xref: /freebsd/contrib/llvm-project/openmp/runtime/src/kmp_runtime.cpp (revision 5e801ac66d24704442eba426ed13c3effb8a34e7)
1 /*
2  * kmp_runtime.cpp -- KPTS runtime support library
3  */
4 
5 //===----------------------------------------------------------------------===//
6 //
7 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
8 // See https://llvm.org/LICENSE.txt for license information.
9 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "kmp.h"
14 #include "kmp_affinity.h"
15 #include "kmp_atomic.h"
16 #include "kmp_environment.h"
17 #include "kmp_error.h"
18 #include "kmp_i18n.h"
19 #include "kmp_io.h"
20 #include "kmp_itt.h"
21 #include "kmp_settings.h"
22 #include "kmp_stats.h"
23 #include "kmp_str.h"
24 #include "kmp_wait_release.h"
25 #include "kmp_wrapper_getpid.h"
26 #include "kmp_dispatch.h"
27 #if KMP_USE_HIER_SCHED
28 #include "kmp_dispatch_hier.h"
29 #endif
30 
31 #if OMPT_SUPPORT
32 #include "ompt-specific.h"
33 #endif
34 #if OMPD_SUPPORT
35 #include "ompd-specific.h"
36 #endif
37 
38 #if OMP_PROFILING_SUPPORT
39 #include "llvm/Support/TimeProfiler.h"
40 static char *ProfileTraceFile = nullptr;
41 #endif
42 
43 /* these are temporary issues to be dealt with */
44 #define KMP_USE_PRCTL 0
45 
46 #if KMP_OS_WINDOWS
47 #include <process.h>
48 #endif
49 
50 #if KMP_OS_WINDOWS
51 // windows does not need include files as it doesn't use shared memory
52 #else
53 #include <sys/mman.h>
54 #include <sys/stat.h>
55 #include <fcntl.h>
56 #define SHM_SIZE 1024
57 #endif
58 
59 #if defined(KMP_GOMP_COMPAT)
60 char const __kmp_version_alt_comp[] =
61     KMP_VERSION_PREFIX "alternative compiler support: yes";
62 #endif /* defined(KMP_GOMP_COMPAT) */
63 
64 char const __kmp_version_omp_api[] =
65     KMP_VERSION_PREFIX "API version: 5.0 (201611)";
66 
67 #ifdef KMP_DEBUG
68 char const __kmp_version_lock[] =
69     KMP_VERSION_PREFIX "lock type: run time selectable";
70 #endif /* KMP_DEBUG */
71 
72 #define KMP_MIN(x, y) ((x) < (y) ? (x) : (y))
73 
74 /* ------------------------------------------------------------------------ */
75 
76 #if KMP_USE_MONITOR
77 kmp_info_t __kmp_monitor;
78 #endif
79 
80 /* Forward declarations */
81 
82 void __kmp_cleanup(void);
83 
84 static void __kmp_initialize_info(kmp_info_t *, kmp_team_t *, int tid,
85                                   int gtid);
86 static void __kmp_initialize_team(kmp_team_t *team, int new_nproc,
87                                   kmp_internal_control_t *new_icvs,
88                                   ident_t *loc);
89 #if KMP_AFFINITY_SUPPORTED
90 static void __kmp_partition_places(kmp_team_t *team,
91                                    int update_master_only = 0);
92 #endif
93 static void __kmp_do_serial_initialize(void);
94 void __kmp_fork_barrier(int gtid, int tid);
95 void __kmp_join_barrier(int gtid);
96 void __kmp_setup_icv_copy(kmp_team_t *team, int new_nproc,
97                           kmp_internal_control_t *new_icvs, ident_t *loc);
98 
99 #ifdef USE_LOAD_BALANCE
100 static int __kmp_load_balance_nproc(kmp_root_t *root, int set_nproc);
101 #endif
102 
103 static int __kmp_expand_threads(int nNeed);
104 #if KMP_OS_WINDOWS
105 static int __kmp_unregister_root_other_thread(int gtid);
106 #endif
107 static void __kmp_reap_thread(kmp_info_t *thread, int is_root);
108 kmp_info_t *__kmp_thread_pool_insert_pt = NULL;
109 
110 void __kmp_resize_dist_barrier(kmp_team_t *team, int old_nthreads,
111                                int new_nthreads);
112 void __kmp_add_threads_to_team(kmp_team_t *team, int new_nthreads);
113 
114 /* Calculate the identifier of the current thread */
115 /* fast (and somewhat portable) way to get unique identifier of executing
116    thread. Returns KMP_GTID_DNE if we haven't been assigned a gtid. */
117 int __kmp_get_global_thread_id() {
118   int i;
119   kmp_info_t **other_threads;
120   size_t stack_data;
121   char *stack_addr;
122   size_t stack_size;
123   char *stack_base;
124 
125   KA_TRACE(
126       1000,
127       ("*** __kmp_get_global_thread_id: entering, nproc=%d  all_nproc=%d\n",
128        __kmp_nth, __kmp_all_nth));
129 
130   /* JPH - to handle the case where __kmpc_end(0) is called immediately prior to
131      a parallel region, made it return KMP_GTID_DNE to force serial_initialize
132      by caller. Had to handle KMP_GTID_DNE at all call-sites, or else guarantee
133      __kmp_init_gtid for this to work. */
134 
135   if (!TCR_4(__kmp_init_gtid))
136     return KMP_GTID_DNE;
137 
138 #ifdef KMP_TDATA_GTID
139   if (TCR_4(__kmp_gtid_mode) >= 3) {
140     KA_TRACE(1000, ("*** __kmp_get_global_thread_id: using TDATA\n"));
141     return __kmp_gtid;
142   }
143 #endif
144   if (TCR_4(__kmp_gtid_mode) >= 2) {
145     KA_TRACE(1000, ("*** __kmp_get_global_thread_id: using keyed TLS\n"));
146     return __kmp_gtid_get_specific();
147   }
148   KA_TRACE(1000, ("*** __kmp_get_global_thread_id: using internal alg.\n"));
149 
150   stack_addr = (char *)&stack_data;
151   other_threads = __kmp_threads;
152 
153   /* ATT: The code below is a source of potential bugs due to unsynchronized
154      access to __kmp_threads array. For example:
155      1. Current thread loads other_threads[i] to thr and checks it, it is
156         non-NULL.
157      2. Current thread is suspended by OS.
158      3. Another thread unregisters and finishes (debug versions of free()
159         may fill memory with something like 0xEF).
160      4. Current thread is resumed.
161      5. Current thread reads junk from *thr.
162      TODO: Fix it.  --ln  */
163 
164   for (i = 0; i < __kmp_threads_capacity; i++) {
165 
166     kmp_info_t *thr = (kmp_info_t *)TCR_SYNC_PTR(other_threads[i]);
167     if (!thr)
168       continue;
169 
170     stack_size = (size_t)TCR_PTR(thr->th.th_info.ds.ds_stacksize);
171     stack_base = (char *)TCR_PTR(thr->th.th_info.ds.ds_stackbase);
172 
173     /* stack grows down -- search through all of the active threads */
174 
175     if (stack_addr <= stack_base) {
176       size_t stack_diff = stack_base - stack_addr;
177 
178       if (stack_diff <= stack_size) {
179         /* The only way we can be closer than the allocated */
180         /* stack size is if we are running on this thread. */
181         KMP_DEBUG_ASSERT(__kmp_gtid_get_specific() == i);
182         return i;
183       }
184     }
185   }
186 
187   /* get specific to try and determine our gtid */
188   KA_TRACE(1000,
189            ("*** __kmp_get_global_thread_id: internal alg. failed to find "
190             "thread, using TLS\n"));
191   i = __kmp_gtid_get_specific();
192 
193   /*fprintf( stderr, "=== %d\n", i );  */ /* GROO */
194 
195   /* if we havn't been assigned a gtid, then return code */
196   if (i < 0)
197     return i;
198 
199   /* dynamically updated stack window for uber threads to avoid get_specific
200      call */
201   if (!TCR_4(other_threads[i]->th.th_info.ds.ds_stackgrow)) {
202     KMP_FATAL(StackOverflow, i);
203   }
204 
205   stack_base = (char *)other_threads[i]->th.th_info.ds.ds_stackbase;
206   if (stack_addr > stack_base) {
207     TCW_PTR(other_threads[i]->th.th_info.ds.ds_stackbase, stack_addr);
208     TCW_PTR(other_threads[i]->th.th_info.ds.ds_stacksize,
209             other_threads[i]->th.th_info.ds.ds_stacksize + stack_addr -
210                 stack_base);
211   } else {
212     TCW_PTR(other_threads[i]->th.th_info.ds.ds_stacksize,
213             stack_base - stack_addr);
214   }
215 
216   /* Reprint stack bounds for ubermaster since they have been refined */
217   if (__kmp_storage_map) {
218     char *stack_end = (char *)other_threads[i]->th.th_info.ds.ds_stackbase;
219     char *stack_beg = stack_end - other_threads[i]->th.th_info.ds.ds_stacksize;
220     __kmp_print_storage_map_gtid(i, stack_beg, stack_end,
221                                  other_threads[i]->th.th_info.ds.ds_stacksize,
222                                  "th_%d stack (refinement)", i);
223   }
224   return i;
225 }
226 
227 int __kmp_get_global_thread_id_reg() {
228   int gtid;
229 
230   if (!__kmp_init_serial) {
231     gtid = KMP_GTID_DNE;
232   } else
233 #ifdef KMP_TDATA_GTID
234       if (TCR_4(__kmp_gtid_mode) >= 3) {
235     KA_TRACE(1000, ("*** __kmp_get_global_thread_id_reg: using TDATA\n"));
236     gtid = __kmp_gtid;
237   } else
238 #endif
239       if (TCR_4(__kmp_gtid_mode) >= 2) {
240     KA_TRACE(1000, ("*** __kmp_get_global_thread_id_reg: using keyed TLS\n"));
241     gtid = __kmp_gtid_get_specific();
242   } else {
243     KA_TRACE(1000,
244              ("*** __kmp_get_global_thread_id_reg: using internal alg.\n"));
245     gtid = __kmp_get_global_thread_id();
246   }
247 
248   /* we must be a new uber master sibling thread */
249   if (gtid == KMP_GTID_DNE) {
250     KA_TRACE(10,
251              ("__kmp_get_global_thread_id_reg: Encountered new root thread. "
252               "Registering a new gtid.\n"));
253     __kmp_acquire_bootstrap_lock(&__kmp_initz_lock);
254     if (!__kmp_init_serial) {
255       __kmp_do_serial_initialize();
256       gtid = __kmp_gtid_get_specific();
257     } else {
258       gtid = __kmp_register_root(FALSE);
259     }
260     __kmp_release_bootstrap_lock(&__kmp_initz_lock);
261     /*__kmp_printf( "+++ %d\n", gtid ); */ /* GROO */
262   }
263 
264   KMP_DEBUG_ASSERT(gtid >= 0);
265 
266   return gtid;
267 }
268 
269 /* caller must hold forkjoin_lock */
270 void __kmp_check_stack_overlap(kmp_info_t *th) {
271   int f;
272   char *stack_beg = NULL;
273   char *stack_end = NULL;
274   int gtid;
275 
276   KA_TRACE(10, ("__kmp_check_stack_overlap: called\n"));
277   if (__kmp_storage_map) {
278     stack_end = (char *)th->th.th_info.ds.ds_stackbase;
279     stack_beg = stack_end - th->th.th_info.ds.ds_stacksize;
280 
281     gtid = __kmp_gtid_from_thread(th);
282 
283     if (gtid == KMP_GTID_MONITOR) {
284       __kmp_print_storage_map_gtid(
285           gtid, stack_beg, stack_end, th->th.th_info.ds.ds_stacksize,
286           "th_%s stack (%s)", "mon",
287           (th->th.th_info.ds.ds_stackgrow) ? "initial" : "actual");
288     } else {
289       __kmp_print_storage_map_gtid(
290           gtid, stack_beg, stack_end, th->th.th_info.ds.ds_stacksize,
291           "th_%d stack (%s)", gtid,
292           (th->th.th_info.ds.ds_stackgrow) ? "initial" : "actual");
293     }
294   }
295 
296   /* No point in checking ubermaster threads since they use refinement and
297    * cannot overlap */
298   gtid = __kmp_gtid_from_thread(th);
299   if (__kmp_env_checks == TRUE && !KMP_UBER_GTID(gtid)) {
300     KA_TRACE(10,
301              ("__kmp_check_stack_overlap: performing extensive checking\n"));
302     if (stack_beg == NULL) {
303       stack_end = (char *)th->th.th_info.ds.ds_stackbase;
304       stack_beg = stack_end - th->th.th_info.ds.ds_stacksize;
305     }
306 
307     for (f = 0; f < __kmp_threads_capacity; f++) {
308       kmp_info_t *f_th = (kmp_info_t *)TCR_SYNC_PTR(__kmp_threads[f]);
309 
310       if (f_th && f_th != th) {
311         char *other_stack_end =
312             (char *)TCR_PTR(f_th->th.th_info.ds.ds_stackbase);
313         char *other_stack_beg =
314             other_stack_end - (size_t)TCR_PTR(f_th->th.th_info.ds.ds_stacksize);
315         if ((stack_beg > other_stack_beg && stack_beg < other_stack_end) ||
316             (stack_end > other_stack_beg && stack_end < other_stack_end)) {
317 
318           /* Print the other stack values before the abort */
319           if (__kmp_storage_map)
320             __kmp_print_storage_map_gtid(
321                 -1, other_stack_beg, other_stack_end,
322                 (size_t)TCR_PTR(f_th->th.th_info.ds.ds_stacksize),
323                 "th_%d stack (overlapped)", __kmp_gtid_from_thread(f_th));
324 
325           __kmp_fatal(KMP_MSG(StackOverlap), KMP_HNT(ChangeStackLimit),
326                       __kmp_msg_null);
327         }
328       }
329     }
330   }
331   KA_TRACE(10, ("__kmp_check_stack_overlap: returning\n"));
332 }
333 
334 /* ------------------------------------------------------------------------ */
335 
336 void __kmp_infinite_loop(void) {
337   static int done = FALSE;
338 
339   while (!done) {
340     KMP_YIELD(TRUE);
341   }
342 }
343 
344 #define MAX_MESSAGE 512
345 
346 void __kmp_print_storage_map_gtid(int gtid, void *p1, void *p2, size_t size,
347                                   char const *format, ...) {
348   char buffer[MAX_MESSAGE];
349   va_list ap;
350 
351   va_start(ap, format);
352   KMP_SNPRINTF(buffer, sizeof(buffer), "OMP storage map: %p %p%8lu %s\n", p1,
353                p2, (unsigned long)size, format);
354   __kmp_acquire_bootstrap_lock(&__kmp_stdio_lock);
355   __kmp_vprintf(kmp_err, buffer, ap);
356 #if KMP_PRINT_DATA_PLACEMENT
357   int node;
358   if (gtid >= 0) {
359     if (p1 <= p2 && (char *)p2 - (char *)p1 == size) {
360       if (__kmp_storage_map_verbose) {
361         node = __kmp_get_host_node(p1);
362         if (node < 0) /* doesn't work, so don't try this next time */
363           __kmp_storage_map_verbose = FALSE;
364         else {
365           char *last;
366           int lastNode;
367           int localProc = __kmp_get_cpu_from_gtid(gtid);
368 
369           const int page_size = KMP_GET_PAGE_SIZE();
370 
371           p1 = (void *)((size_t)p1 & ~((size_t)page_size - 1));
372           p2 = (void *)(((size_t)p2 - 1) & ~((size_t)page_size - 1));
373           if (localProc >= 0)
374             __kmp_printf_no_lock("  GTID %d localNode %d\n", gtid,
375                                  localProc >> 1);
376           else
377             __kmp_printf_no_lock("  GTID %d\n", gtid);
378 #if KMP_USE_PRCTL
379           /* The more elaborate format is disabled for now because of the prctl
380            * hanging bug. */
381           do {
382             last = p1;
383             lastNode = node;
384             /* This loop collates adjacent pages with the same host node. */
385             do {
386               (char *)p1 += page_size;
387             } while (p1 <= p2 && (node = __kmp_get_host_node(p1)) == lastNode);
388             __kmp_printf_no_lock("    %p-%p memNode %d\n", last, (char *)p1 - 1,
389                                  lastNode);
390           } while (p1 <= p2);
391 #else
392           __kmp_printf_no_lock("    %p-%p memNode %d\n", p1,
393                                (char *)p1 + (page_size - 1),
394                                __kmp_get_host_node(p1));
395           if (p1 < p2) {
396             __kmp_printf_no_lock("    %p-%p memNode %d\n", p2,
397                                  (char *)p2 + (page_size - 1),
398                                  __kmp_get_host_node(p2));
399           }
400 #endif
401         }
402       }
403     } else
404       __kmp_printf_no_lock("  %s\n", KMP_I18N_STR(StorageMapWarning));
405   }
406 #endif /* KMP_PRINT_DATA_PLACEMENT */
407   __kmp_release_bootstrap_lock(&__kmp_stdio_lock);
408 }
409 
410 void __kmp_warn(char const *format, ...) {
411   char buffer[MAX_MESSAGE];
412   va_list ap;
413 
414   if (__kmp_generate_warnings == kmp_warnings_off) {
415     return;
416   }
417 
418   va_start(ap, format);
419 
420   KMP_SNPRINTF(buffer, sizeof(buffer), "OMP warning: %s\n", format);
421   __kmp_acquire_bootstrap_lock(&__kmp_stdio_lock);
422   __kmp_vprintf(kmp_err, buffer, ap);
423   __kmp_release_bootstrap_lock(&__kmp_stdio_lock);
424 
425   va_end(ap);
426 }
427 
428 void __kmp_abort_process() {
429   // Later threads may stall here, but that's ok because abort() will kill them.
430   __kmp_acquire_bootstrap_lock(&__kmp_exit_lock);
431 
432   if (__kmp_debug_buf) {
433     __kmp_dump_debug_buffer();
434   }
435 
436   if (KMP_OS_WINDOWS) {
437     // Let other threads know of abnormal termination and prevent deadlock
438     // if abort happened during library initialization or shutdown
439     __kmp_global.g.g_abort = SIGABRT;
440 
441     /* On Windows* OS by default abort() causes pop-up error box, which stalls
442        nightly testing. Unfortunately, we cannot reliably suppress pop-up error
443        boxes. _set_abort_behavior() works well, but this function is not
444        available in VS7 (this is not problem for DLL, but it is a problem for
445        static OpenMP RTL). SetErrorMode (and so, timelimit utility) does not
446        help, at least in some versions of MS C RTL.
447 
448        It seems following sequence is the only way to simulate abort() and
449        avoid pop-up error box. */
450     raise(SIGABRT);
451     _exit(3); // Just in case, if signal ignored, exit anyway.
452   } else {
453     __kmp_unregister_library();
454     abort();
455   }
456 
457   __kmp_infinite_loop();
458   __kmp_release_bootstrap_lock(&__kmp_exit_lock);
459 
460 } // __kmp_abort_process
461 
462 void __kmp_abort_thread(void) {
463   // TODO: Eliminate g_abort global variable and this function.
464   // In case of abort just call abort(), it will kill all the threads.
465   __kmp_infinite_loop();
466 } // __kmp_abort_thread
467 
468 /* Print out the storage map for the major kmp_info_t thread data structures
469    that are allocated together. */
470 
471 static void __kmp_print_thread_storage_map(kmp_info_t *thr, int gtid) {
472   __kmp_print_storage_map_gtid(gtid, thr, thr + 1, sizeof(kmp_info_t), "th_%d",
473                                gtid);
474 
475   __kmp_print_storage_map_gtid(gtid, &thr->th.th_info, &thr->th.th_team,
476                                sizeof(kmp_desc_t), "th_%d.th_info", gtid);
477 
478   __kmp_print_storage_map_gtid(gtid, &thr->th.th_local, &thr->th.th_pri_head,
479                                sizeof(kmp_local_t), "th_%d.th_local", gtid);
480 
481   __kmp_print_storage_map_gtid(
482       gtid, &thr->th.th_bar[0], &thr->th.th_bar[bs_last_barrier],
483       sizeof(kmp_balign_t) * bs_last_barrier, "th_%d.th_bar", gtid);
484 
485   __kmp_print_storage_map_gtid(gtid, &thr->th.th_bar[bs_plain_barrier],
486                                &thr->th.th_bar[bs_plain_barrier + 1],
487                                sizeof(kmp_balign_t), "th_%d.th_bar[plain]",
488                                gtid);
489 
490   __kmp_print_storage_map_gtid(gtid, &thr->th.th_bar[bs_forkjoin_barrier],
491                                &thr->th.th_bar[bs_forkjoin_barrier + 1],
492                                sizeof(kmp_balign_t), "th_%d.th_bar[forkjoin]",
493                                gtid);
494 
495 #if KMP_FAST_REDUCTION_BARRIER
496   __kmp_print_storage_map_gtid(gtid, &thr->th.th_bar[bs_reduction_barrier],
497                                &thr->th.th_bar[bs_reduction_barrier + 1],
498                                sizeof(kmp_balign_t), "th_%d.th_bar[reduction]",
499                                gtid);
500 #endif // KMP_FAST_REDUCTION_BARRIER
501 }
502 
503 /* Print out the storage map for the major kmp_team_t team data structures
504    that are allocated together. */
505 
506 static void __kmp_print_team_storage_map(const char *header, kmp_team_t *team,
507                                          int team_id, int num_thr) {
508   int num_disp_buff = team->t.t_max_nproc > 1 ? __kmp_dispatch_num_buffers : 2;
509   __kmp_print_storage_map_gtid(-1, team, team + 1, sizeof(kmp_team_t), "%s_%d",
510                                header, team_id);
511 
512   __kmp_print_storage_map_gtid(-1, &team->t.t_bar[0],
513                                &team->t.t_bar[bs_last_barrier],
514                                sizeof(kmp_balign_team_t) * bs_last_barrier,
515                                "%s_%d.t_bar", header, team_id);
516 
517   __kmp_print_storage_map_gtid(-1, &team->t.t_bar[bs_plain_barrier],
518                                &team->t.t_bar[bs_plain_barrier + 1],
519                                sizeof(kmp_balign_team_t), "%s_%d.t_bar[plain]",
520                                header, team_id);
521 
522   __kmp_print_storage_map_gtid(-1, &team->t.t_bar[bs_forkjoin_barrier],
523                                &team->t.t_bar[bs_forkjoin_barrier + 1],
524                                sizeof(kmp_balign_team_t),
525                                "%s_%d.t_bar[forkjoin]", header, team_id);
526 
527 #if KMP_FAST_REDUCTION_BARRIER
528   __kmp_print_storage_map_gtid(-1, &team->t.t_bar[bs_reduction_barrier],
529                                &team->t.t_bar[bs_reduction_barrier + 1],
530                                sizeof(kmp_balign_team_t),
531                                "%s_%d.t_bar[reduction]", header, team_id);
532 #endif // KMP_FAST_REDUCTION_BARRIER
533 
534   __kmp_print_storage_map_gtid(
535       -1, &team->t.t_dispatch[0], &team->t.t_dispatch[num_thr],
536       sizeof(kmp_disp_t) * num_thr, "%s_%d.t_dispatch", header, team_id);
537 
538   __kmp_print_storage_map_gtid(
539       -1, &team->t.t_threads[0], &team->t.t_threads[num_thr],
540       sizeof(kmp_info_t *) * num_thr, "%s_%d.t_threads", header, team_id);
541 
542   __kmp_print_storage_map_gtid(-1, &team->t.t_disp_buffer[0],
543                                &team->t.t_disp_buffer[num_disp_buff],
544                                sizeof(dispatch_shared_info_t) * num_disp_buff,
545                                "%s_%d.t_disp_buffer", header, team_id);
546 }
547 
548 static void __kmp_init_allocator() {
549   __kmp_init_memkind();
550   __kmp_init_target_mem();
551 }
552 static void __kmp_fini_allocator() { __kmp_fini_memkind(); }
553 
554 /* ------------------------------------------------------------------------ */
555 
556 #if KMP_DYNAMIC_LIB
557 #if KMP_OS_WINDOWS
558 
559 BOOL WINAPI DllMain(HINSTANCE hInstDLL, DWORD fdwReason, LPVOID lpReserved) {
560   //__kmp_acquire_bootstrap_lock( &__kmp_initz_lock );
561 
562   switch (fdwReason) {
563 
564   case DLL_PROCESS_ATTACH:
565     KA_TRACE(10, ("DllMain: PROCESS_ATTACH\n"));
566 
567     return TRUE;
568 
569   case DLL_PROCESS_DETACH:
570     KA_TRACE(10, ("DllMain: PROCESS_DETACH T#%d\n", __kmp_gtid_get_specific()));
571 
572     // According to Windows* documentation for DllMain entry point:
573     // for DLL_PROCESS_DETACH, lpReserved is used for telling the difference:
574     //   lpReserved == NULL when FreeLibrary() is called,
575     //   lpReserved != NULL when the process is terminated.
576     // When FreeLibrary() is called, worker threads remain alive. So the
577     // runtime's state is consistent and executing proper shutdown is OK.
578     // When the process is terminated, worker threads have exited or been
579     // forcefully terminated by the OS and only the shutdown thread remains.
580     // This can leave the runtime in an inconsistent state.
581     // Hence, only attempt proper cleanup when FreeLibrary() is called.
582     // Otherwise, rely on OS to reclaim resources.
583     if (lpReserved == NULL)
584       __kmp_internal_end_library(__kmp_gtid_get_specific());
585 
586     return TRUE;
587 
588   case DLL_THREAD_ATTACH:
589     KA_TRACE(10, ("DllMain: THREAD_ATTACH\n"));
590 
591     /* if we want to register new siblings all the time here call
592      * __kmp_get_gtid(); */
593     return TRUE;
594 
595   case DLL_THREAD_DETACH:
596     KA_TRACE(10, ("DllMain: THREAD_DETACH T#%d\n", __kmp_gtid_get_specific()));
597 
598     __kmp_internal_end_thread(__kmp_gtid_get_specific());
599     return TRUE;
600   }
601 
602   return TRUE;
603 }
604 
605 #endif /* KMP_OS_WINDOWS */
606 #endif /* KMP_DYNAMIC_LIB */
607 
608 /* __kmp_parallel_deo -- Wait until it's our turn. */
609 void __kmp_parallel_deo(int *gtid_ref, int *cid_ref, ident_t *loc_ref) {
610   int gtid = *gtid_ref;
611 #ifdef BUILD_PARALLEL_ORDERED
612   kmp_team_t *team = __kmp_team_from_gtid(gtid);
613 #endif /* BUILD_PARALLEL_ORDERED */
614 
615   if (__kmp_env_consistency_check) {
616     if (__kmp_threads[gtid]->th.th_root->r.r_active)
617 #if KMP_USE_DYNAMIC_LOCK
618       __kmp_push_sync(gtid, ct_ordered_in_parallel, loc_ref, NULL, 0);
619 #else
620       __kmp_push_sync(gtid, ct_ordered_in_parallel, loc_ref, NULL);
621 #endif
622   }
623 #ifdef BUILD_PARALLEL_ORDERED
624   if (!team->t.t_serialized) {
625     KMP_MB();
626     KMP_WAIT(&team->t.t_ordered.dt.t_value, __kmp_tid_from_gtid(gtid), KMP_EQ,
627              NULL);
628     KMP_MB();
629   }
630 #endif /* BUILD_PARALLEL_ORDERED */
631 }
632 
633 /* __kmp_parallel_dxo -- Signal the next task. */
634 void __kmp_parallel_dxo(int *gtid_ref, int *cid_ref, ident_t *loc_ref) {
635   int gtid = *gtid_ref;
636 #ifdef BUILD_PARALLEL_ORDERED
637   int tid = __kmp_tid_from_gtid(gtid);
638   kmp_team_t *team = __kmp_team_from_gtid(gtid);
639 #endif /* BUILD_PARALLEL_ORDERED */
640 
641   if (__kmp_env_consistency_check) {
642     if (__kmp_threads[gtid]->th.th_root->r.r_active)
643       __kmp_pop_sync(gtid, ct_ordered_in_parallel, loc_ref);
644   }
645 #ifdef BUILD_PARALLEL_ORDERED
646   if (!team->t.t_serialized) {
647     KMP_MB(); /* Flush all pending memory write invalidates.  */
648 
649     /* use the tid of the next thread in this team */
650     /* TODO replace with general release procedure */
651     team->t.t_ordered.dt.t_value = ((tid + 1) % team->t.t_nproc);
652 
653     KMP_MB(); /* Flush all pending memory write invalidates.  */
654   }
655 #endif /* BUILD_PARALLEL_ORDERED */
656 }
657 
658 /* ------------------------------------------------------------------------ */
659 /* The BARRIER for a SINGLE process section is always explicit   */
660 
661 int __kmp_enter_single(int gtid, ident_t *id_ref, int push_ws) {
662   int status;
663   kmp_info_t *th;
664   kmp_team_t *team;
665 
666   if (!TCR_4(__kmp_init_parallel))
667     __kmp_parallel_initialize();
668   __kmp_resume_if_soft_paused();
669 
670   th = __kmp_threads[gtid];
671   team = th->th.th_team;
672   status = 0;
673 
674   th->th.th_ident = id_ref;
675 
676   if (team->t.t_serialized) {
677     status = 1;
678   } else {
679     kmp_int32 old_this = th->th.th_local.this_construct;
680 
681     ++th->th.th_local.this_construct;
682     /* try to set team count to thread count--success means thread got the
683        single block */
684     /* TODO: Should this be acquire or release? */
685     if (team->t.t_construct == old_this) {
686       status = __kmp_atomic_compare_store_acq(&team->t.t_construct, old_this,
687                                               th->th.th_local.this_construct);
688     }
689 #if USE_ITT_BUILD
690     if (__itt_metadata_add_ptr && __kmp_forkjoin_frames_mode == 3 &&
691         KMP_MASTER_GTID(gtid) && th->th.th_teams_microtask == NULL &&
692         team->t.t_active_level == 1) {
693       // Only report metadata by primary thread of active team at level 1
694       __kmp_itt_metadata_single(id_ref);
695     }
696 #endif /* USE_ITT_BUILD */
697   }
698 
699   if (__kmp_env_consistency_check) {
700     if (status && push_ws) {
701       __kmp_push_workshare(gtid, ct_psingle, id_ref);
702     } else {
703       __kmp_check_workshare(gtid, ct_psingle, id_ref);
704     }
705   }
706 #if USE_ITT_BUILD
707   if (status) {
708     __kmp_itt_single_start(gtid);
709   }
710 #endif /* USE_ITT_BUILD */
711   return status;
712 }
713 
714 void __kmp_exit_single(int gtid) {
715 #if USE_ITT_BUILD
716   __kmp_itt_single_end(gtid);
717 #endif /* USE_ITT_BUILD */
718   if (__kmp_env_consistency_check)
719     __kmp_pop_workshare(gtid, ct_psingle, NULL);
720 }
721 
722 /* determine if we can go parallel or must use a serialized parallel region and
723  * how many threads we can use
724  * set_nproc is the number of threads requested for the team
725  * returns 0 if we should serialize or only use one thread,
726  * otherwise the number of threads to use
727  * The forkjoin lock is held by the caller. */
728 static int __kmp_reserve_threads(kmp_root_t *root, kmp_team_t *parent_team,
729                                  int master_tid, int set_nthreads,
730                                  int enter_teams) {
731   int capacity;
732   int new_nthreads;
733   KMP_DEBUG_ASSERT(__kmp_init_serial);
734   KMP_DEBUG_ASSERT(root && parent_team);
735   kmp_info_t *this_thr = parent_team->t.t_threads[master_tid];
736 
737   // If dyn-var is set, dynamically adjust the number of desired threads,
738   // according to the method specified by dynamic_mode.
739   new_nthreads = set_nthreads;
740   if (!get__dynamic_2(parent_team, master_tid)) {
741     ;
742   }
743 #ifdef USE_LOAD_BALANCE
744   else if (__kmp_global.g.g_dynamic_mode == dynamic_load_balance) {
745     new_nthreads = __kmp_load_balance_nproc(root, set_nthreads);
746     if (new_nthreads == 1) {
747       KC_TRACE(10, ("__kmp_reserve_threads: T#%d load balance reduced "
748                     "reservation to 1 thread\n",
749                     master_tid));
750       return 1;
751     }
752     if (new_nthreads < set_nthreads) {
753       KC_TRACE(10, ("__kmp_reserve_threads: T#%d load balance reduced "
754                     "reservation to %d threads\n",
755                     master_tid, new_nthreads));
756     }
757   }
758 #endif /* USE_LOAD_BALANCE */
759   else if (__kmp_global.g.g_dynamic_mode == dynamic_thread_limit) {
760     new_nthreads = __kmp_avail_proc - __kmp_nth +
761                    (root->r.r_active ? 1 : root->r.r_hot_team->t.t_nproc);
762     if (new_nthreads <= 1) {
763       KC_TRACE(10, ("__kmp_reserve_threads: T#%d thread limit reduced "
764                     "reservation to 1 thread\n",
765                     master_tid));
766       return 1;
767     }
768     if (new_nthreads < set_nthreads) {
769       KC_TRACE(10, ("__kmp_reserve_threads: T#%d thread limit reduced "
770                     "reservation to %d threads\n",
771                     master_tid, new_nthreads));
772     } else {
773       new_nthreads = set_nthreads;
774     }
775   } else if (__kmp_global.g.g_dynamic_mode == dynamic_random) {
776     if (set_nthreads > 2) {
777       new_nthreads = __kmp_get_random(parent_team->t.t_threads[master_tid]);
778       new_nthreads = (new_nthreads % set_nthreads) + 1;
779       if (new_nthreads == 1) {
780         KC_TRACE(10, ("__kmp_reserve_threads: T#%d dynamic random reduced "
781                       "reservation to 1 thread\n",
782                       master_tid));
783         return 1;
784       }
785       if (new_nthreads < set_nthreads) {
786         KC_TRACE(10, ("__kmp_reserve_threads: T#%d dynamic random reduced "
787                       "reservation to %d threads\n",
788                       master_tid, new_nthreads));
789       }
790     }
791   } else {
792     KMP_ASSERT(0);
793   }
794 
795   // Respect KMP_ALL_THREADS/KMP_DEVICE_THREAD_LIMIT.
796   if (__kmp_nth + new_nthreads -
797           (root->r.r_active ? 1 : root->r.r_hot_team->t.t_nproc) >
798       __kmp_max_nth) {
799     int tl_nthreads = __kmp_max_nth - __kmp_nth +
800                       (root->r.r_active ? 1 : root->r.r_hot_team->t.t_nproc);
801     if (tl_nthreads <= 0) {
802       tl_nthreads = 1;
803     }
804 
805     // If dyn-var is false, emit a 1-time warning.
806     if (!get__dynamic_2(parent_team, master_tid) && (!__kmp_reserve_warn)) {
807       __kmp_reserve_warn = 1;
808       __kmp_msg(kmp_ms_warning,
809                 KMP_MSG(CantFormThrTeam, set_nthreads, tl_nthreads),
810                 KMP_HNT(Unset_ALL_THREADS), __kmp_msg_null);
811     }
812     if (tl_nthreads == 1) {
813       KC_TRACE(10, ("__kmp_reserve_threads: T#%d KMP_DEVICE_THREAD_LIMIT "
814                     "reduced reservation to 1 thread\n",
815                     master_tid));
816       return 1;
817     }
818     KC_TRACE(10, ("__kmp_reserve_threads: T#%d KMP_DEVICE_THREAD_LIMIT reduced "
819                   "reservation to %d threads\n",
820                   master_tid, tl_nthreads));
821     new_nthreads = tl_nthreads;
822   }
823 
824   // Respect OMP_THREAD_LIMIT
825   int cg_nthreads = this_thr->th.th_cg_roots->cg_nthreads;
826   int max_cg_threads = this_thr->th.th_cg_roots->cg_thread_limit;
827   if (cg_nthreads + new_nthreads -
828           (root->r.r_active ? 1 : root->r.r_hot_team->t.t_nproc) >
829       max_cg_threads) {
830     int tl_nthreads = max_cg_threads - cg_nthreads +
831                       (root->r.r_active ? 1 : root->r.r_hot_team->t.t_nproc);
832     if (tl_nthreads <= 0) {
833       tl_nthreads = 1;
834     }
835 
836     // If dyn-var is false, emit a 1-time warning.
837     if (!get__dynamic_2(parent_team, master_tid) && (!__kmp_reserve_warn)) {
838       __kmp_reserve_warn = 1;
839       __kmp_msg(kmp_ms_warning,
840                 KMP_MSG(CantFormThrTeam, set_nthreads, tl_nthreads),
841                 KMP_HNT(Unset_ALL_THREADS), __kmp_msg_null);
842     }
843     if (tl_nthreads == 1) {
844       KC_TRACE(10, ("__kmp_reserve_threads: T#%d OMP_THREAD_LIMIT "
845                     "reduced reservation to 1 thread\n",
846                     master_tid));
847       return 1;
848     }
849     KC_TRACE(10, ("__kmp_reserve_threads: T#%d OMP_THREAD_LIMIT reduced "
850                   "reservation to %d threads\n",
851                   master_tid, tl_nthreads));
852     new_nthreads = tl_nthreads;
853   }
854 
855   // Check if the threads array is large enough, or needs expanding.
856   // See comment in __kmp_register_root() about the adjustment if
857   // __kmp_threads[0] == NULL.
858   capacity = __kmp_threads_capacity;
859   if (TCR_PTR(__kmp_threads[0]) == NULL) {
860     --capacity;
861   }
862   // If it is not for initializing the hidden helper team, we need to take
863   // __kmp_hidden_helper_threads_num out of the capacity because it is included
864   // in __kmp_threads_capacity.
865   if (__kmp_enable_hidden_helper && !TCR_4(__kmp_init_hidden_helper_threads)) {
866     capacity -= __kmp_hidden_helper_threads_num;
867   }
868   if (__kmp_nth + new_nthreads -
869           (root->r.r_active ? 1 : root->r.r_hot_team->t.t_nproc) >
870       capacity) {
871     // Expand the threads array.
872     int slotsRequired = __kmp_nth + new_nthreads -
873                         (root->r.r_active ? 1 : root->r.r_hot_team->t.t_nproc) -
874                         capacity;
875     int slotsAdded = __kmp_expand_threads(slotsRequired);
876     if (slotsAdded < slotsRequired) {
877       // The threads array was not expanded enough.
878       new_nthreads -= (slotsRequired - slotsAdded);
879       KMP_ASSERT(new_nthreads >= 1);
880 
881       // If dyn-var is false, emit a 1-time warning.
882       if (!get__dynamic_2(parent_team, master_tid) && (!__kmp_reserve_warn)) {
883         __kmp_reserve_warn = 1;
884         if (__kmp_tp_cached) {
885           __kmp_msg(kmp_ms_warning,
886                     KMP_MSG(CantFormThrTeam, set_nthreads, new_nthreads),
887                     KMP_HNT(Set_ALL_THREADPRIVATE, __kmp_tp_capacity),
888                     KMP_HNT(PossibleSystemLimitOnThreads), __kmp_msg_null);
889         } else {
890           __kmp_msg(kmp_ms_warning,
891                     KMP_MSG(CantFormThrTeam, set_nthreads, new_nthreads),
892                     KMP_HNT(SystemLimitOnThreads), __kmp_msg_null);
893         }
894       }
895     }
896   }
897 
898 #ifdef KMP_DEBUG
899   if (new_nthreads == 1) {
900     KC_TRACE(10,
901              ("__kmp_reserve_threads: T#%d serializing team after reclaiming "
902               "dead roots and rechecking; requested %d threads\n",
903               __kmp_get_gtid(), set_nthreads));
904   } else {
905     KC_TRACE(10, ("__kmp_reserve_threads: T#%d allocating %d threads; requested"
906                   " %d threads\n",
907                   __kmp_get_gtid(), new_nthreads, set_nthreads));
908   }
909 #endif // KMP_DEBUG
910   return new_nthreads;
911 }
912 
913 /* Allocate threads from the thread pool and assign them to the new team. We are
914    assured that there are enough threads available, because we checked on that
915    earlier within critical section forkjoin */
916 static void __kmp_fork_team_threads(kmp_root_t *root, kmp_team_t *team,
917                                     kmp_info_t *master_th, int master_gtid,
918                                     int fork_teams_workers) {
919   int i;
920   int use_hot_team;
921 
922   KA_TRACE(10, ("__kmp_fork_team_threads: new_nprocs = %d\n", team->t.t_nproc));
923   KMP_DEBUG_ASSERT(master_gtid == __kmp_get_gtid());
924   KMP_MB();
925 
926   /* first, let's setup the primary thread */
927   master_th->th.th_info.ds.ds_tid = 0;
928   master_th->th.th_team = team;
929   master_th->th.th_team_nproc = team->t.t_nproc;
930   master_th->th.th_team_master = master_th;
931   master_th->th.th_team_serialized = FALSE;
932   master_th->th.th_dispatch = &team->t.t_dispatch[0];
933 
934 /* make sure we are not the optimized hot team */
935 #if KMP_NESTED_HOT_TEAMS
936   use_hot_team = 0;
937   kmp_hot_team_ptr_t *hot_teams = master_th->th.th_hot_teams;
938   if (hot_teams) { // hot teams array is not allocated if
939     // KMP_HOT_TEAMS_MAX_LEVEL=0
940     int level = team->t.t_active_level - 1; // index in array of hot teams
941     if (master_th->th.th_teams_microtask) { // are we inside the teams?
942       if (master_th->th.th_teams_size.nteams > 1) {
943         ++level; // level was not increased in teams construct for
944         // team_of_masters
945       }
946       if (team->t.t_pkfn != (microtask_t)__kmp_teams_master &&
947           master_th->th.th_teams_level == team->t.t_level) {
948         ++level; // level was not increased in teams construct for
949         // team_of_workers before the parallel
950       } // team->t.t_level will be increased inside parallel
951     }
952     if (level < __kmp_hot_teams_max_level) {
953       if (hot_teams[level].hot_team) {
954         // hot team has already been allocated for given level
955         KMP_DEBUG_ASSERT(hot_teams[level].hot_team == team);
956         use_hot_team = 1; // the team is ready to use
957       } else {
958         use_hot_team = 0; // AC: threads are not allocated yet
959         hot_teams[level].hot_team = team; // remember new hot team
960         hot_teams[level].hot_team_nth = team->t.t_nproc;
961       }
962     } else {
963       use_hot_team = 0;
964     }
965   }
966 #else
967   use_hot_team = team == root->r.r_hot_team;
968 #endif
969   if (!use_hot_team) {
970 
971     /* install the primary thread */
972     team->t.t_threads[0] = master_th;
973     __kmp_initialize_info(master_th, team, 0, master_gtid);
974 
975     /* now, install the worker threads */
976     for (i = 1; i < team->t.t_nproc; i++) {
977 
978       /* fork or reallocate a new thread and install it in team */
979       kmp_info_t *thr = __kmp_allocate_thread(root, team, i);
980       team->t.t_threads[i] = thr;
981       KMP_DEBUG_ASSERT(thr);
982       KMP_DEBUG_ASSERT(thr->th.th_team == team);
983       /* align team and thread arrived states */
984       KA_TRACE(20, ("__kmp_fork_team_threads: T#%d(%d:%d) init arrived "
985                     "T#%d(%d:%d) join =%llu, plain=%llu\n",
986                     __kmp_gtid_from_tid(0, team), team->t.t_id, 0,
987                     __kmp_gtid_from_tid(i, team), team->t.t_id, i,
988                     team->t.t_bar[bs_forkjoin_barrier].b_arrived,
989                     team->t.t_bar[bs_plain_barrier].b_arrived));
990       thr->th.th_teams_microtask = master_th->th.th_teams_microtask;
991       thr->th.th_teams_level = master_th->th.th_teams_level;
992       thr->th.th_teams_size = master_th->th.th_teams_size;
993       { // Initialize threads' barrier data.
994         int b;
995         kmp_balign_t *balign = team->t.t_threads[i]->th.th_bar;
996         for (b = 0; b < bs_last_barrier; ++b) {
997           balign[b].bb.b_arrived = team->t.t_bar[b].b_arrived;
998           KMP_DEBUG_ASSERT(balign[b].bb.wait_flag != KMP_BARRIER_PARENT_FLAG);
999 #if USE_DEBUGGER
1000           balign[b].bb.b_worker_arrived = team->t.t_bar[b].b_team_arrived;
1001 #endif
1002         }
1003       }
1004     }
1005 
1006 #if KMP_AFFINITY_SUPPORTED
1007     // Do not partition the places list for teams construct workers who
1008     // haven't actually been forked to do real work yet. This partitioning
1009     // will take place in the parallel region nested within the teams construct.
1010     if (!fork_teams_workers) {
1011       __kmp_partition_places(team);
1012     }
1013 #endif
1014   }
1015 
1016   if (__kmp_display_affinity && team->t.t_display_affinity != 1) {
1017     for (i = 0; i < team->t.t_nproc; i++) {
1018       kmp_info_t *thr = team->t.t_threads[i];
1019       if (thr->th.th_prev_num_threads != team->t.t_nproc ||
1020           thr->th.th_prev_level != team->t.t_level) {
1021         team->t.t_display_affinity = 1;
1022         break;
1023       }
1024     }
1025   }
1026 
1027   KMP_MB();
1028 }
1029 
1030 #if KMP_ARCH_X86 || KMP_ARCH_X86_64
1031 // Propagate any changes to the floating point control registers out to the team
1032 // We try to avoid unnecessary writes to the relevant cache line in the team
1033 // structure, so we don't make changes unless they are needed.
1034 inline static void propagateFPControl(kmp_team_t *team) {
1035   if (__kmp_inherit_fp_control) {
1036     kmp_int16 x87_fpu_control_word;
1037     kmp_uint32 mxcsr;
1038 
1039     // Get primary thread's values of FPU control flags (both X87 and vector)
1040     __kmp_store_x87_fpu_control_word(&x87_fpu_control_word);
1041     __kmp_store_mxcsr(&mxcsr);
1042     mxcsr &= KMP_X86_MXCSR_MASK;
1043 
1044     // There is no point looking at t_fp_control_saved here.
1045     // If it is TRUE, we still have to update the values if they are different
1046     // from those we now have. If it is FALSE we didn't save anything yet, but
1047     // our objective is the same. We have to ensure that the values in the team
1048     // are the same as those we have.
1049     // So, this code achieves what we need whether or not t_fp_control_saved is
1050     // true. By checking whether the value needs updating we avoid unnecessary
1051     // writes that would put the cache-line into a written state, causing all
1052     // threads in the team to have to read it again.
1053     KMP_CHECK_UPDATE(team->t.t_x87_fpu_control_word, x87_fpu_control_word);
1054     KMP_CHECK_UPDATE(team->t.t_mxcsr, mxcsr);
1055     // Although we don't use this value, other code in the runtime wants to know
1056     // whether it should restore them. So we must ensure it is correct.
1057     KMP_CHECK_UPDATE(team->t.t_fp_control_saved, TRUE);
1058   } else {
1059     // Similarly here. Don't write to this cache-line in the team structure
1060     // unless we have to.
1061     KMP_CHECK_UPDATE(team->t.t_fp_control_saved, FALSE);
1062   }
1063 }
1064 
1065 // Do the opposite, setting the hardware registers to the updated values from
1066 // the team.
1067 inline static void updateHWFPControl(kmp_team_t *team) {
1068   if (__kmp_inherit_fp_control && team->t.t_fp_control_saved) {
1069     // Only reset the fp control regs if they have been changed in the team.
1070     // the parallel region that we are exiting.
1071     kmp_int16 x87_fpu_control_word;
1072     kmp_uint32 mxcsr;
1073     __kmp_store_x87_fpu_control_word(&x87_fpu_control_word);
1074     __kmp_store_mxcsr(&mxcsr);
1075     mxcsr &= KMP_X86_MXCSR_MASK;
1076 
1077     if (team->t.t_x87_fpu_control_word != x87_fpu_control_word) {
1078       __kmp_clear_x87_fpu_status_word();
1079       __kmp_load_x87_fpu_control_word(&team->t.t_x87_fpu_control_word);
1080     }
1081 
1082     if (team->t.t_mxcsr != mxcsr) {
1083       __kmp_load_mxcsr(&team->t.t_mxcsr);
1084     }
1085   }
1086 }
1087 #else
1088 #define propagateFPControl(x) ((void)0)
1089 #define updateHWFPControl(x) ((void)0)
1090 #endif /* KMP_ARCH_X86 || KMP_ARCH_X86_64 */
1091 
1092 static void __kmp_alloc_argv_entries(int argc, kmp_team_t *team,
1093                                      int realloc); // forward declaration
1094 
1095 /* Run a parallel region that has been serialized, so runs only in a team of the
1096    single primary thread. */
1097 void __kmp_serialized_parallel(ident_t *loc, kmp_int32 global_tid) {
1098   kmp_info_t *this_thr;
1099   kmp_team_t *serial_team;
1100 
1101   KC_TRACE(10, ("__kmpc_serialized_parallel: called by T#%d\n", global_tid));
1102 
1103   /* Skip all this code for autopar serialized loops since it results in
1104      unacceptable overhead */
1105   if (loc != NULL && (loc->flags & KMP_IDENT_AUTOPAR))
1106     return;
1107 
1108   if (!TCR_4(__kmp_init_parallel))
1109     __kmp_parallel_initialize();
1110   __kmp_resume_if_soft_paused();
1111 
1112   this_thr = __kmp_threads[global_tid];
1113   serial_team = this_thr->th.th_serial_team;
1114 
1115   /* utilize the serialized team held by this thread */
1116   KMP_DEBUG_ASSERT(serial_team);
1117   KMP_MB();
1118 
1119   if (__kmp_tasking_mode != tskm_immediate_exec) {
1120     KMP_DEBUG_ASSERT(
1121         this_thr->th.th_task_team ==
1122         this_thr->th.th_team->t.t_task_team[this_thr->th.th_task_state]);
1123     KMP_DEBUG_ASSERT(serial_team->t.t_task_team[this_thr->th.th_task_state] ==
1124                      NULL);
1125     KA_TRACE(20, ("__kmpc_serialized_parallel: T#%d pushing task_team %p / "
1126                   "team %p, new task_team = NULL\n",
1127                   global_tid, this_thr->th.th_task_team, this_thr->th.th_team));
1128     this_thr->th.th_task_team = NULL;
1129   }
1130 
1131   kmp_proc_bind_t proc_bind = this_thr->th.th_set_proc_bind;
1132   if (this_thr->th.th_current_task->td_icvs.proc_bind == proc_bind_false) {
1133     proc_bind = proc_bind_false;
1134   } else if (proc_bind == proc_bind_default) {
1135     // No proc_bind clause was specified, so use the current value
1136     // of proc-bind-var for this parallel region.
1137     proc_bind = this_thr->th.th_current_task->td_icvs.proc_bind;
1138   }
1139   // Reset for next parallel region
1140   this_thr->th.th_set_proc_bind = proc_bind_default;
1141 
1142 #if OMPT_SUPPORT
1143   ompt_data_t ompt_parallel_data = ompt_data_none;
1144   void *codeptr = OMPT_LOAD_RETURN_ADDRESS(global_tid);
1145   if (ompt_enabled.enabled &&
1146       this_thr->th.ompt_thread_info.state != ompt_state_overhead) {
1147 
1148     ompt_task_info_t *parent_task_info;
1149     parent_task_info = OMPT_CUR_TASK_INFO(this_thr);
1150 
1151     parent_task_info->frame.enter_frame.ptr = OMPT_GET_FRAME_ADDRESS(0);
1152     if (ompt_enabled.ompt_callback_parallel_begin) {
1153       int team_size = 1;
1154 
1155       ompt_callbacks.ompt_callback(ompt_callback_parallel_begin)(
1156           &(parent_task_info->task_data), &(parent_task_info->frame),
1157           &ompt_parallel_data, team_size,
1158           ompt_parallel_invoker_program | ompt_parallel_team, codeptr);
1159     }
1160   }
1161 #endif // OMPT_SUPPORT
1162 
1163   if (this_thr->th.th_team != serial_team) {
1164     // Nested level will be an index in the nested nthreads array
1165     int level = this_thr->th.th_team->t.t_level;
1166 
1167     if (serial_team->t.t_serialized) {
1168       /* this serial team was already used
1169          TODO increase performance by making this locks more specific */
1170       kmp_team_t *new_team;
1171 
1172       __kmp_acquire_bootstrap_lock(&__kmp_forkjoin_lock);
1173 
1174       new_team =
1175           __kmp_allocate_team(this_thr->th.th_root, 1, 1,
1176 #if OMPT_SUPPORT
1177                               ompt_parallel_data,
1178 #endif
1179                               proc_bind, &this_thr->th.th_current_task->td_icvs,
1180                               0 USE_NESTED_HOT_ARG(NULL));
1181       __kmp_release_bootstrap_lock(&__kmp_forkjoin_lock);
1182       KMP_ASSERT(new_team);
1183 
1184       /* setup new serialized team and install it */
1185       new_team->t.t_threads[0] = this_thr;
1186       new_team->t.t_parent = this_thr->th.th_team;
1187       serial_team = new_team;
1188       this_thr->th.th_serial_team = serial_team;
1189 
1190       KF_TRACE(
1191           10,
1192           ("__kmpc_serialized_parallel: T#%d allocated new serial team %p\n",
1193            global_tid, serial_team));
1194 
1195       /* TODO the above breaks the requirement that if we run out of resources,
1196          then we can still guarantee that serialized teams are ok, since we may
1197          need to allocate a new one */
1198     } else {
1199       KF_TRACE(
1200           10,
1201           ("__kmpc_serialized_parallel: T#%d reusing cached serial team %p\n",
1202            global_tid, serial_team));
1203     }
1204 
1205     /* we have to initialize this serial team */
1206     KMP_DEBUG_ASSERT(serial_team->t.t_threads);
1207     KMP_DEBUG_ASSERT(serial_team->t.t_threads[0] == this_thr);
1208     KMP_DEBUG_ASSERT(this_thr->th.th_team != serial_team);
1209     serial_team->t.t_ident = loc;
1210     serial_team->t.t_serialized = 1;
1211     serial_team->t.t_nproc = 1;
1212     serial_team->t.t_parent = this_thr->th.th_team;
1213     serial_team->t.t_sched.sched = this_thr->th.th_team->t.t_sched.sched;
1214     this_thr->th.th_team = serial_team;
1215     serial_team->t.t_master_tid = this_thr->th.th_info.ds.ds_tid;
1216 
1217     KF_TRACE(10, ("__kmpc_serialized_parallel: T#%d curtask=%p\n", global_tid,
1218                   this_thr->th.th_current_task));
1219     KMP_ASSERT(this_thr->th.th_current_task->td_flags.executing == 1);
1220     this_thr->th.th_current_task->td_flags.executing = 0;
1221 
1222     __kmp_push_current_task_to_thread(this_thr, serial_team, 0);
1223 
1224     /* TODO: GEH: do ICVs work for nested serialized teams? Don't we need an
1225        implicit task for each serialized task represented by
1226        team->t.t_serialized? */
1227     copy_icvs(&this_thr->th.th_current_task->td_icvs,
1228               &this_thr->th.th_current_task->td_parent->td_icvs);
1229 
1230     // Thread value exists in the nested nthreads array for the next nested
1231     // level
1232     if (__kmp_nested_nth.used && (level + 1 < __kmp_nested_nth.used)) {
1233       this_thr->th.th_current_task->td_icvs.nproc =
1234           __kmp_nested_nth.nth[level + 1];
1235     }
1236 
1237     if (__kmp_nested_proc_bind.used &&
1238         (level + 1 < __kmp_nested_proc_bind.used)) {
1239       this_thr->th.th_current_task->td_icvs.proc_bind =
1240           __kmp_nested_proc_bind.bind_types[level + 1];
1241     }
1242 
1243 #if USE_DEBUGGER
1244     serial_team->t.t_pkfn = (microtask_t)(~0); // For the debugger.
1245 #endif
1246     this_thr->th.th_info.ds.ds_tid = 0;
1247 
1248     /* set thread cache values */
1249     this_thr->th.th_team_nproc = 1;
1250     this_thr->th.th_team_master = this_thr;
1251     this_thr->th.th_team_serialized = 1;
1252 
1253     serial_team->t.t_level = serial_team->t.t_parent->t.t_level + 1;
1254     serial_team->t.t_active_level = serial_team->t.t_parent->t.t_active_level;
1255     serial_team->t.t_def_allocator = this_thr->th.th_def_allocator; // save
1256 
1257     propagateFPControl(serial_team);
1258 
1259     /* check if we need to allocate dispatch buffers stack */
1260     KMP_DEBUG_ASSERT(serial_team->t.t_dispatch);
1261     if (!serial_team->t.t_dispatch->th_disp_buffer) {
1262       serial_team->t.t_dispatch->th_disp_buffer =
1263           (dispatch_private_info_t *)__kmp_allocate(
1264               sizeof(dispatch_private_info_t));
1265     }
1266     this_thr->th.th_dispatch = serial_team->t.t_dispatch;
1267 
1268     KMP_MB();
1269 
1270   } else {
1271     /* this serialized team is already being used,
1272      * that's fine, just add another nested level */
1273     KMP_DEBUG_ASSERT(this_thr->th.th_team == serial_team);
1274     KMP_DEBUG_ASSERT(serial_team->t.t_threads);
1275     KMP_DEBUG_ASSERT(serial_team->t.t_threads[0] == this_thr);
1276     ++serial_team->t.t_serialized;
1277     this_thr->th.th_team_serialized = serial_team->t.t_serialized;
1278 
1279     // Nested level will be an index in the nested nthreads array
1280     int level = this_thr->th.th_team->t.t_level;
1281     // Thread value exists in the nested nthreads array for the next nested
1282     // level
1283     if (__kmp_nested_nth.used && (level + 1 < __kmp_nested_nth.used)) {
1284       this_thr->th.th_current_task->td_icvs.nproc =
1285           __kmp_nested_nth.nth[level + 1];
1286     }
1287     serial_team->t.t_level++;
1288     KF_TRACE(10, ("__kmpc_serialized_parallel: T#%d increasing nesting level "
1289                   "of serial team %p to %d\n",
1290                   global_tid, serial_team, serial_team->t.t_level));
1291 
1292     /* allocate/push dispatch buffers stack */
1293     KMP_DEBUG_ASSERT(serial_team->t.t_dispatch);
1294     {
1295       dispatch_private_info_t *disp_buffer =
1296           (dispatch_private_info_t *)__kmp_allocate(
1297               sizeof(dispatch_private_info_t));
1298       disp_buffer->next = serial_team->t.t_dispatch->th_disp_buffer;
1299       serial_team->t.t_dispatch->th_disp_buffer = disp_buffer;
1300     }
1301     this_thr->th.th_dispatch = serial_team->t.t_dispatch;
1302 
1303     KMP_MB();
1304   }
1305   KMP_CHECK_UPDATE(serial_team->t.t_cancel_request, cancel_noreq);
1306 
1307   // Perform the display affinity functionality for
1308   // serialized parallel regions
1309   if (__kmp_display_affinity) {
1310     if (this_thr->th.th_prev_level != serial_team->t.t_level ||
1311         this_thr->th.th_prev_num_threads != 1) {
1312       // NULL means use the affinity-format-var ICV
1313       __kmp_aux_display_affinity(global_tid, NULL);
1314       this_thr->th.th_prev_level = serial_team->t.t_level;
1315       this_thr->th.th_prev_num_threads = 1;
1316     }
1317   }
1318 
1319   if (__kmp_env_consistency_check)
1320     __kmp_push_parallel(global_tid, NULL);
1321 #if OMPT_SUPPORT
1322   serial_team->t.ompt_team_info.master_return_address = codeptr;
1323   if (ompt_enabled.enabled &&
1324       this_thr->th.ompt_thread_info.state != ompt_state_overhead) {
1325     OMPT_CUR_TASK_INFO(this_thr)->frame.exit_frame.ptr =
1326         OMPT_GET_FRAME_ADDRESS(0);
1327 
1328     ompt_lw_taskteam_t lw_taskteam;
1329     __ompt_lw_taskteam_init(&lw_taskteam, this_thr, global_tid,
1330                             &ompt_parallel_data, codeptr);
1331 
1332     __ompt_lw_taskteam_link(&lw_taskteam, this_thr, 1);
1333     // don't use lw_taskteam after linking. content was swaped
1334 
1335     /* OMPT implicit task begin */
1336     if (ompt_enabled.ompt_callback_implicit_task) {
1337       ompt_callbacks.ompt_callback(ompt_callback_implicit_task)(
1338           ompt_scope_begin, OMPT_CUR_TEAM_DATA(this_thr),
1339           OMPT_CUR_TASK_DATA(this_thr), 1, __kmp_tid_from_gtid(global_tid),
1340           ompt_task_implicit); // TODO: Can this be ompt_task_initial?
1341       OMPT_CUR_TASK_INFO(this_thr)->thread_num =
1342           __kmp_tid_from_gtid(global_tid);
1343     }
1344 
1345     /* OMPT state */
1346     this_thr->th.ompt_thread_info.state = ompt_state_work_parallel;
1347     OMPT_CUR_TASK_INFO(this_thr)->frame.exit_frame.ptr =
1348         OMPT_GET_FRAME_ADDRESS(0);
1349   }
1350 #endif
1351 }
1352 
1353 /* most of the work for a fork */
1354 /* return true if we really went parallel, false if serialized */
1355 int __kmp_fork_call(ident_t *loc, int gtid,
1356                     enum fork_context_e call_context, // Intel, GNU, ...
1357                     kmp_int32 argc, microtask_t microtask, launch_t invoker,
1358                     kmp_va_list ap) {
1359   void **argv;
1360   int i;
1361   int master_tid;
1362   int master_this_cons;
1363   kmp_team_t *team;
1364   kmp_team_t *parent_team;
1365   kmp_info_t *master_th;
1366   kmp_root_t *root;
1367   int nthreads;
1368   int master_active;
1369   int master_set_numthreads;
1370   int level;
1371   int active_level;
1372   int teams_level;
1373 #if KMP_NESTED_HOT_TEAMS
1374   kmp_hot_team_ptr_t **p_hot_teams;
1375 #endif
1376   { // KMP_TIME_BLOCK
1377     KMP_TIME_DEVELOPER_PARTITIONED_BLOCK(KMP_fork_call);
1378     KMP_COUNT_VALUE(OMP_PARALLEL_args, argc);
1379 
1380     KA_TRACE(20, ("__kmp_fork_call: enter T#%d\n", gtid));
1381     if (__kmp_stkpadding > 0 && __kmp_root[gtid] != NULL) {
1382       /* Some systems prefer the stack for the root thread(s) to start with */
1383       /* some gap from the parent stack to prevent false sharing. */
1384       void *dummy = KMP_ALLOCA(__kmp_stkpadding);
1385       /* These 2 lines below are so this does not get optimized out */
1386       if (__kmp_stkpadding > KMP_MAX_STKPADDING)
1387         __kmp_stkpadding += (short)((kmp_int64)dummy);
1388     }
1389 
1390     /* initialize if needed */
1391     KMP_DEBUG_ASSERT(
1392         __kmp_init_serial); // AC: potentially unsafe, not in sync with shutdown
1393     if (!TCR_4(__kmp_init_parallel))
1394       __kmp_parallel_initialize();
1395     __kmp_resume_if_soft_paused();
1396 
1397     /* setup current data */
1398     master_th = __kmp_threads[gtid]; // AC: potentially unsafe, not in sync with
1399     // shutdown
1400     parent_team = master_th->th.th_team;
1401     master_tid = master_th->th.th_info.ds.ds_tid;
1402     master_this_cons = master_th->th.th_local.this_construct;
1403     root = master_th->th.th_root;
1404     master_active = root->r.r_active;
1405     master_set_numthreads = master_th->th.th_set_nproc;
1406 
1407 #if OMPT_SUPPORT
1408     ompt_data_t ompt_parallel_data = ompt_data_none;
1409     ompt_data_t *parent_task_data;
1410     ompt_frame_t *ompt_frame;
1411     ompt_data_t *implicit_task_data;
1412     void *return_address = NULL;
1413 
1414     if (ompt_enabled.enabled) {
1415       __ompt_get_task_info_internal(0, NULL, &parent_task_data, &ompt_frame,
1416                                     NULL, NULL);
1417       return_address = OMPT_LOAD_RETURN_ADDRESS(gtid);
1418     }
1419 #endif
1420 
1421     // Assign affinity to root thread if it hasn't happened yet
1422     __kmp_assign_root_init_mask();
1423 
1424     // Nested level will be an index in the nested nthreads array
1425     level = parent_team->t.t_level;
1426     // used to launch non-serial teams even if nested is not allowed
1427     active_level = parent_team->t.t_active_level;
1428     // needed to check nesting inside the teams
1429     teams_level = master_th->th.th_teams_level;
1430 #if KMP_NESTED_HOT_TEAMS
1431     p_hot_teams = &master_th->th.th_hot_teams;
1432     if (*p_hot_teams == NULL && __kmp_hot_teams_max_level > 0) {
1433       *p_hot_teams = (kmp_hot_team_ptr_t *)__kmp_allocate(
1434           sizeof(kmp_hot_team_ptr_t) * __kmp_hot_teams_max_level);
1435       (*p_hot_teams)[0].hot_team = root->r.r_hot_team;
1436       // it is either actual or not needed (when active_level > 0)
1437       (*p_hot_teams)[0].hot_team_nth = 1;
1438     }
1439 #endif
1440 
1441 #if OMPT_SUPPORT
1442     if (ompt_enabled.enabled) {
1443       if (ompt_enabled.ompt_callback_parallel_begin) {
1444         int team_size = master_set_numthreads
1445                             ? master_set_numthreads
1446                             : get__nproc_2(parent_team, master_tid);
1447         int flags = OMPT_INVOKER(call_context) |
1448                     ((microtask == (microtask_t)__kmp_teams_master)
1449                          ? ompt_parallel_league
1450                          : ompt_parallel_team);
1451         ompt_callbacks.ompt_callback(ompt_callback_parallel_begin)(
1452             parent_task_data, ompt_frame, &ompt_parallel_data, team_size, flags,
1453             return_address);
1454       }
1455       master_th->th.ompt_thread_info.state = ompt_state_overhead;
1456     }
1457 #endif
1458 
1459     master_th->th.th_ident = loc;
1460 
1461     if (master_th->th.th_teams_microtask && ap &&
1462         microtask != (microtask_t)__kmp_teams_master && level == teams_level) {
1463       // AC: This is start of parallel that is nested inside teams construct.
1464       // The team is actual (hot), all workers are ready at the fork barrier.
1465       // No lock needed to initialize the team a bit, then free workers.
1466       parent_team->t.t_ident = loc;
1467       __kmp_alloc_argv_entries(argc, parent_team, TRUE);
1468       parent_team->t.t_argc = argc;
1469       argv = (void **)parent_team->t.t_argv;
1470       for (i = argc - 1; i >= 0; --i)
1471         *argv++ = va_arg(kmp_va_deref(ap), void *);
1472       // Increment our nested depth levels, but not increase the serialization
1473       if (parent_team == master_th->th.th_serial_team) {
1474         // AC: we are in serialized parallel
1475         __kmpc_serialized_parallel(loc, gtid);
1476         KMP_DEBUG_ASSERT(parent_team->t.t_serialized > 1);
1477 
1478         if (call_context == fork_context_gnu) {
1479           // AC: need to decrement t_serialized for enquiry functions to work
1480           // correctly, will restore at join time
1481           parent_team->t.t_serialized--;
1482           return TRUE;
1483         }
1484 
1485 #if OMPD_SUPPORT
1486         parent_team->t.t_pkfn = microtask;
1487 #endif
1488 
1489 #if OMPT_SUPPORT
1490         void *dummy;
1491         void **exit_frame_p;
1492 
1493         ompt_lw_taskteam_t lw_taskteam;
1494 
1495         if (ompt_enabled.enabled) {
1496           __ompt_lw_taskteam_init(&lw_taskteam, master_th, gtid,
1497                                   &ompt_parallel_data, return_address);
1498           exit_frame_p = &(lw_taskteam.ompt_task_info.frame.exit_frame.ptr);
1499 
1500           __ompt_lw_taskteam_link(&lw_taskteam, master_th, 0);
1501           // don't use lw_taskteam after linking. content was swaped
1502 
1503           /* OMPT implicit task begin */
1504           implicit_task_data = OMPT_CUR_TASK_DATA(master_th);
1505           if (ompt_enabled.ompt_callback_implicit_task) {
1506             OMPT_CUR_TASK_INFO(master_th)->thread_num =
1507                 __kmp_tid_from_gtid(gtid);
1508             ompt_callbacks.ompt_callback(ompt_callback_implicit_task)(
1509                 ompt_scope_begin, OMPT_CUR_TEAM_DATA(master_th),
1510                 implicit_task_data, 1,
1511                 OMPT_CUR_TASK_INFO(master_th)->thread_num, ompt_task_implicit);
1512           }
1513 
1514           /* OMPT state */
1515           master_th->th.ompt_thread_info.state = ompt_state_work_parallel;
1516         } else {
1517           exit_frame_p = &dummy;
1518         }
1519 #endif
1520         // AC: need to decrement t_serialized for enquiry functions to work
1521         // correctly, will restore at join time
1522         parent_team->t.t_serialized--;
1523 
1524         {
1525           KMP_TIME_PARTITIONED_BLOCK(OMP_parallel);
1526           KMP_SET_THREAD_STATE_BLOCK(IMPLICIT_TASK);
1527           __kmp_invoke_microtask(microtask, gtid, 0, argc, parent_team->t.t_argv
1528 #if OMPT_SUPPORT
1529                                  ,
1530                                  exit_frame_p
1531 #endif
1532           );
1533         }
1534 
1535 #if OMPT_SUPPORT
1536         if (ompt_enabled.enabled) {
1537           *exit_frame_p = NULL;
1538           OMPT_CUR_TASK_INFO(master_th)->frame.exit_frame = ompt_data_none;
1539           if (ompt_enabled.ompt_callback_implicit_task) {
1540             ompt_callbacks.ompt_callback(ompt_callback_implicit_task)(
1541                 ompt_scope_end, NULL, implicit_task_data, 1,
1542                 OMPT_CUR_TASK_INFO(master_th)->thread_num, ompt_task_implicit);
1543           }
1544           ompt_parallel_data = *OMPT_CUR_TEAM_DATA(master_th);
1545           __ompt_lw_taskteam_unlink(master_th);
1546           if (ompt_enabled.ompt_callback_parallel_end) {
1547             ompt_callbacks.ompt_callback(ompt_callback_parallel_end)(
1548                 &ompt_parallel_data, OMPT_CUR_TASK_DATA(master_th),
1549                 OMPT_INVOKER(call_context) | ompt_parallel_team,
1550                 return_address);
1551           }
1552           master_th->th.ompt_thread_info.state = ompt_state_overhead;
1553         }
1554 #endif
1555         return TRUE;
1556       }
1557 
1558       parent_team->t.t_pkfn = microtask;
1559       parent_team->t.t_invoke = invoker;
1560       KMP_ATOMIC_INC(&root->r.r_in_parallel);
1561       parent_team->t.t_active_level++;
1562       parent_team->t.t_level++;
1563       parent_team->t.t_def_allocator = master_th->th.th_def_allocator; // save
1564 
1565 #if OMPT_SUPPORT
1566       if (ompt_enabled.enabled) {
1567         ompt_lw_taskteam_t lw_taskteam;
1568         __ompt_lw_taskteam_init(&lw_taskteam, master_th, gtid,
1569                                 &ompt_parallel_data, return_address);
1570         __ompt_lw_taskteam_link(&lw_taskteam, master_th, 1, true);
1571       }
1572 #endif
1573 
1574       /* Change number of threads in the team if requested */
1575       if (master_set_numthreads) { // The parallel has num_threads clause
1576         if (master_set_numthreads <= master_th->th.th_teams_size.nth) {
1577           // AC: only can reduce number of threads dynamically, can't increase
1578           kmp_info_t **other_threads = parent_team->t.t_threads;
1579           // NOTE: if using distributed barrier, we need to run this code block
1580           // even when the team size appears not to have changed from the max.
1581           int old_proc = master_th->th.th_teams_size.nth;
1582           if (__kmp_barrier_release_pattern[bs_forkjoin_barrier] ==
1583               bp_dist_bar) {
1584             __kmp_resize_dist_barrier(parent_team, old_proc,
1585                                       master_set_numthreads);
1586             __kmp_add_threads_to_team(parent_team, master_set_numthreads);
1587           }
1588           parent_team->t.t_nproc = master_set_numthreads;
1589           for (i = 0; i < master_set_numthreads; ++i) {
1590             other_threads[i]->th.th_team_nproc = master_set_numthreads;
1591           }
1592         }
1593         // Keep extra threads hot in the team for possible next parallels
1594         master_th->th.th_set_nproc = 0;
1595       }
1596 
1597 #if USE_DEBUGGER
1598       if (__kmp_debugging) { // Let debugger override number of threads.
1599         int nth = __kmp_omp_num_threads(loc);
1600         if (nth > 0) { // 0 means debugger doesn't want to change num threads
1601           master_set_numthreads = nth;
1602         }
1603       }
1604 #endif
1605 
1606       // Figure out the proc_bind policy for the nested parallel within teams
1607       kmp_proc_bind_t proc_bind = master_th->th.th_set_proc_bind;
1608       // proc_bind_default means don't update
1609       kmp_proc_bind_t proc_bind_icv = proc_bind_default;
1610       if (master_th->th.th_current_task->td_icvs.proc_bind == proc_bind_false) {
1611         proc_bind = proc_bind_false;
1612       } else {
1613         // No proc_bind clause specified; use current proc-bind-var
1614         if (proc_bind == proc_bind_default) {
1615           proc_bind = master_th->th.th_current_task->td_icvs.proc_bind;
1616         }
1617         /* else: The proc_bind policy was specified explicitly on parallel
1618            clause.
1619            This overrides proc-bind-var for this parallel region, but does not
1620            change proc-bind-var. */
1621         // Figure the value of proc-bind-var for the child threads.
1622         if ((level + 1 < __kmp_nested_proc_bind.used) &&
1623             (__kmp_nested_proc_bind.bind_types[level + 1] !=
1624              master_th->th.th_current_task->td_icvs.proc_bind)) {
1625           proc_bind_icv = __kmp_nested_proc_bind.bind_types[level + 1];
1626         }
1627       }
1628       KMP_CHECK_UPDATE(parent_team->t.t_proc_bind, proc_bind);
1629       // Need to change the bind-var ICV to correct value for each implicit task
1630       if (proc_bind_icv != proc_bind_default &&
1631           master_th->th.th_current_task->td_icvs.proc_bind != proc_bind_icv) {
1632         kmp_info_t **other_threads = parent_team->t.t_threads;
1633         for (i = 0; i < master_th->th.th_team_nproc; ++i) {
1634           other_threads[i]->th.th_current_task->td_icvs.proc_bind =
1635               proc_bind_icv;
1636         }
1637       }
1638       // Reset for next parallel region
1639       master_th->th.th_set_proc_bind = proc_bind_default;
1640 
1641 #if USE_ITT_BUILD && USE_ITT_NOTIFY
1642       if (((__itt_frame_submit_v3_ptr && __itt_get_timestamp_ptr) ||
1643            KMP_ITT_DEBUG) &&
1644           __kmp_forkjoin_frames_mode == 3 &&
1645           parent_team->t.t_active_level == 1 // only report frames at level 1
1646           && master_th->th.th_teams_size.nteams == 1) {
1647         kmp_uint64 tmp_time = __itt_get_timestamp();
1648         master_th->th.th_frame_time = tmp_time;
1649         parent_team->t.t_region_time = tmp_time;
1650       }
1651       if (__itt_stack_caller_create_ptr) {
1652         KMP_DEBUG_ASSERT(parent_team->t.t_stack_id == NULL);
1653         // create new stack stitching id before entering fork barrier
1654         parent_team->t.t_stack_id = __kmp_itt_stack_caller_create();
1655       }
1656 #endif /* USE_ITT_BUILD && USE_ITT_NOTIFY */
1657 #if KMP_AFFINITY_SUPPORTED
1658       __kmp_partition_places(parent_team);
1659 #endif
1660 
1661       KF_TRACE(10, ("__kmp_fork_call: before internal fork: root=%p, team=%p, "
1662                     "master_th=%p, gtid=%d\n",
1663                     root, parent_team, master_th, gtid));
1664       __kmp_internal_fork(loc, gtid, parent_team);
1665       KF_TRACE(10, ("__kmp_fork_call: after internal fork: root=%p, team=%p, "
1666                     "master_th=%p, gtid=%d\n",
1667                     root, parent_team, master_th, gtid));
1668 
1669       if (call_context == fork_context_gnu)
1670         return TRUE;
1671 
1672       /* Invoke microtask for PRIMARY thread */
1673       KA_TRACE(20, ("__kmp_fork_call: T#%d(%d:0) invoke microtask = %p\n", gtid,
1674                     parent_team->t.t_id, parent_team->t.t_pkfn));
1675 
1676       if (!parent_team->t.t_invoke(gtid)) {
1677         KMP_ASSERT2(0, "cannot invoke microtask for PRIMARY thread");
1678       }
1679       KA_TRACE(20, ("__kmp_fork_call: T#%d(%d:0) done microtask = %p\n", gtid,
1680                     parent_team->t.t_id, parent_team->t.t_pkfn));
1681       KMP_MB(); /* Flush all pending memory write invalidates.  */
1682 
1683       KA_TRACE(20, ("__kmp_fork_call: parallel exit T#%d\n", gtid));
1684 
1685       return TRUE;
1686     } // Parallel closely nested in teams construct
1687 
1688 #if KMP_DEBUG
1689     if (__kmp_tasking_mode != tskm_immediate_exec) {
1690       KMP_DEBUG_ASSERT(master_th->th.th_task_team ==
1691                        parent_team->t.t_task_team[master_th->th.th_task_state]);
1692     }
1693 #endif
1694 
1695     // Need this to happen before we determine the number of threads, not while
1696     // we are allocating the team
1697     //__kmp_push_current_task_to_thread(master_th, parent_team, 0);
1698     int enter_teams = 0;
1699     if (parent_team->t.t_active_level >=
1700         master_th->th.th_current_task->td_icvs.max_active_levels) {
1701       nthreads = 1;
1702     } else {
1703       enter_teams = ((ap == NULL && active_level == 0) ||
1704                      (ap && teams_level > 0 && teams_level == level));
1705       nthreads = master_set_numthreads
1706                      ? master_set_numthreads
1707                      // TODO: get nproc directly from current task
1708                      : get__nproc_2(parent_team, master_tid);
1709       // Check if we need to take forkjoin lock? (no need for serialized
1710       // parallel out of teams construct). This code moved here from
1711       // __kmp_reserve_threads() to speedup nested serialized parallels.
1712       if (nthreads > 1) {
1713         if ((get__max_active_levels(master_th) == 1 &&
1714              (root->r.r_in_parallel && !enter_teams)) ||
1715             (__kmp_library == library_serial)) {
1716           KC_TRACE(10, ("__kmp_fork_call: T#%d serializing team; requested %d"
1717                         " threads\n",
1718                         gtid, nthreads));
1719           nthreads = 1;
1720         }
1721       }
1722       if (nthreads > 1) {
1723         /* determine how many new threads we can use */
1724         __kmp_acquire_bootstrap_lock(&__kmp_forkjoin_lock);
1725         /* AC: If we execute teams from parallel region (on host), then teams
1726            should be created but each can only have 1 thread if nesting is
1727            disabled. If teams called from serial region, then teams and their
1728            threads should be created regardless of the nesting setting. */
1729         nthreads = __kmp_reserve_threads(root, parent_team, master_tid,
1730                                          nthreads, enter_teams);
1731         if (nthreads == 1) {
1732           // Free lock for single thread execution here; for multi-thread
1733           // execution it will be freed later after team of threads created
1734           // and initialized
1735           __kmp_release_bootstrap_lock(&__kmp_forkjoin_lock);
1736         }
1737       }
1738     }
1739     KMP_DEBUG_ASSERT(nthreads > 0);
1740 
1741     // If we temporarily changed the set number of threads then restore it now
1742     master_th->th.th_set_nproc = 0;
1743 
1744     /* create a serialized parallel region? */
1745     if (nthreads == 1) {
1746 /* josh todo: hypothetical question: what do we do for OS X*? */
1747 #if KMP_OS_LINUX &&                                                            \
1748     (KMP_ARCH_X86 || KMP_ARCH_X86_64 || KMP_ARCH_ARM || KMP_ARCH_AARCH64)
1749       void *args[argc];
1750 #else
1751       void **args = (void **)KMP_ALLOCA(argc * sizeof(void *));
1752 #endif /* KMP_OS_LINUX && ( KMP_ARCH_X86 || KMP_ARCH_X86_64 || KMP_ARCH_ARM || \
1753           KMP_ARCH_AARCH64) */
1754 
1755       KA_TRACE(20,
1756                ("__kmp_fork_call: T#%d serializing parallel region\n", gtid));
1757 
1758       __kmpc_serialized_parallel(loc, gtid);
1759 
1760 #if OMPD_SUPPORT
1761       master_th->th.th_serial_team->t.t_pkfn = microtask;
1762 #endif
1763 
1764       if (call_context == fork_context_intel) {
1765         /* TODO this sucks, use the compiler itself to pass args! :) */
1766         master_th->th.th_serial_team->t.t_ident = loc;
1767         if (!ap) {
1768           // revert change made in __kmpc_serialized_parallel()
1769           master_th->th.th_serial_team->t.t_level--;
1770           // Get args from parent team for teams construct
1771 
1772 #if OMPT_SUPPORT
1773           void *dummy;
1774           void **exit_frame_p;
1775           ompt_task_info_t *task_info;
1776 
1777           ompt_lw_taskteam_t lw_taskteam;
1778 
1779           if (ompt_enabled.enabled) {
1780             __ompt_lw_taskteam_init(&lw_taskteam, master_th, gtid,
1781                                     &ompt_parallel_data, return_address);
1782 
1783             __ompt_lw_taskteam_link(&lw_taskteam, master_th, 0);
1784             // don't use lw_taskteam after linking. content was swaped
1785 
1786             task_info = OMPT_CUR_TASK_INFO(master_th);
1787             exit_frame_p = &(task_info->frame.exit_frame.ptr);
1788             if (ompt_enabled.ompt_callback_implicit_task) {
1789               OMPT_CUR_TASK_INFO(master_th)->thread_num =
1790                   __kmp_tid_from_gtid(gtid);
1791               ompt_callbacks.ompt_callback(ompt_callback_implicit_task)(
1792                   ompt_scope_begin, OMPT_CUR_TEAM_DATA(master_th),
1793                   &(task_info->task_data), 1,
1794                   OMPT_CUR_TASK_INFO(master_th)->thread_num,
1795                   ompt_task_implicit);
1796             }
1797 
1798             /* OMPT state */
1799             master_th->th.ompt_thread_info.state = ompt_state_work_parallel;
1800           } else {
1801             exit_frame_p = &dummy;
1802           }
1803 #endif
1804 
1805           {
1806             KMP_TIME_PARTITIONED_BLOCK(OMP_parallel);
1807             KMP_SET_THREAD_STATE_BLOCK(IMPLICIT_TASK);
1808             __kmp_invoke_microtask(microtask, gtid, 0, argc,
1809                                    parent_team->t.t_argv
1810 #if OMPT_SUPPORT
1811                                    ,
1812                                    exit_frame_p
1813 #endif
1814             );
1815           }
1816 
1817 #if OMPT_SUPPORT
1818           if (ompt_enabled.enabled) {
1819             *exit_frame_p = NULL;
1820             if (ompt_enabled.ompt_callback_implicit_task) {
1821               ompt_callbacks.ompt_callback(ompt_callback_implicit_task)(
1822                   ompt_scope_end, NULL, &(task_info->task_data), 1,
1823                   OMPT_CUR_TASK_INFO(master_th)->thread_num,
1824                   ompt_task_implicit);
1825             }
1826             ompt_parallel_data = *OMPT_CUR_TEAM_DATA(master_th);
1827             __ompt_lw_taskteam_unlink(master_th);
1828             if (ompt_enabled.ompt_callback_parallel_end) {
1829               ompt_callbacks.ompt_callback(ompt_callback_parallel_end)(
1830                   &ompt_parallel_data, parent_task_data,
1831                   OMPT_INVOKER(call_context) | ompt_parallel_team,
1832                   return_address);
1833             }
1834             master_th->th.ompt_thread_info.state = ompt_state_overhead;
1835           }
1836 #endif
1837         } else if (microtask == (microtask_t)__kmp_teams_master) {
1838           KMP_DEBUG_ASSERT(master_th->th.th_team ==
1839                            master_th->th.th_serial_team);
1840           team = master_th->th.th_team;
1841           // team->t.t_pkfn = microtask;
1842           team->t.t_invoke = invoker;
1843           __kmp_alloc_argv_entries(argc, team, TRUE);
1844           team->t.t_argc = argc;
1845           argv = (void **)team->t.t_argv;
1846           if (ap) {
1847             for (i = argc - 1; i >= 0; --i)
1848               *argv++ = va_arg(kmp_va_deref(ap), void *);
1849           } else {
1850             for (i = 0; i < argc; ++i)
1851               // Get args from parent team for teams construct
1852               argv[i] = parent_team->t.t_argv[i];
1853           }
1854           // AC: revert change made in __kmpc_serialized_parallel()
1855           //     because initial code in teams should have level=0
1856           team->t.t_level--;
1857           // AC: call special invoker for outer "parallel" of teams construct
1858           invoker(gtid);
1859 #if OMPT_SUPPORT
1860           if (ompt_enabled.enabled) {
1861             ompt_task_info_t *task_info = OMPT_CUR_TASK_INFO(master_th);
1862             if (ompt_enabled.ompt_callback_implicit_task) {
1863               ompt_callbacks.ompt_callback(ompt_callback_implicit_task)(
1864                   ompt_scope_end, NULL, &(task_info->task_data), 0,
1865                   OMPT_CUR_TASK_INFO(master_th)->thread_num, ompt_task_initial);
1866             }
1867             if (ompt_enabled.ompt_callback_parallel_end) {
1868               ompt_callbacks.ompt_callback(ompt_callback_parallel_end)(
1869                   &ompt_parallel_data, parent_task_data,
1870                   OMPT_INVOKER(call_context) | ompt_parallel_league,
1871                   return_address);
1872             }
1873             master_th->th.ompt_thread_info.state = ompt_state_overhead;
1874           }
1875 #endif
1876         } else {
1877           argv = args;
1878           for (i = argc - 1; i >= 0; --i)
1879             *argv++ = va_arg(kmp_va_deref(ap), void *);
1880           KMP_MB();
1881 
1882 #if OMPT_SUPPORT
1883           void *dummy;
1884           void **exit_frame_p;
1885           ompt_task_info_t *task_info;
1886 
1887           ompt_lw_taskteam_t lw_taskteam;
1888 
1889           if (ompt_enabled.enabled) {
1890             __ompt_lw_taskteam_init(&lw_taskteam, master_th, gtid,
1891                                     &ompt_parallel_data, return_address);
1892             __ompt_lw_taskteam_link(&lw_taskteam, master_th, 0);
1893             // don't use lw_taskteam after linking. content was swaped
1894             task_info = OMPT_CUR_TASK_INFO(master_th);
1895             exit_frame_p = &(task_info->frame.exit_frame.ptr);
1896 
1897             /* OMPT implicit task begin */
1898             implicit_task_data = OMPT_CUR_TASK_DATA(master_th);
1899             if (ompt_enabled.ompt_callback_implicit_task) {
1900               ompt_callbacks.ompt_callback(ompt_callback_implicit_task)(
1901                   ompt_scope_begin, OMPT_CUR_TEAM_DATA(master_th),
1902                   implicit_task_data, 1, __kmp_tid_from_gtid(gtid),
1903                   ompt_task_implicit);
1904               OMPT_CUR_TASK_INFO(master_th)->thread_num =
1905                   __kmp_tid_from_gtid(gtid);
1906             }
1907 
1908             /* OMPT state */
1909             master_th->th.ompt_thread_info.state = ompt_state_work_parallel;
1910           } else {
1911             exit_frame_p = &dummy;
1912           }
1913 #endif
1914 
1915           {
1916             KMP_TIME_PARTITIONED_BLOCK(OMP_parallel);
1917             KMP_SET_THREAD_STATE_BLOCK(IMPLICIT_TASK);
1918             __kmp_invoke_microtask(microtask, gtid, 0, argc, args
1919 #if OMPT_SUPPORT
1920                                    ,
1921                                    exit_frame_p
1922 #endif
1923             );
1924           }
1925 
1926 #if OMPT_SUPPORT
1927           if (ompt_enabled.enabled) {
1928             *exit_frame_p = NULL;
1929             if (ompt_enabled.ompt_callback_implicit_task) {
1930               ompt_callbacks.ompt_callback(ompt_callback_implicit_task)(
1931                   ompt_scope_end, NULL, &(task_info->task_data), 1,
1932                   OMPT_CUR_TASK_INFO(master_th)->thread_num,
1933                   ompt_task_implicit);
1934             }
1935 
1936             ompt_parallel_data = *OMPT_CUR_TEAM_DATA(master_th);
1937             __ompt_lw_taskteam_unlink(master_th);
1938             if (ompt_enabled.ompt_callback_parallel_end) {
1939               ompt_callbacks.ompt_callback(ompt_callback_parallel_end)(
1940                   &ompt_parallel_data, parent_task_data,
1941                   OMPT_INVOKER(call_context) | ompt_parallel_team,
1942                   return_address);
1943             }
1944             master_th->th.ompt_thread_info.state = ompt_state_overhead;
1945           }
1946 #endif
1947         }
1948       } else if (call_context == fork_context_gnu) {
1949 #if OMPT_SUPPORT
1950         ompt_lw_taskteam_t lwt;
1951         __ompt_lw_taskteam_init(&lwt, master_th, gtid, &ompt_parallel_data,
1952                                 return_address);
1953 
1954         lwt.ompt_task_info.frame.exit_frame = ompt_data_none;
1955         __ompt_lw_taskteam_link(&lwt, master_th, 1);
1956 // don't use lw_taskteam after linking. content was swaped
1957 #endif
1958 
1959         // we were called from GNU native code
1960         KA_TRACE(20, ("__kmp_fork_call: T#%d serial exit\n", gtid));
1961         return FALSE;
1962       } else {
1963         KMP_ASSERT2(call_context < fork_context_last,
1964                     "__kmp_fork_call: unknown fork_context parameter");
1965       }
1966 
1967       KA_TRACE(20, ("__kmp_fork_call: T#%d serial exit\n", gtid));
1968       KMP_MB();
1969       return FALSE;
1970     } // if (nthreads == 1)
1971 
1972     // GEH: only modify the executing flag in the case when not serialized
1973     //      serialized case is handled in kmpc_serialized_parallel
1974     KF_TRACE(10, ("__kmp_fork_call: parent_team_aclevel=%d, master_th=%p, "
1975                   "curtask=%p, curtask_max_aclevel=%d\n",
1976                   parent_team->t.t_active_level, master_th,
1977                   master_th->th.th_current_task,
1978                   master_th->th.th_current_task->td_icvs.max_active_levels));
1979     // TODO: GEH - cannot do this assertion because root thread not set up as
1980     // executing
1981     // KMP_ASSERT( master_th->th.th_current_task->td_flags.executing == 1 );
1982     master_th->th.th_current_task->td_flags.executing = 0;
1983 
1984     if (!master_th->th.th_teams_microtask || level > teams_level) {
1985       /* Increment our nested depth level */
1986       KMP_ATOMIC_INC(&root->r.r_in_parallel);
1987     }
1988 
1989     // See if we need to make a copy of the ICVs.
1990     int nthreads_icv = master_th->th.th_current_task->td_icvs.nproc;
1991     if ((level + 1 < __kmp_nested_nth.used) &&
1992         (__kmp_nested_nth.nth[level + 1] != nthreads_icv)) {
1993       nthreads_icv = __kmp_nested_nth.nth[level + 1];
1994     } else {
1995       nthreads_icv = 0; // don't update
1996     }
1997 
1998     // Figure out the proc_bind_policy for the new team.
1999     kmp_proc_bind_t proc_bind = master_th->th.th_set_proc_bind;
2000     // proc_bind_default means don't update
2001     kmp_proc_bind_t proc_bind_icv = proc_bind_default;
2002     if (master_th->th.th_current_task->td_icvs.proc_bind == proc_bind_false) {
2003       proc_bind = proc_bind_false;
2004     } else {
2005       // No proc_bind clause specified; use current proc-bind-var for this
2006       // parallel region
2007       if (proc_bind == proc_bind_default) {
2008         proc_bind = master_th->th.th_current_task->td_icvs.proc_bind;
2009       }
2010       // Have teams construct take proc_bind value from KMP_TEAMS_PROC_BIND
2011       if (master_th->th.th_teams_microtask &&
2012           microtask == (microtask_t)__kmp_teams_master) {
2013         proc_bind = __kmp_teams_proc_bind;
2014       }
2015       /* else: The proc_bind policy was specified explicitly on parallel clause.
2016          This overrides proc-bind-var for this parallel region, but does not
2017          change proc-bind-var. */
2018       // Figure the value of proc-bind-var for the child threads.
2019       if ((level + 1 < __kmp_nested_proc_bind.used) &&
2020           (__kmp_nested_proc_bind.bind_types[level + 1] !=
2021            master_th->th.th_current_task->td_icvs.proc_bind)) {
2022         // Do not modify the proc bind icv for the two teams construct forks
2023         // They just let the proc bind icv pass through
2024         if (!master_th->th.th_teams_microtask ||
2025             !(microtask == (microtask_t)__kmp_teams_master || ap == NULL))
2026           proc_bind_icv = __kmp_nested_proc_bind.bind_types[level + 1];
2027       }
2028     }
2029 
2030     // Reset for next parallel region
2031     master_th->th.th_set_proc_bind = proc_bind_default;
2032 
2033     if ((nthreads_icv > 0) || (proc_bind_icv != proc_bind_default)) {
2034       kmp_internal_control_t new_icvs;
2035       copy_icvs(&new_icvs, &master_th->th.th_current_task->td_icvs);
2036       new_icvs.next = NULL;
2037       if (nthreads_icv > 0) {
2038         new_icvs.nproc = nthreads_icv;
2039       }
2040       if (proc_bind_icv != proc_bind_default) {
2041         new_icvs.proc_bind = proc_bind_icv;
2042       }
2043 
2044       /* allocate a new parallel team */
2045       KF_TRACE(10, ("__kmp_fork_call: before __kmp_allocate_team\n"));
2046       team = __kmp_allocate_team(root, nthreads, nthreads,
2047 #if OMPT_SUPPORT
2048                                  ompt_parallel_data,
2049 #endif
2050                                  proc_bind, &new_icvs,
2051                                  argc USE_NESTED_HOT_ARG(master_th));
2052       if (__kmp_barrier_release_pattern[bs_forkjoin_barrier] == bp_dist_bar)
2053         copy_icvs((kmp_internal_control_t *)team->t.b->team_icvs, &new_icvs);
2054     } else {
2055       /* allocate a new parallel team */
2056       KF_TRACE(10, ("__kmp_fork_call: before __kmp_allocate_team\n"));
2057       team = __kmp_allocate_team(root, nthreads, nthreads,
2058 #if OMPT_SUPPORT
2059                                  ompt_parallel_data,
2060 #endif
2061                                  proc_bind,
2062                                  &master_th->th.th_current_task->td_icvs,
2063                                  argc USE_NESTED_HOT_ARG(master_th));
2064       if (__kmp_barrier_release_pattern[bs_forkjoin_barrier] == bp_dist_bar)
2065         copy_icvs((kmp_internal_control_t *)team->t.b->team_icvs,
2066                   &master_th->th.th_current_task->td_icvs);
2067     }
2068     KF_TRACE(
2069         10, ("__kmp_fork_call: after __kmp_allocate_team - team = %p\n", team));
2070 
2071     /* setup the new team */
2072     KMP_CHECK_UPDATE(team->t.t_master_tid, master_tid);
2073     KMP_CHECK_UPDATE(team->t.t_master_this_cons, master_this_cons);
2074     KMP_CHECK_UPDATE(team->t.t_ident, loc);
2075     KMP_CHECK_UPDATE(team->t.t_parent, parent_team);
2076     KMP_CHECK_UPDATE_SYNC(team->t.t_pkfn, microtask);
2077 #if OMPT_SUPPORT
2078     KMP_CHECK_UPDATE_SYNC(team->t.ompt_team_info.master_return_address,
2079                           return_address);
2080 #endif
2081     KMP_CHECK_UPDATE(team->t.t_invoke, invoker); // TODO move to root, maybe
2082     // TODO: parent_team->t.t_level == INT_MAX ???
2083     if (!master_th->th.th_teams_microtask || level > teams_level) {
2084       int new_level = parent_team->t.t_level + 1;
2085       KMP_CHECK_UPDATE(team->t.t_level, new_level);
2086       new_level = parent_team->t.t_active_level + 1;
2087       KMP_CHECK_UPDATE(team->t.t_active_level, new_level);
2088     } else {
2089       // AC: Do not increase parallel level at start of the teams construct
2090       int new_level = parent_team->t.t_level;
2091       KMP_CHECK_UPDATE(team->t.t_level, new_level);
2092       new_level = parent_team->t.t_active_level;
2093       KMP_CHECK_UPDATE(team->t.t_active_level, new_level);
2094     }
2095     kmp_r_sched_t new_sched = get__sched_2(parent_team, master_tid);
2096     // set primary thread's schedule as new run-time schedule
2097     KMP_CHECK_UPDATE(team->t.t_sched.sched, new_sched.sched);
2098 
2099     KMP_CHECK_UPDATE(team->t.t_cancel_request, cancel_noreq);
2100     KMP_CHECK_UPDATE(team->t.t_def_allocator, master_th->th.th_def_allocator);
2101 
2102     // Update the floating point rounding in the team if required.
2103     propagateFPControl(team);
2104 #if OMPD_SUPPORT
2105     if (ompd_state & OMPD_ENABLE_BP)
2106       ompd_bp_parallel_begin();
2107 #endif
2108 
2109     if (__kmp_tasking_mode != tskm_immediate_exec) {
2110       // Set primary thread's task team to team's task team. Unless this is hot
2111       // team, it should be NULL.
2112       KMP_DEBUG_ASSERT(master_th->th.th_task_team ==
2113                        parent_team->t.t_task_team[master_th->th.th_task_state]);
2114       KA_TRACE(20, ("__kmp_fork_call: Primary T#%d pushing task_team %p / team "
2115                     "%p, new task_team %p / team %p\n",
2116                     __kmp_gtid_from_thread(master_th),
2117                     master_th->th.th_task_team, parent_team,
2118                     team->t.t_task_team[master_th->th.th_task_state], team));
2119 
2120       if (active_level || master_th->th.th_task_team) {
2121         // Take a memo of primary thread's task_state
2122         KMP_DEBUG_ASSERT(master_th->th.th_task_state_memo_stack);
2123         if (master_th->th.th_task_state_top >=
2124             master_th->th.th_task_state_stack_sz) { // increase size
2125           kmp_uint32 new_size = 2 * master_th->th.th_task_state_stack_sz;
2126           kmp_uint8 *old_stack, *new_stack;
2127           kmp_uint32 i;
2128           new_stack = (kmp_uint8 *)__kmp_allocate(new_size);
2129           for (i = 0; i < master_th->th.th_task_state_stack_sz; ++i) {
2130             new_stack[i] = master_th->th.th_task_state_memo_stack[i];
2131           }
2132           for (i = master_th->th.th_task_state_stack_sz; i < new_size;
2133                ++i) { // zero-init rest of stack
2134             new_stack[i] = 0;
2135           }
2136           old_stack = master_th->th.th_task_state_memo_stack;
2137           master_th->th.th_task_state_memo_stack = new_stack;
2138           master_th->th.th_task_state_stack_sz = new_size;
2139           __kmp_free(old_stack);
2140         }
2141         // Store primary thread's task_state on stack
2142         master_th->th
2143             .th_task_state_memo_stack[master_th->th.th_task_state_top] =
2144             master_th->th.th_task_state;
2145         master_th->th.th_task_state_top++;
2146 #if KMP_NESTED_HOT_TEAMS
2147         if (master_th->th.th_hot_teams &&
2148             active_level < __kmp_hot_teams_max_level &&
2149             team == master_th->th.th_hot_teams[active_level].hot_team) {
2150           // Restore primary thread's nested state if nested hot team
2151           master_th->th.th_task_state =
2152               master_th->th
2153                   .th_task_state_memo_stack[master_th->th.th_task_state_top];
2154         } else {
2155 #endif
2156           master_th->th.th_task_state = 0;
2157 #if KMP_NESTED_HOT_TEAMS
2158         }
2159 #endif
2160       }
2161 #if !KMP_NESTED_HOT_TEAMS
2162       KMP_DEBUG_ASSERT((master_th->th.th_task_team == NULL) ||
2163                        (team == root->r.r_hot_team));
2164 #endif
2165     }
2166 
2167     KA_TRACE(
2168         20,
2169         ("__kmp_fork_call: T#%d(%d:%d)->(%d:0) created a team of %d threads\n",
2170          gtid, parent_team->t.t_id, team->t.t_master_tid, team->t.t_id,
2171          team->t.t_nproc));
2172     KMP_DEBUG_ASSERT(team != root->r.r_hot_team ||
2173                      (team->t.t_master_tid == 0 &&
2174                       (team->t.t_parent == root->r.r_root_team ||
2175                        team->t.t_parent->t.t_serialized)));
2176     KMP_MB();
2177 
2178     /* now, setup the arguments */
2179     argv = (void **)team->t.t_argv;
2180     if (ap) {
2181       for (i = argc - 1; i >= 0; --i) {
2182         void *new_argv = va_arg(kmp_va_deref(ap), void *);
2183         KMP_CHECK_UPDATE(*argv, new_argv);
2184         argv++;
2185       }
2186     } else {
2187       for (i = 0; i < argc; ++i) {
2188         // Get args from parent team for teams construct
2189         KMP_CHECK_UPDATE(argv[i], team->t.t_parent->t.t_argv[i]);
2190       }
2191     }
2192 
2193     /* now actually fork the threads */
2194     KMP_CHECK_UPDATE(team->t.t_master_active, master_active);
2195     if (!root->r.r_active) // Only do assignment if it prevents cache ping-pong
2196       root->r.r_active = TRUE;
2197 
2198     __kmp_fork_team_threads(root, team, master_th, gtid, !ap);
2199     __kmp_setup_icv_copy(team, nthreads,
2200                          &master_th->th.th_current_task->td_icvs, loc);
2201 
2202 #if OMPT_SUPPORT
2203     master_th->th.ompt_thread_info.state = ompt_state_work_parallel;
2204 #endif
2205 
2206     __kmp_release_bootstrap_lock(&__kmp_forkjoin_lock);
2207 
2208 #if USE_ITT_BUILD
2209     if (team->t.t_active_level == 1 // only report frames at level 1
2210         && !master_th->th.th_teams_microtask) { // not in teams construct
2211 #if USE_ITT_NOTIFY
2212       if ((__itt_frame_submit_v3_ptr || KMP_ITT_DEBUG) &&
2213           (__kmp_forkjoin_frames_mode == 3 ||
2214            __kmp_forkjoin_frames_mode == 1)) {
2215         kmp_uint64 tmp_time = 0;
2216         if (__itt_get_timestamp_ptr)
2217           tmp_time = __itt_get_timestamp();
2218         // Internal fork - report frame begin
2219         master_th->th.th_frame_time = tmp_time;
2220         if (__kmp_forkjoin_frames_mode == 3)
2221           team->t.t_region_time = tmp_time;
2222       } else
2223 // only one notification scheme (either "submit" or "forking/joined", not both)
2224 #endif /* USE_ITT_NOTIFY */
2225           if ((__itt_frame_begin_v3_ptr || KMP_ITT_DEBUG) &&
2226               __kmp_forkjoin_frames && !__kmp_forkjoin_frames_mode) {
2227         // Mark start of "parallel" region for Intel(R) VTune(TM) analyzer.
2228         __kmp_itt_region_forking(gtid, team->t.t_nproc, 0);
2229       }
2230     }
2231 #endif /* USE_ITT_BUILD */
2232 
2233     /* now go on and do the work */
2234     KMP_DEBUG_ASSERT(team == __kmp_threads[gtid]->th.th_team);
2235     KMP_MB();
2236     KF_TRACE(10,
2237              ("__kmp_internal_fork : root=%p, team=%p, master_th=%p, gtid=%d\n",
2238               root, team, master_th, gtid));
2239 
2240 #if USE_ITT_BUILD
2241     if (__itt_stack_caller_create_ptr) {
2242       // create new stack stitching id before entering fork barrier
2243       if (!enter_teams) {
2244         KMP_DEBUG_ASSERT(team->t.t_stack_id == NULL);
2245         team->t.t_stack_id = __kmp_itt_stack_caller_create();
2246       } else if (parent_team->t.t_serialized) {
2247         // keep stack stitching id in the serialized parent_team;
2248         // current team will be used for parallel inside the teams;
2249         // if parent_team is active, then it already keeps stack stitching id
2250         // for the league of teams
2251         KMP_DEBUG_ASSERT(parent_team->t.t_stack_id == NULL);
2252         parent_team->t.t_stack_id = __kmp_itt_stack_caller_create();
2253       }
2254     }
2255 #endif /* USE_ITT_BUILD */
2256 
2257     // AC: skip __kmp_internal_fork at teams construct, let only primary
2258     // threads execute
2259     if (ap) {
2260       __kmp_internal_fork(loc, gtid, team);
2261       KF_TRACE(10, ("__kmp_internal_fork : after : root=%p, team=%p, "
2262                     "master_th=%p, gtid=%d\n",
2263                     root, team, master_th, gtid));
2264     }
2265 
2266     if (call_context == fork_context_gnu) {
2267       KA_TRACE(20, ("__kmp_fork_call: parallel exit T#%d\n", gtid));
2268       return TRUE;
2269     }
2270 
2271     /* Invoke microtask for PRIMARY thread */
2272     KA_TRACE(20, ("__kmp_fork_call: T#%d(%d:0) invoke microtask = %p\n", gtid,
2273                   team->t.t_id, team->t.t_pkfn));
2274   } // END of timer KMP_fork_call block
2275 
2276 #if KMP_STATS_ENABLED
2277   // If beginning a teams construct, then change thread state
2278   stats_state_e previous_state = KMP_GET_THREAD_STATE();
2279   if (!ap) {
2280     KMP_SET_THREAD_STATE(stats_state_e::TEAMS_REGION);
2281   }
2282 #endif
2283 
2284   if (!team->t.t_invoke(gtid)) {
2285     KMP_ASSERT2(0, "cannot invoke microtask for PRIMARY thread");
2286   }
2287 
2288 #if KMP_STATS_ENABLED
2289   // If was beginning of a teams construct, then reset thread state
2290   if (!ap) {
2291     KMP_SET_THREAD_STATE(previous_state);
2292   }
2293 #endif
2294 
2295   KA_TRACE(20, ("__kmp_fork_call: T#%d(%d:0) done microtask = %p\n", gtid,
2296                 team->t.t_id, team->t.t_pkfn));
2297   KMP_MB(); /* Flush all pending memory write invalidates.  */
2298 
2299   KA_TRACE(20, ("__kmp_fork_call: parallel exit T#%d\n", gtid));
2300 #if OMPT_SUPPORT
2301   if (ompt_enabled.enabled) {
2302     master_th->th.ompt_thread_info.state = ompt_state_overhead;
2303   }
2304 #endif
2305 
2306   return TRUE;
2307 }
2308 
2309 #if OMPT_SUPPORT
2310 static inline void __kmp_join_restore_state(kmp_info_t *thread,
2311                                             kmp_team_t *team) {
2312   // restore state outside the region
2313   thread->th.ompt_thread_info.state =
2314       ((team->t.t_serialized) ? ompt_state_work_serial
2315                               : ompt_state_work_parallel);
2316 }
2317 
2318 static inline void __kmp_join_ompt(int gtid, kmp_info_t *thread,
2319                                    kmp_team_t *team, ompt_data_t *parallel_data,
2320                                    int flags, void *codeptr) {
2321   ompt_task_info_t *task_info = __ompt_get_task_info_object(0);
2322   if (ompt_enabled.ompt_callback_parallel_end) {
2323     ompt_callbacks.ompt_callback(ompt_callback_parallel_end)(
2324         parallel_data, &(task_info->task_data), flags, codeptr);
2325   }
2326 
2327   task_info->frame.enter_frame = ompt_data_none;
2328   __kmp_join_restore_state(thread, team);
2329 }
2330 #endif
2331 
2332 void __kmp_join_call(ident_t *loc, int gtid
2333 #if OMPT_SUPPORT
2334                      ,
2335                      enum fork_context_e fork_context
2336 #endif
2337                      ,
2338                      int exit_teams) {
2339   KMP_TIME_DEVELOPER_PARTITIONED_BLOCK(KMP_join_call);
2340   kmp_team_t *team;
2341   kmp_team_t *parent_team;
2342   kmp_info_t *master_th;
2343   kmp_root_t *root;
2344   int master_active;
2345 
2346   KA_TRACE(20, ("__kmp_join_call: enter T#%d\n", gtid));
2347 
2348   /* setup current data */
2349   master_th = __kmp_threads[gtid];
2350   root = master_th->th.th_root;
2351   team = master_th->th.th_team;
2352   parent_team = team->t.t_parent;
2353 
2354   master_th->th.th_ident = loc;
2355 
2356 #if OMPT_SUPPORT
2357   void *team_microtask = (void *)team->t.t_pkfn;
2358   // For GOMP interface with serialized parallel, need the
2359   // __kmpc_end_serialized_parallel to call hooks for OMPT end-implicit-task
2360   // and end-parallel events.
2361   if (ompt_enabled.enabled &&
2362       !(team->t.t_serialized && fork_context == fork_context_gnu)) {
2363     master_th->th.ompt_thread_info.state = ompt_state_overhead;
2364   }
2365 #endif
2366 
2367 #if KMP_DEBUG
2368   if (__kmp_tasking_mode != tskm_immediate_exec && !exit_teams) {
2369     KA_TRACE(20, ("__kmp_join_call: T#%d, old team = %p old task_team = %p, "
2370                   "th_task_team = %p\n",
2371                   __kmp_gtid_from_thread(master_th), team,
2372                   team->t.t_task_team[master_th->th.th_task_state],
2373                   master_th->th.th_task_team));
2374     KMP_DEBUG_ASSERT(master_th->th.th_task_team ==
2375                      team->t.t_task_team[master_th->th.th_task_state]);
2376   }
2377 #endif
2378 
2379   if (team->t.t_serialized) {
2380     if (master_th->th.th_teams_microtask) {
2381       // We are in teams construct
2382       int level = team->t.t_level;
2383       int tlevel = master_th->th.th_teams_level;
2384       if (level == tlevel) {
2385         // AC: we haven't incremented it earlier at start of teams construct,
2386         //     so do it here - at the end of teams construct
2387         team->t.t_level++;
2388       } else if (level == tlevel + 1) {
2389         // AC: we are exiting parallel inside teams, need to increment
2390         // serialization in order to restore it in the next call to
2391         // __kmpc_end_serialized_parallel
2392         team->t.t_serialized++;
2393       }
2394     }
2395     __kmpc_end_serialized_parallel(loc, gtid);
2396 
2397 #if OMPT_SUPPORT
2398     if (ompt_enabled.enabled) {
2399       __kmp_join_restore_state(master_th, parent_team);
2400     }
2401 #endif
2402 
2403     return;
2404   }
2405 
2406   master_active = team->t.t_master_active;
2407 
2408   if (!exit_teams) {
2409     // AC: No barrier for internal teams at exit from teams construct.
2410     //     But there is barrier for external team (league).
2411     __kmp_internal_join(loc, gtid, team);
2412 #if USE_ITT_BUILD
2413     if (__itt_stack_caller_create_ptr) {
2414       KMP_DEBUG_ASSERT(team->t.t_stack_id != NULL);
2415       // destroy the stack stitching id after join barrier
2416       __kmp_itt_stack_caller_destroy((__itt_caller)team->t.t_stack_id);
2417       team->t.t_stack_id = NULL;
2418     }
2419 #endif
2420   } else {
2421     master_th->th.th_task_state =
2422         0; // AC: no tasking in teams (out of any parallel)
2423 #if USE_ITT_BUILD
2424     if (__itt_stack_caller_create_ptr && parent_team->t.t_serialized) {
2425       KMP_DEBUG_ASSERT(parent_team->t.t_stack_id != NULL);
2426       // destroy the stack stitching id on exit from the teams construct
2427       // if parent_team is active, then the id will be destroyed later on
2428       // by master of the league of teams
2429       __kmp_itt_stack_caller_destroy((__itt_caller)parent_team->t.t_stack_id);
2430       parent_team->t.t_stack_id = NULL;
2431     }
2432 #endif
2433 
2434     if (team->t.t_nproc > 1 &&
2435         __kmp_barrier_gather_pattern[bs_forkjoin_barrier] == bp_dist_bar) {
2436       team->t.b->update_num_threads(team->t.t_nproc);
2437       __kmp_add_threads_to_team(team, team->t.t_nproc);
2438     }
2439   }
2440 
2441   KMP_MB();
2442 
2443 #if OMPT_SUPPORT
2444   ompt_data_t *parallel_data = &(team->t.ompt_team_info.parallel_data);
2445   void *codeptr = team->t.ompt_team_info.master_return_address;
2446 #endif
2447 
2448 #if USE_ITT_BUILD
2449   // Mark end of "parallel" region for Intel(R) VTune(TM) analyzer.
2450   if (team->t.t_active_level == 1 &&
2451       (!master_th->th.th_teams_microtask || /* not in teams construct */
2452        master_th->th.th_teams_size.nteams == 1)) {
2453     master_th->th.th_ident = loc;
2454     // only one notification scheme (either "submit" or "forking/joined", not
2455     // both)
2456     if ((__itt_frame_submit_v3_ptr || KMP_ITT_DEBUG) &&
2457         __kmp_forkjoin_frames_mode == 3)
2458       __kmp_itt_frame_submit(gtid, team->t.t_region_time,
2459                              master_th->th.th_frame_time, 0, loc,
2460                              master_th->th.th_team_nproc, 1);
2461     else if ((__itt_frame_end_v3_ptr || KMP_ITT_DEBUG) &&
2462              !__kmp_forkjoin_frames_mode && __kmp_forkjoin_frames)
2463       __kmp_itt_region_joined(gtid);
2464   } // active_level == 1
2465 #endif /* USE_ITT_BUILD */
2466 
2467 #if KMP_AFFINITY_SUPPORTED
2468   if (!exit_teams) {
2469     // Restore master thread's partition.
2470     master_th->th.th_first_place = team->t.t_first_place;
2471     master_th->th.th_last_place = team->t.t_last_place;
2472   }
2473 #endif // KMP_AFFINITY_SUPPORTED
2474 
2475   if (master_th->th.th_teams_microtask && !exit_teams &&
2476       team->t.t_pkfn != (microtask_t)__kmp_teams_master &&
2477       team->t.t_level == master_th->th.th_teams_level + 1) {
2478 // AC: We need to leave the team structure intact at the end of parallel
2479 // inside the teams construct, so that at the next parallel same (hot) team
2480 // works, only adjust nesting levels
2481 #if OMPT_SUPPORT
2482     ompt_data_t ompt_parallel_data = ompt_data_none;
2483     if (ompt_enabled.enabled) {
2484       ompt_task_info_t *task_info = __ompt_get_task_info_object(0);
2485       if (ompt_enabled.ompt_callback_implicit_task) {
2486         int ompt_team_size = team->t.t_nproc;
2487         ompt_callbacks.ompt_callback(ompt_callback_implicit_task)(
2488             ompt_scope_end, NULL, &(task_info->task_data), ompt_team_size,
2489             OMPT_CUR_TASK_INFO(master_th)->thread_num, ompt_task_implicit);
2490       }
2491       task_info->frame.exit_frame = ompt_data_none;
2492       task_info->task_data = ompt_data_none;
2493       ompt_parallel_data = *OMPT_CUR_TEAM_DATA(master_th);
2494       __ompt_lw_taskteam_unlink(master_th);
2495     }
2496 #endif
2497     /* Decrement our nested depth level */
2498     team->t.t_level--;
2499     team->t.t_active_level--;
2500     KMP_ATOMIC_DEC(&root->r.r_in_parallel);
2501 
2502     // Restore number of threads in the team if needed. This code relies on
2503     // the proper adjustment of th_teams_size.nth after the fork in
2504     // __kmp_teams_master on each teams primary thread in the case that
2505     // __kmp_reserve_threads reduced it.
2506     if (master_th->th.th_team_nproc < master_th->th.th_teams_size.nth) {
2507       int old_num = master_th->th.th_team_nproc;
2508       int new_num = master_th->th.th_teams_size.nth;
2509       kmp_info_t **other_threads = team->t.t_threads;
2510       team->t.t_nproc = new_num;
2511       for (int i = 0; i < old_num; ++i) {
2512         other_threads[i]->th.th_team_nproc = new_num;
2513       }
2514       // Adjust states of non-used threads of the team
2515       for (int i = old_num; i < new_num; ++i) {
2516         // Re-initialize thread's barrier data.
2517         KMP_DEBUG_ASSERT(other_threads[i]);
2518         kmp_balign_t *balign = other_threads[i]->th.th_bar;
2519         for (int b = 0; b < bs_last_barrier; ++b) {
2520           balign[b].bb.b_arrived = team->t.t_bar[b].b_arrived;
2521           KMP_DEBUG_ASSERT(balign[b].bb.wait_flag != KMP_BARRIER_PARENT_FLAG);
2522 #if USE_DEBUGGER
2523           balign[b].bb.b_worker_arrived = team->t.t_bar[b].b_team_arrived;
2524 #endif
2525         }
2526         if (__kmp_tasking_mode != tskm_immediate_exec) {
2527           // Synchronize thread's task state
2528           other_threads[i]->th.th_task_state = master_th->th.th_task_state;
2529         }
2530       }
2531     }
2532 
2533 #if OMPT_SUPPORT
2534     if (ompt_enabled.enabled) {
2535       __kmp_join_ompt(gtid, master_th, parent_team, &ompt_parallel_data,
2536                       OMPT_INVOKER(fork_context) | ompt_parallel_team, codeptr);
2537     }
2538 #endif
2539 
2540     return;
2541   }
2542 
2543   /* do cleanup and restore the parent team */
2544   master_th->th.th_info.ds.ds_tid = team->t.t_master_tid;
2545   master_th->th.th_local.this_construct = team->t.t_master_this_cons;
2546 
2547   master_th->th.th_dispatch = &parent_team->t.t_dispatch[team->t.t_master_tid];
2548 
2549   /* jc: The following lock has instructions with REL and ACQ semantics,
2550      separating the parallel user code called in this parallel region
2551      from the serial user code called after this function returns. */
2552   __kmp_acquire_bootstrap_lock(&__kmp_forkjoin_lock);
2553 
2554   if (!master_th->th.th_teams_microtask ||
2555       team->t.t_level > master_th->th.th_teams_level) {
2556     /* Decrement our nested depth level */
2557     KMP_ATOMIC_DEC(&root->r.r_in_parallel);
2558   }
2559   KMP_DEBUG_ASSERT(root->r.r_in_parallel >= 0);
2560 
2561 #if OMPT_SUPPORT
2562   if (ompt_enabled.enabled) {
2563     ompt_task_info_t *task_info = __ompt_get_task_info_object(0);
2564     if (ompt_enabled.ompt_callback_implicit_task) {
2565       int flags = (team_microtask == (void *)__kmp_teams_master)
2566                       ? ompt_task_initial
2567                       : ompt_task_implicit;
2568       int ompt_team_size = (flags == ompt_task_initial) ? 0 : team->t.t_nproc;
2569       ompt_callbacks.ompt_callback(ompt_callback_implicit_task)(
2570           ompt_scope_end, NULL, &(task_info->task_data), ompt_team_size,
2571           OMPT_CUR_TASK_INFO(master_th)->thread_num, flags);
2572     }
2573     task_info->frame.exit_frame = ompt_data_none;
2574     task_info->task_data = ompt_data_none;
2575   }
2576 #endif
2577 
2578   KF_TRACE(10, ("__kmp_join_call1: T#%d, this_thread=%p team=%p\n", 0,
2579                 master_th, team));
2580   __kmp_pop_current_task_from_thread(master_th);
2581 
2582   master_th->th.th_def_allocator = team->t.t_def_allocator;
2583 
2584 #if OMPD_SUPPORT
2585   if (ompd_state & OMPD_ENABLE_BP)
2586     ompd_bp_parallel_end();
2587 #endif
2588   updateHWFPControl(team);
2589 
2590   if (root->r.r_active != master_active)
2591     root->r.r_active = master_active;
2592 
2593   __kmp_free_team(root, team USE_NESTED_HOT_ARG(
2594                             master_th)); // this will free worker threads
2595 
2596   /* this race was fun to find. make sure the following is in the critical
2597      region otherwise assertions may fail occasionally since the old team may be
2598      reallocated and the hierarchy appears inconsistent. it is actually safe to
2599      run and won't cause any bugs, but will cause those assertion failures. it's
2600      only one deref&assign so might as well put this in the critical region */
2601   master_th->th.th_team = parent_team;
2602   master_th->th.th_team_nproc = parent_team->t.t_nproc;
2603   master_th->th.th_team_master = parent_team->t.t_threads[0];
2604   master_th->th.th_team_serialized = parent_team->t.t_serialized;
2605 
2606   /* restore serialized team, if need be */
2607   if (parent_team->t.t_serialized &&
2608       parent_team != master_th->th.th_serial_team &&
2609       parent_team != root->r.r_root_team) {
2610     __kmp_free_team(root,
2611                     master_th->th.th_serial_team USE_NESTED_HOT_ARG(NULL));
2612     master_th->th.th_serial_team = parent_team;
2613   }
2614 
2615   if (__kmp_tasking_mode != tskm_immediate_exec) {
2616     if (master_th->th.th_task_state_top >
2617         0) { // Restore task state from memo stack
2618       KMP_DEBUG_ASSERT(master_th->th.th_task_state_memo_stack);
2619       // Remember primary thread's state if we re-use this nested hot team
2620       master_th->th.th_task_state_memo_stack[master_th->th.th_task_state_top] =
2621           master_th->th.th_task_state;
2622       --master_th->th.th_task_state_top; // pop
2623       // Now restore state at this level
2624       master_th->th.th_task_state =
2625           master_th->th
2626               .th_task_state_memo_stack[master_th->th.th_task_state_top];
2627     }
2628     // Copy the task team from the parent team to the primary thread
2629     master_th->th.th_task_team =
2630         parent_team->t.t_task_team[master_th->th.th_task_state];
2631     KA_TRACE(20,
2632              ("__kmp_join_call: Primary T#%d restoring task_team %p, team %p\n",
2633               __kmp_gtid_from_thread(master_th), master_th->th.th_task_team,
2634               parent_team));
2635   }
2636 
2637   // TODO: GEH - cannot do this assertion because root thread not set up as
2638   // executing
2639   // KMP_ASSERT( master_th->th.th_current_task->td_flags.executing == 0 );
2640   master_th->th.th_current_task->td_flags.executing = 1;
2641 
2642   __kmp_release_bootstrap_lock(&__kmp_forkjoin_lock);
2643 
2644 #if OMPT_SUPPORT
2645   int flags =
2646       OMPT_INVOKER(fork_context) |
2647       ((team_microtask == (void *)__kmp_teams_master) ? ompt_parallel_league
2648                                                       : ompt_parallel_team);
2649   if (ompt_enabled.enabled) {
2650     __kmp_join_ompt(gtid, master_th, parent_team, parallel_data, flags,
2651                     codeptr);
2652   }
2653 #endif
2654 
2655   KMP_MB();
2656   KA_TRACE(20, ("__kmp_join_call: exit T#%d\n", gtid));
2657 }
2658 
2659 /* Check whether we should push an internal control record onto the
2660    serial team stack.  If so, do it.  */
2661 void __kmp_save_internal_controls(kmp_info_t *thread) {
2662 
2663   if (thread->th.th_team != thread->th.th_serial_team) {
2664     return;
2665   }
2666   if (thread->th.th_team->t.t_serialized > 1) {
2667     int push = 0;
2668 
2669     if (thread->th.th_team->t.t_control_stack_top == NULL) {
2670       push = 1;
2671     } else {
2672       if (thread->th.th_team->t.t_control_stack_top->serial_nesting_level !=
2673           thread->th.th_team->t.t_serialized) {
2674         push = 1;
2675       }
2676     }
2677     if (push) { /* push a record on the serial team's stack */
2678       kmp_internal_control_t *control =
2679           (kmp_internal_control_t *)__kmp_allocate(
2680               sizeof(kmp_internal_control_t));
2681 
2682       copy_icvs(control, &thread->th.th_current_task->td_icvs);
2683 
2684       control->serial_nesting_level = thread->th.th_team->t.t_serialized;
2685 
2686       control->next = thread->th.th_team->t.t_control_stack_top;
2687       thread->th.th_team->t.t_control_stack_top = control;
2688     }
2689   }
2690 }
2691 
2692 /* Changes set_nproc */
2693 void __kmp_set_num_threads(int new_nth, int gtid) {
2694   kmp_info_t *thread;
2695   kmp_root_t *root;
2696 
2697   KF_TRACE(10, ("__kmp_set_num_threads: new __kmp_nth = %d\n", new_nth));
2698   KMP_DEBUG_ASSERT(__kmp_init_serial);
2699 
2700   if (new_nth < 1)
2701     new_nth = 1;
2702   else if (new_nth > __kmp_max_nth)
2703     new_nth = __kmp_max_nth;
2704 
2705   KMP_COUNT_VALUE(OMP_set_numthreads, new_nth);
2706   thread = __kmp_threads[gtid];
2707   if (thread->th.th_current_task->td_icvs.nproc == new_nth)
2708     return; // nothing to do
2709 
2710   __kmp_save_internal_controls(thread);
2711 
2712   set__nproc(thread, new_nth);
2713 
2714   // If this omp_set_num_threads() call will cause the hot team size to be
2715   // reduced (in the absence of a num_threads clause), then reduce it now,
2716   // rather than waiting for the next parallel region.
2717   root = thread->th.th_root;
2718   if (__kmp_init_parallel && (!root->r.r_active) &&
2719       (root->r.r_hot_team->t.t_nproc > new_nth)
2720 #if KMP_NESTED_HOT_TEAMS
2721       && __kmp_hot_teams_max_level && !__kmp_hot_teams_mode
2722 #endif
2723   ) {
2724     kmp_team_t *hot_team = root->r.r_hot_team;
2725     int f;
2726 
2727     __kmp_acquire_bootstrap_lock(&__kmp_forkjoin_lock);
2728 
2729     if (__kmp_barrier_release_pattern[bs_forkjoin_barrier] == bp_dist_bar) {
2730       __kmp_resize_dist_barrier(hot_team, hot_team->t.t_nproc, new_nth);
2731     }
2732     // Release the extra threads we don't need any more.
2733     for (f = new_nth; f < hot_team->t.t_nproc; f++) {
2734       KMP_DEBUG_ASSERT(hot_team->t.t_threads[f] != NULL);
2735       if (__kmp_tasking_mode != tskm_immediate_exec) {
2736         // When decreasing team size, threads no longer in the team should unref
2737         // task team.
2738         hot_team->t.t_threads[f]->th.th_task_team = NULL;
2739       }
2740       __kmp_free_thread(hot_team->t.t_threads[f]);
2741       hot_team->t.t_threads[f] = NULL;
2742     }
2743     hot_team->t.t_nproc = new_nth;
2744 #if KMP_NESTED_HOT_TEAMS
2745     if (thread->th.th_hot_teams) {
2746       KMP_DEBUG_ASSERT(hot_team == thread->th.th_hot_teams[0].hot_team);
2747       thread->th.th_hot_teams[0].hot_team_nth = new_nth;
2748     }
2749 #endif
2750 
2751     if (__kmp_barrier_release_pattern[bs_forkjoin_barrier] == bp_dist_bar) {
2752       hot_team->t.b->update_num_threads(new_nth);
2753       __kmp_add_threads_to_team(hot_team, new_nth);
2754     }
2755 
2756     __kmp_release_bootstrap_lock(&__kmp_forkjoin_lock);
2757 
2758     // Update the t_nproc field in the threads that are still active.
2759     for (f = 0; f < new_nth; f++) {
2760       KMP_DEBUG_ASSERT(hot_team->t.t_threads[f] != NULL);
2761       hot_team->t.t_threads[f]->th.th_team_nproc = new_nth;
2762     }
2763     // Special flag in case omp_set_num_threads() call
2764     hot_team->t.t_size_changed = -1;
2765   }
2766 }
2767 
2768 /* Changes max_active_levels */
2769 void __kmp_set_max_active_levels(int gtid, int max_active_levels) {
2770   kmp_info_t *thread;
2771 
2772   KF_TRACE(10, ("__kmp_set_max_active_levels: new max_active_levels for thread "
2773                 "%d = (%d)\n",
2774                 gtid, max_active_levels));
2775   KMP_DEBUG_ASSERT(__kmp_init_serial);
2776 
2777   // validate max_active_levels
2778   if (max_active_levels < 0) {
2779     KMP_WARNING(ActiveLevelsNegative, max_active_levels);
2780     // We ignore this call if the user has specified a negative value.
2781     // The current setting won't be changed. The last valid setting will be
2782     // used. A warning will be issued (if warnings are allowed as controlled by
2783     // the KMP_WARNINGS env var).
2784     KF_TRACE(10, ("__kmp_set_max_active_levels: the call is ignored: new "
2785                   "max_active_levels for thread %d = (%d)\n",
2786                   gtid, max_active_levels));
2787     return;
2788   }
2789   if (max_active_levels <= KMP_MAX_ACTIVE_LEVELS_LIMIT) {
2790     // it's OK, the max_active_levels is within the valid range: [ 0;
2791     // KMP_MAX_ACTIVE_LEVELS_LIMIT ]
2792     // We allow a zero value. (implementation defined behavior)
2793   } else {
2794     KMP_WARNING(ActiveLevelsExceedLimit, max_active_levels,
2795                 KMP_MAX_ACTIVE_LEVELS_LIMIT);
2796     max_active_levels = KMP_MAX_ACTIVE_LEVELS_LIMIT;
2797     // Current upper limit is MAX_INT. (implementation defined behavior)
2798     // If the input exceeds the upper limit, we correct the input to be the
2799     // upper limit. (implementation defined behavior)
2800     // Actually, the flow should never get here until we use MAX_INT limit.
2801   }
2802   KF_TRACE(10, ("__kmp_set_max_active_levels: after validation: new "
2803                 "max_active_levels for thread %d = (%d)\n",
2804                 gtid, max_active_levels));
2805 
2806   thread = __kmp_threads[gtid];
2807 
2808   __kmp_save_internal_controls(thread);
2809 
2810   set__max_active_levels(thread, max_active_levels);
2811 }
2812 
2813 /* Gets max_active_levels */
2814 int __kmp_get_max_active_levels(int gtid) {
2815   kmp_info_t *thread;
2816 
2817   KF_TRACE(10, ("__kmp_get_max_active_levels: thread %d\n", gtid));
2818   KMP_DEBUG_ASSERT(__kmp_init_serial);
2819 
2820   thread = __kmp_threads[gtid];
2821   KMP_DEBUG_ASSERT(thread->th.th_current_task);
2822   KF_TRACE(10, ("__kmp_get_max_active_levels: thread %d, curtask=%p, "
2823                 "curtask_maxaclevel=%d\n",
2824                 gtid, thread->th.th_current_task,
2825                 thread->th.th_current_task->td_icvs.max_active_levels));
2826   return thread->th.th_current_task->td_icvs.max_active_levels;
2827 }
2828 
2829 // nteams-var per-device ICV
2830 void __kmp_set_num_teams(int num_teams) {
2831   if (num_teams > 0)
2832     __kmp_nteams = num_teams;
2833 }
2834 int __kmp_get_max_teams(void) { return __kmp_nteams; }
2835 // teams-thread-limit-var per-device ICV
2836 void __kmp_set_teams_thread_limit(int limit) {
2837   if (limit > 0)
2838     __kmp_teams_thread_limit = limit;
2839 }
2840 int __kmp_get_teams_thread_limit(void) { return __kmp_teams_thread_limit; }
2841 
2842 KMP_BUILD_ASSERT(sizeof(kmp_sched_t) == sizeof(int));
2843 KMP_BUILD_ASSERT(sizeof(enum sched_type) == sizeof(int));
2844 
2845 /* Changes def_sched_var ICV values (run-time schedule kind and chunk) */
2846 void __kmp_set_schedule(int gtid, kmp_sched_t kind, int chunk) {
2847   kmp_info_t *thread;
2848   kmp_sched_t orig_kind;
2849   //    kmp_team_t *team;
2850 
2851   KF_TRACE(10, ("__kmp_set_schedule: new schedule for thread %d = (%d, %d)\n",
2852                 gtid, (int)kind, chunk));
2853   KMP_DEBUG_ASSERT(__kmp_init_serial);
2854 
2855   // Check if the kind parameter is valid, correct if needed.
2856   // Valid parameters should fit in one of two intervals - standard or extended:
2857   //       <lower>, <valid>, <upper_std>, <lower_ext>, <valid>, <upper>
2858   // 2008-01-25: 0,  1 - 4,       5,         100,     101 - 102, 103
2859   orig_kind = kind;
2860   kind = __kmp_sched_without_mods(kind);
2861 
2862   if (kind <= kmp_sched_lower || kind >= kmp_sched_upper ||
2863       (kind <= kmp_sched_lower_ext && kind >= kmp_sched_upper_std)) {
2864     // TODO: Hint needs attention in case we change the default schedule.
2865     __kmp_msg(kmp_ms_warning, KMP_MSG(ScheduleKindOutOfRange, kind),
2866               KMP_HNT(DefaultScheduleKindUsed, "static, no chunk"),
2867               __kmp_msg_null);
2868     kind = kmp_sched_default;
2869     chunk = 0; // ignore chunk value in case of bad kind
2870   }
2871 
2872   thread = __kmp_threads[gtid];
2873 
2874   __kmp_save_internal_controls(thread);
2875 
2876   if (kind < kmp_sched_upper_std) {
2877     if (kind == kmp_sched_static && chunk < KMP_DEFAULT_CHUNK) {
2878       // differ static chunked vs. unchunked:  chunk should be invalid to
2879       // indicate unchunked schedule (which is the default)
2880       thread->th.th_current_task->td_icvs.sched.r_sched_type = kmp_sch_static;
2881     } else {
2882       thread->th.th_current_task->td_icvs.sched.r_sched_type =
2883           __kmp_sch_map[kind - kmp_sched_lower - 1];
2884     }
2885   } else {
2886     //    __kmp_sch_map[ kind - kmp_sched_lower_ext + kmp_sched_upper_std -
2887     //    kmp_sched_lower - 2 ];
2888     thread->th.th_current_task->td_icvs.sched.r_sched_type =
2889         __kmp_sch_map[kind - kmp_sched_lower_ext + kmp_sched_upper_std -
2890                       kmp_sched_lower - 2];
2891   }
2892   __kmp_sched_apply_mods_intkind(
2893       orig_kind, &(thread->th.th_current_task->td_icvs.sched.r_sched_type));
2894   if (kind == kmp_sched_auto || chunk < 1) {
2895     // ignore parameter chunk for schedule auto
2896     thread->th.th_current_task->td_icvs.sched.chunk = KMP_DEFAULT_CHUNK;
2897   } else {
2898     thread->th.th_current_task->td_icvs.sched.chunk = chunk;
2899   }
2900 }
2901 
2902 /* Gets def_sched_var ICV values */
2903 void __kmp_get_schedule(int gtid, kmp_sched_t *kind, int *chunk) {
2904   kmp_info_t *thread;
2905   enum sched_type th_type;
2906 
2907   KF_TRACE(10, ("__kmp_get_schedule: thread %d\n", gtid));
2908   KMP_DEBUG_ASSERT(__kmp_init_serial);
2909 
2910   thread = __kmp_threads[gtid];
2911 
2912   th_type = thread->th.th_current_task->td_icvs.sched.r_sched_type;
2913   switch (SCHEDULE_WITHOUT_MODIFIERS(th_type)) {
2914   case kmp_sch_static:
2915   case kmp_sch_static_greedy:
2916   case kmp_sch_static_balanced:
2917     *kind = kmp_sched_static;
2918     __kmp_sched_apply_mods_stdkind(kind, th_type);
2919     *chunk = 0; // chunk was not set, try to show this fact via zero value
2920     return;
2921   case kmp_sch_static_chunked:
2922     *kind = kmp_sched_static;
2923     break;
2924   case kmp_sch_dynamic_chunked:
2925     *kind = kmp_sched_dynamic;
2926     break;
2927   case kmp_sch_guided_chunked:
2928   case kmp_sch_guided_iterative_chunked:
2929   case kmp_sch_guided_analytical_chunked:
2930     *kind = kmp_sched_guided;
2931     break;
2932   case kmp_sch_auto:
2933     *kind = kmp_sched_auto;
2934     break;
2935   case kmp_sch_trapezoidal:
2936     *kind = kmp_sched_trapezoidal;
2937     break;
2938 #if KMP_STATIC_STEAL_ENABLED
2939   case kmp_sch_static_steal:
2940     *kind = kmp_sched_static_steal;
2941     break;
2942 #endif
2943   default:
2944     KMP_FATAL(UnknownSchedulingType, th_type);
2945   }
2946 
2947   __kmp_sched_apply_mods_stdkind(kind, th_type);
2948   *chunk = thread->th.th_current_task->td_icvs.sched.chunk;
2949 }
2950 
2951 int __kmp_get_ancestor_thread_num(int gtid, int level) {
2952 
2953   int ii, dd;
2954   kmp_team_t *team;
2955   kmp_info_t *thr;
2956 
2957   KF_TRACE(10, ("__kmp_get_ancestor_thread_num: thread %d %d\n", gtid, level));
2958   KMP_DEBUG_ASSERT(__kmp_init_serial);
2959 
2960   // validate level
2961   if (level == 0)
2962     return 0;
2963   if (level < 0)
2964     return -1;
2965   thr = __kmp_threads[gtid];
2966   team = thr->th.th_team;
2967   ii = team->t.t_level;
2968   if (level > ii)
2969     return -1;
2970 
2971   if (thr->th.th_teams_microtask) {
2972     // AC: we are in teams region where multiple nested teams have same level
2973     int tlevel = thr->th.th_teams_level; // the level of the teams construct
2974     if (level <=
2975         tlevel) { // otherwise usual algorithm works (will not touch the teams)
2976       KMP_DEBUG_ASSERT(ii >= tlevel);
2977       // AC: As we need to pass by the teams league, we need to artificially
2978       // increase ii
2979       if (ii == tlevel) {
2980         ii += 2; // three teams have same level
2981       } else {
2982         ii++; // two teams have same level
2983       }
2984     }
2985   }
2986 
2987   if (ii == level)
2988     return __kmp_tid_from_gtid(gtid);
2989 
2990   dd = team->t.t_serialized;
2991   level++;
2992   while (ii > level) {
2993     for (dd = team->t.t_serialized; (dd > 0) && (ii > level); dd--, ii--) {
2994     }
2995     if ((team->t.t_serialized) && (!dd)) {
2996       team = team->t.t_parent;
2997       continue;
2998     }
2999     if (ii > level) {
3000       team = team->t.t_parent;
3001       dd = team->t.t_serialized;
3002       ii--;
3003     }
3004   }
3005 
3006   return (dd > 1) ? (0) : (team->t.t_master_tid);
3007 }
3008 
3009 int __kmp_get_team_size(int gtid, int level) {
3010 
3011   int ii, dd;
3012   kmp_team_t *team;
3013   kmp_info_t *thr;
3014 
3015   KF_TRACE(10, ("__kmp_get_team_size: thread %d %d\n", gtid, level));
3016   KMP_DEBUG_ASSERT(__kmp_init_serial);
3017 
3018   // validate level
3019   if (level == 0)
3020     return 1;
3021   if (level < 0)
3022     return -1;
3023   thr = __kmp_threads[gtid];
3024   team = thr->th.th_team;
3025   ii = team->t.t_level;
3026   if (level > ii)
3027     return -1;
3028 
3029   if (thr->th.th_teams_microtask) {
3030     // AC: we are in teams region where multiple nested teams have same level
3031     int tlevel = thr->th.th_teams_level; // the level of the teams construct
3032     if (level <=
3033         tlevel) { // otherwise usual algorithm works (will not touch the teams)
3034       KMP_DEBUG_ASSERT(ii >= tlevel);
3035       // AC: As we need to pass by the teams league, we need to artificially
3036       // increase ii
3037       if (ii == tlevel) {
3038         ii += 2; // three teams have same level
3039       } else {
3040         ii++; // two teams have same level
3041       }
3042     }
3043   }
3044 
3045   while (ii > level) {
3046     for (dd = team->t.t_serialized; (dd > 0) && (ii > level); dd--, ii--) {
3047     }
3048     if (team->t.t_serialized && (!dd)) {
3049       team = team->t.t_parent;
3050       continue;
3051     }
3052     if (ii > level) {
3053       team = team->t.t_parent;
3054       ii--;
3055     }
3056   }
3057 
3058   return team->t.t_nproc;
3059 }
3060 
3061 kmp_r_sched_t __kmp_get_schedule_global() {
3062   // This routine created because pairs (__kmp_sched, __kmp_chunk) and
3063   // (__kmp_static, __kmp_guided) may be changed by kmp_set_defaults
3064   // independently. So one can get the updated schedule here.
3065 
3066   kmp_r_sched_t r_sched;
3067 
3068   // create schedule from 4 globals: __kmp_sched, __kmp_chunk, __kmp_static,
3069   // __kmp_guided. __kmp_sched should keep original value, so that user can set
3070   // KMP_SCHEDULE multiple times, and thus have different run-time schedules in
3071   // different roots (even in OMP 2.5)
3072   enum sched_type s = SCHEDULE_WITHOUT_MODIFIERS(__kmp_sched);
3073   enum sched_type sched_modifiers = SCHEDULE_GET_MODIFIERS(__kmp_sched);
3074   if (s == kmp_sch_static) {
3075     // replace STATIC with more detailed schedule (balanced or greedy)
3076     r_sched.r_sched_type = __kmp_static;
3077   } else if (s == kmp_sch_guided_chunked) {
3078     // replace GUIDED with more detailed schedule (iterative or analytical)
3079     r_sched.r_sched_type = __kmp_guided;
3080   } else { // (STATIC_CHUNKED), or (DYNAMIC_CHUNKED), or other
3081     r_sched.r_sched_type = __kmp_sched;
3082   }
3083   SCHEDULE_SET_MODIFIERS(r_sched.r_sched_type, sched_modifiers);
3084 
3085   if (__kmp_chunk < KMP_DEFAULT_CHUNK) {
3086     // __kmp_chunk may be wrong here (if it was not ever set)
3087     r_sched.chunk = KMP_DEFAULT_CHUNK;
3088   } else {
3089     r_sched.chunk = __kmp_chunk;
3090   }
3091 
3092   return r_sched;
3093 }
3094 
3095 /* Allocate (realloc == FALSE) * or reallocate (realloc == TRUE)
3096    at least argc number of *t_argv entries for the requested team. */
3097 static void __kmp_alloc_argv_entries(int argc, kmp_team_t *team, int realloc) {
3098 
3099   KMP_DEBUG_ASSERT(team);
3100   if (!realloc || argc > team->t.t_max_argc) {
3101 
3102     KA_TRACE(100, ("__kmp_alloc_argv_entries: team %d: needed entries=%d, "
3103                    "current entries=%d\n",
3104                    team->t.t_id, argc, (realloc) ? team->t.t_max_argc : 0));
3105     /* if previously allocated heap space for args, free them */
3106     if (realloc && team->t.t_argv != &team->t.t_inline_argv[0])
3107       __kmp_free((void *)team->t.t_argv);
3108 
3109     if (argc <= KMP_INLINE_ARGV_ENTRIES) {
3110       /* use unused space in the cache line for arguments */
3111       team->t.t_max_argc = KMP_INLINE_ARGV_ENTRIES;
3112       KA_TRACE(100, ("__kmp_alloc_argv_entries: team %d: inline allocate %d "
3113                      "argv entries\n",
3114                      team->t.t_id, team->t.t_max_argc));
3115       team->t.t_argv = &team->t.t_inline_argv[0];
3116       if (__kmp_storage_map) {
3117         __kmp_print_storage_map_gtid(
3118             -1, &team->t.t_inline_argv[0],
3119             &team->t.t_inline_argv[KMP_INLINE_ARGV_ENTRIES],
3120             (sizeof(void *) * KMP_INLINE_ARGV_ENTRIES), "team_%d.t_inline_argv",
3121             team->t.t_id);
3122       }
3123     } else {
3124       /* allocate space for arguments in the heap */
3125       team->t.t_max_argc = (argc <= (KMP_MIN_MALLOC_ARGV_ENTRIES >> 1))
3126                                ? KMP_MIN_MALLOC_ARGV_ENTRIES
3127                                : 2 * argc;
3128       KA_TRACE(100, ("__kmp_alloc_argv_entries: team %d: dynamic allocate %d "
3129                      "argv entries\n",
3130                      team->t.t_id, team->t.t_max_argc));
3131       team->t.t_argv =
3132           (void **)__kmp_page_allocate(sizeof(void *) * team->t.t_max_argc);
3133       if (__kmp_storage_map) {
3134         __kmp_print_storage_map_gtid(-1, &team->t.t_argv[0],
3135                                      &team->t.t_argv[team->t.t_max_argc],
3136                                      sizeof(void *) * team->t.t_max_argc,
3137                                      "team_%d.t_argv", team->t.t_id);
3138       }
3139     }
3140   }
3141 }
3142 
3143 static void __kmp_allocate_team_arrays(kmp_team_t *team, int max_nth) {
3144   int i;
3145   int num_disp_buff = max_nth > 1 ? __kmp_dispatch_num_buffers : 2;
3146   team->t.t_threads =
3147       (kmp_info_t **)__kmp_allocate(sizeof(kmp_info_t *) * max_nth);
3148   team->t.t_disp_buffer = (dispatch_shared_info_t *)__kmp_allocate(
3149       sizeof(dispatch_shared_info_t) * num_disp_buff);
3150   team->t.t_dispatch =
3151       (kmp_disp_t *)__kmp_allocate(sizeof(kmp_disp_t) * max_nth);
3152   team->t.t_implicit_task_taskdata =
3153       (kmp_taskdata_t *)__kmp_allocate(sizeof(kmp_taskdata_t) * max_nth);
3154   team->t.t_max_nproc = max_nth;
3155 
3156   /* setup dispatch buffers */
3157   for (i = 0; i < num_disp_buff; ++i) {
3158     team->t.t_disp_buffer[i].buffer_index = i;
3159     team->t.t_disp_buffer[i].doacross_buf_idx = i;
3160   }
3161 }
3162 
3163 static void __kmp_free_team_arrays(kmp_team_t *team) {
3164   /* Note: this does not free the threads in t_threads (__kmp_free_threads) */
3165   int i;
3166   for (i = 0; i < team->t.t_max_nproc; ++i) {
3167     if (team->t.t_dispatch[i].th_disp_buffer != NULL) {
3168       __kmp_free(team->t.t_dispatch[i].th_disp_buffer);
3169       team->t.t_dispatch[i].th_disp_buffer = NULL;
3170     }
3171   }
3172 #if KMP_USE_HIER_SCHED
3173   __kmp_dispatch_free_hierarchies(team);
3174 #endif
3175   __kmp_free(team->t.t_threads);
3176   __kmp_free(team->t.t_disp_buffer);
3177   __kmp_free(team->t.t_dispatch);
3178   __kmp_free(team->t.t_implicit_task_taskdata);
3179   team->t.t_threads = NULL;
3180   team->t.t_disp_buffer = NULL;
3181   team->t.t_dispatch = NULL;
3182   team->t.t_implicit_task_taskdata = 0;
3183 }
3184 
3185 static void __kmp_reallocate_team_arrays(kmp_team_t *team, int max_nth) {
3186   kmp_info_t **oldThreads = team->t.t_threads;
3187 
3188   __kmp_free(team->t.t_disp_buffer);
3189   __kmp_free(team->t.t_dispatch);
3190   __kmp_free(team->t.t_implicit_task_taskdata);
3191   __kmp_allocate_team_arrays(team, max_nth);
3192 
3193   KMP_MEMCPY(team->t.t_threads, oldThreads,
3194              team->t.t_nproc * sizeof(kmp_info_t *));
3195 
3196   __kmp_free(oldThreads);
3197 }
3198 
3199 static kmp_internal_control_t __kmp_get_global_icvs(void) {
3200 
3201   kmp_r_sched_t r_sched =
3202       __kmp_get_schedule_global(); // get current state of scheduling globals
3203 
3204   KMP_DEBUG_ASSERT(__kmp_nested_proc_bind.used > 0);
3205 
3206   kmp_internal_control_t g_icvs = {
3207     0, // int serial_nesting_level; //corresponds to value of th_team_serialized
3208     (kmp_int8)__kmp_global.g.g_dynamic, // internal control for dynamic
3209     // adjustment of threads (per thread)
3210     (kmp_int8)__kmp_env_blocktime, // int bt_set; //internal control for
3211     // whether blocktime is explicitly set
3212     __kmp_dflt_blocktime, // int blocktime; //internal control for blocktime
3213 #if KMP_USE_MONITOR
3214     __kmp_bt_intervals, // int bt_intervals; //internal control for blocktime
3215 // intervals
3216 #endif
3217     __kmp_dflt_team_nth, // int nproc; //internal control for # of threads for
3218     // next parallel region (per thread)
3219     // (use a max ub on value if __kmp_parallel_initialize not called yet)
3220     __kmp_cg_max_nth, // int thread_limit;
3221     __kmp_dflt_max_active_levels, // int max_active_levels; //internal control
3222     // for max_active_levels
3223     r_sched, // kmp_r_sched_t sched; //internal control for runtime schedule
3224     // {sched,chunk} pair
3225     __kmp_nested_proc_bind.bind_types[0],
3226     __kmp_default_device,
3227     NULL // struct kmp_internal_control *next;
3228   };
3229 
3230   return g_icvs;
3231 }
3232 
3233 static kmp_internal_control_t __kmp_get_x_global_icvs(const kmp_team_t *team) {
3234 
3235   kmp_internal_control_t gx_icvs;
3236   gx_icvs.serial_nesting_level =
3237       0; // probably =team->t.t_serial like in save_inter_controls
3238   copy_icvs(&gx_icvs, &team->t.t_threads[0]->th.th_current_task->td_icvs);
3239   gx_icvs.next = NULL;
3240 
3241   return gx_icvs;
3242 }
3243 
3244 static void __kmp_initialize_root(kmp_root_t *root) {
3245   int f;
3246   kmp_team_t *root_team;
3247   kmp_team_t *hot_team;
3248   int hot_team_max_nth;
3249   kmp_r_sched_t r_sched =
3250       __kmp_get_schedule_global(); // get current state of scheduling globals
3251   kmp_internal_control_t r_icvs = __kmp_get_global_icvs();
3252   KMP_DEBUG_ASSERT(root);
3253   KMP_ASSERT(!root->r.r_begin);
3254 
3255   /* setup the root state structure */
3256   __kmp_init_lock(&root->r.r_begin_lock);
3257   root->r.r_begin = FALSE;
3258   root->r.r_active = FALSE;
3259   root->r.r_in_parallel = 0;
3260   root->r.r_blocktime = __kmp_dflt_blocktime;
3261 #if KMP_AFFINITY_SUPPORTED
3262   root->r.r_affinity_assigned = FALSE;
3263 #endif
3264 
3265   /* setup the root team for this task */
3266   /* allocate the root team structure */
3267   KF_TRACE(10, ("__kmp_initialize_root: before root_team\n"));
3268 
3269   root_team =
3270       __kmp_allocate_team(root,
3271                           1, // new_nproc
3272                           1, // max_nproc
3273 #if OMPT_SUPPORT
3274                           ompt_data_none, // root parallel id
3275 #endif
3276                           __kmp_nested_proc_bind.bind_types[0], &r_icvs,
3277                           0 // argc
3278                           USE_NESTED_HOT_ARG(NULL) // primary thread is unknown
3279                           );
3280 #if USE_DEBUGGER
3281   // Non-NULL value should be assigned to make the debugger display the root
3282   // team.
3283   TCW_SYNC_PTR(root_team->t.t_pkfn, (microtask_t)(~0));
3284 #endif
3285 
3286   KF_TRACE(10, ("__kmp_initialize_root: after root_team = %p\n", root_team));
3287 
3288   root->r.r_root_team = root_team;
3289   root_team->t.t_control_stack_top = NULL;
3290 
3291   /* initialize root team */
3292   root_team->t.t_threads[0] = NULL;
3293   root_team->t.t_nproc = 1;
3294   root_team->t.t_serialized = 1;
3295   // TODO???: root_team->t.t_max_active_levels = __kmp_dflt_max_active_levels;
3296   root_team->t.t_sched.sched = r_sched.sched;
3297   KA_TRACE(
3298       20,
3299       ("__kmp_initialize_root: init root team %d arrived: join=%u, plain=%u\n",
3300        root_team->t.t_id, KMP_INIT_BARRIER_STATE, KMP_INIT_BARRIER_STATE));
3301 
3302   /* setup the  hot team for this task */
3303   /* allocate the hot team structure */
3304   KF_TRACE(10, ("__kmp_initialize_root: before hot_team\n"));
3305 
3306   hot_team =
3307       __kmp_allocate_team(root,
3308                           1, // new_nproc
3309                           __kmp_dflt_team_nth_ub * 2, // max_nproc
3310 #if OMPT_SUPPORT
3311                           ompt_data_none, // root parallel id
3312 #endif
3313                           __kmp_nested_proc_bind.bind_types[0], &r_icvs,
3314                           0 // argc
3315                           USE_NESTED_HOT_ARG(NULL) // primary thread is unknown
3316                           );
3317   KF_TRACE(10, ("__kmp_initialize_root: after hot_team = %p\n", hot_team));
3318 
3319   root->r.r_hot_team = hot_team;
3320   root_team->t.t_control_stack_top = NULL;
3321 
3322   /* first-time initialization */
3323   hot_team->t.t_parent = root_team;
3324 
3325   /* initialize hot team */
3326   hot_team_max_nth = hot_team->t.t_max_nproc;
3327   for (f = 0; f < hot_team_max_nth; ++f) {
3328     hot_team->t.t_threads[f] = NULL;
3329   }
3330   hot_team->t.t_nproc = 1;
3331   // TODO???: hot_team->t.t_max_active_levels = __kmp_dflt_max_active_levels;
3332   hot_team->t.t_sched.sched = r_sched.sched;
3333   hot_team->t.t_size_changed = 0;
3334 }
3335 
3336 #ifdef KMP_DEBUG
3337 
3338 typedef struct kmp_team_list_item {
3339   kmp_team_p const *entry;
3340   struct kmp_team_list_item *next;
3341 } kmp_team_list_item_t;
3342 typedef kmp_team_list_item_t *kmp_team_list_t;
3343 
3344 static void __kmp_print_structure_team_accum( // Add team to list of teams.
3345     kmp_team_list_t list, // List of teams.
3346     kmp_team_p const *team // Team to add.
3347 ) {
3348 
3349   // List must terminate with item where both entry and next are NULL.
3350   // Team is added to the list only once.
3351   // List is sorted in ascending order by team id.
3352   // Team id is *not* a key.
3353 
3354   kmp_team_list_t l;
3355 
3356   KMP_DEBUG_ASSERT(list != NULL);
3357   if (team == NULL) {
3358     return;
3359   }
3360 
3361   __kmp_print_structure_team_accum(list, team->t.t_parent);
3362   __kmp_print_structure_team_accum(list, team->t.t_next_pool);
3363 
3364   // Search list for the team.
3365   l = list;
3366   while (l->next != NULL && l->entry != team) {
3367     l = l->next;
3368   }
3369   if (l->next != NULL) {
3370     return; // Team has been added before, exit.
3371   }
3372 
3373   // Team is not found. Search list again for insertion point.
3374   l = list;
3375   while (l->next != NULL && l->entry->t.t_id <= team->t.t_id) {
3376     l = l->next;
3377   }
3378 
3379   // Insert team.
3380   {
3381     kmp_team_list_item_t *item = (kmp_team_list_item_t *)KMP_INTERNAL_MALLOC(
3382         sizeof(kmp_team_list_item_t));
3383     *item = *l;
3384     l->entry = team;
3385     l->next = item;
3386   }
3387 }
3388 
3389 static void __kmp_print_structure_team(char const *title, kmp_team_p const *team
3390 
3391 ) {
3392   __kmp_printf("%s", title);
3393   if (team != NULL) {
3394     __kmp_printf("%2x %p\n", team->t.t_id, team);
3395   } else {
3396     __kmp_printf(" - (nil)\n");
3397   }
3398 }
3399 
3400 static void __kmp_print_structure_thread(char const *title,
3401                                          kmp_info_p const *thread) {
3402   __kmp_printf("%s", title);
3403   if (thread != NULL) {
3404     __kmp_printf("%2d %p\n", thread->th.th_info.ds.ds_gtid, thread);
3405   } else {
3406     __kmp_printf(" - (nil)\n");
3407   }
3408 }
3409 
3410 void __kmp_print_structure(void) {
3411 
3412   kmp_team_list_t list;
3413 
3414   // Initialize list of teams.
3415   list =
3416       (kmp_team_list_item_t *)KMP_INTERNAL_MALLOC(sizeof(kmp_team_list_item_t));
3417   list->entry = NULL;
3418   list->next = NULL;
3419 
3420   __kmp_printf("\n------------------------------\nGlobal Thread "
3421                "Table\n------------------------------\n");
3422   {
3423     int gtid;
3424     for (gtid = 0; gtid < __kmp_threads_capacity; ++gtid) {
3425       __kmp_printf("%2d", gtid);
3426       if (__kmp_threads != NULL) {
3427         __kmp_printf(" %p", __kmp_threads[gtid]);
3428       }
3429       if (__kmp_root != NULL) {
3430         __kmp_printf(" %p", __kmp_root[gtid]);
3431       }
3432       __kmp_printf("\n");
3433     }
3434   }
3435 
3436   // Print out __kmp_threads array.
3437   __kmp_printf("\n------------------------------\nThreads\n--------------------"
3438                "----------\n");
3439   if (__kmp_threads != NULL) {
3440     int gtid;
3441     for (gtid = 0; gtid < __kmp_threads_capacity; ++gtid) {
3442       kmp_info_t const *thread = __kmp_threads[gtid];
3443       if (thread != NULL) {
3444         __kmp_printf("GTID %2d %p:\n", gtid, thread);
3445         __kmp_printf("    Our Root:        %p\n", thread->th.th_root);
3446         __kmp_print_structure_team("    Our Team:     ", thread->th.th_team);
3447         __kmp_print_structure_team("    Serial Team:  ",
3448                                    thread->th.th_serial_team);
3449         __kmp_printf("    Threads:      %2d\n", thread->th.th_team_nproc);
3450         __kmp_print_structure_thread("    Primary:      ",
3451                                      thread->th.th_team_master);
3452         __kmp_printf("    Serialized?:  %2d\n", thread->th.th_team_serialized);
3453         __kmp_printf("    Set NProc:    %2d\n", thread->th.th_set_nproc);
3454         __kmp_printf("    Set Proc Bind: %2d\n", thread->th.th_set_proc_bind);
3455         __kmp_print_structure_thread("    Next in pool: ",
3456                                      thread->th.th_next_pool);
3457         __kmp_printf("\n");
3458         __kmp_print_structure_team_accum(list, thread->th.th_team);
3459         __kmp_print_structure_team_accum(list, thread->th.th_serial_team);
3460       }
3461     }
3462   } else {
3463     __kmp_printf("Threads array is not allocated.\n");
3464   }
3465 
3466   // Print out __kmp_root array.
3467   __kmp_printf("\n------------------------------\nUbers\n----------------------"
3468                "--------\n");
3469   if (__kmp_root != NULL) {
3470     int gtid;
3471     for (gtid = 0; gtid < __kmp_threads_capacity; ++gtid) {
3472       kmp_root_t const *root = __kmp_root[gtid];
3473       if (root != NULL) {
3474         __kmp_printf("GTID %2d %p:\n", gtid, root);
3475         __kmp_print_structure_team("    Root Team:    ", root->r.r_root_team);
3476         __kmp_print_structure_team("    Hot Team:     ", root->r.r_hot_team);
3477         __kmp_print_structure_thread("    Uber Thread:  ",
3478                                      root->r.r_uber_thread);
3479         __kmp_printf("    Active?:      %2d\n", root->r.r_active);
3480         __kmp_printf("    In Parallel:  %2d\n",
3481                      KMP_ATOMIC_LD_RLX(&root->r.r_in_parallel));
3482         __kmp_printf("\n");
3483         __kmp_print_structure_team_accum(list, root->r.r_root_team);
3484         __kmp_print_structure_team_accum(list, root->r.r_hot_team);
3485       }
3486     }
3487   } else {
3488     __kmp_printf("Ubers array is not allocated.\n");
3489   }
3490 
3491   __kmp_printf("\n------------------------------\nTeams\n----------------------"
3492                "--------\n");
3493   while (list->next != NULL) {
3494     kmp_team_p const *team = list->entry;
3495     int i;
3496     __kmp_printf("Team %2x %p:\n", team->t.t_id, team);
3497     __kmp_print_structure_team("    Parent Team:      ", team->t.t_parent);
3498     __kmp_printf("    Primary TID:      %2d\n", team->t.t_master_tid);
3499     __kmp_printf("    Max threads:      %2d\n", team->t.t_max_nproc);
3500     __kmp_printf("    Levels of serial: %2d\n", team->t.t_serialized);
3501     __kmp_printf("    Number threads:   %2d\n", team->t.t_nproc);
3502     for (i = 0; i < team->t.t_nproc; ++i) {
3503       __kmp_printf("    Thread %2d:      ", i);
3504       __kmp_print_structure_thread("", team->t.t_threads[i]);
3505     }
3506     __kmp_print_structure_team("    Next in pool:     ", team->t.t_next_pool);
3507     __kmp_printf("\n");
3508     list = list->next;
3509   }
3510 
3511   // Print out __kmp_thread_pool and __kmp_team_pool.
3512   __kmp_printf("\n------------------------------\nPools\n----------------------"
3513                "--------\n");
3514   __kmp_print_structure_thread("Thread pool:          ",
3515                                CCAST(kmp_info_t *, __kmp_thread_pool));
3516   __kmp_print_structure_team("Team pool:            ",
3517                              CCAST(kmp_team_t *, __kmp_team_pool));
3518   __kmp_printf("\n");
3519 
3520   // Free team list.
3521   while (list != NULL) {
3522     kmp_team_list_item_t *item = list;
3523     list = list->next;
3524     KMP_INTERNAL_FREE(item);
3525   }
3526 }
3527 
3528 #endif
3529 
3530 //---------------------------------------------------------------------------
3531 //  Stuff for per-thread fast random number generator
3532 //  Table of primes
3533 static const unsigned __kmp_primes[] = {
3534     0x9e3779b1, 0xffe6cc59, 0x2109f6dd, 0x43977ab5, 0xba5703f5, 0xb495a877,
3535     0xe1626741, 0x79695e6b, 0xbc98c09f, 0xd5bee2b3, 0x287488f9, 0x3af18231,
3536     0x9677cd4d, 0xbe3a6929, 0xadc6a877, 0xdcf0674b, 0xbe4d6fe9, 0x5f15e201,
3537     0x99afc3fd, 0xf3f16801, 0xe222cfff, 0x24ba5fdb, 0x0620452d, 0x79f149e3,
3538     0xc8b93f49, 0x972702cd, 0xb07dd827, 0x6c97d5ed, 0x085a3d61, 0x46eb5ea7,
3539     0x3d9910ed, 0x2e687b5b, 0x29609227, 0x6eb081f1, 0x0954c4e1, 0x9d114db9,
3540     0x542acfa9, 0xb3e6bd7b, 0x0742d917, 0xe9f3ffa7, 0x54581edb, 0xf2480f45,
3541     0x0bb9288f, 0xef1affc7, 0x85fa0ca7, 0x3ccc14db, 0xe6baf34b, 0x343377f7,
3542     0x5ca19031, 0xe6d9293b, 0xf0a9f391, 0x5d2e980b, 0xfc411073, 0xc3749363,
3543     0xb892d829, 0x3549366b, 0x629750ad, 0xb98294e5, 0x892d9483, 0xc235baf3,
3544     0x3d2402a3, 0x6bdef3c9, 0xbec333cd, 0x40c9520f};
3545 
3546 //---------------------------------------------------------------------------
3547 //  __kmp_get_random: Get a random number using a linear congruential method.
3548 unsigned short __kmp_get_random(kmp_info_t *thread) {
3549   unsigned x = thread->th.th_x;
3550   unsigned short r = (unsigned short)(x >> 16);
3551 
3552   thread->th.th_x = x * thread->th.th_a + 1;
3553 
3554   KA_TRACE(30, ("__kmp_get_random: THREAD: %d, RETURN: %u\n",
3555                 thread->th.th_info.ds.ds_tid, r));
3556 
3557   return r;
3558 }
3559 //--------------------------------------------------------
3560 // __kmp_init_random: Initialize a random number generator
3561 void __kmp_init_random(kmp_info_t *thread) {
3562   unsigned seed = thread->th.th_info.ds.ds_tid;
3563 
3564   thread->th.th_a =
3565       __kmp_primes[seed % (sizeof(__kmp_primes) / sizeof(__kmp_primes[0]))];
3566   thread->th.th_x = (seed + 1) * thread->th.th_a + 1;
3567   KA_TRACE(30,
3568            ("__kmp_init_random: THREAD: %u; A: %u\n", seed, thread->th.th_a));
3569 }
3570 
3571 #if KMP_OS_WINDOWS
3572 /* reclaim array entries for root threads that are already dead, returns number
3573  * reclaimed */
3574 static int __kmp_reclaim_dead_roots(void) {
3575   int i, r = 0;
3576 
3577   for (i = 0; i < __kmp_threads_capacity; ++i) {
3578     if (KMP_UBER_GTID(i) &&
3579         !__kmp_still_running((kmp_info_t *)TCR_SYNC_PTR(__kmp_threads[i])) &&
3580         !__kmp_root[i]
3581              ->r.r_active) { // AC: reclaim only roots died in non-active state
3582       r += __kmp_unregister_root_other_thread(i);
3583     }
3584   }
3585   return r;
3586 }
3587 #endif
3588 
3589 /* This function attempts to create free entries in __kmp_threads and
3590    __kmp_root, and returns the number of free entries generated.
3591 
3592    For Windows* OS static library, the first mechanism used is to reclaim array
3593    entries for root threads that are already dead.
3594 
3595    On all platforms, expansion is attempted on the arrays __kmp_threads_ and
3596    __kmp_root, with appropriate update to __kmp_threads_capacity. Array
3597    capacity is increased by doubling with clipping to __kmp_tp_capacity, if
3598    threadprivate cache array has been created. Synchronization with
3599    __kmpc_threadprivate_cached is done using __kmp_tp_cached_lock.
3600 
3601    After any dead root reclamation, if the clipping value allows array expansion
3602    to result in the generation of a total of nNeed free slots, the function does
3603    that expansion. If not, nothing is done beyond the possible initial root
3604    thread reclamation.
3605 
3606    If any argument is negative, the behavior is undefined. */
3607 static int __kmp_expand_threads(int nNeed) {
3608   int added = 0;
3609   int minimumRequiredCapacity;
3610   int newCapacity;
3611   kmp_info_t **newThreads;
3612   kmp_root_t **newRoot;
3613 
3614   // All calls to __kmp_expand_threads should be under __kmp_forkjoin_lock, so
3615   // resizing __kmp_threads does not need additional protection if foreign
3616   // threads are present
3617 
3618 #if KMP_OS_WINDOWS && !KMP_DYNAMIC_LIB
3619   /* only for Windows static library */
3620   /* reclaim array entries for root threads that are already dead */
3621   added = __kmp_reclaim_dead_roots();
3622 
3623   if (nNeed) {
3624     nNeed -= added;
3625     if (nNeed < 0)
3626       nNeed = 0;
3627   }
3628 #endif
3629   if (nNeed <= 0)
3630     return added;
3631 
3632   // Note that __kmp_threads_capacity is not bounded by __kmp_max_nth. If
3633   // __kmp_max_nth is set to some value less than __kmp_sys_max_nth by the
3634   // user via KMP_DEVICE_THREAD_LIMIT, then __kmp_threads_capacity may become
3635   // > __kmp_max_nth in one of two ways:
3636   //
3637   // 1) The initialization thread (gtid = 0) exits.  __kmp_threads[0]
3638   //    may not be reused by another thread, so we may need to increase
3639   //    __kmp_threads_capacity to __kmp_max_nth + 1.
3640   //
3641   // 2) New foreign root(s) are encountered.  We always register new foreign
3642   //    roots. This may cause a smaller # of threads to be allocated at
3643   //    subsequent parallel regions, but the worker threads hang around (and
3644   //    eventually go to sleep) and need slots in the __kmp_threads[] array.
3645   //
3646   // Anyway, that is the reason for moving the check to see if
3647   // __kmp_max_nth was exceeded into __kmp_reserve_threads()
3648   // instead of having it performed here. -BB
3649 
3650   KMP_DEBUG_ASSERT(__kmp_sys_max_nth >= __kmp_threads_capacity);
3651 
3652   /* compute expansion headroom to check if we can expand */
3653   if (__kmp_sys_max_nth - __kmp_threads_capacity < nNeed) {
3654     /* possible expansion too small -- give up */
3655     return added;
3656   }
3657   minimumRequiredCapacity = __kmp_threads_capacity + nNeed;
3658 
3659   newCapacity = __kmp_threads_capacity;
3660   do {
3661     newCapacity = newCapacity <= (__kmp_sys_max_nth >> 1) ? (newCapacity << 1)
3662                                                           : __kmp_sys_max_nth;
3663   } while (newCapacity < minimumRequiredCapacity);
3664   newThreads = (kmp_info_t **)__kmp_allocate(
3665       (sizeof(kmp_info_t *) + sizeof(kmp_root_t *)) * newCapacity + CACHE_LINE);
3666   newRoot =
3667       (kmp_root_t **)((char *)newThreads + sizeof(kmp_info_t *) * newCapacity);
3668   KMP_MEMCPY(newThreads, __kmp_threads,
3669              __kmp_threads_capacity * sizeof(kmp_info_t *));
3670   KMP_MEMCPY(newRoot, __kmp_root,
3671              __kmp_threads_capacity * sizeof(kmp_root_t *));
3672 
3673   kmp_info_t **temp_threads = __kmp_threads;
3674   *(kmp_info_t * *volatile *)&__kmp_threads = newThreads;
3675   *(kmp_root_t * *volatile *)&__kmp_root = newRoot;
3676   __kmp_free(temp_threads);
3677   added += newCapacity - __kmp_threads_capacity;
3678   *(volatile int *)&__kmp_threads_capacity = newCapacity;
3679 
3680   if (newCapacity > __kmp_tp_capacity) {
3681     __kmp_acquire_bootstrap_lock(&__kmp_tp_cached_lock);
3682     if (__kmp_tp_cached && newCapacity > __kmp_tp_capacity) {
3683       __kmp_threadprivate_resize_cache(newCapacity);
3684     } else { // increase __kmp_tp_capacity to correspond with kmp_threads size
3685       *(volatile int *)&__kmp_tp_capacity = newCapacity;
3686     }
3687     __kmp_release_bootstrap_lock(&__kmp_tp_cached_lock);
3688   }
3689 
3690   return added;
3691 }
3692 
3693 /* Register the current thread as a root thread and obtain our gtid. We must
3694    have the __kmp_initz_lock held at this point. Argument TRUE only if are the
3695    thread that calls from __kmp_do_serial_initialize() */
3696 int __kmp_register_root(int initial_thread) {
3697   kmp_info_t *root_thread;
3698   kmp_root_t *root;
3699   int gtid;
3700   int capacity;
3701   __kmp_acquire_bootstrap_lock(&__kmp_forkjoin_lock);
3702   KA_TRACE(20, ("__kmp_register_root: entered\n"));
3703   KMP_MB();
3704 
3705   /* 2007-03-02:
3706      If initial thread did not invoke OpenMP RTL yet, and this thread is not an
3707      initial one, "__kmp_all_nth >= __kmp_threads_capacity" condition does not
3708      work as expected -- it may return false (that means there is at least one
3709      empty slot in __kmp_threads array), but it is possible the only free slot
3710      is #0, which is reserved for initial thread and so cannot be used for this
3711      one. Following code workarounds this bug.
3712 
3713      However, right solution seems to be not reserving slot #0 for initial
3714      thread because:
3715      (1) there is no magic in slot #0,
3716      (2) we cannot detect initial thread reliably (the first thread which does
3717         serial initialization may be not a real initial thread).
3718   */
3719   capacity = __kmp_threads_capacity;
3720   if (!initial_thread && TCR_PTR(__kmp_threads[0]) == NULL) {
3721     --capacity;
3722   }
3723 
3724   // If it is not for initializing the hidden helper team, we need to take
3725   // __kmp_hidden_helper_threads_num out of the capacity because it is included
3726   // in __kmp_threads_capacity.
3727   if (__kmp_enable_hidden_helper && !TCR_4(__kmp_init_hidden_helper_threads)) {
3728     capacity -= __kmp_hidden_helper_threads_num;
3729   }
3730 
3731   /* see if there are too many threads */
3732   if (__kmp_all_nth >= capacity && !__kmp_expand_threads(1)) {
3733     if (__kmp_tp_cached) {
3734       __kmp_fatal(KMP_MSG(CantRegisterNewThread),
3735                   KMP_HNT(Set_ALL_THREADPRIVATE, __kmp_tp_capacity),
3736                   KMP_HNT(PossibleSystemLimitOnThreads), __kmp_msg_null);
3737     } else {
3738       __kmp_fatal(KMP_MSG(CantRegisterNewThread), KMP_HNT(SystemLimitOnThreads),
3739                   __kmp_msg_null);
3740     }
3741   }
3742 
3743   // When hidden helper task is enabled, __kmp_threads is organized as follows:
3744   // 0: initial thread, also a regular OpenMP thread.
3745   // [1, __kmp_hidden_helper_threads_num]: slots for hidden helper threads.
3746   // [__kmp_hidden_helper_threads_num + 1, __kmp_threads_capacity): slots for
3747   // regular OpenMP threads.
3748   if (TCR_4(__kmp_init_hidden_helper_threads)) {
3749     // Find an available thread slot for hidden helper thread. Slots for hidden
3750     // helper threads start from 1 to __kmp_hidden_helper_threads_num.
3751     for (gtid = 1; TCR_PTR(__kmp_threads[gtid]) != NULL &&
3752                    gtid <= __kmp_hidden_helper_threads_num;
3753          gtid++)
3754       ;
3755     KMP_ASSERT(gtid <= __kmp_hidden_helper_threads_num);
3756     KA_TRACE(1, ("__kmp_register_root: found slot in threads array for "
3757                  "hidden helper thread: T#%d\n",
3758                  gtid));
3759   } else {
3760     /* find an available thread slot */
3761     // Don't reassign the zero slot since we need that to only be used by
3762     // initial thread. Slots for hidden helper threads should also be skipped.
3763     if (initial_thread && TCR_PTR(__kmp_threads[0]) == NULL) {
3764       gtid = 0;
3765     } else {
3766       for (gtid = __kmp_hidden_helper_threads_num + 1;
3767            TCR_PTR(__kmp_threads[gtid]) != NULL; gtid++)
3768         ;
3769     }
3770     KA_TRACE(
3771         1, ("__kmp_register_root: found slot in threads array: T#%d\n", gtid));
3772     KMP_ASSERT(gtid < __kmp_threads_capacity);
3773   }
3774 
3775   /* update global accounting */
3776   __kmp_all_nth++;
3777   TCW_4(__kmp_nth, __kmp_nth + 1);
3778 
3779   // if __kmp_adjust_gtid_mode is set, then we use method #1 (sp search) for low
3780   // numbers of procs, and method #2 (keyed API call) for higher numbers.
3781   if (__kmp_adjust_gtid_mode) {
3782     if (__kmp_all_nth >= __kmp_tls_gtid_min) {
3783       if (TCR_4(__kmp_gtid_mode) != 2) {
3784         TCW_4(__kmp_gtid_mode, 2);
3785       }
3786     } else {
3787       if (TCR_4(__kmp_gtid_mode) != 1) {
3788         TCW_4(__kmp_gtid_mode, 1);
3789       }
3790     }
3791   }
3792 
3793 #ifdef KMP_ADJUST_BLOCKTIME
3794   /* Adjust blocktime to zero if necessary            */
3795   /* Middle initialization might not have occurred yet */
3796   if (!__kmp_env_blocktime && (__kmp_avail_proc > 0)) {
3797     if (__kmp_nth > __kmp_avail_proc) {
3798       __kmp_zero_bt = TRUE;
3799     }
3800   }
3801 #endif /* KMP_ADJUST_BLOCKTIME */
3802 
3803   /* setup this new hierarchy */
3804   if (!(root = __kmp_root[gtid])) {
3805     root = __kmp_root[gtid] = (kmp_root_t *)__kmp_allocate(sizeof(kmp_root_t));
3806     KMP_DEBUG_ASSERT(!root->r.r_root_team);
3807   }
3808 
3809 #if KMP_STATS_ENABLED
3810   // Initialize stats as soon as possible (right after gtid assignment).
3811   __kmp_stats_thread_ptr = __kmp_stats_list->push_back(gtid);
3812   __kmp_stats_thread_ptr->startLife();
3813   KMP_SET_THREAD_STATE(SERIAL_REGION);
3814   KMP_INIT_PARTITIONED_TIMERS(OMP_serial);
3815 #endif
3816   __kmp_initialize_root(root);
3817 
3818   /* setup new root thread structure */
3819   if (root->r.r_uber_thread) {
3820     root_thread = root->r.r_uber_thread;
3821   } else {
3822     root_thread = (kmp_info_t *)__kmp_allocate(sizeof(kmp_info_t));
3823     if (__kmp_storage_map) {
3824       __kmp_print_thread_storage_map(root_thread, gtid);
3825     }
3826     root_thread->th.th_info.ds.ds_gtid = gtid;
3827 #if OMPT_SUPPORT
3828     root_thread->th.ompt_thread_info.thread_data = ompt_data_none;
3829 #endif
3830     root_thread->th.th_root = root;
3831     if (__kmp_env_consistency_check) {
3832       root_thread->th.th_cons = __kmp_allocate_cons_stack(gtid);
3833     }
3834 #if USE_FAST_MEMORY
3835     __kmp_initialize_fast_memory(root_thread);
3836 #endif /* USE_FAST_MEMORY */
3837 
3838 #if KMP_USE_BGET
3839     KMP_DEBUG_ASSERT(root_thread->th.th_local.bget_data == NULL);
3840     __kmp_initialize_bget(root_thread);
3841 #endif
3842     __kmp_init_random(root_thread); // Initialize random number generator
3843   }
3844 
3845   /* setup the serial team held in reserve by the root thread */
3846   if (!root_thread->th.th_serial_team) {
3847     kmp_internal_control_t r_icvs = __kmp_get_global_icvs();
3848     KF_TRACE(10, ("__kmp_register_root: before serial_team\n"));
3849     root_thread->th.th_serial_team = __kmp_allocate_team(
3850         root, 1, 1,
3851 #if OMPT_SUPPORT
3852         ompt_data_none, // root parallel id
3853 #endif
3854         proc_bind_default, &r_icvs, 0 USE_NESTED_HOT_ARG(NULL));
3855   }
3856   KMP_ASSERT(root_thread->th.th_serial_team);
3857   KF_TRACE(10, ("__kmp_register_root: after serial_team = %p\n",
3858                 root_thread->th.th_serial_team));
3859 
3860   /* drop root_thread into place */
3861   TCW_SYNC_PTR(__kmp_threads[gtid], root_thread);
3862 
3863   root->r.r_root_team->t.t_threads[0] = root_thread;
3864   root->r.r_hot_team->t.t_threads[0] = root_thread;
3865   root_thread->th.th_serial_team->t.t_threads[0] = root_thread;
3866   // AC: the team created in reserve, not for execution (it is unused for now).
3867   root_thread->th.th_serial_team->t.t_serialized = 0;
3868   root->r.r_uber_thread = root_thread;
3869 
3870   /* initialize the thread, get it ready to go */
3871   __kmp_initialize_info(root_thread, root->r.r_root_team, 0, gtid);
3872   TCW_4(__kmp_init_gtid, TRUE);
3873 
3874   /* prepare the primary thread for get_gtid() */
3875   __kmp_gtid_set_specific(gtid);
3876 
3877 #if USE_ITT_BUILD
3878   __kmp_itt_thread_name(gtid);
3879 #endif /* USE_ITT_BUILD */
3880 
3881 #ifdef KMP_TDATA_GTID
3882   __kmp_gtid = gtid;
3883 #endif
3884   __kmp_create_worker(gtid, root_thread, __kmp_stksize);
3885   KMP_DEBUG_ASSERT(__kmp_gtid_get_specific() == gtid);
3886 
3887   KA_TRACE(20, ("__kmp_register_root: T#%d init T#%d(%d:%d) arrived: join=%u, "
3888                 "plain=%u\n",
3889                 gtid, __kmp_gtid_from_tid(0, root->r.r_hot_team),
3890                 root->r.r_hot_team->t.t_id, 0, KMP_INIT_BARRIER_STATE,
3891                 KMP_INIT_BARRIER_STATE));
3892   { // Initialize barrier data.
3893     int b;
3894     for (b = 0; b < bs_last_barrier; ++b) {
3895       root_thread->th.th_bar[b].bb.b_arrived = KMP_INIT_BARRIER_STATE;
3896 #if USE_DEBUGGER
3897       root_thread->th.th_bar[b].bb.b_worker_arrived = 0;
3898 #endif
3899     }
3900   }
3901   KMP_DEBUG_ASSERT(root->r.r_hot_team->t.t_bar[bs_forkjoin_barrier].b_arrived ==
3902                    KMP_INIT_BARRIER_STATE);
3903 
3904 #if KMP_AFFINITY_SUPPORTED
3905   root_thread->th.th_current_place = KMP_PLACE_UNDEFINED;
3906   root_thread->th.th_new_place = KMP_PLACE_UNDEFINED;
3907   root_thread->th.th_first_place = KMP_PLACE_UNDEFINED;
3908   root_thread->th.th_last_place = KMP_PLACE_UNDEFINED;
3909 #endif /* KMP_AFFINITY_SUPPORTED */
3910   root_thread->th.th_def_allocator = __kmp_def_allocator;
3911   root_thread->th.th_prev_level = 0;
3912   root_thread->th.th_prev_num_threads = 1;
3913 
3914   kmp_cg_root_t *tmp = (kmp_cg_root_t *)__kmp_allocate(sizeof(kmp_cg_root_t));
3915   tmp->cg_root = root_thread;
3916   tmp->cg_thread_limit = __kmp_cg_max_nth;
3917   tmp->cg_nthreads = 1;
3918   KA_TRACE(100, ("__kmp_register_root: Thread %p created node %p with"
3919                  " cg_nthreads init to 1\n",
3920                  root_thread, tmp));
3921   tmp->up = NULL;
3922   root_thread->th.th_cg_roots = tmp;
3923 
3924   __kmp_root_counter++;
3925 
3926 #if OMPT_SUPPORT
3927   if (!initial_thread && ompt_enabled.enabled) {
3928 
3929     kmp_info_t *root_thread = ompt_get_thread();
3930 
3931     ompt_set_thread_state(root_thread, ompt_state_overhead);
3932 
3933     if (ompt_enabled.ompt_callback_thread_begin) {
3934       ompt_callbacks.ompt_callback(ompt_callback_thread_begin)(
3935           ompt_thread_initial, __ompt_get_thread_data_internal());
3936     }
3937     ompt_data_t *task_data;
3938     ompt_data_t *parallel_data;
3939     __ompt_get_task_info_internal(0, NULL, &task_data, NULL, &parallel_data,
3940                                   NULL);
3941     if (ompt_enabled.ompt_callback_implicit_task) {
3942       ompt_callbacks.ompt_callback(ompt_callback_implicit_task)(
3943           ompt_scope_begin, parallel_data, task_data, 1, 1, ompt_task_initial);
3944     }
3945 
3946     ompt_set_thread_state(root_thread, ompt_state_work_serial);
3947   }
3948 #endif
3949 #if OMPD_SUPPORT
3950   if (ompd_state & OMPD_ENABLE_BP)
3951     ompd_bp_thread_begin();
3952 #endif
3953 
3954   KMP_MB();
3955   __kmp_release_bootstrap_lock(&__kmp_forkjoin_lock);
3956 
3957   return gtid;
3958 }
3959 
3960 #if KMP_NESTED_HOT_TEAMS
3961 static int __kmp_free_hot_teams(kmp_root_t *root, kmp_info_t *thr, int level,
3962                                 const int max_level) {
3963   int i, n, nth;
3964   kmp_hot_team_ptr_t *hot_teams = thr->th.th_hot_teams;
3965   if (!hot_teams || !hot_teams[level].hot_team) {
3966     return 0;
3967   }
3968   KMP_DEBUG_ASSERT(level < max_level);
3969   kmp_team_t *team = hot_teams[level].hot_team;
3970   nth = hot_teams[level].hot_team_nth;
3971   n = nth - 1; // primary thread is not freed
3972   if (level < max_level - 1) {
3973     for (i = 0; i < nth; ++i) {
3974       kmp_info_t *th = team->t.t_threads[i];
3975       n += __kmp_free_hot_teams(root, th, level + 1, max_level);
3976       if (i > 0 && th->th.th_hot_teams) {
3977         __kmp_free(th->th.th_hot_teams);
3978         th->th.th_hot_teams = NULL;
3979       }
3980     }
3981   }
3982   __kmp_free_team(root, team, NULL);
3983   return n;
3984 }
3985 #endif
3986 
3987 // Resets a root thread and clear its root and hot teams.
3988 // Returns the number of __kmp_threads entries directly and indirectly freed.
3989 static int __kmp_reset_root(int gtid, kmp_root_t *root) {
3990   kmp_team_t *root_team = root->r.r_root_team;
3991   kmp_team_t *hot_team = root->r.r_hot_team;
3992   int n = hot_team->t.t_nproc;
3993   int i;
3994 
3995   KMP_DEBUG_ASSERT(!root->r.r_active);
3996 
3997   root->r.r_root_team = NULL;
3998   root->r.r_hot_team = NULL;
3999   // __kmp_free_team() does not free hot teams, so we have to clear r_hot_team
4000   // before call to __kmp_free_team().
4001   __kmp_free_team(root, root_team USE_NESTED_HOT_ARG(NULL));
4002 #if KMP_NESTED_HOT_TEAMS
4003   if (__kmp_hot_teams_max_level >
4004       0) { // need to free nested hot teams and their threads if any
4005     for (i = 0; i < hot_team->t.t_nproc; ++i) {
4006       kmp_info_t *th = hot_team->t.t_threads[i];
4007       if (__kmp_hot_teams_max_level > 1) {
4008         n += __kmp_free_hot_teams(root, th, 1, __kmp_hot_teams_max_level);
4009       }
4010       if (th->th.th_hot_teams) {
4011         __kmp_free(th->th.th_hot_teams);
4012         th->th.th_hot_teams = NULL;
4013       }
4014     }
4015   }
4016 #endif
4017   __kmp_free_team(root, hot_team USE_NESTED_HOT_ARG(NULL));
4018 
4019   // Before we can reap the thread, we need to make certain that all other
4020   // threads in the teams that had this root as ancestor have stopped trying to
4021   // steal tasks.
4022   if (__kmp_tasking_mode != tskm_immediate_exec) {
4023     __kmp_wait_to_unref_task_teams();
4024   }
4025 
4026 #if KMP_OS_WINDOWS
4027   /* Close Handle of root duplicated in __kmp_create_worker (tr #62919) */
4028   KA_TRACE(
4029       10, ("__kmp_reset_root: free handle, th = %p, handle = %" KMP_UINTPTR_SPEC
4030            "\n",
4031            (LPVOID) & (root->r.r_uber_thread->th),
4032            root->r.r_uber_thread->th.th_info.ds.ds_thread));
4033   __kmp_free_handle(root->r.r_uber_thread->th.th_info.ds.ds_thread);
4034 #endif /* KMP_OS_WINDOWS */
4035 
4036 #if OMPD_SUPPORT
4037   if (ompd_state & OMPD_ENABLE_BP)
4038     ompd_bp_thread_end();
4039 #endif
4040 
4041 #if OMPT_SUPPORT
4042   ompt_data_t *task_data;
4043   ompt_data_t *parallel_data;
4044   __ompt_get_task_info_internal(0, NULL, &task_data, NULL, &parallel_data,
4045                                 NULL);
4046   if (ompt_enabled.ompt_callback_implicit_task) {
4047     ompt_callbacks.ompt_callback(ompt_callback_implicit_task)(
4048         ompt_scope_end, parallel_data, task_data, 0, 1, ompt_task_initial);
4049   }
4050   if (ompt_enabled.ompt_callback_thread_end) {
4051     ompt_callbacks.ompt_callback(ompt_callback_thread_end)(
4052         &(root->r.r_uber_thread->th.ompt_thread_info.thread_data));
4053   }
4054 #endif
4055 
4056   TCW_4(__kmp_nth,
4057         __kmp_nth - 1); // __kmp_reap_thread will decrement __kmp_all_nth.
4058   i = root->r.r_uber_thread->th.th_cg_roots->cg_nthreads--;
4059   KA_TRACE(100, ("__kmp_reset_root: Thread %p decrement cg_nthreads on node %p"
4060                  " to %d\n",
4061                  root->r.r_uber_thread, root->r.r_uber_thread->th.th_cg_roots,
4062                  root->r.r_uber_thread->th.th_cg_roots->cg_nthreads));
4063   if (i == 1) {
4064     // need to free contention group structure
4065     KMP_DEBUG_ASSERT(root->r.r_uber_thread ==
4066                      root->r.r_uber_thread->th.th_cg_roots->cg_root);
4067     KMP_DEBUG_ASSERT(root->r.r_uber_thread->th.th_cg_roots->up == NULL);
4068     __kmp_free(root->r.r_uber_thread->th.th_cg_roots);
4069     root->r.r_uber_thread->th.th_cg_roots = NULL;
4070   }
4071   __kmp_reap_thread(root->r.r_uber_thread, 1);
4072 
4073   // We canot put root thread to __kmp_thread_pool, so we have to reap it
4074   // instead of freeing.
4075   root->r.r_uber_thread = NULL;
4076   /* mark root as no longer in use */
4077   root->r.r_begin = FALSE;
4078 
4079   return n;
4080 }
4081 
4082 void __kmp_unregister_root_current_thread(int gtid) {
4083   KA_TRACE(1, ("__kmp_unregister_root_current_thread: enter T#%d\n", gtid));
4084   /* this lock should be ok, since unregister_root_current_thread is never
4085      called during an abort, only during a normal close. furthermore, if you
4086      have the forkjoin lock, you should never try to get the initz lock */
4087   __kmp_acquire_bootstrap_lock(&__kmp_forkjoin_lock);
4088   if (TCR_4(__kmp_global.g.g_done) || !__kmp_init_serial) {
4089     KC_TRACE(10, ("__kmp_unregister_root_current_thread: already finished, "
4090                   "exiting T#%d\n",
4091                   gtid));
4092     __kmp_release_bootstrap_lock(&__kmp_forkjoin_lock);
4093     return;
4094   }
4095   kmp_root_t *root = __kmp_root[gtid];
4096 
4097   KMP_DEBUG_ASSERT(__kmp_threads && __kmp_threads[gtid]);
4098   KMP_ASSERT(KMP_UBER_GTID(gtid));
4099   KMP_ASSERT(root == __kmp_threads[gtid]->th.th_root);
4100   KMP_ASSERT(root->r.r_active == FALSE);
4101 
4102   KMP_MB();
4103 
4104   kmp_info_t *thread = __kmp_threads[gtid];
4105   kmp_team_t *team = thread->th.th_team;
4106   kmp_task_team_t *task_team = thread->th.th_task_team;
4107 
4108   // we need to wait for the proxy tasks before finishing the thread
4109   if (task_team != NULL && task_team->tt.tt_found_proxy_tasks) {
4110 #if OMPT_SUPPORT
4111     // the runtime is shutting down so we won't report any events
4112     thread->th.ompt_thread_info.state = ompt_state_undefined;
4113 #endif
4114     __kmp_task_team_wait(thread, team USE_ITT_BUILD_ARG(NULL));
4115   }
4116 
4117   __kmp_reset_root(gtid, root);
4118 
4119   KMP_MB();
4120   KC_TRACE(10,
4121            ("__kmp_unregister_root_current_thread: T#%d unregistered\n", gtid));
4122 
4123   __kmp_release_bootstrap_lock(&__kmp_forkjoin_lock);
4124 }
4125 
4126 #if KMP_OS_WINDOWS
4127 /* __kmp_forkjoin_lock must be already held
4128    Unregisters a root thread that is not the current thread.  Returns the number
4129    of __kmp_threads entries freed as a result. */
4130 static int __kmp_unregister_root_other_thread(int gtid) {
4131   kmp_root_t *root = __kmp_root[gtid];
4132   int r;
4133 
4134   KA_TRACE(1, ("__kmp_unregister_root_other_thread: enter T#%d\n", gtid));
4135   KMP_DEBUG_ASSERT(__kmp_threads && __kmp_threads[gtid]);
4136   KMP_ASSERT(KMP_UBER_GTID(gtid));
4137   KMP_ASSERT(root == __kmp_threads[gtid]->th.th_root);
4138   KMP_ASSERT(root->r.r_active == FALSE);
4139 
4140   r = __kmp_reset_root(gtid, root);
4141   KC_TRACE(10,
4142            ("__kmp_unregister_root_other_thread: T#%d unregistered\n", gtid));
4143   return r;
4144 }
4145 #endif
4146 
4147 #if KMP_DEBUG
4148 void __kmp_task_info() {
4149 
4150   kmp_int32 gtid = __kmp_entry_gtid();
4151   kmp_int32 tid = __kmp_tid_from_gtid(gtid);
4152   kmp_info_t *this_thr = __kmp_threads[gtid];
4153   kmp_team_t *steam = this_thr->th.th_serial_team;
4154   kmp_team_t *team = this_thr->th.th_team;
4155 
4156   __kmp_printf(
4157       "__kmp_task_info: gtid=%d tid=%d t_thread=%p team=%p steam=%p curtask=%p "
4158       "ptask=%p\n",
4159       gtid, tid, this_thr, team, steam, this_thr->th.th_current_task,
4160       team->t.t_implicit_task_taskdata[tid].td_parent);
4161 }
4162 #endif // KMP_DEBUG
4163 
4164 /* TODO optimize with one big memclr, take out what isn't needed, split
4165    responsibility to workers as much as possible, and delay initialization of
4166    features as much as possible  */
4167 static void __kmp_initialize_info(kmp_info_t *this_thr, kmp_team_t *team,
4168                                   int tid, int gtid) {
4169   /* this_thr->th.th_info.ds.ds_gtid is setup in
4170      kmp_allocate_thread/create_worker.
4171      this_thr->th.th_serial_team is setup in __kmp_allocate_thread */
4172   KMP_DEBUG_ASSERT(this_thr != NULL);
4173   KMP_DEBUG_ASSERT(this_thr->th.th_serial_team);
4174   KMP_DEBUG_ASSERT(team);
4175   KMP_DEBUG_ASSERT(team->t.t_threads);
4176   KMP_DEBUG_ASSERT(team->t.t_dispatch);
4177   kmp_info_t *master = team->t.t_threads[0];
4178   KMP_DEBUG_ASSERT(master);
4179   KMP_DEBUG_ASSERT(master->th.th_root);
4180 
4181   KMP_MB();
4182 
4183   TCW_SYNC_PTR(this_thr->th.th_team, team);
4184 
4185   this_thr->th.th_info.ds.ds_tid = tid;
4186   this_thr->th.th_set_nproc = 0;
4187   if (__kmp_tasking_mode != tskm_immediate_exec)
4188     // When tasking is possible, threads are not safe to reap until they are
4189     // done tasking; this will be set when tasking code is exited in wait
4190     this_thr->th.th_reap_state = KMP_NOT_SAFE_TO_REAP;
4191   else // no tasking --> always safe to reap
4192     this_thr->th.th_reap_state = KMP_SAFE_TO_REAP;
4193   this_thr->th.th_set_proc_bind = proc_bind_default;
4194 #if KMP_AFFINITY_SUPPORTED
4195   this_thr->th.th_new_place = this_thr->th.th_current_place;
4196 #endif
4197   this_thr->th.th_root = master->th.th_root;
4198 
4199   /* setup the thread's cache of the team structure */
4200   this_thr->th.th_team_nproc = team->t.t_nproc;
4201   this_thr->th.th_team_master = master;
4202   this_thr->th.th_team_serialized = team->t.t_serialized;
4203 
4204   KMP_DEBUG_ASSERT(team->t.t_implicit_task_taskdata);
4205 
4206   KF_TRACE(10, ("__kmp_initialize_info1: T#%d:%d this_thread=%p curtask=%p\n",
4207                 tid, gtid, this_thr, this_thr->th.th_current_task));
4208 
4209   __kmp_init_implicit_task(this_thr->th.th_team_master->th.th_ident, this_thr,
4210                            team, tid, TRUE);
4211 
4212   KF_TRACE(10, ("__kmp_initialize_info2: T#%d:%d this_thread=%p curtask=%p\n",
4213                 tid, gtid, this_thr, this_thr->th.th_current_task));
4214   // TODO: Initialize ICVs from parent; GEH - isn't that already done in
4215   // __kmp_initialize_team()?
4216 
4217   /* TODO no worksharing in speculative threads */
4218   this_thr->th.th_dispatch = &team->t.t_dispatch[tid];
4219 
4220   this_thr->th.th_local.this_construct = 0;
4221 
4222   if (!this_thr->th.th_pri_common) {
4223     this_thr->th.th_pri_common =
4224         (struct common_table *)__kmp_allocate(sizeof(struct common_table));
4225     if (__kmp_storage_map) {
4226       __kmp_print_storage_map_gtid(
4227           gtid, this_thr->th.th_pri_common, this_thr->th.th_pri_common + 1,
4228           sizeof(struct common_table), "th_%d.th_pri_common\n", gtid);
4229     }
4230     this_thr->th.th_pri_head = NULL;
4231   }
4232 
4233   if (this_thr != master && // Primary thread's CG root is initialized elsewhere
4234       this_thr->th.th_cg_roots != master->th.th_cg_roots) { // CG root not set
4235     // Make new thread's CG root same as primary thread's
4236     KMP_DEBUG_ASSERT(master->th.th_cg_roots);
4237     kmp_cg_root_t *tmp = this_thr->th.th_cg_roots;
4238     if (tmp) {
4239       // worker changes CG, need to check if old CG should be freed
4240       int i = tmp->cg_nthreads--;
4241       KA_TRACE(100, ("__kmp_initialize_info: Thread %p decrement cg_nthreads"
4242                      " on node %p of thread %p to %d\n",
4243                      this_thr, tmp, tmp->cg_root, tmp->cg_nthreads));
4244       if (i == 1) {
4245         __kmp_free(tmp); // last thread left CG --> free it
4246       }
4247     }
4248     this_thr->th.th_cg_roots = master->th.th_cg_roots;
4249     // Increment new thread's CG root's counter to add the new thread
4250     this_thr->th.th_cg_roots->cg_nthreads++;
4251     KA_TRACE(100, ("__kmp_initialize_info: Thread %p increment cg_nthreads on"
4252                    " node %p of thread %p to %d\n",
4253                    this_thr, this_thr->th.th_cg_roots,
4254                    this_thr->th.th_cg_roots->cg_root,
4255                    this_thr->th.th_cg_roots->cg_nthreads));
4256     this_thr->th.th_current_task->td_icvs.thread_limit =
4257         this_thr->th.th_cg_roots->cg_thread_limit;
4258   }
4259 
4260   /* Initialize dynamic dispatch */
4261   {
4262     volatile kmp_disp_t *dispatch = this_thr->th.th_dispatch;
4263     // Use team max_nproc since this will never change for the team.
4264     size_t disp_size =
4265         sizeof(dispatch_private_info_t) *
4266         (team->t.t_max_nproc == 1 ? 1 : __kmp_dispatch_num_buffers);
4267     KD_TRACE(10, ("__kmp_initialize_info: T#%d max_nproc: %d\n", gtid,
4268                   team->t.t_max_nproc));
4269     KMP_ASSERT(dispatch);
4270     KMP_DEBUG_ASSERT(team->t.t_dispatch);
4271     KMP_DEBUG_ASSERT(dispatch == &team->t.t_dispatch[tid]);
4272 
4273     dispatch->th_disp_index = 0;
4274     dispatch->th_doacross_buf_idx = 0;
4275     if (!dispatch->th_disp_buffer) {
4276       dispatch->th_disp_buffer =
4277           (dispatch_private_info_t *)__kmp_allocate(disp_size);
4278 
4279       if (__kmp_storage_map) {
4280         __kmp_print_storage_map_gtid(
4281             gtid, &dispatch->th_disp_buffer[0],
4282             &dispatch->th_disp_buffer[team->t.t_max_nproc == 1
4283                                           ? 1
4284                                           : __kmp_dispatch_num_buffers],
4285             disp_size,
4286             "th_%d.th_dispatch.th_disp_buffer "
4287             "(team_%d.t_dispatch[%d].th_disp_buffer)",
4288             gtid, team->t.t_id, gtid);
4289       }
4290     } else {
4291       memset(&dispatch->th_disp_buffer[0], '\0', disp_size);
4292     }
4293 
4294     dispatch->th_dispatch_pr_current = 0;
4295     dispatch->th_dispatch_sh_current = 0;
4296 
4297     dispatch->th_deo_fcn = 0; /* ORDERED     */
4298     dispatch->th_dxo_fcn = 0; /* END ORDERED */
4299   }
4300 
4301   this_thr->th.th_next_pool = NULL;
4302 
4303   if (!this_thr->th.th_task_state_memo_stack) {
4304     size_t i;
4305     this_thr->th.th_task_state_memo_stack =
4306         (kmp_uint8 *)__kmp_allocate(4 * sizeof(kmp_uint8));
4307     this_thr->th.th_task_state_top = 0;
4308     this_thr->th.th_task_state_stack_sz = 4;
4309     for (i = 0; i < this_thr->th.th_task_state_stack_sz;
4310          ++i) // zero init the stack
4311       this_thr->th.th_task_state_memo_stack[i] = 0;
4312   }
4313 
4314   KMP_DEBUG_ASSERT(!this_thr->th.th_spin_here);
4315   KMP_DEBUG_ASSERT(this_thr->th.th_next_waiting == 0);
4316 
4317   KMP_MB();
4318 }
4319 
4320 /* allocate a new thread for the requesting team. this is only called from
4321    within a forkjoin critical section. we will first try to get an available
4322    thread from the thread pool. if none is available, we will fork a new one
4323    assuming we are able to create a new one. this should be assured, as the
4324    caller should check on this first. */
4325 kmp_info_t *__kmp_allocate_thread(kmp_root_t *root, kmp_team_t *team,
4326                                   int new_tid) {
4327   kmp_team_t *serial_team;
4328   kmp_info_t *new_thr;
4329   int new_gtid;
4330 
4331   KA_TRACE(20, ("__kmp_allocate_thread: T#%d\n", __kmp_get_gtid()));
4332   KMP_DEBUG_ASSERT(root && team);
4333 #if !KMP_NESTED_HOT_TEAMS
4334   KMP_DEBUG_ASSERT(KMP_MASTER_GTID(__kmp_get_gtid()));
4335 #endif
4336   KMP_MB();
4337 
4338   /* first, try to get one from the thread pool */
4339   if (__kmp_thread_pool) {
4340     new_thr = CCAST(kmp_info_t *, __kmp_thread_pool);
4341     __kmp_thread_pool = (volatile kmp_info_t *)new_thr->th.th_next_pool;
4342     if (new_thr == __kmp_thread_pool_insert_pt) {
4343       __kmp_thread_pool_insert_pt = NULL;
4344     }
4345     TCW_4(new_thr->th.th_in_pool, FALSE);
4346     __kmp_suspend_initialize_thread(new_thr);
4347     __kmp_lock_suspend_mx(new_thr);
4348     if (new_thr->th.th_active_in_pool == TRUE) {
4349       KMP_DEBUG_ASSERT(new_thr->th.th_active == TRUE);
4350       KMP_ATOMIC_DEC(&__kmp_thread_pool_active_nth);
4351       new_thr->th.th_active_in_pool = FALSE;
4352     }
4353     __kmp_unlock_suspend_mx(new_thr);
4354 
4355     KA_TRACE(20, ("__kmp_allocate_thread: T#%d using thread T#%d\n",
4356                   __kmp_get_gtid(), new_thr->th.th_info.ds.ds_gtid));
4357     KMP_ASSERT(!new_thr->th.th_team);
4358     KMP_DEBUG_ASSERT(__kmp_nth < __kmp_threads_capacity);
4359 
4360     /* setup the thread structure */
4361     __kmp_initialize_info(new_thr, team, new_tid,
4362                           new_thr->th.th_info.ds.ds_gtid);
4363     KMP_DEBUG_ASSERT(new_thr->th.th_serial_team);
4364 
4365     TCW_4(__kmp_nth, __kmp_nth + 1);
4366 
4367     new_thr->th.th_task_state = 0;
4368     new_thr->th.th_task_state_top = 0;
4369     new_thr->th.th_task_state_stack_sz = 4;
4370 
4371     if (__kmp_barrier_gather_pattern[bs_forkjoin_barrier] == bp_dist_bar) {
4372       // Make sure pool thread has transitioned to waiting on own thread struct
4373       KMP_DEBUG_ASSERT(new_thr->th.th_used_in_team.load() == 0);
4374       // Thread activated in __kmp_allocate_team when increasing team size
4375     }
4376 
4377 #ifdef KMP_ADJUST_BLOCKTIME
4378     /* Adjust blocktime back to zero if necessary */
4379     /* Middle initialization might not have occurred yet */
4380     if (!__kmp_env_blocktime && (__kmp_avail_proc > 0)) {
4381       if (__kmp_nth > __kmp_avail_proc) {
4382         __kmp_zero_bt = TRUE;
4383       }
4384     }
4385 #endif /* KMP_ADJUST_BLOCKTIME */
4386 
4387 #if KMP_DEBUG
4388     // If thread entered pool via __kmp_free_thread, wait_flag should !=
4389     // KMP_BARRIER_PARENT_FLAG.
4390     int b;
4391     kmp_balign_t *balign = new_thr->th.th_bar;
4392     for (b = 0; b < bs_last_barrier; ++b)
4393       KMP_DEBUG_ASSERT(balign[b].bb.wait_flag != KMP_BARRIER_PARENT_FLAG);
4394 #endif
4395 
4396     KF_TRACE(10, ("__kmp_allocate_thread: T#%d using thread %p T#%d\n",
4397                   __kmp_get_gtid(), new_thr, new_thr->th.th_info.ds.ds_gtid));
4398 
4399     KMP_MB();
4400     return new_thr;
4401   }
4402 
4403   /* no, well fork a new one */
4404   KMP_ASSERT(__kmp_nth == __kmp_all_nth);
4405   KMP_ASSERT(__kmp_all_nth < __kmp_threads_capacity);
4406 
4407 #if KMP_USE_MONITOR
4408   // If this is the first worker thread the RTL is creating, then also
4409   // launch the monitor thread.  We try to do this as early as possible.
4410   if (!TCR_4(__kmp_init_monitor)) {
4411     __kmp_acquire_bootstrap_lock(&__kmp_monitor_lock);
4412     if (!TCR_4(__kmp_init_monitor)) {
4413       KF_TRACE(10, ("before __kmp_create_monitor\n"));
4414       TCW_4(__kmp_init_monitor, 1);
4415       __kmp_create_monitor(&__kmp_monitor);
4416       KF_TRACE(10, ("after __kmp_create_monitor\n"));
4417 #if KMP_OS_WINDOWS
4418       // AC: wait until monitor has started. This is a fix for CQ232808.
4419       // The reason is that if the library is loaded/unloaded in a loop with
4420       // small (parallel) work in between, then there is high probability that
4421       // monitor thread started after the library shutdown. At shutdown it is
4422       // too late to cope with the problem, because when the primary thread is
4423       // in DllMain (process detach) the monitor has no chances to start (it is
4424       // blocked), and primary thread has no means to inform the monitor that
4425       // the library has gone, because all the memory which the monitor can
4426       // access is going to be released/reset.
4427       while (TCR_4(__kmp_init_monitor) < 2) {
4428         KMP_YIELD(TRUE);
4429       }
4430       KF_TRACE(10, ("after monitor thread has started\n"));
4431 #endif
4432     }
4433     __kmp_release_bootstrap_lock(&__kmp_monitor_lock);
4434   }
4435 #endif
4436 
4437   KMP_MB();
4438 
4439   {
4440     int new_start_gtid = TCR_4(__kmp_init_hidden_helper_threads)
4441                              ? 1
4442                              : __kmp_hidden_helper_threads_num + 1;
4443 
4444     for (new_gtid = new_start_gtid; TCR_PTR(__kmp_threads[new_gtid]) != NULL;
4445          ++new_gtid) {
4446       KMP_DEBUG_ASSERT(new_gtid < __kmp_threads_capacity);
4447     }
4448 
4449     if (TCR_4(__kmp_init_hidden_helper_threads)) {
4450       KMP_DEBUG_ASSERT(new_gtid <= __kmp_hidden_helper_threads_num);
4451     }
4452   }
4453 
4454   /* allocate space for it. */
4455   new_thr = (kmp_info_t *)__kmp_allocate(sizeof(kmp_info_t));
4456 
4457   TCW_SYNC_PTR(__kmp_threads[new_gtid], new_thr);
4458 
4459 #if USE_ITT_BUILD && USE_ITT_NOTIFY && KMP_DEBUG
4460   // suppress race conditions detection on synchronization flags in debug mode
4461   // this helps to analyze library internals eliminating false positives
4462   __itt_suppress_mark_range(
4463       __itt_suppress_range, __itt_suppress_threading_errors,
4464       &new_thr->th.th_sleep_loc, sizeof(new_thr->th.th_sleep_loc));
4465   __itt_suppress_mark_range(
4466       __itt_suppress_range, __itt_suppress_threading_errors,
4467       &new_thr->th.th_reap_state, sizeof(new_thr->th.th_reap_state));
4468 #if KMP_OS_WINDOWS
4469   __itt_suppress_mark_range(
4470       __itt_suppress_range, __itt_suppress_threading_errors,
4471       &new_thr->th.th_suspend_init, sizeof(new_thr->th.th_suspend_init));
4472 #else
4473   __itt_suppress_mark_range(__itt_suppress_range,
4474                             __itt_suppress_threading_errors,
4475                             &new_thr->th.th_suspend_init_count,
4476                             sizeof(new_thr->th.th_suspend_init_count));
4477 #endif
4478   // TODO: check if we need to also suppress b_arrived flags
4479   __itt_suppress_mark_range(__itt_suppress_range,
4480                             __itt_suppress_threading_errors,
4481                             CCAST(kmp_uint64 *, &new_thr->th.th_bar[0].bb.b_go),
4482                             sizeof(new_thr->th.th_bar[0].bb.b_go));
4483   __itt_suppress_mark_range(__itt_suppress_range,
4484                             __itt_suppress_threading_errors,
4485                             CCAST(kmp_uint64 *, &new_thr->th.th_bar[1].bb.b_go),
4486                             sizeof(new_thr->th.th_bar[1].bb.b_go));
4487   __itt_suppress_mark_range(__itt_suppress_range,
4488                             __itt_suppress_threading_errors,
4489                             CCAST(kmp_uint64 *, &new_thr->th.th_bar[2].bb.b_go),
4490                             sizeof(new_thr->th.th_bar[2].bb.b_go));
4491 #endif /* USE_ITT_BUILD && USE_ITT_NOTIFY && KMP_DEBUG */
4492   if (__kmp_storage_map) {
4493     __kmp_print_thread_storage_map(new_thr, new_gtid);
4494   }
4495 
4496   // add the reserve serialized team, initialized from the team's primary thread
4497   {
4498     kmp_internal_control_t r_icvs = __kmp_get_x_global_icvs(team);
4499     KF_TRACE(10, ("__kmp_allocate_thread: before th_serial/serial_team\n"));
4500     new_thr->th.th_serial_team = serial_team =
4501         (kmp_team_t *)__kmp_allocate_team(root, 1, 1,
4502 #if OMPT_SUPPORT
4503                                           ompt_data_none, // root parallel id
4504 #endif
4505                                           proc_bind_default, &r_icvs,
4506                                           0 USE_NESTED_HOT_ARG(NULL));
4507   }
4508   KMP_ASSERT(serial_team);
4509   serial_team->t.t_serialized = 0; // AC: the team created in reserve, not for
4510   // execution (it is unused for now).
4511   serial_team->t.t_threads[0] = new_thr;
4512   KF_TRACE(10,
4513            ("__kmp_allocate_thread: after th_serial/serial_team : new_thr=%p\n",
4514             new_thr));
4515 
4516   /* setup the thread structures */
4517   __kmp_initialize_info(new_thr, team, new_tid, new_gtid);
4518 
4519 #if USE_FAST_MEMORY
4520   __kmp_initialize_fast_memory(new_thr);
4521 #endif /* USE_FAST_MEMORY */
4522 
4523 #if KMP_USE_BGET
4524   KMP_DEBUG_ASSERT(new_thr->th.th_local.bget_data == NULL);
4525   __kmp_initialize_bget(new_thr);
4526 #endif
4527 
4528   __kmp_init_random(new_thr); // Initialize random number generator
4529 
4530   /* Initialize these only once when thread is grabbed for a team allocation */
4531   KA_TRACE(20,
4532            ("__kmp_allocate_thread: T#%d init go fork=%u, plain=%u\n",
4533             __kmp_get_gtid(), KMP_INIT_BARRIER_STATE, KMP_INIT_BARRIER_STATE));
4534 
4535   int b;
4536   kmp_balign_t *balign = new_thr->th.th_bar;
4537   for (b = 0; b < bs_last_barrier; ++b) {
4538     balign[b].bb.b_go = KMP_INIT_BARRIER_STATE;
4539     balign[b].bb.team = NULL;
4540     balign[b].bb.wait_flag = KMP_BARRIER_NOT_WAITING;
4541     balign[b].bb.use_oncore_barrier = 0;
4542   }
4543 
4544   TCW_PTR(new_thr->th.th_sleep_loc, NULL);
4545   new_thr->th.th_sleep_loc_type = flag_unset;
4546 
4547   new_thr->th.th_spin_here = FALSE;
4548   new_thr->th.th_next_waiting = 0;
4549 #if KMP_OS_UNIX
4550   new_thr->th.th_blocking = false;
4551 #endif
4552 
4553 #if KMP_AFFINITY_SUPPORTED
4554   new_thr->th.th_current_place = KMP_PLACE_UNDEFINED;
4555   new_thr->th.th_new_place = KMP_PLACE_UNDEFINED;
4556   new_thr->th.th_first_place = KMP_PLACE_UNDEFINED;
4557   new_thr->th.th_last_place = KMP_PLACE_UNDEFINED;
4558 #endif
4559   new_thr->th.th_def_allocator = __kmp_def_allocator;
4560   new_thr->th.th_prev_level = 0;
4561   new_thr->th.th_prev_num_threads = 1;
4562 
4563   TCW_4(new_thr->th.th_in_pool, FALSE);
4564   new_thr->th.th_active_in_pool = FALSE;
4565   TCW_4(new_thr->th.th_active, TRUE);
4566 
4567   /* adjust the global counters */
4568   __kmp_all_nth++;
4569   __kmp_nth++;
4570 
4571   // if __kmp_adjust_gtid_mode is set, then we use method #1 (sp search) for low
4572   // numbers of procs, and method #2 (keyed API call) for higher numbers.
4573   if (__kmp_adjust_gtid_mode) {
4574     if (__kmp_all_nth >= __kmp_tls_gtid_min) {
4575       if (TCR_4(__kmp_gtid_mode) != 2) {
4576         TCW_4(__kmp_gtid_mode, 2);
4577       }
4578     } else {
4579       if (TCR_4(__kmp_gtid_mode) != 1) {
4580         TCW_4(__kmp_gtid_mode, 1);
4581       }
4582     }
4583   }
4584 
4585 #ifdef KMP_ADJUST_BLOCKTIME
4586   /* Adjust blocktime back to zero if necessary       */
4587   /* Middle initialization might not have occurred yet */
4588   if (!__kmp_env_blocktime && (__kmp_avail_proc > 0)) {
4589     if (__kmp_nth > __kmp_avail_proc) {
4590       __kmp_zero_bt = TRUE;
4591     }
4592   }
4593 #endif /* KMP_ADJUST_BLOCKTIME */
4594 
4595   /* actually fork it and create the new worker thread */
4596   KF_TRACE(
4597       10, ("__kmp_allocate_thread: before __kmp_create_worker: %p\n", new_thr));
4598   __kmp_create_worker(new_gtid, new_thr, __kmp_stksize);
4599   KF_TRACE(10,
4600            ("__kmp_allocate_thread: after __kmp_create_worker: %p\n", new_thr));
4601 
4602   KA_TRACE(20, ("__kmp_allocate_thread: T#%d forked T#%d\n", __kmp_get_gtid(),
4603                 new_gtid));
4604   KMP_MB();
4605   return new_thr;
4606 }
4607 
4608 /* Reinitialize team for reuse.
4609    The hot team code calls this case at every fork barrier, so EPCC barrier
4610    test are extremely sensitive to changes in it, esp. writes to the team
4611    struct, which cause a cache invalidation in all threads.
4612    IF YOU TOUCH THIS ROUTINE, RUN EPCC C SYNCBENCH ON A BIG-IRON MACHINE!!! */
4613 static void __kmp_reinitialize_team(kmp_team_t *team,
4614                                     kmp_internal_control_t *new_icvs,
4615                                     ident_t *loc) {
4616   KF_TRACE(10, ("__kmp_reinitialize_team: enter this_thread=%p team=%p\n",
4617                 team->t.t_threads[0], team));
4618   KMP_DEBUG_ASSERT(team && new_icvs);
4619   KMP_DEBUG_ASSERT((!TCR_4(__kmp_init_parallel)) || new_icvs->nproc);
4620   KMP_CHECK_UPDATE(team->t.t_ident, loc);
4621 
4622   KMP_CHECK_UPDATE(team->t.t_id, KMP_GEN_TEAM_ID());
4623   // Copy ICVs to the primary thread's implicit taskdata
4624   __kmp_init_implicit_task(loc, team->t.t_threads[0], team, 0, FALSE);
4625   copy_icvs(&team->t.t_implicit_task_taskdata[0].td_icvs, new_icvs);
4626 
4627   KF_TRACE(10, ("__kmp_reinitialize_team: exit this_thread=%p team=%p\n",
4628                 team->t.t_threads[0], team));
4629 }
4630 
4631 /* Initialize the team data structure.
4632    This assumes the t_threads and t_max_nproc are already set.
4633    Also, we don't touch the arguments */
4634 static void __kmp_initialize_team(kmp_team_t *team, int new_nproc,
4635                                   kmp_internal_control_t *new_icvs,
4636                                   ident_t *loc) {
4637   KF_TRACE(10, ("__kmp_initialize_team: enter: team=%p\n", team));
4638 
4639   /* verify */
4640   KMP_DEBUG_ASSERT(team);
4641   KMP_DEBUG_ASSERT(new_nproc <= team->t.t_max_nproc);
4642   KMP_DEBUG_ASSERT(team->t.t_threads);
4643   KMP_MB();
4644 
4645   team->t.t_master_tid = 0; /* not needed */
4646   /* team->t.t_master_bar;        not needed */
4647   team->t.t_serialized = new_nproc > 1 ? 0 : 1;
4648   team->t.t_nproc = new_nproc;
4649 
4650   /* team->t.t_parent     = NULL; TODO not needed & would mess up hot team */
4651   team->t.t_next_pool = NULL;
4652   /* memset( team->t.t_threads, 0, sizeof(kmp_info_t*)*new_nproc ); would mess
4653    * up hot team */
4654 
4655   TCW_SYNC_PTR(team->t.t_pkfn, NULL); /* not needed */
4656   team->t.t_invoke = NULL; /* not needed */
4657 
4658   // TODO???: team->t.t_max_active_levels       = new_max_active_levels;
4659   team->t.t_sched.sched = new_icvs->sched.sched;
4660 
4661 #if KMP_ARCH_X86 || KMP_ARCH_X86_64
4662   team->t.t_fp_control_saved = FALSE; /* not needed */
4663   team->t.t_x87_fpu_control_word = 0; /* not needed */
4664   team->t.t_mxcsr = 0; /* not needed */
4665 #endif /* KMP_ARCH_X86 || KMP_ARCH_X86_64 */
4666 
4667   team->t.t_construct = 0;
4668 
4669   team->t.t_ordered.dt.t_value = 0;
4670   team->t.t_master_active = FALSE;
4671 
4672 #ifdef KMP_DEBUG
4673   team->t.t_copypriv_data = NULL; /* not necessary, but nice for debugging */
4674 #endif
4675 #if KMP_OS_WINDOWS
4676   team->t.t_copyin_counter = 0; /* for barrier-free copyin implementation */
4677 #endif
4678 
4679   team->t.t_control_stack_top = NULL;
4680 
4681   __kmp_reinitialize_team(team, new_icvs, loc);
4682 
4683   KMP_MB();
4684   KF_TRACE(10, ("__kmp_initialize_team: exit: team=%p\n", team));
4685 }
4686 
4687 #if (KMP_OS_LINUX || KMP_OS_FREEBSD) && KMP_AFFINITY_SUPPORTED
4688 /* Sets full mask for thread and returns old mask, no changes to structures. */
4689 static void
4690 __kmp_set_thread_affinity_mask_full_tmp(kmp_affin_mask_t *old_mask) {
4691   if (KMP_AFFINITY_CAPABLE()) {
4692     int status;
4693     if (old_mask != NULL) {
4694       status = __kmp_get_system_affinity(old_mask, TRUE);
4695       int error = errno;
4696       if (status != 0) {
4697         __kmp_fatal(KMP_MSG(ChangeThreadAffMaskError), KMP_ERR(error),
4698                     __kmp_msg_null);
4699       }
4700     }
4701     __kmp_set_system_affinity(__kmp_affin_fullMask, TRUE);
4702   }
4703 }
4704 #endif
4705 
4706 #if KMP_AFFINITY_SUPPORTED
4707 
4708 // __kmp_partition_places() is the heart of the OpenMP 4.0 affinity mechanism.
4709 // It calculates the worker + primary thread's partition based upon the parent
4710 // thread's partition, and binds each worker to a thread in their partition.
4711 // The primary thread's partition should already include its current binding.
4712 static void __kmp_partition_places(kmp_team_t *team, int update_master_only) {
4713   // Do not partition places for the hidden helper team
4714   if (KMP_HIDDEN_HELPER_TEAM(team))
4715     return;
4716   // Copy the primary thread's place partition to the team struct
4717   kmp_info_t *master_th = team->t.t_threads[0];
4718   KMP_DEBUG_ASSERT(master_th != NULL);
4719   kmp_proc_bind_t proc_bind = team->t.t_proc_bind;
4720   int first_place = master_th->th.th_first_place;
4721   int last_place = master_th->th.th_last_place;
4722   int masters_place = master_th->th.th_current_place;
4723   team->t.t_first_place = first_place;
4724   team->t.t_last_place = last_place;
4725 
4726   KA_TRACE(20, ("__kmp_partition_places: enter: proc_bind = %d T#%d(%d:0) "
4727                 "bound to place %d partition = [%d,%d]\n",
4728                 proc_bind, __kmp_gtid_from_thread(team->t.t_threads[0]),
4729                 team->t.t_id, masters_place, first_place, last_place));
4730 
4731   switch (proc_bind) {
4732 
4733   case proc_bind_default:
4734     // Serial teams might have the proc_bind policy set to proc_bind_default.
4735     // Not an issue -- we don't rebind primary thread for any proc_bind policy.
4736     KMP_DEBUG_ASSERT(team->t.t_nproc == 1);
4737     break;
4738 
4739   case proc_bind_primary: {
4740     int f;
4741     int n_th = team->t.t_nproc;
4742     for (f = 1; f < n_th; f++) {
4743       kmp_info_t *th = team->t.t_threads[f];
4744       KMP_DEBUG_ASSERT(th != NULL);
4745       th->th.th_first_place = first_place;
4746       th->th.th_last_place = last_place;
4747       th->th.th_new_place = masters_place;
4748       if (__kmp_display_affinity && masters_place != th->th.th_current_place &&
4749           team->t.t_display_affinity != 1) {
4750         team->t.t_display_affinity = 1;
4751       }
4752 
4753       KA_TRACE(100, ("__kmp_partition_places: primary: T#%d(%d:%d) place %d "
4754                      "partition = [%d,%d]\n",
4755                      __kmp_gtid_from_thread(team->t.t_threads[f]), team->t.t_id,
4756                      f, masters_place, first_place, last_place));
4757     }
4758   } break;
4759 
4760   case proc_bind_close: {
4761     int f;
4762     int n_th = team->t.t_nproc;
4763     int n_places;
4764     if (first_place <= last_place) {
4765       n_places = last_place - first_place + 1;
4766     } else {
4767       n_places = __kmp_affinity_num_masks - first_place + last_place + 1;
4768     }
4769     if (n_th <= n_places) {
4770       int place = masters_place;
4771       for (f = 1; f < n_th; f++) {
4772         kmp_info_t *th = team->t.t_threads[f];
4773         KMP_DEBUG_ASSERT(th != NULL);
4774 
4775         if (place == last_place) {
4776           place = first_place;
4777         } else if (place == (int)(__kmp_affinity_num_masks - 1)) {
4778           place = 0;
4779         } else {
4780           place++;
4781         }
4782         th->th.th_first_place = first_place;
4783         th->th.th_last_place = last_place;
4784         th->th.th_new_place = place;
4785         if (__kmp_display_affinity && place != th->th.th_current_place &&
4786             team->t.t_display_affinity != 1) {
4787           team->t.t_display_affinity = 1;
4788         }
4789 
4790         KA_TRACE(100, ("__kmp_partition_places: close: T#%d(%d:%d) place %d "
4791                        "partition = [%d,%d]\n",
4792                        __kmp_gtid_from_thread(team->t.t_threads[f]),
4793                        team->t.t_id, f, place, first_place, last_place));
4794       }
4795     } else {
4796       int S, rem, gap, s_count;
4797       S = n_th / n_places;
4798       s_count = 0;
4799       rem = n_th - (S * n_places);
4800       gap = rem > 0 ? n_places / rem : n_places;
4801       int place = masters_place;
4802       int gap_ct = gap;
4803       for (f = 0; f < n_th; f++) {
4804         kmp_info_t *th = team->t.t_threads[f];
4805         KMP_DEBUG_ASSERT(th != NULL);
4806 
4807         th->th.th_first_place = first_place;
4808         th->th.th_last_place = last_place;
4809         th->th.th_new_place = place;
4810         if (__kmp_display_affinity && place != th->th.th_current_place &&
4811             team->t.t_display_affinity != 1) {
4812           team->t.t_display_affinity = 1;
4813         }
4814         s_count++;
4815 
4816         if ((s_count == S) && rem && (gap_ct == gap)) {
4817           // do nothing, add an extra thread to place on next iteration
4818         } else if ((s_count == S + 1) && rem && (gap_ct == gap)) {
4819           // we added an extra thread to this place; move to next place
4820           if (place == last_place) {
4821             place = first_place;
4822           } else if (place == (int)(__kmp_affinity_num_masks - 1)) {
4823             place = 0;
4824           } else {
4825             place++;
4826           }
4827           s_count = 0;
4828           gap_ct = 1;
4829           rem--;
4830         } else if (s_count == S) { // place full; don't add extra
4831           if (place == last_place) {
4832             place = first_place;
4833           } else if (place == (int)(__kmp_affinity_num_masks - 1)) {
4834             place = 0;
4835           } else {
4836             place++;
4837           }
4838           gap_ct++;
4839           s_count = 0;
4840         }
4841 
4842         KA_TRACE(100,
4843                  ("__kmp_partition_places: close: T#%d(%d:%d) place %d "
4844                   "partition = [%d,%d]\n",
4845                   __kmp_gtid_from_thread(team->t.t_threads[f]), team->t.t_id, f,
4846                   th->th.th_new_place, first_place, last_place));
4847       }
4848       KMP_DEBUG_ASSERT(place == masters_place);
4849     }
4850   } break;
4851 
4852   case proc_bind_spread: {
4853     int f;
4854     int n_th = team->t.t_nproc;
4855     int n_places;
4856     int thidx;
4857     if (first_place <= last_place) {
4858       n_places = last_place - first_place + 1;
4859     } else {
4860       n_places = __kmp_affinity_num_masks - first_place + last_place + 1;
4861     }
4862     if (n_th <= n_places) {
4863       int place = -1;
4864 
4865       if (n_places != static_cast<int>(__kmp_affinity_num_masks)) {
4866         int S = n_places / n_th;
4867         int s_count, rem, gap, gap_ct;
4868 
4869         place = masters_place;
4870         rem = n_places - n_th * S;
4871         gap = rem ? n_th / rem : 1;
4872         gap_ct = gap;
4873         thidx = n_th;
4874         if (update_master_only == 1)
4875           thidx = 1;
4876         for (f = 0; f < thidx; f++) {
4877           kmp_info_t *th = team->t.t_threads[f];
4878           KMP_DEBUG_ASSERT(th != NULL);
4879 
4880           th->th.th_first_place = place;
4881           th->th.th_new_place = place;
4882           if (__kmp_display_affinity && place != th->th.th_current_place &&
4883               team->t.t_display_affinity != 1) {
4884             team->t.t_display_affinity = 1;
4885           }
4886           s_count = 1;
4887           while (s_count < S) {
4888             if (place == last_place) {
4889               place = first_place;
4890             } else if (place == (int)(__kmp_affinity_num_masks - 1)) {
4891               place = 0;
4892             } else {
4893               place++;
4894             }
4895             s_count++;
4896           }
4897           if (rem && (gap_ct == gap)) {
4898             if (place == last_place) {
4899               place = first_place;
4900             } else if (place == (int)(__kmp_affinity_num_masks - 1)) {
4901               place = 0;
4902             } else {
4903               place++;
4904             }
4905             rem--;
4906             gap_ct = 0;
4907           }
4908           th->th.th_last_place = place;
4909           gap_ct++;
4910 
4911           if (place == last_place) {
4912             place = first_place;
4913           } else if (place == (int)(__kmp_affinity_num_masks - 1)) {
4914             place = 0;
4915           } else {
4916             place++;
4917           }
4918 
4919           KA_TRACE(100,
4920                    ("__kmp_partition_places: spread: T#%d(%d:%d) place %d "
4921                     "partition = [%d,%d], __kmp_affinity_num_masks: %u\n",
4922                     __kmp_gtid_from_thread(team->t.t_threads[f]), team->t.t_id,
4923                     f, th->th.th_new_place, th->th.th_first_place,
4924                     th->th.th_last_place, __kmp_affinity_num_masks));
4925         }
4926       } else {
4927         /* Having uniform space of available computation places I can create
4928            T partitions of round(P/T) size and put threads into the first
4929            place of each partition. */
4930         double current = static_cast<double>(masters_place);
4931         double spacing =
4932             (static_cast<double>(n_places + 1) / static_cast<double>(n_th));
4933         int first, last;
4934         kmp_info_t *th;
4935 
4936         thidx = n_th + 1;
4937         if (update_master_only == 1)
4938           thidx = 1;
4939         for (f = 0; f < thidx; f++) {
4940           first = static_cast<int>(current);
4941           last = static_cast<int>(current + spacing) - 1;
4942           KMP_DEBUG_ASSERT(last >= first);
4943           if (first >= n_places) {
4944             if (masters_place) {
4945               first -= n_places;
4946               last -= n_places;
4947               if (first == (masters_place + 1)) {
4948                 KMP_DEBUG_ASSERT(f == n_th);
4949                 first--;
4950               }
4951               if (last == masters_place) {
4952                 KMP_DEBUG_ASSERT(f == (n_th - 1));
4953                 last--;
4954               }
4955             } else {
4956               KMP_DEBUG_ASSERT(f == n_th);
4957               first = 0;
4958               last = 0;
4959             }
4960           }
4961           if (last >= n_places) {
4962             last = (n_places - 1);
4963           }
4964           place = first;
4965           current += spacing;
4966           if (f < n_th) {
4967             KMP_DEBUG_ASSERT(0 <= first);
4968             KMP_DEBUG_ASSERT(n_places > first);
4969             KMP_DEBUG_ASSERT(0 <= last);
4970             KMP_DEBUG_ASSERT(n_places > last);
4971             KMP_DEBUG_ASSERT(last_place >= first_place);
4972             th = team->t.t_threads[f];
4973             KMP_DEBUG_ASSERT(th);
4974             th->th.th_first_place = first;
4975             th->th.th_new_place = place;
4976             th->th.th_last_place = last;
4977             if (__kmp_display_affinity && place != th->th.th_current_place &&
4978                 team->t.t_display_affinity != 1) {
4979               team->t.t_display_affinity = 1;
4980             }
4981             KA_TRACE(100,
4982                      ("__kmp_partition_places: spread: T#%d(%d:%d) place %d "
4983                       "partition = [%d,%d], spacing = %.4f\n",
4984                       __kmp_gtid_from_thread(team->t.t_threads[f]),
4985                       team->t.t_id, f, th->th.th_new_place,
4986                       th->th.th_first_place, th->th.th_last_place, spacing));
4987           }
4988         }
4989       }
4990       KMP_DEBUG_ASSERT(update_master_only || place == masters_place);
4991     } else {
4992       int S, rem, gap, s_count;
4993       S = n_th / n_places;
4994       s_count = 0;
4995       rem = n_th - (S * n_places);
4996       gap = rem > 0 ? n_places / rem : n_places;
4997       int place = masters_place;
4998       int gap_ct = gap;
4999       thidx = n_th;
5000       if (update_master_only == 1)
5001         thidx = 1;
5002       for (f = 0; f < thidx; f++) {
5003         kmp_info_t *th = team->t.t_threads[f];
5004         KMP_DEBUG_ASSERT(th != NULL);
5005 
5006         th->th.th_first_place = place;
5007         th->th.th_last_place = place;
5008         th->th.th_new_place = place;
5009         if (__kmp_display_affinity && place != th->th.th_current_place &&
5010             team->t.t_display_affinity != 1) {
5011           team->t.t_display_affinity = 1;
5012         }
5013         s_count++;
5014 
5015         if ((s_count == S) && rem && (gap_ct == gap)) {
5016           // do nothing, add an extra thread to place on next iteration
5017         } else if ((s_count == S + 1) && rem && (gap_ct == gap)) {
5018           // we added an extra thread to this place; move on to next place
5019           if (place == last_place) {
5020             place = first_place;
5021           } else if (place == (int)(__kmp_affinity_num_masks - 1)) {
5022             place = 0;
5023           } else {
5024             place++;
5025           }
5026           s_count = 0;
5027           gap_ct = 1;
5028           rem--;
5029         } else if (s_count == S) { // place is full; don't add extra thread
5030           if (place == last_place) {
5031             place = first_place;
5032           } else if (place == (int)(__kmp_affinity_num_masks - 1)) {
5033             place = 0;
5034           } else {
5035             place++;
5036           }
5037           gap_ct++;
5038           s_count = 0;
5039         }
5040 
5041         KA_TRACE(100, ("__kmp_partition_places: spread: T#%d(%d:%d) place %d "
5042                        "partition = [%d,%d]\n",
5043                        __kmp_gtid_from_thread(team->t.t_threads[f]),
5044                        team->t.t_id, f, th->th.th_new_place,
5045                        th->th.th_first_place, th->th.th_last_place));
5046       }
5047       KMP_DEBUG_ASSERT(update_master_only || place == masters_place);
5048     }
5049   } break;
5050 
5051   default:
5052     break;
5053   }
5054 
5055   KA_TRACE(20, ("__kmp_partition_places: exit T#%d\n", team->t.t_id));
5056 }
5057 
5058 #endif // KMP_AFFINITY_SUPPORTED
5059 
5060 /* allocate a new team data structure to use.  take one off of the free pool if
5061    available */
5062 kmp_team_t *
5063 __kmp_allocate_team(kmp_root_t *root, int new_nproc, int max_nproc,
5064 #if OMPT_SUPPORT
5065                     ompt_data_t ompt_parallel_data,
5066 #endif
5067                     kmp_proc_bind_t new_proc_bind,
5068                     kmp_internal_control_t *new_icvs,
5069                     int argc USE_NESTED_HOT_ARG(kmp_info_t *master)) {
5070   KMP_TIME_DEVELOPER_PARTITIONED_BLOCK(KMP_allocate_team);
5071   int f;
5072   kmp_team_t *team;
5073   int use_hot_team = !root->r.r_active;
5074   int level = 0;
5075   int do_place_partition = 1;
5076 
5077   KA_TRACE(20, ("__kmp_allocate_team: called\n"));
5078   KMP_DEBUG_ASSERT(new_nproc >= 1 && argc >= 0);
5079   KMP_DEBUG_ASSERT(max_nproc >= new_nproc);
5080   KMP_MB();
5081 
5082 #if KMP_NESTED_HOT_TEAMS
5083   kmp_hot_team_ptr_t *hot_teams;
5084   if (master) {
5085     team = master->th.th_team;
5086     level = team->t.t_active_level;
5087     if (master->th.th_teams_microtask) { // in teams construct?
5088       if (master->th.th_teams_size.nteams > 1 &&
5089           ( // #teams > 1
5090               team->t.t_pkfn ==
5091                   (microtask_t)__kmp_teams_master || // inner fork of the teams
5092               master->th.th_teams_level <
5093                   team->t.t_level)) { // or nested parallel inside the teams
5094         ++level; // not increment if #teams==1, or for outer fork of the teams;
5095         // increment otherwise
5096       }
5097       // Do not perform the place partition if inner fork of the teams
5098       // Wait until nested parallel region encountered inside teams construct
5099       if ((master->th.th_teams_size.nteams == 1 &&
5100            master->th.th_teams_level >= team->t.t_level) ||
5101           (team->t.t_pkfn == (microtask_t)__kmp_teams_master))
5102         do_place_partition = 0;
5103     }
5104     hot_teams = master->th.th_hot_teams;
5105     if (level < __kmp_hot_teams_max_level && hot_teams &&
5106         hot_teams[level].hot_team) {
5107       // hot team has already been allocated for given level
5108       use_hot_team = 1;
5109     } else {
5110       use_hot_team = 0;
5111     }
5112   } else {
5113     // check we won't access uninitialized hot_teams, just in case
5114     KMP_DEBUG_ASSERT(new_nproc == 1);
5115   }
5116 #endif
5117   // Optimization to use a "hot" team
5118   if (use_hot_team && new_nproc > 1) {
5119     KMP_DEBUG_ASSERT(new_nproc <= max_nproc);
5120 #if KMP_NESTED_HOT_TEAMS
5121     team = hot_teams[level].hot_team;
5122 #else
5123     team = root->r.r_hot_team;
5124 #endif
5125 #if KMP_DEBUG
5126     if (__kmp_tasking_mode != tskm_immediate_exec) {
5127       KA_TRACE(20, ("__kmp_allocate_team: hot team task_team[0] = %p "
5128                     "task_team[1] = %p before reinit\n",
5129                     team->t.t_task_team[0], team->t.t_task_team[1]));
5130     }
5131 #endif
5132 
5133     if (team->t.t_nproc != new_nproc &&
5134         __kmp_barrier_release_pattern[bs_forkjoin_barrier] == bp_dist_bar) {
5135       // Distributed barrier may need a resize
5136       int old_nthr = team->t.t_nproc;
5137       __kmp_resize_dist_barrier(team, old_nthr, new_nproc);
5138     }
5139 
5140     // If not doing the place partition, then reset the team's proc bind
5141     // to indicate that partitioning of all threads still needs to take place
5142     if (do_place_partition == 0)
5143       team->t.t_proc_bind = proc_bind_default;
5144     // Has the number of threads changed?
5145     /* Let's assume the most common case is that the number of threads is
5146        unchanged, and put that case first. */
5147     if (team->t.t_nproc == new_nproc) { // Check changes in number of threads
5148       KA_TRACE(20, ("__kmp_allocate_team: reusing hot team\n"));
5149       // This case can mean that omp_set_num_threads() was called and the hot
5150       // team size was already reduced, so we check the special flag
5151       if (team->t.t_size_changed == -1) {
5152         team->t.t_size_changed = 1;
5153       } else {
5154         KMP_CHECK_UPDATE(team->t.t_size_changed, 0);
5155       }
5156 
5157       // TODO???: team->t.t_max_active_levels = new_max_active_levels;
5158       kmp_r_sched_t new_sched = new_icvs->sched;
5159       // set primary thread's schedule as new run-time schedule
5160       KMP_CHECK_UPDATE(team->t.t_sched.sched, new_sched.sched);
5161 
5162       __kmp_reinitialize_team(team, new_icvs,
5163                               root->r.r_uber_thread->th.th_ident);
5164 
5165       KF_TRACE(10, ("__kmp_allocate_team2: T#%d, this_thread=%p team=%p\n", 0,
5166                     team->t.t_threads[0], team));
5167       __kmp_push_current_task_to_thread(team->t.t_threads[0], team, 0);
5168 
5169 #if KMP_AFFINITY_SUPPORTED
5170       if ((team->t.t_size_changed == 0) &&
5171           (team->t.t_proc_bind == new_proc_bind)) {
5172         if (new_proc_bind == proc_bind_spread) {
5173           if (do_place_partition) {
5174             // add flag to update only master for spread
5175             __kmp_partition_places(team, 1);
5176           }
5177         }
5178         KA_TRACE(200, ("__kmp_allocate_team: reusing hot team #%d bindings: "
5179                        "proc_bind = %d, partition = [%d,%d]\n",
5180                        team->t.t_id, new_proc_bind, team->t.t_first_place,
5181                        team->t.t_last_place));
5182       } else {
5183         if (do_place_partition) {
5184           KMP_CHECK_UPDATE(team->t.t_proc_bind, new_proc_bind);
5185           __kmp_partition_places(team);
5186         }
5187       }
5188 #else
5189       KMP_CHECK_UPDATE(team->t.t_proc_bind, new_proc_bind);
5190 #endif /* KMP_AFFINITY_SUPPORTED */
5191     } else if (team->t.t_nproc > new_nproc) {
5192       KA_TRACE(20,
5193                ("__kmp_allocate_team: decreasing hot team thread count to %d\n",
5194                 new_nproc));
5195 
5196       team->t.t_size_changed = 1;
5197       if (__kmp_barrier_release_pattern[bs_forkjoin_barrier] == bp_dist_bar) {
5198         // Barrier size already reduced earlier in this function
5199         // Activate team threads via th_used_in_team
5200         __kmp_add_threads_to_team(team, new_nproc);
5201       }
5202 #if KMP_NESTED_HOT_TEAMS
5203       if (__kmp_hot_teams_mode == 0) {
5204         // AC: saved number of threads should correspond to team's value in this
5205         // mode, can be bigger in mode 1, when hot team has threads in reserve
5206         KMP_DEBUG_ASSERT(hot_teams[level].hot_team_nth == team->t.t_nproc);
5207         hot_teams[level].hot_team_nth = new_nproc;
5208 #endif // KMP_NESTED_HOT_TEAMS
5209         /* release the extra threads we don't need any more */
5210         for (f = new_nproc; f < team->t.t_nproc; f++) {
5211           KMP_DEBUG_ASSERT(team->t.t_threads[f]);
5212           if (__kmp_tasking_mode != tskm_immediate_exec) {
5213             // When decreasing team size, threads no longer in the team should
5214             // unref task team.
5215             team->t.t_threads[f]->th.th_task_team = NULL;
5216           }
5217           __kmp_free_thread(team->t.t_threads[f]);
5218           team->t.t_threads[f] = NULL;
5219         }
5220 #if KMP_NESTED_HOT_TEAMS
5221       } // (__kmp_hot_teams_mode == 0)
5222       else {
5223         // When keeping extra threads in team, switch threads to wait on own
5224         // b_go flag
5225         for (f = new_nproc; f < team->t.t_nproc; ++f) {
5226           KMP_DEBUG_ASSERT(team->t.t_threads[f]);
5227           kmp_balign_t *balign = team->t.t_threads[f]->th.th_bar;
5228           for (int b = 0; b < bs_last_barrier; ++b) {
5229             if (balign[b].bb.wait_flag == KMP_BARRIER_PARENT_FLAG) {
5230               balign[b].bb.wait_flag = KMP_BARRIER_SWITCH_TO_OWN_FLAG;
5231             }
5232             KMP_CHECK_UPDATE(balign[b].bb.leaf_kids, 0);
5233           }
5234         }
5235       }
5236 #endif // KMP_NESTED_HOT_TEAMS
5237       team->t.t_nproc = new_nproc;
5238       // TODO???: team->t.t_max_active_levels = new_max_active_levels;
5239       KMP_CHECK_UPDATE(team->t.t_sched.sched, new_icvs->sched.sched);
5240       __kmp_reinitialize_team(team, new_icvs,
5241                               root->r.r_uber_thread->th.th_ident);
5242 
5243       // Update remaining threads
5244       for (f = 0; f < new_nproc; ++f) {
5245         team->t.t_threads[f]->th.th_team_nproc = new_nproc;
5246       }
5247 
5248       // restore the current task state of the primary thread: should be the
5249       // implicit task
5250       KF_TRACE(10, ("__kmp_allocate_team: T#%d, this_thread=%p team=%p\n", 0,
5251                     team->t.t_threads[0], team));
5252 
5253       __kmp_push_current_task_to_thread(team->t.t_threads[0], team, 0);
5254 
5255 #ifdef KMP_DEBUG
5256       for (f = 0; f < team->t.t_nproc; f++) {
5257         KMP_DEBUG_ASSERT(team->t.t_threads[f] &&
5258                          team->t.t_threads[f]->th.th_team_nproc ==
5259                              team->t.t_nproc);
5260       }
5261 #endif
5262 
5263       if (do_place_partition) {
5264         KMP_CHECK_UPDATE(team->t.t_proc_bind, new_proc_bind);
5265 #if KMP_AFFINITY_SUPPORTED
5266         __kmp_partition_places(team);
5267 #endif
5268       }
5269     } else { // team->t.t_nproc < new_nproc
5270 #if (KMP_OS_LINUX || KMP_OS_FREEBSD) && KMP_AFFINITY_SUPPORTED
5271       kmp_affin_mask_t *old_mask;
5272       if (KMP_AFFINITY_CAPABLE()) {
5273         KMP_CPU_ALLOC(old_mask);
5274       }
5275 #endif
5276 
5277       KA_TRACE(20,
5278                ("__kmp_allocate_team: increasing hot team thread count to %d\n",
5279                 new_nproc));
5280       int old_nproc = team->t.t_nproc; // save old value and use to update only
5281       team->t.t_size_changed = 1;
5282 
5283 #if KMP_NESTED_HOT_TEAMS
5284       int avail_threads = hot_teams[level].hot_team_nth;
5285       if (new_nproc < avail_threads)
5286         avail_threads = new_nproc;
5287       kmp_info_t **other_threads = team->t.t_threads;
5288       for (f = team->t.t_nproc; f < avail_threads; ++f) {
5289         // Adjust barrier data of reserved threads (if any) of the team
5290         // Other data will be set in __kmp_initialize_info() below.
5291         int b;
5292         kmp_balign_t *balign = other_threads[f]->th.th_bar;
5293         for (b = 0; b < bs_last_barrier; ++b) {
5294           balign[b].bb.b_arrived = team->t.t_bar[b].b_arrived;
5295           KMP_DEBUG_ASSERT(balign[b].bb.wait_flag != KMP_BARRIER_PARENT_FLAG);
5296 #if USE_DEBUGGER
5297           balign[b].bb.b_worker_arrived = team->t.t_bar[b].b_team_arrived;
5298 #endif
5299         }
5300       }
5301       if (hot_teams[level].hot_team_nth >= new_nproc) {
5302         // we have all needed threads in reserve, no need to allocate any
5303         // this only possible in mode 1, cannot have reserved threads in mode 0
5304         KMP_DEBUG_ASSERT(__kmp_hot_teams_mode == 1);
5305         team->t.t_nproc = new_nproc; // just get reserved threads involved
5306       } else {
5307         // We may have some threads in reserve, but not enough;
5308         // get reserved threads involved if any.
5309         team->t.t_nproc = hot_teams[level].hot_team_nth;
5310         hot_teams[level].hot_team_nth = new_nproc; // adjust hot team max size
5311 #endif // KMP_NESTED_HOT_TEAMS
5312         if (team->t.t_max_nproc < new_nproc) {
5313           /* reallocate larger arrays */
5314           __kmp_reallocate_team_arrays(team, new_nproc);
5315           __kmp_reinitialize_team(team, new_icvs, NULL);
5316         }
5317 
5318 #if (KMP_OS_LINUX || KMP_OS_FREEBSD) && KMP_AFFINITY_SUPPORTED
5319         /* Temporarily set full mask for primary thread before creation of
5320            workers. The reason is that workers inherit the affinity from the
5321            primary thread, so if a lot of workers are created on the single
5322            core quickly, they don't get a chance to set their own affinity for
5323            a long time. */
5324         __kmp_set_thread_affinity_mask_full_tmp(old_mask);
5325 #endif
5326 
5327         /* allocate new threads for the hot team */
5328         for (f = team->t.t_nproc; f < new_nproc; f++) {
5329           kmp_info_t *new_worker = __kmp_allocate_thread(root, team, f);
5330           KMP_DEBUG_ASSERT(new_worker);
5331           team->t.t_threads[f] = new_worker;
5332 
5333           KA_TRACE(20,
5334                    ("__kmp_allocate_team: team %d init T#%d arrived: "
5335                     "join=%llu, plain=%llu\n",
5336                     team->t.t_id, __kmp_gtid_from_tid(f, team), team->t.t_id, f,
5337                     team->t.t_bar[bs_forkjoin_barrier].b_arrived,
5338                     team->t.t_bar[bs_plain_barrier].b_arrived));
5339 
5340           { // Initialize barrier data for new threads.
5341             int b;
5342             kmp_balign_t *balign = new_worker->th.th_bar;
5343             for (b = 0; b < bs_last_barrier; ++b) {
5344               balign[b].bb.b_arrived = team->t.t_bar[b].b_arrived;
5345               KMP_DEBUG_ASSERT(balign[b].bb.wait_flag !=
5346                                KMP_BARRIER_PARENT_FLAG);
5347 #if USE_DEBUGGER
5348               balign[b].bb.b_worker_arrived = team->t.t_bar[b].b_team_arrived;
5349 #endif
5350             }
5351           }
5352         }
5353 
5354 #if (KMP_OS_LINUX || KMP_OS_FREEBSD) && KMP_AFFINITY_SUPPORTED
5355         if (KMP_AFFINITY_CAPABLE()) {
5356           /* Restore initial primary thread's affinity mask */
5357           __kmp_set_system_affinity(old_mask, TRUE);
5358           KMP_CPU_FREE(old_mask);
5359         }
5360 #endif
5361 #if KMP_NESTED_HOT_TEAMS
5362       } // end of check of t_nproc vs. new_nproc vs. hot_team_nth
5363 #endif // KMP_NESTED_HOT_TEAMS
5364       if (__kmp_barrier_release_pattern[bs_forkjoin_barrier] == bp_dist_bar) {
5365         // Barrier size already increased earlier in this function
5366         // Activate team threads via th_used_in_team
5367         __kmp_add_threads_to_team(team, new_nproc);
5368       }
5369       /* make sure everyone is syncronized */
5370       // new threads below
5371       __kmp_initialize_team(team, new_nproc, new_icvs,
5372                             root->r.r_uber_thread->th.th_ident);
5373 
5374       /* reinitialize the threads */
5375       KMP_DEBUG_ASSERT(team->t.t_nproc == new_nproc);
5376       for (f = 0; f < team->t.t_nproc; ++f)
5377         __kmp_initialize_info(team->t.t_threads[f], team, f,
5378                               __kmp_gtid_from_tid(f, team));
5379 
5380       if (level) { // set th_task_state for new threads in nested hot team
5381         // __kmp_initialize_info() no longer zeroes th_task_state, so we should
5382         // only need to set the th_task_state for the new threads. th_task_state
5383         // for primary thread will not be accurate until after this in
5384         // __kmp_fork_call(), so we look to the primary thread's memo_stack to
5385         // get the correct value.
5386         for (f = old_nproc; f < team->t.t_nproc; ++f)
5387           team->t.t_threads[f]->th.th_task_state =
5388               team->t.t_threads[0]->th.th_task_state_memo_stack[level];
5389       } else { // set th_task_state for new threads in non-nested hot team
5390         // copy primary thread's state
5391         kmp_uint8 old_state = team->t.t_threads[0]->th.th_task_state;
5392         for (f = old_nproc; f < team->t.t_nproc; ++f)
5393           team->t.t_threads[f]->th.th_task_state = old_state;
5394       }
5395 
5396 #ifdef KMP_DEBUG
5397       for (f = 0; f < team->t.t_nproc; ++f) {
5398         KMP_DEBUG_ASSERT(team->t.t_threads[f] &&
5399                          team->t.t_threads[f]->th.th_team_nproc ==
5400                              team->t.t_nproc);
5401       }
5402 #endif
5403 
5404       if (do_place_partition) {
5405         KMP_CHECK_UPDATE(team->t.t_proc_bind, new_proc_bind);
5406 #if KMP_AFFINITY_SUPPORTED
5407         __kmp_partition_places(team);
5408 #endif
5409       }
5410     } // Check changes in number of threads
5411 
5412     kmp_info_t *master = team->t.t_threads[0];
5413     if (master->th.th_teams_microtask) {
5414       for (f = 1; f < new_nproc; ++f) {
5415         // propagate teams construct specific info to workers
5416         kmp_info_t *thr = team->t.t_threads[f];
5417         thr->th.th_teams_microtask = master->th.th_teams_microtask;
5418         thr->th.th_teams_level = master->th.th_teams_level;
5419         thr->th.th_teams_size = master->th.th_teams_size;
5420       }
5421     }
5422 #if KMP_NESTED_HOT_TEAMS
5423     if (level) {
5424       // Sync barrier state for nested hot teams, not needed for outermost hot
5425       // team.
5426       for (f = 1; f < new_nproc; ++f) {
5427         kmp_info_t *thr = team->t.t_threads[f];
5428         int b;
5429         kmp_balign_t *balign = thr->th.th_bar;
5430         for (b = 0; b < bs_last_barrier; ++b) {
5431           balign[b].bb.b_arrived = team->t.t_bar[b].b_arrived;
5432           KMP_DEBUG_ASSERT(balign[b].bb.wait_flag != KMP_BARRIER_PARENT_FLAG);
5433 #if USE_DEBUGGER
5434           balign[b].bb.b_worker_arrived = team->t.t_bar[b].b_team_arrived;
5435 #endif
5436         }
5437       }
5438     }
5439 #endif // KMP_NESTED_HOT_TEAMS
5440 
5441     /* reallocate space for arguments if necessary */
5442     __kmp_alloc_argv_entries(argc, team, TRUE);
5443     KMP_CHECK_UPDATE(team->t.t_argc, argc);
5444     // The hot team re-uses the previous task team,
5445     // if untouched during the previous release->gather phase.
5446 
5447     KF_TRACE(10, (" hot_team = %p\n", team));
5448 
5449 #if KMP_DEBUG
5450     if (__kmp_tasking_mode != tskm_immediate_exec) {
5451       KA_TRACE(20, ("__kmp_allocate_team: hot team task_team[0] = %p "
5452                     "task_team[1] = %p after reinit\n",
5453                     team->t.t_task_team[0], team->t.t_task_team[1]));
5454     }
5455 #endif
5456 
5457 #if OMPT_SUPPORT
5458     __ompt_team_assign_id(team, ompt_parallel_data);
5459 #endif
5460 
5461     KMP_MB();
5462 
5463     return team;
5464   }
5465 
5466   /* next, let's try to take one from the team pool */
5467   KMP_MB();
5468   for (team = CCAST(kmp_team_t *, __kmp_team_pool); (team);) {
5469     /* TODO: consider resizing undersized teams instead of reaping them, now
5470        that we have a resizing mechanism */
5471     if (team->t.t_max_nproc >= max_nproc) {
5472       /* take this team from the team pool */
5473       __kmp_team_pool = team->t.t_next_pool;
5474 
5475       if (max_nproc > 1 &&
5476           __kmp_barrier_gather_pattern[bs_forkjoin_barrier] == bp_dist_bar) {
5477         if (!team->t.b) { // Allocate barrier structure
5478           team->t.b = distributedBarrier::allocate(__kmp_dflt_team_nth_ub);
5479         }
5480       }
5481 
5482       /* setup the team for fresh use */
5483       __kmp_initialize_team(team, new_nproc, new_icvs, NULL);
5484 
5485       KA_TRACE(20, ("__kmp_allocate_team: setting task_team[0] %p and "
5486                     "task_team[1] %p to NULL\n",
5487                     &team->t.t_task_team[0], &team->t.t_task_team[1]));
5488       team->t.t_task_team[0] = NULL;
5489       team->t.t_task_team[1] = NULL;
5490 
5491       /* reallocate space for arguments if necessary */
5492       __kmp_alloc_argv_entries(argc, team, TRUE);
5493       KMP_CHECK_UPDATE(team->t.t_argc, argc);
5494 
5495       KA_TRACE(
5496           20, ("__kmp_allocate_team: team %d init arrived: join=%u, plain=%u\n",
5497                team->t.t_id, KMP_INIT_BARRIER_STATE, KMP_INIT_BARRIER_STATE));
5498       { // Initialize barrier data.
5499         int b;
5500         for (b = 0; b < bs_last_barrier; ++b) {
5501           team->t.t_bar[b].b_arrived = KMP_INIT_BARRIER_STATE;
5502 #if USE_DEBUGGER
5503           team->t.t_bar[b].b_master_arrived = 0;
5504           team->t.t_bar[b].b_team_arrived = 0;
5505 #endif
5506         }
5507       }
5508 
5509       team->t.t_proc_bind = new_proc_bind;
5510 
5511       KA_TRACE(20, ("__kmp_allocate_team: using team from pool %d.\n",
5512                     team->t.t_id));
5513 
5514 #if OMPT_SUPPORT
5515       __ompt_team_assign_id(team, ompt_parallel_data);
5516 #endif
5517 
5518       KMP_MB();
5519 
5520       return team;
5521     }
5522 
5523     /* reap team if it is too small, then loop back and check the next one */
5524     // not sure if this is wise, but, will be redone during the hot-teams
5525     // rewrite.
5526     /* TODO: Use technique to find the right size hot-team, don't reap them */
5527     team = __kmp_reap_team(team);
5528     __kmp_team_pool = team;
5529   }
5530 
5531   /* nothing available in the pool, no matter, make a new team! */
5532   KMP_MB();
5533   team = (kmp_team_t *)__kmp_allocate(sizeof(kmp_team_t));
5534 
5535   /* and set it up */
5536   team->t.t_max_nproc = max_nproc;
5537   if (max_nproc > 1 &&
5538       __kmp_barrier_gather_pattern[bs_forkjoin_barrier] == bp_dist_bar) {
5539     // Allocate barrier structure
5540     team->t.b = distributedBarrier::allocate(__kmp_dflt_team_nth_ub);
5541   }
5542 
5543   /* NOTE well, for some reason allocating one big buffer and dividing it up
5544      seems to really hurt performance a lot on the P4, so, let's not use this */
5545   __kmp_allocate_team_arrays(team, max_nproc);
5546 
5547   KA_TRACE(20, ("__kmp_allocate_team: making a new team\n"));
5548   __kmp_initialize_team(team, new_nproc, new_icvs, NULL);
5549 
5550   KA_TRACE(20, ("__kmp_allocate_team: setting task_team[0] %p and task_team[1] "
5551                 "%p to NULL\n",
5552                 &team->t.t_task_team[0], &team->t.t_task_team[1]));
5553   team->t.t_task_team[0] = NULL; // to be removed, as __kmp_allocate zeroes
5554   // memory, no need to duplicate
5555   team->t.t_task_team[1] = NULL; // to be removed, as __kmp_allocate zeroes
5556   // memory, no need to duplicate
5557 
5558   if (__kmp_storage_map) {
5559     __kmp_print_team_storage_map("team", team, team->t.t_id, new_nproc);
5560   }
5561 
5562   /* allocate space for arguments */
5563   __kmp_alloc_argv_entries(argc, team, FALSE);
5564   team->t.t_argc = argc;
5565 
5566   KA_TRACE(20,
5567            ("__kmp_allocate_team: team %d init arrived: join=%u, plain=%u\n",
5568             team->t.t_id, KMP_INIT_BARRIER_STATE, KMP_INIT_BARRIER_STATE));
5569   { // Initialize barrier data.
5570     int b;
5571     for (b = 0; b < bs_last_barrier; ++b) {
5572       team->t.t_bar[b].b_arrived = KMP_INIT_BARRIER_STATE;
5573 #if USE_DEBUGGER
5574       team->t.t_bar[b].b_master_arrived = 0;
5575       team->t.t_bar[b].b_team_arrived = 0;
5576 #endif
5577     }
5578   }
5579 
5580   team->t.t_proc_bind = new_proc_bind;
5581 
5582 #if OMPT_SUPPORT
5583   __ompt_team_assign_id(team, ompt_parallel_data);
5584   team->t.ompt_serialized_team_info = NULL;
5585 #endif
5586 
5587   KMP_MB();
5588 
5589   KA_TRACE(20, ("__kmp_allocate_team: done creating a new team %d.\n",
5590                 team->t.t_id));
5591 
5592   return team;
5593 }
5594 
5595 /* TODO implement hot-teams at all levels */
5596 /* TODO implement lazy thread release on demand (disband request) */
5597 
5598 /* free the team.  return it to the team pool.  release all the threads
5599  * associated with it */
5600 void __kmp_free_team(kmp_root_t *root,
5601                      kmp_team_t *team USE_NESTED_HOT_ARG(kmp_info_t *master)) {
5602   int f;
5603   KA_TRACE(20, ("__kmp_free_team: T#%d freeing team %d\n", __kmp_get_gtid(),
5604                 team->t.t_id));
5605 
5606   /* verify state */
5607   KMP_DEBUG_ASSERT(root);
5608   KMP_DEBUG_ASSERT(team);
5609   KMP_DEBUG_ASSERT(team->t.t_nproc <= team->t.t_max_nproc);
5610   KMP_DEBUG_ASSERT(team->t.t_threads);
5611 
5612   int use_hot_team = team == root->r.r_hot_team;
5613 #if KMP_NESTED_HOT_TEAMS
5614   int level;
5615   if (master) {
5616     level = team->t.t_active_level - 1;
5617     if (master->th.th_teams_microtask) { // in teams construct?
5618       if (master->th.th_teams_size.nteams > 1) {
5619         ++level; // level was not increased in teams construct for
5620         // team_of_masters
5621       }
5622       if (team->t.t_pkfn != (microtask_t)__kmp_teams_master &&
5623           master->th.th_teams_level == team->t.t_level) {
5624         ++level; // level was not increased in teams construct for
5625         // team_of_workers before the parallel
5626       } // team->t.t_level will be increased inside parallel
5627     }
5628 #if KMP_DEBUG
5629     kmp_hot_team_ptr_t *hot_teams = master->th.th_hot_teams;
5630 #endif
5631     if (level < __kmp_hot_teams_max_level) {
5632       KMP_DEBUG_ASSERT(team == hot_teams[level].hot_team);
5633       use_hot_team = 1;
5634     }
5635   }
5636 #endif // KMP_NESTED_HOT_TEAMS
5637 
5638   /* team is done working */
5639   TCW_SYNC_PTR(team->t.t_pkfn,
5640                NULL); // Important for Debugging Support Library.
5641 #if KMP_OS_WINDOWS
5642   team->t.t_copyin_counter = 0; // init counter for possible reuse
5643 #endif
5644   // Do not reset pointer to parent team to NULL for hot teams.
5645 
5646   /* if we are non-hot team, release our threads */
5647   if (!use_hot_team) {
5648     if (__kmp_tasking_mode != tskm_immediate_exec) {
5649       // Wait for threads to reach reapable state
5650       for (f = 1; f < team->t.t_nproc; ++f) {
5651         KMP_DEBUG_ASSERT(team->t.t_threads[f]);
5652         kmp_info_t *th = team->t.t_threads[f];
5653         volatile kmp_uint32 *state = &th->th.th_reap_state;
5654         while (*state != KMP_SAFE_TO_REAP) {
5655 #if KMP_OS_WINDOWS
5656           // On Windows a thread can be killed at any time, check this
5657           DWORD ecode;
5658           if (!__kmp_is_thread_alive(th, &ecode)) {
5659             *state = KMP_SAFE_TO_REAP; // reset the flag for dead thread
5660             break;
5661           }
5662 #endif
5663           // first check if thread is sleeping
5664           kmp_flag_64<> fl(&th->th.th_bar[bs_forkjoin_barrier].bb.b_go, th);
5665           if (fl.is_sleeping())
5666             fl.resume(__kmp_gtid_from_thread(th));
5667           KMP_CPU_PAUSE();
5668         }
5669       }
5670 
5671       // Delete task teams
5672       int tt_idx;
5673       for (tt_idx = 0; tt_idx < 2; ++tt_idx) {
5674         kmp_task_team_t *task_team = team->t.t_task_team[tt_idx];
5675         if (task_team != NULL) {
5676           for (f = 0; f < team->t.t_nproc; ++f) { // threads unref task teams
5677             KMP_DEBUG_ASSERT(team->t.t_threads[f]);
5678             team->t.t_threads[f]->th.th_task_team = NULL;
5679           }
5680           KA_TRACE(
5681               20,
5682               ("__kmp_free_team: T#%d deactivating task_team %p on team %d\n",
5683                __kmp_get_gtid(), task_team, team->t.t_id));
5684 #if KMP_NESTED_HOT_TEAMS
5685           __kmp_free_task_team(master, task_team);
5686 #endif
5687           team->t.t_task_team[tt_idx] = NULL;
5688         }
5689       }
5690     }
5691 
5692     // Reset pointer to parent team only for non-hot teams.
5693     team->t.t_parent = NULL;
5694     team->t.t_level = 0;
5695     team->t.t_active_level = 0;
5696 
5697     /* free the worker threads */
5698     for (f = 1; f < team->t.t_nproc; ++f) {
5699       KMP_DEBUG_ASSERT(team->t.t_threads[f]);
5700       if (__kmp_barrier_gather_pattern[bs_forkjoin_barrier] == bp_dist_bar) {
5701         KMP_COMPARE_AND_STORE_ACQ32(&(team->t.t_threads[f]->th.th_used_in_team),
5702                                     1, 2);
5703       }
5704       __kmp_free_thread(team->t.t_threads[f]);
5705     }
5706 
5707     if (__kmp_barrier_gather_pattern[bs_forkjoin_barrier] == bp_dist_bar) {
5708       if (team->t.b) {
5709         // wake up thread at old location
5710         team->t.b->go_release();
5711         if (__kmp_dflt_blocktime != KMP_MAX_BLOCKTIME) {
5712           for (f = 1; f < team->t.t_nproc; ++f) {
5713             if (team->t.b->sleep[f].sleep) {
5714               __kmp_atomic_resume_64(
5715                   team->t.t_threads[f]->th.th_info.ds.ds_gtid,
5716                   (kmp_atomic_flag_64<> *)NULL);
5717             }
5718           }
5719         }
5720         // Wait for threads to be removed from team
5721         for (int f = 1; f < team->t.t_nproc; ++f) {
5722           while (team->t.t_threads[f]->th.th_used_in_team.load() != 0)
5723             KMP_CPU_PAUSE();
5724         }
5725       }
5726     }
5727 
5728     for (f = 1; f < team->t.t_nproc; ++f) {
5729       team->t.t_threads[f] = NULL;
5730     }
5731 
5732     if (team->t.t_max_nproc > 1 &&
5733         __kmp_barrier_gather_pattern[bs_forkjoin_barrier] == bp_dist_bar) {
5734       distributedBarrier::deallocate(team->t.b);
5735       team->t.b = NULL;
5736     }
5737     /* put the team back in the team pool */
5738     /* TODO limit size of team pool, call reap_team if pool too large */
5739     team->t.t_next_pool = CCAST(kmp_team_t *, __kmp_team_pool);
5740     __kmp_team_pool = (volatile kmp_team_t *)team;
5741   } else { // Check if team was created for primary threads in teams construct
5742     // See if first worker is a CG root
5743     KMP_DEBUG_ASSERT(team->t.t_threads[1] &&
5744                      team->t.t_threads[1]->th.th_cg_roots);
5745     if (team->t.t_threads[1]->th.th_cg_roots->cg_root == team->t.t_threads[1]) {
5746       // Clean up the CG root nodes on workers so that this team can be re-used
5747       for (f = 1; f < team->t.t_nproc; ++f) {
5748         kmp_info_t *thr = team->t.t_threads[f];
5749         KMP_DEBUG_ASSERT(thr && thr->th.th_cg_roots &&
5750                          thr->th.th_cg_roots->cg_root == thr);
5751         // Pop current CG root off list
5752         kmp_cg_root_t *tmp = thr->th.th_cg_roots;
5753         thr->th.th_cg_roots = tmp->up;
5754         KA_TRACE(100, ("__kmp_free_team: Thread %p popping node %p and moving"
5755                        " up to node %p. cg_nthreads was %d\n",
5756                        thr, tmp, thr->th.th_cg_roots, tmp->cg_nthreads));
5757         int i = tmp->cg_nthreads--;
5758         if (i == 1) {
5759           __kmp_free(tmp); // free CG if we are the last thread in it
5760         }
5761         // Restore current task's thread_limit from CG root
5762         if (thr->th.th_cg_roots)
5763           thr->th.th_current_task->td_icvs.thread_limit =
5764               thr->th.th_cg_roots->cg_thread_limit;
5765       }
5766     }
5767   }
5768 
5769   KMP_MB();
5770 }
5771 
5772 /* reap the team.  destroy it, reclaim all its resources and free its memory */
5773 kmp_team_t *__kmp_reap_team(kmp_team_t *team) {
5774   kmp_team_t *next_pool = team->t.t_next_pool;
5775 
5776   KMP_DEBUG_ASSERT(team);
5777   KMP_DEBUG_ASSERT(team->t.t_dispatch);
5778   KMP_DEBUG_ASSERT(team->t.t_disp_buffer);
5779   KMP_DEBUG_ASSERT(team->t.t_threads);
5780   KMP_DEBUG_ASSERT(team->t.t_argv);
5781 
5782   /* TODO clean the threads that are a part of this? */
5783 
5784   /* free stuff */
5785   __kmp_free_team_arrays(team);
5786   if (team->t.t_argv != &team->t.t_inline_argv[0])
5787     __kmp_free((void *)team->t.t_argv);
5788   __kmp_free(team);
5789 
5790   KMP_MB();
5791   return next_pool;
5792 }
5793 
5794 // Free the thread.  Don't reap it, just place it on the pool of available
5795 // threads.
5796 //
5797 // Changes for Quad issue 527845: We need a predictable OMP tid <-> gtid
5798 // binding for the affinity mechanism to be useful.
5799 //
5800 // Now, we always keep the free list (__kmp_thread_pool) sorted by gtid.
5801 // However, we want to avoid a potential performance problem by always
5802 // scanning through the list to find the correct point at which to insert
5803 // the thread (potential N**2 behavior).  To do this we keep track of the
5804 // last place a thread struct was inserted (__kmp_thread_pool_insert_pt).
5805 // With single-level parallelism, threads will always be added to the tail
5806 // of the list, kept track of by __kmp_thread_pool_insert_pt.  With nested
5807 // parallelism, all bets are off and we may need to scan through the entire
5808 // free list.
5809 //
5810 // This change also has a potentially large performance benefit, for some
5811 // applications.  Previously, as threads were freed from the hot team, they
5812 // would be placed back on the free list in inverse order.  If the hot team
5813 // grew back to it's original size, then the freed thread would be placed
5814 // back on the hot team in reverse order.  This could cause bad cache
5815 // locality problems on programs where the size of the hot team regularly
5816 // grew and shrunk.
5817 //
5818 // Now, for single-level parallelism, the OMP tid is always == gtid.
5819 void __kmp_free_thread(kmp_info_t *this_th) {
5820   int gtid;
5821   kmp_info_t **scan;
5822 
5823   KA_TRACE(20, ("__kmp_free_thread: T#%d putting T#%d back on free pool.\n",
5824                 __kmp_get_gtid(), this_th->th.th_info.ds.ds_gtid));
5825 
5826   KMP_DEBUG_ASSERT(this_th);
5827 
5828   // When moving thread to pool, switch thread to wait on own b_go flag, and
5829   // uninitialized (NULL team).
5830   int b;
5831   kmp_balign_t *balign = this_th->th.th_bar;
5832   for (b = 0; b < bs_last_barrier; ++b) {
5833     if (balign[b].bb.wait_flag == KMP_BARRIER_PARENT_FLAG)
5834       balign[b].bb.wait_flag = KMP_BARRIER_SWITCH_TO_OWN_FLAG;
5835     balign[b].bb.team = NULL;
5836     balign[b].bb.leaf_kids = 0;
5837   }
5838   this_th->th.th_task_state = 0;
5839   this_th->th.th_reap_state = KMP_SAFE_TO_REAP;
5840 
5841   /* put thread back on the free pool */
5842   TCW_PTR(this_th->th.th_team, NULL);
5843   TCW_PTR(this_th->th.th_root, NULL);
5844   TCW_PTR(this_th->th.th_dispatch, NULL); /* NOT NEEDED */
5845 
5846   while (this_th->th.th_cg_roots) {
5847     this_th->th.th_cg_roots->cg_nthreads--;
5848     KA_TRACE(100, ("__kmp_free_thread: Thread %p decrement cg_nthreads on node"
5849                    " %p of thread  %p to %d\n",
5850                    this_th, this_th->th.th_cg_roots,
5851                    this_th->th.th_cg_roots->cg_root,
5852                    this_th->th.th_cg_roots->cg_nthreads));
5853     kmp_cg_root_t *tmp = this_th->th.th_cg_roots;
5854     if (tmp->cg_root == this_th) { // Thread is a cg_root
5855       KMP_DEBUG_ASSERT(tmp->cg_nthreads == 0);
5856       KA_TRACE(
5857           5, ("__kmp_free_thread: Thread %p freeing node %p\n", this_th, tmp));
5858       this_th->th.th_cg_roots = tmp->up;
5859       __kmp_free(tmp);
5860     } else { // Worker thread
5861       if (tmp->cg_nthreads == 0) { // last thread leaves contention group
5862         __kmp_free(tmp);
5863       }
5864       this_th->th.th_cg_roots = NULL;
5865       break;
5866     }
5867   }
5868 
5869   /* If the implicit task assigned to this thread can be used by other threads
5870    * -> multiple threads can share the data and try to free the task at
5871    * __kmp_reap_thread at exit. This duplicate use of the task data can happen
5872    * with higher probability when hot team is disabled but can occurs even when
5873    * the hot team is enabled */
5874   __kmp_free_implicit_task(this_th);
5875   this_th->th.th_current_task = NULL;
5876 
5877   // If the __kmp_thread_pool_insert_pt is already past the new insert
5878   // point, then we need to re-scan the entire list.
5879   gtid = this_th->th.th_info.ds.ds_gtid;
5880   if (__kmp_thread_pool_insert_pt != NULL) {
5881     KMP_DEBUG_ASSERT(__kmp_thread_pool != NULL);
5882     if (__kmp_thread_pool_insert_pt->th.th_info.ds.ds_gtid > gtid) {
5883       __kmp_thread_pool_insert_pt = NULL;
5884     }
5885   }
5886 
5887   // Scan down the list to find the place to insert the thread.
5888   // scan is the address of a link in the list, possibly the address of
5889   // __kmp_thread_pool itself.
5890   //
5891   // In the absence of nested parallelism, the for loop will have 0 iterations.
5892   if (__kmp_thread_pool_insert_pt != NULL) {
5893     scan = &(__kmp_thread_pool_insert_pt->th.th_next_pool);
5894   } else {
5895     scan = CCAST(kmp_info_t **, &__kmp_thread_pool);
5896   }
5897   for (; (*scan != NULL) && ((*scan)->th.th_info.ds.ds_gtid < gtid);
5898        scan = &((*scan)->th.th_next_pool))
5899     ;
5900 
5901   // Insert the new element on the list, and set __kmp_thread_pool_insert_pt
5902   // to its address.
5903   TCW_PTR(this_th->th.th_next_pool, *scan);
5904   __kmp_thread_pool_insert_pt = *scan = this_th;
5905   KMP_DEBUG_ASSERT((this_th->th.th_next_pool == NULL) ||
5906                    (this_th->th.th_info.ds.ds_gtid <
5907                     this_th->th.th_next_pool->th.th_info.ds.ds_gtid));
5908   TCW_4(this_th->th.th_in_pool, TRUE);
5909   __kmp_suspend_initialize_thread(this_th);
5910   __kmp_lock_suspend_mx(this_th);
5911   if (this_th->th.th_active == TRUE) {
5912     KMP_ATOMIC_INC(&__kmp_thread_pool_active_nth);
5913     this_th->th.th_active_in_pool = TRUE;
5914   }
5915 #if KMP_DEBUG
5916   else {
5917     KMP_DEBUG_ASSERT(this_th->th.th_active_in_pool == FALSE);
5918   }
5919 #endif
5920   __kmp_unlock_suspend_mx(this_th);
5921 
5922   TCW_4(__kmp_nth, __kmp_nth - 1);
5923 
5924 #ifdef KMP_ADJUST_BLOCKTIME
5925   /* Adjust blocktime back to user setting or default if necessary */
5926   /* Middle initialization might never have occurred                */
5927   if (!__kmp_env_blocktime && (__kmp_avail_proc > 0)) {
5928     KMP_DEBUG_ASSERT(__kmp_avail_proc > 0);
5929     if (__kmp_nth <= __kmp_avail_proc) {
5930       __kmp_zero_bt = FALSE;
5931     }
5932   }
5933 #endif /* KMP_ADJUST_BLOCKTIME */
5934 
5935   KMP_MB();
5936 }
5937 
5938 /* ------------------------------------------------------------------------ */
5939 
5940 void *__kmp_launch_thread(kmp_info_t *this_thr) {
5941 #if OMP_PROFILING_SUPPORT
5942   ProfileTraceFile = getenv("LIBOMPTARGET_PROFILE");
5943   // TODO: add a configuration option for time granularity
5944   if (ProfileTraceFile)
5945     llvm::timeTraceProfilerInitialize(500 /* us */, "libomptarget");
5946 #endif
5947 
5948   int gtid = this_thr->th.th_info.ds.ds_gtid;
5949   /*    void                 *stack_data;*/
5950   kmp_team_t **volatile pteam;
5951 
5952   KMP_MB();
5953   KA_TRACE(10, ("__kmp_launch_thread: T#%d start\n", gtid));
5954 
5955   if (__kmp_env_consistency_check) {
5956     this_thr->th.th_cons = __kmp_allocate_cons_stack(gtid); // ATT: Memory leak?
5957   }
5958 
5959 #if OMPD_SUPPORT
5960   if (ompd_state & OMPD_ENABLE_BP)
5961     ompd_bp_thread_begin();
5962 #endif
5963 
5964 #if OMPT_SUPPORT
5965   ompt_data_t *thread_data = nullptr;
5966   if (ompt_enabled.enabled) {
5967     thread_data = &(this_thr->th.ompt_thread_info.thread_data);
5968     *thread_data = ompt_data_none;
5969 
5970     this_thr->th.ompt_thread_info.state = ompt_state_overhead;
5971     this_thr->th.ompt_thread_info.wait_id = 0;
5972     this_thr->th.ompt_thread_info.idle_frame = OMPT_GET_FRAME_ADDRESS(0);
5973     this_thr->th.ompt_thread_info.parallel_flags = 0;
5974     if (ompt_enabled.ompt_callback_thread_begin) {
5975       ompt_callbacks.ompt_callback(ompt_callback_thread_begin)(
5976           ompt_thread_worker, thread_data);
5977     }
5978     this_thr->th.ompt_thread_info.state = ompt_state_idle;
5979   }
5980 #endif
5981 
5982   /* This is the place where threads wait for work */
5983   while (!TCR_4(__kmp_global.g.g_done)) {
5984     KMP_DEBUG_ASSERT(this_thr == __kmp_threads[gtid]);
5985     KMP_MB();
5986 
5987     /* wait for work to do */
5988     KA_TRACE(20, ("__kmp_launch_thread: T#%d waiting for work\n", gtid));
5989 
5990     /* No tid yet since not part of a team */
5991     __kmp_fork_barrier(gtid, KMP_GTID_DNE);
5992 
5993 #if OMPT_SUPPORT
5994     if (ompt_enabled.enabled) {
5995       this_thr->th.ompt_thread_info.state = ompt_state_overhead;
5996     }
5997 #endif
5998 
5999     pteam = &this_thr->th.th_team;
6000 
6001     /* have we been allocated? */
6002     if (TCR_SYNC_PTR(*pteam) && !TCR_4(__kmp_global.g.g_done)) {
6003       /* we were just woken up, so run our new task */
6004       if (TCR_SYNC_PTR((*pteam)->t.t_pkfn) != NULL) {
6005         int rc;
6006         KA_TRACE(20,
6007                  ("__kmp_launch_thread: T#%d(%d:%d) invoke microtask = %p\n",
6008                   gtid, (*pteam)->t.t_id, __kmp_tid_from_gtid(gtid),
6009                   (*pteam)->t.t_pkfn));
6010 
6011         updateHWFPControl(*pteam);
6012 
6013 #if OMPT_SUPPORT
6014         if (ompt_enabled.enabled) {
6015           this_thr->th.ompt_thread_info.state = ompt_state_work_parallel;
6016         }
6017 #endif
6018 
6019         rc = (*pteam)->t.t_invoke(gtid);
6020         KMP_ASSERT(rc);
6021 
6022         KMP_MB();
6023         KA_TRACE(20, ("__kmp_launch_thread: T#%d(%d:%d) done microtask = %p\n",
6024                       gtid, (*pteam)->t.t_id, __kmp_tid_from_gtid(gtid),
6025                       (*pteam)->t.t_pkfn));
6026       }
6027 #if OMPT_SUPPORT
6028       if (ompt_enabled.enabled) {
6029         /* no frame set while outside task */
6030         __ompt_get_task_info_object(0)->frame.exit_frame = ompt_data_none;
6031 
6032         this_thr->th.ompt_thread_info.state = ompt_state_overhead;
6033       }
6034 #endif
6035       /* join barrier after parallel region */
6036       __kmp_join_barrier(gtid);
6037     }
6038   }
6039   TCR_SYNC_PTR((intptr_t)__kmp_global.g.g_done);
6040 
6041 #if OMPD_SUPPORT
6042   if (ompd_state & OMPD_ENABLE_BP)
6043     ompd_bp_thread_end();
6044 #endif
6045 
6046 #if OMPT_SUPPORT
6047   if (ompt_enabled.ompt_callback_thread_end) {
6048     ompt_callbacks.ompt_callback(ompt_callback_thread_end)(thread_data);
6049   }
6050 #endif
6051 
6052   this_thr->th.th_task_team = NULL;
6053   /* run the destructors for the threadprivate data for this thread */
6054   __kmp_common_destroy_gtid(gtid);
6055 
6056   KA_TRACE(10, ("__kmp_launch_thread: T#%d done\n", gtid));
6057   KMP_MB();
6058 
6059 #if OMP_PROFILING_SUPPORT
6060   llvm::timeTraceProfilerFinishThread();
6061 #endif
6062   return this_thr;
6063 }
6064 
6065 /* ------------------------------------------------------------------------ */
6066 
6067 void __kmp_internal_end_dest(void *specific_gtid) {
6068   // Make sure no significant bits are lost
6069   int gtid;
6070   __kmp_type_convert((kmp_intptr_t)specific_gtid - 1, &gtid);
6071 
6072   KA_TRACE(30, ("__kmp_internal_end_dest: T#%d\n", gtid));
6073   /* NOTE: the gtid is stored as gitd+1 in the thread-local-storage
6074    * this is because 0 is reserved for the nothing-stored case */
6075 
6076   __kmp_internal_end_thread(gtid);
6077 }
6078 
6079 #if KMP_OS_UNIX && KMP_DYNAMIC_LIB
6080 
6081 __attribute__((destructor)) void __kmp_internal_end_dtor(void) {
6082   __kmp_internal_end_atexit();
6083 }
6084 
6085 #endif
6086 
6087 /* [Windows] josh: when the atexit handler is called, there may still be more
6088    than one thread alive */
6089 void __kmp_internal_end_atexit(void) {
6090   KA_TRACE(30, ("__kmp_internal_end_atexit\n"));
6091   /* [Windows]
6092      josh: ideally, we want to completely shutdown the library in this atexit
6093      handler, but stat code that depends on thread specific data for gtid fails
6094      because that data becomes unavailable at some point during the shutdown, so
6095      we call __kmp_internal_end_thread instead. We should eventually remove the
6096      dependency on __kmp_get_specific_gtid in the stat code and use
6097      __kmp_internal_end_library to cleanly shutdown the library.
6098 
6099      // TODO: Can some of this comment about GVS be removed?
6100      I suspect that the offending stat code is executed when the calling thread
6101      tries to clean up a dead root thread's data structures, resulting in GVS
6102      code trying to close the GVS structures for that thread, but since the stat
6103      code uses __kmp_get_specific_gtid to get the gtid with the assumption that
6104      the calling thread is cleaning up itself instead of another thread, it get
6105      confused. This happens because allowing a thread to unregister and cleanup
6106      another thread is a recent modification for addressing an issue.
6107      Based on the current design (20050722), a thread may end up
6108      trying to unregister another thread only if thread death does not trigger
6109      the calling of __kmp_internal_end_thread.  For Linux* OS, there is the
6110      thread specific data destructor function to detect thread death. For
6111      Windows dynamic, there is DllMain(THREAD_DETACH). For Windows static, there
6112      is nothing.  Thus, the workaround is applicable only for Windows static
6113      stat library. */
6114   __kmp_internal_end_library(-1);
6115 #if KMP_OS_WINDOWS
6116   __kmp_close_console();
6117 #endif
6118 }
6119 
6120 static void __kmp_reap_thread(kmp_info_t *thread, int is_root) {
6121   // It is assumed __kmp_forkjoin_lock is acquired.
6122 
6123   int gtid;
6124 
6125   KMP_DEBUG_ASSERT(thread != NULL);
6126 
6127   gtid = thread->th.th_info.ds.ds_gtid;
6128 
6129   if (!is_root) {
6130     if (__kmp_dflt_blocktime != KMP_MAX_BLOCKTIME) {
6131       /* Assume the threads are at the fork barrier here */
6132       KA_TRACE(
6133           20, ("__kmp_reap_thread: releasing T#%d from fork barrier for reap\n",
6134                gtid));
6135       if (__kmp_barrier_gather_pattern[bs_forkjoin_barrier] == bp_dist_bar) {
6136         while (
6137             !KMP_COMPARE_AND_STORE_ACQ32(&(thread->th.th_used_in_team), 0, 3))
6138           KMP_CPU_PAUSE();
6139         __kmp_resume_32(gtid, (kmp_flag_32<false, false> *)NULL);
6140       } else {
6141         /* Need release fence here to prevent seg faults for tree forkjoin
6142            barrier (GEH) */
6143         kmp_flag_64<> flag(&thread->th.th_bar[bs_forkjoin_barrier].bb.b_go,
6144                            thread);
6145         __kmp_release_64(&flag);
6146       }
6147     }
6148 
6149     // Terminate OS thread.
6150     __kmp_reap_worker(thread);
6151 
6152     // The thread was killed asynchronously.  If it was actively
6153     // spinning in the thread pool, decrement the global count.
6154     //
6155     // There is a small timing hole here - if the worker thread was just waking
6156     // up after sleeping in the pool, had reset it's th_active_in_pool flag but
6157     // not decremented the global counter __kmp_thread_pool_active_nth yet, then
6158     // the global counter might not get updated.
6159     //
6160     // Currently, this can only happen as the library is unloaded,
6161     // so there are no harmful side effects.
6162     if (thread->th.th_active_in_pool) {
6163       thread->th.th_active_in_pool = FALSE;
6164       KMP_ATOMIC_DEC(&__kmp_thread_pool_active_nth);
6165       KMP_DEBUG_ASSERT(__kmp_thread_pool_active_nth >= 0);
6166     }
6167   }
6168 
6169   __kmp_free_implicit_task(thread);
6170 
6171 // Free the fast memory for tasking
6172 #if USE_FAST_MEMORY
6173   __kmp_free_fast_memory(thread);
6174 #endif /* USE_FAST_MEMORY */
6175 
6176   __kmp_suspend_uninitialize_thread(thread);
6177 
6178   KMP_DEBUG_ASSERT(__kmp_threads[gtid] == thread);
6179   TCW_SYNC_PTR(__kmp_threads[gtid], NULL);
6180 
6181   --__kmp_all_nth;
6182   // __kmp_nth was decremented when thread is added to the pool.
6183 
6184 #ifdef KMP_ADJUST_BLOCKTIME
6185   /* Adjust blocktime back to user setting or default if necessary */
6186   /* Middle initialization might never have occurred                */
6187   if (!__kmp_env_blocktime && (__kmp_avail_proc > 0)) {
6188     KMP_DEBUG_ASSERT(__kmp_avail_proc > 0);
6189     if (__kmp_nth <= __kmp_avail_proc) {
6190       __kmp_zero_bt = FALSE;
6191     }
6192   }
6193 #endif /* KMP_ADJUST_BLOCKTIME */
6194 
6195   /* free the memory being used */
6196   if (__kmp_env_consistency_check) {
6197     if (thread->th.th_cons) {
6198       __kmp_free_cons_stack(thread->th.th_cons);
6199       thread->th.th_cons = NULL;
6200     }
6201   }
6202 
6203   if (thread->th.th_pri_common != NULL) {
6204     __kmp_free(thread->th.th_pri_common);
6205     thread->th.th_pri_common = NULL;
6206   }
6207 
6208   if (thread->th.th_task_state_memo_stack != NULL) {
6209     __kmp_free(thread->th.th_task_state_memo_stack);
6210     thread->th.th_task_state_memo_stack = NULL;
6211   }
6212 
6213 #if KMP_USE_BGET
6214   if (thread->th.th_local.bget_data != NULL) {
6215     __kmp_finalize_bget(thread);
6216   }
6217 #endif
6218 
6219 #if KMP_AFFINITY_SUPPORTED
6220   if (thread->th.th_affin_mask != NULL) {
6221     KMP_CPU_FREE(thread->th.th_affin_mask);
6222     thread->th.th_affin_mask = NULL;
6223   }
6224 #endif /* KMP_AFFINITY_SUPPORTED */
6225 
6226 #if KMP_USE_HIER_SCHED
6227   if (thread->th.th_hier_bar_data != NULL) {
6228     __kmp_free(thread->th.th_hier_bar_data);
6229     thread->th.th_hier_bar_data = NULL;
6230   }
6231 #endif
6232 
6233   __kmp_reap_team(thread->th.th_serial_team);
6234   thread->th.th_serial_team = NULL;
6235   __kmp_free(thread);
6236 
6237   KMP_MB();
6238 
6239 } // __kmp_reap_thread
6240 
6241 static void __kmp_itthash_clean(kmp_info_t *th) {
6242 #if USE_ITT_NOTIFY
6243   if (__kmp_itt_region_domains.count > 0) {
6244     for (int i = 0; i < KMP_MAX_FRAME_DOMAINS; ++i) {
6245       kmp_itthash_entry_t *bucket = __kmp_itt_region_domains.buckets[i];
6246       while (bucket) {
6247         kmp_itthash_entry_t *next = bucket->next_in_bucket;
6248         __kmp_thread_free(th, bucket);
6249         bucket = next;
6250       }
6251     }
6252   }
6253   if (__kmp_itt_barrier_domains.count > 0) {
6254     for (int i = 0; i < KMP_MAX_FRAME_DOMAINS; ++i) {
6255       kmp_itthash_entry_t *bucket = __kmp_itt_barrier_domains.buckets[i];
6256       while (bucket) {
6257         kmp_itthash_entry_t *next = bucket->next_in_bucket;
6258         __kmp_thread_free(th, bucket);
6259         bucket = next;
6260       }
6261     }
6262   }
6263 #endif
6264 }
6265 
6266 static void __kmp_internal_end(void) {
6267   int i;
6268 
6269   /* First, unregister the library */
6270   __kmp_unregister_library();
6271 
6272 #if KMP_OS_WINDOWS
6273   /* In Win static library, we can't tell when a root actually dies, so we
6274      reclaim the data structures for any root threads that have died but not
6275      unregistered themselves, in order to shut down cleanly.
6276      In Win dynamic library we also can't tell when a thread dies.  */
6277   __kmp_reclaim_dead_roots(); // AC: moved here to always clean resources of
6278 // dead roots
6279 #endif
6280 
6281   for (i = 0; i < __kmp_threads_capacity; i++)
6282     if (__kmp_root[i])
6283       if (__kmp_root[i]->r.r_active)
6284         break;
6285   KMP_MB(); /* Flush all pending memory write invalidates.  */
6286   TCW_SYNC_4(__kmp_global.g.g_done, TRUE);
6287 
6288   if (i < __kmp_threads_capacity) {
6289 #if KMP_USE_MONITOR
6290     // 2009-09-08 (lev): Other alive roots found. Why do we kill the monitor??
6291     KMP_MB(); /* Flush all pending memory write invalidates.  */
6292 
6293     // Need to check that monitor was initialized before reaping it. If we are
6294     // called form __kmp_atfork_child (which sets __kmp_init_parallel = 0), then
6295     // __kmp_monitor will appear to contain valid data, but it is only valid in
6296     // the parent process, not the child.
6297     // New behavior (201008): instead of keying off of the flag
6298     // __kmp_init_parallel, the monitor thread creation is keyed off
6299     // of the new flag __kmp_init_monitor.
6300     __kmp_acquire_bootstrap_lock(&__kmp_monitor_lock);
6301     if (TCR_4(__kmp_init_monitor)) {
6302       __kmp_reap_monitor(&__kmp_monitor);
6303       TCW_4(__kmp_init_monitor, 0);
6304     }
6305     __kmp_release_bootstrap_lock(&__kmp_monitor_lock);
6306     KA_TRACE(10, ("__kmp_internal_end: monitor reaped\n"));
6307 #endif // KMP_USE_MONITOR
6308   } else {
6309 /* TODO move this to cleanup code */
6310 #ifdef KMP_DEBUG
6311     /* make sure that everything has properly ended */
6312     for (i = 0; i < __kmp_threads_capacity; i++) {
6313       if (__kmp_root[i]) {
6314         //                    KMP_ASSERT( ! KMP_UBER_GTID( i ) );         // AC:
6315         //                    there can be uber threads alive here
6316         KMP_ASSERT(!__kmp_root[i]->r.r_active); // TODO: can they be active?
6317       }
6318     }
6319 #endif
6320 
6321     KMP_MB();
6322 
6323     // Reap the worker threads.
6324     // This is valid for now, but be careful if threads are reaped sooner.
6325     while (__kmp_thread_pool != NULL) { // Loop thru all the thread in the pool.
6326       // Get the next thread from the pool.
6327       kmp_info_t *thread = CCAST(kmp_info_t *, __kmp_thread_pool);
6328       __kmp_thread_pool = thread->th.th_next_pool;
6329       // Reap it.
6330       KMP_DEBUG_ASSERT(thread->th.th_reap_state == KMP_SAFE_TO_REAP);
6331       thread->th.th_next_pool = NULL;
6332       thread->th.th_in_pool = FALSE;
6333       __kmp_reap_thread(thread, 0);
6334     }
6335     __kmp_thread_pool_insert_pt = NULL;
6336 
6337     // Reap teams.
6338     while (__kmp_team_pool != NULL) { // Loop thru all the teams in the pool.
6339       // Get the next team from the pool.
6340       kmp_team_t *team = CCAST(kmp_team_t *, __kmp_team_pool);
6341       __kmp_team_pool = team->t.t_next_pool;
6342       // Reap it.
6343       team->t.t_next_pool = NULL;
6344       __kmp_reap_team(team);
6345     }
6346 
6347     __kmp_reap_task_teams();
6348 
6349 #if KMP_OS_UNIX
6350     // Threads that are not reaped should not access any resources since they
6351     // are going to be deallocated soon, so the shutdown sequence should wait
6352     // until all threads either exit the final spin-waiting loop or begin
6353     // sleeping after the given blocktime.
6354     for (i = 0; i < __kmp_threads_capacity; i++) {
6355       kmp_info_t *thr = __kmp_threads[i];
6356       while (thr && KMP_ATOMIC_LD_ACQ(&thr->th.th_blocking))
6357         KMP_CPU_PAUSE();
6358     }
6359 #endif
6360 
6361     for (i = 0; i < __kmp_threads_capacity; ++i) {
6362       // TBD: Add some checking...
6363       // Something like KMP_DEBUG_ASSERT( __kmp_thread[ i ] == NULL );
6364     }
6365 
6366     /* Make sure all threadprivate destructors get run by joining with all
6367        worker threads before resetting this flag */
6368     TCW_SYNC_4(__kmp_init_common, FALSE);
6369 
6370     KA_TRACE(10, ("__kmp_internal_end: all workers reaped\n"));
6371     KMP_MB();
6372 
6373 #if KMP_USE_MONITOR
6374     // See note above: One of the possible fixes for CQ138434 / CQ140126
6375     //
6376     // FIXME: push both code fragments down and CSE them?
6377     // push them into __kmp_cleanup() ?
6378     __kmp_acquire_bootstrap_lock(&__kmp_monitor_lock);
6379     if (TCR_4(__kmp_init_monitor)) {
6380       __kmp_reap_monitor(&__kmp_monitor);
6381       TCW_4(__kmp_init_monitor, 0);
6382     }
6383     __kmp_release_bootstrap_lock(&__kmp_monitor_lock);
6384     KA_TRACE(10, ("__kmp_internal_end: monitor reaped\n"));
6385 #endif
6386   } /* else !__kmp_global.t_active */
6387   TCW_4(__kmp_init_gtid, FALSE);
6388   KMP_MB(); /* Flush all pending memory write invalidates.  */
6389 
6390   __kmp_cleanup();
6391 #if OMPT_SUPPORT
6392   ompt_fini();
6393 #endif
6394 }
6395 
6396 void __kmp_internal_end_library(int gtid_req) {
6397   /* if we have already cleaned up, don't try again, it wouldn't be pretty */
6398   /* this shouldn't be a race condition because __kmp_internal_end() is the
6399      only place to clear __kmp_serial_init */
6400   /* we'll check this later too, after we get the lock */
6401   // 2009-09-06: We do not set g_abort without setting g_done. This check looks
6402   // redundant, because the next check will work in any case.
6403   if (__kmp_global.g.g_abort) {
6404     KA_TRACE(11, ("__kmp_internal_end_library: abort, exiting\n"));
6405     /* TODO abort? */
6406     return;
6407   }
6408   if (TCR_4(__kmp_global.g.g_done) || !__kmp_init_serial) {
6409     KA_TRACE(10, ("__kmp_internal_end_library: already finished\n"));
6410     return;
6411   }
6412 
6413   // If hidden helper team has been initialized, we need to deinit it
6414   if (TCR_4(__kmp_init_hidden_helper) &&
6415       !TCR_4(__kmp_hidden_helper_team_done)) {
6416     TCW_SYNC_4(__kmp_hidden_helper_team_done, TRUE);
6417     // First release the main thread to let it continue its work
6418     __kmp_hidden_helper_main_thread_release();
6419     // Wait until the hidden helper team has been destroyed
6420     __kmp_hidden_helper_threads_deinitz_wait();
6421   }
6422 
6423   KMP_MB(); /* Flush all pending memory write invalidates.  */
6424   /* find out who we are and what we should do */
6425   {
6426     int gtid = (gtid_req >= 0) ? gtid_req : __kmp_gtid_get_specific();
6427     KA_TRACE(
6428         10, ("__kmp_internal_end_library: enter T#%d  (%d)\n", gtid, gtid_req));
6429     if (gtid == KMP_GTID_SHUTDOWN) {
6430       KA_TRACE(10, ("__kmp_internal_end_library: !__kmp_init_runtime, system "
6431                     "already shutdown\n"));
6432       return;
6433     } else if (gtid == KMP_GTID_MONITOR) {
6434       KA_TRACE(10, ("__kmp_internal_end_library: monitor thread, gtid not "
6435                     "registered, or system shutdown\n"));
6436       return;
6437     } else if (gtid == KMP_GTID_DNE) {
6438       KA_TRACE(10, ("__kmp_internal_end_library: gtid not registered or system "
6439                     "shutdown\n"));
6440       /* we don't know who we are, but we may still shutdown the library */
6441     } else if (KMP_UBER_GTID(gtid)) {
6442       /* unregister ourselves as an uber thread.  gtid is no longer valid */
6443       if (__kmp_root[gtid]->r.r_active) {
6444         __kmp_global.g.g_abort = -1;
6445         TCW_SYNC_4(__kmp_global.g.g_done, TRUE);
6446         __kmp_unregister_library();
6447         KA_TRACE(10,
6448                  ("__kmp_internal_end_library: root still active, abort T#%d\n",
6449                   gtid));
6450         return;
6451       } else {
6452         __kmp_itthash_clean(__kmp_threads[gtid]);
6453         KA_TRACE(
6454             10,
6455             ("__kmp_internal_end_library: unregistering sibling T#%d\n", gtid));
6456         __kmp_unregister_root_current_thread(gtid);
6457       }
6458     } else {
6459 /* worker threads may call this function through the atexit handler, if they
6460  * call exit() */
6461 /* For now, skip the usual subsequent processing and just dump the debug buffer.
6462    TODO: do a thorough shutdown instead */
6463 #ifdef DUMP_DEBUG_ON_EXIT
6464       if (__kmp_debug_buf)
6465         __kmp_dump_debug_buffer();
6466 #endif
6467       // added unregister library call here when we switch to shm linux
6468       // if we don't, it will leave lots of files in /dev/shm
6469       // cleanup shared memory file before exiting.
6470       __kmp_unregister_library();
6471       return;
6472     }
6473   }
6474   /* synchronize the termination process */
6475   __kmp_acquire_bootstrap_lock(&__kmp_initz_lock);
6476 
6477   /* have we already finished */
6478   if (__kmp_global.g.g_abort) {
6479     KA_TRACE(10, ("__kmp_internal_end_library: abort, exiting\n"));
6480     /* TODO abort? */
6481     __kmp_release_bootstrap_lock(&__kmp_initz_lock);
6482     return;
6483   }
6484   if (TCR_4(__kmp_global.g.g_done) || !__kmp_init_serial) {
6485     __kmp_release_bootstrap_lock(&__kmp_initz_lock);
6486     return;
6487   }
6488 
6489   /* We need this lock to enforce mutex between this reading of
6490      __kmp_threads_capacity and the writing by __kmp_register_root.
6491      Alternatively, we can use a counter of roots that is atomically updated by
6492      __kmp_get_global_thread_id_reg, __kmp_do_serial_initialize and
6493      __kmp_internal_end_*.  */
6494   __kmp_acquire_bootstrap_lock(&__kmp_forkjoin_lock);
6495 
6496   /* now we can safely conduct the actual termination */
6497   __kmp_internal_end();
6498 
6499   __kmp_release_bootstrap_lock(&__kmp_forkjoin_lock);
6500   __kmp_release_bootstrap_lock(&__kmp_initz_lock);
6501 
6502   KA_TRACE(10, ("__kmp_internal_end_library: exit\n"));
6503 
6504 #ifdef DUMP_DEBUG_ON_EXIT
6505   if (__kmp_debug_buf)
6506     __kmp_dump_debug_buffer();
6507 #endif
6508 
6509 #if KMP_OS_WINDOWS
6510   __kmp_close_console();
6511 #endif
6512 
6513   __kmp_fini_allocator();
6514 
6515 } // __kmp_internal_end_library
6516 
6517 void __kmp_internal_end_thread(int gtid_req) {
6518   int i;
6519 
6520   /* if we have already cleaned up, don't try again, it wouldn't be pretty */
6521   /* this shouldn't be a race condition because __kmp_internal_end() is the
6522    * only place to clear __kmp_serial_init */
6523   /* we'll check this later too, after we get the lock */
6524   // 2009-09-06: We do not set g_abort without setting g_done. This check looks
6525   // redundant, because the next check will work in any case.
6526   if (__kmp_global.g.g_abort) {
6527     KA_TRACE(11, ("__kmp_internal_end_thread: abort, exiting\n"));
6528     /* TODO abort? */
6529     return;
6530   }
6531   if (TCR_4(__kmp_global.g.g_done) || !__kmp_init_serial) {
6532     KA_TRACE(10, ("__kmp_internal_end_thread: already finished\n"));
6533     return;
6534   }
6535 
6536   // If hidden helper team has been initialized, we need to deinit it
6537   if (TCR_4(__kmp_init_hidden_helper) &&
6538       !TCR_4(__kmp_hidden_helper_team_done)) {
6539     TCW_SYNC_4(__kmp_hidden_helper_team_done, TRUE);
6540     // First release the main thread to let it continue its work
6541     __kmp_hidden_helper_main_thread_release();
6542     // Wait until the hidden helper team has been destroyed
6543     __kmp_hidden_helper_threads_deinitz_wait();
6544   }
6545 
6546   KMP_MB(); /* Flush all pending memory write invalidates.  */
6547 
6548   /* find out who we are and what we should do */
6549   {
6550     int gtid = (gtid_req >= 0) ? gtid_req : __kmp_gtid_get_specific();
6551     KA_TRACE(10,
6552              ("__kmp_internal_end_thread: enter T#%d  (%d)\n", gtid, gtid_req));
6553     if (gtid == KMP_GTID_SHUTDOWN) {
6554       KA_TRACE(10, ("__kmp_internal_end_thread: !__kmp_init_runtime, system "
6555                     "already shutdown\n"));
6556       return;
6557     } else if (gtid == KMP_GTID_MONITOR) {
6558       KA_TRACE(10, ("__kmp_internal_end_thread: monitor thread, gtid not "
6559                     "registered, or system shutdown\n"));
6560       return;
6561     } else if (gtid == KMP_GTID_DNE) {
6562       KA_TRACE(10, ("__kmp_internal_end_thread: gtid not registered or system "
6563                     "shutdown\n"));
6564       return;
6565       /* we don't know who we are */
6566     } else if (KMP_UBER_GTID(gtid)) {
6567       /* unregister ourselves as an uber thread.  gtid is no longer valid */
6568       if (__kmp_root[gtid]->r.r_active) {
6569         __kmp_global.g.g_abort = -1;
6570         TCW_SYNC_4(__kmp_global.g.g_done, TRUE);
6571         KA_TRACE(10,
6572                  ("__kmp_internal_end_thread: root still active, abort T#%d\n",
6573                   gtid));
6574         return;
6575       } else {
6576         KA_TRACE(10, ("__kmp_internal_end_thread: unregistering sibling T#%d\n",
6577                       gtid));
6578         __kmp_unregister_root_current_thread(gtid);
6579       }
6580     } else {
6581       /* just a worker thread, let's leave */
6582       KA_TRACE(10, ("__kmp_internal_end_thread: worker thread T#%d\n", gtid));
6583 
6584       if (gtid >= 0) {
6585         __kmp_threads[gtid]->th.th_task_team = NULL;
6586       }
6587 
6588       KA_TRACE(10,
6589                ("__kmp_internal_end_thread: worker thread done, exiting T#%d\n",
6590                 gtid));
6591       return;
6592     }
6593   }
6594 #if KMP_DYNAMIC_LIB
6595   if (__kmp_pause_status != kmp_hard_paused)
6596   // AC: lets not shutdown the dynamic library at the exit of uber thread,
6597   // because we will better shutdown later in the library destructor.
6598   {
6599     KA_TRACE(10, ("__kmp_internal_end_thread: exiting T#%d\n", gtid_req));
6600     return;
6601   }
6602 #endif
6603   /* synchronize the termination process */
6604   __kmp_acquire_bootstrap_lock(&__kmp_initz_lock);
6605 
6606   /* have we already finished */
6607   if (__kmp_global.g.g_abort) {
6608     KA_TRACE(10, ("__kmp_internal_end_thread: abort, exiting\n"));
6609     /* TODO abort? */
6610     __kmp_release_bootstrap_lock(&__kmp_initz_lock);
6611     return;
6612   }
6613   if (TCR_4(__kmp_global.g.g_done) || !__kmp_init_serial) {
6614     __kmp_release_bootstrap_lock(&__kmp_initz_lock);
6615     return;
6616   }
6617 
6618   /* We need this lock to enforce mutex between this reading of
6619      __kmp_threads_capacity and the writing by __kmp_register_root.
6620      Alternatively, we can use a counter of roots that is atomically updated by
6621      __kmp_get_global_thread_id_reg, __kmp_do_serial_initialize and
6622      __kmp_internal_end_*.  */
6623 
6624   /* should we finish the run-time?  are all siblings done? */
6625   __kmp_acquire_bootstrap_lock(&__kmp_forkjoin_lock);
6626 
6627   for (i = 0; i < __kmp_threads_capacity; ++i) {
6628     if (KMP_UBER_GTID(i)) {
6629       KA_TRACE(
6630           10,
6631           ("__kmp_internal_end_thread: remaining sibling task: gtid==%d\n", i));
6632       __kmp_release_bootstrap_lock(&__kmp_forkjoin_lock);
6633       __kmp_release_bootstrap_lock(&__kmp_initz_lock);
6634       return;
6635     }
6636   }
6637 
6638   /* now we can safely conduct the actual termination */
6639 
6640   __kmp_internal_end();
6641 
6642   __kmp_release_bootstrap_lock(&__kmp_forkjoin_lock);
6643   __kmp_release_bootstrap_lock(&__kmp_initz_lock);
6644 
6645   KA_TRACE(10, ("__kmp_internal_end_thread: exit T#%d\n", gtid_req));
6646 
6647 #ifdef DUMP_DEBUG_ON_EXIT
6648   if (__kmp_debug_buf)
6649     __kmp_dump_debug_buffer();
6650 #endif
6651 } // __kmp_internal_end_thread
6652 
6653 // -----------------------------------------------------------------------------
6654 // Library registration stuff.
6655 
6656 static long __kmp_registration_flag = 0;
6657 // Random value used to indicate library initialization.
6658 static char *__kmp_registration_str = NULL;
6659 // Value to be saved in env var __KMP_REGISTERED_LIB_<pid>.
6660 
6661 static inline char *__kmp_reg_status_name() {
6662 /* On RHEL 3u5 if linked statically, getpid() returns different values in
6663    each thread. If registration and unregistration go in different threads
6664    (omp_misc_other_root_exit.cpp test case), the name of registered_lib_env
6665    env var can not be found, because the name will contain different pid. */
6666 // macOS* complains about name being too long with additional getuid()
6667 #if KMP_OS_UNIX && !KMP_OS_DARWIN && KMP_DYNAMIC_LIB
6668   return __kmp_str_format("__KMP_REGISTERED_LIB_%d_%d", (int)getpid(),
6669                           (int)getuid());
6670 #else
6671   return __kmp_str_format("__KMP_REGISTERED_LIB_%d", (int)getpid());
6672 #endif
6673 } // __kmp_reg_status_get
6674 
6675 void __kmp_register_library_startup(void) {
6676 
6677   char *name = __kmp_reg_status_name(); // Name of the environment variable.
6678   int done = 0;
6679   union {
6680     double dtime;
6681     long ltime;
6682   } time;
6683 #if KMP_ARCH_X86 || KMP_ARCH_X86_64
6684   __kmp_initialize_system_tick();
6685 #endif
6686   __kmp_read_system_time(&time.dtime);
6687   __kmp_registration_flag = 0xCAFE0000L | (time.ltime & 0x0000FFFFL);
6688   __kmp_registration_str =
6689       __kmp_str_format("%p-%lx-%s", &__kmp_registration_flag,
6690                        __kmp_registration_flag, KMP_LIBRARY_FILE);
6691 
6692   KA_TRACE(50, ("__kmp_register_library_startup: %s=\"%s\"\n", name,
6693                 __kmp_registration_str));
6694 
6695   while (!done) {
6696 
6697     char *value = NULL; // Actual value of the environment variable.
6698 
6699 #if defined(KMP_USE_SHM)
6700     char *shm_name = __kmp_str_format("/%s", name);
6701     int shm_preexist = 0;
6702     char *data1;
6703     int fd1 = shm_open(shm_name, O_CREAT | O_EXCL | O_RDWR, 0666);
6704     if ((fd1 == -1) && (errno == EEXIST)) {
6705       // file didn't open because it already exists.
6706       // try opening existing file
6707       fd1 = shm_open(shm_name, O_RDWR, 0666);
6708       if (fd1 == -1) { // file didn't open
6709         // error out here
6710         __kmp_fatal(KMP_MSG(FunctionError, "Can't open SHM"), KMP_ERR(0),
6711                     __kmp_msg_null);
6712       } else {
6713         // able to open existing file
6714         shm_preexist = 1;
6715       }
6716     } else if (fd1 == -1) { // SHM didn't open; it was due to error other than
6717       // already exists.
6718       // error out here.
6719       __kmp_fatal(KMP_MSG(FunctionError, "Can't open SHM2"), KMP_ERR(errno),
6720                   __kmp_msg_null);
6721     }
6722     if (shm_preexist == 0) {
6723       // we created SHM now set size
6724       if (ftruncate(fd1, SHM_SIZE) == -1) {
6725         // error occured setting size;
6726         __kmp_fatal(KMP_MSG(FunctionError, "Can't set size of SHM"),
6727                     KMP_ERR(errno), __kmp_msg_null);
6728       }
6729     }
6730     data1 =
6731         (char *)mmap(0, SHM_SIZE, PROT_READ | PROT_WRITE, MAP_SHARED, fd1, 0);
6732     if (data1 == MAP_FAILED) {
6733       // failed to map shared memory
6734       __kmp_fatal(KMP_MSG(FunctionError, "Can't map SHM"), KMP_ERR(errno),
6735                   __kmp_msg_null);
6736     }
6737     if (shm_preexist == 0) { // set data to SHM, set value
6738       KMP_STRCPY_S(data1, SHM_SIZE, __kmp_registration_str);
6739     }
6740     // Read value from either what we just wrote or existing file.
6741     value = __kmp_str_format("%s", data1); // read value from SHM
6742     munmap(data1, SHM_SIZE);
6743     close(fd1);
6744 #else // Windows and unix with static library
6745     // Set environment variable, but do not overwrite if it is exist.
6746     __kmp_env_set(name, __kmp_registration_str, 0);
6747     // read value to see if it got set
6748     value = __kmp_env_get(name);
6749 #endif
6750 
6751     if (value != NULL && strcmp(value, __kmp_registration_str) == 0) {
6752       done = 1; // Ok, environment variable set successfully, exit the loop.
6753     } else {
6754       // Oops. Write failed. Another copy of OpenMP RTL is in memory.
6755       // Check whether it alive or dead.
6756       int neighbor = 0; // 0 -- unknown status, 1 -- alive, 2 -- dead.
6757       char *tail = value;
6758       char *flag_addr_str = NULL;
6759       char *flag_val_str = NULL;
6760       char const *file_name = NULL;
6761       __kmp_str_split(tail, '-', &flag_addr_str, &tail);
6762       __kmp_str_split(tail, '-', &flag_val_str, &tail);
6763       file_name = tail;
6764       if (tail != NULL) {
6765         unsigned long *flag_addr = 0;
6766         unsigned long flag_val = 0;
6767         KMP_SSCANF(flag_addr_str, "%p", RCAST(void **, &flag_addr));
6768         KMP_SSCANF(flag_val_str, "%lx", &flag_val);
6769         if (flag_addr != 0 && flag_val != 0 && strcmp(file_name, "") != 0) {
6770           // First, check whether environment-encoded address is mapped into
6771           // addr space.
6772           // If so, dereference it to see if it still has the right value.
6773           if (__kmp_is_address_mapped(flag_addr) && *flag_addr == flag_val) {
6774             neighbor = 1;
6775           } else {
6776             // If not, then we know the other copy of the library is no longer
6777             // running.
6778             neighbor = 2;
6779           }
6780         }
6781       }
6782       switch (neighbor) {
6783       case 0: // Cannot parse environment variable -- neighbor status unknown.
6784         // Assume it is the incompatible format of future version of the
6785         // library. Assume the other library is alive.
6786         // WARN( ... ); // TODO: Issue a warning.
6787         file_name = "unknown library";
6788         KMP_FALLTHROUGH();
6789       // Attention! Falling to the next case. That's intentional.
6790       case 1: { // Neighbor is alive.
6791         // Check it is allowed.
6792         char *duplicate_ok = __kmp_env_get("KMP_DUPLICATE_LIB_OK");
6793         if (!__kmp_str_match_true(duplicate_ok)) {
6794           // That's not allowed. Issue fatal error.
6795           __kmp_fatal(KMP_MSG(DuplicateLibrary, KMP_LIBRARY_FILE, file_name),
6796                       KMP_HNT(DuplicateLibrary), __kmp_msg_null);
6797         }
6798         KMP_INTERNAL_FREE(duplicate_ok);
6799         __kmp_duplicate_library_ok = 1;
6800         done = 1; // Exit the loop.
6801       } break;
6802       case 2: { // Neighbor is dead.
6803 
6804 #if defined(KMP_USE_SHM)
6805         // close shared memory.
6806         shm_unlink(shm_name); // this removes file in /dev/shm
6807 #else
6808         // Clear the variable and try to register library again.
6809         __kmp_env_unset(name);
6810 #endif
6811       } break;
6812       default: {
6813         KMP_DEBUG_ASSERT(0);
6814       } break;
6815       }
6816     }
6817     KMP_INTERNAL_FREE((void *)value);
6818 #if defined(KMP_USE_SHM)
6819     KMP_INTERNAL_FREE((void *)shm_name);
6820 #endif
6821   } // while
6822   KMP_INTERNAL_FREE((void *)name);
6823 
6824 } // func __kmp_register_library_startup
6825 
6826 void __kmp_unregister_library(void) {
6827 
6828   char *name = __kmp_reg_status_name();
6829   char *value = NULL;
6830 
6831 #if defined(KMP_USE_SHM)
6832   char *shm_name = __kmp_str_format("/%s", name);
6833   int fd1 = shm_open(shm_name, O_RDONLY, 0666);
6834   if (fd1 == -1) {
6835     // file did not open. return.
6836     return;
6837   }
6838   char *data1 = (char *)mmap(0, SHM_SIZE, PROT_READ, MAP_SHARED, fd1, 0);
6839   if (data1 != MAP_FAILED) {
6840     value = __kmp_str_format("%s", data1); // read value from SHM
6841     munmap(data1, SHM_SIZE);
6842   }
6843   close(fd1);
6844 #else
6845   value = __kmp_env_get(name);
6846 #endif
6847 
6848   KMP_DEBUG_ASSERT(__kmp_registration_flag != 0);
6849   KMP_DEBUG_ASSERT(__kmp_registration_str != NULL);
6850   if (value != NULL && strcmp(value, __kmp_registration_str) == 0) {
6851 //  Ok, this is our variable. Delete it.
6852 #if defined(KMP_USE_SHM)
6853     shm_unlink(shm_name); // this removes file in /dev/shm
6854 #else
6855     __kmp_env_unset(name);
6856 #endif
6857   }
6858 
6859 #if defined(KMP_USE_SHM)
6860   KMP_INTERNAL_FREE(shm_name);
6861 #endif
6862 
6863   KMP_INTERNAL_FREE(__kmp_registration_str);
6864   KMP_INTERNAL_FREE(value);
6865   KMP_INTERNAL_FREE(name);
6866 
6867   __kmp_registration_flag = 0;
6868   __kmp_registration_str = NULL;
6869 
6870 } // __kmp_unregister_library
6871 
6872 // End of Library registration stuff.
6873 // -----------------------------------------------------------------------------
6874 
6875 #if KMP_MIC_SUPPORTED
6876 
6877 static void __kmp_check_mic_type() {
6878   kmp_cpuid_t cpuid_state = {0};
6879   kmp_cpuid_t *cs_p = &cpuid_state;
6880   __kmp_x86_cpuid(1, 0, cs_p);
6881   // We don't support mic1 at the moment
6882   if ((cs_p->eax & 0xff0) == 0xB10) {
6883     __kmp_mic_type = mic2;
6884   } else if ((cs_p->eax & 0xf0ff0) == 0x50670) {
6885     __kmp_mic_type = mic3;
6886   } else {
6887     __kmp_mic_type = non_mic;
6888   }
6889 }
6890 
6891 #endif /* KMP_MIC_SUPPORTED */
6892 
6893 #if KMP_HAVE_UMWAIT
6894 static void __kmp_user_level_mwait_init() {
6895   struct kmp_cpuid buf;
6896   __kmp_x86_cpuid(7, 0, &buf);
6897   __kmp_umwait_enabled = ((buf.ecx >> 5) & 1) && __kmp_user_level_mwait;
6898   KF_TRACE(30, ("__kmp_user_level_mwait_init: __kmp_umwait_enabled = %d\n",
6899                 __kmp_umwait_enabled));
6900 }
6901 #elif KMP_HAVE_MWAIT
6902 #ifndef AT_INTELPHIUSERMWAIT
6903 // Spurious, non-existent value that should always fail to return anything.
6904 // Will be replaced with the correct value when we know that.
6905 #define AT_INTELPHIUSERMWAIT 10000
6906 #endif
6907 // getauxval() function is available in RHEL7 and SLES12. If a system with an
6908 // earlier OS is used to build the RTL, we'll use the following internal
6909 // function when the entry is not found.
6910 unsigned long getauxval(unsigned long) KMP_WEAK_ATTRIBUTE_EXTERNAL;
6911 unsigned long getauxval(unsigned long) { return 0; }
6912 
6913 static void __kmp_user_level_mwait_init() {
6914   // When getauxval() and correct value of AT_INTELPHIUSERMWAIT are available
6915   // use them to find if the user-level mwait is enabled. Otherwise, forcibly
6916   // set __kmp_mwait_enabled=TRUE on Intel MIC if the environment variable
6917   // KMP_USER_LEVEL_MWAIT was set to TRUE.
6918   if (__kmp_mic_type == mic3) {
6919     unsigned long res = getauxval(AT_INTELPHIUSERMWAIT);
6920     if ((res & 0x1) || __kmp_user_level_mwait) {
6921       __kmp_mwait_enabled = TRUE;
6922       if (__kmp_user_level_mwait) {
6923         KMP_INFORM(EnvMwaitWarn);
6924       }
6925     } else {
6926       __kmp_mwait_enabled = FALSE;
6927     }
6928   }
6929   KF_TRACE(30, ("__kmp_user_level_mwait_init: __kmp_mic_type = %d, "
6930                 "__kmp_mwait_enabled = %d\n",
6931                 __kmp_mic_type, __kmp_mwait_enabled));
6932 }
6933 #endif /* KMP_HAVE_UMWAIT */
6934 
6935 static void __kmp_do_serial_initialize(void) {
6936   int i, gtid;
6937   size_t size;
6938 
6939   KA_TRACE(10, ("__kmp_do_serial_initialize: enter\n"));
6940 
6941   KMP_DEBUG_ASSERT(sizeof(kmp_int32) == 4);
6942   KMP_DEBUG_ASSERT(sizeof(kmp_uint32) == 4);
6943   KMP_DEBUG_ASSERT(sizeof(kmp_int64) == 8);
6944   KMP_DEBUG_ASSERT(sizeof(kmp_uint64) == 8);
6945   KMP_DEBUG_ASSERT(sizeof(kmp_intptr_t) == sizeof(void *));
6946 
6947 #if OMPT_SUPPORT
6948   ompt_pre_init();
6949 #endif
6950 #if OMPD_SUPPORT
6951   __kmp_env_dump();
6952   ompd_init();
6953 #endif
6954 
6955   __kmp_validate_locks();
6956 
6957   /* Initialize internal memory allocator */
6958   __kmp_init_allocator();
6959 
6960   /* Register the library startup via an environment variable and check to see
6961      whether another copy of the library is already registered. */
6962 
6963   __kmp_register_library_startup();
6964 
6965   /* TODO reinitialization of library */
6966   if (TCR_4(__kmp_global.g.g_done)) {
6967     KA_TRACE(10, ("__kmp_do_serial_initialize: reinitialization of library\n"));
6968   }
6969 
6970   __kmp_global.g.g_abort = 0;
6971   TCW_SYNC_4(__kmp_global.g.g_done, FALSE);
6972 
6973 /* initialize the locks */
6974 #if KMP_USE_ADAPTIVE_LOCKS
6975 #if KMP_DEBUG_ADAPTIVE_LOCKS
6976   __kmp_init_speculative_stats();
6977 #endif
6978 #endif
6979 #if KMP_STATS_ENABLED
6980   __kmp_stats_init();
6981 #endif
6982   __kmp_init_lock(&__kmp_global_lock);
6983   __kmp_init_queuing_lock(&__kmp_dispatch_lock);
6984   __kmp_init_lock(&__kmp_debug_lock);
6985   __kmp_init_atomic_lock(&__kmp_atomic_lock);
6986   __kmp_init_atomic_lock(&__kmp_atomic_lock_1i);
6987   __kmp_init_atomic_lock(&__kmp_atomic_lock_2i);
6988   __kmp_init_atomic_lock(&__kmp_atomic_lock_4i);
6989   __kmp_init_atomic_lock(&__kmp_atomic_lock_4r);
6990   __kmp_init_atomic_lock(&__kmp_atomic_lock_8i);
6991   __kmp_init_atomic_lock(&__kmp_atomic_lock_8r);
6992   __kmp_init_atomic_lock(&__kmp_atomic_lock_8c);
6993   __kmp_init_atomic_lock(&__kmp_atomic_lock_10r);
6994   __kmp_init_atomic_lock(&__kmp_atomic_lock_16r);
6995   __kmp_init_atomic_lock(&__kmp_atomic_lock_16c);
6996   __kmp_init_atomic_lock(&__kmp_atomic_lock_20c);
6997   __kmp_init_atomic_lock(&__kmp_atomic_lock_32c);
6998   __kmp_init_bootstrap_lock(&__kmp_forkjoin_lock);
6999   __kmp_init_bootstrap_lock(&__kmp_exit_lock);
7000 #if KMP_USE_MONITOR
7001   __kmp_init_bootstrap_lock(&__kmp_monitor_lock);
7002 #endif
7003   __kmp_init_bootstrap_lock(&__kmp_tp_cached_lock);
7004 
7005   /* conduct initialization and initial setup of configuration */
7006 
7007   __kmp_runtime_initialize();
7008 
7009 #if KMP_MIC_SUPPORTED
7010   __kmp_check_mic_type();
7011 #endif
7012 
7013 // Some global variable initialization moved here from kmp_env_initialize()
7014 #ifdef KMP_DEBUG
7015   kmp_diag = 0;
7016 #endif
7017   __kmp_abort_delay = 0;
7018 
7019   // From __kmp_init_dflt_team_nth()
7020   /* assume the entire machine will be used */
7021   __kmp_dflt_team_nth_ub = __kmp_xproc;
7022   if (__kmp_dflt_team_nth_ub < KMP_MIN_NTH) {
7023     __kmp_dflt_team_nth_ub = KMP_MIN_NTH;
7024   }
7025   if (__kmp_dflt_team_nth_ub > __kmp_sys_max_nth) {
7026     __kmp_dflt_team_nth_ub = __kmp_sys_max_nth;
7027   }
7028   __kmp_max_nth = __kmp_sys_max_nth;
7029   __kmp_cg_max_nth = __kmp_sys_max_nth;
7030   __kmp_teams_max_nth = __kmp_xproc; // set a "reasonable" default
7031   if (__kmp_teams_max_nth > __kmp_sys_max_nth) {
7032     __kmp_teams_max_nth = __kmp_sys_max_nth;
7033   }
7034 
7035   // Three vars below moved here from __kmp_env_initialize() "KMP_BLOCKTIME"
7036   // part
7037   __kmp_dflt_blocktime = KMP_DEFAULT_BLOCKTIME;
7038 #if KMP_USE_MONITOR
7039   __kmp_monitor_wakeups =
7040       KMP_WAKEUPS_FROM_BLOCKTIME(__kmp_dflt_blocktime, __kmp_monitor_wakeups);
7041   __kmp_bt_intervals =
7042       KMP_INTERVALS_FROM_BLOCKTIME(__kmp_dflt_blocktime, __kmp_monitor_wakeups);
7043 #endif
7044   // From "KMP_LIBRARY" part of __kmp_env_initialize()
7045   __kmp_library = library_throughput;
7046   // From KMP_SCHEDULE initialization
7047   __kmp_static = kmp_sch_static_balanced;
7048 // AC: do not use analytical here, because it is non-monotonous
7049 //__kmp_guided = kmp_sch_guided_iterative_chunked;
7050 //__kmp_auto = kmp_sch_guided_analytical_chunked; // AC: it is the default, no
7051 // need to repeat assignment
7052 // Barrier initialization. Moved here from __kmp_env_initialize() Barrier branch
7053 // bit control and barrier method control parts
7054 #if KMP_FAST_REDUCTION_BARRIER
7055 #define kmp_reduction_barrier_gather_bb ((int)1)
7056 #define kmp_reduction_barrier_release_bb ((int)1)
7057 #define kmp_reduction_barrier_gather_pat __kmp_barrier_gather_pat_dflt
7058 #define kmp_reduction_barrier_release_pat __kmp_barrier_release_pat_dflt
7059 #endif // KMP_FAST_REDUCTION_BARRIER
7060   for (i = bs_plain_barrier; i < bs_last_barrier; i++) {
7061     __kmp_barrier_gather_branch_bits[i] = __kmp_barrier_gather_bb_dflt;
7062     __kmp_barrier_release_branch_bits[i] = __kmp_barrier_release_bb_dflt;
7063     __kmp_barrier_gather_pattern[i] = __kmp_barrier_gather_pat_dflt;
7064     __kmp_barrier_release_pattern[i] = __kmp_barrier_release_pat_dflt;
7065 #if KMP_FAST_REDUCTION_BARRIER
7066     if (i == bs_reduction_barrier) { // tested and confirmed on ALTIX only (
7067       // lin_64 ): hyper,1
7068       __kmp_barrier_gather_branch_bits[i] = kmp_reduction_barrier_gather_bb;
7069       __kmp_barrier_release_branch_bits[i] = kmp_reduction_barrier_release_bb;
7070       __kmp_barrier_gather_pattern[i] = kmp_reduction_barrier_gather_pat;
7071       __kmp_barrier_release_pattern[i] = kmp_reduction_barrier_release_pat;
7072     }
7073 #endif // KMP_FAST_REDUCTION_BARRIER
7074   }
7075 #if KMP_FAST_REDUCTION_BARRIER
7076 #undef kmp_reduction_barrier_release_pat
7077 #undef kmp_reduction_barrier_gather_pat
7078 #undef kmp_reduction_barrier_release_bb
7079 #undef kmp_reduction_barrier_gather_bb
7080 #endif // KMP_FAST_REDUCTION_BARRIER
7081 #if KMP_MIC_SUPPORTED
7082   if (__kmp_mic_type == mic2) { // KNC
7083     // AC: plane=3,2, forkjoin=2,1 are optimal for 240 threads on KNC
7084     __kmp_barrier_gather_branch_bits[bs_plain_barrier] = 3; // plain gather
7085     __kmp_barrier_release_branch_bits[bs_forkjoin_barrier] =
7086         1; // forkjoin release
7087     __kmp_barrier_gather_pattern[bs_forkjoin_barrier] = bp_hierarchical_bar;
7088     __kmp_barrier_release_pattern[bs_forkjoin_barrier] = bp_hierarchical_bar;
7089   }
7090 #if KMP_FAST_REDUCTION_BARRIER
7091   if (__kmp_mic_type == mic2) { // KNC
7092     __kmp_barrier_gather_pattern[bs_reduction_barrier] = bp_hierarchical_bar;
7093     __kmp_barrier_release_pattern[bs_reduction_barrier] = bp_hierarchical_bar;
7094   }
7095 #endif // KMP_FAST_REDUCTION_BARRIER
7096 #endif // KMP_MIC_SUPPORTED
7097 
7098 // From KMP_CHECKS initialization
7099 #ifdef KMP_DEBUG
7100   __kmp_env_checks = TRUE; /* development versions have the extra checks */
7101 #else
7102   __kmp_env_checks = FALSE; /* port versions do not have the extra checks */
7103 #endif
7104 
7105   // From "KMP_FOREIGN_THREADS_THREADPRIVATE" initialization
7106   __kmp_foreign_tp = TRUE;
7107 
7108   __kmp_global.g.g_dynamic = FALSE;
7109   __kmp_global.g.g_dynamic_mode = dynamic_default;
7110 
7111   __kmp_init_nesting_mode();
7112 
7113   __kmp_env_initialize(NULL);
7114 
7115 #if KMP_HAVE_MWAIT || KMP_HAVE_UMWAIT
7116   __kmp_user_level_mwait_init();
7117 #endif
7118 // Print all messages in message catalog for testing purposes.
7119 #ifdef KMP_DEBUG
7120   char const *val = __kmp_env_get("KMP_DUMP_CATALOG");
7121   if (__kmp_str_match_true(val)) {
7122     kmp_str_buf_t buffer;
7123     __kmp_str_buf_init(&buffer);
7124     __kmp_i18n_dump_catalog(&buffer);
7125     __kmp_printf("%s", buffer.str);
7126     __kmp_str_buf_free(&buffer);
7127   }
7128   __kmp_env_free(&val);
7129 #endif
7130 
7131   __kmp_threads_capacity =
7132       __kmp_initial_threads_capacity(__kmp_dflt_team_nth_ub);
7133   // Moved here from __kmp_env_initialize() "KMP_ALL_THREADPRIVATE" part
7134   __kmp_tp_capacity = __kmp_default_tp_capacity(
7135       __kmp_dflt_team_nth_ub, __kmp_max_nth, __kmp_allThreadsSpecified);
7136 
7137   // If the library is shut down properly, both pools must be NULL. Just in
7138   // case, set them to NULL -- some memory may leak, but subsequent code will
7139   // work even if pools are not freed.
7140   KMP_DEBUG_ASSERT(__kmp_thread_pool == NULL);
7141   KMP_DEBUG_ASSERT(__kmp_thread_pool_insert_pt == NULL);
7142   KMP_DEBUG_ASSERT(__kmp_team_pool == NULL);
7143   __kmp_thread_pool = NULL;
7144   __kmp_thread_pool_insert_pt = NULL;
7145   __kmp_team_pool = NULL;
7146 
7147   /* Allocate all of the variable sized records */
7148   /* NOTE: __kmp_threads_capacity entries are allocated, but the arrays are
7149    * expandable */
7150   /* Since allocation is cache-aligned, just add extra padding at the end */
7151   size =
7152       (sizeof(kmp_info_t *) + sizeof(kmp_root_t *)) * __kmp_threads_capacity +
7153       CACHE_LINE;
7154   __kmp_threads = (kmp_info_t **)__kmp_allocate(size);
7155   __kmp_root = (kmp_root_t **)((char *)__kmp_threads +
7156                                sizeof(kmp_info_t *) * __kmp_threads_capacity);
7157 
7158   /* init thread counts */
7159   KMP_DEBUG_ASSERT(__kmp_all_nth ==
7160                    0); // Asserts fail if the library is reinitializing and
7161   KMP_DEBUG_ASSERT(__kmp_nth == 0); // something was wrong in termination.
7162   __kmp_all_nth = 0;
7163   __kmp_nth = 0;
7164 
7165   /* setup the uber master thread and hierarchy */
7166   gtid = __kmp_register_root(TRUE);
7167   KA_TRACE(10, ("__kmp_do_serial_initialize  T#%d\n", gtid));
7168   KMP_ASSERT(KMP_UBER_GTID(gtid));
7169   KMP_ASSERT(KMP_INITIAL_GTID(gtid));
7170 
7171   KMP_MB(); /* Flush all pending memory write invalidates.  */
7172 
7173   __kmp_common_initialize();
7174 
7175 #if KMP_OS_UNIX
7176   /* invoke the child fork handler */
7177   __kmp_register_atfork();
7178 #endif
7179 
7180 #if !KMP_DYNAMIC_LIB
7181   {
7182     /* Invoke the exit handler when the program finishes, only for static
7183        library. For dynamic library, we already have _fini and DllMain. */
7184     int rc = atexit(__kmp_internal_end_atexit);
7185     if (rc != 0) {
7186       __kmp_fatal(KMP_MSG(FunctionError, "atexit()"), KMP_ERR(rc),
7187                   __kmp_msg_null);
7188     }
7189   }
7190 #endif
7191 
7192 #if KMP_HANDLE_SIGNALS
7193 #if KMP_OS_UNIX
7194   /* NOTE: make sure that this is called before the user installs their own
7195      signal handlers so that the user handlers are called first. this way they
7196      can return false, not call our handler, avoid terminating the library, and
7197      continue execution where they left off. */
7198   __kmp_install_signals(FALSE);
7199 #endif /* KMP_OS_UNIX */
7200 #if KMP_OS_WINDOWS
7201   __kmp_install_signals(TRUE);
7202 #endif /* KMP_OS_WINDOWS */
7203 #endif
7204 
7205   /* we have finished the serial initialization */
7206   __kmp_init_counter++;
7207 
7208   __kmp_init_serial = TRUE;
7209 
7210   if (__kmp_settings) {
7211     __kmp_env_print();
7212   }
7213 
7214   if (__kmp_display_env || __kmp_display_env_verbose) {
7215     __kmp_env_print_2();
7216   }
7217 
7218 #if OMPT_SUPPORT
7219   ompt_post_init();
7220 #endif
7221 
7222   KMP_MB();
7223 
7224   KA_TRACE(10, ("__kmp_do_serial_initialize: exit\n"));
7225 }
7226 
7227 void __kmp_serial_initialize(void) {
7228   if (__kmp_init_serial) {
7229     return;
7230   }
7231   __kmp_acquire_bootstrap_lock(&__kmp_initz_lock);
7232   if (__kmp_init_serial) {
7233     __kmp_release_bootstrap_lock(&__kmp_initz_lock);
7234     return;
7235   }
7236   __kmp_do_serial_initialize();
7237   __kmp_release_bootstrap_lock(&__kmp_initz_lock);
7238 }
7239 
7240 static void __kmp_do_middle_initialize(void) {
7241   int i, j;
7242   int prev_dflt_team_nth;
7243 
7244   if (!__kmp_init_serial) {
7245     __kmp_do_serial_initialize();
7246   }
7247 
7248   KA_TRACE(10, ("__kmp_middle_initialize: enter\n"));
7249 
7250   // Save the previous value for the __kmp_dflt_team_nth so that
7251   // we can avoid some reinitialization if it hasn't changed.
7252   prev_dflt_team_nth = __kmp_dflt_team_nth;
7253 
7254 #if KMP_AFFINITY_SUPPORTED
7255   // __kmp_affinity_initialize() will try to set __kmp_ncores to the
7256   // number of cores on the machine.
7257   __kmp_affinity_initialize();
7258 
7259 #endif /* KMP_AFFINITY_SUPPORTED */
7260 
7261   KMP_ASSERT(__kmp_xproc > 0);
7262   if (__kmp_avail_proc == 0) {
7263     __kmp_avail_proc = __kmp_xproc;
7264   }
7265 
7266   // If there were empty places in num_threads list (OMP_NUM_THREADS=,,2,3),
7267   // correct them now
7268   j = 0;
7269   while ((j < __kmp_nested_nth.used) && !__kmp_nested_nth.nth[j]) {
7270     __kmp_nested_nth.nth[j] = __kmp_dflt_team_nth = __kmp_dflt_team_nth_ub =
7271         __kmp_avail_proc;
7272     j++;
7273   }
7274 
7275   if (__kmp_dflt_team_nth == 0) {
7276 #ifdef KMP_DFLT_NTH_CORES
7277     // Default #threads = #cores
7278     __kmp_dflt_team_nth = __kmp_ncores;
7279     KA_TRACE(20, ("__kmp_middle_initialize: setting __kmp_dflt_team_nth = "
7280                   "__kmp_ncores (%d)\n",
7281                   __kmp_dflt_team_nth));
7282 #else
7283     // Default #threads = #available OS procs
7284     __kmp_dflt_team_nth = __kmp_avail_proc;
7285     KA_TRACE(20, ("__kmp_middle_initialize: setting __kmp_dflt_team_nth = "
7286                   "__kmp_avail_proc(%d)\n",
7287                   __kmp_dflt_team_nth));
7288 #endif /* KMP_DFLT_NTH_CORES */
7289   }
7290 
7291   if (__kmp_dflt_team_nth < KMP_MIN_NTH) {
7292     __kmp_dflt_team_nth = KMP_MIN_NTH;
7293   }
7294   if (__kmp_dflt_team_nth > __kmp_sys_max_nth) {
7295     __kmp_dflt_team_nth = __kmp_sys_max_nth;
7296   }
7297 
7298   if (__kmp_nesting_mode > 0)
7299     __kmp_set_nesting_mode_threads();
7300 
7301   // There's no harm in continuing if the following check fails,
7302   // but it indicates an error in the previous logic.
7303   KMP_DEBUG_ASSERT(__kmp_dflt_team_nth <= __kmp_dflt_team_nth_ub);
7304 
7305   if (__kmp_dflt_team_nth != prev_dflt_team_nth) {
7306     // Run through the __kmp_threads array and set the num threads icv for each
7307     // root thread that is currently registered with the RTL (which has not
7308     // already explicitly set its nthreads-var with a call to
7309     // omp_set_num_threads()).
7310     for (i = 0; i < __kmp_threads_capacity; i++) {
7311       kmp_info_t *thread = __kmp_threads[i];
7312       if (thread == NULL)
7313         continue;
7314       if (thread->th.th_current_task->td_icvs.nproc != 0)
7315         continue;
7316 
7317       set__nproc(__kmp_threads[i], __kmp_dflt_team_nth);
7318     }
7319   }
7320   KA_TRACE(
7321       20,
7322       ("__kmp_middle_initialize: final value for __kmp_dflt_team_nth = %d\n",
7323        __kmp_dflt_team_nth));
7324 
7325 #ifdef KMP_ADJUST_BLOCKTIME
7326   /* Adjust blocktime to zero if necessary  now that __kmp_avail_proc is set */
7327   if (!__kmp_env_blocktime && (__kmp_avail_proc > 0)) {
7328     KMP_DEBUG_ASSERT(__kmp_avail_proc > 0);
7329     if (__kmp_nth > __kmp_avail_proc) {
7330       __kmp_zero_bt = TRUE;
7331     }
7332   }
7333 #endif /* KMP_ADJUST_BLOCKTIME */
7334 
7335   /* we have finished middle initialization */
7336   TCW_SYNC_4(__kmp_init_middle, TRUE);
7337 
7338   KA_TRACE(10, ("__kmp_do_middle_initialize: exit\n"));
7339 }
7340 
7341 void __kmp_middle_initialize(void) {
7342   if (__kmp_init_middle) {
7343     return;
7344   }
7345   __kmp_acquire_bootstrap_lock(&__kmp_initz_lock);
7346   if (__kmp_init_middle) {
7347     __kmp_release_bootstrap_lock(&__kmp_initz_lock);
7348     return;
7349   }
7350   __kmp_do_middle_initialize();
7351   __kmp_release_bootstrap_lock(&__kmp_initz_lock);
7352 }
7353 
7354 void __kmp_parallel_initialize(void) {
7355   int gtid = __kmp_entry_gtid(); // this might be a new root
7356 
7357   /* synchronize parallel initialization (for sibling) */
7358   if (TCR_4(__kmp_init_parallel))
7359     return;
7360   __kmp_acquire_bootstrap_lock(&__kmp_initz_lock);
7361   if (TCR_4(__kmp_init_parallel)) {
7362     __kmp_release_bootstrap_lock(&__kmp_initz_lock);
7363     return;
7364   }
7365 
7366   /* TODO reinitialization after we have already shut down */
7367   if (TCR_4(__kmp_global.g.g_done)) {
7368     KA_TRACE(
7369         10,
7370         ("__kmp_parallel_initialize: attempt to init while shutting down\n"));
7371     __kmp_infinite_loop();
7372   }
7373 
7374   /* jc: The lock __kmp_initz_lock is already held, so calling
7375      __kmp_serial_initialize would cause a deadlock.  So we call
7376      __kmp_do_serial_initialize directly. */
7377   if (!__kmp_init_middle) {
7378     __kmp_do_middle_initialize();
7379   }
7380   __kmp_assign_root_init_mask();
7381   __kmp_resume_if_hard_paused();
7382 
7383   /* begin initialization */
7384   KA_TRACE(10, ("__kmp_parallel_initialize: enter\n"));
7385   KMP_ASSERT(KMP_UBER_GTID(gtid));
7386 
7387 #if KMP_ARCH_X86 || KMP_ARCH_X86_64
7388   // Save the FP control regs.
7389   // Worker threads will set theirs to these values at thread startup.
7390   __kmp_store_x87_fpu_control_word(&__kmp_init_x87_fpu_control_word);
7391   __kmp_store_mxcsr(&__kmp_init_mxcsr);
7392   __kmp_init_mxcsr &= KMP_X86_MXCSR_MASK;
7393 #endif /* KMP_ARCH_X86 || KMP_ARCH_X86_64 */
7394 
7395 #if KMP_OS_UNIX
7396 #if KMP_HANDLE_SIGNALS
7397   /*  must be after __kmp_serial_initialize  */
7398   __kmp_install_signals(TRUE);
7399 #endif
7400 #endif
7401 
7402   __kmp_suspend_initialize();
7403 
7404 #if defined(USE_LOAD_BALANCE)
7405   if (__kmp_global.g.g_dynamic_mode == dynamic_default) {
7406     __kmp_global.g.g_dynamic_mode = dynamic_load_balance;
7407   }
7408 #else
7409   if (__kmp_global.g.g_dynamic_mode == dynamic_default) {
7410     __kmp_global.g.g_dynamic_mode = dynamic_thread_limit;
7411   }
7412 #endif
7413 
7414   if (__kmp_version) {
7415     __kmp_print_version_2();
7416   }
7417 
7418   /* we have finished parallel initialization */
7419   TCW_SYNC_4(__kmp_init_parallel, TRUE);
7420 
7421   KMP_MB();
7422   KA_TRACE(10, ("__kmp_parallel_initialize: exit\n"));
7423 
7424   __kmp_release_bootstrap_lock(&__kmp_initz_lock);
7425 }
7426 
7427 void __kmp_hidden_helper_initialize() {
7428   if (TCR_4(__kmp_init_hidden_helper))
7429     return;
7430 
7431   // __kmp_parallel_initialize is required before we initialize hidden helper
7432   if (!TCR_4(__kmp_init_parallel))
7433     __kmp_parallel_initialize();
7434 
7435   // Double check. Note that this double check should not be placed before
7436   // __kmp_parallel_initialize as it will cause dead lock.
7437   __kmp_acquire_bootstrap_lock(&__kmp_initz_lock);
7438   if (TCR_4(__kmp_init_hidden_helper)) {
7439     __kmp_release_bootstrap_lock(&__kmp_initz_lock);
7440     return;
7441   }
7442 
7443   // Set the count of hidden helper tasks to be executed to zero
7444   KMP_ATOMIC_ST_REL(&__kmp_unexecuted_hidden_helper_tasks, 0);
7445 
7446   // Set the global variable indicating that we're initializing hidden helper
7447   // team/threads
7448   TCW_SYNC_4(__kmp_init_hidden_helper_threads, TRUE);
7449 
7450   // Platform independent initialization
7451   __kmp_do_initialize_hidden_helper_threads();
7452 
7453   // Wait here for the finish of initialization of hidden helper teams
7454   __kmp_hidden_helper_threads_initz_wait();
7455 
7456   // We have finished hidden helper initialization
7457   TCW_SYNC_4(__kmp_init_hidden_helper, TRUE);
7458 
7459   __kmp_release_bootstrap_lock(&__kmp_initz_lock);
7460 }
7461 
7462 /* ------------------------------------------------------------------------ */
7463 
7464 void __kmp_run_before_invoked_task(int gtid, int tid, kmp_info_t *this_thr,
7465                                    kmp_team_t *team) {
7466   kmp_disp_t *dispatch;
7467 
7468   KMP_MB();
7469 
7470   /* none of the threads have encountered any constructs, yet. */
7471   this_thr->th.th_local.this_construct = 0;
7472 #if KMP_CACHE_MANAGE
7473   KMP_CACHE_PREFETCH(&this_thr->th.th_bar[bs_forkjoin_barrier].bb.b_arrived);
7474 #endif /* KMP_CACHE_MANAGE */
7475   dispatch = (kmp_disp_t *)TCR_PTR(this_thr->th.th_dispatch);
7476   KMP_DEBUG_ASSERT(dispatch);
7477   KMP_DEBUG_ASSERT(team->t.t_dispatch);
7478   // KMP_DEBUG_ASSERT( this_thr->th.th_dispatch == &team->t.t_dispatch[
7479   // this_thr->th.th_info.ds.ds_tid ] );
7480 
7481   dispatch->th_disp_index = 0; /* reset the dispatch buffer counter */
7482   dispatch->th_doacross_buf_idx = 0; // reset doacross dispatch buffer counter
7483   if (__kmp_env_consistency_check)
7484     __kmp_push_parallel(gtid, team->t.t_ident);
7485 
7486   KMP_MB(); /* Flush all pending memory write invalidates.  */
7487 }
7488 
7489 void __kmp_run_after_invoked_task(int gtid, int tid, kmp_info_t *this_thr,
7490                                   kmp_team_t *team) {
7491   if (__kmp_env_consistency_check)
7492     __kmp_pop_parallel(gtid, team->t.t_ident);
7493 
7494   __kmp_finish_implicit_task(this_thr);
7495 }
7496 
7497 int __kmp_invoke_task_func(int gtid) {
7498   int rc;
7499   int tid = __kmp_tid_from_gtid(gtid);
7500   kmp_info_t *this_thr = __kmp_threads[gtid];
7501   kmp_team_t *team = this_thr->th.th_team;
7502 
7503   __kmp_run_before_invoked_task(gtid, tid, this_thr, team);
7504 #if USE_ITT_BUILD
7505   if (__itt_stack_caller_create_ptr) {
7506     // inform ittnotify about entering user's code
7507     if (team->t.t_stack_id != NULL) {
7508       __kmp_itt_stack_callee_enter((__itt_caller)team->t.t_stack_id);
7509     } else {
7510       KMP_DEBUG_ASSERT(team->t.t_parent->t.t_stack_id != NULL);
7511       __kmp_itt_stack_callee_enter(
7512           (__itt_caller)team->t.t_parent->t.t_stack_id);
7513     }
7514   }
7515 #endif /* USE_ITT_BUILD */
7516 #if INCLUDE_SSC_MARKS
7517   SSC_MARK_INVOKING();
7518 #endif
7519 
7520 #if OMPT_SUPPORT
7521   void *dummy;
7522   void **exit_frame_p;
7523   ompt_data_t *my_task_data;
7524   ompt_data_t *my_parallel_data;
7525   int ompt_team_size;
7526 
7527   if (ompt_enabled.enabled) {
7528     exit_frame_p = &(team->t.t_implicit_task_taskdata[tid]
7529                          .ompt_task_info.frame.exit_frame.ptr);
7530   } else {
7531     exit_frame_p = &dummy;
7532   }
7533 
7534   my_task_data =
7535       &(team->t.t_implicit_task_taskdata[tid].ompt_task_info.task_data);
7536   my_parallel_data = &(team->t.ompt_team_info.parallel_data);
7537   if (ompt_enabled.ompt_callback_implicit_task) {
7538     ompt_team_size = team->t.t_nproc;
7539     ompt_callbacks.ompt_callback(ompt_callback_implicit_task)(
7540         ompt_scope_begin, my_parallel_data, my_task_data, ompt_team_size,
7541         __kmp_tid_from_gtid(gtid), ompt_task_implicit);
7542     OMPT_CUR_TASK_INFO(this_thr)->thread_num = __kmp_tid_from_gtid(gtid);
7543   }
7544 #endif
7545 
7546 #if KMP_STATS_ENABLED
7547   stats_state_e previous_state = KMP_GET_THREAD_STATE();
7548   if (previous_state == stats_state_e::TEAMS_REGION) {
7549     KMP_PUSH_PARTITIONED_TIMER(OMP_teams);
7550   } else {
7551     KMP_PUSH_PARTITIONED_TIMER(OMP_parallel);
7552   }
7553   KMP_SET_THREAD_STATE(IMPLICIT_TASK);
7554 #endif
7555 
7556   rc = __kmp_invoke_microtask((microtask_t)TCR_SYNC_PTR(team->t.t_pkfn), gtid,
7557                               tid, (int)team->t.t_argc, (void **)team->t.t_argv
7558 #if OMPT_SUPPORT
7559                               ,
7560                               exit_frame_p
7561 #endif
7562   );
7563 #if OMPT_SUPPORT
7564   *exit_frame_p = NULL;
7565   this_thr->th.ompt_thread_info.parallel_flags |= ompt_parallel_team;
7566 #endif
7567 
7568 #if KMP_STATS_ENABLED
7569   if (previous_state == stats_state_e::TEAMS_REGION) {
7570     KMP_SET_THREAD_STATE(previous_state);
7571   }
7572   KMP_POP_PARTITIONED_TIMER();
7573 #endif
7574 
7575 #if USE_ITT_BUILD
7576   if (__itt_stack_caller_create_ptr) {
7577     // inform ittnotify about leaving user's code
7578     if (team->t.t_stack_id != NULL) {
7579       __kmp_itt_stack_callee_leave((__itt_caller)team->t.t_stack_id);
7580     } else {
7581       KMP_DEBUG_ASSERT(team->t.t_parent->t.t_stack_id != NULL);
7582       __kmp_itt_stack_callee_leave(
7583           (__itt_caller)team->t.t_parent->t.t_stack_id);
7584     }
7585   }
7586 #endif /* USE_ITT_BUILD */
7587   __kmp_run_after_invoked_task(gtid, tid, this_thr, team);
7588 
7589   return rc;
7590 }
7591 
7592 void __kmp_teams_master(int gtid) {
7593   // This routine is called by all primary threads in teams construct
7594   kmp_info_t *thr = __kmp_threads[gtid];
7595   kmp_team_t *team = thr->th.th_team;
7596   ident_t *loc = team->t.t_ident;
7597   thr->th.th_set_nproc = thr->th.th_teams_size.nth;
7598   KMP_DEBUG_ASSERT(thr->th.th_teams_microtask);
7599   KMP_DEBUG_ASSERT(thr->th.th_set_nproc);
7600   KA_TRACE(20, ("__kmp_teams_master: T#%d, Tid %d, microtask %p\n", gtid,
7601                 __kmp_tid_from_gtid(gtid), thr->th.th_teams_microtask));
7602 
7603   // This thread is a new CG root.  Set up the proper variables.
7604   kmp_cg_root_t *tmp = (kmp_cg_root_t *)__kmp_allocate(sizeof(kmp_cg_root_t));
7605   tmp->cg_root = thr; // Make thr the CG root
7606   // Init to thread limit stored when league primary threads were forked
7607   tmp->cg_thread_limit = thr->th.th_current_task->td_icvs.thread_limit;
7608   tmp->cg_nthreads = 1; // Init counter to one active thread, this one
7609   KA_TRACE(100, ("__kmp_teams_master: Thread %p created node %p and init"
7610                  " cg_nthreads to 1\n",
7611                  thr, tmp));
7612   tmp->up = thr->th.th_cg_roots;
7613   thr->th.th_cg_roots = tmp;
7614 
7615 // Launch league of teams now, but not let workers execute
7616 // (they hang on fork barrier until next parallel)
7617 #if INCLUDE_SSC_MARKS
7618   SSC_MARK_FORKING();
7619 #endif
7620   __kmp_fork_call(loc, gtid, fork_context_intel, team->t.t_argc,
7621                   (microtask_t)thr->th.th_teams_microtask, // "wrapped" task
7622                   VOLATILE_CAST(launch_t) __kmp_invoke_task_func, NULL);
7623 #if INCLUDE_SSC_MARKS
7624   SSC_MARK_JOINING();
7625 #endif
7626   // If the team size was reduced from the limit, set it to the new size
7627   if (thr->th.th_team_nproc < thr->th.th_teams_size.nth)
7628     thr->th.th_teams_size.nth = thr->th.th_team_nproc;
7629   // AC: last parameter "1" eliminates join barrier which won't work because
7630   // worker threads are in a fork barrier waiting for more parallel regions
7631   __kmp_join_call(loc, gtid
7632 #if OMPT_SUPPORT
7633                   ,
7634                   fork_context_intel
7635 #endif
7636                   ,
7637                   1);
7638 }
7639 
7640 int __kmp_invoke_teams_master(int gtid) {
7641   kmp_info_t *this_thr = __kmp_threads[gtid];
7642   kmp_team_t *team = this_thr->th.th_team;
7643 #if KMP_DEBUG
7644   if (!__kmp_threads[gtid]->th.th_team->t.t_serialized)
7645     KMP_DEBUG_ASSERT((void *)__kmp_threads[gtid]->th.th_team->t.t_pkfn ==
7646                      (void *)__kmp_teams_master);
7647 #endif
7648   __kmp_run_before_invoked_task(gtid, 0, this_thr, team);
7649 #if OMPT_SUPPORT
7650   int tid = __kmp_tid_from_gtid(gtid);
7651   ompt_data_t *task_data =
7652       &team->t.t_implicit_task_taskdata[tid].ompt_task_info.task_data;
7653   ompt_data_t *parallel_data = &team->t.ompt_team_info.parallel_data;
7654   if (ompt_enabled.ompt_callback_implicit_task) {
7655     ompt_callbacks.ompt_callback(ompt_callback_implicit_task)(
7656         ompt_scope_begin, parallel_data, task_data, team->t.t_nproc, tid,
7657         ompt_task_initial);
7658     OMPT_CUR_TASK_INFO(this_thr)->thread_num = tid;
7659   }
7660 #endif
7661   __kmp_teams_master(gtid);
7662 #if OMPT_SUPPORT
7663   this_thr->th.ompt_thread_info.parallel_flags |= ompt_parallel_league;
7664 #endif
7665   __kmp_run_after_invoked_task(gtid, 0, this_thr, team);
7666   return 1;
7667 }
7668 
7669 /* this sets the requested number of threads for the next parallel region
7670    encountered by this team. since this should be enclosed in the forkjoin
7671    critical section it should avoid race conditions with asymmetrical nested
7672    parallelism */
7673 
7674 void __kmp_push_num_threads(ident_t *id, int gtid, int num_threads) {
7675   kmp_info_t *thr = __kmp_threads[gtid];
7676 
7677   if (num_threads > 0)
7678     thr->th.th_set_nproc = num_threads;
7679 }
7680 
7681 static void __kmp_push_thread_limit(kmp_info_t *thr, int num_teams,
7682                                     int num_threads) {
7683   KMP_DEBUG_ASSERT(thr);
7684   // Remember the number of threads for inner parallel regions
7685   if (!TCR_4(__kmp_init_middle))
7686     __kmp_middle_initialize(); // get internal globals calculated
7687   __kmp_assign_root_init_mask();
7688   KMP_DEBUG_ASSERT(__kmp_avail_proc);
7689   KMP_DEBUG_ASSERT(__kmp_dflt_team_nth);
7690 
7691   if (num_threads == 0) {
7692     if (__kmp_teams_thread_limit > 0) {
7693       num_threads = __kmp_teams_thread_limit;
7694     } else {
7695       num_threads = __kmp_avail_proc / num_teams;
7696     }
7697     // adjust num_threads w/o warning as it is not user setting
7698     // num_threads = min(num_threads, nthreads-var, thread-limit-var)
7699     // no thread_limit clause specified -  do not change thread-limit-var ICV
7700     if (num_threads > __kmp_dflt_team_nth) {
7701       num_threads = __kmp_dflt_team_nth; // honor nthreads-var ICV
7702     }
7703     if (num_threads > thr->th.th_current_task->td_icvs.thread_limit) {
7704       num_threads = thr->th.th_current_task->td_icvs.thread_limit;
7705     } // prevent team size to exceed thread-limit-var
7706     if (num_teams * num_threads > __kmp_teams_max_nth) {
7707       num_threads = __kmp_teams_max_nth / num_teams;
7708     }
7709     if (num_threads == 0) {
7710       num_threads = 1;
7711     }
7712   } else {
7713     // This thread will be the primary thread of the league primary threads
7714     // Store new thread limit; old limit is saved in th_cg_roots list
7715     thr->th.th_current_task->td_icvs.thread_limit = num_threads;
7716     // num_threads = min(num_threads, nthreads-var)
7717     if (num_threads > __kmp_dflt_team_nth) {
7718       num_threads = __kmp_dflt_team_nth; // honor nthreads-var ICV
7719     }
7720     if (num_teams * num_threads > __kmp_teams_max_nth) {
7721       int new_threads = __kmp_teams_max_nth / num_teams;
7722       if (new_threads == 0) {
7723         new_threads = 1;
7724       }
7725       if (new_threads != num_threads) {
7726         if (!__kmp_reserve_warn) { // user asked for too many threads
7727           __kmp_reserve_warn = 1; // conflicts with KMP_TEAMS_THREAD_LIMIT
7728           __kmp_msg(kmp_ms_warning,
7729                     KMP_MSG(CantFormThrTeam, num_threads, new_threads),
7730                     KMP_HNT(Unset_ALL_THREADS), __kmp_msg_null);
7731         }
7732       }
7733       num_threads = new_threads;
7734     }
7735   }
7736   thr->th.th_teams_size.nth = num_threads;
7737 }
7738 
7739 /* this sets the requested number of teams for the teams region and/or
7740    the number of threads for the next parallel region encountered  */
7741 void __kmp_push_num_teams(ident_t *id, int gtid, int num_teams,
7742                           int num_threads) {
7743   kmp_info_t *thr = __kmp_threads[gtid];
7744   KMP_DEBUG_ASSERT(num_teams >= 0);
7745   KMP_DEBUG_ASSERT(num_threads >= 0);
7746 
7747   if (num_teams == 0) {
7748     if (__kmp_nteams > 0) {
7749       num_teams = __kmp_nteams;
7750     } else {
7751       num_teams = 1; // default number of teams is 1.
7752     }
7753   }
7754   if (num_teams > __kmp_teams_max_nth) { // if too many teams requested?
7755     if (!__kmp_reserve_warn) {
7756       __kmp_reserve_warn = 1;
7757       __kmp_msg(kmp_ms_warning,
7758                 KMP_MSG(CantFormThrTeam, num_teams, __kmp_teams_max_nth),
7759                 KMP_HNT(Unset_ALL_THREADS), __kmp_msg_null);
7760     }
7761     num_teams = __kmp_teams_max_nth;
7762   }
7763   // Set number of teams (number of threads in the outer "parallel" of the
7764   // teams)
7765   thr->th.th_set_nproc = thr->th.th_teams_size.nteams = num_teams;
7766 
7767   __kmp_push_thread_limit(thr, num_teams, num_threads);
7768 }
7769 
7770 /* This sets the requested number of teams for the teams region and/or
7771    the number of threads for the next parallel region encountered  */
7772 void __kmp_push_num_teams_51(ident_t *id, int gtid, int num_teams_lb,
7773                              int num_teams_ub, int num_threads) {
7774   kmp_info_t *thr = __kmp_threads[gtid];
7775   KMP_DEBUG_ASSERT(num_teams_lb >= 0 && num_teams_ub >= 0);
7776   KMP_DEBUG_ASSERT(num_teams_ub >= num_teams_lb);
7777   KMP_DEBUG_ASSERT(num_threads >= 0);
7778 
7779   if (num_teams_lb > num_teams_ub) {
7780     __kmp_fatal(KMP_MSG(FailedToCreateTeam, num_teams_lb, num_teams_ub),
7781                 KMP_HNT(SetNewBound, __kmp_teams_max_nth), __kmp_msg_null);
7782   }
7783 
7784   int num_teams = 1; // defalt number of teams is 1.
7785 
7786   if (num_teams_lb == 0 && num_teams_ub > 0)
7787     num_teams_lb = num_teams_ub;
7788 
7789   if (num_teams_lb == 0 && num_teams_ub == 0) { // no num_teams clause
7790     num_teams = (__kmp_nteams > 0) ? __kmp_nteams : num_teams;
7791     if (num_teams > __kmp_teams_max_nth) {
7792       if (!__kmp_reserve_warn) {
7793         __kmp_reserve_warn = 1;
7794         __kmp_msg(kmp_ms_warning,
7795                   KMP_MSG(CantFormThrTeam, num_teams, __kmp_teams_max_nth),
7796                   KMP_HNT(Unset_ALL_THREADS), __kmp_msg_null);
7797       }
7798       num_teams = __kmp_teams_max_nth;
7799     }
7800   } else if (num_teams_lb == num_teams_ub) { // requires exact number of teams
7801     num_teams = num_teams_ub;
7802   } else { // num_teams_lb <= num_teams <= num_teams_ub
7803     if (num_threads == 0) {
7804       if (num_teams_ub > __kmp_teams_max_nth) {
7805         num_teams = num_teams_lb;
7806       } else {
7807         num_teams = num_teams_ub;
7808       }
7809     } else {
7810       num_teams = (num_threads > __kmp_teams_max_nth)
7811                       ? num_teams
7812                       : __kmp_teams_max_nth / num_threads;
7813       if (num_teams < num_teams_lb) {
7814         num_teams = num_teams_lb;
7815       } else if (num_teams > num_teams_ub) {
7816         num_teams = num_teams_ub;
7817       }
7818     }
7819   }
7820   // Set number of teams (number of threads in the outer "parallel" of the
7821   // teams)
7822   thr->th.th_set_nproc = thr->th.th_teams_size.nteams = num_teams;
7823 
7824   __kmp_push_thread_limit(thr, num_teams, num_threads);
7825 }
7826 
7827 // Set the proc_bind var to use in the following parallel region.
7828 void __kmp_push_proc_bind(ident_t *id, int gtid, kmp_proc_bind_t proc_bind) {
7829   kmp_info_t *thr = __kmp_threads[gtid];
7830   thr->th.th_set_proc_bind = proc_bind;
7831 }
7832 
7833 /* Launch the worker threads into the microtask. */
7834 
7835 void __kmp_internal_fork(ident_t *id, int gtid, kmp_team_t *team) {
7836   kmp_info_t *this_thr = __kmp_threads[gtid];
7837 
7838 #ifdef KMP_DEBUG
7839   int f;
7840 #endif /* KMP_DEBUG */
7841 
7842   KMP_DEBUG_ASSERT(team);
7843   KMP_DEBUG_ASSERT(this_thr->th.th_team == team);
7844   KMP_ASSERT(KMP_MASTER_GTID(gtid));
7845   KMP_MB(); /* Flush all pending memory write invalidates.  */
7846 
7847   team->t.t_construct = 0; /* no single directives seen yet */
7848   team->t.t_ordered.dt.t_value =
7849       0; /* thread 0 enters the ordered section first */
7850 
7851   /* Reset the identifiers on the dispatch buffer */
7852   KMP_DEBUG_ASSERT(team->t.t_disp_buffer);
7853   if (team->t.t_max_nproc > 1) {
7854     int i;
7855     for (i = 0; i < __kmp_dispatch_num_buffers; ++i) {
7856       team->t.t_disp_buffer[i].buffer_index = i;
7857       team->t.t_disp_buffer[i].doacross_buf_idx = i;
7858     }
7859   } else {
7860     team->t.t_disp_buffer[0].buffer_index = 0;
7861     team->t.t_disp_buffer[0].doacross_buf_idx = 0;
7862   }
7863 
7864   KMP_MB(); /* Flush all pending memory write invalidates.  */
7865   KMP_ASSERT(this_thr->th.th_team == team);
7866 
7867 #ifdef KMP_DEBUG
7868   for (f = 0; f < team->t.t_nproc; f++) {
7869     KMP_DEBUG_ASSERT(team->t.t_threads[f] &&
7870                      team->t.t_threads[f]->th.th_team_nproc == team->t.t_nproc);
7871   }
7872 #endif /* KMP_DEBUG */
7873 
7874   /* release the worker threads so they may begin working */
7875   __kmp_fork_barrier(gtid, 0);
7876 }
7877 
7878 void __kmp_internal_join(ident_t *id, int gtid, kmp_team_t *team) {
7879   kmp_info_t *this_thr = __kmp_threads[gtid];
7880 
7881   KMP_DEBUG_ASSERT(team);
7882   KMP_DEBUG_ASSERT(this_thr->th.th_team == team);
7883   KMP_ASSERT(KMP_MASTER_GTID(gtid));
7884   KMP_MB(); /* Flush all pending memory write invalidates.  */
7885 
7886   /* Join barrier after fork */
7887 
7888 #ifdef KMP_DEBUG
7889   if (__kmp_threads[gtid] &&
7890       __kmp_threads[gtid]->th.th_team_nproc != team->t.t_nproc) {
7891     __kmp_printf("GTID: %d, __kmp_threads[%d]=%p\n", gtid, gtid,
7892                  __kmp_threads[gtid]);
7893     __kmp_printf("__kmp_threads[%d]->th.th_team_nproc=%d, TEAM: %p, "
7894                  "team->t.t_nproc=%d\n",
7895                  gtid, __kmp_threads[gtid]->th.th_team_nproc, team,
7896                  team->t.t_nproc);
7897     __kmp_print_structure();
7898   }
7899   KMP_DEBUG_ASSERT(__kmp_threads[gtid] &&
7900                    __kmp_threads[gtid]->th.th_team_nproc == team->t.t_nproc);
7901 #endif /* KMP_DEBUG */
7902 
7903   __kmp_join_barrier(gtid); /* wait for everyone */
7904 #if OMPT_SUPPORT
7905   if (ompt_enabled.enabled &&
7906       this_thr->th.ompt_thread_info.state == ompt_state_wait_barrier_implicit) {
7907     int ds_tid = this_thr->th.th_info.ds.ds_tid;
7908     ompt_data_t *task_data = OMPT_CUR_TASK_DATA(this_thr);
7909     this_thr->th.ompt_thread_info.state = ompt_state_overhead;
7910 #if OMPT_OPTIONAL
7911     void *codeptr = NULL;
7912     if (KMP_MASTER_TID(ds_tid) &&
7913         (ompt_callbacks.ompt_callback(ompt_callback_sync_region_wait) ||
7914          ompt_callbacks.ompt_callback(ompt_callback_sync_region)))
7915       codeptr = OMPT_CUR_TEAM_INFO(this_thr)->master_return_address;
7916 
7917     if (ompt_enabled.ompt_callback_sync_region_wait) {
7918       ompt_callbacks.ompt_callback(ompt_callback_sync_region_wait)(
7919           ompt_sync_region_barrier_implicit, ompt_scope_end, NULL, task_data,
7920           codeptr);
7921     }
7922     if (ompt_enabled.ompt_callback_sync_region) {
7923       ompt_callbacks.ompt_callback(ompt_callback_sync_region)(
7924           ompt_sync_region_barrier_implicit, ompt_scope_end, NULL, task_data,
7925           codeptr);
7926     }
7927 #endif
7928     if (!KMP_MASTER_TID(ds_tid) && ompt_enabled.ompt_callback_implicit_task) {
7929       ompt_callbacks.ompt_callback(ompt_callback_implicit_task)(
7930           ompt_scope_end, NULL, task_data, 0, ds_tid,
7931           ompt_task_implicit); // TODO: Can this be ompt_task_initial?
7932     }
7933   }
7934 #endif
7935 
7936   KMP_MB(); /* Flush all pending memory write invalidates.  */
7937   KMP_ASSERT(this_thr->th.th_team == team);
7938 }
7939 
7940 /* ------------------------------------------------------------------------ */
7941 
7942 #ifdef USE_LOAD_BALANCE
7943 
7944 // Return the worker threads actively spinning in the hot team, if we
7945 // are at the outermost level of parallelism.  Otherwise, return 0.
7946 static int __kmp_active_hot_team_nproc(kmp_root_t *root) {
7947   int i;
7948   int retval;
7949   kmp_team_t *hot_team;
7950 
7951   if (root->r.r_active) {
7952     return 0;
7953   }
7954   hot_team = root->r.r_hot_team;
7955   if (__kmp_dflt_blocktime == KMP_MAX_BLOCKTIME) {
7956     return hot_team->t.t_nproc - 1; // Don't count primary thread
7957   }
7958 
7959   // Skip the primary thread - it is accounted for elsewhere.
7960   retval = 0;
7961   for (i = 1; i < hot_team->t.t_nproc; i++) {
7962     if (hot_team->t.t_threads[i]->th.th_active) {
7963       retval++;
7964     }
7965   }
7966   return retval;
7967 }
7968 
7969 // Perform an automatic adjustment to the number of
7970 // threads used by the next parallel region.
7971 static int __kmp_load_balance_nproc(kmp_root_t *root, int set_nproc) {
7972   int retval;
7973   int pool_active;
7974   int hot_team_active;
7975   int team_curr_active;
7976   int system_active;
7977 
7978   KB_TRACE(20, ("__kmp_load_balance_nproc: called root:%p set_nproc:%d\n", root,
7979                 set_nproc));
7980   KMP_DEBUG_ASSERT(root);
7981   KMP_DEBUG_ASSERT(root->r.r_root_team->t.t_threads[0]
7982                        ->th.th_current_task->td_icvs.dynamic == TRUE);
7983   KMP_DEBUG_ASSERT(set_nproc > 1);
7984 
7985   if (set_nproc == 1) {
7986     KB_TRACE(20, ("__kmp_load_balance_nproc: serial execution.\n"));
7987     return 1;
7988   }
7989 
7990   // Threads that are active in the thread pool, active in the hot team for this
7991   // particular root (if we are at the outer par level), and the currently
7992   // executing thread (to become the primary thread) are available to add to the
7993   // new team, but are currently contributing to the system load, and must be
7994   // accounted for.
7995   pool_active = __kmp_thread_pool_active_nth;
7996   hot_team_active = __kmp_active_hot_team_nproc(root);
7997   team_curr_active = pool_active + hot_team_active + 1;
7998 
7999   // Check the system load.
8000   system_active = __kmp_get_load_balance(__kmp_avail_proc + team_curr_active);
8001   KB_TRACE(30, ("__kmp_load_balance_nproc: system active = %d pool active = %d "
8002                 "hot team active = %d\n",
8003                 system_active, pool_active, hot_team_active));
8004 
8005   if (system_active < 0) {
8006     // There was an error reading the necessary info from /proc, so use the
8007     // thread limit algorithm instead. Once we set __kmp_global.g.g_dynamic_mode
8008     // = dynamic_thread_limit, we shouldn't wind up getting back here.
8009     __kmp_global.g.g_dynamic_mode = dynamic_thread_limit;
8010     KMP_WARNING(CantLoadBalUsing, "KMP_DYNAMIC_MODE=thread limit");
8011 
8012     // Make this call behave like the thread limit algorithm.
8013     retval = __kmp_avail_proc - __kmp_nth +
8014              (root->r.r_active ? 1 : root->r.r_hot_team->t.t_nproc);
8015     if (retval > set_nproc) {
8016       retval = set_nproc;
8017     }
8018     if (retval < KMP_MIN_NTH) {
8019       retval = KMP_MIN_NTH;
8020     }
8021 
8022     KB_TRACE(20, ("__kmp_load_balance_nproc: thread limit exit. retval:%d\n",
8023                   retval));
8024     return retval;
8025   }
8026 
8027   // There is a slight delay in the load balance algorithm in detecting new
8028   // running procs. The real system load at this instant should be at least as
8029   // large as the #active omp thread that are available to add to the team.
8030   if (system_active < team_curr_active) {
8031     system_active = team_curr_active;
8032   }
8033   retval = __kmp_avail_proc - system_active + team_curr_active;
8034   if (retval > set_nproc) {
8035     retval = set_nproc;
8036   }
8037   if (retval < KMP_MIN_NTH) {
8038     retval = KMP_MIN_NTH;
8039   }
8040 
8041   KB_TRACE(20, ("__kmp_load_balance_nproc: exit. retval:%d\n", retval));
8042   return retval;
8043 } // __kmp_load_balance_nproc()
8044 
8045 #endif /* USE_LOAD_BALANCE */
8046 
8047 /* ------------------------------------------------------------------------ */
8048 
8049 /* NOTE: this is called with the __kmp_init_lock held */
8050 void __kmp_cleanup(void) {
8051   int f;
8052 
8053   KA_TRACE(10, ("__kmp_cleanup: enter\n"));
8054 
8055   if (TCR_4(__kmp_init_parallel)) {
8056 #if KMP_HANDLE_SIGNALS
8057     __kmp_remove_signals();
8058 #endif
8059     TCW_4(__kmp_init_parallel, FALSE);
8060   }
8061 
8062   if (TCR_4(__kmp_init_middle)) {
8063 #if KMP_AFFINITY_SUPPORTED
8064     __kmp_affinity_uninitialize();
8065 #endif /* KMP_AFFINITY_SUPPORTED */
8066     __kmp_cleanup_hierarchy();
8067     TCW_4(__kmp_init_middle, FALSE);
8068   }
8069 
8070   KA_TRACE(10, ("__kmp_cleanup: go serial cleanup\n"));
8071 
8072   if (__kmp_init_serial) {
8073     __kmp_runtime_destroy();
8074     __kmp_init_serial = FALSE;
8075   }
8076 
8077   __kmp_cleanup_threadprivate_caches();
8078 
8079   for (f = 0; f < __kmp_threads_capacity; f++) {
8080     if (__kmp_root[f] != NULL) {
8081       __kmp_free(__kmp_root[f]);
8082       __kmp_root[f] = NULL;
8083     }
8084   }
8085   __kmp_free(__kmp_threads);
8086   // __kmp_threads and __kmp_root were allocated at once, as single block, so
8087   // there is no need in freeing __kmp_root.
8088   __kmp_threads = NULL;
8089   __kmp_root = NULL;
8090   __kmp_threads_capacity = 0;
8091 
8092 #if KMP_USE_DYNAMIC_LOCK
8093   __kmp_cleanup_indirect_user_locks();
8094 #else
8095   __kmp_cleanup_user_locks();
8096 #endif
8097 #if OMPD_SUPPORT
8098   if (ompd_state) {
8099     __kmp_free(ompd_env_block);
8100     ompd_env_block = NULL;
8101     ompd_env_block_size = 0;
8102   }
8103 #endif
8104 
8105 #if KMP_AFFINITY_SUPPORTED
8106   KMP_INTERNAL_FREE(CCAST(char *, __kmp_cpuinfo_file));
8107   __kmp_cpuinfo_file = NULL;
8108 #endif /* KMP_AFFINITY_SUPPORTED */
8109 
8110 #if KMP_USE_ADAPTIVE_LOCKS
8111 #if KMP_DEBUG_ADAPTIVE_LOCKS
8112   __kmp_print_speculative_stats();
8113 #endif
8114 #endif
8115   KMP_INTERNAL_FREE(__kmp_nested_nth.nth);
8116   __kmp_nested_nth.nth = NULL;
8117   __kmp_nested_nth.size = 0;
8118   __kmp_nested_nth.used = 0;
8119   KMP_INTERNAL_FREE(__kmp_nested_proc_bind.bind_types);
8120   __kmp_nested_proc_bind.bind_types = NULL;
8121   __kmp_nested_proc_bind.size = 0;
8122   __kmp_nested_proc_bind.used = 0;
8123   if (__kmp_affinity_format) {
8124     KMP_INTERNAL_FREE(__kmp_affinity_format);
8125     __kmp_affinity_format = NULL;
8126   }
8127 
8128   __kmp_i18n_catclose();
8129 
8130 #if KMP_USE_HIER_SCHED
8131   __kmp_hier_scheds.deallocate();
8132 #endif
8133 
8134 #if KMP_STATS_ENABLED
8135   __kmp_stats_fini();
8136 #endif
8137 
8138   KA_TRACE(10, ("__kmp_cleanup: exit\n"));
8139 }
8140 
8141 /* ------------------------------------------------------------------------ */
8142 
8143 int __kmp_ignore_mppbeg(void) {
8144   char *env;
8145 
8146   if ((env = getenv("KMP_IGNORE_MPPBEG")) != NULL) {
8147     if (__kmp_str_match_false(env))
8148       return FALSE;
8149   }
8150   // By default __kmpc_begin() is no-op.
8151   return TRUE;
8152 }
8153 
8154 int __kmp_ignore_mppend(void) {
8155   char *env;
8156 
8157   if ((env = getenv("KMP_IGNORE_MPPEND")) != NULL) {
8158     if (__kmp_str_match_false(env))
8159       return FALSE;
8160   }
8161   // By default __kmpc_end() is no-op.
8162   return TRUE;
8163 }
8164 
8165 void __kmp_internal_begin(void) {
8166   int gtid;
8167   kmp_root_t *root;
8168 
8169   /* this is a very important step as it will register new sibling threads
8170      and assign these new uber threads a new gtid */
8171   gtid = __kmp_entry_gtid();
8172   root = __kmp_threads[gtid]->th.th_root;
8173   KMP_ASSERT(KMP_UBER_GTID(gtid));
8174 
8175   if (root->r.r_begin)
8176     return;
8177   __kmp_acquire_lock(&root->r.r_begin_lock, gtid);
8178   if (root->r.r_begin) {
8179     __kmp_release_lock(&root->r.r_begin_lock, gtid);
8180     return;
8181   }
8182 
8183   root->r.r_begin = TRUE;
8184 
8185   __kmp_release_lock(&root->r.r_begin_lock, gtid);
8186 }
8187 
8188 /* ------------------------------------------------------------------------ */
8189 
8190 void __kmp_user_set_library(enum library_type arg) {
8191   int gtid;
8192   kmp_root_t *root;
8193   kmp_info_t *thread;
8194 
8195   /* first, make sure we are initialized so we can get our gtid */
8196 
8197   gtid = __kmp_entry_gtid();
8198   thread = __kmp_threads[gtid];
8199 
8200   root = thread->th.th_root;
8201 
8202   KA_TRACE(20, ("__kmp_user_set_library: enter T#%d, arg: %d, %d\n", gtid, arg,
8203                 library_serial));
8204   if (root->r.r_in_parallel) { /* Must be called in serial section of top-level
8205                                   thread */
8206     KMP_WARNING(SetLibraryIncorrectCall);
8207     return;
8208   }
8209 
8210   switch (arg) {
8211   case library_serial:
8212     thread->th.th_set_nproc = 0;
8213     set__nproc(thread, 1);
8214     break;
8215   case library_turnaround:
8216     thread->th.th_set_nproc = 0;
8217     set__nproc(thread, __kmp_dflt_team_nth ? __kmp_dflt_team_nth
8218                                            : __kmp_dflt_team_nth_ub);
8219     break;
8220   case library_throughput:
8221     thread->th.th_set_nproc = 0;
8222     set__nproc(thread, __kmp_dflt_team_nth ? __kmp_dflt_team_nth
8223                                            : __kmp_dflt_team_nth_ub);
8224     break;
8225   default:
8226     KMP_FATAL(UnknownLibraryType, arg);
8227   }
8228 
8229   __kmp_aux_set_library(arg);
8230 }
8231 
8232 void __kmp_aux_set_stacksize(size_t arg) {
8233   if (!__kmp_init_serial)
8234     __kmp_serial_initialize();
8235 
8236 #if KMP_OS_DARWIN
8237   if (arg & (0x1000 - 1)) {
8238     arg &= ~(0x1000 - 1);
8239     if (arg + 0x1000) /* check for overflow if we round up */
8240       arg += 0x1000;
8241   }
8242 #endif
8243   __kmp_acquire_bootstrap_lock(&__kmp_initz_lock);
8244 
8245   /* only change the default stacksize before the first parallel region */
8246   if (!TCR_4(__kmp_init_parallel)) {
8247     size_t value = arg; /* argument is in bytes */
8248 
8249     if (value < __kmp_sys_min_stksize)
8250       value = __kmp_sys_min_stksize;
8251     else if (value > KMP_MAX_STKSIZE)
8252       value = KMP_MAX_STKSIZE;
8253 
8254     __kmp_stksize = value;
8255 
8256     __kmp_env_stksize = TRUE; /* was KMP_STACKSIZE specified? */
8257   }
8258 
8259   __kmp_release_bootstrap_lock(&__kmp_initz_lock);
8260 }
8261 
8262 /* set the behaviour of the runtime library */
8263 /* TODO this can cause some odd behaviour with sibling parallelism... */
8264 void __kmp_aux_set_library(enum library_type arg) {
8265   __kmp_library = arg;
8266 
8267   switch (__kmp_library) {
8268   case library_serial: {
8269     KMP_INFORM(LibraryIsSerial);
8270   } break;
8271   case library_turnaround:
8272     if (__kmp_use_yield == 1 && !__kmp_use_yield_exp_set)
8273       __kmp_use_yield = 2; // only yield when oversubscribed
8274     break;
8275   case library_throughput:
8276     if (__kmp_dflt_blocktime == KMP_MAX_BLOCKTIME)
8277       __kmp_dflt_blocktime = 200;
8278     break;
8279   default:
8280     KMP_FATAL(UnknownLibraryType, arg);
8281   }
8282 }
8283 
8284 /* Getting team information common for all team API */
8285 // Returns NULL if not in teams construct
8286 static kmp_team_t *__kmp_aux_get_team_info(int &teams_serialized) {
8287   kmp_info_t *thr = __kmp_entry_thread();
8288   teams_serialized = 0;
8289   if (thr->th.th_teams_microtask) {
8290     kmp_team_t *team = thr->th.th_team;
8291     int tlevel = thr->th.th_teams_level; // the level of the teams construct
8292     int ii = team->t.t_level;
8293     teams_serialized = team->t.t_serialized;
8294     int level = tlevel + 1;
8295     KMP_DEBUG_ASSERT(ii >= tlevel);
8296     while (ii > level) {
8297       for (teams_serialized = team->t.t_serialized;
8298            (teams_serialized > 0) && (ii > level); teams_serialized--, ii--) {
8299       }
8300       if (team->t.t_serialized && (!teams_serialized)) {
8301         team = team->t.t_parent;
8302         continue;
8303       }
8304       if (ii > level) {
8305         team = team->t.t_parent;
8306         ii--;
8307       }
8308     }
8309     return team;
8310   }
8311   return NULL;
8312 }
8313 
8314 int __kmp_aux_get_team_num() {
8315   int serialized;
8316   kmp_team_t *team = __kmp_aux_get_team_info(serialized);
8317   if (team) {
8318     if (serialized > 1) {
8319       return 0; // teams region is serialized ( 1 team of 1 thread ).
8320     } else {
8321       return team->t.t_master_tid;
8322     }
8323   }
8324   return 0;
8325 }
8326 
8327 int __kmp_aux_get_num_teams() {
8328   int serialized;
8329   kmp_team_t *team = __kmp_aux_get_team_info(serialized);
8330   if (team) {
8331     if (serialized > 1) {
8332       return 1;
8333     } else {
8334       return team->t.t_parent->t.t_nproc;
8335     }
8336   }
8337   return 1;
8338 }
8339 
8340 /* ------------------------------------------------------------------------ */
8341 
8342 /*
8343  * Affinity Format Parser
8344  *
8345  * Field is in form of: %[[[0].]size]type
8346  * % and type are required (%% means print a literal '%')
8347  * type is either single char or long name surrounded by {},
8348  * e.g., N or {num_threads}
8349  * 0 => leading zeros
8350  * . => right justified when size is specified
8351  * by default output is left justified
8352  * size is the *minimum* field length
8353  * All other characters are printed as is
8354  *
8355  * Available field types:
8356  * L {thread_level}      - omp_get_level()
8357  * n {thread_num}        - omp_get_thread_num()
8358  * h {host}              - name of host machine
8359  * P {process_id}        - process id (integer)
8360  * T {thread_identifier} - native thread identifier (integer)
8361  * N {num_threads}       - omp_get_num_threads()
8362  * A {ancestor_tnum}     - omp_get_ancestor_thread_num(omp_get_level()-1)
8363  * a {thread_affinity}   - comma separated list of integers or integer ranges
8364  *                         (values of affinity mask)
8365  *
8366  * Implementation-specific field types can be added
8367  * If a type is unknown, print "undefined"
8368  */
8369 
8370 // Structure holding the short name, long name, and corresponding data type
8371 // for snprintf.  A table of these will represent the entire valid keyword
8372 // field types.
8373 typedef struct kmp_affinity_format_field_t {
8374   char short_name; // from spec e.g., L -> thread level
8375   const char *long_name; // from spec thread_level -> thread level
8376   char field_format; // data type for snprintf (typically 'd' or 's'
8377   // for integer or string)
8378 } kmp_affinity_format_field_t;
8379 
8380 static const kmp_affinity_format_field_t __kmp_affinity_format_table[] = {
8381 #if KMP_AFFINITY_SUPPORTED
8382     {'A', "thread_affinity", 's'},
8383 #endif
8384     {'t', "team_num", 'd'},
8385     {'T', "num_teams", 'd'},
8386     {'L', "nesting_level", 'd'},
8387     {'n', "thread_num", 'd'},
8388     {'N', "num_threads", 'd'},
8389     {'a', "ancestor_tnum", 'd'},
8390     {'H', "host", 's'},
8391     {'P', "process_id", 'd'},
8392     {'i', "native_thread_id", 'd'}};
8393 
8394 // Return the number of characters it takes to hold field
8395 static int __kmp_aux_capture_affinity_field(int gtid, const kmp_info_t *th,
8396                                             const char **ptr,
8397                                             kmp_str_buf_t *field_buffer) {
8398   int rc, format_index, field_value;
8399   const char *width_left, *width_right;
8400   bool pad_zeros, right_justify, parse_long_name, found_valid_name;
8401   static const int FORMAT_SIZE = 20;
8402   char format[FORMAT_SIZE] = {0};
8403   char absolute_short_name = 0;
8404 
8405   KMP_DEBUG_ASSERT(gtid >= 0);
8406   KMP_DEBUG_ASSERT(th);
8407   KMP_DEBUG_ASSERT(**ptr == '%');
8408   KMP_DEBUG_ASSERT(field_buffer);
8409 
8410   __kmp_str_buf_clear(field_buffer);
8411 
8412   // Skip the initial %
8413   (*ptr)++;
8414 
8415   // Check for %% first
8416   if (**ptr == '%') {
8417     __kmp_str_buf_cat(field_buffer, "%", 1);
8418     (*ptr)++; // skip over the second %
8419     return 1;
8420   }
8421 
8422   // Parse field modifiers if they are present
8423   pad_zeros = false;
8424   if (**ptr == '0') {
8425     pad_zeros = true;
8426     (*ptr)++; // skip over 0
8427   }
8428   right_justify = false;
8429   if (**ptr == '.') {
8430     right_justify = true;
8431     (*ptr)++; // skip over .
8432   }
8433   // Parse width of field: [width_left, width_right)
8434   width_left = width_right = NULL;
8435   if (**ptr >= '0' && **ptr <= '9') {
8436     width_left = *ptr;
8437     SKIP_DIGITS(*ptr);
8438     width_right = *ptr;
8439   }
8440 
8441   // Create the format for KMP_SNPRINTF based on flags parsed above
8442   format_index = 0;
8443   format[format_index++] = '%';
8444   if (!right_justify)
8445     format[format_index++] = '-';
8446   if (pad_zeros)
8447     format[format_index++] = '0';
8448   if (width_left && width_right) {
8449     int i = 0;
8450     // Only allow 8 digit number widths.
8451     // This also prevents overflowing format variable
8452     while (i < 8 && width_left < width_right) {
8453       format[format_index++] = *width_left;
8454       width_left++;
8455       i++;
8456     }
8457   }
8458 
8459   // Parse a name (long or short)
8460   // Canonicalize the name into absolute_short_name
8461   found_valid_name = false;
8462   parse_long_name = (**ptr == '{');
8463   if (parse_long_name)
8464     (*ptr)++; // skip initial left brace
8465   for (size_t i = 0; i < sizeof(__kmp_affinity_format_table) /
8466                              sizeof(__kmp_affinity_format_table[0]);
8467        ++i) {
8468     char short_name = __kmp_affinity_format_table[i].short_name;
8469     const char *long_name = __kmp_affinity_format_table[i].long_name;
8470     char field_format = __kmp_affinity_format_table[i].field_format;
8471     if (parse_long_name) {
8472       size_t length = KMP_STRLEN(long_name);
8473       if (strncmp(*ptr, long_name, length) == 0) {
8474         found_valid_name = true;
8475         (*ptr) += length; // skip the long name
8476       }
8477     } else if (**ptr == short_name) {
8478       found_valid_name = true;
8479       (*ptr)++; // skip the short name
8480     }
8481     if (found_valid_name) {
8482       format[format_index++] = field_format;
8483       format[format_index++] = '\0';
8484       absolute_short_name = short_name;
8485       break;
8486     }
8487   }
8488   if (parse_long_name) {
8489     if (**ptr != '}') {
8490       absolute_short_name = 0;
8491     } else {
8492       (*ptr)++; // skip over the right brace
8493     }
8494   }
8495 
8496   // Attempt to fill the buffer with the requested
8497   // value using snprintf within __kmp_str_buf_print()
8498   switch (absolute_short_name) {
8499   case 't':
8500     rc = __kmp_str_buf_print(field_buffer, format, __kmp_aux_get_team_num());
8501     break;
8502   case 'T':
8503     rc = __kmp_str_buf_print(field_buffer, format, __kmp_aux_get_num_teams());
8504     break;
8505   case 'L':
8506     rc = __kmp_str_buf_print(field_buffer, format, th->th.th_team->t.t_level);
8507     break;
8508   case 'n':
8509     rc = __kmp_str_buf_print(field_buffer, format, __kmp_tid_from_gtid(gtid));
8510     break;
8511   case 'H': {
8512     static const int BUFFER_SIZE = 256;
8513     char buf[BUFFER_SIZE];
8514     __kmp_expand_host_name(buf, BUFFER_SIZE);
8515     rc = __kmp_str_buf_print(field_buffer, format, buf);
8516   } break;
8517   case 'P':
8518     rc = __kmp_str_buf_print(field_buffer, format, getpid());
8519     break;
8520   case 'i':
8521     rc = __kmp_str_buf_print(field_buffer, format, __kmp_gettid());
8522     break;
8523   case 'N':
8524     rc = __kmp_str_buf_print(field_buffer, format, th->th.th_team->t.t_nproc);
8525     break;
8526   case 'a':
8527     field_value =
8528         __kmp_get_ancestor_thread_num(gtid, th->th.th_team->t.t_level - 1);
8529     rc = __kmp_str_buf_print(field_buffer, format, field_value);
8530     break;
8531 #if KMP_AFFINITY_SUPPORTED
8532   case 'A': {
8533     kmp_str_buf_t buf;
8534     __kmp_str_buf_init(&buf);
8535     __kmp_affinity_str_buf_mask(&buf, th->th.th_affin_mask);
8536     rc = __kmp_str_buf_print(field_buffer, format, buf.str);
8537     __kmp_str_buf_free(&buf);
8538   } break;
8539 #endif
8540   default:
8541     // According to spec, If an implementation does not have info for field
8542     // type, then "undefined" is printed
8543     rc = __kmp_str_buf_print(field_buffer, "%s", "undefined");
8544     // Skip the field
8545     if (parse_long_name) {
8546       SKIP_TOKEN(*ptr);
8547       if (**ptr == '}')
8548         (*ptr)++;
8549     } else {
8550       (*ptr)++;
8551     }
8552   }
8553 
8554   KMP_ASSERT(format_index <= FORMAT_SIZE);
8555   return rc;
8556 }
8557 
8558 /*
8559  * Return number of characters needed to hold the affinity string
8560  * (not including null byte character)
8561  * The resultant string is printed to buffer, which the caller can then
8562  * handle afterwards
8563  */
8564 size_t __kmp_aux_capture_affinity(int gtid, const char *format,
8565                                   kmp_str_buf_t *buffer) {
8566   const char *parse_ptr;
8567   size_t retval;
8568   const kmp_info_t *th;
8569   kmp_str_buf_t field;
8570 
8571   KMP_DEBUG_ASSERT(buffer);
8572   KMP_DEBUG_ASSERT(gtid >= 0);
8573 
8574   __kmp_str_buf_init(&field);
8575   __kmp_str_buf_clear(buffer);
8576 
8577   th = __kmp_threads[gtid];
8578   retval = 0;
8579 
8580   // If format is NULL or zero-length string, then we use
8581   // affinity-format-var ICV
8582   parse_ptr = format;
8583   if (parse_ptr == NULL || *parse_ptr == '\0') {
8584     parse_ptr = __kmp_affinity_format;
8585   }
8586   KMP_DEBUG_ASSERT(parse_ptr);
8587 
8588   while (*parse_ptr != '\0') {
8589     // Parse a field
8590     if (*parse_ptr == '%') {
8591       // Put field in the buffer
8592       int rc = __kmp_aux_capture_affinity_field(gtid, th, &parse_ptr, &field);
8593       __kmp_str_buf_catbuf(buffer, &field);
8594       retval += rc;
8595     } else {
8596       // Put literal character in buffer
8597       __kmp_str_buf_cat(buffer, parse_ptr, 1);
8598       retval++;
8599       parse_ptr++;
8600     }
8601   }
8602   __kmp_str_buf_free(&field);
8603   return retval;
8604 }
8605 
8606 // Displays the affinity string to stdout
8607 void __kmp_aux_display_affinity(int gtid, const char *format) {
8608   kmp_str_buf_t buf;
8609   __kmp_str_buf_init(&buf);
8610   __kmp_aux_capture_affinity(gtid, format, &buf);
8611   __kmp_fprintf(kmp_out, "%s" KMP_END_OF_LINE, buf.str);
8612   __kmp_str_buf_free(&buf);
8613 }
8614 
8615 /* ------------------------------------------------------------------------ */
8616 
8617 void __kmp_aux_set_blocktime(int arg, kmp_info_t *thread, int tid) {
8618   int blocktime = arg; /* argument is in milliseconds */
8619 #if KMP_USE_MONITOR
8620   int bt_intervals;
8621 #endif
8622   kmp_int8 bt_set;
8623 
8624   __kmp_save_internal_controls(thread);
8625 
8626   /* Normalize and set blocktime for the teams */
8627   if (blocktime < KMP_MIN_BLOCKTIME)
8628     blocktime = KMP_MIN_BLOCKTIME;
8629   else if (blocktime > KMP_MAX_BLOCKTIME)
8630     blocktime = KMP_MAX_BLOCKTIME;
8631 
8632   set__blocktime_team(thread->th.th_team, tid, blocktime);
8633   set__blocktime_team(thread->th.th_serial_team, 0, blocktime);
8634 
8635 #if KMP_USE_MONITOR
8636   /* Calculate and set blocktime intervals for the teams */
8637   bt_intervals = KMP_INTERVALS_FROM_BLOCKTIME(blocktime, __kmp_monitor_wakeups);
8638 
8639   set__bt_intervals_team(thread->th.th_team, tid, bt_intervals);
8640   set__bt_intervals_team(thread->th.th_serial_team, 0, bt_intervals);
8641 #endif
8642 
8643   /* Set whether blocktime has been set to "TRUE" */
8644   bt_set = TRUE;
8645 
8646   set__bt_set_team(thread->th.th_team, tid, bt_set);
8647   set__bt_set_team(thread->th.th_serial_team, 0, bt_set);
8648 #if KMP_USE_MONITOR
8649   KF_TRACE(10, ("kmp_set_blocktime: T#%d(%d:%d), blocktime=%d, "
8650                 "bt_intervals=%d, monitor_updates=%d\n",
8651                 __kmp_gtid_from_tid(tid, thread->th.th_team),
8652                 thread->th.th_team->t.t_id, tid, blocktime, bt_intervals,
8653                 __kmp_monitor_wakeups));
8654 #else
8655   KF_TRACE(10, ("kmp_set_blocktime: T#%d(%d:%d), blocktime=%d\n",
8656                 __kmp_gtid_from_tid(tid, thread->th.th_team),
8657                 thread->th.th_team->t.t_id, tid, blocktime));
8658 #endif
8659 }
8660 
8661 void __kmp_aux_set_defaults(char const *str, size_t len) {
8662   if (!__kmp_init_serial) {
8663     __kmp_serial_initialize();
8664   }
8665   __kmp_env_initialize(str);
8666 
8667   if (__kmp_settings || __kmp_display_env || __kmp_display_env_verbose) {
8668     __kmp_env_print();
8669   }
8670 } // __kmp_aux_set_defaults
8671 
8672 /* ------------------------------------------------------------------------ */
8673 /* internal fast reduction routines */
8674 
8675 PACKED_REDUCTION_METHOD_T
8676 __kmp_determine_reduction_method(
8677     ident_t *loc, kmp_int32 global_tid, kmp_int32 num_vars, size_t reduce_size,
8678     void *reduce_data, void (*reduce_func)(void *lhs_data, void *rhs_data),
8679     kmp_critical_name *lck) {
8680 
8681   // Default reduction method: critical construct ( lck != NULL, like in current
8682   // PAROPT )
8683   // If ( reduce_data!=NULL && reduce_func!=NULL ): the tree-reduction method
8684   // can be selected by RTL
8685   // If loc->flags contains KMP_IDENT_ATOMIC_REDUCE, the atomic reduce method
8686   // can be selected by RTL
8687   // Finally, it's up to OpenMP RTL to make a decision on which method to select
8688   // among generated by PAROPT.
8689 
8690   PACKED_REDUCTION_METHOD_T retval;
8691 
8692   int team_size;
8693 
8694   KMP_DEBUG_ASSERT(loc); // it would be nice to test ( loc != 0 )
8695   KMP_DEBUG_ASSERT(lck); // it would be nice to test ( lck != 0 )
8696 
8697 #define FAST_REDUCTION_ATOMIC_METHOD_GENERATED                                 \
8698   ((loc->flags & (KMP_IDENT_ATOMIC_REDUCE)) == (KMP_IDENT_ATOMIC_REDUCE))
8699 #define FAST_REDUCTION_TREE_METHOD_GENERATED ((reduce_data) && (reduce_func))
8700 
8701   retval = critical_reduce_block;
8702 
8703   // another choice of getting a team size (with 1 dynamic deference) is slower
8704   team_size = __kmp_get_team_num_threads(global_tid);
8705   if (team_size == 1) {
8706 
8707     retval = empty_reduce_block;
8708 
8709   } else {
8710 
8711     int atomic_available = FAST_REDUCTION_ATOMIC_METHOD_GENERATED;
8712 
8713 #if KMP_ARCH_X86_64 || KMP_ARCH_PPC64 || KMP_ARCH_AARCH64 ||                   \
8714     KMP_ARCH_MIPS64 || KMP_ARCH_RISCV64
8715 
8716 #if KMP_OS_LINUX || KMP_OS_DRAGONFLY || KMP_OS_FREEBSD || KMP_OS_NETBSD ||     \
8717     KMP_OS_OPENBSD || KMP_OS_WINDOWS || KMP_OS_DARWIN || KMP_OS_HURD
8718 
8719     int teamsize_cutoff = 4;
8720 
8721 #if KMP_MIC_SUPPORTED
8722     if (__kmp_mic_type != non_mic) {
8723       teamsize_cutoff = 8;
8724     }
8725 #endif
8726     int tree_available = FAST_REDUCTION_TREE_METHOD_GENERATED;
8727     if (tree_available) {
8728       if (team_size <= teamsize_cutoff) {
8729         if (atomic_available) {
8730           retval = atomic_reduce_block;
8731         }
8732       } else {
8733         retval = TREE_REDUCE_BLOCK_WITH_REDUCTION_BARRIER;
8734       }
8735     } else if (atomic_available) {
8736       retval = atomic_reduce_block;
8737     }
8738 #else
8739 #error "Unknown or unsupported OS"
8740 #endif // KMP_OS_LINUX || KMP_OS_DRAGONFLY || KMP_OS_FREEBSD || KMP_OS_NETBSD ||
8741        // KMP_OS_OPENBSD || KMP_OS_WINDOWS || KMP_OS_DARWIN || KMP_OS_HURD
8742 
8743 #elif KMP_ARCH_X86 || KMP_ARCH_ARM || KMP_ARCH_AARCH || KMP_ARCH_MIPS
8744 
8745 #if KMP_OS_LINUX || KMP_OS_FREEBSD || KMP_OS_WINDOWS || KMP_OS_HURD
8746 
8747     // basic tuning
8748 
8749     if (atomic_available) {
8750       if (num_vars <= 2) { // && ( team_size <= 8 ) due to false-sharing ???
8751         retval = atomic_reduce_block;
8752       }
8753     } // otherwise: use critical section
8754 
8755 #elif KMP_OS_DARWIN
8756 
8757     int tree_available = FAST_REDUCTION_TREE_METHOD_GENERATED;
8758     if (atomic_available && (num_vars <= 3)) {
8759       retval = atomic_reduce_block;
8760     } else if (tree_available) {
8761       if ((reduce_size > (9 * sizeof(kmp_real64))) &&
8762           (reduce_size < (2000 * sizeof(kmp_real64)))) {
8763         retval = TREE_REDUCE_BLOCK_WITH_PLAIN_BARRIER;
8764       }
8765     } // otherwise: use critical section
8766 
8767 #else
8768 #error "Unknown or unsupported OS"
8769 #endif
8770 
8771 #else
8772 #error "Unknown or unsupported architecture"
8773 #endif
8774   }
8775 
8776   // KMP_FORCE_REDUCTION
8777 
8778   // If the team is serialized (team_size == 1), ignore the forced reduction
8779   // method and stay with the unsynchronized method (empty_reduce_block)
8780   if (__kmp_force_reduction_method != reduction_method_not_defined &&
8781       team_size != 1) {
8782 
8783     PACKED_REDUCTION_METHOD_T forced_retval = critical_reduce_block;
8784 
8785     int atomic_available, tree_available;
8786 
8787     switch ((forced_retval = __kmp_force_reduction_method)) {
8788     case critical_reduce_block:
8789       KMP_ASSERT(lck); // lck should be != 0
8790       break;
8791 
8792     case atomic_reduce_block:
8793       atomic_available = FAST_REDUCTION_ATOMIC_METHOD_GENERATED;
8794       if (!atomic_available) {
8795         KMP_WARNING(RedMethodNotSupported, "atomic");
8796         forced_retval = critical_reduce_block;
8797       }
8798       break;
8799 
8800     case tree_reduce_block:
8801       tree_available = FAST_REDUCTION_TREE_METHOD_GENERATED;
8802       if (!tree_available) {
8803         KMP_WARNING(RedMethodNotSupported, "tree");
8804         forced_retval = critical_reduce_block;
8805       } else {
8806 #if KMP_FAST_REDUCTION_BARRIER
8807         forced_retval = TREE_REDUCE_BLOCK_WITH_REDUCTION_BARRIER;
8808 #endif
8809       }
8810       break;
8811 
8812     default:
8813       KMP_ASSERT(0); // "unsupported method specified"
8814     }
8815 
8816     retval = forced_retval;
8817   }
8818 
8819   KA_TRACE(10, ("reduction method selected=%08x\n", retval));
8820 
8821 #undef FAST_REDUCTION_TREE_METHOD_GENERATED
8822 #undef FAST_REDUCTION_ATOMIC_METHOD_GENERATED
8823 
8824   return (retval);
8825 }
8826 // this function is for testing set/get/determine reduce method
8827 kmp_int32 __kmp_get_reduce_method(void) {
8828   return ((__kmp_entry_thread()->th.th_local.packed_reduction_method) >> 8);
8829 }
8830 
8831 // Soft pause sets up threads to ignore blocktime and just go to sleep.
8832 // Spin-wait code checks __kmp_pause_status and reacts accordingly.
8833 void __kmp_soft_pause() { __kmp_pause_status = kmp_soft_paused; }
8834 
8835 // Hard pause shuts down the runtime completely.  Resume happens naturally when
8836 // OpenMP is used subsequently.
8837 void __kmp_hard_pause() {
8838   __kmp_pause_status = kmp_hard_paused;
8839   __kmp_internal_end_thread(-1);
8840 }
8841 
8842 // Soft resume sets __kmp_pause_status, and wakes up all threads.
8843 void __kmp_resume_if_soft_paused() {
8844   if (__kmp_pause_status == kmp_soft_paused) {
8845     __kmp_pause_status = kmp_not_paused;
8846 
8847     for (int gtid = 1; gtid < __kmp_threads_capacity; ++gtid) {
8848       kmp_info_t *thread = __kmp_threads[gtid];
8849       if (thread) { // Wake it if sleeping
8850         kmp_flag_64<> fl(&thread->th.th_bar[bs_forkjoin_barrier].bb.b_go,
8851                          thread);
8852         if (fl.is_sleeping())
8853           fl.resume(gtid);
8854         else if (__kmp_try_suspend_mx(thread)) { // got suspend lock
8855           __kmp_unlock_suspend_mx(thread); // unlock it; it won't sleep
8856         } else { // thread holds the lock and may sleep soon
8857           do { // until either the thread sleeps, or we can get the lock
8858             if (fl.is_sleeping()) {
8859               fl.resume(gtid);
8860               break;
8861             } else if (__kmp_try_suspend_mx(thread)) {
8862               __kmp_unlock_suspend_mx(thread);
8863               break;
8864             }
8865           } while (1);
8866         }
8867       }
8868     }
8869   }
8870 }
8871 
8872 // This function is called via __kmpc_pause_resource. Returns 0 if successful.
8873 // TODO: add warning messages
8874 int __kmp_pause_resource(kmp_pause_status_t level) {
8875   if (level == kmp_not_paused) { // requesting resume
8876     if (__kmp_pause_status == kmp_not_paused) {
8877       // error message about runtime not being paused, so can't resume
8878       return 1;
8879     } else {
8880       KMP_DEBUG_ASSERT(__kmp_pause_status == kmp_soft_paused ||
8881                        __kmp_pause_status == kmp_hard_paused);
8882       __kmp_pause_status = kmp_not_paused;
8883       return 0;
8884     }
8885   } else if (level == kmp_soft_paused) { // requesting soft pause
8886     if (__kmp_pause_status != kmp_not_paused) {
8887       // error message about already being paused
8888       return 1;
8889     } else {
8890       __kmp_soft_pause();
8891       return 0;
8892     }
8893   } else if (level == kmp_hard_paused) { // requesting hard pause
8894     if (__kmp_pause_status != kmp_not_paused) {
8895       // error message about already being paused
8896       return 1;
8897     } else {
8898       __kmp_hard_pause();
8899       return 0;
8900     }
8901   } else {
8902     // error message about invalid level
8903     return 1;
8904   }
8905 }
8906 
8907 void __kmp_omp_display_env(int verbose) {
8908   __kmp_acquire_bootstrap_lock(&__kmp_initz_lock);
8909   if (__kmp_init_serial == 0)
8910     __kmp_do_serial_initialize();
8911   __kmp_display_env_impl(!verbose, verbose);
8912   __kmp_release_bootstrap_lock(&__kmp_initz_lock);
8913 }
8914 
8915 // The team size is changing, so distributed barrier must be modified
8916 void __kmp_resize_dist_barrier(kmp_team_t *team, int old_nthreads,
8917                                int new_nthreads) {
8918   KMP_DEBUG_ASSERT(__kmp_barrier_release_pattern[bs_forkjoin_barrier] ==
8919                    bp_dist_bar);
8920   kmp_info_t **other_threads = team->t.t_threads;
8921 
8922   // We want all the workers to stop waiting on the barrier while we adjust the
8923   // size of the team.
8924   for (int f = 1; f < old_nthreads; ++f) {
8925     KMP_DEBUG_ASSERT(other_threads[f] != NULL);
8926     // Ignore threads that are already inactive or not present in the team
8927     if (team->t.t_threads[f]->th.th_used_in_team.load() == 0) {
8928       // teams construct causes thread_limit to get passed in, and some of
8929       // those could be inactive; just ignore them
8930       continue;
8931     }
8932     // If thread is transitioning still to in_use state, wait for it
8933     if (team->t.t_threads[f]->th.th_used_in_team.load() == 3) {
8934       while (team->t.t_threads[f]->th.th_used_in_team.load() == 3)
8935         KMP_CPU_PAUSE();
8936     }
8937     // The thread should be in_use now
8938     KMP_DEBUG_ASSERT(team->t.t_threads[f]->th.th_used_in_team.load() == 1);
8939     // Transition to unused state
8940     team->t.t_threads[f]->th.th_used_in_team.store(2);
8941     KMP_DEBUG_ASSERT(team->t.t_threads[f]->th.th_used_in_team.load() == 2);
8942   }
8943   // Release all the workers
8944   kmp_uint64 new_value; // new value for go
8945   new_value = team->t.b->go_release();
8946 
8947   KMP_MFENCE();
8948 
8949   // Workers should see transition status 2 and move to 0; but may need to be
8950   // woken up first
8951   size_t my_go_index;
8952   int count = old_nthreads - 1;
8953   while (count > 0) {
8954     count = old_nthreads - 1;
8955     for (int f = 1; f < old_nthreads; ++f) {
8956       my_go_index = f / team->t.b->threads_per_go;
8957       if (other_threads[f]->th.th_used_in_team.load() != 0) {
8958         if (__kmp_dflt_blocktime != KMP_MAX_BLOCKTIME) { // Wake up the workers
8959           kmp_atomic_flag_64<> *flag = (kmp_atomic_flag_64<> *)CCAST(
8960               void *, other_threads[f]->th.th_sleep_loc);
8961           __kmp_atomic_resume_64(other_threads[f]->th.th_info.ds.ds_gtid, flag);
8962         }
8963       } else {
8964         KMP_DEBUG_ASSERT(team->t.t_threads[f]->th.th_used_in_team.load() == 0);
8965         count--;
8966       }
8967     }
8968   }
8969   // Now update the barrier size
8970   team->t.b->update_num_threads(new_nthreads);
8971   team->t.b->go_reset();
8972 }
8973 
8974 void __kmp_add_threads_to_team(kmp_team_t *team, int new_nthreads) {
8975   // Add the threads back to the team
8976   KMP_DEBUG_ASSERT(team);
8977   // Threads were paused and pointed at th_used_in_team temporarily during a
8978   // resize of the team. We're going to set th_used_in_team to 3 to indicate to
8979   // the thread that it should transition itself back into the team. Then, if
8980   // blocktime isn't infinite, the thread could be sleeping, so we send a resume
8981   // to wake it up.
8982   for (int f = 1; f < new_nthreads; ++f) {
8983     KMP_DEBUG_ASSERT(team->t.t_threads[f]);
8984     KMP_COMPARE_AND_STORE_ACQ32(&(team->t.t_threads[f]->th.th_used_in_team), 0,
8985                                 3);
8986     if (__kmp_dflt_blocktime != KMP_MAX_BLOCKTIME) { // Wake up sleeping threads
8987       __kmp_resume_32(team->t.t_threads[f]->th.th_info.ds.ds_gtid,
8988                       (kmp_flag_32<false, false> *)NULL);
8989     }
8990   }
8991   // The threads should be transitioning to the team; when they are done, they
8992   // should have set th_used_in_team to 1. This loop forces master to wait until
8993   // all threads have moved into the team and are waiting in the barrier.
8994   int count = new_nthreads - 1;
8995   while (count > 0) {
8996     count = new_nthreads - 1;
8997     for (int f = 1; f < new_nthreads; ++f) {
8998       if (team->t.t_threads[f]->th.th_used_in_team.load() == 1) {
8999         count--;
9000       }
9001     }
9002   }
9003 }
9004 
9005 // Globals and functions for hidden helper task
9006 kmp_info_t **__kmp_hidden_helper_threads;
9007 kmp_info_t *__kmp_hidden_helper_main_thread;
9008 std::atomic<kmp_int32> __kmp_unexecuted_hidden_helper_tasks;
9009 #if KMP_OS_LINUX
9010 kmp_int32 __kmp_hidden_helper_threads_num = 8;
9011 kmp_int32 __kmp_enable_hidden_helper = TRUE;
9012 #else
9013 kmp_int32 __kmp_hidden_helper_threads_num = 0;
9014 kmp_int32 __kmp_enable_hidden_helper = FALSE;
9015 #endif
9016 
9017 namespace {
9018 std::atomic<kmp_int32> __kmp_hit_hidden_helper_threads_num;
9019 
9020 void __kmp_hidden_helper_wrapper_fn(int *gtid, int *, ...) {
9021   // This is an explicit synchronization on all hidden helper threads in case
9022   // that when a regular thread pushes a hidden helper task to one hidden
9023   // helper thread, the thread has not been awaken once since they're released
9024   // by the main thread after creating the team.
9025   KMP_ATOMIC_INC(&__kmp_hit_hidden_helper_threads_num);
9026   while (KMP_ATOMIC_LD_ACQ(&__kmp_hit_hidden_helper_threads_num) !=
9027          __kmp_hidden_helper_threads_num)
9028     ;
9029 
9030   // If main thread, then wait for signal
9031   if (__kmpc_master(nullptr, *gtid)) {
9032     // First, unset the initial state and release the initial thread
9033     TCW_4(__kmp_init_hidden_helper_threads, FALSE);
9034     __kmp_hidden_helper_initz_release();
9035     __kmp_hidden_helper_main_thread_wait();
9036     // Now wake up all worker threads
9037     for (int i = 1; i < __kmp_hit_hidden_helper_threads_num; ++i) {
9038       __kmp_hidden_helper_worker_thread_signal();
9039     }
9040   }
9041 }
9042 } // namespace
9043 
9044 void __kmp_hidden_helper_threads_initz_routine() {
9045   // Create a new root for hidden helper team/threads
9046   const int gtid = __kmp_register_root(TRUE);
9047   __kmp_hidden_helper_main_thread = __kmp_threads[gtid];
9048   __kmp_hidden_helper_threads = &__kmp_threads[gtid];
9049   __kmp_hidden_helper_main_thread->th.th_set_nproc =
9050       __kmp_hidden_helper_threads_num;
9051 
9052   KMP_ATOMIC_ST_REL(&__kmp_hit_hidden_helper_threads_num, 0);
9053 
9054   __kmpc_fork_call(nullptr, 0, __kmp_hidden_helper_wrapper_fn);
9055 
9056   // Set the initialization flag to FALSE
9057   TCW_SYNC_4(__kmp_init_hidden_helper, FALSE);
9058 
9059   __kmp_hidden_helper_threads_deinitz_release();
9060 }
9061 
9062 /* Nesting Mode:
9063    Set via KMP_NESTING_MODE, which takes an integer.
9064    Note: we skip duplicate topology levels, and skip levels with only
9065       one entity.
9066    KMP_NESTING_MODE=0 is the default, and doesn't use nesting mode.
9067    KMP_NESTING_MODE=1 sets as many nesting levels as there are distinct levels
9068       in the topology, and initializes the number of threads at each of those
9069       levels to the number of entities at each level, respectively, below the
9070       entity at the parent level.
9071    KMP_NESTING_MODE=N, where N>1, attempts to create up to N nesting levels,
9072       but starts with nesting OFF -- max-active-levels-var is 1 -- and requires
9073       the user to turn nesting on explicitly. This is an even more experimental
9074       option to this experimental feature, and may change or go away in the
9075       future.
9076 */
9077 
9078 // Allocate space to store nesting levels
9079 void __kmp_init_nesting_mode() {
9080   int levels = KMP_HW_LAST;
9081   __kmp_nesting_mode_nlevels = levels;
9082   __kmp_nesting_nth_level = (int *)KMP_INTERNAL_MALLOC(levels * sizeof(int));
9083   for (int i = 0; i < levels; ++i)
9084     __kmp_nesting_nth_level[i] = 0;
9085   if (__kmp_nested_nth.size < levels) {
9086     __kmp_nested_nth.nth =
9087         (int *)KMP_INTERNAL_REALLOC(__kmp_nested_nth.nth, levels * sizeof(int));
9088     __kmp_nested_nth.size = levels;
9089   }
9090 }
9091 
9092 // Set # threads for top levels of nesting; must be called after topology set
9093 void __kmp_set_nesting_mode_threads() {
9094   kmp_info_t *thread = __kmp_threads[__kmp_entry_gtid()];
9095 
9096   if (__kmp_nesting_mode == 1)
9097     __kmp_nesting_mode_nlevels = KMP_MAX_ACTIVE_LEVELS_LIMIT;
9098   else if (__kmp_nesting_mode > 1)
9099     __kmp_nesting_mode_nlevels = __kmp_nesting_mode;
9100 
9101   if (__kmp_topology) { // use topology info
9102     int loc, hw_level;
9103     for (loc = 0, hw_level = 0; hw_level < __kmp_topology->get_depth() &&
9104                                 loc < __kmp_nesting_mode_nlevels;
9105          loc++, hw_level++) {
9106       __kmp_nesting_nth_level[loc] = __kmp_topology->get_ratio(hw_level);
9107       if (__kmp_nesting_nth_level[loc] == 1)
9108         loc--;
9109     }
9110     // Make sure all cores are used
9111     if (__kmp_nesting_mode > 1 && loc > 1) {
9112       int core_level = __kmp_topology->get_level(KMP_HW_CORE);
9113       int num_cores = __kmp_topology->get_count(core_level);
9114       int upper_levels = 1;
9115       for (int level = 0; level < loc - 1; ++level)
9116         upper_levels *= __kmp_nesting_nth_level[level];
9117       if (upper_levels * __kmp_nesting_nth_level[loc - 1] < num_cores)
9118         __kmp_nesting_nth_level[loc - 1] =
9119             num_cores / __kmp_nesting_nth_level[loc - 2];
9120     }
9121     __kmp_nesting_mode_nlevels = loc;
9122     __kmp_nested_nth.used = __kmp_nesting_mode_nlevels;
9123   } else { // no topology info available; provide a reasonable guesstimation
9124     if (__kmp_avail_proc >= 4) {
9125       __kmp_nesting_nth_level[0] = __kmp_avail_proc / 2;
9126       __kmp_nesting_nth_level[1] = 2;
9127       __kmp_nesting_mode_nlevels = 2;
9128     } else {
9129       __kmp_nesting_nth_level[0] = __kmp_avail_proc;
9130       __kmp_nesting_mode_nlevels = 1;
9131     }
9132     __kmp_nested_nth.used = __kmp_nesting_mode_nlevels;
9133   }
9134   for (int i = 0; i < __kmp_nesting_mode_nlevels; ++i) {
9135     __kmp_nested_nth.nth[i] = __kmp_nesting_nth_level[i];
9136   }
9137   set__nproc(thread, __kmp_nesting_nth_level[0]);
9138   if (__kmp_nesting_mode > 1 && __kmp_nesting_mode_nlevels > __kmp_nesting_mode)
9139     __kmp_nesting_mode_nlevels = __kmp_nesting_mode;
9140   if (get__max_active_levels(thread) > 1) {
9141     // if max levels was set, set nesting mode levels to same
9142     __kmp_nesting_mode_nlevels = get__max_active_levels(thread);
9143   }
9144   if (__kmp_nesting_mode == 1) // turn on nesting for this case only
9145     set__max_active_levels(thread, __kmp_nesting_mode_nlevels);
9146 }
9147