xref: /freebsd/contrib/llvm-project/openmp/runtime/src/kmp_affinity.cpp (revision 6132212808e8dccedc9e5d85fea4390c2f38059a)
1 /*
2  * kmp_affinity.cpp -- affinity management
3  */
4 
5 //===----------------------------------------------------------------------===//
6 //
7 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
8 // See https://llvm.org/LICENSE.txt for license information.
9 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "kmp.h"
14 #include "kmp_affinity.h"
15 #include "kmp_i18n.h"
16 #include "kmp_io.h"
17 #include "kmp_str.h"
18 #include "kmp_wrapper_getpid.h"
19 #if KMP_USE_HIER_SCHED
20 #include "kmp_dispatch_hier.h"
21 #endif
22 
23 // Store the real or imagined machine hierarchy here
24 static hierarchy_info machine_hierarchy;
25 
26 void __kmp_cleanup_hierarchy() { machine_hierarchy.fini(); }
27 
28 void __kmp_get_hierarchy(kmp_uint32 nproc, kmp_bstate_t *thr_bar) {
29   kmp_uint32 depth;
30   // The test below is true if affinity is available, but set to "none". Need to
31   // init on first use of hierarchical barrier.
32   if (TCR_1(machine_hierarchy.uninitialized))
33     machine_hierarchy.init(NULL, nproc);
34 
35   // Adjust the hierarchy in case num threads exceeds original
36   if (nproc > machine_hierarchy.base_num_threads)
37     machine_hierarchy.resize(nproc);
38 
39   depth = machine_hierarchy.depth;
40   KMP_DEBUG_ASSERT(depth > 0);
41 
42   thr_bar->depth = depth;
43   thr_bar->base_leaf_kids = (kmp_uint8)machine_hierarchy.numPerLevel[0] - 1;
44   thr_bar->skip_per_level = machine_hierarchy.skipPerLevel;
45 }
46 
47 #if KMP_AFFINITY_SUPPORTED
48 
49 bool KMPAffinity::picked_api = false;
50 
51 void *KMPAffinity::Mask::operator new(size_t n) { return __kmp_allocate(n); }
52 void *KMPAffinity::Mask::operator new[](size_t n) { return __kmp_allocate(n); }
53 void KMPAffinity::Mask::operator delete(void *p) { __kmp_free(p); }
54 void KMPAffinity::Mask::operator delete[](void *p) { __kmp_free(p); }
55 void *KMPAffinity::operator new(size_t n) { return __kmp_allocate(n); }
56 void KMPAffinity::operator delete(void *p) { __kmp_free(p); }
57 
58 void KMPAffinity::pick_api() {
59   KMPAffinity *affinity_dispatch;
60   if (picked_api)
61     return;
62 #if KMP_USE_HWLOC
63   // Only use Hwloc if affinity isn't explicitly disabled and
64   // user requests Hwloc topology method
65   if (__kmp_affinity_top_method == affinity_top_method_hwloc &&
66       __kmp_affinity_type != affinity_disabled) {
67     affinity_dispatch = new KMPHwlocAffinity();
68   } else
69 #endif
70   {
71     affinity_dispatch = new KMPNativeAffinity();
72   }
73   __kmp_affinity_dispatch = affinity_dispatch;
74   picked_api = true;
75 }
76 
77 void KMPAffinity::destroy_api() {
78   if (__kmp_affinity_dispatch != NULL) {
79     delete __kmp_affinity_dispatch;
80     __kmp_affinity_dispatch = NULL;
81     picked_api = false;
82   }
83 }
84 
85 #define KMP_ADVANCE_SCAN(scan)                                                 \
86   while (*scan != '\0') {                                                      \
87     scan++;                                                                    \
88   }
89 
90 // Print the affinity mask to the character array in a pretty format.
91 // The format is a comma separated list of non-negative integers or integer
92 // ranges: e.g., 1,2,3-5,7,9-15
93 // The format can also be the string "{<empty>}" if no bits are set in mask
94 char *__kmp_affinity_print_mask(char *buf, int buf_len,
95                                 kmp_affin_mask_t *mask) {
96   int start = 0, finish = 0, previous = 0;
97   bool first_range;
98   KMP_ASSERT(buf);
99   KMP_ASSERT(buf_len >= 40);
100   KMP_ASSERT(mask);
101   char *scan = buf;
102   char *end = buf + buf_len - 1;
103 
104   // Check for empty set.
105   if (mask->begin() == mask->end()) {
106     KMP_SNPRINTF(scan, end - scan + 1, "{<empty>}");
107     KMP_ADVANCE_SCAN(scan);
108     KMP_ASSERT(scan <= end);
109     return buf;
110   }
111 
112   first_range = true;
113   start = mask->begin();
114   while (1) {
115     // Find next range
116     // [start, previous] is inclusive range of contiguous bits in mask
117     for (finish = mask->next(start), previous = start;
118          finish == previous + 1 && finish != mask->end();
119          finish = mask->next(finish)) {
120       previous = finish;
121     }
122 
123     // The first range does not need a comma printed before it, but the rest
124     // of the ranges do need a comma beforehand
125     if (!first_range) {
126       KMP_SNPRINTF(scan, end - scan + 1, "%s", ",");
127       KMP_ADVANCE_SCAN(scan);
128     } else {
129       first_range = false;
130     }
131     // Range with three or more contiguous bits in the affinity mask
132     if (previous - start > 1) {
133       KMP_SNPRINTF(scan, end - scan + 1, "%d-%d", static_cast<int>(start),
134                    static_cast<int>(previous));
135     } else {
136       // Range with one or two contiguous bits in the affinity mask
137       KMP_SNPRINTF(scan, end - scan + 1, "%d", static_cast<int>(start));
138       KMP_ADVANCE_SCAN(scan);
139       if (previous - start > 0) {
140         KMP_SNPRINTF(scan, end - scan + 1, ",%d", static_cast<int>(previous));
141       }
142     }
143     KMP_ADVANCE_SCAN(scan);
144     // Start over with new start point
145     start = finish;
146     if (start == mask->end())
147       break;
148     // Check for overflow
149     if (end - scan < 2)
150       break;
151   }
152 
153   // Check for overflow
154   KMP_ASSERT(scan <= end);
155   return buf;
156 }
157 #undef KMP_ADVANCE_SCAN
158 
159 // Print the affinity mask to the string buffer object in a pretty format
160 // The format is a comma separated list of non-negative integers or integer
161 // ranges: e.g., 1,2,3-5,7,9-15
162 // The format can also be the string "{<empty>}" if no bits are set in mask
163 kmp_str_buf_t *__kmp_affinity_str_buf_mask(kmp_str_buf_t *buf,
164                                            kmp_affin_mask_t *mask) {
165   int start = 0, finish = 0, previous = 0;
166   bool first_range;
167   KMP_ASSERT(buf);
168   KMP_ASSERT(mask);
169 
170   __kmp_str_buf_clear(buf);
171 
172   // Check for empty set.
173   if (mask->begin() == mask->end()) {
174     __kmp_str_buf_print(buf, "%s", "{<empty>}");
175     return buf;
176   }
177 
178   first_range = true;
179   start = mask->begin();
180   while (1) {
181     // Find next range
182     // [start, previous] is inclusive range of contiguous bits in mask
183     for (finish = mask->next(start), previous = start;
184          finish == previous + 1 && finish != mask->end();
185          finish = mask->next(finish)) {
186       previous = finish;
187     }
188 
189     // The first range does not need a comma printed before it, but the rest
190     // of the ranges do need a comma beforehand
191     if (!first_range) {
192       __kmp_str_buf_print(buf, "%s", ",");
193     } else {
194       first_range = false;
195     }
196     // Range with three or more contiguous bits in the affinity mask
197     if (previous - start > 1) {
198       __kmp_str_buf_print(buf, "%d-%d", static_cast<int>(start),
199                           static_cast<int>(previous));
200     } else {
201       // Range with one or two contiguous bits in the affinity mask
202       __kmp_str_buf_print(buf, "%d", static_cast<int>(start));
203       if (previous - start > 0) {
204         __kmp_str_buf_print(buf, ",%d", static_cast<int>(previous));
205       }
206     }
207     // Start over with new start point
208     start = finish;
209     if (start == mask->end())
210       break;
211   }
212   return buf;
213 }
214 
215 void __kmp_affinity_entire_machine_mask(kmp_affin_mask_t *mask) {
216   KMP_CPU_ZERO(mask);
217 
218 #if KMP_GROUP_AFFINITY
219 
220   if (__kmp_num_proc_groups > 1) {
221     int group;
222     KMP_DEBUG_ASSERT(__kmp_GetActiveProcessorCount != NULL);
223     for (group = 0; group < __kmp_num_proc_groups; group++) {
224       int i;
225       int num = __kmp_GetActiveProcessorCount(group);
226       for (i = 0; i < num; i++) {
227         KMP_CPU_SET(i + group * (CHAR_BIT * sizeof(DWORD_PTR)), mask);
228       }
229     }
230   } else
231 
232 #endif /* KMP_GROUP_AFFINITY */
233 
234   {
235     int proc;
236     for (proc = 0; proc < __kmp_xproc; proc++) {
237       KMP_CPU_SET(proc, mask);
238     }
239   }
240 }
241 
242 // When sorting by labels, __kmp_affinity_assign_child_nums() must first be
243 // called to renumber the labels from [0..n] and place them into the child_num
244 // vector of the address object.  This is done in case the labels used for
245 // the children at one node of the hierarchy differ from those used for
246 // another node at the same level.  Example:  suppose the machine has 2 nodes
247 // with 2 packages each.  The first node contains packages 601 and 602, and
248 // second node contains packages 603 and 604.  If we try to sort the table
249 // for "scatter" affinity, the table will still be sorted 601, 602, 603, 604
250 // because we are paying attention to the labels themselves, not the ordinal
251 // child numbers.  By using the child numbers in the sort, the result is
252 // {0,0}=601, {0,1}=603, {1,0}=602, {1,1}=604.
253 static void __kmp_affinity_assign_child_nums(AddrUnsPair *address2os,
254                                              int numAddrs) {
255   KMP_DEBUG_ASSERT(numAddrs > 0);
256   int depth = address2os->first.depth;
257   unsigned *counts = (unsigned *)__kmp_allocate(depth * sizeof(unsigned));
258   unsigned *lastLabel = (unsigned *)__kmp_allocate(depth * sizeof(unsigned));
259   int labCt;
260   for (labCt = 0; labCt < depth; labCt++) {
261     address2os[0].first.childNums[labCt] = counts[labCt] = 0;
262     lastLabel[labCt] = address2os[0].first.labels[labCt];
263   }
264   int i;
265   for (i = 1; i < numAddrs; i++) {
266     for (labCt = 0; labCt < depth; labCt++) {
267       if (address2os[i].first.labels[labCt] != lastLabel[labCt]) {
268         int labCt2;
269         for (labCt2 = labCt + 1; labCt2 < depth; labCt2++) {
270           counts[labCt2] = 0;
271           lastLabel[labCt2] = address2os[i].first.labels[labCt2];
272         }
273         counts[labCt]++;
274         lastLabel[labCt] = address2os[i].first.labels[labCt];
275         break;
276       }
277     }
278     for (labCt = 0; labCt < depth; labCt++) {
279       address2os[i].first.childNums[labCt] = counts[labCt];
280     }
281     for (; labCt < (int)Address::maxDepth; labCt++) {
282       address2os[i].first.childNums[labCt] = 0;
283     }
284   }
285   __kmp_free(lastLabel);
286   __kmp_free(counts);
287 }
288 
289 // All of the __kmp_affinity_create_*_map() routines should set
290 // __kmp_affinity_masks to a vector of affinity mask objects of length
291 // __kmp_affinity_num_masks, if __kmp_affinity_type != affinity_none, and return
292 // the number of levels in the machine topology tree (zero if
293 // __kmp_affinity_type == affinity_none).
294 //
295 // All of the __kmp_affinity_create_*_map() routines should set
296 // *__kmp_affin_fullMask to the affinity mask for the initialization thread.
297 // They need to save and restore the mask, and it could be needed later, so
298 // saving it is just an optimization to avoid calling kmp_get_system_affinity()
299 // again.
300 kmp_affin_mask_t *__kmp_affin_fullMask = NULL;
301 
302 static int nCoresPerPkg, nPackages;
303 static int __kmp_nThreadsPerCore;
304 #ifndef KMP_DFLT_NTH_CORES
305 static int __kmp_ncores;
306 #endif
307 static int *__kmp_pu_os_idx = NULL;
308 
309 // __kmp_affinity_uniform_topology() doesn't work when called from
310 // places which support arbitrarily many levels in the machine topology
311 // map, i.e. the non-default cases in __kmp_affinity_create_cpuinfo_map()
312 // __kmp_affinity_create_x2apicid_map().
313 inline static bool __kmp_affinity_uniform_topology() {
314   return __kmp_avail_proc == (__kmp_nThreadsPerCore * nCoresPerPkg * nPackages);
315 }
316 
317 // Print out the detailed machine topology map, i.e. the physical locations
318 // of each OS proc.
319 static void __kmp_affinity_print_topology(AddrUnsPair *address2os, int len,
320                                           int depth, int pkgLevel,
321                                           int coreLevel, int threadLevel) {
322   int proc;
323 
324   KMP_INFORM(OSProcToPhysicalThreadMap, "KMP_AFFINITY");
325   for (proc = 0; proc < len; proc++) {
326     int level;
327     kmp_str_buf_t buf;
328     __kmp_str_buf_init(&buf);
329     for (level = 0; level < depth; level++) {
330       if (level == threadLevel) {
331         __kmp_str_buf_print(&buf, "%s ", KMP_I18N_STR(Thread));
332       } else if (level == coreLevel) {
333         __kmp_str_buf_print(&buf, "%s ", KMP_I18N_STR(Core));
334       } else if (level == pkgLevel) {
335         __kmp_str_buf_print(&buf, "%s ", KMP_I18N_STR(Package));
336       } else if (level > pkgLevel) {
337         __kmp_str_buf_print(&buf, "%s_%d ", KMP_I18N_STR(Node),
338                             level - pkgLevel - 1);
339       } else {
340         __kmp_str_buf_print(&buf, "L%d ", level);
341       }
342       __kmp_str_buf_print(&buf, "%d ", address2os[proc].first.labels[level]);
343     }
344     KMP_INFORM(OSProcMapToPack, "KMP_AFFINITY", address2os[proc].second,
345                buf.str);
346     __kmp_str_buf_free(&buf);
347   }
348 }
349 
350 #if KMP_USE_HWLOC
351 
352 static void __kmp_affinity_print_hwloc_tp(AddrUnsPair *addrP, int len,
353                                           int depth, int *levels) {
354   int proc;
355   kmp_str_buf_t buf;
356   __kmp_str_buf_init(&buf);
357   KMP_INFORM(OSProcToPhysicalThreadMap, "KMP_AFFINITY");
358   for (proc = 0; proc < len; proc++) {
359     __kmp_str_buf_print(&buf, "%s %d ", KMP_I18N_STR(Package),
360                         addrP[proc].first.labels[0]);
361     if (depth > 1) {
362       int level = 1; // iterate over levels
363       int label = 1; // iterate over labels
364       if (__kmp_numa_detected)
365         // node level follows package
366         if (levels[level++] > 0)
367           __kmp_str_buf_print(&buf, "%s %d ", KMP_I18N_STR(Node),
368                               addrP[proc].first.labels[label++]);
369       if (__kmp_tile_depth > 0)
370         // tile level follows node if any, or package
371         if (levels[level++] > 0)
372           __kmp_str_buf_print(&buf, "%s %d ", KMP_I18N_STR(Tile),
373                               addrP[proc].first.labels[label++]);
374       if (levels[level++] > 0)
375         // core level follows
376         __kmp_str_buf_print(&buf, "%s %d ", KMP_I18N_STR(Core),
377                             addrP[proc].first.labels[label++]);
378       if (levels[level++] > 0)
379         // thread level is the latest
380         __kmp_str_buf_print(&buf, "%s %d ", KMP_I18N_STR(Thread),
381                             addrP[proc].first.labels[label++]);
382       KMP_DEBUG_ASSERT(label == depth);
383     }
384     KMP_INFORM(OSProcMapToPack, "KMP_AFFINITY", addrP[proc].second, buf.str);
385     __kmp_str_buf_clear(&buf);
386   }
387   __kmp_str_buf_free(&buf);
388 }
389 
390 static int nNodePerPkg, nTilePerPkg, nTilePerNode, nCorePerNode, nCorePerTile;
391 
392 // This function removes the topology levels that are radix 1 and don't offer
393 // further information about the topology.  The most common example is when you
394 // have one thread context per core, we don't want the extra thread context
395 // level if it offers no unique labels.  So they are removed.
396 // return value: the new depth of address2os
397 static int __kmp_affinity_remove_radix_one_levels(AddrUnsPair *addrP, int nTh,
398                                                   int depth, int *levels) {
399   int level;
400   int i;
401   int radix1_detected;
402   int new_depth = depth;
403   for (level = depth - 1; level > 0; --level) {
404     // Detect if this level is radix 1
405     radix1_detected = 1;
406     for (i = 1; i < nTh; ++i) {
407       if (addrP[0].first.labels[level] != addrP[i].first.labels[level]) {
408         // There are differing label values for this level so it stays
409         radix1_detected = 0;
410         break;
411       }
412     }
413     if (!radix1_detected)
414       continue;
415     // Radix 1 was detected
416     --new_depth;
417     levels[level] = -1; // mark level as not present in address2os array
418     if (level == new_depth) {
419       // "turn off" deepest level, just decrement the depth that removes
420       // the level from address2os array
421       for (i = 0; i < nTh; ++i) {
422         addrP[i].first.depth--;
423       }
424     } else {
425       // For other levels, we move labels over and also reduce the depth
426       int j;
427       for (j = level; j < new_depth; ++j) {
428         for (i = 0; i < nTh; ++i) {
429           addrP[i].first.labels[j] = addrP[i].first.labels[j + 1];
430           addrP[i].first.depth--;
431         }
432         levels[j + 1] -= 1;
433       }
434     }
435   }
436   return new_depth;
437 }
438 
439 // Returns the number of objects of type 'type' below 'obj' within the topology
440 // tree structure. e.g., if obj is a HWLOC_OBJ_PACKAGE object, and type is
441 // HWLOC_OBJ_PU, then this will return the number of PU's under the SOCKET
442 // object.
443 static int __kmp_hwloc_get_nobjs_under_obj(hwloc_obj_t obj,
444                                            hwloc_obj_type_t type) {
445   int retval = 0;
446   hwloc_obj_t first;
447   for (first = hwloc_get_obj_below_by_type(__kmp_hwloc_topology, obj->type,
448                                            obj->logical_index, type, 0);
449        first != NULL &&
450        hwloc_get_ancestor_obj_by_type(__kmp_hwloc_topology, obj->type, first) ==
451            obj;
452        first = hwloc_get_next_obj_by_type(__kmp_hwloc_topology, first->type,
453                                           first)) {
454     ++retval;
455   }
456   return retval;
457 }
458 
459 static int __kmp_hwloc_count_children_by_depth(hwloc_topology_t t,
460                                                hwloc_obj_t o,
461                                                kmp_hwloc_depth_t depth,
462                                                hwloc_obj_t *f) {
463   if (o->depth == depth) {
464     if (*f == NULL)
465       *f = o; // output first descendant found
466     return 1;
467   }
468   int sum = 0;
469   for (unsigned i = 0; i < o->arity; i++)
470     sum += __kmp_hwloc_count_children_by_depth(t, o->children[i], depth, f);
471   return sum; // will be 0 if no one found (as PU arity is 0)
472 }
473 
474 static int __kmp_hwloc_count_children_by_type(hwloc_topology_t t, hwloc_obj_t o,
475                                               hwloc_obj_type_t type,
476                                               hwloc_obj_t *f) {
477   if (!hwloc_compare_types(o->type, type)) {
478     if (*f == NULL)
479       *f = o; // output first descendant found
480     return 1;
481   }
482   int sum = 0;
483   for (unsigned i = 0; i < o->arity; i++)
484     sum += __kmp_hwloc_count_children_by_type(t, o->children[i], type, f);
485   return sum; // will be 0 if no one found (as PU arity is 0)
486 }
487 
488 static int __kmp_hwloc_process_obj_core_pu(AddrUnsPair *addrPair,
489                                            int &nActiveThreads,
490                                            int &num_active_cores,
491                                            hwloc_obj_t obj, int depth,
492                                            int *labels) {
493   hwloc_obj_t core = NULL;
494   hwloc_topology_t &tp = __kmp_hwloc_topology;
495   int NC = __kmp_hwloc_count_children_by_type(tp, obj, HWLOC_OBJ_CORE, &core);
496   for (int core_id = 0; core_id < NC; ++core_id, core = core->next_cousin) {
497     hwloc_obj_t pu = NULL;
498     KMP_DEBUG_ASSERT(core != NULL);
499     int num_active_threads = 0;
500     int NT = __kmp_hwloc_count_children_by_type(tp, core, HWLOC_OBJ_PU, &pu);
501     // int NT = core->arity; pu = core->first_child; // faster?
502     for (int pu_id = 0; pu_id < NT; ++pu_id, pu = pu->next_cousin) {
503       KMP_DEBUG_ASSERT(pu != NULL);
504       if (!KMP_CPU_ISSET(pu->os_index, __kmp_affin_fullMask))
505         continue; // skip inactive (inaccessible) unit
506       Address addr(depth + 2);
507       KA_TRACE(20, ("Hwloc inserting %d (%d) %d (%d) %d (%d) into address2os\n",
508                     obj->os_index, obj->logical_index, core->os_index,
509                     core->logical_index, pu->os_index, pu->logical_index));
510       for (int i = 0; i < depth; ++i)
511         addr.labels[i] = labels[i]; // package, etc.
512       addr.labels[depth] = core_id; // core
513       addr.labels[depth + 1] = pu_id; // pu
514       addrPair[nActiveThreads] = AddrUnsPair(addr, pu->os_index);
515       __kmp_pu_os_idx[nActiveThreads] = pu->os_index;
516       nActiveThreads++;
517       ++num_active_threads; // count active threads per core
518     }
519     if (num_active_threads) { // were there any active threads on the core?
520       ++__kmp_ncores; // count total active cores
521       ++num_active_cores; // count active cores per socket
522       if (num_active_threads > __kmp_nThreadsPerCore)
523         __kmp_nThreadsPerCore = num_active_threads; // calc maximum
524     }
525   }
526   return 0;
527 }
528 
529 // Check if NUMA node detected below the package,
530 // and if tile object is detected and return its depth
531 static int __kmp_hwloc_check_numa() {
532   hwloc_topology_t &tp = __kmp_hwloc_topology;
533   hwloc_obj_t hT, hC, hL, hN, hS; // hwloc objects (pointers to)
534   int depth, l2cache_depth, package_depth;
535 
536   // Get some PU
537   hT = hwloc_get_obj_by_type(tp, HWLOC_OBJ_PU, 0);
538   if (hT == NULL) // something has gone wrong
539     return 1;
540 
541   // check NUMA node below PACKAGE
542   hN = hwloc_get_ancestor_obj_by_type(tp, HWLOC_OBJ_NUMANODE, hT);
543   hS = hwloc_get_ancestor_obj_by_type(tp, HWLOC_OBJ_PACKAGE, hT);
544   KMP_DEBUG_ASSERT(hS != NULL);
545   if (hN != NULL && hN->depth > hS->depth) {
546     __kmp_numa_detected = TRUE; // socket includes node(s)
547     if (__kmp_affinity_gran == affinity_gran_node) {
548       __kmp_affinity_gran = affinity_gran_numa;
549     }
550   }
551 
552   package_depth = hwloc_get_type_depth(tp, HWLOC_OBJ_PACKAGE);
553   l2cache_depth = hwloc_get_cache_type_depth(tp, 2, HWLOC_OBJ_CACHE_UNIFIED);
554   // check tile, get object by depth because of multiple caches possible
555   depth = (l2cache_depth < package_depth) ? package_depth : l2cache_depth;
556   hL = hwloc_get_ancestor_obj_by_depth(tp, depth, hT);
557   hC = NULL; // not used, but reset it here just in case
558   if (hL != NULL &&
559       __kmp_hwloc_count_children_by_type(tp, hL, HWLOC_OBJ_CORE, &hC) > 1)
560     __kmp_tile_depth = depth; // tile consists of multiple cores
561   return 0;
562 }
563 
564 static int __kmp_affinity_create_hwloc_map(AddrUnsPair **address2os,
565                                            kmp_i18n_id_t *const msg_id) {
566   hwloc_topology_t &tp = __kmp_hwloc_topology; // shortcut of a long name
567   *address2os = NULL;
568   *msg_id = kmp_i18n_null;
569 
570   // Save the affinity mask for the current thread.
571   kmp_affin_mask_t *oldMask;
572   KMP_CPU_ALLOC(oldMask);
573   __kmp_get_system_affinity(oldMask, TRUE);
574   __kmp_hwloc_check_numa();
575 
576   if (!KMP_AFFINITY_CAPABLE()) {
577     // Hack to try and infer the machine topology using only the data
578     // available from cpuid on the current thread, and __kmp_xproc.
579     KMP_ASSERT(__kmp_affinity_type == affinity_none);
580 
581     nCoresPerPkg = __kmp_hwloc_get_nobjs_under_obj(
582         hwloc_get_obj_by_type(tp, HWLOC_OBJ_PACKAGE, 0), HWLOC_OBJ_CORE);
583     __kmp_nThreadsPerCore = __kmp_hwloc_get_nobjs_under_obj(
584         hwloc_get_obj_by_type(tp, HWLOC_OBJ_CORE, 0), HWLOC_OBJ_PU);
585     __kmp_ncores = __kmp_xproc / __kmp_nThreadsPerCore;
586     nPackages = (__kmp_xproc + nCoresPerPkg - 1) / nCoresPerPkg;
587     if (__kmp_affinity_verbose) {
588       KMP_INFORM(AffNotCapableUseLocCpuidL11, "KMP_AFFINITY");
589       KMP_INFORM(AvailableOSProc, "KMP_AFFINITY", __kmp_avail_proc);
590       if (__kmp_affinity_uniform_topology()) {
591         KMP_INFORM(Uniform, "KMP_AFFINITY");
592       } else {
593         KMP_INFORM(NonUniform, "KMP_AFFINITY");
594       }
595       KMP_INFORM(Topology, "KMP_AFFINITY", nPackages, nCoresPerPkg,
596                  __kmp_nThreadsPerCore, __kmp_ncores);
597     }
598     KMP_CPU_FREE(oldMask);
599     return 0;
600   }
601 
602   int depth = 3;
603   int levels[5] = {0, 1, 2, 3, 4}; // package, [node,] [tile,] core, thread
604   int labels[3] = {0}; // package [,node] [,tile] - head of labels array
605   if (__kmp_numa_detected)
606     ++depth;
607   if (__kmp_tile_depth)
608     ++depth;
609 
610   // Allocate the data structure to be returned.
611   AddrUnsPair *retval =
612       (AddrUnsPair *)__kmp_allocate(sizeof(AddrUnsPair) * __kmp_avail_proc);
613   KMP_DEBUG_ASSERT(__kmp_pu_os_idx == NULL);
614   __kmp_pu_os_idx = (int *)__kmp_allocate(sizeof(int) * __kmp_avail_proc);
615 
616   // When affinity is off, this routine will still be called to set
617   // __kmp_ncores, as well as __kmp_nThreadsPerCore,
618   // nCoresPerPkg, & nPackages.  Make sure all these vars are set
619   // correctly, and return if affinity is not enabled.
620 
621   hwloc_obj_t socket, node, tile;
622   int nActiveThreads = 0;
623   int socket_id = 0;
624   // re-calculate globals to count only accessible resources
625   __kmp_ncores = nPackages = nCoresPerPkg = __kmp_nThreadsPerCore = 0;
626   nNodePerPkg = nTilePerPkg = nTilePerNode = nCorePerNode = nCorePerTile = 0;
627   for (socket = hwloc_get_obj_by_type(tp, HWLOC_OBJ_PACKAGE, 0); socket != NULL;
628        socket = hwloc_get_next_obj_by_type(tp, HWLOC_OBJ_PACKAGE, socket),
629       socket_id++) {
630     labels[0] = socket_id;
631     if (__kmp_numa_detected) {
632       int NN;
633       int n_active_nodes = 0;
634       node = NULL;
635       NN = __kmp_hwloc_count_children_by_type(tp, socket, HWLOC_OBJ_NUMANODE,
636                                               &node);
637       for (int node_id = 0; node_id < NN; ++node_id, node = node->next_cousin) {
638         labels[1] = node_id;
639         if (__kmp_tile_depth) {
640           // NUMA + tiles
641           int NT;
642           int n_active_tiles = 0;
643           tile = NULL;
644           NT = __kmp_hwloc_count_children_by_depth(tp, node, __kmp_tile_depth,
645                                                    &tile);
646           for (int tl_id = 0; tl_id < NT; ++tl_id, tile = tile->next_cousin) {
647             labels[2] = tl_id;
648             int n_active_cores = 0;
649             __kmp_hwloc_process_obj_core_pu(retval, nActiveThreads,
650                                             n_active_cores, tile, 3, labels);
651             if (n_active_cores) { // were there any active cores on the socket?
652               ++n_active_tiles; // count active tiles per node
653               if (n_active_cores > nCorePerTile)
654                 nCorePerTile = n_active_cores; // calc maximum
655             }
656           }
657           if (n_active_tiles) { // were there any active tiles on the socket?
658             ++n_active_nodes; // count active nodes per package
659             if (n_active_tiles > nTilePerNode)
660               nTilePerNode = n_active_tiles; // calc maximum
661           }
662         } else {
663           // NUMA, no tiles
664           int n_active_cores = 0;
665           __kmp_hwloc_process_obj_core_pu(retval, nActiveThreads,
666                                           n_active_cores, node, 2, labels);
667           if (n_active_cores) { // were there any active cores on the socket?
668             ++n_active_nodes; // count active nodes per package
669             if (n_active_cores > nCorePerNode)
670               nCorePerNode = n_active_cores; // calc maximum
671           }
672         }
673       }
674       if (n_active_nodes) { // were there any active nodes on the socket?
675         ++nPackages; // count total active packages
676         if (n_active_nodes > nNodePerPkg)
677           nNodePerPkg = n_active_nodes; // calc maximum
678       }
679     } else {
680       if (__kmp_tile_depth) {
681         // no NUMA, tiles
682         int NT;
683         int n_active_tiles = 0;
684         tile = NULL;
685         NT = __kmp_hwloc_count_children_by_depth(tp, socket, __kmp_tile_depth,
686                                                  &tile);
687         for (int tl_id = 0; tl_id < NT; ++tl_id, tile = tile->next_cousin) {
688           labels[1] = tl_id;
689           int n_active_cores = 0;
690           __kmp_hwloc_process_obj_core_pu(retval, nActiveThreads,
691                                           n_active_cores, tile, 2, labels);
692           if (n_active_cores) { // were there any active cores on the socket?
693             ++n_active_tiles; // count active tiles per package
694             if (n_active_cores > nCorePerTile)
695               nCorePerTile = n_active_cores; // calc maximum
696           }
697         }
698         if (n_active_tiles) { // were there any active tiles on the socket?
699           ++nPackages; // count total active packages
700           if (n_active_tiles > nTilePerPkg)
701             nTilePerPkg = n_active_tiles; // calc maximum
702         }
703       } else {
704         // no NUMA, no tiles
705         int n_active_cores = 0;
706         __kmp_hwloc_process_obj_core_pu(retval, nActiveThreads, n_active_cores,
707                                         socket, 1, labels);
708         if (n_active_cores) { // were there any active cores on the socket?
709           ++nPackages; // count total active packages
710           if (n_active_cores > nCoresPerPkg)
711             nCoresPerPkg = n_active_cores; // calc maximum
712         }
713       }
714     }
715   }
716 
717   // If there's only one thread context to bind to, return now.
718   KMP_DEBUG_ASSERT(nActiveThreads == __kmp_avail_proc);
719   KMP_ASSERT(nActiveThreads > 0);
720   if (nActiveThreads == 1) {
721     __kmp_ncores = nPackages = 1;
722     __kmp_nThreadsPerCore = nCoresPerPkg = 1;
723     if (__kmp_affinity_verbose) {
724       char buf[KMP_AFFIN_MASK_PRINT_LEN];
725       __kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN, oldMask);
726 
727       KMP_INFORM(AffUsingHwloc, "KMP_AFFINITY");
728       if (__kmp_affinity_respect_mask) {
729         KMP_INFORM(InitOSProcSetRespect, "KMP_AFFINITY", buf);
730       } else {
731         KMP_INFORM(InitOSProcSetNotRespect, "KMP_AFFINITY", buf);
732       }
733       KMP_INFORM(AvailableOSProc, "KMP_AFFINITY", __kmp_avail_proc);
734       KMP_INFORM(Uniform, "KMP_AFFINITY");
735       KMP_INFORM(Topology, "KMP_AFFINITY", nPackages, nCoresPerPkg,
736                  __kmp_nThreadsPerCore, __kmp_ncores);
737     }
738 
739     if (__kmp_affinity_type == affinity_none) {
740       __kmp_free(retval);
741       KMP_CPU_FREE(oldMask);
742       return 0;
743     }
744 
745     // Form an Address object which only includes the package level.
746     Address addr(1);
747     addr.labels[0] = retval[0].first.labels[0];
748     retval[0].first = addr;
749 
750     if (__kmp_affinity_gran_levels < 0) {
751       __kmp_affinity_gran_levels = 0;
752     }
753 
754     if (__kmp_affinity_verbose) {
755       __kmp_affinity_print_topology(retval, 1, 1, 0, -1, -1);
756     }
757 
758     *address2os = retval;
759     KMP_CPU_FREE(oldMask);
760     return 1;
761   }
762 
763   // Sort the table by physical Id.
764   qsort(retval, nActiveThreads, sizeof(*retval),
765         __kmp_affinity_cmp_Address_labels);
766 
767   // Check to see if the machine topology is uniform
768   int nPUs = nPackages * __kmp_nThreadsPerCore;
769   if (__kmp_numa_detected) {
770     if (__kmp_tile_depth) { // NUMA + tiles
771       nPUs *= (nNodePerPkg * nTilePerNode * nCorePerTile);
772     } else { // NUMA, no tiles
773       nPUs *= (nNodePerPkg * nCorePerNode);
774     }
775   } else {
776     if (__kmp_tile_depth) { // no NUMA, tiles
777       nPUs *= (nTilePerPkg * nCorePerTile);
778     } else { // no NUMA, no tiles
779       nPUs *= nCoresPerPkg;
780     }
781   }
782   unsigned uniform = (nPUs == nActiveThreads);
783 
784   // Print the machine topology summary.
785   if (__kmp_affinity_verbose) {
786     char mask[KMP_AFFIN_MASK_PRINT_LEN];
787     __kmp_affinity_print_mask(mask, KMP_AFFIN_MASK_PRINT_LEN, oldMask);
788     if (__kmp_affinity_respect_mask) {
789       KMP_INFORM(InitOSProcSetRespect, "KMP_AFFINITY", mask);
790     } else {
791       KMP_INFORM(InitOSProcSetNotRespect, "KMP_AFFINITY", mask);
792     }
793     KMP_INFORM(AvailableOSProc, "KMP_AFFINITY", __kmp_avail_proc);
794     if (uniform) {
795       KMP_INFORM(Uniform, "KMP_AFFINITY");
796     } else {
797       KMP_INFORM(NonUniform, "KMP_AFFINITY");
798     }
799     if (__kmp_numa_detected) {
800       if (__kmp_tile_depth) { // NUMA + tiles
801         KMP_INFORM(TopologyExtraNoTi, "KMP_AFFINITY", nPackages, nNodePerPkg,
802                    nTilePerNode, nCorePerTile, __kmp_nThreadsPerCore,
803                    __kmp_ncores);
804       } else { // NUMA, no tiles
805         KMP_INFORM(TopologyExtraNode, "KMP_AFFINITY", nPackages, nNodePerPkg,
806                    nCorePerNode, __kmp_nThreadsPerCore, __kmp_ncores);
807         nPUs *= (nNodePerPkg * nCorePerNode);
808       }
809     } else {
810       if (__kmp_tile_depth) { // no NUMA, tiles
811         KMP_INFORM(TopologyExtraTile, "KMP_AFFINITY", nPackages, nTilePerPkg,
812                    nCorePerTile, __kmp_nThreadsPerCore, __kmp_ncores);
813       } else { // no NUMA, no tiles
814         kmp_str_buf_t buf;
815         __kmp_str_buf_init(&buf);
816         __kmp_str_buf_print(&buf, "%d", nPackages);
817         KMP_INFORM(TopologyExtra, "KMP_AFFINITY", buf.str, nCoresPerPkg,
818                    __kmp_nThreadsPerCore, __kmp_ncores);
819         __kmp_str_buf_free(&buf);
820       }
821     }
822   }
823 
824   if (__kmp_affinity_type == affinity_none) {
825     __kmp_free(retval);
826     KMP_CPU_FREE(oldMask);
827     return 0;
828   }
829 
830   int depth_full = depth; // number of levels before compressing
831   // Find any levels with radix 1, and remove them from the map
832   // (except for the package level).
833   depth = __kmp_affinity_remove_radix_one_levels(retval, nActiveThreads, depth,
834                                                  levels);
835   KMP_DEBUG_ASSERT(__kmp_affinity_gran != affinity_gran_default);
836   if (__kmp_affinity_gran_levels < 0) {
837     // Set the granularity level based on what levels are modeled
838     // in the machine topology map.
839     __kmp_affinity_gran_levels = 0; // lowest level (e.g. fine)
840     if (__kmp_affinity_gran > affinity_gran_thread) {
841       for (int i = 1; i <= depth_full; ++i) {
842         if (__kmp_affinity_gran <= i) // only count deeper levels
843           break;
844         if (levels[depth_full - i] > 0)
845           __kmp_affinity_gran_levels++;
846       }
847     }
848     if (__kmp_affinity_gran > affinity_gran_package)
849       __kmp_affinity_gran_levels++; // e.g. granularity = group
850   }
851 
852   if (__kmp_affinity_verbose)
853     __kmp_affinity_print_hwloc_tp(retval, nActiveThreads, depth, levels);
854 
855   KMP_CPU_FREE(oldMask);
856   *address2os = retval;
857   return depth;
858 }
859 #endif // KMP_USE_HWLOC
860 
861 // If we don't know how to retrieve the machine's processor topology, or
862 // encounter an error in doing so, this routine is called to form a "flat"
863 // mapping of os thread id's <-> processor id's.
864 static int __kmp_affinity_create_flat_map(AddrUnsPair **address2os,
865                                           kmp_i18n_id_t *const msg_id) {
866   *address2os = NULL;
867   *msg_id = kmp_i18n_null;
868 
869   // Even if __kmp_affinity_type == affinity_none, this routine might still
870   // called to set __kmp_ncores, as well as
871   // __kmp_nThreadsPerCore, nCoresPerPkg, & nPackages.
872   if (!KMP_AFFINITY_CAPABLE()) {
873     KMP_ASSERT(__kmp_affinity_type == affinity_none);
874     __kmp_ncores = nPackages = __kmp_xproc;
875     __kmp_nThreadsPerCore = nCoresPerPkg = 1;
876     if (__kmp_affinity_verbose) {
877       KMP_INFORM(AffFlatTopology, "KMP_AFFINITY");
878       KMP_INFORM(AvailableOSProc, "KMP_AFFINITY", __kmp_avail_proc);
879       KMP_INFORM(Uniform, "KMP_AFFINITY");
880       KMP_INFORM(Topology, "KMP_AFFINITY", nPackages, nCoresPerPkg,
881                  __kmp_nThreadsPerCore, __kmp_ncores);
882     }
883     return 0;
884   }
885 
886   // When affinity is off, this routine will still be called to set
887   // __kmp_ncores, as well as __kmp_nThreadsPerCore, nCoresPerPkg, & nPackages.
888   // Make sure all these vars are set correctly, and return now if affinity is
889   // not enabled.
890   __kmp_ncores = nPackages = __kmp_avail_proc;
891   __kmp_nThreadsPerCore = nCoresPerPkg = 1;
892   if (__kmp_affinity_verbose) {
893     char buf[KMP_AFFIN_MASK_PRINT_LEN];
894     __kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN,
895                               __kmp_affin_fullMask);
896 
897     KMP_INFORM(AffCapableUseFlat, "KMP_AFFINITY");
898     if (__kmp_affinity_respect_mask) {
899       KMP_INFORM(InitOSProcSetRespect, "KMP_AFFINITY", buf);
900     } else {
901       KMP_INFORM(InitOSProcSetNotRespect, "KMP_AFFINITY", buf);
902     }
903     KMP_INFORM(AvailableOSProc, "KMP_AFFINITY", __kmp_avail_proc);
904     KMP_INFORM(Uniform, "KMP_AFFINITY");
905     KMP_INFORM(Topology, "KMP_AFFINITY", nPackages, nCoresPerPkg,
906                __kmp_nThreadsPerCore, __kmp_ncores);
907   }
908   KMP_DEBUG_ASSERT(__kmp_pu_os_idx == NULL);
909   __kmp_pu_os_idx = (int *)__kmp_allocate(sizeof(int) * __kmp_avail_proc);
910   if (__kmp_affinity_type == affinity_none) {
911     int avail_ct = 0;
912     int i;
913     KMP_CPU_SET_ITERATE(i, __kmp_affin_fullMask) {
914       if (!KMP_CPU_ISSET(i, __kmp_affin_fullMask))
915         continue;
916       __kmp_pu_os_idx[avail_ct++] = i; // suppose indices are flat
917     }
918     return 0;
919   }
920 
921   // Construct the data structure to be returned.
922   *address2os =
923       (AddrUnsPair *)__kmp_allocate(sizeof(**address2os) * __kmp_avail_proc);
924   int avail_ct = 0;
925   int i;
926   KMP_CPU_SET_ITERATE(i, __kmp_affin_fullMask) {
927     // Skip this proc if it is not included in the machine model.
928     if (!KMP_CPU_ISSET(i, __kmp_affin_fullMask)) {
929       continue;
930     }
931     __kmp_pu_os_idx[avail_ct] = i; // suppose indices are flat
932     Address addr(1);
933     addr.labels[0] = i;
934     (*address2os)[avail_ct++] = AddrUnsPair(addr, i);
935   }
936   if (__kmp_affinity_verbose) {
937     KMP_INFORM(OSProcToPackage, "KMP_AFFINITY");
938   }
939 
940   if (__kmp_affinity_gran_levels < 0) {
941     // Only the package level is modeled in the machine topology map,
942     // so the #levels of granularity is either 0 or 1.
943     if (__kmp_affinity_gran > affinity_gran_package) {
944       __kmp_affinity_gran_levels = 1;
945     } else {
946       __kmp_affinity_gran_levels = 0;
947     }
948   }
949   return 1;
950 }
951 
952 #if KMP_GROUP_AFFINITY
953 
954 // If multiple Windows* OS processor groups exist, we can create a 2-level
955 // topology map with the groups at level 0 and the individual procs at level 1.
956 // This facilitates letting the threads float among all procs in a group,
957 // if granularity=group (the default when there are multiple groups).
958 static int __kmp_affinity_create_proc_group_map(AddrUnsPair **address2os,
959                                                 kmp_i18n_id_t *const msg_id) {
960   *address2os = NULL;
961   *msg_id = kmp_i18n_null;
962 
963   // If we aren't affinity capable, then return now.
964   // The flat mapping will be used.
965   if (!KMP_AFFINITY_CAPABLE()) {
966     // FIXME set *msg_id
967     return -1;
968   }
969 
970   // Construct the data structure to be returned.
971   *address2os =
972       (AddrUnsPair *)__kmp_allocate(sizeof(**address2os) * __kmp_avail_proc);
973   KMP_DEBUG_ASSERT(__kmp_pu_os_idx == NULL);
974   __kmp_pu_os_idx = (int *)__kmp_allocate(sizeof(int) * __kmp_avail_proc);
975   int avail_ct = 0;
976   int i;
977   KMP_CPU_SET_ITERATE(i, __kmp_affin_fullMask) {
978     // Skip this proc if it is not included in the machine model.
979     if (!KMP_CPU_ISSET(i, __kmp_affin_fullMask)) {
980       continue;
981     }
982     __kmp_pu_os_idx[avail_ct] = i; // suppose indices are flat
983     Address addr(2);
984     addr.labels[0] = i / (CHAR_BIT * sizeof(DWORD_PTR));
985     addr.labels[1] = i % (CHAR_BIT * sizeof(DWORD_PTR));
986     (*address2os)[avail_ct++] = AddrUnsPair(addr, i);
987 
988     if (__kmp_affinity_verbose) {
989       KMP_INFORM(AffOSProcToGroup, "KMP_AFFINITY", i, addr.labels[0],
990                  addr.labels[1]);
991     }
992   }
993 
994   if (__kmp_affinity_gran_levels < 0) {
995     if (__kmp_affinity_gran == affinity_gran_group) {
996       __kmp_affinity_gran_levels = 1;
997     } else if ((__kmp_affinity_gran == affinity_gran_fine) ||
998                (__kmp_affinity_gran == affinity_gran_thread)) {
999       __kmp_affinity_gran_levels = 0;
1000     } else {
1001       const char *gran_str = NULL;
1002       if (__kmp_affinity_gran == affinity_gran_core) {
1003         gran_str = "core";
1004       } else if (__kmp_affinity_gran == affinity_gran_package) {
1005         gran_str = "package";
1006       } else if (__kmp_affinity_gran == affinity_gran_node) {
1007         gran_str = "node";
1008       } else {
1009         KMP_ASSERT(0);
1010       }
1011 
1012       // Warning: can't use affinity granularity \"gran\" with group topology
1013       // method, using "thread"
1014       __kmp_affinity_gran_levels = 0;
1015     }
1016   }
1017   return 2;
1018 }
1019 
1020 #endif /* KMP_GROUP_AFFINITY */
1021 
1022 #if KMP_ARCH_X86 || KMP_ARCH_X86_64
1023 
1024 static int __kmp_cpuid_mask_width(int count) {
1025   int r = 0;
1026 
1027   while ((1 << r) < count)
1028     ++r;
1029   return r;
1030 }
1031 
1032 class apicThreadInfo {
1033 public:
1034   unsigned osId; // param to __kmp_affinity_bind_thread
1035   unsigned apicId; // from cpuid after binding
1036   unsigned maxCoresPerPkg; //      ""
1037   unsigned maxThreadsPerPkg; //      ""
1038   unsigned pkgId; // inferred from above values
1039   unsigned coreId; //      ""
1040   unsigned threadId; //      ""
1041 };
1042 
1043 static int __kmp_affinity_cmp_apicThreadInfo_phys_id(const void *a,
1044                                                      const void *b) {
1045   const apicThreadInfo *aa = (const apicThreadInfo *)a;
1046   const apicThreadInfo *bb = (const apicThreadInfo *)b;
1047   if (aa->pkgId < bb->pkgId)
1048     return -1;
1049   if (aa->pkgId > bb->pkgId)
1050     return 1;
1051   if (aa->coreId < bb->coreId)
1052     return -1;
1053   if (aa->coreId > bb->coreId)
1054     return 1;
1055   if (aa->threadId < bb->threadId)
1056     return -1;
1057   if (aa->threadId > bb->threadId)
1058     return 1;
1059   return 0;
1060 }
1061 
1062 // On IA-32 architecture and Intel(R) 64 architecture, we attempt to use
1063 // an algorithm which cycles through the available os threads, setting
1064 // the current thread's affinity mask to that thread, and then retrieves
1065 // the Apic Id for each thread context using the cpuid instruction.
1066 static int __kmp_affinity_create_apicid_map(AddrUnsPair **address2os,
1067                                             kmp_i18n_id_t *const msg_id) {
1068   kmp_cpuid buf;
1069   *address2os = NULL;
1070   *msg_id = kmp_i18n_null;
1071 
1072   // Check if cpuid leaf 4 is supported.
1073   __kmp_x86_cpuid(0, 0, &buf);
1074   if (buf.eax < 4) {
1075     *msg_id = kmp_i18n_str_NoLeaf4Support;
1076     return -1;
1077   }
1078 
1079   // The algorithm used starts by setting the affinity to each available thread
1080   // and retrieving info from the cpuid instruction, so if we are not capable of
1081   // calling __kmp_get_system_affinity() and _kmp_get_system_affinity(), then we
1082   // need to do something else - use the defaults that we calculated from
1083   // issuing cpuid without binding to each proc.
1084   if (!KMP_AFFINITY_CAPABLE()) {
1085     // Hack to try and infer the machine topology using only the data
1086     // available from cpuid on the current thread, and __kmp_xproc.
1087     KMP_ASSERT(__kmp_affinity_type == affinity_none);
1088 
1089     // Get an upper bound on the number of threads per package using cpuid(1).
1090     // On some OS/chps combinations where HT is supported by the chip but is
1091     // disabled, this value will be 2 on a single core chip. Usually, it will be
1092     // 2 if HT is enabled and 1 if HT is disabled.
1093     __kmp_x86_cpuid(1, 0, &buf);
1094     int maxThreadsPerPkg = (buf.ebx >> 16) & 0xff;
1095     if (maxThreadsPerPkg == 0) {
1096       maxThreadsPerPkg = 1;
1097     }
1098 
1099     // The num cores per pkg comes from cpuid(4). 1 must be added to the encoded
1100     // value.
1101     //
1102     // The author of cpu_count.cpp treated this only an upper bound on the
1103     // number of cores, but I haven't seen any cases where it was greater than
1104     // the actual number of cores, so we will treat it as exact in this block of
1105     // code.
1106     //
1107     // First, we need to check if cpuid(4) is supported on this chip. To see if
1108     // cpuid(n) is supported, issue cpuid(0) and check if eax has the value n or
1109     // greater.
1110     __kmp_x86_cpuid(0, 0, &buf);
1111     if (buf.eax >= 4) {
1112       __kmp_x86_cpuid(4, 0, &buf);
1113       nCoresPerPkg = ((buf.eax >> 26) & 0x3f) + 1;
1114     } else {
1115       nCoresPerPkg = 1;
1116     }
1117 
1118     // There is no way to reliably tell if HT is enabled without issuing the
1119     // cpuid instruction from every thread, can correlating the cpuid info, so
1120     // if the machine is not affinity capable, we assume that HT is off. We have
1121     // seen quite a few machines where maxThreadsPerPkg is 2, yet the machine
1122     // does not support HT.
1123     //
1124     // - Older OSes are usually found on machines with older chips, which do not
1125     //   support HT.
1126     // - The performance penalty for mistakenly identifying a machine as HT when
1127     //   it isn't (which results in blocktime being incorrectly set to 0) is
1128     //   greater than the penalty when for mistakenly identifying a machine as
1129     //   being 1 thread/core when it is really HT enabled (which results in
1130     //   blocktime being incorrectly set to a positive value).
1131     __kmp_ncores = __kmp_xproc;
1132     nPackages = (__kmp_xproc + nCoresPerPkg - 1) / nCoresPerPkg;
1133     __kmp_nThreadsPerCore = 1;
1134     if (__kmp_affinity_verbose) {
1135       KMP_INFORM(AffNotCapableUseLocCpuid, "KMP_AFFINITY");
1136       KMP_INFORM(AvailableOSProc, "KMP_AFFINITY", __kmp_avail_proc);
1137       if (__kmp_affinity_uniform_topology()) {
1138         KMP_INFORM(Uniform, "KMP_AFFINITY");
1139       } else {
1140         KMP_INFORM(NonUniform, "KMP_AFFINITY");
1141       }
1142       KMP_INFORM(Topology, "KMP_AFFINITY", nPackages, nCoresPerPkg,
1143                  __kmp_nThreadsPerCore, __kmp_ncores);
1144     }
1145     return 0;
1146   }
1147 
1148   // From here on, we can assume that it is safe to call
1149   // __kmp_get_system_affinity() and __kmp_set_system_affinity(), even if
1150   // __kmp_affinity_type = affinity_none.
1151 
1152   // Save the affinity mask for the current thread.
1153   kmp_affin_mask_t *oldMask;
1154   KMP_CPU_ALLOC(oldMask);
1155   KMP_ASSERT(oldMask != NULL);
1156   __kmp_get_system_affinity(oldMask, TRUE);
1157 
1158   // Run through each of the available contexts, binding the current thread
1159   // to it, and obtaining the pertinent information using the cpuid instr.
1160   //
1161   // The relevant information is:
1162   // - Apic Id: Bits 24:31 of ebx after issuing cpuid(1) - each thread context
1163   //     has a uniqie Apic Id, which is of the form pkg# : core# : thread#.
1164   // - Max Threads Per Pkg: Bits 16:23 of ebx after issuing cpuid(1). The value
1165   //     of this field determines the width of the core# + thread# fields in the
1166   //     Apic Id. It is also an upper bound on the number of threads per
1167   //     package, but it has been verified that situations happen were it is not
1168   //     exact. In particular, on certain OS/chip combinations where Intel(R)
1169   //     Hyper-Threading Technology is supported by the chip but has been
1170   //     disabled, the value of this field will be 2 (for a single core chip).
1171   //     On other OS/chip combinations supporting Intel(R) Hyper-Threading
1172   //     Technology, the value of this field will be 1 when Intel(R)
1173   //     Hyper-Threading Technology is disabled and 2 when it is enabled.
1174   // - Max Cores Per Pkg:  Bits 26:31 of eax after issuing cpuid(4). The value
1175   //     of this field (+1) determines the width of the core# field in the Apic
1176   //     Id. The comments in "cpucount.cpp" say that this value is an upper
1177   //     bound, but the IA-32 architecture manual says that it is exactly the
1178   //     number of cores per package, and I haven't seen any case where it
1179   //     wasn't.
1180   //
1181   // From this information, deduce the package Id, core Id, and thread Id,
1182   // and set the corresponding fields in the apicThreadInfo struct.
1183   unsigned i;
1184   apicThreadInfo *threadInfo = (apicThreadInfo *)__kmp_allocate(
1185       __kmp_avail_proc * sizeof(apicThreadInfo));
1186   unsigned nApics = 0;
1187   KMP_CPU_SET_ITERATE(i, __kmp_affin_fullMask) {
1188     // Skip this proc if it is not included in the machine model.
1189     if (!KMP_CPU_ISSET(i, __kmp_affin_fullMask)) {
1190       continue;
1191     }
1192     KMP_DEBUG_ASSERT((int)nApics < __kmp_avail_proc);
1193 
1194     __kmp_affinity_dispatch->bind_thread(i);
1195     threadInfo[nApics].osId = i;
1196 
1197     // The apic id and max threads per pkg come from cpuid(1).
1198     __kmp_x86_cpuid(1, 0, &buf);
1199     if (((buf.edx >> 9) & 1) == 0) {
1200       __kmp_set_system_affinity(oldMask, TRUE);
1201       __kmp_free(threadInfo);
1202       KMP_CPU_FREE(oldMask);
1203       *msg_id = kmp_i18n_str_ApicNotPresent;
1204       return -1;
1205     }
1206     threadInfo[nApics].apicId = (buf.ebx >> 24) & 0xff;
1207     threadInfo[nApics].maxThreadsPerPkg = (buf.ebx >> 16) & 0xff;
1208     if (threadInfo[nApics].maxThreadsPerPkg == 0) {
1209       threadInfo[nApics].maxThreadsPerPkg = 1;
1210     }
1211 
1212     // Max cores per pkg comes from cpuid(4). 1 must be added to the encoded
1213     // value.
1214     //
1215     // First, we need to check if cpuid(4) is supported on this chip. To see if
1216     // cpuid(n) is supported, issue cpuid(0) and check if eax has the value n
1217     // or greater.
1218     __kmp_x86_cpuid(0, 0, &buf);
1219     if (buf.eax >= 4) {
1220       __kmp_x86_cpuid(4, 0, &buf);
1221       threadInfo[nApics].maxCoresPerPkg = ((buf.eax >> 26) & 0x3f) + 1;
1222     } else {
1223       threadInfo[nApics].maxCoresPerPkg = 1;
1224     }
1225 
1226     // Infer the pkgId / coreId / threadId using only the info obtained locally.
1227     int widthCT = __kmp_cpuid_mask_width(threadInfo[nApics].maxThreadsPerPkg);
1228     threadInfo[nApics].pkgId = threadInfo[nApics].apicId >> widthCT;
1229 
1230     int widthC = __kmp_cpuid_mask_width(threadInfo[nApics].maxCoresPerPkg);
1231     int widthT = widthCT - widthC;
1232     if (widthT < 0) {
1233       // I've never seen this one happen, but I suppose it could, if the cpuid
1234       // instruction on a chip was really screwed up. Make sure to restore the
1235       // affinity mask before the tail call.
1236       __kmp_set_system_affinity(oldMask, TRUE);
1237       __kmp_free(threadInfo);
1238       KMP_CPU_FREE(oldMask);
1239       *msg_id = kmp_i18n_str_InvalidCpuidInfo;
1240       return -1;
1241     }
1242 
1243     int maskC = (1 << widthC) - 1;
1244     threadInfo[nApics].coreId = (threadInfo[nApics].apicId >> widthT) & maskC;
1245 
1246     int maskT = (1 << widthT) - 1;
1247     threadInfo[nApics].threadId = threadInfo[nApics].apicId & maskT;
1248 
1249     nApics++;
1250   }
1251 
1252   // We've collected all the info we need.
1253   // Restore the old affinity mask for this thread.
1254   __kmp_set_system_affinity(oldMask, TRUE);
1255 
1256   // If there's only one thread context to bind to, form an Address object
1257   // with depth 1 and return immediately (or, if affinity is off, set
1258   // address2os to NULL and return).
1259   //
1260   // If it is configured to omit the package level when there is only a single
1261   // package, the logic at the end of this routine won't work if there is only
1262   // a single thread - it would try to form an Address object with depth 0.
1263   KMP_ASSERT(nApics > 0);
1264   if (nApics == 1) {
1265     __kmp_ncores = nPackages = 1;
1266     __kmp_nThreadsPerCore = nCoresPerPkg = 1;
1267     if (__kmp_affinity_verbose) {
1268       char buf[KMP_AFFIN_MASK_PRINT_LEN];
1269       __kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN, oldMask);
1270 
1271       KMP_INFORM(AffUseGlobCpuid, "KMP_AFFINITY");
1272       if (__kmp_affinity_respect_mask) {
1273         KMP_INFORM(InitOSProcSetRespect, "KMP_AFFINITY", buf);
1274       } else {
1275         KMP_INFORM(InitOSProcSetNotRespect, "KMP_AFFINITY", buf);
1276       }
1277       KMP_INFORM(AvailableOSProc, "KMP_AFFINITY", __kmp_avail_proc);
1278       KMP_INFORM(Uniform, "KMP_AFFINITY");
1279       KMP_INFORM(Topology, "KMP_AFFINITY", nPackages, nCoresPerPkg,
1280                  __kmp_nThreadsPerCore, __kmp_ncores);
1281     }
1282 
1283     if (__kmp_affinity_type == affinity_none) {
1284       __kmp_free(threadInfo);
1285       KMP_CPU_FREE(oldMask);
1286       return 0;
1287     }
1288 
1289     *address2os = (AddrUnsPair *)__kmp_allocate(sizeof(AddrUnsPair));
1290     Address addr(1);
1291     addr.labels[0] = threadInfo[0].pkgId;
1292     (*address2os)[0] = AddrUnsPair(addr, threadInfo[0].osId);
1293 
1294     if (__kmp_affinity_gran_levels < 0) {
1295       __kmp_affinity_gran_levels = 0;
1296     }
1297 
1298     if (__kmp_affinity_verbose) {
1299       __kmp_affinity_print_topology(*address2os, 1, 1, 0, -1, -1);
1300     }
1301 
1302     __kmp_free(threadInfo);
1303     KMP_CPU_FREE(oldMask);
1304     return 1;
1305   }
1306 
1307   // Sort the threadInfo table by physical Id.
1308   qsort(threadInfo, nApics, sizeof(*threadInfo),
1309         __kmp_affinity_cmp_apicThreadInfo_phys_id);
1310 
1311   // The table is now sorted by pkgId / coreId / threadId, but we really don't
1312   // know the radix of any of the fields. pkgId's may be sparsely assigned among
1313   // the chips on a system. Although coreId's are usually assigned
1314   // [0 .. coresPerPkg-1] and threadId's are usually assigned
1315   // [0..threadsPerCore-1], we don't want to make any such assumptions.
1316   //
1317   // For that matter, we don't know what coresPerPkg and threadsPerCore (or the
1318   // total # packages) are at this point - we want to determine that now. We
1319   // only have an upper bound on the first two figures.
1320   //
1321   // We also perform a consistency check at this point: the values returned by
1322   // the cpuid instruction for any thread bound to a given package had better
1323   // return the same info for maxThreadsPerPkg and maxCoresPerPkg.
1324   nPackages = 1;
1325   nCoresPerPkg = 1;
1326   __kmp_nThreadsPerCore = 1;
1327   unsigned nCores = 1;
1328 
1329   unsigned pkgCt = 1; // to determine radii
1330   unsigned lastPkgId = threadInfo[0].pkgId;
1331   unsigned coreCt = 1;
1332   unsigned lastCoreId = threadInfo[0].coreId;
1333   unsigned threadCt = 1;
1334   unsigned lastThreadId = threadInfo[0].threadId;
1335 
1336   // intra-pkg consist checks
1337   unsigned prevMaxCoresPerPkg = threadInfo[0].maxCoresPerPkg;
1338   unsigned prevMaxThreadsPerPkg = threadInfo[0].maxThreadsPerPkg;
1339 
1340   for (i = 1; i < nApics; i++) {
1341     if (threadInfo[i].pkgId != lastPkgId) {
1342       nCores++;
1343       pkgCt++;
1344       lastPkgId = threadInfo[i].pkgId;
1345       if ((int)coreCt > nCoresPerPkg)
1346         nCoresPerPkg = coreCt;
1347       coreCt = 1;
1348       lastCoreId = threadInfo[i].coreId;
1349       if ((int)threadCt > __kmp_nThreadsPerCore)
1350         __kmp_nThreadsPerCore = threadCt;
1351       threadCt = 1;
1352       lastThreadId = threadInfo[i].threadId;
1353 
1354       // This is a different package, so go on to the next iteration without
1355       // doing any consistency checks. Reset the consistency check vars, though.
1356       prevMaxCoresPerPkg = threadInfo[i].maxCoresPerPkg;
1357       prevMaxThreadsPerPkg = threadInfo[i].maxThreadsPerPkg;
1358       continue;
1359     }
1360 
1361     if (threadInfo[i].coreId != lastCoreId) {
1362       nCores++;
1363       coreCt++;
1364       lastCoreId = threadInfo[i].coreId;
1365       if ((int)threadCt > __kmp_nThreadsPerCore)
1366         __kmp_nThreadsPerCore = threadCt;
1367       threadCt = 1;
1368       lastThreadId = threadInfo[i].threadId;
1369     } else if (threadInfo[i].threadId != lastThreadId) {
1370       threadCt++;
1371       lastThreadId = threadInfo[i].threadId;
1372     } else {
1373       __kmp_free(threadInfo);
1374       KMP_CPU_FREE(oldMask);
1375       *msg_id = kmp_i18n_str_LegacyApicIDsNotUnique;
1376       return -1;
1377     }
1378 
1379     // Check to make certain that the maxCoresPerPkg and maxThreadsPerPkg
1380     // fields agree between all the threads bounds to a given package.
1381     if ((prevMaxCoresPerPkg != threadInfo[i].maxCoresPerPkg) ||
1382         (prevMaxThreadsPerPkg != threadInfo[i].maxThreadsPerPkg)) {
1383       __kmp_free(threadInfo);
1384       KMP_CPU_FREE(oldMask);
1385       *msg_id = kmp_i18n_str_InconsistentCpuidInfo;
1386       return -1;
1387     }
1388   }
1389   nPackages = pkgCt;
1390   if ((int)coreCt > nCoresPerPkg)
1391     nCoresPerPkg = coreCt;
1392   if ((int)threadCt > __kmp_nThreadsPerCore)
1393     __kmp_nThreadsPerCore = threadCt;
1394 
1395   // When affinity is off, this routine will still be called to set
1396   // __kmp_ncores, as well as __kmp_nThreadsPerCore, nCoresPerPkg, & nPackages.
1397   // Make sure all these vars are set correctly, and return now if affinity is
1398   // not enabled.
1399   __kmp_ncores = nCores;
1400   if (__kmp_affinity_verbose) {
1401     char buf[KMP_AFFIN_MASK_PRINT_LEN];
1402     __kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN, oldMask);
1403 
1404     KMP_INFORM(AffUseGlobCpuid, "KMP_AFFINITY");
1405     if (__kmp_affinity_respect_mask) {
1406       KMP_INFORM(InitOSProcSetRespect, "KMP_AFFINITY", buf);
1407     } else {
1408       KMP_INFORM(InitOSProcSetNotRespect, "KMP_AFFINITY", buf);
1409     }
1410     KMP_INFORM(AvailableOSProc, "KMP_AFFINITY", __kmp_avail_proc);
1411     if (__kmp_affinity_uniform_topology()) {
1412       KMP_INFORM(Uniform, "KMP_AFFINITY");
1413     } else {
1414       KMP_INFORM(NonUniform, "KMP_AFFINITY");
1415     }
1416     KMP_INFORM(Topology, "KMP_AFFINITY", nPackages, nCoresPerPkg,
1417                __kmp_nThreadsPerCore, __kmp_ncores);
1418   }
1419   KMP_DEBUG_ASSERT(__kmp_pu_os_idx == NULL);
1420   KMP_DEBUG_ASSERT(nApics == (unsigned)__kmp_avail_proc);
1421   __kmp_pu_os_idx = (int *)__kmp_allocate(sizeof(int) * __kmp_avail_proc);
1422   for (i = 0; i < nApics; ++i) {
1423     __kmp_pu_os_idx[i] = threadInfo[i].osId;
1424   }
1425   if (__kmp_affinity_type == affinity_none) {
1426     __kmp_free(threadInfo);
1427     KMP_CPU_FREE(oldMask);
1428     return 0;
1429   }
1430 
1431   // Now that we've determined the number of packages, the number of cores per
1432   // package, and the number of threads per core, we can construct the data
1433   // structure that is to be returned.
1434   int pkgLevel = 0;
1435   int coreLevel = (nCoresPerPkg <= 1) ? -1 : 1;
1436   int threadLevel =
1437       (__kmp_nThreadsPerCore <= 1) ? -1 : ((coreLevel >= 0) ? 2 : 1);
1438   unsigned depth = (pkgLevel >= 0) + (coreLevel >= 0) + (threadLevel >= 0);
1439 
1440   KMP_ASSERT(depth > 0);
1441   *address2os = (AddrUnsPair *)__kmp_allocate(sizeof(AddrUnsPair) * nApics);
1442 
1443   for (i = 0; i < nApics; ++i) {
1444     Address addr(depth);
1445     unsigned os = threadInfo[i].osId;
1446     int d = 0;
1447 
1448     if (pkgLevel >= 0) {
1449       addr.labels[d++] = threadInfo[i].pkgId;
1450     }
1451     if (coreLevel >= 0) {
1452       addr.labels[d++] = threadInfo[i].coreId;
1453     }
1454     if (threadLevel >= 0) {
1455       addr.labels[d++] = threadInfo[i].threadId;
1456     }
1457     (*address2os)[i] = AddrUnsPair(addr, os);
1458   }
1459 
1460   if (__kmp_affinity_gran_levels < 0) {
1461     // Set the granularity level based on what levels are modeled in the machine
1462     // topology map.
1463     __kmp_affinity_gran_levels = 0;
1464     if ((threadLevel >= 0) && (__kmp_affinity_gran > affinity_gran_thread)) {
1465       __kmp_affinity_gran_levels++;
1466     }
1467     if ((coreLevel >= 0) && (__kmp_affinity_gran > affinity_gran_core)) {
1468       __kmp_affinity_gran_levels++;
1469     }
1470     if ((pkgLevel >= 0) && (__kmp_affinity_gran > affinity_gran_package)) {
1471       __kmp_affinity_gran_levels++;
1472     }
1473   }
1474 
1475   if (__kmp_affinity_verbose) {
1476     __kmp_affinity_print_topology(*address2os, nApics, depth, pkgLevel,
1477                                   coreLevel, threadLevel);
1478   }
1479 
1480   __kmp_free(threadInfo);
1481   KMP_CPU_FREE(oldMask);
1482   return depth;
1483 }
1484 
1485 // Intel(R) microarchitecture code name Nehalem, Dunnington and later
1486 // architectures support a newer interface for specifying the x2APIC Ids,
1487 // based on cpuid leaf 11.
1488 static int __kmp_affinity_create_x2apicid_map(AddrUnsPair **address2os,
1489                                               kmp_i18n_id_t *const msg_id) {
1490   kmp_cpuid buf;
1491   *address2os = NULL;
1492   *msg_id = kmp_i18n_null;
1493 
1494   // Check to see if cpuid leaf 11 is supported.
1495   __kmp_x86_cpuid(0, 0, &buf);
1496   if (buf.eax < 11) {
1497     *msg_id = kmp_i18n_str_NoLeaf11Support;
1498     return -1;
1499   }
1500   __kmp_x86_cpuid(11, 0, &buf);
1501   if (buf.ebx == 0) {
1502     *msg_id = kmp_i18n_str_NoLeaf11Support;
1503     return -1;
1504   }
1505 
1506   // Find the number of levels in the machine topology. While we're at it, get
1507   // the default values for __kmp_nThreadsPerCore & nCoresPerPkg. We will try to
1508   // get more accurate values later by explicitly counting them, but get
1509   // reasonable defaults now, in case we return early.
1510   int level;
1511   int threadLevel = -1;
1512   int coreLevel = -1;
1513   int pkgLevel = -1;
1514   __kmp_nThreadsPerCore = nCoresPerPkg = nPackages = 1;
1515 
1516   for (level = 0;; level++) {
1517     if (level > 31) {
1518       // FIXME: Hack for DPD200163180
1519       //
1520       // If level is big then something went wrong -> exiting
1521       //
1522       // There could actually be 32 valid levels in the machine topology, but so
1523       // far, the only machine we have seen which does not exit this loop before
1524       // iteration 32 has fubar x2APIC settings.
1525       //
1526       // For now, just reject this case based upon loop trip count.
1527       *msg_id = kmp_i18n_str_InvalidCpuidInfo;
1528       return -1;
1529     }
1530     __kmp_x86_cpuid(11, level, &buf);
1531     if (buf.ebx == 0) {
1532       if (pkgLevel < 0) {
1533         // Will infer nPackages from __kmp_xproc
1534         pkgLevel = level;
1535         level++;
1536       }
1537       break;
1538     }
1539     int kind = (buf.ecx >> 8) & 0xff;
1540     if (kind == 1) {
1541       // SMT level
1542       threadLevel = level;
1543       coreLevel = -1;
1544       pkgLevel = -1;
1545       __kmp_nThreadsPerCore = buf.ebx & 0xffff;
1546       if (__kmp_nThreadsPerCore == 0) {
1547         *msg_id = kmp_i18n_str_InvalidCpuidInfo;
1548         return -1;
1549       }
1550     } else if (kind == 2) {
1551       // core level
1552       coreLevel = level;
1553       pkgLevel = -1;
1554       nCoresPerPkg = buf.ebx & 0xffff;
1555       if (nCoresPerPkg == 0) {
1556         *msg_id = kmp_i18n_str_InvalidCpuidInfo;
1557         return -1;
1558       }
1559     } else {
1560       if (level <= 0) {
1561         *msg_id = kmp_i18n_str_InvalidCpuidInfo;
1562         return -1;
1563       }
1564       if (pkgLevel >= 0) {
1565         continue;
1566       }
1567       pkgLevel = level;
1568       nPackages = buf.ebx & 0xffff;
1569       if (nPackages == 0) {
1570         *msg_id = kmp_i18n_str_InvalidCpuidInfo;
1571         return -1;
1572       }
1573     }
1574   }
1575   int depth = level;
1576 
1577   // In the above loop, "level" was counted from the finest level (usually
1578   // thread) to the coarsest.  The caller expects that we will place the labels
1579   // in (*address2os)[].first.labels[] in the inverse order, so we need to
1580   // invert the vars saying which level means what.
1581   if (threadLevel >= 0) {
1582     threadLevel = depth - threadLevel - 1;
1583   }
1584   if (coreLevel >= 0) {
1585     coreLevel = depth - coreLevel - 1;
1586   }
1587   KMP_DEBUG_ASSERT(pkgLevel >= 0);
1588   pkgLevel = depth - pkgLevel - 1;
1589 
1590   // The algorithm used starts by setting the affinity to each available thread
1591   // and retrieving info from the cpuid instruction, so if we are not capable of
1592   // calling __kmp_get_system_affinity() and _kmp_get_system_affinity(), then we
1593   // need to do something else - use the defaults that we calculated from
1594   // issuing cpuid without binding to each proc.
1595   if (!KMP_AFFINITY_CAPABLE()) {
1596     // Hack to try and infer the machine topology using only the data
1597     // available from cpuid on the current thread, and __kmp_xproc.
1598     KMP_ASSERT(__kmp_affinity_type == affinity_none);
1599 
1600     __kmp_ncores = __kmp_xproc / __kmp_nThreadsPerCore;
1601     nPackages = (__kmp_xproc + nCoresPerPkg - 1) / nCoresPerPkg;
1602     if (__kmp_affinity_verbose) {
1603       KMP_INFORM(AffNotCapableUseLocCpuidL11, "KMP_AFFINITY");
1604       KMP_INFORM(AvailableOSProc, "KMP_AFFINITY", __kmp_avail_proc);
1605       if (__kmp_affinity_uniform_topology()) {
1606         KMP_INFORM(Uniform, "KMP_AFFINITY");
1607       } else {
1608         KMP_INFORM(NonUniform, "KMP_AFFINITY");
1609       }
1610       KMP_INFORM(Topology, "KMP_AFFINITY", nPackages, nCoresPerPkg,
1611                  __kmp_nThreadsPerCore, __kmp_ncores);
1612     }
1613     return 0;
1614   }
1615 
1616   // From here on, we can assume that it is safe to call
1617   // __kmp_get_system_affinity() and __kmp_set_system_affinity(), even if
1618   // __kmp_affinity_type = affinity_none.
1619 
1620   // Save the affinity mask for the current thread.
1621   kmp_affin_mask_t *oldMask;
1622   KMP_CPU_ALLOC(oldMask);
1623   __kmp_get_system_affinity(oldMask, TRUE);
1624 
1625   // Allocate the data structure to be returned.
1626   AddrUnsPair *retval =
1627       (AddrUnsPair *)__kmp_allocate(sizeof(AddrUnsPair) * __kmp_avail_proc);
1628 
1629   // Run through each of the available contexts, binding the current thread
1630   // to it, and obtaining the pertinent information using the cpuid instr.
1631   unsigned int proc;
1632   int nApics = 0;
1633   KMP_CPU_SET_ITERATE(proc, __kmp_affin_fullMask) {
1634     // Skip this proc if it is not included in the machine model.
1635     if (!KMP_CPU_ISSET(proc, __kmp_affin_fullMask)) {
1636       continue;
1637     }
1638     KMP_DEBUG_ASSERT(nApics < __kmp_avail_proc);
1639 
1640     __kmp_affinity_dispatch->bind_thread(proc);
1641 
1642     // Extract labels for each level in the machine topology map from Apic ID.
1643     Address addr(depth);
1644     int prev_shift = 0;
1645 
1646     for (level = 0; level < depth; level++) {
1647       __kmp_x86_cpuid(11, level, &buf);
1648       unsigned apicId = buf.edx;
1649       if (buf.ebx == 0) {
1650         if (level != depth - 1) {
1651           KMP_CPU_FREE(oldMask);
1652           *msg_id = kmp_i18n_str_InconsistentCpuidInfo;
1653           return -1;
1654         }
1655         addr.labels[depth - level - 1] = apicId >> prev_shift;
1656         level++;
1657         break;
1658       }
1659       int shift = buf.eax & 0x1f;
1660       int mask = (1 << shift) - 1;
1661       addr.labels[depth - level - 1] = (apicId & mask) >> prev_shift;
1662       prev_shift = shift;
1663     }
1664     if (level != depth) {
1665       KMP_CPU_FREE(oldMask);
1666       *msg_id = kmp_i18n_str_InconsistentCpuidInfo;
1667       return -1;
1668     }
1669 
1670     retval[nApics] = AddrUnsPair(addr, proc);
1671     nApics++;
1672   }
1673 
1674   // We've collected all the info we need.
1675   // Restore the old affinity mask for this thread.
1676   __kmp_set_system_affinity(oldMask, TRUE);
1677 
1678   // If there's only one thread context to bind to, return now.
1679   KMP_ASSERT(nApics > 0);
1680   if (nApics == 1) {
1681     __kmp_ncores = nPackages = 1;
1682     __kmp_nThreadsPerCore = nCoresPerPkg = 1;
1683     if (__kmp_affinity_verbose) {
1684       char buf[KMP_AFFIN_MASK_PRINT_LEN];
1685       __kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN, oldMask);
1686 
1687       KMP_INFORM(AffUseGlobCpuidL11, "KMP_AFFINITY");
1688       if (__kmp_affinity_respect_mask) {
1689         KMP_INFORM(InitOSProcSetRespect, "KMP_AFFINITY", buf);
1690       } else {
1691         KMP_INFORM(InitOSProcSetNotRespect, "KMP_AFFINITY", buf);
1692       }
1693       KMP_INFORM(AvailableOSProc, "KMP_AFFINITY", __kmp_avail_proc);
1694       KMP_INFORM(Uniform, "KMP_AFFINITY");
1695       KMP_INFORM(Topology, "KMP_AFFINITY", nPackages, nCoresPerPkg,
1696                  __kmp_nThreadsPerCore, __kmp_ncores);
1697     }
1698 
1699     if (__kmp_affinity_type == affinity_none) {
1700       __kmp_free(retval);
1701       KMP_CPU_FREE(oldMask);
1702       return 0;
1703     }
1704 
1705     // Form an Address object which only includes the package level.
1706     Address addr(1);
1707     addr.labels[0] = retval[0].first.labels[pkgLevel];
1708     retval[0].first = addr;
1709 
1710     if (__kmp_affinity_gran_levels < 0) {
1711       __kmp_affinity_gran_levels = 0;
1712     }
1713 
1714     if (__kmp_affinity_verbose) {
1715       __kmp_affinity_print_topology(retval, 1, 1, 0, -1, -1);
1716     }
1717 
1718     *address2os = retval;
1719     KMP_CPU_FREE(oldMask);
1720     return 1;
1721   }
1722 
1723   // Sort the table by physical Id.
1724   qsort(retval, nApics, sizeof(*retval), __kmp_affinity_cmp_Address_labels);
1725 
1726   // Find the radix at each of the levels.
1727   unsigned *totals = (unsigned *)__kmp_allocate(depth * sizeof(unsigned));
1728   unsigned *counts = (unsigned *)__kmp_allocate(depth * sizeof(unsigned));
1729   unsigned *maxCt = (unsigned *)__kmp_allocate(depth * sizeof(unsigned));
1730   unsigned *last = (unsigned *)__kmp_allocate(depth * sizeof(unsigned));
1731   for (level = 0; level < depth; level++) {
1732     totals[level] = 1;
1733     maxCt[level] = 1;
1734     counts[level] = 1;
1735     last[level] = retval[0].first.labels[level];
1736   }
1737 
1738   // From here on, the iteration variable "level" runs from the finest level to
1739   // the coarsest, i.e. we iterate forward through
1740   // (*address2os)[].first.labels[] - in the previous loops, we iterated
1741   // backwards.
1742   for (proc = 1; (int)proc < nApics; proc++) {
1743     int level;
1744     for (level = 0; level < depth; level++) {
1745       if (retval[proc].first.labels[level] != last[level]) {
1746         int j;
1747         for (j = level + 1; j < depth; j++) {
1748           totals[j]++;
1749           counts[j] = 1;
1750           // The line below causes printing incorrect topology information in
1751           // case the max value for some level (maxCt[level]) is encountered
1752           // earlier than some less value while going through the array. For
1753           // example, let pkg0 has 4 cores and pkg1 has 2 cores. Then
1754           // maxCt[1] == 2
1755           // whereas it must be 4.
1756           // TODO!!! Check if it can be commented safely
1757           // maxCt[j] = 1;
1758           last[j] = retval[proc].first.labels[j];
1759         }
1760         totals[level]++;
1761         counts[level]++;
1762         if (counts[level] > maxCt[level]) {
1763           maxCt[level] = counts[level];
1764         }
1765         last[level] = retval[proc].first.labels[level];
1766         break;
1767       } else if (level == depth - 1) {
1768         __kmp_free(last);
1769         __kmp_free(maxCt);
1770         __kmp_free(counts);
1771         __kmp_free(totals);
1772         __kmp_free(retval);
1773         KMP_CPU_FREE(oldMask);
1774         *msg_id = kmp_i18n_str_x2ApicIDsNotUnique;
1775         return -1;
1776       }
1777     }
1778   }
1779 
1780   // When affinity is off, this routine will still be called to set
1781   // __kmp_ncores, as well as __kmp_nThreadsPerCore, nCoresPerPkg, & nPackages.
1782   // Make sure all these vars are set correctly, and return if affinity is not
1783   // enabled.
1784   if (threadLevel >= 0) {
1785     __kmp_nThreadsPerCore = maxCt[threadLevel];
1786   } else {
1787     __kmp_nThreadsPerCore = 1;
1788   }
1789   nPackages = totals[pkgLevel];
1790 
1791   if (coreLevel >= 0) {
1792     __kmp_ncores = totals[coreLevel];
1793     nCoresPerPkg = maxCt[coreLevel];
1794   } else {
1795     __kmp_ncores = nPackages;
1796     nCoresPerPkg = 1;
1797   }
1798 
1799   // Check to see if the machine topology is uniform
1800   unsigned prod = maxCt[0];
1801   for (level = 1; level < depth; level++) {
1802     prod *= maxCt[level];
1803   }
1804   bool uniform = (prod == totals[level - 1]);
1805 
1806   // Print the machine topology summary.
1807   if (__kmp_affinity_verbose) {
1808     char mask[KMP_AFFIN_MASK_PRINT_LEN];
1809     __kmp_affinity_print_mask(mask, KMP_AFFIN_MASK_PRINT_LEN, oldMask);
1810 
1811     KMP_INFORM(AffUseGlobCpuidL11, "KMP_AFFINITY");
1812     if (__kmp_affinity_respect_mask) {
1813       KMP_INFORM(InitOSProcSetRespect, "KMP_AFFINITY", mask);
1814     } else {
1815       KMP_INFORM(InitOSProcSetNotRespect, "KMP_AFFINITY", mask);
1816     }
1817     KMP_INFORM(AvailableOSProc, "KMP_AFFINITY", __kmp_avail_proc);
1818     if (uniform) {
1819       KMP_INFORM(Uniform, "KMP_AFFINITY");
1820     } else {
1821       KMP_INFORM(NonUniform, "KMP_AFFINITY");
1822     }
1823 
1824     kmp_str_buf_t buf;
1825     __kmp_str_buf_init(&buf);
1826 
1827     __kmp_str_buf_print(&buf, "%d", totals[0]);
1828     for (level = 1; level <= pkgLevel; level++) {
1829       __kmp_str_buf_print(&buf, " x %d", maxCt[level]);
1830     }
1831     KMP_INFORM(TopologyExtra, "KMP_AFFINITY", buf.str, nCoresPerPkg,
1832                __kmp_nThreadsPerCore, __kmp_ncores);
1833 
1834     __kmp_str_buf_free(&buf);
1835   }
1836   KMP_DEBUG_ASSERT(__kmp_pu_os_idx == NULL);
1837   KMP_DEBUG_ASSERT(nApics == __kmp_avail_proc);
1838   __kmp_pu_os_idx = (int *)__kmp_allocate(sizeof(int) * __kmp_avail_proc);
1839   for (proc = 0; (int)proc < nApics; ++proc) {
1840     __kmp_pu_os_idx[proc] = retval[proc].second;
1841   }
1842   if (__kmp_affinity_type == affinity_none) {
1843     __kmp_free(last);
1844     __kmp_free(maxCt);
1845     __kmp_free(counts);
1846     __kmp_free(totals);
1847     __kmp_free(retval);
1848     KMP_CPU_FREE(oldMask);
1849     return 0;
1850   }
1851 
1852   // Find any levels with radix 1, and remove them from the map
1853   // (except for the package level).
1854   int new_depth = 0;
1855   for (level = 0; level < depth; level++) {
1856     if ((maxCt[level] == 1) && (level != pkgLevel)) {
1857       continue;
1858     }
1859     new_depth++;
1860   }
1861 
1862   // If we are removing any levels, allocate a new vector to return,
1863   // and copy the relevant information to it.
1864   if (new_depth != depth) {
1865     AddrUnsPair *new_retval =
1866         (AddrUnsPair *)__kmp_allocate(sizeof(AddrUnsPair) * nApics);
1867     for (proc = 0; (int)proc < nApics; proc++) {
1868       Address addr(new_depth);
1869       new_retval[proc] = AddrUnsPair(addr, retval[proc].second);
1870     }
1871     int new_level = 0;
1872     int newPkgLevel = -1;
1873     int newCoreLevel = -1;
1874     int newThreadLevel = -1;
1875     for (level = 0; level < depth; level++) {
1876       if ((maxCt[level] == 1) && (level != pkgLevel)) {
1877         // Remove this level. Never remove the package level
1878         continue;
1879       }
1880       if (level == pkgLevel) {
1881         newPkgLevel = new_level;
1882       }
1883       if (level == coreLevel) {
1884         newCoreLevel = new_level;
1885       }
1886       if (level == threadLevel) {
1887         newThreadLevel = new_level;
1888       }
1889       for (proc = 0; (int)proc < nApics; proc++) {
1890         new_retval[proc].first.labels[new_level] =
1891             retval[proc].first.labels[level];
1892       }
1893       new_level++;
1894     }
1895 
1896     __kmp_free(retval);
1897     retval = new_retval;
1898     depth = new_depth;
1899     pkgLevel = newPkgLevel;
1900     coreLevel = newCoreLevel;
1901     threadLevel = newThreadLevel;
1902   }
1903 
1904   if (__kmp_affinity_gran_levels < 0) {
1905     // Set the granularity level based on what levels are modeled
1906     // in the machine topology map.
1907     __kmp_affinity_gran_levels = 0;
1908     if ((threadLevel >= 0) && (__kmp_affinity_gran > affinity_gran_thread)) {
1909       __kmp_affinity_gran_levels++;
1910     }
1911     if ((coreLevel >= 0) && (__kmp_affinity_gran > affinity_gran_core)) {
1912       __kmp_affinity_gran_levels++;
1913     }
1914     if (__kmp_affinity_gran > affinity_gran_package) {
1915       __kmp_affinity_gran_levels++;
1916     }
1917   }
1918 
1919   if (__kmp_affinity_verbose) {
1920     __kmp_affinity_print_topology(retval, nApics, depth, pkgLevel, coreLevel,
1921                                   threadLevel);
1922   }
1923 
1924   __kmp_free(last);
1925   __kmp_free(maxCt);
1926   __kmp_free(counts);
1927   __kmp_free(totals);
1928   KMP_CPU_FREE(oldMask);
1929   *address2os = retval;
1930   return depth;
1931 }
1932 
1933 #endif /* KMP_ARCH_X86 || KMP_ARCH_X86_64 */
1934 
1935 #define osIdIndex 0
1936 #define threadIdIndex 1
1937 #define coreIdIndex 2
1938 #define pkgIdIndex 3
1939 #define nodeIdIndex 4
1940 
1941 typedef unsigned *ProcCpuInfo;
1942 static unsigned maxIndex = pkgIdIndex;
1943 
1944 static int __kmp_affinity_cmp_ProcCpuInfo_phys_id(const void *a,
1945                                                   const void *b) {
1946   unsigned i;
1947   const unsigned *aa = *(unsigned *const *)a;
1948   const unsigned *bb = *(unsigned *const *)b;
1949   for (i = maxIndex;; i--) {
1950     if (aa[i] < bb[i])
1951       return -1;
1952     if (aa[i] > bb[i])
1953       return 1;
1954     if (i == osIdIndex)
1955       break;
1956   }
1957   return 0;
1958 }
1959 
1960 #if KMP_USE_HIER_SCHED
1961 // Set the array sizes for the hierarchy layers
1962 static void __kmp_dispatch_set_hierarchy_values() {
1963   // Set the maximum number of L1's to number of cores
1964   // Set the maximum number of L2's to to either number of cores / 2 for
1965   // Intel(R) Xeon Phi(TM) coprocessor formally codenamed Knights Landing
1966   // Or the number of cores for Intel(R) Xeon(R) processors
1967   // Set the maximum number of NUMA nodes and L3's to number of packages
1968   __kmp_hier_max_units[kmp_hier_layer_e::LAYER_THREAD + 1] =
1969       nPackages * nCoresPerPkg * __kmp_nThreadsPerCore;
1970   __kmp_hier_max_units[kmp_hier_layer_e::LAYER_L1 + 1] = __kmp_ncores;
1971 #if KMP_ARCH_X86_64 && (KMP_OS_LINUX || KMP_OS_FREEBSD || KMP_OS_WINDOWS) && \
1972     KMP_MIC_SUPPORTED
1973   if (__kmp_mic_type >= mic3)
1974     __kmp_hier_max_units[kmp_hier_layer_e::LAYER_L2 + 1] = __kmp_ncores / 2;
1975   else
1976 #endif // KMP_ARCH_X86_64 && (KMP_OS_LINUX || KMP_OS_WINDOWS)
1977     __kmp_hier_max_units[kmp_hier_layer_e::LAYER_L2 + 1] = __kmp_ncores;
1978   __kmp_hier_max_units[kmp_hier_layer_e::LAYER_L3 + 1] = nPackages;
1979   __kmp_hier_max_units[kmp_hier_layer_e::LAYER_NUMA + 1] = nPackages;
1980   __kmp_hier_max_units[kmp_hier_layer_e::LAYER_LOOP + 1] = 1;
1981   // Set the number of threads per unit
1982   // Number of hardware threads per L1/L2/L3/NUMA/LOOP
1983   __kmp_hier_threads_per[kmp_hier_layer_e::LAYER_THREAD + 1] = 1;
1984   __kmp_hier_threads_per[kmp_hier_layer_e::LAYER_L1 + 1] =
1985       __kmp_nThreadsPerCore;
1986 #if KMP_ARCH_X86_64 && (KMP_OS_LINUX || KMP_OS_FREEBSD || KMP_OS_WINDOWS) && \
1987     KMP_MIC_SUPPORTED
1988   if (__kmp_mic_type >= mic3)
1989     __kmp_hier_threads_per[kmp_hier_layer_e::LAYER_L2 + 1] =
1990         2 * __kmp_nThreadsPerCore;
1991   else
1992 #endif // KMP_ARCH_X86_64 && (KMP_OS_LINUX || KMP_OS_WINDOWS)
1993     __kmp_hier_threads_per[kmp_hier_layer_e::LAYER_L2 + 1] =
1994         __kmp_nThreadsPerCore;
1995   __kmp_hier_threads_per[kmp_hier_layer_e::LAYER_L3 + 1] =
1996       nCoresPerPkg * __kmp_nThreadsPerCore;
1997   __kmp_hier_threads_per[kmp_hier_layer_e::LAYER_NUMA + 1] =
1998       nCoresPerPkg * __kmp_nThreadsPerCore;
1999   __kmp_hier_threads_per[kmp_hier_layer_e::LAYER_LOOP + 1] =
2000       nPackages * nCoresPerPkg * __kmp_nThreadsPerCore;
2001 }
2002 
2003 // Return the index into the hierarchy for this tid and layer type (L1, L2, etc)
2004 // i.e., this thread's L1 or this thread's L2, etc.
2005 int __kmp_dispatch_get_index(int tid, kmp_hier_layer_e type) {
2006   int index = type + 1;
2007   int num_hw_threads = __kmp_hier_max_units[kmp_hier_layer_e::LAYER_THREAD + 1];
2008   KMP_DEBUG_ASSERT(type != kmp_hier_layer_e::LAYER_LAST);
2009   if (type == kmp_hier_layer_e::LAYER_THREAD)
2010     return tid;
2011   else if (type == kmp_hier_layer_e::LAYER_LOOP)
2012     return 0;
2013   KMP_DEBUG_ASSERT(__kmp_hier_max_units[index] != 0);
2014   if (tid >= num_hw_threads)
2015     tid = tid % num_hw_threads;
2016   return (tid / __kmp_hier_threads_per[index]) % __kmp_hier_max_units[index];
2017 }
2018 
2019 // Return the number of t1's per t2
2020 int __kmp_dispatch_get_t1_per_t2(kmp_hier_layer_e t1, kmp_hier_layer_e t2) {
2021   int i1 = t1 + 1;
2022   int i2 = t2 + 1;
2023   KMP_DEBUG_ASSERT(i1 <= i2);
2024   KMP_DEBUG_ASSERT(t1 != kmp_hier_layer_e::LAYER_LAST);
2025   KMP_DEBUG_ASSERT(t2 != kmp_hier_layer_e::LAYER_LAST);
2026   KMP_DEBUG_ASSERT(__kmp_hier_threads_per[i1] != 0);
2027   // (nthreads/t2) / (nthreads/t1) = t1 / t2
2028   return __kmp_hier_threads_per[i2] / __kmp_hier_threads_per[i1];
2029 }
2030 #endif // KMP_USE_HIER_SCHED
2031 
2032 // Parse /proc/cpuinfo (or an alternate file in the same format) to obtain the
2033 // affinity map.
2034 static int __kmp_affinity_create_cpuinfo_map(AddrUnsPair **address2os,
2035                                              int *line,
2036                                              kmp_i18n_id_t *const msg_id,
2037                                              FILE *f) {
2038   *address2os = NULL;
2039   *msg_id = kmp_i18n_null;
2040 
2041   // Scan of the file, and count the number of "processor" (osId) fields,
2042   // and find the highest value of <n> for a node_<n> field.
2043   char buf[256];
2044   unsigned num_records = 0;
2045   while (!feof(f)) {
2046     buf[sizeof(buf) - 1] = 1;
2047     if (!fgets(buf, sizeof(buf), f)) {
2048       // Read errors presumably because of EOF
2049       break;
2050     }
2051 
2052     char s1[] = "processor";
2053     if (strncmp(buf, s1, sizeof(s1) - 1) == 0) {
2054       num_records++;
2055       continue;
2056     }
2057 
2058     // FIXME - this will match "node_<n> <garbage>"
2059     unsigned level;
2060     if (KMP_SSCANF(buf, "node_%u id", &level) == 1) {
2061       if (nodeIdIndex + level >= maxIndex) {
2062         maxIndex = nodeIdIndex + level;
2063       }
2064       continue;
2065     }
2066   }
2067 
2068   // Check for empty file / no valid processor records, or too many. The number
2069   // of records can't exceed the number of valid bits in the affinity mask.
2070   if (num_records == 0) {
2071     *line = 0;
2072     *msg_id = kmp_i18n_str_NoProcRecords;
2073     return -1;
2074   }
2075   if (num_records > (unsigned)__kmp_xproc) {
2076     *line = 0;
2077     *msg_id = kmp_i18n_str_TooManyProcRecords;
2078     return -1;
2079   }
2080 
2081   // Set the file pointer back to the beginning, so that we can scan the file
2082   // again, this time performing a full parse of the data. Allocate a vector of
2083   // ProcCpuInfo object, where we will place the data. Adding an extra element
2084   // at the end allows us to remove a lot of extra checks for termination
2085   // conditions.
2086   if (fseek(f, 0, SEEK_SET) != 0) {
2087     *line = 0;
2088     *msg_id = kmp_i18n_str_CantRewindCpuinfo;
2089     return -1;
2090   }
2091 
2092   // Allocate the array of records to store the proc info in.  The dummy
2093   // element at the end makes the logic in filling them out easier to code.
2094   unsigned **threadInfo =
2095       (unsigned **)__kmp_allocate((num_records + 1) * sizeof(unsigned *));
2096   unsigned i;
2097   for (i = 0; i <= num_records; i++) {
2098     threadInfo[i] =
2099         (unsigned *)__kmp_allocate((maxIndex + 1) * sizeof(unsigned));
2100   }
2101 
2102 #define CLEANUP_THREAD_INFO                                                    \
2103   for (i = 0; i <= num_records; i++) {                                         \
2104     __kmp_free(threadInfo[i]);                                                 \
2105   }                                                                            \
2106   __kmp_free(threadInfo);
2107 
2108   // A value of UINT_MAX means that we didn't find the field
2109   unsigned __index;
2110 
2111 #define INIT_PROC_INFO(p)                                                      \
2112   for (__index = 0; __index <= maxIndex; __index++) {                          \
2113     (p)[__index] = UINT_MAX;                                                   \
2114   }
2115 
2116   for (i = 0; i <= num_records; i++) {
2117     INIT_PROC_INFO(threadInfo[i]);
2118   }
2119 
2120   unsigned num_avail = 0;
2121   *line = 0;
2122   while (!feof(f)) {
2123     // Create an inner scoping level, so that all the goto targets at the end of
2124     // the loop appear in an outer scoping level. This avoids warnings about
2125     // jumping past an initialization to a target in the same block.
2126     {
2127       buf[sizeof(buf) - 1] = 1;
2128       bool long_line = false;
2129       if (!fgets(buf, sizeof(buf), f)) {
2130         // Read errors presumably because of EOF
2131         // If there is valid data in threadInfo[num_avail], then fake
2132         // a blank line in ensure that the last address gets parsed.
2133         bool valid = false;
2134         for (i = 0; i <= maxIndex; i++) {
2135           if (threadInfo[num_avail][i] != UINT_MAX) {
2136             valid = true;
2137           }
2138         }
2139         if (!valid) {
2140           break;
2141         }
2142         buf[0] = 0;
2143       } else if (!buf[sizeof(buf) - 1]) {
2144         // The line is longer than the buffer.  Set a flag and don't
2145         // emit an error if we were going to ignore the line, anyway.
2146         long_line = true;
2147 
2148 #define CHECK_LINE                                                             \
2149   if (long_line) {                                                             \
2150     CLEANUP_THREAD_INFO;                                                       \
2151     *msg_id = kmp_i18n_str_LongLineCpuinfo;                                    \
2152     return -1;                                                                 \
2153   }
2154       }
2155       (*line)++;
2156 
2157       char s1[] = "processor";
2158       if (strncmp(buf, s1, sizeof(s1) - 1) == 0) {
2159         CHECK_LINE;
2160         char *p = strchr(buf + sizeof(s1) - 1, ':');
2161         unsigned val;
2162         if ((p == NULL) || (KMP_SSCANF(p + 1, "%u\n", &val) != 1))
2163           goto no_val;
2164         if (threadInfo[num_avail][osIdIndex] != UINT_MAX)
2165 #if KMP_ARCH_AARCH64
2166           // Handle the old AArch64 /proc/cpuinfo layout differently,
2167           // it contains all of the 'processor' entries listed in a
2168           // single 'Processor' section, therefore the normal looking
2169           // for duplicates in that section will always fail.
2170           num_avail++;
2171 #else
2172           goto dup_field;
2173 #endif
2174         threadInfo[num_avail][osIdIndex] = val;
2175 #if KMP_OS_LINUX && !(KMP_ARCH_X86 || KMP_ARCH_X86_64)
2176         char path[256];
2177         KMP_SNPRINTF(
2178             path, sizeof(path),
2179             "/sys/devices/system/cpu/cpu%u/topology/physical_package_id",
2180             threadInfo[num_avail][osIdIndex]);
2181         __kmp_read_from_file(path, "%u", &threadInfo[num_avail][pkgIdIndex]);
2182 
2183         KMP_SNPRINTF(path, sizeof(path),
2184                      "/sys/devices/system/cpu/cpu%u/topology/core_id",
2185                      threadInfo[num_avail][osIdIndex]);
2186         __kmp_read_from_file(path, "%u", &threadInfo[num_avail][coreIdIndex]);
2187         continue;
2188 #else
2189       }
2190       char s2[] = "physical id";
2191       if (strncmp(buf, s2, sizeof(s2) - 1) == 0) {
2192         CHECK_LINE;
2193         char *p = strchr(buf + sizeof(s2) - 1, ':');
2194         unsigned val;
2195         if ((p == NULL) || (KMP_SSCANF(p + 1, "%u\n", &val) != 1))
2196           goto no_val;
2197         if (threadInfo[num_avail][pkgIdIndex] != UINT_MAX)
2198           goto dup_field;
2199         threadInfo[num_avail][pkgIdIndex] = val;
2200         continue;
2201       }
2202       char s3[] = "core id";
2203       if (strncmp(buf, s3, sizeof(s3) - 1) == 0) {
2204         CHECK_LINE;
2205         char *p = strchr(buf + sizeof(s3) - 1, ':');
2206         unsigned val;
2207         if ((p == NULL) || (KMP_SSCANF(p + 1, "%u\n", &val) != 1))
2208           goto no_val;
2209         if (threadInfo[num_avail][coreIdIndex] != UINT_MAX)
2210           goto dup_field;
2211         threadInfo[num_avail][coreIdIndex] = val;
2212         continue;
2213 #endif // KMP_OS_LINUX && USE_SYSFS_INFO
2214       }
2215       char s4[] = "thread id";
2216       if (strncmp(buf, s4, sizeof(s4) - 1) == 0) {
2217         CHECK_LINE;
2218         char *p = strchr(buf + sizeof(s4) - 1, ':');
2219         unsigned val;
2220         if ((p == NULL) || (KMP_SSCANF(p + 1, "%u\n", &val) != 1))
2221           goto no_val;
2222         if (threadInfo[num_avail][threadIdIndex] != UINT_MAX)
2223           goto dup_field;
2224         threadInfo[num_avail][threadIdIndex] = val;
2225         continue;
2226       }
2227       unsigned level;
2228       if (KMP_SSCANF(buf, "node_%u id", &level) == 1) {
2229         CHECK_LINE;
2230         char *p = strchr(buf + sizeof(s4) - 1, ':');
2231         unsigned val;
2232         if ((p == NULL) || (KMP_SSCANF(p + 1, "%u\n", &val) != 1))
2233           goto no_val;
2234         KMP_ASSERT(nodeIdIndex + level <= maxIndex);
2235         if (threadInfo[num_avail][nodeIdIndex + level] != UINT_MAX)
2236           goto dup_field;
2237         threadInfo[num_avail][nodeIdIndex + level] = val;
2238         continue;
2239       }
2240 
2241       // We didn't recognize the leading token on the line. There are lots of
2242       // leading tokens that we don't recognize - if the line isn't empty, go on
2243       // to the next line.
2244       if ((*buf != 0) && (*buf != '\n')) {
2245         // If the line is longer than the buffer, read characters
2246         // until we find a newline.
2247         if (long_line) {
2248           int ch;
2249           while (((ch = fgetc(f)) != EOF) && (ch != '\n'))
2250             ;
2251         }
2252         continue;
2253       }
2254 
2255       // A newline has signalled the end of the processor record.
2256       // Check that there aren't too many procs specified.
2257       if ((int)num_avail == __kmp_xproc) {
2258         CLEANUP_THREAD_INFO;
2259         *msg_id = kmp_i18n_str_TooManyEntries;
2260         return -1;
2261       }
2262 
2263       // Check for missing fields.  The osId field must be there, and we
2264       // currently require that the physical id field is specified, also.
2265       if (threadInfo[num_avail][osIdIndex] == UINT_MAX) {
2266         CLEANUP_THREAD_INFO;
2267         *msg_id = kmp_i18n_str_MissingProcField;
2268         return -1;
2269       }
2270       if (threadInfo[0][pkgIdIndex] == UINT_MAX) {
2271         CLEANUP_THREAD_INFO;
2272         *msg_id = kmp_i18n_str_MissingPhysicalIDField;
2273         return -1;
2274       }
2275 
2276       // Skip this proc if it is not included in the machine model.
2277       if (!KMP_CPU_ISSET(threadInfo[num_avail][osIdIndex],
2278                          __kmp_affin_fullMask)) {
2279         INIT_PROC_INFO(threadInfo[num_avail]);
2280         continue;
2281       }
2282 
2283       // We have a successful parse of this proc's info.
2284       // Increment the counter, and prepare for the next proc.
2285       num_avail++;
2286       KMP_ASSERT(num_avail <= num_records);
2287       INIT_PROC_INFO(threadInfo[num_avail]);
2288     }
2289     continue;
2290 
2291   no_val:
2292     CLEANUP_THREAD_INFO;
2293     *msg_id = kmp_i18n_str_MissingValCpuinfo;
2294     return -1;
2295 
2296   dup_field:
2297     CLEANUP_THREAD_INFO;
2298     *msg_id = kmp_i18n_str_DuplicateFieldCpuinfo;
2299     return -1;
2300   }
2301   *line = 0;
2302 
2303 #if KMP_MIC && REDUCE_TEAM_SIZE
2304   unsigned teamSize = 0;
2305 #endif // KMP_MIC && REDUCE_TEAM_SIZE
2306 
2307   // check for num_records == __kmp_xproc ???
2308 
2309   // If there's only one thread context to bind to, form an Address object with
2310   // depth 1 and return immediately (or, if affinity is off, set address2os to
2311   // NULL and return).
2312   //
2313   // If it is configured to omit the package level when there is only a single
2314   // package, the logic at the end of this routine won't work if there is only a
2315   // single thread - it would try to form an Address object with depth 0.
2316   KMP_ASSERT(num_avail > 0);
2317   KMP_ASSERT(num_avail <= num_records);
2318   if (num_avail == 1) {
2319     __kmp_ncores = 1;
2320     __kmp_nThreadsPerCore = nCoresPerPkg = nPackages = 1;
2321     if (__kmp_affinity_verbose) {
2322       if (!KMP_AFFINITY_CAPABLE()) {
2323         KMP_INFORM(AffNotCapableUseCpuinfo, "KMP_AFFINITY");
2324         KMP_INFORM(AvailableOSProc, "KMP_AFFINITY", __kmp_avail_proc);
2325         KMP_INFORM(Uniform, "KMP_AFFINITY");
2326       } else {
2327         char buf[KMP_AFFIN_MASK_PRINT_LEN];
2328         __kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN,
2329                                   __kmp_affin_fullMask);
2330         KMP_INFORM(AffCapableUseCpuinfo, "KMP_AFFINITY");
2331         if (__kmp_affinity_respect_mask) {
2332           KMP_INFORM(InitOSProcSetRespect, "KMP_AFFINITY", buf);
2333         } else {
2334           KMP_INFORM(InitOSProcSetNotRespect, "KMP_AFFINITY", buf);
2335         }
2336         KMP_INFORM(AvailableOSProc, "KMP_AFFINITY", __kmp_avail_proc);
2337         KMP_INFORM(Uniform, "KMP_AFFINITY");
2338       }
2339       int index;
2340       kmp_str_buf_t buf;
2341       __kmp_str_buf_init(&buf);
2342       __kmp_str_buf_print(&buf, "1");
2343       for (index = maxIndex - 1; index > pkgIdIndex; index--) {
2344         __kmp_str_buf_print(&buf, " x 1");
2345       }
2346       KMP_INFORM(TopologyExtra, "KMP_AFFINITY", buf.str, 1, 1, 1);
2347       __kmp_str_buf_free(&buf);
2348     }
2349 
2350     if (__kmp_affinity_type == affinity_none) {
2351       CLEANUP_THREAD_INFO;
2352       return 0;
2353     }
2354 
2355     *address2os = (AddrUnsPair *)__kmp_allocate(sizeof(AddrUnsPair));
2356     Address addr(1);
2357     addr.labels[0] = threadInfo[0][pkgIdIndex];
2358     (*address2os)[0] = AddrUnsPair(addr, threadInfo[0][osIdIndex]);
2359 
2360     if (__kmp_affinity_gran_levels < 0) {
2361       __kmp_affinity_gran_levels = 0;
2362     }
2363 
2364     if (__kmp_affinity_verbose) {
2365       __kmp_affinity_print_topology(*address2os, 1, 1, 0, -1, -1);
2366     }
2367 
2368     CLEANUP_THREAD_INFO;
2369     return 1;
2370   }
2371 
2372   // Sort the threadInfo table by physical Id.
2373   qsort(threadInfo, num_avail, sizeof(*threadInfo),
2374         __kmp_affinity_cmp_ProcCpuInfo_phys_id);
2375 
2376   // The table is now sorted by pkgId / coreId / threadId, but we really don't
2377   // know the radix of any of the fields. pkgId's may be sparsely assigned among
2378   // the chips on a system. Although coreId's are usually assigned
2379   // [0 .. coresPerPkg-1] and threadId's are usually assigned
2380   // [0..threadsPerCore-1], we don't want to make any such assumptions.
2381   //
2382   // For that matter, we don't know what coresPerPkg and threadsPerCore (or the
2383   // total # packages) are at this point - we want to determine that now. We
2384   // only have an upper bound on the first two figures.
2385   unsigned *counts =
2386       (unsigned *)__kmp_allocate((maxIndex + 1) * sizeof(unsigned));
2387   unsigned *maxCt =
2388       (unsigned *)__kmp_allocate((maxIndex + 1) * sizeof(unsigned));
2389   unsigned *totals =
2390       (unsigned *)__kmp_allocate((maxIndex + 1) * sizeof(unsigned));
2391   unsigned *lastId =
2392       (unsigned *)__kmp_allocate((maxIndex + 1) * sizeof(unsigned));
2393 
2394   bool assign_thread_ids = false;
2395   unsigned threadIdCt;
2396   unsigned index;
2397 
2398 restart_radix_check:
2399   threadIdCt = 0;
2400 
2401   // Initialize the counter arrays with data from threadInfo[0].
2402   if (assign_thread_ids) {
2403     if (threadInfo[0][threadIdIndex] == UINT_MAX) {
2404       threadInfo[0][threadIdIndex] = threadIdCt++;
2405     } else if (threadIdCt <= threadInfo[0][threadIdIndex]) {
2406       threadIdCt = threadInfo[0][threadIdIndex] + 1;
2407     }
2408   }
2409   for (index = 0; index <= maxIndex; index++) {
2410     counts[index] = 1;
2411     maxCt[index] = 1;
2412     totals[index] = 1;
2413     lastId[index] = threadInfo[0][index];
2414     ;
2415   }
2416 
2417   // Run through the rest of the OS procs.
2418   for (i = 1; i < num_avail; i++) {
2419     // Find the most significant index whose id differs from the id for the
2420     // previous OS proc.
2421     for (index = maxIndex; index >= threadIdIndex; index--) {
2422       if (assign_thread_ids && (index == threadIdIndex)) {
2423         // Auto-assign the thread id field if it wasn't specified.
2424         if (threadInfo[i][threadIdIndex] == UINT_MAX) {
2425           threadInfo[i][threadIdIndex] = threadIdCt++;
2426         }
2427         // Apparently the thread id field was specified for some entries and not
2428         // others. Start the thread id counter off at the next higher thread id.
2429         else if (threadIdCt <= threadInfo[i][threadIdIndex]) {
2430           threadIdCt = threadInfo[i][threadIdIndex] + 1;
2431         }
2432       }
2433       if (threadInfo[i][index] != lastId[index]) {
2434         // Run through all indices which are less significant, and reset the
2435         // counts to 1. At all levels up to and including index, we need to
2436         // increment the totals and record the last id.
2437         unsigned index2;
2438         for (index2 = threadIdIndex; index2 < index; index2++) {
2439           totals[index2]++;
2440           if (counts[index2] > maxCt[index2]) {
2441             maxCt[index2] = counts[index2];
2442           }
2443           counts[index2] = 1;
2444           lastId[index2] = threadInfo[i][index2];
2445         }
2446         counts[index]++;
2447         totals[index]++;
2448         lastId[index] = threadInfo[i][index];
2449 
2450         if (assign_thread_ids && (index > threadIdIndex)) {
2451 
2452 #if KMP_MIC && REDUCE_TEAM_SIZE
2453           // The default team size is the total #threads in the machine
2454           // minus 1 thread for every core that has 3 or more threads.
2455           teamSize += (threadIdCt <= 2) ? (threadIdCt) : (threadIdCt - 1);
2456 #endif // KMP_MIC && REDUCE_TEAM_SIZE
2457 
2458           // Restart the thread counter, as we are on a new core.
2459           threadIdCt = 0;
2460 
2461           // Auto-assign the thread id field if it wasn't specified.
2462           if (threadInfo[i][threadIdIndex] == UINT_MAX) {
2463             threadInfo[i][threadIdIndex] = threadIdCt++;
2464           }
2465 
2466           // Apparently the thread id field was specified for some entries and
2467           // not others. Start the thread id counter off at the next higher
2468           // thread id.
2469           else if (threadIdCt <= threadInfo[i][threadIdIndex]) {
2470             threadIdCt = threadInfo[i][threadIdIndex] + 1;
2471           }
2472         }
2473         break;
2474       }
2475     }
2476     if (index < threadIdIndex) {
2477       // If thread ids were specified, it is an error if they are not unique.
2478       // Also, check that we waven't already restarted the loop (to be safe -
2479       // shouldn't need to).
2480       if ((threadInfo[i][threadIdIndex] != UINT_MAX) || assign_thread_ids) {
2481         __kmp_free(lastId);
2482         __kmp_free(totals);
2483         __kmp_free(maxCt);
2484         __kmp_free(counts);
2485         CLEANUP_THREAD_INFO;
2486         *msg_id = kmp_i18n_str_PhysicalIDsNotUnique;
2487         return -1;
2488       }
2489 
2490       // If the thread ids were not specified and we see entries entries that
2491       // are duplicates, start the loop over and assign the thread ids manually.
2492       assign_thread_ids = true;
2493       goto restart_radix_check;
2494     }
2495   }
2496 
2497 #if KMP_MIC && REDUCE_TEAM_SIZE
2498   // The default team size is the total #threads in the machine
2499   // minus 1 thread for every core that has 3 or more threads.
2500   teamSize += (threadIdCt <= 2) ? (threadIdCt) : (threadIdCt - 1);
2501 #endif // KMP_MIC && REDUCE_TEAM_SIZE
2502 
2503   for (index = threadIdIndex; index <= maxIndex; index++) {
2504     if (counts[index] > maxCt[index]) {
2505       maxCt[index] = counts[index];
2506     }
2507   }
2508 
2509   __kmp_nThreadsPerCore = maxCt[threadIdIndex];
2510   nCoresPerPkg = maxCt[coreIdIndex];
2511   nPackages = totals[pkgIdIndex];
2512 
2513   // Check to see if the machine topology is uniform
2514   unsigned prod = totals[maxIndex];
2515   for (index = threadIdIndex; index < maxIndex; index++) {
2516     prod *= maxCt[index];
2517   }
2518   bool uniform = (prod == totals[threadIdIndex]);
2519 
2520   // When affinity is off, this routine will still be called to set
2521   // __kmp_ncores, as well as __kmp_nThreadsPerCore, nCoresPerPkg, & nPackages.
2522   // Make sure all these vars are set correctly, and return now if affinity is
2523   // not enabled.
2524   __kmp_ncores = totals[coreIdIndex];
2525 
2526   if (__kmp_affinity_verbose) {
2527     if (!KMP_AFFINITY_CAPABLE()) {
2528       KMP_INFORM(AffNotCapableUseCpuinfo, "KMP_AFFINITY");
2529       KMP_INFORM(AvailableOSProc, "KMP_AFFINITY", __kmp_avail_proc);
2530       if (uniform) {
2531         KMP_INFORM(Uniform, "KMP_AFFINITY");
2532       } else {
2533         KMP_INFORM(NonUniform, "KMP_AFFINITY");
2534       }
2535     } else {
2536       char buf[KMP_AFFIN_MASK_PRINT_LEN];
2537       __kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN,
2538                                 __kmp_affin_fullMask);
2539       KMP_INFORM(AffCapableUseCpuinfo, "KMP_AFFINITY");
2540       if (__kmp_affinity_respect_mask) {
2541         KMP_INFORM(InitOSProcSetRespect, "KMP_AFFINITY", buf);
2542       } else {
2543         KMP_INFORM(InitOSProcSetNotRespect, "KMP_AFFINITY", buf);
2544       }
2545       KMP_INFORM(AvailableOSProc, "KMP_AFFINITY", __kmp_avail_proc);
2546       if (uniform) {
2547         KMP_INFORM(Uniform, "KMP_AFFINITY");
2548       } else {
2549         KMP_INFORM(NonUniform, "KMP_AFFINITY");
2550       }
2551     }
2552     kmp_str_buf_t buf;
2553     __kmp_str_buf_init(&buf);
2554 
2555     __kmp_str_buf_print(&buf, "%d", totals[maxIndex]);
2556     for (index = maxIndex - 1; index >= pkgIdIndex; index--) {
2557       __kmp_str_buf_print(&buf, " x %d", maxCt[index]);
2558     }
2559     KMP_INFORM(TopologyExtra, "KMP_AFFINITY", buf.str, maxCt[coreIdIndex],
2560                maxCt[threadIdIndex], __kmp_ncores);
2561 
2562     __kmp_str_buf_free(&buf);
2563   }
2564 
2565 #if KMP_MIC && REDUCE_TEAM_SIZE
2566   // Set the default team size.
2567   if ((__kmp_dflt_team_nth == 0) && (teamSize > 0)) {
2568     __kmp_dflt_team_nth = teamSize;
2569     KA_TRACE(20, ("__kmp_affinity_create_cpuinfo_map: setting "
2570                   "__kmp_dflt_team_nth = %d\n",
2571                   __kmp_dflt_team_nth));
2572   }
2573 #endif // KMP_MIC && REDUCE_TEAM_SIZE
2574 
2575   KMP_DEBUG_ASSERT(__kmp_pu_os_idx == NULL);
2576   KMP_DEBUG_ASSERT(num_avail == (unsigned)__kmp_avail_proc);
2577   __kmp_pu_os_idx = (int *)__kmp_allocate(sizeof(int) * __kmp_avail_proc);
2578   for (i = 0; i < num_avail; ++i) { // fill the os indices
2579     __kmp_pu_os_idx[i] = threadInfo[i][osIdIndex];
2580   }
2581 
2582   if (__kmp_affinity_type == affinity_none) {
2583     __kmp_free(lastId);
2584     __kmp_free(totals);
2585     __kmp_free(maxCt);
2586     __kmp_free(counts);
2587     CLEANUP_THREAD_INFO;
2588     return 0;
2589   }
2590 
2591   // Count the number of levels which have more nodes at that level than at the
2592   // parent's level (with there being an implicit root node of the top level).
2593   // This is equivalent to saying that there is at least one node at this level
2594   // which has a sibling. These levels are in the map, and the package level is
2595   // always in the map.
2596   bool *inMap = (bool *)__kmp_allocate((maxIndex + 1) * sizeof(bool));
2597   for (index = threadIdIndex; index < maxIndex; index++) {
2598     KMP_ASSERT(totals[index] >= totals[index + 1]);
2599     inMap[index] = (totals[index] > totals[index + 1]);
2600   }
2601   inMap[maxIndex] = (totals[maxIndex] > 1);
2602   inMap[pkgIdIndex] = true;
2603 
2604   int depth = 0;
2605   for (index = threadIdIndex; index <= maxIndex; index++) {
2606     if (inMap[index]) {
2607       depth++;
2608     }
2609   }
2610   KMP_ASSERT(depth > 0);
2611 
2612   // Construct the data structure that is to be returned.
2613   *address2os = (AddrUnsPair *)__kmp_allocate(sizeof(AddrUnsPair) * num_avail);
2614   int pkgLevel = -1;
2615   int coreLevel = -1;
2616   int threadLevel = -1;
2617 
2618   for (i = 0; i < num_avail; ++i) {
2619     Address addr(depth);
2620     unsigned os = threadInfo[i][osIdIndex];
2621     int src_index;
2622     int dst_index = 0;
2623 
2624     for (src_index = maxIndex; src_index >= threadIdIndex; src_index--) {
2625       if (!inMap[src_index]) {
2626         continue;
2627       }
2628       addr.labels[dst_index] = threadInfo[i][src_index];
2629       if (src_index == pkgIdIndex) {
2630         pkgLevel = dst_index;
2631       } else if (src_index == coreIdIndex) {
2632         coreLevel = dst_index;
2633       } else if (src_index == threadIdIndex) {
2634         threadLevel = dst_index;
2635       }
2636       dst_index++;
2637     }
2638     (*address2os)[i] = AddrUnsPair(addr, os);
2639   }
2640 
2641   if (__kmp_affinity_gran_levels < 0) {
2642     // Set the granularity level based on what levels are modeled
2643     // in the machine topology map.
2644     unsigned src_index;
2645     __kmp_affinity_gran_levels = 0;
2646     for (src_index = threadIdIndex; src_index <= maxIndex; src_index++) {
2647       if (!inMap[src_index]) {
2648         continue;
2649       }
2650       switch (src_index) {
2651       case threadIdIndex:
2652         if (__kmp_affinity_gran > affinity_gran_thread) {
2653           __kmp_affinity_gran_levels++;
2654         }
2655 
2656         break;
2657       case coreIdIndex:
2658         if (__kmp_affinity_gran > affinity_gran_core) {
2659           __kmp_affinity_gran_levels++;
2660         }
2661         break;
2662 
2663       case pkgIdIndex:
2664         if (__kmp_affinity_gran > affinity_gran_package) {
2665           __kmp_affinity_gran_levels++;
2666         }
2667         break;
2668       }
2669     }
2670   }
2671 
2672   if (__kmp_affinity_verbose) {
2673     __kmp_affinity_print_topology(*address2os, num_avail, depth, pkgLevel,
2674                                   coreLevel, threadLevel);
2675   }
2676 
2677   __kmp_free(inMap);
2678   __kmp_free(lastId);
2679   __kmp_free(totals);
2680   __kmp_free(maxCt);
2681   __kmp_free(counts);
2682   CLEANUP_THREAD_INFO;
2683   return depth;
2684 }
2685 
2686 // Create and return a table of affinity masks, indexed by OS thread ID.
2687 // This routine handles OR'ing together all the affinity masks of threads
2688 // that are sufficiently close, if granularity > fine.
2689 static kmp_affin_mask_t *__kmp_create_masks(unsigned *maxIndex,
2690                                             unsigned *numUnique,
2691                                             AddrUnsPair *address2os,
2692                                             unsigned numAddrs) {
2693   // First form a table of affinity masks in order of OS thread id.
2694   unsigned depth;
2695   unsigned maxOsId;
2696   unsigned i;
2697 
2698   KMP_ASSERT(numAddrs > 0);
2699   depth = address2os[0].first.depth;
2700 
2701   maxOsId = 0;
2702   for (i = numAddrs - 1;; --i) {
2703     unsigned osId = address2os[i].second;
2704     if (osId > maxOsId) {
2705       maxOsId = osId;
2706     }
2707     if (i == 0)
2708       break;
2709   }
2710   kmp_affin_mask_t *osId2Mask;
2711   KMP_CPU_ALLOC_ARRAY(osId2Mask, (maxOsId + 1));
2712 
2713   // Sort the address2os table according to physical order. Doing so will put
2714   // all threads on the same core/package/node in consecutive locations.
2715   qsort(address2os, numAddrs, sizeof(*address2os),
2716         __kmp_affinity_cmp_Address_labels);
2717 
2718   KMP_ASSERT(__kmp_affinity_gran_levels >= 0);
2719   if (__kmp_affinity_verbose && (__kmp_affinity_gran_levels > 0)) {
2720     KMP_INFORM(ThreadsMigrate, "KMP_AFFINITY", __kmp_affinity_gran_levels);
2721   }
2722   if (__kmp_affinity_gran_levels >= (int)depth) {
2723     if (__kmp_affinity_verbose ||
2724         (__kmp_affinity_warnings && (__kmp_affinity_type != affinity_none))) {
2725       KMP_WARNING(AffThreadsMayMigrate);
2726     }
2727   }
2728 
2729   // Run through the table, forming the masks for all threads on each core.
2730   // Threads on the same core will have identical "Address" objects, not
2731   // considering the last level, which must be the thread id. All threads on a
2732   // core will appear consecutively.
2733   unsigned unique = 0;
2734   unsigned j = 0; // index of 1st thread on core
2735   unsigned leader = 0;
2736   Address *leaderAddr = &(address2os[0].first);
2737   kmp_affin_mask_t *sum;
2738   KMP_CPU_ALLOC_ON_STACK(sum);
2739   KMP_CPU_ZERO(sum);
2740   KMP_CPU_SET(address2os[0].second, sum);
2741   for (i = 1; i < numAddrs; i++) {
2742     // If this thread is sufficiently close to the leader (within the
2743     // granularity setting), then set the bit for this os thread in the
2744     // affinity mask for this group, and go on to the next thread.
2745     if (leaderAddr->isClose(address2os[i].first, __kmp_affinity_gran_levels)) {
2746       KMP_CPU_SET(address2os[i].second, sum);
2747       continue;
2748     }
2749 
2750     // For every thread in this group, copy the mask to the thread's entry in
2751     // the osId2Mask table.  Mark the first address as a leader.
2752     for (; j < i; j++) {
2753       unsigned osId = address2os[j].second;
2754       KMP_DEBUG_ASSERT(osId <= maxOsId);
2755       kmp_affin_mask_t *mask = KMP_CPU_INDEX(osId2Mask, osId);
2756       KMP_CPU_COPY(mask, sum);
2757       address2os[j].first.leader = (j == leader);
2758     }
2759     unique++;
2760 
2761     // Start a new mask.
2762     leader = i;
2763     leaderAddr = &(address2os[i].first);
2764     KMP_CPU_ZERO(sum);
2765     KMP_CPU_SET(address2os[i].second, sum);
2766   }
2767 
2768   // For every thread in last group, copy the mask to the thread's
2769   // entry in the osId2Mask table.
2770   for (; j < i; j++) {
2771     unsigned osId = address2os[j].second;
2772     KMP_DEBUG_ASSERT(osId <= maxOsId);
2773     kmp_affin_mask_t *mask = KMP_CPU_INDEX(osId2Mask, osId);
2774     KMP_CPU_COPY(mask, sum);
2775     address2os[j].first.leader = (j == leader);
2776   }
2777   unique++;
2778   KMP_CPU_FREE_FROM_STACK(sum);
2779 
2780   *maxIndex = maxOsId;
2781   *numUnique = unique;
2782   return osId2Mask;
2783 }
2784 
2785 // Stuff for the affinity proclist parsers.  It's easier to declare these vars
2786 // as file-static than to try and pass them through the calling sequence of
2787 // the recursive-descent OMP_PLACES parser.
2788 static kmp_affin_mask_t *newMasks;
2789 static int numNewMasks;
2790 static int nextNewMask;
2791 
2792 #define ADD_MASK(_mask)                                                        \
2793   {                                                                            \
2794     if (nextNewMask >= numNewMasks) {                                          \
2795       int i;                                                                   \
2796       numNewMasks *= 2;                                                        \
2797       kmp_affin_mask_t *temp;                                                  \
2798       KMP_CPU_INTERNAL_ALLOC_ARRAY(temp, numNewMasks);                         \
2799       for (i = 0; i < numNewMasks / 2; i++) {                                  \
2800         kmp_affin_mask_t *src = KMP_CPU_INDEX(newMasks, i);                    \
2801         kmp_affin_mask_t *dest = KMP_CPU_INDEX(temp, i);                       \
2802         KMP_CPU_COPY(dest, src);                                               \
2803       }                                                                        \
2804       KMP_CPU_INTERNAL_FREE_ARRAY(newMasks, numNewMasks / 2);                  \
2805       newMasks = temp;                                                         \
2806     }                                                                          \
2807     KMP_CPU_COPY(KMP_CPU_INDEX(newMasks, nextNewMask), (_mask));               \
2808     nextNewMask++;                                                             \
2809   }
2810 
2811 #define ADD_MASK_OSID(_osId, _osId2Mask, _maxOsId)                             \
2812   {                                                                            \
2813     if (((_osId) > _maxOsId) ||                                                \
2814         (!KMP_CPU_ISSET((_osId), KMP_CPU_INDEX((_osId2Mask), (_osId))))) {     \
2815       if (__kmp_affinity_verbose ||                                            \
2816           (__kmp_affinity_warnings &&                                          \
2817            (__kmp_affinity_type != affinity_none))) {                          \
2818         KMP_WARNING(AffIgnoreInvalidProcID, _osId);                            \
2819       }                                                                        \
2820     } else {                                                                   \
2821       ADD_MASK(KMP_CPU_INDEX(_osId2Mask, (_osId)));                            \
2822     }                                                                          \
2823   }
2824 
2825 // Re-parse the proclist (for the explicit affinity type), and form the list
2826 // of affinity newMasks indexed by gtid.
2827 static void __kmp_affinity_process_proclist(kmp_affin_mask_t **out_masks,
2828                                             unsigned int *out_numMasks,
2829                                             const char *proclist,
2830                                             kmp_affin_mask_t *osId2Mask,
2831                                             int maxOsId) {
2832   int i;
2833   const char *scan = proclist;
2834   const char *next = proclist;
2835 
2836   // We use malloc() for the temporary mask vector, so that we can use
2837   // realloc() to extend it.
2838   numNewMasks = 2;
2839   KMP_CPU_INTERNAL_ALLOC_ARRAY(newMasks, numNewMasks);
2840   nextNewMask = 0;
2841   kmp_affin_mask_t *sumMask;
2842   KMP_CPU_ALLOC(sumMask);
2843   int setSize = 0;
2844 
2845   for (;;) {
2846     int start, end, stride;
2847 
2848     SKIP_WS(scan);
2849     next = scan;
2850     if (*next == '\0') {
2851       break;
2852     }
2853 
2854     if (*next == '{') {
2855       int num;
2856       setSize = 0;
2857       next++; // skip '{'
2858       SKIP_WS(next);
2859       scan = next;
2860 
2861       // Read the first integer in the set.
2862       KMP_ASSERT2((*next >= '0') && (*next <= '9'), "bad proclist");
2863       SKIP_DIGITS(next);
2864       num = __kmp_str_to_int(scan, *next);
2865       KMP_ASSERT2(num >= 0, "bad explicit proc list");
2866 
2867       // Copy the mask for that osId to the sum (union) mask.
2868       if ((num > maxOsId) ||
2869           (!KMP_CPU_ISSET(num, KMP_CPU_INDEX(osId2Mask, num)))) {
2870         if (__kmp_affinity_verbose ||
2871             (__kmp_affinity_warnings &&
2872              (__kmp_affinity_type != affinity_none))) {
2873           KMP_WARNING(AffIgnoreInvalidProcID, num);
2874         }
2875         KMP_CPU_ZERO(sumMask);
2876       } else {
2877         KMP_CPU_COPY(sumMask, KMP_CPU_INDEX(osId2Mask, num));
2878         setSize = 1;
2879       }
2880 
2881       for (;;) {
2882         // Check for end of set.
2883         SKIP_WS(next);
2884         if (*next == '}') {
2885           next++; // skip '}'
2886           break;
2887         }
2888 
2889         // Skip optional comma.
2890         if (*next == ',') {
2891           next++;
2892         }
2893         SKIP_WS(next);
2894 
2895         // Read the next integer in the set.
2896         scan = next;
2897         KMP_ASSERT2((*next >= '0') && (*next <= '9'), "bad explicit proc list");
2898 
2899         SKIP_DIGITS(next);
2900         num = __kmp_str_to_int(scan, *next);
2901         KMP_ASSERT2(num >= 0, "bad explicit proc list");
2902 
2903         // Add the mask for that osId to the sum mask.
2904         if ((num > maxOsId) ||
2905             (!KMP_CPU_ISSET(num, KMP_CPU_INDEX(osId2Mask, num)))) {
2906           if (__kmp_affinity_verbose ||
2907               (__kmp_affinity_warnings &&
2908                (__kmp_affinity_type != affinity_none))) {
2909             KMP_WARNING(AffIgnoreInvalidProcID, num);
2910           }
2911         } else {
2912           KMP_CPU_UNION(sumMask, KMP_CPU_INDEX(osId2Mask, num));
2913           setSize++;
2914         }
2915       }
2916       if (setSize > 0) {
2917         ADD_MASK(sumMask);
2918       }
2919 
2920       SKIP_WS(next);
2921       if (*next == ',') {
2922         next++;
2923       }
2924       scan = next;
2925       continue;
2926     }
2927 
2928     // Read the first integer.
2929     KMP_ASSERT2((*next >= '0') && (*next <= '9'), "bad explicit proc list");
2930     SKIP_DIGITS(next);
2931     start = __kmp_str_to_int(scan, *next);
2932     KMP_ASSERT2(start >= 0, "bad explicit proc list");
2933     SKIP_WS(next);
2934 
2935     // If this isn't a range, then add a mask to the list and go on.
2936     if (*next != '-') {
2937       ADD_MASK_OSID(start, osId2Mask, maxOsId);
2938 
2939       // Skip optional comma.
2940       if (*next == ',') {
2941         next++;
2942       }
2943       scan = next;
2944       continue;
2945     }
2946 
2947     // This is a range.  Skip over the '-' and read in the 2nd int.
2948     next++; // skip '-'
2949     SKIP_WS(next);
2950     scan = next;
2951     KMP_ASSERT2((*next >= '0') && (*next <= '9'), "bad explicit proc list");
2952     SKIP_DIGITS(next);
2953     end = __kmp_str_to_int(scan, *next);
2954     KMP_ASSERT2(end >= 0, "bad explicit proc list");
2955 
2956     // Check for a stride parameter
2957     stride = 1;
2958     SKIP_WS(next);
2959     if (*next == ':') {
2960       // A stride is specified.  Skip over the ':" and read the 3rd int.
2961       int sign = +1;
2962       next++; // skip ':'
2963       SKIP_WS(next);
2964       scan = next;
2965       if (*next == '-') {
2966         sign = -1;
2967         next++;
2968         SKIP_WS(next);
2969         scan = next;
2970       }
2971       KMP_ASSERT2((*next >= '0') && (*next <= '9'), "bad explicit proc list");
2972       SKIP_DIGITS(next);
2973       stride = __kmp_str_to_int(scan, *next);
2974       KMP_ASSERT2(stride >= 0, "bad explicit proc list");
2975       stride *= sign;
2976     }
2977 
2978     // Do some range checks.
2979     KMP_ASSERT2(stride != 0, "bad explicit proc list");
2980     if (stride > 0) {
2981       KMP_ASSERT2(start <= end, "bad explicit proc list");
2982     } else {
2983       KMP_ASSERT2(start >= end, "bad explicit proc list");
2984     }
2985     KMP_ASSERT2((end - start) / stride <= 65536, "bad explicit proc list");
2986 
2987     // Add the mask for each OS proc # to the list.
2988     if (stride > 0) {
2989       do {
2990         ADD_MASK_OSID(start, osId2Mask, maxOsId);
2991         start += stride;
2992       } while (start <= end);
2993     } else {
2994       do {
2995         ADD_MASK_OSID(start, osId2Mask, maxOsId);
2996         start += stride;
2997       } while (start >= end);
2998     }
2999 
3000     // Skip optional comma.
3001     SKIP_WS(next);
3002     if (*next == ',') {
3003       next++;
3004     }
3005     scan = next;
3006   }
3007 
3008   *out_numMasks = nextNewMask;
3009   if (nextNewMask == 0) {
3010     *out_masks = NULL;
3011     KMP_CPU_INTERNAL_FREE_ARRAY(newMasks, numNewMasks);
3012     return;
3013   }
3014   KMP_CPU_ALLOC_ARRAY((*out_masks), nextNewMask);
3015   for (i = 0; i < nextNewMask; i++) {
3016     kmp_affin_mask_t *src = KMP_CPU_INDEX(newMasks, i);
3017     kmp_affin_mask_t *dest = KMP_CPU_INDEX((*out_masks), i);
3018     KMP_CPU_COPY(dest, src);
3019   }
3020   KMP_CPU_INTERNAL_FREE_ARRAY(newMasks, numNewMasks);
3021   KMP_CPU_FREE(sumMask);
3022 }
3023 
3024 /*-----------------------------------------------------------------------------
3025 Re-parse the OMP_PLACES proc id list, forming the newMasks for the different
3026 places.  Again, Here is the grammar:
3027 
3028 place_list := place
3029 place_list := place , place_list
3030 place := num
3031 place := place : num
3032 place := place : num : signed
3033 place := { subplacelist }
3034 place := ! place                  // (lowest priority)
3035 subplace_list := subplace
3036 subplace_list := subplace , subplace_list
3037 subplace := num
3038 subplace := num : num
3039 subplace := num : num : signed
3040 signed := num
3041 signed := + signed
3042 signed := - signed
3043 -----------------------------------------------------------------------------*/
3044 static void __kmp_process_subplace_list(const char **scan,
3045                                         kmp_affin_mask_t *osId2Mask,
3046                                         int maxOsId, kmp_affin_mask_t *tempMask,
3047                                         int *setSize) {
3048   const char *next;
3049 
3050   for (;;) {
3051     int start, count, stride, i;
3052 
3053     // Read in the starting proc id
3054     SKIP_WS(*scan);
3055     KMP_ASSERT2((**scan >= '0') && (**scan <= '9'), "bad explicit places list");
3056     next = *scan;
3057     SKIP_DIGITS(next);
3058     start = __kmp_str_to_int(*scan, *next);
3059     KMP_ASSERT(start >= 0);
3060     *scan = next;
3061 
3062     // valid follow sets are ',' ':' and '}'
3063     SKIP_WS(*scan);
3064     if (**scan == '}' || **scan == ',') {
3065       if ((start > maxOsId) ||
3066           (!KMP_CPU_ISSET(start, KMP_CPU_INDEX(osId2Mask, start)))) {
3067         if (__kmp_affinity_verbose ||
3068             (__kmp_affinity_warnings &&
3069              (__kmp_affinity_type != affinity_none))) {
3070           KMP_WARNING(AffIgnoreInvalidProcID, start);
3071         }
3072       } else {
3073         KMP_CPU_UNION(tempMask, KMP_CPU_INDEX(osId2Mask, start));
3074         (*setSize)++;
3075       }
3076       if (**scan == '}') {
3077         break;
3078       }
3079       (*scan)++; // skip ','
3080       continue;
3081     }
3082     KMP_ASSERT2(**scan == ':', "bad explicit places list");
3083     (*scan)++; // skip ':'
3084 
3085     // Read count parameter
3086     SKIP_WS(*scan);
3087     KMP_ASSERT2((**scan >= '0') && (**scan <= '9'), "bad explicit places list");
3088     next = *scan;
3089     SKIP_DIGITS(next);
3090     count = __kmp_str_to_int(*scan, *next);
3091     KMP_ASSERT(count >= 0);
3092     *scan = next;
3093 
3094     // valid follow sets are ',' ':' and '}'
3095     SKIP_WS(*scan);
3096     if (**scan == '}' || **scan == ',') {
3097       for (i = 0; i < count; i++) {
3098         if ((start > maxOsId) ||
3099             (!KMP_CPU_ISSET(start, KMP_CPU_INDEX(osId2Mask, start)))) {
3100           if (__kmp_affinity_verbose ||
3101               (__kmp_affinity_warnings &&
3102                (__kmp_affinity_type != affinity_none))) {
3103             KMP_WARNING(AffIgnoreInvalidProcID, start);
3104           }
3105           break; // don't proliferate warnings for large count
3106         } else {
3107           KMP_CPU_UNION(tempMask, KMP_CPU_INDEX(osId2Mask, start));
3108           start++;
3109           (*setSize)++;
3110         }
3111       }
3112       if (**scan == '}') {
3113         break;
3114       }
3115       (*scan)++; // skip ','
3116       continue;
3117     }
3118     KMP_ASSERT2(**scan == ':', "bad explicit places list");
3119     (*scan)++; // skip ':'
3120 
3121     // Read stride parameter
3122     int sign = +1;
3123     for (;;) {
3124       SKIP_WS(*scan);
3125       if (**scan == '+') {
3126         (*scan)++; // skip '+'
3127         continue;
3128       }
3129       if (**scan == '-') {
3130         sign *= -1;
3131         (*scan)++; // skip '-'
3132         continue;
3133       }
3134       break;
3135     }
3136     SKIP_WS(*scan);
3137     KMP_ASSERT2((**scan >= '0') && (**scan <= '9'), "bad explicit places list");
3138     next = *scan;
3139     SKIP_DIGITS(next);
3140     stride = __kmp_str_to_int(*scan, *next);
3141     KMP_ASSERT(stride >= 0);
3142     *scan = next;
3143     stride *= sign;
3144 
3145     // valid follow sets are ',' and '}'
3146     SKIP_WS(*scan);
3147     if (**scan == '}' || **scan == ',') {
3148       for (i = 0; i < count; i++) {
3149         if ((start > maxOsId) ||
3150             (!KMP_CPU_ISSET(start, KMP_CPU_INDEX(osId2Mask, start)))) {
3151           if (__kmp_affinity_verbose ||
3152               (__kmp_affinity_warnings &&
3153                (__kmp_affinity_type != affinity_none))) {
3154             KMP_WARNING(AffIgnoreInvalidProcID, start);
3155           }
3156           break; // don't proliferate warnings for large count
3157         } else {
3158           KMP_CPU_UNION(tempMask, KMP_CPU_INDEX(osId2Mask, start));
3159           start += stride;
3160           (*setSize)++;
3161         }
3162       }
3163       if (**scan == '}') {
3164         break;
3165       }
3166       (*scan)++; // skip ','
3167       continue;
3168     }
3169 
3170     KMP_ASSERT2(0, "bad explicit places list");
3171   }
3172 }
3173 
3174 static void __kmp_process_place(const char **scan, kmp_affin_mask_t *osId2Mask,
3175                                 int maxOsId, kmp_affin_mask_t *tempMask,
3176                                 int *setSize) {
3177   const char *next;
3178 
3179   // valid follow sets are '{' '!' and num
3180   SKIP_WS(*scan);
3181   if (**scan == '{') {
3182     (*scan)++; // skip '{'
3183     __kmp_process_subplace_list(scan, osId2Mask, maxOsId, tempMask, setSize);
3184     KMP_ASSERT2(**scan == '}', "bad explicit places list");
3185     (*scan)++; // skip '}'
3186   } else if (**scan == '!') {
3187     (*scan)++; // skip '!'
3188     __kmp_process_place(scan, osId2Mask, maxOsId, tempMask, setSize);
3189     KMP_CPU_COMPLEMENT(maxOsId, tempMask);
3190   } else if ((**scan >= '0') && (**scan <= '9')) {
3191     next = *scan;
3192     SKIP_DIGITS(next);
3193     int num = __kmp_str_to_int(*scan, *next);
3194     KMP_ASSERT(num >= 0);
3195     if ((num > maxOsId) ||
3196         (!KMP_CPU_ISSET(num, KMP_CPU_INDEX(osId2Mask, num)))) {
3197       if (__kmp_affinity_verbose ||
3198           (__kmp_affinity_warnings && (__kmp_affinity_type != affinity_none))) {
3199         KMP_WARNING(AffIgnoreInvalidProcID, num);
3200       }
3201     } else {
3202       KMP_CPU_UNION(tempMask, KMP_CPU_INDEX(osId2Mask, num));
3203       (*setSize)++;
3204     }
3205     *scan = next; // skip num
3206   } else {
3207     KMP_ASSERT2(0, "bad explicit places list");
3208   }
3209 }
3210 
3211 // static void
3212 void __kmp_affinity_process_placelist(kmp_affin_mask_t **out_masks,
3213                                       unsigned int *out_numMasks,
3214                                       const char *placelist,
3215                                       kmp_affin_mask_t *osId2Mask,
3216                                       int maxOsId) {
3217   int i, j, count, stride, sign;
3218   const char *scan = placelist;
3219   const char *next = placelist;
3220 
3221   numNewMasks = 2;
3222   KMP_CPU_INTERNAL_ALLOC_ARRAY(newMasks, numNewMasks);
3223   nextNewMask = 0;
3224 
3225   // tempMask is modified based on the previous or initial
3226   //   place to form the current place
3227   // previousMask contains the previous place
3228   kmp_affin_mask_t *tempMask;
3229   kmp_affin_mask_t *previousMask;
3230   KMP_CPU_ALLOC(tempMask);
3231   KMP_CPU_ZERO(tempMask);
3232   KMP_CPU_ALLOC(previousMask);
3233   KMP_CPU_ZERO(previousMask);
3234   int setSize = 0;
3235 
3236   for (;;) {
3237     __kmp_process_place(&scan, osId2Mask, maxOsId, tempMask, &setSize);
3238 
3239     // valid follow sets are ',' ':' and EOL
3240     SKIP_WS(scan);
3241     if (*scan == '\0' || *scan == ',') {
3242       if (setSize > 0) {
3243         ADD_MASK(tempMask);
3244       }
3245       KMP_CPU_ZERO(tempMask);
3246       setSize = 0;
3247       if (*scan == '\0') {
3248         break;
3249       }
3250       scan++; // skip ','
3251       continue;
3252     }
3253 
3254     KMP_ASSERT2(*scan == ':', "bad explicit places list");
3255     scan++; // skip ':'
3256 
3257     // Read count parameter
3258     SKIP_WS(scan);
3259     KMP_ASSERT2((*scan >= '0') && (*scan <= '9'), "bad explicit places list");
3260     next = scan;
3261     SKIP_DIGITS(next);
3262     count = __kmp_str_to_int(scan, *next);
3263     KMP_ASSERT(count >= 0);
3264     scan = next;
3265 
3266     // valid follow sets are ',' ':' and EOL
3267     SKIP_WS(scan);
3268     if (*scan == '\0' || *scan == ',') {
3269       stride = +1;
3270     } else {
3271       KMP_ASSERT2(*scan == ':', "bad explicit places list");
3272       scan++; // skip ':'
3273 
3274       // Read stride parameter
3275       sign = +1;
3276       for (;;) {
3277         SKIP_WS(scan);
3278         if (*scan == '+') {
3279           scan++; // skip '+'
3280           continue;
3281         }
3282         if (*scan == '-') {
3283           sign *= -1;
3284           scan++; // skip '-'
3285           continue;
3286         }
3287         break;
3288       }
3289       SKIP_WS(scan);
3290       KMP_ASSERT2((*scan >= '0') && (*scan <= '9'), "bad explicit places list");
3291       next = scan;
3292       SKIP_DIGITS(next);
3293       stride = __kmp_str_to_int(scan, *next);
3294       KMP_DEBUG_ASSERT(stride >= 0);
3295       scan = next;
3296       stride *= sign;
3297     }
3298 
3299     // Add places determined by initial_place : count : stride
3300     for (i = 0; i < count; i++) {
3301       if (setSize == 0) {
3302         break;
3303       }
3304       // Add the current place, then build the next place (tempMask) from that
3305       KMP_CPU_COPY(previousMask, tempMask);
3306       ADD_MASK(previousMask);
3307       KMP_CPU_ZERO(tempMask);
3308       setSize = 0;
3309       KMP_CPU_SET_ITERATE(j, previousMask) {
3310         if (!KMP_CPU_ISSET(j, previousMask)) {
3311           continue;
3312         }
3313         if ((j + stride > maxOsId) || (j + stride < 0) ||
3314             (!KMP_CPU_ISSET(j, __kmp_affin_fullMask)) ||
3315             (!KMP_CPU_ISSET(j + stride,
3316                             KMP_CPU_INDEX(osId2Mask, j + stride)))) {
3317           if ((__kmp_affinity_verbose ||
3318                (__kmp_affinity_warnings &&
3319                 (__kmp_affinity_type != affinity_none))) &&
3320               i < count - 1) {
3321             KMP_WARNING(AffIgnoreInvalidProcID, j + stride);
3322           }
3323           continue;
3324         }
3325         KMP_CPU_SET(j + stride, tempMask);
3326         setSize++;
3327       }
3328     }
3329     KMP_CPU_ZERO(tempMask);
3330     setSize = 0;
3331 
3332     // valid follow sets are ',' and EOL
3333     SKIP_WS(scan);
3334     if (*scan == '\0') {
3335       break;
3336     }
3337     if (*scan == ',') {
3338       scan++; // skip ','
3339       continue;
3340     }
3341 
3342     KMP_ASSERT2(0, "bad explicit places list");
3343   }
3344 
3345   *out_numMasks = nextNewMask;
3346   if (nextNewMask == 0) {
3347     *out_masks = NULL;
3348     KMP_CPU_INTERNAL_FREE_ARRAY(newMasks, numNewMasks);
3349     return;
3350   }
3351   KMP_CPU_ALLOC_ARRAY((*out_masks), nextNewMask);
3352   KMP_CPU_FREE(tempMask);
3353   KMP_CPU_FREE(previousMask);
3354   for (i = 0; i < nextNewMask; i++) {
3355     kmp_affin_mask_t *src = KMP_CPU_INDEX(newMasks, i);
3356     kmp_affin_mask_t *dest = KMP_CPU_INDEX((*out_masks), i);
3357     KMP_CPU_COPY(dest, src);
3358   }
3359   KMP_CPU_INTERNAL_FREE_ARRAY(newMasks, numNewMasks);
3360 }
3361 
3362 #undef ADD_MASK
3363 #undef ADD_MASK_OSID
3364 
3365 #if KMP_USE_HWLOC
3366 static int __kmp_hwloc_skip_PUs_obj(hwloc_topology_t t, hwloc_obj_t o) {
3367   // skip PUs descendants of the object o
3368   int skipped = 0;
3369   hwloc_obj_t hT = NULL;
3370   int N = __kmp_hwloc_count_children_by_type(t, o, HWLOC_OBJ_PU, &hT);
3371   for (int i = 0; i < N; ++i) {
3372     KMP_DEBUG_ASSERT(hT);
3373     unsigned idx = hT->os_index;
3374     if (KMP_CPU_ISSET(idx, __kmp_affin_fullMask)) {
3375       KMP_CPU_CLR(idx, __kmp_affin_fullMask);
3376       KC_TRACE(200, ("KMP_HW_SUBSET: skipped proc %d\n", idx));
3377       ++skipped;
3378     }
3379     hT = hwloc_get_next_obj_by_type(t, HWLOC_OBJ_PU, hT);
3380   }
3381   return skipped; // count number of skipped units
3382 }
3383 
3384 static int __kmp_hwloc_obj_has_PUs(hwloc_topology_t t, hwloc_obj_t o) {
3385   // check if obj has PUs present in fullMask
3386   hwloc_obj_t hT = NULL;
3387   int N = __kmp_hwloc_count_children_by_type(t, o, HWLOC_OBJ_PU, &hT);
3388   for (int i = 0; i < N; ++i) {
3389     KMP_DEBUG_ASSERT(hT);
3390     unsigned idx = hT->os_index;
3391     if (KMP_CPU_ISSET(idx, __kmp_affin_fullMask))
3392       return 1; // found PU
3393     hT = hwloc_get_next_obj_by_type(t, HWLOC_OBJ_PU, hT);
3394   }
3395   return 0; // no PUs found
3396 }
3397 #endif // KMP_USE_HWLOC
3398 
3399 static void __kmp_apply_thread_places(AddrUnsPair **pAddr, int depth) {
3400   AddrUnsPair *newAddr;
3401   if (__kmp_hws_requested == 0)
3402     goto _exit; // no topology limiting actions requested, exit
3403 #if KMP_USE_HWLOC
3404   if (__kmp_affinity_dispatch->get_api_type() == KMPAffinity::HWLOC) {
3405     // Number of subobjects calculated dynamically, this works fine for
3406     // any non-uniform topology.
3407     // L2 cache objects are determined by depth, other objects - by type.
3408     hwloc_topology_t tp = __kmp_hwloc_topology;
3409     int nS = 0, nN = 0, nL = 0, nC = 0,
3410         nT = 0; // logical index including skipped
3411     int nCr = 0, nTr = 0; // number of requested units
3412     int nPkg = 0, nCo = 0, n_new = 0, n_old = 0, nCpP = 0, nTpC = 0; // counters
3413     hwloc_obj_t hT, hC, hL, hN, hS; // hwloc objects (pointers to)
3414     int L2depth, idx;
3415 
3416     // check support of extensions ----------------------------------
3417     int numa_support = 0, tile_support = 0;
3418     if (__kmp_pu_os_idx)
3419       hT = hwloc_get_pu_obj_by_os_index(tp,
3420                                         __kmp_pu_os_idx[__kmp_avail_proc - 1]);
3421     else
3422       hT = hwloc_get_obj_by_type(tp, HWLOC_OBJ_PU, __kmp_avail_proc - 1);
3423     if (hT == NULL) { // something's gone wrong
3424       KMP_WARNING(AffHWSubsetUnsupported);
3425       goto _exit;
3426     }
3427     // check NUMA node
3428     hN = hwloc_get_ancestor_obj_by_type(tp, HWLOC_OBJ_NUMANODE, hT);
3429     hS = hwloc_get_ancestor_obj_by_type(tp, HWLOC_OBJ_PACKAGE, hT);
3430     if (hN != NULL && hN->depth > hS->depth) {
3431       numa_support = 1; // 1 in case socket includes node(s)
3432     } else if (__kmp_hws_node.num > 0) {
3433       // don't support sockets inside NUMA node (no such HW found for testing)
3434       KMP_WARNING(AffHWSubsetUnsupported);
3435       goto _exit;
3436     }
3437     // check L2 cahce, get object by depth because of multiple caches
3438     L2depth = hwloc_get_cache_type_depth(tp, 2, HWLOC_OBJ_CACHE_UNIFIED);
3439     hL = hwloc_get_ancestor_obj_by_depth(tp, L2depth, hT);
3440     if (hL != NULL &&
3441         __kmp_hwloc_count_children_by_type(tp, hL, HWLOC_OBJ_CORE, &hC) > 1) {
3442       tile_support = 1; // no sense to count L2 if it includes single core
3443     } else if (__kmp_hws_tile.num > 0) {
3444       if (__kmp_hws_core.num == 0) {
3445         __kmp_hws_core = __kmp_hws_tile; // replace L2 with core
3446         __kmp_hws_tile.num = 0;
3447       } else {
3448         // L2 and core are both requested, but represent same object
3449         KMP_WARNING(AffHWSubsetInvalid);
3450         goto _exit;
3451       }
3452     }
3453     // end of check of extensions -----------------------------------
3454 
3455     // fill in unset items, validate settings -----------------------
3456     if (__kmp_hws_socket.num == 0)
3457       __kmp_hws_socket.num = nPackages; // use all available sockets
3458     if (__kmp_hws_socket.offset >= nPackages) {
3459       KMP_WARNING(AffHWSubsetManySockets);
3460       goto _exit;
3461     }
3462     if (numa_support) {
3463       hN = NULL;
3464       int NN = __kmp_hwloc_count_children_by_type(tp, hS, HWLOC_OBJ_NUMANODE,
3465                                                   &hN); // num nodes in socket
3466       if (__kmp_hws_node.num == 0)
3467         __kmp_hws_node.num = NN; // use all available nodes
3468       if (__kmp_hws_node.offset >= NN) {
3469         KMP_WARNING(AffHWSubsetManyNodes);
3470         goto _exit;
3471       }
3472       if (tile_support) {
3473         // get num tiles in node
3474         int NL = __kmp_hwloc_count_children_by_depth(tp, hN, L2depth, &hL);
3475         if (__kmp_hws_tile.num == 0) {
3476           __kmp_hws_tile.num = NL + 1;
3477         } // use all available tiles, some node may have more tiles, thus +1
3478         if (__kmp_hws_tile.offset >= NL) {
3479           KMP_WARNING(AffHWSubsetManyTiles);
3480           goto _exit;
3481         }
3482         int NC = __kmp_hwloc_count_children_by_type(tp, hL, HWLOC_OBJ_CORE,
3483                                                     &hC); // num cores in tile
3484         if (__kmp_hws_core.num == 0)
3485           __kmp_hws_core.num = NC; // use all available cores
3486         if (__kmp_hws_core.offset >= NC) {
3487           KMP_WARNING(AffHWSubsetManyCores);
3488           goto _exit;
3489         }
3490       } else { // tile_support
3491         int NC = __kmp_hwloc_count_children_by_type(tp, hN, HWLOC_OBJ_CORE,
3492                                                     &hC); // num cores in node
3493         if (__kmp_hws_core.num == 0)
3494           __kmp_hws_core.num = NC; // use all available cores
3495         if (__kmp_hws_core.offset >= NC) {
3496           KMP_WARNING(AffHWSubsetManyCores);
3497           goto _exit;
3498         }
3499       } // tile_support
3500     } else { // numa_support
3501       if (tile_support) {
3502         // get num tiles in socket
3503         int NL = __kmp_hwloc_count_children_by_depth(tp, hS, L2depth, &hL);
3504         if (__kmp_hws_tile.num == 0)
3505           __kmp_hws_tile.num = NL; // use all available tiles
3506         if (__kmp_hws_tile.offset >= NL) {
3507           KMP_WARNING(AffHWSubsetManyTiles);
3508           goto _exit;
3509         }
3510         int NC = __kmp_hwloc_count_children_by_type(tp, hL, HWLOC_OBJ_CORE,
3511                                                     &hC); // num cores in tile
3512         if (__kmp_hws_core.num == 0)
3513           __kmp_hws_core.num = NC; // use all available cores
3514         if (__kmp_hws_core.offset >= NC) {
3515           KMP_WARNING(AffHWSubsetManyCores);
3516           goto _exit;
3517         }
3518       } else { // tile_support
3519         int NC = __kmp_hwloc_count_children_by_type(tp, hS, HWLOC_OBJ_CORE,
3520                                                     &hC); // num cores in socket
3521         if (__kmp_hws_core.num == 0)
3522           __kmp_hws_core.num = NC; // use all available cores
3523         if (__kmp_hws_core.offset >= NC) {
3524           KMP_WARNING(AffHWSubsetManyCores);
3525           goto _exit;
3526         }
3527       } // tile_support
3528     }
3529     if (__kmp_hws_proc.num == 0)
3530       __kmp_hws_proc.num = __kmp_nThreadsPerCore; // use all available procs
3531     if (__kmp_hws_proc.offset >= __kmp_nThreadsPerCore) {
3532       KMP_WARNING(AffHWSubsetManyProcs);
3533       goto _exit;
3534     }
3535     // end of validation --------------------------------------------
3536 
3537     if (pAddr) // pAddr is NULL in case of affinity_none
3538       newAddr = (AddrUnsPair *)__kmp_allocate(sizeof(AddrUnsPair) *
3539                                               __kmp_avail_proc); // max size
3540     // main loop to form HW subset ----------------------------------
3541     hS = NULL;
3542     int NP = hwloc_get_nbobjs_by_type(tp, HWLOC_OBJ_PACKAGE);
3543     for (int s = 0; s < NP; ++s) {
3544       // Check Socket -----------------------------------------------
3545       hS = hwloc_get_next_obj_by_type(tp, HWLOC_OBJ_PACKAGE, hS);
3546       if (!__kmp_hwloc_obj_has_PUs(tp, hS))
3547         continue; // skip socket if all PUs are out of fullMask
3548       ++nS; // only count objects those have PUs in affinity mask
3549       if (nS <= __kmp_hws_socket.offset ||
3550           nS > __kmp_hws_socket.num + __kmp_hws_socket.offset) {
3551         n_old += __kmp_hwloc_skip_PUs_obj(tp, hS); // skip socket
3552         continue; // move to next socket
3553       }
3554       nCr = 0; // count number of cores per socket
3555       // socket requested, go down the topology tree
3556       // check 4 cases: (+NUMA+Tile), (+NUMA-Tile), (-NUMA+Tile), (-NUMA-Tile)
3557       if (numa_support) {
3558         nN = 0;
3559         hN = NULL;
3560         // num nodes in current socket
3561         int NN =
3562             __kmp_hwloc_count_children_by_type(tp, hS, HWLOC_OBJ_NUMANODE, &hN);
3563         for (int n = 0; n < NN; ++n) {
3564           // Check NUMA Node ----------------------------------------
3565           if (!__kmp_hwloc_obj_has_PUs(tp, hN)) {
3566             hN = hwloc_get_next_obj_by_type(tp, HWLOC_OBJ_NUMANODE, hN);
3567             continue; // skip node if all PUs are out of fullMask
3568           }
3569           ++nN;
3570           if (nN <= __kmp_hws_node.offset ||
3571               nN > __kmp_hws_node.num + __kmp_hws_node.offset) {
3572             // skip node as not requested
3573             n_old += __kmp_hwloc_skip_PUs_obj(tp, hN); // skip node
3574             hN = hwloc_get_next_obj_by_type(tp, HWLOC_OBJ_NUMANODE, hN);
3575             continue; // move to next node
3576           }
3577           // node requested, go down the topology tree
3578           if (tile_support) {
3579             nL = 0;
3580             hL = NULL;
3581             int NL = __kmp_hwloc_count_children_by_depth(tp, hN, L2depth, &hL);
3582             for (int l = 0; l < NL; ++l) {
3583               // Check L2 (tile) ------------------------------------
3584               if (!__kmp_hwloc_obj_has_PUs(tp, hL)) {
3585                 hL = hwloc_get_next_obj_by_depth(tp, L2depth, hL);
3586                 continue; // skip tile if all PUs are out of fullMask
3587               }
3588               ++nL;
3589               if (nL <= __kmp_hws_tile.offset ||
3590                   nL > __kmp_hws_tile.num + __kmp_hws_tile.offset) {
3591                 // skip tile as not requested
3592                 n_old += __kmp_hwloc_skip_PUs_obj(tp, hL); // skip tile
3593                 hL = hwloc_get_next_obj_by_depth(tp, L2depth, hL);
3594                 continue; // move to next tile
3595               }
3596               // tile requested, go down the topology tree
3597               nC = 0;
3598               hC = NULL;
3599               // num cores in current tile
3600               int NC = __kmp_hwloc_count_children_by_type(tp, hL,
3601                                                           HWLOC_OBJ_CORE, &hC);
3602               for (int c = 0; c < NC; ++c) {
3603                 // Check Core ---------------------------------------
3604                 if (!__kmp_hwloc_obj_has_PUs(tp, hC)) {
3605                   hC = hwloc_get_next_obj_by_type(tp, HWLOC_OBJ_CORE, hC);
3606                   continue; // skip core if all PUs are out of fullMask
3607                 }
3608                 ++nC;
3609                 if (nC <= __kmp_hws_core.offset ||
3610                     nC > __kmp_hws_core.num + __kmp_hws_core.offset) {
3611                   // skip node as not requested
3612                   n_old += __kmp_hwloc_skip_PUs_obj(tp, hC); // skip core
3613                   hC = hwloc_get_next_obj_by_type(tp, HWLOC_OBJ_CORE, hC);
3614                   continue; // move to next node
3615                 }
3616                 // core requested, go down to PUs
3617                 nT = 0;
3618                 nTr = 0;
3619                 hT = NULL;
3620                 // num procs in current core
3621                 int NT = __kmp_hwloc_count_children_by_type(tp, hC,
3622                                                             HWLOC_OBJ_PU, &hT);
3623                 for (int t = 0; t < NT; ++t) {
3624                   // Check PU ---------------------------------------
3625                   idx = hT->os_index;
3626                   if (!KMP_CPU_ISSET(idx, __kmp_affin_fullMask)) {
3627                     hT = hwloc_get_next_obj_by_type(tp, HWLOC_OBJ_PU, hT);
3628                     continue; // skip PU if not in fullMask
3629                   }
3630                   ++nT;
3631                   if (nT <= __kmp_hws_proc.offset ||
3632                       nT > __kmp_hws_proc.num + __kmp_hws_proc.offset) {
3633                     // skip PU
3634                     KMP_CPU_CLR(idx, __kmp_affin_fullMask);
3635                     ++n_old;
3636                     KC_TRACE(200, ("KMP_HW_SUBSET: skipped proc %d\n", idx));
3637                     hT = hwloc_get_next_obj_by_type(tp, HWLOC_OBJ_PU, hT);
3638                     continue; // move to next node
3639                   }
3640                   ++nTr;
3641                   if (pAddr) // collect requested thread's data
3642                     newAddr[n_new] = (*pAddr)[n_old];
3643                   ++n_new;
3644                   ++n_old;
3645                   hT = hwloc_get_next_obj_by_type(tp, HWLOC_OBJ_PU, hT);
3646                 } // threads loop
3647                 if (nTr > 0) {
3648                   ++nCr; // num cores per socket
3649                   ++nCo; // total num cores
3650                   if (nTr > nTpC)
3651                     nTpC = nTr; // calc max threads per core
3652                 }
3653                 hC = hwloc_get_next_obj_by_type(tp, HWLOC_OBJ_CORE, hC);
3654               } // cores loop
3655               hL = hwloc_get_next_obj_by_depth(tp, L2depth, hL);
3656             } // tiles loop
3657           } else { // tile_support
3658             // no tiles, check cores
3659             nC = 0;
3660             hC = NULL;
3661             // num cores in current node
3662             int NC =
3663                 __kmp_hwloc_count_children_by_type(tp, hN, HWLOC_OBJ_CORE, &hC);
3664             for (int c = 0; c < NC; ++c) {
3665               // Check Core ---------------------------------------
3666               if (!__kmp_hwloc_obj_has_PUs(tp, hC)) {
3667                 hC = hwloc_get_next_obj_by_type(tp, HWLOC_OBJ_CORE, hC);
3668                 continue; // skip core if all PUs are out of fullMask
3669               }
3670               ++nC;
3671               if (nC <= __kmp_hws_core.offset ||
3672                   nC > __kmp_hws_core.num + __kmp_hws_core.offset) {
3673                 // skip node as not requested
3674                 n_old += __kmp_hwloc_skip_PUs_obj(tp, hC); // skip core
3675                 hC = hwloc_get_next_obj_by_type(tp, HWLOC_OBJ_CORE, hC);
3676                 continue; // move to next node
3677               }
3678               // core requested, go down to PUs
3679               nT = 0;
3680               nTr = 0;
3681               hT = NULL;
3682               int NT =
3683                   __kmp_hwloc_count_children_by_type(tp, hC, HWLOC_OBJ_PU, &hT);
3684               for (int t = 0; t < NT; ++t) {
3685                 // Check PU ---------------------------------------
3686                 idx = hT->os_index;
3687                 if (!KMP_CPU_ISSET(idx, __kmp_affin_fullMask)) {
3688                   hT = hwloc_get_next_obj_by_type(tp, HWLOC_OBJ_PU, hT);
3689                   continue; // skip PU if not in fullMask
3690                 }
3691                 ++nT;
3692                 if (nT <= __kmp_hws_proc.offset ||
3693                     nT > __kmp_hws_proc.num + __kmp_hws_proc.offset) {
3694                   // skip PU
3695                   KMP_CPU_CLR(idx, __kmp_affin_fullMask);
3696                   ++n_old;
3697                   KC_TRACE(200, ("KMP_HW_SUBSET: skipped proc %d\n", idx));
3698                   hT = hwloc_get_next_obj_by_type(tp, HWLOC_OBJ_PU, hT);
3699                   continue; // move to next node
3700                 }
3701                 ++nTr;
3702                 if (pAddr) // collect requested thread's data
3703                   newAddr[n_new] = (*pAddr)[n_old];
3704                 ++n_new;
3705                 ++n_old;
3706                 hT = hwloc_get_next_obj_by_type(tp, HWLOC_OBJ_PU, hT);
3707               } // threads loop
3708               if (nTr > 0) {
3709                 ++nCr; // num cores per socket
3710                 ++nCo; // total num cores
3711                 if (nTr > nTpC)
3712                   nTpC = nTr; // calc max threads per core
3713               }
3714               hC = hwloc_get_next_obj_by_type(tp, HWLOC_OBJ_CORE, hC);
3715             } // cores loop
3716           } // tiles support
3717           hN = hwloc_get_next_obj_by_type(tp, HWLOC_OBJ_NUMANODE, hN);
3718         } // nodes loop
3719       } else { // numa_support
3720         // no NUMA support
3721         if (tile_support) {
3722           nL = 0;
3723           hL = NULL;
3724           // num tiles in current socket
3725           int NL = __kmp_hwloc_count_children_by_depth(tp, hS, L2depth, &hL);
3726           for (int l = 0; l < NL; ++l) {
3727             // Check L2 (tile) ------------------------------------
3728             if (!__kmp_hwloc_obj_has_PUs(tp, hL)) {
3729               hL = hwloc_get_next_obj_by_depth(tp, L2depth, hL);
3730               continue; // skip tile if all PUs are out of fullMask
3731             }
3732             ++nL;
3733             if (nL <= __kmp_hws_tile.offset ||
3734                 nL > __kmp_hws_tile.num + __kmp_hws_tile.offset) {
3735               // skip tile as not requested
3736               n_old += __kmp_hwloc_skip_PUs_obj(tp, hL); // skip tile
3737               hL = hwloc_get_next_obj_by_depth(tp, L2depth, hL);
3738               continue; // move to next tile
3739             }
3740             // tile requested, go down the topology tree
3741             nC = 0;
3742             hC = NULL;
3743             // num cores per tile
3744             int NC =
3745                 __kmp_hwloc_count_children_by_type(tp, hL, HWLOC_OBJ_CORE, &hC);
3746             for (int c = 0; c < NC; ++c) {
3747               // Check Core ---------------------------------------
3748               if (!__kmp_hwloc_obj_has_PUs(tp, hC)) {
3749                 hC = hwloc_get_next_obj_by_type(tp, HWLOC_OBJ_CORE, hC);
3750                 continue; // skip core if all PUs are out of fullMask
3751               }
3752               ++nC;
3753               if (nC <= __kmp_hws_core.offset ||
3754                   nC > __kmp_hws_core.num + __kmp_hws_core.offset) {
3755                 // skip node as not requested
3756                 n_old += __kmp_hwloc_skip_PUs_obj(tp, hC); // skip core
3757                 hC = hwloc_get_next_obj_by_type(tp, HWLOC_OBJ_CORE, hC);
3758                 continue; // move to next node
3759               }
3760               // core requested, go down to PUs
3761               nT = 0;
3762               nTr = 0;
3763               hT = NULL;
3764               // num procs per core
3765               int NT =
3766                   __kmp_hwloc_count_children_by_type(tp, hC, HWLOC_OBJ_PU, &hT);
3767               for (int t = 0; t < NT; ++t) {
3768                 // Check PU ---------------------------------------
3769                 idx = hT->os_index;
3770                 if (!KMP_CPU_ISSET(idx, __kmp_affin_fullMask)) {
3771                   hT = hwloc_get_next_obj_by_type(tp, HWLOC_OBJ_PU, hT);
3772                   continue; // skip PU if not in fullMask
3773                 }
3774                 ++nT;
3775                 if (nT <= __kmp_hws_proc.offset ||
3776                     nT > __kmp_hws_proc.num + __kmp_hws_proc.offset) {
3777                   // skip PU
3778                   KMP_CPU_CLR(idx, __kmp_affin_fullMask);
3779                   ++n_old;
3780                   KC_TRACE(200, ("KMP_HW_SUBSET: skipped proc %d\n", idx));
3781                   hT = hwloc_get_next_obj_by_type(tp, HWLOC_OBJ_PU, hT);
3782                   continue; // move to next node
3783                 }
3784                 ++nTr;
3785                 if (pAddr) // collect requested thread's data
3786                   newAddr[n_new] = (*pAddr)[n_old];
3787                 ++n_new;
3788                 ++n_old;
3789                 hT = hwloc_get_next_obj_by_type(tp, HWLOC_OBJ_PU, hT);
3790               } // threads loop
3791               if (nTr > 0) {
3792                 ++nCr; // num cores per socket
3793                 ++nCo; // total num cores
3794                 if (nTr > nTpC)
3795                   nTpC = nTr; // calc max threads per core
3796               }
3797               hC = hwloc_get_next_obj_by_type(tp, HWLOC_OBJ_CORE, hC);
3798             } // cores loop
3799             hL = hwloc_get_next_obj_by_depth(tp, L2depth, hL);
3800           } // tiles loop
3801         } else { // tile_support
3802           // no tiles, check cores
3803           nC = 0;
3804           hC = NULL;
3805           // num cores in socket
3806           int NC =
3807               __kmp_hwloc_count_children_by_type(tp, hS, HWLOC_OBJ_CORE, &hC);
3808           for (int c = 0; c < NC; ++c) {
3809             // Check Core -------------------------------------------
3810             if (!__kmp_hwloc_obj_has_PUs(tp, hC)) {
3811               hC = hwloc_get_next_obj_by_type(tp, HWLOC_OBJ_CORE, hC);
3812               continue; // skip core if all PUs are out of fullMask
3813             }
3814             ++nC;
3815             if (nC <= __kmp_hws_core.offset ||
3816                 nC > __kmp_hws_core.num + __kmp_hws_core.offset) {
3817               // skip node as not requested
3818               n_old += __kmp_hwloc_skip_PUs_obj(tp, hC); // skip core
3819               hC = hwloc_get_next_obj_by_type(tp, HWLOC_OBJ_CORE, hC);
3820               continue; // move to next node
3821             }
3822             // core requested, go down to PUs
3823             nT = 0;
3824             nTr = 0;
3825             hT = NULL;
3826             // num procs per core
3827             int NT =
3828                 __kmp_hwloc_count_children_by_type(tp, hC, HWLOC_OBJ_PU, &hT);
3829             for (int t = 0; t < NT; ++t) {
3830               // Check PU ---------------------------------------
3831               idx = hT->os_index;
3832               if (!KMP_CPU_ISSET(idx, __kmp_affin_fullMask)) {
3833                 hT = hwloc_get_next_obj_by_type(tp, HWLOC_OBJ_PU, hT);
3834                 continue; // skip PU if not in fullMask
3835               }
3836               ++nT;
3837               if (nT <= __kmp_hws_proc.offset ||
3838                   nT > __kmp_hws_proc.num + __kmp_hws_proc.offset) {
3839                 // skip PU
3840                 KMP_CPU_CLR(idx, __kmp_affin_fullMask);
3841                 ++n_old;
3842                 KC_TRACE(200, ("KMP_HW_SUBSET: skipped proc %d\n", idx));
3843                 hT = hwloc_get_next_obj_by_type(tp, HWLOC_OBJ_PU, hT);
3844                 continue; // move to next node
3845               }
3846               ++nTr;
3847               if (pAddr) // collect requested thread's data
3848                 newAddr[n_new] = (*pAddr)[n_old];
3849               ++n_new;
3850               ++n_old;
3851               hT = hwloc_get_next_obj_by_type(tp, HWLOC_OBJ_PU, hT);
3852             } // threads loop
3853             if (nTr > 0) {
3854               ++nCr; // num cores per socket
3855               ++nCo; // total num cores
3856               if (nTr > nTpC)
3857                 nTpC = nTr; // calc max threads per core
3858             }
3859             hC = hwloc_get_next_obj_by_type(tp, HWLOC_OBJ_CORE, hC);
3860           } // cores loop
3861         } // tiles support
3862       } // numa_support
3863       if (nCr > 0) { // found cores?
3864         ++nPkg; // num sockets
3865         if (nCr > nCpP)
3866           nCpP = nCr; // calc max cores per socket
3867       }
3868     } // sockets loop
3869 
3870     // check the subset is valid
3871     KMP_DEBUG_ASSERT(n_old == __kmp_avail_proc);
3872     KMP_DEBUG_ASSERT(nPkg > 0);
3873     KMP_DEBUG_ASSERT(nCpP > 0);
3874     KMP_DEBUG_ASSERT(nTpC > 0);
3875     KMP_DEBUG_ASSERT(nCo > 0);
3876     KMP_DEBUG_ASSERT(nPkg <= nPackages);
3877     KMP_DEBUG_ASSERT(nCpP <= nCoresPerPkg);
3878     KMP_DEBUG_ASSERT(nTpC <= __kmp_nThreadsPerCore);
3879     KMP_DEBUG_ASSERT(nCo <= __kmp_ncores);
3880 
3881     nPackages = nPkg; // correct num sockets
3882     nCoresPerPkg = nCpP; // correct num cores per socket
3883     __kmp_nThreadsPerCore = nTpC; // correct num threads per core
3884     __kmp_avail_proc = n_new; // correct num procs
3885     __kmp_ncores = nCo; // correct num cores
3886     // hwloc topology method end
3887   } else
3888 #endif // KMP_USE_HWLOC
3889   {
3890     int n_old = 0, n_new = 0, proc_num = 0;
3891     if (__kmp_hws_node.num > 0 || __kmp_hws_tile.num > 0) {
3892       KMP_WARNING(AffHWSubsetNoHWLOC);
3893       goto _exit;
3894     }
3895     if (__kmp_hws_socket.num == 0)
3896       __kmp_hws_socket.num = nPackages; // use all available sockets
3897     if (__kmp_hws_core.num == 0)
3898       __kmp_hws_core.num = nCoresPerPkg; // use all available cores
3899     if (__kmp_hws_proc.num == 0 || __kmp_hws_proc.num > __kmp_nThreadsPerCore)
3900       __kmp_hws_proc.num = __kmp_nThreadsPerCore; // use all HW contexts
3901     if (!__kmp_affinity_uniform_topology()) {
3902       KMP_WARNING(AffHWSubsetNonUniform);
3903       goto _exit; // don't support non-uniform topology
3904     }
3905     if (depth > 3) {
3906       KMP_WARNING(AffHWSubsetNonThreeLevel);
3907       goto _exit; // don't support not-3-level topology
3908     }
3909     if (__kmp_hws_socket.offset + __kmp_hws_socket.num > nPackages) {
3910       KMP_WARNING(AffHWSubsetManySockets);
3911       goto _exit;
3912     }
3913     if (__kmp_hws_core.offset + __kmp_hws_core.num > nCoresPerPkg) {
3914       KMP_WARNING(AffHWSubsetManyCores);
3915       goto _exit;
3916     }
3917     // Form the requested subset
3918     if (pAddr) // pAddr is NULL in case of affinity_none
3919       newAddr = (AddrUnsPair *)__kmp_allocate(
3920           sizeof(AddrUnsPair) * __kmp_hws_socket.num * __kmp_hws_core.num *
3921           __kmp_hws_proc.num);
3922     for (int i = 0; i < nPackages; ++i) {
3923       if (i < __kmp_hws_socket.offset ||
3924           i >= __kmp_hws_socket.offset + __kmp_hws_socket.num) {
3925         // skip not-requested socket
3926         n_old += nCoresPerPkg * __kmp_nThreadsPerCore;
3927         if (__kmp_pu_os_idx != NULL) {
3928           // walk through skipped socket
3929           for (int j = 0; j < nCoresPerPkg; ++j) {
3930             for (int k = 0; k < __kmp_nThreadsPerCore; ++k) {
3931               KMP_CPU_CLR(__kmp_pu_os_idx[proc_num], __kmp_affin_fullMask);
3932               ++proc_num;
3933             }
3934           }
3935         }
3936       } else {
3937         // walk through requested socket
3938         for (int j = 0; j < nCoresPerPkg; ++j) {
3939           if (j < __kmp_hws_core.offset ||
3940               j >= __kmp_hws_core.offset +
3941                        __kmp_hws_core.num) { // skip not-requested core
3942             n_old += __kmp_nThreadsPerCore;
3943             if (__kmp_pu_os_idx != NULL) {
3944               for (int k = 0; k < __kmp_nThreadsPerCore; ++k) {
3945                 KMP_CPU_CLR(__kmp_pu_os_idx[proc_num], __kmp_affin_fullMask);
3946                 ++proc_num;
3947               }
3948             }
3949           } else {
3950             // walk through requested core
3951             for (int k = 0; k < __kmp_nThreadsPerCore; ++k) {
3952               if (k < __kmp_hws_proc.num) {
3953                 if (pAddr) // collect requested thread's data
3954                   newAddr[n_new] = (*pAddr)[n_old];
3955                 n_new++;
3956               } else {
3957                 if (__kmp_pu_os_idx != NULL)
3958                   KMP_CPU_CLR(__kmp_pu_os_idx[proc_num], __kmp_affin_fullMask);
3959               }
3960               n_old++;
3961               ++proc_num;
3962             }
3963           }
3964         }
3965       }
3966     }
3967     KMP_DEBUG_ASSERT(n_old == nPackages * nCoresPerPkg * __kmp_nThreadsPerCore);
3968     KMP_DEBUG_ASSERT(n_new ==
3969                      __kmp_hws_socket.num * __kmp_hws_core.num *
3970                          __kmp_hws_proc.num);
3971     nPackages = __kmp_hws_socket.num; // correct nPackages
3972     nCoresPerPkg = __kmp_hws_core.num; // correct nCoresPerPkg
3973     __kmp_nThreadsPerCore = __kmp_hws_proc.num; // correct __kmp_nThreadsPerCore
3974     __kmp_avail_proc = n_new; // correct avail_proc
3975     __kmp_ncores = nPackages * __kmp_hws_core.num; // correct ncores
3976   } // non-hwloc topology method
3977   if (pAddr) {
3978     __kmp_free(*pAddr);
3979     *pAddr = newAddr; // replace old topology with new one
3980   }
3981   if (__kmp_affinity_verbose) {
3982     char m[KMP_AFFIN_MASK_PRINT_LEN];
3983     __kmp_affinity_print_mask(m, KMP_AFFIN_MASK_PRINT_LEN,
3984                               __kmp_affin_fullMask);
3985     if (__kmp_affinity_respect_mask) {
3986       KMP_INFORM(InitOSProcSetRespect, "KMP_HW_SUBSET", m);
3987     } else {
3988       KMP_INFORM(InitOSProcSetNotRespect, "KMP_HW_SUBSET", m);
3989     }
3990     KMP_INFORM(AvailableOSProc, "KMP_HW_SUBSET", __kmp_avail_proc);
3991     kmp_str_buf_t buf;
3992     __kmp_str_buf_init(&buf);
3993     __kmp_str_buf_print(&buf, "%d", nPackages);
3994     KMP_INFORM(TopologyExtra, "KMP_HW_SUBSET", buf.str, nCoresPerPkg,
3995                __kmp_nThreadsPerCore, __kmp_ncores);
3996     __kmp_str_buf_free(&buf);
3997   }
3998 _exit:
3999   if (__kmp_pu_os_idx != NULL) {
4000     __kmp_free(__kmp_pu_os_idx);
4001     __kmp_pu_os_idx = NULL;
4002   }
4003 }
4004 
4005 // This function figures out the deepest level at which there is at least one
4006 // cluster/core with more than one processing unit bound to it.
4007 static int __kmp_affinity_find_core_level(const AddrUnsPair *address2os,
4008                                           int nprocs, int bottom_level) {
4009   int core_level = 0;
4010 
4011   for (int i = 0; i < nprocs; i++) {
4012     for (int j = bottom_level; j > 0; j--) {
4013       if (address2os[i].first.labels[j] > 0) {
4014         if (core_level < (j - 1)) {
4015           core_level = j - 1;
4016         }
4017       }
4018     }
4019   }
4020   return core_level;
4021 }
4022 
4023 // This function counts number of clusters/cores at given level.
4024 static int __kmp_affinity_compute_ncores(const AddrUnsPair *address2os,
4025                                          int nprocs, int bottom_level,
4026                                          int core_level) {
4027   int ncores = 0;
4028   int i, j;
4029 
4030   j = bottom_level;
4031   for (i = 0; i < nprocs; i++) {
4032     for (j = bottom_level; j > core_level; j--) {
4033       if ((i + 1) < nprocs) {
4034         if (address2os[i + 1].first.labels[j] > 0) {
4035           break;
4036         }
4037       }
4038     }
4039     if (j == core_level) {
4040       ncores++;
4041     }
4042   }
4043   if (j > core_level) {
4044     // In case of ( nprocs < __kmp_avail_proc ) we may end too deep and miss one
4045     // core. May occur when called from __kmp_affinity_find_core().
4046     ncores++;
4047   }
4048   return ncores;
4049 }
4050 
4051 // This function finds to which cluster/core given processing unit is bound.
4052 static int __kmp_affinity_find_core(const AddrUnsPair *address2os, int proc,
4053                                     int bottom_level, int core_level) {
4054   return __kmp_affinity_compute_ncores(address2os, proc + 1, bottom_level,
4055                                        core_level) -
4056          1;
4057 }
4058 
4059 // This function finds maximal number of processing units bound to a
4060 // cluster/core at given level.
4061 static int __kmp_affinity_max_proc_per_core(const AddrUnsPair *address2os,
4062                                             int nprocs, int bottom_level,
4063                                             int core_level) {
4064   int maxprocpercore = 0;
4065 
4066   if (core_level < bottom_level) {
4067     for (int i = 0; i < nprocs; i++) {
4068       int percore = address2os[i].first.labels[core_level + 1] + 1;
4069 
4070       if (percore > maxprocpercore) {
4071         maxprocpercore = percore;
4072       }
4073     }
4074   } else {
4075     maxprocpercore = 1;
4076   }
4077   return maxprocpercore;
4078 }
4079 
4080 static AddrUnsPair *address2os = NULL;
4081 static int *procarr = NULL;
4082 static int __kmp_aff_depth = 0;
4083 
4084 #if KMP_USE_HIER_SCHED
4085 #define KMP_EXIT_AFF_NONE                                                      \
4086   KMP_ASSERT(__kmp_affinity_type == affinity_none);                            \
4087   KMP_ASSERT(address2os == NULL);                                              \
4088   __kmp_apply_thread_places(NULL, 0);                                          \
4089   __kmp_create_affinity_none_places();                                         \
4090   __kmp_dispatch_set_hierarchy_values();                                       \
4091   return;
4092 #else
4093 #define KMP_EXIT_AFF_NONE                                                      \
4094   KMP_ASSERT(__kmp_affinity_type == affinity_none);                            \
4095   KMP_ASSERT(address2os == NULL);                                              \
4096   __kmp_apply_thread_places(NULL, 0);                                          \
4097   __kmp_create_affinity_none_places();                                         \
4098   return;
4099 #endif
4100 
4101 // Create a one element mask array (set of places) which only contains the
4102 // initial process's affinity mask
4103 static void __kmp_create_affinity_none_places() {
4104   KMP_ASSERT(__kmp_affin_fullMask != NULL);
4105   KMP_ASSERT(__kmp_affinity_type == affinity_none);
4106   __kmp_affinity_num_masks = 1;
4107   KMP_CPU_ALLOC_ARRAY(__kmp_affinity_masks, __kmp_affinity_num_masks);
4108   kmp_affin_mask_t *dest = KMP_CPU_INDEX(__kmp_affinity_masks, 0);
4109   KMP_CPU_COPY(dest, __kmp_affin_fullMask);
4110 }
4111 
4112 static int __kmp_affinity_cmp_Address_child_num(const void *a, const void *b) {
4113   const Address *aa = &(((const AddrUnsPair *)a)->first);
4114   const Address *bb = &(((const AddrUnsPair *)b)->first);
4115   unsigned depth = aa->depth;
4116   unsigned i;
4117   KMP_DEBUG_ASSERT(depth == bb->depth);
4118   KMP_DEBUG_ASSERT((unsigned)__kmp_affinity_compact <= depth);
4119   KMP_DEBUG_ASSERT(__kmp_affinity_compact >= 0);
4120   for (i = 0; i < (unsigned)__kmp_affinity_compact; i++) {
4121     int j = depth - i - 1;
4122     if (aa->childNums[j] < bb->childNums[j])
4123       return -1;
4124     if (aa->childNums[j] > bb->childNums[j])
4125       return 1;
4126   }
4127   for (; i < depth; i++) {
4128     int j = i - __kmp_affinity_compact;
4129     if (aa->childNums[j] < bb->childNums[j])
4130       return -1;
4131     if (aa->childNums[j] > bb->childNums[j])
4132       return 1;
4133   }
4134   return 0;
4135 }
4136 
4137 static void __kmp_aux_affinity_initialize(void) {
4138   if (__kmp_affinity_masks != NULL) {
4139     KMP_ASSERT(__kmp_affin_fullMask != NULL);
4140     return;
4141   }
4142 
4143   // Create the "full" mask - this defines all of the processors that we
4144   // consider to be in the machine model. If respect is set, then it is the
4145   // initialization thread's affinity mask. Otherwise, it is all processors that
4146   // we know about on the machine.
4147   if (__kmp_affin_fullMask == NULL) {
4148     KMP_CPU_ALLOC(__kmp_affin_fullMask);
4149   }
4150   if (KMP_AFFINITY_CAPABLE()) {
4151     if (__kmp_affinity_respect_mask) {
4152       __kmp_get_system_affinity(__kmp_affin_fullMask, TRUE);
4153 
4154       // Count the number of available processors.
4155       unsigned i;
4156       __kmp_avail_proc = 0;
4157       KMP_CPU_SET_ITERATE(i, __kmp_affin_fullMask) {
4158         if (!KMP_CPU_ISSET(i, __kmp_affin_fullMask)) {
4159           continue;
4160         }
4161         __kmp_avail_proc++;
4162       }
4163       if (__kmp_avail_proc > __kmp_xproc) {
4164         if (__kmp_affinity_verbose ||
4165             (__kmp_affinity_warnings &&
4166              (__kmp_affinity_type != affinity_none))) {
4167           KMP_WARNING(ErrorInitializeAffinity);
4168         }
4169         __kmp_affinity_type = affinity_none;
4170         KMP_AFFINITY_DISABLE();
4171         return;
4172       }
4173     } else {
4174       __kmp_affinity_entire_machine_mask(__kmp_affin_fullMask);
4175       __kmp_avail_proc = __kmp_xproc;
4176     }
4177   }
4178 
4179   if (__kmp_affinity_gran == affinity_gran_tile &&
4180       // check if user's request is valid
4181       __kmp_affinity_dispatch->get_api_type() == KMPAffinity::NATIVE_OS) {
4182     KMP_WARNING(AffTilesNoHWLOC, "KMP_AFFINITY");
4183     __kmp_affinity_gran = affinity_gran_package;
4184   }
4185 
4186   int depth = -1;
4187   kmp_i18n_id_t msg_id = kmp_i18n_null;
4188 
4189   // For backward compatibility, setting KMP_CPUINFO_FILE =>
4190   // KMP_TOPOLOGY_METHOD=cpuinfo
4191   if ((__kmp_cpuinfo_file != NULL) &&
4192       (__kmp_affinity_top_method == affinity_top_method_all)) {
4193     __kmp_affinity_top_method = affinity_top_method_cpuinfo;
4194   }
4195 
4196   if (__kmp_affinity_top_method == affinity_top_method_all) {
4197     // In the default code path, errors are not fatal - we just try using
4198     // another method. We only emit a warning message if affinity is on, or the
4199     // verbose flag is set, and the nowarnings flag was not set.
4200     const char *file_name = NULL;
4201     int line = 0;
4202 #if KMP_USE_HWLOC
4203     if (depth < 0 &&
4204         __kmp_affinity_dispatch->get_api_type() == KMPAffinity::HWLOC) {
4205       if (__kmp_affinity_verbose) {
4206         KMP_INFORM(AffUsingHwloc, "KMP_AFFINITY");
4207       }
4208       if (!__kmp_hwloc_error) {
4209         depth = __kmp_affinity_create_hwloc_map(&address2os, &msg_id);
4210         if (depth == 0) {
4211           KMP_EXIT_AFF_NONE;
4212         } else if (depth < 0 && __kmp_affinity_verbose) {
4213           KMP_INFORM(AffIgnoringHwloc, "KMP_AFFINITY");
4214         }
4215       } else if (__kmp_affinity_verbose) {
4216         KMP_INFORM(AffIgnoringHwloc, "KMP_AFFINITY");
4217       }
4218     }
4219 #endif
4220 
4221 #if KMP_ARCH_X86 || KMP_ARCH_X86_64
4222 
4223     if (depth < 0) {
4224       if (__kmp_affinity_verbose) {
4225         KMP_INFORM(AffInfoStr, "KMP_AFFINITY", KMP_I18N_STR(Decodingx2APIC));
4226       }
4227 
4228       file_name = NULL;
4229       depth = __kmp_affinity_create_x2apicid_map(&address2os, &msg_id);
4230       if (depth == 0) {
4231         KMP_EXIT_AFF_NONE;
4232       }
4233 
4234       if (depth < 0) {
4235         if (__kmp_affinity_verbose) {
4236           if (msg_id != kmp_i18n_null) {
4237             KMP_INFORM(AffInfoStrStr, "KMP_AFFINITY",
4238                        __kmp_i18n_catgets(msg_id),
4239                        KMP_I18N_STR(DecodingLegacyAPIC));
4240           } else {
4241             KMP_INFORM(AffInfoStr, "KMP_AFFINITY",
4242                        KMP_I18N_STR(DecodingLegacyAPIC));
4243           }
4244         }
4245 
4246         file_name = NULL;
4247         depth = __kmp_affinity_create_apicid_map(&address2os, &msg_id);
4248         if (depth == 0) {
4249           KMP_EXIT_AFF_NONE;
4250         }
4251       }
4252     }
4253 
4254 #endif /* KMP_ARCH_X86 || KMP_ARCH_X86_64 */
4255 
4256 #if KMP_OS_LINUX
4257 
4258     if (depth < 0) {
4259       if (__kmp_affinity_verbose) {
4260         if (msg_id != kmp_i18n_null) {
4261           KMP_INFORM(AffStrParseFilename, "KMP_AFFINITY",
4262                      __kmp_i18n_catgets(msg_id), "/proc/cpuinfo");
4263         } else {
4264           KMP_INFORM(AffParseFilename, "KMP_AFFINITY", "/proc/cpuinfo");
4265         }
4266       }
4267 
4268       FILE *f = fopen("/proc/cpuinfo", "r");
4269       if (f == NULL) {
4270         msg_id = kmp_i18n_str_CantOpenCpuinfo;
4271       } else {
4272         file_name = "/proc/cpuinfo";
4273         depth =
4274             __kmp_affinity_create_cpuinfo_map(&address2os, &line, &msg_id, f);
4275         fclose(f);
4276         if (depth == 0) {
4277           KMP_EXIT_AFF_NONE;
4278         }
4279       }
4280     }
4281 
4282 #endif /* KMP_OS_LINUX */
4283 
4284 #if KMP_GROUP_AFFINITY
4285 
4286     if ((depth < 0) && (__kmp_num_proc_groups > 1)) {
4287       if (__kmp_affinity_verbose) {
4288         KMP_INFORM(AffWindowsProcGroupMap, "KMP_AFFINITY");
4289       }
4290 
4291       depth = __kmp_affinity_create_proc_group_map(&address2os, &msg_id);
4292       KMP_ASSERT(depth != 0);
4293     }
4294 
4295 #endif /* KMP_GROUP_AFFINITY */
4296 
4297     if (depth < 0) {
4298       if (__kmp_affinity_verbose && (msg_id != kmp_i18n_null)) {
4299         if (file_name == NULL) {
4300           KMP_INFORM(UsingFlatOS, __kmp_i18n_catgets(msg_id));
4301         } else if (line == 0) {
4302           KMP_INFORM(UsingFlatOSFile, file_name, __kmp_i18n_catgets(msg_id));
4303         } else {
4304           KMP_INFORM(UsingFlatOSFileLine, file_name, line,
4305                      __kmp_i18n_catgets(msg_id));
4306         }
4307       }
4308       // FIXME - print msg if msg_id = kmp_i18n_null ???
4309 
4310       file_name = "";
4311       depth = __kmp_affinity_create_flat_map(&address2os, &msg_id);
4312       if (depth == 0) {
4313         KMP_EXIT_AFF_NONE;
4314       }
4315       KMP_ASSERT(depth > 0);
4316       KMP_ASSERT(address2os != NULL);
4317     }
4318   }
4319 
4320 #if KMP_USE_HWLOC
4321   else if (__kmp_affinity_top_method == affinity_top_method_hwloc) {
4322     KMP_ASSERT(__kmp_affinity_dispatch->get_api_type() == KMPAffinity::HWLOC);
4323     if (__kmp_affinity_verbose) {
4324       KMP_INFORM(AffUsingHwloc, "KMP_AFFINITY");
4325     }
4326     depth = __kmp_affinity_create_hwloc_map(&address2os, &msg_id);
4327     if (depth == 0) {
4328       KMP_EXIT_AFF_NONE;
4329     }
4330   }
4331 #endif // KMP_USE_HWLOC
4332 
4333 // If the user has specified that a particular topology discovery method is to be
4334 // used, then we abort if that method fails. The exception is group affinity,
4335 // which might have been implicitly set.
4336 
4337 #if KMP_ARCH_X86 || KMP_ARCH_X86_64
4338 
4339   else if (__kmp_affinity_top_method == affinity_top_method_x2apicid) {
4340     if (__kmp_affinity_verbose) {
4341       KMP_INFORM(AffInfoStr, "KMP_AFFINITY", KMP_I18N_STR(Decodingx2APIC));
4342     }
4343 
4344     depth = __kmp_affinity_create_x2apicid_map(&address2os, &msg_id);
4345     if (depth == 0) {
4346       KMP_EXIT_AFF_NONE;
4347     }
4348     if (depth < 0) {
4349       KMP_ASSERT(msg_id != kmp_i18n_null);
4350       KMP_FATAL(MsgExiting, __kmp_i18n_catgets(msg_id));
4351     }
4352   } else if (__kmp_affinity_top_method == affinity_top_method_apicid) {
4353     if (__kmp_affinity_verbose) {
4354       KMP_INFORM(AffInfoStr, "KMP_AFFINITY", KMP_I18N_STR(DecodingLegacyAPIC));
4355     }
4356 
4357     depth = __kmp_affinity_create_apicid_map(&address2os, &msg_id);
4358     if (depth == 0) {
4359       KMP_EXIT_AFF_NONE;
4360     }
4361     if (depth < 0) {
4362       KMP_ASSERT(msg_id != kmp_i18n_null);
4363       KMP_FATAL(MsgExiting, __kmp_i18n_catgets(msg_id));
4364     }
4365   }
4366 
4367 #endif /* KMP_ARCH_X86 || KMP_ARCH_X86_64 */
4368 
4369   else if (__kmp_affinity_top_method == affinity_top_method_cpuinfo) {
4370     const char *filename;
4371     if (__kmp_cpuinfo_file != NULL) {
4372       filename = __kmp_cpuinfo_file;
4373     } else {
4374       filename = "/proc/cpuinfo";
4375     }
4376 
4377     if (__kmp_affinity_verbose) {
4378       KMP_INFORM(AffParseFilename, "KMP_AFFINITY", filename);
4379     }
4380 
4381     FILE *f = fopen(filename, "r");
4382     if (f == NULL) {
4383       int code = errno;
4384       if (__kmp_cpuinfo_file != NULL) {
4385         __kmp_fatal(KMP_MSG(CantOpenFileForReading, filename), KMP_ERR(code),
4386                     KMP_HNT(NameComesFrom_CPUINFO_FILE), __kmp_msg_null);
4387       } else {
4388         __kmp_fatal(KMP_MSG(CantOpenFileForReading, filename), KMP_ERR(code),
4389                     __kmp_msg_null);
4390       }
4391     }
4392     int line = 0;
4393     depth = __kmp_affinity_create_cpuinfo_map(&address2os, &line, &msg_id, f);
4394     fclose(f);
4395     if (depth < 0) {
4396       KMP_ASSERT(msg_id != kmp_i18n_null);
4397       if (line > 0) {
4398         KMP_FATAL(FileLineMsgExiting, filename, line,
4399                   __kmp_i18n_catgets(msg_id));
4400       } else {
4401         KMP_FATAL(FileMsgExiting, filename, __kmp_i18n_catgets(msg_id));
4402       }
4403     }
4404     if (__kmp_affinity_type == affinity_none) {
4405       KMP_ASSERT(depth == 0);
4406       KMP_EXIT_AFF_NONE;
4407     }
4408   }
4409 
4410 #if KMP_GROUP_AFFINITY
4411 
4412   else if (__kmp_affinity_top_method == affinity_top_method_group) {
4413     if (__kmp_affinity_verbose) {
4414       KMP_INFORM(AffWindowsProcGroupMap, "KMP_AFFINITY");
4415     }
4416 
4417     depth = __kmp_affinity_create_proc_group_map(&address2os, &msg_id);
4418     KMP_ASSERT(depth != 0);
4419     if (depth < 0) {
4420       KMP_ASSERT(msg_id != kmp_i18n_null);
4421       KMP_FATAL(MsgExiting, __kmp_i18n_catgets(msg_id));
4422     }
4423   }
4424 
4425 #endif /* KMP_GROUP_AFFINITY */
4426 
4427   else if (__kmp_affinity_top_method == affinity_top_method_flat) {
4428     if (__kmp_affinity_verbose) {
4429       KMP_INFORM(AffUsingFlatOS, "KMP_AFFINITY");
4430     }
4431 
4432     depth = __kmp_affinity_create_flat_map(&address2os, &msg_id);
4433     if (depth == 0) {
4434       KMP_EXIT_AFF_NONE;
4435     }
4436     // should not fail
4437     KMP_ASSERT(depth > 0);
4438     KMP_ASSERT(address2os != NULL);
4439   }
4440 
4441 #if KMP_USE_HIER_SCHED
4442   __kmp_dispatch_set_hierarchy_values();
4443 #endif
4444 
4445   if (address2os == NULL) {
4446     if (KMP_AFFINITY_CAPABLE() &&
4447         (__kmp_affinity_verbose ||
4448          (__kmp_affinity_warnings && (__kmp_affinity_type != affinity_none)))) {
4449       KMP_WARNING(ErrorInitializeAffinity);
4450     }
4451     __kmp_affinity_type = affinity_none;
4452     __kmp_create_affinity_none_places();
4453     KMP_AFFINITY_DISABLE();
4454     return;
4455   }
4456 
4457   if (__kmp_affinity_gran == affinity_gran_tile
4458 #if KMP_USE_HWLOC
4459       && __kmp_tile_depth == 0
4460 #endif
4461       ) {
4462     // tiles requested but not detected, warn user on this
4463     KMP_WARNING(AffTilesNoTiles, "KMP_AFFINITY");
4464   }
4465 
4466   __kmp_apply_thread_places(&address2os, depth);
4467 
4468   // Create the table of masks, indexed by thread Id.
4469   unsigned maxIndex;
4470   unsigned numUnique;
4471   kmp_affin_mask_t *osId2Mask =
4472       __kmp_create_masks(&maxIndex, &numUnique, address2os, __kmp_avail_proc);
4473   if (__kmp_affinity_gran_levels == 0) {
4474     KMP_DEBUG_ASSERT((int)numUnique == __kmp_avail_proc);
4475   }
4476 
4477   // Set the childNums vector in all Address objects. This must be done before
4478   // we can sort using __kmp_affinity_cmp_Address_child_num(), which takes into
4479   // account the setting of __kmp_affinity_compact.
4480   __kmp_affinity_assign_child_nums(address2os, __kmp_avail_proc);
4481 
4482   switch (__kmp_affinity_type) {
4483 
4484   case affinity_explicit:
4485     KMP_DEBUG_ASSERT(__kmp_affinity_proclist != NULL);
4486     if (__kmp_nested_proc_bind.bind_types[0] == proc_bind_intel) {
4487       __kmp_affinity_process_proclist(
4488           &__kmp_affinity_masks, &__kmp_affinity_num_masks,
4489           __kmp_affinity_proclist, osId2Mask, maxIndex);
4490     } else {
4491       __kmp_affinity_process_placelist(
4492           &__kmp_affinity_masks, &__kmp_affinity_num_masks,
4493           __kmp_affinity_proclist, osId2Mask, maxIndex);
4494     }
4495     if (__kmp_affinity_num_masks == 0) {
4496       if (__kmp_affinity_verbose ||
4497           (__kmp_affinity_warnings && (__kmp_affinity_type != affinity_none))) {
4498         KMP_WARNING(AffNoValidProcID);
4499       }
4500       __kmp_affinity_type = affinity_none;
4501       __kmp_create_affinity_none_places();
4502       return;
4503     }
4504     break;
4505 
4506   // The other affinity types rely on sorting the Addresses according to some
4507   // permutation of the machine topology tree. Set __kmp_affinity_compact and
4508   // __kmp_affinity_offset appropriately, then jump to a common code fragment
4509   // to do the sort and create the array of affinity masks.
4510 
4511   case affinity_logical:
4512     __kmp_affinity_compact = 0;
4513     if (__kmp_affinity_offset) {
4514       __kmp_affinity_offset =
4515           __kmp_nThreadsPerCore * __kmp_affinity_offset % __kmp_avail_proc;
4516     }
4517     goto sortAddresses;
4518 
4519   case affinity_physical:
4520     if (__kmp_nThreadsPerCore > 1) {
4521       __kmp_affinity_compact = 1;
4522       if (__kmp_affinity_compact >= depth) {
4523         __kmp_affinity_compact = 0;
4524       }
4525     } else {
4526       __kmp_affinity_compact = 0;
4527     }
4528     if (__kmp_affinity_offset) {
4529       __kmp_affinity_offset =
4530           __kmp_nThreadsPerCore * __kmp_affinity_offset % __kmp_avail_proc;
4531     }
4532     goto sortAddresses;
4533 
4534   case affinity_scatter:
4535     if (__kmp_affinity_compact >= depth) {
4536       __kmp_affinity_compact = 0;
4537     } else {
4538       __kmp_affinity_compact = depth - 1 - __kmp_affinity_compact;
4539     }
4540     goto sortAddresses;
4541 
4542   case affinity_compact:
4543     if (__kmp_affinity_compact >= depth) {
4544       __kmp_affinity_compact = depth - 1;
4545     }
4546     goto sortAddresses;
4547 
4548   case affinity_balanced:
4549     if (depth <= 1) {
4550       if (__kmp_affinity_verbose || __kmp_affinity_warnings) {
4551         KMP_WARNING(AffBalancedNotAvail, "KMP_AFFINITY");
4552       }
4553       __kmp_affinity_type = affinity_none;
4554       __kmp_create_affinity_none_places();
4555       return;
4556     } else if (!__kmp_affinity_uniform_topology()) {
4557       // Save the depth for further usage
4558       __kmp_aff_depth = depth;
4559 
4560       int core_level = __kmp_affinity_find_core_level(
4561           address2os, __kmp_avail_proc, depth - 1);
4562       int ncores = __kmp_affinity_compute_ncores(address2os, __kmp_avail_proc,
4563                                                  depth - 1, core_level);
4564       int maxprocpercore = __kmp_affinity_max_proc_per_core(
4565           address2os, __kmp_avail_proc, depth - 1, core_level);
4566 
4567       int nproc = ncores * maxprocpercore;
4568       if ((nproc < 2) || (nproc < __kmp_avail_proc)) {
4569         if (__kmp_affinity_verbose || __kmp_affinity_warnings) {
4570           KMP_WARNING(AffBalancedNotAvail, "KMP_AFFINITY");
4571         }
4572         __kmp_affinity_type = affinity_none;
4573         return;
4574       }
4575 
4576       procarr = (int *)__kmp_allocate(sizeof(int) * nproc);
4577       for (int i = 0; i < nproc; i++) {
4578         procarr[i] = -1;
4579       }
4580 
4581       int lastcore = -1;
4582       int inlastcore = 0;
4583       for (int i = 0; i < __kmp_avail_proc; i++) {
4584         int proc = address2os[i].second;
4585         int core =
4586             __kmp_affinity_find_core(address2os, i, depth - 1, core_level);
4587 
4588         if (core == lastcore) {
4589           inlastcore++;
4590         } else {
4591           inlastcore = 0;
4592         }
4593         lastcore = core;
4594 
4595         procarr[core * maxprocpercore + inlastcore] = proc;
4596       }
4597     }
4598     if (__kmp_affinity_compact >= depth) {
4599       __kmp_affinity_compact = depth - 1;
4600     }
4601 
4602   sortAddresses:
4603     // Allocate the gtid->affinity mask table.
4604     if (__kmp_affinity_dups) {
4605       __kmp_affinity_num_masks = __kmp_avail_proc;
4606     } else {
4607       __kmp_affinity_num_masks = numUnique;
4608     }
4609 
4610     if ((__kmp_nested_proc_bind.bind_types[0] != proc_bind_intel) &&
4611         (__kmp_affinity_num_places > 0) &&
4612         ((unsigned)__kmp_affinity_num_places < __kmp_affinity_num_masks)) {
4613       __kmp_affinity_num_masks = __kmp_affinity_num_places;
4614     }
4615 
4616     KMP_CPU_ALLOC_ARRAY(__kmp_affinity_masks, __kmp_affinity_num_masks);
4617 
4618     // Sort the address2os table according to the current setting of
4619     // __kmp_affinity_compact, then fill out __kmp_affinity_masks.
4620     qsort(address2os, __kmp_avail_proc, sizeof(*address2os),
4621           __kmp_affinity_cmp_Address_child_num);
4622     {
4623       int i;
4624       unsigned j;
4625       for (i = 0, j = 0; i < __kmp_avail_proc; i++) {
4626         if ((!__kmp_affinity_dups) && (!address2os[i].first.leader)) {
4627           continue;
4628         }
4629         unsigned osId = address2os[i].second;
4630         kmp_affin_mask_t *src = KMP_CPU_INDEX(osId2Mask, osId);
4631         kmp_affin_mask_t *dest = KMP_CPU_INDEX(__kmp_affinity_masks, j);
4632         KMP_ASSERT(KMP_CPU_ISSET(osId, src));
4633         KMP_CPU_COPY(dest, src);
4634         if (++j >= __kmp_affinity_num_masks) {
4635           break;
4636         }
4637       }
4638       KMP_DEBUG_ASSERT(j == __kmp_affinity_num_masks);
4639     }
4640     break;
4641 
4642   default:
4643     KMP_ASSERT2(0, "Unexpected affinity setting");
4644   }
4645 
4646   KMP_CPU_FREE_ARRAY(osId2Mask, maxIndex + 1);
4647   machine_hierarchy.init(address2os, __kmp_avail_proc);
4648 }
4649 #undef KMP_EXIT_AFF_NONE
4650 
4651 void __kmp_affinity_initialize(void) {
4652   // Much of the code above was written assuming that if a machine was not
4653   // affinity capable, then __kmp_affinity_type == affinity_none.  We now
4654   // explicitly represent this as __kmp_affinity_type == affinity_disabled.
4655   // There are too many checks for __kmp_affinity_type == affinity_none
4656   // in this code.  Instead of trying to change them all, check if
4657   // __kmp_affinity_type == affinity_disabled, and if so, slam it with
4658   // affinity_none, call the real initialization routine, then restore
4659   // __kmp_affinity_type to affinity_disabled.
4660   int disabled = (__kmp_affinity_type == affinity_disabled);
4661   if (!KMP_AFFINITY_CAPABLE()) {
4662     KMP_ASSERT(disabled);
4663   }
4664   if (disabled) {
4665     __kmp_affinity_type = affinity_none;
4666   }
4667   __kmp_aux_affinity_initialize();
4668   if (disabled) {
4669     __kmp_affinity_type = affinity_disabled;
4670   }
4671 }
4672 
4673 void __kmp_affinity_uninitialize(void) {
4674   if (__kmp_affinity_masks != NULL) {
4675     KMP_CPU_FREE_ARRAY(__kmp_affinity_masks, __kmp_affinity_num_masks);
4676     __kmp_affinity_masks = NULL;
4677   }
4678   if (__kmp_affin_fullMask != NULL) {
4679     KMP_CPU_FREE(__kmp_affin_fullMask);
4680     __kmp_affin_fullMask = NULL;
4681   }
4682   __kmp_affinity_num_masks = 0;
4683   __kmp_affinity_type = affinity_default;
4684   __kmp_affinity_num_places = 0;
4685   if (__kmp_affinity_proclist != NULL) {
4686     __kmp_free(__kmp_affinity_proclist);
4687     __kmp_affinity_proclist = NULL;
4688   }
4689   if (address2os != NULL) {
4690     __kmp_free(address2os);
4691     address2os = NULL;
4692   }
4693   if (procarr != NULL) {
4694     __kmp_free(procarr);
4695     procarr = NULL;
4696   }
4697 #if KMP_USE_HWLOC
4698   if (__kmp_hwloc_topology != NULL) {
4699     hwloc_topology_destroy(__kmp_hwloc_topology);
4700     __kmp_hwloc_topology = NULL;
4701   }
4702 #endif
4703   KMPAffinity::destroy_api();
4704 }
4705 
4706 void __kmp_affinity_set_init_mask(int gtid, int isa_root) {
4707   if (!KMP_AFFINITY_CAPABLE()) {
4708     return;
4709   }
4710 
4711   kmp_info_t *th = (kmp_info_t *)TCR_SYNC_PTR(__kmp_threads[gtid]);
4712   if (th->th.th_affin_mask == NULL) {
4713     KMP_CPU_ALLOC(th->th.th_affin_mask);
4714   } else {
4715     KMP_CPU_ZERO(th->th.th_affin_mask);
4716   }
4717 
4718   // Copy the thread mask to the kmp_info_t structure. If
4719   // __kmp_affinity_type == affinity_none, copy the "full" mask, i.e. one that
4720   // has all of the OS proc ids set, or if __kmp_affinity_respect_mask is set,
4721   // then the full mask is the same as the mask of the initialization thread.
4722   kmp_affin_mask_t *mask;
4723   int i;
4724 
4725   if (KMP_AFFINITY_NON_PROC_BIND) {
4726     if ((__kmp_affinity_type == affinity_none) ||
4727         (__kmp_affinity_type == affinity_balanced)) {
4728 #if KMP_GROUP_AFFINITY
4729       if (__kmp_num_proc_groups > 1) {
4730         return;
4731       }
4732 #endif
4733       KMP_ASSERT(__kmp_affin_fullMask != NULL);
4734       i = 0;
4735       mask = __kmp_affin_fullMask;
4736     } else {
4737       KMP_DEBUG_ASSERT(__kmp_affinity_num_masks > 0);
4738       i = (gtid + __kmp_affinity_offset) % __kmp_affinity_num_masks;
4739       mask = KMP_CPU_INDEX(__kmp_affinity_masks, i);
4740     }
4741   } else {
4742     if ((!isa_root) ||
4743         (__kmp_nested_proc_bind.bind_types[0] == proc_bind_false)) {
4744 #if KMP_GROUP_AFFINITY
4745       if (__kmp_num_proc_groups > 1) {
4746         return;
4747       }
4748 #endif
4749       KMP_ASSERT(__kmp_affin_fullMask != NULL);
4750       i = KMP_PLACE_ALL;
4751       mask = __kmp_affin_fullMask;
4752     } else {
4753       // int i = some hash function or just a counter that doesn't
4754       // always start at 0.  Use gtid for now.
4755       KMP_DEBUG_ASSERT(__kmp_affinity_num_masks > 0);
4756       i = (gtid + __kmp_affinity_offset) % __kmp_affinity_num_masks;
4757       mask = KMP_CPU_INDEX(__kmp_affinity_masks, i);
4758     }
4759   }
4760 
4761   th->th.th_current_place = i;
4762   if (isa_root) {
4763     th->th.th_new_place = i;
4764     th->th.th_first_place = 0;
4765     th->th.th_last_place = __kmp_affinity_num_masks - 1;
4766   } else if (KMP_AFFINITY_NON_PROC_BIND) {
4767     // When using a Non-OMP_PROC_BIND affinity method,
4768     // set all threads' place-partition-var to the entire place list
4769     th->th.th_first_place = 0;
4770     th->th.th_last_place = __kmp_affinity_num_masks - 1;
4771   }
4772 
4773   if (i == KMP_PLACE_ALL) {
4774     KA_TRACE(100, ("__kmp_affinity_set_init_mask: binding T#%d to all places\n",
4775                    gtid));
4776   } else {
4777     KA_TRACE(100, ("__kmp_affinity_set_init_mask: binding T#%d to place %d\n",
4778                    gtid, i));
4779   }
4780 
4781   KMP_CPU_COPY(th->th.th_affin_mask, mask);
4782 
4783   if (__kmp_affinity_verbose
4784       /* to avoid duplicate printing (will be correctly printed on barrier) */
4785       && (__kmp_affinity_type == affinity_none ||
4786           (i != KMP_PLACE_ALL && __kmp_affinity_type != affinity_balanced))) {
4787     char buf[KMP_AFFIN_MASK_PRINT_LEN];
4788     __kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN,
4789                               th->th.th_affin_mask);
4790     KMP_INFORM(BoundToOSProcSet, "KMP_AFFINITY", (kmp_int32)getpid(),
4791                __kmp_gettid(), gtid, buf);
4792   }
4793 
4794 #if KMP_OS_WINDOWS
4795   // On Windows* OS, the process affinity mask might have changed. If the user
4796   // didn't request affinity and this call fails, just continue silently.
4797   // See CQ171393.
4798   if (__kmp_affinity_type == affinity_none) {
4799     __kmp_set_system_affinity(th->th.th_affin_mask, FALSE);
4800   } else
4801 #endif
4802     __kmp_set_system_affinity(th->th.th_affin_mask, TRUE);
4803 }
4804 
4805 void __kmp_affinity_set_place(int gtid) {
4806   if (!KMP_AFFINITY_CAPABLE()) {
4807     return;
4808   }
4809 
4810   kmp_info_t *th = (kmp_info_t *)TCR_SYNC_PTR(__kmp_threads[gtid]);
4811 
4812   KA_TRACE(100, ("__kmp_affinity_set_place: binding T#%d to place %d (current "
4813                  "place = %d)\n",
4814                  gtid, th->th.th_new_place, th->th.th_current_place));
4815 
4816   // Check that the new place is within this thread's partition.
4817   KMP_DEBUG_ASSERT(th->th.th_affin_mask != NULL);
4818   KMP_ASSERT(th->th.th_new_place >= 0);
4819   KMP_ASSERT((unsigned)th->th.th_new_place <= __kmp_affinity_num_masks);
4820   if (th->th.th_first_place <= th->th.th_last_place) {
4821     KMP_ASSERT((th->th.th_new_place >= th->th.th_first_place) &&
4822                (th->th.th_new_place <= th->th.th_last_place));
4823   } else {
4824     KMP_ASSERT((th->th.th_new_place <= th->th.th_first_place) ||
4825                (th->th.th_new_place >= th->th.th_last_place));
4826   }
4827 
4828   // Copy the thread mask to the kmp_info_t structure,
4829   // and set this thread's affinity.
4830   kmp_affin_mask_t *mask =
4831       KMP_CPU_INDEX(__kmp_affinity_masks, th->th.th_new_place);
4832   KMP_CPU_COPY(th->th.th_affin_mask, mask);
4833   th->th.th_current_place = th->th.th_new_place;
4834 
4835   if (__kmp_affinity_verbose) {
4836     char buf[KMP_AFFIN_MASK_PRINT_LEN];
4837     __kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN,
4838                               th->th.th_affin_mask);
4839     KMP_INFORM(BoundToOSProcSet, "OMP_PROC_BIND", (kmp_int32)getpid(),
4840                __kmp_gettid(), gtid, buf);
4841   }
4842   __kmp_set_system_affinity(th->th.th_affin_mask, TRUE);
4843 }
4844 
4845 int __kmp_aux_set_affinity(void **mask) {
4846   int gtid;
4847   kmp_info_t *th;
4848   int retval;
4849 
4850   if (!KMP_AFFINITY_CAPABLE()) {
4851     return -1;
4852   }
4853 
4854   gtid = __kmp_entry_gtid();
4855   KA_TRACE(1000, (""); {
4856     char buf[KMP_AFFIN_MASK_PRINT_LEN];
4857     __kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN,
4858                               (kmp_affin_mask_t *)(*mask));
4859     __kmp_debug_printf(
4860         "kmp_set_affinity: setting affinity mask for thread %d = %s\n", gtid,
4861         buf);
4862   });
4863 
4864   if (__kmp_env_consistency_check) {
4865     if ((mask == NULL) || (*mask == NULL)) {
4866       KMP_FATAL(AffinityInvalidMask, "kmp_set_affinity");
4867     } else {
4868       unsigned proc;
4869       int num_procs = 0;
4870 
4871       KMP_CPU_SET_ITERATE(proc, ((kmp_affin_mask_t *)(*mask))) {
4872         if (!KMP_CPU_ISSET(proc, __kmp_affin_fullMask)) {
4873           KMP_FATAL(AffinityInvalidMask, "kmp_set_affinity");
4874         }
4875         if (!KMP_CPU_ISSET(proc, (kmp_affin_mask_t *)(*mask))) {
4876           continue;
4877         }
4878         num_procs++;
4879       }
4880       if (num_procs == 0) {
4881         KMP_FATAL(AffinityInvalidMask, "kmp_set_affinity");
4882       }
4883 
4884 #if KMP_GROUP_AFFINITY
4885       if (__kmp_get_proc_group((kmp_affin_mask_t *)(*mask)) < 0) {
4886         KMP_FATAL(AffinityInvalidMask, "kmp_set_affinity");
4887       }
4888 #endif /* KMP_GROUP_AFFINITY */
4889     }
4890   }
4891 
4892   th = __kmp_threads[gtid];
4893   KMP_DEBUG_ASSERT(th->th.th_affin_mask != NULL);
4894   retval = __kmp_set_system_affinity((kmp_affin_mask_t *)(*mask), FALSE);
4895   if (retval == 0) {
4896     KMP_CPU_COPY(th->th.th_affin_mask, (kmp_affin_mask_t *)(*mask));
4897   }
4898 
4899   th->th.th_current_place = KMP_PLACE_UNDEFINED;
4900   th->th.th_new_place = KMP_PLACE_UNDEFINED;
4901   th->th.th_first_place = 0;
4902   th->th.th_last_place = __kmp_affinity_num_masks - 1;
4903 
4904   // Turn off 4.0 affinity for the current tread at this parallel level.
4905   th->th.th_current_task->td_icvs.proc_bind = proc_bind_false;
4906 
4907   return retval;
4908 }
4909 
4910 int __kmp_aux_get_affinity(void **mask) {
4911   int gtid;
4912   int retval;
4913   kmp_info_t *th;
4914 
4915   if (!KMP_AFFINITY_CAPABLE()) {
4916     return -1;
4917   }
4918 
4919   gtid = __kmp_entry_gtid();
4920   th = __kmp_threads[gtid];
4921   KMP_DEBUG_ASSERT(th->th.th_affin_mask != NULL);
4922 
4923   KA_TRACE(1000, (""); {
4924     char buf[KMP_AFFIN_MASK_PRINT_LEN];
4925     __kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN,
4926                               th->th.th_affin_mask);
4927     __kmp_printf("kmp_get_affinity: stored affinity mask for thread %d = %s\n",
4928                  gtid, buf);
4929   });
4930 
4931   if (__kmp_env_consistency_check) {
4932     if ((mask == NULL) || (*mask == NULL)) {
4933       KMP_FATAL(AffinityInvalidMask, "kmp_get_affinity");
4934     }
4935   }
4936 
4937 #if !KMP_OS_WINDOWS
4938 
4939   retval = __kmp_get_system_affinity((kmp_affin_mask_t *)(*mask), FALSE);
4940   KA_TRACE(1000, (""); {
4941     char buf[KMP_AFFIN_MASK_PRINT_LEN];
4942     __kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN,
4943                               (kmp_affin_mask_t *)(*mask));
4944     __kmp_printf("kmp_get_affinity: system affinity mask for thread %d = %s\n",
4945                  gtid, buf);
4946   });
4947   return retval;
4948 
4949 #else
4950 
4951   KMP_CPU_COPY((kmp_affin_mask_t *)(*mask), th->th.th_affin_mask);
4952   return 0;
4953 
4954 #endif /* KMP_OS_WINDOWS */
4955 }
4956 
4957 int __kmp_aux_get_affinity_max_proc() {
4958   if (!KMP_AFFINITY_CAPABLE()) {
4959     return 0;
4960   }
4961 #if KMP_GROUP_AFFINITY
4962   if (__kmp_num_proc_groups > 1) {
4963     return (int)(__kmp_num_proc_groups * sizeof(DWORD_PTR) * CHAR_BIT);
4964   }
4965 #endif
4966   return __kmp_xproc;
4967 }
4968 
4969 int __kmp_aux_set_affinity_mask_proc(int proc, void **mask) {
4970   if (!KMP_AFFINITY_CAPABLE()) {
4971     return -1;
4972   }
4973 
4974   KA_TRACE(1000, (""); {
4975     int gtid = __kmp_entry_gtid();
4976     char buf[KMP_AFFIN_MASK_PRINT_LEN];
4977     __kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN,
4978                               (kmp_affin_mask_t *)(*mask));
4979     __kmp_debug_printf("kmp_set_affinity_mask_proc: setting proc %d in "
4980                        "affinity mask for thread %d = %s\n",
4981                        proc, gtid, buf);
4982   });
4983 
4984   if (__kmp_env_consistency_check) {
4985     if ((mask == NULL) || (*mask == NULL)) {
4986       KMP_FATAL(AffinityInvalidMask, "kmp_set_affinity_mask_proc");
4987     }
4988   }
4989 
4990   if ((proc < 0) || (proc >= __kmp_aux_get_affinity_max_proc())) {
4991     return -1;
4992   }
4993   if (!KMP_CPU_ISSET(proc, __kmp_affin_fullMask)) {
4994     return -2;
4995   }
4996 
4997   KMP_CPU_SET(proc, (kmp_affin_mask_t *)(*mask));
4998   return 0;
4999 }
5000 
5001 int __kmp_aux_unset_affinity_mask_proc(int proc, void **mask) {
5002   if (!KMP_AFFINITY_CAPABLE()) {
5003     return -1;
5004   }
5005 
5006   KA_TRACE(1000, (""); {
5007     int gtid = __kmp_entry_gtid();
5008     char buf[KMP_AFFIN_MASK_PRINT_LEN];
5009     __kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN,
5010                               (kmp_affin_mask_t *)(*mask));
5011     __kmp_debug_printf("kmp_unset_affinity_mask_proc: unsetting proc %d in "
5012                        "affinity mask for thread %d = %s\n",
5013                        proc, gtid, buf);
5014   });
5015 
5016   if (__kmp_env_consistency_check) {
5017     if ((mask == NULL) || (*mask == NULL)) {
5018       KMP_FATAL(AffinityInvalidMask, "kmp_unset_affinity_mask_proc");
5019     }
5020   }
5021 
5022   if ((proc < 0) || (proc >= __kmp_aux_get_affinity_max_proc())) {
5023     return -1;
5024   }
5025   if (!KMP_CPU_ISSET(proc, __kmp_affin_fullMask)) {
5026     return -2;
5027   }
5028 
5029   KMP_CPU_CLR(proc, (kmp_affin_mask_t *)(*mask));
5030   return 0;
5031 }
5032 
5033 int __kmp_aux_get_affinity_mask_proc(int proc, void **mask) {
5034   if (!KMP_AFFINITY_CAPABLE()) {
5035     return -1;
5036   }
5037 
5038   KA_TRACE(1000, (""); {
5039     int gtid = __kmp_entry_gtid();
5040     char buf[KMP_AFFIN_MASK_PRINT_LEN];
5041     __kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN,
5042                               (kmp_affin_mask_t *)(*mask));
5043     __kmp_debug_printf("kmp_get_affinity_mask_proc: getting proc %d in "
5044                        "affinity mask for thread %d = %s\n",
5045                        proc, gtid, buf);
5046   });
5047 
5048   if (__kmp_env_consistency_check) {
5049     if ((mask == NULL) || (*mask == NULL)) {
5050       KMP_FATAL(AffinityInvalidMask, "kmp_get_affinity_mask_proc");
5051     }
5052   }
5053 
5054   if ((proc < 0) || (proc >= __kmp_aux_get_affinity_max_proc())) {
5055     return -1;
5056   }
5057   if (!KMP_CPU_ISSET(proc, __kmp_affin_fullMask)) {
5058     return 0;
5059   }
5060 
5061   return KMP_CPU_ISSET(proc, (kmp_affin_mask_t *)(*mask));
5062 }
5063 
5064 // Dynamic affinity settings - Affinity balanced
5065 void __kmp_balanced_affinity(kmp_info_t *th, int nthreads) {
5066   KMP_DEBUG_ASSERT(th);
5067   bool fine_gran = true;
5068   int tid = th->th.th_info.ds.ds_tid;
5069 
5070   switch (__kmp_affinity_gran) {
5071   case affinity_gran_fine:
5072   case affinity_gran_thread:
5073     break;
5074   case affinity_gran_core:
5075     if (__kmp_nThreadsPerCore > 1) {
5076       fine_gran = false;
5077     }
5078     break;
5079   case affinity_gran_package:
5080     if (nCoresPerPkg > 1) {
5081       fine_gran = false;
5082     }
5083     break;
5084   default:
5085     fine_gran = false;
5086   }
5087 
5088   if (__kmp_affinity_uniform_topology()) {
5089     int coreID;
5090     int threadID;
5091     // Number of hyper threads per core in HT machine
5092     int __kmp_nth_per_core = __kmp_avail_proc / __kmp_ncores;
5093     // Number of cores
5094     int ncores = __kmp_ncores;
5095     if ((nPackages > 1) && (__kmp_nth_per_core <= 1)) {
5096       __kmp_nth_per_core = __kmp_avail_proc / nPackages;
5097       ncores = nPackages;
5098     }
5099     // How many threads will be bound to each core
5100     int chunk = nthreads / ncores;
5101     // How many cores will have an additional thread bound to it - "big cores"
5102     int big_cores = nthreads % ncores;
5103     // Number of threads on the big cores
5104     int big_nth = (chunk + 1) * big_cores;
5105     if (tid < big_nth) {
5106       coreID = tid / (chunk + 1);
5107       threadID = (tid % (chunk + 1)) % __kmp_nth_per_core;
5108     } else { // tid >= big_nth
5109       coreID = (tid - big_cores) / chunk;
5110       threadID = ((tid - big_cores) % chunk) % __kmp_nth_per_core;
5111     }
5112 
5113     KMP_DEBUG_ASSERT2(KMP_AFFINITY_CAPABLE(),
5114                       "Illegal set affinity operation when not capable");
5115 
5116     kmp_affin_mask_t *mask = th->th.th_affin_mask;
5117     KMP_CPU_ZERO(mask);
5118 
5119     if (fine_gran) {
5120       int osID = address2os[coreID * __kmp_nth_per_core + threadID].second;
5121       KMP_CPU_SET(osID, mask);
5122     } else {
5123       for (int i = 0; i < __kmp_nth_per_core; i++) {
5124         int osID;
5125         osID = address2os[coreID * __kmp_nth_per_core + i].second;
5126         KMP_CPU_SET(osID, mask);
5127       }
5128     }
5129     if (__kmp_affinity_verbose) {
5130       char buf[KMP_AFFIN_MASK_PRINT_LEN];
5131       __kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN, mask);
5132       KMP_INFORM(BoundToOSProcSet, "KMP_AFFINITY", (kmp_int32)getpid(),
5133                  __kmp_gettid(), tid, buf);
5134     }
5135     __kmp_set_system_affinity(mask, TRUE);
5136   } else { // Non-uniform topology
5137 
5138     kmp_affin_mask_t *mask = th->th.th_affin_mask;
5139     KMP_CPU_ZERO(mask);
5140 
5141     int core_level = __kmp_affinity_find_core_level(
5142         address2os, __kmp_avail_proc, __kmp_aff_depth - 1);
5143     int ncores = __kmp_affinity_compute_ncores(address2os, __kmp_avail_proc,
5144                                                __kmp_aff_depth - 1, core_level);
5145     int nth_per_core = __kmp_affinity_max_proc_per_core(
5146         address2os, __kmp_avail_proc, __kmp_aff_depth - 1, core_level);
5147 
5148     // For performance gain consider the special case nthreads ==
5149     // __kmp_avail_proc
5150     if (nthreads == __kmp_avail_proc) {
5151       if (fine_gran) {
5152         int osID = address2os[tid].second;
5153         KMP_CPU_SET(osID, mask);
5154       } else {
5155         int core = __kmp_affinity_find_core(address2os, tid,
5156                                             __kmp_aff_depth - 1, core_level);
5157         for (int i = 0; i < __kmp_avail_proc; i++) {
5158           int osID = address2os[i].second;
5159           if (__kmp_affinity_find_core(address2os, i, __kmp_aff_depth - 1,
5160                                        core_level) == core) {
5161             KMP_CPU_SET(osID, mask);
5162           }
5163         }
5164       }
5165     } else if (nthreads <= ncores) {
5166 
5167       int core = 0;
5168       for (int i = 0; i < ncores; i++) {
5169         // Check if this core from procarr[] is in the mask
5170         int in_mask = 0;
5171         for (int j = 0; j < nth_per_core; j++) {
5172           if (procarr[i * nth_per_core + j] != -1) {
5173             in_mask = 1;
5174             break;
5175           }
5176         }
5177         if (in_mask) {
5178           if (tid == core) {
5179             for (int j = 0; j < nth_per_core; j++) {
5180               int osID = procarr[i * nth_per_core + j];
5181               if (osID != -1) {
5182                 KMP_CPU_SET(osID, mask);
5183                 // For fine granularity it is enough to set the first available
5184                 // osID for this core
5185                 if (fine_gran) {
5186                   break;
5187                 }
5188               }
5189             }
5190             break;
5191           } else {
5192             core++;
5193           }
5194         }
5195       }
5196     } else { // nthreads > ncores
5197       // Array to save the number of processors at each core
5198       int *nproc_at_core = (int *)KMP_ALLOCA(sizeof(int) * ncores);
5199       // Array to save the number of cores with "x" available processors;
5200       int *ncores_with_x_procs =
5201           (int *)KMP_ALLOCA(sizeof(int) * (nth_per_core + 1));
5202       // Array to save the number of cores with # procs from x to nth_per_core
5203       int *ncores_with_x_to_max_procs =
5204           (int *)KMP_ALLOCA(sizeof(int) * (nth_per_core + 1));
5205 
5206       for (int i = 0; i <= nth_per_core; i++) {
5207         ncores_with_x_procs[i] = 0;
5208         ncores_with_x_to_max_procs[i] = 0;
5209       }
5210 
5211       for (int i = 0; i < ncores; i++) {
5212         int cnt = 0;
5213         for (int j = 0; j < nth_per_core; j++) {
5214           if (procarr[i * nth_per_core + j] != -1) {
5215             cnt++;
5216           }
5217         }
5218         nproc_at_core[i] = cnt;
5219         ncores_with_x_procs[cnt]++;
5220       }
5221 
5222       for (int i = 0; i <= nth_per_core; i++) {
5223         for (int j = i; j <= nth_per_core; j++) {
5224           ncores_with_x_to_max_procs[i] += ncores_with_x_procs[j];
5225         }
5226       }
5227 
5228       // Max number of processors
5229       int nproc = nth_per_core * ncores;
5230       // An array to keep number of threads per each context
5231       int *newarr = (int *)__kmp_allocate(sizeof(int) * nproc);
5232       for (int i = 0; i < nproc; i++) {
5233         newarr[i] = 0;
5234       }
5235 
5236       int nth = nthreads;
5237       int flag = 0;
5238       while (nth > 0) {
5239         for (int j = 1; j <= nth_per_core; j++) {
5240           int cnt = ncores_with_x_to_max_procs[j];
5241           for (int i = 0; i < ncores; i++) {
5242             // Skip the core with 0 processors
5243             if (nproc_at_core[i] == 0) {
5244               continue;
5245             }
5246             for (int k = 0; k < nth_per_core; k++) {
5247               if (procarr[i * nth_per_core + k] != -1) {
5248                 if (newarr[i * nth_per_core + k] == 0) {
5249                   newarr[i * nth_per_core + k] = 1;
5250                   cnt--;
5251                   nth--;
5252                   break;
5253                 } else {
5254                   if (flag != 0) {
5255                     newarr[i * nth_per_core + k]++;
5256                     cnt--;
5257                     nth--;
5258                     break;
5259                   }
5260                 }
5261               }
5262             }
5263             if (cnt == 0 || nth == 0) {
5264               break;
5265             }
5266           }
5267           if (nth == 0) {
5268             break;
5269           }
5270         }
5271         flag = 1;
5272       }
5273       int sum = 0;
5274       for (int i = 0; i < nproc; i++) {
5275         sum += newarr[i];
5276         if (sum > tid) {
5277           if (fine_gran) {
5278             int osID = procarr[i];
5279             KMP_CPU_SET(osID, mask);
5280           } else {
5281             int coreID = i / nth_per_core;
5282             for (int ii = 0; ii < nth_per_core; ii++) {
5283               int osID = procarr[coreID * nth_per_core + ii];
5284               if (osID != -1) {
5285                 KMP_CPU_SET(osID, mask);
5286               }
5287             }
5288           }
5289           break;
5290         }
5291       }
5292       __kmp_free(newarr);
5293     }
5294 
5295     if (__kmp_affinity_verbose) {
5296       char buf[KMP_AFFIN_MASK_PRINT_LEN];
5297       __kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN, mask);
5298       KMP_INFORM(BoundToOSProcSet, "KMP_AFFINITY", (kmp_int32)getpid(),
5299                  __kmp_gettid(), tid, buf);
5300     }
5301     __kmp_set_system_affinity(mask, TRUE);
5302   }
5303 }
5304 
5305 #if KMP_OS_LINUX || KMP_OS_FREEBSD
5306 // We don't need this entry for Windows because
5307 // there is GetProcessAffinityMask() api
5308 //
5309 // The intended usage is indicated by these steps:
5310 // 1) The user gets the current affinity mask
5311 // 2) Then sets the affinity by calling this function
5312 // 3) Error check the return value
5313 // 4) Use non-OpenMP parallelization
5314 // 5) Reset the affinity to what was stored in step 1)
5315 #ifdef __cplusplus
5316 extern "C"
5317 #endif
5318     int
5319     kmp_set_thread_affinity_mask_initial()
5320 // the function returns 0 on success,
5321 //   -1 if we cannot bind thread
5322 //   >0 (errno) if an error happened during binding
5323 {
5324   int gtid = __kmp_get_gtid();
5325   if (gtid < 0) {
5326     // Do not touch non-omp threads
5327     KA_TRACE(30, ("kmp_set_thread_affinity_mask_initial: "
5328                   "non-omp thread, returning\n"));
5329     return -1;
5330   }
5331   if (!KMP_AFFINITY_CAPABLE() || !__kmp_init_middle) {
5332     KA_TRACE(30, ("kmp_set_thread_affinity_mask_initial: "
5333                   "affinity not initialized, returning\n"));
5334     return -1;
5335   }
5336   KA_TRACE(30, ("kmp_set_thread_affinity_mask_initial: "
5337                 "set full mask for thread %d\n",
5338                 gtid));
5339   KMP_DEBUG_ASSERT(__kmp_affin_fullMask != NULL);
5340   return __kmp_set_system_affinity(__kmp_affin_fullMask, FALSE);
5341 }
5342 #endif
5343 
5344 #endif // KMP_AFFINITY_SUPPORTED
5345