xref: /freebsd/contrib/llvm-project/openmp/runtime/src/kmp_alloc.cpp (revision 924226fba12cc9a228c73b956e1b7fa24c60b055)
1 /*
2  * kmp_alloc.cpp -- private/shared dynamic memory allocation and management
3  */
4 
5 //===----------------------------------------------------------------------===//
6 //
7 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
8 // See https://llvm.org/LICENSE.txt for license information.
9 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "kmp.h"
14 #include "kmp_io.h"
15 #include "kmp_wrapper_malloc.h"
16 
17 // Disable bget when it is not used
18 #if KMP_USE_BGET
19 
20 /* Thread private buffer management code */
21 
22 typedef int (*bget_compact_t)(size_t, int);
23 typedef void *(*bget_acquire_t)(size_t);
24 typedef void (*bget_release_t)(void *);
25 
26 /* NOTE: bufsize must be a signed datatype */
27 
28 #if KMP_OS_WINDOWS
29 #if KMP_ARCH_X86 || KMP_ARCH_ARM
30 typedef kmp_int32 bufsize;
31 #else
32 typedef kmp_int64 bufsize;
33 #endif
34 #else
35 typedef ssize_t bufsize;
36 #endif // KMP_OS_WINDOWS
37 
38 /* The three modes of operation are, fifo search, lifo search, and best-fit */
39 
40 typedef enum bget_mode {
41   bget_mode_fifo = 0,
42   bget_mode_lifo = 1,
43   bget_mode_best = 2
44 } bget_mode_t;
45 
46 static void bpool(kmp_info_t *th, void *buffer, bufsize len);
47 static void *bget(kmp_info_t *th, bufsize size);
48 static void *bgetz(kmp_info_t *th, bufsize size);
49 static void *bgetr(kmp_info_t *th, void *buffer, bufsize newsize);
50 static void brel(kmp_info_t *th, void *buf);
51 static void bectl(kmp_info_t *th, bget_compact_t compact,
52                   bget_acquire_t acquire, bget_release_t release,
53                   bufsize pool_incr);
54 
55 /* BGET CONFIGURATION */
56 /* Buffer allocation size quantum: all buffers allocated are a
57    multiple of this size.  This MUST be a power of two. */
58 
59 /* On IA-32 architecture with  Linux* OS, malloc() does not
60    ensure 16 byte alignment */
61 
62 #if KMP_ARCH_X86 || !KMP_HAVE_QUAD
63 
64 #define SizeQuant 8
65 #define AlignType double
66 
67 #else
68 
69 #define SizeQuant 16
70 #define AlignType _Quad
71 
72 #endif
73 
74 // Define this symbol to enable the bstats() function which calculates the
75 // total free space in the buffer pool, the largest available buffer, and the
76 // total space currently allocated.
77 #define BufStats 1
78 
79 #ifdef KMP_DEBUG
80 
81 // Define this symbol to enable the bpoold() function which dumps the buffers
82 // in a buffer pool.
83 #define BufDump 1
84 
85 // Define this symbol to enable the bpoolv() function for validating a buffer
86 // pool.
87 #define BufValid 1
88 
89 // Define this symbol to enable the bufdump() function which allows dumping the
90 // contents of an allocated or free buffer.
91 #define DumpData 1
92 
93 #ifdef NOT_USED_NOW
94 
95 // Wipe free buffers to a guaranteed pattern of garbage to trip up miscreants
96 // who attempt to use pointers into released buffers.
97 #define FreeWipe 1
98 
99 // Use a best fit algorithm when searching for space for an allocation request.
100 // This uses memory more efficiently, but allocation will be much slower.
101 #define BestFit 1
102 
103 #endif /* NOT_USED_NOW */
104 #endif /* KMP_DEBUG */
105 
106 static bufsize bget_bin_size[] = {
107     0,
108     //    1 << 6,    /* .5 Cache line */
109     1 << 7, /* 1 Cache line, new */
110     1 << 8, /* 2 Cache lines */
111     1 << 9, /* 4 Cache lines, new */
112     1 << 10, /* 8 Cache lines */
113     1 << 11, /* 16 Cache lines, new */
114     1 << 12, 1 << 13, /* new */
115     1 << 14, 1 << 15, /* new */
116     1 << 16, 1 << 17, 1 << 18, 1 << 19, 1 << 20, /*  1MB */
117     1 << 21, /*  2MB */
118     1 << 22, /*  4MB */
119     1 << 23, /*  8MB */
120     1 << 24, /* 16MB */
121     1 << 25, /* 32MB */
122 };
123 
124 #define MAX_BGET_BINS (int)(sizeof(bget_bin_size) / sizeof(bufsize))
125 
126 struct bfhead;
127 
128 //  Declare the interface, including the requested buffer size type, bufsize.
129 
130 /* Queue links */
131 typedef struct qlinks {
132   struct bfhead *flink; /* Forward link */
133   struct bfhead *blink; /* Backward link */
134 } qlinks_t;
135 
136 /* Header in allocated and free buffers */
137 typedef struct bhead2 {
138   kmp_info_t *bthr; /* The thread which owns the buffer pool */
139   bufsize prevfree; /* Relative link back to previous free buffer in memory or
140                        0 if previous buffer is allocated.  */
141   bufsize bsize; /* Buffer size: positive if free, negative if allocated. */
142 } bhead2_t;
143 
144 /* Make sure the bhead structure is a multiple of SizeQuant in size. */
145 typedef union bhead {
146   KMP_ALIGN(SizeQuant)
147   AlignType b_align;
148   char b_pad[sizeof(bhead2_t) + (SizeQuant - (sizeof(bhead2_t) % SizeQuant))];
149   bhead2_t bb;
150 } bhead_t;
151 #define BH(p) ((bhead_t *)(p))
152 
153 /*  Header in directly allocated buffers (by acqfcn) */
154 typedef struct bdhead {
155   bufsize tsize; /* Total size, including overhead */
156   bhead_t bh; /* Common header */
157 } bdhead_t;
158 #define BDH(p) ((bdhead_t *)(p))
159 
160 /* Header in free buffers */
161 typedef struct bfhead {
162   bhead_t bh; /* Common allocated/free header */
163   qlinks_t ql; /* Links on free list */
164 } bfhead_t;
165 #define BFH(p) ((bfhead_t *)(p))
166 
167 typedef struct thr_data {
168   bfhead_t freelist[MAX_BGET_BINS];
169 #if BufStats
170   size_t totalloc; /* Total space currently allocated */
171   long numget, numrel; /* Number of bget() and brel() calls */
172   long numpblk; /* Number of pool blocks */
173   long numpget, numprel; /* Number of block gets and rels */
174   long numdget, numdrel; /* Number of direct gets and rels */
175 #endif /* BufStats */
176 
177   /* Automatic expansion block management functions */
178   bget_compact_t compfcn;
179   bget_acquire_t acqfcn;
180   bget_release_t relfcn;
181 
182   bget_mode_t mode; /* what allocation mode to use? */
183 
184   bufsize exp_incr; /* Expansion block size */
185   bufsize pool_len; /* 0: no bpool calls have been made
186                        -1: not all pool blocks are the same size
187                        >0: (common) block size for all bpool calls made so far
188                     */
189   bfhead_t *last_pool; /* Last pool owned by this thread (delay deallocation) */
190 } thr_data_t;
191 
192 /*  Minimum allocation quantum: */
193 #define QLSize (sizeof(qlinks_t))
194 #define SizeQ ((SizeQuant > QLSize) ? SizeQuant : QLSize)
195 #define MaxSize                                                                \
196   (bufsize)(                                                                   \
197       ~(((bufsize)(1) << (sizeof(bufsize) * CHAR_BIT - 1)) | (SizeQuant - 1)))
198 // Maximum for the requested size.
199 
200 /* End sentinel: value placed in bsize field of dummy block delimiting
201    end of pool block.  The most negative number which will  fit  in  a
202    bufsize, defined in a way that the compiler will accept. */
203 
204 #define ESent                                                                  \
205   ((bufsize)(-(((((bufsize)1) << ((int)sizeof(bufsize) * 8 - 2)) - 1) * 2) - 2))
206 
207 /* Thread Data management routines */
208 static int bget_get_bin(bufsize size) {
209   // binary chop bins
210   int lo = 0, hi = MAX_BGET_BINS - 1;
211 
212   KMP_DEBUG_ASSERT(size > 0);
213 
214   while ((hi - lo) > 1) {
215     int mid = (lo + hi) >> 1;
216     if (size < bget_bin_size[mid])
217       hi = mid - 1;
218     else
219       lo = mid;
220   }
221 
222   KMP_DEBUG_ASSERT((lo >= 0) && (lo < MAX_BGET_BINS));
223 
224   return lo;
225 }
226 
227 static void set_thr_data(kmp_info_t *th) {
228   int i;
229   thr_data_t *data;
230 
231   data = (thr_data_t *)((!th->th.th_local.bget_data)
232                             ? __kmp_allocate(sizeof(*data))
233                             : th->th.th_local.bget_data);
234 
235   memset(data, '\0', sizeof(*data));
236 
237   for (i = 0; i < MAX_BGET_BINS; ++i) {
238     data->freelist[i].ql.flink = &data->freelist[i];
239     data->freelist[i].ql.blink = &data->freelist[i];
240   }
241 
242   th->th.th_local.bget_data = data;
243   th->th.th_local.bget_list = 0;
244 #if !USE_CMP_XCHG_FOR_BGET
245 #ifdef USE_QUEUING_LOCK_FOR_BGET
246   __kmp_init_lock(&th->th.th_local.bget_lock);
247 #else
248   __kmp_init_bootstrap_lock(&th->th.th_local.bget_lock);
249 #endif /* USE_LOCK_FOR_BGET */
250 #endif /* ! USE_CMP_XCHG_FOR_BGET */
251 }
252 
253 static thr_data_t *get_thr_data(kmp_info_t *th) {
254   thr_data_t *data;
255 
256   data = (thr_data_t *)th->th.th_local.bget_data;
257 
258   KMP_DEBUG_ASSERT(data != 0);
259 
260   return data;
261 }
262 
263 /* Walk the free list and release the enqueued buffers */
264 static void __kmp_bget_dequeue(kmp_info_t *th) {
265   void *p = TCR_SYNC_PTR(th->th.th_local.bget_list);
266 
267   if (p != 0) {
268 #if USE_CMP_XCHG_FOR_BGET
269     {
270       volatile void *old_value = TCR_SYNC_PTR(th->th.th_local.bget_list);
271       while (!KMP_COMPARE_AND_STORE_PTR(&th->th.th_local.bget_list,
272                                         CCAST(void *, old_value), nullptr)) {
273         KMP_CPU_PAUSE();
274         old_value = TCR_SYNC_PTR(th->th.th_local.bget_list);
275       }
276       p = CCAST(void *, old_value);
277     }
278 #else /* ! USE_CMP_XCHG_FOR_BGET */
279 #ifdef USE_QUEUING_LOCK_FOR_BGET
280     __kmp_acquire_lock(&th->th.th_local.bget_lock, __kmp_gtid_from_thread(th));
281 #else
282     __kmp_acquire_bootstrap_lock(&th->th.th_local.bget_lock);
283 #endif /* USE_QUEUING_LOCK_FOR_BGET */
284 
285     p = (void *)th->th.th_local.bget_list;
286     th->th.th_local.bget_list = 0;
287 
288 #ifdef USE_QUEUING_LOCK_FOR_BGET
289     __kmp_release_lock(&th->th.th_local.bget_lock, __kmp_gtid_from_thread(th));
290 #else
291     __kmp_release_bootstrap_lock(&th->th.th_local.bget_lock);
292 #endif
293 #endif /* USE_CMP_XCHG_FOR_BGET */
294 
295     /* Check again to make sure the list is not empty */
296     while (p != 0) {
297       void *buf = p;
298       bfhead_t *b = BFH(((char *)p) - sizeof(bhead_t));
299 
300       KMP_DEBUG_ASSERT(b->bh.bb.bsize != 0);
301       KMP_DEBUG_ASSERT(((kmp_uintptr_t)TCR_PTR(b->bh.bb.bthr) & ~1) ==
302                        (kmp_uintptr_t)th); // clear possible mark
303       KMP_DEBUG_ASSERT(b->ql.blink == 0);
304 
305       p = (void *)b->ql.flink;
306 
307       brel(th, buf);
308     }
309   }
310 }
311 
312 /* Chain together the free buffers by using the thread owner field */
313 static void __kmp_bget_enqueue(kmp_info_t *th, void *buf
314 #ifdef USE_QUEUING_LOCK_FOR_BGET
315                                ,
316                                kmp_int32 rel_gtid
317 #endif
318 ) {
319   bfhead_t *b = BFH(((char *)buf) - sizeof(bhead_t));
320 
321   KMP_DEBUG_ASSERT(b->bh.bb.bsize != 0);
322   KMP_DEBUG_ASSERT(((kmp_uintptr_t)TCR_PTR(b->bh.bb.bthr) & ~1) ==
323                    (kmp_uintptr_t)th); // clear possible mark
324 
325   b->ql.blink = 0;
326 
327   KC_TRACE(10, ("__kmp_bget_enqueue: moving buffer to T#%d list\n",
328                 __kmp_gtid_from_thread(th)));
329 
330 #if USE_CMP_XCHG_FOR_BGET
331   {
332     volatile void *old_value = TCR_PTR(th->th.th_local.bget_list);
333     /* the next pointer must be set before setting bget_list to buf to avoid
334        exposing a broken list to other threads, even for an instant. */
335     b->ql.flink = BFH(CCAST(void *, old_value));
336 
337     while (!KMP_COMPARE_AND_STORE_PTR(&th->th.th_local.bget_list,
338                                       CCAST(void *, old_value), buf)) {
339       KMP_CPU_PAUSE();
340       old_value = TCR_PTR(th->th.th_local.bget_list);
341       /* the next pointer must be set before setting bget_list to buf to avoid
342          exposing a broken list to other threads, even for an instant. */
343       b->ql.flink = BFH(CCAST(void *, old_value));
344     }
345   }
346 #else /* ! USE_CMP_XCHG_FOR_BGET */
347 #ifdef USE_QUEUING_LOCK_FOR_BGET
348   __kmp_acquire_lock(&th->th.th_local.bget_lock, rel_gtid);
349 #else
350   __kmp_acquire_bootstrap_lock(&th->th.th_local.bget_lock);
351 #endif
352 
353   b->ql.flink = BFH(th->th.th_local.bget_list);
354   th->th.th_local.bget_list = (void *)buf;
355 
356 #ifdef USE_QUEUING_LOCK_FOR_BGET
357   __kmp_release_lock(&th->th.th_local.bget_lock, rel_gtid);
358 #else
359   __kmp_release_bootstrap_lock(&th->th.th_local.bget_lock);
360 #endif
361 #endif /* USE_CMP_XCHG_FOR_BGET */
362 }
363 
364 /* insert buffer back onto a new freelist */
365 static void __kmp_bget_insert_into_freelist(thr_data_t *thr, bfhead_t *b) {
366   int bin;
367 
368   KMP_DEBUG_ASSERT(((size_t)b) % SizeQuant == 0);
369   KMP_DEBUG_ASSERT(b->bh.bb.bsize % SizeQuant == 0);
370 
371   bin = bget_get_bin(b->bh.bb.bsize);
372 
373   KMP_DEBUG_ASSERT(thr->freelist[bin].ql.blink->ql.flink ==
374                    &thr->freelist[bin]);
375   KMP_DEBUG_ASSERT(thr->freelist[bin].ql.flink->ql.blink ==
376                    &thr->freelist[bin]);
377 
378   b->ql.flink = &thr->freelist[bin];
379   b->ql.blink = thr->freelist[bin].ql.blink;
380 
381   thr->freelist[bin].ql.blink = b;
382   b->ql.blink->ql.flink = b;
383 }
384 
385 /* unlink the buffer from the old freelist */
386 static void __kmp_bget_remove_from_freelist(bfhead_t *b) {
387   KMP_DEBUG_ASSERT(b->ql.blink->ql.flink == b);
388   KMP_DEBUG_ASSERT(b->ql.flink->ql.blink == b);
389 
390   b->ql.blink->ql.flink = b->ql.flink;
391   b->ql.flink->ql.blink = b->ql.blink;
392 }
393 
394 /*  GET STATS -- check info on free list */
395 static void bcheck(kmp_info_t *th, bufsize *max_free, bufsize *total_free) {
396   thr_data_t *thr = get_thr_data(th);
397   int bin;
398 
399   *total_free = *max_free = 0;
400 
401   for (bin = 0; bin < MAX_BGET_BINS; ++bin) {
402     bfhead_t *b, *best;
403 
404     best = &thr->freelist[bin];
405     b = best->ql.flink;
406 
407     while (b != &thr->freelist[bin]) {
408       *total_free += (b->bh.bb.bsize - sizeof(bhead_t));
409       if ((best == &thr->freelist[bin]) || (b->bh.bb.bsize < best->bh.bb.bsize))
410         best = b;
411 
412       /* Link to next buffer */
413       b = b->ql.flink;
414     }
415 
416     if (*max_free < best->bh.bb.bsize)
417       *max_free = best->bh.bb.bsize;
418   }
419 
420   if (*max_free > (bufsize)sizeof(bhead_t))
421     *max_free -= sizeof(bhead_t);
422 }
423 
424 /*  BGET  --  Allocate a buffer.  */
425 static void *bget(kmp_info_t *th, bufsize requested_size) {
426   thr_data_t *thr = get_thr_data(th);
427   bufsize size = requested_size;
428   bfhead_t *b;
429   void *buf;
430   int compactseq = 0;
431   int use_blink = 0;
432   /* For BestFit */
433   bfhead_t *best;
434 
435   if (size < 0 || size + sizeof(bhead_t) > MaxSize) {
436     return NULL;
437   }
438 
439   __kmp_bget_dequeue(th); /* Release any queued buffers */
440 
441   if (size < (bufsize)SizeQ) { // Need at least room for the queue links.
442     size = SizeQ;
443   }
444 #if defined(SizeQuant) && (SizeQuant > 1)
445   size = (size + (SizeQuant - 1)) & (~(SizeQuant - 1));
446 #endif
447 
448   size += sizeof(bhead_t); // Add overhead in allocated buffer to size required.
449   KMP_DEBUG_ASSERT(size >= 0);
450   KMP_DEBUG_ASSERT(size % SizeQuant == 0);
451 
452   use_blink = (thr->mode == bget_mode_lifo);
453 
454   /* If a compact function was provided in the call to bectl(), wrap
455      a loop around the allocation process  to  allow  compaction  to
456      intervene in case we don't find a suitable buffer in the chain. */
457 
458   for (;;) {
459     int bin;
460 
461     for (bin = bget_get_bin(size); bin < MAX_BGET_BINS; ++bin) {
462       /* Link to next buffer */
463       b = (use_blink ? thr->freelist[bin].ql.blink
464                      : thr->freelist[bin].ql.flink);
465 
466       if (thr->mode == bget_mode_best) {
467         best = &thr->freelist[bin];
468 
469         /* Scan the free list searching for the first buffer big enough
470            to hold the requested size buffer. */
471         while (b != &thr->freelist[bin]) {
472           if (b->bh.bb.bsize >= (bufsize)size) {
473             if ((best == &thr->freelist[bin]) ||
474                 (b->bh.bb.bsize < best->bh.bb.bsize)) {
475               best = b;
476             }
477           }
478 
479           /* Link to next buffer */
480           b = (use_blink ? b->ql.blink : b->ql.flink);
481         }
482         b = best;
483       }
484 
485       while (b != &thr->freelist[bin]) {
486         if ((bufsize)b->bh.bb.bsize >= (bufsize)size) {
487 
488           // Buffer is big enough to satisfy the request. Allocate it to the
489           // caller. We must decide whether the buffer is large enough to split
490           // into the part given to the caller and a free buffer that remains
491           // on the free list, or whether the entire buffer should be removed
492           // from the free list and given to the caller in its entirety. We
493           // only split the buffer if enough room remains for a header plus the
494           // minimum quantum of allocation.
495           if ((b->bh.bb.bsize - (bufsize)size) >
496               (bufsize)(SizeQ + (sizeof(bhead_t)))) {
497             bhead_t *ba, *bn;
498 
499             ba = BH(((char *)b) + (b->bh.bb.bsize - (bufsize)size));
500             bn = BH(((char *)ba) + size);
501 
502             KMP_DEBUG_ASSERT(bn->bb.prevfree == b->bh.bb.bsize);
503 
504             /* Subtract size from length of free block. */
505             b->bh.bb.bsize -= (bufsize)size;
506 
507             /* Link allocated buffer to the previous free buffer. */
508             ba->bb.prevfree = b->bh.bb.bsize;
509 
510             /* Plug negative size into user buffer. */
511             ba->bb.bsize = -size;
512 
513             /* Mark this buffer as owned by this thread. */
514             TCW_PTR(ba->bb.bthr,
515                     th); // not an allocated address (do not mark it)
516             /* Mark buffer after this one not preceded by free block. */
517             bn->bb.prevfree = 0;
518 
519             // unlink buffer from old freelist, and reinsert into new freelist
520             __kmp_bget_remove_from_freelist(b);
521             __kmp_bget_insert_into_freelist(thr, b);
522 #if BufStats
523             thr->totalloc += (size_t)size;
524             thr->numget++; /* Increment number of bget() calls */
525 #endif
526             buf = (void *)((((char *)ba) + sizeof(bhead_t)));
527             KMP_DEBUG_ASSERT(((size_t)buf) % SizeQuant == 0);
528             return buf;
529           } else {
530             bhead_t *ba;
531 
532             ba = BH(((char *)b) + b->bh.bb.bsize);
533 
534             KMP_DEBUG_ASSERT(ba->bb.prevfree == b->bh.bb.bsize);
535 
536             /* The buffer isn't big enough to split.  Give  the  whole
537                shebang to the caller and remove it from the free list. */
538 
539             __kmp_bget_remove_from_freelist(b);
540 #if BufStats
541             thr->totalloc += (size_t)b->bh.bb.bsize;
542             thr->numget++; /* Increment number of bget() calls */
543 #endif
544             /* Negate size to mark buffer allocated. */
545             b->bh.bb.bsize = -(b->bh.bb.bsize);
546 
547             /* Mark this buffer as owned by this thread. */
548             TCW_PTR(ba->bb.bthr, th); // not an allocated address (do not mark)
549             /* Zero the back pointer in the next buffer in memory
550                to indicate that this buffer is allocated. */
551             ba->bb.prevfree = 0;
552 
553             /* Give user buffer starting at queue links. */
554             buf = (void *)&(b->ql);
555             KMP_DEBUG_ASSERT(((size_t)buf) % SizeQuant == 0);
556             return buf;
557           }
558         }
559 
560         /* Link to next buffer */
561         b = (use_blink ? b->ql.blink : b->ql.flink);
562       }
563     }
564 
565     /* We failed to find a buffer. If there's a compact function defined,
566        notify it of the size requested. If it returns TRUE, try the allocation
567        again. */
568 
569     if ((thr->compfcn == 0) || (!(*thr->compfcn)(size, ++compactseq))) {
570       break;
571     }
572   }
573 
574   /* No buffer available with requested size free. */
575 
576   /* Don't give up yet -- look in the reserve supply. */
577   if (thr->acqfcn != 0) {
578     if (size > (bufsize)(thr->exp_incr - sizeof(bhead_t))) {
579       /* Request is too large to fit in a single expansion block.
580          Try to satisfy it by a direct buffer acquisition. */
581       bdhead_t *bdh;
582 
583       size += sizeof(bdhead_t) - sizeof(bhead_t);
584 
585       KE_TRACE(10, ("%%%%%% MALLOC( %d )\n", (int)size));
586 
587       /* richryan */
588       bdh = BDH((*thr->acqfcn)((bufsize)size));
589       if (bdh != NULL) {
590 
591         // Mark the buffer special by setting size field of its header to zero.
592         bdh->bh.bb.bsize = 0;
593 
594         /* Mark this buffer as owned by this thread. */
595         TCW_PTR(bdh->bh.bb.bthr, th); // don't mark buffer as allocated,
596         // because direct buffer never goes to free list
597         bdh->bh.bb.prevfree = 0;
598         bdh->tsize = size;
599 #if BufStats
600         thr->totalloc += (size_t)size;
601         thr->numget++; /* Increment number of bget() calls */
602         thr->numdget++; /* Direct bget() call count */
603 #endif
604         buf = (void *)(bdh + 1);
605         KMP_DEBUG_ASSERT(((size_t)buf) % SizeQuant == 0);
606         return buf;
607       }
608 
609     } else {
610 
611       /*  Try to obtain a new expansion block */
612       void *newpool;
613 
614       KE_TRACE(10, ("%%%%%% MALLOCB( %d )\n", (int)thr->exp_incr));
615 
616       /* richryan */
617       newpool = (*thr->acqfcn)((bufsize)thr->exp_incr);
618       KMP_DEBUG_ASSERT(((size_t)newpool) % SizeQuant == 0);
619       if (newpool != NULL) {
620         bpool(th, newpool, thr->exp_incr);
621         buf = bget(
622             th, requested_size); /* This can't, I say, can't get into a loop. */
623         return buf;
624       }
625     }
626   }
627 
628   /*  Still no buffer available */
629 
630   return NULL;
631 }
632 
633 /*  BGETZ  --  Allocate a buffer and clear its contents to zero.  We clear
634                the  entire  contents  of  the buffer to zero, not just the
635                region requested by the caller. */
636 
637 static void *bgetz(kmp_info_t *th, bufsize size) {
638   char *buf = (char *)bget(th, size);
639 
640   if (buf != NULL) {
641     bhead_t *b;
642     bufsize rsize;
643 
644     b = BH(buf - sizeof(bhead_t));
645     rsize = -(b->bb.bsize);
646     if (rsize == 0) {
647       bdhead_t *bd;
648 
649       bd = BDH(buf - sizeof(bdhead_t));
650       rsize = bd->tsize - (bufsize)sizeof(bdhead_t);
651     } else {
652       rsize -= sizeof(bhead_t);
653     }
654 
655     KMP_DEBUG_ASSERT(rsize >= size);
656 
657     (void)memset(buf, 0, (bufsize)rsize);
658   }
659   return ((void *)buf);
660 }
661 
662 /*  BGETR  --  Reallocate a buffer.  This is a minimal implementation,
663                simply in terms of brel()  and  bget().   It  could  be
664                enhanced to allow the buffer to grow into adjacent free
665                blocks and to avoid moving data unnecessarily.  */
666 
667 static void *bgetr(kmp_info_t *th, void *buf, bufsize size) {
668   void *nbuf;
669   bufsize osize; /* Old size of buffer */
670   bhead_t *b;
671 
672   nbuf = bget(th, size);
673   if (nbuf == NULL) { /* Acquire new buffer */
674     return NULL;
675   }
676   if (buf == NULL) {
677     return nbuf;
678   }
679   b = BH(((char *)buf) - sizeof(bhead_t));
680   osize = -b->bb.bsize;
681   if (osize == 0) {
682     /*  Buffer acquired directly through acqfcn. */
683     bdhead_t *bd;
684 
685     bd = BDH(((char *)buf) - sizeof(bdhead_t));
686     osize = bd->tsize - (bufsize)sizeof(bdhead_t);
687   } else {
688     osize -= sizeof(bhead_t);
689   }
690 
691   KMP_DEBUG_ASSERT(osize > 0);
692 
693   (void)KMP_MEMCPY((char *)nbuf, (char *)buf, /* Copy the data */
694                    (size_t)((size < osize) ? size : osize));
695   brel(th, buf);
696 
697   return nbuf;
698 }
699 
700 /*  BREL  --  Release a buffer.  */
701 static void brel(kmp_info_t *th, void *buf) {
702   thr_data_t *thr = get_thr_data(th);
703   bfhead_t *b, *bn;
704   kmp_info_t *bth;
705 
706   KMP_DEBUG_ASSERT(buf != NULL);
707   KMP_DEBUG_ASSERT(((size_t)buf) % SizeQuant == 0);
708 
709   b = BFH(((char *)buf) - sizeof(bhead_t));
710 
711   if (b->bh.bb.bsize == 0) { /* Directly-acquired buffer? */
712     bdhead_t *bdh;
713 
714     bdh = BDH(((char *)buf) - sizeof(bdhead_t));
715     KMP_DEBUG_ASSERT(b->bh.bb.prevfree == 0);
716 #if BufStats
717     thr->totalloc -= (size_t)bdh->tsize;
718     thr->numdrel++; /* Number of direct releases */
719     thr->numrel++; /* Increment number of brel() calls */
720 #endif /* BufStats */
721 #ifdef FreeWipe
722     (void)memset((char *)buf, 0x55, (size_t)(bdh->tsize - sizeof(bdhead_t)));
723 #endif /* FreeWipe */
724 
725     KE_TRACE(10, ("%%%%%% FREE( %p )\n", (void *)bdh));
726 
727     KMP_DEBUG_ASSERT(thr->relfcn != 0);
728     (*thr->relfcn)((void *)bdh); /* Release it directly. */
729     return;
730   }
731 
732   bth = (kmp_info_t *)((kmp_uintptr_t)TCR_PTR(b->bh.bb.bthr) &
733                        ~1); // clear possible mark before comparison
734   if (bth != th) {
735     /* Add this buffer to be released by the owning thread later */
736     __kmp_bget_enqueue(bth, buf
737 #ifdef USE_QUEUING_LOCK_FOR_BGET
738                        ,
739                        __kmp_gtid_from_thread(th)
740 #endif
741     );
742     return;
743   }
744 
745   /* Buffer size must be negative, indicating that the buffer is allocated. */
746   if (b->bh.bb.bsize >= 0) {
747     bn = NULL;
748   }
749   KMP_DEBUG_ASSERT(b->bh.bb.bsize < 0);
750 
751   /*  Back pointer in next buffer must be zero, indicating the same thing: */
752 
753   KMP_DEBUG_ASSERT(BH((char *)b - b->bh.bb.bsize)->bb.prevfree == 0);
754 
755 #if BufStats
756   thr->numrel++; /* Increment number of brel() calls */
757   thr->totalloc += (size_t)b->bh.bb.bsize;
758 #endif
759 
760   /* If the back link is nonzero, the previous buffer is free.  */
761 
762   if (b->bh.bb.prevfree != 0) {
763     /* The previous buffer is free. Consolidate this buffer with it by adding
764        the length of this buffer to the previous free buffer. Note that we
765        subtract the size in the buffer being released, since it's negative to
766        indicate that the buffer is allocated. */
767     bufsize size = b->bh.bb.bsize;
768 
769     /* Make the previous buffer the one we're working on. */
770     KMP_DEBUG_ASSERT(BH((char *)b - b->bh.bb.prevfree)->bb.bsize ==
771                      b->bh.bb.prevfree);
772     b = BFH(((char *)b) - b->bh.bb.prevfree);
773     b->bh.bb.bsize -= size;
774 
775     /* unlink the buffer from the old freelist */
776     __kmp_bget_remove_from_freelist(b);
777   } else {
778     /* The previous buffer isn't allocated. Mark this buffer size as positive
779        (i.e. free) and fall through to place the buffer on the free list as an
780        isolated free block. */
781     b->bh.bb.bsize = -b->bh.bb.bsize;
782   }
783 
784   /* insert buffer back onto a new freelist */
785   __kmp_bget_insert_into_freelist(thr, b);
786 
787   /* Now we look at the next buffer in memory, located by advancing from
788      the  start  of  this  buffer  by its size, to see if that buffer is
789      free.  If it is, we combine  this  buffer  with  the  next  one  in
790      memory, dechaining the second buffer from the free list. */
791   bn = BFH(((char *)b) + b->bh.bb.bsize);
792   if (bn->bh.bb.bsize > 0) {
793 
794     /* The buffer is free.  Remove it from the free list and add
795        its size to that of our buffer. */
796     KMP_DEBUG_ASSERT(BH((char *)bn + bn->bh.bb.bsize)->bb.prevfree ==
797                      bn->bh.bb.bsize);
798 
799     __kmp_bget_remove_from_freelist(bn);
800 
801     b->bh.bb.bsize += bn->bh.bb.bsize;
802 
803     /* unlink the buffer from the old freelist, and reinsert it into the new
804      * freelist */
805     __kmp_bget_remove_from_freelist(b);
806     __kmp_bget_insert_into_freelist(thr, b);
807 
808     /* Finally,  advance  to   the  buffer  that   follows  the  newly
809        consolidated free block.  We must set its  backpointer  to  the
810        head  of  the  consolidated free block.  We know the next block
811        must be an allocated block because the process of recombination
812        guarantees  that  two  free  blocks will never be contiguous in
813        memory.  */
814     bn = BFH(((char *)b) + b->bh.bb.bsize);
815   }
816 #ifdef FreeWipe
817   (void)memset(((char *)b) + sizeof(bfhead_t), 0x55,
818                (size_t)(b->bh.bb.bsize - sizeof(bfhead_t)));
819 #endif
820   KMP_DEBUG_ASSERT(bn->bh.bb.bsize < 0);
821 
822   /* The next buffer is allocated.  Set the backpointer in it  to  point
823      to this buffer; the previous free buffer in memory. */
824 
825   bn->bh.bb.prevfree = b->bh.bb.bsize;
826 
827   /*  If  a  block-release function is defined, and this free buffer
828       constitutes the entire block, release it.  Note that  pool_len
829       is  defined  in  such a way that the test will fail unless all
830       pool blocks are the same size.  */
831   if (thr->relfcn != 0 &&
832       b->bh.bb.bsize == (bufsize)(thr->pool_len - sizeof(bhead_t))) {
833 #if BufStats
834     if (thr->numpblk !=
835         1) { /* Do not release the last buffer until finalization time */
836 #endif
837 
838       KMP_DEBUG_ASSERT(b->bh.bb.prevfree == 0);
839       KMP_DEBUG_ASSERT(BH((char *)b + b->bh.bb.bsize)->bb.bsize == ESent);
840       KMP_DEBUG_ASSERT(BH((char *)b + b->bh.bb.bsize)->bb.prevfree ==
841                        b->bh.bb.bsize);
842 
843       /*  Unlink the buffer from the free list  */
844       __kmp_bget_remove_from_freelist(b);
845 
846       KE_TRACE(10, ("%%%%%% FREE( %p )\n", (void *)b));
847 
848       (*thr->relfcn)(b);
849 #if BufStats
850       thr->numprel++; /* Nr of expansion block releases */
851       thr->numpblk--; /* Total number of blocks */
852       KMP_DEBUG_ASSERT(thr->numpblk == thr->numpget - thr->numprel);
853 
854       // avoid leaving stale last_pool pointer around if it is being dealloced
855       if (thr->last_pool == b)
856         thr->last_pool = 0;
857     } else {
858       thr->last_pool = b;
859     }
860 #endif /* BufStats */
861   }
862 }
863 
864 /*  BECTL  --  Establish automatic pool expansion control  */
865 static void bectl(kmp_info_t *th, bget_compact_t compact,
866                   bget_acquire_t acquire, bget_release_t release,
867                   bufsize pool_incr) {
868   thr_data_t *thr = get_thr_data(th);
869 
870   thr->compfcn = compact;
871   thr->acqfcn = acquire;
872   thr->relfcn = release;
873   thr->exp_incr = pool_incr;
874 }
875 
876 /*  BPOOL  --  Add a region of memory to the buffer pool.  */
877 static void bpool(kmp_info_t *th, void *buf, bufsize len) {
878   /*    int bin = 0; */
879   thr_data_t *thr = get_thr_data(th);
880   bfhead_t *b = BFH(buf);
881   bhead_t *bn;
882 
883   __kmp_bget_dequeue(th); /* Release any queued buffers */
884 
885 #ifdef SizeQuant
886   len &= ~((bufsize)(SizeQuant - 1));
887 #endif
888   if (thr->pool_len == 0) {
889     thr->pool_len = len;
890   } else if (len != thr->pool_len) {
891     thr->pool_len = -1;
892   }
893 #if BufStats
894   thr->numpget++; /* Number of block acquisitions */
895   thr->numpblk++; /* Number of blocks total */
896   KMP_DEBUG_ASSERT(thr->numpblk == thr->numpget - thr->numprel);
897 #endif /* BufStats */
898 
899   /* Since the block is initially occupied by a single free  buffer,
900      it  had  better  not  be  (much) larger than the largest buffer
901      whose size we can store in bhead.bb.bsize. */
902   KMP_DEBUG_ASSERT(len - sizeof(bhead_t) <= -((bufsize)ESent + 1));
903 
904   /* Clear  the  backpointer at  the start of the block to indicate that
905      there  is  no  free  block  prior  to  this   one.    That   blocks
906      recombination when the first block in memory is released. */
907   b->bh.bb.prevfree = 0;
908 
909   /* Create a dummy allocated buffer at the end of the pool.  This dummy
910      buffer is seen when a buffer at the end of the pool is released and
911      blocks  recombination  of  the last buffer with the dummy buffer at
912      the end.  The length in the dummy buffer  is  set  to  the  largest
913      negative  number  to  denote  the  end  of  the pool for diagnostic
914      routines (this specific value is  not  counted  on  by  the  actual
915      allocation and release functions). */
916   len -= sizeof(bhead_t);
917   b->bh.bb.bsize = (bufsize)len;
918   /* Set the owner of this buffer */
919   TCW_PTR(b->bh.bb.bthr,
920           (kmp_info_t *)((kmp_uintptr_t)th |
921                          1)); // mark the buffer as allocated address
922 
923   /* Chain the new block to the free list. */
924   __kmp_bget_insert_into_freelist(thr, b);
925 
926 #ifdef FreeWipe
927   (void)memset(((char *)b) + sizeof(bfhead_t), 0x55,
928                (size_t)(len - sizeof(bfhead_t)));
929 #endif
930   bn = BH(((char *)b) + len);
931   bn->bb.prevfree = (bufsize)len;
932   /* Definition of ESent assumes two's complement! */
933   KMP_DEBUG_ASSERT((~0) == -1 && (bn != 0));
934 
935   bn->bb.bsize = ESent;
936 }
937 
938 /*  BFREED  --  Dump the free lists for this thread. */
939 static void bfreed(kmp_info_t *th) {
940   int bin = 0, count = 0;
941   int gtid = __kmp_gtid_from_thread(th);
942   thr_data_t *thr = get_thr_data(th);
943 
944 #if BufStats
945   __kmp_printf_no_lock("__kmp_printpool: T#%d total=%" KMP_UINT64_SPEC
946                        " get=%" KMP_INT64_SPEC " rel=%" KMP_INT64_SPEC
947                        " pblk=%" KMP_INT64_SPEC " pget=%" KMP_INT64_SPEC
948                        " prel=%" KMP_INT64_SPEC " dget=%" KMP_INT64_SPEC
949                        " drel=%" KMP_INT64_SPEC "\n",
950                        gtid, (kmp_uint64)thr->totalloc, (kmp_int64)thr->numget,
951                        (kmp_int64)thr->numrel, (kmp_int64)thr->numpblk,
952                        (kmp_int64)thr->numpget, (kmp_int64)thr->numprel,
953                        (kmp_int64)thr->numdget, (kmp_int64)thr->numdrel);
954 #endif
955 
956   for (bin = 0; bin < MAX_BGET_BINS; ++bin) {
957     bfhead_t *b;
958 
959     for (b = thr->freelist[bin].ql.flink; b != &thr->freelist[bin];
960          b = b->ql.flink) {
961       bufsize bs = b->bh.bb.bsize;
962 
963       KMP_DEBUG_ASSERT(b->ql.blink->ql.flink == b);
964       KMP_DEBUG_ASSERT(b->ql.flink->ql.blink == b);
965       KMP_DEBUG_ASSERT(bs > 0);
966 
967       count += 1;
968 
969       __kmp_printf_no_lock(
970           "__kmp_printpool: T#%d Free block: 0x%p size %6ld bytes.\n", gtid, b,
971           (long)bs);
972 #ifdef FreeWipe
973       {
974         char *lerr = ((char *)b) + sizeof(bfhead_t);
975         if ((bs > sizeof(bfhead_t)) &&
976             ((*lerr != 0x55) ||
977              (memcmp(lerr, lerr + 1, (size_t)(bs - (sizeof(bfhead_t) + 1))) !=
978               0))) {
979           __kmp_printf_no_lock("__kmp_printpool: T#%d     (Contents of above "
980                                "free block have been overstored.)\n",
981                                gtid);
982         }
983       }
984 #endif
985     }
986   }
987 
988   if (count == 0)
989     __kmp_printf_no_lock("__kmp_printpool: T#%d No free blocks\n", gtid);
990 }
991 
992 void __kmp_initialize_bget(kmp_info_t *th) {
993   KMP_DEBUG_ASSERT(SizeQuant >= sizeof(void *) && (th != 0));
994 
995   set_thr_data(th);
996 
997   bectl(th, (bget_compact_t)0, (bget_acquire_t)malloc, (bget_release_t)free,
998         (bufsize)__kmp_malloc_pool_incr);
999 }
1000 
1001 void __kmp_finalize_bget(kmp_info_t *th) {
1002   thr_data_t *thr;
1003   bfhead_t *b;
1004 
1005   KMP_DEBUG_ASSERT(th != 0);
1006 
1007 #if BufStats
1008   thr = (thr_data_t *)th->th.th_local.bget_data;
1009   KMP_DEBUG_ASSERT(thr != NULL);
1010   b = thr->last_pool;
1011 
1012   /*  If a block-release function is defined, and this free buffer constitutes
1013       the entire block, release it. Note that pool_len is defined in such a way
1014       that the test will fail unless all pool blocks are the same size.  */
1015 
1016   // Deallocate the last pool if one exists because we no longer do it in brel()
1017   if (thr->relfcn != 0 && b != 0 && thr->numpblk != 0 &&
1018       b->bh.bb.bsize == (bufsize)(thr->pool_len - sizeof(bhead_t))) {
1019     KMP_DEBUG_ASSERT(b->bh.bb.prevfree == 0);
1020     KMP_DEBUG_ASSERT(BH((char *)b + b->bh.bb.bsize)->bb.bsize == ESent);
1021     KMP_DEBUG_ASSERT(BH((char *)b + b->bh.bb.bsize)->bb.prevfree ==
1022                      b->bh.bb.bsize);
1023 
1024     /*  Unlink the buffer from the free list  */
1025     __kmp_bget_remove_from_freelist(b);
1026 
1027     KE_TRACE(10, ("%%%%%% FREE( %p )\n", (void *)b));
1028 
1029     (*thr->relfcn)(b);
1030     thr->numprel++; /* Nr of expansion block releases */
1031     thr->numpblk--; /* Total number of blocks */
1032     KMP_DEBUG_ASSERT(thr->numpblk == thr->numpget - thr->numprel);
1033   }
1034 #endif /* BufStats */
1035 
1036   /* Deallocate bget_data */
1037   if (th->th.th_local.bget_data != NULL) {
1038     __kmp_free(th->th.th_local.bget_data);
1039     th->th.th_local.bget_data = NULL;
1040   }
1041 }
1042 
1043 void kmpc_set_poolsize(size_t size) {
1044   bectl(__kmp_get_thread(), (bget_compact_t)0, (bget_acquire_t)malloc,
1045         (bget_release_t)free, (bufsize)size);
1046 }
1047 
1048 size_t kmpc_get_poolsize(void) {
1049   thr_data_t *p;
1050 
1051   p = get_thr_data(__kmp_get_thread());
1052 
1053   return p->exp_incr;
1054 }
1055 
1056 void kmpc_set_poolmode(int mode) {
1057   thr_data_t *p;
1058 
1059   if (mode == bget_mode_fifo || mode == bget_mode_lifo ||
1060       mode == bget_mode_best) {
1061     p = get_thr_data(__kmp_get_thread());
1062     p->mode = (bget_mode_t)mode;
1063   }
1064 }
1065 
1066 int kmpc_get_poolmode(void) {
1067   thr_data_t *p;
1068 
1069   p = get_thr_data(__kmp_get_thread());
1070 
1071   return p->mode;
1072 }
1073 
1074 void kmpc_get_poolstat(size_t *maxmem, size_t *allmem) {
1075   kmp_info_t *th = __kmp_get_thread();
1076   bufsize a, b;
1077 
1078   __kmp_bget_dequeue(th); /* Release any queued buffers */
1079 
1080   bcheck(th, &a, &b);
1081 
1082   *maxmem = a;
1083   *allmem = b;
1084 }
1085 
1086 void kmpc_poolprint(void) {
1087   kmp_info_t *th = __kmp_get_thread();
1088 
1089   __kmp_bget_dequeue(th); /* Release any queued buffers */
1090 
1091   bfreed(th);
1092 }
1093 
1094 #endif // #if KMP_USE_BGET
1095 
1096 void *kmpc_malloc(size_t size) {
1097   void *ptr;
1098   ptr = bget(__kmp_entry_thread(), (bufsize)(size + sizeof(ptr)));
1099   if (ptr != NULL) {
1100     // save allocated pointer just before one returned to user
1101     *(void **)ptr = ptr;
1102     ptr = (void **)ptr + 1;
1103   }
1104   return ptr;
1105 }
1106 
1107 #define IS_POWER_OF_TWO(n) (((n) & ((n)-1)) == 0)
1108 
1109 void *kmpc_aligned_malloc(size_t size, size_t alignment) {
1110   void *ptr;
1111   void *ptr_allocated;
1112   KMP_DEBUG_ASSERT(alignment < 32 * 1024); // Alignment should not be too big
1113   if (!IS_POWER_OF_TWO(alignment)) {
1114     // AC: do we need to issue a warning here?
1115     errno = EINVAL;
1116     return NULL;
1117   }
1118   size = size + sizeof(void *) + alignment;
1119   ptr_allocated = bget(__kmp_entry_thread(), (bufsize)size);
1120   if (ptr_allocated != NULL) {
1121     // save allocated pointer just before one returned to user
1122     ptr = (void *)(((kmp_uintptr_t)ptr_allocated + sizeof(void *) + alignment) &
1123                    ~(alignment - 1));
1124     *((void **)ptr - 1) = ptr_allocated;
1125   } else {
1126     ptr = NULL;
1127   }
1128   return ptr;
1129 }
1130 
1131 void *kmpc_calloc(size_t nelem, size_t elsize) {
1132   void *ptr;
1133   ptr = bgetz(__kmp_entry_thread(), (bufsize)(nelem * elsize + sizeof(ptr)));
1134   if (ptr != NULL) {
1135     // save allocated pointer just before one returned to user
1136     *(void **)ptr = ptr;
1137     ptr = (void **)ptr + 1;
1138   }
1139   return ptr;
1140 }
1141 
1142 void *kmpc_realloc(void *ptr, size_t size) {
1143   void *result = NULL;
1144   if (ptr == NULL) {
1145     // If pointer is NULL, realloc behaves like malloc.
1146     result = bget(__kmp_entry_thread(), (bufsize)(size + sizeof(ptr)));
1147     // save allocated pointer just before one returned to user
1148     if (result != NULL) {
1149       *(void **)result = result;
1150       result = (void **)result + 1;
1151     }
1152   } else if (size == 0) {
1153     // If size is 0, realloc behaves like free.
1154     // The thread must be registered by the call to kmpc_malloc() or
1155     // kmpc_calloc() before.
1156     // So it should be safe to call __kmp_get_thread(), not
1157     // __kmp_entry_thread().
1158     KMP_ASSERT(*((void **)ptr - 1));
1159     brel(__kmp_get_thread(), *((void **)ptr - 1));
1160   } else {
1161     result = bgetr(__kmp_entry_thread(), *((void **)ptr - 1),
1162                    (bufsize)(size + sizeof(ptr)));
1163     if (result != NULL) {
1164       *(void **)result = result;
1165       result = (void **)result + 1;
1166     }
1167   }
1168   return result;
1169 }
1170 
1171 // NOTE: the library must have already been initialized by a previous allocate
1172 void kmpc_free(void *ptr) {
1173   if (!__kmp_init_serial) {
1174     return;
1175   }
1176   if (ptr != NULL) {
1177     kmp_info_t *th = __kmp_get_thread();
1178     __kmp_bget_dequeue(th); /* Release any queued buffers */
1179     // extract allocated pointer and free it
1180     KMP_ASSERT(*((void **)ptr - 1));
1181     brel(th, *((void **)ptr - 1));
1182   }
1183 }
1184 
1185 void *___kmp_thread_malloc(kmp_info_t *th, size_t size KMP_SRC_LOC_DECL) {
1186   void *ptr;
1187   KE_TRACE(30, ("-> __kmp_thread_malloc( %p, %d ) called from %s:%d\n", th,
1188                 (int)size KMP_SRC_LOC_PARM));
1189   ptr = bget(th, (bufsize)size);
1190   KE_TRACE(30, ("<- __kmp_thread_malloc() returns %p\n", ptr));
1191   return ptr;
1192 }
1193 
1194 void *___kmp_thread_calloc(kmp_info_t *th, size_t nelem,
1195                            size_t elsize KMP_SRC_LOC_DECL) {
1196   void *ptr;
1197   KE_TRACE(30, ("-> __kmp_thread_calloc( %p, %d, %d ) called from %s:%d\n", th,
1198                 (int)nelem, (int)elsize KMP_SRC_LOC_PARM));
1199   ptr = bgetz(th, (bufsize)(nelem * elsize));
1200   KE_TRACE(30, ("<- __kmp_thread_calloc() returns %p\n", ptr));
1201   return ptr;
1202 }
1203 
1204 void *___kmp_thread_realloc(kmp_info_t *th, void *ptr,
1205                             size_t size KMP_SRC_LOC_DECL) {
1206   KE_TRACE(30, ("-> __kmp_thread_realloc( %p, %p, %d ) called from %s:%d\n", th,
1207                 ptr, (int)size KMP_SRC_LOC_PARM));
1208   ptr = bgetr(th, ptr, (bufsize)size);
1209   KE_TRACE(30, ("<- __kmp_thread_realloc() returns %p\n", ptr));
1210   return ptr;
1211 }
1212 
1213 void ___kmp_thread_free(kmp_info_t *th, void *ptr KMP_SRC_LOC_DECL) {
1214   KE_TRACE(30, ("-> __kmp_thread_free( %p, %p ) called from %s:%d\n", th,
1215                 ptr KMP_SRC_LOC_PARM));
1216   if (ptr != NULL) {
1217     __kmp_bget_dequeue(th); /* Release any queued buffers */
1218     brel(th, ptr);
1219   }
1220   KE_TRACE(30, ("<- __kmp_thread_free()\n"));
1221 }
1222 
1223 /* OMP 5.0 Memory Management support */
1224 static const char *kmp_mk_lib_name;
1225 static void *h_memkind;
1226 /* memkind experimental API: */
1227 // memkind_alloc
1228 static void *(*kmp_mk_alloc)(void *k, size_t sz);
1229 // memkind_free
1230 static void (*kmp_mk_free)(void *kind, void *ptr);
1231 // memkind_check_available
1232 static int (*kmp_mk_check)(void *kind);
1233 // kinds we are going to use
1234 static void **mk_default;
1235 static void **mk_interleave;
1236 static void **mk_hbw;
1237 static void **mk_hbw_interleave;
1238 static void **mk_hbw_preferred;
1239 static void **mk_hugetlb;
1240 static void **mk_hbw_hugetlb;
1241 static void **mk_hbw_preferred_hugetlb;
1242 static void **mk_dax_kmem;
1243 static void **mk_dax_kmem_all;
1244 static void **mk_dax_kmem_preferred;
1245 // Preview of target memory support
1246 static void *(*kmp_target_alloc_host)(size_t size, int device);
1247 static void *(*kmp_target_alloc_shared)(size_t size, int device);
1248 static void *(*kmp_target_alloc_device)(size_t size, int device);
1249 static void *(*kmp_target_free)(void *ptr, int device);
1250 static bool __kmp_target_mem_available;
1251 #define KMP_IS_TARGET_MEM_SPACE(MS)                                            \
1252   (MS == llvm_omp_target_host_mem_space ||                                     \
1253    MS == llvm_omp_target_shared_mem_space ||                                   \
1254    MS == llvm_omp_target_device_mem_space)
1255 #define KMP_IS_TARGET_MEM_ALLOC(MA)                                            \
1256   (MA == llvm_omp_target_host_mem_alloc ||                                     \
1257    MA == llvm_omp_target_shared_mem_alloc ||                                   \
1258    MA == llvm_omp_target_device_mem_alloc)
1259 
1260 #if KMP_OS_UNIX && KMP_DYNAMIC_LIB
1261 static inline void chk_kind(void ***pkind) {
1262   KMP_DEBUG_ASSERT(pkind);
1263   if (*pkind) // symbol found
1264     if (kmp_mk_check(**pkind)) // kind not available or error
1265       *pkind = NULL;
1266 }
1267 #endif
1268 
1269 void __kmp_init_memkind() {
1270 // as of 2018-07-31 memkind does not support Windows*, exclude it for now
1271 #if KMP_OS_UNIX && KMP_DYNAMIC_LIB
1272   // use of statically linked memkind is problematic, as it depends on libnuma
1273   kmp_mk_lib_name = "libmemkind.so";
1274   h_memkind = dlopen(kmp_mk_lib_name, RTLD_LAZY);
1275   if (h_memkind) {
1276     kmp_mk_check = (int (*)(void *))dlsym(h_memkind, "memkind_check_available");
1277     kmp_mk_alloc =
1278         (void *(*)(void *, size_t))dlsym(h_memkind, "memkind_malloc");
1279     kmp_mk_free = (void (*)(void *, void *))dlsym(h_memkind, "memkind_free");
1280     mk_default = (void **)dlsym(h_memkind, "MEMKIND_DEFAULT");
1281     if (kmp_mk_check && kmp_mk_alloc && kmp_mk_free && mk_default &&
1282         !kmp_mk_check(*mk_default)) {
1283       __kmp_memkind_available = 1;
1284       mk_interleave = (void **)dlsym(h_memkind, "MEMKIND_INTERLEAVE");
1285       chk_kind(&mk_interleave);
1286       mk_hbw = (void **)dlsym(h_memkind, "MEMKIND_HBW");
1287       chk_kind(&mk_hbw);
1288       mk_hbw_interleave = (void **)dlsym(h_memkind, "MEMKIND_HBW_INTERLEAVE");
1289       chk_kind(&mk_hbw_interleave);
1290       mk_hbw_preferred = (void **)dlsym(h_memkind, "MEMKIND_HBW_PREFERRED");
1291       chk_kind(&mk_hbw_preferred);
1292       mk_hugetlb = (void **)dlsym(h_memkind, "MEMKIND_HUGETLB");
1293       chk_kind(&mk_hugetlb);
1294       mk_hbw_hugetlb = (void **)dlsym(h_memkind, "MEMKIND_HBW_HUGETLB");
1295       chk_kind(&mk_hbw_hugetlb);
1296       mk_hbw_preferred_hugetlb =
1297           (void **)dlsym(h_memkind, "MEMKIND_HBW_PREFERRED_HUGETLB");
1298       chk_kind(&mk_hbw_preferred_hugetlb);
1299       mk_dax_kmem = (void **)dlsym(h_memkind, "MEMKIND_DAX_KMEM");
1300       chk_kind(&mk_dax_kmem);
1301       mk_dax_kmem_all = (void **)dlsym(h_memkind, "MEMKIND_DAX_KMEM_ALL");
1302       chk_kind(&mk_dax_kmem_all);
1303       mk_dax_kmem_preferred =
1304           (void **)dlsym(h_memkind, "MEMKIND_DAX_KMEM_PREFERRED");
1305       chk_kind(&mk_dax_kmem_preferred);
1306       KE_TRACE(25, ("__kmp_init_memkind: memkind library initialized\n"));
1307       return; // success
1308     }
1309     dlclose(h_memkind); // failure
1310   }
1311 #else // !(KMP_OS_UNIX && KMP_DYNAMIC_LIB)
1312   kmp_mk_lib_name = "";
1313 #endif // !(KMP_OS_UNIX && KMP_DYNAMIC_LIB)
1314   h_memkind = NULL;
1315   kmp_mk_check = NULL;
1316   kmp_mk_alloc = NULL;
1317   kmp_mk_free = NULL;
1318   mk_default = NULL;
1319   mk_interleave = NULL;
1320   mk_hbw = NULL;
1321   mk_hbw_interleave = NULL;
1322   mk_hbw_preferred = NULL;
1323   mk_hugetlb = NULL;
1324   mk_hbw_hugetlb = NULL;
1325   mk_hbw_preferred_hugetlb = NULL;
1326   mk_dax_kmem = NULL;
1327   mk_dax_kmem_all = NULL;
1328   mk_dax_kmem_preferred = NULL;
1329 }
1330 
1331 void __kmp_fini_memkind() {
1332 #if KMP_OS_UNIX && KMP_DYNAMIC_LIB
1333   if (__kmp_memkind_available)
1334     KE_TRACE(25, ("__kmp_fini_memkind: finalize memkind library\n"));
1335   if (h_memkind) {
1336     dlclose(h_memkind);
1337     h_memkind = NULL;
1338   }
1339   kmp_mk_check = NULL;
1340   kmp_mk_alloc = NULL;
1341   kmp_mk_free = NULL;
1342   mk_default = NULL;
1343   mk_interleave = NULL;
1344   mk_hbw = NULL;
1345   mk_hbw_interleave = NULL;
1346   mk_hbw_preferred = NULL;
1347   mk_hugetlb = NULL;
1348   mk_hbw_hugetlb = NULL;
1349   mk_hbw_preferred_hugetlb = NULL;
1350   mk_dax_kmem = NULL;
1351   mk_dax_kmem_all = NULL;
1352   mk_dax_kmem_preferred = NULL;
1353 #endif
1354 }
1355 // Preview of target memory support
1356 void __kmp_init_target_mem() {
1357   *(void **)(&kmp_target_alloc_host) = KMP_DLSYM("llvm_omp_target_alloc_host");
1358   *(void **)(&kmp_target_alloc_shared) =
1359       KMP_DLSYM("llvm_omp_target_alloc_shared");
1360   *(void **)(&kmp_target_alloc_device) =
1361       KMP_DLSYM("llvm_omp_target_alloc_device");
1362   *(void **)(&kmp_target_free) = KMP_DLSYM("omp_target_free");
1363   __kmp_target_mem_available = kmp_target_alloc_host &&
1364                                kmp_target_alloc_shared &&
1365                                kmp_target_alloc_device && kmp_target_free;
1366 }
1367 
1368 omp_allocator_handle_t __kmpc_init_allocator(int gtid, omp_memspace_handle_t ms,
1369                                              int ntraits,
1370                                              omp_alloctrait_t traits[]) {
1371   // OpenMP 5.0 only allows predefined memspaces
1372   KMP_DEBUG_ASSERT(ms == omp_default_mem_space || ms == omp_low_lat_mem_space ||
1373                    ms == omp_large_cap_mem_space || ms == omp_const_mem_space ||
1374                    ms == omp_high_bw_mem_space || KMP_IS_TARGET_MEM_SPACE(ms));
1375   kmp_allocator_t *al;
1376   int i;
1377   al = (kmp_allocator_t *)__kmp_allocate(sizeof(kmp_allocator_t)); // zeroed
1378   al->memspace = ms; // not used currently
1379   for (i = 0; i < ntraits; ++i) {
1380     switch (traits[i].key) {
1381     case omp_atk_sync_hint:
1382     case omp_atk_access:
1383     case omp_atk_pinned:
1384       break;
1385     case omp_atk_alignment:
1386       __kmp_type_convert(traits[i].value, &(al->alignment));
1387       KMP_ASSERT(IS_POWER_OF_TWO(al->alignment));
1388       break;
1389     case omp_atk_pool_size:
1390       al->pool_size = traits[i].value;
1391       break;
1392     case omp_atk_fallback:
1393       al->fb = (omp_alloctrait_value_t)traits[i].value;
1394       KMP_DEBUG_ASSERT(
1395           al->fb == omp_atv_default_mem_fb || al->fb == omp_atv_null_fb ||
1396           al->fb == omp_atv_abort_fb || al->fb == omp_atv_allocator_fb);
1397       break;
1398     case omp_atk_fb_data:
1399       al->fb_data = RCAST(kmp_allocator_t *, traits[i].value);
1400       break;
1401     case omp_atk_partition:
1402       al->memkind = RCAST(void **, traits[i].value);
1403       break;
1404     default:
1405       KMP_ASSERT2(0, "Unexpected allocator trait");
1406     }
1407   }
1408   if (al->fb == 0) {
1409     // set default allocator
1410     al->fb = omp_atv_default_mem_fb;
1411     al->fb_data = (kmp_allocator_t *)omp_default_mem_alloc;
1412   } else if (al->fb == omp_atv_allocator_fb) {
1413     KMP_ASSERT(al->fb_data != NULL);
1414   } else if (al->fb == omp_atv_default_mem_fb) {
1415     al->fb_data = (kmp_allocator_t *)omp_default_mem_alloc;
1416   }
1417   if (__kmp_memkind_available) {
1418     // Let's use memkind library if available
1419     if (ms == omp_high_bw_mem_space) {
1420       if (al->memkind == (void *)omp_atv_interleaved && mk_hbw_interleave) {
1421         al->memkind = mk_hbw_interleave;
1422       } else if (mk_hbw_preferred) {
1423         // AC: do not try to use MEMKIND_HBW for now, because memkind library
1424         // cannot reliably detect exhaustion of HBW memory.
1425         // It could be possible using hbw_verify_memory_region() but memkind
1426         // manual says: "Using this function in production code may result in
1427         // serious performance penalty".
1428         al->memkind = mk_hbw_preferred;
1429       } else {
1430         // HBW is requested but not available --> return NULL allocator
1431         __kmp_free(al);
1432         return omp_null_allocator;
1433       }
1434     } else if (ms == omp_large_cap_mem_space) {
1435       if (mk_dax_kmem_all) {
1436         // All pmem nodes are visited
1437         al->memkind = mk_dax_kmem_all;
1438       } else if (mk_dax_kmem) {
1439         // Only closest pmem node is visited
1440         al->memkind = mk_dax_kmem;
1441       } else {
1442         __kmp_free(al);
1443         return omp_null_allocator;
1444       }
1445     } else {
1446       if (al->memkind == (void *)omp_atv_interleaved && mk_interleave) {
1447         al->memkind = mk_interleave;
1448       } else {
1449         al->memkind = mk_default;
1450       }
1451     }
1452   } else if (KMP_IS_TARGET_MEM_SPACE(ms) && !__kmp_target_mem_available) {
1453     __kmp_free(al);
1454     return omp_null_allocator;
1455   } else {
1456     if (ms == omp_high_bw_mem_space) {
1457       // cannot detect HBW memory presence without memkind library
1458       __kmp_free(al);
1459       return omp_null_allocator;
1460     }
1461   }
1462   return (omp_allocator_handle_t)al;
1463 }
1464 
1465 void __kmpc_destroy_allocator(int gtid, omp_allocator_handle_t allocator) {
1466   if (allocator > kmp_max_mem_alloc)
1467     __kmp_free(allocator);
1468 }
1469 
1470 void __kmpc_set_default_allocator(int gtid, omp_allocator_handle_t allocator) {
1471   if (allocator == omp_null_allocator)
1472     allocator = omp_default_mem_alloc;
1473   __kmp_threads[gtid]->th.th_def_allocator = allocator;
1474 }
1475 
1476 omp_allocator_handle_t __kmpc_get_default_allocator(int gtid) {
1477   return __kmp_threads[gtid]->th.th_def_allocator;
1478 }
1479 
1480 typedef struct kmp_mem_desc { // Memory block descriptor
1481   void *ptr_alloc; // Pointer returned by allocator
1482   size_t size_a; // Size of allocated memory block (initial+descriptor+align)
1483   size_t size_orig; // Original size requested
1484   void *ptr_align; // Pointer to aligned memory, returned
1485   kmp_allocator_t *allocator; // allocator
1486 } kmp_mem_desc_t;
1487 static int alignment = sizeof(void *); // align to pointer size by default
1488 
1489 // external interfaces are wrappers over internal implementation
1490 void *__kmpc_alloc(int gtid, size_t size, omp_allocator_handle_t allocator) {
1491   KE_TRACE(25, ("__kmpc_alloc: T#%d (%d, %p)\n", gtid, (int)size, allocator));
1492   void *ptr = __kmp_alloc(gtid, 0, size, allocator);
1493   KE_TRACE(25, ("__kmpc_alloc returns %p, T#%d\n", ptr, gtid));
1494   return ptr;
1495 }
1496 
1497 void *__kmpc_aligned_alloc(int gtid, size_t algn, size_t size,
1498                            omp_allocator_handle_t allocator) {
1499   KE_TRACE(25, ("__kmpc_aligned_alloc: T#%d (%d, %d, %p)\n", gtid, (int)algn,
1500                 (int)size, allocator));
1501   void *ptr = __kmp_alloc(gtid, algn, size, allocator);
1502   KE_TRACE(25, ("__kmpc_aligned_alloc returns %p, T#%d\n", ptr, gtid));
1503   return ptr;
1504 }
1505 
1506 void *__kmpc_calloc(int gtid, size_t nmemb, size_t size,
1507                     omp_allocator_handle_t allocator) {
1508   KE_TRACE(25, ("__kmpc_calloc: T#%d (%d, %d, %p)\n", gtid, (int)nmemb,
1509                 (int)size, allocator));
1510   void *ptr = __kmp_calloc(gtid, 0, nmemb, size, allocator);
1511   KE_TRACE(25, ("__kmpc_calloc returns %p, T#%d\n", ptr, gtid));
1512   return ptr;
1513 }
1514 
1515 void *__kmpc_realloc(int gtid, void *ptr, size_t size,
1516                      omp_allocator_handle_t allocator,
1517                      omp_allocator_handle_t free_allocator) {
1518   KE_TRACE(25, ("__kmpc_realloc: T#%d (%p, %d, %p, %p)\n", gtid, ptr, (int)size,
1519                 allocator, free_allocator));
1520   void *nptr = __kmp_realloc(gtid, ptr, size, allocator, free_allocator);
1521   KE_TRACE(25, ("__kmpc_realloc returns %p, T#%d\n", nptr, gtid));
1522   return nptr;
1523 }
1524 
1525 void __kmpc_free(int gtid, void *ptr, omp_allocator_handle_t allocator) {
1526   KE_TRACE(25, ("__kmpc_free: T#%d free(%p,%p)\n", gtid, ptr, allocator));
1527   ___kmpc_free(gtid, ptr, allocator);
1528   KE_TRACE(10, ("__kmpc_free: T#%d freed %p (%p)\n", gtid, ptr, allocator));
1529   return;
1530 }
1531 
1532 // internal implementation, called from inside the library
1533 void *__kmp_alloc(int gtid, size_t algn, size_t size,
1534                   omp_allocator_handle_t allocator) {
1535   void *ptr = NULL;
1536   kmp_allocator_t *al;
1537   KMP_DEBUG_ASSERT(__kmp_init_serial);
1538   if (size == 0)
1539     return NULL;
1540   if (allocator == omp_null_allocator)
1541     allocator = __kmp_threads[gtid]->th.th_def_allocator;
1542 
1543   al = RCAST(kmp_allocator_t *, allocator);
1544 
1545   int sz_desc = sizeof(kmp_mem_desc_t);
1546   kmp_mem_desc_t desc;
1547   kmp_uintptr_t addr; // address returned by allocator
1548   kmp_uintptr_t addr_align; // address to return to caller
1549   kmp_uintptr_t addr_descr; // address of memory block descriptor
1550   size_t align = alignment; // default alignment
1551   if (allocator > kmp_max_mem_alloc && al->alignment > align)
1552     align = al->alignment; // alignment required by allocator trait
1553   if (align < algn)
1554     align = algn; // max of allocator trait, parameter and sizeof(void*)
1555   desc.size_orig = size;
1556   desc.size_a = size + sz_desc + align;
1557 
1558   if (__kmp_memkind_available) {
1559     if (allocator < kmp_max_mem_alloc) {
1560       // pre-defined allocator
1561       if (allocator == omp_high_bw_mem_alloc && mk_hbw_preferred) {
1562         ptr = kmp_mk_alloc(*mk_hbw_preferred, desc.size_a);
1563       } else if (allocator == omp_large_cap_mem_alloc && mk_dax_kmem_all) {
1564         ptr = kmp_mk_alloc(*mk_dax_kmem_all, desc.size_a);
1565       } else {
1566         ptr = kmp_mk_alloc(*mk_default, desc.size_a);
1567       }
1568     } else if (al->pool_size > 0) {
1569       // custom allocator with pool size requested
1570       kmp_uint64 used =
1571           KMP_TEST_THEN_ADD64((kmp_int64 *)&al->pool_used, desc.size_a);
1572       if (used + desc.size_a > al->pool_size) {
1573         // not enough space, need to go fallback path
1574         KMP_TEST_THEN_ADD64((kmp_int64 *)&al->pool_used, -desc.size_a);
1575         if (al->fb == omp_atv_default_mem_fb) {
1576           al = (kmp_allocator_t *)omp_default_mem_alloc;
1577           ptr = kmp_mk_alloc(*mk_default, desc.size_a);
1578         } else if (al->fb == omp_atv_abort_fb) {
1579           KMP_ASSERT(0); // abort fallback requested
1580         } else if (al->fb == omp_atv_allocator_fb) {
1581           KMP_ASSERT(al != al->fb_data);
1582           al = al->fb_data;
1583           return __kmp_alloc(gtid, algn, size, (omp_allocator_handle_t)al);
1584         } // else ptr == NULL;
1585       } else {
1586         // pool has enough space
1587         ptr = kmp_mk_alloc(*al->memkind, desc.size_a);
1588         if (ptr == NULL) {
1589           if (al->fb == omp_atv_default_mem_fb) {
1590             al = (kmp_allocator_t *)omp_default_mem_alloc;
1591             ptr = kmp_mk_alloc(*mk_default, desc.size_a);
1592           } else if (al->fb == omp_atv_abort_fb) {
1593             KMP_ASSERT(0); // abort fallback requested
1594           } else if (al->fb == omp_atv_allocator_fb) {
1595             KMP_ASSERT(al != al->fb_data);
1596             al = al->fb_data;
1597             return __kmp_alloc(gtid, algn, size, (omp_allocator_handle_t)al);
1598           }
1599         }
1600       }
1601     } else {
1602       // custom allocator, pool size not requested
1603       ptr = kmp_mk_alloc(*al->memkind, desc.size_a);
1604       if (ptr == NULL) {
1605         if (al->fb == omp_atv_default_mem_fb) {
1606           al = (kmp_allocator_t *)omp_default_mem_alloc;
1607           ptr = kmp_mk_alloc(*mk_default, desc.size_a);
1608         } else if (al->fb == omp_atv_abort_fb) {
1609           KMP_ASSERT(0); // abort fallback requested
1610         } else if (al->fb == omp_atv_allocator_fb) {
1611           KMP_ASSERT(al != al->fb_data);
1612           al = al->fb_data;
1613           return __kmp_alloc(gtid, algn, size, (omp_allocator_handle_t)al);
1614         }
1615       }
1616     }
1617   } else if (allocator < kmp_max_mem_alloc) {
1618     if (KMP_IS_TARGET_MEM_ALLOC(allocator)) {
1619       // Use size input directly as the memory may not be accessible on host.
1620       // Use default device for now.
1621       if (__kmp_target_mem_available) {
1622         kmp_int32 device =
1623             __kmp_threads[gtid]->th.th_current_task->td_icvs.default_device;
1624         if (allocator == llvm_omp_target_host_mem_alloc)
1625           ptr = kmp_target_alloc_host(size, device);
1626         else if (allocator == llvm_omp_target_shared_mem_alloc)
1627           ptr = kmp_target_alloc_shared(size, device);
1628         else // allocator == llvm_omp_target_device_mem_alloc
1629           ptr = kmp_target_alloc_device(size, device);
1630       }
1631       return ptr;
1632     }
1633 
1634     // pre-defined allocator
1635     if (allocator == omp_high_bw_mem_alloc) {
1636       // ptr = NULL;
1637     } else if (allocator == omp_large_cap_mem_alloc) {
1638       // warnings?
1639     } else {
1640       ptr = __kmp_thread_malloc(__kmp_thread_from_gtid(gtid), desc.size_a);
1641     }
1642   } else if (KMP_IS_TARGET_MEM_SPACE(al->memspace)) {
1643     if (__kmp_target_mem_available) {
1644       kmp_int32 device =
1645           __kmp_threads[gtid]->th.th_current_task->td_icvs.default_device;
1646       if (al->memspace == llvm_omp_target_host_mem_space)
1647         ptr = kmp_target_alloc_host(size, device);
1648       else if (al->memspace == llvm_omp_target_shared_mem_space)
1649         ptr = kmp_target_alloc_shared(size, device);
1650       else // al->memspace == llvm_omp_target_device_mem_space
1651         ptr = kmp_target_alloc_device(size, device);
1652     }
1653     return ptr;
1654   } else if (al->pool_size > 0) {
1655     // custom allocator with pool size requested
1656     kmp_uint64 used =
1657         KMP_TEST_THEN_ADD64((kmp_int64 *)&al->pool_used, desc.size_a);
1658     if (used + desc.size_a > al->pool_size) {
1659       // not enough space, need to go fallback path
1660       KMP_TEST_THEN_ADD64((kmp_int64 *)&al->pool_used, -desc.size_a);
1661       if (al->fb == omp_atv_default_mem_fb) {
1662         al = (kmp_allocator_t *)omp_default_mem_alloc;
1663         ptr = __kmp_thread_malloc(__kmp_thread_from_gtid(gtid), desc.size_a);
1664       } else if (al->fb == omp_atv_abort_fb) {
1665         KMP_ASSERT(0); // abort fallback requested
1666       } else if (al->fb == omp_atv_allocator_fb) {
1667         KMP_ASSERT(al != al->fb_data);
1668         al = al->fb_data;
1669         return __kmp_alloc(gtid, algn, size, (omp_allocator_handle_t)al);
1670       } // else ptr == NULL;
1671     } else {
1672       // pool has enough space
1673       ptr = __kmp_thread_malloc(__kmp_thread_from_gtid(gtid), desc.size_a);
1674       if (ptr == NULL && al->fb == omp_atv_abort_fb) {
1675         KMP_ASSERT(0); // abort fallback requested
1676       } // no sense to look for another fallback because of same internal alloc
1677     }
1678   } else {
1679     // custom allocator, pool size not requested
1680     ptr = __kmp_thread_malloc(__kmp_thread_from_gtid(gtid), desc.size_a);
1681     if (ptr == NULL && al->fb == omp_atv_abort_fb) {
1682       KMP_ASSERT(0); // abort fallback requested
1683     } // no sense to look for another fallback because of same internal alloc
1684   }
1685   KE_TRACE(10, ("__kmp_alloc: T#%d %p=alloc(%d)\n", gtid, ptr, desc.size_a));
1686   if (ptr == NULL)
1687     return NULL;
1688 
1689   addr = (kmp_uintptr_t)ptr;
1690   addr_align = (addr + sz_desc + align - 1) & ~(align - 1);
1691   addr_descr = addr_align - sz_desc;
1692 
1693   desc.ptr_alloc = ptr;
1694   desc.ptr_align = (void *)addr_align;
1695   desc.allocator = al;
1696   *((kmp_mem_desc_t *)addr_descr) = desc; // save descriptor contents
1697   KMP_MB();
1698 
1699   return desc.ptr_align;
1700 }
1701 
1702 void *__kmp_calloc(int gtid, size_t algn, size_t nmemb, size_t size,
1703                    omp_allocator_handle_t allocator) {
1704   void *ptr = NULL;
1705   kmp_allocator_t *al;
1706   KMP_DEBUG_ASSERT(__kmp_init_serial);
1707 
1708   if (allocator == omp_null_allocator)
1709     allocator = __kmp_threads[gtid]->th.th_def_allocator;
1710 
1711   al = RCAST(kmp_allocator_t *, allocator);
1712 
1713   if (nmemb == 0 || size == 0)
1714     return ptr;
1715 
1716   if ((SIZE_MAX - sizeof(kmp_mem_desc_t)) / size < nmemb) {
1717     if (al->fb == omp_atv_abort_fb) {
1718       KMP_ASSERT(0);
1719     }
1720     return ptr;
1721   }
1722 
1723   ptr = __kmp_alloc(gtid, algn, nmemb * size, allocator);
1724 
1725   if (ptr) {
1726     memset(ptr, 0x00, nmemb * size);
1727   }
1728   return ptr;
1729 }
1730 
1731 void *__kmp_realloc(int gtid, void *ptr, size_t size,
1732                     omp_allocator_handle_t allocator,
1733                     omp_allocator_handle_t free_allocator) {
1734   void *nptr = NULL;
1735   KMP_DEBUG_ASSERT(__kmp_init_serial);
1736 
1737   if (size == 0) {
1738     if (ptr != NULL)
1739       ___kmpc_free(gtid, ptr, free_allocator);
1740     return nptr;
1741   }
1742 
1743   nptr = __kmp_alloc(gtid, 0, size, allocator);
1744 
1745   if (nptr != NULL && ptr != NULL) {
1746     kmp_mem_desc_t desc;
1747     kmp_uintptr_t addr_align; // address to return to caller
1748     kmp_uintptr_t addr_descr; // address of memory block descriptor
1749 
1750     addr_align = (kmp_uintptr_t)ptr;
1751     addr_descr = addr_align - sizeof(kmp_mem_desc_t);
1752     desc = *((kmp_mem_desc_t *)addr_descr); // read descriptor
1753 
1754     KMP_DEBUG_ASSERT(desc.ptr_align == ptr);
1755     KMP_DEBUG_ASSERT(desc.size_orig > 0);
1756     KMP_DEBUG_ASSERT(desc.size_orig < desc.size_a);
1757     KMP_MEMCPY((char *)nptr, (char *)ptr,
1758                (size_t)((size < desc.size_orig) ? size : desc.size_orig));
1759   }
1760 
1761   if (nptr != NULL) {
1762     ___kmpc_free(gtid, ptr, free_allocator);
1763   }
1764 
1765   return nptr;
1766 }
1767 
1768 void ___kmpc_free(int gtid, void *ptr, omp_allocator_handle_t allocator) {
1769   if (ptr == NULL)
1770     return;
1771 
1772   kmp_allocator_t *al;
1773   omp_allocator_handle_t oal;
1774   al = RCAST(kmp_allocator_t *, CCAST(omp_allocator_handle_t, allocator));
1775   kmp_mem_desc_t desc;
1776   kmp_uintptr_t addr_align; // address to return to caller
1777   kmp_uintptr_t addr_descr; // address of memory block descriptor
1778   if (KMP_IS_TARGET_MEM_ALLOC(allocator) ||
1779       (allocator > kmp_max_mem_alloc &&
1780        KMP_IS_TARGET_MEM_SPACE(al->memspace))) {
1781     KMP_DEBUG_ASSERT(kmp_target_free);
1782     kmp_int32 device =
1783         __kmp_threads[gtid]->th.th_current_task->td_icvs.default_device;
1784     kmp_target_free(ptr, device);
1785     return;
1786   }
1787 
1788   addr_align = (kmp_uintptr_t)ptr;
1789   addr_descr = addr_align - sizeof(kmp_mem_desc_t);
1790   desc = *((kmp_mem_desc_t *)addr_descr); // read descriptor
1791 
1792   KMP_DEBUG_ASSERT(desc.ptr_align == ptr);
1793   if (allocator) {
1794     KMP_DEBUG_ASSERT(desc.allocator == al || desc.allocator == al->fb_data);
1795   }
1796   al = desc.allocator;
1797   oal = (omp_allocator_handle_t)al; // cast to void* for comparisons
1798   KMP_DEBUG_ASSERT(al);
1799 
1800   if (__kmp_memkind_available) {
1801     if (oal < kmp_max_mem_alloc) {
1802       // pre-defined allocator
1803       if (oal == omp_high_bw_mem_alloc && mk_hbw_preferred) {
1804         kmp_mk_free(*mk_hbw_preferred, desc.ptr_alloc);
1805       } else if (oal == omp_large_cap_mem_alloc && mk_dax_kmem_all) {
1806         kmp_mk_free(*mk_dax_kmem_all, desc.ptr_alloc);
1807       } else {
1808         kmp_mk_free(*mk_default, desc.ptr_alloc);
1809       }
1810     } else {
1811       if (al->pool_size > 0) { // custom allocator with pool size requested
1812         kmp_uint64 used =
1813             KMP_TEST_THEN_ADD64((kmp_int64 *)&al->pool_used, -desc.size_a);
1814         (void)used; // to suppress compiler warning
1815         KMP_DEBUG_ASSERT(used >= desc.size_a);
1816       }
1817       kmp_mk_free(*al->memkind, desc.ptr_alloc);
1818     }
1819   } else {
1820     if (oal > kmp_max_mem_alloc && al->pool_size > 0) {
1821       kmp_uint64 used =
1822           KMP_TEST_THEN_ADD64((kmp_int64 *)&al->pool_used, -desc.size_a);
1823       (void)used; // to suppress compiler warning
1824       KMP_DEBUG_ASSERT(used >= desc.size_a);
1825     }
1826     __kmp_thread_free(__kmp_thread_from_gtid(gtid), desc.ptr_alloc);
1827   }
1828 }
1829 
1830 /* If LEAK_MEMORY is defined, __kmp_free() will *not* free memory. It causes
1831    memory leaks, but it may be useful for debugging memory corruptions, used
1832    freed pointers, etc. */
1833 /* #define LEAK_MEMORY */
1834 struct kmp_mem_descr { // Memory block descriptor.
1835   void *ptr_allocated; // Pointer returned by malloc(), subject for free().
1836   size_t size_allocated; // Size of allocated memory block.
1837   void *ptr_aligned; // Pointer to aligned memory, to be used by client code.
1838   size_t size_aligned; // Size of aligned memory block.
1839 };
1840 typedef struct kmp_mem_descr kmp_mem_descr_t;
1841 
1842 /* Allocate memory on requested boundary, fill allocated memory with 0x00.
1843    NULL is NEVER returned, __kmp_abort() is called in case of memory allocation
1844    error. Must use __kmp_free when freeing memory allocated by this routine! */
1845 static void *___kmp_allocate_align(size_t size,
1846                                    size_t alignment KMP_SRC_LOC_DECL) {
1847   /* __kmp_allocate() allocates (by call to malloc()) bigger memory block than
1848      requested to return properly aligned pointer. Original pointer returned
1849      by malloc() and size of allocated block is saved in descriptor just
1850      before the aligned pointer. This information used by __kmp_free() -- it
1851      has to pass to free() original pointer, not aligned one.
1852 
1853           +---------+------------+-----------------------------------+---------+
1854           | padding | descriptor |           aligned block           | padding |
1855           +---------+------------+-----------------------------------+---------+
1856           ^                      ^
1857           |                      |
1858           |                      +- Aligned pointer returned to caller
1859           +- Pointer returned by malloc()
1860 
1861       Aligned block is filled with zeros, paddings are filled with 0xEF. */
1862 
1863   kmp_mem_descr_t descr;
1864   kmp_uintptr_t addr_allocated; // Address returned by malloc().
1865   kmp_uintptr_t addr_aligned; // Aligned address to return to caller.
1866   kmp_uintptr_t addr_descr; // Address of memory block descriptor.
1867 
1868   KE_TRACE(25, ("-> ___kmp_allocate_align( %d, %d ) called from %s:%d\n",
1869                 (int)size, (int)alignment KMP_SRC_LOC_PARM));
1870 
1871   KMP_DEBUG_ASSERT(alignment < 32 * 1024); // Alignment should not be too
1872   KMP_DEBUG_ASSERT(sizeof(void *) <= sizeof(kmp_uintptr_t));
1873   // Make sure kmp_uintptr_t is enough to store addresses.
1874 
1875   descr.size_aligned = size;
1876   descr.size_allocated =
1877       descr.size_aligned + sizeof(kmp_mem_descr_t) + alignment;
1878 
1879 #if KMP_DEBUG
1880   descr.ptr_allocated = _malloc_src_loc(descr.size_allocated, _file_, _line_);
1881 #else
1882   descr.ptr_allocated = malloc_src_loc(descr.size_allocated KMP_SRC_LOC_PARM);
1883 #endif
1884   KE_TRACE(10, ("   malloc( %d ) returned %p\n", (int)descr.size_allocated,
1885                 descr.ptr_allocated));
1886   if (descr.ptr_allocated == NULL) {
1887     KMP_FATAL(OutOfHeapMemory);
1888   }
1889 
1890   addr_allocated = (kmp_uintptr_t)descr.ptr_allocated;
1891   addr_aligned =
1892       (addr_allocated + sizeof(kmp_mem_descr_t) + alignment) & ~(alignment - 1);
1893   addr_descr = addr_aligned - sizeof(kmp_mem_descr_t);
1894 
1895   descr.ptr_aligned = (void *)addr_aligned;
1896 
1897   KE_TRACE(26, ("   ___kmp_allocate_align: "
1898                 "ptr_allocated=%p, size_allocated=%d, "
1899                 "ptr_aligned=%p, size_aligned=%d\n",
1900                 descr.ptr_allocated, (int)descr.size_allocated,
1901                 descr.ptr_aligned, (int)descr.size_aligned));
1902 
1903   KMP_DEBUG_ASSERT(addr_allocated <= addr_descr);
1904   KMP_DEBUG_ASSERT(addr_descr + sizeof(kmp_mem_descr_t) == addr_aligned);
1905   KMP_DEBUG_ASSERT(addr_aligned + descr.size_aligned <=
1906                    addr_allocated + descr.size_allocated);
1907   KMP_DEBUG_ASSERT(addr_aligned % alignment == 0);
1908 #ifdef KMP_DEBUG
1909   memset(descr.ptr_allocated, 0xEF, descr.size_allocated);
1910 // Fill allocated memory block with 0xEF.
1911 #endif
1912   memset(descr.ptr_aligned, 0x00, descr.size_aligned);
1913   // Fill the aligned memory block (which is intended for using by caller) with
1914   // 0x00. Do not
1915   // put this filling under KMP_DEBUG condition! Many callers expect zeroed
1916   // memory. (Padding
1917   // bytes remain filled with 0xEF in debugging library.)
1918   *((kmp_mem_descr_t *)addr_descr) = descr;
1919 
1920   KMP_MB();
1921 
1922   KE_TRACE(25, ("<- ___kmp_allocate_align() returns %p\n", descr.ptr_aligned));
1923   return descr.ptr_aligned;
1924 } // func ___kmp_allocate_align
1925 
1926 /* Allocate memory on cache line boundary, fill allocated memory with 0x00.
1927    Do not call this func directly! Use __kmp_allocate macro instead.
1928    NULL is NEVER returned, __kmp_abort() is called in case of memory allocation
1929    error. Must use __kmp_free when freeing memory allocated by this routine! */
1930 void *___kmp_allocate(size_t size KMP_SRC_LOC_DECL) {
1931   void *ptr;
1932   KE_TRACE(25, ("-> __kmp_allocate( %d ) called from %s:%d\n",
1933                 (int)size KMP_SRC_LOC_PARM));
1934   ptr = ___kmp_allocate_align(size, __kmp_align_alloc KMP_SRC_LOC_PARM);
1935   KE_TRACE(25, ("<- __kmp_allocate() returns %p\n", ptr));
1936   return ptr;
1937 } // func ___kmp_allocate
1938 
1939 /* Allocate memory on page boundary, fill allocated memory with 0x00.
1940    Does not call this func directly! Use __kmp_page_allocate macro instead.
1941    NULL is NEVER returned, __kmp_abort() is called in case of memory allocation
1942    error. Must use __kmp_free when freeing memory allocated by this routine! */
1943 void *___kmp_page_allocate(size_t size KMP_SRC_LOC_DECL) {
1944   int page_size = 8 * 1024;
1945   void *ptr;
1946 
1947   KE_TRACE(25, ("-> __kmp_page_allocate( %d ) called from %s:%d\n",
1948                 (int)size KMP_SRC_LOC_PARM));
1949   ptr = ___kmp_allocate_align(size, page_size KMP_SRC_LOC_PARM);
1950   KE_TRACE(25, ("<- __kmp_page_allocate( %d ) returns %p\n", (int)size, ptr));
1951   return ptr;
1952 } // ___kmp_page_allocate
1953 
1954 /* Free memory allocated by __kmp_allocate() and __kmp_page_allocate().
1955    In debug mode, fill the memory block with 0xEF before call to free(). */
1956 void ___kmp_free(void *ptr KMP_SRC_LOC_DECL) {
1957   kmp_mem_descr_t descr;
1958 #if KMP_DEBUG
1959   kmp_uintptr_t addr_allocated; // Address returned by malloc().
1960   kmp_uintptr_t addr_aligned; // Aligned address passed by caller.
1961 #endif
1962   KE_TRACE(25,
1963            ("-> __kmp_free( %p ) called from %s:%d\n", ptr KMP_SRC_LOC_PARM));
1964   KMP_ASSERT(ptr != NULL);
1965 
1966   descr = *(kmp_mem_descr_t *)((kmp_uintptr_t)ptr - sizeof(kmp_mem_descr_t));
1967 
1968   KE_TRACE(26, ("   __kmp_free:     "
1969                 "ptr_allocated=%p, size_allocated=%d, "
1970                 "ptr_aligned=%p, size_aligned=%d\n",
1971                 descr.ptr_allocated, (int)descr.size_allocated,
1972                 descr.ptr_aligned, (int)descr.size_aligned));
1973 #if KMP_DEBUG
1974   addr_allocated = (kmp_uintptr_t)descr.ptr_allocated;
1975   addr_aligned = (kmp_uintptr_t)descr.ptr_aligned;
1976   KMP_DEBUG_ASSERT(addr_aligned % CACHE_LINE == 0);
1977   KMP_DEBUG_ASSERT(descr.ptr_aligned == ptr);
1978   KMP_DEBUG_ASSERT(addr_allocated + sizeof(kmp_mem_descr_t) <= addr_aligned);
1979   KMP_DEBUG_ASSERT(descr.size_aligned < descr.size_allocated);
1980   KMP_DEBUG_ASSERT(addr_aligned + descr.size_aligned <=
1981                    addr_allocated + descr.size_allocated);
1982   memset(descr.ptr_allocated, 0xEF, descr.size_allocated);
1983 // Fill memory block with 0xEF, it helps catch using freed memory.
1984 #endif
1985 
1986 #ifndef LEAK_MEMORY
1987   KE_TRACE(10, ("   free( %p )\n", descr.ptr_allocated));
1988 #ifdef KMP_DEBUG
1989   _free_src_loc(descr.ptr_allocated, _file_, _line_);
1990 #else
1991   free_src_loc(descr.ptr_allocated KMP_SRC_LOC_PARM);
1992 #endif
1993 #endif
1994   KMP_MB();
1995   KE_TRACE(25, ("<- __kmp_free() returns\n"));
1996 } // func ___kmp_free
1997 
1998 #if USE_FAST_MEMORY == 3
1999 // Allocate fast memory by first scanning the thread's free lists
2000 // If a chunk the right size exists, grab it off the free list.
2001 // Otherwise allocate normally using kmp_thread_malloc.
2002 
2003 // AC: How to choose the limit? Just get 16 for now...
2004 #define KMP_FREE_LIST_LIMIT 16
2005 
2006 // Always use 128 bytes for determining buckets for caching memory blocks
2007 #define DCACHE_LINE 128
2008 
2009 void *___kmp_fast_allocate(kmp_info_t *this_thr, size_t size KMP_SRC_LOC_DECL) {
2010   void *ptr;
2011   size_t num_lines, idx;
2012   int index;
2013   void *alloc_ptr;
2014   size_t alloc_size;
2015   kmp_mem_descr_t *descr;
2016 
2017   KE_TRACE(25, ("-> __kmp_fast_allocate( T#%d, %d ) called from %s:%d\n",
2018                 __kmp_gtid_from_thread(this_thr), (int)size KMP_SRC_LOC_PARM));
2019 
2020   num_lines = (size + DCACHE_LINE - 1) / DCACHE_LINE;
2021   idx = num_lines - 1;
2022   KMP_DEBUG_ASSERT(idx >= 0);
2023   if (idx < 2) {
2024     index = 0; // idx is [ 0, 1 ], use first free list
2025     num_lines = 2; // 1, 2 cache lines or less than cache line
2026   } else if ((idx >>= 2) == 0) {
2027     index = 1; // idx is [ 2, 3 ], use second free list
2028     num_lines = 4; // 3, 4 cache lines
2029   } else if ((idx >>= 2) == 0) {
2030     index = 2; // idx is [ 4, 15 ], use third free list
2031     num_lines = 16; // 5, 6, ..., 16 cache lines
2032   } else if ((idx >>= 2) == 0) {
2033     index = 3; // idx is [ 16, 63 ], use fourth free list
2034     num_lines = 64; // 17, 18, ..., 64 cache lines
2035   } else {
2036     goto alloc_call; // 65 or more cache lines ( > 8KB ), don't use free lists
2037   }
2038 
2039   ptr = this_thr->th.th_free_lists[index].th_free_list_self;
2040   if (ptr != NULL) {
2041     // pop the head of no-sync free list
2042     this_thr->th.th_free_lists[index].th_free_list_self = *((void **)ptr);
2043     KMP_DEBUG_ASSERT(this_thr == ((kmp_mem_descr_t *)((kmp_uintptr_t)ptr -
2044                                                       sizeof(kmp_mem_descr_t)))
2045                                      ->ptr_aligned);
2046     goto end;
2047   }
2048   ptr = TCR_SYNC_PTR(this_thr->th.th_free_lists[index].th_free_list_sync);
2049   if (ptr != NULL) {
2050     // no-sync free list is empty, use sync free list (filled in by other
2051     // threads only)
2052     // pop the head of the sync free list, push NULL instead
2053     while (!KMP_COMPARE_AND_STORE_PTR(
2054         &this_thr->th.th_free_lists[index].th_free_list_sync, ptr, nullptr)) {
2055       KMP_CPU_PAUSE();
2056       ptr = TCR_SYNC_PTR(this_thr->th.th_free_lists[index].th_free_list_sync);
2057     }
2058     // push the rest of chain into no-sync free list (can be NULL if there was
2059     // the only block)
2060     this_thr->th.th_free_lists[index].th_free_list_self = *((void **)ptr);
2061     KMP_DEBUG_ASSERT(this_thr == ((kmp_mem_descr_t *)((kmp_uintptr_t)ptr -
2062                                                       sizeof(kmp_mem_descr_t)))
2063                                      ->ptr_aligned);
2064     goto end;
2065   }
2066 
2067 alloc_call:
2068   // haven't found block in the free lists, thus allocate it
2069   size = num_lines * DCACHE_LINE;
2070 
2071   alloc_size = size + sizeof(kmp_mem_descr_t) + DCACHE_LINE;
2072   KE_TRACE(25, ("__kmp_fast_allocate: T#%d Calling __kmp_thread_malloc with "
2073                 "alloc_size %d\n",
2074                 __kmp_gtid_from_thread(this_thr), alloc_size));
2075   alloc_ptr = bget(this_thr, (bufsize)alloc_size);
2076 
2077   // align ptr to DCACHE_LINE
2078   ptr = (void *)((((kmp_uintptr_t)alloc_ptr) + sizeof(kmp_mem_descr_t) +
2079                   DCACHE_LINE) &
2080                  ~(DCACHE_LINE - 1));
2081   descr = (kmp_mem_descr_t *)(((kmp_uintptr_t)ptr) - sizeof(kmp_mem_descr_t));
2082 
2083   descr->ptr_allocated = alloc_ptr; // remember allocated pointer
2084   // we don't need size_allocated
2085   descr->ptr_aligned = (void *)this_thr; // remember allocating thread
2086   // (it is already saved in bget buffer,
2087   // but we may want to use another allocator in future)
2088   descr->size_aligned = size;
2089 
2090 end:
2091   KE_TRACE(25, ("<- __kmp_fast_allocate( T#%d ) returns %p\n",
2092                 __kmp_gtid_from_thread(this_thr), ptr));
2093   return ptr;
2094 } // func __kmp_fast_allocate
2095 
2096 // Free fast memory and place it on the thread's free list if it is of
2097 // the correct size.
2098 void ___kmp_fast_free(kmp_info_t *this_thr, void *ptr KMP_SRC_LOC_DECL) {
2099   kmp_mem_descr_t *descr;
2100   kmp_info_t *alloc_thr;
2101   size_t size;
2102   size_t idx;
2103   int index;
2104 
2105   KE_TRACE(25, ("-> __kmp_fast_free( T#%d, %p ) called from %s:%d\n",
2106                 __kmp_gtid_from_thread(this_thr), ptr KMP_SRC_LOC_PARM));
2107   KMP_ASSERT(ptr != NULL);
2108 
2109   descr = (kmp_mem_descr_t *)(((kmp_uintptr_t)ptr) - sizeof(kmp_mem_descr_t));
2110 
2111   KE_TRACE(26, ("   __kmp_fast_free:     size_aligned=%d\n",
2112                 (int)descr->size_aligned));
2113 
2114   size = descr->size_aligned; // 2, 4, 16, 64, 65, 66, ... cache lines
2115 
2116   idx = DCACHE_LINE * 2; // 2 cache lines is minimal size of block
2117   if (idx == size) {
2118     index = 0; // 2 cache lines
2119   } else if ((idx <<= 1) == size) {
2120     index = 1; // 4 cache lines
2121   } else if ((idx <<= 2) == size) {
2122     index = 2; // 16 cache lines
2123   } else if ((idx <<= 2) == size) {
2124     index = 3; // 64 cache lines
2125   } else {
2126     KMP_DEBUG_ASSERT(size > DCACHE_LINE * 64);
2127     goto free_call; // 65 or more cache lines ( > 8KB )
2128   }
2129 
2130   alloc_thr = (kmp_info_t *)descr->ptr_aligned; // get thread owning the block
2131   if (alloc_thr == this_thr) {
2132     // push block to self no-sync free list, linking previous head (LIFO)
2133     *((void **)ptr) = this_thr->th.th_free_lists[index].th_free_list_self;
2134     this_thr->th.th_free_lists[index].th_free_list_self = ptr;
2135   } else {
2136     void *head = this_thr->th.th_free_lists[index].th_free_list_other;
2137     if (head == NULL) {
2138       // Create new free list
2139       this_thr->th.th_free_lists[index].th_free_list_other = ptr;
2140       *((void **)ptr) = NULL; // mark the tail of the list
2141       descr->size_allocated = (size_t)1; // head of the list keeps its length
2142     } else {
2143       // need to check existed "other" list's owner thread and size of queue
2144       kmp_mem_descr_t *dsc =
2145           (kmp_mem_descr_t *)((char *)head - sizeof(kmp_mem_descr_t));
2146       // allocating thread, same for all queue nodes
2147       kmp_info_t *q_th = (kmp_info_t *)(dsc->ptr_aligned);
2148       size_t q_sz =
2149           dsc->size_allocated + 1; // new size in case we add current task
2150       if (q_th == alloc_thr && q_sz <= KMP_FREE_LIST_LIMIT) {
2151         // we can add current task to "other" list, no sync needed
2152         *((void **)ptr) = head;
2153         descr->size_allocated = q_sz;
2154         this_thr->th.th_free_lists[index].th_free_list_other = ptr;
2155       } else {
2156         // either queue blocks owner is changing or size limit exceeded
2157         // return old queue to allocating thread (q_th) synchronously,
2158         // and start new list for alloc_thr's tasks
2159         void *old_ptr;
2160         void *tail = head;
2161         void *next = *((void **)head);
2162         while (next != NULL) {
2163           KMP_DEBUG_ASSERT(
2164               // queue size should decrease by 1 each step through the list
2165               ((kmp_mem_descr_t *)((char *)next - sizeof(kmp_mem_descr_t)))
2166                       ->size_allocated +
2167                   1 ==
2168               ((kmp_mem_descr_t *)((char *)tail - sizeof(kmp_mem_descr_t)))
2169                   ->size_allocated);
2170           tail = next; // remember tail node
2171           next = *((void **)next);
2172         }
2173         KMP_DEBUG_ASSERT(q_th != NULL);
2174         // push block to owner's sync free list
2175         old_ptr = TCR_PTR(q_th->th.th_free_lists[index].th_free_list_sync);
2176         /* the next pointer must be set before setting free_list to ptr to avoid
2177            exposing a broken list to other threads, even for an instant. */
2178         *((void **)tail) = old_ptr;
2179 
2180         while (!KMP_COMPARE_AND_STORE_PTR(
2181             &q_th->th.th_free_lists[index].th_free_list_sync, old_ptr, head)) {
2182           KMP_CPU_PAUSE();
2183           old_ptr = TCR_PTR(q_th->th.th_free_lists[index].th_free_list_sync);
2184           *((void **)tail) = old_ptr;
2185         }
2186 
2187         // start new list of not-selt tasks
2188         this_thr->th.th_free_lists[index].th_free_list_other = ptr;
2189         *((void **)ptr) = NULL;
2190         descr->size_allocated = (size_t)1; // head of queue keeps its length
2191       }
2192     }
2193   }
2194   goto end;
2195 
2196 free_call:
2197   KE_TRACE(25, ("__kmp_fast_free: T#%d Calling __kmp_thread_free for size %d\n",
2198                 __kmp_gtid_from_thread(this_thr), size));
2199   __kmp_bget_dequeue(this_thr); /* Release any queued buffers */
2200   brel(this_thr, descr->ptr_allocated);
2201 
2202 end:
2203   KE_TRACE(25, ("<- __kmp_fast_free() returns\n"));
2204 
2205 } // func __kmp_fast_free
2206 
2207 // Initialize the thread free lists related to fast memory
2208 // Only do this when a thread is initially created.
2209 void __kmp_initialize_fast_memory(kmp_info_t *this_thr) {
2210   KE_TRACE(10, ("__kmp_initialize_fast_memory: Called from th %p\n", this_thr));
2211 
2212   memset(this_thr->th.th_free_lists, 0, NUM_LISTS * sizeof(kmp_free_list_t));
2213 }
2214 
2215 // Free the memory in the thread free lists related to fast memory
2216 // Only do this when a thread is being reaped (destroyed).
2217 void __kmp_free_fast_memory(kmp_info_t *th) {
2218   // Suppose we use BGET underlying allocator, walk through its structures...
2219   int bin;
2220   thr_data_t *thr = get_thr_data(th);
2221   void **lst = NULL;
2222 
2223   KE_TRACE(
2224       5, ("__kmp_free_fast_memory: Called T#%d\n", __kmp_gtid_from_thread(th)));
2225 
2226   __kmp_bget_dequeue(th); // Release any queued buffers
2227 
2228   // Dig through free lists and extract all allocated blocks
2229   for (bin = 0; bin < MAX_BGET_BINS; ++bin) {
2230     bfhead_t *b = thr->freelist[bin].ql.flink;
2231     while (b != &thr->freelist[bin]) {
2232       if ((kmp_uintptr_t)b->bh.bb.bthr & 1) { // the buffer is allocated address
2233         *((void **)b) =
2234             lst; // link the list (override bthr, but keep flink yet)
2235         lst = (void **)b; // push b into lst
2236       }
2237       b = b->ql.flink; // get next buffer
2238     }
2239   }
2240   while (lst != NULL) {
2241     void *next = *lst;
2242     KE_TRACE(10, ("__kmp_free_fast_memory: freeing %p, next=%p th %p (%d)\n",
2243                   lst, next, th, __kmp_gtid_from_thread(th)));
2244     (*thr->relfcn)(lst);
2245 #if BufStats
2246     // count blocks to prevent problems in __kmp_finalize_bget()
2247     thr->numprel++; /* Nr of expansion block releases */
2248     thr->numpblk--; /* Total number of blocks */
2249 #endif
2250     lst = (void **)next;
2251   }
2252 
2253   KE_TRACE(
2254       5, ("__kmp_free_fast_memory: Freed T#%d\n", __kmp_gtid_from_thread(th)));
2255 }
2256 
2257 #endif // USE_FAST_MEMORY
2258