xref: /freebsd/contrib/llvm-project/openmp/runtime/src/kmp_affinity.cpp (revision ae7e8a02e6e93455e026036132c4d053b2c12ad9)
1 /*
2  * kmp_affinity.cpp -- affinity management
3  */
4 
5 //===----------------------------------------------------------------------===//
6 //
7 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
8 // See https://llvm.org/LICENSE.txt for license information.
9 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "kmp.h"
14 #include "kmp_affinity.h"
15 #include "kmp_i18n.h"
16 #include "kmp_io.h"
17 #include "kmp_str.h"
18 #include "kmp_wrapper_getpid.h"
19 #if KMP_USE_HIER_SCHED
20 #include "kmp_dispatch_hier.h"
21 #endif
22 
23 // Store the real or imagined machine hierarchy here
24 static hierarchy_info machine_hierarchy;
25 
26 void __kmp_cleanup_hierarchy() { machine_hierarchy.fini(); }
27 
28 void __kmp_get_hierarchy(kmp_uint32 nproc, kmp_bstate_t *thr_bar) {
29   kmp_uint32 depth;
30   // The test below is true if affinity is available, but set to "none". Need to
31   // init on first use of hierarchical barrier.
32   if (TCR_1(machine_hierarchy.uninitialized))
33     machine_hierarchy.init(NULL, nproc);
34 
35   // Adjust the hierarchy in case num threads exceeds original
36   if (nproc > machine_hierarchy.base_num_threads)
37     machine_hierarchy.resize(nproc);
38 
39   depth = machine_hierarchy.depth;
40   KMP_DEBUG_ASSERT(depth > 0);
41 
42   thr_bar->depth = depth;
43   __kmp_type_convert(machine_hierarchy.numPerLevel[0] - 1,
44                      &(thr_bar->base_leaf_kids));
45   thr_bar->skip_per_level = machine_hierarchy.skipPerLevel;
46 }
47 
48 #if KMP_AFFINITY_SUPPORTED
49 
50 bool KMPAffinity::picked_api = false;
51 
52 void *KMPAffinity::Mask::operator new(size_t n) { return __kmp_allocate(n); }
53 void *KMPAffinity::Mask::operator new[](size_t n) { return __kmp_allocate(n); }
54 void KMPAffinity::Mask::operator delete(void *p) { __kmp_free(p); }
55 void KMPAffinity::Mask::operator delete[](void *p) { __kmp_free(p); }
56 void *KMPAffinity::operator new(size_t n) { return __kmp_allocate(n); }
57 void KMPAffinity::operator delete(void *p) { __kmp_free(p); }
58 
59 void KMPAffinity::pick_api() {
60   KMPAffinity *affinity_dispatch;
61   if (picked_api)
62     return;
63 #if KMP_USE_HWLOC
64   // Only use Hwloc if affinity isn't explicitly disabled and
65   // user requests Hwloc topology method
66   if (__kmp_affinity_top_method == affinity_top_method_hwloc &&
67       __kmp_affinity_type != affinity_disabled) {
68     affinity_dispatch = new KMPHwlocAffinity();
69   } else
70 #endif
71   {
72     affinity_dispatch = new KMPNativeAffinity();
73   }
74   __kmp_affinity_dispatch = affinity_dispatch;
75   picked_api = true;
76 }
77 
78 void KMPAffinity::destroy_api() {
79   if (__kmp_affinity_dispatch != NULL) {
80     delete __kmp_affinity_dispatch;
81     __kmp_affinity_dispatch = NULL;
82     picked_api = false;
83   }
84 }
85 
86 #define KMP_ADVANCE_SCAN(scan)                                                 \
87   while (*scan != '\0') {                                                      \
88     scan++;                                                                    \
89   }
90 
91 // Print the affinity mask to the character array in a pretty format.
92 // The format is a comma separated list of non-negative integers or integer
93 // ranges: e.g., 1,2,3-5,7,9-15
94 // The format can also be the string "{<empty>}" if no bits are set in mask
95 char *__kmp_affinity_print_mask(char *buf, int buf_len,
96                                 kmp_affin_mask_t *mask) {
97   int start = 0, finish = 0, previous = 0;
98   bool first_range;
99   KMP_ASSERT(buf);
100   KMP_ASSERT(buf_len >= 40);
101   KMP_ASSERT(mask);
102   char *scan = buf;
103   char *end = buf + buf_len - 1;
104 
105   // Check for empty set.
106   if (mask->begin() == mask->end()) {
107     KMP_SNPRINTF(scan, end - scan + 1, "{<empty>}");
108     KMP_ADVANCE_SCAN(scan);
109     KMP_ASSERT(scan <= end);
110     return buf;
111   }
112 
113   first_range = true;
114   start = mask->begin();
115   while (1) {
116     // Find next range
117     // [start, previous] is inclusive range of contiguous bits in mask
118     for (finish = mask->next(start), previous = start;
119          finish == previous + 1 && finish != mask->end();
120          finish = mask->next(finish)) {
121       previous = finish;
122     }
123 
124     // The first range does not need a comma printed before it, but the rest
125     // of the ranges do need a comma beforehand
126     if (!first_range) {
127       KMP_SNPRINTF(scan, end - scan + 1, "%s", ",");
128       KMP_ADVANCE_SCAN(scan);
129     } else {
130       first_range = false;
131     }
132     // Range with three or more contiguous bits in the affinity mask
133     if (previous - start > 1) {
134       KMP_SNPRINTF(scan, end - scan + 1, "%u-%u", start, previous);
135     } else {
136       // Range with one or two contiguous bits in the affinity mask
137       KMP_SNPRINTF(scan, end - scan + 1, "%u", start);
138       KMP_ADVANCE_SCAN(scan);
139       if (previous - start > 0) {
140         KMP_SNPRINTF(scan, end - scan + 1, ",%u", previous);
141       }
142     }
143     KMP_ADVANCE_SCAN(scan);
144     // Start over with new start point
145     start = finish;
146     if (start == mask->end())
147       break;
148     // Check for overflow
149     if (end - scan < 2)
150       break;
151   }
152 
153   // Check for overflow
154   KMP_ASSERT(scan <= end);
155   return buf;
156 }
157 #undef KMP_ADVANCE_SCAN
158 
159 // Print the affinity mask to the string buffer object in a pretty format
160 // The format is a comma separated list of non-negative integers or integer
161 // ranges: e.g., 1,2,3-5,7,9-15
162 // The format can also be the string "{<empty>}" if no bits are set in mask
163 kmp_str_buf_t *__kmp_affinity_str_buf_mask(kmp_str_buf_t *buf,
164                                            kmp_affin_mask_t *mask) {
165   int start = 0, finish = 0, previous = 0;
166   bool first_range;
167   KMP_ASSERT(buf);
168   KMP_ASSERT(mask);
169 
170   __kmp_str_buf_clear(buf);
171 
172   // Check for empty set.
173   if (mask->begin() == mask->end()) {
174     __kmp_str_buf_print(buf, "%s", "{<empty>}");
175     return buf;
176   }
177 
178   first_range = true;
179   start = mask->begin();
180   while (1) {
181     // Find next range
182     // [start, previous] is inclusive range of contiguous bits in mask
183     for (finish = mask->next(start), previous = start;
184          finish == previous + 1 && finish != mask->end();
185          finish = mask->next(finish)) {
186       previous = finish;
187     }
188 
189     // The first range does not need a comma printed before it, but the rest
190     // of the ranges do need a comma beforehand
191     if (!first_range) {
192       __kmp_str_buf_print(buf, "%s", ",");
193     } else {
194       first_range = false;
195     }
196     // Range with three or more contiguous bits in the affinity mask
197     if (previous - start > 1) {
198       __kmp_str_buf_print(buf, "%u-%u", start, previous);
199     } else {
200       // Range with one or two contiguous bits in the affinity mask
201       __kmp_str_buf_print(buf, "%u", start);
202       if (previous - start > 0) {
203         __kmp_str_buf_print(buf, ",%u", previous);
204       }
205     }
206     // Start over with new start point
207     start = finish;
208     if (start == mask->end())
209       break;
210   }
211   return buf;
212 }
213 
214 void __kmp_affinity_entire_machine_mask(kmp_affin_mask_t *mask) {
215   KMP_CPU_ZERO(mask);
216 
217 #if KMP_GROUP_AFFINITY
218 
219   if (__kmp_num_proc_groups > 1) {
220     int group;
221     KMP_DEBUG_ASSERT(__kmp_GetActiveProcessorCount != NULL);
222     for (group = 0; group < __kmp_num_proc_groups; group++) {
223       int i;
224       int num = __kmp_GetActiveProcessorCount(group);
225       for (i = 0; i < num; i++) {
226         KMP_CPU_SET(i + group * (CHAR_BIT * sizeof(DWORD_PTR)), mask);
227       }
228     }
229   } else
230 
231 #endif /* KMP_GROUP_AFFINITY */
232 
233   {
234     int proc;
235     for (proc = 0; proc < __kmp_xproc; proc++) {
236       KMP_CPU_SET(proc, mask);
237     }
238   }
239 }
240 
241 // When sorting by labels, __kmp_affinity_assign_child_nums() must first be
242 // called to renumber the labels from [0..n] and place them into the child_num
243 // vector of the address object.  This is done in case the labels used for
244 // the children at one node of the hierarchy differ from those used for
245 // another node at the same level.  Example:  suppose the machine has 2 nodes
246 // with 2 packages each.  The first node contains packages 601 and 602, and
247 // second node contains packages 603 and 604.  If we try to sort the table
248 // for "scatter" affinity, the table will still be sorted 601, 602, 603, 604
249 // because we are paying attention to the labels themselves, not the ordinal
250 // child numbers.  By using the child numbers in the sort, the result is
251 // {0,0}=601, {0,1}=603, {1,0}=602, {1,1}=604.
252 static void __kmp_affinity_assign_child_nums(AddrUnsPair *address2os,
253                                              int numAddrs) {
254   KMP_DEBUG_ASSERT(numAddrs > 0);
255   int depth = address2os->first.depth;
256   unsigned *counts = (unsigned *)__kmp_allocate(depth * sizeof(unsigned));
257   unsigned *lastLabel = (unsigned *)__kmp_allocate(depth * sizeof(unsigned));
258   int labCt;
259   for (labCt = 0; labCt < depth; labCt++) {
260     address2os[0].first.childNums[labCt] = counts[labCt] = 0;
261     lastLabel[labCt] = address2os[0].first.labels[labCt];
262   }
263   int i;
264   for (i = 1; i < numAddrs; i++) {
265     for (labCt = 0; labCt < depth; labCt++) {
266       if (address2os[i].first.labels[labCt] != lastLabel[labCt]) {
267         int labCt2;
268         for (labCt2 = labCt + 1; labCt2 < depth; labCt2++) {
269           counts[labCt2] = 0;
270           lastLabel[labCt2] = address2os[i].first.labels[labCt2];
271         }
272         counts[labCt]++;
273         lastLabel[labCt] = address2os[i].first.labels[labCt];
274         break;
275       }
276     }
277     for (labCt = 0; labCt < depth; labCt++) {
278       address2os[i].first.childNums[labCt] = counts[labCt];
279     }
280     for (; labCt < (int)Address::maxDepth; labCt++) {
281       address2os[i].first.childNums[labCt] = 0;
282     }
283   }
284   __kmp_free(lastLabel);
285   __kmp_free(counts);
286 }
287 
288 // All of the __kmp_affinity_create_*_map() routines should set
289 // __kmp_affinity_masks to a vector of affinity mask objects of length
290 // __kmp_affinity_num_masks, if __kmp_affinity_type != affinity_none, and return
291 // the number of levels in the machine topology tree (zero if
292 // __kmp_affinity_type == affinity_none).
293 //
294 // All of the __kmp_affinity_create_*_map() routines should set
295 // *__kmp_affin_fullMask to the affinity mask for the initialization thread.
296 // They need to save and restore the mask, and it could be needed later, so
297 // saving it is just an optimization to avoid calling kmp_get_system_affinity()
298 // again.
299 kmp_affin_mask_t *__kmp_affin_fullMask = NULL;
300 
301 static int nCoresPerPkg, nPackages;
302 static int __kmp_nThreadsPerCore;
303 #ifndef KMP_DFLT_NTH_CORES
304 static int __kmp_ncores;
305 #endif
306 static int *__kmp_pu_os_idx = NULL;
307 
308 // __kmp_affinity_uniform_topology() doesn't work when called from
309 // places which support arbitrarily many levels in the machine topology
310 // map, i.e. the non-default cases in __kmp_affinity_create_cpuinfo_map()
311 // __kmp_affinity_create_x2apicid_map().
312 inline static bool __kmp_affinity_uniform_topology() {
313   return __kmp_avail_proc == (__kmp_nThreadsPerCore * nCoresPerPkg * nPackages);
314 }
315 
316 // Print out the detailed machine topology map, i.e. the physical locations
317 // of each OS proc.
318 static void __kmp_affinity_print_topology(AddrUnsPair *address2os, int len,
319                                           int depth, int pkgLevel,
320                                           int coreLevel, int threadLevel) {
321   int proc;
322 
323   KMP_INFORM(OSProcToPhysicalThreadMap, "KMP_AFFINITY");
324   for (proc = 0; proc < len; proc++) {
325     int level;
326     kmp_str_buf_t buf;
327     __kmp_str_buf_init(&buf);
328     for (level = 0; level < depth; level++) {
329       if (level == threadLevel) {
330         __kmp_str_buf_print(&buf, "%s ", KMP_I18N_STR(Thread));
331       } else if (level == coreLevel) {
332         __kmp_str_buf_print(&buf, "%s ", KMP_I18N_STR(Core));
333       } else if (level == pkgLevel) {
334         __kmp_str_buf_print(&buf, "%s ", KMP_I18N_STR(Package));
335       } else if (level > pkgLevel) {
336         __kmp_str_buf_print(&buf, "%s_%d ", KMP_I18N_STR(Node),
337                             level - pkgLevel - 1);
338       } else {
339         __kmp_str_buf_print(&buf, "L%d ", level);
340       }
341       __kmp_str_buf_print(&buf, "%d ", address2os[proc].first.labels[level]);
342     }
343     KMP_INFORM(OSProcMapToPack, "KMP_AFFINITY", address2os[proc].second,
344                buf.str);
345     __kmp_str_buf_free(&buf);
346   }
347 }
348 
349 #if KMP_USE_HWLOC
350 
351 static void __kmp_affinity_print_hwloc_tp(AddrUnsPair *addrP, int len,
352                                           int depth, int *levels) {
353   int proc;
354   kmp_str_buf_t buf;
355   __kmp_str_buf_init(&buf);
356   KMP_INFORM(OSProcToPhysicalThreadMap, "KMP_AFFINITY");
357   for (proc = 0; proc < len; proc++) {
358     __kmp_str_buf_print(&buf, "%s %d ", KMP_I18N_STR(Package),
359                         addrP[proc].first.labels[0]);
360     if (depth > 1) {
361       int level = 1; // iterate over levels
362       int label = 1; // iterate over labels
363       if (__kmp_numa_detected)
364         // node level follows package
365         if (levels[level++] > 0)
366           __kmp_str_buf_print(&buf, "%s %d ", KMP_I18N_STR(Node),
367                               addrP[proc].first.labels[label++]);
368       if (__kmp_tile_depth > 0)
369         // tile level follows node if any, or package
370         if (levels[level++] > 0)
371           __kmp_str_buf_print(&buf, "%s %d ", KMP_I18N_STR(Tile),
372                               addrP[proc].first.labels[label++]);
373       if (levels[level++] > 0)
374         // core level follows
375         __kmp_str_buf_print(&buf, "%s %d ", KMP_I18N_STR(Core),
376                             addrP[proc].first.labels[label++]);
377       if (levels[level++] > 0)
378         // thread level is the latest
379         __kmp_str_buf_print(&buf, "%s %d ", KMP_I18N_STR(Thread),
380                             addrP[proc].first.labels[label++]);
381       KMP_DEBUG_ASSERT(label == depth);
382     }
383     KMP_INFORM(OSProcMapToPack, "KMP_AFFINITY", addrP[proc].second, buf.str);
384     __kmp_str_buf_clear(&buf);
385   }
386   __kmp_str_buf_free(&buf);
387 }
388 
389 static int nNodePerPkg, nTilePerPkg, nTilePerNode, nCorePerNode, nCorePerTile;
390 
391 // This function removes the topology levels that are radix 1 and don't offer
392 // further information about the topology.  The most common example is when you
393 // have one thread context per core, we don't want the extra thread context
394 // level if it offers no unique labels.  So they are removed.
395 // return value: the new depth of address2os
396 static int __kmp_affinity_remove_radix_one_levels(AddrUnsPair *addrP, int nTh,
397                                                   int depth, int *levels) {
398   int level;
399   int i;
400   int radix1_detected;
401   int new_depth = depth;
402   for (level = depth - 1; level > 0; --level) {
403     // Detect if this level is radix 1
404     radix1_detected = 1;
405     for (i = 1; i < nTh; ++i) {
406       if (addrP[0].first.labels[level] != addrP[i].first.labels[level]) {
407         // There are differing label values for this level so it stays
408         radix1_detected = 0;
409         break;
410       }
411     }
412     if (!radix1_detected)
413       continue;
414     // Radix 1 was detected
415     --new_depth;
416     levels[level] = -1; // mark level as not present in address2os array
417     if (level == new_depth) {
418       // "turn off" deepest level, just decrement the depth that removes
419       // the level from address2os array
420       for (i = 0; i < nTh; ++i) {
421         addrP[i].first.depth--;
422       }
423     } else {
424       // For other levels, we move labels over and also reduce the depth
425       int j;
426       for (j = level; j < new_depth; ++j) {
427         for (i = 0; i < nTh; ++i) {
428           addrP[i].first.labels[j] = addrP[i].first.labels[j + 1];
429           addrP[i].first.depth--;
430         }
431         levels[j + 1] -= 1;
432       }
433     }
434   }
435   return new_depth;
436 }
437 
438 // Returns the number of objects of type 'type' below 'obj' within the topology
439 // tree structure. e.g., if obj is a HWLOC_OBJ_PACKAGE object, and type is
440 // HWLOC_OBJ_PU, then this will return the number of PU's under the SOCKET
441 // object.
442 static int __kmp_hwloc_get_nobjs_under_obj(hwloc_obj_t obj,
443                                            hwloc_obj_type_t type) {
444   int retval = 0;
445   hwloc_obj_t first;
446   for (first = hwloc_get_obj_below_by_type(__kmp_hwloc_topology, obj->type,
447                                            obj->logical_index, type, 0);
448        first != NULL &&
449        hwloc_get_ancestor_obj_by_type(__kmp_hwloc_topology, obj->type, first) ==
450            obj;
451        first = hwloc_get_next_obj_by_type(__kmp_hwloc_topology, first->type,
452                                           first)) {
453     ++retval;
454   }
455   return retval;
456 }
457 
458 static int __kmp_hwloc_count_children_by_depth(hwloc_topology_t t,
459                                                hwloc_obj_t o,
460                                                kmp_hwloc_depth_t depth,
461                                                hwloc_obj_t *f) {
462   if (o->depth == depth) {
463     if (*f == NULL)
464       *f = o; // output first descendant found
465     return 1;
466   }
467   int sum = 0;
468   for (unsigned i = 0; i < o->arity; i++)
469     sum += __kmp_hwloc_count_children_by_depth(t, o->children[i], depth, f);
470   return sum; // will be 0 if no one found (as PU arity is 0)
471 }
472 
473 static int __kmp_hwloc_count_children_by_type(hwloc_topology_t t, hwloc_obj_t o,
474                                               hwloc_obj_type_t type,
475                                               hwloc_obj_t *f) {
476   if (!hwloc_compare_types(o->type, type)) {
477     if (*f == NULL)
478       *f = o; // output first descendant found
479     return 1;
480   }
481   int sum = 0;
482   for (unsigned i = 0; i < o->arity; i++)
483     sum += __kmp_hwloc_count_children_by_type(t, o->children[i], type, f);
484   return sum; // will be 0 if no one found (as PU arity is 0)
485 }
486 
487 static int __kmp_hwloc_process_obj_core_pu(AddrUnsPair *addrPair,
488                                            int &nActiveThreads,
489                                            int &num_active_cores,
490                                            hwloc_obj_t obj, int depth,
491                                            int *labels) {
492   hwloc_obj_t core = NULL;
493   hwloc_topology_t &tp = __kmp_hwloc_topology;
494   int NC = __kmp_hwloc_count_children_by_type(tp, obj, HWLOC_OBJ_CORE, &core);
495   for (int core_id = 0; core_id < NC; ++core_id, core = core->next_cousin) {
496     hwloc_obj_t pu = NULL;
497     KMP_DEBUG_ASSERT(core != NULL);
498     int num_active_threads = 0;
499     int NT = __kmp_hwloc_count_children_by_type(tp, core, HWLOC_OBJ_PU, &pu);
500     // int NT = core->arity; pu = core->first_child; // faster?
501     for (int pu_id = 0; pu_id < NT; ++pu_id, pu = pu->next_cousin) {
502       KMP_DEBUG_ASSERT(pu != NULL);
503       if (!KMP_CPU_ISSET(pu->os_index, __kmp_affin_fullMask))
504         continue; // skip inactive (inaccessible) unit
505       Address addr(depth + 2);
506       KA_TRACE(20, ("Hwloc inserting %d (%d) %d (%d) %d (%d) into address2os\n",
507                     obj->os_index, obj->logical_index, core->os_index,
508                     core->logical_index, pu->os_index, pu->logical_index));
509       for (int i = 0; i < depth; ++i)
510         addr.labels[i] = labels[i]; // package, etc.
511       addr.labels[depth] = core_id; // core
512       addr.labels[depth + 1] = pu_id; // pu
513       addrPair[nActiveThreads] = AddrUnsPair(addr, pu->os_index);
514       __kmp_pu_os_idx[nActiveThreads] = pu->os_index;
515       nActiveThreads++;
516       ++num_active_threads; // count active threads per core
517     }
518     if (num_active_threads) { // were there any active threads on the core?
519       ++__kmp_ncores; // count total active cores
520       ++num_active_cores; // count active cores per socket
521       if (num_active_threads > __kmp_nThreadsPerCore)
522         __kmp_nThreadsPerCore = num_active_threads; // calc maximum
523     }
524   }
525   return 0;
526 }
527 
528 // Check if NUMA node detected below the package,
529 // and if tile object is detected and return its depth
530 static int __kmp_hwloc_check_numa() {
531   hwloc_topology_t &tp = __kmp_hwloc_topology;
532   hwloc_obj_t hT, hC, hL, hN, hS; // hwloc objects (pointers to)
533   int depth, l2cache_depth, package_depth;
534 
535   // Get some PU
536   hT = hwloc_get_obj_by_type(tp, HWLOC_OBJ_PU, 0);
537   if (hT == NULL) // something has gone wrong
538     return 1;
539 
540   // check NUMA node below PACKAGE
541   hN = hwloc_get_ancestor_obj_by_type(tp, HWLOC_OBJ_NUMANODE, hT);
542   hS = hwloc_get_ancestor_obj_by_type(tp, HWLOC_OBJ_PACKAGE, hT);
543   KMP_DEBUG_ASSERT(hS != NULL);
544   if (hN != NULL && hN->depth > hS->depth) {
545     __kmp_numa_detected = TRUE; // socket includes node(s)
546     if (__kmp_affinity_gran == affinity_gran_node) {
547       __kmp_affinity_gran = affinity_gran_numa;
548     }
549   }
550 
551   package_depth = hwloc_get_type_depth(tp, HWLOC_OBJ_PACKAGE);
552   l2cache_depth = hwloc_get_cache_type_depth(tp, 2, HWLOC_OBJ_CACHE_UNIFIED);
553   // check tile, get object by depth because of multiple caches possible
554   depth = (l2cache_depth < package_depth) ? package_depth : l2cache_depth;
555   hL = hwloc_get_ancestor_obj_by_depth(tp, depth, hT);
556   hC = NULL; // not used, but reset it here just in case
557   if (hL != NULL &&
558       __kmp_hwloc_count_children_by_type(tp, hL, HWLOC_OBJ_CORE, &hC) > 1)
559     __kmp_tile_depth = depth; // tile consists of multiple cores
560   return 0;
561 }
562 
563 static int __kmp_affinity_create_hwloc_map(AddrUnsPair **address2os,
564                                            kmp_i18n_id_t *const msg_id) {
565   hwloc_topology_t &tp = __kmp_hwloc_topology; // shortcut of a long name
566   *address2os = NULL;
567   *msg_id = kmp_i18n_null;
568 
569   // Save the affinity mask for the current thread.
570   kmp_affin_mask_t *oldMask;
571   KMP_CPU_ALLOC(oldMask);
572   __kmp_get_system_affinity(oldMask, TRUE);
573   __kmp_hwloc_check_numa();
574 
575   if (!KMP_AFFINITY_CAPABLE()) {
576     // Hack to try and infer the machine topology using only the data
577     // available from cpuid on the current thread, and __kmp_xproc.
578     KMP_ASSERT(__kmp_affinity_type == affinity_none);
579     // hwloc only guarantees existance of PU object, so check PACKAGE and CORE
580     hwloc_obj_t o = hwloc_get_obj_by_type(tp, HWLOC_OBJ_PACKAGE, 0);
581     if (o != NULL)
582       nCoresPerPkg = __kmp_hwloc_get_nobjs_under_obj(o, HWLOC_OBJ_CORE);
583     else
584       nCoresPerPkg = 1; // no PACKAGE found
585     o = hwloc_get_obj_by_type(tp, HWLOC_OBJ_CORE, 0);
586     if (o != NULL)
587       __kmp_nThreadsPerCore = __kmp_hwloc_get_nobjs_under_obj(o, HWLOC_OBJ_PU);
588     else
589       __kmp_nThreadsPerCore = 1; // no CORE found
590     __kmp_ncores = __kmp_xproc / __kmp_nThreadsPerCore;
591     if (nCoresPerPkg == 0)
592       nCoresPerPkg = 1; // to prevent possible division by 0
593     nPackages = (__kmp_xproc + nCoresPerPkg - 1) / nCoresPerPkg;
594     if (__kmp_affinity_verbose) {
595       KMP_INFORM(AffNotCapableUseLocCpuidL11, "KMP_AFFINITY");
596       KMP_INFORM(AvailableOSProc, "KMP_AFFINITY", __kmp_avail_proc);
597       if (__kmp_affinity_uniform_topology()) {
598         KMP_INFORM(Uniform, "KMP_AFFINITY");
599       } else {
600         KMP_INFORM(NonUniform, "KMP_AFFINITY");
601       }
602       KMP_INFORM(Topology, "KMP_AFFINITY", nPackages, nCoresPerPkg,
603                  __kmp_nThreadsPerCore, __kmp_ncores);
604     }
605     KMP_CPU_FREE(oldMask);
606     return 0;
607   }
608 
609   int depth = 3;
610   int levels[5] = {0, 1, 2, 3, 4}; // package, [node,] [tile,] core, thread
611   int labels[3] = {0}; // package [,node] [,tile] - head of labels array
612   if (__kmp_numa_detected)
613     ++depth;
614   if (__kmp_tile_depth)
615     ++depth;
616 
617   // Allocate the data structure to be returned.
618   AddrUnsPair *retval =
619       (AddrUnsPair *)__kmp_allocate(sizeof(AddrUnsPair) * __kmp_avail_proc);
620   KMP_DEBUG_ASSERT(__kmp_pu_os_idx == NULL);
621   __kmp_pu_os_idx = (int *)__kmp_allocate(sizeof(int) * __kmp_avail_proc);
622 
623   // When affinity is off, this routine will still be called to set
624   // __kmp_ncores, as well as __kmp_nThreadsPerCore,
625   // nCoresPerPkg, & nPackages.  Make sure all these vars are set
626   // correctly, and return if affinity is not enabled.
627 
628   hwloc_obj_t socket, node, tile;
629   int nActiveThreads = 0;
630   int socket_id = 0;
631   // re-calculate globals to count only accessible resources
632   __kmp_ncores = nPackages = nCoresPerPkg = __kmp_nThreadsPerCore = 0;
633   nNodePerPkg = nTilePerPkg = nTilePerNode = nCorePerNode = nCorePerTile = 0;
634   for (socket = hwloc_get_obj_by_type(tp, HWLOC_OBJ_PACKAGE, 0); socket != NULL;
635        socket = hwloc_get_next_obj_by_type(tp, HWLOC_OBJ_PACKAGE, socket),
636       socket_id++) {
637     labels[0] = socket_id;
638     if (__kmp_numa_detected) {
639       int NN;
640       int n_active_nodes = 0;
641       node = NULL;
642       NN = __kmp_hwloc_count_children_by_type(tp, socket, HWLOC_OBJ_NUMANODE,
643                                               &node);
644       for (int node_id = 0; node_id < NN; ++node_id, node = node->next_cousin) {
645         labels[1] = node_id;
646         if (__kmp_tile_depth) {
647           // NUMA + tiles
648           int NT;
649           int n_active_tiles = 0;
650           tile = NULL;
651           NT = __kmp_hwloc_count_children_by_depth(tp, node, __kmp_tile_depth,
652                                                    &tile);
653           for (int tl_id = 0; tl_id < NT; ++tl_id, tile = tile->next_cousin) {
654             labels[2] = tl_id;
655             int n_active_cores = 0;
656             __kmp_hwloc_process_obj_core_pu(retval, nActiveThreads,
657                                             n_active_cores, tile, 3, labels);
658             if (n_active_cores) { // were there any active cores on the socket?
659               ++n_active_tiles; // count active tiles per node
660               if (n_active_cores > nCorePerTile)
661                 nCorePerTile = n_active_cores; // calc maximum
662             }
663           }
664           if (n_active_tiles) { // were there any active tiles on the socket?
665             ++n_active_nodes; // count active nodes per package
666             if (n_active_tiles > nTilePerNode)
667               nTilePerNode = n_active_tiles; // calc maximum
668           }
669         } else {
670           // NUMA, no tiles
671           int n_active_cores = 0;
672           __kmp_hwloc_process_obj_core_pu(retval, nActiveThreads,
673                                           n_active_cores, node, 2, labels);
674           if (n_active_cores) { // were there any active cores on the socket?
675             ++n_active_nodes; // count active nodes per package
676             if (n_active_cores > nCorePerNode)
677               nCorePerNode = n_active_cores; // calc maximum
678           }
679         }
680       }
681       if (n_active_nodes) { // were there any active nodes on the socket?
682         ++nPackages; // count total active packages
683         if (n_active_nodes > nNodePerPkg)
684           nNodePerPkg = n_active_nodes; // calc maximum
685       }
686     } else {
687       if (__kmp_tile_depth) {
688         // no NUMA, tiles
689         int NT;
690         int n_active_tiles = 0;
691         tile = NULL;
692         NT = __kmp_hwloc_count_children_by_depth(tp, socket, __kmp_tile_depth,
693                                                  &tile);
694         for (int tl_id = 0; tl_id < NT; ++tl_id, tile = tile->next_cousin) {
695           labels[1] = tl_id;
696           int n_active_cores = 0;
697           __kmp_hwloc_process_obj_core_pu(retval, nActiveThreads,
698                                           n_active_cores, tile, 2, labels);
699           if (n_active_cores) { // were there any active cores on the socket?
700             ++n_active_tiles; // count active tiles per package
701             if (n_active_cores > nCorePerTile)
702               nCorePerTile = n_active_cores; // calc maximum
703           }
704         }
705         if (n_active_tiles) { // were there any active tiles on the socket?
706           ++nPackages; // count total active packages
707           if (n_active_tiles > nTilePerPkg)
708             nTilePerPkg = n_active_tiles; // calc maximum
709         }
710       } else {
711         // no NUMA, no tiles
712         int n_active_cores = 0;
713         __kmp_hwloc_process_obj_core_pu(retval, nActiveThreads, n_active_cores,
714                                         socket, 1, labels);
715         if (n_active_cores) { // were there any active cores on the socket?
716           ++nPackages; // count total active packages
717           if (n_active_cores > nCoresPerPkg)
718             nCoresPerPkg = n_active_cores; // calc maximum
719         }
720       }
721     }
722   }
723 
724   // If there's only one thread context to bind to, return now.
725   KMP_DEBUG_ASSERT(nActiveThreads == __kmp_avail_proc);
726   KMP_ASSERT(nActiveThreads > 0);
727   if (nActiveThreads == 1) {
728     __kmp_ncores = nPackages = 1;
729     __kmp_nThreadsPerCore = nCoresPerPkg = 1;
730     if (__kmp_affinity_verbose) {
731       KMP_INFORM(AffUsingHwloc, "KMP_AFFINITY");
732       KMP_INFORM(AvailableOSProc, "KMP_AFFINITY", __kmp_avail_proc);
733       KMP_INFORM(Uniform, "KMP_AFFINITY");
734       KMP_INFORM(Topology, "KMP_AFFINITY", nPackages, nCoresPerPkg,
735                  __kmp_nThreadsPerCore, __kmp_ncores);
736     }
737 
738     if (__kmp_affinity_type == affinity_none) {
739       __kmp_free(retval);
740       KMP_CPU_FREE(oldMask);
741       return 0;
742     }
743 
744     // Form an Address object which only includes the package level.
745     Address addr(1);
746     addr.labels[0] = retval[0].first.labels[0];
747     retval[0].first = addr;
748 
749     if (__kmp_affinity_gran_levels < 0) {
750       __kmp_affinity_gran_levels = 0;
751     }
752 
753     if (__kmp_affinity_verbose) {
754       __kmp_affinity_print_topology(retval, 1, 1, 0, -1, -1);
755     }
756 
757     *address2os = retval;
758     KMP_CPU_FREE(oldMask);
759     return 1;
760   }
761 
762   // Sort the table by physical Id.
763   qsort(retval, nActiveThreads, sizeof(*retval),
764         __kmp_affinity_cmp_Address_labels);
765 
766   // Check to see if the machine topology is uniform
767   int nPUs = nPackages * __kmp_nThreadsPerCore;
768   if (__kmp_numa_detected) {
769     if (__kmp_tile_depth) { // NUMA + tiles
770       nPUs *= (nNodePerPkg * nTilePerNode * nCorePerTile);
771     } else { // NUMA, no tiles
772       nPUs *= (nNodePerPkg * nCorePerNode);
773     }
774   } else {
775     if (__kmp_tile_depth) { // no NUMA, tiles
776       nPUs *= (nTilePerPkg * nCorePerTile);
777     } else { // no NUMA, no tiles
778       nPUs *= nCoresPerPkg;
779     }
780   }
781   unsigned uniform = (nPUs == nActiveThreads);
782 
783   // Print the machine topology summary.
784   if (__kmp_affinity_verbose) {
785     KMP_INFORM(AvailableOSProc, "KMP_AFFINITY", __kmp_avail_proc);
786     if (uniform) {
787       KMP_INFORM(Uniform, "KMP_AFFINITY");
788     } else {
789       KMP_INFORM(NonUniform, "KMP_AFFINITY");
790     }
791     if (__kmp_numa_detected) {
792       if (__kmp_tile_depth) { // NUMA + tiles
793         KMP_INFORM(TopologyExtraNoTi, "KMP_AFFINITY", nPackages, nNodePerPkg,
794                    nTilePerNode, nCorePerTile, __kmp_nThreadsPerCore,
795                    __kmp_ncores);
796       } else { // NUMA, no tiles
797         KMP_INFORM(TopologyExtraNode, "KMP_AFFINITY", nPackages, nNodePerPkg,
798                    nCorePerNode, __kmp_nThreadsPerCore, __kmp_ncores);
799         nPUs *= (nNodePerPkg * nCorePerNode);
800       }
801     } else {
802       if (__kmp_tile_depth) { // no NUMA, tiles
803         KMP_INFORM(TopologyExtraTile, "KMP_AFFINITY", nPackages, nTilePerPkg,
804                    nCorePerTile, __kmp_nThreadsPerCore, __kmp_ncores);
805       } else { // no NUMA, no tiles
806         kmp_str_buf_t buf;
807         __kmp_str_buf_init(&buf);
808         __kmp_str_buf_print(&buf, "%d", nPackages);
809         KMP_INFORM(TopologyExtra, "KMP_AFFINITY", buf.str, nCoresPerPkg,
810                    __kmp_nThreadsPerCore, __kmp_ncores);
811         __kmp_str_buf_free(&buf);
812       }
813     }
814   }
815 
816   if (__kmp_affinity_type == affinity_none) {
817     __kmp_free(retval);
818     KMP_CPU_FREE(oldMask);
819     return 0;
820   }
821 
822   int depth_full = depth; // number of levels before compressing
823   // Find any levels with radix 1, and remove them from the map
824   // (except for the package level).
825   depth = __kmp_affinity_remove_radix_one_levels(retval, nActiveThreads, depth,
826                                                  levels);
827   KMP_DEBUG_ASSERT(__kmp_affinity_gran != affinity_gran_default);
828   if (__kmp_affinity_gran_levels < 0) {
829     // Set the granularity level based on what levels are modeled
830     // in the machine topology map.
831     __kmp_affinity_gran_levels = 0; // lowest level (e.g. fine)
832     if (__kmp_affinity_gran > affinity_gran_thread) {
833       for (int i = 1; i <= depth_full; ++i) {
834         if (__kmp_affinity_gran <= i) // only count deeper levels
835           break;
836         if (levels[depth_full - i] > 0)
837           __kmp_affinity_gran_levels++;
838       }
839     }
840     if (__kmp_affinity_gran > affinity_gran_package)
841       __kmp_affinity_gran_levels++; // e.g. granularity = group
842   }
843 
844   if (__kmp_affinity_verbose)
845     __kmp_affinity_print_hwloc_tp(retval, nActiveThreads, depth, levels);
846 
847   KMP_CPU_FREE(oldMask);
848   *address2os = retval;
849   return depth;
850 }
851 #endif // KMP_USE_HWLOC
852 
853 // If we don't know how to retrieve the machine's processor topology, or
854 // encounter an error in doing so, this routine is called to form a "flat"
855 // mapping of os thread id's <-> processor id's.
856 static int __kmp_affinity_create_flat_map(AddrUnsPair **address2os,
857                                           kmp_i18n_id_t *const msg_id) {
858   *address2os = NULL;
859   *msg_id = kmp_i18n_null;
860 
861   // Even if __kmp_affinity_type == affinity_none, this routine might still
862   // called to set __kmp_ncores, as well as
863   // __kmp_nThreadsPerCore, nCoresPerPkg, & nPackages.
864   if (!KMP_AFFINITY_CAPABLE()) {
865     KMP_ASSERT(__kmp_affinity_type == affinity_none);
866     __kmp_ncores = nPackages = __kmp_xproc;
867     __kmp_nThreadsPerCore = nCoresPerPkg = 1;
868     if (__kmp_affinity_verbose) {
869       KMP_INFORM(AffFlatTopology, "KMP_AFFINITY");
870       KMP_INFORM(AvailableOSProc, "KMP_AFFINITY", __kmp_avail_proc);
871       KMP_INFORM(Uniform, "KMP_AFFINITY");
872       KMP_INFORM(Topology, "KMP_AFFINITY", nPackages, nCoresPerPkg,
873                  __kmp_nThreadsPerCore, __kmp_ncores);
874     }
875     return 0;
876   }
877 
878   // When affinity is off, this routine will still be called to set
879   // __kmp_ncores, as well as __kmp_nThreadsPerCore, nCoresPerPkg, & nPackages.
880   // Make sure all these vars are set correctly, and return now if affinity is
881   // not enabled.
882   __kmp_ncores = nPackages = __kmp_avail_proc;
883   __kmp_nThreadsPerCore = nCoresPerPkg = 1;
884   if (__kmp_affinity_verbose) {
885     KMP_INFORM(AffCapableUseFlat, "KMP_AFFINITY");
886     KMP_INFORM(AvailableOSProc, "KMP_AFFINITY", __kmp_avail_proc);
887     KMP_INFORM(Uniform, "KMP_AFFINITY");
888     KMP_INFORM(Topology, "KMP_AFFINITY", nPackages, nCoresPerPkg,
889                __kmp_nThreadsPerCore, __kmp_ncores);
890   }
891   KMP_DEBUG_ASSERT(__kmp_pu_os_idx == NULL);
892   __kmp_pu_os_idx = (int *)__kmp_allocate(sizeof(int) * __kmp_avail_proc);
893   if (__kmp_affinity_type == affinity_none) {
894     int avail_ct = 0;
895     int i;
896     KMP_CPU_SET_ITERATE(i, __kmp_affin_fullMask) {
897       if (!KMP_CPU_ISSET(i, __kmp_affin_fullMask))
898         continue;
899       __kmp_pu_os_idx[avail_ct++] = i; // suppose indices are flat
900     }
901     return 0;
902   }
903 
904   // Construct the data structure to be returned.
905   *address2os =
906       (AddrUnsPair *)__kmp_allocate(sizeof(**address2os) * __kmp_avail_proc);
907   int avail_ct = 0;
908   int i;
909   KMP_CPU_SET_ITERATE(i, __kmp_affin_fullMask) {
910     // Skip this proc if it is not included in the machine model.
911     if (!KMP_CPU_ISSET(i, __kmp_affin_fullMask)) {
912       continue;
913     }
914     __kmp_pu_os_idx[avail_ct] = i; // suppose indices are flat
915     Address addr(1);
916     addr.labels[0] = i;
917     (*address2os)[avail_ct++] = AddrUnsPair(addr, i);
918   }
919   if (__kmp_affinity_verbose) {
920     KMP_INFORM(OSProcToPackage, "KMP_AFFINITY");
921   }
922 
923   if (__kmp_affinity_gran_levels < 0) {
924     // Only the package level is modeled in the machine topology map,
925     // so the #levels of granularity is either 0 or 1.
926     if (__kmp_affinity_gran > affinity_gran_package) {
927       __kmp_affinity_gran_levels = 1;
928     } else {
929       __kmp_affinity_gran_levels = 0;
930     }
931   }
932   return 1;
933 }
934 
935 #if KMP_GROUP_AFFINITY
936 
937 // If multiple Windows* OS processor groups exist, we can create a 2-level
938 // topology map with the groups at level 0 and the individual procs at level 1.
939 // This facilitates letting the threads float among all procs in a group,
940 // if granularity=group (the default when there are multiple groups).
941 static int __kmp_affinity_create_proc_group_map(AddrUnsPair **address2os,
942                                                 kmp_i18n_id_t *const msg_id) {
943   *address2os = NULL;
944   *msg_id = kmp_i18n_null;
945 
946   // If we aren't affinity capable, then return now.
947   // The flat mapping will be used.
948   if (!KMP_AFFINITY_CAPABLE()) {
949     // FIXME set *msg_id
950     return -1;
951   }
952 
953   // Construct the data structure to be returned.
954   *address2os =
955       (AddrUnsPair *)__kmp_allocate(sizeof(**address2os) * __kmp_avail_proc);
956   KMP_DEBUG_ASSERT(__kmp_pu_os_idx == NULL);
957   __kmp_pu_os_idx = (int *)__kmp_allocate(sizeof(int) * __kmp_avail_proc);
958   int avail_ct = 0;
959   int i;
960   KMP_CPU_SET_ITERATE(i, __kmp_affin_fullMask) {
961     // Skip this proc if it is not included in the machine model.
962     if (!KMP_CPU_ISSET(i, __kmp_affin_fullMask)) {
963       continue;
964     }
965     __kmp_pu_os_idx[avail_ct] = i; // suppose indices are flat
966     Address addr(2);
967     addr.labels[0] = i / (CHAR_BIT * sizeof(DWORD_PTR));
968     addr.labels[1] = i % (CHAR_BIT * sizeof(DWORD_PTR));
969     (*address2os)[avail_ct++] = AddrUnsPair(addr, i);
970 
971     if (__kmp_affinity_verbose) {
972       KMP_INFORM(AffOSProcToGroup, "KMP_AFFINITY", i, addr.labels[0],
973                  addr.labels[1]);
974     }
975   }
976 
977   if (__kmp_affinity_gran_levels < 0) {
978     if (__kmp_affinity_gran == affinity_gran_group) {
979       __kmp_affinity_gran_levels = 1;
980     } else if ((__kmp_affinity_gran == affinity_gran_fine) ||
981                (__kmp_affinity_gran == affinity_gran_thread)) {
982       __kmp_affinity_gran_levels = 0;
983     } else {
984       const char *gran_str = NULL;
985       if (__kmp_affinity_gran == affinity_gran_core) {
986         gran_str = "core";
987       } else if (__kmp_affinity_gran == affinity_gran_package) {
988         gran_str = "package";
989       } else if (__kmp_affinity_gran == affinity_gran_node) {
990         gran_str = "node";
991       } else {
992         KMP_ASSERT(0);
993       }
994 
995       // Warning: can't use affinity granularity \"gran\" with group topology
996       // method, using "thread"
997       __kmp_affinity_gran_levels = 0;
998     }
999   }
1000   return 2;
1001 }
1002 
1003 #endif /* KMP_GROUP_AFFINITY */
1004 
1005 #if KMP_ARCH_X86 || KMP_ARCH_X86_64
1006 
1007 static int __kmp_cpuid_mask_width(int count) {
1008   int r = 0;
1009 
1010   while ((1 << r) < count)
1011     ++r;
1012   return r;
1013 }
1014 
1015 class apicThreadInfo {
1016 public:
1017   unsigned osId; // param to __kmp_affinity_bind_thread
1018   unsigned apicId; // from cpuid after binding
1019   unsigned maxCoresPerPkg; //      ""
1020   unsigned maxThreadsPerPkg; //      ""
1021   unsigned pkgId; // inferred from above values
1022   unsigned coreId; //      ""
1023   unsigned threadId; //      ""
1024 };
1025 
1026 static int __kmp_affinity_cmp_apicThreadInfo_phys_id(const void *a,
1027                                                      const void *b) {
1028   const apicThreadInfo *aa = (const apicThreadInfo *)a;
1029   const apicThreadInfo *bb = (const apicThreadInfo *)b;
1030   if (aa->pkgId < bb->pkgId)
1031     return -1;
1032   if (aa->pkgId > bb->pkgId)
1033     return 1;
1034   if (aa->coreId < bb->coreId)
1035     return -1;
1036   if (aa->coreId > bb->coreId)
1037     return 1;
1038   if (aa->threadId < bb->threadId)
1039     return -1;
1040   if (aa->threadId > bb->threadId)
1041     return 1;
1042   return 0;
1043 }
1044 
1045 // On IA-32 architecture and Intel(R) 64 architecture, we attempt to use
1046 // an algorithm which cycles through the available os threads, setting
1047 // the current thread's affinity mask to that thread, and then retrieves
1048 // the Apic Id for each thread context using the cpuid instruction.
1049 static int __kmp_affinity_create_apicid_map(AddrUnsPair **address2os,
1050                                             kmp_i18n_id_t *const msg_id) {
1051   kmp_cpuid buf;
1052   *address2os = NULL;
1053   *msg_id = kmp_i18n_null;
1054 
1055   // Check if cpuid leaf 4 is supported.
1056   __kmp_x86_cpuid(0, 0, &buf);
1057   if (buf.eax < 4) {
1058     *msg_id = kmp_i18n_str_NoLeaf4Support;
1059     return -1;
1060   }
1061 
1062   // The algorithm used starts by setting the affinity to each available thread
1063   // and retrieving info from the cpuid instruction, so if we are not capable of
1064   // calling __kmp_get_system_affinity() and _kmp_get_system_affinity(), then we
1065   // need to do something else - use the defaults that we calculated from
1066   // issuing cpuid without binding to each proc.
1067   if (!KMP_AFFINITY_CAPABLE()) {
1068     // Hack to try and infer the machine topology using only the data
1069     // available from cpuid on the current thread, and __kmp_xproc.
1070     KMP_ASSERT(__kmp_affinity_type == affinity_none);
1071 
1072     // Get an upper bound on the number of threads per package using cpuid(1).
1073     // On some OS/chps combinations where HT is supported by the chip but is
1074     // disabled, this value will be 2 on a single core chip. Usually, it will be
1075     // 2 if HT is enabled and 1 if HT is disabled.
1076     __kmp_x86_cpuid(1, 0, &buf);
1077     int maxThreadsPerPkg = (buf.ebx >> 16) & 0xff;
1078     if (maxThreadsPerPkg == 0) {
1079       maxThreadsPerPkg = 1;
1080     }
1081 
1082     // The num cores per pkg comes from cpuid(4). 1 must be added to the encoded
1083     // value.
1084     //
1085     // The author of cpu_count.cpp treated this only an upper bound on the
1086     // number of cores, but I haven't seen any cases where it was greater than
1087     // the actual number of cores, so we will treat it as exact in this block of
1088     // code.
1089     //
1090     // First, we need to check if cpuid(4) is supported on this chip. To see if
1091     // cpuid(n) is supported, issue cpuid(0) and check if eax has the value n or
1092     // greater.
1093     __kmp_x86_cpuid(0, 0, &buf);
1094     if (buf.eax >= 4) {
1095       __kmp_x86_cpuid(4, 0, &buf);
1096       nCoresPerPkg = ((buf.eax >> 26) & 0x3f) + 1;
1097     } else {
1098       nCoresPerPkg = 1;
1099     }
1100 
1101     // There is no way to reliably tell if HT is enabled without issuing the
1102     // cpuid instruction from every thread, can correlating the cpuid info, so
1103     // if the machine is not affinity capable, we assume that HT is off. We have
1104     // seen quite a few machines where maxThreadsPerPkg is 2, yet the machine
1105     // does not support HT.
1106     //
1107     // - Older OSes are usually found on machines with older chips, which do not
1108     //   support HT.
1109     // - The performance penalty for mistakenly identifying a machine as HT when
1110     //   it isn't (which results in blocktime being incorrectly set to 0) is
1111     //   greater than the penalty when for mistakenly identifying a machine as
1112     //   being 1 thread/core when it is really HT enabled (which results in
1113     //   blocktime being incorrectly set to a positive value).
1114     __kmp_ncores = __kmp_xproc;
1115     nPackages = (__kmp_xproc + nCoresPerPkg - 1) / nCoresPerPkg;
1116     __kmp_nThreadsPerCore = 1;
1117     if (__kmp_affinity_verbose) {
1118       KMP_INFORM(AffNotCapableUseLocCpuid, "KMP_AFFINITY");
1119       KMP_INFORM(AvailableOSProc, "KMP_AFFINITY", __kmp_avail_proc);
1120       if (__kmp_affinity_uniform_topology()) {
1121         KMP_INFORM(Uniform, "KMP_AFFINITY");
1122       } else {
1123         KMP_INFORM(NonUniform, "KMP_AFFINITY");
1124       }
1125       KMP_INFORM(Topology, "KMP_AFFINITY", nPackages, nCoresPerPkg,
1126                  __kmp_nThreadsPerCore, __kmp_ncores);
1127     }
1128     return 0;
1129   }
1130 
1131   // From here on, we can assume that it is safe to call
1132   // __kmp_get_system_affinity() and __kmp_set_system_affinity(), even if
1133   // __kmp_affinity_type = affinity_none.
1134 
1135   // Save the affinity mask for the current thread.
1136   kmp_affin_mask_t *oldMask;
1137   KMP_CPU_ALLOC(oldMask);
1138   KMP_ASSERT(oldMask != NULL);
1139   __kmp_get_system_affinity(oldMask, TRUE);
1140 
1141   // Run through each of the available contexts, binding the current thread
1142   // to it, and obtaining the pertinent information using the cpuid instr.
1143   //
1144   // The relevant information is:
1145   // - Apic Id: Bits 24:31 of ebx after issuing cpuid(1) - each thread context
1146   //     has a uniqie Apic Id, which is of the form pkg# : core# : thread#.
1147   // - Max Threads Per Pkg: Bits 16:23 of ebx after issuing cpuid(1). The value
1148   //     of this field determines the width of the core# + thread# fields in the
1149   //     Apic Id. It is also an upper bound on the number of threads per
1150   //     package, but it has been verified that situations happen were it is not
1151   //     exact. In particular, on certain OS/chip combinations where Intel(R)
1152   //     Hyper-Threading Technology is supported by the chip but has been
1153   //     disabled, the value of this field will be 2 (for a single core chip).
1154   //     On other OS/chip combinations supporting Intel(R) Hyper-Threading
1155   //     Technology, the value of this field will be 1 when Intel(R)
1156   //     Hyper-Threading Technology is disabled and 2 when it is enabled.
1157   // - Max Cores Per Pkg:  Bits 26:31 of eax after issuing cpuid(4). The value
1158   //     of this field (+1) determines the width of the core# field in the Apic
1159   //     Id. The comments in "cpucount.cpp" say that this value is an upper
1160   //     bound, but the IA-32 architecture manual says that it is exactly the
1161   //     number of cores per package, and I haven't seen any case where it
1162   //     wasn't.
1163   //
1164   // From this information, deduce the package Id, core Id, and thread Id,
1165   // and set the corresponding fields in the apicThreadInfo struct.
1166   unsigned i;
1167   apicThreadInfo *threadInfo = (apicThreadInfo *)__kmp_allocate(
1168       __kmp_avail_proc * sizeof(apicThreadInfo));
1169   unsigned nApics = 0;
1170   KMP_CPU_SET_ITERATE(i, __kmp_affin_fullMask) {
1171     // Skip this proc if it is not included in the machine model.
1172     if (!KMP_CPU_ISSET(i, __kmp_affin_fullMask)) {
1173       continue;
1174     }
1175     KMP_DEBUG_ASSERT((int)nApics < __kmp_avail_proc);
1176 
1177     __kmp_affinity_dispatch->bind_thread(i);
1178     threadInfo[nApics].osId = i;
1179 
1180     // The apic id and max threads per pkg come from cpuid(1).
1181     __kmp_x86_cpuid(1, 0, &buf);
1182     if (((buf.edx >> 9) & 1) == 0) {
1183       __kmp_set_system_affinity(oldMask, TRUE);
1184       __kmp_free(threadInfo);
1185       KMP_CPU_FREE(oldMask);
1186       *msg_id = kmp_i18n_str_ApicNotPresent;
1187       return -1;
1188     }
1189     threadInfo[nApics].apicId = (buf.ebx >> 24) & 0xff;
1190     threadInfo[nApics].maxThreadsPerPkg = (buf.ebx >> 16) & 0xff;
1191     if (threadInfo[nApics].maxThreadsPerPkg == 0) {
1192       threadInfo[nApics].maxThreadsPerPkg = 1;
1193     }
1194 
1195     // Max cores per pkg comes from cpuid(4). 1 must be added to the encoded
1196     // value.
1197     //
1198     // First, we need to check if cpuid(4) is supported on this chip. To see if
1199     // cpuid(n) is supported, issue cpuid(0) and check if eax has the value n
1200     // or greater.
1201     __kmp_x86_cpuid(0, 0, &buf);
1202     if (buf.eax >= 4) {
1203       __kmp_x86_cpuid(4, 0, &buf);
1204       threadInfo[nApics].maxCoresPerPkg = ((buf.eax >> 26) & 0x3f) + 1;
1205     } else {
1206       threadInfo[nApics].maxCoresPerPkg = 1;
1207     }
1208 
1209     // Infer the pkgId / coreId / threadId using only the info obtained locally.
1210     int widthCT = __kmp_cpuid_mask_width(threadInfo[nApics].maxThreadsPerPkg);
1211     threadInfo[nApics].pkgId = threadInfo[nApics].apicId >> widthCT;
1212 
1213     int widthC = __kmp_cpuid_mask_width(threadInfo[nApics].maxCoresPerPkg);
1214     int widthT = widthCT - widthC;
1215     if (widthT < 0) {
1216       // I've never seen this one happen, but I suppose it could, if the cpuid
1217       // instruction on a chip was really screwed up. Make sure to restore the
1218       // affinity mask before the tail call.
1219       __kmp_set_system_affinity(oldMask, TRUE);
1220       __kmp_free(threadInfo);
1221       KMP_CPU_FREE(oldMask);
1222       *msg_id = kmp_i18n_str_InvalidCpuidInfo;
1223       return -1;
1224     }
1225 
1226     int maskC = (1 << widthC) - 1;
1227     threadInfo[nApics].coreId = (threadInfo[nApics].apicId >> widthT) & maskC;
1228 
1229     int maskT = (1 << widthT) - 1;
1230     threadInfo[nApics].threadId = threadInfo[nApics].apicId & maskT;
1231 
1232     nApics++;
1233   }
1234 
1235   // We've collected all the info we need.
1236   // Restore the old affinity mask for this thread.
1237   __kmp_set_system_affinity(oldMask, TRUE);
1238 
1239   // If there's only one thread context to bind to, form an Address object
1240   // with depth 1 and return immediately (or, if affinity is off, set
1241   // address2os to NULL and return).
1242   //
1243   // If it is configured to omit the package level when there is only a single
1244   // package, the logic at the end of this routine won't work if there is only
1245   // a single thread - it would try to form an Address object with depth 0.
1246   KMP_ASSERT(nApics > 0);
1247   if (nApics == 1) {
1248     __kmp_ncores = nPackages = 1;
1249     __kmp_nThreadsPerCore = nCoresPerPkg = 1;
1250     if (__kmp_affinity_verbose) {
1251       KMP_INFORM(AffUseGlobCpuid, "KMP_AFFINITY");
1252       KMP_INFORM(AvailableOSProc, "KMP_AFFINITY", __kmp_avail_proc);
1253       KMP_INFORM(Uniform, "KMP_AFFINITY");
1254       KMP_INFORM(Topology, "KMP_AFFINITY", nPackages, nCoresPerPkg,
1255                  __kmp_nThreadsPerCore, __kmp_ncores);
1256     }
1257 
1258     if (__kmp_affinity_type == affinity_none) {
1259       __kmp_free(threadInfo);
1260       KMP_CPU_FREE(oldMask);
1261       return 0;
1262     }
1263 
1264     *address2os = (AddrUnsPair *)__kmp_allocate(sizeof(AddrUnsPair));
1265     Address addr(1);
1266     addr.labels[0] = threadInfo[0].pkgId;
1267     (*address2os)[0] = AddrUnsPair(addr, threadInfo[0].osId);
1268 
1269     if (__kmp_affinity_gran_levels < 0) {
1270       __kmp_affinity_gran_levels = 0;
1271     }
1272 
1273     if (__kmp_affinity_verbose) {
1274       __kmp_affinity_print_topology(*address2os, 1, 1, 0, -1, -1);
1275     }
1276 
1277     __kmp_free(threadInfo);
1278     KMP_CPU_FREE(oldMask);
1279     return 1;
1280   }
1281 
1282   // Sort the threadInfo table by physical Id.
1283   qsort(threadInfo, nApics, sizeof(*threadInfo),
1284         __kmp_affinity_cmp_apicThreadInfo_phys_id);
1285 
1286   // The table is now sorted by pkgId / coreId / threadId, but we really don't
1287   // know the radix of any of the fields. pkgId's may be sparsely assigned among
1288   // the chips on a system. Although coreId's are usually assigned
1289   // [0 .. coresPerPkg-1] and threadId's are usually assigned
1290   // [0..threadsPerCore-1], we don't want to make any such assumptions.
1291   //
1292   // For that matter, we don't know what coresPerPkg and threadsPerCore (or the
1293   // total # packages) are at this point - we want to determine that now. We
1294   // only have an upper bound on the first two figures.
1295   //
1296   // We also perform a consistency check at this point: the values returned by
1297   // the cpuid instruction for any thread bound to a given package had better
1298   // return the same info for maxThreadsPerPkg and maxCoresPerPkg.
1299   nPackages = 1;
1300   nCoresPerPkg = 1;
1301   __kmp_nThreadsPerCore = 1;
1302   unsigned nCores = 1;
1303 
1304   unsigned pkgCt = 1; // to determine radii
1305   unsigned lastPkgId = threadInfo[0].pkgId;
1306   unsigned coreCt = 1;
1307   unsigned lastCoreId = threadInfo[0].coreId;
1308   unsigned threadCt = 1;
1309   unsigned lastThreadId = threadInfo[0].threadId;
1310 
1311   // intra-pkg consist checks
1312   unsigned prevMaxCoresPerPkg = threadInfo[0].maxCoresPerPkg;
1313   unsigned prevMaxThreadsPerPkg = threadInfo[0].maxThreadsPerPkg;
1314 
1315   for (i = 1; i < nApics; i++) {
1316     if (threadInfo[i].pkgId != lastPkgId) {
1317       nCores++;
1318       pkgCt++;
1319       lastPkgId = threadInfo[i].pkgId;
1320       if ((int)coreCt > nCoresPerPkg)
1321         nCoresPerPkg = coreCt;
1322       coreCt = 1;
1323       lastCoreId = threadInfo[i].coreId;
1324       if ((int)threadCt > __kmp_nThreadsPerCore)
1325         __kmp_nThreadsPerCore = threadCt;
1326       threadCt = 1;
1327       lastThreadId = threadInfo[i].threadId;
1328 
1329       // This is a different package, so go on to the next iteration without
1330       // doing any consistency checks. Reset the consistency check vars, though.
1331       prevMaxCoresPerPkg = threadInfo[i].maxCoresPerPkg;
1332       prevMaxThreadsPerPkg = threadInfo[i].maxThreadsPerPkg;
1333       continue;
1334     }
1335 
1336     if (threadInfo[i].coreId != lastCoreId) {
1337       nCores++;
1338       coreCt++;
1339       lastCoreId = threadInfo[i].coreId;
1340       if ((int)threadCt > __kmp_nThreadsPerCore)
1341         __kmp_nThreadsPerCore = threadCt;
1342       threadCt = 1;
1343       lastThreadId = threadInfo[i].threadId;
1344     } else if (threadInfo[i].threadId != lastThreadId) {
1345       threadCt++;
1346       lastThreadId = threadInfo[i].threadId;
1347     } else {
1348       __kmp_free(threadInfo);
1349       KMP_CPU_FREE(oldMask);
1350       *msg_id = kmp_i18n_str_LegacyApicIDsNotUnique;
1351       return -1;
1352     }
1353 
1354     // Check to make certain that the maxCoresPerPkg and maxThreadsPerPkg
1355     // fields agree between all the threads bounds to a given package.
1356     if ((prevMaxCoresPerPkg != threadInfo[i].maxCoresPerPkg) ||
1357         (prevMaxThreadsPerPkg != threadInfo[i].maxThreadsPerPkg)) {
1358       __kmp_free(threadInfo);
1359       KMP_CPU_FREE(oldMask);
1360       *msg_id = kmp_i18n_str_InconsistentCpuidInfo;
1361       return -1;
1362     }
1363   }
1364   nPackages = pkgCt;
1365   if ((int)coreCt > nCoresPerPkg)
1366     nCoresPerPkg = coreCt;
1367   if ((int)threadCt > __kmp_nThreadsPerCore)
1368     __kmp_nThreadsPerCore = threadCt;
1369 
1370   // When affinity is off, this routine will still be called to set
1371   // __kmp_ncores, as well as __kmp_nThreadsPerCore, nCoresPerPkg, & nPackages.
1372   // Make sure all these vars are set correctly, and return now if affinity is
1373   // not enabled.
1374   __kmp_ncores = nCores;
1375   if (__kmp_affinity_verbose) {
1376     KMP_INFORM(AffUseGlobCpuid, "KMP_AFFINITY");
1377     KMP_INFORM(AvailableOSProc, "KMP_AFFINITY", __kmp_avail_proc);
1378     if (__kmp_affinity_uniform_topology()) {
1379       KMP_INFORM(Uniform, "KMP_AFFINITY");
1380     } else {
1381       KMP_INFORM(NonUniform, "KMP_AFFINITY");
1382     }
1383     KMP_INFORM(Topology, "KMP_AFFINITY", nPackages, nCoresPerPkg,
1384                __kmp_nThreadsPerCore, __kmp_ncores);
1385   }
1386   KMP_DEBUG_ASSERT(__kmp_pu_os_idx == NULL);
1387   KMP_DEBUG_ASSERT(nApics == (unsigned)__kmp_avail_proc);
1388   __kmp_pu_os_idx = (int *)__kmp_allocate(sizeof(int) * __kmp_avail_proc);
1389   for (i = 0; i < nApics; ++i) {
1390     __kmp_pu_os_idx[i] = threadInfo[i].osId;
1391   }
1392   if (__kmp_affinity_type == affinity_none) {
1393     __kmp_free(threadInfo);
1394     KMP_CPU_FREE(oldMask);
1395     return 0;
1396   }
1397 
1398   // Now that we've determined the number of packages, the number of cores per
1399   // package, and the number of threads per core, we can construct the data
1400   // structure that is to be returned.
1401   int pkgLevel = 0;
1402   int coreLevel = (nCoresPerPkg <= 1) ? -1 : 1;
1403   int threadLevel =
1404       (__kmp_nThreadsPerCore <= 1) ? -1 : ((coreLevel >= 0) ? 2 : 1);
1405   unsigned depth = (pkgLevel >= 0) + (coreLevel >= 0) + (threadLevel >= 0);
1406 
1407   KMP_ASSERT(depth > 0);
1408   *address2os = (AddrUnsPair *)__kmp_allocate(sizeof(AddrUnsPair) * nApics);
1409 
1410   for (i = 0; i < nApics; ++i) {
1411     Address addr(depth);
1412     unsigned os = threadInfo[i].osId;
1413     int d = 0;
1414 
1415     if (pkgLevel >= 0) {
1416       addr.labels[d++] = threadInfo[i].pkgId;
1417     }
1418     if (coreLevel >= 0) {
1419       addr.labels[d++] = threadInfo[i].coreId;
1420     }
1421     if (threadLevel >= 0) {
1422       addr.labels[d++] = threadInfo[i].threadId;
1423     }
1424     (*address2os)[i] = AddrUnsPair(addr, os);
1425   }
1426 
1427   if (__kmp_affinity_gran_levels < 0) {
1428     // Set the granularity level based on what levels are modeled in the machine
1429     // topology map.
1430     __kmp_affinity_gran_levels = 0;
1431     if ((threadLevel >= 0) && (__kmp_affinity_gran > affinity_gran_thread)) {
1432       __kmp_affinity_gran_levels++;
1433     }
1434     if ((coreLevel >= 0) && (__kmp_affinity_gran > affinity_gran_core)) {
1435       __kmp_affinity_gran_levels++;
1436     }
1437     if ((pkgLevel >= 0) && (__kmp_affinity_gran > affinity_gran_package)) {
1438       __kmp_affinity_gran_levels++;
1439     }
1440   }
1441 
1442   if (__kmp_affinity_verbose) {
1443     __kmp_affinity_print_topology(*address2os, nApics, depth, pkgLevel,
1444                                   coreLevel, threadLevel);
1445   }
1446 
1447   __kmp_free(threadInfo);
1448   KMP_CPU_FREE(oldMask);
1449   return depth;
1450 }
1451 
1452 // Intel(R) microarchitecture code name Nehalem, Dunnington and later
1453 // architectures support a newer interface for specifying the x2APIC Ids,
1454 // based on cpuid leaf 11.
1455 static int __kmp_affinity_create_x2apicid_map(AddrUnsPair **address2os,
1456                                               kmp_i18n_id_t *const msg_id) {
1457   kmp_cpuid buf;
1458   *address2os = NULL;
1459   *msg_id = kmp_i18n_null;
1460 
1461   // Check to see if cpuid leaf 11 is supported.
1462   __kmp_x86_cpuid(0, 0, &buf);
1463   if (buf.eax < 11) {
1464     *msg_id = kmp_i18n_str_NoLeaf11Support;
1465     return -1;
1466   }
1467   __kmp_x86_cpuid(11, 0, &buf);
1468   if (buf.ebx == 0) {
1469     *msg_id = kmp_i18n_str_NoLeaf11Support;
1470     return -1;
1471   }
1472 
1473   // Find the number of levels in the machine topology. While we're at it, get
1474   // the default values for __kmp_nThreadsPerCore & nCoresPerPkg. We will try to
1475   // get more accurate values later by explicitly counting them, but get
1476   // reasonable defaults now, in case we return early.
1477   int level;
1478   int threadLevel = -1;
1479   int coreLevel = -1;
1480   int pkgLevel = -1;
1481   __kmp_nThreadsPerCore = nCoresPerPkg = nPackages = 1;
1482 
1483   for (level = 0;; level++) {
1484     if (level > 31) {
1485       // FIXME: Hack for DPD200163180
1486       //
1487       // If level is big then something went wrong -> exiting
1488       //
1489       // There could actually be 32 valid levels in the machine topology, but so
1490       // far, the only machine we have seen which does not exit this loop before
1491       // iteration 32 has fubar x2APIC settings.
1492       //
1493       // For now, just reject this case based upon loop trip count.
1494       *msg_id = kmp_i18n_str_InvalidCpuidInfo;
1495       return -1;
1496     }
1497     __kmp_x86_cpuid(11, level, &buf);
1498     if (buf.ebx == 0) {
1499       if (pkgLevel < 0) {
1500         // Will infer nPackages from __kmp_xproc
1501         pkgLevel = level;
1502         level++;
1503       }
1504       break;
1505     }
1506     int kind = (buf.ecx >> 8) & 0xff;
1507     if (kind == 1) {
1508       // SMT level
1509       threadLevel = level;
1510       coreLevel = -1;
1511       pkgLevel = -1;
1512       __kmp_nThreadsPerCore = buf.ebx & 0xffff;
1513       if (__kmp_nThreadsPerCore == 0) {
1514         *msg_id = kmp_i18n_str_InvalidCpuidInfo;
1515         return -1;
1516       }
1517     } else if (kind == 2) {
1518       // core level
1519       coreLevel = level;
1520       pkgLevel = -1;
1521       nCoresPerPkg = buf.ebx & 0xffff;
1522       if (nCoresPerPkg == 0) {
1523         *msg_id = kmp_i18n_str_InvalidCpuidInfo;
1524         return -1;
1525       }
1526     } else {
1527       if (level <= 0) {
1528         *msg_id = kmp_i18n_str_InvalidCpuidInfo;
1529         return -1;
1530       }
1531       if (pkgLevel >= 0) {
1532         continue;
1533       }
1534       pkgLevel = level;
1535       nPackages = buf.ebx & 0xffff;
1536       if (nPackages == 0) {
1537         *msg_id = kmp_i18n_str_InvalidCpuidInfo;
1538         return -1;
1539       }
1540     }
1541   }
1542   int depth = level;
1543 
1544   // In the above loop, "level" was counted from the finest level (usually
1545   // thread) to the coarsest.  The caller expects that we will place the labels
1546   // in (*address2os)[].first.labels[] in the inverse order, so we need to
1547   // invert the vars saying which level means what.
1548   if (threadLevel >= 0) {
1549     threadLevel = depth - threadLevel - 1;
1550   }
1551   if (coreLevel >= 0) {
1552     coreLevel = depth - coreLevel - 1;
1553   }
1554   KMP_DEBUG_ASSERT(pkgLevel >= 0);
1555   pkgLevel = depth - pkgLevel - 1;
1556 
1557   // The algorithm used starts by setting the affinity to each available thread
1558   // and retrieving info from the cpuid instruction, so if we are not capable of
1559   // calling __kmp_get_system_affinity() and _kmp_get_system_affinity(), then we
1560   // need to do something else - use the defaults that we calculated from
1561   // issuing cpuid without binding to each proc.
1562   if (!KMP_AFFINITY_CAPABLE()) {
1563     // Hack to try and infer the machine topology using only the data
1564     // available from cpuid on the current thread, and __kmp_xproc.
1565     KMP_ASSERT(__kmp_affinity_type == affinity_none);
1566 
1567     __kmp_ncores = __kmp_xproc / __kmp_nThreadsPerCore;
1568     nPackages = (__kmp_xproc + nCoresPerPkg - 1) / nCoresPerPkg;
1569     if (__kmp_affinity_verbose) {
1570       KMP_INFORM(AffNotCapableUseLocCpuidL11, "KMP_AFFINITY");
1571       KMP_INFORM(AvailableOSProc, "KMP_AFFINITY", __kmp_avail_proc);
1572       if (__kmp_affinity_uniform_topology()) {
1573         KMP_INFORM(Uniform, "KMP_AFFINITY");
1574       } else {
1575         KMP_INFORM(NonUniform, "KMP_AFFINITY");
1576       }
1577       KMP_INFORM(Topology, "KMP_AFFINITY", nPackages, nCoresPerPkg,
1578                  __kmp_nThreadsPerCore, __kmp_ncores);
1579     }
1580     return 0;
1581   }
1582 
1583   // From here on, we can assume that it is safe to call
1584   // __kmp_get_system_affinity() and __kmp_set_system_affinity(), even if
1585   // __kmp_affinity_type = affinity_none.
1586 
1587   // Save the affinity mask for the current thread.
1588   kmp_affin_mask_t *oldMask;
1589   KMP_CPU_ALLOC(oldMask);
1590   __kmp_get_system_affinity(oldMask, TRUE);
1591 
1592   // Allocate the data structure to be returned.
1593   AddrUnsPair *retval =
1594       (AddrUnsPair *)__kmp_allocate(sizeof(AddrUnsPair) * __kmp_avail_proc);
1595 
1596   // Run through each of the available contexts, binding the current thread
1597   // to it, and obtaining the pertinent information using the cpuid instr.
1598   unsigned int proc;
1599   int nApics = 0;
1600   KMP_CPU_SET_ITERATE(proc, __kmp_affin_fullMask) {
1601     // Skip this proc if it is not included in the machine model.
1602     if (!KMP_CPU_ISSET(proc, __kmp_affin_fullMask)) {
1603       continue;
1604     }
1605     KMP_DEBUG_ASSERT(nApics < __kmp_avail_proc);
1606 
1607     __kmp_affinity_dispatch->bind_thread(proc);
1608 
1609     // Extract labels for each level in the machine topology map from Apic ID.
1610     Address addr(depth);
1611     int prev_shift = 0;
1612 
1613     for (level = 0; level < depth; level++) {
1614       __kmp_x86_cpuid(11, level, &buf);
1615       unsigned apicId = buf.edx;
1616       if (buf.ebx == 0) {
1617         if (level != depth - 1) {
1618           KMP_CPU_FREE(oldMask);
1619           *msg_id = kmp_i18n_str_InconsistentCpuidInfo;
1620           return -1;
1621         }
1622         addr.labels[depth - level - 1] = apicId >> prev_shift;
1623         level++;
1624         break;
1625       }
1626       int shift = buf.eax & 0x1f;
1627       int mask = (1 << shift) - 1;
1628       addr.labels[depth - level - 1] = (apicId & mask) >> prev_shift;
1629       prev_shift = shift;
1630     }
1631     if (level != depth) {
1632       KMP_CPU_FREE(oldMask);
1633       *msg_id = kmp_i18n_str_InconsistentCpuidInfo;
1634       return -1;
1635     }
1636 
1637     retval[nApics] = AddrUnsPair(addr, proc);
1638     nApics++;
1639   }
1640 
1641   // We've collected all the info we need.
1642   // Restore the old affinity mask for this thread.
1643   __kmp_set_system_affinity(oldMask, TRUE);
1644 
1645   // If there's only one thread context to bind to, return now.
1646   KMP_ASSERT(nApics > 0);
1647   if (nApics == 1) {
1648     __kmp_ncores = nPackages = 1;
1649     __kmp_nThreadsPerCore = nCoresPerPkg = 1;
1650     if (__kmp_affinity_verbose) {
1651       KMP_INFORM(AffUseGlobCpuidL11, "KMP_AFFINITY");
1652       KMP_INFORM(AvailableOSProc, "KMP_AFFINITY", __kmp_avail_proc);
1653       KMP_INFORM(Uniform, "KMP_AFFINITY");
1654       KMP_INFORM(Topology, "KMP_AFFINITY", nPackages, nCoresPerPkg,
1655                  __kmp_nThreadsPerCore, __kmp_ncores);
1656     }
1657 
1658     if (__kmp_affinity_type == affinity_none) {
1659       __kmp_free(retval);
1660       KMP_CPU_FREE(oldMask);
1661       return 0;
1662     }
1663 
1664     // Form an Address object which only includes the package level.
1665     Address addr(1);
1666     addr.labels[0] = retval[0].first.labels[pkgLevel];
1667     retval[0].first = addr;
1668 
1669     if (__kmp_affinity_gran_levels < 0) {
1670       __kmp_affinity_gran_levels = 0;
1671     }
1672 
1673     if (__kmp_affinity_verbose) {
1674       __kmp_affinity_print_topology(retval, 1, 1, 0, -1, -1);
1675     }
1676 
1677     *address2os = retval;
1678     KMP_CPU_FREE(oldMask);
1679     return 1;
1680   }
1681 
1682   // Sort the table by physical Id.
1683   qsort(retval, nApics, sizeof(*retval), __kmp_affinity_cmp_Address_labels);
1684 
1685   // Find the radix at each of the levels.
1686   unsigned *totals = (unsigned *)__kmp_allocate(depth * sizeof(unsigned));
1687   unsigned *counts = (unsigned *)__kmp_allocate(depth * sizeof(unsigned));
1688   unsigned *maxCt = (unsigned *)__kmp_allocate(depth * sizeof(unsigned));
1689   unsigned *last = (unsigned *)__kmp_allocate(depth * sizeof(unsigned));
1690   for (level = 0; level < depth; level++) {
1691     totals[level] = 1;
1692     maxCt[level] = 1;
1693     counts[level] = 1;
1694     last[level] = retval[0].first.labels[level];
1695   }
1696 
1697   // From here on, the iteration variable "level" runs from the finest level to
1698   // the coarsest, i.e. we iterate forward through
1699   // (*address2os)[].first.labels[] - in the previous loops, we iterated
1700   // backwards.
1701   for (proc = 1; (int)proc < nApics; proc++) {
1702     int level;
1703     for (level = 0; level < depth; level++) {
1704       if (retval[proc].first.labels[level] != last[level]) {
1705         int j;
1706         for (j = level + 1; j < depth; j++) {
1707           totals[j]++;
1708           counts[j] = 1;
1709           // The line below causes printing incorrect topology information in
1710           // case the max value for some level (maxCt[level]) is encountered
1711           // earlier than some less value while going through the array. For
1712           // example, let pkg0 has 4 cores and pkg1 has 2 cores. Then
1713           // maxCt[1] == 2
1714           // whereas it must be 4.
1715           // TODO!!! Check if it can be commented safely
1716           // maxCt[j] = 1;
1717           last[j] = retval[proc].first.labels[j];
1718         }
1719         totals[level]++;
1720         counts[level]++;
1721         if (counts[level] > maxCt[level]) {
1722           maxCt[level] = counts[level];
1723         }
1724         last[level] = retval[proc].first.labels[level];
1725         break;
1726       } else if (level == depth - 1) {
1727         __kmp_free(last);
1728         __kmp_free(maxCt);
1729         __kmp_free(counts);
1730         __kmp_free(totals);
1731         __kmp_free(retval);
1732         KMP_CPU_FREE(oldMask);
1733         *msg_id = kmp_i18n_str_x2ApicIDsNotUnique;
1734         return -1;
1735       }
1736     }
1737   }
1738 
1739   // When affinity is off, this routine will still be called to set
1740   // __kmp_ncores, as well as __kmp_nThreadsPerCore, nCoresPerPkg, & nPackages.
1741   // Make sure all these vars are set correctly, and return if affinity is not
1742   // enabled.
1743   if (threadLevel >= 0) {
1744     __kmp_nThreadsPerCore = maxCt[threadLevel];
1745   } else {
1746     __kmp_nThreadsPerCore = 1;
1747   }
1748   nPackages = totals[pkgLevel];
1749 
1750   if (coreLevel >= 0) {
1751     __kmp_ncores = totals[coreLevel];
1752     nCoresPerPkg = maxCt[coreLevel];
1753   } else {
1754     __kmp_ncores = nPackages;
1755     nCoresPerPkg = 1;
1756   }
1757 
1758   // Check to see if the machine topology is uniform
1759   unsigned prod = maxCt[0];
1760   for (level = 1; level < depth; level++) {
1761     prod *= maxCt[level];
1762   }
1763   bool uniform = (prod == totals[level - 1]);
1764 
1765   // Print the machine topology summary.
1766   if (__kmp_affinity_verbose) {
1767     KMP_INFORM(AffUseGlobCpuidL11, "KMP_AFFINITY");
1768     KMP_INFORM(AvailableOSProc, "KMP_AFFINITY", __kmp_avail_proc);
1769     if (uniform) {
1770       KMP_INFORM(Uniform, "KMP_AFFINITY");
1771     } else {
1772       KMP_INFORM(NonUniform, "KMP_AFFINITY");
1773     }
1774 
1775     kmp_str_buf_t buf;
1776     __kmp_str_buf_init(&buf);
1777 
1778     __kmp_str_buf_print(&buf, "%d", totals[0]);
1779     for (level = 1; level <= pkgLevel; level++) {
1780       __kmp_str_buf_print(&buf, " x %d", maxCt[level]);
1781     }
1782     KMP_INFORM(TopologyExtra, "KMP_AFFINITY", buf.str, nCoresPerPkg,
1783                __kmp_nThreadsPerCore, __kmp_ncores);
1784 
1785     __kmp_str_buf_free(&buf);
1786   }
1787   KMP_DEBUG_ASSERT(__kmp_pu_os_idx == NULL);
1788   KMP_DEBUG_ASSERT(nApics == __kmp_avail_proc);
1789   __kmp_pu_os_idx = (int *)__kmp_allocate(sizeof(int) * __kmp_avail_proc);
1790   for (proc = 0; (int)proc < nApics; ++proc) {
1791     __kmp_pu_os_idx[proc] = retval[proc].second;
1792   }
1793   if (__kmp_affinity_type == affinity_none) {
1794     __kmp_free(last);
1795     __kmp_free(maxCt);
1796     __kmp_free(counts);
1797     __kmp_free(totals);
1798     __kmp_free(retval);
1799     KMP_CPU_FREE(oldMask);
1800     return 0;
1801   }
1802 
1803   // Find any levels with radix 1, and remove them from the map
1804   // (except for the package level).
1805   int new_depth = 0;
1806   for (level = 0; level < depth; level++) {
1807     if ((maxCt[level] == 1) && (level != pkgLevel)) {
1808       continue;
1809     }
1810     new_depth++;
1811   }
1812 
1813   // If we are removing any levels, allocate a new vector to return,
1814   // and copy the relevant information to it.
1815   if (new_depth != depth) {
1816     AddrUnsPair *new_retval =
1817         (AddrUnsPair *)__kmp_allocate(sizeof(AddrUnsPair) * nApics);
1818     for (proc = 0; (int)proc < nApics; proc++) {
1819       Address addr(new_depth);
1820       new_retval[proc] = AddrUnsPair(addr, retval[proc].second);
1821     }
1822     int new_level = 0;
1823     int newPkgLevel = -1;
1824     int newCoreLevel = -1;
1825     int newThreadLevel = -1;
1826     for (level = 0; level < depth; level++) {
1827       if ((maxCt[level] == 1) && (level != pkgLevel)) {
1828         // Remove this level. Never remove the package level
1829         continue;
1830       }
1831       if (level == pkgLevel) {
1832         newPkgLevel = new_level;
1833       }
1834       if (level == coreLevel) {
1835         newCoreLevel = new_level;
1836       }
1837       if (level == threadLevel) {
1838         newThreadLevel = new_level;
1839       }
1840       for (proc = 0; (int)proc < nApics; proc++) {
1841         new_retval[proc].first.labels[new_level] =
1842             retval[proc].first.labels[level];
1843       }
1844       new_level++;
1845     }
1846 
1847     __kmp_free(retval);
1848     retval = new_retval;
1849     depth = new_depth;
1850     pkgLevel = newPkgLevel;
1851     coreLevel = newCoreLevel;
1852     threadLevel = newThreadLevel;
1853   }
1854 
1855   if (__kmp_affinity_gran_levels < 0) {
1856     // Set the granularity level based on what levels are modeled
1857     // in the machine topology map.
1858     __kmp_affinity_gran_levels = 0;
1859     if ((threadLevel >= 0) && (__kmp_affinity_gran > affinity_gran_thread)) {
1860       __kmp_affinity_gran_levels++;
1861     }
1862     if ((coreLevel >= 0) && (__kmp_affinity_gran > affinity_gran_core)) {
1863       __kmp_affinity_gran_levels++;
1864     }
1865     if (__kmp_affinity_gran > affinity_gran_package) {
1866       __kmp_affinity_gran_levels++;
1867     }
1868   }
1869 
1870   if (__kmp_affinity_verbose) {
1871     __kmp_affinity_print_topology(retval, nApics, depth, pkgLevel, coreLevel,
1872                                   threadLevel);
1873   }
1874 
1875   __kmp_free(last);
1876   __kmp_free(maxCt);
1877   __kmp_free(counts);
1878   __kmp_free(totals);
1879   KMP_CPU_FREE(oldMask);
1880   *address2os = retval;
1881   return depth;
1882 }
1883 
1884 #endif /* KMP_ARCH_X86 || KMP_ARCH_X86_64 */
1885 
1886 #define osIdIndex 0
1887 #define threadIdIndex 1
1888 #define coreIdIndex 2
1889 #define pkgIdIndex 3
1890 #define nodeIdIndex 4
1891 
1892 typedef unsigned *ProcCpuInfo;
1893 static unsigned maxIndex = pkgIdIndex;
1894 
1895 static int __kmp_affinity_cmp_ProcCpuInfo_phys_id(const void *a,
1896                                                   const void *b) {
1897   unsigned i;
1898   const unsigned *aa = *(unsigned *const *)a;
1899   const unsigned *bb = *(unsigned *const *)b;
1900   for (i = maxIndex;; i--) {
1901     if (aa[i] < bb[i])
1902       return -1;
1903     if (aa[i] > bb[i])
1904       return 1;
1905     if (i == osIdIndex)
1906       break;
1907   }
1908   return 0;
1909 }
1910 
1911 #if KMP_USE_HIER_SCHED
1912 // Set the array sizes for the hierarchy layers
1913 static void __kmp_dispatch_set_hierarchy_values() {
1914   // Set the maximum number of L1's to number of cores
1915   // Set the maximum number of L2's to to either number of cores / 2 for
1916   // Intel(R) Xeon Phi(TM) coprocessor formally codenamed Knights Landing
1917   // Or the number of cores for Intel(R) Xeon(R) processors
1918   // Set the maximum number of NUMA nodes and L3's to number of packages
1919   __kmp_hier_max_units[kmp_hier_layer_e::LAYER_THREAD + 1] =
1920       nPackages * nCoresPerPkg * __kmp_nThreadsPerCore;
1921   __kmp_hier_max_units[kmp_hier_layer_e::LAYER_L1 + 1] = __kmp_ncores;
1922 #if KMP_ARCH_X86_64 && (KMP_OS_LINUX || KMP_OS_FREEBSD || KMP_OS_WINDOWS) && \
1923     KMP_MIC_SUPPORTED
1924   if (__kmp_mic_type >= mic3)
1925     __kmp_hier_max_units[kmp_hier_layer_e::LAYER_L2 + 1] = __kmp_ncores / 2;
1926   else
1927 #endif // KMP_ARCH_X86_64 && (KMP_OS_LINUX || KMP_OS_WINDOWS)
1928     __kmp_hier_max_units[kmp_hier_layer_e::LAYER_L2 + 1] = __kmp_ncores;
1929   __kmp_hier_max_units[kmp_hier_layer_e::LAYER_L3 + 1] = nPackages;
1930   __kmp_hier_max_units[kmp_hier_layer_e::LAYER_NUMA + 1] = nPackages;
1931   __kmp_hier_max_units[kmp_hier_layer_e::LAYER_LOOP + 1] = 1;
1932   // Set the number of threads per unit
1933   // Number of hardware threads per L1/L2/L3/NUMA/LOOP
1934   __kmp_hier_threads_per[kmp_hier_layer_e::LAYER_THREAD + 1] = 1;
1935   __kmp_hier_threads_per[kmp_hier_layer_e::LAYER_L1 + 1] =
1936       __kmp_nThreadsPerCore;
1937 #if KMP_ARCH_X86_64 && (KMP_OS_LINUX || KMP_OS_FREEBSD || KMP_OS_WINDOWS) && \
1938     KMP_MIC_SUPPORTED
1939   if (__kmp_mic_type >= mic3)
1940     __kmp_hier_threads_per[kmp_hier_layer_e::LAYER_L2 + 1] =
1941         2 * __kmp_nThreadsPerCore;
1942   else
1943 #endif // KMP_ARCH_X86_64 && (KMP_OS_LINUX || KMP_OS_WINDOWS)
1944     __kmp_hier_threads_per[kmp_hier_layer_e::LAYER_L2 + 1] =
1945         __kmp_nThreadsPerCore;
1946   __kmp_hier_threads_per[kmp_hier_layer_e::LAYER_L3 + 1] =
1947       nCoresPerPkg * __kmp_nThreadsPerCore;
1948   __kmp_hier_threads_per[kmp_hier_layer_e::LAYER_NUMA + 1] =
1949       nCoresPerPkg * __kmp_nThreadsPerCore;
1950   __kmp_hier_threads_per[kmp_hier_layer_e::LAYER_LOOP + 1] =
1951       nPackages * nCoresPerPkg * __kmp_nThreadsPerCore;
1952 }
1953 
1954 // Return the index into the hierarchy for this tid and layer type (L1, L2, etc)
1955 // i.e., this thread's L1 or this thread's L2, etc.
1956 int __kmp_dispatch_get_index(int tid, kmp_hier_layer_e type) {
1957   int index = type + 1;
1958   int num_hw_threads = __kmp_hier_max_units[kmp_hier_layer_e::LAYER_THREAD + 1];
1959   KMP_DEBUG_ASSERT(type != kmp_hier_layer_e::LAYER_LAST);
1960   if (type == kmp_hier_layer_e::LAYER_THREAD)
1961     return tid;
1962   else if (type == kmp_hier_layer_e::LAYER_LOOP)
1963     return 0;
1964   KMP_DEBUG_ASSERT(__kmp_hier_max_units[index] != 0);
1965   if (tid >= num_hw_threads)
1966     tid = tid % num_hw_threads;
1967   return (tid / __kmp_hier_threads_per[index]) % __kmp_hier_max_units[index];
1968 }
1969 
1970 // Return the number of t1's per t2
1971 int __kmp_dispatch_get_t1_per_t2(kmp_hier_layer_e t1, kmp_hier_layer_e t2) {
1972   int i1 = t1 + 1;
1973   int i2 = t2 + 1;
1974   KMP_DEBUG_ASSERT(i1 <= i2);
1975   KMP_DEBUG_ASSERT(t1 != kmp_hier_layer_e::LAYER_LAST);
1976   KMP_DEBUG_ASSERT(t2 != kmp_hier_layer_e::LAYER_LAST);
1977   KMP_DEBUG_ASSERT(__kmp_hier_threads_per[i1] != 0);
1978   // (nthreads/t2) / (nthreads/t1) = t1 / t2
1979   return __kmp_hier_threads_per[i2] / __kmp_hier_threads_per[i1];
1980 }
1981 #endif // KMP_USE_HIER_SCHED
1982 
1983 // Parse /proc/cpuinfo (or an alternate file in the same format) to obtain the
1984 // affinity map.
1985 static int __kmp_affinity_create_cpuinfo_map(AddrUnsPair **address2os,
1986                                              int *line,
1987                                              kmp_i18n_id_t *const msg_id,
1988                                              FILE *f) {
1989   *address2os = NULL;
1990   *msg_id = kmp_i18n_null;
1991 
1992   // Scan of the file, and count the number of "processor" (osId) fields,
1993   // and find the highest value of <n> for a node_<n> field.
1994   char buf[256];
1995   unsigned num_records = 0;
1996   while (!feof(f)) {
1997     buf[sizeof(buf) - 1] = 1;
1998     if (!fgets(buf, sizeof(buf), f)) {
1999       // Read errors presumably because of EOF
2000       break;
2001     }
2002 
2003     char s1[] = "processor";
2004     if (strncmp(buf, s1, sizeof(s1) - 1) == 0) {
2005       num_records++;
2006       continue;
2007     }
2008 
2009     // FIXME - this will match "node_<n> <garbage>"
2010     unsigned level;
2011     if (KMP_SSCANF(buf, "node_%u id", &level) == 1) {
2012       if (nodeIdIndex + level >= maxIndex) {
2013         maxIndex = nodeIdIndex + level;
2014       }
2015       continue;
2016     }
2017   }
2018 
2019   // Check for empty file / no valid processor records, or too many. The number
2020   // of records can't exceed the number of valid bits in the affinity mask.
2021   if (num_records == 0) {
2022     *line = 0;
2023     *msg_id = kmp_i18n_str_NoProcRecords;
2024     return -1;
2025   }
2026   if (num_records > (unsigned)__kmp_xproc) {
2027     *line = 0;
2028     *msg_id = kmp_i18n_str_TooManyProcRecords;
2029     return -1;
2030   }
2031 
2032   // Set the file pointer back to the beginning, so that we can scan the file
2033   // again, this time performing a full parse of the data. Allocate a vector of
2034   // ProcCpuInfo object, where we will place the data. Adding an extra element
2035   // at the end allows us to remove a lot of extra checks for termination
2036   // conditions.
2037   if (fseek(f, 0, SEEK_SET) != 0) {
2038     *line = 0;
2039     *msg_id = kmp_i18n_str_CantRewindCpuinfo;
2040     return -1;
2041   }
2042 
2043   // Allocate the array of records to store the proc info in.  The dummy
2044   // element at the end makes the logic in filling them out easier to code.
2045   unsigned **threadInfo =
2046       (unsigned **)__kmp_allocate((num_records + 1) * sizeof(unsigned *));
2047   unsigned i;
2048   for (i = 0; i <= num_records; i++) {
2049     threadInfo[i] =
2050         (unsigned *)__kmp_allocate((maxIndex + 1) * sizeof(unsigned));
2051   }
2052 
2053 #define CLEANUP_THREAD_INFO                                                    \
2054   for (i = 0; i <= num_records; i++) {                                         \
2055     __kmp_free(threadInfo[i]);                                                 \
2056   }                                                                            \
2057   __kmp_free(threadInfo);
2058 
2059   // A value of UINT_MAX means that we didn't find the field
2060   unsigned __index;
2061 
2062 #define INIT_PROC_INFO(p)                                                      \
2063   for (__index = 0; __index <= maxIndex; __index++) {                          \
2064     (p)[__index] = UINT_MAX;                                                   \
2065   }
2066 
2067   for (i = 0; i <= num_records; i++) {
2068     INIT_PROC_INFO(threadInfo[i]);
2069   }
2070 
2071   unsigned num_avail = 0;
2072   *line = 0;
2073   while (!feof(f)) {
2074     // Create an inner scoping level, so that all the goto targets at the end of
2075     // the loop appear in an outer scoping level. This avoids warnings about
2076     // jumping past an initialization to a target in the same block.
2077     {
2078       buf[sizeof(buf) - 1] = 1;
2079       bool long_line = false;
2080       if (!fgets(buf, sizeof(buf), f)) {
2081         // Read errors presumably because of EOF
2082         // If there is valid data in threadInfo[num_avail], then fake
2083         // a blank line in ensure that the last address gets parsed.
2084         bool valid = false;
2085         for (i = 0; i <= maxIndex; i++) {
2086           if (threadInfo[num_avail][i] != UINT_MAX) {
2087             valid = true;
2088           }
2089         }
2090         if (!valid) {
2091           break;
2092         }
2093         buf[0] = 0;
2094       } else if (!buf[sizeof(buf) - 1]) {
2095         // The line is longer than the buffer.  Set a flag and don't
2096         // emit an error if we were going to ignore the line, anyway.
2097         long_line = true;
2098 
2099 #define CHECK_LINE                                                             \
2100   if (long_line) {                                                             \
2101     CLEANUP_THREAD_INFO;                                                       \
2102     *msg_id = kmp_i18n_str_LongLineCpuinfo;                                    \
2103     return -1;                                                                 \
2104   }
2105       }
2106       (*line)++;
2107 
2108       char s1[] = "processor";
2109       if (strncmp(buf, s1, sizeof(s1) - 1) == 0) {
2110         CHECK_LINE;
2111         char *p = strchr(buf + sizeof(s1) - 1, ':');
2112         unsigned val;
2113         if ((p == NULL) || (KMP_SSCANF(p + 1, "%u\n", &val) != 1))
2114           goto no_val;
2115         if (threadInfo[num_avail][osIdIndex] != UINT_MAX)
2116 #if KMP_ARCH_AARCH64
2117           // Handle the old AArch64 /proc/cpuinfo layout differently,
2118           // it contains all of the 'processor' entries listed in a
2119           // single 'Processor' section, therefore the normal looking
2120           // for duplicates in that section will always fail.
2121           num_avail++;
2122 #else
2123           goto dup_field;
2124 #endif
2125         threadInfo[num_avail][osIdIndex] = val;
2126 #if KMP_OS_LINUX && !(KMP_ARCH_X86 || KMP_ARCH_X86_64)
2127         char path[256];
2128         KMP_SNPRINTF(
2129             path, sizeof(path),
2130             "/sys/devices/system/cpu/cpu%u/topology/physical_package_id",
2131             threadInfo[num_avail][osIdIndex]);
2132         __kmp_read_from_file(path, "%u", &threadInfo[num_avail][pkgIdIndex]);
2133 
2134         KMP_SNPRINTF(path, sizeof(path),
2135                      "/sys/devices/system/cpu/cpu%u/topology/core_id",
2136                      threadInfo[num_avail][osIdIndex]);
2137         __kmp_read_from_file(path, "%u", &threadInfo[num_avail][coreIdIndex]);
2138         continue;
2139 #else
2140       }
2141       char s2[] = "physical id";
2142       if (strncmp(buf, s2, sizeof(s2) - 1) == 0) {
2143         CHECK_LINE;
2144         char *p = strchr(buf + sizeof(s2) - 1, ':');
2145         unsigned val;
2146         if ((p == NULL) || (KMP_SSCANF(p + 1, "%u\n", &val) != 1))
2147           goto no_val;
2148         if (threadInfo[num_avail][pkgIdIndex] != UINT_MAX)
2149           goto dup_field;
2150         threadInfo[num_avail][pkgIdIndex] = val;
2151         continue;
2152       }
2153       char s3[] = "core id";
2154       if (strncmp(buf, s3, sizeof(s3) - 1) == 0) {
2155         CHECK_LINE;
2156         char *p = strchr(buf + sizeof(s3) - 1, ':');
2157         unsigned val;
2158         if ((p == NULL) || (KMP_SSCANF(p + 1, "%u\n", &val) != 1))
2159           goto no_val;
2160         if (threadInfo[num_avail][coreIdIndex] != UINT_MAX)
2161           goto dup_field;
2162         threadInfo[num_avail][coreIdIndex] = val;
2163         continue;
2164 #endif // KMP_OS_LINUX && USE_SYSFS_INFO
2165       }
2166       char s4[] = "thread id";
2167       if (strncmp(buf, s4, sizeof(s4) - 1) == 0) {
2168         CHECK_LINE;
2169         char *p = strchr(buf + sizeof(s4) - 1, ':');
2170         unsigned val;
2171         if ((p == NULL) || (KMP_SSCANF(p + 1, "%u\n", &val) != 1))
2172           goto no_val;
2173         if (threadInfo[num_avail][threadIdIndex] != UINT_MAX)
2174           goto dup_field;
2175         threadInfo[num_avail][threadIdIndex] = val;
2176         continue;
2177       }
2178       unsigned level;
2179       if (KMP_SSCANF(buf, "node_%u id", &level) == 1) {
2180         CHECK_LINE;
2181         char *p = strchr(buf + sizeof(s4) - 1, ':');
2182         unsigned val;
2183         if ((p == NULL) || (KMP_SSCANF(p + 1, "%u\n", &val) != 1))
2184           goto no_val;
2185         KMP_ASSERT(nodeIdIndex + level <= maxIndex);
2186         if (threadInfo[num_avail][nodeIdIndex + level] != UINT_MAX)
2187           goto dup_field;
2188         threadInfo[num_avail][nodeIdIndex + level] = val;
2189         continue;
2190       }
2191 
2192       // We didn't recognize the leading token on the line. There are lots of
2193       // leading tokens that we don't recognize - if the line isn't empty, go on
2194       // to the next line.
2195       if ((*buf != 0) && (*buf != '\n')) {
2196         // If the line is longer than the buffer, read characters
2197         // until we find a newline.
2198         if (long_line) {
2199           int ch;
2200           while (((ch = fgetc(f)) != EOF) && (ch != '\n'))
2201             ;
2202         }
2203         continue;
2204       }
2205 
2206       // A newline has signalled the end of the processor record.
2207       // Check that there aren't too many procs specified.
2208       if ((int)num_avail == __kmp_xproc) {
2209         CLEANUP_THREAD_INFO;
2210         *msg_id = kmp_i18n_str_TooManyEntries;
2211         return -1;
2212       }
2213 
2214       // Check for missing fields.  The osId field must be there, and we
2215       // currently require that the physical id field is specified, also.
2216       if (threadInfo[num_avail][osIdIndex] == UINT_MAX) {
2217         CLEANUP_THREAD_INFO;
2218         *msg_id = kmp_i18n_str_MissingProcField;
2219         return -1;
2220       }
2221       if (threadInfo[0][pkgIdIndex] == UINT_MAX) {
2222         CLEANUP_THREAD_INFO;
2223         *msg_id = kmp_i18n_str_MissingPhysicalIDField;
2224         return -1;
2225       }
2226 
2227       // Skip this proc if it is not included in the machine model.
2228       if (!KMP_CPU_ISSET(threadInfo[num_avail][osIdIndex],
2229                          __kmp_affin_fullMask)) {
2230         INIT_PROC_INFO(threadInfo[num_avail]);
2231         continue;
2232       }
2233 
2234       // We have a successful parse of this proc's info.
2235       // Increment the counter, and prepare for the next proc.
2236       num_avail++;
2237       KMP_ASSERT(num_avail <= num_records);
2238       INIT_PROC_INFO(threadInfo[num_avail]);
2239     }
2240     continue;
2241 
2242   no_val:
2243     CLEANUP_THREAD_INFO;
2244     *msg_id = kmp_i18n_str_MissingValCpuinfo;
2245     return -1;
2246 
2247   dup_field:
2248     CLEANUP_THREAD_INFO;
2249     *msg_id = kmp_i18n_str_DuplicateFieldCpuinfo;
2250     return -1;
2251   }
2252   *line = 0;
2253 
2254 #if KMP_MIC && REDUCE_TEAM_SIZE
2255   unsigned teamSize = 0;
2256 #endif // KMP_MIC && REDUCE_TEAM_SIZE
2257 
2258   // check for num_records == __kmp_xproc ???
2259 
2260   // If there's only one thread context to bind to, form an Address object with
2261   // depth 1 and return immediately (or, if affinity is off, set address2os to
2262   // NULL and return).
2263   //
2264   // If it is configured to omit the package level when there is only a single
2265   // package, the logic at the end of this routine won't work if there is only a
2266   // single thread - it would try to form an Address object with depth 0.
2267   KMP_ASSERT(num_avail > 0);
2268   KMP_ASSERT(num_avail <= num_records);
2269   if (num_avail == 1) {
2270     __kmp_ncores = 1;
2271     __kmp_nThreadsPerCore = nCoresPerPkg = nPackages = 1;
2272     if (__kmp_affinity_verbose) {
2273       if (!KMP_AFFINITY_CAPABLE()) {
2274         KMP_INFORM(AffNotCapableUseCpuinfo, "KMP_AFFINITY");
2275         KMP_INFORM(AvailableOSProc, "KMP_AFFINITY", __kmp_avail_proc);
2276         KMP_INFORM(Uniform, "KMP_AFFINITY");
2277       } else {
2278         KMP_INFORM(AffCapableUseCpuinfo, "KMP_AFFINITY");
2279         KMP_INFORM(AvailableOSProc, "KMP_AFFINITY", __kmp_avail_proc);
2280         KMP_INFORM(Uniform, "KMP_AFFINITY");
2281       }
2282       int index;
2283       kmp_str_buf_t buf;
2284       __kmp_str_buf_init(&buf);
2285       __kmp_str_buf_print(&buf, "1");
2286       for (index = maxIndex - 1; index > pkgIdIndex; index--) {
2287         __kmp_str_buf_print(&buf, " x 1");
2288       }
2289       KMP_INFORM(TopologyExtra, "KMP_AFFINITY", buf.str, 1, 1, 1);
2290       __kmp_str_buf_free(&buf);
2291     }
2292 
2293     if (__kmp_affinity_type == affinity_none) {
2294       CLEANUP_THREAD_INFO;
2295       return 0;
2296     }
2297 
2298     *address2os = (AddrUnsPair *)__kmp_allocate(sizeof(AddrUnsPair));
2299     Address addr(1);
2300     addr.labels[0] = threadInfo[0][pkgIdIndex];
2301     (*address2os)[0] = AddrUnsPair(addr, threadInfo[0][osIdIndex]);
2302 
2303     if (__kmp_affinity_gran_levels < 0) {
2304       __kmp_affinity_gran_levels = 0;
2305     }
2306 
2307     if (__kmp_affinity_verbose) {
2308       __kmp_affinity_print_topology(*address2os, 1, 1, 0, -1, -1);
2309     }
2310 
2311     CLEANUP_THREAD_INFO;
2312     return 1;
2313   }
2314 
2315   // Sort the threadInfo table by physical Id.
2316   qsort(threadInfo, num_avail, sizeof(*threadInfo),
2317         __kmp_affinity_cmp_ProcCpuInfo_phys_id);
2318 
2319   // The table is now sorted by pkgId / coreId / threadId, but we really don't
2320   // know the radix of any of the fields. pkgId's may be sparsely assigned among
2321   // the chips on a system. Although coreId's are usually assigned
2322   // [0 .. coresPerPkg-1] and threadId's are usually assigned
2323   // [0..threadsPerCore-1], we don't want to make any such assumptions.
2324   //
2325   // For that matter, we don't know what coresPerPkg and threadsPerCore (or the
2326   // total # packages) are at this point - we want to determine that now. We
2327   // only have an upper bound on the first two figures.
2328   unsigned *counts =
2329       (unsigned *)__kmp_allocate((maxIndex + 1) * sizeof(unsigned));
2330   unsigned *maxCt =
2331       (unsigned *)__kmp_allocate((maxIndex + 1) * sizeof(unsigned));
2332   unsigned *totals =
2333       (unsigned *)__kmp_allocate((maxIndex + 1) * sizeof(unsigned));
2334   unsigned *lastId =
2335       (unsigned *)__kmp_allocate((maxIndex + 1) * sizeof(unsigned));
2336 
2337   bool assign_thread_ids = false;
2338   unsigned threadIdCt;
2339   unsigned index;
2340 
2341 restart_radix_check:
2342   threadIdCt = 0;
2343 
2344   // Initialize the counter arrays with data from threadInfo[0].
2345   if (assign_thread_ids) {
2346     if (threadInfo[0][threadIdIndex] == UINT_MAX) {
2347       threadInfo[0][threadIdIndex] = threadIdCt++;
2348     } else if (threadIdCt <= threadInfo[0][threadIdIndex]) {
2349       threadIdCt = threadInfo[0][threadIdIndex] + 1;
2350     }
2351   }
2352   for (index = 0; index <= maxIndex; index++) {
2353     counts[index] = 1;
2354     maxCt[index] = 1;
2355     totals[index] = 1;
2356     lastId[index] = threadInfo[0][index];
2357     ;
2358   }
2359 
2360   // Run through the rest of the OS procs.
2361   for (i = 1; i < num_avail; i++) {
2362     // Find the most significant index whose id differs from the id for the
2363     // previous OS proc.
2364     for (index = maxIndex; index >= threadIdIndex; index--) {
2365       if (assign_thread_ids && (index == threadIdIndex)) {
2366         // Auto-assign the thread id field if it wasn't specified.
2367         if (threadInfo[i][threadIdIndex] == UINT_MAX) {
2368           threadInfo[i][threadIdIndex] = threadIdCt++;
2369         }
2370         // Apparently the thread id field was specified for some entries and not
2371         // others. Start the thread id counter off at the next higher thread id.
2372         else if (threadIdCt <= threadInfo[i][threadIdIndex]) {
2373           threadIdCt = threadInfo[i][threadIdIndex] + 1;
2374         }
2375       }
2376       if (threadInfo[i][index] != lastId[index]) {
2377         // Run through all indices which are less significant, and reset the
2378         // counts to 1. At all levels up to and including index, we need to
2379         // increment the totals and record the last id.
2380         unsigned index2;
2381         for (index2 = threadIdIndex; index2 < index; index2++) {
2382           totals[index2]++;
2383           if (counts[index2] > maxCt[index2]) {
2384             maxCt[index2] = counts[index2];
2385           }
2386           counts[index2] = 1;
2387           lastId[index2] = threadInfo[i][index2];
2388         }
2389         counts[index]++;
2390         totals[index]++;
2391         lastId[index] = threadInfo[i][index];
2392 
2393         if (assign_thread_ids && (index > threadIdIndex)) {
2394 
2395 #if KMP_MIC && REDUCE_TEAM_SIZE
2396           // The default team size is the total #threads in the machine
2397           // minus 1 thread for every core that has 3 or more threads.
2398           teamSize += (threadIdCt <= 2) ? (threadIdCt) : (threadIdCt - 1);
2399 #endif // KMP_MIC && REDUCE_TEAM_SIZE
2400 
2401           // Restart the thread counter, as we are on a new core.
2402           threadIdCt = 0;
2403 
2404           // Auto-assign the thread id field if it wasn't specified.
2405           if (threadInfo[i][threadIdIndex] == UINT_MAX) {
2406             threadInfo[i][threadIdIndex] = threadIdCt++;
2407           }
2408 
2409           // Apparently the thread id field was specified for some entries and
2410           // not others. Start the thread id counter off at the next higher
2411           // thread id.
2412           else if (threadIdCt <= threadInfo[i][threadIdIndex]) {
2413             threadIdCt = threadInfo[i][threadIdIndex] + 1;
2414           }
2415         }
2416         break;
2417       }
2418     }
2419     if (index < threadIdIndex) {
2420       // If thread ids were specified, it is an error if they are not unique.
2421       // Also, check that we waven't already restarted the loop (to be safe -
2422       // shouldn't need to).
2423       if ((threadInfo[i][threadIdIndex] != UINT_MAX) || assign_thread_ids) {
2424         __kmp_free(lastId);
2425         __kmp_free(totals);
2426         __kmp_free(maxCt);
2427         __kmp_free(counts);
2428         CLEANUP_THREAD_INFO;
2429         *msg_id = kmp_i18n_str_PhysicalIDsNotUnique;
2430         return -1;
2431       }
2432 
2433       // If the thread ids were not specified and we see entries entries that
2434       // are duplicates, start the loop over and assign the thread ids manually.
2435       assign_thread_ids = true;
2436       goto restart_radix_check;
2437     }
2438   }
2439 
2440 #if KMP_MIC && REDUCE_TEAM_SIZE
2441   // The default team size is the total #threads in the machine
2442   // minus 1 thread for every core that has 3 or more threads.
2443   teamSize += (threadIdCt <= 2) ? (threadIdCt) : (threadIdCt - 1);
2444 #endif // KMP_MIC && REDUCE_TEAM_SIZE
2445 
2446   for (index = threadIdIndex; index <= maxIndex; index++) {
2447     if (counts[index] > maxCt[index]) {
2448       maxCt[index] = counts[index];
2449     }
2450   }
2451 
2452   __kmp_nThreadsPerCore = maxCt[threadIdIndex];
2453   nCoresPerPkg = maxCt[coreIdIndex];
2454   nPackages = totals[pkgIdIndex];
2455 
2456   // Check to see if the machine topology is uniform
2457   unsigned prod = totals[maxIndex];
2458   for (index = threadIdIndex; index < maxIndex; index++) {
2459     prod *= maxCt[index];
2460   }
2461   bool uniform = (prod == totals[threadIdIndex]);
2462 
2463   // When affinity is off, this routine will still be called to set
2464   // __kmp_ncores, as well as __kmp_nThreadsPerCore, nCoresPerPkg, & nPackages.
2465   // Make sure all these vars are set correctly, and return now if affinity is
2466   // not enabled.
2467   __kmp_ncores = totals[coreIdIndex];
2468 
2469   if (__kmp_affinity_verbose) {
2470     if (!KMP_AFFINITY_CAPABLE()) {
2471       KMP_INFORM(AffNotCapableUseCpuinfo, "KMP_AFFINITY");
2472       KMP_INFORM(AvailableOSProc, "KMP_AFFINITY", __kmp_avail_proc);
2473       if (uniform) {
2474         KMP_INFORM(Uniform, "KMP_AFFINITY");
2475       } else {
2476         KMP_INFORM(NonUniform, "KMP_AFFINITY");
2477       }
2478     } else {
2479       KMP_INFORM(AffCapableUseCpuinfo, "KMP_AFFINITY");
2480       KMP_INFORM(AvailableOSProc, "KMP_AFFINITY", __kmp_avail_proc);
2481       if (uniform) {
2482         KMP_INFORM(Uniform, "KMP_AFFINITY");
2483       } else {
2484         KMP_INFORM(NonUniform, "KMP_AFFINITY");
2485       }
2486     }
2487     kmp_str_buf_t buf;
2488     __kmp_str_buf_init(&buf);
2489 
2490     __kmp_str_buf_print(&buf, "%d", totals[maxIndex]);
2491     for (index = maxIndex - 1; index >= pkgIdIndex; index--) {
2492       __kmp_str_buf_print(&buf, " x %d", maxCt[index]);
2493     }
2494     KMP_INFORM(TopologyExtra, "KMP_AFFINITY", buf.str, maxCt[coreIdIndex],
2495                maxCt[threadIdIndex], __kmp_ncores);
2496 
2497     __kmp_str_buf_free(&buf);
2498   }
2499 
2500 #if KMP_MIC && REDUCE_TEAM_SIZE
2501   // Set the default team size.
2502   if ((__kmp_dflt_team_nth == 0) && (teamSize > 0)) {
2503     __kmp_dflt_team_nth = teamSize;
2504     KA_TRACE(20, ("__kmp_affinity_create_cpuinfo_map: setting "
2505                   "__kmp_dflt_team_nth = %d\n",
2506                   __kmp_dflt_team_nth));
2507   }
2508 #endif // KMP_MIC && REDUCE_TEAM_SIZE
2509 
2510   KMP_DEBUG_ASSERT(__kmp_pu_os_idx == NULL);
2511   KMP_DEBUG_ASSERT(num_avail == (unsigned)__kmp_avail_proc);
2512   __kmp_pu_os_idx = (int *)__kmp_allocate(sizeof(int) * __kmp_avail_proc);
2513   for (i = 0; i < num_avail; ++i) { // fill the os indices
2514     __kmp_pu_os_idx[i] = threadInfo[i][osIdIndex];
2515   }
2516 
2517   if (__kmp_affinity_type == affinity_none) {
2518     __kmp_free(lastId);
2519     __kmp_free(totals);
2520     __kmp_free(maxCt);
2521     __kmp_free(counts);
2522     CLEANUP_THREAD_INFO;
2523     return 0;
2524   }
2525 
2526   // Count the number of levels which have more nodes at that level than at the
2527   // parent's level (with there being an implicit root node of the top level).
2528   // This is equivalent to saying that there is at least one node at this level
2529   // which has a sibling. These levels are in the map, and the package level is
2530   // always in the map.
2531   bool *inMap = (bool *)__kmp_allocate((maxIndex + 1) * sizeof(bool));
2532   for (index = threadIdIndex; index < maxIndex; index++) {
2533     KMP_ASSERT(totals[index] >= totals[index + 1]);
2534     inMap[index] = (totals[index] > totals[index + 1]);
2535   }
2536   inMap[maxIndex] = (totals[maxIndex] > 1);
2537   inMap[pkgIdIndex] = true;
2538 
2539   int depth = 0;
2540   for (index = threadIdIndex; index <= maxIndex; index++) {
2541     if (inMap[index]) {
2542       depth++;
2543     }
2544   }
2545   KMP_ASSERT(depth > 0);
2546 
2547   // Construct the data structure that is to be returned.
2548   *address2os = (AddrUnsPair *)__kmp_allocate(sizeof(AddrUnsPair) * num_avail);
2549   int pkgLevel = -1;
2550   int coreLevel = -1;
2551   int threadLevel = -1;
2552 
2553   for (i = 0; i < num_avail; ++i) {
2554     Address addr(depth);
2555     unsigned os = threadInfo[i][osIdIndex];
2556     int src_index;
2557     int dst_index = 0;
2558 
2559     for (src_index = maxIndex; src_index >= threadIdIndex; src_index--) {
2560       if (!inMap[src_index]) {
2561         continue;
2562       }
2563       addr.labels[dst_index] = threadInfo[i][src_index];
2564       if (src_index == pkgIdIndex) {
2565         pkgLevel = dst_index;
2566       } else if (src_index == coreIdIndex) {
2567         coreLevel = dst_index;
2568       } else if (src_index == threadIdIndex) {
2569         threadLevel = dst_index;
2570       }
2571       dst_index++;
2572     }
2573     (*address2os)[i] = AddrUnsPair(addr, os);
2574   }
2575 
2576   if (__kmp_affinity_gran_levels < 0) {
2577     // Set the granularity level based on what levels are modeled
2578     // in the machine topology map.
2579     unsigned src_index;
2580     __kmp_affinity_gran_levels = 0;
2581     for (src_index = threadIdIndex; src_index <= maxIndex; src_index++) {
2582       if (!inMap[src_index]) {
2583         continue;
2584       }
2585       switch (src_index) {
2586       case threadIdIndex:
2587         if (__kmp_affinity_gran > affinity_gran_thread) {
2588           __kmp_affinity_gran_levels++;
2589         }
2590 
2591         break;
2592       case coreIdIndex:
2593         if (__kmp_affinity_gran > affinity_gran_core) {
2594           __kmp_affinity_gran_levels++;
2595         }
2596         break;
2597 
2598       case pkgIdIndex:
2599         if (__kmp_affinity_gran > affinity_gran_package) {
2600           __kmp_affinity_gran_levels++;
2601         }
2602         break;
2603       }
2604     }
2605   }
2606 
2607   if (__kmp_affinity_verbose) {
2608     __kmp_affinity_print_topology(*address2os, num_avail, depth, pkgLevel,
2609                                   coreLevel, threadLevel);
2610   }
2611 
2612   __kmp_free(inMap);
2613   __kmp_free(lastId);
2614   __kmp_free(totals);
2615   __kmp_free(maxCt);
2616   __kmp_free(counts);
2617   CLEANUP_THREAD_INFO;
2618   return depth;
2619 }
2620 
2621 // Create and return a table of affinity masks, indexed by OS thread ID.
2622 // This routine handles OR'ing together all the affinity masks of threads
2623 // that are sufficiently close, if granularity > fine.
2624 static kmp_affin_mask_t *__kmp_create_masks(unsigned *maxIndex,
2625                                             unsigned *numUnique,
2626                                             AddrUnsPair *address2os,
2627                                             unsigned numAddrs) {
2628   // First form a table of affinity masks in order of OS thread id.
2629   unsigned depth;
2630   unsigned maxOsId;
2631   unsigned i;
2632 
2633   KMP_ASSERT(numAddrs > 0);
2634   depth = address2os[0].first.depth;
2635 
2636   maxOsId = 0;
2637   for (i = numAddrs - 1;; --i) {
2638     unsigned osId = address2os[i].second;
2639     if (osId > maxOsId) {
2640       maxOsId = osId;
2641     }
2642     if (i == 0)
2643       break;
2644   }
2645   kmp_affin_mask_t *osId2Mask;
2646   KMP_CPU_ALLOC_ARRAY(osId2Mask, (maxOsId + 1));
2647 
2648   // Sort the address2os table according to physical order. Doing so will put
2649   // all threads on the same core/package/node in consecutive locations.
2650   qsort(address2os, numAddrs, sizeof(*address2os),
2651         __kmp_affinity_cmp_Address_labels);
2652 
2653   KMP_ASSERT(__kmp_affinity_gran_levels >= 0);
2654   if (__kmp_affinity_verbose && (__kmp_affinity_gran_levels > 0)) {
2655     KMP_INFORM(ThreadsMigrate, "KMP_AFFINITY", __kmp_affinity_gran_levels);
2656   }
2657   if (__kmp_affinity_gran_levels >= (int)depth) {
2658     if (__kmp_affinity_verbose ||
2659         (__kmp_affinity_warnings && (__kmp_affinity_type != affinity_none))) {
2660       KMP_WARNING(AffThreadsMayMigrate);
2661     }
2662   }
2663 
2664   // Run through the table, forming the masks for all threads on each core.
2665   // Threads on the same core will have identical "Address" objects, not
2666   // considering the last level, which must be the thread id. All threads on a
2667   // core will appear consecutively.
2668   unsigned unique = 0;
2669   unsigned j = 0; // index of 1st thread on core
2670   unsigned leader = 0;
2671   Address *leaderAddr = &(address2os[0].first);
2672   kmp_affin_mask_t *sum;
2673   KMP_CPU_ALLOC_ON_STACK(sum);
2674   KMP_CPU_ZERO(sum);
2675   KMP_CPU_SET(address2os[0].second, sum);
2676   for (i = 1; i < numAddrs; i++) {
2677     // If this thread is sufficiently close to the leader (within the
2678     // granularity setting), then set the bit for this os thread in the
2679     // affinity mask for this group, and go on to the next thread.
2680     if (leaderAddr->isClose(address2os[i].first, __kmp_affinity_gran_levels)) {
2681       KMP_CPU_SET(address2os[i].second, sum);
2682       continue;
2683     }
2684 
2685     // For every thread in this group, copy the mask to the thread's entry in
2686     // the osId2Mask table.  Mark the first address as a leader.
2687     for (; j < i; j++) {
2688       unsigned osId = address2os[j].second;
2689       KMP_DEBUG_ASSERT(osId <= maxOsId);
2690       kmp_affin_mask_t *mask = KMP_CPU_INDEX(osId2Mask, osId);
2691       KMP_CPU_COPY(mask, sum);
2692       address2os[j].first.leader = (j == leader);
2693     }
2694     unique++;
2695 
2696     // Start a new mask.
2697     leader = i;
2698     leaderAddr = &(address2os[i].first);
2699     KMP_CPU_ZERO(sum);
2700     KMP_CPU_SET(address2os[i].second, sum);
2701   }
2702 
2703   // For every thread in last group, copy the mask to the thread's
2704   // entry in the osId2Mask table.
2705   for (; j < i; j++) {
2706     unsigned osId = address2os[j].second;
2707     KMP_DEBUG_ASSERT(osId <= maxOsId);
2708     kmp_affin_mask_t *mask = KMP_CPU_INDEX(osId2Mask, osId);
2709     KMP_CPU_COPY(mask, sum);
2710     address2os[j].first.leader = (j == leader);
2711   }
2712   unique++;
2713   KMP_CPU_FREE_FROM_STACK(sum);
2714 
2715   *maxIndex = maxOsId;
2716   *numUnique = unique;
2717   return osId2Mask;
2718 }
2719 
2720 // Stuff for the affinity proclist parsers.  It's easier to declare these vars
2721 // as file-static than to try and pass them through the calling sequence of
2722 // the recursive-descent OMP_PLACES parser.
2723 static kmp_affin_mask_t *newMasks;
2724 static int numNewMasks;
2725 static int nextNewMask;
2726 
2727 #define ADD_MASK(_mask)                                                        \
2728   {                                                                            \
2729     if (nextNewMask >= numNewMasks) {                                          \
2730       int i;                                                                   \
2731       numNewMasks *= 2;                                                        \
2732       kmp_affin_mask_t *temp;                                                  \
2733       KMP_CPU_INTERNAL_ALLOC_ARRAY(temp, numNewMasks);                         \
2734       for (i = 0; i < numNewMasks / 2; i++) {                                  \
2735         kmp_affin_mask_t *src = KMP_CPU_INDEX(newMasks, i);                    \
2736         kmp_affin_mask_t *dest = KMP_CPU_INDEX(temp, i);                       \
2737         KMP_CPU_COPY(dest, src);                                               \
2738       }                                                                        \
2739       KMP_CPU_INTERNAL_FREE_ARRAY(newMasks, numNewMasks / 2);                  \
2740       newMasks = temp;                                                         \
2741     }                                                                          \
2742     KMP_CPU_COPY(KMP_CPU_INDEX(newMasks, nextNewMask), (_mask));               \
2743     nextNewMask++;                                                             \
2744   }
2745 
2746 #define ADD_MASK_OSID(_osId, _osId2Mask, _maxOsId)                             \
2747   {                                                                            \
2748     if (((_osId) > _maxOsId) ||                                                \
2749         (!KMP_CPU_ISSET((_osId), KMP_CPU_INDEX((_osId2Mask), (_osId))))) {     \
2750       if (__kmp_affinity_verbose ||                                            \
2751           (__kmp_affinity_warnings &&                                          \
2752            (__kmp_affinity_type != affinity_none))) {                          \
2753         KMP_WARNING(AffIgnoreInvalidProcID, _osId);                            \
2754       }                                                                        \
2755     } else {                                                                   \
2756       ADD_MASK(KMP_CPU_INDEX(_osId2Mask, (_osId)));                            \
2757     }                                                                          \
2758   }
2759 
2760 // Re-parse the proclist (for the explicit affinity type), and form the list
2761 // of affinity newMasks indexed by gtid.
2762 static void __kmp_affinity_process_proclist(kmp_affin_mask_t **out_masks,
2763                                             unsigned int *out_numMasks,
2764                                             const char *proclist,
2765                                             kmp_affin_mask_t *osId2Mask,
2766                                             int maxOsId) {
2767   int i;
2768   const char *scan = proclist;
2769   const char *next = proclist;
2770 
2771   // We use malloc() for the temporary mask vector, so that we can use
2772   // realloc() to extend it.
2773   numNewMasks = 2;
2774   KMP_CPU_INTERNAL_ALLOC_ARRAY(newMasks, numNewMasks);
2775   nextNewMask = 0;
2776   kmp_affin_mask_t *sumMask;
2777   KMP_CPU_ALLOC(sumMask);
2778   int setSize = 0;
2779 
2780   for (;;) {
2781     int start, end, stride;
2782 
2783     SKIP_WS(scan);
2784     next = scan;
2785     if (*next == '\0') {
2786       break;
2787     }
2788 
2789     if (*next == '{') {
2790       int num;
2791       setSize = 0;
2792       next++; // skip '{'
2793       SKIP_WS(next);
2794       scan = next;
2795 
2796       // Read the first integer in the set.
2797       KMP_ASSERT2((*next >= '0') && (*next <= '9'), "bad proclist");
2798       SKIP_DIGITS(next);
2799       num = __kmp_str_to_int(scan, *next);
2800       KMP_ASSERT2(num >= 0, "bad explicit proc list");
2801 
2802       // Copy the mask for that osId to the sum (union) mask.
2803       if ((num > maxOsId) ||
2804           (!KMP_CPU_ISSET(num, KMP_CPU_INDEX(osId2Mask, num)))) {
2805         if (__kmp_affinity_verbose ||
2806             (__kmp_affinity_warnings &&
2807              (__kmp_affinity_type != affinity_none))) {
2808           KMP_WARNING(AffIgnoreInvalidProcID, num);
2809         }
2810         KMP_CPU_ZERO(sumMask);
2811       } else {
2812         KMP_CPU_COPY(sumMask, KMP_CPU_INDEX(osId2Mask, num));
2813         setSize = 1;
2814       }
2815 
2816       for (;;) {
2817         // Check for end of set.
2818         SKIP_WS(next);
2819         if (*next == '}') {
2820           next++; // skip '}'
2821           break;
2822         }
2823 
2824         // Skip optional comma.
2825         if (*next == ',') {
2826           next++;
2827         }
2828         SKIP_WS(next);
2829 
2830         // Read the next integer in the set.
2831         scan = next;
2832         KMP_ASSERT2((*next >= '0') && (*next <= '9'), "bad explicit proc list");
2833 
2834         SKIP_DIGITS(next);
2835         num = __kmp_str_to_int(scan, *next);
2836         KMP_ASSERT2(num >= 0, "bad explicit proc list");
2837 
2838         // Add the mask for that osId to the sum mask.
2839         if ((num > maxOsId) ||
2840             (!KMP_CPU_ISSET(num, KMP_CPU_INDEX(osId2Mask, num)))) {
2841           if (__kmp_affinity_verbose ||
2842               (__kmp_affinity_warnings &&
2843                (__kmp_affinity_type != affinity_none))) {
2844             KMP_WARNING(AffIgnoreInvalidProcID, num);
2845           }
2846         } else {
2847           KMP_CPU_UNION(sumMask, KMP_CPU_INDEX(osId2Mask, num));
2848           setSize++;
2849         }
2850       }
2851       if (setSize > 0) {
2852         ADD_MASK(sumMask);
2853       }
2854 
2855       SKIP_WS(next);
2856       if (*next == ',') {
2857         next++;
2858       }
2859       scan = next;
2860       continue;
2861     }
2862 
2863     // Read the first integer.
2864     KMP_ASSERT2((*next >= '0') && (*next <= '9'), "bad explicit proc list");
2865     SKIP_DIGITS(next);
2866     start = __kmp_str_to_int(scan, *next);
2867     KMP_ASSERT2(start >= 0, "bad explicit proc list");
2868     SKIP_WS(next);
2869 
2870     // If this isn't a range, then add a mask to the list and go on.
2871     if (*next != '-') {
2872       ADD_MASK_OSID(start, osId2Mask, maxOsId);
2873 
2874       // Skip optional comma.
2875       if (*next == ',') {
2876         next++;
2877       }
2878       scan = next;
2879       continue;
2880     }
2881 
2882     // This is a range.  Skip over the '-' and read in the 2nd int.
2883     next++; // skip '-'
2884     SKIP_WS(next);
2885     scan = next;
2886     KMP_ASSERT2((*next >= '0') && (*next <= '9'), "bad explicit proc list");
2887     SKIP_DIGITS(next);
2888     end = __kmp_str_to_int(scan, *next);
2889     KMP_ASSERT2(end >= 0, "bad explicit proc list");
2890 
2891     // Check for a stride parameter
2892     stride = 1;
2893     SKIP_WS(next);
2894     if (*next == ':') {
2895       // A stride is specified.  Skip over the ':" and read the 3rd int.
2896       int sign = +1;
2897       next++; // skip ':'
2898       SKIP_WS(next);
2899       scan = next;
2900       if (*next == '-') {
2901         sign = -1;
2902         next++;
2903         SKIP_WS(next);
2904         scan = next;
2905       }
2906       KMP_ASSERT2((*next >= '0') && (*next <= '9'), "bad explicit proc list");
2907       SKIP_DIGITS(next);
2908       stride = __kmp_str_to_int(scan, *next);
2909       KMP_ASSERT2(stride >= 0, "bad explicit proc list");
2910       stride *= sign;
2911     }
2912 
2913     // Do some range checks.
2914     KMP_ASSERT2(stride != 0, "bad explicit proc list");
2915     if (stride > 0) {
2916       KMP_ASSERT2(start <= end, "bad explicit proc list");
2917     } else {
2918       KMP_ASSERT2(start >= end, "bad explicit proc list");
2919     }
2920     KMP_ASSERT2((end - start) / stride <= 65536, "bad explicit proc list");
2921 
2922     // Add the mask for each OS proc # to the list.
2923     if (stride > 0) {
2924       do {
2925         ADD_MASK_OSID(start, osId2Mask, maxOsId);
2926         start += stride;
2927       } while (start <= end);
2928     } else {
2929       do {
2930         ADD_MASK_OSID(start, osId2Mask, maxOsId);
2931         start += stride;
2932       } while (start >= end);
2933     }
2934 
2935     // Skip optional comma.
2936     SKIP_WS(next);
2937     if (*next == ',') {
2938       next++;
2939     }
2940     scan = next;
2941   }
2942 
2943   *out_numMasks = nextNewMask;
2944   if (nextNewMask == 0) {
2945     *out_masks = NULL;
2946     KMP_CPU_INTERNAL_FREE_ARRAY(newMasks, numNewMasks);
2947     return;
2948   }
2949   KMP_CPU_ALLOC_ARRAY((*out_masks), nextNewMask);
2950   for (i = 0; i < nextNewMask; i++) {
2951     kmp_affin_mask_t *src = KMP_CPU_INDEX(newMasks, i);
2952     kmp_affin_mask_t *dest = KMP_CPU_INDEX((*out_masks), i);
2953     KMP_CPU_COPY(dest, src);
2954   }
2955   KMP_CPU_INTERNAL_FREE_ARRAY(newMasks, numNewMasks);
2956   KMP_CPU_FREE(sumMask);
2957 }
2958 
2959 /*-----------------------------------------------------------------------------
2960 Re-parse the OMP_PLACES proc id list, forming the newMasks for the different
2961 places.  Again, Here is the grammar:
2962 
2963 place_list := place
2964 place_list := place , place_list
2965 place := num
2966 place := place : num
2967 place := place : num : signed
2968 place := { subplacelist }
2969 place := ! place                  // (lowest priority)
2970 subplace_list := subplace
2971 subplace_list := subplace , subplace_list
2972 subplace := num
2973 subplace := num : num
2974 subplace := num : num : signed
2975 signed := num
2976 signed := + signed
2977 signed := - signed
2978 -----------------------------------------------------------------------------*/
2979 static void __kmp_process_subplace_list(const char **scan,
2980                                         kmp_affin_mask_t *osId2Mask,
2981                                         int maxOsId, kmp_affin_mask_t *tempMask,
2982                                         int *setSize) {
2983   const char *next;
2984 
2985   for (;;) {
2986     int start, count, stride, i;
2987 
2988     // Read in the starting proc id
2989     SKIP_WS(*scan);
2990     KMP_ASSERT2((**scan >= '0') && (**scan <= '9'), "bad explicit places list");
2991     next = *scan;
2992     SKIP_DIGITS(next);
2993     start = __kmp_str_to_int(*scan, *next);
2994     KMP_ASSERT(start >= 0);
2995     *scan = next;
2996 
2997     // valid follow sets are ',' ':' and '}'
2998     SKIP_WS(*scan);
2999     if (**scan == '}' || **scan == ',') {
3000       if ((start > maxOsId) ||
3001           (!KMP_CPU_ISSET(start, KMP_CPU_INDEX(osId2Mask, start)))) {
3002         if (__kmp_affinity_verbose ||
3003             (__kmp_affinity_warnings &&
3004              (__kmp_affinity_type != affinity_none))) {
3005           KMP_WARNING(AffIgnoreInvalidProcID, start);
3006         }
3007       } else {
3008         KMP_CPU_UNION(tempMask, KMP_CPU_INDEX(osId2Mask, start));
3009         (*setSize)++;
3010       }
3011       if (**scan == '}') {
3012         break;
3013       }
3014       (*scan)++; // skip ','
3015       continue;
3016     }
3017     KMP_ASSERT2(**scan == ':', "bad explicit places list");
3018     (*scan)++; // skip ':'
3019 
3020     // Read count parameter
3021     SKIP_WS(*scan);
3022     KMP_ASSERT2((**scan >= '0') && (**scan <= '9'), "bad explicit places list");
3023     next = *scan;
3024     SKIP_DIGITS(next);
3025     count = __kmp_str_to_int(*scan, *next);
3026     KMP_ASSERT(count >= 0);
3027     *scan = next;
3028 
3029     // valid follow sets are ',' ':' and '}'
3030     SKIP_WS(*scan);
3031     if (**scan == '}' || **scan == ',') {
3032       for (i = 0; i < count; i++) {
3033         if ((start > maxOsId) ||
3034             (!KMP_CPU_ISSET(start, KMP_CPU_INDEX(osId2Mask, start)))) {
3035           if (__kmp_affinity_verbose ||
3036               (__kmp_affinity_warnings &&
3037                (__kmp_affinity_type != affinity_none))) {
3038             KMP_WARNING(AffIgnoreInvalidProcID, start);
3039           }
3040           break; // don't proliferate warnings for large count
3041         } else {
3042           KMP_CPU_UNION(tempMask, KMP_CPU_INDEX(osId2Mask, start));
3043           start++;
3044           (*setSize)++;
3045         }
3046       }
3047       if (**scan == '}') {
3048         break;
3049       }
3050       (*scan)++; // skip ','
3051       continue;
3052     }
3053     KMP_ASSERT2(**scan == ':', "bad explicit places list");
3054     (*scan)++; // skip ':'
3055 
3056     // Read stride parameter
3057     int sign = +1;
3058     for (;;) {
3059       SKIP_WS(*scan);
3060       if (**scan == '+') {
3061         (*scan)++; // skip '+'
3062         continue;
3063       }
3064       if (**scan == '-') {
3065         sign *= -1;
3066         (*scan)++; // skip '-'
3067         continue;
3068       }
3069       break;
3070     }
3071     SKIP_WS(*scan);
3072     KMP_ASSERT2((**scan >= '0') && (**scan <= '9'), "bad explicit places list");
3073     next = *scan;
3074     SKIP_DIGITS(next);
3075     stride = __kmp_str_to_int(*scan, *next);
3076     KMP_ASSERT(stride >= 0);
3077     *scan = next;
3078     stride *= sign;
3079 
3080     // valid follow sets are ',' and '}'
3081     SKIP_WS(*scan);
3082     if (**scan == '}' || **scan == ',') {
3083       for (i = 0; i < count; i++) {
3084         if ((start > maxOsId) ||
3085             (!KMP_CPU_ISSET(start, KMP_CPU_INDEX(osId2Mask, start)))) {
3086           if (__kmp_affinity_verbose ||
3087               (__kmp_affinity_warnings &&
3088                (__kmp_affinity_type != affinity_none))) {
3089             KMP_WARNING(AffIgnoreInvalidProcID, start);
3090           }
3091           break; // don't proliferate warnings for large count
3092         } else {
3093           KMP_CPU_UNION(tempMask, KMP_CPU_INDEX(osId2Mask, start));
3094           start += stride;
3095           (*setSize)++;
3096         }
3097       }
3098       if (**scan == '}') {
3099         break;
3100       }
3101       (*scan)++; // skip ','
3102       continue;
3103     }
3104 
3105     KMP_ASSERT2(0, "bad explicit places list");
3106   }
3107 }
3108 
3109 static void __kmp_process_place(const char **scan, kmp_affin_mask_t *osId2Mask,
3110                                 int maxOsId, kmp_affin_mask_t *tempMask,
3111                                 int *setSize) {
3112   const char *next;
3113 
3114   // valid follow sets are '{' '!' and num
3115   SKIP_WS(*scan);
3116   if (**scan == '{') {
3117     (*scan)++; // skip '{'
3118     __kmp_process_subplace_list(scan, osId2Mask, maxOsId, tempMask, setSize);
3119     KMP_ASSERT2(**scan == '}', "bad explicit places list");
3120     (*scan)++; // skip '}'
3121   } else if (**scan == '!') {
3122     (*scan)++; // skip '!'
3123     __kmp_process_place(scan, osId2Mask, maxOsId, tempMask, setSize);
3124     KMP_CPU_COMPLEMENT(maxOsId, tempMask);
3125   } else if ((**scan >= '0') && (**scan <= '9')) {
3126     next = *scan;
3127     SKIP_DIGITS(next);
3128     int num = __kmp_str_to_int(*scan, *next);
3129     KMP_ASSERT(num >= 0);
3130     if ((num > maxOsId) ||
3131         (!KMP_CPU_ISSET(num, KMP_CPU_INDEX(osId2Mask, num)))) {
3132       if (__kmp_affinity_verbose ||
3133           (__kmp_affinity_warnings && (__kmp_affinity_type != affinity_none))) {
3134         KMP_WARNING(AffIgnoreInvalidProcID, num);
3135       }
3136     } else {
3137       KMP_CPU_UNION(tempMask, KMP_CPU_INDEX(osId2Mask, num));
3138       (*setSize)++;
3139     }
3140     *scan = next; // skip num
3141   } else {
3142     KMP_ASSERT2(0, "bad explicit places list");
3143   }
3144 }
3145 
3146 // static void
3147 void __kmp_affinity_process_placelist(kmp_affin_mask_t **out_masks,
3148                                       unsigned int *out_numMasks,
3149                                       const char *placelist,
3150                                       kmp_affin_mask_t *osId2Mask,
3151                                       int maxOsId) {
3152   int i, j, count, stride, sign;
3153   const char *scan = placelist;
3154   const char *next = placelist;
3155 
3156   numNewMasks = 2;
3157   KMP_CPU_INTERNAL_ALLOC_ARRAY(newMasks, numNewMasks);
3158   nextNewMask = 0;
3159 
3160   // tempMask is modified based on the previous or initial
3161   //   place to form the current place
3162   // previousMask contains the previous place
3163   kmp_affin_mask_t *tempMask;
3164   kmp_affin_mask_t *previousMask;
3165   KMP_CPU_ALLOC(tempMask);
3166   KMP_CPU_ZERO(tempMask);
3167   KMP_CPU_ALLOC(previousMask);
3168   KMP_CPU_ZERO(previousMask);
3169   int setSize = 0;
3170 
3171   for (;;) {
3172     __kmp_process_place(&scan, osId2Mask, maxOsId, tempMask, &setSize);
3173 
3174     // valid follow sets are ',' ':' and EOL
3175     SKIP_WS(scan);
3176     if (*scan == '\0' || *scan == ',') {
3177       if (setSize > 0) {
3178         ADD_MASK(tempMask);
3179       }
3180       KMP_CPU_ZERO(tempMask);
3181       setSize = 0;
3182       if (*scan == '\0') {
3183         break;
3184       }
3185       scan++; // skip ','
3186       continue;
3187     }
3188 
3189     KMP_ASSERT2(*scan == ':', "bad explicit places list");
3190     scan++; // skip ':'
3191 
3192     // Read count parameter
3193     SKIP_WS(scan);
3194     KMP_ASSERT2((*scan >= '0') && (*scan <= '9'), "bad explicit places list");
3195     next = scan;
3196     SKIP_DIGITS(next);
3197     count = __kmp_str_to_int(scan, *next);
3198     KMP_ASSERT(count >= 0);
3199     scan = next;
3200 
3201     // valid follow sets are ',' ':' and EOL
3202     SKIP_WS(scan);
3203     if (*scan == '\0' || *scan == ',') {
3204       stride = +1;
3205     } else {
3206       KMP_ASSERT2(*scan == ':', "bad explicit places list");
3207       scan++; // skip ':'
3208 
3209       // Read stride parameter
3210       sign = +1;
3211       for (;;) {
3212         SKIP_WS(scan);
3213         if (*scan == '+') {
3214           scan++; // skip '+'
3215           continue;
3216         }
3217         if (*scan == '-') {
3218           sign *= -1;
3219           scan++; // skip '-'
3220           continue;
3221         }
3222         break;
3223       }
3224       SKIP_WS(scan);
3225       KMP_ASSERT2((*scan >= '0') && (*scan <= '9'), "bad explicit places list");
3226       next = scan;
3227       SKIP_DIGITS(next);
3228       stride = __kmp_str_to_int(scan, *next);
3229       KMP_DEBUG_ASSERT(stride >= 0);
3230       scan = next;
3231       stride *= sign;
3232     }
3233 
3234     // Add places determined by initial_place : count : stride
3235     for (i = 0; i < count; i++) {
3236       if (setSize == 0) {
3237         break;
3238       }
3239       // Add the current place, then build the next place (tempMask) from that
3240       KMP_CPU_COPY(previousMask, tempMask);
3241       ADD_MASK(previousMask);
3242       KMP_CPU_ZERO(tempMask);
3243       setSize = 0;
3244       KMP_CPU_SET_ITERATE(j, previousMask) {
3245         if (!KMP_CPU_ISSET(j, previousMask)) {
3246           continue;
3247         }
3248         if ((j + stride > maxOsId) || (j + stride < 0) ||
3249             (!KMP_CPU_ISSET(j, __kmp_affin_fullMask)) ||
3250             (!KMP_CPU_ISSET(j + stride,
3251                             KMP_CPU_INDEX(osId2Mask, j + stride)))) {
3252           if ((__kmp_affinity_verbose ||
3253                (__kmp_affinity_warnings &&
3254                 (__kmp_affinity_type != affinity_none))) &&
3255               i < count - 1) {
3256             KMP_WARNING(AffIgnoreInvalidProcID, j + stride);
3257           }
3258           continue;
3259         }
3260         KMP_CPU_SET(j + stride, tempMask);
3261         setSize++;
3262       }
3263     }
3264     KMP_CPU_ZERO(tempMask);
3265     setSize = 0;
3266 
3267     // valid follow sets are ',' and EOL
3268     SKIP_WS(scan);
3269     if (*scan == '\0') {
3270       break;
3271     }
3272     if (*scan == ',') {
3273       scan++; // skip ','
3274       continue;
3275     }
3276 
3277     KMP_ASSERT2(0, "bad explicit places list");
3278   }
3279 
3280   *out_numMasks = nextNewMask;
3281   if (nextNewMask == 0) {
3282     *out_masks = NULL;
3283     KMP_CPU_INTERNAL_FREE_ARRAY(newMasks, numNewMasks);
3284     return;
3285   }
3286   KMP_CPU_ALLOC_ARRAY((*out_masks), nextNewMask);
3287   KMP_CPU_FREE(tempMask);
3288   KMP_CPU_FREE(previousMask);
3289   for (i = 0; i < nextNewMask; i++) {
3290     kmp_affin_mask_t *src = KMP_CPU_INDEX(newMasks, i);
3291     kmp_affin_mask_t *dest = KMP_CPU_INDEX((*out_masks), i);
3292     KMP_CPU_COPY(dest, src);
3293   }
3294   KMP_CPU_INTERNAL_FREE_ARRAY(newMasks, numNewMasks);
3295 }
3296 
3297 #undef ADD_MASK
3298 #undef ADD_MASK_OSID
3299 
3300 #if KMP_USE_HWLOC
3301 static int __kmp_hwloc_skip_PUs_obj(hwloc_topology_t t, hwloc_obj_t o) {
3302   // skip PUs descendants of the object o
3303   int skipped = 0;
3304   hwloc_obj_t hT = NULL;
3305   int N = __kmp_hwloc_count_children_by_type(t, o, HWLOC_OBJ_PU, &hT);
3306   for (int i = 0; i < N; ++i) {
3307     KMP_DEBUG_ASSERT(hT);
3308     unsigned idx = hT->os_index;
3309     if (KMP_CPU_ISSET(idx, __kmp_affin_fullMask)) {
3310       KMP_CPU_CLR(idx, __kmp_affin_fullMask);
3311       KC_TRACE(200, ("KMP_HW_SUBSET: skipped proc %d\n", idx));
3312       ++skipped;
3313     }
3314     hT = hwloc_get_next_obj_by_type(t, HWLOC_OBJ_PU, hT);
3315   }
3316   return skipped; // count number of skipped units
3317 }
3318 
3319 static int __kmp_hwloc_obj_has_PUs(hwloc_topology_t t, hwloc_obj_t o) {
3320   // check if obj has PUs present in fullMask
3321   hwloc_obj_t hT = NULL;
3322   int N = __kmp_hwloc_count_children_by_type(t, o, HWLOC_OBJ_PU, &hT);
3323   for (int i = 0; i < N; ++i) {
3324     KMP_DEBUG_ASSERT(hT);
3325     unsigned idx = hT->os_index;
3326     if (KMP_CPU_ISSET(idx, __kmp_affin_fullMask))
3327       return 1; // found PU
3328     hT = hwloc_get_next_obj_by_type(t, HWLOC_OBJ_PU, hT);
3329   }
3330   return 0; // no PUs found
3331 }
3332 #endif // KMP_USE_HWLOC
3333 
3334 static void __kmp_apply_thread_places(AddrUnsPair **pAddr, int depth) {
3335   AddrUnsPair *newAddr;
3336   if (__kmp_hws_requested == 0)
3337     goto _exit; // no topology limiting actions requested, exit
3338 #if KMP_USE_HWLOC
3339   if (__kmp_affinity_dispatch->get_api_type() == KMPAffinity::HWLOC) {
3340     // Number of subobjects calculated dynamically, this works fine for
3341     // any non-uniform topology.
3342     // L2 cache objects are determined by depth, other objects - by type.
3343     hwloc_topology_t tp = __kmp_hwloc_topology;
3344     int nS = 0, nN = 0, nL = 0, nC = 0,
3345         nT = 0; // logical index including skipped
3346     int nCr = 0, nTr = 0; // number of requested units
3347     int nPkg = 0, nCo = 0, n_new = 0, n_old = 0, nCpP = 0, nTpC = 0; // counters
3348     hwloc_obj_t hT, hC, hL, hN, hS; // hwloc objects (pointers to)
3349     int L2depth, idx;
3350 
3351     // check support of extensions ----------------------------------
3352     int numa_support = 0, tile_support = 0;
3353     if (__kmp_pu_os_idx)
3354       hT = hwloc_get_pu_obj_by_os_index(tp,
3355                                         __kmp_pu_os_idx[__kmp_avail_proc - 1]);
3356     else
3357       hT = hwloc_get_obj_by_type(tp, HWLOC_OBJ_PU, __kmp_avail_proc - 1);
3358     if (hT == NULL) { // something's gone wrong
3359       KMP_WARNING(AffHWSubsetUnsupported);
3360       goto _exit;
3361     }
3362     // check NUMA node
3363     hN = hwloc_get_ancestor_obj_by_type(tp, HWLOC_OBJ_NUMANODE, hT);
3364     hS = hwloc_get_ancestor_obj_by_type(tp, HWLOC_OBJ_PACKAGE, hT);
3365     if (hN != NULL && hN->depth > hS->depth) {
3366       numa_support = 1; // 1 in case socket includes node(s)
3367     } else if (__kmp_hws_node.num > 0) {
3368       // don't support sockets inside NUMA node (no such HW found for testing)
3369       KMP_WARNING(AffHWSubsetUnsupported);
3370       goto _exit;
3371     }
3372     // check L2 cahce, get object by depth because of multiple caches
3373     L2depth = hwloc_get_cache_type_depth(tp, 2, HWLOC_OBJ_CACHE_UNIFIED);
3374     hL = hwloc_get_ancestor_obj_by_depth(tp, L2depth, hT);
3375     if (hL != NULL &&
3376         __kmp_hwloc_count_children_by_type(tp, hL, HWLOC_OBJ_CORE, &hC) > 1) {
3377       tile_support = 1; // no sense to count L2 if it includes single core
3378     } else if (__kmp_hws_tile.num > 0) {
3379       if (__kmp_hws_core.num == 0) {
3380         __kmp_hws_core = __kmp_hws_tile; // replace L2 with core
3381         __kmp_hws_tile.num = 0;
3382       } else {
3383         // L2 and core are both requested, but represent same object
3384         KMP_WARNING(AffHWSubsetInvalid);
3385         goto _exit;
3386       }
3387     }
3388     // end of check of extensions -----------------------------------
3389 
3390     // fill in unset items, validate settings -----------------------
3391     if (__kmp_hws_socket.num == 0)
3392       __kmp_hws_socket.num = nPackages; // use all available sockets
3393     if (__kmp_hws_socket.offset >= nPackages) {
3394       KMP_WARNING(AffHWSubsetManySockets);
3395       goto _exit;
3396     }
3397     if (numa_support) {
3398       hN = NULL;
3399       int NN = __kmp_hwloc_count_children_by_type(tp, hS, HWLOC_OBJ_NUMANODE,
3400                                                   &hN); // num nodes in socket
3401       if (__kmp_hws_node.num == 0)
3402         __kmp_hws_node.num = NN; // use all available nodes
3403       if (__kmp_hws_node.offset >= NN) {
3404         KMP_WARNING(AffHWSubsetManyNodes);
3405         goto _exit;
3406       }
3407       if (tile_support) {
3408         // get num tiles in node
3409         int NL = __kmp_hwloc_count_children_by_depth(tp, hN, L2depth, &hL);
3410         if (__kmp_hws_tile.num == 0) {
3411           __kmp_hws_tile.num = NL + 1;
3412         } // use all available tiles, some node may have more tiles, thus +1
3413         if (__kmp_hws_tile.offset >= NL) {
3414           KMP_WARNING(AffHWSubsetManyTiles);
3415           goto _exit;
3416         }
3417         int NC = __kmp_hwloc_count_children_by_type(tp, hL, HWLOC_OBJ_CORE,
3418                                                     &hC); // num cores in tile
3419         if (__kmp_hws_core.num == 0)
3420           __kmp_hws_core.num = NC; // use all available cores
3421         if (__kmp_hws_core.offset >= NC) {
3422           KMP_WARNING(AffHWSubsetManyCores);
3423           goto _exit;
3424         }
3425       } else { // tile_support
3426         int NC = __kmp_hwloc_count_children_by_type(tp, hN, HWLOC_OBJ_CORE,
3427                                                     &hC); // num cores in node
3428         if (__kmp_hws_core.num == 0)
3429           __kmp_hws_core.num = NC; // use all available cores
3430         if (__kmp_hws_core.offset >= NC) {
3431           KMP_WARNING(AffHWSubsetManyCores);
3432           goto _exit;
3433         }
3434       } // tile_support
3435     } else { // numa_support
3436       if (tile_support) {
3437         // get num tiles in socket
3438         int NL = __kmp_hwloc_count_children_by_depth(tp, hS, L2depth, &hL);
3439         if (__kmp_hws_tile.num == 0)
3440           __kmp_hws_tile.num = NL; // use all available tiles
3441         if (__kmp_hws_tile.offset >= NL) {
3442           KMP_WARNING(AffHWSubsetManyTiles);
3443           goto _exit;
3444         }
3445         int NC = __kmp_hwloc_count_children_by_type(tp, hL, HWLOC_OBJ_CORE,
3446                                                     &hC); // num cores in tile
3447         if (__kmp_hws_core.num == 0)
3448           __kmp_hws_core.num = NC; // use all available cores
3449         if (__kmp_hws_core.offset >= NC) {
3450           KMP_WARNING(AffHWSubsetManyCores);
3451           goto _exit;
3452         }
3453       } else { // tile_support
3454         int NC = __kmp_hwloc_count_children_by_type(tp, hS, HWLOC_OBJ_CORE,
3455                                                     &hC); // num cores in socket
3456         if (__kmp_hws_core.num == 0)
3457           __kmp_hws_core.num = NC; // use all available cores
3458         if (__kmp_hws_core.offset >= NC) {
3459           KMP_WARNING(AffHWSubsetManyCores);
3460           goto _exit;
3461         }
3462       } // tile_support
3463     }
3464     if (__kmp_hws_proc.num == 0)
3465       __kmp_hws_proc.num = __kmp_nThreadsPerCore; // use all available procs
3466     if (__kmp_hws_proc.offset >= __kmp_nThreadsPerCore) {
3467       KMP_WARNING(AffHWSubsetManyProcs);
3468       goto _exit;
3469     }
3470     // end of validation --------------------------------------------
3471 
3472     if (pAddr) // pAddr is NULL in case of affinity_none
3473       newAddr = (AddrUnsPair *)__kmp_allocate(sizeof(AddrUnsPair) *
3474                                               __kmp_avail_proc); // max size
3475     // main loop to form HW subset ----------------------------------
3476     hS = NULL;
3477     int NP = hwloc_get_nbobjs_by_type(tp, HWLOC_OBJ_PACKAGE);
3478     for (int s = 0; s < NP; ++s) {
3479       // Check Socket -----------------------------------------------
3480       hS = hwloc_get_next_obj_by_type(tp, HWLOC_OBJ_PACKAGE, hS);
3481       if (!__kmp_hwloc_obj_has_PUs(tp, hS))
3482         continue; // skip socket if all PUs are out of fullMask
3483       ++nS; // only count objects those have PUs in affinity mask
3484       if (nS <= __kmp_hws_socket.offset ||
3485           nS > __kmp_hws_socket.num + __kmp_hws_socket.offset) {
3486         n_old += __kmp_hwloc_skip_PUs_obj(tp, hS); // skip socket
3487         continue; // move to next socket
3488       }
3489       nCr = 0; // count number of cores per socket
3490       // socket requested, go down the topology tree
3491       // check 4 cases: (+NUMA+Tile), (+NUMA-Tile), (-NUMA+Tile), (-NUMA-Tile)
3492       if (numa_support) {
3493         nN = 0;
3494         hN = NULL;
3495         // num nodes in current socket
3496         int NN =
3497             __kmp_hwloc_count_children_by_type(tp, hS, HWLOC_OBJ_NUMANODE, &hN);
3498         for (int n = 0; n < NN; ++n) {
3499           // Check NUMA Node ----------------------------------------
3500           if (!__kmp_hwloc_obj_has_PUs(tp, hN)) {
3501             hN = hwloc_get_next_obj_by_type(tp, HWLOC_OBJ_NUMANODE, hN);
3502             continue; // skip node if all PUs are out of fullMask
3503           }
3504           ++nN;
3505           if (nN <= __kmp_hws_node.offset ||
3506               nN > __kmp_hws_node.num + __kmp_hws_node.offset) {
3507             // skip node as not requested
3508             n_old += __kmp_hwloc_skip_PUs_obj(tp, hN); // skip node
3509             hN = hwloc_get_next_obj_by_type(tp, HWLOC_OBJ_NUMANODE, hN);
3510             continue; // move to next node
3511           }
3512           // node requested, go down the topology tree
3513           if (tile_support) {
3514             nL = 0;
3515             hL = NULL;
3516             int NL = __kmp_hwloc_count_children_by_depth(tp, hN, L2depth, &hL);
3517             for (int l = 0; l < NL; ++l) {
3518               // Check L2 (tile) ------------------------------------
3519               if (!__kmp_hwloc_obj_has_PUs(tp, hL)) {
3520                 hL = hwloc_get_next_obj_by_depth(tp, L2depth, hL);
3521                 continue; // skip tile if all PUs are out of fullMask
3522               }
3523               ++nL;
3524               if (nL <= __kmp_hws_tile.offset ||
3525                   nL > __kmp_hws_tile.num + __kmp_hws_tile.offset) {
3526                 // skip tile as not requested
3527                 n_old += __kmp_hwloc_skip_PUs_obj(tp, hL); // skip tile
3528                 hL = hwloc_get_next_obj_by_depth(tp, L2depth, hL);
3529                 continue; // move to next tile
3530               }
3531               // tile requested, go down the topology tree
3532               nC = 0;
3533               hC = NULL;
3534               // num cores in current tile
3535               int NC = __kmp_hwloc_count_children_by_type(tp, hL,
3536                                                           HWLOC_OBJ_CORE, &hC);
3537               for (int c = 0; c < NC; ++c) {
3538                 // Check Core ---------------------------------------
3539                 if (!__kmp_hwloc_obj_has_PUs(tp, hC)) {
3540                   hC = hwloc_get_next_obj_by_type(tp, HWLOC_OBJ_CORE, hC);
3541                   continue; // skip core if all PUs are out of fullMask
3542                 }
3543                 ++nC;
3544                 if (nC <= __kmp_hws_core.offset ||
3545                     nC > __kmp_hws_core.num + __kmp_hws_core.offset) {
3546                   // skip node as not requested
3547                   n_old += __kmp_hwloc_skip_PUs_obj(tp, hC); // skip core
3548                   hC = hwloc_get_next_obj_by_type(tp, HWLOC_OBJ_CORE, hC);
3549                   continue; // move to next node
3550                 }
3551                 // core requested, go down to PUs
3552                 nT = 0;
3553                 nTr = 0;
3554                 hT = NULL;
3555                 // num procs in current core
3556                 int NT = __kmp_hwloc_count_children_by_type(tp, hC,
3557                                                             HWLOC_OBJ_PU, &hT);
3558                 for (int t = 0; t < NT; ++t) {
3559                   // Check PU ---------------------------------------
3560                   idx = hT->os_index;
3561                   if (!KMP_CPU_ISSET(idx, __kmp_affin_fullMask)) {
3562                     hT = hwloc_get_next_obj_by_type(tp, HWLOC_OBJ_PU, hT);
3563                     continue; // skip PU if not in fullMask
3564                   }
3565                   ++nT;
3566                   if (nT <= __kmp_hws_proc.offset ||
3567                       nT > __kmp_hws_proc.num + __kmp_hws_proc.offset) {
3568                     // skip PU
3569                     KMP_CPU_CLR(idx, __kmp_affin_fullMask);
3570                     ++n_old;
3571                     KC_TRACE(200, ("KMP_HW_SUBSET: skipped proc %d\n", idx));
3572                     hT = hwloc_get_next_obj_by_type(tp, HWLOC_OBJ_PU, hT);
3573                     continue; // move to next node
3574                   }
3575                   ++nTr;
3576                   if (pAddr) // collect requested thread's data
3577                     newAddr[n_new] = (*pAddr)[n_old];
3578                   ++n_new;
3579                   ++n_old;
3580                   hT = hwloc_get_next_obj_by_type(tp, HWLOC_OBJ_PU, hT);
3581                 } // threads loop
3582                 if (nTr > 0) {
3583                   ++nCr; // num cores per socket
3584                   ++nCo; // total num cores
3585                   if (nTr > nTpC)
3586                     nTpC = nTr; // calc max threads per core
3587                 }
3588                 hC = hwloc_get_next_obj_by_type(tp, HWLOC_OBJ_CORE, hC);
3589               } // cores loop
3590               hL = hwloc_get_next_obj_by_depth(tp, L2depth, hL);
3591             } // tiles loop
3592           } else { // tile_support
3593             // no tiles, check cores
3594             nC = 0;
3595             hC = NULL;
3596             // num cores in current node
3597             int NC =
3598                 __kmp_hwloc_count_children_by_type(tp, hN, HWLOC_OBJ_CORE, &hC);
3599             for (int c = 0; c < NC; ++c) {
3600               // Check Core ---------------------------------------
3601               if (!__kmp_hwloc_obj_has_PUs(tp, hC)) {
3602                 hC = hwloc_get_next_obj_by_type(tp, HWLOC_OBJ_CORE, hC);
3603                 continue; // skip core if all PUs are out of fullMask
3604               }
3605               ++nC;
3606               if (nC <= __kmp_hws_core.offset ||
3607                   nC > __kmp_hws_core.num + __kmp_hws_core.offset) {
3608                 // skip node as not requested
3609                 n_old += __kmp_hwloc_skip_PUs_obj(tp, hC); // skip core
3610                 hC = hwloc_get_next_obj_by_type(tp, HWLOC_OBJ_CORE, hC);
3611                 continue; // move to next node
3612               }
3613               // core requested, go down to PUs
3614               nT = 0;
3615               nTr = 0;
3616               hT = NULL;
3617               int NT =
3618                   __kmp_hwloc_count_children_by_type(tp, hC, HWLOC_OBJ_PU, &hT);
3619               for (int t = 0; t < NT; ++t) {
3620                 // Check PU ---------------------------------------
3621                 idx = hT->os_index;
3622                 if (!KMP_CPU_ISSET(idx, __kmp_affin_fullMask)) {
3623                   hT = hwloc_get_next_obj_by_type(tp, HWLOC_OBJ_PU, hT);
3624                   continue; // skip PU if not in fullMask
3625                 }
3626                 ++nT;
3627                 if (nT <= __kmp_hws_proc.offset ||
3628                     nT > __kmp_hws_proc.num + __kmp_hws_proc.offset) {
3629                   // skip PU
3630                   KMP_CPU_CLR(idx, __kmp_affin_fullMask);
3631                   ++n_old;
3632                   KC_TRACE(200, ("KMP_HW_SUBSET: skipped proc %d\n", idx));
3633                   hT = hwloc_get_next_obj_by_type(tp, HWLOC_OBJ_PU, hT);
3634                   continue; // move to next node
3635                 }
3636                 ++nTr;
3637                 if (pAddr) // collect requested thread's data
3638                   newAddr[n_new] = (*pAddr)[n_old];
3639                 ++n_new;
3640                 ++n_old;
3641                 hT = hwloc_get_next_obj_by_type(tp, HWLOC_OBJ_PU, hT);
3642               } // threads loop
3643               if (nTr > 0) {
3644                 ++nCr; // num cores per socket
3645                 ++nCo; // total num cores
3646                 if (nTr > nTpC)
3647                   nTpC = nTr; // calc max threads per core
3648               }
3649               hC = hwloc_get_next_obj_by_type(tp, HWLOC_OBJ_CORE, hC);
3650             } // cores loop
3651           } // tiles support
3652           hN = hwloc_get_next_obj_by_type(tp, HWLOC_OBJ_NUMANODE, hN);
3653         } // nodes loop
3654       } else { // numa_support
3655         // no NUMA support
3656         if (tile_support) {
3657           nL = 0;
3658           hL = NULL;
3659           // num tiles in current socket
3660           int NL = __kmp_hwloc_count_children_by_depth(tp, hS, L2depth, &hL);
3661           for (int l = 0; l < NL; ++l) {
3662             // Check L2 (tile) ------------------------------------
3663             if (!__kmp_hwloc_obj_has_PUs(tp, hL)) {
3664               hL = hwloc_get_next_obj_by_depth(tp, L2depth, hL);
3665               continue; // skip tile if all PUs are out of fullMask
3666             }
3667             ++nL;
3668             if (nL <= __kmp_hws_tile.offset ||
3669                 nL > __kmp_hws_tile.num + __kmp_hws_tile.offset) {
3670               // skip tile as not requested
3671               n_old += __kmp_hwloc_skip_PUs_obj(tp, hL); // skip tile
3672               hL = hwloc_get_next_obj_by_depth(tp, L2depth, hL);
3673               continue; // move to next tile
3674             }
3675             // tile requested, go down the topology tree
3676             nC = 0;
3677             hC = NULL;
3678             // num cores per tile
3679             int NC =
3680                 __kmp_hwloc_count_children_by_type(tp, hL, HWLOC_OBJ_CORE, &hC);
3681             for (int c = 0; c < NC; ++c) {
3682               // Check Core ---------------------------------------
3683               if (!__kmp_hwloc_obj_has_PUs(tp, hC)) {
3684                 hC = hwloc_get_next_obj_by_type(tp, HWLOC_OBJ_CORE, hC);
3685                 continue; // skip core if all PUs are out of fullMask
3686               }
3687               ++nC;
3688               if (nC <= __kmp_hws_core.offset ||
3689                   nC > __kmp_hws_core.num + __kmp_hws_core.offset) {
3690                 // skip node as not requested
3691                 n_old += __kmp_hwloc_skip_PUs_obj(tp, hC); // skip core
3692                 hC = hwloc_get_next_obj_by_type(tp, HWLOC_OBJ_CORE, hC);
3693                 continue; // move to next node
3694               }
3695               // core requested, go down to PUs
3696               nT = 0;
3697               nTr = 0;
3698               hT = NULL;
3699               // num procs per core
3700               int NT =
3701                   __kmp_hwloc_count_children_by_type(tp, hC, HWLOC_OBJ_PU, &hT);
3702               for (int t = 0; t < NT; ++t) {
3703                 // Check PU ---------------------------------------
3704                 idx = hT->os_index;
3705                 if (!KMP_CPU_ISSET(idx, __kmp_affin_fullMask)) {
3706                   hT = hwloc_get_next_obj_by_type(tp, HWLOC_OBJ_PU, hT);
3707                   continue; // skip PU if not in fullMask
3708                 }
3709                 ++nT;
3710                 if (nT <= __kmp_hws_proc.offset ||
3711                     nT > __kmp_hws_proc.num + __kmp_hws_proc.offset) {
3712                   // skip PU
3713                   KMP_CPU_CLR(idx, __kmp_affin_fullMask);
3714                   ++n_old;
3715                   KC_TRACE(200, ("KMP_HW_SUBSET: skipped proc %d\n", idx));
3716                   hT = hwloc_get_next_obj_by_type(tp, HWLOC_OBJ_PU, hT);
3717                   continue; // move to next node
3718                 }
3719                 ++nTr;
3720                 if (pAddr) // collect requested thread's data
3721                   newAddr[n_new] = (*pAddr)[n_old];
3722                 ++n_new;
3723                 ++n_old;
3724                 hT = hwloc_get_next_obj_by_type(tp, HWLOC_OBJ_PU, hT);
3725               } // threads loop
3726               if (nTr > 0) {
3727                 ++nCr; // num cores per socket
3728                 ++nCo; // total num cores
3729                 if (nTr > nTpC)
3730                   nTpC = nTr; // calc max threads per core
3731               }
3732               hC = hwloc_get_next_obj_by_type(tp, HWLOC_OBJ_CORE, hC);
3733             } // cores loop
3734             hL = hwloc_get_next_obj_by_depth(tp, L2depth, hL);
3735           } // tiles loop
3736         } else { // tile_support
3737           // no tiles, check cores
3738           nC = 0;
3739           hC = NULL;
3740           // num cores in socket
3741           int NC =
3742               __kmp_hwloc_count_children_by_type(tp, hS, HWLOC_OBJ_CORE, &hC);
3743           for (int c = 0; c < NC; ++c) {
3744             // Check Core -------------------------------------------
3745             if (!__kmp_hwloc_obj_has_PUs(tp, hC)) {
3746               hC = hwloc_get_next_obj_by_type(tp, HWLOC_OBJ_CORE, hC);
3747               continue; // skip core if all PUs are out of fullMask
3748             }
3749             ++nC;
3750             if (nC <= __kmp_hws_core.offset ||
3751                 nC > __kmp_hws_core.num + __kmp_hws_core.offset) {
3752               // skip node as not requested
3753               n_old += __kmp_hwloc_skip_PUs_obj(tp, hC); // skip core
3754               hC = hwloc_get_next_obj_by_type(tp, HWLOC_OBJ_CORE, hC);
3755               continue; // move to next node
3756             }
3757             // core requested, go down to PUs
3758             nT = 0;
3759             nTr = 0;
3760             hT = NULL;
3761             // num procs per core
3762             int NT =
3763                 __kmp_hwloc_count_children_by_type(tp, hC, HWLOC_OBJ_PU, &hT);
3764             for (int t = 0; t < NT; ++t) {
3765               // Check PU ---------------------------------------
3766               idx = hT->os_index;
3767               if (!KMP_CPU_ISSET(idx, __kmp_affin_fullMask)) {
3768                 hT = hwloc_get_next_obj_by_type(tp, HWLOC_OBJ_PU, hT);
3769                 continue; // skip PU if not in fullMask
3770               }
3771               ++nT;
3772               if (nT <= __kmp_hws_proc.offset ||
3773                   nT > __kmp_hws_proc.num + __kmp_hws_proc.offset) {
3774                 // skip PU
3775                 KMP_CPU_CLR(idx, __kmp_affin_fullMask);
3776                 ++n_old;
3777                 KC_TRACE(200, ("KMP_HW_SUBSET: skipped proc %d\n", idx));
3778                 hT = hwloc_get_next_obj_by_type(tp, HWLOC_OBJ_PU, hT);
3779                 continue; // move to next node
3780               }
3781               ++nTr;
3782               if (pAddr) // collect requested thread's data
3783                 newAddr[n_new] = (*pAddr)[n_old];
3784               ++n_new;
3785               ++n_old;
3786               hT = hwloc_get_next_obj_by_type(tp, HWLOC_OBJ_PU, hT);
3787             } // threads loop
3788             if (nTr > 0) {
3789               ++nCr; // num cores per socket
3790               ++nCo; // total num cores
3791               if (nTr > nTpC)
3792                 nTpC = nTr; // calc max threads per core
3793             }
3794             hC = hwloc_get_next_obj_by_type(tp, HWLOC_OBJ_CORE, hC);
3795           } // cores loop
3796         } // tiles support
3797       } // numa_support
3798       if (nCr > 0) { // found cores?
3799         ++nPkg; // num sockets
3800         if (nCr > nCpP)
3801           nCpP = nCr; // calc max cores per socket
3802       }
3803     } // sockets loop
3804 
3805     // check the subset is valid
3806     KMP_DEBUG_ASSERT(n_old == __kmp_avail_proc);
3807     KMP_DEBUG_ASSERT(nPkg > 0);
3808     KMP_DEBUG_ASSERT(nCpP > 0);
3809     KMP_DEBUG_ASSERT(nTpC > 0);
3810     KMP_DEBUG_ASSERT(nCo > 0);
3811     KMP_DEBUG_ASSERT(nPkg <= nPackages);
3812     KMP_DEBUG_ASSERT(nCpP <= nCoresPerPkg);
3813     KMP_DEBUG_ASSERT(nTpC <= __kmp_nThreadsPerCore);
3814     KMP_DEBUG_ASSERT(nCo <= __kmp_ncores);
3815 
3816     nPackages = nPkg; // correct num sockets
3817     nCoresPerPkg = nCpP; // correct num cores per socket
3818     __kmp_nThreadsPerCore = nTpC; // correct num threads per core
3819     __kmp_avail_proc = n_new; // correct num procs
3820     __kmp_ncores = nCo; // correct num cores
3821     // hwloc topology method end
3822   } else
3823 #endif // KMP_USE_HWLOC
3824   {
3825     int n_old = 0, n_new = 0, proc_num = 0;
3826     if (__kmp_hws_node.num > 0 || __kmp_hws_tile.num > 0) {
3827       KMP_WARNING(AffHWSubsetNoHWLOC);
3828       goto _exit;
3829     }
3830     if (__kmp_hws_socket.num == 0)
3831       __kmp_hws_socket.num = nPackages; // use all available sockets
3832     if (__kmp_hws_core.num == 0)
3833       __kmp_hws_core.num = nCoresPerPkg; // use all available cores
3834     if (__kmp_hws_proc.num == 0 || __kmp_hws_proc.num > __kmp_nThreadsPerCore)
3835       __kmp_hws_proc.num = __kmp_nThreadsPerCore; // use all HW contexts
3836     if (!__kmp_affinity_uniform_topology()) {
3837       KMP_WARNING(AffHWSubsetNonUniform);
3838       goto _exit; // don't support non-uniform topology
3839     }
3840     if (depth > 3) {
3841       KMP_WARNING(AffHWSubsetNonThreeLevel);
3842       goto _exit; // don't support not-3-level topology
3843     }
3844     if (__kmp_hws_socket.offset + __kmp_hws_socket.num > nPackages) {
3845       KMP_WARNING(AffHWSubsetManySockets);
3846       goto _exit;
3847     }
3848     if (__kmp_hws_core.offset + __kmp_hws_core.num > nCoresPerPkg) {
3849       KMP_WARNING(AffHWSubsetManyCores);
3850       goto _exit;
3851     }
3852     // Form the requested subset
3853     if (pAddr) // pAddr is NULL in case of affinity_none
3854       newAddr = (AddrUnsPair *)__kmp_allocate(
3855           sizeof(AddrUnsPair) * __kmp_hws_socket.num * __kmp_hws_core.num *
3856           __kmp_hws_proc.num);
3857     for (int i = 0; i < nPackages; ++i) {
3858       if (i < __kmp_hws_socket.offset ||
3859           i >= __kmp_hws_socket.offset + __kmp_hws_socket.num) {
3860         // skip not-requested socket
3861         n_old += nCoresPerPkg * __kmp_nThreadsPerCore;
3862         if (__kmp_pu_os_idx != NULL) {
3863           // walk through skipped socket
3864           for (int j = 0; j < nCoresPerPkg; ++j) {
3865             for (int k = 0; k < __kmp_nThreadsPerCore; ++k) {
3866               KMP_CPU_CLR(__kmp_pu_os_idx[proc_num], __kmp_affin_fullMask);
3867               ++proc_num;
3868             }
3869           }
3870         }
3871       } else {
3872         // walk through requested socket
3873         for (int j = 0; j < nCoresPerPkg; ++j) {
3874           if (j < __kmp_hws_core.offset ||
3875               j >= __kmp_hws_core.offset +
3876                        __kmp_hws_core.num) { // skip not-requested core
3877             n_old += __kmp_nThreadsPerCore;
3878             if (__kmp_pu_os_idx != NULL) {
3879               for (int k = 0; k < __kmp_nThreadsPerCore; ++k) {
3880                 KMP_CPU_CLR(__kmp_pu_os_idx[proc_num], __kmp_affin_fullMask);
3881                 ++proc_num;
3882               }
3883             }
3884           } else {
3885             // walk through requested core
3886             for (int k = 0; k < __kmp_nThreadsPerCore; ++k) {
3887               if (k < __kmp_hws_proc.num) {
3888                 if (pAddr) // collect requested thread's data
3889                   newAddr[n_new] = (*pAddr)[n_old];
3890                 n_new++;
3891               } else {
3892                 if (__kmp_pu_os_idx != NULL)
3893                   KMP_CPU_CLR(__kmp_pu_os_idx[proc_num], __kmp_affin_fullMask);
3894               }
3895               n_old++;
3896               ++proc_num;
3897             }
3898           }
3899         }
3900       }
3901     }
3902     KMP_DEBUG_ASSERT(n_old == nPackages * nCoresPerPkg * __kmp_nThreadsPerCore);
3903     KMP_DEBUG_ASSERT(n_new ==
3904                      __kmp_hws_socket.num * __kmp_hws_core.num *
3905                          __kmp_hws_proc.num);
3906     nPackages = __kmp_hws_socket.num; // correct nPackages
3907     nCoresPerPkg = __kmp_hws_core.num; // correct nCoresPerPkg
3908     __kmp_nThreadsPerCore = __kmp_hws_proc.num; // correct __kmp_nThreadsPerCore
3909     __kmp_avail_proc = n_new; // correct avail_proc
3910     __kmp_ncores = nPackages * __kmp_hws_core.num; // correct ncores
3911   } // non-hwloc topology method
3912   if (pAddr) {
3913     __kmp_free(*pAddr);
3914     *pAddr = newAddr; // replace old topology with new one
3915   }
3916   if (__kmp_affinity_verbose) {
3917     KMP_INFORM(AvailableOSProc, "KMP_HW_SUBSET", __kmp_avail_proc);
3918     kmp_str_buf_t buf;
3919     __kmp_str_buf_init(&buf);
3920     __kmp_str_buf_print(&buf, "%d", nPackages);
3921     KMP_INFORM(TopologyExtra, "KMP_HW_SUBSET", buf.str, nCoresPerPkg,
3922                __kmp_nThreadsPerCore, __kmp_ncores);
3923     __kmp_str_buf_free(&buf);
3924   }
3925 _exit:
3926   if (__kmp_pu_os_idx != NULL) {
3927     __kmp_free(__kmp_pu_os_idx);
3928     __kmp_pu_os_idx = NULL;
3929   }
3930 }
3931 
3932 // This function figures out the deepest level at which there is at least one
3933 // cluster/core with more than one processing unit bound to it.
3934 static int __kmp_affinity_find_core_level(const AddrUnsPair *address2os,
3935                                           int nprocs, int bottom_level) {
3936   int core_level = 0;
3937 
3938   for (int i = 0; i < nprocs; i++) {
3939     for (int j = bottom_level; j > 0; j--) {
3940       if (address2os[i].first.labels[j] > 0) {
3941         if (core_level < (j - 1)) {
3942           core_level = j - 1;
3943         }
3944       }
3945     }
3946   }
3947   return core_level;
3948 }
3949 
3950 // This function counts number of clusters/cores at given level.
3951 static int __kmp_affinity_compute_ncores(const AddrUnsPair *address2os,
3952                                          int nprocs, int bottom_level,
3953                                          int core_level) {
3954   int ncores = 0;
3955   int i, j;
3956 
3957   j = bottom_level;
3958   for (i = 0; i < nprocs; i++) {
3959     for (j = bottom_level; j > core_level; j--) {
3960       if ((i + 1) < nprocs) {
3961         if (address2os[i + 1].first.labels[j] > 0) {
3962           break;
3963         }
3964       }
3965     }
3966     if (j == core_level) {
3967       ncores++;
3968     }
3969   }
3970   if (j > core_level) {
3971     // In case of ( nprocs < __kmp_avail_proc ) we may end too deep and miss one
3972     // core. May occur when called from __kmp_affinity_find_core().
3973     ncores++;
3974   }
3975   return ncores;
3976 }
3977 
3978 // This function finds to which cluster/core given processing unit is bound.
3979 static int __kmp_affinity_find_core(const AddrUnsPair *address2os, int proc,
3980                                     int bottom_level, int core_level) {
3981   return __kmp_affinity_compute_ncores(address2os, proc + 1, bottom_level,
3982                                        core_level) -
3983          1;
3984 }
3985 
3986 // This function finds maximal number of processing units bound to a
3987 // cluster/core at given level.
3988 static int __kmp_affinity_max_proc_per_core(const AddrUnsPair *address2os,
3989                                             int nprocs, int bottom_level,
3990                                             int core_level) {
3991   int maxprocpercore = 0;
3992 
3993   if (core_level < bottom_level) {
3994     for (int i = 0; i < nprocs; i++) {
3995       int percore = address2os[i].first.labels[core_level + 1] + 1;
3996 
3997       if (percore > maxprocpercore) {
3998         maxprocpercore = percore;
3999       }
4000     }
4001   } else {
4002     maxprocpercore = 1;
4003   }
4004   return maxprocpercore;
4005 }
4006 
4007 static AddrUnsPair *address2os = NULL;
4008 static int *procarr = NULL;
4009 static int __kmp_aff_depth = 0;
4010 
4011 #if KMP_USE_HIER_SCHED
4012 #define KMP_EXIT_AFF_NONE                                                      \
4013   KMP_ASSERT(__kmp_affinity_type == affinity_none);                            \
4014   KMP_ASSERT(address2os == NULL);                                              \
4015   __kmp_apply_thread_places(NULL, 0);                                          \
4016   __kmp_create_affinity_none_places();                                         \
4017   __kmp_dispatch_set_hierarchy_values();                                       \
4018   return;
4019 #else
4020 #define KMP_EXIT_AFF_NONE                                                      \
4021   KMP_ASSERT(__kmp_affinity_type == affinity_none);                            \
4022   KMP_ASSERT(address2os == NULL);                                              \
4023   __kmp_apply_thread_places(NULL, 0);                                          \
4024   __kmp_create_affinity_none_places();                                         \
4025   return;
4026 #endif
4027 
4028 // Create a one element mask array (set of places) which only contains the
4029 // initial process's affinity mask
4030 static void __kmp_create_affinity_none_places() {
4031   KMP_ASSERT(__kmp_affin_fullMask != NULL);
4032   KMP_ASSERT(__kmp_affinity_type == affinity_none);
4033   __kmp_affinity_num_masks = 1;
4034   KMP_CPU_ALLOC_ARRAY(__kmp_affinity_masks, __kmp_affinity_num_masks);
4035   kmp_affin_mask_t *dest = KMP_CPU_INDEX(__kmp_affinity_masks, 0);
4036   KMP_CPU_COPY(dest, __kmp_affin_fullMask);
4037 }
4038 
4039 static int __kmp_affinity_cmp_Address_child_num(const void *a, const void *b) {
4040   const Address *aa = &(((const AddrUnsPair *)a)->first);
4041   const Address *bb = &(((const AddrUnsPair *)b)->first);
4042   unsigned depth = aa->depth;
4043   unsigned i;
4044   KMP_DEBUG_ASSERT(depth == bb->depth);
4045   KMP_DEBUG_ASSERT((unsigned)__kmp_affinity_compact <= depth);
4046   KMP_DEBUG_ASSERT(__kmp_affinity_compact >= 0);
4047   for (i = 0; i < (unsigned)__kmp_affinity_compact; i++) {
4048     int j = depth - i - 1;
4049     if (aa->childNums[j] < bb->childNums[j])
4050       return -1;
4051     if (aa->childNums[j] > bb->childNums[j])
4052       return 1;
4053   }
4054   for (; i < depth; i++) {
4055     int j = i - __kmp_affinity_compact;
4056     if (aa->childNums[j] < bb->childNums[j])
4057       return -1;
4058     if (aa->childNums[j] > bb->childNums[j])
4059       return 1;
4060   }
4061   return 0;
4062 }
4063 
4064 static void __kmp_aux_affinity_initialize(void) {
4065   if (__kmp_affinity_masks != NULL) {
4066     KMP_ASSERT(__kmp_affin_fullMask != NULL);
4067     return;
4068   }
4069 
4070   // Create the "full" mask - this defines all of the processors that we
4071   // consider to be in the machine model. If respect is set, then it is the
4072   // initialization thread's affinity mask. Otherwise, it is all processors that
4073   // we know about on the machine.
4074   if (__kmp_affin_fullMask == NULL) {
4075     KMP_CPU_ALLOC(__kmp_affin_fullMask);
4076   }
4077   if (KMP_AFFINITY_CAPABLE()) {
4078     __kmp_get_system_affinity(__kmp_affin_fullMask, TRUE);
4079     if (__kmp_affinity_respect_mask) {
4080       // Count the number of available processors.
4081       unsigned i;
4082       __kmp_avail_proc = 0;
4083       KMP_CPU_SET_ITERATE(i, __kmp_affin_fullMask) {
4084         if (!KMP_CPU_ISSET(i, __kmp_affin_fullMask)) {
4085           continue;
4086         }
4087         __kmp_avail_proc++;
4088       }
4089       if (__kmp_avail_proc > __kmp_xproc) {
4090         if (__kmp_affinity_verbose ||
4091             (__kmp_affinity_warnings &&
4092              (__kmp_affinity_type != affinity_none))) {
4093           KMP_WARNING(ErrorInitializeAffinity);
4094         }
4095         __kmp_affinity_type = affinity_none;
4096         KMP_AFFINITY_DISABLE();
4097         return;
4098       }
4099 
4100       if (__kmp_affinity_verbose) {
4101         char buf[KMP_AFFIN_MASK_PRINT_LEN];
4102         __kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN,
4103                                   __kmp_affin_fullMask);
4104         KMP_INFORM(InitOSProcSetRespect, "KMP_AFFINITY", buf);
4105       }
4106     } else {
4107       if (__kmp_affinity_verbose) {
4108         char buf[KMP_AFFIN_MASK_PRINT_LEN];
4109         __kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN,
4110                                   __kmp_affin_fullMask);
4111         KMP_INFORM(InitOSProcSetNotRespect, "KMP_AFFINITY", buf);
4112       }
4113       __kmp_affinity_entire_machine_mask(__kmp_affin_fullMask);
4114       __kmp_avail_proc = __kmp_xproc;
4115 #if KMP_OS_WINDOWS
4116       // Set the process affinity mask since threads' affinity
4117       // masks must be subset of process mask in Windows* OS
4118       __kmp_affin_fullMask->set_process_affinity(true);
4119 #endif
4120     }
4121   }
4122 
4123   if (__kmp_affinity_gran == affinity_gran_tile &&
4124       // check if user's request is valid
4125       __kmp_affinity_dispatch->get_api_type() == KMPAffinity::NATIVE_OS) {
4126     KMP_WARNING(AffTilesNoHWLOC, "KMP_AFFINITY");
4127     __kmp_affinity_gran = affinity_gran_package;
4128   }
4129 
4130   int depth = -1;
4131   kmp_i18n_id_t msg_id = kmp_i18n_null;
4132 
4133   // For backward compatibility, setting KMP_CPUINFO_FILE =>
4134   // KMP_TOPOLOGY_METHOD=cpuinfo
4135   if ((__kmp_cpuinfo_file != NULL) &&
4136       (__kmp_affinity_top_method == affinity_top_method_all)) {
4137     __kmp_affinity_top_method = affinity_top_method_cpuinfo;
4138   }
4139 
4140   if (__kmp_affinity_top_method == affinity_top_method_all) {
4141     // In the default code path, errors are not fatal - we just try using
4142     // another method. We only emit a warning message if affinity is on, or the
4143     // verbose flag is set, and the nowarnings flag was not set.
4144     const char *file_name = NULL;
4145     int line = 0;
4146 #if KMP_USE_HWLOC
4147     if (depth < 0 &&
4148         __kmp_affinity_dispatch->get_api_type() == KMPAffinity::HWLOC) {
4149       if (__kmp_affinity_verbose) {
4150         KMP_INFORM(AffUsingHwloc, "KMP_AFFINITY");
4151       }
4152       if (!__kmp_hwloc_error) {
4153         depth = __kmp_affinity_create_hwloc_map(&address2os, &msg_id);
4154         if (depth == 0) {
4155           KMP_EXIT_AFF_NONE;
4156         } else if (depth < 0 && __kmp_affinity_verbose) {
4157           KMP_INFORM(AffIgnoringHwloc, "KMP_AFFINITY");
4158         }
4159       } else if (__kmp_affinity_verbose) {
4160         KMP_INFORM(AffIgnoringHwloc, "KMP_AFFINITY");
4161       }
4162     }
4163 #endif
4164 
4165 #if KMP_ARCH_X86 || KMP_ARCH_X86_64
4166 
4167     if (depth < 0) {
4168       if (__kmp_affinity_verbose) {
4169         KMP_INFORM(AffInfoStr, "KMP_AFFINITY", KMP_I18N_STR(Decodingx2APIC));
4170       }
4171 
4172       file_name = NULL;
4173       depth = __kmp_affinity_create_x2apicid_map(&address2os, &msg_id);
4174       if (depth == 0) {
4175         KMP_EXIT_AFF_NONE;
4176       }
4177 
4178       if (depth < 0) {
4179         if (__kmp_affinity_verbose) {
4180           if (msg_id != kmp_i18n_null) {
4181             KMP_INFORM(AffInfoStrStr, "KMP_AFFINITY",
4182                        __kmp_i18n_catgets(msg_id),
4183                        KMP_I18N_STR(DecodingLegacyAPIC));
4184           } else {
4185             KMP_INFORM(AffInfoStr, "KMP_AFFINITY",
4186                        KMP_I18N_STR(DecodingLegacyAPIC));
4187           }
4188         }
4189 
4190         file_name = NULL;
4191         depth = __kmp_affinity_create_apicid_map(&address2os, &msg_id);
4192         if (depth == 0) {
4193           KMP_EXIT_AFF_NONE;
4194         }
4195       }
4196     }
4197 
4198 #endif /* KMP_ARCH_X86 || KMP_ARCH_X86_64 */
4199 
4200 #if KMP_OS_LINUX
4201 
4202     if (depth < 0) {
4203       if (__kmp_affinity_verbose) {
4204         if (msg_id != kmp_i18n_null) {
4205           KMP_INFORM(AffStrParseFilename, "KMP_AFFINITY",
4206                      __kmp_i18n_catgets(msg_id), "/proc/cpuinfo");
4207         } else {
4208           KMP_INFORM(AffParseFilename, "KMP_AFFINITY", "/proc/cpuinfo");
4209         }
4210       }
4211 
4212       kmp_safe_raii_file_t f("/proc/cpuinfo", "r");
4213       depth = __kmp_affinity_create_cpuinfo_map(&address2os, &line, &msg_id, f);
4214       if (depth == 0) {
4215         KMP_EXIT_AFF_NONE;
4216       }
4217     }
4218 
4219 #endif /* KMP_OS_LINUX */
4220 
4221 #if KMP_GROUP_AFFINITY
4222 
4223     if ((depth < 0) && (__kmp_num_proc_groups > 1)) {
4224       if (__kmp_affinity_verbose) {
4225         KMP_INFORM(AffWindowsProcGroupMap, "KMP_AFFINITY");
4226       }
4227 
4228       depth = __kmp_affinity_create_proc_group_map(&address2os, &msg_id);
4229       KMP_ASSERT(depth != 0);
4230     }
4231 
4232 #endif /* KMP_GROUP_AFFINITY */
4233 
4234     if (depth < 0) {
4235       if (__kmp_affinity_verbose && (msg_id != kmp_i18n_null)) {
4236         if (file_name == NULL) {
4237           KMP_INFORM(UsingFlatOS, __kmp_i18n_catgets(msg_id));
4238         } else if (line == 0) {
4239           KMP_INFORM(UsingFlatOSFile, file_name, __kmp_i18n_catgets(msg_id));
4240         } else {
4241           KMP_INFORM(UsingFlatOSFileLine, file_name, line,
4242                      __kmp_i18n_catgets(msg_id));
4243         }
4244       }
4245       // FIXME - print msg if msg_id = kmp_i18n_null ???
4246 
4247       file_name = "";
4248       depth = __kmp_affinity_create_flat_map(&address2os, &msg_id);
4249       if (depth == 0) {
4250         KMP_EXIT_AFF_NONE;
4251       }
4252       KMP_ASSERT(depth > 0);
4253       KMP_ASSERT(address2os != NULL);
4254     }
4255   }
4256 
4257 #if KMP_USE_HWLOC
4258   else if (__kmp_affinity_top_method == affinity_top_method_hwloc) {
4259     KMP_ASSERT(__kmp_affinity_dispatch->get_api_type() == KMPAffinity::HWLOC);
4260     if (__kmp_affinity_verbose) {
4261       KMP_INFORM(AffUsingHwloc, "KMP_AFFINITY");
4262     }
4263     depth = __kmp_affinity_create_hwloc_map(&address2os, &msg_id);
4264     if (depth == 0) {
4265       KMP_EXIT_AFF_NONE;
4266     }
4267   }
4268 #endif // KMP_USE_HWLOC
4269 
4270 // If the user has specified that a particular topology discovery method is to be
4271 // used, then we abort if that method fails. The exception is group affinity,
4272 // which might have been implicitly set.
4273 
4274 #if KMP_ARCH_X86 || KMP_ARCH_X86_64
4275 
4276   else if (__kmp_affinity_top_method == affinity_top_method_x2apicid) {
4277     if (__kmp_affinity_verbose) {
4278       KMP_INFORM(AffInfoStr, "KMP_AFFINITY", KMP_I18N_STR(Decodingx2APIC));
4279     }
4280 
4281     depth = __kmp_affinity_create_x2apicid_map(&address2os, &msg_id);
4282     if (depth == 0) {
4283       KMP_EXIT_AFF_NONE;
4284     }
4285     if (depth < 0) {
4286       KMP_ASSERT(msg_id != kmp_i18n_null);
4287       KMP_FATAL(MsgExiting, __kmp_i18n_catgets(msg_id));
4288     }
4289   } else if (__kmp_affinity_top_method == affinity_top_method_apicid) {
4290     if (__kmp_affinity_verbose) {
4291       KMP_INFORM(AffInfoStr, "KMP_AFFINITY", KMP_I18N_STR(DecodingLegacyAPIC));
4292     }
4293 
4294     depth = __kmp_affinity_create_apicid_map(&address2os, &msg_id);
4295     if (depth == 0) {
4296       KMP_EXIT_AFF_NONE;
4297     }
4298     if (depth < 0) {
4299       KMP_ASSERT(msg_id != kmp_i18n_null);
4300       KMP_FATAL(MsgExiting, __kmp_i18n_catgets(msg_id));
4301     }
4302   }
4303 
4304 #endif /* KMP_ARCH_X86 || KMP_ARCH_X86_64 */
4305 
4306   else if (__kmp_affinity_top_method == affinity_top_method_cpuinfo) {
4307     const char *filename;
4308     const char *env_var = nullptr;
4309     if (__kmp_cpuinfo_file != NULL) {
4310       filename = __kmp_cpuinfo_file;
4311       env_var = "KMP_CPUINFO_FILE";
4312     } else {
4313       filename = "/proc/cpuinfo";
4314     }
4315 
4316     if (__kmp_affinity_verbose) {
4317       KMP_INFORM(AffParseFilename, "KMP_AFFINITY", filename);
4318     }
4319 
4320     kmp_safe_raii_file_t f(filename, "r", env_var);
4321     int line = 0;
4322     depth = __kmp_affinity_create_cpuinfo_map(&address2os, &line, &msg_id, f);
4323     if (depth < 0) {
4324       KMP_ASSERT(msg_id != kmp_i18n_null);
4325       if (line > 0) {
4326         KMP_FATAL(FileLineMsgExiting, filename, line,
4327                   __kmp_i18n_catgets(msg_id));
4328       } else {
4329         KMP_FATAL(FileMsgExiting, filename, __kmp_i18n_catgets(msg_id));
4330       }
4331     }
4332     if (__kmp_affinity_type == affinity_none) {
4333       KMP_ASSERT(depth == 0);
4334       KMP_EXIT_AFF_NONE;
4335     }
4336   }
4337 
4338 #if KMP_GROUP_AFFINITY
4339 
4340   else if (__kmp_affinity_top_method == affinity_top_method_group) {
4341     if (__kmp_affinity_verbose) {
4342       KMP_INFORM(AffWindowsProcGroupMap, "KMP_AFFINITY");
4343     }
4344 
4345     depth = __kmp_affinity_create_proc_group_map(&address2os, &msg_id);
4346     KMP_ASSERT(depth != 0);
4347     if (depth < 0) {
4348       KMP_ASSERT(msg_id != kmp_i18n_null);
4349       KMP_FATAL(MsgExiting, __kmp_i18n_catgets(msg_id));
4350     }
4351   }
4352 
4353 #endif /* KMP_GROUP_AFFINITY */
4354 
4355   else if (__kmp_affinity_top_method == affinity_top_method_flat) {
4356     if (__kmp_affinity_verbose) {
4357       KMP_INFORM(AffUsingFlatOS, "KMP_AFFINITY");
4358     }
4359 
4360     depth = __kmp_affinity_create_flat_map(&address2os, &msg_id);
4361     if (depth == 0) {
4362       KMP_EXIT_AFF_NONE;
4363     }
4364     // should not fail
4365     KMP_ASSERT(depth > 0);
4366     KMP_ASSERT(address2os != NULL);
4367   }
4368 
4369 #if KMP_USE_HIER_SCHED
4370   __kmp_dispatch_set_hierarchy_values();
4371 #endif
4372 
4373   if (address2os == NULL) {
4374     if (KMP_AFFINITY_CAPABLE() &&
4375         (__kmp_affinity_verbose ||
4376          (__kmp_affinity_warnings && (__kmp_affinity_type != affinity_none)))) {
4377       KMP_WARNING(ErrorInitializeAffinity);
4378     }
4379     __kmp_affinity_type = affinity_none;
4380     __kmp_create_affinity_none_places();
4381     KMP_AFFINITY_DISABLE();
4382     return;
4383   }
4384 
4385   if (__kmp_affinity_gran == affinity_gran_tile
4386 #if KMP_USE_HWLOC
4387       && __kmp_tile_depth == 0
4388 #endif
4389       ) {
4390     // tiles requested but not detected, warn user on this
4391     KMP_WARNING(AffTilesNoTiles, "KMP_AFFINITY");
4392   }
4393 
4394   __kmp_apply_thread_places(&address2os, depth);
4395 
4396   // Create the table of masks, indexed by thread Id.
4397   unsigned maxIndex;
4398   unsigned numUnique;
4399   kmp_affin_mask_t *osId2Mask =
4400       __kmp_create_masks(&maxIndex, &numUnique, address2os, __kmp_avail_proc);
4401   if (__kmp_affinity_gran_levels == 0) {
4402     KMP_DEBUG_ASSERT((int)numUnique == __kmp_avail_proc);
4403   }
4404 
4405   // Set the childNums vector in all Address objects. This must be done before
4406   // we can sort using __kmp_affinity_cmp_Address_child_num(), which takes into
4407   // account the setting of __kmp_affinity_compact.
4408   __kmp_affinity_assign_child_nums(address2os, __kmp_avail_proc);
4409 
4410   switch (__kmp_affinity_type) {
4411 
4412   case affinity_explicit:
4413     KMP_DEBUG_ASSERT(__kmp_affinity_proclist != NULL);
4414     if (__kmp_nested_proc_bind.bind_types[0] == proc_bind_intel) {
4415       __kmp_affinity_process_proclist(
4416           &__kmp_affinity_masks, &__kmp_affinity_num_masks,
4417           __kmp_affinity_proclist, osId2Mask, maxIndex);
4418     } else {
4419       __kmp_affinity_process_placelist(
4420           &__kmp_affinity_masks, &__kmp_affinity_num_masks,
4421           __kmp_affinity_proclist, osId2Mask, maxIndex);
4422     }
4423     if (__kmp_affinity_num_masks == 0) {
4424       if (__kmp_affinity_verbose ||
4425           (__kmp_affinity_warnings && (__kmp_affinity_type != affinity_none))) {
4426         KMP_WARNING(AffNoValidProcID);
4427       }
4428       __kmp_affinity_type = affinity_none;
4429       __kmp_create_affinity_none_places();
4430       return;
4431     }
4432     break;
4433 
4434   // The other affinity types rely on sorting the Addresses according to some
4435   // permutation of the machine topology tree. Set __kmp_affinity_compact and
4436   // __kmp_affinity_offset appropriately, then jump to a common code fragment
4437   // to do the sort and create the array of affinity masks.
4438 
4439   case affinity_logical:
4440     __kmp_affinity_compact = 0;
4441     if (__kmp_affinity_offset) {
4442       __kmp_affinity_offset =
4443           __kmp_nThreadsPerCore * __kmp_affinity_offset % __kmp_avail_proc;
4444     }
4445     goto sortAddresses;
4446 
4447   case affinity_physical:
4448     if (__kmp_nThreadsPerCore > 1) {
4449       __kmp_affinity_compact = 1;
4450       if (__kmp_affinity_compact >= depth) {
4451         __kmp_affinity_compact = 0;
4452       }
4453     } else {
4454       __kmp_affinity_compact = 0;
4455     }
4456     if (__kmp_affinity_offset) {
4457       __kmp_affinity_offset =
4458           __kmp_nThreadsPerCore * __kmp_affinity_offset % __kmp_avail_proc;
4459     }
4460     goto sortAddresses;
4461 
4462   case affinity_scatter:
4463     if (__kmp_affinity_compact >= depth) {
4464       __kmp_affinity_compact = 0;
4465     } else {
4466       __kmp_affinity_compact = depth - 1 - __kmp_affinity_compact;
4467     }
4468     goto sortAddresses;
4469 
4470   case affinity_compact:
4471     if (__kmp_affinity_compact >= depth) {
4472       __kmp_affinity_compact = depth - 1;
4473     }
4474     goto sortAddresses;
4475 
4476   case affinity_balanced:
4477     if (depth <= 1) {
4478       if (__kmp_affinity_verbose || __kmp_affinity_warnings) {
4479         KMP_WARNING(AffBalancedNotAvail, "KMP_AFFINITY");
4480       }
4481       __kmp_affinity_type = affinity_none;
4482       __kmp_create_affinity_none_places();
4483       return;
4484     } else if (!__kmp_affinity_uniform_topology()) {
4485       // Save the depth for further usage
4486       __kmp_aff_depth = depth;
4487 
4488       int core_level = __kmp_affinity_find_core_level(
4489           address2os, __kmp_avail_proc, depth - 1);
4490       int ncores = __kmp_affinity_compute_ncores(address2os, __kmp_avail_proc,
4491                                                  depth - 1, core_level);
4492       int maxprocpercore = __kmp_affinity_max_proc_per_core(
4493           address2os, __kmp_avail_proc, depth - 1, core_level);
4494 
4495       int nproc = ncores * maxprocpercore;
4496       if ((nproc < 2) || (nproc < __kmp_avail_proc)) {
4497         if (__kmp_affinity_verbose || __kmp_affinity_warnings) {
4498           KMP_WARNING(AffBalancedNotAvail, "KMP_AFFINITY");
4499         }
4500         __kmp_affinity_type = affinity_none;
4501         return;
4502       }
4503 
4504       procarr = (int *)__kmp_allocate(sizeof(int) * nproc);
4505       for (int i = 0; i < nproc; i++) {
4506         procarr[i] = -1;
4507       }
4508 
4509       int lastcore = -1;
4510       int inlastcore = 0;
4511       for (int i = 0; i < __kmp_avail_proc; i++) {
4512         int proc = address2os[i].second;
4513         int core =
4514             __kmp_affinity_find_core(address2os, i, depth - 1, core_level);
4515 
4516         if (core == lastcore) {
4517           inlastcore++;
4518         } else {
4519           inlastcore = 0;
4520         }
4521         lastcore = core;
4522 
4523         procarr[core * maxprocpercore + inlastcore] = proc;
4524       }
4525     }
4526     if (__kmp_affinity_compact >= depth) {
4527       __kmp_affinity_compact = depth - 1;
4528     }
4529 
4530   sortAddresses:
4531     // Allocate the gtid->affinity mask table.
4532     if (__kmp_affinity_dups) {
4533       __kmp_affinity_num_masks = __kmp_avail_proc;
4534     } else {
4535       __kmp_affinity_num_masks = numUnique;
4536     }
4537 
4538     if ((__kmp_nested_proc_bind.bind_types[0] != proc_bind_intel) &&
4539         (__kmp_affinity_num_places > 0) &&
4540         ((unsigned)__kmp_affinity_num_places < __kmp_affinity_num_masks)) {
4541       __kmp_affinity_num_masks = __kmp_affinity_num_places;
4542     }
4543 
4544     KMP_CPU_ALLOC_ARRAY(__kmp_affinity_masks, __kmp_affinity_num_masks);
4545 
4546     // Sort the address2os table according to the current setting of
4547     // __kmp_affinity_compact, then fill out __kmp_affinity_masks.
4548     qsort(address2os, __kmp_avail_proc, sizeof(*address2os),
4549           __kmp_affinity_cmp_Address_child_num);
4550     {
4551       int i;
4552       unsigned j;
4553       for (i = 0, j = 0; i < __kmp_avail_proc; i++) {
4554         if ((!__kmp_affinity_dups) && (!address2os[i].first.leader)) {
4555           continue;
4556         }
4557         unsigned osId = address2os[i].second;
4558         kmp_affin_mask_t *src = KMP_CPU_INDEX(osId2Mask, osId);
4559         kmp_affin_mask_t *dest = KMP_CPU_INDEX(__kmp_affinity_masks, j);
4560         KMP_ASSERT(KMP_CPU_ISSET(osId, src));
4561         KMP_CPU_COPY(dest, src);
4562         if (++j >= __kmp_affinity_num_masks) {
4563           break;
4564         }
4565       }
4566       KMP_DEBUG_ASSERT(j == __kmp_affinity_num_masks);
4567     }
4568     break;
4569 
4570   default:
4571     KMP_ASSERT2(0, "Unexpected affinity setting");
4572   }
4573 
4574   KMP_CPU_FREE_ARRAY(osId2Mask, maxIndex + 1);
4575   machine_hierarchy.init(address2os, __kmp_avail_proc);
4576 }
4577 #undef KMP_EXIT_AFF_NONE
4578 
4579 void __kmp_affinity_initialize(void) {
4580   // Much of the code above was written assuming that if a machine was not
4581   // affinity capable, then __kmp_affinity_type == affinity_none.  We now
4582   // explicitly represent this as __kmp_affinity_type == affinity_disabled.
4583   // There are too many checks for __kmp_affinity_type == affinity_none
4584   // in this code.  Instead of trying to change them all, check if
4585   // __kmp_affinity_type == affinity_disabled, and if so, slam it with
4586   // affinity_none, call the real initialization routine, then restore
4587   // __kmp_affinity_type to affinity_disabled.
4588   int disabled = (__kmp_affinity_type == affinity_disabled);
4589   if (!KMP_AFFINITY_CAPABLE()) {
4590     KMP_ASSERT(disabled);
4591   }
4592   if (disabled) {
4593     __kmp_affinity_type = affinity_none;
4594   }
4595   __kmp_aux_affinity_initialize();
4596   if (disabled) {
4597     __kmp_affinity_type = affinity_disabled;
4598   }
4599 }
4600 
4601 void __kmp_affinity_uninitialize(void) {
4602   if (__kmp_affinity_masks != NULL) {
4603     KMP_CPU_FREE_ARRAY(__kmp_affinity_masks, __kmp_affinity_num_masks);
4604     __kmp_affinity_masks = NULL;
4605   }
4606   if (__kmp_affin_fullMask != NULL) {
4607     KMP_CPU_FREE(__kmp_affin_fullMask);
4608     __kmp_affin_fullMask = NULL;
4609   }
4610   __kmp_affinity_num_masks = 0;
4611   __kmp_affinity_type = affinity_default;
4612   __kmp_affinity_num_places = 0;
4613   if (__kmp_affinity_proclist != NULL) {
4614     __kmp_free(__kmp_affinity_proclist);
4615     __kmp_affinity_proclist = NULL;
4616   }
4617   if (address2os != NULL) {
4618     __kmp_free(address2os);
4619     address2os = NULL;
4620   }
4621   if (procarr != NULL) {
4622     __kmp_free(procarr);
4623     procarr = NULL;
4624   }
4625 #if KMP_USE_HWLOC
4626   if (__kmp_hwloc_topology != NULL) {
4627     hwloc_topology_destroy(__kmp_hwloc_topology);
4628     __kmp_hwloc_topology = NULL;
4629   }
4630 #endif
4631   KMPAffinity::destroy_api();
4632 }
4633 
4634 void __kmp_affinity_set_init_mask(int gtid, int isa_root) {
4635   if (!KMP_AFFINITY_CAPABLE()) {
4636     return;
4637   }
4638 
4639   kmp_info_t *th = (kmp_info_t *)TCR_SYNC_PTR(__kmp_threads[gtid]);
4640   if (th->th.th_affin_mask == NULL) {
4641     KMP_CPU_ALLOC(th->th.th_affin_mask);
4642   } else {
4643     KMP_CPU_ZERO(th->th.th_affin_mask);
4644   }
4645 
4646   // Copy the thread mask to the kmp_info_t structure. If
4647   // __kmp_affinity_type == affinity_none, copy the "full" mask, i.e. one that
4648   // has all of the OS proc ids set, or if __kmp_affinity_respect_mask is set,
4649   // then the full mask is the same as the mask of the initialization thread.
4650   kmp_affin_mask_t *mask;
4651   int i;
4652 
4653   if (KMP_AFFINITY_NON_PROC_BIND) {
4654     if ((__kmp_affinity_type == affinity_none) ||
4655         (__kmp_affinity_type == affinity_balanced)) {
4656 #if KMP_GROUP_AFFINITY
4657       if (__kmp_num_proc_groups > 1) {
4658         return;
4659       }
4660 #endif
4661       KMP_ASSERT(__kmp_affin_fullMask != NULL);
4662       i = 0;
4663       mask = __kmp_affin_fullMask;
4664     } else {
4665       KMP_DEBUG_ASSERT(__kmp_affinity_num_masks > 0);
4666       i = (gtid + __kmp_affinity_offset) % __kmp_affinity_num_masks;
4667       mask = KMP_CPU_INDEX(__kmp_affinity_masks, i);
4668     }
4669   } else {
4670     if ((!isa_root) ||
4671         (__kmp_nested_proc_bind.bind_types[0] == proc_bind_false)) {
4672 #if KMP_GROUP_AFFINITY
4673       if (__kmp_num_proc_groups > 1) {
4674         return;
4675       }
4676 #endif
4677       KMP_ASSERT(__kmp_affin_fullMask != NULL);
4678       i = KMP_PLACE_ALL;
4679       mask = __kmp_affin_fullMask;
4680     } else {
4681       // int i = some hash function or just a counter that doesn't
4682       // always start at 0.  Use gtid for now.
4683       KMP_DEBUG_ASSERT(__kmp_affinity_num_masks > 0);
4684       i = (gtid + __kmp_affinity_offset) % __kmp_affinity_num_masks;
4685       mask = KMP_CPU_INDEX(__kmp_affinity_masks, i);
4686     }
4687   }
4688 
4689   th->th.th_current_place = i;
4690   if (isa_root) {
4691     th->th.th_new_place = i;
4692     th->th.th_first_place = 0;
4693     th->th.th_last_place = __kmp_affinity_num_masks - 1;
4694   } else if (KMP_AFFINITY_NON_PROC_BIND) {
4695     // When using a Non-OMP_PROC_BIND affinity method,
4696     // set all threads' place-partition-var to the entire place list
4697     th->th.th_first_place = 0;
4698     th->th.th_last_place = __kmp_affinity_num_masks - 1;
4699   }
4700 
4701   if (i == KMP_PLACE_ALL) {
4702     KA_TRACE(100, ("__kmp_affinity_set_init_mask: binding T#%d to all places\n",
4703                    gtid));
4704   } else {
4705     KA_TRACE(100, ("__kmp_affinity_set_init_mask: binding T#%d to place %d\n",
4706                    gtid, i));
4707   }
4708 
4709   KMP_CPU_COPY(th->th.th_affin_mask, mask);
4710 
4711   if (__kmp_affinity_verbose
4712       /* to avoid duplicate printing (will be correctly printed on barrier) */
4713       && (__kmp_affinity_type == affinity_none ||
4714           (i != KMP_PLACE_ALL && __kmp_affinity_type != affinity_balanced))) {
4715     char buf[KMP_AFFIN_MASK_PRINT_LEN];
4716     __kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN,
4717                               th->th.th_affin_mask);
4718     KMP_INFORM(BoundToOSProcSet, "KMP_AFFINITY", (kmp_int32)getpid(),
4719                __kmp_gettid(), gtid, buf);
4720   }
4721 
4722 #if KMP_OS_WINDOWS
4723   // On Windows* OS, the process affinity mask might have changed. If the user
4724   // didn't request affinity and this call fails, just continue silently.
4725   // See CQ171393.
4726   if (__kmp_affinity_type == affinity_none) {
4727     __kmp_set_system_affinity(th->th.th_affin_mask, FALSE);
4728   } else
4729 #endif
4730     __kmp_set_system_affinity(th->th.th_affin_mask, TRUE);
4731 }
4732 
4733 void __kmp_affinity_set_place(int gtid) {
4734   if (!KMP_AFFINITY_CAPABLE()) {
4735     return;
4736   }
4737 
4738   kmp_info_t *th = (kmp_info_t *)TCR_SYNC_PTR(__kmp_threads[gtid]);
4739 
4740   KA_TRACE(100, ("__kmp_affinity_set_place: binding T#%d to place %d (current "
4741                  "place = %d)\n",
4742                  gtid, th->th.th_new_place, th->th.th_current_place));
4743 
4744   // Check that the new place is within this thread's partition.
4745   KMP_DEBUG_ASSERT(th->th.th_affin_mask != NULL);
4746   KMP_ASSERT(th->th.th_new_place >= 0);
4747   KMP_ASSERT((unsigned)th->th.th_new_place <= __kmp_affinity_num_masks);
4748   if (th->th.th_first_place <= th->th.th_last_place) {
4749     KMP_ASSERT((th->th.th_new_place >= th->th.th_first_place) &&
4750                (th->th.th_new_place <= th->th.th_last_place));
4751   } else {
4752     KMP_ASSERT((th->th.th_new_place <= th->th.th_first_place) ||
4753                (th->th.th_new_place >= th->th.th_last_place));
4754   }
4755 
4756   // Copy the thread mask to the kmp_info_t structure,
4757   // and set this thread's affinity.
4758   kmp_affin_mask_t *mask =
4759       KMP_CPU_INDEX(__kmp_affinity_masks, th->th.th_new_place);
4760   KMP_CPU_COPY(th->th.th_affin_mask, mask);
4761   th->th.th_current_place = th->th.th_new_place;
4762 
4763   if (__kmp_affinity_verbose) {
4764     char buf[KMP_AFFIN_MASK_PRINT_LEN];
4765     __kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN,
4766                               th->th.th_affin_mask);
4767     KMP_INFORM(BoundToOSProcSet, "OMP_PROC_BIND", (kmp_int32)getpid(),
4768                __kmp_gettid(), gtid, buf);
4769   }
4770   __kmp_set_system_affinity(th->th.th_affin_mask, TRUE);
4771 }
4772 
4773 int __kmp_aux_set_affinity(void **mask) {
4774   int gtid;
4775   kmp_info_t *th;
4776   int retval;
4777 
4778   if (!KMP_AFFINITY_CAPABLE()) {
4779     return -1;
4780   }
4781 
4782   gtid = __kmp_entry_gtid();
4783   KA_TRACE(1000, (""); {
4784     char buf[KMP_AFFIN_MASK_PRINT_LEN];
4785     __kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN,
4786                               (kmp_affin_mask_t *)(*mask));
4787     __kmp_debug_printf(
4788         "kmp_set_affinity: setting affinity mask for thread %d = %s\n", gtid,
4789         buf);
4790   });
4791 
4792   if (__kmp_env_consistency_check) {
4793     if ((mask == NULL) || (*mask == NULL)) {
4794       KMP_FATAL(AffinityInvalidMask, "kmp_set_affinity");
4795     } else {
4796       unsigned proc;
4797       int num_procs = 0;
4798 
4799       KMP_CPU_SET_ITERATE(proc, ((kmp_affin_mask_t *)(*mask))) {
4800         if (!KMP_CPU_ISSET(proc, __kmp_affin_fullMask)) {
4801           KMP_FATAL(AffinityInvalidMask, "kmp_set_affinity");
4802         }
4803         if (!KMP_CPU_ISSET(proc, (kmp_affin_mask_t *)(*mask))) {
4804           continue;
4805         }
4806         num_procs++;
4807       }
4808       if (num_procs == 0) {
4809         KMP_FATAL(AffinityInvalidMask, "kmp_set_affinity");
4810       }
4811 
4812 #if KMP_GROUP_AFFINITY
4813       if (__kmp_get_proc_group((kmp_affin_mask_t *)(*mask)) < 0) {
4814         KMP_FATAL(AffinityInvalidMask, "kmp_set_affinity");
4815       }
4816 #endif /* KMP_GROUP_AFFINITY */
4817     }
4818   }
4819 
4820   th = __kmp_threads[gtid];
4821   KMP_DEBUG_ASSERT(th->th.th_affin_mask != NULL);
4822   retval = __kmp_set_system_affinity((kmp_affin_mask_t *)(*mask), FALSE);
4823   if (retval == 0) {
4824     KMP_CPU_COPY(th->th.th_affin_mask, (kmp_affin_mask_t *)(*mask));
4825   }
4826 
4827   th->th.th_current_place = KMP_PLACE_UNDEFINED;
4828   th->th.th_new_place = KMP_PLACE_UNDEFINED;
4829   th->th.th_first_place = 0;
4830   th->th.th_last_place = __kmp_affinity_num_masks - 1;
4831 
4832   // Turn off 4.0 affinity for the current tread at this parallel level.
4833   th->th.th_current_task->td_icvs.proc_bind = proc_bind_false;
4834 
4835   return retval;
4836 }
4837 
4838 int __kmp_aux_get_affinity(void **mask) {
4839   int gtid;
4840   int retval;
4841   kmp_info_t *th;
4842 
4843   if (!KMP_AFFINITY_CAPABLE()) {
4844     return -1;
4845   }
4846 
4847   gtid = __kmp_entry_gtid();
4848   th = __kmp_threads[gtid];
4849   KMP_DEBUG_ASSERT(th->th.th_affin_mask != NULL);
4850 
4851   KA_TRACE(1000, (""); {
4852     char buf[KMP_AFFIN_MASK_PRINT_LEN];
4853     __kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN,
4854                               th->th.th_affin_mask);
4855     __kmp_printf("kmp_get_affinity: stored affinity mask for thread %d = %s\n",
4856                  gtid, buf);
4857   });
4858 
4859   if (__kmp_env_consistency_check) {
4860     if ((mask == NULL) || (*mask == NULL)) {
4861       KMP_FATAL(AffinityInvalidMask, "kmp_get_affinity");
4862     }
4863   }
4864 
4865 #if !KMP_OS_WINDOWS
4866 
4867   retval = __kmp_get_system_affinity((kmp_affin_mask_t *)(*mask), FALSE);
4868   KA_TRACE(1000, (""); {
4869     char buf[KMP_AFFIN_MASK_PRINT_LEN];
4870     __kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN,
4871                               (kmp_affin_mask_t *)(*mask));
4872     __kmp_printf("kmp_get_affinity: system affinity mask for thread %d = %s\n",
4873                  gtid, buf);
4874   });
4875   return retval;
4876 
4877 #else
4878 
4879   KMP_CPU_COPY((kmp_affin_mask_t *)(*mask), th->th.th_affin_mask);
4880   return 0;
4881 
4882 #endif /* KMP_OS_WINDOWS */
4883 }
4884 
4885 int __kmp_aux_get_affinity_max_proc() {
4886   if (!KMP_AFFINITY_CAPABLE()) {
4887     return 0;
4888   }
4889 #if KMP_GROUP_AFFINITY
4890   if (__kmp_num_proc_groups > 1) {
4891     return (int)(__kmp_num_proc_groups * sizeof(DWORD_PTR) * CHAR_BIT);
4892   }
4893 #endif
4894   return __kmp_xproc;
4895 }
4896 
4897 int __kmp_aux_set_affinity_mask_proc(int proc, void **mask) {
4898   if (!KMP_AFFINITY_CAPABLE()) {
4899     return -1;
4900   }
4901 
4902   KA_TRACE(1000, (""); {
4903     int gtid = __kmp_entry_gtid();
4904     char buf[KMP_AFFIN_MASK_PRINT_LEN];
4905     __kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN,
4906                               (kmp_affin_mask_t *)(*mask));
4907     __kmp_debug_printf("kmp_set_affinity_mask_proc: setting proc %d in "
4908                        "affinity mask for thread %d = %s\n",
4909                        proc, gtid, buf);
4910   });
4911 
4912   if (__kmp_env_consistency_check) {
4913     if ((mask == NULL) || (*mask == NULL)) {
4914       KMP_FATAL(AffinityInvalidMask, "kmp_set_affinity_mask_proc");
4915     }
4916   }
4917 
4918   if ((proc < 0) || (proc >= __kmp_aux_get_affinity_max_proc())) {
4919     return -1;
4920   }
4921   if (!KMP_CPU_ISSET(proc, __kmp_affin_fullMask)) {
4922     return -2;
4923   }
4924 
4925   KMP_CPU_SET(proc, (kmp_affin_mask_t *)(*mask));
4926   return 0;
4927 }
4928 
4929 int __kmp_aux_unset_affinity_mask_proc(int proc, void **mask) {
4930   if (!KMP_AFFINITY_CAPABLE()) {
4931     return -1;
4932   }
4933 
4934   KA_TRACE(1000, (""); {
4935     int gtid = __kmp_entry_gtid();
4936     char buf[KMP_AFFIN_MASK_PRINT_LEN];
4937     __kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN,
4938                               (kmp_affin_mask_t *)(*mask));
4939     __kmp_debug_printf("kmp_unset_affinity_mask_proc: unsetting proc %d in "
4940                        "affinity mask for thread %d = %s\n",
4941                        proc, gtid, buf);
4942   });
4943 
4944   if (__kmp_env_consistency_check) {
4945     if ((mask == NULL) || (*mask == NULL)) {
4946       KMP_FATAL(AffinityInvalidMask, "kmp_unset_affinity_mask_proc");
4947     }
4948   }
4949 
4950   if ((proc < 0) || (proc >= __kmp_aux_get_affinity_max_proc())) {
4951     return -1;
4952   }
4953   if (!KMP_CPU_ISSET(proc, __kmp_affin_fullMask)) {
4954     return -2;
4955   }
4956 
4957   KMP_CPU_CLR(proc, (kmp_affin_mask_t *)(*mask));
4958   return 0;
4959 }
4960 
4961 int __kmp_aux_get_affinity_mask_proc(int proc, void **mask) {
4962   if (!KMP_AFFINITY_CAPABLE()) {
4963     return -1;
4964   }
4965 
4966   KA_TRACE(1000, (""); {
4967     int gtid = __kmp_entry_gtid();
4968     char buf[KMP_AFFIN_MASK_PRINT_LEN];
4969     __kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN,
4970                               (kmp_affin_mask_t *)(*mask));
4971     __kmp_debug_printf("kmp_get_affinity_mask_proc: getting proc %d in "
4972                        "affinity mask for thread %d = %s\n",
4973                        proc, gtid, buf);
4974   });
4975 
4976   if (__kmp_env_consistency_check) {
4977     if ((mask == NULL) || (*mask == NULL)) {
4978       KMP_FATAL(AffinityInvalidMask, "kmp_get_affinity_mask_proc");
4979     }
4980   }
4981 
4982   if ((proc < 0) || (proc >= __kmp_aux_get_affinity_max_proc())) {
4983     return -1;
4984   }
4985   if (!KMP_CPU_ISSET(proc, __kmp_affin_fullMask)) {
4986     return 0;
4987   }
4988 
4989   return KMP_CPU_ISSET(proc, (kmp_affin_mask_t *)(*mask));
4990 }
4991 
4992 // Dynamic affinity settings - Affinity balanced
4993 void __kmp_balanced_affinity(kmp_info_t *th, int nthreads) {
4994   KMP_DEBUG_ASSERT(th);
4995   bool fine_gran = true;
4996   int tid = th->th.th_info.ds.ds_tid;
4997 
4998   switch (__kmp_affinity_gran) {
4999   case affinity_gran_fine:
5000   case affinity_gran_thread:
5001     break;
5002   case affinity_gran_core:
5003     if (__kmp_nThreadsPerCore > 1) {
5004       fine_gran = false;
5005     }
5006     break;
5007   case affinity_gran_package:
5008     if (nCoresPerPkg > 1) {
5009       fine_gran = false;
5010     }
5011     break;
5012   default:
5013     fine_gran = false;
5014   }
5015 
5016   if (__kmp_affinity_uniform_topology()) {
5017     int coreID;
5018     int threadID;
5019     // Number of hyper threads per core in HT machine
5020     int __kmp_nth_per_core = __kmp_avail_proc / __kmp_ncores;
5021     // Number of cores
5022     int ncores = __kmp_ncores;
5023     if ((nPackages > 1) && (__kmp_nth_per_core <= 1)) {
5024       __kmp_nth_per_core = __kmp_avail_proc / nPackages;
5025       ncores = nPackages;
5026     }
5027     // How many threads will be bound to each core
5028     int chunk = nthreads / ncores;
5029     // How many cores will have an additional thread bound to it - "big cores"
5030     int big_cores = nthreads % ncores;
5031     // Number of threads on the big cores
5032     int big_nth = (chunk + 1) * big_cores;
5033     if (tid < big_nth) {
5034       coreID = tid / (chunk + 1);
5035       threadID = (tid % (chunk + 1)) % __kmp_nth_per_core;
5036     } else { // tid >= big_nth
5037       coreID = (tid - big_cores) / chunk;
5038       threadID = ((tid - big_cores) % chunk) % __kmp_nth_per_core;
5039     }
5040 
5041     KMP_DEBUG_ASSERT2(KMP_AFFINITY_CAPABLE(),
5042                       "Illegal set affinity operation when not capable");
5043 
5044     kmp_affin_mask_t *mask = th->th.th_affin_mask;
5045     KMP_CPU_ZERO(mask);
5046 
5047     if (fine_gran) {
5048       int osID = address2os[coreID * __kmp_nth_per_core + threadID].second;
5049       KMP_CPU_SET(osID, mask);
5050     } else {
5051       for (int i = 0; i < __kmp_nth_per_core; i++) {
5052         int osID;
5053         osID = address2os[coreID * __kmp_nth_per_core + i].second;
5054         KMP_CPU_SET(osID, mask);
5055       }
5056     }
5057     if (__kmp_affinity_verbose) {
5058       char buf[KMP_AFFIN_MASK_PRINT_LEN];
5059       __kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN, mask);
5060       KMP_INFORM(BoundToOSProcSet, "KMP_AFFINITY", (kmp_int32)getpid(),
5061                  __kmp_gettid(), tid, buf);
5062     }
5063     __kmp_set_system_affinity(mask, TRUE);
5064   } else { // Non-uniform topology
5065 
5066     kmp_affin_mask_t *mask = th->th.th_affin_mask;
5067     KMP_CPU_ZERO(mask);
5068 
5069     int core_level = __kmp_affinity_find_core_level(
5070         address2os, __kmp_avail_proc, __kmp_aff_depth - 1);
5071     int ncores = __kmp_affinity_compute_ncores(address2os, __kmp_avail_proc,
5072                                                __kmp_aff_depth - 1, core_level);
5073     int nth_per_core = __kmp_affinity_max_proc_per_core(
5074         address2os, __kmp_avail_proc, __kmp_aff_depth - 1, core_level);
5075 
5076     // For performance gain consider the special case nthreads ==
5077     // __kmp_avail_proc
5078     if (nthreads == __kmp_avail_proc) {
5079       if (fine_gran) {
5080         int osID = address2os[tid].second;
5081         KMP_CPU_SET(osID, mask);
5082       } else {
5083         int core = __kmp_affinity_find_core(address2os, tid,
5084                                             __kmp_aff_depth - 1, core_level);
5085         for (int i = 0; i < __kmp_avail_proc; i++) {
5086           int osID = address2os[i].second;
5087           if (__kmp_affinity_find_core(address2os, i, __kmp_aff_depth - 1,
5088                                        core_level) == core) {
5089             KMP_CPU_SET(osID, mask);
5090           }
5091         }
5092       }
5093     } else if (nthreads <= ncores) {
5094 
5095       int core = 0;
5096       for (int i = 0; i < ncores; i++) {
5097         // Check if this core from procarr[] is in the mask
5098         int in_mask = 0;
5099         for (int j = 0; j < nth_per_core; j++) {
5100           if (procarr[i * nth_per_core + j] != -1) {
5101             in_mask = 1;
5102             break;
5103           }
5104         }
5105         if (in_mask) {
5106           if (tid == core) {
5107             for (int j = 0; j < nth_per_core; j++) {
5108               int osID = procarr[i * nth_per_core + j];
5109               if (osID != -1) {
5110                 KMP_CPU_SET(osID, mask);
5111                 // For fine granularity it is enough to set the first available
5112                 // osID for this core
5113                 if (fine_gran) {
5114                   break;
5115                 }
5116               }
5117             }
5118             break;
5119           } else {
5120             core++;
5121           }
5122         }
5123       }
5124     } else { // nthreads > ncores
5125       // Array to save the number of processors at each core
5126       int *nproc_at_core = (int *)KMP_ALLOCA(sizeof(int) * ncores);
5127       // Array to save the number of cores with "x" available processors;
5128       int *ncores_with_x_procs =
5129           (int *)KMP_ALLOCA(sizeof(int) * (nth_per_core + 1));
5130       // Array to save the number of cores with # procs from x to nth_per_core
5131       int *ncores_with_x_to_max_procs =
5132           (int *)KMP_ALLOCA(sizeof(int) * (nth_per_core + 1));
5133 
5134       for (int i = 0; i <= nth_per_core; i++) {
5135         ncores_with_x_procs[i] = 0;
5136         ncores_with_x_to_max_procs[i] = 0;
5137       }
5138 
5139       for (int i = 0; i < ncores; i++) {
5140         int cnt = 0;
5141         for (int j = 0; j < nth_per_core; j++) {
5142           if (procarr[i * nth_per_core + j] != -1) {
5143             cnt++;
5144           }
5145         }
5146         nproc_at_core[i] = cnt;
5147         ncores_with_x_procs[cnt]++;
5148       }
5149 
5150       for (int i = 0; i <= nth_per_core; i++) {
5151         for (int j = i; j <= nth_per_core; j++) {
5152           ncores_with_x_to_max_procs[i] += ncores_with_x_procs[j];
5153         }
5154       }
5155 
5156       // Max number of processors
5157       int nproc = nth_per_core * ncores;
5158       // An array to keep number of threads per each context
5159       int *newarr = (int *)__kmp_allocate(sizeof(int) * nproc);
5160       for (int i = 0; i < nproc; i++) {
5161         newarr[i] = 0;
5162       }
5163 
5164       int nth = nthreads;
5165       int flag = 0;
5166       while (nth > 0) {
5167         for (int j = 1; j <= nth_per_core; j++) {
5168           int cnt = ncores_with_x_to_max_procs[j];
5169           for (int i = 0; i < ncores; i++) {
5170             // Skip the core with 0 processors
5171             if (nproc_at_core[i] == 0) {
5172               continue;
5173             }
5174             for (int k = 0; k < nth_per_core; k++) {
5175               if (procarr[i * nth_per_core + k] != -1) {
5176                 if (newarr[i * nth_per_core + k] == 0) {
5177                   newarr[i * nth_per_core + k] = 1;
5178                   cnt--;
5179                   nth--;
5180                   break;
5181                 } else {
5182                   if (flag != 0) {
5183                     newarr[i * nth_per_core + k]++;
5184                     cnt--;
5185                     nth--;
5186                     break;
5187                   }
5188                 }
5189               }
5190             }
5191             if (cnt == 0 || nth == 0) {
5192               break;
5193             }
5194           }
5195           if (nth == 0) {
5196             break;
5197           }
5198         }
5199         flag = 1;
5200       }
5201       int sum = 0;
5202       for (int i = 0; i < nproc; i++) {
5203         sum += newarr[i];
5204         if (sum > tid) {
5205           if (fine_gran) {
5206             int osID = procarr[i];
5207             KMP_CPU_SET(osID, mask);
5208           } else {
5209             int coreID = i / nth_per_core;
5210             for (int ii = 0; ii < nth_per_core; ii++) {
5211               int osID = procarr[coreID * nth_per_core + ii];
5212               if (osID != -1) {
5213                 KMP_CPU_SET(osID, mask);
5214               }
5215             }
5216           }
5217           break;
5218         }
5219       }
5220       __kmp_free(newarr);
5221     }
5222 
5223     if (__kmp_affinity_verbose) {
5224       char buf[KMP_AFFIN_MASK_PRINT_LEN];
5225       __kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN, mask);
5226       KMP_INFORM(BoundToOSProcSet, "KMP_AFFINITY", (kmp_int32)getpid(),
5227                  __kmp_gettid(), tid, buf);
5228     }
5229     __kmp_set_system_affinity(mask, TRUE);
5230   }
5231 }
5232 
5233 #if KMP_OS_LINUX || KMP_OS_FREEBSD
5234 // We don't need this entry for Windows because
5235 // there is GetProcessAffinityMask() api
5236 //
5237 // The intended usage is indicated by these steps:
5238 // 1) The user gets the current affinity mask
5239 // 2) Then sets the affinity by calling this function
5240 // 3) Error check the return value
5241 // 4) Use non-OpenMP parallelization
5242 // 5) Reset the affinity to what was stored in step 1)
5243 #ifdef __cplusplus
5244 extern "C"
5245 #endif
5246     int
5247     kmp_set_thread_affinity_mask_initial()
5248 // the function returns 0 on success,
5249 //   -1 if we cannot bind thread
5250 //   >0 (errno) if an error happened during binding
5251 {
5252   int gtid = __kmp_get_gtid();
5253   if (gtid < 0) {
5254     // Do not touch non-omp threads
5255     KA_TRACE(30, ("kmp_set_thread_affinity_mask_initial: "
5256                   "non-omp thread, returning\n"));
5257     return -1;
5258   }
5259   if (!KMP_AFFINITY_CAPABLE() || !__kmp_init_middle) {
5260     KA_TRACE(30, ("kmp_set_thread_affinity_mask_initial: "
5261                   "affinity not initialized, returning\n"));
5262     return -1;
5263   }
5264   KA_TRACE(30, ("kmp_set_thread_affinity_mask_initial: "
5265                 "set full mask for thread %d\n",
5266                 gtid));
5267   KMP_DEBUG_ASSERT(__kmp_affin_fullMask != NULL);
5268   return __kmp_set_system_affinity(__kmp_affin_fullMask, FALSE);
5269 }
5270 #endif
5271 
5272 #endif // KMP_AFFINITY_SUPPORTED
5273