1 /* 2 * kmp_affinity.cpp -- affinity management 3 */ 4 5 //===----------------------------------------------------------------------===// 6 // 7 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 8 // See https://llvm.org/LICENSE.txt for license information. 9 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "kmp.h" 14 #include "kmp_affinity.h" 15 #include "kmp_i18n.h" 16 #include "kmp_io.h" 17 #include "kmp_str.h" 18 #include "kmp_wrapper_getpid.h" 19 #if KMP_USE_HIER_SCHED 20 #include "kmp_dispatch_hier.h" 21 #endif 22 #if KMP_USE_HWLOC 23 // Copied from hwloc 24 #define HWLOC_GROUP_KIND_INTEL_MODULE 102 25 #define HWLOC_GROUP_KIND_INTEL_TILE 103 26 #define HWLOC_GROUP_KIND_INTEL_DIE 104 27 #define HWLOC_GROUP_KIND_WINDOWS_PROCESSOR_GROUP 220 28 #endif 29 #include <ctype.h> 30 31 // The machine topology 32 kmp_topology_t *__kmp_topology = nullptr; 33 // KMP_HW_SUBSET environment variable 34 kmp_hw_subset_t *__kmp_hw_subset = nullptr; 35 36 // Store the real or imagined machine hierarchy here 37 static hierarchy_info machine_hierarchy; 38 39 void __kmp_cleanup_hierarchy() { machine_hierarchy.fini(); } 40 41 #if KMP_AFFINITY_SUPPORTED 42 // Helper class to see if place lists further restrict the fullMask 43 class kmp_full_mask_modifier_t { 44 kmp_affin_mask_t *mask; 45 46 public: 47 kmp_full_mask_modifier_t() { 48 KMP_CPU_ALLOC(mask); 49 KMP_CPU_ZERO(mask); 50 } 51 ~kmp_full_mask_modifier_t() { 52 KMP_CPU_FREE(mask); 53 mask = nullptr; 54 } 55 void include(const kmp_affin_mask_t *other) { KMP_CPU_UNION(mask, other); } 56 // If the new full mask is different from the current full mask, 57 // then switch them. Returns true if full mask was affected, false otherwise. 58 bool restrict_to_mask() { 59 // See if the new mask further restricts or changes the full mask 60 if (KMP_CPU_EQUAL(__kmp_affin_fullMask, mask) || KMP_CPU_ISEMPTY(mask)) 61 return false; 62 return __kmp_topology->restrict_to_mask(mask); 63 } 64 }; 65 66 static inline const char * 67 __kmp_get_affinity_env_var(const kmp_affinity_t &affinity, 68 bool for_binding = false) { 69 if (affinity.flags.omp_places) { 70 if (for_binding) 71 return "OMP_PROC_BIND"; 72 return "OMP_PLACES"; 73 } 74 return affinity.env_var; 75 } 76 #endif // KMP_AFFINITY_SUPPORTED 77 78 void __kmp_get_hierarchy(kmp_uint32 nproc, kmp_bstate_t *thr_bar) { 79 kmp_uint32 depth; 80 // The test below is true if affinity is available, but set to "none". Need to 81 // init on first use of hierarchical barrier. 82 if (TCR_1(machine_hierarchy.uninitialized)) 83 machine_hierarchy.init(nproc); 84 85 // Adjust the hierarchy in case num threads exceeds original 86 if (nproc > machine_hierarchy.base_num_threads) 87 machine_hierarchy.resize(nproc); 88 89 depth = machine_hierarchy.depth; 90 KMP_DEBUG_ASSERT(depth > 0); 91 92 thr_bar->depth = depth; 93 __kmp_type_convert(machine_hierarchy.numPerLevel[0] - 1, 94 &(thr_bar->base_leaf_kids)); 95 thr_bar->skip_per_level = machine_hierarchy.skipPerLevel; 96 } 97 98 static int nCoresPerPkg, nPackages; 99 static int __kmp_nThreadsPerCore; 100 #ifndef KMP_DFLT_NTH_CORES 101 static int __kmp_ncores; 102 #endif 103 104 const char *__kmp_hw_get_catalog_string(kmp_hw_t type, bool plural) { 105 switch (type) { 106 case KMP_HW_SOCKET: 107 return ((plural) ? KMP_I18N_STR(Sockets) : KMP_I18N_STR(Socket)); 108 case KMP_HW_DIE: 109 return ((plural) ? KMP_I18N_STR(Dice) : KMP_I18N_STR(Die)); 110 case KMP_HW_MODULE: 111 return ((plural) ? KMP_I18N_STR(Modules) : KMP_I18N_STR(Module)); 112 case KMP_HW_TILE: 113 return ((plural) ? KMP_I18N_STR(Tiles) : KMP_I18N_STR(Tile)); 114 case KMP_HW_NUMA: 115 return ((plural) ? KMP_I18N_STR(NumaDomains) : KMP_I18N_STR(NumaDomain)); 116 case KMP_HW_L3: 117 return ((plural) ? KMP_I18N_STR(L3Caches) : KMP_I18N_STR(L3Cache)); 118 case KMP_HW_L2: 119 return ((plural) ? KMP_I18N_STR(L2Caches) : KMP_I18N_STR(L2Cache)); 120 case KMP_HW_L1: 121 return ((plural) ? KMP_I18N_STR(L1Caches) : KMP_I18N_STR(L1Cache)); 122 case KMP_HW_LLC: 123 return ((plural) ? KMP_I18N_STR(LLCaches) : KMP_I18N_STR(LLCache)); 124 case KMP_HW_CORE: 125 return ((plural) ? KMP_I18N_STR(Cores) : KMP_I18N_STR(Core)); 126 case KMP_HW_THREAD: 127 return ((plural) ? KMP_I18N_STR(Threads) : KMP_I18N_STR(Thread)); 128 case KMP_HW_PROC_GROUP: 129 return ((plural) ? KMP_I18N_STR(ProcGroups) : KMP_I18N_STR(ProcGroup)); 130 case KMP_HW_UNKNOWN: 131 case KMP_HW_LAST: 132 return KMP_I18N_STR(Unknown); 133 } 134 KMP_ASSERT2(false, "Unhandled kmp_hw_t enumeration"); 135 KMP_BUILTIN_UNREACHABLE; 136 } 137 138 const char *__kmp_hw_get_keyword(kmp_hw_t type, bool plural) { 139 switch (type) { 140 case KMP_HW_SOCKET: 141 return ((plural) ? "sockets" : "socket"); 142 case KMP_HW_DIE: 143 return ((plural) ? "dice" : "die"); 144 case KMP_HW_MODULE: 145 return ((plural) ? "modules" : "module"); 146 case KMP_HW_TILE: 147 return ((plural) ? "tiles" : "tile"); 148 case KMP_HW_NUMA: 149 return ((plural) ? "numa_domains" : "numa_domain"); 150 case KMP_HW_L3: 151 return ((plural) ? "l3_caches" : "l3_cache"); 152 case KMP_HW_L2: 153 return ((plural) ? "l2_caches" : "l2_cache"); 154 case KMP_HW_L1: 155 return ((plural) ? "l1_caches" : "l1_cache"); 156 case KMP_HW_LLC: 157 return ((plural) ? "ll_caches" : "ll_cache"); 158 case KMP_HW_CORE: 159 return ((plural) ? "cores" : "core"); 160 case KMP_HW_THREAD: 161 return ((plural) ? "threads" : "thread"); 162 case KMP_HW_PROC_GROUP: 163 return ((plural) ? "proc_groups" : "proc_group"); 164 case KMP_HW_UNKNOWN: 165 case KMP_HW_LAST: 166 return ((plural) ? "unknowns" : "unknown"); 167 } 168 KMP_ASSERT2(false, "Unhandled kmp_hw_t enumeration"); 169 KMP_BUILTIN_UNREACHABLE; 170 } 171 172 const char *__kmp_hw_get_core_type_string(kmp_hw_core_type_t type) { 173 switch (type) { 174 case KMP_HW_CORE_TYPE_UNKNOWN: 175 case KMP_HW_MAX_NUM_CORE_TYPES: 176 return "unknown"; 177 #if KMP_ARCH_X86 || KMP_ARCH_X86_64 178 case KMP_HW_CORE_TYPE_ATOM: 179 return "Intel Atom(R) processor"; 180 case KMP_HW_CORE_TYPE_CORE: 181 return "Intel(R) Core(TM) processor"; 182 #endif 183 } 184 KMP_ASSERT2(false, "Unhandled kmp_hw_core_type_t enumeration"); 185 KMP_BUILTIN_UNREACHABLE; 186 } 187 188 #if KMP_AFFINITY_SUPPORTED 189 // If affinity is supported, check the affinity 190 // verbose and warning flags before printing warning 191 #define KMP_AFF_WARNING(s, ...) \ 192 if (s.flags.verbose || (s.flags.warnings && (s.type != affinity_none))) { \ 193 KMP_WARNING(__VA_ARGS__); \ 194 } 195 #else 196 #define KMP_AFF_WARNING(s, ...) KMP_WARNING(__VA_ARGS__) 197 #endif 198 199 //////////////////////////////////////////////////////////////////////////////// 200 // kmp_hw_thread_t methods 201 int kmp_hw_thread_t::compare_ids(const void *a, const void *b) { 202 const kmp_hw_thread_t *ahwthread = (const kmp_hw_thread_t *)a; 203 const kmp_hw_thread_t *bhwthread = (const kmp_hw_thread_t *)b; 204 int depth = __kmp_topology->get_depth(); 205 for (int level = 0; level < depth; ++level) { 206 if (ahwthread->ids[level] < bhwthread->ids[level]) 207 return -1; 208 else if (ahwthread->ids[level] > bhwthread->ids[level]) 209 return 1; 210 } 211 if (ahwthread->os_id < bhwthread->os_id) 212 return -1; 213 else if (ahwthread->os_id > bhwthread->os_id) 214 return 1; 215 return 0; 216 } 217 218 #if KMP_AFFINITY_SUPPORTED 219 int kmp_hw_thread_t::compare_compact(const void *a, const void *b) { 220 int i; 221 const kmp_hw_thread_t *aa = (const kmp_hw_thread_t *)a; 222 const kmp_hw_thread_t *bb = (const kmp_hw_thread_t *)b; 223 int depth = __kmp_topology->get_depth(); 224 int compact = __kmp_topology->compact; 225 KMP_DEBUG_ASSERT(compact >= 0); 226 KMP_DEBUG_ASSERT(compact <= depth); 227 for (i = 0; i < compact; i++) { 228 int j = depth - i - 1; 229 if (aa->sub_ids[j] < bb->sub_ids[j]) 230 return -1; 231 if (aa->sub_ids[j] > bb->sub_ids[j]) 232 return 1; 233 } 234 for (; i < depth; i++) { 235 int j = i - compact; 236 if (aa->sub_ids[j] < bb->sub_ids[j]) 237 return -1; 238 if (aa->sub_ids[j] > bb->sub_ids[j]) 239 return 1; 240 } 241 return 0; 242 } 243 #endif 244 245 void kmp_hw_thread_t::print() const { 246 int depth = __kmp_topology->get_depth(); 247 printf("%4d ", os_id); 248 for (int i = 0; i < depth; ++i) { 249 printf("%4d ", ids[i]); 250 } 251 if (attrs) { 252 if (attrs.is_core_type_valid()) 253 printf(" (%s)", __kmp_hw_get_core_type_string(attrs.get_core_type())); 254 if (attrs.is_core_eff_valid()) 255 printf(" (eff=%d)", attrs.get_core_eff()); 256 } 257 if (leader) 258 printf(" (leader)"); 259 printf("\n"); 260 } 261 262 //////////////////////////////////////////////////////////////////////////////// 263 // kmp_topology_t methods 264 265 // Add a layer to the topology based on the ids. Assume the topology 266 // is perfectly nested (i.e., so no object has more than one parent) 267 void kmp_topology_t::_insert_layer(kmp_hw_t type, const int *ids) { 268 // Figure out where the layer should go by comparing the ids of the current 269 // layers with the new ids 270 int target_layer; 271 int previous_id = kmp_hw_thread_t::UNKNOWN_ID; 272 int previous_new_id = kmp_hw_thread_t::UNKNOWN_ID; 273 274 // Start from the highest layer and work down to find target layer 275 // If new layer is equal to another layer then put the new layer above 276 for (target_layer = 0; target_layer < depth; ++target_layer) { 277 bool layers_equal = true; 278 bool strictly_above_target_layer = false; 279 for (int i = 0; i < num_hw_threads; ++i) { 280 int id = hw_threads[i].ids[target_layer]; 281 int new_id = ids[i]; 282 if (id != previous_id && new_id == previous_new_id) { 283 // Found the layer we are strictly above 284 strictly_above_target_layer = true; 285 layers_equal = false; 286 break; 287 } else if (id == previous_id && new_id != previous_new_id) { 288 // Found a layer we are below. Move to next layer and check. 289 layers_equal = false; 290 break; 291 } 292 previous_id = id; 293 previous_new_id = new_id; 294 } 295 if (strictly_above_target_layer || layers_equal) 296 break; 297 } 298 299 // Found the layer we are above. Now move everything to accommodate the new 300 // layer. And put the new ids and type into the topology. 301 for (int i = depth - 1, j = depth; i >= target_layer; --i, --j) 302 types[j] = types[i]; 303 types[target_layer] = type; 304 for (int k = 0; k < num_hw_threads; ++k) { 305 for (int i = depth - 1, j = depth; i >= target_layer; --i, --j) 306 hw_threads[k].ids[j] = hw_threads[k].ids[i]; 307 hw_threads[k].ids[target_layer] = ids[k]; 308 } 309 equivalent[type] = type; 310 depth++; 311 } 312 313 #if KMP_GROUP_AFFINITY 314 // Insert the Windows Processor Group structure into the topology 315 void kmp_topology_t::_insert_windows_proc_groups() { 316 // Do not insert the processor group structure for a single group 317 if (__kmp_num_proc_groups == 1) 318 return; 319 kmp_affin_mask_t *mask; 320 int *ids = (int *)__kmp_allocate(sizeof(int) * num_hw_threads); 321 KMP_CPU_ALLOC(mask); 322 for (int i = 0; i < num_hw_threads; ++i) { 323 KMP_CPU_ZERO(mask); 324 KMP_CPU_SET(hw_threads[i].os_id, mask); 325 ids[i] = __kmp_get_proc_group(mask); 326 } 327 KMP_CPU_FREE(mask); 328 _insert_layer(KMP_HW_PROC_GROUP, ids); 329 __kmp_free(ids); 330 331 // sort topology after adding proc groups 332 __kmp_topology->sort_ids(); 333 } 334 #endif 335 336 // Remove layers that don't add information to the topology. 337 // This is done by having the layer take on the id = UNKNOWN_ID (-1) 338 void kmp_topology_t::_remove_radix1_layers() { 339 int preference[KMP_HW_LAST]; 340 int top_index1, top_index2; 341 // Set up preference associative array 342 preference[KMP_HW_SOCKET] = 110; 343 preference[KMP_HW_PROC_GROUP] = 100; 344 preference[KMP_HW_CORE] = 95; 345 preference[KMP_HW_THREAD] = 90; 346 preference[KMP_HW_NUMA] = 85; 347 preference[KMP_HW_DIE] = 80; 348 preference[KMP_HW_TILE] = 75; 349 preference[KMP_HW_MODULE] = 73; 350 preference[KMP_HW_L3] = 70; 351 preference[KMP_HW_L2] = 65; 352 preference[KMP_HW_L1] = 60; 353 preference[KMP_HW_LLC] = 5; 354 top_index1 = 0; 355 top_index2 = 1; 356 while (top_index1 < depth - 1 && top_index2 < depth) { 357 kmp_hw_t type1 = types[top_index1]; 358 kmp_hw_t type2 = types[top_index2]; 359 KMP_ASSERT_VALID_HW_TYPE(type1); 360 KMP_ASSERT_VALID_HW_TYPE(type2); 361 // Do not allow the three main topology levels (sockets, cores, threads) to 362 // be compacted down 363 if ((type1 == KMP_HW_THREAD || type1 == KMP_HW_CORE || 364 type1 == KMP_HW_SOCKET) && 365 (type2 == KMP_HW_THREAD || type2 == KMP_HW_CORE || 366 type2 == KMP_HW_SOCKET)) { 367 top_index1 = top_index2++; 368 continue; 369 } 370 bool radix1 = true; 371 bool all_same = true; 372 int id1 = hw_threads[0].ids[top_index1]; 373 int id2 = hw_threads[0].ids[top_index2]; 374 int pref1 = preference[type1]; 375 int pref2 = preference[type2]; 376 for (int hwidx = 1; hwidx < num_hw_threads; ++hwidx) { 377 if (hw_threads[hwidx].ids[top_index1] == id1 && 378 hw_threads[hwidx].ids[top_index2] != id2) { 379 radix1 = false; 380 break; 381 } 382 if (hw_threads[hwidx].ids[top_index2] != id2) 383 all_same = false; 384 id1 = hw_threads[hwidx].ids[top_index1]; 385 id2 = hw_threads[hwidx].ids[top_index2]; 386 } 387 if (radix1) { 388 // Select the layer to remove based on preference 389 kmp_hw_t remove_type, keep_type; 390 int remove_layer, remove_layer_ids; 391 if (pref1 > pref2) { 392 remove_type = type2; 393 remove_layer = remove_layer_ids = top_index2; 394 keep_type = type1; 395 } else { 396 remove_type = type1; 397 remove_layer = remove_layer_ids = top_index1; 398 keep_type = type2; 399 } 400 // If all the indexes for the second (deeper) layer are the same. 401 // e.g., all are zero, then make sure to keep the first layer's ids 402 if (all_same) 403 remove_layer_ids = top_index2; 404 // Remove radix one type by setting the equivalence, removing the id from 405 // the hw threads and removing the layer from types and depth 406 set_equivalent_type(remove_type, keep_type); 407 for (int idx = 0; idx < num_hw_threads; ++idx) { 408 kmp_hw_thread_t &hw_thread = hw_threads[idx]; 409 for (int d = remove_layer_ids; d < depth - 1; ++d) 410 hw_thread.ids[d] = hw_thread.ids[d + 1]; 411 } 412 for (int idx = remove_layer; idx < depth - 1; ++idx) 413 types[idx] = types[idx + 1]; 414 depth--; 415 } else { 416 top_index1 = top_index2++; 417 } 418 } 419 KMP_ASSERT(depth > 0); 420 } 421 422 void kmp_topology_t::_set_last_level_cache() { 423 if (get_equivalent_type(KMP_HW_L3) != KMP_HW_UNKNOWN) 424 set_equivalent_type(KMP_HW_LLC, KMP_HW_L3); 425 else if (get_equivalent_type(KMP_HW_L2) != KMP_HW_UNKNOWN) 426 set_equivalent_type(KMP_HW_LLC, KMP_HW_L2); 427 #if KMP_MIC_SUPPORTED 428 else if (__kmp_mic_type == mic3) { 429 if (get_equivalent_type(KMP_HW_L2) != KMP_HW_UNKNOWN) 430 set_equivalent_type(KMP_HW_LLC, KMP_HW_L2); 431 else if (get_equivalent_type(KMP_HW_TILE) != KMP_HW_UNKNOWN) 432 set_equivalent_type(KMP_HW_LLC, KMP_HW_TILE); 433 // L2/Tile wasn't detected so just say L1 434 else 435 set_equivalent_type(KMP_HW_LLC, KMP_HW_L1); 436 } 437 #endif 438 else if (get_equivalent_type(KMP_HW_L1) != KMP_HW_UNKNOWN) 439 set_equivalent_type(KMP_HW_LLC, KMP_HW_L1); 440 // Fallback is to set last level cache to socket or core 441 if (get_equivalent_type(KMP_HW_LLC) == KMP_HW_UNKNOWN) { 442 if (get_equivalent_type(KMP_HW_SOCKET) != KMP_HW_UNKNOWN) 443 set_equivalent_type(KMP_HW_LLC, KMP_HW_SOCKET); 444 else if (get_equivalent_type(KMP_HW_CORE) != KMP_HW_UNKNOWN) 445 set_equivalent_type(KMP_HW_LLC, KMP_HW_CORE); 446 } 447 KMP_ASSERT(get_equivalent_type(KMP_HW_LLC) != KMP_HW_UNKNOWN); 448 } 449 450 // Gather the count of each topology layer and the ratio 451 void kmp_topology_t::_gather_enumeration_information() { 452 int previous_id[KMP_HW_LAST]; 453 int max[KMP_HW_LAST]; 454 455 for (int i = 0; i < depth; ++i) { 456 previous_id[i] = kmp_hw_thread_t::UNKNOWN_ID; 457 max[i] = 0; 458 count[i] = 0; 459 ratio[i] = 0; 460 } 461 int core_level = get_level(KMP_HW_CORE); 462 for (int i = 0; i < num_hw_threads; ++i) { 463 kmp_hw_thread_t &hw_thread = hw_threads[i]; 464 for (int layer = 0; layer < depth; ++layer) { 465 int id = hw_thread.ids[layer]; 466 if (id != previous_id[layer]) { 467 // Add an additional increment to each count 468 for (int l = layer; l < depth; ++l) 469 count[l]++; 470 // Keep track of topology layer ratio statistics 471 max[layer]++; 472 for (int l = layer + 1; l < depth; ++l) { 473 if (max[l] > ratio[l]) 474 ratio[l] = max[l]; 475 max[l] = 1; 476 } 477 // Figure out the number of different core types 478 // and efficiencies for hybrid CPUs 479 if (__kmp_is_hybrid_cpu() && core_level >= 0 && layer <= core_level) { 480 if (hw_thread.attrs.is_core_eff_valid() && 481 hw_thread.attrs.core_eff >= num_core_efficiencies) { 482 // Because efficiencies can range from 0 to max efficiency - 1, 483 // the number of efficiencies is max efficiency + 1 484 num_core_efficiencies = hw_thread.attrs.core_eff + 1; 485 } 486 if (hw_thread.attrs.is_core_type_valid()) { 487 bool found = false; 488 for (int j = 0; j < num_core_types; ++j) { 489 if (hw_thread.attrs.get_core_type() == core_types[j]) { 490 found = true; 491 break; 492 } 493 } 494 if (!found) { 495 KMP_ASSERT(num_core_types < KMP_HW_MAX_NUM_CORE_TYPES); 496 core_types[num_core_types++] = hw_thread.attrs.get_core_type(); 497 } 498 } 499 } 500 break; 501 } 502 } 503 for (int layer = 0; layer < depth; ++layer) { 504 previous_id[layer] = hw_thread.ids[layer]; 505 } 506 } 507 for (int layer = 0; layer < depth; ++layer) { 508 if (max[layer] > ratio[layer]) 509 ratio[layer] = max[layer]; 510 } 511 } 512 513 int kmp_topology_t::_get_ncores_with_attr(const kmp_hw_attr_t &attr, 514 int above_level, 515 bool find_all) const { 516 int current, current_max; 517 int previous_id[KMP_HW_LAST]; 518 for (int i = 0; i < depth; ++i) 519 previous_id[i] = kmp_hw_thread_t::UNKNOWN_ID; 520 int core_level = get_level(KMP_HW_CORE); 521 if (find_all) 522 above_level = -1; 523 KMP_ASSERT(above_level < core_level); 524 current_max = 0; 525 current = 0; 526 for (int i = 0; i < num_hw_threads; ++i) { 527 kmp_hw_thread_t &hw_thread = hw_threads[i]; 528 if (!find_all && hw_thread.ids[above_level] != previous_id[above_level]) { 529 if (current > current_max) 530 current_max = current; 531 current = hw_thread.attrs.contains(attr); 532 } else { 533 for (int level = above_level + 1; level <= core_level; ++level) { 534 if (hw_thread.ids[level] != previous_id[level]) { 535 if (hw_thread.attrs.contains(attr)) 536 current++; 537 break; 538 } 539 } 540 } 541 for (int level = 0; level < depth; ++level) 542 previous_id[level] = hw_thread.ids[level]; 543 } 544 if (current > current_max) 545 current_max = current; 546 return current_max; 547 } 548 549 // Find out if the topology is uniform 550 void kmp_topology_t::_discover_uniformity() { 551 int num = 1; 552 for (int level = 0; level < depth; ++level) 553 num *= ratio[level]; 554 flags.uniform = (num == count[depth - 1]); 555 } 556 557 // Set all the sub_ids for each hardware thread 558 void kmp_topology_t::_set_sub_ids() { 559 int previous_id[KMP_HW_LAST]; 560 int sub_id[KMP_HW_LAST]; 561 562 for (int i = 0; i < depth; ++i) { 563 previous_id[i] = -1; 564 sub_id[i] = -1; 565 } 566 for (int i = 0; i < num_hw_threads; ++i) { 567 kmp_hw_thread_t &hw_thread = hw_threads[i]; 568 // Setup the sub_id 569 for (int j = 0; j < depth; ++j) { 570 if (hw_thread.ids[j] != previous_id[j]) { 571 sub_id[j]++; 572 for (int k = j + 1; k < depth; ++k) { 573 sub_id[k] = 0; 574 } 575 break; 576 } 577 } 578 // Set previous_id 579 for (int j = 0; j < depth; ++j) { 580 previous_id[j] = hw_thread.ids[j]; 581 } 582 // Set the sub_ids field 583 for (int j = 0; j < depth; ++j) { 584 hw_thread.sub_ids[j] = sub_id[j]; 585 } 586 } 587 } 588 589 void kmp_topology_t::_set_globals() { 590 // Set nCoresPerPkg, nPackages, __kmp_nThreadsPerCore, __kmp_ncores 591 int core_level, thread_level, package_level; 592 package_level = get_level(KMP_HW_SOCKET); 593 #if KMP_GROUP_AFFINITY 594 if (package_level == -1) 595 package_level = get_level(KMP_HW_PROC_GROUP); 596 #endif 597 core_level = get_level(KMP_HW_CORE); 598 thread_level = get_level(KMP_HW_THREAD); 599 600 KMP_ASSERT(core_level != -1); 601 KMP_ASSERT(thread_level != -1); 602 603 __kmp_nThreadsPerCore = calculate_ratio(thread_level, core_level); 604 if (package_level != -1) { 605 nCoresPerPkg = calculate_ratio(core_level, package_level); 606 nPackages = get_count(package_level); 607 } else { 608 // assume one socket 609 nCoresPerPkg = get_count(core_level); 610 nPackages = 1; 611 } 612 #ifndef KMP_DFLT_NTH_CORES 613 __kmp_ncores = get_count(core_level); 614 #endif 615 } 616 617 kmp_topology_t *kmp_topology_t::allocate(int nproc, int ndepth, 618 const kmp_hw_t *types) { 619 kmp_topology_t *retval; 620 // Allocate all data in one large allocation 621 size_t size = sizeof(kmp_topology_t) + sizeof(kmp_hw_thread_t) * nproc + 622 sizeof(int) * (size_t)KMP_HW_LAST * 3; 623 char *bytes = (char *)__kmp_allocate(size); 624 retval = (kmp_topology_t *)bytes; 625 if (nproc > 0) { 626 retval->hw_threads = (kmp_hw_thread_t *)(bytes + sizeof(kmp_topology_t)); 627 } else { 628 retval->hw_threads = nullptr; 629 } 630 retval->num_hw_threads = nproc; 631 retval->depth = ndepth; 632 int *arr = 633 (int *)(bytes + sizeof(kmp_topology_t) + sizeof(kmp_hw_thread_t) * nproc); 634 retval->types = (kmp_hw_t *)arr; 635 retval->ratio = arr + (size_t)KMP_HW_LAST; 636 retval->count = arr + 2 * (size_t)KMP_HW_LAST; 637 retval->num_core_efficiencies = 0; 638 retval->num_core_types = 0; 639 retval->compact = 0; 640 for (int i = 0; i < KMP_HW_MAX_NUM_CORE_TYPES; ++i) 641 retval->core_types[i] = KMP_HW_CORE_TYPE_UNKNOWN; 642 KMP_FOREACH_HW_TYPE(type) { retval->equivalent[type] = KMP_HW_UNKNOWN; } 643 for (int i = 0; i < ndepth; ++i) { 644 retval->types[i] = types[i]; 645 retval->equivalent[types[i]] = types[i]; 646 } 647 return retval; 648 } 649 650 void kmp_topology_t::deallocate(kmp_topology_t *topology) { 651 if (topology) 652 __kmp_free(topology); 653 } 654 655 bool kmp_topology_t::check_ids() const { 656 // Assume ids have been sorted 657 if (num_hw_threads == 0) 658 return true; 659 for (int i = 1; i < num_hw_threads; ++i) { 660 kmp_hw_thread_t ¤t_thread = hw_threads[i]; 661 kmp_hw_thread_t &previous_thread = hw_threads[i - 1]; 662 bool unique = false; 663 for (int j = 0; j < depth; ++j) { 664 if (previous_thread.ids[j] != current_thread.ids[j]) { 665 unique = true; 666 break; 667 } 668 } 669 if (unique) 670 continue; 671 return false; 672 } 673 return true; 674 } 675 676 void kmp_topology_t::dump() const { 677 printf("***********************\n"); 678 printf("*** __kmp_topology: ***\n"); 679 printf("***********************\n"); 680 printf("* depth: %d\n", depth); 681 682 printf("* types: "); 683 for (int i = 0; i < depth; ++i) 684 printf("%15s ", __kmp_hw_get_keyword(types[i])); 685 printf("\n"); 686 687 printf("* ratio: "); 688 for (int i = 0; i < depth; ++i) { 689 printf("%15d ", ratio[i]); 690 } 691 printf("\n"); 692 693 printf("* count: "); 694 for (int i = 0; i < depth; ++i) { 695 printf("%15d ", count[i]); 696 } 697 printf("\n"); 698 699 printf("* num_core_eff: %d\n", num_core_efficiencies); 700 printf("* num_core_types: %d\n", num_core_types); 701 printf("* core_types: "); 702 for (int i = 0; i < num_core_types; ++i) 703 printf("%3d ", core_types[i]); 704 printf("\n"); 705 706 printf("* equivalent map:\n"); 707 KMP_FOREACH_HW_TYPE(i) { 708 const char *key = __kmp_hw_get_keyword(i); 709 const char *value = __kmp_hw_get_keyword(equivalent[i]); 710 printf("%-15s -> %-15s\n", key, value); 711 } 712 713 printf("* uniform: %s\n", (is_uniform() ? "Yes" : "No")); 714 715 printf("* num_hw_threads: %d\n", num_hw_threads); 716 printf("* hw_threads:\n"); 717 for (int i = 0; i < num_hw_threads; ++i) { 718 hw_threads[i].print(); 719 } 720 printf("***********************\n"); 721 } 722 723 void kmp_topology_t::print(const char *env_var) const { 724 kmp_str_buf_t buf; 725 int print_types_depth; 726 __kmp_str_buf_init(&buf); 727 kmp_hw_t print_types[KMP_HW_LAST + 2]; 728 729 // Num Available Threads 730 if (num_hw_threads) { 731 KMP_INFORM(AvailableOSProc, env_var, num_hw_threads); 732 } else { 733 KMP_INFORM(AvailableOSProc, env_var, __kmp_xproc); 734 } 735 736 // Uniform or not 737 if (is_uniform()) { 738 KMP_INFORM(Uniform, env_var); 739 } else { 740 KMP_INFORM(NonUniform, env_var); 741 } 742 743 // Equivalent types 744 KMP_FOREACH_HW_TYPE(type) { 745 kmp_hw_t eq_type = equivalent[type]; 746 if (eq_type != KMP_HW_UNKNOWN && eq_type != type) { 747 KMP_INFORM(AffEqualTopologyTypes, env_var, 748 __kmp_hw_get_catalog_string(type), 749 __kmp_hw_get_catalog_string(eq_type)); 750 } 751 } 752 753 // Quick topology 754 KMP_ASSERT(depth > 0 && depth <= (int)KMP_HW_LAST); 755 // Create a print types array that always guarantees printing 756 // the core and thread level 757 print_types_depth = 0; 758 for (int level = 0; level < depth; ++level) 759 print_types[print_types_depth++] = types[level]; 760 if (equivalent[KMP_HW_CORE] != KMP_HW_CORE) { 761 // Force in the core level for quick topology 762 if (print_types[print_types_depth - 1] == KMP_HW_THREAD) { 763 // Force core before thread e.g., 1 socket X 2 threads/socket 764 // becomes 1 socket X 1 core/socket X 2 threads/socket 765 print_types[print_types_depth - 1] = KMP_HW_CORE; 766 print_types[print_types_depth++] = KMP_HW_THREAD; 767 } else { 768 print_types[print_types_depth++] = KMP_HW_CORE; 769 } 770 } 771 // Always put threads at very end of quick topology 772 if (equivalent[KMP_HW_THREAD] != KMP_HW_THREAD) 773 print_types[print_types_depth++] = KMP_HW_THREAD; 774 775 __kmp_str_buf_clear(&buf); 776 kmp_hw_t numerator_type; 777 kmp_hw_t denominator_type = KMP_HW_UNKNOWN; 778 int core_level = get_level(KMP_HW_CORE); 779 int ncores = get_count(core_level); 780 781 for (int plevel = 0, level = 0; plevel < print_types_depth; ++plevel) { 782 int c; 783 bool plural; 784 numerator_type = print_types[plevel]; 785 KMP_ASSERT_VALID_HW_TYPE(numerator_type); 786 if (equivalent[numerator_type] != numerator_type) 787 c = 1; 788 else 789 c = get_ratio(level++); 790 plural = (c > 1); 791 if (plevel == 0) { 792 __kmp_str_buf_print(&buf, "%d %s", c, 793 __kmp_hw_get_catalog_string(numerator_type, plural)); 794 } else { 795 __kmp_str_buf_print(&buf, " x %d %s/%s", c, 796 __kmp_hw_get_catalog_string(numerator_type, plural), 797 __kmp_hw_get_catalog_string(denominator_type)); 798 } 799 denominator_type = numerator_type; 800 } 801 KMP_INFORM(TopologyGeneric, env_var, buf.str, ncores); 802 803 // Hybrid topology information 804 if (__kmp_is_hybrid_cpu()) { 805 for (int i = 0; i < num_core_types; ++i) { 806 kmp_hw_core_type_t core_type = core_types[i]; 807 kmp_hw_attr_t attr; 808 attr.clear(); 809 attr.set_core_type(core_type); 810 int ncores = get_ncores_with_attr(attr); 811 if (ncores > 0) { 812 KMP_INFORM(TopologyHybrid, env_var, ncores, 813 __kmp_hw_get_core_type_string(core_type)); 814 KMP_ASSERT(num_core_efficiencies <= KMP_HW_MAX_NUM_CORE_EFFS) 815 for (int eff = 0; eff < num_core_efficiencies; ++eff) { 816 attr.set_core_eff(eff); 817 int ncores_with_eff = get_ncores_with_attr(attr); 818 if (ncores_with_eff > 0) { 819 KMP_INFORM(TopologyHybridCoreEff, env_var, ncores_with_eff, eff); 820 } 821 } 822 } 823 } 824 } 825 826 if (num_hw_threads <= 0) { 827 __kmp_str_buf_free(&buf); 828 return; 829 } 830 831 // Full OS proc to hardware thread map 832 KMP_INFORM(OSProcToPhysicalThreadMap, env_var); 833 for (int i = 0; i < num_hw_threads; i++) { 834 __kmp_str_buf_clear(&buf); 835 for (int level = 0; level < depth; ++level) { 836 kmp_hw_t type = types[level]; 837 __kmp_str_buf_print(&buf, "%s ", __kmp_hw_get_catalog_string(type)); 838 __kmp_str_buf_print(&buf, "%d ", hw_threads[i].ids[level]); 839 } 840 if (__kmp_is_hybrid_cpu()) 841 __kmp_str_buf_print( 842 &buf, "(%s)", 843 __kmp_hw_get_core_type_string(hw_threads[i].attrs.get_core_type())); 844 KMP_INFORM(OSProcMapToPack, env_var, hw_threads[i].os_id, buf.str); 845 } 846 847 __kmp_str_buf_free(&buf); 848 } 849 850 #if KMP_AFFINITY_SUPPORTED 851 void kmp_topology_t::set_granularity(kmp_affinity_t &affinity) const { 852 const char *env_var = __kmp_get_affinity_env_var(affinity); 853 // If requested hybrid CPU attributes for granularity (either OMP_PLACES or 854 // KMP_AFFINITY), but none exist, then reset granularity and have below method 855 // select a granularity and warn user. 856 if (!__kmp_is_hybrid_cpu()) { 857 if (affinity.core_attr_gran.valid) { 858 // OMP_PLACES with cores:<attribute> but non-hybrid arch, use cores 859 // instead 860 KMP_AFF_WARNING( 861 affinity, AffIgnoringNonHybrid, env_var, 862 __kmp_hw_get_catalog_string(KMP_HW_CORE, /*plural=*/true)); 863 affinity.gran = KMP_HW_CORE; 864 affinity.gran_levels = -1; 865 affinity.core_attr_gran = KMP_AFFINITY_ATTRS_UNKNOWN; 866 affinity.flags.core_types_gran = affinity.flags.core_effs_gran = 0; 867 } else if (affinity.flags.core_types_gran || 868 affinity.flags.core_effs_gran) { 869 // OMP_PLACES=core_types|core_effs but non-hybrid, use cores instead 870 if (affinity.flags.omp_places) { 871 KMP_AFF_WARNING( 872 affinity, AffIgnoringNonHybrid, env_var, 873 __kmp_hw_get_catalog_string(KMP_HW_CORE, /*plural=*/true)); 874 } else { 875 // KMP_AFFINITY=granularity=core_type|core_eff,... 876 KMP_AFF_WARNING(affinity, AffGranularityBad, env_var, 877 "Intel(R) Hybrid Technology core attribute", 878 __kmp_hw_get_catalog_string(KMP_HW_CORE)); 879 } 880 affinity.gran = KMP_HW_CORE; 881 affinity.gran_levels = -1; 882 affinity.core_attr_gran = KMP_AFFINITY_ATTRS_UNKNOWN; 883 affinity.flags.core_types_gran = affinity.flags.core_effs_gran = 0; 884 } 885 } 886 // Set the number of affinity granularity levels 887 if (affinity.gran_levels < 0) { 888 kmp_hw_t gran_type = get_equivalent_type(affinity.gran); 889 // Check if user's granularity request is valid 890 if (gran_type == KMP_HW_UNKNOWN) { 891 // First try core, then thread, then package 892 kmp_hw_t gran_types[3] = {KMP_HW_CORE, KMP_HW_THREAD, KMP_HW_SOCKET}; 893 for (auto g : gran_types) { 894 if (get_equivalent_type(g) != KMP_HW_UNKNOWN) { 895 gran_type = g; 896 break; 897 } 898 } 899 KMP_ASSERT(gran_type != KMP_HW_UNKNOWN); 900 // Warn user what granularity setting will be used instead 901 KMP_AFF_WARNING(affinity, AffGranularityBad, env_var, 902 __kmp_hw_get_catalog_string(affinity.gran), 903 __kmp_hw_get_catalog_string(gran_type)); 904 affinity.gran = gran_type; 905 } 906 #if KMP_GROUP_AFFINITY 907 // If more than one processor group exists, and the level of 908 // granularity specified by the user is too coarse, then the 909 // granularity must be adjusted "down" to processor group affinity 910 // because threads can only exist within one processor group. 911 // For example, if a user sets granularity=socket and there are two 912 // processor groups that cover a socket, then the runtime must 913 // restrict the granularity down to the processor group level. 914 if (__kmp_num_proc_groups > 1) { 915 int gran_depth = get_level(gran_type); 916 int proc_group_depth = get_level(KMP_HW_PROC_GROUP); 917 if (gran_depth >= 0 && proc_group_depth >= 0 && 918 gran_depth < proc_group_depth) { 919 KMP_AFF_WARNING(affinity, AffGranTooCoarseProcGroup, env_var, 920 __kmp_hw_get_catalog_string(affinity.gran)); 921 affinity.gran = gran_type = KMP_HW_PROC_GROUP; 922 } 923 } 924 #endif 925 affinity.gran_levels = 0; 926 for (int i = depth - 1; i >= 0 && get_type(i) != gran_type; --i) 927 affinity.gran_levels++; 928 } 929 } 930 #endif 931 932 void kmp_topology_t::canonicalize() { 933 #if KMP_GROUP_AFFINITY 934 _insert_windows_proc_groups(); 935 #endif 936 _remove_radix1_layers(); 937 _gather_enumeration_information(); 938 _discover_uniformity(); 939 _set_sub_ids(); 940 _set_globals(); 941 _set_last_level_cache(); 942 943 #if KMP_MIC_SUPPORTED 944 // Manually Add L2 = Tile equivalence 945 if (__kmp_mic_type == mic3) { 946 if (get_level(KMP_HW_L2) != -1) 947 set_equivalent_type(KMP_HW_TILE, KMP_HW_L2); 948 else if (get_level(KMP_HW_TILE) != -1) 949 set_equivalent_type(KMP_HW_L2, KMP_HW_TILE); 950 } 951 #endif 952 953 // Perform post canonicalization checking 954 KMP_ASSERT(depth > 0); 955 for (int level = 0; level < depth; ++level) { 956 // All counts, ratios, and types must be valid 957 KMP_ASSERT(count[level] > 0 && ratio[level] > 0); 958 KMP_ASSERT_VALID_HW_TYPE(types[level]); 959 // Detected types must point to themselves 960 KMP_ASSERT(equivalent[types[level]] == types[level]); 961 } 962 } 963 964 // Canonicalize an explicit packages X cores/pkg X threads/core topology 965 void kmp_topology_t::canonicalize(int npackages, int ncores_per_pkg, 966 int nthreads_per_core, int ncores) { 967 int ndepth = 3; 968 depth = ndepth; 969 KMP_FOREACH_HW_TYPE(i) { equivalent[i] = KMP_HW_UNKNOWN; } 970 for (int level = 0; level < depth; ++level) { 971 count[level] = 0; 972 ratio[level] = 0; 973 } 974 count[0] = npackages; 975 count[1] = ncores; 976 count[2] = __kmp_xproc; 977 ratio[0] = npackages; 978 ratio[1] = ncores_per_pkg; 979 ratio[2] = nthreads_per_core; 980 equivalent[KMP_HW_SOCKET] = KMP_HW_SOCKET; 981 equivalent[KMP_HW_CORE] = KMP_HW_CORE; 982 equivalent[KMP_HW_THREAD] = KMP_HW_THREAD; 983 types[0] = KMP_HW_SOCKET; 984 types[1] = KMP_HW_CORE; 985 types[2] = KMP_HW_THREAD; 986 //__kmp_avail_proc = __kmp_xproc; 987 _discover_uniformity(); 988 } 989 990 #if KMP_AFFINITY_SUPPORTED 991 static kmp_str_buf_t * 992 __kmp_hw_get_catalog_core_string(const kmp_hw_attr_t &attr, kmp_str_buf_t *buf, 993 bool plural) { 994 __kmp_str_buf_init(buf); 995 if (attr.is_core_type_valid()) 996 __kmp_str_buf_print(buf, "%s %s", 997 __kmp_hw_get_core_type_string(attr.get_core_type()), 998 __kmp_hw_get_catalog_string(KMP_HW_CORE, plural)); 999 else 1000 __kmp_str_buf_print(buf, "%s eff=%d", 1001 __kmp_hw_get_catalog_string(KMP_HW_CORE, plural), 1002 attr.get_core_eff()); 1003 return buf; 1004 } 1005 1006 bool kmp_topology_t::restrict_to_mask(const kmp_affin_mask_t *mask) { 1007 // Apply the filter 1008 bool affected; 1009 int new_index = 0; 1010 for (int i = 0; i < num_hw_threads; ++i) { 1011 int os_id = hw_threads[i].os_id; 1012 if (KMP_CPU_ISSET(os_id, mask)) { 1013 if (i != new_index) 1014 hw_threads[new_index] = hw_threads[i]; 1015 new_index++; 1016 } else { 1017 KMP_CPU_CLR(os_id, __kmp_affin_fullMask); 1018 __kmp_avail_proc--; 1019 } 1020 } 1021 1022 KMP_DEBUG_ASSERT(new_index <= num_hw_threads); 1023 affected = (num_hw_threads != new_index); 1024 num_hw_threads = new_index; 1025 1026 // Post hardware subset canonicalization 1027 if (affected) { 1028 _gather_enumeration_information(); 1029 _discover_uniformity(); 1030 _set_globals(); 1031 _set_last_level_cache(); 1032 #if KMP_OS_WINDOWS 1033 // Copy filtered full mask if topology has single processor group 1034 if (__kmp_num_proc_groups <= 1) 1035 #endif 1036 __kmp_affin_origMask->copy(__kmp_affin_fullMask); 1037 } 1038 return affected; 1039 } 1040 1041 // Apply the KMP_HW_SUBSET envirable to the topology 1042 // Returns true if KMP_HW_SUBSET filtered any processors 1043 // otherwise, returns false 1044 bool kmp_topology_t::filter_hw_subset() { 1045 // If KMP_HW_SUBSET wasn't requested, then do nothing. 1046 if (!__kmp_hw_subset) 1047 return false; 1048 1049 // First, sort the KMP_HW_SUBSET items by the machine topology 1050 __kmp_hw_subset->sort(); 1051 1052 __kmp_hw_subset->canonicalize(__kmp_topology); 1053 1054 // Check to see if KMP_HW_SUBSET is a valid subset of the detected topology 1055 bool using_core_types = false; 1056 bool using_core_effs = false; 1057 bool is_absolute = __kmp_hw_subset->is_absolute(); 1058 int hw_subset_depth = __kmp_hw_subset->get_depth(); 1059 kmp_hw_t specified[KMP_HW_LAST]; 1060 int *topology_levels = (int *)KMP_ALLOCA(sizeof(int) * hw_subset_depth); 1061 KMP_ASSERT(hw_subset_depth > 0); 1062 KMP_FOREACH_HW_TYPE(i) { specified[i] = KMP_HW_UNKNOWN; } 1063 int core_level = get_level(KMP_HW_CORE); 1064 for (int i = 0; i < hw_subset_depth; ++i) { 1065 int max_count; 1066 const kmp_hw_subset_t::item_t &item = __kmp_hw_subset->at(i); 1067 int num = item.num[0]; 1068 int offset = item.offset[0]; 1069 kmp_hw_t type = item.type; 1070 kmp_hw_t equivalent_type = equivalent[type]; 1071 int level = get_level(type); 1072 topology_levels[i] = level; 1073 1074 // Check to see if current layer is in detected machine topology 1075 if (equivalent_type != KMP_HW_UNKNOWN) { 1076 __kmp_hw_subset->at(i).type = equivalent_type; 1077 } else { 1078 KMP_AFF_WARNING(__kmp_affinity, AffHWSubsetNotExistGeneric, 1079 __kmp_hw_get_catalog_string(type)); 1080 return false; 1081 } 1082 1083 // Check to see if current layer has already been 1084 // specified either directly or through an equivalent type 1085 if (specified[equivalent_type] != KMP_HW_UNKNOWN) { 1086 KMP_AFF_WARNING(__kmp_affinity, AffHWSubsetEqvLayers, 1087 __kmp_hw_get_catalog_string(type), 1088 __kmp_hw_get_catalog_string(specified[equivalent_type])); 1089 return false; 1090 } 1091 specified[equivalent_type] = type; 1092 1093 // Check to see if each layer's num & offset parameters are valid 1094 max_count = get_ratio(level); 1095 if (!is_absolute) { 1096 if (max_count < 0 || 1097 (num != kmp_hw_subset_t::USE_ALL && num + offset > max_count)) { 1098 bool plural = (num > 1); 1099 KMP_AFF_WARNING(__kmp_affinity, AffHWSubsetManyGeneric, 1100 __kmp_hw_get_catalog_string(type, plural)); 1101 return false; 1102 } 1103 } 1104 1105 // Check to see if core attributes are consistent 1106 if (core_level == level) { 1107 // Determine which core attributes are specified 1108 for (int j = 0; j < item.num_attrs; ++j) { 1109 if (item.attr[j].is_core_type_valid()) 1110 using_core_types = true; 1111 if (item.attr[j].is_core_eff_valid()) 1112 using_core_effs = true; 1113 } 1114 1115 // Check if using a single core attribute on non-hybrid arch. 1116 // Do not ignore all of KMP_HW_SUBSET, just ignore the attribute. 1117 // 1118 // Check if using multiple core attributes on non-hyrbid arch. 1119 // Ignore all of KMP_HW_SUBSET if this is the case. 1120 if ((using_core_effs || using_core_types) && !__kmp_is_hybrid_cpu()) { 1121 if (item.num_attrs == 1) { 1122 if (using_core_effs) { 1123 KMP_AFF_WARNING(__kmp_affinity, AffHWSubsetIgnoringAttr, 1124 "efficiency"); 1125 } else { 1126 KMP_AFF_WARNING(__kmp_affinity, AffHWSubsetIgnoringAttr, 1127 "core_type"); 1128 } 1129 using_core_effs = false; 1130 using_core_types = false; 1131 } else { 1132 KMP_AFF_WARNING(__kmp_affinity, AffHWSubsetAttrsNonHybrid); 1133 return false; 1134 } 1135 } 1136 1137 // Check if using both core types and core efficiencies together 1138 if (using_core_types && using_core_effs) { 1139 KMP_AFF_WARNING(__kmp_affinity, AffHWSubsetIncompat, "core_type", 1140 "efficiency"); 1141 return false; 1142 } 1143 1144 // Check that core efficiency values are valid 1145 if (using_core_effs) { 1146 for (int j = 0; j < item.num_attrs; ++j) { 1147 if (item.attr[j].is_core_eff_valid()) { 1148 int core_eff = item.attr[j].get_core_eff(); 1149 if (core_eff < 0 || core_eff >= num_core_efficiencies) { 1150 kmp_str_buf_t buf; 1151 __kmp_str_buf_init(&buf); 1152 __kmp_str_buf_print(&buf, "%d", item.attr[j].get_core_eff()); 1153 __kmp_msg(kmp_ms_warning, 1154 KMP_MSG(AffHWSubsetAttrInvalid, "efficiency", buf.str), 1155 KMP_HNT(ValidValuesRange, 0, num_core_efficiencies - 1), 1156 __kmp_msg_null); 1157 __kmp_str_buf_free(&buf); 1158 return false; 1159 } 1160 } 1161 } 1162 } 1163 1164 // Check that the number of requested cores with attributes is valid 1165 if ((using_core_types || using_core_effs) && !is_absolute) { 1166 for (int j = 0; j < item.num_attrs; ++j) { 1167 int num = item.num[j]; 1168 int offset = item.offset[j]; 1169 int level_above = core_level - 1; 1170 if (level_above >= 0) { 1171 max_count = get_ncores_with_attr_per(item.attr[j], level_above); 1172 if (max_count <= 0 || 1173 (num != kmp_hw_subset_t::USE_ALL && num + offset > max_count)) { 1174 kmp_str_buf_t buf; 1175 __kmp_hw_get_catalog_core_string(item.attr[j], &buf, num > 0); 1176 KMP_AFF_WARNING(__kmp_affinity, AffHWSubsetManyGeneric, buf.str); 1177 __kmp_str_buf_free(&buf); 1178 return false; 1179 } 1180 } 1181 } 1182 } 1183 1184 if ((using_core_types || using_core_effs) && item.num_attrs > 1) { 1185 for (int j = 0; j < item.num_attrs; ++j) { 1186 // Ambiguous use of specific core attribute + generic core 1187 // e.g., 4c & 3c:intel_core or 4c & 3c:eff1 1188 if (!item.attr[j]) { 1189 kmp_hw_attr_t other_attr; 1190 for (int k = 0; k < item.num_attrs; ++k) { 1191 if (item.attr[k] != item.attr[j]) { 1192 other_attr = item.attr[k]; 1193 break; 1194 } 1195 } 1196 kmp_str_buf_t buf; 1197 __kmp_hw_get_catalog_core_string(other_attr, &buf, item.num[j] > 0); 1198 KMP_AFF_WARNING(__kmp_affinity, AffHWSubsetIncompat, 1199 __kmp_hw_get_catalog_string(KMP_HW_CORE), buf.str); 1200 __kmp_str_buf_free(&buf); 1201 return false; 1202 } 1203 // Allow specifying a specific core type or core eff exactly once 1204 for (int k = 0; k < j; ++k) { 1205 if (!item.attr[j] || !item.attr[k]) 1206 continue; 1207 if (item.attr[k] == item.attr[j]) { 1208 kmp_str_buf_t buf; 1209 __kmp_hw_get_catalog_core_string(item.attr[j], &buf, 1210 item.num[j] > 0); 1211 KMP_AFF_WARNING(__kmp_affinity, AffHWSubsetAttrRepeat, buf.str); 1212 __kmp_str_buf_free(&buf); 1213 return false; 1214 } 1215 } 1216 } 1217 } 1218 } 1219 } 1220 1221 // For keeping track of sub_ids for an absolute KMP_HW_SUBSET 1222 // or core attributes (core type or efficiency) 1223 int prev_sub_ids[KMP_HW_LAST]; 1224 int abs_sub_ids[KMP_HW_LAST]; 1225 int core_eff_sub_ids[KMP_HW_MAX_NUM_CORE_EFFS]; 1226 int core_type_sub_ids[KMP_HW_MAX_NUM_CORE_TYPES]; 1227 for (size_t i = 0; i < KMP_HW_LAST; ++i) { 1228 abs_sub_ids[i] = -1; 1229 prev_sub_ids[i] = -1; 1230 } 1231 for (size_t i = 0; i < KMP_HW_MAX_NUM_CORE_EFFS; ++i) 1232 core_eff_sub_ids[i] = -1; 1233 for (size_t i = 0; i < KMP_HW_MAX_NUM_CORE_TYPES; ++i) 1234 core_type_sub_ids[i] = -1; 1235 1236 // Determine which hardware threads should be filtered. 1237 1238 // Helpful to determine if a topology layer is targeted by an absolute subset 1239 auto is_targeted = [&](int level) { 1240 if (is_absolute) { 1241 for (int i = 0; i < hw_subset_depth; ++i) 1242 if (topology_levels[i] == level) 1243 return true; 1244 return false; 1245 } 1246 // If not absolute KMP_HW_SUBSET, then every layer is seen as targeted 1247 return true; 1248 }; 1249 1250 // Helpful to index into core type sub Ids array 1251 auto get_core_type_index = [](const kmp_hw_thread_t &t) { 1252 switch (t.attrs.get_core_type()) { 1253 case KMP_HW_CORE_TYPE_UNKNOWN: 1254 case KMP_HW_MAX_NUM_CORE_TYPES: 1255 return 0; 1256 #if KMP_ARCH_X86 || KMP_ARCH_X86_64 1257 case KMP_HW_CORE_TYPE_ATOM: 1258 return 1; 1259 case KMP_HW_CORE_TYPE_CORE: 1260 return 2; 1261 #endif 1262 } 1263 KMP_ASSERT2(false, "Unhandled kmp_hw_thread_t enumeration"); 1264 KMP_BUILTIN_UNREACHABLE; 1265 }; 1266 1267 // Helpful to index into core efficiencies sub Ids array 1268 auto get_core_eff_index = [](const kmp_hw_thread_t &t) { 1269 return t.attrs.get_core_eff(); 1270 }; 1271 1272 int num_filtered = 0; 1273 kmp_affin_mask_t *filtered_mask; 1274 KMP_CPU_ALLOC(filtered_mask); 1275 KMP_CPU_COPY(filtered_mask, __kmp_affin_fullMask); 1276 for (int i = 0; i < num_hw_threads; ++i) { 1277 kmp_hw_thread_t &hw_thread = hw_threads[i]; 1278 1279 // Figure out the absolute sub ids and core eff/type sub ids 1280 if (is_absolute || using_core_effs || using_core_types) { 1281 for (int level = 0; level < get_depth(); ++level) { 1282 if (hw_thread.sub_ids[level] != prev_sub_ids[level]) { 1283 bool found_targeted = false; 1284 for (int j = level; j < get_depth(); ++j) { 1285 bool targeted = is_targeted(j); 1286 if (!found_targeted && targeted) { 1287 found_targeted = true; 1288 abs_sub_ids[j]++; 1289 if (j == core_level && using_core_effs) 1290 core_eff_sub_ids[get_core_eff_index(hw_thread)]++; 1291 if (j == core_level && using_core_types) 1292 core_type_sub_ids[get_core_type_index(hw_thread)]++; 1293 } else if (targeted) { 1294 abs_sub_ids[j] = 0; 1295 if (j == core_level && using_core_effs) 1296 core_eff_sub_ids[get_core_eff_index(hw_thread)] = 0; 1297 if (j == core_level && using_core_types) 1298 core_type_sub_ids[get_core_type_index(hw_thread)] = 0; 1299 } 1300 } 1301 break; 1302 } 1303 } 1304 for (int level = 0; level < get_depth(); ++level) 1305 prev_sub_ids[level] = hw_thread.sub_ids[level]; 1306 } 1307 1308 // Check to see if this hardware thread should be filtered 1309 bool should_be_filtered = false; 1310 for (int hw_subset_index = 0; hw_subset_index < hw_subset_depth; 1311 ++hw_subset_index) { 1312 const auto &hw_subset_item = __kmp_hw_subset->at(hw_subset_index); 1313 int level = topology_levels[hw_subset_index]; 1314 if (level == -1) 1315 continue; 1316 if ((using_core_effs || using_core_types) && level == core_level) { 1317 // Look for the core attribute in KMP_HW_SUBSET which corresponds 1318 // to this hardware thread's core attribute. Use this num,offset plus 1319 // the running sub_id for the particular core attribute of this hardware 1320 // thread to determine if the hardware thread should be filtered or not. 1321 int attr_idx; 1322 kmp_hw_core_type_t core_type = hw_thread.attrs.get_core_type(); 1323 int core_eff = hw_thread.attrs.get_core_eff(); 1324 for (attr_idx = 0; attr_idx < hw_subset_item.num_attrs; ++attr_idx) { 1325 if (using_core_types && 1326 hw_subset_item.attr[attr_idx].get_core_type() == core_type) 1327 break; 1328 if (using_core_effs && 1329 hw_subset_item.attr[attr_idx].get_core_eff() == core_eff) 1330 break; 1331 } 1332 // This core attribute isn't in the KMP_HW_SUBSET so always filter it. 1333 if (attr_idx == hw_subset_item.num_attrs) { 1334 should_be_filtered = true; 1335 break; 1336 } 1337 int sub_id; 1338 int num = hw_subset_item.num[attr_idx]; 1339 int offset = hw_subset_item.offset[attr_idx]; 1340 if (using_core_types) 1341 sub_id = core_type_sub_ids[get_core_type_index(hw_thread)]; 1342 else 1343 sub_id = core_eff_sub_ids[get_core_eff_index(hw_thread)]; 1344 if (sub_id < offset || 1345 (num != kmp_hw_subset_t::USE_ALL && sub_id >= offset + num)) { 1346 should_be_filtered = true; 1347 break; 1348 } 1349 } else { 1350 int sub_id; 1351 int num = hw_subset_item.num[0]; 1352 int offset = hw_subset_item.offset[0]; 1353 if (is_absolute) 1354 sub_id = abs_sub_ids[level]; 1355 else 1356 sub_id = hw_thread.sub_ids[level]; 1357 if (sub_id < offset || 1358 (num != kmp_hw_subset_t::USE_ALL && sub_id >= offset + num)) { 1359 should_be_filtered = true; 1360 break; 1361 } 1362 } 1363 } 1364 // Collect filtering information 1365 if (should_be_filtered) { 1366 KMP_CPU_CLR(hw_thread.os_id, filtered_mask); 1367 num_filtered++; 1368 } 1369 } 1370 1371 // One last check that we shouldn't allow filtering entire machine 1372 if (num_filtered == num_hw_threads) { 1373 KMP_AFF_WARNING(__kmp_affinity, AffHWSubsetAllFiltered); 1374 return false; 1375 } 1376 1377 // Apply the filter 1378 restrict_to_mask(filtered_mask); 1379 return true; 1380 } 1381 1382 bool kmp_topology_t::is_close(int hwt1, int hwt2, 1383 const kmp_affinity_t &stgs) const { 1384 int hw_level = stgs.gran_levels; 1385 if (hw_level >= depth) 1386 return true; 1387 bool retval = true; 1388 const kmp_hw_thread_t &t1 = hw_threads[hwt1]; 1389 const kmp_hw_thread_t &t2 = hw_threads[hwt2]; 1390 if (stgs.flags.core_types_gran) 1391 return t1.attrs.get_core_type() == t2.attrs.get_core_type(); 1392 if (stgs.flags.core_effs_gran) 1393 return t1.attrs.get_core_eff() == t2.attrs.get_core_eff(); 1394 for (int i = 0; i < (depth - hw_level); ++i) { 1395 if (t1.ids[i] != t2.ids[i]) 1396 return false; 1397 } 1398 return retval; 1399 } 1400 1401 //////////////////////////////////////////////////////////////////////////////// 1402 1403 bool KMPAffinity::picked_api = false; 1404 1405 void *KMPAffinity::Mask::operator new(size_t n) { return __kmp_allocate(n); } 1406 void *KMPAffinity::Mask::operator new[](size_t n) { return __kmp_allocate(n); } 1407 void KMPAffinity::Mask::operator delete(void *p) { __kmp_free(p); } 1408 void KMPAffinity::Mask::operator delete[](void *p) { __kmp_free(p); } 1409 void *KMPAffinity::operator new(size_t n) { return __kmp_allocate(n); } 1410 void KMPAffinity::operator delete(void *p) { __kmp_free(p); } 1411 1412 void KMPAffinity::pick_api() { 1413 KMPAffinity *affinity_dispatch; 1414 if (picked_api) 1415 return; 1416 #if KMP_USE_HWLOC 1417 // Only use Hwloc if affinity isn't explicitly disabled and 1418 // user requests Hwloc topology method 1419 if (__kmp_affinity_top_method == affinity_top_method_hwloc && 1420 __kmp_affinity.type != affinity_disabled) { 1421 affinity_dispatch = new KMPHwlocAffinity(); 1422 } else 1423 #endif 1424 { 1425 affinity_dispatch = new KMPNativeAffinity(); 1426 } 1427 __kmp_affinity_dispatch = affinity_dispatch; 1428 picked_api = true; 1429 } 1430 1431 void KMPAffinity::destroy_api() { 1432 if (__kmp_affinity_dispatch != NULL) { 1433 delete __kmp_affinity_dispatch; 1434 __kmp_affinity_dispatch = NULL; 1435 picked_api = false; 1436 } 1437 } 1438 1439 #define KMP_ADVANCE_SCAN(scan) \ 1440 while (*scan != '\0') { \ 1441 scan++; \ 1442 } 1443 1444 // Print the affinity mask to the character array in a pretty format. 1445 // The format is a comma separated list of non-negative integers or integer 1446 // ranges: e.g., 1,2,3-5,7,9-15 1447 // The format can also be the string "{<empty>}" if no bits are set in mask 1448 char *__kmp_affinity_print_mask(char *buf, int buf_len, 1449 kmp_affin_mask_t *mask) { 1450 int start = 0, finish = 0, previous = 0; 1451 bool first_range; 1452 KMP_ASSERT(buf); 1453 KMP_ASSERT(buf_len >= 40); 1454 KMP_ASSERT(mask); 1455 char *scan = buf; 1456 char *end = buf + buf_len - 1; 1457 1458 // Check for empty set. 1459 if (mask->begin() == mask->end()) { 1460 KMP_SNPRINTF(scan, end - scan + 1, "{<empty>}"); 1461 KMP_ADVANCE_SCAN(scan); 1462 KMP_ASSERT(scan <= end); 1463 return buf; 1464 } 1465 1466 first_range = true; 1467 start = mask->begin(); 1468 while (1) { 1469 // Find next range 1470 // [start, previous] is inclusive range of contiguous bits in mask 1471 for (finish = mask->next(start), previous = start; 1472 finish == previous + 1 && finish != mask->end(); 1473 finish = mask->next(finish)) { 1474 previous = finish; 1475 } 1476 1477 // The first range does not need a comma printed before it, but the rest 1478 // of the ranges do need a comma beforehand 1479 if (!first_range) { 1480 KMP_SNPRINTF(scan, end - scan + 1, "%s", ","); 1481 KMP_ADVANCE_SCAN(scan); 1482 } else { 1483 first_range = false; 1484 } 1485 // Range with three or more contiguous bits in the affinity mask 1486 if (previous - start > 1) { 1487 KMP_SNPRINTF(scan, end - scan + 1, "%u-%u", start, previous); 1488 } else { 1489 // Range with one or two contiguous bits in the affinity mask 1490 KMP_SNPRINTF(scan, end - scan + 1, "%u", start); 1491 KMP_ADVANCE_SCAN(scan); 1492 if (previous - start > 0) { 1493 KMP_SNPRINTF(scan, end - scan + 1, ",%u", previous); 1494 } 1495 } 1496 KMP_ADVANCE_SCAN(scan); 1497 // Start over with new start point 1498 start = finish; 1499 if (start == mask->end()) 1500 break; 1501 // Check for overflow 1502 if (end - scan < 2) 1503 break; 1504 } 1505 1506 // Check for overflow 1507 KMP_ASSERT(scan <= end); 1508 return buf; 1509 } 1510 #undef KMP_ADVANCE_SCAN 1511 1512 // Print the affinity mask to the string buffer object in a pretty format 1513 // The format is a comma separated list of non-negative integers or integer 1514 // ranges: e.g., 1,2,3-5,7,9-15 1515 // The format can also be the string "{<empty>}" if no bits are set in mask 1516 kmp_str_buf_t *__kmp_affinity_str_buf_mask(kmp_str_buf_t *buf, 1517 kmp_affin_mask_t *mask) { 1518 int start = 0, finish = 0, previous = 0; 1519 bool first_range; 1520 KMP_ASSERT(buf); 1521 KMP_ASSERT(mask); 1522 1523 __kmp_str_buf_clear(buf); 1524 1525 // Check for empty set. 1526 if (mask->begin() == mask->end()) { 1527 __kmp_str_buf_print(buf, "%s", "{<empty>}"); 1528 return buf; 1529 } 1530 1531 first_range = true; 1532 start = mask->begin(); 1533 while (1) { 1534 // Find next range 1535 // [start, previous] is inclusive range of contiguous bits in mask 1536 for (finish = mask->next(start), previous = start; 1537 finish == previous + 1 && finish != mask->end(); 1538 finish = mask->next(finish)) { 1539 previous = finish; 1540 } 1541 1542 // The first range does not need a comma printed before it, but the rest 1543 // of the ranges do need a comma beforehand 1544 if (!first_range) { 1545 __kmp_str_buf_print(buf, "%s", ","); 1546 } else { 1547 first_range = false; 1548 } 1549 // Range with three or more contiguous bits in the affinity mask 1550 if (previous - start > 1) { 1551 __kmp_str_buf_print(buf, "%u-%u", start, previous); 1552 } else { 1553 // Range with one or two contiguous bits in the affinity mask 1554 __kmp_str_buf_print(buf, "%u", start); 1555 if (previous - start > 0) { 1556 __kmp_str_buf_print(buf, ",%u", previous); 1557 } 1558 } 1559 // Start over with new start point 1560 start = finish; 1561 if (start == mask->end()) 1562 break; 1563 } 1564 return buf; 1565 } 1566 1567 // Return (possibly empty) affinity mask representing the offline CPUs 1568 // Caller must free the mask 1569 kmp_affin_mask_t *__kmp_affinity_get_offline_cpus() { 1570 kmp_affin_mask_t *offline; 1571 KMP_CPU_ALLOC(offline); 1572 KMP_CPU_ZERO(offline); 1573 #if KMP_OS_LINUX 1574 int n, begin_cpu, end_cpu; 1575 kmp_safe_raii_file_t offline_file; 1576 auto skip_ws = [](FILE *f) { 1577 int c; 1578 do { 1579 c = fgetc(f); 1580 } while (isspace(c)); 1581 if (c != EOF) 1582 ungetc(c, f); 1583 }; 1584 // File contains CSV of integer ranges representing the offline CPUs 1585 // e.g., 1,2,4-7,9,11-15 1586 int status = offline_file.try_open("/sys/devices/system/cpu/offline", "r"); 1587 if (status != 0) 1588 return offline; 1589 while (!feof(offline_file)) { 1590 skip_ws(offline_file); 1591 n = fscanf(offline_file, "%d", &begin_cpu); 1592 if (n != 1) 1593 break; 1594 skip_ws(offline_file); 1595 int c = fgetc(offline_file); 1596 if (c == EOF || c == ',') { 1597 // Just single CPU 1598 end_cpu = begin_cpu; 1599 } else if (c == '-') { 1600 // Range of CPUs 1601 skip_ws(offline_file); 1602 n = fscanf(offline_file, "%d", &end_cpu); 1603 if (n != 1) 1604 break; 1605 skip_ws(offline_file); 1606 c = fgetc(offline_file); // skip ',' 1607 } else { 1608 // Syntax problem 1609 break; 1610 } 1611 // Ensure a valid range of CPUs 1612 if (begin_cpu < 0 || begin_cpu >= __kmp_xproc || end_cpu < 0 || 1613 end_cpu >= __kmp_xproc || begin_cpu > end_cpu) { 1614 continue; 1615 } 1616 // Insert [begin_cpu, end_cpu] into offline mask 1617 for (int cpu = begin_cpu; cpu <= end_cpu; ++cpu) { 1618 KMP_CPU_SET(cpu, offline); 1619 } 1620 } 1621 #endif 1622 return offline; 1623 } 1624 1625 // Return the number of available procs 1626 int __kmp_affinity_entire_machine_mask(kmp_affin_mask_t *mask) { 1627 int avail_proc = 0; 1628 KMP_CPU_ZERO(mask); 1629 1630 #if KMP_GROUP_AFFINITY 1631 1632 if (__kmp_num_proc_groups > 1) { 1633 int group; 1634 KMP_DEBUG_ASSERT(__kmp_GetActiveProcessorCount != NULL); 1635 for (group = 0; group < __kmp_num_proc_groups; group++) { 1636 int i; 1637 int num = __kmp_GetActiveProcessorCount(group); 1638 for (i = 0; i < num; i++) { 1639 KMP_CPU_SET(i + group * (CHAR_BIT * sizeof(DWORD_PTR)), mask); 1640 avail_proc++; 1641 } 1642 } 1643 } else 1644 1645 #endif /* KMP_GROUP_AFFINITY */ 1646 1647 { 1648 int proc; 1649 kmp_affin_mask_t *offline_cpus = __kmp_affinity_get_offline_cpus(); 1650 for (proc = 0; proc < __kmp_xproc; proc++) { 1651 // Skip offline CPUs 1652 if (KMP_CPU_ISSET(proc, offline_cpus)) 1653 continue; 1654 KMP_CPU_SET(proc, mask); 1655 avail_proc++; 1656 } 1657 KMP_CPU_FREE(offline_cpus); 1658 } 1659 1660 return avail_proc; 1661 } 1662 1663 // All of the __kmp_affinity_create_*_map() routines should allocate the 1664 // internal topology object and set the layer ids for it. Each routine 1665 // returns a boolean on whether it was successful at doing so. 1666 kmp_affin_mask_t *__kmp_affin_fullMask = NULL; 1667 // Original mask is a subset of full mask in multiple processor groups topology 1668 kmp_affin_mask_t *__kmp_affin_origMask = NULL; 1669 1670 #if KMP_USE_HWLOC 1671 static inline bool __kmp_hwloc_is_cache_type(hwloc_obj_t obj) { 1672 #if HWLOC_API_VERSION >= 0x00020000 1673 return hwloc_obj_type_is_cache(obj->type); 1674 #else 1675 return obj->type == HWLOC_OBJ_CACHE; 1676 #endif 1677 } 1678 1679 // Returns KMP_HW_* type derived from HWLOC_* type 1680 static inline kmp_hw_t __kmp_hwloc_type_2_topology_type(hwloc_obj_t obj) { 1681 1682 if (__kmp_hwloc_is_cache_type(obj)) { 1683 if (obj->attr->cache.type == HWLOC_OBJ_CACHE_INSTRUCTION) 1684 return KMP_HW_UNKNOWN; 1685 switch (obj->attr->cache.depth) { 1686 case 1: 1687 return KMP_HW_L1; 1688 case 2: 1689 #if KMP_MIC_SUPPORTED 1690 if (__kmp_mic_type == mic3) { 1691 return KMP_HW_TILE; 1692 } 1693 #endif 1694 return KMP_HW_L2; 1695 case 3: 1696 return KMP_HW_L3; 1697 } 1698 return KMP_HW_UNKNOWN; 1699 } 1700 1701 switch (obj->type) { 1702 case HWLOC_OBJ_PACKAGE: 1703 return KMP_HW_SOCKET; 1704 case HWLOC_OBJ_NUMANODE: 1705 return KMP_HW_NUMA; 1706 case HWLOC_OBJ_CORE: 1707 return KMP_HW_CORE; 1708 case HWLOC_OBJ_PU: 1709 return KMP_HW_THREAD; 1710 case HWLOC_OBJ_GROUP: 1711 #if HWLOC_API_VERSION >= 0x00020000 1712 if (obj->attr->group.kind == HWLOC_GROUP_KIND_INTEL_DIE) 1713 return KMP_HW_DIE; 1714 else if (obj->attr->group.kind == HWLOC_GROUP_KIND_INTEL_TILE) 1715 return KMP_HW_TILE; 1716 else if (obj->attr->group.kind == HWLOC_GROUP_KIND_INTEL_MODULE) 1717 return KMP_HW_MODULE; 1718 else if (obj->attr->group.kind == HWLOC_GROUP_KIND_WINDOWS_PROCESSOR_GROUP) 1719 return KMP_HW_PROC_GROUP; 1720 #endif 1721 return KMP_HW_UNKNOWN; 1722 #if HWLOC_API_VERSION >= 0x00020100 1723 case HWLOC_OBJ_DIE: 1724 return KMP_HW_DIE; 1725 #endif 1726 } 1727 return KMP_HW_UNKNOWN; 1728 } 1729 1730 // Returns the number of objects of type 'type' below 'obj' within the topology 1731 // tree structure. e.g., if obj is a HWLOC_OBJ_PACKAGE object, and type is 1732 // HWLOC_OBJ_PU, then this will return the number of PU's under the SOCKET 1733 // object. 1734 static int __kmp_hwloc_get_nobjs_under_obj(hwloc_obj_t obj, 1735 hwloc_obj_type_t type) { 1736 int retval = 0; 1737 hwloc_obj_t first; 1738 for (first = hwloc_get_obj_below_by_type(__kmp_hwloc_topology, obj->type, 1739 obj->logical_index, type, 0); 1740 first != NULL && hwloc_get_ancestor_obj_by_type(__kmp_hwloc_topology, 1741 obj->type, first) == obj; 1742 first = hwloc_get_next_obj_by_type(__kmp_hwloc_topology, first->type, 1743 first)) { 1744 ++retval; 1745 } 1746 return retval; 1747 } 1748 1749 // This gets the sub_id for a lower object under a higher object in the 1750 // topology tree 1751 static int __kmp_hwloc_get_sub_id(hwloc_topology_t t, hwloc_obj_t higher, 1752 hwloc_obj_t lower) { 1753 hwloc_obj_t obj; 1754 hwloc_obj_type_t ltype = lower->type; 1755 int lindex = lower->logical_index - 1; 1756 int sub_id = 0; 1757 // Get the previous lower object 1758 obj = hwloc_get_obj_by_type(t, ltype, lindex); 1759 while (obj && lindex >= 0 && 1760 hwloc_bitmap_isincluded(obj->cpuset, higher->cpuset)) { 1761 if (obj->userdata) { 1762 sub_id = (int)(RCAST(kmp_intptr_t, obj->userdata)); 1763 break; 1764 } 1765 sub_id++; 1766 lindex--; 1767 obj = hwloc_get_obj_by_type(t, ltype, lindex); 1768 } 1769 // store sub_id + 1 so that 0 is differed from NULL 1770 lower->userdata = RCAST(void *, sub_id + 1); 1771 return sub_id; 1772 } 1773 1774 static bool __kmp_affinity_create_hwloc_map(kmp_i18n_id_t *const msg_id) { 1775 kmp_hw_t type; 1776 int hw_thread_index, sub_id; 1777 int depth; 1778 hwloc_obj_t pu, obj, root, prev; 1779 kmp_hw_t types[KMP_HW_LAST]; 1780 hwloc_obj_type_t hwloc_types[KMP_HW_LAST]; 1781 1782 hwloc_topology_t tp = __kmp_hwloc_topology; 1783 *msg_id = kmp_i18n_null; 1784 if (__kmp_affinity.flags.verbose) { 1785 KMP_INFORM(AffUsingHwloc, "KMP_AFFINITY"); 1786 } 1787 1788 if (!KMP_AFFINITY_CAPABLE()) { 1789 // Hack to try and infer the machine topology using only the data 1790 // available from hwloc on the current thread, and __kmp_xproc. 1791 KMP_ASSERT(__kmp_affinity.type == affinity_none); 1792 // hwloc only guarantees existance of PU object, so check PACKAGE and CORE 1793 hwloc_obj_t o = hwloc_get_obj_by_type(tp, HWLOC_OBJ_PACKAGE, 0); 1794 if (o != NULL) 1795 nCoresPerPkg = __kmp_hwloc_get_nobjs_under_obj(o, HWLOC_OBJ_CORE); 1796 else 1797 nCoresPerPkg = 1; // no PACKAGE found 1798 o = hwloc_get_obj_by_type(tp, HWLOC_OBJ_CORE, 0); 1799 if (o != NULL) 1800 __kmp_nThreadsPerCore = __kmp_hwloc_get_nobjs_under_obj(o, HWLOC_OBJ_PU); 1801 else 1802 __kmp_nThreadsPerCore = 1; // no CORE found 1803 if (__kmp_nThreadsPerCore == 0) 1804 __kmp_nThreadsPerCore = 1; 1805 __kmp_ncores = __kmp_xproc / __kmp_nThreadsPerCore; 1806 if (nCoresPerPkg == 0) 1807 nCoresPerPkg = 1; // to prevent possible division by 0 1808 nPackages = (__kmp_xproc + nCoresPerPkg - 1) / nCoresPerPkg; 1809 return true; 1810 } 1811 1812 #if HWLOC_API_VERSION >= 0x00020400 1813 // Handle multiple types of cores if they exist on the system 1814 int nr_cpu_kinds = hwloc_cpukinds_get_nr(tp, 0); 1815 1816 typedef struct kmp_hwloc_cpukinds_info_t { 1817 int efficiency; 1818 kmp_hw_core_type_t core_type; 1819 hwloc_bitmap_t mask; 1820 } kmp_hwloc_cpukinds_info_t; 1821 kmp_hwloc_cpukinds_info_t *cpukinds = nullptr; 1822 1823 if (nr_cpu_kinds > 0) { 1824 unsigned nr_infos; 1825 struct hwloc_info_s *infos; 1826 cpukinds = (kmp_hwloc_cpukinds_info_t *)__kmp_allocate( 1827 sizeof(kmp_hwloc_cpukinds_info_t) * nr_cpu_kinds); 1828 for (unsigned idx = 0; idx < (unsigned)nr_cpu_kinds; ++idx) { 1829 cpukinds[idx].efficiency = -1; 1830 cpukinds[idx].core_type = KMP_HW_CORE_TYPE_UNKNOWN; 1831 cpukinds[idx].mask = hwloc_bitmap_alloc(); 1832 if (hwloc_cpukinds_get_info(tp, idx, cpukinds[idx].mask, 1833 &cpukinds[idx].efficiency, &nr_infos, &infos, 1834 0) == 0) { 1835 for (unsigned i = 0; i < nr_infos; ++i) { 1836 if (__kmp_str_match("CoreType", 8, infos[i].name)) { 1837 #if KMP_ARCH_X86 || KMP_ARCH_X86_64 1838 if (__kmp_str_match("IntelAtom", 9, infos[i].value)) { 1839 cpukinds[idx].core_type = KMP_HW_CORE_TYPE_ATOM; 1840 break; 1841 } else if (__kmp_str_match("IntelCore", 9, infos[i].value)) { 1842 cpukinds[idx].core_type = KMP_HW_CORE_TYPE_CORE; 1843 break; 1844 } 1845 #endif 1846 } 1847 } 1848 } 1849 } 1850 } 1851 #endif 1852 1853 root = hwloc_get_root_obj(tp); 1854 1855 // Figure out the depth and types in the topology 1856 depth = 0; 1857 obj = hwloc_get_pu_obj_by_os_index(tp, __kmp_affin_fullMask->begin()); 1858 while (obj && obj != root) { 1859 #if HWLOC_API_VERSION >= 0x00020000 1860 if (obj->memory_arity) { 1861 hwloc_obj_t memory; 1862 for (memory = obj->memory_first_child; memory; 1863 memory = hwloc_get_next_child(tp, obj, memory)) { 1864 if (memory->type == HWLOC_OBJ_NUMANODE) 1865 break; 1866 } 1867 if (memory && memory->type == HWLOC_OBJ_NUMANODE) { 1868 types[depth] = KMP_HW_NUMA; 1869 hwloc_types[depth] = memory->type; 1870 depth++; 1871 } 1872 } 1873 #endif 1874 type = __kmp_hwloc_type_2_topology_type(obj); 1875 if (type != KMP_HW_UNKNOWN) { 1876 types[depth] = type; 1877 hwloc_types[depth] = obj->type; 1878 depth++; 1879 } 1880 obj = obj->parent; 1881 } 1882 KMP_ASSERT(depth > 0); 1883 1884 // Get the order for the types correct 1885 for (int i = 0, j = depth - 1; i < j; ++i, --j) { 1886 hwloc_obj_type_t hwloc_temp = hwloc_types[i]; 1887 kmp_hw_t temp = types[i]; 1888 types[i] = types[j]; 1889 types[j] = temp; 1890 hwloc_types[i] = hwloc_types[j]; 1891 hwloc_types[j] = hwloc_temp; 1892 } 1893 1894 // Allocate the data structure to be returned. 1895 __kmp_topology = kmp_topology_t::allocate(__kmp_avail_proc, depth, types); 1896 1897 hw_thread_index = 0; 1898 pu = NULL; 1899 while ((pu = hwloc_get_next_obj_by_type(tp, HWLOC_OBJ_PU, pu))) { 1900 int index = depth - 1; 1901 bool included = KMP_CPU_ISSET(pu->os_index, __kmp_affin_fullMask); 1902 kmp_hw_thread_t &hw_thread = __kmp_topology->at(hw_thread_index); 1903 if (included) { 1904 hw_thread.clear(); 1905 hw_thread.ids[index] = pu->logical_index; 1906 hw_thread.os_id = pu->os_index; 1907 // If multiple core types, then set that attribute for the hardware thread 1908 #if HWLOC_API_VERSION >= 0x00020400 1909 if (cpukinds) { 1910 int cpukind_index = -1; 1911 for (int i = 0; i < nr_cpu_kinds; ++i) { 1912 if (hwloc_bitmap_isset(cpukinds[i].mask, hw_thread.os_id)) { 1913 cpukind_index = i; 1914 break; 1915 } 1916 } 1917 if (cpukind_index >= 0) { 1918 hw_thread.attrs.set_core_type(cpukinds[cpukind_index].core_type); 1919 hw_thread.attrs.set_core_eff(cpukinds[cpukind_index].efficiency); 1920 } 1921 } 1922 #endif 1923 index--; 1924 } 1925 obj = pu; 1926 prev = obj; 1927 while (obj != root && obj != NULL) { 1928 obj = obj->parent; 1929 #if HWLOC_API_VERSION >= 0x00020000 1930 // NUMA Nodes are handled differently since they are not within the 1931 // parent/child structure anymore. They are separate children 1932 // of obj (memory_first_child points to first memory child) 1933 if (obj->memory_arity) { 1934 hwloc_obj_t memory; 1935 for (memory = obj->memory_first_child; memory; 1936 memory = hwloc_get_next_child(tp, obj, memory)) { 1937 if (memory->type == HWLOC_OBJ_NUMANODE) 1938 break; 1939 } 1940 if (memory && memory->type == HWLOC_OBJ_NUMANODE) { 1941 sub_id = __kmp_hwloc_get_sub_id(tp, memory, prev); 1942 if (included) { 1943 hw_thread.ids[index] = memory->logical_index; 1944 hw_thread.ids[index + 1] = sub_id; 1945 index--; 1946 } 1947 prev = memory; 1948 } 1949 prev = obj; 1950 } 1951 #endif 1952 type = __kmp_hwloc_type_2_topology_type(obj); 1953 if (type != KMP_HW_UNKNOWN) { 1954 sub_id = __kmp_hwloc_get_sub_id(tp, obj, prev); 1955 if (included) { 1956 hw_thread.ids[index] = obj->logical_index; 1957 hw_thread.ids[index + 1] = sub_id; 1958 index--; 1959 } 1960 prev = obj; 1961 } 1962 } 1963 if (included) 1964 hw_thread_index++; 1965 } 1966 1967 #if HWLOC_API_VERSION >= 0x00020400 1968 // Free the core types information 1969 if (cpukinds) { 1970 for (int idx = 0; idx < nr_cpu_kinds; ++idx) 1971 hwloc_bitmap_free(cpukinds[idx].mask); 1972 __kmp_free(cpukinds); 1973 } 1974 #endif 1975 __kmp_topology->sort_ids(); 1976 return true; 1977 } 1978 #endif // KMP_USE_HWLOC 1979 1980 // If we don't know how to retrieve the machine's processor topology, or 1981 // encounter an error in doing so, this routine is called to form a "flat" 1982 // mapping of os thread id's <-> processor id's. 1983 static bool __kmp_affinity_create_flat_map(kmp_i18n_id_t *const msg_id) { 1984 *msg_id = kmp_i18n_null; 1985 int depth = 3; 1986 kmp_hw_t types[] = {KMP_HW_SOCKET, KMP_HW_CORE, KMP_HW_THREAD}; 1987 1988 if (__kmp_affinity.flags.verbose) { 1989 KMP_INFORM(UsingFlatOS, "KMP_AFFINITY"); 1990 } 1991 1992 // Even if __kmp_affinity.type == affinity_none, this routine might still 1993 // be called to set __kmp_ncores, as well as 1994 // __kmp_nThreadsPerCore, nCoresPerPkg, & nPackages. 1995 if (!KMP_AFFINITY_CAPABLE()) { 1996 KMP_ASSERT(__kmp_affinity.type == affinity_none); 1997 __kmp_ncores = nPackages = __kmp_xproc; 1998 __kmp_nThreadsPerCore = nCoresPerPkg = 1; 1999 return true; 2000 } 2001 2002 // When affinity is off, this routine will still be called to set 2003 // __kmp_ncores, as well as __kmp_nThreadsPerCore, nCoresPerPkg, & nPackages. 2004 // Make sure all these vars are set correctly, and return now if affinity is 2005 // not enabled. 2006 __kmp_ncores = nPackages = __kmp_avail_proc; 2007 __kmp_nThreadsPerCore = nCoresPerPkg = 1; 2008 2009 // Construct the data structure to be returned. 2010 __kmp_topology = kmp_topology_t::allocate(__kmp_avail_proc, depth, types); 2011 int avail_ct = 0; 2012 int i; 2013 KMP_CPU_SET_ITERATE(i, __kmp_affin_fullMask) { 2014 // Skip this proc if it is not included in the machine model. 2015 if (!KMP_CPU_ISSET(i, __kmp_affin_fullMask)) { 2016 continue; 2017 } 2018 kmp_hw_thread_t &hw_thread = __kmp_topology->at(avail_ct); 2019 hw_thread.clear(); 2020 hw_thread.os_id = i; 2021 hw_thread.ids[0] = i; 2022 hw_thread.ids[1] = 0; 2023 hw_thread.ids[2] = 0; 2024 avail_ct++; 2025 } 2026 if (__kmp_affinity.flags.verbose) { 2027 KMP_INFORM(OSProcToPackage, "KMP_AFFINITY"); 2028 } 2029 return true; 2030 } 2031 2032 #if KMP_GROUP_AFFINITY 2033 // If multiple Windows* OS processor groups exist, we can create a 2-level 2034 // topology map with the groups at level 0 and the individual procs at level 1. 2035 // This facilitates letting the threads float among all procs in a group, 2036 // if granularity=group (the default when there are multiple groups). 2037 static bool __kmp_affinity_create_proc_group_map(kmp_i18n_id_t *const msg_id) { 2038 *msg_id = kmp_i18n_null; 2039 int depth = 3; 2040 kmp_hw_t types[] = {KMP_HW_PROC_GROUP, KMP_HW_CORE, KMP_HW_THREAD}; 2041 const static size_t BITS_PER_GROUP = CHAR_BIT * sizeof(DWORD_PTR); 2042 2043 if (__kmp_affinity.flags.verbose) { 2044 KMP_INFORM(AffWindowsProcGroupMap, "KMP_AFFINITY"); 2045 } 2046 2047 // If we aren't affinity capable, then use flat topology 2048 if (!KMP_AFFINITY_CAPABLE()) { 2049 KMP_ASSERT(__kmp_affinity.type == affinity_none); 2050 nPackages = __kmp_num_proc_groups; 2051 __kmp_nThreadsPerCore = 1; 2052 __kmp_ncores = __kmp_xproc; 2053 nCoresPerPkg = nPackages / __kmp_ncores; 2054 return true; 2055 } 2056 2057 // Construct the data structure to be returned. 2058 __kmp_topology = kmp_topology_t::allocate(__kmp_avail_proc, depth, types); 2059 int avail_ct = 0; 2060 int i; 2061 KMP_CPU_SET_ITERATE(i, __kmp_affin_fullMask) { 2062 // Skip this proc if it is not included in the machine model. 2063 if (!KMP_CPU_ISSET(i, __kmp_affin_fullMask)) { 2064 continue; 2065 } 2066 kmp_hw_thread_t &hw_thread = __kmp_topology->at(avail_ct++); 2067 hw_thread.clear(); 2068 hw_thread.os_id = i; 2069 hw_thread.ids[0] = i / BITS_PER_GROUP; 2070 hw_thread.ids[1] = hw_thread.ids[2] = i % BITS_PER_GROUP; 2071 } 2072 return true; 2073 } 2074 #endif /* KMP_GROUP_AFFINITY */ 2075 2076 #if KMP_ARCH_X86 || KMP_ARCH_X86_64 2077 2078 template <kmp_uint32 LSB, kmp_uint32 MSB> 2079 static inline unsigned __kmp_extract_bits(kmp_uint32 v) { 2080 const kmp_uint32 SHIFT_LEFT = sizeof(kmp_uint32) * 8 - 1 - MSB; 2081 const kmp_uint32 SHIFT_RIGHT = LSB; 2082 kmp_uint32 retval = v; 2083 retval <<= SHIFT_LEFT; 2084 retval >>= (SHIFT_LEFT + SHIFT_RIGHT); 2085 return retval; 2086 } 2087 2088 static int __kmp_cpuid_mask_width(int count) { 2089 int r = 0; 2090 2091 while ((1 << r) < count) 2092 ++r; 2093 return r; 2094 } 2095 2096 class apicThreadInfo { 2097 public: 2098 unsigned osId; // param to __kmp_affinity_bind_thread 2099 unsigned apicId; // from cpuid after binding 2100 unsigned maxCoresPerPkg; // "" 2101 unsigned maxThreadsPerPkg; // "" 2102 unsigned pkgId; // inferred from above values 2103 unsigned coreId; // "" 2104 unsigned threadId; // "" 2105 }; 2106 2107 static int __kmp_affinity_cmp_apicThreadInfo_phys_id(const void *a, 2108 const void *b) { 2109 const apicThreadInfo *aa = (const apicThreadInfo *)a; 2110 const apicThreadInfo *bb = (const apicThreadInfo *)b; 2111 if (aa->pkgId < bb->pkgId) 2112 return -1; 2113 if (aa->pkgId > bb->pkgId) 2114 return 1; 2115 if (aa->coreId < bb->coreId) 2116 return -1; 2117 if (aa->coreId > bb->coreId) 2118 return 1; 2119 if (aa->threadId < bb->threadId) 2120 return -1; 2121 if (aa->threadId > bb->threadId) 2122 return 1; 2123 return 0; 2124 } 2125 2126 class kmp_cache_info_t { 2127 public: 2128 struct info_t { 2129 unsigned level, mask; 2130 }; 2131 kmp_cache_info_t() : depth(0) { get_leaf4_levels(); } 2132 size_t get_depth() const { return depth; } 2133 info_t &operator[](size_t index) { return table[index]; } 2134 const info_t &operator[](size_t index) const { return table[index]; } 2135 2136 static kmp_hw_t get_topology_type(unsigned level) { 2137 KMP_DEBUG_ASSERT(level >= 1 && level <= MAX_CACHE_LEVEL); 2138 switch (level) { 2139 case 1: 2140 return KMP_HW_L1; 2141 case 2: 2142 return KMP_HW_L2; 2143 case 3: 2144 return KMP_HW_L3; 2145 } 2146 return KMP_HW_UNKNOWN; 2147 } 2148 2149 private: 2150 static const int MAX_CACHE_LEVEL = 3; 2151 2152 size_t depth; 2153 info_t table[MAX_CACHE_LEVEL]; 2154 2155 void get_leaf4_levels() { 2156 unsigned level = 0; 2157 while (depth < MAX_CACHE_LEVEL) { 2158 unsigned cache_type, max_threads_sharing; 2159 unsigned cache_level, cache_mask_width; 2160 kmp_cpuid buf2; 2161 __kmp_x86_cpuid(4, level, &buf2); 2162 cache_type = __kmp_extract_bits<0, 4>(buf2.eax); 2163 if (!cache_type) 2164 break; 2165 // Skip instruction caches 2166 if (cache_type == 2) { 2167 level++; 2168 continue; 2169 } 2170 max_threads_sharing = __kmp_extract_bits<14, 25>(buf2.eax) + 1; 2171 cache_mask_width = __kmp_cpuid_mask_width(max_threads_sharing); 2172 cache_level = __kmp_extract_bits<5, 7>(buf2.eax); 2173 table[depth].level = cache_level; 2174 table[depth].mask = ((-1) << cache_mask_width); 2175 depth++; 2176 level++; 2177 } 2178 } 2179 }; 2180 2181 // On IA-32 architecture and Intel(R) 64 architecture, we attempt to use 2182 // an algorithm which cycles through the available os threads, setting 2183 // the current thread's affinity mask to that thread, and then retrieves 2184 // the Apic Id for each thread context using the cpuid instruction. 2185 static bool __kmp_affinity_create_apicid_map(kmp_i18n_id_t *const msg_id) { 2186 kmp_cpuid buf; 2187 *msg_id = kmp_i18n_null; 2188 2189 if (__kmp_affinity.flags.verbose) { 2190 KMP_INFORM(AffInfoStr, "KMP_AFFINITY", KMP_I18N_STR(DecodingLegacyAPIC)); 2191 } 2192 2193 // Check if cpuid leaf 4 is supported. 2194 __kmp_x86_cpuid(0, 0, &buf); 2195 if (buf.eax < 4) { 2196 *msg_id = kmp_i18n_str_NoLeaf4Support; 2197 return false; 2198 } 2199 2200 // The algorithm used starts by setting the affinity to each available thread 2201 // and retrieving info from the cpuid instruction, so if we are not capable of 2202 // calling __kmp_get_system_affinity() and _kmp_get_system_affinity(), then we 2203 // need to do something else - use the defaults that we calculated from 2204 // issuing cpuid without binding to each proc. 2205 if (!KMP_AFFINITY_CAPABLE()) { 2206 // Hack to try and infer the machine topology using only the data 2207 // available from cpuid on the current thread, and __kmp_xproc. 2208 KMP_ASSERT(__kmp_affinity.type == affinity_none); 2209 2210 // Get an upper bound on the number of threads per package using cpuid(1). 2211 // On some OS/chps combinations where HT is supported by the chip but is 2212 // disabled, this value will be 2 on a single core chip. Usually, it will be 2213 // 2 if HT is enabled and 1 if HT is disabled. 2214 __kmp_x86_cpuid(1, 0, &buf); 2215 int maxThreadsPerPkg = (buf.ebx >> 16) & 0xff; 2216 if (maxThreadsPerPkg == 0) { 2217 maxThreadsPerPkg = 1; 2218 } 2219 2220 // The num cores per pkg comes from cpuid(4). 1 must be added to the encoded 2221 // value. 2222 // 2223 // The author of cpu_count.cpp treated this only an upper bound on the 2224 // number of cores, but I haven't seen any cases where it was greater than 2225 // the actual number of cores, so we will treat it as exact in this block of 2226 // code. 2227 // 2228 // First, we need to check if cpuid(4) is supported on this chip. To see if 2229 // cpuid(n) is supported, issue cpuid(0) and check if eax has the value n or 2230 // greater. 2231 __kmp_x86_cpuid(0, 0, &buf); 2232 if (buf.eax >= 4) { 2233 __kmp_x86_cpuid(4, 0, &buf); 2234 nCoresPerPkg = ((buf.eax >> 26) & 0x3f) + 1; 2235 } else { 2236 nCoresPerPkg = 1; 2237 } 2238 2239 // There is no way to reliably tell if HT is enabled without issuing the 2240 // cpuid instruction from every thread, can correlating the cpuid info, so 2241 // if the machine is not affinity capable, we assume that HT is off. We have 2242 // seen quite a few machines where maxThreadsPerPkg is 2, yet the machine 2243 // does not support HT. 2244 // 2245 // - Older OSes are usually found on machines with older chips, which do not 2246 // support HT. 2247 // - The performance penalty for mistakenly identifying a machine as HT when 2248 // it isn't (which results in blocktime being incorrectly set to 0) is 2249 // greater than the penalty when for mistakenly identifying a machine as 2250 // being 1 thread/core when it is really HT enabled (which results in 2251 // blocktime being incorrectly set to a positive value). 2252 __kmp_ncores = __kmp_xproc; 2253 nPackages = (__kmp_xproc + nCoresPerPkg - 1) / nCoresPerPkg; 2254 __kmp_nThreadsPerCore = 1; 2255 return true; 2256 } 2257 2258 // From here on, we can assume that it is safe to call 2259 // __kmp_get_system_affinity() and __kmp_set_system_affinity(), even if 2260 // __kmp_affinity.type = affinity_none. 2261 2262 // Save the affinity mask for the current thread. 2263 kmp_affinity_raii_t previous_affinity; 2264 2265 // Run through each of the available contexts, binding the current thread 2266 // to it, and obtaining the pertinent information using the cpuid instr. 2267 // 2268 // The relevant information is: 2269 // - Apic Id: Bits 24:31 of ebx after issuing cpuid(1) - each thread context 2270 // has a uniqie Apic Id, which is of the form pkg# : core# : thread#. 2271 // - Max Threads Per Pkg: Bits 16:23 of ebx after issuing cpuid(1). The value 2272 // of this field determines the width of the core# + thread# fields in the 2273 // Apic Id. It is also an upper bound on the number of threads per 2274 // package, but it has been verified that situations happen were it is not 2275 // exact. In particular, on certain OS/chip combinations where Intel(R) 2276 // Hyper-Threading Technology is supported by the chip but has been 2277 // disabled, the value of this field will be 2 (for a single core chip). 2278 // On other OS/chip combinations supporting Intel(R) Hyper-Threading 2279 // Technology, the value of this field will be 1 when Intel(R) 2280 // Hyper-Threading Technology is disabled and 2 when it is enabled. 2281 // - Max Cores Per Pkg: Bits 26:31 of eax after issuing cpuid(4). The value 2282 // of this field (+1) determines the width of the core# field in the Apic 2283 // Id. The comments in "cpucount.cpp" say that this value is an upper 2284 // bound, but the IA-32 architecture manual says that it is exactly the 2285 // number of cores per package, and I haven't seen any case where it 2286 // wasn't. 2287 // 2288 // From this information, deduce the package Id, core Id, and thread Id, 2289 // and set the corresponding fields in the apicThreadInfo struct. 2290 unsigned i; 2291 apicThreadInfo *threadInfo = (apicThreadInfo *)__kmp_allocate( 2292 __kmp_avail_proc * sizeof(apicThreadInfo)); 2293 unsigned nApics = 0; 2294 KMP_CPU_SET_ITERATE(i, __kmp_affin_fullMask) { 2295 // Skip this proc if it is not included in the machine model. 2296 if (!KMP_CPU_ISSET(i, __kmp_affin_fullMask)) { 2297 continue; 2298 } 2299 KMP_DEBUG_ASSERT((int)nApics < __kmp_avail_proc); 2300 2301 __kmp_affinity_dispatch->bind_thread(i); 2302 threadInfo[nApics].osId = i; 2303 2304 // The apic id and max threads per pkg come from cpuid(1). 2305 __kmp_x86_cpuid(1, 0, &buf); 2306 if (((buf.edx >> 9) & 1) == 0) { 2307 __kmp_free(threadInfo); 2308 *msg_id = kmp_i18n_str_ApicNotPresent; 2309 return false; 2310 } 2311 threadInfo[nApics].apicId = (buf.ebx >> 24) & 0xff; 2312 threadInfo[nApics].maxThreadsPerPkg = (buf.ebx >> 16) & 0xff; 2313 if (threadInfo[nApics].maxThreadsPerPkg == 0) { 2314 threadInfo[nApics].maxThreadsPerPkg = 1; 2315 } 2316 2317 // Max cores per pkg comes from cpuid(4). 1 must be added to the encoded 2318 // value. 2319 // 2320 // First, we need to check if cpuid(4) is supported on this chip. To see if 2321 // cpuid(n) is supported, issue cpuid(0) and check if eax has the value n 2322 // or greater. 2323 __kmp_x86_cpuid(0, 0, &buf); 2324 if (buf.eax >= 4) { 2325 __kmp_x86_cpuid(4, 0, &buf); 2326 threadInfo[nApics].maxCoresPerPkg = ((buf.eax >> 26) & 0x3f) + 1; 2327 } else { 2328 threadInfo[nApics].maxCoresPerPkg = 1; 2329 } 2330 2331 // Infer the pkgId / coreId / threadId using only the info obtained locally. 2332 int widthCT = __kmp_cpuid_mask_width(threadInfo[nApics].maxThreadsPerPkg); 2333 threadInfo[nApics].pkgId = threadInfo[nApics].apicId >> widthCT; 2334 2335 int widthC = __kmp_cpuid_mask_width(threadInfo[nApics].maxCoresPerPkg); 2336 int widthT = widthCT - widthC; 2337 if (widthT < 0) { 2338 // I've never seen this one happen, but I suppose it could, if the cpuid 2339 // instruction on a chip was really screwed up. Make sure to restore the 2340 // affinity mask before the tail call. 2341 __kmp_free(threadInfo); 2342 *msg_id = kmp_i18n_str_InvalidCpuidInfo; 2343 return false; 2344 } 2345 2346 int maskC = (1 << widthC) - 1; 2347 threadInfo[nApics].coreId = (threadInfo[nApics].apicId >> widthT) & maskC; 2348 2349 int maskT = (1 << widthT) - 1; 2350 threadInfo[nApics].threadId = threadInfo[nApics].apicId & maskT; 2351 2352 nApics++; 2353 } 2354 2355 // We've collected all the info we need. 2356 // Restore the old affinity mask for this thread. 2357 previous_affinity.restore(); 2358 2359 // Sort the threadInfo table by physical Id. 2360 qsort(threadInfo, nApics, sizeof(*threadInfo), 2361 __kmp_affinity_cmp_apicThreadInfo_phys_id); 2362 2363 // The table is now sorted by pkgId / coreId / threadId, but we really don't 2364 // know the radix of any of the fields. pkgId's may be sparsely assigned among 2365 // the chips on a system. Although coreId's are usually assigned 2366 // [0 .. coresPerPkg-1] and threadId's are usually assigned 2367 // [0..threadsPerCore-1], we don't want to make any such assumptions. 2368 // 2369 // For that matter, we don't know what coresPerPkg and threadsPerCore (or the 2370 // total # packages) are at this point - we want to determine that now. We 2371 // only have an upper bound on the first two figures. 2372 // 2373 // We also perform a consistency check at this point: the values returned by 2374 // the cpuid instruction for any thread bound to a given package had better 2375 // return the same info for maxThreadsPerPkg and maxCoresPerPkg. 2376 nPackages = 1; 2377 nCoresPerPkg = 1; 2378 __kmp_nThreadsPerCore = 1; 2379 unsigned nCores = 1; 2380 2381 unsigned pkgCt = 1; // to determine radii 2382 unsigned lastPkgId = threadInfo[0].pkgId; 2383 unsigned coreCt = 1; 2384 unsigned lastCoreId = threadInfo[0].coreId; 2385 unsigned threadCt = 1; 2386 unsigned lastThreadId = threadInfo[0].threadId; 2387 2388 // intra-pkg consist checks 2389 unsigned prevMaxCoresPerPkg = threadInfo[0].maxCoresPerPkg; 2390 unsigned prevMaxThreadsPerPkg = threadInfo[0].maxThreadsPerPkg; 2391 2392 for (i = 1; i < nApics; i++) { 2393 if (threadInfo[i].pkgId != lastPkgId) { 2394 nCores++; 2395 pkgCt++; 2396 lastPkgId = threadInfo[i].pkgId; 2397 if ((int)coreCt > nCoresPerPkg) 2398 nCoresPerPkg = coreCt; 2399 coreCt = 1; 2400 lastCoreId = threadInfo[i].coreId; 2401 if ((int)threadCt > __kmp_nThreadsPerCore) 2402 __kmp_nThreadsPerCore = threadCt; 2403 threadCt = 1; 2404 lastThreadId = threadInfo[i].threadId; 2405 2406 // This is a different package, so go on to the next iteration without 2407 // doing any consistency checks. Reset the consistency check vars, though. 2408 prevMaxCoresPerPkg = threadInfo[i].maxCoresPerPkg; 2409 prevMaxThreadsPerPkg = threadInfo[i].maxThreadsPerPkg; 2410 continue; 2411 } 2412 2413 if (threadInfo[i].coreId != lastCoreId) { 2414 nCores++; 2415 coreCt++; 2416 lastCoreId = threadInfo[i].coreId; 2417 if ((int)threadCt > __kmp_nThreadsPerCore) 2418 __kmp_nThreadsPerCore = threadCt; 2419 threadCt = 1; 2420 lastThreadId = threadInfo[i].threadId; 2421 } else if (threadInfo[i].threadId != lastThreadId) { 2422 threadCt++; 2423 lastThreadId = threadInfo[i].threadId; 2424 } else { 2425 __kmp_free(threadInfo); 2426 *msg_id = kmp_i18n_str_LegacyApicIDsNotUnique; 2427 return false; 2428 } 2429 2430 // Check to make certain that the maxCoresPerPkg and maxThreadsPerPkg 2431 // fields agree between all the threads bounds to a given package. 2432 if ((prevMaxCoresPerPkg != threadInfo[i].maxCoresPerPkg) || 2433 (prevMaxThreadsPerPkg != threadInfo[i].maxThreadsPerPkg)) { 2434 __kmp_free(threadInfo); 2435 *msg_id = kmp_i18n_str_InconsistentCpuidInfo; 2436 return false; 2437 } 2438 } 2439 // When affinity is off, this routine will still be called to set 2440 // __kmp_ncores, as well as __kmp_nThreadsPerCore, nCoresPerPkg, & nPackages. 2441 // Make sure all these vars are set correctly 2442 nPackages = pkgCt; 2443 if ((int)coreCt > nCoresPerPkg) 2444 nCoresPerPkg = coreCt; 2445 if ((int)threadCt > __kmp_nThreadsPerCore) 2446 __kmp_nThreadsPerCore = threadCt; 2447 __kmp_ncores = nCores; 2448 KMP_DEBUG_ASSERT(nApics == (unsigned)__kmp_avail_proc); 2449 2450 // Now that we've determined the number of packages, the number of cores per 2451 // package, and the number of threads per core, we can construct the data 2452 // structure that is to be returned. 2453 int idx = 0; 2454 int pkgLevel = 0; 2455 int coreLevel = 1; 2456 int threadLevel = 2; 2457 //(__kmp_nThreadsPerCore <= 1) ? -1 : ((coreLevel >= 0) ? 2 : 1); 2458 int depth = (pkgLevel >= 0) + (coreLevel >= 0) + (threadLevel >= 0); 2459 kmp_hw_t types[3]; 2460 if (pkgLevel >= 0) 2461 types[idx++] = KMP_HW_SOCKET; 2462 if (coreLevel >= 0) 2463 types[idx++] = KMP_HW_CORE; 2464 if (threadLevel >= 0) 2465 types[idx++] = KMP_HW_THREAD; 2466 2467 KMP_ASSERT(depth > 0); 2468 __kmp_topology = kmp_topology_t::allocate(nApics, depth, types); 2469 2470 for (i = 0; i < nApics; ++i) { 2471 idx = 0; 2472 unsigned os = threadInfo[i].osId; 2473 kmp_hw_thread_t &hw_thread = __kmp_topology->at(i); 2474 hw_thread.clear(); 2475 2476 if (pkgLevel >= 0) { 2477 hw_thread.ids[idx++] = threadInfo[i].pkgId; 2478 } 2479 if (coreLevel >= 0) { 2480 hw_thread.ids[idx++] = threadInfo[i].coreId; 2481 } 2482 if (threadLevel >= 0) { 2483 hw_thread.ids[idx++] = threadInfo[i].threadId; 2484 } 2485 hw_thread.os_id = os; 2486 } 2487 2488 __kmp_free(threadInfo); 2489 __kmp_topology->sort_ids(); 2490 if (!__kmp_topology->check_ids()) { 2491 kmp_topology_t::deallocate(__kmp_topology); 2492 __kmp_topology = nullptr; 2493 *msg_id = kmp_i18n_str_LegacyApicIDsNotUnique; 2494 return false; 2495 } 2496 return true; 2497 } 2498 2499 // Hybrid cpu detection using CPUID.1A 2500 // Thread should be pinned to processor already 2501 static void __kmp_get_hybrid_info(kmp_hw_core_type_t *type, int *efficiency, 2502 unsigned *native_model_id) { 2503 kmp_cpuid buf; 2504 __kmp_x86_cpuid(0x1a, 0, &buf); 2505 *type = (kmp_hw_core_type_t)__kmp_extract_bits<24, 31>(buf.eax); 2506 switch (*type) { 2507 case KMP_HW_CORE_TYPE_ATOM: 2508 *efficiency = 0; 2509 break; 2510 case KMP_HW_CORE_TYPE_CORE: 2511 *efficiency = 1; 2512 break; 2513 default: 2514 *efficiency = 0; 2515 } 2516 *native_model_id = __kmp_extract_bits<0, 23>(buf.eax); 2517 } 2518 2519 // Intel(R) microarchitecture code name Nehalem, Dunnington and later 2520 // architectures support a newer interface for specifying the x2APIC Ids, 2521 // based on CPUID.B or CPUID.1F 2522 /* 2523 * CPUID.B or 1F, Input ECX (sub leaf # aka level number) 2524 Bits Bits Bits Bits 2525 31-16 15-8 7-4 4-0 2526 ---+-----------+--------------+-------------+-----------------+ 2527 EAX| reserved | reserved | reserved | Bits to Shift | 2528 ---+-----------|--------------+-------------+-----------------| 2529 EBX| reserved | Num logical processors at level (16 bits) | 2530 ---+-----------|--------------+-------------------------------| 2531 ECX| reserved | Level Type | Level Number (8 bits) | 2532 ---+-----------+--------------+-------------------------------| 2533 EDX| X2APIC ID (32 bits) | 2534 ---+----------------------------------------------------------+ 2535 */ 2536 2537 enum { 2538 INTEL_LEVEL_TYPE_INVALID = 0, // Package level 2539 INTEL_LEVEL_TYPE_SMT = 1, 2540 INTEL_LEVEL_TYPE_CORE = 2, 2541 INTEL_LEVEL_TYPE_MODULE = 3, 2542 INTEL_LEVEL_TYPE_TILE = 4, 2543 INTEL_LEVEL_TYPE_DIE = 5, 2544 INTEL_LEVEL_TYPE_LAST = 6, 2545 }; 2546 2547 struct cpuid_level_info_t { 2548 unsigned level_type, mask, mask_width, nitems, cache_mask; 2549 }; 2550 2551 static kmp_hw_t __kmp_intel_type_2_topology_type(int intel_type) { 2552 switch (intel_type) { 2553 case INTEL_LEVEL_TYPE_INVALID: 2554 return KMP_HW_SOCKET; 2555 case INTEL_LEVEL_TYPE_SMT: 2556 return KMP_HW_THREAD; 2557 case INTEL_LEVEL_TYPE_CORE: 2558 return KMP_HW_CORE; 2559 case INTEL_LEVEL_TYPE_TILE: 2560 return KMP_HW_TILE; 2561 case INTEL_LEVEL_TYPE_MODULE: 2562 return KMP_HW_MODULE; 2563 case INTEL_LEVEL_TYPE_DIE: 2564 return KMP_HW_DIE; 2565 } 2566 return KMP_HW_UNKNOWN; 2567 } 2568 2569 // This function takes the topology leaf, a levels array to store the levels 2570 // detected and a bitmap of the known levels. 2571 // Returns the number of levels in the topology 2572 static unsigned 2573 __kmp_x2apicid_get_levels(int leaf, 2574 cpuid_level_info_t levels[INTEL_LEVEL_TYPE_LAST], 2575 kmp_uint64 known_levels) { 2576 unsigned level, levels_index; 2577 unsigned level_type, mask_width, nitems; 2578 kmp_cpuid buf; 2579 2580 // New algorithm has known topology layers act as highest unknown topology 2581 // layers when unknown topology layers exist. 2582 // e.g., Suppose layers were SMT <X> CORE <Y> <Z> PACKAGE, where <X> <Y> <Z> 2583 // are unknown topology layers, Then SMT will take the characteristics of 2584 // (SMT x <X>) and CORE will take the characteristics of (CORE x <Y> x <Z>). 2585 // This eliminates unknown portions of the topology while still keeping the 2586 // correct structure. 2587 level = levels_index = 0; 2588 do { 2589 __kmp_x86_cpuid(leaf, level, &buf); 2590 level_type = __kmp_extract_bits<8, 15>(buf.ecx); 2591 mask_width = __kmp_extract_bits<0, 4>(buf.eax); 2592 nitems = __kmp_extract_bits<0, 15>(buf.ebx); 2593 if (level_type != INTEL_LEVEL_TYPE_INVALID && nitems == 0) 2594 return 0; 2595 2596 if (known_levels & (1ull << level_type)) { 2597 // Add a new level to the topology 2598 KMP_ASSERT(levels_index < INTEL_LEVEL_TYPE_LAST); 2599 levels[levels_index].level_type = level_type; 2600 levels[levels_index].mask_width = mask_width; 2601 levels[levels_index].nitems = nitems; 2602 levels_index++; 2603 } else { 2604 // If it is an unknown level, then logically move the previous layer up 2605 if (levels_index > 0) { 2606 levels[levels_index - 1].mask_width = mask_width; 2607 levels[levels_index - 1].nitems = nitems; 2608 } 2609 } 2610 level++; 2611 } while (level_type != INTEL_LEVEL_TYPE_INVALID); 2612 2613 // Ensure the INTEL_LEVEL_TYPE_INVALID (Socket) layer isn't first 2614 if (levels_index == 0 || levels[0].level_type == INTEL_LEVEL_TYPE_INVALID) 2615 return 0; 2616 2617 // Set the masks to & with apicid 2618 for (unsigned i = 0; i < levels_index; ++i) { 2619 if (levels[i].level_type != INTEL_LEVEL_TYPE_INVALID) { 2620 levels[i].mask = ~((-1) << levels[i].mask_width); 2621 levels[i].cache_mask = (-1) << levels[i].mask_width; 2622 for (unsigned j = 0; j < i; ++j) 2623 levels[i].mask ^= levels[j].mask; 2624 } else { 2625 KMP_DEBUG_ASSERT(i > 0); 2626 levels[i].mask = (-1) << levels[i - 1].mask_width; 2627 levels[i].cache_mask = 0; 2628 } 2629 } 2630 return levels_index; 2631 } 2632 2633 static bool __kmp_affinity_create_x2apicid_map(kmp_i18n_id_t *const msg_id) { 2634 2635 cpuid_level_info_t levels[INTEL_LEVEL_TYPE_LAST]; 2636 kmp_hw_t types[INTEL_LEVEL_TYPE_LAST]; 2637 unsigned levels_index; 2638 kmp_cpuid buf; 2639 kmp_uint64 known_levels; 2640 int topology_leaf, highest_leaf, apic_id; 2641 int num_leaves; 2642 static int leaves[] = {0, 0}; 2643 2644 kmp_i18n_id_t leaf_message_id; 2645 2646 KMP_BUILD_ASSERT(sizeof(known_levels) * CHAR_BIT > KMP_HW_LAST); 2647 2648 *msg_id = kmp_i18n_null; 2649 if (__kmp_affinity.flags.verbose) { 2650 KMP_INFORM(AffInfoStr, "KMP_AFFINITY", KMP_I18N_STR(Decodingx2APIC)); 2651 } 2652 2653 // Figure out the known topology levels 2654 known_levels = 0ull; 2655 for (int i = 0; i < INTEL_LEVEL_TYPE_LAST; ++i) { 2656 if (__kmp_intel_type_2_topology_type(i) != KMP_HW_UNKNOWN) { 2657 known_levels |= (1ull << i); 2658 } 2659 } 2660 2661 // Get the highest cpuid leaf supported 2662 __kmp_x86_cpuid(0, 0, &buf); 2663 highest_leaf = buf.eax; 2664 2665 // If a specific topology method was requested, only allow that specific leaf 2666 // otherwise, try both leaves 31 and 11 in that order 2667 num_leaves = 0; 2668 if (__kmp_affinity_top_method == affinity_top_method_x2apicid) { 2669 num_leaves = 1; 2670 leaves[0] = 11; 2671 leaf_message_id = kmp_i18n_str_NoLeaf11Support; 2672 } else if (__kmp_affinity_top_method == affinity_top_method_x2apicid_1f) { 2673 num_leaves = 1; 2674 leaves[0] = 31; 2675 leaf_message_id = kmp_i18n_str_NoLeaf31Support; 2676 } else { 2677 num_leaves = 2; 2678 leaves[0] = 31; 2679 leaves[1] = 11; 2680 leaf_message_id = kmp_i18n_str_NoLeaf11Support; 2681 } 2682 2683 // Check to see if cpuid leaf 31 or 11 is supported. 2684 __kmp_nThreadsPerCore = nCoresPerPkg = nPackages = 1; 2685 topology_leaf = -1; 2686 for (int i = 0; i < num_leaves; ++i) { 2687 int leaf = leaves[i]; 2688 if (highest_leaf < leaf) 2689 continue; 2690 __kmp_x86_cpuid(leaf, 0, &buf); 2691 if (buf.ebx == 0) 2692 continue; 2693 topology_leaf = leaf; 2694 levels_index = __kmp_x2apicid_get_levels(leaf, levels, known_levels); 2695 if (levels_index == 0) 2696 continue; 2697 break; 2698 } 2699 if (topology_leaf == -1 || levels_index == 0) { 2700 *msg_id = leaf_message_id; 2701 return false; 2702 } 2703 KMP_ASSERT(levels_index <= INTEL_LEVEL_TYPE_LAST); 2704 2705 // The algorithm used starts by setting the affinity to each available thread 2706 // and retrieving info from the cpuid instruction, so if we are not capable of 2707 // calling __kmp_get_system_affinity() and __kmp_get_system_affinity(), then 2708 // we need to do something else - use the defaults that we calculated from 2709 // issuing cpuid without binding to each proc. 2710 if (!KMP_AFFINITY_CAPABLE()) { 2711 // Hack to try and infer the machine topology using only the data 2712 // available from cpuid on the current thread, and __kmp_xproc. 2713 KMP_ASSERT(__kmp_affinity.type == affinity_none); 2714 for (unsigned i = 0; i < levels_index; ++i) { 2715 if (levels[i].level_type == INTEL_LEVEL_TYPE_SMT) { 2716 __kmp_nThreadsPerCore = levels[i].nitems; 2717 } else if (levels[i].level_type == INTEL_LEVEL_TYPE_CORE) { 2718 nCoresPerPkg = levels[i].nitems; 2719 } 2720 } 2721 __kmp_ncores = __kmp_xproc / __kmp_nThreadsPerCore; 2722 nPackages = (__kmp_xproc + nCoresPerPkg - 1) / nCoresPerPkg; 2723 return true; 2724 } 2725 2726 // Allocate the data structure to be returned. 2727 int depth = levels_index; 2728 for (int i = depth - 1, j = 0; i >= 0; --i, ++j) 2729 types[j] = __kmp_intel_type_2_topology_type(levels[i].level_type); 2730 __kmp_topology = 2731 kmp_topology_t::allocate(__kmp_avail_proc, levels_index, types); 2732 2733 // Insert equivalent cache types if they exist 2734 kmp_cache_info_t cache_info; 2735 for (size_t i = 0; i < cache_info.get_depth(); ++i) { 2736 const kmp_cache_info_t::info_t &info = cache_info[i]; 2737 unsigned cache_mask = info.mask; 2738 unsigned cache_level = info.level; 2739 for (unsigned j = 0; j < levels_index; ++j) { 2740 unsigned hw_cache_mask = levels[j].cache_mask; 2741 kmp_hw_t cache_type = kmp_cache_info_t::get_topology_type(cache_level); 2742 if (hw_cache_mask == cache_mask && j < levels_index - 1) { 2743 kmp_hw_t type = 2744 __kmp_intel_type_2_topology_type(levels[j + 1].level_type); 2745 __kmp_topology->set_equivalent_type(cache_type, type); 2746 } 2747 } 2748 } 2749 2750 // From here on, we can assume that it is safe to call 2751 // __kmp_get_system_affinity() and __kmp_set_system_affinity(), even if 2752 // __kmp_affinity.type = affinity_none. 2753 2754 // Save the affinity mask for the current thread. 2755 kmp_affinity_raii_t previous_affinity; 2756 2757 // Run through each of the available contexts, binding the current thread 2758 // to it, and obtaining the pertinent information using the cpuid instr. 2759 unsigned int proc; 2760 int hw_thread_index = 0; 2761 KMP_CPU_SET_ITERATE(proc, __kmp_affin_fullMask) { 2762 cpuid_level_info_t my_levels[INTEL_LEVEL_TYPE_LAST]; 2763 unsigned my_levels_index; 2764 2765 // Skip this proc if it is not included in the machine model. 2766 if (!KMP_CPU_ISSET(proc, __kmp_affin_fullMask)) { 2767 continue; 2768 } 2769 KMP_DEBUG_ASSERT(hw_thread_index < __kmp_avail_proc); 2770 2771 __kmp_affinity_dispatch->bind_thread(proc); 2772 2773 // New algorithm 2774 __kmp_x86_cpuid(topology_leaf, 0, &buf); 2775 apic_id = buf.edx; 2776 kmp_hw_thread_t &hw_thread = __kmp_topology->at(hw_thread_index); 2777 my_levels_index = 2778 __kmp_x2apicid_get_levels(topology_leaf, my_levels, known_levels); 2779 if (my_levels_index == 0 || my_levels_index != levels_index) { 2780 *msg_id = kmp_i18n_str_InvalidCpuidInfo; 2781 return false; 2782 } 2783 hw_thread.clear(); 2784 hw_thread.os_id = proc; 2785 // Put in topology information 2786 for (unsigned j = 0, idx = depth - 1; j < my_levels_index; ++j, --idx) { 2787 hw_thread.ids[idx] = apic_id & my_levels[j].mask; 2788 if (j > 0) { 2789 hw_thread.ids[idx] >>= my_levels[j - 1].mask_width; 2790 } 2791 } 2792 // Hybrid information 2793 if (__kmp_is_hybrid_cpu() && highest_leaf >= 0x1a) { 2794 kmp_hw_core_type_t type; 2795 unsigned native_model_id; 2796 int efficiency; 2797 __kmp_get_hybrid_info(&type, &efficiency, &native_model_id); 2798 hw_thread.attrs.set_core_type(type); 2799 hw_thread.attrs.set_core_eff(efficiency); 2800 } 2801 hw_thread_index++; 2802 } 2803 KMP_ASSERT(hw_thread_index > 0); 2804 __kmp_topology->sort_ids(); 2805 if (!__kmp_topology->check_ids()) { 2806 kmp_topology_t::deallocate(__kmp_topology); 2807 __kmp_topology = nullptr; 2808 *msg_id = kmp_i18n_str_x2ApicIDsNotUnique; 2809 return false; 2810 } 2811 return true; 2812 } 2813 #endif /* KMP_ARCH_X86 || KMP_ARCH_X86_64 */ 2814 2815 #define osIdIndex 0 2816 #define threadIdIndex 1 2817 #define coreIdIndex 2 2818 #define pkgIdIndex 3 2819 #define nodeIdIndex 4 2820 2821 typedef unsigned *ProcCpuInfo; 2822 static unsigned maxIndex = pkgIdIndex; 2823 2824 static int __kmp_affinity_cmp_ProcCpuInfo_phys_id(const void *a, 2825 const void *b) { 2826 unsigned i; 2827 const unsigned *aa = *(unsigned *const *)a; 2828 const unsigned *bb = *(unsigned *const *)b; 2829 for (i = maxIndex;; i--) { 2830 if (aa[i] < bb[i]) 2831 return -1; 2832 if (aa[i] > bb[i]) 2833 return 1; 2834 if (i == osIdIndex) 2835 break; 2836 } 2837 return 0; 2838 } 2839 2840 #if KMP_USE_HIER_SCHED 2841 // Set the array sizes for the hierarchy layers 2842 static void __kmp_dispatch_set_hierarchy_values() { 2843 // Set the maximum number of L1's to number of cores 2844 // Set the maximum number of L2's to either number of cores / 2 for 2845 // Intel(R) Xeon Phi(TM) coprocessor formally codenamed Knights Landing 2846 // Or the number of cores for Intel(R) Xeon(R) processors 2847 // Set the maximum number of NUMA nodes and L3's to number of packages 2848 __kmp_hier_max_units[kmp_hier_layer_e::LAYER_THREAD + 1] = 2849 nPackages * nCoresPerPkg * __kmp_nThreadsPerCore; 2850 __kmp_hier_max_units[kmp_hier_layer_e::LAYER_L1 + 1] = __kmp_ncores; 2851 #if KMP_ARCH_X86_64 && \ 2852 (KMP_OS_LINUX || KMP_OS_FREEBSD || KMP_OS_NETBSD || KMP_OS_DRAGONFLY || \ 2853 KMP_OS_WINDOWS) && \ 2854 KMP_MIC_SUPPORTED 2855 if (__kmp_mic_type >= mic3) 2856 __kmp_hier_max_units[kmp_hier_layer_e::LAYER_L2 + 1] = __kmp_ncores / 2; 2857 else 2858 #endif // KMP_ARCH_X86_64 && (KMP_OS_LINUX || KMP_OS_WINDOWS) 2859 __kmp_hier_max_units[kmp_hier_layer_e::LAYER_L2 + 1] = __kmp_ncores; 2860 __kmp_hier_max_units[kmp_hier_layer_e::LAYER_L3 + 1] = nPackages; 2861 __kmp_hier_max_units[kmp_hier_layer_e::LAYER_NUMA + 1] = nPackages; 2862 __kmp_hier_max_units[kmp_hier_layer_e::LAYER_LOOP + 1] = 1; 2863 // Set the number of threads per unit 2864 // Number of hardware threads per L1/L2/L3/NUMA/LOOP 2865 __kmp_hier_threads_per[kmp_hier_layer_e::LAYER_THREAD + 1] = 1; 2866 __kmp_hier_threads_per[kmp_hier_layer_e::LAYER_L1 + 1] = 2867 __kmp_nThreadsPerCore; 2868 #if KMP_ARCH_X86_64 && \ 2869 (KMP_OS_LINUX || KMP_OS_FREEBSD || KMP_OS_NETBSD || KMP_OS_DRAGONFLY || \ 2870 KMP_OS_WINDOWS) && \ 2871 KMP_MIC_SUPPORTED 2872 if (__kmp_mic_type >= mic3) 2873 __kmp_hier_threads_per[kmp_hier_layer_e::LAYER_L2 + 1] = 2874 2 * __kmp_nThreadsPerCore; 2875 else 2876 #endif // KMP_ARCH_X86_64 && (KMP_OS_LINUX || KMP_OS_WINDOWS) 2877 __kmp_hier_threads_per[kmp_hier_layer_e::LAYER_L2 + 1] = 2878 __kmp_nThreadsPerCore; 2879 __kmp_hier_threads_per[kmp_hier_layer_e::LAYER_L3 + 1] = 2880 nCoresPerPkg * __kmp_nThreadsPerCore; 2881 __kmp_hier_threads_per[kmp_hier_layer_e::LAYER_NUMA + 1] = 2882 nCoresPerPkg * __kmp_nThreadsPerCore; 2883 __kmp_hier_threads_per[kmp_hier_layer_e::LAYER_LOOP + 1] = 2884 nPackages * nCoresPerPkg * __kmp_nThreadsPerCore; 2885 } 2886 2887 // Return the index into the hierarchy for this tid and layer type (L1, L2, etc) 2888 // i.e., this thread's L1 or this thread's L2, etc. 2889 int __kmp_dispatch_get_index(int tid, kmp_hier_layer_e type) { 2890 int index = type + 1; 2891 int num_hw_threads = __kmp_hier_max_units[kmp_hier_layer_e::LAYER_THREAD + 1]; 2892 KMP_DEBUG_ASSERT(type != kmp_hier_layer_e::LAYER_LAST); 2893 if (type == kmp_hier_layer_e::LAYER_THREAD) 2894 return tid; 2895 else if (type == kmp_hier_layer_e::LAYER_LOOP) 2896 return 0; 2897 KMP_DEBUG_ASSERT(__kmp_hier_max_units[index] != 0); 2898 if (tid >= num_hw_threads) 2899 tid = tid % num_hw_threads; 2900 return (tid / __kmp_hier_threads_per[index]) % __kmp_hier_max_units[index]; 2901 } 2902 2903 // Return the number of t1's per t2 2904 int __kmp_dispatch_get_t1_per_t2(kmp_hier_layer_e t1, kmp_hier_layer_e t2) { 2905 int i1 = t1 + 1; 2906 int i2 = t2 + 1; 2907 KMP_DEBUG_ASSERT(i1 <= i2); 2908 KMP_DEBUG_ASSERT(t1 != kmp_hier_layer_e::LAYER_LAST); 2909 KMP_DEBUG_ASSERT(t2 != kmp_hier_layer_e::LAYER_LAST); 2910 KMP_DEBUG_ASSERT(__kmp_hier_threads_per[i1] != 0); 2911 // (nthreads/t2) / (nthreads/t1) = t1 / t2 2912 return __kmp_hier_threads_per[i2] / __kmp_hier_threads_per[i1]; 2913 } 2914 #endif // KMP_USE_HIER_SCHED 2915 2916 static inline const char *__kmp_cpuinfo_get_filename() { 2917 const char *filename; 2918 if (__kmp_cpuinfo_file != nullptr) 2919 filename = __kmp_cpuinfo_file; 2920 else 2921 filename = "/proc/cpuinfo"; 2922 return filename; 2923 } 2924 2925 static inline const char *__kmp_cpuinfo_get_envvar() { 2926 const char *envvar = nullptr; 2927 if (__kmp_cpuinfo_file != nullptr) 2928 envvar = "KMP_CPUINFO_FILE"; 2929 return envvar; 2930 } 2931 2932 // Parse /proc/cpuinfo (or an alternate file in the same format) to obtain the 2933 // affinity map. On AIX, the map is obtained through system SRAD (Scheduler 2934 // Resource Allocation Domain). 2935 static bool __kmp_affinity_create_cpuinfo_map(int *line, 2936 kmp_i18n_id_t *const msg_id) { 2937 *msg_id = kmp_i18n_null; 2938 2939 #if KMP_OS_AIX 2940 unsigned num_records = __kmp_xproc; 2941 #else 2942 const char *filename = __kmp_cpuinfo_get_filename(); 2943 const char *envvar = __kmp_cpuinfo_get_envvar(); 2944 2945 if (__kmp_affinity.flags.verbose) { 2946 KMP_INFORM(AffParseFilename, "KMP_AFFINITY", filename); 2947 } 2948 2949 kmp_safe_raii_file_t f(filename, "r", envvar); 2950 2951 // Scan of the file, and count the number of "processor" (osId) fields, 2952 // and find the highest value of <n> for a node_<n> field. 2953 char buf[256]; 2954 unsigned num_records = 0; 2955 while (!feof(f)) { 2956 buf[sizeof(buf) - 1] = 1; 2957 if (!fgets(buf, sizeof(buf), f)) { 2958 // Read errors presumably because of EOF 2959 break; 2960 } 2961 2962 char s1[] = "processor"; 2963 if (strncmp(buf, s1, sizeof(s1) - 1) == 0) { 2964 num_records++; 2965 continue; 2966 } 2967 2968 // FIXME - this will match "node_<n> <garbage>" 2969 unsigned level; 2970 if (KMP_SSCANF(buf, "node_%u id", &level) == 1) { 2971 // validate the input fisrt: 2972 if (level > (unsigned)__kmp_xproc) { // level is too big 2973 level = __kmp_xproc; 2974 } 2975 if (nodeIdIndex + level >= maxIndex) { 2976 maxIndex = nodeIdIndex + level; 2977 } 2978 continue; 2979 } 2980 } 2981 2982 // Check for empty file / no valid processor records, or too many. The number 2983 // of records can't exceed the number of valid bits in the affinity mask. 2984 if (num_records == 0) { 2985 *msg_id = kmp_i18n_str_NoProcRecords; 2986 return false; 2987 } 2988 if (num_records > (unsigned)__kmp_xproc) { 2989 *msg_id = kmp_i18n_str_TooManyProcRecords; 2990 return false; 2991 } 2992 2993 // Set the file pointer back to the beginning, so that we can scan the file 2994 // again, this time performing a full parse of the data. Allocate a vector of 2995 // ProcCpuInfo object, where we will place the data. Adding an extra element 2996 // at the end allows us to remove a lot of extra checks for termination 2997 // conditions. 2998 if (fseek(f, 0, SEEK_SET) != 0) { 2999 *msg_id = kmp_i18n_str_CantRewindCpuinfo; 3000 return false; 3001 } 3002 #endif // KMP_OS_AIX 3003 3004 // Allocate the array of records to store the proc info in. The dummy 3005 // element at the end makes the logic in filling them out easier to code. 3006 unsigned **threadInfo = 3007 (unsigned **)__kmp_allocate((num_records + 1) * sizeof(unsigned *)); 3008 unsigned i; 3009 for (i = 0; i <= num_records; i++) { 3010 threadInfo[i] = 3011 (unsigned *)__kmp_allocate((maxIndex + 1) * sizeof(unsigned)); 3012 } 3013 3014 #define CLEANUP_THREAD_INFO \ 3015 for (i = 0; i <= num_records; i++) { \ 3016 __kmp_free(threadInfo[i]); \ 3017 } \ 3018 __kmp_free(threadInfo); 3019 3020 // A value of UINT_MAX means that we didn't find the field 3021 unsigned __index; 3022 3023 #define INIT_PROC_INFO(p) \ 3024 for (__index = 0; __index <= maxIndex; __index++) { \ 3025 (p)[__index] = UINT_MAX; \ 3026 } 3027 3028 for (i = 0; i <= num_records; i++) { 3029 INIT_PROC_INFO(threadInfo[i]); 3030 } 3031 3032 #if KMP_OS_AIX 3033 int smt_threads; 3034 lpar_info_format1_t cpuinfo; 3035 unsigned num_avail = __kmp_xproc; 3036 3037 if (__kmp_affinity.flags.verbose) 3038 KMP_INFORM(AffParseFilename, "KMP_AFFINITY", "system info for topology"); 3039 3040 // Get the number of SMT threads per core. 3041 smt_threads = syssmt(GET_NUMBER_SMT_SETS, 0, 0, NULL); 3042 3043 // Allocate a resource set containing available system resourses. 3044 rsethandle_t sys_rset = rs_alloc(RS_SYSTEM); 3045 if (sys_rset == NULL) { 3046 CLEANUP_THREAD_INFO; 3047 *msg_id = kmp_i18n_str_UnknownTopology; 3048 return false; 3049 } 3050 // Allocate a resource set for the SRAD info. 3051 rsethandle_t srad = rs_alloc(RS_EMPTY); 3052 if (srad == NULL) { 3053 rs_free(sys_rset); 3054 CLEANUP_THREAD_INFO; 3055 *msg_id = kmp_i18n_str_UnknownTopology; 3056 return false; 3057 } 3058 3059 // Get the SRAD system detail level. 3060 int sradsdl = rs_getinfo(NULL, R_SRADSDL, 0); 3061 if (sradsdl < 0) { 3062 rs_free(sys_rset); 3063 rs_free(srad); 3064 CLEANUP_THREAD_INFO; 3065 *msg_id = kmp_i18n_str_UnknownTopology; 3066 return false; 3067 } 3068 // Get the number of RADs at that SRAD SDL. 3069 int num_rads = rs_numrads(sys_rset, sradsdl, 0); 3070 if (num_rads < 0) { 3071 rs_free(sys_rset); 3072 rs_free(srad); 3073 CLEANUP_THREAD_INFO; 3074 *msg_id = kmp_i18n_str_UnknownTopology; 3075 return false; 3076 } 3077 3078 // Get the maximum number of procs that may be contained in a resource set. 3079 int max_procs = rs_getinfo(NULL, R_MAXPROCS, 0); 3080 if (max_procs < 0) { 3081 rs_free(sys_rset); 3082 rs_free(srad); 3083 CLEANUP_THREAD_INFO; 3084 *msg_id = kmp_i18n_str_UnknownTopology; 3085 return false; 3086 } 3087 3088 int cur_rad = 0; 3089 int num_set = 0; 3090 for (int srad_idx = 0; cur_rad < num_rads && srad_idx < VMI_MAXRADS; 3091 ++srad_idx) { 3092 // Check if the SRAD is available in the RSET. 3093 if (rs_getrad(sys_rset, srad, sradsdl, srad_idx, 0) < 0) 3094 continue; 3095 3096 for (int cpu = 0; cpu < max_procs; cpu++) { 3097 // Set the info for the cpu if it is in the SRAD. 3098 if (rs_op(RS_TESTRESOURCE, srad, NULL, R_PROCS, cpu)) { 3099 threadInfo[cpu][osIdIndex] = cpu; 3100 threadInfo[cpu][pkgIdIndex] = cur_rad; 3101 threadInfo[cpu][coreIdIndex] = cpu / smt_threads; 3102 ++num_set; 3103 if (num_set >= num_avail) { 3104 // Done if all available CPUs have been set. 3105 break; 3106 } 3107 } 3108 } 3109 ++cur_rad; 3110 } 3111 rs_free(sys_rset); 3112 rs_free(srad); 3113 3114 // The topology is already sorted. 3115 3116 #else // !KMP_OS_AIX 3117 unsigned num_avail = 0; 3118 *line = 0; 3119 #if KMP_ARCH_S390X 3120 bool reading_s390x_sys_info = true; 3121 #endif 3122 while (!feof(f)) { 3123 // Create an inner scoping level, so that all the goto targets at the end of 3124 // the loop appear in an outer scoping level. This avoids warnings about 3125 // jumping past an initialization to a target in the same block. 3126 { 3127 buf[sizeof(buf) - 1] = 1; 3128 bool long_line = false; 3129 if (!fgets(buf, sizeof(buf), f)) { 3130 // Read errors presumably because of EOF 3131 // If there is valid data in threadInfo[num_avail], then fake 3132 // a blank line in ensure that the last address gets parsed. 3133 bool valid = false; 3134 for (i = 0; i <= maxIndex; i++) { 3135 if (threadInfo[num_avail][i] != UINT_MAX) { 3136 valid = true; 3137 } 3138 } 3139 if (!valid) { 3140 break; 3141 } 3142 buf[0] = 0; 3143 } else if (!buf[sizeof(buf) - 1]) { 3144 // The line is longer than the buffer. Set a flag and don't 3145 // emit an error if we were going to ignore the line, anyway. 3146 long_line = true; 3147 3148 #define CHECK_LINE \ 3149 if (long_line) { \ 3150 CLEANUP_THREAD_INFO; \ 3151 *msg_id = kmp_i18n_str_LongLineCpuinfo; \ 3152 return false; \ 3153 } 3154 } 3155 (*line)++; 3156 3157 #if KMP_ARCH_LOONGARCH64 3158 // The parsing logic of /proc/cpuinfo in this function highly depends on 3159 // the blank lines between each processor info block. But on LoongArch a 3160 // blank line exists before the first processor info block (i.e. after the 3161 // "system type" line). This blank line was added because the "system 3162 // type" line is unrelated to any of the CPUs. We must skip this line so 3163 // that the original logic works on LoongArch. 3164 if (*buf == '\n' && *line == 2) 3165 continue; 3166 #endif 3167 #if KMP_ARCH_S390X 3168 // s390x /proc/cpuinfo starts with a variable number of lines containing 3169 // the overall system information. Skip them. 3170 if (reading_s390x_sys_info) { 3171 if (*buf == '\n') 3172 reading_s390x_sys_info = false; 3173 continue; 3174 } 3175 #endif 3176 3177 #if KMP_ARCH_S390X 3178 char s1[] = "cpu number"; 3179 #else 3180 char s1[] = "processor"; 3181 #endif 3182 if (strncmp(buf, s1, sizeof(s1) - 1) == 0) { 3183 CHECK_LINE; 3184 char *p = strchr(buf + sizeof(s1) - 1, ':'); 3185 unsigned val; 3186 if ((p == NULL) || (KMP_SSCANF(p + 1, "%u\n", &val) != 1)) 3187 goto no_val; 3188 if (threadInfo[num_avail][osIdIndex] != UINT_MAX) 3189 #if KMP_ARCH_AARCH64 3190 // Handle the old AArch64 /proc/cpuinfo layout differently, 3191 // it contains all of the 'processor' entries listed in a 3192 // single 'Processor' section, therefore the normal looking 3193 // for duplicates in that section will always fail. 3194 num_avail++; 3195 #else 3196 goto dup_field; 3197 #endif 3198 threadInfo[num_avail][osIdIndex] = val; 3199 #if KMP_OS_LINUX && !(KMP_ARCH_X86 || KMP_ARCH_X86_64) 3200 char path[256]; 3201 KMP_SNPRINTF( 3202 path, sizeof(path), 3203 "/sys/devices/system/cpu/cpu%u/topology/physical_package_id", 3204 threadInfo[num_avail][osIdIndex]); 3205 __kmp_read_from_file(path, "%u", &threadInfo[num_avail][pkgIdIndex]); 3206 3207 #if KMP_ARCH_S390X 3208 // Disambiguate physical_package_id. 3209 unsigned book_id; 3210 KMP_SNPRINTF(path, sizeof(path), 3211 "/sys/devices/system/cpu/cpu%u/topology/book_id", 3212 threadInfo[num_avail][osIdIndex]); 3213 __kmp_read_from_file(path, "%u", &book_id); 3214 threadInfo[num_avail][pkgIdIndex] |= (book_id << 8); 3215 3216 unsigned drawer_id; 3217 KMP_SNPRINTF(path, sizeof(path), 3218 "/sys/devices/system/cpu/cpu%u/topology/drawer_id", 3219 threadInfo[num_avail][osIdIndex]); 3220 __kmp_read_from_file(path, "%u", &drawer_id); 3221 threadInfo[num_avail][pkgIdIndex] |= (drawer_id << 16); 3222 #endif 3223 3224 KMP_SNPRINTF(path, sizeof(path), 3225 "/sys/devices/system/cpu/cpu%u/topology/core_id", 3226 threadInfo[num_avail][osIdIndex]); 3227 __kmp_read_from_file(path, "%u", &threadInfo[num_avail][coreIdIndex]); 3228 continue; 3229 #else 3230 } 3231 char s2[] = "physical id"; 3232 if (strncmp(buf, s2, sizeof(s2) - 1) == 0) { 3233 CHECK_LINE; 3234 char *p = strchr(buf + sizeof(s2) - 1, ':'); 3235 unsigned val; 3236 if ((p == NULL) || (KMP_SSCANF(p + 1, "%u\n", &val) != 1)) 3237 goto no_val; 3238 if (threadInfo[num_avail][pkgIdIndex] != UINT_MAX) 3239 goto dup_field; 3240 threadInfo[num_avail][pkgIdIndex] = val; 3241 continue; 3242 } 3243 char s3[] = "core id"; 3244 if (strncmp(buf, s3, sizeof(s3) - 1) == 0) { 3245 CHECK_LINE; 3246 char *p = strchr(buf + sizeof(s3) - 1, ':'); 3247 unsigned val; 3248 if ((p == NULL) || (KMP_SSCANF(p + 1, "%u\n", &val) != 1)) 3249 goto no_val; 3250 if (threadInfo[num_avail][coreIdIndex] != UINT_MAX) 3251 goto dup_field; 3252 threadInfo[num_avail][coreIdIndex] = val; 3253 continue; 3254 #endif // KMP_OS_LINUX && USE_SYSFS_INFO 3255 } 3256 char s4[] = "thread id"; 3257 if (strncmp(buf, s4, sizeof(s4) - 1) == 0) { 3258 CHECK_LINE; 3259 char *p = strchr(buf + sizeof(s4) - 1, ':'); 3260 unsigned val; 3261 if ((p == NULL) || (KMP_SSCANF(p + 1, "%u\n", &val) != 1)) 3262 goto no_val; 3263 if (threadInfo[num_avail][threadIdIndex] != UINT_MAX) 3264 goto dup_field; 3265 threadInfo[num_avail][threadIdIndex] = val; 3266 continue; 3267 } 3268 unsigned level; 3269 if (KMP_SSCANF(buf, "node_%u id", &level) == 1) { 3270 CHECK_LINE; 3271 char *p = strchr(buf + sizeof(s4) - 1, ':'); 3272 unsigned val; 3273 if ((p == NULL) || (KMP_SSCANF(p + 1, "%u\n", &val) != 1)) 3274 goto no_val; 3275 // validate the input before using level: 3276 if (level > (unsigned)__kmp_xproc) { // level is too big 3277 level = __kmp_xproc; 3278 } 3279 if (threadInfo[num_avail][nodeIdIndex + level] != UINT_MAX) 3280 goto dup_field; 3281 threadInfo[num_avail][nodeIdIndex + level] = val; 3282 continue; 3283 } 3284 3285 // We didn't recognize the leading token on the line. There are lots of 3286 // leading tokens that we don't recognize - if the line isn't empty, go on 3287 // to the next line. 3288 if ((*buf != 0) && (*buf != '\n')) { 3289 // If the line is longer than the buffer, read characters 3290 // until we find a newline. 3291 if (long_line) { 3292 int ch; 3293 while (((ch = fgetc(f)) != EOF) && (ch != '\n')) 3294 ; 3295 } 3296 continue; 3297 } 3298 3299 // A newline has signalled the end of the processor record. 3300 // Check that there aren't too many procs specified. 3301 if ((int)num_avail == __kmp_xproc) { 3302 CLEANUP_THREAD_INFO; 3303 *msg_id = kmp_i18n_str_TooManyEntries; 3304 return false; 3305 } 3306 3307 // Check for missing fields. The osId field must be there, and we 3308 // currently require that the physical id field is specified, also. 3309 if (threadInfo[num_avail][osIdIndex] == UINT_MAX) { 3310 CLEANUP_THREAD_INFO; 3311 *msg_id = kmp_i18n_str_MissingProcField; 3312 return false; 3313 } 3314 if (threadInfo[0][pkgIdIndex] == UINT_MAX) { 3315 CLEANUP_THREAD_INFO; 3316 *msg_id = kmp_i18n_str_MissingPhysicalIDField; 3317 return false; 3318 } 3319 3320 // Skip this proc if it is not included in the machine model. 3321 if (KMP_AFFINITY_CAPABLE() && 3322 !KMP_CPU_ISSET(threadInfo[num_avail][osIdIndex], 3323 __kmp_affin_fullMask)) { 3324 INIT_PROC_INFO(threadInfo[num_avail]); 3325 continue; 3326 } 3327 3328 // We have a successful parse of this proc's info. 3329 // Increment the counter, and prepare for the next proc. 3330 num_avail++; 3331 KMP_ASSERT(num_avail <= num_records); 3332 INIT_PROC_INFO(threadInfo[num_avail]); 3333 } 3334 continue; 3335 3336 no_val: 3337 CLEANUP_THREAD_INFO; 3338 *msg_id = kmp_i18n_str_MissingValCpuinfo; 3339 return false; 3340 3341 dup_field: 3342 CLEANUP_THREAD_INFO; 3343 *msg_id = kmp_i18n_str_DuplicateFieldCpuinfo; 3344 return false; 3345 } 3346 *line = 0; 3347 3348 #if KMP_MIC && REDUCE_TEAM_SIZE 3349 unsigned teamSize = 0; 3350 #endif // KMP_MIC && REDUCE_TEAM_SIZE 3351 3352 // check for num_records == __kmp_xproc ??? 3353 3354 // If it is configured to omit the package level when there is only a single 3355 // package, the logic at the end of this routine won't work if there is only a 3356 // single thread 3357 KMP_ASSERT(num_avail > 0); 3358 KMP_ASSERT(num_avail <= num_records); 3359 3360 // Sort the threadInfo table by physical Id. 3361 qsort(threadInfo, num_avail, sizeof(*threadInfo), 3362 __kmp_affinity_cmp_ProcCpuInfo_phys_id); 3363 3364 #endif // KMP_OS_AIX 3365 3366 // The table is now sorted by pkgId / coreId / threadId, but we really don't 3367 // know the radix of any of the fields. pkgId's may be sparsely assigned among 3368 // the chips on a system. Although coreId's are usually assigned 3369 // [0 .. coresPerPkg-1] and threadId's are usually assigned 3370 // [0..threadsPerCore-1], we don't want to make any such assumptions. 3371 // 3372 // For that matter, we don't know what coresPerPkg and threadsPerCore (or the 3373 // total # packages) are at this point - we want to determine that now. We 3374 // only have an upper bound on the first two figures. 3375 unsigned *counts = 3376 (unsigned *)__kmp_allocate((maxIndex + 1) * sizeof(unsigned)); 3377 unsigned *maxCt = 3378 (unsigned *)__kmp_allocate((maxIndex + 1) * sizeof(unsigned)); 3379 unsigned *totals = 3380 (unsigned *)__kmp_allocate((maxIndex + 1) * sizeof(unsigned)); 3381 unsigned *lastId = 3382 (unsigned *)__kmp_allocate((maxIndex + 1) * sizeof(unsigned)); 3383 3384 bool assign_thread_ids = false; 3385 unsigned threadIdCt; 3386 unsigned index; 3387 3388 restart_radix_check: 3389 threadIdCt = 0; 3390 3391 // Initialize the counter arrays with data from threadInfo[0]. 3392 if (assign_thread_ids) { 3393 if (threadInfo[0][threadIdIndex] == UINT_MAX) { 3394 threadInfo[0][threadIdIndex] = threadIdCt++; 3395 } else if (threadIdCt <= threadInfo[0][threadIdIndex]) { 3396 threadIdCt = threadInfo[0][threadIdIndex] + 1; 3397 } 3398 } 3399 for (index = 0; index <= maxIndex; index++) { 3400 counts[index] = 1; 3401 maxCt[index] = 1; 3402 totals[index] = 1; 3403 lastId[index] = threadInfo[0][index]; 3404 ; 3405 } 3406 3407 // Run through the rest of the OS procs. 3408 for (i = 1; i < num_avail; i++) { 3409 // Find the most significant index whose id differs from the id for the 3410 // previous OS proc. 3411 for (index = maxIndex; index >= threadIdIndex; index--) { 3412 if (assign_thread_ids && (index == threadIdIndex)) { 3413 // Auto-assign the thread id field if it wasn't specified. 3414 if (threadInfo[i][threadIdIndex] == UINT_MAX) { 3415 threadInfo[i][threadIdIndex] = threadIdCt++; 3416 } 3417 // Apparently the thread id field was specified for some entries and not 3418 // others. Start the thread id counter off at the next higher thread id. 3419 else if (threadIdCt <= threadInfo[i][threadIdIndex]) { 3420 threadIdCt = threadInfo[i][threadIdIndex] + 1; 3421 } 3422 } 3423 if (threadInfo[i][index] != lastId[index]) { 3424 // Run through all indices which are less significant, and reset the 3425 // counts to 1. At all levels up to and including index, we need to 3426 // increment the totals and record the last id. 3427 unsigned index2; 3428 for (index2 = threadIdIndex; index2 < index; index2++) { 3429 totals[index2]++; 3430 if (counts[index2] > maxCt[index2]) { 3431 maxCt[index2] = counts[index2]; 3432 } 3433 counts[index2] = 1; 3434 lastId[index2] = threadInfo[i][index2]; 3435 } 3436 counts[index]++; 3437 totals[index]++; 3438 lastId[index] = threadInfo[i][index]; 3439 3440 if (assign_thread_ids && (index > threadIdIndex)) { 3441 3442 #if KMP_MIC && REDUCE_TEAM_SIZE 3443 // The default team size is the total #threads in the machine 3444 // minus 1 thread for every core that has 3 or more threads. 3445 teamSize += (threadIdCt <= 2) ? (threadIdCt) : (threadIdCt - 1); 3446 #endif // KMP_MIC && REDUCE_TEAM_SIZE 3447 3448 // Restart the thread counter, as we are on a new core. 3449 threadIdCt = 0; 3450 3451 // Auto-assign the thread id field if it wasn't specified. 3452 if (threadInfo[i][threadIdIndex] == UINT_MAX) { 3453 threadInfo[i][threadIdIndex] = threadIdCt++; 3454 } 3455 3456 // Apparently the thread id field was specified for some entries and 3457 // not others. Start the thread id counter off at the next higher 3458 // thread id. 3459 else if (threadIdCt <= threadInfo[i][threadIdIndex]) { 3460 threadIdCt = threadInfo[i][threadIdIndex] + 1; 3461 } 3462 } 3463 break; 3464 } 3465 } 3466 if (index < threadIdIndex) { 3467 // If thread ids were specified, it is an error if they are not unique. 3468 // Also, check that we waven't already restarted the loop (to be safe - 3469 // shouldn't need to). 3470 if ((threadInfo[i][threadIdIndex] != UINT_MAX) || assign_thread_ids) { 3471 __kmp_free(lastId); 3472 __kmp_free(totals); 3473 __kmp_free(maxCt); 3474 __kmp_free(counts); 3475 CLEANUP_THREAD_INFO; 3476 *msg_id = kmp_i18n_str_PhysicalIDsNotUnique; 3477 return false; 3478 } 3479 3480 // If the thread ids were not specified and we see entries that 3481 // are duplicates, start the loop over and assign the thread ids manually. 3482 assign_thread_ids = true; 3483 goto restart_radix_check; 3484 } 3485 } 3486 3487 #if KMP_MIC && REDUCE_TEAM_SIZE 3488 // The default team size is the total #threads in the machine 3489 // minus 1 thread for every core that has 3 or more threads. 3490 teamSize += (threadIdCt <= 2) ? (threadIdCt) : (threadIdCt - 1); 3491 #endif // KMP_MIC && REDUCE_TEAM_SIZE 3492 3493 for (index = threadIdIndex; index <= maxIndex; index++) { 3494 if (counts[index] > maxCt[index]) { 3495 maxCt[index] = counts[index]; 3496 } 3497 } 3498 3499 __kmp_nThreadsPerCore = maxCt[threadIdIndex]; 3500 nCoresPerPkg = maxCt[coreIdIndex]; 3501 nPackages = totals[pkgIdIndex]; 3502 3503 // When affinity is off, this routine will still be called to set 3504 // __kmp_ncores, as well as __kmp_nThreadsPerCore, nCoresPerPkg, & nPackages. 3505 // Make sure all these vars are set correctly, and return now if affinity is 3506 // not enabled. 3507 __kmp_ncores = totals[coreIdIndex]; 3508 if (!KMP_AFFINITY_CAPABLE()) { 3509 KMP_ASSERT(__kmp_affinity.type == affinity_none); 3510 return true; 3511 } 3512 3513 #if KMP_MIC && REDUCE_TEAM_SIZE 3514 // Set the default team size. 3515 if ((__kmp_dflt_team_nth == 0) && (teamSize > 0)) { 3516 __kmp_dflt_team_nth = teamSize; 3517 KA_TRACE(20, ("__kmp_affinity_create_cpuinfo_map: setting " 3518 "__kmp_dflt_team_nth = %d\n", 3519 __kmp_dflt_team_nth)); 3520 } 3521 #endif // KMP_MIC && REDUCE_TEAM_SIZE 3522 3523 KMP_DEBUG_ASSERT(num_avail == (unsigned)__kmp_avail_proc); 3524 3525 // Count the number of levels which have more nodes at that level than at the 3526 // parent's level (with there being an implicit root node of the top level). 3527 // This is equivalent to saying that there is at least one node at this level 3528 // which has a sibling. These levels are in the map, and the package level is 3529 // always in the map. 3530 bool *inMap = (bool *)__kmp_allocate((maxIndex + 1) * sizeof(bool)); 3531 for (index = threadIdIndex; index < maxIndex; index++) { 3532 KMP_ASSERT(totals[index] >= totals[index + 1]); 3533 inMap[index] = (totals[index] > totals[index + 1]); 3534 } 3535 inMap[maxIndex] = (totals[maxIndex] > 1); 3536 inMap[pkgIdIndex] = true; 3537 inMap[coreIdIndex] = true; 3538 inMap[threadIdIndex] = true; 3539 3540 int depth = 0; 3541 int idx = 0; 3542 kmp_hw_t types[KMP_HW_LAST]; 3543 int pkgLevel = -1; 3544 int coreLevel = -1; 3545 int threadLevel = -1; 3546 for (index = threadIdIndex; index <= maxIndex; index++) { 3547 if (inMap[index]) { 3548 depth++; 3549 } 3550 } 3551 if (inMap[pkgIdIndex]) { 3552 pkgLevel = idx; 3553 types[idx++] = KMP_HW_SOCKET; 3554 } 3555 if (inMap[coreIdIndex]) { 3556 coreLevel = idx; 3557 types[idx++] = KMP_HW_CORE; 3558 } 3559 if (inMap[threadIdIndex]) { 3560 threadLevel = idx; 3561 types[idx++] = KMP_HW_THREAD; 3562 } 3563 KMP_ASSERT(depth > 0); 3564 3565 // Construct the data structure that is to be returned. 3566 __kmp_topology = kmp_topology_t::allocate(num_avail, depth, types); 3567 3568 for (i = 0; i < num_avail; ++i) { 3569 unsigned os = threadInfo[i][osIdIndex]; 3570 int src_index; 3571 kmp_hw_thread_t &hw_thread = __kmp_topology->at(i); 3572 hw_thread.clear(); 3573 hw_thread.os_id = os; 3574 3575 idx = 0; 3576 for (src_index = maxIndex; src_index >= threadIdIndex; src_index--) { 3577 if (!inMap[src_index]) { 3578 continue; 3579 } 3580 if (src_index == pkgIdIndex) { 3581 hw_thread.ids[pkgLevel] = threadInfo[i][src_index]; 3582 } else if (src_index == coreIdIndex) { 3583 hw_thread.ids[coreLevel] = threadInfo[i][src_index]; 3584 } else if (src_index == threadIdIndex) { 3585 hw_thread.ids[threadLevel] = threadInfo[i][src_index]; 3586 } 3587 } 3588 } 3589 3590 __kmp_free(inMap); 3591 __kmp_free(lastId); 3592 __kmp_free(totals); 3593 __kmp_free(maxCt); 3594 __kmp_free(counts); 3595 CLEANUP_THREAD_INFO; 3596 __kmp_topology->sort_ids(); 3597 if (!__kmp_topology->check_ids()) { 3598 kmp_topology_t::deallocate(__kmp_topology); 3599 __kmp_topology = nullptr; 3600 *msg_id = kmp_i18n_str_PhysicalIDsNotUnique; 3601 return false; 3602 } 3603 return true; 3604 } 3605 3606 // Create and return a table of affinity masks, indexed by OS thread ID. 3607 // This routine handles OR'ing together all the affinity masks of threads 3608 // that are sufficiently close, if granularity > fine. 3609 template <typename FindNextFunctionType> 3610 static void __kmp_create_os_id_masks(unsigned *numUnique, 3611 kmp_affinity_t &affinity, 3612 FindNextFunctionType find_next) { 3613 // First form a table of affinity masks in order of OS thread id. 3614 int maxOsId; 3615 int i; 3616 int numAddrs = __kmp_topology->get_num_hw_threads(); 3617 int depth = __kmp_topology->get_depth(); 3618 const char *env_var = __kmp_get_affinity_env_var(affinity); 3619 KMP_ASSERT(numAddrs); 3620 KMP_ASSERT(depth); 3621 3622 i = find_next(-1); 3623 // If could not find HW thread location with attributes, then return and 3624 // fallback to increment find_next and disregard core attributes. 3625 if (i >= numAddrs) 3626 return; 3627 3628 maxOsId = 0; 3629 for (i = numAddrs - 1;; --i) { 3630 int osId = __kmp_topology->at(i).os_id; 3631 if (osId > maxOsId) { 3632 maxOsId = osId; 3633 } 3634 if (i == 0) 3635 break; 3636 } 3637 affinity.num_os_id_masks = maxOsId + 1; 3638 KMP_CPU_ALLOC_ARRAY(affinity.os_id_masks, affinity.num_os_id_masks); 3639 KMP_ASSERT(affinity.gran_levels >= 0); 3640 if (affinity.flags.verbose && (affinity.gran_levels > 0)) { 3641 KMP_INFORM(ThreadsMigrate, env_var, affinity.gran_levels); 3642 } 3643 if (affinity.gran_levels >= (int)depth) { 3644 KMP_AFF_WARNING(affinity, AffThreadsMayMigrate); 3645 } 3646 3647 // Run through the table, forming the masks for all threads on each core. 3648 // Threads on the same core will have identical kmp_hw_thread_t objects, not 3649 // considering the last level, which must be the thread id. All threads on a 3650 // core will appear consecutively. 3651 int unique = 0; 3652 int j = 0; // index of 1st thread on core 3653 int leader = 0; 3654 kmp_affin_mask_t *sum; 3655 KMP_CPU_ALLOC_ON_STACK(sum); 3656 KMP_CPU_ZERO(sum); 3657 3658 i = j = leader = find_next(-1); 3659 KMP_CPU_SET(__kmp_topology->at(i).os_id, sum); 3660 kmp_full_mask_modifier_t full_mask; 3661 for (i = find_next(i); i < numAddrs; i = find_next(i)) { 3662 // If this thread is sufficiently close to the leader (within the 3663 // granularity setting), then set the bit for this os thread in the 3664 // affinity mask for this group, and go on to the next thread. 3665 if (__kmp_topology->is_close(leader, i, affinity)) { 3666 KMP_CPU_SET(__kmp_topology->at(i).os_id, sum); 3667 continue; 3668 } 3669 3670 // For every thread in this group, copy the mask to the thread's entry in 3671 // the OS Id mask table. Mark the first address as a leader. 3672 for (; j < i; j = find_next(j)) { 3673 int osId = __kmp_topology->at(j).os_id; 3674 KMP_DEBUG_ASSERT(osId <= maxOsId); 3675 kmp_affin_mask_t *mask = KMP_CPU_INDEX(affinity.os_id_masks, osId); 3676 KMP_CPU_COPY(mask, sum); 3677 __kmp_topology->at(j).leader = (j == leader); 3678 } 3679 unique++; 3680 3681 // Start a new mask. 3682 leader = i; 3683 full_mask.include(sum); 3684 KMP_CPU_ZERO(sum); 3685 KMP_CPU_SET(__kmp_topology->at(i).os_id, sum); 3686 } 3687 3688 // For every thread in last group, copy the mask to the thread's 3689 // entry in the OS Id mask table. 3690 for (; j < i; j = find_next(j)) { 3691 int osId = __kmp_topology->at(j).os_id; 3692 KMP_DEBUG_ASSERT(osId <= maxOsId); 3693 kmp_affin_mask_t *mask = KMP_CPU_INDEX(affinity.os_id_masks, osId); 3694 KMP_CPU_COPY(mask, sum); 3695 __kmp_topology->at(j).leader = (j == leader); 3696 } 3697 full_mask.include(sum); 3698 unique++; 3699 KMP_CPU_FREE_FROM_STACK(sum); 3700 3701 // See if the OS Id mask table further restricts or changes the full mask 3702 if (full_mask.restrict_to_mask() && affinity.flags.verbose) { 3703 __kmp_topology->print(env_var); 3704 } 3705 3706 *numUnique = unique; 3707 } 3708 3709 // Stuff for the affinity proclist parsers. It's easier to declare these vars 3710 // as file-static than to try and pass them through the calling sequence of 3711 // the recursive-descent OMP_PLACES parser. 3712 static kmp_affin_mask_t *newMasks; 3713 static int numNewMasks; 3714 static int nextNewMask; 3715 3716 #define ADD_MASK(_mask) \ 3717 { \ 3718 if (nextNewMask >= numNewMasks) { \ 3719 int i; \ 3720 numNewMasks *= 2; \ 3721 kmp_affin_mask_t *temp; \ 3722 KMP_CPU_INTERNAL_ALLOC_ARRAY(temp, numNewMasks); \ 3723 for (i = 0; i < numNewMasks / 2; i++) { \ 3724 kmp_affin_mask_t *src = KMP_CPU_INDEX(newMasks, i); \ 3725 kmp_affin_mask_t *dest = KMP_CPU_INDEX(temp, i); \ 3726 KMP_CPU_COPY(dest, src); \ 3727 } \ 3728 KMP_CPU_INTERNAL_FREE_ARRAY(newMasks, numNewMasks / 2); \ 3729 newMasks = temp; \ 3730 } \ 3731 KMP_CPU_COPY(KMP_CPU_INDEX(newMasks, nextNewMask), (_mask)); \ 3732 nextNewMask++; \ 3733 } 3734 3735 #define ADD_MASK_OSID(_osId, _osId2Mask, _maxOsId) \ 3736 { \ 3737 if (((_osId) > _maxOsId) || \ 3738 (!KMP_CPU_ISSET((_osId), KMP_CPU_INDEX((_osId2Mask), (_osId))))) { \ 3739 KMP_AFF_WARNING(affinity, AffIgnoreInvalidProcID, _osId); \ 3740 } else { \ 3741 ADD_MASK(KMP_CPU_INDEX(_osId2Mask, (_osId))); \ 3742 } \ 3743 } 3744 3745 // Re-parse the proclist (for the explicit affinity type), and form the list 3746 // of affinity newMasks indexed by gtid. 3747 static void __kmp_affinity_process_proclist(kmp_affinity_t &affinity) { 3748 int i; 3749 kmp_affin_mask_t **out_masks = &affinity.masks; 3750 unsigned *out_numMasks = &affinity.num_masks; 3751 const char *proclist = affinity.proclist; 3752 kmp_affin_mask_t *osId2Mask = affinity.os_id_masks; 3753 int maxOsId = affinity.num_os_id_masks - 1; 3754 const char *scan = proclist; 3755 const char *next = proclist; 3756 3757 // We use malloc() for the temporary mask vector, so that we can use 3758 // realloc() to extend it. 3759 numNewMasks = 2; 3760 KMP_CPU_INTERNAL_ALLOC_ARRAY(newMasks, numNewMasks); 3761 nextNewMask = 0; 3762 kmp_affin_mask_t *sumMask; 3763 KMP_CPU_ALLOC(sumMask); 3764 int setSize = 0; 3765 3766 for (;;) { 3767 int start, end, stride; 3768 3769 SKIP_WS(scan); 3770 next = scan; 3771 if (*next == '\0') { 3772 break; 3773 } 3774 3775 if (*next == '{') { 3776 int num; 3777 setSize = 0; 3778 next++; // skip '{' 3779 SKIP_WS(next); 3780 scan = next; 3781 3782 // Read the first integer in the set. 3783 KMP_ASSERT2((*next >= '0') && (*next <= '9'), "bad proclist"); 3784 SKIP_DIGITS(next); 3785 num = __kmp_str_to_int(scan, *next); 3786 KMP_ASSERT2(num >= 0, "bad explicit proc list"); 3787 3788 // Copy the mask for that osId to the sum (union) mask. 3789 if ((num > maxOsId) || 3790 (!KMP_CPU_ISSET(num, KMP_CPU_INDEX(osId2Mask, num)))) { 3791 KMP_AFF_WARNING(affinity, AffIgnoreInvalidProcID, num); 3792 KMP_CPU_ZERO(sumMask); 3793 } else { 3794 KMP_CPU_COPY(sumMask, KMP_CPU_INDEX(osId2Mask, num)); 3795 setSize = 1; 3796 } 3797 3798 for (;;) { 3799 // Check for end of set. 3800 SKIP_WS(next); 3801 if (*next == '}') { 3802 next++; // skip '}' 3803 break; 3804 } 3805 3806 // Skip optional comma. 3807 if (*next == ',') { 3808 next++; 3809 } 3810 SKIP_WS(next); 3811 3812 // Read the next integer in the set. 3813 scan = next; 3814 KMP_ASSERT2((*next >= '0') && (*next <= '9'), "bad explicit proc list"); 3815 3816 SKIP_DIGITS(next); 3817 num = __kmp_str_to_int(scan, *next); 3818 KMP_ASSERT2(num >= 0, "bad explicit proc list"); 3819 3820 // Add the mask for that osId to the sum mask. 3821 if ((num > maxOsId) || 3822 (!KMP_CPU_ISSET(num, KMP_CPU_INDEX(osId2Mask, num)))) { 3823 KMP_AFF_WARNING(affinity, AffIgnoreInvalidProcID, num); 3824 } else { 3825 KMP_CPU_UNION(sumMask, KMP_CPU_INDEX(osId2Mask, num)); 3826 setSize++; 3827 } 3828 } 3829 if (setSize > 0) { 3830 ADD_MASK(sumMask); 3831 } 3832 3833 SKIP_WS(next); 3834 if (*next == ',') { 3835 next++; 3836 } 3837 scan = next; 3838 continue; 3839 } 3840 3841 // Read the first integer. 3842 KMP_ASSERT2((*next >= '0') && (*next <= '9'), "bad explicit proc list"); 3843 SKIP_DIGITS(next); 3844 start = __kmp_str_to_int(scan, *next); 3845 KMP_ASSERT2(start >= 0, "bad explicit proc list"); 3846 SKIP_WS(next); 3847 3848 // If this isn't a range, then add a mask to the list and go on. 3849 if (*next != '-') { 3850 ADD_MASK_OSID(start, osId2Mask, maxOsId); 3851 3852 // Skip optional comma. 3853 if (*next == ',') { 3854 next++; 3855 } 3856 scan = next; 3857 continue; 3858 } 3859 3860 // This is a range. Skip over the '-' and read in the 2nd int. 3861 next++; // skip '-' 3862 SKIP_WS(next); 3863 scan = next; 3864 KMP_ASSERT2((*next >= '0') && (*next <= '9'), "bad explicit proc list"); 3865 SKIP_DIGITS(next); 3866 end = __kmp_str_to_int(scan, *next); 3867 KMP_ASSERT2(end >= 0, "bad explicit proc list"); 3868 3869 // Check for a stride parameter 3870 stride = 1; 3871 SKIP_WS(next); 3872 if (*next == ':') { 3873 // A stride is specified. Skip over the ':" and read the 3rd int. 3874 int sign = +1; 3875 next++; // skip ':' 3876 SKIP_WS(next); 3877 scan = next; 3878 if (*next == '-') { 3879 sign = -1; 3880 next++; 3881 SKIP_WS(next); 3882 scan = next; 3883 } 3884 KMP_ASSERT2((*next >= '0') && (*next <= '9'), "bad explicit proc list"); 3885 SKIP_DIGITS(next); 3886 stride = __kmp_str_to_int(scan, *next); 3887 KMP_ASSERT2(stride >= 0, "bad explicit proc list"); 3888 stride *= sign; 3889 } 3890 3891 // Do some range checks. 3892 KMP_ASSERT2(stride != 0, "bad explicit proc list"); 3893 if (stride > 0) { 3894 KMP_ASSERT2(start <= end, "bad explicit proc list"); 3895 } else { 3896 KMP_ASSERT2(start >= end, "bad explicit proc list"); 3897 } 3898 KMP_ASSERT2((end - start) / stride <= 65536, "bad explicit proc list"); 3899 3900 // Add the mask for each OS proc # to the list. 3901 if (stride > 0) { 3902 do { 3903 ADD_MASK_OSID(start, osId2Mask, maxOsId); 3904 start += stride; 3905 } while (start <= end); 3906 } else { 3907 do { 3908 ADD_MASK_OSID(start, osId2Mask, maxOsId); 3909 start += stride; 3910 } while (start >= end); 3911 } 3912 3913 // Skip optional comma. 3914 SKIP_WS(next); 3915 if (*next == ',') { 3916 next++; 3917 } 3918 scan = next; 3919 } 3920 3921 *out_numMasks = nextNewMask; 3922 if (nextNewMask == 0) { 3923 *out_masks = NULL; 3924 KMP_CPU_INTERNAL_FREE_ARRAY(newMasks, numNewMasks); 3925 return; 3926 } 3927 KMP_CPU_ALLOC_ARRAY((*out_masks), nextNewMask); 3928 for (i = 0; i < nextNewMask; i++) { 3929 kmp_affin_mask_t *src = KMP_CPU_INDEX(newMasks, i); 3930 kmp_affin_mask_t *dest = KMP_CPU_INDEX((*out_masks), i); 3931 KMP_CPU_COPY(dest, src); 3932 } 3933 KMP_CPU_INTERNAL_FREE_ARRAY(newMasks, numNewMasks); 3934 KMP_CPU_FREE(sumMask); 3935 } 3936 3937 /*----------------------------------------------------------------------------- 3938 Re-parse the OMP_PLACES proc id list, forming the newMasks for the different 3939 places. Again, Here is the grammar: 3940 3941 place_list := place 3942 place_list := place , place_list 3943 place := num 3944 place := place : num 3945 place := place : num : signed 3946 place := { subplacelist } 3947 place := ! place // (lowest priority) 3948 subplace_list := subplace 3949 subplace_list := subplace , subplace_list 3950 subplace := num 3951 subplace := num : num 3952 subplace := num : num : signed 3953 signed := num 3954 signed := + signed 3955 signed := - signed 3956 -----------------------------------------------------------------------------*/ 3957 static void __kmp_process_subplace_list(const char **scan, 3958 kmp_affinity_t &affinity, int maxOsId, 3959 kmp_affin_mask_t *tempMask, 3960 int *setSize) { 3961 const char *next; 3962 kmp_affin_mask_t *osId2Mask = affinity.os_id_masks; 3963 3964 for (;;) { 3965 int start, count, stride, i; 3966 3967 // Read in the starting proc id 3968 SKIP_WS(*scan); 3969 KMP_ASSERT2((**scan >= '0') && (**scan <= '9'), "bad explicit places list"); 3970 next = *scan; 3971 SKIP_DIGITS(next); 3972 start = __kmp_str_to_int(*scan, *next); 3973 KMP_ASSERT(start >= 0); 3974 *scan = next; 3975 3976 // valid follow sets are ',' ':' and '}' 3977 SKIP_WS(*scan); 3978 if (**scan == '}' || **scan == ',') { 3979 if ((start > maxOsId) || 3980 (!KMP_CPU_ISSET(start, KMP_CPU_INDEX(osId2Mask, start)))) { 3981 KMP_AFF_WARNING(affinity, AffIgnoreInvalidProcID, start); 3982 } else { 3983 KMP_CPU_UNION(tempMask, KMP_CPU_INDEX(osId2Mask, start)); 3984 (*setSize)++; 3985 } 3986 if (**scan == '}') { 3987 break; 3988 } 3989 (*scan)++; // skip ',' 3990 continue; 3991 } 3992 KMP_ASSERT2(**scan == ':', "bad explicit places list"); 3993 (*scan)++; // skip ':' 3994 3995 // Read count parameter 3996 SKIP_WS(*scan); 3997 KMP_ASSERT2((**scan >= '0') && (**scan <= '9'), "bad explicit places list"); 3998 next = *scan; 3999 SKIP_DIGITS(next); 4000 count = __kmp_str_to_int(*scan, *next); 4001 KMP_ASSERT(count >= 0); 4002 *scan = next; 4003 4004 // valid follow sets are ',' ':' and '}' 4005 SKIP_WS(*scan); 4006 if (**scan == '}' || **scan == ',') { 4007 for (i = 0; i < count; i++) { 4008 if ((start > maxOsId) || 4009 (!KMP_CPU_ISSET(start, KMP_CPU_INDEX(osId2Mask, start)))) { 4010 KMP_AFF_WARNING(affinity, AffIgnoreInvalidProcID, start); 4011 break; // don't proliferate warnings for large count 4012 } else { 4013 KMP_CPU_UNION(tempMask, KMP_CPU_INDEX(osId2Mask, start)); 4014 start++; 4015 (*setSize)++; 4016 } 4017 } 4018 if (**scan == '}') { 4019 break; 4020 } 4021 (*scan)++; // skip ',' 4022 continue; 4023 } 4024 KMP_ASSERT2(**scan == ':', "bad explicit places list"); 4025 (*scan)++; // skip ':' 4026 4027 // Read stride parameter 4028 int sign = +1; 4029 for (;;) { 4030 SKIP_WS(*scan); 4031 if (**scan == '+') { 4032 (*scan)++; // skip '+' 4033 continue; 4034 } 4035 if (**scan == '-') { 4036 sign *= -1; 4037 (*scan)++; // skip '-' 4038 continue; 4039 } 4040 break; 4041 } 4042 SKIP_WS(*scan); 4043 KMP_ASSERT2((**scan >= '0') && (**scan <= '9'), "bad explicit places list"); 4044 next = *scan; 4045 SKIP_DIGITS(next); 4046 stride = __kmp_str_to_int(*scan, *next); 4047 KMP_ASSERT(stride >= 0); 4048 *scan = next; 4049 stride *= sign; 4050 4051 // valid follow sets are ',' and '}' 4052 SKIP_WS(*scan); 4053 if (**scan == '}' || **scan == ',') { 4054 for (i = 0; i < count; i++) { 4055 if ((start > maxOsId) || 4056 (!KMP_CPU_ISSET(start, KMP_CPU_INDEX(osId2Mask, start)))) { 4057 KMP_AFF_WARNING(affinity, AffIgnoreInvalidProcID, start); 4058 break; // don't proliferate warnings for large count 4059 } else { 4060 KMP_CPU_UNION(tempMask, KMP_CPU_INDEX(osId2Mask, start)); 4061 start += stride; 4062 (*setSize)++; 4063 } 4064 } 4065 if (**scan == '}') { 4066 break; 4067 } 4068 (*scan)++; // skip ',' 4069 continue; 4070 } 4071 4072 KMP_ASSERT2(0, "bad explicit places list"); 4073 } 4074 } 4075 4076 static void __kmp_process_place(const char **scan, kmp_affinity_t &affinity, 4077 int maxOsId, kmp_affin_mask_t *tempMask, 4078 int *setSize) { 4079 const char *next; 4080 kmp_affin_mask_t *osId2Mask = affinity.os_id_masks; 4081 4082 // valid follow sets are '{' '!' and num 4083 SKIP_WS(*scan); 4084 if (**scan == '{') { 4085 (*scan)++; // skip '{' 4086 __kmp_process_subplace_list(scan, affinity, maxOsId, tempMask, setSize); 4087 KMP_ASSERT2(**scan == '}', "bad explicit places list"); 4088 (*scan)++; // skip '}' 4089 } else if (**scan == '!') { 4090 (*scan)++; // skip '!' 4091 __kmp_process_place(scan, affinity, maxOsId, tempMask, setSize); 4092 KMP_CPU_COMPLEMENT(maxOsId, tempMask); 4093 } else if ((**scan >= '0') && (**scan <= '9')) { 4094 next = *scan; 4095 SKIP_DIGITS(next); 4096 int num = __kmp_str_to_int(*scan, *next); 4097 KMP_ASSERT(num >= 0); 4098 if ((num > maxOsId) || 4099 (!KMP_CPU_ISSET(num, KMP_CPU_INDEX(osId2Mask, num)))) { 4100 KMP_AFF_WARNING(affinity, AffIgnoreInvalidProcID, num); 4101 } else { 4102 KMP_CPU_UNION(tempMask, KMP_CPU_INDEX(osId2Mask, num)); 4103 (*setSize)++; 4104 } 4105 *scan = next; // skip num 4106 } else { 4107 KMP_ASSERT2(0, "bad explicit places list"); 4108 } 4109 } 4110 4111 // static void 4112 void __kmp_affinity_process_placelist(kmp_affinity_t &affinity) { 4113 int i, j, count, stride, sign; 4114 kmp_affin_mask_t **out_masks = &affinity.masks; 4115 unsigned *out_numMasks = &affinity.num_masks; 4116 const char *placelist = affinity.proclist; 4117 kmp_affin_mask_t *osId2Mask = affinity.os_id_masks; 4118 int maxOsId = affinity.num_os_id_masks - 1; 4119 const char *scan = placelist; 4120 const char *next = placelist; 4121 4122 numNewMasks = 2; 4123 KMP_CPU_INTERNAL_ALLOC_ARRAY(newMasks, numNewMasks); 4124 nextNewMask = 0; 4125 4126 // tempMask is modified based on the previous or initial 4127 // place to form the current place 4128 // previousMask contains the previous place 4129 kmp_affin_mask_t *tempMask; 4130 kmp_affin_mask_t *previousMask; 4131 KMP_CPU_ALLOC(tempMask); 4132 KMP_CPU_ZERO(tempMask); 4133 KMP_CPU_ALLOC(previousMask); 4134 KMP_CPU_ZERO(previousMask); 4135 int setSize = 0; 4136 4137 for (;;) { 4138 __kmp_process_place(&scan, affinity, maxOsId, tempMask, &setSize); 4139 4140 // valid follow sets are ',' ':' and EOL 4141 SKIP_WS(scan); 4142 if (*scan == '\0' || *scan == ',') { 4143 if (setSize > 0) { 4144 ADD_MASK(tempMask); 4145 } 4146 KMP_CPU_ZERO(tempMask); 4147 setSize = 0; 4148 if (*scan == '\0') { 4149 break; 4150 } 4151 scan++; // skip ',' 4152 continue; 4153 } 4154 4155 KMP_ASSERT2(*scan == ':', "bad explicit places list"); 4156 scan++; // skip ':' 4157 4158 // Read count parameter 4159 SKIP_WS(scan); 4160 KMP_ASSERT2((*scan >= '0') && (*scan <= '9'), "bad explicit places list"); 4161 next = scan; 4162 SKIP_DIGITS(next); 4163 count = __kmp_str_to_int(scan, *next); 4164 KMP_ASSERT(count >= 0); 4165 scan = next; 4166 4167 // valid follow sets are ',' ':' and EOL 4168 SKIP_WS(scan); 4169 if (*scan == '\0' || *scan == ',') { 4170 stride = +1; 4171 } else { 4172 KMP_ASSERT2(*scan == ':', "bad explicit places list"); 4173 scan++; // skip ':' 4174 4175 // Read stride parameter 4176 sign = +1; 4177 for (;;) { 4178 SKIP_WS(scan); 4179 if (*scan == '+') { 4180 scan++; // skip '+' 4181 continue; 4182 } 4183 if (*scan == '-') { 4184 sign *= -1; 4185 scan++; // skip '-' 4186 continue; 4187 } 4188 break; 4189 } 4190 SKIP_WS(scan); 4191 KMP_ASSERT2((*scan >= '0') && (*scan <= '9'), "bad explicit places list"); 4192 next = scan; 4193 SKIP_DIGITS(next); 4194 stride = __kmp_str_to_int(scan, *next); 4195 KMP_DEBUG_ASSERT(stride >= 0); 4196 scan = next; 4197 stride *= sign; 4198 } 4199 4200 // Add places determined by initial_place : count : stride 4201 for (i = 0; i < count; i++) { 4202 if (setSize == 0) { 4203 break; 4204 } 4205 // Add the current place, then build the next place (tempMask) from that 4206 KMP_CPU_COPY(previousMask, tempMask); 4207 ADD_MASK(previousMask); 4208 KMP_CPU_ZERO(tempMask); 4209 setSize = 0; 4210 KMP_CPU_SET_ITERATE(j, previousMask) { 4211 if (!KMP_CPU_ISSET(j, previousMask)) { 4212 continue; 4213 } 4214 if ((j + stride > maxOsId) || (j + stride < 0) || 4215 (!KMP_CPU_ISSET(j, __kmp_affin_fullMask)) || 4216 (!KMP_CPU_ISSET(j + stride, 4217 KMP_CPU_INDEX(osId2Mask, j + stride)))) { 4218 if (i < count - 1) { 4219 KMP_AFF_WARNING(affinity, AffIgnoreInvalidProcID, j + stride); 4220 } 4221 continue; 4222 } 4223 KMP_CPU_SET(j + stride, tempMask); 4224 setSize++; 4225 } 4226 } 4227 KMP_CPU_ZERO(tempMask); 4228 setSize = 0; 4229 4230 // valid follow sets are ',' and EOL 4231 SKIP_WS(scan); 4232 if (*scan == '\0') { 4233 break; 4234 } 4235 if (*scan == ',') { 4236 scan++; // skip ',' 4237 continue; 4238 } 4239 4240 KMP_ASSERT2(0, "bad explicit places list"); 4241 } 4242 4243 *out_numMasks = nextNewMask; 4244 if (nextNewMask == 0) { 4245 *out_masks = NULL; 4246 KMP_CPU_INTERNAL_FREE_ARRAY(newMasks, numNewMasks); 4247 return; 4248 } 4249 KMP_CPU_ALLOC_ARRAY((*out_masks), nextNewMask); 4250 KMP_CPU_FREE(tempMask); 4251 KMP_CPU_FREE(previousMask); 4252 for (i = 0; i < nextNewMask; i++) { 4253 kmp_affin_mask_t *src = KMP_CPU_INDEX(newMasks, i); 4254 kmp_affin_mask_t *dest = KMP_CPU_INDEX((*out_masks), i); 4255 KMP_CPU_COPY(dest, src); 4256 } 4257 KMP_CPU_INTERNAL_FREE_ARRAY(newMasks, numNewMasks); 4258 } 4259 4260 #undef ADD_MASK 4261 #undef ADD_MASK_OSID 4262 4263 // This function figures out the deepest level at which there is at least one 4264 // cluster/core with more than one processing unit bound to it. 4265 static int __kmp_affinity_find_core_level(int nprocs, int bottom_level) { 4266 int core_level = 0; 4267 4268 for (int i = 0; i < nprocs; i++) { 4269 const kmp_hw_thread_t &hw_thread = __kmp_topology->at(i); 4270 for (int j = bottom_level; j > 0; j--) { 4271 if (hw_thread.ids[j] > 0) { 4272 if (core_level < (j - 1)) { 4273 core_level = j - 1; 4274 } 4275 } 4276 } 4277 } 4278 return core_level; 4279 } 4280 4281 // This function counts number of clusters/cores at given level. 4282 static int __kmp_affinity_compute_ncores(int nprocs, int bottom_level, 4283 int core_level) { 4284 return __kmp_topology->get_count(core_level); 4285 } 4286 // This function finds to which cluster/core given processing unit is bound. 4287 static int __kmp_affinity_find_core(int proc, int bottom_level, 4288 int core_level) { 4289 int core = 0; 4290 KMP_DEBUG_ASSERT(proc >= 0 && proc < __kmp_topology->get_num_hw_threads()); 4291 for (int i = 0; i <= proc; ++i) { 4292 if (i + 1 <= proc) { 4293 for (int j = 0; j <= core_level; ++j) { 4294 if (__kmp_topology->at(i + 1).sub_ids[j] != 4295 __kmp_topology->at(i).sub_ids[j]) { 4296 core++; 4297 break; 4298 } 4299 } 4300 } 4301 } 4302 return core; 4303 } 4304 4305 // This function finds maximal number of processing units bound to a 4306 // cluster/core at given level. 4307 static int __kmp_affinity_max_proc_per_core(int nprocs, int bottom_level, 4308 int core_level) { 4309 if (core_level >= bottom_level) 4310 return 1; 4311 int thread_level = __kmp_topology->get_level(KMP_HW_THREAD); 4312 return __kmp_topology->calculate_ratio(thread_level, core_level); 4313 } 4314 4315 static int *procarr = NULL; 4316 static int __kmp_aff_depth = 0; 4317 static int *__kmp_osid_to_hwthread_map = NULL; 4318 4319 static void __kmp_affinity_get_mask_topology_info(const kmp_affin_mask_t *mask, 4320 kmp_affinity_ids_t &ids, 4321 kmp_affinity_attrs_t &attrs) { 4322 if (!KMP_AFFINITY_CAPABLE()) 4323 return; 4324 4325 // Initiailze ids and attrs thread data 4326 for (int i = 0; i < KMP_HW_LAST; ++i) 4327 ids.ids[i] = kmp_hw_thread_t::UNKNOWN_ID; 4328 attrs = KMP_AFFINITY_ATTRS_UNKNOWN; 4329 4330 // Iterate through each os id within the mask and determine 4331 // the topology id and attribute information 4332 int cpu; 4333 int depth = __kmp_topology->get_depth(); 4334 KMP_CPU_SET_ITERATE(cpu, mask) { 4335 int osid_idx = __kmp_osid_to_hwthread_map[cpu]; 4336 ids.os_id = cpu; 4337 const kmp_hw_thread_t &hw_thread = __kmp_topology->at(osid_idx); 4338 for (int level = 0; level < depth; ++level) { 4339 kmp_hw_t type = __kmp_topology->get_type(level); 4340 int id = hw_thread.sub_ids[level]; 4341 if (ids.ids[type] == kmp_hw_thread_t::UNKNOWN_ID || ids.ids[type] == id) { 4342 ids.ids[type] = id; 4343 } else { 4344 // This mask spans across multiple topology units, set it as such 4345 // and mark every level below as such as well. 4346 ids.ids[type] = kmp_hw_thread_t::MULTIPLE_ID; 4347 for (; level < depth; ++level) { 4348 kmp_hw_t type = __kmp_topology->get_type(level); 4349 ids.ids[type] = kmp_hw_thread_t::MULTIPLE_ID; 4350 } 4351 } 4352 } 4353 if (!attrs.valid) { 4354 attrs.core_type = hw_thread.attrs.get_core_type(); 4355 attrs.core_eff = hw_thread.attrs.get_core_eff(); 4356 attrs.valid = 1; 4357 } else { 4358 // This mask spans across multiple attributes, set it as such 4359 if (attrs.core_type != hw_thread.attrs.get_core_type()) 4360 attrs.core_type = KMP_HW_CORE_TYPE_UNKNOWN; 4361 if (attrs.core_eff != hw_thread.attrs.get_core_eff()) 4362 attrs.core_eff = kmp_hw_attr_t::UNKNOWN_CORE_EFF; 4363 } 4364 } 4365 } 4366 4367 static void __kmp_affinity_get_thread_topology_info(kmp_info_t *th) { 4368 if (!KMP_AFFINITY_CAPABLE()) 4369 return; 4370 const kmp_affin_mask_t *mask = th->th.th_affin_mask; 4371 kmp_affinity_ids_t &ids = th->th.th_topology_ids; 4372 kmp_affinity_attrs_t &attrs = th->th.th_topology_attrs; 4373 __kmp_affinity_get_mask_topology_info(mask, ids, attrs); 4374 } 4375 4376 // Assign the topology information to each place in the place list 4377 // A thread can then grab not only its affinity mask, but the topology 4378 // information associated with that mask. e.g., Which socket is a thread on 4379 static void __kmp_affinity_get_topology_info(kmp_affinity_t &affinity) { 4380 if (!KMP_AFFINITY_CAPABLE()) 4381 return; 4382 if (affinity.type != affinity_none) { 4383 KMP_ASSERT(affinity.num_os_id_masks); 4384 KMP_ASSERT(affinity.os_id_masks); 4385 } 4386 KMP_ASSERT(affinity.num_masks); 4387 KMP_ASSERT(affinity.masks); 4388 KMP_ASSERT(__kmp_affin_fullMask); 4389 4390 int max_cpu = __kmp_affin_fullMask->get_max_cpu(); 4391 int num_hw_threads = __kmp_topology->get_num_hw_threads(); 4392 4393 // Allocate thread topology information 4394 if (!affinity.ids) { 4395 affinity.ids = (kmp_affinity_ids_t *)__kmp_allocate( 4396 sizeof(kmp_affinity_ids_t) * affinity.num_masks); 4397 } 4398 if (!affinity.attrs) { 4399 affinity.attrs = (kmp_affinity_attrs_t *)__kmp_allocate( 4400 sizeof(kmp_affinity_attrs_t) * affinity.num_masks); 4401 } 4402 if (!__kmp_osid_to_hwthread_map) { 4403 // Want the +1 because max_cpu should be valid index into map 4404 __kmp_osid_to_hwthread_map = 4405 (int *)__kmp_allocate(sizeof(int) * (max_cpu + 1)); 4406 } 4407 4408 // Create the OS proc to hardware thread map 4409 for (int hw_thread = 0; hw_thread < num_hw_threads; ++hw_thread) { 4410 int os_id = __kmp_topology->at(hw_thread).os_id; 4411 if (KMP_CPU_ISSET(os_id, __kmp_affin_fullMask)) 4412 __kmp_osid_to_hwthread_map[os_id] = hw_thread; 4413 } 4414 4415 for (unsigned i = 0; i < affinity.num_masks; ++i) { 4416 kmp_affinity_ids_t &ids = affinity.ids[i]; 4417 kmp_affinity_attrs_t &attrs = affinity.attrs[i]; 4418 kmp_affin_mask_t *mask = KMP_CPU_INDEX(affinity.masks, i); 4419 __kmp_affinity_get_mask_topology_info(mask, ids, attrs); 4420 } 4421 } 4422 4423 // Called when __kmp_topology is ready 4424 static void __kmp_aux_affinity_initialize_other_data(kmp_affinity_t &affinity) { 4425 // Initialize other data structures which depend on the topology 4426 if (__kmp_topology && __kmp_topology->get_num_hw_threads()) { 4427 machine_hierarchy.init(__kmp_topology->get_num_hw_threads()); 4428 __kmp_affinity_get_topology_info(affinity); 4429 #if KMP_WEIGHTED_ITERATIONS_SUPPORTED 4430 __kmp_first_osid_with_ecore = __kmp_get_first_osid_with_ecore(); 4431 #endif 4432 } 4433 } 4434 4435 // Create a one element mask array (set of places) which only contains the 4436 // initial process's affinity mask 4437 static void __kmp_create_affinity_none_places(kmp_affinity_t &affinity) { 4438 KMP_ASSERT(__kmp_affin_fullMask != NULL); 4439 KMP_ASSERT(affinity.type == affinity_none); 4440 KMP_ASSERT(__kmp_avail_proc == __kmp_topology->get_num_hw_threads()); 4441 affinity.num_masks = 1; 4442 KMP_CPU_ALLOC_ARRAY(affinity.masks, affinity.num_masks); 4443 kmp_affin_mask_t *dest = KMP_CPU_INDEX(affinity.masks, 0); 4444 KMP_CPU_COPY(dest, __kmp_affin_fullMask); 4445 __kmp_aux_affinity_initialize_other_data(affinity); 4446 } 4447 4448 static void __kmp_aux_affinity_initialize_masks(kmp_affinity_t &affinity) { 4449 // Create the "full" mask - this defines all of the processors that we 4450 // consider to be in the machine model. If respect is set, then it is the 4451 // initialization thread's affinity mask. Otherwise, it is all processors that 4452 // we know about on the machine. 4453 int verbose = affinity.flags.verbose; 4454 const char *env_var = affinity.env_var; 4455 4456 // Already initialized 4457 if (__kmp_affin_fullMask && __kmp_affin_origMask) 4458 return; 4459 4460 if (__kmp_affin_fullMask == NULL) { 4461 KMP_CPU_ALLOC(__kmp_affin_fullMask); 4462 } 4463 if (__kmp_affin_origMask == NULL) { 4464 KMP_CPU_ALLOC(__kmp_affin_origMask); 4465 } 4466 if (KMP_AFFINITY_CAPABLE()) { 4467 __kmp_get_system_affinity(__kmp_affin_fullMask, TRUE); 4468 // Make a copy before possible expanding to the entire machine mask 4469 __kmp_affin_origMask->copy(__kmp_affin_fullMask); 4470 if (affinity.flags.respect) { 4471 // Count the number of available processors. 4472 unsigned i; 4473 __kmp_avail_proc = 0; 4474 KMP_CPU_SET_ITERATE(i, __kmp_affin_fullMask) { 4475 if (!KMP_CPU_ISSET(i, __kmp_affin_fullMask)) { 4476 continue; 4477 } 4478 __kmp_avail_proc++; 4479 } 4480 if (__kmp_avail_proc > __kmp_xproc) { 4481 KMP_AFF_WARNING(affinity, ErrorInitializeAffinity); 4482 affinity.type = affinity_none; 4483 KMP_AFFINITY_DISABLE(); 4484 return; 4485 } 4486 4487 if (verbose) { 4488 char buf[KMP_AFFIN_MASK_PRINT_LEN]; 4489 __kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN, 4490 __kmp_affin_fullMask); 4491 KMP_INFORM(InitOSProcSetRespect, env_var, buf); 4492 } 4493 } else { 4494 if (verbose) { 4495 char buf[KMP_AFFIN_MASK_PRINT_LEN]; 4496 __kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN, 4497 __kmp_affin_fullMask); 4498 KMP_INFORM(InitOSProcSetNotRespect, env_var, buf); 4499 } 4500 __kmp_avail_proc = 4501 __kmp_affinity_entire_machine_mask(__kmp_affin_fullMask); 4502 #if KMP_OS_WINDOWS 4503 if (__kmp_num_proc_groups <= 1) { 4504 // Copy expanded full mask if topology has single processor group 4505 __kmp_affin_origMask->copy(__kmp_affin_fullMask); 4506 } 4507 // Set the process affinity mask since threads' affinity 4508 // masks must be subset of process mask in Windows* OS 4509 __kmp_affin_fullMask->set_process_affinity(true); 4510 #endif 4511 } 4512 } 4513 } 4514 4515 static bool __kmp_aux_affinity_initialize_topology(kmp_affinity_t &affinity) { 4516 bool success = false; 4517 const char *env_var = affinity.env_var; 4518 kmp_i18n_id_t msg_id = kmp_i18n_null; 4519 int verbose = affinity.flags.verbose; 4520 4521 // For backward compatibility, setting KMP_CPUINFO_FILE => 4522 // KMP_TOPOLOGY_METHOD=cpuinfo 4523 if ((__kmp_cpuinfo_file != NULL) && 4524 (__kmp_affinity_top_method == affinity_top_method_all)) { 4525 __kmp_affinity_top_method = affinity_top_method_cpuinfo; 4526 } 4527 4528 if (__kmp_affinity_top_method == affinity_top_method_all) { 4529 // In the default code path, errors are not fatal - we just try using 4530 // another method. We only emit a warning message if affinity is on, or the 4531 // verbose flag is set, an the nowarnings flag was not set. 4532 #if KMP_USE_HWLOC 4533 if (!success && 4534 __kmp_affinity_dispatch->get_api_type() == KMPAffinity::HWLOC) { 4535 if (!__kmp_hwloc_error) { 4536 success = __kmp_affinity_create_hwloc_map(&msg_id); 4537 if (!success && verbose) { 4538 KMP_INFORM(AffIgnoringHwloc, env_var); 4539 } 4540 } else if (verbose) { 4541 KMP_INFORM(AffIgnoringHwloc, env_var); 4542 } 4543 } 4544 #endif 4545 4546 #if KMP_ARCH_X86 || KMP_ARCH_X86_64 4547 if (!success) { 4548 success = __kmp_affinity_create_x2apicid_map(&msg_id); 4549 if (!success && verbose && msg_id != kmp_i18n_null) { 4550 KMP_INFORM(AffInfoStr, env_var, __kmp_i18n_catgets(msg_id)); 4551 } 4552 } 4553 if (!success) { 4554 success = __kmp_affinity_create_apicid_map(&msg_id); 4555 if (!success && verbose && msg_id != kmp_i18n_null) { 4556 KMP_INFORM(AffInfoStr, env_var, __kmp_i18n_catgets(msg_id)); 4557 } 4558 } 4559 #endif /* KMP_ARCH_X86 || KMP_ARCH_X86_64 */ 4560 4561 #if KMP_OS_LINUX || KMP_OS_AIX 4562 if (!success) { 4563 int line = 0; 4564 success = __kmp_affinity_create_cpuinfo_map(&line, &msg_id); 4565 if (!success && verbose && msg_id != kmp_i18n_null) { 4566 KMP_INFORM(AffInfoStr, env_var, __kmp_i18n_catgets(msg_id)); 4567 } 4568 } 4569 #endif /* KMP_OS_LINUX */ 4570 4571 #if KMP_GROUP_AFFINITY 4572 if (!success && (__kmp_num_proc_groups > 1)) { 4573 success = __kmp_affinity_create_proc_group_map(&msg_id); 4574 if (!success && verbose && msg_id != kmp_i18n_null) { 4575 KMP_INFORM(AffInfoStr, env_var, __kmp_i18n_catgets(msg_id)); 4576 } 4577 } 4578 #endif /* KMP_GROUP_AFFINITY */ 4579 4580 if (!success) { 4581 success = __kmp_affinity_create_flat_map(&msg_id); 4582 if (!success && verbose && msg_id != kmp_i18n_null) { 4583 KMP_INFORM(AffInfoStr, env_var, __kmp_i18n_catgets(msg_id)); 4584 } 4585 KMP_ASSERT(success); 4586 } 4587 } 4588 4589 // If the user has specified that a paricular topology discovery method is to be 4590 // used, then we abort if that method fails. The exception is group affinity, 4591 // which might have been implicitly set. 4592 #if KMP_USE_HWLOC 4593 else if (__kmp_affinity_top_method == affinity_top_method_hwloc) { 4594 KMP_ASSERT(__kmp_affinity_dispatch->get_api_type() == KMPAffinity::HWLOC); 4595 success = __kmp_affinity_create_hwloc_map(&msg_id); 4596 if (!success) { 4597 KMP_ASSERT(msg_id != kmp_i18n_null); 4598 KMP_FATAL(MsgExiting, __kmp_i18n_catgets(msg_id)); 4599 } 4600 } 4601 #endif // KMP_USE_HWLOC 4602 4603 #if KMP_ARCH_X86 || KMP_ARCH_X86_64 4604 else if (__kmp_affinity_top_method == affinity_top_method_x2apicid || 4605 __kmp_affinity_top_method == affinity_top_method_x2apicid_1f) { 4606 success = __kmp_affinity_create_x2apicid_map(&msg_id); 4607 if (!success) { 4608 KMP_ASSERT(msg_id != kmp_i18n_null); 4609 KMP_FATAL(MsgExiting, __kmp_i18n_catgets(msg_id)); 4610 } 4611 } else if (__kmp_affinity_top_method == affinity_top_method_apicid) { 4612 success = __kmp_affinity_create_apicid_map(&msg_id); 4613 if (!success) { 4614 KMP_ASSERT(msg_id != kmp_i18n_null); 4615 KMP_FATAL(MsgExiting, __kmp_i18n_catgets(msg_id)); 4616 } 4617 } 4618 #endif /* KMP_ARCH_X86 || KMP_ARCH_X86_64 */ 4619 4620 else if (__kmp_affinity_top_method == affinity_top_method_cpuinfo) { 4621 int line = 0; 4622 success = __kmp_affinity_create_cpuinfo_map(&line, &msg_id); 4623 if (!success) { 4624 KMP_ASSERT(msg_id != kmp_i18n_null); 4625 const char *filename = __kmp_cpuinfo_get_filename(); 4626 if (line > 0) { 4627 KMP_FATAL(FileLineMsgExiting, filename, line, 4628 __kmp_i18n_catgets(msg_id)); 4629 } else { 4630 KMP_FATAL(FileMsgExiting, filename, __kmp_i18n_catgets(msg_id)); 4631 } 4632 } 4633 } 4634 4635 #if KMP_GROUP_AFFINITY 4636 else if (__kmp_affinity_top_method == affinity_top_method_group) { 4637 success = __kmp_affinity_create_proc_group_map(&msg_id); 4638 KMP_ASSERT(success); 4639 if (!success) { 4640 KMP_ASSERT(msg_id != kmp_i18n_null); 4641 KMP_FATAL(MsgExiting, __kmp_i18n_catgets(msg_id)); 4642 } 4643 } 4644 #endif /* KMP_GROUP_AFFINITY */ 4645 4646 else if (__kmp_affinity_top_method == affinity_top_method_flat) { 4647 success = __kmp_affinity_create_flat_map(&msg_id); 4648 // should not fail 4649 KMP_ASSERT(success); 4650 } 4651 4652 // Early exit if topology could not be created 4653 if (!__kmp_topology) { 4654 if (KMP_AFFINITY_CAPABLE()) { 4655 KMP_AFF_WARNING(affinity, ErrorInitializeAffinity); 4656 } 4657 if (nPackages > 0 && nCoresPerPkg > 0 && __kmp_nThreadsPerCore > 0 && 4658 __kmp_ncores > 0) { 4659 __kmp_topology = kmp_topology_t::allocate(0, 0, NULL); 4660 __kmp_topology->canonicalize(nPackages, nCoresPerPkg, 4661 __kmp_nThreadsPerCore, __kmp_ncores); 4662 if (verbose) { 4663 __kmp_topology->print(env_var); 4664 } 4665 } 4666 return false; 4667 } 4668 4669 // Canonicalize, print (if requested), apply KMP_HW_SUBSET 4670 __kmp_topology->canonicalize(); 4671 if (verbose) 4672 __kmp_topology->print(env_var); 4673 bool filtered = __kmp_topology->filter_hw_subset(); 4674 if (filtered && verbose) 4675 __kmp_topology->print("KMP_HW_SUBSET"); 4676 return success; 4677 } 4678 4679 static void __kmp_aux_affinity_initialize(kmp_affinity_t &affinity) { 4680 bool is_regular_affinity = (&affinity == &__kmp_affinity); 4681 bool is_hidden_helper_affinity = (&affinity == &__kmp_hh_affinity); 4682 const char *env_var = __kmp_get_affinity_env_var(affinity); 4683 4684 if (affinity.flags.initialized) { 4685 KMP_ASSERT(__kmp_affin_fullMask != NULL); 4686 return; 4687 } 4688 4689 if (is_regular_affinity && (!__kmp_affin_fullMask || !__kmp_affin_origMask)) 4690 __kmp_aux_affinity_initialize_masks(affinity); 4691 4692 if (is_regular_affinity && !__kmp_topology) { 4693 bool success = __kmp_aux_affinity_initialize_topology(affinity); 4694 if (success) { 4695 KMP_ASSERT(__kmp_avail_proc == __kmp_topology->get_num_hw_threads()); 4696 } else { 4697 affinity.type = affinity_none; 4698 KMP_AFFINITY_DISABLE(); 4699 } 4700 } 4701 4702 // If KMP_AFFINITY=none, then only create the single "none" place 4703 // which is the process's initial affinity mask or the number of 4704 // hardware threads depending on respect,norespect 4705 if (affinity.type == affinity_none) { 4706 __kmp_create_affinity_none_places(affinity); 4707 #if KMP_USE_HIER_SCHED 4708 __kmp_dispatch_set_hierarchy_values(); 4709 #endif 4710 affinity.flags.initialized = TRUE; 4711 return; 4712 } 4713 4714 __kmp_topology->set_granularity(affinity); 4715 int depth = __kmp_topology->get_depth(); 4716 4717 // Create the table of masks, indexed by thread Id. 4718 unsigned numUnique; 4719 int numAddrs = __kmp_topology->get_num_hw_threads(); 4720 // If OMP_PLACES=cores:<attribute> specified, then attempt 4721 // to make OS Id mask table using those attributes 4722 if (affinity.core_attr_gran.valid) { 4723 __kmp_create_os_id_masks(&numUnique, affinity, [&](int idx) { 4724 KMP_ASSERT(idx >= -1); 4725 for (int i = idx + 1; i < numAddrs; ++i) 4726 if (__kmp_topology->at(i).attrs.contains(affinity.core_attr_gran)) 4727 return i; 4728 return numAddrs; 4729 }); 4730 if (!affinity.os_id_masks) { 4731 const char *core_attribute; 4732 if (affinity.core_attr_gran.core_eff != kmp_hw_attr_t::UNKNOWN_CORE_EFF) 4733 core_attribute = "core_efficiency"; 4734 else 4735 core_attribute = "core_type"; 4736 KMP_AFF_WARNING(affinity, AffIgnoringNotAvailable, env_var, 4737 core_attribute, 4738 __kmp_hw_get_catalog_string(KMP_HW_CORE, /*plural=*/true)) 4739 } 4740 } 4741 // If core attributes did not work, or none were specified, 4742 // then make OS Id mask table using typical incremental way. 4743 if (!affinity.os_id_masks) { 4744 __kmp_create_os_id_masks(&numUnique, affinity, [](int idx) { 4745 KMP_ASSERT(idx >= -1); 4746 return idx + 1; 4747 }); 4748 } 4749 if (affinity.gran_levels == 0) { 4750 KMP_DEBUG_ASSERT((int)numUnique == __kmp_avail_proc); 4751 } 4752 4753 switch (affinity.type) { 4754 4755 case affinity_explicit: 4756 KMP_DEBUG_ASSERT(affinity.proclist != NULL); 4757 if (is_hidden_helper_affinity || 4758 __kmp_nested_proc_bind.bind_types[0] == proc_bind_intel) { 4759 __kmp_affinity_process_proclist(affinity); 4760 } else { 4761 __kmp_affinity_process_placelist(affinity); 4762 } 4763 if (affinity.num_masks == 0) { 4764 KMP_AFF_WARNING(affinity, AffNoValidProcID); 4765 affinity.type = affinity_none; 4766 __kmp_create_affinity_none_places(affinity); 4767 affinity.flags.initialized = TRUE; 4768 return; 4769 } 4770 break; 4771 4772 // The other affinity types rely on sorting the hardware threads according to 4773 // some permutation of the machine topology tree. Set affinity.compact 4774 // and affinity.offset appropriately, then jump to a common code 4775 // fragment to do the sort and create the array of affinity masks. 4776 case affinity_logical: 4777 affinity.compact = 0; 4778 if (affinity.offset) { 4779 affinity.offset = 4780 __kmp_nThreadsPerCore * affinity.offset % __kmp_avail_proc; 4781 } 4782 goto sortTopology; 4783 4784 case affinity_physical: 4785 if (__kmp_nThreadsPerCore > 1) { 4786 affinity.compact = 1; 4787 if (affinity.compact >= depth) { 4788 affinity.compact = 0; 4789 } 4790 } else { 4791 affinity.compact = 0; 4792 } 4793 if (affinity.offset) { 4794 affinity.offset = 4795 __kmp_nThreadsPerCore * affinity.offset % __kmp_avail_proc; 4796 } 4797 goto sortTopology; 4798 4799 case affinity_scatter: 4800 if (affinity.compact >= depth) { 4801 affinity.compact = 0; 4802 } else { 4803 affinity.compact = depth - 1 - affinity.compact; 4804 } 4805 goto sortTopology; 4806 4807 case affinity_compact: 4808 if (affinity.compact >= depth) { 4809 affinity.compact = depth - 1; 4810 } 4811 goto sortTopology; 4812 4813 case affinity_balanced: 4814 if (depth <= 1 || is_hidden_helper_affinity) { 4815 KMP_AFF_WARNING(affinity, AffBalancedNotAvail, env_var); 4816 affinity.type = affinity_none; 4817 __kmp_create_affinity_none_places(affinity); 4818 affinity.flags.initialized = TRUE; 4819 return; 4820 } else if (!__kmp_topology->is_uniform()) { 4821 // Save the depth for further usage 4822 __kmp_aff_depth = depth; 4823 4824 int core_level = 4825 __kmp_affinity_find_core_level(__kmp_avail_proc, depth - 1); 4826 int ncores = __kmp_affinity_compute_ncores(__kmp_avail_proc, depth - 1, 4827 core_level); 4828 int maxprocpercore = __kmp_affinity_max_proc_per_core( 4829 __kmp_avail_proc, depth - 1, core_level); 4830 4831 int nproc = ncores * maxprocpercore; 4832 if ((nproc < 2) || (nproc < __kmp_avail_proc)) { 4833 KMP_AFF_WARNING(affinity, AffBalancedNotAvail, env_var); 4834 affinity.type = affinity_none; 4835 __kmp_create_affinity_none_places(affinity); 4836 affinity.flags.initialized = TRUE; 4837 return; 4838 } 4839 4840 procarr = (int *)__kmp_allocate(sizeof(int) * nproc); 4841 for (int i = 0; i < nproc; i++) { 4842 procarr[i] = -1; 4843 } 4844 4845 int lastcore = -1; 4846 int inlastcore = 0; 4847 for (int i = 0; i < __kmp_avail_proc; i++) { 4848 int proc = __kmp_topology->at(i).os_id; 4849 int core = __kmp_affinity_find_core(i, depth - 1, core_level); 4850 4851 if (core == lastcore) { 4852 inlastcore++; 4853 } else { 4854 inlastcore = 0; 4855 } 4856 lastcore = core; 4857 4858 procarr[core * maxprocpercore + inlastcore] = proc; 4859 } 4860 } 4861 if (affinity.compact >= depth) { 4862 affinity.compact = depth - 1; 4863 } 4864 4865 sortTopology: 4866 // Allocate the gtid->affinity mask table. 4867 if (affinity.flags.dups) { 4868 affinity.num_masks = __kmp_avail_proc; 4869 } else { 4870 affinity.num_masks = numUnique; 4871 } 4872 4873 if ((__kmp_nested_proc_bind.bind_types[0] != proc_bind_intel) && 4874 (__kmp_affinity_num_places > 0) && 4875 ((unsigned)__kmp_affinity_num_places < affinity.num_masks) && 4876 !is_hidden_helper_affinity) { 4877 affinity.num_masks = __kmp_affinity_num_places; 4878 } 4879 4880 KMP_CPU_ALLOC_ARRAY(affinity.masks, affinity.num_masks); 4881 4882 // Sort the topology table according to the current setting of 4883 // affinity.compact, then fill out affinity.masks. 4884 __kmp_topology->sort_compact(affinity); 4885 { 4886 int i; 4887 unsigned j; 4888 int num_hw_threads = __kmp_topology->get_num_hw_threads(); 4889 kmp_full_mask_modifier_t full_mask; 4890 for (i = 0, j = 0; i < num_hw_threads; i++) { 4891 if ((!affinity.flags.dups) && (!__kmp_topology->at(i).leader)) { 4892 continue; 4893 } 4894 int osId = __kmp_topology->at(i).os_id; 4895 4896 kmp_affin_mask_t *src = KMP_CPU_INDEX(affinity.os_id_masks, osId); 4897 kmp_affin_mask_t *dest = KMP_CPU_INDEX(affinity.masks, j); 4898 KMP_ASSERT(KMP_CPU_ISSET(osId, src)); 4899 KMP_CPU_COPY(dest, src); 4900 full_mask.include(src); 4901 if (++j >= affinity.num_masks) { 4902 break; 4903 } 4904 } 4905 KMP_DEBUG_ASSERT(j == affinity.num_masks); 4906 // See if the places list further restricts or changes the full mask 4907 if (full_mask.restrict_to_mask() && affinity.flags.verbose) { 4908 __kmp_topology->print(env_var); 4909 } 4910 } 4911 // Sort the topology back using ids 4912 __kmp_topology->sort_ids(); 4913 break; 4914 4915 default: 4916 KMP_ASSERT2(0, "Unexpected affinity setting"); 4917 } 4918 __kmp_aux_affinity_initialize_other_data(affinity); 4919 affinity.flags.initialized = TRUE; 4920 } 4921 4922 void __kmp_affinity_initialize(kmp_affinity_t &affinity) { 4923 // Much of the code above was written assuming that if a machine was not 4924 // affinity capable, then affinity type == affinity_none. 4925 // We now explicitly represent this as affinity type == affinity_disabled. 4926 // There are too many checks for affinity type == affinity_none in this code. 4927 // Instead of trying to change them all, check if 4928 // affinity type == affinity_disabled, and if so, slam it with affinity_none, 4929 // call the real initialization routine, then restore affinity type to 4930 // affinity_disabled. 4931 int disabled = (affinity.type == affinity_disabled); 4932 if (!KMP_AFFINITY_CAPABLE()) 4933 KMP_ASSERT(disabled); 4934 if (disabled) 4935 affinity.type = affinity_none; 4936 __kmp_aux_affinity_initialize(affinity); 4937 if (disabled) 4938 affinity.type = affinity_disabled; 4939 } 4940 4941 void __kmp_affinity_uninitialize(void) { 4942 for (kmp_affinity_t *affinity : __kmp_affinities) { 4943 if (affinity->masks != NULL) 4944 KMP_CPU_FREE_ARRAY(affinity->masks, affinity->num_masks); 4945 if (affinity->os_id_masks != NULL) 4946 KMP_CPU_FREE_ARRAY(affinity->os_id_masks, affinity->num_os_id_masks); 4947 if (affinity->proclist != NULL) 4948 __kmp_free(affinity->proclist); 4949 if (affinity->ids != NULL) 4950 __kmp_free(affinity->ids); 4951 if (affinity->attrs != NULL) 4952 __kmp_free(affinity->attrs); 4953 *affinity = KMP_AFFINITY_INIT(affinity->env_var); 4954 } 4955 if (__kmp_affin_origMask != NULL) { 4956 if (KMP_AFFINITY_CAPABLE()) { 4957 #if KMP_OS_AIX 4958 // Uninitialize by unbinding the thread. 4959 bindprocessor(BINDTHREAD, thread_self(), PROCESSOR_CLASS_ANY); 4960 #else 4961 __kmp_set_system_affinity(__kmp_affin_origMask, FALSE); 4962 #endif 4963 } 4964 KMP_CPU_FREE(__kmp_affin_origMask); 4965 __kmp_affin_origMask = NULL; 4966 } 4967 __kmp_affinity_num_places = 0; 4968 if (procarr != NULL) { 4969 __kmp_free(procarr); 4970 procarr = NULL; 4971 } 4972 if (__kmp_osid_to_hwthread_map) { 4973 __kmp_free(__kmp_osid_to_hwthread_map); 4974 __kmp_osid_to_hwthread_map = NULL; 4975 } 4976 #if KMP_USE_HWLOC 4977 if (__kmp_hwloc_topology != NULL) { 4978 hwloc_topology_destroy(__kmp_hwloc_topology); 4979 __kmp_hwloc_topology = NULL; 4980 } 4981 #endif 4982 if (__kmp_hw_subset) { 4983 kmp_hw_subset_t::deallocate(__kmp_hw_subset); 4984 __kmp_hw_subset = nullptr; 4985 } 4986 if (__kmp_topology) { 4987 kmp_topology_t::deallocate(__kmp_topology); 4988 __kmp_topology = nullptr; 4989 } 4990 KMPAffinity::destroy_api(); 4991 } 4992 4993 static void __kmp_select_mask_by_gtid(int gtid, const kmp_affinity_t *affinity, 4994 int *place, kmp_affin_mask_t **mask) { 4995 int mask_idx; 4996 bool is_hidden_helper = KMP_HIDDEN_HELPER_THREAD(gtid); 4997 if (is_hidden_helper) 4998 // The first gtid is the regular primary thread, the second gtid is the main 4999 // thread of hidden team which does not participate in task execution. 5000 mask_idx = gtid - 2; 5001 else 5002 mask_idx = __kmp_adjust_gtid_for_hidden_helpers(gtid); 5003 KMP_DEBUG_ASSERT(affinity->num_masks > 0); 5004 *place = (mask_idx + affinity->offset) % affinity->num_masks; 5005 *mask = KMP_CPU_INDEX(affinity->masks, *place); 5006 } 5007 5008 // This function initializes the per-thread data concerning affinity including 5009 // the mask and topology information 5010 void __kmp_affinity_set_init_mask(int gtid, int isa_root) { 5011 5012 kmp_info_t *th = (kmp_info_t *)TCR_SYNC_PTR(__kmp_threads[gtid]); 5013 5014 // Set the thread topology information to default of unknown 5015 for (int id = 0; id < KMP_HW_LAST; ++id) 5016 th->th.th_topology_ids.ids[id] = kmp_hw_thread_t::UNKNOWN_ID; 5017 th->th.th_topology_attrs = KMP_AFFINITY_ATTRS_UNKNOWN; 5018 5019 if (!KMP_AFFINITY_CAPABLE()) { 5020 return; 5021 } 5022 5023 if (th->th.th_affin_mask == NULL) { 5024 KMP_CPU_ALLOC(th->th.th_affin_mask); 5025 } else { 5026 KMP_CPU_ZERO(th->th.th_affin_mask); 5027 } 5028 5029 // Copy the thread mask to the kmp_info_t structure. If 5030 // __kmp_affinity.type == affinity_none, copy the "full" mask, i.e. 5031 // one that has all of the OS proc ids set, or if 5032 // __kmp_affinity.flags.respect is set, then the full mask is the 5033 // same as the mask of the initialization thread. 5034 kmp_affin_mask_t *mask; 5035 int i; 5036 const kmp_affinity_t *affinity; 5037 bool is_hidden_helper = KMP_HIDDEN_HELPER_THREAD(gtid); 5038 5039 if (is_hidden_helper) 5040 affinity = &__kmp_hh_affinity; 5041 else 5042 affinity = &__kmp_affinity; 5043 5044 if (KMP_AFFINITY_NON_PROC_BIND || is_hidden_helper) { 5045 if ((affinity->type == affinity_none) || 5046 (affinity->type == affinity_balanced) || 5047 KMP_HIDDEN_HELPER_MAIN_THREAD(gtid)) { 5048 #if KMP_GROUP_AFFINITY 5049 if (__kmp_num_proc_groups > 1) { 5050 return; 5051 } 5052 #endif 5053 KMP_ASSERT(__kmp_affin_fullMask != NULL); 5054 i = 0; 5055 mask = __kmp_affin_fullMask; 5056 } else { 5057 __kmp_select_mask_by_gtid(gtid, affinity, &i, &mask); 5058 } 5059 } else { 5060 if (!isa_root || __kmp_nested_proc_bind.bind_types[0] == proc_bind_false) { 5061 #if KMP_GROUP_AFFINITY 5062 if (__kmp_num_proc_groups > 1) { 5063 return; 5064 } 5065 #endif 5066 KMP_ASSERT(__kmp_affin_fullMask != NULL); 5067 i = KMP_PLACE_ALL; 5068 mask = __kmp_affin_fullMask; 5069 } else { 5070 __kmp_select_mask_by_gtid(gtid, affinity, &i, &mask); 5071 } 5072 } 5073 5074 th->th.th_current_place = i; 5075 if (isa_root && !is_hidden_helper) { 5076 th->th.th_new_place = i; 5077 th->th.th_first_place = 0; 5078 th->th.th_last_place = affinity->num_masks - 1; 5079 } else if (KMP_AFFINITY_NON_PROC_BIND) { 5080 // When using a Non-OMP_PROC_BIND affinity method, 5081 // set all threads' place-partition-var to the entire place list 5082 th->th.th_first_place = 0; 5083 th->th.th_last_place = affinity->num_masks - 1; 5084 } 5085 // Copy topology information associated with the place 5086 if (i >= 0) { 5087 th->th.th_topology_ids = __kmp_affinity.ids[i]; 5088 th->th.th_topology_attrs = __kmp_affinity.attrs[i]; 5089 } 5090 5091 if (i == KMP_PLACE_ALL) { 5092 KA_TRACE(100, ("__kmp_affinity_set_init_mask: setting T#%d to all places\n", 5093 gtid)); 5094 } else { 5095 KA_TRACE(100, ("__kmp_affinity_set_init_mask: setting T#%d to place %d\n", 5096 gtid, i)); 5097 } 5098 5099 KMP_CPU_COPY(th->th.th_affin_mask, mask); 5100 } 5101 5102 void __kmp_affinity_bind_init_mask(int gtid) { 5103 if (!KMP_AFFINITY_CAPABLE()) { 5104 return; 5105 } 5106 kmp_info_t *th = (kmp_info_t *)TCR_SYNC_PTR(__kmp_threads[gtid]); 5107 const kmp_affinity_t *affinity; 5108 const char *env_var; 5109 bool is_hidden_helper = KMP_HIDDEN_HELPER_THREAD(gtid); 5110 5111 if (is_hidden_helper) 5112 affinity = &__kmp_hh_affinity; 5113 else 5114 affinity = &__kmp_affinity; 5115 env_var = __kmp_get_affinity_env_var(*affinity, /*for_binding=*/true); 5116 /* to avoid duplicate printing (will be correctly printed on barrier) */ 5117 if (affinity->flags.verbose && (affinity->type == affinity_none || 5118 (th->th.th_current_place != KMP_PLACE_ALL && 5119 affinity->type != affinity_balanced)) && 5120 !KMP_HIDDEN_HELPER_MAIN_THREAD(gtid)) { 5121 char buf[KMP_AFFIN_MASK_PRINT_LEN]; 5122 __kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN, 5123 th->th.th_affin_mask); 5124 KMP_INFORM(BoundToOSProcSet, env_var, (kmp_int32)getpid(), __kmp_gettid(), 5125 gtid, buf); 5126 } 5127 5128 #if KMP_OS_WINDOWS 5129 // On Windows* OS, the process affinity mask might have changed. If the user 5130 // didn't request affinity and this call fails, just continue silently. 5131 // See CQ171393. 5132 if (affinity->type == affinity_none) { 5133 __kmp_set_system_affinity(th->th.th_affin_mask, FALSE); 5134 } else 5135 #endif 5136 #ifndef KMP_OS_AIX 5137 // Do not set the full mask as the init mask on AIX. 5138 __kmp_set_system_affinity(th->th.th_affin_mask, TRUE); 5139 #endif 5140 } 5141 5142 void __kmp_affinity_bind_place(int gtid) { 5143 // Hidden helper threads should not be affected by OMP_PLACES/OMP_PROC_BIND 5144 if (!KMP_AFFINITY_CAPABLE() || KMP_HIDDEN_HELPER_THREAD(gtid)) { 5145 return; 5146 } 5147 5148 kmp_info_t *th = (kmp_info_t *)TCR_SYNC_PTR(__kmp_threads[gtid]); 5149 5150 KA_TRACE(100, ("__kmp_affinity_bind_place: binding T#%d to place %d (current " 5151 "place = %d)\n", 5152 gtid, th->th.th_new_place, th->th.th_current_place)); 5153 5154 // Check that the new place is within this thread's partition. 5155 KMP_DEBUG_ASSERT(th->th.th_affin_mask != NULL); 5156 KMP_ASSERT(th->th.th_new_place >= 0); 5157 KMP_ASSERT((unsigned)th->th.th_new_place <= __kmp_affinity.num_masks); 5158 if (th->th.th_first_place <= th->th.th_last_place) { 5159 KMP_ASSERT((th->th.th_new_place >= th->th.th_first_place) && 5160 (th->th.th_new_place <= th->th.th_last_place)); 5161 } else { 5162 KMP_ASSERT((th->th.th_new_place <= th->th.th_first_place) || 5163 (th->th.th_new_place >= th->th.th_last_place)); 5164 } 5165 5166 // Copy the thread mask to the kmp_info_t structure, 5167 // and set this thread's affinity. 5168 kmp_affin_mask_t *mask = 5169 KMP_CPU_INDEX(__kmp_affinity.masks, th->th.th_new_place); 5170 KMP_CPU_COPY(th->th.th_affin_mask, mask); 5171 th->th.th_current_place = th->th.th_new_place; 5172 5173 if (__kmp_affinity.flags.verbose) { 5174 char buf[KMP_AFFIN_MASK_PRINT_LEN]; 5175 __kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN, 5176 th->th.th_affin_mask); 5177 KMP_INFORM(BoundToOSProcSet, "OMP_PROC_BIND", (kmp_int32)getpid(), 5178 __kmp_gettid(), gtid, buf); 5179 } 5180 __kmp_set_system_affinity(th->th.th_affin_mask, TRUE); 5181 } 5182 5183 int __kmp_aux_set_affinity(void **mask) { 5184 int gtid; 5185 kmp_info_t *th; 5186 int retval; 5187 5188 if (!KMP_AFFINITY_CAPABLE()) { 5189 return -1; 5190 } 5191 5192 gtid = __kmp_entry_gtid(); 5193 KA_TRACE( 5194 1000, (""); { 5195 char buf[KMP_AFFIN_MASK_PRINT_LEN]; 5196 __kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN, 5197 (kmp_affin_mask_t *)(*mask)); 5198 __kmp_debug_printf( 5199 "kmp_set_affinity: setting affinity mask for thread %d = %s\n", 5200 gtid, buf); 5201 }); 5202 5203 if (__kmp_env_consistency_check) { 5204 if ((mask == NULL) || (*mask == NULL)) { 5205 KMP_FATAL(AffinityInvalidMask, "kmp_set_affinity"); 5206 } else { 5207 unsigned proc; 5208 int num_procs = 0; 5209 5210 KMP_CPU_SET_ITERATE(proc, ((kmp_affin_mask_t *)(*mask))) { 5211 if (!KMP_CPU_ISSET(proc, __kmp_affin_fullMask)) { 5212 KMP_FATAL(AffinityInvalidMask, "kmp_set_affinity"); 5213 } 5214 if (!KMP_CPU_ISSET(proc, (kmp_affin_mask_t *)(*mask))) { 5215 continue; 5216 } 5217 num_procs++; 5218 } 5219 if (num_procs == 0) { 5220 KMP_FATAL(AffinityInvalidMask, "kmp_set_affinity"); 5221 } 5222 5223 #if KMP_GROUP_AFFINITY 5224 if (__kmp_get_proc_group((kmp_affin_mask_t *)(*mask)) < 0) { 5225 KMP_FATAL(AffinityInvalidMask, "kmp_set_affinity"); 5226 } 5227 #endif /* KMP_GROUP_AFFINITY */ 5228 } 5229 } 5230 5231 th = __kmp_threads[gtid]; 5232 KMP_DEBUG_ASSERT(th->th.th_affin_mask != NULL); 5233 retval = __kmp_set_system_affinity((kmp_affin_mask_t *)(*mask), FALSE); 5234 if (retval == 0) { 5235 KMP_CPU_COPY(th->th.th_affin_mask, (kmp_affin_mask_t *)(*mask)); 5236 } 5237 5238 th->th.th_current_place = KMP_PLACE_UNDEFINED; 5239 th->th.th_new_place = KMP_PLACE_UNDEFINED; 5240 th->th.th_first_place = 0; 5241 th->th.th_last_place = __kmp_affinity.num_masks - 1; 5242 5243 // Turn off 4.0 affinity for the current tread at this parallel level. 5244 th->th.th_current_task->td_icvs.proc_bind = proc_bind_false; 5245 5246 return retval; 5247 } 5248 5249 int __kmp_aux_get_affinity(void **mask) { 5250 int gtid; 5251 int retval; 5252 #if KMP_OS_WINDOWS || KMP_OS_AIX || KMP_DEBUG 5253 kmp_info_t *th; 5254 #endif 5255 if (!KMP_AFFINITY_CAPABLE()) { 5256 return -1; 5257 } 5258 5259 gtid = __kmp_entry_gtid(); 5260 #if KMP_OS_WINDOWS || KMP_OS_AIX || KMP_DEBUG 5261 th = __kmp_threads[gtid]; 5262 #else 5263 (void)gtid; // unused variable 5264 #endif 5265 KMP_DEBUG_ASSERT(th->th.th_affin_mask != NULL); 5266 5267 KA_TRACE( 5268 1000, (""); { 5269 char buf[KMP_AFFIN_MASK_PRINT_LEN]; 5270 __kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN, 5271 th->th.th_affin_mask); 5272 __kmp_printf( 5273 "kmp_get_affinity: stored affinity mask for thread %d = %s\n", gtid, 5274 buf); 5275 }); 5276 5277 if (__kmp_env_consistency_check) { 5278 if ((mask == NULL) || (*mask == NULL)) { 5279 KMP_FATAL(AffinityInvalidMask, "kmp_get_affinity"); 5280 } 5281 } 5282 5283 #if !KMP_OS_WINDOWS && !KMP_OS_AIX 5284 5285 retval = __kmp_get_system_affinity((kmp_affin_mask_t *)(*mask), FALSE); 5286 KA_TRACE( 5287 1000, (""); { 5288 char buf[KMP_AFFIN_MASK_PRINT_LEN]; 5289 __kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN, 5290 (kmp_affin_mask_t *)(*mask)); 5291 __kmp_printf( 5292 "kmp_get_affinity: system affinity mask for thread %d = %s\n", gtid, 5293 buf); 5294 }); 5295 return retval; 5296 5297 #else 5298 (void)retval; 5299 5300 KMP_CPU_COPY((kmp_affin_mask_t *)(*mask), th->th.th_affin_mask); 5301 return 0; 5302 5303 #endif /* !KMP_OS_WINDOWS && !KMP_OS_AIX */ 5304 } 5305 5306 int __kmp_aux_get_affinity_max_proc() { 5307 if (!KMP_AFFINITY_CAPABLE()) { 5308 return 0; 5309 } 5310 #if KMP_GROUP_AFFINITY 5311 if (__kmp_num_proc_groups > 1) { 5312 return (int)(__kmp_num_proc_groups * sizeof(DWORD_PTR) * CHAR_BIT); 5313 } 5314 #endif 5315 return __kmp_xproc; 5316 } 5317 5318 int __kmp_aux_set_affinity_mask_proc(int proc, void **mask) { 5319 if (!KMP_AFFINITY_CAPABLE()) { 5320 return -1; 5321 } 5322 5323 KA_TRACE( 5324 1000, (""); { 5325 int gtid = __kmp_entry_gtid(); 5326 char buf[KMP_AFFIN_MASK_PRINT_LEN]; 5327 __kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN, 5328 (kmp_affin_mask_t *)(*mask)); 5329 __kmp_debug_printf("kmp_set_affinity_mask_proc: setting proc %d in " 5330 "affinity mask for thread %d = %s\n", 5331 proc, gtid, buf); 5332 }); 5333 5334 if (__kmp_env_consistency_check) { 5335 if ((mask == NULL) || (*mask == NULL)) { 5336 KMP_FATAL(AffinityInvalidMask, "kmp_set_affinity_mask_proc"); 5337 } 5338 } 5339 5340 if ((proc < 0) || (proc >= __kmp_aux_get_affinity_max_proc())) { 5341 return -1; 5342 } 5343 if (!KMP_CPU_ISSET(proc, __kmp_affin_fullMask)) { 5344 return -2; 5345 } 5346 5347 KMP_CPU_SET(proc, (kmp_affin_mask_t *)(*mask)); 5348 return 0; 5349 } 5350 5351 int __kmp_aux_unset_affinity_mask_proc(int proc, void **mask) { 5352 if (!KMP_AFFINITY_CAPABLE()) { 5353 return -1; 5354 } 5355 5356 KA_TRACE( 5357 1000, (""); { 5358 int gtid = __kmp_entry_gtid(); 5359 char buf[KMP_AFFIN_MASK_PRINT_LEN]; 5360 __kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN, 5361 (kmp_affin_mask_t *)(*mask)); 5362 __kmp_debug_printf("kmp_unset_affinity_mask_proc: unsetting proc %d in " 5363 "affinity mask for thread %d = %s\n", 5364 proc, gtid, buf); 5365 }); 5366 5367 if (__kmp_env_consistency_check) { 5368 if ((mask == NULL) || (*mask == NULL)) { 5369 KMP_FATAL(AffinityInvalidMask, "kmp_unset_affinity_mask_proc"); 5370 } 5371 } 5372 5373 if ((proc < 0) || (proc >= __kmp_aux_get_affinity_max_proc())) { 5374 return -1; 5375 } 5376 if (!KMP_CPU_ISSET(proc, __kmp_affin_fullMask)) { 5377 return -2; 5378 } 5379 5380 KMP_CPU_CLR(proc, (kmp_affin_mask_t *)(*mask)); 5381 return 0; 5382 } 5383 5384 int __kmp_aux_get_affinity_mask_proc(int proc, void **mask) { 5385 if (!KMP_AFFINITY_CAPABLE()) { 5386 return -1; 5387 } 5388 5389 KA_TRACE( 5390 1000, (""); { 5391 int gtid = __kmp_entry_gtid(); 5392 char buf[KMP_AFFIN_MASK_PRINT_LEN]; 5393 __kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN, 5394 (kmp_affin_mask_t *)(*mask)); 5395 __kmp_debug_printf("kmp_get_affinity_mask_proc: getting proc %d in " 5396 "affinity mask for thread %d = %s\n", 5397 proc, gtid, buf); 5398 }); 5399 5400 if (__kmp_env_consistency_check) { 5401 if ((mask == NULL) || (*mask == NULL)) { 5402 KMP_FATAL(AffinityInvalidMask, "kmp_get_affinity_mask_proc"); 5403 } 5404 } 5405 5406 if ((proc < 0) || (proc >= __kmp_aux_get_affinity_max_proc())) { 5407 return -1; 5408 } 5409 if (!KMP_CPU_ISSET(proc, __kmp_affin_fullMask)) { 5410 return 0; 5411 } 5412 5413 return KMP_CPU_ISSET(proc, (kmp_affin_mask_t *)(*mask)); 5414 } 5415 5416 #if KMP_WEIGHTED_ITERATIONS_SUPPORTED 5417 // Returns first os proc id with ATOM core 5418 int __kmp_get_first_osid_with_ecore(void) { 5419 int low = 0; 5420 int high = __kmp_topology->get_num_hw_threads() - 1; 5421 int mid = 0; 5422 while (high - low > 1) { 5423 mid = (high + low) / 2; 5424 if (__kmp_topology->at(mid).attrs.get_core_type() == 5425 KMP_HW_CORE_TYPE_CORE) { 5426 low = mid + 1; 5427 } else { 5428 high = mid; 5429 } 5430 } 5431 if (__kmp_topology->at(mid).attrs.get_core_type() == KMP_HW_CORE_TYPE_ATOM) { 5432 return mid; 5433 } 5434 return -1; 5435 } 5436 #endif 5437 5438 // Dynamic affinity settings - Affinity balanced 5439 void __kmp_balanced_affinity(kmp_info_t *th, int nthreads) { 5440 KMP_DEBUG_ASSERT(th); 5441 bool fine_gran = true; 5442 int tid = th->th.th_info.ds.ds_tid; 5443 const char *env_var = "KMP_AFFINITY"; 5444 5445 // Do not perform balanced affinity for the hidden helper threads 5446 if (KMP_HIDDEN_HELPER_THREAD(__kmp_gtid_from_thread(th))) 5447 return; 5448 5449 switch (__kmp_affinity.gran) { 5450 case KMP_HW_THREAD: 5451 break; 5452 case KMP_HW_CORE: 5453 if (__kmp_nThreadsPerCore > 1) { 5454 fine_gran = false; 5455 } 5456 break; 5457 case KMP_HW_SOCKET: 5458 if (nCoresPerPkg > 1) { 5459 fine_gran = false; 5460 } 5461 break; 5462 default: 5463 fine_gran = false; 5464 } 5465 5466 if (__kmp_topology->is_uniform()) { 5467 int coreID; 5468 int threadID; 5469 // Number of hyper threads per core in HT machine 5470 int __kmp_nth_per_core = __kmp_avail_proc / __kmp_ncores; 5471 // Number of cores 5472 int ncores = __kmp_ncores; 5473 if ((nPackages > 1) && (__kmp_nth_per_core <= 1)) { 5474 __kmp_nth_per_core = __kmp_avail_proc / nPackages; 5475 ncores = nPackages; 5476 } 5477 // How many threads will be bound to each core 5478 int chunk = nthreads / ncores; 5479 // How many cores will have an additional thread bound to it - "big cores" 5480 int big_cores = nthreads % ncores; 5481 // Number of threads on the big cores 5482 int big_nth = (chunk + 1) * big_cores; 5483 if (tid < big_nth) { 5484 coreID = tid / (chunk + 1); 5485 threadID = (tid % (chunk + 1)) % __kmp_nth_per_core; 5486 } else { // tid >= big_nth 5487 coreID = (tid - big_cores) / chunk; 5488 threadID = ((tid - big_cores) % chunk) % __kmp_nth_per_core; 5489 } 5490 KMP_DEBUG_ASSERT2(KMP_AFFINITY_CAPABLE(), 5491 "Illegal set affinity operation when not capable"); 5492 5493 kmp_affin_mask_t *mask = th->th.th_affin_mask; 5494 KMP_CPU_ZERO(mask); 5495 5496 if (fine_gran) { 5497 int osID = 5498 __kmp_topology->at(coreID * __kmp_nth_per_core + threadID).os_id; 5499 KMP_CPU_SET(osID, mask); 5500 } else { 5501 for (int i = 0; i < __kmp_nth_per_core; i++) { 5502 int osID; 5503 osID = __kmp_topology->at(coreID * __kmp_nth_per_core + i).os_id; 5504 KMP_CPU_SET(osID, mask); 5505 } 5506 } 5507 if (__kmp_affinity.flags.verbose) { 5508 char buf[KMP_AFFIN_MASK_PRINT_LEN]; 5509 __kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN, mask); 5510 KMP_INFORM(BoundToOSProcSet, env_var, (kmp_int32)getpid(), __kmp_gettid(), 5511 tid, buf); 5512 } 5513 __kmp_affinity_get_thread_topology_info(th); 5514 __kmp_set_system_affinity(mask, TRUE); 5515 } else { // Non-uniform topology 5516 5517 kmp_affin_mask_t *mask = th->th.th_affin_mask; 5518 KMP_CPU_ZERO(mask); 5519 5520 int core_level = 5521 __kmp_affinity_find_core_level(__kmp_avail_proc, __kmp_aff_depth - 1); 5522 int ncores = __kmp_affinity_compute_ncores(__kmp_avail_proc, 5523 __kmp_aff_depth - 1, core_level); 5524 int nth_per_core = __kmp_affinity_max_proc_per_core( 5525 __kmp_avail_proc, __kmp_aff_depth - 1, core_level); 5526 5527 // For performance gain consider the special case nthreads == 5528 // __kmp_avail_proc 5529 if (nthreads == __kmp_avail_proc) { 5530 if (fine_gran) { 5531 int osID = __kmp_topology->at(tid).os_id; 5532 KMP_CPU_SET(osID, mask); 5533 } else { 5534 int core = 5535 __kmp_affinity_find_core(tid, __kmp_aff_depth - 1, core_level); 5536 for (int i = 0; i < __kmp_avail_proc; i++) { 5537 int osID = __kmp_topology->at(i).os_id; 5538 if (__kmp_affinity_find_core(i, __kmp_aff_depth - 1, core_level) == 5539 core) { 5540 KMP_CPU_SET(osID, mask); 5541 } 5542 } 5543 } 5544 } else if (nthreads <= ncores) { 5545 5546 int core = 0; 5547 for (int i = 0; i < ncores; i++) { 5548 // Check if this core from procarr[] is in the mask 5549 int in_mask = 0; 5550 for (int j = 0; j < nth_per_core; j++) { 5551 if (procarr[i * nth_per_core + j] != -1) { 5552 in_mask = 1; 5553 break; 5554 } 5555 } 5556 if (in_mask) { 5557 if (tid == core) { 5558 for (int j = 0; j < nth_per_core; j++) { 5559 int osID = procarr[i * nth_per_core + j]; 5560 if (osID != -1) { 5561 KMP_CPU_SET(osID, mask); 5562 // For fine granularity it is enough to set the first available 5563 // osID for this core 5564 if (fine_gran) { 5565 break; 5566 } 5567 } 5568 } 5569 break; 5570 } else { 5571 core++; 5572 } 5573 } 5574 } 5575 } else { // nthreads > ncores 5576 // Array to save the number of processors at each core 5577 int *nproc_at_core = (int *)KMP_ALLOCA(sizeof(int) * ncores); 5578 // Array to save the number of cores with "x" available processors; 5579 int *ncores_with_x_procs = 5580 (int *)KMP_ALLOCA(sizeof(int) * (nth_per_core + 1)); 5581 // Array to save the number of cores with # procs from x to nth_per_core 5582 int *ncores_with_x_to_max_procs = 5583 (int *)KMP_ALLOCA(sizeof(int) * (nth_per_core + 1)); 5584 5585 for (int i = 0; i <= nth_per_core; i++) { 5586 ncores_with_x_procs[i] = 0; 5587 ncores_with_x_to_max_procs[i] = 0; 5588 } 5589 5590 for (int i = 0; i < ncores; i++) { 5591 int cnt = 0; 5592 for (int j = 0; j < nth_per_core; j++) { 5593 if (procarr[i * nth_per_core + j] != -1) { 5594 cnt++; 5595 } 5596 } 5597 nproc_at_core[i] = cnt; 5598 ncores_with_x_procs[cnt]++; 5599 } 5600 5601 for (int i = 0; i <= nth_per_core; i++) { 5602 for (int j = i; j <= nth_per_core; j++) { 5603 ncores_with_x_to_max_procs[i] += ncores_with_x_procs[j]; 5604 } 5605 } 5606 5607 // Max number of processors 5608 int nproc = nth_per_core * ncores; 5609 // An array to keep number of threads per each context 5610 int *newarr = (int *)__kmp_allocate(sizeof(int) * nproc); 5611 for (int i = 0; i < nproc; i++) { 5612 newarr[i] = 0; 5613 } 5614 5615 int nth = nthreads; 5616 int flag = 0; 5617 while (nth > 0) { 5618 for (int j = 1; j <= nth_per_core; j++) { 5619 int cnt = ncores_with_x_to_max_procs[j]; 5620 for (int i = 0; i < ncores; i++) { 5621 // Skip the core with 0 processors 5622 if (nproc_at_core[i] == 0) { 5623 continue; 5624 } 5625 for (int k = 0; k < nth_per_core; k++) { 5626 if (procarr[i * nth_per_core + k] != -1) { 5627 if (newarr[i * nth_per_core + k] == 0) { 5628 newarr[i * nth_per_core + k] = 1; 5629 cnt--; 5630 nth--; 5631 break; 5632 } else { 5633 if (flag != 0) { 5634 newarr[i * nth_per_core + k]++; 5635 cnt--; 5636 nth--; 5637 break; 5638 } 5639 } 5640 } 5641 } 5642 if (cnt == 0 || nth == 0) { 5643 break; 5644 } 5645 } 5646 if (nth == 0) { 5647 break; 5648 } 5649 } 5650 flag = 1; 5651 } 5652 int sum = 0; 5653 for (int i = 0; i < nproc; i++) { 5654 sum += newarr[i]; 5655 if (sum > tid) { 5656 if (fine_gran) { 5657 int osID = procarr[i]; 5658 KMP_CPU_SET(osID, mask); 5659 } else { 5660 int coreID = i / nth_per_core; 5661 for (int ii = 0; ii < nth_per_core; ii++) { 5662 int osID = procarr[coreID * nth_per_core + ii]; 5663 if (osID != -1) { 5664 KMP_CPU_SET(osID, mask); 5665 } 5666 } 5667 } 5668 break; 5669 } 5670 } 5671 __kmp_free(newarr); 5672 } 5673 5674 if (__kmp_affinity.flags.verbose) { 5675 char buf[KMP_AFFIN_MASK_PRINT_LEN]; 5676 __kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN, mask); 5677 KMP_INFORM(BoundToOSProcSet, env_var, (kmp_int32)getpid(), __kmp_gettid(), 5678 tid, buf); 5679 } 5680 __kmp_affinity_get_thread_topology_info(th); 5681 __kmp_set_system_affinity(mask, TRUE); 5682 } 5683 } 5684 5685 #if KMP_OS_LINUX || KMP_OS_FREEBSD || KMP_OS_NETBSD || KMP_OS_DRAGONFLY || \ 5686 KMP_OS_AIX 5687 // We don't need this entry for Windows because 5688 // there is GetProcessAffinityMask() api 5689 // 5690 // The intended usage is indicated by these steps: 5691 // 1) The user gets the current affinity mask 5692 // 2) Then sets the affinity by calling this function 5693 // 3) Error check the return value 5694 // 4) Use non-OpenMP parallelization 5695 // 5) Reset the affinity to what was stored in step 1) 5696 #ifdef __cplusplus 5697 extern "C" 5698 #endif 5699 int 5700 kmp_set_thread_affinity_mask_initial() 5701 // the function returns 0 on success, 5702 // -1 if we cannot bind thread 5703 // >0 (errno) if an error happened during binding 5704 { 5705 int gtid = __kmp_get_gtid(); 5706 if (gtid < 0) { 5707 // Do not touch non-omp threads 5708 KA_TRACE(30, ("kmp_set_thread_affinity_mask_initial: " 5709 "non-omp thread, returning\n")); 5710 return -1; 5711 } 5712 if (!KMP_AFFINITY_CAPABLE() || !__kmp_init_middle) { 5713 KA_TRACE(30, ("kmp_set_thread_affinity_mask_initial: " 5714 "affinity not initialized, returning\n")); 5715 return -1; 5716 } 5717 KA_TRACE(30, ("kmp_set_thread_affinity_mask_initial: " 5718 "set full mask for thread %d\n", 5719 gtid)); 5720 KMP_DEBUG_ASSERT(__kmp_affin_fullMask != NULL); 5721 #if KMP_OS_AIX 5722 return bindprocessor(BINDTHREAD, thread_self(), PROCESSOR_CLASS_ANY); 5723 #else 5724 return __kmp_set_system_affinity(__kmp_affin_fullMask, FALSE); 5725 #endif 5726 } 5727 #endif 5728 5729 #endif // KMP_AFFINITY_SUPPORTED 5730