xref: /freebsd/contrib/llvm-project/openmp/runtime/src/kmp_lock.h (revision e6bfd18d21b225af6a0ed67ceeaf1293b7b9eba5)
1 /*
2  * kmp_lock.h -- lock header file
3  */
4 
5 //===----------------------------------------------------------------------===//
6 //
7 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
8 // See https://llvm.org/LICENSE.txt for license information.
9 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #ifndef KMP_LOCK_H
14 #define KMP_LOCK_H
15 
16 #include <limits.h> // CHAR_BIT
17 #include <stddef.h> // offsetof
18 
19 #include "kmp_debug.h"
20 #include "kmp_os.h"
21 
22 #ifdef __cplusplus
23 #include <atomic>
24 
25 extern "C" {
26 #endif // __cplusplus
27 
28 // ----------------------------------------------------------------------------
29 // Have to copy these definitions from kmp.h because kmp.h cannot be included
30 // due to circular dependencies.  Will undef these at end of file.
31 
32 #define KMP_PAD(type, sz)                                                      \
33   (sizeof(type) + (sz - ((sizeof(type) - 1) % (sz)) - 1))
34 #define KMP_GTID_DNE (-2)
35 
36 // Forward declaration of ident and ident_t
37 
38 struct ident;
39 typedef struct ident ident_t;
40 
41 // End of copied code.
42 // ----------------------------------------------------------------------------
43 
44 // We need to know the size of the area we can assume that the compiler(s)
45 // allocated for objects of type omp_lock_t and omp_nest_lock_t.  The Intel
46 // compiler always allocates a pointer-sized area, as does visual studio.
47 //
48 // gcc however, only allocates 4 bytes for regular locks, even on 64-bit
49 // intel archs.  It allocates at least 8 bytes for nested lock (more on
50 // recent versions), but we are bounded by the pointer-sized chunks that
51 // the Intel compiler allocates.
52 
53 #if KMP_OS_LINUX && defined(KMP_GOMP_COMPAT)
54 #define OMP_LOCK_T_SIZE sizeof(int)
55 #define OMP_NEST_LOCK_T_SIZE sizeof(void *)
56 #else
57 #define OMP_LOCK_T_SIZE sizeof(void *)
58 #define OMP_NEST_LOCK_T_SIZE sizeof(void *)
59 #endif
60 
61 // The Intel compiler allocates a 32-byte chunk for a critical section.
62 // Both gcc and visual studio only allocate enough space for a pointer.
63 // Sometimes we know that the space was allocated by the Intel compiler.
64 #define OMP_CRITICAL_SIZE sizeof(void *)
65 #define INTEL_CRITICAL_SIZE 32
66 
67 // lock flags
68 typedef kmp_uint32 kmp_lock_flags_t;
69 
70 #define kmp_lf_critical_section 1
71 
72 // When a lock table is used, the indices are of kmp_lock_index_t
73 typedef kmp_uint32 kmp_lock_index_t;
74 
75 // When memory allocated for locks are on the lock pool (free list),
76 // it is treated as structs of this type.
77 struct kmp_lock_pool {
78   union kmp_user_lock *next;
79   kmp_lock_index_t index;
80 };
81 
82 typedef struct kmp_lock_pool kmp_lock_pool_t;
83 
84 extern void __kmp_validate_locks(void);
85 
86 // ----------------------------------------------------------------------------
87 //  There are 5 lock implementations:
88 //       1. Test and set locks.
89 //       2. futex locks (Linux* OS on x86 and
90 //          Intel(R) Many Integrated Core Architecture)
91 //       3. Ticket (Lamport bakery) locks.
92 //       4. Queuing locks (with separate spin fields).
93 //       5. DRPA (Dynamically Reconfigurable Distributed Polling Area) locks
94 //
95 //   and 3 lock purposes:
96 //       1. Bootstrap locks -- Used for a few locks available at library
97 //       startup-shutdown time.
98 //          These do not require non-negative global thread ID's.
99 //       2. Internal RTL locks -- Used everywhere else in the RTL
100 //       3. User locks (includes critical sections)
101 // ----------------------------------------------------------------------------
102 
103 // ============================================================================
104 // Lock implementations.
105 //
106 // Test and set locks.
107 //
108 // Non-nested test and set locks differ from the other lock kinds (except
109 // futex) in that we use the memory allocated by the compiler for the lock,
110 // rather than a pointer to it.
111 //
112 // On lin32, lin_32e, and win_32, the space allocated may be as small as 4
113 // bytes, so we have to use a lock table for nested locks, and avoid accessing
114 // the depth_locked field for non-nested locks.
115 //
116 // Information normally available to the tools, such as lock location, lock
117 // usage (normal lock vs. critical section), etc. is not available with test and
118 // set locks.
119 // ----------------------------------------------------------------------------
120 
121 struct kmp_base_tas_lock {
122   // KMP_LOCK_FREE(tas) => unlocked; locked: (gtid+1) of owning thread
123   std::atomic<kmp_int32> poll;
124   kmp_int32 depth_locked; // depth locked, for nested locks only
125 };
126 
127 typedef struct kmp_base_tas_lock kmp_base_tas_lock_t;
128 
129 union kmp_tas_lock {
130   kmp_base_tas_lock_t lk;
131   kmp_lock_pool_t pool; // make certain struct is large enough
132   double lk_align; // use worst case alignment; no cache line padding
133 };
134 
135 typedef union kmp_tas_lock kmp_tas_lock_t;
136 
137 // Static initializer for test and set lock variables. Usage:
138 //    kmp_tas_lock_t xlock = KMP_TAS_LOCK_INITIALIZER( xlock );
139 #define KMP_TAS_LOCK_INITIALIZER(lock)                                         \
140   {                                                                            \
141     { ATOMIC_VAR_INIT(KMP_LOCK_FREE(tas)), 0 }                                 \
142   }
143 
144 extern int __kmp_acquire_tas_lock(kmp_tas_lock_t *lck, kmp_int32 gtid);
145 extern int __kmp_test_tas_lock(kmp_tas_lock_t *lck, kmp_int32 gtid);
146 extern int __kmp_release_tas_lock(kmp_tas_lock_t *lck, kmp_int32 gtid);
147 extern void __kmp_init_tas_lock(kmp_tas_lock_t *lck);
148 extern void __kmp_destroy_tas_lock(kmp_tas_lock_t *lck);
149 
150 extern int __kmp_acquire_nested_tas_lock(kmp_tas_lock_t *lck, kmp_int32 gtid);
151 extern int __kmp_test_nested_tas_lock(kmp_tas_lock_t *lck, kmp_int32 gtid);
152 extern int __kmp_release_nested_tas_lock(kmp_tas_lock_t *lck, kmp_int32 gtid);
153 extern void __kmp_init_nested_tas_lock(kmp_tas_lock_t *lck);
154 extern void __kmp_destroy_nested_tas_lock(kmp_tas_lock_t *lck);
155 
156 #define KMP_LOCK_RELEASED 1
157 #define KMP_LOCK_STILL_HELD 0
158 #define KMP_LOCK_ACQUIRED_FIRST 1
159 #define KMP_LOCK_ACQUIRED_NEXT 0
160 #ifndef KMP_USE_FUTEX
161 #define KMP_USE_FUTEX                                                          \
162   (KMP_OS_LINUX &&                                                             \
163    (KMP_ARCH_X86 || KMP_ARCH_X86_64 || KMP_ARCH_ARM || KMP_ARCH_AARCH64))
164 #endif
165 #if KMP_USE_FUTEX
166 
167 // ----------------------------------------------------------------------------
168 // futex locks.  futex locks are only available on Linux* OS.
169 //
170 // Like non-nested test and set lock, non-nested futex locks use the memory
171 // allocated by the compiler for the lock, rather than a pointer to it.
172 //
173 // Information normally available to the tools, such as lock location, lock
174 // usage (normal lock vs. critical section), etc. is not available with test and
175 // set locks. With non-nested futex locks, the lock owner is not even available.
176 // ----------------------------------------------------------------------------
177 
178 struct kmp_base_futex_lock {
179   volatile kmp_int32 poll; // KMP_LOCK_FREE(futex) => unlocked
180   // 2*(gtid+1) of owning thread, 0 if unlocked
181   // locked: (gtid+1) of owning thread
182   kmp_int32 depth_locked; // depth locked, for nested locks only
183 };
184 
185 typedef struct kmp_base_futex_lock kmp_base_futex_lock_t;
186 
187 union kmp_futex_lock {
188   kmp_base_futex_lock_t lk;
189   kmp_lock_pool_t pool; // make certain struct is large enough
190   double lk_align; // use worst case alignment
191   // no cache line padding
192 };
193 
194 typedef union kmp_futex_lock kmp_futex_lock_t;
195 
196 // Static initializer for futex lock variables. Usage:
197 //    kmp_futex_lock_t xlock = KMP_FUTEX_LOCK_INITIALIZER( xlock );
198 #define KMP_FUTEX_LOCK_INITIALIZER(lock)                                       \
199   {                                                                            \
200     { KMP_LOCK_FREE(futex), 0 }                                                \
201   }
202 
203 extern int __kmp_acquire_futex_lock(kmp_futex_lock_t *lck, kmp_int32 gtid);
204 extern int __kmp_test_futex_lock(kmp_futex_lock_t *lck, kmp_int32 gtid);
205 extern int __kmp_release_futex_lock(kmp_futex_lock_t *lck, kmp_int32 gtid);
206 extern void __kmp_init_futex_lock(kmp_futex_lock_t *lck);
207 extern void __kmp_destroy_futex_lock(kmp_futex_lock_t *lck);
208 
209 extern int __kmp_acquire_nested_futex_lock(kmp_futex_lock_t *lck,
210                                            kmp_int32 gtid);
211 extern int __kmp_test_nested_futex_lock(kmp_futex_lock_t *lck, kmp_int32 gtid);
212 extern int __kmp_release_nested_futex_lock(kmp_futex_lock_t *lck,
213                                            kmp_int32 gtid);
214 extern void __kmp_init_nested_futex_lock(kmp_futex_lock_t *lck);
215 extern void __kmp_destroy_nested_futex_lock(kmp_futex_lock_t *lck);
216 
217 #endif // KMP_USE_FUTEX
218 
219 // ----------------------------------------------------------------------------
220 // Ticket locks.
221 
222 #ifdef __cplusplus
223 
224 #ifdef _MSC_VER
225 // MSVC won't allow use of std::atomic<> in a union since it has non-trivial
226 // copy constructor.
227 
228 struct kmp_base_ticket_lock {
229   // `initialized' must be the first entry in the lock data structure!
230   std::atomic_bool initialized;
231   volatile union kmp_ticket_lock *self; // points to the lock union
232   ident_t const *location; // Source code location of omp_init_lock().
233   std::atomic_uint
234       next_ticket; // ticket number to give to next thread which acquires
235   std::atomic_uint now_serving; // ticket number for thread which holds the lock
236   std::atomic_int owner_id; // (gtid+1) of owning thread, 0 if unlocked
237   std::atomic_int depth_locked; // depth locked, for nested locks only
238   kmp_lock_flags_t flags; // lock specifics, e.g. critical section lock
239 };
240 #else
241 struct kmp_base_ticket_lock {
242   // `initialized' must be the first entry in the lock data structure!
243   std::atomic<bool> initialized;
244   volatile union kmp_ticket_lock *self; // points to the lock union
245   ident_t const *location; // Source code location of omp_init_lock().
246   std::atomic<unsigned>
247       next_ticket; // ticket number to give to next thread which acquires
248   std::atomic<unsigned>
249       now_serving; // ticket number for thread which holds the lock
250   std::atomic<int> owner_id; // (gtid+1) of owning thread, 0 if unlocked
251   std::atomic<int> depth_locked; // depth locked, for nested locks only
252   kmp_lock_flags_t flags; // lock specifics, e.g. critical section lock
253 };
254 #endif
255 
256 #else // __cplusplus
257 
258 struct kmp_base_ticket_lock;
259 
260 #endif // !__cplusplus
261 
262 typedef struct kmp_base_ticket_lock kmp_base_ticket_lock_t;
263 
264 union KMP_ALIGN_CACHE kmp_ticket_lock {
265   kmp_base_ticket_lock_t
266       lk; // This field must be first to allow static initializing.
267   kmp_lock_pool_t pool;
268   double lk_align; // use worst case alignment
269   char lk_pad[KMP_PAD(kmp_base_ticket_lock_t, CACHE_LINE)];
270 };
271 
272 typedef union kmp_ticket_lock kmp_ticket_lock_t;
273 
274 // Static initializer for simple ticket lock variables. Usage:
275 //    kmp_ticket_lock_t xlock = KMP_TICKET_LOCK_INITIALIZER( xlock );
276 // Note the macro argument. It is important to make var properly initialized.
277 #define KMP_TICKET_LOCK_INITIALIZER(lock)                                      \
278   {                                                                            \
279     {                                                                          \
280       ATOMIC_VAR_INIT(true)                                                    \
281       , &(lock), NULL, ATOMIC_VAR_INIT(0U), ATOMIC_VAR_INIT(0U),               \
282           ATOMIC_VAR_INIT(0), ATOMIC_VAR_INIT(-1)                              \
283     }                                                                          \
284   }
285 
286 extern int __kmp_acquire_ticket_lock(kmp_ticket_lock_t *lck, kmp_int32 gtid);
287 extern int __kmp_test_ticket_lock(kmp_ticket_lock_t *lck, kmp_int32 gtid);
288 extern int __kmp_test_ticket_lock_with_cheks(kmp_ticket_lock_t *lck,
289                                              kmp_int32 gtid);
290 extern int __kmp_release_ticket_lock(kmp_ticket_lock_t *lck, kmp_int32 gtid);
291 extern void __kmp_init_ticket_lock(kmp_ticket_lock_t *lck);
292 extern void __kmp_destroy_ticket_lock(kmp_ticket_lock_t *lck);
293 
294 extern int __kmp_acquire_nested_ticket_lock(kmp_ticket_lock_t *lck,
295                                             kmp_int32 gtid);
296 extern int __kmp_test_nested_ticket_lock(kmp_ticket_lock_t *lck,
297                                          kmp_int32 gtid);
298 extern int __kmp_release_nested_ticket_lock(kmp_ticket_lock_t *lck,
299                                             kmp_int32 gtid);
300 extern void __kmp_init_nested_ticket_lock(kmp_ticket_lock_t *lck);
301 extern void __kmp_destroy_nested_ticket_lock(kmp_ticket_lock_t *lck);
302 
303 // ----------------------------------------------------------------------------
304 // Queuing locks.
305 
306 #if KMP_USE_ADAPTIVE_LOCKS
307 
308 struct kmp_adaptive_lock_info;
309 
310 typedef struct kmp_adaptive_lock_info kmp_adaptive_lock_info_t;
311 
312 #if KMP_DEBUG_ADAPTIVE_LOCKS
313 
314 struct kmp_adaptive_lock_statistics {
315   /* So we can get stats from locks that haven't been destroyed. */
316   kmp_adaptive_lock_info_t *next;
317   kmp_adaptive_lock_info_t *prev;
318 
319   /* Other statistics */
320   kmp_uint32 successfulSpeculations;
321   kmp_uint32 hardFailedSpeculations;
322   kmp_uint32 softFailedSpeculations;
323   kmp_uint32 nonSpeculativeAcquires;
324   kmp_uint32 nonSpeculativeAcquireAttempts;
325   kmp_uint32 lemmingYields;
326 };
327 
328 typedef struct kmp_adaptive_lock_statistics kmp_adaptive_lock_statistics_t;
329 
330 extern void __kmp_print_speculative_stats();
331 extern void __kmp_init_speculative_stats();
332 
333 #endif // KMP_DEBUG_ADAPTIVE_LOCKS
334 
335 struct kmp_adaptive_lock_info {
336   /* Values used for adaptivity.
337      Although these are accessed from multiple threads we don't access them
338      atomically, because if we miss updates it probably doesn't matter much. (It
339      just affects our decision about whether to try speculation on the lock). */
340   kmp_uint32 volatile badness;
341   kmp_uint32 volatile acquire_attempts;
342   /* Parameters of the lock. */
343   kmp_uint32 max_badness;
344   kmp_uint32 max_soft_retries;
345 
346 #if KMP_DEBUG_ADAPTIVE_LOCKS
347   kmp_adaptive_lock_statistics_t volatile stats;
348 #endif
349 };
350 
351 #endif // KMP_USE_ADAPTIVE_LOCKS
352 
353 struct kmp_base_queuing_lock {
354 
355   //  `initialized' must be the first entry in the lock data structure!
356   volatile union kmp_queuing_lock
357       *initialized; // Points to the lock union if in initialized state.
358 
359   ident_t const *location; // Source code location of omp_init_lock().
360 
361   KMP_ALIGN(8) // tail_id  must be 8-byte aligned!
362 
363   volatile kmp_int32
364       tail_id; // (gtid+1) of thread at tail of wait queue, 0 if empty
365   // Must be no padding here since head/tail used in 8-byte CAS
366   volatile kmp_int32
367       head_id; // (gtid+1) of thread at head of wait queue, 0 if empty
368   // Decl order assumes little endian
369   // bakery-style lock
370   volatile kmp_uint32
371       next_ticket; // ticket number to give to next thread which acquires
372   volatile kmp_uint32
373       now_serving; // ticket number for thread which holds the lock
374   volatile kmp_int32 owner_id; // (gtid+1) of owning thread, 0 if unlocked
375   kmp_int32 depth_locked; // depth locked, for nested locks only
376 
377   kmp_lock_flags_t flags; // lock specifics, e.g. critical section lock
378 };
379 
380 typedef struct kmp_base_queuing_lock kmp_base_queuing_lock_t;
381 
382 KMP_BUILD_ASSERT(offsetof(kmp_base_queuing_lock_t, tail_id) % 8 == 0);
383 
384 union KMP_ALIGN_CACHE kmp_queuing_lock {
385   kmp_base_queuing_lock_t
386       lk; // This field must be first to allow static initializing.
387   kmp_lock_pool_t pool;
388   double lk_align; // use worst case alignment
389   char lk_pad[KMP_PAD(kmp_base_queuing_lock_t, CACHE_LINE)];
390 };
391 
392 typedef union kmp_queuing_lock kmp_queuing_lock_t;
393 
394 extern int __kmp_acquire_queuing_lock(kmp_queuing_lock_t *lck, kmp_int32 gtid);
395 extern int __kmp_test_queuing_lock(kmp_queuing_lock_t *lck, kmp_int32 gtid);
396 extern int __kmp_release_queuing_lock(kmp_queuing_lock_t *lck, kmp_int32 gtid);
397 extern void __kmp_init_queuing_lock(kmp_queuing_lock_t *lck);
398 extern void __kmp_destroy_queuing_lock(kmp_queuing_lock_t *lck);
399 
400 extern int __kmp_acquire_nested_queuing_lock(kmp_queuing_lock_t *lck,
401                                              kmp_int32 gtid);
402 extern int __kmp_test_nested_queuing_lock(kmp_queuing_lock_t *lck,
403                                           kmp_int32 gtid);
404 extern int __kmp_release_nested_queuing_lock(kmp_queuing_lock_t *lck,
405                                              kmp_int32 gtid);
406 extern void __kmp_init_nested_queuing_lock(kmp_queuing_lock_t *lck);
407 extern void __kmp_destroy_nested_queuing_lock(kmp_queuing_lock_t *lck);
408 
409 #if KMP_USE_ADAPTIVE_LOCKS
410 
411 // ----------------------------------------------------------------------------
412 // Adaptive locks.
413 struct kmp_base_adaptive_lock {
414   kmp_base_queuing_lock qlk;
415   KMP_ALIGN(CACHE_LINE)
416   kmp_adaptive_lock_info_t
417       adaptive; // Information for the speculative adaptive lock
418 };
419 
420 typedef struct kmp_base_adaptive_lock kmp_base_adaptive_lock_t;
421 
422 union KMP_ALIGN_CACHE kmp_adaptive_lock {
423   kmp_base_adaptive_lock_t lk;
424   kmp_lock_pool_t pool;
425   double lk_align;
426   char lk_pad[KMP_PAD(kmp_base_adaptive_lock_t, CACHE_LINE)];
427 };
428 typedef union kmp_adaptive_lock kmp_adaptive_lock_t;
429 
430 #define GET_QLK_PTR(l) ((kmp_queuing_lock_t *)&(l)->lk.qlk)
431 
432 #endif // KMP_USE_ADAPTIVE_LOCKS
433 
434 // ----------------------------------------------------------------------------
435 // DRDPA ticket locks.
436 struct kmp_base_drdpa_lock {
437   // All of the fields on the first cache line are only written when
438   // initializing or reconfiguring the lock.  These are relatively rare
439   // operations, so data from the first cache line will usually stay resident in
440   // the cache of each thread trying to acquire the lock.
441   //
442   // initialized must be the first entry in the lock data structure!
443   KMP_ALIGN_CACHE
444 
445   volatile union kmp_drdpa_lock
446       *initialized; // points to the lock union if in initialized state
447   ident_t const *location; // Source code location of omp_init_lock().
448   std::atomic<std::atomic<kmp_uint64> *> polls;
449   std::atomic<kmp_uint64> mask; // is 2**num_polls-1 for mod op
450   kmp_uint64 cleanup_ticket; // thread with cleanup ticket
451   std::atomic<kmp_uint64> *old_polls; // will deallocate old_polls
452   kmp_uint32 num_polls; // must be power of 2
453 
454   // next_ticket it needs to exist in a separate cache line, as it is
455   // invalidated every time a thread takes a new ticket.
456   KMP_ALIGN_CACHE
457 
458   std::atomic<kmp_uint64> next_ticket;
459 
460   // now_serving is used to store our ticket value while we hold the lock. It
461   // has a slightly different meaning in the DRDPA ticket locks (where it is
462   // written by the acquiring thread) than it does in the simple ticket locks
463   // (where it is written by the releasing thread).
464   //
465   // Since now_serving is only read and written in the critical section,
466   // it is non-volatile, but it needs to exist on a separate cache line,
467   // as it is invalidated at every lock acquire.
468   //
469   // Likewise, the vars used for nested locks (owner_id and depth_locked) are
470   // only written by the thread owning the lock, so they are put in this cache
471   // line.  owner_id is read by other threads, so it must be declared volatile.
472   KMP_ALIGN_CACHE
473   kmp_uint64 now_serving; // doesn't have to be volatile
474   volatile kmp_uint32 owner_id; // (gtid+1) of owning thread, 0 if unlocked
475   kmp_int32 depth_locked; // depth locked
476   kmp_lock_flags_t flags; // lock specifics, e.g. critical section lock
477 };
478 
479 typedef struct kmp_base_drdpa_lock kmp_base_drdpa_lock_t;
480 
481 union KMP_ALIGN_CACHE kmp_drdpa_lock {
482   kmp_base_drdpa_lock_t
483       lk; // This field must be first to allow static initializing. */
484   kmp_lock_pool_t pool;
485   double lk_align; // use worst case alignment
486   char lk_pad[KMP_PAD(kmp_base_drdpa_lock_t, CACHE_LINE)];
487 };
488 
489 typedef union kmp_drdpa_lock kmp_drdpa_lock_t;
490 
491 extern int __kmp_acquire_drdpa_lock(kmp_drdpa_lock_t *lck, kmp_int32 gtid);
492 extern int __kmp_test_drdpa_lock(kmp_drdpa_lock_t *lck, kmp_int32 gtid);
493 extern int __kmp_release_drdpa_lock(kmp_drdpa_lock_t *lck, kmp_int32 gtid);
494 extern void __kmp_init_drdpa_lock(kmp_drdpa_lock_t *lck);
495 extern void __kmp_destroy_drdpa_lock(kmp_drdpa_lock_t *lck);
496 
497 extern int __kmp_acquire_nested_drdpa_lock(kmp_drdpa_lock_t *lck,
498                                            kmp_int32 gtid);
499 extern int __kmp_test_nested_drdpa_lock(kmp_drdpa_lock_t *lck, kmp_int32 gtid);
500 extern int __kmp_release_nested_drdpa_lock(kmp_drdpa_lock_t *lck,
501                                            kmp_int32 gtid);
502 extern void __kmp_init_nested_drdpa_lock(kmp_drdpa_lock_t *lck);
503 extern void __kmp_destroy_nested_drdpa_lock(kmp_drdpa_lock_t *lck);
504 
505 // ============================================================================
506 // Lock purposes.
507 // ============================================================================
508 
509 // Bootstrap locks.
510 //
511 // Bootstrap locks -- very few locks used at library initialization time.
512 // Bootstrap locks are currently implemented as ticket locks.
513 // They could also be implemented as test and set lock, but cannot be
514 // implemented with other lock kinds as they require gtids which are not
515 // available at initialization time.
516 
517 typedef kmp_ticket_lock_t kmp_bootstrap_lock_t;
518 
519 #define KMP_BOOTSTRAP_LOCK_INITIALIZER(lock) KMP_TICKET_LOCK_INITIALIZER((lock))
520 #define KMP_BOOTSTRAP_LOCK_INIT(lock)                                          \
521   kmp_bootstrap_lock_t lock = KMP_TICKET_LOCK_INITIALIZER(lock)
522 
523 static inline int __kmp_acquire_bootstrap_lock(kmp_bootstrap_lock_t *lck) {
524   return __kmp_acquire_ticket_lock(lck, KMP_GTID_DNE);
525 }
526 
527 static inline int __kmp_test_bootstrap_lock(kmp_bootstrap_lock_t *lck) {
528   return __kmp_test_ticket_lock(lck, KMP_GTID_DNE);
529 }
530 
531 static inline void __kmp_release_bootstrap_lock(kmp_bootstrap_lock_t *lck) {
532   __kmp_release_ticket_lock(lck, KMP_GTID_DNE);
533 }
534 
535 static inline void __kmp_init_bootstrap_lock(kmp_bootstrap_lock_t *lck) {
536   __kmp_init_ticket_lock(lck);
537 }
538 
539 static inline void __kmp_destroy_bootstrap_lock(kmp_bootstrap_lock_t *lck) {
540   __kmp_destroy_ticket_lock(lck);
541 }
542 
543 // Internal RTL locks.
544 //
545 // Internal RTL locks are also implemented as ticket locks, for now.
546 //
547 // FIXME - We should go through and figure out which lock kind works best for
548 // each internal lock, and use the type declaration and function calls for
549 // that explicit lock kind (and get rid of this section).
550 
551 typedef kmp_ticket_lock_t kmp_lock_t;
552 
553 #define KMP_LOCK_INIT(lock) kmp_lock_t lock = KMP_TICKET_LOCK_INITIALIZER(lock)
554 
555 static inline int __kmp_acquire_lock(kmp_lock_t *lck, kmp_int32 gtid) {
556   return __kmp_acquire_ticket_lock(lck, gtid);
557 }
558 
559 static inline int __kmp_test_lock(kmp_lock_t *lck, kmp_int32 gtid) {
560   return __kmp_test_ticket_lock(lck, gtid);
561 }
562 
563 static inline void __kmp_release_lock(kmp_lock_t *lck, kmp_int32 gtid) {
564   __kmp_release_ticket_lock(lck, gtid);
565 }
566 
567 static inline void __kmp_init_lock(kmp_lock_t *lck) {
568   __kmp_init_ticket_lock(lck);
569 }
570 
571 static inline void __kmp_destroy_lock(kmp_lock_t *lck) {
572   __kmp_destroy_ticket_lock(lck);
573 }
574 
575 // User locks.
576 //
577 // Do not allocate objects of type union kmp_user_lock!!! This will waste space
578 // unless __kmp_user_lock_kind == lk_drdpa. Instead, check the value of
579 // __kmp_user_lock_kind and allocate objects of the type of the appropriate
580 // union member, and cast their addresses to kmp_user_lock_p.
581 
582 enum kmp_lock_kind {
583   lk_default = 0,
584   lk_tas,
585 #if KMP_USE_FUTEX
586   lk_futex,
587 #endif
588 #if KMP_USE_DYNAMIC_LOCK && KMP_USE_TSX
589   lk_hle,
590   lk_rtm_queuing,
591   lk_rtm_spin,
592 #endif
593   lk_ticket,
594   lk_queuing,
595   lk_drdpa,
596 #if KMP_USE_ADAPTIVE_LOCKS
597   lk_adaptive
598 #endif // KMP_USE_ADAPTIVE_LOCKS
599 };
600 
601 typedef enum kmp_lock_kind kmp_lock_kind_t;
602 
603 extern kmp_lock_kind_t __kmp_user_lock_kind;
604 
605 union kmp_user_lock {
606   kmp_tas_lock_t tas;
607 #if KMP_USE_FUTEX
608   kmp_futex_lock_t futex;
609 #endif
610   kmp_ticket_lock_t ticket;
611   kmp_queuing_lock_t queuing;
612   kmp_drdpa_lock_t drdpa;
613 #if KMP_USE_ADAPTIVE_LOCKS
614   kmp_adaptive_lock_t adaptive;
615 #endif // KMP_USE_ADAPTIVE_LOCKS
616   kmp_lock_pool_t pool;
617 };
618 
619 typedef union kmp_user_lock *kmp_user_lock_p;
620 
621 #if !KMP_USE_DYNAMIC_LOCK
622 
623 extern size_t __kmp_base_user_lock_size;
624 extern size_t __kmp_user_lock_size;
625 
626 extern kmp_int32 (*__kmp_get_user_lock_owner_)(kmp_user_lock_p lck);
627 
628 static inline kmp_int32 __kmp_get_user_lock_owner(kmp_user_lock_p lck) {
629   KMP_DEBUG_ASSERT(__kmp_get_user_lock_owner_ != NULL);
630   return (*__kmp_get_user_lock_owner_)(lck);
631 }
632 
633 extern int (*__kmp_acquire_user_lock_with_checks_)(kmp_user_lock_p lck,
634                                                    kmp_int32 gtid);
635 
636 #if KMP_OS_LINUX &&                                                            \
637     (KMP_ARCH_X86 || KMP_ARCH_X86_64 || KMP_ARCH_ARM || KMP_ARCH_AARCH64)
638 
639 #define __kmp_acquire_user_lock_with_checks(lck, gtid)                         \
640   if (__kmp_user_lock_kind == lk_tas) {                                        \
641     if (__kmp_env_consistency_check) {                                         \
642       char const *const func = "omp_set_lock";                                 \
643       if ((sizeof(kmp_tas_lock_t) <= OMP_LOCK_T_SIZE) &&                       \
644           lck->tas.lk.depth_locked != -1) {                                    \
645         KMP_FATAL(LockNestableUsedAsSimple, func);                             \
646       }                                                                        \
647       if ((gtid >= 0) && (lck->tas.lk.poll - 1 == gtid)) {                     \
648         KMP_FATAL(LockIsAlreadyOwned, func);                                   \
649       }                                                                        \
650     }                                                                          \
651     if (lck->tas.lk.poll != 0 ||                                               \
652         !__kmp_atomic_compare_store_acq(&lck->tas.lk.poll, 0, gtid + 1)) {     \
653       kmp_uint32 spins;                                                        \
654       kmp_uint64 time;                                                         \
655       KMP_FSYNC_PREPARE(lck);                                                  \
656       KMP_INIT_YIELD(spins);                                                   \
657       KMP_INIT_BACKOFF(time);                                                  \
658       do {                                                                     \
659         KMP_YIELD_OVERSUB_ELSE_SPIN(spins, time);                              \
660       } while (                                                                \
661           lck->tas.lk.poll != 0 ||                                             \
662           !__kmp_atomic_compare_store_acq(&lck->tas.lk.poll, 0, gtid + 1));    \
663     }                                                                          \
664     KMP_FSYNC_ACQUIRED(lck);                                                   \
665   } else {                                                                     \
666     KMP_DEBUG_ASSERT(__kmp_acquire_user_lock_with_checks_ != NULL);            \
667     (*__kmp_acquire_user_lock_with_checks_)(lck, gtid);                        \
668   }
669 
670 #else
671 static inline int __kmp_acquire_user_lock_with_checks(kmp_user_lock_p lck,
672                                                       kmp_int32 gtid) {
673   KMP_DEBUG_ASSERT(__kmp_acquire_user_lock_with_checks_ != NULL);
674   return (*__kmp_acquire_user_lock_with_checks_)(lck, gtid);
675 }
676 #endif
677 
678 extern int (*__kmp_test_user_lock_with_checks_)(kmp_user_lock_p lck,
679                                                 kmp_int32 gtid);
680 
681 #if KMP_OS_LINUX &&                                                            \
682     (KMP_ARCH_X86 || KMP_ARCH_X86_64 || KMP_ARCH_ARM || KMP_ARCH_AARCH64)
683 
684 #include "kmp_i18n.h" /* AC: KMP_FATAL definition */
685 extern int __kmp_env_consistency_check; /* AC: copy from kmp.h here */
686 static inline int __kmp_test_user_lock_with_checks(kmp_user_lock_p lck,
687                                                    kmp_int32 gtid) {
688   if (__kmp_user_lock_kind == lk_tas) {
689     if (__kmp_env_consistency_check) {
690       char const *const func = "omp_test_lock";
691       if ((sizeof(kmp_tas_lock_t) <= OMP_LOCK_T_SIZE) &&
692           lck->tas.lk.depth_locked != -1) {
693         KMP_FATAL(LockNestableUsedAsSimple, func);
694       }
695     }
696     return ((lck->tas.lk.poll == 0) &&
697             __kmp_atomic_compare_store_acq(&lck->tas.lk.poll, 0, gtid + 1));
698   } else {
699     KMP_DEBUG_ASSERT(__kmp_test_user_lock_with_checks_ != NULL);
700     return (*__kmp_test_user_lock_with_checks_)(lck, gtid);
701   }
702 }
703 #else
704 static inline int __kmp_test_user_lock_with_checks(kmp_user_lock_p lck,
705                                                    kmp_int32 gtid) {
706   KMP_DEBUG_ASSERT(__kmp_test_user_lock_with_checks_ != NULL);
707   return (*__kmp_test_user_lock_with_checks_)(lck, gtid);
708 }
709 #endif
710 
711 extern int (*__kmp_release_user_lock_with_checks_)(kmp_user_lock_p lck,
712                                                    kmp_int32 gtid);
713 
714 static inline void __kmp_release_user_lock_with_checks(kmp_user_lock_p lck,
715                                                        kmp_int32 gtid) {
716   KMP_DEBUG_ASSERT(__kmp_release_user_lock_with_checks_ != NULL);
717   (*__kmp_release_user_lock_with_checks_)(lck, gtid);
718 }
719 
720 extern void (*__kmp_init_user_lock_with_checks_)(kmp_user_lock_p lck);
721 
722 static inline void __kmp_init_user_lock_with_checks(kmp_user_lock_p lck) {
723   KMP_DEBUG_ASSERT(__kmp_init_user_lock_with_checks_ != NULL);
724   (*__kmp_init_user_lock_with_checks_)(lck);
725 }
726 
727 // We need a non-checking version of destroy lock for when the RTL is
728 // doing the cleanup as it can't always tell if the lock is nested or not.
729 extern void (*__kmp_destroy_user_lock_)(kmp_user_lock_p lck);
730 
731 static inline void __kmp_destroy_user_lock(kmp_user_lock_p lck) {
732   KMP_DEBUG_ASSERT(__kmp_destroy_user_lock_ != NULL);
733   (*__kmp_destroy_user_lock_)(lck);
734 }
735 
736 extern void (*__kmp_destroy_user_lock_with_checks_)(kmp_user_lock_p lck);
737 
738 static inline void __kmp_destroy_user_lock_with_checks(kmp_user_lock_p lck) {
739   KMP_DEBUG_ASSERT(__kmp_destroy_user_lock_with_checks_ != NULL);
740   (*__kmp_destroy_user_lock_with_checks_)(lck);
741 }
742 
743 extern int (*__kmp_acquire_nested_user_lock_with_checks_)(kmp_user_lock_p lck,
744                                                           kmp_int32 gtid);
745 
746 #if KMP_OS_LINUX && (KMP_ARCH_X86 || KMP_ARCH_X86_64)
747 
748 #define __kmp_acquire_nested_user_lock_with_checks(lck, gtid, depth)           \
749   if (__kmp_user_lock_kind == lk_tas) {                                        \
750     if (__kmp_env_consistency_check) {                                         \
751       char const *const func = "omp_set_nest_lock";                            \
752       if ((sizeof(kmp_tas_lock_t) <= OMP_NEST_LOCK_T_SIZE) &&                  \
753           lck->tas.lk.depth_locked == -1) {                                    \
754         KMP_FATAL(LockSimpleUsedAsNestable, func);                             \
755       }                                                                        \
756     }                                                                          \
757     if (lck->tas.lk.poll - 1 == gtid) {                                        \
758       lck->tas.lk.depth_locked += 1;                                           \
759       *depth = KMP_LOCK_ACQUIRED_NEXT;                                         \
760     } else {                                                                   \
761       if ((lck->tas.lk.poll != 0) ||                                           \
762           !__kmp_atomic_compare_store_acq(&lck->tas.lk.poll, 0, gtid + 1)) {   \
763         kmp_uint32 spins;                                                      \
764         kmp_uint64 time;                                                       \
765         KMP_FSYNC_PREPARE(lck);                                                \
766         KMP_INIT_YIELD(spins);                                                 \
767         KMP_INIT_BACKOFF(time);                                                \
768         do {                                                                   \
769           KMP_YIELD_OVERSUB_ELSE_SPIN(spins, time);                            \
770         } while (                                                              \
771             (lck->tas.lk.poll != 0) ||                                         \
772             !__kmp_atomic_compare_store_acq(&lck->tas.lk.poll, 0, gtid + 1));  \
773       }                                                                        \
774       lck->tas.lk.depth_locked = 1;                                            \
775       *depth = KMP_LOCK_ACQUIRED_FIRST;                                        \
776     }                                                                          \
777     KMP_FSYNC_ACQUIRED(lck);                                                   \
778   } else {                                                                     \
779     KMP_DEBUG_ASSERT(__kmp_acquire_nested_user_lock_with_checks_ != NULL);     \
780     *depth = (*__kmp_acquire_nested_user_lock_with_checks_)(lck, gtid);        \
781   }
782 
783 #else
784 static inline void
785 __kmp_acquire_nested_user_lock_with_checks(kmp_user_lock_p lck, kmp_int32 gtid,
786                                            int *depth) {
787   KMP_DEBUG_ASSERT(__kmp_acquire_nested_user_lock_with_checks_ != NULL);
788   *depth = (*__kmp_acquire_nested_user_lock_with_checks_)(lck, gtid);
789 }
790 #endif
791 
792 extern int (*__kmp_test_nested_user_lock_with_checks_)(kmp_user_lock_p lck,
793                                                        kmp_int32 gtid);
794 
795 #if KMP_OS_LINUX && (KMP_ARCH_X86 || KMP_ARCH_X86_64)
796 static inline int __kmp_test_nested_user_lock_with_checks(kmp_user_lock_p lck,
797                                                           kmp_int32 gtid) {
798   if (__kmp_user_lock_kind == lk_tas) {
799     int retval;
800     if (__kmp_env_consistency_check) {
801       char const *const func = "omp_test_nest_lock";
802       if ((sizeof(kmp_tas_lock_t) <= OMP_NEST_LOCK_T_SIZE) &&
803           lck->tas.lk.depth_locked == -1) {
804         KMP_FATAL(LockSimpleUsedAsNestable, func);
805       }
806     }
807     KMP_DEBUG_ASSERT(gtid >= 0);
808     if (lck->tas.lk.poll - 1 ==
809         gtid) { /* __kmp_get_tas_lock_owner( lck ) == gtid */
810       return ++lck->tas.lk.depth_locked; /* same owner, depth increased */
811     }
812     retval = ((lck->tas.lk.poll == 0) &&
813               __kmp_atomic_compare_store_acq(&lck->tas.lk.poll, 0, gtid + 1));
814     if (retval) {
815       KMP_MB();
816       lck->tas.lk.depth_locked = 1;
817     }
818     return retval;
819   } else {
820     KMP_DEBUG_ASSERT(__kmp_test_nested_user_lock_with_checks_ != NULL);
821     return (*__kmp_test_nested_user_lock_with_checks_)(lck, gtid);
822   }
823 }
824 #else
825 static inline int __kmp_test_nested_user_lock_with_checks(kmp_user_lock_p lck,
826                                                           kmp_int32 gtid) {
827   KMP_DEBUG_ASSERT(__kmp_test_nested_user_lock_with_checks_ != NULL);
828   return (*__kmp_test_nested_user_lock_with_checks_)(lck, gtid);
829 }
830 #endif
831 
832 extern int (*__kmp_release_nested_user_lock_with_checks_)(kmp_user_lock_p lck,
833                                                           kmp_int32 gtid);
834 
835 static inline int
836 __kmp_release_nested_user_lock_with_checks(kmp_user_lock_p lck,
837                                            kmp_int32 gtid) {
838   KMP_DEBUG_ASSERT(__kmp_release_nested_user_lock_with_checks_ != NULL);
839   return (*__kmp_release_nested_user_lock_with_checks_)(lck, gtid);
840 }
841 
842 extern void (*__kmp_init_nested_user_lock_with_checks_)(kmp_user_lock_p lck);
843 
844 static inline void
845 __kmp_init_nested_user_lock_with_checks(kmp_user_lock_p lck) {
846   KMP_DEBUG_ASSERT(__kmp_init_nested_user_lock_with_checks_ != NULL);
847   (*__kmp_init_nested_user_lock_with_checks_)(lck);
848 }
849 
850 extern void (*__kmp_destroy_nested_user_lock_with_checks_)(kmp_user_lock_p lck);
851 
852 static inline void
853 __kmp_destroy_nested_user_lock_with_checks(kmp_user_lock_p lck) {
854   KMP_DEBUG_ASSERT(__kmp_destroy_nested_user_lock_with_checks_ != NULL);
855   (*__kmp_destroy_nested_user_lock_with_checks_)(lck);
856 }
857 
858 // user lock functions which do not necessarily exist for all lock kinds.
859 //
860 // The "set" functions usually have wrapper routines that check for a NULL set
861 // function pointer and call it if non-NULL.
862 //
863 // In some cases, it makes sense to have a "get" wrapper function check for a
864 // NULL get function pointer and return NULL / invalid value / error code if
865 // the function pointer is NULL.
866 //
867 // In other cases, the calling code really should differentiate between an
868 // unimplemented function and one that is implemented but returning NULL /
869 // invalid value.  If this is the case, no get function wrapper exists.
870 
871 extern int (*__kmp_is_user_lock_initialized_)(kmp_user_lock_p lck);
872 
873 // no set function; fields set during local allocation
874 
875 extern const ident_t *(*__kmp_get_user_lock_location_)(kmp_user_lock_p lck);
876 
877 static inline const ident_t *__kmp_get_user_lock_location(kmp_user_lock_p lck) {
878   if (__kmp_get_user_lock_location_ != NULL) {
879     return (*__kmp_get_user_lock_location_)(lck);
880   } else {
881     return NULL;
882   }
883 }
884 
885 extern void (*__kmp_set_user_lock_location_)(kmp_user_lock_p lck,
886                                              const ident_t *loc);
887 
888 static inline void __kmp_set_user_lock_location(kmp_user_lock_p lck,
889                                                 const ident_t *loc) {
890   if (__kmp_set_user_lock_location_ != NULL) {
891     (*__kmp_set_user_lock_location_)(lck, loc);
892   }
893 }
894 
895 extern kmp_lock_flags_t (*__kmp_get_user_lock_flags_)(kmp_user_lock_p lck);
896 
897 extern void (*__kmp_set_user_lock_flags_)(kmp_user_lock_p lck,
898                                           kmp_lock_flags_t flags);
899 
900 static inline void __kmp_set_user_lock_flags(kmp_user_lock_p lck,
901                                              kmp_lock_flags_t flags) {
902   if (__kmp_set_user_lock_flags_ != NULL) {
903     (*__kmp_set_user_lock_flags_)(lck, flags);
904   }
905 }
906 
907 // The function which sets up all of the vtbl pointers for kmp_user_lock_t.
908 extern void __kmp_set_user_lock_vptrs(kmp_lock_kind_t user_lock_kind);
909 
910 // Macros for binding user lock functions.
911 #define KMP_BIND_USER_LOCK_TEMPLATE(nest, kind, suffix)                        \
912   {                                                                            \
913     __kmp_acquire##nest##user_lock_with_checks_ = (int (*)(                    \
914         kmp_user_lock_p, kmp_int32))__kmp_acquire##nest##kind##_##suffix;      \
915     __kmp_release##nest##user_lock_with_checks_ = (int (*)(                    \
916         kmp_user_lock_p, kmp_int32))__kmp_release##nest##kind##_##suffix;      \
917     __kmp_test##nest##user_lock_with_checks_ = (int (*)(                       \
918         kmp_user_lock_p, kmp_int32))__kmp_test##nest##kind##_##suffix;         \
919     __kmp_init##nest##user_lock_with_checks_ =                                 \
920         (void (*)(kmp_user_lock_p))__kmp_init##nest##kind##_##suffix;          \
921     __kmp_destroy##nest##user_lock_with_checks_ =                              \
922         (void (*)(kmp_user_lock_p))__kmp_destroy##nest##kind##_##suffix;       \
923   }
924 
925 #define KMP_BIND_USER_LOCK(kind) KMP_BIND_USER_LOCK_TEMPLATE(_, kind, lock)
926 #define KMP_BIND_USER_LOCK_WITH_CHECKS(kind)                                   \
927   KMP_BIND_USER_LOCK_TEMPLATE(_, kind, lock_with_checks)
928 #define KMP_BIND_NESTED_USER_LOCK(kind)                                        \
929   KMP_BIND_USER_LOCK_TEMPLATE(_nested_, kind, lock)
930 #define KMP_BIND_NESTED_USER_LOCK_WITH_CHECKS(kind)                            \
931   KMP_BIND_USER_LOCK_TEMPLATE(_nested_, kind, lock_with_checks)
932 
933 // User lock table & lock allocation
934 /* On 64-bit Linux* OS (and OS X*) GNU compiler allocates only 4 bytems memory
935    for lock variable, which is not enough to store a pointer, so we have to use
936    lock indexes instead of pointers and maintain lock table to map indexes to
937    pointers.
938 
939 
940    Note: The first element of the table is not a pointer to lock! It is a
941    pointer to previously allocated table (or NULL if it is the first table).
942 
943    Usage:
944 
945    if ( OMP_LOCK_T_SIZE < sizeof( <lock> ) ) { // or OMP_NEST_LOCK_T_SIZE
946      Lock table is fully utilized. User locks are indexes, so table is used on
947      user lock operation.
948      Note: it may be the case (lin_32) that we don't need to use a lock
949      table for regular locks, but do need the table for nested locks.
950    }
951    else {
952      Lock table initialized but not actually used.
953    }
954 */
955 
956 struct kmp_lock_table {
957   kmp_lock_index_t used; // Number of used elements
958   kmp_lock_index_t allocated; // Number of allocated elements
959   kmp_user_lock_p *table; // Lock table.
960 };
961 
962 typedef struct kmp_lock_table kmp_lock_table_t;
963 
964 extern kmp_lock_table_t __kmp_user_lock_table;
965 extern kmp_user_lock_p __kmp_lock_pool;
966 
967 struct kmp_block_of_locks {
968   struct kmp_block_of_locks *next_block;
969   void *locks;
970 };
971 
972 typedef struct kmp_block_of_locks kmp_block_of_locks_t;
973 
974 extern kmp_block_of_locks_t *__kmp_lock_blocks;
975 extern int __kmp_num_locks_in_block;
976 
977 extern kmp_user_lock_p __kmp_user_lock_allocate(void **user_lock,
978                                                 kmp_int32 gtid,
979                                                 kmp_lock_flags_t flags);
980 extern void __kmp_user_lock_free(void **user_lock, kmp_int32 gtid,
981                                  kmp_user_lock_p lck);
982 extern kmp_user_lock_p __kmp_lookup_user_lock(void **user_lock,
983                                               char const *func);
984 extern void __kmp_cleanup_user_locks();
985 
986 #define KMP_CHECK_USER_LOCK_INIT()                                             \
987   {                                                                            \
988     if (!TCR_4(__kmp_init_user_locks)) {                                       \
989       __kmp_acquire_bootstrap_lock(&__kmp_initz_lock);                         \
990       if (!TCR_4(__kmp_init_user_locks)) {                                     \
991         TCW_4(__kmp_init_user_locks, TRUE);                                    \
992       }                                                                        \
993       __kmp_release_bootstrap_lock(&__kmp_initz_lock);                         \
994     }                                                                          \
995   }
996 
997 #endif // KMP_USE_DYNAMIC_LOCK
998 
999 #undef KMP_PAD
1000 #undef KMP_GTID_DNE
1001 
1002 #if KMP_USE_DYNAMIC_LOCK
1003 // KMP_USE_DYNAMIC_LOCK enables dynamic dispatch of lock functions without
1004 // breaking the current compatibility. Essential functionality of this new code
1005 // is dynamic dispatch, but it also implements (or enables implementation of)
1006 // hinted user lock and critical section which will be part of OMP 4.5 soon.
1007 //
1008 // Lock type can be decided at creation time (i.e., lock initialization), and
1009 // subsequent lock function call on the created lock object requires type
1010 // extraction and call through jump table using the extracted type. This type
1011 // information is stored in two different ways depending on the size of the lock
1012 // object, and we differentiate lock types by this size requirement - direct and
1013 // indirect locks.
1014 //
1015 // Direct locks:
1016 // A direct lock object fits into the space created by the compiler for an
1017 // omp_lock_t object, and TAS/Futex lock falls into this category. We use low
1018 // one byte of the lock object as the storage for the lock type, and appropriate
1019 // bit operation is required to access the data meaningful to the lock
1020 // algorithms. Also, to differentiate direct lock from indirect lock, 1 is
1021 // written to LSB of the lock object. The newly introduced "hle" lock is also a
1022 // direct lock.
1023 //
1024 // Indirect locks:
1025 // An indirect lock object requires more space than the compiler-generated
1026 // space, and it should be allocated from heap. Depending on the size of the
1027 // compiler-generated space for the lock (i.e., size of omp_lock_t), this
1028 // omp_lock_t object stores either the address of the heap-allocated indirect
1029 // lock (void * fits in the object) or an index to the indirect lock table entry
1030 // that holds the address. Ticket/Queuing/DRDPA/Adaptive lock falls into this
1031 // category, and the newly introduced "rtm" lock is also an indirect lock which
1032 // was implemented on top of the Queuing lock. When the omp_lock_t object holds
1033 // an index (not lock address), 0 is written to LSB to differentiate the lock
1034 // from a direct lock, and the remaining part is the actual index to the
1035 // indirect lock table.
1036 
1037 #include <stdint.h> // for uintptr_t
1038 
1039 // Shortcuts
1040 #define KMP_USE_INLINED_TAS                                                    \
1041   (KMP_OS_LINUX && (KMP_ARCH_X86 || KMP_ARCH_X86_64 || KMP_ARCH_ARM)) && 1
1042 #define KMP_USE_INLINED_FUTEX KMP_USE_FUTEX && 0
1043 
1044 // List of lock definitions; all nested locks are indirect locks.
1045 // hle lock is xchg lock prefixed with XACQUIRE/XRELEASE.
1046 // All nested locks are indirect lock types.
1047 #if KMP_USE_TSX
1048 #if KMP_USE_FUTEX
1049 #define KMP_FOREACH_D_LOCK(m, a) m(tas, a) m(futex, a) m(hle, a) m(rtm_spin, a)
1050 #define KMP_FOREACH_I_LOCK(m, a)                                               \
1051   m(ticket, a) m(queuing, a) m(adaptive, a) m(drdpa, a) m(rtm_queuing, a)      \
1052       m(nested_tas, a) m(nested_futex, a) m(nested_ticket, a)                  \
1053           m(nested_queuing, a) m(nested_drdpa, a)
1054 #else
1055 #define KMP_FOREACH_D_LOCK(m, a) m(tas, a) m(hle, a) m(rtm_spin, a)
1056 #define KMP_FOREACH_I_LOCK(m, a)                                               \
1057   m(ticket, a) m(queuing, a) m(adaptive, a) m(drdpa, a) m(rtm_queuing, a)      \
1058       m(nested_tas, a) m(nested_ticket, a) m(nested_queuing, a)                \
1059           m(nested_drdpa, a)
1060 #endif // KMP_USE_FUTEX
1061 #define KMP_LAST_D_LOCK lockseq_rtm_spin
1062 #else
1063 #if KMP_USE_FUTEX
1064 #define KMP_FOREACH_D_LOCK(m, a) m(tas, a) m(futex, a)
1065 #define KMP_FOREACH_I_LOCK(m, a)                                               \
1066   m(ticket, a) m(queuing, a) m(drdpa, a) m(nested_tas, a) m(nested_futex, a)   \
1067       m(nested_ticket, a) m(nested_queuing, a) m(nested_drdpa, a)
1068 #define KMP_LAST_D_LOCK lockseq_futex
1069 #else
1070 #define KMP_FOREACH_D_LOCK(m, a) m(tas, a)
1071 #define KMP_FOREACH_I_LOCK(m, a)                                               \
1072   m(ticket, a) m(queuing, a) m(drdpa, a) m(nested_tas, a) m(nested_ticket, a)  \
1073       m(nested_queuing, a) m(nested_drdpa, a)
1074 #define KMP_LAST_D_LOCK lockseq_tas
1075 #endif // KMP_USE_FUTEX
1076 #endif // KMP_USE_TSX
1077 
1078 // Information used in dynamic dispatch
1079 #define KMP_LOCK_SHIFT                                                         \
1080   8 // number of low bits to be used as tag for direct locks
1081 #define KMP_FIRST_D_LOCK lockseq_tas
1082 #define KMP_FIRST_I_LOCK lockseq_ticket
1083 #define KMP_LAST_I_LOCK lockseq_nested_drdpa
1084 #define KMP_NUM_I_LOCKS                                                        \
1085   (locktag_nested_drdpa + 1) // number of indirect lock types
1086 
1087 // Base type for dynamic locks.
1088 typedef kmp_uint32 kmp_dyna_lock_t;
1089 
1090 // Lock sequence that enumerates all lock kinds. Always make this enumeration
1091 // consistent with kmp_lockseq_t in the include directory.
1092 typedef enum {
1093   lockseq_indirect = 0,
1094 #define expand_seq(l, a) lockseq_##l,
1095   KMP_FOREACH_D_LOCK(expand_seq, 0) KMP_FOREACH_I_LOCK(expand_seq, 0)
1096 #undef expand_seq
1097 } kmp_dyna_lockseq_t;
1098 
1099 // Enumerates indirect lock tags.
1100 typedef enum {
1101 #define expand_tag(l, a) locktag_##l,
1102   KMP_FOREACH_I_LOCK(expand_tag, 0)
1103 #undef expand_tag
1104 } kmp_indirect_locktag_t;
1105 
1106 // Utility macros that extract information from lock sequences.
1107 #define KMP_IS_D_LOCK(seq)                                                     \
1108   ((seq) >= KMP_FIRST_D_LOCK && (seq) <= KMP_LAST_D_LOCK)
1109 #define KMP_IS_I_LOCK(seq)                                                     \
1110   ((seq) >= KMP_FIRST_I_LOCK && (seq) <= KMP_LAST_I_LOCK)
1111 #define KMP_GET_I_TAG(seq) (kmp_indirect_locktag_t)((seq)-KMP_FIRST_I_LOCK)
1112 #define KMP_GET_D_TAG(seq) ((seq) << 1 | 1)
1113 
1114 // Enumerates direct lock tags starting from indirect tag.
1115 typedef enum {
1116 #define expand_tag(l, a) locktag_##l = KMP_GET_D_TAG(lockseq_##l),
1117   KMP_FOREACH_D_LOCK(expand_tag, 0)
1118 #undef expand_tag
1119 } kmp_direct_locktag_t;
1120 
1121 // Indirect lock type
1122 typedef struct {
1123   kmp_user_lock_p lock;
1124   kmp_indirect_locktag_t type;
1125 } kmp_indirect_lock_t;
1126 
1127 // Function tables for direct locks. Set/unset/test differentiate functions
1128 // with/without consistency checking.
1129 extern void (*__kmp_direct_init[])(kmp_dyna_lock_t *, kmp_dyna_lockseq_t);
1130 extern void (**__kmp_direct_destroy)(kmp_dyna_lock_t *);
1131 extern int (**__kmp_direct_set)(kmp_dyna_lock_t *, kmp_int32);
1132 extern int (**__kmp_direct_unset)(kmp_dyna_lock_t *, kmp_int32);
1133 extern int (**__kmp_direct_test)(kmp_dyna_lock_t *, kmp_int32);
1134 
1135 // Function tables for indirect locks. Set/unset/test differentiate functions
1136 // with/without consistency checking.
1137 extern void (*__kmp_indirect_init[])(kmp_user_lock_p);
1138 extern void (**__kmp_indirect_destroy)(kmp_user_lock_p);
1139 extern int (**__kmp_indirect_set)(kmp_user_lock_p, kmp_int32);
1140 extern int (**__kmp_indirect_unset)(kmp_user_lock_p, kmp_int32);
1141 extern int (**__kmp_indirect_test)(kmp_user_lock_p, kmp_int32);
1142 
1143 // Extracts direct lock tag from a user lock pointer
1144 #define KMP_EXTRACT_D_TAG(l)                                                   \
1145   (*((kmp_dyna_lock_t *)(l)) & ((1 << KMP_LOCK_SHIFT) - 1) &                   \
1146    -(*((kmp_dyna_lock_t *)(l)) & 1))
1147 
1148 // Extracts indirect lock index from a user lock pointer
1149 #define KMP_EXTRACT_I_INDEX(l) (*(kmp_lock_index_t *)(l) >> 1)
1150 
1151 // Returns function pointer to the direct lock function with l (kmp_dyna_lock_t
1152 // *) and op (operation type).
1153 #define KMP_D_LOCK_FUNC(l, op) __kmp_direct_##op[KMP_EXTRACT_D_TAG(l)]
1154 
1155 // Returns function pointer to the indirect lock function with l
1156 // (kmp_indirect_lock_t *) and op (operation type).
1157 #define KMP_I_LOCK_FUNC(l, op)                                                 \
1158   __kmp_indirect_##op[((kmp_indirect_lock_t *)(l))->type]
1159 
1160 // Initializes a direct lock with the given lock pointer and lock sequence.
1161 #define KMP_INIT_D_LOCK(l, seq)                                                \
1162   __kmp_direct_init[KMP_GET_D_TAG(seq)]((kmp_dyna_lock_t *)l, seq)
1163 
1164 // Initializes an indirect lock with the given lock pointer and lock sequence.
1165 #define KMP_INIT_I_LOCK(l, seq)                                                \
1166   __kmp_direct_init[0]((kmp_dyna_lock_t *)(l), seq)
1167 
1168 // Returns "free" lock value for the given lock type.
1169 #define KMP_LOCK_FREE(type) (locktag_##type)
1170 
1171 // Returns "busy" lock value for the given lock teyp.
1172 #define KMP_LOCK_BUSY(v, type) ((v) << KMP_LOCK_SHIFT | locktag_##type)
1173 
1174 // Returns lock value after removing (shifting) lock tag.
1175 #define KMP_LOCK_STRIP(v) ((v) >> KMP_LOCK_SHIFT)
1176 
1177 // Initializes global states and data structures for managing dynamic user
1178 // locks.
1179 extern void __kmp_init_dynamic_user_locks();
1180 
1181 // Allocates and returns an indirect lock with the given indirect lock tag.
1182 extern kmp_indirect_lock_t *
1183 __kmp_allocate_indirect_lock(void **, kmp_int32, kmp_indirect_locktag_t);
1184 
1185 // Cleans up global states and data structures for managing dynamic user locks.
1186 extern void __kmp_cleanup_indirect_user_locks();
1187 
1188 // Default user lock sequence when not using hinted locks.
1189 extern kmp_dyna_lockseq_t __kmp_user_lock_seq;
1190 
1191 // Jump table for "set lock location", available only for indirect locks.
1192 extern void (*__kmp_indirect_set_location[KMP_NUM_I_LOCKS])(kmp_user_lock_p,
1193                                                             const ident_t *);
1194 #define KMP_SET_I_LOCK_LOCATION(lck, loc)                                      \
1195   {                                                                            \
1196     if (__kmp_indirect_set_location[(lck)->type] != NULL)                      \
1197       __kmp_indirect_set_location[(lck)->type]((lck)->lock, loc);              \
1198   }
1199 
1200 // Jump table for "set lock flags", available only for indirect locks.
1201 extern void (*__kmp_indirect_set_flags[KMP_NUM_I_LOCKS])(kmp_user_lock_p,
1202                                                          kmp_lock_flags_t);
1203 #define KMP_SET_I_LOCK_FLAGS(lck, flag)                                        \
1204   {                                                                            \
1205     if (__kmp_indirect_set_flags[(lck)->type] != NULL)                         \
1206       __kmp_indirect_set_flags[(lck)->type]((lck)->lock, flag);                \
1207   }
1208 
1209 // Jump table for "get lock location", available only for indirect locks.
1210 extern const ident_t *(*__kmp_indirect_get_location[KMP_NUM_I_LOCKS])(
1211     kmp_user_lock_p);
1212 #define KMP_GET_I_LOCK_LOCATION(lck)                                           \
1213   (__kmp_indirect_get_location[(lck)->type] != NULL                            \
1214        ? __kmp_indirect_get_location[(lck)->type]((lck)->lock)                 \
1215        : NULL)
1216 
1217 // Jump table for "get lock flags", available only for indirect locks.
1218 extern kmp_lock_flags_t (*__kmp_indirect_get_flags[KMP_NUM_I_LOCKS])(
1219     kmp_user_lock_p);
1220 #define KMP_GET_I_LOCK_FLAGS(lck)                                              \
1221   (__kmp_indirect_get_flags[(lck)->type] != NULL                               \
1222        ? __kmp_indirect_get_flags[(lck)->type]((lck)->lock)                    \
1223        : NULL)
1224 
1225 // number of kmp_indirect_lock_t objects to be allocated together
1226 #define KMP_I_LOCK_CHUNK 1024
1227 // Keep at a power of 2 since it is used in multiplication & division
1228 KMP_BUILD_ASSERT(KMP_I_LOCK_CHUNK % 2 == 0);
1229 // number of row entries in the initial lock table
1230 #define KMP_I_LOCK_TABLE_INIT_NROW_PTRS 8
1231 
1232 // Lock table for indirect locks.
1233 typedef struct kmp_indirect_lock_table {
1234   kmp_indirect_lock_t **table; // blocks of indirect locks allocated
1235   kmp_uint32 nrow_ptrs; // number *table pointer entries in table
1236   kmp_lock_index_t next; // index to the next lock to be allocated
1237   struct kmp_indirect_lock_table *next_table;
1238 } kmp_indirect_lock_table_t;
1239 
1240 extern kmp_indirect_lock_table_t __kmp_i_lock_table;
1241 
1242 // Returns the indirect lock associated with the given index.
1243 // Returns nullptr if no lock at given index
1244 static inline kmp_indirect_lock_t *__kmp_get_i_lock(kmp_lock_index_t idx) {
1245   kmp_indirect_lock_table_t *lock_table = &__kmp_i_lock_table;
1246   while (lock_table) {
1247     kmp_lock_index_t max_locks = lock_table->nrow_ptrs * KMP_I_LOCK_CHUNK;
1248     if (idx < max_locks) {
1249       kmp_lock_index_t row = idx / KMP_I_LOCK_CHUNK;
1250       kmp_lock_index_t col = idx % KMP_I_LOCK_CHUNK;
1251       if (!lock_table->table[row] || idx >= lock_table->next)
1252         break;
1253       return &lock_table->table[row][col];
1254     }
1255     idx -= max_locks;
1256     lock_table = lock_table->next_table;
1257   }
1258   return nullptr;
1259 }
1260 
1261 // Number of locks in a lock block, which is fixed to "1" now.
1262 // TODO: No lock block implementation now. If we do support, we need to manage
1263 // lock block data structure for each indirect lock type.
1264 extern int __kmp_num_locks_in_block;
1265 
1266 // Fast lock table lookup without consistency checking
1267 #define KMP_LOOKUP_I_LOCK(l)                                                   \
1268   ((OMP_LOCK_T_SIZE < sizeof(void *))                                          \
1269        ? __kmp_get_i_lock(KMP_EXTRACT_I_INDEX(l))                              \
1270        : *((kmp_indirect_lock_t **)(l)))
1271 
1272 // Used once in kmp_error.cpp
1273 extern kmp_int32 __kmp_get_user_lock_owner(kmp_user_lock_p, kmp_uint32);
1274 
1275 #else // KMP_USE_DYNAMIC_LOCK
1276 
1277 #define KMP_LOCK_BUSY(v, type) (v)
1278 #define KMP_LOCK_FREE(type) 0
1279 #define KMP_LOCK_STRIP(v) (v)
1280 
1281 #endif // KMP_USE_DYNAMIC_LOCK
1282 
1283 // data structure for using backoff within spin locks.
1284 typedef struct {
1285   kmp_uint32 step; // current step
1286   kmp_uint32 max_backoff; // upper bound of outer delay loop
1287   kmp_uint32 min_tick; // size of inner delay loop in ticks (machine-dependent)
1288 } kmp_backoff_t;
1289 
1290 // Runtime's default backoff parameters
1291 extern kmp_backoff_t __kmp_spin_backoff_params;
1292 
1293 // Backoff function
1294 extern void __kmp_spin_backoff(kmp_backoff_t *);
1295 
1296 #ifdef __cplusplus
1297 } // extern "C"
1298 #endif // __cplusplus
1299 
1300 #endif /* KMP_LOCK_H */
1301