1 /* 2 * kmp_affinity.cpp -- affinity management 3 */ 4 5 //===----------------------------------------------------------------------===// 6 // 7 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 8 // See https://llvm.org/LICENSE.txt for license information. 9 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "kmp.h" 14 #include "kmp_affinity.h" 15 #include "kmp_i18n.h" 16 #include "kmp_io.h" 17 #include "kmp_str.h" 18 #include "kmp_wrapper_getpid.h" 19 #if KMP_USE_HIER_SCHED 20 #include "kmp_dispatch_hier.h" 21 #endif 22 #if KMP_USE_HWLOC 23 // Copied from hwloc 24 #define HWLOC_GROUP_KIND_INTEL_MODULE 102 25 #define HWLOC_GROUP_KIND_INTEL_TILE 103 26 #define HWLOC_GROUP_KIND_INTEL_DIE 104 27 #define HWLOC_GROUP_KIND_WINDOWS_PROCESSOR_GROUP 220 28 #endif 29 #include <ctype.h> 30 31 // The machine topology 32 kmp_topology_t *__kmp_topology = nullptr; 33 // KMP_HW_SUBSET environment variable 34 kmp_hw_subset_t *__kmp_hw_subset = nullptr; 35 36 // Store the real or imagined machine hierarchy here 37 static hierarchy_info machine_hierarchy; 38 39 void __kmp_cleanup_hierarchy() { machine_hierarchy.fini(); } 40 41 void __kmp_get_hierarchy(kmp_uint32 nproc, kmp_bstate_t *thr_bar) { 42 kmp_uint32 depth; 43 // The test below is true if affinity is available, but set to "none". Need to 44 // init on first use of hierarchical barrier. 45 if (TCR_1(machine_hierarchy.uninitialized)) 46 machine_hierarchy.init(nproc); 47 48 // Adjust the hierarchy in case num threads exceeds original 49 if (nproc > machine_hierarchy.base_num_threads) 50 machine_hierarchy.resize(nproc); 51 52 depth = machine_hierarchy.depth; 53 KMP_DEBUG_ASSERT(depth > 0); 54 55 thr_bar->depth = depth; 56 __kmp_type_convert(machine_hierarchy.numPerLevel[0] - 1, 57 &(thr_bar->base_leaf_kids)); 58 thr_bar->skip_per_level = machine_hierarchy.skipPerLevel; 59 } 60 61 static int nCoresPerPkg, nPackages; 62 static int __kmp_nThreadsPerCore; 63 #ifndef KMP_DFLT_NTH_CORES 64 static int __kmp_ncores; 65 #endif 66 67 const char *__kmp_hw_get_catalog_string(kmp_hw_t type, bool plural) { 68 switch (type) { 69 case KMP_HW_SOCKET: 70 return ((plural) ? KMP_I18N_STR(Sockets) : KMP_I18N_STR(Socket)); 71 case KMP_HW_DIE: 72 return ((plural) ? KMP_I18N_STR(Dice) : KMP_I18N_STR(Die)); 73 case KMP_HW_MODULE: 74 return ((plural) ? KMP_I18N_STR(Modules) : KMP_I18N_STR(Module)); 75 case KMP_HW_TILE: 76 return ((plural) ? KMP_I18N_STR(Tiles) : KMP_I18N_STR(Tile)); 77 case KMP_HW_NUMA: 78 return ((plural) ? KMP_I18N_STR(NumaDomains) : KMP_I18N_STR(NumaDomain)); 79 case KMP_HW_L3: 80 return ((plural) ? KMP_I18N_STR(L3Caches) : KMP_I18N_STR(L3Cache)); 81 case KMP_HW_L2: 82 return ((plural) ? KMP_I18N_STR(L2Caches) : KMP_I18N_STR(L2Cache)); 83 case KMP_HW_L1: 84 return ((plural) ? KMP_I18N_STR(L1Caches) : KMP_I18N_STR(L1Cache)); 85 case KMP_HW_LLC: 86 return ((plural) ? KMP_I18N_STR(LLCaches) : KMP_I18N_STR(LLCache)); 87 case KMP_HW_CORE: 88 return ((plural) ? KMP_I18N_STR(Cores) : KMP_I18N_STR(Core)); 89 case KMP_HW_THREAD: 90 return ((plural) ? KMP_I18N_STR(Threads) : KMP_I18N_STR(Thread)); 91 case KMP_HW_PROC_GROUP: 92 return ((plural) ? KMP_I18N_STR(ProcGroups) : KMP_I18N_STR(ProcGroup)); 93 } 94 return KMP_I18N_STR(Unknown); 95 } 96 97 const char *__kmp_hw_get_keyword(kmp_hw_t type, bool plural) { 98 switch (type) { 99 case KMP_HW_SOCKET: 100 return ((plural) ? "sockets" : "socket"); 101 case KMP_HW_DIE: 102 return ((plural) ? "dice" : "die"); 103 case KMP_HW_MODULE: 104 return ((plural) ? "modules" : "module"); 105 case KMP_HW_TILE: 106 return ((plural) ? "tiles" : "tile"); 107 case KMP_HW_NUMA: 108 return ((plural) ? "numa_domains" : "numa_domain"); 109 case KMP_HW_L3: 110 return ((plural) ? "l3_caches" : "l3_cache"); 111 case KMP_HW_L2: 112 return ((plural) ? "l2_caches" : "l2_cache"); 113 case KMP_HW_L1: 114 return ((plural) ? "l1_caches" : "l1_cache"); 115 case KMP_HW_LLC: 116 return ((plural) ? "ll_caches" : "ll_cache"); 117 case KMP_HW_CORE: 118 return ((plural) ? "cores" : "core"); 119 case KMP_HW_THREAD: 120 return ((plural) ? "threads" : "thread"); 121 case KMP_HW_PROC_GROUP: 122 return ((plural) ? "proc_groups" : "proc_group"); 123 } 124 return ((plural) ? "unknowns" : "unknown"); 125 } 126 127 const char *__kmp_hw_get_core_type_string(kmp_hw_core_type_t type) { 128 switch (type) { 129 case KMP_HW_CORE_TYPE_UNKNOWN: 130 return "unknown"; 131 #if KMP_ARCH_X86 || KMP_ARCH_X86_64 132 case KMP_HW_CORE_TYPE_ATOM: 133 return "Intel Atom(R) processor"; 134 case KMP_HW_CORE_TYPE_CORE: 135 return "Intel(R) Core(TM) processor"; 136 #endif 137 } 138 return "unknown"; 139 } 140 141 #if KMP_AFFINITY_SUPPORTED 142 // If affinity is supported, check the affinity 143 // verbose and warning flags before printing warning 144 #define KMP_AFF_WARNING(...) \ 145 if (__kmp_affinity_verbose || \ 146 (__kmp_affinity_warnings && (__kmp_affinity_type != affinity_none))) { \ 147 KMP_WARNING(__VA_ARGS__); \ 148 } 149 #else 150 #define KMP_AFF_WARNING KMP_WARNING 151 #endif 152 153 //////////////////////////////////////////////////////////////////////////////// 154 // kmp_hw_thread_t methods 155 int kmp_hw_thread_t::compare_ids(const void *a, const void *b) { 156 const kmp_hw_thread_t *ahwthread = (const kmp_hw_thread_t *)a; 157 const kmp_hw_thread_t *bhwthread = (const kmp_hw_thread_t *)b; 158 int depth = __kmp_topology->get_depth(); 159 for (int level = 0; level < depth; ++level) { 160 if (ahwthread->ids[level] < bhwthread->ids[level]) 161 return -1; 162 else if (ahwthread->ids[level] > bhwthread->ids[level]) 163 return 1; 164 } 165 if (ahwthread->os_id < bhwthread->os_id) 166 return -1; 167 else if (ahwthread->os_id > bhwthread->os_id) 168 return 1; 169 return 0; 170 } 171 172 #if KMP_AFFINITY_SUPPORTED 173 int kmp_hw_thread_t::compare_compact(const void *a, const void *b) { 174 int i; 175 const kmp_hw_thread_t *aa = (const kmp_hw_thread_t *)a; 176 const kmp_hw_thread_t *bb = (const kmp_hw_thread_t *)b; 177 int depth = __kmp_topology->get_depth(); 178 KMP_DEBUG_ASSERT(__kmp_affinity_compact >= 0); 179 KMP_DEBUG_ASSERT(__kmp_affinity_compact <= depth); 180 for (i = 0; i < __kmp_affinity_compact; i++) { 181 int j = depth - i - 1; 182 if (aa->sub_ids[j] < bb->sub_ids[j]) 183 return -1; 184 if (aa->sub_ids[j] > bb->sub_ids[j]) 185 return 1; 186 } 187 for (; i < depth; i++) { 188 int j = i - __kmp_affinity_compact; 189 if (aa->sub_ids[j] < bb->sub_ids[j]) 190 return -1; 191 if (aa->sub_ids[j] > bb->sub_ids[j]) 192 return 1; 193 } 194 return 0; 195 } 196 #endif 197 198 void kmp_hw_thread_t::print() const { 199 int depth = __kmp_topology->get_depth(); 200 printf("%4d ", os_id); 201 for (int i = 0; i < depth; ++i) { 202 printf("%4d ", ids[i]); 203 } 204 if (attrs) { 205 if (attrs.is_core_type_valid()) 206 printf(" (%s)", __kmp_hw_get_core_type_string(attrs.get_core_type())); 207 if (attrs.is_core_eff_valid()) 208 printf(" (eff=%d)", attrs.get_core_eff()); 209 } 210 printf("\n"); 211 } 212 213 //////////////////////////////////////////////////////////////////////////////// 214 // kmp_topology_t methods 215 216 // Add a layer to the topology based on the ids. Assume the topology 217 // is perfectly nested (i.e., so no object has more than one parent) 218 void kmp_topology_t::_insert_layer(kmp_hw_t type, const int *ids) { 219 // Figure out where the layer should go by comparing the ids of the current 220 // layers with the new ids 221 int target_layer; 222 int previous_id = kmp_hw_thread_t::UNKNOWN_ID; 223 int previous_new_id = kmp_hw_thread_t::UNKNOWN_ID; 224 225 // Start from the highest layer and work down to find target layer 226 // If new layer is equal to another layer then put the new layer above 227 for (target_layer = 0; target_layer < depth; ++target_layer) { 228 bool layers_equal = true; 229 bool strictly_above_target_layer = false; 230 for (int i = 0; i < num_hw_threads; ++i) { 231 int id = hw_threads[i].ids[target_layer]; 232 int new_id = ids[i]; 233 if (id != previous_id && new_id == previous_new_id) { 234 // Found the layer we are strictly above 235 strictly_above_target_layer = true; 236 layers_equal = false; 237 break; 238 } else if (id == previous_id && new_id != previous_new_id) { 239 // Found a layer we are below. Move to next layer and check. 240 layers_equal = false; 241 break; 242 } 243 previous_id = id; 244 previous_new_id = new_id; 245 } 246 if (strictly_above_target_layer || layers_equal) 247 break; 248 } 249 250 // Found the layer we are above. Now move everything to accommodate the new 251 // layer. And put the new ids and type into the topology. 252 for (int i = depth - 1, j = depth; i >= target_layer; --i, --j) 253 types[j] = types[i]; 254 types[target_layer] = type; 255 for (int k = 0; k < num_hw_threads; ++k) { 256 for (int i = depth - 1, j = depth; i >= target_layer; --i, --j) 257 hw_threads[k].ids[j] = hw_threads[k].ids[i]; 258 hw_threads[k].ids[target_layer] = ids[k]; 259 } 260 equivalent[type] = type; 261 depth++; 262 } 263 264 #if KMP_GROUP_AFFINITY 265 // Insert the Windows Processor Group structure into the topology 266 void kmp_topology_t::_insert_windows_proc_groups() { 267 // Do not insert the processor group structure for a single group 268 if (__kmp_num_proc_groups == 1) 269 return; 270 kmp_affin_mask_t *mask; 271 int *ids = (int *)__kmp_allocate(sizeof(int) * num_hw_threads); 272 KMP_CPU_ALLOC(mask); 273 for (int i = 0; i < num_hw_threads; ++i) { 274 KMP_CPU_ZERO(mask); 275 KMP_CPU_SET(hw_threads[i].os_id, mask); 276 ids[i] = __kmp_get_proc_group(mask); 277 } 278 KMP_CPU_FREE(mask); 279 _insert_layer(KMP_HW_PROC_GROUP, ids); 280 __kmp_free(ids); 281 } 282 #endif 283 284 // Remove layers that don't add information to the topology. 285 // This is done by having the layer take on the id = UNKNOWN_ID (-1) 286 void kmp_topology_t::_remove_radix1_layers() { 287 int preference[KMP_HW_LAST]; 288 int top_index1, top_index2; 289 // Set up preference associative array 290 preference[KMP_HW_SOCKET] = 110; 291 preference[KMP_HW_PROC_GROUP] = 100; 292 preference[KMP_HW_CORE] = 95; 293 preference[KMP_HW_THREAD] = 90; 294 preference[KMP_HW_NUMA] = 85; 295 preference[KMP_HW_DIE] = 80; 296 preference[KMP_HW_TILE] = 75; 297 preference[KMP_HW_MODULE] = 73; 298 preference[KMP_HW_L3] = 70; 299 preference[KMP_HW_L2] = 65; 300 preference[KMP_HW_L1] = 60; 301 preference[KMP_HW_LLC] = 5; 302 top_index1 = 0; 303 top_index2 = 1; 304 while (top_index1 < depth - 1 && top_index2 < depth) { 305 kmp_hw_t type1 = types[top_index1]; 306 kmp_hw_t type2 = types[top_index2]; 307 KMP_ASSERT_VALID_HW_TYPE(type1); 308 KMP_ASSERT_VALID_HW_TYPE(type2); 309 // Do not allow the three main topology levels (sockets, cores, threads) to 310 // be compacted down 311 if ((type1 == KMP_HW_THREAD || type1 == KMP_HW_CORE || 312 type1 == KMP_HW_SOCKET) && 313 (type2 == KMP_HW_THREAD || type2 == KMP_HW_CORE || 314 type2 == KMP_HW_SOCKET)) { 315 top_index1 = top_index2++; 316 continue; 317 } 318 bool radix1 = true; 319 bool all_same = true; 320 int id1 = hw_threads[0].ids[top_index1]; 321 int id2 = hw_threads[0].ids[top_index2]; 322 int pref1 = preference[type1]; 323 int pref2 = preference[type2]; 324 for (int hwidx = 1; hwidx < num_hw_threads; ++hwidx) { 325 if (hw_threads[hwidx].ids[top_index1] == id1 && 326 hw_threads[hwidx].ids[top_index2] != id2) { 327 radix1 = false; 328 break; 329 } 330 if (hw_threads[hwidx].ids[top_index2] != id2) 331 all_same = false; 332 id1 = hw_threads[hwidx].ids[top_index1]; 333 id2 = hw_threads[hwidx].ids[top_index2]; 334 } 335 if (radix1) { 336 // Select the layer to remove based on preference 337 kmp_hw_t remove_type, keep_type; 338 int remove_layer, remove_layer_ids; 339 if (pref1 > pref2) { 340 remove_type = type2; 341 remove_layer = remove_layer_ids = top_index2; 342 keep_type = type1; 343 } else { 344 remove_type = type1; 345 remove_layer = remove_layer_ids = top_index1; 346 keep_type = type2; 347 } 348 // If all the indexes for the second (deeper) layer are the same. 349 // e.g., all are zero, then make sure to keep the first layer's ids 350 if (all_same) 351 remove_layer_ids = top_index2; 352 // Remove radix one type by setting the equivalence, removing the id from 353 // the hw threads and removing the layer from types and depth 354 set_equivalent_type(remove_type, keep_type); 355 for (int idx = 0; idx < num_hw_threads; ++idx) { 356 kmp_hw_thread_t &hw_thread = hw_threads[idx]; 357 for (int d = remove_layer_ids; d < depth - 1; ++d) 358 hw_thread.ids[d] = hw_thread.ids[d + 1]; 359 } 360 for (int idx = remove_layer; idx < depth - 1; ++idx) 361 types[idx] = types[idx + 1]; 362 depth--; 363 } else { 364 top_index1 = top_index2++; 365 } 366 } 367 KMP_ASSERT(depth > 0); 368 } 369 370 void kmp_topology_t::_set_last_level_cache() { 371 if (get_equivalent_type(KMP_HW_L3) != KMP_HW_UNKNOWN) 372 set_equivalent_type(KMP_HW_LLC, KMP_HW_L3); 373 else if (get_equivalent_type(KMP_HW_L2) != KMP_HW_UNKNOWN) 374 set_equivalent_type(KMP_HW_LLC, KMP_HW_L2); 375 #if KMP_MIC_SUPPORTED 376 else if (__kmp_mic_type == mic3) { 377 if (get_equivalent_type(KMP_HW_L2) != KMP_HW_UNKNOWN) 378 set_equivalent_type(KMP_HW_LLC, KMP_HW_L2); 379 else if (get_equivalent_type(KMP_HW_TILE) != KMP_HW_UNKNOWN) 380 set_equivalent_type(KMP_HW_LLC, KMP_HW_TILE); 381 // L2/Tile wasn't detected so just say L1 382 else 383 set_equivalent_type(KMP_HW_LLC, KMP_HW_L1); 384 } 385 #endif 386 else if (get_equivalent_type(KMP_HW_L1) != KMP_HW_UNKNOWN) 387 set_equivalent_type(KMP_HW_LLC, KMP_HW_L1); 388 // Fallback is to set last level cache to socket or core 389 if (get_equivalent_type(KMP_HW_LLC) == KMP_HW_UNKNOWN) { 390 if (get_equivalent_type(KMP_HW_SOCKET) != KMP_HW_UNKNOWN) 391 set_equivalent_type(KMP_HW_LLC, KMP_HW_SOCKET); 392 else if (get_equivalent_type(KMP_HW_CORE) != KMP_HW_UNKNOWN) 393 set_equivalent_type(KMP_HW_LLC, KMP_HW_CORE); 394 } 395 KMP_ASSERT(get_equivalent_type(KMP_HW_LLC) != KMP_HW_UNKNOWN); 396 } 397 398 // Gather the count of each topology layer and the ratio 399 void kmp_topology_t::_gather_enumeration_information() { 400 int previous_id[KMP_HW_LAST]; 401 int max[KMP_HW_LAST]; 402 403 for (int i = 0; i < depth; ++i) { 404 previous_id[i] = kmp_hw_thread_t::UNKNOWN_ID; 405 max[i] = 0; 406 count[i] = 0; 407 ratio[i] = 0; 408 } 409 int core_level = get_level(KMP_HW_CORE); 410 for (int i = 0; i < num_hw_threads; ++i) { 411 kmp_hw_thread_t &hw_thread = hw_threads[i]; 412 for (int layer = 0; layer < depth; ++layer) { 413 int id = hw_thread.ids[layer]; 414 if (id != previous_id[layer]) { 415 // Add an additional increment to each count 416 for (int l = layer; l < depth; ++l) 417 count[l]++; 418 // Keep track of topology layer ratio statistics 419 max[layer]++; 420 for (int l = layer + 1; l < depth; ++l) { 421 if (max[l] > ratio[l]) 422 ratio[l] = max[l]; 423 max[l] = 1; 424 } 425 // Figure out the number of different core types 426 // and efficiencies for hybrid CPUs 427 if (__kmp_is_hybrid_cpu() && core_level >= 0 && layer <= core_level) { 428 if (hw_thread.attrs.is_core_eff_valid() && 429 hw_thread.attrs.core_eff >= num_core_efficiencies) { 430 // Because efficiencies can range from 0 to max efficiency - 1, 431 // the number of efficiencies is max efficiency + 1 432 num_core_efficiencies = hw_thread.attrs.core_eff + 1; 433 } 434 if (hw_thread.attrs.is_core_type_valid()) { 435 bool found = false; 436 for (int j = 0; j < num_core_types; ++j) { 437 if (hw_thread.attrs.get_core_type() == core_types[j]) { 438 found = true; 439 break; 440 } 441 } 442 if (!found) { 443 KMP_ASSERT(num_core_types < KMP_HW_MAX_NUM_CORE_TYPES); 444 core_types[num_core_types++] = hw_thread.attrs.get_core_type(); 445 } 446 } 447 } 448 break; 449 } 450 } 451 for (int layer = 0; layer < depth; ++layer) { 452 previous_id[layer] = hw_thread.ids[layer]; 453 } 454 } 455 for (int layer = 0; layer < depth; ++layer) { 456 if (max[layer] > ratio[layer]) 457 ratio[layer] = max[layer]; 458 } 459 } 460 461 int kmp_topology_t::_get_ncores_with_attr(const kmp_hw_attr_t &attr, 462 int above_level, 463 bool find_all) const { 464 int current, current_max; 465 int previous_id[KMP_HW_LAST]; 466 for (int i = 0; i < depth; ++i) 467 previous_id[i] = kmp_hw_thread_t::UNKNOWN_ID; 468 int core_level = get_level(KMP_HW_CORE); 469 if (find_all) 470 above_level = -1; 471 KMP_ASSERT(above_level < core_level); 472 current_max = 0; 473 current = 0; 474 for (int i = 0; i < num_hw_threads; ++i) { 475 kmp_hw_thread_t &hw_thread = hw_threads[i]; 476 if (!find_all && hw_thread.ids[above_level] != previous_id[above_level]) { 477 if (current > current_max) 478 current_max = current; 479 current = hw_thread.attrs.contains(attr); 480 } else { 481 for (int level = above_level + 1; level <= core_level; ++level) { 482 if (hw_thread.ids[level] != previous_id[level]) { 483 if (hw_thread.attrs.contains(attr)) 484 current++; 485 break; 486 } 487 } 488 } 489 for (int level = 0; level < depth; ++level) 490 previous_id[level] = hw_thread.ids[level]; 491 } 492 if (current > current_max) 493 current_max = current; 494 return current_max; 495 } 496 497 // Find out if the topology is uniform 498 void kmp_topology_t::_discover_uniformity() { 499 int num = 1; 500 for (int level = 0; level < depth; ++level) 501 num *= ratio[level]; 502 flags.uniform = (num == count[depth - 1]); 503 } 504 505 // Set all the sub_ids for each hardware thread 506 void kmp_topology_t::_set_sub_ids() { 507 int previous_id[KMP_HW_LAST]; 508 int sub_id[KMP_HW_LAST]; 509 510 for (int i = 0; i < depth; ++i) { 511 previous_id[i] = -1; 512 sub_id[i] = -1; 513 } 514 for (int i = 0; i < num_hw_threads; ++i) { 515 kmp_hw_thread_t &hw_thread = hw_threads[i]; 516 // Setup the sub_id 517 for (int j = 0; j < depth; ++j) { 518 if (hw_thread.ids[j] != previous_id[j]) { 519 sub_id[j]++; 520 for (int k = j + 1; k < depth; ++k) { 521 sub_id[k] = 0; 522 } 523 break; 524 } 525 } 526 // Set previous_id 527 for (int j = 0; j < depth; ++j) { 528 previous_id[j] = hw_thread.ids[j]; 529 } 530 // Set the sub_ids field 531 for (int j = 0; j < depth; ++j) { 532 hw_thread.sub_ids[j] = sub_id[j]; 533 } 534 } 535 } 536 537 void kmp_topology_t::_set_globals() { 538 // Set nCoresPerPkg, nPackages, __kmp_nThreadsPerCore, __kmp_ncores 539 int core_level, thread_level, package_level; 540 package_level = get_level(KMP_HW_SOCKET); 541 #if KMP_GROUP_AFFINITY 542 if (package_level == -1) 543 package_level = get_level(KMP_HW_PROC_GROUP); 544 #endif 545 core_level = get_level(KMP_HW_CORE); 546 thread_level = get_level(KMP_HW_THREAD); 547 548 KMP_ASSERT(core_level != -1); 549 KMP_ASSERT(thread_level != -1); 550 551 __kmp_nThreadsPerCore = calculate_ratio(thread_level, core_level); 552 if (package_level != -1) { 553 nCoresPerPkg = calculate_ratio(core_level, package_level); 554 nPackages = get_count(package_level); 555 } else { 556 // assume one socket 557 nCoresPerPkg = get_count(core_level); 558 nPackages = 1; 559 } 560 #ifndef KMP_DFLT_NTH_CORES 561 __kmp_ncores = get_count(core_level); 562 #endif 563 } 564 565 kmp_topology_t *kmp_topology_t::allocate(int nproc, int ndepth, 566 const kmp_hw_t *types) { 567 kmp_topology_t *retval; 568 // Allocate all data in one large allocation 569 size_t size = sizeof(kmp_topology_t) + sizeof(kmp_hw_thread_t) * nproc + 570 sizeof(int) * (size_t)KMP_HW_LAST * 3; 571 char *bytes = (char *)__kmp_allocate(size); 572 retval = (kmp_topology_t *)bytes; 573 if (nproc > 0) { 574 retval->hw_threads = (kmp_hw_thread_t *)(bytes + sizeof(kmp_topology_t)); 575 } else { 576 retval->hw_threads = nullptr; 577 } 578 retval->num_hw_threads = nproc; 579 retval->depth = ndepth; 580 int *arr = 581 (int *)(bytes + sizeof(kmp_topology_t) + sizeof(kmp_hw_thread_t) * nproc); 582 retval->types = (kmp_hw_t *)arr; 583 retval->ratio = arr + (size_t)KMP_HW_LAST; 584 retval->count = arr + 2 * (size_t)KMP_HW_LAST; 585 retval->num_core_efficiencies = 0; 586 retval->num_core_types = 0; 587 for (int i = 0; i < KMP_HW_MAX_NUM_CORE_TYPES; ++i) 588 retval->core_types[i] = KMP_HW_CORE_TYPE_UNKNOWN; 589 KMP_FOREACH_HW_TYPE(type) { retval->equivalent[type] = KMP_HW_UNKNOWN; } 590 for (int i = 0; i < ndepth; ++i) { 591 retval->types[i] = types[i]; 592 retval->equivalent[types[i]] = types[i]; 593 } 594 return retval; 595 } 596 597 void kmp_topology_t::deallocate(kmp_topology_t *topology) { 598 if (topology) 599 __kmp_free(topology); 600 } 601 602 bool kmp_topology_t::check_ids() const { 603 // Assume ids have been sorted 604 if (num_hw_threads == 0) 605 return true; 606 for (int i = 1; i < num_hw_threads; ++i) { 607 kmp_hw_thread_t ¤t_thread = hw_threads[i]; 608 kmp_hw_thread_t &previous_thread = hw_threads[i - 1]; 609 bool unique = false; 610 for (int j = 0; j < depth; ++j) { 611 if (previous_thread.ids[j] != current_thread.ids[j]) { 612 unique = true; 613 break; 614 } 615 } 616 if (unique) 617 continue; 618 return false; 619 } 620 return true; 621 } 622 623 void kmp_topology_t::dump() const { 624 printf("***********************\n"); 625 printf("*** __kmp_topology: ***\n"); 626 printf("***********************\n"); 627 printf("* depth: %d\n", depth); 628 629 printf("* types: "); 630 for (int i = 0; i < depth; ++i) 631 printf("%15s ", __kmp_hw_get_keyword(types[i])); 632 printf("\n"); 633 634 printf("* ratio: "); 635 for (int i = 0; i < depth; ++i) { 636 printf("%15d ", ratio[i]); 637 } 638 printf("\n"); 639 640 printf("* count: "); 641 for (int i = 0; i < depth; ++i) { 642 printf("%15d ", count[i]); 643 } 644 printf("\n"); 645 646 printf("* num_core_eff: %d\n", num_core_efficiencies); 647 printf("* num_core_types: %d\n", num_core_types); 648 printf("* core_types: "); 649 for (int i = 0; i < num_core_types; ++i) 650 printf("%3d ", core_types[i]); 651 printf("\n"); 652 653 printf("* equivalent map:\n"); 654 KMP_FOREACH_HW_TYPE(i) { 655 const char *key = __kmp_hw_get_keyword(i); 656 const char *value = __kmp_hw_get_keyword(equivalent[i]); 657 printf("%-15s -> %-15s\n", key, value); 658 } 659 660 printf("* uniform: %s\n", (is_uniform() ? "Yes" : "No")); 661 662 printf("* num_hw_threads: %d\n", num_hw_threads); 663 printf("* hw_threads:\n"); 664 for (int i = 0; i < num_hw_threads; ++i) { 665 hw_threads[i].print(); 666 } 667 printf("***********************\n"); 668 } 669 670 void kmp_topology_t::print(const char *env_var) const { 671 kmp_str_buf_t buf; 672 int print_types_depth; 673 __kmp_str_buf_init(&buf); 674 kmp_hw_t print_types[KMP_HW_LAST + 2]; 675 676 // Num Available Threads 677 KMP_INFORM(AvailableOSProc, env_var, num_hw_threads); 678 679 // Uniform or not 680 if (is_uniform()) { 681 KMP_INFORM(Uniform, env_var); 682 } else { 683 KMP_INFORM(NonUniform, env_var); 684 } 685 686 // Equivalent types 687 KMP_FOREACH_HW_TYPE(type) { 688 kmp_hw_t eq_type = equivalent[type]; 689 if (eq_type != KMP_HW_UNKNOWN && eq_type != type) { 690 KMP_INFORM(AffEqualTopologyTypes, env_var, 691 __kmp_hw_get_catalog_string(type), 692 __kmp_hw_get_catalog_string(eq_type)); 693 } 694 } 695 696 // Quick topology 697 KMP_ASSERT(depth > 0 && depth <= (int)KMP_HW_LAST); 698 // Create a print types array that always guarantees printing 699 // the core and thread level 700 print_types_depth = 0; 701 for (int level = 0; level < depth; ++level) 702 print_types[print_types_depth++] = types[level]; 703 if (equivalent[KMP_HW_CORE] != KMP_HW_CORE) { 704 // Force in the core level for quick topology 705 if (print_types[print_types_depth - 1] == KMP_HW_THREAD) { 706 // Force core before thread e.g., 1 socket X 2 threads/socket 707 // becomes 1 socket X 1 core/socket X 2 threads/socket 708 print_types[print_types_depth - 1] = KMP_HW_CORE; 709 print_types[print_types_depth++] = KMP_HW_THREAD; 710 } else { 711 print_types[print_types_depth++] = KMP_HW_CORE; 712 } 713 } 714 // Always put threads at very end of quick topology 715 if (equivalent[KMP_HW_THREAD] != KMP_HW_THREAD) 716 print_types[print_types_depth++] = KMP_HW_THREAD; 717 718 __kmp_str_buf_clear(&buf); 719 kmp_hw_t numerator_type; 720 kmp_hw_t denominator_type = KMP_HW_UNKNOWN; 721 int core_level = get_level(KMP_HW_CORE); 722 int ncores = get_count(core_level); 723 724 for (int plevel = 0, level = 0; plevel < print_types_depth; ++plevel) { 725 int c; 726 bool plural; 727 numerator_type = print_types[plevel]; 728 KMP_ASSERT_VALID_HW_TYPE(numerator_type); 729 if (equivalent[numerator_type] != numerator_type) 730 c = 1; 731 else 732 c = get_ratio(level++); 733 plural = (c > 1); 734 if (plevel == 0) { 735 __kmp_str_buf_print(&buf, "%d %s", c, 736 __kmp_hw_get_catalog_string(numerator_type, plural)); 737 } else { 738 __kmp_str_buf_print(&buf, " x %d %s/%s", c, 739 __kmp_hw_get_catalog_string(numerator_type, plural), 740 __kmp_hw_get_catalog_string(denominator_type)); 741 } 742 denominator_type = numerator_type; 743 } 744 KMP_INFORM(TopologyGeneric, env_var, buf.str, ncores); 745 746 // Hybrid topology information 747 if (__kmp_is_hybrid_cpu()) { 748 for (int i = 0; i < num_core_types; ++i) { 749 kmp_hw_core_type_t core_type = core_types[i]; 750 kmp_hw_attr_t attr; 751 attr.clear(); 752 attr.set_core_type(core_type); 753 int ncores = get_ncores_with_attr(attr); 754 if (ncores > 0) { 755 KMP_INFORM(TopologyHybrid, env_var, ncores, 756 __kmp_hw_get_core_type_string(core_type)); 757 KMP_ASSERT(num_core_efficiencies <= KMP_HW_MAX_NUM_CORE_EFFS) 758 for (int eff = 0; eff < num_core_efficiencies; ++eff) { 759 attr.set_core_eff(eff); 760 int ncores_with_eff = get_ncores_with_attr(attr); 761 if (ncores_with_eff > 0) { 762 KMP_INFORM(TopologyHybridCoreEff, env_var, ncores_with_eff, eff); 763 } 764 } 765 } 766 } 767 } 768 769 if (num_hw_threads <= 0) { 770 __kmp_str_buf_free(&buf); 771 return; 772 } 773 774 // Full OS proc to hardware thread map 775 KMP_INFORM(OSProcToPhysicalThreadMap, env_var); 776 for (int i = 0; i < num_hw_threads; i++) { 777 __kmp_str_buf_clear(&buf); 778 for (int level = 0; level < depth; ++level) { 779 kmp_hw_t type = types[level]; 780 __kmp_str_buf_print(&buf, "%s ", __kmp_hw_get_catalog_string(type)); 781 __kmp_str_buf_print(&buf, "%d ", hw_threads[i].ids[level]); 782 } 783 if (__kmp_is_hybrid_cpu()) 784 __kmp_str_buf_print( 785 &buf, "(%s)", 786 __kmp_hw_get_core_type_string(hw_threads[i].attrs.get_core_type())); 787 KMP_INFORM(OSProcMapToPack, env_var, hw_threads[i].os_id, buf.str); 788 } 789 790 __kmp_str_buf_free(&buf); 791 } 792 793 void kmp_topology_t::canonicalize() { 794 #if KMP_GROUP_AFFINITY 795 _insert_windows_proc_groups(); 796 #endif 797 _remove_radix1_layers(); 798 _gather_enumeration_information(); 799 _discover_uniformity(); 800 _set_sub_ids(); 801 _set_globals(); 802 _set_last_level_cache(); 803 804 #if KMP_MIC_SUPPORTED 805 // Manually Add L2 = Tile equivalence 806 if (__kmp_mic_type == mic3) { 807 if (get_level(KMP_HW_L2) != -1) 808 set_equivalent_type(KMP_HW_TILE, KMP_HW_L2); 809 else if (get_level(KMP_HW_TILE) != -1) 810 set_equivalent_type(KMP_HW_L2, KMP_HW_TILE); 811 } 812 #endif 813 814 // Perform post canonicalization checking 815 KMP_ASSERT(depth > 0); 816 for (int level = 0; level < depth; ++level) { 817 // All counts, ratios, and types must be valid 818 KMP_ASSERT(count[level] > 0 && ratio[level] > 0); 819 KMP_ASSERT_VALID_HW_TYPE(types[level]); 820 // Detected types must point to themselves 821 KMP_ASSERT(equivalent[types[level]] == types[level]); 822 } 823 824 #if KMP_AFFINITY_SUPPORTED 825 // Set the number of affinity granularity levels 826 if (__kmp_affinity_gran_levels < 0) { 827 kmp_hw_t gran_type = get_equivalent_type(__kmp_affinity_gran); 828 // Check if user's granularity request is valid 829 if (gran_type == KMP_HW_UNKNOWN) { 830 // First try core, then thread, then package 831 kmp_hw_t gran_types[3] = {KMP_HW_CORE, KMP_HW_THREAD, KMP_HW_SOCKET}; 832 for (auto g : gran_types) { 833 if (get_equivalent_type(g) != KMP_HW_UNKNOWN) { 834 gran_type = g; 835 break; 836 } 837 } 838 KMP_ASSERT(gran_type != KMP_HW_UNKNOWN); 839 // Warn user what granularity setting will be used instead 840 KMP_AFF_WARNING(AffGranularityBad, "KMP_AFFINITY", 841 __kmp_hw_get_catalog_string(__kmp_affinity_gran), 842 __kmp_hw_get_catalog_string(gran_type)); 843 __kmp_affinity_gran = gran_type; 844 } 845 #if KMP_GROUP_AFFINITY 846 // If more than one processor group exists, and the level of 847 // granularity specified by the user is too coarse, then the 848 // granularity must be adjusted "down" to processor group affinity 849 // because threads can only exist within one processor group. 850 // For example, if a user sets granularity=socket and there are two 851 // processor groups that cover a socket, then the runtime must 852 // restrict the granularity down to the processor group level. 853 if (__kmp_num_proc_groups > 1) { 854 int gran_depth = get_level(gran_type); 855 int proc_group_depth = get_level(KMP_HW_PROC_GROUP); 856 if (gran_depth >= 0 && proc_group_depth >= 0 && 857 gran_depth < proc_group_depth) { 858 KMP_AFF_WARNING(AffGranTooCoarseProcGroup, "KMP_AFFINITY", 859 __kmp_hw_get_catalog_string(__kmp_affinity_gran)); 860 __kmp_affinity_gran = gran_type = KMP_HW_PROC_GROUP; 861 } 862 } 863 #endif 864 __kmp_affinity_gran_levels = 0; 865 for (int i = depth - 1; i >= 0 && get_type(i) != gran_type; --i) 866 __kmp_affinity_gran_levels++; 867 } 868 #endif // KMP_AFFINITY_SUPPORTED 869 } 870 871 // Canonicalize an explicit packages X cores/pkg X threads/core topology 872 void kmp_topology_t::canonicalize(int npackages, int ncores_per_pkg, 873 int nthreads_per_core, int ncores) { 874 int ndepth = 3; 875 depth = ndepth; 876 KMP_FOREACH_HW_TYPE(i) { equivalent[i] = KMP_HW_UNKNOWN; } 877 for (int level = 0; level < depth; ++level) { 878 count[level] = 0; 879 ratio[level] = 0; 880 } 881 count[0] = npackages; 882 count[1] = ncores; 883 count[2] = __kmp_xproc; 884 ratio[0] = npackages; 885 ratio[1] = ncores_per_pkg; 886 ratio[2] = nthreads_per_core; 887 equivalent[KMP_HW_SOCKET] = KMP_HW_SOCKET; 888 equivalent[KMP_HW_CORE] = KMP_HW_CORE; 889 equivalent[KMP_HW_THREAD] = KMP_HW_THREAD; 890 types[0] = KMP_HW_SOCKET; 891 types[1] = KMP_HW_CORE; 892 types[2] = KMP_HW_THREAD; 893 //__kmp_avail_proc = __kmp_xproc; 894 _discover_uniformity(); 895 } 896 897 // Represents running sub IDs for a single core attribute where 898 // attribute values have SIZE possibilities. 899 template <size_t SIZE, typename IndexFunc> struct kmp_sub_ids_t { 900 int last_level; // last level in topology to consider for sub_ids 901 int sub_id[SIZE]; // The sub ID for a given attribute value 902 int prev_sub_id[KMP_HW_LAST]; 903 IndexFunc indexer; 904 905 public: 906 kmp_sub_ids_t(int last_level) : last_level(last_level) { 907 KMP_ASSERT(last_level < KMP_HW_LAST); 908 for (size_t i = 0; i < SIZE; ++i) 909 sub_id[i] = -1; 910 for (size_t i = 0; i < KMP_HW_LAST; ++i) 911 prev_sub_id[i] = -1; 912 } 913 void update(const kmp_hw_thread_t &hw_thread) { 914 int idx = indexer(hw_thread); 915 KMP_ASSERT(idx < (int)SIZE); 916 for (int level = 0; level <= last_level; ++level) { 917 if (hw_thread.sub_ids[level] != prev_sub_id[level]) { 918 if (level < last_level) 919 sub_id[idx] = -1; 920 sub_id[idx]++; 921 break; 922 } 923 } 924 for (int level = 0; level <= last_level; ++level) 925 prev_sub_id[level] = hw_thread.sub_ids[level]; 926 } 927 int get_sub_id(const kmp_hw_thread_t &hw_thread) const { 928 return sub_id[indexer(hw_thread)]; 929 } 930 }; 931 932 static kmp_str_buf_t * 933 __kmp_hw_get_catalog_core_string(const kmp_hw_attr_t &attr, kmp_str_buf_t *buf, 934 bool plural) { 935 __kmp_str_buf_init(buf); 936 if (attr.is_core_type_valid()) 937 __kmp_str_buf_print(buf, "%s %s", 938 __kmp_hw_get_core_type_string(attr.get_core_type()), 939 __kmp_hw_get_catalog_string(KMP_HW_CORE, plural)); 940 else 941 __kmp_str_buf_print(buf, "%s eff=%d", 942 __kmp_hw_get_catalog_string(KMP_HW_CORE, plural), 943 attr.get_core_eff()); 944 return buf; 945 } 946 947 // Apply the KMP_HW_SUBSET envirable to the topology 948 // Returns true if KMP_HW_SUBSET filtered any processors 949 // otherwise, returns false 950 bool kmp_topology_t::filter_hw_subset() { 951 // If KMP_HW_SUBSET wasn't requested, then do nothing. 952 if (!__kmp_hw_subset) 953 return false; 954 955 // First, sort the KMP_HW_SUBSET items by the machine topology 956 __kmp_hw_subset->sort(); 957 958 // Check to see if KMP_HW_SUBSET is a valid subset of the detected topology 959 bool using_core_types = false; 960 bool using_core_effs = false; 961 int hw_subset_depth = __kmp_hw_subset->get_depth(); 962 kmp_hw_t specified[KMP_HW_LAST]; 963 int *topology_levels = (int *)KMP_ALLOCA(sizeof(int) * hw_subset_depth); 964 KMP_ASSERT(hw_subset_depth > 0); 965 KMP_FOREACH_HW_TYPE(i) { specified[i] = KMP_HW_UNKNOWN; } 966 int core_level = get_level(KMP_HW_CORE); 967 for (int i = 0; i < hw_subset_depth; ++i) { 968 int max_count; 969 const kmp_hw_subset_t::item_t &item = __kmp_hw_subset->at(i); 970 int num = item.num[0]; 971 int offset = item.offset[0]; 972 kmp_hw_t type = item.type; 973 kmp_hw_t equivalent_type = equivalent[type]; 974 int level = get_level(type); 975 topology_levels[i] = level; 976 977 // Check to see if current layer is in detected machine topology 978 if (equivalent_type != KMP_HW_UNKNOWN) { 979 __kmp_hw_subset->at(i).type = equivalent_type; 980 } else { 981 KMP_AFF_WARNING(AffHWSubsetNotExistGeneric, 982 __kmp_hw_get_catalog_string(type)); 983 return false; 984 } 985 986 // Check to see if current layer has already been 987 // specified either directly or through an equivalent type 988 if (specified[equivalent_type] != KMP_HW_UNKNOWN) { 989 KMP_AFF_WARNING(AffHWSubsetEqvLayers, __kmp_hw_get_catalog_string(type), 990 __kmp_hw_get_catalog_string(specified[equivalent_type])); 991 return false; 992 } 993 specified[equivalent_type] = type; 994 995 // Check to see if each layer's num & offset parameters are valid 996 max_count = get_ratio(level); 997 if (max_count < 0 || 998 (num != kmp_hw_subset_t::USE_ALL && num + offset > max_count)) { 999 bool plural = (num > 1); 1000 KMP_AFF_WARNING(AffHWSubsetManyGeneric, 1001 __kmp_hw_get_catalog_string(type, plural)); 1002 return false; 1003 } 1004 1005 // Check to see if core attributes are consistent 1006 if (core_level == level) { 1007 // Determine which core attributes are specified 1008 for (int j = 0; j < item.num_attrs; ++j) { 1009 if (item.attr[j].is_core_type_valid()) 1010 using_core_types = true; 1011 if (item.attr[j].is_core_eff_valid()) 1012 using_core_effs = true; 1013 } 1014 1015 // Check if using a single core attribute on non-hybrid arch. 1016 // Do not ignore all of KMP_HW_SUBSET, just ignore the attribute. 1017 // 1018 // Check if using multiple core attributes on non-hyrbid arch. 1019 // Ignore all of KMP_HW_SUBSET if this is the case. 1020 if ((using_core_effs || using_core_types) && !__kmp_is_hybrid_cpu()) { 1021 if (item.num_attrs == 1) { 1022 if (using_core_effs) { 1023 KMP_AFF_WARNING(AffHWSubsetIgnoringAttr, "efficiency"); 1024 } else { 1025 KMP_AFF_WARNING(AffHWSubsetIgnoringAttr, "core_type"); 1026 } 1027 using_core_effs = false; 1028 using_core_types = false; 1029 } else { 1030 KMP_AFF_WARNING(AffHWSubsetAttrsNonHybrid); 1031 return false; 1032 } 1033 } 1034 1035 // Check if using both core types and core efficiencies together 1036 if (using_core_types && using_core_effs) { 1037 KMP_AFF_WARNING(AffHWSubsetIncompat, "core_type", "efficiency"); 1038 return false; 1039 } 1040 1041 // Check that core efficiency values are valid 1042 if (using_core_effs) { 1043 for (int j = 0; j < item.num_attrs; ++j) { 1044 if (item.attr[j].is_core_eff_valid()) { 1045 int core_eff = item.attr[j].get_core_eff(); 1046 if (core_eff < 0 || core_eff >= num_core_efficiencies) { 1047 kmp_str_buf_t buf; 1048 __kmp_str_buf_init(&buf); 1049 __kmp_str_buf_print(&buf, "%d", item.attr[j].get_core_eff()); 1050 __kmp_msg(kmp_ms_warning, 1051 KMP_MSG(AffHWSubsetAttrInvalid, "efficiency", buf.str), 1052 KMP_HNT(ValidValuesRange, 0, num_core_efficiencies - 1), 1053 __kmp_msg_null); 1054 __kmp_str_buf_free(&buf); 1055 return false; 1056 } 1057 } 1058 } 1059 } 1060 1061 // Check that the number of requested cores with attributes is valid 1062 if (using_core_types || using_core_effs) { 1063 for (int j = 0; j < item.num_attrs; ++j) { 1064 int num = item.num[j]; 1065 int offset = item.offset[j]; 1066 int level_above = core_level - 1; 1067 if (level_above >= 0) { 1068 max_count = get_ncores_with_attr_per(item.attr[j], level_above); 1069 if (max_count <= 0 || 1070 (num != kmp_hw_subset_t::USE_ALL && num + offset > max_count)) { 1071 kmp_str_buf_t buf; 1072 __kmp_hw_get_catalog_core_string(item.attr[j], &buf, num > 0); 1073 KMP_AFF_WARNING(AffHWSubsetManyGeneric, buf.str); 1074 __kmp_str_buf_free(&buf); 1075 return false; 1076 } 1077 } 1078 } 1079 } 1080 1081 if ((using_core_types || using_core_effs) && item.num_attrs > 1) { 1082 for (int j = 0; j < item.num_attrs; ++j) { 1083 // Ambiguous use of specific core attribute + generic core 1084 // e.g., 4c & 3c:intel_core or 4c & 3c:eff1 1085 if (!item.attr[j]) { 1086 kmp_hw_attr_t other_attr; 1087 for (int k = 0; k < item.num_attrs; ++k) { 1088 if (item.attr[k] != item.attr[j]) { 1089 other_attr = item.attr[k]; 1090 break; 1091 } 1092 } 1093 kmp_str_buf_t buf; 1094 __kmp_hw_get_catalog_core_string(other_attr, &buf, item.num[j] > 0); 1095 KMP_AFF_WARNING(AffHWSubsetIncompat, 1096 __kmp_hw_get_catalog_string(KMP_HW_CORE), buf.str); 1097 __kmp_str_buf_free(&buf); 1098 return false; 1099 } 1100 // Allow specifying a specific core type or core eff exactly once 1101 for (int k = 0; k < j; ++k) { 1102 if (!item.attr[j] || !item.attr[k]) 1103 continue; 1104 if (item.attr[k] == item.attr[j]) { 1105 kmp_str_buf_t buf; 1106 __kmp_hw_get_catalog_core_string(item.attr[j], &buf, 1107 item.num[j] > 0); 1108 KMP_AFF_WARNING(AffHWSubsetAttrRepeat, buf.str); 1109 __kmp_str_buf_free(&buf); 1110 return false; 1111 } 1112 } 1113 } 1114 } 1115 } 1116 } 1117 1118 struct core_type_indexer { 1119 int operator()(const kmp_hw_thread_t &t) const { 1120 switch (t.attrs.get_core_type()) { 1121 #if KMP_ARCH_X86 || KMP_ARCH_X86_64 1122 case KMP_HW_CORE_TYPE_ATOM: 1123 return 1; 1124 case KMP_HW_CORE_TYPE_CORE: 1125 return 2; 1126 #endif 1127 case KMP_HW_CORE_TYPE_UNKNOWN: 1128 return 0; 1129 } 1130 KMP_ASSERT(0); 1131 return 0; 1132 } 1133 }; 1134 struct core_eff_indexer { 1135 int operator()(const kmp_hw_thread_t &t) const { 1136 return t.attrs.get_core_eff(); 1137 } 1138 }; 1139 1140 kmp_sub_ids_t<KMP_HW_MAX_NUM_CORE_TYPES, core_type_indexer> core_type_sub_ids( 1141 core_level); 1142 kmp_sub_ids_t<KMP_HW_MAX_NUM_CORE_EFFS, core_eff_indexer> core_eff_sub_ids( 1143 core_level); 1144 1145 // Determine which hardware threads should be filtered. 1146 int num_filtered = 0; 1147 bool *filtered = (bool *)__kmp_allocate(sizeof(bool) * num_hw_threads); 1148 for (int i = 0; i < num_hw_threads; ++i) { 1149 kmp_hw_thread_t &hw_thread = hw_threads[i]; 1150 // Update type_sub_id 1151 if (using_core_types) 1152 core_type_sub_ids.update(hw_thread); 1153 if (using_core_effs) 1154 core_eff_sub_ids.update(hw_thread); 1155 1156 // Check to see if this hardware thread should be filtered 1157 bool should_be_filtered = false; 1158 for (int hw_subset_index = 0; hw_subset_index < hw_subset_depth; 1159 ++hw_subset_index) { 1160 const auto &hw_subset_item = __kmp_hw_subset->at(hw_subset_index); 1161 int level = topology_levels[hw_subset_index]; 1162 if (level == -1) 1163 continue; 1164 if ((using_core_effs || using_core_types) && level == core_level) { 1165 // Look for the core attribute in KMP_HW_SUBSET which corresponds 1166 // to this hardware thread's core attribute. Use this num,offset plus 1167 // the running sub_id for the particular core attribute of this hardware 1168 // thread to determine if the hardware thread should be filtered or not. 1169 int attr_idx; 1170 kmp_hw_core_type_t core_type = hw_thread.attrs.get_core_type(); 1171 int core_eff = hw_thread.attrs.get_core_eff(); 1172 for (attr_idx = 0; attr_idx < hw_subset_item.num_attrs; ++attr_idx) { 1173 if (using_core_types && 1174 hw_subset_item.attr[attr_idx].get_core_type() == core_type) 1175 break; 1176 if (using_core_effs && 1177 hw_subset_item.attr[attr_idx].get_core_eff() == core_eff) 1178 break; 1179 } 1180 // This core attribute isn't in the KMP_HW_SUBSET so always filter it. 1181 if (attr_idx == hw_subset_item.num_attrs) { 1182 should_be_filtered = true; 1183 break; 1184 } 1185 int sub_id; 1186 int num = hw_subset_item.num[attr_idx]; 1187 int offset = hw_subset_item.offset[attr_idx]; 1188 if (using_core_types) 1189 sub_id = core_type_sub_ids.get_sub_id(hw_thread); 1190 else 1191 sub_id = core_eff_sub_ids.get_sub_id(hw_thread); 1192 if (sub_id < offset || 1193 (num != kmp_hw_subset_t::USE_ALL && sub_id >= offset + num)) { 1194 should_be_filtered = true; 1195 break; 1196 } 1197 } else { 1198 int num = hw_subset_item.num[0]; 1199 int offset = hw_subset_item.offset[0]; 1200 if (hw_thread.sub_ids[level] < offset || 1201 (num != kmp_hw_subset_t::USE_ALL && 1202 hw_thread.sub_ids[level] >= offset + num)) { 1203 should_be_filtered = true; 1204 break; 1205 } 1206 } 1207 } 1208 // Collect filtering information 1209 filtered[i] = should_be_filtered; 1210 if (should_be_filtered) 1211 num_filtered++; 1212 } 1213 1214 // One last check that we shouldn't allow filtering entire machine 1215 if (num_filtered == num_hw_threads) { 1216 KMP_AFF_WARNING(AffHWSubsetAllFiltered); 1217 __kmp_free(filtered); 1218 return false; 1219 } 1220 1221 // Apply the filter 1222 int new_index = 0; 1223 for (int i = 0; i < num_hw_threads; ++i) { 1224 if (!filtered[i]) { 1225 if (i != new_index) 1226 hw_threads[new_index] = hw_threads[i]; 1227 new_index++; 1228 } else { 1229 #if KMP_AFFINITY_SUPPORTED 1230 KMP_CPU_CLR(hw_threads[i].os_id, __kmp_affin_fullMask); 1231 #endif 1232 __kmp_avail_proc--; 1233 } 1234 } 1235 1236 KMP_DEBUG_ASSERT(new_index <= num_hw_threads); 1237 num_hw_threads = new_index; 1238 1239 // Post hardware subset canonicalization 1240 _gather_enumeration_information(); 1241 _discover_uniformity(); 1242 _set_globals(); 1243 _set_last_level_cache(); 1244 __kmp_free(filtered); 1245 return true; 1246 } 1247 1248 bool kmp_topology_t::is_close(int hwt1, int hwt2, int hw_level) const { 1249 if (hw_level >= depth) 1250 return true; 1251 bool retval = true; 1252 const kmp_hw_thread_t &t1 = hw_threads[hwt1]; 1253 const kmp_hw_thread_t &t2 = hw_threads[hwt2]; 1254 for (int i = 0; i < (depth - hw_level); ++i) { 1255 if (t1.ids[i] != t2.ids[i]) 1256 return false; 1257 } 1258 return retval; 1259 } 1260 1261 //////////////////////////////////////////////////////////////////////////////// 1262 1263 #if KMP_AFFINITY_SUPPORTED 1264 class kmp_affinity_raii_t { 1265 kmp_affin_mask_t *mask; 1266 bool restored; 1267 1268 public: 1269 kmp_affinity_raii_t() : restored(false) { 1270 KMP_CPU_ALLOC(mask); 1271 KMP_ASSERT(mask != NULL); 1272 __kmp_get_system_affinity(mask, TRUE); 1273 } 1274 void restore() { 1275 __kmp_set_system_affinity(mask, TRUE); 1276 KMP_CPU_FREE(mask); 1277 restored = true; 1278 } 1279 ~kmp_affinity_raii_t() { 1280 if (!restored) { 1281 __kmp_set_system_affinity(mask, TRUE); 1282 KMP_CPU_FREE(mask); 1283 } 1284 } 1285 }; 1286 1287 bool KMPAffinity::picked_api = false; 1288 1289 void *KMPAffinity::Mask::operator new(size_t n) { return __kmp_allocate(n); } 1290 void *KMPAffinity::Mask::operator new[](size_t n) { return __kmp_allocate(n); } 1291 void KMPAffinity::Mask::operator delete(void *p) { __kmp_free(p); } 1292 void KMPAffinity::Mask::operator delete[](void *p) { __kmp_free(p); } 1293 void *KMPAffinity::operator new(size_t n) { return __kmp_allocate(n); } 1294 void KMPAffinity::operator delete(void *p) { __kmp_free(p); } 1295 1296 void KMPAffinity::pick_api() { 1297 KMPAffinity *affinity_dispatch; 1298 if (picked_api) 1299 return; 1300 #if KMP_USE_HWLOC 1301 // Only use Hwloc if affinity isn't explicitly disabled and 1302 // user requests Hwloc topology method 1303 if (__kmp_affinity_top_method == affinity_top_method_hwloc && 1304 __kmp_affinity_type != affinity_disabled) { 1305 affinity_dispatch = new KMPHwlocAffinity(); 1306 } else 1307 #endif 1308 { 1309 affinity_dispatch = new KMPNativeAffinity(); 1310 } 1311 __kmp_affinity_dispatch = affinity_dispatch; 1312 picked_api = true; 1313 } 1314 1315 void KMPAffinity::destroy_api() { 1316 if (__kmp_affinity_dispatch != NULL) { 1317 delete __kmp_affinity_dispatch; 1318 __kmp_affinity_dispatch = NULL; 1319 picked_api = false; 1320 } 1321 } 1322 1323 #define KMP_ADVANCE_SCAN(scan) \ 1324 while (*scan != '\0') { \ 1325 scan++; \ 1326 } 1327 1328 // Print the affinity mask to the character array in a pretty format. 1329 // The format is a comma separated list of non-negative integers or integer 1330 // ranges: e.g., 1,2,3-5,7,9-15 1331 // The format can also be the string "{<empty>}" if no bits are set in mask 1332 char *__kmp_affinity_print_mask(char *buf, int buf_len, 1333 kmp_affin_mask_t *mask) { 1334 int start = 0, finish = 0, previous = 0; 1335 bool first_range; 1336 KMP_ASSERT(buf); 1337 KMP_ASSERT(buf_len >= 40); 1338 KMP_ASSERT(mask); 1339 char *scan = buf; 1340 char *end = buf + buf_len - 1; 1341 1342 // Check for empty set. 1343 if (mask->begin() == mask->end()) { 1344 KMP_SNPRINTF(scan, end - scan + 1, "{<empty>}"); 1345 KMP_ADVANCE_SCAN(scan); 1346 KMP_ASSERT(scan <= end); 1347 return buf; 1348 } 1349 1350 first_range = true; 1351 start = mask->begin(); 1352 while (1) { 1353 // Find next range 1354 // [start, previous] is inclusive range of contiguous bits in mask 1355 for (finish = mask->next(start), previous = start; 1356 finish == previous + 1 && finish != mask->end(); 1357 finish = mask->next(finish)) { 1358 previous = finish; 1359 } 1360 1361 // The first range does not need a comma printed before it, but the rest 1362 // of the ranges do need a comma beforehand 1363 if (!first_range) { 1364 KMP_SNPRINTF(scan, end - scan + 1, "%s", ","); 1365 KMP_ADVANCE_SCAN(scan); 1366 } else { 1367 first_range = false; 1368 } 1369 // Range with three or more contiguous bits in the affinity mask 1370 if (previous - start > 1) { 1371 KMP_SNPRINTF(scan, end - scan + 1, "%u-%u", start, previous); 1372 } else { 1373 // Range with one or two contiguous bits in the affinity mask 1374 KMP_SNPRINTF(scan, end - scan + 1, "%u", start); 1375 KMP_ADVANCE_SCAN(scan); 1376 if (previous - start > 0) { 1377 KMP_SNPRINTF(scan, end - scan + 1, ",%u", previous); 1378 } 1379 } 1380 KMP_ADVANCE_SCAN(scan); 1381 // Start over with new start point 1382 start = finish; 1383 if (start == mask->end()) 1384 break; 1385 // Check for overflow 1386 if (end - scan < 2) 1387 break; 1388 } 1389 1390 // Check for overflow 1391 KMP_ASSERT(scan <= end); 1392 return buf; 1393 } 1394 #undef KMP_ADVANCE_SCAN 1395 1396 // Print the affinity mask to the string buffer object in a pretty format 1397 // The format is a comma separated list of non-negative integers or integer 1398 // ranges: e.g., 1,2,3-5,7,9-15 1399 // The format can also be the string "{<empty>}" if no bits are set in mask 1400 kmp_str_buf_t *__kmp_affinity_str_buf_mask(kmp_str_buf_t *buf, 1401 kmp_affin_mask_t *mask) { 1402 int start = 0, finish = 0, previous = 0; 1403 bool first_range; 1404 KMP_ASSERT(buf); 1405 KMP_ASSERT(mask); 1406 1407 __kmp_str_buf_clear(buf); 1408 1409 // Check for empty set. 1410 if (mask->begin() == mask->end()) { 1411 __kmp_str_buf_print(buf, "%s", "{<empty>}"); 1412 return buf; 1413 } 1414 1415 first_range = true; 1416 start = mask->begin(); 1417 while (1) { 1418 // Find next range 1419 // [start, previous] is inclusive range of contiguous bits in mask 1420 for (finish = mask->next(start), previous = start; 1421 finish == previous + 1 && finish != mask->end(); 1422 finish = mask->next(finish)) { 1423 previous = finish; 1424 } 1425 1426 // The first range does not need a comma printed before it, but the rest 1427 // of the ranges do need a comma beforehand 1428 if (!first_range) { 1429 __kmp_str_buf_print(buf, "%s", ","); 1430 } else { 1431 first_range = false; 1432 } 1433 // Range with three or more contiguous bits in the affinity mask 1434 if (previous - start > 1) { 1435 __kmp_str_buf_print(buf, "%u-%u", start, previous); 1436 } else { 1437 // Range with one or two contiguous bits in the affinity mask 1438 __kmp_str_buf_print(buf, "%u", start); 1439 if (previous - start > 0) { 1440 __kmp_str_buf_print(buf, ",%u", previous); 1441 } 1442 } 1443 // Start over with new start point 1444 start = finish; 1445 if (start == mask->end()) 1446 break; 1447 } 1448 return buf; 1449 } 1450 1451 // Return (possibly empty) affinity mask representing the offline CPUs 1452 // Caller must free the mask 1453 kmp_affin_mask_t *__kmp_affinity_get_offline_cpus() { 1454 kmp_affin_mask_t *offline; 1455 KMP_CPU_ALLOC(offline); 1456 KMP_CPU_ZERO(offline); 1457 #if KMP_OS_LINUX 1458 int n, begin_cpu, end_cpu; 1459 kmp_safe_raii_file_t offline_file; 1460 auto skip_ws = [](FILE *f) { 1461 int c; 1462 do { 1463 c = fgetc(f); 1464 } while (isspace(c)); 1465 if (c != EOF) 1466 ungetc(c, f); 1467 }; 1468 // File contains CSV of integer ranges representing the offline CPUs 1469 // e.g., 1,2,4-7,9,11-15 1470 int status = offline_file.try_open("/sys/devices/system/cpu/offline", "r"); 1471 if (status != 0) 1472 return offline; 1473 while (!feof(offline_file)) { 1474 skip_ws(offline_file); 1475 n = fscanf(offline_file, "%d", &begin_cpu); 1476 if (n != 1) 1477 break; 1478 skip_ws(offline_file); 1479 int c = fgetc(offline_file); 1480 if (c == EOF || c == ',') { 1481 // Just single CPU 1482 end_cpu = begin_cpu; 1483 } else if (c == '-') { 1484 // Range of CPUs 1485 skip_ws(offline_file); 1486 n = fscanf(offline_file, "%d", &end_cpu); 1487 if (n != 1) 1488 break; 1489 skip_ws(offline_file); 1490 c = fgetc(offline_file); // skip ',' 1491 } else { 1492 // Syntax problem 1493 break; 1494 } 1495 // Ensure a valid range of CPUs 1496 if (begin_cpu < 0 || begin_cpu >= __kmp_xproc || end_cpu < 0 || 1497 end_cpu >= __kmp_xproc || begin_cpu > end_cpu) { 1498 continue; 1499 } 1500 // Insert [begin_cpu, end_cpu] into offline mask 1501 for (int cpu = begin_cpu; cpu <= end_cpu; ++cpu) { 1502 KMP_CPU_SET(cpu, offline); 1503 } 1504 } 1505 #endif 1506 return offline; 1507 } 1508 1509 // Return the number of available procs 1510 int __kmp_affinity_entire_machine_mask(kmp_affin_mask_t *mask) { 1511 int avail_proc = 0; 1512 KMP_CPU_ZERO(mask); 1513 1514 #if KMP_GROUP_AFFINITY 1515 1516 if (__kmp_num_proc_groups > 1) { 1517 int group; 1518 KMP_DEBUG_ASSERT(__kmp_GetActiveProcessorCount != NULL); 1519 for (group = 0; group < __kmp_num_proc_groups; group++) { 1520 int i; 1521 int num = __kmp_GetActiveProcessorCount(group); 1522 for (i = 0; i < num; i++) { 1523 KMP_CPU_SET(i + group * (CHAR_BIT * sizeof(DWORD_PTR)), mask); 1524 avail_proc++; 1525 } 1526 } 1527 } else 1528 1529 #endif /* KMP_GROUP_AFFINITY */ 1530 1531 { 1532 int proc; 1533 kmp_affin_mask_t *offline_cpus = __kmp_affinity_get_offline_cpus(); 1534 for (proc = 0; proc < __kmp_xproc; proc++) { 1535 // Skip offline CPUs 1536 if (KMP_CPU_ISSET(proc, offline_cpus)) 1537 continue; 1538 KMP_CPU_SET(proc, mask); 1539 avail_proc++; 1540 } 1541 KMP_CPU_FREE(offline_cpus); 1542 } 1543 1544 return avail_proc; 1545 } 1546 1547 // All of the __kmp_affinity_create_*_map() routines should allocate the 1548 // internal topology object and set the layer ids for it. Each routine 1549 // returns a boolean on whether it was successful at doing so. 1550 kmp_affin_mask_t *__kmp_affin_fullMask = NULL; 1551 // Original mask is a subset of full mask in multiple processor groups topology 1552 kmp_affin_mask_t *__kmp_affin_origMask = NULL; 1553 1554 #if KMP_USE_HWLOC 1555 static inline bool __kmp_hwloc_is_cache_type(hwloc_obj_t obj) { 1556 #if HWLOC_API_VERSION >= 0x00020000 1557 return hwloc_obj_type_is_cache(obj->type); 1558 #else 1559 return obj->type == HWLOC_OBJ_CACHE; 1560 #endif 1561 } 1562 1563 // Returns KMP_HW_* type derived from HWLOC_* type 1564 static inline kmp_hw_t __kmp_hwloc_type_2_topology_type(hwloc_obj_t obj) { 1565 1566 if (__kmp_hwloc_is_cache_type(obj)) { 1567 if (obj->attr->cache.type == HWLOC_OBJ_CACHE_INSTRUCTION) 1568 return KMP_HW_UNKNOWN; 1569 switch (obj->attr->cache.depth) { 1570 case 1: 1571 return KMP_HW_L1; 1572 case 2: 1573 #if KMP_MIC_SUPPORTED 1574 if (__kmp_mic_type == mic3) { 1575 return KMP_HW_TILE; 1576 } 1577 #endif 1578 return KMP_HW_L2; 1579 case 3: 1580 return KMP_HW_L3; 1581 } 1582 return KMP_HW_UNKNOWN; 1583 } 1584 1585 switch (obj->type) { 1586 case HWLOC_OBJ_PACKAGE: 1587 return KMP_HW_SOCKET; 1588 case HWLOC_OBJ_NUMANODE: 1589 return KMP_HW_NUMA; 1590 case HWLOC_OBJ_CORE: 1591 return KMP_HW_CORE; 1592 case HWLOC_OBJ_PU: 1593 return KMP_HW_THREAD; 1594 case HWLOC_OBJ_GROUP: 1595 if (obj->attr->group.kind == HWLOC_GROUP_KIND_INTEL_DIE) 1596 return KMP_HW_DIE; 1597 else if (obj->attr->group.kind == HWLOC_GROUP_KIND_INTEL_TILE) 1598 return KMP_HW_TILE; 1599 else if (obj->attr->group.kind == HWLOC_GROUP_KIND_INTEL_MODULE) 1600 return KMP_HW_MODULE; 1601 else if (obj->attr->group.kind == HWLOC_GROUP_KIND_WINDOWS_PROCESSOR_GROUP) 1602 return KMP_HW_PROC_GROUP; 1603 return KMP_HW_UNKNOWN; 1604 #if HWLOC_API_VERSION >= 0x00020100 1605 case HWLOC_OBJ_DIE: 1606 return KMP_HW_DIE; 1607 #endif 1608 } 1609 return KMP_HW_UNKNOWN; 1610 } 1611 1612 // Returns the number of objects of type 'type' below 'obj' within the topology 1613 // tree structure. e.g., if obj is a HWLOC_OBJ_PACKAGE object, and type is 1614 // HWLOC_OBJ_PU, then this will return the number of PU's under the SOCKET 1615 // object. 1616 static int __kmp_hwloc_get_nobjs_under_obj(hwloc_obj_t obj, 1617 hwloc_obj_type_t type) { 1618 int retval = 0; 1619 hwloc_obj_t first; 1620 for (first = hwloc_get_obj_below_by_type(__kmp_hwloc_topology, obj->type, 1621 obj->logical_index, type, 0); 1622 first != NULL && hwloc_get_ancestor_obj_by_type(__kmp_hwloc_topology, 1623 obj->type, first) == obj; 1624 first = hwloc_get_next_obj_by_type(__kmp_hwloc_topology, first->type, 1625 first)) { 1626 ++retval; 1627 } 1628 return retval; 1629 } 1630 1631 // This gets the sub_id for a lower object under a higher object in the 1632 // topology tree 1633 static int __kmp_hwloc_get_sub_id(hwloc_topology_t t, hwloc_obj_t higher, 1634 hwloc_obj_t lower) { 1635 hwloc_obj_t obj; 1636 hwloc_obj_type_t ltype = lower->type; 1637 int lindex = lower->logical_index - 1; 1638 int sub_id = 0; 1639 // Get the previous lower object 1640 obj = hwloc_get_obj_by_type(t, ltype, lindex); 1641 while (obj && lindex >= 0 && 1642 hwloc_bitmap_isincluded(obj->cpuset, higher->cpuset)) { 1643 if (obj->userdata) { 1644 sub_id = (int)(RCAST(kmp_intptr_t, obj->userdata)); 1645 break; 1646 } 1647 sub_id++; 1648 lindex--; 1649 obj = hwloc_get_obj_by_type(t, ltype, lindex); 1650 } 1651 // store sub_id + 1 so that 0 is differed from NULL 1652 lower->userdata = RCAST(void *, sub_id + 1); 1653 return sub_id; 1654 } 1655 1656 static bool __kmp_affinity_create_hwloc_map(kmp_i18n_id_t *const msg_id) { 1657 kmp_hw_t type; 1658 int hw_thread_index, sub_id; 1659 int depth; 1660 hwloc_obj_t pu, obj, root, prev; 1661 kmp_hw_t types[KMP_HW_LAST]; 1662 hwloc_obj_type_t hwloc_types[KMP_HW_LAST]; 1663 1664 hwloc_topology_t tp = __kmp_hwloc_topology; 1665 *msg_id = kmp_i18n_null; 1666 if (__kmp_affinity_verbose) { 1667 KMP_INFORM(AffUsingHwloc, "KMP_AFFINITY"); 1668 } 1669 1670 if (!KMP_AFFINITY_CAPABLE()) { 1671 // Hack to try and infer the machine topology using only the data 1672 // available from hwloc on the current thread, and __kmp_xproc. 1673 KMP_ASSERT(__kmp_affinity_type == affinity_none); 1674 // hwloc only guarantees existance of PU object, so check PACKAGE and CORE 1675 hwloc_obj_t o = hwloc_get_obj_by_type(tp, HWLOC_OBJ_PACKAGE, 0); 1676 if (o != NULL) 1677 nCoresPerPkg = __kmp_hwloc_get_nobjs_under_obj(o, HWLOC_OBJ_CORE); 1678 else 1679 nCoresPerPkg = 1; // no PACKAGE found 1680 o = hwloc_get_obj_by_type(tp, HWLOC_OBJ_CORE, 0); 1681 if (o != NULL) 1682 __kmp_nThreadsPerCore = __kmp_hwloc_get_nobjs_under_obj(o, HWLOC_OBJ_PU); 1683 else 1684 __kmp_nThreadsPerCore = 1; // no CORE found 1685 __kmp_ncores = __kmp_xproc / __kmp_nThreadsPerCore; 1686 if (nCoresPerPkg == 0) 1687 nCoresPerPkg = 1; // to prevent possible division by 0 1688 nPackages = (__kmp_xproc + nCoresPerPkg - 1) / nCoresPerPkg; 1689 return true; 1690 } 1691 1692 // Handle multiple types of cores if they exist on the system 1693 int nr_cpu_kinds = hwloc_cpukinds_get_nr(tp, 0); 1694 1695 typedef struct kmp_hwloc_cpukinds_info_t { 1696 int efficiency; 1697 kmp_hw_core_type_t core_type; 1698 hwloc_bitmap_t mask; 1699 } kmp_hwloc_cpukinds_info_t; 1700 kmp_hwloc_cpukinds_info_t *cpukinds = nullptr; 1701 1702 if (nr_cpu_kinds > 0) { 1703 unsigned nr_infos; 1704 struct hwloc_info_s *infos; 1705 cpukinds = (kmp_hwloc_cpukinds_info_t *)__kmp_allocate( 1706 sizeof(kmp_hwloc_cpukinds_info_t) * nr_cpu_kinds); 1707 for (unsigned idx = 0; idx < (unsigned)nr_cpu_kinds; ++idx) { 1708 cpukinds[idx].efficiency = -1; 1709 cpukinds[idx].core_type = KMP_HW_CORE_TYPE_UNKNOWN; 1710 cpukinds[idx].mask = hwloc_bitmap_alloc(); 1711 if (hwloc_cpukinds_get_info(tp, idx, cpukinds[idx].mask, 1712 &cpukinds[idx].efficiency, &nr_infos, &infos, 1713 0) == 0) { 1714 for (unsigned i = 0; i < nr_infos; ++i) { 1715 if (__kmp_str_match("CoreType", 8, infos[i].name)) { 1716 #if KMP_ARCH_X86 || KMP_ARCH_X86_64 1717 if (__kmp_str_match("IntelAtom", 9, infos[i].value)) { 1718 cpukinds[idx].core_type = KMP_HW_CORE_TYPE_ATOM; 1719 break; 1720 } else if (__kmp_str_match("IntelCore", 9, infos[i].value)) { 1721 cpukinds[idx].core_type = KMP_HW_CORE_TYPE_CORE; 1722 break; 1723 } 1724 #endif 1725 } 1726 } 1727 } 1728 } 1729 } 1730 1731 root = hwloc_get_root_obj(tp); 1732 1733 // Figure out the depth and types in the topology 1734 depth = 0; 1735 pu = hwloc_get_pu_obj_by_os_index(tp, __kmp_affin_fullMask->begin()); 1736 KMP_ASSERT(pu); 1737 obj = pu; 1738 types[depth] = KMP_HW_THREAD; 1739 hwloc_types[depth] = obj->type; 1740 depth++; 1741 while (obj != root && obj != NULL) { 1742 obj = obj->parent; 1743 #if HWLOC_API_VERSION >= 0x00020000 1744 if (obj->memory_arity) { 1745 hwloc_obj_t memory; 1746 for (memory = obj->memory_first_child; memory; 1747 memory = hwloc_get_next_child(tp, obj, memory)) { 1748 if (memory->type == HWLOC_OBJ_NUMANODE) 1749 break; 1750 } 1751 if (memory && memory->type == HWLOC_OBJ_NUMANODE) { 1752 types[depth] = KMP_HW_NUMA; 1753 hwloc_types[depth] = memory->type; 1754 depth++; 1755 } 1756 } 1757 #endif 1758 type = __kmp_hwloc_type_2_topology_type(obj); 1759 if (type != KMP_HW_UNKNOWN) { 1760 types[depth] = type; 1761 hwloc_types[depth] = obj->type; 1762 depth++; 1763 } 1764 } 1765 KMP_ASSERT(depth > 0); 1766 1767 // Get the order for the types correct 1768 for (int i = 0, j = depth - 1; i < j; ++i, --j) { 1769 hwloc_obj_type_t hwloc_temp = hwloc_types[i]; 1770 kmp_hw_t temp = types[i]; 1771 types[i] = types[j]; 1772 types[j] = temp; 1773 hwloc_types[i] = hwloc_types[j]; 1774 hwloc_types[j] = hwloc_temp; 1775 } 1776 1777 // Allocate the data structure to be returned. 1778 __kmp_topology = kmp_topology_t::allocate(__kmp_avail_proc, depth, types); 1779 1780 hw_thread_index = 0; 1781 pu = NULL; 1782 while ((pu = hwloc_get_next_obj_by_type(tp, HWLOC_OBJ_PU, pu))) { 1783 int index = depth - 1; 1784 bool included = KMP_CPU_ISSET(pu->os_index, __kmp_affin_fullMask); 1785 kmp_hw_thread_t &hw_thread = __kmp_topology->at(hw_thread_index); 1786 if (included) { 1787 hw_thread.clear(); 1788 hw_thread.ids[index] = pu->logical_index; 1789 hw_thread.os_id = pu->os_index; 1790 // If multiple core types, then set that attribute for the hardware thread 1791 if (cpukinds) { 1792 int cpukind_index = -1; 1793 for (int i = 0; i < nr_cpu_kinds; ++i) { 1794 if (hwloc_bitmap_isset(cpukinds[i].mask, hw_thread.os_id)) { 1795 cpukind_index = i; 1796 break; 1797 } 1798 } 1799 if (cpukind_index >= 0) { 1800 hw_thread.attrs.set_core_type(cpukinds[cpukind_index].core_type); 1801 hw_thread.attrs.set_core_eff(cpukinds[cpukind_index].efficiency); 1802 } 1803 } 1804 index--; 1805 } 1806 obj = pu; 1807 prev = obj; 1808 while (obj != root && obj != NULL) { 1809 obj = obj->parent; 1810 #if HWLOC_API_VERSION >= 0x00020000 1811 // NUMA Nodes are handled differently since they are not within the 1812 // parent/child structure anymore. They are separate children 1813 // of obj (memory_first_child points to first memory child) 1814 if (obj->memory_arity) { 1815 hwloc_obj_t memory; 1816 for (memory = obj->memory_first_child; memory; 1817 memory = hwloc_get_next_child(tp, obj, memory)) { 1818 if (memory->type == HWLOC_OBJ_NUMANODE) 1819 break; 1820 } 1821 if (memory && memory->type == HWLOC_OBJ_NUMANODE) { 1822 sub_id = __kmp_hwloc_get_sub_id(tp, memory, prev); 1823 if (included) { 1824 hw_thread.ids[index] = memory->logical_index; 1825 hw_thread.ids[index + 1] = sub_id; 1826 index--; 1827 } 1828 prev = memory; 1829 } 1830 prev = obj; 1831 } 1832 #endif 1833 type = __kmp_hwloc_type_2_topology_type(obj); 1834 if (type != KMP_HW_UNKNOWN) { 1835 sub_id = __kmp_hwloc_get_sub_id(tp, obj, prev); 1836 if (included) { 1837 hw_thread.ids[index] = obj->logical_index; 1838 hw_thread.ids[index + 1] = sub_id; 1839 index--; 1840 } 1841 prev = obj; 1842 } 1843 } 1844 if (included) 1845 hw_thread_index++; 1846 } 1847 1848 // Free the core types information 1849 if (cpukinds) { 1850 for (int idx = 0; idx < nr_cpu_kinds; ++idx) 1851 hwloc_bitmap_free(cpukinds[idx].mask); 1852 __kmp_free(cpukinds); 1853 } 1854 __kmp_topology->sort_ids(); 1855 return true; 1856 } 1857 #endif // KMP_USE_HWLOC 1858 1859 // If we don't know how to retrieve the machine's processor topology, or 1860 // encounter an error in doing so, this routine is called to form a "flat" 1861 // mapping of os thread id's <-> processor id's. 1862 static bool __kmp_affinity_create_flat_map(kmp_i18n_id_t *const msg_id) { 1863 *msg_id = kmp_i18n_null; 1864 int depth = 3; 1865 kmp_hw_t types[] = {KMP_HW_SOCKET, KMP_HW_CORE, KMP_HW_THREAD}; 1866 1867 if (__kmp_affinity_verbose) { 1868 KMP_INFORM(UsingFlatOS, "KMP_AFFINITY"); 1869 } 1870 1871 // Even if __kmp_affinity_type == affinity_none, this routine might still 1872 // called to set __kmp_ncores, as well as 1873 // __kmp_nThreadsPerCore, nCoresPerPkg, & nPackages. 1874 if (!KMP_AFFINITY_CAPABLE()) { 1875 KMP_ASSERT(__kmp_affinity_type == affinity_none); 1876 __kmp_ncores = nPackages = __kmp_xproc; 1877 __kmp_nThreadsPerCore = nCoresPerPkg = 1; 1878 return true; 1879 } 1880 1881 // When affinity is off, this routine will still be called to set 1882 // __kmp_ncores, as well as __kmp_nThreadsPerCore, nCoresPerPkg, & nPackages. 1883 // Make sure all these vars are set correctly, and return now if affinity is 1884 // not enabled. 1885 __kmp_ncores = nPackages = __kmp_avail_proc; 1886 __kmp_nThreadsPerCore = nCoresPerPkg = 1; 1887 1888 // Construct the data structure to be returned. 1889 __kmp_topology = kmp_topology_t::allocate(__kmp_avail_proc, depth, types); 1890 int avail_ct = 0; 1891 int i; 1892 KMP_CPU_SET_ITERATE(i, __kmp_affin_fullMask) { 1893 // Skip this proc if it is not included in the machine model. 1894 if (!KMP_CPU_ISSET(i, __kmp_affin_fullMask)) { 1895 continue; 1896 } 1897 kmp_hw_thread_t &hw_thread = __kmp_topology->at(avail_ct); 1898 hw_thread.clear(); 1899 hw_thread.os_id = i; 1900 hw_thread.ids[0] = i; 1901 hw_thread.ids[1] = 0; 1902 hw_thread.ids[2] = 0; 1903 avail_ct++; 1904 } 1905 if (__kmp_affinity_verbose) { 1906 KMP_INFORM(OSProcToPackage, "KMP_AFFINITY"); 1907 } 1908 return true; 1909 } 1910 1911 #if KMP_GROUP_AFFINITY 1912 // If multiple Windows* OS processor groups exist, we can create a 2-level 1913 // topology map with the groups at level 0 and the individual procs at level 1. 1914 // This facilitates letting the threads float among all procs in a group, 1915 // if granularity=group (the default when there are multiple groups). 1916 static bool __kmp_affinity_create_proc_group_map(kmp_i18n_id_t *const msg_id) { 1917 *msg_id = kmp_i18n_null; 1918 int depth = 3; 1919 kmp_hw_t types[] = {KMP_HW_PROC_GROUP, KMP_HW_CORE, KMP_HW_THREAD}; 1920 const static size_t BITS_PER_GROUP = CHAR_BIT * sizeof(DWORD_PTR); 1921 1922 if (__kmp_affinity_verbose) { 1923 KMP_INFORM(AffWindowsProcGroupMap, "KMP_AFFINITY"); 1924 } 1925 1926 // If we aren't affinity capable, then use flat topology 1927 if (!KMP_AFFINITY_CAPABLE()) { 1928 KMP_ASSERT(__kmp_affinity_type == affinity_none); 1929 nPackages = __kmp_num_proc_groups; 1930 __kmp_nThreadsPerCore = 1; 1931 __kmp_ncores = __kmp_xproc; 1932 nCoresPerPkg = nPackages / __kmp_ncores; 1933 return true; 1934 } 1935 1936 // Construct the data structure to be returned. 1937 __kmp_topology = kmp_topology_t::allocate(__kmp_avail_proc, depth, types); 1938 int avail_ct = 0; 1939 int i; 1940 KMP_CPU_SET_ITERATE(i, __kmp_affin_fullMask) { 1941 // Skip this proc if it is not included in the machine model. 1942 if (!KMP_CPU_ISSET(i, __kmp_affin_fullMask)) { 1943 continue; 1944 } 1945 kmp_hw_thread_t &hw_thread = __kmp_topology->at(avail_ct++); 1946 hw_thread.clear(); 1947 hw_thread.os_id = i; 1948 hw_thread.ids[0] = i / BITS_PER_GROUP; 1949 hw_thread.ids[1] = hw_thread.ids[2] = i % BITS_PER_GROUP; 1950 } 1951 return true; 1952 } 1953 #endif /* KMP_GROUP_AFFINITY */ 1954 1955 #if KMP_ARCH_X86 || KMP_ARCH_X86_64 1956 1957 template <kmp_uint32 LSB, kmp_uint32 MSB> 1958 static inline unsigned __kmp_extract_bits(kmp_uint32 v) { 1959 const kmp_uint32 SHIFT_LEFT = sizeof(kmp_uint32) * 8 - 1 - MSB; 1960 const kmp_uint32 SHIFT_RIGHT = LSB; 1961 kmp_uint32 retval = v; 1962 retval <<= SHIFT_LEFT; 1963 retval >>= (SHIFT_LEFT + SHIFT_RIGHT); 1964 return retval; 1965 } 1966 1967 static int __kmp_cpuid_mask_width(int count) { 1968 int r = 0; 1969 1970 while ((1 << r) < count) 1971 ++r; 1972 return r; 1973 } 1974 1975 class apicThreadInfo { 1976 public: 1977 unsigned osId; // param to __kmp_affinity_bind_thread 1978 unsigned apicId; // from cpuid after binding 1979 unsigned maxCoresPerPkg; // "" 1980 unsigned maxThreadsPerPkg; // "" 1981 unsigned pkgId; // inferred from above values 1982 unsigned coreId; // "" 1983 unsigned threadId; // "" 1984 }; 1985 1986 static int __kmp_affinity_cmp_apicThreadInfo_phys_id(const void *a, 1987 const void *b) { 1988 const apicThreadInfo *aa = (const apicThreadInfo *)a; 1989 const apicThreadInfo *bb = (const apicThreadInfo *)b; 1990 if (aa->pkgId < bb->pkgId) 1991 return -1; 1992 if (aa->pkgId > bb->pkgId) 1993 return 1; 1994 if (aa->coreId < bb->coreId) 1995 return -1; 1996 if (aa->coreId > bb->coreId) 1997 return 1; 1998 if (aa->threadId < bb->threadId) 1999 return -1; 2000 if (aa->threadId > bb->threadId) 2001 return 1; 2002 return 0; 2003 } 2004 2005 class kmp_cache_info_t { 2006 public: 2007 struct info_t { 2008 unsigned level, mask; 2009 }; 2010 kmp_cache_info_t() : depth(0) { get_leaf4_levels(); } 2011 size_t get_depth() const { return depth; } 2012 info_t &operator[](size_t index) { return table[index]; } 2013 const info_t &operator[](size_t index) const { return table[index]; } 2014 2015 static kmp_hw_t get_topology_type(unsigned level) { 2016 KMP_DEBUG_ASSERT(level >= 1 && level <= MAX_CACHE_LEVEL); 2017 switch (level) { 2018 case 1: 2019 return KMP_HW_L1; 2020 case 2: 2021 return KMP_HW_L2; 2022 case 3: 2023 return KMP_HW_L3; 2024 } 2025 return KMP_HW_UNKNOWN; 2026 } 2027 2028 private: 2029 static const int MAX_CACHE_LEVEL = 3; 2030 2031 size_t depth; 2032 info_t table[MAX_CACHE_LEVEL]; 2033 2034 void get_leaf4_levels() { 2035 unsigned level = 0; 2036 while (depth < MAX_CACHE_LEVEL) { 2037 unsigned cache_type, max_threads_sharing; 2038 unsigned cache_level, cache_mask_width; 2039 kmp_cpuid buf2; 2040 __kmp_x86_cpuid(4, level, &buf2); 2041 cache_type = __kmp_extract_bits<0, 4>(buf2.eax); 2042 if (!cache_type) 2043 break; 2044 // Skip instruction caches 2045 if (cache_type == 2) { 2046 level++; 2047 continue; 2048 } 2049 max_threads_sharing = __kmp_extract_bits<14, 25>(buf2.eax) + 1; 2050 cache_mask_width = __kmp_cpuid_mask_width(max_threads_sharing); 2051 cache_level = __kmp_extract_bits<5, 7>(buf2.eax); 2052 table[depth].level = cache_level; 2053 table[depth].mask = ((-1) << cache_mask_width); 2054 depth++; 2055 level++; 2056 } 2057 } 2058 }; 2059 2060 // On IA-32 architecture and Intel(R) 64 architecture, we attempt to use 2061 // an algorithm which cycles through the available os threads, setting 2062 // the current thread's affinity mask to that thread, and then retrieves 2063 // the Apic Id for each thread context using the cpuid instruction. 2064 static bool __kmp_affinity_create_apicid_map(kmp_i18n_id_t *const msg_id) { 2065 kmp_cpuid buf; 2066 *msg_id = kmp_i18n_null; 2067 2068 if (__kmp_affinity_verbose) { 2069 KMP_INFORM(AffInfoStr, "KMP_AFFINITY", KMP_I18N_STR(DecodingLegacyAPIC)); 2070 } 2071 2072 // Check if cpuid leaf 4 is supported. 2073 __kmp_x86_cpuid(0, 0, &buf); 2074 if (buf.eax < 4) { 2075 *msg_id = kmp_i18n_str_NoLeaf4Support; 2076 return false; 2077 } 2078 2079 // The algorithm used starts by setting the affinity to each available thread 2080 // and retrieving info from the cpuid instruction, so if we are not capable of 2081 // calling __kmp_get_system_affinity() and _kmp_get_system_affinity(), then we 2082 // need to do something else - use the defaults that we calculated from 2083 // issuing cpuid without binding to each proc. 2084 if (!KMP_AFFINITY_CAPABLE()) { 2085 // Hack to try and infer the machine topology using only the data 2086 // available from cpuid on the current thread, and __kmp_xproc. 2087 KMP_ASSERT(__kmp_affinity_type == affinity_none); 2088 2089 // Get an upper bound on the number of threads per package using cpuid(1). 2090 // On some OS/chps combinations where HT is supported by the chip but is 2091 // disabled, this value will be 2 on a single core chip. Usually, it will be 2092 // 2 if HT is enabled and 1 if HT is disabled. 2093 __kmp_x86_cpuid(1, 0, &buf); 2094 int maxThreadsPerPkg = (buf.ebx >> 16) & 0xff; 2095 if (maxThreadsPerPkg == 0) { 2096 maxThreadsPerPkg = 1; 2097 } 2098 2099 // The num cores per pkg comes from cpuid(4). 1 must be added to the encoded 2100 // value. 2101 // 2102 // The author of cpu_count.cpp treated this only an upper bound on the 2103 // number of cores, but I haven't seen any cases where it was greater than 2104 // the actual number of cores, so we will treat it as exact in this block of 2105 // code. 2106 // 2107 // First, we need to check if cpuid(4) is supported on this chip. To see if 2108 // cpuid(n) is supported, issue cpuid(0) and check if eax has the value n or 2109 // greater. 2110 __kmp_x86_cpuid(0, 0, &buf); 2111 if (buf.eax >= 4) { 2112 __kmp_x86_cpuid(4, 0, &buf); 2113 nCoresPerPkg = ((buf.eax >> 26) & 0x3f) + 1; 2114 } else { 2115 nCoresPerPkg = 1; 2116 } 2117 2118 // There is no way to reliably tell if HT is enabled without issuing the 2119 // cpuid instruction from every thread, can correlating the cpuid info, so 2120 // if the machine is not affinity capable, we assume that HT is off. We have 2121 // seen quite a few machines where maxThreadsPerPkg is 2, yet the machine 2122 // does not support HT. 2123 // 2124 // - Older OSes are usually found on machines with older chips, which do not 2125 // support HT. 2126 // - The performance penalty for mistakenly identifying a machine as HT when 2127 // it isn't (which results in blocktime being incorrectly set to 0) is 2128 // greater than the penalty when for mistakenly identifying a machine as 2129 // being 1 thread/core when it is really HT enabled (which results in 2130 // blocktime being incorrectly set to a positive value). 2131 __kmp_ncores = __kmp_xproc; 2132 nPackages = (__kmp_xproc + nCoresPerPkg - 1) / nCoresPerPkg; 2133 __kmp_nThreadsPerCore = 1; 2134 return true; 2135 } 2136 2137 // From here on, we can assume that it is safe to call 2138 // __kmp_get_system_affinity() and __kmp_set_system_affinity(), even if 2139 // __kmp_affinity_type = affinity_none. 2140 2141 // Save the affinity mask for the current thread. 2142 kmp_affinity_raii_t previous_affinity; 2143 2144 // Run through each of the available contexts, binding the current thread 2145 // to it, and obtaining the pertinent information using the cpuid instr. 2146 // 2147 // The relevant information is: 2148 // - Apic Id: Bits 24:31 of ebx after issuing cpuid(1) - each thread context 2149 // has a uniqie Apic Id, which is of the form pkg# : core# : thread#. 2150 // - Max Threads Per Pkg: Bits 16:23 of ebx after issuing cpuid(1). The value 2151 // of this field determines the width of the core# + thread# fields in the 2152 // Apic Id. It is also an upper bound on the number of threads per 2153 // package, but it has been verified that situations happen were it is not 2154 // exact. In particular, on certain OS/chip combinations where Intel(R) 2155 // Hyper-Threading Technology is supported by the chip but has been 2156 // disabled, the value of this field will be 2 (for a single core chip). 2157 // On other OS/chip combinations supporting Intel(R) Hyper-Threading 2158 // Technology, the value of this field will be 1 when Intel(R) 2159 // Hyper-Threading Technology is disabled and 2 when it is enabled. 2160 // - Max Cores Per Pkg: Bits 26:31 of eax after issuing cpuid(4). The value 2161 // of this field (+1) determines the width of the core# field in the Apic 2162 // Id. The comments in "cpucount.cpp" say that this value is an upper 2163 // bound, but the IA-32 architecture manual says that it is exactly the 2164 // number of cores per package, and I haven't seen any case where it 2165 // wasn't. 2166 // 2167 // From this information, deduce the package Id, core Id, and thread Id, 2168 // and set the corresponding fields in the apicThreadInfo struct. 2169 unsigned i; 2170 apicThreadInfo *threadInfo = (apicThreadInfo *)__kmp_allocate( 2171 __kmp_avail_proc * sizeof(apicThreadInfo)); 2172 unsigned nApics = 0; 2173 KMP_CPU_SET_ITERATE(i, __kmp_affin_fullMask) { 2174 // Skip this proc if it is not included in the machine model. 2175 if (!KMP_CPU_ISSET(i, __kmp_affin_fullMask)) { 2176 continue; 2177 } 2178 KMP_DEBUG_ASSERT((int)nApics < __kmp_avail_proc); 2179 2180 __kmp_affinity_dispatch->bind_thread(i); 2181 threadInfo[nApics].osId = i; 2182 2183 // The apic id and max threads per pkg come from cpuid(1). 2184 __kmp_x86_cpuid(1, 0, &buf); 2185 if (((buf.edx >> 9) & 1) == 0) { 2186 __kmp_free(threadInfo); 2187 *msg_id = kmp_i18n_str_ApicNotPresent; 2188 return false; 2189 } 2190 threadInfo[nApics].apicId = (buf.ebx >> 24) & 0xff; 2191 threadInfo[nApics].maxThreadsPerPkg = (buf.ebx >> 16) & 0xff; 2192 if (threadInfo[nApics].maxThreadsPerPkg == 0) { 2193 threadInfo[nApics].maxThreadsPerPkg = 1; 2194 } 2195 2196 // Max cores per pkg comes from cpuid(4). 1 must be added to the encoded 2197 // value. 2198 // 2199 // First, we need to check if cpuid(4) is supported on this chip. To see if 2200 // cpuid(n) is supported, issue cpuid(0) and check if eax has the value n 2201 // or greater. 2202 __kmp_x86_cpuid(0, 0, &buf); 2203 if (buf.eax >= 4) { 2204 __kmp_x86_cpuid(4, 0, &buf); 2205 threadInfo[nApics].maxCoresPerPkg = ((buf.eax >> 26) & 0x3f) + 1; 2206 } else { 2207 threadInfo[nApics].maxCoresPerPkg = 1; 2208 } 2209 2210 // Infer the pkgId / coreId / threadId using only the info obtained locally. 2211 int widthCT = __kmp_cpuid_mask_width(threadInfo[nApics].maxThreadsPerPkg); 2212 threadInfo[nApics].pkgId = threadInfo[nApics].apicId >> widthCT; 2213 2214 int widthC = __kmp_cpuid_mask_width(threadInfo[nApics].maxCoresPerPkg); 2215 int widthT = widthCT - widthC; 2216 if (widthT < 0) { 2217 // I've never seen this one happen, but I suppose it could, if the cpuid 2218 // instruction on a chip was really screwed up. Make sure to restore the 2219 // affinity mask before the tail call. 2220 __kmp_free(threadInfo); 2221 *msg_id = kmp_i18n_str_InvalidCpuidInfo; 2222 return false; 2223 } 2224 2225 int maskC = (1 << widthC) - 1; 2226 threadInfo[nApics].coreId = (threadInfo[nApics].apicId >> widthT) & maskC; 2227 2228 int maskT = (1 << widthT) - 1; 2229 threadInfo[nApics].threadId = threadInfo[nApics].apicId & maskT; 2230 2231 nApics++; 2232 } 2233 2234 // We've collected all the info we need. 2235 // Restore the old affinity mask for this thread. 2236 previous_affinity.restore(); 2237 2238 // Sort the threadInfo table by physical Id. 2239 qsort(threadInfo, nApics, sizeof(*threadInfo), 2240 __kmp_affinity_cmp_apicThreadInfo_phys_id); 2241 2242 // The table is now sorted by pkgId / coreId / threadId, but we really don't 2243 // know the radix of any of the fields. pkgId's may be sparsely assigned among 2244 // the chips on a system. Although coreId's are usually assigned 2245 // [0 .. coresPerPkg-1] and threadId's are usually assigned 2246 // [0..threadsPerCore-1], we don't want to make any such assumptions. 2247 // 2248 // For that matter, we don't know what coresPerPkg and threadsPerCore (or the 2249 // total # packages) are at this point - we want to determine that now. We 2250 // only have an upper bound on the first two figures. 2251 // 2252 // We also perform a consistency check at this point: the values returned by 2253 // the cpuid instruction for any thread bound to a given package had better 2254 // return the same info for maxThreadsPerPkg and maxCoresPerPkg. 2255 nPackages = 1; 2256 nCoresPerPkg = 1; 2257 __kmp_nThreadsPerCore = 1; 2258 unsigned nCores = 1; 2259 2260 unsigned pkgCt = 1; // to determine radii 2261 unsigned lastPkgId = threadInfo[0].pkgId; 2262 unsigned coreCt = 1; 2263 unsigned lastCoreId = threadInfo[0].coreId; 2264 unsigned threadCt = 1; 2265 unsigned lastThreadId = threadInfo[0].threadId; 2266 2267 // intra-pkg consist checks 2268 unsigned prevMaxCoresPerPkg = threadInfo[0].maxCoresPerPkg; 2269 unsigned prevMaxThreadsPerPkg = threadInfo[0].maxThreadsPerPkg; 2270 2271 for (i = 1; i < nApics; i++) { 2272 if (threadInfo[i].pkgId != lastPkgId) { 2273 nCores++; 2274 pkgCt++; 2275 lastPkgId = threadInfo[i].pkgId; 2276 if ((int)coreCt > nCoresPerPkg) 2277 nCoresPerPkg = coreCt; 2278 coreCt = 1; 2279 lastCoreId = threadInfo[i].coreId; 2280 if ((int)threadCt > __kmp_nThreadsPerCore) 2281 __kmp_nThreadsPerCore = threadCt; 2282 threadCt = 1; 2283 lastThreadId = threadInfo[i].threadId; 2284 2285 // This is a different package, so go on to the next iteration without 2286 // doing any consistency checks. Reset the consistency check vars, though. 2287 prevMaxCoresPerPkg = threadInfo[i].maxCoresPerPkg; 2288 prevMaxThreadsPerPkg = threadInfo[i].maxThreadsPerPkg; 2289 continue; 2290 } 2291 2292 if (threadInfo[i].coreId != lastCoreId) { 2293 nCores++; 2294 coreCt++; 2295 lastCoreId = threadInfo[i].coreId; 2296 if ((int)threadCt > __kmp_nThreadsPerCore) 2297 __kmp_nThreadsPerCore = threadCt; 2298 threadCt = 1; 2299 lastThreadId = threadInfo[i].threadId; 2300 } else if (threadInfo[i].threadId != lastThreadId) { 2301 threadCt++; 2302 lastThreadId = threadInfo[i].threadId; 2303 } else { 2304 __kmp_free(threadInfo); 2305 *msg_id = kmp_i18n_str_LegacyApicIDsNotUnique; 2306 return false; 2307 } 2308 2309 // Check to make certain that the maxCoresPerPkg and maxThreadsPerPkg 2310 // fields agree between all the threads bounds to a given package. 2311 if ((prevMaxCoresPerPkg != threadInfo[i].maxCoresPerPkg) || 2312 (prevMaxThreadsPerPkg != threadInfo[i].maxThreadsPerPkg)) { 2313 __kmp_free(threadInfo); 2314 *msg_id = kmp_i18n_str_InconsistentCpuidInfo; 2315 return false; 2316 } 2317 } 2318 // When affinity is off, this routine will still be called to set 2319 // __kmp_ncores, as well as __kmp_nThreadsPerCore, nCoresPerPkg, & nPackages. 2320 // Make sure all these vars are set correctly 2321 nPackages = pkgCt; 2322 if ((int)coreCt > nCoresPerPkg) 2323 nCoresPerPkg = coreCt; 2324 if ((int)threadCt > __kmp_nThreadsPerCore) 2325 __kmp_nThreadsPerCore = threadCt; 2326 __kmp_ncores = nCores; 2327 KMP_DEBUG_ASSERT(nApics == (unsigned)__kmp_avail_proc); 2328 2329 // Now that we've determined the number of packages, the number of cores per 2330 // package, and the number of threads per core, we can construct the data 2331 // structure that is to be returned. 2332 int idx = 0; 2333 int pkgLevel = 0; 2334 int coreLevel = 1; 2335 int threadLevel = 2; 2336 //(__kmp_nThreadsPerCore <= 1) ? -1 : ((coreLevel >= 0) ? 2 : 1); 2337 int depth = (pkgLevel >= 0) + (coreLevel >= 0) + (threadLevel >= 0); 2338 kmp_hw_t types[3]; 2339 if (pkgLevel >= 0) 2340 types[idx++] = KMP_HW_SOCKET; 2341 if (coreLevel >= 0) 2342 types[idx++] = KMP_HW_CORE; 2343 if (threadLevel >= 0) 2344 types[idx++] = KMP_HW_THREAD; 2345 2346 KMP_ASSERT(depth > 0); 2347 __kmp_topology = kmp_topology_t::allocate(nApics, depth, types); 2348 2349 for (i = 0; i < nApics; ++i) { 2350 idx = 0; 2351 unsigned os = threadInfo[i].osId; 2352 kmp_hw_thread_t &hw_thread = __kmp_topology->at(i); 2353 hw_thread.clear(); 2354 2355 if (pkgLevel >= 0) { 2356 hw_thread.ids[idx++] = threadInfo[i].pkgId; 2357 } 2358 if (coreLevel >= 0) { 2359 hw_thread.ids[idx++] = threadInfo[i].coreId; 2360 } 2361 if (threadLevel >= 0) { 2362 hw_thread.ids[idx++] = threadInfo[i].threadId; 2363 } 2364 hw_thread.os_id = os; 2365 } 2366 2367 __kmp_free(threadInfo); 2368 __kmp_topology->sort_ids(); 2369 if (!__kmp_topology->check_ids()) { 2370 kmp_topology_t::deallocate(__kmp_topology); 2371 __kmp_topology = nullptr; 2372 *msg_id = kmp_i18n_str_LegacyApicIDsNotUnique; 2373 return false; 2374 } 2375 return true; 2376 } 2377 2378 // Hybrid cpu detection using CPUID.1A 2379 // Thread should be pinned to processor already 2380 static void __kmp_get_hybrid_info(kmp_hw_core_type_t *type, int *efficiency, 2381 unsigned *native_model_id) { 2382 kmp_cpuid buf; 2383 __kmp_x86_cpuid(0x1a, 0, &buf); 2384 *type = (kmp_hw_core_type_t)__kmp_extract_bits<24, 31>(buf.eax); 2385 switch (*type) { 2386 case KMP_HW_CORE_TYPE_ATOM: 2387 *efficiency = 0; 2388 break; 2389 case KMP_HW_CORE_TYPE_CORE: 2390 *efficiency = 1; 2391 break; 2392 default: 2393 *efficiency = 0; 2394 } 2395 *native_model_id = __kmp_extract_bits<0, 23>(buf.eax); 2396 } 2397 2398 // Intel(R) microarchitecture code name Nehalem, Dunnington and later 2399 // architectures support a newer interface for specifying the x2APIC Ids, 2400 // based on CPUID.B or CPUID.1F 2401 /* 2402 * CPUID.B or 1F, Input ECX (sub leaf # aka level number) 2403 Bits Bits Bits Bits 2404 31-16 15-8 7-4 4-0 2405 ---+-----------+--------------+-------------+-----------------+ 2406 EAX| reserved | reserved | reserved | Bits to Shift | 2407 ---+-----------|--------------+-------------+-----------------| 2408 EBX| reserved | Num logical processors at level (16 bits) | 2409 ---+-----------|--------------+-------------------------------| 2410 ECX| reserved | Level Type | Level Number (8 bits) | 2411 ---+-----------+--------------+-------------------------------| 2412 EDX| X2APIC ID (32 bits) | 2413 ---+----------------------------------------------------------+ 2414 */ 2415 2416 enum { 2417 INTEL_LEVEL_TYPE_INVALID = 0, // Package level 2418 INTEL_LEVEL_TYPE_SMT = 1, 2419 INTEL_LEVEL_TYPE_CORE = 2, 2420 INTEL_LEVEL_TYPE_TILE = 3, 2421 INTEL_LEVEL_TYPE_MODULE = 4, 2422 INTEL_LEVEL_TYPE_DIE = 5, 2423 INTEL_LEVEL_TYPE_LAST = 6, 2424 }; 2425 2426 struct cpuid_level_info_t { 2427 unsigned level_type, mask, mask_width, nitems, cache_mask; 2428 }; 2429 2430 static kmp_hw_t __kmp_intel_type_2_topology_type(int intel_type) { 2431 switch (intel_type) { 2432 case INTEL_LEVEL_TYPE_INVALID: 2433 return KMP_HW_SOCKET; 2434 case INTEL_LEVEL_TYPE_SMT: 2435 return KMP_HW_THREAD; 2436 case INTEL_LEVEL_TYPE_CORE: 2437 return KMP_HW_CORE; 2438 case INTEL_LEVEL_TYPE_TILE: 2439 return KMP_HW_TILE; 2440 case INTEL_LEVEL_TYPE_MODULE: 2441 return KMP_HW_MODULE; 2442 case INTEL_LEVEL_TYPE_DIE: 2443 return KMP_HW_DIE; 2444 } 2445 return KMP_HW_UNKNOWN; 2446 } 2447 2448 // This function takes the topology leaf, a levels array to store the levels 2449 // detected and a bitmap of the known levels. 2450 // Returns the number of levels in the topology 2451 static unsigned 2452 __kmp_x2apicid_get_levels(int leaf, 2453 cpuid_level_info_t levels[INTEL_LEVEL_TYPE_LAST], 2454 kmp_uint64 known_levels) { 2455 unsigned level, levels_index; 2456 unsigned level_type, mask_width, nitems; 2457 kmp_cpuid buf; 2458 2459 // New algorithm has known topology layers act as highest unknown topology 2460 // layers when unknown topology layers exist. 2461 // e.g., Suppose layers were SMT <X> CORE <Y> <Z> PACKAGE, where <X> <Y> <Z> 2462 // are unknown topology layers, Then SMT will take the characteristics of 2463 // (SMT x <X>) and CORE will take the characteristics of (CORE x <Y> x <Z>). 2464 // This eliminates unknown portions of the topology while still keeping the 2465 // correct structure. 2466 level = levels_index = 0; 2467 do { 2468 __kmp_x86_cpuid(leaf, level, &buf); 2469 level_type = __kmp_extract_bits<8, 15>(buf.ecx); 2470 mask_width = __kmp_extract_bits<0, 4>(buf.eax); 2471 nitems = __kmp_extract_bits<0, 15>(buf.ebx); 2472 if (level_type != INTEL_LEVEL_TYPE_INVALID && nitems == 0) 2473 return 0; 2474 2475 if (known_levels & (1ull << level_type)) { 2476 // Add a new level to the topology 2477 KMP_ASSERT(levels_index < INTEL_LEVEL_TYPE_LAST); 2478 levels[levels_index].level_type = level_type; 2479 levels[levels_index].mask_width = mask_width; 2480 levels[levels_index].nitems = nitems; 2481 levels_index++; 2482 } else { 2483 // If it is an unknown level, then logically move the previous layer up 2484 if (levels_index > 0) { 2485 levels[levels_index - 1].mask_width = mask_width; 2486 levels[levels_index - 1].nitems = nitems; 2487 } 2488 } 2489 level++; 2490 } while (level_type != INTEL_LEVEL_TYPE_INVALID); 2491 2492 // Set the masks to & with apicid 2493 for (unsigned i = 0; i < levels_index; ++i) { 2494 if (levels[i].level_type != INTEL_LEVEL_TYPE_INVALID) { 2495 levels[i].mask = ~((-1) << levels[i].mask_width); 2496 levels[i].cache_mask = (-1) << levels[i].mask_width; 2497 for (unsigned j = 0; j < i; ++j) 2498 levels[i].mask ^= levels[j].mask; 2499 } else { 2500 KMP_DEBUG_ASSERT(levels_index > 0); 2501 levels[i].mask = (-1) << levels[i - 1].mask_width; 2502 levels[i].cache_mask = 0; 2503 } 2504 } 2505 return levels_index; 2506 } 2507 2508 static bool __kmp_affinity_create_x2apicid_map(kmp_i18n_id_t *const msg_id) { 2509 2510 cpuid_level_info_t levels[INTEL_LEVEL_TYPE_LAST]; 2511 kmp_hw_t types[INTEL_LEVEL_TYPE_LAST]; 2512 unsigned levels_index; 2513 kmp_cpuid buf; 2514 kmp_uint64 known_levels; 2515 int topology_leaf, highest_leaf, apic_id; 2516 int num_leaves; 2517 static int leaves[] = {0, 0}; 2518 2519 kmp_i18n_id_t leaf_message_id; 2520 2521 KMP_BUILD_ASSERT(sizeof(known_levels) * CHAR_BIT > KMP_HW_LAST); 2522 2523 *msg_id = kmp_i18n_null; 2524 if (__kmp_affinity_verbose) { 2525 KMP_INFORM(AffInfoStr, "KMP_AFFINITY", KMP_I18N_STR(Decodingx2APIC)); 2526 } 2527 2528 // Figure out the known topology levels 2529 known_levels = 0ull; 2530 for (int i = 0; i < INTEL_LEVEL_TYPE_LAST; ++i) { 2531 if (__kmp_intel_type_2_topology_type(i) != KMP_HW_UNKNOWN) { 2532 known_levels |= (1ull << i); 2533 } 2534 } 2535 2536 // Get the highest cpuid leaf supported 2537 __kmp_x86_cpuid(0, 0, &buf); 2538 highest_leaf = buf.eax; 2539 2540 // If a specific topology method was requested, only allow that specific leaf 2541 // otherwise, try both leaves 31 and 11 in that order 2542 num_leaves = 0; 2543 if (__kmp_affinity_top_method == affinity_top_method_x2apicid) { 2544 num_leaves = 1; 2545 leaves[0] = 11; 2546 leaf_message_id = kmp_i18n_str_NoLeaf11Support; 2547 } else if (__kmp_affinity_top_method == affinity_top_method_x2apicid_1f) { 2548 num_leaves = 1; 2549 leaves[0] = 31; 2550 leaf_message_id = kmp_i18n_str_NoLeaf31Support; 2551 } else { 2552 num_leaves = 2; 2553 leaves[0] = 31; 2554 leaves[1] = 11; 2555 leaf_message_id = kmp_i18n_str_NoLeaf11Support; 2556 } 2557 2558 // Check to see if cpuid leaf 31 or 11 is supported. 2559 __kmp_nThreadsPerCore = nCoresPerPkg = nPackages = 1; 2560 topology_leaf = -1; 2561 for (int i = 0; i < num_leaves; ++i) { 2562 int leaf = leaves[i]; 2563 if (highest_leaf < leaf) 2564 continue; 2565 __kmp_x86_cpuid(leaf, 0, &buf); 2566 if (buf.ebx == 0) 2567 continue; 2568 topology_leaf = leaf; 2569 levels_index = __kmp_x2apicid_get_levels(leaf, levels, known_levels); 2570 if (levels_index == 0) 2571 continue; 2572 break; 2573 } 2574 if (topology_leaf == -1 || levels_index == 0) { 2575 *msg_id = leaf_message_id; 2576 return false; 2577 } 2578 KMP_ASSERT(levels_index <= INTEL_LEVEL_TYPE_LAST); 2579 2580 // The algorithm used starts by setting the affinity to each available thread 2581 // and retrieving info from the cpuid instruction, so if we are not capable of 2582 // calling __kmp_get_system_affinity() and __kmp_get_system_affinity(), then 2583 // we need to do something else - use the defaults that we calculated from 2584 // issuing cpuid without binding to each proc. 2585 if (!KMP_AFFINITY_CAPABLE()) { 2586 // Hack to try and infer the machine topology using only the data 2587 // available from cpuid on the current thread, and __kmp_xproc. 2588 KMP_ASSERT(__kmp_affinity_type == affinity_none); 2589 for (unsigned i = 0; i < levels_index; ++i) { 2590 if (levels[i].level_type == INTEL_LEVEL_TYPE_SMT) { 2591 __kmp_nThreadsPerCore = levels[i].nitems; 2592 } else if (levels[i].level_type == INTEL_LEVEL_TYPE_CORE) { 2593 nCoresPerPkg = levels[i].nitems; 2594 } 2595 } 2596 __kmp_ncores = __kmp_xproc / __kmp_nThreadsPerCore; 2597 nPackages = (__kmp_xproc + nCoresPerPkg - 1) / nCoresPerPkg; 2598 return true; 2599 } 2600 2601 // Allocate the data structure to be returned. 2602 int depth = levels_index; 2603 for (int i = depth - 1, j = 0; i >= 0; --i, ++j) 2604 types[j] = __kmp_intel_type_2_topology_type(levels[i].level_type); 2605 __kmp_topology = 2606 kmp_topology_t::allocate(__kmp_avail_proc, levels_index, types); 2607 2608 // Insert equivalent cache types if they exist 2609 kmp_cache_info_t cache_info; 2610 for (size_t i = 0; i < cache_info.get_depth(); ++i) { 2611 const kmp_cache_info_t::info_t &info = cache_info[i]; 2612 unsigned cache_mask = info.mask; 2613 unsigned cache_level = info.level; 2614 for (unsigned j = 0; j < levels_index; ++j) { 2615 unsigned hw_cache_mask = levels[j].cache_mask; 2616 kmp_hw_t cache_type = kmp_cache_info_t::get_topology_type(cache_level); 2617 if (hw_cache_mask == cache_mask && j < levels_index - 1) { 2618 kmp_hw_t type = 2619 __kmp_intel_type_2_topology_type(levels[j + 1].level_type); 2620 __kmp_topology->set_equivalent_type(cache_type, type); 2621 } 2622 } 2623 } 2624 2625 // From here on, we can assume that it is safe to call 2626 // __kmp_get_system_affinity() and __kmp_set_system_affinity(), even if 2627 // __kmp_affinity_type = affinity_none. 2628 2629 // Save the affinity mask for the current thread. 2630 kmp_affinity_raii_t previous_affinity; 2631 2632 // Run through each of the available contexts, binding the current thread 2633 // to it, and obtaining the pertinent information using the cpuid instr. 2634 unsigned int proc; 2635 int hw_thread_index = 0; 2636 KMP_CPU_SET_ITERATE(proc, __kmp_affin_fullMask) { 2637 cpuid_level_info_t my_levels[INTEL_LEVEL_TYPE_LAST]; 2638 unsigned my_levels_index; 2639 2640 // Skip this proc if it is not included in the machine model. 2641 if (!KMP_CPU_ISSET(proc, __kmp_affin_fullMask)) { 2642 continue; 2643 } 2644 KMP_DEBUG_ASSERT(hw_thread_index < __kmp_avail_proc); 2645 2646 __kmp_affinity_dispatch->bind_thread(proc); 2647 2648 // New algorithm 2649 __kmp_x86_cpuid(topology_leaf, 0, &buf); 2650 apic_id = buf.edx; 2651 kmp_hw_thread_t &hw_thread = __kmp_topology->at(hw_thread_index); 2652 my_levels_index = 2653 __kmp_x2apicid_get_levels(topology_leaf, my_levels, known_levels); 2654 if (my_levels_index == 0 || my_levels_index != levels_index) { 2655 *msg_id = kmp_i18n_str_InvalidCpuidInfo; 2656 return false; 2657 } 2658 hw_thread.clear(); 2659 hw_thread.os_id = proc; 2660 // Put in topology information 2661 for (unsigned j = 0, idx = depth - 1; j < my_levels_index; ++j, --idx) { 2662 hw_thread.ids[idx] = apic_id & my_levels[j].mask; 2663 if (j > 0) { 2664 hw_thread.ids[idx] >>= my_levels[j - 1].mask_width; 2665 } 2666 } 2667 // Hybrid information 2668 if (__kmp_is_hybrid_cpu() && highest_leaf >= 0x1a) { 2669 kmp_hw_core_type_t type; 2670 unsigned native_model_id; 2671 int efficiency; 2672 __kmp_get_hybrid_info(&type, &efficiency, &native_model_id); 2673 hw_thread.attrs.set_core_type(type); 2674 hw_thread.attrs.set_core_eff(efficiency); 2675 } 2676 hw_thread_index++; 2677 } 2678 KMP_ASSERT(hw_thread_index > 0); 2679 __kmp_topology->sort_ids(); 2680 if (!__kmp_topology->check_ids()) { 2681 kmp_topology_t::deallocate(__kmp_topology); 2682 __kmp_topology = nullptr; 2683 *msg_id = kmp_i18n_str_x2ApicIDsNotUnique; 2684 return false; 2685 } 2686 return true; 2687 } 2688 #endif /* KMP_ARCH_X86 || KMP_ARCH_X86_64 */ 2689 2690 #define osIdIndex 0 2691 #define threadIdIndex 1 2692 #define coreIdIndex 2 2693 #define pkgIdIndex 3 2694 #define nodeIdIndex 4 2695 2696 typedef unsigned *ProcCpuInfo; 2697 static unsigned maxIndex = pkgIdIndex; 2698 2699 static int __kmp_affinity_cmp_ProcCpuInfo_phys_id(const void *a, 2700 const void *b) { 2701 unsigned i; 2702 const unsigned *aa = *(unsigned *const *)a; 2703 const unsigned *bb = *(unsigned *const *)b; 2704 for (i = maxIndex;; i--) { 2705 if (aa[i] < bb[i]) 2706 return -1; 2707 if (aa[i] > bb[i]) 2708 return 1; 2709 if (i == osIdIndex) 2710 break; 2711 } 2712 return 0; 2713 } 2714 2715 #if KMP_USE_HIER_SCHED 2716 // Set the array sizes for the hierarchy layers 2717 static void __kmp_dispatch_set_hierarchy_values() { 2718 // Set the maximum number of L1's to number of cores 2719 // Set the maximum number of L2's to to either number of cores / 2 for 2720 // Intel(R) Xeon Phi(TM) coprocessor formally codenamed Knights Landing 2721 // Or the number of cores for Intel(R) Xeon(R) processors 2722 // Set the maximum number of NUMA nodes and L3's to number of packages 2723 __kmp_hier_max_units[kmp_hier_layer_e::LAYER_THREAD + 1] = 2724 nPackages * nCoresPerPkg * __kmp_nThreadsPerCore; 2725 __kmp_hier_max_units[kmp_hier_layer_e::LAYER_L1 + 1] = __kmp_ncores; 2726 #if KMP_ARCH_X86_64 && (KMP_OS_LINUX || KMP_OS_FREEBSD || KMP_OS_WINDOWS) && \ 2727 KMP_MIC_SUPPORTED 2728 if (__kmp_mic_type >= mic3) 2729 __kmp_hier_max_units[kmp_hier_layer_e::LAYER_L2 + 1] = __kmp_ncores / 2; 2730 else 2731 #endif // KMP_ARCH_X86_64 && (KMP_OS_LINUX || KMP_OS_WINDOWS) 2732 __kmp_hier_max_units[kmp_hier_layer_e::LAYER_L2 + 1] = __kmp_ncores; 2733 __kmp_hier_max_units[kmp_hier_layer_e::LAYER_L3 + 1] = nPackages; 2734 __kmp_hier_max_units[kmp_hier_layer_e::LAYER_NUMA + 1] = nPackages; 2735 __kmp_hier_max_units[kmp_hier_layer_e::LAYER_LOOP + 1] = 1; 2736 // Set the number of threads per unit 2737 // Number of hardware threads per L1/L2/L3/NUMA/LOOP 2738 __kmp_hier_threads_per[kmp_hier_layer_e::LAYER_THREAD + 1] = 1; 2739 __kmp_hier_threads_per[kmp_hier_layer_e::LAYER_L1 + 1] = 2740 __kmp_nThreadsPerCore; 2741 #if KMP_ARCH_X86_64 && (KMP_OS_LINUX || KMP_OS_FREEBSD || KMP_OS_WINDOWS) && \ 2742 KMP_MIC_SUPPORTED 2743 if (__kmp_mic_type >= mic3) 2744 __kmp_hier_threads_per[kmp_hier_layer_e::LAYER_L2 + 1] = 2745 2 * __kmp_nThreadsPerCore; 2746 else 2747 #endif // KMP_ARCH_X86_64 && (KMP_OS_LINUX || KMP_OS_WINDOWS) 2748 __kmp_hier_threads_per[kmp_hier_layer_e::LAYER_L2 + 1] = 2749 __kmp_nThreadsPerCore; 2750 __kmp_hier_threads_per[kmp_hier_layer_e::LAYER_L3 + 1] = 2751 nCoresPerPkg * __kmp_nThreadsPerCore; 2752 __kmp_hier_threads_per[kmp_hier_layer_e::LAYER_NUMA + 1] = 2753 nCoresPerPkg * __kmp_nThreadsPerCore; 2754 __kmp_hier_threads_per[kmp_hier_layer_e::LAYER_LOOP + 1] = 2755 nPackages * nCoresPerPkg * __kmp_nThreadsPerCore; 2756 } 2757 2758 // Return the index into the hierarchy for this tid and layer type (L1, L2, etc) 2759 // i.e., this thread's L1 or this thread's L2, etc. 2760 int __kmp_dispatch_get_index(int tid, kmp_hier_layer_e type) { 2761 int index = type + 1; 2762 int num_hw_threads = __kmp_hier_max_units[kmp_hier_layer_e::LAYER_THREAD + 1]; 2763 KMP_DEBUG_ASSERT(type != kmp_hier_layer_e::LAYER_LAST); 2764 if (type == kmp_hier_layer_e::LAYER_THREAD) 2765 return tid; 2766 else if (type == kmp_hier_layer_e::LAYER_LOOP) 2767 return 0; 2768 KMP_DEBUG_ASSERT(__kmp_hier_max_units[index] != 0); 2769 if (tid >= num_hw_threads) 2770 tid = tid % num_hw_threads; 2771 return (tid / __kmp_hier_threads_per[index]) % __kmp_hier_max_units[index]; 2772 } 2773 2774 // Return the number of t1's per t2 2775 int __kmp_dispatch_get_t1_per_t2(kmp_hier_layer_e t1, kmp_hier_layer_e t2) { 2776 int i1 = t1 + 1; 2777 int i2 = t2 + 1; 2778 KMP_DEBUG_ASSERT(i1 <= i2); 2779 KMP_DEBUG_ASSERT(t1 != kmp_hier_layer_e::LAYER_LAST); 2780 KMP_DEBUG_ASSERT(t2 != kmp_hier_layer_e::LAYER_LAST); 2781 KMP_DEBUG_ASSERT(__kmp_hier_threads_per[i1] != 0); 2782 // (nthreads/t2) / (nthreads/t1) = t1 / t2 2783 return __kmp_hier_threads_per[i2] / __kmp_hier_threads_per[i1]; 2784 } 2785 #endif // KMP_USE_HIER_SCHED 2786 2787 static inline const char *__kmp_cpuinfo_get_filename() { 2788 const char *filename; 2789 if (__kmp_cpuinfo_file != nullptr) 2790 filename = __kmp_cpuinfo_file; 2791 else 2792 filename = "/proc/cpuinfo"; 2793 return filename; 2794 } 2795 2796 static inline const char *__kmp_cpuinfo_get_envvar() { 2797 const char *envvar = nullptr; 2798 if (__kmp_cpuinfo_file != nullptr) 2799 envvar = "KMP_CPUINFO_FILE"; 2800 return envvar; 2801 } 2802 2803 // Parse /proc/cpuinfo (or an alternate file in the same format) to obtain the 2804 // affinity map. 2805 static bool __kmp_affinity_create_cpuinfo_map(int *line, 2806 kmp_i18n_id_t *const msg_id) { 2807 const char *filename = __kmp_cpuinfo_get_filename(); 2808 const char *envvar = __kmp_cpuinfo_get_envvar(); 2809 *msg_id = kmp_i18n_null; 2810 2811 if (__kmp_affinity_verbose) { 2812 KMP_INFORM(AffParseFilename, "KMP_AFFINITY", filename); 2813 } 2814 2815 kmp_safe_raii_file_t f(filename, "r", envvar); 2816 2817 // Scan of the file, and count the number of "processor" (osId) fields, 2818 // and find the highest value of <n> for a node_<n> field. 2819 char buf[256]; 2820 unsigned num_records = 0; 2821 while (!feof(f)) { 2822 buf[sizeof(buf) - 1] = 1; 2823 if (!fgets(buf, sizeof(buf), f)) { 2824 // Read errors presumably because of EOF 2825 break; 2826 } 2827 2828 char s1[] = "processor"; 2829 if (strncmp(buf, s1, sizeof(s1) - 1) == 0) { 2830 num_records++; 2831 continue; 2832 } 2833 2834 // FIXME - this will match "node_<n> <garbage>" 2835 unsigned level; 2836 if (KMP_SSCANF(buf, "node_%u id", &level) == 1) { 2837 // validate the input fisrt: 2838 if (level > (unsigned)__kmp_xproc) { // level is too big 2839 level = __kmp_xproc; 2840 } 2841 if (nodeIdIndex + level >= maxIndex) { 2842 maxIndex = nodeIdIndex + level; 2843 } 2844 continue; 2845 } 2846 } 2847 2848 // Check for empty file / no valid processor records, or too many. The number 2849 // of records can't exceed the number of valid bits in the affinity mask. 2850 if (num_records == 0) { 2851 *msg_id = kmp_i18n_str_NoProcRecords; 2852 return false; 2853 } 2854 if (num_records > (unsigned)__kmp_xproc) { 2855 *msg_id = kmp_i18n_str_TooManyProcRecords; 2856 return false; 2857 } 2858 2859 // Set the file pointer back to the beginning, so that we can scan the file 2860 // again, this time performing a full parse of the data. Allocate a vector of 2861 // ProcCpuInfo object, where we will place the data. Adding an extra element 2862 // at the end allows us to remove a lot of extra checks for termination 2863 // conditions. 2864 if (fseek(f, 0, SEEK_SET) != 0) { 2865 *msg_id = kmp_i18n_str_CantRewindCpuinfo; 2866 return false; 2867 } 2868 2869 // Allocate the array of records to store the proc info in. The dummy 2870 // element at the end makes the logic in filling them out easier to code. 2871 unsigned **threadInfo = 2872 (unsigned **)__kmp_allocate((num_records + 1) * sizeof(unsigned *)); 2873 unsigned i; 2874 for (i = 0; i <= num_records; i++) { 2875 threadInfo[i] = 2876 (unsigned *)__kmp_allocate((maxIndex + 1) * sizeof(unsigned)); 2877 } 2878 2879 #define CLEANUP_THREAD_INFO \ 2880 for (i = 0; i <= num_records; i++) { \ 2881 __kmp_free(threadInfo[i]); \ 2882 } \ 2883 __kmp_free(threadInfo); 2884 2885 // A value of UINT_MAX means that we didn't find the field 2886 unsigned __index; 2887 2888 #define INIT_PROC_INFO(p) \ 2889 for (__index = 0; __index <= maxIndex; __index++) { \ 2890 (p)[__index] = UINT_MAX; \ 2891 } 2892 2893 for (i = 0; i <= num_records; i++) { 2894 INIT_PROC_INFO(threadInfo[i]); 2895 } 2896 2897 unsigned num_avail = 0; 2898 *line = 0; 2899 while (!feof(f)) { 2900 // Create an inner scoping level, so that all the goto targets at the end of 2901 // the loop appear in an outer scoping level. This avoids warnings about 2902 // jumping past an initialization to a target in the same block. 2903 { 2904 buf[sizeof(buf) - 1] = 1; 2905 bool long_line = false; 2906 if (!fgets(buf, sizeof(buf), f)) { 2907 // Read errors presumably because of EOF 2908 // If there is valid data in threadInfo[num_avail], then fake 2909 // a blank line in ensure that the last address gets parsed. 2910 bool valid = false; 2911 for (i = 0; i <= maxIndex; i++) { 2912 if (threadInfo[num_avail][i] != UINT_MAX) { 2913 valid = true; 2914 } 2915 } 2916 if (!valid) { 2917 break; 2918 } 2919 buf[0] = 0; 2920 } else if (!buf[sizeof(buf) - 1]) { 2921 // The line is longer than the buffer. Set a flag and don't 2922 // emit an error if we were going to ignore the line, anyway. 2923 long_line = true; 2924 2925 #define CHECK_LINE \ 2926 if (long_line) { \ 2927 CLEANUP_THREAD_INFO; \ 2928 *msg_id = kmp_i18n_str_LongLineCpuinfo; \ 2929 return false; \ 2930 } 2931 } 2932 (*line)++; 2933 2934 char s1[] = "processor"; 2935 if (strncmp(buf, s1, sizeof(s1) - 1) == 0) { 2936 CHECK_LINE; 2937 char *p = strchr(buf + sizeof(s1) - 1, ':'); 2938 unsigned val; 2939 if ((p == NULL) || (KMP_SSCANF(p + 1, "%u\n", &val) != 1)) 2940 goto no_val; 2941 if (threadInfo[num_avail][osIdIndex] != UINT_MAX) 2942 #if KMP_ARCH_AARCH64 2943 // Handle the old AArch64 /proc/cpuinfo layout differently, 2944 // it contains all of the 'processor' entries listed in a 2945 // single 'Processor' section, therefore the normal looking 2946 // for duplicates in that section will always fail. 2947 num_avail++; 2948 #else 2949 goto dup_field; 2950 #endif 2951 threadInfo[num_avail][osIdIndex] = val; 2952 #if KMP_OS_LINUX && !(KMP_ARCH_X86 || KMP_ARCH_X86_64) 2953 char path[256]; 2954 KMP_SNPRINTF( 2955 path, sizeof(path), 2956 "/sys/devices/system/cpu/cpu%u/topology/physical_package_id", 2957 threadInfo[num_avail][osIdIndex]); 2958 __kmp_read_from_file(path, "%u", &threadInfo[num_avail][pkgIdIndex]); 2959 2960 KMP_SNPRINTF(path, sizeof(path), 2961 "/sys/devices/system/cpu/cpu%u/topology/core_id", 2962 threadInfo[num_avail][osIdIndex]); 2963 __kmp_read_from_file(path, "%u", &threadInfo[num_avail][coreIdIndex]); 2964 continue; 2965 #else 2966 } 2967 char s2[] = "physical id"; 2968 if (strncmp(buf, s2, sizeof(s2) - 1) == 0) { 2969 CHECK_LINE; 2970 char *p = strchr(buf + sizeof(s2) - 1, ':'); 2971 unsigned val; 2972 if ((p == NULL) || (KMP_SSCANF(p + 1, "%u\n", &val) != 1)) 2973 goto no_val; 2974 if (threadInfo[num_avail][pkgIdIndex] != UINT_MAX) 2975 goto dup_field; 2976 threadInfo[num_avail][pkgIdIndex] = val; 2977 continue; 2978 } 2979 char s3[] = "core id"; 2980 if (strncmp(buf, s3, sizeof(s3) - 1) == 0) { 2981 CHECK_LINE; 2982 char *p = strchr(buf + sizeof(s3) - 1, ':'); 2983 unsigned val; 2984 if ((p == NULL) || (KMP_SSCANF(p + 1, "%u\n", &val) != 1)) 2985 goto no_val; 2986 if (threadInfo[num_avail][coreIdIndex] != UINT_MAX) 2987 goto dup_field; 2988 threadInfo[num_avail][coreIdIndex] = val; 2989 continue; 2990 #endif // KMP_OS_LINUX && USE_SYSFS_INFO 2991 } 2992 char s4[] = "thread id"; 2993 if (strncmp(buf, s4, sizeof(s4) - 1) == 0) { 2994 CHECK_LINE; 2995 char *p = strchr(buf + sizeof(s4) - 1, ':'); 2996 unsigned val; 2997 if ((p == NULL) || (KMP_SSCANF(p + 1, "%u\n", &val) != 1)) 2998 goto no_val; 2999 if (threadInfo[num_avail][threadIdIndex] != UINT_MAX) 3000 goto dup_field; 3001 threadInfo[num_avail][threadIdIndex] = val; 3002 continue; 3003 } 3004 unsigned level; 3005 if (KMP_SSCANF(buf, "node_%u id", &level) == 1) { 3006 CHECK_LINE; 3007 char *p = strchr(buf + sizeof(s4) - 1, ':'); 3008 unsigned val; 3009 if ((p == NULL) || (KMP_SSCANF(p + 1, "%u\n", &val) != 1)) 3010 goto no_val; 3011 // validate the input before using level: 3012 if (level > (unsigned)__kmp_xproc) { // level is too big 3013 level = __kmp_xproc; 3014 } 3015 if (threadInfo[num_avail][nodeIdIndex + level] != UINT_MAX) 3016 goto dup_field; 3017 threadInfo[num_avail][nodeIdIndex + level] = val; 3018 continue; 3019 } 3020 3021 // We didn't recognize the leading token on the line. There are lots of 3022 // leading tokens that we don't recognize - if the line isn't empty, go on 3023 // to the next line. 3024 if ((*buf != 0) && (*buf != '\n')) { 3025 // If the line is longer than the buffer, read characters 3026 // until we find a newline. 3027 if (long_line) { 3028 int ch; 3029 while (((ch = fgetc(f)) != EOF) && (ch != '\n')) 3030 ; 3031 } 3032 continue; 3033 } 3034 3035 // A newline has signalled the end of the processor record. 3036 // Check that there aren't too many procs specified. 3037 if ((int)num_avail == __kmp_xproc) { 3038 CLEANUP_THREAD_INFO; 3039 *msg_id = kmp_i18n_str_TooManyEntries; 3040 return false; 3041 } 3042 3043 // Check for missing fields. The osId field must be there, and we 3044 // currently require that the physical id field is specified, also. 3045 if (threadInfo[num_avail][osIdIndex] == UINT_MAX) { 3046 CLEANUP_THREAD_INFO; 3047 *msg_id = kmp_i18n_str_MissingProcField; 3048 return false; 3049 } 3050 if (threadInfo[0][pkgIdIndex] == UINT_MAX) { 3051 CLEANUP_THREAD_INFO; 3052 *msg_id = kmp_i18n_str_MissingPhysicalIDField; 3053 return false; 3054 } 3055 3056 // Skip this proc if it is not included in the machine model. 3057 if (!KMP_CPU_ISSET(threadInfo[num_avail][osIdIndex], 3058 __kmp_affin_fullMask)) { 3059 INIT_PROC_INFO(threadInfo[num_avail]); 3060 continue; 3061 } 3062 3063 // We have a successful parse of this proc's info. 3064 // Increment the counter, and prepare for the next proc. 3065 num_avail++; 3066 KMP_ASSERT(num_avail <= num_records); 3067 INIT_PROC_INFO(threadInfo[num_avail]); 3068 } 3069 continue; 3070 3071 no_val: 3072 CLEANUP_THREAD_INFO; 3073 *msg_id = kmp_i18n_str_MissingValCpuinfo; 3074 return false; 3075 3076 dup_field: 3077 CLEANUP_THREAD_INFO; 3078 *msg_id = kmp_i18n_str_DuplicateFieldCpuinfo; 3079 return false; 3080 } 3081 *line = 0; 3082 3083 #if KMP_MIC && REDUCE_TEAM_SIZE 3084 unsigned teamSize = 0; 3085 #endif // KMP_MIC && REDUCE_TEAM_SIZE 3086 3087 // check for num_records == __kmp_xproc ??? 3088 3089 // If it is configured to omit the package level when there is only a single 3090 // package, the logic at the end of this routine won't work if there is only a 3091 // single thread 3092 KMP_ASSERT(num_avail > 0); 3093 KMP_ASSERT(num_avail <= num_records); 3094 3095 // Sort the threadInfo table by physical Id. 3096 qsort(threadInfo, num_avail, sizeof(*threadInfo), 3097 __kmp_affinity_cmp_ProcCpuInfo_phys_id); 3098 3099 // The table is now sorted by pkgId / coreId / threadId, but we really don't 3100 // know the radix of any of the fields. pkgId's may be sparsely assigned among 3101 // the chips on a system. Although coreId's are usually assigned 3102 // [0 .. coresPerPkg-1] and threadId's are usually assigned 3103 // [0..threadsPerCore-1], we don't want to make any such assumptions. 3104 // 3105 // For that matter, we don't know what coresPerPkg and threadsPerCore (or the 3106 // total # packages) are at this point - we want to determine that now. We 3107 // only have an upper bound on the first two figures. 3108 unsigned *counts = 3109 (unsigned *)__kmp_allocate((maxIndex + 1) * sizeof(unsigned)); 3110 unsigned *maxCt = 3111 (unsigned *)__kmp_allocate((maxIndex + 1) * sizeof(unsigned)); 3112 unsigned *totals = 3113 (unsigned *)__kmp_allocate((maxIndex + 1) * sizeof(unsigned)); 3114 unsigned *lastId = 3115 (unsigned *)__kmp_allocate((maxIndex + 1) * sizeof(unsigned)); 3116 3117 bool assign_thread_ids = false; 3118 unsigned threadIdCt; 3119 unsigned index; 3120 3121 restart_radix_check: 3122 threadIdCt = 0; 3123 3124 // Initialize the counter arrays with data from threadInfo[0]. 3125 if (assign_thread_ids) { 3126 if (threadInfo[0][threadIdIndex] == UINT_MAX) { 3127 threadInfo[0][threadIdIndex] = threadIdCt++; 3128 } else if (threadIdCt <= threadInfo[0][threadIdIndex]) { 3129 threadIdCt = threadInfo[0][threadIdIndex] + 1; 3130 } 3131 } 3132 for (index = 0; index <= maxIndex; index++) { 3133 counts[index] = 1; 3134 maxCt[index] = 1; 3135 totals[index] = 1; 3136 lastId[index] = threadInfo[0][index]; 3137 ; 3138 } 3139 3140 // Run through the rest of the OS procs. 3141 for (i = 1; i < num_avail; i++) { 3142 // Find the most significant index whose id differs from the id for the 3143 // previous OS proc. 3144 for (index = maxIndex; index >= threadIdIndex; index--) { 3145 if (assign_thread_ids && (index == threadIdIndex)) { 3146 // Auto-assign the thread id field if it wasn't specified. 3147 if (threadInfo[i][threadIdIndex] == UINT_MAX) { 3148 threadInfo[i][threadIdIndex] = threadIdCt++; 3149 } 3150 // Apparently the thread id field was specified for some entries and not 3151 // others. Start the thread id counter off at the next higher thread id. 3152 else if (threadIdCt <= threadInfo[i][threadIdIndex]) { 3153 threadIdCt = threadInfo[i][threadIdIndex] + 1; 3154 } 3155 } 3156 if (threadInfo[i][index] != lastId[index]) { 3157 // Run through all indices which are less significant, and reset the 3158 // counts to 1. At all levels up to and including index, we need to 3159 // increment the totals and record the last id. 3160 unsigned index2; 3161 for (index2 = threadIdIndex; index2 < index; index2++) { 3162 totals[index2]++; 3163 if (counts[index2] > maxCt[index2]) { 3164 maxCt[index2] = counts[index2]; 3165 } 3166 counts[index2] = 1; 3167 lastId[index2] = threadInfo[i][index2]; 3168 } 3169 counts[index]++; 3170 totals[index]++; 3171 lastId[index] = threadInfo[i][index]; 3172 3173 if (assign_thread_ids && (index > threadIdIndex)) { 3174 3175 #if KMP_MIC && REDUCE_TEAM_SIZE 3176 // The default team size is the total #threads in the machine 3177 // minus 1 thread for every core that has 3 or more threads. 3178 teamSize += (threadIdCt <= 2) ? (threadIdCt) : (threadIdCt - 1); 3179 #endif // KMP_MIC && REDUCE_TEAM_SIZE 3180 3181 // Restart the thread counter, as we are on a new core. 3182 threadIdCt = 0; 3183 3184 // Auto-assign the thread id field if it wasn't specified. 3185 if (threadInfo[i][threadIdIndex] == UINT_MAX) { 3186 threadInfo[i][threadIdIndex] = threadIdCt++; 3187 } 3188 3189 // Apparently the thread id field was specified for some entries and 3190 // not others. Start the thread id counter off at the next higher 3191 // thread id. 3192 else if (threadIdCt <= threadInfo[i][threadIdIndex]) { 3193 threadIdCt = threadInfo[i][threadIdIndex] + 1; 3194 } 3195 } 3196 break; 3197 } 3198 } 3199 if (index < threadIdIndex) { 3200 // If thread ids were specified, it is an error if they are not unique. 3201 // Also, check that we waven't already restarted the loop (to be safe - 3202 // shouldn't need to). 3203 if ((threadInfo[i][threadIdIndex] != UINT_MAX) || assign_thread_ids) { 3204 __kmp_free(lastId); 3205 __kmp_free(totals); 3206 __kmp_free(maxCt); 3207 __kmp_free(counts); 3208 CLEANUP_THREAD_INFO; 3209 *msg_id = kmp_i18n_str_PhysicalIDsNotUnique; 3210 return false; 3211 } 3212 3213 // If the thread ids were not specified and we see entries entries that 3214 // are duplicates, start the loop over and assign the thread ids manually. 3215 assign_thread_ids = true; 3216 goto restart_radix_check; 3217 } 3218 } 3219 3220 #if KMP_MIC && REDUCE_TEAM_SIZE 3221 // The default team size is the total #threads in the machine 3222 // minus 1 thread for every core that has 3 or more threads. 3223 teamSize += (threadIdCt <= 2) ? (threadIdCt) : (threadIdCt - 1); 3224 #endif // KMP_MIC && REDUCE_TEAM_SIZE 3225 3226 for (index = threadIdIndex; index <= maxIndex; index++) { 3227 if (counts[index] > maxCt[index]) { 3228 maxCt[index] = counts[index]; 3229 } 3230 } 3231 3232 __kmp_nThreadsPerCore = maxCt[threadIdIndex]; 3233 nCoresPerPkg = maxCt[coreIdIndex]; 3234 nPackages = totals[pkgIdIndex]; 3235 3236 // When affinity is off, this routine will still be called to set 3237 // __kmp_ncores, as well as __kmp_nThreadsPerCore, nCoresPerPkg, & nPackages. 3238 // Make sure all these vars are set correctly, and return now if affinity is 3239 // not enabled. 3240 __kmp_ncores = totals[coreIdIndex]; 3241 if (!KMP_AFFINITY_CAPABLE()) { 3242 KMP_ASSERT(__kmp_affinity_type == affinity_none); 3243 return true; 3244 } 3245 3246 #if KMP_MIC && REDUCE_TEAM_SIZE 3247 // Set the default team size. 3248 if ((__kmp_dflt_team_nth == 0) && (teamSize > 0)) { 3249 __kmp_dflt_team_nth = teamSize; 3250 KA_TRACE(20, ("__kmp_affinity_create_cpuinfo_map: setting " 3251 "__kmp_dflt_team_nth = %d\n", 3252 __kmp_dflt_team_nth)); 3253 } 3254 #endif // KMP_MIC && REDUCE_TEAM_SIZE 3255 3256 KMP_DEBUG_ASSERT(num_avail == (unsigned)__kmp_avail_proc); 3257 3258 // Count the number of levels which have more nodes at that level than at the 3259 // parent's level (with there being an implicit root node of the top level). 3260 // This is equivalent to saying that there is at least one node at this level 3261 // which has a sibling. These levels are in the map, and the package level is 3262 // always in the map. 3263 bool *inMap = (bool *)__kmp_allocate((maxIndex + 1) * sizeof(bool)); 3264 for (index = threadIdIndex; index < maxIndex; index++) { 3265 KMP_ASSERT(totals[index] >= totals[index + 1]); 3266 inMap[index] = (totals[index] > totals[index + 1]); 3267 } 3268 inMap[maxIndex] = (totals[maxIndex] > 1); 3269 inMap[pkgIdIndex] = true; 3270 inMap[coreIdIndex] = true; 3271 inMap[threadIdIndex] = true; 3272 3273 int depth = 0; 3274 int idx = 0; 3275 kmp_hw_t types[KMP_HW_LAST]; 3276 int pkgLevel = -1; 3277 int coreLevel = -1; 3278 int threadLevel = -1; 3279 for (index = threadIdIndex; index <= maxIndex; index++) { 3280 if (inMap[index]) { 3281 depth++; 3282 } 3283 } 3284 if (inMap[pkgIdIndex]) { 3285 pkgLevel = idx; 3286 types[idx++] = KMP_HW_SOCKET; 3287 } 3288 if (inMap[coreIdIndex]) { 3289 coreLevel = idx; 3290 types[idx++] = KMP_HW_CORE; 3291 } 3292 if (inMap[threadIdIndex]) { 3293 threadLevel = idx; 3294 types[idx++] = KMP_HW_THREAD; 3295 } 3296 KMP_ASSERT(depth > 0); 3297 3298 // Construct the data structure that is to be returned. 3299 __kmp_topology = kmp_topology_t::allocate(num_avail, depth, types); 3300 3301 for (i = 0; i < num_avail; ++i) { 3302 unsigned os = threadInfo[i][osIdIndex]; 3303 int src_index; 3304 int dst_index = 0; 3305 kmp_hw_thread_t &hw_thread = __kmp_topology->at(i); 3306 hw_thread.clear(); 3307 hw_thread.os_id = os; 3308 3309 idx = 0; 3310 for (src_index = maxIndex; src_index >= threadIdIndex; src_index--) { 3311 if (!inMap[src_index]) { 3312 continue; 3313 } 3314 if (src_index == pkgIdIndex) { 3315 hw_thread.ids[pkgLevel] = threadInfo[i][src_index]; 3316 } else if (src_index == coreIdIndex) { 3317 hw_thread.ids[coreLevel] = threadInfo[i][src_index]; 3318 } else if (src_index == threadIdIndex) { 3319 hw_thread.ids[threadLevel] = threadInfo[i][src_index]; 3320 } 3321 dst_index++; 3322 } 3323 } 3324 3325 __kmp_free(inMap); 3326 __kmp_free(lastId); 3327 __kmp_free(totals); 3328 __kmp_free(maxCt); 3329 __kmp_free(counts); 3330 CLEANUP_THREAD_INFO; 3331 __kmp_topology->sort_ids(); 3332 if (!__kmp_topology->check_ids()) { 3333 kmp_topology_t::deallocate(__kmp_topology); 3334 __kmp_topology = nullptr; 3335 *msg_id = kmp_i18n_str_PhysicalIDsNotUnique; 3336 return false; 3337 } 3338 return true; 3339 } 3340 3341 // Create and return a table of affinity masks, indexed by OS thread ID. 3342 // This routine handles OR'ing together all the affinity masks of threads 3343 // that are sufficiently close, if granularity > fine. 3344 static kmp_affin_mask_t *__kmp_create_masks(unsigned *maxIndex, 3345 unsigned *numUnique) { 3346 // First form a table of affinity masks in order of OS thread id. 3347 int maxOsId; 3348 int i; 3349 int numAddrs = __kmp_topology->get_num_hw_threads(); 3350 int depth = __kmp_topology->get_depth(); 3351 KMP_ASSERT(numAddrs); 3352 KMP_ASSERT(depth); 3353 3354 maxOsId = 0; 3355 for (i = numAddrs - 1;; --i) { 3356 int osId = __kmp_topology->at(i).os_id; 3357 if (osId > maxOsId) { 3358 maxOsId = osId; 3359 } 3360 if (i == 0) 3361 break; 3362 } 3363 kmp_affin_mask_t *osId2Mask; 3364 KMP_CPU_ALLOC_ARRAY(osId2Mask, (maxOsId + 1)); 3365 KMP_ASSERT(__kmp_affinity_gran_levels >= 0); 3366 if (__kmp_affinity_verbose && (__kmp_affinity_gran_levels > 0)) { 3367 KMP_INFORM(ThreadsMigrate, "KMP_AFFINITY", __kmp_affinity_gran_levels); 3368 } 3369 if (__kmp_affinity_gran_levels >= (int)depth) { 3370 KMP_AFF_WARNING(AffThreadsMayMigrate); 3371 } 3372 3373 // Run through the table, forming the masks for all threads on each core. 3374 // Threads on the same core will have identical kmp_hw_thread_t objects, not 3375 // considering the last level, which must be the thread id. All threads on a 3376 // core will appear consecutively. 3377 int unique = 0; 3378 int j = 0; // index of 1st thread on core 3379 int leader = 0; 3380 kmp_affin_mask_t *sum; 3381 KMP_CPU_ALLOC_ON_STACK(sum); 3382 KMP_CPU_ZERO(sum); 3383 KMP_CPU_SET(__kmp_topology->at(0).os_id, sum); 3384 for (i = 1; i < numAddrs; i++) { 3385 // If this thread is sufficiently close to the leader (within the 3386 // granularity setting), then set the bit for this os thread in the 3387 // affinity mask for this group, and go on to the next thread. 3388 if (__kmp_topology->is_close(leader, i, __kmp_affinity_gran_levels)) { 3389 KMP_CPU_SET(__kmp_topology->at(i).os_id, sum); 3390 continue; 3391 } 3392 3393 // For every thread in this group, copy the mask to the thread's entry in 3394 // the osId2Mask table. Mark the first address as a leader. 3395 for (; j < i; j++) { 3396 int osId = __kmp_topology->at(j).os_id; 3397 KMP_DEBUG_ASSERT(osId <= maxOsId); 3398 kmp_affin_mask_t *mask = KMP_CPU_INDEX(osId2Mask, osId); 3399 KMP_CPU_COPY(mask, sum); 3400 __kmp_topology->at(j).leader = (j == leader); 3401 } 3402 unique++; 3403 3404 // Start a new mask. 3405 leader = i; 3406 KMP_CPU_ZERO(sum); 3407 KMP_CPU_SET(__kmp_topology->at(i).os_id, sum); 3408 } 3409 3410 // For every thread in last group, copy the mask to the thread's 3411 // entry in the osId2Mask table. 3412 for (; j < i; j++) { 3413 int osId = __kmp_topology->at(j).os_id; 3414 KMP_DEBUG_ASSERT(osId <= maxOsId); 3415 kmp_affin_mask_t *mask = KMP_CPU_INDEX(osId2Mask, osId); 3416 KMP_CPU_COPY(mask, sum); 3417 __kmp_topology->at(j).leader = (j == leader); 3418 } 3419 unique++; 3420 KMP_CPU_FREE_FROM_STACK(sum); 3421 3422 *maxIndex = maxOsId; 3423 *numUnique = unique; 3424 return osId2Mask; 3425 } 3426 3427 // Stuff for the affinity proclist parsers. It's easier to declare these vars 3428 // as file-static than to try and pass them through the calling sequence of 3429 // the recursive-descent OMP_PLACES parser. 3430 static kmp_affin_mask_t *newMasks; 3431 static int numNewMasks; 3432 static int nextNewMask; 3433 3434 #define ADD_MASK(_mask) \ 3435 { \ 3436 if (nextNewMask >= numNewMasks) { \ 3437 int i; \ 3438 numNewMasks *= 2; \ 3439 kmp_affin_mask_t *temp; \ 3440 KMP_CPU_INTERNAL_ALLOC_ARRAY(temp, numNewMasks); \ 3441 for (i = 0; i < numNewMasks / 2; i++) { \ 3442 kmp_affin_mask_t *src = KMP_CPU_INDEX(newMasks, i); \ 3443 kmp_affin_mask_t *dest = KMP_CPU_INDEX(temp, i); \ 3444 KMP_CPU_COPY(dest, src); \ 3445 } \ 3446 KMP_CPU_INTERNAL_FREE_ARRAY(newMasks, numNewMasks / 2); \ 3447 newMasks = temp; \ 3448 } \ 3449 KMP_CPU_COPY(KMP_CPU_INDEX(newMasks, nextNewMask), (_mask)); \ 3450 nextNewMask++; \ 3451 } 3452 3453 #define ADD_MASK_OSID(_osId, _osId2Mask, _maxOsId) \ 3454 { \ 3455 if (((_osId) > _maxOsId) || \ 3456 (!KMP_CPU_ISSET((_osId), KMP_CPU_INDEX((_osId2Mask), (_osId))))) { \ 3457 KMP_AFF_WARNING(AffIgnoreInvalidProcID, _osId); \ 3458 } else { \ 3459 ADD_MASK(KMP_CPU_INDEX(_osId2Mask, (_osId))); \ 3460 } \ 3461 } 3462 3463 // Re-parse the proclist (for the explicit affinity type), and form the list 3464 // of affinity newMasks indexed by gtid. 3465 static void __kmp_affinity_process_proclist(kmp_affin_mask_t **out_masks, 3466 unsigned int *out_numMasks, 3467 const char *proclist, 3468 kmp_affin_mask_t *osId2Mask, 3469 int maxOsId) { 3470 int i; 3471 const char *scan = proclist; 3472 const char *next = proclist; 3473 3474 // We use malloc() for the temporary mask vector, so that we can use 3475 // realloc() to extend it. 3476 numNewMasks = 2; 3477 KMP_CPU_INTERNAL_ALLOC_ARRAY(newMasks, numNewMasks); 3478 nextNewMask = 0; 3479 kmp_affin_mask_t *sumMask; 3480 KMP_CPU_ALLOC(sumMask); 3481 int setSize = 0; 3482 3483 for (;;) { 3484 int start, end, stride; 3485 3486 SKIP_WS(scan); 3487 next = scan; 3488 if (*next == '\0') { 3489 break; 3490 } 3491 3492 if (*next == '{') { 3493 int num; 3494 setSize = 0; 3495 next++; // skip '{' 3496 SKIP_WS(next); 3497 scan = next; 3498 3499 // Read the first integer in the set. 3500 KMP_ASSERT2((*next >= '0') && (*next <= '9'), "bad proclist"); 3501 SKIP_DIGITS(next); 3502 num = __kmp_str_to_int(scan, *next); 3503 KMP_ASSERT2(num >= 0, "bad explicit proc list"); 3504 3505 // Copy the mask for that osId to the sum (union) mask. 3506 if ((num > maxOsId) || 3507 (!KMP_CPU_ISSET(num, KMP_CPU_INDEX(osId2Mask, num)))) { 3508 KMP_AFF_WARNING(AffIgnoreInvalidProcID, num); 3509 KMP_CPU_ZERO(sumMask); 3510 } else { 3511 KMP_CPU_COPY(sumMask, KMP_CPU_INDEX(osId2Mask, num)); 3512 setSize = 1; 3513 } 3514 3515 for (;;) { 3516 // Check for end of set. 3517 SKIP_WS(next); 3518 if (*next == '}') { 3519 next++; // skip '}' 3520 break; 3521 } 3522 3523 // Skip optional comma. 3524 if (*next == ',') { 3525 next++; 3526 } 3527 SKIP_WS(next); 3528 3529 // Read the next integer in the set. 3530 scan = next; 3531 KMP_ASSERT2((*next >= '0') && (*next <= '9'), "bad explicit proc list"); 3532 3533 SKIP_DIGITS(next); 3534 num = __kmp_str_to_int(scan, *next); 3535 KMP_ASSERT2(num >= 0, "bad explicit proc list"); 3536 3537 // Add the mask for that osId to the sum mask. 3538 if ((num > maxOsId) || 3539 (!KMP_CPU_ISSET(num, KMP_CPU_INDEX(osId2Mask, num)))) { 3540 KMP_AFF_WARNING(AffIgnoreInvalidProcID, num); 3541 } else { 3542 KMP_CPU_UNION(sumMask, KMP_CPU_INDEX(osId2Mask, num)); 3543 setSize++; 3544 } 3545 } 3546 if (setSize > 0) { 3547 ADD_MASK(sumMask); 3548 } 3549 3550 SKIP_WS(next); 3551 if (*next == ',') { 3552 next++; 3553 } 3554 scan = next; 3555 continue; 3556 } 3557 3558 // Read the first integer. 3559 KMP_ASSERT2((*next >= '0') && (*next <= '9'), "bad explicit proc list"); 3560 SKIP_DIGITS(next); 3561 start = __kmp_str_to_int(scan, *next); 3562 KMP_ASSERT2(start >= 0, "bad explicit proc list"); 3563 SKIP_WS(next); 3564 3565 // If this isn't a range, then add a mask to the list and go on. 3566 if (*next != '-') { 3567 ADD_MASK_OSID(start, osId2Mask, maxOsId); 3568 3569 // Skip optional comma. 3570 if (*next == ',') { 3571 next++; 3572 } 3573 scan = next; 3574 continue; 3575 } 3576 3577 // This is a range. Skip over the '-' and read in the 2nd int. 3578 next++; // skip '-' 3579 SKIP_WS(next); 3580 scan = next; 3581 KMP_ASSERT2((*next >= '0') && (*next <= '9'), "bad explicit proc list"); 3582 SKIP_DIGITS(next); 3583 end = __kmp_str_to_int(scan, *next); 3584 KMP_ASSERT2(end >= 0, "bad explicit proc list"); 3585 3586 // Check for a stride parameter 3587 stride = 1; 3588 SKIP_WS(next); 3589 if (*next == ':') { 3590 // A stride is specified. Skip over the ':" and read the 3rd int. 3591 int sign = +1; 3592 next++; // skip ':' 3593 SKIP_WS(next); 3594 scan = next; 3595 if (*next == '-') { 3596 sign = -1; 3597 next++; 3598 SKIP_WS(next); 3599 scan = next; 3600 } 3601 KMP_ASSERT2((*next >= '0') && (*next <= '9'), "bad explicit proc list"); 3602 SKIP_DIGITS(next); 3603 stride = __kmp_str_to_int(scan, *next); 3604 KMP_ASSERT2(stride >= 0, "bad explicit proc list"); 3605 stride *= sign; 3606 } 3607 3608 // Do some range checks. 3609 KMP_ASSERT2(stride != 0, "bad explicit proc list"); 3610 if (stride > 0) { 3611 KMP_ASSERT2(start <= end, "bad explicit proc list"); 3612 } else { 3613 KMP_ASSERT2(start >= end, "bad explicit proc list"); 3614 } 3615 KMP_ASSERT2((end - start) / stride <= 65536, "bad explicit proc list"); 3616 3617 // Add the mask for each OS proc # to the list. 3618 if (stride > 0) { 3619 do { 3620 ADD_MASK_OSID(start, osId2Mask, maxOsId); 3621 start += stride; 3622 } while (start <= end); 3623 } else { 3624 do { 3625 ADD_MASK_OSID(start, osId2Mask, maxOsId); 3626 start += stride; 3627 } while (start >= end); 3628 } 3629 3630 // Skip optional comma. 3631 SKIP_WS(next); 3632 if (*next == ',') { 3633 next++; 3634 } 3635 scan = next; 3636 } 3637 3638 *out_numMasks = nextNewMask; 3639 if (nextNewMask == 0) { 3640 *out_masks = NULL; 3641 KMP_CPU_INTERNAL_FREE_ARRAY(newMasks, numNewMasks); 3642 return; 3643 } 3644 KMP_CPU_ALLOC_ARRAY((*out_masks), nextNewMask); 3645 for (i = 0; i < nextNewMask; i++) { 3646 kmp_affin_mask_t *src = KMP_CPU_INDEX(newMasks, i); 3647 kmp_affin_mask_t *dest = KMP_CPU_INDEX((*out_masks), i); 3648 KMP_CPU_COPY(dest, src); 3649 } 3650 KMP_CPU_INTERNAL_FREE_ARRAY(newMasks, numNewMasks); 3651 KMP_CPU_FREE(sumMask); 3652 } 3653 3654 /*----------------------------------------------------------------------------- 3655 Re-parse the OMP_PLACES proc id list, forming the newMasks for the different 3656 places. Again, Here is the grammar: 3657 3658 place_list := place 3659 place_list := place , place_list 3660 place := num 3661 place := place : num 3662 place := place : num : signed 3663 place := { subplacelist } 3664 place := ! place // (lowest priority) 3665 subplace_list := subplace 3666 subplace_list := subplace , subplace_list 3667 subplace := num 3668 subplace := num : num 3669 subplace := num : num : signed 3670 signed := num 3671 signed := + signed 3672 signed := - signed 3673 -----------------------------------------------------------------------------*/ 3674 static void __kmp_process_subplace_list(const char **scan, 3675 kmp_affin_mask_t *osId2Mask, 3676 int maxOsId, kmp_affin_mask_t *tempMask, 3677 int *setSize) { 3678 const char *next; 3679 3680 for (;;) { 3681 int start, count, stride, i; 3682 3683 // Read in the starting proc id 3684 SKIP_WS(*scan); 3685 KMP_ASSERT2((**scan >= '0') && (**scan <= '9'), "bad explicit places list"); 3686 next = *scan; 3687 SKIP_DIGITS(next); 3688 start = __kmp_str_to_int(*scan, *next); 3689 KMP_ASSERT(start >= 0); 3690 *scan = next; 3691 3692 // valid follow sets are ',' ':' and '}' 3693 SKIP_WS(*scan); 3694 if (**scan == '}' || **scan == ',') { 3695 if ((start > maxOsId) || 3696 (!KMP_CPU_ISSET(start, KMP_CPU_INDEX(osId2Mask, start)))) { 3697 KMP_AFF_WARNING(AffIgnoreInvalidProcID, start); 3698 } else { 3699 KMP_CPU_UNION(tempMask, KMP_CPU_INDEX(osId2Mask, start)); 3700 (*setSize)++; 3701 } 3702 if (**scan == '}') { 3703 break; 3704 } 3705 (*scan)++; // skip ',' 3706 continue; 3707 } 3708 KMP_ASSERT2(**scan == ':', "bad explicit places list"); 3709 (*scan)++; // skip ':' 3710 3711 // Read count parameter 3712 SKIP_WS(*scan); 3713 KMP_ASSERT2((**scan >= '0') && (**scan <= '9'), "bad explicit places list"); 3714 next = *scan; 3715 SKIP_DIGITS(next); 3716 count = __kmp_str_to_int(*scan, *next); 3717 KMP_ASSERT(count >= 0); 3718 *scan = next; 3719 3720 // valid follow sets are ',' ':' and '}' 3721 SKIP_WS(*scan); 3722 if (**scan == '}' || **scan == ',') { 3723 for (i = 0; i < count; i++) { 3724 if ((start > maxOsId) || 3725 (!KMP_CPU_ISSET(start, KMP_CPU_INDEX(osId2Mask, start)))) { 3726 KMP_AFF_WARNING(AffIgnoreInvalidProcID, start); 3727 break; // don't proliferate warnings for large count 3728 } else { 3729 KMP_CPU_UNION(tempMask, KMP_CPU_INDEX(osId2Mask, start)); 3730 start++; 3731 (*setSize)++; 3732 } 3733 } 3734 if (**scan == '}') { 3735 break; 3736 } 3737 (*scan)++; // skip ',' 3738 continue; 3739 } 3740 KMP_ASSERT2(**scan == ':', "bad explicit places list"); 3741 (*scan)++; // skip ':' 3742 3743 // Read stride parameter 3744 int sign = +1; 3745 for (;;) { 3746 SKIP_WS(*scan); 3747 if (**scan == '+') { 3748 (*scan)++; // skip '+' 3749 continue; 3750 } 3751 if (**scan == '-') { 3752 sign *= -1; 3753 (*scan)++; // skip '-' 3754 continue; 3755 } 3756 break; 3757 } 3758 SKIP_WS(*scan); 3759 KMP_ASSERT2((**scan >= '0') && (**scan <= '9'), "bad explicit places list"); 3760 next = *scan; 3761 SKIP_DIGITS(next); 3762 stride = __kmp_str_to_int(*scan, *next); 3763 KMP_ASSERT(stride >= 0); 3764 *scan = next; 3765 stride *= sign; 3766 3767 // valid follow sets are ',' and '}' 3768 SKIP_WS(*scan); 3769 if (**scan == '}' || **scan == ',') { 3770 for (i = 0; i < count; i++) { 3771 if ((start > maxOsId) || 3772 (!KMP_CPU_ISSET(start, KMP_CPU_INDEX(osId2Mask, start)))) { 3773 KMP_AFF_WARNING(AffIgnoreInvalidProcID, start); 3774 break; // don't proliferate warnings for large count 3775 } else { 3776 KMP_CPU_UNION(tempMask, KMP_CPU_INDEX(osId2Mask, start)); 3777 start += stride; 3778 (*setSize)++; 3779 } 3780 } 3781 if (**scan == '}') { 3782 break; 3783 } 3784 (*scan)++; // skip ',' 3785 continue; 3786 } 3787 3788 KMP_ASSERT2(0, "bad explicit places list"); 3789 } 3790 } 3791 3792 static void __kmp_process_place(const char **scan, kmp_affin_mask_t *osId2Mask, 3793 int maxOsId, kmp_affin_mask_t *tempMask, 3794 int *setSize) { 3795 const char *next; 3796 3797 // valid follow sets are '{' '!' and num 3798 SKIP_WS(*scan); 3799 if (**scan == '{') { 3800 (*scan)++; // skip '{' 3801 __kmp_process_subplace_list(scan, osId2Mask, maxOsId, tempMask, setSize); 3802 KMP_ASSERT2(**scan == '}', "bad explicit places list"); 3803 (*scan)++; // skip '}' 3804 } else if (**scan == '!') { 3805 (*scan)++; // skip '!' 3806 __kmp_process_place(scan, osId2Mask, maxOsId, tempMask, setSize); 3807 KMP_CPU_COMPLEMENT(maxOsId, tempMask); 3808 } else if ((**scan >= '0') && (**scan <= '9')) { 3809 next = *scan; 3810 SKIP_DIGITS(next); 3811 int num = __kmp_str_to_int(*scan, *next); 3812 KMP_ASSERT(num >= 0); 3813 if ((num > maxOsId) || 3814 (!KMP_CPU_ISSET(num, KMP_CPU_INDEX(osId2Mask, num)))) { 3815 KMP_AFF_WARNING(AffIgnoreInvalidProcID, num); 3816 } else { 3817 KMP_CPU_UNION(tempMask, KMP_CPU_INDEX(osId2Mask, num)); 3818 (*setSize)++; 3819 } 3820 *scan = next; // skip num 3821 } else { 3822 KMP_ASSERT2(0, "bad explicit places list"); 3823 } 3824 } 3825 3826 // static void 3827 void __kmp_affinity_process_placelist(kmp_affin_mask_t **out_masks, 3828 unsigned int *out_numMasks, 3829 const char *placelist, 3830 kmp_affin_mask_t *osId2Mask, 3831 int maxOsId) { 3832 int i, j, count, stride, sign; 3833 const char *scan = placelist; 3834 const char *next = placelist; 3835 3836 numNewMasks = 2; 3837 KMP_CPU_INTERNAL_ALLOC_ARRAY(newMasks, numNewMasks); 3838 nextNewMask = 0; 3839 3840 // tempMask is modified based on the previous or initial 3841 // place to form the current place 3842 // previousMask contains the previous place 3843 kmp_affin_mask_t *tempMask; 3844 kmp_affin_mask_t *previousMask; 3845 KMP_CPU_ALLOC(tempMask); 3846 KMP_CPU_ZERO(tempMask); 3847 KMP_CPU_ALLOC(previousMask); 3848 KMP_CPU_ZERO(previousMask); 3849 int setSize = 0; 3850 3851 for (;;) { 3852 __kmp_process_place(&scan, osId2Mask, maxOsId, tempMask, &setSize); 3853 3854 // valid follow sets are ',' ':' and EOL 3855 SKIP_WS(scan); 3856 if (*scan == '\0' || *scan == ',') { 3857 if (setSize > 0) { 3858 ADD_MASK(tempMask); 3859 } 3860 KMP_CPU_ZERO(tempMask); 3861 setSize = 0; 3862 if (*scan == '\0') { 3863 break; 3864 } 3865 scan++; // skip ',' 3866 continue; 3867 } 3868 3869 KMP_ASSERT2(*scan == ':', "bad explicit places list"); 3870 scan++; // skip ':' 3871 3872 // Read count parameter 3873 SKIP_WS(scan); 3874 KMP_ASSERT2((*scan >= '0') && (*scan <= '9'), "bad explicit places list"); 3875 next = scan; 3876 SKIP_DIGITS(next); 3877 count = __kmp_str_to_int(scan, *next); 3878 KMP_ASSERT(count >= 0); 3879 scan = next; 3880 3881 // valid follow sets are ',' ':' and EOL 3882 SKIP_WS(scan); 3883 if (*scan == '\0' || *scan == ',') { 3884 stride = +1; 3885 } else { 3886 KMP_ASSERT2(*scan == ':', "bad explicit places list"); 3887 scan++; // skip ':' 3888 3889 // Read stride parameter 3890 sign = +1; 3891 for (;;) { 3892 SKIP_WS(scan); 3893 if (*scan == '+') { 3894 scan++; // skip '+' 3895 continue; 3896 } 3897 if (*scan == '-') { 3898 sign *= -1; 3899 scan++; // skip '-' 3900 continue; 3901 } 3902 break; 3903 } 3904 SKIP_WS(scan); 3905 KMP_ASSERT2((*scan >= '0') && (*scan <= '9'), "bad explicit places list"); 3906 next = scan; 3907 SKIP_DIGITS(next); 3908 stride = __kmp_str_to_int(scan, *next); 3909 KMP_DEBUG_ASSERT(stride >= 0); 3910 scan = next; 3911 stride *= sign; 3912 } 3913 3914 // Add places determined by initial_place : count : stride 3915 for (i = 0; i < count; i++) { 3916 if (setSize == 0) { 3917 break; 3918 } 3919 // Add the current place, then build the next place (tempMask) from that 3920 KMP_CPU_COPY(previousMask, tempMask); 3921 ADD_MASK(previousMask); 3922 KMP_CPU_ZERO(tempMask); 3923 setSize = 0; 3924 KMP_CPU_SET_ITERATE(j, previousMask) { 3925 if (!KMP_CPU_ISSET(j, previousMask)) { 3926 continue; 3927 } 3928 if ((j + stride > maxOsId) || (j + stride < 0) || 3929 (!KMP_CPU_ISSET(j, __kmp_affin_fullMask)) || 3930 (!KMP_CPU_ISSET(j + stride, 3931 KMP_CPU_INDEX(osId2Mask, j + stride)))) { 3932 if (i < count - 1) { 3933 KMP_AFF_WARNING(AffIgnoreInvalidProcID, j + stride); 3934 } 3935 continue; 3936 } 3937 KMP_CPU_SET(j + stride, tempMask); 3938 setSize++; 3939 } 3940 } 3941 KMP_CPU_ZERO(tempMask); 3942 setSize = 0; 3943 3944 // valid follow sets are ',' and EOL 3945 SKIP_WS(scan); 3946 if (*scan == '\0') { 3947 break; 3948 } 3949 if (*scan == ',') { 3950 scan++; // skip ',' 3951 continue; 3952 } 3953 3954 KMP_ASSERT2(0, "bad explicit places list"); 3955 } 3956 3957 *out_numMasks = nextNewMask; 3958 if (nextNewMask == 0) { 3959 *out_masks = NULL; 3960 KMP_CPU_INTERNAL_FREE_ARRAY(newMasks, numNewMasks); 3961 return; 3962 } 3963 KMP_CPU_ALLOC_ARRAY((*out_masks), nextNewMask); 3964 KMP_CPU_FREE(tempMask); 3965 KMP_CPU_FREE(previousMask); 3966 for (i = 0; i < nextNewMask; i++) { 3967 kmp_affin_mask_t *src = KMP_CPU_INDEX(newMasks, i); 3968 kmp_affin_mask_t *dest = KMP_CPU_INDEX((*out_masks), i); 3969 KMP_CPU_COPY(dest, src); 3970 } 3971 KMP_CPU_INTERNAL_FREE_ARRAY(newMasks, numNewMasks); 3972 } 3973 3974 #undef ADD_MASK 3975 #undef ADD_MASK_OSID 3976 3977 // This function figures out the deepest level at which there is at least one 3978 // cluster/core with more than one processing unit bound to it. 3979 static int __kmp_affinity_find_core_level(int nprocs, int bottom_level) { 3980 int core_level = 0; 3981 3982 for (int i = 0; i < nprocs; i++) { 3983 const kmp_hw_thread_t &hw_thread = __kmp_topology->at(i); 3984 for (int j = bottom_level; j > 0; j--) { 3985 if (hw_thread.ids[j] > 0) { 3986 if (core_level < (j - 1)) { 3987 core_level = j - 1; 3988 } 3989 } 3990 } 3991 } 3992 return core_level; 3993 } 3994 3995 // This function counts number of clusters/cores at given level. 3996 static int __kmp_affinity_compute_ncores(int nprocs, int bottom_level, 3997 int core_level) { 3998 return __kmp_topology->get_count(core_level); 3999 } 4000 // This function finds to which cluster/core given processing unit is bound. 4001 static int __kmp_affinity_find_core(int proc, int bottom_level, 4002 int core_level) { 4003 int core = 0; 4004 KMP_DEBUG_ASSERT(proc >= 0 && proc < __kmp_topology->get_num_hw_threads()); 4005 for (int i = 0; i <= proc; ++i) { 4006 if (i + 1 <= proc) { 4007 for (int j = 0; j <= core_level; ++j) { 4008 if (__kmp_topology->at(i + 1).sub_ids[j] != 4009 __kmp_topology->at(i).sub_ids[j]) { 4010 core++; 4011 break; 4012 } 4013 } 4014 } 4015 } 4016 return core; 4017 } 4018 4019 // This function finds maximal number of processing units bound to a 4020 // cluster/core at given level. 4021 static int __kmp_affinity_max_proc_per_core(int nprocs, int bottom_level, 4022 int core_level) { 4023 if (core_level >= bottom_level) 4024 return 1; 4025 int thread_level = __kmp_topology->get_level(KMP_HW_THREAD); 4026 return __kmp_topology->calculate_ratio(thread_level, core_level); 4027 } 4028 4029 static int *procarr = NULL; 4030 static int __kmp_aff_depth = 0; 4031 4032 // Create a one element mask array (set of places) which only contains the 4033 // initial process's affinity mask 4034 static void __kmp_create_affinity_none_places() { 4035 KMP_ASSERT(__kmp_affin_fullMask != NULL); 4036 KMP_ASSERT(__kmp_affinity_type == affinity_none); 4037 __kmp_affinity_num_masks = 1; 4038 KMP_CPU_ALLOC_ARRAY(__kmp_affinity_masks, __kmp_affinity_num_masks); 4039 kmp_affin_mask_t *dest = KMP_CPU_INDEX(__kmp_affinity_masks, 0); 4040 KMP_CPU_COPY(dest, __kmp_affin_fullMask); 4041 } 4042 4043 static void __kmp_aux_affinity_initialize(void) { 4044 if (__kmp_affinity_masks != NULL) { 4045 KMP_ASSERT(__kmp_affin_fullMask != NULL); 4046 return; 4047 } 4048 4049 // Create the "full" mask - this defines all of the processors that we 4050 // consider to be in the machine model. If respect is set, then it is the 4051 // initialization thread's affinity mask. Otherwise, it is all processors that 4052 // we know about on the machine. 4053 if (__kmp_affin_fullMask == NULL) { 4054 KMP_CPU_ALLOC(__kmp_affin_fullMask); 4055 } 4056 if (__kmp_affin_origMask == NULL) { 4057 KMP_CPU_ALLOC(__kmp_affin_origMask); 4058 } 4059 if (KMP_AFFINITY_CAPABLE()) { 4060 __kmp_get_system_affinity(__kmp_affin_fullMask, TRUE); 4061 // Make a copy before possible expanding to the entire machine mask 4062 __kmp_affin_origMask->copy(__kmp_affin_fullMask); 4063 if (__kmp_affinity_respect_mask) { 4064 // Count the number of available processors. 4065 unsigned i; 4066 __kmp_avail_proc = 0; 4067 KMP_CPU_SET_ITERATE(i, __kmp_affin_fullMask) { 4068 if (!KMP_CPU_ISSET(i, __kmp_affin_fullMask)) { 4069 continue; 4070 } 4071 __kmp_avail_proc++; 4072 } 4073 if (__kmp_avail_proc > __kmp_xproc) { 4074 KMP_AFF_WARNING(ErrorInitializeAffinity); 4075 __kmp_affinity_type = affinity_none; 4076 KMP_AFFINITY_DISABLE(); 4077 return; 4078 } 4079 4080 if (__kmp_affinity_verbose) { 4081 char buf[KMP_AFFIN_MASK_PRINT_LEN]; 4082 __kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN, 4083 __kmp_affin_fullMask); 4084 KMP_INFORM(InitOSProcSetRespect, "KMP_AFFINITY", buf); 4085 } 4086 } else { 4087 if (__kmp_affinity_verbose) { 4088 char buf[KMP_AFFIN_MASK_PRINT_LEN]; 4089 __kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN, 4090 __kmp_affin_fullMask); 4091 KMP_INFORM(InitOSProcSetNotRespect, "KMP_AFFINITY", buf); 4092 } 4093 __kmp_avail_proc = 4094 __kmp_affinity_entire_machine_mask(__kmp_affin_fullMask); 4095 #if KMP_OS_WINDOWS 4096 if (__kmp_num_proc_groups <= 1) { 4097 // Copy expanded full mask if topology has single processor group 4098 __kmp_affin_origMask->copy(__kmp_affin_fullMask); 4099 } 4100 // Set the process affinity mask since threads' affinity 4101 // masks must be subset of process mask in Windows* OS 4102 __kmp_affin_fullMask->set_process_affinity(true); 4103 #endif 4104 } 4105 } 4106 4107 kmp_i18n_id_t msg_id = kmp_i18n_null; 4108 4109 // For backward compatibility, setting KMP_CPUINFO_FILE => 4110 // KMP_TOPOLOGY_METHOD=cpuinfo 4111 if ((__kmp_cpuinfo_file != NULL) && 4112 (__kmp_affinity_top_method == affinity_top_method_all)) { 4113 __kmp_affinity_top_method = affinity_top_method_cpuinfo; 4114 } 4115 4116 bool success = false; 4117 if (__kmp_affinity_top_method == affinity_top_method_all) { 4118 // In the default code path, errors are not fatal - we just try using 4119 // another method. We only emit a warning message if affinity is on, or the 4120 // verbose flag is set, an the nowarnings flag was not set. 4121 #if KMP_USE_HWLOC 4122 if (!success && 4123 __kmp_affinity_dispatch->get_api_type() == KMPAffinity::HWLOC) { 4124 if (!__kmp_hwloc_error) { 4125 success = __kmp_affinity_create_hwloc_map(&msg_id); 4126 if (!success && __kmp_affinity_verbose) { 4127 KMP_INFORM(AffIgnoringHwloc, "KMP_AFFINITY"); 4128 } 4129 } else if (__kmp_affinity_verbose) { 4130 KMP_INFORM(AffIgnoringHwloc, "KMP_AFFINITY"); 4131 } 4132 } 4133 #endif 4134 4135 #if KMP_ARCH_X86 || KMP_ARCH_X86_64 4136 if (!success) { 4137 success = __kmp_affinity_create_x2apicid_map(&msg_id); 4138 if (!success && __kmp_affinity_verbose && msg_id != kmp_i18n_null) { 4139 KMP_INFORM(AffInfoStr, "KMP_AFFINITY", __kmp_i18n_catgets(msg_id)); 4140 } 4141 } 4142 if (!success) { 4143 success = __kmp_affinity_create_apicid_map(&msg_id); 4144 if (!success && __kmp_affinity_verbose && msg_id != kmp_i18n_null) { 4145 KMP_INFORM(AffInfoStr, "KMP_AFFINITY", __kmp_i18n_catgets(msg_id)); 4146 } 4147 } 4148 #endif /* KMP_ARCH_X86 || KMP_ARCH_X86_64 */ 4149 4150 #if KMP_OS_LINUX 4151 if (!success) { 4152 int line = 0; 4153 success = __kmp_affinity_create_cpuinfo_map(&line, &msg_id); 4154 if (!success && __kmp_affinity_verbose && msg_id != kmp_i18n_null) { 4155 KMP_INFORM(AffInfoStr, "KMP_AFFINITY", __kmp_i18n_catgets(msg_id)); 4156 } 4157 } 4158 #endif /* KMP_OS_LINUX */ 4159 4160 #if KMP_GROUP_AFFINITY 4161 if (!success && (__kmp_num_proc_groups > 1)) { 4162 success = __kmp_affinity_create_proc_group_map(&msg_id); 4163 if (!success && __kmp_affinity_verbose && msg_id != kmp_i18n_null) { 4164 KMP_INFORM(AffInfoStr, "KMP_AFFINITY", __kmp_i18n_catgets(msg_id)); 4165 } 4166 } 4167 #endif /* KMP_GROUP_AFFINITY */ 4168 4169 if (!success) { 4170 success = __kmp_affinity_create_flat_map(&msg_id); 4171 if (!success && __kmp_affinity_verbose && msg_id != kmp_i18n_null) { 4172 KMP_INFORM(AffInfoStr, "KMP_AFFINITY", __kmp_i18n_catgets(msg_id)); 4173 } 4174 KMP_ASSERT(success); 4175 } 4176 } 4177 4178 // If the user has specified that a paricular topology discovery method is to be 4179 // used, then we abort if that method fails. The exception is group affinity, 4180 // which might have been implicitly set. 4181 #if KMP_USE_HWLOC 4182 else if (__kmp_affinity_top_method == affinity_top_method_hwloc) { 4183 KMP_ASSERT(__kmp_affinity_dispatch->get_api_type() == KMPAffinity::HWLOC); 4184 success = __kmp_affinity_create_hwloc_map(&msg_id); 4185 if (!success) { 4186 KMP_ASSERT(msg_id != kmp_i18n_null); 4187 KMP_FATAL(MsgExiting, __kmp_i18n_catgets(msg_id)); 4188 } 4189 } 4190 #endif // KMP_USE_HWLOC 4191 4192 #if KMP_ARCH_X86 || KMP_ARCH_X86_64 4193 else if (__kmp_affinity_top_method == affinity_top_method_x2apicid || 4194 __kmp_affinity_top_method == affinity_top_method_x2apicid_1f) { 4195 success = __kmp_affinity_create_x2apicid_map(&msg_id); 4196 if (!success) { 4197 KMP_ASSERT(msg_id != kmp_i18n_null); 4198 KMP_FATAL(MsgExiting, __kmp_i18n_catgets(msg_id)); 4199 } 4200 } else if (__kmp_affinity_top_method == affinity_top_method_apicid) { 4201 success = __kmp_affinity_create_apicid_map(&msg_id); 4202 if (!success) { 4203 KMP_ASSERT(msg_id != kmp_i18n_null); 4204 KMP_FATAL(MsgExiting, __kmp_i18n_catgets(msg_id)); 4205 } 4206 } 4207 #endif /* KMP_ARCH_X86 || KMP_ARCH_X86_64 */ 4208 4209 else if (__kmp_affinity_top_method == affinity_top_method_cpuinfo) { 4210 int line = 0; 4211 success = __kmp_affinity_create_cpuinfo_map(&line, &msg_id); 4212 if (!success) { 4213 KMP_ASSERT(msg_id != kmp_i18n_null); 4214 const char *filename = __kmp_cpuinfo_get_filename(); 4215 if (line > 0) { 4216 KMP_FATAL(FileLineMsgExiting, filename, line, 4217 __kmp_i18n_catgets(msg_id)); 4218 } else { 4219 KMP_FATAL(FileMsgExiting, filename, __kmp_i18n_catgets(msg_id)); 4220 } 4221 } 4222 } 4223 4224 #if KMP_GROUP_AFFINITY 4225 else if (__kmp_affinity_top_method == affinity_top_method_group) { 4226 success = __kmp_affinity_create_proc_group_map(&msg_id); 4227 KMP_ASSERT(success); 4228 if (!success) { 4229 KMP_ASSERT(msg_id != kmp_i18n_null); 4230 KMP_FATAL(MsgExiting, __kmp_i18n_catgets(msg_id)); 4231 } 4232 } 4233 #endif /* KMP_GROUP_AFFINITY */ 4234 4235 else if (__kmp_affinity_top_method == affinity_top_method_flat) { 4236 success = __kmp_affinity_create_flat_map(&msg_id); 4237 // should not fail 4238 KMP_ASSERT(success); 4239 } 4240 4241 // Early exit if topology could not be created 4242 if (!__kmp_topology) { 4243 if (KMP_AFFINITY_CAPABLE()) { 4244 KMP_AFF_WARNING(ErrorInitializeAffinity); 4245 } 4246 if (nPackages > 0 && nCoresPerPkg > 0 && __kmp_nThreadsPerCore > 0 && 4247 __kmp_ncores > 0) { 4248 __kmp_topology = kmp_topology_t::allocate(0, 0, NULL); 4249 __kmp_topology->canonicalize(nPackages, nCoresPerPkg, 4250 __kmp_nThreadsPerCore, __kmp_ncores); 4251 if (__kmp_affinity_verbose) { 4252 __kmp_topology->print("KMP_AFFINITY"); 4253 } 4254 } 4255 __kmp_affinity_type = affinity_none; 4256 __kmp_create_affinity_none_places(); 4257 #if KMP_USE_HIER_SCHED 4258 __kmp_dispatch_set_hierarchy_values(); 4259 #endif 4260 KMP_AFFINITY_DISABLE(); 4261 return; 4262 } 4263 4264 // Canonicalize, print (if requested), apply KMP_HW_SUBSET, and 4265 // initialize other data structures which depend on the topology 4266 __kmp_topology->canonicalize(); 4267 if (__kmp_affinity_verbose) 4268 __kmp_topology->print("KMP_AFFINITY"); 4269 bool filtered = __kmp_topology->filter_hw_subset(); 4270 if (filtered) { 4271 #if KMP_OS_WINDOWS 4272 // Copy filtered full mask if topology has single processor group 4273 if (__kmp_num_proc_groups <= 1) 4274 #endif 4275 __kmp_affin_origMask->copy(__kmp_affin_fullMask); 4276 } 4277 if (filtered && __kmp_affinity_verbose) 4278 __kmp_topology->print("KMP_HW_SUBSET"); 4279 machine_hierarchy.init(__kmp_topology->get_num_hw_threads()); 4280 KMP_ASSERT(__kmp_avail_proc == __kmp_topology->get_num_hw_threads()); 4281 // If KMP_AFFINITY=none, then only create the single "none" place 4282 // which is the process's initial affinity mask or the number of 4283 // hardware threads depending on respect,norespect 4284 if (__kmp_affinity_type == affinity_none) { 4285 __kmp_create_affinity_none_places(); 4286 #if KMP_USE_HIER_SCHED 4287 __kmp_dispatch_set_hierarchy_values(); 4288 #endif 4289 return; 4290 } 4291 int depth = __kmp_topology->get_depth(); 4292 4293 // Create the table of masks, indexed by thread Id. 4294 unsigned maxIndex; 4295 unsigned numUnique; 4296 kmp_affin_mask_t *osId2Mask = __kmp_create_masks(&maxIndex, &numUnique); 4297 if (__kmp_affinity_gran_levels == 0) { 4298 KMP_DEBUG_ASSERT((int)numUnique == __kmp_avail_proc); 4299 } 4300 4301 switch (__kmp_affinity_type) { 4302 4303 case affinity_explicit: 4304 KMP_DEBUG_ASSERT(__kmp_affinity_proclist != NULL); 4305 if (__kmp_nested_proc_bind.bind_types[0] == proc_bind_intel) { 4306 __kmp_affinity_process_proclist( 4307 &__kmp_affinity_masks, &__kmp_affinity_num_masks, 4308 __kmp_affinity_proclist, osId2Mask, maxIndex); 4309 } else { 4310 __kmp_affinity_process_placelist( 4311 &__kmp_affinity_masks, &__kmp_affinity_num_masks, 4312 __kmp_affinity_proclist, osId2Mask, maxIndex); 4313 } 4314 if (__kmp_affinity_num_masks == 0) { 4315 KMP_AFF_WARNING(AffNoValidProcID); 4316 __kmp_affinity_type = affinity_none; 4317 __kmp_create_affinity_none_places(); 4318 return; 4319 } 4320 break; 4321 4322 // The other affinity types rely on sorting the hardware threads according to 4323 // some permutation of the machine topology tree. Set __kmp_affinity_compact 4324 // and __kmp_affinity_offset appropriately, then jump to a common code 4325 // fragment to do the sort and create the array of affinity masks. 4326 case affinity_logical: 4327 __kmp_affinity_compact = 0; 4328 if (__kmp_affinity_offset) { 4329 __kmp_affinity_offset = 4330 __kmp_nThreadsPerCore * __kmp_affinity_offset % __kmp_avail_proc; 4331 } 4332 goto sortTopology; 4333 4334 case affinity_physical: 4335 if (__kmp_nThreadsPerCore > 1) { 4336 __kmp_affinity_compact = 1; 4337 if (__kmp_affinity_compact >= depth) { 4338 __kmp_affinity_compact = 0; 4339 } 4340 } else { 4341 __kmp_affinity_compact = 0; 4342 } 4343 if (__kmp_affinity_offset) { 4344 __kmp_affinity_offset = 4345 __kmp_nThreadsPerCore * __kmp_affinity_offset % __kmp_avail_proc; 4346 } 4347 goto sortTopology; 4348 4349 case affinity_scatter: 4350 if (__kmp_affinity_compact >= depth) { 4351 __kmp_affinity_compact = 0; 4352 } else { 4353 __kmp_affinity_compact = depth - 1 - __kmp_affinity_compact; 4354 } 4355 goto sortTopology; 4356 4357 case affinity_compact: 4358 if (__kmp_affinity_compact >= depth) { 4359 __kmp_affinity_compact = depth - 1; 4360 } 4361 goto sortTopology; 4362 4363 case affinity_balanced: 4364 if (depth <= 1) { 4365 KMP_AFF_WARNING(AffBalancedNotAvail, "KMP_AFFINITY"); 4366 __kmp_affinity_type = affinity_none; 4367 __kmp_create_affinity_none_places(); 4368 return; 4369 } else if (!__kmp_topology->is_uniform()) { 4370 // Save the depth for further usage 4371 __kmp_aff_depth = depth; 4372 4373 int core_level = 4374 __kmp_affinity_find_core_level(__kmp_avail_proc, depth - 1); 4375 int ncores = __kmp_affinity_compute_ncores(__kmp_avail_proc, depth - 1, 4376 core_level); 4377 int maxprocpercore = __kmp_affinity_max_proc_per_core( 4378 __kmp_avail_proc, depth - 1, core_level); 4379 4380 int nproc = ncores * maxprocpercore; 4381 if ((nproc < 2) || (nproc < __kmp_avail_proc)) { 4382 KMP_AFF_WARNING(AffBalancedNotAvail, "KMP_AFFINITY"); 4383 __kmp_affinity_type = affinity_none; 4384 return; 4385 } 4386 4387 procarr = (int *)__kmp_allocate(sizeof(int) * nproc); 4388 for (int i = 0; i < nproc; i++) { 4389 procarr[i] = -1; 4390 } 4391 4392 int lastcore = -1; 4393 int inlastcore = 0; 4394 for (int i = 0; i < __kmp_avail_proc; i++) { 4395 int proc = __kmp_topology->at(i).os_id; 4396 int core = __kmp_affinity_find_core(i, depth - 1, core_level); 4397 4398 if (core == lastcore) { 4399 inlastcore++; 4400 } else { 4401 inlastcore = 0; 4402 } 4403 lastcore = core; 4404 4405 procarr[core * maxprocpercore + inlastcore] = proc; 4406 } 4407 } 4408 if (__kmp_affinity_compact >= depth) { 4409 __kmp_affinity_compact = depth - 1; 4410 } 4411 4412 sortTopology: 4413 // Allocate the gtid->affinity mask table. 4414 if (__kmp_affinity_dups) { 4415 __kmp_affinity_num_masks = __kmp_avail_proc; 4416 } else { 4417 __kmp_affinity_num_masks = numUnique; 4418 } 4419 4420 if ((__kmp_nested_proc_bind.bind_types[0] != proc_bind_intel) && 4421 (__kmp_affinity_num_places > 0) && 4422 ((unsigned)__kmp_affinity_num_places < __kmp_affinity_num_masks)) { 4423 __kmp_affinity_num_masks = __kmp_affinity_num_places; 4424 } 4425 4426 KMP_CPU_ALLOC_ARRAY(__kmp_affinity_masks, __kmp_affinity_num_masks); 4427 4428 // Sort the topology table according to the current setting of 4429 // __kmp_affinity_compact, then fill out __kmp_affinity_masks. 4430 __kmp_topology->sort_compact(); 4431 { 4432 int i; 4433 unsigned j; 4434 int num_hw_threads = __kmp_topology->get_num_hw_threads(); 4435 for (i = 0, j = 0; i < num_hw_threads; i++) { 4436 if ((!__kmp_affinity_dups) && (!__kmp_topology->at(i).leader)) { 4437 continue; 4438 } 4439 int osId = __kmp_topology->at(i).os_id; 4440 4441 kmp_affin_mask_t *src = KMP_CPU_INDEX(osId2Mask, osId); 4442 kmp_affin_mask_t *dest = KMP_CPU_INDEX(__kmp_affinity_masks, j); 4443 KMP_ASSERT(KMP_CPU_ISSET(osId, src)); 4444 KMP_CPU_COPY(dest, src); 4445 if (++j >= __kmp_affinity_num_masks) { 4446 break; 4447 } 4448 } 4449 KMP_DEBUG_ASSERT(j == __kmp_affinity_num_masks); 4450 } 4451 // Sort the topology back using ids 4452 __kmp_topology->sort_ids(); 4453 break; 4454 4455 default: 4456 KMP_ASSERT2(0, "Unexpected affinity setting"); 4457 } 4458 4459 KMP_CPU_FREE_ARRAY(osId2Mask, maxIndex + 1); 4460 } 4461 4462 void __kmp_affinity_initialize(void) { 4463 // Much of the code above was written assuming that if a machine was not 4464 // affinity capable, then __kmp_affinity_type == affinity_none. We now 4465 // explicitly represent this as __kmp_affinity_type == affinity_disabled. 4466 // There are too many checks for __kmp_affinity_type == affinity_none 4467 // in this code. Instead of trying to change them all, check if 4468 // __kmp_affinity_type == affinity_disabled, and if so, slam it with 4469 // affinity_none, call the real initialization routine, then restore 4470 // __kmp_affinity_type to affinity_disabled. 4471 int disabled = (__kmp_affinity_type == affinity_disabled); 4472 if (!KMP_AFFINITY_CAPABLE()) { 4473 KMP_ASSERT(disabled); 4474 } 4475 if (disabled) { 4476 __kmp_affinity_type = affinity_none; 4477 } 4478 __kmp_aux_affinity_initialize(); 4479 if (disabled) { 4480 __kmp_affinity_type = affinity_disabled; 4481 } 4482 } 4483 4484 void __kmp_affinity_uninitialize(void) { 4485 if (__kmp_affinity_masks != NULL) { 4486 KMP_CPU_FREE_ARRAY(__kmp_affinity_masks, __kmp_affinity_num_masks); 4487 __kmp_affinity_masks = NULL; 4488 } 4489 if (__kmp_affin_fullMask != NULL) { 4490 KMP_CPU_FREE(__kmp_affin_fullMask); 4491 __kmp_affin_fullMask = NULL; 4492 } 4493 if (__kmp_affin_origMask != NULL) { 4494 KMP_CPU_FREE(__kmp_affin_origMask); 4495 __kmp_affin_origMask = NULL; 4496 } 4497 __kmp_affinity_num_masks = 0; 4498 __kmp_affinity_type = affinity_default; 4499 __kmp_affinity_num_places = 0; 4500 if (__kmp_affinity_proclist != NULL) { 4501 __kmp_free(__kmp_affinity_proclist); 4502 __kmp_affinity_proclist = NULL; 4503 } 4504 if (procarr != NULL) { 4505 __kmp_free(procarr); 4506 procarr = NULL; 4507 } 4508 #if KMP_USE_HWLOC 4509 if (__kmp_hwloc_topology != NULL) { 4510 hwloc_topology_destroy(__kmp_hwloc_topology); 4511 __kmp_hwloc_topology = NULL; 4512 } 4513 #endif 4514 if (__kmp_hw_subset) { 4515 kmp_hw_subset_t::deallocate(__kmp_hw_subset); 4516 __kmp_hw_subset = nullptr; 4517 } 4518 if (__kmp_topology) { 4519 kmp_topology_t::deallocate(__kmp_topology); 4520 __kmp_topology = nullptr; 4521 } 4522 KMPAffinity::destroy_api(); 4523 } 4524 4525 void __kmp_affinity_set_init_mask(int gtid, int isa_root) { 4526 if (!KMP_AFFINITY_CAPABLE()) { 4527 return; 4528 } 4529 4530 kmp_info_t *th = (kmp_info_t *)TCR_SYNC_PTR(__kmp_threads[gtid]); 4531 if (th->th.th_affin_mask == NULL) { 4532 KMP_CPU_ALLOC(th->th.th_affin_mask); 4533 } else { 4534 KMP_CPU_ZERO(th->th.th_affin_mask); 4535 } 4536 4537 // Copy the thread mask to the kmp_info_t structure. If 4538 // __kmp_affinity_type == affinity_none, copy the "full" mask, i.e. one that 4539 // has all of the OS proc ids set, or if __kmp_affinity_respect_mask is set, 4540 // then the full mask is the same as the mask of the initialization thread. 4541 kmp_affin_mask_t *mask; 4542 int i; 4543 4544 if (KMP_AFFINITY_NON_PROC_BIND) { 4545 if ((__kmp_affinity_type == affinity_none) || 4546 (__kmp_affinity_type == affinity_balanced) || 4547 KMP_HIDDEN_HELPER_THREAD(gtid)) { 4548 #if KMP_GROUP_AFFINITY 4549 if (__kmp_num_proc_groups > 1) { 4550 return; 4551 } 4552 #endif 4553 KMP_ASSERT(__kmp_affin_fullMask != NULL); 4554 i = 0; 4555 mask = __kmp_affin_fullMask; 4556 } else { 4557 int mask_idx = __kmp_adjust_gtid_for_hidden_helpers(gtid); 4558 KMP_DEBUG_ASSERT(__kmp_affinity_num_masks > 0); 4559 i = (mask_idx + __kmp_affinity_offset) % __kmp_affinity_num_masks; 4560 mask = KMP_CPU_INDEX(__kmp_affinity_masks, i); 4561 } 4562 } else { 4563 if ((!isa_root) || KMP_HIDDEN_HELPER_THREAD(gtid) || 4564 (__kmp_nested_proc_bind.bind_types[0] == proc_bind_false)) { 4565 #if KMP_GROUP_AFFINITY 4566 if (__kmp_num_proc_groups > 1) { 4567 return; 4568 } 4569 #endif 4570 KMP_ASSERT(__kmp_affin_fullMask != NULL); 4571 i = KMP_PLACE_ALL; 4572 mask = __kmp_affin_fullMask; 4573 } else { 4574 // int i = some hash function or just a counter that doesn't 4575 // always start at 0. Use adjusted gtid for now. 4576 int mask_idx = __kmp_adjust_gtid_for_hidden_helpers(gtid); 4577 KMP_DEBUG_ASSERT(__kmp_affinity_num_masks > 0); 4578 i = (mask_idx + __kmp_affinity_offset) % __kmp_affinity_num_masks; 4579 mask = KMP_CPU_INDEX(__kmp_affinity_masks, i); 4580 } 4581 } 4582 4583 th->th.th_current_place = i; 4584 if (isa_root || KMP_HIDDEN_HELPER_THREAD(gtid)) { 4585 th->th.th_new_place = i; 4586 th->th.th_first_place = 0; 4587 th->th.th_last_place = __kmp_affinity_num_masks - 1; 4588 } else if (KMP_AFFINITY_NON_PROC_BIND) { 4589 // When using a Non-OMP_PROC_BIND affinity method, 4590 // set all threads' place-partition-var to the entire place list 4591 th->th.th_first_place = 0; 4592 th->th.th_last_place = __kmp_affinity_num_masks - 1; 4593 } 4594 4595 if (i == KMP_PLACE_ALL) { 4596 KA_TRACE(100, ("__kmp_affinity_set_init_mask: binding T#%d to all places\n", 4597 gtid)); 4598 } else { 4599 KA_TRACE(100, ("__kmp_affinity_set_init_mask: binding T#%d to place %d\n", 4600 gtid, i)); 4601 } 4602 4603 KMP_CPU_COPY(th->th.th_affin_mask, mask); 4604 4605 if (__kmp_affinity_verbose && !KMP_HIDDEN_HELPER_THREAD(gtid) 4606 /* to avoid duplicate printing (will be correctly printed on barrier) */ 4607 && (__kmp_affinity_type == affinity_none || 4608 (i != KMP_PLACE_ALL && __kmp_affinity_type != affinity_balanced))) { 4609 char buf[KMP_AFFIN_MASK_PRINT_LEN]; 4610 __kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN, 4611 th->th.th_affin_mask); 4612 KMP_INFORM(BoundToOSProcSet, "KMP_AFFINITY", (kmp_int32)getpid(), 4613 __kmp_gettid(), gtid, buf); 4614 } 4615 4616 #if KMP_DEBUG 4617 // Hidden helper thread affinity only printed for debug builds 4618 if (__kmp_affinity_verbose && KMP_HIDDEN_HELPER_THREAD(gtid)) { 4619 char buf[KMP_AFFIN_MASK_PRINT_LEN]; 4620 __kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN, 4621 th->th.th_affin_mask); 4622 KMP_INFORM(BoundToOSProcSet, "KMP_AFFINITY (hidden helper thread)", 4623 (kmp_int32)getpid(), __kmp_gettid(), gtid, buf); 4624 } 4625 #endif 4626 4627 #if KMP_OS_WINDOWS 4628 // On Windows* OS, the process affinity mask might have changed. If the user 4629 // didn't request affinity and this call fails, just continue silently. 4630 // See CQ171393. 4631 if (__kmp_affinity_type == affinity_none) { 4632 __kmp_set_system_affinity(th->th.th_affin_mask, FALSE); 4633 } else 4634 #endif 4635 __kmp_set_system_affinity(th->th.th_affin_mask, TRUE); 4636 } 4637 4638 void __kmp_affinity_set_place(int gtid) { 4639 if (!KMP_AFFINITY_CAPABLE()) { 4640 return; 4641 } 4642 4643 kmp_info_t *th = (kmp_info_t *)TCR_SYNC_PTR(__kmp_threads[gtid]); 4644 4645 KA_TRACE(100, ("__kmp_affinity_set_place: binding T#%d to place %d (current " 4646 "place = %d)\n", 4647 gtid, th->th.th_new_place, th->th.th_current_place)); 4648 4649 // Check that the new place is within this thread's partition. 4650 KMP_DEBUG_ASSERT(th->th.th_affin_mask != NULL); 4651 KMP_ASSERT(th->th.th_new_place >= 0); 4652 KMP_ASSERT((unsigned)th->th.th_new_place <= __kmp_affinity_num_masks); 4653 if (th->th.th_first_place <= th->th.th_last_place) { 4654 KMP_ASSERT((th->th.th_new_place >= th->th.th_first_place) && 4655 (th->th.th_new_place <= th->th.th_last_place)); 4656 } else { 4657 KMP_ASSERT((th->th.th_new_place <= th->th.th_first_place) || 4658 (th->th.th_new_place >= th->th.th_last_place)); 4659 } 4660 4661 // Copy the thread mask to the kmp_info_t structure, 4662 // and set this thread's affinity. 4663 kmp_affin_mask_t *mask = 4664 KMP_CPU_INDEX(__kmp_affinity_masks, th->th.th_new_place); 4665 KMP_CPU_COPY(th->th.th_affin_mask, mask); 4666 th->th.th_current_place = th->th.th_new_place; 4667 4668 if (__kmp_affinity_verbose) { 4669 char buf[KMP_AFFIN_MASK_PRINT_LEN]; 4670 __kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN, 4671 th->th.th_affin_mask); 4672 KMP_INFORM(BoundToOSProcSet, "OMP_PROC_BIND", (kmp_int32)getpid(), 4673 __kmp_gettid(), gtid, buf); 4674 } 4675 __kmp_set_system_affinity(th->th.th_affin_mask, TRUE); 4676 } 4677 4678 int __kmp_aux_set_affinity(void **mask) { 4679 int gtid; 4680 kmp_info_t *th; 4681 int retval; 4682 4683 if (!KMP_AFFINITY_CAPABLE()) { 4684 return -1; 4685 } 4686 4687 gtid = __kmp_entry_gtid(); 4688 KA_TRACE( 4689 1000, (""); { 4690 char buf[KMP_AFFIN_MASK_PRINT_LEN]; 4691 __kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN, 4692 (kmp_affin_mask_t *)(*mask)); 4693 __kmp_debug_printf( 4694 "kmp_set_affinity: setting affinity mask for thread %d = %s\n", 4695 gtid, buf); 4696 }); 4697 4698 if (__kmp_env_consistency_check) { 4699 if ((mask == NULL) || (*mask == NULL)) { 4700 KMP_FATAL(AffinityInvalidMask, "kmp_set_affinity"); 4701 } else { 4702 unsigned proc; 4703 int num_procs = 0; 4704 4705 KMP_CPU_SET_ITERATE(proc, ((kmp_affin_mask_t *)(*mask))) { 4706 if (!KMP_CPU_ISSET(proc, __kmp_affin_fullMask)) { 4707 KMP_FATAL(AffinityInvalidMask, "kmp_set_affinity"); 4708 } 4709 if (!KMP_CPU_ISSET(proc, (kmp_affin_mask_t *)(*mask))) { 4710 continue; 4711 } 4712 num_procs++; 4713 } 4714 if (num_procs == 0) { 4715 KMP_FATAL(AffinityInvalidMask, "kmp_set_affinity"); 4716 } 4717 4718 #if KMP_GROUP_AFFINITY 4719 if (__kmp_get_proc_group((kmp_affin_mask_t *)(*mask)) < 0) { 4720 KMP_FATAL(AffinityInvalidMask, "kmp_set_affinity"); 4721 } 4722 #endif /* KMP_GROUP_AFFINITY */ 4723 } 4724 } 4725 4726 th = __kmp_threads[gtid]; 4727 KMP_DEBUG_ASSERT(th->th.th_affin_mask != NULL); 4728 retval = __kmp_set_system_affinity((kmp_affin_mask_t *)(*mask), FALSE); 4729 if (retval == 0) { 4730 KMP_CPU_COPY(th->th.th_affin_mask, (kmp_affin_mask_t *)(*mask)); 4731 } 4732 4733 th->th.th_current_place = KMP_PLACE_UNDEFINED; 4734 th->th.th_new_place = KMP_PLACE_UNDEFINED; 4735 th->th.th_first_place = 0; 4736 th->th.th_last_place = __kmp_affinity_num_masks - 1; 4737 4738 // Turn off 4.0 affinity for the current tread at this parallel level. 4739 th->th.th_current_task->td_icvs.proc_bind = proc_bind_false; 4740 4741 return retval; 4742 } 4743 4744 int __kmp_aux_get_affinity(void **mask) { 4745 int gtid; 4746 int retval; 4747 #if KMP_OS_WINDOWS || KMP_DEBUG 4748 kmp_info_t *th; 4749 #endif 4750 if (!KMP_AFFINITY_CAPABLE()) { 4751 return -1; 4752 } 4753 4754 gtid = __kmp_entry_gtid(); 4755 #if KMP_OS_WINDOWS || KMP_DEBUG 4756 th = __kmp_threads[gtid]; 4757 #else 4758 (void)gtid; // unused variable 4759 #endif 4760 KMP_DEBUG_ASSERT(th->th.th_affin_mask != NULL); 4761 4762 KA_TRACE( 4763 1000, (""); { 4764 char buf[KMP_AFFIN_MASK_PRINT_LEN]; 4765 __kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN, 4766 th->th.th_affin_mask); 4767 __kmp_printf( 4768 "kmp_get_affinity: stored affinity mask for thread %d = %s\n", gtid, 4769 buf); 4770 }); 4771 4772 if (__kmp_env_consistency_check) { 4773 if ((mask == NULL) || (*mask == NULL)) { 4774 KMP_FATAL(AffinityInvalidMask, "kmp_get_affinity"); 4775 } 4776 } 4777 4778 #if !KMP_OS_WINDOWS 4779 4780 retval = __kmp_get_system_affinity((kmp_affin_mask_t *)(*mask), FALSE); 4781 KA_TRACE( 4782 1000, (""); { 4783 char buf[KMP_AFFIN_MASK_PRINT_LEN]; 4784 __kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN, 4785 (kmp_affin_mask_t *)(*mask)); 4786 __kmp_printf( 4787 "kmp_get_affinity: system affinity mask for thread %d = %s\n", gtid, 4788 buf); 4789 }); 4790 return retval; 4791 4792 #else 4793 (void)retval; 4794 4795 KMP_CPU_COPY((kmp_affin_mask_t *)(*mask), th->th.th_affin_mask); 4796 return 0; 4797 4798 #endif /* KMP_OS_WINDOWS */ 4799 } 4800 4801 int __kmp_aux_get_affinity_max_proc() { 4802 if (!KMP_AFFINITY_CAPABLE()) { 4803 return 0; 4804 } 4805 #if KMP_GROUP_AFFINITY 4806 if (__kmp_num_proc_groups > 1) { 4807 return (int)(__kmp_num_proc_groups * sizeof(DWORD_PTR) * CHAR_BIT); 4808 } 4809 #endif 4810 return __kmp_xproc; 4811 } 4812 4813 int __kmp_aux_set_affinity_mask_proc(int proc, void **mask) { 4814 if (!KMP_AFFINITY_CAPABLE()) { 4815 return -1; 4816 } 4817 4818 KA_TRACE( 4819 1000, (""); { 4820 int gtid = __kmp_entry_gtid(); 4821 char buf[KMP_AFFIN_MASK_PRINT_LEN]; 4822 __kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN, 4823 (kmp_affin_mask_t *)(*mask)); 4824 __kmp_debug_printf("kmp_set_affinity_mask_proc: setting proc %d in " 4825 "affinity mask for thread %d = %s\n", 4826 proc, gtid, buf); 4827 }); 4828 4829 if (__kmp_env_consistency_check) { 4830 if ((mask == NULL) || (*mask == NULL)) { 4831 KMP_FATAL(AffinityInvalidMask, "kmp_set_affinity_mask_proc"); 4832 } 4833 } 4834 4835 if ((proc < 0) || (proc >= __kmp_aux_get_affinity_max_proc())) { 4836 return -1; 4837 } 4838 if (!KMP_CPU_ISSET(proc, __kmp_affin_fullMask)) { 4839 return -2; 4840 } 4841 4842 KMP_CPU_SET(proc, (kmp_affin_mask_t *)(*mask)); 4843 return 0; 4844 } 4845 4846 int __kmp_aux_unset_affinity_mask_proc(int proc, void **mask) { 4847 if (!KMP_AFFINITY_CAPABLE()) { 4848 return -1; 4849 } 4850 4851 KA_TRACE( 4852 1000, (""); { 4853 int gtid = __kmp_entry_gtid(); 4854 char buf[KMP_AFFIN_MASK_PRINT_LEN]; 4855 __kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN, 4856 (kmp_affin_mask_t *)(*mask)); 4857 __kmp_debug_printf("kmp_unset_affinity_mask_proc: unsetting proc %d in " 4858 "affinity mask for thread %d = %s\n", 4859 proc, gtid, buf); 4860 }); 4861 4862 if (__kmp_env_consistency_check) { 4863 if ((mask == NULL) || (*mask == NULL)) { 4864 KMP_FATAL(AffinityInvalidMask, "kmp_unset_affinity_mask_proc"); 4865 } 4866 } 4867 4868 if ((proc < 0) || (proc >= __kmp_aux_get_affinity_max_proc())) { 4869 return -1; 4870 } 4871 if (!KMP_CPU_ISSET(proc, __kmp_affin_fullMask)) { 4872 return -2; 4873 } 4874 4875 KMP_CPU_CLR(proc, (kmp_affin_mask_t *)(*mask)); 4876 return 0; 4877 } 4878 4879 int __kmp_aux_get_affinity_mask_proc(int proc, void **mask) { 4880 if (!KMP_AFFINITY_CAPABLE()) { 4881 return -1; 4882 } 4883 4884 KA_TRACE( 4885 1000, (""); { 4886 int gtid = __kmp_entry_gtid(); 4887 char buf[KMP_AFFIN_MASK_PRINT_LEN]; 4888 __kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN, 4889 (kmp_affin_mask_t *)(*mask)); 4890 __kmp_debug_printf("kmp_get_affinity_mask_proc: getting proc %d in " 4891 "affinity mask for thread %d = %s\n", 4892 proc, gtid, buf); 4893 }); 4894 4895 if (__kmp_env_consistency_check) { 4896 if ((mask == NULL) || (*mask == NULL)) { 4897 KMP_FATAL(AffinityInvalidMask, "kmp_get_affinity_mask_proc"); 4898 } 4899 } 4900 4901 if ((proc < 0) || (proc >= __kmp_aux_get_affinity_max_proc())) { 4902 return -1; 4903 } 4904 if (!KMP_CPU_ISSET(proc, __kmp_affin_fullMask)) { 4905 return 0; 4906 } 4907 4908 return KMP_CPU_ISSET(proc, (kmp_affin_mask_t *)(*mask)); 4909 } 4910 4911 // Dynamic affinity settings - Affinity balanced 4912 void __kmp_balanced_affinity(kmp_info_t *th, int nthreads) { 4913 KMP_DEBUG_ASSERT(th); 4914 bool fine_gran = true; 4915 int tid = th->th.th_info.ds.ds_tid; 4916 4917 // Do not perform balanced affinity for the hidden helper threads 4918 if (KMP_HIDDEN_HELPER_THREAD(__kmp_gtid_from_thread(th))) 4919 return; 4920 4921 switch (__kmp_affinity_gran) { 4922 case KMP_HW_THREAD: 4923 break; 4924 case KMP_HW_CORE: 4925 if (__kmp_nThreadsPerCore > 1) { 4926 fine_gran = false; 4927 } 4928 break; 4929 case KMP_HW_SOCKET: 4930 if (nCoresPerPkg > 1) { 4931 fine_gran = false; 4932 } 4933 break; 4934 default: 4935 fine_gran = false; 4936 } 4937 4938 if (__kmp_topology->is_uniform()) { 4939 int coreID; 4940 int threadID; 4941 // Number of hyper threads per core in HT machine 4942 int __kmp_nth_per_core = __kmp_avail_proc / __kmp_ncores; 4943 // Number of cores 4944 int ncores = __kmp_ncores; 4945 if ((nPackages > 1) && (__kmp_nth_per_core <= 1)) { 4946 __kmp_nth_per_core = __kmp_avail_proc / nPackages; 4947 ncores = nPackages; 4948 } 4949 // How many threads will be bound to each core 4950 int chunk = nthreads / ncores; 4951 // How many cores will have an additional thread bound to it - "big cores" 4952 int big_cores = nthreads % ncores; 4953 // Number of threads on the big cores 4954 int big_nth = (chunk + 1) * big_cores; 4955 if (tid < big_nth) { 4956 coreID = tid / (chunk + 1); 4957 threadID = (tid % (chunk + 1)) % __kmp_nth_per_core; 4958 } else { // tid >= big_nth 4959 coreID = (tid - big_cores) / chunk; 4960 threadID = ((tid - big_cores) % chunk) % __kmp_nth_per_core; 4961 } 4962 KMP_DEBUG_ASSERT2(KMP_AFFINITY_CAPABLE(), 4963 "Illegal set affinity operation when not capable"); 4964 4965 kmp_affin_mask_t *mask = th->th.th_affin_mask; 4966 KMP_CPU_ZERO(mask); 4967 4968 if (fine_gran) { 4969 int osID = 4970 __kmp_topology->at(coreID * __kmp_nth_per_core + threadID).os_id; 4971 KMP_CPU_SET(osID, mask); 4972 } else { 4973 for (int i = 0; i < __kmp_nth_per_core; i++) { 4974 int osID; 4975 osID = __kmp_topology->at(coreID * __kmp_nth_per_core + i).os_id; 4976 KMP_CPU_SET(osID, mask); 4977 } 4978 } 4979 if (__kmp_affinity_verbose) { 4980 char buf[KMP_AFFIN_MASK_PRINT_LEN]; 4981 __kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN, mask); 4982 KMP_INFORM(BoundToOSProcSet, "KMP_AFFINITY", (kmp_int32)getpid(), 4983 __kmp_gettid(), tid, buf); 4984 } 4985 __kmp_set_system_affinity(mask, TRUE); 4986 } else { // Non-uniform topology 4987 4988 kmp_affin_mask_t *mask = th->th.th_affin_mask; 4989 KMP_CPU_ZERO(mask); 4990 4991 int core_level = 4992 __kmp_affinity_find_core_level(__kmp_avail_proc, __kmp_aff_depth - 1); 4993 int ncores = __kmp_affinity_compute_ncores(__kmp_avail_proc, 4994 __kmp_aff_depth - 1, core_level); 4995 int nth_per_core = __kmp_affinity_max_proc_per_core( 4996 __kmp_avail_proc, __kmp_aff_depth - 1, core_level); 4997 4998 // For performance gain consider the special case nthreads == 4999 // __kmp_avail_proc 5000 if (nthreads == __kmp_avail_proc) { 5001 if (fine_gran) { 5002 int osID = __kmp_topology->at(tid).os_id; 5003 KMP_CPU_SET(osID, mask); 5004 } else { 5005 int core = 5006 __kmp_affinity_find_core(tid, __kmp_aff_depth - 1, core_level); 5007 for (int i = 0; i < __kmp_avail_proc; i++) { 5008 int osID = __kmp_topology->at(i).os_id; 5009 if (__kmp_affinity_find_core(i, __kmp_aff_depth - 1, core_level) == 5010 core) { 5011 KMP_CPU_SET(osID, mask); 5012 } 5013 } 5014 } 5015 } else if (nthreads <= ncores) { 5016 5017 int core = 0; 5018 for (int i = 0; i < ncores; i++) { 5019 // Check if this core from procarr[] is in the mask 5020 int in_mask = 0; 5021 for (int j = 0; j < nth_per_core; j++) { 5022 if (procarr[i * nth_per_core + j] != -1) { 5023 in_mask = 1; 5024 break; 5025 } 5026 } 5027 if (in_mask) { 5028 if (tid == core) { 5029 for (int j = 0; j < nth_per_core; j++) { 5030 int osID = procarr[i * nth_per_core + j]; 5031 if (osID != -1) { 5032 KMP_CPU_SET(osID, mask); 5033 // For fine granularity it is enough to set the first available 5034 // osID for this core 5035 if (fine_gran) { 5036 break; 5037 } 5038 } 5039 } 5040 break; 5041 } else { 5042 core++; 5043 } 5044 } 5045 } 5046 } else { // nthreads > ncores 5047 // Array to save the number of processors at each core 5048 int *nproc_at_core = (int *)KMP_ALLOCA(sizeof(int) * ncores); 5049 // Array to save the number of cores with "x" available processors; 5050 int *ncores_with_x_procs = 5051 (int *)KMP_ALLOCA(sizeof(int) * (nth_per_core + 1)); 5052 // Array to save the number of cores with # procs from x to nth_per_core 5053 int *ncores_with_x_to_max_procs = 5054 (int *)KMP_ALLOCA(sizeof(int) * (nth_per_core + 1)); 5055 5056 for (int i = 0; i <= nth_per_core; i++) { 5057 ncores_with_x_procs[i] = 0; 5058 ncores_with_x_to_max_procs[i] = 0; 5059 } 5060 5061 for (int i = 0; i < ncores; i++) { 5062 int cnt = 0; 5063 for (int j = 0; j < nth_per_core; j++) { 5064 if (procarr[i * nth_per_core + j] != -1) { 5065 cnt++; 5066 } 5067 } 5068 nproc_at_core[i] = cnt; 5069 ncores_with_x_procs[cnt]++; 5070 } 5071 5072 for (int i = 0; i <= nth_per_core; i++) { 5073 for (int j = i; j <= nth_per_core; j++) { 5074 ncores_with_x_to_max_procs[i] += ncores_with_x_procs[j]; 5075 } 5076 } 5077 5078 // Max number of processors 5079 int nproc = nth_per_core * ncores; 5080 // An array to keep number of threads per each context 5081 int *newarr = (int *)__kmp_allocate(sizeof(int) * nproc); 5082 for (int i = 0; i < nproc; i++) { 5083 newarr[i] = 0; 5084 } 5085 5086 int nth = nthreads; 5087 int flag = 0; 5088 while (nth > 0) { 5089 for (int j = 1; j <= nth_per_core; j++) { 5090 int cnt = ncores_with_x_to_max_procs[j]; 5091 for (int i = 0; i < ncores; i++) { 5092 // Skip the core with 0 processors 5093 if (nproc_at_core[i] == 0) { 5094 continue; 5095 } 5096 for (int k = 0; k < nth_per_core; k++) { 5097 if (procarr[i * nth_per_core + k] != -1) { 5098 if (newarr[i * nth_per_core + k] == 0) { 5099 newarr[i * nth_per_core + k] = 1; 5100 cnt--; 5101 nth--; 5102 break; 5103 } else { 5104 if (flag != 0) { 5105 newarr[i * nth_per_core + k]++; 5106 cnt--; 5107 nth--; 5108 break; 5109 } 5110 } 5111 } 5112 } 5113 if (cnt == 0 || nth == 0) { 5114 break; 5115 } 5116 } 5117 if (nth == 0) { 5118 break; 5119 } 5120 } 5121 flag = 1; 5122 } 5123 int sum = 0; 5124 for (int i = 0; i < nproc; i++) { 5125 sum += newarr[i]; 5126 if (sum > tid) { 5127 if (fine_gran) { 5128 int osID = procarr[i]; 5129 KMP_CPU_SET(osID, mask); 5130 } else { 5131 int coreID = i / nth_per_core; 5132 for (int ii = 0; ii < nth_per_core; ii++) { 5133 int osID = procarr[coreID * nth_per_core + ii]; 5134 if (osID != -1) { 5135 KMP_CPU_SET(osID, mask); 5136 } 5137 } 5138 } 5139 break; 5140 } 5141 } 5142 __kmp_free(newarr); 5143 } 5144 5145 if (__kmp_affinity_verbose) { 5146 char buf[KMP_AFFIN_MASK_PRINT_LEN]; 5147 __kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN, mask); 5148 KMP_INFORM(BoundToOSProcSet, "KMP_AFFINITY", (kmp_int32)getpid(), 5149 __kmp_gettid(), tid, buf); 5150 } 5151 __kmp_set_system_affinity(mask, TRUE); 5152 } 5153 } 5154 5155 #if KMP_OS_LINUX || KMP_OS_FREEBSD 5156 // We don't need this entry for Windows because 5157 // there is GetProcessAffinityMask() api 5158 // 5159 // The intended usage is indicated by these steps: 5160 // 1) The user gets the current affinity mask 5161 // 2) Then sets the affinity by calling this function 5162 // 3) Error check the return value 5163 // 4) Use non-OpenMP parallelization 5164 // 5) Reset the affinity to what was stored in step 1) 5165 #ifdef __cplusplus 5166 extern "C" 5167 #endif 5168 int 5169 kmp_set_thread_affinity_mask_initial() 5170 // the function returns 0 on success, 5171 // -1 if we cannot bind thread 5172 // >0 (errno) if an error happened during binding 5173 { 5174 int gtid = __kmp_get_gtid(); 5175 if (gtid < 0) { 5176 // Do not touch non-omp threads 5177 KA_TRACE(30, ("kmp_set_thread_affinity_mask_initial: " 5178 "non-omp thread, returning\n")); 5179 return -1; 5180 } 5181 if (!KMP_AFFINITY_CAPABLE() || !__kmp_init_middle) { 5182 KA_TRACE(30, ("kmp_set_thread_affinity_mask_initial: " 5183 "affinity not initialized, returning\n")); 5184 return -1; 5185 } 5186 KA_TRACE(30, ("kmp_set_thread_affinity_mask_initial: " 5187 "set full mask for thread %d\n", 5188 gtid)); 5189 KMP_DEBUG_ASSERT(__kmp_affin_fullMask != NULL); 5190 return __kmp_set_system_affinity(__kmp_affin_fullMask, FALSE); 5191 } 5192 #endif 5193 5194 #endif // KMP_AFFINITY_SUPPORTED 5195