xref: /freebsd/contrib/llvm-project/openmp/runtime/src/kmp_lock.cpp (revision cfd6422a5217410fbd66f7a7a8a64d9d85e61229)
1 /*
2  * kmp_lock.cpp -- lock-related functions
3  */
4 
5 //===----------------------------------------------------------------------===//
6 //
7 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
8 // See https://llvm.org/LICENSE.txt for license information.
9 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include <stddef.h>
14 #include <atomic>
15 
16 #include "kmp.h"
17 #include "kmp_i18n.h"
18 #include "kmp_io.h"
19 #include "kmp_itt.h"
20 #include "kmp_lock.h"
21 #include "kmp_wait_release.h"
22 #include "kmp_wrapper_getpid.h"
23 
24 #include "tsan_annotations.h"
25 
26 #if KMP_USE_FUTEX
27 #include <sys/syscall.h>
28 #include <unistd.h>
29 // We should really include <futex.h>, but that causes compatibility problems on
30 // different Linux* OS distributions that either require that you include (or
31 // break when you try to include) <pci/types.h>. Since all we need is the two
32 // macros below (which are part of the kernel ABI, so can't change) we just
33 // define the constants here and don't include <futex.h>
34 #ifndef FUTEX_WAIT
35 #define FUTEX_WAIT 0
36 #endif
37 #ifndef FUTEX_WAKE
38 #define FUTEX_WAKE 1
39 #endif
40 #endif
41 
42 /* Implement spin locks for internal library use.             */
43 /* The algorithm implemented is Lamport's bakery lock [1974]. */
44 
45 void __kmp_validate_locks(void) {
46   int i;
47   kmp_uint32 x, y;
48 
49   /* Check to make sure unsigned arithmetic does wraps properly */
50   x = ~((kmp_uint32)0) - 2;
51   y = x - 2;
52 
53   for (i = 0; i < 8; ++i, ++x, ++y) {
54     kmp_uint32 z = (x - y);
55     KMP_ASSERT(z == 2);
56   }
57 
58   KMP_ASSERT(offsetof(kmp_base_queuing_lock, tail_id) % 8 == 0);
59 }
60 
61 /* ------------------------------------------------------------------------ */
62 /* test and set locks */
63 
64 // For the non-nested locks, we can only assume that the first 4 bytes were
65 // allocated, since gcc only allocates 4 bytes for omp_lock_t, and the Intel
66 // compiler only allocates a 4 byte pointer on IA-32 architecture.  On
67 // Windows* OS on Intel(R) 64, we can assume that all 8 bytes were allocated.
68 //
69 // gcc reserves >= 8 bytes for nested locks, so we can assume that the
70 // entire 8 bytes were allocated for nested locks on all 64-bit platforms.
71 
72 static kmp_int32 __kmp_get_tas_lock_owner(kmp_tas_lock_t *lck) {
73   return KMP_LOCK_STRIP(KMP_ATOMIC_LD_RLX(&lck->lk.poll)) - 1;
74 }
75 
76 static inline bool __kmp_is_tas_lock_nestable(kmp_tas_lock_t *lck) {
77   return lck->lk.depth_locked != -1;
78 }
79 
80 __forceinline static int
81 __kmp_acquire_tas_lock_timed_template(kmp_tas_lock_t *lck, kmp_int32 gtid) {
82   KMP_MB();
83 
84 #ifdef USE_LOCK_PROFILE
85   kmp_uint32 curr = KMP_LOCK_STRIP(lck->lk.poll);
86   if ((curr != 0) && (curr != gtid + 1))
87     __kmp_printf("LOCK CONTENTION: %p\n", lck);
88 /* else __kmp_printf( "." );*/
89 #endif /* USE_LOCK_PROFILE */
90 
91   kmp_int32 tas_free = KMP_LOCK_FREE(tas);
92   kmp_int32 tas_busy = KMP_LOCK_BUSY(gtid + 1, tas);
93 
94   if (KMP_ATOMIC_LD_RLX(&lck->lk.poll) == tas_free &&
95       __kmp_atomic_compare_store_acq(&lck->lk.poll, tas_free, tas_busy)) {
96     KMP_FSYNC_ACQUIRED(lck);
97     return KMP_LOCK_ACQUIRED_FIRST;
98   }
99 
100   kmp_uint32 spins;
101   KMP_FSYNC_PREPARE(lck);
102   KMP_INIT_YIELD(spins);
103   kmp_backoff_t backoff = __kmp_spin_backoff_params;
104   do {
105     __kmp_spin_backoff(&backoff);
106     KMP_YIELD_OVERSUB_ELSE_SPIN(spins);
107   } while (KMP_ATOMIC_LD_RLX(&lck->lk.poll) != tas_free ||
108            !__kmp_atomic_compare_store_acq(&lck->lk.poll, tas_free, tas_busy));
109   KMP_FSYNC_ACQUIRED(lck);
110   return KMP_LOCK_ACQUIRED_FIRST;
111 }
112 
113 int __kmp_acquire_tas_lock(kmp_tas_lock_t *lck, kmp_int32 gtid) {
114   int retval = __kmp_acquire_tas_lock_timed_template(lck, gtid);
115   ANNOTATE_TAS_ACQUIRED(lck);
116   return retval;
117 }
118 
119 static int __kmp_acquire_tas_lock_with_checks(kmp_tas_lock_t *lck,
120                                               kmp_int32 gtid) {
121   char const *const func = "omp_set_lock";
122   if ((sizeof(kmp_tas_lock_t) <= OMP_LOCK_T_SIZE) &&
123       __kmp_is_tas_lock_nestable(lck)) {
124     KMP_FATAL(LockNestableUsedAsSimple, func);
125   }
126   if ((gtid >= 0) && (__kmp_get_tas_lock_owner(lck) == gtid)) {
127     KMP_FATAL(LockIsAlreadyOwned, func);
128   }
129   return __kmp_acquire_tas_lock(lck, gtid);
130 }
131 
132 int __kmp_test_tas_lock(kmp_tas_lock_t *lck, kmp_int32 gtid) {
133   kmp_int32 tas_free = KMP_LOCK_FREE(tas);
134   kmp_int32 tas_busy = KMP_LOCK_BUSY(gtid + 1, tas);
135   if (KMP_ATOMIC_LD_RLX(&lck->lk.poll) == tas_free &&
136       __kmp_atomic_compare_store_acq(&lck->lk.poll, tas_free, tas_busy)) {
137     KMP_FSYNC_ACQUIRED(lck);
138     return TRUE;
139   }
140   return FALSE;
141 }
142 
143 static int __kmp_test_tas_lock_with_checks(kmp_tas_lock_t *lck,
144                                            kmp_int32 gtid) {
145   char const *const func = "omp_test_lock";
146   if ((sizeof(kmp_tas_lock_t) <= OMP_LOCK_T_SIZE) &&
147       __kmp_is_tas_lock_nestable(lck)) {
148     KMP_FATAL(LockNestableUsedAsSimple, func);
149   }
150   return __kmp_test_tas_lock(lck, gtid);
151 }
152 
153 int __kmp_release_tas_lock(kmp_tas_lock_t *lck, kmp_int32 gtid) {
154   KMP_MB(); /* Flush all pending memory write invalidates.  */
155 
156   KMP_FSYNC_RELEASING(lck);
157   ANNOTATE_TAS_RELEASED(lck);
158   KMP_ATOMIC_ST_REL(&lck->lk.poll, KMP_LOCK_FREE(tas));
159   KMP_MB(); /* Flush all pending memory write invalidates.  */
160 
161   KMP_YIELD_OVERSUB();
162   return KMP_LOCK_RELEASED;
163 }
164 
165 static int __kmp_release_tas_lock_with_checks(kmp_tas_lock_t *lck,
166                                               kmp_int32 gtid) {
167   char const *const func = "omp_unset_lock";
168   KMP_MB(); /* in case another processor initialized lock */
169   if ((sizeof(kmp_tas_lock_t) <= OMP_LOCK_T_SIZE) &&
170       __kmp_is_tas_lock_nestable(lck)) {
171     KMP_FATAL(LockNestableUsedAsSimple, func);
172   }
173   if (__kmp_get_tas_lock_owner(lck) == -1) {
174     KMP_FATAL(LockUnsettingFree, func);
175   }
176   if ((gtid >= 0) && (__kmp_get_tas_lock_owner(lck) >= 0) &&
177       (__kmp_get_tas_lock_owner(lck) != gtid)) {
178     KMP_FATAL(LockUnsettingSetByAnother, func);
179   }
180   return __kmp_release_tas_lock(lck, gtid);
181 }
182 
183 void __kmp_init_tas_lock(kmp_tas_lock_t *lck) {
184   lck->lk.poll = KMP_LOCK_FREE(tas);
185 }
186 
187 void __kmp_destroy_tas_lock(kmp_tas_lock_t *lck) { lck->lk.poll = 0; }
188 
189 static void __kmp_destroy_tas_lock_with_checks(kmp_tas_lock_t *lck) {
190   char const *const func = "omp_destroy_lock";
191   if ((sizeof(kmp_tas_lock_t) <= OMP_LOCK_T_SIZE) &&
192       __kmp_is_tas_lock_nestable(lck)) {
193     KMP_FATAL(LockNestableUsedAsSimple, func);
194   }
195   if (__kmp_get_tas_lock_owner(lck) != -1) {
196     KMP_FATAL(LockStillOwned, func);
197   }
198   __kmp_destroy_tas_lock(lck);
199 }
200 
201 // nested test and set locks
202 
203 int __kmp_acquire_nested_tas_lock(kmp_tas_lock_t *lck, kmp_int32 gtid) {
204   KMP_DEBUG_ASSERT(gtid >= 0);
205 
206   if (__kmp_get_tas_lock_owner(lck) == gtid) {
207     lck->lk.depth_locked += 1;
208     return KMP_LOCK_ACQUIRED_NEXT;
209   } else {
210     __kmp_acquire_tas_lock_timed_template(lck, gtid);
211     ANNOTATE_TAS_ACQUIRED(lck);
212     lck->lk.depth_locked = 1;
213     return KMP_LOCK_ACQUIRED_FIRST;
214   }
215 }
216 
217 static int __kmp_acquire_nested_tas_lock_with_checks(kmp_tas_lock_t *lck,
218                                                      kmp_int32 gtid) {
219   char const *const func = "omp_set_nest_lock";
220   if (!__kmp_is_tas_lock_nestable(lck)) {
221     KMP_FATAL(LockSimpleUsedAsNestable, func);
222   }
223   return __kmp_acquire_nested_tas_lock(lck, gtid);
224 }
225 
226 int __kmp_test_nested_tas_lock(kmp_tas_lock_t *lck, kmp_int32 gtid) {
227   int retval;
228 
229   KMP_DEBUG_ASSERT(gtid >= 0);
230 
231   if (__kmp_get_tas_lock_owner(lck) == gtid) {
232     retval = ++lck->lk.depth_locked;
233   } else if (!__kmp_test_tas_lock(lck, gtid)) {
234     retval = 0;
235   } else {
236     KMP_MB();
237     retval = lck->lk.depth_locked = 1;
238   }
239   return retval;
240 }
241 
242 static int __kmp_test_nested_tas_lock_with_checks(kmp_tas_lock_t *lck,
243                                                   kmp_int32 gtid) {
244   char const *const func = "omp_test_nest_lock";
245   if (!__kmp_is_tas_lock_nestable(lck)) {
246     KMP_FATAL(LockSimpleUsedAsNestable, func);
247   }
248   return __kmp_test_nested_tas_lock(lck, gtid);
249 }
250 
251 int __kmp_release_nested_tas_lock(kmp_tas_lock_t *lck, kmp_int32 gtid) {
252   KMP_DEBUG_ASSERT(gtid >= 0);
253 
254   KMP_MB();
255   if (--(lck->lk.depth_locked) == 0) {
256     __kmp_release_tas_lock(lck, gtid);
257     return KMP_LOCK_RELEASED;
258   }
259   return KMP_LOCK_STILL_HELD;
260 }
261 
262 static int __kmp_release_nested_tas_lock_with_checks(kmp_tas_lock_t *lck,
263                                                      kmp_int32 gtid) {
264   char const *const func = "omp_unset_nest_lock";
265   KMP_MB(); /* in case another processor initialized lock */
266   if (!__kmp_is_tas_lock_nestable(lck)) {
267     KMP_FATAL(LockSimpleUsedAsNestable, func);
268   }
269   if (__kmp_get_tas_lock_owner(lck) == -1) {
270     KMP_FATAL(LockUnsettingFree, func);
271   }
272   if (__kmp_get_tas_lock_owner(lck) != gtid) {
273     KMP_FATAL(LockUnsettingSetByAnother, func);
274   }
275   return __kmp_release_nested_tas_lock(lck, gtid);
276 }
277 
278 void __kmp_init_nested_tas_lock(kmp_tas_lock_t *lck) {
279   __kmp_init_tas_lock(lck);
280   lck->lk.depth_locked = 0; // >= 0 for nestable locks, -1 for simple locks
281 }
282 
283 void __kmp_destroy_nested_tas_lock(kmp_tas_lock_t *lck) {
284   __kmp_destroy_tas_lock(lck);
285   lck->lk.depth_locked = 0;
286 }
287 
288 static void __kmp_destroy_nested_tas_lock_with_checks(kmp_tas_lock_t *lck) {
289   char const *const func = "omp_destroy_nest_lock";
290   if (!__kmp_is_tas_lock_nestable(lck)) {
291     KMP_FATAL(LockSimpleUsedAsNestable, func);
292   }
293   if (__kmp_get_tas_lock_owner(lck) != -1) {
294     KMP_FATAL(LockStillOwned, func);
295   }
296   __kmp_destroy_nested_tas_lock(lck);
297 }
298 
299 #if KMP_USE_FUTEX
300 
301 /* ------------------------------------------------------------------------ */
302 /* futex locks */
303 
304 // futex locks are really just test and set locks, with a different method
305 // of handling contention.  They take the same amount of space as test and
306 // set locks, and are allocated the same way (i.e. use the area allocated by
307 // the compiler for non-nested locks / allocate nested locks on the heap).
308 
309 static kmp_int32 __kmp_get_futex_lock_owner(kmp_futex_lock_t *lck) {
310   return KMP_LOCK_STRIP((TCR_4(lck->lk.poll) >> 1)) - 1;
311 }
312 
313 static inline bool __kmp_is_futex_lock_nestable(kmp_futex_lock_t *lck) {
314   return lck->lk.depth_locked != -1;
315 }
316 
317 __forceinline static int
318 __kmp_acquire_futex_lock_timed_template(kmp_futex_lock_t *lck, kmp_int32 gtid) {
319   kmp_int32 gtid_code = (gtid + 1) << 1;
320 
321   KMP_MB();
322 
323 #ifdef USE_LOCK_PROFILE
324   kmp_uint32 curr = KMP_LOCK_STRIP(TCR_4(lck->lk.poll));
325   if ((curr != 0) && (curr != gtid_code))
326     __kmp_printf("LOCK CONTENTION: %p\n", lck);
327 /* else __kmp_printf( "." );*/
328 #endif /* USE_LOCK_PROFILE */
329 
330   KMP_FSYNC_PREPARE(lck);
331   KA_TRACE(1000, ("__kmp_acquire_futex_lock: lck:%p(0x%x), T#%d entering\n",
332                   lck, lck->lk.poll, gtid));
333 
334   kmp_int32 poll_val;
335 
336   while ((poll_val = KMP_COMPARE_AND_STORE_RET32(
337               &(lck->lk.poll), KMP_LOCK_FREE(futex),
338               KMP_LOCK_BUSY(gtid_code, futex))) != KMP_LOCK_FREE(futex)) {
339 
340     kmp_int32 cond = KMP_LOCK_STRIP(poll_val) & 1;
341     KA_TRACE(
342         1000,
343         ("__kmp_acquire_futex_lock: lck:%p, T#%d poll_val = 0x%x cond = 0x%x\n",
344          lck, gtid, poll_val, cond));
345 
346     // NOTE: if you try to use the following condition for this branch
347     //
348     // if ( poll_val & 1 == 0 )
349     //
350     // Then the 12.0 compiler has a bug where the following block will
351     // always be skipped, regardless of the value of the LSB of poll_val.
352     if (!cond) {
353       // Try to set the lsb in the poll to indicate to the owner
354       // thread that they need to wake this thread up.
355       if (!KMP_COMPARE_AND_STORE_REL32(&(lck->lk.poll), poll_val,
356                                        poll_val | KMP_LOCK_BUSY(1, futex))) {
357         KA_TRACE(
358             1000,
359             ("__kmp_acquire_futex_lock: lck:%p(0x%x), T#%d can't set bit 0\n",
360              lck, lck->lk.poll, gtid));
361         continue;
362       }
363       poll_val |= KMP_LOCK_BUSY(1, futex);
364 
365       KA_TRACE(1000,
366                ("__kmp_acquire_futex_lock: lck:%p(0x%x), T#%d bit 0 set\n", lck,
367                 lck->lk.poll, gtid));
368     }
369 
370     KA_TRACE(
371         1000,
372         ("__kmp_acquire_futex_lock: lck:%p, T#%d before futex_wait(0x%x)\n",
373          lck, gtid, poll_val));
374 
375     kmp_int32 rc;
376     if ((rc = syscall(__NR_futex, &(lck->lk.poll), FUTEX_WAIT, poll_val, NULL,
377                       NULL, 0)) != 0) {
378       KA_TRACE(1000, ("__kmp_acquire_futex_lock: lck:%p, T#%d futex_wait(0x%x) "
379                       "failed (rc=%d errno=%d)\n",
380                       lck, gtid, poll_val, rc, errno));
381       continue;
382     }
383 
384     KA_TRACE(1000,
385              ("__kmp_acquire_futex_lock: lck:%p, T#%d after futex_wait(0x%x)\n",
386               lck, gtid, poll_val));
387     // This thread has now done a successful futex wait call and was entered on
388     // the OS futex queue.  We must now perform a futex wake call when releasing
389     // the lock, as we have no idea how many other threads are in the queue.
390     gtid_code |= 1;
391   }
392 
393   KMP_FSYNC_ACQUIRED(lck);
394   KA_TRACE(1000, ("__kmp_acquire_futex_lock: lck:%p(0x%x), T#%d exiting\n", lck,
395                   lck->lk.poll, gtid));
396   return KMP_LOCK_ACQUIRED_FIRST;
397 }
398 
399 int __kmp_acquire_futex_lock(kmp_futex_lock_t *lck, kmp_int32 gtid) {
400   int retval = __kmp_acquire_futex_lock_timed_template(lck, gtid);
401   ANNOTATE_FUTEX_ACQUIRED(lck);
402   return retval;
403 }
404 
405 static int __kmp_acquire_futex_lock_with_checks(kmp_futex_lock_t *lck,
406                                                 kmp_int32 gtid) {
407   char const *const func = "omp_set_lock";
408   if ((sizeof(kmp_futex_lock_t) <= OMP_LOCK_T_SIZE) &&
409       __kmp_is_futex_lock_nestable(lck)) {
410     KMP_FATAL(LockNestableUsedAsSimple, func);
411   }
412   if ((gtid >= 0) && (__kmp_get_futex_lock_owner(lck) == gtid)) {
413     KMP_FATAL(LockIsAlreadyOwned, func);
414   }
415   return __kmp_acquire_futex_lock(lck, gtid);
416 }
417 
418 int __kmp_test_futex_lock(kmp_futex_lock_t *lck, kmp_int32 gtid) {
419   if (KMP_COMPARE_AND_STORE_ACQ32(&(lck->lk.poll), KMP_LOCK_FREE(futex),
420                                   KMP_LOCK_BUSY((gtid + 1) << 1, futex))) {
421     KMP_FSYNC_ACQUIRED(lck);
422     return TRUE;
423   }
424   return FALSE;
425 }
426 
427 static int __kmp_test_futex_lock_with_checks(kmp_futex_lock_t *lck,
428                                              kmp_int32 gtid) {
429   char const *const func = "omp_test_lock";
430   if ((sizeof(kmp_futex_lock_t) <= OMP_LOCK_T_SIZE) &&
431       __kmp_is_futex_lock_nestable(lck)) {
432     KMP_FATAL(LockNestableUsedAsSimple, func);
433   }
434   return __kmp_test_futex_lock(lck, gtid);
435 }
436 
437 int __kmp_release_futex_lock(kmp_futex_lock_t *lck, kmp_int32 gtid) {
438   KMP_MB(); /* Flush all pending memory write invalidates.  */
439 
440   KA_TRACE(1000, ("__kmp_release_futex_lock: lck:%p(0x%x), T#%d entering\n",
441                   lck, lck->lk.poll, gtid));
442 
443   KMP_FSYNC_RELEASING(lck);
444   ANNOTATE_FUTEX_RELEASED(lck);
445 
446   kmp_int32 poll_val = KMP_XCHG_FIXED32(&(lck->lk.poll), KMP_LOCK_FREE(futex));
447 
448   KA_TRACE(1000,
449            ("__kmp_release_futex_lock: lck:%p, T#%d released poll_val = 0x%x\n",
450             lck, gtid, poll_val));
451 
452   if (KMP_LOCK_STRIP(poll_val) & 1) {
453     KA_TRACE(1000,
454              ("__kmp_release_futex_lock: lck:%p, T#%d futex_wake 1 thread\n",
455               lck, gtid));
456     syscall(__NR_futex, &(lck->lk.poll), FUTEX_WAKE, KMP_LOCK_BUSY(1, futex),
457             NULL, NULL, 0);
458   }
459 
460   KMP_MB(); /* Flush all pending memory write invalidates.  */
461 
462   KA_TRACE(1000, ("__kmp_release_futex_lock: lck:%p(0x%x), T#%d exiting\n", lck,
463                   lck->lk.poll, gtid));
464 
465   KMP_YIELD_OVERSUB();
466   return KMP_LOCK_RELEASED;
467 }
468 
469 static int __kmp_release_futex_lock_with_checks(kmp_futex_lock_t *lck,
470                                                 kmp_int32 gtid) {
471   char const *const func = "omp_unset_lock";
472   KMP_MB(); /* in case another processor initialized lock */
473   if ((sizeof(kmp_futex_lock_t) <= OMP_LOCK_T_SIZE) &&
474       __kmp_is_futex_lock_nestable(lck)) {
475     KMP_FATAL(LockNestableUsedAsSimple, func);
476   }
477   if (__kmp_get_futex_lock_owner(lck) == -1) {
478     KMP_FATAL(LockUnsettingFree, func);
479   }
480   if ((gtid >= 0) && (__kmp_get_futex_lock_owner(lck) >= 0) &&
481       (__kmp_get_futex_lock_owner(lck) != gtid)) {
482     KMP_FATAL(LockUnsettingSetByAnother, func);
483   }
484   return __kmp_release_futex_lock(lck, gtid);
485 }
486 
487 void __kmp_init_futex_lock(kmp_futex_lock_t *lck) {
488   TCW_4(lck->lk.poll, KMP_LOCK_FREE(futex));
489 }
490 
491 void __kmp_destroy_futex_lock(kmp_futex_lock_t *lck) { lck->lk.poll = 0; }
492 
493 static void __kmp_destroy_futex_lock_with_checks(kmp_futex_lock_t *lck) {
494   char const *const func = "omp_destroy_lock";
495   if ((sizeof(kmp_futex_lock_t) <= OMP_LOCK_T_SIZE) &&
496       __kmp_is_futex_lock_nestable(lck)) {
497     KMP_FATAL(LockNestableUsedAsSimple, func);
498   }
499   if (__kmp_get_futex_lock_owner(lck) != -1) {
500     KMP_FATAL(LockStillOwned, func);
501   }
502   __kmp_destroy_futex_lock(lck);
503 }
504 
505 // nested futex locks
506 
507 int __kmp_acquire_nested_futex_lock(kmp_futex_lock_t *lck, kmp_int32 gtid) {
508   KMP_DEBUG_ASSERT(gtid >= 0);
509 
510   if (__kmp_get_futex_lock_owner(lck) == gtid) {
511     lck->lk.depth_locked += 1;
512     return KMP_LOCK_ACQUIRED_NEXT;
513   } else {
514     __kmp_acquire_futex_lock_timed_template(lck, gtid);
515     ANNOTATE_FUTEX_ACQUIRED(lck);
516     lck->lk.depth_locked = 1;
517     return KMP_LOCK_ACQUIRED_FIRST;
518   }
519 }
520 
521 static int __kmp_acquire_nested_futex_lock_with_checks(kmp_futex_lock_t *lck,
522                                                        kmp_int32 gtid) {
523   char const *const func = "omp_set_nest_lock";
524   if (!__kmp_is_futex_lock_nestable(lck)) {
525     KMP_FATAL(LockSimpleUsedAsNestable, func);
526   }
527   return __kmp_acquire_nested_futex_lock(lck, gtid);
528 }
529 
530 int __kmp_test_nested_futex_lock(kmp_futex_lock_t *lck, kmp_int32 gtid) {
531   int retval;
532 
533   KMP_DEBUG_ASSERT(gtid >= 0);
534 
535   if (__kmp_get_futex_lock_owner(lck) == gtid) {
536     retval = ++lck->lk.depth_locked;
537   } else if (!__kmp_test_futex_lock(lck, gtid)) {
538     retval = 0;
539   } else {
540     KMP_MB();
541     retval = lck->lk.depth_locked = 1;
542   }
543   return retval;
544 }
545 
546 static int __kmp_test_nested_futex_lock_with_checks(kmp_futex_lock_t *lck,
547                                                     kmp_int32 gtid) {
548   char const *const func = "omp_test_nest_lock";
549   if (!__kmp_is_futex_lock_nestable(lck)) {
550     KMP_FATAL(LockSimpleUsedAsNestable, func);
551   }
552   return __kmp_test_nested_futex_lock(lck, gtid);
553 }
554 
555 int __kmp_release_nested_futex_lock(kmp_futex_lock_t *lck, kmp_int32 gtid) {
556   KMP_DEBUG_ASSERT(gtid >= 0);
557 
558   KMP_MB();
559   if (--(lck->lk.depth_locked) == 0) {
560     __kmp_release_futex_lock(lck, gtid);
561     return KMP_LOCK_RELEASED;
562   }
563   return KMP_LOCK_STILL_HELD;
564 }
565 
566 static int __kmp_release_nested_futex_lock_with_checks(kmp_futex_lock_t *lck,
567                                                        kmp_int32 gtid) {
568   char const *const func = "omp_unset_nest_lock";
569   KMP_MB(); /* in case another processor initialized lock */
570   if (!__kmp_is_futex_lock_nestable(lck)) {
571     KMP_FATAL(LockSimpleUsedAsNestable, func);
572   }
573   if (__kmp_get_futex_lock_owner(lck) == -1) {
574     KMP_FATAL(LockUnsettingFree, func);
575   }
576   if (__kmp_get_futex_lock_owner(lck) != gtid) {
577     KMP_FATAL(LockUnsettingSetByAnother, func);
578   }
579   return __kmp_release_nested_futex_lock(lck, gtid);
580 }
581 
582 void __kmp_init_nested_futex_lock(kmp_futex_lock_t *lck) {
583   __kmp_init_futex_lock(lck);
584   lck->lk.depth_locked = 0; // >= 0 for nestable locks, -1 for simple locks
585 }
586 
587 void __kmp_destroy_nested_futex_lock(kmp_futex_lock_t *lck) {
588   __kmp_destroy_futex_lock(lck);
589   lck->lk.depth_locked = 0;
590 }
591 
592 static void __kmp_destroy_nested_futex_lock_with_checks(kmp_futex_lock_t *lck) {
593   char const *const func = "omp_destroy_nest_lock";
594   if (!__kmp_is_futex_lock_nestable(lck)) {
595     KMP_FATAL(LockSimpleUsedAsNestable, func);
596   }
597   if (__kmp_get_futex_lock_owner(lck) != -1) {
598     KMP_FATAL(LockStillOwned, func);
599   }
600   __kmp_destroy_nested_futex_lock(lck);
601 }
602 
603 #endif // KMP_USE_FUTEX
604 
605 /* ------------------------------------------------------------------------ */
606 /* ticket (bakery) locks */
607 
608 static kmp_int32 __kmp_get_ticket_lock_owner(kmp_ticket_lock_t *lck) {
609   return std::atomic_load_explicit(&lck->lk.owner_id,
610                                    std::memory_order_relaxed) -
611          1;
612 }
613 
614 static inline bool __kmp_is_ticket_lock_nestable(kmp_ticket_lock_t *lck) {
615   return std::atomic_load_explicit(&lck->lk.depth_locked,
616                                    std::memory_order_relaxed) != -1;
617 }
618 
619 static kmp_uint32 __kmp_bakery_check(void *now_serving, kmp_uint32 my_ticket) {
620   return std::atomic_load_explicit((std::atomic<unsigned> *)now_serving,
621                                    std::memory_order_acquire) == my_ticket;
622 }
623 
624 __forceinline static int
625 __kmp_acquire_ticket_lock_timed_template(kmp_ticket_lock_t *lck,
626                                          kmp_int32 gtid) {
627   kmp_uint32 my_ticket = std::atomic_fetch_add_explicit(
628       &lck->lk.next_ticket, 1U, std::memory_order_relaxed);
629 
630 #ifdef USE_LOCK_PROFILE
631   if (std::atomic_load_explicit(&lck->lk.now_serving,
632                                 std::memory_order_relaxed) != my_ticket)
633     __kmp_printf("LOCK CONTENTION: %p\n", lck);
634 /* else __kmp_printf( "." );*/
635 #endif /* USE_LOCK_PROFILE */
636 
637   if (std::atomic_load_explicit(&lck->lk.now_serving,
638                                 std::memory_order_acquire) == my_ticket) {
639     return KMP_LOCK_ACQUIRED_FIRST;
640   }
641   KMP_WAIT_PTR(&lck->lk.now_serving, my_ticket, __kmp_bakery_check, lck);
642   return KMP_LOCK_ACQUIRED_FIRST;
643 }
644 
645 int __kmp_acquire_ticket_lock(kmp_ticket_lock_t *lck, kmp_int32 gtid) {
646   int retval = __kmp_acquire_ticket_lock_timed_template(lck, gtid);
647   ANNOTATE_TICKET_ACQUIRED(lck);
648   return retval;
649 }
650 
651 static int __kmp_acquire_ticket_lock_with_checks(kmp_ticket_lock_t *lck,
652                                                  kmp_int32 gtid) {
653   char const *const func = "omp_set_lock";
654 
655   if (!std::atomic_load_explicit(&lck->lk.initialized,
656                                  std::memory_order_relaxed)) {
657     KMP_FATAL(LockIsUninitialized, func);
658   }
659   if (lck->lk.self != lck) {
660     KMP_FATAL(LockIsUninitialized, func);
661   }
662   if (__kmp_is_ticket_lock_nestable(lck)) {
663     KMP_FATAL(LockNestableUsedAsSimple, func);
664   }
665   if ((gtid >= 0) && (__kmp_get_ticket_lock_owner(lck) == gtid)) {
666     KMP_FATAL(LockIsAlreadyOwned, func);
667   }
668 
669   __kmp_acquire_ticket_lock(lck, gtid);
670 
671   std::atomic_store_explicit(&lck->lk.owner_id, gtid + 1,
672                              std::memory_order_relaxed);
673   return KMP_LOCK_ACQUIRED_FIRST;
674 }
675 
676 int __kmp_test_ticket_lock(kmp_ticket_lock_t *lck, kmp_int32 gtid) {
677   kmp_uint32 my_ticket = std::atomic_load_explicit(&lck->lk.next_ticket,
678                                                    std::memory_order_relaxed);
679 
680   if (std::atomic_load_explicit(&lck->lk.now_serving,
681                                 std::memory_order_relaxed) == my_ticket) {
682     kmp_uint32 next_ticket = my_ticket + 1;
683     if (std::atomic_compare_exchange_strong_explicit(
684             &lck->lk.next_ticket, &my_ticket, next_ticket,
685             std::memory_order_acquire, std::memory_order_acquire)) {
686       return TRUE;
687     }
688   }
689   return FALSE;
690 }
691 
692 static int __kmp_test_ticket_lock_with_checks(kmp_ticket_lock_t *lck,
693                                               kmp_int32 gtid) {
694   char const *const func = "omp_test_lock";
695 
696   if (!std::atomic_load_explicit(&lck->lk.initialized,
697                                  std::memory_order_relaxed)) {
698     KMP_FATAL(LockIsUninitialized, func);
699   }
700   if (lck->lk.self != lck) {
701     KMP_FATAL(LockIsUninitialized, func);
702   }
703   if (__kmp_is_ticket_lock_nestable(lck)) {
704     KMP_FATAL(LockNestableUsedAsSimple, func);
705   }
706 
707   int retval = __kmp_test_ticket_lock(lck, gtid);
708 
709   if (retval) {
710     std::atomic_store_explicit(&lck->lk.owner_id, gtid + 1,
711                                std::memory_order_relaxed);
712   }
713   return retval;
714 }
715 
716 int __kmp_release_ticket_lock(kmp_ticket_lock_t *lck, kmp_int32 gtid) {
717   kmp_uint32 distance = std::atomic_load_explicit(&lck->lk.next_ticket,
718                                                   std::memory_order_relaxed) -
719                         std::atomic_load_explicit(&lck->lk.now_serving,
720                                                   std::memory_order_relaxed);
721 
722   ANNOTATE_TICKET_RELEASED(lck);
723   std::atomic_fetch_add_explicit(&lck->lk.now_serving, 1U,
724                                  std::memory_order_release);
725 
726   KMP_YIELD(distance >
727             (kmp_uint32)(__kmp_avail_proc ? __kmp_avail_proc : __kmp_xproc));
728   return KMP_LOCK_RELEASED;
729 }
730 
731 static int __kmp_release_ticket_lock_with_checks(kmp_ticket_lock_t *lck,
732                                                  kmp_int32 gtid) {
733   char const *const func = "omp_unset_lock";
734 
735   if (!std::atomic_load_explicit(&lck->lk.initialized,
736                                  std::memory_order_relaxed)) {
737     KMP_FATAL(LockIsUninitialized, func);
738   }
739   if (lck->lk.self != lck) {
740     KMP_FATAL(LockIsUninitialized, func);
741   }
742   if (__kmp_is_ticket_lock_nestable(lck)) {
743     KMP_FATAL(LockNestableUsedAsSimple, func);
744   }
745   if (__kmp_get_ticket_lock_owner(lck) == -1) {
746     KMP_FATAL(LockUnsettingFree, func);
747   }
748   if ((gtid >= 0) && (__kmp_get_ticket_lock_owner(lck) >= 0) &&
749       (__kmp_get_ticket_lock_owner(lck) != gtid)) {
750     KMP_FATAL(LockUnsettingSetByAnother, func);
751   }
752   std::atomic_store_explicit(&lck->lk.owner_id, 0, std::memory_order_relaxed);
753   return __kmp_release_ticket_lock(lck, gtid);
754 }
755 
756 void __kmp_init_ticket_lock(kmp_ticket_lock_t *lck) {
757   lck->lk.location = NULL;
758   lck->lk.self = lck;
759   std::atomic_store_explicit(&lck->lk.next_ticket, 0U,
760                              std::memory_order_relaxed);
761   std::atomic_store_explicit(&lck->lk.now_serving, 0U,
762                              std::memory_order_relaxed);
763   std::atomic_store_explicit(
764       &lck->lk.owner_id, 0,
765       std::memory_order_relaxed); // no thread owns the lock.
766   std::atomic_store_explicit(
767       &lck->lk.depth_locked, -1,
768       std::memory_order_relaxed); // -1 => not a nested lock.
769   std::atomic_store_explicit(&lck->lk.initialized, true,
770                              std::memory_order_release);
771 }
772 
773 void __kmp_destroy_ticket_lock(kmp_ticket_lock_t *lck) {
774   std::atomic_store_explicit(&lck->lk.initialized, false,
775                              std::memory_order_release);
776   lck->lk.self = NULL;
777   lck->lk.location = NULL;
778   std::atomic_store_explicit(&lck->lk.next_ticket, 0U,
779                              std::memory_order_relaxed);
780   std::atomic_store_explicit(&lck->lk.now_serving, 0U,
781                              std::memory_order_relaxed);
782   std::atomic_store_explicit(&lck->lk.owner_id, 0, std::memory_order_relaxed);
783   std::atomic_store_explicit(&lck->lk.depth_locked, -1,
784                              std::memory_order_relaxed);
785 }
786 
787 static void __kmp_destroy_ticket_lock_with_checks(kmp_ticket_lock_t *lck) {
788   char const *const func = "omp_destroy_lock";
789 
790   if (!std::atomic_load_explicit(&lck->lk.initialized,
791                                  std::memory_order_relaxed)) {
792     KMP_FATAL(LockIsUninitialized, func);
793   }
794   if (lck->lk.self != lck) {
795     KMP_FATAL(LockIsUninitialized, func);
796   }
797   if (__kmp_is_ticket_lock_nestable(lck)) {
798     KMP_FATAL(LockNestableUsedAsSimple, func);
799   }
800   if (__kmp_get_ticket_lock_owner(lck) != -1) {
801     KMP_FATAL(LockStillOwned, func);
802   }
803   __kmp_destroy_ticket_lock(lck);
804 }
805 
806 // nested ticket locks
807 
808 int __kmp_acquire_nested_ticket_lock(kmp_ticket_lock_t *lck, kmp_int32 gtid) {
809   KMP_DEBUG_ASSERT(gtid >= 0);
810 
811   if (__kmp_get_ticket_lock_owner(lck) == gtid) {
812     std::atomic_fetch_add_explicit(&lck->lk.depth_locked, 1,
813                                    std::memory_order_relaxed);
814     return KMP_LOCK_ACQUIRED_NEXT;
815   } else {
816     __kmp_acquire_ticket_lock_timed_template(lck, gtid);
817     ANNOTATE_TICKET_ACQUIRED(lck);
818     std::atomic_store_explicit(&lck->lk.depth_locked, 1,
819                                std::memory_order_relaxed);
820     std::atomic_store_explicit(&lck->lk.owner_id, gtid + 1,
821                                std::memory_order_relaxed);
822     return KMP_LOCK_ACQUIRED_FIRST;
823   }
824 }
825 
826 static int __kmp_acquire_nested_ticket_lock_with_checks(kmp_ticket_lock_t *lck,
827                                                         kmp_int32 gtid) {
828   char const *const func = "omp_set_nest_lock";
829 
830   if (!std::atomic_load_explicit(&lck->lk.initialized,
831                                  std::memory_order_relaxed)) {
832     KMP_FATAL(LockIsUninitialized, func);
833   }
834   if (lck->lk.self != lck) {
835     KMP_FATAL(LockIsUninitialized, func);
836   }
837   if (!__kmp_is_ticket_lock_nestable(lck)) {
838     KMP_FATAL(LockSimpleUsedAsNestable, func);
839   }
840   return __kmp_acquire_nested_ticket_lock(lck, gtid);
841 }
842 
843 int __kmp_test_nested_ticket_lock(kmp_ticket_lock_t *lck, kmp_int32 gtid) {
844   int retval;
845 
846   KMP_DEBUG_ASSERT(gtid >= 0);
847 
848   if (__kmp_get_ticket_lock_owner(lck) == gtid) {
849     retval = std::atomic_fetch_add_explicit(&lck->lk.depth_locked, 1,
850                                             std::memory_order_relaxed) +
851              1;
852   } else if (!__kmp_test_ticket_lock(lck, gtid)) {
853     retval = 0;
854   } else {
855     std::atomic_store_explicit(&lck->lk.depth_locked, 1,
856                                std::memory_order_relaxed);
857     std::atomic_store_explicit(&lck->lk.owner_id, gtid + 1,
858                                std::memory_order_relaxed);
859     retval = 1;
860   }
861   return retval;
862 }
863 
864 static int __kmp_test_nested_ticket_lock_with_checks(kmp_ticket_lock_t *lck,
865                                                      kmp_int32 gtid) {
866   char const *const func = "omp_test_nest_lock";
867 
868   if (!std::atomic_load_explicit(&lck->lk.initialized,
869                                  std::memory_order_relaxed)) {
870     KMP_FATAL(LockIsUninitialized, func);
871   }
872   if (lck->lk.self != lck) {
873     KMP_FATAL(LockIsUninitialized, func);
874   }
875   if (!__kmp_is_ticket_lock_nestable(lck)) {
876     KMP_FATAL(LockSimpleUsedAsNestable, func);
877   }
878   return __kmp_test_nested_ticket_lock(lck, gtid);
879 }
880 
881 int __kmp_release_nested_ticket_lock(kmp_ticket_lock_t *lck, kmp_int32 gtid) {
882   KMP_DEBUG_ASSERT(gtid >= 0);
883 
884   if ((std::atomic_fetch_add_explicit(&lck->lk.depth_locked, -1,
885                                       std::memory_order_relaxed) -
886        1) == 0) {
887     std::atomic_store_explicit(&lck->lk.owner_id, 0, std::memory_order_relaxed);
888     __kmp_release_ticket_lock(lck, gtid);
889     return KMP_LOCK_RELEASED;
890   }
891   return KMP_LOCK_STILL_HELD;
892 }
893 
894 static int __kmp_release_nested_ticket_lock_with_checks(kmp_ticket_lock_t *lck,
895                                                         kmp_int32 gtid) {
896   char const *const func = "omp_unset_nest_lock";
897 
898   if (!std::atomic_load_explicit(&lck->lk.initialized,
899                                  std::memory_order_relaxed)) {
900     KMP_FATAL(LockIsUninitialized, func);
901   }
902   if (lck->lk.self != lck) {
903     KMP_FATAL(LockIsUninitialized, func);
904   }
905   if (!__kmp_is_ticket_lock_nestable(lck)) {
906     KMP_FATAL(LockSimpleUsedAsNestable, func);
907   }
908   if (__kmp_get_ticket_lock_owner(lck) == -1) {
909     KMP_FATAL(LockUnsettingFree, func);
910   }
911   if (__kmp_get_ticket_lock_owner(lck) != gtid) {
912     KMP_FATAL(LockUnsettingSetByAnother, func);
913   }
914   return __kmp_release_nested_ticket_lock(lck, gtid);
915 }
916 
917 void __kmp_init_nested_ticket_lock(kmp_ticket_lock_t *lck) {
918   __kmp_init_ticket_lock(lck);
919   std::atomic_store_explicit(&lck->lk.depth_locked, 0,
920                              std::memory_order_relaxed);
921   // >= 0 for nestable locks, -1 for simple locks
922 }
923 
924 void __kmp_destroy_nested_ticket_lock(kmp_ticket_lock_t *lck) {
925   __kmp_destroy_ticket_lock(lck);
926   std::atomic_store_explicit(&lck->lk.depth_locked, 0,
927                              std::memory_order_relaxed);
928 }
929 
930 static void
931 __kmp_destroy_nested_ticket_lock_with_checks(kmp_ticket_lock_t *lck) {
932   char const *const func = "omp_destroy_nest_lock";
933 
934   if (!std::atomic_load_explicit(&lck->lk.initialized,
935                                  std::memory_order_relaxed)) {
936     KMP_FATAL(LockIsUninitialized, func);
937   }
938   if (lck->lk.self != lck) {
939     KMP_FATAL(LockIsUninitialized, func);
940   }
941   if (!__kmp_is_ticket_lock_nestable(lck)) {
942     KMP_FATAL(LockSimpleUsedAsNestable, func);
943   }
944   if (__kmp_get_ticket_lock_owner(lck) != -1) {
945     KMP_FATAL(LockStillOwned, func);
946   }
947   __kmp_destroy_nested_ticket_lock(lck);
948 }
949 
950 // access functions to fields which don't exist for all lock kinds.
951 
952 static const ident_t *__kmp_get_ticket_lock_location(kmp_ticket_lock_t *lck) {
953   return lck->lk.location;
954 }
955 
956 static void __kmp_set_ticket_lock_location(kmp_ticket_lock_t *lck,
957                                            const ident_t *loc) {
958   lck->lk.location = loc;
959 }
960 
961 static kmp_lock_flags_t __kmp_get_ticket_lock_flags(kmp_ticket_lock_t *lck) {
962   return lck->lk.flags;
963 }
964 
965 static void __kmp_set_ticket_lock_flags(kmp_ticket_lock_t *lck,
966                                         kmp_lock_flags_t flags) {
967   lck->lk.flags = flags;
968 }
969 
970 /* ------------------------------------------------------------------------ */
971 /* queuing locks */
972 
973 /* First the states
974    (head,tail) =              0, 0  means lock is unheld, nobody on queue
975                  UINT_MAX or -1, 0  means lock is held, nobody on queue
976                               h, h  means lock held or about to transition,
977                                     1 element on queue
978                               h, t  h <> t, means lock is held or about to
979                                     transition, >1 elements on queue
980 
981    Now the transitions
982       Acquire(0,0)  = -1 ,0
983       Release(0,0)  = Error
984       Acquire(-1,0) =  h ,h    h > 0
985       Release(-1,0) =  0 ,0
986       Acquire(h,h)  =  h ,t    h > 0, t > 0, h <> t
987       Release(h,h)  = -1 ,0    h > 0
988       Acquire(h,t)  =  h ,t'   h > 0, t > 0, t' > 0, h <> t, h <> t', t <> t'
989       Release(h,t)  =  h',t    h > 0, t > 0, h <> t, h <> h', h' maybe = t
990 
991    And pictorially
992 
993            +-----+
994            | 0, 0|------- release -------> Error
995            +-----+
996              |  ^
997       acquire|  |release
998              |  |
999              |  |
1000              v  |
1001            +-----+
1002            |-1, 0|
1003            +-----+
1004              |  ^
1005       acquire|  |release
1006              |  |
1007              |  |
1008              v  |
1009            +-----+
1010            | h, h|
1011            +-----+
1012              |  ^
1013       acquire|  |release
1014              |  |
1015              |  |
1016              v  |
1017            +-----+
1018            | h, t|----- acquire, release loopback ---+
1019            +-----+                                   |
1020                 ^                                    |
1021                 |                                    |
1022                 +------------------------------------+
1023  */
1024 
1025 #ifdef DEBUG_QUEUING_LOCKS
1026 
1027 /* Stuff for circular trace buffer */
1028 #define TRACE_BUF_ELE 1024
1029 static char traces[TRACE_BUF_ELE][128] = {0};
1030 static int tc = 0;
1031 #define TRACE_LOCK(X, Y)                                                       \
1032   KMP_SNPRINTF(traces[tc++ % TRACE_BUF_ELE], 128, "t%d at %s\n", X, Y);
1033 #define TRACE_LOCK_T(X, Y, Z)                                                  \
1034   KMP_SNPRINTF(traces[tc++ % TRACE_BUF_ELE], 128, "t%d at %s%d\n", X, Y, Z);
1035 #define TRACE_LOCK_HT(X, Y, Z, Q)                                              \
1036   KMP_SNPRINTF(traces[tc++ % TRACE_BUF_ELE], 128, "t%d at %s %d,%d\n", X, Y,   \
1037                Z, Q);
1038 
1039 static void __kmp_dump_queuing_lock(kmp_info_t *this_thr, kmp_int32 gtid,
1040                                     kmp_queuing_lock_t *lck, kmp_int32 head_id,
1041                                     kmp_int32 tail_id) {
1042   kmp_int32 t, i;
1043 
1044   __kmp_printf_no_lock("\n__kmp_dump_queuing_lock: TRACE BEGINS HERE! \n");
1045 
1046   i = tc % TRACE_BUF_ELE;
1047   __kmp_printf_no_lock("%s\n", traces[i]);
1048   i = (i + 1) % TRACE_BUF_ELE;
1049   while (i != (tc % TRACE_BUF_ELE)) {
1050     __kmp_printf_no_lock("%s", traces[i]);
1051     i = (i + 1) % TRACE_BUF_ELE;
1052   }
1053   __kmp_printf_no_lock("\n");
1054 
1055   __kmp_printf_no_lock("\n__kmp_dump_queuing_lock: gtid+1:%d, spin_here:%d, "
1056                        "next_wait:%d, head_id:%d, tail_id:%d\n",
1057                        gtid + 1, this_thr->th.th_spin_here,
1058                        this_thr->th.th_next_waiting, head_id, tail_id);
1059 
1060   __kmp_printf_no_lock("\t\thead: %d ", lck->lk.head_id);
1061 
1062   if (lck->lk.head_id >= 1) {
1063     t = __kmp_threads[lck->lk.head_id - 1]->th.th_next_waiting;
1064     while (t > 0) {
1065       __kmp_printf_no_lock("-> %d ", t);
1066       t = __kmp_threads[t - 1]->th.th_next_waiting;
1067     }
1068   }
1069   __kmp_printf_no_lock(";  tail: %d ", lck->lk.tail_id);
1070   __kmp_printf_no_lock("\n\n");
1071 }
1072 
1073 #endif /* DEBUG_QUEUING_LOCKS */
1074 
1075 static kmp_int32 __kmp_get_queuing_lock_owner(kmp_queuing_lock_t *lck) {
1076   return TCR_4(lck->lk.owner_id) - 1;
1077 }
1078 
1079 static inline bool __kmp_is_queuing_lock_nestable(kmp_queuing_lock_t *lck) {
1080   return lck->lk.depth_locked != -1;
1081 }
1082 
1083 /* Acquire a lock using a the queuing lock implementation */
1084 template <bool takeTime>
1085 /* [TLW] The unused template above is left behind because of what BEB believes
1086    is a potential compiler problem with __forceinline. */
1087 __forceinline static int
1088 __kmp_acquire_queuing_lock_timed_template(kmp_queuing_lock_t *lck,
1089                                           kmp_int32 gtid) {
1090   kmp_info_t *this_thr = __kmp_thread_from_gtid(gtid);
1091   volatile kmp_int32 *head_id_p = &lck->lk.head_id;
1092   volatile kmp_int32 *tail_id_p = &lck->lk.tail_id;
1093   volatile kmp_uint32 *spin_here_p;
1094   kmp_int32 need_mf = 1;
1095 
1096 #if OMPT_SUPPORT
1097   ompt_state_t prev_state = ompt_state_undefined;
1098 #endif
1099 
1100   KA_TRACE(1000,
1101            ("__kmp_acquire_queuing_lock: lck:%p, T#%d entering\n", lck, gtid));
1102 
1103   KMP_FSYNC_PREPARE(lck);
1104   KMP_DEBUG_ASSERT(this_thr != NULL);
1105   spin_here_p = &this_thr->th.th_spin_here;
1106 
1107 #ifdef DEBUG_QUEUING_LOCKS
1108   TRACE_LOCK(gtid + 1, "acq ent");
1109   if (*spin_here_p)
1110     __kmp_dump_queuing_lock(this_thr, gtid, lck, *head_id_p, *tail_id_p);
1111   if (this_thr->th.th_next_waiting != 0)
1112     __kmp_dump_queuing_lock(this_thr, gtid, lck, *head_id_p, *tail_id_p);
1113 #endif
1114   KMP_DEBUG_ASSERT(!*spin_here_p);
1115   KMP_DEBUG_ASSERT(this_thr->th.th_next_waiting == 0);
1116 
1117   /* The following st.rel to spin_here_p needs to precede the cmpxchg.acq to
1118      head_id_p that may follow, not just in execution order, but also in
1119      visibility order. This way, when a releasing thread observes the changes to
1120      the queue by this thread, it can rightly assume that spin_here_p has
1121      already been set to TRUE, so that when it sets spin_here_p to FALSE, it is
1122      not premature.  If the releasing thread sets spin_here_p to FALSE before
1123      this thread sets it to TRUE, this thread will hang. */
1124   *spin_here_p = TRUE; /* before enqueuing to prevent race */
1125 
1126   while (1) {
1127     kmp_int32 enqueued;
1128     kmp_int32 head;
1129     kmp_int32 tail;
1130 
1131     head = *head_id_p;
1132 
1133     switch (head) {
1134 
1135     case -1: {
1136 #ifdef DEBUG_QUEUING_LOCKS
1137       tail = *tail_id_p;
1138       TRACE_LOCK_HT(gtid + 1, "acq read: ", head, tail);
1139 #endif
1140       tail = 0; /* to make sure next link asynchronously read is not set
1141                 accidentally; this assignment prevents us from entering the
1142                 if ( t > 0 ) condition in the enqueued case below, which is not
1143                 necessary for this state transition */
1144 
1145       need_mf = 0;
1146       /* try (-1,0)->(tid,tid) */
1147       enqueued = KMP_COMPARE_AND_STORE_ACQ64((volatile kmp_int64 *)tail_id_p,
1148                                              KMP_PACK_64(-1, 0),
1149                                              KMP_PACK_64(gtid + 1, gtid + 1));
1150 #ifdef DEBUG_QUEUING_LOCKS
1151       if (enqueued)
1152         TRACE_LOCK(gtid + 1, "acq enq: (-1,0)->(tid,tid)");
1153 #endif
1154     } break;
1155 
1156     default: {
1157       tail = *tail_id_p;
1158       KMP_DEBUG_ASSERT(tail != gtid + 1);
1159 
1160 #ifdef DEBUG_QUEUING_LOCKS
1161       TRACE_LOCK_HT(gtid + 1, "acq read: ", head, tail);
1162 #endif
1163 
1164       if (tail == 0) {
1165         enqueued = FALSE;
1166       } else {
1167         need_mf = 0;
1168         /* try (h,t) or (h,h)->(h,tid) */
1169         enqueued = KMP_COMPARE_AND_STORE_ACQ32(tail_id_p, tail, gtid + 1);
1170 
1171 #ifdef DEBUG_QUEUING_LOCKS
1172         if (enqueued)
1173           TRACE_LOCK(gtid + 1, "acq enq: (h,t)->(h,tid)");
1174 #endif
1175       }
1176     } break;
1177 
1178     case 0: /* empty queue */
1179     {
1180       kmp_int32 grabbed_lock;
1181 
1182 #ifdef DEBUG_QUEUING_LOCKS
1183       tail = *tail_id_p;
1184       TRACE_LOCK_HT(gtid + 1, "acq read: ", head, tail);
1185 #endif
1186       /* try (0,0)->(-1,0) */
1187 
1188       /* only legal transition out of head = 0 is head = -1 with no change to
1189        * tail */
1190       grabbed_lock = KMP_COMPARE_AND_STORE_ACQ32(head_id_p, 0, -1);
1191 
1192       if (grabbed_lock) {
1193 
1194         *spin_here_p = FALSE;
1195 
1196         KA_TRACE(
1197             1000,
1198             ("__kmp_acquire_queuing_lock: lck:%p, T#%d exiting: no queuing\n",
1199              lck, gtid));
1200 #ifdef DEBUG_QUEUING_LOCKS
1201         TRACE_LOCK_HT(gtid + 1, "acq exit: ", head, 0);
1202 #endif
1203 
1204 #if OMPT_SUPPORT
1205         if (ompt_enabled.enabled && prev_state != ompt_state_undefined) {
1206           /* change the state before clearing wait_id */
1207           this_thr->th.ompt_thread_info.state = prev_state;
1208           this_thr->th.ompt_thread_info.wait_id = 0;
1209         }
1210 #endif
1211 
1212         KMP_FSYNC_ACQUIRED(lck);
1213         return KMP_LOCK_ACQUIRED_FIRST; /* lock holder cannot be on queue */
1214       }
1215       enqueued = FALSE;
1216     } break;
1217     }
1218 
1219 #if OMPT_SUPPORT
1220     if (ompt_enabled.enabled && prev_state == ompt_state_undefined) {
1221       /* this thread will spin; set wait_id before entering wait state */
1222       prev_state = this_thr->th.ompt_thread_info.state;
1223       this_thr->th.ompt_thread_info.wait_id = (uint64_t)lck;
1224       this_thr->th.ompt_thread_info.state = ompt_state_wait_lock;
1225     }
1226 #endif
1227 
1228     if (enqueued) {
1229       if (tail > 0) {
1230         kmp_info_t *tail_thr = __kmp_thread_from_gtid(tail - 1);
1231         KMP_ASSERT(tail_thr != NULL);
1232         tail_thr->th.th_next_waiting = gtid + 1;
1233         /* corresponding wait for this write in release code */
1234       }
1235       KA_TRACE(1000,
1236                ("__kmp_acquire_queuing_lock: lck:%p, T#%d waiting for lock\n",
1237                 lck, gtid));
1238 
1239       KMP_MB();
1240       // ToDo: Use __kmp_wait_sleep or similar when blocktime != inf
1241       KMP_WAIT(spin_here_p, FALSE, KMP_EQ, lck);
1242       // Synchronize writes to both runtime thread structures
1243       // and writes in user code.
1244       KMP_MB();
1245 
1246 #ifdef DEBUG_QUEUING_LOCKS
1247       TRACE_LOCK(gtid + 1, "acq spin");
1248 
1249       if (this_thr->th.th_next_waiting != 0)
1250         __kmp_dump_queuing_lock(this_thr, gtid, lck, *head_id_p, *tail_id_p);
1251 #endif
1252       KMP_DEBUG_ASSERT(this_thr->th.th_next_waiting == 0);
1253       KA_TRACE(1000, ("__kmp_acquire_queuing_lock: lck:%p, T#%d exiting: after "
1254                       "waiting on queue\n",
1255                       lck, gtid));
1256 
1257 #ifdef DEBUG_QUEUING_LOCKS
1258       TRACE_LOCK(gtid + 1, "acq exit 2");
1259 #endif
1260 
1261 #if OMPT_SUPPORT
1262       /* change the state before clearing wait_id */
1263       this_thr->th.ompt_thread_info.state = prev_state;
1264       this_thr->th.ompt_thread_info.wait_id = 0;
1265 #endif
1266 
1267       /* got lock, we were dequeued by the thread that released lock */
1268       return KMP_LOCK_ACQUIRED_FIRST;
1269     }
1270 
1271     /* Yield if number of threads > number of logical processors */
1272     /* ToDo: Not sure why this should only be in oversubscription case,
1273        maybe should be traditional YIELD_INIT/YIELD_WHEN loop */
1274     KMP_YIELD_OVERSUB();
1275 
1276 #ifdef DEBUG_QUEUING_LOCKS
1277     TRACE_LOCK(gtid + 1, "acq retry");
1278 #endif
1279   }
1280   KMP_ASSERT2(0, "should not get here");
1281   return KMP_LOCK_ACQUIRED_FIRST;
1282 }
1283 
1284 int __kmp_acquire_queuing_lock(kmp_queuing_lock_t *lck, kmp_int32 gtid) {
1285   KMP_DEBUG_ASSERT(gtid >= 0);
1286 
1287   int retval = __kmp_acquire_queuing_lock_timed_template<false>(lck, gtid);
1288   ANNOTATE_QUEUING_ACQUIRED(lck);
1289   return retval;
1290 }
1291 
1292 static int __kmp_acquire_queuing_lock_with_checks(kmp_queuing_lock_t *lck,
1293                                                   kmp_int32 gtid) {
1294   char const *const func = "omp_set_lock";
1295   if (lck->lk.initialized != lck) {
1296     KMP_FATAL(LockIsUninitialized, func);
1297   }
1298   if (__kmp_is_queuing_lock_nestable(lck)) {
1299     KMP_FATAL(LockNestableUsedAsSimple, func);
1300   }
1301   if (__kmp_get_queuing_lock_owner(lck) == gtid) {
1302     KMP_FATAL(LockIsAlreadyOwned, func);
1303   }
1304 
1305   __kmp_acquire_queuing_lock(lck, gtid);
1306 
1307   lck->lk.owner_id = gtid + 1;
1308   return KMP_LOCK_ACQUIRED_FIRST;
1309 }
1310 
1311 int __kmp_test_queuing_lock(kmp_queuing_lock_t *lck, kmp_int32 gtid) {
1312   volatile kmp_int32 *head_id_p = &lck->lk.head_id;
1313   kmp_int32 head;
1314 #ifdef KMP_DEBUG
1315   kmp_info_t *this_thr;
1316 #endif
1317 
1318   KA_TRACE(1000, ("__kmp_test_queuing_lock: T#%d entering\n", gtid));
1319   KMP_DEBUG_ASSERT(gtid >= 0);
1320 #ifdef KMP_DEBUG
1321   this_thr = __kmp_thread_from_gtid(gtid);
1322   KMP_DEBUG_ASSERT(this_thr != NULL);
1323   KMP_DEBUG_ASSERT(!this_thr->th.th_spin_here);
1324 #endif
1325 
1326   head = *head_id_p;
1327 
1328   if (head == 0) { /* nobody on queue, nobody holding */
1329     /* try (0,0)->(-1,0) */
1330     if (KMP_COMPARE_AND_STORE_ACQ32(head_id_p, 0, -1)) {
1331       KA_TRACE(1000,
1332                ("__kmp_test_queuing_lock: T#%d exiting: holding lock\n", gtid));
1333       KMP_FSYNC_ACQUIRED(lck);
1334       ANNOTATE_QUEUING_ACQUIRED(lck);
1335       return TRUE;
1336     }
1337   }
1338 
1339   KA_TRACE(1000,
1340            ("__kmp_test_queuing_lock: T#%d exiting: without lock\n", gtid));
1341   return FALSE;
1342 }
1343 
1344 static int __kmp_test_queuing_lock_with_checks(kmp_queuing_lock_t *lck,
1345                                                kmp_int32 gtid) {
1346   char const *const func = "omp_test_lock";
1347   if (lck->lk.initialized != lck) {
1348     KMP_FATAL(LockIsUninitialized, func);
1349   }
1350   if (__kmp_is_queuing_lock_nestable(lck)) {
1351     KMP_FATAL(LockNestableUsedAsSimple, func);
1352   }
1353 
1354   int retval = __kmp_test_queuing_lock(lck, gtid);
1355 
1356   if (retval) {
1357     lck->lk.owner_id = gtid + 1;
1358   }
1359   return retval;
1360 }
1361 
1362 int __kmp_release_queuing_lock(kmp_queuing_lock_t *lck, kmp_int32 gtid) {
1363   kmp_info_t *this_thr;
1364   volatile kmp_int32 *head_id_p = &lck->lk.head_id;
1365   volatile kmp_int32 *tail_id_p = &lck->lk.tail_id;
1366 
1367   KA_TRACE(1000,
1368            ("__kmp_release_queuing_lock: lck:%p, T#%d entering\n", lck, gtid));
1369   KMP_DEBUG_ASSERT(gtid >= 0);
1370   this_thr = __kmp_thread_from_gtid(gtid);
1371   KMP_DEBUG_ASSERT(this_thr != NULL);
1372 #ifdef DEBUG_QUEUING_LOCKS
1373   TRACE_LOCK(gtid + 1, "rel ent");
1374 
1375   if (this_thr->th.th_spin_here)
1376     __kmp_dump_queuing_lock(this_thr, gtid, lck, *head_id_p, *tail_id_p);
1377   if (this_thr->th.th_next_waiting != 0)
1378     __kmp_dump_queuing_lock(this_thr, gtid, lck, *head_id_p, *tail_id_p);
1379 #endif
1380   KMP_DEBUG_ASSERT(!this_thr->th.th_spin_here);
1381   KMP_DEBUG_ASSERT(this_thr->th.th_next_waiting == 0);
1382 
1383   KMP_FSYNC_RELEASING(lck);
1384   ANNOTATE_QUEUING_RELEASED(lck);
1385 
1386   while (1) {
1387     kmp_int32 dequeued;
1388     kmp_int32 head;
1389     kmp_int32 tail;
1390 
1391     head = *head_id_p;
1392 
1393 #ifdef DEBUG_QUEUING_LOCKS
1394     tail = *tail_id_p;
1395     TRACE_LOCK_HT(gtid + 1, "rel read: ", head, tail);
1396     if (head == 0)
1397       __kmp_dump_queuing_lock(this_thr, gtid, lck, head, tail);
1398 #endif
1399     KMP_DEBUG_ASSERT(head !=
1400                      0); /* holding the lock, head must be -1 or queue head */
1401 
1402     if (head == -1) { /* nobody on queue */
1403       /* try (-1,0)->(0,0) */
1404       if (KMP_COMPARE_AND_STORE_REL32(head_id_p, -1, 0)) {
1405         KA_TRACE(
1406             1000,
1407             ("__kmp_release_queuing_lock: lck:%p, T#%d exiting: queue empty\n",
1408              lck, gtid));
1409 #ifdef DEBUG_QUEUING_LOCKS
1410         TRACE_LOCK_HT(gtid + 1, "rel exit: ", 0, 0);
1411 #endif
1412 
1413 #if OMPT_SUPPORT
1414 /* nothing to do - no other thread is trying to shift blame */
1415 #endif
1416         return KMP_LOCK_RELEASED;
1417       }
1418       dequeued = FALSE;
1419     } else {
1420       KMP_MB();
1421       tail = *tail_id_p;
1422       if (head == tail) { /* only one thread on the queue */
1423 #ifdef DEBUG_QUEUING_LOCKS
1424         if (head <= 0)
1425           __kmp_dump_queuing_lock(this_thr, gtid, lck, head, tail);
1426 #endif
1427         KMP_DEBUG_ASSERT(head > 0);
1428 
1429         /* try (h,h)->(-1,0) */
1430         dequeued = KMP_COMPARE_AND_STORE_REL64(
1431             RCAST(volatile kmp_int64 *, tail_id_p), KMP_PACK_64(head, head),
1432             KMP_PACK_64(-1, 0));
1433 #ifdef DEBUG_QUEUING_LOCKS
1434         TRACE_LOCK(gtid + 1, "rel deq: (h,h)->(-1,0)");
1435 #endif
1436 
1437       } else {
1438         volatile kmp_int32 *waiting_id_p;
1439         kmp_info_t *head_thr = __kmp_thread_from_gtid(head - 1);
1440         KMP_DEBUG_ASSERT(head_thr != NULL);
1441         waiting_id_p = &head_thr->th.th_next_waiting;
1442 
1443 /* Does this require synchronous reads? */
1444 #ifdef DEBUG_QUEUING_LOCKS
1445         if (head <= 0 || tail <= 0)
1446           __kmp_dump_queuing_lock(this_thr, gtid, lck, head, tail);
1447 #endif
1448         KMP_DEBUG_ASSERT(head > 0 && tail > 0);
1449 
1450         /* try (h,t)->(h',t) or (t,t) */
1451         KMP_MB();
1452         /* make sure enqueuing thread has time to update next waiting thread
1453          * field */
1454         *head_id_p =
1455             KMP_WAIT((volatile kmp_uint32 *)waiting_id_p, 0, KMP_NEQ, NULL);
1456 #ifdef DEBUG_QUEUING_LOCKS
1457         TRACE_LOCK(gtid + 1, "rel deq: (h,t)->(h',t)");
1458 #endif
1459         dequeued = TRUE;
1460       }
1461     }
1462 
1463     if (dequeued) {
1464       kmp_info_t *head_thr = __kmp_thread_from_gtid(head - 1);
1465       KMP_DEBUG_ASSERT(head_thr != NULL);
1466 
1467 /* Does this require synchronous reads? */
1468 #ifdef DEBUG_QUEUING_LOCKS
1469       if (head <= 0 || tail <= 0)
1470         __kmp_dump_queuing_lock(this_thr, gtid, lck, head, tail);
1471 #endif
1472       KMP_DEBUG_ASSERT(head > 0 && tail > 0);
1473 
1474       /* For clean code only. Thread not released until next statement prevents
1475          race with acquire code. */
1476       head_thr->th.th_next_waiting = 0;
1477 #ifdef DEBUG_QUEUING_LOCKS
1478       TRACE_LOCK_T(gtid + 1, "rel nw=0 for t=", head);
1479 #endif
1480 
1481       KMP_MB();
1482       /* reset spin value */
1483       head_thr->th.th_spin_here = FALSE;
1484 
1485       KA_TRACE(1000, ("__kmp_release_queuing_lock: lck:%p, T#%d exiting: after "
1486                       "dequeuing\n",
1487                       lck, gtid));
1488 #ifdef DEBUG_QUEUING_LOCKS
1489       TRACE_LOCK(gtid + 1, "rel exit 2");
1490 #endif
1491       return KMP_LOCK_RELEASED;
1492     }
1493 /* KMP_CPU_PAUSE(); don't want to make releasing thread hold up acquiring
1494    threads */
1495 
1496 #ifdef DEBUG_QUEUING_LOCKS
1497     TRACE_LOCK(gtid + 1, "rel retry");
1498 #endif
1499 
1500   } /* while */
1501   KMP_ASSERT2(0, "should not get here");
1502   return KMP_LOCK_RELEASED;
1503 }
1504 
1505 static int __kmp_release_queuing_lock_with_checks(kmp_queuing_lock_t *lck,
1506                                                   kmp_int32 gtid) {
1507   char const *const func = "omp_unset_lock";
1508   KMP_MB(); /* in case another processor initialized lock */
1509   if (lck->lk.initialized != lck) {
1510     KMP_FATAL(LockIsUninitialized, func);
1511   }
1512   if (__kmp_is_queuing_lock_nestable(lck)) {
1513     KMP_FATAL(LockNestableUsedAsSimple, func);
1514   }
1515   if (__kmp_get_queuing_lock_owner(lck) == -1) {
1516     KMP_FATAL(LockUnsettingFree, func);
1517   }
1518   if (__kmp_get_queuing_lock_owner(lck) != gtid) {
1519     KMP_FATAL(LockUnsettingSetByAnother, func);
1520   }
1521   lck->lk.owner_id = 0;
1522   return __kmp_release_queuing_lock(lck, gtid);
1523 }
1524 
1525 void __kmp_init_queuing_lock(kmp_queuing_lock_t *lck) {
1526   lck->lk.location = NULL;
1527   lck->lk.head_id = 0;
1528   lck->lk.tail_id = 0;
1529   lck->lk.next_ticket = 0;
1530   lck->lk.now_serving = 0;
1531   lck->lk.owner_id = 0; // no thread owns the lock.
1532   lck->lk.depth_locked = -1; // >= 0 for nestable locks, -1 for simple locks.
1533   lck->lk.initialized = lck;
1534 
1535   KA_TRACE(1000, ("__kmp_init_queuing_lock: lock %p initialized\n", lck));
1536 }
1537 
1538 void __kmp_destroy_queuing_lock(kmp_queuing_lock_t *lck) {
1539   lck->lk.initialized = NULL;
1540   lck->lk.location = NULL;
1541   lck->lk.head_id = 0;
1542   lck->lk.tail_id = 0;
1543   lck->lk.next_ticket = 0;
1544   lck->lk.now_serving = 0;
1545   lck->lk.owner_id = 0;
1546   lck->lk.depth_locked = -1;
1547 }
1548 
1549 static void __kmp_destroy_queuing_lock_with_checks(kmp_queuing_lock_t *lck) {
1550   char const *const func = "omp_destroy_lock";
1551   if (lck->lk.initialized != lck) {
1552     KMP_FATAL(LockIsUninitialized, func);
1553   }
1554   if (__kmp_is_queuing_lock_nestable(lck)) {
1555     KMP_FATAL(LockNestableUsedAsSimple, func);
1556   }
1557   if (__kmp_get_queuing_lock_owner(lck) != -1) {
1558     KMP_FATAL(LockStillOwned, func);
1559   }
1560   __kmp_destroy_queuing_lock(lck);
1561 }
1562 
1563 // nested queuing locks
1564 
1565 int __kmp_acquire_nested_queuing_lock(kmp_queuing_lock_t *lck, kmp_int32 gtid) {
1566   KMP_DEBUG_ASSERT(gtid >= 0);
1567 
1568   if (__kmp_get_queuing_lock_owner(lck) == gtid) {
1569     lck->lk.depth_locked += 1;
1570     return KMP_LOCK_ACQUIRED_NEXT;
1571   } else {
1572     __kmp_acquire_queuing_lock_timed_template<false>(lck, gtid);
1573     ANNOTATE_QUEUING_ACQUIRED(lck);
1574     KMP_MB();
1575     lck->lk.depth_locked = 1;
1576     KMP_MB();
1577     lck->lk.owner_id = gtid + 1;
1578     return KMP_LOCK_ACQUIRED_FIRST;
1579   }
1580 }
1581 
1582 static int
1583 __kmp_acquire_nested_queuing_lock_with_checks(kmp_queuing_lock_t *lck,
1584                                               kmp_int32 gtid) {
1585   char const *const func = "omp_set_nest_lock";
1586   if (lck->lk.initialized != lck) {
1587     KMP_FATAL(LockIsUninitialized, func);
1588   }
1589   if (!__kmp_is_queuing_lock_nestable(lck)) {
1590     KMP_FATAL(LockSimpleUsedAsNestable, func);
1591   }
1592   return __kmp_acquire_nested_queuing_lock(lck, gtid);
1593 }
1594 
1595 int __kmp_test_nested_queuing_lock(kmp_queuing_lock_t *lck, kmp_int32 gtid) {
1596   int retval;
1597 
1598   KMP_DEBUG_ASSERT(gtid >= 0);
1599 
1600   if (__kmp_get_queuing_lock_owner(lck) == gtid) {
1601     retval = ++lck->lk.depth_locked;
1602   } else if (!__kmp_test_queuing_lock(lck, gtid)) {
1603     retval = 0;
1604   } else {
1605     KMP_MB();
1606     retval = lck->lk.depth_locked = 1;
1607     KMP_MB();
1608     lck->lk.owner_id = gtid + 1;
1609   }
1610   return retval;
1611 }
1612 
1613 static int __kmp_test_nested_queuing_lock_with_checks(kmp_queuing_lock_t *lck,
1614                                                       kmp_int32 gtid) {
1615   char const *const func = "omp_test_nest_lock";
1616   if (lck->lk.initialized != lck) {
1617     KMP_FATAL(LockIsUninitialized, func);
1618   }
1619   if (!__kmp_is_queuing_lock_nestable(lck)) {
1620     KMP_FATAL(LockSimpleUsedAsNestable, func);
1621   }
1622   return __kmp_test_nested_queuing_lock(lck, gtid);
1623 }
1624 
1625 int __kmp_release_nested_queuing_lock(kmp_queuing_lock_t *lck, kmp_int32 gtid) {
1626   KMP_DEBUG_ASSERT(gtid >= 0);
1627 
1628   KMP_MB();
1629   if (--(lck->lk.depth_locked) == 0) {
1630     KMP_MB();
1631     lck->lk.owner_id = 0;
1632     __kmp_release_queuing_lock(lck, gtid);
1633     return KMP_LOCK_RELEASED;
1634   }
1635   return KMP_LOCK_STILL_HELD;
1636 }
1637 
1638 static int
1639 __kmp_release_nested_queuing_lock_with_checks(kmp_queuing_lock_t *lck,
1640                                               kmp_int32 gtid) {
1641   char const *const func = "omp_unset_nest_lock";
1642   KMP_MB(); /* in case another processor initialized lock */
1643   if (lck->lk.initialized != lck) {
1644     KMP_FATAL(LockIsUninitialized, func);
1645   }
1646   if (!__kmp_is_queuing_lock_nestable(lck)) {
1647     KMP_FATAL(LockSimpleUsedAsNestable, func);
1648   }
1649   if (__kmp_get_queuing_lock_owner(lck) == -1) {
1650     KMP_FATAL(LockUnsettingFree, func);
1651   }
1652   if (__kmp_get_queuing_lock_owner(lck) != gtid) {
1653     KMP_FATAL(LockUnsettingSetByAnother, func);
1654   }
1655   return __kmp_release_nested_queuing_lock(lck, gtid);
1656 }
1657 
1658 void __kmp_init_nested_queuing_lock(kmp_queuing_lock_t *lck) {
1659   __kmp_init_queuing_lock(lck);
1660   lck->lk.depth_locked = 0; // >= 0 for nestable locks, -1 for simple locks
1661 }
1662 
1663 void __kmp_destroy_nested_queuing_lock(kmp_queuing_lock_t *lck) {
1664   __kmp_destroy_queuing_lock(lck);
1665   lck->lk.depth_locked = 0;
1666 }
1667 
1668 static void
1669 __kmp_destroy_nested_queuing_lock_with_checks(kmp_queuing_lock_t *lck) {
1670   char const *const func = "omp_destroy_nest_lock";
1671   if (lck->lk.initialized != lck) {
1672     KMP_FATAL(LockIsUninitialized, func);
1673   }
1674   if (!__kmp_is_queuing_lock_nestable(lck)) {
1675     KMP_FATAL(LockSimpleUsedAsNestable, func);
1676   }
1677   if (__kmp_get_queuing_lock_owner(lck) != -1) {
1678     KMP_FATAL(LockStillOwned, func);
1679   }
1680   __kmp_destroy_nested_queuing_lock(lck);
1681 }
1682 
1683 // access functions to fields which don't exist for all lock kinds.
1684 
1685 static const ident_t *__kmp_get_queuing_lock_location(kmp_queuing_lock_t *lck) {
1686   return lck->lk.location;
1687 }
1688 
1689 static void __kmp_set_queuing_lock_location(kmp_queuing_lock_t *lck,
1690                                             const ident_t *loc) {
1691   lck->lk.location = loc;
1692 }
1693 
1694 static kmp_lock_flags_t __kmp_get_queuing_lock_flags(kmp_queuing_lock_t *lck) {
1695   return lck->lk.flags;
1696 }
1697 
1698 static void __kmp_set_queuing_lock_flags(kmp_queuing_lock_t *lck,
1699                                          kmp_lock_flags_t flags) {
1700   lck->lk.flags = flags;
1701 }
1702 
1703 #if KMP_USE_ADAPTIVE_LOCKS
1704 
1705 /* RTM Adaptive locks */
1706 
1707 #if (KMP_COMPILER_ICC && __INTEL_COMPILER >= 1300) ||                          \
1708     (KMP_COMPILER_MSVC && _MSC_VER >= 1700) ||                                 \
1709     (KMP_COMPILER_CLANG && (KMP_MSVC_COMPAT || __MINGW32__)) ||                \
1710     (KMP_COMPILER_GCC && __MINGW32__)
1711 
1712 #include <immintrin.h>
1713 #define SOFT_ABORT_MASK (_XABORT_RETRY | _XABORT_CONFLICT | _XABORT_EXPLICIT)
1714 
1715 #else
1716 
1717 // Values from the status register after failed speculation.
1718 #define _XBEGIN_STARTED (~0u)
1719 #define _XABORT_EXPLICIT (1 << 0)
1720 #define _XABORT_RETRY (1 << 1)
1721 #define _XABORT_CONFLICT (1 << 2)
1722 #define _XABORT_CAPACITY (1 << 3)
1723 #define _XABORT_DEBUG (1 << 4)
1724 #define _XABORT_NESTED (1 << 5)
1725 #define _XABORT_CODE(x) ((unsigned char)(((x) >> 24) & 0xFF))
1726 
1727 // Aborts for which it's worth trying again immediately
1728 #define SOFT_ABORT_MASK (_XABORT_RETRY | _XABORT_CONFLICT | _XABORT_EXPLICIT)
1729 
1730 #define STRINGIZE_INTERNAL(arg) #arg
1731 #define STRINGIZE(arg) STRINGIZE_INTERNAL(arg)
1732 
1733 // Access to RTM instructions
1734 /*A version of XBegin which returns -1 on speculation, and the value of EAX on
1735   an abort. This is the same definition as the compiler intrinsic that will be
1736   supported at some point. */
1737 static __inline int _xbegin() {
1738   int res = -1;
1739 
1740 #if KMP_OS_WINDOWS
1741 #if KMP_ARCH_X86_64
1742   _asm {
1743         _emit 0xC7
1744         _emit 0xF8
1745         _emit 2
1746         _emit 0
1747         _emit 0
1748         _emit 0
1749         jmp   L2
1750         mov   res, eax
1751     L2:
1752   }
1753 #else /* IA32 */
1754   _asm {
1755         _emit 0xC7
1756         _emit 0xF8
1757         _emit 2
1758         _emit 0
1759         _emit 0
1760         _emit 0
1761         jmp   L2
1762         mov   res, eax
1763     L2:
1764   }
1765 #endif // KMP_ARCH_X86_64
1766 #else
1767   /* Note that %eax must be noted as killed (clobbered), because the XSR is
1768      returned in %eax(%rax) on abort.  Other register values are restored, so
1769      don't need to be killed.
1770 
1771      We must also mark 'res' as an input and an output, since otherwise
1772      'res=-1' may be dropped as being dead, whereas we do need the assignment on
1773      the successful (i.e., non-abort) path. */
1774   __asm__ volatile("1: .byte  0xC7; .byte 0xF8;\n"
1775                    "   .long  1f-1b-6\n"
1776                    "    jmp   2f\n"
1777                    "1:  movl  %%eax,%0\n"
1778                    "2:"
1779                    : "+r"(res)::"memory", "%eax");
1780 #endif // KMP_OS_WINDOWS
1781   return res;
1782 }
1783 
1784 /* Transaction end */
1785 static __inline void _xend() {
1786 #if KMP_OS_WINDOWS
1787   __asm {
1788         _emit 0x0f
1789         _emit 0x01
1790         _emit 0xd5
1791   }
1792 #else
1793   __asm__ volatile(".byte 0x0f; .byte 0x01; .byte 0xd5" ::: "memory");
1794 #endif
1795 }
1796 
1797 /* This is a macro, the argument must be a single byte constant which can be
1798    evaluated by the inline assembler, since it is emitted as a byte into the
1799    assembly code. */
1800 // clang-format off
1801 #if KMP_OS_WINDOWS
1802 #define _xabort(ARG) _asm _emit 0xc6 _asm _emit 0xf8 _asm _emit ARG
1803 #else
1804 #define _xabort(ARG)                                                           \
1805   __asm__ volatile(".byte 0xC6; .byte 0xF8; .byte " STRINGIZE(ARG):::"memory");
1806 #endif
1807 // clang-format on
1808 #endif // KMP_COMPILER_ICC && __INTEL_COMPILER >= 1300
1809 
1810 // Statistics is collected for testing purpose
1811 #if KMP_DEBUG_ADAPTIVE_LOCKS
1812 
1813 // We accumulate speculative lock statistics when the lock is destroyed. We
1814 // keep locks that haven't been destroyed in the liveLocks list so that we can
1815 // grab their statistics too.
1816 static kmp_adaptive_lock_statistics_t destroyedStats;
1817 
1818 // To hold the list of live locks.
1819 static kmp_adaptive_lock_info_t liveLocks;
1820 
1821 // A lock so we can safely update the list of locks.
1822 static kmp_bootstrap_lock_t chain_lock =
1823     KMP_BOOTSTRAP_LOCK_INITIALIZER(chain_lock);
1824 
1825 // Initialize the list of stats.
1826 void __kmp_init_speculative_stats() {
1827   kmp_adaptive_lock_info_t *lck = &liveLocks;
1828 
1829   memset(CCAST(kmp_adaptive_lock_statistics_t *, &(lck->stats)), 0,
1830          sizeof(lck->stats));
1831   lck->stats.next = lck;
1832   lck->stats.prev = lck;
1833 
1834   KMP_ASSERT(lck->stats.next->stats.prev == lck);
1835   KMP_ASSERT(lck->stats.prev->stats.next == lck);
1836 
1837   __kmp_init_bootstrap_lock(&chain_lock);
1838 }
1839 
1840 // Insert the lock into the circular list
1841 static void __kmp_remember_lock(kmp_adaptive_lock_info_t *lck) {
1842   __kmp_acquire_bootstrap_lock(&chain_lock);
1843 
1844   lck->stats.next = liveLocks.stats.next;
1845   lck->stats.prev = &liveLocks;
1846 
1847   liveLocks.stats.next = lck;
1848   lck->stats.next->stats.prev = lck;
1849 
1850   KMP_ASSERT(lck->stats.next->stats.prev == lck);
1851   KMP_ASSERT(lck->stats.prev->stats.next == lck);
1852 
1853   __kmp_release_bootstrap_lock(&chain_lock);
1854 }
1855 
1856 static void __kmp_forget_lock(kmp_adaptive_lock_info_t *lck) {
1857   KMP_ASSERT(lck->stats.next->stats.prev == lck);
1858   KMP_ASSERT(lck->stats.prev->stats.next == lck);
1859 
1860   kmp_adaptive_lock_info_t *n = lck->stats.next;
1861   kmp_adaptive_lock_info_t *p = lck->stats.prev;
1862 
1863   n->stats.prev = p;
1864   p->stats.next = n;
1865 }
1866 
1867 static void __kmp_zero_speculative_stats(kmp_adaptive_lock_info_t *lck) {
1868   memset(CCAST(kmp_adaptive_lock_statistics_t *, &lck->stats), 0,
1869          sizeof(lck->stats));
1870   __kmp_remember_lock(lck);
1871 }
1872 
1873 static void __kmp_add_stats(kmp_adaptive_lock_statistics_t *t,
1874                             kmp_adaptive_lock_info_t *lck) {
1875   kmp_adaptive_lock_statistics_t volatile *s = &lck->stats;
1876 
1877   t->nonSpeculativeAcquireAttempts += lck->acquire_attempts;
1878   t->successfulSpeculations += s->successfulSpeculations;
1879   t->hardFailedSpeculations += s->hardFailedSpeculations;
1880   t->softFailedSpeculations += s->softFailedSpeculations;
1881   t->nonSpeculativeAcquires += s->nonSpeculativeAcquires;
1882   t->lemmingYields += s->lemmingYields;
1883 }
1884 
1885 static void __kmp_accumulate_speculative_stats(kmp_adaptive_lock_info_t *lck) {
1886   __kmp_acquire_bootstrap_lock(&chain_lock);
1887 
1888   __kmp_add_stats(&destroyedStats, lck);
1889   __kmp_forget_lock(lck);
1890 
1891   __kmp_release_bootstrap_lock(&chain_lock);
1892 }
1893 
1894 static float percent(kmp_uint32 count, kmp_uint32 total) {
1895   return (total == 0) ? 0.0 : (100.0 * count) / total;
1896 }
1897 
1898 static FILE *__kmp_open_stats_file() {
1899   if (strcmp(__kmp_speculative_statsfile, "-") == 0)
1900     return stdout;
1901 
1902   size_t buffLen = KMP_STRLEN(__kmp_speculative_statsfile) + 20;
1903   char buffer[buffLen];
1904   KMP_SNPRINTF(&buffer[0], buffLen, __kmp_speculative_statsfile,
1905                (kmp_int32)getpid());
1906   FILE *result = fopen(&buffer[0], "w");
1907 
1908   // Maybe we should issue a warning here...
1909   return result ? result : stdout;
1910 }
1911 
1912 void __kmp_print_speculative_stats() {
1913   kmp_adaptive_lock_statistics_t total = destroyedStats;
1914   kmp_adaptive_lock_info_t *lck;
1915 
1916   for (lck = liveLocks.stats.next; lck != &liveLocks; lck = lck->stats.next) {
1917     __kmp_add_stats(&total, lck);
1918   }
1919   kmp_adaptive_lock_statistics_t *t = &total;
1920   kmp_uint32 totalSections =
1921       t->nonSpeculativeAcquires + t->successfulSpeculations;
1922   kmp_uint32 totalSpeculations = t->successfulSpeculations +
1923                                  t->hardFailedSpeculations +
1924                                  t->softFailedSpeculations;
1925   if (totalSections <= 0)
1926     return;
1927 
1928   FILE *statsFile = __kmp_open_stats_file();
1929 
1930   fprintf(statsFile, "Speculative lock statistics (all approximate!)\n");
1931   fprintf(statsFile, " Lock parameters: \n"
1932                      "   max_soft_retries               : %10d\n"
1933                      "   max_badness                    : %10d\n",
1934           __kmp_adaptive_backoff_params.max_soft_retries,
1935           __kmp_adaptive_backoff_params.max_badness);
1936   fprintf(statsFile, " Non-speculative acquire attempts : %10d\n",
1937           t->nonSpeculativeAcquireAttempts);
1938   fprintf(statsFile, " Total critical sections          : %10d\n",
1939           totalSections);
1940   fprintf(statsFile, " Successful speculations          : %10d (%5.1f%%)\n",
1941           t->successfulSpeculations,
1942           percent(t->successfulSpeculations, totalSections));
1943   fprintf(statsFile, " Non-speculative acquires         : %10d (%5.1f%%)\n",
1944           t->nonSpeculativeAcquires,
1945           percent(t->nonSpeculativeAcquires, totalSections));
1946   fprintf(statsFile, " Lemming yields                   : %10d\n\n",
1947           t->lemmingYields);
1948 
1949   fprintf(statsFile, " Speculative acquire attempts     : %10d\n",
1950           totalSpeculations);
1951   fprintf(statsFile, " Successes                        : %10d (%5.1f%%)\n",
1952           t->successfulSpeculations,
1953           percent(t->successfulSpeculations, totalSpeculations));
1954   fprintf(statsFile, " Soft failures                    : %10d (%5.1f%%)\n",
1955           t->softFailedSpeculations,
1956           percent(t->softFailedSpeculations, totalSpeculations));
1957   fprintf(statsFile, " Hard failures                    : %10d (%5.1f%%)\n",
1958           t->hardFailedSpeculations,
1959           percent(t->hardFailedSpeculations, totalSpeculations));
1960 
1961   if (statsFile != stdout)
1962     fclose(statsFile);
1963 }
1964 
1965 #define KMP_INC_STAT(lck, stat) (lck->lk.adaptive.stats.stat++)
1966 #else
1967 #define KMP_INC_STAT(lck, stat)
1968 
1969 #endif // KMP_DEBUG_ADAPTIVE_LOCKS
1970 
1971 static inline bool __kmp_is_unlocked_queuing_lock(kmp_queuing_lock_t *lck) {
1972   // It is enough to check that the head_id is zero.
1973   // We don't also need to check the tail.
1974   bool res = lck->lk.head_id == 0;
1975 
1976 // We need a fence here, since we must ensure that no memory operations
1977 // from later in this thread float above that read.
1978 #if KMP_COMPILER_ICC
1979   _mm_mfence();
1980 #else
1981   __sync_synchronize();
1982 #endif
1983 
1984   return res;
1985 }
1986 
1987 // Functions for manipulating the badness
1988 static __inline void
1989 __kmp_update_badness_after_success(kmp_adaptive_lock_t *lck) {
1990   // Reset the badness to zero so we eagerly try to speculate again
1991   lck->lk.adaptive.badness = 0;
1992   KMP_INC_STAT(lck, successfulSpeculations);
1993 }
1994 
1995 // Create a bit mask with one more set bit.
1996 static __inline void __kmp_step_badness(kmp_adaptive_lock_t *lck) {
1997   kmp_uint32 newBadness = (lck->lk.adaptive.badness << 1) | 1;
1998   if (newBadness > lck->lk.adaptive.max_badness) {
1999     return;
2000   } else {
2001     lck->lk.adaptive.badness = newBadness;
2002   }
2003 }
2004 
2005 // Check whether speculation should be attempted.
2006 static __inline int __kmp_should_speculate(kmp_adaptive_lock_t *lck,
2007                                            kmp_int32 gtid) {
2008   kmp_uint32 badness = lck->lk.adaptive.badness;
2009   kmp_uint32 attempts = lck->lk.adaptive.acquire_attempts;
2010   int res = (attempts & badness) == 0;
2011   return res;
2012 }
2013 
2014 // Attempt to acquire only the speculative lock.
2015 // Does not back off to the non-speculative lock.
2016 static int __kmp_test_adaptive_lock_only(kmp_adaptive_lock_t *lck,
2017                                          kmp_int32 gtid) {
2018   int retries = lck->lk.adaptive.max_soft_retries;
2019 
2020   // We don't explicitly count the start of speculation, rather we record the
2021   // results (success, hard fail, soft fail). The sum of all of those is the
2022   // total number of times we started speculation since all speculations must
2023   // end one of those ways.
2024   do {
2025     kmp_uint32 status = _xbegin();
2026     // Switch this in to disable actual speculation but exercise at least some
2027     // of the rest of the code. Useful for debugging...
2028     // kmp_uint32 status = _XABORT_NESTED;
2029 
2030     if (status == _XBEGIN_STARTED) {
2031       /* We have successfully started speculation. Check that no-one acquired
2032          the lock for real between when we last looked and now. This also gets
2033          the lock cache line into our read-set, which we need so that we'll
2034          abort if anyone later claims it for real. */
2035       if (!__kmp_is_unlocked_queuing_lock(GET_QLK_PTR(lck))) {
2036         // Lock is now visibly acquired, so someone beat us to it. Abort the
2037         // transaction so we'll restart from _xbegin with the failure status.
2038         _xabort(0x01);
2039         KMP_ASSERT2(0, "should not get here");
2040       }
2041       return 1; // Lock has been acquired (speculatively)
2042     } else {
2043       // We have aborted, update the statistics
2044       if (status & SOFT_ABORT_MASK) {
2045         KMP_INC_STAT(lck, softFailedSpeculations);
2046         // and loop round to retry.
2047       } else {
2048         KMP_INC_STAT(lck, hardFailedSpeculations);
2049         // Give up if we had a hard failure.
2050         break;
2051       }
2052     }
2053   } while (retries--); // Loop while we have retries, and didn't fail hard.
2054 
2055   // Either we had a hard failure or we didn't succeed softly after
2056   // the full set of attempts, so back off the badness.
2057   __kmp_step_badness(lck);
2058   return 0;
2059 }
2060 
2061 // Attempt to acquire the speculative lock, or back off to the non-speculative
2062 // one if the speculative lock cannot be acquired.
2063 // We can succeed speculatively, non-speculatively, or fail.
2064 static int __kmp_test_adaptive_lock(kmp_adaptive_lock_t *lck, kmp_int32 gtid) {
2065   // First try to acquire the lock speculatively
2066   if (__kmp_should_speculate(lck, gtid) &&
2067       __kmp_test_adaptive_lock_only(lck, gtid))
2068     return 1;
2069 
2070   // Speculative acquisition failed, so try to acquire it non-speculatively.
2071   // Count the non-speculative acquire attempt
2072   lck->lk.adaptive.acquire_attempts++;
2073 
2074   // Use base, non-speculative lock.
2075   if (__kmp_test_queuing_lock(GET_QLK_PTR(lck), gtid)) {
2076     KMP_INC_STAT(lck, nonSpeculativeAcquires);
2077     return 1; // Lock is acquired (non-speculatively)
2078   } else {
2079     return 0; // Failed to acquire the lock, it's already visibly locked.
2080   }
2081 }
2082 
2083 static int __kmp_test_adaptive_lock_with_checks(kmp_adaptive_lock_t *lck,
2084                                                 kmp_int32 gtid) {
2085   char const *const func = "omp_test_lock";
2086   if (lck->lk.qlk.initialized != GET_QLK_PTR(lck)) {
2087     KMP_FATAL(LockIsUninitialized, func);
2088   }
2089 
2090   int retval = __kmp_test_adaptive_lock(lck, gtid);
2091 
2092   if (retval) {
2093     lck->lk.qlk.owner_id = gtid + 1;
2094   }
2095   return retval;
2096 }
2097 
2098 // Block until we can acquire a speculative, adaptive lock. We check whether we
2099 // should be trying to speculate. If we should be, we check the real lock to see
2100 // if it is free, and, if not, pause without attempting to acquire it until it
2101 // is. Then we try the speculative acquire. This means that although we suffer
2102 // from lemmings a little (because all we can't acquire the lock speculatively
2103 // until the queue of threads waiting has cleared), we don't get into a state
2104 // where we can never acquire the lock speculatively (because we force the queue
2105 // to clear by preventing new arrivals from entering the queue). This does mean
2106 // that when we're trying to break lemmings, the lock is no longer fair. However
2107 // OpenMP makes no guarantee that its locks are fair, so this isn't a real
2108 // problem.
2109 static void __kmp_acquire_adaptive_lock(kmp_adaptive_lock_t *lck,
2110                                         kmp_int32 gtid) {
2111   if (__kmp_should_speculate(lck, gtid)) {
2112     if (__kmp_is_unlocked_queuing_lock(GET_QLK_PTR(lck))) {
2113       if (__kmp_test_adaptive_lock_only(lck, gtid))
2114         return;
2115       // We tried speculation and failed, so give up.
2116     } else {
2117       // We can't try speculation until the lock is free, so we pause here
2118       // (without suspending on the queueing lock, to allow it to drain, then
2119       // try again. All other threads will also see the same result for
2120       // shouldSpeculate, so will be doing the same if they try to claim the
2121       // lock from now on.
2122       while (!__kmp_is_unlocked_queuing_lock(GET_QLK_PTR(lck))) {
2123         KMP_INC_STAT(lck, lemmingYields);
2124         KMP_YIELD(TRUE);
2125       }
2126 
2127       if (__kmp_test_adaptive_lock_only(lck, gtid))
2128         return;
2129     }
2130   }
2131 
2132   // Speculative acquisition failed, so acquire it non-speculatively.
2133   // Count the non-speculative acquire attempt
2134   lck->lk.adaptive.acquire_attempts++;
2135 
2136   __kmp_acquire_queuing_lock_timed_template<FALSE>(GET_QLK_PTR(lck), gtid);
2137   // We have acquired the base lock, so count that.
2138   KMP_INC_STAT(lck, nonSpeculativeAcquires);
2139   ANNOTATE_QUEUING_ACQUIRED(lck);
2140 }
2141 
2142 static void __kmp_acquire_adaptive_lock_with_checks(kmp_adaptive_lock_t *lck,
2143                                                     kmp_int32 gtid) {
2144   char const *const func = "omp_set_lock";
2145   if (lck->lk.qlk.initialized != GET_QLK_PTR(lck)) {
2146     KMP_FATAL(LockIsUninitialized, func);
2147   }
2148   if (__kmp_get_queuing_lock_owner(GET_QLK_PTR(lck)) == gtid) {
2149     KMP_FATAL(LockIsAlreadyOwned, func);
2150   }
2151 
2152   __kmp_acquire_adaptive_lock(lck, gtid);
2153 
2154   lck->lk.qlk.owner_id = gtid + 1;
2155 }
2156 
2157 static int __kmp_release_adaptive_lock(kmp_adaptive_lock_t *lck,
2158                                        kmp_int32 gtid) {
2159   if (__kmp_is_unlocked_queuing_lock(GET_QLK_PTR(
2160           lck))) { // If the lock doesn't look claimed we must be speculating.
2161     // (Or the user's code is buggy and they're releasing without locking;
2162     // if we had XTEST we'd be able to check that case...)
2163     _xend(); // Exit speculation
2164     __kmp_update_badness_after_success(lck);
2165   } else { // Since the lock *is* visibly locked we're not speculating,
2166     // so should use the underlying lock's release scheme.
2167     __kmp_release_queuing_lock(GET_QLK_PTR(lck), gtid);
2168   }
2169   return KMP_LOCK_RELEASED;
2170 }
2171 
2172 static int __kmp_release_adaptive_lock_with_checks(kmp_adaptive_lock_t *lck,
2173                                                    kmp_int32 gtid) {
2174   char const *const func = "omp_unset_lock";
2175   KMP_MB(); /* in case another processor initialized lock */
2176   if (lck->lk.qlk.initialized != GET_QLK_PTR(lck)) {
2177     KMP_FATAL(LockIsUninitialized, func);
2178   }
2179   if (__kmp_get_queuing_lock_owner(GET_QLK_PTR(lck)) == -1) {
2180     KMP_FATAL(LockUnsettingFree, func);
2181   }
2182   if (__kmp_get_queuing_lock_owner(GET_QLK_PTR(lck)) != gtid) {
2183     KMP_FATAL(LockUnsettingSetByAnother, func);
2184   }
2185   lck->lk.qlk.owner_id = 0;
2186   __kmp_release_adaptive_lock(lck, gtid);
2187   return KMP_LOCK_RELEASED;
2188 }
2189 
2190 static void __kmp_init_adaptive_lock(kmp_adaptive_lock_t *lck) {
2191   __kmp_init_queuing_lock(GET_QLK_PTR(lck));
2192   lck->lk.adaptive.badness = 0;
2193   lck->lk.adaptive.acquire_attempts = 0; // nonSpeculativeAcquireAttempts = 0;
2194   lck->lk.adaptive.max_soft_retries =
2195       __kmp_adaptive_backoff_params.max_soft_retries;
2196   lck->lk.adaptive.max_badness = __kmp_adaptive_backoff_params.max_badness;
2197 #if KMP_DEBUG_ADAPTIVE_LOCKS
2198   __kmp_zero_speculative_stats(&lck->lk.adaptive);
2199 #endif
2200   KA_TRACE(1000, ("__kmp_init_adaptive_lock: lock %p initialized\n", lck));
2201 }
2202 
2203 static void __kmp_destroy_adaptive_lock(kmp_adaptive_lock_t *lck) {
2204 #if KMP_DEBUG_ADAPTIVE_LOCKS
2205   __kmp_accumulate_speculative_stats(&lck->lk.adaptive);
2206 #endif
2207   __kmp_destroy_queuing_lock(GET_QLK_PTR(lck));
2208   // Nothing needed for the speculative part.
2209 }
2210 
2211 static void __kmp_destroy_adaptive_lock_with_checks(kmp_adaptive_lock_t *lck) {
2212   char const *const func = "omp_destroy_lock";
2213   if (lck->lk.qlk.initialized != GET_QLK_PTR(lck)) {
2214     KMP_FATAL(LockIsUninitialized, func);
2215   }
2216   if (__kmp_get_queuing_lock_owner(GET_QLK_PTR(lck)) != -1) {
2217     KMP_FATAL(LockStillOwned, func);
2218   }
2219   __kmp_destroy_adaptive_lock(lck);
2220 }
2221 
2222 #endif // KMP_USE_ADAPTIVE_LOCKS
2223 
2224 /* ------------------------------------------------------------------------ */
2225 /* DRDPA ticket locks                                                */
2226 /* "DRDPA" means Dynamically Reconfigurable Distributed Polling Area */
2227 
2228 static kmp_int32 __kmp_get_drdpa_lock_owner(kmp_drdpa_lock_t *lck) {
2229   return lck->lk.owner_id - 1;
2230 }
2231 
2232 static inline bool __kmp_is_drdpa_lock_nestable(kmp_drdpa_lock_t *lck) {
2233   return lck->lk.depth_locked != -1;
2234 }
2235 
2236 __forceinline static int
2237 __kmp_acquire_drdpa_lock_timed_template(kmp_drdpa_lock_t *lck, kmp_int32 gtid) {
2238   kmp_uint64 ticket = KMP_ATOMIC_INC(&lck->lk.next_ticket);
2239   kmp_uint64 mask = lck->lk.mask; // atomic load
2240   std::atomic<kmp_uint64> *polls = lck->lk.polls;
2241 
2242 #ifdef USE_LOCK_PROFILE
2243   if (polls[ticket & mask] != ticket)
2244     __kmp_printf("LOCK CONTENTION: %p\n", lck);
2245 /* else __kmp_printf( "." );*/
2246 #endif /* USE_LOCK_PROFILE */
2247 
2248   // Now spin-wait, but reload the polls pointer and mask, in case the
2249   // polling area has been reconfigured.  Unless it is reconfigured, the
2250   // reloads stay in L1 cache and are cheap.
2251   //
2252   // Keep this code in sync with KMP_WAIT, in kmp_dispatch.cpp !!!
2253   // The current implementation of KMP_WAIT doesn't allow for mask
2254   // and poll to be re-read every spin iteration.
2255   kmp_uint32 spins;
2256   KMP_FSYNC_PREPARE(lck);
2257   KMP_INIT_YIELD(spins);
2258   while (polls[ticket & mask] < ticket) { // atomic load
2259     KMP_YIELD_OVERSUB_ELSE_SPIN(spins);
2260     // Re-read the mask and the poll pointer from the lock structure.
2261     //
2262     // Make certain that "mask" is read before "polls" !!!
2263     //
2264     // If another thread picks reconfigures the polling area and updates their
2265     // values, and we get the new value of mask and the old polls pointer, we
2266     // could access memory beyond the end of the old polling area.
2267     mask = lck->lk.mask; // atomic load
2268     polls = lck->lk.polls; // atomic load
2269   }
2270 
2271   // Critical section starts here
2272   KMP_FSYNC_ACQUIRED(lck);
2273   KA_TRACE(1000, ("__kmp_acquire_drdpa_lock: ticket #%lld acquired lock %p\n",
2274                   ticket, lck));
2275   lck->lk.now_serving = ticket; // non-volatile store
2276 
2277   // Deallocate a garbage polling area if we know that we are the last
2278   // thread that could possibly access it.
2279   //
2280   // The >= check is in case __kmp_test_drdpa_lock() allocated the cleanup
2281   // ticket.
2282   if ((lck->lk.old_polls != NULL) && (ticket >= lck->lk.cleanup_ticket)) {
2283     __kmp_free(lck->lk.old_polls);
2284     lck->lk.old_polls = NULL;
2285     lck->lk.cleanup_ticket = 0;
2286   }
2287 
2288   // Check to see if we should reconfigure the polling area.
2289   // If there is still a garbage polling area to be deallocated from a
2290   // previous reconfiguration, let a later thread reconfigure it.
2291   if (lck->lk.old_polls == NULL) {
2292     bool reconfigure = false;
2293     std::atomic<kmp_uint64> *old_polls = polls;
2294     kmp_uint32 num_polls = TCR_4(lck->lk.num_polls);
2295 
2296     if (TCR_4(__kmp_nth) >
2297         (__kmp_avail_proc ? __kmp_avail_proc : __kmp_xproc)) {
2298       // We are in oversubscription mode.  Contract the polling area
2299       // down to a single location, if that hasn't been done already.
2300       if (num_polls > 1) {
2301         reconfigure = true;
2302         num_polls = TCR_4(lck->lk.num_polls);
2303         mask = 0;
2304         num_polls = 1;
2305         polls = (std::atomic<kmp_uint64> *)__kmp_allocate(num_polls *
2306                                                           sizeof(*polls));
2307         polls[0] = ticket;
2308       }
2309     } else {
2310       // We are in under/fully subscribed mode.  Check the number of
2311       // threads waiting on the lock.  The size of the polling area
2312       // should be at least the number of threads waiting.
2313       kmp_uint64 num_waiting = TCR_8(lck->lk.next_ticket) - ticket - 1;
2314       if (num_waiting > num_polls) {
2315         kmp_uint32 old_num_polls = num_polls;
2316         reconfigure = true;
2317         do {
2318           mask = (mask << 1) | 1;
2319           num_polls *= 2;
2320         } while (num_polls <= num_waiting);
2321 
2322         // Allocate the new polling area, and copy the relevant portion
2323         // of the old polling area to the new area.  __kmp_allocate()
2324         // zeroes the memory it allocates, and most of the old area is
2325         // just zero padding, so we only copy the release counters.
2326         polls = (std::atomic<kmp_uint64> *)__kmp_allocate(num_polls *
2327                                                           sizeof(*polls));
2328         kmp_uint32 i;
2329         for (i = 0; i < old_num_polls; i++) {
2330           polls[i].store(old_polls[i]);
2331         }
2332       }
2333     }
2334 
2335     if (reconfigure) {
2336       // Now write the updated fields back to the lock structure.
2337       //
2338       // Make certain that "polls" is written before "mask" !!!
2339       //
2340       // If another thread picks up the new value of mask and the old polls
2341       // pointer , it could access memory beyond the end of the old polling
2342       // area.
2343       //
2344       // On x86, we need memory fences.
2345       KA_TRACE(1000, ("__kmp_acquire_drdpa_lock: ticket #%lld reconfiguring "
2346                       "lock %p to %d polls\n",
2347                       ticket, lck, num_polls));
2348 
2349       lck->lk.old_polls = old_polls;
2350       lck->lk.polls = polls; // atomic store
2351 
2352       KMP_MB();
2353 
2354       lck->lk.num_polls = num_polls;
2355       lck->lk.mask = mask; // atomic store
2356 
2357       KMP_MB();
2358 
2359       // Only after the new polling area and mask have been flushed
2360       // to main memory can we update the cleanup ticket field.
2361       //
2362       // volatile load / non-volatile store
2363       lck->lk.cleanup_ticket = lck->lk.next_ticket;
2364     }
2365   }
2366   return KMP_LOCK_ACQUIRED_FIRST;
2367 }
2368 
2369 int __kmp_acquire_drdpa_lock(kmp_drdpa_lock_t *lck, kmp_int32 gtid) {
2370   int retval = __kmp_acquire_drdpa_lock_timed_template(lck, gtid);
2371   ANNOTATE_DRDPA_ACQUIRED(lck);
2372   return retval;
2373 }
2374 
2375 static int __kmp_acquire_drdpa_lock_with_checks(kmp_drdpa_lock_t *lck,
2376                                                 kmp_int32 gtid) {
2377   char const *const func = "omp_set_lock";
2378   if (lck->lk.initialized != lck) {
2379     KMP_FATAL(LockIsUninitialized, func);
2380   }
2381   if (__kmp_is_drdpa_lock_nestable(lck)) {
2382     KMP_FATAL(LockNestableUsedAsSimple, func);
2383   }
2384   if ((gtid >= 0) && (__kmp_get_drdpa_lock_owner(lck) == gtid)) {
2385     KMP_FATAL(LockIsAlreadyOwned, func);
2386   }
2387 
2388   __kmp_acquire_drdpa_lock(lck, gtid);
2389 
2390   lck->lk.owner_id = gtid + 1;
2391   return KMP_LOCK_ACQUIRED_FIRST;
2392 }
2393 
2394 int __kmp_test_drdpa_lock(kmp_drdpa_lock_t *lck, kmp_int32 gtid) {
2395   // First get a ticket, then read the polls pointer and the mask.
2396   // The polls pointer must be read before the mask!!! (See above)
2397   kmp_uint64 ticket = lck->lk.next_ticket; // atomic load
2398   std::atomic<kmp_uint64> *polls = lck->lk.polls;
2399   kmp_uint64 mask = lck->lk.mask; // atomic load
2400   if (polls[ticket & mask] == ticket) {
2401     kmp_uint64 next_ticket = ticket + 1;
2402     if (__kmp_atomic_compare_store_acq(&lck->lk.next_ticket, ticket,
2403                                        next_ticket)) {
2404       KMP_FSYNC_ACQUIRED(lck);
2405       KA_TRACE(1000, ("__kmp_test_drdpa_lock: ticket #%lld acquired lock %p\n",
2406                       ticket, lck));
2407       lck->lk.now_serving = ticket; // non-volatile store
2408 
2409       // Since no threads are waiting, there is no possibility that we would
2410       // want to reconfigure the polling area.  We might have the cleanup ticket
2411       // value (which says that it is now safe to deallocate old_polls), but
2412       // we'll let a later thread which calls __kmp_acquire_lock do that - this
2413       // routine isn't supposed to block, and we would risk blocks if we called
2414       // __kmp_free() to do the deallocation.
2415       return TRUE;
2416     }
2417   }
2418   return FALSE;
2419 }
2420 
2421 static int __kmp_test_drdpa_lock_with_checks(kmp_drdpa_lock_t *lck,
2422                                              kmp_int32 gtid) {
2423   char const *const func = "omp_test_lock";
2424   if (lck->lk.initialized != lck) {
2425     KMP_FATAL(LockIsUninitialized, func);
2426   }
2427   if (__kmp_is_drdpa_lock_nestable(lck)) {
2428     KMP_FATAL(LockNestableUsedAsSimple, func);
2429   }
2430 
2431   int retval = __kmp_test_drdpa_lock(lck, gtid);
2432 
2433   if (retval) {
2434     lck->lk.owner_id = gtid + 1;
2435   }
2436   return retval;
2437 }
2438 
2439 int __kmp_release_drdpa_lock(kmp_drdpa_lock_t *lck, kmp_int32 gtid) {
2440   // Read the ticket value from the lock data struct, then the polls pointer and
2441   // the mask.  The polls pointer must be read before the mask!!! (See above)
2442   kmp_uint64 ticket = lck->lk.now_serving + 1; // non-atomic load
2443   std::atomic<kmp_uint64> *polls = lck->lk.polls; // atomic load
2444   kmp_uint64 mask = lck->lk.mask; // atomic load
2445   KA_TRACE(1000, ("__kmp_release_drdpa_lock: ticket #%lld released lock %p\n",
2446                   ticket - 1, lck));
2447   KMP_FSYNC_RELEASING(lck);
2448   ANNOTATE_DRDPA_RELEASED(lck);
2449   polls[ticket & mask] = ticket; // atomic store
2450   return KMP_LOCK_RELEASED;
2451 }
2452 
2453 static int __kmp_release_drdpa_lock_with_checks(kmp_drdpa_lock_t *lck,
2454                                                 kmp_int32 gtid) {
2455   char const *const func = "omp_unset_lock";
2456   KMP_MB(); /* in case another processor initialized lock */
2457   if (lck->lk.initialized != lck) {
2458     KMP_FATAL(LockIsUninitialized, func);
2459   }
2460   if (__kmp_is_drdpa_lock_nestable(lck)) {
2461     KMP_FATAL(LockNestableUsedAsSimple, func);
2462   }
2463   if (__kmp_get_drdpa_lock_owner(lck) == -1) {
2464     KMP_FATAL(LockUnsettingFree, func);
2465   }
2466   if ((gtid >= 0) && (__kmp_get_drdpa_lock_owner(lck) >= 0) &&
2467       (__kmp_get_drdpa_lock_owner(lck) != gtid)) {
2468     KMP_FATAL(LockUnsettingSetByAnother, func);
2469   }
2470   lck->lk.owner_id = 0;
2471   return __kmp_release_drdpa_lock(lck, gtid);
2472 }
2473 
2474 void __kmp_init_drdpa_lock(kmp_drdpa_lock_t *lck) {
2475   lck->lk.location = NULL;
2476   lck->lk.mask = 0;
2477   lck->lk.num_polls = 1;
2478   lck->lk.polls = (std::atomic<kmp_uint64> *)__kmp_allocate(
2479       lck->lk.num_polls * sizeof(*(lck->lk.polls)));
2480   lck->lk.cleanup_ticket = 0;
2481   lck->lk.old_polls = NULL;
2482   lck->lk.next_ticket = 0;
2483   lck->lk.now_serving = 0;
2484   lck->lk.owner_id = 0; // no thread owns the lock.
2485   lck->lk.depth_locked = -1; // >= 0 for nestable locks, -1 for simple locks.
2486   lck->lk.initialized = lck;
2487 
2488   KA_TRACE(1000, ("__kmp_init_drdpa_lock: lock %p initialized\n", lck));
2489 }
2490 
2491 void __kmp_destroy_drdpa_lock(kmp_drdpa_lock_t *lck) {
2492   lck->lk.initialized = NULL;
2493   lck->lk.location = NULL;
2494   if (lck->lk.polls.load() != NULL) {
2495     __kmp_free(lck->lk.polls.load());
2496     lck->lk.polls = NULL;
2497   }
2498   if (lck->lk.old_polls != NULL) {
2499     __kmp_free(lck->lk.old_polls);
2500     lck->lk.old_polls = NULL;
2501   }
2502   lck->lk.mask = 0;
2503   lck->lk.num_polls = 0;
2504   lck->lk.cleanup_ticket = 0;
2505   lck->lk.next_ticket = 0;
2506   lck->lk.now_serving = 0;
2507   lck->lk.owner_id = 0;
2508   lck->lk.depth_locked = -1;
2509 }
2510 
2511 static void __kmp_destroy_drdpa_lock_with_checks(kmp_drdpa_lock_t *lck) {
2512   char const *const func = "omp_destroy_lock";
2513   if (lck->lk.initialized != lck) {
2514     KMP_FATAL(LockIsUninitialized, func);
2515   }
2516   if (__kmp_is_drdpa_lock_nestable(lck)) {
2517     KMP_FATAL(LockNestableUsedAsSimple, func);
2518   }
2519   if (__kmp_get_drdpa_lock_owner(lck) != -1) {
2520     KMP_FATAL(LockStillOwned, func);
2521   }
2522   __kmp_destroy_drdpa_lock(lck);
2523 }
2524 
2525 // nested drdpa ticket locks
2526 
2527 int __kmp_acquire_nested_drdpa_lock(kmp_drdpa_lock_t *lck, kmp_int32 gtid) {
2528   KMP_DEBUG_ASSERT(gtid >= 0);
2529 
2530   if (__kmp_get_drdpa_lock_owner(lck) == gtid) {
2531     lck->lk.depth_locked += 1;
2532     return KMP_LOCK_ACQUIRED_NEXT;
2533   } else {
2534     __kmp_acquire_drdpa_lock_timed_template(lck, gtid);
2535     ANNOTATE_DRDPA_ACQUIRED(lck);
2536     KMP_MB();
2537     lck->lk.depth_locked = 1;
2538     KMP_MB();
2539     lck->lk.owner_id = gtid + 1;
2540     return KMP_LOCK_ACQUIRED_FIRST;
2541   }
2542 }
2543 
2544 static void __kmp_acquire_nested_drdpa_lock_with_checks(kmp_drdpa_lock_t *lck,
2545                                                         kmp_int32 gtid) {
2546   char const *const func = "omp_set_nest_lock";
2547   if (lck->lk.initialized != lck) {
2548     KMP_FATAL(LockIsUninitialized, func);
2549   }
2550   if (!__kmp_is_drdpa_lock_nestable(lck)) {
2551     KMP_FATAL(LockSimpleUsedAsNestable, func);
2552   }
2553   __kmp_acquire_nested_drdpa_lock(lck, gtid);
2554 }
2555 
2556 int __kmp_test_nested_drdpa_lock(kmp_drdpa_lock_t *lck, kmp_int32 gtid) {
2557   int retval;
2558 
2559   KMP_DEBUG_ASSERT(gtid >= 0);
2560 
2561   if (__kmp_get_drdpa_lock_owner(lck) == gtid) {
2562     retval = ++lck->lk.depth_locked;
2563   } else if (!__kmp_test_drdpa_lock(lck, gtid)) {
2564     retval = 0;
2565   } else {
2566     KMP_MB();
2567     retval = lck->lk.depth_locked = 1;
2568     KMP_MB();
2569     lck->lk.owner_id = gtid + 1;
2570   }
2571   return retval;
2572 }
2573 
2574 static int __kmp_test_nested_drdpa_lock_with_checks(kmp_drdpa_lock_t *lck,
2575                                                     kmp_int32 gtid) {
2576   char const *const func = "omp_test_nest_lock";
2577   if (lck->lk.initialized != lck) {
2578     KMP_FATAL(LockIsUninitialized, func);
2579   }
2580   if (!__kmp_is_drdpa_lock_nestable(lck)) {
2581     KMP_FATAL(LockSimpleUsedAsNestable, func);
2582   }
2583   return __kmp_test_nested_drdpa_lock(lck, gtid);
2584 }
2585 
2586 int __kmp_release_nested_drdpa_lock(kmp_drdpa_lock_t *lck, kmp_int32 gtid) {
2587   KMP_DEBUG_ASSERT(gtid >= 0);
2588 
2589   KMP_MB();
2590   if (--(lck->lk.depth_locked) == 0) {
2591     KMP_MB();
2592     lck->lk.owner_id = 0;
2593     __kmp_release_drdpa_lock(lck, gtid);
2594     return KMP_LOCK_RELEASED;
2595   }
2596   return KMP_LOCK_STILL_HELD;
2597 }
2598 
2599 static int __kmp_release_nested_drdpa_lock_with_checks(kmp_drdpa_lock_t *lck,
2600                                                        kmp_int32 gtid) {
2601   char const *const func = "omp_unset_nest_lock";
2602   KMP_MB(); /* in case another processor initialized lock */
2603   if (lck->lk.initialized != lck) {
2604     KMP_FATAL(LockIsUninitialized, func);
2605   }
2606   if (!__kmp_is_drdpa_lock_nestable(lck)) {
2607     KMP_FATAL(LockSimpleUsedAsNestable, func);
2608   }
2609   if (__kmp_get_drdpa_lock_owner(lck) == -1) {
2610     KMP_FATAL(LockUnsettingFree, func);
2611   }
2612   if (__kmp_get_drdpa_lock_owner(lck) != gtid) {
2613     KMP_FATAL(LockUnsettingSetByAnother, func);
2614   }
2615   return __kmp_release_nested_drdpa_lock(lck, gtid);
2616 }
2617 
2618 void __kmp_init_nested_drdpa_lock(kmp_drdpa_lock_t *lck) {
2619   __kmp_init_drdpa_lock(lck);
2620   lck->lk.depth_locked = 0; // >= 0 for nestable locks, -1 for simple locks
2621 }
2622 
2623 void __kmp_destroy_nested_drdpa_lock(kmp_drdpa_lock_t *lck) {
2624   __kmp_destroy_drdpa_lock(lck);
2625   lck->lk.depth_locked = 0;
2626 }
2627 
2628 static void __kmp_destroy_nested_drdpa_lock_with_checks(kmp_drdpa_lock_t *lck) {
2629   char const *const func = "omp_destroy_nest_lock";
2630   if (lck->lk.initialized != lck) {
2631     KMP_FATAL(LockIsUninitialized, func);
2632   }
2633   if (!__kmp_is_drdpa_lock_nestable(lck)) {
2634     KMP_FATAL(LockSimpleUsedAsNestable, func);
2635   }
2636   if (__kmp_get_drdpa_lock_owner(lck) != -1) {
2637     KMP_FATAL(LockStillOwned, func);
2638   }
2639   __kmp_destroy_nested_drdpa_lock(lck);
2640 }
2641 
2642 // access functions to fields which don't exist for all lock kinds.
2643 
2644 static const ident_t *__kmp_get_drdpa_lock_location(kmp_drdpa_lock_t *lck) {
2645   return lck->lk.location;
2646 }
2647 
2648 static void __kmp_set_drdpa_lock_location(kmp_drdpa_lock_t *lck,
2649                                           const ident_t *loc) {
2650   lck->lk.location = loc;
2651 }
2652 
2653 static kmp_lock_flags_t __kmp_get_drdpa_lock_flags(kmp_drdpa_lock_t *lck) {
2654   return lck->lk.flags;
2655 }
2656 
2657 static void __kmp_set_drdpa_lock_flags(kmp_drdpa_lock_t *lck,
2658                                        kmp_lock_flags_t flags) {
2659   lck->lk.flags = flags;
2660 }
2661 
2662 // Time stamp counter
2663 #if KMP_ARCH_X86 || KMP_ARCH_X86_64
2664 #define __kmp_tsc() __kmp_hardware_timestamp()
2665 // Runtime's default backoff parameters
2666 kmp_backoff_t __kmp_spin_backoff_params = {1, 4096, 100};
2667 #else
2668 // Use nanoseconds for other platforms
2669 extern kmp_uint64 __kmp_now_nsec();
2670 kmp_backoff_t __kmp_spin_backoff_params = {1, 256, 100};
2671 #define __kmp_tsc() __kmp_now_nsec()
2672 #endif
2673 
2674 // A useful predicate for dealing with timestamps that may wrap.
2675 // Is a before b? Since the timestamps may wrap, this is asking whether it's
2676 // shorter to go clockwise from a to b around the clock-face, or anti-clockwise.
2677 // Times where going clockwise is less distance than going anti-clockwise
2678 // are in the future, others are in the past. e.g. a = MAX-1, b = MAX+1 (=0),
2679 // then a > b (true) does not mean a reached b; whereas signed(a) = -2,
2680 // signed(b) = 0 captures the actual difference
2681 static inline bool before(kmp_uint64 a, kmp_uint64 b) {
2682   return ((kmp_int64)b - (kmp_int64)a) > 0;
2683 }
2684 
2685 // Truncated binary exponential backoff function
2686 void __kmp_spin_backoff(kmp_backoff_t *boff) {
2687   // We could flatten this loop, but making it a nested loop gives better result
2688   kmp_uint32 i;
2689   for (i = boff->step; i > 0; i--) {
2690     kmp_uint64 goal = __kmp_tsc() + boff->min_tick;
2691     do {
2692       KMP_CPU_PAUSE();
2693     } while (before(__kmp_tsc(), goal));
2694   }
2695   boff->step = (boff->step << 1 | 1) & (boff->max_backoff - 1);
2696 }
2697 
2698 #if KMP_USE_DYNAMIC_LOCK
2699 
2700 // Direct lock initializers. It simply writes a tag to the low 8 bits of the
2701 // lock word.
2702 static void __kmp_init_direct_lock(kmp_dyna_lock_t *lck,
2703                                    kmp_dyna_lockseq_t seq) {
2704   TCW_4(*lck, KMP_GET_D_TAG(seq));
2705   KA_TRACE(
2706       20,
2707       ("__kmp_init_direct_lock: initialized direct lock with type#%d\n", seq));
2708 }
2709 
2710 #if KMP_USE_TSX
2711 
2712 // HLE lock functions - imported from the testbed runtime.
2713 #define HLE_ACQUIRE ".byte 0xf2;"
2714 #define HLE_RELEASE ".byte 0xf3;"
2715 
2716 static inline kmp_uint32 swap4(kmp_uint32 volatile *p, kmp_uint32 v) {
2717   __asm__ volatile(HLE_ACQUIRE "xchg %1,%0" : "+r"(v), "+m"(*p) : : "memory");
2718   return v;
2719 }
2720 
2721 static void __kmp_destroy_hle_lock(kmp_dyna_lock_t *lck) { TCW_4(*lck, 0); }
2722 
2723 static void __kmp_destroy_hle_lock_with_checks(kmp_dyna_lock_t *lck) {
2724   TCW_4(*lck, 0);
2725 }
2726 
2727 static void __kmp_acquire_hle_lock(kmp_dyna_lock_t *lck, kmp_int32 gtid) {
2728   // Use gtid for KMP_LOCK_BUSY if necessary
2729   if (swap4(lck, KMP_LOCK_BUSY(1, hle)) != KMP_LOCK_FREE(hle)) {
2730     int delay = 1;
2731     do {
2732       while (*(kmp_uint32 volatile *)lck != KMP_LOCK_FREE(hle)) {
2733         for (int i = delay; i != 0; --i)
2734           KMP_CPU_PAUSE();
2735         delay = ((delay << 1) | 1) & 7;
2736       }
2737     } while (swap4(lck, KMP_LOCK_BUSY(1, hle)) != KMP_LOCK_FREE(hle));
2738   }
2739 }
2740 
2741 static void __kmp_acquire_hle_lock_with_checks(kmp_dyna_lock_t *lck,
2742                                                kmp_int32 gtid) {
2743   __kmp_acquire_hle_lock(lck, gtid); // TODO: add checks
2744 }
2745 
2746 static int __kmp_release_hle_lock(kmp_dyna_lock_t *lck, kmp_int32 gtid) {
2747   __asm__ volatile(HLE_RELEASE "movl %1,%0"
2748                    : "=m"(*lck)
2749                    : "r"(KMP_LOCK_FREE(hle))
2750                    : "memory");
2751   return KMP_LOCK_RELEASED;
2752 }
2753 
2754 static int __kmp_release_hle_lock_with_checks(kmp_dyna_lock_t *lck,
2755                                               kmp_int32 gtid) {
2756   return __kmp_release_hle_lock(lck, gtid); // TODO: add checks
2757 }
2758 
2759 static int __kmp_test_hle_lock(kmp_dyna_lock_t *lck, kmp_int32 gtid) {
2760   return swap4(lck, KMP_LOCK_BUSY(1, hle)) == KMP_LOCK_FREE(hle);
2761 }
2762 
2763 static int __kmp_test_hle_lock_with_checks(kmp_dyna_lock_t *lck,
2764                                            kmp_int32 gtid) {
2765   return __kmp_test_hle_lock(lck, gtid); // TODO: add checks
2766 }
2767 
2768 static void __kmp_init_rtm_lock(kmp_queuing_lock_t *lck) {
2769   __kmp_init_queuing_lock(lck);
2770 }
2771 
2772 static void __kmp_destroy_rtm_lock(kmp_queuing_lock_t *lck) {
2773   __kmp_destroy_queuing_lock(lck);
2774 }
2775 
2776 static void __kmp_destroy_rtm_lock_with_checks(kmp_queuing_lock_t *lck) {
2777   __kmp_destroy_queuing_lock_with_checks(lck);
2778 }
2779 
2780 static void __kmp_acquire_rtm_lock(kmp_queuing_lock_t *lck, kmp_int32 gtid) {
2781   unsigned retries = 3, status;
2782   do {
2783     status = _xbegin();
2784     if (status == _XBEGIN_STARTED) {
2785       if (__kmp_is_unlocked_queuing_lock(lck))
2786         return;
2787       _xabort(0xff);
2788     }
2789     if ((status & _XABORT_EXPLICIT) && _XABORT_CODE(status) == 0xff) {
2790       // Wait until lock becomes free
2791       while (!__kmp_is_unlocked_queuing_lock(lck)) {
2792         KMP_YIELD(TRUE);
2793       }
2794     } else if (!(status & _XABORT_RETRY))
2795       break;
2796   } while (retries--);
2797 
2798   // Fall-back non-speculative lock (xchg)
2799   __kmp_acquire_queuing_lock(lck, gtid);
2800 }
2801 
2802 static void __kmp_acquire_rtm_lock_with_checks(kmp_queuing_lock_t *lck,
2803                                                kmp_int32 gtid) {
2804   __kmp_acquire_rtm_lock(lck, gtid);
2805 }
2806 
2807 static int __kmp_release_rtm_lock(kmp_queuing_lock_t *lck, kmp_int32 gtid) {
2808   if (__kmp_is_unlocked_queuing_lock(lck)) {
2809     // Releasing from speculation
2810     _xend();
2811   } else {
2812     // Releasing from a real lock
2813     __kmp_release_queuing_lock(lck, gtid);
2814   }
2815   return KMP_LOCK_RELEASED;
2816 }
2817 
2818 static int __kmp_release_rtm_lock_with_checks(kmp_queuing_lock_t *lck,
2819                                               kmp_int32 gtid) {
2820   return __kmp_release_rtm_lock(lck, gtid);
2821 }
2822 
2823 static int __kmp_test_rtm_lock(kmp_queuing_lock_t *lck, kmp_int32 gtid) {
2824   unsigned retries = 3, status;
2825   do {
2826     status = _xbegin();
2827     if (status == _XBEGIN_STARTED && __kmp_is_unlocked_queuing_lock(lck)) {
2828       return 1;
2829     }
2830     if (!(status & _XABORT_RETRY))
2831       break;
2832   } while (retries--);
2833 
2834   return (__kmp_is_unlocked_queuing_lock(lck)) ? 1 : 0;
2835 }
2836 
2837 static int __kmp_test_rtm_lock_with_checks(kmp_queuing_lock_t *lck,
2838                                            kmp_int32 gtid) {
2839   return __kmp_test_rtm_lock(lck, gtid);
2840 }
2841 
2842 #endif // KMP_USE_TSX
2843 
2844 // Entry functions for indirect locks (first element of direct lock jump tables)
2845 static void __kmp_init_indirect_lock(kmp_dyna_lock_t *l,
2846                                      kmp_dyna_lockseq_t tag);
2847 static void __kmp_destroy_indirect_lock(kmp_dyna_lock_t *lock);
2848 static int __kmp_set_indirect_lock(kmp_dyna_lock_t *lock, kmp_int32);
2849 static int __kmp_unset_indirect_lock(kmp_dyna_lock_t *lock, kmp_int32);
2850 static int __kmp_test_indirect_lock(kmp_dyna_lock_t *lock, kmp_int32);
2851 static int __kmp_set_indirect_lock_with_checks(kmp_dyna_lock_t *lock,
2852                                                kmp_int32);
2853 static int __kmp_unset_indirect_lock_with_checks(kmp_dyna_lock_t *lock,
2854                                                  kmp_int32);
2855 static int __kmp_test_indirect_lock_with_checks(kmp_dyna_lock_t *lock,
2856                                                 kmp_int32);
2857 
2858 // Lock function definitions for the union parameter type
2859 #define KMP_FOREACH_LOCK_KIND(m, a) m(ticket, a) m(queuing, a) m(drdpa, a)
2860 
2861 #define expand1(lk, op)                                                        \
2862   static void __kmp_##op##_##lk##_##lock(kmp_user_lock_p lock) {               \
2863     __kmp_##op##_##lk##_##lock(&lock->lk);                                     \
2864   }
2865 #define expand2(lk, op)                                                        \
2866   static int __kmp_##op##_##lk##_##lock(kmp_user_lock_p lock,                  \
2867                                         kmp_int32 gtid) {                      \
2868     return __kmp_##op##_##lk##_##lock(&lock->lk, gtid);                        \
2869   }
2870 #define expand3(lk, op)                                                        \
2871   static void __kmp_set_##lk##_##lock_flags(kmp_user_lock_p lock,              \
2872                                             kmp_lock_flags_t flags) {          \
2873     __kmp_set_##lk##_lock_flags(&lock->lk, flags);                             \
2874   }
2875 #define expand4(lk, op)                                                        \
2876   static void __kmp_set_##lk##_##lock_location(kmp_user_lock_p lock,           \
2877                                                const ident_t *loc) {           \
2878     __kmp_set_##lk##_lock_location(&lock->lk, loc);                            \
2879   }
2880 
2881 KMP_FOREACH_LOCK_KIND(expand1, init)
2882 KMP_FOREACH_LOCK_KIND(expand1, init_nested)
2883 KMP_FOREACH_LOCK_KIND(expand1, destroy)
2884 KMP_FOREACH_LOCK_KIND(expand1, destroy_nested)
2885 KMP_FOREACH_LOCK_KIND(expand2, acquire)
2886 KMP_FOREACH_LOCK_KIND(expand2, acquire_nested)
2887 KMP_FOREACH_LOCK_KIND(expand2, release)
2888 KMP_FOREACH_LOCK_KIND(expand2, release_nested)
2889 KMP_FOREACH_LOCK_KIND(expand2, test)
2890 KMP_FOREACH_LOCK_KIND(expand2, test_nested)
2891 KMP_FOREACH_LOCK_KIND(expand3, )
2892 KMP_FOREACH_LOCK_KIND(expand4, )
2893 
2894 #undef expand1
2895 #undef expand2
2896 #undef expand3
2897 #undef expand4
2898 
2899 // Jump tables for the indirect lock functions
2900 // Only fill in the odd entries, that avoids the need to shift out the low bit
2901 
2902 // init functions
2903 #define expand(l, op) 0, __kmp_init_direct_lock,
2904 void (*__kmp_direct_init[])(kmp_dyna_lock_t *, kmp_dyna_lockseq_t) = {
2905     __kmp_init_indirect_lock, 0, KMP_FOREACH_D_LOCK(expand, init)};
2906 #undef expand
2907 
2908 // destroy functions
2909 #define expand(l, op) 0, (void (*)(kmp_dyna_lock_t *))__kmp_##op##_##l##_lock,
2910 static void (*direct_destroy[])(kmp_dyna_lock_t *) = {
2911     __kmp_destroy_indirect_lock, 0, KMP_FOREACH_D_LOCK(expand, destroy)};
2912 #undef expand
2913 #define expand(l, op)                                                          \
2914   0, (void (*)(kmp_dyna_lock_t *))__kmp_destroy_##l##_lock_with_checks,
2915 static void (*direct_destroy_check[])(kmp_dyna_lock_t *) = {
2916     __kmp_destroy_indirect_lock, 0, KMP_FOREACH_D_LOCK(expand, destroy)};
2917 #undef expand
2918 
2919 // set/acquire functions
2920 #define expand(l, op)                                                          \
2921   0, (int (*)(kmp_dyna_lock_t *, kmp_int32))__kmp_##op##_##l##_lock,
2922 static int (*direct_set[])(kmp_dyna_lock_t *, kmp_int32) = {
2923     __kmp_set_indirect_lock, 0, KMP_FOREACH_D_LOCK(expand, acquire)};
2924 #undef expand
2925 #define expand(l, op)                                                          \
2926   0, (int (*)(kmp_dyna_lock_t *, kmp_int32))__kmp_##op##_##l##_lock_with_checks,
2927 static int (*direct_set_check[])(kmp_dyna_lock_t *, kmp_int32) = {
2928     __kmp_set_indirect_lock_with_checks, 0,
2929     KMP_FOREACH_D_LOCK(expand, acquire)};
2930 #undef expand
2931 
2932 // unset/release and test functions
2933 #define expand(l, op)                                                          \
2934   0, (int (*)(kmp_dyna_lock_t *, kmp_int32))__kmp_##op##_##l##_lock,
2935 static int (*direct_unset[])(kmp_dyna_lock_t *, kmp_int32) = {
2936     __kmp_unset_indirect_lock, 0, KMP_FOREACH_D_LOCK(expand, release)};
2937 static int (*direct_test[])(kmp_dyna_lock_t *, kmp_int32) = {
2938     __kmp_test_indirect_lock, 0, KMP_FOREACH_D_LOCK(expand, test)};
2939 #undef expand
2940 #define expand(l, op)                                                          \
2941   0, (int (*)(kmp_dyna_lock_t *, kmp_int32))__kmp_##op##_##l##_lock_with_checks,
2942 static int (*direct_unset_check[])(kmp_dyna_lock_t *, kmp_int32) = {
2943     __kmp_unset_indirect_lock_with_checks, 0,
2944     KMP_FOREACH_D_LOCK(expand, release)};
2945 static int (*direct_test_check[])(kmp_dyna_lock_t *, kmp_int32) = {
2946     __kmp_test_indirect_lock_with_checks, 0, KMP_FOREACH_D_LOCK(expand, test)};
2947 #undef expand
2948 
2949 // Exposes only one set of jump tables (*lock or *lock_with_checks).
2950 void (**__kmp_direct_destroy)(kmp_dyna_lock_t *) = 0;
2951 int (**__kmp_direct_set)(kmp_dyna_lock_t *, kmp_int32) = 0;
2952 int (**__kmp_direct_unset)(kmp_dyna_lock_t *, kmp_int32) = 0;
2953 int (**__kmp_direct_test)(kmp_dyna_lock_t *, kmp_int32) = 0;
2954 
2955 // Jump tables for the indirect lock functions
2956 #define expand(l, op) (void (*)(kmp_user_lock_p)) __kmp_##op##_##l##_##lock,
2957 void (*__kmp_indirect_init[])(kmp_user_lock_p) = {
2958     KMP_FOREACH_I_LOCK(expand, init)};
2959 #undef expand
2960 
2961 #define expand(l, op) (void (*)(kmp_user_lock_p)) __kmp_##op##_##l##_##lock,
2962 static void (*indirect_destroy[])(kmp_user_lock_p) = {
2963     KMP_FOREACH_I_LOCK(expand, destroy)};
2964 #undef expand
2965 #define expand(l, op)                                                          \
2966   (void (*)(kmp_user_lock_p)) __kmp_##op##_##l##_##lock_with_checks,
2967 static void (*indirect_destroy_check[])(kmp_user_lock_p) = {
2968     KMP_FOREACH_I_LOCK(expand, destroy)};
2969 #undef expand
2970 
2971 // set/acquire functions
2972 #define expand(l, op)                                                          \
2973   (int (*)(kmp_user_lock_p, kmp_int32)) __kmp_##op##_##l##_##lock,
2974 static int (*indirect_set[])(kmp_user_lock_p,
2975                              kmp_int32) = {KMP_FOREACH_I_LOCK(expand, acquire)};
2976 #undef expand
2977 #define expand(l, op)                                                          \
2978   (int (*)(kmp_user_lock_p, kmp_int32)) __kmp_##op##_##l##_##lock_with_checks,
2979 static int (*indirect_set_check[])(kmp_user_lock_p, kmp_int32) = {
2980     KMP_FOREACH_I_LOCK(expand, acquire)};
2981 #undef expand
2982 
2983 // unset/release and test functions
2984 #define expand(l, op)                                                          \
2985   (int (*)(kmp_user_lock_p, kmp_int32)) __kmp_##op##_##l##_##lock,
2986 static int (*indirect_unset[])(kmp_user_lock_p, kmp_int32) = {
2987     KMP_FOREACH_I_LOCK(expand, release)};
2988 static int (*indirect_test[])(kmp_user_lock_p,
2989                               kmp_int32) = {KMP_FOREACH_I_LOCK(expand, test)};
2990 #undef expand
2991 #define expand(l, op)                                                          \
2992   (int (*)(kmp_user_lock_p, kmp_int32)) __kmp_##op##_##l##_##lock_with_checks,
2993 static int (*indirect_unset_check[])(kmp_user_lock_p, kmp_int32) = {
2994     KMP_FOREACH_I_LOCK(expand, release)};
2995 static int (*indirect_test_check[])(kmp_user_lock_p, kmp_int32) = {
2996     KMP_FOREACH_I_LOCK(expand, test)};
2997 #undef expand
2998 
2999 // Exposes only one jump tables (*lock or *lock_with_checks).
3000 void (**__kmp_indirect_destroy)(kmp_user_lock_p) = 0;
3001 int (**__kmp_indirect_set)(kmp_user_lock_p, kmp_int32) = 0;
3002 int (**__kmp_indirect_unset)(kmp_user_lock_p, kmp_int32) = 0;
3003 int (**__kmp_indirect_test)(kmp_user_lock_p, kmp_int32) = 0;
3004 
3005 // Lock index table.
3006 kmp_indirect_lock_table_t __kmp_i_lock_table;
3007 
3008 // Size of indirect locks.
3009 static kmp_uint32 __kmp_indirect_lock_size[KMP_NUM_I_LOCKS] = {0};
3010 
3011 // Jump tables for lock accessor/modifier.
3012 void (*__kmp_indirect_set_location[KMP_NUM_I_LOCKS])(kmp_user_lock_p,
3013                                                      const ident_t *) = {0};
3014 void (*__kmp_indirect_set_flags[KMP_NUM_I_LOCKS])(kmp_user_lock_p,
3015                                                   kmp_lock_flags_t) = {0};
3016 const ident_t *(*__kmp_indirect_get_location[KMP_NUM_I_LOCKS])(
3017     kmp_user_lock_p) = {0};
3018 kmp_lock_flags_t (*__kmp_indirect_get_flags[KMP_NUM_I_LOCKS])(
3019     kmp_user_lock_p) = {0};
3020 
3021 // Use different lock pools for different lock types.
3022 static kmp_indirect_lock_t *__kmp_indirect_lock_pool[KMP_NUM_I_LOCKS] = {0};
3023 
3024 // User lock allocator for dynamically dispatched indirect locks. Every entry of
3025 // the indirect lock table holds the address and type of the allocated indirect
3026 // lock (kmp_indirect_lock_t), and the size of the table doubles when it is
3027 // full. A destroyed indirect lock object is returned to the reusable pool of
3028 // locks, unique to each lock type.
3029 kmp_indirect_lock_t *__kmp_allocate_indirect_lock(void **user_lock,
3030                                                   kmp_int32 gtid,
3031                                                   kmp_indirect_locktag_t tag) {
3032   kmp_indirect_lock_t *lck;
3033   kmp_lock_index_t idx;
3034 
3035   __kmp_acquire_lock(&__kmp_global_lock, gtid);
3036 
3037   if (__kmp_indirect_lock_pool[tag] != NULL) {
3038     // Reuse the allocated and destroyed lock object
3039     lck = __kmp_indirect_lock_pool[tag];
3040     if (OMP_LOCK_T_SIZE < sizeof(void *))
3041       idx = lck->lock->pool.index;
3042     __kmp_indirect_lock_pool[tag] = (kmp_indirect_lock_t *)lck->lock->pool.next;
3043     KA_TRACE(20, ("__kmp_allocate_indirect_lock: reusing an existing lock %p\n",
3044                   lck));
3045   } else {
3046     idx = __kmp_i_lock_table.next;
3047     // Check capacity and double the size if it is full
3048     if (idx == __kmp_i_lock_table.size) {
3049       // Double up the space for block pointers
3050       int row = __kmp_i_lock_table.size / KMP_I_LOCK_CHUNK;
3051       kmp_indirect_lock_t **new_table = (kmp_indirect_lock_t **)__kmp_allocate(
3052           2 * row * sizeof(kmp_indirect_lock_t *));
3053       KMP_MEMCPY(new_table, __kmp_i_lock_table.table,
3054                  row * sizeof(kmp_indirect_lock_t *));
3055       kmp_indirect_lock_t **old_table = __kmp_i_lock_table.table;
3056       __kmp_i_lock_table.table = new_table;
3057       __kmp_free(old_table);
3058       // Allocate new objects in the new blocks
3059       for (int i = row; i < 2 * row; ++i)
3060         *(__kmp_i_lock_table.table + i) = (kmp_indirect_lock_t *)__kmp_allocate(
3061             KMP_I_LOCK_CHUNK * sizeof(kmp_indirect_lock_t));
3062       __kmp_i_lock_table.size = 2 * idx;
3063     }
3064     __kmp_i_lock_table.next++;
3065     lck = KMP_GET_I_LOCK(idx);
3066     // Allocate a new base lock object
3067     lck->lock = (kmp_user_lock_p)__kmp_allocate(__kmp_indirect_lock_size[tag]);
3068     KA_TRACE(20,
3069              ("__kmp_allocate_indirect_lock: allocated a new lock %p\n", lck));
3070   }
3071 
3072   __kmp_release_lock(&__kmp_global_lock, gtid);
3073 
3074   lck->type = tag;
3075 
3076   if (OMP_LOCK_T_SIZE < sizeof(void *)) {
3077     *((kmp_lock_index_t *)user_lock) = idx
3078                                        << 1; // indirect lock word must be even
3079   } else {
3080     *((kmp_indirect_lock_t **)user_lock) = lck;
3081   }
3082 
3083   return lck;
3084 }
3085 
3086 // User lock lookup for dynamically dispatched locks.
3087 static __forceinline kmp_indirect_lock_t *
3088 __kmp_lookup_indirect_lock(void **user_lock, const char *func) {
3089   if (__kmp_env_consistency_check) {
3090     kmp_indirect_lock_t *lck = NULL;
3091     if (user_lock == NULL) {
3092       KMP_FATAL(LockIsUninitialized, func);
3093     }
3094     if (OMP_LOCK_T_SIZE < sizeof(void *)) {
3095       kmp_lock_index_t idx = KMP_EXTRACT_I_INDEX(user_lock);
3096       if (idx >= __kmp_i_lock_table.size) {
3097         KMP_FATAL(LockIsUninitialized, func);
3098       }
3099       lck = KMP_GET_I_LOCK(idx);
3100     } else {
3101       lck = *((kmp_indirect_lock_t **)user_lock);
3102     }
3103     if (lck == NULL) {
3104       KMP_FATAL(LockIsUninitialized, func);
3105     }
3106     return lck;
3107   } else {
3108     if (OMP_LOCK_T_SIZE < sizeof(void *)) {
3109       return KMP_GET_I_LOCK(KMP_EXTRACT_I_INDEX(user_lock));
3110     } else {
3111       return *((kmp_indirect_lock_t **)user_lock);
3112     }
3113   }
3114 }
3115 
3116 static void __kmp_init_indirect_lock(kmp_dyna_lock_t *lock,
3117                                      kmp_dyna_lockseq_t seq) {
3118 #if KMP_USE_ADAPTIVE_LOCKS
3119   if (seq == lockseq_adaptive && !__kmp_cpuinfo.rtm) {
3120     KMP_WARNING(AdaptiveNotSupported, "kmp_lockseq_t", "adaptive");
3121     seq = lockseq_queuing;
3122   }
3123 #endif
3124 #if KMP_USE_TSX
3125   if (seq == lockseq_rtm && !__kmp_cpuinfo.rtm) {
3126     seq = lockseq_queuing;
3127   }
3128 #endif
3129   kmp_indirect_locktag_t tag = KMP_GET_I_TAG(seq);
3130   kmp_indirect_lock_t *l =
3131       __kmp_allocate_indirect_lock((void **)lock, __kmp_entry_gtid(), tag);
3132   KMP_I_LOCK_FUNC(l, init)(l->lock);
3133   KA_TRACE(
3134       20, ("__kmp_init_indirect_lock: initialized indirect lock with type#%d\n",
3135            seq));
3136 }
3137 
3138 static void __kmp_destroy_indirect_lock(kmp_dyna_lock_t *lock) {
3139   kmp_uint32 gtid = __kmp_entry_gtid();
3140   kmp_indirect_lock_t *l =
3141       __kmp_lookup_indirect_lock((void **)lock, "omp_destroy_lock");
3142   KMP_I_LOCK_FUNC(l, destroy)(l->lock);
3143   kmp_indirect_locktag_t tag = l->type;
3144 
3145   __kmp_acquire_lock(&__kmp_global_lock, gtid);
3146 
3147   // Use the base lock's space to keep the pool chain.
3148   l->lock->pool.next = (kmp_user_lock_p)__kmp_indirect_lock_pool[tag];
3149   if (OMP_LOCK_T_SIZE < sizeof(void *)) {
3150     l->lock->pool.index = KMP_EXTRACT_I_INDEX(lock);
3151   }
3152   __kmp_indirect_lock_pool[tag] = l;
3153 
3154   __kmp_release_lock(&__kmp_global_lock, gtid);
3155 }
3156 
3157 static int __kmp_set_indirect_lock(kmp_dyna_lock_t *lock, kmp_int32 gtid) {
3158   kmp_indirect_lock_t *l = KMP_LOOKUP_I_LOCK(lock);
3159   return KMP_I_LOCK_FUNC(l, set)(l->lock, gtid);
3160 }
3161 
3162 static int __kmp_unset_indirect_lock(kmp_dyna_lock_t *lock, kmp_int32 gtid) {
3163   kmp_indirect_lock_t *l = KMP_LOOKUP_I_LOCK(lock);
3164   return KMP_I_LOCK_FUNC(l, unset)(l->lock, gtid);
3165 }
3166 
3167 static int __kmp_test_indirect_lock(kmp_dyna_lock_t *lock, kmp_int32 gtid) {
3168   kmp_indirect_lock_t *l = KMP_LOOKUP_I_LOCK(lock);
3169   return KMP_I_LOCK_FUNC(l, test)(l->lock, gtid);
3170 }
3171 
3172 static int __kmp_set_indirect_lock_with_checks(kmp_dyna_lock_t *lock,
3173                                                kmp_int32 gtid) {
3174   kmp_indirect_lock_t *l =
3175       __kmp_lookup_indirect_lock((void **)lock, "omp_set_lock");
3176   return KMP_I_LOCK_FUNC(l, set)(l->lock, gtid);
3177 }
3178 
3179 static int __kmp_unset_indirect_lock_with_checks(kmp_dyna_lock_t *lock,
3180                                                  kmp_int32 gtid) {
3181   kmp_indirect_lock_t *l =
3182       __kmp_lookup_indirect_lock((void **)lock, "omp_unset_lock");
3183   return KMP_I_LOCK_FUNC(l, unset)(l->lock, gtid);
3184 }
3185 
3186 static int __kmp_test_indirect_lock_with_checks(kmp_dyna_lock_t *lock,
3187                                                 kmp_int32 gtid) {
3188   kmp_indirect_lock_t *l =
3189       __kmp_lookup_indirect_lock((void **)lock, "omp_test_lock");
3190   return KMP_I_LOCK_FUNC(l, test)(l->lock, gtid);
3191 }
3192 
3193 kmp_dyna_lockseq_t __kmp_user_lock_seq = lockseq_queuing;
3194 
3195 // This is used only in kmp_error.cpp when consistency checking is on.
3196 kmp_int32 __kmp_get_user_lock_owner(kmp_user_lock_p lck, kmp_uint32 seq) {
3197   switch (seq) {
3198   case lockseq_tas:
3199   case lockseq_nested_tas:
3200     return __kmp_get_tas_lock_owner((kmp_tas_lock_t *)lck);
3201 #if KMP_USE_FUTEX
3202   case lockseq_futex:
3203   case lockseq_nested_futex:
3204     return __kmp_get_futex_lock_owner((kmp_futex_lock_t *)lck);
3205 #endif
3206   case lockseq_ticket:
3207   case lockseq_nested_ticket:
3208     return __kmp_get_ticket_lock_owner((kmp_ticket_lock_t *)lck);
3209   case lockseq_queuing:
3210   case lockseq_nested_queuing:
3211 #if KMP_USE_ADAPTIVE_LOCKS
3212   case lockseq_adaptive:
3213 #endif
3214     return __kmp_get_queuing_lock_owner((kmp_queuing_lock_t *)lck);
3215   case lockseq_drdpa:
3216   case lockseq_nested_drdpa:
3217     return __kmp_get_drdpa_lock_owner((kmp_drdpa_lock_t *)lck);
3218   default:
3219     return 0;
3220   }
3221 }
3222 
3223 // Initializes data for dynamic user locks.
3224 void __kmp_init_dynamic_user_locks() {
3225   // Initialize jump table for the lock functions
3226   if (__kmp_env_consistency_check) {
3227     __kmp_direct_set = direct_set_check;
3228     __kmp_direct_unset = direct_unset_check;
3229     __kmp_direct_test = direct_test_check;
3230     __kmp_direct_destroy = direct_destroy_check;
3231     __kmp_indirect_set = indirect_set_check;
3232     __kmp_indirect_unset = indirect_unset_check;
3233     __kmp_indirect_test = indirect_test_check;
3234     __kmp_indirect_destroy = indirect_destroy_check;
3235   } else {
3236     __kmp_direct_set = direct_set;
3237     __kmp_direct_unset = direct_unset;
3238     __kmp_direct_test = direct_test;
3239     __kmp_direct_destroy = direct_destroy;
3240     __kmp_indirect_set = indirect_set;
3241     __kmp_indirect_unset = indirect_unset;
3242     __kmp_indirect_test = indirect_test;
3243     __kmp_indirect_destroy = indirect_destroy;
3244   }
3245   // If the user locks have already been initialized, then return. Allow the
3246   // switch between different KMP_CONSISTENCY_CHECK values, but do not allocate
3247   // new lock tables if they have already been allocated.
3248   if (__kmp_init_user_locks)
3249     return;
3250 
3251   // Initialize lock index table
3252   __kmp_i_lock_table.size = KMP_I_LOCK_CHUNK;
3253   __kmp_i_lock_table.table =
3254       (kmp_indirect_lock_t **)__kmp_allocate(sizeof(kmp_indirect_lock_t *));
3255   *(__kmp_i_lock_table.table) = (kmp_indirect_lock_t *)__kmp_allocate(
3256       KMP_I_LOCK_CHUNK * sizeof(kmp_indirect_lock_t));
3257   __kmp_i_lock_table.next = 0;
3258 
3259   // Indirect lock size
3260   __kmp_indirect_lock_size[locktag_ticket] = sizeof(kmp_ticket_lock_t);
3261   __kmp_indirect_lock_size[locktag_queuing] = sizeof(kmp_queuing_lock_t);
3262 #if KMP_USE_ADAPTIVE_LOCKS
3263   __kmp_indirect_lock_size[locktag_adaptive] = sizeof(kmp_adaptive_lock_t);
3264 #endif
3265   __kmp_indirect_lock_size[locktag_drdpa] = sizeof(kmp_drdpa_lock_t);
3266 #if KMP_USE_TSX
3267   __kmp_indirect_lock_size[locktag_rtm] = sizeof(kmp_queuing_lock_t);
3268 #endif
3269   __kmp_indirect_lock_size[locktag_nested_tas] = sizeof(kmp_tas_lock_t);
3270 #if KMP_USE_FUTEX
3271   __kmp_indirect_lock_size[locktag_nested_futex] = sizeof(kmp_futex_lock_t);
3272 #endif
3273   __kmp_indirect_lock_size[locktag_nested_ticket] = sizeof(kmp_ticket_lock_t);
3274   __kmp_indirect_lock_size[locktag_nested_queuing] = sizeof(kmp_queuing_lock_t);
3275   __kmp_indirect_lock_size[locktag_nested_drdpa] = sizeof(kmp_drdpa_lock_t);
3276 
3277 // Initialize lock accessor/modifier
3278 #define fill_jumps(table, expand, sep)                                         \
3279   {                                                                            \
3280     table[locktag##sep##ticket] = expand(ticket);                              \
3281     table[locktag##sep##queuing] = expand(queuing);                            \
3282     table[locktag##sep##drdpa] = expand(drdpa);                                \
3283   }
3284 
3285 #if KMP_USE_ADAPTIVE_LOCKS
3286 #define fill_table(table, expand)                                              \
3287   {                                                                            \
3288     fill_jumps(table, expand, _);                                              \
3289     table[locktag_adaptive] = expand(queuing);                                 \
3290     fill_jumps(table, expand, _nested_);                                       \
3291   }
3292 #else
3293 #define fill_table(table, expand)                                              \
3294   {                                                                            \
3295     fill_jumps(table, expand, _);                                              \
3296     fill_jumps(table, expand, _nested_);                                       \
3297   }
3298 #endif // KMP_USE_ADAPTIVE_LOCKS
3299 
3300 #define expand(l)                                                              \
3301   (void (*)(kmp_user_lock_p, const ident_t *)) __kmp_set_##l##_lock_location
3302   fill_table(__kmp_indirect_set_location, expand);
3303 #undef expand
3304 #define expand(l)                                                              \
3305   (void (*)(kmp_user_lock_p, kmp_lock_flags_t)) __kmp_set_##l##_lock_flags
3306   fill_table(__kmp_indirect_set_flags, expand);
3307 #undef expand
3308 #define expand(l)                                                              \
3309   (const ident_t *(*)(kmp_user_lock_p)) __kmp_get_##l##_lock_location
3310   fill_table(__kmp_indirect_get_location, expand);
3311 #undef expand
3312 #define expand(l)                                                              \
3313   (kmp_lock_flags_t(*)(kmp_user_lock_p)) __kmp_get_##l##_lock_flags
3314   fill_table(__kmp_indirect_get_flags, expand);
3315 #undef expand
3316 
3317   __kmp_init_user_locks = TRUE;
3318 }
3319 
3320 // Clean up the lock table.
3321 void __kmp_cleanup_indirect_user_locks() {
3322   kmp_lock_index_t i;
3323   int k;
3324 
3325   // Clean up locks in the pools first (they were already destroyed before going
3326   // into the pools).
3327   for (k = 0; k < KMP_NUM_I_LOCKS; ++k) {
3328     kmp_indirect_lock_t *l = __kmp_indirect_lock_pool[k];
3329     while (l != NULL) {
3330       kmp_indirect_lock_t *ll = l;
3331       l = (kmp_indirect_lock_t *)l->lock->pool.next;
3332       KA_TRACE(20, ("__kmp_cleanup_indirect_user_locks: freeing %p from pool\n",
3333                     ll));
3334       __kmp_free(ll->lock);
3335       ll->lock = NULL;
3336     }
3337     __kmp_indirect_lock_pool[k] = NULL;
3338   }
3339   // Clean up the remaining undestroyed locks.
3340   for (i = 0; i < __kmp_i_lock_table.next; i++) {
3341     kmp_indirect_lock_t *l = KMP_GET_I_LOCK(i);
3342     if (l->lock != NULL) {
3343       // Locks not destroyed explicitly need to be destroyed here.
3344       KMP_I_LOCK_FUNC(l, destroy)(l->lock);
3345       KA_TRACE(
3346           20,
3347           ("__kmp_cleanup_indirect_user_locks: destroy/freeing %p from table\n",
3348            l));
3349       __kmp_free(l->lock);
3350     }
3351   }
3352   // Free the table
3353   for (i = 0; i < __kmp_i_lock_table.size / KMP_I_LOCK_CHUNK; i++)
3354     __kmp_free(__kmp_i_lock_table.table[i]);
3355   __kmp_free(__kmp_i_lock_table.table);
3356 
3357   __kmp_init_user_locks = FALSE;
3358 }
3359 
3360 enum kmp_lock_kind __kmp_user_lock_kind = lk_default;
3361 int __kmp_num_locks_in_block = 1; // FIXME - tune this value
3362 
3363 #else // KMP_USE_DYNAMIC_LOCK
3364 
3365 static void __kmp_init_tas_lock_with_checks(kmp_tas_lock_t *lck) {
3366   __kmp_init_tas_lock(lck);
3367 }
3368 
3369 static void __kmp_init_nested_tas_lock_with_checks(kmp_tas_lock_t *lck) {
3370   __kmp_init_nested_tas_lock(lck);
3371 }
3372 
3373 #if KMP_USE_FUTEX
3374 static void __kmp_init_futex_lock_with_checks(kmp_futex_lock_t *lck) {
3375   __kmp_init_futex_lock(lck);
3376 }
3377 
3378 static void __kmp_init_nested_futex_lock_with_checks(kmp_futex_lock_t *lck) {
3379   __kmp_init_nested_futex_lock(lck);
3380 }
3381 #endif
3382 
3383 static int __kmp_is_ticket_lock_initialized(kmp_ticket_lock_t *lck) {
3384   return lck == lck->lk.self;
3385 }
3386 
3387 static void __kmp_init_ticket_lock_with_checks(kmp_ticket_lock_t *lck) {
3388   __kmp_init_ticket_lock(lck);
3389 }
3390 
3391 static void __kmp_init_nested_ticket_lock_with_checks(kmp_ticket_lock_t *lck) {
3392   __kmp_init_nested_ticket_lock(lck);
3393 }
3394 
3395 static int __kmp_is_queuing_lock_initialized(kmp_queuing_lock_t *lck) {
3396   return lck == lck->lk.initialized;
3397 }
3398 
3399 static void __kmp_init_queuing_lock_with_checks(kmp_queuing_lock_t *lck) {
3400   __kmp_init_queuing_lock(lck);
3401 }
3402 
3403 static void
3404 __kmp_init_nested_queuing_lock_with_checks(kmp_queuing_lock_t *lck) {
3405   __kmp_init_nested_queuing_lock(lck);
3406 }
3407 
3408 #if KMP_USE_ADAPTIVE_LOCKS
3409 static void __kmp_init_adaptive_lock_with_checks(kmp_adaptive_lock_t *lck) {
3410   __kmp_init_adaptive_lock(lck);
3411 }
3412 #endif
3413 
3414 static int __kmp_is_drdpa_lock_initialized(kmp_drdpa_lock_t *lck) {
3415   return lck == lck->lk.initialized;
3416 }
3417 
3418 static void __kmp_init_drdpa_lock_with_checks(kmp_drdpa_lock_t *lck) {
3419   __kmp_init_drdpa_lock(lck);
3420 }
3421 
3422 static void __kmp_init_nested_drdpa_lock_with_checks(kmp_drdpa_lock_t *lck) {
3423   __kmp_init_nested_drdpa_lock(lck);
3424 }
3425 
3426 /* user locks
3427  * They are implemented as a table of function pointers which are set to the
3428  * lock functions of the appropriate kind, once that has been determined. */
3429 
3430 enum kmp_lock_kind __kmp_user_lock_kind = lk_default;
3431 
3432 size_t __kmp_base_user_lock_size = 0;
3433 size_t __kmp_user_lock_size = 0;
3434 
3435 kmp_int32 (*__kmp_get_user_lock_owner_)(kmp_user_lock_p lck) = NULL;
3436 int (*__kmp_acquire_user_lock_with_checks_)(kmp_user_lock_p lck,
3437                                             kmp_int32 gtid) = NULL;
3438 
3439 int (*__kmp_test_user_lock_with_checks_)(kmp_user_lock_p lck,
3440                                          kmp_int32 gtid) = NULL;
3441 int (*__kmp_release_user_lock_with_checks_)(kmp_user_lock_p lck,
3442                                             kmp_int32 gtid) = NULL;
3443 void (*__kmp_init_user_lock_with_checks_)(kmp_user_lock_p lck) = NULL;
3444 void (*__kmp_destroy_user_lock_)(kmp_user_lock_p lck) = NULL;
3445 void (*__kmp_destroy_user_lock_with_checks_)(kmp_user_lock_p lck) = NULL;
3446 int (*__kmp_acquire_nested_user_lock_with_checks_)(kmp_user_lock_p lck,
3447                                                    kmp_int32 gtid) = NULL;
3448 
3449 int (*__kmp_test_nested_user_lock_with_checks_)(kmp_user_lock_p lck,
3450                                                 kmp_int32 gtid) = NULL;
3451 int (*__kmp_release_nested_user_lock_with_checks_)(kmp_user_lock_p lck,
3452                                                    kmp_int32 gtid) = NULL;
3453 void (*__kmp_init_nested_user_lock_with_checks_)(kmp_user_lock_p lck) = NULL;
3454 void (*__kmp_destroy_nested_user_lock_with_checks_)(kmp_user_lock_p lck) = NULL;
3455 
3456 int (*__kmp_is_user_lock_initialized_)(kmp_user_lock_p lck) = NULL;
3457 const ident_t *(*__kmp_get_user_lock_location_)(kmp_user_lock_p lck) = NULL;
3458 void (*__kmp_set_user_lock_location_)(kmp_user_lock_p lck,
3459                                       const ident_t *loc) = NULL;
3460 kmp_lock_flags_t (*__kmp_get_user_lock_flags_)(kmp_user_lock_p lck) = NULL;
3461 void (*__kmp_set_user_lock_flags_)(kmp_user_lock_p lck,
3462                                    kmp_lock_flags_t flags) = NULL;
3463 
3464 void __kmp_set_user_lock_vptrs(kmp_lock_kind_t user_lock_kind) {
3465   switch (user_lock_kind) {
3466   case lk_default:
3467   default:
3468     KMP_ASSERT(0);
3469 
3470   case lk_tas: {
3471     __kmp_base_user_lock_size = sizeof(kmp_base_tas_lock_t);
3472     __kmp_user_lock_size = sizeof(kmp_tas_lock_t);
3473 
3474     __kmp_get_user_lock_owner_ =
3475         (kmp_int32(*)(kmp_user_lock_p))(&__kmp_get_tas_lock_owner);
3476 
3477     if (__kmp_env_consistency_check) {
3478       KMP_BIND_USER_LOCK_WITH_CHECKS(tas);
3479       KMP_BIND_NESTED_USER_LOCK_WITH_CHECKS(tas);
3480     } else {
3481       KMP_BIND_USER_LOCK(tas);
3482       KMP_BIND_NESTED_USER_LOCK(tas);
3483     }
3484 
3485     __kmp_destroy_user_lock_ =
3486         (void (*)(kmp_user_lock_p))(&__kmp_destroy_tas_lock);
3487 
3488     __kmp_is_user_lock_initialized_ = (int (*)(kmp_user_lock_p))NULL;
3489 
3490     __kmp_get_user_lock_location_ = (const ident_t *(*)(kmp_user_lock_p))NULL;
3491 
3492     __kmp_set_user_lock_location_ =
3493         (void (*)(kmp_user_lock_p, const ident_t *))NULL;
3494 
3495     __kmp_get_user_lock_flags_ = (kmp_lock_flags_t(*)(kmp_user_lock_p))NULL;
3496 
3497     __kmp_set_user_lock_flags_ =
3498         (void (*)(kmp_user_lock_p, kmp_lock_flags_t))NULL;
3499   } break;
3500 
3501 #if KMP_USE_FUTEX
3502 
3503   case lk_futex: {
3504     __kmp_base_user_lock_size = sizeof(kmp_base_futex_lock_t);
3505     __kmp_user_lock_size = sizeof(kmp_futex_lock_t);
3506 
3507     __kmp_get_user_lock_owner_ =
3508         (kmp_int32(*)(kmp_user_lock_p))(&__kmp_get_futex_lock_owner);
3509 
3510     if (__kmp_env_consistency_check) {
3511       KMP_BIND_USER_LOCK_WITH_CHECKS(futex);
3512       KMP_BIND_NESTED_USER_LOCK_WITH_CHECKS(futex);
3513     } else {
3514       KMP_BIND_USER_LOCK(futex);
3515       KMP_BIND_NESTED_USER_LOCK(futex);
3516     }
3517 
3518     __kmp_destroy_user_lock_ =
3519         (void (*)(kmp_user_lock_p))(&__kmp_destroy_futex_lock);
3520 
3521     __kmp_is_user_lock_initialized_ = (int (*)(kmp_user_lock_p))NULL;
3522 
3523     __kmp_get_user_lock_location_ = (const ident_t *(*)(kmp_user_lock_p))NULL;
3524 
3525     __kmp_set_user_lock_location_ =
3526         (void (*)(kmp_user_lock_p, const ident_t *))NULL;
3527 
3528     __kmp_get_user_lock_flags_ = (kmp_lock_flags_t(*)(kmp_user_lock_p))NULL;
3529 
3530     __kmp_set_user_lock_flags_ =
3531         (void (*)(kmp_user_lock_p, kmp_lock_flags_t))NULL;
3532   } break;
3533 
3534 #endif // KMP_USE_FUTEX
3535 
3536   case lk_ticket: {
3537     __kmp_base_user_lock_size = sizeof(kmp_base_ticket_lock_t);
3538     __kmp_user_lock_size = sizeof(kmp_ticket_lock_t);
3539 
3540     __kmp_get_user_lock_owner_ =
3541         (kmp_int32(*)(kmp_user_lock_p))(&__kmp_get_ticket_lock_owner);
3542 
3543     if (__kmp_env_consistency_check) {
3544       KMP_BIND_USER_LOCK_WITH_CHECKS(ticket);
3545       KMP_BIND_NESTED_USER_LOCK_WITH_CHECKS(ticket);
3546     } else {
3547       KMP_BIND_USER_LOCK(ticket);
3548       KMP_BIND_NESTED_USER_LOCK(ticket);
3549     }
3550 
3551     __kmp_destroy_user_lock_ =
3552         (void (*)(kmp_user_lock_p))(&__kmp_destroy_ticket_lock);
3553 
3554     __kmp_is_user_lock_initialized_ =
3555         (int (*)(kmp_user_lock_p))(&__kmp_is_ticket_lock_initialized);
3556 
3557     __kmp_get_user_lock_location_ =
3558         (const ident_t *(*)(kmp_user_lock_p))(&__kmp_get_ticket_lock_location);
3559 
3560     __kmp_set_user_lock_location_ = (void (*)(
3561         kmp_user_lock_p, const ident_t *))(&__kmp_set_ticket_lock_location);
3562 
3563     __kmp_get_user_lock_flags_ =
3564         (kmp_lock_flags_t(*)(kmp_user_lock_p))(&__kmp_get_ticket_lock_flags);
3565 
3566     __kmp_set_user_lock_flags_ = (void (*)(kmp_user_lock_p, kmp_lock_flags_t))(
3567         &__kmp_set_ticket_lock_flags);
3568   } break;
3569 
3570   case lk_queuing: {
3571     __kmp_base_user_lock_size = sizeof(kmp_base_queuing_lock_t);
3572     __kmp_user_lock_size = sizeof(kmp_queuing_lock_t);
3573 
3574     __kmp_get_user_lock_owner_ =
3575         (kmp_int32(*)(kmp_user_lock_p))(&__kmp_get_queuing_lock_owner);
3576 
3577     if (__kmp_env_consistency_check) {
3578       KMP_BIND_USER_LOCK_WITH_CHECKS(queuing);
3579       KMP_BIND_NESTED_USER_LOCK_WITH_CHECKS(queuing);
3580     } else {
3581       KMP_BIND_USER_LOCK(queuing);
3582       KMP_BIND_NESTED_USER_LOCK(queuing);
3583     }
3584 
3585     __kmp_destroy_user_lock_ =
3586         (void (*)(kmp_user_lock_p))(&__kmp_destroy_queuing_lock);
3587 
3588     __kmp_is_user_lock_initialized_ =
3589         (int (*)(kmp_user_lock_p))(&__kmp_is_queuing_lock_initialized);
3590 
3591     __kmp_get_user_lock_location_ =
3592         (const ident_t *(*)(kmp_user_lock_p))(&__kmp_get_queuing_lock_location);
3593 
3594     __kmp_set_user_lock_location_ = (void (*)(
3595         kmp_user_lock_p, const ident_t *))(&__kmp_set_queuing_lock_location);
3596 
3597     __kmp_get_user_lock_flags_ =
3598         (kmp_lock_flags_t(*)(kmp_user_lock_p))(&__kmp_get_queuing_lock_flags);
3599 
3600     __kmp_set_user_lock_flags_ = (void (*)(kmp_user_lock_p, kmp_lock_flags_t))(
3601         &__kmp_set_queuing_lock_flags);
3602   } break;
3603 
3604 #if KMP_USE_ADAPTIVE_LOCKS
3605   case lk_adaptive: {
3606     __kmp_base_user_lock_size = sizeof(kmp_base_adaptive_lock_t);
3607     __kmp_user_lock_size = sizeof(kmp_adaptive_lock_t);
3608 
3609     __kmp_get_user_lock_owner_ =
3610         (kmp_int32(*)(kmp_user_lock_p))(&__kmp_get_queuing_lock_owner);
3611 
3612     if (__kmp_env_consistency_check) {
3613       KMP_BIND_USER_LOCK_WITH_CHECKS(adaptive);
3614     } else {
3615       KMP_BIND_USER_LOCK(adaptive);
3616     }
3617 
3618     __kmp_destroy_user_lock_ =
3619         (void (*)(kmp_user_lock_p))(&__kmp_destroy_adaptive_lock);
3620 
3621     __kmp_is_user_lock_initialized_ =
3622         (int (*)(kmp_user_lock_p))(&__kmp_is_queuing_lock_initialized);
3623 
3624     __kmp_get_user_lock_location_ =
3625         (const ident_t *(*)(kmp_user_lock_p))(&__kmp_get_queuing_lock_location);
3626 
3627     __kmp_set_user_lock_location_ = (void (*)(
3628         kmp_user_lock_p, const ident_t *))(&__kmp_set_queuing_lock_location);
3629 
3630     __kmp_get_user_lock_flags_ =
3631         (kmp_lock_flags_t(*)(kmp_user_lock_p))(&__kmp_get_queuing_lock_flags);
3632 
3633     __kmp_set_user_lock_flags_ = (void (*)(kmp_user_lock_p, kmp_lock_flags_t))(
3634         &__kmp_set_queuing_lock_flags);
3635 
3636   } break;
3637 #endif // KMP_USE_ADAPTIVE_LOCKS
3638 
3639   case lk_drdpa: {
3640     __kmp_base_user_lock_size = sizeof(kmp_base_drdpa_lock_t);
3641     __kmp_user_lock_size = sizeof(kmp_drdpa_lock_t);
3642 
3643     __kmp_get_user_lock_owner_ =
3644         (kmp_int32(*)(kmp_user_lock_p))(&__kmp_get_drdpa_lock_owner);
3645 
3646     if (__kmp_env_consistency_check) {
3647       KMP_BIND_USER_LOCK_WITH_CHECKS(drdpa);
3648       KMP_BIND_NESTED_USER_LOCK_WITH_CHECKS(drdpa);
3649     } else {
3650       KMP_BIND_USER_LOCK(drdpa);
3651       KMP_BIND_NESTED_USER_LOCK(drdpa);
3652     }
3653 
3654     __kmp_destroy_user_lock_ =
3655         (void (*)(kmp_user_lock_p))(&__kmp_destroy_drdpa_lock);
3656 
3657     __kmp_is_user_lock_initialized_ =
3658         (int (*)(kmp_user_lock_p))(&__kmp_is_drdpa_lock_initialized);
3659 
3660     __kmp_get_user_lock_location_ =
3661         (const ident_t *(*)(kmp_user_lock_p))(&__kmp_get_drdpa_lock_location);
3662 
3663     __kmp_set_user_lock_location_ = (void (*)(
3664         kmp_user_lock_p, const ident_t *))(&__kmp_set_drdpa_lock_location);
3665 
3666     __kmp_get_user_lock_flags_ =
3667         (kmp_lock_flags_t(*)(kmp_user_lock_p))(&__kmp_get_drdpa_lock_flags);
3668 
3669     __kmp_set_user_lock_flags_ = (void (*)(kmp_user_lock_p, kmp_lock_flags_t))(
3670         &__kmp_set_drdpa_lock_flags);
3671   } break;
3672   }
3673 }
3674 
3675 // ----------------------------------------------------------------------------
3676 // User lock table & lock allocation
3677 
3678 kmp_lock_table_t __kmp_user_lock_table = {1, 0, NULL};
3679 kmp_user_lock_p __kmp_lock_pool = NULL;
3680 
3681 // Lock block-allocation support.
3682 kmp_block_of_locks *__kmp_lock_blocks = NULL;
3683 int __kmp_num_locks_in_block = 1; // FIXME - tune this value
3684 
3685 static kmp_lock_index_t __kmp_lock_table_insert(kmp_user_lock_p lck) {
3686   // Assume that kmp_global_lock is held upon entry/exit.
3687   kmp_lock_index_t index;
3688   if (__kmp_user_lock_table.used >= __kmp_user_lock_table.allocated) {
3689     kmp_lock_index_t size;
3690     kmp_user_lock_p *table;
3691     // Reallocate lock table.
3692     if (__kmp_user_lock_table.allocated == 0) {
3693       size = 1024;
3694     } else {
3695       size = __kmp_user_lock_table.allocated * 2;
3696     }
3697     table = (kmp_user_lock_p *)__kmp_allocate(sizeof(kmp_user_lock_p) * size);
3698     KMP_MEMCPY(table + 1, __kmp_user_lock_table.table + 1,
3699                sizeof(kmp_user_lock_p) * (__kmp_user_lock_table.used - 1));
3700     table[0] = (kmp_user_lock_p)__kmp_user_lock_table.table;
3701     // We cannot free the previous table now, since it may be in use by other
3702     // threads. So save the pointer to the previous table in in the first
3703     // element of the new table. All the tables will be organized into a list,
3704     // and could be freed when library shutting down.
3705     __kmp_user_lock_table.table = table;
3706     __kmp_user_lock_table.allocated = size;
3707   }
3708   KMP_DEBUG_ASSERT(__kmp_user_lock_table.used <
3709                    __kmp_user_lock_table.allocated);
3710   index = __kmp_user_lock_table.used;
3711   __kmp_user_lock_table.table[index] = lck;
3712   ++__kmp_user_lock_table.used;
3713   return index;
3714 }
3715 
3716 static kmp_user_lock_p __kmp_lock_block_allocate() {
3717   // Assume that kmp_global_lock is held upon entry/exit.
3718   static int last_index = 0;
3719   if ((last_index >= __kmp_num_locks_in_block) || (__kmp_lock_blocks == NULL)) {
3720     // Restart the index.
3721     last_index = 0;
3722     // Need to allocate a new block.
3723     KMP_DEBUG_ASSERT(__kmp_user_lock_size > 0);
3724     size_t space_for_locks = __kmp_user_lock_size * __kmp_num_locks_in_block;
3725     char *buffer =
3726         (char *)__kmp_allocate(space_for_locks + sizeof(kmp_block_of_locks));
3727     // Set up the new block.
3728     kmp_block_of_locks *new_block =
3729         (kmp_block_of_locks *)(&buffer[space_for_locks]);
3730     new_block->next_block = __kmp_lock_blocks;
3731     new_block->locks = (void *)buffer;
3732     // Publish the new block.
3733     KMP_MB();
3734     __kmp_lock_blocks = new_block;
3735   }
3736   kmp_user_lock_p ret = (kmp_user_lock_p)(&(
3737       ((char *)(__kmp_lock_blocks->locks))[last_index * __kmp_user_lock_size]));
3738   last_index++;
3739   return ret;
3740 }
3741 
3742 // Get memory for a lock. It may be freshly allocated memory or reused memory
3743 // from lock pool.
3744 kmp_user_lock_p __kmp_user_lock_allocate(void **user_lock, kmp_int32 gtid,
3745                                          kmp_lock_flags_t flags) {
3746   kmp_user_lock_p lck;
3747   kmp_lock_index_t index;
3748   KMP_DEBUG_ASSERT(user_lock);
3749 
3750   __kmp_acquire_lock(&__kmp_global_lock, gtid);
3751 
3752   if (__kmp_lock_pool == NULL) {
3753     // Lock pool is empty. Allocate new memory.
3754 
3755     // ANNOTATION: Found no good way to express the syncronisation
3756     // between allocation and usage, so ignore the allocation
3757     ANNOTATE_IGNORE_WRITES_BEGIN();
3758     if (__kmp_num_locks_in_block <= 1) { // Tune this cutoff point.
3759       lck = (kmp_user_lock_p)__kmp_allocate(__kmp_user_lock_size);
3760     } else {
3761       lck = __kmp_lock_block_allocate();
3762     }
3763     ANNOTATE_IGNORE_WRITES_END();
3764 
3765     // Insert lock in the table so that it can be freed in __kmp_cleanup,
3766     // and debugger has info on all allocated locks.
3767     index = __kmp_lock_table_insert(lck);
3768   } else {
3769     // Pick up lock from pool.
3770     lck = __kmp_lock_pool;
3771     index = __kmp_lock_pool->pool.index;
3772     __kmp_lock_pool = __kmp_lock_pool->pool.next;
3773   }
3774 
3775   // We could potentially differentiate between nested and regular locks
3776   // here, and do the lock table lookup for regular locks only.
3777   if (OMP_LOCK_T_SIZE < sizeof(void *)) {
3778     *((kmp_lock_index_t *)user_lock) = index;
3779   } else {
3780     *((kmp_user_lock_p *)user_lock) = lck;
3781   }
3782 
3783   // mark the lock if it is critical section lock.
3784   __kmp_set_user_lock_flags(lck, flags);
3785 
3786   __kmp_release_lock(&__kmp_global_lock, gtid); // AC: TODO move this line upper
3787 
3788   return lck;
3789 }
3790 
3791 // Put lock's memory to pool for reusing.
3792 void __kmp_user_lock_free(void **user_lock, kmp_int32 gtid,
3793                           kmp_user_lock_p lck) {
3794   KMP_DEBUG_ASSERT(user_lock != NULL);
3795   KMP_DEBUG_ASSERT(lck != NULL);
3796 
3797   __kmp_acquire_lock(&__kmp_global_lock, gtid);
3798 
3799   lck->pool.next = __kmp_lock_pool;
3800   __kmp_lock_pool = lck;
3801   if (OMP_LOCK_T_SIZE < sizeof(void *)) {
3802     kmp_lock_index_t index = *((kmp_lock_index_t *)user_lock);
3803     KMP_DEBUG_ASSERT(0 < index && index <= __kmp_user_lock_table.used);
3804     lck->pool.index = index;
3805   }
3806 
3807   __kmp_release_lock(&__kmp_global_lock, gtid);
3808 }
3809 
3810 kmp_user_lock_p __kmp_lookup_user_lock(void **user_lock, char const *func) {
3811   kmp_user_lock_p lck = NULL;
3812 
3813   if (__kmp_env_consistency_check) {
3814     if (user_lock == NULL) {
3815       KMP_FATAL(LockIsUninitialized, func);
3816     }
3817   }
3818 
3819   if (OMP_LOCK_T_SIZE < sizeof(void *)) {
3820     kmp_lock_index_t index = *((kmp_lock_index_t *)user_lock);
3821     if (__kmp_env_consistency_check) {
3822       if (!(0 < index && index < __kmp_user_lock_table.used)) {
3823         KMP_FATAL(LockIsUninitialized, func);
3824       }
3825     }
3826     KMP_DEBUG_ASSERT(0 < index && index < __kmp_user_lock_table.used);
3827     KMP_DEBUG_ASSERT(__kmp_user_lock_size > 0);
3828     lck = __kmp_user_lock_table.table[index];
3829   } else {
3830     lck = *((kmp_user_lock_p *)user_lock);
3831   }
3832 
3833   if (__kmp_env_consistency_check) {
3834     if (lck == NULL) {
3835       KMP_FATAL(LockIsUninitialized, func);
3836     }
3837   }
3838 
3839   return lck;
3840 }
3841 
3842 void __kmp_cleanup_user_locks(void) {
3843   // Reset lock pool. Don't worry about lock in the pool--we will free them when
3844   // iterating through lock table (it includes all the locks, dead or alive).
3845   __kmp_lock_pool = NULL;
3846 
3847 #define IS_CRITICAL(lck)                                                       \
3848   ((__kmp_get_user_lock_flags_ != NULL) &&                                     \
3849    ((*__kmp_get_user_lock_flags_)(lck)&kmp_lf_critical_section))
3850 
3851   // Loop through lock table, free all locks.
3852   // Do not free item [0], it is reserved for lock tables list.
3853   //
3854   // FIXME - we are iterating through a list of (pointers to) objects of type
3855   // union kmp_user_lock, but we have no way of knowing whether the base type is
3856   // currently "pool" or whatever the global user lock type is.
3857   //
3858   // We are relying on the fact that for all of the user lock types
3859   // (except "tas"), the first field in the lock struct is the "initialized"
3860   // field, which is set to the address of the lock object itself when
3861   // the lock is initialized.  When the union is of type "pool", the
3862   // first field is a pointer to the next object in the free list, which
3863   // will not be the same address as the object itself.
3864   //
3865   // This means that the check (*__kmp_is_user_lock_initialized_)(lck) will fail
3866   // for "pool" objects on the free list.  This must happen as the "location"
3867   // field of real user locks overlaps the "index" field of "pool" objects.
3868   //
3869   // It would be better to run through the free list, and remove all "pool"
3870   // objects from the lock table before executing this loop.  However,
3871   // "pool" objects do not always have their index field set (only on
3872   // lin_32e), and I don't want to search the lock table for the address
3873   // of every "pool" object on the free list.
3874   while (__kmp_user_lock_table.used > 1) {
3875     const ident *loc;
3876 
3877     // reduce __kmp_user_lock_table.used before freeing the lock,
3878     // so that state of locks is consistent
3879     kmp_user_lock_p lck =
3880         __kmp_user_lock_table.table[--__kmp_user_lock_table.used];
3881 
3882     if ((__kmp_is_user_lock_initialized_ != NULL) &&
3883         (*__kmp_is_user_lock_initialized_)(lck)) {
3884       // Issue a warning if: KMP_CONSISTENCY_CHECK AND lock is initialized AND
3885       // it is NOT a critical section (user is not responsible for destroying
3886       // criticals) AND we know source location to report.
3887       if (__kmp_env_consistency_check && (!IS_CRITICAL(lck)) &&
3888           ((loc = __kmp_get_user_lock_location(lck)) != NULL) &&
3889           (loc->psource != NULL)) {
3890         kmp_str_loc_t str_loc = __kmp_str_loc_init(loc->psource, 0);
3891         KMP_WARNING(CnsLockNotDestroyed, str_loc.file, str_loc.line);
3892         __kmp_str_loc_free(&str_loc);
3893       }
3894 
3895 #ifdef KMP_DEBUG
3896       if (IS_CRITICAL(lck)) {
3897         KA_TRACE(
3898             20,
3899             ("__kmp_cleanup_user_locks: free critical section lock %p (%p)\n",
3900              lck, *(void **)lck));
3901       } else {
3902         KA_TRACE(20, ("__kmp_cleanup_user_locks: free lock %p (%p)\n", lck,
3903                       *(void **)lck));
3904       }
3905 #endif // KMP_DEBUG
3906 
3907       // Cleanup internal lock dynamic resources (for drdpa locks particularly).
3908       __kmp_destroy_user_lock(lck);
3909     }
3910 
3911     // Free the lock if block allocation of locks is not used.
3912     if (__kmp_lock_blocks == NULL) {
3913       __kmp_free(lck);
3914     }
3915   }
3916 
3917 #undef IS_CRITICAL
3918 
3919   // delete lock table(s).
3920   kmp_user_lock_p *table_ptr = __kmp_user_lock_table.table;
3921   __kmp_user_lock_table.table = NULL;
3922   __kmp_user_lock_table.allocated = 0;
3923 
3924   while (table_ptr != NULL) {
3925     // In the first element we saved the pointer to the previous
3926     // (smaller) lock table.
3927     kmp_user_lock_p *next = (kmp_user_lock_p *)(table_ptr[0]);
3928     __kmp_free(table_ptr);
3929     table_ptr = next;
3930   }
3931 
3932   // Free buffers allocated for blocks of locks.
3933   kmp_block_of_locks_t *block_ptr = __kmp_lock_blocks;
3934   __kmp_lock_blocks = NULL;
3935 
3936   while (block_ptr != NULL) {
3937     kmp_block_of_locks_t *next = block_ptr->next_block;
3938     __kmp_free(block_ptr->locks);
3939     // *block_ptr itself was allocated at the end of the locks vector.
3940     block_ptr = next;
3941   }
3942 
3943   TCW_4(__kmp_init_user_locks, FALSE);
3944 }
3945 
3946 #endif // KMP_USE_DYNAMIC_LOCK
3947