xref: /freebsd/contrib/llvm-project/openmp/runtime/src/kmp_dispatch.cpp (revision 1f1e2261e341e6ca6862f82261066ef1705f0a7a)
1 /*
2  * kmp_dispatch.cpp: dynamic scheduling - iteration initialization and dispatch.
3  */
4 
5 //===----------------------------------------------------------------------===//
6 //
7 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
8 // See https://llvm.org/LICENSE.txt for license information.
9 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
10 //
11 //===----------------------------------------------------------------------===//
12 
13 /* Dynamic scheduling initialization and dispatch.
14  *
15  * NOTE: __kmp_nth is a constant inside of any dispatch loop, however
16  *       it may change values between parallel regions.  __kmp_max_nth
17  *       is the largest value __kmp_nth may take, 1 is the smallest.
18  */
19 
20 #include "kmp.h"
21 #include "kmp_error.h"
22 #include "kmp_i18n.h"
23 #include "kmp_itt.h"
24 #include "kmp_stats.h"
25 #include "kmp_str.h"
26 #if KMP_USE_X87CONTROL
27 #include <float.h>
28 #endif
29 #include "kmp_lock.h"
30 #include "kmp_dispatch.h"
31 #if KMP_USE_HIER_SCHED
32 #include "kmp_dispatch_hier.h"
33 #endif
34 
35 #if OMPT_SUPPORT
36 #include "ompt-specific.h"
37 #endif
38 
39 /* ------------------------------------------------------------------------ */
40 /* ------------------------------------------------------------------------ */
41 
42 void __kmp_dispatch_deo_error(int *gtid_ref, int *cid_ref, ident_t *loc_ref) {
43   kmp_info_t *th;
44 
45   KMP_DEBUG_ASSERT(gtid_ref);
46 
47   if (__kmp_env_consistency_check) {
48     th = __kmp_threads[*gtid_ref];
49     if (th->th.th_root->r.r_active &&
50         (th->th.th_dispatch->th_dispatch_pr_current->pushed_ws != ct_none)) {
51 #if KMP_USE_DYNAMIC_LOCK
52       __kmp_push_sync(*gtid_ref, ct_ordered_in_pdo, loc_ref, NULL, 0);
53 #else
54       __kmp_push_sync(*gtid_ref, ct_ordered_in_pdo, loc_ref, NULL);
55 #endif
56     }
57   }
58 }
59 
60 void __kmp_dispatch_dxo_error(int *gtid_ref, int *cid_ref, ident_t *loc_ref) {
61   kmp_info_t *th;
62 
63   if (__kmp_env_consistency_check) {
64     th = __kmp_threads[*gtid_ref];
65     if (th->th.th_dispatch->th_dispatch_pr_current->pushed_ws != ct_none) {
66       __kmp_pop_sync(*gtid_ref, ct_ordered_in_pdo, loc_ref);
67     }
68   }
69 }
70 
71 // Returns either SCHEDULE_MONOTONIC or SCHEDULE_NONMONOTONIC
72 static inline int __kmp_get_monotonicity(ident_t *loc, enum sched_type schedule,
73                                          bool use_hier = false) {
74   // Pick up the nonmonotonic/monotonic bits from the scheduling type
75   // Nonmonotonic as default for dynamic schedule when no modifier is specified
76   int monotonicity = SCHEDULE_NONMONOTONIC;
77 
78   // Let default be monotonic for executables
79   // compiled with OpenMP* 4.5 or less compilers
80   if (loc != NULL && loc->get_openmp_version() < 50)
81     monotonicity = SCHEDULE_MONOTONIC;
82 
83   if (use_hier || __kmp_force_monotonic)
84     monotonicity = SCHEDULE_MONOTONIC;
85   else if (SCHEDULE_HAS_NONMONOTONIC(schedule))
86     monotonicity = SCHEDULE_NONMONOTONIC;
87   else if (SCHEDULE_HAS_MONOTONIC(schedule))
88     monotonicity = SCHEDULE_MONOTONIC;
89 
90   return monotonicity;
91 }
92 
93 #if KMP_STATIC_STEAL_ENABLED
94 enum { // values for steal_flag (possible states of private per-loop buffer)
95   UNUSED = 0,
96   CLAIMED = 1, // owner thread started initialization
97   READY = 2, // available for stealing
98   THIEF = 3 // finished by owner, or claimed by thief
99   // possible state changes:
100   // 0 -> 1 owner only, sync
101   // 0 -> 3 thief only, sync
102   // 1 -> 2 owner only, async
103   // 2 -> 3 owner only, async
104   // 3 -> 2 owner only, async
105   // 3 -> 0 last thread finishing the loop, async
106 };
107 #endif
108 
109 // Initialize a dispatch_private_info_template<T> buffer for a particular
110 // type of schedule,chunk.  The loop description is found in lb (lower bound),
111 // ub (upper bound), and st (stride).  nproc is the number of threads relevant
112 // to the scheduling (often the number of threads in a team, but not always if
113 // hierarchical scheduling is used).  tid is the id of the thread calling
114 // the function within the group of nproc threads.  It will have a value
115 // between 0 and nproc - 1.  This is often just the thread id within a team, but
116 // is not necessarily the case when using hierarchical scheduling.
117 // loc is the source file location of the corresponding loop
118 // gtid is the global thread id
119 template <typename T>
120 void __kmp_dispatch_init_algorithm(ident_t *loc, int gtid,
121                                    dispatch_private_info_template<T> *pr,
122                                    enum sched_type schedule, T lb, T ub,
123                                    typename traits_t<T>::signed_t st,
124 #if USE_ITT_BUILD
125                                    kmp_uint64 *cur_chunk,
126 #endif
127                                    typename traits_t<T>::signed_t chunk,
128                                    T nproc, T tid) {
129   typedef typename traits_t<T>::unsigned_t UT;
130   typedef typename traits_t<T>::floating_t DBL;
131 
132   int active;
133   T tc;
134   kmp_info_t *th;
135   kmp_team_t *team;
136   int monotonicity;
137   bool use_hier;
138 
139 #ifdef KMP_DEBUG
140   typedef typename traits_t<T>::signed_t ST;
141   {
142     char *buff;
143     // create format specifiers before the debug output
144     buff = __kmp_str_format("__kmp_dispatch_init_algorithm: T#%%d called "
145                             "pr:%%p lb:%%%s ub:%%%s st:%%%s "
146                             "schedule:%%d chunk:%%%s nproc:%%%s tid:%%%s\n",
147                             traits_t<T>::spec, traits_t<T>::spec,
148                             traits_t<ST>::spec, traits_t<ST>::spec,
149                             traits_t<T>::spec, traits_t<T>::spec);
150     KD_TRACE(10, (buff, gtid, pr, lb, ub, st, schedule, chunk, nproc, tid));
151     __kmp_str_free(&buff);
152   }
153 #endif
154   /* setup data */
155   th = __kmp_threads[gtid];
156   team = th->th.th_team;
157   active = !team->t.t_serialized;
158 
159 #if USE_ITT_BUILD
160   int itt_need_metadata_reporting =
161       __itt_metadata_add_ptr && __kmp_forkjoin_frames_mode == 3 &&
162       KMP_MASTER_GTID(gtid) && th->th.th_teams_microtask == NULL &&
163       team->t.t_active_level == 1;
164 #endif
165 
166 #if KMP_USE_HIER_SCHED
167   use_hier = pr->flags.use_hier;
168 #else
169   use_hier = false;
170 #endif
171 
172   /* Pick up the nonmonotonic/monotonic bits from the scheduling type */
173   monotonicity = __kmp_get_monotonicity(loc, schedule, use_hier);
174   schedule = SCHEDULE_WITHOUT_MODIFIERS(schedule);
175 
176   /* Pick up the nomerge/ordered bits from the scheduling type */
177   if ((schedule >= kmp_nm_lower) && (schedule < kmp_nm_upper)) {
178     pr->flags.nomerge = TRUE;
179     schedule =
180         (enum sched_type)(((int)schedule) - (kmp_nm_lower - kmp_sch_lower));
181   } else {
182     pr->flags.nomerge = FALSE;
183   }
184   pr->type_size = traits_t<T>::type_size; // remember the size of variables
185   if (kmp_ord_lower & schedule) {
186     pr->flags.ordered = TRUE;
187     schedule =
188         (enum sched_type)(((int)schedule) - (kmp_ord_lower - kmp_sch_lower));
189   } else {
190     pr->flags.ordered = FALSE;
191   }
192   // Ordered overrides nonmonotonic
193   if (pr->flags.ordered) {
194     monotonicity = SCHEDULE_MONOTONIC;
195   }
196 
197   if (schedule == kmp_sch_static) {
198     schedule = __kmp_static;
199   } else {
200     if (schedule == kmp_sch_runtime) {
201       // Use the scheduling specified by OMP_SCHEDULE (or __kmp_sch_default if
202       // not specified)
203       schedule = team->t.t_sched.r_sched_type;
204       monotonicity = __kmp_get_monotonicity(loc, schedule, use_hier);
205       schedule = SCHEDULE_WITHOUT_MODIFIERS(schedule);
206       if (pr->flags.ordered) // correct monotonicity for ordered loop if needed
207         monotonicity = SCHEDULE_MONOTONIC;
208       // Detail the schedule if needed (global controls are differentiated
209       // appropriately)
210       if (schedule == kmp_sch_guided_chunked) {
211         schedule = __kmp_guided;
212       } else if (schedule == kmp_sch_static) {
213         schedule = __kmp_static;
214       }
215       // Use the chunk size specified by OMP_SCHEDULE (or default if not
216       // specified)
217       chunk = team->t.t_sched.chunk;
218 #if USE_ITT_BUILD
219       if (cur_chunk)
220         *cur_chunk = chunk;
221 #endif
222 #ifdef KMP_DEBUG
223       {
224         char *buff;
225         // create format specifiers before the debug output
226         buff = __kmp_str_format("__kmp_dispatch_init_algorithm: T#%%d new: "
227                                 "schedule:%%d chunk:%%%s\n",
228                                 traits_t<ST>::spec);
229         KD_TRACE(10, (buff, gtid, schedule, chunk));
230         __kmp_str_free(&buff);
231       }
232 #endif
233     } else {
234       if (schedule == kmp_sch_guided_chunked) {
235         schedule = __kmp_guided;
236       }
237       if (chunk <= 0) {
238         chunk = KMP_DEFAULT_CHUNK;
239       }
240     }
241 
242     if (schedule == kmp_sch_auto) {
243       // mapping and differentiation: in the __kmp_do_serial_initialize()
244       schedule = __kmp_auto;
245 #ifdef KMP_DEBUG
246       {
247         char *buff;
248         // create format specifiers before the debug output
249         buff = __kmp_str_format(
250             "__kmp_dispatch_init_algorithm: kmp_sch_auto: T#%%d new: "
251             "schedule:%%d chunk:%%%s\n",
252             traits_t<ST>::spec);
253         KD_TRACE(10, (buff, gtid, schedule, chunk));
254         __kmp_str_free(&buff);
255       }
256 #endif
257     }
258 #if KMP_STATIC_STEAL_ENABLED
259     // map nonmonotonic:dynamic to static steal
260     if (schedule == kmp_sch_dynamic_chunked) {
261       if (monotonicity == SCHEDULE_NONMONOTONIC)
262         schedule = kmp_sch_static_steal;
263     }
264 #endif
265     /* guided analytical not safe for too many threads */
266     if (schedule == kmp_sch_guided_analytical_chunked && nproc > 1 << 20) {
267       schedule = kmp_sch_guided_iterative_chunked;
268       KMP_WARNING(DispatchManyThreads);
269     }
270     if (schedule == kmp_sch_runtime_simd) {
271       // compiler provides simd_width in the chunk parameter
272       schedule = team->t.t_sched.r_sched_type;
273       monotonicity = __kmp_get_monotonicity(loc, schedule, use_hier);
274       schedule = SCHEDULE_WITHOUT_MODIFIERS(schedule);
275       // Detail the schedule if needed (global controls are differentiated
276       // appropriately)
277       if (schedule == kmp_sch_static || schedule == kmp_sch_auto ||
278           schedule == __kmp_static) {
279         schedule = kmp_sch_static_balanced_chunked;
280       } else {
281         if (schedule == kmp_sch_guided_chunked || schedule == __kmp_guided) {
282           schedule = kmp_sch_guided_simd;
283         }
284         chunk = team->t.t_sched.chunk * chunk;
285       }
286 #if USE_ITT_BUILD
287       if (cur_chunk)
288         *cur_chunk = chunk;
289 #endif
290 #ifdef KMP_DEBUG
291       {
292         char *buff;
293         // create format specifiers before the debug output
294         buff = __kmp_str_format(
295             "__kmp_dispatch_init_algorithm: T#%%d new: schedule:%%d"
296             " chunk:%%%s\n",
297             traits_t<ST>::spec);
298         KD_TRACE(10, (buff, gtid, schedule, chunk));
299         __kmp_str_free(&buff);
300       }
301 #endif
302     }
303     pr->u.p.parm1 = chunk;
304   }
305   KMP_ASSERT2((kmp_sch_lower < schedule && schedule < kmp_sch_upper),
306               "unknown scheduling type");
307 
308   pr->u.p.count = 0;
309 
310   if (__kmp_env_consistency_check) {
311     if (st == 0) {
312       __kmp_error_construct(kmp_i18n_msg_CnsLoopIncrZeroProhibited,
313                             (pr->flags.ordered ? ct_pdo_ordered : ct_pdo), loc);
314     }
315   }
316   // compute trip count
317   if (st == 1) { // most common case
318     if (ub >= lb) {
319       tc = ub - lb + 1;
320     } else { // ub < lb
321       tc = 0; // zero-trip
322     }
323   } else if (st < 0) {
324     if (lb >= ub) {
325       // AC: cast to unsigned is needed for loops like (i=2B; i>-2B; i-=1B),
326       // where the division needs to be unsigned regardless of the result type
327       tc = (UT)(lb - ub) / (-st) + 1;
328     } else { // lb < ub
329       tc = 0; // zero-trip
330     }
331   } else { // st > 0
332     if (ub >= lb) {
333       // AC: cast to unsigned is needed for loops like (i=-2B; i<2B; i+=1B),
334       // where the division needs to be unsigned regardless of the result type
335       tc = (UT)(ub - lb) / st + 1;
336     } else { // ub < lb
337       tc = 0; // zero-trip
338     }
339   }
340 
341 #if KMP_STATS_ENABLED
342   if (KMP_MASTER_GTID(gtid)) {
343     KMP_COUNT_VALUE(OMP_loop_dynamic_total_iterations, tc);
344   }
345 #endif
346 
347   pr->u.p.lb = lb;
348   pr->u.p.ub = ub;
349   pr->u.p.st = st;
350   pr->u.p.tc = tc;
351 
352 #if KMP_OS_WINDOWS
353   pr->u.p.last_upper = ub + st;
354 #endif /* KMP_OS_WINDOWS */
355 
356   /* NOTE: only the active parallel region(s) has active ordered sections */
357 
358   if (active) {
359     if (pr->flags.ordered) {
360       pr->ordered_bumped = 0;
361       pr->u.p.ordered_lower = 1;
362       pr->u.p.ordered_upper = 0;
363     }
364   }
365 
366   switch (schedule) {
367 #if KMP_STATIC_STEAL_ENABLED
368   case kmp_sch_static_steal: {
369     T ntc, init;
370 
371     KD_TRACE(100,
372              ("__kmp_dispatch_init_algorithm: T#%d kmp_sch_static_steal case\n",
373               gtid));
374 
375     ntc = (tc % chunk ? 1 : 0) + tc / chunk;
376     if (nproc > 1 && ntc >= nproc) {
377       KMP_COUNT_BLOCK(OMP_LOOP_STATIC_STEAL);
378       T id = tid;
379       T small_chunk, extras;
380       kmp_uint32 old = UNUSED;
381       int claimed = pr->steal_flag.compare_exchange_strong(old, CLAIMED);
382       if (traits_t<T>::type_size > 4) {
383         // AC: TODO: check if 16-byte CAS available and use it to
384         // improve performance (probably wait for explicit request
385         // before spending time on this).
386         // For now use dynamically allocated per-private-buffer lock,
387         // free memory in __kmp_dispatch_next when status==0.
388         pr->u.p.steal_lock = (kmp_lock_t *)__kmp_allocate(sizeof(kmp_lock_t));
389         __kmp_init_lock(pr->u.p.steal_lock);
390       }
391       small_chunk = ntc / nproc;
392       extras = ntc % nproc;
393 
394       init = id * small_chunk + (id < extras ? id : extras);
395       pr->u.p.count = init;
396       if (claimed) { // are we succeeded in claiming own buffer?
397         pr->u.p.ub = init + small_chunk + (id < extras ? 1 : 0);
398         // Other threads will inspect steal_flag when searching for a victim.
399         // READY means other threads may steal from this thread from now on.
400         KMP_ATOMIC_ST_REL(&pr->steal_flag, READY);
401       } else {
402         // other thread has stolen whole our range
403         KMP_DEBUG_ASSERT(pr->steal_flag == THIEF);
404         pr->u.p.ub = init; // mark there is no iterations to work on
405       }
406       pr->u.p.parm2 = ntc; // save number of chunks
407       // parm3 is the number of times to attempt stealing which is
408       // nproc (just a heuristics, could be optimized later on).
409       pr->u.p.parm3 = nproc;
410       pr->u.p.parm4 = (id + 1) % nproc; // remember neighbour tid
411       break;
412     } else {
413       /* too few chunks: switching to kmp_sch_dynamic_chunked */
414       schedule = kmp_sch_dynamic_chunked;
415       KD_TRACE(100, ("__kmp_dispatch_init_algorithm: T#%d switching to "
416                      "kmp_sch_dynamic_chunked\n",
417                      gtid));
418       goto dynamic_init;
419       break;
420     } // if
421   } // case
422 #endif
423   case kmp_sch_static_balanced: {
424     T init, limit;
425 
426     KD_TRACE(
427         100,
428         ("__kmp_dispatch_init_algorithm: T#%d kmp_sch_static_balanced case\n",
429          gtid));
430 
431     if (nproc > 1) {
432       T id = tid;
433 
434       if (tc < nproc) {
435         if (id < tc) {
436           init = id;
437           limit = id;
438           pr->u.p.parm1 = (id == tc - 1); /* parm1 stores *plastiter */
439         } else {
440           pr->u.p.count = 1; /* means no more chunks to execute */
441           pr->u.p.parm1 = FALSE;
442           break;
443         }
444       } else {
445         T small_chunk = tc / nproc;
446         T extras = tc % nproc;
447         init = id * small_chunk + (id < extras ? id : extras);
448         limit = init + small_chunk - (id < extras ? 0 : 1);
449         pr->u.p.parm1 = (id == nproc - 1);
450       }
451     } else {
452       if (tc > 0) {
453         init = 0;
454         limit = tc - 1;
455         pr->u.p.parm1 = TRUE;
456       } else {
457         // zero trip count
458         pr->u.p.count = 1; /* means no more chunks to execute */
459         pr->u.p.parm1 = FALSE;
460         break;
461       }
462     }
463 #if USE_ITT_BUILD
464     // Calculate chunk for metadata report
465     if (itt_need_metadata_reporting)
466       if (cur_chunk)
467         *cur_chunk = limit - init + 1;
468 #endif
469     if (st == 1) {
470       pr->u.p.lb = lb + init;
471       pr->u.p.ub = lb + limit;
472     } else {
473       // calculated upper bound, "ub" is user-defined upper bound
474       T ub_tmp = lb + limit * st;
475       pr->u.p.lb = lb + init * st;
476       // adjust upper bound to "ub" if needed, so that MS lastprivate will match
477       // it exactly
478       if (st > 0) {
479         pr->u.p.ub = (ub_tmp + st > ub ? ub : ub_tmp);
480       } else {
481         pr->u.p.ub = (ub_tmp + st < ub ? ub : ub_tmp);
482       }
483     }
484     if (pr->flags.ordered) {
485       pr->u.p.ordered_lower = init;
486       pr->u.p.ordered_upper = limit;
487     }
488     break;
489   } // case
490   case kmp_sch_static_balanced_chunked: {
491     // similar to balanced, but chunk adjusted to multiple of simd width
492     T nth = nproc;
493     KD_TRACE(100, ("__kmp_dispatch_init_algorithm: T#%d runtime(simd:static)"
494                    " -> falling-through to static_greedy\n",
495                    gtid));
496     schedule = kmp_sch_static_greedy;
497     if (nth > 1)
498       pr->u.p.parm1 = ((tc + nth - 1) / nth + chunk - 1) & ~(chunk - 1);
499     else
500       pr->u.p.parm1 = tc;
501     break;
502   } // case
503   case kmp_sch_guided_simd:
504   case kmp_sch_guided_iterative_chunked: {
505     KD_TRACE(
506         100,
507         ("__kmp_dispatch_init_algorithm: T#%d kmp_sch_guided_iterative_chunked"
508          " case\n",
509          gtid));
510 
511     if (nproc > 1) {
512       if ((2L * chunk + 1) * nproc >= tc) {
513         /* chunk size too large, switch to dynamic */
514         schedule = kmp_sch_dynamic_chunked;
515         goto dynamic_init;
516       } else {
517         // when remaining iters become less than parm2 - switch to dynamic
518         pr->u.p.parm2 = guided_int_param * nproc * (chunk + 1);
519         *(double *)&pr->u.p.parm3 =
520             guided_flt_param / (double)nproc; // may occupy parm3 and parm4
521       }
522     } else {
523       KD_TRACE(100, ("__kmp_dispatch_init_algorithm: T#%d falling-through to "
524                      "kmp_sch_static_greedy\n",
525                      gtid));
526       schedule = kmp_sch_static_greedy;
527       /* team->t.t_nproc == 1: fall-through to kmp_sch_static_greedy */
528       KD_TRACE(
529           100,
530           ("__kmp_dispatch_init_algorithm: T#%d kmp_sch_static_greedy case\n",
531            gtid));
532       pr->u.p.parm1 = tc;
533     } // if
534   } // case
535   break;
536   case kmp_sch_guided_analytical_chunked: {
537     KD_TRACE(100, ("__kmp_dispatch_init_algorithm: T#%d "
538                    "kmp_sch_guided_analytical_chunked case\n",
539                    gtid));
540 
541     if (nproc > 1) {
542       if ((2L * chunk + 1) * nproc >= tc) {
543         /* chunk size too large, switch to dynamic */
544         schedule = kmp_sch_dynamic_chunked;
545         goto dynamic_init;
546       } else {
547         /* commonly used term: (2 nproc - 1)/(2 nproc) */
548         DBL x;
549 
550 #if KMP_USE_X87CONTROL
551         /* Linux* OS already has 64-bit computation by default for long double,
552            and on Windows* OS on Intel(R) 64, /Qlong_double doesn't work. On
553            Windows* OS on IA-32 architecture, we need to set precision to 64-bit
554            instead of the default 53-bit. Even though long double doesn't work
555            on Windows* OS on Intel(R) 64, the resulting lack of precision is not
556            expected to impact the correctness of the algorithm, but this has not
557            been mathematically proven. */
558         // save original FPCW and set precision to 64-bit, as
559         // Windows* OS on IA-32 architecture defaults to 53-bit
560         unsigned int oldFpcw = _control87(0, 0);
561         _control87(_PC_64, _MCW_PC); // 0,0x30000
562 #endif
563         /* value used for comparison in solver for cross-over point */
564         KMP_ASSERT(tc > 0);
565         long double target = ((long double)chunk * 2 + 1) * nproc / tc;
566 
567         /* crossover point--chunk indexes equal to or greater than
568            this point switch to dynamic-style scheduling */
569         UT cross;
570 
571         /* commonly used term: (2 nproc - 1)/(2 nproc) */
572         x = 1.0 - 0.5 / (double)nproc;
573 
574 #ifdef KMP_DEBUG
575         { // test natural alignment
576           struct _test_a {
577             char a;
578             union {
579               char b;
580               DBL d;
581             };
582           } t;
583           ptrdiff_t natural_alignment =
584               (ptrdiff_t)&t.b - (ptrdiff_t)&t - (ptrdiff_t)1;
585           //__kmp_warn( " %llx %llx %lld", (long long)&t.d, (long long)&t, (long
586           // long)natural_alignment );
587           KMP_DEBUG_ASSERT(
588               (((ptrdiff_t)&pr->u.p.parm3) & (natural_alignment)) == 0);
589         }
590 #endif // KMP_DEBUG
591 
592         /* save the term in thread private dispatch structure */
593         *(DBL *)&pr->u.p.parm3 = x;
594 
595         /* solve for the crossover point to the nearest integer i for which C_i
596            <= chunk */
597         {
598           UT left, right, mid;
599           long double p;
600 
601           /* estimate initial upper and lower bound */
602 
603           /* doesn't matter what value right is as long as it is positive, but
604              it affects performance of the solver */
605           right = 229;
606           p = __kmp_pow<UT>(x, right);
607           if (p > target) {
608             do {
609               p *= p;
610               right <<= 1;
611             } while (p > target && right < (1 << 27));
612             /* lower bound is previous (failed) estimate of upper bound */
613             left = right >> 1;
614           } else {
615             left = 0;
616           }
617 
618           /* bisection root-finding method */
619           while (left + 1 < right) {
620             mid = (left + right) / 2;
621             if (__kmp_pow<UT>(x, mid) > target) {
622               left = mid;
623             } else {
624               right = mid;
625             }
626           } // while
627           cross = right;
628         }
629         /* assert sanity of computed crossover point */
630         KMP_ASSERT(cross && __kmp_pow<UT>(x, cross - 1) > target &&
631                    __kmp_pow<UT>(x, cross) <= target);
632 
633         /* save the crossover point in thread private dispatch structure */
634         pr->u.p.parm2 = cross;
635 
636 // C75803
637 #if ((KMP_OS_LINUX || KMP_OS_WINDOWS) && KMP_ARCH_X86) && (!defined(KMP_I8))
638 #define GUIDED_ANALYTICAL_WORKAROUND (*(DBL *)&pr->u.p.parm3)
639 #else
640 #define GUIDED_ANALYTICAL_WORKAROUND (x)
641 #endif
642         /* dynamic-style scheduling offset */
643         pr->u.p.count = tc -
644                         __kmp_dispatch_guided_remaining(
645                             tc, GUIDED_ANALYTICAL_WORKAROUND, cross) -
646                         cross * chunk;
647 #if KMP_USE_X87CONTROL
648         // restore FPCW
649         _control87(oldFpcw, _MCW_PC);
650 #endif
651       } // if
652     } else {
653       KD_TRACE(100, ("__kmp_dispatch_init_algorithm: T#%d falling-through to "
654                      "kmp_sch_static_greedy\n",
655                      gtid));
656       schedule = kmp_sch_static_greedy;
657       /* team->t.t_nproc == 1: fall-through to kmp_sch_static_greedy */
658       pr->u.p.parm1 = tc;
659     } // if
660   } // case
661   break;
662   case kmp_sch_static_greedy:
663     KD_TRACE(
664         100,
665         ("__kmp_dispatch_init_algorithm: T#%d kmp_sch_static_greedy case\n",
666          gtid));
667     pr->u.p.parm1 = (nproc > 1) ? (tc + nproc - 1) / nproc : tc;
668     break;
669   case kmp_sch_static_chunked:
670   case kmp_sch_dynamic_chunked:
671   dynamic_init:
672     if (tc == 0)
673       break;
674     if (pr->u.p.parm1 <= 0)
675       pr->u.p.parm1 = KMP_DEFAULT_CHUNK;
676     else if (pr->u.p.parm1 > tc)
677       pr->u.p.parm1 = tc;
678     // Store the total number of chunks to prevent integer overflow during
679     // bounds calculations in the get next chunk routine.
680     pr->u.p.parm2 = (tc / pr->u.p.parm1) + (tc % pr->u.p.parm1 ? 1 : 0);
681     KD_TRACE(100, ("__kmp_dispatch_init_algorithm: T#%d "
682                    "kmp_sch_static_chunked/kmp_sch_dynamic_chunked cases\n",
683                    gtid));
684     break;
685   case kmp_sch_trapezoidal: {
686     /* TSS: trapezoid self-scheduling, minimum chunk_size = parm1 */
687 
688     T parm1, parm2, parm3, parm4;
689     KD_TRACE(100,
690              ("__kmp_dispatch_init_algorithm: T#%d kmp_sch_trapezoidal case\n",
691               gtid));
692 
693     parm1 = chunk;
694 
695     /* F : size of the first cycle */
696     parm2 = (tc / (2 * nproc));
697 
698     if (parm2 < 1) {
699       parm2 = 1;
700     }
701 
702     /* L : size of the last cycle.  Make sure the last cycle is not larger
703        than the first cycle. */
704     if (parm1 < 1) {
705       parm1 = 1;
706     } else if (parm1 > parm2) {
707       parm1 = parm2;
708     }
709 
710     /* N : number of cycles */
711     parm3 = (parm2 + parm1);
712     parm3 = (2 * tc + parm3 - 1) / parm3;
713 
714     if (parm3 < 2) {
715       parm3 = 2;
716     }
717 
718     /* sigma : decreasing incr of the trapezoid */
719     parm4 = (parm3 - 1);
720     parm4 = (parm2 - parm1) / parm4;
721 
722     // pointless check, because parm4 >= 0 always
723     // if ( parm4 < 0 ) {
724     //    parm4 = 0;
725     //}
726 
727     pr->u.p.parm1 = parm1;
728     pr->u.p.parm2 = parm2;
729     pr->u.p.parm3 = parm3;
730     pr->u.p.parm4 = parm4;
731   } // case
732   break;
733 
734   default: {
735     __kmp_fatal(KMP_MSG(UnknownSchedTypeDetected), // Primary message
736                 KMP_HNT(GetNewerLibrary), // Hint
737                 __kmp_msg_null // Variadic argument list terminator
738     );
739   } break;
740   } // switch
741   pr->schedule = schedule;
742 }
743 
744 #if KMP_USE_HIER_SCHED
745 template <typename T>
746 inline void __kmp_dispatch_init_hier_runtime(ident_t *loc, T lb, T ub,
747                                              typename traits_t<T>::signed_t st);
748 template <>
749 inline void
750 __kmp_dispatch_init_hier_runtime<kmp_int32>(ident_t *loc, kmp_int32 lb,
751                                             kmp_int32 ub, kmp_int32 st) {
752   __kmp_dispatch_init_hierarchy<kmp_int32>(
753       loc, __kmp_hier_scheds.size, __kmp_hier_scheds.layers,
754       __kmp_hier_scheds.scheds, __kmp_hier_scheds.small_chunks, lb, ub, st);
755 }
756 template <>
757 inline void
758 __kmp_dispatch_init_hier_runtime<kmp_uint32>(ident_t *loc, kmp_uint32 lb,
759                                              kmp_uint32 ub, kmp_int32 st) {
760   __kmp_dispatch_init_hierarchy<kmp_uint32>(
761       loc, __kmp_hier_scheds.size, __kmp_hier_scheds.layers,
762       __kmp_hier_scheds.scheds, __kmp_hier_scheds.small_chunks, lb, ub, st);
763 }
764 template <>
765 inline void
766 __kmp_dispatch_init_hier_runtime<kmp_int64>(ident_t *loc, kmp_int64 lb,
767                                             kmp_int64 ub, kmp_int64 st) {
768   __kmp_dispatch_init_hierarchy<kmp_int64>(
769       loc, __kmp_hier_scheds.size, __kmp_hier_scheds.layers,
770       __kmp_hier_scheds.scheds, __kmp_hier_scheds.large_chunks, lb, ub, st);
771 }
772 template <>
773 inline void
774 __kmp_dispatch_init_hier_runtime<kmp_uint64>(ident_t *loc, kmp_uint64 lb,
775                                              kmp_uint64 ub, kmp_int64 st) {
776   __kmp_dispatch_init_hierarchy<kmp_uint64>(
777       loc, __kmp_hier_scheds.size, __kmp_hier_scheds.layers,
778       __kmp_hier_scheds.scheds, __kmp_hier_scheds.large_chunks, lb, ub, st);
779 }
780 
781 // free all the hierarchy scheduling memory associated with the team
782 void __kmp_dispatch_free_hierarchies(kmp_team_t *team) {
783   int num_disp_buff = team->t.t_max_nproc > 1 ? __kmp_dispatch_num_buffers : 2;
784   for (int i = 0; i < num_disp_buff; ++i) {
785     // type does not matter here so use kmp_int32
786     auto sh =
787         reinterpret_cast<dispatch_shared_info_template<kmp_int32> volatile *>(
788             &team->t.t_disp_buffer[i]);
789     if (sh->hier) {
790       sh->hier->deallocate();
791       __kmp_free(sh->hier);
792     }
793   }
794 }
795 #endif
796 
797 // UT - unsigned flavor of T, ST - signed flavor of T,
798 // DBL - double if sizeof(T)==4, or long double if sizeof(T)==8
799 template <typename T>
800 static void
801 __kmp_dispatch_init(ident_t *loc, int gtid, enum sched_type schedule, T lb,
802                     T ub, typename traits_t<T>::signed_t st,
803                     typename traits_t<T>::signed_t chunk, int push_ws) {
804   typedef typename traits_t<T>::unsigned_t UT;
805 
806   int active;
807   kmp_info_t *th;
808   kmp_team_t *team;
809   kmp_uint32 my_buffer_index;
810   dispatch_private_info_template<T> *pr;
811   dispatch_shared_info_template<T> volatile *sh;
812 
813   KMP_BUILD_ASSERT(sizeof(dispatch_private_info_template<T>) ==
814                    sizeof(dispatch_private_info));
815   KMP_BUILD_ASSERT(sizeof(dispatch_shared_info_template<UT>) ==
816                    sizeof(dispatch_shared_info));
817   __kmp_assert_valid_gtid(gtid);
818 
819   if (!TCR_4(__kmp_init_parallel))
820     __kmp_parallel_initialize();
821 
822   __kmp_resume_if_soft_paused();
823 
824 #if INCLUDE_SSC_MARKS
825   SSC_MARK_DISPATCH_INIT();
826 #endif
827 #ifdef KMP_DEBUG
828   typedef typename traits_t<T>::signed_t ST;
829   {
830     char *buff;
831     // create format specifiers before the debug output
832     buff = __kmp_str_format("__kmp_dispatch_init: T#%%d called: schedule:%%d "
833                             "chunk:%%%s lb:%%%s ub:%%%s st:%%%s\n",
834                             traits_t<ST>::spec, traits_t<T>::spec,
835                             traits_t<T>::spec, traits_t<ST>::spec);
836     KD_TRACE(10, (buff, gtid, schedule, chunk, lb, ub, st));
837     __kmp_str_free(&buff);
838   }
839 #endif
840   /* setup data */
841   th = __kmp_threads[gtid];
842   team = th->th.th_team;
843   active = !team->t.t_serialized;
844   th->th.th_ident = loc;
845 
846   // Any half-decent optimizer will remove this test when the blocks are empty
847   // since the macros expand to nothing
848   // when statistics are disabled.
849   if (schedule == __kmp_static) {
850     KMP_COUNT_BLOCK(OMP_LOOP_STATIC);
851   } else {
852     KMP_COUNT_BLOCK(OMP_LOOP_DYNAMIC);
853   }
854 
855 #if KMP_USE_HIER_SCHED
856   // Initialize the scheduling hierarchy if requested in OMP_SCHEDULE envirable
857   // Hierarchical scheduling does not work with ordered, so if ordered is
858   // detected, then revert back to threaded scheduling.
859   bool ordered;
860   enum sched_type my_sched = schedule;
861   my_buffer_index = th->th.th_dispatch->th_disp_index;
862   pr = reinterpret_cast<dispatch_private_info_template<T> *>(
863       &th->th.th_dispatch
864            ->th_disp_buffer[my_buffer_index % __kmp_dispatch_num_buffers]);
865   my_sched = SCHEDULE_WITHOUT_MODIFIERS(my_sched);
866   if ((my_sched >= kmp_nm_lower) && (my_sched < kmp_nm_upper))
867     my_sched =
868         (enum sched_type)(((int)my_sched) - (kmp_nm_lower - kmp_sch_lower));
869   ordered = (kmp_ord_lower & my_sched);
870   if (pr->flags.use_hier) {
871     if (ordered) {
872       KD_TRACE(100, ("__kmp_dispatch_init: T#%d ordered loop detected.  "
873                      "Disabling hierarchical scheduling.\n",
874                      gtid));
875       pr->flags.use_hier = FALSE;
876     }
877   }
878   if (schedule == kmp_sch_runtime && __kmp_hier_scheds.size > 0) {
879     // Don't use hierarchical for ordered parallel loops and don't
880     // use the runtime hierarchy if one was specified in the program
881     if (!ordered && !pr->flags.use_hier)
882       __kmp_dispatch_init_hier_runtime<T>(loc, lb, ub, st);
883   }
884 #endif // KMP_USE_HIER_SCHED
885 
886 #if USE_ITT_BUILD
887   kmp_uint64 cur_chunk = chunk;
888   int itt_need_metadata_reporting =
889       __itt_metadata_add_ptr && __kmp_forkjoin_frames_mode == 3 &&
890       KMP_MASTER_GTID(gtid) && th->th.th_teams_microtask == NULL &&
891       team->t.t_active_level == 1;
892 #endif
893   if (!active) {
894     pr = reinterpret_cast<dispatch_private_info_template<T> *>(
895         th->th.th_dispatch->th_disp_buffer); /* top of the stack */
896   } else {
897     KMP_DEBUG_ASSERT(th->th.th_dispatch ==
898                      &th->th.th_team->t.t_dispatch[th->th.th_info.ds.ds_tid]);
899 
900     my_buffer_index = th->th.th_dispatch->th_disp_index++;
901 
902     /* What happens when number of threads changes, need to resize buffer? */
903     pr = reinterpret_cast<dispatch_private_info_template<T> *>(
904         &th->th.th_dispatch
905              ->th_disp_buffer[my_buffer_index % __kmp_dispatch_num_buffers]);
906     sh = reinterpret_cast<dispatch_shared_info_template<T> volatile *>(
907         &team->t.t_disp_buffer[my_buffer_index % __kmp_dispatch_num_buffers]);
908     KD_TRACE(10, ("__kmp_dispatch_init: T#%d my_buffer_index:%d\n", gtid,
909                   my_buffer_index));
910     if (sh->buffer_index != my_buffer_index) { // too many loops in progress?
911       KD_TRACE(100, ("__kmp_dispatch_init: T#%d before wait: my_buffer_index:%d"
912                      " sh->buffer_index:%d\n",
913                      gtid, my_buffer_index, sh->buffer_index));
914       __kmp_wait<kmp_uint32>(&sh->buffer_index, my_buffer_index,
915                              __kmp_eq<kmp_uint32> USE_ITT_BUILD_ARG(NULL));
916       // Note: KMP_WAIT() cannot be used there: buffer index and
917       // my_buffer_index are *always* 32-bit integers.
918       KD_TRACE(100, ("__kmp_dispatch_init: T#%d after wait: my_buffer_index:%d "
919                      "sh->buffer_index:%d\n",
920                      gtid, my_buffer_index, sh->buffer_index));
921     }
922   }
923 
924   __kmp_dispatch_init_algorithm(loc, gtid, pr, schedule, lb, ub, st,
925 #if USE_ITT_BUILD
926                                 &cur_chunk,
927 #endif
928                                 chunk, (T)th->th.th_team_nproc,
929                                 (T)th->th.th_info.ds.ds_tid);
930   if (active) {
931     if (pr->flags.ordered == 0) {
932       th->th.th_dispatch->th_deo_fcn = __kmp_dispatch_deo_error;
933       th->th.th_dispatch->th_dxo_fcn = __kmp_dispatch_dxo_error;
934     } else {
935       th->th.th_dispatch->th_deo_fcn = __kmp_dispatch_deo<UT>;
936       th->th.th_dispatch->th_dxo_fcn = __kmp_dispatch_dxo<UT>;
937     }
938     th->th.th_dispatch->th_dispatch_pr_current = (dispatch_private_info_t *)pr;
939     th->th.th_dispatch->th_dispatch_sh_current =
940         CCAST(dispatch_shared_info_t *, (volatile dispatch_shared_info_t *)sh);
941 #if USE_ITT_BUILD
942     if (pr->flags.ordered) {
943       __kmp_itt_ordered_init(gtid);
944     }
945     // Report loop metadata
946     if (itt_need_metadata_reporting) {
947       // Only report metadata by primary thread of active team at level 1
948       kmp_uint64 schedtype = 0;
949       switch (schedule) {
950       case kmp_sch_static_chunked:
951       case kmp_sch_static_balanced: // Chunk is calculated in the switch above
952         break;
953       case kmp_sch_static_greedy:
954         cur_chunk = pr->u.p.parm1;
955         break;
956       case kmp_sch_dynamic_chunked:
957         schedtype = 1;
958         break;
959       case kmp_sch_guided_iterative_chunked:
960       case kmp_sch_guided_analytical_chunked:
961       case kmp_sch_guided_simd:
962         schedtype = 2;
963         break;
964       default:
965         // Should we put this case under "static"?
966         // case kmp_sch_static_steal:
967         schedtype = 3;
968         break;
969       }
970       __kmp_itt_metadata_loop(loc, schedtype, pr->u.p.tc, cur_chunk);
971     }
972 #if KMP_USE_HIER_SCHED
973     if (pr->flags.use_hier) {
974       pr->u.p.count = 0;
975       pr->u.p.ub = pr->u.p.lb = pr->u.p.st = pr->u.p.tc = 0;
976     }
977 #endif // KMP_USER_HIER_SCHED
978 #endif /* USE_ITT_BUILD */
979   }
980 
981 #ifdef KMP_DEBUG
982   {
983     char *buff;
984     // create format specifiers before the debug output
985     buff = __kmp_str_format(
986         "__kmp_dispatch_init: T#%%d returning: schedule:%%d ordered:%%%s "
987         "lb:%%%s ub:%%%s"
988         " st:%%%s tc:%%%s count:%%%s\n\tordered_lower:%%%s ordered_upper:%%%s"
989         " parm1:%%%s parm2:%%%s parm3:%%%s parm4:%%%s\n",
990         traits_t<UT>::spec, traits_t<T>::spec, traits_t<T>::spec,
991         traits_t<ST>::spec, traits_t<UT>::spec, traits_t<UT>::spec,
992         traits_t<UT>::spec, traits_t<UT>::spec, traits_t<T>::spec,
993         traits_t<T>::spec, traits_t<T>::spec, traits_t<T>::spec);
994     KD_TRACE(10, (buff, gtid, pr->schedule, pr->flags.ordered, pr->u.p.lb,
995                   pr->u.p.ub, pr->u.p.st, pr->u.p.tc, pr->u.p.count,
996                   pr->u.p.ordered_lower, pr->u.p.ordered_upper, pr->u.p.parm1,
997                   pr->u.p.parm2, pr->u.p.parm3, pr->u.p.parm4));
998     __kmp_str_free(&buff);
999   }
1000 #endif
1001 #if OMPT_SUPPORT && OMPT_OPTIONAL
1002   if (ompt_enabled.ompt_callback_work) {
1003     ompt_team_info_t *team_info = __ompt_get_teaminfo(0, NULL);
1004     ompt_task_info_t *task_info = __ompt_get_task_info_object(0);
1005     ompt_callbacks.ompt_callback(ompt_callback_work)(
1006         ompt_work_loop, ompt_scope_begin, &(team_info->parallel_data),
1007         &(task_info->task_data), pr->u.p.tc, OMPT_LOAD_RETURN_ADDRESS(gtid));
1008   }
1009 #endif
1010   KMP_PUSH_PARTITIONED_TIMER(OMP_loop_dynamic);
1011 }
1012 
1013 /* For ordered loops, either __kmp_dispatch_finish() should be called after
1014  * every iteration, or __kmp_dispatch_finish_chunk() should be called after
1015  * every chunk of iterations.  If the ordered section(s) were not executed
1016  * for this iteration (or every iteration in this chunk), we need to set the
1017  * ordered iteration counters so that the next thread can proceed. */
1018 template <typename UT>
1019 static void __kmp_dispatch_finish(int gtid, ident_t *loc) {
1020   typedef typename traits_t<UT>::signed_t ST;
1021   __kmp_assert_valid_gtid(gtid);
1022   kmp_info_t *th = __kmp_threads[gtid];
1023 
1024   KD_TRACE(100, ("__kmp_dispatch_finish: T#%d called\n", gtid));
1025   if (!th->th.th_team->t.t_serialized) {
1026 
1027     dispatch_private_info_template<UT> *pr =
1028         reinterpret_cast<dispatch_private_info_template<UT> *>(
1029             th->th.th_dispatch->th_dispatch_pr_current);
1030     dispatch_shared_info_template<UT> volatile *sh =
1031         reinterpret_cast<dispatch_shared_info_template<UT> volatile *>(
1032             th->th.th_dispatch->th_dispatch_sh_current);
1033     KMP_DEBUG_ASSERT(pr);
1034     KMP_DEBUG_ASSERT(sh);
1035     KMP_DEBUG_ASSERT(th->th.th_dispatch ==
1036                      &th->th.th_team->t.t_dispatch[th->th.th_info.ds.ds_tid]);
1037 
1038     if (pr->ordered_bumped) {
1039       KD_TRACE(
1040           1000,
1041           ("__kmp_dispatch_finish: T#%d resetting ordered_bumped to zero\n",
1042            gtid));
1043       pr->ordered_bumped = 0;
1044     } else {
1045       UT lower = pr->u.p.ordered_lower;
1046 
1047 #ifdef KMP_DEBUG
1048       {
1049         char *buff;
1050         // create format specifiers before the debug output
1051         buff = __kmp_str_format("__kmp_dispatch_finish: T#%%d before wait: "
1052                                 "ordered_iteration:%%%s lower:%%%s\n",
1053                                 traits_t<UT>::spec, traits_t<UT>::spec);
1054         KD_TRACE(1000, (buff, gtid, sh->u.s.ordered_iteration, lower));
1055         __kmp_str_free(&buff);
1056       }
1057 #endif
1058 
1059       __kmp_wait<UT>(&sh->u.s.ordered_iteration, lower,
1060                      __kmp_ge<UT> USE_ITT_BUILD_ARG(NULL));
1061       KMP_MB(); /* is this necessary? */
1062 #ifdef KMP_DEBUG
1063       {
1064         char *buff;
1065         // create format specifiers before the debug output
1066         buff = __kmp_str_format("__kmp_dispatch_finish: T#%%d after wait: "
1067                                 "ordered_iteration:%%%s lower:%%%s\n",
1068                                 traits_t<UT>::spec, traits_t<UT>::spec);
1069         KD_TRACE(1000, (buff, gtid, sh->u.s.ordered_iteration, lower));
1070         __kmp_str_free(&buff);
1071       }
1072 #endif
1073 
1074       test_then_inc<ST>((volatile ST *)&sh->u.s.ordered_iteration);
1075     } // if
1076   } // if
1077   KD_TRACE(100, ("__kmp_dispatch_finish: T#%d returned\n", gtid));
1078 }
1079 
1080 #ifdef KMP_GOMP_COMPAT
1081 
1082 template <typename UT>
1083 static void __kmp_dispatch_finish_chunk(int gtid, ident_t *loc) {
1084   typedef typename traits_t<UT>::signed_t ST;
1085   __kmp_assert_valid_gtid(gtid);
1086   kmp_info_t *th = __kmp_threads[gtid];
1087 
1088   KD_TRACE(100, ("__kmp_dispatch_finish_chunk: T#%d called\n", gtid));
1089   if (!th->th.th_team->t.t_serialized) {
1090     dispatch_private_info_template<UT> *pr =
1091         reinterpret_cast<dispatch_private_info_template<UT> *>(
1092             th->th.th_dispatch->th_dispatch_pr_current);
1093     dispatch_shared_info_template<UT> volatile *sh =
1094         reinterpret_cast<dispatch_shared_info_template<UT> volatile *>(
1095             th->th.th_dispatch->th_dispatch_sh_current);
1096     KMP_DEBUG_ASSERT(pr);
1097     KMP_DEBUG_ASSERT(sh);
1098     KMP_DEBUG_ASSERT(th->th.th_dispatch ==
1099                      &th->th.th_team->t.t_dispatch[th->th.th_info.ds.ds_tid]);
1100 
1101     UT lower = pr->u.p.ordered_lower;
1102     UT upper = pr->u.p.ordered_upper;
1103     UT inc = upper - lower + 1;
1104 
1105     if (pr->ordered_bumped == inc) {
1106       KD_TRACE(
1107           1000,
1108           ("__kmp_dispatch_finish: T#%d resetting ordered_bumped to zero\n",
1109            gtid));
1110       pr->ordered_bumped = 0;
1111     } else {
1112       inc -= pr->ordered_bumped;
1113 
1114 #ifdef KMP_DEBUG
1115       {
1116         char *buff;
1117         // create format specifiers before the debug output
1118         buff = __kmp_str_format(
1119             "__kmp_dispatch_finish_chunk: T#%%d before wait: "
1120             "ordered_iteration:%%%s lower:%%%s upper:%%%s\n",
1121             traits_t<UT>::spec, traits_t<UT>::spec, traits_t<UT>::spec);
1122         KD_TRACE(1000, (buff, gtid, sh->u.s.ordered_iteration, lower, upper));
1123         __kmp_str_free(&buff);
1124       }
1125 #endif
1126 
1127       __kmp_wait<UT>(&sh->u.s.ordered_iteration, lower,
1128                      __kmp_ge<UT> USE_ITT_BUILD_ARG(NULL));
1129 
1130       KMP_MB(); /* is this necessary? */
1131       KD_TRACE(1000, ("__kmp_dispatch_finish_chunk: T#%d resetting "
1132                       "ordered_bumped to zero\n",
1133                       gtid));
1134       pr->ordered_bumped = 0;
1135 //!!!!! TODO check if the inc should be unsigned, or signed???
1136 #ifdef KMP_DEBUG
1137       {
1138         char *buff;
1139         // create format specifiers before the debug output
1140         buff = __kmp_str_format(
1141             "__kmp_dispatch_finish_chunk: T#%%d after wait: "
1142             "ordered_iteration:%%%s inc:%%%s lower:%%%s upper:%%%s\n",
1143             traits_t<UT>::spec, traits_t<UT>::spec, traits_t<UT>::spec,
1144             traits_t<UT>::spec);
1145         KD_TRACE(1000,
1146                  (buff, gtid, sh->u.s.ordered_iteration, inc, lower, upper));
1147         __kmp_str_free(&buff);
1148       }
1149 #endif
1150 
1151       test_then_add<ST>((volatile ST *)&sh->u.s.ordered_iteration, inc);
1152     }
1153     //        }
1154   }
1155   KD_TRACE(100, ("__kmp_dispatch_finish_chunk: T#%d returned\n", gtid));
1156 }
1157 
1158 #endif /* KMP_GOMP_COMPAT */
1159 
1160 template <typename T>
1161 int __kmp_dispatch_next_algorithm(int gtid,
1162                                   dispatch_private_info_template<T> *pr,
1163                                   dispatch_shared_info_template<T> volatile *sh,
1164                                   kmp_int32 *p_last, T *p_lb, T *p_ub,
1165                                   typename traits_t<T>::signed_t *p_st, T nproc,
1166                                   T tid) {
1167   typedef typename traits_t<T>::unsigned_t UT;
1168   typedef typename traits_t<T>::signed_t ST;
1169   typedef typename traits_t<T>::floating_t DBL;
1170   int status = 0;
1171   bool last = false;
1172   T start;
1173   ST incr;
1174   UT limit, trip, init;
1175   kmp_info_t *th = __kmp_threads[gtid];
1176   kmp_team_t *team = th->th.th_team;
1177 
1178   KMP_DEBUG_ASSERT(th->th.th_dispatch ==
1179                    &th->th.th_team->t.t_dispatch[th->th.th_info.ds.ds_tid]);
1180   KMP_DEBUG_ASSERT(pr);
1181   KMP_DEBUG_ASSERT(sh);
1182   KMP_DEBUG_ASSERT(tid >= 0 && tid < nproc);
1183 #ifdef KMP_DEBUG
1184   {
1185     char *buff;
1186     // create format specifiers before the debug output
1187     buff =
1188         __kmp_str_format("__kmp_dispatch_next_algorithm: T#%%d called pr:%%p "
1189                          "sh:%%p nproc:%%%s tid:%%%s\n",
1190                          traits_t<T>::spec, traits_t<T>::spec);
1191     KD_TRACE(10, (buff, gtid, pr, sh, nproc, tid));
1192     __kmp_str_free(&buff);
1193   }
1194 #endif
1195 
1196   // zero trip count
1197   if (pr->u.p.tc == 0) {
1198     KD_TRACE(10,
1199              ("__kmp_dispatch_next_algorithm: T#%d early exit trip count is "
1200               "zero status:%d\n",
1201               gtid, status));
1202     return 0;
1203   }
1204 
1205   switch (pr->schedule) {
1206 #if KMP_STATIC_STEAL_ENABLED
1207   case kmp_sch_static_steal: {
1208     T chunk = pr->u.p.parm1;
1209     UT nchunks = pr->u.p.parm2;
1210     KD_TRACE(100,
1211              ("__kmp_dispatch_next_algorithm: T#%d kmp_sch_static_steal case\n",
1212               gtid));
1213 
1214     trip = pr->u.p.tc - 1;
1215 
1216     if (traits_t<T>::type_size > 4) {
1217       // use lock for 8-byte induction variable.
1218       // TODO (optional): check presence and use 16-byte CAS
1219       kmp_lock_t *lck = pr->u.p.steal_lock;
1220       KMP_DEBUG_ASSERT(lck != NULL);
1221       if (pr->u.p.count < (UT)pr->u.p.ub) {
1222         KMP_DEBUG_ASSERT(pr->steal_flag == READY);
1223         __kmp_acquire_lock(lck, gtid);
1224         // try to get own chunk of iterations
1225         init = (pr->u.p.count)++;
1226         status = (init < (UT)pr->u.p.ub);
1227         __kmp_release_lock(lck, gtid);
1228       } else {
1229         status = 0; // no own chunks
1230       }
1231       if (!status) { // try to steal
1232         kmp_lock_t *lckv; // victim buffer's lock
1233         T while_limit = pr->u.p.parm3;
1234         T while_index = 0;
1235         int idx = (th->th.th_dispatch->th_disp_index - 1) %
1236                   __kmp_dispatch_num_buffers; // current loop index
1237         // note: victim thread can potentially execute another loop
1238         KMP_ATOMIC_ST_REL(&pr->steal_flag, THIEF); // mark self buffer inactive
1239         while ((!status) && (while_limit != ++while_index)) {
1240           dispatch_private_info_template<T> *v;
1241           T remaining;
1242           T victimId = pr->u.p.parm4;
1243           T oldVictimId = victimId ? victimId - 1 : nproc - 1;
1244           v = reinterpret_cast<dispatch_private_info_template<T> *>(
1245               &team->t.t_dispatch[victimId].th_disp_buffer[idx]);
1246           KMP_DEBUG_ASSERT(v);
1247           while ((v == pr || KMP_ATOMIC_LD_RLX(&v->steal_flag) == THIEF) &&
1248                  oldVictimId != victimId) {
1249             victimId = (victimId + 1) % nproc;
1250             v = reinterpret_cast<dispatch_private_info_template<T> *>(
1251                 &team->t.t_dispatch[victimId].th_disp_buffer[idx]);
1252             KMP_DEBUG_ASSERT(v);
1253           }
1254           if (v == pr || KMP_ATOMIC_LD_RLX(&v->steal_flag) == THIEF) {
1255             continue; // try once more (nproc attempts in total)
1256           }
1257           if (KMP_ATOMIC_LD_RLX(&v->steal_flag) == UNUSED) {
1258             kmp_uint32 old = UNUSED;
1259             // try to steal whole range from inactive victim
1260             status = v->steal_flag.compare_exchange_strong(old, THIEF);
1261             if (status) {
1262               // initialize self buffer with victim's whole range of chunks
1263               T id = victimId;
1264               T small_chunk, extras;
1265               small_chunk = nchunks / nproc; // chunks per thread
1266               extras = nchunks % nproc;
1267               init = id * small_chunk + (id < extras ? id : extras);
1268               __kmp_acquire_lock(lck, gtid);
1269               pr->u.p.count = init + 1; // exclude one we execute immediately
1270               pr->u.p.ub = init + small_chunk + (id < extras ? 1 : 0);
1271               __kmp_release_lock(lck, gtid);
1272               pr->u.p.parm4 = (id + 1) % nproc; // remember neighbour tid
1273               // no need to reinitialize other thread invariants: lb, st, etc.
1274 #ifdef KMP_DEBUG
1275               {
1276                 char *buff;
1277                 // create format specifiers before the debug output
1278                 buff = __kmp_str_format(
1279                     "__kmp_dispatch_next: T#%%d stolen chunks from T#%%d, "
1280                     "count:%%%s ub:%%%s\n",
1281                     traits_t<UT>::spec, traits_t<T>::spec);
1282                 KD_TRACE(10, (buff, gtid, id, pr->u.p.count, pr->u.p.ub));
1283                 __kmp_str_free(&buff);
1284               }
1285 #endif
1286               // activate non-empty buffer and let others steal from us
1287               if (pr->u.p.count < (UT)pr->u.p.ub)
1288                 KMP_ATOMIC_ST_REL(&pr->steal_flag, READY);
1289               break;
1290             }
1291           }
1292           if (KMP_ATOMIC_LD_RLX(&v->steal_flag) != READY ||
1293               v->u.p.count >= (UT)v->u.p.ub) {
1294             pr->u.p.parm4 = (victimId + 1) % nproc; // shift start victim tid
1295             continue; // no chunks to steal, try next victim
1296           }
1297           lckv = v->u.p.steal_lock;
1298           KMP_ASSERT(lckv != NULL);
1299           __kmp_acquire_lock(lckv, gtid);
1300           limit = v->u.p.ub; // keep initial ub
1301           if (v->u.p.count >= limit) {
1302             __kmp_release_lock(lckv, gtid);
1303             pr->u.p.parm4 = (victimId + 1) % nproc; // shift start victim tid
1304             continue; // no chunks to steal, try next victim
1305           }
1306 
1307           // stealing succeded, reduce victim's ub by 1/4 of undone chunks
1308           // TODO: is this heuristics good enough??
1309           remaining = limit - v->u.p.count;
1310           if (remaining > 7) {
1311             // steal 1/4 of remaining
1312             KMP_COUNT_DEVELOPER_VALUE(FOR_static_steal_stolen, remaining >> 2);
1313             init = (v->u.p.ub -= (remaining >> 2));
1314           } else {
1315             // steal 1 chunk of 1..7 remaining
1316             KMP_COUNT_DEVELOPER_VALUE(FOR_static_steal_stolen, 1);
1317             init = (v->u.p.ub -= 1);
1318           }
1319           __kmp_release_lock(lckv, gtid);
1320 #ifdef KMP_DEBUG
1321           {
1322             char *buff;
1323             // create format specifiers before the debug output
1324             buff = __kmp_str_format(
1325                 "__kmp_dispatch_next: T#%%d stolen chunks from T#%%d, "
1326                 "count:%%%s ub:%%%s\n",
1327                 traits_t<UT>::spec, traits_t<UT>::spec);
1328             KD_TRACE(10, (buff, gtid, victimId, init, limit));
1329             __kmp_str_free(&buff);
1330           }
1331 #endif
1332           KMP_DEBUG_ASSERT(init + 1 <= limit);
1333           pr->u.p.parm4 = victimId; // remember victim to steal from
1334           status = 1;
1335           // now update own count and ub with stolen range excluding init chunk
1336           __kmp_acquire_lock(lck, gtid);
1337           pr->u.p.count = init + 1;
1338           pr->u.p.ub = limit;
1339           __kmp_release_lock(lck, gtid);
1340           // activate non-empty buffer and let others steal from us
1341           if (init + 1 < limit)
1342             KMP_ATOMIC_ST_REL(&pr->steal_flag, READY);
1343         } // while (search for victim)
1344       } // if (try to find victim and steal)
1345     } else {
1346       // 4-byte induction variable, use 8-byte CAS for pair (count, ub)
1347       // as all operations on pair (count, ub) must be done atomically
1348       typedef union {
1349         struct {
1350           UT count;
1351           T ub;
1352         } p;
1353         kmp_int64 b;
1354       } union_i4;
1355       union_i4 vold, vnew;
1356       if (pr->u.p.count < (UT)pr->u.p.ub) {
1357         KMP_DEBUG_ASSERT(pr->steal_flag == READY);
1358         vold.b = *(volatile kmp_int64 *)(&pr->u.p.count);
1359         vnew.b = vold.b;
1360         vnew.p.count++; // get chunk from head of self range
1361         while (!KMP_COMPARE_AND_STORE_REL64(
1362             (volatile kmp_int64 *)&pr->u.p.count,
1363             *VOLATILE_CAST(kmp_int64 *) & vold.b,
1364             *VOLATILE_CAST(kmp_int64 *) & vnew.b)) {
1365           KMP_CPU_PAUSE();
1366           vold.b = *(volatile kmp_int64 *)(&pr->u.p.count);
1367           vnew.b = vold.b;
1368           vnew.p.count++;
1369         }
1370         init = vold.p.count;
1371         status = (init < (UT)vold.p.ub);
1372       } else {
1373         status = 0; // no own chunks
1374       }
1375       if (!status) { // try to steal
1376         T while_limit = pr->u.p.parm3;
1377         T while_index = 0;
1378         int idx = (th->th.th_dispatch->th_disp_index - 1) %
1379                   __kmp_dispatch_num_buffers; // current loop index
1380         // note: victim thread can potentially execute another loop
1381         KMP_ATOMIC_ST_REL(&pr->steal_flag, THIEF); // mark self buffer inactive
1382         while ((!status) && (while_limit != ++while_index)) {
1383           dispatch_private_info_template<T> *v;
1384           T remaining;
1385           T victimId = pr->u.p.parm4;
1386           T oldVictimId = victimId ? victimId - 1 : nproc - 1;
1387           v = reinterpret_cast<dispatch_private_info_template<T> *>(
1388               &team->t.t_dispatch[victimId].th_disp_buffer[idx]);
1389           KMP_DEBUG_ASSERT(v);
1390           while ((v == pr || KMP_ATOMIC_LD_RLX(&v->steal_flag) == THIEF) &&
1391                  oldVictimId != victimId) {
1392             victimId = (victimId + 1) % nproc;
1393             v = reinterpret_cast<dispatch_private_info_template<T> *>(
1394                 &team->t.t_dispatch[victimId].th_disp_buffer[idx]);
1395             KMP_DEBUG_ASSERT(v);
1396           }
1397           if (v == pr || KMP_ATOMIC_LD_RLX(&v->steal_flag) == THIEF) {
1398             continue; // try once more (nproc attempts in total)
1399           }
1400           if (KMP_ATOMIC_LD_RLX(&v->steal_flag) == UNUSED) {
1401             kmp_uint32 old = UNUSED;
1402             // try to steal whole range from inactive victim
1403             status = v->steal_flag.compare_exchange_strong(old, THIEF);
1404             if (status) {
1405               // initialize self buffer with victim's whole range of chunks
1406               T id = victimId;
1407               T small_chunk, extras;
1408               small_chunk = nchunks / nproc; // chunks per thread
1409               extras = nchunks % nproc;
1410               init = id * small_chunk + (id < extras ? id : extras);
1411               vnew.p.count = init + 1;
1412               vnew.p.ub = init + small_chunk + (id < extras ? 1 : 0);
1413               // write pair (count, ub) at once atomically
1414 #if KMP_ARCH_X86
1415               KMP_XCHG_FIXED64((volatile kmp_int64 *)(&pr->u.p.count), vnew.b);
1416 #else
1417               *(volatile kmp_int64 *)(&pr->u.p.count) = vnew.b;
1418 #endif
1419               pr->u.p.parm4 = (id + 1) % nproc; // remember neighbour tid
1420               // no need to initialize other thread invariants: lb, st, etc.
1421 #ifdef KMP_DEBUG
1422               {
1423                 char *buff;
1424                 // create format specifiers before the debug output
1425                 buff = __kmp_str_format(
1426                     "__kmp_dispatch_next: T#%%d stolen chunks from T#%%d, "
1427                     "count:%%%s ub:%%%s\n",
1428                     traits_t<UT>::spec, traits_t<T>::spec);
1429                 KD_TRACE(10, (buff, gtid, id, pr->u.p.count, pr->u.p.ub));
1430                 __kmp_str_free(&buff);
1431               }
1432 #endif
1433               // activate non-empty buffer and let others steal from us
1434               if (pr->u.p.count < (UT)pr->u.p.ub)
1435                 KMP_ATOMIC_ST_REL(&pr->steal_flag, READY);
1436               break;
1437             }
1438           }
1439           while (1) { // CAS loop with check if victim still has enough chunks
1440             // many threads may be stealing concurrently from same victim
1441             vold.b = *(volatile kmp_int64 *)(&v->u.p.count);
1442             if (KMP_ATOMIC_LD_ACQ(&v->steal_flag) != READY ||
1443                 vold.p.count >= (UT)vold.p.ub) {
1444               pr->u.p.parm4 = (victimId + 1) % nproc; // shift start victim id
1445               break; // no chunks to steal, try next victim
1446             }
1447             vnew.b = vold.b;
1448             remaining = vold.p.ub - vold.p.count;
1449             // try to steal 1/4 of remaining
1450             // TODO: is this heuristics good enough??
1451             if (remaining > 7) {
1452               vnew.p.ub -= remaining >> 2; // steal from tail of victim's range
1453             } else {
1454               vnew.p.ub -= 1; // steal 1 chunk of 1..7 remaining
1455             }
1456             KMP_DEBUG_ASSERT(vnew.p.ub * (UT)chunk <= trip);
1457             if (KMP_COMPARE_AND_STORE_REL64(
1458                     (volatile kmp_int64 *)&v->u.p.count,
1459                     *VOLATILE_CAST(kmp_int64 *) & vold.b,
1460                     *VOLATILE_CAST(kmp_int64 *) & vnew.b)) {
1461               // stealing succedded
1462 #ifdef KMP_DEBUG
1463               {
1464                 char *buff;
1465                 // create format specifiers before the debug output
1466                 buff = __kmp_str_format(
1467                     "__kmp_dispatch_next: T#%%d stolen chunks from T#%%d, "
1468                     "count:%%%s ub:%%%s\n",
1469                     traits_t<T>::spec, traits_t<T>::spec);
1470                 KD_TRACE(10, (buff, gtid, victimId, vnew.p.ub, vold.p.ub));
1471                 __kmp_str_free(&buff);
1472               }
1473 #endif
1474               KMP_COUNT_DEVELOPER_VALUE(FOR_static_steal_stolen,
1475                                         vold.p.ub - vnew.p.ub);
1476               status = 1;
1477               pr->u.p.parm4 = victimId; // keep victim id
1478               // now update own count and ub
1479               init = vnew.p.ub;
1480               vold.p.count = init + 1;
1481 #if KMP_ARCH_X86
1482               KMP_XCHG_FIXED64((volatile kmp_int64 *)(&pr->u.p.count), vold.b);
1483 #else
1484               *(volatile kmp_int64 *)(&pr->u.p.count) = vold.b;
1485 #endif
1486               // activate non-empty buffer and let others steal from us
1487               if (vold.p.count < (UT)vold.p.ub)
1488                 KMP_ATOMIC_ST_REL(&pr->steal_flag, READY);
1489               break;
1490             } // if (check CAS result)
1491             KMP_CPU_PAUSE(); // CAS failed, repeatedly attempt
1492           } // while (try to steal from particular victim)
1493         } // while (search for victim)
1494       } // if (try to find victim and steal)
1495     } // if (4-byte induction variable)
1496     if (!status) {
1497       *p_lb = 0;
1498       *p_ub = 0;
1499       if (p_st != NULL)
1500         *p_st = 0;
1501     } else {
1502       start = pr->u.p.lb;
1503       init *= chunk;
1504       limit = chunk + init - 1;
1505       incr = pr->u.p.st;
1506       KMP_COUNT_DEVELOPER_VALUE(FOR_static_steal_chunks, 1);
1507 
1508       KMP_DEBUG_ASSERT(init <= trip);
1509       // keep track of done chunks for possible early exit from stealing
1510       // TODO: count executed chunks locally with rare update of shared location
1511       // test_then_inc<ST>((volatile ST *)&sh->u.s.iteration);
1512       if ((last = (limit >= trip)) != 0)
1513         limit = trip;
1514       if (p_st != NULL)
1515         *p_st = incr;
1516 
1517       if (incr == 1) {
1518         *p_lb = start + init;
1519         *p_ub = start + limit;
1520       } else {
1521         *p_lb = start + init * incr;
1522         *p_ub = start + limit * incr;
1523       }
1524     } // if
1525     break;
1526   } // case
1527 #endif // KMP_STATIC_STEAL_ENABLED
1528   case kmp_sch_static_balanced: {
1529     KD_TRACE(
1530         10,
1531         ("__kmp_dispatch_next_algorithm: T#%d kmp_sch_static_balanced case\n",
1532          gtid));
1533     /* check if thread has any iteration to do */
1534     if ((status = !pr->u.p.count) != 0) {
1535       pr->u.p.count = 1;
1536       *p_lb = pr->u.p.lb;
1537       *p_ub = pr->u.p.ub;
1538       last = (pr->u.p.parm1 != 0);
1539       if (p_st != NULL)
1540         *p_st = pr->u.p.st;
1541     } else { /* no iterations to do */
1542       pr->u.p.lb = pr->u.p.ub + pr->u.p.st;
1543     }
1544   } // case
1545   break;
1546   case kmp_sch_static_greedy: /* original code for kmp_sch_static_greedy was
1547                                  merged here */
1548   case kmp_sch_static_chunked: {
1549     T parm1;
1550 
1551     KD_TRACE(100, ("__kmp_dispatch_next_algorithm: T#%d "
1552                    "kmp_sch_static_[affinity|chunked] case\n",
1553                    gtid));
1554     parm1 = pr->u.p.parm1;
1555 
1556     trip = pr->u.p.tc - 1;
1557     init = parm1 * (pr->u.p.count + tid);
1558 
1559     if ((status = (init <= trip)) != 0) {
1560       start = pr->u.p.lb;
1561       incr = pr->u.p.st;
1562       limit = parm1 + init - 1;
1563 
1564       if ((last = (limit >= trip)) != 0)
1565         limit = trip;
1566 
1567       if (p_st != NULL)
1568         *p_st = incr;
1569 
1570       pr->u.p.count += nproc;
1571 
1572       if (incr == 1) {
1573         *p_lb = start + init;
1574         *p_ub = start + limit;
1575       } else {
1576         *p_lb = start + init * incr;
1577         *p_ub = start + limit * incr;
1578       }
1579 
1580       if (pr->flags.ordered) {
1581         pr->u.p.ordered_lower = init;
1582         pr->u.p.ordered_upper = limit;
1583       } // if
1584     } // if
1585   } // case
1586   break;
1587 
1588   case kmp_sch_dynamic_chunked: {
1589     UT chunk_number;
1590     UT chunk_size = pr->u.p.parm1;
1591     UT nchunks = pr->u.p.parm2;
1592 
1593     KD_TRACE(
1594         100,
1595         ("__kmp_dispatch_next_algorithm: T#%d kmp_sch_dynamic_chunked case\n",
1596          gtid));
1597 
1598     chunk_number = test_then_inc_acq<ST>((volatile ST *)&sh->u.s.iteration);
1599     status = (chunk_number < nchunks);
1600     if (!status) {
1601       *p_lb = 0;
1602       *p_ub = 0;
1603       if (p_st != NULL)
1604         *p_st = 0;
1605     } else {
1606       init = chunk_size * chunk_number;
1607       trip = pr->u.p.tc - 1;
1608       start = pr->u.p.lb;
1609       incr = pr->u.p.st;
1610 
1611       if ((last = (trip - init < (UT)chunk_size)))
1612         limit = trip;
1613       else
1614         limit = chunk_size + init - 1;
1615 
1616       if (p_st != NULL)
1617         *p_st = incr;
1618 
1619       if (incr == 1) {
1620         *p_lb = start + init;
1621         *p_ub = start + limit;
1622       } else {
1623         *p_lb = start + init * incr;
1624         *p_ub = start + limit * incr;
1625       }
1626 
1627       if (pr->flags.ordered) {
1628         pr->u.p.ordered_lower = init;
1629         pr->u.p.ordered_upper = limit;
1630       } // if
1631     } // if
1632   } // case
1633   break;
1634 
1635   case kmp_sch_guided_iterative_chunked: {
1636     T chunkspec = pr->u.p.parm1;
1637     KD_TRACE(100, ("__kmp_dispatch_next_algorithm: T#%d kmp_sch_guided_chunked "
1638                    "iterative case\n",
1639                    gtid));
1640     trip = pr->u.p.tc;
1641     // Start atomic part of calculations
1642     while (1) {
1643       ST remaining; // signed, because can be < 0
1644       init = sh->u.s.iteration; // shared value
1645       remaining = trip - init;
1646       if (remaining <= 0) { // AC: need to compare with 0 first
1647         // nothing to do, don't try atomic op
1648         status = 0;
1649         break;
1650       }
1651       if ((T)remaining <
1652           pr->u.p.parm2) { // compare with K*nproc*(chunk+1), K=2 by default
1653         // use dynamic-style schedule
1654         // atomically increment iterations, get old value
1655         init = test_then_add<ST>(RCAST(volatile ST *, &sh->u.s.iteration),
1656                                  (ST)chunkspec);
1657         remaining = trip - init;
1658         if (remaining <= 0) {
1659           status = 0; // all iterations got by other threads
1660         } else {
1661           // got some iterations to work on
1662           status = 1;
1663           if ((T)remaining > chunkspec) {
1664             limit = init + chunkspec - 1;
1665           } else {
1666             last = true; // the last chunk
1667             limit = init + remaining - 1;
1668           } // if
1669         } // if
1670         break;
1671       } // if
1672       limit = init + (UT)((double)remaining *
1673                           *(double *)&pr->u.p.parm3); // divide by K*nproc
1674       if (compare_and_swap<ST>(RCAST(volatile ST *, &sh->u.s.iteration),
1675                                (ST)init, (ST)limit)) {
1676         // CAS was successful, chunk obtained
1677         status = 1;
1678         --limit;
1679         break;
1680       } // if
1681     } // while
1682     if (status != 0) {
1683       start = pr->u.p.lb;
1684       incr = pr->u.p.st;
1685       if (p_st != NULL)
1686         *p_st = incr;
1687       *p_lb = start + init * incr;
1688       *p_ub = start + limit * incr;
1689       if (pr->flags.ordered) {
1690         pr->u.p.ordered_lower = init;
1691         pr->u.p.ordered_upper = limit;
1692       } // if
1693     } else {
1694       *p_lb = 0;
1695       *p_ub = 0;
1696       if (p_st != NULL)
1697         *p_st = 0;
1698     } // if
1699   } // case
1700   break;
1701 
1702   case kmp_sch_guided_simd: {
1703     // same as iterative but curr-chunk adjusted to be multiple of given
1704     // chunk
1705     T chunk = pr->u.p.parm1;
1706     KD_TRACE(100,
1707              ("__kmp_dispatch_next_algorithm: T#%d kmp_sch_guided_simd case\n",
1708               gtid));
1709     trip = pr->u.p.tc;
1710     // Start atomic part of calculations
1711     while (1) {
1712       ST remaining; // signed, because can be < 0
1713       init = sh->u.s.iteration; // shared value
1714       remaining = trip - init;
1715       if (remaining <= 0) { // AC: need to compare with 0 first
1716         status = 0; // nothing to do, don't try atomic op
1717         break;
1718       }
1719       KMP_DEBUG_ASSERT(chunk && init % chunk == 0);
1720       // compare with K*nproc*(chunk+1), K=2 by default
1721       if ((T)remaining < pr->u.p.parm2) {
1722         // use dynamic-style schedule
1723         // atomically increment iterations, get old value
1724         init = test_then_add<ST>(RCAST(volatile ST *, &sh->u.s.iteration),
1725                                  (ST)chunk);
1726         remaining = trip - init;
1727         if (remaining <= 0) {
1728           status = 0; // all iterations got by other threads
1729         } else {
1730           // got some iterations to work on
1731           status = 1;
1732           if ((T)remaining > chunk) {
1733             limit = init + chunk - 1;
1734           } else {
1735             last = true; // the last chunk
1736             limit = init + remaining - 1;
1737           } // if
1738         } // if
1739         break;
1740       } // if
1741       // divide by K*nproc
1742       UT span;
1743       __kmp_type_convert((double)remaining * (*(double *)&pr->u.p.parm3),
1744                          &span);
1745       UT rem = span % chunk;
1746       if (rem) // adjust so that span%chunk == 0
1747         span += chunk - rem;
1748       limit = init + span;
1749       if (compare_and_swap<ST>(RCAST(volatile ST *, &sh->u.s.iteration),
1750                                (ST)init, (ST)limit)) {
1751         // CAS was successful, chunk obtained
1752         status = 1;
1753         --limit;
1754         break;
1755       } // if
1756     } // while
1757     if (status != 0) {
1758       start = pr->u.p.lb;
1759       incr = pr->u.p.st;
1760       if (p_st != NULL)
1761         *p_st = incr;
1762       *p_lb = start + init * incr;
1763       *p_ub = start + limit * incr;
1764       if (pr->flags.ordered) {
1765         pr->u.p.ordered_lower = init;
1766         pr->u.p.ordered_upper = limit;
1767       } // if
1768     } else {
1769       *p_lb = 0;
1770       *p_ub = 0;
1771       if (p_st != NULL)
1772         *p_st = 0;
1773     } // if
1774   } // case
1775   break;
1776 
1777   case kmp_sch_guided_analytical_chunked: {
1778     T chunkspec = pr->u.p.parm1;
1779     UT chunkIdx;
1780 #if KMP_USE_X87CONTROL
1781     /* for storing original FPCW value for Windows* OS on
1782        IA-32 architecture 8-byte version */
1783     unsigned int oldFpcw;
1784     unsigned int fpcwSet = 0;
1785 #endif
1786     KD_TRACE(100, ("__kmp_dispatch_next_algorithm: T#%d "
1787                    "kmp_sch_guided_analytical_chunked case\n",
1788                    gtid));
1789 
1790     trip = pr->u.p.tc;
1791 
1792     KMP_DEBUG_ASSERT(nproc > 1);
1793     KMP_DEBUG_ASSERT((2UL * chunkspec + 1) * (UT)nproc < trip);
1794 
1795     while (1) { /* this while loop is a safeguard against unexpected zero
1796                    chunk sizes */
1797       chunkIdx = test_then_inc_acq<ST>((volatile ST *)&sh->u.s.iteration);
1798       if (chunkIdx >= (UT)pr->u.p.parm2) {
1799         --trip;
1800         /* use dynamic-style scheduling */
1801         init = chunkIdx * chunkspec + pr->u.p.count;
1802         /* need to verify init > 0 in case of overflow in the above
1803          * calculation */
1804         if ((status = (init > 0 && init <= trip)) != 0) {
1805           limit = init + chunkspec - 1;
1806 
1807           if ((last = (limit >= trip)) != 0)
1808             limit = trip;
1809         }
1810         break;
1811       } else {
1812 /* use exponential-style scheduling */
1813 /* The following check is to workaround the lack of long double precision on
1814    Windows* OS.
1815    This check works around the possible effect that init != 0 for chunkIdx == 0.
1816  */
1817 #if KMP_USE_X87CONTROL
1818         /* If we haven't already done so, save original
1819            FPCW and set precision to 64-bit, as Windows* OS
1820            on IA-32 architecture defaults to 53-bit */
1821         if (!fpcwSet) {
1822           oldFpcw = _control87(0, 0);
1823           _control87(_PC_64, _MCW_PC);
1824           fpcwSet = 0x30000;
1825         }
1826 #endif
1827         if (chunkIdx) {
1828           init = __kmp_dispatch_guided_remaining<T>(
1829               trip, *(DBL *)&pr->u.p.parm3, chunkIdx);
1830           KMP_DEBUG_ASSERT(init);
1831           init = trip - init;
1832         } else
1833           init = 0;
1834         limit = trip - __kmp_dispatch_guided_remaining<T>(
1835                            trip, *(DBL *)&pr->u.p.parm3, chunkIdx + 1);
1836         KMP_ASSERT(init <= limit);
1837         if (init < limit) {
1838           KMP_DEBUG_ASSERT(limit <= trip);
1839           --limit;
1840           status = 1;
1841           break;
1842         } // if
1843       } // if
1844     } // while (1)
1845 #if KMP_USE_X87CONTROL
1846     /* restore FPCW if necessary
1847        AC: check fpcwSet flag first because oldFpcw can be uninitialized here
1848     */
1849     if (fpcwSet && (oldFpcw & fpcwSet))
1850       _control87(oldFpcw, _MCW_PC);
1851 #endif
1852     if (status != 0) {
1853       start = pr->u.p.lb;
1854       incr = pr->u.p.st;
1855       if (p_st != NULL)
1856         *p_st = incr;
1857       *p_lb = start + init * incr;
1858       *p_ub = start + limit * incr;
1859       if (pr->flags.ordered) {
1860         pr->u.p.ordered_lower = init;
1861         pr->u.p.ordered_upper = limit;
1862       }
1863     } else {
1864       *p_lb = 0;
1865       *p_ub = 0;
1866       if (p_st != NULL)
1867         *p_st = 0;
1868     }
1869   } // case
1870   break;
1871 
1872   case kmp_sch_trapezoidal: {
1873     UT index;
1874     T parm2 = pr->u.p.parm2;
1875     T parm3 = pr->u.p.parm3;
1876     T parm4 = pr->u.p.parm4;
1877     KD_TRACE(100,
1878              ("__kmp_dispatch_next_algorithm: T#%d kmp_sch_trapezoidal case\n",
1879               gtid));
1880 
1881     index = test_then_inc<ST>((volatile ST *)&sh->u.s.iteration);
1882 
1883     init = (index * ((2 * parm2) - (index - 1) * parm4)) / 2;
1884     trip = pr->u.p.tc - 1;
1885 
1886     if ((status = ((T)index < parm3 && init <= trip)) == 0) {
1887       *p_lb = 0;
1888       *p_ub = 0;
1889       if (p_st != NULL)
1890         *p_st = 0;
1891     } else {
1892       start = pr->u.p.lb;
1893       limit = ((index + 1) * (2 * parm2 - index * parm4)) / 2 - 1;
1894       incr = pr->u.p.st;
1895 
1896       if ((last = (limit >= trip)) != 0)
1897         limit = trip;
1898 
1899       if (p_st != NULL)
1900         *p_st = incr;
1901 
1902       if (incr == 1) {
1903         *p_lb = start + init;
1904         *p_ub = start + limit;
1905       } else {
1906         *p_lb = start + init * incr;
1907         *p_ub = start + limit * incr;
1908       }
1909 
1910       if (pr->flags.ordered) {
1911         pr->u.p.ordered_lower = init;
1912         pr->u.p.ordered_upper = limit;
1913       } // if
1914     } // if
1915   } // case
1916   break;
1917   default: {
1918     status = 0; // to avoid complaints on uninitialized variable use
1919     __kmp_fatal(KMP_MSG(UnknownSchedTypeDetected), // Primary message
1920                 KMP_HNT(GetNewerLibrary), // Hint
1921                 __kmp_msg_null // Variadic argument list terminator
1922     );
1923   } break;
1924   } // switch
1925   if (p_last)
1926     *p_last = last;
1927 #ifdef KMP_DEBUG
1928   if (pr->flags.ordered) {
1929     char *buff;
1930     // create format specifiers before the debug output
1931     buff = __kmp_str_format("__kmp_dispatch_next_algorithm: T#%%d "
1932                             "ordered_lower:%%%s ordered_upper:%%%s\n",
1933                             traits_t<UT>::spec, traits_t<UT>::spec);
1934     KD_TRACE(1000, (buff, gtid, pr->u.p.ordered_lower, pr->u.p.ordered_upper));
1935     __kmp_str_free(&buff);
1936   }
1937   {
1938     char *buff;
1939     // create format specifiers before the debug output
1940     buff = __kmp_str_format(
1941         "__kmp_dispatch_next_algorithm: T#%%d exit status:%%d p_last:%%d "
1942         "p_lb:%%%s p_ub:%%%s p_st:%%%s\n",
1943         traits_t<T>::spec, traits_t<T>::spec, traits_t<ST>::spec);
1944     KMP_DEBUG_ASSERT(p_last);
1945     KMP_DEBUG_ASSERT(p_st);
1946     KD_TRACE(10, (buff, gtid, status, *p_last, *p_lb, *p_ub, *p_st));
1947     __kmp_str_free(&buff);
1948   }
1949 #endif
1950   return status;
1951 }
1952 
1953 /* Define a macro for exiting __kmp_dispatch_next(). If status is 0 (no more
1954    work), then tell OMPT the loop is over. In some cases kmp_dispatch_fini()
1955    is not called. */
1956 #if OMPT_SUPPORT && OMPT_OPTIONAL
1957 #define OMPT_LOOP_END                                                          \
1958   if (status == 0) {                                                           \
1959     if (ompt_enabled.ompt_callback_work) {                                     \
1960       ompt_team_info_t *team_info = __ompt_get_teaminfo(0, NULL);              \
1961       ompt_task_info_t *task_info = __ompt_get_task_info_object(0);            \
1962       ompt_callbacks.ompt_callback(ompt_callback_work)(                        \
1963           ompt_work_loop, ompt_scope_end, &(team_info->parallel_data),         \
1964           &(task_info->task_data), 0, codeptr);                                \
1965     }                                                                          \
1966   }
1967 // TODO: implement count
1968 #else
1969 #define OMPT_LOOP_END // no-op
1970 #endif
1971 
1972 #if KMP_STATS_ENABLED
1973 #define KMP_STATS_LOOP_END                                                     \
1974   {                                                                            \
1975     kmp_int64 u, l, t, i;                                                      \
1976     l = (kmp_int64)(*p_lb);                                                    \
1977     u = (kmp_int64)(*p_ub);                                                    \
1978     i = (kmp_int64)(pr->u.p.st);                                               \
1979     if (status == 0) {                                                         \
1980       t = 0;                                                                   \
1981       KMP_POP_PARTITIONED_TIMER();                                             \
1982     } else if (i == 1) {                                                       \
1983       if (u >= l)                                                              \
1984         t = u - l + 1;                                                         \
1985       else                                                                     \
1986         t = 0;                                                                 \
1987     } else if (i < 0) {                                                        \
1988       if (l >= u)                                                              \
1989         t = (l - u) / (-i) + 1;                                                \
1990       else                                                                     \
1991         t = 0;                                                                 \
1992     } else {                                                                   \
1993       if (u >= l)                                                              \
1994         t = (u - l) / i + 1;                                                   \
1995       else                                                                     \
1996         t = 0;                                                                 \
1997     }                                                                          \
1998     KMP_COUNT_VALUE(OMP_loop_dynamic_iterations, t);                           \
1999   }
2000 #else
2001 #define KMP_STATS_LOOP_END /* Nothing */
2002 #endif
2003 
2004 template <typename T>
2005 static int __kmp_dispatch_next(ident_t *loc, int gtid, kmp_int32 *p_last,
2006                                T *p_lb, T *p_ub,
2007                                typename traits_t<T>::signed_t *p_st
2008 #if OMPT_SUPPORT && OMPT_OPTIONAL
2009                                ,
2010                                void *codeptr
2011 #endif
2012 ) {
2013 
2014   typedef typename traits_t<T>::unsigned_t UT;
2015   typedef typename traits_t<T>::signed_t ST;
2016   // This is potentially slightly misleading, schedule(runtime) will appear here
2017   // even if the actual runtime schedule is static. (Which points out a
2018   // disadvantage of schedule(runtime): even when static scheduling is used it
2019   // costs more than a compile time choice to use static scheduling would.)
2020   KMP_TIME_PARTITIONED_BLOCK(OMP_loop_dynamic_scheduling);
2021 
2022   int status;
2023   dispatch_private_info_template<T> *pr;
2024   __kmp_assert_valid_gtid(gtid);
2025   kmp_info_t *th = __kmp_threads[gtid];
2026   kmp_team_t *team = th->th.th_team;
2027 
2028   KMP_DEBUG_ASSERT(p_lb && p_ub && p_st); // AC: these cannot be NULL
2029   KD_TRACE(
2030       1000,
2031       ("__kmp_dispatch_next: T#%d called p_lb:%p p_ub:%p p_st:%p p_last: %p\n",
2032        gtid, p_lb, p_ub, p_st, p_last));
2033 
2034   if (team->t.t_serialized) {
2035     /* NOTE: serialize this dispatch because we are not at the active level */
2036     pr = reinterpret_cast<dispatch_private_info_template<T> *>(
2037         th->th.th_dispatch->th_disp_buffer); /* top of the stack */
2038     KMP_DEBUG_ASSERT(pr);
2039 
2040     if ((status = (pr->u.p.tc != 0)) == 0) {
2041       *p_lb = 0;
2042       *p_ub = 0;
2043       //            if ( p_last != NULL )
2044       //                *p_last = 0;
2045       if (p_st != NULL)
2046         *p_st = 0;
2047       if (__kmp_env_consistency_check) {
2048         if (pr->pushed_ws != ct_none) {
2049           pr->pushed_ws = __kmp_pop_workshare(gtid, pr->pushed_ws, loc);
2050         }
2051       }
2052     } else if (pr->flags.nomerge) {
2053       kmp_int32 last;
2054       T start;
2055       UT limit, trip, init;
2056       ST incr;
2057       T chunk = pr->u.p.parm1;
2058 
2059       KD_TRACE(100, ("__kmp_dispatch_next: T#%d kmp_sch_dynamic_chunked case\n",
2060                      gtid));
2061 
2062       init = chunk * pr->u.p.count++;
2063       trip = pr->u.p.tc - 1;
2064 
2065       if ((status = (init <= trip)) == 0) {
2066         *p_lb = 0;
2067         *p_ub = 0;
2068         //                if ( p_last != NULL )
2069         //                    *p_last = 0;
2070         if (p_st != NULL)
2071           *p_st = 0;
2072         if (__kmp_env_consistency_check) {
2073           if (pr->pushed_ws != ct_none) {
2074             pr->pushed_ws = __kmp_pop_workshare(gtid, pr->pushed_ws, loc);
2075           }
2076         }
2077       } else {
2078         start = pr->u.p.lb;
2079         limit = chunk + init - 1;
2080         incr = pr->u.p.st;
2081 
2082         if ((last = (limit >= trip)) != 0) {
2083           limit = trip;
2084 #if KMP_OS_WINDOWS
2085           pr->u.p.last_upper = pr->u.p.ub;
2086 #endif /* KMP_OS_WINDOWS */
2087         }
2088         if (p_last != NULL)
2089           *p_last = last;
2090         if (p_st != NULL)
2091           *p_st = incr;
2092         if (incr == 1) {
2093           *p_lb = start + init;
2094           *p_ub = start + limit;
2095         } else {
2096           *p_lb = start + init * incr;
2097           *p_ub = start + limit * incr;
2098         }
2099 
2100         if (pr->flags.ordered) {
2101           pr->u.p.ordered_lower = init;
2102           pr->u.p.ordered_upper = limit;
2103 #ifdef KMP_DEBUG
2104           {
2105             char *buff;
2106             // create format specifiers before the debug output
2107             buff = __kmp_str_format("__kmp_dispatch_next: T#%%d "
2108                                     "ordered_lower:%%%s ordered_upper:%%%s\n",
2109                                     traits_t<UT>::spec, traits_t<UT>::spec);
2110             KD_TRACE(1000, (buff, gtid, pr->u.p.ordered_lower,
2111                             pr->u.p.ordered_upper));
2112             __kmp_str_free(&buff);
2113           }
2114 #endif
2115         } // if
2116       } // if
2117     } else {
2118       pr->u.p.tc = 0;
2119       *p_lb = pr->u.p.lb;
2120       *p_ub = pr->u.p.ub;
2121 #if KMP_OS_WINDOWS
2122       pr->u.p.last_upper = *p_ub;
2123 #endif /* KMP_OS_WINDOWS */
2124       if (p_last != NULL)
2125         *p_last = TRUE;
2126       if (p_st != NULL)
2127         *p_st = pr->u.p.st;
2128     } // if
2129 #ifdef KMP_DEBUG
2130     {
2131       char *buff;
2132       // create format specifiers before the debug output
2133       buff = __kmp_str_format(
2134           "__kmp_dispatch_next: T#%%d serialized case: p_lb:%%%s "
2135           "p_ub:%%%s p_st:%%%s p_last:%%p %%d  returning:%%d\n",
2136           traits_t<T>::spec, traits_t<T>::spec, traits_t<ST>::spec);
2137       KD_TRACE(10, (buff, gtid, *p_lb, *p_ub, *p_st, p_last,
2138                     (p_last ? *p_last : 0), status));
2139       __kmp_str_free(&buff);
2140     }
2141 #endif
2142 #if INCLUDE_SSC_MARKS
2143     SSC_MARK_DISPATCH_NEXT();
2144 #endif
2145     OMPT_LOOP_END;
2146     KMP_STATS_LOOP_END;
2147     return status;
2148   } else {
2149     kmp_int32 last = 0;
2150     dispatch_shared_info_template<T> volatile *sh;
2151 
2152     KMP_DEBUG_ASSERT(th->th.th_dispatch ==
2153                      &th->th.th_team->t.t_dispatch[th->th.th_info.ds.ds_tid]);
2154 
2155     pr = reinterpret_cast<dispatch_private_info_template<T> *>(
2156         th->th.th_dispatch->th_dispatch_pr_current);
2157     KMP_DEBUG_ASSERT(pr);
2158     sh = reinterpret_cast<dispatch_shared_info_template<T> volatile *>(
2159         th->th.th_dispatch->th_dispatch_sh_current);
2160     KMP_DEBUG_ASSERT(sh);
2161 
2162 #if KMP_USE_HIER_SCHED
2163     if (pr->flags.use_hier)
2164       status = sh->hier->next(loc, gtid, pr, &last, p_lb, p_ub, p_st);
2165     else
2166 #endif // KMP_USE_HIER_SCHED
2167       status = __kmp_dispatch_next_algorithm<T>(gtid, pr, sh, &last, p_lb, p_ub,
2168                                                 p_st, th->th.th_team_nproc,
2169                                                 th->th.th_info.ds.ds_tid);
2170     // status == 0: no more iterations to execute
2171     if (status == 0) {
2172       ST num_done;
2173       num_done = test_then_inc<ST>(&sh->u.s.num_done);
2174 #ifdef KMP_DEBUG
2175       {
2176         char *buff;
2177         // create format specifiers before the debug output
2178         buff = __kmp_str_format(
2179             "__kmp_dispatch_next: T#%%d increment num_done:%%%s\n",
2180             traits_t<ST>::spec);
2181         KD_TRACE(10, (buff, gtid, sh->u.s.num_done));
2182         __kmp_str_free(&buff);
2183       }
2184 #endif
2185 
2186 #if KMP_USE_HIER_SCHED
2187       pr->flags.use_hier = FALSE;
2188 #endif
2189       if (num_done == th->th.th_team_nproc - 1) {
2190 #if KMP_STATIC_STEAL_ENABLED
2191         if (pr->schedule == kmp_sch_static_steal) {
2192           int i;
2193           int idx = (th->th.th_dispatch->th_disp_index - 1) %
2194                     __kmp_dispatch_num_buffers; // current loop index
2195           // loop complete, safe to destroy locks used for stealing
2196           for (i = 0; i < th->th.th_team_nproc; ++i) {
2197             dispatch_private_info_template<T> *buf =
2198                 reinterpret_cast<dispatch_private_info_template<T> *>(
2199                     &team->t.t_dispatch[i].th_disp_buffer[idx]);
2200             KMP_ASSERT(buf->steal_flag == THIEF); // buffer must be inactive
2201             KMP_ATOMIC_ST_RLX(&buf->steal_flag, UNUSED);
2202             if (traits_t<T>::type_size > 4) {
2203               // destroy locks used for stealing
2204               kmp_lock_t *lck = buf->u.p.steal_lock;
2205               KMP_ASSERT(lck != NULL);
2206               __kmp_destroy_lock(lck);
2207               __kmp_free(lck);
2208               buf->u.p.steal_lock = NULL;
2209             }
2210           }
2211         }
2212 #endif
2213         /* NOTE: release shared buffer to be reused */
2214 
2215         KMP_MB(); /* Flush all pending memory write invalidates.  */
2216 
2217         sh->u.s.num_done = 0;
2218         sh->u.s.iteration = 0;
2219 
2220         /* TODO replace with general release procedure? */
2221         if (pr->flags.ordered) {
2222           sh->u.s.ordered_iteration = 0;
2223         }
2224 
2225         sh->buffer_index += __kmp_dispatch_num_buffers;
2226         KD_TRACE(100, ("__kmp_dispatch_next: T#%d change buffer_index:%d\n",
2227                        gtid, sh->buffer_index));
2228 
2229         KMP_MB(); /* Flush all pending memory write invalidates.  */
2230 
2231       } // if
2232       if (__kmp_env_consistency_check) {
2233         if (pr->pushed_ws != ct_none) {
2234           pr->pushed_ws = __kmp_pop_workshare(gtid, pr->pushed_ws, loc);
2235         }
2236       }
2237 
2238       th->th.th_dispatch->th_deo_fcn = NULL;
2239       th->th.th_dispatch->th_dxo_fcn = NULL;
2240       th->th.th_dispatch->th_dispatch_sh_current = NULL;
2241       th->th.th_dispatch->th_dispatch_pr_current = NULL;
2242     } // if (status == 0)
2243 #if KMP_OS_WINDOWS
2244     else if (last) {
2245       pr->u.p.last_upper = pr->u.p.ub;
2246     }
2247 #endif /* KMP_OS_WINDOWS */
2248     if (p_last != NULL && status != 0)
2249       *p_last = last;
2250   } // if
2251 
2252 #ifdef KMP_DEBUG
2253   {
2254     char *buff;
2255     // create format specifiers before the debug output
2256     buff = __kmp_str_format(
2257         "__kmp_dispatch_next: T#%%d normal case: "
2258         "p_lb:%%%s p_ub:%%%s p_st:%%%s p_last:%%p (%%d) returning:%%d\n",
2259         traits_t<T>::spec, traits_t<T>::spec, traits_t<ST>::spec);
2260     KD_TRACE(10, (buff, gtid, *p_lb, *p_ub, p_st ? *p_st : 0, p_last,
2261                   (p_last ? *p_last : 0), status));
2262     __kmp_str_free(&buff);
2263   }
2264 #endif
2265 #if INCLUDE_SSC_MARKS
2266   SSC_MARK_DISPATCH_NEXT();
2267 #endif
2268   OMPT_LOOP_END;
2269   KMP_STATS_LOOP_END;
2270   return status;
2271 }
2272 
2273 template <typename T>
2274 static void __kmp_dist_get_bounds(ident_t *loc, kmp_int32 gtid,
2275                                   kmp_int32 *plastiter, T *plower, T *pupper,
2276                                   typename traits_t<T>::signed_t incr) {
2277   typedef typename traits_t<T>::unsigned_t UT;
2278   kmp_uint32 team_id;
2279   kmp_uint32 nteams;
2280   UT trip_count;
2281   kmp_team_t *team;
2282   kmp_info_t *th;
2283 
2284   KMP_DEBUG_ASSERT(plastiter && plower && pupper);
2285   KE_TRACE(10, ("__kmpc_dist_get_bounds called (%d)\n", gtid));
2286 #ifdef KMP_DEBUG
2287   typedef typename traits_t<T>::signed_t ST;
2288   {
2289     char *buff;
2290     // create format specifiers before the debug output
2291     buff = __kmp_str_format("__kmpc_dist_get_bounds: T#%%d liter=%%d "
2292                             "iter=(%%%s, %%%s, %%%s) signed?<%s>\n",
2293                             traits_t<T>::spec, traits_t<T>::spec,
2294                             traits_t<ST>::spec, traits_t<T>::spec);
2295     KD_TRACE(100, (buff, gtid, *plastiter, *plower, *pupper, incr));
2296     __kmp_str_free(&buff);
2297   }
2298 #endif
2299 
2300   if (__kmp_env_consistency_check) {
2301     if (incr == 0) {
2302       __kmp_error_construct(kmp_i18n_msg_CnsLoopIncrZeroProhibited, ct_pdo,
2303                             loc);
2304     }
2305     if (incr > 0 ? (*pupper < *plower) : (*plower < *pupper)) {
2306       // The loop is illegal.
2307       // Some zero-trip loops maintained by compiler, e.g.:
2308       //   for(i=10;i<0;++i) // lower >= upper - run-time check
2309       //   for(i=0;i>10;--i) // lower <= upper - run-time check
2310       //   for(i=0;i>10;++i) // incr > 0       - compile-time check
2311       //   for(i=10;i<0;--i) // incr < 0       - compile-time check
2312       // Compiler does not check the following illegal loops:
2313       //   for(i=0;i<10;i+=incr) // where incr<0
2314       //   for(i=10;i>0;i-=incr) // where incr<0
2315       __kmp_error_construct(kmp_i18n_msg_CnsLoopIncrIllegal, ct_pdo, loc);
2316     }
2317   }
2318   __kmp_assert_valid_gtid(gtid);
2319   th = __kmp_threads[gtid];
2320   team = th->th.th_team;
2321   KMP_DEBUG_ASSERT(th->th.th_teams_microtask); // we are in the teams construct
2322   nteams = th->th.th_teams_size.nteams;
2323   team_id = team->t.t_master_tid;
2324   KMP_DEBUG_ASSERT(nteams == (kmp_uint32)team->t.t_parent->t.t_nproc);
2325 
2326   // compute global trip count
2327   if (incr == 1) {
2328     trip_count = *pupper - *plower + 1;
2329   } else if (incr == -1) {
2330     trip_count = *plower - *pupper + 1;
2331   } else if (incr > 0) {
2332     // upper-lower can exceed the limit of signed type
2333     trip_count = (UT)(*pupper - *plower) / incr + 1;
2334   } else {
2335     trip_count = (UT)(*plower - *pupper) / (-incr) + 1;
2336   }
2337 
2338   if (trip_count <= nteams) {
2339     KMP_DEBUG_ASSERT(
2340         __kmp_static == kmp_sch_static_greedy ||
2341         __kmp_static ==
2342             kmp_sch_static_balanced); // Unknown static scheduling type.
2343     // only some teams get single iteration, others get nothing
2344     if (team_id < trip_count) {
2345       *pupper = *plower = *plower + team_id * incr;
2346     } else {
2347       *plower = *pupper + incr; // zero-trip loop
2348     }
2349     if (plastiter != NULL)
2350       *plastiter = (team_id == trip_count - 1);
2351   } else {
2352     if (__kmp_static == kmp_sch_static_balanced) {
2353       UT chunk = trip_count / nteams;
2354       UT extras = trip_count % nteams;
2355       *plower +=
2356           incr * (team_id * chunk + (team_id < extras ? team_id : extras));
2357       *pupper = *plower + chunk * incr - (team_id < extras ? 0 : incr);
2358       if (plastiter != NULL)
2359         *plastiter = (team_id == nteams - 1);
2360     } else {
2361       T chunk_inc_count =
2362           (trip_count / nteams + ((trip_count % nteams) ? 1 : 0)) * incr;
2363       T upper = *pupper;
2364       KMP_DEBUG_ASSERT(__kmp_static == kmp_sch_static_greedy);
2365       // Unknown static scheduling type.
2366       *plower += team_id * chunk_inc_count;
2367       *pupper = *plower + chunk_inc_count - incr;
2368       // Check/correct bounds if needed
2369       if (incr > 0) {
2370         if (*pupper < *plower)
2371           *pupper = traits_t<T>::max_value;
2372         if (plastiter != NULL)
2373           *plastiter = *plower <= upper && *pupper > upper - incr;
2374         if (*pupper > upper)
2375           *pupper = upper; // tracker C73258
2376       } else {
2377         if (*pupper > *plower)
2378           *pupper = traits_t<T>::min_value;
2379         if (plastiter != NULL)
2380           *plastiter = *plower >= upper && *pupper < upper - incr;
2381         if (*pupper < upper)
2382           *pupper = upper; // tracker C73258
2383       }
2384     }
2385   }
2386 }
2387 
2388 //-----------------------------------------------------------------------------
2389 // Dispatch routines
2390 //    Transfer call to template< type T >
2391 //    __kmp_dispatch_init( ident_t *loc, int gtid, enum sched_type schedule,
2392 //                         T lb, T ub, ST st, ST chunk )
2393 extern "C" {
2394 
2395 /*!
2396 @ingroup WORK_SHARING
2397 @{
2398 @param loc Source location
2399 @param gtid Global thread id
2400 @param schedule Schedule type
2401 @param lb  Lower bound
2402 @param ub  Upper bound
2403 @param st  Step (or increment if you prefer)
2404 @param chunk The chunk size to block with
2405 
2406 This function prepares the runtime to start a dynamically scheduled for loop,
2407 saving the loop arguments.
2408 These functions are all identical apart from the types of the arguments.
2409 */
2410 
2411 void __kmpc_dispatch_init_4(ident_t *loc, kmp_int32 gtid,
2412                             enum sched_type schedule, kmp_int32 lb,
2413                             kmp_int32 ub, kmp_int32 st, kmp_int32 chunk) {
2414   KMP_DEBUG_ASSERT(__kmp_init_serial);
2415 #if OMPT_SUPPORT && OMPT_OPTIONAL
2416   OMPT_STORE_RETURN_ADDRESS(gtid);
2417 #endif
2418   __kmp_dispatch_init<kmp_int32>(loc, gtid, schedule, lb, ub, st, chunk, true);
2419 }
2420 /*!
2421 See @ref __kmpc_dispatch_init_4
2422 */
2423 void __kmpc_dispatch_init_4u(ident_t *loc, kmp_int32 gtid,
2424                              enum sched_type schedule, kmp_uint32 lb,
2425                              kmp_uint32 ub, kmp_int32 st, kmp_int32 chunk) {
2426   KMP_DEBUG_ASSERT(__kmp_init_serial);
2427 #if OMPT_SUPPORT && OMPT_OPTIONAL
2428   OMPT_STORE_RETURN_ADDRESS(gtid);
2429 #endif
2430   __kmp_dispatch_init<kmp_uint32>(loc, gtid, schedule, lb, ub, st, chunk, true);
2431 }
2432 
2433 /*!
2434 See @ref __kmpc_dispatch_init_4
2435 */
2436 void __kmpc_dispatch_init_8(ident_t *loc, kmp_int32 gtid,
2437                             enum sched_type schedule, kmp_int64 lb,
2438                             kmp_int64 ub, kmp_int64 st, kmp_int64 chunk) {
2439   KMP_DEBUG_ASSERT(__kmp_init_serial);
2440 #if OMPT_SUPPORT && OMPT_OPTIONAL
2441   OMPT_STORE_RETURN_ADDRESS(gtid);
2442 #endif
2443   __kmp_dispatch_init<kmp_int64>(loc, gtid, schedule, lb, ub, st, chunk, true);
2444 }
2445 
2446 /*!
2447 See @ref __kmpc_dispatch_init_4
2448 */
2449 void __kmpc_dispatch_init_8u(ident_t *loc, kmp_int32 gtid,
2450                              enum sched_type schedule, kmp_uint64 lb,
2451                              kmp_uint64 ub, kmp_int64 st, kmp_int64 chunk) {
2452   KMP_DEBUG_ASSERT(__kmp_init_serial);
2453 #if OMPT_SUPPORT && OMPT_OPTIONAL
2454   OMPT_STORE_RETURN_ADDRESS(gtid);
2455 #endif
2456   __kmp_dispatch_init<kmp_uint64>(loc, gtid, schedule, lb, ub, st, chunk, true);
2457 }
2458 
2459 /*!
2460 See @ref __kmpc_dispatch_init_4
2461 
2462 Difference from __kmpc_dispatch_init set of functions is these functions
2463 are called for composite distribute parallel for construct. Thus before
2464 regular iterations dispatching we need to calc per-team iteration space.
2465 
2466 These functions are all identical apart from the types of the arguments.
2467 */
2468 void __kmpc_dist_dispatch_init_4(ident_t *loc, kmp_int32 gtid,
2469                                  enum sched_type schedule, kmp_int32 *p_last,
2470                                  kmp_int32 lb, kmp_int32 ub, kmp_int32 st,
2471                                  kmp_int32 chunk) {
2472   KMP_DEBUG_ASSERT(__kmp_init_serial);
2473 #if OMPT_SUPPORT && OMPT_OPTIONAL
2474   OMPT_STORE_RETURN_ADDRESS(gtid);
2475 #endif
2476   __kmp_dist_get_bounds<kmp_int32>(loc, gtid, p_last, &lb, &ub, st);
2477   __kmp_dispatch_init<kmp_int32>(loc, gtid, schedule, lb, ub, st, chunk, true);
2478 }
2479 
2480 void __kmpc_dist_dispatch_init_4u(ident_t *loc, kmp_int32 gtid,
2481                                   enum sched_type schedule, kmp_int32 *p_last,
2482                                   kmp_uint32 lb, kmp_uint32 ub, kmp_int32 st,
2483                                   kmp_int32 chunk) {
2484   KMP_DEBUG_ASSERT(__kmp_init_serial);
2485 #if OMPT_SUPPORT && OMPT_OPTIONAL
2486   OMPT_STORE_RETURN_ADDRESS(gtid);
2487 #endif
2488   __kmp_dist_get_bounds<kmp_uint32>(loc, gtid, p_last, &lb, &ub, st);
2489   __kmp_dispatch_init<kmp_uint32>(loc, gtid, schedule, lb, ub, st, chunk, true);
2490 }
2491 
2492 void __kmpc_dist_dispatch_init_8(ident_t *loc, kmp_int32 gtid,
2493                                  enum sched_type schedule, kmp_int32 *p_last,
2494                                  kmp_int64 lb, kmp_int64 ub, kmp_int64 st,
2495                                  kmp_int64 chunk) {
2496   KMP_DEBUG_ASSERT(__kmp_init_serial);
2497 #if OMPT_SUPPORT && OMPT_OPTIONAL
2498   OMPT_STORE_RETURN_ADDRESS(gtid);
2499 #endif
2500   __kmp_dist_get_bounds<kmp_int64>(loc, gtid, p_last, &lb, &ub, st);
2501   __kmp_dispatch_init<kmp_int64>(loc, gtid, schedule, lb, ub, st, chunk, true);
2502 }
2503 
2504 void __kmpc_dist_dispatch_init_8u(ident_t *loc, kmp_int32 gtid,
2505                                   enum sched_type schedule, kmp_int32 *p_last,
2506                                   kmp_uint64 lb, kmp_uint64 ub, kmp_int64 st,
2507                                   kmp_int64 chunk) {
2508   KMP_DEBUG_ASSERT(__kmp_init_serial);
2509 #if OMPT_SUPPORT && OMPT_OPTIONAL
2510   OMPT_STORE_RETURN_ADDRESS(gtid);
2511 #endif
2512   __kmp_dist_get_bounds<kmp_uint64>(loc, gtid, p_last, &lb, &ub, st);
2513   __kmp_dispatch_init<kmp_uint64>(loc, gtid, schedule, lb, ub, st, chunk, true);
2514 }
2515 
2516 /*!
2517 @param loc Source code location
2518 @param gtid Global thread id
2519 @param p_last Pointer to a flag set to one if this is the last chunk or zero
2520 otherwise
2521 @param p_lb   Pointer to the lower bound for the next chunk of work
2522 @param p_ub   Pointer to the upper bound for the next chunk of work
2523 @param p_st   Pointer to the stride for the next chunk of work
2524 @return one if there is work to be done, zero otherwise
2525 
2526 Get the next dynamically allocated chunk of work for this thread.
2527 If there is no more work, then the lb,ub and stride need not be modified.
2528 */
2529 int __kmpc_dispatch_next_4(ident_t *loc, kmp_int32 gtid, kmp_int32 *p_last,
2530                            kmp_int32 *p_lb, kmp_int32 *p_ub, kmp_int32 *p_st) {
2531 #if OMPT_SUPPORT && OMPT_OPTIONAL
2532   OMPT_STORE_RETURN_ADDRESS(gtid);
2533 #endif
2534   return __kmp_dispatch_next<kmp_int32>(loc, gtid, p_last, p_lb, p_ub, p_st
2535 #if OMPT_SUPPORT && OMPT_OPTIONAL
2536                                         ,
2537                                         OMPT_LOAD_RETURN_ADDRESS(gtid)
2538 #endif
2539   );
2540 }
2541 
2542 /*!
2543 See @ref __kmpc_dispatch_next_4
2544 */
2545 int __kmpc_dispatch_next_4u(ident_t *loc, kmp_int32 gtid, kmp_int32 *p_last,
2546                             kmp_uint32 *p_lb, kmp_uint32 *p_ub,
2547                             kmp_int32 *p_st) {
2548 #if OMPT_SUPPORT && OMPT_OPTIONAL
2549   OMPT_STORE_RETURN_ADDRESS(gtid);
2550 #endif
2551   return __kmp_dispatch_next<kmp_uint32>(loc, gtid, p_last, p_lb, p_ub, p_st
2552 #if OMPT_SUPPORT && OMPT_OPTIONAL
2553                                          ,
2554                                          OMPT_LOAD_RETURN_ADDRESS(gtid)
2555 #endif
2556   );
2557 }
2558 
2559 /*!
2560 See @ref __kmpc_dispatch_next_4
2561 */
2562 int __kmpc_dispatch_next_8(ident_t *loc, kmp_int32 gtid, kmp_int32 *p_last,
2563                            kmp_int64 *p_lb, kmp_int64 *p_ub, kmp_int64 *p_st) {
2564 #if OMPT_SUPPORT && OMPT_OPTIONAL
2565   OMPT_STORE_RETURN_ADDRESS(gtid);
2566 #endif
2567   return __kmp_dispatch_next<kmp_int64>(loc, gtid, p_last, p_lb, p_ub, p_st
2568 #if OMPT_SUPPORT && OMPT_OPTIONAL
2569                                         ,
2570                                         OMPT_LOAD_RETURN_ADDRESS(gtid)
2571 #endif
2572   );
2573 }
2574 
2575 /*!
2576 See @ref __kmpc_dispatch_next_4
2577 */
2578 int __kmpc_dispatch_next_8u(ident_t *loc, kmp_int32 gtid, kmp_int32 *p_last,
2579                             kmp_uint64 *p_lb, kmp_uint64 *p_ub,
2580                             kmp_int64 *p_st) {
2581 #if OMPT_SUPPORT && OMPT_OPTIONAL
2582   OMPT_STORE_RETURN_ADDRESS(gtid);
2583 #endif
2584   return __kmp_dispatch_next<kmp_uint64>(loc, gtid, p_last, p_lb, p_ub, p_st
2585 #if OMPT_SUPPORT && OMPT_OPTIONAL
2586                                          ,
2587                                          OMPT_LOAD_RETURN_ADDRESS(gtid)
2588 #endif
2589   );
2590 }
2591 
2592 /*!
2593 @param loc Source code location
2594 @param gtid Global thread id
2595 
2596 Mark the end of a dynamic loop.
2597 */
2598 void __kmpc_dispatch_fini_4(ident_t *loc, kmp_int32 gtid) {
2599   __kmp_dispatch_finish<kmp_uint32>(gtid, loc);
2600 }
2601 
2602 /*!
2603 See @ref __kmpc_dispatch_fini_4
2604 */
2605 void __kmpc_dispatch_fini_8(ident_t *loc, kmp_int32 gtid) {
2606   __kmp_dispatch_finish<kmp_uint64>(gtid, loc);
2607 }
2608 
2609 /*!
2610 See @ref __kmpc_dispatch_fini_4
2611 */
2612 void __kmpc_dispatch_fini_4u(ident_t *loc, kmp_int32 gtid) {
2613   __kmp_dispatch_finish<kmp_uint32>(gtid, loc);
2614 }
2615 
2616 /*!
2617 See @ref __kmpc_dispatch_fini_4
2618 */
2619 void __kmpc_dispatch_fini_8u(ident_t *loc, kmp_int32 gtid) {
2620   __kmp_dispatch_finish<kmp_uint64>(gtid, loc);
2621 }
2622 /*! @} */
2623 
2624 //-----------------------------------------------------------------------------
2625 // Non-template routines from kmp_dispatch.cpp used in other sources
2626 
2627 kmp_uint32 __kmp_eq_4(kmp_uint32 value, kmp_uint32 checker) {
2628   return value == checker;
2629 }
2630 
2631 kmp_uint32 __kmp_neq_4(kmp_uint32 value, kmp_uint32 checker) {
2632   return value != checker;
2633 }
2634 
2635 kmp_uint32 __kmp_lt_4(kmp_uint32 value, kmp_uint32 checker) {
2636   return value < checker;
2637 }
2638 
2639 kmp_uint32 __kmp_ge_4(kmp_uint32 value, kmp_uint32 checker) {
2640   return value >= checker;
2641 }
2642 
2643 kmp_uint32 __kmp_le_4(kmp_uint32 value, kmp_uint32 checker) {
2644   return value <= checker;
2645 }
2646 
2647 kmp_uint32
2648 __kmp_wait_4(volatile kmp_uint32 *spinner, kmp_uint32 checker,
2649              kmp_uint32 (*pred)(kmp_uint32, kmp_uint32),
2650              void *obj // Higher-level synchronization object, or NULL.
2651 ) {
2652   // note: we may not belong to a team at this point
2653   volatile kmp_uint32 *spin = spinner;
2654   kmp_uint32 check = checker;
2655   kmp_uint32 spins;
2656   kmp_uint32 (*f)(kmp_uint32, kmp_uint32) = pred;
2657   kmp_uint32 r;
2658   kmp_uint64 time;
2659 
2660   KMP_FSYNC_SPIN_INIT(obj, CCAST(kmp_uint32 *, spin));
2661   KMP_INIT_YIELD(spins);
2662   KMP_INIT_BACKOFF(time);
2663   // main wait spin loop
2664   while (!f(r = TCR_4(*spin), check)) {
2665     KMP_FSYNC_SPIN_PREPARE(obj);
2666     /* GEH - remove this since it was accidentally introduced when kmp_wait was
2667        split. It causes problems with infinite recursion because of exit lock */
2668     /* if ( TCR_4(__kmp_global.g.g_done) && __kmp_global.g.g_abort)
2669         __kmp_abort_thread(); */
2670     KMP_YIELD_OVERSUB_ELSE_SPIN(spins, time);
2671   }
2672   KMP_FSYNC_SPIN_ACQUIRED(obj);
2673   return r;
2674 }
2675 
2676 void __kmp_wait_4_ptr(void *spinner, kmp_uint32 checker,
2677                       kmp_uint32 (*pred)(void *, kmp_uint32),
2678                       void *obj // Higher-level synchronization object, or NULL.
2679 ) {
2680   // note: we may not belong to a team at this point
2681   void *spin = spinner;
2682   kmp_uint32 check = checker;
2683   kmp_uint32 spins;
2684   kmp_uint32 (*f)(void *, kmp_uint32) = pred;
2685   kmp_uint64 time;
2686 
2687   KMP_FSYNC_SPIN_INIT(obj, spin);
2688   KMP_INIT_YIELD(spins);
2689   KMP_INIT_BACKOFF(time);
2690   // main wait spin loop
2691   while (!f(spin, check)) {
2692     KMP_FSYNC_SPIN_PREPARE(obj);
2693     /* if we have waited a bit, or are noversubscribed, yield */
2694     /* pause is in the following code */
2695     KMP_YIELD_OVERSUB_ELSE_SPIN(spins, time);
2696   }
2697   KMP_FSYNC_SPIN_ACQUIRED(obj);
2698 }
2699 
2700 } // extern "C"
2701 
2702 #ifdef KMP_GOMP_COMPAT
2703 
2704 void __kmp_aux_dispatch_init_4(ident_t *loc, kmp_int32 gtid,
2705                                enum sched_type schedule, kmp_int32 lb,
2706                                kmp_int32 ub, kmp_int32 st, kmp_int32 chunk,
2707                                int push_ws) {
2708   __kmp_dispatch_init<kmp_int32>(loc, gtid, schedule, lb, ub, st, chunk,
2709                                  push_ws);
2710 }
2711 
2712 void __kmp_aux_dispatch_init_4u(ident_t *loc, kmp_int32 gtid,
2713                                 enum sched_type schedule, kmp_uint32 lb,
2714                                 kmp_uint32 ub, kmp_int32 st, kmp_int32 chunk,
2715                                 int push_ws) {
2716   __kmp_dispatch_init<kmp_uint32>(loc, gtid, schedule, lb, ub, st, chunk,
2717                                   push_ws);
2718 }
2719 
2720 void __kmp_aux_dispatch_init_8(ident_t *loc, kmp_int32 gtid,
2721                                enum sched_type schedule, kmp_int64 lb,
2722                                kmp_int64 ub, kmp_int64 st, kmp_int64 chunk,
2723                                int push_ws) {
2724   __kmp_dispatch_init<kmp_int64>(loc, gtid, schedule, lb, ub, st, chunk,
2725                                  push_ws);
2726 }
2727 
2728 void __kmp_aux_dispatch_init_8u(ident_t *loc, kmp_int32 gtid,
2729                                 enum sched_type schedule, kmp_uint64 lb,
2730                                 kmp_uint64 ub, kmp_int64 st, kmp_int64 chunk,
2731                                 int push_ws) {
2732   __kmp_dispatch_init<kmp_uint64>(loc, gtid, schedule, lb, ub, st, chunk,
2733                                   push_ws);
2734 }
2735 
2736 void __kmp_aux_dispatch_fini_chunk_4(ident_t *loc, kmp_int32 gtid) {
2737   __kmp_dispatch_finish_chunk<kmp_uint32>(gtid, loc);
2738 }
2739 
2740 void __kmp_aux_dispatch_fini_chunk_8(ident_t *loc, kmp_int32 gtid) {
2741   __kmp_dispatch_finish_chunk<kmp_uint64>(gtid, loc);
2742 }
2743 
2744 void __kmp_aux_dispatch_fini_chunk_4u(ident_t *loc, kmp_int32 gtid) {
2745   __kmp_dispatch_finish_chunk<kmp_uint32>(gtid, loc);
2746 }
2747 
2748 void __kmp_aux_dispatch_fini_chunk_8u(ident_t *loc, kmp_int32 gtid) {
2749   __kmp_dispatch_finish_chunk<kmp_uint64>(gtid, loc);
2750 }
2751 
2752 #endif /* KMP_GOMP_COMPAT */
2753 
2754 /* ------------------------------------------------------------------------ */
2755