1 /* 2 * kmp_dispatch.cpp: dynamic scheduling - iteration initialization and dispatch. 3 */ 4 5 //===----------------------------------------------------------------------===// 6 // 7 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 8 // See https://llvm.org/LICENSE.txt for license information. 9 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 10 // 11 //===----------------------------------------------------------------------===// 12 13 /* Dynamic scheduling initialization and dispatch. 14 * 15 * NOTE: __kmp_nth is a constant inside of any dispatch loop, however 16 * it may change values between parallel regions. __kmp_max_nth 17 * is the largest value __kmp_nth may take, 1 is the smallest. 18 */ 19 20 #include "kmp.h" 21 #include "kmp_error.h" 22 #include "kmp_i18n.h" 23 #include "kmp_itt.h" 24 #include "kmp_stats.h" 25 #include "kmp_str.h" 26 #if KMP_USE_X87CONTROL 27 #include <float.h> 28 #endif 29 #include "kmp_lock.h" 30 #include "kmp_dispatch.h" 31 #if KMP_USE_HIER_SCHED 32 #include "kmp_dispatch_hier.h" 33 #endif 34 35 #if OMPT_SUPPORT 36 #include "ompt-specific.h" 37 #endif 38 39 /* ------------------------------------------------------------------------ */ 40 /* ------------------------------------------------------------------------ */ 41 42 void __kmp_dispatch_deo_error(int *gtid_ref, int *cid_ref, ident_t *loc_ref) { 43 kmp_info_t *th; 44 45 KMP_DEBUG_ASSERT(gtid_ref); 46 47 if (__kmp_env_consistency_check) { 48 th = __kmp_threads[*gtid_ref]; 49 if (th->th.th_root->r.r_active && 50 (th->th.th_dispatch->th_dispatch_pr_current->pushed_ws != ct_none)) { 51 #if KMP_USE_DYNAMIC_LOCK 52 __kmp_push_sync(*gtid_ref, ct_ordered_in_pdo, loc_ref, NULL, 0); 53 #else 54 __kmp_push_sync(*gtid_ref, ct_ordered_in_pdo, loc_ref, NULL); 55 #endif 56 } 57 } 58 } 59 60 void __kmp_dispatch_dxo_error(int *gtid_ref, int *cid_ref, ident_t *loc_ref) { 61 kmp_info_t *th; 62 63 if (__kmp_env_consistency_check) { 64 th = __kmp_threads[*gtid_ref]; 65 if (th->th.th_dispatch->th_dispatch_pr_current->pushed_ws != ct_none) { 66 __kmp_pop_sync(*gtid_ref, ct_ordered_in_pdo, loc_ref); 67 } 68 } 69 } 70 71 // Returns either SCHEDULE_MONOTONIC or SCHEDULE_NONMONOTONIC 72 static inline int __kmp_get_monotonicity(enum sched_type schedule, 73 bool use_hier = false) { 74 // Pick up the nonmonotonic/monotonic bits from the scheduling type 75 int monotonicity; 76 // default to monotonic 77 monotonicity = SCHEDULE_MONOTONIC; 78 if (SCHEDULE_HAS_NONMONOTONIC(schedule)) 79 monotonicity = SCHEDULE_NONMONOTONIC; 80 else if (SCHEDULE_HAS_MONOTONIC(schedule)) 81 monotonicity = SCHEDULE_MONOTONIC; 82 return monotonicity; 83 } 84 85 // Initialize a dispatch_private_info_template<T> buffer for a particular 86 // type of schedule,chunk. The loop description is found in lb (lower bound), 87 // ub (upper bound), and st (stride). nproc is the number of threads relevant 88 // to the scheduling (often the number of threads in a team, but not always if 89 // hierarchical scheduling is used). tid is the id of the thread calling 90 // the function within the group of nproc threads. It will have a value 91 // between 0 and nproc - 1. This is often just the thread id within a team, but 92 // is not necessarily the case when using hierarchical scheduling. 93 // loc is the source file location of the corresponding loop 94 // gtid is the global thread id 95 template <typename T> 96 void __kmp_dispatch_init_algorithm(ident_t *loc, int gtid, 97 dispatch_private_info_template<T> *pr, 98 enum sched_type schedule, T lb, T ub, 99 typename traits_t<T>::signed_t st, 100 #if USE_ITT_BUILD 101 kmp_uint64 *cur_chunk, 102 #endif 103 typename traits_t<T>::signed_t chunk, 104 T nproc, T tid) { 105 typedef typename traits_t<T>::unsigned_t UT; 106 typedef typename traits_t<T>::floating_t DBL; 107 108 int active; 109 T tc; 110 kmp_info_t *th; 111 kmp_team_t *team; 112 int monotonicity; 113 bool use_hier; 114 115 #ifdef KMP_DEBUG 116 typedef typename traits_t<T>::signed_t ST; 117 { 118 char *buff; 119 // create format specifiers before the debug output 120 buff = __kmp_str_format("__kmp_dispatch_init_algorithm: T#%%d called " 121 "pr:%%p lb:%%%s ub:%%%s st:%%%s " 122 "schedule:%%d chunk:%%%s nproc:%%%s tid:%%%s\n", 123 traits_t<T>::spec, traits_t<T>::spec, 124 traits_t<ST>::spec, traits_t<ST>::spec, 125 traits_t<T>::spec, traits_t<T>::spec); 126 KD_TRACE(10, (buff, gtid, pr, lb, ub, st, schedule, chunk, nproc, tid)); 127 __kmp_str_free(&buff); 128 } 129 #endif 130 /* setup data */ 131 th = __kmp_threads[gtid]; 132 team = th->th.th_team; 133 active = !team->t.t_serialized; 134 135 #if USE_ITT_BUILD 136 int itt_need_metadata_reporting = 137 __itt_metadata_add_ptr && __kmp_forkjoin_frames_mode == 3 && 138 KMP_MASTER_GTID(gtid) && th->th.th_teams_microtask == NULL && 139 team->t.t_active_level == 1; 140 #endif 141 142 #if KMP_USE_HIER_SCHED 143 use_hier = pr->flags.use_hier; 144 #else 145 use_hier = false; 146 #endif 147 148 /* Pick up the nonmonotonic/monotonic bits from the scheduling type */ 149 monotonicity = __kmp_get_monotonicity(schedule, use_hier); 150 schedule = SCHEDULE_WITHOUT_MODIFIERS(schedule); 151 152 /* Pick up the nomerge/ordered bits from the scheduling type */ 153 if ((schedule >= kmp_nm_lower) && (schedule < kmp_nm_upper)) { 154 pr->flags.nomerge = TRUE; 155 schedule = 156 (enum sched_type)(((int)schedule) - (kmp_nm_lower - kmp_sch_lower)); 157 } else { 158 pr->flags.nomerge = FALSE; 159 } 160 pr->type_size = traits_t<T>::type_size; // remember the size of variables 161 if (kmp_ord_lower & schedule) { 162 pr->flags.ordered = TRUE; 163 schedule = 164 (enum sched_type)(((int)schedule) - (kmp_ord_lower - kmp_sch_lower)); 165 } else { 166 pr->flags.ordered = FALSE; 167 } 168 // Ordered overrides nonmonotonic 169 if (pr->flags.ordered) { 170 monotonicity = SCHEDULE_MONOTONIC; 171 } 172 173 if (schedule == kmp_sch_static) { 174 schedule = __kmp_static; 175 } else { 176 if (schedule == kmp_sch_runtime) { 177 // Use the scheduling specified by OMP_SCHEDULE (or __kmp_sch_default if 178 // not specified) 179 schedule = team->t.t_sched.r_sched_type; 180 monotonicity = __kmp_get_monotonicity(schedule, use_hier); 181 schedule = SCHEDULE_WITHOUT_MODIFIERS(schedule); 182 // Detail the schedule if needed (global controls are differentiated 183 // appropriately) 184 if (schedule == kmp_sch_guided_chunked) { 185 schedule = __kmp_guided; 186 } else if (schedule == kmp_sch_static) { 187 schedule = __kmp_static; 188 } 189 // Use the chunk size specified by OMP_SCHEDULE (or default if not 190 // specified) 191 chunk = team->t.t_sched.chunk; 192 #if USE_ITT_BUILD 193 if (cur_chunk) 194 *cur_chunk = chunk; 195 #endif 196 #ifdef KMP_DEBUG 197 { 198 char *buff; 199 // create format specifiers before the debug output 200 buff = __kmp_str_format("__kmp_dispatch_init_algorithm: T#%%d new: " 201 "schedule:%%d chunk:%%%s\n", 202 traits_t<ST>::spec); 203 KD_TRACE(10, (buff, gtid, schedule, chunk)); 204 __kmp_str_free(&buff); 205 } 206 #endif 207 } else { 208 if (schedule == kmp_sch_guided_chunked) { 209 schedule = __kmp_guided; 210 } 211 if (chunk <= 0) { 212 chunk = KMP_DEFAULT_CHUNK; 213 } 214 } 215 216 if (schedule == kmp_sch_auto) { 217 // mapping and differentiation: in the __kmp_do_serial_initialize() 218 schedule = __kmp_auto; 219 #ifdef KMP_DEBUG 220 { 221 char *buff; 222 // create format specifiers before the debug output 223 buff = __kmp_str_format( 224 "__kmp_dispatch_init_algorithm: kmp_sch_auto: T#%%d new: " 225 "schedule:%%d chunk:%%%s\n", 226 traits_t<ST>::spec); 227 KD_TRACE(10, (buff, gtid, schedule, chunk)); 228 __kmp_str_free(&buff); 229 } 230 #endif 231 } 232 #if KMP_STATIC_STEAL_ENABLED 233 // map nonmonotonic:dynamic to static steal 234 if (schedule == kmp_sch_dynamic_chunked) { 235 if (monotonicity == SCHEDULE_NONMONOTONIC) 236 schedule = kmp_sch_static_steal; 237 } 238 #endif 239 /* guided analytical not safe for too many threads */ 240 if (schedule == kmp_sch_guided_analytical_chunked && nproc > 1 << 20) { 241 schedule = kmp_sch_guided_iterative_chunked; 242 KMP_WARNING(DispatchManyThreads); 243 } 244 if (schedule == kmp_sch_runtime_simd) { 245 // compiler provides simd_width in the chunk parameter 246 schedule = team->t.t_sched.r_sched_type; 247 monotonicity = __kmp_get_monotonicity(schedule, use_hier); 248 schedule = SCHEDULE_WITHOUT_MODIFIERS(schedule); 249 // Detail the schedule if needed (global controls are differentiated 250 // appropriately) 251 if (schedule == kmp_sch_static || schedule == kmp_sch_auto || 252 schedule == __kmp_static) { 253 schedule = kmp_sch_static_balanced_chunked; 254 } else { 255 if (schedule == kmp_sch_guided_chunked || schedule == __kmp_guided) { 256 schedule = kmp_sch_guided_simd; 257 } 258 chunk = team->t.t_sched.chunk * chunk; 259 } 260 #if USE_ITT_BUILD 261 if (cur_chunk) 262 *cur_chunk = chunk; 263 #endif 264 #ifdef KMP_DEBUG 265 { 266 char *buff; 267 // create format specifiers before the debug output 268 buff = __kmp_str_format( 269 "__kmp_dispatch_init_algorithm: T#%%d new: schedule:%%d" 270 " chunk:%%%s\n", 271 traits_t<ST>::spec); 272 KD_TRACE(10, (buff, gtid, schedule, chunk)); 273 __kmp_str_free(&buff); 274 } 275 #endif 276 } 277 pr->u.p.parm1 = chunk; 278 } 279 KMP_ASSERT2((kmp_sch_lower < schedule && schedule < kmp_sch_upper), 280 "unknown scheduling type"); 281 282 pr->u.p.count = 0; 283 284 if (__kmp_env_consistency_check) { 285 if (st == 0) { 286 __kmp_error_construct(kmp_i18n_msg_CnsLoopIncrZeroProhibited, 287 (pr->flags.ordered ? ct_pdo_ordered : ct_pdo), loc); 288 } 289 } 290 // compute trip count 291 if (st == 1) { // most common case 292 if (ub >= lb) { 293 tc = ub - lb + 1; 294 } else { // ub < lb 295 tc = 0; // zero-trip 296 } 297 } else if (st < 0) { 298 if (lb >= ub) { 299 // AC: cast to unsigned is needed for loops like (i=2B; i>-2B; i-=1B), 300 // where the division needs to be unsigned regardless of the result type 301 tc = (UT)(lb - ub) / (-st) + 1; 302 } else { // lb < ub 303 tc = 0; // zero-trip 304 } 305 } else { // st > 0 306 if (ub >= lb) { 307 // AC: cast to unsigned is needed for loops like (i=-2B; i<2B; i+=1B), 308 // where the division needs to be unsigned regardless of the result type 309 tc = (UT)(ub - lb) / st + 1; 310 } else { // ub < lb 311 tc = 0; // zero-trip 312 } 313 } 314 315 #if KMP_STATS_ENABLED 316 if (KMP_MASTER_GTID(gtid)) { 317 KMP_COUNT_VALUE(OMP_loop_dynamic_total_iterations, tc); 318 } 319 #endif 320 321 pr->u.p.lb = lb; 322 pr->u.p.ub = ub; 323 pr->u.p.st = st; 324 pr->u.p.tc = tc; 325 326 #if KMP_OS_WINDOWS 327 pr->u.p.last_upper = ub + st; 328 #endif /* KMP_OS_WINDOWS */ 329 330 /* NOTE: only the active parallel region(s) has active ordered sections */ 331 332 if (active) { 333 if (pr->flags.ordered) { 334 pr->ordered_bumped = 0; 335 pr->u.p.ordered_lower = 1; 336 pr->u.p.ordered_upper = 0; 337 } 338 } 339 340 switch (schedule) { 341 #if (KMP_STATIC_STEAL_ENABLED) 342 case kmp_sch_static_steal: { 343 T ntc, init; 344 345 KD_TRACE(100, 346 ("__kmp_dispatch_init_algorithm: T#%d kmp_sch_static_steal case\n", 347 gtid)); 348 349 ntc = (tc % chunk ? 1 : 0) + tc / chunk; 350 if (nproc > 1 && ntc >= nproc) { 351 KMP_COUNT_BLOCK(OMP_LOOP_STATIC_STEAL); 352 T id = tid; 353 T small_chunk, extras; 354 355 small_chunk = ntc / nproc; 356 extras = ntc % nproc; 357 358 init = id * small_chunk + (id < extras ? id : extras); 359 pr->u.p.count = init; 360 pr->u.p.ub = init + small_chunk + (id < extras ? 1 : 0); 361 362 pr->u.p.parm2 = lb; 363 // parm3 is the number of times to attempt stealing which is 364 // proportional to the number of chunks per thread up until 365 // the maximum value of nproc. 366 pr->u.p.parm3 = KMP_MIN(small_chunk + extras, nproc); 367 pr->u.p.parm4 = (id + 1) % nproc; // remember neighbour tid 368 pr->u.p.st = st; 369 if (traits_t<T>::type_size > 4) { 370 // AC: TODO: check if 16-byte CAS available and use it to 371 // improve performance (probably wait for explicit request 372 // before spending time on this). 373 // For now use dynamically allocated per-thread lock, 374 // free memory in __kmp_dispatch_next when status==0. 375 KMP_DEBUG_ASSERT(th->th.th_dispatch->th_steal_lock == NULL); 376 th->th.th_dispatch->th_steal_lock = 377 (kmp_lock_t *)__kmp_allocate(sizeof(kmp_lock_t)); 378 __kmp_init_lock(th->th.th_dispatch->th_steal_lock); 379 } 380 break; 381 } else { 382 /* too few chunks: switching to kmp_sch_dynamic_chunked */ 383 schedule = kmp_sch_dynamic_chunked; 384 KD_TRACE(100, ("__kmp_dispatch_init_algorithm: T#%d switching to " 385 "kmp_sch_dynamic_chunked\n", 386 gtid)); 387 if (pr->u.p.parm1 <= 0) 388 pr->u.p.parm1 = KMP_DEFAULT_CHUNK; 389 break; 390 } // if 391 } // case 392 #endif 393 case kmp_sch_static_balanced: { 394 T init, limit; 395 396 KD_TRACE( 397 100, 398 ("__kmp_dispatch_init_algorithm: T#%d kmp_sch_static_balanced case\n", 399 gtid)); 400 401 if (nproc > 1) { 402 T id = tid; 403 404 if (tc < nproc) { 405 if (id < tc) { 406 init = id; 407 limit = id; 408 pr->u.p.parm1 = (id == tc - 1); /* parm1 stores *plastiter */ 409 } else { 410 pr->u.p.count = 1; /* means no more chunks to execute */ 411 pr->u.p.parm1 = FALSE; 412 break; 413 } 414 } else { 415 T small_chunk = tc / nproc; 416 T extras = tc % nproc; 417 init = id * small_chunk + (id < extras ? id : extras); 418 limit = init + small_chunk - (id < extras ? 0 : 1); 419 pr->u.p.parm1 = (id == nproc - 1); 420 } 421 } else { 422 if (tc > 0) { 423 init = 0; 424 limit = tc - 1; 425 pr->u.p.parm1 = TRUE; 426 } else { 427 // zero trip count 428 pr->u.p.count = 1; /* means no more chunks to execute */ 429 pr->u.p.parm1 = FALSE; 430 break; 431 } 432 } 433 #if USE_ITT_BUILD 434 // Calculate chunk for metadata report 435 if (itt_need_metadata_reporting) 436 if (cur_chunk) 437 *cur_chunk = limit - init + 1; 438 #endif 439 if (st == 1) { 440 pr->u.p.lb = lb + init; 441 pr->u.p.ub = lb + limit; 442 } else { 443 // calculated upper bound, "ub" is user-defined upper bound 444 T ub_tmp = lb + limit * st; 445 pr->u.p.lb = lb + init * st; 446 // adjust upper bound to "ub" if needed, so that MS lastprivate will match 447 // it exactly 448 if (st > 0) { 449 pr->u.p.ub = (ub_tmp + st > ub ? ub : ub_tmp); 450 } else { 451 pr->u.p.ub = (ub_tmp + st < ub ? ub : ub_tmp); 452 } 453 } 454 if (pr->flags.ordered) { 455 pr->u.p.ordered_lower = init; 456 pr->u.p.ordered_upper = limit; 457 } 458 break; 459 } // case 460 case kmp_sch_static_balanced_chunked: { 461 // similar to balanced, but chunk adjusted to multiple of simd width 462 T nth = nproc; 463 KD_TRACE(100, ("__kmp_dispatch_init_algorithm: T#%d runtime(simd:static)" 464 " -> falling-through to static_greedy\n", 465 gtid)); 466 schedule = kmp_sch_static_greedy; 467 if (nth > 1) 468 pr->u.p.parm1 = ((tc + nth - 1) / nth + chunk - 1) & ~(chunk - 1); 469 else 470 pr->u.p.parm1 = tc; 471 break; 472 } // case 473 case kmp_sch_guided_simd: 474 case kmp_sch_guided_iterative_chunked: { 475 KD_TRACE( 476 100, 477 ("__kmp_dispatch_init_algorithm: T#%d kmp_sch_guided_iterative_chunked" 478 " case\n", 479 gtid)); 480 481 if (nproc > 1) { 482 if ((2L * chunk + 1) * nproc >= tc) { 483 /* chunk size too large, switch to dynamic */ 484 schedule = kmp_sch_dynamic_chunked; 485 } else { 486 // when remaining iters become less than parm2 - switch to dynamic 487 pr->u.p.parm2 = guided_int_param * nproc * (chunk + 1); 488 *(double *)&pr->u.p.parm3 = 489 guided_flt_param / nproc; // may occupy parm3 and parm4 490 } 491 } else { 492 KD_TRACE(100, ("__kmp_dispatch_init_algorithm: T#%d falling-through to " 493 "kmp_sch_static_greedy\n", 494 gtid)); 495 schedule = kmp_sch_static_greedy; 496 /* team->t.t_nproc == 1: fall-through to kmp_sch_static_greedy */ 497 KD_TRACE( 498 100, 499 ("__kmp_dispatch_init_algorithm: T#%d kmp_sch_static_greedy case\n", 500 gtid)); 501 pr->u.p.parm1 = tc; 502 } // if 503 } // case 504 break; 505 case kmp_sch_guided_analytical_chunked: { 506 KD_TRACE(100, ("__kmp_dispatch_init_algorithm: T#%d " 507 "kmp_sch_guided_analytical_chunked case\n", 508 gtid)); 509 510 if (nproc > 1) { 511 if ((2L * chunk + 1) * nproc >= tc) { 512 /* chunk size too large, switch to dynamic */ 513 schedule = kmp_sch_dynamic_chunked; 514 } else { 515 /* commonly used term: (2 nproc - 1)/(2 nproc) */ 516 DBL x; 517 518 #if KMP_USE_X87CONTROL 519 /* Linux* OS already has 64-bit computation by default for long double, 520 and on Windows* OS on Intel(R) 64, /Qlong_double doesn't work. On 521 Windows* OS on IA-32 architecture, we need to set precision to 64-bit 522 instead of the default 53-bit. Even though long double doesn't work 523 on Windows* OS on Intel(R) 64, the resulting lack of precision is not 524 expected to impact the correctness of the algorithm, but this has not 525 been mathematically proven. */ 526 // save original FPCW and set precision to 64-bit, as 527 // Windows* OS on IA-32 architecture defaults to 53-bit 528 unsigned int oldFpcw = _control87(0, 0); 529 _control87(_PC_64, _MCW_PC); // 0,0x30000 530 #endif 531 /* value used for comparison in solver for cross-over point */ 532 long double target = ((long double)chunk * 2 + 1) * nproc / tc; 533 534 /* crossover point--chunk indexes equal to or greater than 535 this point switch to dynamic-style scheduling */ 536 UT cross; 537 538 /* commonly used term: (2 nproc - 1)/(2 nproc) */ 539 x = (long double)1.0 - (long double)0.5 / nproc; 540 541 #ifdef KMP_DEBUG 542 { // test natural alignment 543 struct _test_a { 544 char a; 545 union { 546 char b; 547 DBL d; 548 }; 549 } t; 550 ptrdiff_t natural_alignment = 551 (ptrdiff_t)&t.b - (ptrdiff_t)&t - (ptrdiff_t)1; 552 //__kmp_warn( " %llx %llx %lld", (long long)&t.d, (long long)&t, (long 553 // long)natural_alignment ); 554 KMP_DEBUG_ASSERT( 555 (((ptrdiff_t)&pr->u.p.parm3) & (natural_alignment)) == 0); 556 } 557 #endif // KMP_DEBUG 558 559 /* save the term in thread private dispatch structure */ 560 *(DBL *)&pr->u.p.parm3 = x; 561 562 /* solve for the crossover point to the nearest integer i for which C_i 563 <= chunk */ 564 { 565 UT left, right, mid; 566 long double p; 567 568 /* estimate initial upper and lower bound */ 569 570 /* doesn't matter what value right is as long as it is positive, but 571 it affects performance of the solver */ 572 right = 229; 573 p = __kmp_pow<UT>(x, right); 574 if (p > target) { 575 do { 576 p *= p; 577 right <<= 1; 578 } while (p > target && right < (1 << 27)); 579 /* lower bound is previous (failed) estimate of upper bound */ 580 left = right >> 1; 581 } else { 582 left = 0; 583 } 584 585 /* bisection root-finding method */ 586 while (left + 1 < right) { 587 mid = (left + right) / 2; 588 if (__kmp_pow<UT>(x, mid) > target) { 589 left = mid; 590 } else { 591 right = mid; 592 } 593 } // while 594 cross = right; 595 } 596 /* assert sanity of computed crossover point */ 597 KMP_ASSERT(cross && __kmp_pow<UT>(x, cross - 1) > target && 598 __kmp_pow<UT>(x, cross) <= target); 599 600 /* save the crossover point in thread private dispatch structure */ 601 pr->u.p.parm2 = cross; 602 603 // C75803 604 #if ((KMP_OS_LINUX || KMP_OS_WINDOWS) && KMP_ARCH_X86) && (!defined(KMP_I8)) 605 #define GUIDED_ANALYTICAL_WORKAROUND (*(DBL *)&pr->u.p.parm3) 606 #else 607 #define GUIDED_ANALYTICAL_WORKAROUND (x) 608 #endif 609 /* dynamic-style scheduling offset */ 610 pr->u.p.count = tc - __kmp_dispatch_guided_remaining( 611 tc, GUIDED_ANALYTICAL_WORKAROUND, cross) - 612 cross * chunk; 613 #if KMP_USE_X87CONTROL 614 // restore FPCW 615 _control87(oldFpcw, _MCW_PC); 616 #endif 617 } // if 618 } else { 619 KD_TRACE(100, ("__kmp_dispatch_init_algorithm: T#%d falling-through to " 620 "kmp_sch_static_greedy\n", 621 gtid)); 622 schedule = kmp_sch_static_greedy; 623 /* team->t.t_nproc == 1: fall-through to kmp_sch_static_greedy */ 624 pr->u.p.parm1 = tc; 625 } // if 626 } // case 627 break; 628 case kmp_sch_static_greedy: 629 KD_TRACE( 630 100, 631 ("__kmp_dispatch_init_algorithm: T#%d kmp_sch_static_greedy case\n", 632 gtid)); 633 pr->u.p.parm1 = (nproc > 1) ? (tc + nproc - 1) / nproc : tc; 634 break; 635 case kmp_sch_static_chunked: 636 case kmp_sch_dynamic_chunked: 637 if (pr->u.p.parm1 <= 0) { 638 pr->u.p.parm1 = KMP_DEFAULT_CHUNK; 639 } 640 KD_TRACE(100, ("__kmp_dispatch_init_algorithm: T#%d " 641 "kmp_sch_static_chunked/kmp_sch_dynamic_chunked cases\n", 642 gtid)); 643 break; 644 case kmp_sch_trapezoidal: { 645 /* TSS: trapezoid self-scheduling, minimum chunk_size = parm1 */ 646 647 T parm1, parm2, parm3, parm4; 648 KD_TRACE(100, 649 ("__kmp_dispatch_init_algorithm: T#%d kmp_sch_trapezoidal case\n", 650 gtid)); 651 652 parm1 = chunk; 653 654 /* F : size of the first cycle */ 655 parm2 = (tc / (2 * nproc)); 656 657 if (parm2 < 1) { 658 parm2 = 1; 659 } 660 661 /* L : size of the last cycle. Make sure the last cycle is not larger 662 than the first cycle. */ 663 if (parm1 < 1) { 664 parm1 = 1; 665 } else if (parm1 > parm2) { 666 parm1 = parm2; 667 } 668 669 /* N : number of cycles */ 670 parm3 = (parm2 + parm1); 671 parm3 = (2 * tc + parm3 - 1) / parm3; 672 673 if (parm3 < 2) { 674 parm3 = 2; 675 } 676 677 /* sigma : decreasing incr of the trapezoid */ 678 parm4 = (parm3 - 1); 679 parm4 = (parm2 - parm1) / parm4; 680 681 // pointless check, because parm4 >= 0 always 682 // if ( parm4 < 0 ) { 683 // parm4 = 0; 684 //} 685 686 pr->u.p.parm1 = parm1; 687 pr->u.p.parm2 = parm2; 688 pr->u.p.parm3 = parm3; 689 pr->u.p.parm4 = parm4; 690 } // case 691 break; 692 693 default: { 694 __kmp_fatal(KMP_MSG(UnknownSchedTypeDetected), // Primary message 695 KMP_HNT(GetNewerLibrary), // Hint 696 __kmp_msg_null // Variadic argument list terminator 697 ); 698 } break; 699 } // switch 700 pr->schedule = schedule; 701 } 702 703 #if KMP_USE_HIER_SCHED 704 template <typename T> 705 inline void __kmp_dispatch_init_hier_runtime(ident_t *loc, T lb, T ub, 706 typename traits_t<T>::signed_t st); 707 template <> 708 inline void 709 __kmp_dispatch_init_hier_runtime<kmp_int32>(ident_t *loc, kmp_int32 lb, 710 kmp_int32 ub, kmp_int32 st) { 711 __kmp_dispatch_init_hierarchy<kmp_int32>( 712 loc, __kmp_hier_scheds.size, __kmp_hier_scheds.layers, 713 __kmp_hier_scheds.scheds, __kmp_hier_scheds.small_chunks, lb, ub, st); 714 } 715 template <> 716 inline void 717 __kmp_dispatch_init_hier_runtime<kmp_uint32>(ident_t *loc, kmp_uint32 lb, 718 kmp_uint32 ub, kmp_int32 st) { 719 __kmp_dispatch_init_hierarchy<kmp_uint32>( 720 loc, __kmp_hier_scheds.size, __kmp_hier_scheds.layers, 721 __kmp_hier_scheds.scheds, __kmp_hier_scheds.small_chunks, lb, ub, st); 722 } 723 template <> 724 inline void 725 __kmp_dispatch_init_hier_runtime<kmp_int64>(ident_t *loc, kmp_int64 lb, 726 kmp_int64 ub, kmp_int64 st) { 727 __kmp_dispatch_init_hierarchy<kmp_int64>( 728 loc, __kmp_hier_scheds.size, __kmp_hier_scheds.layers, 729 __kmp_hier_scheds.scheds, __kmp_hier_scheds.large_chunks, lb, ub, st); 730 } 731 template <> 732 inline void 733 __kmp_dispatch_init_hier_runtime<kmp_uint64>(ident_t *loc, kmp_uint64 lb, 734 kmp_uint64 ub, kmp_int64 st) { 735 __kmp_dispatch_init_hierarchy<kmp_uint64>( 736 loc, __kmp_hier_scheds.size, __kmp_hier_scheds.layers, 737 __kmp_hier_scheds.scheds, __kmp_hier_scheds.large_chunks, lb, ub, st); 738 } 739 740 // free all the hierarchy scheduling memory associated with the team 741 void __kmp_dispatch_free_hierarchies(kmp_team_t *team) { 742 int num_disp_buff = team->t.t_max_nproc > 1 ? __kmp_dispatch_num_buffers : 2; 743 for (int i = 0; i < num_disp_buff; ++i) { 744 // type does not matter here so use kmp_int32 745 auto sh = 746 reinterpret_cast<dispatch_shared_info_template<kmp_int32> volatile *>( 747 &team->t.t_disp_buffer[i]); 748 if (sh->hier) { 749 sh->hier->deallocate(); 750 __kmp_free(sh->hier); 751 } 752 } 753 } 754 #endif 755 756 // UT - unsigned flavor of T, ST - signed flavor of T, 757 // DBL - double if sizeof(T)==4, or long double if sizeof(T)==8 758 template <typename T> 759 static void 760 __kmp_dispatch_init(ident_t *loc, int gtid, enum sched_type schedule, T lb, 761 T ub, typename traits_t<T>::signed_t st, 762 typename traits_t<T>::signed_t chunk, int push_ws) { 763 typedef typename traits_t<T>::unsigned_t UT; 764 765 int active; 766 kmp_info_t *th; 767 kmp_team_t *team; 768 kmp_uint32 my_buffer_index; 769 dispatch_private_info_template<T> *pr; 770 dispatch_shared_info_template<T> volatile *sh; 771 772 KMP_BUILD_ASSERT(sizeof(dispatch_private_info_template<T>) == 773 sizeof(dispatch_private_info)); 774 KMP_BUILD_ASSERT(sizeof(dispatch_shared_info_template<UT>) == 775 sizeof(dispatch_shared_info)); 776 777 if (!TCR_4(__kmp_init_parallel)) 778 __kmp_parallel_initialize(); 779 780 __kmp_resume_if_soft_paused(); 781 782 #if INCLUDE_SSC_MARKS 783 SSC_MARK_DISPATCH_INIT(); 784 #endif 785 #ifdef KMP_DEBUG 786 typedef typename traits_t<T>::signed_t ST; 787 { 788 char *buff; 789 // create format specifiers before the debug output 790 buff = __kmp_str_format("__kmp_dispatch_init: T#%%d called: schedule:%%d " 791 "chunk:%%%s lb:%%%s ub:%%%s st:%%%s\n", 792 traits_t<ST>::spec, traits_t<T>::spec, 793 traits_t<T>::spec, traits_t<ST>::spec); 794 KD_TRACE(10, (buff, gtid, schedule, chunk, lb, ub, st)); 795 __kmp_str_free(&buff); 796 } 797 #endif 798 /* setup data */ 799 th = __kmp_threads[gtid]; 800 team = th->th.th_team; 801 active = !team->t.t_serialized; 802 th->th.th_ident = loc; 803 804 // Any half-decent optimizer will remove this test when the blocks are empty 805 // since the macros expand to nothing 806 // when statistics are disabled. 807 if (schedule == __kmp_static) { 808 KMP_COUNT_BLOCK(OMP_LOOP_STATIC); 809 } else { 810 KMP_COUNT_BLOCK(OMP_LOOP_DYNAMIC); 811 } 812 813 #if KMP_USE_HIER_SCHED 814 // Initialize the scheduling hierarchy if requested in OMP_SCHEDULE envirable 815 // Hierarchical scheduling does not work with ordered, so if ordered is 816 // detected, then revert back to threaded scheduling. 817 bool ordered; 818 enum sched_type my_sched = schedule; 819 my_buffer_index = th->th.th_dispatch->th_disp_index; 820 pr = reinterpret_cast<dispatch_private_info_template<T> *>( 821 &th->th.th_dispatch 822 ->th_disp_buffer[my_buffer_index % __kmp_dispatch_num_buffers]); 823 my_sched = SCHEDULE_WITHOUT_MODIFIERS(my_sched); 824 if ((my_sched >= kmp_nm_lower) && (my_sched < kmp_nm_upper)) 825 my_sched = 826 (enum sched_type)(((int)my_sched) - (kmp_nm_lower - kmp_sch_lower)); 827 ordered = (kmp_ord_lower & my_sched); 828 if (pr->flags.use_hier) { 829 if (ordered) { 830 KD_TRACE(100, ("__kmp_dispatch_init: T#%d ordered loop detected. " 831 "Disabling hierarchical scheduling.\n", 832 gtid)); 833 pr->flags.use_hier = FALSE; 834 } 835 } 836 if (schedule == kmp_sch_runtime && __kmp_hier_scheds.size > 0) { 837 // Don't use hierarchical for ordered parallel loops and don't 838 // use the runtime hierarchy if one was specified in the program 839 if (!ordered && !pr->flags.use_hier) 840 __kmp_dispatch_init_hier_runtime<T>(loc, lb, ub, st); 841 } 842 #endif // KMP_USE_HIER_SCHED 843 844 #if USE_ITT_BUILD 845 kmp_uint64 cur_chunk = chunk; 846 int itt_need_metadata_reporting = 847 __itt_metadata_add_ptr && __kmp_forkjoin_frames_mode == 3 && 848 KMP_MASTER_GTID(gtid) && th->th.th_teams_microtask == NULL && 849 team->t.t_active_level == 1; 850 #endif 851 if (!active) { 852 pr = reinterpret_cast<dispatch_private_info_template<T> *>( 853 th->th.th_dispatch->th_disp_buffer); /* top of the stack */ 854 } else { 855 KMP_DEBUG_ASSERT(th->th.th_dispatch == 856 &th->th.th_team->t.t_dispatch[th->th.th_info.ds.ds_tid]); 857 858 my_buffer_index = th->th.th_dispatch->th_disp_index++; 859 860 /* What happens when number of threads changes, need to resize buffer? */ 861 pr = reinterpret_cast<dispatch_private_info_template<T> *>( 862 &th->th.th_dispatch 863 ->th_disp_buffer[my_buffer_index % __kmp_dispatch_num_buffers]); 864 sh = reinterpret_cast<dispatch_shared_info_template<T> volatile *>( 865 &team->t.t_disp_buffer[my_buffer_index % __kmp_dispatch_num_buffers]); 866 KD_TRACE(10, ("__kmp_dispatch_init: T#%d my_buffer_index:%d\n", gtid, 867 my_buffer_index)); 868 } 869 870 __kmp_dispatch_init_algorithm(loc, gtid, pr, schedule, lb, ub, st, 871 #if USE_ITT_BUILD 872 &cur_chunk, 873 #endif 874 chunk, (T)th->th.th_team_nproc, 875 (T)th->th.th_info.ds.ds_tid); 876 if (active) { 877 if (pr->flags.ordered == 0) { 878 th->th.th_dispatch->th_deo_fcn = __kmp_dispatch_deo_error; 879 th->th.th_dispatch->th_dxo_fcn = __kmp_dispatch_dxo_error; 880 } else { 881 th->th.th_dispatch->th_deo_fcn = __kmp_dispatch_deo<UT>; 882 th->th.th_dispatch->th_dxo_fcn = __kmp_dispatch_dxo<UT>; 883 } 884 } 885 886 if (active) { 887 /* The name of this buffer should be my_buffer_index when it's free to use 888 * it */ 889 890 KD_TRACE(100, ("__kmp_dispatch_init: T#%d before wait: my_buffer_index:%d " 891 "sh->buffer_index:%d\n", 892 gtid, my_buffer_index, sh->buffer_index)); 893 __kmp_wait<kmp_uint32>(&sh->buffer_index, my_buffer_index, 894 __kmp_eq<kmp_uint32> USE_ITT_BUILD_ARG(NULL)); 895 // Note: KMP_WAIT() cannot be used there: buffer index and 896 // my_buffer_index are *always* 32-bit integers. 897 KMP_MB(); /* is this necessary? */ 898 KD_TRACE(100, ("__kmp_dispatch_init: T#%d after wait: my_buffer_index:%d " 899 "sh->buffer_index:%d\n", 900 gtid, my_buffer_index, sh->buffer_index)); 901 902 th->th.th_dispatch->th_dispatch_pr_current = (dispatch_private_info_t *)pr; 903 th->th.th_dispatch->th_dispatch_sh_current = 904 CCAST(dispatch_shared_info_t *, (volatile dispatch_shared_info_t *)sh); 905 #if USE_ITT_BUILD 906 if (pr->flags.ordered) { 907 __kmp_itt_ordered_init(gtid); 908 } 909 // Report loop metadata 910 if (itt_need_metadata_reporting) { 911 // Only report metadata by master of active team at level 1 912 kmp_uint64 schedtype = 0; 913 switch (schedule) { 914 case kmp_sch_static_chunked: 915 case kmp_sch_static_balanced: // Chunk is calculated in the switch above 916 break; 917 case kmp_sch_static_greedy: 918 cur_chunk = pr->u.p.parm1; 919 break; 920 case kmp_sch_dynamic_chunked: 921 schedtype = 1; 922 break; 923 case kmp_sch_guided_iterative_chunked: 924 case kmp_sch_guided_analytical_chunked: 925 case kmp_sch_guided_simd: 926 schedtype = 2; 927 break; 928 default: 929 // Should we put this case under "static"? 930 // case kmp_sch_static_steal: 931 schedtype = 3; 932 break; 933 } 934 __kmp_itt_metadata_loop(loc, schedtype, pr->u.p.tc, cur_chunk); 935 } 936 #if KMP_USE_HIER_SCHED 937 if (pr->flags.use_hier) { 938 pr->u.p.count = 0; 939 pr->u.p.ub = pr->u.p.lb = pr->u.p.st = pr->u.p.tc = 0; 940 } 941 #endif // KMP_USER_HIER_SCHED 942 #endif /* USE_ITT_BUILD */ 943 } 944 945 #ifdef KMP_DEBUG 946 { 947 char *buff; 948 // create format specifiers before the debug output 949 buff = __kmp_str_format( 950 "__kmp_dispatch_init: T#%%d returning: schedule:%%d ordered:%%%s " 951 "lb:%%%s ub:%%%s" 952 " st:%%%s tc:%%%s count:%%%s\n\tordered_lower:%%%s ordered_upper:%%%s" 953 " parm1:%%%s parm2:%%%s parm3:%%%s parm4:%%%s\n", 954 traits_t<UT>::spec, traits_t<T>::spec, traits_t<T>::spec, 955 traits_t<ST>::spec, traits_t<UT>::spec, traits_t<UT>::spec, 956 traits_t<UT>::spec, traits_t<UT>::spec, traits_t<T>::spec, 957 traits_t<T>::spec, traits_t<T>::spec, traits_t<T>::spec); 958 KD_TRACE(10, (buff, gtid, pr->schedule, pr->flags.ordered, pr->u.p.lb, 959 pr->u.p.ub, pr->u.p.st, pr->u.p.tc, pr->u.p.count, 960 pr->u.p.ordered_lower, pr->u.p.ordered_upper, pr->u.p.parm1, 961 pr->u.p.parm2, pr->u.p.parm3, pr->u.p.parm4)); 962 __kmp_str_free(&buff); 963 } 964 #endif 965 #if (KMP_STATIC_STEAL_ENABLED) 966 // It cannot be guaranteed that after execution of a loop with some other 967 // schedule kind all the parm3 variables will contain the same value. Even if 968 // all parm3 will be the same, it still exists a bad case like using 0 and 1 969 // rather than program life-time increment. So the dedicated variable is 970 // required. The 'static_steal_counter' is used. 971 if (schedule == kmp_sch_static_steal) { 972 // Other threads will inspect this variable when searching for a victim. 973 // This is a flag showing that other threads may steal from this thread 974 // since then. 975 volatile T *p = &pr->u.p.static_steal_counter; 976 *p = *p + 1; 977 } 978 #endif // ( KMP_STATIC_STEAL_ENABLED ) 979 980 #if OMPT_SUPPORT && OMPT_OPTIONAL 981 if (ompt_enabled.ompt_callback_work) { 982 ompt_team_info_t *team_info = __ompt_get_teaminfo(0, NULL); 983 ompt_task_info_t *task_info = __ompt_get_task_info_object(0); 984 ompt_callbacks.ompt_callback(ompt_callback_work)( 985 ompt_work_loop, ompt_scope_begin, &(team_info->parallel_data), 986 &(task_info->task_data), pr->u.p.tc, OMPT_LOAD_RETURN_ADDRESS(gtid)); 987 } 988 #endif 989 KMP_PUSH_PARTITIONED_TIMER(OMP_loop_dynamic); 990 } 991 992 /* For ordered loops, either __kmp_dispatch_finish() should be called after 993 * every iteration, or __kmp_dispatch_finish_chunk() should be called after 994 * every chunk of iterations. If the ordered section(s) were not executed 995 * for this iteration (or every iteration in this chunk), we need to set the 996 * ordered iteration counters so that the next thread can proceed. */ 997 template <typename UT> 998 static void __kmp_dispatch_finish(int gtid, ident_t *loc) { 999 typedef typename traits_t<UT>::signed_t ST; 1000 kmp_info_t *th = __kmp_threads[gtid]; 1001 1002 KD_TRACE(100, ("__kmp_dispatch_finish: T#%d called\n", gtid)); 1003 if (!th->th.th_team->t.t_serialized) { 1004 1005 dispatch_private_info_template<UT> *pr = 1006 reinterpret_cast<dispatch_private_info_template<UT> *>( 1007 th->th.th_dispatch->th_dispatch_pr_current); 1008 dispatch_shared_info_template<UT> volatile *sh = 1009 reinterpret_cast<dispatch_shared_info_template<UT> volatile *>( 1010 th->th.th_dispatch->th_dispatch_sh_current); 1011 KMP_DEBUG_ASSERT(pr); 1012 KMP_DEBUG_ASSERT(sh); 1013 KMP_DEBUG_ASSERT(th->th.th_dispatch == 1014 &th->th.th_team->t.t_dispatch[th->th.th_info.ds.ds_tid]); 1015 1016 if (pr->ordered_bumped) { 1017 KD_TRACE( 1018 1000, 1019 ("__kmp_dispatch_finish: T#%d resetting ordered_bumped to zero\n", 1020 gtid)); 1021 pr->ordered_bumped = 0; 1022 } else { 1023 UT lower = pr->u.p.ordered_lower; 1024 1025 #ifdef KMP_DEBUG 1026 { 1027 char *buff; 1028 // create format specifiers before the debug output 1029 buff = __kmp_str_format("__kmp_dispatch_finish: T#%%d before wait: " 1030 "ordered_iteration:%%%s lower:%%%s\n", 1031 traits_t<UT>::spec, traits_t<UT>::spec); 1032 KD_TRACE(1000, (buff, gtid, sh->u.s.ordered_iteration, lower)); 1033 __kmp_str_free(&buff); 1034 } 1035 #endif 1036 1037 __kmp_wait<UT>(&sh->u.s.ordered_iteration, lower, 1038 __kmp_ge<UT> USE_ITT_BUILD_ARG(NULL)); 1039 KMP_MB(); /* is this necessary? */ 1040 #ifdef KMP_DEBUG 1041 { 1042 char *buff; 1043 // create format specifiers before the debug output 1044 buff = __kmp_str_format("__kmp_dispatch_finish: T#%%d after wait: " 1045 "ordered_iteration:%%%s lower:%%%s\n", 1046 traits_t<UT>::spec, traits_t<UT>::spec); 1047 KD_TRACE(1000, (buff, gtid, sh->u.s.ordered_iteration, lower)); 1048 __kmp_str_free(&buff); 1049 } 1050 #endif 1051 1052 test_then_inc<ST>((volatile ST *)&sh->u.s.ordered_iteration); 1053 } // if 1054 } // if 1055 KD_TRACE(100, ("__kmp_dispatch_finish: T#%d returned\n", gtid)); 1056 } 1057 1058 #ifdef KMP_GOMP_COMPAT 1059 1060 template <typename UT> 1061 static void __kmp_dispatch_finish_chunk(int gtid, ident_t *loc) { 1062 typedef typename traits_t<UT>::signed_t ST; 1063 kmp_info_t *th = __kmp_threads[gtid]; 1064 1065 KD_TRACE(100, ("__kmp_dispatch_finish_chunk: T#%d called\n", gtid)); 1066 if (!th->th.th_team->t.t_serialized) { 1067 // int cid; 1068 dispatch_private_info_template<UT> *pr = 1069 reinterpret_cast<dispatch_private_info_template<UT> *>( 1070 th->th.th_dispatch->th_dispatch_pr_current); 1071 dispatch_shared_info_template<UT> volatile *sh = 1072 reinterpret_cast<dispatch_shared_info_template<UT> volatile *>( 1073 th->th.th_dispatch->th_dispatch_sh_current); 1074 KMP_DEBUG_ASSERT(pr); 1075 KMP_DEBUG_ASSERT(sh); 1076 KMP_DEBUG_ASSERT(th->th.th_dispatch == 1077 &th->th.th_team->t.t_dispatch[th->th.th_info.ds.ds_tid]); 1078 1079 // for (cid = 0; cid < KMP_MAX_ORDERED; ++cid) { 1080 UT lower = pr->u.p.ordered_lower; 1081 UT upper = pr->u.p.ordered_upper; 1082 UT inc = upper - lower + 1; 1083 1084 if (pr->ordered_bumped == inc) { 1085 KD_TRACE( 1086 1000, 1087 ("__kmp_dispatch_finish: T#%d resetting ordered_bumped to zero\n", 1088 gtid)); 1089 pr->ordered_bumped = 0; 1090 } else { 1091 inc -= pr->ordered_bumped; 1092 1093 #ifdef KMP_DEBUG 1094 { 1095 char *buff; 1096 // create format specifiers before the debug output 1097 buff = __kmp_str_format( 1098 "__kmp_dispatch_finish_chunk: T#%%d before wait: " 1099 "ordered_iteration:%%%s lower:%%%s upper:%%%s\n", 1100 traits_t<UT>::spec, traits_t<UT>::spec, traits_t<UT>::spec); 1101 KD_TRACE(1000, (buff, gtid, sh->u.s.ordered_iteration, lower, upper)); 1102 __kmp_str_free(&buff); 1103 } 1104 #endif 1105 1106 __kmp_wait<UT>(&sh->u.s.ordered_iteration, lower, 1107 __kmp_ge<UT> USE_ITT_BUILD_ARG(NULL)); 1108 1109 KMP_MB(); /* is this necessary? */ 1110 KD_TRACE(1000, ("__kmp_dispatch_finish_chunk: T#%d resetting " 1111 "ordered_bumped to zero\n", 1112 gtid)); 1113 pr->ordered_bumped = 0; 1114 //!!!!! TODO check if the inc should be unsigned, or signed??? 1115 #ifdef KMP_DEBUG 1116 { 1117 char *buff; 1118 // create format specifiers before the debug output 1119 buff = __kmp_str_format( 1120 "__kmp_dispatch_finish_chunk: T#%%d after wait: " 1121 "ordered_iteration:%%%s inc:%%%s lower:%%%s upper:%%%s\n", 1122 traits_t<UT>::spec, traits_t<UT>::spec, traits_t<UT>::spec, 1123 traits_t<UT>::spec); 1124 KD_TRACE(1000, 1125 (buff, gtid, sh->u.s.ordered_iteration, inc, lower, upper)); 1126 __kmp_str_free(&buff); 1127 } 1128 #endif 1129 1130 test_then_add<ST>((volatile ST *)&sh->u.s.ordered_iteration, inc); 1131 } 1132 // } 1133 } 1134 KD_TRACE(100, ("__kmp_dispatch_finish_chunk: T#%d returned\n", gtid)); 1135 } 1136 1137 #endif /* KMP_GOMP_COMPAT */ 1138 1139 template <typename T> 1140 int __kmp_dispatch_next_algorithm(int gtid, 1141 dispatch_private_info_template<T> *pr, 1142 dispatch_shared_info_template<T> volatile *sh, 1143 kmp_int32 *p_last, T *p_lb, T *p_ub, 1144 typename traits_t<T>::signed_t *p_st, T nproc, 1145 T tid) { 1146 typedef typename traits_t<T>::unsigned_t UT; 1147 typedef typename traits_t<T>::signed_t ST; 1148 typedef typename traits_t<T>::floating_t DBL; 1149 int status = 0; 1150 kmp_int32 last = 0; 1151 T start; 1152 ST incr; 1153 UT limit, trip, init; 1154 kmp_info_t *th = __kmp_threads[gtid]; 1155 kmp_team_t *team = th->th.th_team; 1156 1157 KMP_DEBUG_ASSERT(th->th.th_dispatch == 1158 &th->th.th_team->t.t_dispatch[th->th.th_info.ds.ds_tid]); 1159 KMP_DEBUG_ASSERT(pr); 1160 KMP_DEBUG_ASSERT(sh); 1161 KMP_DEBUG_ASSERT(tid >= 0 && tid < nproc); 1162 #ifdef KMP_DEBUG 1163 { 1164 char *buff; 1165 // create format specifiers before the debug output 1166 buff = 1167 __kmp_str_format("__kmp_dispatch_next_algorithm: T#%%d called pr:%%p " 1168 "sh:%%p nproc:%%%s tid:%%%s\n", 1169 traits_t<T>::spec, traits_t<T>::spec); 1170 KD_TRACE(10, (buff, gtid, pr, sh, nproc, tid)); 1171 __kmp_str_free(&buff); 1172 } 1173 #endif 1174 1175 // zero trip count 1176 if (pr->u.p.tc == 0) { 1177 KD_TRACE(10, 1178 ("__kmp_dispatch_next_algorithm: T#%d early exit trip count is " 1179 "zero status:%d\n", 1180 gtid, status)); 1181 return 0; 1182 } 1183 1184 switch (pr->schedule) { 1185 #if (KMP_STATIC_STEAL_ENABLED) 1186 case kmp_sch_static_steal: { 1187 T chunk = pr->u.p.parm1; 1188 1189 KD_TRACE(100, 1190 ("__kmp_dispatch_next_algorithm: T#%d kmp_sch_static_steal case\n", 1191 gtid)); 1192 1193 trip = pr->u.p.tc - 1; 1194 1195 if (traits_t<T>::type_size > 4) { 1196 // use lock for 8-byte and CAS for 4-byte induction 1197 // variable. TODO (optional): check and use 16-byte CAS 1198 kmp_lock_t *lck = th->th.th_dispatch->th_steal_lock; 1199 KMP_DEBUG_ASSERT(lck != NULL); 1200 if (pr->u.p.count < (UT)pr->u.p.ub) { 1201 __kmp_acquire_lock(lck, gtid); 1202 // try to get own chunk of iterations 1203 init = (pr->u.p.count)++; 1204 status = (init < (UT)pr->u.p.ub); 1205 __kmp_release_lock(lck, gtid); 1206 } else { 1207 status = 0; // no own chunks 1208 } 1209 if (!status) { // try to steal 1210 kmp_info_t **other_threads = team->t.t_threads; 1211 int while_limit = pr->u.p.parm3; 1212 int while_index = 0; 1213 // TODO: algorithm of searching for a victim 1214 // should be cleaned up and measured 1215 while ((!status) && (while_limit != ++while_index)) { 1216 T remaining; 1217 T victimIdx = pr->u.p.parm4; 1218 T oldVictimIdx = victimIdx ? victimIdx - 1 : nproc - 1; 1219 dispatch_private_info_template<T> *victim = 1220 reinterpret_cast<dispatch_private_info_template<T> *>( 1221 other_threads[victimIdx] 1222 ->th.th_dispatch->th_dispatch_pr_current); 1223 while ((victim == NULL || victim == pr || 1224 (*(volatile T *)&victim->u.p.static_steal_counter != 1225 *(volatile T *)&pr->u.p.static_steal_counter)) && 1226 oldVictimIdx != victimIdx) { 1227 victimIdx = (victimIdx + 1) % nproc; 1228 victim = reinterpret_cast<dispatch_private_info_template<T> *>( 1229 other_threads[victimIdx] 1230 ->th.th_dispatch->th_dispatch_pr_current); 1231 } 1232 if (!victim || (*(volatile T *)&victim->u.p.static_steal_counter != 1233 *(volatile T *)&pr->u.p.static_steal_counter)) { 1234 continue; // try once more (nproc attempts in total) 1235 // no victim is ready yet to participate in stealing 1236 // because all victims are still in kmp_init_dispatch 1237 } 1238 if (victim->u.p.count + 2 > (UT)victim->u.p.ub) { 1239 pr->u.p.parm4 = (victimIdx + 1) % nproc; // shift start tid 1240 continue; // not enough chunks to steal, goto next victim 1241 } 1242 1243 lck = other_threads[victimIdx]->th.th_dispatch->th_steal_lock; 1244 KMP_ASSERT(lck != NULL); 1245 __kmp_acquire_lock(lck, gtid); 1246 limit = victim->u.p.ub; // keep initial ub 1247 if (victim->u.p.count >= limit || 1248 (remaining = limit - victim->u.p.count) < 2) { 1249 __kmp_release_lock(lck, gtid); 1250 pr->u.p.parm4 = (victimIdx + 1) % nproc; // next victim 1251 continue; // not enough chunks to steal 1252 } 1253 // stealing succeded, reduce victim's ub by 1/4 of undone chunks or 1254 // by 1 1255 if (remaining > 3) { 1256 // steal 1/4 of remaining 1257 KMP_COUNT_DEVELOPER_VALUE(FOR_static_steal_stolen, remaining >> 2); 1258 init = (victim->u.p.ub -= (remaining >> 2)); 1259 } else { 1260 // steal 1 chunk of 2 or 3 remaining 1261 KMP_COUNT_DEVELOPER_VALUE(FOR_static_steal_stolen, 1); 1262 init = (victim->u.p.ub -= 1); 1263 } 1264 __kmp_release_lock(lck, gtid); 1265 1266 KMP_DEBUG_ASSERT(init + 1 <= limit); 1267 pr->u.p.parm4 = victimIdx; // remember victim to steal from 1268 status = 1; 1269 while_index = 0; 1270 // now update own count and ub with stolen range but init chunk 1271 __kmp_acquire_lock(th->th.th_dispatch->th_steal_lock, gtid); 1272 pr->u.p.count = init + 1; 1273 pr->u.p.ub = limit; 1274 __kmp_release_lock(th->th.th_dispatch->th_steal_lock, gtid); 1275 } // while (search for victim) 1276 } // if (try to find victim and steal) 1277 } else { 1278 // 4-byte induction variable, use 8-byte CAS for pair (count, ub) 1279 typedef union { 1280 struct { 1281 UT count; 1282 T ub; 1283 } p; 1284 kmp_int64 b; 1285 } union_i4; 1286 // All operations on 'count' or 'ub' must be combined atomically 1287 // together. 1288 { 1289 union_i4 vold, vnew; 1290 vold.b = *(volatile kmp_int64 *)(&pr->u.p.count); 1291 vnew = vold; 1292 vnew.p.count++; 1293 while (!KMP_COMPARE_AND_STORE_ACQ64( 1294 (volatile kmp_int64 *)&pr->u.p.count, 1295 *VOLATILE_CAST(kmp_int64 *) & vold.b, 1296 *VOLATILE_CAST(kmp_int64 *) & vnew.b)) { 1297 KMP_CPU_PAUSE(); 1298 vold.b = *(volatile kmp_int64 *)(&pr->u.p.count); 1299 vnew = vold; 1300 vnew.p.count++; 1301 } 1302 vnew = vold; 1303 init = vnew.p.count; 1304 status = (init < (UT)vnew.p.ub); 1305 } 1306 1307 if (!status) { 1308 kmp_info_t **other_threads = team->t.t_threads; 1309 int while_limit = pr->u.p.parm3; 1310 int while_index = 0; 1311 1312 // TODO: algorithm of searching for a victim 1313 // should be cleaned up and measured 1314 while ((!status) && (while_limit != ++while_index)) { 1315 union_i4 vold, vnew; 1316 kmp_int32 remaining; 1317 T victimIdx = pr->u.p.parm4; 1318 T oldVictimIdx = victimIdx ? victimIdx - 1 : nproc - 1; 1319 dispatch_private_info_template<T> *victim = 1320 reinterpret_cast<dispatch_private_info_template<T> *>( 1321 other_threads[victimIdx] 1322 ->th.th_dispatch->th_dispatch_pr_current); 1323 while ((victim == NULL || victim == pr || 1324 (*(volatile T *)&victim->u.p.static_steal_counter != 1325 *(volatile T *)&pr->u.p.static_steal_counter)) && 1326 oldVictimIdx != victimIdx) { 1327 victimIdx = (victimIdx + 1) % nproc; 1328 victim = reinterpret_cast<dispatch_private_info_template<T> *>( 1329 other_threads[victimIdx] 1330 ->th.th_dispatch->th_dispatch_pr_current); 1331 } 1332 if (!victim || (*(volatile T *)&victim->u.p.static_steal_counter != 1333 *(volatile T *)&pr->u.p.static_steal_counter)) { 1334 continue; // try once more (nproc attempts in total) 1335 // no victim is ready yet to participate in stealing 1336 // because all victims are still in kmp_init_dispatch 1337 } 1338 pr->u.p.parm4 = victimIdx; // new victim found 1339 while (1) { // CAS loop if victim has enough chunks to steal 1340 vold.b = *(volatile kmp_int64 *)(&victim->u.p.count); 1341 vnew = vold; 1342 1343 KMP_DEBUG_ASSERT((vnew.p.ub - 1) * (UT)chunk <= trip); 1344 if (vnew.p.count >= (UT)vnew.p.ub || 1345 (remaining = vnew.p.ub - vnew.p.count) < 2) { 1346 pr->u.p.parm4 = (victimIdx + 1) % nproc; // shift start victim id 1347 break; // not enough chunks to steal, goto next victim 1348 } 1349 if (remaining > 3) { 1350 vnew.p.ub -= (remaining >> 2); // try to steal 1/4 of remaining 1351 } else { 1352 vnew.p.ub -= 1; // steal 1 chunk of 2 or 3 remaining 1353 } 1354 KMP_DEBUG_ASSERT((vnew.p.ub - 1) * (UT)chunk <= trip); 1355 // TODO: Should this be acquire or release? 1356 if (KMP_COMPARE_AND_STORE_ACQ64( 1357 (volatile kmp_int64 *)&victim->u.p.count, 1358 *VOLATILE_CAST(kmp_int64 *) & vold.b, 1359 *VOLATILE_CAST(kmp_int64 *) & vnew.b)) { 1360 // stealing succedded 1361 KMP_COUNT_DEVELOPER_VALUE(FOR_static_steal_stolen, 1362 vold.p.ub - vnew.p.ub); 1363 status = 1; 1364 while_index = 0; 1365 // now update own count and ub 1366 init = vnew.p.ub; 1367 vold.p.count = init + 1; 1368 #if KMP_ARCH_X86 1369 KMP_XCHG_FIXED64((volatile kmp_int64 *)(&pr->u.p.count), vold.b); 1370 #else 1371 *(volatile kmp_int64 *)(&pr->u.p.count) = vold.b; 1372 #endif 1373 break; 1374 } // if (check CAS result) 1375 KMP_CPU_PAUSE(); // CAS failed, repeate attempt 1376 } // while (try to steal from particular victim) 1377 } // while (search for victim) 1378 } // if (try to find victim and steal) 1379 } // if (4-byte induction variable) 1380 if (!status) { 1381 *p_lb = 0; 1382 *p_ub = 0; 1383 if (p_st != NULL) 1384 *p_st = 0; 1385 } else { 1386 start = pr->u.p.parm2; 1387 init *= chunk; 1388 limit = chunk + init - 1; 1389 incr = pr->u.p.st; 1390 KMP_COUNT_DEVELOPER_VALUE(FOR_static_steal_chunks, 1); 1391 1392 KMP_DEBUG_ASSERT(init <= trip); 1393 if ((last = (limit >= trip)) != 0) 1394 limit = trip; 1395 if (p_st != NULL) 1396 *p_st = incr; 1397 1398 if (incr == 1) { 1399 *p_lb = start + init; 1400 *p_ub = start + limit; 1401 } else { 1402 *p_lb = start + init * incr; 1403 *p_ub = start + limit * incr; 1404 } 1405 1406 if (pr->flags.ordered) { 1407 pr->u.p.ordered_lower = init; 1408 pr->u.p.ordered_upper = limit; 1409 } // if 1410 } // if 1411 break; 1412 } // case 1413 #endif // ( KMP_STATIC_STEAL_ENABLED ) 1414 case kmp_sch_static_balanced: { 1415 KD_TRACE( 1416 10, 1417 ("__kmp_dispatch_next_algorithm: T#%d kmp_sch_static_balanced case\n", 1418 gtid)); 1419 /* check if thread has any iteration to do */ 1420 if ((status = !pr->u.p.count) != 0) { 1421 pr->u.p.count = 1; 1422 *p_lb = pr->u.p.lb; 1423 *p_ub = pr->u.p.ub; 1424 last = pr->u.p.parm1; 1425 if (p_st != NULL) 1426 *p_st = pr->u.p.st; 1427 } else { /* no iterations to do */ 1428 pr->u.p.lb = pr->u.p.ub + pr->u.p.st; 1429 } 1430 } // case 1431 break; 1432 case kmp_sch_static_greedy: /* original code for kmp_sch_static_greedy was 1433 merged here */ 1434 case kmp_sch_static_chunked: { 1435 T parm1; 1436 1437 KD_TRACE(100, ("__kmp_dispatch_next_algorithm: T#%d " 1438 "kmp_sch_static_[affinity|chunked] case\n", 1439 gtid)); 1440 parm1 = pr->u.p.parm1; 1441 1442 trip = pr->u.p.tc - 1; 1443 init = parm1 * (pr->u.p.count + tid); 1444 1445 if ((status = (init <= trip)) != 0) { 1446 start = pr->u.p.lb; 1447 incr = pr->u.p.st; 1448 limit = parm1 + init - 1; 1449 1450 if ((last = (limit >= trip)) != 0) 1451 limit = trip; 1452 1453 if (p_st != NULL) 1454 *p_st = incr; 1455 1456 pr->u.p.count += nproc; 1457 1458 if (incr == 1) { 1459 *p_lb = start + init; 1460 *p_ub = start + limit; 1461 } else { 1462 *p_lb = start + init * incr; 1463 *p_ub = start + limit * incr; 1464 } 1465 1466 if (pr->flags.ordered) { 1467 pr->u.p.ordered_lower = init; 1468 pr->u.p.ordered_upper = limit; 1469 } // if 1470 } // if 1471 } // case 1472 break; 1473 1474 case kmp_sch_dynamic_chunked: { 1475 T chunk = pr->u.p.parm1; 1476 1477 KD_TRACE( 1478 100, 1479 ("__kmp_dispatch_next_algorithm: T#%d kmp_sch_dynamic_chunked case\n", 1480 gtid)); 1481 1482 init = chunk * test_then_inc_acq<ST>((volatile ST *)&sh->u.s.iteration); 1483 trip = pr->u.p.tc - 1; 1484 1485 if ((status = (init <= trip)) == 0) { 1486 *p_lb = 0; 1487 *p_ub = 0; 1488 if (p_st != NULL) 1489 *p_st = 0; 1490 } else { 1491 start = pr->u.p.lb; 1492 limit = chunk + init - 1; 1493 incr = pr->u.p.st; 1494 1495 if ((last = (limit >= trip)) != 0) 1496 limit = trip; 1497 1498 if (p_st != NULL) 1499 *p_st = incr; 1500 1501 if (incr == 1) { 1502 *p_lb = start + init; 1503 *p_ub = start + limit; 1504 } else { 1505 *p_lb = start + init * incr; 1506 *p_ub = start + limit * incr; 1507 } 1508 1509 if (pr->flags.ordered) { 1510 pr->u.p.ordered_lower = init; 1511 pr->u.p.ordered_upper = limit; 1512 } // if 1513 } // if 1514 } // case 1515 break; 1516 1517 case kmp_sch_guided_iterative_chunked: { 1518 T chunkspec = pr->u.p.parm1; 1519 KD_TRACE(100, ("__kmp_dispatch_next_algorithm: T#%d kmp_sch_guided_chunked " 1520 "iterative case\n", 1521 gtid)); 1522 trip = pr->u.p.tc; 1523 // Start atomic part of calculations 1524 while (1) { 1525 ST remaining; // signed, because can be < 0 1526 init = sh->u.s.iteration; // shared value 1527 remaining = trip - init; 1528 if (remaining <= 0) { // AC: need to compare with 0 first 1529 // nothing to do, don't try atomic op 1530 status = 0; 1531 break; 1532 } 1533 if ((T)remaining < 1534 pr->u.p.parm2) { // compare with K*nproc*(chunk+1), K=2 by default 1535 // use dynamic-style shcedule 1536 // atomically increment iterations, get old value 1537 init = test_then_add<ST>(RCAST(volatile ST *, &sh->u.s.iteration), 1538 (ST)chunkspec); 1539 remaining = trip - init; 1540 if (remaining <= 0) { 1541 status = 0; // all iterations got by other threads 1542 } else { 1543 // got some iterations to work on 1544 status = 1; 1545 if ((T)remaining > chunkspec) { 1546 limit = init + chunkspec - 1; 1547 } else { 1548 last = 1; // the last chunk 1549 limit = init + remaining - 1; 1550 } // if 1551 } // if 1552 break; 1553 } // if 1554 limit = init + 1555 (UT)(remaining * *(double *)&pr->u.p.parm3); // divide by K*nproc 1556 if (compare_and_swap<ST>(RCAST(volatile ST *, &sh->u.s.iteration), 1557 (ST)init, (ST)limit)) { 1558 // CAS was successful, chunk obtained 1559 status = 1; 1560 --limit; 1561 break; 1562 } // if 1563 } // while 1564 if (status != 0) { 1565 start = pr->u.p.lb; 1566 incr = pr->u.p.st; 1567 if (p_st != NULL) 1568 *p_st = incr; 1569 *p_lb = start + init * incr; 1570 *p_ub = start + limit * incr; 1571 if (pr->flags.ordered) { 1572 pr->u.p.ordered_lower = init; 1573 pr->u.p.ordered_upper = limit; 1574 } // if 1575 } else { 1576 *p_lb = 0; 1577 *p_ub = 0; 1578 if (p_st != NULL) 1579 *p_st = 0; 1580 } // if 1581 } // case 1582 break; 1583 1584 case kmp_sch_guided_simd: { 1585 // same as iterative but curr-chunk adjusted to be multiple of given 1586 // chunk 1587 T chunk = pr->u.p.parm1; 1588 KD_TRACE(100, 1589 ("__kmp_dispatch_next_algorithm: T#%d kmp_sch_guided_simd case\n", 1590 gtid)); 1591 trip = pr->u.p.tc; 1592 // Start atomic part of calculations 1593 while (1) { 1594 ST remaining; // signed, because can be < 0 1595 init = sh->u.s.iteration; // shared value 1596 remaining = trip - init; 1597 if (remaining <= 0) { // AC: need to compare with 0 first 1598 status = 0; // nothing to do, don't try atomic op 1599 break; 1600 } 1601 KMP_DEBUG_ASSERT(init % chunk == 0); 1602 // compare with K*nproc*(chunk+1), K=2 by default 1603 if ((T)remaining < pr->u.p.parm2) { 1604 // use dynamic-style shcedule 1605 // atomically increment iterations, get old value 1606 init = test_then_add<ST>(RCAST(volatile ST *, &sh->u.s.iteration), 1607 (ST)chunk); 1608 remaining = trip - init; 1609 if (remaining <= 0) { 1610 status = 0; // all iterations got by other threads 1611 } else { 1612 // got some iterations to work on 1613 status = 1; 1614 if ((T)remaining > chunk) { 1615 limit = init + chunk - 1; 1616 } else { 1617 last = 1; // the last chunk 1618 limit = init + remaining - 1; 1619 } // if 1620 } // if 1621 break; 1622 } // if 1623 // divide by K*nproc 1624 UT span = remaining * (*(double *)&pr->u.p.parm3); 1625 UT rem = span % chunk; 1626 if (rem) // adjust so that span%chunk == 0 1627 span += chunk - rem; 1628 limit = init + span; 1629 if (compare_and_swap<ST>(RCAST(volatile ST *, &sh->u.s.iteration), 1630 (ST)init, (ST)limit)) { 1631 // CAS was successful, chunk obtained 1632 status = 1; 1633 --limit; 1634 break; 1635 } // if 1636 } // while 1637 if (status != 0) { 1638 start = pr->u.p.lb; 1639 incr = pr->u.p.st; 1640 if (p_st != NULL) 1641 *p_st = incr; 1642 *p_lb = start + init * incr; 1643 *p_ub = start + limit * incr; 1644 if (pr->flags.ordered) { 1645 pr->u.p.ordered_lower = init; 1646 pr->u.p.ordered_upper = limit; 1647 } // if 1648 } else { 1649 *p_lb = 0; 1650 *p_ub = 0; 1651 if (p_st != NULL) 1652 *p_st = 0; 1653 } // if 1654 } // case 1655 break; 1656 1657 case kmp_sch_guided_analytical_chunked: { 1658 T chunkspec = pr->u.p.parm1; 1659 UT chunkIdx; 1660 #if KMP_USE_X87CONTROL 1661 /* for storing original FPCW value for Windows* OS on 1662 IA-32 architecture 8-byte version */ 1663 unsigned int oldFpcw; 1664 unsigned int fpcwSet = 0; 1665 #endif 1666 KD_TRACE(100, ("__kmp_dispatch_next_algorithm: T#%d " 1667 "kmp_sch_guided_analytical_chunked case\n", 1668 gtid)); 1669 1670 trip = pr->u.p.tc; 1671 1672 KMP_DEBUG_ASSERT(nproc > 1); 1673 KMP_DEBUG_ASSERT((2UL * chunkspec + 1) * (UT)nproc < trip); 1674 1675 while (1) { /* this while loop is a safeguard against unexpected zero 1676 chunk sizes */ 1677 chunkIdx = test_then_inc_acq<ST>((volatile ST *)&sh->u.s.iteration); 1678 if (chunkIdx >= (UT)pr->u.p.parm2) { 1679 --trip; 1680 /* use dynamic-style scheduling */ 1681 init = chunkIdx * chunkspec + pr->u.p.count; 1682 /* need to verify init > 0 in case of overflow in the above 1683 * calculation */ 1684 if ((status = (init > 0 && init <= trip)) != 0) { 1685 limit = init + chunkspec - 1; 1686 1687 if ((last = (limit >= trip)) != 0) 1688 limit = trip; 1689 } 1690 break; 1691 } else { 1692 /* use exponential-style scheduling */ 1693 /* The following check is to workaround the lack of long double precision on 1694 Windows* OS. 1695 This check works around the possible effect that init != 0 for chunkIdx == 0. 1696 */ 1697 #if KMP_USE_X87CONTROL 1698 /* If we haven't already done so, save original 1699 FPCW and set precision to 64-bit, as Windows* OS 1700 on IA-32 architecture defaults to 53-bit */ 1701 if (!fpcwSet) { 1702 oldFpcw = _control87(0, 0); 1703 _control87(_PC_64, _MCW_PC); 1704 fpcwSet = 0x30000; 1705 } 1706 #endif 1707 if (chunkIdx) { 1708 init = __kmp_dispatch_guided_remaining<T>( 1709 trip, *(DBL *)&pr->u.p.parm3, chunkIdx); 1710 KMP_DEBUG_ASSERT(init); 1711 init = trip - init; 1712 } else 1713 init = 0; 1714 limit = trip - __kmp_dispatch_guided_remaining<T>( 1715 trip, *(DBL *)&pr->u.p.parm3, chunkIdx + 1); 1716 KMP_ASSERT(init <= limit); 1717 if (init < limit) { 1718 KMP_DEBUG_ASSERT(limit <= trip); 1719 --limit; 1720 status = 1; 1721 break; 1722 } // if 1723 } // if 1724 } // while (1) 1725 #if KMP_USE_X87CONTROL 1726 /* restore FPCW if necessary 1727 AC: check fpcwSet flag first because oldFpcw can be uninitialized here 1728 */ 1729 if (fpcwSet && (oldFpcw & fpcwSet)) 1730 _control87(oldFpcw, _MCW_PC); 1731 #endif 1732 if (status != 0) { 1733 start = pr->u.p.lb; 1734 incr = pr->u.p.st; 1735 if (p_st != NULL) 1736 *p_st = incr; 1737 *p_lb = start + init * incr; 1738 *p_ub = start + limit * incr; 1739 if (pr->flags.ordered) { 1740 pr->u.p.ordered_lower = init; 1741 pr->u.p.ordered_upper = limit; 1742 } 1743 } else { 1744 *p_lb = 0; 1745 *p_ub = 0; 1746 if (p_st != NULL) 1747 *p_st = 0; 1748 } 1749 } // case 1750 break; 1751 1752 case kmp_sch_trapezoidal: { 1753 UT index; 1754 T parm2 = pr->u.p.parm2; 1755 T parm3 = pr->u.p.parm3; 1756 T parm4 = pr->u.p.parm4; 1757 KD_TRACE(100, 1758 ("__kmp_dispatch_next_algorithm: T#%d kmp_sch_trapezoidal case\n", 1759 gtid)); 1760 1761 index = test_then_inc<ST>((volatile ST *)&sh->u.s.iteration); 1762 1763 init = (index * ((2 * parm2) - (index - 1) * parm4)) / 2; 1764 trip = pr->u.p.tc - 1; 1765 1766 if ((status = ((T)index < parm3 && init <= trip)) == 0) { 1767 *p_lb = 0; 1768 *p_ub = 0; 1769 if (p_st != NULL) 1770 *p_st = 0; 1771 } else { 1772 start = pr->u.p.lb; 1773 limit = ((index + 1) * (2 * parm2 - index * parm4)) / 2 - 1; 1774 incr = pr->u.p.st; 1775 1776 if ((last = (limit >= trip)) != 0) 1777 limit = trip; 1778 1779 if (p_st != NULL) 1780 *p_st = incr; 1781 1782 if (incr == 1) { 1783 *p_lb = start + init; 1784 *p_ub = start + limit; 1785 } else { 1786 *p_lb = start + init * incr; 1787 *p_ub = start + limit * incr; 1788 } 1789 1790 if (pr->flags.ordered) { 1791 pr->u.p.ordered_lower = init; 1792 pr->u.p.ordered_upper = limit; 1793 } // if 1794 } // if 1795 } // case 1796 break; 1797 default: { 1798 status = 0; // to avoid complaints on uninitialized variable use 1799 __kmp_fatal(KMP_MSG(UnknownSchedTypeDetected), // Primary message 1800 KMP_HNT(GetNewerLibrary), // Hint 1801 __kmp_msg_null // Variadic argument list terminator 1802 ); 1803 } break; 1804 } // switch 1805 if (p_last) 1806 *p_last = last; 1807 #ifdef KMP_DEBUG 1808 if (pr->flags.ordered) { 1809 char *buff; 1810 // create format specifiers before the debug output 1811 buff = __kmp_str_format("__kmp_dispatch_next_algorithm: T#%%d " 1812 "ordered_lower:%%%s ordered_upper:%%%s\n", 1813 traits_t<UT>::spec, traits_t<UT>::spec); 1814 KD_TRACE(1000, (buff, gtid, pr->u.p.ordered_lower, pr->u.p.ordered_upper)); 1815 __kmp_str_free(&buff); 1816 } 1817 { 1818 char *buff; 1819 // create format specifiers before the debug output 1820 buff = __kmp_str_format( 1821 "__kmp_dispatch_next_algorithm: T#%%d exit status:%%d p_last:%%d " 1822 "p_lb:%%%s p_ub:%%%s p_st:%%%s\n", 1823 traits_t<T>::spec, traits_t<T>::spec, traits_t<ST>::spec); 1824 KD_TRACE(10, (buff, gtid, status, *p_last, *p_lb, *p_ub, *p_st)); 1825 __kmp_str_free(&buff); 1826 } 1827 #endif 1828 return status; 1829 } 1830 1831 /* Define a macro for exiting __kmp_dispatch_next(). If status is 0 (no more 1832 work), then tell OMPT the loop is over. In some cases kmp_dispatch_fini() 1833 is not called. */ 1834 #if OMPT_SUPPORT && OMPT_OPTIONAL 1835 #define OMPT_LOOP_END \ 1836 if (status == 0) { \ 1837 if (ompt_enabled.ompt_callback_work) { \ 1838 ompt_team_info_t *team_info = __ompt_get_teaminfo(0, NULL); \ 1839 ompt_task_info_t *task_info = __ompt_get_task_info_object(0); \ 1840 ompt_callbacks.ompt_callback(ompt_callback_work)( \ 1841 ompt_work_loop, ompt_scope_end, &(team_info->parallel_data), \ 1842 &(task_info->task_data), 0, codeptr); \ 1843 } \ 1844 } 1845 // TODO: implement count 1846 #else 1847 #define OMPT_LOOP_END // no-op 1848 #endif 1849 1850 #if KMP_STATS_ENABLED 1851 #define KMP_STATS_LOOP_END \ 1852 { \ 1853 kmp_int64 u, l, t, i; \ 1854 l = (kmp_int64)(*p_lb); \ 1855 u = (kmp_int64)(*p_ub); \ 1856 i = (kmp_int64)(pr->u.p.st); \ 1857 if (status == 0) { \ 1858 t = 0; \ 1859 KMP_POP_PARTITIONED_TIMER(); \ 1860 } else if (i == 1) { \ 1861 if (u >= l) \ 1862 t = u - l + 1; \ 1863 else \ 1864 t = 0; \ 1865 } else if (i < 0) { \ 1866 if (l >= u) \ 1867 t = (l - u) / (-i) + 1; \ 1868 else \ 1869 t = 0; \ 1870 } else { \ 1871 if (u >= l) \ 1872 t = (u - l) / i + 1; \ 1873 else \ 1874 t = 0; \ 1875 } \ 1876 KMP_COUNT_VALUE(OMP_loop_dynamic_iterations, t); \ 1877 } 1878 #else 1879 #define KMP_STATS_LOOP_END /* Nothing */ 1880 #endif 1881 1882 template <typename T> 1883 static int __kmp_dispatch_next(ident_t *loc, int gtid, kmp_int32 *p_last, 1884 T *p_lb, T *p_ub, 1885 typename traits_t<T>::signed_t *p_st 1886 #if OMPT_SUPPORT && OMPT_OPTIONAL 1887 , 1888 void *codeptr 1889 #endif 1890 ) { 1891 1892 typedef typename traits_t<T>::unsigned_t UT; 1893 typedef typename traits_t<T>::signed_t ST; 1894 // This is potentially slightly misleading, schedule(runtime) will appear here 1895 // even if the actual runtme schedule is static. (Which points out a 1896 // disadvantage of schedule(runtime): even when static scheduling is used it 1897 // costs more than a compile time choice to use static scheduling would.) 1898 KMP_TIME_PARTITIONED_BLOCK(OMP_loop_dynamic_scheduling); 1899 1900 int status; 1901 dispatch_private_info_template<T> *pr; 1902 kmp_info_t *th = __kmp_threads[gtid]; 1903 kmp_team_t *team = th->th.th_team; 1904 1905 KMP_DEBUG_ASSERT(p_lb && p_ub && p_st); // AC: these cannot be NULL 1906 KD_TRACE( 1907 1000, 1908 ("__kmp_dispatch_next: T#%d called p_lb:%p p_ub:%p p_st:%p p_last: %p\n", 1909 gtid, p_lb, p_ub, p_st, p_last)); 1910 1911 if (team->t.t_serialized) { 1912 /* NOTE: serialize this dispatch becase we are not at the active level */ 1913 pr = reinterpret_cast<dispatch_private_info_template<T> *>( 1914 th->th.th_dispatch->th_disp_buffer); /* top of the stack */ 1915 KMP_DEBUG_ASSERT(pr); 1916 1917 if ((status = (pr->u.p.tc != 0)) == 0) { 1918 *p_lb = 0; 1919 *p_ub = 0; 1920 // if ( p_last != NULL ) 1921 // *p_last = 0; 1922 if (p_st != NULL) 1923 *p_st = 0; 1924 if (__kmp_env_consistency_check) { 1925 if (pr->pushed_ws != ct_none) { 1926 pr->pushed_ws = __kmp_pop_workshare(gtid, pr->pushed_ws, loc); 1927 } 1928 } 1929 } else if (pr->flags.nomerge) { 1930 kmp_int32 last; 1931 T start; 1932 UT limit, trip, init; 1933 ST incr; 1934 T chunk = pr->u.p.parm1; 1935 1936 KD_TRACE(100, ("__kmp_dispatch_next: T#%d kmp_sch_dynamic_chunked case\n", 1937 gtid)); 1938 1939 init = chunk * pr->u.p.count++; 1940 trip = pr->u.p.tc - 1; 1941 1942 if ((status = (init <= trip)) == 0) { 1943 *p_lb = 0; 1944 *p_ub = 0; 1945 // if ( p_last != NULL ) 1946 // *p_last = 0; 1947 if (p_st != NULL) 1948 *p_st = 0; 1949 if (__kmp_env_consistency_check) { 1950 if (pr->pushed_ws != ct_none) { 1951 pr->pushed_ws = __kmp_pop_workshare(gtid, pr->pushed_ws, loc); 1952 } 1953 } 1954 } else { 1955 start = pr->u.p.lb; 1956 limit = chunk + init - 1; 1957 incr = pr->u.p.st; 1958 1959 if ((last = (limit >= trip)) != 0) { 1960 limit = trip; 1961 #if KMP_OS_WINDOWS 1962 pr->u.p.last_upper = pr->u.p.ub; 1963 #endif /* KMP_OS_WINDOWS */ 1964 } 1965 if (p_last != NULL) 1966 *p_last = last; 1967 if (p_st != NULL) 1968 *p_st = incr; 1969 if (incr == 1) { 1970 *p_lb = start + init; 1971 *p_ub = start + limit; 1972 } else { 1973 *p_lb = start + init * incr; 1974 *p_ub = start + limit * incr; 1975 } 1976 1977 if (pr->flags.ordered) { 1978 pr->u.p.ordered_lower = init; 1979 pr->u.p.ordered_upper = limit; 1980 #ifdef KMP_DEBUG 1981 { 1982 char *buff; 1983 // create format specifiers before the debug output 1984 buff = __kmp_str_format("__kmp_dispatch_next: T#%%d " 1985 "ordered_lower:%%%s ordered_upper:%%%s\n", 1986 traits_t<UT>::spec, traits_t<UT>::spec); 1987 KD_TRACE(1000, (buff, gtid, pr->u.p.ordered_lower, 1988 pr->u.p.ordered_upper)); 1989 __kmp_str_free(&buff); 1990 } 1991 #endif 1992 } // if 1993 } // if 1994 } else { 1995 pr->u.p.tc = 0; 1996 *p_lb = pr->u.p.lb; 1997 *p_ub = pr->u.p.ub; 1998 #if KMP_OS_WINDOWS 1999 pr->u.p.last_upper = *p_ub; 2000 #endif /* KMP_OS_WINDOWS */ 2001 if (p_last != NULL) 2002 *p_last = TRUE; 2003 if (p_st != NULL) 2004 *p_st = pr->u.p.st; 2005 } // if 2006 #ifdef KMP_DEBUG 2007 { 2008 char *buff; 2009 // create format specifiers before the debug output 2010 buff = __kmp_str_format( 2011 "__kmp_dispatch_next: T#%%d serialized case: p_lb:%%%s " 2012 "p_ub:%%%s p_st:%%%s p_last:%%p %%d returning:%%d\n", 2013 traits_t<T>::spec, traits_t<T>::spec, traits_t<ST>::spec); 2014 KD_TRACE(10, (buff, gtid, *p_lb, *p_ub, *p_st, p_last, *p_last, status)); 2015 __kmp_str_free(&buff); 2016 } 2017 #endif 2018 #if INCLUDE_SSC_MARKS 2019 SSC_MARK_DISPATCH_NEXT(); 2020 #endif 2021 OMPT_LOOP_END; 2022 KMP_STATS_LOOP_END; 2023 return status; 2024 } else { 2025 kmp_int32 last = 0; 2026 dispatch_shared_info_template<T> volatile *sh; 2027 2028 KMP_DEBUG_ASSERT(th->th.th_dispatch == 2029 &th->th.th_team->t.t_dispatch[th->th.th_info.ds.ds_tid]); 2030 2031 pr = reinterpret_cast<dispatch_private_info_template<T> *>( 2032 th->th.th_dispatch->th_dispatch_pr_current); 2033 KMP_DEBUG_ASSERT(pr); 2034 sh = reinterpret_cast<dispatch_shared_info_template<T> volatile *>( 2035 th->th.th_dispatch->th_dispatch_sh_current); 2036 KMP_DEBUG_ASSERT(sh); 2037 2038 #if KMP_USE_HIER_SCHED 2039 if (pr->flags.use_hier) 2040 status = sh->hier->next(loc, gtid, pr, &last, p_lb, p_ub, p_st); 2041 else 2042 #endif // KMP_USE_HIER_SCHED 2043 status = __kmp_dispatch_next_algorithm<T>(gtid, pr, sh, &last, p_lb, p_ub, 2044 p_st, th->th.th_team_nproc, 2045 th->th.th_info.ds.ds_tid); 2046 // status == 0: no more iterations to execute 2047 if (status == 0) { 2048 UT num_done; 2049 2050 num_done = test_then_inc<ST>((volatile ST *)&sh->u.s.num_done); 2051 #ifdef KMP_DEBUG 2052 { 2053 char *buff; 2054 // create format specifiers before the debug output 2055 buff = __kmp_str_format( 2056 "__kmp_dispatch_next: T#%%d increment num_done:%%%s\n", 2057 traits_t<UT>::spec); 2058 KD_TRACE(10, (buff, gtid, sh->u.s.num_done)); 2059 __kmp_str_free(&buff); 2060 } 2061 #endif 2062 2063 #if KMP_USE_HIER_SCHED 2064 pr->flags.use_hier = FALSE; 2065 #endif 2066 if ((ST)num_done == th->th.th_team_nproc - 1) { 2067 #if (KMP_STATIC_STEAL_ENABLED) 2068 if (pr->schedule == kmp_sch_static_steal && 2069 traits_t<T>::type_size > 4) { 2070 int i; 2071 kmp_info_t **other_threads = team->t.t_threads; 2072 // loop complete, safe to destroy locks used for stealing 2073 for (i = 0; i < th->th.th_team_nproc; ++i) { 2074 kmp_lock_t *lck = other_threads[i]->th.th_dispatch->th_steal_lock; 2075 KMP_ASSERT(lck != NULL); 2076 __kmp_destroy_lock(lck); 2077 __kmp_free(lck); 2078 other_threads[i]->th.th_dispatch->th_steal_lock = NULL; 2079 } 2080 } 2081 #endif 2082 /* NOTE: release this buffer to be reused */ 2083 2084 KMP_MB(); /* Flush all pending memory write invalidates. */ 2085 2086 sh->u.s.num_done = 0; 2087 sh->u.s.iteration = 0; 2088 2089 /* TODO replace with general release procedure? */ 2090 if (pr->flags.ordered) { 2091 sh->u.s.ordered_iteration = 0; 2092 } 2093 2094 KMP_MB(); /* Flush all pending memory write invalidates. */ 2095 2096 sh->buffer_index += __kmp_dispatch_num_buffers; 2097 KD_TRACE(100, ("__kmp_dispatch_next: T#%d change buffer_index:%d\n", 2098 gtid, sh->buffer_index)); 2099 2100 KMP_MB(); /* Flush all pending memory write invalidates. */ 2101 2102 } // if 2103 if (__kmp_env_consistency_check) { 2104 if (pr->pushed_ws != ct_none) { 2105 pr->pushed_ws = __kmp_pop_workshare(gtid, pr->pushed_ws, loc); 2106 } 2107 } 2108 2109 th->th.th_dispatch->th_deo_fcn = NULL; 2110 th->th.th_dispatch->th_dxo_fcn = NULL; 2111 th->th.th_dispatch->th_dispatch_sh_current = NULL; 2112 th->th.th_dispatch->th_dispatch_pr_current = NULL; 2113 } // if (status == 0) 2114 #if KMP_OS_WINDOWS 2115 else if (last) { 2116 pr->u.p.last_upper = pr->u.p.ub; 2117 } 2118 #endif /* KMP_OS_WINDOWS */ 2119 if (p_last != NULL && status != 0) 2120 *p_last = last; 2121 } // if 2122 2123 #ifdef KMP_DEBUG 2124 { 2125 char *buff; 2126 // create format specifiers before the debug output 2127 buff = __kmp_str_format( 2128 "__kmp_dispatch_next: T#%%d normal case: " 2129 "p_lb:%%%s p_ub:%%%s p_st:%%%s p_last:%%p (%%d) returning:%%d\n", 2130 traits_t<T>::spec, traits_t<T>::spec, traits_t<ST>::spec); 2131 KD_TRACE(10, (buff, gtid, *p_lb, *p_ub, p_st ? *p_st : 0, p_last, 2132 (p_last ? *p_last : 0), status)); 2133 __kmp_str_free(&buff); 2134 } 2135 #endif 2136 #if INCLUDE_SSC_MARKS 2137 SSC_MARK_DISPATCH_NEXT(); 2138 #endif 2139 OMPT_LOOP_END; 2140 KMP_STATS_LOOP_END; 2141 return status; 2142 } 2143 2144 template <typename T> 2145 static void __kmp_dist_get_bounds(ident_t *loc, kmp_int32 gtid, 2146 kmp_int32 *plastiter, T *plower, T *pupper, 2147 typename traits_t<T>::signed_t incr) { 2148 typedef typename traits_t<T>::unsigned_t UT; 2149 kmp_uint32 team_id; 2150 kmp_uint32 nteams; 2151 UT trip_count; 2152 kmp_team_t *team; 2153 kmp_info_t *th; 2154 2155 KMP_DEBUG_ASSERT(plastiter && plower && pupper); 2156 KE_TRACE(10, ("__kmpc_dist_get_bounds called (%d)\n", gtid)); 2157 #ifdef KMP_DEBUG 2158 typedef typename traits_t<T>::signed_t ST; 2159 { 2160 char *buff; 2161 // create format specifiers before the debug output 2162 buff = __kmp_str_format("__kmpc_dist_get_bounds: T#%%d liter=%%d " 2163 "iter=(%%%s, %%%s, %%%s) signed?<%s>\n", 2164 traits_t<T>::spec, traits_t<T>::spec, 2165 traits_t<ST>::spec, traits_t<T>::spec); 2166 KD_TRACE(100, (buff, gtid, *plastiter, *plower, *pupper, incr)); 2167 __kmp_str_free(&buff); 2168 } 2169 #endif 2170 2171 if (__kmp_env_consistency_check) { 2172 if (incr == 0) { 2173 __kmp_error_construct(kmp_i18n_msg_CnsLoopIncrZeroProhibited, ct_pdo, 2174 loc); 2175 } 2176 if (incr > 0 ? (*pupper < *plower) : (*plower < *pupper)) { 2177 // The loop is illegal. 2178 // Some zero-trip loops maintained by compiler, e.g.: 2179 // for(i=10;i<0;++i) // lower >= upper - run-time check 2180 // for(i=0;i>10;--i) // lower <= upper - run-time check 2181 // for(i=0;i>10;++i) // incr > 0 - compile-time check 2182 // for(i=10;i<0;--i) // incr < 0 - compile-time check 2183 // Compiler does not check the following illegal loops: 2184 // for(i=0;i<10;i+=incr) // where incr<0 2185 // for(i=10;i>0;i-=incr) // where incr<0 2186 __kmp_error_construct(kmp_i18n_msg_CnsLoopIncrIllegal, ct_pdo, loc); 2187 } 2188 } 2189 th = __kmp_threads[gtid]; 2190 team = th->th.th_team; 2191 KMP_DEBUG_ASSERT(th->th.th_teams_microtask); // we are in the teams construct 2192 nteams = th->th.th_teams_size.nteams; 2193 team_id = team->t.t_master_tid; 2194 KMP_DEBUG_ASSERT(nteams == (kmp_uint32)team->t.t_parent->t.t_nproc); 2195 2196 // compute global trip count 2197 if (incr == 1) { 2198 trip_count = *pupper - *plower + 1; 2199 } else if (incr == -1) { 2200 trip_count = *plower - *pupper + 1; 2201 } else if (incr > 0) { 2202 // upper-lower can exceed the limit of signed type 2203 trip_count = (UT)(*pupper - *plower) / incr + 1; 2204 } else { 2205 trip_count = (UT)(*plower - *pupper) / (-incr) + 1; 2206 } 2207 2208 if (trip_count <= nteams) { 2209 KMP_DEBUG_ASSERT( 2210 __kmp_static == kmp_sch_static_greedy || 2211 __kmp_static == 2212 kmp_sch_static_balanced); // Unknown static scheduling type. 2213 // only some teams get single iteration, others get nothing 2214 if (team_id < trip_count) { 2215 *pupper = *plower = *plower + team_id * incr; 2216 } else { 2217 *plower = *pupper + incr; // zero-trip loop 2218 } 2219 if (plastiter != NULL) 2220 *plastiter = (team_id == trip_count - 1); 2221 } else { 2222 if (__kmp_static == kmp_sch_static_balanced) { 2223 UT chunk = trip_count / nteams; 2224 UT extras = trip_count % nteams; 2225 *plower += 2226 incr * (team_id * chunk + (team_id < extras ? team_id : extras)); 2227 *pupper = *plower + chunk * incr - (team_id < extras ? 0 : incr); 2228 if (plastiter != NULL) 2229 *plastiter = (team_id == nteams - 1); 2230 } else { 2231 T chunk_inc_count = 2232 (trip_count / nteams + ((trip_count % nteams) ? 1 : 0)) * incr; 2233 T upper = *pupper; 2234 KMP_DEBUG_ASSERT(__kmp_static == kmp_sch_static_greedy); 2235 // Unknown static scheduling type. 2236 *plower += team_id * chunk_inc_count; 2237 *pupper = *plower + chunk_inc_count - incr; 2238 // Check/correct bounds if needed 2239 if (incr > 0) { 2240 if (*pupper < *plower) 2241 *pupper = traits_t<T>::max_value; 2242 if (plastiter != NULL) 2243 *plastiter = *plower <= upper && *pupper > upper - incr; 2244 if (*pupper > upper) 2245 *pupper = upper; // tracker C73258 2246 } else { 2247 if (*pupper > *plower) 2248 *pupper = traits_t<T>::min_value; 2249 if (plastiter != NULL) 2250 *plastiter = *plower >= upper && *pupper < upper - incr; 2251 if (*pupper < upper) 2252 *pupper = upper; // tracker C73258 2253 } 2254 } 2255 } 2256 } 2257 2258 //----------------------------------------------------------------------------- 2259 // Dispatch routines 2260 // Transfer call to template< type T > 2261 // __kmp_dispatch_init( ident_t *loc, int gtid, enum sched_type schedule, 2262 // T lb, T ub, ST st, ST chunk ) 2263 extern "C" { 2264 2265 /*! 2266 @ingroup WORK_SHARING 2267 @{ 2268 @param loc Source location 2269 @param gtid Global thread id 2270 @param schedule Schedule type 2271 @param lb Lower bound 2272 @param ub Upper bound 2273 @param st Step (or increment if you prefer) 2274 @param chunk The chunk size to block with 2275 2276 This function prepares the runtime to start a dynamically scheduled for loop, 2277 saving the loop arguments. 2278 These functions are all identical apart from the types of the arguments. 2279 */ 2280 2281 void __kmpc_dispatch_init_4(ident_t *loc, kmp_int32 gtid, 2282 enum sched_type schedule, kmp_int32 lb, 2283 kmp_int32 ub, kmp_int32 st, kmp_int32 chunk) { 2284 KMP_DEBUG_ASSERT(__kmp_init_serial); 2285 #if OMPT_SUPPORT && OMPT_OPTIONAL 2286 OMPT_STORE_RETURN_ADDRESS(gtid); 2287 #endif 2288 __kmp_dispatch_init<kmp_int32>(loc, gtid, schedule, lb, ub, st, chunk, true); 2289 } 2290 /*! 2291 See @ref __kmpc_dispatch_init_4 2292 */ 2293 void __kmpc_dispatch_init_4u(ident_t *loc, kmp_int32 gtid, 2294 enum sched_type schedule, kmp_uint32 lb, 2295 kmp_uint32 ub, kmp_int32 st, kmp_int32 chunk) { 2296 KMP_DEBUG_ASSERT(__kmp_init_serial); 2297 #if OMPT_SUPPORT && OMPT_OPTIONAL 2298 OMPT_STORE_RETURN_ADDRESS(gtid); 2299 #endif 2300 __kmp_dispatch_init<kmp_uint32>(loc, gtid, schedule, lb, ub, st, chunk, true); 2301 } 2302 2303 /*! 2304 See @ref __kmpc_dispatch_init_4 2305 */ 2306 void __kmpc_dispatch_init_8(ident_t *loc, kmp_int32 gtid, 2307 enum sched_type schedule, kmp_int64 lb, 2308 kmp_int64 ub, kmp_int64 st, kmp_int64 chunk) { 2309 KMP_DEBUG_ASSERT(__kmp_init_serial); 2310 #if OMPT_SUPPORT && OMPT_OPTIONAL 2311 OMPT_STORE_RETURN_ADDRESS(gtid); 2312 #endif 2313 __kmp_dispatch_init<kmp_int64>(loc, gtid, schedule, lb, ub, st, chunk, true); 2314 } 2315 2316 /*! 2317 See @ref __kmpc_dispatch_init_4 2318 */ 2319 void __kmpc_dispatch_init_8u(ident_t *loc, kmp_int32 gtid, 2320 enum sched_type schedule, kmp_uint64 lb, 2321 kmp_uint64 ub, kmp_int64 st, kmp_int64 chunk) { 2322 KMP_DEBUG_ASSERT(__kmp_init_serial); 2323 #if OMPT_SUPPORT && OMPT_OPTIONAL 2324 OMPT_STORE_RETURN_ADDRESS(gtid); 2325 #endif 2326 __kmp_dispatch_init<kmp_uint64>(loc, gtid, schedule, lb, ub, st, chunk, true); 2327 } 2328 2329 /*! 2330 See @ref __kmpc_dispatch_init_4 2331 2332 Difference from __kmpc_dispatch_init set of functions is these functions 2333 are called for composite distribute parallel for construct. Thus before 2334 regular iterations dispatching we need to calc per-team iteration space. 2335 2336 These functions are all identical apart from the types of the arguments. 2337 */ 2338 void __kmpc_dist_dispatch_init_4(ident_t *loc, kmp_int32 gtid, 2339 enum sched_type schedule, kmp_int32 *p_last, 2340 kmp_int32 lb, kmp_int32 ub, kmp_int32 st, 2341 kmp_int32 chunk) { 2342 KMP_DEBUG_ASSERT(__kmp_init_serial); 2343 #if OMPT_SUPPORT && OMPT_OPTIONAL 2344 OMPT_STORE_RETURN_ADDRESS(gtid); 2345 #endif 2346 __kmp_dist_get_bounds<kmp_int32>(loc, gtid, p_last, &lb, &ub, st); 2347 __kmp_dispatch_init<kmp_int32>(loc, gtid, schedule, lb, ub, st, chunk, true); 2348 } 2349 2350 void __kmpc_dist_dispatch_init_4u(ident_t *loc, kmp_int32 gtid, 2351 enum sched_type schedule, kmp_int32 *p_last, 2352 kmp_uint32 lb, kmp_uint32 ub, kmp_int32 st, 2353 kmp_int32 chunk) { 2354 KMP_DEBUG_ASSERT(__kmp_init_serial); 2355 #if OMPT_SUPPORT && OMPT_OPTIONAL 2356 OMPT_STORE_RETURN_ADDRESS(gtid); 2357 #endif 2358 __kmp_dist_get_bounds<kmp_uint32>(loc, gtid, p_last, &lb, &ub, st); 2359 __kmp_dispatch_init<kmp_uint32>(loc, gtid, schedule, lb, ub, st, chunk, true); 2360 } 2361 2362 void __kmpc_dist_dispatch_init_8(ident_t *loc, kmp_int32 gtid, 2363 enum sched_type schedule, kmp_int32 *p_last, 2364 kmp_int64 lb, kmp_int64 ub, kmp_int64 st, 2365 kmp_int64 chunk) { 2366 KMP_DEBUG_ASSERT(__kmp_init_serial); 2367 #if OMPT_SUPPORT && OMPT_OPTIONAL 2368 OMPT_STORE_RETURN_ADDRESS(gtid); 2369 #endif 2370 __kmp_dist_get_bounds<kmp_int64>(loc, gtid, p_last, &lb, &ub, st); 2371 __kmp_dispatch_init<kmp_int64>(loc, gtid, schedule, lb, ub, st, chunk, true); 2372 } 2373 2374 void __kmpc_dist_dispatch_init_8u(ident_t *loc, kmp_int32 gtid, 2375 enum sched_type schedule, kmp_int32 *p_last, 2376 kmp_uint64 lb, kmp_uint64 ub, kmp_int64 st, 2377 kmp_int64 chunk) { 2378 KMP_DEBUG_ASSERT(__kmp_init_serial); 2379 #if OMPT_SUPPORT && OMPT_OPTIONAL 2380 OMPT_STORE_RETURN_ADDRESS(gtid); 2381 #endif 2382 __kmp_dist_get_bounds<kmp_uint64>(loc, gtid, p_last, &lb, &ub, st); 2383 __kmp_dispatch_init<kmp_uint64>(loc, gtid, schedule, lb, ub, st, chunk, true); 2384 } 2385 2386 /*! 2387 @param loc Source code location 2388 @param gtid Global thread id 2389 @param p_last Pointer to a flag set to one if this is the last chunk or zero 2390 otherwise 2391 @param p_lb Pointer to the lower bound for the next chunk of work 2392 @param p_ub Pointer to the upper bound for the next chunk of work 2393 @param p_st Pointer to the stride for the next chunk of work 2394 @return one if there is work to be done, zero otherwise 2395 2396 Get the next dynamically allocated chunk of work for this thread. 2397 If there is no more work, then the lb,ub and stride need not be modified. 2398 */ 2399 int __kmpc_dispatch_next_4(ident_t *loc, kmp_int32 gtid, kmp_int32 *p_last, 2400 kmp_int32 *p_lb, kmp_int32 *p_ub, kmp_int32 *p_st) { 2401 #if OMPT_SUPPORT && OMPT_OPTIONAL 2402 OMPT_STORE_RETURN_ADDRESS(gtid); 2403 #endif 2404 return __kmp_dispatch_next<kmp_int32>(loc, gtid, p_last, p_lb, p_ub, p_st 2405 #if OMPT_SUPPORT && OMPT_OPTIONAL 2406 , 2407 OMPT_LOAD_RETURN_ADDRESS(gtid) 2408 #endif 2409 ); 2410 } 2411 2412 /*! 2413 See @ref __kmpc_dispatch_next_4 2414 */ 2415 int __kmpc_dispatch_next_4u(ident_t *loc, kmp_int32 gtid, kmp_int32 *p_last, 2416 kmp_uint32 *p_lb, kmp_uint32 *p_ub, 2417 kmp_int32 *p_st) { 2418 #if OMPT_SUPPORT && OMPT_OPTIONAL 2419 OMPT_STORE_RETURN_ADDRESS(gtid); 2420 #endif 2421 return __kmp_dispatch_next<kmp_uint32>(loc, gtid, p_last, p_lb, p_ub, p_st 2422 #if OMPT_SUPPORT && OMPT_OPTIONAL 2423 , 2424 OMPT_LOAD_RETURN_ADDRESS(gtid) 2425 #endif 2426 ); 2427 } 2428 2429 /*! 2430 See @ref __kmpc_dispatch_next_4 2431 */ 2432 int __kmpc_dispatch_next_8(ident_t *loc, kmp_int32 gtid, kmp_int32 *p_last, 2433 kmp_int64 *p_lb, kmp_int64 *p_ub, kmp_int64 *p_st) { 2434 #if OMPT_SUPPORT && OMPT_OPTIONAL 2435 OMPT_STORE_RETURN_ADDRESS(gtid); 2436 #endif 2437 return __kmp_dispatch_next<kmp_int64>(loc, gtid, p_last, p_lb, p_ub, p_st 2438 #if OMPT_SUPPORT && OMPT_OPTIONAL 2439 , 2440 OMPT_LOAD_RETURN_ADDRESS(gtid) 2441 #endif 2442 ); 2443 } 2444 2445 /*! 2446 See @ref __kmpc_dispatch_next_4 2447 */ 2448 int __kmpc_dispatch_next_8u(ident_t *loc, kmp_int32 gtid, kmp_int32 *p_last, 2449 kmp_uint64 *p_lb, kmp_uint64 *p_ub, 2450 kmp_int64 *p_st) { 2451 #if OMPT_SUPPORT && OMPT_OPTIONAL 2452 OMPT_STORE_RETURN_ADDRESS(gtid); 2453 #endif 2454 return __kmp_dispatch_next<kmp_uint64>(loc, gtid, p_last, p_lb, p_ub, p_st 2455 #if OMPT_SUPPORT && OMPT_OPTIONAL 2456 , 2457 OMPT_LOAD_RETURN_ADDRESS(gtid) 2458 #endif 2459 ); 2460 } 2461 2462 /*! 2463 @param loc Source code location 2464 @param gtid Global thread id 2465 2466 Mark the end of a dynamic loop. 2467 */ 2468 void __kmpc_dispatch_fini_4(ident_t *loc, kmp_int32 gtid) { 2469 __kmp_dispatch_finish<kmp_uint32>(gtid, loc); 2470 } 2471 2472 /*! 2473 See @ref __kmpc_dispatch_fini_4 2474 */ 2475 void __kmpc_dispatch_fini_8(ident_t *loc, kmp_int32 gtid) { 2476 __kmp_dispatch_finish<kmp_uint64>(gtid, loc); 2477 } 2478 2479 /*! 2480 See @ref __kmpc_dispatch_fini_4 2481 */ 2482 void __kmpc_dispatch_fini_4u(ident_t *loc, kmp_int32 gtid) { 2483 __kmp_dispatch_finish<kmp_uint32>(gtid, loc); 2484 } 2485 2486 /*! 2487 See @ref __kmpc_dispatch_fini_4 2488 */ 2489 void __kmpc_dispatch_fini_8u(ident_t *loc, kmp_int32 gtid) { 2490 __kmp_dispatch_finish<kmp_uint64>(gtid, loc); 2491 } 2492 /*! @} */ 2493 2494 //----------------------------------------------------------------------------- 2495 // Non-template routines from kmp_dispatch.cpp used in other sources 2496 2497 kmp_uint32 __kmp_eq_4(kmp_uint32 value, kmp_uint32 checker) { 2498 return value == checker; 2499 } 2500 2501 kmp_uint32 __kmp_neq_4(kmp_uint32 value, kmp_uint32 checker) { 2502 return value != checker; 2503 } 2504 2505 kmp_uint32 __kmp_lt_4(kmp_uint32 value, kmp_uint32 checker) { 2506 return value < checker; 2507 } 2508 2509 kmp_uint32 __kmp_ge_4(kmp_uint32 value, kmp_uint32 checker) { 2510 return value >= checker; 2511 } 2512 2513 kmp_uint32 __kmp_le_4(kmp_uint32 value, kmp_uint32 checker) { 2514 return value <= checker; 2515 } 2516 2517 kmp_uint32 2518 __kmp_wait_4(volatile kmp_uint32 *spinner, kmp_uint32 checker, 2519 kmp_uint32 (*pred)(kmp_uint32, kmp_uint32), 2520 void *obj // Higher-level synchronization object, or NULL. 2521 ) { 2522 // note: we may not belong to a team at this point 2523 volatile kmp_uint32 *spin = spinner; 2524 kmp_uint32 check = checker; 2525 kmp_uint32 spins; 2526 kmp_uint32 (*f)(kmp_uint32, kmp_uint32) = pred; 2527 kmp_uint32 r; 2528 2529 KMP_FSYNC_SPIN_INIT(obj, CCAST(kmp_uint32 *, spin)); 2530 KMP_INIT_YIELD(spins); 2531 // main wait spin loop 2532 while (!f(r = TCR_4(*spin), check)) { 2533 KMP_FSYNC_SPIN_PREPARE(obj); 2534 /* GEH - remove this since it was accidentally introduced when kmp_wait was 2535 split. It causes problems with infinite recursion because of exit lock */ 2536 /* if ( TCR_4(__kmp_global.g.g_done) && __kmp_global.g.g_abort) 2537 __kmp_abort_thread(); */ 2538 KMP_YIELD_OVERSUB_ELSE_SPIN(spins); 2539 } 2540 KMP_FSYNC_SPIN_ACQUIRED(obj); 2541 return r; 2542 } 2543 2544 void __kmp_wait_4_ptr(void *spinner, kmp_uint32 checker, 2545 kmp_uint32 (*pred)(void *, kmp_uint32), 2546 void *obj // Higher-level synchronization object, or NULL. 2547 ) { 2548 // note: we may not belong to a team at this point 2549 void *spin = spinner; 2550 kmp_uint32 check = checker; 2551 kmp_uint32 spins; 2552 kmp_uint32 (*f)(void *, kmp_uint32) = pred; 2553 2554 KMP_FSYNC_SPIN_INIT(obj, spin); 2555 KMP_INIT_YIELD(spins); 2556 // main wait spin loop 2557 while (!f(spin, check)) { 2558 KMP_FSYNC_SPIN_PREPARE(obj); 2559 /* if we have waited a bit, or are noversubscribed, yield */ 2560 /* pause is in the following code */ 2561 KMP_YIELD_OVERSUB_ELSE_SPIN(spins); 2562 } 2563 KMP_FSYNC_SPIN_ACQUIRED(obj); 2564 } 2565 2566 } // extern "C" 2567 2568 #ifdef KMP_GOMP_COMPAT 2569 2570 void __kmp_aux_dispatch_init_4(ident_t *loc, kmp_int32 gtid, 2571 enum sched_type schedule, kmp_int32 lb, 2572 kmp_int32 ub, kmp_int32 st, kmp_int32 chunk, 2573 int push_ws) { 2574 __kmp_dispatch_init<kmp_int32>(loc, gtid, schedule, lb, ub, st, chunk, 2575 push_ws); 2576 } 2577 2578 void __kmp_aux_dispatch_init_4u(ident_t *loc, kmp_int32 gtid, 2579 enum sched_type schedule, kmp_uint32 lb, 2580 kmp_uint32 ub, kmp_int32 st, kmp_int32 chunk, 2581 int push_ws) { 2582 __kmp_dispatch_init<kmp_uint32>(loc, gtid, schedule, lb, ub, st, chunk, 2583 push_ws); 2584 } 2585 2586 void __kmp_aux_dispatch_init_8(ident_t *loc, kmp_int32 gtid, 2587 enum sched_type schedule, kmp_int64 lb, 2588 kmp_int64 ub, kmp_int64 st, kmp_int64 chunk, 2589 int push_ws) { 2590 __kmp_dispatch_init<kmp_int64>(loc, gtid, schedule, lb, ub, st, chunk, 2591 push_ws); 2592 } 2593 2594 void __kmp_aux_dispatch_init_8u(ident_t *loc, kmp_int32 gtid, 2595 enum sched_type schedule, kmp_uint64 lb, 2596 kmp_uint64 ub, kmp_int64 st, kmp_int64 chunk, 2597 int push_ws) { 2598 __kmp_dispatch_init<kmp_uint64>(loc, gtid, schedule, lb, ub, st, chunk, 2599 push_ws); 2600 } 2601 2602 void __kmp_aux_dispatch_fini_chunk_4(ident_t *loc, kmp_int32 gtid) { 2603 __kmp_dispatch_finish_chunk<kmp_uint32>(gtid, loc); 2604 } 2605 2606 void __kmp_aux_dispatch_fini_chunk_8(ident_t *loc, kmp_int32 gtid) { 2607 __kmp_dispatch_finish_chunk<kmp_uint64>(gtid, loc); 2608 } 2609 2610 void __kmp_aux_dispatch_fini_chunk_4u(ident_t *loc, kmp_int32 gtid) { 2611 __kmp_dispatch_finish_chunk<kmp_uint32>(gtid, loc); 2612 } 2613 2614 void __kmp_aux_dispatch_fini_chunk_8u(ident_t *loc, kmp_int32 gtid) { 2615 __kmp_dispatch_finish_chunk<kmp_uint64>(gtid, loc); 2616 } 2617 2618 #endif /* KMP_GOMP_COMPAT */ 2619 2620 /* ------------------------------------------------------------------------ */ 2621