1 /* 2 * kmp_alloc.cpp -- private/shared dynamic memory allocation and management 3 */ 4 5 //===----------------------------------------------------------------------===// 6 // 7 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 8 // See https://llvm.org/LICENSE.txt for license information. 9 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "kmp.h" 14 #include "kmp_io.h" 15 #include "kmp_wrapper_malloc.h" 16 17 // Disable bget when it is not used 18 #if KMP_USE_BGET 19 20 /* Thread private buffer management code */ 21 22 typedef int (*bget_compact_t)(size_t, int); 23 typedef void *(*bget_acquire_t)(size_t); 24 typedef void (*bget_release_t)(void *); 25 26 /* NOTE: bufsize must be a signed datatype */ 27 28 #if KMP_OS_WINDOWS 29 #if KMP_ARCH_X86 || KMP_ARCH_ARM 30 typedef kmp_int32 bufsize; 31 #else 32 typedef kmp_int64 bufsize; 33 #endif 34 #else 35 typedef ssize_t bufsize; 36 #endif // KMP_OS_WINDOWS 37 38 /* The three modes of operation are, fifo search, lifo search, and best-fit */ 39 40 typedef enum bget_mode { 41 bget_mode_fifo = 0, 42 bget_mode_lifo = 1, 43 bget_mode_best = 2 44 } bget_mode_t; 45 46 static void bpool(kmp_info_t *th, void *buffer, bufsize len); 47 static void *bget(kmp_info_t *th, bufsize size); 48 static void *bgetz(kmp_info_t *th, bufsize size); 49 static void *bgetr(kmp_info_t *th, void *buffer, bufsize newsize); 50 static void brel(kmp_info_t *th, void *buf); 51 static void bectl(kmp_info_t *th, bget_compact_t compact, 52 bget_acquire_t acquire, bget_release_t release, 53 bufsize pool_incr); 54 55 /* BGET CONFIGURATION */ 56 /* Buffer allocation size quantum: all buffers allocated are a 57 multiple of this size. This MUST be a power of two. */ 58 59 /* On IA-32 architecture with Linux* OS, malloc() does not 60 ensure 16 byte alignment */ 61 62 #if KMP_ARCH_X86 || !KMP_HAVE_QUAD 63 64 #define SizeQuant 8 65 #define AlignType double 66 67 #else 68 69 #define SizeQuant 16 70 #define AlignType _Quad 71 72 #endif 73 74 // Define this symbol to enable the bstats() function which calculates the 75 // total free space in the buffer pool, the largest available buffer, and the 76 // total space currently allocated. 77 #define BufStats 1 78 79 #ifdef KMP_DEBUG 80 81 // Define this symbol to enable the bpoold() function which dumps the buffers 82 // in a buffer pool. 83 #define BufDump 1 84 85 // Define this symbol to enable the bpoolv() function for validating a buffer 86 // pool. 87 #define BufValid 1 88 89 // Define this symbol to enable the bufdump() function which allows dumping the 90 // contents of an allocated or free buffer. 91 #define DumpData 1 92 93 #ifdef NOT_USED_NOW 94 95 // Wipe free buffers to a guaranteed pattern of garbage to trip up miscreants 96 // who attempt to use pointers into released buffers. 97 #define FreeWipe 1 98 99 // Use a best fit algorithm when searching for space for an allocation request. 100 // This uses memory more efficiently, but allocation will be much slower. 101 #define BestFit 1 102 103 #endif /* NOT_USED_NOW */ 104 #endif /* KMP_DEBUG */ 105 106 static bufsize bget_bin_size[] = { 107 0, 108 // 1 << 6, /* .5 Cache line */ 109 1 << 7, /* 1 Cache line, new */ 110 1 << 8, /* 2 Cache lines */ 111 1 << 9, /* 4 Cache lines, new */ 112 1 << 10, /* 8 Cache lines */ 113 1 << 11, /* 16 Cache lines, new */ 114 1 << 12, 1 << 13, /* new */ 115 1 << 14, 1 << 15, /* new */ 116 1 << 16, 1 << 17, 1 << 18, 1 << 19, 1 << 20, /* 1MB */ 117 1 << 21, /* 2MB */ 118 1 << 22, /* 4MB */ 119 1 << 23, /* 8MB */ 120 1 << 24, /* 16MB */ 121 1 << 25, /* 32MB */ 122 }; 123 124 #define MAX_BGET_BINS (int)(sizeof(bget_bin_size) / sizeof(bufsize)) 125 126 struct bfhead; 127 128 // Declare the interface, including the requested buffer size type, bufsize. 129 130 /* Queue links */ 131 typedef struct qlinks { 132 struct bfhead *flink; /* Forward link */ 133 struct bfhead *blink; /* Backward link */ 134 } qlinks_t; 135 136 /* Header in allocated and free buffers */ 137 typedef struct bhead2 { 138 kmp_info_t *bthr; /* The thread which owns the buffer pool */ 139 bufsize prevfree; /* Relative link back to previous free buffer in memory or 140 0 if previous buffer is allocated. */ 141 bufsize bsize; /* Buffer size: positive if free, negative if allocated. */ 142 } bhead2_t; 143 144 /* Make sure the bhead structure is a multiple of SizeQuant in size. */ 145 typedef union bhead { 146 KMP_ALIGN(SizeQuant) 147 AlignType b_align; 148 char b_pad[sizeof(bhead2_t) + (SizeQuant - (sizeof(bhead2_t) % SizeQuant))]; 149 bhead2_t bb; 150 } bhead_t; 151 #define BH(p) ((bhead_t *)(p)) 152 153 /* Header in directly allocated buffers (by acqfcn) */ 154 typedef struct bdhead { 155 bufsize tsize; /* Total size, including overhead */ 156 bhead_t bh; /* Common header */ 157 } bdhead_t; 158 #define BDH(p) ((bdhead_t *)(p)) 159 160 /* Header in free buffers */ 161 typedef struct bfhead { 162 bhead_t bh; /* Common allocated/free header */ 163 qlinks_t ql; /* Links on free list */ 164 } bfhead_t; 165 #define BFH(p) ((bfhead_t *)(p)) 166 167 typedef struct thr_data { 168 bfhead_t freelist[MAX_BGET_BINS]; 169 #if BufStats 170 size_t totalloc; /* Total space currently allocated */ 171 long numget, numrel; /* Number of bget() and brel() calls */ 172 long numpblk; /* Number of pool blocks */ 173 long numpget, numprel; /* Number of block gets and rels */ 174 long numdget, numdrel; /* Number of direct gets and rels */ 175 #endif /* BufStats */ 176 177 /* Automatic expansion block management functions */ 178 bget_compact_t compfcn; 179 bget_acquire_t acqfcn; 180 bget_release_t relfcn; 181 182 bget_mode_t mode; /* what allocation mode to use? */ 183 184 bufsize exp_incr; /* Expansion block size */ 185 bufsize pool_len; /* 0: no bpool calls have been made 186 -1: not all pool blocks are the same size 187 >0: (common) block size for all bpool calls made so far 188 */ 189 bfhead_t *last_pool; /* Last pool owned by this thread (delay deallocation) */ 190 } thr_data_t; 191 192 /* Minimum allocation quantum: */ 193 #define QLSize (sizeof(qlinks_t)) 194 #define SizeQ ((SizeQuant > QLSize) ? SizeQuant : QLSize) 195 #define MaxSize \ 196 (bufsize)( \ 197 ~(((bufsize)(1) << (sizeof(bufsize) * CHAR_BIT - 1)) | (SizeQuant - 1))) 198 // Maximum for the requested size. 199 200 /* End sentinel: value placed in bsize field of dummy block delimiting 201 end of pool block. The most negative number which will fit in a 202 bufsize, defined in a way that the compiler will accept. */ 203 204 #define ESent \ 205 ((bufsize)(-(((((bufsize)1) << ((int)sizeof(bufsize) * 8 - 2)) - 1) * 2) - 2)) 206 207 /* Thread Data management routines */ 208 static int bget_get_bin(bufsize size) { 209 // binary chop bins 210 int lo = 0, hi = MAX_BGET_BINS - 1; 211 212 KMP_DEBUG_ASSERT(size > 0); 213 214 while ((hi - lo) > 1) { 215 int mid = (lo + hi) >> 1; 216 if (size < bget_bin_size[mid]) 217 hi = mid - 1; 218 else 219 lo = mid; 220 } 221 222 KMP_DEBUG_ASSERT((lo >= 0) && (lo < MAX_BGET_BINS)); 223 224 return lo; 225 } 226 227 static void set_thr_data(kmp_info_t *th) { 228 int i; 229 thr_data_t *data; 230 231 data = (thr_data_t *)((!th->th.th_local.bget_data) 232 ? __kmp_allocate(sizeof(*data)) 233 : th->th.th_local.bget_data); 234 235 memset(data, '\0', sizeof(*data)); 236 237 for (i = 0; i < MAX_BGET_BINS; ++i) { 238 data->freelist[i].ql.flink = &data->freelist[i]; 239 data->freelist[i].ql.blink = &data->freelist[i]; 240 } 241 242 th->th.th_local.bget_data = data; 243 th->th.th_local.bget_list = 0; 244 #if !USE_CMP_XCHG_FOR_BGET 245 #ifdef USE_QUEUING_LOCK_FOR_BGET 246 __kmp_init_lock(&th->th.th_local.bget_lock); 247 #else 248 __kmp_init_bootstrap_lock(&th->th.th_local.bget_lock); 249 #endif /* USE_LOCK_FOR_BGET */ 250 #endif /* ! USE_CMP_XCHG_FOR_BGET */ 251 } 252 253 static thr_data_t *get_thr_data(kmp_info_t *th) { 254 thr_data_t *data; 255 256 data = (thr_data_t *)th->th.th_local.bget_data; 257 258 KMP_DEBUG_ASSERT(data != 0); 259 260 return data; 261 } 262 263 /* Walk the free list and release the enqueued buffers */ 264 static void __kmp_bget_dequeue(kmp_info_t *th) { 265 void *p = TCR_SYNC_PTR(th->th.th_local.bget_list); 266 267 if (p != 0) { 268 #if USE_CMP_XCHG_FOR_BGET 269 { 270 volatile void *old_value = TCR_SYNC_PTR(th->th.th_local.bget_list); 271 while (!KMP_COMPARE_AND_STORE_PTR(&th->th.th_local.bget_list, 272 CCAST(void *, old_value), nullptr)) { 273 KMP_CPU_PAUSE(); 274 old_value = TCR_SYNC_PTR(th->th.th_local.bget_list); 275 } 276 p = CCAST(void *, old_value); 277 } 278 #else /* ! USE_CMP_XCHG_FOR_BGET */ 279 #ifdef USE_QUEUING_LOCK_FOR_BGET 280 __kmp_acquire_lock(&th->th.th_local.bget_lock, __kmp_gtid_from_thread(th)); 281 #else 282 __kmp_acquire_bootstrap_lock(&th->th.th_local.bget_lock); 283 #endif /* USE_QUEUING_LOCK_FOR_BGET */ 284 285 p = (void *)th->th.th_local.bget_list; 286 th->th.th_local.bget_list = 0; 287 288 #ifdef USE_QUEUING_LOCK_FOR_BGET 289 __kmp_release_lock(&th->th.th_local.bget_lock, __kmp_gtid_from_thread(th)); 290 #else 291 __kmp_release_bootstrap_lock(&th->th.th_local.bget_lock); 292 #endif 293 #endif /* USE_CMP_XCHG_FOR_BGET */ 294 295 /* Check again to make sure the list is not empty */ 296 while (p != 0) { 297 void *buf = p; 298 bfhead_t *b = BFH(((char *)p) - sizeof(bhead_t)); 299 300 KMP_DEBUG_ASSERT(b->bh.bb.bsize != 0); 301 KMP_DEBUG_ASSERT(((kmp_uintptr_t)TCR_PTR(b->bh.bb.bthr) & ~1) == 302 (kmp_uintptr_t)th); // clear possible mark 303 KMP_DEBUG_ASSERT(b->ql.blink == 0); 304 305 p = (void *)b->ql.flink; 306 307 brel(th, buf); 308 } 309 } 310 } 311 312 /* Chain together the free buffers by using the thread owner field */ 313 static void __kmp_bget_enqueue(kmp_info_t *th, void *buf 314 #ifdef USE_QUEUING_LOCK_FOR_BGET 315 , 316 kmp_int32 rel_gtid 317 #endif 318 ) { 319 bfhead_t *b = BFH(((char *)buf) - sizeof(bhead_t)); 320 321 KMP_DEBUG_ASSERT(b->bh.bb.bsize != 0); 322 KMP_DEBUG_ASSERT(((kmp_uintptr_t)TCR_PTR(b->bh.bb.bthr) & ~1) == 323 (kmp_uintptr_t)th); // clear possible mark 324 325 b->ql.blink = 0; 326 327 KC_TRACE(10, ("__kmp_bget_enqueue: moving buffer to T#%d list\n", 328 __kmp_gtid_from_thread(th))); 329 330 #if USE_CMP_XCHG_FOR_BGET 331 { 332 volatile void *old_value = TCR_PTR(th->th.th_local.bget_list); 333 /* the next pointer must be set before setting bget_list to buf to avoid 334 exposing a broken list to other threads, even for an instant. */ 335 b->ql.flink = BFH(CCAST(void *, old_value)); 336 337 while (!KMP_COMPARE_AND_STORE_PTR(&th->th.th_local.bget_list, 338 CCAST(void *, old_value), buf)) { 339 KMP_CPU_PAUSE(); 340 old_value = TCR_PTR(th->th.th_local.bget_list); 341 /* the next pointer must be set before setting bget_list to buf to avoid 342 exposing a broken list to other threads, even for an instant. */ 343 b->ql.flink = BFH(CCAST(void *, old_value)); 344 } 345 } 346 #else /* ! USE_CMP_XCHG_FOR_BGET */ 347 #ifdef USE_QUEUING_LOCK_FOR_BGET 348 __kmp_acquire_lock(&th->th.th_local.bget_lock, rel_gtid); 349 #else 350 __kmp_acquire_bootstrap_lock(&th->th.th_local.bget_lock); 351 #endif 352 353 b->ql.flink = BFH(th->th.th_local.bget_list); 354 th->th.th_local.bget_list = (void *)buf; 355 356 #ifdef USE_QUEUING_LOCK_FOR_BGET 357 __kmp_release_lock(&th->th.th_local.bget_lock, rel_gtid); 358 #else 359 __kmp_release_bootstrap_lock(&th->th.th_local.bget_lock); 360 #endif 361 #endif /* USE_CMP_XCHG_FOR_BGET */ 362 } 363 364 /* insert buffer back onto a new freelist */ 365 static void __kmp_bget_insert_into_freelist(thr_data_t *thr, bfhead_t *b) { 366 int bin; 367 368 KMP_DEBUG_ASSERT(((size_t)b) % SizeQuant == 0); 369 KMP_DEBUG_ASSERT(b->bh.bb.bsize % SizeQuant == 0); 370 371 bin = bget_get_bin(b->bh.bb.bsize); 372 373 KMP_DEBUG_ASSERT(thr->freelist[bin].ql.blink->ql.flink == 374 &thr->freelist[bin]); 375 KMP_DEBUG_ASSERT(thr->freelist[bin].ql.flink->ql.blink == 376 &thr->freelist[bin]); 377 378 b->ql.flink = &thr->freelist[bin]; 379 b->ql.blink = thr->freelist[bin].ql.blink; 380 381 thr->freelist[bin].ql.blink = b; 382 b->ql.blink->ql.flink = b; 383 } 384 385 /* unlink the buffer from the old freelist */ 386 static void __kmp_bget_remove_from_freelist(bfhead_t *b) { 387 KMP_DEBUG_ASSERT(b->ql.blink->ql.flink == b); 388 KMP_DEBUG_ASSERT(b->ql.flink->ql.blink == b); 389 390 b->ql.blink->ql.flink = b->ql.flink; 391 b->ql.flink->ql.blink = b->ql.blink; 392 } 393 394 /* GET STATS -- check info on free list */ 395 static void bcheck(kmp_info_t *th, bufsize *max_free, bufsize *total_free) { 396 thr_data_t *thr = get_thr_data(th); 397 int bin; 398 399 *total_free = *max_free = 0; 400 401 for (bin = 0; bin < MAX_BGET_BINS; ++bin) { 402 bfhead_t *b, *best; 403 404 best = &thr->freelist[bin]; 405 b = best->ql.flink; 406 407 while (b != &thr->freelist[bin]) { 408 *total_free += (b->bh.bb.bsize - sizeof(bhead_t)); 409 if ((best == &thr->freelist[bin]) || (b->bh.bb.bsize < best->bh.bb.bsize)) 410 best = b; 411 412 /* Link to next buffer */ 413 b = b->ql.flink; 414 } 415 416 if (*max_free < best->bh.bb.bsize) 417 *max_free = best->bh.bb.bsize; 418 } 419 420 if (*max_free > (bufsize)sizeof(bhead_t)) 421 *max_free -= sizeof(bhead_t); 422 } 423 424 /* BGET -- Allocate a buffer. */ 425 static void *bget(kmp_info_t *th, bufsize requested_size) { 426 thr_data_t *thr = get_thr_data(th); 427 bufsize size = requested_size; 428 bfhead_t *b; 429 void *buf; 430 int compactseq = 0; 431 int use_blink = 0; 432 /* For BestFit */ 433 bfhead_t *best; 434 435 if (size < 0 || size + sizeof(bhead_t) > MaxSize) { 436 return NULL; 437 } 438 439 __kmp_bget_dequeue(th); /* Release any queued buffers */ 440 441 if (size < (bufsize)SizeQ) { // Need at least room for the queue links. 442 size = SizeQ; 443 } 444 #if defined(SizeQuant) && (SizeQuant > 1) 445 size = (size + (SizeQuant - 1)) & (~(SizeQuant - 1)); 446 #endif 447 448 size += sizeof(bhead_t); // Add overhead in allocated buffer to size required. 449 KMP_DEBUG_ASSERT(size >= 0); 450 KMP_DEBUG_ASSERT(size % SizeQuant == 0); 451 452 use_blink = (thr->mode == bget_mode_lifo); 453 454 /* If a compact function was provided in the call to bectl(), wrap 455 a loop around the allocation process to allow compaction to 456 intervene in case we don't find a suitable buffer in the chain. */ 457 458 for (;;) { 459 int bin; 460 461 for (bin = bget_get_bin(size); bin < MAX_BGET_BINS; ++bin) { 462 /* Link to next buffer */ 463 b = (use_blink ? thr->freelist[bin].ql.blink 464 : thr->freelist[bin].ql.flink); 465 466 if (thr->mode == bget_mode_best) { 467 best = &thr->freelist[bin]; 468 469 /* Scan the free list searching for the first buffer big enough 470 to hold the requested size buffer. */ 471 while (b != &thr->freelist[bin]) { 472 if (b->bh.bb.bsize >= (bufsize)size) { 473 if ((best == &thr->freelist[bin]) || 474 (b->bh.bb.bsize < best->bh.bb.bsize)) { 475 best = b; 476 } 477 } 478 479 /* Link to next buffer */ 480 b = (use_blink ? b->ql.blink : b->ql.flink); 481 } 482 b = best; 483 } 484 485 while (b != &thr->freelist[bin]) { 486 if ((bufsize)b->bh.bb.bsize >= (bufsize)size) { 487 488 // Buffer is big enough to satisfy the request. Allocate it to the 489 // caller. We must decide whether the buffer is large enough to split 490 // into the part given to the caller and a free buffer that remains 491 // on the free list, or whether the entire buffer should be removed 492 // from the free list and given to the caller in its entirety. We 493 // only split the buffer if enough room remains for a header plus the 494 // minimum quantum of allocation. 495 if ((b->bh.bb.bsize - (bufsize)size) > 496 (bufsize)(SizeQ + (sizeof(bhead_t)))) { 497 bhead_t *ba, *bn; 498 499 ba = BH(((char *)b) + (b->bh.bb.bsize - (bufsize)size)); 500 bn = BH(((char *)ba) + size); 501 502 KMP_DEBUG_ASSERT(bn->bb.prevfree == b->bh.bb.bsize); 503 504 /* Subtract size from length of free block. */ 505 b->bh.bb.bsize -= (bufsize)size; 506 507 /* Link allocated buffer to the previous free buffer. */ 508 ba->bb.prevfree = b->bh.bb.bsize; 509 510 /* Plug negative size into user buffer. */ 511 ba->bb.bsize = -size; 512 513 /* Mark this buffer as owned by this thread. */ 514 TCW_PTR(ba->bb.bthr, 515 th); // not an allocated address (do not mark it) 516 /* Mark buffer after this one not preceded by free block. */ 517 bn->bb.prevfree = 0; 518 519 // unlink buffer from old freelist, and reinsert into new freelist 520 __kmp_bget_remove_from_freelist(b); 521 __kmp_bget_insert_into_freelist(thr, b); 522 #if BufStats 523 thr->totalloc += (size_t)size; 524 thr->numget++; /* Increment number of bget() calls */ 525 #endif 526 buf = (void *)((((char *)ba) + sizeof(bhead_t))); 527 KMP_DEBUG_ASSERT(((size_t)buf) % SizeQuant == 0); 528 return buf; 529 } else { 530 bhead_t *ba; 531 532 ba = BH(((char *)b) + b->bh.bb.bsize); 533 534 KMP_DEBUG_ASSERT(ba->bb.prevfree == b->bh.bb.bsize); 535 536 /* The buffer isn't big enough to split. Give the whole 537 shebang to the caller and remove it from the free list. */ 538 539 __kmp_bget_remove_from_freelist(b); 540 #if BufStats 541 thr->totalloc += (size_t)b->bh.bb.bsize; 542 thr->numget++; /* Increment number of bget() calls */ 543 #endif 544 /* Negate size to mark buffer allocated. */ 545 b->bh.bb.bsize = -(b->bh.bb.bsize); 546 547 /* Mark this buffer as owned by this thread. */ 548 TCW_PTR(ba->bb.bthr, th); // not an allocated address (do not mark) 549 /* Zero the back pointer in the next buffer in memory 550 to indicate that this buffer is allocated. */ 551 ba->bb.prevfree = 0; 552 553 /* Give user buffer starting at queue links. */ 554 buf = (void *)&(b->ql); 555 KMP_DEBUG_ASSERT(((size_t)buf) % SizeQuant == 0); 556 return buf; 557 } 558 } 559 560 /* Link to next buffer */ 561 b = (use_blink ? b->ql.blink : b->ql.flink); 562 } 563 } 564 565 /* We failed to find a buffer. If there's a compact function defined, 566 notify it of the size requested. If it returns TRUE, try the allocation 567 again. */ 568 569 if ((thr->compfcn == 0) || (!(*thr->compfcn)(size, ++compactseq))) { 570 break; 571 } 572 } 573 574 /* No buffer available with requested size free. */ 575 576 /* Don't give up yet -- look in the reserve supply. */ 577 if (thr->acqfcn != 0) { 578 if (size > (bufsize)(thr->exp_incr - sizeof(bhead_t))) { 579 /* Request is too large to fit in a single expansion block. 580 Try to satisfy it by a direct buffer acquisition. */ 581 bdhead_t *bdh; 582 583 size += sizeof(bdhead_t) - sizeof(bhead_t); 584 585 KE_TRACE(10, ("%%%%%% MALLOC( %d )\n", (int)size)); 586 587 /* richryan */ 588 bdh = BDH((*thr->acqfcn)((bufsize)size)); 589 if (bdh != NULL) { 590 591 // Mark the buffer special by setting size field of its header to zero. 592 bdh->bh.bb.bsize = 0; 593 594 /* Mark this buffer as owned by this thread. */ 595 TCW_PTR(bdh->bh.bb.bthr, th); // don't mark buffer as allocated, 596 // because direct buffer never goes to free list 597 bdh->bh.bb.prevfree = 0; 598 bdh->tsize = size; 599 #if BufStats 600 thr->totalloc += (size_t)size; 601 thr->numget++; /* Increment number of bget() calls */ 602 thr->numdget++; /* Direct bget() call count */ 603 #endif 604 buf = (void *)(bdh + 1); 605 KMP_DEBUG_ASSERT(((size_t)buf) % SizeQuant == 0); 606 return buf; 607 } 608 609 } else { 610 611 /* Try to obtain a new expansion block */ 612 void *newpool; 613 614 KE_TRACE(10, ("%%%%%% MALLOCB( %d )\n", (int)thr->exp_incr)); 615 616 /* richryan */ 617 newpool = (*thr->acqfcn)((bufsize)thr->exp_incr); 618 KMP_DEBUG_ASSERT(((size_t)newpool) % SizeQuant == 0); 619 if (newpool != NULL) { 620 bpool(th, newpool, thr->exp_incr); 621 buf = bget( 622 th, requested_size); /* This can't, I say, can't get into a loop. */ 623 return buf; 624 } 625 } 626 } 627 628 /* Still no buffer available */ 629 630 return NULL; 631 } 632 633 /* BGETZ -- Allocate a buffer and clear its contents to zero. We clear 634 the entire contents of the buffer to zero, not just the 635 region requested by the caller. */ 636 637 static void *bgetz(kmp_info_t *th, bufsize size) { 638 char *buf = (char *)bget(th, size); 639 640 if (buf != NULL) { 641 bhead_t *b; 642 bufsize rsize; 643 644 b = BH(buf - sizeof(bhead_t)); 645 rsize = -(b->bb.bsize); 646 if (rsize == 0) { 647 bdhead_t *bd; 648 649 bd = BDH(buf - sizeof(bdhead_t)); 650 rsize = bd->tsize - (bufsize)sizeof(bdhead_t); 651 } else { 652 rsize -= sizeof(bhead_t); 653 } 654 655 KMP_DEBUG_ASSERT(rsize >= size); 656 657 (void)memset(buf, 0, (bufsize)rsize); 658 } 659 return ((void *)buf); 660 } 661 662 /* BGETR -- Reallocate a buffer. This is a minimal implementation, 663 simply in terms of brel() and bget(). It could be 664 enhanced to allow the buffer to grow into adjacent free 665 blocks and to avoid moving data unnecessarily. */ 666 667 static void *bgetr(kmp_info_t *th, void *buf, bufsize size) { 668 void *nbuf; 669 bufsize osize; /* Old size of buffer */ 670 bhead_t *b; 671 672 nbuf = bget(th, size); 673 if (nbuf == NULL) { /* Acquire new buffer */ 674 return NULL; 675 } 676 if (buf == NULL) { 677 return nbuf; 678 } 679 b = BH(((char *)buf) - sizeof(bhead_t)); 680 osize = -b->bb.bsize; 681 if (osize == 0) { 682 /* Buffer acquired directly through acqfcn. */ 683 bdhead_t *bd; 684 685 bd = BDH(((char *)buf) - sizeof(bdhead_t)); 686 osize = bd->tsize - (bufsize)sizeof(bdhead_t); 687 } else { 688 osize -= sizeof(bhead_t); 689 } 690 691 KMP_DEBUG_ASSERT(osize > 0); 692 693 (void)KMP_MEMCPY((char *)nbuf, (char *)buf, /* Copy the data */ 694 (size_t)((size < osize) ? size : osize)); 695 brel(th, buf); 696 697 return nbuf; 698 } 699 700 /* BREL -- Release a buffer. */ 701 static void brel(kmp_info_t *th, void *buf) { 702 thr_data_t *thr = get_thr_data(th); 703 bfhead_t *b, *bn; 704 kmp_info_t *bth; 705 706 KMP_DEBUG_ASSERT(buf != NULL); 707 KMP_DEBUG_ASSERT(((size_t)buf) % SizeQuant == 0); 708 709 b = BFH(((char *)buf) - sizeof(bhead_t)); 710 711 if (b->bh.bb.bsize == 0) { /* Directly-acquired buffer? */ 712 bdhead_t *bdh; 713 714 bdh = BDH(((char *)buf) - sizeof(bdhead_t)); 715 KMP_DEBUG_ASSERT(b->bh.bb.prevfree == 0); 716 #if BufStats 717 thr->totalloc -= (size_t)bdh->tsize; 718 thr->numdrel++; /* Number of direct releases */ 719 thr->numrel++; /* Increment number of brel() calls */ 720 #endif /* BufStats */ 721 #ifdef FreeWipe 722 (void)memset((char *)buf, 0x55, (size_t)(bdh->tsize - sizeof(bdhead_t))); 723 #endif /* FreeWipe */ 724 725 KE_TRACE(10, ("%%%%%% FREE( %p )\n", (void *)bdh)); 726 727 KMP_DEBUG_ASSERT(thr->relfcn != 0); 728 (*thr->relfcn)((void *)bdh); /* Release it directly. */ 729 return; 730 } 731 732 bth = (kmp_info_t *)((kmp_uintptr_t)TCR_PTR(b->bh.bb.bthr) & 733 ~1); // clear possible mark before comparison 734 if (bth != th) { 735 /* Add this buffer to be released by the owning thread later */ 736 __kmp_bget_enqueue(bth, buf 737 #ifdef USE_QUEUING_LOCK_FOR_BGET 738 , 739 __kmp_gtid_from_thread(th) 740 #endif 741 ); 742 return; 743 } 744 745 /* Buffer size must be negative, indicating that the buffer is allocated. */ 746 if (b->bh.bb.bsize >= 0) { 747 bn = NULL; 748 } 749 KMP_DEBUG_ASSERT(b->bh.bb.bsize < 0); 750 751 /* Back pointer in next buffer must be zero, indicating the same thing: */ 752 753 KMP_DEBUG_ASSERT(BH((char *)b - b->bh.bb.bsize)->bb.prevfree == 0); 754 755 #if BufStats 756 thr->numrel++; /* Increment number of brel() calls */ 757 thr->totalloc += (size_t)b->bh.bb.bsize; 758 #endif 759 760 /* If the back link is nonzero, the previous buffer is free. */ 761 762 if (b->bh.bb.prevfree != 0) { 763 /* The previous buffer is free. Consolidate this buffer with it by adding 764 the length of this buffer to the previous free buffer. Note that we 765 subtract the size in the buffer being released, since it's negative to 766 indicate that the buffer is allocated. */ 767 bufsize size = b->bh.bb.bsize; 768 769 /* Make the previous buffer the one we're working on. */ 770 KMP_DEBUG_ASSERT(BH((char *)b - b->bh.bb.prevfree)->bb.bsize == 771 b->bh.bb.prevfree); 772 b = BFH(((char *)b) - b->bh.bb.prevfree); 773 b->bh.bb.bsize -= size; 774 775 /* unlink the buffer from the old freelist */ 776 __kmp_bget_remove_from_freelist(b); 777 } else { 778 /* The previous buffer isn't allocated. Mark this buffer size as positive 779 (i.e. free) and fall through to place the buffer on the free list as an 780 isolated free block. */ 781 b->bh.bb.bsize = -b->bh.bb.bsize; 782 } 783 784 /* insert buffer back onto a new freelist */ 785 __kmp_bget_insert_into_freelist(thr, b); 786 787 /* Now we look at the next buffer in memory, located by advancing from 788 the start of this buffer by its size, to see if that buffer is 789 free. If it is, we combine this buffer with the next one in 790 memory, dechaining the second buffer from the free list. */ 791 bn = BFH(((char *)b) + b->bh.bb.bsize); 792 if (bn->bh.bb.bsize > 0) { 793 794 /* The buffer is free. Remove it from the free list and add 795 its size to that of our buffer. */ 796 KMP_DEBUG_ASSERT(BH((char *)bn + bn->bh.bb.bsize)->bb.prevfree == 797 bn->bh.bb.bsize); 798 799 __kmp_bget_remove_from_freelist(bn); 800 801 b->bh.bb.bsize += bn->bh.bb.bsize; 802 803 /* unlink the buffer from the old freelist, and reinsert it into the new 804 * freelist */ 805 __kmp_bget_remove_from_freelist(b); 806 __kmp_bget_insert_into_freelist(thr, b); 807 808 /* Finally, advance to the buffer that follows the newly 809 consolidated free block. We must set its backpointer to the 810 head of the consolidated free block. We know the next block 811 must be an allocated block because the process of recombination 812 guarantees that two free blocks will never be contiguous in 813 memory. */ 814 bn = BFH(((char *)b) + b->bh.bb.bsize); 815 } 816 #ifdef FreeWipe 817 (void)memset(((char *)b) + sizeof(bfhead_t), 0x55, 818 (size_t)(b->bh.bb.bsize - sizeof(bfhead_t))); 819 #endif 820 KMP_DEBUG_ASSERT(bn->bh.bb.bsize < 0); 821 822 /* The next buffer is allocated. Set the backpointer in it to point 823 to this buffer; the previous free buffer in memory. */ 824 825 bn->bh.bb.prevfree = b->bh.bb.bsize; 826 827 /* If a block-release function is defined, and this free buffer 828 constitutes the entire block, release it. Note that pool_len 829 is defined in such a way that the test will fail unless all 830 pool blocks are the same size. */ 831 if (thr->relfcn != 0 && 832 b->bh.bb.bsize == (bufsize)(thr->pool_len - sizeof(bhead_t))) { 833 #if BufStats 834 if (thr->numpblk != 835 1) { /* Do not release the last buffer until finalization time */ 836 #endif 837 838 KMP_DEBUG_ASSERT(b->bh.bb.prevfree == 0); 839 KMP_DEBUG_ASSERT(BH((char *)b + b->bh.bb.bsize)->bb.bsize == ESent); 840 KMP_DEBUG_ASSERT(BH((char *)b + b->bh.bb.bsize)->bb.prevfree == 841 b->bh.bb.bsize); 842 843 /* Unlink the buffer from the free list */ 844 __kmp_bget_remove_from_freelist(b); 845 846 KE_TRACE(10, ("%%%%%% FREE( %p )\n", (void *)b)); 847 848 (*thr->relfcn)(b); 849 #if BufStats 850 thr->numprel++; /* Nr of expansion block releases */ 851 thr->numpblk--; /* Total number of blocks */ 852 KMP_DEBUG_ASSERT(thr->numpblk == thr->numpget - thr->numprel); 853 854 // avoid leaving stale last_pool pointer around if it is being dealloced 855 if (thr->last_pool == b) 856 thr->last_pool = 0; 857 } else { 858 thr->last_pool = b; 859 } 860 #endif /* BufStats */ 861 } 862 } 863 864 /* BECTL -- Establish automatic pool expansion control */ 865 static void bectl(kmp_info_t *th, bget_compact_t compact, 866 bget_acquire_t acquire, bget_release_t release, 867 bufsize pool_incr) { 868 thr_data_t *thr = get_thr_data(th); 869 870 thr->compfcn = compact; 871 thr->acqfcn = acquire; 872 thr->relfcn = release; 873 thr->exp_incr = pool_incr; 874 } 875 876 /* BPOOL -- Add a region of memory to the buffer pool. */ 877 static void bpool(kmp_info_t *th, void *buf, bufsize len) { 878 /* int bin = 0; */ 879 thr_data_t *thr = get_thr_data(th); 880 bfhead_t *b = BFH(buf); 881 bhead_t *bn; 882 883 __kmp_bget_dequeue(th); /* Release any queued buffers */ 884 885 #ifdef SizeQuant 886 len &= ~((bufsize)(SizeQuant - 1)); 887 #endif 888 if (thr->pool_len == 0) { 889 thr->pool_len = len; 890 } else if (len != thr->pool_len) { 891 thr->pool_len = -1; 892 } 893 #if BufStats 894 thr->numpget++; /* Number of block acquisitions */ 895 thr->numpblk++; /* Number of blocks total */ 896 KMP_DEBUG_ASSERT(thr->numpblk == thr->numpget - thr->numprel); 897 #endif /* BufStats */ 898 899 /* Since the block is initially occupied by a single free buffer, 900 it had better not be (much) larger than the largest buffer 901 whose size we can store in bhead.bb.bsize. */ 902 KMP_DEBUG_ASSERT(len - sizeof(bhead_t) <= -((bufsize)ESent + 1)); 903 904 /* Clear the backpointer at the start of the block to indicate that 905 there is no free block prior to this one. That blocks 906 recombination when the first block in memory is released. */ 907 b->bh.bb.prevfree = 0; 908 909 /* Create a dummy allocated buffer at the end of the pool. This dummy 910 buffer is seen when a buffer at the end of the pool is released and 911 blocks recombination of the last buffer with the dummy buffer at 912 the end. The length in the dummy buffer is set to the largest 913 negative number to denote the end of the pool for diagnostic 914 routines (this specific value is not counted on by the actual 915 allocation and release functions). */ 916 len -= sizeof(bhead_t); 917 b->bh.bb.bsize = (bufsize)len; 918 /* Set the owner of this buffer */ 919 TCW_PTR(b->bh.bb.bthr, 920 (kmp_info_t *)((kmp_uintptr_t)th | 921 1)); // mark the buffer as allocated address 922 923 /* Chain the new block to the free list. */ 924 __kmp_bget_insert_into_freelist(thr, b); 925 926 #ifdef FreeWipe 927 (void)memset(((char *)b) + sizeof(bfhead_t), 0x55, 928 (size_t)(len - sizeof(bfhead_t))); 929 #endif 930 bn = BH(((char *)b) + len); 931 bn->bb.prevfree = (bufsize)len; 932 /* Definition of ESent assumes two's complement! */ 933 KMP_DEBUG_ASSERT((~0) == -1 && (bn != 0)); 934 935 bn->bb.bsize = ESent; 936 } 937 938 /* BFREED -- Dump the free lists for this thread. */ 939 static void bfreed(kmp_info_t *th) { 940 int bin = 0, count = 0; 941 int gtid = __kmp_gtid_from_thread(th); 942 thr_data_t *thr = get_thr_data(th); 943 944 #if BufStats 945 __kmp_printf_no_lock("__kmp_printpool: T#%d total=%" KMP_UINT64_SPEC 946 " get=%" KMP_INT64_SPEC " rel=%" KMP_INT64_SPEC 947 " pblk=%" KMP_INT64_SPEC " pget=%" KMP_INT64_SPEC 948 " prel=%" KMP_INT64_SPEC " dget=%" KMP_INT64_SPEC 949 " drel=%" KMP_INT64_SPEC "\n", 950 gtid, (kmp_uint64)thr->totalloc, (kmp_int64)thr->numget, 951 (kmp_int64)thr->numrel, (kmp_int64)thr->numpblk, 952 (kmp_int64)thr->numpget, (kmp_int64)thr->numprel, 953 (kmp_int64)thr->numdget, (kmp_int64)thr->numdrel); 954 #endif 955 956 for (bin = 0; bin < MAX_BGET_BINS; ++bin) { 957 bfhead_t *b; 958 959 for (b = thr->freelist[bin].ql.flink; b != &thr->freelist[bin]; 960 b = b->ql.flink) { 961 bufsize bs = b->bh.bb.bsize; 962 963 KMP_DEBUG_ASSERT(b->ql.blink->ql.flink == b); 964 KMP_DEBUG_ASSERT(b->ql.flink->ql.blink == b); 965 KMP_DEBUG_ASSERT(bs > 0); 966 967 count += 1; 968 969 __kmp_printf_no_lock( 970 "__kmp_printpool: T#%d Free block: 0x%p size %6ld bytes.\n", gtid, b, 971 (long)bs); 972 #ifdef FreeWipe 973 { 974 char *lerr = ((char *)b) + sizeof(bfhead_t); 975 if ((bs > sizeof(bfhead_t)) && 976 ((*lerr != 0x55) || 977 (memcmp(lerr, lerr + 1, (size_t)(bs - (sizeof(bfhead_t) + 1))) != 978 0))) { 979 __kmp_printf_no_lock("__kmp_printpool: T#%d (Contents of above " 980 "free block have been overstored.)\n", 981 gtid); 982 } 983 } 984 #endif 985 } 986 } 987 988 if (count == 0) 989 __kmp_printf_no_lock("__kmp_printpool: T#%d No free blocks\n", gtid); 990 } 991 992 void __kmp_initialize_bget(kmp_info_t *th) { 993 KMP_DEBUG_ASSERT(SizeQuant >= sizeof(void *) && (th != 0)); 994 995 set_thr_data(th); 996 997 bectl(th, (bget_compact_t)0, (bget_acquire_t)malloc, (bget_release_t)free, 998 (bufsize)__kmp_malloc_pool_incr); 999 } 1000 1001 void __kmp_finalize_bget(kmp_info_t *th) { 1002 thr_data_t *thr; 1003 bfhead_t *b; 1004 1005 KMP_DEBUG_ASSERT(th != 0); 1006 1007 #if BufStats 1008 thr = (thr_data_t *)th->th.th_local.bget_data; 1009 KMP_DEBUG_ASSERT(thr != NULL); 1010 b = thr->last_pool; 1011 1012 /* If a block-release function is defined, and this free buffer constitutes 1013 the entire block, release it. Note that pool_len is defined in such a way 1014 that the test will fail unless all pool blocks are the same size. */ 1015 1016 // Deallocate the last pool if one exists because we no longer do it in brel() 1017 if (thr->relfcn != 0 && b != 0 && thr->numpblk != 0 && 1018 b->bh.bb.bsize == (bufsize)(thr->pool_len - sizeof(bhead_t))) { 1019 KMP_DEBUG_ASSERT(b->bh.bb.prevfree == 0); 1020 KMP_DEBUG_ASSERT(BH((char *)b + b->bh.bb.bsize)->bb.bsize == ESent); 1021 KMP_DEBUG_ASSERT(BH((char *)b + b->bh.bb.bsize)->bb.prevfree == 1022 b->bh.bb.bsize); 1023 1024 /* Unlink the buffer from the free list */ 1025 __kmp_bget_remove_from_freelist(b); 1026 1027 KE_TRACE(10, ("%%%%%% FREE( %p )\n", (void *)b)); 1028 1029 (*thr->relfcn)(b); 1030 thr->numprel++; /* Nr of expansion block releases */ 1031 thr->numpblk--; /* Total number of blocks */ 1032 KMP_DEBUG_ASSERT(thr->numpblk == thr->numpget - thr->numprel); 1033 } 1034 #endif /* BufStats */ 1035 1036 /* Deallocate bget_data */ 1037 if (th->th.th_local.bget_data != NULL) { 1038 __kmp_free(th->th.th_local.bget_data); 1039 th->th.th_local.bget_data = NULL; 1040 } 1041 } 1042 1043 void kmpc_set_poolsize(size_t size) { 1044 bectl(__kmp_get_thread(), (bget_compact_t)0, (bget_acquire_t)malloc, 1045 (bget_release_t)free, (bufsize)size); 1046 } 1047 1048 size_t kmpc_get_poolsize(void) { 1049 thr_data_t *p; 1050 1051 p = get_thr_data(__kmp_get_thread()); 1052 1053 return p->exp_incr; 1054 } 1055 1056 void kmpc_set_poolmode(int mode) { 1057 thr_data_t *p; 1058 1059 if (mode == bget_mode_fifo || mode == bget_mode_lifo || 1060 mode == bget_mode_best) { 1061 p = get_thr_data(__kmp_get_thread()); 1062 p->mode = (bget_mode_t)mode; 1063 } 1064 } 1065 1066 int kmpc_get_poolmode(void) { 1067 thr_data_t *p; 1068 1069 p = get_thr_data(__kmp_get_thread()); 1070 1071 return p->mode; 1072 } 1073 1074 void kmpc_get_poolstat(size_t *maxmem, size_t *allmem) { 1075 kmp_info_t *th = __kmp_get_thread(); 1076 bufsize a, b; 1077 1078 __kmp_bget_dequeue(th); /* Release any queued buffers */ 1079 1080 bcheck(th, &a, &b); 1081 1082 *maxmem = a; 1083 *allmem = b; 1084 } 1085 1086 void kmpc_poolprint(void) { 1087 kmp_info_t *th = __kmp_get_thread(); 1088 1089 __kmp_bget_dequeue(th); /* Release any queued buffers */ 1090 1091 bfreed(th); 1092 } 1093 1094 #endif // #if KMP_USE_BGET 1095 1096 void *kmpc_malloc(size_t size) { 1097 void *ptr; 1098 ptr = bget(__kmp_entry_thread(), (bufsize)(size + sizeof(ptr))); 1099 if (ptr != NULL) { 1100 // save allocated pointer just before one returned to user 1101 *(void **)ptr = ptr; 1102 ptr = (void **)ptr + 1; 1103 } 1104 return ptr; 1105 } 1106 1107 #define IS_POWER_OF_TWO(n) (((n) & ((n)-1)) == 0) 1108 1109 void *kmpc_aligned_malloc(size_t size, size_t alignment) { 1110 void *ptr; 1111 void *ptr_allocated; 1112 KMP_DEBUG_ASSERT(alignment < 32 * 1024); // Alignment should not be too big 1113 if (!IS_POWER_OF_TWO(alignment)) { 1114 // AC: do we need to issue a warning here? 1115 errno = EINVAL; 1116 return NULL; 1117 } 1118 size = size + sizeof(void *) + alignment; 1119 ptr_allocated = bget(__kmp_entry_thread(), (bufsize)size); 1120 if (ptr_allocated != NULL) { 1121 // save allocated pointer just before one returned to user 1122 ptr = (void *)(((kmp_uintptr_t)ptr_allocated + sizeof(void *) + alignment) & 1123 ~(alignment - 1)); 1124 *((void **)ptr - 1) = ptr_allocated; 1125 } else { 1126 ptr = NULL; 1127 } 1128 return ptr; 1129 } 1130 1131 void *kmpc_calloc(size_t nelem, size_t elsize) { 1132 void *ptr; 1133 ptr = bgetz(__kmp_entry_thread(), (bufsize)(nelem * elsize + sizeof(ptr))); 1134 if (ptr != NULL) { 1135 // save allocated pointer just before one returned to user 1136 *(void **)ptr = ptr; 1137 ptr = (void **)ptr + 1; 1138 } 1139 return ptr; 1140 } 1141 1142 void *kmpc_realloc(void *ptr, size_t size) { 1143 void *result = NULL; 1144 if (ptr == NULL) { 1145 // If pointer is NULL, realloc behaves like malloc. 1146 result = bget(__kmp_entry_thread(), (bufsize)(size + sizeof(ptr))); 1147 // save allocated pointer just before one returned to user 1148 if (result != NULL) { 1149 *(void **)result = result; 1150 result = (void **)result + 1; 1151 } 1152 } else if (size == 0) { 1153 // If size is 0, realloc behaves like free. 1154 // The thread must be registered by the call to kmpc_malloc() or 1155 // kmpc_calloc() before. 1156 // So it should be safe to call __kmp_get_thread(), not 1157 // __kmp_entry_thread(). 1158 KMP_ASSERT(*((void **)ptr - 1)); 1159 brel(__kmp_get_thread(), *((void **)ptr - 1)); 1160 } else { 1161 result = bgetr(__kmp_entry_thread(), *((void **)ptr - 1), 1162 (bufsize)(size + sizeof(ptr))); 1163 if (result != NULL) { 1164 *(void **)result = result; 1165 result = (void **)result + 1; 1166 } 1167 } 1168 return result; 1169 } 1170 1171 // NOTE: the library must have already been initialized by a previous allocate 1172 void kmpc_free(void *ptr) { 1173 if (!__kmp_init_serial) { 1174 return; 1175 } 1176 if (ptr != NULL) { 1177 kmp_info_t *th = __kmp_get_thread(); 1178 __kmp_bget_dequeue(th); /* Release any queued buffers */ 1179 // extract allocated pointer and free it 1180 KMP_ASSERT(*((void **)ptr - 1)); 1181 brel(th, *((void **)ptr - 1)); 1182 } 1183 } 1184 1185 void *___kmp_thread_malloc(kmp_info_t *th, size_t size KMP_SRC_LOC_DECL) { 1186 void *ptr; 1187 KE_TRACE(30, ("-> __kmp_thread_malloc( %p, %d ) called from %s:%d\n", th, 1188 (int)size KMP_SRC_LOC_PARM)); 1189 ptr = bget(th, (bufsize)size); 1190 KE_TRACE(30, ("<- __kmp_thread_malloc() returns %p\n", ptr)); 1191 return ptr; 1192 } 1193 1194 void *___kmp_thread_calloc(kmp_info_t *th, size_t nelem, 1195 size_t elsize KMP_SRC_LOC_DECL) { 1196 void *ptr; 1197 KE_TRACE(30, ("-> __kmp_thread_calloc( %p, %d, %d ) called from %s:%d\n", th, 1198 (int)nelem, (int)elsize KMP_SRC_LOC_PARM)); 1199 ptr = bgetz(th, (bufsize)(nelem * elsize)); 1200 KE_TRACE(30, ("<- __kmp_thread_calloc() returns %p\n", ptr)); 1201 return ptr; 1202 } 1203 1204 void *___kmp_thread_realloc(kmp_info_t *th, void *ptr, 1205 size_t size KMP_SRC_LOC_DECL) { 1206 KE_TRACE(30, ("-> __kmp_thread_realloc( %p, %p, %d ) called from %s:%d\n", th, 1207 ptr, (int)size KMP_SRC_LOC_PARM)); 1208 ptr = bgetr(th, ptr, (bufsize)size); 1209 KE_TRACE(30, ("<- __kmp_thread_realloc() returns %p\n", ptr)); 1210 return ptr; 1211 } 1212 1213 void ___kmp_thread_free(kmp_info_t *th, void *ptr KMP_SRC_LOC_DECL) { 1214 KE_TRACE(30, ("-> __kmp_thread_free( %p, %p ) called from %s:%d\n", th, 1215 ptr KMP_SRC_LOC_PARM)); 1216 if (ptr != NULL) { 1217 __kmp_bget_dequeue(th); /* Release any queued buffers */ 1218 brel(th, ptr); 1219 } 1220 KE_TRACE(30, ("<- __kmp_thread_free()\n")); 1221 } 1222 1223 /* OMP 5.0 Memory Management support */ 1224 static const char *kmp_mk_lib_name; 1225 static void *h_memkind; 1226 /* memkind experimental API: */ 1227 // memkind_alloc 1228 static void *(*kmp_mk_alloc)(void *k, size_t sz); 1229 // memkind_free 1230 static void (*kmp_mk_free)(void *kind, void *ptr); 1231 // memkind_check_available 1232 static int (*kmp_mk_check)(void *kind); 1233 // kinds we are going to use 1234 static void **mk_default; 1235 static void **mk_interleave; 1236 static void **mk_hbw; 1237 static void **mk_hbw_interleave; 1238 static void **mk_hbw_preferred; 1239 static void **mk_hugetlb; 1240 static void **mk_hbw_hugetlb; 1241 static void **mk_hbw_preferred_hugetlb; 1242 static void **mk_dax_kmem; 1243 static void **mk_dax_kmem_all; 1244 static void **mk_dax_kmem_preferred; 1245 static void *(*kmp_target_alloc_host)(size_t size, int device); 1246 static void *(*kmp_target_alloc_shared)(size_t size, int device); 1247 static void *(*kmp_target_alloc_device)(size_t size, int device); 1248 static void *(*kmp_target_free)(void *ptr, int device); 1249 static bool __kmp_target_mem_available; 1250 #define KMP_IS_TARGET_MEM_SPACE(MS) \ 1251 (MS == llvm_omp_target_host_mem_space || \ 1252 MS == llvm_omp_target_shared_mem_space || \ 1253 MS == llvm_omp_target_device_mem_space) 1254 #define KMP_IS_TARGET_MEM_ALLOC(MA) \ 1255 (MA == llvm_omp_target_host_mem_alloc || \ 1256 MA == llvm_omp_target_shared_mem_alloc || \ 1257 MA == llvm_omp_target_device_mem_alloc) 1258 1259 #if KMP_OS_UNIX && KMP_DYNAMIC_LIB && !KMP_OS_DARWIN 1260 static inline void chk_kind(void ***pkind) { 1261 KMP_DEBUG_ASSERT(pkind); 1262 if (*pkind) // symbol found 1263 if (kmp_mk_check(**pkind)) // kind not available or error 1264 *pkind = NULL; 1265 } 1266 #endif 1267 1268 void __kmp_init_memkind() { 1269 // as of 2018-07-31 memkind does not support Windows*, exclude it for now 1270 #if KMP_OS_UNIX && KMP_DYNAMIC_LIB && !KMP_OS_DARWIN 1271 // use of statically linked memkind is problematic, as it depends on libnuma 1272 kmp_mk_lib_name = "libmemkind.so"; 1273 h_memkind = dlopen(kmp_mk_lib_name, RTLD_LAZY); 1274 if (h_memkind) { 1275 kmp_mk_check = (int (*)(void *))dlsym(h_memkind, "memkind_check_available"); 1276 kmp_mk_alloc = 1277 (void *(*)(void *, size_t))dlsym(h_memkind, "memkind_malloc"); 1278 kmp_mk_free = (void (*)(void *, void *))dlsym(h_memkind, "memkind_free"); 1279 mk_default = (void **)dlsym(h_memkind, "MEMKIND_DEFAULT"); 1280 if (kmp_mk_check && kmp_mk_alloc && kmp_mk_free && mk_default && 1281 !kmp_mk_check(*mk_default)) { 1282 __kmp_memkind_available = 1; 1283 mk_interleave = (void **)dlsym(h_memkind, "MEMKIND_INTERLEAVE"); 1284 chk_kind(&mk_interleave); 1285 mk_hbw = (void **)dlsym(h_memkind, "MEMKIND_HBW"); 1286 chk_kind(&mk_hbw); 1287 mk_hbw_interleave = (void **)dlsym(h_memkind, "MEMKIND_HBW_INTERLEAVE"); 1288 chk_kind(&mk_hbw_interleave); 1289 mk_hbw_preferred = (void **)dlsym(h_memkind, "MEMKIND_HBW_PREFERRED"); 1290 chk_kind(&mk_hbw_preferred); 1291 mk_hugetlb = (void **)dlsym(h_memkind, "MEMKIND_HUGETLB"); 1292 chk_kind(&mk_hugetlb); 1293 mk_hbw_hugetlb = (void **)dlsym(h_memkind, "MEMKIND_HBW_HUGETLB"); 1294 chk_kind(&mk_hbw_hugetlb); 1295 mk_hbw_preferred_hugetlb = 1296 (void **)dlsym(h_memkind, "MEMKIND_HBW_PREFERRED_HUGETLB"); 1297 chk_kind(&mk_hbw_preferred_hugetlb); 1298 mk_dax_kmem = (void **)dlsym(h_memkind, "MEMKIND_DAX_KMEM"); 1299 chk_kind(&mk_dax_kmem); 1300 mk_dax_kmem_all = (void **)dlsym(h_memkind, "MEMKIND_DAX_KMEM_ALL"); 1301 chk_kind(&mk_dax_kmem_all); 1302 mk_dax_kmem_preferred = 1303 (void **)dlsym(h_memkind, "MEMKIND_DAX_KMEM_PREFERRED"); 1304 chk_kind(&mk_dax_kmem_preferred); 1305 KE_TRACE(25, ("__kmp_init_memkind: memkind library initialized\n")); 1306 return; // success 1307 } 1308 dlclose(h_memkind); // failure 1309 } 1310 #else // !(KMP_OS_UNIX && KMP_DYNAMIC_LIB) 1311 kmp_mk_lib_name = ""; 1312 #endif // !(KMP_OS_UNIX && KMP_DYNAMIC_LIB) 1313 h_memkind = NULL; 1314 kmp_mk_check = NULL; 1315 kmp_mk_alloc = NULL; 1316 kmp_mk_free = NULL; 1317 mk_default = NULL; 1318 mk_interleave = NULL; 1319 mk_hbw = NULL; 1320 mk_hbw_interleave = NULL; 1321 mk_hbw_preferred = NULL; 1322 mk_hugetlb = NULL; 1323 mk_hbw_hugetlb = NULL; 1324 mk_hbw_preferred_hugetlb = NULL; 1325 mk_dax_kmem = NULL; 1326 mk_dax_kmem_all = NULL; 1327 mk_dax_kmem_preferred = NULL; 1328 } 1329 1330 void __kmp_fini_memkind() { 1331 #if KMP_OS_UNIX && KMP_DYNAMIC_LIB 1332 if (__kmp_memkind_available) 1333 KE_TRACE(25, ("__kmp_fini_memkind: finalize memkind library\n")); 1334 if (h_memkind) { 1335 dlclose(h_memkind); 1336 h_memkind = NULL; 1337 } 1338 kmp_mk_check = NULL; 1339 kmp_mk_alloc = NULL; 1340 kmp_mk_free = NULL; 1341 mk_default = NULL; 1342 mk_interleave = NULL; 1343 mk_hbw = NULL; 1344 mk_hbw_interleave = NULL; 1345 mk_hbw_preferred = NULL; 1346 mk_hugetlb = NULL; 1347 mk_hbw_hugetlb = NULL; 1348 mk_hbw_preferred_hugetlb = NULL; 1349 mk_dax_kmem = NULL; 1350 mk_dax_kmem_all = NULL; 1351 mk_dax_kmem_preferred = NULL; 1352 #endif 1353 } 1354 1355 void __kmp_init_target_mem() { 1356 *(void **)(&kmp_target_alloc_host) = KMP_DLSYM("llvm_omp_target_alloc_host"); 1357 *(void **)(&kmp_target_alloc_shared) = 1358 KMP_DLSYM("llvm_omp_target_alloc_shared"); 1359 *(void **)(&kmp_target_alloc_device) = 1360 KMP_DLSYM("llvm_omp_target_alloc_device"); 1361 *(void **)(&kmp_target_free) = KMP_DLSYM("omp_target_free"); 1362 __kmp_target_mem_available = kmp_target_alloc_host && 1363 kmp_target_alloc_shared && 1364 kmp_target_alloc_device && kmp_target_free; 1365 } 1366 1367 omp_allocator_handle_t __kmpc_init_allocator(int gtid, omp_memspace_handle_t ms, 1368 int ntraits, 1369 omp_alloctrait_t traits[]) { 1370 // OpenMP 5.0 only allows predefined memspaces 1371 KMP_DEBUG_ASSERT(ms == omp_default_mem_space || ms == omp_low_lat_mem_space || 1372 ms == omp_large_cap_mem_space || ms == omp_const_mem_space || 1373 ms == omp_high_bw_mem_space || KMP_IS_TARGET_MEM_SPACE(ms)); 1374 kmp_allocator_t *al; 1375 int i; 1376 al = (kmp_allocator_t *)__kmp_allocate(sizeof(kmp_allocator_t)); // zeroed 1377 al->memspace = ms; // not used currently 1378 for (i = 0; i < ntraits; ++i) { 1379 switch (traits[i].key) { 1380 case omp_atk_sync_hint: 1381 case omp_atk_access: 1382 case omp_atk_pinned: 1383 break; 1384 case omp_atk_alignment: 1385 __kmp_type_convert(traits[i].value, &(al->alignment)); 1386 KMP_ASSERT(IS_POWER_OF_TWO(al->alignment)); 1387 break; 1388 case omp_atk_pool_size: 1389 al->pool_size = traits[i].value; 1390 break; 1391 case omp_atk_fallback: 1392 al->fb = (omp_alloctrait_value_t)traits[i].value; 1393 KMP_DEBUG_ASSERT( 1394 al->fb == omp_atv_default_mem_fb || al->fb == omp_atv_null_fb || 1395 al->fb == omp_atv_abort_fb || al->fb == omp_atv_allocator_fb); 1396 break; 1397 case omp_atk_fb_data: 1398 al->fb_data = RCAST(kmp_allocator_t *, traits[i].value); 1399 break; 1400 case omp_atk_partition: 1401 al->memkind = RCAST(void **, traits[i].value); 1402 break; 1403 default: 1404 KMP_ASSERT2(0, "Unexpected allocator trait"); 1405 } 1406 } 1407 if (al->fb == 0) { 1408 // set default allocator 1409 al->fb = omp_atv_default_mem_fb; 1410 al->fb_data = (kmp_allocator_t *)omp_default_mem_alloc; 1411 } else if (al->fb == omp_atv_allocator_fb) { 1412 KMP_ASSERT(al->fb_data != NULL); 1413 } else if (al->fb == omp_atv_default_mem_fb) { 1414 al->fb_data = (kmp_allocator_t *)omp_default_mem_alloc; 1415 } 1416 if (__kmp_memkind_available) { 1417 // Let's use memkind library if available 1418 if (ms == omp_high_bw_mem_space) { 1419 if (al->memkind == (void *)omp_atv_interleaved && mk_hbw_interleave) { 1420 al->memkind = mk_hbw_interleave; 1421 } else if (mk_hbw_preferred) { 1422 // AC: do not try to use MEMKIND_HBW for now, because memkind library 1423 // cannot reliably detect exhaustion of HBW memory. 1424 // It could be possible using hbw_verify_memory_region() but memkind 1425 // manual says: "Using this function in production code may result in 1426 // serious performance penalty". 1427 al->memkind = mk_hbw_preferred; 1428 } else { 1429 // HBW is requested but not available --> return NULL allocator 1430 __kmp_free(al); 1431 return omp_null_allocator; 1432 } 1433 } else if (ms == omp_large_cap_mem_space) { 1434 if (mk_dax_kmem_all) { 1435 // All pmem nodes are visited 1436 al->memkind = mk_dax_kmem_all; 1437 } else if (mk_dax_kmem) { 1438 // Only closest pmem node is visited 1439 al->memkind = mk_dax_kmem; 1440 } else { 1441 __kmp_free(al); 1442 return omp_null_allocator; 1443 } 1444 } else { 1445 if (al->memkind == (void *)omp_atv_interleaved && mk_interleave) { 1446 al->memkind = mk_interleave; 1447 } else { 1448 al->memkind = mk_default; 1449 } 1450 } 1451 } else if (KMP_IS_TARGET_MEM_SPACE(ms) && !__kmp_target_mem_available) { 1452 __kmp_free(al); 1453 return omp_null_allocator; 1454 } else { 1455 if (ms == omp_high_bw_mem_space) { 1456 // cannot detect HBW memory presence without memkind library 1457 __kmp_free(al); 1458 return omp_null_allocator; 1459 } 1460 } 1461 return (omp_allocator_handle_t)al; 1462 } 1463 1464 void __kmpc_destroy_allocator(int gtid, omp_allocator_handle_t allocator) { 1465 if (allocator > kmp_max_mem_alloc) 1466 __kmp_free(allocator); 1467 } 1468 1469 void __kmpc_set_default_allocator(int gtid, omp_allocator_handle_t allocator) { 1470 if (allocator == omp_null_allocator) 1471 allocator = omp_default_mem_alloc; 1472 __kmp_threads[gtid]->th.th_def_allocator = allocator; 1473 } 1474 1475 omp_allocator_handle_t __kmpc_get_default_allocator(int gtid) { 1476 return __kmp_threads[gtid]->th.th_def_allocator; 1477 } 1478 1479 typedef struct kmp_mem_desc { // Memory block descriptor 1480 void *ptr_alloc; // Pointer returned by allocator 1481 size_t size_a; // Size of allocated memory block (initial+descriptor+align) 1482 size_t size_orig; // Original size requested 1483 void *ptr_align; // Pointer to aligned memory, returned 1484 kmp_allocator_t *allocator; // allocator 1485 } kmp_mem_desc_t; 1486 static int alignment = sizeof(void *); // align to pointer size by default 1487 1488 // external interfaces are wrappers over internal implementation 1489 void *__kmpc_alloc(int gtid, size_t size, omp_allocator_handle_t allocator) { 1490 KE_TRACE(25, ("__kmpc_alloc: T#%d (%d, %p)\n", gtid, (int)size, allocator)); 1491 void *ptr = __kmp_alloc(gtid, 0, size, allocator); 1492 KE_TRACE(25, ("__kmpc_alloc returns %p, T#%d\n", ptr, gtid)); 1493 return ptr; 1494 } 1495 1496 void *__kmpc_aligned_alloc(int gtid, size_t algn, size_t size, 1497 omp_allocator_handle_t allocator) { 1498 KE_TRACE(25, ("__kmpc_aligned_alloc: T#%d (%d, %d, %p)\n", gtid, (int)algn, 1499 (int)size, allocator)); 1500 void *ptr = __kmp_alloc(gtid, algn, size, allocator); 1501 KE_TRACE(25, ("__kmpc_aligned_alloc returns %p, T#%d\n", ptr, gtid)); 1502 return ptr; 1503 } 1504 1505 void *__kmpc_calloc(int gtid, size_t nmemb, size_t size, 1506 omp_allocator_handle_t allocator) { 1507 KE_TRACE(25, ("__kmpc_calloc: T#%d (%d, %d, %p)\n", gtid, (int)nmemb, 1508 (int)size, allocator)); 1509 void *ptr = __kmp_calloc(gtid, 0, nmemb, size, allocator); 1510 KE_TRACE(25, ("__kmpc_calloc returns %p, T#%d\n", ptr, gtid)); 1511 return ptr; 1512 } 1513 1514 void *__kmpc_realloc(int gtid, void *ptr, size_t size, 1515 omp_allocator_handle_t allocator, 1516 omp_allocator_handle_t free_allocator) { 1517 KE_TRACE(25, ("__kmpc_realloc: T#%d (%p, %d, %p, %p)\n", gtid, ptr, (int)size, 1518 allocator, free_allocator)); 1519 void *nptr = __kmp_realloc(gtid, ptr, size, allocator, free_allocator); 1520 KE_TRACE(25, ("__kmpc_realloc returns %p, T#%d\n", nptr, gtid)); 1521 return nptr; 1522 } 1523 1524 void __kmpc_free(int gtid, void *ptr, omp_allocator_handle_t allocator) { 1525 KE_TRACE(25, ("__kmpc_free: T#%d free(%p,%p)\n", gtid, ptr, allocator)); 1526 ___kmpc_free(gtid, ptr, allocator); 1527 KE_TRACE(10, ("__kmpc_free: T#%d freed %p (%p)\n", gtid, ptr, allocator)); 1528 return; 1529 } 1530 1531 // internal implementation, called from inside the library 1532 void *__kmp_alloc(int gtid, size_t algn, size_t size, 1533 omp_allocator_handle_t allocator) { 1534 void *ptr = NULL; 1535 kmp_allocator_t *al; 1536 KMP_DEBUG_ASSERT(__kmp_init_serial); 1537 if (size == 0) 1538 return NULL; 1539 if (allocator == omp_null_allocator) 1540 allocator = __kmp_threads[gtid]->th.th_def_allocator; 1541 1542 al = RCAST(kmp_allocator_t *, allocator); 1543 1544 int sz_desc = sizeof(kmp_mem_desc_t); 1545 kmp_mem_desc_t desc; 1546 kmp_uintptr_t addr; // address returned by allocator 1547 kmp_uintptr_t addr_align; // address to return to caller 1548 kmp_uintptr_t addr_descr; // address of memory block descriptor 1549 size_t align = alignment; // default alignment 1550 if (allocator > kmp_max_mem_alloc && al->alignment > align) 1551 align = al->alignment; // alignment required by allocator trait 1552 if (align < algn) 1553 align = algn; // max of allocator trait, parameter and sizeof(void*) 1554 desc.size_orig = size; 1555 desc.size_a = size + sz_desc + align; 1556 1557 if (__kmp_memkind_available) { 1558 if (allocator < kmp_max_mem_alloc) { 1559 // pre-defined allocator 1560 if (allocator == omp_high_bw_mem_alloc && mk_hbw_preferred) { 1561 ptr = kmp_mk_alloc(*mk_hbw_preferred, desc.size_a); 1562 } else if (allocator == omp_large_cap_mem_alloc && mk_dax_kmem_all) { 1563 ptr = kmp_mk_alloc(*mk_dax_kmem_all, desc.size_a); 1564 } else { 1565 ptr = kmp_mk_alloc(*mk_default, desc.size_a); 1566 } 1567 } else if (al->pool_size > 0) { 1568 // custom allocator with pool size requested 1569 kmp_uint64 used = 1570 KMP_TEST_THEN_ADD64((kmp_int64 *)&al->pool_used, desc.size_a); 1571 if (used + desc.size_a > al->pool_size) { 1572 // not enough space, need to go fallback path 1573 KMP_TEST_THEN_ADD64((kmp_int64 *)&al->pool_used, -desc.size_a); 1574 if (al->fb == omp_atv_default_mem_fb) { 1575 al = (kmp_allocator_t *)omp_default_mem_alloc; 1576 ptr = kmp_mk_alloc(*mk_default, desc.size_a); 1577 } else if (al->fb == omp_atv_abort_fb) { 1578 KMP_ASSERT(0); // abort fallback requested 1579 } else if (al->fb == omp_atv_allocator_fb) { 1580 KMP_ASSERT(al != al->fb_data); 1581 al = al->fb_data; 1582 return __kmp_alloc(gtid, algn, size, (omp_allocator_handle_t)al); 1583 } // else ptr == NULL; 1584 } else { 1585 // pool has enough space 1586 ptr = kmp_mk_alloc(*al->memkind, desc.size_a); 1587 if (ptr == NULL) { 1588 if (al->fb == omp_atv_default_mem_fb) { 1589 al = (kmp_allocator_t *)omp_default_mem_alloc; 1590 ptr = kmp_mk_alloc(*mk_default, desc.size_a); 1591 } else if (al->fb == omp_atv_abort_fb) { 1592 KMP_ASSERT(0); // abort fallback requested 1593 } else if (al->fb == omp_atv_allocator_fb) { 1594 KMP_ASSERT(al != al->fb_data); 1595 al = al->fb_data; 1596 return __kmp_alloc(gtid, algn, size, (omp_allocator_handle_t)al); 1597 } 1598 } 1599 } 1600 } else { 1601 // custom allocator, pool size not requested 1602 ptr = kmp_mk_alloc(*al->memkind, desc.size_a); 1603 if (ptr == NULL) { 1604 if (al->fb == omp_atv_default_mem_fb) { 1605 al = (kmp_allocator_t *)omp_default_mem_alloc; 1606 ptr = kmp_mk_alloc(*mk_default, desc.size_a); 1607 } else if (al->fb == omp_atv_abort_fb) { 1608 KMP_ASSERT(0); // abort fallback requested 1609 } else if (al->fb == omp_atv_allocator_fb) { 1610 KMP_ASSERT(al != al->fb_data); 1611 al = al->fb_data; 1612 return __kmp_alloc(gtid, algn, size, (omp_allocator_handle_t)al); 1613 } 1614 } 1615 } 1616 } else if (allocator < kmp_max_mem_alloc) { 1617 if (KMP_IS_TARGET_MEM_ALLOC(allocator)) { 1618 // Use size input directly as the memory may not be accessible on host. 1619 // Use default device for now. 1620 if (__kmp_target_mem_available) { 1621 kmp_int32 device = 1622 __kmp_threads[gtid]->th.th_current_task->td_icvs.default_device; 1623 if (allocator == llvm_omp_target_host_mem_alloc) 1624 ptr = kmp_target_alloc_host(size, device); 1625 else if (allocator == llvm_omp_target_shared_mem_alloc) 1626 ptr = kmp_target_alloc_shared(size, device); 1627 else // allocator == llvm_omp_target_device_mem_alloc 1628 ptr = kmp_target_alloc_device(size, device); 1629 } 1630 return ptr; 1631 } 1632 1633 // pre-defined allocator 1634 if (allocator == omp_high_bw_mem_alloc) { 1635 // ptr = NULL; 1636 } else if (allocator == omp_large_cap_mem_alloc) { 1637 // warnings? 1638 } else { 1639 ptr = __kmp_thread_malloc(__kmp_thread_from_gtid(gtid), desc.size_a); 1640 } 1641 } else if (KMP_IS_TARGET_MEM_SPACE(al->memspace)) { 1642 if (__kmp_target_mem_available) { 1643 kmp_int32 device = 1644 __kmp_threads[gtid]->th.th_current_task->td_icvs.default_device; 1645 if (al->memspace == llvm_omp_target_host_mem_space) 1646 ptr = kmp_target_alloc_host(size, device); 1647 else if (al->memspace == llvm_omp_target_shared_mem_space) 1648 ptr = kmp_target_alloc_shared(size, device); 1649 else // al->memspace == llvm_omp_target_device_mem_space 1650 ptr = kmp_target_alloc_device(size, device); 1651 } 1652 return ptr; 1653 } else if (al->pool_size > 0) { 1654 // custom allocator with pool size requested 1655 kmp_uint64 used = 1656 KMP_TEST_THEN_ADD64((kmp_int64 *)&al->pool_used, desc.size_a); 1657 if (used + desc.size_a > al->pool_size) { 1658 // not enough space, need to go fallback path 1659 KMP_TEST_THEN_ADD64((kmp_int64 *)&al->pool_used, -desc.size_a); 1660 if (al->fb == omp_atv_default_mem_fb) { 1661 al = (kmp_allocator_t *)omp_default_mem_alloc; 1662 ptr = __kmp_thread_malloc(__kmp_thread_from_gtid(gtid), desc.size_a); 1663 } else if (al->fb == omp_atv_abort_fb) { 1664 KMP_ASSERT(0); // abort fallback requested 1665 } else if (al->fb == omp_atv_allocator_fb) { 1666 KMP_ASSERT(al != al->fb_data); 1667 al = al->fb_data; 1668 return __kmp_alloc(gtid, algn, size, (omp_allocator_handle_t)al); 1669 } // else ptr == NULL; 1670 } else { 1671 // pool has enough space 1672 ptr = __kmp_thread_malloc(__kmp_thread_from_gtid(gtid), desc.size_a); 1673 if (ptr == NULL && al->fb == omp_atv_abort_fb) { 1674 KMP_ASSERT(0); // abort fallback requested 1675 } // no sense to look for another fallback because of same internal alloc 1676 } 1677 } else { 1678 // custom allocator, pool size not requested 1679 ptr = __kmp_thread_malloc(__kmp_thread_from_gtid(gtid), desc.size_a); 1680 if (ptr == NULL && al->fb == omp_atv_abort_fb) { 1681 KMP_ASSERT(0); // abort fallback requested 1682 } // no sense to look for another fallback because of same internal alloc 1683 } 1684 KE_TRACE(10, ("__kmp_alloc: T#%d %p=alloc(%d)\n", gtid, ptr, desc.size_a)); 1685 if (ptr == NULL) 1686 return NULL; 1687 1688 addr = (kmp_uintptr_t)ptr; 1689 addr_align = (addr + sz_desc + align - 1) & ~(align - 1); 1690 addr_descr = addr_align - sz_desc; 1691 1692 desc.ptr_alloc = ptr; 1693 desc.ptr_align = (void *)addr_align; 1694 desc.allocator = al; 1695 *((kmp_mem_desc_t *)addr_descr) = desc; // save descriptor contents 1696 KMP_MB(); 1697 1698 return desc.ptr_align; 1699 } 1700 1701 void *__kmp_calloc(int gtid, size_t algn, size_t nmemb, size_t size, 1702 omp_allocator_handle_t allocator) { 1703 void *ptr = NULL; 1704 kmp_allocator_t *al; 1705 KMP_DEBUG_ASSERT(__kmp_init_serial); 1706 1707 if (allocator == omp_null_allocator) 1708 allocator = __kmp_threads[gtid]->th.th_def_allocator; 1709 1710 al = RCAST(kmp_allocator_t *, allocator); 1711 1712 if (nmemb == 0 || size == 0) 1713 return ptr; 1714 1715 if ((SIZE_MAX - sizeof(kmp_mem_desc_t)) / size < nmemb) { 1716 if (al->fb == omp_atv_abort_fb) { 1717 KMP_ASSERT(0); 1718 } 1719 return ptr; 1720 } 1721 1722 ptr = __kmp_alloc(gtid, algn, nmemb * size, allocator); 1723 1724 if (ptr) { 1725 memset(ptr, 0x00, nmemb * size); 1726 } 1727 return ptr; 1728 } 1729 1730 void *__kmp_realloc(int gtid, void *ptr, size_t size, 1731 omp_allocator_handle_t allocator, 1732 omp_allocator_handle_t free_allocator) { 1733 void *nptr = NULL; 1734 KMP_DEBUG_ASSERT(__kmp_init_serial); 1735 1736 if (size == 0) { 1737 if (ptr != NULL) 1738 ___kmpc_free(gtid, ptr, free_allocator); 1739 return nptr; 1740 } 1741 1742 nptr = __kmp_alloc(gtid, 0, size, allocator); 1743 1744 if (nptr != NULL && ptr != NULL) { 1745 kmp_mem_desc_t desc; 1746 kmp_uintptr_t addr_align; // address to return to caller 1747 kmp_uintptr_t addr_descr; // address of memory block descriptor 1748 1749 addr_align = (kmp_uintptr_t)ptr; 1750 addr_descr = addr_align - sizeof(kmp_mem_desc_t); 1751 desc = *((kmp_mem_desc_t *)addr_descr); // read descriptor 1752 1753 KMP_DEBUG_ASSERT(desc.ptr_align == ptr); 1754 KMP_DEBUG_ASSERT(desc.size_orig > 0); 1755 KMP_DEBUG_ASSERT(desc.size_orig < desc.size_a); 1756 KMP_MEMCPY((char *)nptr, (char *)ptr, 1757 (size_t)((size < desc.size_orig) ? size : desc.size_orig)); 1758 } 1759 1760 if (nptr != NULL) { 1761 ___kmpc_free(gtid, ptr, free_allocator); 1762 } 1763 1764 return nptr; 1765 } 1766 1767 void ___kmpc_free(int gtid, void *ptr, omp_allocator_handle_t allocator) { 1768 if (ptr == NULL) 1769 return; 1770 1771 kmp_allocator_t *al; 1772 omp_allocator_handle_t oal; 1773 al = RCAST(kmp_allocator_t *, CCAST(omp_allocator_handle_t, allocator)); 1774 kmp_mem_desc_t desc; 1775 kmp_uintptr_t addr_align; // address to return to caller 1776 kmp_uintptr_t addr_descr; // address of memory block descriptor 1777 if (KMP_IS_TARGET_MEM_ALLOC(allocator) || 1778 (allocator > kmp_max_mem_alloc && 1779 KMP_IS_TARGET_MEM_SPACE(al->memspace))) { 1780 KMP_DEBUG_ASSERT(kmp_target_free); 1781 kmp_int32 device = 1782 __kmp_threads[gtid]->th.th_current_task->td_icvs.default_device; 1783 kmp_target_free(ptr, device); 1784 return; 1785 } 1786 1787 addr_align = (kmp_uintptr_t)ptr; 1788 addr_descr = addr_align - sizeof(kmp_mem_desc_t); 1789 desc = *((kmp_mem_desc_t *)addr_descr); // read descriptor 1790 1791 KMP_DEBUG_ASSERT(desc.ptr_align == ptr); 1792 if (allocator) { 1793 KMP_DEBUG_ASSERT(desc.allocator == al || desc.allocator == al->fb_data); 1794 } 1795 al = desc.allocator; 1796 oal = (omp_allocator_handle_t)al; // cast to void* for comparisons 1797 KMP_DEBUG_ASSERT(al); 1798 1799 if (__kmp_memkind_available) { 1800 if (oal < kmp_max_mem_alloc) { 1801 // pre-defined allocator 1802 if (oal == omp_high_bw_mem_alloc && mk_hbw_preferred) { 1803 kmp_mk_free(*mk_hbw_preferred, desc.ptr_alloc); 1804 } else if (oal == omp_large_cap_mem_alloc && mk_dax_kmem_all) { 1805 kmp_mk_free(*mk_dax_kmem_all, desc.ptr_alloc); 1806 } else { 1807 kmp_mk_free(*mk_default, desc.ptr_alloc); 1808 } 1809 } else { 1810 if (al->pool_size > 0) { // custom allocator with pool size requested 1811 kmp_uint64 used = 1812 KMP_TEST_THEN_ADD64((kmp_int64 *)&al->pool_used, -desc.size_a); 1813 (void)used; // to suppress compiler warning 1814 KMP_DEBUG_ASSERT(used >= desc.size_a); 1815 } 1816 kmp_mk_free(*al->memkind, desc.ptr_alloc); 1817 } 1818 } else { 1819 if (oal > kmp_max_mem_alloc && al->pool_size > 0) { 1820 kmp_uint64 used = 1821 KMP_TEST_THEN_ADD64((kmp_int64 *)&al->pool_used, -desc.size_a); 1822 (void)used; // to suppress compiler warning 1823 KMP_DEBUG_ASSERT(used >= desc.size_a); 1824 } 1825 __kmp_thread_free(__kmp_thread_from_gtid(gtid), desc.ptr_alloc); 1826 } 1827 } 1828 1829 /* If LEAK_MEMORY is defined, __kmp_free() will *not* free memory. It causes 1830 memory leaks, but it may be useful for debugging memory corruptions, used 1831 freed pointers, etc. */ 1832 /* #define LEAK_MEMORY */ 1833 struct kmp_mem_descr { // Memory block descriptor. 1834 void *ptr_allocated; // Pointer returned by malloc(), subject for free(). 1835 size_t size_allocated; // Size of allocated memory block. 1836 void *ptr_aligned; // Pointer to aligned memory, to be used by client code. 1837 size_t size_aligned; // Size of aligned memory block. 1838 }; 1839 typedef struct kmp_mem_descr kmp_mem_descr_t; 1840 1841 /* Allocate memory on requested boundary, fill allocated memory with 0x00. 1842 NULL is NEVER returned, __kmp_abort() is called in case of memory allocation 1843 error. Must use __kmp_free when freeing memory allocated by this routine! */ 1844 static void *___kmp_allocate_align(size_t size, 1845 size_t alignment KMP_SRC_LOC_DECL) { 1846 /* __kmp_allocate() allocates (by call to malloc()) bigger memory block than 1847 requested to return properly aligned pointer. Original pointer returned 1848 by malloc() and size of allocated block is saved in descriptor just 1849 before the aligned pointer. This information used by __kmp_free() -- it 1850 has to pass to free() original pointer, not aligned one. 1851 1852 +---------+------------+-----------------------------------+---------+ 1853 | padding | descriptor | aligned block | padding | 1854 +---------+------------+-----------------------------------+---------+ 1855 ^ ^ 1856 | | 1857 | +- Aligned pointer returned to caller 1858 +- Pointer returned by malloc() 1859 1860 Aligned block is filled with zeros, paddings are filled with 0xEF. */ 1861 1862 kmp_mem_descr_t descr; 1863 kmp_uintptr_t addr_allocated; // Address returned by malloc(). 1864 kmp_uintptr_t addr_aligned; // Aligned address to return to caller. 1865 kmp_uintptr_t addr_descr; // Address of memory block descriptor. 1866 1867 KE_TRACE(25, ("-> ___kmp_allocate_align( %d, %d ) called from %s:%d\n", 1868 (int)size, (int)alignment KMP_SRC_LOC_PARM)); 1869 1870 KMP_DEBUG_ASSERT(alignment < 32 * 1024); // Alignment should not be too 1871 KMP_DEBUG_ASSERT(sizeof(void *) <= sizeof(kmp_uintptr_t)); 1872 // Make sure kmp_uintptr_t is enough to store addresses. 1873 1874 descr.size_aligned = size; 1875 descr.size_allocated = 1876 descr.size_aligned + sizeof(kmp_mem_descr_t) + alignment; 1877 1878 #if KMP_DEBUG 1879 descr.ptr_allocated = _malloc_src_loc(descr.size_allocated, _file_, _line_); 1880 #else 1881 descr.ptr_allocated = malloc_src_loc(descr.size_allocated KMP_SRC_LOC_PARM); 1882 #endif 1883 KE_TRACE(10, (" malloc( %d ) returned %p\n", (int)descr.size_allocated, 1884 descr.ptr_allocated)); 1885 if (descr.ptr_allocated == NULL) { 1886 KMP_FATAL(OutOfHeapMemory); 1887 } 1888 1889 addr_allocated = (kmp_uintptr_t)descr.ptr_allocated; 1890 addr_aligned = 1891 (addr_allocated + sizeof(kmp_mem_descr_t) + alignment) & ~(alignment - 1); 1892 addr_descr = addr_aligned - sizeof(kmp_mem_descr_t); 1893 1894 descr.ptr_aligned = (void *)addr_aligned; 1895 1896 KE_TRACE(26, (" ___kmp_allocate_align: " 1897 "ptr_allocated=%p, size_allocated=%d, " 1898 "ptr_aligned=%p, size_aligned=%d\n", 1899 descr.ptr_allocated, (int)descr.size_allocated, 1900 descr.ptr_aligned, (int)descr.size_aligned)); 1901 1902 KMP_DEBUG_ASSERT(addr_allocated <= addr_descr); 1903 KMP_DEBUG_ASSERT(addr_descr + sizeof(kmp_mem_descr_t) == addr_aligned); 1904 KMP_DEBUG_ASSERT(addr_aligned + descr.size_aligned <= 1905 addr_allocated + descr.size_allocated); 1906 KMP_DEBUG_ASSERT(addr_aligned % alignment == 0); 1907 #ifdef KMP_DEBUG 1908 memset(descr.ptr_allocated, 0xEF, descr.size_allocated); 1909 // Fill allocated memory block with 0xEF. 1910 #endif 1911 memset(descr.ptr_aligned, 0x00, descr.size_aligned); 1912 // Fill the aligned memory block (which is intended for using by caller) with 1913 // 0x00. Do not 1914 // put this filling under KMP_DEBUG condition! Many callers expect zeroed 1915 // memory. (Padding 1916 // bytes remain filled with 0xEF in debugging library.) 1917 *((kmp_mem_descr_t *)addr_descr) = descr; 1918 1919 KMP_MB(); 1920 1921 KE_TRACE(25, ("<- ___kmp_allocate_align() returns %p\n", descr.ptr_aligned)); 1922 return descr.ptr_aligned; 1923 } // func ___kmp_allocate_align 1924 1925 /* Allocate memory on cache line boundary, fill allocated memory with 0x00. 1926 Do not call this func directly! Use __kmp_allocate macro instead. 1927 NULL is NEVER returned, __kmp_abort() is called in case of memory allocation 1928 error. Must use __kmp_free when freeing memory allocated by this routine! */ 1929 void *___kmp_allocate(size_t size KMP_SRC_LOC_DECL) { 1930 void *ptr; 1931 KE_TRACE(25, ("-> __kmp_allocate( %d ) called from %s:%d\n", 1932 (int)size KMP_SRC_LOC_PARM)); 1933 ptr = ___kmp_allocate_align(size, __kmp_align_alloc KMP_SRC_LOC_PARM); 1934 KE_TRACE(25, ("<- __kmp_allocate() returns %p\n", ptr)); 1935 return ptr; 1936 } // func ___kmp_allocate 1937 1938 /* Allocate memory on page boundary, fill allocated memory with 0x00. 1939 Does not call this func directly! Use __kmp_page_allocate macro instead. 1940 NULL is NEVER returned, __kmp_abort() is called in case of memory allocation 1941 error. Must use __kmp_free when freeing memory allocated by this routine! */ 1942 void *___kmp_page_allocate(size_t size KMP_SRC_LOC_DECL) { 1943 int page_size = 8 * 1024; 1944 void *ptr; 1945 1946 KE_TRACE(25, ("-> __kmp_page_allocate( %d ) called from %s:%d\n", 1947 (int)size KMP_SRC_LOC_PARM)); 1948 ptr = ___kmp_allocate_align(size, page_size KMP_SRC_LOC_PARM); 1949 KE_TRACE(25, ("<- __kmp_page_allocate( %d ) returns %p\n", (int)size, ptr)); 1950 return ptr; 1951 } // ___kmp_page_allocate 1952 1953 /* Free memory allocated by __kmp_allocate() and __kmp_page_allocate(). 1954 In debug mode, fill the memory block with 0xEF before call to free(). */ 1955 void ___kmp_free(void *ptr KMP_SRC_LOC_DECL) { 1956 kmp_mem_descr_t descr; 1957 #if KMP_DEBUG 1958 kmp_uintptr_t addr_allocated; // Address returned by malloc(). 1959 kmp_uintptr_t addr_aligned; // Aligned address passed by caller. 1960 #endif 1961 KE_TRACE(25, 1962 ("-> __kmp_free( %p ) called from %s:%d\n", ptr KMP_SRC_LOC_PARM)); 1963 KMP_ASSERT(ptr != NULL); 1964 1965 descr = *(kmp_mem_descr_t *)((kmp_uintptr_t)ptr - sizeof(kmp_mem_descr_t)); 1966 1967 KE_TRACE(26, (" __kmp_free: " 1968 "ptr_allocated=%p, size_allocated=%d, " 1969 "ptr_aligned=%p, size_aligned=%d\n", 1970 descr.ptr_allocated, (int)descr.size_allocated, 1971 descr.ptr_aligned, (int)descr.size_aligned)); 1972 #if KMP_DEBUG 1973 addr_allocated = (kmp_uintptr_t)descr.ptr_allocated; 1974 addr_aligned = (kmp_uintptr_t)descr.ptr_aligned; 1975 KMP_DEBUG_ASSERT(addr_aligned % CACHE_LINE == 0); 1976 KMP_DEBUG_ASSERT(descr.ptr_aligned == ptr); 1977 KMP_DEBUG_ASSERT(addr_allocated + sizeof(kmp_mem_descr_t) <= addr_aligned); 1978 KMP_DEBUG_ASSERT(descr.size_aligned < descr.size_allocated); 1979 KMP_DEBUG_ASSERT(addr_aligned + descr.size_aligned <= 1980 addr_allocated + descr.size_allocated); 1981 memset(descr.ptr_allocated, 0xEF, descr.size_allocated); 1982 // Fill memory block with 0xEF, it helps catch using freed memory. 1983 #endif 1984 1985 #ifndef LEAK_MEMORY 1986 KE_TRACE(10, (" free( %p )\n", descr.ptr_allocated)); 1987 #ifdef KMP_DEBUG 1988 _free_src_loc(descr.ptr_allocated, _file_, _line_); 1989 #else 1990 free_src_loc(descr.ptr_allocated KMP_SRC_LOC_PARM); 1991 #endif 1992 #endif 1993 KMP_MB(); 1994 KE_TRACE(25, ("<- __kmp_free() returns\n")); 1995 } // func ___kmp_free 1996 1997 #if USE_FAST_MEMORY == 3 1998 // Allocate fast memory by first scanning the thread's free lists 1999 // If a chunk the right size exists, grab it off the free list. 2000 // Otherwise allocate normally using kmp_thread_malloc. 2001 2002 // AC: How to choose the limit? Just get 16 for now... 2003 #define KMP_FREE_LIST_LIMIT 16 2004 2005 // Always use 128 bytes for determining buckets for caching memory blocks 2006 #define DCACHE_LINE 128 2007 2008 void *___kmp_fast_allocate(kmp_info_t *this_thr, size_t size KMP_SRC_LOC_DECL) { 2009 void *ptr; 2010 size_t num_lines, idx; 2011 int index; 2012 void *alloc_ptr; 2013 size_t alloc_size; 2014 kmp_mem_descr_t *descr; 2015 2016 KE_TRACE(25, ("-> __kmp_fast_allocate( T#%d, %d ) called from %s:%d\n", 2017 __kmp_gtid_from_thread(this_thr), (int)size KMP_SRC_LOC_PARM)); 2018 2019 num_lines = (size + DCACHE_LINE - 1) / DCACHE_LINE; 2020 idx = num_lines - 1; 2021 KMP_DEBUG_ASSERT(idx >= 0); 2022 if (idx < 2) { 2023 index = 0; // idx is [ 0, 1 ], use first free list 2024 num_lines = 2; // 1, 2 cache lines or less than cache line 2025 } else if ((idx >>= 2) == 0) { 2026 index = 1; // idx is [ 2, 3 ], use second free list 2027 num_lines = 4; // 3, 4 cache lines 2028 } else if ((idx >>= 2) == 0) { 2029 index = 2; // idx is [ 4, 15 ], use third free list 2030 num_lines = 16; // 5, 6, ..., 16 cache lines 2031 } else if ((idx >>= 2) == 0) { 2032 index = 3; // idx is [ 16, 63 ], use fourth free list 2033 num_lines = 64; // 17, 18, ..., 64 cache lines 2034 } else { 2035 goto alloc_call; // 65 or more cache lines ( > 8KB ), don't use free lists 2036 } 2037 2038 ptr = this_thr->th.th_free_lists[index].th_free_list_self; 2039 if (ptr != NULL) { 2040 // pop the head of no-sync free list 2041 this_thr->th.th_free_lists[index].th_free_list_self = *((void **)ptr); 2042 KMP_DEBUG_ASSERT(this_thr == ((kmp_mem_descr_t *)((kmp_uintptr_t)ptr - 2043 sizeof(kmp_mem_descr_t))) 2044 ->ptr_aligned); 2045 goto end; 2046 } 2047 ptr = TCR_SYNC_PTR(this_thr->th.th_free_lists[index].th_free_list_sync); 2048 if (ptr != NULL) { 2049 // no-sync free list is empty, use sync free list (filled in by other 2050 // threads only) 2051 // pop the head of the sync free list, push NULL instead 2052 while (!KMP_COMPARE_AND_STORE_PTR( 2053 &this_thr->th.th_free_lists[index].th_free_list_sync, ptr, nullptr)) { 2054 KMP_CPU_PAUSE(); 2055 ptr = TCR_SYNC_PTR(this_thr->th.th_free_lists[index].th_free_list_sync); 2056 } 2057 // push the rest of chain into no-sync free list (can be NULL if there was 2058 // the only block) 2059 this_thr->th.th_free_lists[index].th_free_list_self = *((void **)ptr); 2060 KMP_DEBUG_ASSERT(this_thr == ((kmp_mem_descr_t *)((kmp_uintptr_t)ptr - 2061 sizeof(kmp_mem_descr_t))) 2062 ->ptr_aligned); 2063 goto end; 2064 } 2065 2066 alloc_call: 2067 // haven't found block in the free lists, thus allocate it 2068 size = num_lines * DCACHE_LINE; 2069 2070 alloc_size = size + sizeof(kmp_mem_descr_t) + DCACHE_LINE; 2071 KE_TRACE(25, ("__kmp_fast_allocate: T#%d Calling __kmp_thread_malloc with " 2072 "alloc_size %d\n", 2073 __kmp_gtid_from_thread(this_thr), alloc_size)); 2074 alloc_ptr = bget(this_thr, (bufsize)alloc_size); 2075 2076 // align ptr to DCACHE_LINE 2077 ptr = (void *)((((kmp_uintptr_t)alloc_ptr) + sizeof(kmp_mem_descr_t) + 2078 DCACHE_LINE) & 2079 ~(DCACHE_LINE - 1)); 2080 descr = (kmp_mem_descr_t *)(((kmp_uintptr_t)ptr) - sizeof(kmp_mem_descr_t)); 2081 2082 descr->ptr_allocated = alloc_ptr; // remember allocated pointer 2083 // we don't need size_allocated 2084 descr->ptr_aligned = (void *)this_thr; // remember allocating thread 2085 // (it is already saved in bget buffer, 2086 // but we may want to use another allocator in future) 2087 descr->size_aligned = size; 2088 2089 end: 2090 KE_TRACE(25, ("<- __kmp_fast_allocate( T#%d ) returns %p\n", 2091 __kmp_gtid_from_thread(this_thr), ptr)); 2092 return ptr; 2093 } // func __kmp_fast_allocate 2094 2095 // Free fast memory and place it on the thread's free list if it is of 2096 // the correct size. 2097 void ___kmp_fast_free(kmp_info_t *this_thr, void *ptr KMP_SRC_LOC_DECL) { 2098 kmp_mem_descr_t *descr; 2099 kmp_info_t *alloc_thr; 2100 size_t size; 2101 size_t idx; 2102 int index; 2103 2104 KE_TRACE(25, ("-> __kmp_fast_free( T#%d, %p ) called from %s:%d\n", 2105 __kmp_gtid_from_thread(this_thr), ptr KMP_SRC_LOC_PARM)); 2106 KMP_ASSERT(ptr != NULL); 2107 2108 descr = (kmp_mem_descr_t *)(((kmp_uintptr_t)ptr) - sizeof(kmp_mem_descr_t)); 2109 2110 KE_TRACE(26, (" __kmp_fast_free: size_aligned=%d\n", 2111 (int)descr->size_aligned)); 2112 2113 size = descr->size_aligned; // 2, 4, 16, 64, 65, 66, ... cache lines 2114 2115 idx = DCACHE_LINE * 2; // 2 cache lines is minimal size of block 2116 if (idx == size) { 2117 index = 0; // 2 cache lines 2118 } else if ((idx <<= 1) == size) { 2119 index = 1; // 4 cache lines 2120 } else if ((idx <<= 2) == size) { 2121 index = 2; // 16 cache lines 2122 } else if ((idx <<= 2) == size) { 2123 index = 3; // 64 cache lines 2124 } else { 2125 KMP_DEBUG_ASSERT(size > DCACHE_LINE * 64); 2126 goto free_call; // 65 or more cache lines ( > 8KB ) 2127 } 2128 2129 alloc_thr = (kmp_info_t *)descr->ptr_aligned; // get thread owning the block 2130 if (alloc_thr == this_thr) { 2131 // push block to self no-sync free list, linking previous head (LIFO) 2132 *((void **)ptr) = this_thr->th.th_free_lists[index].th_free_list_self; 2133 this_thr->th.th_free_lists[index].th_free_list_self = ptr; 2134 } else { 2135 void *head = this_thr->th.th_free_lists[index].th_free_list_other; 2136 if (head == NULL) { 2137 // Create new free list 2138 this_thr->th.th_free_lists[index].th_free_list_other = ptr; 2139 *((void **)ptr) = NULL; // mark the tail of the list 2140 descr->size_allocated = (size_t)1; // head of the list keeps its length 2141 } else { 2142 // need to check existed "other" list's owner thread and size of queue 2143 kmp_mem_descr_t *dsc = 2144 (kmp_mem_descr_t *)((char *)head - sizeof(kmp_mem_descr_t)); 2145 // allocating thread, same for all queue nodes 2146 kmp_info_t *q_th = (kmp_info_t *)(dsc->ptr_aligned); 2147 size_t q_sz = 2148 dsc->size_allocated + 1; // new size in case we add current task 2149 if (q_th == alloc_thr && q_sz <= KMP_FREE_LIST_LIMIT) { 2150 // we can add current task to "other" list, no sync needed 2151 *((void **)ptr) = head; 2152 descr->size_allocated = q_sz; 2153 this_thr->th.th_free_lists[index].th_free_list_other = ptr; 2154 } else { 2155 // either queue blocks owner is changing or size limit exceeded 2156 // return old queue to allocating thread (q_th) synchronously, 2157 // and start new list for alloc_thr's tasks 2158 void *old_ptr; 2159 void *tail = head; 2160 void *next = *((void **)head); 2161 while (next != NULL) { 2162 KMP_DEBUG_ASSERT( 2163 // queue size should decrease by 1 each step through the list 2164 ((kmp_mem_descr_t *)((char *)next - sizeof(kmp_mem_descr_t))) 2165 ->size_allocated + 2166 1 == 2167 ((kmp_mem_descr_t *)((char *)tail - sizeof(kmp_mem_descr_t))) 2168 ->size_allocated); 2169 tail = next; // remember tail node 2170 next = *((void **)next); 2171 } 2172 KMP_DEBUG_ASSERT(q_th != NULL); 2173 // push block to owner's sync free list 2174 old_ptr = TCR_PTR(q_th->th.th_free_lists[index].th_free_list_sync); 2175 /* the next pointer must be set before setting free_list to ptr to avoid 2176 exposing a broken list to other threads, even for an instant. */ 2177 *((void **)tail) = old_ptr; 2178 2179 while (!KMP_COMPARE_AND_STORE_PTR( 2180 &q_th->th.th_free_lists[index].th_free_list_sync, old_ptr, head)) { 2181 KMP_CPU_PAUSE(); 2182 old_ptr = TCR_PTR(q_th->th.th_free_lists[index].th_free_list_sync); 2183 *((void **)tail) = old_ptr; 2184 } 2185 2186 // start new list of not-selt tasks 2187 this_thr->th.th_free_lists[index].th_free_list_other = ptr; 2188 *((void **)ptr) = NULL; 2189 descr->size_allocated = (size_t)1; // head of queue keeps its length 2190 } 2191 } 2192 } 2193 goto end; 2194 2195 free_call: 2196 KE_TRACE(25, ("__kmp_fast_free: T#%d Calling __kmp_thread_free for size %d\n", 2197 __kmp_gtid_from_thread(this_thr), size)); 2198 __kmp_bget_dequeue(this_thr); /* Release any queued buffers */ 2199 brel(this_thr, descr->ptr_allocated); 2200 2201 end: 2202 KE_TRACE(25, ("<- __kmp_fast_free() returns\n")); 2203 2204 } // func __kmp_fast_free 2205 2206 // Initialize the thread free lists related to fast memory 2207 // Only do this when a thread is initially created. 2208 void __kmp_initialize_fast_memory(kmp_info_t *this_thr) { 2209 KE_TRACE(10, ("__kmp_initialize_fast_memory: Called from th %p\n", this_thr)); 2210 2211 memset(this_thr->th.th_free_lists, 0, NUM_LISTS * sizeof(kmp_free_list_t)); 2212 } 2213 2214 // Free the memory in the thread free lists related to fast memory 2215 // Only do this when a thread is being reaped (destroyed). 2216 void __kmp_free_fast_memory(kmp_info_t *th) { 2217 // Suppose we use BGET underlying allocator, walk through its structures... 2218 int bin; 2219 thr_data_t *thr = get_thr_data(th); 2220 void **lst = NULL; 2221 2222 KE_TRACE( 2223 5, ("__kmp_free_fast_memory: Called T#%d\n", __kmp_gtid_from_thread(th))); 2224 2225 __kmp_bget_dequeue(th); // Release any queued buffers 2226 2227 // Dig through free lists and extract all allocated blocks 2228 for (bin = 0; bin < MAX_BGET_BINS; ++bin) { 2229 bfhead_t *b = thr->freelist[bin].ql.flink; 2230 while (b != &thr->freelist[bin]) { 2231 if ((kmp_uintptr_t)b->bh.bb.bthr & 1) { // the buffer is allocated address 2232 *((void **)b) = 2233 lst; // link the list (override bthr, but keep flink yet) 2234 lst = (void **)b; // push b into lst 2235 } 2236 b = b->ql.flink; // get next buffer 2237 } 2238 } 2239 while (lst != NULL) { 2240 void *next = *lst; 2241 KE_TRACE(10, ("__kmp_free_fast_memory: freeing %p, next=%p th %p (%d)\n", 2242 lst, next, th, __kmp_gtid_from_thread(th))); 2243 (*thr->relfcn)(lst); 2244 #if BufStats 2245 // count blocks to prevent problems in __kmp_finalize_bget() 2246 thr->numprel++; /* Nr of expansion block releases */ 2247 thr->numpblk--; /* Total number of blocks */ 2248 #endif 2249 lst = (void **)next; 2250 } 2251 2252 KE_TRACE( 2253 5, ("__kmp_free_fast_memory: Freed T#%d\n", __kmp_gtid_from_thread(th))); 2254 } 2255 2256 #endif // USE_FAST_MEMORY 2257