1 /* 2 * kmp_lock.h -- lock header file 3 */ 4 5 //===----------------------------------------------------------------------===// 6 // 7 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 8 // See https://llvm.org/LICENSE.txt for license information. 9 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 10 // 11 //===----------------------------------------------------------------------===// 12 13 #ifndef KMP_LOCK_H 14 #define KMP_LOCK_H 15 16 #include <limits.h> // CHAR_BIT 17 #include <stddef.h> // offsetof 18 19 #include "kmp_debug.h" 20 #include "kmp_os.h" 21 22 #ifdef __cplusplus 23 #include <atomic> 24 25 extern "C" { 26 #endif // __cplusplus 27 28 // ---------------------------------------------------------------------------- 29 // Have to copy these definitions from kmp.h because kmp.h cannot be included 30 // due to circular dependencies. Will undef these at end of file. 31 32 #define KMP_PAD(type, sz) \ 33 (sizeof(type) + (sz - ((sizeof(type) - 1) % (sz)) - 1)) 34 #define KMP_GTID_DNE (-2) 35 36 // Forward declaration of ident and ident_t 37 38 struct ident; 39 typedef struct ident ident_t; 40 41 // End of copied code. 42 // ---------------------------------------------------------------------------- 43 44 // We need to know the size of the area we can assume that the compiler(s) 45 // allocated for objects of type omp_lock_t and omp_nest_lock_t. The Intel 46 // compiler always allocates a pointer-sized area, as does visual studio. 47 // 48 // gcc however, only allocates 4 bytes for regular locks, even on 64-bit 49 // intel archs. It allocates at least 8 bytes for nested lock (more on 50 // recent versions), but we are bounded by the pointer-sized chunks that 51 // the Intel compiler allocates. 52 53 #if KMP_OS_LINUX && defined(KMP_GOMP_COMPAT) 54 #define OMP_LOCK_T_SIZE sizeof(int) 55 #define OMP_NEST_LOCK_T_SIZE sizeof(void *) 56 #else 57 #define OMP_LOCK_T_SIZE sizeof(void *) 58 #define OMP_NEST_LOCK_T_SIZE sizeof(void *) 59 #endif 60 61 // The Intel compiler allocates a 32-byte chunk for a critical section. 62 // Both gcc and visual studio only allocate enough space for a pointer. 63 // Sometimes we know that the space was allocated by the Intel compiler. 64 #define OMP_CRITICAL_SIZE sizeof(void *) 65 #define INTEL_CRITICAL_SIZE 32 66 67 // lock flags 68 typedef kmp_uint32 kmp_lock_flags_t; 69 70 #define kmp_lf_critical_section 1 71 72 // When a lock table is used, the indices are of kmp_lock_index_t 73 typedef kmp_uint32 kmp_lock_index_t; 74 75 // When memory allocated for locks are on the lock pool (free list), 76 // it is treated as structs of this type. 77 struct kmp_lock_pool { 78 union kmp_user_lock *next; 79 kmp_lock_index_t index; 80 }; 81 82 typedef struct kmp_lock_pool kmp_lock_pool_t; 83 84 extern void __kmp_validate_locks(void); 85 86 // ---------------------------------------------------------------------------- 87 // There are 5 lock implementations: 88 // 1. Test and set locks. 89 // 2. futex locks (Linux* OS on x86 and 90 // Intel(R) Many Integrated Core Architecture) 91 // 3. Ticket (Lamport bakery) locks. 92 // 4. Queuing locks (with separate spin fields). 93 // 5. DRPA (Dynamically Reconfigurable Distributed Polling Area) locks 94 // 95 // and 3 lock purposes: 96 // 1. Bootstrap locks -- Used for a few locks available at library 97 // startup-shutdown time. 98 // These do not require non-negative global thread ID's. 99 // 2. Internal RTL locks -- Used everywhere else in the RTL 100 // 3. User locks (includes critical sections) 101 // ---------------------------------------------------------------------------- 102 103 // ============================================================================ 104 // Lock implementations. 105 // 106 // Test and set locks. 107 // 108 // Non-nested test and set locks differ from the other lock kinds (except 109 // futex) in that we use the memory allocated by the compiler for the lock, 110 // rather than a pointer to it. 111 // 112 // On lin32, lin_32e, and win_32, the space allocated may be as small as 4 113 // bytes, so we have to use a lock table for nested locks, and avoid accessing 114 // the depth_locked field for non-nested locks. 115 // 116 // Information normally available to the tools, such as lock location, lock 117 // usage (normal lock vs. critical section), etc. is not available with test and 118 // set locks. 119 // ---------------------------------------------------------------------------- 120 121 struct kmp_base_tas_lock { 122 // KMP_LOCK_FREE(tas) => unlocked; locked: (gtid+1) of owning thread 123 std::atomic<kmp_int32> poll; 124 kmp_int32 depth_locked; // depth locked, for nested locks only 125 }; 126 127 typedef struct kmp_base_tas_lock kmp_base_tas_lock_t; 128 129 union kmp_tas_lock { 130 kmp_base_tas_lock_t lk; 131 kmp_lock_pool_t pool; // make certain struct is large enough 132 double lk_align; // use worst case alignment; no cache line padding 133 }; 134 135 typedef union kmp_tas_lock kmp_tas_lock_t; 136 137 // Static initializer for test and set lock variables. Usage: 138 // kmp_tas_lock_t xlock = KMP_TAS_LOCK_INITIALIZER( xlock ); 139 #define KMP_TAS_LOCK_INITIALIZER(lock) \ 140 { \ 141 { ATOMIC_VAR_INIT(KMP_LOCK_FREE(tas)), 0 } \ 142 } 143 144 extern int __kmp_acquire_tas_lock(kmp_tas_lock_t *lck, kmp_int32 gtid); 145 extern int __kmp_test_tas_lock(kmp_tas_lock_t *lck, kmp_int32 gtid); 146 extern int __kmp_release_tas_lock(kmp_tas_lock_t *lck, kmp_int32 gtid); 147 extern void __kmp_init_tas_lock(kmp_tas_lock_t *lck); 148 extern void __kmp_destroy_tas_lock(kmp_tas_lock_t *lck); 149 150 extern int __kmp_acquire_nested_tas_lock(kmp_tas_lock_t *lck, kmp_int32 gtid); 151 extern int __kmp_test_nested_tas_lock(kmp_tas_lock_t *lck, kmp_int32 gtid); 152 extern int __kmp_release_nested_tas_lock(kmp_tas_lock_t *lck, kmp_int32 gtid); 153 extern void __kmp_init_nested_tas_lock(kmp_tas_lock_t *lck); 154 extern void __kmp_destroy_nested_tas_lock(kmp_tas_lock_t *lck); 155 156 #define KMP_LOCK_RELEASED 1 157 #define KMP_LOCK_STILL_HELD 0 158 #define KMP_LOCK_ACQUIRED_FIRST 1 159 #define KMP_LOCK_ACQUIRED_NEXT 0 160 #ifndef KMP_USE_FUTEX 161 #define KMP_USE_FUTEX \ 162 (KMP_OS_LINUX && \ 163 (KMP_ARCH_X86 || KMP_ARCH_X86_64 || KMP_ARCH_ARM || KMP_ARCH_AARCH64)) 164 #endif 165 #if KMP_USE_FUTEX 166 167 // ---------------------------------------------------------------------------- 168 // futex locks. futex locks are only available on Linux* OS. 169 // 170 // Like non-nested test and set lock, non-nested futex locks use the memory 171 // allocated by the compiler for the lock, rather than a pointer to it. 172 // 173 // Information normally available to the tools, such as lock location, lock 174 // usage (normal lock vs. critical section), etc. is not available with test and 175 // set locks. With non-nested futex locks, the lock owner is not even available. 176 // ---------------------------------------------------------------------------- 177 178 struct kmp_base_futex_lock { 179 volatile kmp_int32 poll; // KMP_LOCK_FREE(futex) => unlocked 180 // 2*(gtid+1) of owning thread, 0 if unlocked 181 // locked: (gtid+1) of owning thread 182 kmp_int32 depth_locked; // depth locked, for nested locks only 183 }; 184 185 typedef struct kmp_base_futex_lock kmp_base_futex_lock_t; 186 187 union kmp_futex_lock { 188 kmp_base_futex_lock_t lk; 189 kmp_lock_pool_t pool; // make certain struct is large enough 190 double lk_align; // use worst case alignment 191 // no cache line padding 192 }; 193 194 typedef union kmp_futex_lock kmp_futex_lock_t; 195 196 // Static initializer for futex lock variables. Usage: 197 // kmp_futex_lock_t xlock = KMP_FUTEX_LOCK_INITIALIZER( xlock ); 198 #define KMP_FUTEX_LOCK_INITIALIZER(lock) \ 199 { \ 200 { KMP_LOCK_FREE(futex), 0 } \ 201 } 202 203 extern int __kmp_acquire_futex_lock(kmp_futex_lock_t *lck, kmp_int32 gtid); 204 extern int __kmp_test_futex_lock(kmp_futex_lock_t *lck, kmp_int32 gtid); 205 extern int __kmp_release_futex_lock(kmp_futex_lock_t *lck, kmp_int32 gtid); 206 extern void __kmp_init_futex_lock(kmp_futex_lock_t *lck); 207 extern void __kmp_destroy_futex_lock(kmp_futex_lock_t *lck); 208 209 extern int __kmp_acquire_nested_futex_lock(kmp_futex_lock_t *lck, 210 kmp_int32 gtid); 211 extern int __kmp_test_nested_futex_lock(kmp_futex_lock_t *lck, kmp_int32 gtid); 212 extern int __kmp_release_nested_futex_lock(kmp_futex_lock_t *lck, 213 kmp_int32 gtid); 214 extern void __kmp_init_nested_futex_lock(kmp_futex_lock_t *lck); 215 extern void __kmp_destroy_nested_futex_lock(kmp_futex_lock_t *lck); 216 217 #endif // KMP_USE_FUTEX 218 219 // ---------------------------------------------------------------------------- 220 // Ticket locks. 221 222 #ifdef __cplusplus 223 224 #ifdef _MSC_VER 225 // MSVC won't allow use of std::atomic<> in a union since it has non-trivial 226 // copy constructor. 227 228 struct kmp_base_ticket_lock { 229 // `initialized' must be the first entry in the lock data structure! 230 std::atomic_bool initialized; 231 volatile union kmp_ticket_lock *self; // points to the lock union 232 ident_t const *location; // Source code location of omp_init_lock(). 233 std::atomic_uint 234 next_ticket; // ticket number to give to next thread which acquires 235 std::atomic_uint now_serving; // ticket number for thread which holds the lock 236 std::atomic_int owner_id; // (gtid+1) of owning thread, 0 if unlocked 237 std::atomic_int depth_locked; // depth locked, for nested locks only 238 kmp_lock_flags_t flags; // lock specifics, e.g. critical section lock 239 }; 240 #else 241 struct kmp_base_ticket_lock { 242 // `initialized' must be the first entry in the lock data structure! 243 std::atomic<bool> initialized; 244 volatile union kmp_ticket_lock *self; // points to the lock union 245 ident_t const *location; // Source code location of omp_init_lock(). 246 std::atomic<unsigned> 247 next_ticket; // ticket number to give to next thread which acquires 248 std::atomic<unsigned> 249 now_serving; // ticket number for thread which holds the lock 250 std::atomic<int> owner_id; // (gtid+1) of owning thread, 0 if unlocked 251 std::atomic<int> depth_locked; // depth locked, for nested locks only 252 kmp_lock_flags_t flags; // lock specifics, e.g. critical section lock 253 }; 254 #endif 255 256 #else // __cplusplus 257 258 struct kmp_base_ticket_lock; 259 260 #endif // !__cplusplus 261 262 typedef struct kmp_base_ticket_lock kmp_base_ticket_lock_t; 263 264 union KMP_ALIGN_CACHE kmp_ticket_lock { 265 kmp_base_ticket_lock_t 266 lk; // This field must be first to allow static initializing. 267 kmp_lock_pool_t pool; 268 double lk_align; // use worst case alignment 269 char lk_pad[KMP_PAD(kmp_base_ticket_lock_t, CACHE_LINE)]; 270 }; 271 272 typedef union kmp_ticket_lock kmp_ticket_lock_t; 273 274 // Static initializer for simple ticket lock variables. Usage: 275 // kmp_ticket_lock_t xlock = KMP_TICKET_LOCK_INITIALIZER( xlock ); 276 // Note the macro argument. It is important to make var properly initialized. 277 #define KMP_TICKET_LOCK_INITIALIZER(lock) \ 278 { \ 279 { \ 280 ATOMIC_VAR_INIT(true) \ 281 , &(lock), NULL, ATOMIC_VAR_INIT(0U), ATOMIC_VAR_INIT(0U), \ 282 ATOMIC_VAR_INIT(0), ATOMIC_VAR_INIT(-1) \ 283 } \ 284 } 285 286 extern int __kmp_acquire_ticket_lock(kmp_ticket_lock_t *lck, kmp_int32 gtid); 287 extern int __kmp_test_ticket_lock(kmp_ticket_lock_t *lck, kmp_int32 gtid); 288 extern int __kmp_test_ticket_lock_with_cheks(kmp_ticket_lock_t *lck, 289 kmp_int32 gtid); 290 extern int __kmp_release_ticket_lock(kmp_ticket_lock_t *lck, kmp_int32 gtid); 291 extern void __kmp_init_ticket_lock(kmp_ticket_lock_t *lck); 292 extern void __kmp_destroy_ticket_lock(kmp_ticket_lock_t *lck); 293 294 extern int __kmp_acquire_nested_ticket_lock(kmp_ticket_lock_t *lck, 295 kmp_int32 gtid); 296 extern int __kmp_test_nested_ticket_lock(kmp_ticket_lock_t *lck, 297 kmp_int32 gtid); 298 extern int __kmp_release_nested_ticket_lock(kmp_ticket_lock_t *lck, 299 kmp_int32 gtid); 300 extern void __kmp_init_nested_ticket_lock(kmp_ticket_lock_t *lck); 301 extern void __kmp_destroy_nested_ticket_lock(kmp_ticket_lock_t *lck); 302 303 // ---------------------------------------------------------------------------- 304 // Queuing locks. 305 306 #if KMP_USE_ADAPTIVE_LOCKS 307 308 struct kmp_adaptive_lock_info; 309 310 typedef struct kmp_adaptive_lock_info kmp_adaptive_lock_info_t; 311 312 #if KMP_DEBUG_ADAPTIVE_LOCKS 313 314 struct kmp_adaptive_lock_statistics { 315 /* So we can get stats from locks that haven't been destroyed. */ 316 kmp_adaptive_lock_info_t *next; 317 kmp_adaptive_lock_info_t *prev; 318 319 /* Other statistics */ 320 kmp_uint32 successfulSpeculations; 321 kmp_uint32 hardFailedSpeculations; 322 kmp_uint32 softFailedSpeculations; 323 kmp_uint32 nonSpeculativeAcquires; 324 kmp_uint32 nonSpeculativeAcquireAttempts; 325 kmp_uint32 lemmingYields; 326 }; 327 328 typedef struct kmp_adaptive_lock_statistics kmp_adaptive_lock_statistics_t; 329 330 extern void __kmp_print_speculative_stats(); 331 extern void __kmp_init_speculative_stats(); 332 333 #endif // KMP_DEBUG_ADAPTIVE_LOCKS 334 335 struct kmp_adaptive_lock_info { 336 /* Values used for adaptivity. 337 Although these are accessed from multiple threads we don't access them 338 atomically, because if we miss updates it probably doesn't matter much. (It 339 just affects our decision about whether to try speculation on the lock). */ 340 kmp_uint32 volatile badness; 341 kmp_uint32 volatile acquire_attempts; 342 /* Parameters of the lock. */ 343 kmp_uint32 max_badness; 344 kmp_uint32 max_soft_retries; 345 346 #if KMP_DEBUG_ADAPTIVE_LOCKS 347 kmp_adaptive_lock_statistics_t volatile stats; 348 #endif 349 }; 350 351 #endif // KMP_USE_ADAPTIVE_LOCKS 352 353 struct kmp_base_queuing_lock { 354 355 // `initialized' must be the first entry in the lock data structure! 356 volatile union kmp_queuing_lock 357 *initialized; // Points to the lock union if in initialized state. 358 359 ident_t const *location; // Source code location of omp_init_lock(). 360 361 KMP_ALIGN(8) // tail_id must be 8-byte aligned! 362 363 volatile kmp_int32 364 tail_id; // (gtid+1) of thread at tail of wait queue, 0 if empty 365 // Must be no padding here since head/tail used in 8-byte CAS 366 volatile kmp_int32 367 head_id; // (gtid+1) of thread at head of wait queue, 0 if empty 368 // Decl order assumes little endian 369 // bakery-style lock 370 volatile kmp_uint32 371 next_ticket; // ticket number to give to next thread which acquires 372 volatile kmp_uint32 373 now_serving; // ticket number for thread which holds the lock 374 volatile kmp_int32 owner_id; // (gtid+1) of owning thread, 0 if unlocked 375 kmp_int32 depth_locked; // depth locked, for nested locks only 376 377 kmp_lock_flags_t flags; // lock specifics, e.g. critical section lock 378 }; 379 380 typedef struct kmp_base_queuing_lock kmp_base_queuing_lock_t; 381 382 KMP_BUILD_ASSERT(offsetof(kmp_base_queuing_lock_t, tail_id) % 8 == 0); 383 384 union KMP_ALIGN_CACHE kmp_queuing_lock { 385 kmp_base_queuing_lock_t 386 lk; // This field must be first to allow static initializing. 387 kmp_lock_pool_t pool; 388 double lk_align; // use worst case alignment 389 char lk_pad[KMP_PAD(kmp_base_queuing_lock_t, CACHE_LINE)]; 390 }; 391 392 typedef union kmp_queuing_lock kmp_queuing_lock_t; 393 394 extern int __kmp_acquire_queuing_lock(kmp_queuing_lock_t *lck, kmp_int32 gtid); 395 extern int __kmp_test_queuing_lock(kmp_queuing_lock_t *lck, kmp_int32 gtid); 396 extern int __kmp_release_queuing_lock(kmp_queuing_lock_t *lck, kmp_int32 gtid); 397 extern void __kmp_init_queuing_lock(kmp_queuing_lock_t *lck); 398 extern void __kmp_destroy_queuing_lock(kmp_queuing_lock_t *lck); 399 400 extern int __kmp_acquire_nested_queuing_lock(kmp_queuing_lock_t *lck, 401 kmp_int32 gtid); 402 extern int __kmp_test_nested_queuing_lock(kmp_queuing_lock_t *lck, 403 kmp_int32 gtid); 404 extern int __kmp_release_nested_queuing_lock(kmp_queuing_lock_t *lck, 405 kmp_int32 gtid); 406 extern void __kmp_init_nested_queuing_lock(kmp_queuing_lock_t *lck); 407 extern void __kmp_destroy_nested_queuing_lock(kmp_queuing_lock_t *lck); 408 409 #if KMP_USE_ADAPTIVE_LOCKS 410 411 // ---------------------------------------------------------------------------- 412 // Adaptive locks. 413 struct kmp_base_adaptive_lock { 414 kmp_base_queuing_lock qlk; 415 KMP_ALIGN(CACHE_LINE) 416 kmp_adaptive_lock_info_t 417 adaptive; // Information for the speculative adaptive lock 418 }; 419 420 typedef struct kmp_base_adaptive_lock kmp_base_adaptive_lock_t; 421 422 union KMP_ALIGN_CACHE kmp_adaptive_lock { 423 kmp_base_adaptive_lock_t lk; 424 kmp_lock_pool_t pool; 425 double lk_align; 426 char lk_pad[KMP_PAD(kmp_base_adaptive_lock_t, CACHE_LINE)]; 427 }; 428 typedef union kmp_adaptive_lock kmp_adaptive_lock_t; 429 430 #define GET_QLK_PTR(l) ((kmp_queuing_lock_t *)&(l)->lk.qlk) 431 432 #endif // KMP_USE_ADAPTIVE_LOCKS 433 434 // ---------------------------------------------------------------------------- 435 // DRDPA ticket locks. 436 struct kmp_base_drdpa_lock { 437 // All of the fields on the first cache line are only written when 438 // initializing or reconfiguring the lock. These are relatively rare 439 // operations, so data from the first cache line will usually stay resident in 440 // the cache of each thread trying to acquire the lock. 441 // 442 // initialized must be the first entry in the lock data structure! 443 KMP_ALIGN_CACHE 444 445 volatile union kmp_drdpa_lock 446 *initialized; // points to the lock union if in initialized state 447 ident_t const *location; // Source code location of omp_init_lock(). 448 std::atomic<std::atomic<kmp_uint64> *> polls; 449 std::atomic<kmp_uint64> mask; // is 2**num_polls-1 for mod op 450 kmp_uint64 cleanup_ticket; // thread with cleanup ticket 451 std::atomic<kmp_uint64> *old_polls; // will deallocate old_polls 452 kmp_uint32 num_polls; // must be power of 2 453 454 // next_ticket it needs to exist in a separate cache line, as it is 455 // invalidated every time a thread takes a new ticket. 456 KMP_ALIGN_CACHE 457 458 std::atomic<kmp_uint64> next_ticket; 459 460 // now_serving is used to store our ticket value while we hold the lock. It 461 // has a slightly different meaning in the DRDPA ticket locks (where it is 462 // written by the acquiring thread) than it does in the simple ticket locks 463 // (where it is written by the releasing thread). 464 // 465 // Since now_serving is only read and written in the critical section, 466 // it is non-volatile, but it needs to exist on a separate cache line, 467 // as it is invalidated at every lock acquire. 468 // 469 // Likewise, the vars used for nested locks (owner_id and depth_locked) are 470 // only written by the thread owning the lock, so they are put in this cache 471 // line. owner_id is read by other threads, so it must be declared volatile. 472 KMP_ALIGN_CACHE 473 kmp_uint64 now_serving; // doesn't have to be volatile 474 volatile kmp_uint32 owner_id; // (gtid+1) of owning thread, 0 if unlocked 475 kmp_int32 depth_locked; // depth locked 476 kmp_lock_flags_t flags; // lock specifics, e.g. critical section lock 477 }; 478 479 typedef struct kmp_base_drdpa_lock kmp_base_drdpa_lock_t; 480 481 union KMP_ALIGN_CACHE kmp_drdpa_lock { 482 kmp_base_drdpa_lock_t 483 lk; // This field must be first to allow static initializing. */ 484 kmp_lock_pool_t pool; 485 double lk_align; // use worst case alignment 486 char lk_pad[KMP_PAD(kmp_base_drdpa_lock_t, CACHE_LINE)]; 487 }; 488 489 typedef union kmp_drdpa_lock kmp_drdpa_lock_t; 490 491 extern int __kmp_acquire_drdpa_lock(kmp_drdpa_lock_t *lck, kmp_int32 gtid); 492 extern int __kmp_test_drdpa_lock(kmp_drdpa_lock_t *lck, kmp_int32 gtid); 493 extern int __kmp_release_drdpa_lock(kmp_drdpa_lock_t *lck, kmp_int32 gtid); 494 extern void __kmp_init_drdpa_lock(kmp_drdpa_lock_t *lck); 495 extern void __kmp_destroy_drdpa_lock(kmp_drdpa_lock_t *lck); 496 497 extern int __kmp_acquire_nested_drdpa_lock(kmp_drdpa_lock_t *lck, 498 kmp_int32 gtid); 499 extern int __kmp_test_nested_drdpa_lock(kmp_drdpa_lock_t *lck, kmp_int32 gtid); 500 extern int __kmp_release_nested_drdpa_lock(kmp_drdpa_lock_t *lck, 501 kmp_int32 gtid); 502 extern void __kmp_init_nested_drdpa_lock(kmp_drdpa_lock_t *lck); 503 extern void __kmp_destroy_nested_drdpa_lock(kmp_drdpa_lock_t *lck); 504 505 // ============================================================================ 506 // Lock purposes. 507 // ============================================================================ 508 509 // Bootstrap locks. 510 // 511 // Bootstrap locks -- very few locks used at library initialization time. 512 // Bootstrap locks are currently implemented as ticket locks. 513 // They could also be implemented as test and set lock, but cannot be 514 // implemented with other lock kinds as they require gtids which are not 515 // available at initialization time. 516 517 typedef kmp_ticket_lock_t kmp_bootstrap_lock_t; 518 519 #define KMP_BOOTSTRAP_LOCK_INITIALIZER(lock) KMP_TICKET_LOCK_INITIALIZER((lock)) 520 #define KMP_BOOTSTRAP_LOCK_INIT(lock) \ 521 kmp_bootstrap_lock_t lock = KMP_TICKET_LOCK_INITIALIZER(lock) 522 523 static inline int __kmp_acquire_bootstrap_lock(kmp_bootstrap_lock_t *lck) { 524 return __kmp_acquire_ticket_lock(lck, KMP_GTID_DNE); 525 } 526 527 static inline int __kmp_test_bootstrap_lock(kmp_bootstrap_lock_t *lck) { 528 return __kmp_test_ticket_lock(lck, KMP_GTID_DNE); 529 } 530 531 static inline void __kmp_release_bootstrap_lock(kmp_bootstrap_lock_t *lck) { 532 __kmp_release_ticket_lock(lck, KMP_GTID_DNE); 533 } 534 535 static inline void __kmp_init_bootstrap_lock(kmp_bootstrap_lock_t *lck) { 536 __kmp_init_ticket_lock(lck); 537 } 538 539 static inline void __kmp_destroy_bootstrap_lock(kmp_bootstrap_lock_t *lck) { 540 __kmp_destroy_ticket_lock(lck); 541 } 542 543 // Internal RTL locks. 544 // 545 // Internal RTL locks are also implemented as ticket locks, for now. 546 // 547 // FIXME - We should go through and figure out which lock kind works best for 548 // each internal lock, and use the type declaration and function calls for 549 // that explicit lock kind (and get rid of this section). 550 551 typedef kmp_ticket_lock_t kmp_lock_t; 552 553 #define KMP_LOCK_INIT(lock) kmp_lock_t lock = KMP_TICKET_LOCK_INITIALIZER(lock) 554 555 static inline int __kmp_acquire_lock(kmp_lock_t *lck, kmp_int32 gtid) { 556 return __kmp_acquire_ticket_lock(lck, gtid); 557 } 558 559 static inline int __kmp_test_lock(kmp_lock_t *lck, kmp_int32 gtid) { 560 return __kmp_test_ticket_lock(lck, gtid); 561 } 562 563 static inline void __kmp_release_lock(kmp_lock_t *lck, kmp_int32 gtid) { 564 __kmp_release_ticket_lock(lck, gtid); 565 } 566 567 static inline void __kmp_init_lock(kmp_lock_t *lck) { 568 __kmp_init_ticket_lock(lck); 569 } 570 571 static inline void __kmp_destroy_lock(kmp_lock_t *lck) { 572 __kmp_destroy_ticket_lock(lck); 573 } 574 575 // User locks. 576 // 577 // Do not allocate objects of type union kmp_user_lock!!! This will waste space 578 // unless __kmp_user_lock_kind == lk_drdpa. Instead, check the value of 579 // __kmp_user_lock_kind and allocate objects of the type of the appropriate 580 // union member, and cast their addresses to kmp_user_lock_p. 581 582 enum kmp_lock_kind { 583 lk_default = 0, 584 lk_tas, 585 #if KMP_USE_FUTEX 586 lk_futex, 587 #endif 588 #if KMP_USE_DYNAMIC_LOCK && KMP_USE_TSX 589 lk_hle, 590 lk_rtm_queuing, 591 lk_rtm_spin, 592 #endif 593 lk_ticket, 594 lk_queuing, 595 lk_drdpa, 596 #if KMP_USE_ADAPTIVE_LOCKS 597 lk_adaptive 598 #endif // KMP_USE_ADAPTIVE_LOCKS 599 }; 600 601 typedef enum kmp_lock_kind kmp_lock_kind_t; 602 603 extern kmp_lock_kind_t __kmp_user_lock_kind; 604 605 union kmp_user_lock { 606 kmp_tas_lock_t tas; 607 #if KMP_USE_FUTEX 608 kmp_futex_lock_t futex; 609 #endif 610 kmp_ticket_lock_t ticket; 611 kmp_queuing_lock_t queuing; 612 kmp_drdpa_lock_t drdpa; 613 #if KMP_USE_ADAPTIVE_LOCKS 614 kmp_adaptive_lock_t adaptive; 615 #endif // KMP_USE_ADAPTIVE_LOCKS 616 kmp_lock_pool_t pool; 617 }; 618 619 typedef union kmp_user_lock *kmp_user_lock_p; 620 621 #if !KMP_USE_DYNAMIC_LOCK 622 623 extern size_t __kmp_base_user_lock_size; 624 extern size_t __kmp_user_lock_size; 625 626 extern kmp_int32 (*__kmp_get_user_lock_owner_)(kmp_user_lock_p lck); 627 628 static inline kmp_int32 __kmp_get_user_lock_owner(kmp_user_lock_p lck) { 629 KMP_DEBUG_ASSERT(__kmp_get_user_lock_owner_ != NULL); 630 return (*__kmp_get_user_lock_owner_)(lck); 631 } 632 633 extern int (*__kmp_acquire_user_lock_with_checks_)(kmp_user_lock_p lck, 634 kmp_int32 gtid); 635 636 #if KMP_OS_LINUX && \ 637 (KMP_ARCH_X86 || KMP_ARCH_X86_64 || KMP_ARCH_ARM || KMP_ARCH_AARCH64) 638 639 #define __kmp_acquire_user_lock_with_checks(lck, gtid) \ 640 if (__kmp_user_lock_kind == lk_tas) { \ 641 if (__kmp_env_consistency_check) { \ 642 char const *const func = "omp_set_lock"; \ 643 if ((sizeof(kmp_tas_lock_t) <= OMP_LOCK_T_SIZE) && \ 644 lck->tas.lk.depth_locked != -1) { \ 645 KMP_FATAL(LockNestableUsedAsSimple, func); \ 646 } \ 647 if ((gtid >= 0) && (lck->tas.lk.poll - 1 == gtid)) { \ 648 KMP_FATAL(LockIsAlreadyOwned, func); \ 649 } \ 650 } \ 651 if (lck->tas.lk.poll != 0 || \ 652 !__kmp_atomic_compare_store_acq(&lck->tas.lk.poll, 0, gtid + 1)) { \ 653 kmp_uint32 spins; \ 654 KMP_FSYNC_PREPARE(lck); \ 655 KMP_INIT_YIELD(spins); \ 656 do { \ 657 KMP_YIELD_OVERSUB_ELSE_SPIN(spins); \ 658 } while ( \ 659 lck->tas.lk.poll != 0 || \ 660 !__kmp_atomic_compare_store_acq(&lck->tas.lk.poll, 0, gtid + 1)); \ 661 } \ 662 KMP_FSYNC_ACQUIRED(lck); \ 663 } else { \ 664 KMP_DEBUG_ASSERT(__kmp_acquire_user_lock_with_checks_ != NULL); \ 665 (*__kmp_acquire_user_lock_with_checks_)(lck, gtid); \ 666 } 667 668 #else 669 static inline int __kmp_acquire_user_lock_with_checks(kmp_user_lock_p lck, 670 kmp_int32 gtid) { 671 KMP_DEBUG_ASSERT(__kmp_acquire_user_lock_with_checks_ != NULL); 672 return (*__kmp_acquire_user_lock_with_checks_)(lck, gtid); 673 } 674 #endif 675 676 extern int (*__kmp_test_user_lock_with_checks_)(kmp_user_lock_p lck, 677 kmp_int32 gtid); 678 679 #if KMP_OS_LINUX && \ 680 (KMP_ARCH_X86 || KMP_ARCH_X86_64 || KMP_ARCH_ARM || KMP_ARCH_AARCH64) 681 682 #include "kmp_i18n.h" /* AC: KMP_FATAL definition */ 683 extern int __kmp_env_consistency_check; /* AC: copy from kmp.h here */ 684 static inline int __kmp_test_user_lock_with_checks(kmp_user_lock_p lck, 685 kmp_int32 gtid) { 686 if (__kmp_user_lock_kind == lk_tas) { 687 if (__kmp_env_consistency_check) { 688 char const *const func = "omp_test_lock"; 689 if ((sizeof(kmp_tas_lock_t) <= OMP_LOCK_T_SIZE) && 690 lck->tas.lk.depth_locked != -1) { 691 KMP_FATAL(LockNestableUsedAsSimple, func); 692 } 693 } 694 return ((lck->tas.lk.poll == 0) && 695 __kmp_atomic_compare_store_acq(&lck->tas.lk.poll, 0, gtid + 1)); 696 } else { 697 KMP_DEBUG_ASSERT(__kmp_test_user_lock_with_checks_ != NULL); 698 return (*__kmp_test_user_lock_with_checks_)(lck, gtid); 699 } 700 } 701 #else 702 static inline int __kmp_test_user_lock_with_checks(kmp_user_lock_p lck, 703 kmp_int32 gtid) { 704 KMP_DEBUG_ASSERT(__kmp_test_user_lock_with_checks_ != NULL); 705 return (*__kmp_test_user_lock_with_checks_)(lck, gtid); 706 } 707 #endif 708 709 extern int (*__kmp_release_user_lock_with_checks_)(kmp_user_lock_p lck, 710 kmp_int32 gtid); 711 712 static inline void __kmp_release_user_lock_with_checks(kmp_user_lock_p lck, 713 kmp_int32 gtid) { 714 KMP_DEBUG_ASSERT(__kmp_release_user_lock_with_checks_ != NULL); 715 (*__kmp_release_user_lock_with_checks_)(lck, gtid); 716 } 717 718 extern void (*__kmp_init_user_lock_with_checks_)(kmp_user_lock_p lck); 719 720 static inline void __kmp_init_user_lock_with_checks(kmp_user_lock_p lck) { 721 KMP_DEBUG_ASSERT(__kmp_init_user_lock_with_checks_ != NULL); 722 (*__kmp_init_user_lock_with_checks_)(lck); 723 } 724 725 // We need a non-checking version of destroy lock for when the RTL is 726 // doing the cleanup as it can't always tell if the lock is nested or not. 727 extern void (*__kmp_destroy_user_lock_)(kmp_user_lock_p lck); 728 729 static inline void __kmp_destroy_user_lock(kmp_user_lock_p lck) { 730 KMP_DEBUG_ASSERT(__kmp_destroy_user_lock_ != NULL); 731 (*__kmp_destroy_user_lock_)(lck); 732 } 733 734 extern void (*__kmp_destroy_user_lock_with_checks_)(kmp_user_lock_p lck); 735 736 static inline void __kmp_destroy_user_lock_with_checks(kmp_user_lock_p lck) { 737 KMP_DEBUG_ASSERT(__kmp_destroy_user_lock_with_checks_ != NULL); 738 (*__kmp_destroy_user_lock_with_checks_)(lck); 739 } 740 741 extern int (*__kmp_acquire_nested_user_lock_with_checks_)(kmp_user_lock_p lck, 742 kmp_int32 gtid); 743 744 #if KMP_OS_LINUX && (KMP_ARCH_X86 || KMP_ARCH_X86_64) 745 746 #define __kmp_acquire_nested_user_lock_with_checks(lck, gtid, depth) \ 747 if (__kmp_user_lock_kind == lk_tas) { \ 748 if (__kmp_env_consistency_check) { \ 749 char const *const func = "omp_set_nest_lock"; \ 750 if ((sizeof(kmp_tas_lock_t) <= OMP_NEST_LOCK_T_SIZE) && \ 751 lck->tas.lk.depth_locked == -1) { \ 752 KMP_FATAL(LockSimpleUsedAsNestable, func); \ 753 } \ 754 } \ 755 if (lck->tas.lk.poll - 1 == gtid) { \ 756 lck->tas.lk.depth_locked += 1; \ 757 *depth = KMP_LOCK_ACQUIRED_NEXT; \ 758 } else { \ 759 if ((lck->tas.lk.poll != 0) || \ 760 !__kmp_atomic_compare_store_acq(&lck->tas.lk.poll, 0, gtid + 1)) { \ 761 kmp_uint32 spins; \ 762 KMP_FSYNC_PREPARE(lck); \ 763 KMP_INIT_YIELD(spins); \ 764 do { \ 765 KMP_YIELD_OVERSUB_ELSE_SPIN(spins); \ 766 } while ( \ 767 (lck->tas.lk.poll != 0) || \ 768 !__kmp_atomic_compare_store_acq(&lck->tas.lk.poll, 0, gtid + 1)); \ 769 } \ 770 lck->tas.lk.depth_locked = 1; \ 771 *depth = KMP_LOCK_ACQUIRED_FIRST; \ 772 } \ 773 KMP_FSYNC_ACQUIRED(lck); \ 774 } else { \ 775 KMP_DEBUG_ASSERT(__kmp_acquire_nested_user_lock_with_checks_ != NULL); \ 776 *depth = (*__kmp_acquire_nested_user_lock_with_checks_)(lck, gtid); \ 777 } 778 779 #else 780 static inline void 781 __kmp_acquire_nested_user_lock_with_checks(kmp_user_lock_p lck, kmp_int32 gtid, 782 int *depth) { 783 KMP_DEBUG_ASSERT(__kmp_acquire_nested_user_lock_with_checks_ != NULL); 784 *depth = (*__kmp_acquire_nested_user_lock_with_checks_)(lck, gtid); 785 } 786 #endif 787 788 extern int (*__kmp_test_nested_user_lock_with_checks_)(kmp_user_lock_p lck, 789 kmp_int32 gtid); 790 791 #if KMP_OS_LINUX && (KMP_ARCH_X86 || KMP_ARCH_X86_64) 792 static inline int __kmp_test_nested_user_lock_with_checks(kmp_user_lock_p lck, 793 kmp_int32 gtid) { 794 if (__kmp_user_lock_kind == lk_tas) { 795 int retval; 796 if (__kmp_env_consistency_check) { 797 char const *const func = "omp_test_nest_lock"; 798 if ((sizeof(kmp_tas_lock_t) <= OMP_NEST_LOCK_T_SIZE) && 799 lck->tas.lk.depth_locked == -1) { 800 KMP_FATAL(LockSimpleUsedAsNestable, func); 801 } 802 } 803 KMP_DEBUG_ASSERT(gtid >= 0); 804 if (lck->tas.lk.poll - 1 == 805 gtid) { /* __kmp_get_tas_lock_owner( lck ) == gtid */ 806 return ++lck->tas.lk.depth_locked; /* same owner, depth increased */ 807 } 808 retval = ((lck->tas.lk.poll == 0) && 809 __kmp_atomic_compare_store_acq(&lck->tas.lk.poll, 0, gtid + 1)); 810 if (retval) { 811 KMP_MB(); 812 lck->tas.lk.depth_locked = 1; 813 } 814 return retval; 815 } else { 816 KMP_DEBUG_ASSERT(__kmp_test_nested_user_lock_with_checks_ != NULL); 817 return (*__kmp_test_nested_user_lock_with_checks_)(lck, gtid); 818 } 819 } 820 #else 821 static inline int __kmp_test_nested_user_lock_with_checks(kmp_user_lock_p lck, 822 kmp_int32 gtid) { 823 KMP_DEBUG_ASSERT(__kmp_test_nested_user_lock_with_checks_ != NULL); 824 return (*__kmp_test_nested_user_lock_with_checks_)(lck, gtid); 825 } 826 #endif 827 828 extern int (*__kmp_release_nested_user_lock_with_checks_)(kmp_user_lock_p lck, 829 kmp_int32 gtid); 830 831 static inline int 832 __kmp_release_nested_user_lock_with_checks(kmp_user_lock_p lck, 833 kmp_int32 gtid) { 834 KMP_DEBUG_ASSERT(__kmp_release_nested_user_lock_with_checks_ != NULL); 835 return (*__kmp_release_nested_user_lock_with_checks_)(lck, gtid); 836 } 837 838 extern void (*__kmp_init_nested_user_lock_with_checks_)(kmp_user_lock_p lck); 839 840 static inline void 841 __kmp_init_nested_user_lock_with_checks(kmp_user_lock_p lck) { 842 KMP_DEBUG_ASSERT(__kmp_init_nested_user_lock_with_checks_ != NULL); 843 (*__kmp_init_nested_user_lock_with_checks_)(lck); 844 } 845 846 extern void (*__kmp_destroy_nested_user_lock_with_checks_)(kmp_user_lock_p lck); 847 848 static inline void 849 __kmp_destroy_nested_user_lock_with_checks(kmp_user_lock_p lck) { 850 KMP_DEBUG_ASSERT(__kmp_destroy_nested_user_lock_with_checks_ != NULL); 851 (*__kmp_destroy_nested_user_lock_with_checks_)(lck); 852 } 853 854 // user lock functions which do not necessarily exist for all lock kinds. 855 // 856 // The "set" functions usually have wrapper routines that check for a NULL set 857 // function pointer and call it if non-NULL. 858 // 859 // In some cases, it makes sense to have a "get" wrapper function check for a 860 // NULL get function pointer and return NULL / invalid value / error code if 861 // the function pointer is NULL. 862 // 863 // In other cases, the calling code really should differentiate between an 864 // unimplemented function and one that is implemented but returning NULL / 865 // invalid value. If this is the case, no get function wrapper exists. 866 867 extern int (*__kmp_is_user_lock_initialized_)(kmp_user_lock_p lck); 868 869 // no set function; fields set during local allocation 870 871 extern const ident_t *(*__kmp_get_user_lock_location_)(kmp_user_lock_p lck); 872 873 static inline const ident_t *__kmp_get_user_lock_location(kmp_user_lock_p lck) { 874 if (__kmp_get_user_lock_location_ != NULL) { 875 return (*__kmp_get_user_lock_location_)(lck); 876 } else { 877 return NULL; 878 } 879 } 880 881 extern void (*__kmp_set_user_lock_location_)(kmp_user_lock_p lck, 882 const ident_t *loc); 883 884 static inline void __kmp_set_user_lock_location(kmp_user_lock_p lck, 885 const ident_t *loc) { 886 if (__kmp_set_user_lock_location_ != NULL) { 887 (*__kmp_set_user_lock_location_)(lck, loc); 888 } 889 } 890 891 extern kmp_lock_flags_t (*__kmp_get_user_lock_flags_)(kmp_user_lock_p lck); 892 893 extern void (*__kmp_set_user_lock_flags_)(kmp_user_lock_p lck, 894 kmp_lock_flags_t flags); 895 896 static inline void __kmp_set_user_lock_flags(kmp_user_lock_p lck, 897 kmp_lock_flags_t flags) { 898 if (__kmp_set_user_lock_flags_ != NULL) { 899 (*__kmp_set_user_lock_flags_)(lck, flags); 900 } 901 } 902 903 // The function which sets up all of the vtbl pointers for kmp_user_lock_t. 904 extern void __kmp_set_user_lock_vptrs(kmp_lock_kind_t user_lock_kind); 905 906 // Macros for binding user lock functions. 907 #define KMP_BIND_USER_LOCK_TEMPLATE(nest, kind, suffix) \ 908 { \ 909 __kmp_acquire##nest##user_lock_with_checks_ = (int (*)( \ 910 kmp_user_lock_p, kmp_int32))__kmp_acquire##nest##kind##_##suffix; \ 911 __kmp_release##nest##user_lock_with_checks_ = (int (*)( \ 912 kmp_user_lock_p, kmp_int32))__kmp_release##nest##kind##_##suffix; \ 913 __kmp_test##nest##user_lock_with_checks_ = (int (*)( \ 914 kmp_user_lock_p, kmp_int32))__kmp_test##nest##kind##_##suffix; \ 915 __kmp_init##nest##user_lock_with_checks_ = \ 916 (void (*)(kmp_user_lock_p))__kmp_init##nest##kind##_##suffix; \ 917 __kmp_destroy##nest##user_lock_with_checks_ = \ 918 (void (*)(kmp_user_lock_p))__kmp_destroy##nest##kind##_##suffix; \ 919 } 920 921 #define KMP_BIND_USER_LOCK(kind) KMP_BIND_USER_LOCK_TEMPLATE(_, kind, lock) 922 #define KMP_BIND_USER_LOCK_WITH_CHECKS(kind) \ 923 KMP_BIND_USER_LOCK_TEMPLATE(_, kind, lock_with_checks) 924 #define KMP_BIND_NESTED_USER_LOCK(kind) \ 925 KMP_BIND_USER_LOCK_TEMPLATE(_nested_, kind, lock) 926 #define KMP_BIND_NESTED_USER_LOCK_WITH_CHECKS(kind) \ 927 KMP_BIND_USER_LOCK_TEMPLATE(_nested_, kind, lock_with_checks) 928 929 // User lock table & lock allocation 930 /* On 64-bit Linux* OS (and OS X*) GNU compiler allocates only 4 bytems memory 931 for lock variable, which is not enough to store a pointer, so we have to use 932 lock indexes instead of pointers and maintain lock table to map indexes to 933 pointers. 934 935 936 Note: The first element of the table is not a pointer to lock! It is a 937 pointer to previously allocated table (or NULL if it is the first table). 938 939 Usage: 940 941 if ( OMP_LOCK_T_SIZE < sizeof( <lock> ) ) { // or OMP_NEST_LOCK_T_SIZE 942 Lock table is fully utilized. User locks are indexes, so table is used on 943 user lock operation. 944 Note: it may be the case (lin_32) that we don't need to use a lock 945 table for regular locks, but do need the table for nested locks. 946 } 947 else { 948 Lock table initialized but not actually used. 949 } 950 */ 951 952 struct kmp_lock_table { 953 kmp_lock_index_t used; // Number of used elements 954 kmp_lock_index_t allocated; // Number of allocated elements 955 kmp_user_lock_p *table; // Lock table. 956 }; 957 958 typedef struct kmp_lock_table kmp_lock_table_t; 959 960 extern kmp_lock_table_t __kmp_user_lock_table; 961 extern kmp_user_lock_p __kmp_lock_pool; 962 963 struct kmp_block_of_locks { 964 struct kmp_block_of_locks *next_block; 965 void *locks; 966 }; 967 968 typedef struct kmp_block_of_locks kmp_block_of_locks_t; 969 970 extern kmp_block_of_locks_t *__kmp_lock_blocks; 971 extern int __kmp_num_locks_in_block; 972 973 extern kmp_user_lock_p __kmp_user_lock_allocate(void **user_lock, 974 kmp_int32 gtid, 975 kmp_lock_flags_t flags); 976 extern void __kmp_user_lock_free(void **user_lock, kmp_int32 gtid, 977 kmp_user_lock_p lck); 978 extern kmp_user_lock_p __kmp_lookup_user_lock(void **user_lock, 979 char const *func); 980 extern void __kmp_cleanup_user_locks(); 981 982 #define KMP_CHECK_USER_LOCK_INIT() \ 983 { \ 984 if (!TCR_4(__kmp_init_user_locks)) { \ 985 __kmp_acquire_bootstrap_lock(&__kmp_initz_lock); \ 986 if (!TCR_4(__kmp_init_user_locks)) { \ 987 TCW_4(__kmp_init_user_locks, TRUE); \ 988 } \ 989 __kmp_release_bootstrap_lock(&__kmp_initz_lock); \ 990 } \ 991 } 992 993 #endif // KMP_USE_DYNAMIC_LOCK 994 995 #undef KMP_PAD 996 #undef KMP_GTID_DNE 997 998 #if KMP_USE_DYNAMIC_LOCK 999 // KMP_USE_DYNAMIC_LOCK enables dynamic dispatch of lock functions without 1000 // breaking the current compatibility. Essential functionality of this new code 1001 // is dynamic dispatch, but it also implements (or enables implementation of) 1002 // hinted user lock and critical section which will be part of OMP 4.5 soon. 1003 // 1004 // Lock type can be decided at creation time (i.e., lock initialization), and 1005 // subsequent lock function call on the created lock object requires type 1006 // extraction and call through jump table using the extracted type. This type 1007 // information is stored in two different ways depending on the size of the lock 1008 // object, and we differentiate lock types by this size requirement - direct and 1009 // indirect locks. 1010 // 1011 // Direct locks: 1012 // A direct lock object fits into the space created by the compiler for an 1013 // omp_lock_t object, and TAS/Futex lock falls into this category. We use low 1014 // one byte of the lock object as the storage for the lock type, and appropriate 1015 // bit operation is required to access the data meaningful to the lock 1016 // algorithms. Also, to differentiate direct lock from indirect lock, 1 is 1017 // written to LSB of the lock object. The newly introduced "hle" lock is also a 1018 // direct lock. 1019 // 1020 // Indirect locks: 1021 // An indirect lock object requires more space than the compiler-generated 1022 // space, and it should be allocated from heap. Depending on the size of the 1023 // compiler-generated space for the lock (i.e., size of omp_lock_t), this 1024 // omp_lock_t object stores either the address of the heap-allocated indirect 1025 // lock (void * fits in the object) or an index to the indirect lock table entry 1026 // that holds the address. Ticket/Queuing/DRDPA/Adaptive lock falls into this 1027 // category, and the newly introduced "rtm" lock is also an indirect lock which 1028 // was implemented on top of the Queuing lock. When the omp_lock_t object holds 1029 // an index (not lock address), 0 is written to LSB to differentiate the lock 1030 // from a direct lock, and the remaining part is the actual index to the 1031 // indirect lock table. 1032 1033 #include <stdint.h> // for uintptr_t 1034 1035 // Shortcuts 1036 #define KMP_USE_INLINED_TAS \ 1037 (KMP_OS_LINUX && (KMP_ARCH_X86 || KMP_ARCH_X86_64 || KMP_ARCH_ARM)) && 1 1038 #define KMP_USE_INLINED_FUTEX KMP_USE_FUTEX && 0 1039 1040 // List of lock definitions; all nested locks are indirect locks. 1041 // hle lock is xchg lock prefixed with XACQUIRE/XRELEASE. 1042 // All nested locks are indirect lock types. 1043 #if KMP_USE_TSX 1044 #if KMP_USE_FUTEX 1045 #define KMP_FOREACH_D_LOCK(m, a) m(tas, a) m(futex, a) m(hle, a) m(rtm_spin, a) 1046 #define KMP_FOREACH_I_LOCK(m, a) \ 1047 m(ticket, a) m(queuing, a) m(adaptive, a) m(drdpa, a) m(rtm_queuing, a) \ 1048 m(nested_tas, a) m(nested_futex, a) m(nested_ticket, a) \ 1049 m(nested_queuing, a) m(nested_drdpa, a) 1050 #else 1051 #define KMP_FOREACH_D_LOCK(m, a) m(tas, a) m(hle, a) m(rtm_spin, a) 1052 #define KMP_FOREACH_I_LOCK(m, a) \ 1053 m(ticket, a) m(queuing, a) m(adaptive, a) m(drdpa, a) m(rtm_queuing, a) \ 1054 m(nested_tas, a) m(nested_ticket, a) m(nested_queuing, a) \ 1055 m(nested_drdpa, a) 1056 #endif // KMP_USE_FUTEX 1057 #define KMP_LAST_D_LOCK lockseq_rtm_spin 1058 #else 1059 #if KMP_USE_FUTEX 1060 #define KMP_FOREACH_D_LOCK(m, a) m(tas, a) m(futex, a) 1061 #define KMP_FOREACH_I_LOCK(m, a) \ 1062 m(ticket, a) m(queuing, a) m(drdpa, a) m(nested_tas, a) m(nested_futex, a) \ 1063 m(nested_ticket, a) m(nested_queuing, a) m(nested_drdpa, a) 1064 #define KMP_LAST_D_LOCK lockseq_futex 1065 #else 1066 #define KMP_FOREACH_D_LOCK(m, a) m(tas, a) 1067 #define KMP_FOREACH_I_LOCK(m, a) \ 1068 m(ticket, a) m(queuing, a) m(drdpa, a) m(nested_tas, a) m(nested_ticket, a) \ 1069 m(nested_queuing, a) m(nested_drdpa, a) 1070 #define KMP_LAST_D_LOCK lockseq_tas 1071 #endif // KMP_USE_FUTEX 1072 #endif // KMP_USE_TSX 1073 1074 // Information used in dynamic dispatch 1075 #define KMP_LOCK_SHIFT \ 1076 8 // number of low bits to be used as tag for direct locks 1077 #define KMP_FIRST_D_LOCK lockseq_tas 1078 #define KMP_FIRST_I_LOCK lockseq_ticket 1079 #define KMP_LAST_I_LOCK lockseq_nested_drdpa 1080 #define KMP_NUM_I_LOCKS \ 1081 (locktag_nested_drdpa + 1) // number of indirect lock types 1082 1083 // Base type for dynamic locks. 1084 typedef kmp_uint32 kmp_dyna_lock_t; 1085 1086 // Lock sequence that enumerates all lock kinds. Always make this enumeration 1087 // consistent with kmp_lockseq_t in the include directory. 1088 typedef enum { 1089 lockseq_indirect = 0, 1090 #define expand_seq(l, a) lockseq_##l, 1091 KMP_FOREACH_D_LOCK(expand_seq, 0) KMP_FOREACH_I_LOCK(expand_seq, 0) 1092 #undef expand_seq 1093 } kmp_dyna_lockseq_t; 1094 1095 // Enumerates indirect lock tags. 1096 typedef enum { 1097 #define expand_tag(l, a) locktag_##l, 1098 KMP_FOREACH_I_LOCK(expand_tag, 0) 1099 #undef expand_tag 1100 } kmp_indirect_locktag_t; 1101 1102 // Utility macros that extract information from lock sequences. 1103 #define KMP_IS_D_LOCK(seq) \ 1104 ((seq) >= KMP_FIRST_D_LOCK && (seq) <= KMP_LAST_D_LOCK) 1105 #define KMP_IS_I_LOCK(seq) \ 1106 ((seq) >= KMP_FIRST_I_LOCK && (seq) <= KMP_LAST_I_LOCK) 1107 #define KMP_GET_I_TAG(seq) (kmp_indirect_locktag_t)((seq)-KMP_FIRST_I_LOCK) 1108 #define KMP_GET_D_TAG(seq) ((seq) << 1 | 1) 1109 1110 // Enumerates direct lock tags starting from indirect tag. 1111 typedef enum { 1112 #define expand_tag(l, a) locktag_##l = KMP_GET_D_TAG(lockseq_##l), 1113 KMP_FOREACH_D_LOCK(expand_tag, 0) 1114 #undef expand_tag 1115 } kmp_direct_locktag_t; 1116 1117 // Indirect lock type 1118 typedef struct { 1119 kmp_user_lock_p lock; 1120 kmp_indirect_locktag_t type; 1121 } kmp_indirect_lock_t; 1122 1123 // Function tables for direct locks. Set/unset/test differentiate functions 1124 // with/without consistency checking. 1125 extern void (*__kmp_direct_init[])(kmp_dyna_lock_t *, kmp_dyna_lockseq_t); 1126 extern void (**__kmp_direct_destroy)(kmp_dyna_lock_t *); 1127 extern int (**__kmp_direct_set)(kmp_dyna_lock_t *, kmp_int32); 1128 extern int (**__kmp_direct_unset)(kmp_dyna_lock_t *, kmp_int32); 1129 extern int (**__kmp_direct_test)(kmp_dyna_lock_t *, kmp_int32); 1130 1131 // Function tables for indirect locks. Set/unset/test differentiate functions 1132 // with/without consistency checking. 1133 extern void (*__kmp_indirect_init[])(kmp_user_lock_p); 1134 extern void (**__kmp_indirect_destroy)(kmp_user_lock_p); 1135 extern int (**__kmp_indirect_set)(kmp_user_lock_p, kmp_int32); 1136 extern int (**__kmp_indirect_unset)(kmp_user_lock_p, kmp_int32); 1137 extern int (**__kmp_indirect_test)(kmp_user_lock_p, kmp_int32); 1138 1139 // Extracts direct lock tag from a user lock pointer 1140 #define KMP_EXTRACT_D_TAG(l) \ 1141 (*((kmp_dyna_lock_t *)(l)) & ((1 << KMP_LOCK_SHIFT) - 1) & \ 1142 -(*((kmp_dyna_lock_t *)(l)) & 1)) 1143 1144 // Extracts indirect lock index from a user lock pointer 1145 #define KMP_EXTRACT_I_INDEX(l) (*(kmp_lock_index_t *)(l) >> 1) 1146 1147 // Returns function pointer to the direct lock function with l (kmp_dyna_lock_t 1148 // *) and op (operation type). 1149 #define KMP_D_LOCK_FUNC(l, op) __kmp_direct_##op[KMP_EXTRACT_D_TAG(l)] 1150 1151 // Returns function pointer to the indirect lock function with l 1152 // (kmp_indirect_lock_t *) and op (operation type). 1153 #define KMP_I_LOCK_FUNC(l, op) \ 1154 __kmp_indirect_##op[((kmp_indirect_lock_t *)(l))->type] 1155 1156 // Initializes a direct lock with the given lock pointer and lock sequence. 1157 #define KMP_INIT_D_LOCK(l, seq) \ 1158 __kmp_direct_init[KMP_GET_D_TAG(seq)]((kmp_dyna_lock_t *)l, seq) 1159 1160 // Initializes an indirect lock with the given lock pointer and lock sequence. 1161 #define KMP_INIT_I_LOCK(l, seq) \ 1162 __kmp_direct_init[0]((kmp_dyna_lock_t *)(l), seq) 1163 1164 // Returns "free" lock value for the given lock type. 1165 #define KMP_LOCK_FREE(type) (locktag_##type) 1166 1167 // Returns "busy" lock value for the given lock teyp. 1168 #define KMP_LOCK_BUSY(v, type) ((v) << KMP_LOCK_SHIFT | locktag_##type) 1169 1170 // Returns lock value after removing (shifting) lock tag. 1171 #define KMP_LOCK_STRIP(v) ((v) >> KMP_LOCK_SHIFT) 1172 1173 // Initializes global states and data structures for managing dynamic user 1174 // locks. 1175 extern void __kmp_init_dynamic_user_locks(); 1176 1177 // Allocates and returns an indirect lock with the given indirect lock tag. 1178 extern kmp_indirect_lock_t * 1179 __kmp_allocate_indirect_lock(void **, kmp_int32, kmp_indirect_locktag_t); 1180 1181 // Cleans up global states and data structures for managing dynamic user locks. 1182 extern void __kmp_cleanup_indirect_user_locks(); 1183 1184 // Default user lock sequence when not using hinted locks. 1185 extern kmp_dyna_lockseq_t __kmp_user_lock_seq; 1186 1187 // Jump table for "set lock location", available only for indirect locks. 1188 extern void (*__kmp_indirect_set_location[KMP_NUM_I_LOCKS])(kmp_user_lock_p, 1189 const ident_t *); 1190 #define KMP_SET_I_LOCK_LOCATION(lck, loc) \ 1191 { \ 1192 if (__kmp_indirect_set_location[(lck)->type] != NULL) \ 1193 __kmp_indirect_set_location[(lck)->type]((lck)->lock, loc); \ 1194 } 1195 1196 // Jump table for "set lock flags", available only for indirect locks. 1197 extern void (*__kmp_indirect_set_flags[KMP_NUM_I_LOCKS])(kmp_user_lock_p, 1198 kmp_lock_flags_t); 1199 #define KMP_SET_I_LOCK_FLAGS(lck, flag) \ 1200 { \ 1201 if (__kmp_indirect_set_flags[(lck)->type] != NULL) \ 1202 __kmp_indirect_set_flags[(lck)->type]((lck)->lock, flag); \ 1203 } 1204 1205 // Jump table for "get lock location", available only for indirect locks. 1206 extern const ident_t *(*__kmp_indirect_get_location[KMP_NUM_I_LOCKS])( 1207 kmp_user_lock_p); 1208 #define KMP_GET_I_LOCK_LOCATION(lck) \ 1209 (__kmp_indirect_get_location[(lck)->type] != NULL \ 1210 ? __kmp_indirect_get_location[(lck)->type]((lck)->lock) \ 1211 : NULL) 1212 1213 // Jump table for "get lock flags", available only for indirect locks. 1214 extern kmp_lock_flags_t (*__kmp_indirect_get_flags[KMP_NUM_I_LOCKS])( 1215 kmp_user_lock_p); 1216 #define KMP_GET_I_LOCK_FLAGS(lck) \ 1217 (__kmp_indirect_get_flags[(lck)->type] != NULL \ 1218 ? __kmp_indirect_get_flags[(lck)->type]((lck)->lock) \ 1219 : NULL) 1220 1221 #define KMP_I_LOCK_CHUNK \ 1222 1024 // number of kmp_indirect_lock_t objects to be allocated together 1223 1224 // Lock table for indirect locks. 1225 typedef struct kmp_indirect_lock_table { 1226 kmp_indirect_lock_t **table; // blocks of indirect locks allocated 1227 kmp_lock_index_t size; // size of the indirect lock table 1228 kmp_lock_index_t next; // index to the next lock to be allocated 1229 } kmp_indirect_lock_table_t; 1230 1231 extern kmp_indirect_lock_table_t __kmp_i_lock_table; 1232 1233 // Returns the indirect lock associated with the given index. 1234 #define KMP_GET_I_LOCK(index) \ 1235 (*(__kmp_i_lock_table.table + (index) / KMP_I_LOCK_CHUNK) + \ 1236 (index) % KMP_I_LOCK_CHUNK) 1237 1238 // Number of locks in a lock block, which is fixed to "1" now. 1239 // TODO: No lock block implementation now. If we do support, we need to manage 1240 // lock block data structure for each indirect lock type. 1241 extern int __kmp_num_locks_in_block; 1242 1243 // Fast lock table lookup without consistency checking 1244 #define KMP_LOOKUP_I_LOCK(l) \ 1245 ((OMP_LOCK_T_SIZE < sizeof(void *)) ? KMP_GET_I_LOCK(KMP_EXTRACT_I_INDEX(l)) \ 1246 : *((kmp_indirect_lock_t **)(l))) 1247 1248 // Used once in kmp_error.cpp 1249 extern kmp_int32 __kmp_get_user_lock_owner(kmp_user_lock_p, kmp_uint32); 1250 1251 #else // KMP_USE_DYNAMIC_LOCK 1252 1253 #define KMP_LOCK_BUSY(v, type) (v) 1254 #define KMP_LOCK_FREE(type) 0 1255 #define KMP_LOCK_STRIP(v) (v) 1256 1257 #endif // KMP_USE_DYNAMIC_LOCK 1258 1259 // data structure for using backoff within spin locks. 1260 typedef struct { 1261 kmp_uint32 step; // current step 1262 kmp_uint32 max_backoff; // upper bound of outer delay loop 1263 kmp_uint32 min_tick; // size of inner delay loop in ticks (machine-dependent) 1264 } kmp_backoff_t; 1265 1266 // Runtime's default backoff parameters 1267 extern kmp_backoff_t __kmp_spin_backoff_params; 1268 1269 // Backoff function 1270 extern void __kmp_spin_backoff(kmp_backoff_t *); 1271 1272 #ifdef __cplusplus 1273 } // extern "C" 1274 #endif // __cplusplus 1275 1276 #endif /* KMP_LOCK_H */ 1277