1 /* 2 * kmp_lock.cpp -- lock-related functions 3 */ 4 5 //===----------------------------------------------------------------------===// 6 // 7 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 8 // See https://llvm.org/LICENSE.txt for license information. 9 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include <stddef.h> 14 #include <atomic> 15 16 #include "kmp.h" 17 #include "kmp_i18n.h" 18 #include "kmp_io.h" 19 #include "kmp_itt.h" 20 #include "kmp_lock.h" 21 #include "kmp_wait_release.h" 22 #include "kmp_wrapper_getpid.h" 23 24 #include "tsan_annotations.h" 25 26 #if KMP_USE_FUTEX 27 #include <sys/syscall.h> 28 #include <unistd.h> 29 // We should really include <futex.h>, but that causes compatibility problems on 30 // different Linux* OS distributions that either require that you include (or 31 // break when you try to include) <pci/types.h>. Since all we need is the two 32 // macros below (which are part of the kernel ABI, so can't change) we just 33 // define the constants here and don't include <futex.h> 34 #ifndef FUTEX_WAIT 35 #define FUTEX_WAIT 0 36 #endif 37 #ifndef FUTEX_WAKE 38 #define FUTEX_WAKE 1 39 #endif 40 #endif 41 42 /* Implement spin locks for internal library use. */ 43 /* The algorithm implemented is Lamport's bakery lock [1974]. */ 44 45 void __kmp_validate_locks(void) { 46 int i; 47 kmp_uint32 x, y; 48 49 /* Check to make sure unsigned arithmetic does wraps properly */ 50 x = ~((kmp_uint32)0) - 2; 51 y = x - 2; 52 53 for (i = 0; i < 8; ++i, ++x, ++y) { 54 kmp_uint32 z = (x - y); 55 KMP_ASSERT(z == 2); 56 } 57 58 KMP_ASSERT(offsetof(kmp_base_queuing_lock, tail_id) % 8 == 0); 59 } 60 61 /* ------------------------------------------------------------------------ */ 62 /* test and set locks */ 63 64 // For the non-nested locks, we can only assume that the first 4 bytes were 65 // allocated, since gcc only allocates 4 bytes for omp_lock_t, and the Intel 66 // compiler only allocates a 4 byte pointer on IA-32 architecture. On 67 // Windows* OS on Intel(R) 64, we can assume that all 8 bytes were allocated. 68 // 69 // gcc reserves >= 8 bytes for nested locks, so we can assume that the 70 // entire 8 bytes were allocated for nested locks on all 64-bit platforms. 71 72 static kmp_int32 __kmp_get_tas_lock_owner(kmp_tas_lock_t *lck) { 73 return KMP_LOCK_STRIP(KMP_ATOMIC_LD_RLX(&lck->lk.poll)) - 1; 74 } 75 76 static inline bool __kmp_is_tas_lock_nestable(kmp_tas_lock_t *lck) { 77 return lck->lk.depth_locked != -1; 78 } 79 80 __forceinline static int 81 __kmp_acquire_tas_lock_timed_template(kmp_tas_lock_t *lck, kmp_int32 gtid) { 82 KMP_MB(); 83 84 #ifdef USE_LOCK_PROFILE 85 kmp_uint32 curr = KMP_LOCK_STRIP(lck->lk.poll); 86 if ((curr != 0) && (curr != gtid + 1)) 87 __kmp_printf("LOCK CONTENTION: %p\n", lck); 88 /* else __kmp_printf( "." );*/ 89 #endif /* USE_LOCK_PROFILE */ 90 91 kmp_int32 tas_free = KMP_LOCK_FREE(tas); 92 kmp_int32 tas_busy = KMP_LOCK_BUSY(gtid + 1, tas); 93 94 if (KMP_ATOMIC_LD_RLX(&lck->lk.poll) == tas_free && 95 __kmp_atomic_compare_store_acq(&lck->lk.poll, tas_free, tas_busy)) { 96 KMP_FSYNC_ACQUIRED(lck); 97 return KMP_LOCK_ACQUIRED_FIRST; 98 } 99 100 kmp_uint32 spins; 101 KMP_FSYNC_PREPARE(lck); 102 KMP_INIT_YIELD(spins); 103 kmp_backoff_t backoff = __kmp_spin_backoff_params; 104 do { 105 __kmp_spin_backoff(&backoff); 106 KMP_YIELD_OVERSUB_ELSE_SPIN(spins); 107 } while (KMP_ATOMIC_LD_RLX(&lck->lk.poll) != tas_free || 108 !__kmp_atomic_compare_store_acq(&lck->lk.poll, tas_free, tas_busy)); 109 KMP_FSYNC_ACQUIRED(lck); 110 return KMP_LOCK_ACQUIRED_FIRST; 111 } 112 113 int __kmp_acquire_tas_lock(kmp_tas_lock_t *lck, kmp_int32 gtid) { 114 int retval = __kmp_acquire_tas_lock_timed_template(lck, gtid); 115 ANNOTATE_TAS_ACQUIRED(lck); 116 return retval; 117 } 118 119 static int __kmp_acquire_tas_lock_with_checks(kmp_tas_lock_t *lck, 120 kmp_int32 gtid) { 121 char const *const func = "omp_set_lock"; 122 if ((sizeof(kmp_tas_lock_t) <= OMP_LOCK_T_SIZE) && 123 __kmp_is_tas_lock_nestable(lck)) { 124 KMP_FATAL(LockNestableUsedAsSimple, func); 125 } 126 if ((gtid >= 0) && (__kmp_get_tas_lock_owner(lck) == gtid)) { 127 KMP_FATAL(LockIsAlreadyOwned, func); 128 } 129 return __kmp_acquire_tas_lock(lck, gtid); 130 } 131 132 int __kmp_test_tas_lock(kmp_tas_lock_t *lck, kmp_int32 gtid) { 133 kmp_int32 tas_free = KMP_LOCK_FREE(tas); 134 kmp_int32 tas_busy = KMP_LOCK_BUSY(gtid + 1, tas); 135 if (KMP_ATOMIC_LD_RLX(&lck->lk.poll) == tas_free && 136 __kmp_atomic_compare_store_acq(&lck->lk.poll, tas_free, tas_busy)) { 137 KMP_FSYNC_ACQUIRED(lck); 138 return TRUE; 139 } 140 return FALSE; 141 } 142 143 static int __kmp_test_tas_lock_with_checks(kmp_tas_lock_t *lck, 144 kmp_int32 gtid) { 145 char const *const func = "omp_test_lock"; 146 if ((sizeof(kmp_tas_lock_t) <= OMP_LOCK_T_SIZE) && 147 __kmp_is_tas_lock_nestable(lck)) { 148 KMP_FATAL(LockNestableUsedAsSimple, func); 149 } 150 return __kmp_test_tas_lock(lck, gtid); 151 } 152 153 int __kmp_release_tas_lock(kmp_tas_lock_t *lck, kmp_int32 gtid) { 154 KMP_MB(); /* Flush all pending memory write invalidates. */ 155 156 KMP_FSYNC_RELEASING(lck); 157 ANNOTATE_TAS_RELEASED(lck); 158 KMP_ATOMIC_ST_REL(&lck->lk.poll, KMP_LOCK_FREE(tas)); 159 KMP_MB(); /* Flush all pending memory write invalidates. */ 160 161 KMP_YIELD_OVERSUB(); 162 return KMP_LOCK_RELEASED; 163 } 164 165 static int __kmp_release_tas_lock_with_checks(kmp_tas_lock_t *lck, 166 kmp_int32 gtid) { 167 char const *const func = "omp_unset_lock"; 168 KMP_MB(); /* in case another processor initialized lock */ 169 if ((sizeof(kmp_tas_lock_t) <= OMP_LOCK_T_SIZE) && 170 __kmp_is_tas_lock_nestable(lck)) { 171 KMP_FATAL(LockNestableUsedAsSimple, func); 172 } 173 if (__kmp_get_tas_lock_owner(lck) == -1) { 174 KMP_FATAL(LockUnsettingFree, func); 175 } 176 if ((gtid >= 0) && (__kmp_get_tas_lock_owner(lck) >= 0) && 177 (__kmp_get_tas_lock_owner(lck) != gtid)) { 178 KMP_FATAL(LockUnsettingSetByAnother, func); 179 } 180 return __kmp_release_tas_lock(lck, gtid); 181 } 182 183 void __kmp_init_tas_lock(kmp_tas_lock_t *lck) { 184 lck->lk.poll = KMP_LOCK_FREE(tas); 185 } 186 187 void __kmp_destroy_tas_lock(kmp_tas_lock_t *lck) { lck->lk.poll = 0; } 188 189 static void __kmp_destroy_tas_lock_with_checks(kmp_tas_lock_t *lck) { 190 char const *const func = "omp_destroy_lock"; 191 if ((sizeof(kmp_tas_lock_t) <= OMP_LOCK_T_SIZE) && 192 __kmp_is_tas_lock_nestable(lck)) { 193 KMP_FATAL(LockNestableUsedAsSimple, func); 194 } 195 if (__kmp_get_tas_lock_owner(lck) != -1) { 196 KMP_FATAL(LockStillOwned, func); 197 } 198 __kmp_destroy_tas_lock(lck); 199 } 200 201 // nested test and set locks 202 203 int __kmp_acquire_nested_tas_lock(kmp_tas_lock_t *lck, kmp_int32 gtid) { 204 KMP_DEBUG_ASSERT(gtid >= 0); 205 206 if (__kmp_get_tas_lock_owner(lck) == gtid) { 207 lck->lk.depth_locked += 1; 208 return KMP_LOCK_ACQUIRED_NEXT; 209 } else { 210 __kmp_acquire_tas_lock_timed_template(lck, gtid); 211 ANNOTATE_TAS_ACQUIRED(lck); 212 lck->lk.depth_locked = 1; 213 return KMP_LOCK_ACQUIRED_FIRST; 214 } 215 } 216 217 static int __kmp_acquire_nested_tas_lock_with_checks(kmp_tas_lock_t *lck, 218 kmp_int32 gtid) { 219 char const *const func = "omp_set_nest_lock"; 220 if (!__kmp_is_tas_lock_nestable(lck)) { 221 KMP_FATAL(LockSimpleUsedAsNestable, func); 222 } 223 return __kmp_acquire_nested_tas_lock(lck, gtid); 224 } 225 226 int __kmp_test_nested_tas_lock(kmp_tas_lock_t *lck, kmp_int32 gtid) { 227 int retval; 228 229 KMP_DEBUG_ASSERT(gtid >= 0); 230 231 if (__kmp_get_tas_lock_owner(lck) == gtid) { 232 retval = ++lck->lk.depth_locked; 233 } else if (!__kmp_test_tas_lock(lck, gtid)) { 234 retval = 0; 235 } else { 236 KMP_MB(); 237 retval = lck->lk.depth_locked = 1; 238 } 239 return retval; 240 } 241 242 static int __kmp_test_nested_tas_lock_with_checks(kmp_tas_lock_t *lck, 243 kmp_int32 gtid) { 244 char const *const func = "omp_test_nest_lock"; 245 if (!__kmp_is_tas_lock_nestable(lck)) { 246 KMP_FATAL(LockSimpleUsedAsNestable, func); 247 } 248 return __kmp_test_nested_tas_lock(lck, gtid); 249 } 250 251 int __kmp_release_nested_tas_lock(kmp_tas_lock_t *lck, kmp_int32 gtid) { 252 KMP_DEBUG_ASSERT(gtid >= 0); 253 254 KMP_MB(); 255 if (--(lck->lk.depth_locked) == 0) { 256 __kmp_release_tas_lock(lck, gtid); 257 return KMP_LOCK_RELEASED; 258 } 259 return KMP_LOCK_STILL_HELD; 260 } 261 262 static int __kmp_release_nested_tas_lock_with_checks(kmp_tas_lock_t *lck, 263 kmp_int32 gtid) { 264 char const *const func = "omp_unset_nest_lock"; 265 KMP_MB(); /* in case another processor initialized lock */ 266 if (!__kmp_is_tas_lock_nestable(lck)) { 267 KMP_FATAL(LockSimpleUsedAsNestable, func); 268 } 269 if (__kmp_get_tas_lock_owner(lck) == -1) { 270 KMP_FATAL(LockUnsettingFree, func); 271 } 272 if (__kmp_get_tas_lock_owner(lck) != gtid) { 273 KMP_FATAL(LockUnsettingSetByAnother, func); 274 } 275 return __kmp_release_nested_tas_lock(lck, gtid); 276 } 277 278 void __kmp_init_nested_tas_lock(kmp_tas_lock_t *lck) { 279 __kmp_init_tas_lock(lck); 280 lck->lk.depth_locked = 0; // >= 0 for nestable locks, -1 for simple locks 281 } 282 283 void __kmp_destroy_nested_tas_lock(kmp_tas_lock_t *lck) { 284 __kmp_destroy_tas_lock(lck); 285 lck->lk.depth_locked = 0; 286 } 287 288 static void __kmp_destroy_nested_tas_lock_with_checks(kmp_tas_lock_t *lck) { 289 char const *const func = "omp_destroy_nest_lock"; 290 if (!__kmp_is_tas_lock_nestable(lck)) { 291 KMP_FATAL(LockSimpleUsedAsNestable, func); 292 } 293 if (__kmp_get_tas_lock_owner(lck) != -1) { 294 KMP_FATAL(LockStillOwned, func); 295 } 296 __kmp_destroy_nested_tas_lock(lck); 297 } 298 299 #if KMP_USE_FUTEX 300 301 /* ------------------------------------------------------------------------ */ 302 /* futex locks */ 303 304 // futex locks are really just test and set locks, with a different method 305 // of handling contention. They take the same amount of space as test and 306 // set locks, and are allocated the same way (i.e. use the area allocated by 307 // the compiler for non-nested locks / allocate nested locks on the heap). 308 309 static kmp_int32 __kmp_get_futex_lock_owner(kmp_futex_lock_t *lck) { 310 return KMP_LOCK_STRIP((TCR_4(lck->lk.poll) >> 1)) - 1; 311 } 312 313 static inline bool __kmp_is_futex_lock_nestable(kmp_futex_lock_t *lck) { 314 return lck->lk.depth_locked != -1; 315 } 316 317 __forceinline static int 318 __kmp_acquire_futex_lock_timed_template(kmp_futex_lock_t *lck, kmp_int32 gtid) { 319 kmp_int32 gtid_code = (gtid + 1) << 1; 320 321 KMP_MB(); 322 323 #ifdef USE_LOCK_PROFILE 324 kmp_uint32 curr = KMP_LOCK_STRIP(TCR_4(lck->lk.poll)); 325 if ((curr != 0) && (curr != gtid_code)) 326 __kmp_printf("LOCK CONTENTION: %p\n", lck); 327 /* else __kmp_printf( "." );*/ 328 #endif /* USE_LOCK_PROFILE */ 329 330 KMP_FSYNC_PREPARE(lck); 331 KA_TRACE(1000, ("__kmp_acquire_futex_lock: lck:%p(0x%x), T#%d entering\n", 332 lck, lck->lk.poll, gtid)); 333 334 kmp_int32 poll_val; 335 336 while ((poll_val = KMP_COMPARE_AND_STORE_RET32( 337 &(lck->lk.poll), KMP_LOCK_FREE(futex), 338 KMP_LOCK_BUSY(gtid_code, futex))) != KMP_LOCK_FREE(futex)) { 339 340 kmp_int32 cond = KMP_LOCK_STRIP(poll_val) & 1; 341 KA_TRACE( 342 1000, 343 ("__kmp_acquire_futex_lock: lck:%p, T#%d poll_val = 0x%x cond = 0x%x\n", 344 lck, gtid, poll_val, cond)); 345 346 // NOTE: if you try to use the following condition for this branch 347 // 348 // if ( poll_val & 1 == 0 ) 349 // 350 // Then the 12.0 compiler has a bug where the following block will 351 // always be skipped, regardless of the value of the LSB of poll_val. 352 if (!cond) { 353 // Try to set the lsb in the poll to indicate to the owner 354 // thread that they need to wake this thread up. 355 if (!KMP_COMPARE_AND_STORE_REL32(&(lck->lk.poll), poll_val, 356 poll_val | KMP_LOCK_BUSY(1, futex))) { 357 KA_TRACE( 358 1000, 359 ("__kmp_acquire_futex_lock: lck:%p(0x%x), T#%d can't set bit 0\n", 360 lck, lck->lk.poll, gtid)); 361 continue; 362 } 363 poll_val |= KMP_LOCK_BUSY(1, futex); 364 365 KA_TRACE(1000, 366 ("__kmp_acquire_futex_lock: lck:%p(0x%x), T#%d bit 0 set\n", lck, 367 lck->lk.poll, gtid)); 368 } 369 370 KA_TRACE( 371 1000, 372 ("__kmp_acquire_futex_lock: lck:%p, T#%d before futex_wait(0x%x)\n", 373 lck, gtid, poll_val)); 374 375 long rc; 376 if ((rc = syscall(__NR_futex, &(lck->lk.poll), FUTEX_WAIT, poll_val, NULL, 377 NULL, 0)) != 0) { 378 KA_TRACE(1000, ("__kmp_acquire_futex_lock: lck:%p, T#%d futex_wait(0x%x) " 379 "failed (rc=%ld errno=%d)\n", 380 lck, gtid, poll_val, rc, errno)); 381 continue; 382 } 383 384 KA_TRACE(1000, 385 ("__kmp_acquire_futex_lock: lck:%p, T#%d after futex_wait(0x%x)\n", 386 lck, gtid, poll_val)); 387 // This thread has now done a successful futex wait call and was entered on 388 // the OS futex queue. We must now perform a futex wake call when releasing 389 // the lock, as we have no idea how many other threads are in the queue. 390 gtid_code |= 1; 391 } 392 393 KMP_FSYNC_ACQUIRED(lck); 394 KA_TRACE(1000, ("__kmp_acquire_futex_lock: lck:%p(0x%x), T#%d exiting\n", lck, 395 lck->lk.poll, gtid)); 396 return KMP_LOCK_ACQUIRED_FIRST; 397 } 398 399 int __kmp_acquire_futex_lock(kmp_futex_lock_t *lck, kmp_int32 gtid) { 400 int retval = __kmp_acquire_futex_lock_timed_template(lck, gtid); 401 ANNOTATE_FUTEX_ACQUIRED(lck); 402 return retval; 403 } 404 405 static int __kmp_acquire_futex_lock_with_checks(kmp_futex_lock_t *lck, 406 kmp_int32 gtid) { 407 char const *const func = "omp_set_lock"; 408 if ((sizeof(kmp_futex_lock_t) <= OMP_LOCK_T_SIZE) && 409 __kmp_is_futex_lock_nestable(lck)) { 410 KMP_FATAL(LockNestableUsedAsSimple, func); 411 } 412 if ((gtid >= 0) && (__kmp_get_futex_lock_owner(lck) == gtid)) { 413 KMP_FATAL(LockIsAlreadyOwned, func); 414 } 415 return __kmp_acquire_futex_lock(lck, gtid); 416 } 417 418 int __kmp_test_futex_lock(kmp_futex_lock_t *lck, kmp_int32 gtid) { 419 if (KMP_COMPARE_AND_STORE_ACQ32(&(lck->lk.poll), KMP_LOCK_FREE(futex), 420 KMP_LOCK_BUSY((gtid + 1) << 1, futex))) { 421 KMP_FSYNC_ACQUIRED(lck); 422 return TRUE; 423 } 424 return FALSE; 425 } 426 427 static int __kmp_test_futex_lock_with_checks(kmp_futex_lock_t *lck, 428 kmp_int32 gtid) { 429 char const *const func = "omp_test_lock"; 430 if ((sizeof(kmp_futex_lock_t) <= OMP_LOCK_T_SIZE) && 431 __kmp_is_futex_lock_nestable(lck)) { 432 KMP_FATAL(LockNestableUsedAsSimple, func); 433 } 434 return __kmp_test_futex_lock(lck, gtid); 435 } 436 437 int __kmp_release_futex_lock(kmp_futex_lock_t *lck, kmp_int32 gtid) { 438 KMP_MB(); /* Flush all pending memory write invalidates. */ 439 440 KA_TRACE(1000, ("__kmp_release_futex_lock: lck:%p(0x%x), T#%d entering\n", 441 lck, lck->lk.poll, gtid)); 442 443 KMP_FSYNC_RELEASING(lck); 444 ANNOTATE_FUTEX_RELEASED(lck); 445 446 kmp_int32 poll_val = KMP_XCHG_FIXED32(&(lck->lk.poll), KMP_LOCK_FREE(futex)); 447 448 KA_TRACE(1000, 449 ("__kmp_release_futex_lock: lck:%p, T#%d released poll_val = 0x%x\n", 450 lck, gtid, poll_val)); 451 452 if (KMP_LOCK_STRIP(poll_val) & 1) { 453 KA_TRACE(1000, 454 ("__kmp_release_futex_lock: lck:%p, T#%d futex_wake 1 thread\n", 455 lck, gtid)); 456 syscall(__NR_futex, &(lck->lk.poll), FUTEX_WAKE, KMP_LOCK_BUSY(1, futex), 457 NULL, NULL, 0); 458 } 459 460 KMP_MB(); /* Flush all pending memory write invalidates. */ 461 462 KA_TRACE(1000, ("__kmp_release_futex_lock: lck:%p(0x%x), T#%d exiting\n", lck, 463 lck->lk.poll, gtid)); 464 465 KMP_YIELD_OVERSUB(); 466 return KMP_LOCK_RELEASED; 467 } 468 469 static int __kmp_release_futex_lock_with_checks(kmp_futex_lock_t *lck, 470 kmp_int32 gtid) { 471 char const *const func = "omp_unset_lock"; 472 KMP_MB(); /* in case another processor initialized lock */ 473 if ((sizeof(kmp_futex_lock_t) <= OMP_LOCK_T_SIZE) && 474 __kmp_is_futex_lock_nestable(lck)) { 475 KMP_FATAL(LockNestableUsedAsSimple, func); 476 } 477 if (__kmp_get_futex_lock_owner(lck) == -1) { 478 KMP_FATAL(LockUnsettingFree, func); 479 } 480 if ((gtid >= 0) && (__kmp_get_futex_lock_owner(lck) >= 0) && 481 (__kmp_get_futex_lock_owner(lck) != gtid)) { 482 KMP_FATAL(LockUnsettingSetByAnother, func); 483 } 484 return __kmp_release_futex_lock(lck, gtid); 485 } 486 487 void __kmp_init_futex_lock(kmp_futex_lock_t *lck) { 488 TCW_4(lck->lk.poll, KMP_LOCK_FREE(futex)); 489 } 490 491 void __kmp_destroy_futex_lock(kmp_futex_lock_t *lck) { lck->lk.poll = 0; } 492 493 static void __kmp_destroy_futex_lock_with_checks(kmp_futex_lock_t *lck) { 494 char const *const func = "omp_destroy_lock"; 495 if ((sizeof(kmp_futex_lock_t) <= OMP_LOCK_T_SIZE) && 496 __kmp_is_futex_lock_nestable(lck)) { 497 KMP_FATAL(LockNestableUsedAsSimple, func); 498 } 499 if (__kmp_get_futex_lock_owner(lck) != -1) { 500 KMP_FATAL(LockStillOwned, func); 501 } 502 __kmp_destroy_futex_lock(lck); 503 } 504 505 // nested futex locks 506 507 int __kmp_acquire_nested_futex_lock(kmp_futex_lock_t *lck, kmp_int32 gtid) { 508 KMP_DEBUG_ASSERT(gtid >= 0); 509 510 if (__kmp_get_futex_lock_owner(lck) == gtid) { 511 lck->lk.depth_locked += 1; 512 return KMP_LOCK_ACQUIRED_NEXT; 513 } else { 514 __kmp_acquire_futex_lock_timed_template(lck, gtid); 515 ANNOTATE_FUTEX_ACQUIRED(lck); 516 lck->lk.depth_locked = 1; 517 return KMP_LOCK_ACQUIRED_FIRST; 518 } 519 } 520 521 static int __kmp_acquire_nested_futex_lock_with_checks(kmp_futex_lock_t *lck, 522 kmp_int32 gtid) { 523 char const *const func = "omp_set_nest_lock"; 524 if (!__kmp_is_futex_lock_nestable(lck)) { 525 KMP_FATAL(LockSimpleUsedAsNestable, func); 526 } 527 return __kmp_acquire_nested_futex_lock(lck, gtid); 528 } 529 530 int __kmp_test_nested_futex_lock(kmp_futex_lock_t *lck, kmp_int32 gtid) { 531 int retval; 532 533 KMP_DEBUG_ASSERT(gtid >= 0); 534 535 if (__kmp_get_futex_lock_owner(lck) == gtid) { 536 retval = ++lck->lk.depth_locked; 537 } else if (!__kmp_test_futex_lock(lck, gtid)) { 538 retval = 0; 539 } else { 540 KMP_MB(); 541 retval = lck->lk.depth_locked = 1; 542 } 543 return retval; 544 } 545 546 static int __kmp_test_nested_futex_lock_with_checks(kmp_futex_lock_t *lck, 547 kmp_int32 gtid) { 548 char const *const func = "omp_test_nest_lock"; 549 if (!__kmp_is_futex_lock_nestable(lck)) { 550 KMP_FATAL(LockSimpleUsedAsNestable, func); 551 } 552 return __kmp_test_nested_futex_lock(lck, gtid); 553 } 554 555 int __kmp_release_nested_futex_lock(kmp_futex_lock_t *lck, kmp_int32 gtid) { 556 KMP_DEBUG_ASSERT(gtid >= 0); 557 558 KMP_MB(); 559 if (--(lck->lk.depth_locked) == 0) { 560 __kmp_release_futex_lock(lck, gtid); 561 return KMP_LOCK_RELEASED; 562 } 563 return KMP_LOCK_STILL_HELD; 564 } 565 566 static int __kmp_release_nested_futex_lock_with_checks(kmp_futex_lock_t *lck, 567 kmp_int32 gtid) { 568 char const *const func = "omp_unset_nest_lock"; 569 KMP_MB(); /* in case another processor initialized lock */ 570 if (!__kmp_is_futex_lock_nestable(lck)) { 571 KMP_FATAL(LockSimpleUsedAsNestable, func); 572 } 573 if (__kmp_get_futex_lock_owner(lck) == -1) { 574 KMP_FATAL(LockUnsettingFree, func); 575 } 576 if (__kmp_get_futex_lock_owner(lck) != gtid) { 577 KMP_FATAL(LockUnsettingSetByAnother, func); 578 } 579 return __kmp_release_nested_futex_lock(lck, gtid); 580 } 581 582 void __kmp_init_nested_futex_lock(kmp_futex_lock_t *lck) { 583 __kmp_init_futex_lock(lck); 584 lck->lk.depth_locked = 0; // >= 0 for nestable locks, -1 for simple locks 585 } 586 587 void __kmp_destroy_nested_futex_lock(kmp_futex_lock_t *lck) { 588 __kmp_destroy_futex_lock(lck); 589 lck->lk.depth_locked = 0; 590 } 591 592 static void __kmp_destroy_nested_futex_lock_with_checks(kmp_futex_lock_t *lck) { 593 char const *const func = "omp_destroy_nest_lock"; 594 if (!__kmp_is_futex_lock_nestable(lck)) { 595 KMP_FATAL(LockSimpleUsedAsNestable, func); 596 } 597 if (__kmp_get_futex_lock_owner(lck) != -1) { 598 KMP_FATAL(LockStillOwned, func); 599 } 600 __kmp_destroy_nested_futex_lock(lck); 601 } 602 603 #endif // KMP_USE_FUTEX 604 605 /* ------------------------------------------------------------------------ */ 606 /* ticket (bakery) locks */ 607 608 static kmp_int32 __kmp_get_ticket_lock_owner(kmp_ticket_lock_t *lck) { 609 return std::atomic_load_explicit(&lck->lk.owner_id, 610 std::memory_order_relaxed) - 611 1; 612 } 613 614 static inline bool __kmp_is_ticket_lock_nestable(kmp_ticket_lock_t *lck) { 615 return std::atomic_load_explicit(&lck->lk.depth_locked, 616 std::memory_order_relaxed) != -1; 617 } 618 619 static kmp_uint32 __kmp_bakery_check(void *now_serving, kmp_uint32 my_ticket) { 620 return std::atomic_load_explicit((std::atomic<unsigned> *)now_serving, 621 std::memory_order_acquire) == my_ticket; 622 } 623 624 __forceinline static int 625 __kmp_acquire_ticket_lock_timed_template(kmp_ticket_lock_t *lck, 626 kmp_int32 gtid) { 627 kmp_uint32 my_ticket = std::atomic_fetch_add_explicit( 628 &lck->lk.next_ticket, 1U, std::memory_order_relaxed); 629 630 #ifdef USE_LOCK_PROFILE 631 if (std::atomic_load_explicit(&lck->lk.now_serving, 632 std::memory_order_relaxed) != my_ticket) 633 __kmp_printf("LOCK CONTENTION: %p\n", lck); 634 /* else __kmp_printf( "." );*/ 635 #endif /* USE_LOCK_PROFILE */ 636 637 if (std::atomic_load_explicit(&lck->lk.now_serving, 638 std::memory_order_acquire) == my_ticket) { 639 return KMP_LOCK_ACQUIRED_FIRST; 640 } 641 KMP_WAIT_PTR(&lck->lk.now_serving, my_ticket, __kmp_bakery_check, lck); 642 return KMP_LOCK_ACQUIRED_FIRST; 643 } 644 645 int __kmp_acquire_ticket_lock(kmp_ticket_lock_t *lck, kmp_int32 gtid) { 646 int retval = __kmp_acquire_ticket_lock_timed_template(lck, gtid); 647 ANNOTATE_TICKET_ACQUIRED(lck); 648 return retval; 649 } 650 651 static int __kmp_acquire_ticket_lock_with_checks(kmp_ticket_lock_t *lck, 652 kmp_int32 gtid) { 653 char const *const func = "omp_set_lock"; 654 655 if (!std::atomic_load_explicit(&lck->lk.initialized, 656 std::memory_order_relaxed)) { 657 KMP_FATAL(LockIsUninitialized, func); 658 } 659 if (lck->lk.self != lck) { 660 KMP_FATAL(LockIsUninitialized, func); 661 } 662 if (__kmp_is_ticket_lock_nestable(lck)) { 663 KMP_FATAL(LockNestableUsedAsSimple, func); 664 } 665 if ((gtid >= 0) && (__kmp_get_ticket_lock_owner(lck) == gtid)) { 666 KMP_FATAL(LockIsAlreadyOwned, func); 667 } 668 669 __kmp_acquire_ticket_lock(lck, gtid); 670 671 std::atomic_store_explicit(&lck->lk.owner_id, gtid + 1, 672 std::memory_order_relaxed); 673 return KMP_LOCK_ACQUIRED_FIRST; 674 } 675 676 int __kmp_test_ticket_lock(kmp_ticket_lock_t *lck, kmp_int32 gtid) { 677 kmp_uint32 my_ticket = std::atomic_load_explicit(&lck->lk.next_ticket, 678 std::memory_order_relaxed); 679 680 if (std::atomic_load_explicit(&lck->lk.now_serving, 681 std::memory_order_relaxed) == my_ticket) { 682 kmp_uint32 next_ticket = my_ticket + 1; 683 if (std::atomic_compare_exchange_strong_explicit( 684 &lck->lk.next_ticket, &my_ticket, next_ticket, 685 std::memory_order_acquire, std::memory_order_acquire)) { 686 return TRUE; 687 } 688 } 689 return FALSE; 690 } 691 692 static int __kmp_test_ticket_lock_with_checks(kmp_ticket_lock_t *lck, 693 kmp_int32 gtid) { 694 char const *const func = "omp_test_lock"; 695 696 if (!std::atomic_load_explicit(&lck->lk.initialized, 697 std::memory_order_relaxed)) { 698 KMP_FATAL(LockIsUninitialized, func); 699 } 700 if (lck->lk.self != lck) { 701 KMP_FATAL(LockIsUninitialized, func); 702 } 703 if (__kmp_is_ticket_lock_nestable(lck)) { 704 KMP_FATAL(LockNestableUsedAsSimple, func); 705 } 706 707 int retval = __kmp_test_ticket_lock(lck, gtid); 708 709 if (retval) { 710 std::atomic_store_explicit(&lck->lk.owner_id, gtid + 1, 711 std::memory_order_relaxed); 712 } 713 return retval; 714 } 715 716 int __kmp_release_ticket_lock(kmp_ticket_lock_t *lck, kmp_int32 gtid) { 717 kmp_uint32 distance = std::atomic_load_explicit(&lck->lk.next_ticket, 718 std::memory_order_relaxed) - 719 std::atomic_load_explicit(&lck->lk.now_serving, 720 std::memory_order_relaxed); 721 722 ANNOTATE_TICKET_RELEASED(lck); 723 std::atomic_fetch_add_explicit(&lck->lk.now_serving, 1U, 724 std::memory_order_release); 725 726 KMP_YIELD(distance > 727 (kmp_uint32)(__kmp_avail_proc ? __kmp_avail_proc : __kmp_xproc)); 728 return KMP_LOCK_RELEASED; 729 } 730 731 static int __kmp_release_ticket_lock_with_checks(kmp_ticket_lock_t *lck, 732 kmp_int32 gtid) { 733 char const *const func = "omp_unset_lock"; 734 735 if (!std::atomic_load_explicit(&lck->lk.initialized, 736 std::memory_order_relaxed)) { 737 KMP_FATAL(LockIsUninitialized, func); 738 } 739 if (lck->lk.self != lck) { 740 KMP_FATAL(LockIsUninitialized, func); 741 } 742 if (__kmp_is_ticket_lock_nestable(lck)) { 743 KMP_FATAL(LockNestableUsedAsSimple, func); 744 } 745 if (__kmp_get_ticket_lock_owner(lck) == -1) { 746 KMP_FATAL(LockUnsettingFree, func); 747 } 748 if ((gtid >= 0) && (__kmp_get_ticket_lock_owner(lck) >= 0) && 749 (__kmp_get_ticket_lock_owner(lck) != gtid)) { 750 KMP_FATAL(LockUnsettingSetByAnother, func); 751 } 752 std::atomic_store_explicit(&lck->lk.owner_id, 0, std::memory_order_relaxed); 753 return __kmp_release_ticket_lock(lck, gtid); 754 } 755 756 void __kmp_init_ticket_lock(kmp_ticket_lock_t *lck) { 757 lck->lk.location = NULL; 758 lck->lk.self = lck; 759 std::atomic_store_explicit(&lck->lk.next_ticket, 0U, 760 std::memory_order_relaxed); 761 std::atomic_store_explicit(&lck->lk.now_serving, 0U, 762 std::memory_order_relaxed); 763 std::atomic_store_explicit( 764 &lck->lk.owner_id, 0, 765 std::memory_order_relaxed); // no thread owns the lock. 766 std::atomic_store_explicit( 767 &lck->lk.depth_locked, -1, 768 std::memory_order_relaxed); // -1 => not a nested lock. 769 std::atomic_store_explicit(&lck->lk.initialized, true, 770 std::memory_order_release); 771 } 772 773 void __kmp_destroy_ticket_lock(kmp_ticket_lock_t *lck) { 774 std::atomic_store_explicit(&lck->lk.initialized, false, 775 std::memory_order_release); 776 lck->lk.self = NULL; 777 lck->lk.location = NULL; 778 std::atomic_store_explicit(&lck->lk.next_ticket, 0U, 779 std::memory_order_relaxed); 780 std::atomic_store_explicit(&lck->lk.now_serving, 0U, 781 std::memory_order_relaxed); 782 std::atomic_store_explicit(&lck->lk.owner_id, 0, std::memory_order_relaxed); 783 std::atomic_store_explicit(&lck->lk.depth_locked, -1, 784 std::memory_order_relaxed); 785 } 786 787 static void __kmp_destroy_ticket_lock_with_checks(kmp_ticket_lock_t *lck) { 788 char const *const func = "omp_destroy_lock"; 789 790 if (!std::atomic_load_explicit(&lck->lk.initialized, 791 std::memory_order_relaxed)) { 792 KMP_FATAL(LockIsUninitialized, func); 793 } 794 if (lck->lk.self != lck) { 795 KMP_FATAL(LockIsUninitialized, func); 796 } 797 if (__kmp_is_ticket_lock_nestable(lck)) { 798 KMP_FATAL(LockNestableUsedAsSimple, func); 799 } 800 if (__kmp_get_ticket_lock_owner(lck) != -1) { 801 KMP_FATAL(LockStillOwned, func); 802 } 803 __kmp_destroy_ticket_lock(lck); 804 } 805 806 // nested ticket locks 807 808 int __kmp_acquire_nested_ticket_lock(kmp_ticket_lock_t *lck, kmp_int32 gtid) { 809 KMP_DEBUG_ASSERT(gtid >= 0); 810 811 if (__kmp_get_ticket_lock_owner(lck) == gtid) { 812 std::atomic_fetch_add_explicit(&lck->lk.depth_locked, 1, 813 std::memory_order_relaxed); 814 return KMP_LOCK_ACQUIRED_NEXT; 815 } else { 816 __kmp_acquire_ticket_lock_timed_template(lck, gtid); 817 ANNOTATE_TICKET_ACQUIRED(lck); 818 std::atomic_store_explicit(&lck->lk.depth_locked, 1, 819 std::memory_order_relaxed); 820 std::atomic_store_explicit(&lck->lk.owner_id, gtid + 1, 821 std::memory_order_relaxed); 822 return KMP_LOCK_ACQUIRED_FIRST; 823 } 824 } 825 826 static int __kmp_acquire_nested_ticket_lock_with_checks(kmp_ticket_lock_t *lck, 827 kmp_int32 gtid) { 828 char const *const func = "omp_set_nest_lock"; 829 830 if (!std::atomic_load_explicit(&lck->lk.initialized, 831 std::memory_order_relaxed)) { 832 KMP_FATAL(LockIsUninitialized, func); 833 } 834 if (lck->lk.self != lck) { 835 KMP_FATAL(LockIsUninitialized, func); 836 } 837 if (!__kmp_is_ticket_lock_nestable(lck)) { 838 KMP_FATAL(LockSimpleUsedAsNestable, func); 839 } 840 return __kmp_acquire_nested_ticket_lock(lck, gtid); 841 } 842 843 int __kmp_test_nested_ticket_lock(kmp_ticket_lock_t *lck, kmp_int32 gtid) { 844 int retval; 845 846 KMP_DEBUG_ASSERT(gtid >= 0); 847 848 if (__kmp_get_ticket_lock_owner(lck) == gtid) { 849 retval = std::atomic_fetch_add_explicit(&lck->lk.depth_locked, 1, 850 std::memory_order_relaxed) + 851 1; 852 } else if (!__kmp_test_ticket_lock(lck, gtid)) { 853 retval = 0; 854 } else { 855 std::atomic_store_explicit(&lck->lk.depth_locked, 1, 856 std::memory_order_relaxed); 857 std::atomic_store_explicit(&lck->lk.owner_id, gtid + 1, 858 std::memory_order_relaxed); 859 retval = 1; 860 } 861 return retval; 862 } 863 864 static int __kmp_test_nested_ticket_lock_with_checks(kmp_ticket_lock_t *lck, 865 kmp_int32 gtid) { 866 char const *const func = "omp_test_nest_lock"; 867 868 if (!std::atomic_load_explicit(&lck->lk.initialized, 869 std::memory_order_relaxed)) { 870 KMP_FATAL(LockIsUninitialized, func); 871 } 872 if (lck->lk.self != lck) { 873 KMP_FATAL(LockIsUninitialized, func); 874 } 875 if (!__kmp_is_ticket_lock_nestable(lck)) { 876 KMP_FATAL(LockSimpleUsedAsNestable, func); 877 } 878 return __kmp_test_nested_ticket_lock(lck, gtid); 879 } 880 881 int __kmp_release_nested_ticket_lock(kmp_ticket_lock_t *lck, kmp_int32 gtid) { 882 KMP_DEBUG_ASSERT(gtid >= 0); 883 884 if ((std::atomic_fetch_add_explicit(&lck->lk.depth_locked, -1, 885 std::memory_order_relaxed) - 886 1) == 0) { 887 std::atomic_store_explicit(&lck->lk.owner_id, 0, std::memory_order_relaxed); 888 __kmp_release_ticket_lock(lck, gtid); 889 return KMP_LOCK_RELEASED; 890 } 891 return KMP_LOCK_STILL_HELD; 892 } 893 894 static int __kmp_release_nested_ticket_lock_with_checks(kmp_ticket_lock_t *lck, 895 kmp_int32 gtid) { 896 char const *const func = "omp_unset_nest_lock"; 897 898 if (!std::atomic_load_explicit(&lck->lk.initialized, 899 std::memory_order_relaxed)) { 900 KMP_FATAL(LockIsUninitialized, func); 901 } 902 if (lck->lk.self != lck) { 903 KMP_FATAL(LockIsUninitialized, func); 904 } 905 if (!__kmp_is_ticket_lock_nestable(lck)) { 906 KMP_FATAL(LockSimpleUsedAsNestable, func); 907 } 908 if (__kmp_get_ticket_lock_owner(lck) == -1) { 909 KMP_FATAL(LockUnsettingFree, func); 910 } 911 if (__kmp_get_ticket_lock_owner(lck) != gtid) { 912 KMP_FATAL(LockUnsettingSetByAnother, func); 913 } 914 return __kmp_release_nested_ticket_lock(lck, gtid); 915 } 916 917 void __kmp_init_nested_ticket_lock(kmp_ticket_lock_t *lck) { 918 __kmp_init_ticket_lock(lck); 919 std::atomic_store_explicit(&lck->lk.depth_locked, 0, 920 std::memory_order_relaxed); 921 // >= 0 for nestable locks, -1 for simple locks 922 } 923 924 void __kmp_destroy_nested_ticket_lock(kmp_ticket_lock_t *lck) { 925 __kmp_destroy_ticket_lock(lck); 926 std::atomic_store_explicit(&lck->lk.depth_locked, 0, 927 std::memory_order_relaxed); 928 } 929 930 static void 931 __kmp_destroy_nested_ticket_lock_with_checks(kmp_ticket_lock_t *lck) { 932 char const *const func = "omp_destroy_nest_lock"; 933 934 if (!std::atomic_load_explicit(&lck->lk.initialized, 935 std::memory_order_relaxed)) { 936 KMP_FATAL(LockIsUninitialized, func); 937 } 938 if (lck->lk.self != lck) { 939 KMP_FATAL(LockIsUninitialized, func); 940 } 941 if (!__kmp_is_ticket_lock_nestable(lck)) { 942 KMP_FATAL(LockSimpleUsedAsNestable, func); 943 } 944 if (__kmp_get_ticket_lock_owner(lck) != -1) { 945 KMP_FATAL(LockStillOwned, func); 946 } 947 __kmp_destroy_nested_ticket_lock(lck); 948 } 949 950 // access functions to fields which don't exist for all lock kinds. 951 952 static const ident_t *__kmp_get_ticket_lock_location(kmp_ticket_lock_t *lck) { 953 return lck->lk.location; 954 } 955 956 static void __kmp_set_ticket_lock_location(kmp_ticket_lock_t *lck, 957 const ident_t *loc) { 958 lck->lk.location = loc; 959 } 960 961 static kmp_lock_flags_t __kmp_get_ticket_lock_flags(kmp_ticket_lock_t *lck) { 962 return lck->lk.flags; 963 } 964 965 static void __kmp_set_ticket_lock_flags(kmp_ticket_lock_t *lck, 966 kmp_lock_flags_t flags) { 967 lck->lk.flags = flags; 968 } 969 970 /* ------------------------------------------------------------------------ */ 971 /* queuing locks */ 972 973 /* First the states 974 (head,tail) = 0, 0 means lock is unheld, nobody on queue 975 UINT_MAX or -1, 0 means lock is held, nobody on queue 976 h, h means lock held or about to transition, 977 1 element on queue 978 h, t h <> t, means lock is held or about to 979 transition, >1 elements on queue 980 981 Now the transitions 982 Acquire(0,0) = -1 ,0 983 Release(0,0) = Error 984 Acquire(-1,0) = h ,h h > 0 985 Release(-1,0) = 0 ,0 986 Acquire(h,h) = h ,t h > 0, t > 0, h <> t 987 Release(h,h) = -1 ,0 h > 0 988 Acquire(h,t) = h ,t' h > 0, t > 0, t' > 0, h <> t, h <> t', t <> t' 989 Release(h,t) = h',t h > 0, t > 0, h <> t, h <> h', h' maybe = t 990 991 And pictorially 992 993 +-----+ 994 | 0, 0|------- release -------> Error 995 +-----+ 996 | ^ 997 acquire| |release 998 | | 999 | | 1000 v | 1001 +-----+ 1002 |-1, 0| 1003 +-----+ 1004 | ^ 1005 acquire| |release 1006 | | 1007 | | 1008 v | 1009 +-----+ 1010 | h, h| 1011 +-----+ 1012 | ^ 1013 acquire| |release 1014 | | 1015 | | 1016 v | 1017 +-----+ 1018 | h, t|----- acquire, release loopback ---+ 1019 +-----+ | 1020 ^ | 1021 | | 1022 +------------------------------------+ 1023 */ 1024 1025 #ifdef DEBUG_QUEUING_LOCKS 1026 1027 /* Stuff for circular trace buffer */ 1028 #define TRACE_BUF_ELE 1024 1029 static char traces[TRACE_BUF_ELE][128] = {0}; 1030 static int tc = 0; 1031 #define TRACE_LOCK(X, Y) \ 1032 KMP_SNPRINTF(traces[tc++ % TRACE_BUF_ELE], 128, "t%d at %s\n", X, Y); 1033 #define TRACE_LOCK_T(X, Y, Z) \ 1034 KMP_SNPRINTF(traces[tc++ % TRACE_BUF_ELE], 128, "t%d at %s%d\n", X, Y, Z); 1035 #define TRACE_LOCK_HT(X, Y, Z, Q) \ 1036 KMP_SNPRINTF(traces[tc++ % TRACE_BUF_ELE], 128, "t%d at %s %d,%d\n", X, Y, \ 1037 Z, Q); 1038 1039 static void __kmp_dump_queuing_lock(kmp_info_t *this_thr, kmp_int32 gtid, 1040 kmp_queuing_lock_t *lck, kmp_int32 head_id, 1041 kmp_int32 tail_id) { 1042 kmp_int32 t, i; 1043 1044 __kmp_printf_no_lock("\n__kmp_dump_queuing_lock: TRACE BEGINS HERE! \n"); 1045 1046 i = tc % TRACE_BUF_ELE; 1047 __kmp_printf_no_lock("%s\n", traces[i]); 1048 i = (i + 1) % TRACE_BUF_ELE; 1049 while (i != (tc % TRACE_BUF_ELE)) { 1050 __kmp_printf_no_lock("%s", traces[i]); 1051 i = (i + 1) % TRACE_BUF_ELE; 1052 } 1053 __kmp_printf_no_lock("\n"); 1054 1055 __kmp_printf_no_lock("\n__kmp_dump_queuing_lock: gtid+1:%d, spin_here:%d, " 1056 "next_wait:%d, head_id:%d, tail_id:%d\n", 1057 gtid + 1, this_thr->th.th_spin_here, 1058 this_thr->th.th_next_waiting, head_id, tail_id); 1059 1060 __kmp_printf_no_lock("\t\thead: %d ", lck->lk.head_id); 1061 1062 if (lck->lk.head_id >= 1) { 1063 t = __kmp_threads[lck->lk.head_id - 1]->th.th_next_waiting; 1064 while (t > 0) { 1065 __kmp_printf_no_lock("-> %d ", t); 1066 t = __kmp_threads[t - 1]->th.th_next_waiting; 1067 } 1068 } 1069 __kmp_printf_no_lock("; tail: %d ", lck->lk.tail_id); 1070 __kmp_printf_no_lock("\n\n"); 1071 } 1072 1073 #endif /* DEBUG_QUEUING_LOCKS */ 1074 1075 static kmp_int32 __kmp_get_queuing_lock_owner(kmp_queuing_lock_t *lck) { 1076 return TCR_4(lck->lk.owner_id) - 1; 1077 } 1078 1079 static inline bool __kmp_is_queuing_lock_nestable(kmp_queuing_lock_t *lck) { 1080 return lck->lk.depth_locked != -1; 1081 } 1082 1083 /* Acquire a lock using a the queuing lock implementation */ 1084 template <bool takeTime> 1085 /* [TLW] The unused template above is left behind because of what BEB believes 1086 is a potential compiler problem with __forceinline. */ 1087 __forceinline static int 1088 __kmp_acquire_queuing_lock_timed_template(kmp_queuing_lock_t *lck, 1089 kmp_int32 gtid) { 1090 kmp_info_t *this_thr = __kmp_thread_from_gtid(gtid); 1091 volatile kmp_int32 *head_id_p = &lck->lk.head_id; 1092 volatile kmp_int32 *tail_id_p = &lck->lk.tail_id; 1093 volatile kmp_uint32 *spin_here_p; 1094 kmp_int32 need_mf = 1; 1095 1096 #if OMPT_SUPPORT 1097 ompt_state_t prev_state = ompt_state_undefined; 1098 #endif 1099 1100 KA_TRACE(1000, 1101 ("__kmp_acquire_queuing_lock: lck:%p, T#%d entering\n", lck, gtid)); 1102 1103 KMP_FSYNC_PREPARE(lck); 1104 KMP_DEBUG_ASSERT(this_thr != NULL); 1105 spin_here_p = &this_thr->th.th_spin_here; 1106 1107 #ifdef DEBUG_QUEUING_LOCKS 1108 TRACE_LOCK(gtid + 1, "acq ent"); 1109 if (*spin_here_p) 1110 __kmp_dump_queuing_lock(this_thr, gtid, lck, *head_id_p, *tail_id_p); 1111 if (this_thr->th.th_next_waiting != 0) 1112 __kmp_dump_queuing_lock(this_thr, gtid, lck, *head_id_p, *tail_id_p); 1113 #endif 1114 KMP_DEBUG_ASSERT(!*spin_here_p); 1115 KMP_DEBUG_ASSERT(this_thr->th.th_next_waiting == 0); 1116 1117 /* The following st.rel to spin_here_p needs to precede the cmpxchg.acq to 1118 head_id_p that may follow, not just in execution order, but also in 1119 visibility order. This way, when a releasing thread observes the changes to 1120 the queue by this thread, it can rightly assume that spin_here_p has 1121 already been set to TRUE, so that when it sets spin_here_p to FALSE, it is 1122 not premature. If the releasing thread sets spin_here_p to FALSE before 1123 this thread sets it to TRUE, this thread will hang. */ 1124 *spin_here_p = TRUE; /* before enqueuing to prevent race */ 1125 1126 while (1) { 1127 kmp_int32 enqueued; 1128 kmp_int32 head; 1129 kmp_int32 tail; 1130 1131 head = *head_id_p; 1132 1133 switch (head) { 1134 1135 case -1: { 1136 #ifdef DEBUG_QUEUING_LOCKS 1137 tail = *tail_id_p; 1138 TRACE_LOCK_HT(gtid + 1, "acq read: ", head, tail); 1139 #endif 1140 tail = 0; /* to make sure next link asynchronously read is not set 1141 accidentally; this assignment prevents us from entering the 1142 if ( t > 0 ) condition in the enqueued case below, which is not 1143 necessary for this state transition */ 1144 1145 need_mf = 0; 1146 /* try (-1,0)->(tid,tid) */ 1147 enqueued = KMP_COMPARE_AND_STORE_ACQ64((volatile kmp_int64 *)tail_id_p, 1148 KMP_PACK_64(-1, 0), 1149 KMP_PACK_64(gtid + 1, gtid + 1)); 1150 #ifdef DEBUG_QUEUING_LOCKS 1151 if (enqueued) 1152 TRACE_LOCK(gtid + 1, "acq enq: (-1,0)->(tid,tid)"); 1153 #endif 1154 } break; 1155 1156 default: { 1157 tail = *tail_id_p; 1158 KMP_DEBUG_ASSERT(tail != gtid + 1); 1159 1160 #ifdef DEBUG_QUEUING_LOCKS 1161 TRACE_LOCK_HT(gtid + 1, "acq read: ", head, tail); 1162 #endif 1163 1164 if (tail == 0) { 1165 enqueued = FALSE; 1166 } else { 1167 need_mf = 0; 1168 /* try (h,t) or (h,h)->(h,tid) */ 1169 enqueued = KMP_COMPARE_AND_STORE_ACQ32(tail_id_p, tail, gtid + 1); 1170 1171 #ifdef DEBUG_QUEUING_LOCKS 1172 if (enqueued) 1173 TRACE_LOCK(gtid + 1, "acq enq: (h,t)->(h,tid)"); 1174 #endif 1175 } 1176 } break; 1177 1178 case 0: /* empty queue */ 1179 { 1180 kmp_int32 grabbed_lock; 1181 1182 #ifdef DEBUG_QUEUING_LOCKS 1183 tail = *tail_id_p; 1184 TRACE_LOCK_HT(gtid + 1, "acq read: ", head, tail); 1185 #endif 1186 /* try (0,0)->(-1,0) */ 1187 1188 /* only legal transition out of head = 0 is head = -1 with no change to 1189 * tail */ 1190 grabbed_lock = KMP_COMPARE_AND_STORE_ACQ32(head_id_p, 0, -1); 1191 1192 if (grabbed_lock) { 1193 1194 *spin_here_p = FALSE; 1195 1196 KA_TRACE( 1197 1000, 1198 ("__kmp_acquire_queuing_lock: lck:%p, T#%d exiting: no queuing\n", 1199 lck, gtid)); 1200 #ifdef DEBUG_QUEUING_LOCKS 1201 TRACE_LOCK_HT(gtid + 1, "acq exit: ", head, 0); 1202 #endif 1203 1204 #if OMPT_SUPPORT 1205 if (ompt_enabled.enabled && prev_state != ompt_state_undefined) { 1206 /* change the state before clearing wait_id */ 1207 this_thr->th.ompt_thread_info.state = prev_state; 1208 this_thr->th.ompt_thread_info.wait_id = 0; 1209 } 1210 #endif 1211 1212 KMP_FSYNC_ACQUIRED(lck); 1213 return KMP_LOCK_ACQUIRED_FIRST; /* lock holder cannot be on queue */ 1214 } 1215 enqueued = FALSE; 1216 } break; 1217 } 1218 1219 #if OMPT_SUPPORT 1220 if (ompt_enabled.enabled && prev_state == ompt_state_undefined) { 1221 /* this thread will spin; set wait_id before entering wait state */ 1222 prev_state = this_thr->th.ompt_thread_info.state; 1223 this_thr->th.ompt_thread_info.wait_id = (uint64_t)lck; 1224 this_thr->th.ompt_thread_info.state = ompt_state_wait_lock; 1225 } 1226 #endif 1227 1228 if (enqueued) { 1229 if (tail > 0) { 1230 kmp_info_t *tail_thr = __kmp_thread_from_gtid(tail - 1); 1231 KMP_ASSERT(tail_thr != NULL); 1232 tail_thr->th.th_next_waiting = gtid + 1; 1233 /* corresponding wait for this write in release code */ 1234 } 1235 KA_TRACE(1000, 1236 ("__kmp_acquire_queuing_lock: lck:%p, T#%d waiting for lock\n", 1237 lck, gtid)); 1238 1239 KMP_MB(); 1240 // ToDo: Use __kmp_wait_sleep or similar when blocktime != inf 1241 KMP_WAIT(spin_here_p, FALSE, KMP_EQ, lck); 1242 // Synchronize writes to both runtime thread structures 1243 // and writes in user code. 1244 KMP_MB(); 1245 1246 #ifdef DEBUG_QUEUING_LOCKS 1247 TRACE_LOCK(gtid + 1, "acq spin"); 1248 1249 if (this_thr->th.th_next_waiting != 0) 1250 __kmp_dump_queuing_lock(this_thr, gtid, lck, *head_id_p, *tail_id_p); 1251 #endif 1252 KMP_DEBUG_ASSERT(this_thr->th.th_next_waiting == 0); 1253 KA_TRACE(1000, ("__kmp_acquire_queuing_lock: lck:%p, T#%d exiting: after " 1254 "waiting on queue\n", 1255 lck, gtid)); 1256 1257 #ifdef DEBUG_QUEUING_LOCKS 1258 TRACE_LOCK(gtid + 1, "acq exit 2"); 1259 #endif 1260 1261 #if OMPT_SUPPORT 1262 /* change the state before clearing wait_id */ 1263 this_thr->th.ompt_thread_info.state = prev_state; 1264 this_thr->th.ompt_thread_info.wait_id = 0; 1265 #endif 1266 1267 /* got lock, we were dequeued by the thread that released lock */ 1268 return KMP_LOCK_ACQUIRED_FIRST; 1269 } 1270 1271 /* Yield if number of threads > number of logical processors */ 1272 /* ToDo: Not sure why this should only be in oversubscription case, 1273 maybe should be traditional YIELD_INIT/YIELD_WHEN loop */ 1274 KMP_YIELD_OVERSUB(); 1275 1276 #ifdef DEBUG_QUEUING_LOCKS 1277 TRACE_LOCK(gtid + 1, "acq retry"); 1278 #endif 1279 } 1280 KMP_ASSERT2(0, "should not get here"); 1281 return KMP_LOCK_ACQUIRED_FIRST; 1282 } 1283 1284 int __kmp_acquire_queuing_lock(kmp_queuing_lock_t *lck, kmp_int32 gtid) { 1285 KMP_DEBUG_ASSERT(gtid >= 0); 1286 1287 int retval = __kmp_acquire_queuing_lock_timed_template<false>(lck, gtid); 1288 ANNOTATE_QUEUING_ACQUIRED(lck); 1289 return retval; 1290 } 1291 1292 static int __kmp_acquire_queuing_lock_with_checks(kmp_queuing_lock_t *lck, 1293 kmp_int32 gtid) { 1294 char const *const func = "omp_set_lock"; 1295 if (lck->lk.initialized != lck) { 1296 KMP_FATAL(LockIsUninitialized, func); 1297 } 1298 if (__kmp_is_queuing_lock_nestable(lck)) { 1299 KMP_FATAL(LockNestableUsedAsSimple, func); 1300 } 1301 if (__kmp_get_queuing_lock_owner(lck) == gtid) { 1302 KMP_FATAL(LockIsAlreadyOwned, func); 1303 } 1304 1305 __kmp_acquire_queuing_lock(lck, gtid); 1306 1307 lck->lk.owner_id = gtid + 1; 1308 return KMP_LOCK_ACQUIRED_FIRST; 1309 } 1310 1311 int __kmp_test_queuing_lock(kmp_queuing_lock_t *lck, kmp_int32 gtid) { 1312 volatile kmp_int32 *head_id_p = &lck->lk.head_id; 1313 kmp_int32 head; 1314 #ifdef KMP_DEBUG 1315 kmp_info_t *this_thr; 1316 #endif 1317 1318 KA_TRACE(1000, ("__kmp_test_queuing_lock: T#%d entering\n", gtid)); 1319 KMP_DEBUG_ASSERT(gtid >= 0); 1320 #ifdef KMP_DEBUG 1321 this_thr = __kmp_thread_from_gtid(gtid); 1322 KMP_DEBUG_ASSERT(this_thr != NULL); 1323 KMP_DEBUG_ASSERT(!this_thr->th.th_spin_here); 1324 #endif 1325 1326 head = *head_id_p; 1327 1328 if (head == 0) { /* nobody on queue, nobody holding */ 1329 /* try (0,0)->(-1,0) */ 1330 if (KMP_COMPARE_AND_STORE_ACQ32(head_id_p, 0, -1)) { 1331 KA_TRACE(1000, 1332 ("__kmp_test_queuing_lock: T#%d exiting: holding lock\n", gtid)); 1333 KMP_FSYNC_ACQUIRED(lck); 1334 ANNOTATE_QUEUING_ACQUIRED(lck); 1335 return TRUE; 1336 } 1337 } 1338 1339 KA_TRACE(1000, 1340 ("__kmp_test_queuing_lock: T#%d exiting: without lock\n", gtid)); 1341 return FALSE; 1342 } 1343 1344 static int __kmp_test_queuing_lock_with_checks(kmp_queuing_lock_t *lck, 1345 kmp_int32 gtid) { 1346 char const *const func = "omp_test_lock"; 1347 if (lck->lk.initialized != lck) { 1348 KMP_FATAL(LockIsUninitialized, func); 1349 } 1350 if (__kmp_is_queuing_lock_nestable(lck)) { 1351 KMP_FATAL(LockNestableUsedAsSimple, func); 1352 } 1353 1354 int retval = __kmp_test_queuing_lock(lck, gtid); 1355 1356 if (retval) { 1357 lck->lk.owner_id = gtid + 1; 1358 } 1359 return retval; 1360 } 1361 1362 int __kmp_release_queuing_lock(kmp_queuing_lock_t *lck, kmp_int32 gtid) { 1363 kmp_info_t *this_thr; 1364 volatile kmp_int32 *head_id_p = &lck->lk.head_id; 1365 volatile kmp_int32 *tail_id_p = &lck->lk.tail_id; 1366 1367 KA_TRACE(1000, 1368 ("__kmp_release_queuing_lock: lck:%p, T#%d entering\n", lck, gtid)); 1369 KMP_DEBUG_ASSERT(gtid >= 0); 1370 this_thr = __kmp_thread_from_gtid(gtid); 1371 KMP_DEBUG_ASSERT(this_thr != NULL); 1372 #ifdef DEBUG_QUEUING_LOCKS 1373 TRACE_LOCK(gtid + 1, "rel ent"); 1374 1375 if (this_thr->th.th_spin_here) 1376 __kmp_dump_queuing_lock(this_thr, gtid, lck, *head_id_p, *tail_id_p); 1377 if (this_thr->th.th_next_waiting != 0) 1378 __kmp_dump_queuing_lock(this_thr, gtid, lck, *head_id_p, *tail_id_p); 1379 #endif 1380 KMP_DEBUG_ASSERT(!this_thr->th.th_spin_here); 1381 KMP_DEBUG_ASSERT(this_thr->th.th_next_waiting == 0); 1382 1383 KMP_FSYNC_RELEASING(lck); 1384 ANNOTATE_QUEUING_RELEASED(lck); 1385 1386 while (1) { 1387 kmp_int32 dequeued; 1388 kmp_int32 head; 1389 kmp_int32 tail; 1390 1391 head = *head_id_p; 1392 1393 #ifdef DEBUG_QUEUING_LOCKS 1394 tail = *tail_id_p; 1395 TRACE_LOCK_HT(gtid + 1, "rel read: ", head, tail); 1396 if (head == 0) 1397 __kmp_dump_queuing_lock(this_thr, gtid, lck, head, tail); 1398 #endif 1399 KMP_DEBUG_ASSERT(head != 1400 0); /* holding the lock, head must be -1 or queue head */ 1401 1402 if (head == -1) { /* nobody on queue */ 1403 /* try (-1,0)->(0,0) */ 1404 if (KMP_COMPARE_AND_STORE_REL32(head_id_p, -1, 0)) { 1405 KA_TRACE( 1406 1000, 1407 ("__kmp_release_queuing_lock: lck:%p, T#%d exiting: queue empty\n", 1408 lck, gtid)); 1409 #ifdef DEBUG_QUEUING_LOCKS 1410 TRACE_LOCK_HT(gtid + 1, "rel exit: ", 0, 0); 1411 #endif 1412 1413 #if OMPT_SUPPORT 1414 /* nothing to do - no other thread is trying to shift blame */ 1415 #endif 1416 return KMP_LOCK_RELEASED; 1417 } 1418 dequeued = FALSE; 1419 } else { 1420 KMP_MB(); 1421 tail = *tail_id_p; 1422 if (head == tail) { /* only one thread on the queue */ 1423 #ifdef DEBUG_QUEUING_LOCKS 1424 if (head <= 0) 1425 __kmp_dump_queuing_lock(this_thr, gtid, lck, head, tail); 1426 #endif 1427 KMP_DEBUG_ASSERT(head > 0); 1428 1429 /* try (h,h)->(-1,0) */ 1430 dequeued = KMP_COMPARE_AND_STORE_REL64( 1431 RCAST(volatile kmp_int64 *, tail_id_p), KMP_PACK_64(head, head), 1432 KMP_PACK_64(-1, 0)); 1433 #ifdef DEBUG_QUEUING_LOCKS 1434 TRACE_LOCK(gtid + 1, "rel deq: (h,h)->(-1,0)"); 1435 #endif 1436 1437 } else { 1438 volatile kmp_int32 *waiting_id_p; 1439 kmp_info_t *head_thr = __kmp_thread_from_gtid(head - 1); 1440 KMP_DEBUG_ASSERT(head_thr != NULL); 1441 waiting_id_p = &head_thr->th.th_next_waiting; 1442 1443 /* Does this require synchronous reads? */ 1444 #ifdef DEBUG_QUEUING_LOCKS 1445 if (head <= 0 || tail <= 0) 1446 __kmp_dump_queuing_lock(this_thr, gtid, lck, head, tail); 1447 #endif 1448 KMP_DEBUG_ASSERT(head > 0 && tail > 0); 1449 1450 /* try (h,t)->(h',t) or (t,t) */ 1451 KMP_MB(); 1452 /* make sure enqueuing thread has time to update next waiting thread 1453 * field */ 1454 *head_id_p = 1455 KMP_WAIT((volatile kmp_uint32 *)waiting_id_p, 0, KMP_NEQ, NULL); 1456 #ifdef DEBUG_QUEUING_LOCKS 1457 TRACE_LOCK(gtid + 1, "rel deq: (h,t)->(h',t)"); 1458 #endif 1459 dequeued = TRUE; 1460 } 1461 } 1462 1463 if (dequeued) { 1464 kmp_info_t *head_thr = __kmp_thread_from_gtid(head - 1); 1465 KMP_DEBUG_ASSERT(head_thr != NULL); 1466 1467 /* Does this require synchronous reads? */ 1468 #ifdef DEBUG_QUEUING_LOCKS 1469 if (head <= 0 || tail <= 0) 1470 __kmp_dump_queuing_lock(this_thr, gtid, lck, head, tail); 1471 #endif 1472 KMP_DEBUG_ASSERT(head > 0 && tail > 0); 1473 1474 /* For clean code only. Thread not released until next statement prevents 1475 race with acquire code. */ 1476 head_thr->th.th_next_waiting = 0; 1477 #ifdef DEBUG_QUEUING_LOCKS 1478 TRACE_LOCK_T(gtid + 1, "rel nw=0 for t=", head); 1479 #endif 1480 1481 KMP_MB(); 1482 /* reset spin value */ 1483 head_thr->th.th_spin_here = FALSE; 1484 1485 KA_TRACE(1000, ("__kmp_release_queuing_lock: lck:%p, T#%d exiting: after " 1486 "dequeuing\n", 1487 lck, gtid)); 1488 #ifdef DEBUG_QUEUING_LOCKS 1489 TRACE_LOCK(gtid + 1, "rel exit 2"); 1490 #endif 1491 return KMP_LOCK_RELEASED; 1492 } 1493 /* KMP_CPU_PAUSE(); don't want to make releasing thread hold up acquiring 1494 threads */ 1495 1496 #ifdef DEBUG_QUEUING_LOCKS 1497 TRACE_LOCK(gtid + 1, "rel retry"); 1498 #endif 1499 1500 } /* while */ 1501 KMP_ASSERT2(0, "should not get here"); 1502 return KMP_LOCK_RELEASED; 1503 } 1504 1505 static int __kmp_release_queuing_lock_with_checks(kmp_queuing_lock_t *lck, 1506 kmp_int32 gtid) { 1507 char const *const func = "omp_unset_lock"; 1508 KMP_MB(); /* in case another processor initialized lock */ 1509 if (lck->lk.initialized != lck) { 1510 KMP_FATAL(LockIsUninitialized, func); 1511 } 1512 if (__kmp_is_queuing_lock_nestable(lck)) { 1513 KMP_FATAL(LockNestableUsedAsSimple, func); 1514 } 1515 if (__kmp_get_queuing_lock_owner(lck) == -1) { 1516 KMP_FATAL(LockUnsettingFree, func); 1517 } 1518 if (__kmp_get_queuing_lock_owner(lck) != gtid) { 1519 KMP_FATAL(LockUnsettingSetByAnother, func); 1520 } 1521 lck->lk.owner_id = 0; 1522 return __kmp_release_queuing_lock(lck, gtid); 1523 } 1524 1525 void __kmp_init_queuing_lock(kmp_queuing_lock_t *lck) { 1526 lck->lk.location = NULL; 1527 lck->lk.head_id = 0; 1528 lck->lk.tail_id = 0; 1529 lck->lk.next_ticket = 0; 1530 lck->lk.now_serving = 0; 1531 lck->lk.owner_id = 0; // no thread owns the lock. 1532 lck->lk.depth_locked = -1; // >= 0 for nestable locks, -1 for simple locks. 1533 lck->lk.initialized = lck; 1534 1535 KA_TRACE(1000, ("__kmp_init_queuing_lock: lock %p initialized\n", lck)); 1536 } 1537 1538 void __kmp_destroy_queuing_lock(kmp_queuing_lock_t *lck) { 1539 lck->lk.initialized = NULL; 1540 lck->lk.location = NULL; 1541 lck->lk.head_id = 0; 1542 lck->lk.tail_id = 0; 1543 lck->lk.next_ticket = 0; 1544 lck->lk.now_serving = 0; 1545 lck->lk.owner_id = 0; 1546 lck->lk.depth_locked = -1; 1547 } 1548 1549 static void __kmp_destroy_queuing_lock_with_checks(kmp_queuing_lock_t *lck) { 1550 char const *const func = "omp_destroy_lock"; 1551 if (lck->lk.initialized != lck) { 1552 KMP_FATAL(LockIsUninitialized, func); 1553 } 1554 if (__kmp_is_queuing_lock_nestable(lck)) { 1555 KMP_FATAL(LockNestableUsedAsSimple, func); 1556 } 1557 if (__kmp_get_queuing_lock_owner(lck) != -1) { 1558 KMP_FATAL(LockStillOwned, func); 1559 } 1560 __kmp_destroy_queuing_lock(lck); 1561 } 1562 1563 // nested queuing locks 1564 1565 int __kmp_acquire_nested_queuing_lock(kmp_queuing_lock_t *lck, kmp_int32 gtid) { 1566 KMP_DEBUG_ASSERT(gtid >= 0); 1567 1568 if (__kmp_get_queuing_lock_owner(lck) == gtid) { 1569 lck->lk.depth_locked += 1; 1570 return KMP_LOCK_ACQUIRED_NEXT; 1571 } else { 1572 __kmp_acquire_queuing_lock_timed_template<false>(lck, gtid); 1573 ANNOTATE_QUEUING_ACQUIRED(lck); 1574 KMP_MB(); 1575 lck->lk.depth_locked = 1; 1576 KMP_MB(); 1577 lck->lk.owner_id = gtid + 1; 1578 return KMP_LOCK_ACQUIRED_FIRST; 1579 } 1580 } 1581 1582 static int 1583 __kmp_acquire_nested_queuing_lock_with_checks(kmp_queuing_lock_t *lck, 1584 kmp_int32 gtid) { 1585 char const *const func = "omp_set_nest_lock"; 1586 if (lck->lk.initialized != lck) { 1587 KMP_FATAL(LockIsUninitialized, func); 1588 } 1589 if (!__kmp_is_queuing_lock_nestable(lck)) { 1590 KMP_FATAL(LockSimpleUsedAsNestable, func); 1591 } 1592 return __kmp_acquire_nested_queuing_lock(lck, gtid); 1593 } 1594 1595 int __kmp_test_nested_queuing_lock(kmp_queuing_lock_t *lck, kmp_int32 gtid) { 1596 int retval; 1597 1598 KMP_DEBUG_ASSERT(gtid >= 0); 1599 1600 if (__kmp_get_queuing_lock_owner(lck) == gtid) { 1601 retval = ++lck->lk.depth_locked; 1602 } else if (!__kmp_test_queuing_lock(lck, gtid)) { 1603 retval = 0; 1604 } else { 1605 KMP_MB(); 1606 retval = lck->lk.depth_locked = 1; 1607 KMP_MB(); 1608 lck->lk.owner_id = gtid + 1; 1609 } 1610 return retval; 1611 } 1612 1613 static int __kmp_test_nested_queuing_lock_with_checks(kmp_queuing_lock_t *lck, 1614 kmp_int32 gtid) { 1615 char const *const func = "omp_test_nest_lock"; 1616 if (lck->lk.initialized != lck) { 1617 KMP_FATAL(LockIsUninitialized, func); 1618 } 1619 if (!__kmp_is_queuing_lock_nestable(lck)) { 1620 KMP_FATAL(LockSimpleUsedAsNestable, func); 1621 } 1622 return __kmp_test_nested_queuing_lock(lck, gtid); 1623 } 1624 1625 int __kmp_release_nested_queuing_lock(kmp_queuing_lock_t *lck, kmp_int32 gtid) { 1626 KMP_DEBUG_ASSERT(gtid >= 0); 1627 1628 KMP_MB(); 1629 if (--(lck->lk.depth_locked) == 0) { 1630 KMP_MB(); 1631 lck->lk.owner_id = 0; 1632 __kmp_release_queuing_lock(lck, gtid); 1633 return KMP_LOCK_RELEASED; 1634 } 1635 return KMP_LOCK_STILL_HELD; 1636 } 1637 1638 static int 1639 __kmp_release_nested_queuing_lock_with_checks(kmp_queuing_lock_t *lck, 1640 kmp_int32 gtid) { 1641 char const *const func = "omp_unset_nest_lock"; 1642 KMP_MB(); /* in case another processor initialized lock */ 1643 if (lck->lk.initialized != lck) { 1644 KMP_FATAL(LockIsUninitialized, func); 1645 } 1646 if (!__kmp_is_queuing_lock_nestable(lck)) { 1647 KMP_FATAL(LockSimpleUsedAsNestable, func); 1648 } 1649 if (__kmp_get_queuing_lock_owner(lck) == -1) { 1650 KMP_FATAL(LockUnsettingFree, func); 1651 } 1652 if (__kmp_get_queuing_lock_owner(lck) != gtid) { 1653 KMP_FATAL(LockUnsettingSetByAnother, func); 1654 } 1655 return __kmp_release_nested_queuing_lock(lck, gtid); 1656 } 1657 1658 void __kmp_init_nested_queuing_lock(kmp_queuing_lock_t *lck) { 1659 __kmp_init_queuing_lock(lck); 1660 lck->lk.depth_locked = 0; // >= 0 for nestable locks, -1 for simple locks 1661 } 1662 1663 void __kmp_destroy_nested_queuing_lock(kmp_queuing_lock_t *lck) { 1664 __kmp_destroy_queuing_lock(lck); 1665 lck->lk.depth_locked = 0; 1666 } 1667 1668 static void 1669 __kmp_destroy_nested_queuing_lock_with_checks(kmp_queuing_lock_t *lck) { 1670 char const *const func = "omp_destroy_nest_lock"; 1671 if (lck->lk.initialized != lck) { 1672 KMP_FATAL(LockIsUninitialized, func); 1673 } 1674 if (!__kmp_is_queuing_lock_nestable(lck)) { 1675 KMP_FATAL(LockSimpleUsedAsNestable, func); 1676 } 1677 if (__kmp_get_queuing_lock_owner(lck) != -1) { 1678 KMP_FATAL(LockStillOwned, func); 1679 } 1680 __kmp_destroy_nested_queuing_lock(lck); 1681 } 1682 1683 // access functions to fields which don't exist for all lock kinds. 1684 1685 static const ident_t *__kmp_get_queuing_lock_location(kmp_queuing_lock_t *lck) { 1686 return lck->lk.location; 1687 } 1688 1689 static void __kmp_set_queuing_lock_location(kmp_queuing_lock_t *lck, 1690 const ident_t *loc) { 1691 lck->lk.location = loc; 1692 } 1693 1694 static kmp_lock_flags_t __kmp_get_queuing_lock_flags(kmp_queuing_lock_t *lck) { 1695 return lck->lk.flags; 1696 } 1697 1698 static void __kmp_set_queuing_lock_flags(kmp_queuing_lock_t *lck, 1699 kmp_lock_flags_t flags) { 1700 lck->lk.flags = flags; 1701 } 1702 1703 #if KMP_USE_ADAPTIVE_LOCKS 1704 1705 /* RTM Adaptive locks */ 1706 1707 #if KMP_HAVE_RTM_INTRINSICS 1708 #include <immintrin.h> 1709 #define SOFT_ABORT_MASK (_XABORT_RETRY | _XABORT_CONFLICT | _XABORT_EXPLICIT) 1710 1711 #else 1712 1713 // Values from the status register after failed speculation. 1714 #define _XBEGIN_STARTED (~0u) 1715 #define _XABORT_EXPLICIT (1 << 0) 1716 #define _XABORT_RETRY (1 << 1) 1717 #define _XABORT_CONFLICT (1 << 2) 1718 #define _XABORT_CAPACITY (1 << 3) 1719 #define _XABORT_DEBUG (1 << 4) 1720 #define _XABORT_NESTED (1 << 5) 1721 #define _XABORT_CODE(x) ((unsigned char)(((x) >> 24) & 0xFF)) 1722 1723 // Aborts for which it's worth trying again immediately 1724 #define SOFT_ABORT_MASK (_XABORT_RETRY | _XABORT_CONFLICT | _XABORT_EXPLICIT) 1725 1726 #define STRINGIZE_INTERNAL(arg) #arg 1727 #define STRINGIZE(arg) STRINGIZE_INTERNAL(arg) 1728 1729 // Access to RTM instructions 1730 /*A version of XBegin which returns -1 on speculation, and the value of EAX on 1731 an abort. This is the same definition as the compiler intrinsic that will be 1732 supported at some point. */ 1733 static __inline int _xbegin() { 1734 int res = -1; 1735 1736 #if KMP_OS_WINDOWS 1737 #if KMP_ARCH_X86_64 1738 _asm { 1739 _emit 0xC7 1740 _emit 0xF8 1741 _emit 2 1742 _emit 0 1743 _emit 0 1744 _emit 0 1745 jmp L2 1746 mov res, eax 1747 L2: 1748 } 1749 #else /* IA32 */ 1750 _asm { 1751 _emit 0xC7 1752 _emit 0xF8 1753 _emit 2 1754 _emit 0 1755 _emit 0 1756 _emit 0 1757 jmp L2 1758 mov res, eax 1759 L2: 1760 } 1761 #endif // KMP_ARCH_X86_64 1762 #else 1763 /* Note that %eax must be noted as killed (clobbered), because the XSR is 1764 returned in %eax(%rax) on abort. Other register values are restored, so 1765 don't need to be killed. 1766 1767 We must also mark 'res' as an input and an output, since otherwise 1768 'res=-1' may be dropped as being dead, whereas we do need the assignment on 1769 the successful (i.e., non-abort) path. */ 1770 __asm__ volatile("1: .byte 0xC7; .byte 0xF8;\n" 1771 " .long 1f-1b-6\n" 1772 " jmp 2f\n" 1773 "1: movl %%eax,%0\n" 1774 "2:" 1775 : "+r"(res)::"memory", "%eax"); 1776 #endif // KMP_OS_WINDOWS 1777 return res; 1778 } 1779 1780 /* Transaction end */ 1781 static __inline void _xend() { 1782 #if KMP_OS_WINDOWS 1783 __asm { 1784 _emit 0x0f 1785 _emit 0x01 1786 _emit 0xd5 1787 } 1788 #else 1789 __asm__ volatile(".byte 0x0f; .byte 0x01; .byte 0xd5" ::: "memory"); 1790 #endif 1791 } 1792 1793 /* This is a macro, the argument must be a single byte constant which can be 1794 evaluated by the inline assembler, since it is emitted as a byte into the 1795 assembly code. */ 1796 // clang-format off 1797 #if KMP_OS_WINDOWS 1798 #define _xabort(ARG) _asm _emit 0xc6 _asm _emit 0xf8 _asm _emit ARG 1799 #else 1800 #define _xabort(ARG) \ 1801 __asm__ volatile(".byte 0xC6; .byte 0xF8; .byte " STRINGIZE(ARG):::"memory"); 1802 #endif 1803 // clang-format on 1804 #endif // KMP_COMPILER_ICC && __INTEL_COMPILER >= 1300 1805 1806 // Statistics is collected for testing purpose 1807 #if KMP_DEBUG_ADAPTIVE_LOCKS 1808 1809 // We accumulate speculative lock statistics when the lock is destroyed. We 1810 // keep locks that haven't been destroyed in the liveLocks list so that we can 1811 // grab their statistics too. 1812 static kmp_adaptive_lock_statistics_t destroyedStats; 1813 1814 // To hold the list of live locks. 1815 static kmp_adaptive_lock_info_t liveLocks; 1816 1817 // A lock so we can safely update the list of locks. 1818 static kmp_bootstrap_lock_t chain_lock = 1819 KMP_BOOTSTRAP_LOCK_INITIALIZER(chain_lock); 1820 1821 // Initialize the list of stats. 1822 void __kmp_init_speculative_stats() { 1823 kmp_adaptive_lock_info_t *lck = &liveLocks; 1824 1825 memset(CCAST(kmp_adaptive_lock_statistics_t *, &(lck->stats)), 0, 1826 sizeof(lck->stats)); 1827 lck->stats.next = lck; 1828 lck->stats.prev = lck; 1829 1830 KMP_ASSERT(lck->stats.next->stats.prev == lck); 1831 KMP_ASSERT(lck->stats.prev->stats.next == lck); 1832 1833 __kmp_init_bootstrap_lock(&chain_lock); 1834 } 1835 1836 // Insert the lock into the circular list 1837 static void __kmp_remember_lock(kmp_adaptive_lock_info_t *lck) { 1838 __kmp_acquire_bootstrap_lock(&chain_lock); 1839 1840 lck->stats.next = liveLocks.stats.next; 1841 lck->stats.prev = &liveLocks; 1842 1843 liveLocks.stats.next = lck; 1844 lck->stats.next->stats.prev = lck; 1845 1846 KMP_ASSERT(lck->stats.next->stats.prev == lck); 1847 KMP_ASSERT(lck->stats.prev->stats.next == lck); 1848 1849 __kmp_release_bootstrap_lock(&chain_lock); 1850 } 1851 1852 static void __kmp_forget_lock(kmp_adaptive_lock_info_t *lck) { 1853 KMP_ASSERT(lck->stats.next->stats.prev == lck); 1854 KMP_ASSERT(lck->stats.prev->stats.next == lck); 1855 1856 kmp_adaptive_lock_info_t *n = lck->stats.next; 1857 kmp_adaptive_lock_info_t *p = lck->stats.prev; 1858 1859 n->stats.prev = p; 1860 p->stats.next = n; 1861 } 1862 1863 static void __kmp_zero_speculative_stats(kmp_adaptive_lock_info_t *lck) { 1864 memset(CCAST(kmp_adaptive_lock_statistics_t *, &lck->stats), 0, 1865 sizeof(lck->stats)); 1866 __kmp_remember_lock(lck); 1867 } 1868 1869 static void __kmp_add_stats(kmp_adaptive_lock_statistics_t *t, 1870 kmp_adaptive_lock_info_t *lck) { 1871 kmp_adaptive_lock_statistics_t volatile *s = &lck->stats; 1872 1873 t->nonSpeculativeAcquireAttempts += lck->acquire_attempts; 1874 t->successfulSpeculations += s->successfulSpeculations; 1875 t->hardFailedSpeculations += s->hardFailedSpeculations; 1876 t->softFailedSpeculations += s->softFailedSpeculations; 1877 t->nonSpeculativeAcquires += s->nonSpeculativeAcquires; 1878 t->lemmingYields += s->lemmingYields; 1879 } 1880 1881 static void __kmp_accumulate_speculative_stats(kmp_adaptive_lock_info_t *lck) { 1882 __kmp_acquire_bootstrap_lock(&chain_lock); 1883 1884 __kmp_add_stats(&destroyedStats, lck); 1885 __kmp_forget_lock(lck); 1886 1887 __kmp_release_bootstrap_lock(&chain_lock); 1888 } 1889 1890 static float percent(kmp_uint32 count, kmp_uint32 total) { 1891 return (total == 0) ? 0.0 : (100.0 * count) / total; 1892 } 1893 1894 void __kmp_print_speculative_stats() { 1895 kmp_adaptive_lock_statistics_t total = destroyedStats; 1896 kmp_adaptive_lock_info_t *lck; 1897 1898 for (lck = liveLocks.stats.next; lck != &liveLocks; lck = lck->stats.next) { 1899 __kmp_add_stats(&total, lck); 1900 } 1901 kmp_adaptive_lock_statistics_t *t = &total; 1902 kmp_uint32 totalSections = 1903 t->nonSpeculativeAcquires + t->successfulSpeculations; 1904 kmp_uint32 totalSpeculations = t->successfulSpeculations + 1905 t->hardFailedSpeculations + 1906 t->softFailedSpeculations; 1907 if (totalSections <= 0) 1908 return; 1909 1910 kmp_safe_raii_file_t statsFile; 1911 if (strcmp(__kmp_speculative_statsfile, "-") == 0) { 1912 statsFile.set_stdout(); 1913 } else { 1914 size_t buffLen = KMP_STRLEN(__kmp_speculative_statsfile) + 20; 1915 char buffer[buffLen]; 1916 KMP_SNPRINTF(&buffer[0], buffLen, __kmp_speculative_statsfile, 1917 (kmp_int32)getpid()); 1918 statsFile.open(buffer, "w"); 1919 } 1920 1921 fprintf(statsFile, "Speculative lock statistics (all approximate!)\n"); 1922 fprintf(statsFile, " Lock parameters: \n" 1923 " max_soft_retries : %10d\n" 1924 " max_badness : %10d\n", 1925 __kmp_adaptive_backoff_params.max_soft_retries, 1926 __kmp_adaptive_backoff_params.max_badness); 1927 fprintf(statsFile, " Non-speculative acquire attempts : %10d\n", 1928 t->nonSpeculativeAcquireAttempts); 1929 fprintf(statsFile, " Total critical sections : %10d\n", 1930 totalSections); 1931 fprintf(statsFile, " Successful speculations : %10d (%5.1f%%)\n", 1932 t->successfulSpeculations, 1933 percent(t->successfulSpeculations, totalSections)); 1934 fprintf(statsFile, " Non-speculative acquires : %10d (%5.1f%%)\n", 1935 t->nonSpeculativeAcquires, 1936 percent(t->nonSpeculativeAcquires, totalSections)); 1937 fprintf(statsFile, " Lemming yields : %10d\n\n", 1938 t->lemmingYields); 1939 1940 fprintf(statsFile, " Speculative acquire attempts : %10d\n", 1941 totalSpeculations); 1942 fprintf(statsFile, " Successes : %10d (%5.1f%%)\n", 1943 t->successfulSpeculations, 1944 percent(t->successfulSpeculations, totalSpeculations)); 1945 fprintf(statsFile, " Soft failures : %10d (%5.1f%%)\n", 1946 t->softFailedSpeculations, 1947 percent(t->softFailedSpeculations, totalSpeculations)); 1948 fprintf(statsFile, " Hard failures : %10d (%5.1f%%)\n", 1949 t->hardFailedSpeculations, 1950 percent(t->hardFailedSpeculations, totalSpeculations)); 1951 } 1952 1953 #define KMP_INC_STAT(lck, stat) (lck->lk.adaptive.stats.stat++) 1954 #else 1955 #define KMP_INC_STAT(lck, stat) 1956 1957 #endif // KMP_DEBUG_ADAPTIVE_LOCKS 1958 1959 static inline bool __kmp_is_unlocked_queuing_lock(kmp_queuing_lock_t *lck) { 1960 // It is enough to check that the head_id is zero. 1961 // We don't also need to check the tail. 1962 bool res = lck->lk.head_id == 0; 1963 1964 // We need a fence here, since we must ensure that no memory operations 1965 // from later in this thread float above that read. 1966 #if KMP_COMPILER_ICC 1967 _mm_mfence(); 1968 #else 1969 __sync_synchronize(); 1970 #endif 1971 1972 return res; 1973 } 1974 1975 // Functions for manipulating the badness 1976 static __inline void 1977 __kmp_update_badness_after_success(kmp_adaptive_lock_t *lck) { 1978 // Reset the badness to zero so we eagerly try to speculate again 1979 lck->lk.adaptive.badness = 0; 1980 KMP_INC_STAT(lck, successfulSpeculations); 1981 } 1982 1983 // Create a bit mask with one more set bit. 1984 static __inline void __kmp_step_badness(kmp_adaptive_lock_t *lck) { 1985 kmp_uint32 newBadness = (lck->lk.adaptive.badness << 1) | 1; 1986 if (newBadness > lck->lk.adaptive.max_badness) { 1987 return; 1988 } else { 1989 lck->lk.adaptive.badness = newBadness; 1990 } 1991 } 1992 1993 // Check whether speculation should be attempted. 1994 KMP_ATTRIBUTE_TARGET_RTM 1995 static __inline int __kmp_should_speculate(kmp_adaptive_lock_t *lck, 1996 kmp_int32 gtid) { 1997 kmp_uint32 badness = lck->lk.adaptive.badness; 1998 kmp_uint32 attempts = lck->lk.adaptive.acquire_attempts; 1999 int res = (attempts & badness) == 0; 2000 return res; 2001 } 2002 2003 // Attempt to acquire only the speculative lock. 2004 // Does not back off to the non-speculative lock. 2005 KMP_ATTRIBUTE_TARGET_RTM 2006 static int __kmp_test_adaptive_lock_only(kmp_adaptive_lock_t *lck, 2007 kmp_int32 gtid) { 2008 int retries = lck->lk.adaptive.max_soft_retries; 2009 2010 // We don't explicitly count the start of speculation, rather we record the 2011 // results (success, hard fail, soft fail). The sum of all of those is the 2012 // total number of times we started speculation since all speculations must 2013 // end one of those ways. 2014 do { 2015 kmp_uint32 status = _xbegin(); 2016 // Switch this in to disable actual speculation but exercise at least some 2017 // of the rest of the code. Useful for debugging... 2018 // kmp_uint32 status = _XABORT_NESTED; 2019 2020 if (status == _XBEGIN_STARTED) { 2021 /* We have successfully started speculation. Check that no-one acquired 2022 the lock for real between when we last looked and now. This also gets 2023 the lock cache line into our read-set, which we need so that we'll 2024 abort if anyone later claims it for real. */ 2025 if (!__kmp_is_unlocked_queuing_lock(GET_QLK_PTR(lck))) { 2026 // Lock is now visibly acquired, so someone beat us to it. Abort the 2027 // transaction so we'll restart from _xbegin with the failure status. 2028 _xabort(0x01); 2029 KMP_ASSERT2(0, "should not get here"); 2030 } 2031 return 1; // Lock has been acquired (speculatively) 2032 } else { 2033 // We have aborted, update the statistics 2034 if (status & SOFT_ABORT_MASK) { 2035 KMP_INC_STAT(lck, softFailedSpeculations); 2036 // and loop round to retry. 2037 } else { 2038 KMP_INC_STAT(lck, hardFailedSpeculations); 2039 // Give up if we had a hard failure. 2040 break; 2041 } 2042 } 2043 } while (retries--); // Loop while we have retries, and didn't fail hard. 2044 2045 // Either we had a hard failure or we didn't succeed softly after 2046 // the full set of attempts, so back off the badness. 2047 __kmp_step_badness(lck); 2048 return 0; 2049 } 2050 2051 // Attempt to acquire the speculative lock, or back off to the non-speculative 2052 // one if the speculative lock cannot be acquired. 2053 // We can succeed speculatively, non-speculatively, or fail. 2054 static int __kmp_test_adaptive_lock(kmp_adaptive_lock_t *lck, kmp_int32 gtid) { 2055 // First try to acquire the lock speculatively 2056 if (__kmp_should_speculate(lck, gtid) && 2057 __kmp_test_adaptive_lock_only(lck, gtid)) 2058 return 1; 2059 2060 // Speculative acquisition failed, so try to acquire it non-speculatively. 2061 // Count the non-speculative acquire attempt 2062 lck->lk.adaptive.acquire_attempts++; 2063 2064 // Use base, non-speculative lock. 2065 if (__kmp_test_queuing_lock(GET_QLK_PTR(lck), gtid)) { 2066 KMP_INC_STAT(lck, nonSpeculativeAcquires); 2067 return 1; // Lock is acquired (non-speculatively) 2068 } else { 2069 return 0; // Failed to acquire the lock, it's already visibly locked. 2070 } 2071 } 2072 2073 static int __kmp_test_adaptive_lock_with_checks(kmp_adaptive_lock_t *lck, 2074 kmp_int32 gtid) { 2075 char const *const func = "omp_test_lock"; 2076 if (lck->lk.qlk.initialized != GET_QLK_PTR(lck)) { 2077 KMP_FATAL(LockIsUninitialized, func); 2078 } 2079 2080 int retval = __kmp_test_adaptive_lock(lck, gtid); 2081 2082 if (retval) { 2083 lck->lk.qlk.owner_id = gtid + 1; 2084 } 2085 return retval; 2086 } 2087 2088 // Block until we can acquire a speculative, adaptive lock. We check whether we 2089 // should be trying to speculate. If we should be, we check the real lock to see 2090 // if it is free, and, if not, pause without attempting to acquire it until it 2091 // is. Then we try the speculative acquire. This means that although we suffer 2092 // from lemmings a little (because all we can't acquire the lock speculatively 2093 // until the queue of threads waiting has cleared), we don't get into a state 2094 // where we can never acquire the lock speculatively (because we force the queue 2095 // to clear by preventing new arrivals from entering the queue). This does mean 2096 // that when we're trying to break lemmings, the lock is no longer fair. However 2097 // OpenMP makes no guarantee that its locks are fair, so this isn't a real 2098 // problem. 2099 static void __kmp_acquire_adaptive_lock(kmp_adaptive_lock_t *lck, 2100 kmp_int32 gtid) { 2101 if (__kmp_should_speculate(lck, gtid)) { 2102 if (__kmp_is_unlocked_queuing_lock(GET_QLK_PTR(lck))) { 2103 if (__kmp_test_adaptive_lock_only(lck, gtid)) 2104 return; 2105 // We tried speculation and failed, so give up. 2106 } else { 2107 // We can't try speculation until the lock is free, so we pause here 2108 // (without suspending on the queueing lock, to allow it to drain, then 2109 // try again. All other threads will also see the same result for 2110 // shouldSpeculate, so will be doing the same if they try to claim the 2111 // lock from now on. 2112 while (!__kmp_is_unlocked_queuing_lock(GET_QLK_PTR(lck))) { 2113 KMP_INC_STAT(lck, lemmingYields); 2114 KMP_YIELD(TRUE); 2115 } 2116 2117 if (__kmp_test_adaptive_lock_only(lck, gtid)) 2118 return; 2119 } 2120 } 2121 2122 // Speculative acquisition failed, so acquire it non-speculatively. 2123 // Count the non-speculative acquire attempt 2124 lck->lk.adaptive.acquire_attempts++; 2125 2126 __kmp_acquire_queuing_lock_timed_template<FALSE>(GET_QLK_PTR(lck), gtid); 2127 // We have acquired the base lock, so count that. 2128 KMP_INC_STAT(lck, nonSpeculativeAcquires); 2129 ANNOTATE_QUEUING_ACQUIRED(lck); 2130 } 2131 2132 static void __kmp_acquire_adaptive_lock_with_checks(kmp_adaptive_lock_t *lck, 2133 kmp_int32 gtid) { 2134 char const *const func = "omp_set_lock"; 2135 if (lck->lk.qlk.initialized != GET_QLK_PTR(lck)) { 2136 KMP_FATAL(LockIsUninitialized, func); 2137 } 2138 if (__kmp_get_queuing_lock_owner(GET_QLK_PTR(lck)) == gtid) { 2139 KMP_FATAL(LockIsAlreadyOwned, func); 2140 } 2141 2142 __kmp_acquire_adaptive_lock(lck, gtid); 2143 2144 lck->lk.qlk.owner_id = gtid + 1; 2145 } 2146 2147 KMP_ATTRIBUTE_TARGET_RTM 2148 static int __kmp_release_adaptive_lock(kmp_adaptive_lock_t *lck, 2149 kmp_int32 gtid) { 2150 if (__kmp_is_unlocked_queuing_lock(GET_QLK_PTR( 2151 lck))) { // If the lock doesn't look claimed we must be speculating. 2152 // (Or the user's code is buggy and they're releasing without locking; 2153 // if we had XTEST we'd be able to check that case...) 2154 _xend(); // Exit speculation 2155 __kmp_update_badness_after_success(lck); 2156 } else { // Since the lock *is* visibly locked we're not speculating, 2157 // so should use the underlying lock's release scheme. 2158 __kmp_release_queuing_lock(GET_QLK_PTR(lck), gtid); 2159 } 2160 return KMP_LOCK_RELEASED; 2161 } 2162 2163 static int __kmp_release_adaptive_lock_with_checks(kmp_adaptive_lock_t *lck, 2164 kmp_int32 gtid) { 2165 char const *const func = "omp_unset_lock"; 2166 KMP_MB(); /* in case another processor initialized lock */ 2167 if (lck->lk.qlk.initialized != GET_QLK_PTR(lck)) { 2168 KMP_FATAL(LockIsUninitialized, func); 2169 } 2170 if (__kmp_get_queuing_lock_owner(GET_QLK_PTR(lck)) == -1) { 2171 KMP_FATAL(LockUnsettingFree, func); 2172 } 2173 if (__kmp_get_queuing_lock_owner(GET_QLK_PTR(lck)) != gtid) { 2174 KMP_FATAL(LockUnsettingSetByAnother, func); 2175 } 2176 lck->lk.qlk.owner_id = 0; 2177 __kmp_release_adaptive_lock(lck, gtid); 2178 return KMP_LOCK_RELEASED; 2179 } 2180 2181 static void __kmp_init_adaptive_lock(kmp_adaptive_lock_t *lck) { 2182 __kmp_init_queuing_lock(GET_QLK_PTR(lck)); 2183 lck->lk.adaptive.badness = 0; 2184 lck->lk.adaptive.acquire_attempts = 0; // nonSpeculativeAcquireAttempts = 0; 2185 lck->lk.adaptive.max_soft_retries = 2186 __kmp_adaptive_backoff_params.max_soft_retries; 2187 lck->lk.adaptive.max_badness = __kmp_adaptive_backoff_params.max_badness; 2188 #if KMP_DEBUG_ADAPTIVE_LOCKS 2189 __kmp_zero_speculative_stats(&lck->lk.adaptive); 2190 #endif 2191 KA_TRACE(1000, ("__kmp_init_adaptive_lock: lock %p initialized\n", lck)); 2192 } 2193 2194 static void __kmp_destroy_adaptive_lock(kmp_adaptive_lock_t *lck) { 2195 #if KMP_DEBUG_ADAPTIVE_LOCKS 2196 __kmp_accumulate_speculative_stats(&lck->lk.adaptive); 2197 #endif 2198 __kmp_destroy_queuing_lock(GET_QLK_PTR(lck)); 2199 // Nothing needed for the speculative part. 2200 } 2201 2202 static void __kmp_destroy_adaptive_lock_with_checks(kmp_adaptive_lock_t *lck) { 2203 char const *const func = "omp_destroy_lock"; 2204 if (lck->lk.qlk.initialized != GET_QLK_PTR(lck)) { 2205 KMP_FATAL(LockIsUninitialized, func); 2206 } 2207 if (__kmp_get_queuing_lock_owner(GET_QLK_PTR(lck)) != -1) { 2208 KMP_FATAL(LockStillOwned, func); 2209 } 2210 __kmp_destroy_adaptive_lock(lck); 2211 } 2212 2213 #endif // KMP_USE_ADAPTIVE_LOCKS 2214 2215 /* ------------------------------------------------------------------------ */ 2216 /* DRDPA ticket locks */ 2217 /* "DRDPA" means Dynamically Reconfigurable Distributed Polling Area */ 2218 2219 static kmp_int32 __kmp_get_drdpa_lock_owner(kmp_drdpa_lock_t *lck) { 2220 return lck->lk.owner_id - 1; 2221 } 2222 2223 static inline bool __kmp_is_drdpa_lock_nestable(kmp_drdpa_lock_t *lck) { 2224 return lck->lk.depth_locked != -1; 2225 } 2226 2227 __forceinline static int 2228 __kmp_acquire_drdpa_lock_timed_template(kmp_drdpa_lock_t *lck, kmp_int32 gtid) { 2229 kmp_uint64 ticket = KMP_ATOMIC_INC(&lck->lk.next_ticket); 2230 kmp_uint64 mask = lck->lk.mask; // atomic load 2231 std::atomic<kmp_uint64> *polls = lck->lk.polls; 2232 2233 #ifdef USE_LOCK_PROFILE 2234 if (polls[ticket & mask] != ticket) 2235 __kmp_printf("LOCK CONTENTION: %p\n", lck); 2236 /* else __kmp_printf( "." );*/ 2237 #endif /* USE_LOCK_PROFILE */ 2238 2239 // Now spin-wait, but reload the polls pointer and mask, in case the 2240 // polling area has been reconfigured. Unless it is reconfigured, the 2241 // reloads stay in L1 cache and are cheap. 2242 // 2243 // Keep this code in sync with KMP_WAIT, in kmp_dispatch.cpp !!! 2244 // The current implementation of KMP_WAIT doesn't allow for mask 2245 // and poll to be re-read every spin iteration. 2246 kmp_uint32 spins; 2247 KMP_FSYNC_PREPARE(lck); 2248 KMP_INIT_YIELD(spins); 2249 while (polls[ticket & mask] < ticket) { // atomic load 2250 KMP_YIELD_OVERSUB_ELSE_SPIN(spins); 2251 // Re-read the mask and the poll pointer from the lock structure. 2252 // 2253 // Make certain that "mask" is read before "polls" !!! 2254 // 2255 // If another thread picks reconfigures the polling area and updates their 2256 // values, and we get the new value of mask and the old polls pointer, we 2257 // could access memory beyond the end of the old polling area. 2258 mask = lck->lk.mask; // atomic load 2259 polls = lck->lk.polls; // atomic load 2260 } 2261 2262 // Critical section starts here 2263 KMP_FSYNC_ACQUIRED(lck); 2264 KA_TRACE(1000, ("__kmp_acquire_drdpa_lock: ticket #%lld acquired lock %p\n", 2265 ticket, lck)); 2266 lck->lk.now_serving = ticket; // non-volatile store 2267 2268 // Deallocate a garbage polling area if we know that we are the last 2269 // thread that could possibly access it. 2270 // 2271 // The >= check is in case __kmp_test_drdpa_lock() allocated the cleanup 2272 // ticket. 2273 if ((lck->lk.old_polls != NULL) && (ticket >= lck->lk.cleanup_ticket)) { 2274 __kmp_free(lck->lk.old_polls); 2275 lck->lk.old_polls = NULL; 2276 lck->lk.cleanup_ticket = 0; 2277 } 2278 2279 // Check to see if we should reconfigure the polling area. 2280 // If there is still a garbage polling area to be deallocated from a 2281 // previous reconfiguration, let a later thread reconfigure it. 2282 if (lck->lk.old_polls == NULL) { 2283 bool reconfigure = false; 2284 std::atomic<kmp_uint64> *old_polls = polls; 2285 kmp_uint32 num_polls = TCR_4(lck->lk.num_polls); 2286 2287 if (TCR_4(__kmp_nth) > 2288 (__kmp_avail_proc ? __kmp_avail_proc : __kmp_xproc)) { 2289 // We are in oversubscription mode. Contract the polling area 2290 // down to a single location, if that hasn't been done already. 2291 if (num_polls > 1) { 2292 reconfigure = true; 2293 num_polls = TCR_4(lck->lk.num_polls); 2294 mask = 0; 2295 num_polls = 1; 2296 polls = (std::atomic<kmp_uint64> *)__kmp_allocate(num_polls * 2297 sizeof(*polls)); 2298 polls[0] = ticket; 2299 } 2300 } else { 2301 // We are in under/fully subscribed mode. Check the number of 2302 // threads waiting on the lock. The size of the polling area 2303 // should be at least the number of threads waiting. 2304 kmp_uint64 num_waiting = TCR_8(lck->lk.next_ticket) - ticket - 1; 2305 if (num_waiting > num_polls) { 2306 kmp_uint32 old_num_polls = num_polls; 2307 reconfigure = true; 2308 do { 2309 mask = (mask << 1) | 1; 2310 num_polls *= 2; 2311 } while (num_polls <= num_waiting); 2312 2313 // Allocate the new polling area, and copy the relevant portion 2314 // of the old polling area to the new area. __kmp_allocate() 2315 // zeroes the memory it allocates, and most of the old area is 2316 // just zero padding, so we only copy the release counters. 2317 polls = (std::atomic<kmp_uint64> *)__kmp_allocate(num_polls * 2318 sizeof(*polls)); 2319 kmp_uint32 i; 2320 for (i = 0; i < old_num_polls; i++) { 2321 polls[i].store(old_polls[i]); 2322 } 2323 } 2324 } 2325 2326 if (reconfigure) { 2327 // Now write the updated fields back to the lock structure. 2328 // 2329 // Make certain that "polls" is written before "mask" !!! 2330 // 2331 // If another thread picks up the new value of mask and the old polls 2332 // pointer , it could access memory beyond the end of the old polling 2333 // area. 2334 // 2335 // On x86, we need memory fences. 2336 KA_TRACE(1000, ("__kmp_acquire_drdpa_lock: ticket #%lld reconfiguring " 2337 "lock %p to %d polls\n", 2338 ticket, lck, num_polls)); 2339 2340 lck->lk.old_polls = old_polls; 2341 lck->lk.polls = polls; // atomic store 2342 2343 KMP_MB(); 2344 2345 lck->lk.num_polls = num_polls; 2346 lck->lk.mask = mask; // atomic store 2347 2348 KMP_MB(); 2349 2350 // Only after the new polling area and mask have been flushed 2351 // to main memory can we update the cleanup ticket field. 2352 // 2353 // volatile load / non-volatile store 2354 lck->lk.cleanup_ticket = lck->lk.next_ticket; 2355 } 2356 } 2357 return KMP_LOCK_ACQUIRED_FIRST; 2358 } 2359 2360 int __kmp_acquire_drdpa_lock(kmp_drdpa_lock_t *lck, kmp_int32 gtid) { 2361 int retval = __kmp_acquire_drdpa_lock_timed_template(lck, gtid); 2362 ANNOTATE_DRDPA_ACQUIRED(lck); 2363 return retval; 2364 } 2365 2366 static int __kmp_acquire_drdpa_lock_with_checks(kmp_drdpa_lock_t *lck, 2367 kmp_int32 gtid) { 2368 char const *const func = "omp_set_lock"; 2369 if (lck->lk.initialized != lck) { 2370 KMP_FATAL(LockIsUninitialized, func); 2371 } 2372 if (__kmp_is_drdpa_lock_nestable(lck)) { 2373 KMP_FATAL(LockNestableUsedAsSimple, func); 2374 } 2375 if ((gtid >= 0) && (__kmp_get_drdpa_lock_owner(lck) == gtid)) { 2376 KMP_FATAL(LockIsAlreadyOwned, func); 2377 } 2378 2379 __kmp_acquire_drdpa_lock(lck, gtid); 2380 2381 lck->lk.owner_id = gtid + 1; 2382 return KMP_LOCK_ACQUIRED_FIRST; 2383 } 2384 2385 int __kmp_test_drdpa_lock(kmp_drdpa_lock_t *lck, kmp_int32 gtid) { 2386 // First get a ticket, then read the polls pointer and the mask. 2387 // The polls pointer must be read before the mask!!! (See above) 2388 kmp_uint64 ticket = lck->lk.next_ticket; // atomic load 2389 std::atomic<kmp_uint64> *polls = lck->lk.polls; 2390 kmp_uint64 mask = lck->lk.mask; // atomic load 2391 if (polls[ticket & mask] == ticket) { 2392 kmp_uint64 next_ticket = ticket + 1; 2393 if (__kmp_atomic_compare_store_acq(&lck->lk.next_ticket, ticket, 2394 next_ticket)) { 2395 KMP_FSYNC_ACQUIRED(lck); 2396 KA_TRACE(1000, ("__kmp_test_drdpa_lock: ticket #%lld acquired lock %p\n", 2397 ticket, lck)); 2398 lck->lk.now_serving = ticket; // non-volatile store 2399 2400 // Since no threads are waiting, there is no possibility that we would 2401 // want to reconfigure the polling area. We might have the cleanup ticket 2402 // value (which says that it is now safe to deallocate old_polls), but 2403 // we'll let a later thread which calls __kmp_acquire_lock do that - this 2404 // routine isn't supposed to block, and we would risk blocks if we called 2405 // __kmp_free() to do the deallocation. 2406 return TRUE; 2407 } 2408 } 2409 return FALSE; 2410 } 2411 2412 static int __kmp_test_drdpa_lock_with_checks(kmp_drdpa_lock_t *lck, 2413 kmp_int32 gtid) { 2414 char const *const func = "omp_test_lock"; 2415 if (lck->lk.initialized != lck) { 2416 KMP_FATAL(LockIsUninitialized, func); 2417 } 2418 if (__kmp_is_drdpa_lock_nestable(lck)) { 2419 KMP_FATAL(LockNestableUsedAsSimple, func); 2420 } 2421 2422 int retval = __kmp_test_drdpa_lock(lck, gtid); 2423 2424 if (retval) { 2425 lck->lk.owner_id = gtid + 1; 2426 } 2427 return retval; 2428 } 2429 2430 int __kmp_release_drdpa_lock(kmp_drdpa_lock_t *lck, kmp_int32 gtid) { 2431 // Read the ticket value from the lock data struct, then the polls pointer and 2432 // the mask. The polls pointer must be read before the mask!!! (See above) 2433 kmp_uint64 ticket = lck->lk.now_serving + 1; // non-atomic load 2434 std::atomic<kmp_uint64> *polls = lck->lk.polls; // atomic load 2435 kmp_uint64 mask = lck->lk.mask; // atomic load 2436 KA_TRACE(1000, ("__kmp_release_drdpa_lock: ticket #%lld released lock %p\n", 2437 ticket - 1, lck)); 2438 KMP_FSYNC_RELEASING(lck); 2439 ANNOTATE_DRDPA_RELEASED(lck); 2440 polls[ticket & mask] = ticket; // atomic store 2441 return KMP_LOCK_RELEASED; 2442 } 2443 2444 static int __kmp_release_drdpa_lock_with_checks(kmp_drdpa_lock_t *lck, 2445 kmp_int32 gtid) { 2446 char const *const func = "omp_unset_lock"; 2447 KMP_MB(); /* in case another processor initialized lock */ 2448 if (lck->lk.initialized != lck) { 2449 KMP_FATAL(LockIsUninitialized, func); 2450 } 2451 if (__kmp_is_drdpa_lock_nestable(lck)) { 2452 KMP_FATAL(LockNestableUsedAsSimple, func); 2453 } 2454 if (__kmp_get_drdpa_lock_owner(lck) == -1) { 2455 KMP_FATAL(LockUnsettingFree, func); 2456 } 2457 if ((gtid >= 0) && (__kmp_get_drdpa_lock_owner(lck) >= 0) && 2458 (__kmp_get_drdpa_lock_owner(lck) != gtid)) { 2459 KMP_FATAL(LockUnsettingSetByAnother, func); 2460 } 2461 lck->lk.owner_id = 0; 2462 return __kmp_release_drdpa_lock(lck, gtid); 2463 } 2464 2465 void __kmp_init_drdpa_lock(kmp_drdpa_lock_t *lck) { 2466 lck->lk.location = NULL; 2467 lck->lk.mask = 0; 2468 lck->lk.num_polls = 1; 2469 lck->lk.polls = (std::atomic<kmp_uint64> *)__kmp_allocate( 2470 lck->lk.num_polls * sizeof(*(lck->lk.polls))); 2471 lck->lk.cleanup_ticket = 0; 2472 lck->lk.old_polls = NULL; 2473 lck->lk.next_ticket = 0; 2474 lck->lk.now_serving = 0; 2475 lck->lk.owner_id = 0; // no thread owns the lock. 2476 lck->lk.depth_locked = -1; // >= 0 for nestable locks, -1 for simple locks. 2477 lck->lk.initialized = lck; 2478 2479 KA_TRACE(1000, ("__kmp_init_drdpa_lock: lock %p initialized\n", lck)); 2480 } 2481 2482 void __kmp_destroy_drdpa_lock(kmp_drdpa_lock_t *lck) { 2483 lck->lk.initialized = NULL; 2484 lck->lk.location = NULL; 2485 if (lck->lk.polls.load() != NULL) { 2486 __kmp_free(lck->lk.polls.load()); 2487 lck->lk.polls = NULL; 2488 } 2489 if (lck->lk.old_polls != NULL) { 2490 __kmp_free(lck->lk.old_polls); 2491 lck->lk.old_polls = NULL; 2492 } 2493 lck->lk.mask = 0; 2494 lck->lk.num_polls = 0; 2495 lck->lk.cleanup_ticket = 0; 2496 lck->lk.next_ticket = 0; 2497 lck->lk.now_serving = 0; 2498 lck->lk.owner_id = 0; 2499 lck->lk.depth_locked = -1; 2500 } 2501 2502 static void __kmp_destroy_drdpa_lock_with_checks(kmp_drdpa_lock_t *lck) { 2503 char const *const func = "omp_destroy_lock"; 2504 if (lck->lk.initialized != lck) { 2505 KMP_FATAL(LockIsUninitialized, func); 2506 } 2507 if (__kmp_is_drdpa_lock_nestable(lck)) { 2508 KMP_FATAL(LockNestableUsedAsSimple, func); 2509 } 2510 if (__kmp_get_drdpa_lock_owner(lck) != -1) { 2511 KMP_FATAL(LockStillOwned, func); 2512 } 2513 __kmp_destroy_drdpa_lock(lck); 2514 } 2515 2516 // nested drdpa ticket locks 2517 2518 int __kmp_acquire_nested_drdpa_lock(kmp_drdpa_lock_t *lck, kmp_int32 gtid) { 2519 KMP_DEBUG_ASSERT(gtid >= 0); 2520 2521 if (__kmp_get_drdpa_lock_owner(lck) == gtid) { 2522 lck->lk.depth_locked += 1; 2523 return KMP_LOCK_ACQUIRED_NEXT; 2524 } else { 2525 __kmp_acquire_drdpa_lock_timed_template(lck, gtid); 2526 ANNOTATE_DRDPA_ACQUIRED(lck); 2527 KMP_MB(); 2528 lck->lk.depth_locked = 1; 2529 KMP_MB(); 2530 lck->lk.owner_id = gtid + 1; 2531 return KMP_LOCK_ACQUIRED_FIRST; 2532 } 2533 } 2534 2535 static void __kmp_acquire_nested_drdpa_lock_with_checks(kmp_drdpa_lock_t *lck, 2536 kmp_int32 gtid) { 2537 char const *const func = "omp_set_nest_lock"; 2538 if (lck->lk.initialized != lck) { 2539 KMP_FATAL(LockIsUninitialized, func); 2540 } 2541 if (!__kmp_is_drdpa_lock_nestable(lck)) { 2542 KMP_FATAL(LockSimpleUsedAsNestable, func); 2543 } 2544 __kmp_acquire_nested_drdpa_lock(lck, gtid); 2545 } 2546 2547 int __kmp_test_nested_drdpa_lock(kmp_drdpa_lock_t *lck, kmp_int32 gtid) { 2548 int retval; 2549 2550 KMP_DEBUG_ASSERT(gtid >= 0); 2551 2552 if (__kmp_get_drdpa_lock_owner(lck) == gtid) { 2553 retval = ++lck->lk.depth_locked; 2554 } else if (!__kmp_test_drdpa_lock(lck, gtid)) { 2555 retval = 0; 2556 } else { 2557 KMP_MB(); 2558 retval = lck->lk.depth_locked = 1; 2559 KMP_MB(); 2560 lck->lk.owner_id = gtid + 1; 2561 } 2562 return retval; 2563 } 2564 2565 static int __kmp_test_nested_drdpa_lock_with_checks(kmp_drdpa_lock_t *lck, 2566 kmp_int32 gtid) { 2567 char const *const func = "omp_test_nest_lock"; 2568 if (lck->lk.initialized != lck) { 2569 KMP_FATAL(LockIsUninitialized, func); 2570 } 2571 if (!__kmp_is_drdpa_lock_nestable(lck)) { 2572 KMP_FATAL(LockSimpleUsedAsNestable, func); 2573 } 2574 return __kmp_test_nested_drdpa_lock(lck, gtid); 2575 } 2576 2577 int __kmp_release_nested_drdpa_lock(kmp_drdpa_lock_t *lck, kmp_int32 gtid) { 2578 KMP_DEBUG_ASSERT(gtid >= 0); 2579 2580 KMP_MB(); 2581 if (--(lck->lk.depth_locked) == 0) { 2582 KMP_MB(); 2583 lck->lk.owner_id = 0; 2584 __kmp_release_drdpa_lock(lck, gtid); 2585 return KMP_LOCK_RELEASED; 2586 } 2587 return KMP_LOCK_STILL_HELD; 2588 } 2589 2590 static int __kmp_release_nested_drdpa_lock_with_checks(kmp_drdpa_lock_t *lck, 2591 kmp_int32 gtid) { 2592 char const *const func = "omp_unset_nest_lock"; 2593 KMP_MB(); /* in case another processor initialized lock */ 2594 if (lck->lk.initialized != lck) { 2595 KMP_FATAL(LockIsUninitialized, func); 2596 } 2597 if (!__kmp_is_drdpa_lock_nestable(lck)) { 2598 KMP_FATAL(LockSimpleUsedAsNestable, func); 2599 } 2600 if (__kmp_get_drdpa_lock_owner(lck) == -1) { 2601 KMP_FATAL(LockUnsettingFree, func); 2602 } 2603 if (__kmp_get_drdpa_lock_owner(lck) != gtid) { 2604 KMP_FATAL(LockUnsettingSetByAnother, func); 2605 } 2606 return __kmp_release_nested_drdpa_lock(lck, gtid); 2607 } 2608 2609 void __kmp_init_nested_drdpa_lock(kmp_drdpa_lock_t *lck) { 2610 __kmp_init_drdpa_lock(lck); 2611 lck->lk.depth_locked = 0; // >= 0 for nestable locks, -1 for simple locks 2612 } 2613 2614 void __kmp_destroy_nested_drdpa_lock(kmp_drdpa_lock_t *lck) { 2615 __kmp_destroy_drdpa_lock(lck); 2616 lck->lk.depth_locked = 0; 2617 } 2618 2619 static void __kmp_destroy_nested_drdpa_lock_with_checks(kmp_drdpa_lock_t *lck) { 2620 char const *const func = "omp_destroy_nest_lock"; 2621 if (lck->lk.initialized != lck) { 2622 KMP_FATAL(LockIsUninitialized, func); 2623 } 2624 if (!__kmp_is_drdpa_lock_nestable(lck)) { 2625 KMP_FATAL(LockSimpleUsedAsNestable, func); 2626 } 2627 if (__kmp_get_drdpa_lock_owner(lck) != -1) { 2628 KMP_FATAL(LockStillOwned, func); 2629 } 2630 __kmp_destroy_nested_drdpa_lock(lck); 2631 } 2632 2633 // access functions to fields which don't exist for all lock kinds. 2634 2635 static const ident_t *__kmp_get_drdpa_lock_location(kmp_drdpa_lock_t *lck) { 2636 return lck->lk.location; 2637 } 2638 2639 static void __kmp_set_drdpa_lock_location(kmp_drdpa_lock_t *lck, 2640 const ident_t *loc) { 2641 lck->lk.location = loc; 2642 } 2643 2644 static kmp_lock_flags_t __kmp_get_drdpa_lock_flags(kmp_drdpa_lock_t *lck) { 2645 return lck->lk.flags; 2646 } 2647 2648 static void __kmp_set_drdpa_lock_flags(kmp_drdpa_lock_t *lck, 2649 kmp_lock_flags_t flags) { 2650 lck->lk.flags = flags; 2651 } 2652 2653 // Time stamp counter 2654 #if KMP_ARCH_X86 || KMP_ARCH_X86_64 2655 #define __kmp_tsc() __kmp_hardware_timestamp() 2656 // Runtime's default backoff parameters 2657 kmp_backoff_t __kmp_spin_backoff_params = {1, 4096, 100}; 2658 #else 2659 // Use nanoseconds for other platforms 2660 extern kmp_uint64 __kmp_now_nsec(); 2661 kmp_backoff_t __kmp_spin_backoff_params = {1, 256, 100}; 2662 #define __kmp_tsc() __kmp_now_nsec() 2663 #endif 2664 2665 // A useful predicate for dealing with timestamps that may wrap. 2666 // Is a before b? Since the timestamps may wrap, this is asking whether it's 2667 // shorter to go clockwise from a to b around the clock-face, or anti-clockwise. 2668 // Times where going clockwise is less distance than going anti-clockwise 2669 // are in the future, others are in the past. e.g. a = MAX-1, b = MAX+1 (=0), 2670 // then a > b (true) does not mean a reached b; whereas signed(a) = -2, 2671 // signed(b) = 0 captures the actual difference 2672 static inline bool before(kmp_uint64 a, kmp_uint64 b) { 2673 return ((kmp_int64)b - (kmp_int64)a) > 0; 2674 } 2675 2676 // Truncated binary exponential backoff function 2677 void __kmp_spin_backoff(kmp_backoff_t *boff) { 2678 // We could flatten this loop, but making it a nested loop gives better result 2679 kmp_uint32 i; 2680 for (i = boff->step; i > 0; i--) { 2681 kmp_uint64 goal = __kmp_tsc() + boff->min_tick; 2682 do { 2683 KMP_CPU_PAUSE(); 2684 } while (before(__kmp_tsc(), goal)); 2685 } 2686 boff->step = (boff->step << 1 | 1) & (boff->max_backoff - 1); 2687 } 2688 2689 #if KMP_USE_DYNAMIC_LOCK 2690 2691 // Direct lock initializers. It simply writes a tag to the low 8 bits of the 2692 // lock word. 2693 static void __kmp_init_direct_lock(kmp_dyna_lock_t *lck, 2694 kmp_dyna_lockseq_t seq) { 2695 TCW_4(*lck, KMP_GET_D_TAG(seq)); 2696 KA_TRACE( 2697 20, 2698 ("__kmp_init_direct_lock: initialized direct lock with type#%d\n", seq)); 2699 } 2700 2701 #if KMP_USE_TSX 2702 2703 // HLE lock functions - imported from the testbed runtime. 2704 #define HLE_ACQUIRE ".byte 0xf2;" 2705 #define HLE_RELEASE ".byte 0xf3;" 2706 2707 static inline kmp_uint32 swap4(kmp_uint32 volatile *p, kmp_uint32 v) { 2708 __asm__ volatile(HLE_ACQUIRE "xchg %1,%0" : "+r"(v), "+m"(*p) : : "memory"); 2709 return v; 2710 } 2711 2712 static void __kmp_destroy_hle_lock(kmp_dyna_lock_t *lck) { TCW_4(*lck, 0); } 2713 2714 static void __kmp_destroy_hle_lock_with_checks(kmp_dyna_lock_t *lck) { 2715 TCW_4(*lck, 0); 2716 } 2717 2718 static void __kmp_acquire_hle_lock(kmp_dyna_lock_t *lck, kmp_int32 gtid) { 2719 // Use gtid for KMP_LOCK_BUSY if necessary 2720 if (swap4(lck, KMP_LOCK_BUSY(1, hle)) != KMP_LOCK_FREE(hle)) { 2721 int delay = 1; 2722 do { 2723 while (*(kmp_uint32 volatile *)lck != KMP_LOCK_FREE(hle)) { 2724 for (int i = delay; i != 0; --i) 2725 KMP_CPU_PAUSE(); 2726 delay = ((delay << 1) | 1) & 7; 2727 } 2728 } while (swap4(lck, KMP_LOCK_BUSY(1, hle)) != KMP_LOCK_FREE(hle)); 2729 } 2730 } 2731 2732 static void __kmp_acquire_hle_lock_with_checks(kmp_dyna_lock_t *lck, 2733 kmp_int32 gtid) { 2734 __kmp_acquire_hle_lock(lck, gtid); // TODO: add checks 2735 } 2736 2737 static int __kmp_release_hle_lock(kmp_dyna_lock_t *lck, kmp_int32 gtid) { 2738 __asm__ volatile(HLE_RELEASE "movl %1,%0" 2739 : "=m"(*lck) 2740 : "r"(KMP_LOCK_FREE(hle)) 2741 : "memory"); 2742 return KMP_LOCK_RELEASED; 2743 } 2744 2745 static int __kmp_release_hle_lock_with_checks(kmp_dyna_lock_t *lck, 2746 kmp_int32 gtid) { 2747 return __kmp_release_hle_lock(lck, gtid); // TODO: add checks 2748 } 2749 2750 static int __kmp_test_hle_lock(kmp_dyna_lock_t *lck, kmp_int32 gtid) { 2751 return swap4(lck, KMP_LOCK_BUSY(1, hle)) == KMP_LOCK_FREE(hle); 2752 } 2753 2754 static int __kmp_test_hle_lock_with_checks(kmp_dyna_lock_t *lck, 2755 kmp_int32 gtid) { 2756 return __kmp_test_hle_lock(lck, gtid); // TODO: add checks 2757 } 2758 2759 static void __kmp_init_rtm_queuing_lock(kmp_queuing_lock_t *lck) { 2760 __kmp_init_queuing_lock(lck); 2761 } 2762 2763 static void __kmp_destroy_rtm_queuing_lock(kmp_queuing_lock_t *lck) { 2764 __kmp_destroy_queuing_lock(lck); 2765 } 2766 2767 static void 2768 __kmp_destroy_rtm_queuing_lock_with_checks(kmp_queuing_lock_t *lck) { 2769 __kmp_destroy_queuing_lock_with_checks(lck); 2770 } 2771 2772 KMP_ATTRIBUTE_TARGET_RTM 2773 static void __kmp_acquire_rtm_queuing_lock(kmp_queuing_lock_t *lck, 2774 kmp_int32 gtid) { 2775 unsigned retries = 3, status; 2776 do { 2777 status = _xbegin(); 2778 if (status == _XBEGIN_STARTED) { 2779 if (__kmp_is_unlocked_queuing_lock(lck)) 2780 return; 2781 _xabort(0xff); 2782 } 2783 if ((status & _XABORT_EXPLICIT) && _XABORT_CODE(status) == 0xff) { 2784 // Wait until lock becomes free 2785 while (!__kmp_is_unlocked_queuing_lock(lck)) { 2786 KMP_YIELD(TRUE); 2787 } 2788 } else if (!(status & _XABORT_RETRY)) 2789 break; 2790 } while (retries--); 2791 2792 // Fall-back non-speculative lock (xchg) 2793 __kmp_acquire_queuing_lock(lck, gtid); 2794 } 2795 2796 static void __kmp_acquire_rtm_queuing_lock_with_checks(kmp_queuing_lock_t *lck, 2797 kmp_int32 gtid) { 2798 __kmp_acquire_rtm_queuing_lock(lck, gtid); 2799 } 2800 2801 KMP_ATTRIBUTE_TARGET_RTM 2802 static int __kmp_release_rtm_queuing_lock(kmp_queuing_lock_t *lck, 2803 kmp_int32 gtid) { 2804 if (__kmp_is_unlocked_queuing_lock(lck)) { 2805 // Releasing from speculation 2806 _xend(); 2807 } else { 2808 // Releasing from a real lock 2809 __kmp_release_queuing_lock(lck, gtid); 2810 } 2811 return KMP_LOCK_RELEASED; 2812 } 2813 2814 static int __kmp_release_rtm_queuing_lock_with_checks(kmp_queuing_lock_t *lck, 2815 kmp_int32 gtid) { 2816 return __kmp_release_rtm_queuing_lock(lck, gtid); 2817 } 2818 2819 KMP_ATTRIBUTE_TARGET_RTM 2820 static int __kmp_test_rtm_queuing_lock(kmp_queuing_lock_t *lck, 2821 kmp_int32 gtid) { 2822 unsigned retries = 3, status; 2823 do { 2824 status = _xbegin(); 2825 if (status == _XBEGIN_STARTED && __kmp_is_unlocked_queuing_lock(lck)) { 2826 return 1; 2827 } 2828 if (!(status & _XABORT_RETRY)) 2829 break; 2830 } while (retries--); 2831 2832 return __kmp_test_queuing_lock(lck, gtid); 2833 } 2834 2835 static int __kmp_test_rtm_queuing_lock_with_checks(kmp_queuing_lock_t *lck, 2836 kmp_int32 gtid) { 2837 return __kmp_test_rtm_queuing_lock(lck, gtid); 2838 } 2839 2840 // Reuse kmp_tas_lock_t for TSX lock which use RTM with fall-back spin lock. 2841 typedef kmp_tas_lock_t kmp_rtm_spin_lock_t; 2842 2843 static void __kmp_destroy_rtm_spin_lock(kmp_rtm_spin_lock_t *lck) { 2844 KMP_ATOMIC_ST_REL(&lck->lk.poll, 0); 2845 } 2846 2847 static void __kmp_destroy_rtm_spin_lock_with_checks(kmp_rtm_spin_lock_t *lck) { 2848 __kmp_destroy_rtm_spin_lock(lck); 2849 } 2850 2851 KMP_ATTRIBUTE_TARGET_RTM 2852 static int __kmp_acquire_rtm_spin_lock(kmp_rtm_spin_lock_t *lck, 2853 kmp_int32 gtid) { 2854 unsigned retries = 3, status; 2855 kmp_int32 lock_free = KMP_LOCK_FREE(rtm_spin); 2856 kmp_int32 lock_busy = KMP_LOCK_BUSY(1, rtm_spin); 2857 do { 2858 status = _xbegin(); 2859 if (status == _XBEGIN_STARTED) { 2860 if (KMP_ATOMIC_LD_RLX(&lck->lk.poll) == lock_free) 2861 return KMP_LOCK_ACQUIRED_FIRST; 2862 _xabort(0xff); 2863 } 2864 if ((status & _XABORT_EXPLICIT) && _XABORT_CODE(status) == 0xff) { 2865 // Wait until lock becomes free 2866 while (KMP_ATOMIC_LD_RLX(&lck->lk.poll) != lock_free) { 2867 KMP_YIELD(TRUE); 2868 } 2869 } else if (!(status & _XABORT_RETRY)) 2870 break; 2871 } while (retries--); 2872 2873 // Fall-back spin lock 2874 KMP_FSYNC_PREPARE(lck); 2875 kmp_backoff_t backoff = __kmp_spin_backoff_params; 2876 while (KMP_ATOMIC_LD_RLX(&lck->lk.poll) != lock_free || 2877 !__kmp_atomic_compare_store_acq(&lck->lk.poll, lock_free, lock_busy)) { 2878 __kmp_spin_backoff(&backoff); 2879 } 2880 KMP_FSYNC_ACQUIRED(lck); 2881 return KMP_LOCK_ACQUIRED_FIRST; 2882 } 2883 2884 static int __kmp_acquire_rtm_spin_lock_with_checks(kmp_rtm_spin_lock_t *lck, 2885 kmp_int32 gtid) { 2886 return __kmp_acquire_rtm_spin_lock(lck, gtid); 2887 } 2888 2889 KMP_ATTRIBUTE_TARGET_RTM 2890 static int __kmp_release_rtm_spin_lock(kmp_rtm_spin_lock_t *lck, 2891 kmp_int32 gtid) { 2892 if (KMP_ATOMIC_LD_RLX(&lck->lk.poll) == KMP_LOCK_FREE(rtm_spin)) { 2893 // Releasing from speculation 2894 _xend(); 2895 } else { 2896 // Releasing from a real lock 2897 KMP_FSYNC_RELEASING(lck); 2898 KMP_ATOMIC_ST_REL(&lck->lk.poll, KMP_LOCK_FREE(rtm_spin)); 2899 } 2900 return KMP_LOCK_RELEASED; 2901 } 2902 2903 static int __kmp_release_rtm_spin_lock_with_checks(kmp_rtm_spin_lock_t *lck, 2904 kmp_int32 gtid) { 2905 return __kmp_release_rtm_spin_lock(lck, gtid); 2906 } 2907 2908 KMP_ATTRIBUTE_TARGET_RTM 2909 static int __kmp_test_rtm_spin_lock(kmp_rtm_spin_lock_t *lck, kmp_int32 gtid) { 2910 unsigned retries = 3, status; 2911 kmp_int32 lock_free = KMP_LOCK_FREE(rtm_spin); 2912 kmp_int32 lock_busy = KMP_LOCK_BUSY(1, rtm_spin); 2913 do { 2914 status = _xbegin(); 2915 if (status == _XBEGIN_STARTED && 2916 KMP_ATOMIC_LD_RLX(&lck->lk.poll) == lock_free) { 2917 return TRUE; 2918 } 2919 if (!(status & _XABORT_RETRY)) 2920 break; 2921 } while (retries--); 2922 2923 if (KMP_ATOMIC_LD_RLX(&lck->lk.poll) == lock_free && 2924 __kmp_atomic_compare_store_acq(&lck->lk.poll, lock_free, lock_busy)) { 2925 KMP_FSYNC_ACQUIRED(lck); 2926 return TRUE; 2927 } 2928 return FALSE; 2929 } 2930 2931 static int __kmp_test_rtm_spin_lock_with_checks(kmp_rtm_spin_lock_t *lck, 2932 kmp_int32 gtid) { 2933 return __kmp_test_rtm_spin_lock(lck, gtid); 2934 } 2935 2936 #endif // KMP_USE_TSX 2937 2938 // Entry functions for indirect locks (first element of direct lock jump tables) 2939 static void __kmp_init_indirect_lock(kmp_dyna_lock_t *l, 2940 kmp_dyna_lockseq_t tag); 2941 static void __kmp_destroy_indirect_lock(kmp_dyna_lock_t *lock); 2942 static int __kmp_set_indirect_lock(kmp_dyna_lock_t *lock, kmp_int32); 2943 static int __kmp_unset_indirect_lock(kmp_dyna_lock_t *lock, kmp_int32); 2944 static int __kmp_test_indirect_lock(kmp_dyna_lock_t *lock, kmp_int32); 2945 static int __kmp_set_indirect_lock_with_checks(kmp_dyna_lock_t *lock, 2946 kmp_int32); 2947 static int __kmp_unset_indirect_lock_with_checks(kmp_dyna_lock_t *lock, 2948 kmp_int32); 2949 static int __kmp_test_indirect_lock_with_checks(kmp_dyna_lock_t *lock, 2950 kmp_int32); 2951 2952 // Lock function definitions for the union parameter type 2953 #define KMP_FOREACH_LOCK_KIND(m, a) m(ticket, a) m(queuing, a) m(drdpa, a) 2954 2955 #define expand1(lk, op) \ 2956 static void __kmp_##op##_##lk##_##lock(kmp_user_lock_p lock) { \ 2957 __kmp_##op##_##lk##_##lock(&lock->lk); \ 2958 } 2959 #define expand2(lk, op) \ 2960 static int __kmp_##op##_##lk##_##lock(kmp_user_lock_p lock, \ 2961 kmp_int32 gtid) { \ 2962 return __kmp_##op##_##lk##_##lock(&lock->lk, gtid); \ 2963 } 2964 #define expand3(lk, op) \ 2965 static void __kmp_set_##lk##_##lock_flags(kmp_user_lock_p lock, \ 2966 kmp_lock_flags_t flags) { \ 2967 __kmp_set_##lk##_lock_flags(&lock->lk, flags); \ 2968 } 2969 #define expand4(lk, op) \ 2970 static void __kmp_set_##lk##_##lock_location(kmp_user_lock_p lock, \ 2971 const ident_t *loc) { \ 2972 __kmp_set_##lk##_lock_location(&lock->lk, loc); \ 2973 } 2974 2975 KMP_FOREACH_LOCK_KIND(expand1, init) 2976 KMP_FOREACH_LOCK_KIND(expand1, init_nested) 2977 KMP_FOREACH_LOCK_KIND(expand1, destroy) 2978 KMP_FOREACH_LOCK_KIND(expand1, destroy_nested) 2979 KMP_FOREACH_LOCK_KIND(expand2, acquire) 2980 KMP_FOREACH_LOCK_KIND(expand2, acquire_nested) 2981 KMP_FOREACH_LOCK_KIND(expand2, release) 2982 KMP_FOREACH_LOCK_KIND(expand2, release_nested) 2983 KMP_FOREACH_LOCK_KIND(expand2, test) 2984 KMP_FOREACH_LOCK_KIND(expand2, test_nested) 2985 KMP_FOREACH_LOCK_KIND(expand3, ) 2986 KMP_FOREACH_LOCK_KIND(expand4, ) 2987 2988 #undef expand1 2989 #undef expand2 2990 #undef expand3 2991 #undef expand4 2992 2993 // Jump tables for the indirect lock functions 2994 // Only fill in the odd entries, that avoids the need to shift out the low bit 2995 2996 // init functions 2997 #define expand(l, op) 0, __kmp_init_direct_lock, 2998 void (*__kmp_direct_init[])(kmp_dyna_lock_t *, kmp_dyna_lockseq_t) = { 2999 __kmp_init_indirect_lock, 0, KMP_FOREACH_D_LOCK(expand, init)}; 3000 #undef expand 3001 3002 // destroy functions 3003 #define expand(l, op) 0, (void (*)(kmp_dyna_lock_t *))__kmp_##op##_##l##_lock, 3004 static void (*direct_destroy[])(kmp_dyna_lock_t *) = { 3005 __kmp_destroy_indirect_lock, 0, KMP_FOREACH_D_LOCK(expand, destroy)}; 3006 #undef expand 3007 #define expand(l, op) \ 3008 0, (void (*)(kmp_dyna_lock_t *))__kmp_destroy_##l##_lock_with_checks, 3009 static void (*direct_destroy_check[])(kmp_dyna_lock_t *) = { 3010 __kmp_destroy_indirect_lock, 0, KMP_FOREACH_D_LOCK(expand, destroy)}; 3011 #undef expand 3012 3013 // set/acquire functions 3014 #define expand(l, op) \ 3015 0, (int (*)(kmp_dyna_lock_t *, kmp_int32))__kmp_##op##_##l##_lock, 3016 static int (*direct_set[])(kmp_dyna_lock_t *, kmp_int32) = { 3017 __kmp_set_indirect_lock, 0, KMP_FOREACH_D_LOCK(expand, acquire)}; 3018 #undef expand 3019 #define expand(l, op) \ 3020 0, (int (*)(kmp_dyna_lock_t *, kmp_int32))__kmp_##op##_##l##_lock_with_checks, 3021 static int (*direct_set_check[])(kmp_dyna_lock_t *, kmp_int32) = { 3022 __kmp_set_indirect_lock_with_checks, 0, 3023 KMP_FOREACH_D_LOCK(expand, acquire)}; 3024 #undef expand 3025 3026 // unset/release and test functions 3027 #define expand(l, op) \ 3028 0, (int (*)(kmp_dyna_lock_t *, kmp_int32))__kmp_##op##_##l##_lock, 3029 static int (*direct_unset[])(kmp_dyna_lock_t *, kmp_int32) = { 3030 __kmp_unset_indirect_lock, 0, KMP_FOREACH_D_LOCK(expand, release)}; 3031 static int (*direct_test[])(kmp_dyna_lock_t *, kmp_int32) = { 3032 __kmp_test_indirect_lock, 0, KMP_FOREACH_D_LOCK(expand, test)}; 3033 #undef expand 3034 #define expand(l, op) \ 3035 0, (int (*)(kmp_dyna_lock_t *, kmp_int32))__kmp_##op##_##l##_lock_with_checks, 3036 static int (*direct_unset_check[])(kmp_dyna_lock_t *, kmp_int32) = { 3037 __kmp_unset_indirect_lock_with_checks, 0, 3038 KMP_FOREACH_D_LOCK(expand, release)}; 3039 static int (*direct_test_check[])(kmp_dyna_lock_t *, kmp_int32) = { 3040 __kmp_test_indirect_lock_with_checks, 0, KMP_FOREACH_D_LOCK(expand, test)}; 3041 #undef expand 3042 3043 // Exposes only one set of jump tables (*lock or *lock_with_checks). 3044 void (**__kmp_direct_destroy)(kmp_dyna_lock_t *) = 0; 3045 int (**__kmp_direct_set)(kmp_dyna_lock_t *, kmp_int32) = 0; 3046 int (**__kmp_direct_unset)(kmp_dyna_lock_t *, kmp_int32) = 0; 3047 int (**__kmp_direct_test)(kmp_dyna_lock_t *, kmp_int32) = 0; 3048 3049 // Jump tables for the indirect lock functions 3050 #define expand(l, op) (void (*)(kmp_user_lock_p)) __kmp_##op##_##l##_##lock, 3051 void (*__kmp_indirect_init[])(kmp_user_lock_p) = { 3052 KMP_FOREACH_I_LOCK(expand, init)}; 3053 #undef expand 3054 3055 #define expand(l, op) (void (*)(kmp_user_lock_p)) __kmp_##op##_##l##_##lock, 3056 static void (*indirect_destroy[])(kmp_user_lock_p) = { 3057 KMP_FOREACH_I_LOCK(expand, destroy)}; 3058 #undef expand 3059 #define expand(l, op) \ 3060 (void (*)(kmp_user_lock_p)) __kmp_##op##_##l##_##lock_with_checks, 3061 static void (*indirect_destroy_check[])(kmp_user_lock_p) = { 3062 KMP_FOREACH_I_LOCK(expand, destroy)}; 3063 #undef expand 3064 3065 // set/acquire functions 3066 #define expand(l, op) \ 3067 (int (*)(kmp_user_lock_p, kmp_int32)) __kmp_##op##_##l##_##lock, 3068 static int (*indirect_set[])(kmp_user_lock_p, 3069 kmp_int32) = {KMP_FOREACH_I_LOCK(expand, acquire)}; 3070 #undef expand 3071 #define expand(l, op) \ 3072 (int (*)(kmp_user_lock_p, kmp_int32)) __kmp_##op##_##l##_##lock_with_checks, 3073 static int (*indirect_set_check[])(kmp_user_lock_p, kmp_int32) = { 3074 KMP_FOREACH_I_LOCK(expand, acquire)}; 3075 #undef expand 3076 3077 // unset/release and test functions 3078 #define expand(l, op) \ 3079 (int (*)(kmp_user_lock_p, kmp_int32)) __kmp_##op##_##l##_##lock, 3080 static int (*indirect_unset[])(kmp_user_lock_p, kmp_int32) = { 3081 KMP_FOREACH_I_LOCK(expand, release)}; 3082 static int (*indirect_test[])(kmp_user_lock_p, 3083 kmp_int32) = {KMP_FOREACH_I_LOCK(expand, test)}; 3084 #undef expand 3085 #define expand(l, op) \ 3086 (int (*)(kmp_user_lock_p, kmp_int32)) __kmp_##op##_##l##_##lock_with_checks, 3087 static int (*indirect_unset_check[])(kmp_user_lock_p, kmp_int32) = { 3088 KMP_FOREACH_I_LOCK(expand, release)}; 3089 static int (*indirect_test_check[])(kmp_user_lock_p, kmp_int32) = { 3090 KMP_FOREACH_I_LOCK(expand, test)}; 3091 #undef expand 3092 3093 // Exposes only one jump tables (*lock or *lock_with_checks). 3094 void (**__kmp_indirect_destroy)(kmp_user_lock_p) = 0; 3095 int (**__kmp_indirect_set)(kmp_user_lock_p, kmp_int32) = 0; 3096 int (**__kmp_indirect_unset)(kmp_user_lock_p, kmp_int32) = 0; 3097 int (**__kmp_indirect_test)(kmp_user_lock_p, kmp_int32) = 0; 3098 3099 // Lock index table. 3100 kmp_indirect_lock_table_t __kmp_i_lock_table; 3101 3102 // Size of indirect locks. 3103 static kmp_uint32 __kmp_indirect_lock_size[KMP_NUM_I_LOCKS] = {0}; 3104 3105 // Jump tables for lock accessor/modifier. 3106 void (*__kmp_indirect_set_location[KMP_NUM_I_LOCKS])(kmp_user_lock_p, 3107 const ident_t *) = {0}; 3108 void (*__kmp_indirect_set_flags[KMP_NUM_I_LOCKS])(kmp_user_lock_p, 3109 kmp_lock_flags_t) = {0}; 3110 const ident_t *(*__kmp_indirect_get_location[KMP_NUM_I_LOCKS])( 3111 kmp_user_lock_p) = {0}; 3112 kmp_lock_flags_t (*__kmp_indirect_get_flags[KMP_NUM_I_LOCKS])( 3113 kmp_user_lock_p) = {0}; 3114 3115 // Use different lock pools for different lock types. 3116 static kmp_indirect_lock_t *__kmp_indirect_lock_pool[KMP_NUM_I_LOCKS] = {0}; 3117 3118 // User lock allocator for dynamically dispatched indirect locks. Every entry of 3119 // the indirect lock table holds the address and type of the allocated indirect 3120 // lock (kmp_indirect_lock_t), and the size of the table doubles when it is 3121 // full. A destroyed indirect lock object is returned to the reusable pool of 3122 // locks, unique to each lock type. 3123 kmp_indirect_lock_t *__kmp_allocate_indirect_lock(void **user_lock, 3124 kmp_int32 gtid, 3125 kmp_indirect_locktag_t tag) { 3126 kmp_indirect_lock_t *lck; 3127 kmp_lock_index_t idx; 3128 3129 __kmp_acquire_lock(&__kmp_global_lock, gtid); 3130 3131 if (__kmp_indirect_lock_pool[tag] != NULL) { 3132 // Reuse the allocated and destroyed lock object 3133 lck = __kmp_indirect_lock_pool[tag]; 3134 if (OMP_LOCK_T_SIZE < sizeof(void *)) 3135 idx = lck->lock->pool.index; 3136 __kmp_indirect_lock_pool[tag] = (kmp_indirect_lock_t *)lck->lock->pool.next; 3137 KA_TRACE(20, ("__kmp_allocate_indirect_lock: reusing an existing lock %p\n", 3138 lck)); 3139 } else { 3140 idx = __kmp_i_lock_table.next; 3141 // Check capacity and double the size if it is full 3142 if (idx == __kmp_i_lock_table.size) { 3143 // Double up the space for block pointers 3144 int row = __kmp_i_lock_table.size / KMP_I_LOCK_CHUNK; 3145 kmp_indirect_lock_t **new_table = (kmp_indirect_lock_t **)__kmp_allocate( 3146 2 * row * sizeof(kmp_indirect_lock_t *)); 3147 KMP_MEMCPY(new_table, __kmp_i_lock_table.table, 3148 row * sizeof(kmp_indirect_lock_t *)); 3149 kmp_indirect_lock_t **old_table = __kmp_i_lock_table.table; 3150 __kmp_i_lock_table.table = new_table; 3151 __kmp_free(old_table); 3152 // Allocate new objects in the new blocks 3153 for (int i = row; i < 2 * row; ++i) 3154 *(__kmp_i_lock_table.table + i) = (kmp_indirect_lock_t *)__kmp_allocate( 3155 KMP_I_LOCK_CHUNK * sizeof(kmp_indirect_lock_t)); 3156 __kmp_i_lock_table.size = 2 * idx; 3157 } 3158 __kmp_i_lock_table.next++; 3159 lck = KMP_GET_I_LOCK(idx); 3160 // Allocate a new base lock object 3161 lck->lock = (kmp_user_lock_p)__kmp_allocate(__kmp_indirect_lock_size[tag]); 3162 KA_TRACE(20, 3163 ("__kmp_allocate_indirect_lock: allocated a new lock %p\n", lck)); 3164 } 3165 3166 __kmp_release_lock(&__kmp_global_lock, gtid); 3167 3168 lck->type = tag; 3169 3170 if (OMP_LOCK_T_SIZE < sizeof(void *)) { 3171 *((kmp_lock_index_t *)user_lock) = idx 3172 << 1; // indirect lock word must be even 3173 } else { 3174 *((kmp_indirect_lock_t **)user_lock) = lck; 3175 } 3176 3177 return lck; 3178 } 3179 3180 // User lock lookup for dynamically dispatched locks. 3181 static __forceinline kmp_indirect_lock_t * 3182 __kmp_lookup_indirect_lock(void **user_lock, const char *func) { 3183 if (__kmp_env_consistency_check) { 3184 kmp_indirect_lock_t *lck = NULL; 3185 if (user_lock == NULL) { 3186 KMP_FATAL(LockIsUninitialized, func); 3187 } 3188 if (OMP_LOCK_T_SIZE < sizeof(void *)) { 3189 kmp_lock_index_t idx = KMP_EXTRACT_I_INDEX(user_lock); 3190 if (idx >= __kmp_i_lock_table.size) { 3191 KMP_FATAL(LockIsUninitialized, func); 3192 } 3193 lck = KMP_GET_I_LOCK(idx); 3194 } else { 3195 lck = *((kmp_indirect_lock_t **)user_lock); 3196 } 3197 if (lck == NULL) { 3198 KMP_FATAL(LockIsUninitialized, func); 3199 } 3200 return lck; 3201 } else { 3202 if (OMP_LOCK_T_SIZE < sizeof(void *)) { 3203 return KMP_GET_I_LOCK(KMP_EXTRACT_I_INDEX(user_lock)); 3204 } else { 3205 return *((kmp_indirect_lock_t **)user_lock); 3206 } 3207 } 3208 } 3209 3210 static void __kmp_init_indirect_lock(kmp_dyna_lock_t *lock, 3211 kmp_dyna_lockseq_t seq) { 3212 #if KMP_USE_ADAPTIVE_LOCKS 3213 if (seq == lockseq_adaptive && !__kmp_cpuinfo.rtm) { 3214 KMP_WARNING(AdaptiveNotSupported, "kmp_lockseq_t", "adaptive"); 3215 seq = lockseq_queuing; 3216 } 3217 #endif 3218 #if KMP_USE_TSX 3219 if (seq == lockseq_rtm_queuing && !__kmp_cpuinfo.rtm) { 3220 seq = lockseq_queuing; 3221 } 3222 #endif 3223 kmp_indirect_locktag_t tag = KMP_GET_I_TAG(seq); 3224 kmp_indirect_lock_t *l = 3225 __kmp_allocate_indirect_lock((void **)lock, __kmp_entry_gtid(), tag); 3226 KMP_I_LOCK_FUNC(l, init)(l->lock); 3227 KA_TRACE( 3228 20, ("__kmp_init_indirect_lock: initialized indirect lock with type#%d\n", 3229 seq)); 3230 } 3231 3232 static void __kmp_destroy_indirect_lock(kmp_dyna_lock_t *lock) { 3233 kmp_uint32 gtid = __kmp_entry_gtid(); 3234 kmp_indirect_lock_t *l = 3235 __kmp_lookup_indirect_lock((void **)lock, "omp_destroy_lock"); 3236 KMP_I_LOCK_FUNC(l, destroy)(l->lock); 3237 kmp_indirect_locktag_t tag = l->type; 3238 3239 __kmp_acquire_lock(&__kmp_global_lock, gtid); 3240 3241 // Use the base lock's space to keep the pool chain. 3242 l->lock->pool.next = (kmp_user_lock_p)__kmp_indirect_lock_pool[tag]; 3243 if (OMP_LOCK_T_SIZE < sizeof(void *)) { 3244 l->lock->pool.index = KMP_EXTRACT_I_INDEX(lock); 3245 } 3246 __kmp_indirect_lock_pool[tag] = l; 3247 3248 __kmp_release_lock(&__kmp_global_lock, gtid); 3249 } 3250 3251 static int __kmp_set_indirect_lock(kmp_dyna_lock_t *lock, kmp_int32 gtid) { 3252 kmp_indirect_lock_t *l = KMP_LOOKUP_I_LOCK(lock); 3253 return KMP_I_LOCK_FUNC(l, set)(l->lock, gtid); 3254 } 3255 3256 static int __kmp_unset_indirect_lock(kmp_dyna_lock_t *lock, kmp_int32 gtid) { 3257 kmp_indirect_lock_t *l = KMP_LOOKUP_I_LOCK(lock); 3258 return KMP_I_LOCK_FUNC(l, unset)(l->lock, gtid); 3259 } 3260 3261 static int __kmp_test_indirect_lock(kmp_dyna_lock_t *lock, kmp_int32 gtid) { 3262 kmp_indirect_lock_t *l = KMP_LOOKUP_I_LOCK(lock); 3263 return KMP_I_LOCK_FUNC(l, test)(l->lock, gtid); 3264 } 3265 3266 static int __kmp_set_indirect_lock_with_checks(kmp_dyna_lock_t *lock, 3267 kmp_int32 gtid) { 3268 kmp_indirect_lock_t *l = 3269 __kmp_lookup_indirect_lock((void **)lock, "omp_set_lock"); 3270 return KMP_I_LOCK_FUNC(l, set)(l->lock, gtid); 3271 } 3272 3273 static int __kmp_unset_indirect_lock_with_checks(kmp_dyna_lock_t *lock, 3274 kmp_int32 gtid) { 3275 kmp_indirect_lock_t *l = 3276 __kmp_lookup_indirect_lock((void **)lock, "omp_unset_lock"); 3277 return KMP_I_LOCK_FUNC(l, unset)(l->lock, gtid); 3278 } 3279 3280 static int __kmp_test_indirect_lock_with_checks(kmp_dyna_lock_t *lock, 3281 kmp_int32 gtid) { 3282 kmp_indirect_lock_t *l = 3283 __kmp_lookup_indirect_lock((void **)lock, "omp_test_lock"); 3284 return KMP_I_LOCK_FUNC(l, test)(l->lock, gtid); 3285 } 3286 3287 kmp_dyna_lockseq_t __kmp_user_lock_seq = lockseq_queuing; 3288 3289 // This is used only in kmp_error.cpp when consistency checking is on. 3290 kmp_int32 __kmp_get_user_lock_owner(kmp_user_lock_p lck, kmp_uint32 seq) { 3291 switch (seq) { 3292 case lockseq_tas: 3293 case lockseq_nested_tas: 3294 return __kmp_get_tas_lock_owner((kmp_tas_lock_t *)lck); 3295 #if KMP_USE_FUTEX 3296 case lockseq_futex: 3297 case lockseq_nested_futex: 3298 return __kmp_get_futex_lock_owner((kmp_futex_lock_t *)lck); 3299 #endif 3300 case lockseq_ticket: 3301 case lockseq_nested_ticket: 3302 return __kmp_get_ticket_lock_owner((kmp_ticket_lock_t *)lck); 3303 case lockseq_queuing: 3304 case lockseq_nested_queuing: 3305 #if KMP_USE_ADAPTIVE_LOCKS 3306 case lockseq_adaptive: 3307 #endif 3308 return __kmp_get_queuing_lock_owner((kmp_queuing_lock_t *)lck); 3309 case lockseq_drdpa: 3310 case lockseq_nested_drdpa: 3311 return __kmp_get_drdpa_lock_owner((kmp_drdpa_lock_t *)lck); 3312 default: 3313 return 0; 3314 } 3315 } 3316 3317 // Initializes data for dynamic user locks. 3318 void __kmp_init_dynamic_user_locks() { 3319 // Initialize jump table for the lock functions 3320 if (__kmp_env_consistency_check) { 3321 __kmp_direct_set = direct_set_check; 3322 __kmp_direct_unset = direct_unset_check; 3323 __kmp_direct_test = direct_test_check; 3324 __kmp_direct_destroy = direct_destroy_check; 3325 __kmp_indirect_set = indirect_set_check; 3326 __kmp_indirect_unset = indirect_unset_check; 3327 __kmp_indirect_test = indirect_test_check; 3328 __kmp_indirect_destroy = indirect_destroy_check; 3329 } else { 3330 __kmp_direct_set = direct_set; 3331 __kmp_direct_unset = direct_unset; 3332 __kmp_direct_test = direct_test; 3333 __kmp_direct_destroy = direct_destroy; 3334 __kmp_indirect_set = indirect_set; 3335 __kmp_indirect_unset = indirect_unset; 3336 __kmp_indirect_test = indirect_test; 3337 __kmp_indirect_destroy = indirect_destroy; 3338 } 3339 // If the user locks have already been initialized, then return. Allow the 3340 // switch between different KMP_CONSISTENCY_CHECK values, but do not allocate 3341 // new lock tables if they have already been allocated. 3342 if (__kmp_init_user_locks) 3343 return; 3344 3345 // Initialize lock index table 3346 __kmp_i_lock_table.size = KMP_I_LOCK_CHUNK; 3347 __kmp_i_lock_table.table = 3348 (kmp_indirect_lock_t **)__kmp_allocate(sizeof(kmp_indirect_lock_t *)); 3349 *(__kmp_i_lock_table.table) = (kmp_indirect_lock_t *)__kmp_allocate( 3350 KMP_I_LOCK_CHUNK * sizeof(kmp_indirect_lock_t)); 3351 __kmp_i_lock_table.next = 0; 3352 3353 // Indirect lock size 3354 __kmp_indirect_lock_size[locktag_ticket] = sizeof(kmp_ticket_lock_t); 3355 __kmp_indirect_lock_size[locktag_queuing] = sizeof(kmp_queuing_lock_t); 3356 #if KMP_USE_ADAPTIVE_LOCKS 3357 __kmp_indirect_lock_size[locktag_adaptive] = sizeof(kmp_adaptive_lock_t); 3358 #endif 3359 __kmp_indirect_lock_size[locktag_drdpa] = sizeof(kmp_drdpa_lock_t); 3360 #if KMP_USE_TSX 3361 __kmp_indirect_lock_size[locktag_rtm_queuing] = sizeof(kmp_queuing_lock_t); 3362 #endif 3363 __kmp_indirect_lock_size[locktag_nested_tas] = sizeof(kmp_tas_lock_t); 3364 #if KMP_USE_FUTEX 3365 __kmp_indirect_lock_size[locktag_nested_futex] = sizeof(kmp_futex_lock_t); 3366 #endif 3367 __kmp_indirect_lock_size[locktag_nested_ticket] = sizeof(kmp_ticket_lock_t); 3368 __kmp_indirect_lock_size[locktag_nested_queuing] = sizeof(kmp_queuing_lock_t); 3369 __kmp_indirect_lock_size[locktag_nested_drdpa] = sizeof(kmp_drdpa_lock_t); 3370 3371 // Initialize lock accessor/modifier 3372 #define fill_jumps(table, expand, sep) \ 3373 { \ 3374 table[locktag##sep##ticket] = expand(ticket); \ 3375 table[locktag##sep##queuing] = expand(queuing); \ 3376 table[locktag##sep##drdpa] = expand(drdpa); \ 3377 } 3378 3379 #if KMP_USE_ADAPTIVE_LOCKS 3380 #define fill_table(table, expand) \ 3381 { \ 3382 fill_jumps(table, expand, _); \ 3383 table[locktag_adaptive] = expand(queuing); \ 3384 fill_jumps(table, expand, _nested_); \ 3385 } 3386 #else 3387 #define fill_table(table, expand) \ 3388 { \ 3389 fill_jumps(table, expand, _); \ 3390 fill_jumps(table, expand, _nested_); \ 3391 } 3392 #endif // KMP_USE_ADAPTIVE_LOCKS 3393 3394 #define expand(l) \ 3395 (void (*)(kmp_user_lock_p, const ident_t *)) __kmp_set_##l##_lock_location 3396 fill_table(__kmp_indirect_set_location, expand); 3397 #undef expand 3398 #define expand(l) \ 3399 (void (*)(kmp_user_lock_p, kmp_lock_flags_t)) __kmp_set_##l##_lock_flags 3400 fill_table(__kmp_indirect_set_flags, expand); 3401 #undef expand 3402 #define expand(l) \ 3403 (const ident_t *(*)(kmp_user_lock_p)) __kmp_get_##l##_lock_location 3404 fill_table(__kmp_indirect_get_location, expand); 3405 #undef expand 3406 #define expand(l) \ 3407 (kmp_lock_flags_t(*)(kmp_user_lock_p)) __kmp_get_##l##_lock_flags 3408 fill_table(__kmp_indirect_get_flags, expand); 3409 #undef expand 3410 3411 __kmp_init_user_locks = TRUE; 3412 } 3413 3414 // Clean up the lock table. 3415 void __kmp_cleanup_indirect_user_locks() { 3416 kmp_lock_index_t i; 3417 int k; 3418 3419 // Clean up locks in the pools first (they were already destroyed before going 3420 // into the pools). 3421 for (k = 0; k < KMP_NUM_I_LOCKS; ++k) { 3422 kmp_indirect_lock_t *l = __kmp_indirect_lock_pool[k]; 3423 while (l != NULL) { 3424 kmp_indirect_lock_t *ll = l; 3425 l = (kmp_indirect_lock_t *)l->lock->pool.next; 3426 KA_TRACE(20, ("__kmp_cleanup_indirect_user_locks: freeing %p from pool\n", 3427 ll)); 3428 __kmp_free(ll->lock); 3429 ll->lock = NULL; 3430 } 3431 __kmp_indirect_lock_pool[k] = NULL; 3432 } 3433 // Clean up the remaining undestroyed locks. 3434 for (i = 0; i < __kmp_i_lock_table.next; i++) { 3435 kmp_indirect_lock_t *l = KMP_GET_I_LOCK(i); 3436 if (l->lock != NULL) { 3437 // Locks not destroyed explicitly need to be destroyed here. 3438 KMP_I_LOCK_FUNC(l, destroy)(l->lock); 3439 KA_TRACE( 3440 20, 3441 ("__kmp_cleanup_indirect_user_locks: destroy/freeing %p from table\n", 3442 l)); 3443 __kmp_free(l->lock); 3444 } 3445 } 3446 // Free the table 3447 for (i = 0; i < __kmp_i_lock_table.size / KMP_I_LOCK_CHUNK; i++) 3448 __kmp_free(__kmp_i_lock_table.table[i]); 3449 __kmp_free(__kmp_i_lock_table.table); 3450 3451 __kmp_init_user_locks = FALSE; 3452 } 3453 3454 enum kmp_lock_kind __kmp_user_lock_kind = lk_default; 3455 int __kmp_num_locks_in_block = 1; // FIXME - tune this value 3456 3457 #else // KMP_USE_DYNAMIC_LOCK 3458 3459 static void __kmp_init_tas_lock_with_checks(kmp_tas_lock_t *lck) { 3460 __kmp_init_tas_lock(lck); 3461 } 3462 3463 static void __kmp_init_nested_tas_lock_with_checks(kmp_tas_lock_t *lck) { 3464 __kmp_init_nested_tas_lock(lck); 3465 } 3466 3467 #if KMP_USE_FUTEX 3468 static void __kmp_init_futex_lock_with_checks(kmp_futex_lock_t *lck) { 3469 __kmp_init_futex_lock(lck); 3470 } 3471 3472 static void __kmp_init_nested_futex_lock_with_checks(kmp_futex_lock_t *lck) { 3473 __kmp_init_nested_futex_lock(lck); 3474 } 3475 #endif 3476 3477 static int __kmp_is_ticket_lock_initialized(kmp_ticket_lock_t *lck) { 3478 return lck == lck->lk.self; 3479 } 3480 3481 static void __kmp_init_ticket_lock_with_checks(kmp_ticket_lock_t *lck) { 3482 __kmp_init_ticket_lock(lck); 3483 } 3484 3485 static void __kmp_init_nested_ticket_lock_with_checks(kmp_ticket_lock_t *lck) { 3486 __kmp_init_nested_ticket_lock(lck); 3487 } 3488 3489 static int __kmp_is_queuing_lock_initialized(kmp_queuing_lock_t *lck) { 3490 return lck == lck->lk.initialized; 3491 } 3492 3493 static void __kmp_init_queuing_lock_with_checks(kmp_queuing_lock_t *lck) { 3494 __kmp_init_queuing_lock(lck); 3495 } 3496 3497 static void 3498 __kmp_init_nested_queuing_lock_with_checks(kmp_queuing_lock_t *lck) { 3499 __kmp_init_nested_queuing_lock(lck); 3500 } 3501 3502 #if KMP_USE_ADAPTIVE_LOCKS 3503 static void __kmp_init_adaptive_lock_with_checks(kmp_adaptive_lock_t *lck) { 3504 __kmp_init_adaptive_lock(lck); 3505 } 3506 #endif 3507 3508 static int __kmp_is_drdpa_lock_initialized(kmp_drdpa_lock_t *lck) { 3509 return lck == lck->lk.initialized; 3510 } 3511 3512 static void __kmp_init_drdpa_lock_with_checks(kmp_drdpa_lock_t *lck) { 3513 __kmp_init_drdpa_lock(lck); 3514 } 3515 3516 static void __kmp_init_nested_drdpa_lock_with_checks(kmp_drdpa_lock_t *lck) { 3517 __kmp_init_nested_drdpa_lock(lck); 3518 } 3519 3520 /* user locks 3521 * They are implemented as a table of function pointers which are set to the 3522 * lock functions of the appropriate kind, once that has been determined. */ 3523 3524 enum kmp_lock_kind __kmp_user_lock_kind = lk_default; 3525 3526 size_t __kmp_base_user_lock_size = 0; 3527 size_t __kmp_user_lock_size = 0; 3528 3529 kmp_int32 (*__kmp_get_user_lock_owner_)(kmp_user_lock_p lck) = NULL; 3530 int (*__kmp_acquire_user_lock_with_checks_)(kmp_user_lock_p lck, 3531 kmp_int32 gtid) = NULL; 3532 3533 int (*__kmp_test_user_lock_with_checks_)(kmp_user_lock_p lck, 3534 kmp_int32 gtid) = NULL; 3535 int (*__kmp_release_user_lock_with_checks_)(kmp_user_lock_p lck, 3536 kmp_int32 gtid) = NULL; 3537 void (*__kmp_init_user_lock_with_checks_)(kmp_user_lock_p lck) = NULL; 3538 void (*__kmp_destroy_user_lock_)(kmp_user_lock_p lck) = NULL; 3539 void (*__kmp_destroy_user_lock_with_checks_)(kmp_user_lock_p lck) = NULL; 3540 int (*__kmp_acquire_nested_user_lock_with_checks_)(kmp_user_lock_p lck, 3541 kmp_int32 gtid) = NULL; 3542 3543 int (*__kmp_test_nested_user_lock_with_checks_)(kmp_user_lock_p lck, 3544 kmp_int32 gtid) = NULL; 3545 int (*__kmp_release_nested_user_lock_with_checks_)(kmp_user_lock_p lck, 3546 kmp_int32 gtid) = NULL; 3547 void (*__kmp_init_nested_user_lock_with_checks_)(kmp_user_lock_p lck) = NULL; 3548 void (*__kmp_destroy_nested_user_lock_with_checks_)(kmp_user_lock_p lck) = NULL; 3549 3550 int (*__kmp_is_user_lock_initialized_)(kmp_user_lock_p lck) = NULL; 3551 const ident_t *(*__kmp_get_user_lock_location_)(kmp_user_lock_p lck) = NULL; 3552 void (*__kmp_set_user_lock_location_)(kmp_user_lock_p lck, 3553 const ident_t *loc) = NULL; 3554 kmp_lock_flags_t (*__kmp_get_user_lock_flags_)(kmp_user_lock_p lck) = NULL; 3555 void (*__kmp_set_user_lock_flags_)(kmp_user_lock_p lck, 3556 kmp_lock_flags_t flags) = NULL; 3557 3558 void __kmp_set_user_lock_vptrs(kmp_lock_kind_t user_lock_kind) { 3559 switch (user_lock_kind) { 3560 case lk_default: 3561 default: 3562 KMP_ASSERT(0); 3563 3564 case lk_tas: { 3565 __kmp_base_user_lock_size = sizeof(kmp_base_tas_lock_t); 3566 __kmp_user_lock_size = sizeof(kmp_tas_lock_t); 3567 3568 __kmp_get_user_lock_owner_ = 3569 (kmp_int32(*)(kmp_user_lock_p))(&__kmp_get_tas_lock_owner); 3570 3571 if (__kmp_env_consistency_check) { 3572 KMP_BIND_USER_LOCK_WITH_CHECKS(tas); 3573 KMP_BIND_NESTED_USER_LOCK_WITH_CHECKS(tas); 3574 } else { 3575 KMP_BIND_USER_LOCK(tas); 3576 KMP_BIND_NESTED_USER_LOCK(tas); 3577 } 3578 3579 __kmp_destroy_user_lock_ = 3580 (void (*)(kmp_user_lock_p))(&__kmp_destroy_tas_lock); 3581 3582 __kmp_is_user_lock_initialized_ = (int (*)(kmp_user_lock_p))NULL; 3583 3584 __kmp_get_user_lock_location_ = (const ident_t *(*)(kmp_user_lock_p))NULL; 3585 3586 __kmp_set_user_lock_location_ = 3587 (void (*)(kmp_user_lock_p, const ident_t *))NULL; 3588 3589 __kmp_get_user_lock_flags_ = (kmp_lock_flags_t(*)(kmp_user_lock_p))NULL; 3590 3591 __kmp_set_user_lock_flags_ = 3592 (void (*)(kmp_user_lock_p, kmp_lock_flags_t))NULL; 3593 } break; 3594 3595 #if KMP_USE_FUTEX 3596 3597 case lk_futex: { 3598 __kmp_base_user_lock_size = sizeof(kmp_base_futex_lock_t); 3599 __kmp_user_lock_size = sizeof(kmp_futex_lock_t); 3600 3601 __kmp_get_user_lock_owner_ = 3602 (kmp_int32(*)(kmp_user_lock_p))(&__kmp_get_futex_lock_owner); 3603 3604 if (__kmp_env_consistency_check) { 3605 KMP_BIND_USER_LOCK_WITH_CHECKS(futex); 3606 KMP_BIND_NESTED_USER_LOCK_WITH_CHECKS(futex); 3607 } else { 3608 KMP_BIND_USER_LOCK(futex); 3609 KMP_BIND_NESTED_USER_LOCK(futex); 3610 } 3611 3612 __kmp_destroy_user_lock_ = 3613 (void (*)(kmp_user_lock_p))(&__kmp_destroy_futex_lock); 3614 3615 __kmp_is_user_lock_initialized_ = (int (*)(kmp_user_lock_p))NULL; 3616 3617 __kmp_get_user_lock_location_ = (const ident_t *(*)(kmp_user_lock_p))NULL; 3618 3619 __kmp_set_user_lock_location_ = 3620 (void (*)(kmp_user_lock_p, const ident_t *))NULL; 3621 3622 __kmp_get_user_lock_flags_ = (kmp_lock_flags_t(*)(kmp_user_lock_p))NULL; 3623 3624 __kmp_set_user_lock_flags_ = 3625 (void (*)(kmp_user_lock_p, kmp_lock_flags_t))NULL; 3626 } break; 3627 3628 #endif // KMP_USE_FUTEX 3629 3630 case lk_ticket: { 3631 __kmp_base_user_lock_size = sizeof(kmp_base_ticket_lock_t); 3632 __kmp_user_lock_size = sizeof(kmp_ticket_lock_t); 3633 3634 __kmp_get_user_lock_owner_ = 3635 (kmp_int32(*)(kmp_user_lock_p))(&__kmp_get_ticket_lock_owner); 3636 3637 if (__kmp_env_consistency_check) { 3638 KMP_BIND_USER_LOCK_WITH_CHECKS(ticket); 3639 KMP_BIND_NESTED_USER_LOCK_WITH_CHECKS(ticket); 3640 } else { 3641 KMP_BIND_USER_LOCK(ticket); 3642 KMP_BIND_NESTED_USER_LOCK(ticket); 3643 } 3644 3645 __kmp_destroy_user_lock_ = 3646 (void (*)(kmp_user_lock_p))(&__kmp_destroy_ticket_lock); 3647 3648 __kmp_is_user_lock_initialized_ = 3649 (int (*)(kmp_user_lock_p))(&__kmp_is_ticket_lock_initialized); 3650 3651 __kmp_get_user_lock_location_ = 3652 (const ident_t *(*)(kmp_user_lock_p))(&__kmp_get_ticket_lock_location); 3653 3654 __kmp_set_user_lock_location_ = (void (*)( 3655 kmp_user_lock_p, const ident_t *))(&__kmp_set_ticket_lock_location); 3656 3657 __kmp_get_user_lock_flags_ = 3658 (kmp_lock_flags_t(*)(kmp_user_lock_p))(&__kmp_get_ticket_lock_flags); 3659 3660 __kmp_set_user_lock_flags_ = (void (*)(kmp_user_lock_p, kmp_lock_flags_t))( 3661 &__kmp_set_ticket_lock_flags); 3662 } break; 3663 3664 case lk_queuing: { 3665 __kmp_base_user_lock_size = sizeof(kmp_base_queuing_lock_t); 3666 __kmp_user_lock_size = sizeof(kmp_queuing_lock_t); 3667 3668 __kmp_get_user_lock_owner_ = 3669 (kmp_int32(*)(kmp_user_lock_p))(&__kmp_get_queuing_lock_owner); 3670 3671 if (__kmp_env_consistency_check) { 3672 KMP_BIND_USER_LOCK_WITH_CHECKS(queuing); 3673 KMP_BIND_NESTED_USER_LOCK_WITH_CHECKS(queuing); 3674 } else { 3675 KMP_BIND_USER_LOCK(queuing); 3676 KMP_BIND_NESTED_USER_LOCK(queuing); 3677 } 3678 3679 __kmp_destroy_user_lock_ = 3680 (void (*)(kmp_user_lock_p))(&__kmp_destroy_queuing_lock); 3681 3682 __kmp_is_user_lock_initialized_ = 3683 (int (*)(kmp_user_lock_p))(&__kmp_is_queuing_lock_initialized); 3684 3685 __kmp_get_user_lock_location_ = 3686 (const ident_t *(*)(kmp_user_lock_p))(&__kmp_get_queuing_lock_location); 3687 3688 __kmp_set_user_lock_location_ = (void (*)( 3689 kmp_user_lock_p, const ident_t *))(&__kmp_set_queuing_lock_location); 3690 3691 __kmp_get_user_lock_flags_ = 3692 (kmp_lock_flags_t(*)(kmp_user_lock_p))(&__kmp_get_queuing_lock_flags); 3693 3694 __kmp_set_user_lock_flags_ = (void (*)(kmp_user_lock_p, kmp_lock_flags_t))( 3695 &__kmp_set_queuing_lock_flags); 3696 } break; 3697 3698 #if KMP_USE_ADAPTIVE_LOCKS 3699 case lk_adaptive: { 3700 __kmp_base_user_lock_size = sizeof(kmp_base_adaptive_lock_t); 3701 __kmp_user_lock_size = sizeof(kmp_adaptive_lock_t); 3702 3703 __kmp_get_user_lock_owner_ = 3704 (kmp_int32(*)(kmp_user_lock_p))(&__kmp_get_queuing_lock_owner); 3705 3706 if (__kmp_env_consistency_check) { 3707 KMP_BIND_USER_LOCK_WITH_CHECKS(adaptive); 3708 } else { 3709 KMP_BIND_USER_LOCK(adaptive); 3710 } 3711 3712 __kmp_destroy_user_lock_ = 3713 (void (*)(kmp_user_lock_p))(&__kmp_destroy_adaptive_lock); 3714 3715 __kmp_is_user_lock_initialized_ = 3716 (int (*)(kmp_user_lock_p))(&__kmp_is_queuing_lock_initialized); 3717 3718 __kmp_get_user_lock_location_ = 3719 (const ident_t *(*)(kmp_user_lock_p))(&__kmp_get_queuing_lock_location); 3720 3721 __kmp_set_user_lock_location_ = (void (*)( 3722 kmp_user_lock_p, const ident_t *))(&__kmp_set_queuing_lock_location); 3723 3724 __kmp_get_user_lock_flags_ = 3725 (kmp_lock_flags_t(*)(kmp_user_lock_p))(&__kmp_get_queuing_lock_flags); 3726 3727 __kmp_set_user_lock_flags_ = (void (*)(kmp_user_lock_p, kmp_lock_flags_t))( 3728 &__kmp_set_queuing_lock_flags); 3729 3730 } break; 3731 #endif // KMP_USE_ADAPTIVE_LOCKS 3732 3733 case lk_drdpa: { 3734 __kmp_base_user_lock_size = sizeof(kmp_base_drdpa_lock_t); 3735 __kmp_user_lock_size = sizeof(kmp_drdpa_lock_t); 3736 3737 __kmp_get_user_lock_owner_ = 3738 (kmp_int32(*)(kmp_user_lock_p))(&__kmp_get_drdpa_lock_owner); 3739 3740 if (__kmp_env_consistency_check) { 3741 KMP_BIND_USER_LOCK_WITH_CHECKS(drdpa); 3742 KMP_BIND_NESTED_USER_LOCK_WITH_CHECKS(drdpa); 3743 } else { 3744 KMP_BIND_USER_LOCK(drdpa); 3745 KMP_BIND_NESTED_USER_LOCK(drdpa); 3746 } 3747 3748 __kmp_destroy_user_lock_ = 3749 (void (*)(kmp_user_lock_p))(&__kmp_destroy_drdpa_lock); 3750 3751 __kmp_is_user_lock_initialized_ = 3752 (int (*)(kmp_user_lock_p))(&__kmp_is_drdpa_lock_initialized); 3753 3754 __kmp_get_user_lock_location_ = 3755 (const ident_t *(*)(kmp_user_lock_p))(&__kmp_get_drdpa_lock_location); 3756 3757 __kmp_set_user_lock_location_ = (void (*)( 3758 kmp_user_lock_p, const ident_t *))(&__kmp_set_drdpa_lock_location); 3759 3760 __kmp_get_user_lock_flags_ = 3761 (kmp_lock_flags_t(*)(kmp_user_lock_p))(&__kmp_get_drdpa_lock_flags); 3762 3763 __kmp_set_user_lock_flags_ = (void (*)(kmp_user_lock_p, kmp_lock_flags_t))( 3764 &__kmp_set_drdpa_lock_flags); 3765 } break; 3766 } 3767 } 3768 3769 // ---------------------------------------------------------------------------- 3770 // User lock table & lock allocation 3771 3772 kmp_lock_table_t __kmp_user_lock_table = {1, 0, NULL}; 3773 kmp_user_lock_p __kmp_lock_pool = NULL; 3774 3775 // Lock block-allocation support. 3776 kmp_block_of_locks *__kmp_lock_blocks = NULL; 3777 int __kmp_num_locks_in_block = 1; // FIXME - tune this value 3778 3779 static kmp_lock_index_t __kmp_lock_table_insert(kmp_user_lock_p lck) { 3780 // Assume that kmp_global_lock is held upon entry/exit. 3781 kmp_lock_index_t index; 3782 if (__kmp_user_lock_table.used >= __kmp_user_lock_table.allocated) { 3783 kmp_lock_index_t size; 3784 kmp_user_lock_p *table; 3785 // Reallocate lock table. 3786 if (__kmp_user_lock_table.allocated == 0) { 3787 size = 1024; 3788 } else { 3789 size = __kmp_user_lock_table.allocated * 2; 3790 } 3791 table = (kmp_user_lock_p *)__kmp_allocate(sizeof(kmp_user_lock_p) * size); 3792 KMP_MEMCPY(table + 1, __kmp_user_lock_table.table + 1, 3793 sizeof(kmp_user_lock_p) * (__kmp_user_lock_table.used - 1)); 3794 table[0] = (kmp_user_lock_p)__kmp_user_lock_table.table; 3795 // We cannot free the previous table now, since it may be in use by other 3796 // threads. So save the pointer to the previous table in in the first 3797 // element of the new table. All the tables will be organized into a list, 3798 // and could be freed when library shutting down. 3799 __kmp_user_lock_table.table = table; 3800 __kmp_user_lock_table.allocated = size; 3801 } 3802 KMP_DEBUG_ASSERT(__kmp_user_lock_table.used < 3803 __kmp_user_lock_table.allocated); 3804 index = __kmp_user_lock_table.used; 3805 __kmp_user_lock_table.table[index] = lck; 3806 ++__kmp_user_lock_table.used; 3807 return index; 3808 } 3809 3810 static kmp_user_lock_p __kmp_lock_block_allocate() { 3811 // Assume that kmp_global_lock is held upon entry/exit. 3812 static int last_index = 0; 3813 if ((last_index >= __kmp_num_locks_in_block) || (__kmp_lock_blocks == NULL)) { 3814 // Restart the index. 3815 last_index = 0; 3816 // Need to allocate a new block. 3817 KMP_DEBUG_ASSERT(__kmp_user_lock_size > 0); 3818 size_t space_for_locks = __kmp_user_lock_size * __kmp_num_locks_in_block; 3819 char *buffer = 3820 (char *)__kmp_allocate(space_for_locks + sizeof(kmp_block_of_locks)); 3821 // Set up the new block. 3822 kmp_block_of_locks *new_block = 3823 (kmp_block_of_locks *)(&buffer[space_for_locks]); 3824 new_block->next_block = __kmp_lock_blocks; 3825 new_block->locks = (void *)buffer; 3826 // Publish the new block. 3827 KMP_MB(); 3828 __kmp_lock_blocks = new_block; 3829 } 3830 kmp_user_lock_p ret = (kmp_user_lock_p)(&( 3831 ((char *)(__kmp_lock_blocks->locks))[last_index * __kmp_user_lock_size])); 3832 last_index++; 3833 return ret; 3834 } 3835 3836 // Get memory for a lock. It may be freshly allocated memory or reused memory 3837 // from lock pool. 3838 kmp_user_lock_p __kmp_user_lock_allocate(void **user_lock, kmp_int32 gtid, 3839 kmp_lock_flags_t flags) { 3840 kmp_user_lock_p lck; 3841 kmp_lock_index_t index; 3842 KMP_DEBUG_ASSERT(user_lock); 3843 3844 __kmp_acquire_lock(&__kmp_global_lock, gtid); 3845 3846 if (__kmp_lock_pool == NULL) { 3847 // Lock pool is empty. Allocate new memory. 3848 3849 // ANNOTATION: Found no good way to express the syncronisation 3850 // between allocation and usage, so ignore the allocation 3851 ANNOTATE_IGNORE_WRITES_BEGIN(); 3852 if (__kmp_num_locks_in_block <= 1) { // Tune this cutoff point. 3853 lck = (kmp_user_lock_p)__kmp_allocate(__kmp_user_lock_size); 3854 } else { 3855 lck = __kmp_lock_block_allocate(); 3856 } 3857 ANNOTATE_IGNORE_WRITES_END(); 3858 3859 // Insert lock in the table so that it can be freed in __kmp_cleanup, 3860 // and debugger has info on all allocated locks. 3861 index = __kmp_lock_table_insert(lck); 3862 } else { 3863 // Pick up lock from pool. 3864 lck = __kmp_lock_pool; 3865 index = __kmp_lock_pool->pool.index; 3866 __kmp_lock_pool = __kmp_lock_pool->pool.next; 3867 } 3868 3869 // We could potentially differentiate between nested and regular locks 3870 // here, and do the lock table lookup for regular locks only. 3871 if (OMP_LOCK_T_SIZE < sizeof(void *)) { 3872 *((kmp_lock_index_t *)user_lock) = index; 3873 } else { 3874 *((kmp_user_lock_p *)user_lock) = lck; 3875 } 3876 3877 // mark the lock if it is critical section lock. 3878 __kmp_set_user_lock_flags(lck, flags); 3879 3880 __kmp_release_lock(&__kmp_global_lock, gtid); // AC: TODO move this line upper 3881 3882 return lck; 3883 } 3884 3885 // Put lock's memory to pool for reusing. 3886 void __kmp_user_lock_free(void **user_lock, kmp_int32 gtid, 3887 kmp_user_lock_p lck) { 3888 KMP_DEBUG_ASSERT(user_lock != NULL); 3889 KMP_DEBUG_ASSERT(lck != NULL); 3890 3891 __kmp_acquire_lock(&__kmp_global_lock, gtid); 3892 3893 lck->pool.next = __kmp_lock_pool; 3894 __kmp_lock_pool = lck; 3895 if (OMP_LOCK_T_SIZE < sizeof(void *)) { 3896 kmp_lock_index_t index = *((kmp_lock_index_t *)user_lock); 3897 KMP_DEBUG_ASSERT(0 < index && index <= __kmp_user_lock_table.used); 3898 lck->pool.index = index; 3899 } 3900 3901 __kmp_release_lock(&__kmp_global_lock, gtid); 3902 } 3903 3904 kmp_user_lock_p __kmp_lookup_user_lock(void **user_lock, char const *func) { 3905 kmp_user_lock_p lck = NULL; 3906 3907 if (__kmp_env_consistency_check) { 3908 if (user_lock == NULL) { 3909 KMP_FATAL(LockIsUninitialized, func); 3910 } 3911 } 3912 3913 if (OMP_LOCK_T_SIZE < sizeof(void *)) { 3914 kmp_lock_index_t index = *((kmp_lock_index_t *)user_lock); 3915 if (__kmp_env_consistency_check) { 3916 if (!(0 < index && index < __kmp_user_lock_table.used)) { 3917 KMP_FATAL(LockIsUninitialized, func); 3918 } 3919 } 3920 KMP_DEBUG_ASSERT(0 < index && index < __kmp_user_lock_table.used); 3921 KMP_DEBUG_ASSERT(__kmp_user_lock_size > 0); 3922 lck = __kmp_user_lock_table.table[index]; 3923 } else { 3924 lck = *((kmp_user_lock_p *)user_lock); 3925 } 3926 3927 if (__kmp_env_consistency_check) { 3928 if (lck == NULL) { 3929 KMP_FATAL(LockIsUninitialized, func); 3930 } 3931 } 3932 3933 return lck; 3934 } 3935 3936 void __kmp_cleanup_user_locks(void) { 3937 // Reset lock pool. Don't worry about lock in the pool--we will free them when 3938 // iterating through lock table (it includes all the locks, dead or alive). 3939 __kmp_lock_pool = NULL; 3940 3941 #define IS_CRITICAL(lck) \ 3942 ((__kmp_get_user_lock_flags_ != NULL) && \ 3943 ((*__kmp_get_user_lock_flags_)(lck)&kmp_lf_critical_section)) 3944 3945 // Loop through lock table, free all locks. 3946 // Do not free item [0], it is reserved for lock tables list. 3947 // 3948 // FIXME - we are iterating through a list of (pointers to) objects of type 3949 // union kmp_user_lock, but we have no way of knowing whether the base type is 3950 // currently "pool" or whatever the global user lock type is. 3951 // 3952 // We are relying on the fact that for all of the user lock types 3953 // (except "tas"), the first field in the lock struct is the "initialized" 3954 // field, which is set to the address of the lock object itself when 3955 // the lock is initialized. When the union is of type "pool", the 3956 // first field is a pointer to the next object in the free list, which 3957 // will not be the same address as the object itself. 3958 // 3959 // This means that the check (*__kmp_is_user_lock_initialized_)(lck) will fail 3960 // for "pool" objects on the free list. This must happen as the "location" 3961 // field of real user locks overlaps the "index" field of "pool" objects. 3962 // 3963 // It would be better to run through the free list, and remove all "pool" 3964 // objects from the lock table before executing this loop. However, 3965 // "pool" objects do not always have their index field set (only on 3966 // lin_32e), and I don't want to search the lock table for the address 3967 // of every "pool" object on the free list. 3968 while (__kmp_user_lock_table.used > 1) { 3969 const ident *loc; 3970 3971 // reduce __kmp_user_lock_table.used before freeing the lock, 3972 // so that state of locks is consistent 3973 kmp_user_lock_p lck = 3974 __kmp_user_lock_table.table[--__kmp_user_lock_table.used]; 3975 3976 if ((__kmp_is_user_lock_initialized_ != NULL) && 3977 (*__kmp_is_user_lock_initialized_)(lck)) { 3978 // Issue a warning if: KMP_CONSISTENCY_CHECK AND lock is initialized AND 3979 // it is NOT a critical section (user is not responsible for destroying 3980 // criticals) AND we know source location to report. 3981 if (__kmp_env_consistency_check && (!IS_CRITICAL(lck)) && 3982 ((loc = __kmp_get_user_lock_location(lck)) != NULL) && 3983 (loc->psource != NULL)) { 3984 kmp_str_loc_t str_loc = __kmp_str_loc_init(loc->psource, false); 3985 KMP_WARNING(CnsLockNotDestroyed, str_loc.file, str_loc.line); 3986 __kmp_str_loc_free(&str_loc); 3987 } 3988 3989 #ifdef KMP_DEBUG 3990 if (IS_CRITICAL(lck)) { 3991 KA_TRACE( 3992 20, 3993 ("__kmp_cleanup_user_locks: free critical section lock %p (%p)\n", 3994 lck, *(void **)lck)); 3995 } else { 3996 KA_TRACE(20, ("__kmp_cleanup_user_locks: free lock %p (%p)\n", lck, 3997 *(void **)lck)); 3998 } 3999 #endif // KMP_DEBUG 4000 4001 // Cleanup internal lock dynamic resources (for drdpa locks particularly). 4002 __kmp_destroy_user_lock(lck); 4003 } 4004 4005 // Free the lock if block allocation of locks is not used. 4006 if (__kmp_lock_blocks == NULL) { 4007 __kmp_free(lck); 4008 } 4009 } 4010 4011 #undef IS_CRITICAL 4012 4013 // delete lock table(s). 4014 kmp_user_lock_p *table_ptr = __kmp_user_lock_table.table; 4015 __kmp_user_lock_table.table = NULL; 4016 __kmp_user_lock_table.allocated = 0; 4017 4018 while (table_ptr != NULL) { 4019 // In the first element we saved the pointer to the previous 4020 // (smaller) lock table. 4021 kmp_user_lock_p *next = (kmp_user_lock_p *)(table_ptr[0]); 4022 __kmp_free(table_ptr); 4023 table_ptr = next; 4024 } 4025 4026 // Free buffers allocated for blocks of locks. 4027 kmp_block_of_locks_t *block_ptr = __kmp_lock_blocks; 4028 __kmp_lock_blocks = NULL; 4029 4030 while (block_ptr != NULL) { 4031 kmp_block_of_locks_t *next = block_ptr->next_block; 4032 __kmp_free(block_ptr->locks); 4033 // *block_ptr itself was allocated at the end of the locks vector. 4034 block_ptr = next; 4035 } 4036 4037 TCW_4(__kmp_init_user_locks, FALSE); 4038 } 4039 4040 #endif // KMP_USE_DYNAMIC_LOCK 4041