xref: /freebsd/contrib/llvm-project/openmp/runtime/src/kmp_affinity.cpp (revision 5ca8e32633c4ffbbcd6762e5888b6a4ba0708c6c)
1 /*
2  * kmp_affinity.cpp -- affinity management
3  */
4 
5 //===----------------------------------------------------------------------===//
6 //
7 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
8 // See https://llvm.org/LICENSE.txt for license information.
9 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "kmp.h"
14 #include "kmp_affinity.h"
15 #include "kmp_i18n.h"
16 #include "kmp_io.h"
17 #include "kmp_str.h"
18 #include "kmp_wrapper_getpid.h"
19 #if KMP_USE_HIER_SCHED
20 #include "kmp_dispatch_hier.h"
21 #endif
22 #if KMP_USE_HWLOC
23 // Copied from hwloc
24 #define HWLOC_GROUP_KIND_INTEL_MODULE 102
25 #define HWLOC_GROUP_KIND_INTEL_TILE 103
26 #define HWLOC_GROUP_KIND_INTEL_DIE 104
27 #define HWLOC_GROUP_KIND_WINDOWS_PROCESSOR_GROUP 220
28 #endif
29 #include <ctype.h>
30 
31 // The machine topology
32 kmp_topology_t *__kmp_topology = nullptr;
33 // KMP_HW_SUBSET environment variable
34 kmp_hw_subset_t *__kmp_hw_subset = nullptr;
35 
36 // Store the real or imagined machine hierarchy here
37 static hierarchy_info machine_hierarchy;
38 
39 void __kmp_cleanup_hierarchy() { machine_hierarchy.fini(); }
40 
41 void __kmp_get_hierarchy(kmp_uint32 nproc, kmp_bstate_t *thr_bar) {
42   kmp_uint32 depth;
43   // The test below is true if affinity is available, but set to "none". Need to
44   // init on first use of hierarchical barrier.
45   if (TCR_1(machine_hierarchy.uninitialized))
46     machine_hierarchy.init(nproc);
47 
48   // Adjust the hierarchy in case num threads exceeds original
49   if (nproc > machine_hierarchy.base_num_threads)
50     machine_hierarchy.resize(nproc);
51 
52   depth = machine_hierarchy.depth;
53   KMP_DEBUG_ASSERT(depth > 0);
54 
55   thr_bar->depth = depth;
56   __kmp_type_convert(machine_hierarchy.numPerLevel[0] - 1,
57                      &(thr_bar->base_leaf_kids));
58   thr_bar->skip_per_level = machine_hierarchy.skipPerLevel;
59 }
60 
61 static int nCoresPerPkg, nPackages;
62 static int __kmp_nThreadsPerCore;
63 #ifndef KMP_DFLT_NTH_CORES
64 static int __kmp_ncores;
65 #endif
66 
67 const char *__kmp_hw_get_catalog_string(kmp_hw_t type, bool plural) {
68   switch (type) {
69   case KMP_HW_SOCKET:
70     return ((plural) ? KMP_I18N_STR(Sockets) : KMP_I18N_STR(Socket));
71   case KMP_HW_DIE:
72     return ((plural) ? KMP_I18N_STR(Dice) : KMP_I18N_STR(Die));
73   case KMP_HW_MODULE:
74     return ((plural) ? KMP_I18N_STR(Modules) : KMP_I18N_STR(Module));
75   case KMP_HW_TILE:
76     return ((plural) ? KMP_I18N_STR(Tiles) : KMP_I18N_STR(Tile));
77   case KMP_HW_NUMA:
78     return ((plural) ? KMP_I18N_STR(NumaDomains) : KMP_I18N_STR(NumaDomain));
79   case KMP_HW_L3:
80     return ((plural) ? KMP_I18N_STR(L3Caches) : KMP_I18N_STR(L3Cache));
81   case KMP_HW_L2:
82     return ((plural) ? KMP_I18N_STR(L2Caches) : KMP_I18N_STR(L2Cache));
83   case KMP_HW_L1:
84     return ((plural) ? KMP_I18N_STR(L1Caches) : KMP_I18N_STR(L1Cache));
85   case KMP_HW_LLC:
86     return ((plural) ? KMP_I18N_STR(LLCaches) : KMP_I18N_STR(LLCache));
87   case KMP_HW_CORE:
88     return ((plural) ? KMP_I18N_STR(Cores) : KMP_I18N_STR(Core));
89   case KMP_HW_THREAD:
90     return ((plural) ? KMP_I18N_STR(Threads) : KMP_I18N_STR(Thread));
91   case KMP_HW_PROC_GROUP:
92     return ((plural) ? KMP_I18N_STR(ProcGroups) : KMP_I18N_STR(ProcGroup));
93   }
94   return KMP_I18N_STR(Unknown);
95 }
96 
97 const char *__kmp_hw_get_keyword(kmp_hw_t type, bool plural) {
98   switch (type) {
99   case KMP_HW_SOCKET:
100     return ((plural) ? "sockets" : "socket");
101   case KMP_HW_DIE:
102     return ((plural) ? "dice" : "die");
103   case KMP_HW_MODULE:
104     return ((plural) ? "modules" : "module");
105   case KMP_HW_TILE:
106     return ((plural) ? "tiles" : "tile");
107   case KMP_HW_NUMA:
108     return ((plural) ? "numa_domains" : "numa_domain");
109   case KMP_HW_L3:
110     return ((plural) ? "l3_caches" : "l3_cache");
111   case KMP_HW_L2:
112     return ((plural) ? "l2_caches" : "l2_cache");
113   case KMP_HW_L1:
114     return ((plural) ? "l1_caches" : "l1_cache");
115   case KMP_HW_LLC:
116     return ((plural) ? "ll_caches" : "ll_cache");
117   case KMP_HW_CORE:
118     return ((plural) ? "cores" : "core");
119   case KMP_HW_THREAD:
120     return ((plural) ? "threads" : "thread");
121   case KMP_HW_PROC_GROUP:
122     return ((plural) ? "proc_groups" : "proc_group");
123   }
124   return ((plural) ? "unknowns" : "unknown");
125 }
126 
127 const char *__kmp_hw_get_core_type_string(kmp_hw_core_type_t type) {
128   switch (type) {
129   case KMP_HW_CORE_TYPE_UNKNOWN:
130     return "unknown";
131 #if KMP_ARCH_X86 || KMP_ARCH_X86_64
132   case KMP_HW_CORE_TYPE_ATOM:
133     return "Intel Atom(R) processor";
134   case KMP_HW_CORE_TYPE_CORE:
135     return "Intel(R) Core(TM) processor";
136 #endif
137   }
138   return "unknown";
139 }
140 
141 #if KMP_AFFINITY_SUPPORTED
142 // If affinity is supported, check the affinity
143 // verbose and warning flags before printing warning
144 #define KMP_AFF_WARNING(s, ...)                                                \
145   if (s.flags.verbose || (s.flags.warnings && (s.type != affinity_none))) {    \
146     KMP_WARNING(__VA_ARGS__);                                                  \
147   }
148 #else
149 #define KMP_AFF_WARNING(s, ...) KMP_WARNING(__VA_ARGS__)
150 #endif
151 
152 ////////////////////////////////////////////////////////////////////////////////
153 // kmp_hw_thread_t methods
154 int kmp_hw_thread_t::compare_ids(const void *a, const void *b) {
155   const kmp_hw_thread_t *ahwthread = (const kmp_hw_thread_t *)a;
156   const kmp_hw_thread_t *bhwthread = (const kmp_hw_thread_t *)b;
157   int depth = __kmp_topology->get_depth();
158   for (int level = 0; level < depth; ++level) {
159     if (ahwthread->ids[level] < bhwthread->ids[level])
160       return -1;
161     else if (ahwthread->ids[level] > bhwthread->ids[level])
162       return 1;
163   }
164   if (ahwthread->os_id < bhwthread->os_id)
165     return -1;
166   else if (ahwthread->os_id > bhwthread->os_id)
167     return 1;
168   return 0;
169 }
170 
171 #if KMP_AFFINITY_SUPPORTED
172 int kmp_hw_thread_t::compare_compact(const void *a, const void *b) {
173   int i;
174   const kmp_hw_thread_t *aa = (const kmp_hw_thread_t *)a;
175   const kmp_hw_thread_t *bb = (const kmp_hw_thread_t *)b;
176   int depth = __kmp_topology->get_depth();
177   int compact = __kmp_topology->compact;
178   KMP_DEBUG_ASSERT(compact >= 0);
179   KMP_DEBUG_ASSERT(compact <= depth);
180   for (i = 0; i < compact; i++) {
181     int j = depth - i - 1;
182     if (aa->sub_ids[j] < bb->sub_ids[j])
183       return -1;
184     if (aa->sub_ids[j] > bb->sub_ids[j])
185       return 1;
186   }
187   for (; i < depth; i++) {
188     int j = i - compact;
189     if (aa->sub_ids[j] < bb->sub_ids[j])
190       return -1;
191     if (aa->sub_ids[j] > bb->sub_ids[j])
192       return 1;
193   }
194   return 0;
195 }
196 #endif
197 
198 void kmp_hw_thread_t::print() const {
199   int depth = __kmp_topology->get_depth();
200   printf("%4d ", os_id);
201   for (int i = 0; i < depth; ++i) {
202     printf("%4d ", ids[i]);
203   }
204   if (attrs) {
205     if (attrs.is_core_type_valid())
206       printf(" (%s)", __kmp_hw_get_core_type_string(attrs.get_core_type()));
207     if (attrs.is_core_eff_valid())
208       printf(" (eff=%d)", attrs.get_core_eff());
209   }
210   printf("\n");
211 }
212 
213 ////////////////////////////////////////////////////////////////////////////////
214 // kmp_topology_t methods
215 
216 // Add a layer to the topology based on the ids. Assume the topology
217 // is perfectly nested (i.e., so no object has more than one parent)
218 void kmp_topology_t::_insert_layer(kmp_hw_t type, const int *ids) {
219   // Figure out where the layer should go by comparing the ids of the current
220   // layers with the new ids
221   int target_layer;
222   int previous_id = kmp_hw_thread_t::UNKNOWN_ID;
223   int previous_new_id = kmp_hw_thread_t::UNKNOWN_ID;
224 
225   // Start from the highest layer and work down to find target layer
226   // If new layer is equal to another layer then put the new layer above
227   for (target_layer = 0; target_layer < depth; ++target_layer) {
228     bool layers_equal = true;
229     bool strictly_above_target_layer = false;
230     for (int i = 0; i < num_hw_threads; ++i) {
231       int id = hw_threads[i].ids[target_layer];
232       int new_id = ids[i];
233       if (id != previous_id && new_id == previous_new_id) {
234         // Found the layer we are strictly above
235         strictly_above_target_layer = true;
236         layers_equal = false;
237         break;
238       } else if (id == previous_id && new_id != previous_new_id) {
239         // Found a layer we are below. Move to next layer and check.
240         layers_equal = false;
241         break;
242       }
243       previous_id = id;
244       previous_new_id = new_id;
245     }
246     if (strictly_above_target_layer || layers_equal)
247       break;
248   }
249 
250   // Found the layer we are above. Now move everything to accommodate the new
251   // layer. And put the new ids and type into the topology.
252   for (int i = depth - 1, j = depth; i >= target_layer; --i, --j)
253     types[j] = types[i];
254   types[target_layer] = type;
255   for (int k = 0; k < num_hw_threads; ++k) {
256     for (int i = depth - 1, j = depth; i >= target_layer; --i, --j)
257       hw_threads[k].ids[j] = hw_threads[k].ids[i];
258     hw_threads[k].ids[target_layer] = ids[k];
259   }
260   equivalent[type] = type;
261   depth++;
262 }
263 
264 #if KMP_GROUP_AFFINITY
265 // Insert the Windows Processor Group structure into the topology
266 void kmp_topology_t::_insert_windows_proc_groups() {
267   // Do not insert the processor group structure for a single group
268   if (__kmp_num_proc_groups == 1)
269     return;
270   kmp_affin_mask_t *mask;
271   int *ids = (int *)__kmp_allocate(sizeof(int) * num_hw_threads);
272   KMP_CPU_ALLOC(mask);
273   for (int i = 0; i < num_hw_threads; ++i) {
274     KMP_CPU_ZERO(mask);
275     KMP_CPU_SET(hw_threads[i].os_id, mask);
276     ids[i] = __kmp_get_proc_group(mask);
277   }
278   KMP_CPU_FREE(mask);
279   _insert_layer(KMP_HW_PROC_GROUP, ids);
280   __kmp_free(ids);
281 }
282 #endif
283 
284 // Remove layers that don't add information to the topology.
285 // This is done by having the layer take on the id = UNKNOWN_ID (-1)
286 void kmp_topology_t::_remove_radix1_layers() {
287   int preference[KMP_HW_LAST];
288   int top_index1, top_index2;
289   // Set up preference associative array
290   preference[KMP_HW_SOCKET] = 110;
291   preference[KMP_HW_PROC_GROUP] = 100;
292   preference[KMP_HW_CORE] = 95;
293   preference[KMP_HW_THREAD] = 90;
294   preference[KMP_HW_NUMA] = 85;
295   preference[KMP_HW_DIE] = 80;
296   preference[KMP_HW_TILE] = 75;
297   preference[KMP_HW_MODULE] = 73;
298   preference[KMP_HW_L3] = 70;
299   preference[KMP_HW_L2] = 65;
300   preference[KMP_HW_L1] = 60;
301   preference[KMP_HW_LLC] = 5;
302   top_index1 = 0;
303   top_index2 = 1;
304   while (top_index1 < depth - 1 && top_index2 < depth) {
305     kmp_hw_t type1 = types[top_index1];
306     kmp_hw_t type2 = types[top_index2];
307     KMP_ASSERT_VALID_HW_TYPE(type1);
308     KMP_ASSERT_VALID_HW_TYPE(type2);
309     // Do not allow the three main topology levels (sockets, cores, threads) to
310     // be compacted down
311     if ((type1 == KMP_HW_THREAD || type1 == KMP_HW_CORE ||
312          type1 == KMP_HW_SOCKET) &&
313         (type2 == KMP_HW_THREAD || type2 == KMP_HW_CORE ||
314          type2 == KMP_HW_SOCKET)) {
315       top_index1 = top_index2++;
316       continue;
317     }
318     bool radix1 = true;
319     bool all_same = true;
320     int id1 = hw_threads[0].ids[top_index1];
321     int id2 = hw_threads[0].ids[top_index2];
322     int pref1 = preference[type1];
323     int pref2 = preference[type2];
324     for (int hwidx = 1; hwidx < num_hw_threads; ++hwidx) {
325       if (hw_threads[hwidx].ids[top_index1] == id1 &&
326           hw_threads[hwidx].ids[top_index2] != id2) {
327         radix1 = false;
328         break;
329       }
330       if (hw_threads[hwidx].ids[top_index2] != id2)
331         all_same = false;
332       id1 = hw_threads[hwidx].ids[top_index1];
333       id2 = hw_threads[hwidx].ids[top_index2];
334     }
335     if (radix1) {
336       // Select the layer to remove based on preference
337       kmp_hw_t remove_type, keep_type;
338       int remove_layer, remove_layer_ids;
339       if (pref1 > pref2) {
340         remove_type = type2;
341         remove_layer = remove_layer_ids = top_index2;
342         keep_type = type1;
343       } else {
344         remove_type = type1;
345         remove_layer = remove_layer_ids = top_index1;
346         keep_type = type2;
347       }
348       // If all the indexes for the second (deeper) layer are the same.
349       // e.g., all are zero, then make sure to keep the first layer's ids
350       if (all_same)
351         remove_layer_ids = top_index2;
352       // Remove radix one type by setting the equivalence, removing the id from
353       // the hw threads and removing the layer from types and depth
354       set_equivalent_type(remove_type, keep_type);
355       for (int idx = 0; idx < num_hw_threads; ++idx) {
356         kmp_hw_thread_t &hw_thread = hw_threads[idx];
357         for (int d = remove_layer_ids; d < depth - 1; ++d)
358           hw_thread.ids[d] = hw_thread.ids[d + 1];
359       }
360       for (int idx = remove_layer; idx < depth - 1; ++idx)
361         types[idx] = types[idx + 1];
362       depth--;
363     } else {
364       top_index1 = top_index2++;
365     }
366   }
367   KMP_ASSERT(depth > 0);
368 }
369 
370 void kmp_topology_t::_set_last_level_cache() {
371   if (get_equivalent_type(KMP_HW_L3) != KMP_HW_UNKNOWN)
372     set_equivalent_type(KMP_HW_LLC, KMP_HW_L3);
373   else if (get_equivalent_type(KMP_HW_L2) != KMP_HW_UNKNOWN)
374     set_equivalent_type(KMP_HW_LLC, KMP_HW_L2);
375 #if KMP_MIC_SUPPORTED
376   else if (__kmp_mic_type == mic3) {
377     if (get_equivalent_type(KMP_HW_L2) != KMP_HW_UNKNOWN)
378       set_equivalent_type(KMP_HW_LLC, KMP_HW_L2);
379     else if (get_equivalent_type(KMP_HW_TILE) != KMP_HW_UNKNOWN)
380       set_equivalent_type(KMP_HW_LLC, KMP_HW_TILE);
381     // L2/Tile wasn't detected so just say L1
382     else
383       set_equivalent_type(KMP_HW_LLC, KMP_HW_L1);
384   }
385 #endif
386   else if (get_equivalent_type(KMP_HW_L1) != KMP_HW_UNKNOWN)
387     set_equivalent_type(KMP_HW_LLC, KMP_HW_L1);
388   // Fallback is to set last level cache to socket or core
389   if (get_equivalent_type(KMP_HW_LLC) == KMP_HW_UNKNOWN) {
390     if (get_equivalent_type(KMP_HW_SOCKET) != KMP_HW_UNKNOWN)
391       set_equivalent_type(KMP_HW_LLC, KMP_HW_SOCKET);
392     else if (get_equivalent_type(KMP_HW_CORE) != KMP_HW_UNKNOWN)
393       set_equivalent_type(KMP_HW_LLC, KMP_HW_CORE);
394   }
395   KMP_ASSERT(get_equivalent_type(KMP_HW_LLC) != KMP_HW_UNKNOWN);
396 }
397 
398 // Gather the count of each topology layer and the ratio
399 void kmp_topology_t::_gather_enumeration_information() {
400   int previous_id[KMP_HW_LAST];
401   int max[KMP_HW_LAST];
402 
403   for (int i = 0; i < depth; ++i) {
404     previous_id[i] = kmp_hw_thread_t::UNKNOWN_ID;
405     max[i] = 0;
406     count[i] = 0;
407     ratio[i] = 0;
408   }
409   int core_level = get_level(KMP_HW_CORE);
410   for (int i = 0; i < num_hw_threads; ++i) {
411     kmp_hw_thread_t &hw_thread = hw_threads[i];
412     for (int layer = 0; layer < depth; ++layer) {
413       int id = hw_thread.ids[layer];
414       if (id != previous_id[layer]) {
415         // Add an additional increment to each count
416         for (int l = layer; l < depth; ++l)
417           count[l]++;
418         // Keep track of topology layer ratio statistics
419         max[layer]++;
420         for (int l = layer + 1; l < depth; ++l) {
421           if (max[l] > ratio[l])
422             ratio[l] = max[l];
423           max[l] = 1;
424         }
425         // Figure out the number of different core types
426         // and efficiencies for hybrid CPUs
427         if (__kmp_is_hybrid_cpu() && core_level >= 0 && layer <= core_level) {
428           if (hw_thread.attrs.is_core_eff_valid() &&
429               hw_thread.attrs.core_eff >= num_core_efficiencies) {
430             // Because efficiencies can range from 0 to max efficiency - 1,
431             // the number of efficiencies is max efficiency + 1
432             num_core_efficiencies = hw_thread.attrs.core_eff + 1;
433           }
434           if (hw_thread.attrs.is_core_type_valid()) {
435             bool found = false;
436             for (int j = 0; j < num_core_types; ++j) {
437               if (hw_thread.attrs.get_core_type() == core_types[j]) {
438                 found = true;
439                 break;
440               }
441             }
442             if (!found) {
443               KMP_ASSERT(num_core_types < KMP_HW_MAX_NUM_CORE_TYPES);
444               core_types[num_core_types++] = hw_thread.attrs.get_core_type();
445             }
446           }
447         }
448         break;
449       }
450     }
451     for (int layer = 0; layer < depth; ++layer) {
452       previous_id[layer] = hw_thread.ids[layer];
453     }
454   }
455   for (int layer = 0; layer < depth; ++layer) {
456     if (max[layer] > ratio[layer])
457       ratio[layer] = max[layer];
458   }
459 }
460 
461 int kmp_topology_t::_get_ncores_with_attr(const kmp_hw_attr_t &attr,
462                                           int above_level,
463                                           bool find_all) const {
464   int current, current_max;
465   int previous_id[KMP_HW_LAST];
466   for (int i = 0; i < depth; ++i)
467     previous_id[i] = kmp_hw_thread_t::UNKNOWN_ID;
468   int core_level = get_level(KMP_HW_CORE);
469   if (find_all)
470     above_level = -1;
471   KMP_ASSERT(above_level < core_level);
472   current_max = 0;
473   current = 0;
474   for (int i = 0; i < num_hw_threads; ++i) {
475     kmp_hw_thread_t &hw_thread = hw_threads[i];
476     if (!find_all && hw_thread.ids[above_level] != previous_id[above_level]) {
477       if (current > current_max)
478         current_max = current;
479       current = hw_thread.attrs.contains(attr);
480     } else {
481       for (int level = above_level + 1; level <= core_level; ++level) {
482         if (hw_thread.ids[level] != previous_id[level]) {
483           if (hw_thread.attrs.contains(attr))
484             current++;
485           break;
486         }
487       }
488     }
489     for (int level = 0; level < depth; ++level)
490       previous_id[level] = hw_thread.ids[level];
491   }
492   if (current > current_max)
493     current_max = current;
494   return current_max;
495 }
496 
497 // Find out if the topology is uniform
498 void kmp_topology_t::_discover_uniformity() {
499   int num = 1;
500   for (int level = 0; level < depth; ++level)
501     num *= ratio[level];
502   flags.uniform = (num == count[depth - 1]);
503 }
504 
505 // Set all the sub_ids for each hardware thread
506 void kmp_topology_t::_set_sub_ids() {
507   int previous_id[KMP_HW_LAST];
508   int sub_id[KMP_HW_LAST];
509 
510   for (int i = 0; i < depth; ++i) {
511     previous_id[i] = -1;
512     sub_id[i] = -1;
513   }
514   for (int i = 0; i < num_hw_threads; ++i) {
515     kmp_hw_thread_t &hw_thread = hw_threads[i];
516     // Setup the sub_id
517     for (int j = 0; j < depth; ++j) {
518       if (hw_thread.ids[j] != previous_id[j]) {
519         sub_id[j]++;
520         for (int k = j + 1; k < depth; ++k) {
521           sub_id[k] = 0;
522         }
523         break;
524       }
525     }
526     // Set previous_id
527     for (int j = 0; j < depth; ++j) {
528       previous_id[j] = hw_thread.ids[j];
529     }
530     // Set the sub_ids field
531     for (int j = 0; j < depth; ++j) {
532       hw_thread.sub_ids[j] = sub_id[j];
533     }
534   }
535 }
536 
537 void kmp_topology_t::_set_globals() {
538   // Set nCoresPerPkg, nPackages, __kmp_nThreadsPerCore, __kmp_ncores
539   int core_level, thread_level, package_level;
540   package_level = get_level(KMP_HW_SOCKET);
541 #if KMP_GROUP_AFFINITY
542   if (package_level == -1)
543     package_level = get_level(KMP_HW_PROC_GROUP);
544 #endif
545   core_level = get_level(KMP_HW_CORE);
546   thread_level = get_level(KMP_HW_THREAD);
547 
548   KMP_ASSERT(core_level != -1);
549   KMP_ASSERT(thread_level != -1);
550 
551   __kmp_nThreadsPerCore = calculate_ratio(thread_level, core_level);
552   if (package_level != -1) {
553     nCoresPerPkg = calculate_ratio(core_level, package_level);
554     nPackages = get_count(package_level);
555   } else {
556     // assume one socket
557     nCoresPerPkg = get_count(core_level);
558     nPackages = 1;
559   }
560 #ifndef KMP_DFLT_NTH_CORES
561   __kmp_ncores = get_count(core_level);
562 #endif
563 }
564 
565 kmp_topology_t *kmp_topology_t::allocate(int nproc, int ndepth,
566                                          const kmp_hw_t *types) {
567   kmp_topology_t *retval;
568   // Allocate all data in one large allocation
569   size_t size = sizeof(kmp_topology_t) + sizeof(kmp_hw_thread_t) * nproc +
570                 sizeof(int) * (size_t)KMP_HW_LAST * 3;
571   char *bytes = (char *)__kmp_allocate(size);
572   retval = (kmp_topology_t *)bytes;
573   if (nproc > 0) {
574     retval->hw_threads = (kmp_hw_thread_t *)(bytes + sizeof(kmp_topology_t));
575   } else {
576     retval->hw_threads = nullptr;
577   }
578   retval->num_hw_threads = nproc;
579   retval->depth = ndepth;
580   int *arr =
581       (int *)(bytes + sizeof(kmp_topology_t) + sizeof(kmp_hw_thread_t) * nproc);
582   retval->types = (kmp_hw_t *)arr;
583   retval->ratio = arr + (size_t)KMP_HW_LAST;
584   retval->count = arr + 2 * (size_t)KMP_HW_LAST;
585   retval->num_core_efficiencies = 0;
586   retval->num_core_types = 0;
587   retval->compact = 0;
588   for (int i = 0; i < KMP_HW_MAX_NUM_CORE_TYPES; ++i)
589     retval->core_types[i] = KMP_HW_CORE_TYPE_UNKNOWN;
590   KMP_FOREACH_HW_TYPE(type) { retval->equivalent[type] = KMP_HW_UNKNOWN; }
591   for (int i = 0; i < ndepth; ++i) {
592     retval->types[i] = types[i];
593     retval->equivalent[types[i]] = types[i];
594   }
595   return retval;
596 }
597 
598 void kmp_topology_t::deallocate(kmp_topology_t *topology) {
599   if (topology)
600     __kmp_free(topology);
601 }
602 
603 bool kmp_topology_t::check_ids() const {
604   // Assume ids have been sorted
605   if (num_hw_threads == 0)
606     return true;
607   for (int i = 1; i < num_hw_threads; ++i) {
608     kmp_hw_thread_t &current_thread = hw_threads[i];
609     kmp_hw_thread_t &previous_thread = hw_threads[i - 1];
610     bool unique = false;
611     for (int j = 0; j < depth; ++j) {
612       if (previous_thread.ids[j] != current_thread.ids[j]) {
613         unique = true;
614         break;
615       }
616     }
617     if (unique)
618       continue;
619     return false;
620   }
621   return true;
622 }
623 
624 void kmp_topology_t::dump() const {
625   printf("***********************\n");
626   printf("*** __kmp_topology: ***\n");
627   printf("***********************\n");
628   printf("* depth: %d\n", depth);
629 
630   printf("* types: ");
631   for (int i = 0; i < depth; ++i)
632     printf("%15s ", __kmp_hw_get_keyword(types[i]));
633   printf("\n");
634 
635   printf("* ratio: ");
636   for (int i = 0; i < depth; ++i) {
637     printf("%15d ", ratio[i]);
638   }
639   printf("\n");
640 
641   printf("* count: ");
642   for (int i = 0; i < depth; ++i) {
643     printf("%15d ", count[i]);
644   }
645   printf("\n");
646 
647   printf("* num_core_eff: %d\n", num_core_efficiencies);
648   printf("* num_core_types: %d\n", num_core_types);
649   printf("* core_types: ");
650   for (int i = 0; i < num_core_types; ++i)
651     printf("%3d ", core_types[i]);
652   printf("\n");
653 
654   printf("* equivalent map:\n");
655   KMP_FOREACH_HW_TYPE(i) {
656     const char *key = __kmp_hw_get_keyword(i);
657     const char *value = __kmp_hw_get_keyword(equivalent[i]);
658     printf("%-15s -> %-15s\n", key, value);
659   }
660 
661   printf("* uniform: %s\n", (is_uniform() ? "Yes" : "No"));
662 
663   printf("* num_hw_threads: %d\n", num_hw_threads);
664   printf("* hw_threads:\n");
665   for (int i = 0; i < num_hw_threads; ++i) {
666     hw_threads[i].print();
667   }
668   printf("***********************\n");
669 }
670 
671 void kmp_topology_t::print(const char *env_var) const {
672   kmp_str_buf_t buf;
673   int print_types_depth;
674   __kmp_str_buf_init(&buf);
675   kmp_hw_t print_types[KMP_HW_LAST + 2];
676 
677   // Num Available Threads
678   if (num_hw_threads) {
679     KMP_INFORM(AvailableOSProc, env_var, num_hw_threads);
680   } else {
681     KMP_INFORM(AvailableOSProc, env_var, __kmp_xproc);
682   }
683 
684   // Uniform or not
685   if (is_uniform()) {
686     KMP_INFORM(Uniform, env_var);
687   } else {
688     KMP_INFORM(NonUniform, env_var);
689   }
690 
691   // Equivalent types
692   KMP_FOREACH_HW_TYPE(type) {
693     kmp_hw_t eq_type = equivalent[type];
694     if (eq_type != KMP_HW_UNKNOWN && eq_type != type) {
695       KMP_INFORM(AffEqualTopologyTypes, env_var,
696                  __kmp_hw_get_catalog_string(type),
697                  __kmp_hw_get_catalog_string(eq_type));
698     }
699   }
700 
701   // Quick topology
702   KMP_ASSERT(depth > 0 && depth <= (int)KMP_HW_LAST);
703   // Create a print types array that always guarantees printing
704   // the core and thread level
705   print_types_depth = 0;
706   for (int level = 0; level < depth; ++level)
707     print_types[print_types_depth++] = types[level];
708   if (equivalent[KMP_HW_CORE] != KMP_HW_CORE) {
709     // Force in the core level for quick topology
710     if (print_types[print_types_depth - 1] == KMP_HW_THREAD) {
711       // Force core before thread e.g., 1 socket X 2 threads/socket
712       // becomes 1 socket X 1 core/socket X 2 threads/socket
713       print_types[print_types_depth - 1] = KMP_HW_CORE;
714       print_types[print_types_depth++] = KMP_HW_THREAD;
715     } else {
716       print_types[print_types_depth++] = KMP_HW_CORE;
717     }
718   }
719   // Always put threads at very end of quick topology
720   if (equivalent[KMP_HW_THREAD] != KMP_HW_THREAD)
721     print_types[print_types_depth++] = KMP_HW_THREAD;
722 
723   __kmp_str_buf_clear(&buf);
724   kmp_hw_t numerator_type;
725   kmp_hw_t denominator_type = KMP_HW_UNKNOWN;
726   int core_level = get_level(KMP_HW_CORE);
727   int ncores = get_count(core_level);
728 
729   for (int plevel = 0, level = 0; plevel < print_types_depth; ++plevel) {
730     int c;
731     bool plural;
732     numerator_type = print_types[plevel];
733     KMP_ASSERT_VALID_HW_TYPE(numerator_type);
734     if (equivalent[numerator_type] != numerator_type)
735       c = 1;
736     else
737       c = get_ratio(level++);
738     plural = (c > 1);
739     if (plevel == 0) {
740       __kmp_str_buf_print(&buf, "%d %s", c,
741                           __kmp_hw_get_catalog_string(numerator_type, plural));
742     } else {
743       __kmp_str_buf_print(&buf, " x %d %s/%s", c,
744                           __kmp_hw_get_catalog_string(numerator_type, plural),
745                           __kmp_hw_get_catalog_string(denominator_type));
746     }
747     denominator_type = numerator_type;
748   }
749   KMP_INFORM(TopologyGeneric, env_var, buf.str, ncores);
750 
751   // Hybrid topology information
752   if (__kmp_is_hybrid_cpu()) {
753     for (int i = 0; i < num_core_types; ++i) {
754       kmp_hw_core_type_t core_type = core_types[i];
755       kmp_hw_attr_t attr;
756       attr.clear();
757       attr.set_core_type(core_type);
758       int ncores = get_ncores_with_attr(attr);
759       if (ncores > 0) {
760         KMP_INFORM(TopologyHybrid, env_var, ncores,
761                    __kmp_hw_get_core_type_string(core_type));
762         KMP_ASSERT(num_core_efficiencies <= KMP_HW_MAX_NUM_CORE_EFFS)
763         for (int eff = 0; eff < num_core_efficiencies; ++eff) {
764           attr.set_core_eff(eff);
765           int ncores_with_eff = get_ncores_with_attr(attr);
766           if (ncores_with_eff > 0) {
767             KMP_INFORM(TopologyHybridCoreEff, env_var, ncores_with_eff, eff);
768           }
769         }
770       }
771     }
772   }
773 
774   if (num_hw_threads <= 0) {
775     __kmp_str_buf_free(&buf);
776     return;
777   }
778 
779   // Full OS proc to hardware thread map
780   KMP_INFORM(OSProcToPhysicalThreadMap, env_var);
781   for (int i = 0; i < num_hw_threads; i++) {
782     __kmp_str_buf_clear(&buf);
783     for (int level = 0; level < depth; ++level) {
784       kmp_hw_t type = types[level];
785       __kmp_str_buf_print(&buf, "%s ", __kmp_hw_get_catalog_string(type));
786       __kmp_str_buf_print(&buf, "%d ", hw_threads[i].ids[level]);
787     }
788     if (__kmp_is_hybrid_cpu())
789       __kmp_str_buf_print(
790           &buf, "(%s)",
791           __kmp_hw_get_core_type_string(hw_threads[i].attrs.get_core_type()));
792     KMP_INFORM(OSProcMapToPack, env_var, hw_threads[i].os_id, buf.str);
793   }
794 
795   __kmp_str_buf_free(&buf);
796 }
797 
798 #if KMP_AFFINITY_SUPPORTED
799 void kmp_topology_t::set_granularity(kmp_affinity_t &affinity) const {
800   const char *env_var = affinity.env_var;
801   // Set the number of affinity granularity levels
802   if (affinity.gran_levels < 0) {
803     kmp_hw_t gran_type = get_equivalent_type(affinity.gran);
804     // Check if user's granularity request is valid
805     if (gran_type == KMP_HW_UNKNOWN) {
806       // First try core, then thread, then package
807       kmp_hw_t gran_types[3] = {KMP_HW_CORE, KMP_HW_THREAD, KMP_HW_SOCKET};
808       for (auto g : gran_types) {
809         if (get_equivalent_type(g) != KMP_HW_UNKNOWN) {
810           gran_type = g;
811           break;
812         }
813       }
814       KMP_ASSERT(gran_type != KMP_HW_UNKNOWN);
815       // Warn user what granularity setting will be used instead
816       KMP_AFF_WARNING(affinity, AffGranularityBad, env_var,
817                       __kmp_hw_get_catalog_string(affinity.gran),
818                       __kmp_hw_get_catalog_string(gran_type));
819       affinity.gran = gran_type;
820     }
821 #if KMP_GROUP_AFFINITY
822     // If more than one processor group exists, and the level of
823     // granularity specified by the user is too coarse, then the
824     // granularity must be adjusted "down" to processor group affinity
825     // because threads can only exist within one processor group.
826     // For example, if a user sets granularity=socket and there are two
827     // processor groups that cover a socket, then the runtime must
828     // restrict the granularity down to the processor group level.
829     if (__kmp_num_proc_groups > 1) {
830       int gran_depth = get_level(gran_type);
831       int proc_group_depth = get_level(KMP_HW_PROC_GROUP);
832       if (gran_depth >= 0 && proc_group_depth >= 0 &&
833           gran_depth < proc_group_depth) {
834         KMP_AFF_WARNING(affinity, AffGranTooCoarseProcGroup, env_var,
835                         __kmp_hw_get_catalog_string(affinity.gran));
836         affinity.gran = gran_type = KMP_HW_PROC_GROUP;
837       }
838     }
839 #endif
840     affinity.gran_levels = 0;
841     for (int i = depth - 1; i >= 0 && get_type(i) != gran_type; --i)
842       affinity.gran_levels++;
843   }
844 }
845 #endif
846 
847 void kmp_topology_t::canonicalize() {
848 #if KMP_GROUP_AFFINITY
849   _insert_windows_proc_groups();
850 #endif
851   _remove_radix1_layers();
852   _gather_enumeration_information();
853   _discover_uniformity();
854   _set_sub_ids();
855   _set_globals();
856   _set_last_level_cache();
857 
858 #if KMP_MIC_SUPPORTED
859   // Manually Add L2 = Tile equivalence
860   if (__kmp_mic_type == mic3) {
861     if (get_level(KMP_HW_L2) != -1)
862       set_equivalent_type(KMP_HW_TILE, KMP_HW_L2);
863     else if (get_level(KMP_HW_TILE) != -1)
864       set_equivalent_type(KMP_HW_L2, KMP_HW_TILE);
865   }
866 #endif
867 
868   // Perform post canonicalization checking
869   KMP_ASSERT(depth > 0);
870   for (int level = 0; level < depth; ++level) {
871     // All counts, ratios, and types must be valid
872     KMP_ASSERT(count[level] > 0 && ratio[level] > 0);
873     KMP_ASSERT_VALID_HW_TYPE(types[level]);
874     // Detected types must point to themselves
875     KMP_ASSERT(equivalent[types[level]] == types[level]);
876   }
877 }
878 
879 // Canonicalize an explicit packages X cores/pkg X threads/core topology
880 void kmp_topology_t::canonicalize(int npackages, int ncores_per_pkg,
881                                   int nthreads_per_core, int ncores) {
882   int ndepth = 3;
883   depth = ndepth;
884   KMP_FOREACH_HW_TYPE(i) { equivalent[i] = KMP_HW_UNKNOWN; }
885   for (int level = 0; level < depth; ++level) {
886     count[level] = 0;
887     ratio[level] = 0;
888   }
889   count[0] = npackages;
890   count[1] = ncores;
891   count[2] = __kmp_xproc;
892   ratio[0] = npackages;
893   ratio[1] = ncores_per_pkg;
894   ratio[2] = nthreads_per_core;
895   equivalent[KMP_HW_SOCKET] = KMP_HW_SOCKET;
896   equivalent[KMP_HW_CORE] = KMP_HW_CORE;
897   equivalent[KMP_HW_THREAD] = KMP_HW_THREAD;
898   types[0] = KMP_HW_SOCKET;
899   types[1] = KMP_HW_CORE;
900   types[2] = KMP_HW_THREAD;
901   //__kmp_avail_proc = __kmp_xproc;
902   _discover_uniformity();
903 }
904 
905 // Represents running sub IDs for a single core attribute where
906 // attribute values have SIZE possibilities.
907 template <size_t SIZE, typename IndexFunc> struct kmp_sub_ids_t {
908   int last_level; // last level in topology to consider for sub_ids
909   int sub_id[SIZE]; // The sub ID for a given attribute value
910   int prev_sub_id[KMP_HW_LAST];
911   IndexFunc indexer;
912 
913 public:
914   kmp_sub_ids_t(int last_level) : last_level(last_level) {
915     KMP_ASSERT(last_level < KMP_HW_LAST);
916     for (size_t i = 0; i < SIZE; ++i)
917       sub_id[i] = -1;
918     for (size_t i = 0; i < KMP_HW_LAST; ++i)
919       prev_sub_id[i] = -1;
920   }
921   void update(const kmp_hw_thread_t &hw_thread) {
922     int idx = indexer(hw_thread);
923     KMP_ASSERT(idx < (int)SIZE);
924     for (int level = 0; level <= last_level; ++level) {
925       if (hw_thread.sub_ids[level] != prev_sub_id[level]) {
926         if (level < last_level)
927           sub_id[idx] = -1;
928         sub_id[idx]++;
929         break;
930       }
931     }
932     for (int level = 0; level <= last_level; ++level)
933       prev_sub_id[level] = hw_thread.sub_ids[level];
934   }
935   int get_sub_id(const kmp_hw_thread_t &hw_thread) const {
936     return sub_id[indexer(hw_thread)];
937   }
938 };
939 
940 static kmp_str_buf_t *
941 __kmp_hw_get_catalog_core_string(const kmp_hw_attr_t &attr, kmp_str_buf_t *buf,
942                                  bool plural) {
943   __kmp_str_buf_init(buf);
944   if (attr.is_core_type_valid())
945     __kmp_str_buf_print(buf, "%s %s",
946                         __kmp_hw_get_core_type_string(attr.get_core_type()),
947                         __kmp_hw_get_catalog_string(KMP_HW_CORE, plural));
948   else
949     __kmp_str_buf_print(buf, "%s eff=%d",
950                         __kmp_hw_get_catalog_string(KMP_HW_CORE, plural),
951                         attr.get_core_eff());
952   return buf;
953 }
954 
955 // Apply the KMP_HW_SUBSET envirable to the topology
956 // Returns true if KMP_HW_SUBSET filtered any processors
957 // otherwise, returns false
958 bool kmp_topology_t::filter_hw_subset() {
959   // If KMP_HW_SUBSET wasn't requested, then do nothing.
960   if (!__kmp_hw_subset)
961     return false;
962 
963   // First, sort the KMP_HW_SUBSET items by the machine topology
964   __kmp_hw_subset->sort();
965 
966   // Check to see if KMP_HW_SUBSET is a valid subset of the detected topology
967   bool using_core_types = false;
968   bool using_core_effs = false;
969   int hw_subset_depth = __kmp_hw_subset->get_depth();
970   kmp_hw_t specified[KMP_HW_LAST];
971   int *topology_levels = (int *)KMP_ALLOCA(sizeof(int) * hw_subset_depth);
972   KMP_ASSERT(hw_subset_depth > 0);
973   KMP_FOREACH_HW_TYPE(i) { specified[i] = KMP_HW_UNKNOWN; }
974   int core_level = get_level(KMP_HW_CORE);
975   for (int i = 0; i < hw_subset_depth; ++i) {
976     int max_count;
977     const kmp_hw_subset_t::item_t &item = __kmp_hw_subset->at(i);
978     int num = item.num[0];
979     int offset = item.offset[0];
980     kmp_hw_t type = item.type;
981     kmp_hw_t equivalent_type = equivalent[type];
982     int level = get_level(type);
983     topology_levels[i] = level;
984 
985     // Check to see if current layer is in detected machine topology
986     if (equivalent_type != KMP_HW_UNKNOWN) {
987       __kmp_hw_subset->at(i).type = equivalent_type;
988     } else {
989       KMP_AFF_WARNING(__kmp_affinity, AffHWSubsetNotExistGeneric,
990                       __kmp_hw_get_catalog_string(type));
991       return false;
992     }
993 
994     // Check to see if current layer has already been
995     // specified either directly or through an equivalent type
996     if (specified[equivalent_type] != KMP_HW_UNKNOWN) {
997       KMP_AFF_WARNING(__kmp_affinity, AffHWSubsetEqvLayers,
998                       __kmp_hw_get_catalog_string(type),
999                       __kmp_hw_get_catalog_string(specified[equivalent_type]));
1000       return false;
1001     }
1002     specified[equivalent_type] = type;
1003 
1004     // Check to see if each layer's num & offset parameters are valid
1005     max_count = get_ratio(level);
1006     if (max_count < 0 ||
1007         (num != kmp_hw_subset_t::USE_ALL && num + offset > max_count)) {
1008       bool plural = (num > 1);
1009       KMP_AFF_WARNING(__kmp_affinity, AffHWSubsetManyGeneric,
1010                       __kmp_hw_get_catalog_string(type, plural));
1011       return false;
1012     }
1013 
1014     // Check to see if core attributes are consistent
1015     if (core_level == level) {
1016       // Determine which core attributes are specified
1017       for (int j = 0; j < item.num_attrs; ++j) {
1018         if (item.attr[j].is_core_type_valid())
1019           using_core_types = true;
1020         if (item.attr[j].is_core_eff_valid())
1021           using_core_effs = true;
1022       }
1023 
1024       // Check if using a single core attribute on non-hybrid arch.
1025       // Do not ignore all of KMP_HW_SUBSET, just ignore the attribute.
1026       //
1027       // Check if using multiple core attributes on non-hyrbid arch.
1028       // Ignore all of KMP_HW_SUBSET if this is the case.
1029       if ((using_core_effs || using_core_types) && !__kmp_is_hybrid_cpu()) {
1030         if (item.num_attrs == 1) {
1031           if (using_core_effs) {
1032             KMP_AFF_WARNING(__kmp_affinity, AffHWSubsetIgnoringAttr,
1033                             "efficiency");
1034           } else {
1035             KMP_AFF_WARNING(__kmp_affinity, AffHWSubsetIgnoringAttr,
1036                             "core_type");
1037           }
1038           using_core_effs = false;
1039           using_core_types = false;
1040         } else {
1041           KMP_AFF_WARNING(__kmp_affinity, AffHWSubsetAttrsNonHybrid);
1042           return false;
1043         }
1044       }
1045 
1046       // Check if using both core types and core efficiencies together
1047       if (using_core_types && using_core_effs) {
1048         KMP_AFF_WARNING(__kmp_affinity, AffHWSubsetIncompat, "core_type",
1049                         "efficiency");
1050         return false;
1051       }
1052 
1053       // Check that core efficiency values are valid
1054       if (using_core_effs) {
1055         for (int j = 0; j < item.num_attrs; ++j) {
1056           if (item.attr[j].is_core_eff_valid()) {
1057             int core_eff = item.attr[j].get_core_eff();
1058             if (core_eff < 0 || core_eff >= num_core_efficiencies) {
1059               kmp_str_buf_t buf;
1060               __kmp_str_buf_init(&buf);
1061               __kmp_str_buf_print(&buf, "%d", item.attr[j].get_core_eff());
1062               __kmp_msg(kmp_ms_warning,
1063                         KMP_MSG(AffHWSubsetAttrInvalid, "efficiency", buf.str),
1064                         KMP_HNT(ValidValuesRange, 0, num_core_efficiencies - 1),
1065                         __kmp_msg_null);
1066               __kmp_str_buf_free(&buf);
1067               return false;
1068             }
1069           }
1070         }
1071       }
1072 
1073       // Check that the number of requested cores with attributes is valid
1074       if (using_core_types || using_core_effs) {
1075         for (int j = 0; j < item.num_attrs; ++j) {
1076           int num = item.num[j];
1077           int offset = item.offset[j];
1078           int level_above = core_level - 1;
1079           if (level_above >= 0) {
1080             max_count = get_ncores_with_attr_per(item.attr[j], level_above);
1081             if (max_count <= 0 ||
1082                 (num != kmp_hw_subset_t::USE_ALL && num + offset > max_count)) {
1083               kmp_str_buf_t buf;
1084               __kmp_hw_get_catalog_core_string(item.attr[j], &buf, num > 0);
1085               KMP_AFF_WARNING(__kmp_affinity, AffHWSubsetManyGeneric, buf.str);
1086               __kmp_str_buf_free(&buf);
1087               return false;
1088             }
1089           }
1090         }
1091       }
1092 
1093       if ((using_core_types || using_core_effs) && item.num_attrs > 1) {
1094         for (int j = 0; j < item.num_attrs; ++j) {
1095           // Ambiguous use of specific core attribute + generic core
1096           // e.g., 4c & 3c:intel_core or 4c & 3c:eff1
1097           if (!item.attr[j]) {
1098             kmp_hw_attr_t other_attr;
1099             for (int k = 0; k < item.num_attrs; ++k) {
1100               if (item.attr[k] != item.attr[j]) {
1101                 other_attr = item.attr[k];
1102                 break;
1103               }
1104             }
1105             kmp_str_buf_t buf;
1106             __kmp_hw_get_catalog_core_string(other_attr, &buf, item.num[j] > 0);
1107             KMP_AFF_WARNING(__kmp_affinity, AffHWSubsetIncompat,
1108                             __kmp_hw_get_catalog_string(KMP_HW_CORE), buf.str);
1109             __kmp_str_buf_free(&buf);
1110             return false;
1111           }
1112           // Allow specifying a specific core type or core eff exactly once
1113           for (int k = 0; k < j; ++k) {
1114             if (!item.attr[j] || !item.attr[k])
1115               continue;
1116             if (item.attr[k] == item.attr[j]) {
1117               kmp_str_buf_t buf;
1118               __kmp_hw_get_catalog_core_string(item.attr[j], &buf,
1119                                                item.num[j] > 0);
1120               KMP_AFF_WARNING(__kmp_affinity, AffHWSubsetAttrRepeat, buf.str);
1121               __kmp_str_buf_free(&buf);
1122               return false;
1123             }
1124           }
1125         }
1126       }
1127     }
1128   }
1129 
1130   struct core_type_indexer {
1131     int operator()(const kmp_hw_thread_t &t) const {
1132       switch (t.attrs.get_core_type()) {
1133 #if KMP_ARCH_X86 || KMP_ARCH_X86_64
1134       case KMP_HW_CORE_TYPE_ATOM:
1135         return 1;
1136       case KMP_HW_CORE_TYPE_CORE:
1137         return 2;
1138 #endif
1139       case KMP_HW_CORE_TYPE_UNKNOWN:
1140         return 0;
1141       }
1142       KMP_ASSERT(0);
1143       return 0;
1144     }
1145   };
1146   struct core_eff_indexer {
1147     int operator()(const kmp_hw_thread_t &t) const {
1148       return t.attrs.get_core_eff();
1149     }
1150   };
1151 
1152   kmp_sub_ids_t<KMP_HW_MAX_NUM_CORE_TYPES, core_type_indexer> core_type_sub_ids(
1153       core_level);
1154   kmp_sub_ids_t<KMP_HW_MAX_NUM_CORE_EFFS, core_eff_indexer> core_eff_sub_ids(
1155       core_level);
1156 
1157   // Determine which hardware threads should be filtered.
1158   int num_filtered = 0;
1159   bool *filtered = (bool *)__kmp_allocate(sizeof(bool) * num_hw_threads);
1160   for (int i = 0; i < num_hw_threads; ++i) {
1161     kmp_hw_thread_t &hw_thread = hw_threads[i];
1162     // Update type_sub_id
1163     if (using_core_types)
1164       core_type_sub_ids.update(hw_thread);
1165     if (using_core_effs)
1166       core_eff_sub_ids.update(hw_thread);
1167 
1168     // Check to see if this hardware thread should be filtered
1169     bool should_be_filtered = false;
1170     for (int hw_subset_index = 0; hw_subset_index < hw_subset_depth;
1171          ++hw_subset_index) {
1172       const auto &hw_subset_item = __kmp_hw_subset->at(hw_subset_index);
1173       int level = topology_levels[hw_subset_index];
1174       if (level == -1)
1175         continue;
1176       if ((using_core_effs || using_core_types) && level == core_level) {
1177         // Look for the core attribute in KMP_HW_SUBSET which corresponds
1178         // to this hardware thread's core attribute. Use this num,offset plus
1179         // the running sub_id for the particular core attribute of this hardware
1180         // thread to determine if the hardware thread should be filtered or not.
1181         int attr_idx;
1182         kmp_hw_core_type_t core_type = hw_thread.attrs.get_core_type();
1183         int core_eff = hw_thread.attrs.get_core_eff();
1184         for (attr_idx = 0; attr_idx < hw_subset_item.num_attrs; ++attr_idx) {
1185           if (using_core_types &&
1186               hw_subset_item.attr[attr_idx].get_core_type() == core_type)
1187             break;
1188           if (using_core_effs &&
1189               hw_subset_item.attr[attr_idx].get_core_eff() == core_eff)
1190             break;
1191         }
1192         // This core attribute isn't in the KMP_HW_SUBSET so always filter it.
1193         if (attr_idx == hw_subset_item.num_attrs) {
1194           should_be_filtered = true;
1195           break;
1196         }
1197         int sub_id;
1198         int num = hw_subset_item.num[attr_idx];
1199         int offset = hw_subset_item.offset[attr_idx];
1200         if (using_core_types)
1201           sub_id = core_type_sub_ids.get_sub_id(hw_thread);
1202         else
1203           sub_id = core_eff_sub_ids.get_sub_id(hw_thread);
1204         if (sub_id < offset ||
1205             (num != kmp_hw_subset_t::USE_ALL && sub_id >= offset + num)) {
1206           should_be_filtered = true;
1207           break;
1208         }
1209       } else {
1210         int num = hw_subset_item.num[0];
1211         int offset = hw_subset_item.offset[0];
1212         if (hw_thread.sub_ids[level] < offset ||
1213             (num != kmp_hw_subset_t::USE_ALL &&
1214              hw_thread.sub_ids[level] >= offset + num)) {
1215           should_be_filtered = true;
1216           break;
1217         }
1218       }
1219     }
1220     // Collect filtering information
1221     filtered[i] = should_be_filtered;
1222     if (should_be_filtered)
1223       num_filtered++;
1224   }
1225 
1226   // One last check that we shouldn't allow filtering entire machine
1227   if (num_filtered == num_hw_threads) {
1228     KMP_AFF_WARNING(__kmp_affinity, AffHWSubsetAllFiltered);
1229     __kmp_free(filtered);
1230     return false;
1231   }
1232 
1233   // Apply the filter
1234   int new_index = 0;
1235   for (int i = 0; i < num_hw_threads; ++i) {
1236     if (!filtered[i]) {
1237       if (i != new_index)
1238         hw_threads[new_index] = hw_threads[i];
1239       new_index++;
1240     } else {
1241 #if KMP_AFFINITY_SUPPORTED
1242       KMP_CPU_CLR(hw_threads[i].os_id, __kmp_affin_fullMask);
1243 #endif
1244       __kmp_avail_proc--;
1245     }
1246   }
1247 
1248   KMP_DEBUG_ASSERT(new_index <= num_hw_threads);
1249   num_hw_threads = new_index;
1250 
1251   // Post hardware subset canonicalization
1252   _gather_enumeration_information();
1253   _discover_uniformity();
1254   _set_globals();
1255   _set_last_level_cache();
1256   __kmp_free(filtered);
1257   return true;
1258 }
1259 
1260 bool kmp_topology_t::is_close(int hwt1, int hwt2, int hw_level) const {
1261   if (hw_level >= depth)
1262     return true;
1263   bool retval = true;
1264   const kmp_hw_thread_t &t1 = hw_threads[hwt1];
1265   const kmp_hw_thread_t &t2 = hw_threads[hwt2];
1266   for (int i = 0; i < (depth - hw_level); ++i) {
1267     if (t1.ids[i] != t2.ids[i])
1268       return false;
1269   }
1270   return retval;
1271 }
1272 
1273 ////////////////////////////////////////////////////////////////////////////////
1274 
1275 #if KMP_AFFINITY_SUPPORTED
1276 
1277 bool KMPAffinity::picked_api = false;
1278 
1279 void *KMPAffinity::Mask::operator new(size_t n) { return __kmp_allocate(n); }
1280 void *KMPAffinity::Mask::operator new[](size_t n) { return __kmp_allocate(n); }
1281 void KMPAffinity::Mask::operator delete(void *p) { __kmp_free(p); }
1282 void KMPAffinity::Mask::operator delete[](void *p) { __kmp_free(p); }
1283 void *KMPAffinity::operator new(size_t n) { return __kmp_allocate(n); }
1284 void KMPAffinity::operator delete(void *p) { __kmp_free(p); }
1285 
1286 void KMPAffinity::pick_api() {
1287   KMPAffinity *affinity_dispatch;
1288   if (picked_api)
1289     return;
1290 #if KMP_USE_HWLOC
1291   // Only use Hwloc if affinity isn't explicitly disabled and
1292   // user requests Hwloc topology method
1293   if (__kmp_affinity_top_method == affinity_top_method_hwloc &&
1294       __kmp_affinity.type != affinity_disabled) {
1295     affinity_dispatch = new KMPHwlocAffinity();
1296   } else
1297 #endif
1298   {
1299     affinity_dispatch = new KMPNativeAffinity();
1300   }
1301   __kmp_affinity_dispatch = affinity_dispatch;
1302   picked_api = true;
1303 }
1304 
1305 void KMPAffinity::destroy_api() {
1306   if (__kmp_affinity_dispatch != NULL) {
1307     delete __kmp_affinity_dispatch;
1308     __kmp_affinity_dispatch = NULL;
1309     picked_api = false;
1310   }
1311 }
1312 
1313 #define KMP_ADVANCE_SCAN(scan)                                                 \
1314   while (*scan != '\0') {                                                      \
1315     scan++;                                                                    \
1316   }
1317 
1318 // Print the affinity mask to the character array in a pretty format.
1319 // The format is a comma separated list of non-negative integers or integer
1320 // ranges: e.g., 1,2,3-5,7,9-15
1321 // The format can also be the string "{<empty>}" if no bits are set in mask
1322 char *__kmp_affinity_print_mask(char *buf, int buf_len,
1323                                 kmp_affin_mask_t *mask) {
1324   int start = 0, finish = 0, previous = 0;
1325   bool first_range;
1326   KMP_ASSERT(buf);
1327   KMP_ASSERT(buf_len >= 40);
1328   KMP_ASSERT(mask);
1329   char *scan = buf;
1330   char *end = buf + buf_len - 1;
1331 
1332   // Check for empty set.
1333   if (mask->begin() == mask->end()) {
1334     KMP_SNPRINTF(scan, end - scan + 1, "{<empty>}");
1335     KMP_ADVANCE_SCAN(scan);
1336     KMP_ASSERT(scan <= end);
1337     return buf;
1338   }
1339 
1340   first_range = true;
1341   start = mask->begin();
1342   while (1) {
1343     // Find next range
1344     // [start, previous] is inclusive range of contiguous bits in mask
1345     for (finish = mask->next(start), previous = start;
1346          finish == previous + 1 && finish != mask->end();
1347          finish = mask->next(finish)) {
1348       previous = finish;
1349     }
1350 
1351     // The first range does not need a comma printed before it, but the rest
1352     // of the ranges do need a comma beforehand
1353     if (!first_range) {
1354       KMP_SNPRINTF(scan, end - scan + 1, "%s", ",");
1355       KMP_ADVANCE_SCAN(scan);
1356     } else {
1357       first_range = false;
1358     }
1359     // Range with three or more contiguous bits in the affinity mask
1360     if (previous - start > 1) {
1361       KMP_SNPRINTF(scan, end - scan + 1, "%u-%u", start, previous);
1362     } else {
1363       // Range with one or two contiguous bits in the affinity mask
1364       KMP_SNPRINTF(scan, end - scan + 1, "%u", start);
1365       KMP_ADVANCE_SCAN(scan);
1366       if (previous - start > 0) {
1367         KMP_SNPRINTF(scan, end - scan + 1, ",%u", previous);
1368       }
1369     }
1370     KMP_ADVANCE_SCAN(scan);
1371     // Start over with new start point
1372     start = finish;
1373     if (start == mask->end())
1374       break;
1375     // Check for overflow
1376     if (end - scan < 2)
1377       break;
1378   }
1379 
1380   // Check for overflow
1381   KMP_ASSERT(scan <= end);
1382   return buf;
1383 }
1384 #undef KMP_ADVANCE_SCAN
1385 
1386 // Print the affinity mask to the string buffer object in a pretty format
1387 // The format is a comma separated list of non-negative integers or integer
1388 // ranges: e.g., 1,2,3-5,7,9-15
1389 // The format can also be the string "{<empty>}" if no bits are set in mask
1390 kmp_str_buf_t *__kmp_affinity_str_buf_mask(kmp_str_buf_t *buf,
1391                                            kmp_affin_mask_t *mask) {
1392   int start = 0, finish = 0, previous = 0;
1393   bool first_range;
1394   KMP_ASSERT(buf);
1395   KMP_ASSERT(mask);
1396 
1397   __kmp_str_buf_clear(buf);
1398 
1399   // Check for empty set.
1400   if (mask->begin() == mask->end()) {
1401     __kmp_str_buf_print(buf, "%s", "{<empty>}");
1402     return buf;
1403   }
1404 
1405   first_range = true;
1406   start = mask->begin();
1407   while (1) {
1408     // Find next range
1409     // [start, previous] is inclusive range of contiguous bits in mask
1410     for (finish = mask->next(start), previous = start;
1411          finish == previous + 1 && finish != mask->end();
1412          finish = mask->next(finish)) {
1413       previous = finish;
1414     }
1415 
1416     // The first range does not need a comma printed before it, but the rest
1417     // of the ranges do need a comma beforehand
1418     if (!first_range) {
1419       __kmp_str_buf_print(buf, "%s", ",");
1420     } else {
1421       first_range = false;
1422     }
1423     // Range with three or more contiguous bits in the affinity mask
1424     if (previous - start > 1) {
1425       __kmp_str_buf_print(buf, "%u-%u", start, previous);
1426     } else {
1427       // Range with one or two contiguous bits in the affinity mask
1428       __kmp_str_buf_print(buf, "%u", start);
1429       if (previous - start > 0) {
1430         __kmp_str_buf_print(buf, ",%u", previous);
1431       }
1432     }
1433     // Start over with new start point
1434     start = finish;
1435     if (start == mask->end())
1436       break;
1437   }
1438   return buf;
1439 }
1440 
1441 // Return (possibly empty) affinity mask representing the offline CPUs
1442 // Caller must free the mask
1443 kmp_affin_mask_t *__kmp_affinity_get_offline_cpus() {
1444   kmp_affin_mask_t *offline;
1445   KMP_CPU_ALLOC(offline);
1446   KMP_CPU_ZERO(offline);
1447 #if KMP_OS_LINUX
1448   int n, begin_cpu, end_cpu;
1449   kmp_safe_raii_file_t offline_file;
1450   auto skip_ws = [](FILE *f) {
1451     int c;
1452     do {
1453       c = fgetc(f);
1454     } while (isspace(c));
1455     if (c != EOF)
1456       ungetc(c, f);
1457   };
1458   // File contains CSV of integer ranges representing the offline CPUs
1459   // e.g., 1,2,4-7,9,11-15
1460   int status = offline_file.try_open("/sys/devices/system/cpu/offline", "r");
1461   if (status != 0)
1462     return offline;
1463   while (!feof(offline_file)) {
1464     skip_ws(offline_file);
1465     n = fscanf(offline_file, "%d", &begin_cpu);
1466     if (n != 1)
1467       break;
1468     skip_ws(offline_file);
1469     int c = fgetc(offline_file);
1470     if (c == EOF || c == ',') {
1471       // Just single CPU
1472       end_cpu = begin_cpu;
1473     } else if (c == '-') {
1474       // Range of CPUs
1475       skip_ws(offline_file);
1476       n = fscanf(offline_file, "%d", &end_cpu);
1477       if (n != 1)
1478         break;
1479       skip_ws(offline_file);
1480       c = fgetc(offline_file); // skip ','
1481     } else {
1482       // Syntax problem
1483       break;
1484     }
1485     // Ensure a valid range of CPUs
1486     if (begin_cpu < 0 || begin_cpu >= __kmp_xproc || end_cpu < 0 ||
1487         end_cpu >= __kmp_xproc || begin_cpu > end_cpu) {
1488       continue;
1489     }
1490     // Insert [begin_cpu, end_cpu] into offline mask
1491     for (int cpu = begin_cpu; cpu <= end_cpu; ++cpu) {
1492       KMP_CPU_SET(cpu, offline);
1493     }
1494   }
1495 #endif
1496   return offline;
1497 }
1498 
1499 // Return the number of available procs
1500 int __kmp_affinity_entire_machine_mask(kmp_affin_mask_t *mask) {
1501   int avail_proc = 0;
1502   KMP_CPU_ZERO(mask);
1503 
1504 #if KMP_GROUP_AFFINITY
1505 
1506   if (__kmp_num_proc_groups > 1) {
1507     int group;
1508     KMP_DEBUG_ASSERT(__kmp_GetActiveProcessorCount != NULL);
1509     for (group = 0; group < __kmp_num_proc_groups; group++) {
1510       int i;
1511       int num = __kmp_GetActiveProcessorCount(group);
1512       for (i = 0; i < num; i++) {
1513         KMP_CPU_SET(i + group * (CHAR_BIT * sizeof(DWORD_PTR)), mask);
1514         avail_proc++;
1515       }
1516     }
1517   } else
1518 
1519 #endif /* KMP_GROUP_AFFINITY */
1520 
1521   {
1522     int proc;
1523     kmp_affin_mask_t *offline_cpus = __kmp_affinity_get_offline_cpus();
1524     for (proc = 0; proc < __kmp_xproc; proc++) {
1525       // Skip offline CPUs
1526       if (KMP_CPU_ISSET(proc, offline_cpus))
1527         continue;
1528       KMP_CPU_SET(proc, mask);
1529       avail_proc++;
1530     }
1531     KMP_CPU_FREE(offline_cpus);
1532   }
1533 
1534   return avail_proc;
1535 }
1536 
1537 // All of the __kmp_affinity_create_*_map() routines should allocate the
1538 // internal topology object and set the layer ids for it.  Each routine
1539 // returns a boolean on whether it was successful at doing so.
1540 kmp_affin_mask_t *__kmp_affin_fullMask = NULL;
1541 // Original mask is a subset of full mask in multiple processor groups topology
1542 kmp_affin_mask_t *__kmp_affin_origMask = NULL;
1543 
1544 #if KMP_USE_HWLOC
1545 static inline bool __kmp_hwloc_is_cache_type(hwloc_obj_t obj) {
1546 #if HWLOC_API_VERSION >= 0x00020000
1547   return hwloc_obj_type_is_cache(obj->type);
1548 #else
1549   return obj->type == HWLOC_OBJ_CACHE;
1550 #endif
1551 }
1552 
1553 // Returns KMP_HW_* type derived from HWLOC_* type
1554 static inline kmp_hw_t __kmp_hwloc_type_2_topology_type(hwloc_obj_t obj) {
1555 
1556   if (__kmp_hwloc_is_cache_type(obj)) {
1557     if (obj->attr->cache.type == HWLOC_OBJ_CACHE_INSTRUCTION)
1558       return KMP_HW_UNKNOWN;
1559     switch (obj->attr->cache.depth) {
1560     case 1:
1561       return KMP_HW_L1;
1562     case 2:
1563 #if KMP_MIC_SUPPORTED
1564       if (__kmp_mic_type == mic3) {
1565         return KMP_HW_TILE;
1566       }
1567 #endif
1568       return KMP_HW_L2;
1569     case 3:
1570       return KMP_HW_L3;
1571     }
1572     return KMP_HW_UNKNOWN;
1573   }
1574 
1575   switch (obj->type) {
1576   case HWLOC_OBJ_PACKAGE:
1577     return KMP_HW_SOCKET;
1578   case HWLOC_OBJ_NUMANODE:
1579     return KMP_HW_NUMA;
1580   case HWLOC_OBJ_CORE:
1581     return KMP_HW_CORE;
1582   case HWLOC_OBJ_PU:
1583     return KMP_HW_THREAD;
1584   case HWLOC_OBJ_GROUP:
1585 #if HWLOC_API_VERSION >= 0x00020000
1586     if (obj->attr->group.kind == HWLOC_GROUP_KIND_INTEL_DIE)
1587       return KMP_HW_DIE;
1588     else if (obj->attr->group.kind == HWLOC_GROUP_KIND_INTEL_TILE)
1589       return KMP_HW_TILE;
1590     else if (obj->attr->group.kind == HWLOC_GROUP_KIND_INTEL_MODULE)
1591       return KMP_HW_MODULE;
1592     else if (obj->attr->group.kind == HWLOC_GROUP_KIND_WINDOWS_PROCESSOR_GROUP)
1593       return KMP_HW_PROC_GROUP;
1594 #endif
1595     return KMP_HW_UNKNOWN;
1596 #if HWLOC_API_VERSION >= 0x00020100
1597   case HWLOC_OBJ_DIE:
1598     return KMP_HW_DIE;
1599 #endif
1600   }
1601   return KMP_HW_UNKNOWN;
1602 }
1603 
1604 // Returns the number of objects of type 'type' below 'obj' within the topology
1605 // tree structure. e.g., if obj is a HWLOC_OBJ_PACKAGE object, and type is
1606 // HWLOC_OBJ_PU, then this will return the number of PU's under the SOCKET
1607 // object.
1608 static int __kmp_hwloc_get_nobjs_under_obj(hwloc_obj_t obj,
1609                                            hwloc_obj_type_t type) {
1610   int retval = 0;
1611   hwloc_obj_t first;
1612   for (first = hwloc_get_obj_below_by_type(__kmp_hwloc_topology, obj->type,
1613                                            obj->logical_index, type, 0);
1614        first != NULL && hwloc_get_ancestor_obj_by_type(__kmp_hwloc_topology,
1615                                                        obj->type, first) == obj;
1616        first = hwloc_get_next_obj_by_type(__kmp_hwloc_topology, first->type,
1617                                           first)) {
1618     ++retval;
1619   }
1620   return retval;
1621 }
1622 
1623 // This gets the sub_id for a lower object under a higher object in the
1624 // topology tree
1625 static int __kmp_hwloc_get_sub_id(hwloc_topology_t t, hwloc_obj_t higher,
1626                                   hwloc_obj_t lower) {
1627   hwloc_obj_t obj;
1628   hwloc_obj_type_t ltype = lower->type;
1629   int lindex = lower->logical_index - 1;
1630   int sub_id = 0;
1631   // Get the previous lower object
1632   obj = hwloc_get_obj_by_type(t, ltype, lindex);
1633   while (obj && lindex >= 0 &&
1634          hwloc_bitmap_isincluded(obj->cpuset, higher->cpuset)) {
1635     if (obj->userdata) {
1636       sub_id = (int)(RCAST(kmp_intptr_t, obj->userdata));
1637       break;
1638     }
1639     sub_id++;
1640     lindex--;
1641     obj = hwloc_get_obj_by_type(t, ltype, lindex);
1642   }
1643   // store sub_id + 1 so that 0 is differed from NULL
1644   lower->userdata = RCAST(void *, sub_id + 1);
1645   return sub_id;
1646 }
1647 
1648 static bool __kmp_affinity_create_hwloc_map(kmp_i18n_id_t *const msg_id) {
1649   kmp_hw_t type;
1650   int hw_thread_index, sub_id;
1651   int depth;
1652   hwloc_obj_t pu, obj, root, prev;
1653   kmp_hw_t types[KMP_HW_LAST];
1654   hwloc_obj_type_t hwloc_types[KMP_HW_LAST];
1655 
1656   hwloc_topology_t tp = __kmp_hwloc_topology;
1657   *msg_id = kmp_i18n_null;
1658   if (__kmp_affinity.flags.verbose) {
1659     KMP_INFORM(AffUsingHwloc, "KMP_AFFINITY");
1660   }
1661 
1662   if (!KMP_AFFINITY_CAPABLE()) {
1663     // Hack to try and infer the machine topology using only the data
1664     // available from hwloc on the current thread, and __kmp_xproc.
1665     KMP_ASSERT(__kmp_affinity.type == affinity_none);
1666     // hwloc only guarantees existance of PU object, so check PACKAGE and CORE
1667     hwloc_obj_t o = hwloc_get_obj_by_type(tp, HWLOC_OBJ_PACKAGE, 0);
1668     if (o != NULL)
1669       nCoresPerPkg = __kmp_hwloc_get_nobjs_under_obj(o, HWLOC_OBJ_CORE);
1670     else
1671       nCoresPerPkg = 1; // no PACKAGE found
1672     o = hwloc_get_obj_by_type(tp, HWLOC_OBJ_CORE, 0);
1673     if (o != NULL)
1674       __kmp_nThreadsPerCore = __kmp_hwloc_get_nobjs_under_obj(o, HWLOC_OBJ_PU);
1675     else
1676       __kmp_nThreadsPerCore = 1; // no CORE found
1677     __kmp_ncores = __kmp_xproc / __kmp_nThreadsPerCore;
1678     if (nCoresPerPkg == 0)
1679       nCoresPerPkg = 1; // to prevent possible division by 0
1680     nPackages = (__kmp_xproc + nCoresPerPkg - 1) / nCoresPerPkg;
1681     return true;
1682   }
1683 
1684 #if HWLOC_API_VERSION >= 0x00020400
1685   // Handle multiple types of cores if they exist on the system
1686   int nr_cpu_kinds = hwloc_cpukinds_get_nr(tp, 0);
1687 
1688   typedef struct kmp_hwloc_cpukinds_info_t {
1689     int efficiency;
1690     kmp_hw_core_type_t core_type;
1691     hwloc_bitmap_t mask;
1692   } kmp_hwloc_cpukinds_info_t;
1693   kmp_hwloc_cpukinds_info_t *cpukinds = nullptr;
1694 
1695   if (nr_cpu_kinds > 0) {
1696     unsigned nr_infos;
1697     struct hwloc_info_s *infos;
1698     cpukinds = (kmp_hwloc_cpukinds_info_t *)__kmp_allocate(
1699         sizeof(kmp_hwloc_cpukinds_info_t) * nr_cpu_kinds);
1700     for (unsigned idx = 0; idx < (unsigned)nr_cpu_kinds; ++idx) {
1701       cpukinds[idx].efficiency = -1;
1702       cpukinds[idx].core_type = KMP_HW_CORE_TYPE_UNKNOWN;
1703       cpukinds[idx].mask = hwloc_bitmap_alloc();
1704       if (hwloc_cpukinds_get_info(tp, idx, cpukinds[idx].mask,
1705                                   &cpukinds[idx].efficiency, &nr_infos, &infos,
1706                                   0) == 0) {
1707         for (unsigned i = 0; i < nr_infos; ++i) {
1708           if (__kmp_str_match("CoreType", 8, infos[i].name)) {
1709 #if KMP_ARCH_X86 || KMP_ARCH_X86_64
1710             if (__kmp_str_match("IntelAtom", 9, infos[i].value)) {
1711               cpukinds[idx].core_type = KMP_HW_CORE_TYPE_ATOM;
1712               break;
1713             } else if (__kmp_str_match("IntelCore", 9, infos[i].value)) {
1714               cpukinds[idx].core_type = KMP_HW_CORE_TYPE_CORE;
1715               break;
1716             }
1717 #endif
1718           }
1719         }
1720       }
1721     }
1722   }
1723 #endif
1724 
1725   root = hwloc_get_root_obj(tp);
1726 
1727   // Figure out the depth and types in the topology
1728   depth = 0;
1729   pu = hwloc_get_pu_obj_by_os_index(tp, __kmp_affin_fullMask->begin());
1730   KMP_ASSERT(pu);
1731   obj = pu;
1732   types[depth] = KMP_HW_THREAD;
1733   hwloc_types[depth] = obj->type;
1734   depth++;
1735   while (obj != root && obj != NULL) {
1736     obj = obj->parent;
1737 #if HWLOC_API_VERSION >= 0x00020000
1738     if (obj->memory_arity) {
1739       hwloc_obj_t memory;
1740       for (memory = obj->memory_first_child; memory;
1741            memory = hwloc_get_next_child(tp, obj, memory)) {
1742         if (memory->type == HWLOC_OBJ_NUMANODE)
1743           break;
1744       }
1745       if (memory && memory->type == HWLOC_OBJ_NUMANODE) {
1746         types[depth] = KMP_HW_NUMA;
1747         hwloc_types[depth] = memory->type;
1748         depth++;
1749       }
1750     }
1751 #endif
1752     type = __kmp_hwloc_type_2_topology_type(obj);
1753     if (type != KMP_HW_UNKNOWN) {
1754       types[depth] = type;
1755       hwloc_types[depth] = obj->type;
1756       depth++;
1757     }
1758   }
1759   KMP_ASSERT(depth > 0);
1760 
1761   // Get the order for the types correct
1762   for (int i = 0, j = depth - 1; i < j; ++i, --j) {
1763     hwloc_obj_type_t hwloc_temp = hwloc_types[i];
1764     kmp_hw_t temp = types[i];
1765     types[i] = types[j];
1766     types[j] = temp;
1767     hwloc_types[i] = hwloc_types[j];
1768     hwloc_types[j] = hwloc_temp;
1769   }
1770 
1771   // Allocate the data structure to be returned.
1772   __kmp_topology = kmp_topology_t::allocate(__kmp_avail_proc, depth, types);
1773 
1774   hw_thread_index = 0;
1775   pu = NULL;
1776   while ((pu = hwloc_get_next_obj_by_type(tp, HWLOC_OBJ_PU, pu))) {
1777     int index = depth - 1;
1778     bool included = KMP_CPU_ISSET(pu->os_index, __kmp_affin_fullMask);
1779     kmp_hw_thread_t &hw_thread = __kmp_topology->at(hw_thread_index);
1780     if (included) {
1781       hw_thread.clear();
1782       hw_thread.ids[index] = pu->logical_index;
1783       hw_thread.os_id = pu->os_index;
1784       // If multiple core types, then set that attribute for the hardware thread
1785 #if HWLOC_API_VERSION >= 0x00020400
1786       if (cpukinds) {
1787         int cpukind_index = -1;
1788         for (int i = 0; i < nr_cpu_kinds; ++i) {
1789           if (hwloc_bitmap_isset(cpukinds[i].mask, hw_thread.os_id)) {
1790             cpukind_index = i;
1791             break;
1792           }
1793         }
1794         if (cpukind_index >= 0) {
1795           hw_thread.attrs.set_core_type(cpukinds[cpukind_index].core_type);
1796           hw_thread.attrs.set_core_eff(cpukinds[cpukind_index].efficiency);
1797         }
1798       }
1799 #endif
1800       index--;
1801     }
1802     obj = pu;
1803     prev = obj;
1804     while (obj != root && obj != NULL) {
1805       obj = obj->parent;
1806 #if HWLOC_API_VERSION >= 0x00020000
1807       // NUMA Nodes are handled differently since they are not within the
1808       // parent/child structure anymore.  They are separate children
1809       // of obj (memory_first_child points to first memory child)
1810       if (obj->memory_arity) {
1811         hwloc_obj_t memory;
1812         for (memory = obj->memory_first_child; memory;
1813              memory = hwloc_get_next_child(tp, obj, memory)) {
1814           if (memory->type == HWLOC_OBJ_NUMANODE)
1815             break;
1816         }
1817         if (memory && memory->type == HWLOC_OBJ_NUMANODE) {
1818           sub_id = __kmp_hwloc_get_sub_id(tp, memory, prev);
1819           if (included) {
1820             hw_thread.ids[index] = memory->logical_index;
1821             hw_thread.ids[index + 1] = sub_id;
1822             index--;
1823           }
1824           prev = memory;
1825         }
1826         prev = obj;
1827       }
1828 #endif
1829       type = __kmp_hwloc_type_2_topology_type(obj);
1830       if (type != KMP_HW_UNKNOWN) {
1831         sub_id = __kmp_hwloc_get_sub_id(tp, obj, prev);
1832         if (included) {
1833           hw_thread.ids[index] = obj->logical_index;
1834           hw_thread.ids[index + 1] = sub_id;
1835           index--;
1836         }
1837         prev = obj;
1838       }
1839     }
1840     if (included)
1841       hw_thread_index++;
1842   }
1843 
1844 #if HWLOC_API_VERSION >= 0x00020400
1845   // Free the core types information
1846   if (cpukinds) {
1847     for (int idx = 0; idx < nr_cpu_kinds; ++idx)
1848       hwloc_bitmap_free(cpukinds[idx].mask);
1849     __kmp_free(cpukinds);
1850   }
1851 #endif
1852   __kmp_topology->sort_ids();
1853   return true;
1854 }
1855 #endif // KMP_USE_HWLOC
1856 
1857 // If we don't know how to retrieve the machine's processor topology, or
1858 // encounter an error in doing so, this routine is called to form a "flat"
1859 // mapping of os thread id's <-> processor id's.
1860 static bool __kmp_affinity_create_flat_map(kmp_i18n_id_t *const msg_id) {
1861   *msg_id = kmp_i18n_null;
1862   int depth = 3;
1863   kmp_hw_t types[] = {KMP_HW_SOCKET, KMP_HW_CORE, KMP_HW_THREAD};
1864 
1865   if (__kmp_affinity.flags.verbose) {
1866     KMP_INFORM(UsingFlatOS, "KMP_AFFINITY");
1867   }
1868 
1869   // Even if __kmp_affinity.type == affinity_none, this routine might still
1870   // be called to set __kmp_ncores, as well as
1871   // __kmp_nThreadsPerCore, nCoresPerPkg, & nPackages.
1872   if (!KMP_AFFINITY_CAPABLE()) {
1873     KMP_ASSERT(__kmp_affinity.type == affinity_none);
1874     __kmp_ncores = nPackages = __kmp_xproc;
1875     __kmp_nThreadsPerCore = nCoresPerPkg = 1;
1876     return true;
1877   }
1878 
1879   // When affinity is off, this routine will still be called to set
1880   // __kmp_ncores, as well as __kmp_nThreadsPerCore, nCoresPerPkg, & nPackages.
1881   // Make sure all these vars are set correctly, and return now if affinity is
1882   // not enabled.
1883   __kmp_ncores = nPackages = __kmp_avail_proc;
1884   __kmp_nThreadsPerCore = nCoresPerPkg = 1;
1885 
1886   // Construct the data structure to be returned.
1887   __kmp_topology = kmp_topology_t::allocate(__kmp_avail_proc, depth, types);
1888   int avail_ct = 0;
1889   int i;
1890   KMP_CPU_SET_ITERATE(i, __kmp_affin_fullMask) {
1891     // Skip this proc if it is not included in the machine model.
1892     if (!KMP_CPU_ISSET(i, __kmp_affin_fullMask)) {
1893       continue;
1894     }
1895     kmp_hw_thread_t &hw_thread = __kmp_topology->at(avail_ct);
1896     hw_thread.clear();
1897     hw_thread.os_id = i;
1898     hw_thread.ids[0] = i;
1899     hw_thread.ids[1] = 0;
1900     hw_thread.ids[2] = 0;
1901     avail_ct++;
1902   }
1903   if (__kmp_affinity.flags.verbose) {
1904     KMP_INFORM(OSProcToPackage, "KMP_AFFINITY");
1905   }
1906   return true;
1907 }
1908 
1909 #if KMP_GROUP_AFFINITY
1910 // If multiple Windows* OS processor groups exist, we can create a 2-level
1911 // topology map with the groups at level 0 and the individual procs at level 1.
1912 // This facilitates letting the threads float among all procs in a group,
1913 // if granularity=group (the default when there are multiple groups).
1914 static bool __kmp_affinity_create_proc_group_map(kmp_i18n_id_t *const msg_id) {
1915   *msg_id = kmp_i18n_null;
1916   int depth = 3;
1917   kmp_hw_t types[] = {KMP_HW_PROC_GROUP, KMP_HW_CORE, KMP_HW_THREAD};
1918   const static size_t BITS_PER_GROUP = CHAR_BIT * sizeof(DWORD_PTR);
1919 
1920   if (__kmp_affinity.flags.verbose) {
1921     KMP_INFORM(AffWindowsProcGroupMap, "KMP_AFFINITY");
1922   }
1923 
1924   // If we aren't affinity capable, then use flat topology
1925   if (!KMP_AFFINITY_CAPABLE()) {
1926     KMP_ASSERT(__kmp_affinity.type == affinity_none);
1927     nPackages = __kmp_num_proc_groups;
1928     __kmp_nThreadsPerCore = 1;
1929     __kmp_ncores = __kmp_xproc;
1930     nCoresPerPkg = nPackages / __kmp_ncores;
1931     return true;
1932   }
1933 
1934   // Construct the data structure to be returned.
1935   __kmp_topology = kmp_topology_t::allocate(__kmp_avail_proc, depth, types);
1936   int avail_ct = 0;
1937   int i;
1938   KMP_CPU_SET_ITERATE(i, __kmp_affin_fullMask) {
1939     // Skip this proc if it is not included in the machine model.
1940     if (!KMP_CPU_ISSET(i, __kmp_affin_fullMask)) {
1941       continue;
1942     }
1943     kmp_hw_thread_t &hw_thread = __kmp_topology->at(avail_ct++);
1944     hw_thread.clear();
1945     hw_thread.os_id = i;
1946     hw_thread.ids[0] = i / BITS_PER_GROUP;
1947     hw_thread.ids[1] = hw_thread.ids[2] = i % BITS_PER_GROUP;
1948   }
1949   return true;
1950 }
1951 #endif /* KMP_GROUP_AFFINITY */
1952 
1953 #if KMP_ARCH_X86 || KMP_ARCH_X86_64
1954 
1955 template <kmp_uint32 LSB, kmp_uint32 MSB>
1956 static inline unsigned __kmp_extract_bits(kmp_uint32 v) {
1957   const kmp_uint32 SHIFT_LEFT = sizeof(kmp_uint32) * 8 - 1 - MSB;
1958   const kmp_uint32 SHIFT_RIGHT = LSB;
1959   kmp_uint32 retval = v;
1960   retval <<= SHIFT_LEFT;
1961   retval >>= (SHIFT_LEFT + SHIFT_RIGHT);
1962   return retval;
1963 }
1964 
1965 static int __kmp_cpuid_mask_width(int count) {
1966   int r = 0;
1967 
1968   while ((1 << r) < count)
1969     ++r;
1970   return r;
1971 }
1972 
1973 class apicThreadInfo {
1974 public:
1975   unsigned osId; // param to __kmp_affinity_bind_thread
1976   unsigned apicId; // from cpuid after binding
1977   unsigned maxCoresPerPkg; //      ""
1978   unsigned maxThreadsPerPkg; //      ""
1979   unsigned pkgId; // inferred from above values
1980   unsigned coreId; //      ""
1981   unsigned threadId; //      ""
1982 };
1983 
1984 static int __kmp_affinity_cmp_apicThreadInfo_phys_id(const void *a,
1985                                                      const void *b) {
1986   const apicThreadInfo *aa = (const apicThreadInfo *)a;
1987   const apicThreadInfo *bb = (const apicThreadInfo *)b;
1988   if (aa->pkgId < bb->pkgId)
1989     return -1;
1990   if (aa->pkgId > bb->pkgId)
1991     return 1;
1992   if (aa->coreId < bb->coreId)
1993     return -1;
1994   if (aa->coreId > bb->coreId)
1995     return 1;
1996   if (aa->threadId < bb->threadId)
1997     return -1;
1998   if (aa->threadId > bb->threadId)
1999     return 1;
2000   return 0;
2001 }
2002 
2003 class kmp_cache_info_t {
2004 public:
2005   struct info_t {
2006     unsigned level, mask;
2007   };
2008   kmp_cache_info_t() : depth(0) { get_leaf4_levels(); }
2009   size_t get_depth() const { return depth; }
2010   info_t &operator[](size_t index) { return table[index]; }
2011   const info_t &operator[](size_t index) const { return table[index]; }
2012 
2013   static kmp_hw_t get_topology_type(unsigned level) {
2014     KMP_DEBUG_ASSERT(level >= 1 && level <= MAX_CACHE_LEVEL);
2015     switch (level) {
2016     case 1:
2017       return KMP_HW_L1;
2018     case 2:
2019       return KMP_HW_L2;
2020     case 3:
2021       return KMP_HW_L3;
2022     }
2023     return KMP_HW_UNKNOWN;
2024   }
2025 
2026 private:
2027   static const int MAX_CACHE_LEVEL = 3;
2028 
2029   size_t depth;
2030   info_t table[MAX_CACHE_LEVEL];
2031 
2032   void get_leaf4_levels() {
2033     unsigned level = 0;
2034     while (depth < MAX_CACHE_LEVEL) {
2035       unsigned cache_type, max_threads_sharing;
2036       unsigned cache_level, cache_mask_width;
2037       kmp_cpuid buf2;
2038       __kmp_x86_cpuid(4, level, &buf2);
2039       cache_type = __kmp_extract_bits<0, 4>(buf2.eax);
2040       if (!cache_type)
2041         break;
2042       // Skip instruction caches
2043       if (cache_type == 2) {
2044         level++;
2045         continue;
2046       }
2047       max_threads_sharing = __kmp_extract_bits<14, 25>(buf2.eax) + 1;
2048       cache_mask_width = __kmp_cpuid_mask_width(max_threads_sharing);
2049       cache_level = __kmp_extract_bits<5, 7>(buf2.eax);
2050       table[depth].level = cache_level;
2051       table[depth].mask = ((-1) << cache_mask_width);
2052       depth++;
2053       level++;
2054     }
2055   }
2056 };
2057 
2058 // On IA-32 architecture and Intel(R) 64 architecture, we attempt to use
2059 // an algorithm which cycles through the available os threads, setting
2060 // the current thread's affinity mask to that thread, and then retrieves
2061 // the Apic Id for each thread context using the cpuid instruction.
2062 static bool __kmp_affinity_create_apicid_map(kmp_i18n_id_t *const msg_id) {
2063   kmp_cpuid buf;
2064   *msg_id = kmp_i18n_null;
2065 
2066   if (__kmp_affinity.flags.verbose) {
2067     KMP_INFORM(AffInfoStr, "KMP_AFFINITY", KMP_I18N_STR(DecodingLegacyAPIC));
2068   }
2069 
2070   // Check if cpuid leaf 4 is supported.
2071   __kmp_x86_cpuid(0, 0, &buf);
2072   if (buf.eax < 4) {
2073     *msg_id = kmp_i18n_str_NoLeaf4Support;
2074     return false;
2075   }
2076 
2077   // The algorithm used starts by setting the affinity to each available thread
2078   // and retrieving info from the cpuid instruction, so if we are not capable of
2079   // calling __kmp_get_system_affinity() and _kmp_get_system_affinity(), then we
2080   // need to do something else - use the defaults that we calculated from
2081   // issuing cpuid without binding to each proc.
2082   if (!KMP_AFFINITY_CAPABLE()) {
2083     // Hack to try and infer the machine topology using only the data
2084     // available from cpuid on the current thread, and __kmp_xproc.
2085     KMP_ASSERT(__kmp_affinity.type == affinity_none);
2086 
2087     // Get an upper bound on the number of threads per package using cpuid(1).
2088     // On some OS/chps combinations where HT is supported by the chip but is
2089     // disabled, this value will be 2 on a single core chip. Usually, it will be
2090     // 2 if HT is enabled and 1 if HT is disabled.
2091     __kmp_x86_cpuid(1, 0, &buf);
2092     int maxThreadsPerPkg = (buf.ebx >> 16) & 0xff;
2093     if (maxThreadsPerPkg == 0) {
2094       maxThreadsPerPkg = 1;
2095     }
2096 
2097     // The num cores per pkg comes from cpuid(4). 1 must be added to the encoded
2098     // value.
2099     //
2100     // The author of cpu_count.cpp treated this only an upper bound on the
2101     // number of cores, but I haven't seen any cases where it was greater than
2102     // the actual number of cores, so we will treat it as exact in this block of
2103     // code.
2104     //
2105     // First, we need to check if cpuid(4) is supported on this chip. To see if
2106     // cpuid(n) is supported, issue cpuid(0) and check if eax has the value n or
2107     // greater.
2108     __kmp_x86_cpuid(0, 0, &buf);
2109     if (buf.eax >= 4) {
2110       __kmp_x86_cpuid(4, 0, &buf);
2111       nCoresPerPkg = ((buf.eax >> 26) & 0x3f) + 1;
2112     } else {
2113       nCoresPerPkg = 1;
2114     }
2115 
2116     // There is no way to reliably tell if HT is enabled without issuing the
2117     // cpuid instruction from every thread, can correlating the cpuid info, so
2118     // if the machine is not affinity capable, we assume that HT is off. We have
2119     // seen quite a few machines where maxThreadsPerPkg is 2, yet the machine
2120     // does not support HT.
2121     //
2122     // - Older OSes are usually found on machines with older chips, which do not
2123     //   support HT.
2124     // - The performance penalty for mistakenly identifying a machine as HT when
2125     //   it isn't (which results in blocktime being incorrectly set to 0) is
2126     //   greater than the penalty when for mistakenly identifying a machine as
2127     //   being 1 thread/core when it is really HT enabled (which results in
2128     //   blocktime being incorrectly set to a positive value).
2129     __kmp_ncores = __kmp_xproc;
2130     nPackages = (__kmp_xproc + nCoresPerPkg - 1) / nCoresPerPkg;
2131     __kmp_nThreadsPerCore = 1;
2132     return true;
2133   }
2134 
2135   // From here on, we can assume that it is safe to call
2136   // __kmp_get_system_affinity() and __kmp_set_system_affinity(), even if
2137   // __kmp_affinity.type = affinity_none.
2138 
2139   // Save the affinity mask for the current thread.
2140   kmp_affinity_raii_t previous_affinity;
2141 
2142   // Run through each of the available contexts, binding the current thread
2143   // to it, and obtaining the pertinent information using the cpuid instr.
2144   //
2145   // The relevant information is:
2146   // - Apic Id: Bits 24:31 of ebx after issuing cpuid(1) - each thread context
2147   //     has a uniqie Apic Id, which is of the form pkg# : core# : thread#.
2148   // - Max Threads Per Pkg: Bits 16:23 of ebx after issuing cpuid(1). The value
2149   //     of this field determines the width of the core# + thread# fields in the
2150   //     Apic Id. It is also an upper bound on the number of threads per
2151   //     package, but it has been verified that situations happen were it is not
2152   //     exact. In particular, on certain OS/chip combinations where Intel(R)
2153   //     Hyper-Threading Technology is supported by the chip but has been
2154   //     disabled, the value of this field will be 2 (for a single core chip).
2155   //     On other OS/chip combinations supporting Intel(R) Hyper-Threading
2156   //     Technology, the value of this field will be 1 when Intel(R)
2157   //     Hyper-Threading Technology is disabled and 2 when it is enabled.
2158   // - Max Cores Per Pkg:  Bits 26:31 of eax after issuing cpuid(4). The value
2159   //     of this field (+1) determines the width of the core# field in the Apic
2160   //     Id. The comments in "cpucount.cpp" say that this value is an upper
2161   //     bound, but the IA-32 architecture manual says that it is exactly the
2162   //     number of cores per package, and I haven't seen any case where it
2163   //     wasn't.
2164   //
2165   // From this information, deduce the package Id, core Id, and thread Id,
2166   // and set the corresponding fields in the apicThreadInfo struct.
2167   unsigned i;
2168   apicThreadInfo *threadInfo = (apicThreadInfo *)__kmp_allocate(
2169       __kmp_avail_proc * sizeof(apicThreadInfo));
2170   unsigned nApics = 0;
2171   KMP_CPU_SET_ITERATE(i, __kmp_affin_fullMask) {
2172     // Skip this proc if it is not included in the machine model.
2173     if (!KMP_CPU_ISSET(i, __kmp_affin_fullMask)) {
2174       continue;
2175     }
2176     KMP_DEBUG_ASSERT((int)nApics < __kmp_avail_proc);
2177 
2178     __kmp_affinity_dispatch->bind_thread(i);
2179     threadInfo[nApics].osId = i;
2180 
2181     // The apic id and max threads per pkg come from cpuid(1).
2182     __kmp_x86_cpuid(1, 0, &buf);
2183     if (((buf.edx >> 9) & 1) == 0) {
2184       __kmp_free(threadInfo);
2185       *msg_id = kmp_i18n_str_ApicNotPresent;
2186       return false;
2187     }
2188     threadInfo[nApics].apicId = (buf.ebx >> 24) & 0xff;
2189     threadInfo[nApics].maxThreadsPerPkg = (buf.ebx >> 16) & 0xff;
2190     if (threadInfo[nApics].maxThreadsPerPkg == 0) {
2191       threadInfo[nApics].maxThreadsPerPkg = 1;
2192     }
2193 
2194     // Max cores per pkg comes from cpuid(4). 1 must be added to the encoded
2195     // value.
2196     //
2197     // First, we need to check if cpuid(4) is supported on this chip. To see if
2198     // cpuid(n) is supported, issue cpuid(0) and check if eax has the value n
2199     // or greater.
2200     __kmp_x86_cpuid(0, 0, &buf);
2201     if (buf.eax >= 4) {
2202       __kmp_x86_cpuid(4, 0, &buf);
2203       threadInfo[nApics].maxCoresPerPkg = ((buf.eax >> 26) & 0x3f) + 1;
2204     } else {
2205       threadInfo[nApics].maxCoresPerPkg = 1;
2206     }
2207 
2208     // Infer the pkgId / coreId / threadId using only the info obtained locally.
2209     int widthCT = __kmp_cpuid_mask_width(threadInfo[nApics].maxThreadsPerPkg);
2210     threadInfo[nApics].pkgId = threadInfo[nApics].apicId >> widthCT;
2211 
2212     int widthC = __kmp_cpuid_mask_width(threadInfo[nApics].maxCoresPerPkg);
2213     int widthT = widthCT - widthC;
2214     if (widthT < 0) {
2215       // I've never seen this one happen, but I suppose it could, if the cpuid
2216       // instruction on a chip was really screwed up. Make sure to restore the
2217       // affinity mask before the tail call.
2218       __kmp_free(threadInfo);
2219       *msg_id = kmp_i18n_str_InvalidCpuidInfo;
2220       return false;
2221     }
2222 
2223     int maskC = (1 << widthC) - 1;
2224     threadInfo[nApics].coreId = (threadInfo[nApics].apicId >> widthT) & maskC;
2225 
2226     int maskT = (1 << widthT) - 1;
2227     threadInfo[nApics].threadId = threadInfo[nApics].apicId & maskT;
2228 
2229     nApics++;
2230   }
2231 
2232   // We've collected all the info we need.
2233   // Restore the old affinity mask for this thread.
2234   previous_affinity.restore();
2235 
2236   // Sort the threadInfo table by physical Id.
2237   qsort(threadInfo, nApics, sizeof(*threadInfo),
2238         __kmp_affinity_cmp_apicThreadInfo_phys_id);
2239 
2240   // The table is now sorted by pkgId / coreId / threadId, but we really don't
2241   // know the radix of any of the fields. pkgId's may be sparsely assigned among
2242   // the chips on a system. Although coreId's are usually assigned
2243   // [0 .. coresPerPkg-1] and threadId's are usually assigned
2244   // [0..threadsPerCore-1], we don't want to make any such assumptions.
2245   //
2246   // For that matter, we don't know what coresPerPkg and threadsPerCore (or the
2247   // total # packages) are at this point - we want to determine that now. We
2248   // only have an upper bound on the first two figures.
2249   //
2250   // We also perform a consistency check at this point: the values returned by
2251   // the cpuid instruction for any thread bound to a given package had better
2252   // return the same info for maxThreadsPerPkg and maxCoresPerPkg.
2253   nPackages = 1;
2254   nCoresPerPkg = 1;
2255   __kmp_nThreadsPerCore = 1;
2256   unsigned nCores = 1;
2257 
2258   unsigned pkgCt = 1; // to determine radii
2259   unsigned lastPkgId = threadInfo[0].pkgId;
2260   unsigned coreCt = 1;
2261   unsigned lastCoreId = threadInfo[0].coreId;
2262   unsigned threadCt = 1;
2263   unsigned lastThreadId = threadInfo[0].threadId;
2264 
2265   // intra-pkg consist checks
2266   unsigned prevMaxCoresPerPkg = threadInfo[0].maxCoresPerPkg;
2267   unsigned prevMaxThreadsPerPkg = threadInfo[0].maxThreadsPerPkg;
2268 
2269   for (i = 1; i < nApics; i++) {
2270     if (threadInfo[i].pkgId != lastPkgId) {
2271       nCores++;
2272       pkgCt++;
2273       lastPkgId = threadInfo[i].pkgId;
2274       if ((int)coreCt > nCoresPerPkg)
2275         nCoresPerPkg = coreCt;
2276       coreCt = 1;
2277       lastCoreId = threadInfo[i].coreId;
2278       if ((int)threadCt > __kmp_nThreadsPerCore)
2279         __kmp_nThreadsPerCore = threadCt;
2280       threadCt = 1;
2281       lastThreadId = threadInfo[i].threadId;
2282 
2283       // This is a different package, so go on to the next iteration without
2284       // doing any consistency checks. Reset the consistency check vars, though.
2285       prevMaxCoresPerPkg = threadInfo[i].maxCoresPerPkg;
2286       prevMaxThreadsPerPkg = threadInfo[i].maxThreadsPerPkg;
2287       continue;
2288     }
2289 
2290     if (threadInfo[i].coreId != lastCoreId) {
2291       nCores++;
2292       coreCt++;
2293       lastCoreId = threadInfo[i].coreId;
2294       if ((int)threadCt > __kmp_nThreadsPerCore)
2295         __kmp_nThreadsPerCore = threadCt;
2296       threadCt = 1;
2297       lastThreadId = threadInfo[i].threadId;
2298     } else if (threadInfo[i].threadId != lastThreadId) {
2299       threadCt++;
2300       lastThreadId = threadInfo[i].threadId;
2301     } else {
2302       __kmp_free(threadInfo);
2303       *msg_id = kmp_i18n_str_LegacyApicIDsNotUnique;
2304       return false;
2305     }
2306 
2307     // Check to make certain that the maxCoresPerPkg and maxThreadsPerPkg
2308     // fields agree between all the threads bounds to a given package.
2309     if ((prevMaxCoresPerPkg != threadInfo[i].maxCoresPerPkg) ||
2310         (prevMaxThreadsPerPkg != threadInfo[i].maxThreadsPerPkg)) {
2311       __kmp_free(threadInfo);
2312       *msg_id = kmp_i18n_str_InconsistentCpuidInfo;
2313       return false;
2314     }
2315   }
2316   // When affinity is off, this routine will still be called to set
2317   // __kmp_ncores, as well as __kmp_nThreadsPerCore, nCoresPerPkg, & nPackages.
2318   // Make sure all these vars are set correctly
2319   nPackages = pkgCt;
2320   if ((int)coreCt > nCoresPerPkg)
2321     nCoresPerPkg = coreCt;
2322   if ((int)threadCt > __kmp_nThreadsPerCore)
2323     __kmp_nThreadsPerCore = threadCt;
2324   __kmp_ncores = nCores;
2325   KMP_DEBUG_ASSERT(nApics == (unsigned)__kmp_avail_proc);
2326 
2327   // Now that we've determined the number of packages, the number of cores per
2328   // package, and the number of threads per core, we can construct the data
2329   // structure that is to be returned.
2330   int idx = 0;
2331   int pkgLevel = 0;
2332   int coreLevel = 1;
2333   int threadLevel = 2;
2334   //(__kmp_nThreadsPerCore <= 1) ? -1 : ((coreLevel >= 0) ? 2 : 1);
2335   int depth = (pkgLevel >= 0) + (coreLevel >= 0) + (threadLevel >= 0);
2336   kmp_hw_t types[3];
2337   if (pkgLevel >= 0)
2338     types[idx++] = KMP_HW_SOCKET;
2339   if (coreLevel >= 0)
2340     types[idx++] = KMP_HW_CORE;
2341   if (threadLevel >= 0)
2342     types[idx++] = KMP_HW_THREAD;
2343 
2344   KMP_ASSERT(depth > 0);
2345   __kmp_topology = kmp_topology_t::allocate(nApics, depth, types);
2346 
2347   for (i = 0; i < nApics; ++i) {
2348     idx = 0;
2349     unsigned os = threadInfo[i].osId;
2350     kmp_hw_thread_t &hw_thread = __kmp_topology->at(i);
2351     hw_thread.clear();
2352 
2353     if (pkgLevel >= 0) {
2354       hw_thread.ids[idx++] = threadInfo[i].pkgId;
2355     }
2356     if (coreLevel >= 0) {
2357       hw_thread.ids[idx++] = threadInfo[i].coreId;
2358     }
2359     if (threadLevel >= 0) {
2360       hw_thread.ids[idx++] = threadInfo[i].threadId;
2361     }
2362     hw_thread.os_id = os;
2363   }
2364 
2365   __kmp_free(threadInfo);
2366   __kmp_topology->sort_ids();
2367   if (!__kmp_topology->check_ids()) {
2368     kmp_topology_t::deallocate(__kmp_topology);
2369     __kmp_topology = nullptr;
2370     *msg_id = kmp_i18n_str_LegacyApicIDsNotUnique;
2371     return false;
2372   }
2373   return true;
2374 }
2375 
2376 // Hybrid cpu detection using CPUID.1A
2377 // Thread should be pinned to processor already
2378 static void __kmp_get_hybrid_info(kmp_hw_core_type_t *type, int *efficiency,
2379                                   unsigned *native_model_id) {
2380   kmp_cpuid buf;
2381   __kmp_x86_cpuid(0x1a, 0, &buf);
2382   *type = (kmp_hw_core_type_t)__kmp_extract_bits<24, 31>(buf.eax);
2383   switch (*type) {
2384   case KMP_HW_CORE_TYPE_ATOM:
2385     *efficiency = 0;
2386     break;
2387   case KMP_HW_CORE_TYPE_CORE:
2388     *efficiency = 1;
2389     break;
2390   default:
2391     *efficiency = 0;
2392   }
2393   *native_model_id = __kmp_extract_bits<0, 23>(buf.eax);
2394 }
2395 
2396 // Intel(R) microarchitecture code name Nehalem, Dunnington and later
2397 // architectures support a newer interface for specifying the x2APIC Ids,
2398 // based on CPUID.B or CPUID.1F
2399 /*
2400  * CPUID.B or 1F, Input ECX (sub leaf # aka level number)
2401     Bits            Bits            Bits           Bits
2402     31-16           15-8            7-4            4-0
2403 ---+-----------+--------------+-------------+-----------------+
2404 EAX| reserved  |   reserved   |   reserved  |  Bits to Shift  |
2405 ---+-----------|--------------+-------------+-----------------|
2406 EBX| reserved  | Num logical processors at level (16 bits)    |
2407 ---+-----------|--------------+-------------------------------|
2408 ECX| reserved  |   Level Type |      Level Number (8 bits)    |
2409 ---+-----------+--------------+-------------------------------|
2410 EDX|                    X2APIC ID (32 bits)                   |
2411 ---+----------------------------------------------------------+
2412 */
2413 
2414 enum {
2415   INTEL_LEVEL_TYPE_INVALID = 0, // Package level
2416   INTEL_LEVEL_TYPE_SMT = 1,
2417   INTEL_LEVEL_TYPE_CORE = 2,
2418   INTEL_LEVEL_TYPE_MODULE = 3,
2419   INTEL_LEVEL_TYPE_TILE = 4,
2420   INTEL_LEVEL_TYPE_DIE = 5,
2421   INTEL_LEVEL_TYPE_LAST = 6,
2422 };
2423 
2424 struct cpuid_level_info_t {
2425   unsigned level_type, mask, mask_width, nitems, cache_mask;
2426 };
2427 
2428 static kmp_hw_t __kmp_intel_type_2_topology_type(int intel_type) {
2429   switch (intel_type) {
2430   case INTEL_LEVEL_TYPE_INVALID:
2431     return KMP_HW_SOCKET;
2432   case INTEL_LEVEL_TYPE_SMT:
2433     return KMP_HW_THREAD;
2434   case INTEL_LEVEL_TYPE_CORE:
2435     return KMP_HW_CORE;
2436   case INTEL_LEVEL_TYPE_TILE:
2437     return KMP_HW_TILE;
2438   case INTEL_LEVEL_TYPE_MODULE:
2439     return KMP_HW_MODULE;
2440   case INTEL_LEVEL_TYPE_DIE:
2441     return KMP_HW_DIE;
2442   }
2443   return KMP_HW_UNKNOWN;
2444 }
2445 
2446 // This function takes the topology leaf, a levels array to store the levels
2447 // detected and a bitmap of the known levels.
2448 // Returns the number of levels in the topology
2449 static unsigned
2450 __kmp_x2apicid_get_levels(int leaf,
2451                           cpuid_level_info_t levels[INTEL_LEVEL_TYPE_LAST],
2452                           kmp_uint64 known_levels) {
2453   unsigned level, levels_index;
2454   unsigned level_type, mask_width, nitems;
2455   kmp_cpuid buf;
2456 
2457   // New algorithm has known topology layers act as highest unknown topology
2458   // layers when unknown topology layers exist.
2459   // e.g., Suppose layers were SMT <X> CORE <Y> <Z> PACKAGE, where <X> <Y> <Z>
2460   // are unknown topology layers, Then SMT will take the characteristics of
2461   // (SMT x <X>) and CORE will take the characteristics of (CORE x <Y> x <Z>).
2462   // This eliminates unknown portions of the topology while still keeping the
2463   // correct structure.
2464   level = levels_index = 0;
2465   do {
2466     __kmp_x86_cpuid(leaf, level, &buf);
2467     level_type = __kmp_extract_bits<8, 15>(buf.ecx);
2468     mask_width = __kmp_extract_bits<0, 4>(buf.eax);
2469     nitems = __kmp_extract_bits<0, 15>(buf.ebx);
2470     if (level_type != INTEL_LEVEL_TYPE_INVALID && nitems == 0)
2471       return 0;
2472 
2473     if (known_levels & (1ull << level_type)) {
2474       // Add a new level to the topology
2475       KMP_ASSERT(levels_index < INTEL_LEVEL_TYPE_LAST);
2476       levels[levels_index].level_type = level_type;
2477       levels[levels_index].mask_width = mask_width;
2478       levels[levels_index].nitems = nitems;
2479       levels_index++;
2480     } else {
2481       // If it is an unknown level, then logically move the previous layer up
2482       if (levels_index > 0) {
2483         levels[levels_index - 1].mask_width = mask_width;
2484         levels[levels_index - 1].nitems = nitems;
2485       }
2486     }
2487     level++;
2488   } while (level_type != INTEL_LEVEL_TYPE_INVALID);
2489 
2490   // Ensure the INTEL_LEVEL_TYPE_INVALID (Socket) layer isn't first
2491   if (levels_index == 0 || levels[0].level_type == INTEL_LEVEL_TYPE_INVALID)
2492     return 0;
2493 
2494   // Set the masks to & with apicid
2495   for (unsigned i = 0; i < levels_index; ++i) {
2496     if (levels[i].level_type != INTEL_LEVEL_TYPE_INVALID) {
2497       levels[i].mask = ~((-1) << levels[i].mask_width);
2498       levels[i].cache_mask = (-1) << levels[i].mask_width;
2499       for (unsigned j = 0; j < i; ++j)
2500         levels[i].mask ^= levels[j].mask;
2501     } else {
2502       KMP_DEBUG_ASSERT(i > 0);
2503       levels[i].mask = (-1) << levels[i - 1].mask_width;
2504       levels[i].cache_mask = 0;
2505     }
2506   }
2507   return levels_index;
2508 }
2509 
2510 static bool __kmp_affinity_create_x2apicid_map(kmp_i18n_id_t *const msg_id) {
2511 
2512   cpuid_level_info_t levels[INTEL_LEVEL_TYPE_LAST];
2513   kmp_hw_t types[INTEL_LEVEL_TYPE_LAST];
2514   unsigned levels_index;
2515   kmp_cpuid buf;
2516   kmp_uint64 known_levels;
2517   int topology_leaf, highest_leaf, apic_id;
2518   int num_leaves;
2519   static int leaves[] = {0, 0};
2520 
2521   kmp_i18n_id_t leaf_message_id;
2522 
2523   KMP_BUILD_ASSERT(sizeof(known_levels) * CHAR_BIT > KMP_HW_LAST);
2524 
2525   *msg_id = kmp_i18n_null;
2526   if (__kmp_affinity.flags.verbose) {
2527     KMP_INFORM(AffInfoStr, "KMP_AFFINITY", KMP_I18N_STR(Decodingx2APIC));
2528   }
2529 
2530   // Figure out the known topology levels
2531   known_levels = 0ull;
2532   for (int i = 0; i < INTEL_LEVEL_TYPE_LAST; ++i) {
2533     if (__kmp_intel_type_2_topology_type(i) != KMP_HW_UNKNOWN) {
2534       known_levels |= (1ull << i);
2535     }
2536   }
2537 
2538   // Get the highest cpuid leaf supported
2539   __kmp_x86_cpuid(0, 0, &buf);
2540   highest_leaf = buf.eax;
2541 
2542   // If a specific topology method was requested, only allow that specific leaf
2543   // otherwise, try both leaves 31 and 11 in that order
2544   num_leaves = 0;
2545   if (__kmp_affinity_top_method == affinity_top_method_x2apicid) {
2546     num_leaves = 1;
2547     leaves[0] = 11;
2548     leaf_message_id = kmp_i18n_str_NoLeaf11Support;
2549   } else if (__kmp_affinity_top_method == affinity_top_method_x2apicid_1f) {
2550     num_leaves = 1;
2551     leaves[0] = 31;
2552     leaf_message_id = kmp_i18n_str_NoLeaf31Support;
2553   } else {
2554     num_leaves = 2;
2555     leaves[0] = 31;
2556     leaves[1] = 11;
2557     leaf_message_id = kmp_i18n_str_NoLeaf11Support;
2558   }
2559 
2560   // Check to see if cpuid leaf 31 or 11 is supported.
2561   __kmp_nThreadsPerCore = nCoresPerPkg = nPackages = 1;
2562   topology_leaf = -1;
2563   for (int i = 0; i < num_leaves; ++i) {
2564     int leaf = leaves[i];
2565     if (highest_leaf < leaf)
2566       continue;
2567     __kmp_x86_cpuid(leaf, 0, &buf);
2568     if (buf.ebx == 0)
2569       continue;
2570     topology_leaf = leaf;
2571     levels_index = __kmp_x2apicid_get_levels(leaf, levels, known_levels);
2572     if (levels_index == 0)
2573       continue;
2574     break;
2575   }
2576   if (topology_leaf == -1 || levels_index == 0) {
2577     *msg_id = leaf_message_id;
2578     return false;
2579   }
2580   KMP_ASSERT(levels_index <= INTEL_LEVEL_TYPE_LAST);
2581 
2582   // The algorithm used starts by setting the affinity to each available thread
2583   // and retrieving info from the cpuid instruction, so if we are not capable of
2584   // calling __kmp_get_system_affinity() and __kmp_get_system_affinity(), then
2585   // we need to do something else - use the defaults that we calculated from
2586   // issuing cpuid without binding to each proc.
2587   if (!KMP_AFFINITY_CAPABLE()) {
2588     // Hack to try and infer the machine topology using only the data
2589     // available from cpuid on the current thread, and __kmp_xproc.
2590     KMP_ASSERT(__kmp_affinity.type == affinity_none);
2591     for (unsigned i = 0; i < levels_index; ++i) {
2592       if (levels[i].level_type == INTEL_LEVEL_TYPE_SMT) {
2593         __kmp_nThreadsPerCore = levels[i].nitems;
2594       } else if (levels[i].level_type == INTEL_LEVEL_TYPE_CORE) {
2595         nCoresPerPkg = levels[i].nitems;
2596       }
2597     }
2598     __kmp_ncores = __kmp_xproc / __kmp_nThreadsPerCore;
2599     nPackages = (__kmp_xproc + nCoresPerPkg - 1) / nCoresPerPkg;
2600     return true;
2601   }
2602 
2603   // Allocate the data structure to be returned.
2604   int depth = levels_index;
2605   for (int i = depth - 1, j = 0; i >= 0; --i, ++j)
2606     types[j] = __kmp_intel_type_2_topology_type(levels[i].level_type);
2607   __kmp_topology =
2608       kmp_topology_t::allocate(__kmp_avail_proc, levels_index, types);
2609 
2610   // Insert equivalent cache types if they exist
2611   kmp_cache_info_t cache_info;
2612   for (size_t i = 0; i < cache_info.get_depth(); ++i) {
2613     const kmp_cache_info_t::info_t &info = cache_info[i];
2614     unsigned cache_mask = info.mask;
2615     unsigned cache_level = info.level;
2616     for (unsigned j = 0; j < levels_index; ++j) {
2617       unsigned hw_cache_mask = levels[j].cache_mask;
2618       kmp_hw_t cache_type = kmp_cache_info_t::get_topology_type(cache_level);
2619       if (hw_cache_mask == cache_mask && j < levels_index - 1) {
2620         kmp_hw_t type =
2621             __kmp_intel_type_2_topology_type(levels[j + 1].level_type);
2622         __kmp_topology->set_equivalent_type(cache_type, type);
2623       }
2624     }
2625   }
2626 
2627   // From here on, we can assume that it is safe to call
2628   // __kmp_get_system_affinity() and __kmp_set_system_affinity(), even if
2629   // __kmp_affinity.type = affinity_none.
2630 
2631   // Save the affinity mask for the current thread.
2632   kmp_affinity_raii_t previous_affinity;
2633 
2634   // Run through each of the available contexts, binding the current thread
2635   // to it, and obtaining the pertinent information using the cpuid instr.
2636   unsigned int proc;
2637   int hw_thread_index = 0;
2638   KMP_CPU_SET_ITERATE(proc, __kmp_affin_fullMask) {
2639     cpuid_level_info_t my_levels[INTEL_LEVEL_TYPE_LAST];
2640     unsigned my_levels_index;
2641 
2642     // Skip this proc if it is not included in the machine model.
2643     if (!KMP_CPU_ISSET(proc, __kmp_affin_fullMask)) {
2644       continue;
2645     }
2646     KMP_DEBUG_ASSERT(hw_thread_index < __kmp_avail_proc);
2647 
2648     __kmp_affinity_dispatch->bind_thread(proc);
2649 
2650     // New algorithm
2651     __kmp_x86_cpuid(topology_leaf, 0, &buf);
2652     apic_id = buf.edx;
2653     kmp_hw_thread_t &hw_thread = __kmp_topology->at(hw_thread_index);
2654     my_levels_index =
2655         __kmp_x2apicid_get_levels(topology_leaf, my_levels, known_levels);
2656     if (my_levels_index == 0 || my_levels_index != levels_index) {
2657       *msg_id = kmp_i18n_str_InvalidCpuidInfo;
2658       return false;
2659     }
2660     hw_thread.clear();
2661     hw_thread.os_id = proc;
2662     // Put in topology information
2663     for (unsigned j = 0, idx = depth - 1; j < my_levels_index; ++j, --idx) {
2664       hw_thread.ids[idx] = apic_id & my_levels[j].mask;
2665       if (j > 0) {
2666         hw_thread.ids[idx] >>= my_levels[j - 1].mask_width;
2667       }
2668     }
2669     // Hybrid information
2670     if (__kmp_is_hybrid_cpu() && highest_leaf >= 0x1a) {
2671       kmp_hw_core_type_t type;
2672       unsigned native_model_id;
2673       int efficiency;
2674       __kmp_get_hybrid_info(&type, &efficiency, &native_model_id);
2675       hw_thread.attrs.set_core_type(type);
2676       hw_thread.attrs.set_core_eff(efficiency);
2677     }
2678     hw_thread_index++;
2679   }
2680   KMP_ASSERT(hw_thread_index > 0);
2681   __kmp_topology->sort_ids();
2682   if (!__kmp_topology->check_ids()) {
2683     kmp_topology_t::deallocate(__kmp_topology);
2684     __kmp_topology = nullptr;
2685     *msg_id = kmp_i18n_str_x2ApicIDsNotUnique;
2686     return false;
2687   }
2688   return true;
2689 }
2690 #endif /* KMP_ARCH_X86 || KMP_ARCH_X86_64 */
2691 
2692 #define osIdIndex 0
2693 #define threadIdIndex 1
2694 #define coreIdIndex 2
2695 #define pkgIdIndex 3
2696 #define nodeIdIndex 4
2697 
2698 typedef unsigned *ProcCpuInfo;
2699 static unsigned maxIndex = pkgIdIndex;
2700 
2701 static int __kmp_affinity_cmp_ProcCpuInfo_phys_id(const void *a,
2702                                                   const void *b) {
2703   unsigned i;
2704   const unsigned *aa = *(unsigned *const *)a;
2705   const unsigned *bb = *(unsigned *const *)b;
2706   for (i = maxIndex;; i--) {
2707     if (aa[i] < bb[i])
2708       return -1;
2709     if (aa[i] > bb[i])
2710       return 1;
2711     if (i == osIdIndex)
2712       break;
2713   }
2714   return 0;
2715 }
2716 
2717 #if KMP_USE_HIER_SCHED
2718 // Set the array sizes for the hierarchy layers
2719 static void __kmp_dispatch_set_hierarchy_values() {
2720   // Set the maximum number of L1's to number of cores
2721   // Set the maximum number of L2's to to either number of cores / 2 for
2722   // Intel(R) Xeon Phi(TM) coprocessor formally codenamed Knights Landing
2723   // Or the number of cores for Intel(R) Xeon(R) processors
2724   // Set the maximum number of NUMA nodes and L3's to number of packages
2725   __kmp_hier_max_units[kmp_hier_layer_e::LAYER_THREAD + 1] =
2726       nPackages * nCoresPerPkg * __kmp_nThreadsPerCore;
2727   __kmp_hier_max_units[kmp_hier_layer_e::LAYER_L1 + 1] = __kmp_ncores;
2728 #if KMP_ARCH_X86_64 && (KMP_OS_LINUX || KMP_OS_FREEBSD || KMP_OS_WINDOWS) &&   \
2729     KMP_MIC_SUPPORTED
2730   if (__kmp_mic_type >= mic3)
2731     __kmp_hier_max_units[kmp_hier_layer_e::LAYER_L2 + 1] = __kmp_ncores / 2;
2732   else
2733 #endif // KMP_ARCH_X86_64 && (KMP_OS_LINUX || KMP_OS_WINDOWS)
2734     __kmp_hier_max_units[kmp_hier_layer_e::LAYER_L2 + 1] = __kmp_ncores;
2735   __kmp_hier_max_units[kmp_hier_layer_e::LAYER_L3 + 1] = nPackages;
2736   __kmp_hier_max_units[kmp_hier_layer_e::LAYER_NUMA + 1] = nPackages;
2737   __kmp_hier_max_units[kmp_hier_layer_e::LAYER_LOOP + 1] = 1;
2738   // Set the number of threads per unit
2739   // Number of hardware threads per L1/L2/L3/NUMA/LOOP
2740   __kmp_hier_threads_per[kmp_hier_layer_e::LAYER_THREAD + 1] = 1;
2741   __kmp_hier_threads_per[kmp_hier_layer_e::LAYER_L1 + 1] =
2742       __kmp_nThreadsPerCore;
2743 #if KMP_ARCH_X86_64 && (KMP_OS_LINUX || KMP_OS_FREEBSD || KMP_OS_WINDOWS) &&   \
2744     KMP_MIC_SUPPORTED
2745   if (__kmp_mic_type >= mic3)
2746     __kmp_hier_threads_per[kmp_hier_layer_e::LAYER_L2 + 1] =
2747         2 * __kmp_nThreadsPerCore;
2748   else
2749 #endif // KMP_ARCH_X86_64 && (KMP_OS_LINUX || KMP_OS_WINDOWS)
2750     __kmp_hier_threads_per[kmp_hier_layer_e::LAYER_L2 + 1] =
2751         __kmp_nThreadsPerCore;
2752   __kmp_hier_threads_per[kmp_hier_layer_e::LAYER_L3 + 1] =
2753       nCoresPerPkg * __kmp_nThreadsPerCore;
2754   __kmp_hier_threads_per[kmp_hier_layer_e::LAYER_NUMA + 1] =
2755       nCoresPerPkg * __kmp_nThreadsPerCore;
2756   __kmp_hier_threads_per[kmp_hier_layer_e::LAYER_LOOP + 1] =
2757       nPackages * nCoresPerPkg * __kmp_nThreadsPerCore;
2758 }
2759 
2760 // Return the index into the hierarchy for this tid and layer type (L1, L2, etc)
2761 // i.e., this thread's L1 or this thread's L2, etc.
2762 int __kmp_dispatch_get_index(int tid, kmp_hier_layer_e type) {
2763   int index = type + 1;
2764   int num_hw_threads = __kmp_hier_max_units[kmp_hier_layer_e::LAYER_THREAD + 1];
2765   KMP_DEBUG_ASSERT(type != kmp_hier_layer_e::LAYER_LAST);
2766   if (type == kmp_hier_layer_e::LAYER_THREAD)
2767     return tid;
2768   else if (type == kmp_hier_layer_e::LAYER_LOOP)
2769     return 0;
2770   KMP_DEBUG_ASSERT(__kmp_hier_max_units[index] != 0);
2771   if (tid >= num_hw_threads)
2772     tid = tid % num_hw_threads;
2773   return (tid / __kmp_hier_threads_per[index]) % __kmp_hier_max_units[index];
2774 }
2775 
2776 // Return the number of t1's per t2
2777 int __kmp_dispatch_get_t1_per_t2(kmp_hier_layer_e t1, kmp_hier_layer_e t2) {
2778   int i1 = t1 + 1;
2779   int i2 = t2 + 1;
2780   KMP_DEBUG_ASSERT(i1 <= i2);
2781   KMP_DEBUG_ASSERT(t1 != kmp_hier_layer_e::LAYER_LAST);
2782   KMP_DEBUG_ASSERT(t2 != kmp_hier_layer_e::LAYER_LAST);
2783   KMP_DEBUG_ASSERT(__kmp_hier_threads_per[i1] != 0);
2784   // (nthreads/t2) / (nthreads/t1) = t1 / t2
2785   return __kmp_hier_threads_per[i2] / __kmp_hier_threads_per[i1];
2786 }
2787 #endif // KMP_USE_HIER_SCHED
2788 
2789 static inline const char *__kmp_cpuinfo_get_filename() {
2790   const char *filename;
2791   if (__kmp_cpuinfo_file != nullptr)
2792     filename = __kmp_cpuinfo_file;
2793   else
2794     filename = "/proc/cpuinfo";
2795   return filename;
2796 }
2797 
2798 static inline const char *__kmp_cpuinfo_get_envvar() {
2799   const char *envvar = nullptr;
2800   if (__kmp_cpuinfo_file != nullptr)
2801     envvar = "KMP_CPUINFO_FILE";
2802   return envvar;
2803 }
2804 
2805 // Parse /proc/cpuinfo (or an alternate file in the same format) to obtain the
2806 // affinity map.
2807 static bool __kmp_affinity_create_cpuinfo_map(int *line,
2808                                               kmp_i18n_id_t *const msg_id) {
2809   const char *filename = __kmp_cpuinfo_get_filename();
2810   const char *envvar = __kmp_cpuinfo_get_envvar();
2811   *msg_id = kmp_i18n_null;
2812 
2813   if (__kmp_affinity.flags.verbose) {
2814     KMP_INFORM(AffParseFilename, "KMP_AFFINITY", filename);
2815   }
2816 
2817   kmp_safe_raii_file_t f(filename, "r", envvar);
2818 
2819   // Scan of the file, and count the number of "processor" (osId) fields,
2820   // and find the highest value of <n> for a node_<n> field.
2821   char buf[256];
2822   unsigned num_records = 0;
2823   while (!feof(f)) {
2824     buf[sizeof(buf) - 1] = 1;
2825     if (!fgets(buf, sizeof(buf), f)) {
2826       // Read errors presumably because of EOF
2827       break;
2828     }
2829 
2830     char s1[] = "processor";
2831     if (strncmp(buf, s1, sizeof(s1) - 1) == 0) {
2832       num_records++;
2833       continue;
2834     }
2835 
2836     // FIXME - this will match "node_<n> <garbage>"
2837     unsigned level;
2838     if (KMP_SSCANF(buf, "node_%u id", &level) == 1) {
2839       // validate the input fisrt:
2840       if (level > (unsigned)__kmp_xproc) { // level is too big
2841         level = __kmp_xproc;
2842       }
2843       if (nodeIdIndex + level >= maxIndex) {
2844         maxIndex = nodeIdIndex + level;
2845       }
2846       continue;
2847     }
2848   }
2849 
2850   // Check for empty file / no valid processor records, or too many. The number
2851   // of records can't exceed the number of valid bits in the affinity mask.
2852   if (num_records == 0) {
2853     *msg_id = kmp_i18n_str_NoProcRecords;
2854     return false;
2855   }
2856   if (num_records > (unsigned)__kmp_xproc) {
2857     *msg_id = kmp_i18n_str_TooManyProcRecords;
2858     return false;
2859   }
2860 
2861   // Set the file pointer back to the beginning, so that we can scan the file
2862   // again, this time performing a full parse of the data. Allocate a vector of
2863   // ProcCpuInfo object, where we will place the data. Adding an extra element
2864   // at the end allows us to remove a lot of extra checks for termination
2865   // conditions.
2866   if (fseek(f, 0, SEEK_SET) != 0) {
2867     *msg_id = kmp_i18n_str_CantRewindCpuinfo;
2868     return false;
2869   }
2870 
2871   // Allocate the array of records to store the proc info in.  The dummy
2872   // element at the end makes the logic in filling them out easier to code.
2873   unsigned **threadInfo =
2874       (unsigned **)__kmp_allocate((num_records + 1) * sizeof(unsigned *));
2875   unsigned i;
2876   for (i = 0; i <= num_records; i++) {
2877     threadInfo[i] =
2878         (unsigned *)__kmp_allocate((maxIndex + 1) * sizeof(unsigned));
2879   }
2880 
2881 #define CLEANUP_THREAD_INFO                                                    \
2882   for (i = 0; i <= num_records; i++) {                                         \
2883     __kmp_free(threadInfo[i]);                                                 \
2884   }                                                                            \
2885   __kmp_free(threadInfo);
2886 
2887   // A value of UINT_MAX means that we didn't find the field
2888   unsigned __index;
2889 
2890 #define INIT_PROC_INFO(p)                                                      \
2891   for (__index = 0; __index <= maxIndex; __index++) {                          \
2892     (p)[__index] = UINT_MAX;                                                   \
2893   }
2894 
2895   for (i = 0; i <= num_records; i++) {
2896     INIT_PROC_INFO(threadInfo[i]);
2897   }
2898 
2899   unsigned num_avail = 0;
2900   *line = 0;
2901   while (!feof(f)) {
2902     // Create an inner scoping level, so that all the goto targets at the end of
2903     // the loop appear in an outer scoping level. This avoids warnings about
2904     // jumping past an initialization to a target in the same block.
2905     {
2906       buf[sizeof(buf) - 1] = 1;
2907       bool long_line = false;
2908       if (!fgets(buf, sizeof(buf), f)) {
2909         // Read errors presumably because of EOF
2910         // If there is valid data in threadInfo[num_avail], then fake
2911         // a blank line in ensure that the last address gets parsed.
2912         bool valid = false;
2913         for (i = 0; i <= maxIndex; i++) {
2914           if (threadInfo[num_avail][i] != UINT_MAX) {
2915             valid = true;
2916           }
2917         }
2918         if (!valid) {
2919           break;
2920         }
2921         buf[0] = 0;
2922       } else if (!buf[sizeof(buf) - 1]) {
2923         // The line is longer than the buffer.  Set a flag and don't
2924         // emit an error if we were going to ignore the line, anyway.
2925         long_line = true;
2926 
2927 #define CHECK_LINE                                                             \
2928   if (long_line) {                                                             \
2929     CLEANUP_THREAD_INFO;                                                       \
2930     *msg_id = kmp_i18n_str_LongLineCpuinfo;                                    \
2931     return false;                                                              \
2932   }
2933       }
2934       (*line)++;
2935 
2936 #if KMP_ARCH_LOONGARCH64
2937       // The parsing logic of /proc/cpuinfo in this function highly depends on
2938       // the blank lines between each processor info block. But on LoongArch a
2939       // blank line exists before the first processor info block (i.e. after the
2940       // "system type" line). This blank line was added because the "system
2941       // type" line is unrelated to any of the CPUs. We must skip this line so
2942       // that the original logic works on LoongArch.
2943       if (*buf == '\n' && *line == 2)
2944         continue;
2945 #endif
2946 
2947       char s1[] = "processor";
2948       if (strncmp(buf, s1, sizeof(s1) - 1) == 0) {
2949         CHECK_LINE;
2950         char *p = strchr(buf + sizeof(s1) - 1, ':');
2951         unsigned val;
2952         if ((p == NULL) || (KMP_SSCANF(p + 1, "%u\n", &val) != 1))
2953           goto no_val;
2954         if (threadInfo[num_avail][osIdIndex] != UINT_MAX)
2955 #if KMP_ARCH_AARCH64
2956           // Handle the old AArch64 /proc/cpuinfo layout differently,
2957           // it contains all of the 'processor' entries listed in a
2958           // single 'Processor' section, therefore the normal looking
2959           // for duplicates in that section will always fail.
2960           num_avail++;
2961 #else
2962           goto dup_field;
2963 #endif
2964         threadInfo[num_avail][osIdIndex] = val;
2965 #if KMP_OS_LINUX && !(KMP_ARCH_X86 || KMP_ARCH_X86_64)
2966         char path[256];
2967         KMP_SNPRINTF(
2968             path, sizeof(path),
2969             "/sys/devices/system/cpu/cpu%u/topology/physical_package_id",
2970             threadInfo[num_avail][osIdIndex]);
2971         __kmp_read_from_file(path, "%u", &threadInfo[num_avail][pkgIdIndex]);
2972 
2973         KMP_SNPRINTF(path, sizeof(path),
2974                      "/sys/devices/system/cpu/cpu%u/topology/core_id",
2975                      threadInfo[num_avail][osIdIndex]);
2976         __kmp_read_from_file(path, "%u", &threadInfo[num_avail][coreIdIndex]);
2977         continue;
2978 #else
2979       }
2980       char s2[] = "physical id";
2981       if (strncmp(buf, s2, sizeof(s2) - 1) == 0) {
2982         CHECK_LINE;
2983         char *p = strchr(buf + sizeof(s2) - 1, ':');
2984         unsigned val;
2985         if ((p == NULL) || (KMP_SSCANF(p + 1, "%u\n", &val) != 1))
2986           goto no_val;
2987         if (threadInfo[num_avail][pkgIdIndex] != UINT_MAX)
2988           goto dup_field;
2989         threadInfo[num_avail][pkgIdIndex] = val;
2990         continue;
2991       }
2992       char s3[] = "core id";
2993       if (strncmp(buf, s3, sizeof(s3) - 1) == 0) {
2994         CHECK_LINE;
2995         char *p = strchr(buf + sizeof(s3) - 1, ':');
2996         unsigned val;
2997         if ((p == NULL) || (KMP_SSCANF(p + 1, "%u\n", &val) != 1))
2998           goto no_val;
2999         if (threadInfo[num_avail][coreIdIndex] != UINT_MAX)
3000           goto dup_field;
3001         threadInfo[num_avail][coreIdIndex] = val;
3002         continue;
3003 #endif // KMP_OS_LINUX && USE_SYSFS_INFO
3004       }
3005       char s4[] = "thread id";
3006       if (strncmp(buf, s4, sizeof(s4) - 1) == 0) {
3007         CHECK_LINE;
3008         char *p = strchr(buf + sizeof(s4) - 1, ':');
3009         unsigned val;
3010         if ((p == NULL) || (KMP_SSCANF(p + 1, "%u\n", &val) != 1))
3011           goto no_val;
3012         if (threadInfo[num_avail][threadIdIndex] != UINT_MAX)
3013           goto dup_field;
3014         threadInfo[num_avail][threadIdIndex] = val;
3015         continue;
3016       }
3017       unsigned level;
3018       if (KMP_SSCANF(buf, "node_%u id", &level) == 1) {
3019         CHECK_LINE;
3020         char *p = strchr(buf + sizeof(s4) - 1, ':');
3021         unsigned val;
3022         if ((p == NULL) || (KMP_SSCANF(p + 1, "%u\n", &val) != 1))
3023           goto no_val;
3024         // validate the input before using level:
3025         if (level > (unsigned)__kmp_xproc) { // level is too big
3026           level = __kmp_xproc;
3027         }
3028         if (threadInfo[num_avail][nodeIdIndex + level] != UINT_MAX)
3029           goto dup_field;
3030         threadInfo[num_avail][nodeIdIndex + level] = val;
3031         continue;
3032       }
3033 
3034       // We didn't recognize the leading token on the line. There are lots of
3035       // leading tokens that we don't recognize - if the line isn't empty, go on
3036       // to the next line.
3037       if ((*buf != 0) && (*buf != '\n')) {
3038         // If the line is longer than the buffer, read characters
3039         // until we find a newline.
3040         if (long_line) {
3041           int ch;
3042           while (((ch = fgetc(f)) != EOF) && (ch != '\n'))
3043             ;
3044         }
3045         continue;
3046       }
3047 
3048       // A newline has signalled the end of the processor record.
3049       // Check that there aren't too many procs specified.
3050       if ((int)num_avail == __kmp_xproc) {
3051         CLEANUP_THREAD_INFO;
3052         *msg_id = kmp_i18n_str_TooManyEntries;
3053         return false;
3054       }
3055 
3056       // Check for missing fields.  The osId field must be there, and we
3057       // currently require that the physical id field is specified, also.
3058       if (threadInfo[num_avail][osIdIndex] == UINT_MAX) {
3059         CLEANUP_THREAD_INFO;
3060         *msg_id = kmp_i18n_str_MissingProcField;
3061         return false;
3062       }
3063       if (threadInfo[0][pkgIdIndex] == UINT_MAX) {
3064         CLEANUP_THREAD_INFO;
3065         *msg_id = kmp_i18n_str_MissingPhysicalIDField;
3066         return false;
3067       }
3068 
3069       // Skip this proc if it is not included in the machine model.
3070       if (KMP_AFFINITY_CAPABLE() &&
3071           !KMP_CPU_ISSET(threadInfo[num_avail][osIdIndex],
3072                          __kmp_affin_fullMask)) {
3073         INIT_PROC_INFO(threadInfo[num_avail]);
3074         continue;
3075       }
3076 
3077       // We have a successful parse of this proc's info.
3078       // Increment the counter, and prepare for the next proc.
3079       num_avail++;
3080       KMP_ASSERT(num_avail <= num_records);
3081       INIT_PROC_INFO(threadInfo[num_avail]);
3082     }
3083     continue;
3084 
3085   no_val:
3086     CLEANUP_THREAD_INFO;
3087     *msg_id = kmp_i18n_str_MissingValCpuinfo;
3088     return false;
3089 
3090   dup_field:
3091     CLEANUP_THREAD_INFO;
3092     *msg_id = kmp_i18n_str_DuplicateFieldCpuinfo;
3093     return false;
3094   }
3095   *line = 0;
3096 
3097 #if KMP_MIC && REDUCE_TEAM_SIZE
3098   unsigned teamSize = 0;
3099 #endif // KMP_MIC && REDUCE_TEAM_SIZE
3100 
3101   // check for num_records == __kmp_xproc ???
3102 
3103   // If it is configured to omit the package level when there is only a single
3104   // package, the logic at the end of this routine won't work if there is only a
3105   // single thread
3106   KMP_ASSERT(num_avail > 0);
3107   KMP_ASSERT(num_avail <= num_records);
3108 
3109   // Sort the threadInfo table by physical Id.
3110   qsort(threadInfo, num_avail, sizeof(*threadInfo),
3111         __kmp_affinity_cmp_ProcCpuInfo_phys_id);
3112 
3113   // The table is now sorted by pkgId / coreId / threadId, but we really don't
3114   // know the radix of any of the fields. pkgId's may be sparsely assigned among
3115   // the chips on a system. Although coreId's are usually assigned
3116   // [0 .. coresPerPkg-1] and threadId's are usually assigned
3117   // [0..threadsPerCore-1], we don't want to make any such assumptions.
3118   //
3119   // For that matter, we don't know what coresPerPkg and threadsPerCore (or the
3120   // total # packages) are at this point - we want to determine that now. We
3121   // only have an upper bound on the first two figures.
3122   unsigned *counts =
3123       (unsigned *)__kmp_allocate((maxIndex + 1) * sizeof(unsigned));
3124   unsigned *maxCt =
3125       (unsigned *)__kmp_allocate((maxIndex + 1) * sizeof(unsigned));
3126   unsigned *totals =
3127       (unsigned *)__kmp_allocate((maxIndex + 1) * sizeof(unsigned));
3128   unsigned *lastId =
3129       (unsigned *)__kmp_allocate((maxIndex + 1) * sizeof(unsigned));
3130 
3131   bool assign_thread_ids = false;
3132   unsigned threadIdCt;
3133   unsigned index;
3134 
3135 restart_radix_check:
3136   threadIdCt = 0;
3137 
3138   // Initialize the counter arrays with data from threadInfo[0].
3139   if (assign_thread_ids) {
3140     if (threadInfo[0][threadIdIndex] == UINT_MAX) {
3141       threadInfo[0][threadIdIndex] = threadIdCt++;
3142     } else if (threadIdCt <= threadInfo[0][threadIdIndex]) {
3143       threadIdCt = threadInfo[0][threadIdIndex] + 1;
3144     }
3145   }
3146   for (index = 0; index <= maxIndex; index++) {
3147     counts[index] = 1;
3148     maxCt[index] = 1;
3149     totals[index] = 1;
3150     lastId[index] = threadInfo[0][index];
3151     ;
3152   }
3153 
3154   // Run through the rest of the OS procs.
3155   for (i = 1; i < num_avail; i++) {
3156     // Find the most significant index whose id differs from the id for the
3157     // previous OS proc.
3158     for (index = maxIndex; index >= threadIdIndex; index--) {
3159       if (assign_thread_ids && (index == threadIdIndex)) {
3160         // Auto-assign the thread id field if it wasn't specified.
3161         if (threadInfo[i][threadIdIndex] == UINT_MAX) {
3162           threadInfo[i][threadIdIndex] = threadIdCt++;
3163         }
3164         // Apparently the thread id field was specified for some entries and not
3165         // others. Start the thread id counter off at the next higher thread id.
3166         else if (threadIdCt <= threadInfo[i][threadIdIndex]) {
3167           threadIdCt = threadInfo[i][threadIdIndex] + 1;
3168         }
3169       }
3170       if (threadInfo[i][index] != lastId[index]) {
3171         // Run through all indices which are less significant, and reset the
3172         // counts to 1. At all levels up to and including index, we need to
3173         // increment the totals and record the last id.
3174         unsigned index2;
3175         for (index2 = threadIdIndex; index2 < index; index2++) {
3176           totals[index2]++;
3177           if (counts[index2] > maxCt[index2]) {
3178             maxCt[index2] = counts[index2];
3179           }
3180           counts[index2] = 1;
3181           lastId[index2] = threadInfo[i][index2];
3182         }
3183         counts[index]++;
3184         totals[index]++;
3185         lastId[index] = threadInfo[i][index];
3186 
3187         if (assign_thread_ids && (index > threadIdIndex)) {
3188 
3189 #if KMP_MIC && REDUCE_TEAM_SIZE
3190           // The default team size is the total #threads in the machine
3191           // minus 1 thread for every core that has 3 or more threads.
3192           teamSize += (threadIdCt <= 2) ? (threadIdCt) : (threadIdCt - 1);
3193 #endif // KMP_MIC && REDUCE_TEAM_SIZE
3194 
3195           // Restart the thread counter, as we are on a new core.
3196           threadIdCt = 0;
3197 
3198           // Auto-assign the thread id field if it wasn't specified.
3199           if (threadInfo[i][threadIdIndex] == UINT_MAX) {
3200             threadInfo[i][threadIdIndex] = threadIdCt++;
3201           }
3202 
3203           // Apparently the thread id field was specified for some entries and
3204           // not others. Start the thread id counter off at the next higher
3205           // thread id.
3206           else if (threadIdCt <= threadInfo[i][threadIdIndex]) {
3207             threadIdCt = threadInfo[i][threadIdIndex] + 1;
3208           }
3209         }
3210         break;
3211       }
3212     }
3213     if (index < threadIdIndex) {
3214       // If thread ids were specified, it is an error if they are not unique.
3215       // Also, check that we waven't already restarted the loop (to be safe -
3216       // shouldn't need to).
3217       if ((threadInfo[i][threadIdIndex] != UINT_MAX) || assign_thread_ids) {
3218         __kmp_free(lastId);
3219         __kmp_free(totals);
3220         __kmp_free(maxCt);
3221         __kmp_free(counts);
3222         CLEANUP_THREAD_INFO;
3223         *msg_id = kmp_i18n_str_PhysicalIDsNotUnique;
3224         return false;
3225       }
3226 
3227       // If the thread ids were not specified and we see entries entries that
3228       // are duplicates, start the loop over and assign the thread ids manually.
3229       assign_thread_ids = true;
3230       goto restart_radix_check;
3231     }
3232   }
3233 
3234 #if KMP_MIC && REDUCE_TEAM_SIZE
3235   // The default team size is the total #threads in the machine
3236   // minus 1 thread for every core that has 3 or more threads.
3237   teamSize += (threadIdCt <= 2) ? (threadIdCt) : (threadIdCt - 1);
3238 #endif // KMP_MIC && REDUCE_TEAM_SIZE
3239 
3240   for (index = threadIdIndex; index <= maxIndex; index++) {
3241     if (counts[index] > maxCt[index]) {
3242       maxCt[index] = counts[index];
3243     }
3244   }
3245 
3246   __kmp_nThreadsPerCore = maxCt[threadIdIndex];
3247   nCoresPerPkg = maxCt[coreIdIndex];
3248   nPackages = totals[pkgIdIndex];
3249 
3250   // When affinity is off, this routine will still be called to set
3251   // __kmp_ncores, as well as __kmp_nThreadsPerCore, nCoresPerPkg, & nPackages.
3252   // Make sure all these vars are set correctly, and return now if affinity is
3253   // not enabled.
3254   __kmp_ncores = totals[coreIdIndex];
3255   if (!KMP_AFFINITY_CAPABLE()) {
3256     KMP_ASSERT(__kmp_affinity.type == affinity_none);
3257     return true;
3258   }
3259 
3260 #if KMP_MIC && REDUCE_TEAM_SIZE
3261   // Set the default team size.
3262   if ((__kmp_dflt_team_nth == 0) && (teamSize > 0)) {
3263     __kmp_dflt_team_nth = teamSize;
3264     KA_TRACE(20, ("__kmp_affinity_create_cpuinfo_map: setting "
3265                   "__kmp_dflt_team_nth = %d\n",
3266                   __kmp_dflt_team_nth));
3267   }
3268 #endif // KMP_MIC && REDUCE_TEAM_SIZE
3269 
3270   KMP_DEBUG_ASSERT(num_avail == (unsigned)__kmp_avail_proc);
3271 
3272   // Count the number of levels which have more nodes at that level than at the
3273   // parent's level (with there being an implicit root node of the top level).
3274   // This is equivalent to saying that there is at least one node at this level
3275   // which has a sibling. These levels are in the map, and the package level is
3276   // always in the map.
3277   bool *inMap = (bool *)__kmp_allocate((maxIndex + 1) * sizeof(bool));
3278   for (index = threadIdIndex; index < maxIndex; index++) {
3279     KMP_ASSERT(totals[index] >= totals[index + 1]);
3280     inMap[index] = (totals[index] > totals[index + 1]);
3281   }
3282   inMap[maxIndex] = (totals[maxIndex] > 1);
3283   inMap[pkgIdIndex] = true;
3284   inMap[coreIdIndex] = true;
3285   inMap[threadIdIndex] = true;
3286 
3287   int depth = 0;
3288   int idx = 0;
3289   kmp_hw_t types[KMP_HW_LAST];
3290   int pkgLevel = -1;
3291   int coreLevel = -1;
3292   int threadLevel = -1;
3293   for (index = threadIdIndex; index <= maxIndex; index++) {
3294     if (inMap[index]) {
3295       depth++;
3296     }
3297   }
3298   if (inMap[pkgIdIndex]) {
3299     pkgLevel = idx;
3300     types[idx++] = KMP_HW_SOCKET;
3301   }
3302   if (inMap[coreIdIndex]) {
3303     coreLevel = idx;
3304     types[idx++] = KMP_HW_CORE;
3305   }
3306   if (inMap[threadIdIndex]) {
3307     threadLevel = idx;
3308     types[idx++] = KMP_HW_THREAD;
3309   }
3310   KMP_ASSERT(depth > 0);
3311 
3312   // Construct the data structure that is to be returned.
3313   __kmp_topology = kmp_topology_t::allocate(num_avail, depth, types);
3314 
3315   for (i = 0; i < num_avail; ++i) {
3316     unsigned os = threadInfo[i][osIdIndex];
3317     int src_index;
3318     kmp_hw_thread_t &hw_thread = __kmp_topology->at(i);
3319     hw_thread.clear();
3320     hw_thread.os_id = os;
3321 
3322     idx = 0;
3323     for (src_index = maxIndex; src_index >= threadIdIndex; src_index--) {
3324       if (!inMap[src_index]) {
3325         continue;
3326       }
3327       if (src_index == pkgIdIndex) {
3328         hw_thread.ids[pkgLevel] = threadInfo[i][src_index];
3329       } else if (src_index == coreIdIndex) {
3330         hw_thread.ids[coreLevel] = threadInfo[i][src_index];
3331       } else if (src_index == threadIdIndex) {
3332         hw_thread.ids[threadLevel] = threadInfo[i][src_index];
3333       }
3334     }
3335   }
3336 
3337   __kmp_free(inMap);
3338   __kmp_free(lastId);
3339   __kmp_free(totals);
3340   __kmp_free(maxCt);
3341   __kmp_free(counts);
3342   CLEANUP_THREAD_INFO;
3343   __kmp_topology->sort_ids();
3344   if (!__kmp_topology->check_ids()) {
3345     kmp_topology_t::deallocate(__kmp_topology);
3346     __kmp_topology = nullptr;
3347     *msg_id = kmp_i18n_str_PhysicalIDsNotUnique;
3348     return false;
3349   }
3350   return true;
3351 }
3352 
3353 // Create and return a table of affinity masks, indexed by OS thread ID.
3354 // This routine handles OR'ing together all the affinity masks of threads
3355 // that are sufficiently close, if granularity > fine.
3356 static void __kmp_create_os_id_masks(unsigned *numUnique,
3357                                      kmp_affinity_t &affinity) {
3358   // First form a table of affinity masks in order of OS thread id.
3359   int maxOsId;
3360   int i;
3361   int numAddrs = __kmp_topology->get_num_hw_threads();
3362   int depth = __kmp_topology->get_depth();
3363   const char *env_var = affinity.env_var;
3364   KMP_ASSERT(numAddrs);
3365   KMP_ASSERT(depth);
3366 
3367   maxOsId = 0;
3368   for (i = numAddrs - 1;; --i) {
3369     int osId = __kmp_topology->at(i).os_id;
3370     if (osId > maxOsId) {
3371       maxOsId = osId;
3372     }
3373     if (i == 0)
3374       break;
3375   }
3376   affinity.num_os_id_masks = maxOsId + 1;
3377   KMP_CPU_ALLOC_ARRAY(affinity.os_id_masks, affinity.num_os_id_masks);
3378   KMP_ASSERT(affinity.gran_levels >= 0);
3379   if (affinity.flags.verbose && (affinity.gran_levels > 0)) {
3380     KMP_INFORM(ThreadsMigrate, env_var, affinity.gran_levels);
3381   }
3382   if (affinity.gran_levels >= (int)depth) {
3383     KMP_AFF_WARNING(affinity, AffThreadsMayMigrate);
3384   }
3385 
3386   // Run through the table, forming the masks for all threads on each core.
3387   // Threads on the same core will have identical kmp_hw_thread_t objects, not
3388   // considering the last level, which must be the thread id. All threads on a
3389   // core will appear consecutively.
3390   int unique = 0;
3391   int j = 0; // index of 1st thread on core
3392   int leader = 0;
3393   kmp_affin_mask_t *sum;
3394   KMP_CPU_ALLOC_ON_STACK(sum);
3395   KMP_CPU_ZERO(sum);
3396   KMP_CPU_SET(__kmp_topology->at(0).os_id, sum);
3397   for (i = 1; i < numAddrs; i++) {
3398     // If this thread is sufficiently close to the leader (within the
3399     // granularity setting), then set the bit for this os thread in the
3400     // affinity mask for this group, and go on to the next thread.
3401     if (__kmp_topology->is_close(leader, i, affinity.gran_levels)) {
3402       KMP_CPU_SET(__kmp_topology->at(i).os_id, sum);
3403       continue;
3404     }
3405 
3406     // For every thread in this group, copy the mask to the thread's entry in
3407     // the OS Id mask table. Mark the first address as a leader.
3408     for (; j < i; j++) {
3409       int osId = __kmp_topology->at(j).os_id;
3410       KMP_DEBUG_ASSERT(osId <= maxOsId);
3411       kmp_affin_mask_t *mask = KMP_CPU_INDEX(affinity.os_id_masks, osId);
3412       KMP_CPU_COPY(mask, sum);
3413       __kmp_topology->at(j).leader = (j == leader);
3414     }
3415     unique++;
3416 
3417     // Start a new mask.
3418     leader = i;
3419     KMP_CPU_ZERO(sum);
3420     KMP_CPU_SET(__kmp_topology->at(i).os_id, sum);
3421   }
3422 
3423   // For every thread in last group, copy the mask to the thread's
3424   // entry in the OS Id mask table.
3425   for (; j < i; j++) {
3426     int osId = __kmp_topology->at(j).os_id;
3427     KMP_DEBUG_ASSERT(osId <= maxOsId);
3428     kmp_affin_mask_t *mask = KMP_CPU_INDEX(affinity.os_id_masks, osId);
3429     KMP_CPU_COPY(mask, sum);
3430     __kmp_topology->at(j).leader = (j == leader);
3431   }
3432   unique++;
3433   KMP_CPU_FREE_FROM_STACK(sum);
3434 
3435   *numUnique = unique;
3436 }
3437 
3438 // Stuff for the affinity proclist parsers.  It's easier to declare these vars
3439 // as file-static than to try and pass them through the calling sequence of
3440 // the recursive-descent OMP_PLACES parser.
3441 static kmp_affin_mask_t *newMasks;
3442 static int numNewMasks;
3443 static int nextNewMask;
3444 
3445 #define ADD_MASK(_mask)                                                        \
3446   {                                                                            \
3447     if (nextNewMask >= numNewMasks) {                                          \
3448       int i;                                                                   \
3449       numNewMasks *= 2;                                                        \
3450       kmp_affin_mask_t *temp;                                                  \
3451       KMP_CPU_INTERNAL_ALLOC_ARRAY(temp, numNewMasks);                         \
3452       for (i = 0; i < numNewMasks / 2; i++) {                                  \
3453         kmp_affin_mask_t *src = KMP_CPU_INDEX(newMasks, i);                    \
3454         kmp_affin_mask_t *dest = KMP_CPU_INDEX(temp, i);                       \
3455         KMP_CPU_COPY(dest, src);                                               \
3456       }                                                                        \
3457       KMP_CPU_INTERNAL_FREE_ARRAY(newMasks, numNewMasks / 2);                  \
3458       newMasks = temp;                                                         \
3459     }                                                                          \
3460     KMP_CPU_COPY(KMP_CPU_INDEX(newMasks, nextNewMask), (_mask));               \
3461     nextNewMask++;                                                             \
3462   }
3463 
3464 #define ADD_MASK_OSID(_osId, _osId2Mask, _maxOsId)                             \
3465   {                                                                            \
3466     if (((_osId) > _maxOsId) ||                                                \
3467         (!KMP_CPU_ISSET((_osId), KMP_CPU_INDEX((_osId2Mask), (_osId))))) {     \
3468       KMP_AFF_WARNING(affinity, AffIgnoreInvalidProcID, _osId);                \
3469     } else {                                                                   \
3470       ADD_MASK(KMP_CPU_INDEX(_osId2Mask, (_osId)));                            \
3471     }                                                                          \
3472   }
3473 
3474 // Re-parse the proclist (for the explicit affinity type), and form the list
3475 // of affinity newMasks indexed by gtid.
3476 static void __kmp_affinity_process_proclist(kmp_affinity_t &affinity) {
3477   int i;
3478   kmp_affin_mask_t **out_masks = &affinity.masks;
3479   unsigned *out_numMasks = &affinity.num_masks;
3480   const char *proclist = affinity.proclist;
3481   kmp_affin_mask_t *osId2Mask = affinity.os_id_masks;
3482   int maxOsId = affinity.num_os_id_masks - 1;
3483   const char *scan = proclist;
3484   const char *next = proclist;
3485 
3486   // We use malloc() for the temporary mask vector, so that we can use
3487   // realloc() to extend it.
3488   numNewMasks = 2;
3489   KMP_CPU_INTERNAL_ALLOC_ARRAY(newMasks, numNewMasks);
3490   nextNewMask = 0;
3491   kmp_affin_mask_t *sumMask;
3492   KMP_CPU_ALLOC(sumMask);
3493   int setSize = 0;
3494 
3495   for (;;) {
3496     int start, end, stride;
3497 
3498     SKIP_WS(scan);
3499     next = scan;
3500     if (*next == '\0') {
3501       break;
3502     }
3503 
3504     if (*next == '{') {
3505       int num;
3506       setSize = 0;
3507       next++; // skip '{'
3508       SKIP_WS(next);
3509       scan = next;
3510 
3511       // Read the first integer in the set.
3512       KMP_ASSERT2((*next >= '0') && (*next <= '9'), "bad proclist");
3513       SKIP_DIGITS(next);
3514       num = __kmp_str_to_int(scan, *next);
3515       KMP_ASSERT2(num >= 0, "bad explicit proc list");
3516 
3517       // Copy the mask for that osId to the sum (union) mask.
3518       if ((num > maxOsId) ||
3519           (!KMP_CPU_ISSET(num, KMP_CPU_INDEX(osId2Mask, num)))) {
3520         KMP_AFF_WARNING(affinity, AffIgnoreInvalidProcID, num);
3521         KMP_CPU_ZERO(sumMask);
3522       } else {
3523         KMP_CPU_COPY(sumMask, KMP_CPU_INDEX(osId2Mask, num));
3524         setSize = 1;
3525       }
3526 
3527       for (;;) {
3528         // Check for end of set.
3529         SKIP_WS(next);
3530         if (*next == '}') {
3531           next++; // skip '}'
3532           break;
3533         }
3534 
3535         // Skip optional comma.
3536         if (*next == ',') {
3537           next++;
3538         }
3539         SKIP_WS(next);
3540 
3541         // Read the next integer in the set.
3542         scan = next;
3543         KMP_ASSERT2((*next >= '0') && (*next <= '9'), "bad explicit proc list");
3544 
3545         SKIP_DIGITS(next);
3546         num = __kmp_str_to_int(scan, *next);
3547         KMP_ASSERT2(num >= 0, "bad explicit proc list");
3548 
3549         // Add the mask for that osId to the sum mask.
3550         if ((num > maxOsId) ||
3551             (!KMP_CPU_ISSET(num, KMP_CPU_INDEX(osId2Mask, num)))) {
3552           KMP_AFF_WARNING(affinity, AffIgnoreInvalidProcID, num);
3553         } else {
3554           KMP_CPU_UNION(sumMask, KMP_CPU_INDEX(osId2Mask, num));
3555           setSize++;
3556         }
3557       }
3558       if (setSize > 0) {
3559         ADD_MASK(sumMask);
3560       }
3561 
3562       SKIP_WS(next);
3563       if (*next == ',') {
3564         next++;
3565       }
3566       scan = next;
3567       continue;
3568     }
3569 
3570     // Read the first integer.
3571     KMP_ASSERT2((*next >= '0') && (*next <= '9'), "bad explicit proc list");
3572     SKIP_DIGITS(next);
3573     start = __kmp_str_to_int(scan, *next);
3574     KMP_ASSERT2(start >= 0, "bad explicit proc list");
3575     SKIP_WS(next);
3576 
3577     // If this isn't a range, then add a mask to the list and go on.
3578     if (*next != '-') {
3579       ADD_MASK_OSID(start, osId2Mask, maxOsId);
3580 
3581       // Skip optional comma.
3582       if (*next == ',') {
3583         next++;
3584       }
3585       scan = next;
3586       continue;
3587     }
3588 
3589     // This is a range.  Skip over the '-' and read in the 2nd int.
3590     next++; // skip '-'
3591     SKIP_WS(next);
3592     scan = next;
3593     KMP_ASSERT2((*next >= '0') && (*next <= '9'), "bad explicit proc list");
3594     SKIP_DIGITS(next);
3595     end = __kmp_str_to_int(scan, *next);
3596     KMP_ASSERT2(end >= 0, "bad explicit proc list");
3597 
3598     // Check for a stride parameter
3599     stride = 1;
3600     SKIP_WS(next);
3601     if (*next == ':') {
3602       // A stride is specified.  Skip over the ':" and read the 3rd int.
3603       int sign = +1;
3604       next++; // skip ':'
3605       SKIP_WS(next);
3606       scan = next;
3607       if (*next == '-') {
3608         sign = -1;
3609         next++;
3610         SKIP_WS(next);
3611         scan = next;
3612       }
3613       KMP_ASSERT2((*next >= '0') && (*next <= '9'), "bad explicit proc list");
3614       SKIP_DIGITS(next);
3615       stride = __kmp_str_to_int(scan, *next);
3616       KMP_ASSERT2(stride >= 0, "bad explicit proc list");
3617       stride *= sign;
3618     }
3619 
3620     // Do some range checks.
3621     KMP_ASSERT2(stride != 0, "bad explicit proc list");
3622     if (stride > 0) {
3623       KMP_ASSERT2(start <= end, "bad explicit proc list");
3624     } else {
3625       KMP_ASSERT2(start >= end, "bad explicit proc list");
3626     }
3627     KMP_ASSERT2((end - start) / stride <= 65536, "bad explicit proc list");
3628 
3629     // Add the mask for each OS proc # to the list.
3630     if (stride > 0) {
3631       do {
3632         ADD_MASK_OSID(start, osId2Mask, maxOsId);
3633         start += stride;
3634       } while (start <= end);
3635     } else {
3636       do {
3637         ADD_MASK_OSID(start, osId2Mask, maxOsId);
3638         start += stride;
3639       } while (start >= end);
3640     }
3641 
3642     // Skip optional comma.
3643     SKIP_WS(next);
3644     if (*next == ',') {
3645       next++;
3646     }
3647     scan = next;
3648   }
3649 
3650   *out_numMasks = nextNewMask;
3651   if (nextNewMask == 0) {
3652     *out_masks = NULL;
3653     KMP_CPU_INTERNAL_FREE_ARRAY(newMasks, numNewMasks);
3654     return;
3655   }
3656   KMP_CPU_ALLOC_ARRAY((*out_masks), nextNewMask);
3657   for (i = 0; i < nextNewMask; i++) {
3658     kmp_affin_mask_t *src = KMP_CPU_INDEX(newMasks, i);
3659     kmp_affin_mask_t *dest = KMP_CPU_INDEX((*out_masks), i);
3660     KMP_CPU_COPY(dest, src);
3661   }
3662   KMP_CPU_INTERNAL_FREE_ARRAY(newMasks, numNewMasks);
3663   KMP_CPU_FREE(sumMask);
3664 }
3665 
3666 /*-----------------------------------------------------------------------------
3667 Re-parse the OMP_PLACES proc id list, forming the newMasks for the different
3668 places.  Again, Here is the grammar:
3669 
3670 place_list := place
3671 place_list := place , place_list
3672 place := num
3673 place := place : num
3674 place := place : num : signed
3675 place := { subplacelist }
3676 place := ! place                  // (lowest priority)
3677 subplace_list := subplace
3678 subplace_list := subplace , subplace_list
3679 subplace := num
3680 subplace := num : num
3681 subplace := num : num : signed
3682 signed := num
3683 signed := + signed
3684 signed := - signed
3685 -----------------------------------------------------------------------------*/
3686 static void __kmp_process_subplace_list(const char **scan,
3687                                         kmp_affinity_t &affinity, int maxOsId,
3688                                         kmp_affin_mask_t *tempMask,
3689                                         int *setSize) {
3690   const char *next;
3691   kmp_affin_mask_t *osId2Mask = affinity.os_id_masks;
3692 
3693   for (;;) {
3694     int start, count, stride, i;
3695 
3696     // Read in the starting proc id
3697     SKIP_WS(*scan);
3698     KMP_ASSERT2((**scan >= '0') && (**scan <= '9'), "bad explicit places list");
3699     next = *scan;
3700     SKIP_DIGITS(next);
3701     start = __kmp_str_to_int(*scan, *next);
3702     KMP_ASSERT(start >= 0);
3703     *scan = next;
3704 
3705     // valid follow sets are ',' ':' and '}'
3706     SKIP_WS(*scan);
3707     if (**scan == '}' || **scan == ',') {
3708       if ((start > maxOsId) ||
3709           (!KMP_CPU_ISSET(start, KMP_CPU_INDEX(osId2Mask, start)))) {
3710         KMP_AFF_WARNING(affinity, AffIgnoreInvalidProcID, start);
3711       } else {
3712         KMP_CPU_UNION(tempMask, KMP_CPU_INDEX(osId2Mask, start));
3713         (*setSize)++;
3714       }
3715       if (**scan == '}') {
3716         break;
3717       }
3718       (*scan)++; // skip ','
3719       continue;
3720     }
3721     KMP_ASSERT2(**scan == ':', "bad explicit places list");
3722     (*scan)++; // skip ':'
3723 
3724     // Read count parameter
3725     SKIP_WS(*scan);
3726     KMP_ASSERT2((**scan >= '0') && (**scan <= '9'), "bad explicit places list");
3727     next = *scan;
3728     SKIP_DIGITS(next);
3729     count = __kmp_str_to_int(*scan, *next);
3730     KMP_ASSERT(count >= 0);
3731     *scan = next;
3732 
3733     // valid follow sets are ',' ':' and '}'
3734     SKIP_WS(*scan);
3735     if (**scan == '}' || **scan == ',') {
3736       for (i = 0; i < count; i++) {
3737         if ((start > maxOsId) ||
3738             (!KMP_CPU_ISSET(start, KMP_CPU_INDEX(osId2Mask, start)))) {
3739           KMP_AFF_WARNING(affinity, AffIgnoreInvalidProcID, start);
3740           break; // don't proliferate warnings for large count
3741         } else {
3742           KMP_CPU_UNION(tempMask, KMP_CPU_INDEX(osId2Mask, start));
3743           start++;
3744           (*setSize)++;
3745         }
3746       }
3747       if (**scan == '}') {
3748         break;
3749       }
3750       (*scan)++; // skip ','
3751       continue;
3752     }
3753     KMP_ASSERT2(**scan == ':', "bad explicit places list");
3754     (*scan)++; // skip ':'
3755 
3756     // Read stride parameter
3757     int sign = +1;
3758     for (;;) {
3759       SKIP_WS(*scan);
3760       if (**scan == '+') {
3761         (*scan)++; // skip '+'
3762         continue;
3763       }
3764       if (**scan == '-') {
3765         sign *= -1;
3766         (*scan)++; // skip '-'
3767         continue;
3768       }
3769       break;
3770     }
3771     SKIP_WS(*scan);
3772     KMP_ASSERT2((**scan >= '0') && (**scan <= '9'), "bad explicit places list");
3773     next = *scan;
3774     SKIP_DIGITS(next);
3775     stride = __kmp_str_to_int(*scan, *next);
3776     KMP_ASSERT(stride >= 0);
3777     *scan = next;
3778     stride *= sign;
3779 
3780     // valid follow sets are ',' and '}'
3781     SKIP_WS(*scan);
3782     if (**scan == '}' || **scan == ',') {
3783       for (i = 0; i < count; i++) {
3784         if ((start > maxOsId) ||
3785             (!KMP_CPU_ISSET(start, KMP_CPU_INDEX(osId2Mask, start)))) {
3786           KMP_AFF_WARNING(affinity, AffIgnoreInvalidProcID, start);
3787           break; // don't proliferate warnings for large count
3788         } else {
3789           KMP_CPU_UNION(tempMask, KMP_CPU_INDEX(osId2Mask, start));
3790           start += stride;
3791           (*setSize)++;
3792         }
3793       }
3794       if (**scan == '}') {
3795         break;
3796       }
3797       (*scan)++; // skip ','
3798       continue;
3799     }
3800 
3801     KMP_ASSERT2(0, "bad explicit places list");
3802   }
3803 }
3804 
3805 static void __kmp_process_place(const char **scan, kmp_affinity_t &affinity,
3806                                 int maxOsId, kmp_affin_mask_t *tempMask,
3807                                 int *setSize) {
3808   const char *next;
3809   kmp_affin_mask_t *osId2Mask = affinity.os_id_masks;
3810 
3811   // valid follow sets are '{' '!' and num
3812   SKIP_WS(*scan);
3813   if (**scan == '{') {
3814     (*scan)++; // skip '{'
3815     __kmp_process_subplace_list(scan, affinity, maxOsId, tempMask, setSize);
3816     KMP_ASSERT2(**scan == '}', "bad explicit places list");
3817     (*scan)++; // skip '}'
3818   } else if (**scan == '!') {
3819     (*scan)++; // skip '!'
3820     __kmp_process_place(scan, affinity, maxOsId, tempMask, setSize);
3821     KMP_CPU_COMPLEMENT(maxOsId, tempMask);
3822   } else if ((**scan >= '0') && (**scan <= '9')) {
3823     next = *scan;
3824     SKIP_DIGITS(next);
3825     int num = __kmp_str_to_int(*scan, *next);
3826     KMP_ASSERT(num >= 0);
3827     if ((num > maxOsId) ||
3828         (!KMP_CPU_ISSET(num, KMP_CPU_INDEX(osId2Mask, num)))) {
3829       KMP_AFF_WARNING(affinity, AffIgnoreInvalidProcID, num);
3830     } else {
3831       KMP_CPU_UNION(tempMask, KMP_CPU_INDEX(osId2Mask, num));
3832       (*setSize)++;
3833     }
3834     *scan = next; // skip num
3835   } else {
3836     KMP_ASSERT2(0, "bad explicit places list");
3837   }
3838 }
3839 
3840 // static void
3841 void __kmp_affinity_process_placelist(kmp_affinity_t &affinity) {
3842   int i, j, count, stride, sign;
3843   kmp_affin_mask_t **out_masks = &affinity.masks;
3844   unsigned *out_numMasks = &affinity.num_masks;
3845   const char *placelist = affinity.proclist;
3846   kmp_affin_mask_t *osId2Mask = affinity.os_id_masks;
3847   int maxOsId = affinity.num_os_id_masks - 1;
3848   const char *scan = placelist;
3849   const char *next = placelist;
3850 
3851   numNewMasks = 2;
3852   KMP_CPU_INTERNAL_ALLOC_ARRAY(newMasks, numNewMasks);
3853   nextNewMask = 0;
3854 
3855   // tempMask is modified based on the previous or initial
3856   //   place to form the current place
3857   // previousMask contains the previous place
3858   kmp_affin_mask_t *tempMask;
3859   kmp_affin_mask_t *previousMask;
3860   KMP_CPU_ALLOC(tempMask);
3861   KMP_CPU_ZERO(tempMask);
3862   KMP_CPU_ALLOC(previousMask);
3863   KMP_CPU_ZERO(previousMask);
3864   int setSize = 0;
3865 
3866   for (;;) {
3867     __kmp_process_place(&scan, affinity, maxOsId, tempMask, &setSize);
3868 
3869     // valid follow sets are ',' ':' and EOL
3870     SKIP_WS(scan);
3871     if (*scan == '\0' || *scan == ',') {
3872       if (setSize > 0) {
3873         ADD_MASK(tempMask);
3874       }
3875       KMP_CPU_ZERO(tempMask);
3876       setSize = 0;
3877       if (*scan == '\0') {
3878         break;
3879       }
3880       scan++; // skip ','
3881       continue;
3882     }
3883 
3884     KMP_ASSERT2(*scan == ':', "bad explicit places list");
3885     scan++; // skip ':'
3886 
3887     // Read count parameter
3888     SKIP_WS(scan);
3889     KMP_ASSERT2((*scan >= '0') && (*scan <= '9'), "bad explicit places list");
3890     next = scan;
3891     SKIP_DIGITS(next);
3892     count = __kmp_str_to_int(scan, *next);
3893     KMP_ASSERT(count >= 0);
3894     scan = next;
3895 
3896     // valid follow sets are ',' ':' and EOL
3897     SKIP_WS(scan);
3898     if (*scan == '\0' || *scan == ',') {
3899       stride = +1;
3900     } else {
3901       KMP_ASSERT2(*scan == ':', "bad explicit places list");
3902       scan++; // skip ':'
3903 
3904       // Read stride parameter
3905       sign = +1;
3906       for (;;) {
3907         SKIP_WS(scan);
3908         if (*scan == '+') {
3909           scan++; // skip '+'
3910           continue;
3911         }
3912         if (*scan == '-') {
3913           sign *= -1;
3914           scan++; // skip '-'
3915           continue;
3916         }
3917         break;
3918       }
3919       SKIP_WS(scan);
3920       KMP_ASSERT2((*scan >= '0') && (*scan <= '9'), "bad explicit places list");
3921       next = scan;
3922       SKIP_DIGITS(next);
3923       stride = __kmp_str_to_int(scan, *next);
3924       KMP_DEBUG_ASSERT(stride >= 0);
3925       scan = next;
3926       stride *= sign;
3927     }
3928 
3929     // Add places determined by initial_place : count : stride
3930     for (i = 0; i < count; i++) {
3931       if (setSize == 0) {
3932         break;
3933       }
3934       // Add the current place, then build the next place (tempMask) from that
3935       KMP_CPU_COPY(previousMask, tempMask);
3936       ADD_MASK(previousMask);
3937       KMP_CPU_ZERO(tempMask);
3938       setSize = 0;
3939       KMP_CPU_SET_ITERATE(j, previousMask) {
3940         if (!KMP_CPU_ISSET(j, previousMask)) {
3941           continue;
3942         }
3943         if ((j + stride > maxOsId) || (j + stride < 0) ||
3944             (!KMP_CPU_ISSET(j, __kmp_affin_fullMask)) ||
3945             (!KMP_CPU_ISSET(j + stride,
3946                             KMP_CPU_INDEX(osId2Mask, j + stride)))) {
3947           if (i < count - 1) {
3948             KMP_AFF_WARNING(affinity, AffIgnoreInvalidProcID, j + stride);
3949           }
3950           continue;
3951         }
3952         KMP_CPU_SET(j + stride, tempMask);
3953         setSize++;
3954       }
3955     }
3956     KMP_CPU_ZERO(tempMask);
3957     setSize = 0;
3958 
3959     // valid follow sets are ',' and EOL
3960     SKIP_WS(scan);
3961     if (*scan == '\0') {
3962       break;
3963     }
3964     if (*scan == ',') {
3965       scan++; // skip ','
3966       continue;
3967     }
3968 
3969     KMP_ASSERT2(0, "bad explicit places list");
3970   }
3971 
3972   *out_numMasks = nextNewMask;
3973   if (nextNewMask == 0) {
3974     *out_masks = NULL;
3975     KMP_CPU_INTERNAL_FREE_ARRAY(newMasks, numNewMasks);
3976     return;
3977   }
3978   KMP_CPU_ALLOC_ARRAY((*out_masks), nextNewMask);
3979   KMP_CPU_FREE(tempMask);
3980   KMP_CPU_FREE(previousMask);
3981   for (i = 0; i < nextNewMask; i++) {
3982     kmp_affin_mask_t *src = KMP_CPU_INDEX(newMasks, i);
3983     kmp_affin_mask_t *dest = KMP_CPU_INDEX((*out_masks), i);
3984     KMP_CPU_COPY(dest, src);
3985   }
3986   KMP_CPU_INTERNAL_FREE_ARRAY(newMasks, numNewMasks);
3987 }
3988 
3989 #undef ADD_MASK
3990 #undef ADD_MASK_OSID
3991 
3992 // This function figures out the deepest level at which there is at least one
3993 // cluster/core with more than one processing unit bound to it.
3994 static int __kmp_affinity_find_core_level(int nprocs, int bottom_level) {
3995   int core_level = 0;
3996 
3997   for (int i = 0; i < nprocs; i++) {
3998     const kmp_hw_thread_t &hw_thread = __kmp_topology->at(i);
3999     for (int j = bottom_level; j > 0; j--) {
4000       if (hw_thread.ids[j] > 0) {
4001         if (core_level < (j - 1)) {
4002           core_level = j - 1;
4003         }
4004       }
4005     }
4006   }
4007   return core_level;
4008 }
4009 
4010 // This function counts number of clusters/cores at given level.
4011 static int __kmp_affinity_compute_ncores(int nprocs, int bottom_level,
4012                                          int core_level) {
4013   return __kmp_topology->get_count(core_level);
4014 }
4015 // This function finds to which cluster/core given processing unit is bound.
4016 static int __kmp_affinity_find_core(int proc, int bottom_level,
4017                                     int core_level) {
4018   int core = 0;
4019   KMP_DEBUG_ASSERT(proc >= 0 && proc < __kmp_topology->get_num_hw_threads());
4020   for (int i = 0; i <= proc; ++i) {
4021     if (i + 1 <= proc) {
4022       for (int j = 0; j <= core_level; ++j) {
4023         if (__kmp_topology->at(i + 1).sub_ids[j] !=
4024             __kmp_topology->at(i).sub_ids[j]) {
4025           core++;
4026           break;
4027         }
4028       }
4029     }
4030   }
4031   return core;
4032 }
4033 
4034 // This function finds maximal number of processing units bound to a
4035 // cluster/core at given level.
4036 static int __kmp_affinity_max_proc_per_core(int nprocs, int bottom_level,
4037                                             int core_level) {
4038   if (core_level >= bottom_level)
4039     return 1;
4040   int thread_level = __kmp_topology->get_level(KMP_HW_THREAD);
4041   return __kmp_topology->calculate_ratio(thread_level, core_level);
4042 }
4043 
4044 static int *procarr = NULL;
4045 static int __kmp_aff_depth = 0;
4046 static int *__kmp_osid_to_hwthread_map = NULL;
4047 
4048 static void __kmp_affinity_get_mask_topology_info(const kmp_affin_mask_t *mask,
4049                                                   kmp_affinity_ids_t &ids,
4050                                                   kmp_affinity_attrs_t &attrs) {
4051   if (!KMP_AFFINITY_CAPABLE())
4052     return;
4053 
4054   // Initiailze ids and attrs thread data
4055   for (int i = 0; i < KMP_HW_LAST; ++i)
4056     ids[i] = kmp_hw_thread_t::UNKNOWN_ID;
4057   attrs = KMP_AFFINITY_ATTRS_UNKNOWN;
4058 
4059   // Iterate through each os id within the mask and determine
4060   // the topology id and attribute information
4061   int cpu;
4062   int depth = __kmp_topology->get_depth();
4063   KMP_CPU_SET_ITERATE(cpu, mask) {
4064     int osid_idx = __kmp_osid_to_hwthread_map[cpu];
4065     const kmp_hw_thread_t &hw_thread = __kmp_topology->at(osid_idx);
4066     for (int level = 0; level < depth; ++level) {
4067       kmp_hw_t type = __kmp_topology->get_type(level);
4068       int id = hw_thread.sub_ids[level];
4069       if (ids[type] == kmp_hw_thread_t::UNKNOWN_ID || ids[type] == id) {
4070         ids[type] = id;
4071       } else {
4072         // This mask spans across multiple topology units, set it as such
4073         // and mark every level below as such as well.
4074         ids[type] = kmp_hw_thread_t::MULTIPLE_ID;
4075         for (; level < depth; ++level) {
4076           kmp_hw_t type = __kmp_topology->get_type(level);
4077           ids[type] = kmp_hw_thread_t::MULTIPLE_ID;
4078         }
4079       }
4080     }
4081     if (!attrs.valid) {
4082       attrs.core_type = hw_thread.attrs.get_core_type();
4083       attrs.core_eff = hw_thread.attrs.get_core_eff();
4084       attrs.valid = 1;
4085     } else {
4086       // This mask spans across multiple attributes, set it as such
4087       if (attrs.core_type != hw_thread.attrs.get_core_type())
4088         attrs.core_type = KMP_HW_CORE_TYPE_UNKNOWN;
4089       if (attrs.core_eff != hw_thread.attrs.get_core_eff())
4090         attrs.core_eff = kmp_hw_attr_t::UNKNOWN_CORE_EFF;
4091     }
4092   }
4093 }
4094 
4095 static void __kmp_affinity_get_thread_topology_info(kmp_info_t *th) {
4096   if (!KMP_AFFINITY_CAPABLE())
4097     return;
4098   const kmp_affin_mask_t *mask = th->th.th_affin_mask;
4099   kmp_affinity_ids_t &ids = th->th.th_topology_ids;
4100   kmp_affinity_attrs_t &attrs = th->th.th_topology_attrs;
4101   __kmp_affinity_get_mask_topology_info(mask, ids, attrs);
4102 }
4103 
4104 // Assign the topology information to each place in the place list
4105 // A thread can then grab not only its affinity mask, but the topology
4106 // information associated with that mask. e.g., Which socket is a thread on
4107 static void __kmp_affinity_get_topology_info(kmp_affinity_t &affinity) {
4108   if (!KMP_AFFINITY_CAPABLE())
4109     return;
4110   if (affinity.type != affinity_none) {
4111     KMP_ASSERT(affinity.num_os_id_masks);
4112     KMP_ASSERT(affinity.os_id_masks);
4113   }
4114   KMP_ASSERT(affinity.num_masks);
4115   KMP_ASSERT(affinity.masks);
4116   KMP_ASSERT(__kmp_affin_fullMask);
4117 
4118   int max_cpu = __kmp_affin_fullMask->get_max_cpu();
4119   int num_hw_threads = __kmp_topology->get_num_hw_threads();
4120 
4121   // Allocate thread topology information
4122   if (!affinity.ids) {
4123     affinity.ids = (kmp_affinity_ids_t *)__kmp_allocate(
4124         sizeof(kmp_affinity_ids_t) * affinity.num_masks);
4125   }
4126   if (!affinity.attrs) {
4127     affinity.attrs = (kmp_affinity_attrs_t *)__kmp_allocate(
4128         sizeof(kmp_affinity_attrs_t) * affinity.num_masks);
4129   }
4130   if (!__kmp_osid_to_hwthread_map) {
4131     // Want the +1 because max_cpu should be valid index into map
4132     __kmp_osid_to_hwthread_map =
4133         (int *)__kmp_allocate(sizeof(int) * (max_cpu + 1));
4134   }
4135 
4136   // Create the OS proc to hardware thread map
4137   for (int hw_thread = 0; hw_thread < num_hw_threads; ++hw_thread)
4138     __kmp_osid_to_hwthread_map[__kmp_topology->at(hw_thread).os_id] = hw_thread;
4139 
4140   for (unsigned i = 0; i < affinity.num_masks; ++i) {
4141     kmp_affinity_ids_t &ids = affinity.ids[i];
4142     kmp_affinity_attrs_t &attrs = affinity.attrs[i];
4143     kmp_affin_mask_t *mask = KMP_CPU_INDEX(affinity.masks, i);
4144     __kmp_affinity_get_mask_topology_info(mask, ids, attrs);
4145   }
4146 }
4147 
4148 // Create a one element mask array (set of places) which only contains the
4149 // initial process's affinity mask
4150 static void __kmp_create_affinity_none_places(kmp_affinity_t &affinity) {
4151   KMP_ASSERT(__kmp_affin_fullMask != NULL);
4152   KMP_ASSERT(affinity.type == affinity_none);
4153   affinity.num_masks = 1;
4154   KMP_CPU_ALLOC_ARRAY(affinity.masks, affinity.num_masks);
4155   kmp_affin_mask_t *dest = KMP_CPU_INDEX(affinity.masks, 0);
4156   KMP_CPU_COPY(dest, __kmp_affin_fullMask);
4157   __kmp_affinity_get_topology_info(affinity);
4158 }
4159 
4160 static void __kmp_aux_affinity_initialize_masks(kmp_affinity_t &affinity) {
4161   // Create the "full" mask - this defines all of the processors that we
4162   // consider to be in the machine model. If respect is set, then it is the
4163   // initialization thread's affinity mask. Otherwise, it is all processors that
4164   // we know about on the machine.
4165   int verbose = affinity.flags.verbose;
4166   const char *env_var = affinity.env_var;
4167 
4168   // Already initialized
4169   if (__kmp_affin_fullMask && __kmp_affin_origMask)
4170     return;
4171 
4172   if (__kmp_affin_fullMask == NULL) {
4173     KMP_CPU_ALLOC(__kmp_affin_fullMask);
4174   }
4175   if (__kmp_affin_origMask == NULL) {
4176     KMP_CPU_ALLOC(__kmp_affin_origMask);
4177   }
4178   if (KMP_AFFINITY_CAPABLE()) {
4179     __kmp_get_system_affinity(__kmp_affin_fullMask, TRUE);
4180     // Make a copy before possible expanding to the entire machine mask
4181     __kmp_affin_origMask->copy(__kmp_affin_fullMask);
4182     if (affinity.flags.respect) {
4183       // Count the number of available processors.
4184       unsigned i;
4185       __kmp_avail_proc = 0;
4186       KMP_CPU_SET_ITERATE(i, __kmp_affin_fullMask) {
4187         if (!KMP_CPU_ISSET(i, __kmp_affin_fullMask)) {
4188           continue;
4189         }
4190         __kmp_avail_proc++;
4191       }
4192       if (__kmp_avail_proc > __kmp_xproc) {
4193         KMP_AFF_WARNING(affinity, ErrorInitializeAffinity);
4194         affinity.type = affinity_none;
4195         KMP_AFFINITY_DISABLE();
4196         return;
4197       }
4198 
4199       if (verbose) {
4200         char buf[KMP_AFFIN_MASK_PRINT_LEN];
4201         __kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN,
4202                                   __kmp_affin_fullMask);
4203         KMP_INFORM(InitOSProcSetRespect, env_var, buf);
4204       }
4205     } else {
4206       if (verbose) {
4207         char buf[KMP_AFFIN_MASK_PRINT_LEN];
4208         __kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN,
4209                                   __kmp_affin_fullMask);
4210         KMP_INFORM(InitOSProcSetNotRespect, env_var, buf);
4211       }
4212       __kmp_avail_proc =
4213           __kmp_affinity_entire_machine_mask(__kmp_affin_fullMask);
4214 #if KMP_OS_WINDOWS
4215       if (__kmp_num_proc_groups <= 1) {
4216         // Copy expanded full mask if topology has single processor group
4217         __kmp_affin_origMask->copy(__kmp_affin_fullMask);
4218       }
4219       // Set the process affinity mask since threads' affinity
4220       // masks must be subset of process mask in Windows* OS
4221       __kmp_affin_fullMask->set_process_affinity(true);
4222 #endif
4223     }
4224   }
4225 }
4226 
4227 static bool __kmp_aux_affinity_initialize_topology(kmp_affinity_t &affinity) {
4228   bool success = false;
4229   const char *env_var = affinity.env_var;
4230   kmp_i18n_id_t msg_id = kmp_i18n_null;
4231   int verbose = affinity.flags.verbose;
4232 
4233   // For backward compatibility, setting KMP_CPUINFO_FILE =>
4234   // KMP_TOPOLOGY_METHOD=cpuinfo
4235   if ((__kmp_cpuinfo_file != NULL) &&
4236       (__kmp_affinity_top_method == affinity_top_method_all)) {
4237     __kmp_affinity_top_method = affinity_top_method_cpuinfo;
4238   }
4239 
4240   if (__kmp_affinity_top_method == affinity_top_method_all) {
4241 // In the default code path, errors are not fatal - we just try using
4242 // another method. We only emit a warning message if affinity is on, or the
4243 // verbose flag is set, an the nowarnings flag was not set.
4244 #if KMP_USE_HWLOC
4245     if (!success &&
4246         __kmp_affinity_dispatch->get_api_type() == KMPAffinity::HWLOC) {
4247       if (!__kmp_hwloc_error) {
4248         success = __kmp_affinity_create_hwloc_map(&msg_id);
4249         if (!success && verbose) {
4250           KMP_INFORM(AffIgnoringHwloc, env_var);
4251         }
4252       } else if (verbose) {
4253         KMP_INFORM(AffIgnoringHwloc, env_var);
4254       }
4255     }
4256 #endif
4257 
4258 #if KMP_ARCH_X86 || KMP_ARCH_X86_64
4259     if (!success) {
4260       success = __kmp_affinity_create_x2apicid_map(&msg_id);
4261       if (!success && verbose && msg_id != kmp_i18n_null) {
4262         KMP_INFORM(AffInfoStr, env_var, __kmp_i18n_catgets(msg_id));
4263       }
4264     }
4265     if (!success) {
4266       success = __kmp_affinity_create_apicid_map(&msg_id);
4267       if (!success && verbose && msg_id != kmp_i18n_null) {
4268         KMP_INFORM(AffInfoStr, env_var, __kmp_i18n_catgets(msg_id));
4269       }
4270     }
4271 #endif /* KMP_ARCH_X86 || KMP_ARCH_X86_64 */
4272 
4273 #if KMP_OS_LINUX
4274     if (!success) {
4275       int line = 0;
4276       success = __kmp_affinity_create_cpuinfo_map(&line, &msg_id);
4277       if (!success && verbose && msg_id != kmp_i18n_null) {
4278         KMP_INFORM(AffInfoStr, env_var, __kmp_i18n_catgets(msg_id));
4279       }
4280     }
4281 #endif /* KMP_OS_LINUX */
4282 
4283 #if KMP_GROUP_AFFINITY
4284     if (!success && (__kmp_num_proc_groups > 1)) {
4285       success = __kmp_affinity_create_proc_group_map(&msg_id);
4286       if (!success && verbose && msg_id != kmp_i18n_null) {
4287         KMP_INFORM(AffInfoStr, env_var, __kmp_i18n_catgets(msg_id));
4288       }
4289     }
4290 #endif /* KMP_GROUP_AFFINITY */
4291 
4292     if (!success) {
4293       success = __kmp_affinity_create_flat_map(&msg_id);
4294       if (!success && verbose && msg_id != kmp_i18n_null) {
4295         KMP_INFORM(AffInfoStr, env_var, __kmp_i18n_catgets(msg_id));
4296       }
4297       KMP_ASSERT(success);
4298     }
4299   }
4300 
4301 // If the user has specified that a paricular topology discovery method is to be
4302 // used, then we abort if that method fails. The exception is group affinity,
4303 // which might have been implicitly set.
4304 #if KMP_USE_HWLOC
4305   else if (__kmp_affinity_top_method == affinity_top_method_hwloc) {
4306     KMP_ASSERT(__kmp_affinity_dispatch->get_api_type() == KMPAffinity::HWLOC);
4307     success = __kmp_affinity_create_hwloc_map(&msg_id);
4308     if (!success) {
4309       KMP_ASSERT(msg_id != kmp_i18n_null);
4310       KMP_FATAL(MsgExiting, __kmp_i18n_catgets(msg_id));
4311     }
4312   }
4313 #endif // KMP_USE_HWLOC
4314 
4315 #if KMP_ARCH_X86 || KMP_ARCH_X86_64
4316   else if (__kmp_affinity_top_method == affinity_top_method_x2apicid ||
4317            __kmp_affinity_top_method == affinity_top_method_x2apicid_1f) {
4318     success = __kmp_affinity_create_x2apicid_map(&msg_id);
4319     if (!success) {
4320       KMP_ASSERT(msg_id != kmp_i18n_null);
4321       KMP_FATAL(MsgExiting, __kmp_i18n_catgets(msg_id));
4322     }
4323   } else if (__kmp_affinity_top_method == affinity_top_method_apicid) {
4324     success = __kmp_affinity_create_apicid_map(&msg_id);
4325     if (!success) {
4326       KMP_ASSERT(msg_id != kmp_i18n_null);
4327       KMP_FATAL(MsgExiting, __kmp_i18n_catgets(msg_id));
4328     }
4329   }
4330 #endif /* KMP_ARCH_X86 || KMP_ARCH_X86_64 */
4331 
4332   else if (__kmp_affinity_top_method == affinity_top_method_cpuinfo) {
4333     int line = 0;
4334     success = __kmp_affinity_create_cpuinfo_map(&line, &msg_id);
4335     if (!success) {
4336       KMP_ASSERT(msg_id != kmp_i18n_null);
4337       const char *filename = __kmp_cpuinfo_get_filename();
4338       if (line > 0) {
4339         KMP_FATAL(FileLineMsgExiting, filename, line,
4340                   __kmp_i18n_catgets(msg_id));
4341       } else {
4342         KMP_FATAL(FileMsgExiting, filename, __kmp_i18n_catgets(msg_id));
4343       }
4344     }
4345   }
4346 
4347 #if KMP_GROUP_AFFINITY
4348   else if (__kmp_affinity_top_method == affinity_top_method_group) {
4349     success = __kmp_affinity_create_proc_group_map(&msg_id);
4350     KMP_ASSERT(success);
4351     if (!success) {
4352       KMP_ASSERT(msg_id != kmp_i18n_null);
4353       KMP_FATAL(MsgExiting, __kmp_i18n_catgets(msg_id));
4354     }
4355   }
4356 #endif /* KMP_GROUP_AFFINITY */
4357 
4358   else if (__kmp_affinity_top_method == affinity_top_method_flat) {
4359     success = __kmp_affinity_create_flat_map(&msg_id);
4360     // should not fail
4361     KMP_ASSERT(success);
4362   }
4363 
4364   // Early exit if topology could not be created
4365   if (!__kmp_topology) {
4366     if (KMP_AFFINITY_CAPABLE()) {
4367       KMP_AFF_WARNING(affinity, ErrorInitializeAffinity);
4368     }
4369     if (nPackages > 0 && nCoresPerPkg > 0 && __kmp_nThreadsPerCore > 0 &&
4370         __kmp_ncores > 0) {
4371       __kmp_topology = kmp_topology_t::allocate(0, 0, NULL);
4372       __kmp_topology->canonicalize(nPackages, nCoresPerPkg,
4373                                    __kmp_nThreadsPerCore, __kmp_ncores);
4374       if (verbose) {
4375         __kmp_topology->print(env_var);
4376       }
4377     }
4378     return false;
4379   }
4380 
4381   // Canonicalize, print (if requested), apply KMP_HW_SUBSET
4382   __kmp_topology->canonicalize();
4383   if (verbose)
4384     __kmp_topology->print(env_var);
4385   bool filtered = __kmp_topology->filter_hw_subset();
4386   if (filtered) {
4387 #if KMP_OS_WINDOWS
4388     // Copy filtered full mask if topology has single processor group
4389     if (__kmp_num_proc_groups <= 1)
4390 #endif
4391       __kmp_affin_origMask->copy(__kmp_affin_fullMask);
4392   }
4393   if (filtered && verbose)
4394     __kmp_topology->print("KMP_HW_SUBSET");
4395   return success;
4396 }
4397 
4398 static void __kmp_aux_affinity_initialize(kmp_affinity_t &affinity) {
4399   bool is_regular_affinity = (&affinity == &__kmp_affinity);
4400   bool is_hidden_helper_affinity = (&affinity == &__kmp_hh_affinity);
4401   const char *env_var = affinity.env_var;
4402 
4403   if (affinity.flags.initialized) {
4404     KMP_ASSERT(__kmp_affin_fullMask != NULL);
4405     return;
4406   }
4407 
4408   if (is_regular_affinity && (!__kmp_affin_fullMask || !__kmp_affin_origMask))
4409     __kmp_aux_affinity_initialize_masks(affinity);
4410 
4411   if (is_regular_affinity && !__kmp_topology) {
4412     bool success = __kmp_aux_affinity_initialize_topology(affinity);
4413     if (success) {
4414       // Initialize other data structures which depend on the topology
4415       machine_hierarchy.init(__kmp_topology->get_num_hw_threads());
4416       KMP_ASSERT(__kmp_avail_proc == __kmp_topology->get_num_hw_threads());
4417     } else {
4418       affinity.type = affinity_none;
4419       KMP_AFFINITY_DISABLE();
4420     }
4421   }
4422 
4423   // If KMP_AFFINITY=none, then only create the single "none" place
4424   // which is the process's initial affinity mask or the number of
4425   // hardware threads depending on respect,norespect
4426   if (affinity.type == affinity_none) {
4427     __kmp_create_affinity_none_places(affinity);
4428 #if KMP_USE_HIER_SCHED
4429     __kmp_dispatch_set_hierarchy_values();
4430 #endif
4431     affinity.flags.initialized = TRUE;
4432     return;
4433   }
4434 
4435   __kmp_topology->set_granularity(affinity);
4436   int depth = __kmp_topology->get_depth();
4437 
4438   // Create the table of masks, indexed by thread Id.
4439   unsigned numUnique;
4440   __kmp_create_os_id_masks(&numUnique, affinity);
4441   if (affinity.gran_levels == 0) {
4442     KMP_DEBUG_ASSERT((int)numUnique == __kmp_avail_proc);
4443   }
4444 
4445   switch (affinity.type) {
4446 
4447   case affinity_explicit:
4448     KMP_DEBUG_ASSERT(affinity.proclist != NULL);
4449     if (is_hidden_helper_affinity ||
4450         __kmp_nested_proc_bind.bind_types[0] == proc_bind_intel) {
4451       __kmp_affinity_process_proclist(affinity);
4452     } else {
4453       __kmp_affinity_process_placelist(affinity);
4454     }
4455     if (affinity.num_masks == 0) {
4456       KMP_AFF_WARNING(affinity, AffNoValidProcID);
4457       affinity.type = affinity_none;
4458       __kmp_create_affinity_none_places(affinity);
4459       affinity.flags.initialized = TRUE;
4460       return;
4461     }
4462     break;
4463 
4464   // The other affinity types rely on sorting the hardware threads according to
4465   // some permutation of the machine topology tree. Set affinity.compact
4466   // and affinity.offset appropriately, then jump to a common code
4467   // fragment to do the sort and create the array of affinity masks.
4468   case affinity_logical:
4469     affinity.compact = 0;
4470     if (affinity.offset) {
4471       affinity.offset =
4472           __kmp_nThreadsPerCore * affinity.offset % __kmp_avail_proc;
4473     }
4474     goto sortTopology;
4475 
4476   case affinity_physical:
4477     if (__kmp_nThreadsPerCore > 1) {
4478       affinity.compact = 1;
4479       if (affinity.compact >= depth) {
4480         affinity.compact = 0;
4481       }
4482     } else {
4483       affinity.compact = 0;
4484     }
4485     if (affinity.offset) {
4486       affinity.offset =
4487           __kmp_nThreadsPerCore * affinity.offset % __kmp_avail_proc;
4488     }
4489     goto sortTopology;
4490 
4491   case affinity_scatter:
4492     if (affinity.compact >= depth) {
4493       affinity.compact = 0;
4494     } else {
4495       affinity.compact = depth - 1 - affinity.compact;
4496     }
4497     goto sortTopology;
4498 
4499   case affinity_compact:
4500     if (affinity.compact >= depth) {
4501       affinity.compact = depth - 1;
4502     }
4503     goto sortTopology;
4504 
4505   case affinity_balanced:
4506     if (depth <= 1 || is_hidden_helper_affinity) {
4507       KMP_AFF_WARNING(affinity, AffBalancedNotAvail, env_var);
4508       affinity.type = affinity_none;
4509       __kmp_create_affinity_none_places(affinity);
4510       affinity.flags.initialized = TRUE;
4511       return;
4512     } else if (!__kmp_topology->is_uniform()) {
4513       // Save the depth for further usage
4514       __kmp_aff_depth = depth;
4515 
4516       int core_level =
4517           __kmp_affinity_find_core_level(__kmp_avail_proc, depth - 1);
4518       int ncores = __kmp_affinity_compute_ncores(__kmp_avail_proc, depth - 1,
4519                                                  core_level);
4520       int maxprocpercore = __kmp_affinity_max_proc_per_core(
4521           __kmp_avail_proc, depth - 1, core_level);
4522 
4523       int nproc = ncores * maxprocpercore;
4524       if ((nproc < 2) || (nproc < __kmp_avail_proc)) {
4525         KMP_AFF_WARNING(affinity, AffBalancedNotAvail, env_var);
4526         affinity.type = affinity_none;
4527         __kmp_create_affinity_none_places(affinity);
4528         affinity.flags.initialized = TRUE;
4529         return;
4530       }
4531 
4532       procarr = (int *)__kmp_allocate(sizeof(int) * nproc);
4533       for (int i = 0; i < nproc; i++) {
4534         procarr[i] = -1;
4535       }
4536 
4537       int lastcore = -1;
4538       int inlastcore = 0;
4539       for (int i = 0; i < __kmp_avail_proc; i++) {
4540         int proc = __kmp_topology->at(i).os_id;
4541         int core = __kmp_affinity_find_core(i, depth - 1, core_level);
4542 
4543         if (core == lastcore) {
4544           inlastcore++;
4545         } else {
4546           inlastcore = 0;
4547         }
4548         lastcore = core;
4549 
4550         procarr[core * maxprocpercore + inlastcore] = proc;
4551       }
4552     }
4553     if (affinity.compact >= depth) {
4554       affinity.compact = depth - 1;
4555     }
4556 
4557   sortTopology:
4558     // Allocate the gtid->affinity mask table.
4559     if (affinity.flags.dups) {
4560       affinity.num_masks = __kmp_avail_proc;
4561     } else {
4562       affinity.num_masks = numUnique;
4563     }
4564 
4565     if ((__kmp_nested_proc_bind.bind_types[0] != proc_bind_intel) &&
4566         (__kmp_affinity_num_places > 0) &&
4567         ((unsigned)__kmp_affinity_num_places < affinity.num_masks) &&
4568         !is_hidden_helper_affinity) {
4569       affinity.num_masks = __kmp_affinity_num_places;
4570     }
4571 
4572     KMP_CPU_ALLOC_ARRAY(affinity.masks, affinity.num_masks);
4573 
4574     // Sort the topology table according to the current setting of
4575     // affinity.compact, then fill out affinity.masks.
4576     __kmp_topology->sort_compact(affinity);
4577     {
4578       int i;
4579       unsigned j;
4580       int num_hw_threads = __kmp_topology->get_num_hw_threads();
4581       for (i = 0, j = 0; i < num_hw_threads; i++) {
4582         if ((!affinity.flags.dups) && (!__kmp_topology->at(i).leader)) {
4583           continue;
4584         }
4585         int osId = __kmp_topology->at(i).os_id;
4586 
4587         kmp_affin_mask_t *src = KMP_CPU_INDEX(affinity.os_id_masks, osId);
4588         kmp_affin_mask_t *dest = KMP_CPU_INDEX(affinity.masks, j);
4589         KMP_ASSERT(KMP_CPU_ISSET(osId, src));
4590         KMP_CPU_COPY(dest, src);
4591         if (++j >= affinity.num_masks) {
4592           break;
4593         }
4594       }
4595       KMP_DEBUG_ASSERT(j == affinity.num_masks);
4596     }
4597     // Sort the topology back using ids
4598     __kmp_topology->sort_ids();
4599     break;
4600 
4601   default:
4602     KMP_ASSERT2(0, "Unexpected affinity setting");
4603   }
4604   __kmp_affinity_get_topology_info(affinity);
4605   affinity.flags.initialized = TRUE;
4606 }
4607 
4608 void __kmp_affinity_initialize(kmp_affinity_t &affinity) {
4609   // Much of the code above was written assuming that if a machine was not
4610   // affinity capable, then affinity type == affinity_none.
4611   // We now explicitly represent this as affinity type == affinity_disabled.
4612   // There are too many checks for affinity type == affinity_none in this code.
4613   // Instead of trying to change them all, check if
4614   // affinity type == affinity_disabled, and if so, slam it with affinity_none,
4615   // call the real initialization routine, then restore affinity type to
4616   // affinity_disabled.
4617   int disabled = (affinity.type == affinity_disabled);
4618   if (!KMP_AFFINITY_CAPABLE())
4619     KMP_ASSERT(disabled);
4620   if (disabled)
4621     affinity.type = affinity_none;
4622   __kmp_aux_affinity_initialize(affinity);
4623   if (disabled)
4624     affinity.type = affinity_disabled;
4625 }
4626 
4627 void __kmp_affinity_uninitialize(void) {
4628   for (kmp_affinity_t *affinity : __kmp_affinities) {
4629     if (affinity->masks != NULL)
4630       KMP_CPU_FREE_ARRAY(affinity->masks, affinity->num_masks);
4631     if (affinity->os_id_masks != NULL)
4632       KMP_CPU_FREE_ARRAY(affinity->os_id_masks, affinity->num_os_id_masks);
4633     if (affinity->proclist != NULL)
4634       __kmp_free(affinity->proclist);
4635     if (affinity->ids != NULL)
4636       __kmp_free(affinity->ids);
4637     if (affinity->attrs != NULL)
4638       __kmp_free(affinity->attrs);
4639     *affinity = KMP_AFFINITY_INIT(affinity->env_var);
4640   }
4641   if (__kmp_affin_origMask != NULL) {
4642     if (KMP_AFFINITY_CAPABLE()) {
4643       __kmp_set_system_affinity(__kmp_affin_origMask, FALSE);
4644     }
4645     KMP_CPU_FREE(__kmp_affin_origMask);
4646     __kmp_affin_origMask = NULL;
4647   }
4648   __kmp_affinity_num_places = 0;
4649   if (procarr != NULL) {
4650     __kmp_free(procarr);
4651     procarr = NULL;
4652   }
4653   if (__kmp_osid_to_hwthread_map) {
4654     __kmp_free(__kmp_osid_to_hwthread_map);
4655     __kmp_osid_to_hwthread_map = NULL;
4656   }
4657 #if KMP_USE_HWLOC
4658   if (__kmp_hwloc_topology != NULL) {
4659     hwloc_topology_destroy(__kmp_hwloc_topology);
4660     __kmp_hwloc_topology = NULL;
4661   }
4662 #endif
4663   if (__kmp_hw_subset) {
4664     kmp_hw_subset_t::deallocate(__kmp_hw_subset);
4665     __kmp_hw_subset = nullptr;
4666   }
4667   if (__kmp_topology) {
4668     kmp_topology_t::deallocate(__kmp_topology);
4669     __kmp_topology = nullptr;
4670   }
4671   KMPAffinity::destroy_api();
4672 }
4673 
4674 static void __kmp_select_mask_by_gtid(int gtid, const kmp_affinity_t *affinity,
4675                                       int *place, kmp_affin_mask_t **mask) {
4676   int mask_idx;
4677   bool is_hidden_helper = KMP_HIDDEN_HELPER_THREAD(gtid);
4678   if (is_hidden_helper)
4679     // The first gtid is the regular primary thread, the second gtid is the main
4680     // thread of hidden team which does not participate in task execution.
4681     mask_idx = gtid - 2;
4682   else
4683     mask_idx = __kmp_adjust_gtid_for_hidden_helpers(gtid);
4684   KMP_DEBUG_ASSERT(affinity->num_masks > 0);
4685   *place = (mask_idx + affinity->offset) % affinity->num_masks;
4686   *mask = KMP_CPU_INDEX(affinity->masks, *place);
4687 }
4688 
4689 // This function initializes the per-thread data concerning affinity including
4690 // the mask and topology information
4691 void __kmp_affinity_set_init_mask(int gtid, int isa_root) {
4692 
4693   kmp_info_t *th = (kmp_info_t *)TCR_SYNC_PTR(__kmp_threads[gtid]);
4694 
4695   // Set the thread topology information to default of unknown
4696   for (int id = 0; id < KMP_HW_LAST; ++id)
4697     th->th.th_topology_ids[id] = kmp_hw_thread_t::UNKNOWN_ID;
4698   th->th.th_topology_attrs = KMP_AFFINITY_ATTRS_UNKNOWN;
4699 
4700   if (!KMP_AFFINITY_CAPABLE()) {
4701     return;
4702   }
4703 
4704   if (th->th.th_affin_mask == NULL) {
4705     KMP_CPU_ALLOC(th->th.th_affin_mask);
4706   } else {
4707     KMP_CPU_ZERO(th->th.th_affin_mask);
4708   }
4709 
4710   // Copy the thread mask to the kmp_info_t structure. If
4711   // __kmp_affinity.type == affinity_none, copy the "full" mask, i.e.
4712   // one that has all of the OS proc ids set, or if
4713   // __kmp_affinity.flags.respect is set, then the full mask is the
4714   // same as the mask of the initialization thread.
4715   kmp_affin_mask_t *mask;
4716   int i;
4717   const kmp_affinity_t *affinity;
4718   const char *env_var;
4719   bool is_hidden_helper = KMP_HIDDEN_HELPER_THREAD(gtid);
4720 
4721   if (is_hidden_helper)
4722     affinity = &__kmp_hh_affinity;
4723   else
4724     affinity = &__kmp_affinity;
4725   env_var = affinity->env_var;
4726 
4727   if (KMP_AFFINITY_NON_PROC_BIND || is_hidden_helper) {
4728     if ((affinity->type == affinity_none) ||
4729         (affinity->type == affinity_balanced) ||
4730         KMP_HIDDEN_HELPER_MAIN_THREAD(gtid)) {
4731 #if KMP_GROUP_AFFINITY
4732       if (__kmp_num_proc_groups > 1) {
4733         return;
4734       }
4735 #endif
4736       KMP_ASSERT(__kmp_affin_fullMask != NULL);
4737       i = 0;
4738       mask = __kmp_affin_fullMask;
4739     } else {
4740       __kmp_select_mask_by_gtid(gtid, affinity, &i, &mask);
4741     }
4742   } else {
4743     if (!isa_root || __kmp_nested_proc_bind.bind_types[0] == proc_bind_false) {
4744 #if KMP_GROUP_AFFINITY
4745       if (__kmp_num_proc_groups > 1) {
4746         return;
4747       }
4748 #endif
4749       KMP_ASSERT(__kmp_affin_fullMask != NULL);
4750       i = KMP_PLACE_ALL;
4751       mask = __kmp_affin_fullMask;
4752     } else {
4753       __kmp_select_mask_by_gtid(gtid, affinity, &i, &mask);
4754     }
4755   }
4756 
4757   th->th.th_current_place = i;
4758   if (isa_root && !is_hidden_helper) {
4759     th->th.th_new_place = i;
4760     th->th.th_first_place = 0;
4761     th->th.th_last_place = affinity->num_masks - 1;
4762   } else if (KMP_AFFINITY_NON_PROC_BIND) {
4763     // When using a Non-OMP_PROC_BIND affinity method,
4764     // set all threads' place-partition-var to the entire place list
4765     th->th.th_first_place = 0;
4766     th->th.th_last_place = affinity->num_masks - 1;
4767   }
4768   // Copy topology information associated with the place
4769   if (i >= 0) {
4770     th->th.th_topology_ids = __kmp_affinity.ids[i];
4771     th->th.th_topology_attrs = __kmp_affinity.attrs[i];
4772   }
4773 
4774   if (i == KMP_PLACE_ALL) {
4775     KA_TRACE(100, ("__kmp_affinity_set_init_mask: binding T#%d to all places\n",
4776                    gtid));
4777   } else {
4778     KA_TRACE(100, ("__kmp_affinity_set_init_mask: binding T#%d to place %d\n",
4779                    gtid, i));
4780   }
4781 
4782   KMP_CPU_COPY(th->th.th_affin_mask, mask);
4783 
4784   /* to avoid duplicate printing (will be correctly printed on barrier) */
4785   if (affinity->flags.verbose &&
4786       (affinity->type == affinity_none ||
4787        (i != KMP_PLACE_ALL && affinity->type != affinity_balanced)) &&
4788       !KMP_HIDDEN_HELPER_MAIN_THREAD(gtid)) {
4789     char buf[KMP_AFFIN_MASK_PRINT_LEN];
4790     __kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN,
4791                               th->th.th_affin_mask);
4792     KMP_INFORM(BoundToOSProcSet, env_var, (kmp_int32)getpid(), __kmp_gettid(),
4793                gtid, buf);
4794   }
4795 
4796 #if KMP_OS_WINDOWS
4797   // On Windows* OS, the process affinity mask might have changed. If the user
4798   // didn't request affinity and this call fails, just continue silently.
4799   // See CQ171393.
4800   if (affinity->type == affinity_none) {
4801     __kmp_set_system_affinity(th->th.th_affin_mask, FALSE);
4802   } else
4803 #endif
4804     __kmp_set_system_affinity(th->th.th_affin_mask, TRUE);
4805 }
4806 
4807 void __kmp_affinity_set_place(int gtid) {
4808   // Hidden helper threads should not be affected by OMP_PLACES/OMP_PROC_BIND
4809   if (!KMP_AFFINITY_CAPABLE() || KMP_HIDDEN_HELPER_THREAD(gtid)) {
4810     return;
4811   }
4812 
4813   kmp_info_t *th = (kmp_info_t *)TCR_SYNC_PTR(__kmp_threads[gtid]);
4814 
4815   KA_TRACE(100, ("__kmp_affinity_set_place: binding T#%d to place %d (current "
4816                  "place = %d)\n",
4817                  gtid, th->th.th_new_place, th->th.th_current_place));
4818 
4819   // Check that the new place is within this thread's partition.
4820   KMP_DEBUG_ASSERT(th->th.th_affin_mask != NULL);
4821   KMP_ASSERT(th->th.th_new_place >= 0);
4822   KMP_ASSERT((unsigned)th->th.th_new_place <= __kmp_affinity.num_masks);
4823   if (th->th.th_first_place <= th->th.th_last_place) {
4824     KMP_ASSERT((th->th.th_new_place >= th->th.th_first_place) &&
4825                (th->th.th_new_place <= th->th.th_last_place));
4826   } else {
4827     KMP_ASSERT((th->th.th_new_place <= th->th.th_first_place) ||
4828                (th->th.th_new_place >= th->th.th_last_place));
4829   }
4830 
4831   // Copy the thread mask to the kmp_info_t structure,
4832   // and set this thread's affinity.
4833   kmp_affin_mask_t *mask =
4834       KMP_CPU_INDEX(__kmp_affinity.masks, th->th.th_new_place);
4835   KMP_CPU_COPY(th->th.th_affin_mask, mask);
4836   th->th.th_current_place = th->th.th_new_place;
4837   // Copy topology information associated with the place
4838   th->th.th_topology_ids = __kmp_affinity.ids[th->th.th_new_place];
4839   th->th.th_topology_attrs = __kmp_affinity.attrs[th->th.th_new_place];
4840 
4841   if (__kmp_affinity.flags.verbose) {
4842     char buf[KMP_AFFIN_MASK_PRINT_LEN];
4843     __kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN,
4844                               th->th.th_affin_mask);
4845     KMP_INFORM(BoundToOSProcSet, "OMP_PROC_BIND", (kmp_int32)getpid(),
4846                __kmp_gettid(), gtid, buf);
4847   }
4848   __kmp_set_system_affinity(th->th.th_affin_mask, TRUE);
4849 }
4850 
4851 int __kmp_aux_set_affinity(void **mask) {
4852   int gtid;
4853   kmp_info_t *th;
4854   int retval;
4855 
4856   if (!KMP_AFFINITY_CAPABLE()) {
4857     return -1;
4858   }
4859 
4860   gtid = __kmp_entry_gtid();
4861   KA_TRACE(
4862       1000, (""); {
4863         char buf[KMP_AFFIN_MASK_PRINT_LEN];
4864         __kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN,
4865                                   (kmp_affin_mask_t *)(*mask));
4866         __kmp_debug_printf(
4867             "kmp_set_affinity: setting affinity mask for thread %d = %s\n",
4868             gtid, buf);
4869       });
4870 
4871   if (__kmp_env_consistency_check) {
4872     if ((mask == NULL) || (*mask == NULL)) {
4873       KMP_FATAL(AffinityInvalidMask, "kmp_set_affinity");
4874     } else {
4875       unsigned proc;
4876       int num_procs = 0;
4877 
4878       KMP_CPU_SET_ITERATE(proc, ((kmp_affin_mask_t *)(*mask))) {
4879         if (!KMP_CPU_ISSET(proc, __kmp_affin_fullMask)) {
4880           KMP_FATAL(AffinityInvalidMask, "kmp_set_affinity");
4881         }
4882         if (!KMP_CPU_ISSET(proc, (kmp_affin_mask_t *)(*mask))) {
4883           continue;
4884         }
4885         num_procs++;
4886       }
4887       if (num_procs == 0) {
4888         KMP_FATAL(AffinityInvalidMask, "kmp_set_affinity");
4889       }
4890 
4891 #if KMP_GROUP_AFFINITY
4892       if (__kmp_get_proc_group((kmp_affin_mask_t *)(*mask)) < 0) {
4893         KMP_FATAL(AffinityInvalidMask, "kmp_set_affinity");
4894       }
4895 #endif /* KMP_GROUP_AFFINITY */
4896     }
4897   }
4898 
4899   th = __kmp_threads[gtid];
4900   KMP_DEBUG_ASSERT(th->th.th_affin_mask != NULL);
4901   retval = __kmp_set_system_affinity((kmp_affin_mask_t *)(*mask), FALSE);
4902   if (retval == 0) {
4903     KMP_CPU_COPY(th->th.th_affin_mask, (kmp_affin_mask_t *)(*mask));
4904   }
4905 
4906   th->th.th_current_place = KMP_PLACE_UNDEFINED;
4907   th->th.th_new_place = KMP_PLACE_UNDEFINED;
4908   th->th.th_first_place = 0;
4909   th->th.th_last_place = __kmp_affinity.num_masks - 1;
4910 
4911   // Turn off 4.0 affinity for the current tread at this parallel level.
4912   th->th.th_current_task->td_icvs.proc_bind = proc_bind_false;
4913 
4914   return retval;
4915 }
4916 
4917 int __kmp_aux_get_affinity(void **mask) {
4918   int gtid;
4919   int retval;
4920 #if KMP_OS_WINDOWS || KMP_DEBUG
4921   kmp_info_t *th;
4922 #endif
4923   if (!KMP_AFFINITY_CAPABLE()) {
4924     return -1;
4925   }
4926 
4927   gtid = __kmp_entry_gtid();
4928 #if KMP_OS_WINDOWS || KMP_DEBUG
4929   th = __kmp_threads[gtid];
4930 #else
4931   (void)gtid; // unused variable
4932 #endif
4933   KMP_DEBUG_ASSERT(th->th.th_affin_mask != NULL);
4934 
4935   KA_TRACE(
4936       1000, (""); {
4937         char buf[KMP_AFFIN_MASK_PRINT_LEN];
4938         __kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN,
4939                                   th->th.th_affin_mask);
4940         __kmp_printf(
4941             "kmp_get_affinity: stored affinity mask for thread %d = %s\n", gtid,
4942             buf);
4943       });
4944 
4945   if (__kmp_env_consistency_check) {
4946     if ((mask == NULL) || (*mask == NULL)) {
4947       KMP_FATAL(AffinityInvalidMask, "kmp_get_affinity");
4948     }
4949   }
4950 
4951 #if !KMP_OS_WINDOWS
4952 
4953   retval = __kmp_get_system_affinity((kmp_affin_mask_t *)(*mask), FALSE);
4954   KA_TRACE(
4955       1000, (""); {
4956         char buf[KMP_AFFIN_MASK_PRINT_LEN];
4957         __kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN,
4958                                   (kmp_affin_mask_t *)(*mask));
4959         __kmp_printf(
4960             "kmp_get_affinity: system affinity mask for thread %d = %s\n", gtid,
4961             buf);
4962       });
4963   return retval;
4964 
4965 #else
4966   (void)retval;
4967 
4968   KMP_CPU_COPY((kmp_affin_mask_t *)(*mask), th->th.th_affin_mask);
4969   return 0;
4970 
4971 #endif /* KMP_OS_WINDOWS */
4972 }
4973 
4974 int __kmp_aux_get_affinity_max_proc() {
4975   if (!KMP_AFFINITY_CAPABLE()) {
4976     return 0;
4977   }
4978 #if KMP_GROUP_AFFINITY
4979   if (__kmp_num_proc_groups > 1) {
4980     return (int)(__kmp_num_proc_groups * sizeof(DWORD_PTR) * CHAR_BIT);
4981   }
4982 #endif
4983   return __kmp_xproc;
4984 }
4985 
4986 int __kmp_aux_set_affinity_mask_proc(int proc, void **mask) {
4987   if (!KMP_AFFINITY_CAPABLE()) {
4988     return -1;
4989   }
4990 
4991   KA_TRACE(
4992       1000, (""); {
4993         int gtid = __kmp_entry_gtid();
4994         char buf[KMP_AFFIN_MASK_PRINT_LEN];
4995         __kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN,
4996                                   (kmp_affin_mask_t *)(*mask));
4997         __kmp_debug_printf("kmp_set_affinity_mask_proc: setting proc %d in "
4998                            "affinity mask for thread %d = %s\n",
4999                            proc, gtid, buf);
5000       });
5001 
5002   if (__kmp_env_consistency_check) {
5003     if ((mask == NULL) || (*mask == NULL)) {
5004       KMP_FATAL(AffinityInvalidMask, "kmp_set_affinity_mask_proc");
5005     }
5006   }
5007 
5008   if ((proc < 0) || (proc >= __kmp_aux_get_affinity_max_proc())) {
5009     return -1;
5010   }
5011   if (!KMP_CPU_ISSET(proc, __kmp_affin_fullMask)) {
5012     return -2;
5013   }
5014 
5015   KMP_CPU_SET(proc, (kmp_affin_mask_t *)(*mask));
5016   return 0;
5017 }
5018 
5019 int __kmp_aux_unset_affinity_mask_proc(int proc, void **mask) {
5020   if (!KMP_AFFINITY_CAPABLE()) {
5021     return -1;
5022   }
5023 
5024   KA_TRACE(
5025       1000, (""); {
5026         int gtid = __kmp_entry_gtid();
5027         char buf[KMP_AFFIN_MASK_PRINT_LEN];
5028         __kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN,
5029                                   (kmp_affin_mask_t *)(*mask));
5030         __kmp_debug_printf("kmp_unset_affinity_mask_proc: unsetting proc %d in "
5031                            "affinity mask for thread %d = %s\n",
5032                            proc, gtid, buf);
5033       });
5034 
5035   if (__kmp_env_consistency_check) {
5036     if ((mask == NULL) || (*mask == NULL)) {
5037       KMP_FATAL(AffinityInvalidMask, "kmp_unset_affinity_mask_proc");
5038     }
5039   }
5040 
5041   if ((proc < 0) || (proc >= __kmp_aux_get_affinity_max_proc())) {
5042     return -1;
5043   }
5044   if (!KMP_CPU_ISSET(proc, __kmp_affin_fullMask)) {
5045     return -2;
5046   }
5047 
5048   KMP_CPU_CLR(proc, (kmp_affin_mask_t *)(*mask));
5049   return 0;
5050 }
5051 
5052 int __kmp_aux_get_affinity_mask_proc(int proc, void **mask) {
5053   if (!KMP_AFFINITY_CAPABLE()) {
5054     return -1;
5055   }
5056 
5057   KA_TRACE(
5058       1000, (""); {
5059         int gtid = __kmp_entry_gtid();
5060         char buf[KMP_AFFIN_MASK_PRINT_LEN];
5061         __kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN,
5062                                   (kmp_affin_mask_t *)(*mask));
5063         __kmp_debug_printf("kmp_get_affinity_mask_proc: getting proc %d in "
5064                            "affinity mask for thread %d = %s\n",
5065                            proc, gtid, buf);
5066       });
5067 
5068   if (__kmp_env_consistency_check) {
5069     if ((mask == NULL) || (*mask == NULL)) {
5070       KMP_FATAL(AffinityInvalidMask, "kmp_get_affinity_mask_proc");
5071     }
5072   }
5073 
5074   if ((proc < 0) || (proc >= __kmp_aux_get_affinity_max_proc())) {
5075     return -1;
5076   }
5077   if (!KMP_CPU_ISSET(proc, __kmp_affin_fullMask)) {
5078     return 0;
5079   }
5080 
5081   return KMP_CPU_ISSET(proc, (kmp_affin_mask_t *)(*mask));
5082 }
5083 
5084 // Dynamic affinity settings - Affinity balanced
5085 void __kmp_balanced_affinity(kmp_info_t *th, int nthreads) {
5086   KMP_DEBUG_ASSERT(th);
5087   bool fine_gran = true;
5088   int tid = th->th.th_info.ds.ds_tid;
5089   const char *env_var = "KMP_AFFINITY";
5090 
5091   // Do not perform balanced affinity for the hidden helper threads
5092   if (KMP_HIDDEN_HELPER_THREAD(__kmp_gtid_from_thread(th)))
5093     return;
5094 
5095   switch (__kmp_affinity.gran) {
5096   case KMP_HW_THREAD:
5097     break;
5098   case KMP_HW_CORE:
5099     if (__kmp_nThreadsPerCore > 1) {
5100       fine_gran = false;
5101     }
5102     break;
5103   case KMP_HW_SOCKET:
5104     if (nCoresPerPkg > 1) {
5105       fine_gran = false;
5106     }
5107     break;
5108   default:
5109     fine_gran = false;
5110   }
5111 
5112   if (__kmp_topology->is_uniform()) {
5113     int coreID;
5114     int threadID;
5115     // Number of hyper threads per core in HT machine
5116     int __kmp_nth_per_core = __kmp_avail_proc / __kmp_ncores;
5117     // Number of cores
5118     int ncores = __kmp_ncores;
5119     if ((nPackages > 1) && (__kmp_nth_per_core <= 1)) {
5120       __kmp_nth_per_core = __kmp_avail_proc / nPackages;
5121       ncores = nPackages;
5122     }
5123     // How many threads will be bound to each core
5124     int chunk = nthreads / ncores;
5125     // How many cores will have an additional thread bound to it - "big cores"
5126     int big_cores = nthreads % ncores;
5127     // Number of threads on the big cores
5128     int big_nth = (chunk + 1) * big_cores;
5129     if (tid < big_nth) {
5130       coreID = tid / (chunk + 1);
5131       threadID = (tid % (chunk + 1)) % __kmp_nth_per_core;
5132     } else { // tid >= big_nth
5133       coreID = (tid - big_cores) / chunk;
5134       threadID = ((tid - big_cores) % chunk) % __kmp_nth_per_core;
5135     }
5136     KMP_DEBUG_ASSERT2(KMP_AFFINITY_CAPABLE(),
5137                       "Illegal set affinity operation when not capable");
5138 
5139     kmp_affin_mask_t *mask = th->th.th_affin_mask;
5140     KMP_CPU_ZERO(mask);
5141 
5142     if (fine_gran) {
5143       int osID =
5144           __kmp_topology->at(coreID * __kmp_nth_per_core + threadID).os_id;
5145       KMP_CPU_SET(osID, mask);
5146     } else {
5147       for (int i = 0; i < __kmp_nth_per_core; i++) {
5148         int osID;
5149         osID = __kmp_topology->at(coreID * __kmp_nth_per_core + i).os_id;
5150         KMP_CPU_SET(osID, mask);
5151       }
5152     }
5153     if (__kmp_affinity.flags.verbose) {
5154       char buf[KMP_AFFIN_MASK_PRINT_LEN];
5155       __kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN, mask);
5156       KMP_INFORM(BoundToOSProcSet, env_var, (kmp_int32)getpid(), __kmp_gettid(),
5157                  tid, buf);
5158     }
5159     __kmp_affinity_get_thread_topology_info(th);
5160     __kmp_set_system_affinity(mask, TRUE);
5161   } else { // Non-uniform topology
5162 
5163     kmp_affin_mask_t *mask = th->th.th_affin_mask;
5164     KMP_CPU_ZERO(mask);
5165 
5166     int core_level =
5167         __kmp_affinity_find_core_level(__kmp_avail_proc, __kmp_aff_depth - 1);
5168     int ncores = __kmp_affinity_compute_ncores(__kmp_avail_proc,
5169                                                __kmp_aff_depth - 1, core_level);
5170     int nth_per_core = __kmp_affinity_max_proc_per_core(
5171         __kmp_avail_proc, __kmp_aff_depth - 1, core_level);
5172 
5173     // For performance gain consider the special case nthreads ==
5174     // __kmp_avail_proc
5175     if (nthreads == __kmp_avail_proc) {
5176       if (fine_gran) {
5177         int osID = __kmp_topology->at(tid).os_id;
5178         KMP_CPU_SET(osID, mask);
5179       } else {
5180         int core =
5181             __kmp_affinity_find_core(tid, __kmp_aff_depth - 1, core_level);
5182         for (int i = 0; i < __kmp_avail_proc; i++) {
5183           int osID = __kmp_topology->at(i).os_id;
5184           if (__kmp_affinity_find_core(i, __kmp_aff_depth - 1, core_level) ==
5185               core) {
5186             KMP_CPU_SET(osID, mask);
5187           }
5188         }
5189       }
5190     } else if (nthreads <= ncores) {
5191 
5192       int core = 0;
5193       for (int i = 0; i < ncores; i++) {
5194         // Check if this core from procarr[] is in the mask
5195         int in_mask = 0;
5196         for (int j = 0; j < nth_per_core; j++) {
5197           if (procarr[i * nth_per_core + j] != -1) {
5198             in_mask = 1;
5199             break;
5200           }
5201         }
5202         if (in_mask) {
5203           if (tid == core) {
5204             for (int j = 0; j < nth_per_core; j++) {
5205               int osID = procarr[i * nth_per_core + j];
5206               if (osID != -1) {
5207                 KMP_CPU_SET(osID, mask);
5208                 // For fine granularity it is enough to set the first available
5209                 // osID for this core
5210                 if (fine_gran) {
5211                   break;
5212                 }
5213               }
5214             }
5215             break;
5216           } else {
5217             core++;
5218           }
5219         }
5220       }
5221     } else { // nthreads > ncores
5222       // Array to save the number of processors at each core
5223       int *nproc_at_core = (int *)KMP_ALLOCA(sizeof(int) * ncores);
5224       // Array to save the number of cores with "x" available processors;
5225       int *ncores_with_x_procs =
5226           (int *)KMP_ALLOCA(sizeof(int) * (nth_per_core + 1));
5227       // Array to save the number of cores with # procs from x to nth_per_core
5228       int *ncores_with_x_to_max_procs =
5229           (int *)KMP_ALLOCA(sizeof(int) * (nth_per_core + 1));
5230 
5231       for (int i = 0; i <= nth_per_core; i++) {
5232         ncores_with_x_procs[i] = 0;
5233         ncores_with_x_to_max_procs[i] = 0;
5234       }
5235 
5236       for (int i = 0; i < ncores; i++) {
5237         int cnt = 0;
5238         for (int j = 0; j < nth_per_core; j++) {
5239           if (procarr[i * nth_per_core + j] != -1) {
5240             cnt++;
5241           }
5242         }
5243         nproc_at_core[i] = cnt;
5244         ncores_with_x_procs[cnt]++;
5245       }
5246 
5247       for (int i = 0; i <= nth_per_core; i++) {
5248         for (int j = i; j <= nth_per_core; j++) {
5249           ncores_with_x_to_max_procs[i] += ncores_with_x_procs[j];
5250         }
5251       }
5252 
5253       // Max number of processors
5254       int nproc = nth_per_core * ncores;
5255       // An array to keep number of threads per each context
5256       int *newarr = (int *)__kmp_allocate(sizeof(int) * nproc);
5257       for (int i = 0; i < nproc; i++) {
5258         newarr[i] = 0;
5259       }
5260 
5261       int nth = nthreads;
5262       int flag = 0;
5263       while (nth > 0) {
5264         for (int j = 1; j <= nth_per_core; j++) {
5265           int cnt = ncores_with_x_to_max_procs[j];
5266           for (int i = 0; i < ncores; i++) {
5267             // Skip the core with 0 processors
5268             if (nproc_at_core[i] == 0) {
5269               continue;
5270             }
5271             for (int k = 0; k < nth_per_core; k++) {
5272               if (procarr[i * nth_per_core + k] != -1) {
5273                 if (newarr[i * nth_per_core + k] == 0) {
5274                   newarr[i * nth_per_core + k] = 1;
5275                   cnt--;
5276                   nth--;
5277                   break;
5278                 } else {
5279                   if (flag != 0) {
5280                     newarr[i * nth_per_core + k]++;
5281                     cnt--;
5282                     nth--;
5283                     break;
5284                   }
5285                 }
5286               }
5287             }
5288             if (cnt == 0 || nth == 0) {
5289               break;
5290             }
5291           }
5292           if (nth == 0) {
5293             break;
5294           }
5295         }
5296         flag = 1;
5297       }
5298       int sum = 0;
5299       for (int i = 0; i < nproc; i++) {
5300         sum += newarr[i];
5301         if (sum > tid) {
5302           if (fine_gran) {
5303             int osID = procarr[i];
5304             KMP_CPU_SET(osID, mask);
5305           } else {
5306             int coreID = i / nth_per_core;
5307             for (int ii = 0; ii < nth_per_core; ii++) {
5308               int osID = procarr[coreID * nth_per_core + ii];
5309               if (osID != -1) {
5310                 KMP_CPU_SET(osID, mask);
5311               }
5312             }
5313           }
5314           break;
5315         }
5316       }
5317       __kmp_free(newarr);
5318     }
5319 
5320     if (__kmp_affinity.flags.verbose) {
5321       char buf[KMP_AFFIN_MASK_PRINT_LEN];
5322       __kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN, mask);
5323       KMP_INFORM(BoundToOSProcSet, env_var, (kmp_int32)getpid(), __kmp_gettid(),
5324                  tid, buf);
5325     }
5326     __kmp_affinity_get_thread_topology_info(th);
5327     __kmp_set_system_affinity(mask, TRUE);
5328   }
5329 }
5330 
5331 #if KMP_OS_LINUX || KMP_OS_FREEBSD
5332 // We don't need this entry for Windows because
5333 // there is GetProcessAffinityMask() api
5334 //
5335 // The intended usage is indicated by these steps:
5336 // 1) The user gets the current affinity mask
5337 // 2) Then sets the affinity by calling this function
5338 // 3) Error check the return value
5339 // 4) Use non-OpenMP parallelization
5340 // 5) Reset the affinity to what was stored in step 1)
5341 #ifdef __cplusplus
5342 extern "C"
5343 #endif
5344     int
5345     kmp_set_thread_affinity_mask_initial()
5346 // the function returns 0 on success,
5347 //   -1 if we cannot bind thread
5348 //   >0 (errno) if an error happened during binding
5349 {
5350   int gtid = __kmp_get_gtid();
5351   if (gtid < 0) {
5352     // Do not touch non-omp threads
5353     KA_TRACE(30, ("kmp_set_thread_affinity_mask_initial: "
5354                   "non-omp thread, returning\n"));
5355     return -1;
5356   }
5357   if (!KMP_AFFINITY_CAPABLE() || !__kmp_init_middle) {
5358     KA_TRACE(30, ("kmp_set_thread_affinity_mask_initial: "
5359                   "affinity not initialized, returning\n"));
5360     return -1;
5361   }
5362   KA_TRACE(30, ("kmp_set_thread_affinity_mask_initial: "
5363                 "set full mask for thread %d\n",
5364                 gtid));
5365   KMP_DEBUG_ASSERT(__kmp_affin_fullMask != NULL);
5366   return __kmp_set_system_affinity(__kmp_affin_fullMask, FALSE);
5367 }
5368 #endif
5369 
5370 #endif // KMP_AFFINITY_SUPPORTED
5371