1 /* 2 * kmp_affinity.cpp -- affinity management 3 */ 4 5 //===----------------------------------------------------------------------===// 6 // 7 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 8 // See https://llvm.org/LICENSE.txt for license information. 9 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "kmp.h" 14 #include "kmp_affinity.h" 15 #include "kmp_i18n.h" 16 #include "kmp_io.h" 17 #include "kmp_str.h" 18 #include "kmp_wrapper_getpid.h" 19 #if KMP_USE_HIER_SCHED 20 #include "kmp_dispatch_hier.h" 21 #endif 22 #if KMP_USE_HWLOC 23 // Copied from hwloc 24 #define HWLOC_GROUP_KIND_INTEL_MODULE 102 25 #define HWLOC_GROUP_KIND_INTEL_TILE 103 26 #define HWLOC_GROUP_KIND_INTEL_DIE 104 27 #define HWLOC_GROUP_KIND_WINDOWS_PROCESSOR_GROUP 220 28 #endif 29 #include <ctype.h> 30 31 // The machine topology 32 kmp_topology_t *__kmp_topology = nullptr; 33 // KMP_HW_SUBSET environment variable 34 kmp_hw_subset_t *__kmp_hw_subset = nullptr; 35 36 // Store the real or imagined machine hierarchy here 37 static hierarchy_info machine_hierarchy; 38 39 void __kmp_cleanup_hierarchy() { machine_hierarchy.fini(); } 40 41 void __kmp_get_hierarchy(kmp_uint32 nproc, kmp_bstate_t *thr_bar) { 42 kmp_uint32 depth; 43 // The test below is true if affinity is available, but set to "none". Need to 44 // init on first use of hierarchical barrier. 45 if (TCR_1(machine_hierarchy.uninitialized)) 46 machine_hierarchy.init(nproc); 47 48 // Adjust the hierarchy in case num threads exceeds original 49 if (nproc > machine_hierarchy.base_num_threads) 50 machine_hierarchy.resize(nproc); 51 52 depth = machine_hierarchy.depth; 53 KMP_DEBUG_ASSERT(depth > 0); 54 55 thr_bar->depth = depth; 56 __kmp_type_convert(machine_hierarchy.numPerLevel[0] - 1, 57 &(thr_bar->base_leaf_kids)); 58 thr_bar->skip_per_level = machine_hierarchy.skipPerLevel; 59 } 60 61 static int nCoresPerPkg, nPackages; 62 static int __kmp_nThreadsPerCore; 63 #ifndef KMP_DFLT_NTH_CORES 64 static int __kmp_ncores; 65 #endif 66 67 const char *__kmp_hw_get_catalog_string(kmp_hw_t type, bool plural) { 68 switch (type) { 69 case KMP_HW_SOCKET: 70 return ((plural) ? KMP_I18N_STR(Sockets) : KMP_I18N_STR(Socket)); 71 case KMP_HW_DIE: 72 return ((plural) ? KMP_I18N_STR(Dice) : KMP_I18N_STR(Die)); 73 case KMP_HW_MODULE: 74 return ((plural) ? KMP_I18N_STR(Modules) : KMP_I18N_STR(Module)); 75 case KMP_HW_TILE: 76 return ((plural) ? KMP_I18N_STR(Tiles) : KMP_I18N_STR(Tile)); 77 case KMP_HW_NUMA: 78 return ((plural) ? KMP_I18N_STR(NumaDomains) : KMP_I18N_STR(NumaDomain)); 79 case KMP_HW_L3: 80 return ((plural) ? KMP_I18N_STR(L3Caches) : KMP_I18N_STR(L3Cache)); 81 case KMP_HW_L2: 82 return ((plural) ? KMP_I18N_STR(L2Caches) : KMP_I18N_STR(L2Cache)); 83 case KMP_HW_L1: 84 return ((plural) ? KMP_I18N_STR(L1Caches) : KMP_I18N_STR(L1Cache)); 85 case KMP_HW_LLC: 86 return ((plural) ? KMP_I18N_STR(LLCaches) : KMP_I18N_STR(LLCache)); 87 case KMP_HW_CORE: 88 return ((plural) ? KMP_I18N_STR(Cores) : KMP_I18N_STR(Core)); 89 case KMP_HW_THREAD: 90 return ((plural) ? KMP_I18N_STR(Threads) : KMP_I18N_STR(Thread)); 91 case KMP_HW_PROC_GROUP: 92 return ((plural) ? KMP_I18N_STR(ProcGroups) : KMP_I18N_STR(ProcGroup)); 93 } 94 return KMP_I18N_STR(Unknown); 95 } 96 97 const char *__kmp_hw_get_keyword(kmp_hw_t type, bool plural) { 98 switch (type) { 99 case KMP_HW_SOCKET: 100 return ((plural) ? "sockets" : "socket"); 101 case KMP_HW_DIE: 102 return ((plural) ? "dice" : "die"); 103 case KMP_HW_MODULE: 104 return ((plural) ? "modules" : "module"); 105 case KMP_HW_TILE: 106 return ((plural) ? "tiles" : "tile"); 107 case KMP_HW_NUMA: 108 return ((plural) ? "numa_domains" : "numa_domain"); 109 case KMP_HW_L3: 110 return ((plural) ? "l3_caches" : "l3_cache"); 111 case KMP_HW_L2: 112 return ((plural) ? "l2_caches" : "l2_cache"); 113 case KMP_HW_L1: 114 return ((plural) ? "l1_caches" : "l1_cache"); 115 case KMP_HW_LLC: 116 return ((plural) ? "ll_caches" : "ll_cache"); 117 case KMP_HW_CORE: 118 return ((plural) ? "cores" : "core"); 119 case KMP_HW_THREAD: 120 return ((plural) ? "threads" : "thread"); 121 case KMP_HW_PROC_GROUP: 122 return ((plural) ? "proc_groups" : "proc_group"); 123 } 124 return ((plural) ? "unknowns" : "unknown"); 125 } 126 127 const char *__kmp_hw_get_core_type_string(kmp_hw_core_type_t type) { 128 switch (type) { 129 case KMP_HW_CORE_TYPE_UNKNOWN: 130 return "unknown"; 131 #if KMP_ARCH_X86 || KMP_ARCH_X86_64 132 case KMP_HW_CORE_TYPE_ATOM: 133 return "Intel Atom(R) processor"; 134 case KMP_HW_CORE_TYPE_CORE: 135 return "Intel(R) Core(TM) processor"; 136 #endif 137 } 138 return "unknown"; 139 } 140 141 #if KMP_AFFINITY_SUPPORTED 142 // If affinity is supported, check the affinity 143 // verbose and warning flags before printing warning 144 #define KMP_AFF_WARNING(s, ...) \ 145 if (s.flags.verbose || (s.flags.warnings && (s.type != affinity_none))) { \ 146 KMP_WARNING(__VA_ARGS__); \ 147 } 148 #else 149 #define KMP_AFF_WARNING(s, ...) KMP_WARNING(__VA_ARGS__) 150 #endif 151 152 //////////////////////////////////////////////////////////////////////////////// 153 // kmp_hw_thread_t methods 154 int kmp_hw_thread_t::compare_ids(const void *a, const void *b) { 155 const kmp_hw_thread_t *ahwthread = (const kmp_hw_thread_t *)a; 156 const kmp_hw_thread_t *bhwthread = (const kmp_hw_thread_t *)b; 157 int depth = __kmp_topology->get_depth(); 158 for (int level = 0; level < depth; ++level) { 159 if (ahwthread->ids[level] < bhwthread->ids[level]) 160 return -1; 161 else if (ahwthread->ids[level] > bhwthread->ids[level]) 162 return 1; 163 } 164 if (ahwthread->os_id < bhwthread->os_id) 165 return -1; 166 else if (ahwthread->os_id > bhwthread->os_id) 167 return 1; 168 return 0; 169 } 170 171 #if KMP_AFFINITY_SUPPORTED 172 int kmp_hw_thread_t::compare_compact(const void *a, const void *b) { 173 int i; 174 const kmp_hw_thread_t *aa = (const kmp_hw_thread_t *)a; 175 const kmp_hw_thread_t *bb = (const kmp_hw_thread_t *)b; 176 int depth = __kmp_topology->get_depth(); 177 int compact = __kmp_topology->compact; 178 KMP_DEBUG_ASSERT(compact >= 0); 179 KMP_DEBUG_ASSERT(compact <= depth); 180 for (i = 0; i < compact; i++) { 181 int j = depth - i - 1; 182 if (aa->sub_ids[j] < bb->sub_ids[j]) 183 return -1; 184 if (aa->sub_ids[j] > bb->sub_ids[j]) 185 return 1; 186 } 187 for (; i < depth; i++) { 188 int j = i - compact; 189 if (aa->sub_ids[j] < bb->sub_ids[j]) 190 return -1; 191 if (aa->sub_ids[j] > bb->sub_ids[j]) 192 return 1; 193 } 194 return 0; 195 } 196 #endif 197 198 void kmp_hw_thread_t::print() const { 199 int depth = __kmp_topology->get_depth(); 200 printf("%4d ", os_id); 201 for (int i = 0; i < depth; ++i) { 202 printf("%4d ", ids[i]); 203 } 204 if (attrs) { 205 if (attrs.is_core_type_valid()) 206 printf(" (%s)", __kmp_hw_get_core_type_string(attrs.get_core_type())); 207 if (attrs.is_core_eff_valid()) 208 printf(" (eff=%d)", attrs.get_core_eff()); 209 } 210 printf("\n"); 211 } 212 213 //////////////////////////////////////////////////////////////////////////////// 214 // kmp_topology_t methods 215 216 // Add a layer to the topology based on the ids. Assume the topology 217 // is perfectly nested (i.e., so no object has more than one parent) 218 void kmp_topology_t::_insert_layer(kmp_hw_t type, const int *ids) { 219 // Figure out where the layer should go by comparing the ids of the current 220 // layers with the new ids 221 int target_layer; 222 int previous_id = kmp_hw_thread_t::UNKNOWN_ID; 223 int previous_new_id = kmp_hw_thread_t::UNKNOWN_ID; 224 225 // Start from the highest layer and work down to find target layer 226 // If new layer is equal to another layer then put the new layer above 227 for (target_layer = 0; target_layer < depth; ++target_layer) { 228 bool layers_equal = true; 229 bool strictly_above_target_layer = false; 230 for (int i = 0; i < num_hw_threads; ++i) { 231 int id = hw_threads[i].ids[target_layer]; 232 int new_id = ids[i]; 233 if (id != previous_id && new_id == previous_new_id) { 234 // Found the layer we are strictly above 235 strictly_above_target_layer = true; 236 layers_equal = false; 237 break; 238 } else if (id == previous_id && new_id != previous_new_id) { 239 // Found a layer we are below. Move to next layer and check. 240 layers_equal = false; 241 break; 242 } 243 previous_id = id; 244 previous_new_id = new_id; 245 } 246 if (strictly_above_target_layer || layers_equal) 247 break; 248 } 249 250 // Found the layer we are above. Now move everything to accommodate the new 251 // layer. And put the new ids and type into the topology. 252 for (int i = depth - 1, j = depth; i >= target_layer; --i, --j) 253 types[j] = types[i]; 254 types[target_layer] = type; 255 for (int k = 0; k < num_hw_threads; ++k) { 256 for (int i = depth - 1, j = depth; i >= target_layer; --i, --j) 257 hw_threads[k].ids[j] = hw_threads[k].ids[i]; 258 hw_threads[k].ids[target_layer] = ids[k]; 259 } 260 equivalent[type] = type; 261 depth++; 262 } 263 264 #if KMP_GROUP_AFFINITY 265 // Insert the Windows Processor Group structure into the topology 266 void kmp_topology_t::_insert_windows_proc_groups() { 267 // Do not insert the processor group structure for a single group 268 if (__kmp_num_proc_groups == 1) 269 return; 270 kmp_affin_mask_t *mask; 271 int *ids = (int *)__kmp_allocate(sizeof(int) * num_hw_threads); 272 KMP_CPU_ALLOC(mask); 273 for (int i = 0; i < num_hw_threads; ++i) { 274 KMP_CPU_ZERO(mask); 275 KMP_CPU_SET(hw_threads[i].os_id, mask); 276 ids[i] = __kmp_get_proc_group(mask); 277 } 278 KMP_CPU_FREE(mask); 279 _insert_layer(KMP_HW_PROC_GROUP, ids); 280 __kmp_free(ids); 281 } 282 #endif 283 284 // Remove layers that don't add information to the topology. 285 // This is done by having the layer take on the id = UNKNOWN_ID (-1) 286 void kmp_topology_t::_remove_radix1_layers() { 287 int preference[KMP_HW_LAST]; 288 int top_index1, top_index2; 289 // Set up preference associative array 290 preference[KMP_HW_SOCKET] = 110; 291 preference[KMP_HW_PROC_GROUP] = 100; 292 preference[KMP_HW_CORE] = 95; 293 preference[KMP_HW_THREAD] = 90; 294 preference[KMP_HW_NUMA] = 85; 295 preference[KMP_HW_DIE] = 80; 296 preference[KMP_HW_TILE] = 75; 297 preference[KMP_HW_MODULE] = 73; 298 preference[KMP_HW_L3] = 70; 299 preference[KMP_HW_L2] = 65; 300 preference[KMP_HW_L1] = 60; 301 preference[KMP_HW_LLC] = 5; 302 top_index1 = 0; 303 top_index2 = 1; 304 while (top_index1 < depth - 1 && top_index2 < depth) { 305 kmp_hw_t type1 = types[top_index1]; 306 kmp_hw_t type2 = types[top_index2]; 307 KMP_ASSERT_VALID_HW_TYPE(type1); 308 KMP_ASSERT_VALID_HW_TYPE(type2); 309 // Do not allow the three main topology levels (sockets, cores, threads) to 310 // be compacted down 311 if ((type1 == KMP_HW_THREAD || type1 == KMP_HW_CORE || 312 type1 == KMP_HW_SOCKET) && 313 (type2 == KMP_HW_THREAD || type2 == KMP_HW_CORE || 314 type2 == KMP_HW_SOCKET)) { 315 top_index1 = top_index2++; 316 continue; 317 } 318 bool radix1 = true; 319 bool all_same = true; 320 int id1 = hw_threads[0].ids[top_index1]; 321 int id2 = hw_threads[0].ids[top_index2]; 322 int pref1 = preference[type1]; 323 int pref2 = preference[type2]; 324 for (int hwidx = 1; hwidx < num_hw_threads; ++hwidx) { 325 if (hw_threads[hwidx].ids[top_index1] == id1 && 326 hw_threads[hwidx].ids[top_index2] != id2) { 327 radix1 = false; 328 break; 329 } 330 if (hw_threads[hwidx].ids[top_index2] != id2) 331 all_same = false; 332 id1 = hw_threads[hwidx].ids[top_index1]; 333 id2 = hw_threads[hwidx].ids[top_index2]; 334 } 335 if (radix1) { 336 // Select the layer to remove based on preference 337 kmp_hw_t remove_type, keep_type; 338 int remove_layer, remove_layer_ids; 339 if (pref1 > pref2) { 340 remove_type = type2; 341 remove_layer = remove_layer_ids = top_index2; 342 keep_type = type1; 343 } else { 344 remove_type = type1; 345 remove_layer = remove_layer_ids = top_index1; 346 keep_type = type2; 347 } 348 // If all the indexes for the second (deeper) layer are the same. 349 // e.g., all are zero, then make sure to keep the first layer's ids 350 if (all_same) 351 remove_layer_ids = top_index2; 352 // Remove radix one type by setting the equivalence, removing the id from 353 // the hw threads and removing the layer from types and depth 354 set_equivalent_type(remove_type, keep_type); 355 for (int idx = 0; idx < num_hw_threads; ++idx) { 356 kmp_hw_thread_t &hw_thread = hw_threads[idx]; 357 for (int d = remove_layer_ids; d < depth - 1; ++d) 358 hw_thread.ids[d] = hw_thread.ids[d + 1]; 359 } 360 for (int idx = remove_layer; idx < depth - 1; ++idx) 361 types[idx] = types[idx + 1]; 362 depth--; 363 } else { 364 top_index1 = top_index2++; 365 } 366 } 367 KMP_ASSERT(depth > 0); 368 } 369 370 void kmp_topology_t::_set_last_level_cache() { 371 if (get_equivalent_type(KMP_HW_L3) != KMP_HW_UNKNOWN) 372 set_equivalent_type(KMP_HW_LLC, KMP_HW_L3); 373 else if (get_equivalent_type(KMP_HW_L2) != KMP_HW_UNKNOWN) 374 set_equivalent_type(KMP_HW_LLC, KMP_HW_L2); 375 #if KMP_MIC_SUPPORTED 376 else if (__kmp_mic_type == mic3) { 377 if (get_equivalent_type(KMP_HW_L2) != KMP_HW_UNKNOWN) 378 set_equivalent_type(KMP_HW_LLC, KMP_HW_L2); 379 else if (get_equivalent_type(KMP_HW_TILE) != KMP_HW_UNKNOWN) 380 set_equivalent_type(KMP_HW_LLC, KMP_HW_TILE); 381 // L2/Tile wasn't detected so just say L1 382 else 383 set_equivalent_type(KMP_HW_LLC, KMP_HW_L1); 384 } 385 #endif 386 else if (get_equivalent_type(KMP_HW_L1) != KMP_HW_UNKNOWN) 387 set_equivalent_type(KMP_HW_LLC, KMP_HW_L1); 388 // Fallback is to set last level cache to socket or core 389 if (get_equivalent_type(KMP_HW_LLC) == KMP_HW_UNKNOWN) { 390 if (get_equivalent_type(KMP_HW_SOCKET) != KMP_HW_UNKNOWN) 391 set_equivalent_type(KMP_HW_LLC, KMP_HW_SOCKET); 392 else if (get_equivalent_type(KMP_HW_CORE) != KMP_HW_UNKNOWN) 393 set_equivalent_type(KMP_HW_LLC, KMP_HW_CORE); 394 } 395 KMP_ASSERT(get_equivalent_type(KMP_HW_LLC) != KMP_HW_UNKNOWN); 396 } 397 398 // Gather the count of each topology layer and the ratio 399 void kmp_topology_t::_gather_enumeration_information() { 400 int previous_id[KMP_HW_LAST]; 401 int max[KMP_HW_LAST]; 402 403 for (int i = 0; i < depth; ++i) { 404 previous_id[i] = kmp_hw_thread_t::UNKNOWN_ID; 405 max[i] = 0; 406 count[i] = 0; 407 ratio[i] = 0; 408 } 409 int core_level = get_level(KMP_HW_CORE); 410 for (int i = 0; i < num_hw_threads; ++i) { 411 kmp_hw_thread_t &hw_thread = hw_threads[i]; 412 for (int layer = 0; layer < depth; ++layer) { 413 int id = hw_thread.ids[layer]; 414 if (id != previous_id[layer]) { 415 // Add an additional increment to each count 416 for (int l = layer; l < depth; ++l) 417 count[l]++; 418 // Keep track of topology layer ratio statistics 419 max[layer]++; 420 for (int l = layer + 1; l < depth; ++l) { 421 if (max[l] > ratio[l]) 422 ratio[l] = max[l]; 423 max[l] = 1; 424 } 425 // Figure out the number of different core types 426 // and efficiencies for hybrid CPUs 427 if (__kmp_is_hybrid_cpu() && core_level >= 0 && layer <= core_level) { 428 if (hw_thread.attrs.is_core_eff_valid() && 429 hw_thread.attrs.core_eff >= num_core_efficiencies) { 430 // Because efficiencies can range from 0 to max efficiency - 1, 431 // the number of efficiencies is max efficiency + 1 432 num_core_efficiencies = hw_thread.attrs.core_eff + 1; 433 } 434 if (hw_thread.attrs.is_core_type_valid()) { 435 bool found = false; 436 for (int j = 0; j < num_core_types; ++j) { 437 if (hw_thread.attrs.get_core_type() == core_types[j]) { 438 found = true; 439 break; 440 } 441 } 442 if (!found) { 443 KMP_ASSERT(num_core_types < KMP_HW_MAX_NUM_CORE_TYPES); 444 core_types[num_core_types++] = hw_thread.attrs.get_core_type(); 445 } 446 } 447 } 448 break; 449 } 450 } 451 for (int layer = 0; layer < depth; ++layer) { 452 previous_id[layer] = hw_thread.ids[layer]; 453 } 454 } 455 for (int layer = 0; layer < depth; ++layer) { 456 if (max[layer] > ratio[layer]) 457 ratio[layer] = max[layer]; 458 } 459 } 460 461 int kmp_topology_t::_get_ncores_with_attr(const kmp_hw_attr_t &attr, 462 int above_level, 463 bool find_all) const { 464 int current, current_max; 465 int previous_id[KMP_HW_LAST]; 466 for (int i = 0; i < depth; ++i) 467 previous_id[i] = kmp_hw_thread_t::UNKNOWN_ID; 468 int core_level = get_level(KMP_HW_CORE); 469 if (find_all) 470 above_level = -1; 471 KMP_ASSERT(above_level < core_level); 472 current_max = 0; 473 current = 0; 474 for (int i = 0; i < num_hw_threads; ++i) { 475 kmp_hw_thread_t &hw_thread = hw_threads[i]; 476 if (!find_all && hw_thread.ids[above_level] != previous_id[above_level]) { 477 if (current > current_max) 478 current_max = current; 479 current = hw_thread.attrs.contains(attr); 480 } else { 481 for (int level = above_level + 1; level <= core_level; ++level) { 482 if (hw_thread.ids[level] != previous_id[level]) { 483 if (hw_thread.attrs.contains(attr)) 484 current++; 485 break; 486 } 487 } 488 } 489 for (int level = 0; level < depth; ++level) 490 previous_id[level] = hw_thread.ids[level]; 491 } 492 if (current > current_max) 493 current_max = current; 494 return current_max; 495 } 496 497 // Find out if the topology is uniform 498 void kmp_topology_t::_discover_uniformity() { 499 int num = 1; 500 for (int level = 0; level < depth; ++level) 501 num *= ratio[level]; 502 flags.uniform = (num == count[depth - 1]); 503 } 504 505 // Set all the sub_ids for each hardware thread 506 void kmp_topology_t::_set_sub_ids() { 507 int previous_id[KMP_HW_LAST]; 508 int sub_id[KMP_HW_LAST]; 509 510 for (int i = 0; i < depth; ++i) { 511 previous_id[i] = -1; 512 sub_id[i] = -1; 513 } 514 for (int i = 0; i < num_hw_threads; ++i) { 515 kmp_hw_thread_t &hw_thread = hw_threads[i]; 516 // Setup the sub_id 517 for (int j = 0; j < depth; ++j) { 518 if (hw_thread.ids[j] != previous_id[j]) { 519 sub_id[j]++; 520 for (int k = j + 1; k < depth; ++k) { 521 sub_id[k] = 0; 522 } 523 break; 524 } 525 } 526 // Set previous_id 527 for (int j = 0; j < depth; ++j) { 528 previous_id[j] = hw_thread.ids[j]; 529 } 530 // Set the sub_ids field 531 for (int j = 0; j < depth; ++j) { 532 hw_thread.sub_ids[j] = sub_id[j]; 533 } 534 } 535 } 536 537 void kmp_topology_t::_set_globals() { 538 // Set nCoresPerPkg, nPackages, __kmp_nThreadsPerCore, __kmp_ncores 539 int core_level, thread_level, package_level; 540 package_level = get_level(KMP_HW_SOCKET); 541 #if KMP_GROUP_AFFINITY 542 if (package_level == -1) 543 package_level = get_level(KMP_HW_PROC_GROUP); 544 #endif 545 core_level = get_level(KMP_HW_CORE); 546 thread_level = get_level(KMP_HW_THREAD); 547 548 KMP_ASSERT(core_level != -1); 549 KMP_ASSERT(thread_level != -1); 550 551 __kmp_nThreadsPerCore = calculate_ratio(thread_level, core_level); 552 if (package_level != -1) { 553 nCoresPerPkg = calculate_ratio(core_level, package_level); 554 nPackages = get_count(package_level); 555 } else { 556 // assume one socket 557 nCoresPerPkg = get_count(core_level); 558 nPackages = 1; 559 } 560 #ifndef KMP_DFLT_NTH_CORES 561 __kmp_ncores = get_count(core_level); 562 #endif 563 } 564 565 kmp_topology_t *kmp_topology_t::allocate(int nproc, int ndepth, 566 const kmp_hw_t *types) { 567 kmp_topology_t *retval; 568 // Allocate all data in one large allocation 569 size_t size = sizeof(kmp_topology_t) + sizeof(kmp_hw_thread_t) * nproc + 570 sizeof(int) * (size_t)KMP_HW_LAST * 3; 571 char *bytes = (char *)__kmp_allocate(size); 572 retval = (kmp_topology_t *)bytes; 573 if (nproc > 0) { 574 retval->hw_threads = (kmp_hw_thread_t *)(bytes + sizeof(kmp_topology_t)); 575 } else { 576 retval->hw_threads = nullptr; 577 } 578 retval->num_hw_threads = nproc; 579 retval->depth = ndepth; 580 int *arr = 581 (int *)(bytes + sizeof(kmp_topology_t) + sizeof(kmp_hw_thread_t) * nproc); 582 retval->types = (kmp_hw_t *)arr; 583 retval->ratio = arr + (size_t)KMP_HW_LAST; 584 retval->count = arr + 2 * (size_t)KMP_HW_LAST; 585 retval->num_core_efficiencies = 0; 586 retval->num_core_types = 0; 587 retval->compact = 0; 588 for (int i = 0; i < KMP_HW_MAX_NUM_CORE_TYPES; ++i) 589 retval->core_types[i] = KMP_HW_CORE_TYPE_UNKNOWN; 590 KMP_FOREACH_HW_TYPE(type) { retval->equivalent[type] = KMP_HW_UNKNOWN; } 591 for (int i = 0; i < ndepth; ++i) { 592 retval->types[i] = types[i]; 593 retval->equivalent[types[i]] = types[i]; 594 } 595 return retval; 596 } 597 598 void kmp_topology_t::deallocate(kmp_topology_t *topology) { 599 if (topology) 600 __kmp_free(topology); 601 } 602 603 bool kmp_topology_t::check_ids() const { 604 // Assume ids have been sorted 605 if (num_hw_threads == 0) 606 return true; 607 for (int i = 1; i < num_hw_threads; ++i) { 608 kmp_hw_thread_t ¤t_thread = hw_threads[i]; 609 kmp_hw_thread_t &previous_thread = hw_threads[i - 1]; 610 bool unique = false; 611 for (int j = 0; j < depth; ++j) { 612 if (previous_thread.ids[j] != current_thread.ids[j]) { 613 unique = true; 614 break; 615 } 616 } 617 if (unique) 618 continue; 619 return false; 620 } 621 return true; 622 } 623 624 void kmp_topology_t::dump() const { 625 printf("***********************\n"); 626 printf("*** __kmp_topology: ***\n"); 627 printf("***********************\n"); 628 printf("* depth: %d\n", depth); 629 630 printf("* types: "); 631 for (int i = 0; i < depth; ++i) 632 printf("%15s ", __kmp_hw_get_keyword(types[i])); 633 printf("\n"); 634 635 printf("* ratio: "); 636 for (int i = 0; i < depth; ++i) { 637 printf("%15d ", ratio[i]); 638 } 639 printf("\n"); 640 641 printf("* count: "); 642 for (int i = 0; i < depth; ++i) { 643 printf("%15d ", count[i]); 644 } 645 printf("\n"); 646 647 printf("* num_core_eff: %d\n", num_core_efficiencies); 648 printf("* num_core_types: %d\n", num_core_types); 649 printf("* core_types: "); 650 for (int i = 0; i < num_core_types; ++i) 651 printf("%3d ", core_types[i]); 652 printf("\n"); 653 654 printf("* equivalent map:\n"); 655 KMP_FOREACH_HW_TYPE(i) { 656 const char *key = __kmp_hw_get_keyword(i); 657 const char *value = __kmp_hw_get_keyword(equivalent[i]); 658 printf("%-15s -> %-15s\n", key, value); 659 } 660 661 printf("* uniform: %s\n", (is_uniform() ? "Yes" : "No")); 662 663 printf("* num_hw_threads: %d\n", num_hw_threads); 664 printf("* hw_threads:\n"); 665 for (int i = 0; i < num_hw_threads; ++i) { 666 hw_threads[i].print(); 667 } 668 printf("***********************\n"); 669 } 670 671 void kmp_topology_t::print(const char *env_var) const { 672 kmp_str_buf_t buf; 673 int print_types_depth; 674 __kmp_str_buf_init(&buf); 675 kmp_hw_t print_types[KMP_HW_LAST + 2]; 676 677 // Num Available Threads 678 if (num_hw_threads) { 679 KMP_INFORM(AvailableOSProc, env_var, num_hw_threads); 680 } else { 681 KMP_INFORM(AvailableOSProc, env_var, __kmp_xproc); 682 } 683 684 // Uniform or not 685 if (is_uniform()) { 686 KMP_INFORM(Uniform, env_var); 687 } else { 688 KMP_INFORM(NonUniform, env_var); 689 } 690 691 // Equivalent types 692 KMP_FOREACH_HW_TYPE(type) { 693 kmp_hw_t eq_type = equivalent[type]; 694 if (eq_type != KMP_HW_UNKNOWN && eq_type != type) { 695 KMP_INFORM(AffEqualTopologyTypes, env_var, 696 __kmp_hw_get_catalog_string(type), 697 __kmp_hw_get_catalog_string(eq_type)); 698 } 699 } 700 701 // Quick topology 702 KMP_ASSERT(depth > 0 && depth <= (int)KMP_HW_LAST); 703 // Create a print types array that always guarantees printing 704 // the core and thread level 705 print_types_depth = 0; 706 for (int level = 0; level < depth; ++level) 707 print_types[print_types_depth++] = types[level]; 708 if (equivalent[KMP_HW_CORE] != KMP_HW_CORE) { 709 // Force in the core level for quick topology 710 if (print_types[print_types_depth - 1] == KMP_HW_THREAD) { 711 // Force core before thread e.g., 1 socket X 2 threads/socket 712 // becomes 1 socket X 1 core/socket X 2 threads/socket 713 print_types[print_types_depth - 1] = KMP_HW_CORE; 714 print_types[print_types_depth++] = KMP_HW_THREAD; 715 } else { 716 print_types[print_types_depth++] = KMP_HW_CORE; 717 } 718 } 719 // Always put threads at very end of quick topology 720 if (equivalent[KMP_HW_THREAD] != KMP_HW_THREAD) 721 print_types[print_types_depth++] = KMP_HW_THREAD; 722 723 __kmp_str_buf_clear(&buf); 724 kmp_hw_t numerator_type; 725 kmp_hw_t denominator_type = KMP_HW_UNKNOWN; 726 int core_level = get_level(KMP_HW_CORE); 727 int ncores = get_count(core_level); 728 729 for (int plevel = 0, level = 0; plevel < print_types_depth; ++plevel) { 730 int c; 731 bool plural; 732 numerator_type = print_types[plevel]; 733 KMP_ASSERT_VALID_HW_TYPE(numerator_type); 734 if (equivalent[numerator_type] != numerator_type) 735 c = 1; 736 else 737 c = get_ratio(level++); 738 plural = (c > 1); 739 if (plevel == 0) { 740 __kmp_str_buf_print(&buf, "%d %s", c, 741 __kmp_hw_get_catalog_string(numerator_type, plural)); 742 } else { 743 __kmp_str_buf_print(&buf, " x %d %s/%s", c, 744 __kmp_hw_get_catalog_string(numerator_type, plural), 745 __kmp_hw_get_catalog_string(denominator_type)); 746 } 747 denominator_type = numerator_type; 748 } 749 KMP_INFORM(TopologyGeneric, env_var, buf.str, ncores); 750 751 // Hybrid topology information 752 if (__kmp_is_hybrid_cpu()) { 753 for (int i = 0; i < num_core_types; ++i) { 754 kmp_hw_core_type_t core_type = core_types[i]; 755 kmp_hw_attr_t attr; 756 attr.clear(); 757 attr.set_core_type(core_type); 758 int ncores = get_ncores_with_attr(attr); 759 if (ncores > 0) { 760 KMP_INFORM(TopologyHybrid, env_var, ncores, 761 __kmp_hw_get_core_type_string(core_type)); 762 KMP_ASSERT(num_core_efficiencies <= KMP_HW_MAX_NUM_CORE_EFFS) 763 for (int eff = 0; eff < num_core_efficiencies; ++eff) { 764 attr.set_core_eff(eff); 765 int ncores_with_eff = get_ncores_with_attr(attr); 766 if (ncores_with_eff > 0) { 767 KMP_INFORM(TopologyHybridCoreEff, env_var, ncores_with_eff, eff); 768 } 769 } 770 } 771 } 772 } 773 774 if (num_hw_threads <= 0) { 775 __kmp_str_buf_free(&buf); 776 return; 777 } 778 779 // Full OS proc to hardware thread map 780 KMP_INFORM(OSProcToPhysicalThreadMap, env_var); 781 for (int i = 0; i < num_hw_threads; i++) { 782 __kmp_str_buf_clear(&buf); 783 for (int level = 0; level < depth; ++level) { 784 kmp_hw_t type = types[level]; 785 __kmp_str_buf_print(&buf, "%s ", __kmp_hw_get_catalog_string(type)); 786 __kmp_str_buf_print(&buf, "%d ", hw_threads[i].ids[level]); 787 } 788 if (__kmp_is_hybrid_cpu()) 789 __kmp_str_buf_print( 790 &buf, "(%s)", 791 __kmp_hw_get_core_type_string(hw_threads[i].attrs.get_core_type())); 792 KMP_INFORM(OSProcMapToPack, env_var, hw_threads[i].os_id, buf.str); 793 } 794 795 __kmp_str_buf_free(&buf); 796 } 797 798 #if KMP_AFFINITY_SUPPORTED 799 void kmp_topology_t::set_granularity(kmp_affinity_t &affinity) const { 800 const char *env_var = affinity.env_var; 801 // Set the number of affinity granularity levels 802 if (affinity.gran_levels < 0) { 803 kmp_hw_t gran_type = get_equivalent_type(affinity.gran); 804 // Check if user's granularity request is valid 805 if (gran_type == KMP_HW_UNKNOWN) { 806 // First try core, then thread, then package 807 kmp_hw_t gran_types[3] = {KMP_HW_CORE, KMP_HW_THREAD, KMP_HW_SOCKET}; 808 for (auto g : gran_types) { 809 if (get_equivalent_type(g) != KMP_HW_UNKNOWN) { 810 gran_type = g; 811 break; 812 } 813 } 814 KMP_ASSERT(gran_type != KMP_HW_UNKNOWN); 815 // Warn user what granularity setting will be used instead 816 KMP_AFF_WARNING(affinity, AffGranularityBad, env_var, 817 __kmp_hw_get_catalog_string(affinity.gran), 818 __kmp_hw_get_catalog_string(gran_type)); 819 affinity.gran = gran_type; 820 } 821 #if KMP_GROUP_AFFINITY 822 // If more than one processor group exists, and the level of 823 // granularity specified by the user is too coarse, then the 824 // granularity must be adjusted "down" to processor group affinity 825 // because threads can only exist within one processor group. 826 // For example, if a user sets granularity=socket and there are two 827 // processor groups that cover a socket, then the runtime must 828 // restrict the granularity down to the processor group level. 829 if (__kmp_num_proc_groups > 1) { 830 int gran_depth = get_level(gran_type); 831 int proc_group_depth = get_level(KMP_HW_PROC_GROUP); 832 if (gran_depth >= 0 && proc_group_depth >= 0 && 833 gran_depth < proc_group_depth) { 834 KMP_AFF_WARNING(affinity, AffGranTooCoarseProcGroup, env_var, 835 __kmp_hw_get_catalog_string(affinity.gran)); 836 affinity.gran = gran_type = KMP_HW_PROC_GROUP; 837 } 838 } 839 #endif 840 affinity.gran_levels = 0; 841 for (int i = depth - 1; i >= 0 && get_type(i) != gran_type; --i) 842 affinity.gran_levels++; 843 } 844 } 845 #endif 846 847 void kmp_topology_t::canonicalize() { 848 #if KMP_GROUP_AFFINITY 849 _insert_windows_proc_groups(); 850 #endif 851 _remove_radix1_layers(); 852 _gather_enumeration_information(); 853 _discover_uniformity(); 854 _set_sub_ids(); 855 _set_globals(); 856 _set_last_level_cache(); 857 858 #if KMP_MIC_SUPPORTED 859 // Manually Add L2 = Tile equivalence 860 if (__kmp_mic_type == mic3) { 861 if (get_level(KMP_HW_L2) != -1) 862 set_equivalent_type(KMP_HW_TILE, KMP_HW_L2); 863 else if (get_level(KMP_HW_TILE) != -1) 864 set_equivalent_type(KMP_HW_L2, KMP_HW_TILE); 865 } 866 #endif 867 868 // Perform post canonicalization checking 869 KMP_ASSERT(depth > 0); 870 for (int level = 0; level < depth; ++level) { 871 // All counts, ratios, and types must be valid 872 KMP_ASSERT(count[level] > 0 && ratio[level] > 0); 873 KMP_ASSERT_VALID_HW_TYPE(types[level]); 874 // Detected types must point to themselves 875 KMP_ASSERT(equivalent[types[level]] == types[level]); 876 } 877 } 878 879 // Canonicalize an explicit packages X cores/pkg X threads/core topology 880 void kmp_topology_t::canonicalize(int npackages, int ncores_per_pkg, 881 int nthreads_per_core, int ncores) { 882 int ndepth = 3; 883 depth = ndepth; 884 KMP_FOREACH_HW_TYPE(i) { equivalent[i] = KMP_HW_UNKNOWN; } 885 for (int level = 0; level < depth; ++level) { 886 count[level] = 0; 887 ratio[level] = 0; 888 } 889 count[0] = npackages; 890 count[1] = ncores; 891 count[2] = __kmp_xproc; 892 ratio[0] = npackages; 893 ratio[1] = ncores_per_pkg; 894 ratio[2] = nthreads_per_core; 895 equivalent[KMP_HW_SOCKET] = KMP_HW_SOCKET; 896 equivalent[KMP_HW_CORE] = KMP_HW_CORE; 897 equivalent[KMP_HW_THREAD] = KMP_HW_THREAD; 898 types[0] = KMP_HW_SOCKET; 899 types[1] = KMP_HW_CORE; 900 types[2] = KMP_HW_THREAD; 901 //__kmp_avail_proc = __kmp_xproc; 902 _discover_uniformity(); 903 } 904 905 // Represents running sub IDs for a single core attribute where 906 // attribute values have SIZE possibilities. 907 template <size_t SIZE, typename IndexFunc> struct kmp_sub_ids_t { 908 int last_level; // last level in topology to consider for sub_ids 909 int sub_id[SIZE]; // The sub ID for a given attribute value 910 int prev_sub_id[KMP_HW_LAST]; 911 IndexFunc indexer; 912 913 public: 914 kmp_sub_ids_t(int last_level) : last_level(last_level) { 915 KMP_ASSERT(last_level < KMP_HW_LAST); 916 for (size_t i = 0; i < SIZE; ++i) 917 sub_id[i] = -1; 918 for (size_t i = 0; i < KMP_HW_LAST; ++i) 919 prev_sub_id[i] = -1; 920 } 921 void update(const kmp_hw_thread_t &hw_thread) { 922 int idx = indexer(hw_thread); 923 KMP_ASSERT(idx < (int)SIZE); 924 for (int level = 0; level <= last_level; ++level) { 925 if (hw_thread.sub_ids[level] != prev_sub_id[level]) { 926 if (level < last_level) 927 sub_id[idx] = -1; 928 sub_id[idx]++; 929 break; 930 } 931 } 932 for (int level = 0; level <= last_level; ++level) 933 prev_sub_id[level] = hw_thread.sub_ids[level]; 934 } 935 int get_sub_id(const kmp_hw_thread_t &hw_thread) const { 936 return sub_id[indexer(hw_thread)]; 937 } 938 }; 939 940 static kmp_str_buf_t * 941 __kmp_hw_get_catalog_core_string(const kmp_hw_attr_t &attr, kmp_str_buf_t *buf, 942 bool plural) { 943 __kmp_str_buf_init(buf); 944 if (attr.is_core_type_valid()) 945 __kmp_str_buf_print(buf, "%s %s", 946 __kmp_hw_get_core_type_string(attr.get_core_type()), 947 __kmp_hw_get_catalog_string(KMP_HW_CORE, plural)); 948 else 949 __kmp_str_buf_print(buf, "%s eff=%d", 950 __kmp_hw_get_catalog_string(KMP_HW_CORE, plural), 951 attr.get_core_eff()); 952 return buf; 953 } 954 955 // Apply the KMP_HW_SUBSET envirable to the topology 956 // Returns true if KMP_HW_SUBSET filtered any processors 957 // otherwise, returns false 958 bool kmp_topology_t::filter_hw_subset() { 959 // If KMP_HW_SUBSET wasn't requested, then do nothing. 960 if (!__kmp_hw_subset) 961 return false; 962 963 // First, sort the KMP_HW_SUBSET items by the machine topology 964 __kmp_hw_subset->sort(); 965 966 // Check to see if KMP_HW_SUBSET is a valid subset of the detected topology 967 bool using_core_types = false; 968 bool using_core_effs = false; 969 int hw_subset_depth = __kmp_hw_subset->get_depth(); 970 kmp_hw_t specified[KMP_HW_LAST]; 971 int *topology_levels = (int *)KMP_ALLOCA(sizeof(int) * hw_subset_depth); 972 KMP_ASSERT(hw_subset_depth > 0); 973 KMP_FOREACH_HW_TYPE(i) { specified[i] = KMP_HW_UNKNOWN; } 974 int core_level = get_level(KMP_HW_CORE); 975 for (int i = 0; i < hw_subset_depth; ++i) { 976 int max_count; 977 const kmp_hw_subset_t::item_t &item = __kmp_hw_subset->at(i); 978 int num = item.num[0]; 979 int offset = item.offset[0]; 980 kmp_hw_t type = item.type; 981 kmp_hw_t equivalent_type = equivalent[type]; 982 int level = get_level(type); 983 topology_levels[i] = level; 984 985 // Check to see if current layer is in detected machine topology 986 if (equivalent_type != KMP_HW_UNKNOWN) { 987 __kmp_hw_subset->at(i).type = equivalent_type; 988 } else { 989 KMP_AFF_WARNING(__kmp_affinity, AffHWSubsetNotExistGeneric, 990 __kmp_hw_get_catalog_string(type)); 991 return false; 992 } 993 994 // Check to see if current layer has already been 995 // specified either directly or through an equivalent type 996 if (specified[equivalent_type] != KMP_HW_UNKNOWN) { 997 KMP_AFF_WARNING(__kmp_affinity, AffHWSubsetEqvLayers, 998 __kmp_hw_get_catalog_string(type), 999 __kmp_hw_get_catalog_string(specified[equivalent_type])); 1000 return false; 1001 } 1002 specified[equivalent_type] = type; 1003 1004 // Check to see if each layer's num & offset parameters are valid 1005 max_count = get_ratio(level); 1006 if (max_count < 0 || 1007 (num != kmp_hw_subset_t::USE_ALL && num + offset > max_count)) { 1008 bool plural = (num > 1); 1009 KMP_AFF_WARNING(__kmp_affinity, AffHWSubsetManyGeneric, 1010 __kmp_hw_get_catalog_string(type, plural)); 1011 return false; 1012 } 1013 1014 // Check to see if core attributes are consistent 1015 if (core_level == level) { 1016 // Determine which core attributes are specified 1017 for (int j = 0; j < item.num_attrs; ++j) { 1018 if (item.attr[j].is_core_type_valid()) 1019 using_core_types = true; 1020 if (item.attr[j].is_core_eff_valid()) 1021 using_core_effs = true; 1022 } 1023 1024 // Check if using a single core attribute on non-hybrid arch. 1025 // Do not ignore all of KMP_HW_SUBSET, just ignore the attribute. 1026 // 1027 // Check if using multiple core attributes on non-hyrbid arch. 1028 // Ignore all of KMP_HW_SUBSET if this is the case. 1029 if ((using_core_effs || using_core_types) && !__kmp_is_hybrid_cpu()) { 1030 if (item.num_attrs == 1) { 1031 if (using_core_effs) { 1032 KMP_AFF_WARNING(__kmp_affinity, AffHWSubsetIgnoringAttr, 1033 "efficiency"); 1034 } else { 1035 KMP_AFF_WARNING(__kmp_affinity, AffHWSubsetIgnoringAttr, 1036 "core_type"); 1037 } 1038 using_core_effs = false; 1039 using_core_types = false; 1040 } else { 1041 KMP_AFF_WARNING(__kmp_affinity, AffHWSubsetAttrsNonHybrid); 1042 return false; 1043 } 1044 } 1045 1046 // Check if using both core types and core efficiencies together 1047 if (using_core_types && using_core_effs) { 1048 KMP_AFF_WARNING(__kmp_affinity, AffHWSubsetIncompat, "core_type", 1049 "efficiency"); 1050 return false; 1051 } 1052 1053 // Check that core efficiency values are valid 1054 if (using_core_effs) { 1055 for (int j = 0; j < item.num_attrs; ++j) { 1056 if (item.attr[j].is_core_eff_valid()) { 1057 int core_eff = item.attr[j].get_core_eff(); 1058 if (core_eff < 0 || core_eff >= num_core_efficiencies) { 1059 kmp_str_buf_t buf; 1060 __kmp_str_buf_init(&buf); 1061 __kmp_str_buf_print(&buf, "%d", item.attr[j].get_core_eff()); 1062 __kmp_msg(kmp_ms_warning, 1063 KMP_MSG(AffHWSubsetAttrInvalid, "efficiency", buf.str), 1064 KMP_HNT(ValidValuesRange, 0, num_core_efficiencies - 1), 1065 __kmp_msg_null); 1066 __kmp_str_buf_free(&buf); 1067 return false; 1068 } 1069 } 1070 } 1071 } 1072 1073 // Check that the number of requested cores with attributes is valid 1074 if (using_core_types || using_core_effs) { 1075 for (int j = 0; j < item.num_attrs; ++j) { 1076 int num = item.num[j]; 1077 int offset = item.offset[j]; 1078 int level_above = core_level - 1; 1079 if (level_above >= 0) { 1080 max_count = get_ncores_with_attr_per(item.attr[j], level_above); 1081 if (max_count <= 0 || 1082 (num != kmp_hw_subset_t::USE_ALL && num + offset > max_count)) { 1083 kmp_str_buf_t buf; 1084 __kmp_hw_get_catalog_core_string(item.attr[j], &buf, num > 0); 1085 KMP_AFF_WARNING(__kmp_affinity, AffHWSubsetManyGeneric, buf.str); 1086 __kmp_str_buf_free(&buf); 1087 return false; 1088 } 1089 } 1090 } 1091 } 1092 1093 if ((using_core_types || using_core_effs) && item.num_attrs > 1) { 1094 for (int j = 0; j < item.num_attrs; ++j) { 1095 // Ambiguous use of specific core attribute + generic core 1096 // e.g., 4c & 3c:intel_core or 4c & 3c:eff1 1097 if (!item.attr[j]) { 1098 kmp_hw_attr_t other_attr; 1099 for (int k = 0; k < item.num_attrs; ++k) { 1100 if (item.attr[k] != item.attr[j]) { 1101 other_attr = item.attr[k]; 1102 break; 1103 } 1104 } 1105 kmp_str_buf_t buf; 1106 __kmp_hw_get_catalog_core_string(other_attr, &buf, item.num[j] > 0); 1107 KMP_AFF_WARNING(__kmp_affinity, AffHWSubsetIncompat, 1108 __kmp_hw_get_catalog_string(KMP_HW_CORE), buf.str); 1109 __kmp_str_buf_free(&buf); 1110 return false; 1111 } 1112 // Allow specifying a specific core type or core eff exactly once 1113 for (int k = 0; k < j; ++k) { 1114 if (!item.attr[j] || !item.attr[k]) 1115 continue; 1116 if (item.attr[k] == item.attr[j]) { 1117 kmp_str_buf_t buf; 1118 __kmp_hw_get_catalog_core_string(item.attr[j], &buf, 1119 item.num[j] > 0); 1120 KMP_AFF_WARNING(__kmp_affinity, AffHWSubsetAttrRepeat, buf.str); 1121 __kmp_str_buf_free(&buf); 1122 return false; 1123 } 1124 } 1125 } 1126 } 1127 } 1128 } 1129 1130 struct core_type_indexer { 1131 int operator()(const kmp_hw_thread_t &t) const { 1132 switch (t.attrs.get_core_type()) { 1133 #if KMP_ARCH_X86 || KMP_ARCH_X86_64 1134 case KMP_HW_CORE_TYPE_ATOM: 1135 return 1; 1136 case KMP_HW_CORE_TYPE_CORE: 1137 return 2; 1138 #endif 1139 case KMP_HW_CORE_TYPE_UNKNOWN: 1140 return 0; 1141 } 1142 KMP_ASSERT(0); 1143 return 0; 1144 } 1145 }; 1146 struct core_eff_indexer { 1147 int operator()(const kmp_hw_thread_t &t) const { 1148 return t.attrs.get_core_eff(); 1149 } 1150 }; 1151 1152 kmp_sub_ids_t<KMP_HW_MAX_NUM_CORE_TYPES, core_type_indexer> core_type_sub_ids( 1153 core_level); 1154 kmp_sub_ids_t<KMP_HW_MAX_NUM_CORE_EFFS, core_eff_indexer> core_eff_sub_ids( 1155 core_level); 1156 1157 // Determine which hardware threads should be filtered. 1158 int num_filtered = 0; 1159 bool *filtered = (bool *)__kmp_allocate(sizeof(bool) * num_hw_threads); 1160 for (int i = 0; i < num_hw_threads; ++i) { 1161 kmp_hw_thread_t &hw_thread = hw_threads[i]; 1162 // Update type_sub_id 1163 if (using_core_types) 1164 core_type_sub_ids.update(hw_thread); 1165 if (using_core_effs) 1166 core_eff_sub_ids.update(hw_thread); 1167 1168 // Check to see if this hardware thread should be filtered 1169 bool should_be_filtered = false; 1170 for (int hw_subset_index = 0; hw_subset_index < hw_subset_depth; 1171 ++hw_subset_index) { 1172 const auto &hw_subset_item = __kmp_hw_subset->at(hw_subset_index); 1173 int level = topology_levels[hw_subset_index]; 1174 if (level == -1) 1175 continue; 1176 if ((using_core_effs || using_core_types) && level == core_level) { 1177 // Look for the core attribute in KMP_HW_SUBSET which corresponds 1178 // to this hardware thread's core attribute. Use this num,offset plus 1179 // the running sub_id for the particular core attribute of this hardware 1180 // thread to determine if the hardware thread should be filtered or not. 1181 int attr_idx; 1182 kmp_hw_core_type_t core_type = hw_thread.attrs.get_core_type(); 1183 int core_eff = hw_thread.attrs.get_core_eff(); 1184 for (attr_idx = 0; attr_idx < hw_subset_item.num_attrs; ++attr_idx) { 1185 if (using_core_types && 1186 hw_subset_item.attr[attr_idx].get_core_type() == core_type) 1187 break; 1188 if (using_core_effs && 1189 hw_subset_item.attr[attr_idx].get_core_eff() == core_eff) 1190 break; 1191 } 1192 // This core attribute isn't in the KMP_HW_SUBSET so always filter it. 1193 if (attr_idx == hw_subset_item.num_attrs) { 1194 should_be_filtered = true; 1195 break; 1196 } 1197 int sub_id; 1198 int num = hw_subset_item.num[attr_idx]; 1199 int offset = hw_subset_item.offset[attr_idx]; 1200 if (using_core_types) 1201 sub_id = core_type_sub_ids.get_sub_id(hw_thread); 1202 else 1203 sub_id = core_eff_sub_ids.get_sub_id(hw_thread); 1204 if (sub_id < offset || 1205 (num != kmp_hw_subset_t::USE_ALL && sub_id >= offset + num)) { 1206 should_be_filtered = true; 1207 break; 1208 } 1209 } else { 1210 int num = hw_subset_item.num[0]; 1211 int offset = hw_subset_item.offset[0]; 1212 if (hw_thread.sub_ids[level] < offset || 1213 (num != kmp_hw_subset_t::USE_ALL && 1214 hw_thread.sub_ids[level] >= offset + num)) { 1215 should_be_filtered = true; 1216 break; 1217 } 1218 } 1219 } 1220 // Collect filtering information 1221 filtered[i] = should_be_filtered; 1222 if (should_be_filtered) 1223 num_filtered++; 1224 } 1225 1226 // One last check that we shouldn't allow filtering entire machine 1227 if (num_filtered == num_hw_threads) { 1228 KMP_AFF_WARNING(__kmp_affinity, AffHWSubsetAllFiltered); 1229 __kmp_free(filtered); 1230 return false; 1231 } 1232 1233 // Apply the filter 1234 int new_index = 0; 1235 for (int i = 0; i < num_hw_threads; ++i) { 1236 if (!filtered[i]) { 1237 if (i != new_index) 1238 hw_threads[new_index] = hw_threads[i]; 1239 new_index++; 1240 } else { 1241 #if KMP_AFFINITY_SUPPORTED 1242 KMP_CPU_CLR(hw_threads[i].os_id, __kmp_affin_fullMask); 1243 #endif 1244 __kmp_avail_proc--; 1245 } 1246 } 1247 1248 KMP_DEBUG_ASSERT(new_index <= num_hw_threads); 1249 num_hw_threads = new_index; 1250 1251 // Post hardware subset canonicalization 1252 _gather_enumeration_information(); 1253 _discover_uniformity(); 1254 _set_globals(); 1255 _set_last_level_cache(); 1256 __kmp_free(filtered); 1257 return true; 1258 } 1259 1260 bool kmp_topology_t::is_close(int hwt1, int hwt2, int hw_level) const { 1261 if (hw_level >= depth) 1262 return true; 1263 bool retval = true; 1264 const kmp_hw_thread_t &t1 = hw_threads[hwt1]; 1265 const kmp_hw_thread_t &t2 = hw_threads[hwt2]; 1266 for (int i = 0; i < (depth - hw_level); ++i) { 1267 if (t1.ids[i] != t2.ids[i]) 1268 return false; 1269 } 1270 return retval; 1271 } 1272 1273 //////////////////////////////////////////////////////////////////////////////// 1274 1275 #if KMP_AFFINITY_SUPPORTED 1276 1277 bool KMPAffinity::picked_api = false; 1278 1279 void *KMPAffinity::Mask::operator new(size_t n) { return __kmp_allocate(n); } 1280 void *KMPAffinity::Mask::operator new[](size_t n) { return __kmp_allocate(n); } 1281 void KMPAffinity::Mask::operator delete(void *p) { __kmp_free(p); } 1282 void KMPAffinity::Mask::operator delete[](void *p) { __kmp_free(p); } 1283 void *KMPAffinity::operator new(size_t n) { return __kmp_allocate(n); } 1284 void KMPAffinity::operator delete(void *p) { __kmp_free(p); } 1285 1286 void KMPAffinity::pick_api() { 1287 KMPAffinity *affinity_dispatch; 1288 if (picked_api) 1289 return; 1290 #if KMP_USE_HWLOC 1291 // Only use Hwloc if affinity isn't explicitly disabled and 1292 // user requests Hwloc topology method 1293 if (__kmp_affinity_top_method == affinity_top_method_hwloc && 1294 __kmp_affinity.type != affinity_disabled) { 1295 affinity_dispatch = new KMPHwlocAffinity(); 1296 } else 1297 #endif 1298 { 1299 affinity_dispatch = new KMPNativeAffinity(); 1300 } 1301 __kmp_affinity_dispatch = affinity_dispatch; 1302 picked_api = true; 1303 } 1304 1305 void KMPAffinity::destroy_api() { 1306 if (__kmp_affinity_dispatch != NULL) { 1307 delete __kmp_affinity_dispatch; 1308 __kmp_affinity_dispatch = NULL; 1309 picked_api = false; 1310 } 1311 } 1312 1313 #define KMP_ADVANCE_SCAN(scan) \ 1314 while (*scan != '\0') { \ 1315 scan++; \ 1316 } 1317 1318 // Print the affinity mask to the character array in a pretty format. 1319 // The format is a comma separated list of non-negative integers or integer 1320 // ranges: e.g., 1,2,3-5,7,9-15 1321 // The format can also be the string "{<empty>}" if no bits are set in mask 1322 char *__kmp_affinity_print_mask(char *buf, int buf_len, 1323 kmp_affin_mask_t *mask) { 1324 int start = 0, finish = 0, previous = 0; 1325 bool first_range; 1326 KMP_ASSERT(buf); 1327 KMP_ASSERT(buf_len >= 40); 1328 KMP_ASSERT(mask); 1329 char *scan = buf; 1330 char *end = buf + buf_len - 1; 1331 1332 // Check for empty set. 1333 if (mask->begin() == mask->end()) { 1334 KMP_SNPRINTF(scan, end - scan + 1, "{<empty>}"); 1335 KMP_ADVANCE_SCAN(scan); 1336 KMP_ASSERT(scan <= end); 1337 return buf; 1338 } 1339 1340 first_range = true; 1341 start = mask->begin(); 1342 while (1) { 1343 // Find next range 1344 // [start, previous] is inclusive range of contiguous bits in mask 1345 for (finish = mask->next(start), previous = start; 1346 finish == previous + 1 && finish != mask->end(); 1347 finish = mask->next(finish)) { 1348 previous = finish; 1349 } 1350 1351 // The first range does not need a comma printed before it, but the rest 1352 // of the ranges do need a comma beforehand 1353 if (!first_range) { 1354 KMP_SNPRINTF(scan, end - scan + 1, "%s", ","); 1355 KMP_ADVANCE_SCAN(scan); 1356 } else { 1357 first_range = false; 1358 } 1359 // Range with three or more contiguous bits in the affinity mask 1360 if (previous - start > 1) { 1361 KMP_SNPRINTF(scan, end - scan + 1, "%u-%u", start, previous); 1362 } else { 1363 // Range with one or two contiguous bits in the affinity mask 1364 KMP_SNPRINTF(scan, end - scan + 1, "%u", start); 1365 KMP_ADVANCE_SCAN(scan); 1366 if (previous - start > 0) { 1367 KMP_SNPRINTF(scan, end - scan + 1, ",%u", previous); 1368 } 1369 } 1370 KMP_ADVANCE_SCAN(scan); 1371 // Start over with new start point 1372 start = finish; 1373 if (start == mask->end()) 1374 break; 1375 // Check for overflow 1376 if (end - scan < 2) 1377 break; 1378 } 1379 1380 // Check for overflow 1381 KMP_ASSERT(scan <= end); 1382 return buf; 1383 } 1384 #undef KMP_ADVANCE_SCAN 1385 1386 // Print the affinity mask to the string buffer object in a pretty format 1387 // The format is a comma separated list of non-negative integers or integer 1388 // ranges: e.g., 1,2,3-5,7,9-15 1389 // The format can also be the string "{<empty>}" if no bits are set in mask 1390 kmp_str_buf_t *__kmp_affinity_str_buf_mask(kmp_str_buf_t *buf, 1391 kmp_affin_mask_t *mask) { 1392 int start = 0, finish = 0, previous = 0; 1393 bool first_range; 1394 KMP_ASSERT(buf); 1395 KMP_ASSERT(mask); 1396 1397 __kmp_str_buf_clear(buf); 1398 1399 // Check for empty set. 1400 if (mask->begin() == mask->end()) { 1401 __kmp_str_buf_print(buf, "%s", "{<empty>}"); 1402 return buf; 1403 } 1404 1405 first_range = true; 1406 start = mask->begin(); 1407 while (1) { 1408 // Find next range 1409 // [start, previous] is inclusive range of contiguous bits in mask 1410 for (finish = mask->next(start), previous = start; 1411 finish == previous + 1 && finish != mask->end(); 1412 finish = mask->next(finish)) { 1413 previous = finish; 1414 } 1415 1416 // The first range does not need a comma printed before it, but the rest 1417 // of the ranges do need a comma beforehand 1418 if (!first_range) { 1419 __kmp_str_buf_print(buf, "%s", ","); 1420 } else { 1421 first_range = false; 1422 } 1423 // Range with three or more contiguous bits in the affinity mask 1424 if (previous - start > 1) { 1425 __kmp_str_buf_print(buf, "%u-%u", start, previous); 1426 } else { 1427 // Range with one or two contiguous bits in the affinity mask 1428 __kmp_str_buf_print(buf, "%u", start); 1429 if (previous - start > 0) { 1430 __kmp_str_buf_print(buf, ",%u", previous); 1431 } 1432 } 1433 // Start over with new start point 1434 start = finish; 1435 if (start == mask->end()) 1436 break; 1437 } 1438 return buf; 1439 } 1440 1441 // Return (possibly empty) affinity mask representing the offline CPUs 1442 // Caller must free the mask 1443 kmp_affin_mask_t *__kmp_affinity_get_offline_cpus() { 1444 kmp_affin_mask_t *offline; 1445 KMP_CPU_ALLOC(offline); 1446 KMP_CPU_ZERO(offline); 1447 #if KMP_OS_LINUX 1448 int n, begin_cpu, end_cpu; 1449 kmp_safe_raii_file_t offline_file; 1450 auto skip_ws = [](FILE *f) { 1451 int c; 1452 do { 1453 c = fgetc(f); 1454 } while (isspace(c)); 1455 if (c != EOF) 1456 ungetc(c, f); 1457 }; 1458 // File contains CSV of integer ranges representing the offline CPUs 1459 // e.g., 1,2,4-7,9,11-15 1460 int status = offline_file.try_open("/sys/devices/system/cpu/offline", "r"); 1461 if (status != 0) 1462 return offline; 1463 while (!feof(offline_file)) { 1464 skip_ws(offline_file); 1465 n = fscanf(offline_file, "%d", &begin_cpu); 1466 if (n != 1) 1467 break; 1468 skip_ws(offline_file); 1469 int c = fgetc(offline_file); 1470 if (c == EOF || c == ',') { 1471 // Just single CPU 1472 end_cpu = begin_cpu; 1473 } else if (c == '-') { 1474 // Range of CPUs 1475 skip_ws(offline_file); 1476 n = fscanf(offline_file, "%d", &end_cpu); 1477 if (n != 1) 1478 break; 1479 skip_ws(offline_file); 1480 c = fgetc(offline_file); // skip ',' 1481 } else { 1482 // Syntax problem 1483 break; 1484 } 1485 // Ensure a valid range of CPUs 1486 if (begin_cpu < 0 || begin_cpu >= __kmp_xproc || end_cpu < 0 || 1487 end_cpu >= __kmp_xproc || begin_cpu > end_cpu) { 1488 continue; 1489 } 1490 // Insert [begin_cpu, end_cpu] into offline mask 1491 for (int cpu = begin_cpu; cpu <= end_cpu; ++cpu) { 1492 KMP_CPU_SET(cpu, offline); 1493 } 1494 } 1495 #endif 1496 return offline; 1497 } 1498 1499 // Return the number of available procs 1500 int __kmp_affinity_entire_machine_mask(kmp_affin_mask_t *mask) { 1501 int avail_proc = 0; 1502 KMP_CPU_ZERO(mask); 1503 1504 #if KMP_GROUP_AFFINITY 1505 1506 if (__kmp_num_proc_groups > 1) { 1507 int group; 1508 KMP_DEBUG_ASSERT(__kmp_GetActiveProcessorCount != NULL); 1509 for (group = 0; group < __kmp_num_proc_groups; group++) { 1510 int i; 1511 int num = __kmp_GetActiveProcessorCount(group); 1512 for (i = 0; i < num; i++) { 1513 KMP_CPU_SET(i + group * (CHAR_BIT * sizeof(DWORD_PTR)), mask); 1514 avail_proc++; 1515 } 1516 } 1517 } else 1518 1519 #endif /* KMP_GROUP_AFFINITY */ 1520 1521 { 1522 int proc; 1523 kmp_affin_mask_t *offline_cpus = __kmp_affinity_get_offline_cpus(); 1524 for (proc = 0; proc < __kmp_xproc; proc++) { 1525 // Skip offline CPUs 1526 if (KMP_CPU_ISSET(proc, offline_cpus)) 1527 continue; 1528 KMP_CPU_SET(proc, mask); 1529 avail_proc++; 1530 } 1531 KMP_CPU_FREE(offline_cpus); 1532 } 1533 1534 return avail_proc; 1535 } 1536 1537 // All of the __kmp_affinity_create_*_map() routines should allocate the 1538 // internal topology object and set the layer ids for it. Each routine 1539 // returns a boolean on whether it was successful at doing so. 1540 kmp_affin_mask_t *__kmp_affin_fullMask = NULL; 1541 // Original mask is a subset of full mask in multiple processor groups topology 1542 kmp_affin_mask_t *__kmp_affin_origMask = NULL; 1543 1544 #if KMP_USE_HWLOC 1545 static inline bool __kmp_hwloc_is_cache_type(hwloc_obj_t obj) { 1546 #if HWLOC_API_VERSION >= 0x00020000 1547 return hwloc_obj_type_is_cache(obj->type); 1548 #else 1549 return obj->type == HWLOC_OBJ_CACHE; 1550 #endif 1551 } 1552 1553 // Returns KMP_HW_* type derived from HWLOC_* type 1554 static inline kmp_hw_t __kmp_hwloc_type_2_topology_type(hwloc_obj_t obj) { 1555 1556 if (__kmp_hwloc_is_cache_type(obj)) { 1557 if (obj->attr->cache.type == HWLOC_OBJ_CACHE_INSTRUCTION) 1558 return KMP_HW_UNKNOWN; 1559 switch (obj->attr->cache.depth) { 1560 case 1: 1561 return KMP_HW_L1; 1562 case 2: 1563 #if KMP_MIC_SUPPORTED 1564 if (__kmp_mic_type == mic3) { 1565 return KMP_HW_TILE; 1566 } 1567 #endif 1568 return KMP_HW_L2; 1569 case 3: 1570 return KMP_HW_L3; 1571 } 1572 return KMP_HW_UNKNOWN; 1573 } 1574 1575 switch (obj->type) { 1576 case HWLOC_OBJ_PACKAGE: 1577 return KMP_HW_SOCKET; 1578 case HWLOC_OBJ_NUMANODE: 1579 return KMP_HW_NUMA; 1580 case HWLOC_OBJ_CORE: 1581 return KMP_HW_CORE; 1582 case HWLOC_OBJ_PU: 1583 return KMP_HW_THREAD; 1584 case HWLOC_OBJ_GROUP: 1585 #if HWLOC_API_VERSION >= 0x00020000 1586 if (obj->attr->group.kind == HWLOC_GROUP_KIND_INTEL_DIE) 1587 return KMP_HW_DIE; 1588 else if (obj->attr->group.kind == HWLOC_GROUP_KIND_INTEL_TILE) 1589 return KMP_HW_TILE; 1590 else if (obj->attr->group.kind == HWLOC_GROUP_KIND_INTEL_MODULE) 1591 return KMP_HW_MODULE; 1592 else if (obj->attr->group.kind == HWLOC_GROUP_KIND_WINDOWS_PROCESSOR_GROUP) 1593 return KMP_HW_PROC_GROUP; 1594 #endif 1595 return KMP_HW_UNKNOWN; 1596 #if HWLOC_API_VERSION >= 0x00020100 1597 case HWLOC_OBJ_DIE: 1598 return KMP_HW_DIE; 1599 #endif 1600 } 1601 return KMP_HW_UNKNOWN; 1602 } 1603 1604 // Returns the number of objects of type 'type' below 'obj' within the topology 1605 // tree structure. e.g., if obj is a HWLOC_OBJ_PACKAGE object, and type is 1606 // HWLOC_OBJ_PU, then this will return the number of PU's under the SOCKET 1607 // object. 1608 static int __kmp_hwloc_get_nobjs_under_obj(hwloc_obj_t obj, 1609 hwloc_obj_type_t type) { 1610 int retval = 0; 1611 hwloc_obj_t first; 1612 for (first = hwloc_get_obj_below_by_type(__kmp_hwloc_topology, obj->type, 1613 obj->logical_index, type, 0); 1614 first != NULL && hwloc_get_ancestor_obj_by_type(__kmp_hwloc_topology, 1615 obj->type, first) == obj; 1616 first = hwloc_get_next_obj_by_type(__kmp_hwloc_topology, first->type, 1617 first)) { 1618 ++retval; 1619 } 1620 return retval; 1621 } 1622 1623 // This gets the sub_id for a lower object under a higher object in the 1624 // topology tree 1625 static int __kmp_hwloc_get_sub_id(hwloc_topology_t t, hwloc_obj_t higher, 1626 hwloc_obj_t lower) { 1627 hwloc_obj_t obj; 1628 hwloc_obj_type_t ltype = lower->type; 1629 int lindex = lower->logical_index - 1; 1630 int sub_id = 0; 1631 // Get the previous lower object 1632 obj = hwloc_get_obj_by_type(t, ltype, lindex); 1633 while (obj && lindex >= 0 && 1634 hwloc_bitmap_isincluded(obj->cpuset, higher->cpuset)) { 1635 if (obj->userdata) { 1636 sub_id = (int)(RCAST(kmp_intptr_t, obj->userdata)); 1637 break; 1638 } 1639 sub_id++; 1640 lindex--; 1641 obj = hwloc_get_obj_by_type(t, ltype, lindex); 1642 } 1643 // store sub_id + 1 so that 0 is differed from NULL 1644 lower->userdata = RCAST(void *, sub_id + 1); 1645 return sub_id; 1646 } 1647 1648 static bool __kmp_affinity_create_hwloc_map(kmp_i18n_id_t *const msg_id) { 1649 kmp_hw_t type; 1650 int hw_thread_index, sub_id; 1651 int depth; 1652 hwloc_obj_t pu, obj, root, prev; 1653 kmp_hw_t types[KMP_HW_LAST]; 1654 hwloc_obj_type_t hwloc_types[KMP_HW_LAST]; 1655 1656 hwloc_topology_t tp = __kmp_hwloc_topology; 1657 *msg_id = kmp_i18n_null; 1658 if (__kmp_affinity.flags.verbose) { 1659 KMP_INFORM(AffUsingHwloc, "KMP_AFFINITY"); 1660 } 1661 1662 if (!KMP_AFFINITY_CAPABLE()) { 1663 // Hack to try and infer the machine topology using only the data 1664 // available from hwloc on the current thread, and __kmp_xproc. 1665 KMP_ASSERT(__kmp_affinity.type == affinity_none); 1666 // hwloc only guarantees existance of PU object, so check PACKAGE and CORE 1667 hwloc_obj_t o = hwloc_get_obj_by_type(tp, HWLOC_OBJ_PACKAGE, 0); 1668 if (o != NULL) 1669 nCoresPerPkg = __kmp_hwloc_get_nobjs_under_obj(o, HWLOC_OBJ_CORE); 1670 else 1671 nCoresPerPkg = 1; // no PACKAGE found 1672 o = hwloc_get_obj_by_type(tp, HWLOC_OBJ_CORE, 0); 1673 if (o != NULL) 1674 __kmp_nThreadsPerCore = __kmp_hwloc_get_nobjs_under_obj(o, HWLOC_OBJ_PU); 1675 else 1676 __kmp_nThreadsPerCore = 1; // no CORE found 1677 __kmp_ncores = __kmp_xproc / __kmp_nThreadsPerCore; 1678 if (nCoresPerPkg == 0) 1679 nCoresPerPkg = 1; // to prevent possible division by 0 1680 nPackages = (__kmp_xproc + nCoresPerPkg - 1) / nCoresPerPkg; 1681 return true; 1682 } 1683 1684 #if HWLOC_API_VERSION >= 0x00020400 1685 // Handle multiple types of cores if they exist on the system 1686 int nr_cpu_kinds = hwloc_cpukinds_get_nr(tp, 0); 1687 1688 typedef struct kmp_hwloc_cpukinds_info_t { 1689 int efficiency; 1690 kmp_hw_core_type_t core_type; 1691 hwloc_bitmap_t mask; 1692 } kmp_hwloc_cpukinds_info_t; 1693 kmp_hwloc_cpukinds_info_t *cpukinds = nullptr; 1694 1695 if (nr_cpu_kinds > 0) { 1696 unsigned nr_infos; 1697 struct hwloc_info_s *infos; 1698 cpukinds = (kmp_hwloc_cpukinds_info_t *)__kmp_allocate( 1699 sizeof(kmp_hwloc_cpukinds_info_t) * nr_cpu_kinds); 1700 for (unsigned idx = 0; idx < (unsigned)nr_cpu_kinds; ++idx) { 1701 cpukinds[idx].efficiency = -1; 1702 cpukinds[idx].core_type = KMP_HW_CORE_TYPE_UNKNOWN; 1703 cpukinds[idx].mask = hwloc_bitmap_alloc(); 1704 if (hwloc_cpukinds_get_info(tp, idx, cpukinds[idx].mask, 1705 &cpukinds[idx].efficiency, &nr_infos, &infos, 1706 0) == 0) { 1707 for (unsigned i = 0; i < nr_infos; ++i) { 1708 if (__kmp_str_match("CoreType", 8, infos[i].name)) { 1709 #if KMP_ARCH_X86 || KMP_ARCH_X86_64 1710 if (__kmp_str_match("IntelAtom", 9, infos[i].value)) { 1711 cpukinds[idx].core_type = KMP_HW_CORE_TYPE_ATOM; 1712 break; 1713 } else if (__kmp_str_match("IntelCore", 9, infos[i].value)) { 1714 cpukinds[idx].core_type = KMP_HW_CORE_TYPE_CORE; 1715 break; 1716 } 1717 #endif 1718 } 1719 } 1720 } 1721 } 1722 } 1723 #endif 1724 1725 root = hwloc_get_root_obj(tp); 1726 1727 // Figure out the depth and types in the topology 1728 depth = 0; 1729 pu = hwloc_get_pu_obj_by_os_index(tp, __kmp_affin_fullMask->begin()); 1730 KMP_ASSERT(pu); 1731 obj = pu; 1732 types[depth] = KMP_HW_THREAD; 1733 hwloc_types[depth] = obj->type; 1734 depth++; 1735 while (obj != root && obj != NULL) { 1736 obj = obj->parent; 1737 #if HWLOC_API_VERSION >= 0x00020000 1738 if (obj->memory_arity) { 1739 hwloc_obj_t memory; 1740 for (memory = obj->memory_first_child; memory; 1741 memory = hwloc_get_next_child(tp, obj, memory)) { 1742 if (memory->type == HWLOC_OBJ_NUMANODE) 1743 break; 1744 } 1745 if (memory && memory->type == HWLOC_OBJ_NUMANODE) { 1746 types[depth] = KMP_HW_NUMA; 1747 hwloc_types[depth] = memory->type; 1748 depth++; 1749 } 1750 } 1751 #endif 1752 type = __kmp_hwloc_type_2_topology_type(obj); 1753 if (type != KMP_HW_UNKNOWN) { 1754 types[depth] = type; 1755 hwloc_types[depth] = obj->type; 1756 depth++; 1757 } 1758 } 1759 KMP_ASSERT(depth > 0); 1760 1761 // Get the order for the types correct 1762 for (int i = 0, j = depth - 1; i < j; ++i, --j) { 1763 hwloc_obj_type_t hwloc_temp = hwloc_types[i]; 1764 kmp_hw_t temp = types[i]; 1765 types[i] = types[j]; 1766 types[j] = temp; 1767 hwloc_types[i] = hwloc_types[j]; 1768 hwloc_types[j] = hwloc_temp; 1769 } 1770 1771 // Allocate the data structure to be returned. 1772 __kmp_topology = kmp_topology_t::allocate(__kmp_avail_proc, depth, types); 1773 1774 hw_thread_index = 0; 1775 pu = NULL; 1776 while ((pu = hwloc_get_next_obj_by_type(tp, HWLOC_OBJ_PU, pu))) { 1777 int index = depth - 1; 1778 bool included = KMP_CPU_ISSET(pu->os_index, __kmp_affin_fullMask); 1779 kmp_hw_thread_t &hw_thread = __kmp_topology->at(hw_thread_index); 1780 if (included) { 1781 hw_thread.clear(); 1782 hw_thread.ids[index] = pu->logical_index; 1783 hw_thread.os_id = pu->os_index; 1784 // If multiple core types, then set that attribute for the hardware thread 1785 #if HWLOC_API_VERSION >= 0x00020400 1786 if (cpukinds) { 1787 int cpukind_index = -1; 1788 for (int i = 0; i < nr_cpu_kinds; ++i) { 1789 if (hwloc_bitmap_isset(cpukinds[i].mask, hw_thread.os_id)) { 1790 cpukind_index = i; 1791 break; 1792 } 1793 } 1794 if (cpukind_index >= 0) { 1795 hw_thread.attrs.set_core_type(cpukinds[cpukind_index].core_type); 1796 hw_thread.attrs.set_core_eff(cpukinds[cpukind_index].efficiency); 1797 } 1798 } 1799 #endif 1800 index--; 1801 } 1802 obj = pu; 1803 prev = obj; 1804 while (obj != root && obj != NULL) { 1805 obj = obj->parent; 1806 #if HWLOC_API_VERSION >= 0x00020000 1807 // NUMA Nodes are handled differently since they are not within the 1808 // parent/child structure anymore. They are separate children 1809 // of obj (memory_first_child points to first memory child) 1810 if (obj->memory_arity) { 1811 hwloc_obj_t memory; 1812 for (memory = obj->memory_first_child; memory; 1813 memory = hwloc_get_next_child(tp, obj, memory)) { 1814 if (memory->type == HWLOC_OBJ_NUMANODE) 1815 break; 1816 } 1817 if (memory && memory->type == HWLOC_OBJ_NUMANODE) { 1818 sub_id = __kmp_hwloc_get_sub_id(tp, memory, prev); 1819 if (included) { 1820 hw_thread.ids[index] = memory->logical_index; 1821 hw_thread.ids[index + 1] = sub_id; 1822 index--; 1823 } 1824 prev = memory; 1825 } 1826 prev = obj; 1827 } 1828 #endif 1829 type = __kmp_hwloc_type_2_topology_type(obj); 1830 if (type != KMP_HW_UNKNOWN) { 1831 sub_id = __kmp_hwloc_get_sub_id(tp, obj, prev); 1832 if (included) { 1833 hw_thread.ids[index] = obj->logical_index; 1834 hw_thread.ids[index + 1] = sub_id; 1835 index--; 1836 } 1837 prev = obj; 1838 } 1839 } 1840 if (included) 1841 hw_thread_index++; 1842 } 1843 1844 #if HWLOC_API_VERSION >= 0x00020400 1845 // Free the core types information 1846 if (cpukinds) { 1847 for (int idx = 0; idx < nr_cpu_kinds; ++idx) 1848 hwloc_bitmap_free(cpukinds[idx].mask); 1849 __kmp_free(cpukinds); 1850 } 1851 #endif 1852 __kmp_topology->sort_ids(); 1853 return true; 1854 } 1855 #endif // KMP_USE_HWLOC 1856 1857 // If we don't know how to retrieve the machine's processor topology, or 1858 // encounter an error in doing so, this routine is called to form a "flat" 1859 // mapping of os thread id's <-> processor id's. 1860 static bool __kmp_affinity_create_flat_map(kmp_i18n_id_t *const msg_id) { 1861 *msg_id = kmp_i18n_null; 1862 int depth = 3; 1863 kmp_hw_t types[] = {KMP_HW_SOCKET, KMP_HW_CORE, KMP_HW_THREAD}; 1864 1865 if (__kmp_affinity.flags.verbose) { 1866 KMP_INFORM(UsingFlatOS, "KMP_AFFINITY"); 1867 } 1868 1869 // Even if __kmp_affinity.type == affinity_none, this routine might still 1870 // be called to set __kmp_ncores, as well as 1871 // __kmp_nThreadsPerCore, nCoresPerPkg, & nPackages. 1872 if (!KMP_AFFINITY_CAPABLE()) { 1873 KMP_ASSERT(__kmp_affinity.type == affinity_none); 1874 __kmp_ncores = nPackages = __kmp_xproc; 1875 __kmp_nThreadsPerCore = nCoresPerPkg = 1; 1876 return true; 1877 } 1878 1879 // When affinity is off, this routine will still be called to set 1880 // __kmp_ncores, as well as __kmp_nThreadsPerCore, nCoresPerPkg, & nPackages. 1881 // Make sure all these vars are set correctly, and return now if affinity is 1882 // not enabled. 1883 __kmp_ncores = nPackages = __kmp_avail_proc; 1884 __kmp_nThreadsPerCore = nCoresPerPkg = 1; 1885 1886 // Construct the data structure to be returned. 1887 __kmp_topology = kmp_topology_t::allocate(__kmp_avail_proc, depth, types); 1888 int avail_ct = 0; 1889 int i; 1890 KMP_CPU_SET_ITERATE(i, __kmp_affin_fullMask) { 1891 // Skip this proc if it is not included in the machine model. 1892 if (!KMP_CPU_ISSET(i, __kmp_affin_fullMask)) { 1893 continue; 1894 } 1895 kmp_hw_thread_t &hw_thread = __kmp_topology->at(avail_ct); 1896 hw_thread.clear(); 1897 hw_thread.os_id = i; 1898 hw_thread.ids[0] = i; 1899 hw_thread.ids[1] = 0; 1900 hw_thread.ids[2] = 0; 1901 avail_ct++; 1902 } 1903 if (__kmp_affinity.flags.verbose) { 1904 KMP_INFORM(OSProcToPackage, "KMP_AFFINITY"); 1905 } 1906 return true; 1907 } 1908 1909 #if KMP_GROUP_AFFINITY 1910 // If multiple Windows* OS processor groups exist, we can create a 2-level 1911 // topology map with the groups at level 0 and the individual procs at level 1. 1912 // This facilitates letting the threads float among all procs in a group, 1913 // if granularity=group (the default when there are multiple groups). 1914 static bool __kmp_affinity_create_proc_group_map(kmp_i18n_id_t *const msg_id) { 1915 *msg_id = kmp_i18n_null; 1916 int depth = 3; 1917 kmp_hw_t types[] = {KMP_HW_PROC_GROUP, KMP_HW_CORE, KMP_HW_THREAD}; 1918 const static size_t BITS_PER_GROUP = CHAR_BIT * sizeof(DWORD_PTR); 1919 1920 if (__kmp_affinity.flags.verbose) { 1921 KMP_INFORM(AffWindowsProcGroupMap, "KMP_AFFINITY"); 1922 } 1923 1924 // If we aren't affinity capable, then use flat topology 1925 if (!KMP_AFFINITY_CAPABLE()) { 1926 KMP_ASSERT(__kmp_affinity.type == affinity_none); 1927 nPackages = __kmp_num_proc_groups; 1928 __kmp_nThreadsPerCore = 1; 1929 __kmp_ncores = __kmp_xproc; 1930 nCoresPerPkg = nPackages / __kmp_ncores; 1931 return true; 1932 } 1933 1934 // Construct the data structure to be returned. 1935 __kmp_topology = kmp_topology_t::allocate(__kmp_avail_proc, depth, types); 1936 int avail_ct = 0; 1937 int i; 1938 KMP_CPU_SET_ITERATE(i, __kmp_affin_fullMask) { 1939 // Skip this proc if it is not included in the machine model. 1940 if (!KMP_CPU_ISSET(i, __kmp_affin_fullMask)) { 1941 continue; 1942 } 1943 kmp_hw_thread_t &hw_thread = __kmp_topology->at(avail_ct++); 1944 hw_thread.clear(); 1945 hw_thread.os_id = i; 1946 hw_thread.ids[0] = i / BITS_PER_GROUP; 1947 hw_thread.ids[1] = hw_thread.ids[2] = i % BITS_PER_GROUP; 1948 } 1949 return true; 1950 } 1951 #endif /* KMP_GROUP_AFFINITY */ 1952 1953 #if KMP_ARCH_X86 || KMP_ARCH_X86_64 1954 1955 template <kmp_uint32 LSB, kmp_uint32 MSB> 1956 static inline unsigned __kmp_extract_bits(kmp_uint32 v) { 1957 const kmp_uint32 SHIFT_LEFT = sizeof(kmp_uint32) * 8 - 1 - MSB; 1958 const kmp_uint32 SHIFT_RIGHT = LSB; 1959 kmp_uint32 retval = v; 1960 retval <<= SHIFT_LEFT; 1961 retval >>= (SHIFT_LEFT + SHIFT_RIGHT); 1962 return retval; 1963 } 1964 1965 static int __kmp_cpuid_mask_width(int count) { 1966 int r = 0; 1967 1968 while ((1 << r) < count) 1969 ++r; 1970 return r; 1971 } 1972 1973 class apicThreadInfo { 1974 public: 1975 unsigned osId; // param to __kmp_affinity_bind_thread 1976 unsigned apicId; // from cpuid after binding 1977 unsigned maxCoresPerPkg; // "" 1978 unsigned maxThreadsPerPkg; // "" 1979 unsigned pkgId; // inferred from above values 1980 unsigned coreId; // "" 1981 unsigned threadId; // "" 1982 }; 1983 1984 static int __kmp_affinity_cmp_apicThreadInfo_phys_id(const void *a, 1985 const void *b) { 1986 const apicThreadInfo *aa = (const apicThreadInfo *)a; 1987 const apicThreadInfo *bb = (const apicThreadInfo *)b; 1988 if (aa->pkgId < bb->pkgId) 1989 return -1; 1990 if (aa->pkgId > bb->pkgId) 1991 return 1; 1992 if (aa->coreId < bb->coreId) 1993 return -1; 1994 if (aa->coreId > bb->coreId) 1995 return 1; 1996 if (aa->threadId < bb->threadId) 1997 return -1; 1998 if (aa->threadId > bb->threadId) 1999 return 1; 2000 return 0; 2001 } 2002 2003 class kmp_cache_info_t { 2004 public: 2005 struct info_t { 2006 unsigned level, mask; 2007 }; 2008 kmp_cache_info_t() : depth(0) { get_leaf4_levels(); } 2009 size_t get_depth() const { return depth; } 2010 info_t &operator[](size_t index) { return table[index]; } 2011 const info_t &operator[](size_t index) const { return table[index]; } 2012 2013 static kmp_hw_t get_topology_type(unsigned level) { 2014 KMP_DEBUG_ASSERT(level >= 1 && level <= MAX_CACHE_LEVEL); 2015 switch (level) { 2016 case 1: 2017 return KMP_HW_L1; 2018 case 2: 2019 return KMP_HW_L2; 2020 case 3: 2021 return KMP_HW_L3; 2022 } 2023 return KMP_HW_UNKNOWN; 2024 } 2025 2026 private: 2027 static const int MAX_CACHE_LEVEL = 3; 2028 2029 size_t depth; 2030 info_t table[MAX_CACHE_LEVEL]; 2031 2032 void get_leaf4_levels() { 2033 unsigned level = 0; 2034 while (depth < MAX_CACHE_LEVEL) { 2035 unsigned cache_type, max_threads_sharing; 2036 unsigned cache_level, cache_mask_width; 2037 kmp_cpuid buf2; 2038 __kmp_x86_cpuid(4, level, &buf2); 2039 cache_type = __kmp_extract_bits<0, 4>(buf2.eax); 2040 if (!cache_type) 2041 break; 2042 // Skip instruction caches 2043 if (cache_type == 2) { 2044 level++; 2045 continue; 2046 } 2047 max_threads_sharing = __kmp_extract_bits<14, 25>(buf2.eax) + 1; 2048 cache_mask_width = __kmp_cpuid_mask_width(max_threads_sharing); 2049 cache_level = __kmp_extract_bits<5, 7>(buf2.eax); 2050 table[depth].level = cache_level; 2051 table[depth].mask = ((-1) << cache_mask_width); 2052 depth++; 2053 level++; 2054 } 2055 } 2056 }; 2057 2058 // On IA-32 architecture and Intel(R) 64 architecture, we attempt to use 2059 // an algorithm which cycles through the available os threads, setting 2060 // the current thread's affinity mask to that thread, and then retrieves 2061 // the Apic Id for each thread context using the cpuid instruction. 2062 static bool __kmp_affinity_create_apicid_map(kmp_i18n_id_t *const msg_id) { 2063 kmp_cpuid buf; 2064 *msg_id = kmp_i18n_null; 2065 2066 if (__kmp_affinity.flags.verbose) { 2067 KMP_INFORM(AffInfoStr, "KMP_AFFINITY", KMP_I18N_STR(DecodingLegacyAPIC)); 2068 } 2069 2070 // Check if cpuid leaf 4 is supported. 2071 __kmp_x86_cpuid(0, 0, &buf); 2072 if (buf.eax < 4) { 2073 *msg_id = kmp_i18n_str_NoLeaf4Support; 2074 return false; 2075 } 2076 2077 // The algorithm used starts by setting the affinity to each available thread 2078 // and retrieving info from the cpuid instruction, so if we are not capable of 2079 // calling __kmp_get_system_affinity() and _kmp_get_system_affinity(), then we 2080 // need to do something else - use the defaults that we calculated from 2081 // issuing cpuid without binding to each proc. 2082 if (!KMP_AFFINITY_CAPABLE()) { 2083 // Hack to try and infer the machine topology using only the data 2084 // available from cpuid on the current thread, and __kmp_xproc. 2085 KMP_ASSERT(__kmp_affinity.type == affinity_none); 2086 2087 // Get an upper bound on the number of threads per package using cpuid(1). 2088 // On some OS/chps combinations where HT is supported by the chip but is 2089 // disabled, this value will be 2 on a single core chip. Usually, it will be 2090 // 2 if HT is enabled and 1 if HT is disabled. 2091 __kmp_x86_cpuid(1, 0, &buf); 2092 int maxThreadsPerPkg = (buf.ebx >> 16) & 0xff; 2093 if (maxThreadsPerPkg == 0) { 2094 maxThreadsPerPkg = 1; 2095 } 2096 2097 // The num cores per pkg comes from cpuid(4). 1 must be added to the encoded 2098 // value. 2099 // 2100 // The author of cpu_count.cpp treated this only an upper bound on the 2101 // number of cores, but I haven't seen any cases where it was greater than 2102 // the actual number of cores, so we will treat it as exact in this block of 2103 // code. 2104 // 2105 // First, we need to check if cpuid(4) is supported on this chip. To see if 2106 // cpuid(n) is supported, issue cpuid(0) and check if eax has the value n or 2107 // greater. 2108 __kmp_x86_cpuid(0, 0, &buf); 2109 if (buf.eax >= 4) { 2110 __kmp_x86_cpuid(4, 0, &buf); 2111 nCoresPerPkg = ((buf.eax >> 26) & 0x3f) + 1; 2112 } else { 2113 nCoresPerPkg = 1; 2114 } 2115 2116 // There is no way to reliably tell if HT is enabled without issuing the 2117 // cpuid instruction from every thread, can correlating the cpuid info, so 2118 // if the machine is not affinity capable, we assume that HT is off. We have 2119 // seen quite a few machines where maxThreadsPerPkg is 2, yet the machine 2120 // does not support HT. 2121 // 2122 // - Older OSes are usually found on machines with older chips, which do not 2123 // support HT. 2124 // - The performance penalty for mistakenly identifying a machine as HT when 2125 // it isn't (which results in blocktime being incorrectly set to 0) is 2126 // greater than the penalty when for mistakenly identifying a machine as 2127 // being 1 thread/core when it is really HT enabled (which results in 2128 // blocktime being incorrectly set to a positive value). 2129 __kmp_ncores = __kmp_xproc; 2130 nPackages = (__kmp_xproc + nCoresPerPkg - 1) / nCoresPerPkg; 2131 __kmp_nThreadsPerCore = 1; 2132 return true; 2133 } 2134 2135 // From here on, we can assume that it is safe to call 2136 // __kmp_get_system_affinity() and __kmp_set_system_affinity(), even if 2137 // __kmp_affinity.type = affinity_none. 2138 2139 // Save the affinity mask for the current thread. 2140 kmp_affinity_raii_t previous_affinity; 2141 2142 // Run through each of the available contexts, binding the current thread 2143 // to it, and obtaining the pertinent information using the cpuid instr. 2144 // 2145 // The relevant information is: 2146 // - Apic Id: Bits 24:31 of ebx after issuing cpuid(1) - each thread context 2147 // has a uniqie Apic Id, which is of the form pkg# : core# : thread#. 2148 // - Max Threads Per Pkg: Bits 16:23 of ebx after issuing cpuid(1). The value 2149 // of this field determines the width of the core# + thread# fields in the 2150 // Apic Id. It is also an upper bound on the number of threads per 2151 // package, but it has been verified that situations happen were it is not 2152 // exact. In particular, on certain OS/chip combinations where Intel(R) 2153 // Hyper-Threading Technology is supported by the chip but has been 2154 // disabled, the value of this field will be 2 (for a single core chip). 2155 // On other OS/chip combinations supporting Intel(R) Hyper-Threading 2156 // Technology, the value of this field will be 1 when Intel(R) 2157 // Hyper-Threading Technology is disabled and 2 when it is enabled. 2158 // - Max Cores Per Pkg: Bits 26:31 of eax after issuing cpuid(4). The value 2159 // of this field (+1) determines the width of the core# field in the Apic 2160 // Id. The comments in "cpucount.cpp" say that this value is an upper 2161 // bound, but the IA-32 architecture manual says that it is exactly the 2162 // number of cores per package, and I haven't seen any case where it 2163 // wasn't. 2164 // 2165 // From this information, deduce the package Id, core Id, and thread Id, 2166 // and set the corresponding fields in the apicThreadInfo struct. 2167 unsigned i; 2168 apicThreadInfo *threadInfo = (apicThreadInfo *)__kmp_allocate( 2169 __kmp_avail_proc * sizeof(apicThreadInfo)); 2170 unsigned nApics = 0; 2171 KMP_CPU_SET_ITERATE(i, __kmp_affin_fullMask) { 2172 // Skip this proc if it is not included in the machine model. 2173 if (!KMP_CPU_ISSET(i, __kmp_affin_fullMask)) { 2174 continue; 2175 } 2176 KMP_DEBUG_ASSERT((int)nApics < __kmp_avail_proc); 2177 2178 __kmp_affinity_dispatch->bind_thread(i); 2179 threadInfo[nApics].osId = i; 2180 2181 // The apic id and max threads per pkg come from cpuid(1). 2182 __kmp_x86_cpuid(1, 0, &buf); 2183 if (((buf.edx >> 9) & 1) == 0) { 2184 __kmp_free(threadInfo); 2185 *msg_id = kmp_i18n_str_ApicNotPresent; 2186 return false; 2187 } 2188 threadInfo[nApics].apicId = (buf.ebx >> 24) & 0xff; 2189 threadInfo[nApics].maxThreadsPerPkg = (buf.ebx >> 16) & 0xff; 2190 if (threadInfo[nApics].maxThreadsPerPkg == 0) { 2191 threadInfo[nApics].maxThreadsPerPkg = 1; 2192 } 2193 2194 // Max cores per pkg comes from cpuid(4). 1 must be added to the encoded 2195 // value. 2196 // 2197 // First, we need to check if cpuid(4) is supported on this chip. To see if 2198 // cpuid(n) is supported, issue cpuid(0) and check if eax has the value n 2199 // or greater. 2200 __kmp_x86_cpuid(0, 0, &buf); 2201 if (buf.eax >= 4) { 2202 __kmp_x86_cpuid(4, 0, &buf); 2203 threadInfo[nApics].maxCoresPerPkg = ((buf.eax >> 26) & 0x3f) + 1; 2204 } else { 2205 threadInfo[nApics].maxCoresPerPkg = 1; 2206 } 2207 2208 // Infer the pkgId / coreId / threadId using only the info obtained locally. 2209 int widthCT = __kmp_cpuid_mask_width(threadInfo[nApics].maxThreadsPerPkg); 2210 threadInfo[nApics].pkgId = threadInfo[nApics].apicId >> widthCT; 2211 2212 int widthC = __kmp_cpuid_mask_width(threadInfo[nApics].maxCoresPerPkg); 2213 int widthT = widthCT - widthC; 2214 if (widthT < 0) { 2215 // I've never seen this one happen, but I suppose it could, if the cpuid 2216 // instruction on a chip was really screwed up. Make sure to restore the 2217 // affinity mask before the tail call. 2218 __kmp_free(threadInfo); 2219 *msg_id = kmp_i18n_str_InvalidCpuidInfo; 2220 return false; 2221 } 2222 2223 int maskC = (1 << widthC) - 1; 2224 threadInfo[nApics].coreId = (threadInfo[nApics].apicId >> widthT) & maskC; 2225 2226 int maskT = (1 << widthT) - 1; 2227 threadInfo[nApics].threadId = threadInfo[nApics].apicId & maskT; 2228 2229 nApics++; 2230 } 2231 2232 // We've collected all the info we need. 2233 // Restore the old affinity mask for this thread. 2234 previous_affinity.restore(); 2235 2236 // Sort the threadInfo table by physical Id. 2237 qsort(threadInfo, nApics, sizeof(*threadInfo), 2238 __kmp_affinity_cmp_apicThreadInfo_phys_id); 2239 2240 // The table is now sorted by pkgId / coreId / threadId, but we really don't 2241 // know the radix of any of the fields. pkgId's may be sparsely assigned among 2242 // the chips on a system. Although coreId's are usually assigned 2243 // [0 .. coresPerPkg-1] and threadId's are usually assigned 2244 // [0..threadsPerCore-1], we don't want to make any such assumptions. 2245 // 2246 // For that matter, we don't know what coresPerPkg and threadsPerCore (or the 2247 // total # packages) are at this point - we want to determine that now. We 2248 // only have an upper bound on the first two figures. 2249 // 2250 // We also perform a consistency check at this point: the values returned by 2251 // the cpuid instruction for any thread bound to a given package had better 2252 // return the same info for maxThreadsPerPkg and maxCoresPerPkg. 2253 nPackages = 1; 2254 nCoresPerPkg = 1; 2255 __kmp_nThreadsPerCore = 1; 2256 unsigned nCores = 1; 2257 2258 unsigned pkgCt = 1; // to determine radii 2259 unsigned lastPkgId = threadInfo[0].pkgId; 2260 unsigned coreCt = 1; 2261 unsigned lastCoreId = threadInfo[0].coreId; 2262 unsigned threadCt = 1; 2263 unsigned lastThreadId = threadInfo[0].threadId; 2264 2265 // intra-pkg consist checks 2266 unsigned prevMaxCoresPerPkg = threadInfo[0].maxCoresPerPkg; 2267 unsigned prevMaxThreadsPerPkg = threadInfo[0].maxThreadsPerPkg; 2268 2269 for (i = 1; i < nApics; i++) { 2270 if (threadInfo[i].pkgId != lastPkgId) { 2271 nCores++; 2272 pkgCt++; 2273 lastPkgId = threadInfo[i].pkgId; 2274 if ((int)coreCt > nCoresPerPkg) 2275 nCoresPerPkg = coreCt; 2276 coreCt = 1; 2277 lastCoreId = threadInfo[i].coreId; 2278 if ((int)threadCt > __kmp_nThreadsPerCore) 2279 __kmp_nThreadsPerCore = threadCt; 2280 threadCt = 1; 2281 lastThreadId = threadInfo[i].threadId; 2282 2283 // This is a different package, so go on to the next iteration without 2284 // doing any consistency checks. Reset the consistency check vars, though. 2285 prevMaxCoresPerPkg = threadInfo[i].maxCoresPerPkg; 2286 prevMaxThreadsPerPkg = threadInfo[i].maxThreadsPerPkg; 2287 continue; 2288 } 2289 2290 if (threadInfo[i].coreId != lastCoreId) { 2291 nCores++; 2292 coreCt++; 2293 lastCoreId = threadInfo[i].coreId; 2294 if ((int)threadCt > __kmp_nThreadsPerCore) 2295 __kmp_nThreadsPerCore = threadCt; 2296 threadCt = 1; 2297 lastThreadId = threadInfo[i].threadId; 2298 } else if (threadInfo[i].threadId != lastThreadId) { 2299 threadCt++; 2300 lastThreadId = threadInfo[i].threadId; 2301 } else { 2302 __kmp_free(threadInfo); 2303 *msg_id = kmp_i18n_str_LegacyApicIDsNotUnique; 2304 return false; 2305 } 2306 2307 // Check to make certain that the maxCoresPerPkg and maxThreadsPerPkg 2308 // fields agree between all the threads bounds to a given package. 2309 if ((prevMaxCoresPerPkg != threadInfo[i].maxCoresPerPkg) || 2310 (prevMaxThreadsPerPkg != threadInfo[i].maxThreadsPerPkg)) { 2311 __kmp_free(threadInfo); 2312 *msg_id = kmp_i18n_str_InconsistentCpuidInfo; 2313 return false; 2314 } 2315 } 2316 // When affinity is off, this routine will still be called to set 2317 // __kmp_ncores, as well as __kmp_nThreadsPerCore, nCoresPerPkg, & nPackages. 2318 // Make sure all these vars are set correctly 2319 nPackages = pkgCt; 2320 if ((int)coreCt > nCoresPerPkg) 2321 nCoresPerPkg = coreCt; 2322 if ((int)threadCt > __kmp_nThreadsPerCore) 2323 __kmp_nThreadsPerCore = threadCt; 2324 __kmp_ncores = nCores; 2325 KMP_DEBUG_ASSERT(nApics == (unsigned)__kmp_avail_proc); 2326 2327 // Now that we've determined the number of packages, the number of cores per 2328 // package, and the number of threads per core, we can construct the data 2329 // structure that is to be returned. 2330 int idx = 0; 2331 int pkgLevel = 0; 2332 int coreLevel = 1; 2333 int threadLevel = 2; 2334 //(__kmp_nThreadsPerCore <= 1) ? -1 : ((coreLevel >= 0) ? 2 : 1); 2335 int depth = (pkgLevel >= 0) + (coreLevel >= 0) + (threadLevel >= 0); 2336 kmp_hw_t types[3]; 2337 if (pkgLevel >= 0) 2338 types[idx++] = KMP_HW_SOCKET; 2339 if (coreLevel >= 0) 2340 types[idx++] = KMP_HW_CORE; 2341 if (threadLevel >= 0) 2342 types[idx++] = KMP_HW_THREAD; 2343 2344 KMP_ASSERT(depth > 0); 2345 __kmp_topology = kmp_topology_t::allocate(nApics, depth, types); 2346 2347 for (i = 0; i < nApics; ++i) { 2348 idx = 0; 2349 unsigned os = threadInfo[i].osId; 2350 kmp_hw_thread_t &hw_thread = __kmp_topology->at(i); 2351 hw_thread.clear(); 2352 2353 if (pkgLevel >= 0) { 2354 hw_thread.ids[idx++] = threadInfo[i].pkgId; 2355 } 2356 if (coreLevel >= 0) { 2357 hw_thread.ids[idx++] = threadInfo[i].coreId; 2358 } 2359 if (threadLevel >= 0) { 2360 hw_thread.ids[idx++] = threadInfo[i].threadId; 2361 } 2362 hw_thread.os_id = os; 2363 } 2364 2365 __kmp_free(threadInfo); 2366 __kmp_topology->sort_ids(); 2367 if (!__kmp_topology->check_ids()) { 2368 kmp_topology_t::deallocate(__kmp_topology); 2369 __kmp_topology = nullptr; 2370 *msg_id = kmp_i18n_str_LegacyApicIDsNotUnique; 2371 return false; 2372 } 2373 return true; 2374 } 2375 2376 // Hybrid cpu detection using CPUID.1A 2377 // Thread should be pinned to processor already 2378 static void __kmp_get_hybrid_info(kmp_hw_core_type_t *type, int *efficiency, 2379 unsigned *native_model_id) { 2380 kmp_cpuid buf; 2381 __kmp_x86_cpuid(0x1a, 0, &buf); 2382 *type = (kmp_hw_core_type_t)__kmp_extract_bits<24, 31>(buf.eax); 2383 switch (*type) { 2384 case KMP_HW_CORE_TYPE_ATOM: 2385 *efficiency = 0; 2386 break; 2387 case KMP_HW_CORE_TYPE_CORE: 2388 *efficiency = 1; 2389 break; 2390 default: 2391 *efficiency = 0; 2392 } 2393 *native_model_id = __kmp_extract_bits<0, 23>(buf.eax); 2394 } 2395 2396 // Intel(R) microarchitecture code name Nehalem, Dunnington and later 2397 // architectures support a newer interface for specifying the x2APIC Ids, 2398 // based on CPUID.B or CPUID.1F 2399 /* 2400 * CPUID.B or 1F, Input ECX (sub leaf # aka level number) 2401 Bits Bits Bits Bits 2402 31-16 15-8 7-4 4-0 2403 ---+-----------+--------------+-------------+-----------------+ 2404 EAX| reserved | reserved | reserved | Bits to Shift | 2405 ---+-----------|--------------+-------------+-----------------| 2406 EBX| reserved | Num logical processors at level (16 bits) | 2407 ---+-----------|--------------+-------------------------------| 2408 ECX| reserved | Level Type | Level Number (8 bits) | 2409 ---+-----------+--------------+-------------------------------| 2410 EDX| X2APIC ID (32 bits) | 2411 ---+----------------------------------------------------------+ 2412 */ 2413 2414 enum { 2415 INTEL_LEVEL_TYPE_INVALID = 0, // Package level 2416 INTEL_LEVEL_TYPE_SMT = 1, 2417 INTEL_LEVEL_TYPE_CORE = 2, 2418 INTEL_LEVEL_TYPE_MODULE = 3, 2419 INTEL_LEVEL_TYPE_TILE = 4, 2420 INTEL_LEVEL_TYPE_DIE = 5, 2421 INTEL_LEVEL_TYPE_LAST = 6, 2422 }; 2423 2424 struct cpuid_level_info_t { 2425 unsigned level_type, mask, mask_width, nitems, cache_mask; 2426 }; 2427 2428 static kmp_hw_t __kmp_intel_type_2_topology_type(int intel_type) { 2429 switch (intel_type) { 2430 case INTEL_LEVEL_TYPE_INVALID: 2431 return KMP_HW_SOCKET; 2432 case INTEL_LEVEL_TYPE_SMT: 2433 return KMP_HW_THREAD; 2434 case INTEL_LEVEL_TYPE_CORE: 2435 return KMP_HW_CORE; 2436 case INTEL_LEVEL_TYPE_TILE: 2437 return KMP_HW_TILE; 2438 case INTEL_LEVEL_TYPE_MODULE: 2439 return KMP_HW_MODULE; 2440 case INTEL_LEVEL_TYPE_DIE: 2441 return KMP_HW_DIE; 2442 } 2443 return KMP_HW_UNKNOWN; 2444 } 2445 2446 // This function takes the topology leaf, a levels array to store the levels 2447 // detected and a bitmap of the known levels. 2448 // Returns the number of levels in the topology 2449 static unsigned 2450 __kmp_x2apicid_get_levels(int leaf, 2451 cpuid_level_info_t levels[INTEL_LEVEL_TYPE_LAST], 2452 kmp_uint64 known_levels) { 2453 unsigned level, levels_index; 2454 unsigned level_type, mask_width, nitems; 2455 kmp_cpuid buf; 2456 2457 // New algorithm has known topology layers act as highest unknown topology 2458 // layers when unknown topology layers exist. 2459 // e.g., Suppose layers were SMT <X> CORE <Y> <Z> PACKAGE, where <X> <Y> <Z> 2460 // are unknown topology layers, Then SMT will take the characteristics of 2461 // (SMT x <X>) and CORE will take the characteristics of (CORE x <Y> x <Z>). 2462 // This eliminates unknown portions of the topology while still keeping the 2463 // correct structure. 2464 level = levels_index = 0; 2465 do { 2466 __kmp_x86_cpuid(leaf, level, &buf); 2467 level_type = __kmp_extract_bits<8, 15>(buf.ecx); 2468 mask_width = __kmp_extract_bits<0, 4>(buf.eax); 2469 nitems = __kmp_extract_bits<0, 15>(buf.ebx); 2470 if (level_type != INTEL_LEVEL_TYPE_INVALID && nitems == 0) 2471 return 0; 2472 2473 if (known_levels & (1ull << level_type)) { 2474 // Add a new level to the topology 2475 KMP_ASSERT(levels_index < INTEL_LEVEL_TYPE_LAST); 2476 levels[levels_index].level_type = level_type; 2477 levels[levels_index].mask_width = mask_width; 2478 levels[levels_index].nitems = nitems; 2479 levels_index++; 2480 } else { 2481 // If it is an unknown level, then logically move the previous layer up 2482 if (levels_index > 0) { 2483 levels[levels_index - 1].mask_width = mask_width; 2484 levels[levels_index - 1].nitems = nitems; 2485 } 2486 } 2487 level++; 2488 } while (level_type != INTEL_LEVEL_TYPE_INVALID); 2489 2490 // Ensure the INTEL_LEVEL_TYPE_INVALID (Socket) layer isn't first 2491 if (levels_index == 0 || levels[0].level_type == INTEL_LEVEL_TYPE_INVALID) 2492 return 0; 2493 2494 // Set the masks to & with apicid 2495 for (unsigned i = 0; i < levels_index; ++i) { 2496 if (levels[i].level_type != INTEL_LEVEL_TYPE_INVALID) { 2497 levels[i].mask = ~((-1) << levels[i].mask_width); 2498 levels[i].cache_mask = (-1) << levels[i].mask_width; 2499 for (unsigned j = 0; j < i; ++j) 2500 levels[i].mask ^= levels[j].mask; 2501 } else { 2502 KMP_DEBUG_ASSERT(i > 0); 2503 levels[i].mask = (-1) << levels[i - 1].mask_width; 2504 levels[i].cache_mask = 0; 2505 } 2506 } 2507 return levels_index; 2508 } 2509 2510 static bool __kmp_affinity_create_x2apicid_map(kmp_i18n_id_t *const msg_id) { 2511 2512 cpuid_level_info_t levels[INTEL_LEVEL_TYPE_LAST]; 2513 kmp_hw_t types[INTEL_LEVEL_TYPE_LAST]; 2514 unsigned levels_index; 2515 kmp_cpuid buf; 2516 kmp_uint64 known_levels; 2517 int topology_leaf, highest_leaf, apic_id; 2518 int num_leaves; 2519 static int leaves[] = {0, 0}; 2520 2521 kmp_i18n_id_t leaf_message_id; 2522 2523 KMP_BUILD_ASSERT(sizeof(known_levels) * CHAR_BIT > KMP_HW_LAST); 2524 2525 *msg_id = kmp_i18n_null; 2526 if (__kmp_affinity.flags.verbose) { 2527 KMP_INFORM(AffInfoStr, "KMP_AFFINITY", KMP_I18N_STR(Decodingx2APIC)); 2528 } 2529 2530 // Figure out the known topology levels 2531 known_levels = 0ull; 2532 for (int i = 0; i < INTEL_LEVEL_TYPE_LAST; ++i) { 2533 if (__kmp_intel_type_2_topology_type(i) != KMP_HW_UNKNOWN) { 2534 known_levels |= (1ull << i); 2535 } 2536 } 2537 2538 // Get the highest cpuid leaf supported 2539 __kmp_x86_cpuid(0, 0, &buf); 2540 highest_leaf = buf.eax; 2541 2542 // If a specific topology method was requested, only allow that specific leaf 2543 // otherwise, try both leaves 31 and 11 in that order 2544 num_leaves = 0; 2545 if (__kmp_affinity_top_method == affinity_top_method_x2apicid) { 2546 num_leaves = 1; 2547 leaves[0] = 11; 2548 leaf_message_id = kmp_i18n_str_NoLeaf11Support; 2549 } else if (__kmp_affinity_top_method == affinity_top_method_x2apicid_1f) { 2550 num_leaves = 1; 2551 leaves[0] = 31; 2552 leaf_message_id = kmp_i18n_str_NoLeaf31Support; 2553 } else { 2554 num_leaves = 2; 2555 leaves[0] = 31; 2556 leaves[1] = 11; 2557 leaf_message_id = kmp_i18n_str_NoLeaf11Support; 2558 } 2559 2560 // Check to see if cpuid leaf 31 or 11 is supported. 2561 __kmp_nThreadsPerCore = nCoresPerPkg = nPackages = 1; 2562 topology_leaf = -1; 2563 for (int i = 0; i < num_leaves; ++i) { 2564 int leaf = leaves[i]; 2565 if (highest_leaf < leaf) 2566 continue; 2567 __kmp_x86_cpuid(leaf, 0, &buf); 2568 if (buf.ebx == 0) 2569 continue; 2570 topology_leaf = leaf; 2571 levels_index = __kmp_x2apicid_get_levels(leaf, levels, known_levels); 2572 if (levels_index == 0) 2573 continue; 2574 break; 2575 } 2576 if (topology_leaf == -1 || levels_index == 0) { 2577 *msg_id = leaf_message_id; 2578 return false; 2579 } 2580 KMP_ASSERT(levels_index <= INTEL_LEVEL_TYPE_LAST); 2581 2582 // The algorithm used starts by setting the affinity to each available thread 2583 // and retrieving info from the cpuid instruction, so if we are not capable of 2584 // calling __kmp_get_system_affinity() and __kmp_get_system_affinity(), then 2585 // we need to do something else - use the defaults that we calculated from 2586 // issuing cpuid without binding to each proc. 2587 if (!KMP_AFFINITY_CAPABLE()) { 2588 // Hack to try and infer the machine topology using only the data 2589 // available from cpuid on the current thread, and __kmp_xproc. 2590 KMP_ASSERT(__kmp_affinity.type == affinity_none); 2591 for (unsigned i = 0; i < levels_index; ++i) { 2592 if (levels[i].level_type == INTEL_LEVEL_TYPE_SMT) { 2593 __kmp_nThreadsPerCore = levels[i].nitems; 2594 } else if (levels[i].level_type == INTEL_LEVEL_TYPE_CORE) { 2595 nCoresPerPkg = levels[i].nitems; 2596 } 2597 } 2598 __kmp_ncores = __kmp_xproc / __kmp_nThreadsPerCore; 2599 nPackages = (__kmp_xproc + nCoresPerPkg - 1) / nCoresPerPkg; 2600 return true; 2601 } 2602 2603 // Allocate the data structure to be returned. 2604 int depth = levels_index; 2605 for (int i = depth - 1, j = 0; i >= 0; --i, ++j) 2606 types[j] = __kmp_intel_type_2_topology_type(levels[i].level_type); 2607 __kmp_topology = 2608 kmp_topology_t::allocate(__kmp_avail_proc, levels_index, types); 2609 2610 // Insert equivalent cache types if they exist 2611 kmp_cache_info_t cache_info; 2612 for (size_t i = 0; i < cache_info.get_depth(); ++i) { 2613 const kmp_cache_info_t::info_t &info = cache_info[i]; 2614 unsigned cache_mask = info.mask; 2615 unsigned cache_level = info.level; 2616 for (unsigned j = 0; j < levels_index; ++j) { 2617 unsigned hw_cache_mask = levels[j].cache_mask; 2618 kmp_hw_t cache_type = kmp_cache_info_t::get_topology_type(cache_level); 2619 if (hw_cache_mask == cache_mask && j < levels_index - 1) { 2620 kmp_hw_t type = 2621 __kmp_intel_type_2_topology_type(levels[j + 1].level_type); 2622 __kmp_topology->set_equivalent_type(cache_type, type); 2623 } 2624 } 2625 } 2626 2627 // From here on, we can assume that it is safe to call 2628 // __kmp_get_system_affinity() and __kmp_set_system_affinity(), even if 2629 // __kmp_affinity.type = affinity_none. 2630 2631 // Save the affinity mask for the current thread. 2632 kmp_affinity_raii_t previous_affinity; 2633 2634 // Run through each of the available contexts, binding the current thread 2635 // to it, and obtaining the pertinent information using the cpuid instr. 2636 unsigned int proc; 2637 int hw_thread_index = 0; 2638 KMP_CPU_SET_ITERATE(proc, __kmp_affin_fullMask) { 2639 cpuid_level_info_t my_levels[INTEL_LEVEL_TYPE_LAST]; 2640 unsigned my_levels_index; 2641 2642 // Skip this proc if it is not included in the machine model. 2643 if (!KMP_CPU_ISSET(proc, __kmp_affin_fullMask)) { 2644 continue; 2645 } 2646 KMP_DEBUG_ASSERT(hw_thread_index < __kmp_avail_proc); 2647 2648 __kmp_affinity_dispatch->bind_thread(proc); 2649 2650 // New algorithm 2651 __kmp_x86_cpuid(topology_leaf, 0, &buf); 2652 apic_id = buf.edx; 2653 kmp_hw_thread_t &hw_thread = __kmp_topology->at(hw_thread_index); 2654 my_levels_index = 2655 __kmp_x2apicid_get_levels(topology_leaf, my_levels, known_levels); 2656 if (my_levels_index == 0 || my_levels_index != levels_index) { 2657 *msg_id = kmp_i18n_str_InvalidCpuidInfo; 2658 return false; 2659 } 2660 hw_thread.clear(); 2661 hw_thread.os_id = proc; 2662 // Put in topology information 2663 for (unsigned j = 0, idx = depth - 1; j < my_levels_index; ++j, --idx) { 2664 hw_thread.ids[idx] = apic_id & my_levels[j].mask; 2665 if (j > 0) { 2666 hw_thread.ids[idx] >>= my_levels[j - 1].mask_width; 2667 } 2668 } 2669 // Hybrid information 2670 if (__kmp_is_hybrid_cpu() && highest_leaf >= 0x1a) { 2671 kmp_hw_core_type_t type; 2672 unsigned native_model_id; 2673 int efficiency; 2674 __kmp_get_hybrid_info(&type, &efficiency, &native_model_id); 2675 hw_thread.attrs.set_core_type(type); 2676 hw_thread.attrs.set_core_eff(efficiency); 2677 } 2678 hw_thread_index++; 2679 } 2680 KMP_ASSERT(hw_thread_index > 0); 2681 __kmp_topology->sort_ids(); 2682 if (!__kmp_topology->check_ids()) { 2683 kmp_topology_t::deallocate(__kmp_topology); 2684 __kmp_topology = nullptr; 2685 *msg_id = kmp_i18n_str_x2ApicIDsNotUnique; 2686 return false; 2687 } 2688 return true; 2689 } 2690 #endif /* KMP_ARCH_X86 || KMP_ARCH_X86_64 */ 2691 2692 #define osIdIndex 0 2693 #define threadIdIndex 1 2694 #define coreIdIndex 2 2695 #define pkgIdIndex 3 2696 #define nodeIdIndex 4 2697 2698 typedef unsigned *ProcCpuInfo; 2699 static unsigned maxIndex = pkgIdIndex; 2700 2701 static int __kmp_affinity_cmp_ProcCpuInfo_phys_id(const void *a, 2702 const void *b) { 2703 unsigned i; 2704 const unsigned *aa = *(unsigned *const *)a; 2705 const unsigned *bb = *(unsigned *const *)b; 2706 for (i = maxIndex;; i--) { 2707 if (aa[i] < bb[i]) 2708 return -1; 2709 if (aa[i] > bb[i]) 2710 return 1; 2711 if (i == osIdIndex) 2712 break; 2713 } 2714 return 0; 2715 } 2716 2717 #if KMP_USE_HIER_SCHED 2718 // Set the array sizes for the hierarchy layers 2719 static void __kmp_dispatch_set_hierarchy_values() { 2720 // Set the maximum number of L1's to number of cores 2721 // Set the maximum number of L2's to to either number of cores / 2 for 2722 // Intel(R) Xeon Phi(TM) coprocessor formally codenamed Knights Landing 2723 // Or the number of cores for Intel(R) Xeon(R) processors 2724 // Set the maximum number of NUMA nodes and L3's to number of packages 2725 __kmp_hier_max_units[kmp_hier_layer_e::LAYER_THREAD + 1] = 2726 nPackages * nCoresPerPkg * __kmp_nThreadsPerCore; 2727 __kmp_hier_max_units[kmp_hier_layer_e::LAYER_L1 + 1] = __kmp_ncores; 2728 #if KMP_ARCH_X86_64 && (KMP_OS_LINUX || KMP_OS_FREEBSD || KMP_OS_WINDOWS) && \ 2729 KMP_MIC_SUPPORTED 2730 if (__kmp_mic_type >= mic3) 2731 __kmp_hier_max_units[kmp_hier_layer_e::LAYER_L2 + 1] = __kmp_ncores / 2; 2732 else 2733 #endif // KMP_ARCH_X86_64 && (KMP_OS_LINUX || KMP_OS_WINDOWS) 2734 __kmp_hier_max_units[kmp_hier_layer_e::LAYER_L2 + 1] = __kmp_ncores; 2735 __kmp_hier_max_units[kmp_hier_layer_e::LAYER_L3 + 1] = nPackages; 2736 __kmp_hier_max_units[kmp_hier_layer_e::LAYER_NUMA + 1] = nPackages; 2737 __kmp_hier_max_units[kmp_hier_layer_e::LAYER_LOOP + 1] = 1; 2738 // Set the number of threads per unit 2739 // Number of hardware threads per L1/L2/L3/NUMA/LOOP 2740 __kmp_hier_threads_per[kmp_hier_layer_e::LAYER_THREAD + 1] = 1; 2741 __kmp_hier_threads_per[kmp_hier_layer_e::LAYER_L1 + 1] = 2742 __kmp_nThreadsPerCore; 2743 #if KMP_ARCH_X86_64 && (KMP_OS_LINUX || KMP_OS_FREEBSD || KMP_OS_WINDOWS) && \ 2744 KMP_MIC_SUPPORTED 2745 if (__kmp_mic_type >= mic3) 2746 __kmp_hier_threads_per[kmp_hier_layer_e::LAYER_L2 + 1] = 2747 2 * __kmp_nThreadsPerCore; 2748 else 2749 #endif // KMP_ARCH_X86_64 && (KMP_OS_LINUX || KMP_OS_WINDOWS) 2750 __kmp_hier_threads_per[kmp_hier_layer_e::LAYER_L2 + 1] = 2751 __kmp_nThreadsPerCore; 2752 __kmp_hier_threads_per[kmp_hier_layer_e::LAYER_L3 + 1] = 2753 nCoresPerPkg * __kmp_nThreadsPerCore; 2754 __kmp_hier_threads_per[kmp_hier_layer_e::LAYER_NUMA + 1] = 2755 nCoresPerPkg * __kmp_nThreadsPerCore; 2756 __kmp_hier_threads_per[kmp_hier_layer_e::LAYER_LOOP + 1] = 2757 nPackages * nCoresPerPkg * __kmp_nThreadsPerCore; 2758 } 2759 2760 // Return the index into the hierarchy for this tid and layer type (L1, L2, etc) 2761 // i.e., this thread's L1 or this thread's L2, etc. 2762 int __kmp_dispatch_get_index(int tid, kmp_hier_layer_e type) { 2763 int index = type + 1; 2764 int num_hw_threads = __kmp_hier_max_units[kmp_hier_layer_e::LAYER_THREAD + 1]; 2765 KMP_DEBUG_ASSERT(type != kmp_hier_layer_e::LAYER_LAST); 2766 if (type == kmp_hier_layer_e::LAYER_THREAD) 2767 return tid; 2768 else if (type == kmp_hier_layer_e::LAYER_LOOP) 2769 return 0; 2770 KMP_DEBUG_ASSERT(__kmp_hier_max_units[index] != 0); 2771 if (tid >= num_hw_threads) 2772 tid = tid % num_hw_threads; 2773 return (tid / __kmp_hier_threads_per[index]) % __kmp_hier_max_units[index]; 2774 } 2775 2776 // Return the number of t1's per t2 2777 int __kmp_dispatch_get_t1_per_t2(kmp_hier_layer_e t1, kmp_hier_layer_e t2) { 2778 int i1 = t1 + 1; 2779 int i2 = t2 + 1; 2780 KMP_DEBUG_ASSERT(i1 <= i2); 2781 KMP_DEBUG_ASSERT(t1 != kmp_hier_layer_e::LAYER_LAST); 2782 KMP_DEBUG_ASSERT(t2 != kmp_hier_layer_e::LAYER_LAST); 2783 KMP_DEBUG_ASSERT(__kmp_hier_threads_per[i1] != 0); 2784 // (nthreads/t2) / (nthreads/t1) = t1 / t2 2785 return __kmp_hier_threads_per[i2] / __kmp_hier_threads_per[i1]; 2786 } 2787 #endif // KMP_USE_HIER_SCHED 2788 2789 static inline const char *__kmp_cpuinfo_get_filename() { 2790 const char *filename; 2791 if (__kmp_cpuinfo_file != nullptr) 2792 filename = __kmp_cpuinfo_file; 2793 else 2794 filename = "/proc/cpuinfo"; 2795 return filename; 2796 } 2797 2798 static inline const char *__kmp_cpuinfo_get_envvar() { 2799 const char *envvar = nullptr; 2800 if (__kmp_cpuinfo_file != nullptr) 2801 envvar = "KMP_CPUINFO_FILE"; 2802 return envvar; 2803 } 2804 2805 // Parse /proc/cpuinfo (or an alternate file in the same format) to obtain the 2806 // affinity map. 2807 static bool __kmp_affinity_create_cpuinfo_map(int *line, 2808 kmp_i18n_id_t *const msg_id) { 2809 const char *filename = __kmp_cpuinfo_get_filename(); 2810 const char *envvar = __kmp_cpuinfo_get_envvar(); 2811 *msg_id = kmp_i18n_null; 2812 2813 if (__kmp_affinity.flags.verbose) { 2814 KMP_INFORM(AffParseFilename, "KMP_AFFINITY", filename); 2815 } 2816 2817 kmp_safe_raii_file_t f(filename, "r", envvar); 2818 2819 // Scan of the file, and count the number of "processor" (osId) fields, 2820 // and find the highest value of <n> for a node_<n> field. 2821 char buf[256]; 2822 unsigned num_records = 0; 2823 while (!feof(f)) { 2824 buf[sizeof(buf) - 1] = 1; 2825 if (!fgets(buf, sizeof(buf), f)) { 2826 // Read errors presumably because of EOF 2827 break; 2828 } 2829 2830 char s1[] = "processor"; 2831 if (strncmp(buf, s1, sizeof(s1) - 1) == 0) { 2832 num_records++; 2833 continue; 2834 } 2835 2836 // FIXME - this will match "node_<n> <garbage>" 2837 unsigned level; 2838 if (KMP_SSCANF(buf, "node_%u id", &level) == 1) { 2839 // validate the input fisrt: 2840 if (level > (unsigned)__kmp_xproc) { // level is too big 2841 level = __kmp_xproc; 2842 } 2843 if (nodeIdIndex + level >= maxIndex) { 2844 maxIndex = nodeIdIndex + level; 2845 } 2846 continue; 2847 } 2848 } 2849 2850 // Check for empty file / no valid processor records, or too many. The number 2851 // of records can't exceed the number of valid bits in the affinity mask. 2852 if (num_records == 0) { 2853 *msg_id = kmp_i18n_str_NoProcRecords; 2854 return false; 2855 } 2856 if (num_records > (unsigned)__kmp_xproc) { 2857 *msg_id = kmp_i18n_str_TooManyProcRecords; 2858 return false; 2859 } 2860 2861 // Set the file pointer back to the beginning, so that we can scan the file 2862 // again, this time performing a full parse of the data. Allocate a vector of 2863 // ProcCpuInfo object, where we will place the data. Adding an extra element 2864 // at the end allows us to remove a lot of extra checks for termination 2865 // conditions. 2866 if (fseek(f, 0, SEEK_SET) != 0) { 2867 *msg_id = kmp_i18n_str_CantRewindCpuinfo; 2868 return false; 2869 } 2870 2871 // Allocate the array of records to store the proc info in. The dummy 2872 // element at the end makes the logic in filling them out easier to code. 2873 unsigned **threadInfo = 2874 (unsigned **)__kmp_allocate((num_records + 1) * sizeof(unsigned *)); 2875 unsigned i; 2876 for (i = 0; i <= num_records; i++) { 2877 threadInfo[i] = 2878 (unsigned *)__kmp_allocate((maxIndex + 1) * sizeof(unsigned)); 2879 } 2880 2881 #define CLEANUP_THREAD_INFO \ 2882 for (i = 0; i <= num_records; i++) { \ 2883 __kmp_free(threadInfo[i]); \ 2884 } \ 2885 __kmp_free(threadInfo); 2886 2887 // A value of UINT_MAX means that we didn't find the field 2888 unsigned __index; 2889 2890 #define INIT_PROC_INFO(p) \ 2891 for (__index = 0; __index <= maxIndex; __index++) { \ 2892 (p)[__index] = UINT_MAX; \ 2893 } 2894 2895 for (i = 0; i <= num_records; i++) { 2896 INIT_PROC_INFO(threadInfo[i]); 2897 } 2898 2899 unsigned num_avail = 0; 2900 *line = 0; 2901 while (!feof(f)) { 2902 // Create an inner scoping level, so that all the goto targets at the end of 2903 // the loop appear in an outer scoping level. This avoids warnings about 2904 // jumping past an initialization to a target in the same block. 2905 { 2906 buf[sizeof(buf) - 1] = 1; 2907 bool long_line = false; 2908 if (!fgets(buf, sizeof(buf), f)) { 2909 // Read errors presumably because of EOF 2910 // If there is valid data in threadInfo[num_avail], then fake 2911 // a blank line in ensure that the last address gets parsed. 2912 bool valid = false; 2913 for (i = 0; i <= maxIndex; i++) { 2914 if (threadInfo[num_avail][i] != UINT_MAX) { 2915 valid = true; 2916 } 2917 } 2918 if (!valid) { 2919 break; 2920 } 2921 buf[0] = 0; 2922 } else if (!buf[sizeof(buf) - 1]) { 2923 // The line is longer than the buffer. Set a flag and don't 2924 // emit an error if we were going to ignore the line, anyway. 2925 long_line = true; 2926 2927 #define CHECK_LINE \ 2928 if (long_line) { \ 2929 CLEANUP_THREAD_INFO; \ 2930 *msg_id = kmp_i18n_str_LongLineCpuinfo; \ 2931 return false; \ 2932 } 2933 } 2934 (*line)++; 2935 2936 #if KMP_ARCH_LOONGARCH64 2937 // The parsing logic of /proc/cpuinfo in this function highly depends on 2938 // the blank lines between each processor info block. But on LoongArch a 2939 // blank line exists before the first processor info block (i.e. after the 2940 // "system type" line). This blank line was added because the "system 2941 // type" line is unrelated to any of the CPUs. We must skip this line so 2942 // that the original logic works on LoongArch. 2943 if (*buf == '\n' && *line == 2) 2944 continue; 2945 #endif 2946 2947 char s1[] = "processor"; 2948 if (strncmp(buf, s1, sizeof(s1) - 1) == 0) { 2949 CHECK_LINE; 2950 char *p = strchr(buf + sizeof(s1) - 1, ':'); 2951 unsigned val; 2952 if ((p == NULL) || (KMP_SSCANF(p + 1, "%u\n", &val) != 1)) 2953 goto no_val; 2954 if (threadInfo[num_avail][osIdIndex] != UINT_MAX) 2955 #if KMP_ARCH_AARCH64 2956 // Handle the old AArch64 /proc/cpuinfo layout differently, 2957 // it contains all of the 'processor' entries listed in a 2958 // single 'Processor' section, therefore the normal looking 2959 // for duplicates in that section will always fail. 2960 num_avail++; 2961 #else 2962 goto dup_field; 2963 #endif 2964 threadInfo[num_avail][osIdIndex] = val; 2965 #if KMP_OS_LINUX && !(KMP_ARCH_X86 || KMP_ARCH_X86_64) 2966 char path[256]; 2967 KMP_SNPRINTF( 2968 path, sizeof(path), 2969 "/sys/devices/system/cpu/cpu%u/topology/physical_package_id", 2970 threadInfo[num_avail][osIdIndex]); 2971 __kmp_read_from_file(path, "%u", &threadInfo[num_avail][pkgIdIndex]); 2972 2973 KMP_SNPRINTF(path, sizeof(path), 2974 "/sys/devices/system/cpu/cpu%u/topology/core_id", 2975 threadInfo[num_avail][osIdIndex]); 2976 __kmp_read_from_file(path, "%u", &threadInfo[num_avail][coreIdIndex]); 2977 continue; 2978 #else 2979 } 2980 char s2[] = "physical id"; 2981 if (strncmp(buf, s2, sizeof(s2) - 1) == 0) { 2982 CHECK_LINE; 2983 char *p = strchr(buf + sizeof(s2) - 1, ':'); 2984 unsigned val; 2985 if ((p == NULL) || (KMP_SSCANF(p + 1, "%u\n", &val) != 1)) 2986 goto no_val; 2987 if (threadInfo[num_avail][pkgIdIndex] != UINT_MAX) 2988 goto dup_field; 2989 threadInfo[num_avail][pkgIdIndex] = val; 2990 continue; 2991 } 2992 char s3[] = "core id"; 2993 if (strncmp(buf, s3, sizeof(s3) - 1) == 0) { 2994 CHECK_LINE; 2995 char *p = strchr(buf + sizeof(s3) - 1, ':'); 2996 unsigned val; 2997 if ((p == NULL) || (KMP_SSCANF(p + 1, "%u\n", &val) != 1)) 2998 goto no_val; 2999 if (threadInfo[num_avail][coreIdIndex] != UINT_MAX) 3000 goto dup_field; 3001 threadInfo[num_avail][coreIdIndex] = val; 3002 continue; 3003 #endif // KMP_OS_LINUX && USE_SYSFS_INFO 3004 } 3005 char s4[] = "thread id"; 3006 if (strncmp(buf, s4, sizeof(s4) - 1) == 0) { 3007 CHECK_LINE; 3008 char *p = strchr(buf + sizeof(s4) - 1, ':'); 3009 unsigned val; 3010 if ((p == NULL) || (KMP_SSCANF(p + 1, "%u\n", &val) != 1)) 3011 goto no_val; 3012 if (threadInfo[num_avail][threadIdIndex] != UINT_MAX) 3013 goto dup_field; 3014 threadInfo[num_avail][threadIdIndex] = val; 3015 continue; 3016 } 3017 unsigned level; 3018 if (KMP_SSCANF(buf, "node_%u id", &level) == 1) { 3019 CHECK_LINE; 3020 char *p = strchr(buf + sizeof(s4) - 1, ':'); 3021 unsigned val; 3022 if ((p == NULL) || (KMP_SSCANF(p + 1, "%u\n", &val) != 1)) 3023 goto no_val; 3024 // validate the input before using level: 3025 if (level > (unsigned)__kmp_xproc) { // level is too big 3026 level = __kmp_xproc; 3027 } 3028 if (threadInfo[num_avail][nodeIdIndex + level] != UINT_MAX) 3029 goto dup_field; 3030 threadInfo[num_avail][nodeIdIndex + level] = val; 3031 continue; 3032 } 3033 3034 // We didn't recognize the leading token on the line. There are lots of 3035 // leading tokens that we don't recognize - if the line isn't empty, go on 3036 // to the next line. 3037 if ((*buf != 0) && (*buf != '\n')) { 3038 // If the line is longer than the buffer, read characters 3039 // until we find a newline. 3040 if (long_line) { 3041 int ch; 3042 while (((ch = fgetc(f)) != EOF) && (ch != '\n')) 3043 ; 3044 } 3045 continue; 3046 } 3047 3048 // A newline has signalled the end of the processor record. 3049 // Check that there aren't too many procs specified. 3050 if ((int)num_avail == __kmp_xproc) { 3051 CLEANUP_THREAD_INFO; 3052 *msg_id = kmp_i18n_str_TooManyEntries; 3053 return false; 3054 } 3055 3056 // Check for missing fields. The osId field must be there, and we 3057 // currently require that the physical id field is specified, also. 3058 if (threadInfo[num_avail][osIdIndex] == UINT_MAX) { 3059 CLEANUP_THREAD_INFO; 3060 *msg_id = kmp_i18n_str_MissingProcField; 3061 return false; 3062 } 3063 if (threadInfo[0][pkgIdIndex] == UINT_MAX) { 3064 CLEANUP_THREAD_INFO; 3065 *msg_id = kmp_i18n_str_MissingPhysicalIDField; 3066 return false; 3067 } 3068 3069 // Skip this proc if it is not included in the machine model. 3070 if (KMP_AFFINITY_CAPABLE() && 3071 !KMP_CPU_ISSET(threadInfo[num_avail][osIdIndex], 3072 __kmp_affin_fullMask)) { 3073 INIT_PROC_INFO(threadInfo[num_avail]); 3074 continue; 3075 } 3076 3077 // We have a successful parse of this proc's info. 3078 // Increment the counter, and prepare for the next proc. 3079 num_avail++; 3080 KMP_ASSERT(num_avail <= num_records); 3081 INIT_PROC_INFO(threadInfo[num_avail]); 3082 } 3083 continue; 3084 3085 no_val: 3086 CLEANUP_THREAD_INFO; 3087 *msg_id = kmp_i18n_str_MissingValCpuinfo; 3088 return false; 3089 3090 dup_field: 3091 CLEANUP_THREAD_INFO; 3092 *msg_id = kmp_i18n_str_DuplicateFieldCpuinfo; 3093 return false; 3094 } 3095 *line = 0; 3096 3097 #if KMP_MIC && REDUCE_TEAM_SIZE 3098 unsigned teamSize = 0; 3099 #endif // KMP_MIC && REDUCE_TEAM_SIZE 3100 3101 // check for num_records == __kmp_xproc ??? 3102 3103 // If it is configured to omit the package level when there is only a single 3104 // package, the logic at the end of this routine won't work if there is only a 3105 // single thread 3106 KMP_ASSERT(num_avail > 0); 3107 KMP_ASSERT(num_avail <= num_records); 3108 3109 // Sort the threadInfo table by physical Id. 3110 qsort(threadInfo, num_avail, sizeof(*threadInfo), 3111 __kmp_affinity_cmp_ProcCpuInfo_phys_id); 3112 3113 // The table is now sorted by pkgId / coreId / threadId, but we really don't 3114 // know the radix of any of the fields. pkgId's may be sparsely assigned among 3115 // the chips on a system. Although coreId's are usually assigned 3116 // [0 .. coresPerPkg-1] and threadId's are usually assigned 3117 // [0..threadsPerCore-1], we don't want to make any such assumptions. 3118 // 3119 // For that matter, we don't know what coresPerPkg and threadsPerCore (or the 3120 // total # packages) are at this point - we want to determine that now. We 3121 // only have an upper bound on the first two figures. 3122 unsigned *counts = 3123 (unsigned *)__kmp_allocate((maxIndex + 1) * sizeof(unsigned)); 3124 unsigned *maxCt = 3125 (unsigned *)__kmp_allocate((maxIndex + 1) * sizeof(unsigned)); 3126 unsigned *totals = 3127 (unsigned *)__kmp_allocate((maxIndex + 1) * sizeof(unsigned)); 3128 unsigned *lastId = 3129 (unsigned *)__kmp_allocate((maxIndex + 1) * sizeof(unsigned)); 3130 3131 bool assign_thread_ids = false; 3132 unsigned threadIdCt; 3133 unsigned index; 3134 3135 restart_radix_check: 3136 threadIdCt = 0; 3137 3138 // Initialize the counter arrays with data from threadInfo[0]. 3139 if (assign_thread_ids) { 3140 if (threadInfo[0][threadIdIndex] == UINT_MAX) { 3141 threadInfo[0][threadIdIndex] = threadIdCt++; 3142 } else if (threadIdCt <= threadInfo[0][threadIdIndex]) { 3143 threadIdCt = threadInfo[0][threadIdIndex] + 1; 3144 } 3145 } 3146 for (index = 0; index <= maxIndex; index++) { 3147 counts[index] = 1; 3148 maxCt[index] = 1; 3149 totals[index] = 1; 3150 lastId[index] = threadInfo[0][index]; 3151 ; 3152 } 3153 3154 // Run through the rest of the OS procs. 3155 for (i = 1; i < num_avail; i++) { 3156 // Find the most significant index whose id differs from the id for the 3157 // previous OS proc. 3158 for (index = maxIndex; index >= threadIdIndex; index--) { 3159 if (assign_thread_ids && (index == threadIdIndex)) { 3160 // Auto-assign the thread id field if it wasn't specified. 3161 if (threadInfo[i][threadIdIndex] == UINT_MAX) { 3162 threadInfo[i][threadIdIndex] = threadIdCt++; 3163 } 3164 // Apparently the thread id field was specified for some entries and not 3165 // others. Start the thread id counter off at the next higher thread id. 3166 else if (threadIdCt <= threadInfo[i][threadIdIndex]) { 3167 threadIdCt = threadInfo[i][threadIdIndex] + 1; 3168 } 3169 } 3170 if (threadInfo[i][index] != lastId[index]) { 3171 // Run through all indices which are less significant, and reset the 3172 // counts to 1. At all levels up to and including index, we need to 3173 // increment the totals and record the last id. 3174 unsigned index2; 3175 for (index2 = threadIdIndex; index2 < index; index2++) { 3176 totals[index2]++; 3177 if (counts[index2] > maxCt[index2]) { 3178 maxCt[index2] = counts[index2]; 3179 } 3180 counts[index2] = 1; 3181 lastId[index2] = threadInfo[i][index2]; 3182 } 3183 counts[index]++; 3184 totals[index]++; 3185 lastId[index] = threadInfo[i][index]; 3186 3187 if (assign_thread_ids && (index > threadIdIndex)) { 3188 3189 #if KMP_MIC && REDUCE_TEAM_SIZE 3190 // The default team size is the total #threads in the machine 3191 // minus 1 thread for every core that has 3 or more threads. 3192 teamSize += (threadIdCt <= 2) ? (threadIdCt) : (threadIdCt - 1); 3193 #endif // KMP_MIC && REDUCE_TEAM_SIZE 3194 3195 // Restart the thread counter, as we are on a new core. 3196 threadIdCt = 0; 3197 3198 // Auto-assign the thread id field if it wasn't specified. 3199 if (threadInfo[i][threadIdIndex] == UINT_MAX) { 3200 threadInfo[i][threadIdIndex] = threadIdCt++; 3201 } 3202 3203 // Apparently the thread id field was specified for some entries and 3204 // not others. Start the thread id counter off at the next higher 3205 // thread id. 3206 else if (threadIdCt <= threadInfo[i][threadIdIndex]) { 3207 threadIdCt = threadInfo[i][threadIdIndex] + 1; 3208 } 3209 } 3210 break; 3211 } 3212 } 3213 if (index < threadIdIndex) { 3214 // If thread ids were specified, it is an error if they are not unique. 3215 // Also, check that we waven't already restarted the loop (to be safe - 3216 // shouldn't need to). 3217 if ((threadInfo[i][threadIdIndex] != UINT_MAX) || assign_thread_ids) { 3218 __kmp_free(lastId); 3219 __kmp_free(totals); 3220 __kmp_free(maxCt); 3221 __kmp_free(counts); 3222 CLEANUP_THREAD_INFO; 3223 *msg_id = kmp_i18n_str_PhysicalIDsNotUnique; 3224 return false; 3225 } 3226 3227 // If the thread ids were not specified and we see entries entries that 3228 // are duplicates, start the loop over and assign the thread ids manually. 3229 assign_thread_ids = true; 3230 goto restart_radix_check; 3231 } 3232 } 3233 3234 #if KMP_MIC && REDUCE_TEAM_SIZE 3235 // The default team size is the total #threads in the machine 3236 // minus 1 thread for every core that has 3 or more threads. 3237 teamSize += (threadIdCt <= 2) ? (threadIdCt) : (threadIdCt - 1); 3238 #endif // KMP_MIC && REDUCE_TEAM_SIZE 3239 3240 for (index = threadIdIndex; index <= maxIndex; index++) { 3241 if (counts[index] > maxCt[index]) { 3242 maxCt[index] = counts[index]; 3243 } 3244 } 3245 3246 __kmp_nThreadsPerCore = maxCt[threadIdIndex]; 3247 nCoresPerPkg = maxCt[coreIdIndex]; 3248 nPackages = totals[pkgIdIndex]; 3249 3250 // When affinity is off, this routine will still be called to set 3251 // __kmp_ncores, as well as __kmp_nThreadsPerCore, nCoresPerPkg, & nPackages. 3252 // Make sure all these vars are set correctly, and return now if affinity is 3253 // not enabled. 3254 __kmp_ncores = totals[coreIdIndex]; 3255 if (!KMP_AFFINITY_CAPABLE()) { 3256 KMP_ASSERT(__kmp_affinity.type == affinity_none); 3257 return true; 3258 } 3259 3260 #if KMP_MIC && REDUCE_TEAM_SIZE 3261 // Set the default team size. 3262 if ((__kmp_dflt_team_nth == 0) && (teamSize > 0)) { 3263 __kmp_dflt_team_nth = teamSize; 3264 KA_TRACE(20, ("__kmp_affinity_create_cpuinfo_map: setting " 3265 "__kmp_dflt_team_nth = %d\n", 3266 __kmp_dflt_team_nth)); 3267 } 3268 #endif // KMP_MIC && REDUCE_TEAM_SIZE 3269 3270 KMP_DEBUG_ASSERT(num_avail == (unsigned)__kmp_avail_proc); 3271 3272 // Count the number of levels which have more nodes at that level than at the 3273 // parent's level (with there being an implicit root node of the top level). 3274 // This is equivalent to saying that there is at least one node at this level 3275 // which has a sibling. These levels are in the map, and the package level is 3276 // always in the map. 3277 bool *inMap = (bool *)__kmp_allocate((maxIndex + 1) * sizeof(bool)); 3278 for (index = threadIdIndex; index < maxIndex; index++) { 3279 KMP_ASSERT(totals[index] >= totals[index + 1]); 3280 inMap[index] = (totals[index] > totals[index + 1]); 3281 } 3282 inMap[maxIndex] = (totals[maxIndex] > 1); 3283 inMap[pkgIdIndex] = true; 3284 inMap[coreIdIndex] = true; 3285 inMap[threadIdIndex] = true; 3286 3287 int depth = 0; 3288 int idx = 0; 3289 kmp_hw_t types[KMP_HW_LAST]; 3290 int pkgLevel = -1; 3291 int coreLevel = -1; 3292 int threadLevel = -1; 3293 for (index = threadIdIndex; index <= maxIndex; index++) { 3294 if (inMap[index]) { 3295 depth++; 3296 } 3297 } 3298 if (inMap[pkgIdIndex]) { 3299 pkgLevel = idx; 3300 types[idx++] = KMP_HW_SOCKET; 3301 } 3302 if (inMap[coreIdIndex]) { 3303 coreLevel = idx; 3304 types[idx++] = KMP_HW_CORE; 3305 } 3306 if (inMap[threadIdIndex]) { 3307 threadLevel = idx; 3308 types[idx++] = KMP_HW_THREAD; 3309 } 3310 KMP_ASSERT(depth > 0); 3311 3312 // Construct the data structure that is to be returned. 3313 __kmp_topology = kmp_topology_t::allocate(num_avail, depth, types); 3314 3315 for (i = 0; i < num_avail; ++i) { 3316 unsigned os = threadInfo[i][osIdIndex]; 3317 int src_index; 3318 kmp_hw_thread_t &hw_thread = __kmp_topology->at(i); 3319 hw_thread.clear(); 3320 hw_thread.os_id = os; 3321 3322 idx = 0; 3323 for (src_index = maxIndex; src_index >= threadIdIndex; src_index--) { 3324 if (!inMap[src_index]) { 3325 continue; 3326 } 3327 if (src_index == pkgIdIndex) { 3328 hw_thread.ids[pkgLevel] = threadInfo[i][src_index]; 3329 } else if (src_index == coreIdIndex) { 3330 hw_thread.ids[coreLevel] = threadInfo[i][src_index]; 3331 } else if (src_index == threadIdIndex) { 3332 hw_thread.ids[threadLevel] = threadInfo[i][src_index]; 3333 } 3334 } 3335 } 3336 3337 __kmp_free(inMap); 3338 __kmp_free(lastId); 3339 __kmp_free(totals); 3340 __kmp_free(maxCt); 3341 __kmp_free(counts); 3342 CLEANUP_THREAD_INFO; 3343 __kmp_topology->sort_ids(); 3344 if (!__kmp_topology->check_ids()) { 3345 kmp_topology_t::deallocate(__kmp_topology); 3346 __kmp_topology = nullptr; 3347 *msg_id = kmp_i18n_str_PhysicalIDsNotUnique; 3348 return false; 3349 } 3350 return true; 3351 } 3352 3353 // Create and return a table of affinity masks, indexed by OS thread ID. 3354 // This routine handles OR'ing together all the affinity masks of threads 3355 // that are sufficiently close, if granularity > fine. 3356 static void __kmp_create_os_id_masks(unsigned *numUnique, 3357 kmp_affinity_t &affinity) { 3358 // First form a table of affinity masks in order of OS thread id. 3359 int maxOsId; 3360 int i; 3361 int numAddrs = __kmp_topology->get_num_hw_threads(); 3362 int depth = __kmp_topology->get_depth(); 3363 const char *env_var = affinity.env_var; 3364 KMP_ASSERT(numAddrs); 3365 KMP_ASSERT(depth); 3366 3367 maxOsId = 0; 3368 for (i = numAddrs - 1;; --i) { 3369 int osId = __kmp_topology->at(i).os_id; 3370 if (osId > maxOsId) { 3371 maxOsId = osId; 3372 } 3373 if (i == 0) 3374 break; 3375 } 3376 affinity.num_os_id_masks = maxOsId + 1; 3377 KMP_CPU_ALLOC_ARRAY(affinity.os_id_masks, affinity.num_os_id_masks); 3378 KMP_ASSERT(affinity.gran_levels >= 0); 3379 if (affinity.flags.verbose && (affinity.gran_levels > 0)) { 3380 KMP_INFORM(ThreadsMigrate, env_var, affinity.gran_levels); 3381 } 3382 if (affinity.gran_levels >= (int)depth) { 3383 KMP_AFF_WARNING(affinity, AffThreadsMayMigrate); 3384 } 3385 3386 // Run through the table, forming the masks for all threads on each core. 3387 // Threads on the same core will have identical kmp_hw_thread_t objects, not 3388 // considering the last level, which must be the thread id. All threads on a 3389 // core will appear consecutively. 3390 int unique = 0; 3391 int j = 0; // index of 1st thread on core 3392 int leader = 0; 3393 kmp_affin_mask_t *sum; 3394 KMP_CPU_ALLOC_ON_STACK(sum); 3395 KMP_CPU_ZERO(sum); 3396 KMP_CPU_SET(__kmp_topology->at(0).os_id, sum); 3397 for (i = 1; i < numAddrs; i++) { 3398 // If this thread is sufficiently close to the leader (within the 3399 // granularity setting), then set the bit for this os thread in the 3400 // affinity mask for this group, and go on to the next thread. 3401 if (__kmp_topology->is_close(leader, i, affinity.gran_levels)) { 3402 KMP_CPU_SET(__kmp_topology->at(i).os_id, sum); 3403 continue; 3404 } 3405 3406 // For every thread in this group, copy the mask to the thread's entry in 3407 // the OS Id mask table. Mark the first address as a leader. 3408 for (; j < i; j++) { 3409 int osId = __kmp_topology->at(j).os_id; 3410 KMP_DEBUG_ASSERT(osId <= maxOsId); 3411 kmp_affin_mask_t *mask = KMP_CPU_INDEX(affinity.os_id_masks, osId); 3412 KMP_CPU_COPY(mask, sum); 3413 __kmp_topology->at(j).leader = (j == leader); 3414 } 3415 unique++; 3416 3417 // Start a new mask. 3418 leader = i; 3419 KMP_CPU_ZERO(sum); 3420 KMP_CPU_SET(__kmp_topology->at(i).os_id, sum); 3421 } 3422 3423 // For every thread in last group, copy the mask to the thread's 3424 // entry in the OS Id mask table. 3425 for (; j < i; j++) { 3426 int osId = __kmp_topology->at(j).os_id; 3427 KMP_DEBUG_ASSERT(osId <= maxOsId); 3428 kmp_affin_mask_t *mask = KMP_CPU_INDEX(affinity.os_id_masks, osId); 3429 KMP_CPU_COPY(mask, sum); 3430 __kmp_topology->at(j).leader = (j == leader); 3431 } 3432 unique++; 3433 KMP_CPU_FREE_FROM_STACK(sum); 3434 3435 *numUnique = unique; 3436 } 3437 3438 // Stuff for the affinity proclist parsers. It's easier to declare these vars 3439 // as file-static than to try and pass them through the calling sequence of 3440 // the recursive-descent OMP_PLACES parser. 3441 static kmp_affin_mask_t *newMasks; 3442 static int numNewMasks; 3443 static int nextNewMask; 3444 3445 #define ADD_MASK(_mask) \ 3446 { \ 3447 if (nextNewMask >= numNewMasks) { \ 3448 int i; \ 3449 numNewMasks *= 2; \ 3450 kmp_affin_mask_t *temp; \ 3451 KMP_CPU_INTERNAL_ALLOC_ARRAY(temp, numNewMasks); \ 3452 for (i = 0; i < numNewMasks / 2; i++) { \ 3453 kmp_affin_mask_t *src = KMP_CPU_INDEX(newMasks, i); \ 3454 kmp_affin_mask_t *dest = KMP_CPU_INDEX(temp, i); \ 3455 KMP_CPU_COPY(dest, src); \ 3456 } \ 3457 KMP_CPU_INTERNAL_FREE_ARRAY(newMasks, numNewMasks / 2); \ 3458 newMasks = temp; \ 3459 } \ 3460 KMP_CPU_COPY(KMP_CPU_INDEX(newMasks, nextNewMask), (_mask)); \ 3461 nextNewMask++; \ 3462 } 3463 3464 #define ADD_MASK_OSID(_osId, _osId2Mask, _maxOsId) \ 3465 { \ 3466 if (((_osId) > _maxOsId) || \ 3467 (!KMP_CPU_ISSET((_osId), KMP_CPU_INDEX((_osId2Mask), (_osId))))) { \ 3468 KMP_AFF_WARNING(affinity, AffIgnoreInvalidProcID, _osId); \ 3469 } else { \ 3470 ADD_MASK(KMP_CPU_INDEX(_osId2Mask, (_osId))); \ 3471 } \ 3472 } 3473 3474 // Re-parse the proclist (for the explicit affinity type), and form the list 3475 // of affinity newMasks indexed by gtid. 3476 static void __kmp_affinity_process_proclist(kmp_affinity_t &affinity) { 3477 int i; 3478 kmp_affin_mask_t **out_masks = &affinity.masks; 3479 unsigned *out_numMasks = &affinity.num_masks; 3480 const char *proclist = affinity.proclist; 3481 kmp_affin_mask_t *osId2Mask = affinity.os_id_masks; 3482 int maxOsId = affinity.num_os_id_masks - 1; 3483 const char *scan = proclist; 3484 const char *next = proclist; 3485 3486 // We use malloc() for the temporary mask vector, so that we can use 3487 // realloc() to extend it. 3488 numNewMasks = 2; 3489 KMP_CPU_INTERNAL_ALLOC_ARRAY(newMasks, numNewMasks); 3490 nextNewMask = 0; 3491 kmp_affin_mask_t *sumMask; 3492 KMP_CPU_ALLOC(sumMask); 3493 int setSize = 0; 3494 3495 for (;;) { 3496 int start, end, stride; 3497 3498 SKIP_WS(scan); 3499 next = scan; 3500 if (*next == '\0') { 3501 break; 3502 } 3503 3504 if (*next == '{') { 3505 int num; 3506 setSize = 0; 3507 next++; // skip '{' 3508 SKIP_WS(next); 3509 scan = next; 3510 3511 // Read the first integer in the set. 3512 KMP_ASSERT2((*next >= '0') && (*next <= '9'), "bad proclist"); 3513 SKIP_DIGITS(next); 3514 num = __kmp_str_to_int(scan, *next); 3515 KMP_ASSERT2(num >= 0, "bad explicit proc list"); 3516 3517 // Copy the mask for that osId to the sum (union) mask. 3518 if ((num > maxOsId) || 3519 (!KMP_CPU_ISSET(num, KMP_CPU_INDEX(osId2Mask, num)))) { 3520 KMP_AFF_WARNING(affinity, AffIgnoreInvalidProcID, num); 3521 KMP_CPU_ZERO(sumMask); 3522 } else { 3523 KMP_CPU_COPY(sumMask, KMP_CPU_INDEX(osId2Mask, num)); 3524 setSize = 1; 3525 } 3526 3527 for (;;) { 3528 // Check for end of set. 3529 SKIP_WS(next); 3530 if (*next == '}') { 3531 next++; // skip '}' 3532 break; 3533 } 3534 3535 // Skip optional comma. 3536 if (*next == ',') { 3537 next++; 3538 } 3539 SKIP_WS(next); 3540 3541 // Read the next integer in the set. 3542 scan = next; 3543 KMP_ASSERT2((*next >= '0') && (*next <= '9'), "bad explicit proc list"); 3544 3545 SKIP_DIGITS(next); 3546 num = __kmp_str_to_int(scan, *next); 3547 KMP_ASSERT2(num >= 0, "bad explicit proc list"); 3548 3549 // Add the mask for that osId to the sum mask. 3550 if ((num > maxOsId) || 3551 (!KMP_CPU_ISSET(num, KMP_CPU_INDEX(osId2Mask, num)))) { 3552 KMP_AFF_WARNING(affinity, AffIgnoreInvalidProcID, num); 3553 } else { 3554 KMP_CPU_UNION(sumMask, KMP_CPU_INDEX(osId2Mask, num)); 3555 setSize++; 3556 } 3557 } 3558 if (setSize > 0) { 3559 ADD_MASK(sumMask); 3560 } 3561 3562 SKIP_WS(next); 3563 if (*next == ',') { 3564 next++; 3565 } 3566 scan = next; 3567 continue; 3568 } 3569 3570 // Read the first integer. 3571 KMP_ASSERT2((*next >= '0') && (*next <= '9'), "bad explicit proc list"); 3572 SKIP_DIGITS(next); 3573 start = __kmp_str_to_int(scan, *next); 3574 KMP_ASSERT2(start >= 0, "bad explicit proc list"); 3575 SKIP_WS(next); 3576 3577 // If this isn't a range, then add a mask to the list and go on. 3578 if (*next != '-') { 3579 ADD_MASK_OSID(start, osId2Mask, maxOsId); 3580 3581 // Skip optional comma. 3582 if (*next == ',') { 3583 next++; 3584 } 3585 scan = next; 3586 continue; 3587 } 3588 3589 // This is a range. Skip over the '-' and read in the 2nd int. 3590 next++; // skip '-' 3591 SKIP_WS(next); 3592 scan = next; 3593 KMP_ASSERT2((*next >= '0') && (*next <= '9'), "bad explicit proc list"); 3594 SKIP_DIGITS(next); 3595 end = __kmp_str_to_int(scan, *next); 3596 KMP_ASSERT2(end >= 0, "bad explicit proc list"); 3597 3598 // Check for a stride parameter 3599 stride = 1; 3600 SKIP_WS(next); 3601 if (*next == ':') { 3602 // A stride is specified. Skip over the ':" and read the 3rd int. 3603 int sign = +1; 3604 next++; // skip ':' 3605 SKIP_WS(next); 3606 scan = next; 3607 if (*next == '-') { 3608 sign = -1; 3609 next++; 3610 SKIP_WS(next); 3611 scan = next; 3612 } 3613 KMP_ASSERT2((*next >= '0') && (*next <= '9'), "bad explicit proc list"); 3614 SKIP_DIGITS(next); 3615 stride = __kmp_str_to_int(scan, *next); 3616 KMP_ASSERT2(stride >= 0, "bad explicit proc list"); 3617 stride *= sign; 3618 } 3619 3620 // Do some range checks. 3621 KMP_ASSERT2(stride != 0, "bad explicit proc list"); 3622 if (stride > 0) { 3623 KMP_ASSERT2(start <= end, "bad explicit proc list"); 3624 } else { 3625 KMP_ASSERT2(start >= end, "bad explicit proc list"); 3626 } 3627 KMP_ASSERT2((end - start) / stride <= 65536, "bad explicit proc list"); 3628 3629 // Add the mask for each OS proc # to the list. 3630 if (stride > 0) { 3631 do { 3632 ADD_MASK_OSID(start, osId2Mask, maxOsId); 3633 start += stride; 3634 } while (start <= end); 3635 } else { 3636 do { 3637 ADD_MASK_OSID(start, osId2Mask, maxOsId); 3638 start += stride; 3639 } while (start >= end); 3640 } 3641 3642 // Skip optional comma. 3643 SKIP_WS(next); 3644 if (*next == ',') { 3645 next++; 3646 } 3647 scan = next; 3648 } 3649 3650 *out_numMasks = nextNewMask; 3651 if (nextNewMask == 0) { 3652 *out_masks = NULL; 3653 KMP_CPU_INTERNAL_FREE_ARRAY(newMasks, numNewMasks); 3654 return; 3655 } 3656 KMP_CPU_ALLOC_ARRAY((*out_masks), nextNewMask); 3657 for (i = 0; i < nextNewMask; i++) { 3658 kmp_affin_mask_t *src = KMP_CPU_INDEX(newMasks, i); 3659 kmp_affin_mask_t *dest = KMP_CPU_INDEX((*out_masks), i); 3660 KMP_CPU_COPY(dest, src); 3661 } 3662 KMP_CPU_INTERNAL_FREE_ARRAY(newMasks, numNewMasks); 3663 KMP_CPU_FREE(sumMask); 3664 } 3665 3666 /*----------------------------------------------------------------------------- 3667 Re-parse the OMP_PLACES proc id list, forming the newMasks for the different 3668 places. Again, Here is the grammar: 3669 3670 place_list := place 3671 place_list := place , place_list 3672 place := num 3673 place := place : num 3674 place := place : num : signed 3675 place := { subplacelist } 3676 place := ! place // (lowest priority) 3677 subplace_list := subplace 3678 subplace_list := subplace , subplace_list 3679 subplace := num 3680 subplace := num : num 3681 subplace := num : num : signed 3682 signed := num 3683 signed := + signed 3684 signed := - signed 3685 -----------------------------------------------------------------------------*/ 3686 static void __kmp_process_subplace_list(const char **scan, 3687 kmp_affinity_t &affinity, int maxOsId, 3688 kmp_affin_mask_t *tempMask, 3689 int *setSize) { 3690 const char *next; 3691 kmp_affin_mask_t *osId2Mask = affinity.os_id_masks; 3692 3693 for (;;) { 3694 int start, count, stride, i; 3695 3696 // Read in the starting proc id 3697 SKIP_WS(*scan); 3698 KMP_ASSERT2((**scan >= '0') && (**scan <= '9'), "bad explicit places list"); 3699 next = *scan; 3700 SKIP_DIGITS(next); 3701 start = __kmp_str_to_int(*scan, *next); 3702 KMP_ASSERT(start >= 0); 3703 *scan = next; 3704 3705 // valid follow sets are ',' ':' and '}' 3706 SKIP_WS(*scan); 3707 if (**scan == '}' || **scan == ',') { 3708 if ((start > maxOsId) || 3709 (!KMP_CPU_ISSET(start, KMP_CPU_INDEX(osId2Mask, start)))) { 3710 KMP_AFF_WARNING(affinity, AffIgnoreInvalidProcID, start); 3711 } else { 3712 KMP_CPU_UNION(tempMask, KMP_CPU_INDEX(osId2Mask, start)); 3713 (*setSize)++; 3714 } 3715 if (**scan == '}') { 3716 break; 3717 } 3718 (*scan)++; // skip ',' 3719 continue; 3720 } 3721 KMP_ASSERT2(**scan == ':', "bad explicit places list"); 3722 (*scan)++; // skip ':' 3723 3724 // Read count parameter 3725 SKIP_WS(*scan); 3726 KMP_ASSERT2((**scan >= '0') && (**scan <= '9'), "bad explicit places list"); 3727 next = *scan; 3728 SKIP_DIGITS(next); 3729 count = __kmp_str_to_int(*scan, *next); 3730 KMP_ASSERT(count >= 0); 3731 *scan = next; 3732 3733 // valid follow sets are ',' ':' and '}' 3734 SKIP_WS(*scan); 3735 if (**scan == '}' || **scan == ',') { 3736 for (i = 0; i < count; i++) { 3737 if ((start > maxOsId) || 3738 (!KMP_CPU_ISSET(start, KMP_CPU_INDEX(osId2Mask, start)))) { 3739 KMP_AFF_WARNING(affinity, AffIgnoreInvalidProcID, start); 3740 break; // don't proliferate warnings for large count 3741 } else { 3742 KMP_CPU_UNION(tempMask, KMP_CPU_INDEX(osId2Mask, start)); 3743 start++; 3744 (*setSize)++; 3745 } 3746 } 3747 if (**scan == '}') { 3748 break; 3749 } 3750 (*scan)++; // skip ',' 3751 continue; 3752 } 3753 KMP_ASSERT2(**scan == ':', "bad explicit places list"); 3754 (*scan)++; // skip ':' 3755 3756 // Read stride parameter 3757 int sign = +1; 3758 for (;;) { 3759 SKIP_WS(*scan); 3760 if (**scan == '+') { 3761 (*scan)++; // skip '+' 3762 continue; 3763 } 3764 if (**scan == '-') { 3765 sign *= -1; 3766 (*scan)++; // skip '-' 3767 continue; 3768 } 3769 break; 3770 } 3771 SKIP_WS(*scan); 3772 KMP_ASSERT2((**scan >= '0') && (**scan <= '9'), "bad explicit places list"); 3773 next = *scan; 3774 SKIP_DIGITS(next); 3775 stride = __kmp_str_to_int(*scan, *next); 3776 KMP_ASSERT(stride >= 0); 3777 *scan = next; 3778 stride *= sign; 3779 3780 // valid follow sets are ',' and '}' 3781 SKIP_WS(*scan); 3782 if (**scan == '}' || **scan == ',') { 3783 for (i = 0; i < count; i++) { 3784 if ((start > maxOsId) || 3785 (!KMP_CPU_ISSET(start, KMP_CPU_INDEX(osId2Mask, start)))) { 3786 KMP_AFF_WARNING(affinity, AffIgnoreInvalidProcID, start); 3787 break; // don't proliferate warnings for large count 3788 } else { 3789 KMP_CPU_UNION(tempMask, KMP_CPU_INDEX(osId2Mask, start)); 3790 start += stride; 3791 (*setSize)++; 3792 } 3793 } 3794 if (**scan == '}') { 3795 break; 3796 } 3797 (*scan)++; // skip ',' 3798 continue; 3799 } 3800 3801 KMP_ASSERT2(0, "bad explicit places list"); 3802 } 3803 } 3804 3805 static void __kmp_process_place(const char **scan, kmp_affinity_t &affinity, 3806 int maxOsId, kmp_affin_mask_t *tempMask, 3807 int *setSize) { 3808 const char *next; 3809 kmp_affin_mask_t *osId2Mask = affinity.os_id_masks; 3810 3811 // valid follow sets are '{' '!' and num 3812 SKIP_WS(*scan); 3813 if (**scan == '{') { 3814 (*scan)++; // skip '{' 3815 __kmp_process_subplace_list(scan, affinity, maxOsId, tempMask, setSize); 3816 KMP_ASSERT2(**scan == '}', "bad explicit places list"); 3817 (*scan)++; // skip '}' 3818 } else if (**scan == '!') { 3819 (*scan)++; // skip '!' 3820 __kmp_process_place(scan, affinity, maxOsId, tempMask, setSize); 3821 KMP_CPU_COMPLEMENT(maxOsId, tempMask); 3822 } else if ((**scan >= '0') && (**scan <= '9')) { 3823 next = *scan; 3824 SKIP_DIGITS(next); 3825 int num = __kmp_str_to_int(*scan, *next); 3826 KMP_ASSERT(num >= 0); 3827 if ((num > maxOsId) || 3828 (!KMP_CPU_ISSET(num, KMP_CPU_INDEX(osId2Mask, num)))) { 3829 KMP_AFF_WARNING(affinity, AffIgnoreInvalidProcID, num); 3830 } else { 3831 KMP_CPU_UNION(tempMask, KMP_CPU_INDEX(osId2Mask, num)); 3832 (*setSize)++; 3833 } 3834 *scan = next; // skip num 3835 } else { 3836 KMP_ASSERT2(0, "bad explicit places list"); 3837 } 3838 } 3839 3840 // static void 3841 void __kmp_affinity_process_placelist(kmp_affinity_t &affinity) { 3842 int i, j, count, stride, sign; 3843 kmp_affin_mask_t **out_masks = &affinity.masks; 3844 unsigned *out_numMasks = &affinity.num_masks; 3845 const char *placelist = affinity.proclist; 3846 kmp_affin_mask_t *osId2Mask = affinity.os_id_masks; 3847 int maxOsId = affinity.num_os_id_masks - 1; 3848 const char *scan = placelist; 3849 const char *next = placelist; 3850 3851 numNewMasks = 2; 3852 KMP_CPU_INTERNAL_ALLOC_ARRAY(newMasks, numNewMasks); 3853 nextNewMask = 0; 3854 3855 // tempMask is modified based on the previous or initial 3856 // place to form the current place 3857 // previousMask contains the previous place 3858 kmp_affin_mask_t *tempMask; 3859 kmp_affin_mask_t *previousMask; 3860 KMP_CPU_ALLOC(tempMask); 3861 KMP_CPU_ZERO(tempMask); 3862 KMP_CPU_ALLOC(previousMask); 3863 KMP_CPU_ZERO(previousMask); 3864 int setSize = 0; 3865 3866 for (;;) { 3867 __kmp_process_place(&scan, affinity, maxOsId, tempMask, &setSize); 3868 3869 // valid follow sets are ',' ':' and EOL 3870 SKIP_WS(scan); 3871 if (*scan == '\0' || *scan == ',') { 3872 if (setSize > 0) { 3873 ADD_MASK(tempMask); 3874 } 3875 KMP_CPU_ZERO(tempMask); 3876 setSize = 0; 3877 if (*scan == '\0') { 3878 break; 3879 } 3880 scan++; // skip ',' 3881 continue; 3882 } 3883 3884 KMP_ASSERT2(*scan == ':', "bad explicit places list"); 3885 scan++; // skip ':' 3886 3887 // Read count parameter 3888 SKIP_WS(scan); 3889 KMP_ASSERT2((*scan >= '0') && (*scan <= '9'), "bad explicit places list"); 3890 next = scan; 3891 SKIP_DIGITS(next); 3892 count = __kmp_str_to_int(scan, *next); 3893 KMP_ASSERT(count >= 0); 3894 scan = next; 3895 3896 // valid follow sets are ',' ':' and EOL 3897 SKIP_WS(scan); 3898 if (*scan == '\0' || *scan == ',') { 3899 stride = +1; 3900 } else { 3901 KMP_ASSERT2(*scan == ':', "bad explicit places list"); 3902 scan++; // skip ':' 3903 3904 // Read stride parameter 3905 sign = +1; 3906 for (;;) { 3907 SKIP_WS(scan); 3908 if (*scan == '+') { 3909 scan++; // skip '+' 3910 continue; 3911 } 3912 if (*scan == '-') { 3913 sign *= -1; 3914 scan++; // skip '-' 3915 continue; 3916 } 3917 break; 3918 } 3919 SKIP_WS(scan); 3920 KMP_ASSERT2((*scan >= '0') && (*scan <= '9'), "bad explicit places list"); 3921 next = scan; 3922 SKIP_DIGITS(next); 3923 stride = __kmp_str_to_int(scan, *next); 3924 KMP_DEBUG_ASSERT(stride >= 0); 3925 scan = next; 3926 stride *= sign; 3927 } 3928 3929 // Add places determined by initial_place : count : stride 3930 for (i = 0; i < count; i++) { 3931 if (setSize == 0) { 3932 break; 3933 } 3934 // Add the current place, then build the next place (tempMask) from that 3935 KMP_CPU_COPY(previousMask, tempMask); 3936 ADD_MASK(previousMask); 3937 KMP_CPU_ZERO(tempMask); 3938 setSize = 0; 3939 KMP_CPU_SET_ITERATE(j, previousMask) { 3940 if (!KMP_CPU_ISSET(j, previousMask)) { 3941 continue; 3942 } 3943 if ((j + stride > maxOsId) || (j + stride < 0) || 3944 (!KMP_CPU_ISSET(j, __kmp_affin_fullMask)) || 3945 (!KMP_CPU_ISSET(j + stride, 3946 KMP_CPU_INDEX(osId2Mask, j + stride)))) { 3947 if (i < count - 1) { 3948 KMP_AFF_WARNING(affinity, AffIgnoreInvalidProcID, j + stride); 3949 } 3950 continue; 3951 } 3952 KMP_CPU_SET(j + stride, tempMask); 3953 setSize++; 3954 } 3955 } 3956 KMP_CPU_ZERO(tempMask); 3957 setSize = 0; 3958 3959 // valid follow sets are ',' and EOL 3960 SKIP_WS(scan); 3961 if (*scan == '\0') { 3962 break; 3963 } 3964 if (*scan == ',') { 3965 scan++; // skip ',' 3966 continue; 3967 } 3968 3969 KMP_ASSERT2(0, "bad explicit places list"); 3970 } 3971 3972 *out_numMasks = nextNewMask; 3973 if (nextNewMask == 0) { 3974 *out_masks = NULL; 3975 KMP_CPU_INTERNAL_FREE_ARRAY(newMasks, numNewMasks); 3976 return; 3977 } 3978 KMP_CPU_ALLOC_ARRAY((*out_masks), nextNewMask); 3979 KMP_CPU_FREE(tempMask); 3980 KMP_CPU_FREE(previousMask); 3981 for (i = 0; i < nextNewMask; i++) { 3982 kmp_affin_mask_t *src = KMP_CPU_INDEX(newMasks, i); 3983 kmp_affin_mask_t *dest = KMP_CPU_INDEX((*out_masks), i); 3984 KMP_CPU_COPY(dest, src); 3985 } 3986 KMP_CPU_INTERNAL_FREE_ARRAY(newMasks, numNewMasks); 3987 } 3988 3989 #undef ADD_MASK 3990 #undef ADD_MASK_OSID 3991 3992 // This function figures out the deepest level at which there is at least one 3993 // cluster/core with more than one processing unit bound to it. 3994 static int __kmp_affinity_find_core_level(int nprocs, int bottom_level) { 3995 int core_level = 0; 3996 3997 for (int i = 0; i < nprocs; i++) { 3998 const kmp_hw_thread_t &hw_thread = __kmp_topology->at(i); 3999 for (int j = bottom_level; j > 0; j--) { 4000 if (hw_thread.ids[j] > 0) { 4001 if (core_level < (j - 1)) { 4002 core_level = j - 1; 4003 } 4004 } 4005 } 4006 } 4007 return core_level; 4008 } 4009 4010 // This function counts number of clusters/cores at given level. 4011 static int __kmp_affinity_compute_ncores(int nprocs, int bottom_level, 4012 int core_level) { 4013 return __kmp_topology->get_count(core_level); 4014 } 4015 // This function finds to which cluster/core given processing unit is bound. 4016 static int __kmp_affinity_find_core(int proc, int bottom_level, 4017 int core_level) { 4018 int core = 0; 4019 KMP_DEBUG_ASSERT(proc >= 0 && proc < __kmp_topology->get_num_hw_threads()); 4020 for (int i = 0; i <= proc; ++i) { 4021 if (i + 1 <= proc) { 4022 for (int j = 0; j <= core_level; ++j) { 4023 if (__kmp_topology->at(i + 1).sub_ids[j] != 4024 __kmp_topology->at(i).sub_ids[j]) { 4025 core++; 4026 break; 4027 } 4028 } 4029 } 4030 } 4031 return core; 4032 } 4033 4034 // This function finds maximal number of processing units bound to a 4035 // cluster/core at given level. 4036 static int __kmp_affinity_max_proc_per_core(int nprocs, int bottom_level, 4037 int core_level) { 4038 if (core_level >= bottom_level) 4039 return 1; 4040 int thread_level = __kmp_topology->get_level(KMP_HW_THREAD); 4041 return __kmp_topology->calculate_ratio(thread_level, core_level); 4042 } 4043 4044 static int *procarr = NULL; 4045 static int __kmp_aff_depth = 0; 4046 static int *__kmp_osid_to_hwthread_map = NULL; 4047 4048 static void __kmp_affinity_get_mask_topology_info(const kmp_affin_mask_t *mask, 4049 kmp_affinity_ids_t &ids, 4050 kmp_affinity_attrs_t &attrs) { 4051 if (!KMP_AFFINITY_CAPABLE()) 4052 return; 4053 4054 // Initiailze ids and attrs thread data 4055 for (int i = 0; i < KMP_HW_LAST; ++i) 4056 ids[i] = kmp_hw_thread_t::UNKNOWN_ID; 4057 attrs = KMP_AFFINITY_ATTRS_UNKNOWN; 4058 4059 // Iterate through each os id within the mask and determine 4060 // the topology id and attribute information 4061 int cpu; 4062 int depth = __kmp_topology->get_depth(); 4063 KMP_CPU_SET_ITERATE(cpu, mask) { 4064 int osid_idx = __kmp_osid_to_hwthread_map[cpu]; 4065 const kmp_hw_thread_t &hw_thread = __kmp_topology->at(osid_idx); 4066 for (int level = 0; level < depth; ++level) { 4067 kmp_hw_t type = __kmp_topology->get_type(level); 4068 int id = hw_thread.sub_ids[level]; 4069 if (ids[type] == kmp_hw_thread_t::UNKNOWN_ID || ids[type] == id) { 4070 ids[type] = id; 4071 } else { 4072 // This mask spans across multiple topology units, set it as such 4073 // and mark every level below as such as well. 4074 ids[type] = kmp_hw_thread_t::MULTIPLE_ID; 4075 for (; level < depth; ++level) { 4076 kmp_hw_t type = __kmp_topology->get_type(level); 4077 ids[type] = kmp_hw_thread_t::MULTIPLE_ID; 4078 } 4079 } 4080 } 4081 if (!attrs.valid) { 4082 attrs.core_type = hw_thread.attrs.get_core_type(); 4083 attrs.core_eff = hw_thread.attrs.get_core_eff(); 4084 attrs.valid = 1; 4085 } else { 4086 // This mask spans across multiple attributes, set it as such 4087 if (attrs.core_type != hw_thread.attrs.get_core_type()) 4088 attrs.core_type = KMP_HW_CORE_TYPE_UNKNOWN; 4089 if (attrs.core_eff != hw_thread.attrs.get_core_eff()) 4090 attrs.core_eff = kmp_hw_attr_t::UNKNOWN_CORE_EFF; 4091 } 4092 } 4093 } 4094 4095 static void __kmp_affinity_get_thread_topology_info(kmp_info_t *th) { 4096 if (!KMP_AFFINITY_CAPABLE()) 4097 return; 4098 const kmp_affin_mask_t *mask = th->th.th_affin_mask; 4099 kmp_affinity_ids_t &ids = th->th.th_topology_ids; 4100 kmp_affinity_attrs_t &attrs = th->th.th_topology_attrs; 4101 __kmp_affinity_get_mask_topology_info(mask, ids, attrs); 4102 } 4103 4104 // Assign the topology information to each place in the place list 4105 // A thread can then grab not only its affinity mask, but the topology 4106 // information associated with that mask. e.g., Which socket is a thread on 4107 static void __kmp_affinity_get_topology_info(kmp_affinity_t &affinity) { 4108 if (!KMP_AFFINITY_CAPABLE()) 4109 return; 4110 if (affinity.type != affinity_none) { 4111 KMP_ASSERT(affinity.num_os_id_masks); 4112 KMP_ASSERT(affinity.os_id_masks); 4113 } 4114 KMP_ASSERT(affinity.num_masks); 4115 KMP_ASSERT(affinity.masks); 4116 KMP_ASSERT(__kmp_affin_fullMask); 4117 4118 int max_cpu = __kmp_affin_fullMask->get_max_cpu(); 4119 int num_hw_threads = __kmp_topology->get_num_hw_threads(); 4120 4121 // Allocate thread topology information 4122 if (!affinity.ids) { 4123 affinity.ids = (kmp_affinity_ids_t *)__kmp_allocate( 4124 sizeof(kmp_affinity_ids_t) * affinity.num_masks); 4125 } 4126 if (!affinity.attrs) { 4127 affinity.attrs = (kmp_affinity_attrs_t *)__kmp_allocate( 4128 sizeof(kmp_affinity_attrs_t) * affinity.num_masks); 4129 } 4130 if (!__kmp_osid_to_hwthread_map) { 4131 // Want the +1 because max_cpu should be valid index into map 4132 __kmp_osid_to_hwthread_map = 4133 (int *)__kmp_allocate(sizeof(int) * (max_cpu + 1)); 4134 } 4135 4136 // Create the OS proc to hardware thread map 4137 for (int hw_thread = 0; hw_thread < num_hw_threads; ++hw_thread) 4138 __kmp_osid_to_hwthread_map[__kmp_topology->at(hw_thread).os_id] = hw_thread; 4139 4140 for (unsigned i = 0; i < affinity.num_masks; ++i) { 4141 kmp_affinity_ids_t &ids = affinity.ids[i]; 4142 kmp_affinity_attrs_t &attrs = affinity.attrs[i]; 4143 kmp_affin_mask_t *mask = KMP_CPU_INDEX(affinity.masks, i); 4144 __kmp_affinity_get_mask_topology_info(mask, ids, attrs); 4145 } 4146 } 4147 4148 // Create a one element mask array (set of places) which only contains the 4149 // initial process's affinity mask 4150 static void __kmp_create_affinity_none_places(kmp_affinity_t &affinity) { 4151 KMP_ASSERT(__kmp_affin_fullMask != NULL); 4152 KMP_ASSERT(affinity.type == affinity_none); 4153 affinity.num_masks = 1; 4154 KMP_CPU_ALLOC_ARRAY(affinity.masks, affinity.num_masks); 4155 kmp_affin_mask_t *dest = KMP_CPU_INDEX(affinity.masks, 0); 4156 KMP_CPU_COPY(dest, __kmp_affin_fullMask); 4157 __kmp_affinity_get_topology_info(affinity); 4158 } 4159 4160 static void __kmp_aux_affinity_initialize_masks(kmp_affinity_t &affinity) { 4161 // Create the "full" mask - this defines all of the processors that we 4162 // consider to be in the machine model. If respect is set, then it is the 4163 // initialization thread's affinity mask. Otherwise, it is all processors that 4164 // we know about on the machine. 4165 int verbose = affinity.flags.verbose; 4166 const char *env_var = affinity.env_var; 4167 4168 // Already initialized 4169 if (__kmp_affin_fullMask && __kmp_affin_origMask) 4170 return; 4171 4172 if (__kmp_affin_fullMask == NULL) { 4173 KMP_CPU_ALLOC(__kmp_affin_fullMask); 4174 } 4175 if (__kmp_affin_origMask == NULL) { 4176 KMP_CPU_ALLOC(__kmp_affin_origMask); 4177 } 4178 if (KMP_AFFINITY_CAPABLE()) { 4179 __kmp_get_system_affinity(__kmp_affin_fullMask, TRUE); 4180 // Make a copy before possible expanding to the entire machine mask 4181 __kmp_affin_origMask->copy(__kmp_affin_fullMask); 4182 if (affinity.flags.respect) { 4183 // Count the number of available processors. 4184 unsigned i; 4185 __kmp_avail_proc = 0; 4186 KMP_CPU_SET_ITERATE(i, __kmp_affin_fullMask) { 4187 if (!KMP_CPU_ISSET(i, __kmp_affin_fullMask)) { 4188 continue; 4189 } 4190 __kmp_avail_proc++; 4191 } 4192 if (__kmp_avail_proc > __kmp_xproc) { 4193 KMP_AFF_WARNING(affinity, ErrorInitializeAffinity); 4194 affinity.type = affinity_none; 4195 KMP_AFFINITY_DISABLE(); 4196 return; 4197 } 4198 4199 if (verbose) { 4200 char buf[KMP_AFFIN_MASK_PRINT_LEN]; 4201 __kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN, 4202 __kmp_affin_fullMask); 4203 KMP_INFORM(InitOSProcSetRespect, env_var, buf); 4204 } 4205 } else { 4206 if (verbose) { 4207 char buf[KMP_AFFIN_MASK_PRINT_LEN]; 4208 __kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN, 4209 __kmp_affin_fullMask); 4210 KMP_INFORM(InitOSProcSetNotRespect, env_var, buf); 4211 } 4212 __kmp_avail_proc = 4213 __kmp_affinity_entire_machine_mask(__kmp_affin_fullMask); 4214 #if KMP_OS_WINDOWS 4215 if (__kmp_num_proc_groups <= 1) { 4216 // Copy expanded full mask if topology has single processor group 4217 __kmp_affin_origMask->copy(__kmp_affin_fullMask); 4218 } 4219 // Set the process affinity mask since threads' affinity 4220 // masks must be subset of process mask in Windows* OS 4221 __kmp_affin_fullMask->set_process_affinity(true); 4222 #endif 4223 } 4224 } 4225 } 4226 4227 static bool __kmp_aux_affinity_initialize_topology(kmp_affinity_t &affinity) { 4228 bool success = false; 4229 const char *env_var = affinity.env_var; 4230 kmp_i18n_id_t msg_id = kmp_i18n_null; 4231 int verbose = affinity.flags.verbose; 4232 4233 // For backward compatibility, setting KMP_CPUINFO_FILE => 4234 // KMP_TOPOLOGY_METHOD=cpuinfo 4235 if ((__kmp_cpuinfo_file != NULL) && 4236 (__kmp_affinity_top_method == affinity_top_method_all)) { 4237 __kmp_affinity_top_method = affinity_top_method_cpuinfo; 4238 } 4239 4240 if (__kmp_affinity_top_method == affinity_top_method_all) { 4241 // In the default code path, errors are not fatal - we just try using 4242 // another method. We only emit a warning message if affinity is on, or the 4243 // verbose flag is set, an the nowarnings flag was not set. 4244 #if KMP_USE_HWLOC 4245 if (!success && 4246 __kmp_affinity_dispatch->get_api_type() == KMPAffinity::HWLOC) { 4247 if (!__kmp_hwloc_error) { 4248 success = __kmp_affinity_create_hwloc_map(&msg_id); 4249 if (!success && verbose) { 4250 KMP_INFORM(AffIgnoringHwloc, env_var); 4251 } 4252 } else if (verbose) { 4253 KMP_INFORM(AffIgnoringHwloc, env_var); 4254 } 4255 } 4256 #endif 4257 4258 #if KMP_ARCH_X86 || KMP_ARCH_X86_64 4259 if (!success) { 4260 success = __kmp_affinity_create_x2apicid_map(&msg_id); 4261 if (!success && verbose && msg_id != kmp_i18n_null) { 4262 KMP_INFORM(AffInfoStr, env_var, __kmp_i18n_catgets(msg_id)); 4263 } 4264 } 4265 if (!success) { 4266 success = __kmp_affinity_create_apicid_map(&msg_id); 4267 if (!success && verbose && msg_id != kmp_i18n_null) { 4268 KMP_INFORM(AffInfoStr, env_var, __kmp_i18n_catgets(msg_id)); 4269 } 4270 } 4271 #endif /* KMP_ARCH_X86 || KMP_ARCH_X86_64 */ 4272 4273 #if KMP_OS_LINUX 4274 if (!success) { 4275 int line = 0; 4276 success = __kmp_affinity_create_cpuinfo_map(&line, &msg_id); 4277 if (!success && verbose && msg_id != kmp_i18n_null) { 4278 KMP_INFORM(AffInfoStr, env_var, __kmp_i18n_catgets(msg_id)); 4279 } 4280 } 4281 #endif /* KMP_OS_LINUX */ 4282 4283 #if KMP_GROUP_AFFINITY 4284 if (!success && (__kmp_num_proc_groups > 1)) { 4285 success = __kmp_affinity_create_proc_group_map(&msg_id); 4286 if (!success && verbose && msg_id != kmp_i18n_null) { 4287 KMP_INFORM(AffInfoStr, env_var, __kmp_i18n_catgets(msg_id)); 4288 } 4289 } 4290 #endif /* KMP_GROUP_AFFINITY */ 4291 4292 if (!success) { 4293 success = __kmp_affinity_create_flat_map(&msg_id); 4294 if (!success && verbose && msg_id != kmp_i18n_null) { 4295 KMP_INFORM(AffInfoStr, env_var, __kmp_i18n_catgets(msg_id)); 4296 } 4297 KMP_ASSERT(success); 4298 } 4299 } 4300 4301 // If the user has specified that a paricular topology discovery method is to be 4302 // used, then we abort if that method fails. The exception is group affinity, 4303 // which might have been implicitly set. 4304 #if KMP_USE_HWLOC 4305 else if (__kmp_affinity_top_method == affinity_top_method_hwloc) { 4306 KMP_ASSERT(__kmp_affinity_dispatch->get_api_type() == KMPAffinity::HWLOC); 4307 success = __kmp_affinity_create_hwloc_map(&msg_id); 4308 if (!success) { 4309 KMP_ASSERT(msg_id != kmp_i18n_null); 4310 KMP_FATAL(MsgExiting, __kmp_i18n_catgets(msg_id)); 4311 } 4312 } 4313 #endif // KMP_USE_HWLOC 4314 4315 #if KMP_ARCH_X86 || KMP_ARCH_X86_64 4316 else if (__kmp_affinity_top_method == affinity_top_method_x2apicid || 4317 __kmp_affinity_top_method == affinity_top_method_x2apicid_1f) { 4318 success = __kmp_affinity_create_x2apicid_map(&msg_id); 4319 if (!success) { 4320 KMP_ASSERT(msg_id != kmp_i18n_null); 4321 KMP_FATAL(MsgExiting, __kmp_i18n_catgets(msg_id)); 4322 } 4323 } else if (__kmp_affinity_top_method == affinity_top_method_apicid) { 4324 success = __kmp_affinity_create_apicid_map(&msg_id); 4325 if (!success) { 4326 KMP_ASSERT(msg_id != kmp_i18n_null); 4327 KMP_FATAL(MsgExiting, __kmp_i18n_catgets(msg_id)); 4328 } 4329 } 4330 #endif /* KMP_ARCH_X86 || KMP_ARCH_X86_64 */ 4331 4332 else if (__kmp_affinity_top_method == affinity_top_method_cpuinfo) { 4333 int line = 0; 4334 success = __kmp_affinity_create_cpuinfo_map(&line, &msg_id); 4335 if (!success) { 4336 KMP_ASSERT(msg_id != kmp_i18n_null); 4337 const char *filename = __kmp_cpuinfo_get_filename(); 4338 if (line > 0) { 4339 KMP_FATAL(FileLineMsgExiting, filename, line, 4340 __kmp_i18n_catgets(msg_id)); 4341 } else { 4342 KMP_FATAL(FileMsgExiting, filename, __kmp_i18n_catgets(msg_id)); 4343 } 4344 } 4345 } 4346 4347 #if KMP_GROUP_AFFINITY 4348 else if (__kmp_affinity_top_method == affinity_top_method_group) { 4349 success = __kmp_affinity_create_proc_group_map(&msg_id); 4350 KMP_ASSERT(success); 4351 if (!success) { 4352 KMP_ASSERT(msg_id != kmp_i18n_null); 4353 KMP_FATAL(MsgExiting, __kmp_i18n_catgets(msg_id)); 4354 } 4355 } 4356 #endif /* KMP_GROUP_AFFINITY */ 4357 4358 else if (__kmp_affinity_top_method == affinity_top_method_flat) { 4359 success = __kmp_affinity_create_flat_map(&msg_id); 4360 // should not fail 4361 KMP_ASSERT(success); 4362 } 4363 4364 // Early exit if topology could not be created 4365 if (!__kmp_topology) { 4366 if (KMP_AFFINITY_CAPABLE()) { 4367 KMP_AFF_WARNING(affinity, ErrorInitializeAffinity); 4368 } 4369 if (nPackages > 0 && nCoresPerPkg > 0 && __kmp_nThreadsPerCore > 0 && 4370 __kmp_ncores > 0) { 4371 __kmp_topology = kmp_topology_t::allocate(0, 0, NULL); 4372 __kmp_topology->canonicalize(nPackages, nCoresPerPkg, 4373 __kmp_nThreadsPerCore, __kmp_ncores); 4374 if (verbose) { 4375 __kmp_topology->print(env_var); 4376 } 4377 } 4378 return false; 4379 } 4380 4381 // Canonicalize, print (if requested), apply KMP_HW_SUBSET 4382 __kmp_topology->canonicalize(); 4383 if (verbose) 4384 __kmp_topology->print(env_var); 4385 bool filtered = __kmp_topology->filter_hw_subset(); 4386 if (filtered) { 4387 #if KMP_OS_WINDOWS 4388 // Copy filtered full mask if topology has single processor group 4389 if (__kmp_num_proc_groups <= 1) 4390 #endif 4391 __kmp_affin_origMask->copy(__kmp_affin_fullMask); 4392 } 4393 if (filtered && verbose) 4394 __kmp_topology->print("KMP_HW_SUBSET"); 4395 return success; 4396 } 4397 4398 static void __kmp_aux_affinity_initialize(kmp_affinity_t &affinity) { 4399 bool is_regular_affinity = (&affinity == &__kmp_affinity); 4400 bool is_hidden_helper_affinity = (&affinity == &__kmp_hh_affinity); 4401 const char *env_var = affinity.env_var; 4402 4403 if (affinity.flags.initialized) { 4404 KMP_ASSERT(__kmp_affin_fullMask != NULL); 4405 return; 4406 } 4407 4408 if (is_regular_affinity && (!__kmp_affin_fullMask || !__kmp_affin_origMask)) 4409 __kmp_aux_affinity_initialize_masks(affinity); 4410 4411 if (is_regular_affinity && !__kmp_topology) { 4412 bool success = __kmp_aux_affinity_initialize_topology(affinity); 4413 if (success) { 4414 // Initialize other data structures which depend on the topology 4415 machine_hierarchy.init(__kmp_topology->get_num_hw_threads()); 4416 KMP_ASSERT(__kmp_avail_proc == __kmp_topology->get_num_hw_threads()); 4417 } else { 4418 affinity.type = affinity_none; 4419 KMP_AFFINITY_DISABLE(); 4420 } 4421 } 4422 4423 // If KMP_AFFINITY=none, then only create the single "none" place 4424 // which is the process's initial affinity mask or the number of 4425 // hardware threads depending on respect,norespect 4426 if (affinity.type == affinity_none) { 4427 __kmp_create_affinity_none_places(affinity); 4428 #if KMP_USE_HIER_SCHED 4429 __kmp_dispatch_set_hierarchy_values(); 4430 #endif 4431 affinity.flags.initialized = TRUE; 4432 return; 4433 } 4434 4435 __kmp_topology->set_granularity(affinity); 4436 int depth = __kmp_topology->get_depth(); 4437 4438 // Create the table of masks, indexed by thread Id. 4439 unsigned numUnique; 4440 __kmp_create_os_id_masks(&numUnique, affinity); 4441 if (affinity.gran_levels == 0) { 4442 KMP_DEBUG_ASSERT((int)numUnique == __kmp_avail_proc); 4443 } 4444 4445 switch (affinity.type) { 4446 4447 case affinity_explicit: 4448 KMP_DEBUG_ASSERT(affinity.proclist != NULL); 4449 if (is_hidden_helper_affinity || 4450 __kmp_nested_proc_bind.bind_types[0] == proc_bind_intel) { 4451 __kmp_affinity_process_proclist(affinity); 4452 } else { 4453 __kmp_affinity_process_placelist(affinity); 4454 } 4455 if (affinity.num_masks == 0) { 4456 KMP_AFF_WARNING(affinity, AffNoValidProcID); 4457 affinity.type = affinity_none; 4458 __kmp_create_affinity_none_places(affinity); 4459 affinity.flags.initialized = TRUE; 4460 return; 4461 } 4462 break; 4463 4464 // The other affinity types rely on sorting the hardware threads according to 4465 // some permutation of the machine topology tree. Set affinity.compact 4466 // and affinity.offset appropriately, then jump to a common code 4467 // fragment to do the sort and create the array of affinity masks. 4468 case affinity_logical: 4469 affinity.compact = 0; 4470 if (affinity.offset) { 4471 affinity.offset = 4472 __kmp_nThreadsPerCore * affinity.offset % __kmp_avail_proc; 4473 } 4474 goto sortTopology; 4475 4476 case affinity_physical: 4477 if (__kmp_nThreadsPerCore > 1) { 4478 affinity.compact = 1; 4479 if (affinity.compact >= depth) { 4480 affinity.compact = 0; 4481 } 4482 } else { 4483 affinity.compact = 0; 4484 } 4485 if (affinity.offset) { 4486 affinity.offset = 4487 __kmp_nThreadsPerCore * affinity.offset % __kmp_avail_proc; 4488 } 4489 goto sortTopology; 4490 4491 case affinity_scatter: 4492 if (affinity.compact >= depth) { 4493 affinity.compact = 0; 4494 } else { 4495 affinity.compact = depth - 1 - affinity.compact; 4496 } 4497 goto sortTopology; 4498 4499 case affinity_compact: 4500 if (affinity.compact >= depth) { 4501 affinity.compact = depth - 1; 4502 } 4503 goto sortTopology; 4504 4505 case affinity_balanced: 4506 if (depth <= 1 || is_hidden_helper_affinity) { 4507 KMP_AFF_WARNING(affinity, AffBalancedNotAvail, env_var); 4508 affinity.type = affinity_none; 4509 __kmp_create_affinity_none_places(affinity); 4510 affinity.flags.initialized = TRUE; 4511 return; 4512 } else if (!__kmp_topology->is_uniform()) { 4513 // Save the depth for further usage 4514 __kmp_aff_depth = depth; 4515 4516 int core_level = 4517 __kmp_affinity_find_core_level(__kmp_avail_proc, depth - 1); 4518 int ncores = __kmp_affinity_compute_ncores(__kmp_avail_proc, depth - 1, 4519 core_level); 4520 int maxprocpercore = __kmp_affinity_max_proc_per_core( 4521 __kmp_avail_proc, depth - 1, core_level); 4522 4523 int nproc = ncores * maxprocpercore; 4524 if ((nproc < 2) || (nproc < __kmp_avail_proc)) { 4525 KMP_AFF_WARNING(affinity, AffBalancedNotAvail, env_var); 4526 affinity.type = affinity_none; 4527 __kmp_create_affinity_none_places(affinity); 4528 affinity.flags.initialized = TRUE; 4529 return; 4530 } 4531 4532 procarr = (int *)__kmp_allocate(sizeof(int) * nproc); 4533 for (int i = 0; i < nproc; i++) { 4534 procarr[i] = -1; 4535 } 4536 4537 int lastcore = -1; 4538 int inlastcore = 0; 4539 for (int i = 0; i < __kmp_avail_proc; i++) { 4540 int proc = __kmp_topology->at(i).os_id; 4541 int core = __kmp_affinity_find_core(i, depth - 1, core_level); 4542 4543 if (core == lastcore) { 4544 inlastcore++; 4545 } else { 4546 inlastcore = 0; 4547 } 4548 lastcore = core; 4549 4550 procarr[core * maxprocpercore + inlastcore] = proc; 4551 } 4552 } 4553 if (affinity.compact >= depth) { 4554 affinity.compact = depth - 1; 4555 } 4556 4557 sortTopology: 4558 // Allocate the gtid->affinity mask table. 4559 if (affinity.flags.dups) { 4560 affinity.num_masks = __kmp_avail_proc; 4561 } else { 4562 affinity.num_masks = numUnique; 4563 } 4564 4565 if ((__kmp_nested_proc_bind.bind_types[0] != proc_bind_intel) && 4566 (__kmp_affinity_num_places > 0) && 4567 ((unsigned)__kmp_affinity_num_places < affinity.num_masks) && 4568 !is_hidden_helper_affinity) { 4569 affinity.num_masks = __kmp_affinity_num_places; 4570 } 4571 4572 KMP_CPU_ALLOC_ARRAY(affinity.masks, affinity.num_masks); 4573 4574 // Sort the topology table according to the current setting of 4575 // affinity.compact, then fill out affinity.masks. 4576 __kmp_topology->sort_compact(affinity); 4577 { 4578 int i; 4579 unsigned j; 4580 int num_hw_threads = __kmp_topology->get_num_hw_threads(); 4581 for (i = 0, j = 0; i < num_hw_threads; i++) { 4582 if ((!affinity.flags.dups) && (!__kmp_topology->at(i).leader)) { 4583 continue; 4584 } 4585 int osId = __kmp_topology->at(i).os_id; 4586 4587 kmp_affin_mask_t *src = KMP_CPU_INDEX(affinity.os_id_masks, osId); 4588 kmp_affin_mask_t *dest = KMP_CPU_INDEX(affinity.masks, j); 4589 KMP_ASSERT(KMP_CPU_ISSET(osId, src)); 4590 KMP_CPU_COPY(dest, src); 4591 if (++j >= affinity.num_masks) { 4592 break; 4593 } 4594 } 4595 KMP_DEBUG_ASSERT(j == affinity.num_masks); 4596 } 4597 // Sort the topology back using ids 4598 __kmp_topology->sort_ids(); 4599 break; 4600 4601 default: 4602 KMP_ASSERT2(0, "Unexpected affinity setting"); 4603 } 4604 __kmp_affinity_get_topology_info(affinity); 4605 affinity.flags.initialized = TRUE; 4606 } 4607 4608 void __kmp_affinity_initialize(kmp_affinity_t &affinity) { 4609 // Much of the code above was written assuming that if a machine was not 4610 // affinity capable, then affinity type == affinity_none. 4611 // We now explicitly represent this as affinity type == affinity_disabled. 4612 // There are too many checks for affinity type == affinity_none in this code. 4613 // Instead of trying to change them all, check if 4614 // affinity type == affinity_disabled, and if so, slam it with affinity_none, 4615 // call the real initialization routine, then restore affinity type to 4616 // affinity_disabled. 4617 int disabled = (affinity.type == affinity_disabled); 4618 if (!KMP_AFFINITY_CAPABLE()) 4619 KMP_ASSERT(disabled); 4620 if (disabled) 4621 affinity.type = affinity_none; 4622 __kmp_aux_affinity_initialize(affinity); 4623 if (disabled) 4624 affinity.type = affinity_disabled; 4625 } 4626 4627 void __kmp_affinity_uninitialize(void) { 4628 for (kmp_affinity_t *affinity : __kmp_affinities) { 4629 if (affinity->masks != NULL) 4630 KMP_CPU_FREE_ARRAY(affinity->masks, affinity->num_masks); 4631 if (affinity->os_id_masks != NULL) 4632 KMP_CPU_FREE_ARRAY(affinity->os_id_masks, affinity->num_os_id_masks); 4633 if (affinity->proclist != NULL) 4634 __kmp_free(affinity->proclist); 4635 if (affinity->ids != NULL) 4636 __kmp_free(affinity->ids); 4637 if (affinity->attrs != NULL) 4638 __kmp_free(affinity->attrs); 4639 *affinity = KMP_AFFINITY_INIT(affinity->env_var); 4640 } 4641 if (__kmp_affin_origMask != NULL) { 4642 if (KMP_AFFINITY_CAPABLE()) { 4643 __kmp_set_system_affinity(__kmp_affin_origMask, FALSE); 4644 } 4645 KMP_CPU_FREE(__kmp_affin_origMask); 4646 __kmp_affin_origMask = NULL; 4647 } 4648 __kmp_affinity_num_places = 0; 4649 if (procarr != NULL) { 4650 __kmp_free(procarr); 4651 procarr = NULL; 4652 } 4653 if (__kmp_osid_to_hwthread_map) { 4654 __kmp_free(__kmp_osid_to_hwthread_map); 4655 __kmp_osid_to_hwthread_map = NULL; 4656 } 4657 #if KMP_USE_HWLOC 4658 if (__kmp_hwloc_topology != NULL) { 4659 hwloc_topology_destroy(__kmp_hwloc_topology); 4660 __kmp_hwloc_topology = NULL; 4661 } 4662 #endif 4663 if (__kmp_hw_subset) { 4664 kmp_hw_subset_t::deallocate(__kmp_hw_subset); 4665 __kmp_hw_subset = nullptr; 4666 } 4667 if (__kmp_topology) { 4668 kmp_topology_t::deallocate(__kmp_topology); 4669 __kmp_topology = nullptr; 4670 } 4671 KMPAffinity::destroy_api(); 4672 } 4673 4674 static void __kmp_select_mask_by_gtid(int gtid, const kmp_affinity_t *affinity, 4675 int *place, kmp_affin_mask_t **mask) { 4676 int mask_idx; 4677 bool is_hidden_helper = KMP_HIDDEN_HELPER_THREAD(gtid); 4678 if (is_hidden_helper) 4679 // The first gtid is the regular primary thread, the second gtid is the main 4680 // thread of hidden team which does not participate in task execution. 4681 mask_idx = gtid - 2; 4682 else 4683 mask_idx = __kmp_adjust_gtid_for_hidden_helpers(gtid); 4684 KMP_DEBUG_ASSERT(affinity->num_masks > 0); 4685 *place = (mask_idx + affinity->offset) % affinity->num_masks; 4686 *mask = KMP_CPU_INDEX(affinity->masks, *place); 4687 } 4688 4689 // This function initializes the per-thread data concerning affinity including 4690 // the mask and topology information 4691 void __kmp_affinity_set_init_mask(int gtid, int isa_root) { 4692 4693 kmp_info_t *th = (kmp_info_t *)TCR_SYNC_PTR(__kmp_threads[gtid]); 4694 4695 // Set the thread topology information to default of unknown 4696 for (int id = 0; id < KMP_HW_LAST; ++id) 4697 th->th.th_topology_ids[id] = kmp_hw_thread_t::UNKNOWN_ID; 4698 th->th.th_topology_attrs = KMP_AFFINITY_ATTRS_UNKNOWN; 4699 4700 if (!KMP_AFFINITY_CAPABLE()) { 4701 return; 4702 } 4703 4704 if (th->th.th_affin_mask == NULL) { 4705 KMP_CPU_ALLOC(th->th.th_affin_mask); 4706 } else { 4707 KMP_CPU_ZERO(th->th.th_affin_mask); 4708 } 4709 4710 // Copy the thread mask to the kmp_info_t structure. If 4711 // __kmp_affinity.type == affinity_none, copy the "full" mask, i.e. 4712 // one that has all of the OS proc ids set, or if 4713 // __kmp_affinity.flags.respect is set, then the full mask is the 4714 // same as the mask of the initialization thread. 4715 kmp_affin_mask_t *mask; 4716 int i; 4717 const kmp_affinity_t *affinity; 4718 const char *env_var; 4719 bool is_hidden_helper = KMP_HIDDEN_HELPER_THREAD(gtid); 4720 4721 if (is_hidden_helper) 4722 affinity = &__kmp_hh_affinity; 4723 else 4724 affinity = &__kmp_affinity; 4725 env_var = affinity->env_var; 4726 4727 if (KMP_AFFINITY_NON_PROC_BIND || is_hidden_helper) { 4728 if ((affinity->type == affinity_none) || 4729 (affinity->type == affinity_balanced) || 4730 KMP_HIDDEN_HELPER_MAIN_THREAD(gtid)) { 4731 #if KMP_GROUP_AFFINITY 4732 if (__kmp_num_proc_groups > 1) { 4733 return; 4734 } 4735 #endif 4736 KMP_ASSERT(__kmp_affin_fullMask != NULL); 4737 i = 0; 4738 mask = __kmp_affin_fullMask; 4739 } else { 4740 __kmp_select_mask_by_gtid(gtid, affinity, &i, &mask); 4741 } 4742 } else { 4743 if (!isa_root || __kmp_nested_proc_bind.bind_types[0] == proc_bind_false) { 4744 #if KMP_GROUP_AFFINITY 4745 if (__kmp_num_proc_groups > 1) { 4746 return; 4747 } 4748 #endif 4749 KMP_ASSERT(__kmp_affin_fullMask != NULL); 4750 i = KMP_PLACE_ALL; 4751 mask = __kmp_affin_fullMask; 4752 } else { 4753 __kmp_select_mask_by_gtid(gtid, affinity, &i, &mask); 4754 } 4755 } 4756 4757 th->th.th_current_place = i; 4758 if (isa_root && !is_hidden_helper) { 4759 th->th.th_new_place = i; 4760 th->th.th_first_place = 0; 4761 th->th.th_last_place = affinity->num_masks - 1; 4762 } else if (KMP_AFFINITY_NON_PROC_BIND) { 4763 // When using a Non-OMP_PROC_BIND affinity method, 4764 // set all threads' place-partition-var to the entire place list 4765 th->th.th_first_place = 0; 4766 th->th.th_last_place = affinity->num_masks - 1; 4767 } 4768 // Copy topology information associated with the place 4769 if (i >= 0) { 4770 th->th.th_topology_ids = __kmp_affinity.ids[i]; 4771 th->th.th_topology_attrs = __kmp_affinity.attrs[i]; 4772 } 4773 4774 if (i == KMP_PLACE_ALL) { 4775 KA_TRACE(100, ("__kmp_affinity_set_init_mask: binding T#%d to all places\n", 4776 gtid)); 4777 } else { 4778 KA_TRACE(100, ("__kmp_affinity_set_init_mask: binding T#%d to place %d\n", 4779 gtid, i)); 4780 } 4781 4782 KMP_CPU_COPY(th->th.th_affin_mask, mask); 4783 4784 /* to avoid duplicate printing (will be correctly printed on barrier) */ 4785 if (affinity->flags.verbose && 4786 (affinity->type == affinity_none || 4787 (i != KMP_PLACE_ALL && affinity->type != affinity_balanced)) && 4788 !KMP_HIDDEN_HELPER_MAIN_THREAD(gtid)) { 4789 char buf[KMP_AFFIN_MASK_PRINT_LEN]; 4790 __kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN, 4791 th->th.th_affin_mask); 4792 KMP_INFORM(BoundToOSProcSet, env_var, (kmp_int32)getpid(), __kmp_gettid(), 4793 gtid, buf); 4794 } 4795 4796 #if KMP_OS_WINDOWS 4797 // On Windows* OS, the process affinity mask might have changed. If the user 4798 // didn't request affinity and this call fails, just continue silently. 4799 // See CQ171393. 4800 if (affinity->type == affinity_none) { 4801 __kmp_set_system_affinity(th->th.th_affin_mask, FALSE); 4802 } else 4803 #endif 4804 __kmp_set_system_affinity(th->th.th_affin_mask, TRUE); 4805 } 4806 4807 void __kmp_affinity_set_place(int gtid) { 4808 // Hidden helper threads should not be affected by OMP_PLACES/OMP_PROC_BIND 4809 if (!KMP_AFFINITY_CAPABLE() || KMP_HIDDEN_HELPER_THREAD(gtid)) { 4810 return; 4811 } 4812 4813 kmp_info_t *th = (kmp_info_t *)TCR_SYNC_PTR(__kmp_threads[gtid]); 4814 4815 KA_TRACE(100, ("__kmp_affinity_set_place: binding T#%d to place %d (current " 4816 "place = %d)\n", 4817 gtid, th->th.th_new_place, th->th.th_current_place)); 4818 4819 // Check that the new place is within this thread's partition. 4820 KMP_DEBUG_ASSERT(th->th.th_affin_mask != NULL); 4821 KMP_ASSERT(th->th.th_new_place >= 0); 4822 KMP_ASSERT((unsigned)th->th.th_new_place <= __kmp_affinity.num_masks); 4823 if (th->th.th_first_place <= th->th.th_last_place) { 4824 KMP_ASSERT((th->th.th_new_place >= th->th.th_first_place) && 4825 (th->th.th_new_place <= th->th.th_last_place)); 4826 } else { 4827 KMP_ASSERT((th->th.th_new_place <= th->th.th_first_place) || 4828 (th->th.th_new_place >= th->th.th_last_place)); 4829 } 4830 4831 // Copy the thread mask to the kmp_info_t structure, 4832 // and set this thread's affinity. 4833 kmp_affin_mask_t *mask = 4834 KMP_CPU_INDEX(__kmp_affinity.masks, th->th.th_new_place); 4835 KMP_CPU_COPY(th->th.th_affin_mask, mask); 4836 th->th.th_current_place = th->th.th_new_place; 4837 // Copy topology information associated with the place 4838 th->th.th_topology_ids = __kmp_affinity.ids[th->th.th_new_place]; 4839 th->th.th_topology_attrs = __kmp_affinity.attrs[th->th.th_new_place]; 4840 4841 if (__kmp_affinity.flags.verbose) { 4842 char buf[KMP_AFFIN_MASK_PRINT_LEN]; 4843 __kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN, 4844 th->th.th_affin_mask); 4845 KMP_INFORM(BoundToOSProcSet, "OMP_PROC_BIND", (kmp_int32)getpid(), 4846 __kmp_gettid(), gtid, buf); 4847 } 4848 __kmp_set_system_affinity(th->th.th_affin_mask, TRUE); 4849 } 4850 4851 int __kmp_aux_set_affinity(void **mask) { 4852 int gtid; 4853 kmp_info_t *th; 4854 int retval; 4855 4856 if (!KMP_AFFINITY_CAPABLE()) { 4857 return -1; 4858 } 4859 4860 gtid = __kmp_entry_gtid(); 4861 KA_TRACE( 4862 1000, (""); { 4863 char buf[KMP_AFFIN_MASK_PRINT_LEN]; 4864 __kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN, 4865 (kmp_affin_mask_t *)(*mask)); 4866 __kmp_debug_printf( 4867 "kmp_set_affinity: setting affinity mask for thread %d = %s\n", 4868 gtid, buf); 4869 }); 4870 4871 if (__kmp_env_consistency_check) { 4872 if ((mask == NULL) || (*mask == NULL)) { 4873 KMP_FATAL(AffinityInvalidMask, "kmp_set_affinity"); 4874 } else { 4875 unsigned proc; 4876 int num_procs = 0; 4877 4878 KMP_CPU_SET_ITERATE(proc, ((kmp_affin_mask_t *)(*mask))) { 4879 if (!KMP_CPU_ISSET(proc, __kmp_affin_fullMask)) { 4880 KMP_FATAL(AffinityInvalidMask, "kmp_set_affinity"); 4881 } 4882 if (!KMP_CPU_ISSET(proc, (kmp_affin_mask_t *)(*mask))) { 4883 continue; 4884 } 4885 num_procs++; 4886 } 4887 if (num_procs == 0) { 4888 KMP_FATAL(AffinityInvalidMask, "kmp_set_affinity"); 4889 } 4890 4891 #if KMP_GROUP_AFFINITY 4892 if (__kmp_get_proc_group((kmp_affin_mask_t *)(*mask)) < 0) { 4893 KMP_FATAL(AffinityInvalidMask, "kmp_set_affinity"); 4894 } 4895 #endif /* KMP_GROUP_AFFINITY */ 4896 } 4897 } 4898 4899 th = __kmp_threads[gtid]; 4900 KMP_DEBUG_ASSERT(th->th.th_affin_mask != NULL); 4901 retval = __kmp_set_system_affinity((kmp_affin_mask_t *)(*mask), FALSE); 4902 if (retval == 0) { 4903 KMP_CPU_COPY(th->th.th_affin_mask, (kmp_affin_mask_t *)(*mask)); 4904 } 4905 4906 th->th.th_current_place = KMP_PLACE_UNDEFINED; 4907 th->th.th_new_place = KMP_PLACE_UNDEFINED; 4908 th->th.th_first_place = 0; 4909 th->th.th_last_place = __kmp_affinity.num_masks - 1; 4910 4911 // Turn off 4.0 affinity for the current tread at this parallel level. 4912 th->th.th_current_task->td_icvs.proc_bind = proc_bind_false; 4913 4914 return retval; 4915 } 4916 4917 int __kmp_aux_get_affinity(void **mask) { 4918 int gtid; 4919 int retval; 4920 #if KMP_OS_WINDOWS || KMP_DEBUG 4921 kmp_info_t *th; 4922 #endif 4923 if (!KMP_AFFINITY_CAPABLE()) { 4924 return -1; 4925 } 4926 4927 gtid = __kmp_entry_gtid(); 4928 #if KMP_OS_WINDOWS || KMP_DEBUG 4929 th = __kmp_threads[gtid]; 4930 #else 4931 (void)gtid; // unused variable 4932 #endif 4933 KMP_DEBUG_ASSERT(th->th.th_affin_mask != NULL); 4934 4935 KA_TRACE( 4936 1000, (""); { 4937 char buf[KMP_AFFIN_MASK_PRINT_LEN]; 4938 __kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN, 4939 th->th.th_affin_mask); 4940 __kmp_printf( 4941 "kmp_get_affinity: stored affinity mask for thread %d = %s\n", gtid, 4942 buf); 4943 }); 4944 4945 if (__kmp_env_consistency_check) { 4946 if ((mask == NULL) || (*mask == NULL)) { 4947 KMP_FATAL(AffinityInvalidMask, "kmp_get_affinity"); 4948 } 4949 } 4950 4951 #if !KMP_OS_WINDOWS 4952 4953 retval = __kmp_get_system_affinity((kmp_affin_mask_t *)(*mask), FALSE); 4954 KA_TRACE( 4955 1000, (""); { 4956 char buf[KMP_AFFIN_MASK_PRINT_LEN]; 4957 __kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN, 4958 (kmp_affin_mask_t *)(*mask)); 4959 __kmp_printf( 4960 "kmp_get_affinity: system affinity mask for thread %d = %s\n", gtid, 4961 buf); 4962 }); 4963 return retval; 4964 4965 #else 4966 (void)retval; 4967 4968 KMP_CPU_COPY((kmp_affin_mask_t *)(*mask), th->th.th_affin_mask); 4969 return 0; 4970 4971 #endif /* KMP_OS_WINDOWS */ 4972 } 4973 4974 int __kmp_aux_get_affinity_max_proc() { 4975 if (!KMP_AFFINITY_CAPABLE()) { 4976 return 0; 4977 } 4978 #if KMP_GROUP_AFFINITY 4979 if (__kmp_num_proc_groups > 1) { 4980 return (int)(__kmp_num_proc_groups * sizeof(DWORD_PTR) * CHAR_BIT); 4981 } 4982 #endif 4983 return __kmp_xproc; 4984 } 4985 4986 int __kmp_aux_set_affinity_mask_proc(int proc, void **mask) { 4987 if (!KMP_AFFINITY_CAPABLE()) { 4988 return -1; 4989 } 4990 4991 KA_TRACE( 4992 1000, (""); { 4993 int gtid = __kmp_entry_gtid(); 4994 char buf[KMP_AFFIN_MASK_PRINT_LEN]; 4995 __kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN, 4996 (kmp_affin_mask_t *)(*mask)); 4997 __kmp_debug_printf("kmp_set_affinity_mask_proc: setting proc %d in " 4998 "affinity mask for thread %d = %s\n", 4999 proc, gtid, buf); 5000 }); 5001 5002 if (__kmp_env_consistency_check) { 5003 if ((mask == NULL) || (*mask == NULL)) { 5004 KMP_FATAL(AffinityInvalidMask, "kmp_set_affinity_mask_proc"); 5005 } 5006 } 5007 5008 if ((proc < 0) || (proc >= __kmp_aux_get_affinity_max_proc())) { 5009 return -1; 5010 } 5011 if (!KMP_CPU_ISSET(proc, __kmp_affin_fullMask)) { 5012 return -2; 5013 } 5014 5015 KMP_CPU_SET(proc, (kmp_affin_mask_t *)(*mask)); 5016 return 0; 5017 } 5018 5019 int __kmp_aux_unset_affinity_mask_proc(int proc, void **mask) { 5020 if (!KMP_AFFINITY_CAPABLE()) { 5021 return -1; 5022 } 5023 5024 KA_TRACE( 5025 1000, (""); { 5026 int gtid = __kmp_entry_gtid(); 5027 char buf[KMP_AFFIN_MASK_PRINT_LEN]; 5028 __kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN, 5029 (kmp_affin_mask_t *)(*mask)); 5030 __kmp_debug_printf("kmp_unset_affinity_mask_proc: unsetting proc %d in " 5031 "affinity mask for thread %d = %s\n", 5032 proc, gtid, buf); 5033 }); 5034 5035 if (__kmp_env_consistency_check) { 5036 if ((mask == NULL) || (*mask == NULL)) { 5037 KMP_FATAL(AffinityInvalidMask, "kmp_unset_affinity_mask_proc"); 5038 } 5039 } 5040 5041 if ((proc < 0) || (proc >= __kmp_aux_get_affinity_max_proc())) { 5042 return -1; 5043 } 5044 if (!KMP_CPU_ISSET(proc, __kmp_affin_fullMask)) { 5045 return -2; 5046 } 5047 5048 KMP_CPU_CLR(proc, (kmp_affin_mask_t *)(*mask)); 5049 return 0; 5050 } 5051 5052 int __kmp_aux_get_affinity_mask_proc(int proc, void **mask) { 5053 if (!KMP_AFFINITY_CAPABLE()) { 5054 return -1; 5055 } 5056 5057 KA_TRACE( 5058 1000, (""); { 5059 int gtid = __kmp_entry_gtid(); 5060 char buf[KMP_AFFIN_MASK_PRINT_LEN]; 5061 __kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN, 5062 (kmp_affin_mask_t *)(*mask)); 5063 __kmp_debug_printf("kmp_get_affinity_mask_proc: getting proc %d in " 5064 "affinity mask for thread %d = %s\n", 5065 proc, gtid, buf); 5066 }); 5067 5068 if (__kmp_env_consistency_check) { 5069 if ((mask == NULL) || (*mask == NULL)) { 5070 KMP_FATAL(AffinityInvalidMask, "kmp_get_affinity_mask_proc"); 5071 } 5072 } 5073 5074 if ((proc < 0) || (proc >= __kmp_aux_get_affinity_max_proc())) { 5075 return -1; 5076 } 5077 if (!KMP_CPU_ISSET(proc, __kmp_affin_fullMask)) { 5078 return 0; 5079 } 5080 5081 return KMP_CPU_ISSET(proc, (kmp_affin_mask_t *)(*mask)); 5082 } 5083 5084 // Dynamic affinity settings - Affinity balanced 5085 void __kmp_balanced_affinity(kmp_info_t *th, int nthreads) { 5086 KMP_DEBUG_ASSERT(th); 5087 bool fine_gran = true; 5088 int tid = th->th.th_info.ds.ds_tid; 5089 const char *env_var = "KMP_AFFINITY"; 5090 5091 // Do not perform balanced affinity for the hidden helper threads 5092 if (KMP_HIDDEN_HELPER_THREAD(__kmp_gtid_from_thread(th))) 5093 return; 5094 5095 switch (__kmp_affinity.gran) { 5096 case KMP_HW_THREAD: 5097 break; 5098 case KMP_HW_CORE: 5099 if (__kmp_nThreadsPerCore > 1) { 5100 fine_gran = false; 5101 } 5102 break; 5103 case KMP_HW_SOCKET: 5104 if (nCoresPerPkg > 1) { 5105 fine_gran = false; 5106 } 5107 break; 5108 default: 5109 fine_gran = false; 5110 } 5111 5112 if (__kmp_topology->is_uniform()) { 5113 int coreID; 5114 int threadID; 5115 // Number of hyper threads per core in HT machine 5116 int __kmp_nth_per_core = __kmp_avail_proc / __kmp_ncores; 5117 // Number of cores 5118 int ncores = __kmp_ncores; 5119 if ((nPackages > 1) && (__kmp_nth_per_core <= 1)) { 5120 __kmp_nth_per_core = __kmp_avail_proc / nPackages; 5121 ncores = nPackages; 5122 } 5123 // How many threads will be bound to each core 5124 int chunk = nthreads / ncores; 5125 // How many cores will have an additional thread bound to it - "big cores" 5126 int big_cores = nthreads % ncores; 5127 // Number of threads on the big cores 5128 int big_nth = (chunk + 1) * big_cores; 5129 if (tid < big_nth) { 5130 coreID = tid / (chunk + 1); 5131 threadID = (tid % (chunk + 1)) % __kmp_nth_per_core; 5132 } else { // tid >= big_nth 5133 coreID = (tid - big_cores) / chunk; 5134 threadID = ((tid - big_cores) % chunk) % __kmp_nth_per_core; 5135 } 5136 KMP_DEBUG_ASSERT2(KMP_AFFINITY_CAPABLE(), 5137 "Illegal set affinity operation when not capable"); 5138 5139 kmp_affin_mask_t *mask = th->th.th_affin_mask; 5140 KMP_CPU_ZERO(mask); 5141 5142 if (fine_gran) { 5143 int osID = 5144 __kmp_topology->at(coreID * __kmp_nth_per_core + threadID).os_id; 5145 KMP_CPU_SET(osID, mask); 5146 } else { 5147 for (int i = 0; i < __kmp_nth_per_core; i++) { 5148 int osID; 5149 osID = __kmp_topology->at(coreID * __kmp_nth_per_core + i).os_id; 5150 KMP_CPU_SET(osID, mask); 5151 } 5152 } 5153 if (__kmp_affinity.flags.verbose) { 5154 char buf[KMP_AFFIN_MASK_PRINT_LEN]; 5155 __kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN, mask); 5156 KMP_INFORM(BoundToOSProcSet, env_var, (kmp_int32)getpid(), __kmp_gettid(), 5157 tid, buf); 5158 } 5159 __kmp_affinity_get_thread_topology_info(th); 5160 __kmp_set_system_affinity(mask, TRUE); 5161 } else { // Non-uniform topology 5162 5163 kmp_affin_mask_t *mask = th->th.th_affin_mask; 5164 KMP_CPU_ZERO(mask); 5165 5166 int core_level = 5167 __kmp_affinity_find_core_level(__kmp_avail_proc, __kmp_aff_depth - 1); 5168 int ncores = __kmp_affinity_compute_ncores(__kmp_avail_proc, 5169 __kmp_aff_depth - 1, core_level); 5170 int nth_per_core = __kmp_affinity_max_proc_per_core( 5171 __kmp_avail_proc, __kmp_aff_depth - 1, core_level); 5172 5173 // For performance gain consider the special case nthreads == 5174 // __kmp_avail_proc 5175 if (nthreads == __kmp_avail_proc) { 5176 if (fine_gran) { 5177 int osID = __kmp_topology->at(tid).os_id; 5178 KMP_CPU_SET(osID, mask); 5179 } else { 5180 int core = 5181 __kmp_affinity_find_core(tid, __kmp_aff_depth - 1, core_level); 5182 for (int i = 0; i < __kmp_avail_proc; i++) { 5183 int osID = __kmp_topology->at(i).os_id; 5184 if (__kmp_affinity_find_core(i, __kmp_aff_depth - 1, core_level) == 5185 core) { 5186 KMP_CPU_SET(osID, mask); 5187 } 5188 } 5189 } 5190 } else if (nthreads <= ncores) { 5191 5192 int core = 0; 5193 for (int i = 0; i < ncores; i++) { 5194 // Check if this core from procarr[] is in the mask 5195 int in_mask = 0; 5196 for (int j = 0; j < nth_per_core; j++) { 5197 if (procarr[i * nth_per_core + j] != -1) { 5198 in_mask = 1; 5199 break; 5200 } 5201 } 5202 if (in_mask) { 5203 if (tid == core) { 5204 for (int j = 0; j < nth_per_core; j++) { 5205 int osID = procarr[i * nth_per_core + j]; 5206 if (osID != -1) { 5207 KMP_CPU_SET(osID, mask); 5208 // For fine granularity it is enough to set the first available 5209 // osID for this core 5210 if (fine_gran) { 5211 break; 5212 } 5213 } 5214 } 5215 break; 5216 } else { 5217 core++; 5218 } 5219 } 5220 } 5221 } else { // nthreads > ncores 5222 // Array to save the number of processors at each core 5223 int *nproc_at_core = (int *)KMP_ALLOCA(sizeof(int) * ncores); 5224 // Array to save the number of cores with "x" available processors; 5225 int *ncores_with_x_procs = 5226 (int *)KMP_ALLOCA(sizeof(int) * (nth_per_core + 1)); 5227 // Array to save the number of cores with # procs from x to nth_per_core 5228 int *ncores_with_x_to_max_procs = 5229 (int *)KMP_ALLOCA(sizeof(int) * (nth_per_core + 1)); 5230 5231 for (int i = 0; i <= nth_per_core; i++) { 5232 ncores_with_x_procs[i] = 0; 5233 ncores_with_x_to_max_procs[i] = 0; 5234 } 5235 5236 for (int i = 0; i < ncores; i++) { 5237 int cnt = 0; 5238 for (int j = 0; j < nth_per_core; j++) { 5239 if (procarr[i * nth_per_core + j] != -1) { 5240 cnt++; 5241 } 5242 } 5243 nproc_at_core[i] = cnt; 5244 ncores_with_x_procs[cnt]++; 5245 } 5246 5247 for (int i = 0; i <= nth_per_core; i++) { 5248 for (int j = i; j <= nth_per_core; j++) { 5249 ncores_with_x_to_max_procs[i] += ncores_with_x_procs[j]; 5250 } 5251 } 5252 5253 // Max number of processors 5254 int nproc = nth_per_core * ncores; 5255 // An array to keep number of threads per each context 5256 int *newarr = (int *)__kmp_allocate(sizeof(int) * nproc); 5257 for (int i = 0; i < nproc; i++) { 5258 newarr[i] = 0; 5259 } 5260 5261 int nth = nthreads; 5262 int flag = 0; 5263 while (nth > 0) { 5264 for (int j = 1; j <= nth_per_core; j++) { 5265 int cnt = ncores_with_x_to_max_procs[j]; 5266 for (int i = 0; i < ncores; i++) { 5267 // Skip the core with 0 processors 5268 if (nproc_at_core[i] == 0) { 5269 continue; 5270 } 5271 for (int k = 0; k < nth_per_core; k++) { 5272 if (procarr[i * nth_per_core + k] != -1) { 5273 if (newarr[i * nth_per_core + k] == 0) { 5274 newarr[i * nth_per_core + k] = 1; 5275 cnt--; 5276 nth--; 5277 break; 5278 } else { 5279 if (flag != 0) { 5280 newarr[i * nth_per_core + k]++; 5281 cnt--; 5282 nth--; 5283 break; 5284 } 5285 } 5286 } 5287 } 5288 if (cnt == 0 || nth == 0) { 5289 break; 5290 } 5291 } 5292 if (nth == 0) { 5293 break; 5294 } 5295 } 5296 flag = 1; 5297 } 5298 int sum = 0; 5299 for (int i = 0; i < nproc; i++) { 5300 sum += newarr[i]; 5301 if (sum > tid) { 5302 if (fine_gran) { 5303 int osID = procarr[i]; 5304 KMP_CPU_SET(osID, mask); 5305 } else { 5306 int coreID = i / nth_per_core; 5307 for (int ii = 0; ii < nth_per_core; ii++) { 5308 int osID = procarr[coreID * nth_per_core + ii]; 5309 if (osID != -1) { 5310 KMP_CPU_SET(osID, mask); 5311 } 5312 } 5313 } 5314 break; 5315 } 5316 } 5317 __kmp_free(newarr); 5318 } 5319 5320 if (__kmp_affinity.flags.verbose) { 5321 char buf[KMP_AFFIN_MASK_PRINT_LEN]; 5322 __kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN, mask); 5323 KMP_INFORM(BoundToOSProcSet, env_var, (kmp_int32)getpid(), __kmp_gettid(), 5324 tid, buf); 5325 } 5326 __kmp_affinity_get_thread_topology_info(th); 5327 __kmp_set_system_affinity(mask, TRUE); 5328 } 5329 } 5330 5331 #if KMP_OS_LINUX || KMP_OS_FREEBSD 5332 // We don't need this entry for Windows because 5333 // there is GetProcessAffinityMask() api 5334 // 5335 // The intended usage is indicated by these steps: 5336 // 1) The user gets the current affinity mask 5337 // 2) Then sets the affinity by calling this function 5338 // 3) Error check the return value 5339 // 4) Use non-OpenMP parallelization 5340 // 5) Reset the affinity to what was stored in step 1) 5341 #ifdef __cplusplus 5342 extern "C" 5343 #endif 5344 int 5345 kmp_set_thread_affinity_mask_initial() 5346 // the function returns 0 on success, 5347 // -1 if we cannot bind thread 5348 // >0 (errno) if an error happened during binding 5349 { 5350 int gtid = __kmp_get_gtid(); 5351 if (gtid < 0) { 5352 // Do not touch non-omp threads 5353 KA_TRACE(30, ("kmp_set_thread_affinity_mask_initial: " 5354 "non-omp thread, returning\n")); 5355 return -1; 5356 } 5357 if (!KMP_AFFINITY_CAPABLE() || !__kmp_init_middle) { 5358 KA_TRACE(30, ("kmp_set_thread_affinity_mask_initial: " 5359 "affinity not initialized, returning\n")); 5360 return -1; 5361 } 5362 KA_TRACE(30, ("kmp_set_thread_affinity_mask_initial: " 5363 "set full mask for thread %d\n", 5364 gtid)); 5365 KMP_DEBUG_ASSERT(__kmp_affin_fullMask != NULL); 5366 return __kmp_set_system_affinity(__kmp_affin_fullMask, FALSE); 5367 } 5368 #endif 5369 5370 #endif // KMP_AFFINITY_SUPPORTED 5371