1 /* 2 * kmp_runtime.cpp -- KPTS runtime support library 3 */ 4 5 //===----------------------------------------------------------------------===// 6 // 7 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 8 // See https://llvm.org/LICENSE.txt for license information. 9 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "kmp.h" 14 #include "kmp_affinity.h" 15 #include "kmp_atomic.h" 16 #include "kmp_environment.h" 17 #include "kmp_error.h" 18 #include "kmp_i18n.h" 19 #include "kmp_io.h" 20 #include "kmp_itt.h" 21 #include "kmp_settings.h" 22 #include "kmp_stats.h" 23 #include "kmp_str.h" 24 #include "kmp_wait_release.h" 25 #include "kmp_wrapper_getpid.h" 26 #include "kmp_dispatch.h" 27 #if KMP_USE_HIER_SCHED 28 #include "kmp_dispatch_hier.h" 29 #endif 30 31 #if OMPT_SUPPORT 32 #include "ompt-specific.h" 33 #endif 34 #if OMPD_SUPPORT 35 #include "ompd-specific.h" 36 #endif 37 38 #if OMP_PROFILING_SUPPORT 39 #include "llvm/Support/TimeProfiler.h" 40 static char *ProfileTraceFile = nullptr; 41 #endif 42 43 /* these are temporary issues to be dealt with */ 44 #define KMP_USE_PRCTL 0 45 46 #if KMP_OS_WINDOWS 47 #include <process.h> 48 #endif 49 50 #if KMP_OS_WINDOWS 51 // windows does not need include files as it doesn't use shared memory 52 #else 53 #include <sys/mman.h> 54 #include <sys/stat.h> 55 #include <fcntl.h> 56 #define SHM_SIZE 1024 57 #endif 58 59 #if defined(KMP_GOMP_COMPAT) 60 char const __kmp_version_alt_comp[] = 61 KMP_VERSION_PREFIX "alternative compiler support: yes"; 62 #endif /* defined(KMP_GOMP_COMPAT) */ 63 64 char const __kmp_version_omp_api[] = 65 KMP_VERSION_PREFIX "API version: 5.0 (201611)"; 66 67 #ifdef KMP_DEBUG 68 char const __kmp_version_lock[] = 69 KMP_VERSION_PREFIX "lock type: run time selectable"; 70 #endif /* KMP_DEBUG */ 71 72 #define KMP_MIN(x, y) ((x) < (y) ? (x) : (y)) 73 74 /* ------------------------------------------------------------------------ */ 75 76 #if KMP_USE_MONITOR 77 kmp_info_t __kmp_monitor; 78 #endif 79 80 /* Forward declarations */ 81 82 void __kmp_cleanup(void); 83 84 static void __kmp_initialize_info(kmp_info_t *, kmp_team_t *, int tid, 85 int gtid); 86 static void __kmp_initialize_team(kmp_team_t *team, int new_nproc, 87 kmp_internal_control_t *new_icvs, 88 ident_t *loc); 89 #if KMP_AFFINITY_SUPPORTED 90 static void __kmp_partition_places(kmp_team_t *team, 91 int update_master_only = 0); 92 #endif 93 static void __kmp_do_serial_initialize(void); 94 void __kmp_fork_barrier(int gtid, int tid); 95 void __kmp_join_barrier(int gtid); 96 void __kmp_setup_icv_copy(kmp_team_t *team, int new_nproc, 97 kmp_internal_control_t *new_icvs, ident_t *loc); 98 99 #ifdef USE_LOAD_BALANCE 100 static int __kmp_load_balance_nproc(kmp_root_t *root, int set_nproc); 101 #endif 102 103 static int __kmp_expand_threads(int nNeed); 104 #if KMP_OS_WINDOWS 105 static int __kmp_unregister_root_other_thread(int gtid); 106 #endif 107 static void __kmp_reap_thread(kmp_info_t *thread, int is_root); 108 kmp_info_t *__kmp_thread_pool_insert_pt = NULL; 109 110 void __kmp_resize_dist_barrier(kmp_team_t *team, int old_nthreads, 111 int new_nthreads); 112 void __kmp_add_threads_to_team(kmp_team_t *team, int new_nthreads); 113 114 /* Calculate the identifier of the current thread */ 115 /* fast (and somewhat portable) way to get unique identifier of executing 116 thread. Returns KMP_GTID_DNE if we haven't been assigned a gtid. */ 117 int __kmp_get_global_thread_id() { 118 int i; 119 kmp_info_t **other_threads; 120 size_t stack_data; 121 char *stack_addr; 122 size_t stack_size; 123 char *stack_base; 124 125 KA_TRACE( 126 1000, 127 ("*** __kmp_get_global_thread_id: entering, nproc=%d all_nproc=%d\n", 128 __kmp_nth, __kmp_all_nth)); 129 130 /* JPH - to handle the case where __kmpc_end(0) is called immediately prior to 131 a parallel region, made it return KMP_GTID_DNE to force serial_initialize 132 by caller. Had to handle KMP_GTID_DNE at all call-sites, or else guarantee 133 __kmp_init_gtid for this to work. */ 134 135 if (!TCR_4(__kmp_init_gtid)) 136 return KMP_GTID_DNE; 137 138 #ifdef KMP_TDATA_GTID 139 if (TCR_4(__kmp_gtid_mode) >= 3) { 140 KA_TRACE(1000, ("*** __kmp_get_global_thread_id: using TDATA\n")); 141 return __kmp_gtid; 142 } 143 #endif 144 if (TCR_4(__kmp_gtid_mode) >= 2) { 145 KA_TRACE(1000, ("*** __kmp_get_global_thread_id: using keyed TLS\n")); 146 return __kmp_gtid_get_specific(); 147 } 148 KA_TRACE(1000, ("*** __kmp_get_global_thread_id: using internal alg.\n")); 149 150 stack_addr = (char *)&stack_data; 151 other_threads = __kmp_threads; 152 153 /* ATT: The code below is a source of potential bugs due to unsynchronized 154 access to __kmp_threads array. For example: 155 1. Current thread loads other_threads[i] to thr and checks it, it is 156 non-NULL. 157 2. Current thread is suspended by OS. 158 3. Another thread unregisters and finishes (debug versions of free() 159 may fill memory with something like 0xEF). 160 4. Current thread is resumed. 161 5. Current thread reads junk from *thr. 162 TODO: Fix it. --ln */ 163 164 for (i = 0; i < __kmp_threads_capacity; i++) { 165 166 kmp_info_t *thr = (kmp_info_t *)TCR_SYNC_PTR(other_threads[i]); 167 if (!thr) 168 continue; 169 170 stack_size = (size_t)TCR_PTR(thr->th.th_info.ds.ds_stacksize); 171 stack_base = (char *)TCR_PTR(thr->th.th_info.ds.ds_stackbase); 172 173 /* stack grows down -- search through all of the active threads */ 174 175 if (stack_addr <= stack_base) { 176 size_t stack_diff = stack_base - stack_addr; 177 178 if (stack_diff <= stack_size) { 179 /* The only way we can be closer than the allocated */ 180 /* stack size is if we are running on this thread. */ 181 KMP_DEBUG_ASSERT(__kmp_gtid_get_specific() == i); 182 return i; 183 } 184 } 185 } 186 187 /* get specific to try and determine our gtid */ 188 KA_TRACE(1000, 189 ("*** __kmp_get_global_thread_id: internal alg. failed to find " 190 "thread, using TLS\n")); 191 i = __kmp_gtid_get_specific(); 192 193 /*fprintf( stderr, "=== %d\n", i ); */ /* GROO */ 194 195 /* if we havn't been assigned a gtid, then return code */ 196 if (i < 0) 197 return i; 198 199 /* dynamically updated stack window for uber threads to avoid get_specific 200 call */ 201 if (!TCR_4(other_threads[i]->th.th_info.ds.ds_stackgrow)) { 202 KMP_FATAL(StackOverflow, i); 203 } 204 205 stack_base = (char *)other_threads[i]->th.th_info.ds.ds_stackbase; 206 if (stack_addr > stack_base) { 207 TCW_PTR(other_threads[i]->th.th_info.ds.ds_stackbase, stack_addr); 208 TCW_PTR(other_threads[i]->th.th_info.ds.ds_stacksize, 209 other_threads[i]->th.th_info.ds.ds_stacksize + stack_addr - 210 stack_base); 211 } else { 212 TCW_PTR(other_threads[i]->th.th_info.ds.ds_stacksize, 213 stack_base - stack_addr); 214 } 215 216 /* Reprint stack bounds for ubermaster since they have been refined */ 217 if (__kmp_storage_map) { 218 char *stack_end = (char *)other_threads[i]->th.th_info.ds.ds_stackbase; 219 char *stack_beg = stack_end - other_threads[i]->th.th_info.ds.ds_stacksize; 220 __kmp_print_storage_map_gtid(i, stack_beg, stack_end, 221 other_threads[i]->th.th_info.ds.ds_stacksize, 222 "th_%d stack (refinement)", i); 223 } 224 return i; 225 } 226 227 int __kmp_get_global_thread_id_reg() { 228 int gtid; 229 230 if (!__kmp_init_serial) { 231 gtid = KMP_GTID_DNE; 232 } else 233 #ifdef KMP_TDATA_GTID 234 if (TCR_4(__kmp_gtid_mode) >= 3) { 235 KA_TRACE(1000, ("*** __kmp_get_global_thread_id_reg: using TDATA\n")); 236 gtid = __kmp_gtid; 237 } else 238 #endif 239 if (TCR_4(__kmp_gtid_mode) >= 2) { 240 KA_TRACE(1000, ("*** __kmp_get_global_thread_id_reg: using keyed TLS\n")); 241 gtid = __kmp_gtid_get_specific(); 242 } else { 243 KA_TRACE(1000, 244 ("*** __kmp_get_global_thread_id_reg: using internal alg.\n")); 245 gtid = __kmp_get_global_thread_id(); 246 } 247 248 /* we must be a new uber master sibling thread */ 249 if (gtid == KMP_GTID_DNE) { 250 KA_TRACE(10, 251 ("__kmp_get_global_thread_id_reg: Encountered new root thread. " 252 "Registering a new gtid.\n")); 253 __kmp_acquire_bootstrap_lock(&__kmp_initz_lock); 254 if (!__kmp_init_serial) { 255 __kmp_do_serial_initialize(); 256 gtid = __kmp_gtid_get_specific(); 257 } else { 258 gtid = __kmp_register_root(FALSE); 259 } 260 __kmp_release_bootstrap_lock(&__kmp_initz_lock); 261 /*__kmp_printf( "+++ %d\n", gtid ); */ /* GROO */ 262 } 263 264 KMP_DEBUG_ASSERT(gtid >= 0); 265 266 return gtid; 267 } 268 269 /* caller must hold forkjoin_lock */ 270 void __kmp_check_stack_overlap(kmp_info_t *th) { 271 int f; 272 char *stack_beg = NULL; 273 char *stack_end = NULL; 274 int gtid; 275 276 KA_TRACE(10, ("__kmp_check_stack_overlap: called\n")); 277 if (__kmp_storage_map) { 278 stack_end = (char *)th->th.th_info.ds.ds_stackbase; 279 stack_beg = stack_end - th->th.th_info.ds.ds_stacksize; 280 281 gtid = __kmp_gtid_from_thread(th); 282 283 if (gtid == KMP_GTID_MONITOR) { 284 __kmp_print_storage_map_gtid( 285 gtid, stack_beg, stack_end, th->th.th_info.ds.ds_stacksize, 286 "th_%s stack (%s)", "mon", 287 (th->th.th_info.ds.ds_stackgrow) ? "initial" : "actual"); 288 } else { 289 __kmp_print_storage_map_gtid( 290 gtid, stack_beg, stack_end, th->th.th_info.ds.ds_stacksize, 291 "th_%d stack (%s)", gtid, 292 (th->th.th_info.ds.ds_stackgrow) ? "initial" : "actual"); 293 } 294 } 295 296 /* No point in checking ubermaster threads since they use refinement and 297 * cannot overlap */ 298 gtid = __kmp_gtid_from_thread(th); 299 if (__kmp_env_checks == TRUE && !KMP_UBER_GTID(gtid)) { 300 KA_TRACE(10, 301 ("__kmp_check_stack_overlap: performing extensive checking\n")); 302 if (stack_beg == NULL) { 303 stack_end = (char *)th->th.th_info.ds.ds_stackbase; 304 stack_beg = stack_end - th->th.th_info.ds.ds_stacksize; 305 } 306 307 for (f = 0; f < __kmp_threads_capacity; f++) { 308 kmp_info_t *f_th = (kmp_info_t *)TCR_SYNC_PTR(__kmp_threads[f]); 309 310 if (f_th && f_th != th) { 311 char *other_stack_end = 312 (char *)TCR_PTR(f_th->th.th_info.ds.ds_stackbase); 313 char *other_stack_beg = 314 other_stack_end - (size_t)TCR_PTR(f_th->th.th_info.ds.ds_stacksize); 315 if ((stack_beg > other_stack_beg && stack_beg < other_stack_end) || 316 (stack_end > other_stack_beg && stack_end < other_stack_end)) { 317 318 /* Print the other stack values before the abort */ 319 if (__kmp_storage_map) 320 __kmp_print_storage_map_gtid( 321 -1, other_stack_beg, other_stack_end, 322 (size_t)TCR_PTR(f_th->th.th_info.ds.ds_stacksize), 323 "th_%d stack (overlapped)", __kmp_gtid_from_thread(f_th)); 324 325 __kmp_fatal(KMP_MSG(StackOverlap), KMP_HNT(ChangeStackLimit), 326 __kmp_msg_null); 327 } 328 } 329 } 330 } 331 KA_TRACE(10, ("__kmp_check_stack_overlap: returning\n")); 332 } 333 334 /* ------------------------------------------------------------------------ */ 335 336 void __kmp_infinite_loop(void) { 337 static int done = FALSE; 338 339 while (!done) { 340 KMP_YIELD(TRUE); 341 } 342 } 343 344 #define MAX_MESSAGE 512 345 346 void __kmp_print_storage_map_gtid(int gtid, void *p1, void *p2, size_t size, 347 char const *format, ...) { 348 char buffer[MAX_MESSAGE]; 349 va_list ap; 350 351 va_start(ap, format); 352 KMP_SNPRINTF(buffer, sizeof(buffer), "OMP storage map: %p %p%8lu %s\n", p1, 353 p2, (unsigned long)size, format); 354 __kmp_acquire_bootstrap_lock(&__kmp_stdio_lock); 355 __kmp_vprintf(kmp_err, buffer, ap); 356 #if KMP_PRINT_DATA_PLACEMENT 357 int node; 358 if (gtid >= 0) { 359 if (p1 <= p2 && (char *)p2 - (char *)p1 == size) { 360 if (__kmp_storage_map_verbose) { 361 node = __kmp_get_host_node(p1); 362 if (node < 0) /* doesn't work, so don't try this next time */ 363 __kmp_storage_map_verbose = FALSE; 364 else { 365 char *last; 366 int lastNode; 367 int localProc = __kmp_get_cpu_from_gtid(gtid); 368 369 const int page_size = KMP_GET_PAGE_SIZE(); 370 371 p1 = (void *)((size_t)p1 & ~((size_t)page_size - 1)); 372 p2 = (void *)(((size_t)p2 - 1) & ~((size_t)page_size - 1)); 373 if (localProc >= 0) 374 __kmp_printf_no_lock(" GTID %d localNode %d\n", gtid, 375 localProc >> 1); 376 else 377 __kmp_printf_no_lock(" GTID %d\n", gtid); 378 #if KMP_USE_PRCTL 379 /* The more elaborate format is disabled for now because of the prctl 380 * hanging bug. */ 381 do { 382 last = p1; 383 lastNode = node; 384 /* This loop collates adjacent pages with the same host node. */ 385 do { 386 (char *)p1 += page_size; 387 } while (p1 <= p2 && (node = __kmp_get_host_node(p1)) == lastNode); 388 __kmp_printf_no_lock(" %p-%p memNode %d\n", last, (char *)p1 - 1, 389 lastNode); 390 } while (p1 <= p2); 391 #else 392 __kmp_printf_no_lock(" %p-%p memNode %d\n", p1, 393 (char *)p1 + (page_size - 1), 394 __kmp_get_host_node(p1)); 395 if (p1 < p2) { 396 __kmp_printf_no_lock(" %p-%p memNode %d\n", p2, 397 (char *)p2 + (page_size - 1), 398 __kmp_get_host_node(p2)); 399 } 400 #endif 401 } 402 } 403 } else 404 __kmp_printf_no_lock(" %s\n", KMP_I18N_STR(StorageMapWarning)); 405 } 406 #endif /* KMP_PRINT_DATA_PLACEMENT */ 407 __kmp_release_bootstrap_lock(&__kmp_stdio_lock); 408 } 409 410 void __kmp_warn(char const *format, ...) { 411 char buffer[MAX_MESSAGE]; 412 va_list ap; 413 414 if (__kmp_generate_warnings == kmp_warnings_off) { 415 return; 416 } 417 418 va_start(ap, format); 419 420 KMP_SNPRINTF(buffer, sizeof(buffer), "OMP warning: %s\n", format); 421 __kmp_acquire_bootstrap_lock(&__kmp_stdio_lock); 422 __kmp_vprintf(kmp_err, buffer, ap); 423 __kmp_release_bootstrap_lock(&__kmp_stdio_lock); 424 425 va_end(ap); 426 } 427 428 void __kmp_abort_process() { 429 // Later threads may stall here, but that's ok because abort() will kill them. 430 __kmp_acquire_bootstrap_lock(&__kmp_exit_lock); 431 432 if (__kmp_debug_buf) { 433 __kmp_dump_debug_buffer(); 434 } 435 436 if (KMP_OS_WINDOWS) { 437 // Let other threads know of abnormal termination and prevent deadlock 438 // if abort happened during library initialization or shutdown 439 __kmp_global.g.g_abort = SIGABRT; 440 441 /* On Windows* OS by default abort() causes pop-up error box, which stalls 442 nightly testing. Unfortunately, we cannot reliably suppress pop-up error 443 boxes. _set_abort_behavior() works well, but this function is not 444 available in VS7 (this is not problem for DLL, but it is a problem for 445 static OpenMP RTL). SetErrorMode (and so, timelimit utility) does not 446 help, at least in some versions of MS C RTL. 447 448 It seems following sequence is the only way to simulate abort() and 449 avoid pop-up error box. */ 450 raise(SIGABRT); 451 _exit(3); // Just in case, if signal ignored, exit anyway. 452 } else { 453 __kmp_unregister_library(); 454 abort(); 455 } 456 457 __kmp_infinite_loop(); 458 __kmp_release_bootstrap_lock(&__kmp_exit_lock); 459 460 } // __kmp_abort_process 461 462 void __kmp_abort_thread(void) { 463 // TODO: Eliminate g_abort global variable and this function. 464 // In case of abort just call abort(), it will kill all the threads. 465 __kmp_infinite_loop(); 466 } // __kmp_abort_thread 467 468 /* Print out the storage map for the major kmp_info_t thread data structures 469 that are allocated together. */ 470 471 static void __kmp_print_thread_storage_map(kmp_info_t *thr, int gtid) { 472 __kmp_print_storage_map_gtid(gtid, thr, thr + 1, sizeof(kmp_info_t), "th_%d", 473 gtid); 474 475 __kmp_print_storage_map_gtid(gtid, &thr->th.th_info, &thr->th.th_team, 476 sizeof(kmp_desc_t), "th_%d.th_info", gtid); 477 478 __kmp_print_storage_map_gtid(gtid, &thr->th.th_local, &thr->th.th_pri_head, 479 sizeof(kmp_local_t), "th_%d.th_local", gtid); 480 481 __kmp_print_storage_map_gtid( 482 gtid, &thr->th.th_bar[0], &thr->th.th_bar[bs_last_barrier], 483 sizeof(kmp_balign_t) * bs_last_barrier, "th_%d.th_bar", gtid); 484 485 __kmp_print_storage_map_gtid(gtid, &thr->th.th_bar[bs_plain_barrier], 486 &thr->th.th_bar[bs_plain_barrier + 1], 487 sizeof(kmp_balign_t), "th_%d.th_bar[plain]", 488 gtid); 489 490 __kmp_print_storage_map_gtid(gtid, &thr->th.th_bar[bs_forkjoin_barrier], 491 &thr->th.th_bar[bs_forkjoin_barrier + 1], 492 sizeof(kmp_balign_t), "th_%d.th_bar[forkjoin]", 493 gtid); 494 495 #if KMP_FAST_REDUCTION_BARRIER 496 __kmp_print_storage_map_gtid(gtid, &thr->th.th_bar[bs_reduction_barrier], 497 &thr->th.th_bar[bs_reduction_barrier + 1], 498 sizeof(kmp_balign_t), "th_%d.th_bar[reduction]", 499 gtid); 500 #endif // KMP_FAST_REDUCTION_BARRIER 501 } 502 503 /* Print out the storage map for the major kmp_team_t team data structures 504 that are allocated together. */ 505 506 static void __kmp_print_team_storage_map(const char *header, kmp_team_t *team, 507 int team_id, int num_thr) { 508 int num_disp_buff = team->t.t_max_nproc > 1 ? __kmp_dispatch_num_buffers : 2; 509 __kmp_print_storage_map_gtid(-1, team, team + 1, sizeof(kmp_team_t), "%s_%d", 510 header, team_id); 511 512 __kmp_print_storage_map_gtid(-1, &team->t.t_bar[0], 513 &team->t.t_bar[bs_last_barrier], 514 sizeof(kmp_balign_team_t) * bs_last_barrier, 515 "%s_%d.t_bar", header, team_id); 516 517 __kmp_print_storage_map_gtid(-1, &team->t.t_bar[bs_plain_barrier], 518 &team->t.t_bar[bs_plain_barrier + 1], 519 sizeof(kmp_balign_team_t), "%s_%d.t_bar[plain]", 520 header, team_id); 521 522 __kmp_print_storage_map_gtid(-1, &team->t.t_bar[bs_forkjoin_barrier], 523 &team->t.t_bar[bs_forkjoin_barrier + 1], 524 sizeof(kmp_balign_team_t), 525 "%s_%d.t_bar[forkjoin]", header, team_id); 526 527 #if KMP_FAST_REDUCTION_BARRIER 528 __kmp_print_storage_map_gtid(-1, &team->t.t_bar[bs_reduction_barrier], 529 &team->t.t_bar[bs_reduction_barrier + 1], 530 sizeof(kmp_balign_team_t), 531 "%s_%d.t_bar[reduction]", header, team_id); 532 #endif // KMP_FAST_REDUCTION_BARRIER 533 534 __kmp_print_storage_map_gtid( 535 -1, &team->t.t_dispatch[0], &team->t.t_dispatch[num_thr], 536 sizeof(kmp_disp_t) * num_thr, "%s_%d.t_dispatch", header, team_id); 537 538 __kmp_print_storage_map_gtid( 539 -1, &team->t.t_threads[0], &team->t.t_threads[num_thr], 540 sizeof(kmp_info_t *) * num_thr, "%s_%d.t_threads", header, team_id); 541 542 __kmp_print_storage_map_gtid(-1, &team->t.t_disp_buffer[0], 543 &team->t.t_disp_buffer[num_disp_buff], 544 sizeof(dispatch_shared_info_t) * num_disp_buff, 545 "%s_%d.t_disp_buffer", header, team_id); 546 } 547 548 static void __kmp_init_allocator() { 549 __kmp_init_memkind(); 550 __kmp_init_target_mem(); 551 } 552 static void __kmp_fini_allocator() { __kmp_fini_memkind(); } 553 554 /* ------------------------------------------------------------------------ */ 555 556 #if KMP_DYNAMIC_LIB 557 #if KMP_OS_WINDOWS 558 559 BOOL WINAPI DllMain(HINSTANCE hInstDLL, DWORD fdwReason, LPVOID lpReserved) { 560 //__kmp_acquire_bootstrap_lock( &__kmp_initz_lock ); 561 562 switch (fdwReason) { 563 564 case DLL_PROCESS_ATTACH: 565 KA_TRACE(10, ("DllMain: PROCESS_ATTACH\n")); 566 567 return TRUE; 568 569 case DLL_PROCESS_DETACH: 570 KA_TRACE(10, ("DllMain: PROCESS_DETACH T#%d\n", __kmp_gtid_get_specific())); 571 572 // According to Windows* documentation for DllMain entry point: 573 // for DLL_PROCESS_DETACH, lpReserved is used for telling the difference: 574 // lpReserved == NULL when FreeLibrary() is called, 575 // lpReserved != NULL when the process is terminated. 576 // When FreeLibrary() is called, worker threads remain alive. So the 577 // runtime's state is consistent and executing proper shutdown is OK. 578 // When the process is terminated, worker threads have exited or been 579 // forcefully terminated by the OS and only the shutdown thread remains. 580 // This can leave the runtime in an inconsistent state. 581 // Hence, only attempt proper cleanup when FreeLibrary() is called. 582 // Otherwise, rely on OS to reclaim resources. 583 if (lpReserved == NULL) 584 __kmp_internal_end_library(__kmp_gtid_get_specific()); 585 586 return TRUE; 587 588 case DLL_THREAD_ATTACH: 589 KA_TRACE(10, ("DllMain: THREAD_ATTACH\n")); 590 591 /* if we want to register new siblings all the time here call 592 * __kmp_get_gtid(); */ 593 return TRUE; 594 595 case DLL_THREAD_DETACH: 596 KA_TRACE(10, ("DllMain: THREAD_DETACH T#%d\n", __kmp_gtid_get_specific())); 597 598 __kmp_internal_end_thread(__kmp_gtid_get_specific()); 599 return TRUE; 600 } 601 602 return TRUE; 603 } 604 605 #endif /* KMP_OS_WINDOWS */ 606 #endif /* KMP_DYNAMIC_LIB */ 607 608 /* __kmp_parallel_deo -- Wait until it's our turn. */ 609 void __kmp_parallel_deo(int *gtid_ref, int *cid_ref, ident_t *loc_ref) { 610 int gtid = *gtid_ref; 611 #ifdef BUILD_PARALLEL_ORDERED 612 kmp_team_t *team = __kmp_team_from_gtid(gtid); 613 #endif /* BUILD_PARALLEL_ORDERED */ 614 615 if (__kmp_env_consistency_check) { 616 if (__kmp_threads[gtid]->th.th_root->r.r_active) 617 #if KMP_USE_DYNAMIC_LOCK 618 __kmp_push_sync(gtid, ct_ordered_in_parallel, loc_ref, NULL, 0); 619 #else 620 __kmp_push_sync(gtid, ct_ordered_in_parallel, loc_ref, NULL); 621 #endif 622 } 623 #ifdef BUILD_PARALLEL_ORDERED 624 if (!team->t.t_serialized) { 625 KMP_MB(); 626 KMP_WAIT(&team->t.t_ordered.dt.t_value, __kmp_tid_from_gtid(gtid), KMP_EQ, 627 NULL); 628 KMP_MB(); 629 } 630 #endif /* BUILD_PARALLEL_ORDERED */ 631 } 632 633 /* __kmp_parallel_dxo -- Signal the next task. */ 634 void __kmp_parallel_dxo(int *gtid_ref, int *cid_ref, ident_t *loc_ref) { 635 int gtid = *gtid_ref; 636 #ifdef BUILD_PARALLEL_ORDERED 637 int tid = __kmp_tid_from_gtid(gtid); 638 kmp_team_t *team = __kmp_team_from_gtid(gtid); 639 #endif /* BUILD_PARALLEL_ORDERED */ 640 641 if (__kmp_env_consistency_check) { 642 if (__kmp_threads[gtid]->th.th_root->r.r_active) 643 __kmp_pop_sync(gtid, ct_ordered_in_parallel, loc_ref); 644 } 645 #ifdef BUILD_PARALLEL_ORDERED 646 if (!team->t.t_serialized) { 647 KMP_MB(); /* Flush all pending memory write invalidates. */ 648 649 /* use the tid of the next thread in this team */ 650 /* TODO replace with general release procedure */ 651 team->t.t_ordered.dt.t_value = ((tid + 1) % team->t.t_nproc); 652 653 KMP_MB(); /* Flush all pending memory write invalidates. */ 654 } 655 #endif /* BUILD_PARALLEL_ORDERED */ 656 } 657 658 /* ------------------------------------------------------------------------ */ 659 /* The BARRIER for a SINGLE process section is always explicit */ 660 661 int __kmp_enter_single(int gtid, ident_t *id_ref, int push_ws) { 662 int status; 663 kmp_info_t *th; 664 kmp_team_t *team; 665 666 if (!TCR_4(__kmp_init_parallel)) 667 __kmp_parallel_initialize(); 668 __kmp_resume_if_soft_paused(); 669 670 th = __kmp_threads[gtid]; 671 team = th->th.th_team; 672 status = 0; 673 674 th->th.th_ident = id_ref; 675 676 if (team->t.t_serialized) { 677 status = 1; 678 } else { 679 kmp_int32 old_this = th->th.th_local.this_construct; 680 681 ++th->th.th_local.this_construct; 682 /* try to set team count to thread count--success means thread got the 683 single block */ 684 /* TODO: Should this be acquire or release? */ 685 if (team->t.t_construct == old_this) { 686 status = __kmp_atomic_compare_store_acq(&team->t.t_construct, old_this, 687 th->th.th_local.this_construct); 688 } 689 #if USE_ITT_BUILD 690 if (__itt_metadata_add_ptr && __kmp_forkjoin_frames_mode == 3 && 691 KMP_MASTER_GTID(gtid) && th->th.th_teams_microtask == NULL && 692 team->t.t_active_level == 1) { 693 // Only report metadata by primary thread of active team at level 1 694 __kmp_itt_metadata_single(id_ref); 695 } 696 #endif /* USE_ITT_BUILD */ 697 } 698 699 if (__kmp_env_consistency_check) { 700 if (status && push_ws) { 701 __kmp_push_workshare(gtid, ct_psingle, id_ref); 702 } else { 703 __kmp_check_workshare(gtid, ct_psingle, id_ref); 704 } 705 } 706 #if USE_ITT_BUILD 707 if (status) { 708 __kmp_itt_single_start(gtid); 709 } 710 #endif /* USE_ITT_BUILD */ 711 return status; 712 } 713 714 void __kmp_exit_single(int gtid) { 715 #if USE_ITT_BUILD 716 __kmp_itt_single_end(gtid); 717 #endif /* USE_ITT_BUILD */ 718 if (__kmp_env_consistency_check) 719 __kmp_pop_workshare(gtid, ct_psingle, NULL); 720 } 721 722 /* determine if we can go parallel or must use a serialized parallel region and 723 * how many threads we can use 724 * set_nproc is the number of threads requested for the team 725 * returns 0 if we should serialize or only use one thread, 726 * otherwise the number of threads to use 727 * The forkjoin lock is held by the caller. */ 728 static int __kmp_reserve_threads(kmp_root_t *root, kmp_team_t *parent_team, 729 int master_tid, int set_nthreads, 730 int enter_teams) { 731 int capacity; 732 int new_nthreads; 733 KMP_DEBUG_ASSERT(__kmp_init_serial); 734 KMP_DEBUG_ASSERT(root && parent_team); 735 kmp_info_t *this_thr = parent_team->t.t_threads[master_tid]; 736 737 // If dyn-var is set, dynamically adjust the number of desired threads, 738 // according to the method specified by dynamic_mode. 739 new_nthreads = set_nthreads; 740 if (!get__dynamic_2(parent_team, master_tid)) { 741 ; 742 } 743 #ifdef USE_LOAD_BALANCE 744 else if (__kmp_global.g.g_dynamic_mode == dynamic_load_balance) { 745 new_nthreads = __kmp_load_balance_nproc(root, set_nthreads); 746 if (new_nthreads == 1) { 747 KC_TRACE(10, ("__kmp_reserve_threads: T#%d load balance reduced " 748 "reservation to 1 thread\n", 749 master_tid)); 750 return 1; 751 } 752 if (new_nthreads < set_nthreads) { 753 KC_TRACE(10, ("__kmp_reserve_threads: T#%d load balance reduced " 754 "reservation to %d threads\n", 755 master_tid, new_nthreads)); 756 } 757 } 758 #endif /* USE_LOAD_BALANCE */ 759 else if (__kmp_global.g.g_dynamic_mode == dynamic_thread_limit) { 760 new_nthreads = __kmp_avail_proc - __kmp_nth + 761 (root->r.r_active ? 1 : root->r.r_hot_team->t.t_nproc); 762 if (new_nthreads <= 1) { 763 KC_TRACE(10, ("__kmp_reserve_threads: T#%d thread limit reduced " 764 "reservation to 1 thread\n", 765 master_tid)); 766 return 1; 767 } 768 if (new_nthreads < set_nthreads) { 769 KC_TRACE(10, ("__kmp_reserve_threads: T#%d thread limit reduced " 770 "reservation to %d threads\n", 771 master_tid, new_nthreads)); 772 } else { 773 new_nthreads = set_nthreads; 774 } 775 } else if (__kmp_global.g.g_dynamic_mode == dynamic_random) { 776 if (set_nthreads > 2) { 777 new_nthreads = __kmp_get_random(parent_team->t.t_threads[master_tid]); 778 new_nthreads = (new_nthreads % set_nthreads) + 1; 779 if (new_nthreads == 1) { 780 KC_TRACE(10, ("__kmp_reserve_threads: T#%d dynamic random reduced " 781 "reservation to 1 thread\n", 782 master_tid)); 783 return 1; 784 } 785 if (new_nthreads < set_nthreads) { 786 KC_TRACE(10, ("__kmp_reserve_threads: T#%d dynamic random reduced " 787 "reservation to %d threads\n", 788 master_tid, new_nthreads)); 789 } 790 } 791 } else { 792 KMP_ASSERT(0); 793 } 794 795 // Respect KMP_ALL_THREADS/KMP_DEVICE_THREAD_LIMIT. 796 if (__kmp_nth + new_nthreads - 797 (root->r.r_active ? 1 : root->r.r_hot_team->t.t_nproc) > 798 __kmp_max_nth) { 799 int tl_nthreads = __kmp_max_nth - __kmp_nth + 800 (root->r.r_active ? 1 : root->r.r_hot_team->t.t_nproc); 801 if (tl_nthreads <= 0) { 802 tl_nthreads = 1; 803 } 804 805 // If dyn-var is false, emit a 1-time warning. 806 if (!get__dynamic_2(parent_team, master_tid) && (!__kmp_reserve_warn)) { 807 __kmp_reserve_warn = 1; 808 __kmp_msg(kmp_ms_warning, 809 KMP_MSG(CantFormThrTeam, set_nthreads, tl_nthreads), 810 KMP_HNT(Unset_ALL_THREADS), __kmp_msg_null); 811 } 812 if (tl_nthreads == 1) { 813 KC_TRACE(10, ("__kmp_reserve_threads: T#%d KMP_DEVICE_THREAD_LIMIT " 814 "reduced reservation to 1 thread\n", 815 master_tid)); 816 return 1; 817 } 818 KC_TRACE(10, ("__kmp_reserve_threads: T#%d KMP_DEVICE_THREAD_LIMIT reduced " 819 "reservation to %d threads\n", 820 master_tid, tl_nthreads)); 821 new_nthreads = tl_nthreads; 822 } 823 824 // Respect OMP_THREAD_LIMIT 825 int cg_nthreads = this_thr->th.th_cg_roots->cg_nthreads; 826 int max_cg_threads = this_thr->th.th_cg_roots->cg_thread_limit; 827 if (cg_nthreads + new_nthreads - 828 (root->r.r_active ? 1 : root->r.r_hot_team->t.t_nproc) > 829 max_cg_threads) { 830 int tl_nthreads = max_cg_threads - cg_nthreads + 831 (root->r.r_active ? 1 : root->r.r_hot_team->t.t_nproc); 832 if (tl_nthreads <= 0) { 833 tl_nthreads = 1; 834 } 835 836 // If dyn-var is false, emit a 1-time warning. 837 if (!get__dynamic_2(parent_team, master_tid) && (!__kmp_reserve_warn)) { 838 __kmp_reserve_warn = 1; 839 __kmp_msg(kmp_ms_warning, 840 KMP_MSG(CantFormThrTeam, set_nthreads, tl_nthreads), 841 KMP_HNT(Unset_ALL_THREADS), __kmp_msg_null); 842 } 843 if (tl_nthreads == 1) { 844 KC_TRACE(10, ("__kmp_reserve_threads: T#%d OMP_THREAD_LIMIT " 845 "reduced reservation to 1 thread\n", 846 master_tid)); 847 return 1; 848 } 849 KC_TRACE(10, ("__kmp_reserve_threads: T#%d OMP_THREAD_LIMIT reduced " 850 "reservation to %d threads\n", 851 master_tid, tl_nthreads)); 852 new_nthreads = tl_nthreads; 853 } 854 855 // Check if the threads array is large enough, or needs expanding. 856 // See comment in __kmp_register_root() about the adjustment if 857 // __kmp_threads[0] == NULL. 858 capacity = __kmp_threads_capacity; 859 if (TCR_PTR(__kmp_threads[0]) == NULL) { 860 --capacity; 861 } 862 // If it is not for initializing the hidden helper team, we need to take 863 // __kmp_hidden_helper_threads_num out of the capacity because it is included 864 // in __kmp_threads_capacity. 865 if (__kmp_enable_hidden_helper && !TCR_4(__kmp_init_hidden_helper_threads)) { 866 capacity -= __kmp_hidden_helper_threads_num; 867 } 868 if (__kmp_nth + new_nthreads - 869 (root->r.r_active ? 1 : root->r.r_hot_team->t.t_nproc) > 870 capacity) { 871 // Expand the threads array. 872 int slotsRequired = __kmp_nth + new_nthreads - 873 (root->r.r_active ? 1 : root->r.r_hot_team->t.t_nproc) - 874 capacity; 875 int slotsAdded = __kmp_expand_threads(slotsRequired); 876 if (slotsAdded < slotsRequired) { 877 // The threads array was not expanded enough. 878 new_nthreads -= (slotsRequired - slotsAdded); 879 KMP_ASSERT(new_nthreads >= 1); 880 881 // If dyn-var is false, emit a 1-time warning. 882 if (!get__dynamic_2(parent_team, master_tid) && (!__kmp_reserve_warn)) { 883 __kmp_reserve_warn = 1; 884 if (__kmp_tp_cached) { 885 __kmp_msg(kmp_ms_warning, 886 KMP_MSG(CantFormThrTeam, set_nthreads, new_nthreads), 887 KMP_HNT(Set_ALL_THREADPRIVATE, __kmp_tp_capacity), 888 KMP_HNT(PossibleSystemLimitOnThreads), __kmp_msg_null); 889 } else { 890 __kmp_msg(kmp_ms_warning, 891 KMP_MSG(CantFormThrTeam, set_nthreads, new_nthreads), 892 KMP_HNT(SystemLimitOnThreads), __kmp_msg_null); 893 } 894 } 895 } 896 } 897 898 #ifdef KMP_DEBUG 899 if (new_nthreads == 1) { 900 KC_TRACE(10, 901 ("__kmp_reserve_threads: T#%d serializing team after reclaiming " 902 "dead roots and rechecking; requested %d threads\n", 903 __kmp_get_gtid(), set_nthreads)); 904 } else { 905 KC_TRACE(10, ("__kmp_reserve_threads: T#%d allocating %d threads; requested" 906 " %d threads\n", 907 __kmp_get_gtid(), new_nthreads, set_nthreads)); 908 } 909 #endif // KMP_DEBUG 910 return new_nthreads; 911 } 912 913 /* Allocate threads from the thread pool and assign them to the new team. We are 914 assured that there are enough threads available, because we checked on that 915 earlier within critical section forkjoin */ 916 static void __kmp_fork_team_threads(kmp_root_t *root, kmp_team_t *team, 917 kmp_info_t *master_th, int master_gtid, 918 int fork_teams_workers) { 919 int i; 920 int use_hot_team; 921 922 KA_TRACE(10, ("__kmp_fork_team_threads: new_nprocs = %d\n", team->t.t_nproc)); 923 KMP_DEBUG_ASSERT(master_gtid == __kmp_get_gtid()); 924 KMP_MB(); 925 926 /* first, let's setup the primary thread */ 927 master_th->th.th_info.ds.ds_tid = 0; 928 master_th->th.th_team = team; 929 master_th->th.th_team_nproc = team->t.t_nproc; 930 master_th->th.th_team_master = master_th; 931 master_th->th.th_team_serialized = FALSE; 932 master_th->th.th_dispatch = &team->t.t_dispatch[0]; 933 934 /* make sure we are not the optimized hot team */ 935 #if KMP_NESTED_HOT_TEAMS 936 use_hot_team = 0; 937 kmp_hot_team_ptr_t *hot_teams = master_th->th.th_hot_teams; 938 if (hot_teams) { // hot teams array is not allocated if 939 // KMP_HOT_TEAMS_MAX_LEVEL=0 940 int level = team->t.t_active_level - 1; // index in array of hot teams 941 if (master_th->th.th_teams_microtask) { // are we inside the teams? 942 if (master_th->th.th_teams_size.nteams > 1) { 943 ++level; // level was not increased in teams construct for 944 // team_of_masters 945 } 946 if (team->t.t_pkfn != (microtask_t)__kmp_teams_master && 947 master_th->th.th_teams_level == team->t.t_level) { 948 ++level; // level was not increased in teams construct for 949 // team_of_workers before the parallel 950 } // team->t.t_level will be increased inside parallel 951 } 952 if (level < __kmp_hot_teams_max_level) { 953 if (hot_teams[level].hot_team) { 954 // hot team has already been allocated for given level 955 KMP_DEBUG_ASSERT(hot_teams[level].hot_team == team); 956 use_hot_team = 1; // the team is ready to use 957 } else { 958 use_hot_team = 0; // AC: threads are not allocated yet 959 hot_teams[level].hot_team = team; // remember new hot team 960 hot_teams[level].hot_team_nth = team->t.t_nproc; 961 } 962 } else { 963 use_hot_team = 0; 964 } 965 } 966 #else 967 use_hot_team = team == root->r.r_hot_team; 968 #endif 969 if (!use_hot_team) { 970 971 /* install the primary thread */ 972 team->t.t_threads[0] = master_th; 973 __kmp_initialize_info(master_th, team, 0, master_gtid); 974 975 /* now, install the worker threads */ 976 for (i = 1; i < team->t.t_nproc; i++) { 977 978 /* fork or reallocate a new thread and install it in team */ 979 kmp_info_t *thr = __kmp_allocate_thread(root, team, i); 980 team->t.t_threads[i] = thr; 981 KMP_DEBUG_ASSERT(thr); 982 KMP_DEBUG_ASSERT(thr->th.th_team == team); 983 /* align team and thread arrived states */ 984 KA_TRACE(20, ("__kmp_fork_team_threads: T#%d(%d:%d) init arrived " 985 "T#%d(%d:%d) join =%llu, plain=%llu\n", 986 __kmp_gtid_from_tid(0, team), team->t.t_id, 0, 987 __kmp_gtid_from_tid(i, team), team->t.t_id, i, 988 team->t.t_bar[bs_forkjoin_barrier].b_arrived, 989 team->t.t_bar[bs_plain_barrier].b_arrived)); 990 thr->th.th_teams_microtask = master_th->th.th_teams_microtask; 991 thr->th.th_teams_level = master_th->th.th_teams_level; 992 thr->th.th_teams_size = master_th->th.th_teams_size; 993 { // Initialize threads' barrier data. 994 int b; 995 kmp_balign_t *balign = team->t.t_threads[i]->th.th_bar; 996 for (b = 0; b < bs_last_barrier; ++b) { 997 balign[b].bb.b_arrived = team->t.t_bar[b].b_arrived; 998 KMP_DEBUG_ASSERT(balign[b].bb.wait_flag != KMP_BARRIER_PARENT_FLAG); 999 #if USE_DEBUGGER 1000 balign[b].bb.b_worker_arrived = team->t.t_bar[b].b_team_arrived; 1001 #endif 1002 } 1003 } 1004 } 1005 1006 #if KMP_AFFINITY_SUPPORTED 1007 // Do not partition the places list for teams construct workers who 1008 // haven't actually been forked to do real work yet. This partitioning 1009 // will take place in the parallel region nested within the teams construct. 1010 if (!fork_teams_workers) { 1011 __kmp_partition_places(team); 1012 } 1013 #endif 1014 } 1015 1016 if (__kmp_display_affinity && team->t.t_display_affinity != 1) { 1017 for (i = 0; i < team->t.t_nproc; i++) { 1018 kmp_info_t *thr = team->t.t_threads[i]; 1019 if (thr->th.th_prev_num_threads != team->t.t_nproc || 1020 thr->th.th_prev_level != team->t.t_level) { 1021 team->t.t_display_affinity = 1; 1022 break; 1023 } 1024 } 1025 } 1026 1027 KMP_MB(); 1028 } 1029 1030 #if KMP_ARCH_X86 || KMP_ARCH_X86_64 1031 // Propagate any changes to the floating point control registers out to the team 1032 // We try to avoid unnecessary writes to the relevant cache line in the team 1033 // structure, so we don't make changes unless they are needed. 1034 inline static void propagateFPControl(kmp_team_t *team) { 1035 if (__kmp_inherit_fp_control) { 1036 kmp_int16 x87_fpu_control_word; 1037 kmp_uint32 mxcsr; 1038 1039 // Get primary thread's values of FPU control flags (both X87 and vector) 1040 __kmp_store_x87_fpu_control_word(&x87_fpu_control_word); 1041 __kmp_store_mxcsr(&mxcsr); 1042 mxcsr &= KMP_X86_MXCSR_MASK; 1043 1044 // There is no point looking at t_fp_control_saved here. 1045 // If it is TRUE, we still have to update the values if they are different 1046 // from those we now have. If it is FALSE we didn't save anything yet, but 1047 // our objective is the same. We have to ensure that the values in the team 1048 // are the same as those we have. 1049 // So, this code achieves what we need whether or not t_fp_control_saved is 1050 // true. By checking whether the value needs updating we avoid unnecessary 1051 // writes that would put the cache-line into a written state, causing all 1052 // threads in the team to have to read it again. 1053 KMP_CHECK_UPDATE(team->t.t_x87_fpu_control_word, x87_fpu_control_word); 1054 KMP_CHECK_UPDATE(team->t.t_mxcsr, mxcsr); 1055 // Although we don't use this value, other code in the runtime wants to know 1056 // whether it should restore them. So we must ensure it is correct. 1057 KMP_CHECK_UPDATE(team->t.t_fp_control_saved, TRUE); 1058 } else { 1059 // Similarly here. Don't write to this cache-line in the team structure 1060 // unless we have to. 1061 KMP_CHECK_UPDATE(team->t.t_fp_control_saved, FALSE); 1062 } 1063 } 1064 1065 // Do the opposite, setting the hardware registers to the updated values from 1066 // the team. 1067 inline static void updateHWFPControl(kmp_team_t *team) { 1068 if (__kmp_inherit_fp_control && team->t.t_fp_control_saved) { 1069 // Only reset the fp control regs if they have been changed in the team. 1070 // the parallel region that we are exiting. 1071 kmp_int16 x87_fpu_control_word; 1072 kmp_uint32 mxcsr; 1073 __kmp_store_x87_fpu_control_word(&x87_fpu_control_word); 1074 __kmp_store_mxcsr(&mxcsr); 1075 mxcsr &= KMP_X86_MXCSR_MASK; 1076 1077 if (team->t.t_x87_fpu_control_word != x87_fpu_control_word) { 1078 __kmp_clear_x87_fpu_status_word(); 1079 __kmp_load_x87_fpu_control_word(&team->t.t_x87_fpu_control_word); 1080 } 1081 1082 if (team->t.t_mxcsr != mxcsr) { 1083 __kmp_load_mxcsr(&team->t.t_mxcsr); 1084 } 1085 } 1086 } 1087 #else 1088 #define propagateFPControl(x) ((void)0) 1089 #define updateHWFPControl(x) ((void)0) 1090 #endif /* KMP_ARCH_X86 || KMP_ARCH_X86_64 */ 1091 1092 static void __kmp_alloc_argv_entries(int argc, kmp_team_t *team, 1093 int realloc); // forward declaration 1094 1095 /* Run a parallel region that has been serialized, so runs only in a team of the 1096 single primary thread. */ 1097 void __kmp_serialized_parallel(ident_t *loc, kmp_int32 global_tid) { 1098 kmp_info_t *this_thr; 1099 kmp_team_t *serial_team; 1100 1101 KC_TRACE(10, ("__kmpc_serialized_parallel: called by T#%d\n", global_tid)); 1102 1103 /* Skip all this code for autopar serialized loops since it results in 1104 unacceptable overhead */ 1105 if (loc != NULL && (loc->flags & KMP_IDENT_AUTOPAR)) 1106 return; 1107 1108 if (!TCR_4(__kmp_init_parallel)) 1109 __kmp_parallel_initialize(); 1110 __kmp_resume_if_soft_paused(); 1111 1112 this_thr = __kmp_threads[global_tid]; 1113 serial_team = this_thr->th.th_serial_team; 1114 1115 /* utilize the serialized team held by this thread */ 1116 KMP_DEBUG_ASSERT(serial_team); 1117 KMP_MB(); 1118 1119 if (__kmp_tasking_mode != tskm_immediate_exec) { 1120 KMP_DEBUG_ASSERT( 1121 this_thr->th.th_task_team == 1122 this_thr->th.th_team->t.t_task_team[this_thr->th.th_task_state]); 1123 KMP_DEBUG_ASSERT(serial_team->t.t_task_team[this_thr->th.th_task_state] == 1124 NULL); 1125 KA_TRACE(20, ("__kmpc_serialized_parallel: T#%d pushing task_team %p / " 1126 "team %p, new task_team = NULL\n", 1127 global_tid, this_thr->th.th_task_team, this_thr->th.th_team)); 1128 this_thr->th.th_task_team = NULL; 1129 } 1130 1131 kmp_proc_bind_t proc_bind = this_thr->th.th_set_proc_bind; 1132 if (this_thr->th.th_current_task->td_icvs.proc_bind == proc_bind_false) { 1133 proc_bind = proc_bind_false; 1134 } else if (proc_bind == proc_bind_default) { 1135 // No proc_bind clause was specified, so use the current value 1136 // of proc-bind-var for this parallel region. 1137 proc_bind = this_thr->th.th_current_task->td_icvs.proc_bind; 1138 } 1139 // Reset for next parallel region 1140 this_thr->th.th_set_proc_bind = proc_bind_default; 1141 1142 #if OMPT_SUPPORT 1143 ompt_data_t ompt_parallel_data = ompt_data_none; 1144 void *codeptr = OMPT_LOAD_RETURN_ADDRESS(global_tid); 1145 if (ompt_enabled.enabled && 1146 this_thr->th.ompt_thread_info.state != ompt_state_overhead) { 1147 1148 ompt_task_info_t *parent_task_info; 1149 parent_task_info = OMPT_CUR_TASK_INFO(this_thr); 1150 1151 parent_task_info->frame.enter_frame.ptr = OMPT_GET_FRAME_ADDRESS(0); 1152 if (ompt_enabled.ompt_callback_parallel_begin) { 1153 int team_size = 1; 1154 1155 ompt_callbacks.ompt_callback(ompt_callback_parallel_begin)( 1156 &(parent_task_info->task_data), &(parent_task_info->frame), 1157 &ompt_parallel_data, team_size, 1158 ompt_parallel_invoker_program | ompt_parallel_team, codeptr); 1159 } 1160 } 1161 #endif // OMPT_SUPPORT 1162 1163 if (this_thr->th.th_team != serial_team) { 1164 // Nested level will be an index in the nested nthreads array 1165 int level = this_thr->th.th_team->t.t_level; 1166 1167 if (serial_team->t.t_serialized) { 1168 /* this serial team was already used 1169 TODO increase performance by making this locks more specific */ 1170 kmp_team_t *new_team; 1171 1172 __kmp_acquire_bootstrap_lock(&__kmp_forkjoin_lock); 1173 1174 new_team = 1175 __kmp_allocate_team(this_thr->th.th_root, 1, 1, 1176 #if OMPT_SUPPORT 1177 ompt_parallel_data, 1178 #endif 1179 proc_bind, &this_thr->th.th_current_task->td_icvs, 1180 0 USE_NESTED_HOT_ARG(NULL)); 1181 __kmp_release_bootstrap_lock(&__kmp_forkjoin_lock); 1182 KMP_ASSERT(new_team); 1183 1184 /* setup new serialized team and install it */ 1185 new_team->t.t_threads[0] = this_thr; 1186 new_team->t.t_parent = this_thr->th.th_team; 1187 serial_team = new_team; 1188 this_thr->th.th_serial_team = serial_team; 1189 1190 KF_TRACE( 1191 10, 1192 ("__kmpc_serialized_parallel: T#%d allocated new serial team %p\n", 1193 global_tid, serial_team)); 1194 1195 /* TODO the above breaks the requirement that if we run out of resources, 1196 then we can still guarantee that serialized teams are ok, since we may 1197 need to allocate a new one */ 1198 } else { 1199 KF_TRACE( 1200 10, 1201 ("__kmpc_serialized_parallel: T#%d reusing cached serial team %p\n", 1202 global_tid, serial_team)); 1203 } 1204 1205 /* we have to initialize this serial team */ 1206 KMP_DEBUG_ASSERT(serial_team->t.t_threads); 1207 KMP_DEBUG_ASSERT(serial_team->t.t_threads[0] == this_thr); 1208 KMP_DEBUG_ASSERT(this_thr->th.th_team != serial_team); 1209 serial_team->t.t_ident = loc; 1210 serial_team->t.t_serialized = 1; 1211 serial_team->t.t_nproc = 1; 1212 serial_team->t.t_parent = this_thr->th.th_team; 1213 serial_team->t.t_sched.sched = this_thr->th.th_team->t.t_sched.sched; 1214 this_thr->th.th_team = serial_team; 1215 serial_team->t.t_master_tid = this_thr->th.th_info.ds.ds_tid; 1216 1217 KF_TRACE(10, ("__kmpc_serialized_parallel: T#%d curtask=%p\n", global_tid, 1218 this_thr->th.th_current_task)); 1219 KMP_ASSERT(this_thr->th.th_current_task->td_flags.executing == 1); 1220 this_thr->th.th_current_task->td_flags.executing = 0; 1221 1222 __kmp_push_current_task_to_thread(this_thr, serial_team, 0); 1223 1224 /* TODO: GEH: do ICVs work for nested serialized teams? Don't we need an 1225 implicit task for each serialized task represented by 1226 team->t.t_serialized? */ 1227 copy_icvs(&this_thr->th.th_current_task->td_icvs, 1228 &this_thr->th.th_current_task->td_parent->td_icvs); 1229 1230 // Thread value exists in the nested nthreads array for the next nested 1231 // level 1232 if (__kmp_nested_nth.used && (level + 1 < __kmp_nested_nth.used)) { 1233 this_thr->th.th_current_task->td_icvs.nproc = 1234 __kmp_nested_nth.nth[level + 1]; 1235 } 1236 1237 if (__kmp_nested_proc_bind.used && 1238 (level + 1 < __kmp_nested_proc_bind.used)) { 1239 this_thr->th.th_current_task->td_icvs.proc_bind = 1240 __kmp_nested_proc_bind.bind_types[level + 1]; 1241 } 1242 1243 #if USE_DEBUGGER 1244 serial_team->t.t_pkfn = (microtask_t)(~0); // For the debugger. 1245 #endif 1246 this_thr->th.th_info.ds.ds_tid = 0; 1247 1248 /* set thread cache values */ 1249 this_thr->th.th_team_nproc = 1; 1250 this_thr->th.th_team_master = this_thr; 1251 this_thr->th.th_team_serialized = 1; 1252 1253 serial_team->t.t_level = serial_team->t.t_parent->t.t_level + 1; 1254 serial_team->t.t_active_level = serial_team->t.t_parent->t.t_active_level; 1255 serial_team->t.t_def_allocator = this_thr->th.th_def_allocator; // save 1256 1257 propagateFPControl(serial_team); 1258 1259 /* check if we need to allocate dispatch buffers stack */ 1260 KMP_DEBUG_ASSERT(serial_team->t.t_dispatch); 1261 if (!serial_team->t.t_dispatch->th_disp_buffer) { 1262 serial_team->t.t_dispatch->th_disp_buffer = 1263 (dispatch_private_info_t *)__kmp_allocate( 1264 sizeof(dispatch_private_info_t)); 1265 } 1266 this_thr->th.th_dispatch = serial_team->t.t_dispatch; 1267 1268 KMP_MB(); 1269 1270 } else { 1271 /* this serialized team is already being used, 1272 * that's fine, just add another nested level */ 1273 KMP_DEBUG_ASSERT(this_thr->th.th_team == serial_team); 1274 KMP_DEBUG_ASSERT(serial_team->t.t_threads); 1275 KMP_DEBUG_ASSERT(serial_team->t.t_threads[0] == this_thr); 1276 ++serial_team->t.t_serialized; 1277 this_thr->th.th_team_serialized = serial_team->t.t_serialized; 1278 1279 // Nested level will be an index in the nested nthreads array 1280 int level = this_thr->th.th_team->t.t_level; 1281 // Thread value exists in the nested nthreads array for the next nested 1282 // level 1283 if (__kmp_nested_nth.used && (level + 1 < __kmp_nested_nth.used)) { 1284 this_thr->th.th_current_task->td_icvs.nproc = 1285 __kmp_nested_nth.nth[level + 1]; 1286 } 1287 serial_team->t.t_level++; 1288 KF_TRACE(10, ("__kmpc_serialized_parallel: T#%d increasing nesting level " 1289 "of serial team %p to %d\n", 1290 global_tid, serial_team, serial_team->t.t_level)); 1291 1292 /* allocate/push dispatch buffers stack */ 1293 KMP_DEBUG_ASSERT(serial_team->t.t_dispatch); 1294 { 1295 dispatch_private_info_t *disp_buffer = 1296 (dispatch_private_info_t *)__kmp_allocate( 1297 sizeof(dispatch_private_info_t)); 1298 disp_buffer->next = serial_team->t.t_dispatch->th_disp_buffer; 1299 serial_team->t.t_dispatch->th_disp_buffer = disp_buffer; 1300 } 1301 this_thr->th.th_dispatch = serial_team->t.t_dispatch; 1302 1303 KMP_MB(); 1304 } 1305 KMP_CHECK_UPDATE(serial_team->t.t_cancel_request, cancel_noreq); 1306 1307 // Perform the display affinity functionality for 1308 // serialized parallel regions 1309 if (__kmp_display_affinity) { 1310 if (this_thr->th.th_prev_level != serial_team->t.t_level || 1311 this_thr->th.th_prev_num_threads != 1) { 1312 // NULL means use the affinity-format-var ICV 1313 __kmp_aux_display_affinity(global_tid, NULL); 1314 this_thr->th.th_prev_level = serial_team->t.t_level; 1315 this_thr->th.th_prev_num_threads = 1; 1316 } 1317 } 1318 1319 if (__kmp_env_consistency_check) 1320 __kmp_push_parallel(global_tid, NULL); 1321 #if OMPT_SUPPORT 1322 serial_team->t.ompt_team_info.master_return_address = codeptr; 1323 if (ompt_enabled.enabled && 1324 this_thr->th.ompt_thread_info.state != ompt_state_overhead) { 1325 OMPT_CUR_TASK_INFO(this_thr)->frame.exit_frame.ptr = 1326 OMPT_GET_FRAME_ADDRESS(0); 1327 1328 ompt_lw_taskteam_t lw_taskteam; 1329 __ompt_lw_taskteam_init(&lw_taskteam, this_thr, global_tid, 1330 &ompt_parallel_data, codeptr); 1331 1332 __ompt_lw_taskteam_link(&lw_taskteam, this_thr, 1); 1333 // don't use lw_taskteam after linking. content was swaped 1334 1335 /* OMPT implicit task begin */ 1336 if (ompt_enabled.ompt_callback_implicit_task) { 1337 ompt_callbacks.ompt_callback(ompt_callback_implicit_task)( 1338 ompt_scope_begin, OMPT_CUR_TEAM_DATA(this_thr), 1339 OMPT_CUR_TASK_DATA(this_thr), 1, __kmp_tid_from_gtid(global_tid), 1340 ompt_task_implicit); // TODO: Can this be ompt_task_initial? 1341 OMPT_CUR_TASK_INFO(this_thr)->thread_num = 1342 __kmp_tid_from_gtid(global_tid); 1343 } 1344 1345 /* OMPT state */ 1346 this_thr->th.ompt_thread_info.state = ompt_state_work_parallel; 1347 OMPT_CUR_TASK_INFO(this_thr)->frame.exit_frame.ptr = 1348 OMPT_GET_FRAME_ADDRESS(0); 1349 } 1350 #endif 1351 } 1352 1353 /* most of the work for a fork */ 1354 /* return true if we really went parallel, false if serialized */ 1355 int __kmp_fork_call(ident_t *loc, int gtid, 1356 enum fork_context_e call_context, // Intel, GNU, ... 1357 kmp_int32 argc, microtask_t microtask, launch_t invoker, 1358 kmp_va_list ap) { 1359 void **argv; 1360 int i; 1361 int master_tid; 1362 int master_this_cons; 1363 kmp_team_t *team; 1364 kmp_team_t *parent_team; 1365 kmp_info_t *master_th; 1366 kmp_root_t *root; 1367 int nthreads; 1368 int master_active; 1369 int master_set_numthreads; 1370 int level; 1371 int active_level; 1372 int teams_level; 1373 #if KMP_NESTED_HOT_TEAMS 1374 kmp_hot_team_ptr_t **p_hot_teams; 1375 #endif 1376 { // KMP_TIME_BLOCK 1377 KMP_TIME_DEVELOPER_PARTITIONED_BLOCK(KMP_fork_call); 1378 KMP_COUNT_VALUE(OMP_PARALLEL_args, argc); 1379 1380 KA_TRACE(20, ("__kmp_fork_call: enter T#%d\n", gtid)); 1381 if (__kmp_stkpadding > 0 && __kmp_root[gtid] != NULL) { 1382 /* Some systems prefer the stack for the root thread(s) to start with */ 1383 /* some gap from the parent stack to prevent false sharing. */ 1384 void *dummy = KMP_ALLOCA(__kmp_stkpadding); 1385 /* These 2 lines below are so this does not get optimized out */ 1386 if (__kmp_stkpadding > KMP_MAX_STKPADDING) 1387 __kmp_stkpadding += (short)((kmp_int64)dummy); 1388 } 1389 1390 /* initialize if needed */ 1391 KMP_DEBUG_ASSERT( 1392 __kmp_init_serial); // AC: potentially unsafe, not in sync with shutdown 1393 if (!TCR_4(__kmp_init_parallel)) 1394 __kmp_parallel_initialize(); 1395 __kmp_resume_if_soft_paused(); 1396 1397 /* setup current data */ 1398 master_th = __kmp_threads[gtid]; // AC: potentially unsafe, not in sync with 1399 // shutdown 1400 parent_team = master_th->th.th_team; 1401 master_tid = master_th->th.th_info.ds.ds_tid; 1402 master_this_cons = master_th->th.th_local.this_construct; 1403 root = master_th->th.th_root; 1404 master_active = root->r.r_active; 1405 master_set_numthreads = master_th->th.th_set_nproc; 1406 1407 #if OMPT_SUPPORT 1408 ompt_data_t ompt_parallel_data = ompt_data_none; 1409 ompt_data_t *parent_task_data; 1410 ompt_frame_t *ompt_frame; 1411 ompt_data_t *implicit_task_data; 1412 void *return_address = NULL; 1413 1414 if (ompt_enabled.enabled) { 1415 __ompt_get_task_info_internal(0, NULL, &parent_task_data, &ompt_frame, 1416 NULL, NULL); 1417 return_address = OMPT_LOAD_RETURN_ADDRESS(gtid); 1418 } 1419 #endif 1420 1421 // Assign affinity to root thread if it hasn't happened yet 1422 __kmp_assign_root_init_mask(); 1423 1424 // Nested level will be an index in the nested nthreads array 1425 level = parent_team->t.t_level; 1426 // used to launch non-serial teams even if nested is not allowed 1427 active_level = parent_team->t.t_active_level; 1428 // needed to check nesting inside the teams 1429 teams_level = master_th->th.th_teams_level; 1430 #if KMP_NESTED_HOT_TEAMS 1431 p_hot_teams = &master_th->th.th_hot_teams; 1432 if (*p_hot_teams == NULL && __kmp_hot_teams_max_level > 0) { 1433 *p_hot_teams = (kmp_hot_team_ptr_t *)__kmp_allocate( 1434 sizeof(kmp_hot_team_ptr_t) * __kmp_hot_teams_max_level); 1435 (*p_hot_teams)[0].hot_team = root->r.r_hot_team; 1436 // it is either actual or not needed (when active_level > 0) 1437 (*p_hot_teams)[0].hot_team_nth = 1; 1438 } 1439 #endif 1440 1441 #if OMPT_SUPPORT 1442 if (ompt_enabled.enabled) { 1443 if (ompt_enabled.ompt_callback_parallel_begin) { 1444 int team_size = master_set_numthreads 1445 ? master_set_numthreads 1446 : get__nproc_2(parent_team, master_tid); 1447 int flags = OMPT_INVOKER(call_context) | 1448 ((microtask == (microtask_t)__kmp_teams_master) 1449 ? ompt_parallel_league 1450 : ompt_parallel_team); 1451 ompt_callbacks.ompt_callback(ompt_callback_parallel_begin)( 1452 parent_task_data, ompt_frame, &ompt_parallel_data, team_size, flags, 1453 return_address); 1454 } 1455 master_th->th.ompt_thread_info.state = ompt_state_overhead; 1456 } 1457 #endif 1458 1459 master_th->th.th_ident = loc; 1460 1461 if (master_th->th.th_teams_microtask && ap && 1462 microtask != (microtask_t)__kmp_teams_master && level == teams_level) { 1463 // AC: This is start of parallel that is nested inside teams construct. 1464 // The team is actual (hot), all workers are ready at the fork barrier. 1465 // No lock needed to initialize the team a bit, then free workers. 1466 parent_team->t.t_ident = loc; 1467 __kmp_alloc_argv_entries(argc, parent_team, TRUE); 1468 parent_team->t.t_argc = argc; 1469 argv = (void **)parent_team->t.t_argv; 1470 for (i = argc - 1; i >= 0; --i) 1471 *argv++ = va_arg(kmp_va_deref(ap), void *); 1472 // Increment our nested depth levels, but not increase the serialization 1473 if (parent_team == master_th->th.th_serial_team) { 1474 // AC: we are in serialized parallel 1475 __kmpc_serialized_parallel(loc, gtid); 1476 KMP_DEBUG_ASSERT(parent_team->t.t_serialized > 1); 1477 1478 if (call_context == fork_context_gnu) { 1479 // AC: need to decrement t_serialized for enquiry functions to work 1480 // correctly, will restore at join time 1481 parent_team->t.t_serialized--; 1482 return TRUE; 1483 } 1484 1485 #if OMPD_SUPPORT 1486 parent_team->t.t_pkfn = microtask; 1487 #endif 1488 1489 #if OMPT_SUPPORT 1490 void *dummy; 1491 void **exit_frame_p; 1492 1493 ompt_lw_taskteam_t lw_taskteam; 1494 1495 if (ompt_enabled.enabled) { 1496 __ompt_lw_taskteam_init(&lw_taskteam, master_th, gtid, 1497 &ompt_parallel_data, return_address); 1498 exit_frame_p = &(lw_taskteam.ompt_task_info.frame.exit_frame.ptr); 1499 1500 __ompt_lw_taskteam_link(&lw_taskteam, master_th, 0); 1501 // don't use lw_taskteam after linking. content was swaped 1502 1503 /* OMPT implicit task begin */ 1504 implicit_task_data = OMPT_CUR_TASK_DATA(master_th); 1505 if (ompt_enabled.ompt_callback_implicit_task) { 1506 OMPT_CUR_TASK_INFO(master_th)->thread_num = 1507 __kmp_tid_from_gtid(gtid); 1508 ompt_callbacks.ompt_callback(ompt_callback_implicit_task)( 1509 ompt_scope_begin, OMPT_CUR_TEAM_DATA(master_th), 1510 implicit_task_data, 1, 1511 OMPT_CUR_TASK_INFO(master_th)->thread_num, ompt_task_implicit); 1512 } 1513 1514 /* OMPT state */ 1515 master_th->th.ompt_thread_info.state = ompt_state_work_parallel; 1516 } else { 1517 exit_frame_p = &dummy; 1518 } 1519 #endif 1520 // AC: need to decrement t_serialized for enquiry functions to work 1521 // correctly, will restore at join time 1522 parent_team->t.t_serialized--; 1523 1524 { 1525 KMP_TIME_PARTITIONED_BLOCK(OMP_parallel); 1526 KMP_SET_THREAD_STATE_BLOCK(IMPLICIT_TASK); 1527 __kmp_invoke_microtask(microtask, gtid, 0, argc, parent_team->t.t_argv 1528 #if OMPT_SUPPORT 1529 , 1530 exit_frame_p 1531 #endif 1532 ); 1533 } 1534 1535 #if OMPT_SUPPORT 1536 if (ompt_enabled.enabled) { 1537 *exit_frame_p = NULL; 1538 OMPT_CUR_TASK_INFO(master_th)->frame.exit_frame = ompt_data_none; 1539 if (ompt_enabled.ompt_callback_implicit_task) { 1540 ompt_callbacks.ompt_callback(ompt_callback_implicit_task)( 1541 ompt_scope_end, NULL, implicit_task_data, 1, 1542 OMPT_CUR_TASK_INFO(master_th)->thread_num, ompt_task_implicit); 1543 } 1544 ompt_parallel_data = *OMPT_CUR_TEAM_DATA(master_th); 1545 __ompt_lw_taskteam_unlink(master_th); 1546 if (ompt_enabled.ompt_callback_parallel_end) { 1547 ompt_callbacks.ompt_callback(ompt_callback_parallel_end)( 1548 &ompt_parallel_data, OMPT_CUR_TASK_DATA(master_th), 1549 OMPT_INVOKER(call_context) | ompt_parallel_team, 1550 return_address); 1551 } 1552 master_th->th.ompt_thread_info.state = ompt_state_overhead; 1553 } 1554 #endif 1555 return TRUE; 1556 } 1557 1558 parent_team->t.t_pkfn = microtask; 1559 parent_team->t.t_invoke = invoker; 1560 KMP_ATOMIC_INC(&root->r.r_in_parallel); 1561 parent_team->t.t_active_level++; 1562 parent_team->t.t_level++; 1563 parent_team->t.t_def_allocator = master_th->th.th_def_allocator; // save 1564 1565 #if OMPT_SUPPORT 1566 if (ompt_enabled.enabled) { 1567 ompt_lw_taskteam_t lw_taskteam; 1568 __ompt_lw_taskteam_init(&lw_taskteam, master_th, gtid, 1569 &ompt_parallel_data, return_address); 1570 __ompt_lw_taskteam_link(&lw_taskteam, master_th, 1, true); 1571 } 1572 #endif 1573 1574 /* Change number of threads in the team if requested */ 1575 if (master_set_numthreads) { // The parallel has num_threads clause 1576 if (master_set_numthreads <= master_th->th.th_teams_size.nth) { 1577 // AC: only can reduce number of threads dynamically, can't increase 1578 kmp_info_t **other_threads = parent_team->t.t_threads; 1579 // NOTE: if using distributed barrier, we need to run this code block 1580 // even when the team size appears not to have changed from the max. 1581 int old_proc = master_th->th.th_teams_size.nth; 1582 if (__kmp_barrier_release_pattern[bs_forkjoin_barrier] == 1583 bp_dist_bar) { 1584 __kmp_resize_dist_barrier(parent_team, old_proc, 1585 master_set_numthreads); 1586 __kmp_add_threads_to_team(parent_team, master_set_numthreads); 1587 } 1588 parent_team->t.t_nproc = master_set_numthreads; 1589 for (i = 0; i < master_set_numthreads; ++i) { 1590 other_threads[i]->th.th_team_nproc = master_set_numthreads; 1591 } 1592 } 1593 // Keep extra threads hot in the team for possible next parallels 1594 master_th->th.th_set_nproc = 0; 1595 } 1596 1597 #if USE_DEBUGGER 1598 if (__kmp_debugging) { // Let debugger override number of threads. 1599 int nth = __kmp_omp_num_threads(loc); 1600 if (nth > 0) { // 0 means debugger doesn't want to change num threads 1601 master_set_numthreads = nth; 1602 } 1603 } 1604 #endif 1605 1606 // Figure out the proc_bind policy for the nested parallel within teams 1607 kmp_proc_bind_t proc_bind = master_th->th.th_set_proc_bind; 1608 // proc_bind_default means don't update 1609 kmp_proc_bind_t proc_bind_icv = proc_bind_default; 1610 if (master_th->th.th_current_task->td_icvs.proc_bind == proc_bind_false) { 1611 proc_bind = proc_bind_false; 1612 } else { 1613 // No proc_bind clause specified; use current proc-bind-var 1614 if (proc_bind == proc_bind_default) { 1615 proc_bind = master_th->th.th_current_task->td_icvs.proc_bind; 1616 } 1617 /* else: The proc_bind policy was specified explicitly on parallel 1618 clause. 1619 This overrides proc-bind-var for this parallel region, but does not 1620 change proc-bind-var. */ 1621 // Figure the value of proc-bind-var for the child threads. 1622 if ((level + 1 < __kmp_nested_proc_bind.used) && 1623 (__kmp_nested_proc_bind.bind_types[level + 1] != 1624 master_th->th.th_current_task->td_icvs.proc_bind)) { 1625 proc_bind_icv = __kmp_nested_proc_bind.bind_types[level + 1]; 1626 } 1627 } 1628 KMP_CHECK_UPDATE(parent_team->t.t_proc_bind, proc_bind); 1629 // Need to change the bind-var ICV to correct value for each implicit task 1630 if (proc_bind_icv != proc_bind_default && 1631 master_th->th.th_current_task->td_icvs.proc_bind != proc_bind_icv) { 1632 kmp_info_t **other_threads = parent_team->t.t_threads; 1633 for (i = 0; i < master_th->th.th_team_nproc; ++i) { 1634 other_threads[i]->th.th_current_task->td_icvs.proc_bind = 1635 proc_bind_icv; 1636 } 1637 } 1638 // Reset for next parallel region 1639 master_th->th.th_set_proc_bind = proc_bind_default; 1640 1641 #if USE_ITT_BUILD && USE_ITT_NOTIFY 1642 if (((__itt_frame_submit_v3_ptr && __itt_get_timestamp_ptr) || 1643 KMP_ITT_DEBUG) && 1644 __kmp_forkjoin_frames_mode == 3 && 1645 parent_team->t.t_active_level == 1 // only report frames at level 1 1646 && master_th->th.th_teams_size.nteams == 1) { 1647 kmp_uint64 tmp_time = __itt_get_timestamp(); 1648 master_th->th.th_frame_time = tmp_time; 1649 parent_team->t.t_region_time = tmp_time; 1650 } 1651 if (__itt_stack_caller_create_ptr) { 1652 KMP_DEBUG_ASSERT(parent_team->t.t_stack_id == NULL); 1653 // create new stack stitching id before entering fork barrier 1654 parent_team->t.t_stack_id = __kmp_itt_stack_caller_create(); 1655 } 1656 #endif /* USE_ITT_BUILD && USE_ITT_NOTIFY */ 1657 #if KMP_AFFINITY_SUPPORTED 1658 __kmp_partition_places(parent_team); 1659 #endif 1660 1661 KF_TRACE(10, ("__kmp_fork_call: before internal fork: root=%p, team=%p, " 1662 "master_th=%p, gtid=%d\n", 1663 root, parent_team, master_th, gtid)); 1664 __kmp_internal_fork(loc, gtid, parent_team); 1665 KF_TRACE(10, ("__kmp_fork_call: after internal fork: root=%p, team=%p, " 1666 "master_th=%p, gtid=%d\n", 1667 root, parent_team, master_th, gtid)); 1668 1669 if (call_context == fork_context_gnu) 1670 return TRUE; 1671 1672 /* Invoke microtask for PRIMARY thread */ 1673 KA_TRACE(20, ("__kmp_fork_call: T#%d(%d:0) invoke microtask = %p\n", gtid, 1674 parent_team->t.t_id, parent_team->t.t_pkfn)); 1675 1676 if (!parent_team->t.t_invoke(gtid)) { 1677 KMP_ASSERT2(0, "cannot invoke microtask for PRIMARY thread"); 1678 } 1679 KA_TRACE(20, ("__kmp_fork_call: T#%d(%d:0) done microtask = %p\n", gtid, 1680 parent_team->t.t_id, parent_team->t.t_pkfn)); 1681 KMP_MB(); /* Flush all pending memory write invalidates. */ 1682 1683 KA_TRACE(20, ("__kmp_fork_call: parallel exit T#%d\n", gtid)); 1684 1685 return TRUE; 1686 } // Parallel closely nested in teams construct 1687 1688 #if KMP_DEBUG 1689 if (__kmp_tasking_mode != tskm_immediate_exec) { 1690 KMP_DEBUG_ASSERT(master_th->th.th_task_team == 1691 parent_team->t.t_task_team[master_th->th.th_task_state]); 1692 } 1693 #endif 1694 1695 // Need this to happen before we determine the number of threads, not while 1696 // we are allocating the team 1697 //__kmp_push_current_task_to_thread(master_th, parent_team, 0); 1698 int enter_teams = 0; 1699 if (parent_team->t.t_active_level >= 1700 master_th->th.th_current_task->td_icvs.max_active_levels) { 1701 nthreads = 1; 1702 } else { 1703 enter_teams = ((ap == NULL && active_level == 0) || 1704 (ap && teams_level > 0 && teams_level == level)); 1705 nthreads = master_set_numthreads 1706 ? master_set_numthreads 1707 // TODO: get nproc directly from current task 1708 : get__nproc_2(parent_team, master_tid); 1709 // Check if we need to take forkjoin lock? (no need for serialized 1710 // parallel out of teams construct). This code moved here from 1711 // __kmp_reserve_threads() to speedup nested serialized parallels. 1712 if (nthreads > 1) { 1713 if ((get__max_active_levels(master_th) == 1 && 1714 (root->r.r_in_parallel && !enter_teams)) || 1715 (__kmp_library == library_serial)) { 1716 KC_TRACE(10, ("__kmp_fork_call: T#%d serializing team; requested %d" 1717 " threads\n", 1718 gtid, nthreads)); 1719 nthreads = 1; 1720 } 1721 } 1722 if (nthreads > 1) { 1723 /* determine how many new threads we can use */ 1724 __kmp_acquire_bootstrap_lock(&__kmp_forkjoin_lock); 1725 /* AC: If we execute teams from parallel region (on host), then teams 1726 should be created but each can only have 1 thread if nesting is 1727 disabled. If teams called from serial region, then teams and their 1728 threads should be created regardless of the nesting setting. */ 1729 nthreads = __kmp_reserve_threads(root, parent_team, master_tid, 1730 nthreads, enter_teams); 1731 if (nthreads == 1) { 1732 // Free lock for single thread execution here; for multi-thread 1733 // execution it will be freed later after team of threads created 1734 // and initialized 1735 __kmp_release_bootstrap_lock(&__kmp_forkjoin_lock); 1736 } 1737 } 1738 } 1739 KMP_DEBUG_ASSERT(nthreads > 0); 1740 1741 // If we temporarily changed the set number of threads then restore it now 1742 master_th->th.th_set_nproc = 0; 1743 1744 /* create a serialized parallel region? */ 1745 if (nthreads == 1) { 1746 /* josh todo: hypothetical question: what do we do for OS X*? */ 1747 #if KMP_OS_LINUX && \ 1748 (KMP_ARCH_X86 || KMP_ARCH_X86_64 || KMP_ARCH_ARM || KMP_ARCH_AARCH64) 1749 void *args[argc]; 1750 #else 1751 void **args = (void **)KMP_ALLOCA(argc * sizeof(void *)); 1752 #endif /* KMP_OS_LINUX && ( KMP_ARCH_X86 || KMP_ARCH_X86_64 || KMP_ARCH_ARM || \ 1753 KMP_ARCH_AARCH64) */ 1754 1755 KA_TRACE(20, 1756 ("__kmp_fork_call: T#%d serializing parallel region\n", gtid)); 1757 1758 __kmpc_serialized_parallel(loc, gtid); 1759 1760 #if OMPD_SUPPORT 1761 master_th->th.th_serial_team->t.t_pkfn = microtask; 1762 #endif 1763 1764 if (call_context == fork_context_intel) { 1765 /* TODO this sucks, use the compiler itself to pass args! :) */ 1766 master_th->th.th_serial_team->t.t_ident = loc; 1767 if (!ap) { 1768 // revert change made in __kmpc_serialized_parallel() 1769 master_th->th.th_serial_team->t.t_level--; 1770 // Get args from parent team for teams construct 1771 1772 #if OMPT_SUPPORT 1773 void *dummy; 1774 void **exit_frame_p; 1775 ompt_task_info_t *task_info; 1776 1777 ompt_lw_taskteam_t lw_taskteam; 1778 1779 if (ompt_enabled.enabled) { 1780 __ompt_lw_taskteam_init(&lw_taskteam, master_th, gtid, 1781 &ompt_parallel_data, return_address); 1782 1783 __ompt_lw_taskteam_link(&lw_taskteam, master_th, 0); 1784 // don't use lw_taskteam after linking. content was swaped 1785 1786 task_info = OMPT_CUR_TASK_INFO(master_th); 1787 exit_frame_p = &(task_info->frame.exit_frame.ptr); 1788 if (ompt_enabled.ompt_callback_implicit_task) { 1789 OMPT_CUR_TASK_INFO(master_th)->thread_num = 1790 __kmp_tid_from_gtid(gtid); 1791 ompt_callbacks.ompt_callback(ompt_callback_implicit_task)( 1792 ompt_scope_begin, OMPT_CUR_TEAM_DATA(master_th), 1793 &(task_info->task_data), 1, 1794 OMPT_CUR_TASK_INFO(master_th)->thread_num, 1795 ompt_task_implicit); 1796 } 1797 1798 /* OMPT state */ 1799 master_th->th.ompt_thread_info.state = ompt_state_work_parallel; 1800 } else { 1801 exit_frame_p = &dummy; 1802 } 1803 #endif 1804 1805 { 1806 KMP_TIME_PARTITIONED_BLOCK(OMP_parallel); 1807 KMP_SET_THREAD_STATE_BLOCK(IMPLICIT_TASK); 1808 __kmp_invoke_microtask(microtask, gtid, 0, argc, 1809 parent_team->t.t_argv 1810 #if OMPT_SUPPORT 1811 , 1812 exit_frame_p 1813 #endif 1814 ); 1815 } 1816 1817 #if OMPT_SUPPORT 1818 if (ompt_enabled.enabled) { 1819 *exit_frame_p = NULL; 1820 if (ompt_enabled.ompt_callback_implicit_task) { 1821 ompt_callbacks.ompt_callback(ompt_callback_implicit_task)( 1822 ompt_scope_end, NULL, &(task_info->task_data), 1, 1823 OMPT_CUR_TASK_INFO(master_th)->thread_num, 1824 ompt_task_implicit); 1825 } 1826 ompt_parallel_data = *OMPT_CUR_TEAM_DATA(master_th); 1827 __ompt_lw_taskteam_unlink(master_th); 1828 if (ompt_enabled.ompt_callback_parallel_end) { 1829 ompt_callbacks.ompt_callback(ompt_callback_parallel_end)( 1830 &ompt_parallel_data, parent_task_data, 1831 OMPT_INVOKER(call_context) | ompt_parallel_team, 1832 return_address); 1833 } 1834 master_th->th.ompt_thread_info.state = ompt_state_overhead; 1835 } 1836 #endif 1837 } else if (microtask == (microtask_t)__kmp_teams_master) { 1838 KMP_DEBUG_ASSERT(master_th->th.th_team == 1839 master_th->th.th_serial_team); 1840 team = master_th->th.th_team; 1841 // team->t.t_pkfn = microtask; 1842 team->t.t_invoke = invoker; 1843 __kmp_alloc_argv_entries(argc, team, TRUE); 1844 team->t.t_argc = argc; 1845 argv = (void **)team->t.t_argv; 1846 if (ap) { 1847 for (i = argc - 1; i >= 0; --i) 1848 *argv++ = va_arg(kmp_va_deref(ap), void *); 1849 } else { 1850 for (i = 0; i < argc; ++i) 1851 // Get args from parent team for teams construct 1852 argv[i] = parent_team->t.t_argv[i]; 1853 } 1854 // AC: revert change made in __kmpc_serialized_parallel() 1855 // because initial code in teams should have level=0 1856 team->t.t_level--; 1857 // AC: call special invoker for outer "parallel" of teams construct 1858 invoker(gtid); 1859 #if OMPT_SUPPORT 1860 if (ompt_enabled.enabled) { 1861 ompt_task_info_t *task_info = OMPT_CUR_TASK_INFO(master_th); 1862 if (ompt_enabled.ompt_callback_implicit_task) { 1863 ompt_callbacks.ompt_callback(ompt_callback_implicit_task)( 1864 ompt_scope_end, NULL, &(task_info->task_data), 0, 1865 OMPT_CUR_TASK_INFO(master_th)->thread_num, ompt_task_initial); 1866 } 1867 if (ompt_enabled.ompt_callback_parallel_end) { 1868 ompt_callbacks.ompt_callback(ompt_callback_parallel_end)( 1869 &ompt_parallel_data, parent_task_data, 1870 OMPT_INVOKER(call_context) | ompt_parallel_league, 1871 return_address); 1872 } 1873 master_th->th.ompt_thread_info.state = ompt_state_overhead; 1874 } 1875 #endif 1876 } else { 1877 argv = args; 1878 for (i = argc - 1; i >= 0; --i) 1879 *argv++ = va_arg(kmp_va_deref(ap), void *); 1880 KMP_MB(); 1881 1882 #if OMPT_SUPPORT 1883 void *dummy; 1884 void **exit_frame_p; 1885 ompt_task_info_t *task_info; 1886 1887 ompt_lw_taskteam_t lw_taskteam; 1888 1889 if (ompt_enabled.enabled) { 1890 __ompt_lw_taskteam_init(&lw_taskteam, master_th, gtid, 1891 &ompt_parallel_data, return_address); 1892 __ompt_lw_taskteam_link(&lw_taskteam, master_th, 0); 1893 // don't use lw_taskteam after linking. content was swaped 1894 task_info = OMPT_CUR_TASK_INFO(master_th); 1895 exit_frame_p = &(task_info->frame.exit_frame.ptr); 1896 1897 /* OMPT implicit task begin */ 1898 implicit_task_data = OMPT_CUR_TASK_DATA(master_th); 1899 if (ompt_enabled.ompt_callback_implicit_task) { 1900 ompt_callbacks.ompt_callback(ompt_callback_implicit_task)( 1901 ompt_scope_begin, OMPT_CUR_TEAM_DATA(master_th), 1902 implicit_task_data, 1, __kmp_tid_from_gtid(gtid), 1903 ompt_task_implicit); 1904 OMPT_CUR_TASK_INFO(master_th)->thread_num = 1905 __kmp_tid_from_gtid(gtid); 1906 } 1907 1908 /* OMPT state */ 1909 master_th->th.ompt_thread_info.state = ompt_state_work_parallel; 1910 } else { 1911 exit_frame_p = &dummy; 1912 } 1913 #endif 1914 1915 { 1916 KMP_TIME_PARTITIONED_BLOCK(OMP_parallel); 1917 KMP_SET_THREAD_STATE_BLOCK(IMPLICIT_TASK); 1918 __kmp_invoke_microtask(microtask, gtid, 0, argc, args 1919 #if OMPT_SUPPORT 1920 , 1921 exit_frame_p 1922 #endif 1923 ); 1924 } 1925 1926 #if OMPT_SUPPORT 1927 if (ompt_enabled.enabled) { 1928 *exit_frame_p = NULL; 1929 if (ompt_enabled.ompt_callback_implicit_task) { 1930 ompt_callbacks.ompt_callback(ompt_callback_implicit_task)( 1931 ompt_scope_end, NULL, &(task_info->task_data), 1, 1932 OMPT_CUR_TASK_INFO(master_th)->thread_num, 1933 ompt_task_implicit); 1934 } 1935 1936 ompt_parallel_data = *OMPT_CUR_TEAM_DATA(master_th); 1937 __ompt_lw_taskteam_unlink(master_th); 1938 if (ompt_enabled.ompt_callback_parallel_end) { 1939 ompt_callbacks.ompt_callback(ompt_callback_parallel_end)( 1940 &ompt_parallel_data, parent_task_data, 1941 OMPT_INVOKER(call_context) | ompt_parallel_team, 1942 return_address); 1943 } 1944 master_th->th.ompt_thread_info.state = ompt_state_overhead; 1945 } 1946 #endif 1947 } 1948 } else if (call_context == fork_context_gnu) { 1949 #if OMPT_SUPPORT 1950 ompt_lw_taskteam_t lwt; 1951 __ompt_lw_taskteam_init(&lwt, master_th, gtid, &ompt_parallel_data, 1952 return_address); 1953 1954 lwt.ompt_task_info.frame.exit_frame = ompt_data_none; 1955 __ompt_lw_taskteam_link(&lwt, master_th, 1); 1956 // don't use lw_taskteam after linking. content was swaped 1957 #endif 1958 1959 // we were called from GNU native code 1960 KA_TRACE(20, ("__kmp_fork_call: T#%d serial exit\n", gtid)); 1961 return FALSE; 1962 } else { 1963 KMP_ASSERT2(call_context < fork_context_last, 1964 "__kmp_fork_call: unknown fork_context parameter"); 1965 } 1966 1967 KA_TRACE(20, ("__kmp_fork_call: T#%d serial exit\n", gtid)); 1968 KMP_MB(); 1969 return FALSE; 1970 } // if (nthreads == 1) 1971 1972 // GEH: only modify the executing flag in the case when not serialized 1973 // serialized case is handled in kmpc_serialized_parallel 1974 KF_TRACE(10, ("__kmp_fork_call: parent_team_aclevel=%d, master_th=%p, " 1975 "curtask=%p, curtask_max_aclevel=%d\n", 1976 parent_team->t.t_active_level, master_th, 1977 master_th->th.th_current_task, 1978 master_th->th.th_current_task->td_icvs.max_active_levels)); 1979 // TODO: GEH - cannot do this assertion because root thread not set up as 1980 // executing 1981 // KMP_ASSERT( master_th->th.th_current_task->td_flags.executing == 1 ); 1982 master_th->th.th_current_task->td_flags.executing = 0; 1983 1984 if (!master_th->th.th_teams_microtask || level > teams_level) { 1985 /* Increment our nested depth level */ 1986 KMP_ATOMIC_INC(&root->r.r_in_parallel); 1987 } 1988 1989 // See if we need to make a copy of the ICVs. 1990 int nthreads_icv = master_th->th.th_current_task->td_icvs.nproc; 1991 if ((level + 1 < __kmp_nested_nth.used) && 1992 (__kmp_nested_nth.nth[level + 1] != nthreads_icv)) { 1993 nthreads_icv = __kmp_nested_nth.nth[level + 1]; 1994 } else { 1995 nthreads_icv = 0; // don't update 1996 } 1997 1998 // Figure out the proc_bind_policy for the new team. 1999 kmp_proc_bind_t proc_bind = master_th->th.th_set_proc_bind; 2000 // proc_bind_default means don't update 2001 kmp_proc_bind_t proc_bind_icv = proc_bind_default; 2002 if (master_th->th.th_current_task->td_icvs.proc_bind == proc_bind_false) { 2003 proc_bind = proc_bind_false; 2004 } else { 2005 // No proc_bind clause specified; use current proc-bind-var for this 2006 // parallel region 2007 if (proc_bind == proc_bind_default) { 2008 proc_bind = master_th->th.th_current_task->td_icvs.proc_bind; 2009 } 2010 // Have teams construct take proc_bind value from KMP_TEAMS_PROC_BIND 2011 if (master_th->th.th_teams_microtask && 2012 microtask == (microtask_t)__kmp_teams_master) { 2013 proc_bind = __kmp_teams_proc_bind; 2014 } 2015 /* else: The proc_bind policy was specified explicitly on parallel clause. 2016 This overrides proc-bind-var for this parallel region, but does not 2017 change proc-bind-var. */ 2018 // Figure the value of proc-bind-var for the child threads. 2019 if ((level + 1 < __kmp_nested_proc_bind.used) && 2020 (__kmp_nested_proc_bind.bind_types[level + 1] != 2021 master_th->th.th_current_task->td_icvs.proc_bind)) { 2022 // Do not modify the proc bind icv for the two teams construct forks 2023 // They just let the proc bind icv pass through 2024 if (!master_th->th.th_teams_microtask || 2025 !(microtask == (microtask_t)__kmp_teams_master || ap == NULL)) 2026 proc_bind_icv = __kmp_nested_proc_bind.bind_types[level + 1]; 2027 } 2028 } 2029 2030 // Reset for next parallel region 2031 master_th->th.th_set_proc_bind = proc_bind_default; 2032 2033 if ((nthreads_icv > 0) || (proc_bind_icv != proc_bind_default)) { 2034 kmp_internal_control_t new_icvs; 2035 copy_icvs(&new_icvs, &master_th->th.th_current_task->td_icvs); 2036 new_icvs.next = NULL; 2037 if (nthreads_icv > 0) { 2038 new_icvs.nproc = nthreads_icv; 2039 } 2040 if (proc_bind_icv != proc_bind_default) { 2041 new_icvs.proc_bind = proc_bind_icv; 2042 } 2043 2044 /* allocate a new parallel team */ 2045 KF_TRACE(10, ("__kmp_fork_call: before __kmp_allocate_team\n")); 2046 team = __kmp_allocate_team(root, nthreads, nthreads, 2047 #if OMPT_SUPPORT 2048 ompt_parallel_data, 2049 #endif 2050 proc_bind, &new_icvs, 2051 argc USE_NESTED_HOT_ARG(master_th)); 2052 if (__kmp_barrier_release_pattern[bs_forkjoin_barrier] == bp_dist_bar) 2053 copy_icvs((kmp_internal_control_t *)team->t.b->team_icvs, &new_icvs); 2054 } else { 2055 /* allocate a new parallel team */ 2056 KF_TRACE(10, ("__kmp_fork_call: before __kmp_allocate_team\n")); 2057 team = __kmp_allocate_team(root, nthreads, nthreads, 2058 #if OMPT_SUPPORT 2059 ompt_parallel_data, 2060 #endif 2061 proc_bind, 2062 &master_th->th.th_current_task->td_icvs, 2063 argc USE_NESTED_HOT_ARG(master_th)); 2064 if (__kmp_barrier_release_pattern[bs_forkjoin_barrier] == bp_dist_bar) 2065 copy_icvs((kmp_internal_control_t *)team->t.b->team_icvs, 2066 &master_th->th.th_current_task->td_icvs); 2067 } 2068 KF_TRACE( 2069 10, ("__kmp_fork_call: after __kmp_allocate_team - team = %p\n", team)); 2070 2071 /* setup the new team */ 2072 KMP_CHECK_UPDATE(team->t.t_master_tid, master_tid); 2073 KMP_CHECK_UPDATE(team->t.t_master_this_cons, master_this_cons); 2074 KMP_CHECK_UPDATE(team->t.t_ident, loc); 2075 KMP_CHECK_UPDATE(team->t.t_parent, parent_team); 2076 KMP_CHECK_UPDATE_SYNC(team->t.t_pkfn, microtask); 2077 #if OMPT_SUPPORT 2078 KMP_CHECK_UPDATE_SYNC(team->t.ompt_team_info.master_return_address, 2079 return_address); 2080 #endif 2081 KMP_CHECK_UPDATE(team->t.t_invoke, invoker); // TODO move to root, maybe 2082 // TODO: parent_team->t.t_level == INT_MAX ??? 2083 if (!master_th->th.th_teams_microtask || level > teams_level) { 2084 int new_level = parent_team->t.t_level + 1; 2085 KMP_CHECK_UPDATE(team->t.t_level, new_level); 2086 new_level = parent_team->t.t_active_level + 1; 2087 KMP_CHECK_UPDATE(team->t.t_active_level, new_level); 2088 } else { 2089 // AC: Do not increase parallel level at start of the teams construct 2090 int new_level = parent_team->t.t_level; 2091 KMP_CHECK_UPDATE(team->t.t_level, new_level); 2092 new_level = parent_team->t.t_active_level; 2093 KMP_CHECK_UPDATE(team->t.t_active_level, new_level); 2094 } 2095 kmp_r_sched_t new_sched = get__sched_2(parent_team, master_tid); 2096 // set primary thread's schedule as new run-time schedule 2097 KMP_CHECK_UPDATE(team->t.t_sched.sched, new_sched.sched); 2098 2099 KMP_CHECK_UPDATE(team->t.t_cancel_request, cancel_noreq); 2100 KMP_CHECK_UPDATE(team->t.t_def_allocator, master_th->th.th_def_allocator); 2101 2102 // Update the floating point rounding in the team if required. 2103 propagateFPControl(team); 2104 #if OMPD_SUPPORT 2105 if (ompd_state & OMPD_ENABLE_BP) 2106 ompd_bp_parallel_begin(); 2107 #endif 2108 2109 if (__kmp_tasking_mode != tskm_immediate_exec) { 2110 // Set primary thread's task team to team's task team. Unless this is hot 2111 // team, it should be NULL. 2112 KMP_DEBUG_ASSERT(master_th->th.th_task_team == 2113 parent_team->t.t_task_team[master_th->th.th_task_state]); 2114 KA_TRACE(20, ("__kmp_fork_call: Primary T#%d pushing task_team %p / team " 2115 "%p, new task_team %p / team %p\n", 2116 __kmp_gtid_from_thread(master_th), 2117 master_th->th.th_task_team, parent_team, 2118 team->t.t_task_team[master_th->th.th_task_state], team)); 2119 2120 if (active_level || master_th->th.th_task_team) { 2121 // Take a memo of primary thread's task_state 2122 KMP_DEBUG_ASSERT(master_th->th.th_task_state_memo_stack); 2123 if (master_th->th.th_task_state_top >= 2124 master_th->th.th_task_state_stack_sz) { // increase size 2125 kmp_uint32 new_size = 2 * master_th->th.th_task_state_stack_sz; 2126 kmp_uint8 *old_stack, *new_stack; 2127 kmp_uint32 i; 2128 new_stack = (kmp_uint8 *)__kmp_allocate(new_size); 2129 for (i = 0; i < master_th->th.th_task_state_stack_sz; ++i) { 2130 new_stack[i] = master_th->th.th_task_state_memo_stack[i]; 2131 } 2132 for (i = master_th->th.th_task_state_stack_sz; i < new_size; 2133 ++i) { // zero-init rest of stack 2134 new_stack[i] = 0; 2135 } 2136 old_stack = master_th->th.th_task_state_memo_stack; 2137 master_th->th.th_task_state_memo_stack = new_stack; 2138 master_th->th.th_task_state_stack_sz = new_size; 2139 __kmp_free(old_stack); 2140 } 2141 // Store primary thread's task_state on stack 2142 master_th->th 2143 .th_task_state_memo_stack[master_th->th.th_task_state_top] = 2144 master_th->th.th_task_state; 2145 master_th->th.th_task_state_top++; 2146 #if KMP_NESTED_HOT_TEAMS 2147 if (master_th->th.th_hot_teams && 2148 active_level < __kmp_hot_teams_max_level && 2149 team == master_th->th.th_hot_teams[active_level].hot_team) { 2150 // Restore primary thread's nested state if nested hot team 2151 master_th->th.th_task_state = 2152 master_th->th 2153 .th_task_state_memo_stack[master_th->th.th_task_state_top]; 2154 } else { 2155 #endif 2156 master_th->th.th_task_state = 0; 2157 #if KMP_NESTED_HOT_TEAMS 2158 } 2159 #endif 2160 } 2161 #if !KMP_NESTED_HOT_TEAMS 2162 KMP_DEBUG_ASSERT((master_th->th.th_task_team == NULL) || 2163 (team == root->r.r_hot_team)); 2164 #endif 2165 } 2166 2167 KA_TRACE( 2168 20, 2169 ("__kmp_fork_call: T#%d(%d:%d)->(%d:0) created a team of %d threads\n", 2170 gtid, parent_team->t.t_id, team->t.t_master_tid, team->t.t_id, 2171 team->t.t_nproc)); 2172 KMP_DEBUG_ASSERT(team != root->r.r_hot_team || 2173 (team->t.t_master_tid == 0 && 2174 (team->t.t_parent == root->r.r_root_team || 2175 team->t.t_parent->t.t_serialized))); 2176 KMP_MB(); 2177 2178 /* now, setup the arguments */ 2179 argv = (void **)team->t.t_argv; 2180 if (ap) { 2181 for (i = argc - 1; i >= 0; --i) { 2182 void *new_argv = va_arg(kmp_va_deref(ap), void *); 2183 KMP_CHECK_UPDATE(*argv, new_argv); 2184 argv++; 2185 } 2186 } else { 2187 for (i = 0; i < argc; ++i) { 2188 // Get args from parent team for teams construct 2189 KMP_CHECK_UPDATE(argv[i], team->t.t_parent->t.t_argv[i]); 2190 } 2191 } 2192 2193 /* now actually fork the threads */ 2194 KMP_CHECK_UPDATE(team->t.t_master_active, master_active); 2195 if (!root->r.r_active) // Only do assignment if it prevents cache ping-pong 2196 root->r.r_active = TRUE; 2197 2198 __kmp_fork_team_threads(root, team, master_th, gtid, !ap); 2199 __kmp_setup_icv_copy(team, nthreads, 2200 &master_th->th.th_current_task->td_icvs, loc); 2201 2202 #if OMPT_SUPPORT 2203 master_th->th.ompt_thread_info.state = ompt_state_work_parallel; 2204 #endif 2205 2206 __kmp_release_bootstrap_lock(&__kmp_forkjoin_lock); 2207 2208 #if USE_ITT_BUILD 2209 if (team->t.t_active_level == 1 // only report frames at level 1 2210 && !master_th->th.th_teams_microtask) { // not in teams construct 2211 #if USE_ITT_NOTIFY 2212 if ((__itt_frame_submit_v3_ptr || KMP_ITT_DEBUG) && 2213 (__kmp_forkjoin_frames_mode == 3 || 2214 __kmp_forkjoin_frames_mode == 1)) { 2215 kmp_uint64 tmp_time = 0; 2216 if (__itt_get_timestamp_ptr) 2217 tmp_time = __itt_get_timestamp(); 2218 // Internal fork - report frame begin 2219 master_th->th.th_frame_time = tmp_time; 2220 if (__kmp_forkjoin_frames_mode == 3) 2221 team->t.t_region_time = tmp_time; 2222 } else 2223 // only one notification scheme (either "submit" or "forking/joined", not both) 2224 #endif /* USE_ITT_NOTIFY */ 2225 if ((__itt_frame_begin_v3_ptr || KMP_ITT_DEBUG) && 2226 __kmp_forkjoin_frames && !__kmp_forkjoin_frames_mode) { 2227 // Mark start of "parallel" region for Intel(R) VTune(TM) analyzer. 2228 __kmp_itt_region_forking(gtid, team->t.t_nproc, 0); 2229 } 2230 } 2231 #endif /* USE_ITT_BUILD */ 2232 2233 /* now go on and do the work */ 2234 KMP_DEBUG_ASSERT(team == __kmp_threads[gtid]->th.th_team); 2235 KMP_MB(); 2236 KF_TRACE(10, 2237 ("__kmp_internal_fork : root=%p, team=%p, master_th=%p, gtid=%d\n", 2238 root, team, master_th, gtid)); 2239 2240 #if USE_ITT_BUILD 2241 if (__itt_stack_caller_create_ptr) { 2242 // create new stack stitching id before entering fork barrier 2243 if (!enter_teams) { 2244 KMP_DEBUG_ASSERT(team->t.t_stack_id == NULL); 2245 team->t.t_stack_id = __kmp_itt_stack_caller_create(); 2246 } else if (parent_team->t.t_serialized) { 2247 // keep stack stitching id in the serialized parent_team; 2248 // current team will be used for parallel inside the teams; 2249 // if parent_team is active, then it already keeps stack stitching id 2250 // for the league of teams 2251 KMP_DEBUG_ASSERT(parent_team->t.t_stack_id == NULL); 2252 parent_team->t.t_stack_id = __kmp_itt_stack_caller_create(); 2253 } 2254 } 2255 #endif /* USE_ITT_BUILD */ 2256 2257 // AC: skip __kmp_internal_fork at teams construct, let only primary 2258 // threads execute 2259 if (ap) { 2260 __kmp_internal_fork(loc, gtid, team); 2261 KF_TRACE(10, ("__kmp_internal_fork : after : root=%p, team=%p, " 2262 "master_th=%p, gtid=%d\n", 2263 root, team, master_th, gtid)); 2264 } 2265 2266 if (call_context == fork_context_gnu) { 2267 KA_TRACE(20, ("__kmp_fork_call: parallel exit T#%d\n", gtid)); 2268 return TRUE; 2269 } 2270 2271 /* Invoke microtask for PRIMARY thread */ 2272 KA_TRACE(20, ("__kmp_fork_call: T#%d(%d:0) invoke microtask = %p\n", gtid, 2273 team->t.t_id, team->t.t_pkfn)); 2274 } // END of timer KMP_fork_call block 2275 2276 #if KMP_STATS_ENABLED 2277 // If beginning a teams construct, then change thread state 2278 stats_state_e previous_state = KMP_GET_THREAD_STATE(); 2279 if (!ap) { 2280 KMP_SET_THREAD_STATE(stats_state_e::TEAMS_REGION); 2281 } 2282 #endif 2283 2284 if (!team->t.t_invoke(gtid)) { 2285 KMP_ASSERT2(0, "cannot invoke microtask for PRIMARY thread"); 2286 } 2287 2288 #if KMP_STATS_ENABLED 2289 // If was beginning of a teams construct, then reset thread state 2290 if (!ap) { 2291 KMP_SET_THREAD_STATE(previous_state); 2292 } 2293 #endif 2294 2295 KA_TRACE(20, ("__kmp_fork_call: T#%d(%d:0) done microtask = %p\n", gtid, 2296 team->t.t_id, team->t.t_pkfn)); 2297 KMP_MB(); /* Flush all pending memory write invalidates. */ 2298 2299 KA_TRACE(20, ("__kmp_fork_call: parallel exit T#%d\n", gtid)); 2300 #if OMPT_SUPPORT 2301 if (ompt_enabled.enabled) { 2302 master_th->th.ompt_thread_info.state = ompt_state_overhead; 2303 } 2304 #endif 2305 2306 return TRUE; 2307 } 2308 2309 #if OMPT_SUPPORT 2310 static inline void __kmp_join_restore_state(kmp_info_t *thread, 2311 kmp_team_t *team) { 2312 // restore state outside the region 2313 thread->th.ompt_thread_info.state = 2314 ((team->t.t_serialized) ? ompt_state_work_serial 2315 : ompt_state_work_parallel); 2316 } 2317 2318 static inline void __kmp_join_ompt(int gtid, kmp_info_t *thread, 2319 kmp_team_t *team, ompt_data_t *parallel_data, 2320 int flags, void *codeptr) { 2321 ompt_task_info_t *task_info = __ompt_get_task_info_object(0); 2322 if (ompt_enabled.ompt_callback_parallel_end) { 2323 ompt_callbacks.ompt_callback(ompt_callback_parallel_end)( 2324 parallel_data, &(task_info->task_data), flags, codeptr); 2325 } 2326 2327 task_info->frame.enter_frame = ompt_data_none; 2328 __kmp_join_restore_state(thread, team); 2329 } 2330 #endif 2331 2332 void __kmp_join_call(ident_t *loc, int gtid 2333 #if OMPT_SUPPORT 2334 , 2335 enum fork_context_e fork_context 2336 #endif 2337 , 2338 int exit_teams) { 2339 KMP_TIME_DEVELOPER_PARTITIONED_BLOCK(KMP_join_call); 2340 kmp_team_t *team; 2341 kmp_team_t *parent_team; 2342 kmp_info_t *master_th; 2343 kmp_root_t *root; 2344 int master_active; 2345 2346 KA_TRACE(20, ("__kmp_join_call: enter T#%d\n", gtid)); 2347 2348 /* setup current data */ 2349 master_th = __kmp_threads[gtid]; 2350 root = master_th->th.th_root; 2351 team = master_th->th.th_team; 2352 parent_team = team->t.t_parent; 2353 2354 master_th->th.th_ident = loc; 2355 2356 #if OMPT_SUPPORT 2357 void *team_microtask = (void *)team->t.t_pkfn; 2358 // For GOMP interface with serialized parallel, need the 2359 // __kmpc_end_serialized_parallel to call hooks for OMPT end-implicit-task 2360 // and end-parallel events. 2361 if (ompt_enabled.enabled && 2362 !(team->t.t_serialized && fork_context == fork_context_gnu)) { 2363 master_th->th.ompt_thread_info.state = ompt_state_overhead; 2364 } 2365 #endif 2366 2367 #if KMP_DEBUG 2368 if (__kmp_tasking_mode != tskm_immediate_exec && !exit_teams) { 2369 KA_TRACE(20, ("__kmp_join_call: T#%d, old team = %p old task_team = %p, " 2370 "th_task_team = %p\n", 2371 __kmp_gtid_from_thread(master_th), team, 2372 team->t.t_task_team[master_th->th.th_task_state], 2373 master_th->th.th_task_team)); 2374 KMP_DEBUG_ASSERT(master_th->th.th_task_team == 2375 team->t.t_task_team[master_th->th.th_task_state]); 2376 } 2377 #endif 2378 2379 if (team->t.t_serialized) { 2380 if (master_th->th.th_teams_microtask) { 2381 // We are in teams construct 2382 int level = team->t.t_level; 2383 int tlevel = master_th->th.th_teams_level; 2384 if (level == tlevel) { 2385 // AC: we haven't incremented it earlier at start of teams construct, 2386 // so do it here - at the end of teams construct 2387 team->t.t_level++; 2388 } else if (level == tlevel + 1) { 2389 // AC: we are exiting parallel inside teams, need to increment 2390 // serialization in order to restore it in the next call to 2391 // __kmpc_end_serialized_parallel 2392 team->t.t_serialized++; 2393 } 2394 } 2395 __kmpc_end_serialized_parallel(loc, gtid); 2396 2397 #if OMPT_SUPPORT 2398 if (ompt_enabled.enabled) { 2399 __kmp_join_restore_state(master_th, parent_team); 2400 } 2401 #endif 2402 2403 return; 2404 } 2405 2406 master_active = team->t.t_master_active; 2407 2408 if (!exit_teams) { 2409 // AC: No barrier for internal teams at exit from teams construct. 2410 // But there is barrier for external team (league). 2411 __kmp_internal_join(loc, gtid, team); 2412 #if USE_ITT_BUILD 2413 if (__itt_stack_caller_create_ptr) { 2414 KMP_DEBUG_ASSERT(team->t.t_stack_id != NULL); 2415 // destroy the stack stitching id after join barrier 2416 __kmp_itt_stack_caller_destroy((__itt_caller)team->t.t_stack_id); 2417 team->t.t_stack_id = NULL; 2418 } 2419 #endif 2420 } else { 2421 master_th->th.th_task_state = 2422 0; // AC: no tasking in teams (out of any parallel) 2423 #if USE_ITT_BUILD 2424 if (__itt_stack_caller_create_ptr && parent_team->t.t_serialized) { 2425 KMP_DEBUG_ASSERT(parent_team->t.t_stack_id != NULL); 2426 // destroy the stack stitching id on exit from the teams construct 2427 // if parent_team is active, then the id will be destroyed later on 2428 // by master of the league of teams 2429 __kmp_itt_stack_caller_destroy((__itt_caller)parent_team->t.t_stack_id); 2430 parent_team->t.t_stack_id = NULL; 2431 } 2432 #endif 2433 2434 if (team->t.t_nproc > 1 && 2435 __kmp_barrier_gather_pattern[bs_forkjoin_barrier] == bp_dist_bar) { 2436 team->t.b->update_num_threads(team->t.t_nproc); 2437 __kmp_add_threads_to_team(team, team->t.t_nproc); 2438 } 2439 } 2440 2441 KMP_MB(); 2442 2443 #if OMPT_SUPPORT 2444 ompt_data_t *parallel_data = &(team->t.ompt_team_info.parallel_data); 2445 void *codeptr = team->t.ompt_team_info.master_return_address; 2446 #endif 2447 2448 #if USE_ITT_BUILD 2449 // Mark end of "parallel" region for Intel(R) VTune(TM) analyzer. 2450 if (team->t.t_active_level == 1 && 2451 (!master_th->th.th_teams_microtask || /* not in teams construct */ 2452 master_th->th.th_teams_size.nteams == 1)) { 2453 master_th->th.th_ident = loc; 2454 // only one notification scheme (either "submit" or "forking/joined", not 2455 // both) 2456 if ((__itt_frame_submit_v3_ptr || KMP_ITT_DEBUG) && 2457 __kmp_forkjoin_frames_mode == 3) 2458 __kmp_itt_frame_submit(gtid, team->t.t_region_time, 2459 master_th->th.th_frame_time, 0, loc, 2460 master_th->th.th_team_nproc, 1); 2461 else if ((__itt_frame_end_v3_ptr || KMP_ITT_DEBUG) && 2462 !__kmp_forkjoin_frames_mode && __kmp_forkjoin_frames) 2463 __kmp_itt_region_joined(gtid); 2464 } // active_level == 1 2465 #endif /* USE_ITT_BUILD */ 2466 2467 #if KMP_AFFINITY_SUPPORTED 2468 if (!exit_teams) { 2469 // Restore master thread's partition. 2470 master_th->th.th_first_place = team->t.t_first_place; 2471 master_th->th.th_last_place = team->t.t_last_place; 2472 } 2473 #endif // KMP_AFFINITY_SUPPORTED 2474 2475 if (master_th->th.th_teams_microtask && !exit_teams && 2476 team->t.t_pkfn != (microtask_t)__kmp_teams_master && 2477 team->t.t_level == master_th->th.th_teams_level + 1) { 2478 // AC: We need to leave the team structure intact at the end of parallel 2479 // inside the teams construct, so that at the next parallel same (hot) team 2480 // works, only adjust nesting levels 2481 #if OMPT_SUPPORT 2482 ompt_data_t ompt_parallel_data = ompt_data_none; 2483 if (ompt_enabled.enabled) { 2484 ompt_task_info_t *task_info = __ompt_get_task_info_object(0); 2485 if (ompt_enabled.ompt_callback_implicit_task) { 2486 int ompt_team_size = team->t.t_nproc; 2487 ompt_callbacks.ompt_callback(ompt_callback_implicit_task)( 2488 ompt_scope_end, NULL, &(task_info->task_data), ompt_team_size, 2489 OMPT_CUR_TASK_INFO(master_th)->thread_num, ompt_task_implicit); 2490 } 2491 task_info->frame.exit_frame = ompt_data_none; 2492 task_info->task_data = ompt_data_none; 2493 ompt_parallel_data = *OMPT_CUR_TEAM_DATA(master_th); 2494 __ompt_lw_taskteam_unlink(master_th); 2495 } 2496 #endif 2497 /* Decrement our nested depth level */ 2498 team->t.t_level--; 2499 team->t.t_active_level--; 2500 KMP_ATOMIC_DEC(&root->r.r_in_parallel); 2501 2502 // Restore number of threads in the team if needed. This code relies on 2503 // the proper adjustment of th_teams_size.nth after the fork in 2504 // __kmp_teams_master on each teams primary thread in the case that 2505 // __kmp_reserve_threads reduced it. 2506 if (master_th->th.th_team_nproc < master_th->th.th_teams_size.nth) { 2507 int old_num = master_th->th.th_team_nproc; 2508 int new_num = master_th->th.th_teams_size.nth; 2509 kmp_info_t **other_threads = team->t.t_threads; 2510 team->t.t_nproc = new_num; 2511 for (int i = 0; i < old_num; ++i) { 2512 other_threads[i]->th.th_team_nproc = new_num; 2513 } 2514 // Adjust states of non-used threads of the team 2515 for (int i = old_num; i < new_num; ++i) { 2516 // Re-initialize thread's barrier data. 2517 KMP_DEBUG_ASSERT(other_threads[i]); 2518 kmp_balign_t *balign = other_threads[i]->th.th_bar; 2519 for (int b = 0; b < bs_last_barrier; ++b) { 2520 balign[b].bb.b_arrived = team->t.t_bar[b].b_arrived; 2521 KMP_DEBUG_ASSERT(balign[b].bb.wait_flag != KMP_BARRIER_PARENT_FLAG); 2522 #if USE_DEBUGGER 2523 balign[b].bb.b_worker_arrived = team->t.t_bar[b].b_team_arrived; 2524 #endif 2525 } 2526 if (__kmp_tasking_mode != tskm_immediate_exec) { 2527 // Synchronize thread's task state 2528 other_threads[i]->th.th_task_state = master_th->th.th_task_state; 2529 } 2530 } 2531 } 2532 2533 #if OMPT_SUPPORT 2534 if (ompt_enabled.enabled) { 2535 __kmp_join_ompt(gtid, master_th, parent_team, &ompt_parallel_data, 2536 OMPT_INVOKER(fork_context) | ompt_parallel_team, codeptr); 2537 } 2538 #endif 2539 2540 return; 2541 } 2542 2543 /* do cleanup and restore the parent team */ 2544 master_th->th.th_info.ds.ds_tid = team->t.t_master_tid; 2545 master_th->th.th_local.this_construct = team->t.t_master_this_cons; 2546 2547 master_th->th.th_dispatch = &parent_team->t.t_dispatch[team->t.t_master_tid]; 2548 2549 /* jc: The following lock has instructions with REL and ACQ semantics, 2550 separating the parallel user code called in this parallel region 2551 from the serial user code called after this function returns. */ 2552 __kmp_acquire_bootstrap_lock(&__kmp_forkjoin_lock); 2553 2554 if (!master_th->th.th_teams_microtask || 2555 team->t.t_level > master_th->th.th_teams_level) { 2556 /* Decrement our nested depth level */ 2557 KMP_ATOMIC_DEC(&root->r.r_in_parallel); 2558 } 2559 KMP_DEBUG_ASSERT(root->r.r_in_parallel >= 0); 2560 2561 #if OMPT_SUPPORT 2562 if (ompt_enabled.enabled) { 2563 ompt_task_info_t *task_info = __ompt_get_task_info_object(0); 2564 if (ompt_enabled.ompt_callback_implicit_task) { 2565 int flags = (team_microtask == (void *)__kmp_teams_master) 2566 ? ompt_task_initial 2567 : ompt_task_implicit; 2568 int ompt_team_size = (flags == ompt_task_initial) ? 0 : team->t.t_nproc; 2569 ompt_callbacks.ompt_callback(ompt_callback_implicit_task)( 2570 ompt_scope_end, NULL, &(task_info->task_data), ompt_team_size, 2571 OMPT_CUR_TASK_INFO(master_th)->thread_num, flags); 2572 } 2573 task_info->frame.exit_frame = ompt_data_none; 2574 task_info->task_data = ompt_data_none; 2575 } 2576 #endif 2577 2578 KF_TRACE(10, ("__kmp_join_call1: T#%d, this_thread=%p team=%p\n", 0, 2579 master_th, team)); 2580 __kmp_pop_current_task_from_thread(master_th); 2581 2582 master_th->th.th_def_allocator = team->t.t_def_allocator; 2583 2584 #if OMPD_SUPPORT 2585 if (ompd_state & OMPD_ENABLE_BP) 2586 ompd_bp_parallel_end(); 2587 #endif 2588 updateHWFPControl(team); 2589 2590 if (root->r.r_active != master_active) 2591 root->r.r_active = master_active; 2592 2593 __kmp_free_team(root, team USE_NESTED_HOT_ARG( 2594 master_th)); // this will free worker threads 2595 2596 /* this race was fun to find. make sure the following is in the critical 2597 region otherwise assertions may fail occasionally since the old team may be 2598 reallocated and the hierarchy appears inconsistent. it is actually safe to 2599 run and won't cause any bugs, but will cause those assertion failures. it's 2600 only one deref&assign so might as well put this in the critical region */ 2601 master_th->th.th_team = parent_team; 2602 master_th->th.th_team_nproc = parent_team->t.t_nproc; 2603 master_th->th.th_team_master = parent_team->t.t_threads[0]; 2604 master_th->th.th_team_serialized = parent_team->t.t_serialized; 2605 2606 /* restore serialized team, if need be */ 2607 if (parent_team->t.t_serialized && 2608 parent_team != master_th->th.th_serial_team && 2609 parent_team != root->r.r_root_team) { 2610 __kmp_free_team(root, 2611 master_th->th.th_serial_team USE_NESTED_HOT_ARG(NULL)); 2612 master_th->th.th_serial_team = parent_team; 2613 } 2614 2615 if (__kmp_tasking_mode != tskm_immediate_exec) { 2616 if (master_th->th.th_task_state_top > 2617 0) { // Restore task state from memo stack 2618 KMP_DEBUG_ASSERT(master_th->th.th_task_state_memo_stack); 2619 // Remember primary thread's state if we re-use this nested hot team 2620 master_th->th.th_task_state_memo_stack[master_th->th.th_task_state_top] = 2621 master_th->th.th_task_state; 2622 --master_th->th.th_task_state_top; // pop 2623 // Now restore state at this level 2624 master_th->th.th_task_state = 2625 master_th->th 2626 .th_task_state_memo_stack[master_th->th.th_task_state_top]; 2627 } 2628 // Copy the task team from the parent team to the primary thread 2629 master_th->th.th_task_team = 2630 parent_team->t.t_task_team[master_th->th.th_task_state]; 2631 KA_TRACE(20, 2632 ("__kmp_join_call: Primary T#%d restoring task_team %p, team %p\n", 2633 __kmp_gtid_from_thread(master_th), master_th->th.th_task_team, 2634 parent_team)); 2635 } 2636 2637 // TODO: GEH - cannot do this assertion because root thread not set up as 2638 // executing 2639 // KMP_ASSERT( master_th->th.th_current_task->td_flags.executing == 0 ); 2640 master_th->th.th_current_task->td_flags.executing = 1; 2641 2642 __kmp_release_bootstrap_lock(&__kmp_forkjoin_lock); 2643 2644 #if OMPT_SUPPORT 2645 int flags = 2646 OMPT_INVOKER(fork_context) | 2647 ((team_microtask == (void *)__kmp_teams_master) ? ompt_parallel_league 2648 : ompt_parallel_team); 2649 if (ompt_enabled.enabled) { 2650 __kmp_join_ompt(gtid, master_th, parent_team, parallel_data, flags, 2651 codeptr); 2652 } 2653 #endif 2654 2655 KMP_MB(); 2656 KA_TRACE(20, ("__kmp_join_call: exit T#%d\n", gtid)); 2657 } 2658 2659 /* Check whether we should push an internal control record onto the 2660 serial team stack. If so, do it. */ 2661 void __kmp_save_internal_controls(kmp_info_t *thread) { 2662 2663 if (thread->th.th_team != thread->th.th_serial_team) { 2664 return; 2665 } 2666 if (thread->th.th_team->t.t_serialized > 1) { 2667 int push = 0; 2668 2669 if (thread->th.th_team->t.t_control_stack_top == NULL) { 2670 push = 1; 2671 } else { 2672 if (thread->th.th_team->t.t_control_stack_top->serial_nesting_level != 2673 thread->th.th_team->t.t_serialized) { 2674 push = 1; 2675 } 2676 } 2677 if (push) { /* push a record on the serial team's stack */ 2678 kmp_internal_control_t *control = 2679 (kmp_internal_control_t *)__kmp_allocate( 2680 sizeof(kmp_internal_control_t)); 2681 2682 copy_icvs(control, &thread->th.th_current_task->td_icvs); 2683 2684 control->serial_nesting_level = thread->th.th_team->t.t_serialized; 2685 2686 control->next = thread->th.th_team->t.t_control_stack_top; 2687 thread->th.th_team->t.t_control_stack_top = control; 2688 } 2689 } 2690 } 2691 2692 /* Changes set_nproc */ 2693 void __kmp_set_num_threads(int new_nth, int gtid) { 2694 kmp_info_t *thread; 2695 kmp_root_t *root; 2696 2697 KF_TRACE(10, ("__kmp_set_num_threads: new __kmp_nth = %d\n", new_nth)); 2698 KMP_DEBUG_ASSERT(__kmp_init_serial); 2699 2700 if (new_nth < 1) 2701 new_nth = 1; 2702 else if (new_nth > __kmp_max_nth) 2703 new_nth = __kmp_max_nth; 2704 2705 KMP_COUNT_VALUE(OMP_set_numthreads, new_nth); 2706 thread = __kmp_threads[gtid]; 2707 if (thread->th.th_current_task->td_icvs.nproc == new_nth) 2708 return; // nothing to do 2709 2710 __kmp_save_internal_controls(thread); 2711 2712 set__nproc(thread, new_nth); 2713 2714 // If this omp_set_num_threads() call will cause the hot team size to be 2715 // reduced (in the absence of a num_threads clause), then reduce it now, 2716 // rather than waiting for the next parallel region. 2717 root = thread->th.th_root; 2718 if (__kmp_init_parallel && (!root->r.r_active) && 2719 (root->r.r_hot_team->t.t_nproc > new_nth) 2720 #if KMP_NESTED_HOT_TEAMS 2721 && __kmp_hot_teams_max_level && !__kmp_hot_teams_mode 2722 #endif 2723 ) { 2724 kmp_team_t *hot_team = root->r.r_hot_team; 2725 int f; 2726 2727 __kmp_acquire_bootstrap_lock(&__kmp_forkjoin_lock); 2728 2729 if (__kmp_barrier_release_pattern[bs_forkjoin_barrier] == bp_dist_bar) { 2730 __kmp_resize_dist_barrier(hot_team, hot_team->t.t_nproc, new_nth); 2731 } 2732 // Release the extra threads we don't need any more. 2733 for (f = new_nth; f < hot_team->t.t_nproc; f++) { 2734 KMP_DEBUG_ASSERT(hot_team->t.t_threads[f] != NULL); 2735 if (__kmp_tasking_mode != tskm_immediate_exec) { 2736 // When decreasing team size, threads no longer in the team should unref 2737 // task team. 2738 hot_team->t.t_threads[f]->th.th_task_team = NULL; 2739 } 2740 __kmp_free_thread(hot_team->t.t_threads[f]); 2741 hot_team->t.t_threads[f] = NULL; 2742 } 2743 hot_team->t.t_nproc = new_nth; 2744 #if KMP_NESTED_HOT_TEAMS 2745 if (thread->th.th_hot_teams) { 2746 KMP_DEBUG_ASSERT(hot_team == thread->th.th_hot_teams[0].hot_team); 2747 thread->th.th_hot_teams[0].hot_team_nth = new_nth; 2748 } 2749 #endif 2750 2751 if (__kmp_barrier_release_pattern[bs_forkjoin_barrier] == bp_dist_bar) { 2752 hot_team->t.b->update_num_threads(new_nth); 2753 __kmp_add_threads_to_team(hot_team, new_nth); 2754 } 2755 2756 __kmp_release_bootstrap_lock(&__kmp_forkjoin_lock); 2757 2758 // Update the t_nproc field in the threads that are still active. 2759 for (f = 0; f < new_nth; f++) { 2760 KMP_DEBUG_ASSERT(hot_team->t.t_threads[f] != NULL); 2761 hot_team->t.t_threads[f]->th.th_team_nproc = new_nth; 2762 } 2763 // Special flag in case omp_set_num_threads() call 2764 hot_team->t.t_size_changed = -1; 2765 } 2766 } 2767 2768 /* Changes max_active_levels */ 2769 void __kmp_set_max_active_levels(int gtid, int max_active_levels) { 2770 kmp_info_t *thread; 2771 2772 KF_TRACE(10, ("__kmp_set_max_active_levels: new max_active_levels for thread " 2773 "%d = (%d)\n", 2774 gtid, max_active_levels)); 2775 KMP_DEBUG_ASSERT(__kmp_init_serial); 2776 2777 // validate max_active_levels 2778 if (max_active_levels < 0) { 2779 KMP_WARNING(ActiveLevelsNegative, max_active_levels); 2780 // We ignore this call if the user has specified a negative value. 2781 // The current setting won't be changed. The last valid setting will be 2782 // used. A warning will be issued (if warnings are allowed as controlled by 2783 // the KMP_WARNINGS env var). 2784 KF_TRACE(10, ("__kmp_set_max_active_levels: the call is ignored: new " 2785 "max_active_levels for thread %d = (%d)\n", 2786 gtid, max_active_levels)); 2787 return; 2788 } 2789 if (max_active_levels <= KMP_MAX_ACTIVE_LEVELS_LIMIT) { 2790 // it's OK, the max_active_levels is within the valid range: [ 0; 2791 // KMP_MAX_ACTIVE_LEVELS_LIMIT ] 2792 // We allow a zero value. (implementation defined behavior) 2793 } else { 2794 KMP_WARNING(ActiveLevelsExceedLimit, max_active_levels, 2795 KMP_MAX_ACTIVE_LEVELS_LIMIT); 2796 max_active_levels = KMP_MAX_ACTIVE_LEVELS_LIMIT; 2797 // Current upper limit is MAX_INT. (implementation defined behavior) 2798 // If the input exceeds the upper limit, we correct the input to be the 2799 // upper limit. (implementation defined behavior) 2800 // Actually, the flow should never get here until we use MAX_INT limit. 2801 } 2802 KF_TRACE(10, ("__kmp_set_max_active_levels: after validation: new " 2803 "max_active_levels for thread %d = (%d)\n", 2804 gtid, max_active_levels)); 2805 2806 thread = __kmp_threads[gtid]; 2807 2808 __kmp_save_internal_controls(thread); 2809 2810 set__max_active_levels(thread, max_active_levels); 2811 } 2812 2813 /* Gets max_active_levels */ 2814 int __kmp_get_max_active_levels(int gtid) { 2815 kmp_info_t *thread; 2816 2817 KF_TRACE(10, ("__kmp_get_max_active_levels: thread %d\n", gtid)); 2818 KMP_DEBUG_ASSERT(__kmp_init_serial); 2819 2820 thread = __kmp_threads[gtid]; 2821 KMP_DEBUG_ASSERT(thread->th.th_current_task); 2822 KF_TRACE(10, ("__kmp_get_max_active_levels: thread %d, curtask=%p, " 2823 "curtask_maxaclevel=%d\n", 2824 gtid, thread->th.th_current_task, 2825 thread->th.th_current_task->td_icvs.max_active_levels)); 2826 return thread->th.th_current_task->td_icvs.max_active_levels; 2827 } 2828 2829 // nteams-var per-device ICV 2830 void __kmp_set_num_teams(int num_teams) { 2831 if (num_teams > 0) 2832 __kmp_nteams = num_teams; 2833 } 2834 int __kmp_get_max_teams(void) { return __kmp_nteams; } 2835 // teams-thread-limit-var per-device ICV 2836 void __kmp_set_teams_thread_limit(int limit) { 2837 if (limit > 0) 2838 __kmp_teams_thread_limit = limit; 2839 } 2840 int __kmp_get_teams_thread_limit(void) { return __kmp_teams_thread_limit; } 2841 2842 KMP_BUILD_ASSERT(sizeof(kmp_sched_t) == sizeof(int)); 2843 KMP_BUILD_ASSERT(sizeof(enum sched_type) == sizeof(int)); 2844 2845 /* Changes def_sched_var ICV values (run-time schedule kind and chunk) */ 2846 void __kmp_set_schedule(int gtid, kmp_sched_t kind, int chunk) { 2847 kmp_info_t *thread; 2848 kmp_sched_t orig_kind; 2849 // kmp_team_t *team; 2850 2851 KF_TRACE(10, ("__kmp_set_schedule: new schedule for thread %d = (%d, %d)\n", 2852 gtid, (int)kind, chunk)); 2853 KMP_DEBUG_ASSERT(__kmp_init_serial); 2854 2855 // Check if the kind parameter is valid, correct if needed. 2856 // Valid parameters should fit in one of two intervals - standard or extended: 2857 // <lower>, <valid>, <upper_std>, <lower_ext>, <valid>, <upper> 2858 // 2008-01-25: 0, 1 - 4, 5, 100, 101 - 102, 103 2859 orig_kind = kind; 2860 kind = __kmp_sched_without_mods(kind); 2861 2862 if (kind <= kmp_sched_lower || kind >= kmp_sched_upper || 2863 (kind <= kmp_sched_lower_ext && kind >= kmp_sched_upper_std)) { 2864 // TODO: Hint needs attention in case we change the default schedule. 2865 __kmp_msg(kmp_ms_warning, KMP_MSG(ScheduleKindOutOfRange, kind), 2866 KMP_HNT(DefaultScheduleKindUsed, "static, no chunk"), 2867 __kmp_msg_null); 2868 kind = kmp_sched_default; 2869 chunk = 0; // ignore chunk value in case of bad kind 2870 } 2871 2872 thread = __kmp_threads[gtid]; 2873 2874 __kmp_save_internal_controls(thread); 2875 2876 if (kind < kmp_sched_upper_std) { 2877 if (kind == kmp_sched_static && chunk < KMP_DEFAULT_CHUNK) { 2878 // differ static chunked vs. unchunked: chunk should be invalid to 2879 // indicate unchunked schedule (which is the default) 2880 thread->th.th_current_task->td_icvs.sched.r_sched_type = kmp_sch_static; 2881 } else { 2882 thread->th.th_current_task->td_icvs.sched.r_sched_type = 2883 __kmp_sch_map[kind - kmp_sched_lower - 1]; 2884 } 2885 } else { 2886 // __kmp_sch_map[ kind - kmp_sched_lower_ext + kmp_sched_upper_std - 2887 // kmp_sched_lower - 2 ]; 2888 thread->th.th_current_task->td_icvs.sched.r_sched_type = 2889 __kmp_sch_map[kind - kmp_sched_lower_ext + kmp_sched_upper_std - 2890 kmp_sched_lower - 2]; 2891 } 2892 __kmp_sched_apply_mods_intkind( 2893 orig_kind, &(thread->th.th_current_task->td_icvs.sched.r_sched_type)); 2894 if (kind == kmp_sched_auto || chunk < 1) { 2895 // ignore parameter chunk for schedule auto 2896 thread->th.th_current_task->td_icvs.sched.chunk = KMP_DEFAULT_CHUNK; 2897 } else { 2898 thread->th.th_current_task->td_icvs.sched.chunk = chunk; 2899 } 2900 } 2901 2902 /* Gets def_sched_var ICV values */ 2903 void __kmp_get_schedule(int gtid, kmp_sched_t *kind, int *chunk) { 2904 kmp_info_t *thread; 2905 enum sched_type th_type; 2906 2907 KF_TRACE(10, ("__kmp_get_schedule: thread %d\n", gtid)); 2908 KMP_DEBUG_ASSERT(__kmp_init_serial); 2909 2910 thread = __kmp_threads[gtid]; 2911 2912 th_type = thread->th.th_current_task->td_icvs.sched.r_sched_type; 2913 switch (SCHEDULE_WITHOUT_MODIFIERS(th_type)) { 2914 case kmp_sch_static: 2915 case kmp_sch_static_greedy: 2916 case kmp_sch_static_balanced: 2917 *kind = kmp_sched_static; 2918 __kmp_sched_apply_mods_stdkind(kind, th_type); 2919 *chunk = 0; // chunk was not set, try to show this fact via zero value 2920 return; 2921 case kmp_sch_static_chunked: 2922 *kind = kmp_sched_static; 2923 break; 2924 case kmp_sch_dynamic_chunked: 2925 *kind = kmp_sched_dynamic; 2926 break; 2927 case kmp_sch_guided_chunked: 2928 case kmp_sch_guided_iterative_chunked: 2929 case kmp_sch_guided_analytical_chunked: 2930 *kind = kmp_sched_guided; 2931 break; 2932 case kmp_sch_auto: 2933 *kind = kmp_sched_auto; 2934 break; 2935 case kmp_sch_trapezoidal: 2936 *kind = kmp_sched_trapezoidal; 2937 break; 2938 #if KMP_STATIC_STEAL_ENABLED 2939 case kmp_sch_static_steal: 2940 *kind = kmp_sched_static_steal; 2941 break; 2942 #endif 2943 default: 2944 KMP_FATAL(UnknownSchedulingType, th_type); 2945 } 2946 2947 __kmp_sched_apply_mods_stdkind(kind, th_type); 2948 *chunk = thread->th.th_current_task->td_icvs.sched.chunk; 2949 } 2950 2951 int __kmp_get_ancestor_thread_num(int gtid, int level) { 2952 2953 int ii, dd; 2954 kmp_team_t *team; 2955 kmp_info_t *thr; 2956 2957 KF_TRACE(10, ("__kmp_get_ancestor_thread_num: thread %d %d\n", gtid, level)); 2958 KMP_DEBUG_ASSERT(__kmp_init_serial); 2959 2960 // validate level 2961 if (level == 0) 2962 return 0; 2963 if (level < 0) 2964 return -1; 2965 thr = __kmp_threads[gtid]; 2966 team = thr->th.th_team; 2967 ii = team->t.t_level; 2968 if (level > ii) 2969 return -1; 2970 2971 if (thr->th.th_teams_microtask) { 2972 // AC: we are in teams region where multiple nested teams have same level 2973 int tlevel = thr->th.th_teams_level; // the level of the teams construct 2974 if (level <= 2975 tlevel) { // otherwise usual algorithm works (will not touch the teams) 2976 KMP_DEBUG_ASSERT(ii >= tlevel); 2977 // AC: As we need to pass by the teams league, we need to artificially 2978 // increase ii 2979 if (ii == tlevel) { 2980 ii += 2; // three teams have same level 2981 } else { 2982 ii++; // two teams have same level 2983 } 2984 } 2985 } 2986 2987 if (ii == level) 2988 return __kmp_tid_from_gtid(gtid); 2989 2990 dd = team->t.t_serialized; 2991 level++; 2992 while (ii > level) { 2993 for (dd = team->t.t_serialized; (dd > 0) && (ii > level); dd--, ii--) { 2994 } 2995 if ((team->t.t_serialized) && (!dd)) { 2996 team = team->t.t_parent; 2997 continue; 2998 } 2999 if (ii > level) { 3000 team = team->t.t_parent; 3001 dd = team->t.t_serialized; 3002 ii--; 3003 } 3004 } 3005 3006 return (dd > 1) ? (0) : (team->t.t_master_tid); 3007 } 3008 3009 int __kmp_get_team_size(int gtid, int level) { 3010 3011 int ii, dd; 3012 kmp_team_t *team; 3013 kmp_info_t *thr; 3014 3015 KF_TRACE(10, ("__kmp_get_team_size: thread %d %d\n", gtid, level)); 3016 KMP_DEBUG_ASSERT(__kmp_init_serial); 3017 3018 // validate level 3019 if (level == 0) 3020 return 1; 3021 if (level < 0) 3022 return -1; 3023 thr = __kmp_threads[gtid]; 3024 team = thr->th.th_team; 3025 ii = team->t.t_level; 3026 if (level > ii) 3027 return -1; 3028 3029 if (thr->th.th_teams_microtask) { 3030 // AC: we are in teams region where multiple nested teams have same level 3031 int tlevel = thr->th.th_teams_level; // the level of the teams construct 3032 if (level <= 3033 tlevel) { // otherwise usual algorithm works (will not touch the teams) 3034 KMP_DEBUG_ASSERT(ii >= tlevel); 3035 // AC: As we need to pass by the teams league, we need to artificially 3036 // increase ii 3037 if (ii == tlevel) { 3038 ii += 2; // three teams have same level 3039 } else { 3040 ii++; // two teams have same level 3041 } 3042 } 3043 } 3044 3045 while (ii > level) { 3046 for (dd = team->t.t_serialized; (dd > 0) && (ii > level); dd--, ii--) { 3047 } 3048 if (team->t.t_serialized && (!dd)) { 3049 team = team->t.t_parent; 3050 continue; 3051 } 3052 if (ii > level) { 3053 team = team->t.t_parent; 3054 ii--; 3055 } 3056 } 3057 3058 return team->t.t_nproc; 3059 } 3060 3061 kmp_r_sched_t __kmp_get_schedule_global() { 3062 // This routine created because pairs (__kmp_sched, __kmp_chunk) and 3063 // (__kmp_static, __kmp_guided) may be changed by kmp_set_defaults 3064 // independently. So one can get the updated schedule here. 3065 3066 kmp_r_sched_t r_sched; 3067 3068 // create schedule from 4 globals: __kmp_sched, __kmp_chunk, __kmp_static, 3069 // __kmp_guided. __kmp_sched should keep original value, so that user can set 3070 // KMP_SCHEDULE multiple times, and thus have different run-time schedules in 3071 // different roots (even in OMP 2.5) 3072 enum sched_type s = SCHEDULE_WITHOUT_MODIFIERS(__kmp_sched); 3073 enum sched_type sched_modifiers = SCHEDULE_GET_MODIFIERS(__kmp_sched); 3074 if (s == kmp_sch_static) { 3075 // replace STATIC with more detailed schedule (balanced or greedy) 3076 r_sched.r_sched_type = __kmp_static; 3077 } else if (s == kmp_sch_guided_chunked) { 3078 // replace GUIDED with more detailed schedule (iterative or analytical) 3079 r_sched.r_sched_type = __kmp_guided; 3080 } else { // (STATIC_CHUNKED), or (DYNAMIC_CHUNKED), or other 3081 r_sched.r_sched_type = __kmp_sched; 3082 } 3083 SCHEDULE_SET_MODIFIERS(r_sched.r_sched_type, sched_modifiers); 3084 3085 if (__kmp_chunk < KMP_DEFAULT_CHUNK) { 3086 // __kmp_chunk may be wrong here (if it was not ever set) 3087 r_sched.chunk = KMP_DEFAULT_CHUNK; 3088 } else { 3089 r_sched.chunk = __kmp_chunk; 3090 } 3091 3092 return r_sched; 3093 } 3094 3095 /* Allocate (realloc == FALSE) * or reallocate (realloc == TRUE) 3096 at least argc number of *t_argv entries for the requested team. */ 3097 static void __kmp_alloc_argv_entries(int argc, kmp_team_t *team, int realloc) { 3098 3099 KMP_DEBUG_ASSERT(team); 3100 if (!realloc || argc > team->t.t_max_argc) { 3101 3102 KA_TRACE(100, ("__kmp_alloc_argv_entries: team %d: needed entries=%d, " 3103 "current entries=%d\n", 3104 team->t.t_id, argc, (realloc) ? team->t.t_max_argc : 0)); 3105 /* if previously allocated heap space for args, free them */ 3106 if (realloc && team->t.t_argv != &team->t.t_inline_argv[0]) 3107 __kmp_free((void *)team->t.t_argv); 3108 3109 if (argc <= KMP_INLINE_ARGV_ENTRIES) { 3110 /* use unused space in the cache line for arguments */ 3111 team->t.t_max_argc = KMP_INLINE_ARGV_ENTRIES; 3112 KA_TRACE(100, ("__kmp_alloc_argv_entries: team %d: inline allocate %d " 3113 "argv entries\n", 3114 team->t.t_id, team->t.t_max_argc)); 3115 team->t.t_argv = &team->t.t_inline_argv[0]; 3116 if (__kmp_storage_map) { 3117 __kmp_print_storage_map_gtid( 3118 -1, &team->t.t_inline_argv[0], 3119 &team->t.t_inline_argv[KMP_INLINE_ARGV_ENTRIES], 3120 (sizeof(void *) * KMP_INLINE_ARGV_ENTRIES), "team_%d.t_inline_argv", 3121 team->t.t_id); 3122 } 3123 } else { 3124 /* allocate space for arguments in the heap */ 3125 team->t.t_max_argc = (argc <= (KMP_MIN_MALLOC_ARGV_ENTRIES >> 1)) 3126 ? KMP_MIN_MALLOC_ARGV_ENTRIES 3127 : 2 * argc; 3128 KA_TRACE(100, ("__kmp_alloc_argv_entries: team %d: dynamic allocate %d " 3129 "argv entries\n", 3130 team->t.t_id, team->t.t_max_argc)); 3131 team->t.t_argv = 3132 (void **)__kmp_page_allocate(sizeof(void *) * team->t.t_max_argc); 3133 if (__kmp_storage_map) { 3134 __kmp_print_storage_map_gtid(-1, &team->t.t_argv[0], 3135 &team->t.t_argv[team->t.t_max_argc], 3136 sizeof(void *) * team->t.t_max_argc, 3137 "team_%d.t_argv", team->t.t_id); 3138 } 3139 } 3140 } 3141 } 3142 3143 static void __kmp_allocate_team_arrays(kmp_team_t *team, int max_nth) { 3144 int i; 3145 int num_disp_buff = max_nth > 1 ? __kmp_dispatch_num_buffers : 2; 3146 team->t.t_threads = 3147 (kmp_info_t **)__kmp_allocate(sizeof(kmp_info_t *) * max_nth); 3148 team->t.t_disp_buffer = (dispatch_shared_info_t *)__kmp_allocate( 3149 sizeof(dispatch_shared_info_t) * num_disp_buff); 3150 team->t.t_dispatch = 3151 (kmp_disp_t *)__kmp_allocate(sizeof(kmp_disp_t) * max_nth); 3152 team->t.t_implicit_task_taskdata = 3153 (kmp_taskdata_t *)__kmp_allocate(sizeof(kmp_taskdata_t) * max_nth); 3154 team->t.t_max_nproc = max_nth; 3155 3156 /* setup dispatch buffers */ 3157 for (i = 0; i < num_disp_buff; ++i) { 3158 team->t.t_disp_buffer[i].buffer_index = i; 3159 team->t.t_disp_buffer[i].doacross_buf_idx = i; 3160 } 3161 } 3162 3163 static void __kmp_free_team_arrays(kmp_team_t *team) { 3164 /* Note: this does not free the threads in t_threads (__kmp_free_threads) */ 3165 int i; 3166 for (i = 0; i < team->t.t_max_nproc; ++i) { 3167 if (team->t.t_dispatch[i].th_disp_buffer != NULL) { 3168 __kmp_free(team->t.t_dispatch[i].th_disp_buffer); 3169 team->t.t_dispatch[i].th_disp_buffer = NULL; 3170 } 3171 } 3172 #if KMP_USE_HIER_SCHED 3173 __kmp_dispatch_free_hierarchies(team); 3174 #endif 3175 __kmp_free(team->t.t_threads); 3176 __kmp_free(team->t.t_disp_buffer); 3177 __kmp_free(team->t.t_dispatch); 3178 __kmp_free(team->t.t_implicit_task_taskdata); 3179 team->t.t_threads = NULL; 3180 team->t.t_disp_buffer = NULL; 3181 team->t.t_dispatch = NULL; 3182 team->t.t_implicit_task_taskdata = 0; 3183 } 3184 3185 static void __kmp_reallocate_team_arrays(kmp_team_t *team, int max_nth) { 3186 kmp_info_t **oldThreads = team->t.t_threads; 3187 3188 __kmp_free(team->t.t_disp_buffer); 3189 __kmp_free(team->t.t_dispatch); 3190 __kmp_free(team->t.t_implicit_task_taskdata); 3191 __kmp_allocate_team_arrays(team, max_nth); 3192 3193 KMP_MEMCPY(team->t.t_threads, oldThreads, 3194 team->t.t_nproc * sizeof(kmp_info_t *)); 3195 3196 __kmp_free(oldThreads); 3197 } 3198 3199 static kmp_internal_control_t __kmp_get_global_icvs(void) { 3200 3201 kmp_r_sched_t r_sched = 3202 __kmp_get_schedule_global(); // get current state of scheduling globals 3203 3204 KMP_DEBUG_ASSERT(__kmp_nested_proc_bind.used > 0); 3205 3206 kmp_internal_control_t g_icvs = { 3207 0, // int serial_nesting_level; //corresponds to value of th_team_serialized 3208 (kmp_int8)__kmp_global.g.g_dynamic, // internal control for dynamic 3209 // adjustment of threads (per thread) 3210 (kmp_int8)__kmp_env_blocktime, // int bt_set; //internal control for 3211 // whether blocktime is explicitly set 3212 __kmp_dflt_blocktime, // int blocktime; //internal control for blocktime 3213 #if KMP_USE_MONITOR 3214 __kmp_bt_intervals, // int bt_intervals; //internal control for blocktime 3215 // intervals 3216 #endif 3217 __kmp_dflt_team_nth, // int nproc; //internal control for # of threads for 3218 // next parallel region (per thread) 3219 // (use a max ub on value if __kmp_parallel_initialize not called yet) 3220 __kmp_cg_max_nth, // int thread_limit; 3221 __kmp_dflt_max_active_levels, // int max_active_levels; //internal control 3222 // for max_active_levels 3223 r_sched, // kmp_r_sched_t sched; //internal control for runtime schedule 3224 // {sched,chunk} pair 3225 __kmp_nested_proc_bind.bind_types[0], 3226 __kmp_default_device, 3227 NULL // struct kmp_internal_control *next; 3228 }; 3229 3230 return g_icvs; 3231 } 3232 3233 static kmp_internal_control_t __kmp_get_x_global_icvs(const kmp_team_t *team) { 3234 3235 kmp_internal_control_t gx_icvs; 3236 gx_icvs.serial_nesting_level = 3237 0; // probably =team->t.t_serial like in save_inter_controls 3238 copy_icvs(&gx_icvs, &team->t.t_threads[0]->th.th_current_task->td_icvs); 3239 gx_icvs.next = NULL; 3240 3241 return gx_icvs; 3242 } 3243 3244 static void __kmp_initialize_root(kmp_root_t *root) { 3245 int f; 3246 kmp_team_t *root_team; 3247 kmp_team_t *hot_team; 3248 int hot_team_max_nth; 3249 kmp_r_sched_t r_sched = 3250 __kmp_get_schedule_global(); // get current state of scheduling globals 3251 kmp_internal_control_t r_icvs = __kmp_get_global_icvs(); 3252 KMP_DEBUG_ASSERT(root); 3253 KMP_ASSERT(!root->r.r_begin); 3254 3255 /* setup the root state structure */ 3256 __kmp_init_lock(&root->r.r_begin_lock); 3257 root->r.r_begin = FALSE; 3258 root->r.r_active = FALSE; 3259 root->r.r_in_parallel = 0; 3260 root->r.r_blocktime = __kmp_dflt_blocktime; 3261 #if KMP_AFFINITY_SUPPORTED 3262 root->r.r_affinity_assigned = FALSE; 3263 #endif 3264 3265 /* setup the root team for this task */ 3266 /* allocate the root team structure */ 3267 KF_TRACE(10, ("__kmp_initialize_root: before root_team\n")); 3268 3269 root_team = 3270 __kmp_allocate_team(root, 3271 1, // new_nproc 3272 1, // max_nproc 3273 #if OMPT_SUPPORT 3274 ompt_data_none, // root parallel id 3275 #endif 3276 __kmp_nested_proc_bind.bind_types[0], &r_icvs, 3277 0 // argc 3278 USE_NESTED_HOT_ARG(NULL) // primary thread is unknown 3279 ); 3280 #if USE_DEBUGGER 3281 // Non-NULL value should be assigned to make the debugger display the root 3282 // team. 3283 TCW_SYNC_PTR(root_team->t.t_pkfn, (microtask_t)(~0)); 3284 #endif 3285 3286 KF_TRACE(10, ("__kmp_initialize_root: after root_team = %p\n", root_team)); 3287 3288 root->r.r_root_team = root_team; 3289 root_team->t.t_control_stack_top = NULL; 3290 3291 /* initialize root team */ 3292 root_team->t.t_threads[0] = NULL; 3293 root_team->t.t_nproc = 1; 3294 root_team->t.t_serialized = 1; 3295 // TODO???: root_team->t.t_max_active_levels = __kmp_dflt_max_active_levels; 3296 root_team->t.t_sched.sched = r_sched.sched; 3297 KA_TRACE( 3298 20, 3299 ("__kmp_initialize_root: init root team %d arrived: join=%u, plain=%u\n", 3300 root_team->t.t_id, KMP_INIT_BARRIER_STATE, KMP_INIT_BARRIER_STATE)); 3301 3302 /* setup the hot team for this task */ 3303 /* allocate the hot team structure */ 3304 KF_TRACE(10, ("__kmp_initialize_root: before hot_team\n")); 3305 3306 hot_team = 3307 __kmp_allocate_team(root, 3308 1, // new_nproc 3309 __kmp_dflt_team_nth_ub * 2, // max_nproc 3310 #if OMPT_SUPPORT 3311 ompt_data_none, // root parallel id 3312 #endif 3313 __kmp_nested_proc_bind.bind_types[0], &r_icvs, 3314 0 // argc 3315 USE_NESTED_HOT_ARG(NULL) // primary thread is unknown 3316 ); 3317 KF_TRACE(10, ("__kmp_initialize_root: after hot_team = %p\n", hot_team)); 3318 3319 root->r.r_hot_team = hot_team; 3320 root_team->t.t_control_stack_top = NULL; 3321 3322 /* first-time initialization */ 3323 hot_team->t.t_parent = root_team; 3324 3325 /* initialize hot team */ 3326 hot_team_max_nth = hot_team->t.t_max_nproc; 3327 for (f = 0; f < hot_team_max_nth; ++f) { 3328 hot_team->t.t_threads[f] = NULL; 3329 } 3330 hot_team->t.t_nproc = 1; 3331 // TODO???: hot_team->t.t_max_active_levels = __kmp_dflt_max_active_levels; 3332 hot_team->t.t_sched.sched = r_sched.sched; 3333 hot_team->t.t_size_changed = 0; 3334 } 3335 3336 #ifdef KMP_DEBUG 3337 3338 typedef struct kmp_team_list_item { 3339 kmp_team_p const *entry; 3340 struct kmp_team_list_item *next; 3341 } kmp_team_list_item_t; 3342 typedef kmp_team_list_item_t *kmp_team_list_t; 3343 3344 static void __kmp_print_structure_team_accum( // Add team to list of teams. 3345 kmp_team_list_t list, // List of teams. 3346 kmp_team_p const *team // Team to add. 3347 ) { 3348 3349 // List must terminate with item where both entry and next are NULL. 3350 // Team is added to the list only once. 3351 // List is sorted in ascending order by team id. 3352 // Team id is *not* a key. 3353 3354 kmp_team_list_t l; 3355 3356 KMP_DEBUG_ASSERT(list != NULL); 3357 if (team == NULL) { 3358 return; 3359 } 3360 3361 __kmp_print_structure_team_accum(list, team->t.t_parent); 3362 __kmp_print_structure_team_accum(list, team->t.t_next_pool); 3363 3364 // Search list for the team. 3365 l = list; 3366 while (l->next != NULL && l->entry != team) { 3367 l = l->next; 3368 } 3369 if (l->next != NULL) { 3370 return; // Team has been added before, exit. 3371 } 3372 3373 // Team is not found. Search list again for insertion point. 3374 l = list; 3375 while (l->next != NULL && l->entry->t.t_id <= team->t.t_id) { 3376 l = l->next; 3377 } 3378 3379 // Insert team. 3380 { 3381 kmp_team_list_item_t *item = (kmp_team_list_item_t *)KMP_INTERNAL_MALLOC( 3382 sizeof(kmp_team_list_item_t)); 3383 *item = *l; 3384 l->entry = team; 3385 l->next = item; 3386 } 3387 } 3388 3389 static void __kmp_print_structure_team(char const *title, kmp_team_p const *team 3390 3391 ) { 3392 __kmp_printf("%s", title); 3393 if (team != NULL) { 3394 __kmp_printf("%2x %p\n", team->t.t_id, team); 3395 } else { 3396 __kmp_printf(" - (nil)\n"); 3397 } 3398 } 3399 3400 static void __kmp_print_structure_thread(char const *title, 3401 kmp_info_p const *thread) { 3402 __kmp_printf("%s", title); 3403 if (thread != NULL) { 3404 __kmp_printf("%2d %p\n", thread->th.th_info.ds.ds_gtid, thread); 3405 } else { 3406 __kmp_printf(" - (nil)\n"); 3407 } 3408 } 3409 3410 void __kmp_print_structure(void) { 3411 3412 kmp_team_list_t list; 3413 3414 // Initialize list of teams. 3415 list = 3416 (kmp_team_list_item_t *)KMP_INTERNAL_MALLOC(sizeof(kmp_team_list_item_t)); 3417 list->entry = NULL; 3418 list->next = NULL; 3419 3420 __kmp_printf("\n------------------------------\nGlobal Thread " 3421 "Table\n------------------------------\n"); 3422 { 3423 int gtid; 3424 for (gtid = 0; gtid < __kmp_threads_capacity; ++gtid) { 3425 __kmp_printf("%2d", gtid); 3426 if (__kmp_threads != NULL) { 3427 __kmp_printf(" %p", __kmp_threads[gtid]); 3428 } 3429 if (__kmp_root != NULL) { 3430 __kmp_printf(" %p", __kmp_root[gtid]); 3431 } 3432 __kmp_printf("\n"); 3433 } 3434 } 3435 3436 // Print out __kmp_threads array. 3437 __kmp_printf("\n------------------------------\nThreads\n--------------------" 3438 "----------\n"); 3439 if (__kmp_threads != NULL) { 3440 int gtid; 3441 for (gtid = 0; gtid < __kmp_threads_capacity; ++gtid) { 3442 kmp_info_t const *thread = __kmp_threads[gtid]; 3443 if (thread != NULL) { 3444 __kmp_printf("GTID %2d %p:\n", gtid, thread); 3445 __kmp_printf(" Our Root: %p\n", thread->th.th_root); 3446 __kmp_print_structure_team(" Our Team: ", thread->th.th_team); 3447 __kmp_print_structure_team(" Serial Team: ", 3448 thread->th.th_serial_team); 3449 __kmp_printf(" Threads: %2d\n", thread->th.th_team_nproc); 3450 __kmp_print_structure_thread(" Primary: ", 3451 thread->th.th_team_master); 3452 __kmp_printf(" Serialized?: %2d\n", thread->th.th_team_serialized); 3453 __kmp_printf(" Set NProc: %2d\n", thread->th.th_set_nproc); 3454 __kmp_printf(" Set Proc Bind: %2d\n", thread->th.th_set_proc_bind); 3455 __kmp_print_structure_thread(" Next in pool: ", 3456 thread->th.th_next_pool); 3457 __kmp_printf("\n"); 3458 __kmp_print_structure_team_accum(list, thread->th.th_team); 3459 __kmp_print_structure_team_accum(list, thread->th.th_serial_team); 3460 } 3461 } 3462 } else { 3463 __kmp_printf("Threads array is not allocated.\n"); 3464 } 3465 3466 // Print out __kmp_root array. 3467 __kmp_printf("\n------------------------------\nUbers\n----------------------" 3468 "--------\n"); 3469 if (__kmp_root != NULL) { 3470 int gtid; 3471 for (gtid = 0; gtid < __kmp_threads_capacity; ++gtid) { 3472 kmp_root_t const *root = __kmp_root[gtid]; 3473 if (root != NULL) { 3474 __kmp_printf("GTID %2d %p:\n", gtid, root); 3475 __kmp_print_structure_team(" Root Team: ", root->r.r_root_team); 3476 __kmp_print_structure_team(" Hot Team: ", root->r.r_hot_team); 3477 __kmp_print_structure_thread(" Uber Thread: ", 3478 root->r.r_uber_thread); 3479 __kmp_printf(" Active?: %2d\n", root->r.r_active); 3480 __kmp_printf(" In Parallel: %2d\n", 3481 KMP_ATOMIC_LD_RLX(&root->r.r_in_parallel)); 3482 __kmp_printf("\n"); 3483 __kmp_print_structure_team_accum(list, root->r.r_root_team); 3484 __kmp_print_structure_team_accum(list, root->r.r_hot_team); 3485 } 3486 } 3487 } else { 3488 __kmp_printf("Ubers array is not allocated.\n"); 3489 } 3490 3491 __kmp_printf("\n------------------------------\nTeams\n----------------------" 3492 "--------\n"); 3493 while (list->next != NULL) { 3494 kmp_team_p const *team = list->entry; 3495 int i; 3496 __kmp_printf("Team %2x %p:\n", team->t.t_id, team); 3497 __kmp_print_structure_team(" Parent Team: ", team->t.t_parent); 3498 __kmp_printf(" Primary TID: %2d\n", team->t.t_master_tid); 3499 __kmp_printf(" Max threads: %2d\n", team->t.t_max_nproc); 3500 __kmp_printf(" Levels of serial: %2d\n", team->t.t_serialized); 3501 __kmp_printf(" Number threads: %2d\n", team->t.t_nproc); 3502 for (i = 0; i < team->t.t_nproc; ++i) { 3503 __kmp_printf(" Thread %2d: ", i); 3504 __kmp_print_structure_thread("", team->t.t_threads[i]); 3505 } 3506 __kmp_print_structure_team(" Next in pool: ", team->t.t_next_pool); 3507 __kmp_printf("\n"); 3508 list = list->next; 3509 } 3510 3511 // Print out __kmp_thread_pool and __kmp_team_pool. 3512 __kmp_printf("\n------------------------------\nPools\n----------------------" 3513 "--------\n"); 3514 __kmp_print_structure_thread("Thread pool: ", 3515 CCAST(kmp_info_t *, __kmp_thread_pool)); 3516 __kmp_print_structure_team("Team pool: ", 3517 CCAST(kmp_team_t *, __kmp_team_pool)); 3518 __kmp_printf("\n"); 3519 3520 // Free team list. 3521 while (list != NULL) { 3522 kmp_team_list_item_t *item = list; 3523 list = list->next; 3524 KMP_INTERNAL_FREE(item); 3525 } 3526 } 3527 3528 #endif 3529 3530 //--------------------------------------------------------------------------- 3531 // Stuff for per-thread fast random number generator 3532 // Table of primes 3533 static const unsigned __kmp_primes[] = { 3534 0x9e3779b1, 0xffe6cc59, 0x2109f6dd, 0x43977ab5, 0xba5703f5, 0xb495a877, 3535 0xe1626741, 0x79695e6b, 0xbc98c09f, 0xd5bee2b3, 0x287488f9, 0x3af18231, 3536 0x9677cd4d, 0xbe3a6929, 0xadc6a877, 0xdcf0674b, 0xbe4d6fe9, 0x5f15e201, 3537 0x99afc3fd, 0xf3f16801, 0xe222cfff, 0x24ba5fdb, 0x0620452d, 0x79f149e3, 3538 0xc8b93f49, 0x972702cd, 0xb07dd827, 0x6c97d5ed, 0x085a3d61, 0x46eb5ea7, 3539 0x3d9910ed, 0x2e687b5b, 0x29609227, 0x6eb081f1, 0x0954c4e1, 0x9d114db9, 3540 0x542acfa9, 0xb3e6bd7b, 0x0742d917, 0xe9f3ffa7, 0x54581edb, 0xf2480f45, 3541 0x0bb9288f, 0xef1affc7, 0x85fa0ca7, 0x3ccc14db, 0xe6baf34b, 0x343377f7, 3542 0x5ca19031, 0xe6d9293b, 0xf0a9f391, 0x5d2e980b, 0xfc411073, 0xc3749363, 3543 0xb892d829, 0x3549366b, 0x629750ad, 0xb98294e5, 0x892d9483, 0xc235baf3, 3544 0x3d2402a3, 0x6bdef3c9, 0xbec333cd, 0x40c9520f}; 3545 3546 //--------------------------------------------------------------------------- 3547 // __kmp_get_random: Get a random number using a linear congruential method. 3548 unsigned short __kmp_get_random(kmp_info_t *thread) { 3549 unsigned x = thread->th.th_x; 3550 unsigned short r = (unsigned short)(x >> 16); 3551 3552 thread->th.th_x = x * thread->th.th_a + 1; 3553 3554 KA_TRACE(30, ("__kmp_get_random: THREAD: %d, RETURN: %u\n", 3555 thread->th.th_info.ds.ds_tid, r)); 3556 3557 return r; 3558 } 3559 //-------------------------------------------------------- 3560 // __kmp_init_random: Initialize a random number generator 3561 void __kmp_init_random(kmp_info_t *thread) { 3562 unsigned seed = thread->th.th_info.ds.ds_tid; 3563 3564 thread->th.th_a = 3565 __kmp_primes[seed % (sizeof(__kmp_primes) / sizeof(__kmp_primes[0]))]; 3566 thread->th.th_x = (seed + 1) * thread->th.th_a + 1; 3567 KA_TRACE(30, 3568 ("__kmp_init_random: THREAD: %u; A: %u\n", seed, thread->th.th_a)); 3569 } 3570 3571 #if KMP_OS_WINDOWS 3572 /* reclaim array entries for root threads that are already dead, returns number 3573 * reclaimed */ 3574 static int __kmp_reclaim_dead_roots(void) { 3575 int i, r = 0; 3576 3577 for (i = 0; i < __kmp_threads_capacity; ++i) { 3578 if (KMP_UBER_GTID(i) && 3579 !__kmp_still_running((kmp_info_t *)TCR_SYNC_PTR(__kmp_threads[i])) && 3580 !__kmp_root[i] 3581 ->r.r_active) { // AC: reclaim only roots died in non-active state 3582 r += __kmp_unregister_root_other_thread(i); 3583 } 3584 } 3585 return r; 3586 } 3587 #endif 3588 3589 /* This function attempts to create free entries in __kmp_threads and 3590 __kmp_root, and returns the number of free entries generated. 3591 3592 For Windows* OS static library, the first mechanism used is to reclaim array 3593 entries for root threads that are already dead. 3594 3595 On all platforms, expansion is attempted on the arrays __kmp_threads_ and 3596 __kmp_root, with appropriate update to __kmp_threads_capacity. Array 3597 capacity is increased by doubling with clipping to __kmp_tp_capacity, if 3598 threadprivate cache array has been created. Synchronization with 3599 __kmpc_threadprivate_cached is done using __kmp_tp_cached_lock. 3600 3601 After any dead root reclamation, if the clipping value allows array expansion 3602 to result in the generation of a total of nNeed free slots, the function does 3603 that expansion. If not, nothing is done beyond the possible initial root 3604 thread reclamation. 3605 3606 If any argument is negative, the behavior is undefined. */ 3607 static int __kmp_expand_threads(int nNeed) { 3608 int added = 0; 3609 int minimumRequiredCapacity; 3610 int newCapacity; 3611 kmp_info_t **newThreads; 3612 kmp_root_t **newRoot; 3613 3614 // All calls to __kmp_expand_threads should be under __kmp_forkjoin_lock, so 3615 // resizing __kmp_threads does not need additional protection if foreign 3616 // threads are present 3617 3618 #if KMP_OS_WINDOWS && !KMP_DYNAMIC_LIB 3619 /* only for Windows static library */ 3620 /* reclaim array entries for root threads that are already dead */ 3621 added = __kmp_reclaim_dead_roots(); 3622 3623 if (nNeed) { 3624 nNeed -= added; 3625 if (nNeed < 0) 3626 nNeed = 0; 3627 } 3628 #endif 3629 if (nNeed <= 0) 3630 return added; 3631 3632 // Note that __kmp_threads_capacity is not bounded by __kmp_max_nth. If 3633 // __kmp_max_nth is set to some value less than __kmp_sys_max_nth by the 3634 // user via KMP_DEVICE_THREAD_LIMIT, then __kmp_threads_capacity may become 3635 // > __kmp_max_nth in one of two ways: 3636 // 3637 // 1) The initialization thread (gtid = 0) exits. __kmp_threads[0] 3638 // may not be reused by another thread, so we may need to increase 3639 // __kmp_threads_capacity to __kmp_max_nth + 1. 3640 // 3641 // 2) New foreign root(s) are encountered. We always register new foreign 3642 // roots. This may cause a smaller # of threads to be allocated at 3643 // subsequent parallel regions, but the worker threads hang around (and 3644 // eventually go to sleep) and need slots in the __kmp_threads[] array. 3645 // 3646 // Anyway, that is the reason for moving the check to see if 3647 // __kmp_max_nth was exceeded into __kmp_reserve_threads() 3648 // instead of having it performed here. -BB 3649 3650 KMP_DEBUG_ASSERT(__kmp_sys_max_nth >= __kmp_threads_capacity); 3651 3652 /* compute expansion headroom to check if we can expand */ 3653 if (__kmp_sys_max_nth - __kmp_threads_capacity < nNeed) { 3654 /* possible expansion too small -- give up */ 3655 return added; 3656 } 3657 minimumRequiredCapacity = __kmp_threads_capacity + nNeed; 3658 3659 newCapacity = __kmp_threads_capacity; 3660 do { 3661 newCapacity = newCapacity <= (__kmp_sys_max_nth >> 1) ? (newCapacity << 1) 3662 : __kmp_sys_max_nth; 3663 } while (newCapacity < minimumRequiredCapacity); 3664 newThreads = (kmp_info_t **)__kmp_allocate( 3665 (sizeof(kmp_info_t *) + sizeof(kmp_root_t *)) * newCapacity + CACHE_LINE); 3666 newRoot = 3667 (kmp_root_t **)((char *)newThreads + sizeof(kmp_info_t *) * newCapacity); 3668 KMP_MEMCPY(newThreads, __kmp_threads, 3669 __kmp_threads_capacity * sizeof(kmp_info_t *)); 3670 KMP_MEMCPY(newRoot, __kmp_root, 3671 __kmp_threads_capacity * sizeof(kmp_root_t *)); 3672 3673 kmp_info_t **temp_threads = __kmp_threads; 3674 *(kmp_info_t * *volatile *)&__kmp_threads = newThreads; 3675 *(kmp_root_t * *volatile *)&__kmp_root = newRoot; 3676 __kmp_free(temp_threads); 3677 added += newCapacity - __kmp_threads_capacity; 3678 *(volatile int *)&__kmp_threads_capacity = newCapacity; 3679 3680 if (newCapacity > __kmp_tp_capacity) { 3681 __kmp_acquire_bootstrap_lock(&__kmp_tp_cached_lock); 3682 if (__kmp_tp_cached && newCapacity > __kmp_tp_capacity) { 3683 __kmp_threadprivate_resize_cache(newCapacity); 3684 } else { // increase __kmp_tp_capacity to correspond with kmp_threads size 3685 *(volatile int *)&__kmp_tp_capacity = newCapacity; 3686 } 3687 __kmp_release_bootstrap_lock(&__kmp_tp_cached_lock); 3688 } 3689 3690 return added; 3691 } 3692 3693 /* Register the current thread as a root thread and obtain our gtid. We must 3694 have the __kmp_initz_lock held at this point. Argument TRUE only if are the 3695 thread that calls from __kmp_do_serial_initialize() */ 3696 int __kmp_register_root(int initial_thread) { 3697 kmp_info_t *root_thread; 3698 kmp_root_t *root; 3699 int gtid; 3700 int capacity; 3701 __kmp_acquire_bootstrap_lock(&__kmp_forkjoin_lock); 3702 KA_TRACE(20, ("__kmp_register_root: entered\n")); 3703 KMP_MB(); 3704 3705 /* 2007-03-02: 3706 If initial thread did not invoke OpenMP RTL yet, and this thread is not an 3707 initial one, "__kmp_all_nth >= __kmp_threads_capacity" condition does not 3708 work as expected -- it may return false (that means there is at least one 3709 empty slot in __kmp_threads array), but it is possible the only free slot 3710 is #0, which is reserved for initial thread and so cannot be used for this 3711 one. Following code workarounds this bug. 3712 3713 However, right solution seems to be not reserving slot #0 for initial 3714 thread because: 3715 (1) there is no magic in slot #0, 3716 (2) we cannot detect initial thread reliably (the first thread which does 3717 serial initialization may be not a real initial thread). 3718 */ 3719 capacity = __kmp_threads_capacity; 3720 if (!initial_thread && TCR_PTR(__kmp_threads[0]) == NULL) { 3721 --capacity; 3722 } 3723 3724 // If it is not for initializing the hidden helper team, we need to take 3725 // __kmp_hidden_helper_threads_num out of the capacity because it is included 3726 // in __kmp_threads_capacity. 3727 if (__kmp_enable_hidden_helper && !TCR_4(__kmp_init_hidden_helper_threads)) { 3728 capacity -= __kmp_hidden_helper_threads_num; 3729 } 3730 3731 /* see if there are too many threads */ 3732 if (__kmp_all_nth >= capacity && !__kmp_expand_threads(1)) { 3733 if (__kmp_tp_cached) { 3734 __kmp_fatal(KMP_MSG(CantRegisterNewThread), 3735 KMP_HNT(Set_ALL_THREADPRIVATE, __kmp_tp_capacity), 3736 KMP_HNT(PossibleSystemLimitOnThreads), __kmp_msg_null); 3737 } else { 3738 __kmp_fatal(KMP_MSG(CantRegisterNewThread), KMP_HNT(SystemLimitOnThreads), 3739 __kmp_msg_null); 3740 } 3741 } 3742 3743 // When hidden helper task is enabled, __kmp_threads is organized as follows: 3744 // 0: initial thread, also a regular OpenMP thread. 3745 // [1, __kmp_hidden_helper_threads_num]: slots for hidden helper threads. 3746 // [__kmp_hidden_helper_threads_num + 1, __kmp_threads_capacity): slots for 3747 // regular OpenMP threads. 3748 if (TCR_4(__kmp_init_hidden_helper_threads)) { 3749 // Find an available thread slot for hidden helper thread. Slots for hidden 3750 // helper threads start from 1 to __kmp_hidden_helper_threads_num. 3751 for (gtid = 1; TCR_PTR(__kmp_threads[gtid]) != NULL && 3752 gtid <= __kmp_hidden_helper_threads_num; 3753 gtid++) 3754 ; 3755 KMP_ASSERT(gtid <= __kmp_hidden_helper_threads_num); 3756 KA_TRACE(1, ("__kmp_register_root: found slot in threads array for " 3757 "hidden helper thread: T#%d\n", 3758 gtid)); 3759 } else { 3760 /* find an available thread slot */ 3761 // Don't reassign the zero slot since we need that to only be used by 3762 // initial thread. Slots for hidden helper threads should also be skipped. 3763 if (initial_thread && TCR_PTR(__kmp_threads[0]) == NULL) { 3764 gtid = 0; 3765 } else { 3766 for (gtid = __kmp_hidden_helper_threads_num + 1; 3767 TCR_PTR(__kmp_threads[gtid]) != NULL; gtid++) 3768 ; 3769 } 3770 KA_TRACE( 3771 1, ("__kmp_register_root: found slot in threads array: T#%d\n", gtid)); 3772 KMP_ASSERT(gtid < __kmp_threads_capacity); 3773 } 3774 3775 /* update global accounting */ 3776 __kmp_all_nth++; 3777 TCW_4(__kmp_nth, __kmp_nth + 1); 3778 3779 // if __kmp_adjust_gtid_mode is set, then we use method #1 (sp search) for low 3780 // numbers of procs, and method #2 (keyed API call) for higher numbers. 3781 if (__kmp_adjust_gtid_mode) { 3782 if (__kmp_all_nth >= __kmp_tls_gtid_min) { 3783 if (TCR_4(__kmp_gtid_mode) != 2) { 3784 TCW_4(__kmp_gtid_mode, 2); 3785 } 3786 } else { 3787 if (TCR_4(__kmp_gtid_mode) != 1) { 3788 TCW_4(__kmp_gtid_mode, 1); 3789 } 3790 } 3791 } 3792 3793 #ifdef KMP_ADJUST_BLOCKTIME 3794 /* Adjust blocktime to zero if necessary */ 3795 /* Middle initialization might not have occurred yet */ 3796 if (!__kmp_env_blocktime && (__kmp_avail_proc > 0)) { 3797 if (__kmp_nth > __kmp_avail_proc) { 3798 __kmp_zero_bt = TRUE; 3799 } 3800 } 3801 #endif /* KMP_ADJUST_BLOCKTIME */ 3802 3803 /* setup this new hierarchy */ 3804 if (!(root = __kmp_root[gtid])) { 3805 root = __kmp_root[gtid] = (kmp_root_t *)__kmp_allocate(sizeof(kmp_root_t)); 3806 KMP_DEBUG_ASSERT(!root->r.r_root_team); 3807 } 3808 3809 #if KMP_STATS_ENABLED 3810 // Initialize stats as soon as possible (right after gtid assignment). 3811 __kmp_stats_thread_ptr = __kmp_stats_list->push_back(gtid); 3812 __kmp_stats_thread_ptr->startLife(); 3813 KMP_SET_THREAD_STATE(SERIAL_REGION); 3814 KMP_INIT_PARTITIONED_TIMERS(OMP_serial); 3815 #endif 3816 __kmp_initialize_root(root); 3817 3818 /* setup new root thread structure */ 3819 if (root->r.r_uber_thread) { 3820 root_thread = root->r.r_uber_thread; 3821 } else { 3822 root_thread = (kmp_info_t *)__kmp_allocate(sizeof(kmp_info_t)); 3823 if (__kmp_storage_map) { 3824 __kmp_print_thread_storage_map(root_thread, gtid); 3825 } 3826 root_thread->th.th_info.ds.ds_gtid = gtid; 3827 #if OMPT_SUPPORT 3828 root_thread->th.ompt_thread_info.thread_data = ompt_data_none; 3829 #endif 3830 root_thread->th.th_root = root; 3831 if (__kmp_env_consistency_check) { 3832 root_thread->th.th_cons = __kmp_allocate_cons_stack(gtid); 3833 } 3834 #if USE_FAST_MEMORY 3835 __kmp_initialize_fast_memory(root_thread); 3836 #endif /* USE_FAST_MEMORY */ 3837 3838 #if KMP_USE_BGET 3839 KMP_DEBUG_ASSERT(root_thread->th.th_local.bget_data == NULL); 3840 __kmp_initialize_bget(root_thread); 3841 #endif 3842 __kmp_init_random(root_thread); // Initialize random number generator 3843 } 3844 3845 /* setup the serial team held in reserve by the root thread */ 3846 if (!root_thread->th.th_serial_team) { 3847 kmp_internal_control_t r_icvs = __kmp_get_global_icvs(); 3848 KF_TRACE(10, ("__kmp_register_root: before serial_team\n")); 3849 root_thread->th.th_serial_team = __kmp_allocate_team( 3850 root, 1, 1, 3851 #if OMPT_SUPPORT 3852 ompt_data_none, // root parallel id 3853 #endif 3854 proc_bind_default, &r_icvs, 0 USE_NESTED_HOT_ARG(NULL)); 3855 } 3856 KMP_ASSERT(root_thread->th.th_serial_team); 3857 KF_TRACE(10, ("__kmp_register_root: after serial_team = %p\n", 3858 root_thread->th.th_serial_team)); 3859 3860 /* drop root_thread into place */ 3861 TCW_SYNC_PTR(__kmp_threads[gtid], root_thread); 3862 3863 root->r.r_root_team->t.t_threads[0] = root_thread; 3864 root->r.r_hot_team->t.t_threads[0] = root_thread; 3865 root_thread->th.th_serial_team->t.t_threads[0] = root_thread; 3866 // AC: the team created in reserve, not for execution (it is unused for now). 3867 root_thread->th.th_serial_team->t.t_serialized = 0; 3868 root->r.r_uber_thread = root_thread; 3869 3870 /* initialize the thread, get it ready to go */ 3871 __kmp_initialize_info(root_thread, root->r.r_root_team, 0, gtid); 3872 TCW_4(__kmp_init_gtid, TRUE); 3873 3874 /* prepare the primary thread for get_gtid() */ 3875 __kmp_gtid_set_specific(gtid); 3876 3877 #if USE_ITT_BUILD 3878 __kmp_itt_thread_name(gtid); 3879 #endif /* USE_ITT_BUILD */ 3880 3881 #ifdef KMP_TDATA_GTID 3882 __kmp_gtid = gtid; 3883 #endif 3884 __kmp_create_worker(gtid, root_thread, __kmp_stksize); 3885 KMP_DEBUG_ASSERT(__kmp_gtid_get_specific() == gtid); 3886 3887 KA_TRACE(20, ("__kmp_register_root: T#%d init T#%d(%d:%d) arrived: join=%u, " 3888 "plain=%u\n", 3889 gtid, __kmp_gtid_from_tid(0, root->r.r_hot_team), 3890 root->r.r_hot_team->t.t_id, 0, KMP_INIT_BARRIER_STATE, 3891 KMP_INIT_BARRIER_STATE)); 3892 { // Initialize barrier data. 3893 int b; 3894 for (b = 0; b < bs_last_barrier; ++b) { 3895 root_thread->th.th_bar[b].bb.b_arrived = KMP_INIT_BARRIER_STATE; 3896 #if USE_DEBUGGER 3897 root_thread->th.th_bar[b].bb.b_worker_arrived = 0; 3898 #endif 3899 } 3900 } 3901 KMP_DEBUG_ASSERT(root->r.r_hot_team->t.t_bar[bs_forkjoin_barrier].b_arrived == 3902 KMP_INIT_BARRIER_STATE); 3903 3904 #if KMP_AFFINITY_SUPPORTED 3905 root_thread->th.th_current_place = KMP_PLACE_UNDEFINED; 3906 root_thread->th.th_new_place = KMP_PLACE_UNDEFINED; 3907 root_thread->th.th_first_place = KMP_PLACE_UNDEFINED; 3908 root_thread->th.th_last_place = KMP_PLACE_UNDEFINED; 3909 #endif /* KMP_AFFINITY_SUPPORTED */ 3910 root_thread->th.th_def_allocator = __kmp_def_allocator; 3911 root_thread->th.th_prev_level = 0; 3912 root_thread->th.th_prev_num_threads = 1; 3913 3914 kmp_cg_root_t *tmp = (kmp_cg_root_t *)__kmp_allocate(sizeof(kmp_cg_root_t)); 3915 tmp->cg_root = root_thread; 3916 tmp->cg_thread_limit = __kmp_cg_max_nth; 3917 tmp->cg_nthreads = 1; 3918 KA_TRACE(100, ("__kmp_register_root: Thread %p created node %p with" 3919 " cg_nthreads init to 1\n", 3920 root_thread, tmp)); 3921 tmp->up = NULL; 3922 root_thread->th.th_cg_roots = tmp; 3923 3924 __kmp_root_counter++; 3925 3926 #if OMPT_SUPPORT 3927 if (!initial_thread && ompt_enabled.enabled) { 3928 3929 kmp_info_t *root_thread = ompt_get_thread(); 3930 3931 ompt_set_thread_state(root_thread, ompt_state_overhead); 3932 3933 if (ompt_enabled.ompt_callback_thread_begin) { 3934 ompt_callbacks.ompt_callback(ompt_callback_thread_begin)( 3935 ompt_thread_initial, __ompt_get_thread_data_internal()); 3936 } 3937 ompt_data_t *task_data; 3938 ompt_data_t *parallel_data; 3939 __ompt_get_task_info_internal(0, NULL, &task_data, NULL, ¶llel_data, 3940 NULL); 3941 if (ompt_enabled.ompt_callback_implicit_task) { 3942 ompt_callbacks.ompt_callback(ompt_callback_implicit_task)( 3943 ompt_scope_begin, parallel_data, task_data, 1, 1, ompt_task_initial); 3944 } 3945 3946 ompt_set_thread_state(root_thread, ompt_state_work_serial); 3947 } 3948 #endif 3949 #if OMPD_SUPPORT 3950 if (ompd_state & OMPD_ENABLE_BP) 3951 ompd_bp_thread_begin(); 3952 #endif 3953 3954 KMP_MB(); 3955 __kmp_release_bootstrap_lock(&__kmp_forkjoin_lock); 3956 3957 return gtid; 3958 } 3959 3960 #if KMP_NESTED_HOT_TEAMS 3961 static int __kmp_free_hot_teams(kmp_root_t *root, kmp_info_t *thr, int level, 3962 const int max_level) { 3963 int i, n, nth; 3964 kmp_hot_team_ptr_t *hot_teams = thr->th.th_hot_teams; 3965 if (!hot_teams || !hot_teams[level].hot_team) { 3966 return 0; 3967 } 3968 KMP_DEBUG_ASSERT(level < max_level); 3969 kmp_team_t *team = hot_teams[level].hot_team; 3970 nth = hot_teams[level].hot_team_nth; 3971 n = nth - 1; // primary thread is not freed 3972 if (level < max_level - 1) { 3973 for (i = 0; i < nth; ++i) { 3974 kmp_info_t *th = team->t.t_threads[i]; 3975 n += __kmp_free_hot_teams(root, th, level + 1, max_level); 3976 if (i > 0 && th->th.th_hot_teams) { 3977 __kmp_free(th->th.th_hot_teams); 3978 th->th.th_hot_teams = NULL; 3979 } 3980 } 3981 } 3982 __kmp_free_team(root, team, NULL); 3983 return n; 3984 } 3985 #endif 3986 3987 // Resets a root thread and clear its root and hot teams. 3988 // Returns the number of __kmp_threads entries directly and indirectly freed. 3989 static int __kmp_reset_root(int gtid, kmp_root_t *root) { 3990 kmp_team_t *root_team = root->r.r_root_team; 3991 kmp_team_t *hot_team = root->r.r_hot_team; 3992 int n = hot_team->t.t_nproc; 3993 int i; 3994 3995 KMP_DEBUG_ASSERT(!root->r.r_active); 3996 3997 root->r.r_root_team = NULL; 3998 root->r.r_hot_team = NULL; 3999 // __kmp_free_team() does not free hot teams, so we have to clear r_hot_team 4000 // before call to __kmp_free_team(). 4001 __kmp_free_team(root, root_team USE_NESTED_HOT_ARG(NULL)); 4002 #if KMP_NESTED_HOT_TEAMS 4003 if (__kmp_hot_teams_max_level > 4004 0) { // need to free nested hot teams and their threads if any 4005 for (i = 0; i < hot_team->t.t_nproc; ++i) { 4006 kmp_info_t *th = hot_team->t.t_threads[i]; 4007 if (__kmp_hot_teams_max_level > 1) { 4008 n += __kmp_free_hot_teams(root, th, 1, __kmp_hot_teams_max_level); 4009 } 4010 if (th->th.th_hot_teams) { 4011 __kmp_free(th->th.th_hot_teams); 4012 th->th.th_hot_teams = NULL; 4013 } 4014 } 4015 } 4016 #endif 4017 __kmp_free_team(root, hot_team USE_NESTED_HOT_ARG(NULL)); 4018 4019 // Before we can reap the thread, we need to make certain that all other 4020 // threads in the teams that had this root as ancestor have stopped trying to 4021 // steal tasks. 4022 if (__kmp_tasking_mode != tskm_immediate_exec) { 4023 __kmp_wait_to_unref_task_teams(); 4024 } 4025 4026 #if KMP_OS_WINDOWS 4027 /* Close Handle of root duplicated in __kmp_create_worker (tr #62919) */ 4028 KA_TRACE( 4029 10, ("__kmp_reset_root: free handle, th = %p, handle = %" KMP_UINTPTR_SPEC 4030 "\n", 4031 (LPVOID) & (root->r.r_uber_thread->th), 4032 root->r.r_uber_thread->th.th_info.ds.ds_thread)); 4033 __kmp_free_handle(root->r.r_uber_thread->th.th_info.ds.ds_thread); 4034 #endif /* KMP_OS_WINDOWS */ 4035 4036 #if OMPD_SUPPORT 4037 if (ompd_state & OMPD_ENABLE_BP) 4038 ompd_bp_thread_end(); 4039 #endif 4040 4041 #if OMPT_SUPPORT 4042 ompt_data_t *task_data; 4043 ompt_data_t *parallel_data; 4044 __ompt_get_task_info_internal(0, NULL, &task_data, NULL, ¶llel_data, 4045 NULL); 4046 if (ompt_enabled.ompt_callback_implicit_task) { 4047 ompt_callbacks.ompt_callback(ompt_callback_implicit_task)( 4048 ompt_scope_end, parallel_data, task_data, 0, 1, ompt_task_initial); 4049 } 4050 if (ompt_enabled.ompt_callback_thread_end) { 4051 ompt_callbacks.ompt_callback(ompt_callback_thread_end)( 4052 &(root->r.r_uber_thread->th.ompt_thread_info.thread_data)); 4053 } 4054 #endif 4055 4056 TCW_4(__kmp_nth, 4057 __kmp_nth - 1); // __kmp_reap_thread will decrement __kmp_all_nth. 4058 i = root->r.r_uber_thread->th.th_cg_roots->cg_nthreads--; 4059 KA_TRACE(100, ("__kmp_reset_root: Thread %p decrement cg_nthreads on node %p" 4060 " to %d\n", 4061 root->r.r_uber_thread, root->r.r_uber_thread->th.th_cg_roots, 4062 root->r.r_uber_thread->th.th_cg_roots->cg_nthreads)); 4063 if (i == 1) { 4064 // need to free contention group structure 4065 KMP_DEBUG_ASSERT(root->r.r_uber_thread == 4066 root->r.r_uber_thread->th.th_cg_roots->cg_root); 4067 KMP_DEBUG_ASSERT(root->r.r_uber_thread->th.th_cg_roots->up == NULL); 4068 __kmp_free(root->r.r_uber_thread->th.th_cg_roots); 4069 root->r.r_uber_thread->th.th_cg_roots = NULL; 4070 } 4071 __kmp_reap_thread(root->r.r_uber_thread, 1); 4072 4073 // We canot put root thread to __kmp_thread_pool, so we have to reap it 4074 // instead of freeing. 4075 root->r.r_uber_thread = NULL; 4076 /* mark root as no longer in use */ 4077 root->r.r_begin = FALSE; 4078 4079 return n; 4080 } 4081 4082 void __kmp_unregister_root_current_thread(int gtid) { 4083 KA_TRACE(1, ("__kmp_unregister_root_current_thread: enter T#%d\n", gtid)); 4084 /* this lock should be ok, since unregister_root_current_thread is never 4085 called during an abort, only during a normal close. furthermore, if you 4086 have the forkjoin lock, you should never try to get the initz lock */ 4087 __kmp_acquire_bootstrap_lock(&__kmp_forkjoin_lock); 4088 if (TCR_4(__kmp_global.g.g_done) || !__kmp_init_serial) { 4089 KC_TRACE(10, ("__kmp_unregister_root_current_thread: already finished, " 4090 "exiting T#%d\n", 4091 gtid)); 4092 __kmp_release_bootstrap_lock(&__kmp_forkjoin_lock); 4093 return; 4094 } 4095 kmp_root_t *root = __kmp_root[gtid]; 4096 4097 KMP_DEBUG_ASSERT(__kmp_threads && __kmp_threads[gtid]); 4098 KMP_ASSERT(KMP_UBER_GTID(gtid)); 4099 KMP_ASSERT(root == __kmp_threads[gtid]->th.th_root); 4100 KMP_ASSERT(root->r.r_active == FALSE); 4101 4102 KMP_MB(); 4103 4104 kmp_info_t *thread = __kmp_threads[gtid]; 4105 kmp_team_t *team = thread->th.th_team; 4106 kmp_task_team_t *task_team = thread->th.th_task_team; 4107 4108 // we need to wait for the proxy tasks before finishing the thread 4109 if (task_team != NULL && task_team->tt.tt_found_proxy_tasks) { 4110 #if OMPT_SUPPORT 4111 // the runtime is shutting down so we won't report any events 4112 thread->th.ompt_thread_info.state = ompt_state_undefined; 4113 #endif 4114 __kmp_task_team_wait(thread, team USE_ITT_BUILD_ARG(NULL)); 4115 } 4116 4117 __kmp_reset_root(gtid, root); 4118 4119 KMP_MB(); 4120 KC_TRACE(10, 4121 ("__kmp_unregister_root_current_thread: T#%d unregistered\n", gtid)); 4122 4123 __kmp_release_bootstrap_lock(&__kmp_forkjoin_lock); 4124 } 4125 4126 #if KMP_OS_WINDOWS 4127 /* __kmp_forkjoin_lock must be already held 4128 Unregisters a root thread that is not the current thread. Returns the number 4129 of __kmp_threads entries freed as a result. */ 4130 static int __kmp_unregister_root_other_thread(int gtid) { 4131 kmp_root_t *root = __kmp_root[gtid]; 4132 int r; 4133 4134 KA_TRACE(1, ("__kmp_unregister_root_other_thread: enter T#%d\n", gtid)); 4135 KMP_DEBUG_ASSERT(__kmp_threads && __kmp_threads[gtid]); 4136 KMP_ASSERT(KMP_UBER_GTID(gtid)); 4137 KMP_ASSERT(root == __kmp_threads[gtid]->th.th_root); 4138 KMP_ASSERT(root->r.r_active == FALSE); 4139 4140 r = __kmp_reset_root(gtid, root); 4141 KC_TRACE(10, 4142 ("__kmp_unregister_root_other_thread: T#%d unregistered\n", gtid)); 4143 return r; 4144 } 4145 #endif 4146 4147 #if KMP_DEBUG 4148 void __kmp_task_info() { 4149 4150 kmp_int32 gtid = __kmp_entry_gtid(); 4151 kmp_int32 tid = __kmp_tid_from_gtid(gtid); 4152 kmp_info_t *this_thr = __kmp_threads[gtid]; 4153 kmp_team_t *steam = this_thr->th.th_serial_team; 4154 kmp_team_t *team = this_thr->th.th_team; 4155 4156 __kmp_printf( 4157 "__kmp_task_info: gtid=%d tid=%d t_thread=%p team=%p steam=%p curtask=%p " 4158 "ptask=%p\n", 4159 gtid, tid, this_thr, team, steam, this_thr->th.th_current_task, 4160 team->t.t_implicit_task_taskdata[tid].td_parent); 4161 } 4162 #endif // KMP_DEBUG 4163 4164 /* TODO optimize with one big memclr, take out what isn't needed, split 4165 responsibility to workers as much as possible, and delay initialization of 4166 features as much as possible */ 4167 static void __kmp_initialize_info(kmp_info_t *this_thr, kmp_team_t *team, 4168 int tid, int gtid) { 4169 /* this_thr->th.th_info.ds.ds_gtid is setup in 4170 kmp_allocate_thread/create_worker. 4171 this_thr->th.th_serial_team is setup in __kmp_allocate_thread */ 4172 KMP_DEBUG_ASSERT(this_thr != NULL); 4173 KMP_DEBUG_ASSERT(this_thr->th.th_serial_team); 4174 KMP_DEBUG_ASSERT(team); 4175 KMP_DEBUG_ASSERT(team->t.t_threads); 4176 KMP_DEBUG_ASSERT(team->t.t_dispatch); 4177 kmp_info_t *master = team->t.t_threads[0]; 4178 KMP_DEBUG_ASSERT(master); 4179 KMP_DEBUG_ASSERT(master->th.th_root); 4180 4181 KMP_MB(); 4182 4183 TCW_SYNC_PTR(this_thr->th.th_team, team); 4184 4185 this_thr->th.th_info.ds.ds_tid = tid; 4186 this_thr->th.th_set_nproc = 0; 4187 if (__kmp_tasking_mode != tskm_immediate_exec) 4188 // When tasking is possible, threads are not safe to reap until they are 4189 // done tasking; this will be set when tasking code is exited in wait 4190 this_thr->th.th_reap_state = KMP_NOT_SAFE_TO_REAP; 4191 else // no tasking --> always safe to reap 4192 this_thr->th.th_reap_state = KMP_SAFE_TO_REAP; 4193 this_thr->th.th_set_proc_bind = proc_bind_default; 4194 #if KMP_AFFINITY_SUPPORTED 4195 this_thr->th.th_new_place = this_thr->th.th_current_place; 4196 #endif 4197 this_thr->th.th_root = master->th.th_root; 4198 4199 /* setup the thread's cache of the team structure */ 4200 this_thr->th.th_team_nproc = team->t.t_nproc; 4201 this_thr->th.th_team_master = master; 4202 this_thr->th.th_team_serialized = team->t.t_serialized; 4203 4204 KMP_DEBUG_ASSERT(team->t.t_implicit_task_taskdata); 4205 4206 KF_TRACE(10, ("__kmp_initialize_info1: T#%d:%d this_thread=%p curtask=%p\n", 4207 tid, gtid, this_thr, this_thr->th.th_current_task)); 4208 4209 __kmp_init_implicit_task(this_thr->th.th_team_master->th.th_ident, this_thr, 4210 team, tid, TRUE); 4211 4212 KF_TRACE(10, ("__kmp_initialize_info2: T#%d:%d this_thread=%p curtask=%p\n", 4213 tid, gtid, this_thr, this_thr->th.th_current_task)); 4214 // TODO: Initialize ICVs from parent; GEH - isn't that already done in 4215 // __kmp_initialize_team()? 4216 4217 /* TODO no worksharing in speculative threads */ 4218 this_thr->th.th_dispatch = &team->t.t_dispatch[tid]; 4219 4220 this_thr->th.th_local.this_construct = 0; 4221 4222 if (!this_thr->th.th_pri_common) { 4223 this_thr->th.th_pri_common = 4224 (struct common_table *)__kmp_allocate(sizeof(struct common_table)); 4225 if (__kmp_storage_map) { 4226 __kmp_print_storage_map_gtid( 4227 gtid, this_thr->th.th_pri_common, this_thr->th.th_pri_common + 1, 4228 sizeof(struct common_table), "th_%d.th_pri_common\n", gtid); 4229 } 4230 this_thr->th.th_pri_head = NULL; 4231 } 4232 4233 if (this_thr != master && // Primary thread's CG root is initialized elsewhere 4234 this_thr->th.th_cg_roots != master->th.th_cg_roots) { // CG root not set 4235 // Make new thread's CG root same as primary thread's 4236 KMP_DEBUG_ASSERT(master->th.th_cg_roots); 4237 kmp_cg_root_t *tmp = this_thr->th.th_cg_roots; 4238 if (tmp) { 4239 // worker changes CG, need to check if old CG should be freed 4240 int i = tmp->cg_nthreads--; 4241 KA_TRACE(100, ("__kmp_initialize_info: Thread %p decrement cg_nthreads" 4242 " on node %p of thread %p to %d\n", 4243 this_thr, tmp, tmp->cg_root, tmp->cg_nthreads)); 4244 if (i == 1) { 4245 __kmp_free(tmp); // last thread left CG --> free it 4246 } 4247 } 4248 this_thr->th.th_cg_roots = master->th.th_cg_roots; 4249 // Increment new thread's CG root's counter to add the new thread 4250 this_thr->th.th_cg_roots->cg_nthreads++; 4251 KA_TRACE(100, ("__kmp_initialize_info: Thread %p increment cg_nthreads on" 4252 " node %p of thread %p to %d\n", 4253 this_thr, this_thr->th.th_cg_roots, 4254 this_thr->th.th_cg_roots->cg_root, 4255 this_thr->th.th_cg_roots->cg_nthreads)); 4256 this_thr->th.th_current_task->td_icvs.thread_limit = 4257 this_thr->th.th_cg_roots->cg_thread_limit; 4258 } 4259 4260 /* Initialize dynamic dispatch */ 4261 { 4262 volatile kmp_disp_t *dispatch = this_thr->th.th_dispatch; 4263 // Use team max_nproc since this will never change for the team. 4264 size_t disp_size = 4265 sizeof(dispatch_private_info_t) * 4266 (team->t.t_max_nproc == 1 ? 1 : __kmp_dispatch_num_buffers); 4267 KD_TRACE(10, ("__kmp_initialize_info: T#%d max_nproc: %d\n", gtid, 4268 team->t.t_max_nproc)); 4269 KMP_ASSERT(dispatch); 4270 KMP_DEBUG_ASSERT(team->t.t_dispatch); 4271 KMP_DEBUG_ASSERT(dispatch == &team->t.t_dispatch[tid]); 4272 4273 dispatch->th_disp_index = 0; 4274 dispatch->th_doacross_buf_idx = 0; 4275 if (!dispatch->th_disp_buffer) { 4276 dispatch->th_disp_buffer = 4277 (dispatch_private_info_t *)__kmp_allocate(disp_size); 4278 4279 if (__kmp_storage_map) { 4280 __kmp_print_storage_map_gtid( 4281 gtid, &dispatch->th_disp_buffer[0], 4282 &dispatch->th_disp_buffer[team->t.t_max_nproc == 1 4283 ? 1 4284 : __kmp_dispatch_num_buffers], 4285 disp_size, 4286 "th_%d.th_dispatch.th_disp_buffer " 4287 "(team_%d.t_dispatch[%d].th_disp_buffer)", 4288 gtid, team->t.t_id, gtid); 4289 } 4290 } else { 4291 memset(&dispatch->th_disp_buffer[0], '\0', disp_size); 4292 } 4293 4294 dispatch->th_dispatch_pr_current = 0; 4295 dispatch->th_dispatch_sh_current = 0; 4296 4297 dispatch->th_deo_fcn = 0; /* ORDERED */ 4298 dispatch->th_dxo_fcn = 0; /* END ORDERED */ 4299 } 4300 4301 this_thr->th.th_next_pool = NULL; 4302 4303 if (!this_thr->th.th_task_state_memo_stack) { 4304 size_t i; 4305 this_thr->th.th_task_state_memo_stack = 4306 (kmp_uint8 *)__kmp_allocate(4 * sizeof(kmp_uint8)); 4307 this_thr->th.th_task_state_top = 0; 4308 this_thr->th.th_task_state_stack_sz = 4; 4309 for (i = 0; i < this_thr->th.th_task_state_stack_sz; 4310 ++i) // zero init the stack 4311 this_thr->th.th_task_state_memo_stack[i] = 0; 4312 } 4313 4314 KMP_DEBUG_ASSERT(!this_thr->th.th_spin_here); 4315 KMP_DEBUG_ASSERT(this_thr->th.th_next_waiting == 0); 4316 4317 KMP_MB(); 4318 } 4319 4320 /* allocate a new thread for the requesting team. this is only called from 4321 within a forkjoin critical section. we will first try to get an available 4322 thread from the thread pool. if none is available, we will fork a new one 4323 assuming we are able to create a new one. this should be assured, as the 4324 caller should check on this first. */ 4325 kmp_info_t *__kmp_allocate_thread(kmp_root_t *root, kmp_team_t *team, 4326 int new_tid) { 4327 kmp_team_t *serial_team; 4328 kmp_info_t *new_thr; 4329 int new_gtid; 4330 4331 KA_TRACE(20, ("__kmp_allocate_thread: T#%d\n", __kmp_get_gtid())); 4332 KMP_DEBUG_ASSERT(root && team); 4333 #if !KMP_NESTED_HOT_TEAMS 4334 KMP_DEBUG_ASSERT(KMP_MASTER_GTID(__kmp_get_gtid())); 4335 #endif 4336 KMP_MB(); 4337 4338 /* first, try to get one from the thread pool */ 4339 if (__kmp_thread_pool) { 4340 new_thr = CCAST(kmp_info_t *, __kmp_thread_pool); 4341 __kmp_thread_pool = (volatile kmp_info_t *)new_thr->th.th_next_pool; 4342 if (new_thr == __kmp_thread_pool_insert_pt) { 4343 __kmp_thread_pool_insert_pt = NULL; 4344 } 4345 TCW_4(new_thr->th.th_in_pool, FALSE); 4346 __kmp_suspend_initialize_thread(new_thr); 4347 __kmp_lock_suspend_mx(new_thr); 4348 if (new_thr->th.th_active_in_pool == TRUE) { 4349 KMP_DEBUG_ASSERT(new_thr->th.th_active == TRUE); 4350 KMP_ATOMIC_DEC(&__kmp_thread_pool_active_nth); 4351 new_thr->th.th_active_in_pool = FALSE; 4352 } 4353 __kmp_unlock_suspend_mx(new_thr); 4354 4355 KA_TRACE(20, ("__kmp_allocate_thread: T#%d using thread T#%d\n", 4356 __kmp_get_gtid(), new_thr->th.th_info.ds.ds_gtid)); 4357 KMP_ASSERT(!new_thr->th.th_team); 4358 KMP_DEBUG_ASSERT(__kmp_nth < __kmp_threads_capacity); 4359 4360 /* setup the thread structure */ 4361 __kmp_initialize_info(new_thr, team, new_tid, 4362 new_thr->th.th_info.ds.ds_gtid); 4363 KMP_DEBUG_ASSERT(new_thr->th.th_serial_team); 4364 4365 TCW_4(__kmp_nth, __kmp_nth + 1); 4366 4367 new_thr->th.th_task_state = 0; 4368 new_thr->th.th_task_state_top = 0; 4369 new_thr->th.th_task_state_stack_sz = 4; 4370 4371 if (__kmp_barrier_gather_pattern[bs_forkjoin_barrier] == bp_dist_bar) { 4372 // Make sure pool thread has transitioned to waiting on own thread struct 4373 KMP_DEBUG_ASSERT(new_thr->th.th_used_in_team.load() == 0); 4374 // Thread activated in __kmp_allocate_team when increasing team size 4375 } 4376 4377 #ifdef KMP_ADJUST_BLOCKTIME 4378 /* Adjust blocktime back to zero if necessary */ 4379 /* Middle initialization might not have occurred yet */ 4380 if (!__kmp_env_blocktime && (__kmp_avail_proc > 0)) { 4381 if (__kmp_nth > __kmp_avail_proc) { 4382 __kmp_zero_bt = TRUE; 4383 } 4384 } 4385 #endif /* KMP_ADJUST_BLOCKTIME */ 4386 4387 #if KMP_DEBUG 4388 // If thread entered pool via __kmp_free_thread, wait_flag should != 4389 // KMP_BARRIER_PARENT_FLAG. 4390 int b; 4391 kmp_balign_t *balign = new_thr->th.th_bar; 4392 for (b = 0; b < bs_last_barrier; ++b) 4393 KMP_DEBUG_ASSERT(balign[b].bb.wait_flag != KMP_BARRIER_PARENT_FLAG); 4394 #endif 4395 4396 KF_TRACE(10, ("__kmp_allocate_thread: T#%d using thread %p T#%d\n", 4397 __kmp_get_gtid(), new_thr, new_thr->th.th_info.ds.ds_gtid)); 4398 4399 KMP_MB(); 4400 return new_thr; 4401 } 4402 4403 /* no, well fork a new one */ 4404 KMP_ASSERT(__kmp_nth == __kmp_all_nth); 4405 KMP_ASSERT(__kmp_all_nth < __kmp_threads_capacity); 4406 4407 #if KMP_USE_MONITOR 4408 // If this is the first worker thread the RTL is creating, then also 4409 // launch the monitor thread. We try to do this as early as possible. 4410 if (!TCR_4(__kmp_init_monitor)) { 4411 __kmp_acquire_bootstrap_lock(&__kmp_monitor_lock); 4412 if (!TCR_4(__kmp_init_monitor)) { 4413 KF_TRACE(10, ("before __kmp_create_monitor\n")); 4414 TCW_4(__kmp_init_monitor, 1); 4415 __kmp_create_monitor(&__kmp_monitor); 4416 KF_TRACE(10, ("after __kmp_create_monitor\n")); 4417 #if KMP_OS_WINDOWS 4418 // AC: wait until monitor has started. This is a fix for CQ232808. 4419 // The reason is that if the library is loaded/unloaded in a loop with 4420 // small (parallel) work in between, then there is high probability that 4421 // monitor thread started after the library shutdown. At shutdown it is 4422 // too late to cope with the problem, because when the primary thread is 4423 // in DllMain (process detach) the monitor has no chances to start (it is 4424 // blocked), and primary thread has no means to inform the monitor that 4425 // the library has gone, because all the memory which the monitor can 4426 // access is going to be released/reset. 4427 while (TCR_4(__kmp_init_monitor) < 2) { 4428 KMP_YIELD(TRUE); 4429 } 4430 KF_TRACE(10, ("after monitor thread has started\n")); 4431 #endif 4432 } 4433 __kmp_release_bootstrap_lock(&__kmp_monitor_lock); 4434 } 4435 #endif 4436 4437 KMP_MB(); 4438 4439 { 4440 int new_start_gtid = TCR_4(__kmp_init_hidden_helper_threads) 4441 ? 1 4442 : __kmp_hidden_helper_threads_num + 1; 4443 4444 for (new_gtid = new_start_gtid; TCR_PTR(__kmp_threads[new_gtid]) != NULL; 4445 ++new_gtid) { 4446 KMP_DEBUG_ASSERT(new_gtid < __kmp_threads_capacity); 4447 } 4448 4449 if (TCR_4(__kmp_init_hidden_helper_threads)) { 4450 KMP_DEBUG_ASSERT(new_gtid <= __kmp_hidden_helper_threads_num); 4451 } 4452 } 4453 4454 /* allocate space for it. */ 4455 new_thr = (kmp_info_t *)__kmp_allocate(sizeof(kmp_info_t)); 4456 4457 TCW_SYNC_PTR(__kmp_threads[new_gtid], new_thr); 4458 4459 #if USE_ITT_BUILD && USE_ITT_NOTIFY && KMP_DEBUG 4460 // suppress race conditions detection on synchronization flags in debug mode 4461 // this helps to analyze library internals eliminating false positives 4462 __itt_suppress_mark_range( 4463 __itt_suppress_range, __itt_suppress_threading_errors, 4464 &new_thr->th.th_sleep_loc, sizeof(new_thr->th.th_sleep_loc)); 4465 __itt_suppress_mark_range( 4466 __itt_suppress_range, __itt_suppress_threading_errors, 4467 &new_thr->th.th_reap_state, sizeof(new_thr->th.th_reap_state)); 4468 #if KMP_OS_WINDOWS 4469 __itt_suppress_mark_range( 4470 __itt_suppress_range, __itt_suppress_threading_errors, 4471 &new_thr->th.th_suspend_init, sizeof(new_thr->th.th_suspend_init)); 4472 #else 4473 __itt_suppress_mark_range(__itt_suppress_range, 4474 __itt_suppress_threading_errors, 4475 &new_thr->th.th_suspend_init_count, 4476 sizeof(new_thr->th.th_suspend_init_count)); 4477 #endif 4478 // TODO: check if we need to also suppress b_arrived flags 4479 __itt_suppress_mark_range(__itt_suppress_range, 4480 __itt_suppress_threading_errors, 4481 CCAST(kmp_uint64 *, &new_thr->th.th_bar[0].bb.b_go), 4482 sizeof(new_thr->th.th_bar[0].bb.b_go)); 4483 __itt_suppress_mark_range(__itt_suppress_range, 4484 __itt_suppress_threading_errors, 4485 CCAST(kmp_uint64 *, &new_thr->th.th_bar[1].bb.b_go), 4486 sizeof(new_thr->th.th_bar[1].bb.b_go)); 4487 __itt_suppress_mark_range(__itt_suppress_range, 4488 __itt_suppress_threading_errors, 4489 CCAST(kmp_uint64 *, &new_thr->th.th_bar[2].bb.b_go), 4490 sizeof(new_thr->th.th_bar[2].bb.b_go)); 4491 #endif /* USE_ITT_BUILD && USE_ITT_NOTIFY && KMP_DEBUG */ 4492 if (__kmp_storage_map) { 4493 __kmp_print_thread_storage_map(new_thr, new_gtid); 4494 } 4495 4496 // add the reserve serialized team, initialized from the team's primary thread 4497 { 4498 kmp_internal_control_t r_icvs = __kmp_get_x_global_icvs(team); 4499 KF_TRACE(10, ("__kmp_allocate_thread: before th_serial/serial_team\n")); 4500 new_thr->th.th_serial_team = serial_team = 4501 (kmp_team_t *)__kmp_allocate_team(root, 1, 1, 4502 #if OMPT_SUPPORT 4503 ompt_data_none, // root parallel id 4504 #endif 4505 proc_bind_default, &r_icvs, 4506 0 USE_NESTED_HOT_ARG(NULL)); 4507 } 4508 KMP_ASSERT(serial_team); 4509 serial_team->t.t_serialized = 0; // AC: the team created in reserve, not for 4510 // execution (it is unused for now). 4511 serial_team->t.t_threads[0] = new_thr; 4512 KF_TRACE(10, 4513 ("__kmp_allocate_thread: after th_serial/serial_team : new_thr=%p\n", 4514 new_thr)); 4515 4516 /* setup the thread structures */ 4517 __kmp_initialize_info(new_thr, team, new_tid, new_gtid); 4518 4519 #if USE_FAST_MEMORY 4520 __kmp_initialize_fast_memory(new_thr); 4521 #endif /* USE_FAST_MEMORY */ 4522 4523 #if KMP_USE_BGET 4524 KMP_DEBUG_ASSERT(new_thr->th.th_local.bget_data == NULL); 4525 __kmp_initialize_bget(new_thr); 4526 #endif 4527 4528 __kmp_init_random(new_thr); // Initialize random number generator 4529 4530 /* Initialize these only once when thread is grabbed for a team allocation */ 4531 KA_TRACE(20, 4532 ("__kmp_allocate_thread: T#%d init go fork=%u, plain=%u\n", 4533 __kmp_get_gtid(), KMP_INIT_BARRIER_STATE, KMP_INIT_BARRIER_STATE)); 4534 4535 int b; 4536 kmp_balign_t *balign = new_thr->th.th_bar; 4537 for (b = 0; b < bs_last_barrier; ++b) { 4538 balign[b].bb.b_go = KMP_INIT_BARRIER_STATE; 4539 balign[b].bb.team = NULL; 4540 balign[b].bb.wait_flag = KMP_BARRIER_NOT_WAITING; 4541 balign[b].bb.use_oncore_barrier = 0; 4542 } 4543 4544 TCW_PTR(new_thr->th.th_sleep_loc, NULL); 4545 new_thr->th.th_sleep_loc_type = flag_unset; 4546 4547 new_thr->th.th_spin_here = FALSE; 4548 new_thr->th.th_next_waiting = 0; 4549 #if KMP_OS_UNIX 4550 new_thr->th.th_blocking = false; 4551 #endif 4552 4553 #if KMP_AFFINITY_SUPPORTED 4554 new_thr->th.th_current_place = KMP_PLACE_UNDEFINED; 4555 new_thr->th.th_new_place = KMP_PLACE_UNDEFINED; 4556 new_thr->th.th_first_place = KMP_PLACE_UNDEFINED; 4557 new_thr->th.th_last_place = KMP_PLACE_UNDEFINED; 4558 #endif 4559 new_thr->th.th_def_allocator = __kmp_def_allocator; 4560 new_thr->th.th_prev_level = 0; 4561 new_thr->th.th_prev_num_threads = 1; 4562 4563 TCW_4(new_thr->th.th_in_pool, FALSE); 4564 new_thr->th.th_active_in_pool = FALSE; 4565 TCW_4(new_thr->th.th_active, TRUE); 4566 4567 /* adjust the global counters */ 4568 __kmp_all_nth++; 4569 __kmp_nth++; 4570 4571 // if __kmp_adjust_gtid_mode is set, then we use method #1 (sp search) for low 4572 // numbers of procs, and method #2 (keyed API call) for higher numbers. 4573 if (__kmp_adjust_gtid_mode) { 4574 if (__kmp_all_nth >= __kmp_tls_gtid_min) { 4575 if (TCR_4(__kmp_gtid_mode) != 2) { 4576 TCW_4(__kmp_gtid_mode, 2); 4577 } 4578 } else { 4579 if (TCR_4(__kmp_gtid_mode) != 1) { 4580 TCW_4(__kmp_gtid_mode, 1); 4581 } 4582 } 4583 } 4584 4585 #ifdef KMP_ADJUST_BLOCKTIME 4586 /* Adjust blocktime back to zero if necessary */ 4587 /* Middle initialization might not have occurred yet */ 4588 if (!__kmp_env_blocktime && (__kmp_avail_proc > 0)) { 4589 if (__kmp_nth > __kmp_avail_proc) { 4590 __kmp_zero_bt = TRUE; 4591 } 4592 } 4593 #endif /* KMP_ADJUST_BLOCKTIME */ 4594 4595 /* actually fork it and create the new worker thread */ 4596 KF_TRACE( 4597 10, ("__kmp_allocate_thread: before __kmp_create_worker: %p\n", new_thr)); 4598 __kmp_create_worker(new_gtid, new_thr, __kmp_stksize); 4599 KF_TRACE(10, 4600 ("__kmp_allocate_thread: after __kmp_create_worker: %p\n", new_thr)); 4601 4602 KA_TRACE(20, ("__kmp_allocate_thread: T#%d forked T#%d\n", __kmp_get_gtid(), 4603 new_gtid)); 4604 KMP_MB(); 4605 return new_thr; 4606 } 4607 4608 /* Reinitialize team for reuse. 4609 The hot team code calls this case at every fork barrier, so EPCC barrier 4610 test are extremely sensitive to changes in it, esp. writes to the team 4611 struct, which cause a cache invalidation in all threads. 4612 IF YOU TOUCH THIS ROUTINE, RUN EPCC C SYNCBENCH ON A BIG-IRON MACHINE!!! */ 4613 static void __kmp_reinitialize_team(kmp_team_t *team, 4614 kmp_internal_control_t *new_icvs, 4615 ident_t *loc) { 4616 KF_TRACE(10, ("__kmp_reinitialize_team: enter this_thread=%p team=%p\n", 4617 team->t.t_threads[0], team)); 4618 KMP_DEBUG_ASSERT(team && new_icvs); 4619 KMP_DEBUG_ASSERT((!TCR_4(__kmp_init_parallel)) || new_icvs->nproc); 4620 KMP_CHECK_UPDATE(team->t.t_ident, loc); 4621 4622 KMP_CHECK_UPDATE(team->t.t_id, KMP_GEN_TEAM_ID()); 4623 // Copy ICVs to the primary thread's implicit taskdata 4624 __kmp_init_implicit_task(loc, team->t.t_threads[0], team, 0, FALSE); 4625 copy_icvs(&team->t.t_implicit_task_taskdata[0].td_icvs, new_icvs); 4626 4627 KF_TRACE(10, ("__kmp_reinitialize_team: exit this_thread=%p team=%p\n", 4628 team->t.t_threads[0], team)); 4629 } 4630 4631 /* Initialize the team data structure. 4632 This assumes the t_threads and t_max_nproc are already set. 4633 Also, we don't touch the arguments */ 4634 static void __kmp_initialize_team(kmp_team_t *team, int new_nproc, 4635 kmp_internal_control_t *new_icvs, 4636 ident_t *loc) { 4637 KF_TRACE(10, ("__kmp_initialize_team: enter: team=%p\n", team)); 4638 4639 /* verify */ 4640 KMP_DEBUG_ASSERT(team); 4641 KMP_DEBUG_ASSERT(new_nproc <= team->t.t_max_nproc); 4642 KMP_DEBUG_ASSERT(team->t.t_threads); 4643 KMP_MB(); 4644 4645 team->t.t_master_tid = 0; /* not needed */ 4646 /* team->t.t_master_bar; not needed */ 4647 team->t.t_serialized = new_nproc > 1 ? 0 : 1; 4648 team->t.t_nproc = new_nproc; 4649 4650 /* team->t.t_parent = NULL; TODO not needed & would mess up hot team */ 4651 team->t.t_next_pool = NULL; 4652 /* memset( team->t.t_threads, 0, sizeof(kmp_info_t*)*new_nproc ); would mess 4653 * up hot team */ 4654 4655 TCW_SYNC_PTR(team->t.t_pkfn, NULL); /* not needed */ 4656 team->t.t_invoke = NULL; /* not needed */ 4657 4658 // TODO???: team->t.t_max_active_levels = new_max_active_levels; 4659 team->t.t_sched.sched = new_icvs->sched.sched; 4660 4661 #if KMP_ARCH_X86 || KMP_ARCH_X86_64 4662 team->t.t_fp_control_saved = FALSE; /* not needed */ 4663 team->t.t_x87_fpu_control_word = 0; /* not needed */ 4664 team->t.t_mxcsr = 0; /* not needed */ 4665 #endif /* KMP_ARCH_X86 || KMP_ARCH_X86_64 */ 4666 4667 team->t.t_construct = 0; 4668 4669 team->t.t_ordered.dt.t_value = 0; 4670 team->t.t_master_active = FALSE; 4671 4672 #ifdef KMP_DEBUG 4673 team->t.t_copypriv_data = NULL; /* not necessary, but nice for debugging */ 4674 #endif 4675 #if KMP_OS_WINDOWS 4676 team->t.t_copyin_counter = 0; /* for barrier-free copyin implementation */ 4677 #endif 4678 4679 team->t.t_control_stack_top = NULL; 4680 4681 __kmp_reinitialize_team(team, new_icvs, loc); 4682 4683 KMP_MB(); 4684 KF_TRACE(10, ("__kmp_initialize_team: exit: team=%p\n", team)); 4685 } 4686 4687 #if (KMP_OS_LINUX || KMP_OS_FREEBSD) && KMP_AFFINITY_SUPPORTED 4688 /* Sets full mask for thread and returns old mask, no changes to structures. */ 4689 static void 4690 __kmp_set_thread_affinity_mask_full_tmp(kmp_affin_mask_t *old_mask) { 4691 if (KMP_AFFINITY_CAPABLE()) { 4692 int status; 4693 if (old_mask != NULL) { 4694 status = __kmp_get_system_affinity(old_mask, TRUE); 4695 int error = errno; 4696 if (status != 0) { 4697 __kmp_fatal(KMP_MSG(ChangeThreadAffMaskError), KMP_ERR(error), 4698 __kmp_msg_null); 4699 } 4700 } 4701 __kmp_set_system_affinity(__kmp_affin_fullMask, TRUE); 4702 } 4703 } 4704 #endif 4705 4706 #if KMP_AFFINITY_SUPPORTED 4707 4708 // __kmp_partition_places() is the heart of the OpenMP 4.0 affinity mechanism. 4709 // It calculates the worker + primary thread's partition based upon the parent 4710 // thread's partition, and binds each worker to a thread in their partition. 4711 // The primary thread's partition should already include its current binding. 4712 static void __kmp_partition_places(kmp_team_t *team, int update_master_only) { 4713 // Do not partition places for the hidden helper team 4714 if (KMP_HIDDEN_HELPER_TEAM(team)) 4715 return; 4716 // Copy the primary thread's place partition to the team struct 4717 kmp_info_t *master_th = team->t.t_threads[0]; 4718 KMP_DEBUG_ASSERT(master_th != NULL); 4719 kmp_proc_bind_t proc_bind = team->t.t_proc_bind; 4720 int first_place = master_th->th.th_first_place; 4721 int last_place = master_th->th.th_last_place; 4722 int masters_place = master_th->th.th_current_place; 4723 team->t.t_first_place = first_place; 4724 team->t.t_last_place = last_place; 4725 4726 KA_TRACE(20, ("__kmp_partition_places: enter: proc_bind = %d T#%d(%d:0) " 4727 "bound to place %d partition = [%d,%d]\n", 4728 proc_bind, __kmp_gtid_from_thread(team->t.t_threads[0]), 4729 team->t.t_id, masters_place, first_place, last_place)); 4730 4731 switch (proc_bind) { 4732 4733 case proc_bind_default: 4734 // Serial teams might have the proc_bind policy set to proc_bind_default. 4735 // Not an issue -- we don't rebind primary thread for any proc_bind policy. 4736 KMP_DEBUG_ASSERT(team->t.t_nproc == 1); 4737 break; 4738 4739 case proc_bind_primary: { 4740 int f; 4741 int n_th = team->t.t_nproc; 4742 for (f = 1; f < n_th; f++) { 4743 kmp_info_t *th = team->t.t_threads[f]; 4744 KMP_DEBUG_ASSERT(th != NULL); 4745 th->th.th_first_place = first_place; 4746 th->th.th_last_place = last_place; 4747 th->th.th_new_place = masters_place; 4748 if (__kmp_display_affinity && masters_place != th->th.th_current_place && 4749 team->t.t_display_affinity != 1) { 4750 team->t.t_display_affinity = 1; 4751 } 4752 4753 KA_TRACE(100, ("__kmp_partition_places: primary: T#%d(%d:%d) place %d " 4754 "partition = [%d,%d]\n", 4755 __kmp_gtid_from_thread(team->t.t_threads[f]), team->t.t_id, 4756 f, masters_place, first_place, last_place)); 4757 } 4758 } break; 4759 4760 case proc_bind_close: { 4761 int f; 4762 int n_th = team->t.t_nproc; 4763 int n_places; 4764 if (first_place <= last_place) { 4765 n_places = last_place - first_place + 1; 4766 } else { 4767 n_places = __kmp_affinity_num_masks - first_place + last_place + 1; 4768 } 4769 if (n_th <= n_places) { 4770 int place = masters_place; 4771 for (f = 1; f < n_th; f++) { 4772 kmp_info_t *th = team->t.t_threads[f]; 4773 KMP_DEBUG_ASSERT(th != NULL); 4774 4775 if (place == last_place) { 4776 place = first_place; 4777 } else if (place == (int)(__kmp_affinity_num_masks - 1)) { 4778 place = 0; 4779 } else { 4780 place++; 4781 } 4782 th->th.th_first_place = first_place; 4783 th->th.th_last_place = last_place; 4784 th->th.th_new_place = place; 4785 if (__kmp_display_affinity && place != th->th.th_current_place && 4786 team->t.t_display_affinity != 1) { 4787 team->t.t_display_affinity = 1; 4788 } 4789 4790 KA_TRACE(100, ("__kmp_partition_places: close: T#%d(%d:%d) place %d " 4791 "partition = [%d,%d]\n", 4792 __kmp_gtid_from_thread(team->t.t_threads[f]), 4793 team->t.t_id, f, place, first_place, last_place)); 4794 } 4795 } else { 4796 int S, rem, gap, s_count; 4797 S = n_th / n_places; 4798 s_count = 0; 4799 rem = n_th - (S * n_places); 4800 gap = rem > 0 ? n_places / rem : n_places; 4801 int place = masters_place; 4802 int gap_ct = gap; 4803 for (f = 0; f < n_th; f++) { 4804 kmp_info_t *th = team->t.t_threads[f]; 4805 KMP_DEBUG_ASSERT(th != NULL); 4806 4807 th->th.th_first_place = first_place; 4808 th->th.th_last_place = last_place; 4809 th->th.th_new_place = place; 4810 if (__kmp_display_affinity && place != th->th.th_current_place && 4811 team->t.t_display_affinity != 1) { 4812 team->t.t_display_affinity = 1; 4813 } 4814 s_count++; 4815 4816 if ((s_count == S) && rem && (gap_ct == gap)) { 4817 // do nothing, add an extra thread to place on next iteration 4818 } else if ((s_count == S + 1) && rem && (gap_ct == gap)) { 4819 // we added an extra thread to this place; move to next place 4820 if (place == last_place) { 4821 place = first_place; 4822 } else if (place == (int)(__kmp_affinity_num_masks - 1)) { 4823 place = 0; 4824 } else { 4825 place++; 4826 } 4827 s_count = 0; 4828 gap_ct = 1; 4829 rem--; 4830 } else if (s_count == S) { // place full; don't add extra 4831 if (place == last_place) { 4832 place = first_place; 4833 } else if (place == (int)(__kmp_affinity_num_masks - 1)) { 4834 place = 0; 4835 } else { 4836 place++; 4837 } 4838 gap_ct++; 4839 s_count = 0; 4840 } 4841 4842 KA_TRACE(100, 4843 ("__kmp_partition_places: close: T#%d(%d:%d) place %d " 4844 "partition = [%d,%d]\n", 4845 __kmp_gtid_from_thread(team->t.t_threads[f]), team->t.t_id, f, 4846 th->th.th_new_place, first_place, last_place)); 4847 } 4848 KMP_DEBUG_ASSERT(place == masters_place); 4849 } 4850 } break; 4851 4852 case proc_bind_spread: { 4853 int f; 4854 int n_th = team->t.t_nproc; 4855 int n_places; 4856 int thidx; 4857 if (first_place <= last_place) { 4858 n_places = last_place - first_place + 1; 4859 } else { 4860 n_places = __kmp_affinity_num_masks - first_place + last_place + 1; 4861 } 4862 if (n_th <= n_places) { 4863 int place = -1; 4864 4865 if (n_places != static_cast<int>(__kmp_affinity_num_masks)) { 4866 int S = n_places / n_th; 4867 int s_count, rem, gap, gap_ct; 4868 4869 place = masters_place; 4870 rem = n_places - n_th * S; 4871 gap = rem ? n_th / rem : 1; 4872 gap_ct = gap; 4873 thidx = n_th; 4874 if (update_master_only == 1) 4875 thidx = 1; 4876 for (f = 0; f < thidx; f++) { 4877 kmp_info_t *th = team->t.t_threads[f]; 4878 KMP_DEBUG_ASSERT(th != NULL); 4879 4880 th->th.th_first_place = place; 4881 th->th.th_new_place = place; 4882 if (__kmp_display_affinity && place != th->th.th_current_place && 4883 team->t.t_display_affinity != 1) { 4884 team->t.t_display_affinity = 1; 4885 } 4886 s_count = 1; 4887 while (s_count < S) { 4888 if (place == last_place) { 4889 place = first_place; 4890 } else if (place == (int)(__kmp_affinity_num_masks - 1)) { 4891 place = 0; 4892 } else { 4893 place++; 4894 } 4895 s_count++; 4896 } 4897 if (rem && (gap_ct == gap)) { 4898 if (place == last_place) { 4899 place = first_place; 4900 } else if (place == (int)(__kmp_affinity_num_masks - 1)) { 4901 place = 0; 4902 } else { 4903 place++; 4904 } 4905 rem--; 4906 gap_ct = 0; 4907 } 4908 th->th.th_last_place = place; 4909 gap_ct++; 4910 4911 if (place == last_place) { 4912 place = first_place; 4913 } else if (place == (int)(__kmp_affinity_num_masks - 1)) { 4914 place = 0; 4915 } else { 4916 place++; 4917 } 4918 4919 KA_TRACE(100, 4920 ("__kmp_partition_places: spread: T#%d(%d:%d) place %d " 4921 "partition = [%d,%d], __kmp_affinity_num_masks: %u\n", 4922 __kmp_gtid_from_thread(team->t.t_threads[f]), team->t.t_id, 4923 f, th->th.th_new_place, th->th.th_first_place, 4924 th->th.th_last_place, __kmp_affinity_num_masks)); 4925 } 4926 } else { 4927 /* Having uniform space of available computation places I can create 4928 T partitions of round(P/T) size and put threads into the first 4929 place of each partition. */ 4930 double current = static_cast<double>(masters_place); 4931 double spacing = 4932 (static_cast<double>(n_places + 1) / static_cast<double>(n_th)); 4933 int first, last; 4934 kmp_info_t *th; 4935 4936 thidx = n_th + 1; 4937 if (update_master_only == 1) 4938 thidx = 1; 4939 for (f = 0; f < thidx; f++) { 4940 first = static_cast<int>(current); 4941 last = static_cast<int>(current + spacing) - 1; 4942 KMP_DEBUG_ASSERT(last >= first); 4943 if (first >= n_places) { 4944 if (masters_place) { 4945 first -= n_places; 4946 last -= n_places; 4947 if (first == (masters_place + 1)) { 4948 KMP_DEBUG_ASSERT(f == n_th); 4949 first--; 4950 } 4951 if (last == masters_place) { 4952 KMP_DEBUG_ASSERT(f == (n_th - 1)); 4953 last--; 4954 } 4955 } else { 4956 KMP_DEBUG_ASSERT(f == n_th); 4957 first = 0; 4958 last = 0; 4959 } 4960 } 4961 if (last >= n_places) { 4962 last = (n_places - 1); 4963 } 4964 place = first; 4965 current += spacing; 4966 if (f < n_th) { 4967 KMP_DEBUG_ASSERT(0 <= first); 4968 KMP_DEBUG_ASSERT(n_places > first); 4969 KMP_DEBUG_ASSERT(0 <= last); 4970 KMP_DEBUG_ASSERT(n_places > last); 4971 KMP_DEBUG_ASSERT(last_place >= first_place); 4972 th = team->t.t_threads[f]; 4973 KMP_DEBUG_ASSERT(th); 4974 th->th.th_first_place = first; 4975 th->th.th_new_place = place; 4976 th->th.th_last_place = last; 4977 if (__kmp_display_affinity && place != th->th.th_current_place && 4978 team->t.t_display_affinity != 1) { 4979 team->t.t_display_affinity = 1; 4980 } 4981 KA_TRACE(100, 4982 ("__kmp_partition_places: spread: T#%d(%d:%d) place %d " 4983 "partition = [%d,%d], spacing = %.4f\n", 4984 __kmp_gtid_from_thread(team->t.t_threads[f]), 4985 team->t.t_id, f, th->th.th_new_place, 4986 th->th.th_first_place, th->th.th_last_place, spacing)); 4987 } 4988 } 4989 } 4990 KMP_DEBUG_ASSERT(update_master_only || place == masters_place); 4991 } else { 4992 int S, rem, gap, s_count; 4993 S = n_th / n_places; 4994 s_count = 0; 4995 rem = n_th - (S * n_places); 4996 gap = rem > 0 ? n_places / rem : n_places; 4997 int place = masters_place; 4998 int gap_ct = gap; 4999 thidx = n_th; 5000 if (update_master_only == 1) 5001 thidx = 1; 5002 for (f = 0; f < thidx; f++) { 5003 kmp_info_t *th = team->t.t_threads[f]; 5004 KMP_DEBUG_ASSERT(th != NULL); 5005 5006 th->th.th_first_place = place; 5007 th->th.th_last_place = place; 5008 th->th.th_new_place = place; 5009 if (__kmp_display_affinity && place != th->th.th_current_place && 5010 team->t.t_display_affinity != 1) { 5011 team->t.t_display_affinity = 1; 5012 } 5013 s_count++; 5014 5015 if ((s_count == S) && rem && (gap_ct == gap)) { 5016 // do nothing, add an extra thread to place on next iteration 5017 } else if ((s_count == S + 1) && rem && (gap_ct == gap)) { 5018 // we added an extra thread to this place; move on to next place 5019 if (place == last_place) { 5020 place = first_place; 5021 } else if (place == (int)(__kmp_affinity_num_masks - 1)) { 5022 place = 0; 5023 } else { 5024 place++; 5025 } 5026 s_count = 0; 5027 gap_ct = 1; 5028 rem--; 5029 } else if (s_count == S) { // place is full; don't add extra thread 5030 if (place == last_place) { 5031 place = first_place; 5032 } else if (place == (int)(__kmp_affinity_num_masks - 1)) { 5033 place = 0; 5034 } else { 5035 place++; 5036 } 5037 gap_ct++; 5038 s_count = 0; 5039 } 5040 5041 KA_TRACE(100, ("__kmp_partition_places: spread: T#%d(%d:%d) place %d " 5042 "partition = [%d,%d]\n", 5043 __kmp_gtid_from_thread(team->t.t_threads[f]), 5044 team->t.t_id, f, th->th.th_new_place, 5045 th->th.th_first_place, th->th.th_last_place)); 5046 } 5047 KMP_DEBUG_ASSERT(update_master_only || place == masters_place); 5048 } 5049 } break; 5050 5051 default: 5052 break; 5053 } 5054 5055 KA_TRACE(20, ("__kmp_partition_places: exit T#%d\n", team->t.t_id)); 5056 } 5057 5058 #endif // KMP_AFFINITY_SUPPORTED 5059 5060 /* allocate a new team data structure to use. take one off of the free pool if 5061 available */ 5062 kmp_team_t * 5063 __kmp_allocate_team(kmp_root_t *root, int new_nproc, int max_nproc, 5064 #if OMPT_SUPPORT 5065 ompt_data_t ompt_parallel_data, 5066 #endif 5067 kmp_proc_bind_t new_proc_bind, 5068 kmp_internal_control_t *new_icvs, 5069 int argc USE_NESTED_HOT_ARG(kmp_info_t *master)) { 5070 KMP_TIME_DEVELOPER_PARTITIONED_BLOCK(KMP_allocate_team); 5071 int f; 5072 kmp_team_t *team; 5073 int use_hot_team = !root->r.r_active; 5074 int level = 0; 5075 int do_place_partition = 1; 5076 5077 KA_TRACE(20, ("__kmp_allocate_team: called\n")); 5078 KMP_DEBUG_ASSERT(new_nproc >= 1 && argc >= 0); 5079 KMP_DEBUG_ASSERT(max_nproc >= new_nproc); 5080 KMP_MB(); 5081 5082 #if KMP_NESTED_HOT_TEAMS 5083 kmp_hot_team_ptr_t *hot_teams; 5084 if (master) { 5085 team = master->th.th_team; 5086 level = team->t.t_active_level; 5087 if (master->th.th_teams_microtask) { // in teams construct? 5088 if (master->th.th_teams_size.nteams > 1 && 5089 ( // #teams > 1 5090 team->t.t_pkfn == 5091 (microtask_t)__kmp_teams_master || // inner fork of the teams 5092 master->th.th_teams_level < 5093 team->t.t_level)) { // or nested parallel inside the teams 5094 ++level; // not increment if #teams==1, or for outer fork of the teams; 5095 // increment otherwise 5096 } 5097 // Do not perform the place partition if inner fork of the teams 5098 // Wait until nested parallel region encountered inside teams construct 5099 if ((master->th.th_teams_size.nteams == 1 && 5100 master->th.th_teams_level >= team->t.t_level) || 5101 (team->t.t_pkfn == (microtask_t)__kmp_teams_master)) 5102 do_place_partition = 0; 5103 } 5104 hot_teams = master->th.th_hot_teams; 5105 if (level < __kmp_hot_teams_max_level && hot_teams && 5106 hot_teams[level].hot_team) { 5107 // hot team has already been allocated for given level 5108 use_hot_team = 1; 5109 } else { 5110 use_hot_team = 0; 5111 } 5112 } else { 5113 // check we won't access uninitialized hot_teams, just in case 5114 KMP_DEBUG_ASSERT(new_nproc == 1); 5115 } 5116 #endif 5117 // Optimization to use a "hot" team 5118 if (use_hot_team && new_nproc > 1) { 5119 KMP_DEBUG_ASSERT(new_nproc <= max_nproc); 5120 #if KMP_NESTED_HOT_TEAMS 5121 team = hot_teams[level].hot_team; 5122 #else 5123 team = root->r.r_hot_team; 5124 #endif 5125 #if KMP_DEBUG 5126 if (__kmp_tasking_mode != tskm_immediate_exec) { 5127 KA_TRACE(20, ("__kmp_allocate_team: hot team task_team[0] = %p " 5128 "task_team[1] = %p before reinit\n", 5129 team->t.t_task_team[0], team->t.t_task_team[1])); 5130 } 5131 #endif 5132 5133 if (team->t.t_nproc != new_nproc && 5134 __kmp_barrier_release_pattern[bs_forkjoin_barrier] == bp_dist_bar) { 5135 // Distributed barrier may need a resize 5136 int old_nthr = team->t.t_nproc; 5137 __kmp_resize_dist_barrier(team, old_nthr, new_nproc); 5138 } 5139 5140 // If not doing the place partition, then reset the team's proc bind 5141 // to indicate that partitioning of all threads still needs to take place 5142 if (do_place_partition == 0) 5143 team->t.t_proc_bind = proc_bind_default; 5144 // Has the number of threads changed? 5145 /* Let's assume the most common case is that the number of threads is 5146 unchanged, and put that case first. */ 5147 if (team->t.t_nproc == new_nproc) { // Check changes in number of threads 5148 KA_TRACE(20, ("__kmp_allocate_team: reusing hot team\n")); 5149 // This case can mean that omp_set_num_threads() was called and the hot 5150 // team size was already reduced, so we check the special flag 5151 if (team->t.t_size_changed == -1) { 5152 team->t.t_size_changed = 1; 5153 } else { 5154 KMP_CHECK_UPDATE(team->t.t_size_changed, 0); 5155 } 5156 5157 // TODO???: team->t.t_max_active_levels = new_max_active_levels; 5158 kmp_r_sched_t new_sched = new_icvs->sched; 5159 // set primary thread's schedule as new run-time schedule 5160 KMP_CHECK_UPDATE(team->t.t_sched.sched, new_sched.sched); 5161 5162 __kmp_reinitialize_team(team, new_icvs, 5163 root->r.r_uber_thread->th.th_ident); 5164 5165 KF_TRACE(10, ("__kmp_allocate_team2: T#%d, this_thread=%p team=%p\n", 0, 5166 team->t.t_threads[0], team)); 5167 __kmp_push_current_task_to_thread(team->t.t_threads[0], team, 0); 5168 5169 #if KMP_AFFINITY_SUPPORTED 5170 if ((team->t.t_size_changed == 0) && 5171 (team->t.t_proc_bind == new_proc_bind)) { 5172 if (new_proc_bind == proc_bind_spread) { 5173 if (do_place_partition) { 5174 // add flag to update only master for spread 5175 __kmp_partition_places(team, 1); 5176 } 5177 } 5178 KA_TRACE(200, ("__kmp_allocate_team: reusing hot team #%d bindings: " 5179 "proc_bind = %d, partition = [%d,%d]\n", 5180 team->t.t_id, new_proc_bind, team->t.t_first_place, 5181 team->t.t_last_place)); 5182 } else { 5183 if (do_place_partition) { 5184 KMP_CHECK_UPDATE(team->t.t_proc_bind, new_proc_bind); 5185 __kmp_partition_places(team); 5186 } 5187 } 5188 #else 5189 KMP_CHECK_UPDATE(team->t.t_proc_bind, new_proc_bind); 5190 #endif /* KMP_AFFINITY_SUPPORTED */ 5191 } else if (team->t.t_nproc > new_nproc) { 5192 KA_TRACE(20, 5193 ("__kmp_allocate_team: decreasing hot team thread count to %d\n", 5194 new_nproc)); 5195 5196 team->t.t_size_changed = 1; 5197 if (__kmp_barrier_release_pattern[bs_forkjoin_barrier] == bp_dist_bar) { 5198 // Barrier size already reduced earlier in this function 5199 // Activate team threads via th_used_in_team 5200 __kmp_add_threads_to_team(team, new_nproc); 5201 } 5202 #if KMP_NESTED_HOT_TEAMS 5203 if (__kmp_hot_teams_mode == 0) { 5204 // AC: saved number of threads should correspond to team's value in this 5205 // mode, can be bigger in mode 1, when hot team has threads in reserve 5206 KMP_DEBUG_ASSERT(hot_teams[level].hot_team_nth == team->t.t_nproc); 5207 hot_teams[level].hot_team_nth = new_nproc; 5208 #endif // KMP_NESTED_HOT_TEAMS 5209 /* release the extra threads we don't need any more */ 5210 for (f = new_nproc; f < team->t.t_nproc; f++) { 5211 KMP_DEBUG_ASSERT(team->t.t_threads[f]); 5212 if (__kmp_tasking_mode != tskm_immediate_exec) { 5213 // When decreasing team size, threads no longer in the team should 5214 // unref task team. 5215 team->t.t_threads[f]->th.th_task_team = NULL; 5216 } 5217 __kmp_free_thread(team->t.t_threads[f]); 5218 team->t.t_threads[f] = NULL; 5219 } 5220 #if KMP_NESTED_HOT_TEAMS 5221 } // (__kmp_hot_teams_mode == 0) 5222 else { 5223 // When keeping extra threads in team, switch threads to wait on own 5224 // b_go flag 5225 for (f = new_nproc; f < team->t.t_nproc; ++f) { 5226 KMP_DEBUG_ASSERT(team->t.t_threads[f]); 5227 kmp_balign_t *balign = team->t.t_threads[f]->th.th_bar; 5228 for (int b = 0; b < bs_last_barrier; ++b) { 5229 if (balign[b].bb.wait_flag == KMP_BARRIER_PARENT_FLAG) { 5230 balign[b].bb.wait_flag = KMP_BARRIER_SWITCH_TO_OWN_FLAG; 5231 } 5232 KMP_CHECK_UPDATE(balign[b].bb.leaf_kids, 0); 5233 } 5234 } 5235 } 5236 #endif // KMP_NESTED_HOT_TEAMS 5237 team->t.t_nproc = new_nproc; 5238 // TODO???: team->t.t_max_active_levels = new_max_active_levels; 5239 KMP_CHECK_UPDATE(team->t.t_sched.sched, new_icvs->sched.sched); 5240 __kmp_reinitialize_team(team, new_icvs, 5241 root->r.r_uber_thread->th.th_ident); 5242 5243 // Update remaining threads 5244 for (f = 0; f < new_nproc; ++f) { 5245 team->t.t_threads[f]->th.th_team_nproc = new_nproc; 5246 } 5247 5248 // restore the current task state of the primary thread: should be the 5249 // implicit task 5250 KF_TRACE(10, ("__kmp_allocate_team: T#%d, this_thread=%p team=%p\n", 0, 5251 team->t.t_threads[0], team)); 5252 5253 __kmp_push_current_task_to_thread(team->t.t_threads[0], team, 0); 5254 5255 #ifdef KMP_DEBUG 5256 for (f = 0; f < team->t.t_nproc; f++) { 5257 KMP_DEBUG_ASSERT(team->t.t_threads[f] && 5258 team->t.t_threads[f]->th.th_team_nproc == 5259 team->t.t_nproc); 5260 } 5261 #endif 5262 5263 if (do_place_partition) { 5264 KMP_CHECK_UPDATE(team->t.t_proc_bind, new_proc_bind); 5265 #if KMP_AFFINITY_SUPPORTED 5266 __kmp_partition_places(team); 5267 #endif 5268 } 5269 } else { // team->t.t_nproc < new_nproc 5270 #if (KMP_OS_LINUX || KMP_OS_FREEBSD) && KMP_AFFINITY_SUPPORTED 5271 kmp_affin_mask_t *old_mask; 5272 if (KMP_AFFINITY_CAPABLE()) { 5273 KMP_CPU_ALLOC(old_mask); 5274 } 5275 #endif 5276 5277 KA_TRACE(20, 5278 ("__kmp_allocate_team: increasing hot team thread count to %d\n", 5279 new_nproc)); 5280 int old_nproc = team->t.t_nproc; // save old value and use to update only 5281 team->t.t_size_changed = 1; 5282 5283 #if KMP_NESTED_HOT_TEAMS 5284 int avail_threads = hot_teams[level].hot_team_nth; 5285 if (new_nproc < avail_threads) 5286 avail_threads = new_nproc; 5287 kmp_info_t **other_threads = team->t.t_threads; 5288 for (f = team->t.t_nproc; f < avail_threads; ++f) { 5289 // Adjust barrier data of reserved threads (if any) of the team 5290 // Other data will be set in __kmp_initialize_info() below. 5291 int b; 5292 kmp_balign_t *balign = other_threads[f]->th.th_bar; 5293 for (b = 0; b < bs_last_barrier; ++b) { 5294 balign[b].bb.b_arrived = team->t.t_bar[b].b_arrived; 5295 KMP_DEBUG_ASSERT(balign[b].bb.wait_flag != KMP_BARRIER_PARENT_FLAG); 5296 #if USE_DEBUGGER 5297 balign[b].bb.b_worker_arrived = team->t.t_bar[b].b_team_arrived; 5298 #endif 5299 } 5300 } 5301 if (hot_teams[level].hot_team_nth >= new_nproc) { 5302 // we have all needed threads in reserve, no need to allocate any 5303 // this only possible in mode 1, cannot have reserved threads in mode 0 5304 KMP_DEBUG_ASSERT(__kmp_hot_teams_mode == 1); 5305 team->t.t_nproc = new_nproc; // just get reserved threads involved 5306 } else { 5307 // We may have some threads in reserve, but not enough; 5308 // get reserved threads involved if any. 5309 team->t.t_nproc = hot_teams[level].hot_team_nth; 5310 hot_teams[level].hot_team_nth = new_nproc; // adjust hot team max size 5311 #endif // KMP_NESTED_HOT_TEAMS 5312 if (team->t.t_max_nproc < new_nproc) { 5313 /* reallocate larger arrays */ 5314 __kmp_reallocate_team_arrays(team, new_nproc); 5315 __kmp_reinitialize_team(team, new_icvs, NULL); 5316 } 5317 5318 #if (KMP_OS_LINUX || KMP_OS_FREEBSD) && KMP_AFFINITY_SUPPORTED 5319 /* Temporarily set full mask for primary thread before creation of 5320 workers. The reason is that workers inherit the affinity from the 5321 primary thread, so if a lot of workers are created on the single 5322 core quickly, they don't get a chance to set their own affinity for 5323 a long time. */ 5324 __kmp_set_thread_affinity_mask_full_tmp(old_mask); 5325 #endif 5326 5327 /* allocate new threads for the hot team */ 5328 for (f = team->t.t_nproc; f < new_nproc; f++) { 5329 kmp_info_t *new_worker = __kmp_allocate_thread(root, team, f); 5330 KMP_DEBUG_ASSERT(new_worker); 5331 team->t.t_threads[f] = new_worker; 5332 5333 KA_TRACE(20, 5334 ("__kmp_allocate_team: team %d init T#%d arrived: " 5335 "join=%llu, plain=%llu\n", 5336 team->t.t_id, __kmp_gtid_from_tid(f, team), team->t.t_id, f, 5337 team->t.t_bar[bs_forkjoin_barrier].b_arrived, 5338 team->t.t_bar[bs_plain_barrier].b_arrived)); 5339 5340 { // Initialize barrier data for new threads. 5341 int b; 5342 kmp_balign_t *balign = new_worker->th.th_bar; 5343 for (b = 0; b < bs_last_barrier; ++b) { 5344 balign[b].bb.b_arrived = team->t.t_bar[b].b_arrived; 5345 KMP_DEBUG_ASSERT(balign[b].bb.wait_flag != 5346 KMP_BARRIER_PARENT_FLAG); 5347 #if USE_DEBUGGER 5348 balign[b].bb.b_worker_arrived = team->t.t_bar[b].b_team_arrived; 5349 #endif 5350 } 5351 } 5352 } 5353 5354 #if (KMP_OS_LINUX || KMP_OS_FREEBSD) && KMP_AFFINITY_SUPPORTED 5355 if (KMP_AFFINITY_CAPABLE()) { 5356 /* Restore initial primary thread's affinity mask */ 5357 __kmp_set_system_affinity(old_mask, TRUE); 5358 KMP_CPU_FREE(old_mask); 5359 } 5360 #endif 5361 #if KMP_NESTED_HOT_TEAMS 5362 } // end of check of t_nproc vs. new_nproc vs. hot_team_nth 5363 #endif // KMP_NESTED_HOT_TEAMS 5364 if (__kmp_barrier_release_pattern[bs_forkjoin_barrier] == bp_dist_bar) { 5365 // Barrier size already increased earlier in this function 5366 // Activate team threads via th_used_in_team 5367 __kmp_add_threads_to_team(team, new_nproc); 5368 } 5369 /* make sure everyone is syncronized */ 5370 // new threads below 5371 __kmp_initialize_team(team, new_nproc, new_icvs, 5372 root->r.r_uber_thread->th.th_ident); 5373 5374 /* reinitialize the threads */ 5375 KMP_DEBUG_ASSERT(team->t.t_nproc == new_nproc); 5376 for (f = 0; f < team->t.t_nproc; ++f) 5377 __kmp_initialize_info(team->t.t_threads[f], team, f, 5378 __kmp_gtid_from_tid(f, team)); 5379 5380 if (level) { // set th_task_state for new threads in nested hot team 5381 // __kmp_initialize_info() no longer zeroes th_task_state, so we should 5382 // only need to set the th_task_state for the new threads. th_task_state 5383 // for primary thread will not be accurate until after this in 5384 // __kmp_fork_call(), so we look to the primary thread's memo_stack to 5385 // get the correct value. 5386 for (f = old_nproc; f < team->t.t_nproc; ++f) 5387 team->t.t_threads[f]->th.th_task_state = 5388 team->t.t_threads[0]->th.th_task_state_memo_stack[level]; 5389 } else { // set th_task_state for new threads in non-nested hot team 5390 // copy primary thread's state 5391 kmp_uint8 old_state = team->t.t_threads[0]->th.th_task_state; 5392 for (f = old_nproc; f < team->t.t_nproc; ++f) 5393 team->t.t_threads[f]->th.th_task_state = old_state; 5394 } 5395 5396 #ifdef KMP_DEBUG 5397 for (f = 0; f < team->t.t_nproc; ++f) { 5398 KMP_DEBUG_ASSERT(team->t.t_threads[f] && 5399 team->t.t_threads[f]->th.th_team_nproc == 5400 team->t.t_nproc); 5401 } 5402 #endif 5403 5404 if (do_place_partition) { 5405 KMP_CHECK_UPDATE(team->t.t_proc_bind, new_proc_bind); 5406 #if KMP_AFFINITY_SUPPORTED 5407 __kmp_partition_places(team); 5408 #endif 5409 } 5410 } // Check changes in number of threads 5411 5412 kmp_info_t *master = team->t.t_threads[0]; 5413 if (master->th.th_teams_microtask) { 5414 for (f = 1; f < new_nproc; ++f) { 5415 // propagate teams construct specific info to workers 5416 kmp_info_t *thr = team->t.t_threads[f]; 5417 thr->th.th_teams_microtask = master->th.th_teams_microtask; 5418 thr->th.th_teams_level = master->th.th_teams_level; 5419 thr->th.th_teams_size = master->th.th_teams_size; 5420 } 5421 } 5422 #if KMP_NESTED_HOT_TEAMS 5423 if (level) { 5424 // Sync barrier state for nested hot teams, not needed for outermost hot 5425 // team. 5426 for (f = 1; f < new_nproc; ++f) { 5427 kmp_info_t *thr = team->t.t_threads[f]; 5428 int b; 5429 kmp_balign_t *balign = thr->th.th_bar; 5430 for (b = 0; b < bs_last_barrier; ++b) { 5431 balign[b].bb.b_arrived = team->t.t_bar[b].b_arrived; 5432 KMP_DEBUG_ASSERT(balign[b].bb.wait_flag != KMP_BARRIER_PARENT_FLAG); 5433 #if USE_DEBUGGER 5434 balign[b].bb.b_worker_arrived = team->t.t_bar[b].b_team_arrived; 5435 #endif 5436 } 5437 } 5438 } 5439 #endif // KMP_NESTED_HOT_TEAMS 5440 5441 /* reallocate space for arguments if necessary */ 5442 __kmp_alloc_argv_entries(argc, team, TRUE); 5443 KMP_CHECK_UPDATE(team->t.t_argc, argc); 5444 // The hot team re-uses the previous task team, 5445 // if untouched during the previous release->gather phase. 5446 5447 KF_TRACE(10, (" hot_team = %p\n", team)); 5448 5449 #if KMP_DEBUG 5450 if (__kmp_tasking_mode != tskm_immediate_exec) { 5451 KA_TRACE(20, ("__kmp_allocate_team: hot team task_team[0] = %p " 5452 "task_team[1] = %p after reinit\n", 5453 team->t.t_task_team[0], team->t.t_task_team[1])); 5454 } 5455 #endif 5456 5457 #if OMPT_SUPPORT 5458 __ompt_team_assign_id(team, ompt_parallel_data); 5459 #endif 5460 5461 KMP_MB(); 5462 5463 return team; 5464 } 5465 5466 /* next, let's try to take one from the team pool */ 5467 KMP_MB(); 5468 for (team = CCAST(kmp_team_t *, __kmp_team_pool); (team);) { 5469 /* TODO: consider resizing undersized teams instead of reaping them, now 5470 that we have a resizing mechanism */ 5471 if (team->t.t_max_nproc >= max_nproc) { 5472 /* take this team from the team pool */ 5473 __kmp_team_pool = team->t.t_next_pool; 5474 5475 if (max_nproc > 1 && 5476 __kmp_barrier_gather_pattern[bs_forkjoin_barrier] == bp_dist_bar) { 5477 if (!team->t.b) { // Allocate barrier structure 5478 team->t.b = distributedBarrier::allocate(__kmp_dflt_team_nth_ub); 5479 } 5480 } 5481 5482 /* setup the team for fresh use */ 5483 __kmp_initialize_team(team, new_nproc, new_icvs, NULL); 5484 5485 KA_TRACE(20, ("__kmp_allocate_team: setting task_team[0] %p and " 5486 "task_team[1] %p to NULL\n", 5487 &team->t.t_task_team[0], &team->t.t_task_team[1])); 5488 team->t.t_task_team[0] = NULL; 5489 team->t.t_task_team[1] = NULL; 5490 5491 /* reallocate space for arguments if necessary */ 5492 __kmp_alloc_argv_entries(argc, team, TRUE); 5493 KMP_CHECK_UPDATE(team->t.t_argc, argc); 5494 5495 KA_TRACE( 5496 20, ("__kmp_allocate_team: team %d init arrived: join=%u, plain=%u\n", 5497 team->t.t_id, KMP_INIT_BARRIER_STATE, KMP_INIT_BARRIER_STATE)); 5498 { // Initialize barrier data. 5499 int b; 5500 for (b = 0; b < bs_last_barrier; ++b) { 5501 team->t.t_bar[b].b_arrived = KMP_INIT_BARRIER_STATE; 5502 #if USE_DEBUGGER 5503 team->t.t_bar[b].b_master_arrived = 0; 5504 team->t.t_bar[b].b_team_arrived = 0; 5505 #endif 5506 } 5507 } 5508 5509 team->t.t_proc_bind = new_proc_bind; 5510 5511 KA_TRACE(20, ("__kmp_allocate_team: using team from pool %d.\n", 5512 team->t.t_id)); 5513 5514 #if OMPT_SUPPORT 5515 __ompt_team_assign_id(team, ompt_parallel_data); 5516 #endif 5517 5518 KMP_MB(); 5519 5520 return team; 5521 } 5522 5523 /* reap team if it is too small, then loop back and check the next one */ 5524 // not sure if this is wise, but, will be redone during the hot-teams 5525 // rewrite. 5526 /* TODO: Use technique to find the right size hot-team, don't reap them */ 5527 team = __kmp_reap_team(team); 5528 __kmp_team_pool = team; 5529 } 5530 5531 /* nothing available in the pool, no matter, make a new team! */ 5532 KMP_MB(); 5533 team = (kmp_team_t *)__kmp_allocate(sizeof(kmp_team_t)); 5534 5535 /* and set it up */ 5536 team->t.t_max_nproc = max_nproc; 5537 if (max_nproc > 1 && 5538 __kmp_barrier_gather_pattern[bs_forkjoin_barrier] == bp_dist_bar) { 5539 // Allocate barrier structure 5540 team->t.b = distributedBarrier::allocate(__kmp_dflt_team_nth_ub); 5541 } 5542 5543 /* NOTE well, for some reason allocating one big buffer and dividing it up 5544 seems to really hurt performance a lot on the P4, so, let's not use this */ 5545 __kmp_allocate_team_arrays(team, max_nproc); 5546 5547 KA_TRACE(20, ("__kmp_allocate_team: making a new team\n")); 5548 __kmp_initialize_team(team, new_nproc, new_icvs, NULL); 5549 5550 KA_TRACE(20, ("__kmp_allocate_team: setting task_team[0] %p and task_team[1] " 5551 "%p to NULL\n", 5552 &team->t.t_task_team[0], &team->t.t_task_team[1])); 5553 team->t.t_task_team[0] = NULL; // to be removed, as __kmp_allocate zeroes 5554 // memory, no need to duplicate 5555 team->t.t_task_team[1] = NULL; // to be removed, as __kmp_allocate zeroes 5556 // memory, no need to duplicate 5557 5558 if (__kmp_storage_map) { 5559 __kmp_print_team_storage_map("team", team, team->t.t_id, new_nproc); 5560 } 5561 5562 /* allocate space for arguments */ 5563 __kmp_alloc_argv_entries(argc, team, FALSE); 5564 team->t.t_argc = argc; 5565 5566 KA_TRACE(20, 5567 ("__kmp_allocate_team: team %d init arrived: join=%u, plain=%u\n", 5568 team->t.t_id, KMP_INIT_BARRIER_STATE, KMP_INIT_BARRIER_STATE)); 5569 { // Initialize barrier data. 5570 int b; 5571 for (b = 0; b < bs_last_barrier; ++b) { 5572 team->t.t_bar[b].b_arrived = KMP_INIT_BARRIER_STATE; 5573 #if USE_DEBUGGER 5574 team->t.t_bar[b].b_master_arrived = 0; 5575 team->t.t_bar[b].b_team_arrived = 0; 5576 #endif 5577 } 5578 } 5579 5580 team->t.t_proc_bind = new_proc_bind; 5581 5582 #if OMPT_SUPPORT 5583 __ompt_team_assign_id(team, ompt_parallel_data); 5584 team->t.ompt_serialized_team_info = NULL; 5585 #endif 5586 5587 KMP_MB(); 5588 5589 KA_TRACE(20, ("__kmp_allocate_team: done creating a new team %d.\n", 5590 team->t.t_id)); 5591 5592 return team; 5593 } 5594 5595 /* TODO implement hot-teams at all levels */ 5596 /* TODO implement lazy thread release on demand (disband request) */ 5597 5598 /* free the team. return it to the team pool. release all the threads 5599 * associated with it */ 5600 void __kmp_free_team(kmp_root_t *root, 5601 kmp_team_t *team USE_NESTED_HOT_ARG(kmp_info_t *master)) { 5602 int f; 5603 KA_TRACE(20, ("__kmp_free_team: T#%d freeing team %d\n", __kmp_get_gtid(), 5604 team->t.t_id)); 5605 5606 /* verify state */ 5607 KMP_DEBUG_ASSERT(root); 5608 KMP_DEBUG_ASSERT(team); 5609 KMP_DEBUG_ASSERT(team->t.t_nproc <= team->t.t_max_nproc); 5610 KMP_DEBUG_ASSERT(team->t.t_threads); 5611 5612 int use_hot_team = team == root->r.r_hot_team; 5613 #if KMP_NESTED_HOT_TEAMS 5614 int level; 5615 if (master) { 5616 level = team->t.t_active_level - 1; 5617 if (master->th.th_teams_microtask) { // in teams construct? 5618 if (master->th.th_teams_size.nteams > 1) { 5619 ++level; // level was not increased in teams construct for 5620 // team_of_masters 5621 } 5622 if (team->t.t_pkfn != (microtask_t)__kmp_teams_master && 5623 master->th.th_teams_level == team->t.t_level) { 5624 ++level; // level was not increased in teams construct for 5625 // team_of_workers before the parallel 5626 } // team->t.t_level will be increased inside parallel 5627 } 5628 #if KMP_DEBUG 5629 kmp_hot_team_ptr_t *hot_teams = master->th.th_hot_teams; 5630 #endif 5631 if (level < __kmp_hot_teams_max_level) { 5632 KMP_DEBUG_ASSERT(team == hot_teams[level].hot_team); 5633 use_hot_team = 1; 5634 } 5635 } 5636 #endif // KMP_NESTED_HOT_TEAMS 5637 5638 /* team is done working */ 5639 TCW_SYNC_PTR(team->t.t_pkfn, 5640 NULL); // Important for Debugging Support Library. 5641 #if KMP_OS_WINDOWS 5642 team->t.t_copyin_counter = 0; // init counter for possible reuse 5643 #endif 5644 // Do not reset pointer to parent team to NULL for hot teams. 5645 5646 /* if we are non-hot team, release our threads */ 5647 if (!use_hot_team) { 5648 if (__kmp_tasking_mode != tskm_immediate_exec) { 5649 // Wait for threads to reach reapable state 5650 for (f = 1; f < team->t.t_nproc; ++f) { 5651 KMP_DEBUG_ASSERT(team->t.t_threads[f]); 5652 kmp_info_t *th = team->t.t_threads[f]; 5653 volatile kmp_uint32 *state = &th->th.th_reap_state; 5654 while (*state != KMP_SAFE_TO_REAP) { 5655 #if KMP_OS_WINDOWS 5656 // On Windows a thread can be killed at any time, check this 5657 DWORD ecode; 5658 if (!__kmp_is_thread_alive(th, &ecode)) { 5659 *state = KMP_SAFE_TO_REAP; // reset the flag for dead thread 5660 break; 5661 } 5662 #endif 5663 // first check if thread is sleeping 5664 kmp_flag_64<> fl(&th->th.th_bar[bs_forkjoin_barrier].bb.b_go, th); 5665 if (fl.is_sleeping()) 5666 fl.resume(__kmp_gtid_from_thread(th)); 5667 KMP_CPU_PAUSE(); 5668 } 5669 } 5670 5671 // Delete task teams 5672 int tt_idx; 5673 for (tt_idx = 0; tt_idx < 2; ++tt_idx) { 5674 kmp_task_team_t *task_team = team->t.t_task_team[tt_idx]; 5675 if (task_team != NULL) { 5676 for (f = 0; f < team->t.t_nproc; ++f) { // threads unref task teams 5677 KMP_DEBUG_ASSERT(team->t.t_threads[f]); 5678 team->t.t_threads[f]->th.th_task_team = NULL; 5679 } 5680 KA_TRACE( 5681 20, 5682 ("__kmp_free_team: T#%d deactivating task_team %p on team %d\n", 5683 __kmp_get_gtid(), task_team, team->t.t_id)); 5684 #if KMP_NESTED_HOT_TEAMS 5685 __kmp_free_task_team(master, task_team); 5686 #endif 5687 team->t.t_task_team[tt_idx] = NULL; 5688 } 5689 } 5690 } 5691 5692 // Reset pointer to parent team only for non-hot teams. 5693 team->t.t_parent = NULL; 5694 team->t.t_level = 0; 5695 team->t.t_active_level = 0; 5696 5697 /* free the worker threads */ 5698 for (f = 1; f < team->t.t_nproc; ++f) { 5699 KMP_DEBUG_ASSERT(team->t.t_threads[f]); 5700 if (__kmp_barrier_gather_pattern[bs_forkjoin_barrier] == bp_dist_bar) { 5701 KMP_COMPARE_AND_STORE_ACQ32(&(team->t.t_threads[f]->th.th_used_in_team), 5702 1, 2); 5703 } 5704 __kmp_free_thread(team->t.t_threads[f]); 5705 } 5706 5707 if (__kmp_barrier_gather_pattern[bs_forkjoin_barrier] == bp_dist_bar) { 5708 if (team->t.b) { 5709 // wake up thread at old location 5710 team->t.b->go_release(); 5711 if (__kmp_dflt_blocktime != KMP_MAX_BLOCKTIME) { 5712 for (f = 1; f < team->t.t_nproc; ++f) { 5713 if (team->t.b->sleep[f].sleep) { 5714 __kmp_atomic_resume_64( 5715 team->t.t_threads[f]->th.th_info.ds.ds_gtid, 5716 (kmp_atomic_flag_64<> *)NULL); 5717 } 5718 } 5719 } 5720 // Wait for threads to be removed from team 5721 for (int f = 1; f < team->t.t_nproc; ++f) { 5722 while (team->t.t_threads[f]->th.th_used_in_team.load() != 0) 5723 KMP_CPU_PAUSE(); 5724 } 5725 } 5726 } 5727 5728 for (f = 1; f < team->t.t_nproc; ++f) { 5729 team->t.t_threads[f] = NULL; 5730 } 5731 5732 if (team->t.t_max_nproc > 1 && 5733 __kmp_barrier_gather_pattern[bs_forkjoin_barrier] == bp_dist_bar) { 5734 distributedBarrier::deallocate(team->t.b); 5735 team->t.b = NULL; 5736 } 5737 /* put the team back in the team pool */ 5738 /* TODO limit size of team pool, call reap_team if pool too large */ 5739 team->t.t_next_pool = CCAST(kmp_team_t *, __kmp_team_pool); 5740 __kmp_team_pool = (volatile kmp_team_t *)team; 5741 } else { // Check if team was created for primary threads in teams construct 5742 // See if first worker is a CG root 5743 KMP_DEBUG_ASSERT(team->t.t_threads[1] && 5744 team->t.t_threads[1]->th.th_cg_roots); 5745 if (team->t.t_threads[1]->th.th_cg_roots->cg_root == team->t.t_threads[1]) { 5746 // Clean up the CG root nodes on workers so that this team can be re-used 5747 for (f = 1; f < team->t.t_nproc; ++f) { 5748 kmp_info_t *thr = team->t.t_threads[f]; 5749 KMP_DEBUG_ASSERT(thr && thr->th.th_cg_roots && 5750 thr->th.th_cg_roots->cg_root == thr); 5751 // Pop current CG root off list 5752 kmp_cg_root_t *tmp = thr->th.th_cg_roots; 5753 thr->th.th_cg_roots = tmp->up; 5754 KA_TRACE(100, ("__kmp_free_team: Thread %p popping node %p and moving" 5755 " up to node %p. cg_nthreads was %d\n", 5756 thr, tmp, thr->th.th_cg_roots, tmp->cg_nthreads)); 5757 int i = tmp->cg_nthreads--; 5758 if (i == 1) { 5759 __kmp_free(tmp); // free CG if we are the last thread in it 5760 } 5761 // Restore current task's thread_limit from CG root 5762 if (thr->th.th_cg_roots) 5763 thr->th.th_current_task->td_icvs.thread_limit = 5764 thr->th.th_cg_roots->cg_thread_limit; 5765 } 5766 } 5767 } 5768 5769 KMP_MB(); 5770 } 5771 5772 /* reap the team. destroy it, reclaim all its resources and free its memory */ 5773 kmp_team_t *__kmp_reap_team(kmp_team_t *team) { 5774 kmp_team_t *next_pool = team->t.t_next_pool; 5775 5776 KMP_DEBUG_ASSERT(team); 5777 KMP_DEBUG_ASSERT(team->t.t_dispatch); 5778 KMP_DEBUG_ASSERT(team->t.t_disp_buffer); 5779 KMP_DEBUG_ASSERT(team->t.t_threads); 5780 KMP_DEBUG_ASSERT(team->t.t_argv); 5781 5782 /* TODO clean the threads that are a part of this? */ 5783 5784 /* free stuff */ 5785 __kmp_free_team_arrays(team); 5786 if (team->t.t_argv != &team->t.t_inline_argv[0]) 5787 __kmp_free((void *)team->t.t_argv); 5788 __kmp_free(team); 5789 5790 KMP_MB(); 5791 return next_pool; 5792 } 5793 5794 // Free the thread. Don't reap it, just place it on the pool of available 5795 // threads. 5796 // 5797 // Changes for Quad issue 527845: We need a predictable OMP tid <-> gtid 5798 // binding for the affinity mechanism to be useful. 5799 // 5800 // Now, we always keep the free list (__kmp_thread_pool) sorted by gtid. 5801 // However, we want to avoid a potential performance problem by always 5802 // scanning through the list to find the correct point at which to insert 5803 // the thread (potential N**2 behavior). To do this we keep track of the 5804 // last place a thread struct was inserted (__kmp_thread_pool_insert_pt). 5805 // With single-level parallelism, threads will always be added to the tail 5806 // of the list, kept track of by __kmp_thread_pool_insert_pt. With nested 5807 // parallelism, all bets are off and we may need to scan through the entire 5808 // free list. 5809 // 5810 // This change also has a potentially large performance benefit, for some 5811 // applications. Previously, as threads were freed from the hot team, they 5812 // would be placed back on the free list in inverse order. If the hot team 5813 // grew back to it's original size, then the freed thread would be placed 5814 // back on the hot team in reverse order. This could cause bad cache 5815 // locality problems on programs where the size of the hot team regularly 5816 // grew and shrunk. 5817 // 5818 // Now, for single-level parallelism, the OMP tid is always == gtid. 5819 void __kmp_free_thread(kmp_info_t *this_th) { 5820 int gtid; 5821 kmp_info_t **scan; 5822 5823 KA_TRACE(20, ("__kmp_free_thread: T#%d putting T#%d back on free pool.\n", 5824 __kmp_get_gtid(), this_th->th.th_info.ds.ds_gtid)); 5825 5826 KMP_DEBUG_ASSERT(this_th); 5827 5828 // When moving thread to pool, switch thread to wait on own b_go flag, and 5829 // uninitialized (NULL team). 5830 int b; 5831 kmp_balign_t *balign = this_th->th.th_bar; 5832 for (b = 0; b < bs_last_barrier; ++b) { 5833 if (balign[b].bb.wait_flag == KMP_BARRIER_PARENT_FLAG) 5834 balign[b].bb.wait_flag = KMP_BARRIER_SWITCH_TO_OWN_FLAG; 5835 balign[b].bb.team = NULL; 5836 balign[b].bb.leaf_kids = 0; 5837 } 5838 this_th->th.th_task_state = 0; 5839 this_th->th.th_reap_state = KMP_SAFE_TO_REAP; 5840 5841 /* put thread back on the free pool */ 5842 TCW_PTR(this_th->th.th_team, NULL); 5843 TCW_PTR(this_th->th.th_root, NULL); 5844 TCW_PTR(this_th->th.th_dispatch, NULL); /* NOT NEEDED */ 5845 5846 while (this_th->th.th_cg_roots) { 5847 this_th->th.th_cg_roots->cg_nthreads--; 5848 KA_TRACE(100, ("__kmp_free_thread: Thread %p decrement cg_nthreads on node" 5849 " %p of thread %p to %d\n", 5850 this_th, this_th->th.th_cg_roots, 5851 this_th->th.th_cg_roots->cg_root, 5852 this_th->th.th_cg_roots->cg_nthreads)); 5853 kmp_cg_root_t *tmp = this_th->th.th_cg_roots; 5854 if (tmp->cg_root == this_th) { // Thread is a cg_root 5855 KMP_DEBUG_ASSERT(tmp->cg_nthreads == 0); 5856 KA_TRACE( 5857 5, ("__kmp_free_thread: Thread %p freeing node %p\n", this_th, tmp)); 5858 this_th->th.th_cg_roots = tmp->up; 5859 __kmp_free(tmp); 5860 } else { // Worker thread 5861 if (tmp->cg_nthreads == 0) { // last thread leaves contention group 5862 __kmp_free(tmp); 5863 } 5864 this_th->th.th_cg_roots = NULL; 5865 break; 5866 } 5867 } 5868 5869 /* If the implicit task assigned to this thread can be used by other threads 5870 * -> multiple threads can share the data and try to free the task at 5871 * __kmp_reap_thread at exit. This duplicate use of the task data can happen 5872 * with higher probability when hot team is disabled but can occurs even when 5873 * the hot team is enabled */ 5874 __kmp_free_implicit_task(this_th); 5875 this_th->th.th_current_task = NULL; 5876 5877 // If the __kmp_thread_pool_insert_pt is already past the new insert 5878 // point, then we need to re-scan the entire list. 5879 gtid = this_th->th.th_info.ds.ds_gtid; 5880 if (__kmp_thread_pool_insert_pt != NULL) { 5881 KMP_DEBUG_ASSERT(__kmp_thread_pool != NULL); 5882 if (__kmp_thread_pool_insert_pt->th.th_info.ds.ds_gtid > gtid) { 5883 __kmp_thread_pool_insert_pt = NULL; 5884 } 5885 } 5886 5887 // Scan down the list to find the place to insert the thread. 5888 // scan is the address of a link in the list, possibly the address of 5889 // __kmp_thread_pool itself. 5890 // 5891 // In the absence of nested parallelism, the for loop will have 0 iterations. 5892 if (__kmp_thread_pool_insert_pt != NULL) { 5893 scan = &(__kmp_thread_pool_insert_pt->th.th_next_pool); 5894 } else { 5895 scan = CCAST(kmp_info_t **, &__kmp_thread_pool); 5896 } 5897 for (; (*scan != NULL) && ((*scan)->th.th_info.ds.ds_gtid < gtid); 5898 scan = &((*scan)->th.th_next_pool)) 5899 ; 5900 5901 // Insert the new element on the list, and set __kmp_thread_pool_insert_pt 5902 // to its address. 5903 TCW_PTR(this_th->th.th_next_pool, *scan); 5904 __kmp_thread_pool_insert_pt = *scan = this_th; 5905 KMP_DEBUG_ASSERT((this_th->th.th_next_pool == NULL) || 5906 (this_th->th.th_info.ds.ds_gtid < 5907 this_th->th.th_next_pool->th.th_info.ds.ds_gtid)); 5908 TCW_4(this_th->th.th_in_pool, TRUE); 5909 __kmp_suspend_initialize_thread(this_th); 5910 __kmp_lock_suspend_mx(this_th); 5911 if (this_th->th.th_active == TRUE) { 5912 KMP_ATOMIC_INC(&__kmp_thread_pool_active_nth); 5913 this_th->th.th_active_in_pool = TRUE; 5914 } 5915 #if KMP_DEBUG 5916 else { 5917 KMP_DEBUG_ASSERT(this_th->th.th_active_in_pool == FALSE); 5918 } 5919 #endif 5920 __kmp_unlock_suspend_mx(this_th); 5921 5922 TCW_4(__kmp_nth, __kmp_nth - 1); 5923 5924 #ifdef KMP_ADJUST_BLOCKTIME 5925 /* Adjust blocktime back to user setting or default if necessary */ 5926 /* Middle initialization might never have occurred */ 5927 if (!__kmp_env_blocktime && (__kmp_avail_proc > 0)) { 5928 KMP_DEBUG_ASSERT(__kmp_avail_proc > 0); 5929 if (__kmp_nth <= __kmp_avail_proc) { 5930 __kmp_zero_bt = FALSE; 5931 } 5932 } 5933 #endif /* KMP_ADJUST_BLOCKTIME */ 5934 5935 KMP_MB(); 5936 } 5937 5938 /* ------------------------------------------------------------------------ */ 5939 5940 void *__kmp_launch_thread(kmp_info_t *this_thr) { 5941 #if OMP_PROFILING_SUPPORT 5942 ProfileTraceFile = getenv("LIBOMPTARGET_PROFILE"); 5943 // TODO: add a configuration option for time granularity 5944 if (ProfileTraceFile) 5945 llvm::timeTraceProfilerInitialize(500 /* us */, "libomptarget"); 5946 #endif 5947 5948 int gtid = this_thr->th.th_info.ds.ds_gtid; 5949 /* void *stack_data;*/ 5950 kmp_team_t **volatile pteam; 5951 5952 KMP_MB(); 5953 KA_TRACE(10, ("__kmp_launch_thread: T#%d start\n", gtid)); 5954 5955 if (__kmp_env_consistency_check) { 5956 this_thr->th.th_cons = __kmp_allocate_cons_stack(gtid); // ATT: Memory leak? 5957 } 5958 5959 #if OMPD_SUPPORT 5960 if (ompd_state & OMPD_ENABLE_BP) 5961 ompd_bp_thread_begin(); 5962 #endif 5963 5964 #if OMPT_SUPPORT 5965 ompt_data_t *thread_data = nullptr; 5966 if (ompt_enabled.enabled) { 5967 thread_data = &(this_thr->th.ompt_thread_info.thread_data); 5968 *thread_data = ompt_data_none; 5969 5970 this_thr->th.ompt_thread_info.state = ompt_state_overhead; 5971 this_thr->th.ompt_thread_info.wait_id = 0; 5972 this_thr->th.ompt_thread_info.idle_frame = OMPT_GET_FRAME_ADDRESS(0); 5973 this_thr->th.ompt_thread_info.parallel_flags = 0; 5974 if (ompt_enabled.ompt_callback_thread_begin) { 5975 ompt_callbacks.ompt_callback(ompt_callback_thread_begin)( 5976 ompt_thread_worker, thread_data); 5977 } 5978 this_thr->th.ompt_thread_info.state = ompt_state_idle; 5979 } 5980 #endif 5981 5982 /* This is the place where threads wait for work */ 5983 while (!TCR_4(__kmp_global.g.g_done)) { 5984 KMP_DEBUG_ASSERT(this_thr == __kmp_threads[gtid]); 5985 KMP_MB(); 5986 5987 /* wait for work to do */ 5988 KA_TRACE(20, ("__kmp_launch_thread: T#%d waiting for work\n", gtid)); 5989 5990 /* No tid yet since not part of a team */ 5991 __kmp_fork_barrier(gtid, KMP_GTID_DNE); 5992 5993 #if OMPT_SUPPORT 5994 if (ompt_enabled.enabled) { 5995 this_thr->th.ompt_thread_info.state = ompt_state_overhead; 5996 } 5997 #endif 5998 5999 pteam = &this_thr->th.th_team; 6000 6001 /* have we been allocated? */ 6002 if (TCR_SYNC_PTR(*pteam) && !TCR_4(__kmp_global.g.g_done)) { 6003 /* we were just woken up, so run our new task */ 6004 if (TCR_SYNC_PTR((*pteam)->t.t_pkfn) != NULL) { 6005 int rc; 6006 KA_TRACE(20, 6007 ("__kmp_launch_thread: T#%d(%d:%d) invoke microtask = %p\n", 6008 gtid, (*pteam)->t.t_id, __kmp_tid_from_gtid(gtid), 6009 (*pteam)->t.t_pkfn)); 6010 6011 updateHWFPControl(*pteam); 6012 6013 #if OMPT_SUPPORT 6014 if (ompt_enabled.enabled) { 6015 this_thr->th.ompt_thread_info.state = ompt_state_work_parallel; 6016 } 6017 #endif 6018 6019 rc = (*pteam)->t.t_invoke(gtid); 6020 KMP_ASSERT(rc); 6021 6022 KMP_MB(); 6023 KA_TRACE(20, ("__kmp_launch_thread: T#%d(%d:%d) done microtask = %p\n", 6024 gtid, (*pteam)->t.t_id, __kmp_tid_from_gtid(gtid), 6025 (*pteam)->t.t_pkfn)); 6026 } 6027 #if OMPT_SUPPORT 6028 if (ompt_enabled.enabled) { 6029 /* no frame set while outside task */ 6030 __ompt_get_task_info_object(0)->frame.exit_frame = ompt_data_none; 6031 6032 this_thr->th.ompt_thread_info.state = ompt_state_overhead; 6033 } 6034 #endif 6035 /* join barrier after parallel region */ 6036 __kmp_join_barrier(gtid); 6037 } 6038 } 6039 TCR_SYNC_PTR((intptr_t)__kmp_global.g.g_done); 6040 6041 #if OMPD_SUPPORT 6042 if (ompd_state & OMPD_ENABLE_BP) 6043 ompd_bp_thread_end(); 6044 #endif 6045 6046 #if OMPT_SUPPORT 6047 if (ompt_enabled.ompt_callback_thread_end) { 6048 ompt_callbacks.ompt_callback(ompt_callback_thread_end)(thread_data); 6049 } 6050 #endif 6051 6052 this_thr->th.th_task_team = NULL; 6053 /* run the destructors for the threadprivate data for this thread */ 6054 __kmp_common_destroy_gtid(gtid); 6055 6056 KA_TRACE(10, ("__kmp_launch_thread: T#%d done\n", gtid)); 6057 KMP_MB(); 6058 6059 #if OMP_PROFILING_SUPPORT 6060 llvm::timeTraceProfilerFinishThread(); 6061 #endif 6062 return this_thr; 6063 } 6064 6065 /* ------------------------------------------------------------------------ */ 6066 6067 void __kmp_internal_end_dest(void *specific_gtid) { 6068 // Make sure no significant bits are lost 6069 int gtid; 6070 __kmp_type_convert((kmp_intptr_t)specific_gtid - 1, >id); 6071 6072 KA_TRACE(30, ("__kmp_internal_end_dest: T#%d\n", gtid)); 6073 /* NOTE: the gtid is stored as gitd+1 in the thread-local-storage 6074 * this is because 0 is reserved for the nothing-stored case */ 6075 6076 __kmp_internal_end_thread(gtid); 6077 } 6078 6079 #if KMP_OS_UNIX && KMP_DYNAMIC_LIB 6080 6081 __attribute__((destructor)) void __kmp_internal_end_dtor(void) { 6082 __kmp_internal_end_atexit(); 6083 } 6084 6085 #endif 6086 6087 /* [Windows] josh: when the atexit handler is called, there may still be more 6088 than one thread alive */ 6089 void __kmp_internal_end_atexit(void) { 6090 KA_TRACE(30, ("__kmp_internal_end_atexit\n")); 6091 /* [Windows] 6092 josh: ideally, we want to completely shutdown the library in this atexit 6093 handler, but stat code that depends on thread specific data for gtid fails 6094 because that data becomes unavailable at some point during the shutdown, so 6095 we call __kmp_internal_end_thread instead. We should eventually remove the 6096 dependency on __kmp_get_specific_gtid in the stat code and use 6097 __kmp_internal_end_library to cleanly shutdown the library. 6098 6099 // TODO: Can some of this comment about GVS be removed? 6100 I suspect that the offending stat code is executed when the calling thread 6101 tries to clean up a dead root thread's data structures, resulting in GVS 6102 code trying to close the GVS structures for that thread, but since the stat 6103 code uses __kmp_get_specific_gtid to get the gtid with the assumption that 6104 the calling thread is cleaning up itself instead of another thread, it get 6105 confused. This happens because allowing a thread to unregister and cleanup 6106 another thread is a recent modification for addressing an issue. 6107 Based on the current design (20050722), a thread may end up 6108 trying to unregister another thread only if thread death does not trigger 6109 the calling of __kmp_internal_end_thread. For Linux* OS, there is the 6110 thread specific data destructor function to detect thread death. For 6111 Windows dynamic, there is DllMain(THREAD_DETACH). For Windows static, there 6112 is nothing. Thus, the workaround is applicable only for Windows static 6113 stat library. */ 6114 __kmp_internal_end_library(-1); 6115 #if KMP_OS_WINDOWS 6116 __kmp_close_console(); 6117 #endif 6118 } 6119 6120 static void __kmp_reap_thread(kmp_info_t *thread, int is_root) { 6121 // It is assumed __kmp_forkjoin_lock is acquired. 6122 6123 int gtid; 6124 6125 KMP_DEBUG_ASSERT(thread != NULL); 6126 6127 gtid = thread->th.th_info.ds.ds_gtid; 6128 6129 if (!is_root) { 6130 if (__kmp_dflt_blocktime != KMP_MAX_BLOCKTIME) { 6131 /* Assume the threads are at the fork barrier here */ 6132 KA_TRACE( 6133 20, ("__kmp_reap_thread: releasing T#%d from fork barrier for reap\n", 6134 gtid)); 6135 if (__kmp_barrier_gather_pattern[bs_forkjoin_barrier] == bp_dist_bar) { 6136 while ( 6137 !KMP_COMPARE_AND_STORE_ACQ32(&(thread->th.th_used_in_team), 0, 3)) 6138 KMP_CPU_PAUSE(); 6139 __kmp_resume_32(gtid, (kmp_flag_32<false, false> *)NULL); 6140 } else { 6141 /* Need release fence here to prevent seg faults for tree forkjoin 6142 barrier (GEH) */ 6143 kmp_flag_64<> flag(&thread->th.th_bar[bs_forkjoin_barrier].bb.b_go, 6144 thread); 6145 __kmp_release_64(&flag); 6146 } 6147 } 6148 6149 // Terminate OS thread. 6150 __kmp_reap_worker(thread); 6151 6152 // The thread was killed asynchronously. If it was actively 6153 // spinning in the thread pool, decrement the global count. 6154 // 6155 // There is a small timing hole here - if the worker thread was just waking 6156 // up after sleeping in the pool, had reset it's th_active_in_pool flag but 6157 // not decremented the global counter __kmp_thread_pool_active_nth yet, then 6158 // the global counter might not get updated. 6159 // 6160 // Currently, this can only happen as the library is unloaded, 6161 // so there are no harmful side effects. 6162 if (thread->th.th_active_in_pool) { 6163 thread->th.th_active_in_pool = FALSE; 6164 KMP_ATOMIC_DEC(&__kmp_thread_pool_active_nth); 6165 KMP_DEBUG_ASSERT(__kmp_thread_pool_active_nth >= 0); 6166 } 6167 } 6168 6169 __kmp_free_implicit_task(thread); 6170 6171 // Free the fast memory for tasking 6172 #if USE_FAST_MEMORY 6173 __kmp_free_fast_memory(thread); 6174 #endif /* USE_FAST_MEMORY */ 6175 6176 __kmp_suspend_uninitialize_thread(thread); 6177 6178 KMP_DEBUG_ASSERT(__kmp_threads[gtid] == thread); 6179 TCW_SYNC_PTR(__kmp_threads[gtid], NULL); 6180 6181 --__kmp_all_nth; 6182 // __kmp_nth was decremented when thread is added to the pool. 6183 6184 #ifdef KMP_ADJUST_BLOCKTIME 6185 /* Adjust blocktime back to user setting or default if necessary */ 6186 /* Middle initialization might never have occurred */ 6187 if (!__kmp_env_blocktime && (__kmp_avail_proc > 0)) { 6188 KMP_DEBUG_ASSERT(__kmp_avail_proc > 0); 6189 if (__kmp_nth <= __kmp_avail_proc) { 6190 __kmp_zero_bt = FALSE; 6191 } 6192 } 6193 #endif /* KMP_ADJUST_BLOCKTIME */ 6194 6195 /* free the memory being used */ 6196 if (__kmp_env_consistency_check) { 6197 if (thread->th.th_cons) { 6198 __kmp_free_cons_stack(thread->th.th_cons); 6199 thread->th.th_cons = NULL; 6200 } 6201 } 6202 6203 if (thread->th.th_pri_common != NULL) { 6204 __kmp_free(thread->th.th_pri_common); 6205 thread->th.th_pri_common = NULL; 6206 } 6207 6208 if (thread->th.th_task_state_memo_stack != NULL) { 6209 __kmp_free(thread->th.th_task_state_memo_stack); 6210 thread->th.th_task_state_memo_stack = NULL; 6211 } 6212 6213 #if KMP_USE_BGET 6214 if (thread->th.th_local.bget_data != NULL) { 6215 __kmp_finalize_bget(thread); 6216 } 6217 #endif 6218 6219 #if KMP_AFFINITY_SUPPORTED 6220 if (thread->th.th_affin_mask != NULL) { 6221 KMP_CPU_FREE(thread->th.th_affin_mask); 6222 thread->th.th_affin_mask = NULL; 6223 } 6224 #endif /* KMP_AFFINITY_SUPPORTED */ 6225 6226 #if KMP_USE_HIER_SCHED 6227 if (thread->th.th_hier_bar_data != NULL) { 6228 __kmp_free(thread->th.th_hier_bar_data); 6229 thread->th.th_hier_bar_data = NULL; 6230 } 6231 #endif 6232 6233 __kmp_reap_team(thread->th.th_serial_team); 6234 thread->th.th_serial_team = NULL; 6235 __kmp_free(thread); 6236 6237 KMP_MB(); 6238 6239 } // __kmp_reap_thread 6240 6241 static void __kmp_itthash_clean(kmp_info_t *th) { 6242 #if USE_ITT_NOTIFY 6243 if (__kmp_itt_region_domains.count > 0) { 6244 for (int i = 0; i < KMP_MAX_FRAME_DOMAINS; ++i) { 6245 kmp_itthash_entry_t *bucket = __kmp_itt_region_domains.buckets[i]; 6246 while (bucket) { 6247 kmp_itthash_entry_t *next = bucket->next_in_bucket; 6248 __kmp_thread_free(th, bucket); 6249 bucket = next; 6250 } 6251 } 6252 } 6253 if (__kmp_itt_barrier_domains.count > 0) { 6254 for (int i = 0; i < KMP_MAX_FRAME_DOMAINS; ++i) { 6255 kmp_itthash_entry_t *bucket = __kmp_itt_barrier_domains.buckets[i]; 6256 while (bucket) { 6257 kmp_itthash_entry_t *next = bucket->next_in_bucket; 6258 __kmp_thread_free(th, bucket); 6259 bucket = next; 6260 } 6261 } 6262 } 6263 #endif 6264 } 6265 6266 static void __kmp_internal_end(void) { 6267 int i; 6268 6269 /* First, unregister the library */ 6270 __kmp_unregister_library(); 6271 6272 #if KMP_OS_WINDOWS 6273 /* In Win static library, we can't tell when a root actually dies, so we 6274 reclaim the data structures for any root threads that have died but not 6275 unregistered themselves, in order to shut down cleanly. 6276 In Win dynamic library we also can't tell when a thread dies. */ 6277 __kmp_reclaim_dead_roots(); // AC: moved here to always clean resources of 6278 // dead roots 6279 #endif 6280 6281 for (i = 0; i < __kmp_threads_capacity; i++) 6282 if (__kmp_root[i]) 6283 if (__kmp_root[i]->r.r_active) 6284 break; 6285 KMP_MB(); /* Flush all pending memory write invalidates. */ 6286 TCW_SYNC_4(__kmp_global.g.g_done, TRUE); 6287 6288 if (i < __kmp_threads_capacity) { 6289 #if KMP_USE_MONITOR 6290 // 2009-09-08 (lev): Other alive roots found. Why do we kill the monitor?? 6291 KMP_MB(); /* Flush all pending memory write invalidates. */ 6292 6293 // Need to check that monitor was initialized before reaping it. If we are 6294 // called form __kmp_atfork_child (which sets __kmp_init_parallel = 0), then 6295 // __kmp_monitor will appear to contain valid data, but it is only valid in 6296 // the parent process, not the child. 6297 // New behavior (201008): instead of keying off of the flag 6298 // __kmp_init_parallel, the monitor thread creation is keyed off 6299 // of the new flag __kmp_init_monitor. 6300 __kmp_acquire_bootstrap_lock(&__kmp_monitor_lock); 6301 if (TCR_4(__kmp_init_monitor)) { 6302 __kmp_reap_monitor(&__kmp_monitor); 6303 TCW_4(__kmp_init_monitor, 0); 6304 } 6305 __kmp_release_bootstrap_lock(&__kmp_monitor_lock); 6306 KA_TRACE(10, ("__kmp_internal_end: monitor reaped\n")); 6307 #endif // KMP_USE_MONITOR 6308 } else { 6309 /* TODO move this to cleanup code */ 6310 #ifdef KMP_DEBUG 6311 /* make sure that everything has properly ended */ 6312 for (i = 0; i < __kmp_threads_capacity; i++) { 6313 if (__kmp_root[i]) { 6314 // KMP_ASSERT( ! KMP_UBER_GTID( i ) ); // AC: 6315 // there can be uber threads alive here 6316 KMP_ASSERT(!__kmp_root[i]->r.r_active); // TODO: can they be active? 6317 } 6318 } 6319 #endif 6320 6321 KMP_MB(); 6322 6323 // Reap the worker threads. 6324 // This is valid for now, but be careful if threads are reaped sooner. 6325 while (__kmp_thread_pool != NULL) { // Loop thru all the thread in the pool. 6326 // Get the next thread from the pool. 6327 kmp_info_t *thread = CCAST(kmp_info_t *, __kmp_thread_pool); 6328 __kmp_thread_pool = thread->th.th_next_pool; 6329 // Reap it. 6330 KMP_DEBUG_ASSERT(thread->th.th_reap_state == KMP_SAFE_TO_REAP); 6331 thread->th.th_next_pool = NULL; 6332 thread->th.th_in_pool = FALSE; 6333 __kmp_reap_thread(thread, 0); 6334 } 6335 __kmp_thread_pool_insert_pt = NULL; 6336 6337 // Reap teams. 6338 while (__kmp_team_pool != NULL) { // Loop thru all the teams in the pool. 6339 // Get the next team from the pool. 6340 kmp_team_t *team = CCAST(kmp_team_t *, __kmp_team_pool); 6341 __kmp_team_pool = team->t.t_next_pool; 6342 // Reap it. 6343 team->t.t_next_pool = NULL; 6344 __kmp_reap_team(team); 6345 } 6346 6347 __kmp_reap_task_teams(); 6348 6349 #if KMP_OS_UNIX 6350 // Threads that are not reaped should not access any resources since they 6351 // are going to be deallocated soon, so the shutdown sequence should wait 6352 // until all threads either exit the final spin-waiting loop or begin 6353 // sleeping after the given blocktime. 6354 for (i = 0; i < __kmp_threads_capacity; i++) { 6355 kmp_info_t *thr = __kmp_threads[i]; 6356 while (thr && KMP_ATOMIC_LD_ACQ(&thr->th.th_blocking)) 6357 KMP_CPU_PAUSE(); 6358 } 6359 #endif 6360 6361 for (i = 0; i < __kmp_threads_capacity; ++i) { 6362 // TBD: Add some checking... 6363 // Something like KMP_DEBUG_ASSERT( __kmp_thread[ i ] == NULL ); 6364 } 6365 6366 /* Make sure all threadprivate destructors get run by joining with all 6367 worker threads before resetting this flag */ 6368 TCW_SYNC_4(__kmp_init_common, FALSE); 6369 6370 KA_TRACE(10, ("__kmp_internal_end: all workers reaped\n")); 6371 KMP_MB(); 6372 6373 #if KMP_USE_MONITOR 6374 // See note above: One of the possible fixes for CQ138434 / CQ140126 6375 // 6376 // FIXME: push both code fragments down and CSE them? 6377 // push them into __kmp_cleanup() ? 6378 __kmp_acquire_bootstrap_lock(&__kmp_monitor_lock); 6379 if (TCR_4(__kmp_init_monitor)) { 6380 __kmp_reap_monitor(&__kmp_monitor); 6381 TCW_4(__kmp_init_monitor, 0); 6382 } 6383 __kmp_release_bootstrap_lock(&__kmp_monitor_lock); 6384 KA_TRACE(10, ("__kmp_internal_end: monitor reaped\n")); 6385 #endif 6386 } /* else !__kmp_global.t_active */ 6387 TCW_4(__kmp_init_gtid, FALSE); 6388 KMP_MB(); /* Flush all pending memory write invalidates. */ 6389 6390 __kmp_cleanup(); 6391 #if OMPT_SUPPORT 6392 ompt_fini(); 6393 #endif 6394 } 6395 6396 void __kmp_internal_end_library(int gtid_req) { 6397 /* if we have already cleaned up, don't try again, it wouldn't be pretty */ 6398 /* this shouldn't be a race condition because __kmp_internal_end() is the 6399 only place to clear __kmp_serial_init */ 6400 /* we'll check this later too, after we get the lock */ 6401 // 2009-09-06: We do not set g_abort without setting g_done. This check looks 6402 // redundant, because the next check will work in any case. 6403 if (__kmp_global.g.g_abort) { 6404 KA_TRACE(11, ("__kmp_internal_end_library: abort, exiting\n")); 6405 /* TODO abort? */ 6406 return; 6407 } 6408 if (TCR_4(__kmp_global.g.g_done) || !__kmp_init_serial) { 6409 KA_TRACE(10, ("__kmp_internal_end_library: already finished\n")); 6410 return; 6411 } 6412 6413 // If hidden helper team has been initialized, we need to deinit it 6414 if (TCR_4(__kmp_init_hidden_helper) && 6415 !TCR_4(__kmp_hidden_helper_team_done)) { 6416 TCW_SYNC_4(__kmp_hidden_helper_team_done, TRUE); 6417 // First release the main thread to let it continue its work 6418 __kmp_hidden_helper_main_thread_release(); 6419 // Wait until the hidden helper team has been destroyed 6420 __kmp_hidden_helper_threads_deinitz_wait(); 6421 } 6422 6423 KMP_MB(); /* Flush all pending memory write invalidates. */ 6424 /* find out who we are and what we should do */ 6425 { 6426 int gtid = (gtid_req >= 0) ? gtid_req : __kmp_gtid_get_specific(); 6427 KA_TRACE( 6428 10, ("__kmp_internal_end_library: enter T#%d (%d)\n", gtid, gtid_req)); 6429 if (gtid == KMP_GTID_SHUTDOWN) { 6430 KA_TRACE(10, ("__kmp_internal_end_library: !__kmp_init_runtime, system " 6431 "already shutdown\n")); 6432 return; 6433 } else if (gtid == KMP_GTID_MONITOR) { 6434 KA_TRACE(10, ("__kmp_internal_end_library: monitor thread, gtid not " 6435 "registered, or system shutdown\n")); 6436 return; 6437 } else if (gtid == KMP_GTID_DNE) { 6438 KA_TRACE(10, ("__kmp_internal_end_library: gtid not registered or system " 6439 "shutdown\n")); 6440 /* we don't know who we are, but we may still shutdown the library */ 6441 } else if (KMP_UBER_GTID(gtid)) { 6442 /* unregister ourselves as an uber thread. gtid is no longer valid */ 6443 if (__kmp_root[gtid]->r.r_active) { 6444 __kmp_global.g.g_abort = -1; 6445 TCW_SYNC_4(__kmp_global.g.g_done, TRUE); 6446 __kmp_unregister_library(); 6447 KA_TRACE(10, 6448 ("__kmp_internal_end_library: root still active, abort T#%d\n", 6449 gtid)); 6450 return; 6451 } else { 6452 __kmp_itthash_clean(__kmp_threads[gtid]); 6453 KA_TRACE( 6454 10, 6455 ("__kmp_internal_end_library: unregistering sibling T#%d\n", gtid)); 6456 __kmp_unregister_root_current_thread(gtid); 6457 } 6458 } else { 6459 /* worker threads may call this function through the atexit handler, if they 6460 * call exit() */ 6461 /* For now, skip the usual subsequent processing and just dump the debug buffer. 6462 TODO: do a thorough shutdown instead */ 6463 #ifdef DUMP_DEBUG_ON_EXIT 6464 if (__kmp_debug_buf) 6465 __kmp_dump_debug_buffer(); 6466 #endif 6467 // added unregister library call here when we switch to shm linux 6468 // if we don't, it will leave lots of files in /dev/shm 6469 // cleanup shared memory file before exiting. 6470 __kmp_unregister_library(); 6471 return; 6472 } 6473 } 6474 /* synchronize the termination process */ 6475 __kmp_acquire_bootstrap_lock(&__kmp_initz_lock); 6476 6477 /* have we already finished */ 6478 if (__kmp_global.g.g_abort) { 6479 KA_TRACE(10, ("__kmp_internal_end_library: abort, exiting\n")); 6480 /* TODO abort? */ 6481 __kmp_release_bootstrap_lock(&__kmp_initz_lock); 6482 return; 6483 } 6484 if (TCR_4(__kmp_global.g.g_done) || !__kmp_init_serial) { 6485 __kmp_release_bootstrap_lock(&__kmp_initz_lock); 6486 return; 6487 } 6488 6489 /* We need this lock to enforce mutex between this reading of 6490 __kmp_threads_capacity and the writing by __kmp_register_root. 6491 Alternatively, we can use a counter of roots that is atomically updated by 6492 __kmp_get_global_thread_id_reg, __kmp_do_serial_initialize and 6493 __kmp_internal_end_*. */ 6494 __kmp_acquire_bootstrap_lock(&__kmp_forkjoin_lock); 6495 6496 /* now we can safely conduct the actual termination */ 6497 __kmp_internal_end(); 6498 6499 __kmp_release_bootstrap_lock(&__kmp_forkjoin_lock); 6500 __kmp_release_bootstrap_lock(&__kmp_initz_lock); 6501 6502 KA_TRACE(10, ("__kmp_internal_end_library: exit\n")); 6503 6504 #ifdef DUMP_DEBUG_ON_EXIT 6505 if (__kmp_debug_buf) 6506 __kmp_dump_debug_buffer(); 6507 #endif 6508 6509 #if KMP_OS_WINDOWS 6510 __kmp_close_console(); 6511 #endif 6512 6513 __kmp_fini_allocator(); 6514 6515 } // __kmp_internal_end_library 6516 6517 void __kmp_internal_end_thread(int gtid_req) { 6518 int i; 6519 6520 /* if we have already cleaned up, don't try again, it wouldn't be pretty */ 6521 /* this shouldn't be a race condition because __kmp_internal_end() is the 6522 * only place to clear __kmp_serial_init */ 6523 /* we'll check this later too, after we get the lock */ 6524 // 2009-09-06: We do not set g_abort without setting g_done. This check looks 6525 // redundant, because the next check will work in any case. 6526 if (__kmp_global.g.g_abort) { 6527 KA_TRACE(11, ("__kmp_internal_end_thread: abort, exiting\n")); 6528 /* TODO abort? */ 6529 return; 6530 } 6531 if (TCR_4(__kmp_global.g.g_done) || !__kmp_init_serial) { 6532 KA_TRACE(10, ("__kmp_internal_end_thread: already finished\n")); 6533 return; 6534 } 6535 6536 // If hidden helper team has been initialized, we need to deinit it 6537 if (TCR_4(__kmp_init_hidden_helper) && 6538 !TCR_4(__kmp_hidden_helper_team_done)) { 6539 TCW_SYNC_4(__kmp_hidden_helper_team_done, TRUE); 6540 // First release the main thread to let it continue its work 6541 __kmp_hidden_helper_main_thread_release(); 6542 // Wait until the hidden helper team has been destroyed 6543 __kmp_hidden_helper_threads_deinitz_wait(); 6544 } 6545 6546 KMP_MB(); /* Flush all pending memory write invalidates. */ 6547 6548 /* find out who we are and what we should do */ 6549 { 6550 int gtid = (gtid_req >= 0) ? gtid_req : __kmp_gtid_get_specific(); 6551 KA_TRACE(10, 6552 ("__kmp_internal_end_thread: enter T#%d (%d)\n", gtid, gtid_req)); 6553 if (gtid == KMP_GTID_SHUTDOWN) { 6554 KA_TRACE(10, ("__kmp_internal_end_thread: !__kmp_init_runtime, system " 6555 "already shutdown\n")); 6556 return; 6557 } else if (gtid == KMP_GTID_MONITOR) { 6558 KA_TRACE(10, ("__kmp_internal_end_thread: monitor thread, gtid not " 6559 "registered, or system shutdown\n")); 6560 return; 6561 } else if (gtid == KMP_GTID_DNE) { 6562 KA_TRACE(10, ("__kmp_internal_end_thread: gtid not registered or system " 6563 "shutdown\n")); 6564 return; 6565 /* we don't know who we are */ 6566 } else if (KMP_UBER_GTID(gtid)) { 6567 /* unregister ourselves as an uber thread. gtid is no longer valid */ 6568 if (__kmp_root[gtid]->r.r_active) { 6569 __kmp_global.g.g_abort = -1; 6570 TCW_SYNC_4(__kmp_global.g.g_done, TRUE); 6571 KA_TRACE(10, 6572 ("__kmp_internal_end_thread: root still active, abort T#%d\n", 6573 gtid)); 6574 return; 6575 } else { 6576 KA_TRACE(10, ("__kmp_internal_end_thread: unregistering sibling T#%d\n", 6577 gtid)); 6578 __kmp_unregister_root_current_thread(gtid); 6579 } 6580 } else { 6581 /* just a worker thread, let's leave */ 6582 KA_TRACE(10, ("__kmp_internal_end_thread: worker thread T#%d\n", gtid)); 6583 6584 if (gtid >= 0) { 6585 __kmp_threads[gtid]->th.th_task_team = NULL; 6586 } 6587 6588 KA_TRACE(10, 6589 ("__kmp_internal_end_thread: worker thread done, exiting T#%d\n", 6590 gtid)); 6591 return; 6592 } 6593 } 6594 #if KMP_DYNAMIC_LIB 6595 if (__kmp_pause_status != kmp_hard_paused) 6596 // AC: lets not shutdown the dynamic library at the exit of uber thread, 6597 // because we will better shutdown later in the library destructor. 6598 { 6599 KA_TRACE(10, ("__kmp_internal_end_thread: exiting T#%d\n", gtid_req)); 6600 return; 6601 } 6602 #endif 6603 /* synchronize the termination process */ 6604 __kmp_acquire_bootstrap_lock(&__kmp_initz_lock); 6605 6606 /* have we already finished */ 6607 if (__kmp_global.g.g_abort) { 6608 KA_TRACE(10, ("__kmp_internal_end_thread: abort, exiting\n")); 6609 /* TODO abort? */ 6610 __kmp_release_bootstrap_lock(&__kmp_initz_lock); 6611 return; 6612 } 6613 if (TCR_4(__kmp_global.g.g_done) || !__kmp_init_serial) { 6614 __kmp_release_bootstrap_lock(&__kmp_initz_lock); 6615 return; 6616 } 6617 6618 /* We need this lock to enforce mutex between this reading of 6619 __kmp_threads_capacity and the writing by __kmp_register_root. 6620 Alternatively, we can use a counter of roots that is atomically updated by 6621 __kmp_get_global_thread_id_reg, __kmp_do_serial_initialize and 6622 __kmp_internal_end_*. */ 6623 6624 /* should we finish the run-time? are all siblings done? */ 6625 __kmp_acquire_bootstrap_lock(&__kmp_forkjoin_lock); 6626 6627 for (i = 0; i < __kmp_threads_capacity; ++i) { 6628 if (KMP_UBER_GTID(i)) { 6629 KA_TRACE( 6630 10, 6631 ("__kmp_internal_end_thread: remaining sibling task: gtid==%d\n", i)); 6632 __kmp_release_bootstrap_lock(&__kmp_forkjoin_lock); 6633 __kmp_release_bootstrap_lock(&__kmp_initz_lock); 6634 return; 6635 } 6636 } 6637 6638 /* now we can safely conduct the actual termination */ 6639 6640 __kmp_internal_end(); 6641 6642 __kmp_release_bootstrap_lock(&__kmp_forkjoin_lock); 6643 __kmp_release_bootstrap_lock(&__kmp_initz_lock); 6644 6645 KA_TRACE(10, ("__kmp_internal_end_thread: exit T#%d\n", gtid_req)); 6646 6647 #ifdef DUMP_DEBUG_ON_EXIT 6648 if (__kmp_debug_buf) 6649 __kmp_dump_debug_buffer(); 6650 #endif 6651 } // __kmp_internal_end_thread 6652 6653 // ----------------------------------------------------------------------------- 6654 // Library registration stuff. 6655 6656 static long __kmp_registration_flag = 0; 6657 // Random value used to indicate library initialization. 6658 static char *__kmp_registration_str = NULL; 6659 // Value to be saved in env var __KMP_REGISTERED_LIB_<pid>. 6660 6661 static inline char *__kmp_reg_status_name() { 6662 /* On RHEL 3u5 if linked statically, getpid() returns different values in 6663 each thread. If registration and unregistration go in different threads 6664 (omp_misc_other_root_exit.cpp test case), the name of registered_lib_env 6665 env var can not be found, because the name will contain different pid. */ 6666 // macOS* complains about name being too long with additional getuid() 6667 #if KMP_OS_UNIX && !KMP_OS_DARWIN && KMP_DYNAMIC_LIB 6668 return __kmp_str_format("__KMP_REGISTERED_LIB_%d_%d", (int)getpid(), 6669 (int)getuid()); 6670 #else 6671 return __kmp_str_format("__KMP_REGISTERED_LIB_%d", (int)getpid()); 6672 #endif 6673 } // __kmp_reg_status_get 6674 6675 void __kmp_register_library_startup(void) { 6676 6677 char *name = __kmp_reg_status_name(); // Name of the environment variable. 6678 int done = 0; 6679 union { 6680 double dtime; 6681 long ltime; 6682 } time; 6683 #if KMP_ARCH_X86 || KMP_ARCH_X86_64 6684 __kmp_initialize_system_tick(); 6685 #endif 6686 __kmp_read_system_time(&time.dtime); 6687 __kmp_registration_flag = 0xCAFE0000L | (time.ltime & 0x0000FFFFL); 6688 __kmp_registration_str = 6689 __kmp_str_format("%p-%lx-%s", &__kmp_registration_flag, 6690 __kmp_registration_flag, KMP_LIBRARY_FILE); 6691 6692 KA_TRACE(50, ("__kmp_register_library_startup: %s=\"%s\"\n", name, 6693 __kmp_registration_str)); 6694 6695 while (!done) { 6696 6697 char *value = NULL; // Actual value of the environment variable. 6698 6699 #if defined(KMP_USE_SHM) 6700 char *shm_name = __kmp_str_format("/%s", name); 6701 int shm_preexist = 0; 6702 char *data1; 6703 int fd1 = shm_open(shm_name, O_CREAT | O_EXCL | O_RDWR, 0666); 6704 if ((fd1 == -1) && (errno == EEXIST)) { 6705 // file didn't open because it already exists. 6706 // try opening existing file 6707 fd1 = shm_open(shm_name, O_RDWR, 0666); 6708 if (fd1 == -1) { // file didn't open 6709 // error out here 6710 __kmp_fatal(KMP_MSG(FunctionError, "Can't open SHM"), KMP_ERR(0), 6711 __kmp_msg_null); 6712 } else { 6713 // able to open existing file 6714 shm_preexist = 1; 6715 } 6716 } else if (fd1 == -1) { // SHM didn't open; it was due to error other than 6717 // already exists. 6718 // error out here. 6719 __kmp_fatal(KMP_MSG(FunctionError, "Can't open SHM2"), KMP_ERR(errno), 6720 __kmp_msg_null); 6721 } 6722 if (shm_preexist == 0) { 6723 // we created SHM now set size 6724 if (ftruncate(fd1, SHM_SIZE) == -1) { 6725 // error occured setting size; 6726 __kmp_fatal(KMP_MSG(FunctionError, "Can't set size of SHM"), 6727 KMP_ERR(errno), __kmp_msg_null); 6728 } 6729 } 6730 data1 = 6731 (char *)mmap(0, SHM_SIZE, PROT_READ | PROT_WRITE, MAP_SHARED, fd1, 0); 6732 if (data1 == MAP_FAILED) { 6733 // failed to map shared memory 6734 __kmp_fatal(KMP_MSG(FunctionError, "Can't map SHM"), KMP_ERR(errno), 6735 __kmp_msg_null); 6736 } 6737 if (shm_preexist == 0) { // set data to SHM, set value 6738 KMP_STRCPY_S(data1, SHM_SIZE, __kmp_registration_str); 6739 } 6740 // Read value from either what we just wrote or existing file. 6741 value = __kmp_str_format("%s", data1); // read value from SHM 6742 munmap(data1, SHM_SIZE); 6743 close(fd1); 6744 #else // Windows and unix with static library 6745 // Set environment variable, but do not overwrite if it is exist. 6746 __kmp_env_set(name, __kmp_registration_str, 0); 6747 // read value to see if it got set 6748 value = __kmp_env_get(name); 6749 #endif 6750 6751 if (value != NULL && strcmp(value, __kmp_registration_str) == 0) { 6752 done = 1; // Ok, environment variable set successfully, exit the loop. 6753 } else { 6754 // Oops. Write failed. Another copy of OpenMP RTL is in memory. 6755 // Check whether it alive or dead. 6756 int neighbor = 0; // 0 -- unknown status, 1 -- alive, 2 -- dead. 6757 char *tail = value; 6758 char *flag_addr_str = NULL; 6759 char *flag_val_str = NULL; 6760 char const *file_name = NULL; 6761 __kmp_str_split(tail, '-', &flag_addr_str, &tail); 6762 __kmp_str_split(tail, '-', &flag_val_str, &tail); 6763 file_name = tail; 6764 if (tail != NULL) { 6765 unsigned long *flag_addr = 0; 6766 unsigned long flag_val = 0; 6767 KMP_SSCANF(flag_addr_str, "%p", RCAST(void **, &flag_addr)); 6768 KMP_SSCANF(flag_val_str, "%lx", &flag_val); 6769 if (flag_addr != 0 && flag_val != 0 && strcmp(file_name, "") != 0) { 6770 // First, check whether environment-encoded address is mapped into 6771 // addr space. 6772 // If so, dereference it to see if it still has the right value. 6773 if (__kmp_is_address_mapped(flag_addr) && *flag_addr == flag_val) { 6774 neighbor = 1; 6775 } else { 6776 // If not, then we know the other copy of the library is no longer 6777 // running. 6778 neighbor = 2; 6779 } 6780 } 6781 } 6782 switch (neighbor) { 6783 case 0: // Cannot parse environment variable -- neighbor status unknown. 6784 // Assume it is the incompatible format of future version of the 6785 // library. Assume the other library is alive. 6786 // WARN( ... ); // TODO: Issue a warning. 6787 file_name = "unknown library"; 6788 KMP_FALLTHROUGH(); 6789 // Attention! Falling to the next case. That's intentional. 6790 case 1: { // Neighbor is alive. 6791 // Check it is allowed. 6792 char *duplicate_ok = __kmp_env_get("KMP_DUPLICATE_LIB_OK"); 6793 if (!__kmp_str_match_true(duplicate_ok)) { 6794 // That's not allowed. Issue fatal error. 6795 __kmp_fatal(KMP_MSG(DuplicateLibrary, KMP_LIBRARY_FILE, file_name), 6796 KMP_HNT(DuplicateLibrary), __kmp_msg_null); 6797 } 6798 KMP_INTERNAL_FREE(duplicate_ok); 6799 __kmp_duplicate_library_ok = 1; 6800 done = 1; // Exit the loop. 6801 } break; 6802 case 2: { // Neighbor is dead. 6803 6804 #if defined(KMP_USE_SHM) 6805 // close shared memory. 6806 shm_unlink(shm_name); // this removes file in /dev/shm 6807 #else 6808 // Clear the variable and try to register library again. 6809 __kmp_env_unset(name); 6810 #endif 6811 } break; 6812 default: { 6813 KMP_DEBUG_ASSERT(0); 6814 } break; 6815 } 6816 } 6817 KMP_INTERNAL_FREE((void *)value); 6818 #if defined(KMP_USE_SHM) 6819 KMP_INTERNAL_FREE((void *)shm_name); 6820 #endif 6821 } // while 6822 KMP_INTERNAL_FREE((void *)name); 6823 6824 } // func __kmp_register_library_startup 6825 6826 void __kmp_unregister_library(void) { 6827 6828 char *name = __kmp_reg_status_name(); 6829 char *value = NULL; 6830 6831 #if defined(KMP_USE_SHM) 6832 char *shm_name = __kmp_str_format("/%s", name); 6833 int fd1 = shm_open(shm_name, O_RDONLY, 0666); 6834 if (fd1 == -1) { 6835 // file did not open. return. 6836 return; 6837 } 6838 char *data1 = (char *)mmap(0, SHM_SIZE, PROT_READ, MAP_SHARED, fd1, 0); 6839 if (data1 != MAP_FAILED) { 6840 value = __kmp_str_format("%s", data1); // read value from SHM 6841 munmap(data1, SHM_SIZE); 6842 } 6843 close(fd1); 6844 #else 6845 value = __kmp_env_get(name); 6846 #endif 6847 6848 KMP_DEBUG_ASSERT(__kmp_registration_flag != 0); 6849 KMP_DEBUG_ASSERT(__kmp_registration_str != NULL); 6850 if (value != NULL && strcmp(value, __kmp_registration_str) == 0) { 6851 // Ok, this is our variable. Delete it. 6852 #if defined(KMP_USE_SHM) 6853 shm_unlink(shm_name); // this removes file in /dev/shm 6854 #else 6855 __kmp_env_unset(name); 6856 #endif 6857 } 6858 6859 #if defined(KMP_USE_SHM) 6860 KMP_INTERNAL_FREE(shm_name); 6861 #endif 6862 6863 KMP_INTERNAL_FREE(__kmp_registration_str); 6864 KMP_INTERNAL_FREE(value); 6865 KMP_INTERNAL_FREE(name); 6866 6867 __kmp_registration_flag = 0; 6868 __kmp_registration_str = NULL; 6869 6870 } // __kmp_unregister_library 6871 6872 // End of Library registration stuff. 6873 // ----------------------------------------------------------------------------- 6874 6875 #if KMP_MIC_SUPPORTED 6876 6877 static void __kmp_check_mic_type() { 6878 kmp_cpuid_t cpuid_state = {0}; 6879 kmp_cpuid_t *cs_p = &cpuid_state; 6880 __kmp_x86_cpuid(1, 0, cs_p); 6881 // We don't support mic1 at the moment 6882 if ((cs_p->eax & 0xff0) == 0xB10) { 6883 __kmp_mic_type = mic2; 6884 } else if ((cs_p->eax & 0xf0ff0) == 0x50670) { 6885 __kmp_mic_type = mic3; 6886 } else { 6887 __kmp_mic_type = non_mic; 6888 } 6889 } 6890 6891 #endif /* KMP_MIC_SUPPORTED */ 6892 6893 #if KMP_HAVE_UMWAIT 6894 static void __kmp_user_level_mwait_init() { 6895 struct kmp_cpuid buf; 6896 __kmp_x86_cpuid(7, 0, &buf); 6897 __kmp_umwait_enabled = ((buf.ecx >> 5) & 1) && __kmp_user_level_mwait; 6898 KF_TRACE(30, ("__kmp_user_level_mwait_init: __kmp_umwait_enabled = %d\n", 6899 __kmp_umwait_enabled)); 6900 } 6901 #elif KMP_HAVE_MWAIT 6902 #ifndef AT_INTELPHIUSERMWAIT 6903 // Spurious, non-existent value that should always fail to return anything. 6904 // Will be replaced with the correct value when we know that. 6905 #define AT_INTELPHIUSERMWAIT 10000 6906 #endif 6907 // getauxval() function is available in RHEL7 and SLES12. If a system with an 6908 // earlier OS is used to build the RTL, we'll use the following internal 6909 // function when the entry is not found. 6910 unsigned long getauxval(unsigned long) KMP_WEAK_ATTRIBUTE_EXTERNAL; 6911 unsigned long getauxval(unsigned long) { return 0; } 6912 6913 static void __kmp_user_level_mwait_init() { 6914 // When getauxval() and correct value of AT_INTELPHIUSERMWAIT are available 6915 // use them to find if the user-level mwait is enabled. Otherwise, forcibly 6916 // set __kmp_mwait_enabled=TRUE on Intel MIC if the environment variable 6917 // KMP_USER_LEVEL_MWAIT was set to TRUE. 6918 if (__kmp_mic_type == mic3) { 6919 unsigned long res = getauxval(AT_INTELPHIUSERMWAIT); 6920 if ((res & 0x1) || __kmp_user_level_mwait) { 6921 __kmp_mwait_enabled = TRUE; 6922 if (__kmp_user_level_mwait) { 6923 KMP_INFORM(EnvMwaitWarn); 6924 } 6925 } else { 6926 __kmp_mwait_enabled = FALSE; 6927 } 6928 } 6929 KF_TRACE(30, ("__kmp_user_level_mwait_init: __kmp_mic_type = %d, " 6930 "__kmp_mwait_enabled = %d\n", 6931 __kmp_mic_type, __kmp_mwait_enabled)); 6932 } 6933 #endif /* KMP_HAVE_UMWAIT */ 6934 6935 static void __kmp_do_serial_initialize(void) { 6936 int i, gtid; 6937 size_t size; 6938 6939 KA_TRACE(10, ("__kmp_do_serial_initialize: enter\n")); 6940 6941 KMP_DEBUG_ASSERT(sizeof(kmp_int32) == 4); 6942 KMP_DEBUG_ASSERT(sizeof(kmp_uint32) == 4); 6943 KMP_DEBUG_ASSERT(sizeof(kmp_int64) == 8); 6944 KMP_DEBUG_ASSERT(sizeof(kmp_uint64) == 8); 6945 KMP_DEBUG_ASSERT(sizeof(kmp_intptr_t) == sizeof(void *)); 6946 6947 #if OMPT_SUPPORT 6948 ompt_pre_init(); 6949 #endif 6950 #if OMPD_SUPPORT 6951 __kmp_env_dump(); 6952 ompd_init(); 6953 #endif 6954 6955 __kmp_validate_locks(); 6956 6957 /* Initialize internal memory allocator */ 6958 __kmp_init_allocator(); 6959 6960 /* Register the library startup via an environment variable and check to see 6961 whether another copy of the library is already registered. */ 6962 6963 __kmp_register_library_startup(); 6964 6965 /* TODO reinitialization of library */ 6966 if (TCR_4(__kmp_global.g.g_done)) { 6967 KA_TRACE(10, ("__kmp_do_serial_initialize: reinitialization of library\n")); 6968 } 6969 6970 __kmp_global.g.g_abort = 0; 6971 TCW_SYNC_4(__kmp_global.g.g_done, FALSE); 6972 6973 /* initialize the locks */ 6974 #if KMP_USE_ADAPTIVE_LOCKS 6975 #if KMP_DEBUG_ADAPTIVE_LOCKS 6976 __kmp_init_speculative_stats(); 6977 #endif 6978 #endif 6979 #if KMP_STATS_ENABLED 6980 __kmp_stats_init(); 6981 #endif 6982 __kmp_init_lock(&__kmp_global_lock); 6983 __kmp_init_queuing_lock(&__kmp_dispatch_lock); 6984 __kmp_init_lock(&__kmp_debug_lock); 6985 __kmp_init_atomic_lock(&__kmp_atomic_lock); 6986 __kmp_init_atomic_lock(&__kmp_atomic_lock_1i); 6987 __kmp_init_atomic_lock(&__kmp_atomic_lock_2i); 6988 __kmp_init_atomic_lock(&__kmp_atomic_lock_4i); 6989 __kmp_init_atomic_lock(&__kmp_atomic_lock_4r); 6990 __kmp_init_atomic_lock(&__kmp_atomic_lock_8i); 6991 __kmp_init_atomic_lock(&__kmp_atomic_lock_8r); 6992 __kmp_init_atomic_lock(&__kmp_atomic_lock_8c); 6993 __kmp_init_atomic_lock(&__kmp_atomic_lock_10r); 6994 __kmp_init_atomic_lock(&__kmp_atomic_lock_16r); 6995 __kmp_init_atomic_lock(&__kmp_atomic_lock_16c); 6996 __kmp_init_atomic_lock(&__kmp_atomic_lock_20c); 6997 __kmp_init_atomic_lock(&__kmp_atomic_lock_32c); 6998 __kmp_init_bootstrap_lock(&__kmp_forkjoin_lock); 6999 __kmp_init_bootstrap_lock(&__kmp_exit_lock); 7000 #if KMP_USE_MONITOR 7001 __kmp_init_bootstrap_lock(&__kmp_monitor_lock); 7002 #endif 7003 __kmp_init_bootstrap_lock(&__kmp_tp_cached_lock); 7004 7005 /* conduct initialization and initial setup of configuration */ 7006 7007 __kmp_runtime_initialize(); 7008 7009 #if KMP_MIC_SUPPORTED 7010 __kmp_check_mic_type(); 7011 #endif 7012 7013 // Some global variable initialization moved here from kmp_env_initialize() 7014 #ifdef KMP_DEBUG 7015 kmp_diag = 0; 7016 #endif 7017 __kmp_abort_delay = 0; 7018 7019 // From __kmp_init_dflt_team_nth() 7020 /* assume the entire machine will be used */ 7021 __kmp_dflt_team_nth_ub = __kmp_xproc; 7022 if (__kmp_dflt_team_nth_ub < KMP_MIN_NTH) { 7023 __kmp_dflt_team_nth_ub = KMP_MIN_NTH; 7024 } 7025 if (__kmp_dflt_team_nth_ub > __kmp_sys_max_nth) { 7026 __kmp_dflt_team_nth_ub = __kmp_sys_max_nth; 7027 } 7028 __kmp_max_nth = __kmp_sys_max_nth; 7029 __kmp_cg_max_nth = __kmp_sys_max_nth; 7030 __kmp_teams_max_nth = __kmp_xproc; // set a "reasonable" default 7031 if (__kmp_teams_max_nth > __kmp_sys_max_nth) { 7032 __kmp_teams_max_nth = __kmp_sys_max_nth; 7033 } 7034 7035 // Three vars below moved here from __kmp_env_initialize() "KMP_BLOCKTIME" 7036 // part 7037 __kmp_dflt_blocktime = KMP_DEFAULT_BLOCKTIME; 7038 #if KMP_USE_MONITOR 7039 __kmp_monitor_wakeups = 7040 KMP_WAKEUPS_FROM_BLOCKTIME(__kmp_dflt_blocktime, __kmp_monitor_wakeups); 7041 __kmp_bt_intervals = 7042 KMP_INTERVALS_FROM_BLOCKTIME(__kmp_dflt_blocktime, __kmp_monitor_wakeups); 7043 #endif 7044 // From "KMP_LIBRARY" part of __kmp_env_initialize() 7045 __kmp_library = library_throughput; 7046 // From KMP_SCHEDULE initialization 7047 __kmp_static = kmp_sch_static_balanced; 7048 // AC: do not use analytical here, because it is non-monotonous 7049 //__kmp_guided = kmp_sch_guided_iterative_chunked; 7050 //__kmp_auto = kmp_sch_guided_analytical_chunked; // AC: it is the default, no 7051 // need to repeat assignment 7052 // Barrier initialization. Moved here from __kmp_env_initialize() Barrier branch 7053 // bit control and barrier method control parts 7054 #if KMP_FAST_REDUCTION_BARRIER 7055 #define kmp_reduction_barrier_gather_bb ((int)1) 7056 #define kmp_reduction_barrier_release_bb ((int)1) 7057 #define kmp_reduction_barrier_gather_pat __kmp_barrier_gather_pat_dflt 7058 #define kmp_reduction_barrier_release_pat __kmp_barrier_release_pat_dflt 7059 #endif // KMP_FAST_REDUCTION_BARRIER 7060 for (i = bs_plain_barrier; i < bs_last_barrier; i++) { 7061 __kmp_barrier_gather_branch_bits[i] = __kmp_barrier_gather_bb_dflt; 7062 __kmp_barrier_release_branch_bits[i] = __kmp_barrier_release_bb_dflt; 7063 __kmp_barrier_gather_pattern[i] = __kmp_barrier_gather_pat_dflt; 7064 __kmp_barrier_release_pattern[i] = __kmp_barrier_release_pat_dflt; 7065 #if KMP_FAST_REDUCTION_BARRIER 7066 if (i == bs_reduction_barrier) { // tested and confirmed on ALTIX only ( 7067 // lin_64 ): hyper,1 7068 __kmp_barrier_gather_branch_bits[i] = kmp_reduction_barrier_gather_bb; 7069 __kmp_barrier_release_branch_bits[i] = kmp_reduction_barrier_release_bb; 7070 __kmp_barrier_gather_pattern[i] = kmp_reduction_barrier_gather_pat; 7071 __kmp_barrier_release_pattern[i] = kmp_reduction_barrier_release_pat; 7072 } 7073 #endif // KMP_FAST_REDUCTION_BARRIER 7074 } 7075 #if KMP_FAST_REDUCTION_BARRIER 7076 #undef kmp_reduction_barrier_release_pat 7077 #undef kmp_reduction_barrier_gather_pat 7078 #undef kmp_reduction_barrier_release_bb 7079 #undef kmp_reduction_barrier_gather_bb 7080 #endif // KMP_FAST_REDUCTION_BARRIER 7081 #if KMP_MIC_SUPPORTED 7082 if (__kmp_mic_type == mic2) { // KNC 7083 // AC: plane=3,2, forkjoin=2,1 are optimal for 240 threads on KNC 7084 __kmp_barrier_gather_branch_bits[bs_plain_barrier] = 3; // plain gather 7085 __kmp_barrier_release_branch_bits[bs_forkjoin_barrier] = 7086 1; // forkjoin release 7087 __kmp_barrier_gather_pattern[bs_forkjoin_barrier] = bp_hierarchical_bar; 7088 __kmp_barrier_release_pattern[bs_forkjoin_barrier] = bp_hierarchical_bar; 7089 } 7090 #if KMP_FAST_REDUCTION_BARRIER 7091 if (__kmp_mic_type == mic2) { // KNC 7092 __kmp_barrier_gather_pattern[bs_reduction_barrier] = bp_hierarchical_bar; 7093 __kmp_barrier_release_pattern[bs_reduction_barrier] = bp_hierarchical_bar; 7094 } 7095 #endif // KMP_FAST_REDUCTION_BARRIER 7096 #endif // KMP_MIC_SUPPORTED 7097 7098 // From KMP_CHECKS initialization 7099 #ifdef KMP_DEBUG 7100 __kmp_env_checks = TRUE; /* development versions have the extra checks */ 7101 #else 7102 __kmp_env_checks = FALSE; /* port versions do not have the extra checks */ 7103 #endif 7104 7105 // From "KMP_FOREIGN_THREADS_THREADPRIVATE" initialization 7106 __kmp_foreign_tp = TRUE; 7107 7108 __kmp_global.g.g_dynamic = FALSE; 7109 __kmp_global.g.g_dynamic_mode = dynamic_default; 7110 7111 __kmp_init_nesting_mode(); 7112 7113 __kmp_env_initialize(NULL); 7114 7115 #if KMP_HAVE_MWAIT || KMP_HAVE_UMWAIT 7116 __kmp_user_level_mwait_init(); 7117 #endif 7118 // Print all messages in message catalog for testing purposes. 7119 #ifdef KMP_DEBUG 7120 char const *val = __kmp_env_get("KMP_DUMP_CATALOG"); 7121 if (__kmp_str_match_true(val)) { 7122 kmp_str_buf_t buffer; 7123 __kmp_str_buf_init(&buffer); 7124 __kmp_i18n_dump_catalog(&buffer); 7125 __kmp_printf("%s", buffer.str); 7126 __kmp_str_buf_free(&buffer); 7127 } 7128 __kmp_env_free(&val); 7129 #endif 7130 7131 __kmp_threads_capacity = 7132 __kmp_initial_threads_capacity(__kmp_dflt_team_nth_ub); 7133 // Moved here from __kmp_env_initialize() "KMP_ALL_THREADPRIVATE" part 7134 __kmp_tp_capacity = __kmp_default_tp_capacity( 7135 __kmp_dflt_team_nth_ub, __kmp_max_nth, __kmp_allThreadsSpecified); 7136 7137 // If the library is shut down properly, both pools must be NULL. Just in 7138 // case, set them to NULL -- some memory may leak, but subsequent code will 7139 // work even if pools are not freed. 7140 KMP_DEBUG_ASSERT(__kmp_thread_pool == NULL); 7141 KMP_DEBUG_ASSERT(__kmp_thread_pool_insert_pt == NULL); 7142 KMP_DEBUG_ASSERT(__kmp_team_pool == NULL); 7143 __kmp_thread_pool = NULL; 7144 __kmp_thread_pool_insert_pt = NULL; 7145 __kmp_team_pool = NULL; 7146 7147 /* Allocate all of the variable sized records */ 7148 /* NOTE: __kmp_threads_capacity entries are allocated, but the arrays are 7149 * expandable */ 7150 /* Since allocation is cache-aligned, just add extra padding at the end */ 7151 size = 7152 (sizeof(kmp_info_t *) + sizeof(kmp_root_t *)) * __kmp_threads_capacity + 7153 CACHE_LINE; 7154 __kmp_threads = (kmp_info_t **)__kmp_allocate(size); 7155 __kmp_root = (kmp_root_t **)((char *)__kmp_threads + 7156 sizeof(kmp_info_t *) * __kmp_threads_capacity); 7157 7158 /* init thread counts */ 7159 KMP_DEBUG_ASSERT(__kmp_all_nth == 7160 0); // Asserts fail if the library is reinitializing and 7161 KMP_DEBUG_ASSERT(__kmp_nth == 0); // something was wrong in termination. 7162 __kmp_all_nth = 0; 7163 __kmp_nth = 0; 7164 7165 /* setup the uber master thread and hierarchy */ 7166 gtid = __kmp_register_root(TRUE); 7167 KA_TRACE(10, ("__kmp_do_serial_initialize T#%d\n", gtid)); 7168 KMP_ASSERT(KMP_UBER_GTID(gtid)); 7169 KMP_ASSERT(KMP_INITIAL_GTID(gtid)); 7170 7171 KMP_MB(); /* Flush all pending memory write invalidates. */ 7172 7173 __kmp_common_initialize(); 7174 7175 #if KMP_OS_UNIX 7176 /* invoke the child fork handler */ 7177 __kmp_register_atfork(); 7178 #endif 7179 7180 #if !KMP_DYNAMIC_LIB 7181 { 7182 /* Invoke the exit handler when the program finishes, only for static 7183 library. For dynamic library, we already have _fini and DllMain. */ 7184 int rc = atexit(__kmp_internal_end_atexit); 7185 if (rc != 0) { 7186 __kmp_fatal(KMP_MSG(FunctionError, "atexit()"), KMP_ERR(rc), 7187 __kmp_msg_null); 7188 } 7189 } 7190 #endif 7191 7192 #if KMP_HANDLE_SIGNALS 7193 #if KMP_OS_UNIX 7194 /* NOTE: make sure that this is called before the user installs their own 7195 signal handlers so that the user handlers are called first. this way they 7196 can return false, not call our handler, avoid terminating the library, and 7197 continue execution where they left off. */ 7198 __kmp_install_signals(FALSE); 7199 #endif /* KMP_OS_UNIX */ 7200 #if KMP_OS_WINDOWS 7201 __kmp_install_signals(TRUE); 7202 #endif /* KMP_OS_WINDOWS */ 7203 #endif 7204 7205 /* we have finished the serial initialization */ 7206 __kmp_init_counter++; 7207 7208 __kmp_init_serial = TRUE; 7209 7210 if (__kmp_settings) { 7211 __kmp_env_print(); 7212 } 7213 7214 if (__kmp_display_env || __kmp_display_env_verbose) { 7215 __kmp_env_print_2(); 7216 } 7217 7218 #if OMPT_SUPPORT 7219 ompt_post_init(); 7220 #endif 7221 7222 KMP_MB(); 7223 7224 KA_TRACE(10, ("__kmp_do_serial_initialize: exit\n")); 7225 } 7226 7227 void __kmp_serial_initialize(void) { 7228 if (__kmp_init_serial) { 7229 return; 7230 } 7231 __kmp_acquire_bootstrap_lock(&__kmp_initz_lock); 7232 if (__kmp_init_serial) { 7233 __kmp_release_bootstrap_lock(&__kmp_initz_lock); 7234 return; 7235 } 7236 __kmp_do_serial_initialize(); 7237 __kmp_release_bootstrap_lock(&__kmp_initz_lock); 7238 } 7239 7240 static void __kmp_do_middle_initialize(void) { 7241 int i, j; 7242 int prev_dflt_team_nth; 7243 7244 if (!__kmp_init_serial) { 7245 __kmp_do_serial_initialize(); 7246 } 7247 7248 KA_TRACE(10, ("__kmp_middle_initialize: enter\n")); 7249 7250 // Save the previous value for the __kmp_dflt_team_nth so that 7251 // we can avoid some reinitialization if it hasn't changed. 7252 prev_dflt_team_nth = __kmp_dflt_team_nth; 7253 7254 #if KMP_AFFINITY_SUPPORTED 7255 // __kmp_affinity_initialize() will try to set __kmp_ncores to the 7256 // number of cores on the machine. 7257 __kmp_affinity_initialize(); 7258 7259 #endif /* KMP_AFFINITY_SUPPORTED */ 7260 7261 KMP_ASSERT(__kmp_xproc > 0); 7262 if (__kmp_avail_proc == 0) { 7263 __kmp_avail_proc = __kmp_xproc; 7264 } 7265 7266 // If there were empty places in num_threads list (OMP_NUM_THREADS=,,2,3), 7267 // correct them now 7268 j = 0; 7269 while ((j < __kmp_nested_nth.used) && !__kmp_nested_nth.nth[j]) { 7270 __kmp_nested_nth.nth[j] = __kmp_dflt_team_nth = __kmp_dflt_team_nth_ub = 7271 __kmp_avail_proc; 7272 j++; 7273 } 7274 7275 if (__kmp_dflt_team_nth == 0) { 7276 #ifdef KMP_DFLT_NTH_CORES 7277 // Default #threads = #cores 7278 __kmp_dflt_team_nth = __kmp_ncores; 7279 KA_TRACE(20, ("__kmp_middle_initialize: setting __kmp_dflt_team_nth = " 7280 "__kmp_ncores (%d)\n", 7281 __kmp_dflt_team_nth)); 7282 #else 7283 // Default #threads = #available OS procs 7284 __kmp_dflt_team_nth = __kmp_avail_proc; 7285 KA_TRACE(20, ("__kmp_middle_initialize: setting __kmp_dflt_team_nth = " 7286 "__kmp_avail_proc(%d)\n", 7287 __kmp_dflt_team_nth)); 7288 #endif /* KMP_DFLT_NTH_CORES */ 7289 } 7290 7291 if (__kmp_dflt_team_nth < KMP_MIN_NTH) { 7292 __kmp_dflt_team_nth = KMP_MIN_NTH; 7293 } 7294 if (__kmp_dflt_team_nth > __kmp_sys_max_nth) { 7295 __kmp_dflt_team_nth = __kmp_sys_max_nth; 7296 } 7297 7298 if (__kmp_nesting_mode > 0) 7299 __kmp_set_nesting_mode_threads(); 7300 7301 // There's no harm in continuing if the following check fails, 7302 // but it indicates an error in the previous logic. 7303 KMP_DEBUG_ASSERT(__kmp_dflt_team_nth <= __kmp_dflt_team_nth_ub); 7304 7305 if (__kmp_dflt_team_nth != prev_dflt_team_nth) { 7306 // Run through the __kmp_threads array and set the num threads icv for each 7307 // root thread that is currently registered with the RTL (which has not 7308 // already explicitly set its nthreads-var with a call to 7309 // omp_set_num_threads()). 7310 for (i = 0; i < __kmp_threads_capacity; i++) { 7311 kmp_info_t *thread = __kmp_threads[i]; 7312 if (thread == NULL) 7313 continue; 7314 if (thread->th.th_current_task->td_icvs.nproc != 0) 7315 continue; 7316 7317 set__nproc(__kmp_threads[i], __kmp_dflt_team_nth); 7318 } 7319 } 7320 KA_TRACE( 7321 20, 7322 ("__kmp_middle_initialize: final value for __kmp_dflt_team_nth = %d\n", 7323 __kmp_dflt_team_nth)); 7324 7325 #ifdef KMP_ADJUST_BLOCKTIME 7326 /* Adjust blocktime to zero if necessary now that __kmp_avail_proc is set */ 7327 if (!__kmp_env_blocktime && (__kmp_avail_proc > 0)) { 7328 KMP_DEBUG_ASSERT(__kmp_avail_proc > 0); 7329 if (__kmp_nth > __kmp_avail_proc) { 7330 __kmp_zero_bt = TRUE; 7331 } 7332 } 7333 #endif /* KMP_ADJUST_BLOCKTIME */ 7334 7335 /* we have finished middle initialization */ 7336 TCW_SYNC_4(__kmp_init_middle, TRUE); 7337 7338 KA_TRACE(10, ("__kmp_do_middle_initialize: exit\n")); 7339 } 7340 7341 void __kmp_middle_initialize(void) { 7342 if (__kmp_init_middle) { 7343 return; 7344 } 7345 __kmp_acquire_bootstrap_lock(&__kmp_initz_lock); 7346 if (__kmp_init_middle) { 7347 __kmp_release_bootstrap_lock(&__kmp_initz_lock); 7348 return; 7349 } 7350 __kmp_do_middle_initialize(); 7351 __kmp_release_bootstrap_lock(&__kmp_initz_lock); 7352 } 7353 7354 void __kmp_parallel_initialize(void) { 7355 int gtid = __kmp_entry_gtid(); // this might be a new root 7356 7357 /* synchronize parallel initialization (for sibling) */ 7358 if (TCR_4(__kmp_init_parallel)) 7359 return; 7360 __kmp_acquire_bootstrap_lock(&__kmp_initz_lock); 7361 if (TCR_4(__kmp_init_parallel)) { 7362 __kmp_release_bootstrap_lock(&__kmp_initz_lock); 7363 return; 7364 } 7365 7366 /* TODO reinitialization after we have already shut down */ 7367 if (TCR_4(__kmp_global.g.g_done)) { 7368 KA_TRACE( 7369 10, 7370 ("__kmp_parallel_initialize: attempt to init while shutting down\n")); 7371 __kmp_infinite_loop(); 7372 } 7373 7374 /* jc: The lock __kmp_initz_lock is already held, so calling 7375 __kmp_serial_initialize would cause a deadlock. So we call 7376 __kmp_do_serial_initialize directly. */ 7377 if (!__kmp_init_middle) { 7378 __kmp_do_middle_initialize(); 7379 } 7380 __kmp_assign_root_init_mask(); 7381 __kmp_resume_if_hard_paused(); 7382 7383 /* begin initialization */ 7384 KA_TRACE(10, ("__kmp_parallel_initialize: enter\n")); 7385 KMP_ASSERT(KMP_UBER_GTID(gtid)); 7386 7387 #if KMP_ARCH_X86 || KMP_ARCH_X86_64 7388 // Save the FP control regs. 7389 // Worker threads will set theirs to these values at thread startup. 7390 __kmp_store_x87_fpu_control_word(&__kmp_init_x87_fpu_control_word); 7391 __kmp_store_mxcsr(&__kmp_init_mxcsr); 7392 __kmp_init_mxcsr &= KMP_X86_MXCSR_MASK; 7393 #endif /* KMP_ARCH_X86 || KMP_ARCH_X86_64 */ 7394 7395 #if KMP_OS_UNIX 7396 #if KMP_HANDLE_SIGNALS 7397 /* must be after __kmp_serial_initialize */ 7398 __kmp_install_signals(TRUE); 7399 #endif 7400 #endif 7401 7402 __kmp_suspend_initialize(); 7403 7404 #if defined(USE_LOAD_BALANCE) 7405 if (__kmp_global.g.g_dynamic_mode == dynamic_default) { 7406 __kmp_global.g.g_dynamic_mode = dynamic_load_balance; 7407 } 7408 #else 7409 if (__kmp_global.g.g_dynamic_mode == dynamic_default) { 7410 __kmp_global.g.g_dynamic_mode = dynamic_thread_limit; 7411 } 7412 #endif 7413 7414 if (__kmp_version) { 7415 __kmp_print_version_2(); 7416 } 7417 7418 /* we have finished parallel initialization */ 7419 TCW_SYNC_4(__kmp_init_parallel, TRUE); 7420 7421 KMP_MB(); 7422 KA_TRACE(10, ("__kmp_parallel_initialize: exit\n")); 7423 7424 __kmp_release_bootstrap_lock(&__kmp_initz_lock); 7425 } 7426 7427 void __kmp_hidden_helper_initialize() { 7428 if (TCR_4(__kmp_init_hidden_helper)) 7429 return; 7430 7431 // __kmp_parallel_initialize is required before we initialize hidden helper 7432 if (!TCR_4(__kmp_init_parallel)) 7433 __kmp_parallel_initialize(); 7434 7435 // Double check. Note that this double check should not be placed before 7436 // __kmp_parallel_initialize as it will cause dead lock. 7437 __kmp_acquire_bootstrap_lock(&__kmp_initz_lock); 7438 if (TCR_4(__kmp_init_hidden_helper)) { 7439 __kmp_release_bootstrap_lock(&__kmp_initz_lock); 7440 return; 7441 } 7442 7443 // Set the count of hidden helper tasks to be executed to zero 7444 KMP_ATOMIC_ST_REL(&__kmp_unexecuted_hidden_helper_tasks, 0); 7445 7446 // Set the global variable indicating that we're initializing hidden helper 7447 // team/threads 7448 TCW_SYNC_4(__kmp_init_hidden_helper_threads, TRUE); 7449 7450 // Platform independent initialization 7451 __kmp_do_initialize_hidden_helper_threads(); 7452 7453 // Wait here for the finish of initialization of hidden helper teams 7454 __kmp_hidden_helper_threads_initz_wait(); 7455 7456 // We have finished hidden helper initialization 7457 TCW_SYNC_4(__kmp_init_hidden_helper, TRUE); 7458 7459 __kmp_release_bootstrap_lock(&__kmp_initz_lock); 7460 } 7461 7462 /* ------------------------------------------------------------------------ */ 7463 7464 void __kmp_run_before_invoked_task(int gtid, int tid, kmp_info_t *this_thr, 7465 kmp_team_t *team) { 7466 kmp_disp_t *dispatch; 7467 7468 KMP_MB(); 7469 7470 /* none of the threads have encountered any constructs, yet. */ 7471 this_thr->th.th_local.this_construct = 0; 7472 #if KMP_CACHE_MANAGE 7473 KMP_CACHE_PREFETCH(&this_thr->th.th_bar[bs_forkjoin_barrier].bb.b_arrived); 7474 #endif /* KMP_CACHE_MANAGE */ 7475 dispatch = (kmp_disp_t *)TCR_PTR(this_thr->th.th_dispatch); 7476 KMP_DEBUG_ASSERT(dispatch); 7477 KMP_DEBUG_ASSERT(team->t.t_dispatch); 7478 // KMP_DEBUG_ASSERT( this_thr->th.th_dispatch == &team->t.t_dispatch[ 7479 // this_thr->th.th_info.ds.ds_tid ] ); 7480 7481 dispatch->th_disp_index = 0; /* reset the dispatch buffer counter */ 7482 dispatch->th_doacross_buf_idx = 0; // reset doacross dispatch buffer counter 7483 if (__kmp_env_consistency_check) 7484 __kmp_push_parallel(gtid, team->t.t_ident); 7485 7486 KMP_MB(); /* Flush all pending memory write invalidates. */ 7487 } 7488 7489 void __kmp_run_after_invoked_task(int gtid, int tid, kmp_info_t *this_thr, 7490 kmp_team_t *team) { 7491 if (__kmp_env_consistency_check) 7492 __kmp_pop_parallel(gtid, team->t.t_ident); 7493 7494 __kmp_finish_implicit_task(this_thr); 7495 } 7496 7497 int __kmp_invoke_task_func(int gtid) { 7498 int rc; 7499 int tid = __kmp_tid_from_gtid(gtid); 7500 kmp_info_t *this_thr = __kmp_threads[gtid]; 7501 kmp_team_t *team = this_thr->th.th_team; 7502 7503 __kmp_run_before_invoked_task(gtid, tid, this_thr, team); 7504 #if USE_ITT_BUILD 7505 if (__itt_stack_caller_create_ptr) { 7506 // inform ittnotify about entering user's code 7507 if (team->t.t_stack_id != NULL) { 7508 __kmp_itt_stack_callee_enter((__itt_caller)team->t.t_stack_id); 7509 } else { 7510 KMP_DEBUG_ASSERT(team->t.t_parent->t.t_stack_id != NULL); 7511 __kmp_itt_stack_callee_enter( 7512 (__itt_caller)team->t.t_parent->t.t_stack_id); 7513 } 7514 } 7515 #endif /* USE_ITT_BUILD */ 7516 #if INCLUDE_SSC_MARKS 7517 SSC_MARK_INVOKING(); 7518 #endif 7519 7520 #if OMPT_SUPPORT 7521 void *dummy; 7522 void **exit_frame_p; 7523 ompt_data_t *my_task_data; 7524 ompt_data_t *my_parallel_data; 7525 int ompt_team_size; 7526 7527 if (ompt_enabled.enabled) { 7528 exit_frame_p = &(team->t.t_implicit_task_taskdata[tid] 7529 .ompt_task_info.frame.exit_frame.ptr); 7530 } else { 7531 exit_frame_p = &dummy; 7532 } 7533 7534 my_task_data = 7535 &(team->t.t_implicit_task_taskdata[tid].ompt_task_info.task_data); 7536 my_parallel_data = &(team->t.ompt_team_info.parallel_data); 7537 if (ompt_enabled.ompt_callback_implicit_task) { 7538 ompt_team_size = team->t.t_nproc; 7539 ompt_callbacks.ompt_callback(ompt_callback_implicit_task)( 7540 ompt_scope_begin, my_parallel_data, my_task_data, ompt_team_size, 7541 __kmp_tid_from_gtid(gtid), ompt_task_implicit); 7542 OMPT_CUR_TASK_INFO(this_thr)->thread_num = __kmp_tid_from_gtid(gtid); 7543 } 7544 #endif 7545 7546 #if KMP_STATS_ENABLED 7547 stats_state_e previous_state = KMP_GET_THREAD_STATE(); 7548 if (previous_state == stats_state_e::TEAMS_REGION) { 7549 KMP_PUSH_PARTITIONED_TIMER(OMP_teams); 7550 } else { 7551 KMP_PUSH_PARTITIONED_TIMER(OMP_parallel); 7552 } 7553 KMP_SET_THREAD_STATE(IMPLICIT_TASK); 7554 #endif 7555 7556 rc = __kmp_invoke_microtask((microtask_t)TCR_SYNC_PTR(team->t.t_pkfn), gtid, 7557 tid, (int)team->t.t_argc, (void **)team->t.t_argv 7558 #if OMPT_SUPPORT 7559 , 7560 exit_frame_p 7561 #endif 7562 ); 7563 #if OMPT_SUPPORT 7564 *exit_frame_p = NULL; 7565 this_thr->th.ompt_thread_info.parallel_flags |= ompt_parallel_team; 7566 #endif 7567 7568 #if KMP_STATS_ENABLED 7569 if (previous_state == stats_state_e::TEAMS_REGION) { 7570 KMP_SET_THREAD_STATE(previous_state); 7571 } 7572 KMP_POP_PARTITIONED_TIMER(); 7573 #endif 7574 7575 #if USE_ITT_BUILD 7576 if (__itt_stack_caller_create_ptr) { 7577 // inform ittnotify about leaving user's code 7578 if (team->t.t_stack_id != NULL) { 7579 __kmp_itt_stack_callee_leave((__itt_caller)team->t.t_stack_id); 7580 } else { 7581 KMP_DEBUG_ASSERT(team->t.t_parent->t.t_stack_id != NULL); 7582 __kmp_itt_stack_callee_leave( 7583 (__itt_caller)team->t.t_parent->t.t_stack_id); 7584 } 7585 } 7586 #endif /* USE_ITT_BUILD */ 7587 __kmp_run_after_invoked_task(gtid, tid, this_thr, team); 7588 7589 return rc; 7590 } 7591 7592 void __kmp_teams_master(int gtid) { 7593 // This routine is called by all primary threads in teams construct 7594 kmp_info_t *thr = __kmp_threads[gtid]; 7595 kmp_team_t *team = thr->th.th_team; 7596 ident_t *loc = team->t.t_ident; 7597 thr->th.th_set_nproc = thr->th.th_teams_size.nth; 7598 KMP_DEBUG_ASSERT(thr->th.th_teams_microtask); 7599 KMP_DEBUG_ASSERT(thr->th.th_set_nproc); 7600 KA_TRACE(20, ("__kmp_teams_master: T#%d, Tid %d, microtask %p\n", gtid, 7601 __kmp_tid_from_gtid(gtid), thr->th.th_teams_microtask)); 7602 7603 // This thread is a new CG root. Set up the proper variables. 7604 kmp_cg_root_t *tmp = (kmp_cg_root_t *)__kmp_allocate(sizeof(kmp_cg_root_t)); 7605 tmp->cg_root = thr; // Make thr the CG root 7606 // Init to thread limit stored when league primary threads were forked 7607 tmp->cg_thread_limit = thr->th.th_current_task->td_icvs.thread_limit; 7608 tmp->cg_nthreads = 1; // Init counter to one active thread, this one 7609 KA_TRACE(100, ("__kmp_teams_master: Thread %p created node %p and init" 7610 " cg_nthreads to 1\n", 7611 thr, tmp)); 7612 tmp->up = thr->th.th_cg_roots; 7613 thr->th.th_cg_roots = tmp; 7614 7615 // Launch league of teams now, but not let workers execute 7616 // (they hang on fork barrier until next parallel) 7617 #if INCLUDE_SSC_MARKS 7618 SSC_MARK_FORKING(); 7619 #endif 7620 __kmp_fork_call(loc, gtid, fork_context_intel, team->t.t_argc, 7621 (microtask_t)thr->th.th_teams_microtask, // "wrapped" task 7622 VOLATILE_CAST(launch_t) __kmp_invoke_task_func, NULL); 7623 #if INCLUDE_SSC_MARKS 7624 SSC_MARK_JOINING(); 7625 #endif 7626 // If the team size was reduced from the limit, set it to the new size 7627 if (thr->th.th_team_nproc < thr->th.th_teams_size.nth) 7628 thr->th.th_teams_size.nth = thr->th.th_team_nproc; 7629 // AC: last parameter "1" eliminates join barrier which won't work because 7630 // worker threads are in a fork barrier waiting for more parallel regions 7631 __kmp_join_call(loc, gtid 7632 #if OMPT_SUPPORT 7633 , 7634 fork_context_intel 7635 #endif 7636 , 7637 1); 7638 } 7639 7640 int __kmp_invoke_teams_master(int gtid) { 7641 kmp_info_t *this_thr = __kmp_threads[gtid]; 7642 kmp_team_t *team = this_thr->th.th_team; 7643 #if KMP_DEBUG 7644 if (!__kmp_threads[gtid]->th.th_team->t.t_serialized) 7645 KMP_DEBUG_ASSERT((void *)__kmp_threads[gtid]->th.th_team->t.t_pkfn == 7646 (void *)__kmp_teams_master); 7647 #endif 7648 __kmp_run_before_invoked_task(gtid, 0, this_thr, team); 7649 #if OMPT_SUPPORT 7650 int tid = __kmp_tid_from_gtid(gtid); 7651 ompt_data_t *task_data = 7652 &team->t.t_implicit_task_taskdata[tid].ompt_task_info.task_data; 7653 ompt_data_t *parallel_data = &team->t.ompt_team_info.parallel_data; 7654 if (ompt_enabled.ompt_callback_implicit_task) { 7655 ompt_callbacks.ompt_callback(ompt_callback_implicit_task)( 7656 ompt_scope_begin, parallel_data, task_data, team->t.t_nproc, tid, 7657 ompt_task_initial); 7658 OMPT_CUR_TASK_INFO(this_thr)->thread_num = tid; 7659 } 7660 #endif 7661 __kmp_teams_master(gtid); 7662 #if OMPT_SUPPORT 7663 this_thr->th.ompt_thread_info.parallel_flags |= ompt_parallel_league; 7664 #endif 7665 __kmp_run_after_invoked_task(gtid, 0, this_thr, team); 7666 return 1; 7667 } 7668 7669 /* this sets the requested number of threads for the next parallel region 7670 encountered by this team. since this should be enclosed in the forkjoin 7671 critical section it should avoid race conditions with asymmetrical nested 7672 parallelism */ 7673 7674 void __kmp_push_num_threads(ident_t *id, int gtid, int num_threads) { 7675 kmp_info_t *thr = __kmp_threads[gtid]; 7676 7677 if (num_threads > 0) 7678 thr->th.th_set_nproc = num_threads; 7679 } 7680 7681 static void __kmp_push_thread_limit(kmp_info_t *thr, int num_teams, 7682 int num_threads) { 7683 KMP_DEBUG_ASSERT(thr); 7684 // Remember the number of threads for inner parallel regions 7685 if (!TCR_4(__kmp_init_middle)) 7686 __kmp_middle_initialize(); // get internal globals calculated 7687 __kmp_assign_root_init_mask(); 7688 KMP_DEBUG_ASSERT(__kmp_avail_proc); 7689 KMP_DEBUG_ASSERT(__kmp_dflt_team_nth); 7690 7691 if (num_threads == 0) { 7692 if (__kmp_teams_thread_limit > 0) { 7693 num_threads = __kmp_teams_thread_limit; 7694 } else { 7695 num_threads = __kmp_avail_proc / num_teams; 7696 } 7697 // adjust num_threads w/o warning as it is not user setting 7698 // num_threads = min(num_threads, nthreads-var, thread-limit-var) 7699 // no thread_limit clause specified - do not change thread-limit-var ICV 7700 if (num_threads > __kmp_dflt_team_nth) { 7701 num_threads = __kmp_dflt_team_nth; // honor nthreads-var ICV 7702 } 7703 if (num_threads > thr->th.th_current_task->td_icvs.thread_limit) { 7704 num_threads = thr->th.th_current_task->td_icvs.thread_limit; 7705 } // prevent team size to exceed thread-limit-var 7706 if (num_teams * num_threads > __kmp_teams_max_nth) { 7707 num_threads = __kmp_teams_max_nth / num_teams; 7708 } 7709 if (num_threads == 0) { 7710 num_threads = 1; 7711 } 7712 } else { 7713 // This thread will be the primary thread of the league primary threads 7714 // Store new thread limit; old limit is saved in th_cg_roots list 7715 thr->th.th_current_task->td_icvs.thread_limit = num_threads; 7716 // num_threads = min(num_threads, nthreads-var) 7717 if (num_threads > __kmp_dflt_team_nth) { 7718 num_threads = __kmp_dflt_team_nth; // honor nthreads-var ICV 7719 } 7720 if (num_teams * num_threads > __kmp_teams_max_nth) { 7721 int new_threads = __kmp_teams_max_nth / num_teams; 7722 if (new_threads == 0) { 7723 new_threads = 1; 7724 } 7725 if (new_threads != num_threads) { 7726 if (!__kmp_reserve_warn) { // user asked for too many threads 7727 __kmp_reserve_warn = 1; // conflicts with KMP_TEAMS_THREAD_LIMIT 7728 __kmp_msg(kmp_ms_warning, 7729 KMP_MSG(CantFormThrTeam, num_threads, new_threads), 7730 KMP_HNT(Unset_ALL_THREADS), __kmp_msg_null); 7731 } 7732 } 7733 num_threads = new_threads; 7734 } 7735 } 7736 thr->th.th_teams_size.nth = num_threads; 7737 } 7738 7739 /* this sets the requested number of teams for the teams region and/or 7740 the number of threads for the next parallel region encountered */ 7741 void __kmp_push_num_teams(ident_t *id, int gtid, int num_teams, 7742 int num_threads) { 7743 kmp_info_t *thr = __kmp_threads[gtid]; 7744 KMP_DEBUG_ASSERT(num_teams >= 0); 7745 KMP_DEBUG_ASSERT(num_threads >= 0); 7746 7747 if (num_teams == 0) { 7748 if (__kmp_nteams > 0) { 7749 num_teams = __kmp_nteams; 7750 } else { 7751 num_teams = 1; // default number of teams is 1. 7752 } 7753 } 7754 if (num_teams > __kmp_teams_max_nth) { // if too many teams requested? 7755 if (!__kmp_reserve_warn) { 7756 __kmp_reserve_warn = 1; 7757 __kmp_msg(kmp_ms_warning, 7758 KMP_MSG(CantFormThrTeam, num_teams, __kmp_teams_max_nth), 7759 KMP_HNT(Unset_ALL_THREADS), __kmp_msg_null); 7760 } 7761 num_teams = __kmp_teams_max_nth; 7762 } 7763 // Set number of teams (number of threads in the outer "parallel" of the 7764 // teams) 7765 thr->th.th_set_nproc = thr->th.th_teams_size.nteams = num_teams; 7766 7767 __kmp_push_thread_limit(thr, num_teams, num_threads); 7768 } 7769 7770 /* This sets the requested number of teams for the teams region and/or 7771 the number of threads for the next parallel region encountered */ 7772 void __kmp_push_num_teams_51(ident_t *id, int gtid, int num_teams_lb, 7773 int num_teams_ub, int num_threads) { 7774 kmp_info_t *thr = __kmp_threads[gtid]; 7775 KMP_DEBUG_ASSERT(num_teams_lb >= 0 && num_teams_ub >= 0); 7776 KMP_DEBUG_ASSERT(num_teams_ub >= num_teams_lb); 7777 KMP_DEBUG_ASSERT(num_threads >= 0); 7778 7779 if (num_teams_lb > num_teams_ub) { 7780 __kmp_fatal(KMP_MSG(FailedToCreateTeam, num_teams_lb, num_teams_ub), 7781 KMP_HNT(SetNewBound, __kmp_teams_max_nth), __kmp_msg_null); 7782 } 7783 7784 int num_teams = 1; // defalt number of teams is 1. 7785 7786 if (num_teams_lb == 0 && num_teams_ub > 0) 7787 num_teams_lb = num_teams_ub; 7788 7789 if (num_teams_lb == 0 && num_teams_ub == 0) { // no num_teams clause 7790 num_teams = (__kmp_nteams > 0) ? __kmp_nteams : num_teams; 7791 if (num_teams > __kmp_teams_max_nth) { 7792 if (!__kmp_reserve_warn) { 7793 __kmp_reserve_warn = 1; 7794 __kmp_msg(kmp_ms_warning, 7795 KMP_MSG(CantFormThrTeam, num_teams, __kmp_teams_max_nth), 7796 KMP_HNT(Unset_ALL_THREADS), __kmp_msg_null); 7797 } 7798 num_teams = __kmp_teams_max_nth; 7799 } 7800 } else if (num_teams_lb == num_teams_ub) { // requires exact number of teams 7801 num_teams = num_teams_ub; 7802 } else { // num_teams_lb <= num_teams <= num_teams_ub 7803 if (num_threads == 0) { 7804 if (num_teams_ub > __kmp_teams_max_nth) { 7805 num_teams = num_teams_lb; 7806 } else { 7807 num_teams = num_teams_ub; 7808 } 7809 } else { 7810 num_teams = (num_threads > __kmp_teams_max_nth) 7811 ? num_teams 7812 : __kmp_teams_max_nth / num_threads; 7813 if (num_teams < num_teams_lb) { 7814 num_teams = num_teams_lb; 7815 } else if (num_teams > num_teams_ub) { 7816 num_teams = num_teams_ub; 7817 } 7818 } 7819 } 7820 // Set number of teams (number of threads in the outer "parallel" of the 7821 // teams) 7822 thr->th.th_set_nproc = thr->th.th_teams_size.nteams = num_teams; 7823 7824 __kmp_push_thread_limit(thr, num_teams, num_threads); 7825 } 7826 7827 // Set the proc_bind var to use in the following parallel region. 7828 void __kmp_push_proc_bind(ident_t *id, int gtid, kmp_proc_bind_t proc_bind) { 7829 kmp_info_t *thr = __kmp_threads[gtid]; 7830 thr->th.th_set_proc_bind = proc_bind; 7831 } 7832 7833 /* Launch the worker threads into the microtask. */ 7834 7835 void __kmp_internal_fork(ident_t *id, int gtid, kmp_team_t *team) { 7836 kmp_info_t *this_thr = __kmp_threads[gtid]; 7837 7838 #ifdef KMP_DEBUG 7839 int f; 7840 #endif /* KMP_DEBUG */ 7841 7842 KMP_DEBUG_ASSERT(team); 7843 KMP_DEBUG_ASSERT(this_thr->th.th_team == team); 7844 KMP_ASSERT(KMP_MASTER_GTID(gtid)); 7845 KMP_MB(); /* Flush all pending memory write invalidates. */ 7846 7847 team->t.t_construct = 0; /* no single directives seen yet */ 7848 team->t.t_ordered.dt.t_value = 7849 0; /* thread 0 enters the ordered section first */ 7850 7851 /* Reset the identifiers on the dispatch buffer */ 7852 KMP_DEBUG_ASSERT(team->t.t_disp_buffer); 7853 if (team->t.t_max_nproc > 1) { 7854 int i; 7855 for (i = 0; i < __kmp_dispatch_num_buffers; ++i) { 7856 team->t.t_disp_buffer[i].buffer_index = i; 7857 team->t.t_disp_buffer[i].doacross_buf_idx = i; 7858 } 7859 } else { 7860 team->t.t_disp_buffer[0].buffer_index = 0; 7861 team->t.t_disp_buffer[0].doacross_buf_idx = 0; 7862 } 7863 7864 KMP_MB(); /* Flush all pending memory write invalidates. */ 7865 KMP_ASSERT(this_thr->th.th_team == team); 7866 7867 #ifdef KMP_DEBUG 7868 for (f = 0; f < team->t.t_nproc; f++) { 7869 KMP_DEBUG_ASSERT(team->t.t_threads[f] && 7870 team->t.t_threads[f]->th.th_team_nproc == team->t.t_nproc); 7871 } 7872 #endif /* KMP_DEBUG */ 7873 7874 /* release the worker threads so they may begin working */ 7875 __kmp_fork_barrier(gtid, 0); 7876 } 7877 7878 void __kmp_internal_join(ident_t *id, int gtid, kmp_team_t *team) { 7879 kmp_info_t *this_thr = __kmp_threads[gtid]; 7880 7881 KMP_DEBUG_ASSERT(team); 7882 KMP_DEBUG_ASSERT(this_thr->th.th_team == team); 7883 KMP_ASSERT(KMP_MASTER_GTID(gtid)); 7884 KMP_MB(); /* Flush all pending memory write invalidates. */ 7885 7886 /* Join barrier after fork */ 7887 7888 #ifdef KMP_DEBUG 7889 if (__kmp_threads[gtid] && 7890 __kmp_threads[gtid]->th.th_team_nproc != team->t.t_nproc) { 7891 __kmp_printf("GTID: %d, __kmp_threads[%d]=%p\n", gtid, gtid, 7892 __kmp_threads[gtid]); 7893 __kmp_printf("__kmp_threads[%d]->th.th_team_nproc=%d, TEAM: %p, " 7894 "team->t.t_nproc=%d\n", 7895 gtid, __kmp_threads[gtid]->th.th_team_nproc, team, 7896 team->t.t_nproc); 7897 __kmp_print_structure(); 7898 } 7899 KMP_DEBUG_ASSERT(__kmp_threads[gtid] && 7900 __kmp_threads[gtid]->th.th_team_nproc == team->t.t_nproc); 7901 #endif /* KMP_DEBUG */ 7902 7903 __kmp_join_barrier(gtid); /* wait for everyone */ 7904 #if OMPT_SUPPORT 7905 if (ompt_enabled.enabled && 7906 this_thr->th.ompt_thread_info.state == ompt_state_wait_barrier_implicit) { 7907 int ds_tid = this_thr->th.th_info.ds.ds_tid; 7908 ompt_data_t *task_data = OMPT_CUR_TASK_DATA(this_thr); 7909 this_thr->th.ompt_thread_info.state = ompt_state_overhead; 7910 #if OMPT_OPTIONAL 7911 void *codeptr = NULL; 7912 if (KMP_MASTER_TID(ds_tid) && 7913 (ompt_callbacks.ompt_callback(ompt_callback_sync_region_wait) || 7914 ompt_callbacks.ompt_callback(ompt_callback_sync_region))) 7915 codeptr = OMPT_CUR_TEAM_INFO(this_thr)->master_return_address; 7916 7917 if (ompt_enabled.ompt_callback_sync_region_wait) { 7918 ompt_callbacks.ompt_callback(ompt_callback_sync_region_wait)( 7919 ompt_sync_region_barrier_implicit, ompt_scope_end, NULL, task_data, 7920 codeptr); 7921 } 7922 if (ompt_enabled.ompt_callback_sync_region) { 7923 ompt_callbacks.ompt_callback(ompt_callback_sync_region)( 7924 ompt_sync_region_barrier_implicit, ompt_scope_end, NULL, task_data, 7925 codeptr); 7926 } 7927 #endif 7928 if (!KMP_MASTER_TID(ds_tid) && ompt_enabled.ompt_callback_implicit_task) { 7929 ompt_callbacks.ompt_callback(ompt_callback_implicit_task)( 7930 ompt_scope_end, NULL, task_data, 0, ds_tid, 7931 ompt_task_implicit); // TODO: Can this be ompt_task_initial? 7932 } 7933 } 7934 #endif 7935 7936 KMP_MB(); /* Flush all pending memory write invalidates. */ 7937 KMP_ASSERT(this_thr->th.th_team == team); 7938 } 7939 7940 /* ------------------------------------------------------------------------ */ 7941 7942 #ifdef USE_LOAD_BALANCE 7943 7944 // Return the worker threads actively spinning in the hot team, if we 7945 // are at the outermost level of parallelism. Otherwise, return 0. 7946 static int __kmp_active_hot_team_nproc(kmp_root_t *root) { 7947 int i; 7948 int retval; 7949 kmp_team_t *hot_team; 7950 7951 if (root->r.r_active) { 7952 return 0; 7953 } 7954 hot_team = root->r.r_hot_team; 7955 if (__kmp_dflt_blocktime == KMP_MAX_BLOCKTIME) { 7956 return hot_team->t.t_nproc - 1; // Don't count primary thread 7957 } 7958 7959 // Skip the primary thread - it is accounted for elsewhere. 7960 retval = 0; 7961 for (i = 1; i < hot_team->t.t_nproc; i++) { 7962 if (hot_team->t.t_threads[i]->th.th_active) { 7963 retval++; 7964 } 7965 } 7966 return retval; 7967 } 7968 7969 // Perform an automatic adjustment to the number of 7970 // threads used by the next parallel region. 7971 static int __kmp_load_balance_nproc(kmp_root_t *root, int set_nproc) { 7972 int retval; 7973 int pool_active; 7974 int hot_team_active; 7975 int team_curr_active; 7976 int system_active; 7977 7978 KB_TRACE(20, ("__kmp_load_balance_nproc: called root:%p set_nproc:%d\n", root, 7979 set_nproc)); 7980 KMP_DEBUG_ASSERT(root); 7981 KMP_DEBUG_ASSERT(root->r.r_root_team->t.t_threads[0] 7982 ->th.th_current_task->td_icvs.dynamic == TRUE); 7983 KMP_DEBUG_ASSERT(set_nproc > 1); 7984 7985 if (set_nproc == 1) { 7986 KB_TRACE(20, ("__kmp_load_balance_nproc: serial execution.\n")); 7987 return 1; 7988 } 7989 7990 // Threads that are active in the thread pool, active in the hot team for this 7991 // particular root (if we are at the outer par level), and the currently 7992 // executing thread (to become the primary thread) are available to add to the 7993 // new team, but are currently contributing to the system load, and must be 7994 // accounted for. 7995 pool_active = __kmp_thread_pool_active_nth; 7996 hot_team_active = __kmp_active_hot_team_nproc(root); 7997 team_curr_active = pool_active + hot_team_active + 1; 7998 7999 // Check the system load. 8000 system_active = __kmp_get_load_balance(__kmp_avail_proc + team_curr_active); 8001 KB_TRACE(30, ("__kmp_load_balance_nproc: system active = %d pool active = %d " 8002 "hot team active = %d\n", 8003 system_active, pool_active, hot_team_active)); 8004 8005 if (system_active < 0) { 8006 // There was an error reading the necessary info from /proc, so use the 8007 // thread limit algorithm instead. Once we set __kmp_global.g.g_dynamic_mode 8008 // = dynamic_thread_limit, we shouldn't wind up getting back here. 8009 __kmp_global.g.g_dynamic_mode = dynamic_thread_limit; 8010 KMP_WARNING(CantLoadBalUsing, "KMP_DYNAMIC_MODE=thread limit"); 8011 8012 // Make this call behave like the thread limit algorithm. 8013 retval = __kmp_avail_proc - __kmp_nth + 8014 (root->r.r_active ? 1 : root->r.r_hot_team->t.t_nproc); 8015 if (retval > set_nproc) { 8016 retval = set_nproc; 8017 } 8018 if (retval < KMP_MIN_NTH) { 8019 retval = KMP_MIN_NTH; 8020 } 8021 8022 KB_TRACE(20, ("__kmp_load_balance_nproc: thread limit exit. retval:%d\n", 8023 retval)); 8024 return retval; 8025 } 8026 8027 // There is a slight delay in the load balance algorithm in detecting new 8028 // running procs. The real system load at this instant should be at least as 8029 // large as the #active omp thread that are available to add to the team. 8030 if (system_active < team_curr_active) { 8031 system_active = team_curr_active; 8032 } 8033 retval = __kmp_avail_proc - system_active + team_curr_active; 8034 if (retval > set_nproc) { 8035 retval = set_nproc; 8036 } 8037 if (retval < KMP_MIN_NTH) { 8038 retval = KMP_MIN_NTH; 8039 } 8040 8041 KB_TRACE(20, ("__kmp_load_balance_nproc: exit. retval:%d\n", retval)); 8042 return retval; 8043 } // __kmp_load_balance_nproc() 8044 8045 #endif /* USE_LOAD_BALANCE */ 8046 8047 /* ------------------------------------------------------------------------ */ 8048 8049 /* NOTE: this is called with the __kmp_init_lock held */ 8050 void __kmp_cleanup(void) { 8051 int f; 8052 8053 KA_TRACE(10, ("__kmp_cleanup: enter\n")); 8054 8055 if (TCR_4(__kmp_init_parallel)) { 8056 #if KMP_HANDLE_SIGNALS 8057 __kmp_remove_signals(); 8058 #endif 8059 TCW_4(__kmp_init_parallel, FALSE); 8060 } 8061 8062 if (TCR_4(__kmp_init_middle)) { 8063 #if KMP_AFFINITY_SUPPORTED 8064 __kmp_affinity_uninitialize(); 8065 #endif /* KMP_AFFINITY_SUPPORTED */ 8066 __kmp_cleanup_hierarchy(); 8067 TCW_4(__kmp_init_middle, FALSE); 8068 } 8069 8070 KA_TRACE(10, ("__kmp_cleanup: go serial cleanup\n")); 8071 8072 if (__kmp_init_serial) { 8073 __kmp_runtime_destroy(); 8074 __kmp_init_serial = FALSE; 8075 } 8076 8077 __kmp_cleanup_threadprivate_caches(); 8078 8079 for (f = 0; f < __kmp_threads_capacity; f++) { 8080 if (__kmp_root[f] != NULL) { 8081 __kmp_free(__kmp_root[f]); 8082 __kmp_root[f] = NULL; 8083 } 8084 } 8085 __kmp_free(__kmp_threads); 8086 // __kmp_threads and __kmp_root were allocated at once, as single block, so 8087 // there is no need in freeing __kmp_root. 8088 __kmp_threads = NULL; 8089 __kmp_root = NULL; 8090 __kmp_threads_capacity = 0; 8091 8092 #if KMP_USE_DYNAMIC_LOCK 8093 __kmp_cleanup_indirect_user_locks(); 8094 #else 8095 __kmp_cleanup_user_locks(); 8096 #endif 8097 #if OMPD_SUPPORT 8098 if (ompd_state) { 8099 __kmp_free(ompd_env_block); 8100 ompd_env_block = NULL; 8101 ompd_env_block_size = 0; 8102 } 8103 #endif 8104 8105 #if KMP_AFFINITY_SUPPORTED 8106 KMP_INTERNAL_FREE(CCAST(char *, __kmp_cpuinfo_file)); 8107 __kmp_cpuinfo_file = NULL; 8108 #endif /* KMP_AFFINITY_SUPPORTED */ 8109 8110 #if KMP_USE_ADAPTIVE_LOCKS 8111 #if KMP_DEBUG_ADAPTIVE_LOCKS 8112 __kmp_print_speculative_stats(); 8113 #endif 8114 #endif 8115 KMP_INTERNAL_FREE(__kmp_nested_nth.nth); 8116 __kmp_nested_nth.nth = NULL; 8117 __kmp_nested_nth.size = 0; 8118 __kmp_nested_nth.used = 0; 8119 KMP_INTERNAL_FREE(__kmp_nested_proc_bind.bind_types); 8120 __kmp_nested_proc_bind.bind_types = NULL; 8121 __kmp_nested_proc_bind.size = 0; 8122 __kmp_nested_proc_bind.used = 0; 8123 if (__kmp_affinity_format) { 8124 KMP_INTERNAL_FREE(__kmp_affinity_format); 8125 __kmp_affinity_format = NULL; 8126 } 8127 8128 __kmp_i18n_catclose(); 8129 8130 #if KMP_USE_HIER_SCHED 8131 __kmp_hier_scheds.deallocate(); 8132 #endif 8133 8134 #if KMP_STATS_ENABLED 8135 __kmp_stats_fini(); 8136 #endif 8137 8138 KA_TRACE(10, ("__kmp_cleanup: exit\n")); 8139 } 8140 8141 /* ------------------------------------------------------------------------ */ 8142 8143 int __kmp_ignore_mppbeg(void) { 8144 char *env; 8145 8146 if ((env = getenv("KMP_IGNORE_MPPBEG")) != NULL) { 8147 if (__kmp_str_match_false(env)) 8148 return FALSE; 8149 } 8150 // By default __kmpc_begin() is no-op. 8151 return TRUE; 8152 } 8153 8154 int __kmp_ignore_mppend(void) { 8155 char *env; 8156 8157 if ((env = getenv("KMP_IGNORE_MPPEND")) != NULL) { 8158 if (__kmp_str_match_false(env)) 8159 return FALSE; 8160 } 8161 // By default __kmpc_end() is no-op. 8162 return TRUE; 8163 } 8164 8165 void __kmp_internal_begin(void) { 8166 int gtid; 8167 kmp_root_t *root; 8168 8169 /* this is a very important step as it will register new sibling threads 8170 and assign these new uber threads a new gtid */ 8171 gtid = __kmp_entry_gtid(); 8172 root = __kmp_threads[gtid]->th.th_root; 8173 KMP_ASSERT(KMP_UBER_GTID(gtid)); 8174 8175 if (root->r.r_begin) 8176 return; 8177 __kmp_acquire_lock(&root->r.r_begin_lock, gtid); 8178 if (root->r.r_begin) { 8179 __kmp_release_lock(&root->r.r_begin_lock, gtid); 8180 return; 8181 } 8182 8183 root->r.r_begin = TRUE; 8184 8185 __kmp_release_lock(&root->r.r_begin_lock, gtid); 8186 } 8187 8188 /* ------------------------------------------------------------------------ */ 8189 8190 void __kmp_user_set_library(enum library_type arg) { 8191 int gtid; 8192 kmp_root_t *root; 8193 kmp_info_t *thread; 8194 8195 /* first, make sure we are initialized so we can get our gtid */ 8196 8197 gtid = __kmp_entry_gtid(); 8198 thread = __kmp_threads[gtid]; 8199 8200 root = thread->th.th_root; 8201 8202 KA_TRACE(20, ("__kmp_user_set_library: enter T#%d, arg: %d, %d\n", gtid, arg, 8203 library_serial)); 8204 if (root->r.r_in_parallel) { /* Must be called in serial section of top-level 8205 thread */ 8206 KMP_WARNING(SetLibraryIncorrectCall); 8207 return; 8208 } 8209 8210 switch (arg) { 8211 case library_serial: 8212 thread->th.th_set_nproc = 0; 8213 set__nproc(thread, 1); 8214 break; 8215 case library_turnaround: 8216 thread->th.th_set_nproc = 0; 8217 set__nproc(thread, __kmp_dflt_team_nth ? __kmp_dflt_team_nth 8218 : __kmp_dflt_team_nth_ub); 8219 break; 8220 case library_throughput: 8221 thread->th.th_set_nproc = 0; 8222 set__nproc(thread, __kmp_dflt_team_nth ? __kmp_dflt_team_nth 8223 : __kmp_dflt_team_nth_ub); 8224 break; 8225 default: 8226 KMP_FATAL(UnknownLibraryType, arg); 8227 } 8228 8229 __kmp_aux_set_library(arg); 8230 } 8231 8232 void __kmp_aux_set_stacksize(size_t arg) { 8233 if (!__kmp_init_serial) 8234 __kmp_serial_initialize(); 8235 8236 #if KMP_OS_DARWIN 8237 if (arg & (0x1000 - 1)) { 8238 arg &= ~(0x1000 - 1); 8239 if (arg + 0x1000) /* check for overflow if we round up */ 8240 arg += 0x1000; 8241 } 8242 #endif 8243 __kmp_acquire_bootstrap_lock(&__kmp_initz_lock); 8244 8245 /* only change the default stacksize before the first parallel region */ 8246 if (!TCR_4(__kmp_init_parallel)) { 8247 size_t value = arg; /* argument is in bytes */ 8248 8249 if (value < __kmp_sys_min_stksize) 8250 value = __kmp_sys_min_stksize; 8251 else if (value > KMP_MAX_STKSIZE) 8252 value = KMP_MAX_STKSIZE; 8253 8254 __kmp_stksize = value; 8255 8256 __kmp_env_stksize = TRUE; /* was KMP_STACKSIZE specified? */ 8257 } 8258 8259 __kmp_release_bootstrap_lock(&__kmp_initz_lock); 8260 } 8261 8262 /* set the behaviour of the runtime library */ 8263 /* TODO this can cause some odd behaviour with sibling parallelism... */ 8264 void __kmp_aux_set_library(enum library_type arg) { 8265 __kmp_library = arg; 8266 8267 switch (__kmp_library) { 8268 case library_serial: { 8269 KMP_INFORM(LibraryIsSerial); 8270 } break; 8271 case library_turnaround: 8272 if (__kmp_use_yield == 1 && !__kmp_use_yield_exp_set) 8273 __kmp_use_yield = 2; // only yield when oversubscribed 8274 break; 8275 case library_throughput: 8276 if (__kmp_dflt_blocktime == KMP_MAX_BLOCKTIME) 8277 __kmp_dflt_blocktime = 200; 8278 break; 8279 default: 8280 KMP_FATAL(UnknownLibraryType, arg); 8281 } 8282 } 8283 8284 /* Getting team information common for all team API */ 8285 // Returns NULL if not in teams construct 8286 static kmp_team_t *__kmp_aux_get_team_info(int &teams_serialized) { 8287 kmp_info_t *thr = __kmp_entry_thread(); 8288 teams_serialized = 0; 8289 if (thr->th.th_teams_microtask) { 8290 kmp_team_t *team = thr->th.th_team; 8291 int tlevel = thr->th.th_teams_level; // the level of the teams construct 8292 int ii = team->t.t_level; 8293 teams_serialized = team->t.t_serialized; 8294 int level = tlevel + 1; 8295 KMP_DEBUG_ASSERT(ii >= tlevel); 8296 while (ii > level) { 8297 for (teams_serialized = team->t.t_serialized; 8298 (teams_serialized > 0) && (ii > level); teams_serialized--, ii--) { 8299 } 8300 if (team->t.t_serialized && (!teams_serialized)) { 8301 team = team->t.t_parent; 8302 continue; 8303 } 8304 if (ii > level) { 8305 team = team->t.t_parent; 8306 ii--; 8307 } 8308 } 8309 return team; 8310 } 8311 return NULL; 8312 } 8313 8314 int __kmp_aux_get_team_num() { 8315 int serialized; 8316 kmp_team_t *team = __kmp_aux_get_team_info(serialized); 8317 if (team) { 8318 if (serialized > 1) { 8319 return 0; // teams region is serialized ( 1 team of 1 thread ). 8320 } else { 8321 return team->t.t_master_tid; 8322 } 8323 } 8324 return 0; 8325 } 8326 8327 int __kmp_aux_get_num_teams() { 8328 int serialized; 8329 kmp_team_t *team = __kmp_aux_get_team_info(serialized); 8330 if (team) { 8331 if (serialized > 1) { 8332 return 1; 8333 } else { 8334 return team->t.t_parent->t.t_nproc; 8335 } 8336 } 8337 return 1; 8338 } 8339 8340 /* ------------------------------------------------------------------------ */ 8341 8342 /* 8343 * Affinity Format Parser 8344 * 8345 * Field is in form of: %[[[0].]size]type 8346 * % and type are required (%% means print a literal '%') 8347 * type is either single char or long name surrounded by {}, 8348 * e.g., N or {num_threads} 8349 * 0 => leading zeros 8350 * . => right justified when size is specified 8351 * by default output is left justified 8352 * size is the *minimum* field length 8353 * All other characters are printed as is 8354 * 8355 * Available field types: 8356 * L {thread_level} - omp_get_level() 8357 * n {thread_num} - omp_get_thread_num() 8358 * h {host} - name of host machine 8359 * P {process_id} - process id (integer) 8360 * T {thread_identifier} - native thread identifier (integer) 8361 * N {num_threads} - omp_get_num_threads() 8362 * A {ancestor_tnum} - omp_get_ancestor_thread_num(omp_get_level()-1) 8363 * a {thread_affinity} - comma separated list of integers or integer ranges 8364 * (values of affinity mask) 8365 * 8366 * Implementation-specific field types can be added 8367 * If a type is unknown, print "undefined" 8368 */ 8369 8370 // Structure holding the short name, long name, and corresponding data type 8371 // for snprintf. A table of these will represent the entire valid keyword 8372 // field types. 8373 typedef struct kmp_affinity_format_field_t { 8374 char short_name; // from spec e.g., L -> thread level 8375 const char *long_name; // from spec thread_level -> thread level 8376 char field_format; // data type for snprintf (typically 'd' or 's' 8377 // for integer or string) 8378 } kmp_affinity_format_field_t; 8379 8380 static const kmp_affinity_format_field_t __kmp_affinity_format_table[] = { 8381 #if KMP_AFFINITY_SUPPORTED 8382 {'A', "thread_affinity", 's'}, 8383 #endif 8384 {'t', "team_num", 'd'}, 8385 {'T', "num_teams", 'd'}, 8386 {'L', "nesting_level", 'd'}, 8387 {'n', "thread_num", 'd'}, 8388 {'N', "num_threads", 'd'}, 8389 {'a', "ancestor_tnum", 'd'}, 8390 {'H', "host", 's'}, 8391 {'P', "process_id", 'd'}, 8392 {'i', "native_thread_id", 'd'}}; 8393 8394 // Return the number of characters it takes to hold field 8395 static int __kmp_aux_capture_affinity_field(int gtid, const kmp_info_t *th, 8396 const char **ptr, 8397 kmp_str_buf_t *field_buffer) { 8398 int rc, format_index, field_value; 8399 const char *width_left, *width_right; 8400 bool pad_zeros, right_justify, parse_long_name, found_valid_name; 8401 static const int FORMAT_SIZE = 20; 8402 char format[FORMAT_SIZE] = {0}; 8403 char absolute_short_name = 0; 8404 8405 KMP_DEBUG_ASSERT(gtid >= 0); 8406 KMP_DEBUG_ASSERT(th); 8407 KMP_DEBUG_ASSERT(**ptr == '%'); 8408 KMP_DEBUG_ASSERT(field_buffer); 8409 8410 __kmp_str_buf_clear(field_buffer); 8411 8412 // Skip the initial % 8413 (*ptr)++; 8414 8415 // Check for %% first 8416 if (**ptr == '%') { 8417 __kmp_str_buf_cat(field_buffer, "%", 1); 8418 (*ptr)++; // skip over the second % 8419 return 1; 8420 } 8421 8422 // Parse field modifiers if they are present 8423 pad_zeros = false; 8424 if (**ptr == '0') { 8425 pad_zeros = true; 8426 (*ptr)++; // skip over 0 8427 } 8428 right_justify = false; 8429 if (**ptr == '.') { 8430 right_justify = true; 8431 (*ptr)++; // skip over . 8432 } 8433 // Parse width of field: [width_left, width_right) 8434 width_left = width_right = NULL; 8435 if (**ptr >= '0' && **ptr <= '9') { 8436 width_left = *ptr; 8437 SKIP_DIGITS(*ptr); 8438 width_right = *ptr; 8439 } 8440 8441 // Create the format for KMP_SNPRINTF based on flags parsed above 8442 format_index = 0; 8443 format[format_index++] = '%'; 8444 if (!right_justify) 8445 format[format_index++] = '-'; 8446 if (pad_zeros) 8447 format[format_index++] = '0'; 8448 if (width_left && width_right) { 8449 int i = 0; 8450 // Only allow 8 digit number widths. 8451 // This also prevents overflowing format variable 8452 while (i < 8 && width_left < width_right) { 8453 format[format_index++] = *width_left; 8454 width_left++; 8455 i++; 8456 } 8457 } 8458 8459 // Parse a name (long or short) 8460 // Canonicalize the name into absolute_short_name 8461 found_valid_name = false; 8462 parse_long_name = (**ptr == '{'); 8463 if (parse_long_name) 8464 (*ptr)++; // skip initial left brace 8465 for (size_t i = 0; i < sizeof(__kmp_affinity_format_table) / 8466 sizeof(__kmp_affinity_format_table[0]); 8467 ++i) { 8468 char short_name = __kmp_affinity_format_table[i].short_name; 8469 const char *long_name = __kmp_affinity_format_table[i].long_name; 8470 char field_format = __kmp_affinity_format_table[i].field_format; 8471 if (parse_long_name) { 8472 size_t length = KMP_STRLEN(long_name); 8473 if (strncmp(*ptr, long_name, length) == 0) { 8474 found_valid_name = true; 8475 (*ptr) += length; // skip the long name 8476 } 8477 } else if (**ptr == short_name) { 8478 found_valid_name = true; 8479 (*ptr)++; // skip the short name 8480 } 8481 if (found_valid_name) { 8482 format[format_index++] = field_format; 8483 format[format_index++] = '\0'; 8484 absolute_short_name = short_name; 8485 break; 8486 } 8487 } 8488 if (parse_long_name) { 8489 if (**ptr != '}') { 8490 absolute_short_name = 0; 8491 } else { 8492 (*ptr)++; // skip over the right brace 8493 } 8494 } 8495 8496 // Attempt to fill the buffer with the requested 8497 // value using snprintf within __kmp_str_buf_print() 8498 switch (absolute_short_name) { 8499 case 't': 8500 rc = __kmp_str_buf_print(field_buffer, format, __kmp_aux_get_team_num()); 8501 break; 8502 case 'T': 8503 rc = __kmp_str_buf_print(field_buffer, format, __kmp_aux_get_num_teams()); 8504 break; 8505 case 'L': 8506 rc = __kmp_str_buf_print(field_buffer, format, th->th.th_team->t.t_level); 8507 break; 8508 case 'n': 8509 rc = __kmp_str_buf_print(field_buffer, format, __kmp_tid_from_gtid(gtid)); 8510 break; 8511 case 'H': { 8512 static const int BUFFER_SIZE = 256; 8513 char buf[BUFFER_SIZE]; 8514 __kmp_expand_host_name(buf, BUFFER_SIZE); 8515 rc = __kmp_str_buf_print(field_buffer, format, buf); 8516 } break; 8517 case 'P': 8518 rc = __kmp_str_buf_print(field_buffer, format, getpid()); 8519 break; 8520 case 'i': 8521 rc = __kmp_str_buf_print(field_buffer, format, __kmp_gettid()); 8522 break; 8523 case 'N': 8524 rc = __kmp_str_buf_print(field_buffer, format, th->th.th_team->t.t_nproc); 8525 break; 8526 case 'a': 8527 field_value = 8528 __kmp_get_ancestor_thread_num(gtid, th->th.th_team->t.t_level - 1); 8529 rc = __kmp_str_buf_print(field_buffer, format, field_value); 8530 break; 8531 #if KMP_AFFINITY_SUPPORTED 8532 case 'A': { 8533 kmp_str_buf_t buf; 8534 __kmp_str_buf_init(&buf); 8535 __kmp_affinity_str_buf_mask(&buf, th->th.th_affin_mask); 8536 rc = __kmp_str_buf_print(field_buffer, format, buf.str); 8537 __kmp_str_buf_free(&buf); 8538 } break; 8539 #endif 8540 default: 8541 // According to spec, If an implementation does not have info for field 8542 // type, then "undefined" is printed 8543 rc = __kmp_str_buf_print(field_buffer, "%s", "undefined"); 8544 // Skip the field 8545 if (parse_long_name) { 8546 SKIP_TOKEN(*ptr); 8547 if (**ptr == '}') 8548 (*ptr)++; 8549 } else { 8550 (*ptr)++; 8551 } 8552 } 8553 8554 KMP_ASSERT(format_index <= FORMAT_SIZE); 8555 return rc; 8556 } 8557 8558 /* 8559 * Return number of characters needed to hold the affinity string 8560 * (not including null byte character) 8561 * The resultant string is printed to buffer, which the caller can then 8562 * handle afterwards 8563 */ 8564 size_t __kmp_aux_capture_affinity(int gtid, const char *format, 8565 kmp_str_buf_t *buffer) { 8566 const char *parse_ptr; 8567 size_t retval; 8568 const kmp_info_t *th; 8569 kmp_str_buf_t field; 8570 8571 KMP_DEBUG_ASSERT(buffer); 8572 KMP_DEBUG_ASSERT(gtid >= 0); 8573 8574 __kmp_str_buf_init(&field); 8575 __kmp_str_buf_clear(buffer); 8576 8577 th = __kmp_threads[gtid]; 8578 retval = 0; 8579 8580 // If format is NULL or zero-length string, then we use 8581 // affinity-format-var ICV 8582 parse_ptr = format; 8583 if (parse_ptr == NULL || *parse_ptr == '\0') { 8584 parse_ptr = __kmp_affinity_format; 8585 } 8586 KMP_DEBUG_ASSERT(parse_ptr); 8587 8588 while (*parse_ptr != '\0') { 8589 // Parse a field 8590 if (*parse_ptr == '%') { 8591 // Put field in the buffer 8592 int rc = __kmp_aux_capture_affinity_field(gtid, th, &parse_ptr, &field); 8593 __kmp_str_buf_catbuf(buffer, &field); 8594 retval += rc; 8595 } else { 8596 // Put literal character in buffer 8597 __kmp_str_buf_cat(buffer, parse_ptr, 1); 8598 retval++; 8599 parse_ptr++; 8600 } 8601 } 8602 __kmp_str_buf_free(&field); 8603 return retval; 8604 } 8605 8606 // Displays the affinity string to stdout 8607 void __kmp_aux_display_affinity(int gtid, const char *format) { 8608 kmp_str_buf_t buf; 8609 __kmp_str_buf_init(&buf); 8610 __kmp_aux_capture_affinity(gtid, format, &buf); 8611 __kmp_fprintf(kmp_out, "%s" KMP_END_OF_LINE, buf.str); 8612 __kmp_str_buf_free(&buf); 8613 } 8614 8615 /* ------------------------------------------------------------------------ */ 8616 8617 void __kmp_aux_set_blocktime(int arg, kmp_info_t *thread, int tid) { 8618 int blocktime = arg; /* argument is in milliseconds */ 8619 #if KMP_USE_MONITOR 8620 int bt_intervals; 8621 #endif 8622 kmp_int8 bt_set; 8623 8624 __kmp_save_internal_controls(thread); 8625 8626 /* Normalize and set blocktime for the teams */ 8627 if (blocktime < KMP_MIN_BLOCKTIME) 8628 blocktime = KMP_MIN_BLOCKTIME; 8629 else if (blocktime > KMP_MAX_BLOCKTIME) 8630 blocktime = KMP_MAX_BLOCKTIME; 8631 8632 set__blocktime_team(thread->th.th_team, tid, blocktime); 8633 set__blocktime_team(thread->th.th_serial_team, 0, blocktime); 8634 8635 #if KMP_USE_MONITOR 8636 /* Calculate and set blocktime intervals for the teams */ 8637 bt_intervals = KMP_INTERVALS_FROM_BLOCKTIME(blocktime, __kmp_monitor_wakeups); 8638 8639 set__bt_intervals_team(thread->th.th_team, tid, bt_intervals); 8640 set__bt_intervals_team(thread->th.th_serial_team, 0, bt_intervals); 8641 #endif 8642 8643 /* Set whether blocktime has been set to "TRUE" */ 8644 bt_set = TRUE; 8645 8646 set__bt_set_team(thread->th.th_team, tid, bt_set); 8647 set__bt_set_team(thread->th.th_serial_team, 0, bt_set); 8648 #if KMP_USE_MONITOR 8649 KF_TRACE(10, ("kmp_set_blocktime: T#%d(%d:%d), blocktime=%d, " 8650 "bt_intervals=%d, monitor_updates=%d\n", 8651 __kmp_gtid_from_tid(tid, thread->th.th_team), 8652 thread->th.th_team->t.t_id, tid, blocktime, bt_intervals, 8653 __kmp_monitor_wakeups)); 8654 #else 8655 KF_TRACE(10, ("kmp_set_blocktime: T#%d(%d:%d), blocktime=%d\n", 8656 __kmp_gtid_from_tid(tid, thread->th.th_team), 8657 thread->th.th_team->t.t_id, tid, blocktime)); 8658 #endif 8659 } 8660 8661 void __kmp_aux_set_defaults(char const *str, size_t len) { 8662 if (!__kmp_init_serial) { 8663 __kmp_serial_initialize(); 8664 } 8665 __kmp_env_initialize(str); 8666 8667 if (__kmp_settings || __kmp_display_env || __kmp_display_env_verbose) { 8668 __kmp_env_print(); 8669 } 8670 } // __kmp_aux_set_defaults 8671 8672 /* ------------------------------------------------------------------------ */ 8673 /* internal fast reduction routines */ 8674 8675 PACKED_REDUCTION_METHOD_T 8676 __kmp_determine_reduction_method( 8677 ident_t *loc, kmp_int32 global_tid, kmp_int32 num_vars, size_t reduce_size, 8678 void *reduce_data, void (*reduce_func)(void *lhs_data, void *rhs_data), 8679 kmp_critical_name *lck) { 8680 8681 // Default reduction method: critical construct ( lck != NULL, like in current 8682 // PAROPT ) 8683 // If ( reduce_data!=NULL && reduce_func!=NULL ): the tree-reduction method 8684 // can be selected by RTL 8685 // If loc->flags contains KMP_IDENT_ATOMIC_REDUCE, the atomic reduce method 8686 // can be selected by RTL 8687 // Finally, it's up to OpenMP RTL to make a decision on which method to select 8688 // among generated by PAROPT. 8689 8690 PACKED_REDUCTION_METHOD_T retval; 8691 8692 int team_size; 8693 8694 KMP_DEBUG_ASSERT(loc); // it would be nice to test ( loc != 0 ) 8695 KMP_DEBUG_ASSERT(lck); // it would be nice to test ( lck != 0 ) 8696 8697 #define FAST_REDUCTION_ATOMIC_METHOD_GENERATED \ 8698 ((loc->flags & (KMP_IDENT_ATOMIC_REDUCE)) == (KMP_IDENT_ATOMIC_REDUCE)) 8699 #define FAST_REDUCTION_TREE_METHOD_GENERATED ((reduce_data) && (reduce_func)) 8700 8701 retval = critical_reduce_block; 8702 8703 // another choice of getting a team size (with 1 dynamic deference) is slower 8704 team_size = __kmp_get_team_num_threads(global_tid); 8705 if (team_size == 1) { 8706 8707 retval = empty_reduce_block; 8708 8709 } else { 8710 8711 int atomic_available = FAST_REDUCTION_ATOMIC_METHOD_GENERATED; 8712 8713 #if KMP_ARCH_X86_64 || KMP_ARCH_PPC64 || KMP_ARCH_AARCH64 || \ 8714 KMP_ARCH_MIPS64 || KMP_ARCH_RISCV64 8715 8716 #if KMP_OS_LINUX || KMP_OS_DRAGONFLY || KMP_OS_FREEBSD || KMP_OS_NETBSD || \ 8717 KMP_OS_OPENBSD || KMP_OS_WINDOWS || KMP_OS_DARWIN || KMP_OS_HURD 8718 8719 int teamsize_cutoff = 4; 8720 8721 #if KMP_MIC_SUPPORTED 8722 if (__kmp_mic_type != non_mic) { 8723 teamsize_cutoff = 8; 8724 } 8725 #endif 8726 int tree_available = FAST_REDUCTION_TREE_METHOD_GENERATED; 8727 if (tree_available) { 8728 if (team_size <= teamsize_cutoff) { 8729 if (atomic_available) { 8730 retval = atomic_reduce_block; 8731 } 8732 } else { 8733 retval = TREE_REDUCE_BLOCK_WITH_REDUCTION_BARRIER; 8734 } 8735 } else if (atomic_available) { 8736 retval = atomic_reduce_block; 8737 } 8738 #else 8739 #error "Unknown or unsupported OS" 8740 #endif // KMP_OS_LINUX || KMP_OS_DRAGONFLY || KMP_OS_FREEBSD || KMP_OS_NETBSD || 8741 // KMP_OS_OPENBSD || KMP_OS_WINDOWS || KMP_OS_DARWIN || KMP_OS_HURD 8742 8743 #elif KMP_ARCH_X86 || KMP_ARCH_ARM || KMP_ARCH_AARCH || KMP_ARCH_MIPS 8744 8745 #if KMP_OS_LINUX || KMP_OS_FREEBSD || KMP_OS_WINDOWS || KMP_OS_HURD 8746 8747 // basic tuning 8748 8749 if (atomic_available) { 8750 if (num_vars <= 2) { // && ( team_size <= 8 ) due to false-sharing ??? 8751 retval = atomic_reduce_block; 8752 } 8753 } // otherwise: use critical section 8754 8755 #elif KMP_OS_DARWIN 8756 8757 int tree_available = FAST_REDUCTION_TREE_METHOD_GENERATED; 8758 if (atomic_available && (num_vars <= 3)) { 8759 retval = atomic_reduce_block; 8760 } else if (tree_available) { 8761 if ((reduce_size > (9 * sizeof(kmp_real64))) && 8762 (reduce_size < (2000 * sizeof(kmp_real64)))) { 8763 retval = TREE_REDUCE_BLOCK_WITH_PLAIN_BARRIER; 8764 } 8765 } // otherwise: use critical section 8766 8767 #else 8768 #error "Unknown or unsupported OS" 8769 #endif 8770 8771 #else 8772 #error "Unknown or unsupported architecture" 8773 #endif 8774 } 8775 8776 // KMP_FORCE_REDUCTION 8777 8778 // If the team is serialized (team_size == 1), ignore the forced reduction 8779 // method and stay with the unsynchronized method (empty_reduce_block) 8780 if (__kmp_force_reduction_method != reduction_method_not_defined && 8781 team_size != 1) { 8782 8783 PACKED_REDUCTION_METHOD_T forced_retval = critical_reduce_block; 8784 8785 int atomic_available, tree_available; 8786 8787 switch ((forced_retval = __kmp_force_reduction_method)) { 8788 case critical_reduce_block: 8789 KMP_ASSERT(lck); // lck should be != 0 8790 break; 8791 8792 case atomic_reduce_block: 8793 atomic_available = FAST_REDUCTION_ATOMIC_METHOD_GENERATED; 8794 if (!atomic_available) { 8795 KMP_WARNING(RedMethodNotSupported, "atomic"); 8796 forced_retval = critical_reduce_block; 8797 } 8798 break; 8799 8800 case tree_reduce_block: 8801 tree_available = FAST_REDUCTION_TREE_METHOD_GENERATED; 8802 if (!tree_available) { 8803 KMP_WARNING(RedMethodNotSupported, "tree"); 8804 forced_retval = critical_reduce_block; 8805 } else { 8806 #if KMP_FAST_REDUCTION_BARRIER 8807 forced_retval = TREE_REDUCE_BLOCK_WITH_REDUCTION_BARRIER; 8808 #endif 8809 } 8810 break; 8811 8812 default: 8813 KMP_ASSERT(0); // "unsupported method specified" 8814 } 8815 8816 retval = forced_retval; 8817 } 8818 8819 KA_TRACE(10, ("reduction method selected=%08x\n", retval)); 8820 8821 #undef FAST_REDUCTION_TREE_METHOD_GENERATED 8822 #undef FAST_REDUCTION_ATOMIC_METHOD_GENERATED 8823 8824 return (retval); 8825 } 8826 // this function is for testing set/get/determine reduce method 8827 kmp_int32 __kmp_get_reduce_method(void) { 8828 return ((__kmp_entry_thread()->th.th_local.packed_reduction_method) >> 8); 8829 } 8830 8831 // Soft pause sets up threads to ignore blocktime and just go to sleep. 8832 // Spin-wait code checks __kmp_pause_status and reacts accordingly. 8833 void __kmp_soft_pause() { __kmp_pause_status = kmp_soft_paused; } 8834 8835 // Hard pause shuts down the runtime completely. Resume happens naturally when 8836 // OpenMP is used subsequently. 8837 void __kmp_hard_pause() { 8838 __kmp_pause_status = kmp_hard_paused; 8839 __kmp_internal_end_thread(-1); 8840 } 8841 8842 // Soft resume sets __kmp_pause_status, and wakes up all threads. 8843 void __kmp_resume_if_soft_paused() { 8844 if (__kmp_pause_status == kmp_soft_paused) { 8845 __kmp_pause_status = kmp_not_paused; 8846 8847 for (int gtid = 1; gtid < __kmp_threads_capacity; ++gtid) { 8848 kmp_info_t *thread = __kmp_threads[gtid]; 8849 if (thread) { // Wake it if sleeping 8850 kmp_flag_64<> fl(&thread->th.th_bar[bs_forkjoin_barrier].bb.b_go, 8851 thread); 8852 if (fl.is_sleeping()) 8853 fl.resume(gtid); 8854 else if (__kmp_try_suspend_mx(thread)) { // got suspend lock 8855 __kmp_unlock_suspend_mx(thread); // unlock it; it won't sleep 8856 } else { // thread holds the lock and may sleep soon 8857 do { // until either the thread sleeps, or we can get the lock 8858 if (fl.is_sleeping()) { 8859 fl.resume(gtid); 8860 break; 8861 } else if (__kmp_try_suspend_mx(thread)) { 8862 __kmp_unlock_suspend_mx(thread); 8863 break; 8864 } 8865 } while (1); 8866 } 8867 } 8868 } 8869 } 8870 } 8871 8872 // This function is called via __kmpc_pause_resource. Returns 0 if successful. 8873 // TODO: add warning messages 8874 int __kmp_pause_resource(kmp_pause_status_t level) { 8875 if (level == kmp_not_paused) { // requesting resume 8876 if (__kmp_pause_status == kmp_not_paused) { 8877 // error message about runtime not being paused, so can't resume 8878 return 1; 8879 } else { 8880 KMP_DEBUG_ASSERT(__kmp_pause_status == kmp_soft_paused || 8881 __kmp_pause_status == kmp_hard_paused); 8882 __kmp_pause_status = kmp_not_paused; 8883 return 0; 8884 } 8885 } else if (level == kmp_soft_paused) { // requesting soft pause 8886 if (__kmp_pause_status != kmp_not_paused) { 8887 // error message about already being paused 8888 return 1; 8889 } else { 8890 __kmp_soft_pause(); 8891 return 0; 8892 } 8893 } else if (level == kmp_hard_paused) { // requesting hard pause 8894 if (__kmp_pause_status != kmp_not_paused) { 8895 // error message about already being paused 8896 return 1; 8897 } else { 8898 __kmp_hard_pause(); 8899 return 0; 8900 } 8901 } else { 8902 // error message about invalid level 8903 return 1; 8904 } 8905 } 8906 8907 void __kmp_omp_display_env(int verbose) { 8908 __kmp_acquire_bootstrap_lock(&__kmp_initz_lock); 8909 if (__kmp_init_serial == 0) 8910 __kmp_do_serial_initialize(); 8911 __kmp_display_env_impl(!verbose, verbose); 8912 __kmp_release_bootstrap_lock(&__kmp_initz_lock); 8913 } 8914 8915 // The team size is changing, so distributed barrier must be modified 8916 void __kmp_resize_dist_barrier(kmp_team_t *team, int old_nthreads, 8917 int new_nthreads) { 8918 KMP_DEBUG_ASSERT(__kmp_barrier_release_pattern[bs_forkjoin_barrier] == 8919 bp_dist_bar); 8920 kmp_info_t **other_threads = team->t.t_threads; 8921 8922 // We want all the workers to stop waiting on the barrier while we adjust the 8923 // size of the team. 8924 for (int f = 1; f < old_nthreads; ++f) { 8925 KMP_DEBUG_ASSERT(other_threads[f] != NULL); 8926 // Ignore threads that are already inactive or not present in the team 8927 if (team->t.t_threads[f]->th.th_used_in_team.load() == 0) { 8928 // teams construct causes thread_limit to get passed in, and some of 8929 // those could be inactive; just ignore them 8930 continue; 8931 } 8932 // If thread is transitioning still to in_use state, wait for it 8933 if (team->t.t_threads[f]->th.th_used_in_team.load() == 3) { 8934 while (team->t.t_threads[f]->th.th_used_in_team.load() == 3) 8935 KMP_CPU_PAUSE(); 8936 } 8937 // The thread should be in_use now 8938 KMP_DEBUG_ASSERT(team->t.t_threads[f]->th.th_used_in_team.load() == 1); 8939 // Transition to unused state 8940 team->t.t_threads[f]->th.th_used_in_team.store(2); 8941 KMP_DEBUG_ASSERT(team->t.t_threads[f]->th.th_used_in_team.load() == 2); 8942 } 8943 // Release all the workers 8944 kmp_uint64 new_value; // new value for go 8945 new_value = team->t.b->go_release(); 8946 8947 KMP_MFENCE(); 8948 8949 // Workers should see transition status 2 and move to 0; but may need to be 8950 // woken up first 8951 size_t my_go_index; 8952 int count = old_nthreads - 1; 8953 while (count > 0) { 8954 count = old_nthreads - 1; 8955 for (int f = 1; f < old_nthreads; ++f) { 8956 my_go_index = f / team->t.b->threads_per_go; 8957 if (other_threads[f]->th.th_used_in_team.load() != 0) { 8958 if (__kmp_dflt_blocktime != KMP_MAX_BLOCKTIME) { // Wake up the workers 8959 kmp_atomic_flag_64<> *flag = (kmp_atomic_flag_64<> *)CCAST( 8960 void *, other_threads[f]->th.th_sleep_loc); 8961 __kmp_atomic_resume_64(other_threads[f]->th.th_info.ds.ds_gtid, flag); 8962 } 8963 } else { 8964 KMP_DEBUG_ASSERT(team->t.t_threads[f]->th.th_used_in_team.load() == 0); 8965 count--; 8966 } 8967 } 8968 } 8969 // Now update the barrier size 8970 team->t.b->update_num_threads(new_nthreads); 8971 team->t.b->go_reset(); 8972 } 8973 8974 void __kmp_add_threads_to_team(kmp_team_t *team, int new_nthreads) { 8975 // Add the threads back to the team 8976 KMP_DEBUG_ASSERT(team); 8977 // Threads were paused and pointed at th_used_in_team temporarily during a 8978 // resize of the team. We're going to set th_used_in_team to 3 to indicate to 8979 // the thread that it should transition itself back into the team. Then, if 8980 // blocktime isn't infinite, the thread could be sleeping, so we send a resume 8981 // to wake it up. 8982 for (int f = 1; f < new_nthreads; ++f) { 8983 KMP_DEBUG_ASSERT(team->t.t_threads[f]); 8984 KMP_COMPARE_AND_STORE_ACQ32(&(team->t.t_threads[f]->th.th_used_in_team), 0, 8985 3); 8986 if (__kmp_dflt_blocktime != KMP_MAX_BLOCKTIME) { // Wake up sleeping threads 8987 __kmp_resume_32(team->t.t_threads[f]->th.th_info.ds.ds_gtid, 8988 (kmp_flag_32<false, false> *)NULL); 8989 } 8990 } 8991 // The threads should be transitioning to the team; when they are done, they 8992 // should have set th_used_in_team to 1. This loop forces master to wait until 8993 // all threads have moved into the team and are waiting in the barrier. 8994 int count = new_nthreads - 1; 8995 while (count > 0) { 8996 count = new_nthreads - 1; 8997 for (int f = 1; f < new_nthreads; ++f) { 8998 if (team->t.t_threads[f]->th.th_used_in_team.load() == 1) { 8999 count--; 9000 } 9001 } 9002 } 9003 } 9004 9005 // Globals and functions for hidden helper task 9006 kmp_info_t **__kmp_hidden_helper_threads; 9007 kmp_info_t *__kmp_hidden_helper_main_thread; 9008 std::atomic<kmp_int32> __kmp_unexecuted_hidden_helper_tasks; 9009 #if KMP_OS_LINUX 9010 kmp_int32 __kmp_hidden_helper_threads_num = 8; 9011 kmp_int32 __kmp_enable_hidden_helper = TRUE; 9012 #else 9013 kmp_int32 __kmp_hidden_helper_threads_num = 0; 9014 kmp_int32 __kmp_enable_hidden_helper = FALSE; 9015 #endif 9016 9017 namespace { 9018 std::atomic<kmp_int32> __kmp_hit_hidden_helper_threads_num; 9019 9020 void __kmp_hidden_helper_wrapper_fn(int *gtid, int *, ...) { 9021 // This is an explicit synchronization on all hidden helper threads in case 9022 // that when a regular thread pushes a hidden helper task to one hidden 9023 // helper thread, the thread has not been awaken once since they're released 9024 // by the main thread after creating the team. 9025 KMP_ATOMIC_INC(&__kmp_hit_hidden_helper_threads_num); 9026 while (KMP_ATOMIC_LD_ACQ(&__kmp_hit_hidden_helper_threads_num) != 9027 __kmp_hidden_helper_threads_num) 9028 ; 9029 9030 // If main thread, then wait for signal 9031 if (__kmpc_master(nullptr, *gtid)) { 9032 // First, unset the initial state and release the initial thread 9033 TCW_4(__kmp_init_hidden_helper_threads, FALSE); 9034 __kmp_hidden_helper_initz_release(); 9035 __kmp_hidden_helper_main_thread_wait(); 9036 // Now wake up all worker threads 9037 for (int i = 1; i < __kmp_hit_hidden_helper_threads_num; ++i) { 9038 __kmp_hidden_helper_worker_thread_signal(); 9039 } 9040 } 9041 } 9042 } // namespace 9043 9044 void __kmp_hidden_helper_threads_initz_routine() { 9045 // Create a new root for hidden helper team/threads 9046 const int gtid = __kmp_register_root(TRUE); 9047 __kmp_hidden_helper_main_thread = __kmp_threads[gtid]; 9048 __kmp_hidden_helper_threads = &__kmp_threads[gtid]; 9049 __kmp_hidden_helper_main_thread->th.th_set_nproc = 9050 __kmp_hidden_helper_threads_num; 9051 9052 KMP_ATOMIC_ST_REL(&__kmp_hit_hidden_helper_threads_num, 0); 9053 9054 __kmpc_fork_call(nullptr, 0, __kmp_hidden_helper_wrapper_fn); 9055 9056 // Set the initialization flag to FALSE 9057 TCW_SYNC_4(__kmp_init_hidden_helper, FALSE); 9058 9059 __kmp_hidden_helper_threads_deinitz_release(); 9060 } 9061 9062 /* Nesting Mode: 9063 Set via KMP_NESTING_MODE, which takes an integer. 9064 Note: we skip duplicate topology levels, and skip levels with only 9065 one entity. 9066 KMP_NESTING_MODE=0 is the default, and doesn't use nesting mode. 9067 KMP_NESTING_MODE=1 sets as many nesting levels as there are distinct levels 9068 in the topology, and initializes the number of threads at each of those 9069 levels to the number of entities at each level, respectively, below the 9070 entity at the parent level. 9071 KMP_NESTING_MODE=N, where N>1, attempts to create up to N nesting levels, 9072 but starts with nesting OFF -- max-active-levels-var is 1 -- and requires 9073 the user to turn nesting on explicitly. This is an even more experimental 9074 option to this experimental feature, and may change or go away in the 9075 future. 9076 */ 9077 9078 // Allocate space to store nesting levels 9079 void __kmp_init_nesting_mode() { 9080 int levels = KMP_HW_LAST; 9081 __kmp_nesting_mode_nlevels = levels; 9082 __kmp_nesting_nth_level = (int *)KMP_INTERNAL_MALLOC(levels * sizeof(int)); 9083 for (int i = 0; i < levels; ++i) 9084 __kmp_nesting_nth_level[i] = 0; 9085 if (__kmp_nested_nth.size < levels) { 9086 __kmp_nested_nth.nth = 9087 (int *)KMP_INTERNAL_REALLOC(__kmp_nested_nth.nth, levels * sizeof(int)); 9088 __kmp_nested_nth.size = levels; 9089 } 9090 } 9091 9092 // Set # threads for top levels of nesting; must be called after topology set 9093 void __kmp_set_nesting_mode_threads() { 9094 kmp_info_t *thread = __kmp_threads[__kmp_entry_gtid()]; 9095 9096 if (__kmp_nesting_mode == 1) 9097 __kmp_nesting_mode_nlevels = KMP_MAX_ACTIVE_LEVELS_LIMIT; 9098 else if (__kmp_nesting_mode > 1) 9099 __kmp_nesting_mode_nlevels = __kmp_nesting_mode; 9100 9101 if (__kmp_topology) { // use topology info 9102 int loc, hw_level; 9103 for (loc = 0, hw_level = 0; hw_level < __kmp_topology->get_depth() && 9104 loc < __kmp_nesting_mode_nlevels; 9105 loc++, hw_level++) { 9106 __kmp_nesting_nth_level[loc] = __kmp_topology->get_ratio(hw_level); 9107 if (__kmp_nesting_nth_level[loc] == 1) 9108 loc--; 9109 } 9110 // Make sure all cores are used 9111 if (__kmp_nesting_mode > 1 && loc > 1) { 9112 int core_level = __kmp_topology->get_level(KMP_HW_CORE); 9113 int num_cores = __kmp_topology->get_count(core_level); 9114 int upper_levels = 1; 9115 for (int level = 0; level < loc - 1; ++level) 9116 upper_levels *= __kmp_nesting_nth_level[level]; 9117 if (upper_levels * __kmp_nesting_nth_level[loc - 1] < num_cores) 9118 __kmp_nesting_nth_level[loc - 1] = 9119 num_cores / __kmp_nesting_nth_level[loc - 2]; 9120 } 9121 __kmp_nesting_mode_nlevels = loc; 9122 __kmp_nested_nth.used = __kmp_nesting_mode_nlevels; 9123 } else { // no topology info available; provide a reasonable guesstimation 9124 if (__kmp_avail_proc >= 4) { 9125 __kmp_nesting_nth_level[0] = __kmp_avail_proc / 2; 9126 __kmp_nesting_nth_level[1] = 2; 9127 __kmp_nesting_mode_nlevels = 2; 9128 } else { 9129 __kmp_nesting_nth_level[0] = __kmp_avail_proc; 9130 __kmp_nesting_mode_nlevels = 1; 9131 } 9132 __kmp_nested_nth.used = __kmp_nesting_mode_nlevels; 9133 } 9134 for (int i = 0; i < __kmp_nesting_mode_nlevels; ++i) { 9135 __kmp_nested_nth.nth[i] = __kmp_nesting_nth_level[i]; 9136 } 9137 set__nproc(thread, __kmp_nesting_nth_level[0]); 9138 if (__kmp_nesting_mode > 1 && __kmp_nesting_mode_nlevels > __kmp_nesting_mode) 9139 __kmp_nesting_mode_nlevels = __kmp_nesting_mode; 9140 if (get__max_active_levels(thread) > 1) { 9141 // if max levels was set, set nesting mode levels to same 9142 __kmp_nesting_mode_nlevels = get__max_active_levels(thread); 9143 } 9144 if (__kmp_nesting_mode == 1) // turn on nesting for this case only 9145 set__max_active_levels(thread, __kmp_nesting_mode_nlevels); 9146 } 9147