s_count = 0; 4579 rem = n_th - (S * n_places); 4580 gap = rem > 0 ? n_places / rem : n_places; 4581 int place = masters_place; 4582 int gap_ct = gap; 4583 for (f = 0; f < n_th; f++) { 4584 kmp_info_t *th = team->t.t_threads[f]; 4585 KMP_DEBUG_ASSERT(th != NULL); 4586 4587 th->th.th_first_place = first_place; 4588 th->th.th_last_place = last_place; 4589 th->th.th_new_place = place; 4590 if (__kmp_display_affinity && place != th->th.th_current_place && 4591 team->t.t_display_affinity != 1) { 4592 team->t.t_display_affinity = 1; 4593 } 4594 s_count++; 4595 4596 if ((s_count == S) && rem && (gap_ct == gap)) { 4597 // do nothing, add an extra thread to place on next iteration 4598 } else if ((s_count == S + 1) && rem && (gap_ct == gap)) { 4599 // we added an extra thread to this place; move to next place 4600 if (place == last_place) { 4601 place = first_place; 4602 } else if (place == (int)(__kmp_affinity_num_masks - 1)) { 4603 place = 0; 4604 } else { 4605 place++; 4606 } 4607 s_count = 0; 4608 gap_ct = 1; 4609 rem--; 4610 } else if (s_count == S) { // place full; don't add extra 4611 if (place == last_place) { 4612 place = first_place; 4613 } else if (place == (int)(__kmp_affinity_num_masks - 1)) { 4614 place = 0; 4615 } else { 4616 place++; 4617 } 4618 gap_ct++; 4619 s_count = 0; 4620 } 4621 4622 KA_TRACE(100, 4623 ("__kmp_partition_places: close: T#%d(%d:%d) place %d " 4624 "partition = [%d,%d]\n", 4625 __kmp_gtid_from_thread(team->t.t_threads[f]), team->t.t_id, f, 4626 th->th.th_new_place, first_place, last_place)); 4627 } 4628 KMP_DEBUG_ASSERT(place == masters_place); 4629 } 4630 } break; 4631 4632 case proc_bind_spread: { 4633 int f; 4634 int n_th = team->t.t_nproc; 4635 int n_places; 4636 int thidx; 4637 if (first_place <= last_place) { 4638 n_places = last_place - first_place + 1; 4639 } else { 4640 n_places = __kmp_affinity_num_masks - first_place + last_place + 1; 4641 } 4642 if (n_th <= n_places) { 4643 int place = -1; 4644 4645 if (n_places != static_cast<int>(__kmp_affinity_num_masks)) { 4646 int S = n_places / n_th; 4647 int s_count, rem, gap, gap_ct; 4648 4649 place = masters_place; 4650 rem = n_places - n_th * S; 4651 gap = rem ? n_th / rem : 1; 4652 gap_ct = gap; 4653 thidx = n_th; 4654 if (update_master_only == 1) 4655 thidx = 1; 4656 for (f = 0; f < thidx; f++) { 4657 kmp_info_t *th = team->t.t_threads[f]; 4658 KMP_DEBUG_ASSERT(th != NULL); 4659 4660 th->th.th_first_place = place; 4661 th->th.th_new_place = place; 4662 if (__kmp_display_affinity && place != th->th.th_current_place && 4663 team->t.t_display_affinity != 1) { 4664 team->t.t_display_affinity = 1; 4665 } 4666 s_count = 1; 4667 while (s_count < S) { 4668 if (place == last_place) { 4669 place = first_place; 4670 } else if (place == (int)(__kmp_affinity_num_masks - 1)) { 4671 place = 0; 4672 } else { 4673 place++; 4674 } 4675 s_count++; 4676 } 4677 if (rem && (gap_ct == gap)) { 4678 if (place == last_place) { 4679 place = first_place; 4680 } else if (place == (int)(__kmp_affinity_num_masks - 1)) { 4681 place = 0; 4682 } else { 4683 place++; 4684 } 4685 rem--; 4686 gap_ct = 0; 4687 } 4688 th->th.th_last_place = place; 4689 gap_ct++; 4690 4691 if (place == last_place) { 4692 place = first_place; 4693 } else if (place == (int)(__kmp_affinity_num_masks - 1)) { 4694 place = 0; 4695 } else { 4696 place++; 4697 } 4698 4699 KA_TRACE(100, 4700 ("__kmp_partition_places: spread: T#%d(%d:%d) place %d " 4701 "partition = [%d,%d], __kmp_affinity_num_masks: %u\n", 4702 __kmp_gtid_from_thread(team->t.t_threads[f]), team->t.t_id, 4703 f, th->th.th_new_place, th->th.th_first_place, 4704 th->th.th_last_place, __kmp_affinity_num_masks)); 4705 } 4706 } else { 4707 /* Having uniform space of available computation places I can create 4708 T partitions of round(P/T) size and put threads into the first 4709 place of each partition. */ 4710 double current = static_cast<double>(masters_place); 4711 double spacing = 4712 (static_cast<double>(n_places + 1) / static_cast<double>(n_th)); 4713 int first, last; 4714 kmp_info_t *th; 4715 4716 thidx = n_th + 1; 4717 if (update_master_only == 1) 4718 thidx = 1; 4719 for (f = 0; f < thidx; f++) { 4720 first = static_cast<int>(current); 4721 last = static_cast<int>(current + spacing) - 1; 4722 KMP_DEBUG_ASSERT(last >= first); 4723 if (first >= n_places) { 4724 if (masters_place) { 4725 first -= n_places; 4726 last -= n_places; 4727 if (first == (masters_place + 1)) { 4728 KMP_DEBUG_ASSERT(f == n_th); 4729 first--; 4730 } 4731 if (last == masters_place) { 4732 KMP_DEBUG_ASSERT(f == (n_th - 1)); 4733 last--; 4734 } 4735 } else { 4736 KMP_DEBUG_ASSERT(f == n_th); 4737 first = 0; 4738 last = 0; 4739 } 4740 } 4741 if (last >= n_places) { 4742 last = (n_places - 1); 4743 } 4744 place = first; 4745 current += spacing; 4746 if (f < n_th) { 4747 KMP_DEBUG_ASSERT(0 <= first); 4748 KMP_DEBUG_ASSERT(n_places > first); 4749 KMP_DEBUG_ASSERT(0 <= last); 4750 KMP_DEBUG_ASSERT(n_places > last); 4751 KMP_DEBUG_ASSERT(last_place >= first_place); 4752 th = team->t.t_threads[f]; 4753 KMP_DEBUG_ASSERT(th); 4754 th->th.th_first_place = first; 4755 th->th.th_new_place = place; 4756 th->th.th_last_place = last; 4757 if (__kmp_display_affinity && place != th->th.th_current_place && 4758 team->t.t_display_affinity != 1) { 4759 team->t.t_display_affinity = 1; 4760 } 4761 KA_TRACE(100, 4762 ("__kmp_partition_places: spread: T#%d(%d:%d) place %d " 4763 "partition = [%d,%d], spacing = %.4f\n", 4764 __kmp_gtid_from_thread(team->t.t_threads[f]), 4765 team->t.t_id, f, th->th.th_new_place, 4766 th->th.th_first_place, th->th.th_last_place, spacing)); 4767 } 4768 } 4769 } 4770 KMP_DEBUG_ASSERT(update_master_only || place == masters_place); 4771 } else { 4772 int S, rem, gap, s_count; 4773 S = n_th / n_places; 4774 s_count = 0; 4775 rem = n_th - (S * n_places); 4776 gap = rem > 0 ? n_places / rem : n_places; 4777 int place = masters_place; 4778 int gap_ct = gap; 4779 thidx = n_th; 4780 if (update_master_only == 1) 4781 thidx = 1; 4782 for (f = 0; f < thidx; f++) { 4783 kmp_info_t *th = team->t.t_threads[f]; 4784 KMP_DEBUG_ASSERT(th != NULL); 4785 4786 th->th.th_first_place = place; 4787 th->th.th_last_place = place; 4788 th->th.th_new_place = place; 4789 if (__kmp_display_affinity && place != th->th.th_current_place && 4790 team->t.t_display_affinity != 1) { 4791 team->t.t_display_affinity = 1; 4792 } 4793 s_count++; 4794 4795 if ((s_count == S) && rem && (gap_ct == gap)) { 4796 // do nothing, add an extra thread to place on next iteration 4797 } else if ((s_count == S + 1) && rem && (gap_ct == gap)) { 4798 // we added an extra thread to this place; move on to next place 4799 if (place == last_place) { 4800 place = first_place; 4801 } else if (place == (int)(__kmp_affinity_num_masks - 1)) { 4802 place = 0; 4803 } else { 4804 place++; 4805 } 4806 s_count = 0; 4807 gap_ct = 1; 4808 rem--; 4809 } else if (s_count == S) { // place is full; don't add extra thread 4810 if (place == last_place) { 4811 place = first_place; 4812 } else if (place == (int)(__kmp_affinity_num_masks - 1)) { 4813 place = 0; 4814 } else { 4815 place++; 4816 } 4817 gap_ct++; 4818 s_count = 0; 4819 } 4820 4821 KA_TRACE(100, ("__kmp_partition_places: spread: T#%d(%d:%d) place %d " 4822 "partition = [%d,%d]\n", 4823 __kmp_gtid_from_thread(team->t.t_threads[f]), 4824 team->t.t_id, f, th->th.th_new_place, 4825 th->th.th_first_place, th->th.th_last_place)); 4826 } 4827 KMP_DEBUG_ASSERT(update_master_only || place == masters_place); 4828 } 4829 } break; 4830 4831 default: 4832 break; 4833 } 4834 4835 KA_TRACE(20, ("__kmp_partition_places: exit T#%d\n", team->t.t_id)); 4836 } 4837 4838 #endif // KMP_AFFINITY_SUPPORTED 4839 4840 /* allocate a new team data structure to use. take one off of the free pool if 4841 available */ 4842 kmp_team_t * 4843 __kmp_allocate_team(kmp_root_t *root, int new_nproc, int max_nproc, 4844 #if OMPT_SUPPORT 4845 ompt_data_t ompt_parallel_data, 4846 #endif 4847 kmp_proc_bind_t new_proc_bind, 4848 kmp_internal_control_t *new_icvs, 4849 int argc USE_NESTED_HOT_ARG(kmp_info_t *master)) { 4850 KMP_TIME_DEVELOPER_PARTITIONED_BLOCK(KMP_allocate_team); 4851 int f; 4852 kmp_team_t *team; 4853 int use_hot_team = !root->r.r_active; 4854 int level = 0; 4855 4856 KA_TRACE(20, ("__kmp_allocate_team: called\n")); 4857 KMP_DEBUG_ASSERT(new_nproc >= 1 && argc >= 0); 4858 KMP_DEBUG_ASSERT(max_nproc >= new_nproc); 4859 KMP_MB(); 4860 4861 #if KMP_NESTED_HOT_TEAMS 4862 kmp_hot_team_ptr_t *hot_teams; 4863 if (master) { 4864 team = master->th.th_team; 4865 level = team->t.t_active_level; 4866 if (master->th.th_teams_microtask) { // in teams construct? 4867 if (master->th.th_teams_size.nteams > 1 && 4868 ( // #teams > 1 4869 team->t.t_pkfn == 4870 (microtask_t)__kmp_teams_master || // inner fork of the teams 4871 master->th.th_teams_level < 4872 team->t.t_level)) { // or nested parallel inside the teams 4873 ++level; // not increment if #teams==1, or for outer fork of the teams; 4874 // increment otherwise 4875 } 4876 } 4877 hot_teams = master->th.th_hot_teams; 4878 if (level < __kmp_hot_teams_max_level && hot_teams && 4879 hot_teams[level] 4880 .hot_team) { // hot team has already been allocated for given level 4881 use_hot_team = 1; 4882 } else { 4883 use_hot_team = 0; 4884 } 4885 } 4886 #endif 4887 // Optimization to use a "hot" team 4888 if (use_hot_team && new_nproc > 1) { 4889 KMP_DEBUG_ASSERT(new_nproc <= max_nproc); 4890 #if KMP_NESTED_HOT_TEAMS 4891 team = hot_teams[level].hot_team; 4892 #else 4893 team = root->r.r_hot_team; 4894 #endif 4895 #if KMP_DEBUG 4896 if (__kmp_tasking_mode != tskm_immediate_exec) { 4897 KA_TRACE(20, ("__kmp_allocate_team: hot team task_team[0] = %p " 4898 "task_team[1] = %p before reinit\n", 4899 team->t.t_task_team[0], team->t.t_task_team[1])); 4900 } 4901 #endif 4902 4903 // Has the number of threads changed? 4904 /* Let's assume the most common case is that the number of threads is 4905 unchanged, and put that case first. */ 4906 if (team->t.t_nproc == new_nproc) { // Check changes in number of threads 4907 KA_TRACE(20, ("__kmp_allocate_team: reusing hot team\n")); 4908 // This case can mean that omp_set_num_threads() was called and the hot 4909 // team size was already reduced, so we check the special flag 4910 if (team->t.t_size_changed == -1) { 4911 team->t.t_size_changed = 1; 4912 } else { 4913 KMP_CHECK_UPDATE(team->t.t_size_changed, 0); 4914 } 4915 4916 // TODO???: team->t.t_max_active_levels = new_max_active_levels; 4917 kmp_r_sched_t new_sched = new_icvs->sched; 4918 // set master's schedule as new run-time schedule 4919 KMP_CHECK_UPDATE(team->t.t_sched.sched, new_sched.sched); 4920 4921 __kmp_reinitialize_team(team, new_icvs, 4922 root->r.r_uber_thread->th.th_ident); 4923 4924 KF_TRACE(10, ("__kmp_allocate_team2: T#%d, this_thread=%p team=%p\n", 0, 4925 team->t.t_threads[0], team)); 4926 __kmp_push_current_task_to_thread(team->t.t_threads[0], team, 0); 4927 4928 #if KMP_AFFINITY_SUPPORTED 4929 if ((team->t.t_size_changed == 0) && 4930 (team->t.t_proc_bind == new_proc_bind)) { 4931 if (new_proc_bind == proc_bind_spread) { 4932 __kmp_partition_places( 4933 team, 1); // add flag to update only master for spread 4934 } 4935 KA_TRACE(200, ("__kmp_allocate_team: reusing hot team #%d bindings: " 4936 "proc_bind = %d, partition = [%d,%d]\n", 4937 team->t.t_id, new_proc_bind, team->t.t_first_place, 4938 team->t.t_last_place)); 4939 } else { 4940 KMP_CHECK_UPDATE(team->t.t_proc_bind, new_proc_bind); 4941 __kmp_partition_places(team); 4942 } 4943 #else 4944 KMP_CHECK_UPDATE(team->t.t_proc_bind, new_proc_bind); 4945 #endif /* KMP_AFFINITY_SUPPORTED */ 4946 } else if (team->t.t_nproc > new_nproc) { 4947 KA_TRACE(20, 4948 ("__kmp_allocate_team: decreasing hot team thread count to %d\n", 4949 new_nproc)); 4950 4951 team->t.t_size_changed = 1; 4952 #if KMP_NESTED_HOT_TEAMS 4953 if (__kmp_hot_teams_mode == 0) { 4954 // AC: saved number of threads should correspond to team's value in this 4955 // mode, can be bigger in mode 1, when hot team has threads in reserve 4956 KMP_DEBUG_ASSERT(hot_teams[level].hot_team_nth == team->t.t_nproc); 4957 hot_teams[level].hot_team_nth = new_nproc; 4958 #endif // KMP_NESTED_HOT_TEAMS 4959 /* release the extra threads we don't need any more */ 4960 for (f = new_nproc; f < team->t.t_nproc; f++) { 4961 KMP_DEBUG_ASSERT(team->t.t_threads[f]); 4962 if (__kmp_tasking_mode != tskm_immediate_exec) { 4963 // When decreasing team size, threads no longer in the team should 4964 // unref task team. 4965 team->t.t_threads[f]->th.th_task_team = NULL; 4966 } 4967 __kmp_free_thread(team->t.t_threads[f]); 4968 team->t.t_threads[f] = NULL; 4969 } 4970 #if KMP_NESTED_HOT_TEAMS 4971 } // (__kmp_hot_teams_mode == 0) 4972 else { 4973 // When keeping extra threads in team, switch threads to wait on own 4974 // b_go flag 4975 for (f = new_nproc; f < team->t.t_nproc; ++f) { 4976 KMP_DEBUG_ASSERT(team->t.t_threads[f]); 4977 kmp_balign_t *balign = team->t.t_threads[f]->th.th_bar; 4978 for (int b = 0; b < bs_last_barrier; ++b) { 4979 if (balign[b].bb.wait_flag == KMP_BARRIER_PARENT_FLAG) { 4980 balign[b].bb.wait_flag = KMP_BARRIER_SWITCH_TO_OWN_FLAG; 4981 } 4982 KMP_CHECK_UPDATE(balign[b].bb.leaf_kids, 0); 4983 } 4984 } 4985 } 4986 #endif // KMP_NESTED_HOT_TEAMS 4987 team->t.t_nproc = new_nproc; 4988 // TODO???: team->t.t_max_active_levels = new_max_active_levels; 4989 KMP_CHECK_UPDATE(team->t.t_sched.sched, new_icvs->sched.sched); 4990 __kmp_reinitialize_team(team, new_icvs, 4991 root->r.r_uber_thread->th.th_ident); 4992 4993 // Update remaining threads 4994 for (f = 0; f < new_nproc; ++f) { 4995 team->t.t_threads[f]->th.th_team_nproc = new_nproc; 4996 } 4997 4998 // restore the current task state of the master thread: should be the 4999 // implicit task 5000 KF_TRACE(10, ("__kmp_allocate_team: T#%d, this_thread=%p team=%p\n", 0, 5001 team->t.t_threads[0], team)); 5002 5003 __kmp_push_current_task_to_thread(team->t.t_threads[0], team, 0); 5004 5005 #ifdef KMP_DEBUG 5006 for (f = 0; f < team->t.t_nproc; f++) { 5007 KMP_DEBUG_ASSERT(team->t.t_threads[f] && 5008 team->t.t_threads[f]->th.th_team_nproc == 5009 team->t.t_nproc); 5010 } 5011 #endif 5012 5013 KMP_CHECK_UPDATE(team->t.t_proc_bind, new_proc_bind); 5014 #if KMP_AFFINITY_SUPPORTED 5015 __kmp_partition_places(team); 5016 #endif 5017 } else { // team->t.t_nproc < new_nproc 5018 #if (KMP_OS_LINUX || KMP_OS_FREEBSD) && KMP_AFFINITY_SUPPORTED 5019 kmp_affin_mask_t *old_mask; 5020 if (KMP_AFFINITY_CAPABLE()) { 5021 KMP_CPU_ALLOC(old_mask); 5022 } 5023 #endif 5024 5025 KA_TRACE(20, 5026 ("__kmp_allocate_team: increasing hot team thread count to %d\n", 5027 new_nproc)); 5028 5029 team->t.t_size_changed = 1; 5030 5031 #if KMP_NESTED_HOT_TEAMS 5032 int avail_threads = hot_teams[level].hot_team_nth; 5033 if (new_nproc < avail_threads) 5034 avail_threads = new_nproc; 5035 kmp_info_t **other_threads = team->t.t_threads; 5036 for (f = team->t.t_nproc; f < avail_threads; ++f) { 5037 // Adjust barrier data of reserved threads (if any) of the team 5038 // Other data will be set in __kmp_initialize_info() below. 5039 int b; 5040 kmp_balign_t *balign = other_threads[f]->th.th_bar; 5041 for (b = 0; b < bs_last_barrier; ++b) { 5042 balign[b].bb.b_arrived = team->t.t_bar[b].b_arrived; 5043 KMP_DEBUG_ASSERT(balign[b].bb.wait_flag != KMP_BARRIER_PARENT_FLAG); 5044 #if USE_DEBUGGER 5045 balign[b].bb.b_worker_arrived = team->t.t_bar[b].b_team_arrived; 5046 #endif 5047 } 5048 } 5049 if (hot_teams[level].hot_team_nth >= new_nproc) { 5050 // we have all needed threads in reserve, no need to allocate any 5051 // this only possible in mode 1, cannot have reserved threads in mode 0 5052 KMP_DEBUG_ASSERT(__kmp_hot_teams_mode == 1); 5053 team->t.t_nproc = new_nproc; // just get reserved threads involved 5054 } else { 5055 // we may have some threads in reserve, but not enough 5056 team->t.t_nproc = 5057 hot_teams[level] 5058 .hot_team_nth; // get reserved threads involved if any 5059 hot_teams[level].hot_team_nth = new_nproc; // adjust hot team max size 5060 #endif // KMP_NESTED_HOT_TEAMS 5061 if (team->t.t_max_nproc < new_nproc) { 5062 /* reallocate larger arrays */ 5063 __kmp_reallocate_team_arrays(team, new_nproc); 5064 __kmp_reinitialize_team(team, new_icvs, NULL); 5065 } 5066 5067 #if (KMP_OS_LINUX || KMP_OS_FREEBSD) && KMP_AFFINITY_SUPPORTED 5068 /* Temporarily set full mask for master thread before creation of 5069 workers. The reason is that workers inherit the affinity from master, 5070 so if a lot of workers are created on the single core quickly, they 5071 don't get a chance to set their own affinity for a long time. */ 5072 __kmp_set_thread_affinity_mask_full_tmp(old_mask); 5073 #endif 5074 5075 /* allocate new threads for the hot team */ 5076 for (f = team->t.t_nproc; f < new_nproc; f++) { 5077 kmp_info_t *new_worker = __kmp_allocate_thread(root, team, f); 5078 KMP_DEBUG_ASSERT(new_worker); 5079 team->t.t_threads[f] = new_worker; 5080 5081 KA_TRACE(20, 5082 ("__kmp_allocate_team: team %d init T#%d arrived: " 5083 "join=%llu, plain=%llu\n", 5084 team->t.t_id, __kmp_gtid_from_tid(f, team), team->t.t_id, f, 5085 team->t.t_bar[bs_forkjoin_barrier].b_arrived, 5086 team->t.t_bar[bs_plain_barrier].b_arrived)); 5087 5088 { // Initialize barrier data for new threads. 5089 int b; 5090 kmp_balign_t *balign = new_worker->th.th_bar; 5091 for (b = 0; b < bs_last_barrier; ++b) { 5092 balign[b].bb.b_arrived = team->t.t_bar[b].b_arrived; 5093 KMP_DEBUG_ASSERT(balign[b].bb.wait_flag != 5094 KMP_BARRIER_PARENT_FLAG); 5095 #if USE_DEBUGGER 5096 balign[b].bb.b_worker_arrived = team->t.t_bar[b].b_team_arrived; 5097 #endif 5098 } 5099 } 5100 } 5101 5102 #if (KMP_OS_LINUX || KMP_OS_FREEBSD) && KMP_AFFINITY_SUPPORTED 5103 if (KMP_AFFINITY_CAPABLE()) { 5104 /* Restore initial master thread's affinity mask */ 5105 __kmp_set_system_affinity(old_mask, TRUE); 5106 KMP_CPU_FREE(old_mask); 5107 } 5108 #endif 5109 #if KMP_NESTED_HOT_TEAMS 5110 } // end of check of t_nproc vs. new_nproc vs. hot_team_nth 5111 #endif // KMP_NESTED_HOT_TEAMS 5112 /* make sure everyone is syncronized */ 5113 int old_nproc = team->t.t_nproc; // save old value and use to update only 5114 // new threads below 5115 __kmp_initialize_team(team, new_nproc, new_icvs, 5116 root->r.r_uber_thread->th.th_ident); 5117 5118 /* reinitialize the threads */ 5119 KMP_DEBUG_ASSERT(team->t.t_nproc == new_nproc); 5120 for (f = 0; f < team->t.t_nproc; ++f) 5121 __kmp_initialize_info(team->t.t_threads[f], team, f, 5122 __kmp_gtid_from_tid(f, team)); 5123 5124 if (level) { // set th_task_state for new threads in nested hot team 5125 // __kmp_initialize_info() no longer zeroes th_task_state, so we should 5126 // only need to set the th_task_state for the new threads. th_task_state 5127 // for master thread will not be accurate until after this in 5128 // __kmp_fork_call(), so we look to the master's memo_stack to get the 5129 // correct value. 5130 for (f = old_nproc; f < team->t.t_nproc; ++f) 5131 team->t.t_threads[f]->th.th_task_state = 5132 team->t.t_threads[0]->th.th_task_state_memo_stack[level]; 5133 } else { // set th_task_state for new threads in non-nested hot team 5134 int old_state = 5135 team->t.t_threads[0]->th.th_task_state; // copy master's state 5136 for (f = old_nproc; f < team->t.t_nproc; ++f) 5137 team->t.t_threads[f]->th.th_task_state = old_state; 5138 } 5139 5140 #ifdef KMP_DEBUG 5141 for (f = 0; f < team->t.t_nproc; ++f) { 5142 KMP_DEBUG_ASSERT(team->t.t_threads[f] && 5143 team->t.t_threads[f]->th.th_team_nproc == 5144 team->t.t_nproc); 5145 } 5146 #endif 5147 5148 KMP_CHECK_UPDATE(team->t.t_proc_bind, new_proc_bind); 5149 #if KMP_AFFINITY_SUPPORTED 5150 __kmp_partition_places(team); 5151 #endif 5152 } // Check changes in number of threads 5153 5154 kmp_info_t *master = team->t.t_threads[0]; 5155 if (master->th.th_teams_microtask) { 5156 for (f = 1; f < new_nproc; ++f) { 5157 // propagate teams construct specific info to workers 5158 kmp_info_t *thr = team->t.t_threads[f]; 5159 thr->th.th_teams_microtask = master->th.th_teams_microtask; 5160 thr->th.th_teams_level = master->th.th_teams_level; 5161 thr->th.th_teams_size = master->th.th_teams_size; 5162 } 5163 } 5164 #if KMP_NESTED_HOT_TEAMS 5165 if (level) { 5166 // Sync barrier state for nested hot teams, not needed for outermost hot 5167 // team. 5168 for (f = 1; f < new_nproc; ++f) { 5169 kmp_info_t *thr = team->t.t_threads[f]; 5170 int b; 5171 kmp_balign_t *balign = thr->th.th_bar; 5172 for (b = 0; b < bs_last_barrier; ++b) { 5173 balign[b].bb.b_arrived = team->t.t_bar[b].b_arrived; 5174 KMP_DEBUG_ASSERT(balign[b].bb.wait_flag != KMP_BARRIER_PARENT_FLAG); 5175 #if USE_DEBUGGER 5176 balign[b].bb.b_worker_arrived = team->t.t_bar[b].b_team_arrived; 5177 #endif 5178 } 5179 } 5180 } 5181 #endif // KMP_NESTED_HOT_TEAMS 5182 5183 /* reallocate space for arguments if necessary */ 5184 __kmp_alloc_argv_entries(argc, team, TRUE); 5185 KMP_CHECK_UPDATE(team->t.t_argc, argc); 5186 // The hot team re-uses the previous task team, 5187 // if untouched during the previous release->gather phase. 5188 5189 KF_TRACE(10, (" hot_team = %p\n", team)); 5190 5191 #if KMP_DEBUG 5192 if (__kmp_tasking_mode != tskm_immediate_exec) { 5193 KA_TRACE(20, ("__kmp_allocate_team: hot team task_team[0] = %p " 5194 "task_team[1] = %p after reinit\n", 5195 team->t.t_task_team[0], team->t.t_task_team[1])); 5196 } 5197 #endif 5198 5199 #if OMPT_SUPPORT 5200 __ompt_team_assign_id(team, ompt_parallel_data); 5201 #endif 5202 5203 KMP_MB(); 5204 5205 return team; 5206 } 5207 5208 /* next, let's try to take one from the team pool */ 5209 KMP_MB(); 5210 for (team = CCAST(kmp_team_t *, __kmp_team_pool); (team);) { 5211 /* TODO: consider resizing undersized teams instead of reaping them, now 5212 that we have a resizing mechanism */ 5213 if (team->t.t_max_nproc >= max_nproc) { 5214 /* take this team from the team pool */ 5215 __kmp_team_pool = team->t.t_next_pool; 5216 5217 /* setup the team for fresh use */ 5218 __kmp_initialize_team(team, new_nproc, new_icvs, NULL); 5219 5220 KA_TRACE(20, ("__kmp_allocate_team: setting task_team[0] %p and " 5221 "task_team[1] %p to NULL\n", 5222 &team->t.t_task_team[0], &team->t.t_task_team[1])); 5223 team->t.t_task_team[0] = NULL; 5224 team->t.t_task_team[1] = NULL; 5225 5226 /* reallocate space for arguments if necessary */ 5227 __kmp_alloc_argv_entries(argc, team, TRUE); 5228 KMP_CHECK_UPDATE(team->t.t_argc, argc); 5229 5230 KA_TRACE( 5231 20, ("__kmp_allocate_team: team %d init arrived: join=%u, plain=%u\n", 5232 team->t.t_id, KMP_INIT_BARRIER_STATE, KMP_INIT_BARRIER_STATE)); 5233 { // Initialize barrier data. 5234 int b; 5235 for (b = 0; b < bs_last_barrier; ++b) { 5236 team->t.t_bar[b].b_arrived = KMP_INIT_BARRIER_STATE; 5237 #if USE_DEBUGGER 5238 team->t.t_bar[b].b_master_arrived = 0; 5239 team->t.t_bar[b].b_team_arrived = 0; 5240 #endif 5241 } 5242 } 5243 5244 team->t.t_proc_bind = new_proc_bind; 5245 5246 KA_TRACE(20, ("__kmp_allocate_team: using team from pool %d.\n", 5247 team->t.t_id)); 5248 5249 #if OMPT_SUPPORT 5250 __ompt_team_assign_id(team, ompt_parallel_data); 5251 #endif 5252 5253 KMP_MB(); 5254 5255 return team; 5256 } 5257 5258 /* reap team if it is too small, then loop back and check the next one */ 5259 // not sure if this is wise, but, will be redone during the hot-teams 5260 // rewrite. 5261 /* TODO: Use technique to find the right size hot-team, don't reap them */ 5262 team = __kmp_reap_team(team); 5263 __kmp_team_pool = team; 5264 } 5265 5266 /* nothing available in the pool, no matter, make a new team! */ 5267 KMP_MB(); 5268 team = (kmp_team_t *)__kmp_allocate(sizeof(kmp_team_t)); 5269 5270 /* and set it up */ 5271 team->t.t_max_nproc = max_nproc; 5272 /* NOTE well, for some reason allocating one big buffer and dividing it up 5273 seems to really hurt performance a lot on the P4, so, let's not use this */ 5274 __kmp_allocate_team_arrays(team, max_nproc); 5275 5276 KA_TRACE(20, ("__kmp_allocate_team: making a new team\n")); 5277 __kmp_initialize_team(team, new_nproc, new_icvs, NULL); 5278 5279 KA_TRACE(20, ("__kmp_allocate_team: setting task_team[0] %p and task_team[1] " 5280 "%p to NULL\n", 5281 &team->t.t_task_team[0], &team->t.t_task_team[1])); 5282 team->t.t_task_team[0] = NULL; // to be removed, as __kmp_allocate zeroes 5283 // memory, no need to duplicate 5284 team->t.t_task_team[1] = NULL; // to be removed, as __kmp_allocate zeroes 5285 // memory, no need to duplicate 5286 5287 if (__kmp_storage_map) { 5288 __kmp_print_team_storage_map("team", team, team->t.t_id, new_nproc); 5289 } 5290 5291 /* allocate space for arguments */ 5292 __kmp_alloc_argv_entries(argc, team, FALSE); 5293 team->t.t_argc = argc; 5294 5295 KA_TRACE(20, 5296 ("__kmp_allocate_team: team %d init arrived: join=%u, plain=%u\n", 5297 team->t.t_id, KMP_INIT_BARRIER_STATE, KMP_INIT_BARRIER_STATE)); 5298 { // Initialize barrier data. 5299 int b; 5300 for (b = 0; b < bs_last_barrier; ++b) { 5301 team->t.t_bar[b].b_arrived = KMP_INIT_BARRIER_STATE; 5302 #if USE_DEBUGGER 5303 team->t.t_bar[b].b_master_arrived = 0; 5304 team->t.t_bar[b].b_team_arrived = 0; 5305 #endif 5306 } 5307 } 5308 5309 team->t.t_proc_bind = new_proc_bind; 5310 5311 #if OMPT_SUPPORT 5312 __ompt_team_assign_id(team, ompt_parallel_data); 5313 team->t.ompt_serialized_team_info = NULL; 5314 #endif 5315 5316 KMP_MB(); 5317 5318 KA_TRACE(20, ("__kmp_allocate_team: done creating a new team %d.\n", 5319 team->t.t_id)); 5320 5321 return team; 5322 } 5323 5324 /* TODO implement hot-teams at all levels */ 5325 /* TODO implement lazy thread release on demand (disband request) */ 5326 5327 /* free the team. return it to the team pool. release all the threads 5328 * associated with it */ 5329 void __kmp_free_team(kmp_root_t *root, 5330 kmp_team_t *team USE_NESTED_HOT_ARG(kmp_info_t *master)) { 5331 int f; 5332 KA_TRACE(20, ("__kmp_free_team: T#%d freeing team %d\n", __kmp_get_gtid(), 5333 team->t.t_id)); 5334 5335 /* verify state */ 5336 KMP_DEBUG_ASSERT(root); 5337 KMP_DEBUG_ASSERT(team); 5338 KMP_DEBUG_ASSERT(team->t.t_nproc <= team->t.t_max_nproc); 5339 KMP_DEBUG_ASSERT(team->t.t_threads); 5340 5341 int use_hot_team = team == root->r.r_hot_team; 5342 #if KMP_NESTED_HOT_TEAMS 5343 int level; 5344 kmp_hot_team_ptr_t *hot_teams; 5345 if (master) { 5346 level = team->t.t_active_level - 1; 5347 if (master->th.th_teams_microtask) { // in teams construct? 5348 if (master->th.th_teams_size.nteams > 1) { 5349 ++level; // level was not increased in teams construct for 5350 // team_of_masters 5351 } 5352 if (team->t.t_pkfn != (microtask_t)__kmp_teams_master && 5353 master->th.th_teams_level == team->t.t_level) { 5354 ++level; // level was not increased in teams construct for 5355 // team_of_workers before the parallel 5356 } // team->t.t_level will be increased inside parallel 5357 } 5358 hot_teams = master->th.th_hot_teams; 5359 if (level < __kmp_hot_teams_max_level) { 5360 KMP_DEBUG_ASSERT(team == hot_teams[level].hot_team); 5361 use_hot_team = 1; 5362 } 5363 } 5364 #endif // KMP_NESTED_HOT_TEAMS 5365 5366 /* team is done working */ 5367 TCW_SYNC_PTR(team->t.t_pkfn, 5368 NULL); // Important for Debugging Support Library. 5369 #if KMP_OS_WINDOWS 5370 team->t.t_copyin_counter = 0; // init counter for possible reuse 5371 #endif 5372 // Do not reset pointer to parent team to NULL for hot teams. 5373 5374 /* if we are non-hot team, release our threads */ 5375 if (!use_hot_team) { 5376 if (__kmp_tasking_mode != tskm_immediate_exec) { 5377 // Wait for threads to reach reapable state 5378 for (f = 1; f < team->t.t_nproc; ++f) { 5379 KMP_DEBUG_ASSERT(team->t.t_threads[f]); 5380 kmp_info_t *th = team->t.t_threads[f]; 5381 volatile kmp_uint32 *state = &th->th.th_reap_state; 5382 while (*state != KMP_SAFE_TO_REAP) { 5383 #if KMP_OS_WINDOWS 5384 // On Windows a thread can be killed at any time, check this 5385 DWORD ecode; 5386 if (!__kmp_is_thread_alive(th, &ecode)) { 5387 *state = KMP_SAFE_TO_REAP; // reset the flag for dead thread 5388 break; 5389 } 5390 #endif 5391 // first check if thread is sleeping 5392 kmp_flag_64 fl(&th->th.th_bar[bs_forkjoin_barrier].bb.b_go, th); 5393 if (fl.is_sleeping()) 5394 fl.resume(__kmp_gtid_from_thread(th)); 5395 KMP_CPU_PAUSE(); 5396 } 5397 } 5398 5399 // Delete task teams 5400 int tt_idx; 5401 for (tt_idx = 0; tt_idx < 2; ++tt_idx) { 5402 kmp_task_team_t *task_team = team->t.t_task_team[tt_idx]; 5403 if (task_team != NULL) { 5404 for (f = 0; f < team->t.t_nproc; ++f) { // threads unref task teams 5405 KMP_DEBUG_ASSERT(team->t.t_threads[f]); 5406 team->t.t_threads[f]->th.th_task_team = NULL; 5407 } 5408 KA_TRACE( 5409 20, 5410 ("__kmp_free_team: T#%d deactivating task_team %p on team %d\n", 5411 __kmp_get_gtid(), task_team, team->t.t_id)); 5412 #if KMP_NESTED_HOT_TEAMS 5413 __kmp_free_task_team(master, task_team); 5414 #endif 5415 team->t.t_task_team[tt_idx] = NULL; 5416 } 5417 } 5418 } 5419 5420 // Reset pointer to parent team only for non-hot teams. 5421 team->t.t_parent = NULL; 5422 team->t.t_level = 0; 5423 team->t.t_active_level = 0; 5424 5425 /* free the worker threads */ 5426 for (f = 1; f < team->t.t_nproc; ++f) { 5427 KMP_DEBUG_ASSERT(team->t.t_threads[f]); 5428 __kmp_free_thread(team->t.t_threads[f]); 5429 team->t.t_threads[f] = NULL; 5430 } 5431 5432 /* put the team back in the team pool */ 5433 /* TODO limit size of team pool, call reap_team if pool too large */ 5434 team->t.t_next_pool = CCAST(kmp_team_t *, __kmp_team_pool); 5435 __kmp_team_pool = (volatile kmp_team_t *)team; 5436 } else { // Check if team was created for the masters in a teams construct 5437 // See if first worker is a CG root 5438 KMP_DEBUG_ASSERT(team->t.t_threads[1] && 5439 team->t.t_threads[1]->th.th_cg_roots); 5440 if (team->t.t_threads[1]->th.th_cg_roots->cg_root == team->t.t_threads[1]) { 5441 // Clean up the CG root nodes on workers so that this team can be re-used 5442 for (f = 1; f < team->t.t_nproc; ++f) { 5443 kmp_info_t *thr = team->t.t_threads[f]; 5444 KMP_DEBUG_ASSERT(thr && thr->th.th_cg_roots && 5445 thr->th.th_cg_roots->cg_root == thr); 5446 // Pop current CG root off list 5447 kmp_cg_root_t *tmp = thr->th.th_cg_roots; 5448 thr->th.th_cg_roots = tmp->up; 5449 KA_TRACE(100, ("__kmp_free_team: Thread %p popping node %p and moving" 5450 " up to node %p. cg_nthreads was %d\n", 5451 thr, tmp, thr->th.th_cg_roots, tmp->cg_nthreads)); 5452 int i = tmp->cg_nthreads--; 5453 if (i == 1) { 5454 __kmp_free(tmp); // free CG if we are the last thread in it 5455 } 5456 // Restore current task's thread_limit from CG root 5457 if (thr->th.th_cg_roots) 5458 thr->th.th_current_task->td_icvs.thread_limit = 5459 thr->th.th_cg_roots->cg_thread_limit; 5460 } 5461 } 5462 } 5463 5464 KMP_MB(); 5465 } 5466 5467 /* reap the team. destroy it, reclaim all its resources and free its memory */ 5468 kmp_team_t *__kmp_reap_team(kmp_team_t *team) { 5469 kmp_team_t *next_pool = team->t.t_next_pool; 5470 5471 KMP_DEBUG_ASSERT(team); 5472 KMP_DEBUG_ASSERT(team->t.t_dispatch); 5473 KMP_DEBUG_ASSERT(team->t.t_disp_buffer); 5474 KMP_DEBUG_ASSERT(team->t.t_threads); 5475 KMP_DEBUG_ASSERT(team->t.t_argv); 5476 5477 /* TODO clean the threads that are a part of this? */ 5478 5479 /* free stuff */ 5480 __kmp_free_team_arrays(team); 5481 if (team->t.t_argv != &team->t.t_inline_argv[0]) 5482 __kmp_free((void *)team->t.t_argv); 5483 __kmp_free(team); 5484 5485 KMP_MB(); 5486 return next_pool; 5487 } 5488 5489 // Free the thread. Don't reap it, just place it on the pool of available 5490 // threads. 5491 // 5492 // Changes for Quad issue 527845: We need a predictable OMP tid <-> gtid 5493 // binding for the affinity mechanism to be useful. 5494 // 5495 // Now, we always keep the free list (__kmp_thread_pool) sorted by gtid. 5496 // However, we want to avoid a potential performance problem by always 5497 // scanning through the list to find the correct point at which to insert 5498 // the thread (potential N**2 behavior). To do this we keep track of the 5499 // last place a thread struct was inserted (__kmp_thread_pool_insert_pt). 5500 // With single-level parallelism, threads will always be added to the tail 5501 // of the list, kept track of by __kmp_thread_pool_insert_pt. With nested 5502 // parallelism, all bets are off and we may need to scan through the entire 5503 // free list. 5504 // 5505 // This change also has a potentially large performance benefit, for some 5506 // applications. Previously, as threads were freed from the hot team, they 5507 // would be placed back on the free list in inverse order. If the hot team 5508 // grew back to it's original size, then the freed thread would be placed 5509 // back on the hot team in reverse order. This could cause bad cache 5510 // locality problems on programs where the size of the hot team regularly 5511 // grew and shrunk. 5512 // 5513 // Now, for single-level parallelism, the OMP tid is always == gtid. 5514 void __kmp_free_thread(kmp_info_t *this_th) { 5515 int gtid; 5516 kmp_info_t **scan; 5517 5518 KA_TRACE(20, ("__kmp_free_thread: T#%d putting T#%d back on free pool.\n", 5519 __kmp_get_gtid(), this_th->th.th_info.ds.ds_gtid)); 5520 5521 KMP_DEBUG_ASSERT(this_th); 5522 5523 // When moving thread to pool, switch thread to wait on own b_go flag, and 5524 // uninitialized (NULL team). 5525 int b; 5526 kmp_balign_t *balign = this_th->th.th_bar; 5527 for (b = 0; b < bs_last_barrier; ++b) { 5528 if (balign[b].bb.wait_flag == KMP_BARRIER_PARENT_FLAG) 5529 balign[b].bb.wait_flag = KMP_BARRIER_SWITCH_TO_OWN_FLAG; 5530 balign[b].bb.team = NULL; 5531 balign[b].bb.leaf_kids = 0; 5532 } 5533 this_th->th.th_task_state = 0; 5534 this_th->th.th_reap_state = KMP_SAFE_TO_REAP; 5535 5536 /* put thread back on the free pool */ 5537 TCW_PTR(this_th->th.th_team, NULL); 5538 TCW_PTR(this_th->th.th_root, NULL); 5539 TCW_PTR(this_th->th.th_dispatch, NULL); /* NOT NEEDED */ 5540 5541 while (this_th->th.th_cg_roots) { 5542 this_th->th.th_cg_roots->cg_nthreads--; 5543 KA_TRACE(100, ("__kmp_free_thread: Thread %p decrement cg_nthreads on node" 5544 " %p of thread %p to %d\n", 5545 this_th, this_th->th.th_cg_roots, 5546 this_th->th.th_cg_roots->cg_root, 5547 this_th->th.th_cg_roots->cg_nthreads)); 5548 kmp_cg_root_t *tmp = this_th->th.th_cg_roots; 5549 if (tmp->cg_root == this_th) { // Thread is a cg_root 5550 KMP_DEBUG_ASSERT(tmp->cg_nthreads == 0); 5551 KA_TRACE( 5552 5, ("__kmp_free_thread: Thread %p freeing node %p\n", this_th, tmp)); 5553 this_th->th.th_cg_roots = tmp->up; 5554 __kmp_free(tmp); 5555 } else { // Worker thread 5556 if (tmp->cg_nthreads == 0) { // last thread leaves contention group 5557 __kmp_free(tmp); 5558 } 5559 this_th->th.th_cg_roots = NULL; 5560 break; 5561 } 5562 } 5563 5564 /* If the implicit task assigned to this thread can be used by other threads 5565 * -> multiple threads can share the data and try to free the task at 5566 * __kmp_reap_thread at exit. This duplicate use of the task data can happen 5567 * with higher probability when hot team is disabled but can occurs even when 5568 * the hot team is enabled */ 5569 __kmp_free_implicit_task(this_th); 5570 this_th->th.th_current_task = NULL; 5571 5572 // If the __kmp_thread_pool_insert_pt is already past the new insert 5573 // point, then we need to re-scan the entire list. 5574 gtid = this_th->th.th_info.ds.ds_gtid; 5575 if (__kmp_thread_pool_insert_pt != NULL) { 5576 KMP_DEBUG_ASSERT(__kmp_thread_pool != NULL); 5577 if (__kmp_thread_pool_insert_pt->th.th_info.ds.ds_gtid > gtid) { 5578 __kmp_thread_pool_insert_pt = NULL; 5579 } 5580 } 5581 5582 // Scan down the list to find the place to insert the thread. 5583 // scan is the address of a link in the list, possibly the address of 5584 // __kmp_thread_pool itself. 5585 // 5586 // In the absence of nested parallelism, the for loop will have 0 iterations. 5587 if (__kmp_thread_pool_insert_pt != NULL) { 5588 scan = &(__kmp_thread_pool_insert_pt->th.th_next_pool); 5589 } else { 5590 scan = CCAST(kmp_info_t **, &__kmp_thread_pool); 5591 } 5592 for (; (*scan != NULL) && ((*scan)->th.th_info.ds.ds_gtid < gtid); 5593 scan = &((*scan)->th.th_next_pool)) 5594 ; 5595 5596 // Insert the new element on the list, and set __kmp_thread_pool_insert_pt 5597 // to its address. 5598 TCW_PTR(this_th->th.th_next_pool, *scan); 5599 __kmp_thread_pool_insert_pt = *scan = this_th; 5600 KMP_DEBUG_ASSERT((this_th->th.th_next_pool == NULL) || 5601 (this_th->th.th_info.ds.ds_gtid < 5602 this_th->th.th_next_pool->th.th_info.ds.ds_gtid)); 5603 TCW_4(this_th->th.th_in_pool, TRUE); 5604 __kmp_suspend_initialize_thread(this_th); 5605 __kmp_lock_suspend_mx(this_th); 5606 if (this_th->th.th_active == TRUE) { 5607 KMP_ATOMIC_INC(&__kmp_thread_pool_active_nth); 5608 this_th->th.th_active_in_pool = TRUE; 5609 } 5610 #if KMP_DEBUG 5611 else { 5612 KMP_DEBUG_ASSERT(this_th->th.th_active_in_pool == FALSE); 5613 } 5614 #endif 5615 __kmp_unlock_suspend_mx(this_th); 5616 5617 TCW_4(__kmp_nth, __kmp_nth - 1); 5618 5619 #ifdef KMP_ADJUST_BLOCKTIME 5620 /* Adjust blocktime back to user setting or default if necessary */ 5621 /* Middle initialization might never have occurred */ 5622 if (!__kmp_env_blocktime && (__kmp_avail_proc > 0)) { 5623 KMP_DEBUG_ASSERT(__kmp_avail_proc > 0); 5624 if (__kmp_nth <= __kmp_avail_proc) { 5625 __kmp_zero_bt = FALSE; 5626 } 5627 } 5628 #endif /* KMP_ADJUST_BLOCKTIME */ 5629 5630 KMP_MB(); 5631 } 5632 5633 /* ------------------------------------------------------------------------ */ 5634 5635 void *__kmp_launch_thread(kmp_info_t *this_thr) { 5636 int gtid = this_thr->th.th_info.ds.ds_gtid; 5637 /* void *stack_data;*/ 5638 kmp_team_t **volatile pteam; 5639 5640 KMP_MB(); 5641 KA_TRACE(10, ("__kmp_launch_thread: T#%d start\n", gtid)); 5642 5643 if (__kmp_env_consistency_check) { 5644 this_thr->th.th_cons = __kmp_allocate_cons_stack(gtid); // ATT: Memory leak? 5645 } 5646 5647 #if OMPT_SUPPORT 5648 ompt_data_t *thread_data; 5649 if (ompt_enabled.enabled) { 5650 thread_data = &(this_thr->th.ompt_thread_info.thread_data); 5651 *thread_data = ompt_data_none; 5652 5653 this_thr->th.ompt_thread_info.state = ompt_state_overhead; 5654 this_thr->th.ompt_thread_info.wait_id = 0; 5655 this_thr->th.ompt_thread_info.idle_frame = OMPT_GET_FRAME_ADDRESS(0); 5656 this_thr->th.ompt_thread_info.parallel_flags = 0; 5657 if (ompt_enabled.ompt_callback_thread_begin) { 5658 ompt_callbacks.ompt_callback(ompt_callback_thread_begin)( 5659 ompt_thread_worker, thread_data); 5660 } 5661 this_thr->th.ompt_thread_info.state = ompt_state_idle; 5662 } 5663 #endif 5664 5665 /* This is the place where threads wait for work */ 5666 while (!TCR_4(__kmp_global.g.g_done)) { 5667 KMP_DEBUG_ASSERT(this_thr == __kmp_threads[gtid]); 5668 KMP_MB(); 5669 5670 /* wait for work to do */ 5671 KA_TRACE(20, ("__kmp_launch_thread: T#%d waiting for work\n", gtid)); 5672 5673 /* No tid yet since not part of a team */ 5674 __kmp_fork_barrier(gtid, KMP_GTID_DNE); 5675 5676 #if OMPT_SUPPORT 5677 if (ompt_enabled.enabled) { 5678 this_thr->th.ompt_thread_info.state = ompt_state_overhead; 5679 } 5680 #endif 5681 5682 pteam = &this_thr->th.th_team; 5683 5684 /* have we been allocated? */ 5685 if (TCR_SYNC_PTR(*pteam) && !TCR_4(__kmp_global.g.g_done)) { 5686 /* we were just woken up, so run our new task */ 5687 if (TCR_SYNC_PTR((*pteam)->t.t_pkfn) != NULL) { 5688 int rc; 5689 KA_TRACE(20, 5690 ("__kmp_launch_thread: T#%d(%d:%d) invoke microtask = %p\n", 5691 gtid, (*pteam)->t.t_id, __kmp_tid_from_gtid(gtid), 5692 (*pteam)->t.t_pkfn)); 5693 5694 updateHWFPControl(*pteam); 5695 5696 #if OMPT_SUPPORT 5697 if (ompt_enabled.enabled) { 5698 this_thr->th.ompt_thread_info.state = ompt_state_work_parallel; 5699 } 5700 #endif 5701 5702 rc = (*pteam)->t.t_invoke(gtid); 5703 KMP_ASSERT(rc); 5704 5705 KMP_MB(); 5706 KA_TRACE(20, ("__kmp_launch_thread: T#%d(%d:%d) done microtask = %p\n", 5707 gtid, (*pteam)->t.t_id, __kmp_tid_from_gtid(gtid), 5708 (*pteam)->t.t_pkfn)); 5709 } 5710 #if OMPT_SUPPORT 5711 if (ompt_enabled.enabled) { 5712 /* no frame set while outside task */ 5713 __ompt_get_task_info_object(0)->frame.exit_frame = ompt_data_none; 5714 5715 this_thr->th.ompt_thread_info.state = ompt_state_overhead; 5716 } 5717 #endif 5718 /* join barrier after parallel region */ 5719 __kmp_join_barrier(gtid); 5720 } 5721 } 5722 TCR_SYNC_PTR((intptr_t)__kmp_global.g.g_done); 5723 5724 #if OMPT_SUPPORT 5725 if (ompt_enabled.ompt_callback_thread_end) { 5726 ompt_callbacks.ompt_callback(ompt_callback_thread_end)(thread_data); 5727 } 5728 #endif 5729 5730 this_thr->th.th_task_team = NULL; 5731 /* run the destructors for the threadprivate data for this thread */ 5732 __kmp_common_destroy_gtid(gtid); 5733 5734 KA_TRACE(10, ("__kmp_launch_thread: T#%d done\n", gtid)); 5735 KMP_MB(); 5736 return this_thr; 5737 } 5738 5739 /* ------------------------------------------------------------------------ */ 5740 5741 void __kmp_internal_end_dest(void *specific_gtid) { 5742 #if KMP_COMPILER_ICC 5743 #pragma warning(push) 5744 #pragma warning(disable : 810) // conversion from "void *" to "int" may lose 5745 // significant bits 5746 #endif 5747 // Make sure no significant bits are lost 5748 int gtid = (kmp_intptr_t)specific_gtid - 1; 5749 #if KMP_COMPILER_ICC 5750 #pragma warning(pop) 5751 #endif 5752 5753 KA_TRACE(30, ("__kmp_internal_end_dest: T#%d\n", gtid)); 5754 /* NOTE: the gtid is stored as gitd+1 in the thread-local-storage 5755 * this is because 0 is reserved for the nothing-stored case */ 5756 5757 /* josh: One reason for setting the gtid specific data even when it is being 5758 destroyed by pthread is to allow gtid lookup through thread specific data 5759 (__kmp_gtid_get_specific). Some of the code, especially stat code, 5760 that gets executed in the call to __kmp_internal_end_thread, actually 5761 gets the gtid through the thread specific data. Setting it here seems 5762 rather inelegant and perhaps wrong, but allows __kmp_internal_end_thread 5763 to run smoothly. 5764 todo: get rid of this after we remove the dependence on 5765 __kmp_gtid_get_specific */ 5766 if (gtid >= 0 && KMP_UBER_GTID(gtid)) 5767 __kmp_gtid_set_specific(gtid); 5768 #ifdef KMP_TDATA_GTID 5769 __kmp_gtid = gtid; 5770 #endif 5771 __kmp_internal_end_thread(gtid); 5772 } 5773 5774 #if KMP_OS_UNIX && KMP_DYNAMIC_LIB 5775 5776 __attribute__((destructor)) void __kmp_internal_end_dtor(void) { 5777 __kmp_internal_end_atexit(); 5778 } 5779 5780 #endif 5781 5782 /* [Windows] josh: when the atexit handler is called, there may still be more 5783 than one thread alive */ 5784 void __kmp_internal_end_atexit(void) { 5785 KA_TRACE(30, ("__kmp_internal_end_atexit\n")); 5786 /* [Windows] 5787 josh: ideally, we want to completely shutdown the library in this atexit 5788 handler, but stat code that depends on thread specific data for gtid fails 5789 because that data becomes unavailable at some point during the shutdown, so 5790 we call __kmp_internal_end_thread instead. We should eventually remove the 5791 dependency on __kmp_get_specific_gtid in the stat code and use 5792 __kmp_internal_end_library to cleanly shutdown the library. 5793 5794 // TODO: Can some of this comment about GVS be removed? 5795 I suspect that the offending stat code is executed when the calling thread 5796 tries to clean up a dead root thread's data structures, resulting in GVS 5797 code trying to close the GVS structures for that thread, but since the stat 5798 code uses __kmp_get_specific_gtid to get the gtid with the assumption that 5799 the calling thread is cleaning up itself instead of another thread, it get 5800 confused. This happens because allowing a thread to unregister and cleanup 5801 another thread is a recent modification for addressing an issue. 5802 Based on the current design (20050722), a thread may end up 5803 trying to unregister another thread only if thread death does not trigger 5804 the calling of __kmp_internal_end_thread. For Linux* OS, there is the 5805 thread specific data destructor function to detect thread death. For 5806 Windows dynamic, there is DllMain(THREAD_DETACH). For Windows static, there 5807 is nothing. Thus, the workaround is applicable only for Windows static 5808 stat library. */ 5809 __kmp_internal_end_library(-1); 5810 #if KMP_OS_WINDOWS 5811 __kmp_close_console(); 5812 #endif 5813 } 5814 5815 static void __kmp_reap_thread(kmp_info_t *thread, int is_root) { 5816 // It is assumed __kmp_forkjoin_lock is acquired. 5817 5818 int gtid; 5819 5820 KMP_DEBUG_ASSERT(thread != NULL); 5821 5822 gtid = thread->th.th_info.ds.ds_gtid; 5823 5824 if (!is_root) { 5825 if (__kmp_dflt_blocktime != KMP_MAX_BLOCKTIME) { 5826 /* Assume the threads are at the fork barrier here */ 5827 KA_TRACE( 5828 20, ("__kmp_reap_thread: releasing T#%d from fork barrier for reap\n", 5829 gtid)); 5830 /* Need release fence here to prevent seg faults for tree forkjoin barrier 5831 * (GEH) */ 5832 ANNOTATE_HAPPENS_BEFORE(thread); 5833 kmp_flag_64 flag(&thread->th.th_bar[bs_forkjoin_barrier].bb.b_go, thread); 5834 __kmp_release_64(&flag); 5835 } 5836 5837 // Terminate OS thread. 5838 __kmp_reap_worker(thread); 5839 5840 // The thread was killed asynchronously. If it was actively 5841 // spinning in the thread pool, decrement the global count. 5842 // 5843 // There is a small timing hole here - if the worker thread was just waking 5844 // up after sleeping in the pool, had reset it's th_active_in_pool flag but 5845 // not decremented the global counter __kmp_thread_pool_active_nth yet, then 5846 // the global counter might not get updated. 5847 // 5848 // Currently, this can only happen as the library is unloaded, 5849 // so there are no harmful side effects. 5850 if (thread->th.th_active_in_pool) { 5851 thread->th.th_active_in_pool = FALSE; 5852 KMP_ATOMIC_DEC(&__kmp_thread_pool_active_nth); 5853 KMP_DEBUG_ASSERT(__kmp_thread_pool_active_nth >= 0); 5854 } 5855 } 5856 5857 __kmp_free_implicit_task(thread); 5858 5859 // Free the fast memory for tasking 5860 #if USE_FAST_MEMORY 5861 __kmp_free_fast_memory(thread); 5862 #endif /* USE_FAST_MEMORY */ 5863 5864 __kmp_suspend_uninitialize_thread(thread); 5865 5866 KMP_DEBUG_ASSERT(__kmp_threads[gtid] == thread); 5867 TCW_SYNC_PTR(__kmp_threads[gtid], NULL); 5868 5869 --__kmp_all_nth; 5870 // __kmp_nth was decremented when thread is added to the pool. 5871 5872 #ifdef KMP_ADJUST_BLOCKTIME 5873 /* Adjust blocktime back to user setting or default if necessary */ 5874 /* Middle initialization might never have occurred */ 5875 if (!__kmp_env_blocktime && (__kmp_avail_proc > 0)) { 5876 KMP_DEBUG_ASSERT(__kmp_avail_proc > 0); 5877 if (__kmp_nth <= __kmp_avail_proc) { 5878 __kmp_zero_bt = FALSE; 5879 } 5880 } 5881 #endif /* KMP_ADJUST_BLOCKTIME */ 5882 5883 /* free the memory being used */ 5884 if (__kmp_env_consistency_check) { 5885 if (thread->th.th_cons) { 5886 __kmp_free_cons_stack(thread->th.th_cons); 5887 thread->th.th_cons = NULL; 5888 } 5889 } 5890 5891 if (thread->th.th_pri_common != NULL) { 5892 __kmp_free(thread->th.th_pri_common); 5893 thread->th.th_pri_common = NULL; 5894 } 5895 5896 if (thread->th.th_task_state_memo_stack != NULL) { 5897 __kmp_free(thread->th.th_task_state_memo_stack); 5898 thread->th.th_task_state_memo_stack = NULL; 5899 } 5900 5901 #if KMP_USE_BGET 5902 if (thread->th.th_local.bget_data != NULL) { 5903 __kmp_finalize_bget(thread); 5904 } 5905 #endif 5906 5907 #if KMP_AFFINITY_SUPPORTED 5908 if (thread->th.th_affin_mask != NULL) { 5909 KMP_CPU_FREE(thread->th.th_affin_mask); 5910 thread->th.th_affin_mask = NULL; 5911 } 5912 #endif /* KMP_AFFINITY_SUPPORTED */ 5913 5914 #if KMP_USE_HIER_SCHED 5915 if (thread->th.th_hier_bar_data != NULL) { 5916 __kmp_free(thread->th.th_hier_bar_data); 5917 thread->th.th_hier_bar_data = NULL; 5918 } 5919 #endif 5920 5921 __kmp_reap_team(thread->th.th_serial_team); 5922 thread->th.th_serial_team = NULL; 5923 __kmp_free(thread); 5924 5925 KMP_MB(); 5926 5927 } // __kmp_reap_thread 5928 5929 static void __kmp_internal_end(void) { 5930 int i; 5931 5932 /* First, unregister the library */ 5933 __kmp_unregister_library(); 5934 5935 #if KMP_OS_WINDOWS 5936 /* In Win static library, we can't tell when a root actually dies, so we 5937 reclaim the data structures for any root threads that have died but not 5938 unregistered themselves, in order to shut down cleanly. 5939 In Win dynamic library we also can't tell when a thread dies. */ 5940 __kmp_reclaim_dead_roots(); // AC: moved here to always clean resources of 5941 // dead roots 5942 #endif 5943 5944 for (i = 0; i < __kmp_threads_capacity; i++) 5945 if (__kmp_root[i]) 5946 if (__kmp_root[i]->r.r_active) 5947 break; 5948 KMP_MB(); /* Flush all pending memory write invalidates. */ 5949 TCW_SYNC_4(__kmp_global.g.g_done, TRUE); 5950 5951 if (i < __kmp_threads_capacity) { 5952 #if KMP_USE_MONITOR 5953 // 2009-09-08 (lev): Other alive roots found. Why do we kill the monitor?? 5954 KMP_MB(); /* Flush all pending memory write invalidates. */ 5955 5956 // Need to check that monitor was initialized before reaping it. If we are 5957 // called form __kmp_atfork_child (which sets __kmp_init_parallel = 0), then 5958 // __kmp_monitor will appear to contain valid data, but it is only valid in 5959 // the parent process, not the child. 5960 // New behavior (201008): instead of keying off of the flag 5961 // __kmp_init_parallel, the monitor thread creation is keyed off 5962 // of the new flag __kmp_init_monitor. 5963 __kmp_acquire_bootstrap_lock(&__kmp_monitor_lock); 5964 if (TCR_4(__kmp_init_monitor)) { 5965 __kmp_reap_monitor(&__kmp_monitor); 5966 TCW_4(__kmp_init_monitor, 0); 5967 } 5968 __kmp_release_bootstrap_lock(&__kmp_monitor_lock); 5969 KA_TRACE(10, ("__kmp_internal_end: monitor reaped\n")); 5970 #endif // KMP_USE_MONITOR 5971 } else { 5972 /* TODO move this to cleanup code */ 5973 #ifdef KMP_DEBUG 5974 /* make sure that everything has properly ended */ 5975 for (i = 0; i < __kmp_threads_capacity; i++) { 5976 if (__kmp_root[i]) { 5977 // KMP_ASSERT( ! KMP_UBER_GTID( i ) ); // AC: 5978 // there can be uber threads alive here 5979 KMP_ASSERT(!__kmp_root[i]->r.r_active); // TODO: can they be active? 5980 } 5981 } 5982 #endif 5983 5984 KMP_MB(); 5985 5986 // Reap the worker threads. 5987 // This is valid for now, but be careful if threads are reaped sooner. 5988 while (__kmp_thread_pool != NULL) { // Loop thru all the thread in the pool. 5989 // Get the next thread from the pool. 5990 kmp_info_t *thread = CCAST(kmp_info_t *, __kmp_thread_pool); 5991 __kmp_thread_pool = thread->th.th_next_pool; 5992 // Reap it. 5993 KMP_DEBUG_ASSERT(thread->th.th_reap_state == KMP_SAFE_TO_REAP); 5994 thread->th.th_next_pool = NULL; 5995 thread->th.th_in_pool = FALSE; 5996 __kmp_reap_thread(thread, 0); 5997 } 5998 __kmp_thread_pool_insert_pt = NULL; 5999 6000 // Reap teams. 6001 while (__kmp_team_pool != NULL) { // Loop thru all the teams in the pool. 6002 // Get the next team from the pool. 6003 kmp_team_t *team = CCAST(kmp_team_t *, __kmp_team_pool); 6004 __kmp_team_pool = team->t.t_next_pool; 6005 // Reap it. 6006 team->t.t_next_pool = NULL; 6007 __kmp_reap_team(team); 6008 } 6009 6010 __kmp_reap_task_teams(); 6011 6012 #if KMP_OS_UNIX 6013 // Threads that are not reaped should not access any resources since they 6014 // are going to be deallocated soon, so the shutdown sequence should wait 6015 // until all threads either exit the final spin-waiting loop or begin 6016 // sleeping after the given blocktime. 6017 for (i = 0; i < __kmp_threads_capacity; i++) { 6018 kmp_info_t *thr = __kmp_threads[i]; 6019 while (thr && KMP_ATOMIC_LD_ACQ(&thr->th.th_blocking)) 6020 KMP_CPU_PAUSE(); 6021 } 6022 #endif 6023 6024 for (i = 0; i < __kmp_threads_capacity; ++i) { 6025 // TBD: Add some checking... 6026 // Something like KMP_DEBUG_ASSERT( __kmp_thread[ i ] == NULL ); 6027 } 6028 6029 /* Make sure all threadprivate destructors get run by joining with all 6030 worker threads before resetting this flag */ 6031 TCW_SYNC_4(__kmp_init_common, FALSE); 6032 6033 KA_TRACE(10, ("__kmp_internal_end: all workers reaped\n")); 6034 KMP_MB(); 6035 6036 #if KMP_USE_MONITOR 6037 // See note above: One of the possible fixes for CQ138434 / CQ140126 6038 // 6039 // FIXME: push both code fragments down and CSE them? 6040 // push them into __kmp_cleanup() ? 6041 __kmp_acquire_bootstrap_lock(&__kmp_monitor_lock); 6042 if (TCR_4(__kmp_init_monitor)) { 6043 __kmp_reap_monitor(&__kmp_monitor); 6044 TCW_4(__kmp_init_monitor, 0); 6045 } 6046 __kmp_release_bootstrap_lock(&__kmp_monitor_lock); 6047 KA_TRACE(10, ("__kmp_internal_end: monitor reaped\n")); 6048 #endif 6049 } /* else !__kmp_global.t_active */ 6050 TCW_4(__kmp_init_gtid, FALSE); 6051 KMP_MB(); /* Flush all pending memory write invalidates. */ 6052 6053 __kmp_cleanup(); 6054 #if OMPT_SUPPORT 6055 ompt_fini(); 6056 #endif 6057 } 6058 6059 void __kmp_internal_end_library(int gtid_req) { 6060 /* if we have already cleaned up, don't try again, it wouldn't be pretty */ 6061 /* this shouldn't be a race condition because __kmp_internal_end() is the 6062 only place to clear __kmp_serial_init */ 6063 /* we'll check this later too, after we get the lock */ 6064 // 2009-09-06: We do not set g_abort without setting g_done. This check looks 6065 // redundant, because the next check will work in any case. 6066 if (__kmp_global.g.g_abort) { 6067 KA_TRACE(11, ("__kmp_internal_end_library: abort, exiting\n")); 6068 /* TODO abort? */ 6069 return; 6070 } 6071 if (TCR_4(__kmp_global.g.g_done) || !__kmp_init_serial) { 6072 KA_TRACE(10, ("__kmp_internal_end_library: already finished\n")); 6073 return; 6074 } 6075 6076 KMP_MB(); /* Flush all pending memory write invalidates. */ 6077 6078 /* find out who we are and what we should do */ 6079 { 6080 int gtid = (gtid_req >= 0) ? gtid_req : __kmp_gtid_get_specific(); 6081 KA_TRACE( 6082 10, ("__kmp_internal_end_library: enter T#%d (%d)\n", gtid, gtid_req)); 6083 if (gtid == KMP_GTID_SHUTDOWN) { 6084 KA_TRACE(10, ("__kmp_internal_end_library: !__kmp_init_runtime, system " 6085 "already shutdown\n")); 6086 return; 6087 } else if (gtid == KMP_GTID_MONITOR) { 6088 KA_TRACE(10, ("__kmp_internal_end_library: monitor thread, gtid not " 6089 "registered, or system shutdown\n")); 6090 return; 6091 } else if (gtid == KMP_GTID_DNE) { 6092 KA_TRACE(10, ("__kmp_internal_end_library: gtid not registered or system " 6093 "shutdown\n")); 6094 /* we don't know who we are, but we may still shutdown the library */ 6095 } else if (KMP_UBER_GTID(gtid)) { 6096 /* unregister ourselves as an uber thread. gtid is no longer valid */ 6097 if (__kmp_root[gtid]->r.r_active) { 6098 __kmp_global.g.g_abort = -1; 6099 TCW_SYNC_4(__kmp_global.g.g_done, TRUE); 6100 KA_TRACE(10, 6101 ("__kmp_internal_end_library: root still active, abort T#%d\n", 6102 gtid)); 6103 return; 6104 } else { 6105 KA_TRACE( 6106 10, 6107 ("__kmp_internal_end_library: unregistering sibling T#%d\n", gtid)); 6108 __kmp_unregister_root_current_thread(gtid); 6109 } 6110 } else { 6111 /* worker threads may call this function through the atexit handler, if they 6112 * call exit() */ 6113 /* For now, skip the usual subsequent processing and just dump the debug buffer. 6114 TODO: do a thorough shutdown instead */ 6115 #ifdef DUMP_DEBUG_ON_EXIT 6116 if (__kmp_debug_buf) 6117 __kmp_dump_debug_buffer(); 6118 #endif 6119 return; 6120 } 6121 } 6122 /* synchronize the termination process */ 6123 __kmp_acquire_bootstrap_lock(&__kmp_initz_lock); 6124 6125 /* have we already finished */ 6126 if (__kmp_global.g.g_abort) { 6127 KA_TRACE(10, ("__kmp_internal_end_library: abort, exiting\n")); 6128 /* TODO abort? */ 6129 __kmp_release_bootstrap_lock(&__kmp_initz_lock); 6130 return; 6131 } 6132 if (TCR_4(__kmp_global.g.g_done) || !__kmp_init_serial) { 6133 __kmp_release_bootstrap_lock(&__kmp_initz_lock); 6134 return; 6135 } 6136 6137 /* We need this lock to enforce mutex between this reading of 6138 __kmp_threads_capacity and the writing by __kmp_register_root. 6139 Alternatively, we can use a counter of roots that is atomically updated by 6140 __kmp_get_global_thread_id_reg, __kmp_do_serial_initialize and 6141 __kmp_internal_end_*. */ 6142 __kmp_acquire_bootstrap_lock(&__kmp_forkjoin_lock); 6143 6144 /* now we can safely conduct the actual termination */ 6145 __kmp_internal_end(); 6146 6147 __kmp_release_bootstrap_lock(&__kmp_forkjoin_lock); 6148 __kmp_release_bootstrap_lock(&__kmp_initz_lock); 6149 6150 KA_TRACE(10, ("__kmp_internal_end_library: exit\n")); 6151 6152 #ifdef DUMP_DEBUG_ON_EXIT 6153 if (__kmp_debug_buf) 6154 __kmp_dump_debug_buffer(); 6155 #endif 6156 6157 #if KMP_OS_WINDOWS 6158 __kmp_close_console(); 6159 #endif 6160 6161 __kmp_fini_allocator(); 6162 6163 } // __kmp_internal_end_library 6164 6165 void __kmp_internal_end_thread(int gtid_req) { 6166 int i; 6167 6168 /* if we have already cleaned up, don't try again, it wouldn't be pretty */ 6169 /* this shouldn't be a race condition because __kmp_internal_end() is the 6170 * only place to clear __kmp_serial_init */ 6171 /* we'll check this later too, after we get the lock */ 6172 // 2009-09-06: We do not set g_abort without setting g_done. This check looks 6173 // redundant, because the next check will work in any case. 6174 if (__kmp_global.g.g_abort) { 6175 KA_TRACE(11, ("__kmp_internal_end_thread: abort, exiting\n")); 6176 /* TODO abort? */ 6177 return; 6178 } 6179 if (TCR_4(__kmp_global.g.g_done) || !__kmp_init_serial) { 6180 KA_TRACE(10, ("__kmp_internal_end_thread: already finished\n")); 6181 return; 6182 } 6183 6184 KMP_MB(); /* Flush all pending memory write invalidates. */ 6185 6186 /* find out who we are and what we should do */ 6187 { 6188 int gtid = (gtid_req >= 0) ? gtid_req : __kmp_gtid_get_specific(); 6189 KA_TRACE(10, 6190 ("__kmp_internal_end_thread: enter T#%d (%d)\n", gtid, gtid_req)); 6191 if (gtid == KMP_GTID_SHUTDOWN) { 6192 KA_TRACE(10, ("__kmp_internal_end_thread: !__kmp_init_runtime, system " 6193 "already shutdown\n")); 6194 return; 6195 } else if (gtid == KMP_GTID_MONITOR) { 6196 KA_TRACE(10, ("__kmp_internal_end_thread: monitor thread, gtid not " 6197 "registered, or system shutdown\n")); 6198 return; 6199 } else if (gtid == KMP_GTID_DNE) { 6200 KA_TRACE(10, ("__kmp_internal_end_thread: gtid not registered or system " 6201 "shutdown\n")); 6202 return; 6203 /* we don't know who we are */ 6204 } else if (KMP_UBER_GTID(gtid)) { 6205 /* unregister ourselves as an uber thread. gtid is no longer valid */ 6206 if (__kmp_root[gtid]->r.r_active) { 6207 __kmp_global.g.g_abort = -1; 6208 TCW_SYNC_4(__kmp_global.g.g_done, TRUE); 6209 KA_TRACE(10, 6210 ("__kmp_internal_end_thread: root still active, abort T#%d\n", 6211 gtid)); 6212 return; 6213 } else { 6214 KA_TRACE(10, ("__kmp_internal_end_thread: unregistering sibling T#%d\n", 6215 gtid)); 6216 __kmp_unregister_root_current_thread(gtid); 6217 } 6218 } else { 6219 /* just a worker thread, let's leave */ 6220 KA_TRACE(10, ("__kmp_internal_end_thread: worker thread T#%d\n", gtid)); 6221 6222 if (gtid >= 0) { 6223 __kmp_threads[gtid]->th.th_task_team = NULL; 6224 } 6225 6226 KA_TRACE(10, 6227 ("__kmp_internal_end_thread: worker thread done, exiting T#%d\n", 6228 gtid)); 6229 return; 6230 } 6231 } 6232 #if KMP_DYNAMIC_LIB 6233 if (__kmp_pause_status != kmp_hard_paused) 6234 // AC: lets not shutdown the dynamic library at the exit of uber thread, 6235 // because we will better shutdown later in the library destructor. 6236 { 6237 KA_TRACE(10, ("__kmp_internal_end_thread: exiting T#%d\n", gtid_req)); 6238 return; 6239 } 6240 #endif 6241 /* synchronize the termination process */ 6242 __kmp_acquire_bootstrap_lock(&__kmp_initz_lock); 6243 6244 /* have we already finished */ 6245 if (__kmp_global.g.g_abort) { 6246 KA_TRACE(10, ("__kmp_internal_end_thread: abort, exiting\n")); 6247 /* TODO abort? */ 6248 __kmp_release_bootstrap_lock(&__kmp_initz_lock); 6249 return; 6250 } 6251 if (TCR_4(__kmp_global.g.g_done) || !__kmp_init_serial) { 6252 __kmp_release_bootstrap_lock(&__kmp_initz_lock); 6253 return; 6254 } 6255 6256 /* We need this lock to enforce mutex between this reading of 6257 __kmp_threads_capacity and the writing by __kmp_register_root. 6258 Alternatively, we can use a counter of roots that is atomically updated by 6259 __kmp_get_global_thread_id_reg, __kmp_do_serial_initialize and 6260 __kmp_internal_end_*. */ 6261 6262 /* should we finish the run-time? are all siblings done? */ 6263 __kmp_acquire_bootstrap_lock(&__kmp_forkjoin_lock); 6264 6265 for (i = 0; i < __kmp_threads_capacity; ++i) { 6266 if (KMP_UBER_GTID(i)) { 6267 KA_TRACE( 6268 10, 6269 ("__kmp_internal_end_thread: remaining sibling task: gtid==%d\n", i)); 6270 __kmp_release_bootstrap_lock(&__kmp_forkjoin_lock); 6271 __kmp_release_bootstrap_lock(&__kmp_initz_lock); 6272 return; 6273 } 6274 } 6275 6276 /* now we can safely conduct the actual termination */ 6277 6278 __kmp_internal_end(); 6279 6280 __kmp_release_bootstrap_lock(&__kmp_forkjoin_lock); 6281 __kmp_release_bootstrap_lock(&__kmp_initz_lock); 6282 6283 KA_TRACE(10, ("__kmp_internal_end_thread: exit T#%d\n", gtid_req)); 6284 6285 #ifdef DUMP_DEBUG_ON_EXIT 6286 if (__kmp_debug_buf) 6287 __kmp_dump_debug_buffer(); 6288 #endif 6289 } // __kmp_internal_end_thread 6290 6291 // ----------------------------------------------------------------------------- 6292 // Library registration stuff. 6293 6294 static long __kmp_registration_flag = 0; 6295 // Random value used to indicate library initialization. 6296 static char *__kmp_registration_str = NULL; 6297 // Value to be saved in env var __KMP_REGISTERED_LIB_<pid>. 6298 6299 static inline char *__kmp_reg_status_name() { 6300 /* On RHEL 3u5 if linked statically, getpid() returns different values in 6301 each thread. If registration and unregistration go in different threads 6302 (omp_misc_other_root_exit.cpp test case), the name of registered_lib_env 6303 env var can not be found, because the name will contain different pid. */ 6304 return __kmp_str_format("__KMP_REGISTERED_LIB_%d", (int)getpid()); 6305 } // __kmp_reg_status_get 6306 6307 void __kmp_register_library_startup(void) { 6308 6309 char *name = __kmp_reg_status_name(); // Name of the environment variable. 6310 int done = 0; 6311 union { 6312 double dtime; 6313 long ltime; 6314 } time; 6315 #if KMP_ARCH_X86 || KMP_ARCH_X86_64 6316 __kmp_initialize_system_tick(); 6317 #endif 6318 __kmp_read_system_time(&time.dtime); 6319 __kmp_registration_flag = 0xCAFE0000L | (time.ltime & 0x0000FFFFL); 6320 __kmp_registration_str = 6321 __kmp_str_format("%p-%lx-%s", &__kmp_registration_flag, 6322 __kmp_registration_flag, KMP_LIBRARY_FILE); 6323 6324 KA_TRACE(50, ("__kmp_register_library_startup: %s=\"%s\"\n", name, 6325 __kmp_registration_str)); 6326 6327 while (!done) { 6328 6329 char *value = NULL; // Actual value of the environment variable. 6330 6331 // Set environment variable, but do not overwrite if it is exist. 6332 __kmp_env_set(name, __kmp_registration_str, 0); 6333 // Check the variable is written. 6334 value = __kmp_env_get(name); 6335 if (value != NULL && strcmp(value, __kmp_registration_str) == 0) { 6336 6337 done = 1; // Ok, environment variable set successfully, exit the loop. 6338 6339 } else { 6340 6341 // Oops. Write failed. Another copy of OpenMP RTL is in memory. 6342 // Check whether it alive or dead. 6343 int neighbor = 0; // 0 -- unknown status, 1 -- alive, 2 -- dead. 6344 char *tail = value; 6345 char *flag_addr_str = NULL; 6346 char *flag_val_str = NULL; 6347 char const *file_name = NULL; 6348 __kmp_str_split(tail, '-', &flag_addr_str, &tail); 6349 __kmp_str_split(tail, '-', &flag_val_str, &tail); 6350 file_name = tail; 6351 if (tail != NULL) { 6352 long *flag_addr = 0; 6353 long flag_val = 0; 6354 KMP_SSCANF(flag_addr_str, "%p", RCAST(void**, &flag_addr)); 6355 KMP_SSCANF(flag_val_str, "%lx", &flag_val); 6356 if (flag_addr != 0 && flag_val != 0 && strcmp(file_name, "") != 0) { 6357 // First, check whether environment-encoded address is mapped into 6358 // addr space. 6359 // If so, dereference it to see if it still has the right value. 6360 if (__kmp_is_address_mapped(flag_addr) && *flag_addr == flag_val) { 6361 neighbor = 1; 6362 } else { 6363 // If not, then we know the other copy of the library is no longer 6364 // running. 6365 neighbor = 2; 6366 } 6367 } 6368 } 6369 switch (neighbor) { 6370 case 0: // Cannot parse environment variable -- neighbor status unknown. 6371 // Assume it is the incompatible format of future version of the 6372 // library. Assume the other library is alive. 6373 // WARN( ... ); // TODO: Issue a warning. 6374 file_name = "unknown library"; 6375 KMP_FALLTHROUGH(); 6376 // Attention! Falling to the next case. That's intentional. 6377 case 1: { // Neighbor is alive. 6378 // Check it is allowed. 6379 char *duplicate_ok = __kmp_env_get("KMP_DUPLICATE_LIB_OK"); 6380 if (!__kmp_str_match_true(duplicate_ok)) { 6381 // That's not allowed. Issue fatal error. 6382 __kmp_fatal(KMP_MSG(DuplicateLibrary, KMP_LIBRARY_FILE, file_name), 6383 KMP_HNT(DuplicateLibrary), __kmp_msg_null); 6384 } 6385 KMP_INTERNAL_FREE(duplicate_ok); 6386 __kmp_duplicate_library_ok = 1; 6387 done = 1; // Exit the loop. 6388 } break; 6389 case 2: { // Neighbor is dead. 6390 // Clear the variable and try to register library again. 6391 __kmp_env_unset(name); 6392 } break; 6393 default: { KMP_DEBUG_ASSERT(0); } break; 6394 } 6395 } 6396 KMP_INTERNAL_FREE((void *)value); 6397 } 6398 KMP_INTERNAL_FREE((void *)name); 6399 6400 } // func __kmp_register_library_startup 6401 6402 void __kmp_unregister_library(void) { 6403 6404 char *name = __kmp_reg_status_name(); 6405 char *value = __kmp_env_get(name); 6406 6407 KMP_DEBUG_ASSERT(__kmp_registration_flag != 0); 6408 KMP_DEBUG_ASSERT(__kmp_registration_str != NULL); 6409 if (value != NULL && strcmp(value, __kmp_registration_str) == 0) { 6410 // Ok, this is our variable. Delete it. 6411 __kmp_env_unset(name); 6412 } 6413 6414 KMP_INTERNAL_FREE(__kmp_registration_str); 6415 KMP_INTERNAL_FREE(value); 6416 KMP_INTERNAL_FREE(name); 6417 6418 __kmp_registration_flag = 0; 6419 __kmp_registration_str = NULL; 6420 6421 } // __kmp_unregister_library 6422 6423 // End of Library registration stuff. 6424 // ----------------------------------------------------------------------------- 6425 6426 #if KMP_MIC_SUPPORTED 6427 6428 static void __kmp_check_mic_type() { 6429 kmp_cpuid_t cpuid_state = {0}; 6430 kmp_cpuid_t *cs_p = &cpuid_state; 6431 __kmp_x86_cpuid(1, 0, cs_p); 6432 // We don't support mic1 at the moment 6433 if ((cs_p->eax & 0xff0) == 0xB10) { 6434 __kmp_mic_type = mic2; 6435 } else if ((cs_p->eax & 0xf0ff0) == 0x50670) { 6436 __kmp_mic_type = mic3; 6437 } else { 6438 __kmp_mic_type = non_mic; 6439 } 6440 } 6441 6442 #endif /* KMP_MIC_SUPPORTED */ 6443 6444 static void __kmp_do_serial_initialize(void) { 6445 int i, gtid; 6446 int size; 6447 6448 KA_TRACE(10, ("__kmp_do_serial_initialize: enter\n")); 6449 6450 KMP_DEBUG_ASSERT(sizeof(kmp_int32) == 4); 6451 KMP_DEBUG_ASSERT(sizeof(kmp_uint32) == 4); 6452 KMP_DEBUG_ASSERT(sizeof(kmp_int64) == 8); 6453 KMP_DEBUG_ASSERT(sizeof(kmp_uint64) == 8); 6454 KMP_DEBUG_ASSERT(sizeof(kmp_intptr_t) == sizeof(void *)); 6455 6456 #if OMPT_SUPPORT 6457 ompt_pre_init(); 6458 #endif 6459 6460 __kmp_validate_locks(); 6461 6462 /* Initialize internal memory allocator */ 6463 __kmp_init_allocator(); 6464 6465 /* Register the library startup via an environment variable and check to see 6466 whether another copy of the library is already registered. */ 6467 6468 __kmp_register_library_startup(); 6469 6470 /* TODO reinitialization of library */ 6471 if (TCR_4(__kmp_global.g.g_done)) { 6472 KA_TRACE(10, ("__kmp_do_serial_initialize: reinitialization of library\n")); 6473 } 6474 6475 __kmp_global.g.g_abort = 0; 6476 TCW_SYNC_4(__kmp_global.g.g_done, FALSE); 6477 6478 /* initialize the locks */ 6479 #if KMP_USE_ADAPTIVE_LOCKS 6480 #if KMP_DEBUG_ADAPTIVE_LOCKS 6481 __kmp_init_speculative_stats(); 6482 #endif 6483 #endif 6484 #if KMP_STATS_ENABLED 6485 __kmp_stats_init(); 6486 #endif 6487 __kmp_init_lock(&__kmp_global_lock); 6488 __kmp_init_queuing_lock(&__kmp_dispatch_lock); 6489 __kmp_init_lock(&__kmp_debug_lock); 6490 __kmp_init_atomic_lock(&__kmp_atomic_lock); 6491 __kmp_init_atomic_lock(&__kmp_atomic_lock_1i); 6492 __kmp_init_atomic_lock(&__kmp_atomic_lock_2i); 6493 __kmp_init_atomic_lock(&__kmp_atomic_lock_4i); 6494 __kmp_init_atomic_lock(&__kmp_atomic_lock_4r); 6495 __kmp_init_atomic_lock(&__kmp_atomic_lock_8i); 6496 __kmp_init_atomic_lock(&__kmp_atomic_lock_8r); 6497 __kmp_init_atomic_lock(&__kmp_atomic_lock_8c); 6498 __kmp_init_atomic_lock(&__kmp_atomic_lock_10r); 6499 __kmp_init_atomic_lock(&__kmp_atomic_lock_16r); 6500 __kmp_init_atomic_lock(&__kmp_atomic_lock_16c); 6501 __kmp_init_atomic_lock(&__kmp_atomic_lock_20c); 6502 __kmp_init_atomic_lock(&__kmp_atomic_lock_32c); 6503 __kmp_init_bootstrap_lock(&__kmp_forkjoin_lock); 6504 __kmp_init_bootstrap_lock(&__kmp_exit_lock); 6505 #if KMP_USE_MONITOR 6506 __kmp_init_bootstrap_lock(&__kmp_monitor_lock); 6507 #endif 6508 __kmp_init_bootstrap_lock(&__kmp_tp_cached_lock); 6509 6510 /* conduct initialization and initial setup of configuration */ 6511 6512 __kmp_runtime_initialize(); 6513 6514 #if KMP_MIC_SUPPORTED 6515 __kmp_check_mic_type(); 6516 #endif 6517 6518 // Some global variable initialization moved here from kmp_env_initialize() 6519 #ifdef KMP_DEBUG 6520 kmp_diag = 0; 6521 #endif 6522 __kmp_abort_delay = 0; 6523 6524 // From __kmp_init_dflt_team_nth() 6525 /* assume the entire machine will be used */ 6526 __kmp_dflt_team_nth_ub = __kmp_xproc; 6527 if (__kmp_dflt_team_nth_ub < KMP_MIN_NTH) { 6528 __kmp_dflt_team_nth_ub = KMP_MIN_NTH; 6529 } 6530 if (__kmp_dflt_team_nth_ub > __kmp_sys_max_nth) { 6531 __kmp_dflt_team_nth_ub = __kmp_sys_max_nth; 6532 } 6533 __kmp_max_nth = __kmp_sys_max_nth; 6534 __kmp_cg_max_nth = __kmp_sys_max_nth; 6535 __kmp_teams_max_nth = __kmp_xproc; // set a "reasonable" default 6536 if (__kmp_teams_max_nth > __kmp_sys_max_nth) { 6537 __kmp_teams_max_nth = __kmp_sys_max_nth; 6538 } 6539 6540 // Three vars below moved here from __kmp_env_initialize() "KMP_BLOCKTIME" 6541 // part 6542 __kmp_dflt_blocktime = KMP_DEFAULT_BLOCKTIME; 6543 #if KMP_USE_MONITOR 6544 __kmp_monitor_wakeups = 6545 KMP_WAKEUPS_FROM_BLOCKTIME(__kmp_dflt_blocktime, __kmp_monitor_wakeups); 6546 __kmp_bt_intervals = 6547 KMP_INTERVALS_FROM_BLOCKTIME(__kmp_dflt_blocktime, __kmp_monitor_wakeups); 6548 #endif 6549 // From "KMP_LIBRARY" part of __kmp_env_initialize() 6550 __kmp_library = library_throughput; 6551 // From KMP_SCHEDULE initialization 6552 __kmp_static = kmp_sch_static_balanced; 6553 // AC: do not use analytical here, because it is non-monotonous 6554 //__kmp_guided = kmp_sch_guided_iterative_chunked; 6555 //__kmp_auto = kmp_sch_guided_analytical_chunked; // AC: it is the default, no 6556 // need to repeat assignment 6557 // Barrier initialization. Moved here from __kmp_env_initialize() Barrier branch 6558 // bit control and barrier method control parts 6559 #if KMP_FAST_REDUCTION_BARRIER 6560 #define kmp_reduction_barrier_gather_bb ((int)1) 6561 #define kmp_reduction_barrier_release_bb ((int)1) 6562 #define kmp_reduction_barrier_gather_pat bp_hyper_bar 6563 #define kmp_reduction_barrier_release_pat bp_hyper_bar 6564 #endif // KMP_FAST_REDUCTION_BARRIER 6565 for (i = bs_plain_barrier; i < bs_last_barrier; i++) { 6566 __kmp_barrier_gather_branch_bits[i] = __kmp_barrier_gather_bb_dflt; 6567 __kmp_barrier_release_branch_bits[i] = __kmp_barrier_release_bb_dflt; 6568 __kmp_barrier_gather_pattern[i] = __kmp_barrier_gather_pat_dflt; 6569 __kmp_barrier_release_pattern[i] = __kmp_barrier_release_pat_dflt; 6570 #if KMP_FAST_REDUCTION_BARRIER 6571 if (i == bs_reduction_barrier) { // tested and confirmed on ALTIX only ( 6572 // lin_64 ): hyper,1 6573 __kmp_barrier_gather_branch_bits[i] = kmp_reduction_barrier_gather_bb; 6574 __kmp_barrier_release_branch_bits[i] = kmp_reduction_barrier_release_bb; 6575 __kmp_barrier_gather_pattern[i] = kmp_reduction_barrier_gather_pat; 6576 __kmp_barrier_release_pattern[i] = kmp_reduction_barrier_release_pat; 6577 } 6578 #endif // KMP_FAST_REDUCTION_BARRIER 6579 } 6580 #if KMP_FAST_REDUCTION_BARRIER 6581 #undef kmp_reduction_barrier_release_pat 6582 #undef kmp_reduction_barrier_gather_pat 6583 #undef kmp_reduction_barrier_release_bb 6584 #undef kmp_reduction_barrier_gather_bb 6585 #endif // KMP_FAST_REDUCTION_BARRIER 6586 #if KMP_MIC_SUPPORTED 6587 if (__kmp_mic_type == mic2) { // KNC 6588 // AC: plane=3,2, forkjoin=2,1 are optimal for 240 threads on KNC 6589 __kmp_barrier_gather_branch_bits[bs_plain_barrier] = 3; // plain gather 6590 __kmp_barrier_release_branch_bits[bs_forkjoin_barrier] = 6591 1; // forkjoin release 6592 __kmp_barrier_gather_pattern[bs_forkjoin_barrier] = bp_hierarchical_bar; 6593 __kmp_barrier_release_pattern[bs_forkjoin_barrier] = bp_hierarchical_bar; 6594 } 6595 #if KMP_FAST_REDUCTION_BARRIER 6596 if (__kmp_mic_type == mic2) { // KNC 6597 __kmp_barrier_gather_pattern[bs_reduction_barrier] = bp_hierarchical_bar; 6598 __kmp_barrier_release_pattern[bs_reduction_barrier] = bp_hierarchical_bar; 6599 } 6600 #endif // KMP_FAST_REDUCTION_BARRIER 6601 #endif // KMP_MIC_SUPPORTED 6602 6603 // From KMP_CHECKS initialization 6604 #ifdef KMP_DEBUG 6605 __kmp_env_checks = TRUE; /* development versions have the extra checks */ 6606 #else 6607 __kmp_env_checks = FALSE; /* port versions do not have the extra checks */ 6608 #endif 6609 6610 // From "KMP_FOREIGN_THREADS_THREADPRIVATE" initialization 6611 __kmp_foreign_tp = TRUE; 6612 6613 __kmp_global.g.g_dynamic = FALSE; 6614 __kmp_global.g.g_dynamic_mode = dynamic_default; 6615 6616 __kmp_env_initialize(NULL); 6617 6618 // Print all messages in message catalog for testing purposes. 6619 #ifdef KMP_DEBUG 6620 char const *val = __kmp_env_get("KMP_DUMP_CATALOG"); 6621 if (__kmp_str_match_true(val)) { 6622 kmp_str_buf_t buffer; 6623 __kmp_str_buf_init(&buffer); 6624 __kmp_i18n_dump_catalog(&buffer); 6625 __kmp_printf("%s", buffer.str); 6626 __kmp_str_buf_free(&buffer); 6627 } 6628 __kmp_env_free(&val); 6629 #endif 6630 6631 __kmp_threads_capacity = 6632 __kmp_initial_threads_capacity(__kmp_dflt_team_nth_ub); 6633 // Moved here from __kmp_env_initialize() "KMP_ALL_THREADPRIVATE" part 6634 __kmp_tp_capacity = __kmp_default_tp_capacity( 6635 __kmp_dflt_team_nth_ub, __kmp_max_nth, __kmp_allThreadsSpecified); 6636 6637 // If the library is shut down properly, both pools must be NULL. Just in 6638 // case, set them to NULL -- some memory may leak, but subsequent code will 6639 // work even if pools are not freed. 6640 KMP_DEBUG_ASSERT(__kmp_thread_pool == NULL); 6641 KMP_DEBUG_ASSERT(__kmp_thread_pool_insert_pt == NULL); 6642 KMP_DEBUG_ASSERT(__kmp_team_pool == NULL); 6643 __kmp_thread_pool = NULL; 6644 __kmp_thread_pool_insert_pt = NULL; 6645 __kmp_team_pool = NULL; 6646 6647 /* Allocate all of the variable sized records */ 6648 /* NOTE: __kmp_threads_capacity entries are allocated, but the arrays are 6649 * expandable */ 6650 /* Since allocation is cache-aligned, just add extra padding at the end */ 6651 size = 6652 (sizeof(kmp_info_t *) + sizeof(kmp_root_t *)) * __kmp_threads_capacity + 6653 CACHE_LINE; 6654 __kmp_threads = (kmp_info_t **)__kmp_allocate(size); 6655 __kmp_root = (kmp_root_t **)((char *)__kmp_threads + 6656 sizeof(kmp_info_t *) * __kmp_threads_capacity); 6657 6658 /* init thread counts */ 6659 KMP_DEBUG_ASSERT(__kmp_all_nth == 6660 0); // Asserts fail if the library is reinitializing and 6661 KMP_DEBUG_ASSERT(__kmp_nth == 0); // something was wrong in termination. 6662 __kmp_all_nth = 0; 6663 __kmp_nth = 0; 6664 6665 /* setup the uber master thread and hierarchy */ 6666 gtid = __kmp_register_root(TRUE); 6667 KA_TRACE(10, ("__kmp_do_serial_initialize T#%d\n", gtid)); 6668 KMP_ASSERT(KMP_UBER_GTID(gtid)); 6669 KMP_ASSERT(KMP_INITIAL_GTID(gtid)); 6670 6671 KMP_MB(); /* Flush all pending memory write invalidates. */ 6672 6673 __kmp_common_initialize(); 6674 6675 #if KMP_OS_UNIX 6676 /* invoke the child fork handler */ 6677 __kmp_register_atfork(); 6678 #endif 6679 6680 #if !KMP_DYNAMIC_LIB 6681 { 6682 /* Invoke the exit handler when the program finishes, only for static 6683 library. For dynamic library, we already have _fini and DllMain. */ 6684 int rc = atexit(__kmp_internal_end_atexit); 6685 if (rc != 0) { 6686 __kmp_fatal(KMP_MSG(FunctionError, "atexit()"), KMP_ERR(rc), 6687 __kmp_msg_null); 6688 } 6689 } 6690 #endif 6691 6692 #if KMP_HANDLE_SIGNALS 6693 #if KMP_OS_UNIX 6694 /* NOTE: make sure that this is called before the user installs their own 6695 signal handlers so that the user handlers are called first. this way they 6696 can return false, not call our handler, avoid terminating the library, and 6697 continue execution where they left off. */ 6698 __kmp_install_signals(FALSE); 6699 #endif /* KMP_OS_UNIX */ 6700 #if KMP_OS_WINDOWS 6701 __kmp_install_signals(TRUE); 6702 #endif /* KMP_OS_WINDOWS */ 6703 #endif 6704 6705 /* we have finished the serial initialization */ 6706 __kmp_init_counter++; 6707 6708 __kmp_init_serial = TRUE; 6709 6710 if (__kmp_settings) { 6711 __kmp_env_print(); 6712 } 6713 6714 if (__kmp_display_env || __kmp_display_env_verbose) { 6715 __kmp_env_print_2(); 6716 } 6717 6718 #if OMPT_SUPPORT 6719 ompt_post_init(); 6720 #endif 6721 6722 KMP_MB(); 6723 6724 KA_TRACE(10, ("__kmp_do_serial_initialize: exit\n")); 6725 } 6726 6727 void __kmp_serial_initialize(void) { 6728 if (__kmp_init_serial) { 6729 return; 6730 } 6731 __kmp_acquire_bootstrap_lock(&__kmp_initz_lock); 6732 if (__kmp_init_serial) { 6733 __kmp_release_bootstrap_lock(&__kmp_initz_lock); 6734 return; 6735 } 6736 __kmp_do_serial_initialize(); 6737 __kmp_release_bootstrap_lock(&__kmp_initz_lock); 6738 } 6739 6740 static void __kmp_do_middle_initialize(void) { 6741 int i, j; 6742 int prev_dflt_team_nth; 6743 6744 if (!__kmp_init_serial) { 6745 __kmp_do_serial_initialize(); 6746 } 6747 6748 KA_TRACE(10, ("__kmp_middle_initialize: enter\n")); 6749 6750 // Save the previous value for the __kmp_dflt_team_nth so that 6751 // we can avoid some reinitialization if it hasn't changed. 6752 prev_dflt_team_nth = __kmp_dflt_team_nth; 6753 6754 #if KMP_AFFINITY_SUPPORTED 6755 // __kmp_affinity_initialize() will try to set __kmp_ncores to the 6756 // number of cores on the machine. 6757 __kmp_affinity_initialize(); 6758 6759 // Run through the __kmp_threads array and set the affinity mask 6760 // for each root thread that is currently registered with the RTL. 6761 for (i = 0; i < __kmp_threads_capacity; i++) { 6762 if (TCR_PTR(__kmp_threads[i]) != NULL) { 6763 __kmp_affinity_set_init_mask(i, TRUE); 6764 } 6765 } 6766 #endif /* KMP_AFFINITY_SUPPORTED */ 6767 6768 KMP_ASSERT(__kmp_xproc > 0); 6769 if (__kmp_avail_proc == 0) { 6770 __kmp_avail_proc = __kmp_xproc; 6771 } 6772 6773 // If there were empty places in num_threads list (OMP_NUM_THREADS=,,2,3), 6774 // correct them now 6775 j = 0; 6776 while ((j < __kmp_nested_nth.used) && !__kmp_nested_nth.nth[j]) { 6777 __kmp_nested_nth.nth[j] = __kmp_dflt_team_nth = __kmp_dflt_team_nth_ub = 6778 __kmp_avail_proc; 6779 j++; 6780 } 6781 6782 if (__kmp_dflt_team_nth == 0) { 6783 #ifdef KMP_DFLT_NTH_CORES 6784 // Default #threads = #cores 6785 __kmp_dflt_team_nth = __kmp_ncores; 6786 KA_TRACE(20, ("__kmp_middle_initialize: setting __kmp_dflt_team_nth = " 6787 "__kmp_ncores (%d)\n", 6788 __kmp_dflt_team_nth)); 6789 #else 6790 // Default #threads = #available OS procs 6791 __kmp_dflt_team_nth = __kmp_avail_proc; 6792 KA_TRACE(20, ("__kmp_middle_initialize: setting __kmp_dflt_team_nth = " 6793 "__kmp_avail_proc(%d)\n", 6794 __kmp_dflt_team_nth)); 6795 #endif /* KMP_DFLT_NTH_CORES */ 6796 } 6797 6798 if (__kmp_dflt_team_nth < KMP_MIN_NTH) { 6799 __kmp_dflt_team_nth = KMP_MIN_NTH; 6800 } 6801 if (__kmp_dflt_team_nth > __kmp_sys_max_nth) { 6802 __kmp_dflt_team_nth = __kmp_sys_max_nth; 6803 } 6804 6805 // There's no harm in continuing if the following check fails, 6806 // but it indicates an error in the previous logic. 6807 KMP_DEBUG_ASSERT(__kmp_dflt_team_nth <= __kmp_dflt_team_nth_ub); 6808 6809 if (__kmp_dflt_team_nth != prev_dflt_team_nth) { 6810 // Run through the __kmp_threads array and set the num threads icv for each 6811 // root thread that is currently registered with the RTL (which has not 6812 // already explicitly set its nthreads-var with a call to 6813 // omp_set_num_threads()). 6814 for (i = 0; i < __kmp_threads_capacity; i++) { 6815 kmp_info_t *thread = __kmp_threads[i]; 6816 if (thread == NULL) 6817 continue; 6818 if (thread->th.th_current_task->td_icvs.nproc != 0) 6819 continue; 6820 6821 set__nproc(__kmp_threads[i], __kmp_dflt_team_nth); 6822 } 6823 } 6824 KA_TRACE( 6825 20, 6826 ("__kmp_middle_initialize: final value for __kmp_dflt_team_nth = %d\n", 6827 __kmp_dflt_team_nth)); 6828 6829 #ifdef KMP_ADJUST_BLOCKTIME 6830 /* Adjust blocktime to zero if necessary now that __kmp_avail_proc is set */ 6831 if (!__kmp_env_blocktime && (__kmp_avail_proc > 0)) { 6832 KMP_DEBUG_ASSERT(__kmp_avail_proc > 0); 6833 if (__kmp_nth > __kmp_avail_proc) { 6834 __kmp_zero_bt = TRUE; 6835 } 6836 } 6837 #endif /* KMP_ADJUST_BLOCKTIME */ 6838 6839 /* we have finished middle initialization */ 6840 TCW_SYNC_4(__kmp_init_middle, TRUE); 6841 6842 KA_TRACE(10, ("__kmp_do_middle_initialize: exit\n")); 6843 } 6844 6845 void __kmp_middle_initialize(void) { 6846 if (__kmp_init_middle) { 6847 return; 6848 } 6849 __kmp_acquire_bootstrap_lock(&__kmp_initz_lock); 6850 if (__kmp_init_middle) { 6851 __kmp_release_bootstrap_lock(&__kmp_initz_lock); 6852 return; 6853 } 6854 __kmp_do_middle_initialize(); 6855 __kmp_release_bootstrap_lock(&__kmp_initz_lock); 6856 } 6857 6858 void __kmp_parallel_initialize(void) { 6859 int gtid = __kmp_entry_gtid(); // this might be a new root 6860 6861 /* synchronize parallel initialization (for sibling) */ 6862 if (TCR_4(__kmp_init_parallel)) 6863 return; 6864 __kmp_acquire_bootstrap_lock(&__kmp_initz_lock); 6865 if (TCR_4(__kmp_init_parallel)) { 6866 __kmp_release_bootstrap_lock(&__kmp_initz_lock); 6867 return; 6868 } 6869 6870 /* TODO reinitialization after we have already shut down */ 6871 if (TCR_4(__kmp_global.g.g_done)) { 6872 KA_TRACE( 6873 10, 6874 ("__kmp_parallel_initialize: attempt to init while shutting down\n")); 6875 __kmp_infinite_loop(); 6876 } 6877 6878 /* jc: The lock __kmp_initz_lock is already held, so calling 6879 __kmp_serial_initialize would cause a deadlock. So we call 6880 __kmp_do_serial_initialize directly. */ 6881 if (!__kmp_init_middle) { 6882 __kmp_do_middle_initialize(); 6883 } 6884 __kmp_resume_if_hard_paused(); 6885 6886 /* begin initialization */ 6887 KA_TRACE(10, ("__kmp_parallel_initialize: enter\n")); 6888 KMP_ASSERT(KMP_UBER_GTID(gtid)); 6889 6890 #if KMP_ARCH_X86 || KMP_ARCH_X86_64 6891 // Save the FP control regs. 6892 // Worker threads will set theirs to these values at thread startup. 6893 __kmp_store_x87_fpu_control_word(&__kmp_init_x87_fpu_control_word); 6894 __kmp_store_mxcsr(&__kmp_init_mxcsr); 6895 __kmp_init_mxcsr &= KMP_X86_MXCSR_MASK; 6896 #endif /* KMP_ARCH_X86 || KMP_ARCH_X86_64 */ 6897 6898 #if KMP_OS_UNIX 6899 #if KMP_HANDLE_SIGNALS 6900 /* must be after __kmp_serial_initialize */ 6901 __kmp_install_signals(TRUE); 6902 #endif 6903 #endif 6904 6905 __kmp_suspend_initialize(); 6906 6907 #if defined(USE_LOAD_BALANCE) 6908 if (__kmp_global.g.g_dynamic_mode == dynamic_default) { 6909 __kmp_global.g.g_dynamic_mode = dynamic_load_balance; 6910 } 6911 #else 6912 if (__kmp_global.g.g_dynamic_mode == dynamic_default) { 6913 __kmp_global.g.g_dynamic_mode = dynamic_thread_limit; 6914 } 6915 #endif 6916 6917 if (__kmp_version) { 6918 __kmp_print_version_2(); 6919 } 6920 6921 /* we have finished parallel initialization */ 6922 TCW_SYNC_4(__kmp_init_parallel, TRUE); 6923 6924 KMP_MB(); 6925 KA_TRACE(10, ("__kmp_parallel_initialize: exit\n")); 6926 6927 __kmp_release_bootstrap_lock(&__kmp_initz_lock); 6928 } 6929 6930 /* ------------------------------------------------------------------------ */ 6931 6932 void __kmp_run_before_invoked_task(int gtid, int tid, kmp_info_t *this_thr, 6933 kmp_team_t *team) { 6934 kmp_disp_t *dispatch; 6935 6936 KMP_MB(); 6937 6938 /* none of the threads have encountered any constructs, yet. */ 6939 this_thr->th.th_local.this_construct = 0; 6940 #if KMP_CACHE_MANAGE 6941 KMP_CACHE_PREFETCH(&this_thr->th.th_bar[bs_forkjoin_barrier].bb.b_arrived); 6942 #endif /* KMP_CACHE_MANAGE */ 6943 dispatch = (kmp_disp_t *)TCR_PTR(this_thr->th.th_dispatch); 6944 KMP_DEBUG_ASSERT(dispatch); 6945 KMP_DEBUG_ASSERT(team->t.t_dispatch); 6946 // KMP_DEBUG_ASSERT( this_thr->th.th_dispatch == &team->t.t_dispatch[ 6947 // this_thr->th.th_info.ds.ds_tid ] ); 6948 6949 dispatch->th_disp_index = 0; /* reset the dispatch buffer counter */ 6950 dispatch->th_doacross_buf_idx = 0; // reset doacross dispatch buffer counter 6951 if (__kmp_env_consistency_check) 6952 __kmp_push_parallel(gtid, team->t.t_ident); 6953 6954 KMP_MB(); /* Flush all pending memory write invalidates. */ 6955 } 6956 6957 void __kmp_run_after_invoked_task(int gtid, int tid, kmp_info_t *this_thr, 6958 kmp_team_t *team) { 6959 if (__kmp_env_consistency_check) 6960 __kmp_pop_parallel(gtid, team->t.t_ident); 6961 6962 __kmp_finish_implicit_task(this_thr); 6963 } 6964 6965 int __kmp_invoke_task_func(int gtid) { 6966 int rc; 6967 int tid = __kmp_tid_from_gtid(gtid); 6968 kmp_info_t *this_thr = __kmp_threads[gtid]; 6969 kmp_team_t *team = this_thr->th.th_team; 6970 6971 __kmp_run_before_invoked_task(gtid, tid, this_thr, team); 6972 #if USE_ITT_BUILD 6973 if (__itt_stack_caller_create_ptr) { 6974 __kmp_itt_stack_callee_enter( 6975 (__itt_caller) 6976 team->t.t_stack_id); // inform ittnotify about entering user's code 6977 } 6978 #endif /* USE_ITT_BUILD */ 6979 #if INCLUDE_SSC_MARKS 6980 SSC_MARK_INVOKING(); 6981 #endif 6982 6983 #if OMPT_SUPPORT 6984 void *dummy; 6985 void **exit_frame_p; 6986 ompt_data_t *my_task_data; 6987 ompt_data_t *my_parallel_data; 6988 int ompt_team_size; 6989 6990 if (ompt_enabled.enabled) { 6991 exit_frame_p = &( 6992 team->t.t_implicit_task_taskdata[tid].ompt_task_info.frame.exit_frame.ptr); 6993 } else { 6994 exit_frame_p = &dummy; 6995 } 6996 6997 my_task_data = 6998 &(team->t.t_implicit_task_taskdata[tid].ompt_task_info.task_data); 6999 my_parallel_data = &(team->t.ompt_team_info.parallel_data); 7000 if (ompt_enabled.ompt_callback_implicit_task) { 7001 ompt_team_size = team->t.t_nproc; 7002 ompt_callbacks.ompt_callback(ompt_callback_implicit_task)( 7003 ompt_scope_begin, my_parallel_data, my_task_data, ompt_team_size, 7004 __kmp_tid_from_gtid(gtid), ompt_task_implicit); 7005 OMPT_CUR_TASK_INFO(this_thr)->thread_num = __kmp_tid_from_gtid(gtid); 7006 } 7007 #endif 7008 7009 #if KMP_STATS_ENABLED 7010 stats_state_e previous_state = KMP_GET_THREAD_STATE(); 7011 if (previous_state == stats_state_e::TEAMS_REGION) { 7012 KMP_PUSH_PARTITIONED_TIMER(OMP_teams); 7013 } else { 7014 KMP_PUSH_PARTITIONED_TIMER(OMP_parallel); 7015 } 7016 KMP_SET_THREAD_STATE(IMPLICIT_TASK); 7017 #endif 7018 7019 rc = __kmp_invoke_microtask((microtask_t)TCR_SYNC_PTR(team->t.t_pkfn), gtid, 7020 tid, (int)team->t.t_argc, (void **)team->t.t_argv 7021 #if OMPT_SUPPORT 7022 , 7023 exit_frame_p 7024 #endif 7025 ); 7026 #if OMPT_SUPPORT 7027 *exit_frame_p = NULL; 7028 this_thr->th.ompt_thread_info.parallel_flags |= ompt_parallel_team; 7029 #endif 7030 7031 #if KMP_STATS_ENABLED 7032 if (previous_state == stats_state_e::TEAMS_REGION) { 7033 KMP_SET_THREAD_STATE(previous_state); 7034 } 7035 KMP_POP_PARTITIONED_TIMER(); 7036 #endif 7037 7038 #if USE_ITT_BUILD 7039 if (__itt_stack_caller_create_ptr) { 7040 __kmp_itt_stack_callee_leave( 7041 (__itt_caller) 7042 team->t.t_stack_id); // inform ittnotify about leaving user's code 7043 } 7044 #endif /* USE_ITT_BUILD */ 7045 __kmp_run_after_invoked_task(gtid, tid, this_thr, team); 7046 7047 return rc; 7048 } 7049 7050 void __kmp_teams_master(int gtid) { 7051 // This routine is called by all master threads in teams construct 7052 kmp_info_t *thr = __kmp_threads[gtid]; 7053 kmp_team_t *team = thr->th.th_team; 7054 ident_t *loc = team->t.t_ident; 7055 thr->th.th_set_nproc = thr->th.th_teams_size.nth; 7056 KMP_DEBUG_ASSERT(thr->th.th_teams_microtask); 7057 KMP_DEBUG_ASSERT(thr->th.th_set_nproc); 7058 KA_TRACE(20, ("__kmp_teams_master: T#%d, Tid %d, microtask %p\n", gtid, 7059 __kmp_tid_from_gtid(gtid), thr->th.th_teams_microtask)); 7060 7061 // This thread is a new CG root. Set up the proper variables. 7062 kmp_cg_root_t *tmp = (kmp_cg_root_t *)__kmp_allocate(sizeof(kmp_cg_root_t)); 7063 tmp->cg_root = thr; // Make thr the CG root 7064 // Init to thread limit that was stored when league masters were forked 7065 tmp->cg_thread_limit = thr->th.th_current_task->td_icvs.thread_limit; 7066 tmp->cg_nthreads = 1; // Init counter to one active thread, this one 7067 KA_TRACE(100, ("__kmp_teams_master: Thread %p created node %p and init" 7068 " cg_nthreads to 1\n", 7069 thr, tmp)); 7070 tmp->up = thr->th.th_cg_roots; 7071 thr->th.th_cg_roots = tmp; 7072 7073 // Launch league of teams now, but not let workers execute 7074 // (they hang on fork barrier until next parallel) 7075 #if INCLUDE_SSC_MARKS 7076 SSC_MARK_FORKING(); 7077 #endif 7078 __kmp_fork_call(loc, gtid, fork_context_intel, team->t.t_argc, 7079 (microtask_t)thr->th.th_teams_microtask, // "wrapped" task 7080 VOLATILE_CAST(launch_t) __kmp_invoke_task_func, NULL); 7081 #if INCLUDE_SSC_MARKS 7082 SSC_MARK_JOINING(); 7083 #endif 7084 // If the team size was reduced from the limit, set it to the new size 7085 if (thr->th.th_team_nproc < thr->th.th_teams_size.nth) 7086 thr->th.th_teams_size.nth = thr->th.th_team_nproc; 7087 // AC: last parameter "1" eliminates join barrier which won't work because 7088 // worker threads are in a fork barrier waiting for more parallel regions 7089 __kmp_join_call(loc, gtid 7090 #if OMPT_SUPPORT 7091 , 7092 fork_context_intel 7093 #endif 7094 , 7095 1); 7096 } 7097 7098 int __kmp_invoke_teams_master(int gtid) { 7099 kmp_info_t *this_thr = __kmp_threads[gtid]; 7100 kmp_team_t *team = this_thr->th.th_team; 7101 #if KMP_DEBUG 7102 if (!__kmp_threads[gtid]->th.th_team->t.t_serialized) 7103 KMP_DEBUG_ASSERT((void *)__kmp_threads[gtid]->th.th_team->t.t_pkfn == 7104 (void *)__kmp_teams_master); 7105 #endif 7106 __kmp_run_before_invoked_task(gtid, 0, this_thr, team); 7107 #if OMPT_SUPPORT 7108 int tid = __kmp_tid_from_gtid(gtid); 7109 ompt_data_t *task_data = 7110 &team->t.t_implicit_task_taskdata[tid].ompt_task_info.task_data; 7111 ompt_data_t *parallel_data = &team->t.ompt_team_info.parallel_data; 7112 if (ompt_enabled.ompt_callback_implicit_task) { 7113 ompt_callbacks.ompt_callback(ompt_callback_implicit_task)( 7114 ompt_scope_begin, parallel_data, task_data, team->t.t_nproc, tid, 7115 ompt_task_initial); 7116 OMPT_CUR_TASK_INFO(this_thr)->thread_num = tid; 7117 } 7118 #endif 7119 __kmp_teams_master(gtid); 7120 #if OMPT_SUPPORT 7121 this_thr->th.ompt_thread_info.parallel_flags |= ompt_parallel_league; 7122 #endif 7123 __kmp_run_after_invoked_task(gtid, 0, this_thr, team); 7124 return 1; 7125 } 7126 7127 /* this sets the requested number of threads for the next parallel region 7128 encountered by this team. since this should be enclosed in the forkjoin 7129 critical section it should avoid race conditions with asymmetrical nested 7130 parallelism */ 7131 7132 void __kmp_push_num_threads(ident_t *id, int gtid, int num_threads) { 7133 kmp_info_t *thr = __kmp_threads[gtid]; 7134 7135 if (num_threads > 0) 7136 thr->th.th_set_nproc = num_threads; 7137 } 7138 7139 /* this sets the requested number of teams for the teams region and/or 7140 the number of threads for the next parallel region encountered */ 7141 void __kmp_push_num_teams(ident_t *id, int gtid, int num_teams, 7142 int num_threads) { 7143 kmp_info_t *thr = __kmp_threads[gtid]; 7144 KMP_DEBUG_ASSERT(num_teams >= 0); 7145 KMP_DEBUG_ASSERT(num_threads >= 0); 7146 7147 if (num_teams == 0) 7148 num_teams = 1; // default number of teams is 1. 7149 if (num_teams > __kmp_teams_max_nth) { // if too many teams requested? 7150 if (!__kmp_reserve_warn) { 7151 __kmp_reserve_warn = 1; 7152 __kmp_msg(kmp_ms_warning, 7153 KMP_MSG(CantFormThrTeam, num_teams, __kmp_teams_max_nth), 7154 KMP_HNT(Unset_ALL_THREADS), __kmp_msg_null); 7155 } 7156 num_teams = __kmp_teams_max_nth; 7157 } 7158 // Set number of teams (number of threads in the outer "parallel" of the 7159 // teams) 7160 thr->th.th_set_nproc = thr->th.th_teams_size.nteams = num_teams; 7161 7162 // Remember the number of threads for inner parallel regions 7163 if (!TCR_4(__kmp_init_middle)) 7164 __kmp_middle_initialize(); // get internal globals calculated 7165 KMP_DEBUG_ASSERT(__kmp_avail_proc); 7166 KMP_DEBUG_ASSERT(__kmp_dflt_team_nth); 7167 if (num_threads == 0) { 7168 num_threads = __kmp_avail_proc / num_teams; 7169 // adjust num_threads w/o warning as it is not user setting 7170 // num_threads = min(num_threads, nthreads-var, thread-limit-var) 7171 // no thread_limit clause specified - do not change thread-limit-var ICV 7172 if (num_threads > __kmp_dflt_team_nth) { 7173 num_threads = __kmp_dflt_team_nth; // honor nthreads-var ICV 7174 } 7175 if (num_threads > thr->th.th_current_task->td_icvs.thread_limit) { 7176 num_threads = thr->th.th_current_task->td_icvs.thread_limit; 7177 } // prevent team size to exceed thread-limit-var 7178 if (num_teams * num_threads > __kmp_teams_max_nth) { 7179 num_threads = __kmp_teams_max_nth / num_teams; 7180 } 7181 } else { 7182 // This thread will be the master of the league masters 7183 // Store new thread limit; old limit is saved in th_cg_roots list 7184 thr->th.th_current_task->td_icvs.thread_limit = num_threads; 7185 // num_threads = min(num_threads, nthreads-var) 7186 if (num_threads > __kmp_dflt_team_nth) { 7187 num_threads = __kmp_dflt_team_nth; // honor nthreads-var ICV 7188 } 7189 if (num_teams * num_threads > __kmp_teams_max_nth) { 7190 int new_threads = __kmp_teams_max_nth / num_teams; 7191 if (!__kmp_reserve_warn) { // user asked for too many threads 7192 __kmp_reserve_warn = 1; // conflicts with KMP_TEAMS_THREAD_LIMIT 7193 __kmp_msg(kmp_ms_warning, 7194 KMP_MSG(CantFormThrTeam, num_threads, new_threads), 7195 KMP_HNT(Unset_ALL_THREADS), __kmp_msg_null); 7196 } 7197 num_threads = new_threads; 7198 } 7199 } 7200 thr->th.th_teams_size.nth = num_threads; 7201 } 7202 7203 // Set the proc_bind var to use in the following parallel region. 7204 void __kmp_push_proc_bind(ident_t *id, int gtid, kmp_proc_bind_t proc_bind) { 7205 kmp_info_t *thr = __kmp_threads[gtid]; 7206 thr->th.th_set_proc_bind = proc_bind; 7207 } 7208 7209 /* Launch the worker threads into the microtask. */ 7210 7211 void __kmp_internal_fork(ident_t *id, int gtid, kmp_team_t *team) { 7212 kmp_info_t *this_thr = __kmp_threads[gtid]; 7213 7214 #ifdef KMP_DEBUG 7215 int f; 7216 #endif /* KMP_DEBUG */ 7217 7218 KMP_DEBUG_ASSERT(team); 7219 KMP_DEBUG_ASSERT(this_thr->th.th_team == team); 7220 KMP_ASSERT(KMP_MASTER_GTID(gtid)); 7221 KMP_MB(); /* Flush all pending memory write invalidates. */ 7222 7223 team->t.t_construct = 0; /* no single directives seen yet */ 7224 team->t.t_ordered.dt.t_value = 7225 0; /* thread 0 enters the ordered section first */ 7226 7227 /* Reset the identifiers on the dispatch buffer */ 7228 KMP_DEBUG_ASSERT(team->t.t_disp_buffer); 7229 if (team->t.t_max_nproc > 1) { 7230 int i; 7231 for (i = 0; i < __kmp_dispatch_num_buffers; ++i) { 7232 team->t.t_disp_buffer[i].buffer_index = i; 7233 team->t.t_disp_buffer[i].doacross_buf_idx = i; 7234 } 7235 } else { 7236 team->t.t_disp_buffer[0].buffer_index = 0; 7237 team->t.t_disp_buffer[0].doacross_buf_idx = 0; 7238 } 7239 7240 KMP_MB(); /* Flush all pending memory write invalidates. */ 7241 KMP_ASSERT(this_thr->th.th_team == team); 7242 7243 #ifdef KMP_DEBUG 7244 for (f = 0; f < team->t.t_nproc; f++) { 7245 KMP_DEBUG_ASSERT(team->t.t_threads[f] && 7246 team->t.t_threads[f]->th.th_team_nproc == team->t.t_nproc); 7247 } 7248 #endif /* KMP_DEBUG */ 7249 7250 /* release the worker threads so they may begin working */ 7251 __kmp_fork_barrier(gtid, 0); 7252 } 7253 7254 void __kmp_internal_join(ident_t *id, int gtid, kmp_team_t *team) { 7255 kmp_info_t *this_thr = __kmp_threads[gtid]; 7256 7257 KMP_DEBUG_ASSERT(team); 7258 KMP_DEBUG_ASSERT(this_thr->th.th_team == team); 7259 KMP_ASSERT(KMP_MASTER_GTID(gtid)); 7260 KMP_MB(); /* Flush all pending memory write invalidates. */ 7261 7262 /* Join barrier after fork */ 7263 7264 #ifdef KMP_DEBUG 7265 if (__kmp_threads[gtid] && 7266 __kmp_threads[gtid]->th.th_team_nproc != team->t.t_nproc) { 7267 __kmp_printf("GTID: %d, __kmp_threads[%d]=%p\n", gtid, gtid, 7268 __kmp_threads[gtid]); 7269 __kmp_printf("__kmp_threads[%d]->th.th_team_nproc=%d, TEAM: %p, " 7270 "team->t.t_nproc=%d\n", 7271 gtid, __kmp_threads[gtid]->th.th_team_nproc, team, 7272 team->t.t_nproc); 7273 __kmp_print_structure(); 7274 } 7275 KMP_DEBUG_ASSERT(__kmp_threads[gtid] && 7276 __kmp_threads[gtid]->th.th_team_nproc == team->t.t_nproc); 7277 #endif /* KMP_DEBUG */ 7278 7279 __kmp_join_barrier(gtid); /* wait for everyone */ 7280 #if OMPT_SUPPORT 7281 if (ompt_enabled.enabled && 7282 this_thr->th.ompt_thread_info.state == ompt_state_wait_barrier_implicit) { 7283 int ds_tid = this_thr->th.th_info.ds.ds_tid; 7284 ompt_data_t *task_data = OMPT_CUR_TASK_DATA(this_thr); 7285 this_thr->th.ompt_thread_info.state = ompt_state_overhead; 7286 #if OMPT_OPTIONAL 7287 void *codeptr = NULL; 7288 if (KMP_MASTER_TID(ds_tid) && 7289 (ompt_callbacks.ompt_callback(ompt_callback_sync_region_wait) || 7290 ompt_callbacks.ompt_callback(ompt_callback_sync_region))) 7291 codeptr = OMPT_CUR_TEAM_INFO(this_thr)->master_return_address; 7292 7293 if (ompt_enabled.ompt_callback_sync_region_wait) { 7294 ompt_callbacks.ompt_callback(ompt_callback_sync_region_wait)( 7295 ompt_sync_region_barrier_implicit, ompt_scope_end, NULL, task_data, 7296 codeptr); 7297 } 7298 if (ompt_enabled.ompt_callback_sync_region) { 7299 ompt_callbacks.ompt_callback(ompt_callback_sync_region)( 7300 ompt_sync_region_barrier_implicit, ompt_scope_end, NULL, task_data, 7301 codeptr); 7302 } 7303 #endif 7304 if (!KMP_MASTER_TID(ds_tid) && ompt_enabled.ompt_callback_implicit_task) { 7305 ompt_callbacks.ompt_callback(ompt_callback_implicit_task)( 7306 ompt_scope_end, NULL, task_data, 0, ds_tid, ompt_task_implicit); // TODO: Can this be ompt_task_initial? 7307 } 7308 } 7309 #endif 7310 7311 KMP_MB(); /* Flush all pending memory write invalidates. */ 7312 KMP_ASSERT(this_thr->th.th_team == team); 7313 } 7314 7315 /* ------------------------------------------------------------------------ */ 7316 7317 #ifdef USE_LOAD_BALANCE 7318 7319 // Return the worker threads actively spinning in the hot team, if we 7320 // are at the outermost level of parallelism. Otherwise, return 0. 7321 static int __kmp_active_hot_team_nproc(kmp_root_t *root) { 7322 int i; 7323 int retval; 7324 kmp_team_t *hot_team; 7325 7326 if (root->r.r_active) { 7327 return 0; 7328 } 7329 hot_team = root->r.r_hot_team; 7330 if (__kmp_dflt_blocktime == KMP_MAX_BLOCKTIME) { 7331 return hot_team->t.t_nproc - 1; // Don't count master thread 7332 } 7333 7334 // Skip the master thread - it is accounted for elsewhere. 7335 retval = 0; 7336 for (i = 1; i < hot_team->t.t_nproc; i++) { 7337 if (hot_team->t.t_threads[i]->th.th_active) { 7338 retval++; 7339 } 7340 } 7341 return retval; 7342 } 7343 7344 // Perform an automatic adjustment to the number of 7345 // threads used by the next parallel region. 7346 static int __kmp_load_balance_nproc(kmp_root_t *root, int set_nproc) { 7347 int retval; 7348 int pool_active; 7349 int hot_team_active; 7350 int team_curr_active; 7351 int system_active; 7352 7353 KB_TRACE(20, ("__kmp_load_balance_nproc: called root:%p set_nproc:%d\n", root, 7354 set_nproc)); 7355 KMP_DEBUG_ASSERT(root); 7356 KMP_DEBUG_ASSERT(root->r.r_root_team->t.t_threads[0] 7357 ->th.th_current_task->td_icvs.dynamic == TRUE); 7358 KMP_DEBUG_ASSERT(set_nproc > 1); 7359 7360 if (set_nproc == 1) { 7361 KB_TRACE(20, ("__kmp_load_balance_nproc: serial execution.\n")); 7362 return 1; 7363 } 7364 7365 // Threads that are active in the thread pool, active in the hot team for this 7366 // particular root (if we are at the outer par level), and the currently 7367 // executing thread (to become the master) are available to add to the new 7368 // team, but are currently contributing to the system load, and must be 7369 // accounted for. 7370 pool_active = __kmp_thread_pool_active_nth; 7371 hot_team_active = __kmp_active_hot_team_nproc(root); 7372 team_curr_active = pool_active + hot_team_active + 1; 7373 7374 // Check the system load. 7375 system_active = __kmp_get_load_balance(__kmp_avail_proc + team_curr_active); 7376 KB_TRACE(30, ("__kmp_load_balance_nproc: system active = %d pool active = %d " 7377 "hot team active = %d\n", 7378 system_active, pool_active, hot_team_active)); 7379 7380 if (system_active < 0) { 7381 // There was an error reading the necessary info from /proc, so use the 7382 // thread limit algorithm instead. Once we set __kmp_global.g.g_dynamic_mode 7383 // = dynamic_thread_limit, we shouldn't wind up getting back here. 7384 __kmp_global.g.g_dynamic_mode = dynamic_thread_limit; 7385 KMP_WARNING(CantLoadBalUsing, "KMP_DYNAMIC_MODE=thread limit"); 7386 7387 // Make this call behave like the thread limit algorithm. 7388 retval = __kmp_avail_proc - __kmp_nth + 7389 (root->r.r_active ? 1 : root->r.r_hot_team->t.t_nproc); 7390 if (retval > set_nproc) { 7391 retval = set_nproc; 7392 } 7393 if (retval < KMP_MIN_NTH) { 7394 retval = KMP_MIN_NTH; 7395 } 7396 7397 KB_TRACE(20, ("__kmp_load_balance_nproc: thread limit exit. retval:%d\n", 7398 retval)); 7399 return retval; 7400 } 7401 7402 // There is a slight delay in the load balance algorithm in detecting new 7403 // running procs. The real system load at this instant should be at least as 7404 // large as the #active omp thread that are available to add to the team. 7405 if (system_active < team_curr_active) { 7406 system_active = team_curr_active; 7407 } 7408 retval = __kmp_avail_proc - system_active + team_curr_active; 7409 if (retval > set_nproc) { 7410 retval = set_nproc; 7411 } 7412 if (retval < KMP_MIN_NTH) { 7413 retval = KMP_MIN_NTH; 7414 } 7415 7416 KB_TRACE(20, ("__kmp_load_balance_nproc: exit. retval:%d\n", retval)); 7417 return retval; 7418 } // __kmp_load_balance_nproc() 7419 7420 #endif /* USE_LOAD_BALANCE */ 7421 7422 /* ------------------------------------------------------------------------ */ 7423 7424 /* NOTE: this is called with the __kmp_init_lock held */ 7425 void __kmp_cleanup(void) { 7426 int f; 7427 7428 KA_TRACE(10, ("__kmp_cleanup: enter\n")); 7429 7430 if (TCR_4(__kmp_init_parallel)) { 7431 #if KMP_HANDLE_SIGNALS 7432 __kmp_remove_signals(); 7433 #endif 7434 TCW_4(__kmp_init_parallel, FALSE); 7435 } 7436 7437 if (TCR_4(__kmp_init_middle)) { 7438 #if KMP_AFFINITY_SUPPORTED 7439 __kmp_affinity_uninitialize(); 7440 #endif /* KMP_AFFINITY_SUPPORTED */ 7441 __kmp_cleanup_hierarchy(); 7442 TCW_4(__kmp_init_middle, FALSE); 7443 } 7444 7445 KA_TRACE(10, ("__kmp_cleanup: go serial cleanup\n")); 7446 7447 if (__kmp_init_serial) { 7448 __kmp_runtime_destroy(); 7449 __kmp_init_serial = FALSE; 7450 } 7451 7452 __kmp_cleanup_threadprivate_caches(); 7453 7454 for (f = 0; f < __kmp_threads_capacity; f++) { 7455 if (__kmp_root[f] != NULL) { 7456 __kmp_free(__kmp_root[f]); 7457 __kmp_root[f] = NULL; 7458 } 7459 } 7460 __kmp_free(__kmp_threads); 7461 // __kmp_threads and __kmp_root were allocated at once, as single block, so 7462 // there is no need in freeing __kmp_root. 7463 __kmp_threads = NULL; 7464 __kmp_root = NULL; 7465 __kmp_threads_capacity = 0; 7466 7467 #if KMP_USE_DYNAMIC_LOCK 7468 __kmp_cleanup_indirect_user_locks(); 7469 #else 7470 __kmp_cleanup_user_locks(); 7471 #endif 7472 7473 #if KMP_AFFINITY_SUPPORTED 7474 KMP_INTERNAL_FREE(CCAST(char *, __kmp_cpuinfo_file)); 7475 __kmp_cpuinfo_file = NULL; 7476 #endif /* KMP_AFFINITY_SUPPORTED */ 7477 7478 #if KMP_USE_ADAPTIVE_LOCKS 7479 #if KMP_DEBUG_ADAPTIVE_LOCKS 7480 __kmp_print_speculative_stats(); 7481 #endif 7482 #endif 7483 KMP_INTERNAL_FREE(__kmp_nested_nth.nth); 7484 __kmp_nested_nth.nth = NULL; 7485 __kmp_nested_nth.size = 0; 7486 __kmp_nested_nth.used = 0; 7487 KMP_INTERNAL_FREE(__kmp_nested_proc_bind.bind_types); 7488 __kmp_nested_proc_bind.bind_types = NULL; 7489 __kmp_nested_proc_bind.size = 0; 7490 __kmp_nested_proc_bind.used = 0; 7491 if (__kmp_affinity_format) { 7492 KMP_INTERNAL_FREE(__kmp_affinity_format); 7493 __kmp_affinity_format = NULL; 7494 } 7495 7496 __kmp_i18n_catclose(); 7497 7498 #if KMP_USE_HIER_SCHED 7499 __kmp_hier_scheds.deallocate(); 7500 #endif 7501 7502 #if KMP_STATS_ENABLED 7503 __kmp_stats_fini(); 7504 #endif 7505 7506 KA_TRACE(10, ("__kmp_cleanup: exit\n")); 7507 } 7508 7509 /* ------------------------------------------------------------------------ */ 7510 7511 int __kmp_ignore_mppbeg(void) { 7512 char *env; 7513 7514 if ((env = getenv("KMP_IGNORE_MPPBEG")) != NULL) { 7515 if (__kmp_str_match_false(env)) 7516 return FALSE; 7517 } 7518 // By default __kmpc_begin() is no-op. 7519 return TRUE; 7520 } 7521 7522 int __kmp_ignore_mppend(void) { 7523 char *env; 7524 7525 if ((env = getenv("KMP_IGNORE_MPPEND")) != NULL) { 7526 if (__kmp_str_match_false(env)) 7527 return FALSE; 7528 } 7529 // By default __kmpc_end() is no-op. 7530 return TRUE; 7531 } 7532 7533 void __kmp_internal_begin(void) { 7534 int gtid; 7535 kmp_root_t *root; 7536 7537 /* this is a very important step as it will register new sibling threads 7538 and assign these new uber threads a new gtid */ 7539 gtid = __kmp_entry_gtid(); 7540 root = __kmp_threads[gtid]->th.th_root; 7541 KMP_ASSERT(KMP_UBER_GTID(gtid)); 7542 7543 if (root->r.r_begin) 7544 return; 7545 __kmp_acquire_lock(&root->r.r_begin_lock, gtid); 7546 if (root->r.r_begin) { 7547 __kmp_release_lock(&root->r.r_begin_lock, gtid); 7548 return; 7549 } 7550 7551 root->r.r_begin = TRUE; 7552 7553 __kmp_release_lock(&root->r.r_begin_lock, gtid); 7554 } 7555 7556 /* ------------------------------------------------------------------------ */ 7557 7558 void __kmp_user_set_library(enum library_type arg) { 7559 int gtid; 7560 kmp_root_t *root; 7561 kmp_info_t *thread; 7562 7563 /* first, make sure we are initialized so we can get our gtid */ 7564 7565 gtid = __kmp_entry_gtid(); 7566 thread = __kmp_threads[gtid]; 7567 7568 root = thread->th.th_root; 7569 7570 KA_TRACE(20, ("__kmp_user_set_library: enter T#%d, arg: %d, %d\n", gtid, arg, 7571 library_serial)); 7572 if (root->r.r_in_parallel) { /* Must be called in serial section of top-level 7573 thread */ 7574 KMP_WARNING(SetLibraryIncorrectCall); 7575 return; 7576 } 7577 7578 switch (arg) { 7579 case library_serial: 7580 thread->th.th_set_nproc = 0; 7581 set__nproc(thread, 1); 7582 break; 7583 case library_turnaround: 7584 thread->th.th_set_nproc = 0; 7585 set__nproc(thread, __kmp_dflt_team_nth ? __kmp_dflt_team_nth 7586 : __kmp_dflt_team_nth_ub); 7587 break; 7588 case library_throughput: 7589 thread->th.th_set_nproc = 0; 7590 set__nproc(thread, __kmp_dflt_team_nth ? __kmp_dflt_team_nth 7591 : __kmp_dflt_team_nth_ub); 7592 break; 7593 default: 7594 KMP_FATAL(UnknownLibraryType, arg); 7595 } 7596 7597 __kmp_aux_set_library(arg); 7598 } 7599 7600 void __kmp_aux_set_stacksize(size_t arg) { 7601 if (!__kmp_init_serial) 7602 __kmp_serial_initialize(); 7603 7604 #if KMP_OS_DARWIN 7605 if (arg & (0x1000 - 1)) { 7606 arg &= ~(0x1000 - 1); 7607 if (arg + 0x1000) /* check for overflow if we round up */ 7608 arg += 0x1000; 7609 } 7610 #endif 7611 __kmp_acquire_bootstrap_lock(&__kmp_initz_lock); 7612 7613 /* only change the default stacksize before the first parallel region */ 7614 if (!TCR_4(__kmp_init_parallel)) { 7615 size_t value = arg; /* argument is in bytes */ 7616 7617 if (value < __kmp_sys_min_stksize) 7618 value = __kmp_sys_min_stksize; 7619 else if (value > KMP_MAX_STKSIZE) 7620 value = KMP_MAX_STKSIZE; 7621 7622 __kmp_stksize = value; 7623 7624 __kmp_env_stksize = TRUE; /* was KMP_STACKSIZE specified? */ 7625 } 7626 7627 __kmp_release_bootstrap_lock(&__kmp_initz_lock); 7628 } 7629 7630 /* set the behaviour of the runtime library */ 7631 /* TODO this can cause some odd behaviour with sibling parallelism... */ 7632 void __kmp_aux_set_library(enum library_type arg) { 7633 __kmp_library = arg; 7634 7635 switch (__kmp_library) { 7636 case library_serial: { 7637 KMP_INFORM(LibraryIsSerial); 7638 } break; 7639 case library_turnaround: 7640 if (__kmp_use_yield == 1 && !__kmp_use_yield_exp_set) 7641 __kmp_use_yield = 2; // only yield when oversubscribed 7642 break; 7643 case library_throughput: 7644 if (__kmp_dflt_blocktime == KMP_MAX_BLOCKTIME) 7645 __kmp_dflt_blocktime = 200; 7646 break; 7647 default: 7648 KMP_FATAL(UnknownLibraryType, arg); 7649 } 7650 } 7651 7652 /* Getting team information common for all team API */ 7653 // Returns NULL if not in teams construct 7654 static kmp_team_t *__kmp_aux_get_team_info(int &teams_serialized) { 7655 kmp_info_t *thr = __kmp_entry_thread(); 7656 teams_serialized = 0; 7657 if (thr->th.th_teams_microtask) { 7658 kmp_team_t *team = thr->th.th_team; 7659 int tlevel = thr->th.th_teams_level; // the level of the teams construct 7660 int ii = team->t.t_level; 7661 teams_serialized = team->t.t_serialized; 7662 int level = tlevel + 1; 7663 KMP_DEBUG_ASSERT(ii >= tlevel); 7664 while (ii > level) { 7665 for (teams_serialized = team->t.t_serialized; 7666 (teams_serialized > 0) && (ii > level); teams_serialized--, ii--) { 7667 } 7668 if (team->t.t_serialized && (!teams_serialized)) { 7669 team = team->t.t_parent; 7670 continue; 7671 } 7672 if (ii > level) { 7673 team = team->t.t_parent; 7674 ii--; 7675 } 7676 } 7677 return team; 7678 } 7679 return NULL; 7680 } 7681 7682 int __kmp_aux_get_team_num() { 7683 int serialized; 7684 kmp_team_t *team = __kmp_aux_get_team_info(serialized); 7685 if (team) { 7686 if (serialized > 1) { 7687 return 0; // teams region is serialized ( 1 team of 1 thread ). 7688 } else { 7689 return team->t.t_master_tid; 7690 } 7691 } 7692 return 0; 7693 } 7694 7695 int __kmp_aux_get_num_teams() { 7696 int serialized; 7697 kmp_team_t *team = __kmp_aux_get_team_info(serialized); 7698 if (team) { 7699 if (serialized > 1) { 7700 return 1; 7701 } else { 7702 return team->t.t_parent->t.t_nproc; 7703 } 7704 } 7705 return 1; 7706 } 7707 7708 /* ------------------------------------------------------------------------ */ 7709 7710 /* 7711 * Affinity Format Parser 7712 * 7713 * Field is in form of: %[[[0].]size]type 7714 * % and type are required (%% means print a literal '%') 7715 * type is either single char or long name surrounded by {}, 7716 * e.g., N or {num_threads} 7717 * 0 => leading zeros 7718 * . => right justified when size is specified 7719 * by default output is left justified 7720 * size is the *minimum* field length 7721 * All other characters are printed as is 7722 * 7723 * Available field types: 7724 * L {thread_level} - omp_get_level() 7725 * n {thread_num} - omp_get_thread_num() 7726 * h {host} - name of host machine 7727 * P {process_id} - process id (integer) 7728 * T {thread_identifier} - native thread identifier (integer) 7729 * N {num_threads} - omp_get_num_threads() 7730 * A {ancestor_tnum} - omp_get_ancestor_thread_num(omp_get_level()-1) 7731 * a {thread_affinity} - comma separated list of integers or integer ranges 7732 * (values of affinity mask) 7733 * 7734 * Implementation-specific field types can be added 7735 * If a type is unknown, print "undefined" 7736 */ 7737 7738 // Structure holding the short name, long name, and corresponding data type 7739 // for snprintf. A table of these will represent the entire valid keyword 7740 // field types. 7741 typedef struct kmp_affinity_format_field_t { 7742 char short_name; // from spec e.g., L -> thread level 7743 const char *long_name; // from spec thread_level -> thread level 7744 char field_format; // data type for snprintf (typically 'd' or 's' 7745 // for integer or string) 7746 } kmp_affinity_format_field_t; 7747 7748 static const kmp_affinity_format_field_t __kmp_affinity_format_table[] = { 7749 #if KMP_AFFINITY_SUPPORTED 7750 {'A', "thread_affinity", 's'}, 7751 #endif 7752 {'t', "team_num", 'd'}, 7753 {'T', "num_teams", 'd'}, 7754 {'L', "nesting_level", 'd'}, 7755 {'n', "thread_num", 'd'}, 7756 {'N', "num_threads", 'd'}, 7757 {'a', "ancestor_tnum", 'd'}, 7758 {'H', "host", 's'}, 7759 {'P', "process_id", 'd'}, 7760 {'i', "native_thread_id", 'd'}}; 7761 7762 // Return the number of characters it takes to hold field 7763 static int __kmp_aux_capture_affinity_field(int gtid, const kmp_info_t *th, 7764 const char **ptr, 7765 kmp_str_buf_t *field_buffer) { 7766 int rc, format_index, field_value; 7767 const char *width_left, *width_right; 7768 bool pad_zeros, right_justify, parse_long_name, found_valid_name; 7769 static const int FORMAT_SIZE = 20; 7770 char format[FORMAT_SIZE] = {0}; 7771 char absolute_short_name = 0; 7772 7773 KMP_DEBUG_ASSERT(gtid >= 0); 7774 KMP_DEBUG_ASSERT(th); 7775 KMP_DEBUG_ASSERT(**ptr == '%'); 7776 KMP_DEBUG_ASSERT(field_buffer); 7777 7778 __kmp_str_buf_clear(field_buffer); 7779 7780 // Skip the initial % 7781 (*ptr)++; 7782 7783 // Check for %% first 7784 if (**ptr == '%') { 7785 __kmp_str_buf_cat(field_buffer, "%", 1); 7786 (*ptr)++; // skip over the second % 7787 return 1; 7788 } 7789 7790 // Parse field modifiers if they are present 7791 pad_zeros = false; 7792 if (**ptr == '0') { 7793 pad_zeros = true; 7794 (*ptr)++; // skip over 0 7795 } 7796 right_justify = false; 7797 if (**ptr == '.') { 7798 right_justify = true; 7799 (*ptr)++; // skip over . 7800 } 7801 // Parse width of field: [width_left, width_right) 7802 width_left = width_right = NULL; 7803 if (**ptr >= '0' && **ptr <= '9') { 7804 width_left = *ptr; 7805 SKIP_DIGITS(*ptr); 7806 width_right = *ptr; 7807 } 7808 7809 // Create the format for KMP_SNPRINTF based on flags parsed above 7810 format_index = 0; 7811 format[format_index++] = '%'; 7812 if (!right_justify) 7813 format[format_index++] = '-'; 7814 if (pad_zeros) 7815 format[format_index++] = '0'; 7816 if (width_left && width_right) { 7817 int i = 0; 7818 // Only allow 8 digit number widths. 7819 // This also prevents overflowing format variable 7820 while (i < 8 && width_left < width_right) { 7821 format[format_index++] = *width_left; 7822 width_left++; 7823 i++; 7824 } 7825 } 7826 7827 // Parse a name (long or short) 7828 // Canonicalize the name into absolute_short_name 7829 found_valid_name = false; 7830 parse_long_name = (**ptr == '{'); 7831 if (parse_long_name) 7832 (*ptr)++; // skip initial left brace 7833 for (size_t i = 0; i < sizeof(__kmp_affinity_format_table) / 7834 sizeof(__kmp_affinity_format_table[0]); 7835 ++i) { 7836 char short_name = __kmp_affinity_format_table[i].short_name; 7837 const char *long_name = __kmp_affinity_format_table[i].long_name; 7838 char field_format = __kmp_affinity_format_table[i].field_format; 7839 if (parse_long_name) { 7840 int length = KMP_STRLEN(long_name); 7841 if (strncmp(*ptr, long_name, length) == 0) { 7842 found_valid_name = true; 7843 (*ptr) += length; // skip the long name 7844 } 7845 } else if (**ptr == short_name) { 7846 found_valid_name = true; 7847 (*ptr)++; // skip the short name 7848 } 7849 if (found_valid_name) { 7850 format[format_index++] = field_format; 7851 format[format_index++] = '\0'; 7852 absolute_short_name = short_name; 7853 break; 7854 } 7855 } 7856 if (parse_long_name) { 7857 if (**ptr != '}') { 7858 absolute_short_name = 0; 7859 } else { 7860 (*ptr)++; // skip over the right brace 7861 } 7862 } 7863 7864 // Attempt to fill the buffer with the requested 7865 // value using snprintf within __kmp_str_buf_print() 7866 switch (absolute_short_name) { 7867 case 't': 7868 rc = __kmp_str_buf_print(field_buffer, format, __kmp_aux_get_team_num()); 7869 break; 7870 case 'T': 7871 rc = __kmp_str_buf_print(field_buffer, format, __kmp_aux_get_num_teams()); 7872 break; 7873 case 'L': 7874 rc = __kmp_str_buf_print(field_buffer, format, th->th.th_team->t.t_level); 7875 break; 7876 case 'n': 7877 rc = __kmp_str_buf_print(field_buffer, format, __kmp_tid_from_gtid(gtid)); 7878 break; 7879 case 'H': { 7880 static const int BUFFER_SIZE = 256; 7881 char buf[BUFFER_SIZE]; 7882 __kmp_expand_host_name(buf, BUFFER_SIZE); 7883 rc = __kmp_str_buf_print(field_buffer, format, buf); 7884 } break; 7885 case 'P': 7886 rc = __kmp_str_buf_print(field_buffer, format, getpid()); 7887 break; 7888 case 'i': 7889 rc = __kmp_str_buf_print(field_buffer, format, __kmp_gettid()); 7890 break; 7891 case 'N': 7892 rc = __kmp_str_buf_print(field_buffer, format, th->th.th_team->t.t_nproc); 7893 break; 7894 case 'a': 7895 field_value = 7896 __kmp_get_ancestor_thread_num(gtid, th->th.th_team->t.t_level - 1); 7897 rc = __kmp_str_buf_print(field_buffer, format, field_value); 7898 break; 7899 #if KMP_AFFINITY_SUPPORTED 7900 case 'A': { 7901 kmp_str_buf_t buf; 7902 __kmp_str_buf_init(&buf); 7903 __kmp_affinity_str_buf_mask(&buf, th->th.th_affin_mask); 7904 rc = __kmp_str_buf_print(field_buffer, format, buf.str); 7905 __kmp_str_buf_free(&buf); 7906 } break; 7907 #endif 7908 default: 7909 // According to spec, If an implementation does not have info for field 7910 // type, then "undefined" is printed 7911 rc = __kmp_str_buf_print(field_buffer, "%s", "undefined"); 7912 // Skip the field 7913 if (parse_long_name) { 7914 SKIP_TOKEN(*ptr); 7915 if (**ptr == '}') 7916 (*ptr)++; 7917 } else { 7918 (*ptr)++; 7919 } 7920 } 7921 7922 KMP_ASSERT(format_index <= FORMAT_SIZE); 7923 return rc; 7924 } 7925 7926 /* 7927 * Return number of characters needed to hold the affinity string 7928 * (not including null byte character) 7929 * The resultant string is printed to buffer, which the caller can then 7930 * handle afterwards 7931 */ 7932 size_t __kmp_aux_capture_affinity(int gtid, const char *format, 7933 kmp_str_buf_t *buffer) { 7934 const char *parse_ptr; 7935 size_t retval; 7936 const kmp_info_t *th; 7937 kmp_str_buf_t field; 7938 7939 KMP_DEBUG_ASSERT(buffer); 7940 KMP_DEBUG_ASSERT(gtid >= 0); 7941 7942 __kmp_str_buf_init(&field); 7943 __kmp_str_buf_clear(buffer); 7944 7945 th = __kmp_threads[gtid]; 7946 retval = 0; 7947 7948 // If format is NULL or zero-length string, then we use 7949 // affinity-format-var ICV 7950 parse_ptr = format; 7951 if (parse_ptr == NULL || *parse_ptr == '\0') { 7952 parse_ptr = __kmp_affinity_format; 7953 } 7954 KMP_DEBUG_ASSERT(parse_ptr); 7955 7956 while (*parse_ptr != '\0') { 7957 // Parse a field 7958 if (*parse_ptr == '%') { 7959 // Put field in the buffer 7960 int rc = __kmp_aux_capture_affinity_field(gtid, th, &parse_ptr, &field); 7961 __kmp_str_buf_catbuf(buffer, &field); 7962 retval += rc; 7963 } else { 7964 // Put literal character in buffer 7965 __kmp_str_buf_cat(buffer, parse_ptr, 1); 7966 retval++; 7967 parse_ptr++; 7968 } 7969 } 7970 __kmp_str_buf_free(&field); 7971 return retval; 7972 } 7973 7974 // Displays the affinity string to stdout 7975 void __kmp_aux_display_affinity(int gtid, const char *format) { 7976 kmp_str_buf_t buf; 7977 __kmp_str_buf_init(&buf); 7978 __kmp_aux_capture_affinity(gtid, format, &buf); 7979 __kmp_fprintf(kmp_out, "%s" KMP_END_OF_LINE, buf.str); 7980 __kmp_str_buf_free(&buf); 7981 } 7982 7983 /* ------------------------------------------------------------------------ */ 7984 7985 void __kmp_aux_set_blocktime(int arg, kmp_info_t *thread, int tid) { 7986 int blocktime = arg; /* argument is in milliseconds */ 7987 #if KMP_USE_MONITOR 7988 int bt_intervals; 7989 #endif 7990 int bt_set; 7991 7992 __kmp_save_internal_controls(thread); 7993 7994 /* Normalize and set blocktime for the teams */ 7995 if (blocktime < KMP_MIN_BLOCKTIME) 7996 blocktime = KMP_MIN_BLOCKTIME; 7997 else if (blocktime > KMP_MAX_BLOCKTIME) 7998 blocktime = KMP_MAX_BLOCKTIME; 7999 8000 set__blocktime_team(thread->th.th_team, tid, blocktime); 8001 set__blocktime_team(thread->th.th_serial_team, 0, blocktime); 8002 8003 #if KMP_USE_MONITOR 8004 /* Calculate and set blocktime intervals for the teams */ 8005 bt_intervals = KMP_INTERVALS_FROM_BLOCKTIME(blocktime, __kmp_monitor_wakeups); 8006 8007 set__bt_intervals_team(thread->th.th_team, tid, bt_intervals); 8008 set__bt_intervals_team(thread->th.th_serial_team, 0, bt_intervals); 8009 #endif 8010 8011 /* Set whether blocktime has been set to "TRUE" */ 8012 bt_set = TRUE; 8013 8014 set__bt_set_team(thread->th.th_team, tid, bt_set); 8015 set__bt_set_team(thread->th.th_serial_team, 0, bt_set); 8016 #if KMP_USE_MONITOR 8017 KF_TRACE(10, ("kmp_set_blocktime: T#%d(%d:%d), blocktime=%d, " 8018 "bt_intervals=%d, monitor_updates=%d\n", 8019 __kmp_gtid_from_tid(tid, thread->th.th_team), 8020 thread->th.th_team->t.t_id, tid, blocktime, bt_intervals, 8021 __kmp_monitor_wakeups)); 8022 #else 8023 KF_TRACE(10, ("kmp_set_blocktime: T#%d(%d:%d), blocktime=%d\n", 8024 __kmp_gtid_from_tid(tid, thread->th.th_team), 8025 thread->th.th_team->t.t_id, tid, blocktime)); 8026 #endif 8027 } 8028 8029 void __kmp_aux_set_defaults(char const *str, int len) { 8030 if (!__kmp_init_serial) { 8031 __kmp_serial_initialize(); 8032 } 8033 __kmp_env_initialize(str); 8034 8035 if (__kmp_settings || __kmp_display_env || __kmp_display_env_verbose) { 8036 __kmp_env_print(); 8037 } 8038 } // __kmp_aux_set_defaults 8039 8040 /* ------------------------------------------------------------------------ */ 8041 /* internal fast reduction routines */ 8042 8043 PACKED_REDUCTION_METHOD_T 8044 __kmp_determine_reduction_method( 8045 ident_t *loc, kmp_int32 global_tid, kmp_int32 num_vars, size_t reduce_size, 8046 void *reduce_data, void (*reduce_func)(void *lhs_data, void *rhs_data), 8047 kmp_critical_name *lck) { 8048 8049 // Default reduction method: critical construct ( lck != NULL, like in current 8050 // PAROPT ) 8051 // If ( reduce_data!=NULL && reduce_func!=NULL ): the tree-reduction method 8052 // can be selected by RTL 8053 // If loc->flags contains KMP_IDENT_ATOMIC_REDUCE, the atomic reduce method 8054 // can be selected by RTL 8055 // Finally, it's up to OpenMP RTL to make a decision on which method to select 8056 // among generated by PAROPT. 8057 8058 PACKED_REDUCTION_METHOD_T retval; 8059 8060 int team_size; 8061 8062 KMP_DEBUG_ASSERT(loc); // it would be nice to test ( loc != 0 ) 8063 KMP_DEBUG_ASSERT(lck); // it would be nice to test ( lck != 0 ) 8064 8065 #define FAST_REDUCTION_ATOMIC_METHOD_GENERATED \ 8066 ((loc->flags & (KMP_IDENT_ATOMIC_REDUCE)) == (KMP_IDENT_ATOMIC_REDUCE)) 8067 #define FAST_REDUCTION_TREE_METHOD_GENERATED ((reduce_data) && (reduce_func)) 8068 8069 retval = critical_reduce_block; 8070 8071 // another choice of getting a team size (with 1 dynamic deference) is slower 8072 team_size = __kmp_get_team_num_threads(global_tid); 8073 if (team_size == 1) { 8074 8075 retval = empty_reduce_block; 8076 8077 } else { 8078 8079 int atomic_available = FAST_REDUCTION_ATOMIC_METHOD_GENERATED; 8080 8081 #if KMP_ARCH_X86_64 || KMP_ARCH_PPC64 || KMP_ARCH_AARCH64 || \ 8082 KMP_ARCH_MIPS64 || KMP_ARCH_RISCV64 8083 8084 #if KMP_OS_LINUX || KMP_OS_DRAGONFLY || KMP_OS_FREEBSD || KMP_OS_NETBSD || \ 8085 KMP_OS_OPENBSD || KMP_OS_WINDOWS || KMP_OS_DARWIN || KMP_OS_HURD 8086 8087 int teamsize_cutoff = 4; 8088 8089 #if KMP_MIC_SUPPORTED 8090 if (__kmp_mic_type != non_mic) { 8091 teamsize_cutoff = 8; 8092 } 8093 #endif 8094 int tree_available = FAST_REDUCTION_TREE_METHOD_GENERATED; 8095 if (tree_available) { 8096 if (team_size <= teamsize_cutoff) { 8097 if (atomic_available) { 8098 retval = atomic_reduce_block; 8099 } 8100 } else { 8101 retval = TREE_REDUCE_BLOCK_WITH_REDUCTION_BARRIER; 8102 } 8103 } else if (atomic_available) { 8104 retval = atomic_reduce_block; 8105 } 8106 #else 8107 #error "Unknown or unsupported OS" 8108 #endif // KMP_OS_LINUX || KMP_OS_DRAGONFLY || KMP_OS_FREEBSD || KMP_OS_NETBSD || 8109 // KMP_OS_OPENBSD || KMP_OS_WINDOWS || KMP_OS_DARWIN || KMP_OS_HURD 8110 8111 #elif KMP_ARCH_X86 || KMP_ARCH_ARM || KMP_ARCH_AARCH || KMP_ARCH_MIPS 8112 8113 #if KMP_OS_LINUX || KMP_OS_FREEBSD || KMP_OS_WINDOWS || KMP_OS_HURD 8114 8115 // basic tuning 8116 8117 if (atomic_available) { 8118 if (num_vars <= 2) { // && ( team_size <= 8 ) due to false-sharing ??? 8119 retval = atomic_reduce_block; 8120 } 8121 } // otherwise: use critical section 8122 8123 #elif KMP_OS_DARWIN 8124 8125 int tree_available = FAST_REDUCTION_TREE_METHOD_GENERATED; 8126 if (atomic_available && (num_vars <= 3)) { 8127 retval = atomic_reduce_block; 8128 } else if (tree_available) { 8129 if ((reduce_size > (9 * sizeof(kmp_real64))) && 8130 (reduce_size < (2000 * sizeof(kmp_real64)))) { 8131 retval = TREE_REDUCE_BLOCK_WITH_PLAIN_BARRIER; 8132 } 8133 } // otherwise: use critical section 8134 8135 #else 8136 #error "Unknown or unsupported OS" 8137 #endif 8138 8139 #else 8140 #error "Unknown or unsupported architecture" 8141 #endif 8142 } 8143 8144 // KMP_FORCE_REDUCTION 8145 8146 // If the team is serialized (team_size == 1), ignore the forced reduction 8147 // method and stay with the unsynchronized method (empty_reduce_block) 8148 if (__kmp_force_reduction_method != reduction_method_not_defined && 8149 team_size != 1) { 8150 8151 PACKED_REDUCTION_METHOD_T forced_retval = critical_reduce_block; 8152 8153 int atomic_available, tree_available; 8154 8155 switch ((forced_retval = __kmp_force_reduction_method)) { 8156 case critical_reduce_block: 8157 KMP_ASSERT(lck); // lck should be != 0 8158 break; 8159 8160 case atomic_reduce_block: 8161 atomic_available = FAST_REDUCTION_ATOMIC_METHOD_GENERATED; 8162 if (!atomic_available) { 8163 KMP_WARNING(RedMethodNotSupported, "atomic"); 8164 forced_retval = critical_reduce_block; 8165 } 8166 break; 8167 8168 case tree_reduce_block: 8169 tree_available = FAST_REDUCTION_TREE_METHOD_GENERATED; 8170 if (!tree_available) { 8171 KMP_WARNING(RedMethodNotSupported, "tree"); 8172 forced_retval = critical_reduce_block; 8173 } else { 8174 #if KMP_FAST_REDUCTION_BARRIER 8175 forced_retval = TREE_REDUCE_BLOCK_WITH_REDUCTION_BARRIER; 8176 #endif 8177 } 8178 break; 8179 8180 default: 8181 KMP_ASSERT(0); // "unsupported method specified" 8182 } 8183 8184 retval = forced_retval; 8185 } 8186 8187 KA_TRACE(10, ("reduction method selected=%08x\n", retval)); 8188 8189 #undef FAST_REDUCTION_TREE_METHOD_GENERATED 8190 #undef FAST_REDUCTION_ATOMIC_METHOD_GENERATED 8191 8192 return (retval); 8193 } 8194 // this function is for testing set/get/determine reduce method 8195 kmp_int32 __kmp_get_reduce_method(void) { 8196 return ((__kmp_entry_thread()->th.th_local.packed_reduction_method) >> 8); 8197 } 8198 8199 // Soft pause sets up threads to ignore blocktime and just go to sleep. 8200 // Spin-wait code checks __kmp_pause_status and reacts accordingly. 8201 void __kmp_soft_pause() { __kmp_pause_status = kmp_soft_paused; } 8202 8203 // Hard pause shuts down the runtime completely. Resume happens naturally when 8204 // OpenMP is used subsequently. 8205 void __kmp_hard_pause() { 8206 __kmp_pause_status = kmp_hard_paused; 8207 __kmp_internal_end_thread(-1); 8208 } 8209 8210 // Soft resume sets __kmp_pause_status, and wakes up all threads. 8211 void __kmp_resume_if_soft_paused() { 8212 if (__kmp_pause_status == kmp_soft_paused) { 8213 __kmp_pause_status = kmp_not_paused; 8214 8215 for (int gtid = 1; gtid < __kmp_threads_capacity; ++gtid) { 8216 kmp_info_t *thread = __kmp_threads[gtid]; 8217 if (thread) { // Wake it if sleeping 8218 kmp_flag_64 fl(&thread->th.th_bar[bs_forkjoin_barrier].bb.b_go, thread); 8219 if (fl.is_sleeping()) 8220 fl.resume(gtid); 8221 else if (__kmp_try_suspend_mx(thread)) { // got suspend lock 8222 __kmp_unlock_suspend_mx(thread); // unlock it; it won't sleep 8223 } else { // thread holds the lock and may sleep soon 8224 do { // until either the thread sleeps, or we can get the lock 8225 if (fl.is_sleeping()) { 8226 fl.resume(gtid); 8227 break; 8228 } else if (__kmp_try_suspend_mx(thread)) { 8229 __kmp_unlock_suspend_mx(thread); 8230 break; 8231 } 8232 } while (1); 8233 } 8234 } 8235 } 8236 } 8237 } 8238 8239 // This function is called via __kmpc_pause_resource. Returns 0 if successful. 8240 // TODO: add warning messages 8241 int __kmp_pause_resource(kmp_pause_status_t level) { 8242 if (level == kmp_not_paused) { // requesting resume 8243 if (__kmp_pause_status == kmp_not_paused) { 8244 // error message about runtime not being paused, so can't resume 8245 return 1; 8246 } else { 8247 KMP_DEBUG_ASSERT(__kmp_pause_status == kmp_soft_paused || 8248 __kmp_pause_status == kmp_hard_paused); 8249 __kmp_pause_status = kmp_not_paused; 8250 return 0; 8251 } 8252 } else if (level == kmp_soft_paused) { // requesting soft pause 8253 if (__kmp_pause_status != kmp_not_paused) { 8254 // error message about already being paused 8255 return 1; 8256 } else { 8257 __kmp_soft_pause(); 8258 return 0; 8259 } 8260 } else if (level == kmp_hard_paused) { // requesting hard pause 8261 if (__kmp_pause_status != kmp_not_paused) { 8262 // error message about already being paused 8263 return 1; 8264 } else { 8265 __kmp_hard_pause(); 8266 return 0; 8267 } 8268 } else { 8269 // error message about invalid level 8270 return 1; 8271 } 8272 } 8273 8274 8275 void __kmp_omp_display_env(int verbose) { 8276 __kmp_acquire_bootstrap_lock(&__kmp_initz_lock); 8277 if (__kmp_init_serial == 0) 8278 __kmp_do_serial_initialize(); 8279 __kmp_display_env_impl(!verbose, verbose); 8280 __kmp_release_bootstrap_lock(&__kmp_initz_lock); 8281 } 8282