1 /* 2 * kmp_affinity.cpp -- affinity management 3 */ 4 5 //===----------------------------------------------------------------------===// 6 // 7 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 8 // See https://llvm.org/LICENSE.txt for license information. 9 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "kmp.h" 14 #include "kmp_affinity.h" 15 #include "kmp_i18n.h" 16 #include "kmp_io.h" 17 #include "kmp_str.h" 18 #include "kmp_wrapper_getpid.h" 19 #if KMP_USE_HIER_SCHED 20 #include "kmp_dispatch_hier.h" 21 #endif 22 #if KMP_USE_HWLOC 23 // Copied from hwloc 24 #define HWLOC_GROUP_KIND_INTEL_MODULE 102 25 #define HWLOC_GROUP_KIND_INTEL_TILE 103 26 #define HWLOC_GROUP_KIND_INTEL_DIE 104 27 #define HWLOC_GROUP_KIND_WINDOWS_PROCESSOR_GROUP 220 28 #endif 29 #include <ctype.h> 30 31 // The machine topology 32 kmp_topology_t *__kmp_topology = nullptr; 33 // KMP_HW_SUBSET environment variable 34 kmp_hw_subset_t *__kmp_hw_subset = nullptr; 35 36 // Store the real or imagined machine hierarchy here 37 static hierarchy_info machine_hierarchy; 38 39 void __kmp_cleanup_hierarchy() { machine_hierarchy.fini(); } 40 41 #if KMP_AFFINITY_SUPPORTED 42 // Helper class to see if place lists further restrict the fullMask 43 class kmp_full_mask_modifier_t { 44 kmp_affin_mask_t *mask; 45 46 public: 47 kmp_full_mask_modifier_t() { 48 KMP_CPU_ALLOC(mask); 49 KMP_CPU_ZERO(mask); 50 } 51 ~kmp_full_mask_modifier_t() { 52 KMP_CPU_FREE(mask); 53 mask = nullptr; 54 } 55 void include(const kmp_affin_mask_t *other) { KMP_CPU_UNION(mask, other); } 56 // If the new full mask is different from the current full mask, 57 // then switch them. Returns true if full mask was affected, false otherwise. 58 bool restrict_to_mask() { 59 // See if the new mask further restricts or changes the full mask 60 if (KMP_CPU_EQUAL(__kmp_affin_fullMask, mask) || KMP_CPU_ISEMPTY(mask)) 61 return false; 62 return __kmp_topology->restrict_to_mask(mask); 63 } 64 }; 65 66 static inline const char * 67 __kmp_get_affinity_env_var(const kmp_affinity_t &affinity, 68 bool for_binding = false) { 69 if (affinity.flags.omp_places) { 70 if (for_binding) 71 return "OMP_PROC_BIND"; 72 return "OMP_PLACES"; 73 } 74 return affinity.env_var; 75 } 76 #endif // KMP_AFFINITY_SUPPORTED 77 78 void __kmp_get_hierarchy(kmp_uint32 nproc, kmp_bstate_t *thr_bar) { 79 kmp_uint32 depth; 80 // The test below is true if affinity is available, but set to "none". Need to 81 // init on first use of hierarchical barrier. 82 if (TCR_1(machine_hierarchy.uninitialized)) 83 machine_hierarchy.init(nproc); 84 85 // Adjust the hierarchy in case num threads exceeds original 86 if (nproc > machine_hierarchy.base_num_threads) 87 machine_hierarchy.resize(nproc); 88 89 depth = machine_hierarchy.depth; 90 KMP_DEBUG_ASSERT(depth > 0); 91 92 thr_bar->depth = depth; 93 __kmp_type_convert(machine_hierarchy.numPerLevel[0] - 1, 94 &(thr_bar->base_leaf_kids)); 95 thr_bar->skip_per_level = machine_hierarchy.skipPerLevel; 96 } 97 98 static int nCoresPerPkg, nPackages; 99 static int __kmp_nThreadsPerCore; 100 #ifndef KMP_DFLT_NTH_CORES 101 static int __kmp_ncores; 102 #endif 103 104 const char *__kmp_hw_get_catalog_string(kmp_hw_t type, bool plural) { 105 switch (type) { 106 case KMP_HW_SOCKET: 107 return ((plural) ? KMP_I18N_STR(Sockets) : KMP_I18N_STR(Socket)); 108 case KMP_HW_DIE: 109 return ((plural) ? KMP_I18N_STR(Dice) : KMP_I18N_STR(Die)); 110 case KMP_HW_MODULE: 111 return ((plural) ? KMP_I18N_STR(Modules) : KMP_I18N_STR(Module)); 112 case KMP_HW_TILE: 113 return ((plural) ? KMP_I18N_STR(Tiles) : KMP_I18N_STR(Tile)); 114 case KMP_HW_NUMA: 115 return ((plural) ? KMP_I18N_STR(NumaDomains) : KMP_I18N_STR(NumaDomain)); 116 case KMP_HW_L3: 117 return ((plural) ? KMP_I18N_STR(L3Caches) : KMP_I18N_STR(L3Cache)); 118 case KMP_HW_L2: 119 return ((plural) ? KMP_I18N_STR(L2Caches) : KMP_I18N_STR(L2Cache)); 120 case KMP_HW_L1: 121 return ((plural) ? KMP_I18N_STR(L1Caches) : KMP_I18N_STR(L1Cache)); 122 case KMP_HW_LLC: 123 return ((plural) ? KMP_I18N_STR(LLCaches) : KMP_I18N_STR(LLCache)); 124 case KMP_HW_CORE: 125 return ((plural) ? KMP_I18N_STR(Cores) : KMP_I18N_STR(Core)); 126 case KMP_HW_THREAD: 127 return ((plural) ? KMP_I18N_STR(Threads) : KMP_I18N_STR(Thread)); 128 case KMP_HW_PROC_GROUP: 129 return ((plural) ? KMP_I18N_STR(ProcGroups) : KMP_I18N_STR(ProcGroup)); 130 case KMP_HW_UNKNOWN: 131 case KMP_HW_LAST: 132 return KMP_I18N_STR(Unknown); 133 } 134 KMP_ASSERT2(false, "Unhandled kmp_hw_t enumeration"); 135 KMP_BUILTIN_UNREACHABLE; 136 } 137 138 const char *__kmp_hw_get_keyword(kmp_hw_t type, bool plural) { 139 switch (type) { 140 case KMP_HW_SOCKET: 141 return ((plural) ? "sockets" : "socket"); 142 case KMP_HW_DIE: 143 return ((plural) ? "dice" : "die"); 144 case KMP_HW_MODULE: 145 return ((plural) ? "modules" : "module"); 146 case KMP_HW_TILE: 147 return ((plural) ? "tiles" : "tile"); 148 case KMP_HW_NUMA: 149 return ((plural) ? "numa_domains" : "numa_domain"); 150 case KMP_HW_L3: 151 return ((plural) ? "l3_caches" : "l3_cache"); 152 case KMP_HW_L2: 153 return ((plural) ? "l2_caches" : "l2_cache"); 154 case KMP_HW_L1: 155 return ((plural) ? "l1_caches" : "l1_cache"); 156 case KMP_HW_LLC: 157 return ((plural) ? "ll_caches" : "ll_cache"); 158 case KMP_HW_CORE: 159 return ((plural) ? "cores" : "core"); 160 case KMP_HW_THREAD: 161 return ((plural) ? "threads" : "thread"); 162 case KMP_HW_PROC_GROUP: 163 return ((plural) ? "proc_groups" : "proc_group"); 164 case KMP_HW_UNKNOWN: 165 case KMP_HW_LAST: 166 return ((plural) ? "unknowns" : "unknown"); 167 } 168 KMP_ASSERT2(false, "Unhandled kmp_hw_t enumeration"); 169 KMP_BUILTIN_UNREACHABLE; 170 } 171 172 const char *__kmp_hw_get_core_type_string(kmp_hw_core_type_t type) { 173 switch (type) { 174 case KMP_HW_CORE_TYPE_UNKNOWN: 175 case KMP_HW_MAX_NUM_CORE_TYPES: 176 return "unknown"; 177 #if KMP_ARCH_X86 || KMP_ARCH_X86_64 178 case KMP_HW_CORE_TYPE_ATOM: 179 return "Intel Atom(R) processor"; 180 case KMP_HW_CORE_TYPE_CORE: 181 return "Intel(R) Core(TM) processor"; 182 #endif 183 } 184 KMP_ASSERT2(false, "Unhandled kmp_hw_core_type_t enumeration"); 185 KMP_BUILTIN_UNREACHABLE; 186 } 187 188 #if KMP_AFFINITY_SUPPORTED 189 // If affinity is supported, check the affinity 190 // verbose and warning flags before printing warning 191 #define KMP_AFF_WARNING(s, ...) \ 192 if (s.flags.verbose || (s.flags.warnings && (s.type != affinity_none))) { \ 193 KMP_WARNING(__VA_ARGS__); \ 194 } 195 #else 196 #define KMP_AFF_WARNING(s, ...) KMP_WARNING(__VA_ARGS__) 197 #endif 198 199 //////////////////////////////////////////////////////////////////////////////// 200 // kmp_hw_thread_t methods 201 int kmp_hw_thread_t::compare_ids(const void *a, const void *b) { 202 const kmp_hw_thread_t *ahwthread = (const kmp_hw_thread_t *)a; 203 const kmp_hw_thread_t *bhwthread = (const kmp_hw_thread_t *)b; 204 int depth = __kmp_topology->get_depth(); 205 for (int level = 0; level < depth; ++level) { 206 if (ahwthread->ids[level] < bhwthread->ids[level]) 207 return -1; 208 else if (ahwthread->ids[level] > bhwthread->ids[level]) 209 return 1; 210 } 211 if (ahwthread->os_id < bhwthread->os_id) 212 return -1; 213 else if (ahwthread->os_id > bhwthread->os_id) 214 return 1; 215 return 0; 216 } 217 218 #if KMP_AFFINITY_SUPPORTED 219 int kmp_hw_thread_t::compare_compact(const void *a, const void *b) { 220 int i; 221 const kmp_hw_thread_t *aa = (const kmp_hw_thread_t *)a; 222 const kmp_hw_thread_t *bb = (const kmp_hw_thread_t *)b; 223 int depth = __kmp_topology->get_depth(); 224 int compact = __kmp_topology->compact; 225 KMP_DEBUG_ASSERT(compact >= 0); 226 KMP_DEBUG_ASSERT(compact <= depth); 227 for (i = 0; i < compact; i++) { 228 int j = depth - i - 1; 229 if (aa->sub_ids[j] < bb->sub_ids[j]) 230 return -1; 231 if (aa->sub_ids[j] > bb->sub_ids[j]) 232 return 1; 233 } 234 for (; i < depth; i++) { 235 int j = i - compact; 236 if (aa->sub_ids[j] < bb->sub_ids[j]) 237 return -1; 238 if (aa->sub_ids[j] > bb->sub_ids[j]) 239 return 1; 240 } 241 return 0; 242 } 243 #endif 244 245 void kmp_hw_thread_t::print() const { 246 int depth = __kmp_topology->get_depth(); 247 printf("%4d ", os_id); 248 for (int i = 0; i < depth; ++i) { 249 printf("%4d ", ids[i]); 250 } 251 if (attrs) { 252 if (attrs.is_core_type_valid()) 253 printf(" (%s)", __kmp_hw_get_core_type_string(attrs.get_core_type())); 254 if (attrs.is_core_eff_valid()) 255 printf(" (eff=%d)", attrs.get_core_eff()); 256 } 257 if (leader) 258 printf(" (leader)"); 259 printf("\n"); 260 } 261 262 //////////////////////////////////////////////////////////////////////////////// 263 // kmp_topology_t methods 264 265 // Add a layer to the topology based on the ids. Assume the topology 266 // is perfectly nested (i.e., so no object has more than one parent) 267 void kmp_topology_t::_insert_layer(kmp_hw_t type, const int *ids) { 268 // Figure out where the layer should go by comparing the ids of the current 269 // layers with the new ids 270 int target_layer; 271 int previous_id = kmp_hw_thread_t::UNKNOWN_ID; 272 int previous_new_id = kmp_hw_thread_t::UNKNOWN_ID; 273 274 // Start from the highest layer and work down to find target layer 275 // If new layer is equal to another layer then put the new layer above 276 for (target_layer = 0; target_layer < depth; ++target_layer) { 277 bool layers_equal = true; 278 bool strictly_above_target_layer = false; 279 for (int i = 0; i < num_hw_threads; ++i) { 280 int id = hw_threads[i].ids[target_layer]; 281 int new_id = ids[i]; 282 if (id != previous_id && new_id == previous_new_id) { 283 // Found the layer we are strictly above 284 strictly_above_target_layer = true; 285 layers_equal = false; 286 break; 287 } else if (id == previous_id && new_id != previous_new_id) { 288 // Found a layer we are below. Move to next layer and check. 289 layers_equal = false; 290 break; 291 } 292 previous_id = id; 293 previous_new_id = new_id; 294 } 295 if (strictly_above_target_layer || layers_equal) 296 break; 297 } 298 299 // Found the layer we are above. Now move everything to accommodate the new 300 // layer. And put the new ids and type into the topology. 301 for (int i = depth - 1, j = depth; i >= target_layer; --i, --j) 302 types[j] = types[i]; 303 types[target_layer] = type; 304 for (int k = 0; k < num_hw_threads; ++k) { 305 for (int i = depth - 1, j = depth; i >= target_layer; --i, --j) 306 hw_threads[k].ids[j] = hw_threads[k].ids[i]; 307 hw_threads[k].ids[target_layer] = ids[k]; 308 } 309 equivalent[type] = type; 310 depth++; 311 } 312 313 #if KMP_GROUP_AFFINITY 314 // Insert the Windows Processor Group structure into the topology 315 void kmp_topology_t::_insert_windows_proc_groups() { 316 // Do not insert the processor group structure for a single group 317 if (__kmp_num_proc_groups == 1) 318 return; 319 kmp_affin_mask_t *mask; 320 int *ids = (int *)__kmp_allocate(sizeof(int) * num_hw_threads); 321 KMP_CPU_ALLOC(mask); 322 for (int i = 0; i < num_hw_threads; ++i) { 323 KMP_CPU_ZERO(mask); 324 KMP_CPU_SET(hw_threads[i].os_id, mask); 325 ids[i] = __kmp_get_proc_group(mask); 326 } 327 KMP_CPU_FREE(mask); 328 _insert_layer(KMP_HW_PROC_GROUP, ids); 329 __kmp_free(ids); 330 } 331 #endif 332 333 // Remove layers that don't add information to the topology. 334 // This is done by having the layer take on the id = UNKNOWN_ID (-1) 335 void kmp_topology_t::_remove_radix1_layers() { 336 int preference[KMP_HW_LAST]; 337 int top_index1, top_index2; 338 // Set up preference associative array 339 preference[KMP_HW_SOCKET] = 110; 340 preference[KMP_HW_PROC_GROUP] = 100; 341 preference[KMP_HW_CORE] = 95; 342 preference[KMP_HW_THREAD] = 90; 343 preference[KMP_HW_NUMA] = 85; 344 preference[KMP_HW_DIE] = 80; 345 preference[KMP_HW_TILE] = 75; 346 preference[KMP_HW_MODULE] = 73; 347 preference[KMP_HW_L3] = 70; 348 preference[KMP_HW_L2] = 65; 349 preference[KMP_HW_L1] = 60; 350 preference[KMP_HW_LLC] = 5; 351 top_index1 = 0; 352 top_index2 = 1; 353 while (top_index1 < depth - 1 && top_index2 < depth) { 354 kmp_hw_t type1 = types[top_index1]; 355 kmp_hw_t type2 = types[top_index2]; 356 KMP_ASSERT_VALID_HW_TYPE(type1); 357 KMP_ASSERT_VALID_HW_TYPE(type2); 358 // Do not allow the three main topology levels (sockets, cores, threads) to 359 // be compacted down 360 if ((type1 == KMP_HW_THREAD || type1 == KMP_HW_CORE || 361 type1 == KMP_HW_SOCKET) && 362 (type2 == KMP_HW_THREAD || type2 == KMP_HW_CORE || 363 type2 == KMP_HW_SOCKET)) { 364 top_index1 = top_index2++; 365 continue; 366 } 367 bool radix1 = true; 368 bool all_same = true; 369 int id1 = hw_threads[0].ids[top_index1]; 370 int id2 = hw_threads[0].ids[top_index2]; 371 int pref1 = preference[type1]; 372 int pref2 = preference[type2]; 373 for (int hwidx = 1; hwidx < num_hw_threads; ++hwidx) { 374 if (hw_threads[hwidx].ids[top_index1] == id1 && 375 hw_threads[hwidx].ids[top_index2] != id2) { 376 radix1 = false; 377 break; 378 } 379 if (hw_threads[hwidx].ids[top_index2] != id2) 380 all_same = false; 381 id1 = hw_threads[hwidx].ids[top_index1]; 382 id2 = hw_threads[hwidx].ids[top_index2]; 383 } 384 if (radix1) { 385 // Select the layer to remove based on preference 386 kmp_hw_t remove_type, keep_type; 387 int remove_layer, remove_layer_ids; 388 if (pref1 > pref2) { 389 remove_type = type2; 390 remove_layer = remove_layer_ids = top_index2; 391 keep_type = type1; 392 } else { 393 remove_type = type1; 394 remove_layer = remove_layer_ids = top_index1; 395 keep_type = type2; 396 } 397 // If all the indexes for the second (deeper) layer are the same. 398 // e.g., all are zero, then make sure to keep the first layer's ids 399 if (all_same) 400 remove_layer_ids = top_index2; 401 // Remove radix one type by setting the equivalence, removing the id from 402 // the hw threads and removing the layer from types and depth 403 set_equivalent_type(remove_type, keep_type); 404 for (int idx = 0; idx < num_hw_threads; ++idx) { 405 kmp_hw_thread_t &hw_thread = hw_threads[idx]; 406 for (int d = remove_layer_ids; d < depth - 1; ++d) 407 hw_thread.ids[d] = hw_thread.ids[d + 1]; 408 } 409 for (int idx = remove_layer; idx < depth - 1; ++idx) 410 types[idx] = types[idx + 1]; 411 depth--; 412 } else { 413 top_index1 = top_index2++; 414 } 415 } 416 KMP_ASSERT(depth > 0); 417 } 418 419 void kmp_topology_t::_set_last_level_cache() { 420 if (get_equivalent_type(KMP_HW_L3) != KMP_HW_UNKNOWN) 421 set_equivalent_type(KMP_HW_LLC, KMP_HW_L3); 422 else if (get_equivalent_type(KMP_HW_L2) != KMP_HW_UNKNOWN) 423 set_equivalent_type(KMP_HW_LLC, KMP_HW_L2); 424 #if KMP_MIC_SUPPORTED 425 else if (__kmp_mic_type == mic3) { 426 if (get_equivalent_type(KMP_HW_L2) != KMP_HW_UNKNOWN) 427 set_equivalent_type(KMP_HW_LLC, KMP_HW_L2); 428 else if (get_equivalent_type(KMP_HW_TILE) != KMP_HW_UNKNOWN) 429 set_equivalent_type(KMP_HW_LLC, KMP_HW_TILE); 430 // L2/Tile wasn't detected so just say L1 431 else 432 set_equivalent_type(KMP_HW_LLC, KMP_HW_L1); 433 } 434 #endif 435 else if (get_equivalent_type(KMP_HW_L1) != KMP_HW_UNKNOWN) 436 set_equivalent_type(KMP_HW_LLC, KMP_HW_L1); 437 // Fallback is to set last level cache to socket or core 438 if (get_equivalent_type(KMP_HW_LLC) == KMP_HW_UNKNOWN) { 439 if (get_equivalent_type(KMP_HW_SOCKET) != KMP_HW_UNKNOWN) 440 set_equivalent_type(KMP_HW_LLC, KMP_HW_SOCKET); 441 else if (get_equivalent_type(KMP_HW_CORE) != KMP_HW_UNKNOWN) 442 set_equivalent_type(KMP_HW_LLC, KMP_HW_CORE); 443 } 444 KMP_ASSERT(get_equivalent_type(KMP_HW_LLC) != KMP_HW_UNKNOWN); 445 } 446 447 // Gather the count of each topology layer and the ratio 448 void kmp_topology_t::_gather_enumeration_information() { 449 int previous_id[KMP_HW_LAST]; 450 int max[KMP_HW_LAST]; 451 452 for (int i = 0; i < depth; ++i) { 453 previous_id[i] = kmp_hw_thread_t::UNKNOWN_ID; 454 max[i] = 0; 455 count[i] = 0; 456 ratio[i] = 0; 457 } 458 int core_level = get_level(KMP_HW_CORE); 459 for (int i = 0; i < num_hw_threads; ++i) { 460 kmp_hw_thread_t &hw_thread = hw_threads[i]; 461 for (int layer = 0; layer < depth; ++layer) { 462 int id = hw_thread.ids[layer]; 463 if (id != previous_id[layer]) { 464 // Add an additional increment to each count 465 for (int l = layer; l < depth; ++l) 466 count[l]++; 467 // Keep track of topology layer ratio statistics 468 max[layer]++; 469 for (int l = layer + 1; l < depth; ++l) { 470 if (max[l] > ratio[l]) 471 ratio[l] = max[l]; 472 max[l] = 1; 473 } 474 // Figure out the number of different core types 475 // and efficiencies for hybrid CPUs 476 if (__kmp_is_hybrid_cpu() && core_level >= 0 && layer <= core_level) { 477 if (hw_thread.attrs.is_core_eff_valid() && 478 hw_thread.attrs.core_eff >= num_core_efficiencies) { 479 // Because efficiencies can range from 0 to max efficiency - 1, 480 // the number of efficiencies is max efficiency + 1 481 num_core_efficiencies = hw_thread.attrs.core_eff + 1; 482 } 483 if (hw_thread.attrs.is_core_type_valid()) { 484 bool found = false; 485 for (int j = 0; j < num_core_types; ++j) { 486 if (hw_thread.attrs.get_core_type() == core_types[j]) { 487 found = true; 488 break; 489 } 490 } 491 if (!found) { 492 KMP_ASSERT(num_core_types < KMP_HW_MAX_NUM_CORE_TYPES); 493 core_types[num_core_types++] = hw_thread.attrs.get_core_type(); 494 } 495 } 496 } 497 break; 498 } 499 } 500 for (int layer = 0; layer < depth; ++layer) { 501 previous_id[layer] = hw_thread.ids[layer]; 502 } 503 } 504 for (int layer = 0; layer < depth; ++layer) { 505 if (max[layer] > ratio[layer]) 506 ratio[layer] = max[layer]; 507 } 508 } 509 510 int kmp_topology_t::_get_ncores_with_attr(const kmp_hw_attr_t &attr, 511 int above_level, 512 bool find_all) const { 513 int current, current_max; 514 int previous_id[KMP_HW_LAST]; 515 for (int i = 0; i < depth; ++i) 516 previous_id[i] = kmp_hw_thread_t::UNKNOWN_ID; 517 int core_level = get_level(KMP_HW_CORE); 518 if (find_all) 519 above_level = -1; 520 KMP_ASSERT(above_level < core_level); 521 current_max = 0; 522 current = 0; 523 for (int i = 0; i < num_hw_threads; ++i) { 524 kmp_hw_thread_t &hw_thread = hw_threads[i]; 525 if (!find_all && hw_thread.ids[above_level] != previous_id[above_level]) { 526 if (current > current_max) 527 current_max = current; 528 current = hw_thread.attrs.contains(attr); 529 } else { 530 for (int level = above_level + 1; level <= core_level; ++level) { 531 if (hw_thread.ids[level] != previous_id[level]) { 532 if (hw_thread.attrs.contains(attr)) 533 current++; 534 break; 535 } 536 } 537 } 538 for (int level = 0; level < depth; ++level) 539 previous_id[level] = hw_thread.ids[level]; 540 } 541 if (current > current_max) 542 current_max = current; 543 return current_max; 544 } 545 546 // Find out if the topology is uniform 547 void kmp_topology_t::_discover_uniformity() { 548 int num = 1; 549 for (int level = 0; level < depth; ++level) 550 num *= ratio[level]; 551 flags.uniform = (num == count[depth - 1]); 552 } 553 554 // Set all the sub_ids for each hardware thread 555 void kmp_topology_t::_set_sub_ids() { 556 int previous_id[KMP_HW_LAST]; 557 int sub_id[KMP_HW_LAST]; 558 559 for (int i = 0; i < depth; ++i) { 560 previous_id[i] = -1; 561 sub_id[i] = -1; 562 } 563 for (int i = 0; i < num_hw_threads; ++i) { 564 kmp_hw_thread_t &hw_thread = hw_threads[i]; 565 // Setup the sub_id 566 for (int j = 0; j < depth; ++j) { 567 if (hw_thread.ids[j] != previous_id[j]) { 568 sub_id[j]++; 569 for (int k = j + 1; k < depth; ++k) { 570 sub_id[k] = 0; 571 } 572 break; 573 } 574 } 575 // Set previous_id 576 for (int j = 0; j < depth; ++j) { 577 previous_id[j] = hw_thread.ids[j]; 578 } 579 // Set the sub_ids field 580 for (int j = 0; j < depth; ++j) { 581 hw_thread.sub_ids[j] = sub_id[j]; 582 } 583 } 584 } 585 586 void kmp_topology_t::_set_globals() { 587 // Set nCoresPerPkg, nPackages, __kmp_nThreadsPerCore, __kmp_ncores 588 int core_level, thread_level, package_level; 589 package_level = get_level(KMP_HW_SOCKET); 590 #if KMP_GROUP_AFFINITY 591 if (package_level == -1) 592 package_level = get_level(KMP_HW_PROC_GROUP); 593 #endif 594 core_level = get_level(KMP_HW_CORE); 595 thread_level = get_level(KMP_HW_THREAD); 596 597 KMP_ASSERT(core_level != -1); 598 KMP_ASSERT(thread_level != -1); 599 600 __kmp_nThreadsPerCore = calculate_ratio(thread_level, core_level); 601 if (package_level != -1) { 602 nCoresPerPkg = calculate_ratio(core_level, package_level); 603 nPackages = get_count(package_level); 604 } else { 605 // assume one socket 606 nCoresPerPkg = get_count(core_level); 607 nPackages = 1; 608 } 609 #ifndef KMP_DFLT_NTH_CORES 610 __kmp_ncores = get_count(core_level); 611 #endif 612 } 613 614 kmp_topology_t *kmp_topology_t::allocate(int nproc, int ndepth, 615 const kmp_hw_t *types) { 616 kmp_topology_t *retval; 617 // Allocate all data in one large allocation 618 size_t size = sizeof(kmp_topology_t) + sizeof(kmp_hw_thread_t) * nproc + 619 sizeof(int) * (size_t)KMP_HW_LAST * 3; 620 char *bytes = (char *)__kmp_allocate(size); 621 retval = (kmp_topology_t *)bytes; 622 if (nproc > 0) { 623 retval->hw_threads = (kmp_hw_thread_t *)(bytes + sizeof(kmp_topology_t)); 624 } else { 625 retval->hw_threads = nullptr; 626 } 627 retval->num_hw_threads = nproc; 628 retval->depth = ndepth; 629 int *arr = 630 (int *)(bytes + sizeof(kmp_topology_t) + sizeof(kmp_hw_thread_t) * nproc); 631 retval->types = (kmp_hw_t *)arr; 632 retval->ratio = arr + (size_t)KMP_HW_LAST; 633 retval->count = arr + 2 * (size_t)KMP_HW_LAST; 634 retval->num_core_efficiencies = 0; 635 retval->num_core_types = 0; 636 retval->compact = 0; 637 for (int i = 0; i < KMP_HW_MAX_NUM_CORE_TYPES; ++i) 638 retval->core_types[i] = KMP_HW_CORE_TYPE_UNKNOWN; 639 KMP_FOREACH_HW_TYPE(type) { retval->equivalent[type] = KMP_HW_UNKNOWN; } 640 for (int i = 0; i < ndepth; ++i) { 641 retval->types[i] = types[i]; 642 retval->equivalent[types[i]] = types[i]; 643 } 644 return retval; 645 } 646 647 void kmp_topology_t::deallocate(kmp_topology_t *topology) { 648 if (topology) 649 __kmp_free(topology); 650 } 651 652 bool kmp_topology_t::check_ids() const { 653 // Assume ids have been sorted 654 if (num_hw_threads == 0) 655 return true; 656 for (int i = 1; i < num_hw_threads; ++i) { 657 kmp_hw_thread_t ¤t_thread = hw_threads[i]; 658 kmp_hw_thread_t &previous_thread = hw_threads[i - 1]; 659 bool unique = false; 660 for (int j = 0; j < depth; ++j) { 661 if (previous_thread.ids[j] != current_thread.ids[j]) { 662 unique = true; 663 break; 664 } 665 } 666 if (unique) 667 continue; 668 return false; 669 } 670 return true; 671 } 672 673 void kmp_topology_t::dump() const { 674 printf("***********************\n"); 675 printf("*** __kmp_topology: ***\n"); 676 printf("***********************\n"); 677 printf("* depth: %d\n", depth); 678 679 printf("* types: "); 680 for (int i = 0; i < depth; ++i) 681 printf("%15s ", __kmp_hw_get_keyword(types[i])); 682 printf("\n"); 683 684 printf("* ratio: "); 685 for (int i = 0; i < depth; ++i) { 686 printf("%15d ", ratio[i]); 687 } 688 printf("\n"); 689 690 printf("* count: "); 691 for (int i = 0; i < depth; ++i) { 692 printf("%15d ", count[i]); 693 } 694 printf("\n"); 695 696 printf("* num_core_eff: %d\n", num_core_efficiencies); 697 printf("* num_core_types: %d\n", num_core_types); 698 printf("* core_types: "); 699 for (int i = 0; i < num_core_types; ++i) 700 printf("%3d ", core_types[i]); 701 printf("\n"); 702 703 printf("* equivalent map:\n"); 704 KMP_FOREACH_HW_TYPE(i) { 705 const char *key = __kmp_hw_get_keyword(i); 706 const char *value = __kmp_hw_get_keyword(equivalent[i]); 707 printf("%-15s -> %-15s\n", key, value); 708 } 709 710 printf("* uniform: %s\n", (is_uniform() ? "Yes" : "No")); 711 712 printf("* num_hw_threads: %d\n", num_hw_threads); 713 printf("* hw_threads:\n"); 714 for (int i = 0; i < num_hw_threads; ++i) { 715 hw_threads[i].print(); 716 } 717 printf("***********************\n"); 718 } 719 720 void kmp_topology_t::print(const char *env_var) const { 721 kmp_str_buf_t buf; 722 int print_types_depth; 723 __kmp_str_buf_init(&buf); 724 kmp_hw_t print_types[KMP_HW_LAST + 2]; 725 726 // Num Available Threads 727 if (num_hw_threads) { 728 KMP_INFORM(AvailableOSProc, env_var, num_hw_threads); 729 } else { 730 KMP_INFORM(AvailableOSProc, env_var, __kmp_xproc); 731 } 732 733 // Uniform or not 734 if (is_uniform()) { 735 KMP_INFORM(Uniform, env_var); 736 } else { 737 KMP_INFORM(NonUniform, env_var); 738 } 739 740 // Equivalent types 741 KMP_FOREACH_HW_TYPE(type) { 742 kmp_hw_t eq_type = equivalent[type]; 743 if (eq_type != KMP_HW_UNKNOWN && eq_type != type) { 744 KMP_INFORM(AffEqualTopologyTypes, env_var, 745 __kmp_hw_get_catalog_string(type), 746 __kmp_hw_get_catalog_string(eq_type)); 747 } 748 } 749 750 // Quick topology 751 KMP_ASSERT(depth > 0 && depth <= (int)KMP_HW_LAST); 752 // Create a print types array that always guarantees printing 753 // the core and thread level 754 print_types_depth = 0; 755 for (int level = 0; level < depth; ++level) 756 print_types[print_types_depth++] = types[level]; 757 if (equivalent[KMP_HW_CORE] != KMP_HW_CORE) { 758 // Force in the core level for quick topology 759 if (print_types[print_types_depth - 1] == KMP_HW_THREAD) { 760 // Force core before thread e.g., 1 socket X 2 threads/socket 761 // becomes 1 socket X 1 core/socket X 2 threads/socket 762 print_types[print_types_depth - 1] = KMP_HW_CORE; 763 print_types[print_types_depth++] = KMP_HW_THREAD; 764 } else { 765 print_types[print_types_depth++] = KMP_HW_CORE; 766 } 767 } 768 // Always put threads at very end of quick topology 769 if (equivalent[KMP_HW_THREAD] != KMP_HW_THREAD) 770 print_types[print_types_depth++] = KMP_HW_THREAD; 771 772 __kmp_str_buf_clear(&buf); 773 kmp_hw_t numerator_type; 774 kmp_hw_t denominator_type = KMP_HW_UNKNOWN; 775 int core_level = get_level(KMP_HW_CORE); 776 int ncores = get_count(core_level); 777 778 for (int plevel = 0, level = 0; plevel < print_types_depth; ++plevel) { 779 int c; 780 bool plural; 781 numerator_type = print_types[plevel]; 782 KMP_ASSERT_VALID_HW_TYPE(numerator_type); 783 if (equivalent[numerator_type] != numerator_type) 784 c = 1; 785 else 786 c = get_ratio(level++); 787 plural = (c > 1); 788 if (plevel == 0) { 789 __kmp_str_buf_print(&buf, "%d %s", c, 790 __kmp_hw_get_catalog_string(numerator_type, plural)); 791 } else { 792 __kmp_str_buf_print(&buf, " x %d %s/%s", c, 793 __kmp_hw_get_catalog_string(numerator_type, plural), 794 __kmp_hw_get_catalog_string(denominator_type)); 795 } 796 denominator_type = numerator_type; 797 } 798 KMP_INFORM(TopologyGeneric, env_var, buf.str, ncores); 799 800 // Hybrid topology information 801 if (__kmp_is_hybrid_cpu()) { 802 for (int i = 0; i < num_core_types; ++i) { 803 kmp_hw_core_type_t core_type = core_types[i]; 804 kmp_hw_attr_t attr; 805 attr.clear(); 806 attr.set_core_type(core_type); 807 int ncores = get_ncores_with_attr(attr); 808 if (ncores > 0) { 809 KMP_INFORM(TopologyHybrid, env_var, ncores, 810 __kmp_hw_get_core_type_string(core_type)); 811 KMP_ASSERT(num_core_efficiencies <= KMP_HW_MAX_NUM_CORE_EFFS) 812 for (int eff = 0; eff < num_core_efficiencies; ++eff) { 813 attr.set_core_eff(eff); 814 int ncores_with_eff = get_ncores_with_attr(attr); 815 if (ncores_with_eff > 0) { 816 KMP_INFORM(TopologyHybridCoreEff, env_var, ncores_with_eff, eff); 817 } 818 } 819 } 820 } 821 } 822 823 if (num_hw_threads <= 0) { 824 __kmp_str_buf_free(&buf); 825 return; 826 } 827 828 // Full OS proc to hardware thread map 829 KMP_INFORM(OSProcToPhysicalThreadMap, env_var); 830 for (int i = 0; i < num_hw_threads; i++) { 831 __kmp_str_buf_clear(&buf); 832 for (int level = 0; level < depth; ++level) { 833 kmp_hw_t type = types[level]; 834 __kmp_str_buf_print(&buf, "%s ", __kmp_hw_get_catalog_string(type)); 835 __kmp_str_buf_print(&buf, "%d ", hw_threads[i].ids[level]); 836 } 837 if (__kmp_is_hybrid_cpu()) 838 __kmp_str_buf_print( 839 &buf, "(%s)", 840 __kmp_hw_get_core_type_string(hw_threads[i].attrs.get_core_type())); 841 KMP_INFORM(OSProcMapToPack, env_var, hw_threads[i].os_id, buf.str); 842 } 843 844 __kmp_str_buf_free(&buf); 845 } 846 847 #if KMP_AFFINITY_SUPPORTED 848 void kmp_topology_t::set_granularity(kmp_affinity_t &affinity) const { 849 const char *env_var = __kmp_get_affinity_env_var(affinity); 850 // If requested hybrid CPU attributes for granularity (either OMP_PLACES or 851 // KMP_AFFINITY), but none exist, then reset granularity and have below method 852 // select a granularity and warn user. 853 if (!__kmp_is_hybrid_cpu()) { 854 if (affinity.core_attr_gran.valid) { 855 // OMP_PLACES with cores:<attribute> but non-hybrid arch, use cores 856 // instead 857 KMP_AFF_WARNING( 858 affinity, AffIgnoringNonHybrid, env_var, 859 __kmp_hw_get_catalog_string(KMP_HW_CORE, /*plural=*/true)); 860 affinity.gran = KMP_HW_CORE; 861 affinity.gran_levels = -1; 862 affinity.core_attr_gran = KMP_AFFINITY_ATTRS_UNKNOWN; 863 affinity.flags.core_types_gran = affinity.flags.core_effs_gran = 0; 864 } else if (affinity.flags.core_types_gran || 865 affinity.flags.core_effs_gran) { 866 // OMP_PLACES=core_types|core_effs but non-hybrid, use cores instead 867 if (affinity.flags.omp_places) { 868 KMP_AFF_WARNING( 869 affinity, AffIgnoringNonHybrid, env_var, 870 __kmp_hw_get_catalog_string(KMP_HW_CORE, /*plural=*/true)); 871 } else { 872 // KMP_AFFINITY=granularity=core_type|core_eff,... 873 KMP_AFF_WARNING(affinity, AffGranularityBad, env_var, 874 "Intel(R) Hybrid Technology core attribute", 875 __kmp_hw_get_catalog_string(KMP_HW_CORE)); 876 } 877 affinity.gran = KMP_HW_CORE; 878 affinity.gran_levels = -1; 879 affinity.core_attr_gran = KMP_AFFINITY_ATTRS_UNKNOWN; 880 affinity.flags.core_types_gran = affinity.flags.core_effs_gran = 0; 881 } 882 } 883 // Set the number of affinity granularity levels 884 if (affinity.gran_levels < 0) { 885 kmp_hw_t gran_type = get_equivalent_type(affinity.gran); 886 // Check if user's granularity request is valid 887 if (gran_type == KMP_HW_UNKNOWN) { 888 // First try core, then thread, then package 889 kmp_hw_t gran_types[3] = {KMP_HW_CORE, KMP_HW_THREAD, KMP_HW_SOCKET}; 890 for (auto g : gran_types) { 891 if (get_equivalent_type(g) != KMP_HW_UNKNOWN) { 892 gran_type = g; 893 break; 894 } 895 } 896 KMP_ASSERT(gran_type != KMP_HW_UNKNOWN); 897 // Warn user what granularity setting will be used instead 898 KMP_AFF_WARNING(affinity, AffGranularityBad, env_var, 899 __kmp_hw_get_catalog_string(affinity.gran), 900 __kmp_hw_get_catalog_string(gran_type)); 901 affinity.gran = gran_type; 902 } 903 #if KMP_GROUP_AFFINITY 904 // If more than one processor group exists, and the level of 905 // granularity specified by the user is too coarse, then the 906 // granularity must be adjusted "down" to processor group affinity 907 // because threads can only exist within one processor group. 908 // For example, if a user sets granularity=socket and there are two 909 // processor groups that cover a socket, then the runtime must 910 // restrict the granularity down to the processor group level. 911 if (__kmp_num_proc_groups > 1) { 912 int gran_depth = get_level(gran_type); 913 int proc_group_depth = get_level(KMP_HW_PROC_GROUP); 914 if (gran_depth >= 0 && proc_group_depth >= 0 && 915 gran_depth < proc_group_depth) { 916 KMP_AFF_WARNING(affinity, AffGranTooCoarseProcGroup, env_var, 917 __kmp_hw_get_catalog_string(affinity.gran)); 918 affinity.gran = gran_type = KMP_HW_PROC_GROUP; 919 } 920 } 921 #endif 922 affinity.gran_levels = 0; 923 for (int i = depth - 1; i >= 0 && get_type(i) != gran_type; --i) 924 affinity.gran_levels++; 925 } 926 } 927 #endif 928 929 void kmp_topology_t::canonicalize() { 930 #if KMP_GROUP_AFFINITY 931 _insert_windows_proc_groups(); 932 #endif 933 _remove_radix1_layers(); 934 _gather_enumeration_information(); 935 _discover_uniformity(); 936 _set_sub_ids(); 937 _set_globals(); 938 _set_last_level_cache(); 939 940 #if KMP_MIC_SUPPORTED 941 // Manually Add L2 = Tile equivalence 942 if (__kmp_mic_type == mic3) { 943 if (get_level(KMP_HW_L2) != -1) 944 set_equivalent_type(KMP_HW_TILE, KMP_HW_L2); 945 else if (get_level(KMP_HW_TILE) != -1) 946 set_equivalent_type(KMP_HW_L2, KMP_HW_TILE); 947 } 948 #endif 949 950 // Perform post canonicalization checking 951 KMP_ASSERT(depth > 0); 952 for (int level = 0; level < depth; ++level) { 953 // All counts, ratios, and types must be valid 954 KMP_ASSERT(count[level] > 0 && ratio[level] > 0); 955 KMP_ASSERT_VALID_HW_TYPE(types[level]); 956 // Detected types must point to themselves 957 KMP_ASSERT(equivalent[types[level]] == types[level]); 958 } 959 } 960 961 // Canonicalize an explicit packages X cores/pkg X threads/core topology 962 void kmp_topology_t::canonicalize(int npackages, int ncores_per_pkg, 963 int nthreads_per_core, int ncores) { 964 int ndepth = 3; 965 depth = ndepth; 966 KMP_FOREACH_HW_TYPE(i) { equivalent[i] = KMP_HW_UNKNOWN; } 967 for (int level = 0; level < depth; ++level) { 968 count[level] = 0; 969 ratio[level] = 0; 970 } 971 count[0] = npackages; 972 count[1] = ncores; 973 count[2] = __kmp_xproc; 974 ratio[0] = npackages; 975 ratio[1] = ncores_per_pkg; 976 ratio[2] = nthreads_per_core; 977 equivalent[KMP_HW_SOCKET] = KMP_HW_SOCKET; 978 equivalent[KMP_HW_CORE] = KMP_HW_CORE; 979 equivalent[KMP_HW_THREAD] = KMP_HW_THREAD; 980 types[0] = KMP_HW_SOCKET; 981 types[1] = KMP_HW_CORE; 982 types[2] = KMP_HW_THREAD; 983 //__kmp_avail_proc = __kmp_xproc; 984 _discover_uniformity(); 985 } 986 987 // Represents running sub IDs for a single core attribute where 988 // attribute values have SIZE possibilities. 989 template <size_t SIZE, typename IndexFunc> struct kmp_sub_ids_t { 990 int last_level; // last level in topology to consider for sub_ids 991 int sub_id[SIZE]; // The sub ID for a given attribute value 992 int prev_sub_id[KMP_HW_LAST]; 993 IndexFunc indexer; 994 995 public: 996 kmp_sub_ids_t(int last_level) : last_level(last_level) { 997 KMP_ASSERT(last_level < KMP_HW_LAST); 998 for (size_t i = 0; i < SIZE; ++i) 999 sub_id[i] = -1; 1000 for (size_t i = 0; i < KMP_HW_LAST; ++i) 1001 prev_sub_id[i] = -1; 1002 } 1003 void update(const kmp_hw_thread_t &hw_thread) { 1004 int idx = indexer(hw_thread); 1005 KMP_ASSERT(idx < (int)SIZE); 1006 for (int level = 0; level <= last_level; ++level) { 1007 if (hw_thread.sub_ids[level] != prev_sub_id[level]) { 1008 if (level < last_level) 1009 sub_id[idx] = -1; 1010 sub_id[idx]++; 1011 break; 1012 } 1013 } 1014 for (int level = 0; level <= last_level; ++level) 1015 prev_sub_id[level] = hw_thread.sub_ids[level]; 1016 } 1017 int get_sub_id(const kmp_hw_thread_t &hw_thread) const { 1018 return sub_id[indexer(hw_thread)]; 1019 } 1020 }; 1021 1022 #if KMP_AFFINITY_SUPPORTED 1023 static kmp_str_buf_t * 1024 __kmp_hw_get_catalog_core_string(const kmp_hw_attr_t &attr, kmp_str_buf_t *buf, 1025 bool plural) { 1026 __kmp_str_buf_init(buf); 1027 if (attr.is_core_type_valid()) 1028 __kmp_str_buf_print(buf, "%s %s", 1029 __kmp_hw_get_core_type_string(attr.get_core_type()), 1030 __kmp_hw_get_catalog_string(KMP_HW_CORE, plural)); 1031 else 1032 __kmp_str_buf_print(buf, "%s eff=%d", 1033 __kmp_hw_get_catalog_string(KMP_HW_CORE, plural), 1034 attr.get_core_eff()); 1035 return buf; 1036 } 1037 1038 bool kmp_topology_t::restrict_to_mask(const kmp_affin_mask_t *mask) { 1039 // Apply the filter 1040 bool affected; 1041 int new_index = 0; 1042 for (int i = 0; i < num_hw_threads; ++i) { 1043 int os_id = hw_threads[i].os_id; 1044 if (KMP_CPU_ISSET(os_id, mask)) { 1045 if (i != new_index) 1046 hw_threads[new_index] = hw_threads[i]; 1047 new_index++; 1048 } else { 1049 KMP_CPU_CLR(os_id, __kmp_affin_fullMask); 1050 __kmp_avail_proc--; 1051 } 1052 } 1053 1054 KMP_DEBUG_ASSERT(new_index <= num_hw_threads); 1055 affected = (num_hw_threads != new_index); 1056 num_hw_threads = new_index; 1057 1058 // Post hardware subset canonicalization 1059 if (affected) { 1060 _gather_enumeration_information(); 1061 _discover_uniformity(); 1062 _set_globals(); 1063 _set_last_level_cache(); 1064 #if KMP_OS_WINDOWS 1065 // Copy filtered full mask if topology has single processor group 1066 if (__kmp_num_proc_groups <= 1) 1067 #endif 1068 __kmp_affin_origMask->copy(__kmp_affin_fullMask); 1069 } 1070 return affected; 1071 } 1072 1073 // Apply the KMP_HW_SUBSET envirable to the topology 1074 // Returns true if KMP_HW_SUBSET filtered any processors 1075 // otherwise, returns false 1076 bool kmp_topology_t::filter_hw_subset() { 1077 // If KMP_HW_SUBSET wasn't requested, then do nothing. 1078 if (!__kmp_hw_subset) 1079 return false; 1080 1081 // First, sort the KMP_HW_SUBSET items by the machine topology 1082 __kmp_hw_subset->sort(); 1083 1084 // Check to see if KMP_HW_SUBSET is a valid subset of the detected topology 1085 bool using_core_types = false; 1086 bool using_core_effs = false; 1087 int hw_subset_depth = __kmp_hw_subset->get_depth(); 1088 kmp_hw_t specified[KMP_HW_LAST]; 1089 int *topology_levels = (int *)KMP_ALLOCA(sizeof(int) * hw_subset_depth); 1090 KMP_ASSERT(hw_subset_depth > 0); 1091 KMP_FOREACH_HW_TYPE(i) { specified[i] = KMP_HW_UNKNOWN; } 1092 int core_level = get_level(KMP_HW_CORE); 1093 for (int i = 0; i < hw_subset_depth; ++i) { 1094 int max_count; 1095 const kmp_hw_subset_t::item_t &item = __kmp_hw_subset->at(i); 1096 int num = item.num[0]; 1097 int offset = item.offset[0]; 1098 kmp_hw_t type = item.type; 1099 kmp_hw_t equivalent_type = equivalent[type]; 1100 int level = get_level(type); 1101 topology_levels[i] = level; 1102 1103 // Check to see if current layer is in detected machine topology 1104 if (equivalent_type != KMP_HW_UNKNOWN) { 1105 __kmp_hw_subset->at(i).type = equivalent_type; 1106 } else { 1107 KMP_AFF_WARNING(__kmp_affinity, AffHWSubsetNotExistGeneric, 1108 __kmp_hw_get_catalog_string(type)); 1109 return false; 1110 } 1111 1112 // Check to see if current layer has already been 1113 // specified either directly or through an equivalent type 1114 if (specified[equivalent_type] != KMP_HW_UNKNOWN) { 1115 KMP_AFF_WARNING(__kmp_affinity, AffHWSubsetEqvLayers, 1116 __kmp_hw_get_catalog_string(type), 1117 __kmp_hw_get_catalog_string(specified[equivalent_type])); 1118 return false; 1119 } 1120 specified[equivalent_type] = type; 1121 1122 // Check to see if each layer's num & offset parameters are valid 1123 max_count = get_ratio(level); 1124 if (max_count < 0 || 1125 (num != kmp_hw_subset_t::USE_ALL && num + offset > max_count)) { 1126 bool plural = (num > 1); 1127 KMP_AFF_WARNING(__kmp_affinity, AffHWSubsetManyGeneric, 1128 __kmp_hw_get_catalog_string(type, plural)); 1129 return false; 1130 } 1131 1132 // Check to see if core attributes are consistent 1133 if (core_level == level) { 1134 // Determine which core attributes are specified 1135 for (int j = 0; j < item.num_attrs; ++j) { 1136 if (item.attr[j].is_core_type_valid()) 1137 using_core_types = true; 1138 if (item.attr[j].is_core_eff_valid()) 1139 using_core_effs = true; 1140 } 1141 1142 // Check if using a single core attribute on non-hybrid arch. 1143 // Do not ignore all of KMP_HW_SUBSET, just ignore the attribute. 1144 // 1145 // Check if using multiple core attributes on non-hyrbid arch. 1146 // Ignore all of KMP_HW_SUBSET if this is the case. 1147 if ((using_core_effs || using_core_types) && !__kmp_is_hybrid_cpu()) { 1148 if (item.num_attrs == 1) { 1149 if (using_core_effs) { 1150 KMP_AFF_WARNING(__kmp_affinity, AffHWSubsetIgnoringAttr, 1151 "efficiency"); 1152 } else { 1153 KMP_AFF_WARNING(__kmp_affinity, AffHWSubsetIgnoringAttr, 1154 "core_type"); 1155 } 1156 using_core_effs = false; 1157 using_core_types = false; 1158 } else { 1159 KMP_AFF_WARNING(__kmp_affinity, AffHWSubsetAttrsNonHybrid); 1160 return false; 1161 } 1162 } 1163 1164 // Check if using both core types and core efficiencies together 1165 if (using_core_types && using_core_effs) { 1166 KMP_AFF_WARNING(__kmp_affinity, AffHWSubsetIncompat, "core_type", 1167 "efficiency"); 1168 return false; 1169 } 1170 1171 // Check that core efficiency values are valid 1172 if (using_core_effs) { 1173 for (int j = 0; j < item.num_attrs; ++j) { 1174 if (item.attr[j].is_core_eff_valid()) { 1175 int core_eff = item.attr[j].get_core_eff(); 1176 if (core_eff < 0 || core_eff >= num_core_efficiencies) { 1177 kmp_str_buf_t buf; 1178 __kmp_str_buf_init(&buf); 1179 __kmp_str_buf_print(&buf, "%d", item.attr[j].get_core_eff()); 1180 __kmp_msg(kmp_ms_warning, 1181 KMP_MSG(AffHWSubsetAttrInvalid, "efficiency", buf.str), 1182 KMP_HNT(ValidValuesRange, 0, num_core_efficiencies - 1), 1183 __kmp_msg_null); 1184 __kmp_str_buf_free(&buf); 1185 return false; 1186 } 1187 } 1188 } 1189 } 1190 1191 // Check that the number of requested cores with attributes is valid 1192 if (using_core_types || using_core_effs) { 1193 for (int j = 0; j < item.num_attrs; ++j) { 1194 int num = item.num[j]; 1195 int offset = item.offset[j]; 1196 int level_above = core_level - 1; 1197 if (level_above >= 0) { 1198 max_count = get_ncores_with_attr_per(item.attr[j], level_above); 1199 if (max_count <= 0 || 1200 (num != kmp_hw_subset_t::USE_ALL && num + offset > max_count)) { 1201 kmp_str_buf_t buf; 1202 __kmp_hw_get_catalog_core_string(item.attr[j], &buf, num > 0); 1203 KMP_AFF_WARNING(__kmp_affinity, AffHWSubsetManyGeneric, buf.str); 1204 __kmp_str_buf_free(&buf); 1205 return false; 1206 } 1207 } 1208 } 1209 } 1210 1211 if ((using_core_types || using_core_effs) && item.num_attrs > 1) { 1212 for (int j = 0; j < item.num_attrs; ++j) { 1213 // Ambiguous use of specific core attribute + generic core 1214 // e.g., 4c & 3c:intel_core or 4c & 3c:eff1 1215 if (!item.attr[j]) { 1216 kmp_hw_attr_t other_attr; 1217 for (int k = 0; k < item.num_attrs; ++k) { 1218 if (item.attr[k] != item.attr[j]) { 1219 other_attr = item.attr[k]; 1220 break; 1221 } 1222 } 1223 kmp_str_buf_t buf; 1224 __kmp_hw_get_catalog_core_string(other_attr, &buf, item.num[j] > 0); 1225 KMP_AFF_WARNING(__kmp_affinity, AffHWSubsetIncompat, 1226 __kmp_hw_get_catalog_string(KMP_HW_CORE), buf.str); 1227 __kmp_str_buf_free(&buf); 1228 return false; 1229 } 1230 // Allow specifying a specific core type or core eff exactly once 1231 for (int k = 0; k < j; ++k) { 1232 if (!item.attr[j] || !item.attr[k]) 1233 continue; 1234 if (item.attr[k] == item.attr[j]) { 1235 kmp_str_buf_t buf; 1236 __kmp_hw_get_catalog_core_string(item.attr[j], &buf, 1237 item.num[j] > 0); 1238 KMP_AFF_WARNING(__kmp_affinity, AffHWSubsetAttrRepeat, buf.str); 1239 __kmp_str_buf_free(&buf); 1240 return false; 1241 } 1242 } 1243 } 1244 } 1245 } 1246 } 1247 1248 struct core_type_indexer { 1249 int operator()(const kmp_hw_thread_t &t) const { 1250 switch (t.attrs.get_core_type()) { 1251 case KMP_HW_CORE_TYPE_UNKNOWN: 1252 case KMP_HW_MAX_NUM_CORE_TYPES: 1253 return 0; 1254 #if KMP_ARCH_X86 || KMP_ARCH_X86_64 1255 case KMP_HW_CORE_TYPE_ATOM: 1256 return 1; 1257 case KMP_HW_CORE_TYPE_CORE: 1258 return 2; 1259 #endif 1260 } 1261 KMP_ASSERT2(false, "Unhandled kmp_hw_thread_t enumeration"); 1262 KMP_BUILTIN_UNREACHABLE; 1263 } 1264 }; 1265 struct core_eff_indexer { 1266 int operator()(const kmp_hw_thread_t &t) const { 1267 return t.attrs.get_core_eff(); 1268 } 1269 }; 1270 1271 kmp_sub_ids_t<KMP_HW_MAX_NUM_CORE_TYPES, core_type_indexer> core_type_sub_ids( 1272 core_level); 1273 kmp_sub_ids_t<KMP_HW_MAX_NUM_CORE_EFFS, core_eff_indexer> core_eff_sub_ids( 1274 core_level); 1275 1276 // Determine which hardware threads should be filtered. 1277 int num_filtered = 0; 1278 kmp_affin_mask_t *filtered_mask; 1279 KMP_CPU_ALLOC(filtered_mask); 1280 KMP_CPU_COPY(filtered_mask, __kmp_affin_fullMask); 1281 for (int i = 0; i < num_hw_threads; ++i) { 1282 kmp_hw_thread_t &hw_thread = hw_threads[i]; 1283 // Update type_sub_id 1284 if (using_core_types) 1285 core_type_sub_ids.update(hw_thread); 1286 if (using_core_effs) 1287 core_eff_sub_ids.update(hw_thread); 1288 1289 // Check to see if this hardware thread should be filtered 1290 bool should_be_filtered = false; 1291 for (int hw_subset_index = 0; hw_subset_index < hw_subset_depth; 1292 ++hw_subset_index) { 1293 const auto &hw_subset_item = __kmp_hw_subset->at(hw_subset_index); 1294 int level = topology_levels[hw_subset_index]; 1295 if (level == -1) 1296 continue; 1297 if ((using_core_effs || using_core_types) && level == core_level) { 1298 // Look for the core attribute in KMP_HW_SUBSET which corresponds 1299 // to this hardware thread's core attribute. Use this num,offset plus 1300 // the running sub_id for the particular core attribute of this hardware 1301 // thread to determine if the hardware thread should be filtered or not. 1302 int attr_idx; 1303 kmp_hw_core_type_t core_type = hw_thread.attrs.get_core_type(); 1304 int core_eff = hw_thread.attrs.get_core_eff(); 1305 for (attr_idx = 0; attr_idx < hw_subset_item.num_attrs; ++attr_idx) { 1306 if (using_core_types && 1307 hw_subset_item.attr[attr_idx].get_core_type() == core_type) 1308 break; 1309 if (using_core_effs && 1310 hw_subset_item.attr[attr_idx].get_core_eff() == core_eff) 1311 break; 1312 } 1313 // This core attribute isn't in the KMP_HW_SUBSET so always filter it. 1314 if (attr_idx == hw_subset_item.num_attrs) { 1315 should_be_filtered = true; 1316 break; 1317 } 1318 int sub_id; 1319 int num = hw_subset_item.num[attr_idx]; 1320 int offset = hw_subset_item.offset[attr_idx]; 1321 if (using_core_types) 1322 sub_id = core_type_sub_ids.get_sub_id(hw_thread); 1323 else 1324 sub_id = core_eff_sub_ids.get_sub_id(hw_thread); 1325 if (sub_id < offset || 1326 (num != kmp_hw_subset_t::USE_ALL && sub_id >= offset + num)) { 1327 should_be_filtered = true; 1328 break; 1329 } 1330 } else { 1331 int num = hw_subset_item.num[0]; 1332 int offset = hw_subset_item.offset[0]; 1333 if (hw_thread.sub_ids[level] < offset || 1334 (num != kmp_hw_subset_t::USE_ALL && 1335 hw_thread.sub_ids[level] >= offset + num)) { 1336 should_be_filtered = true; 1337 break; 1338 } 1339 } 1340 } 1341 // Collect filtering information 1342 if (should_be_filtered) { 1343 KMP_CPU_CLR(hw_thread.os_id, filtered_mask); 1344 num_filtered++; 1345 } 1346 } 1347 1348 // One last check that we shouldn't allow filtering entire machine 1349 if (num_filtered == num_hw_threads) { 1350 KMP_AFF_WARNING(__kmp_affinity, AffHWSubsetAllFiltered); 1351 return false; 1352 } 1353 1354 // Apply the filter 1355 restrict_to_mask(filtered_mask); 1356 return true; 1357 } 1358 1359 bool kmp_topology_t::is_close(int hwt1, int hwt2, 1360 const kmp_affinity_t &stgs) const { 1361 int hw_level = stgs.gran_levels; 1362 if (hw_level >= depth) 1363 return true; 1364 bool retval = true; 1365 const kmp_hw_thread_t &t1 = hw_threads[hwt1]; 1366 const kmp_hw_thread_t &t2 = hw_threads[hwt2]; 1367 if (stgs.flags.core_types_gran) 1368 return t1.attrs.get_core_type() == t2.attrs.get_core_type(); 1369 if (stgs.flags.core_effs_gran) 1370 return t1.attrs.get_core_eff() == t2.attrs.get_core_eff(); 1371 for (int i = 0; i < (depth - hw_level); ++i) { 1372 if (t1.ids[i] != t2.ids[i]) 1373 return false; 1374 } 1375 return retval; 1376 } 1377 1378 //////////////////////////////////////////////////////////////////////////////// 1379 1380 bool KMPAffinity::picked_api = false; 1381 1382 void *KMPAffinity::Mask::operator new(size_t n) { return __kmp_allocate(n); } 1383 void *KMPAffinity::Mask::operator new[](size_t n) { return __kmp_allocate(n); } 1384 void KMPAffinity::Mask::operator delete(void *p) { __kmp_free(p); } 1385 void KMPAffinity::Mask::operator delete[](void *p) { __kmp_free(p); } 1386 void *KMPAffinity::operator new(size_t n) { return __kmp_allocate(n); } 1387 void KMPAffinity::operator delete(void *p) { __kmp_free(p); } 1388 1389 void KMPAffinity::pick_api() { 1390 KMPAffinity *affinity_dispatch; 1391 if (picked_api) 1392 return; 1393 #if KMP_USE_HWLOC 1394 // Only use Hwloc if affinity isn't explicitly disabled and 1395 // user requests Hwloc topology method 1396 if (__kmp_affinity_top_method == affinity_top_method_hwloc && 1397 __kmp_affinity.type != affinity_disabled) { 1398 affinity_dispatch = new KMPHwlocAffinity(); 1399 } else 1400 #endif 1401 { 1402 affinity_dispatch = new KMPNativeAffinity(); 1403 } 1404 __kmp_affinity_dispatch = affinity_dispatch; 1405 picked_api = true; 1406 } 1407 1408 void KMPAffinity::destroy_api() { 1409 if (__kmp_affinity_dispatch != NULL) { 1410 delete __kmp_affinity_dispatch; 1411 __kmp_affinity_dispatch = NULL; 1412 picked_api = false; 1413 } 1414 } 1415 1416 #define KMP_ADVANCE_SCAN(scan) \ 1417 while (*scan != '\0') { \ 1418 scan++; \ 1419 } 1420 1421 // Print the affinity mask to the character array in a pretty format. 1422 // The format is a comma separated list of non-negative integers or integer 1423 // ranges: e.g., 1,2,3-5,7,9-15 1424 // The format can also be the string "{<empty>}" if no bits are set in mask 1425 char *__kmp_affinity_print_mask(char *buf, int buf_len, 1426 kmp_affin_mask_t *mask) { 1427 int start = 0, finish = 0, previous = 0; 1428 bool first_range; 1429 KMP_ASSERT(buf); 1430 KMP_ASSERT(buf_len >= 40); 1431 KMP_ASSERT(mask); 1432 char *scan = buf; 1433 char *end = buf + buf_len - 1; 1434 1435 // Check for empty set. 1436 if (mask->begin() == mask->end()) { 1437 KMP_SNPRINTF(scan, end - scan + 1, "{<empty>}"); 1438 KMP_ADVANCE_SCAN(scan); 1439 KMP_ASSERT(scan <= end); 1440 return buf; 1441 } 1442 1443 first_range = true; 1444 start = mask->begin(); 1445 while (1) { 1446 // Find next range 1447 // [start, previous] is inclusive range of contiguous bits in mask 1448 for (finish = mask->next(start), previous = start; 1449 finish == previous + 1 && finish != mask->end(); 1450 finish = mask->next(finish)) { 1451 previous = finish; 1452 } 1453 1454 // The first range does not need a comma printed before it, but the rest 1455 // of the ranges do need a comma beforehand 1456 if (!first_range) { 1457 KMP_SNPRINTF(scan, end - scan + 1, "%s", ","); 1458 KMP_ADVANCE_SCAN(scan); 1459 } else { 1460 first_range = false; 1461 } 1462 // Range with three or more contiguous bits in the affinity mask 1463 if (previous - start > 1) { 1464 KMP_SNPRINTF(scan, end - scan + 1, "%u-%u", start, previous); 1465 } else { 1466 // Range with one or two contiguous bits in the affinity mask 1467 KMP_SNPRINTF(scan, end - scan + 1, "%u", start); 1468 KMP_ADVANCE_SCAN(scan); 1469 if (previous - start > 0) { 1470 KMP_SNPRINTF(scan, end - scan + 1, ",%u", previous); 1471 } 1472 } 1473 KMP_ADVANCE_SCAN(scan); 1474 // Start over with new start point 1475 start = finish; 1476 if (start == mask->end()) 1477 break; 1478 // Check for overflow 1479 if (end - scan < 2) 1480 break; 1481 } 1482 1483 // Check for overflow 1484 KMP_ASSERT(scan <= end); 1485 return buf; 1486 } 1487 #undef KMP_ADVANCE_SCAN 1488 1489 // Print the affinity mask to the string buffer object in a pretty format 1490 // The format is a comma separated list of non-negative integers or integer 1491 // ranges: e.g., 1,2,3-5,7,9-15 1492 // The format can also be the string "{<empty>}" if no bits are set in mask 1493 kmp_str_buf_t *__kmp_affinity_str_buf_mask(kmp_str_buf_t *buf, 1494 kmp_affin_mask_t *mask) { 1495 int start = 0, finish = 0, previous = 0; 1496 bool first_range; 1497 KMP_ASSERT(buf); 1498 KMP_ASSERT(mask); 1499 1500 __kmp_str_buf_clear(buf); 1501 1502 // Check for empty set. 1503 if (mask->begin() == mask->end()) { 1504 __kmp_str_buf_print(buf, "%s", "{<empty>}"); 1505 return buf; 1506 } 1507 1508 first_range = true; 1509 start = mask->begin(); 1510 while (1) { 1511 // Find next range 1512 // [start, previous] is inclusive range of contiguous bits in mask 1513 for (finish = mask->next(start), previous = start; 1514 finish == previous + 1 && finish != mask->end(); 1515 finish = mask->next(finish)) { 1516 previous = finish; 1517 } 1518 1519 // The first range does not need a comma printed before it, but the rest 1520 // of the ranges do need a comma beforehand 1521 if (!first_range) { 1522 __kmp_str_buf_print(buf, "%s", ","); 1523 } else { 1524 first_range = false; 1525 } 1526 // Range with three or more contiguous bits in the affinity mask 1527 if (previous - start > 1) { 1528 __kmp_str_buf_print(buf, "%u-%u", start, previous); 1529 } else { 1530 // Range with one or two contiguous bits in the affinity mask 1531 __kmp_str_buf_print(buf, "%u", start); 1532 if (previous - start > 0) { 1533 __kmp_str_buf_print(buf, ",%u", previous); 1534 } 1535 } 1536 // Start over with new start point 1537 start = finish; 1538 if (start == mask->end()) 1539 break; 1540 } 1541 return buf; 1542 } 1543 1544 // Return (possibly empty) affinity mask representing the offline CPUs 1545 // Caller must free the mask 1546 kmp_affin_mask_t *__kmp_affinity_get_offline_cpus() { 1547 kmp_affin_mask_t *offline; 1548 KMP_CPU_ALLOC(offline); 1549 KMP_CPU_ZERO(offline); 1550 #if KMP_OS_LINUX 1551 int n, begin_cpu, end_cpu; 1552 kmp_safe_raii_file_t offline_file; 1553 auto skip_ws = [](FILE *f) { 1554 int c; 1555 do { 1556 c = fgetc(f); 1557 } while (isspace(c)); 1558 if (c != EOF) 1559 ungetc(c, f); 1560 }; 1561 // File contains CSV of integer ranges representing the offline CPUs 1562 // e.g., 1,2,4-7,9,11-15 1563 int status = offline_file.try_open("/sys/devices/system/cpu/offline", "r"); 1564 if (status != 0) 1565 return offline; 1566 while (!feof(offline_file)) { 1567 skip_ws(offline_file); 1568 n = fscanf(offline_file, "%d", &begin_cpu); 1569 if (n != 1) 1570 break; 1571 skip_ws(offline_file); 1572 int c = fgetc(offline_file); 1573 if (c == EOF || c == ',') { 1574 // Just single CPU 1575 end_cpu = begin_cpu; 1576 } else if (c == '-') { 1577 // Range of CPUs 1578 skip_ws(offline_file); 1579 n = fscanf(offline_file, "%d", &end_cpu); 1580 if (n != 1) 1581 break; 1582 skip_ws(offline_file); 1583 c = fgetc(offline_file); // skip ',' 1584 } else { 1585 // Syntax problem 1586 break; 1587 } 1588 // Ensure a valid range of CPUs 1589 if (begin_cpu < 0 || begin_cpu >= __kmp_xproc || end_cpu < 0 || 1590 end_cpu >= __kmp_xproc || begin_cpu > end_cpu) { 1591 continue; 1592 } 1593 // Insert [begin_cpu, end_cpu] into offline mask 1594 for (int cpu = begin_cpu; cpu <= end_cpu; ++cpu) { 1595 KMP_CPU_SET(cpu, offline); 1596 } 1597 } 1598 #endif 1599 return offline; 1600 } 1601 1602 // Return the number of available procs 1603 int __kmp_affinity_entire_machine_mask(kmp_affin_mask_t *mask) { 1604 int avail_proc = 0; 1605 KMP_CPU_ZERO(mask); 1606 1607 #if KMP_GROUP_AFFINITY 1608 1609 if (__kmp_num_proc_groups > 1) { 1610 int group; 1611 KMP_DEBUG_ASSERT(__kmp_GetActiveProcessorCount != NULL); 1612 for (group = 0; group < __kmp_num_proc_groups; group++) { 1613 int i; 1614 int num = __kmp_GetActiveProcessorCount(group); 1615 for (i = 0; i < num; i++) { 1616 KMP_CPU_SET(i + group * (CHAR_BIT * sizeof(DWORD_PTR)), mask); 1617 avail_proc++; 1618 } 1619 } 1620 } else 1621 1622 #endif /* KMP_GROUP_AFFINITY */ 1623 1624 { 1625 int proc; 1626 kmp_affin_mask_t *offline_cpus = __kmp_affinity_get_offline_cpus(); 1627 for (proc = 0; proc < __kmp_xproc; proc++) { 1628 // Skip offline CPUs 1629 if (KMP_CPU_ISSET(proc, offline_cpus)) 1630 continue; 1631 KMP_CPU_SET(proc, mask); 1632 avail_proc++; 1633 } 1634 KMP_CPU_FREE(offline_cpus); 1635 } 1636 1637 return avail_proc; 1638 } 1639 1640 // All of the __kmp_affinity_create_*_map() routines should allocate the 1641 // internal topology object and set the layer ids for it. Each routine 1642 // returns a boolean on whether it was successful at doing so. 1643 kmp_affin_mask_t *__kmp_affin_fullMask = NULL; 1644 // Original mask is a subset of full mask in multiple processor groups topology 1645 kmp_affin_mask_t *__kmp_affin_origMask = NULL; 1646 1647 #if KMP_USE_HWLOC 1648 static inline bool __kmp_hwloc_is_cache_type(hwloc_obj_t obj) { 1649 #if HWLOC_API_VERSION >= 0x00020000 1650 return hwloc_obj_type_is_cache(obj->type); 1651 #else 1652 return obj->type == HWLOC_OBJ_CACHE; 1653 #endif 1654 } 1655 1656 // Returns KMP_HW_* type derived from HWLOC_* type 1657 static inline kmp_hw_t __kmp_hwloc_type_2_topology_type(hwloc_obj_t obj) { 1658 1659 if (__kmp_hwloc_is_cache_type(obj)) { 1660 if (obj->attr->cache.type == HWLOC_OBJ_CACHE_INSTRUCTION) 1661 return KMP_HW_UNKNOWN; 1662 switch (obj->attr->cache.depth) { 1663 case 1: 1664 return KMP_HW_L1; 1665 case 2: 1666 #if KMP_MIC_SUPPORTED 1667 if (__kmp_mic_type == mic3) { 1668 return KMP_HW_TILE; 1669 } 1670 #endif 1671 return KMP_HW_L2; 1672 case 3: 1673 return KMP_HW_L3; 1674 } 1675 return KMP_HW_UNKNOWN; 1676 } 1677 1678 switch (obj->type) { 1679 case HWLOC_OBJ_PACKAGE: 1680 return KMP_HW_SOCKET; 1681 case HWLOC_OBJ_NUMANODE: 1682 return KMP_HW_NUMA; 1683 case HWLOC_OBJ_CORE: 1684 return KMP_HW_CORE; 1685 case HWLOC_OBJ_PU: 1686 return KMP_HW_THREAD; 1687 case HWLOC_OBJ_GROUP: 1688 #if HWLOC_API_VERSION >= 0x00020000 1689 if (obj->attr->group.kind == HWLOC_GROUP_KIND_INTEL_DIE) 1690 return KMP_HW_DIE; 1691 else if (obj->attr->group.kind == HWLOC_GROUP_KIND_INTEL_TILE) 1692 return KMP_HW_TILE; 1693 else if (obj->attr->group.kind == HWLOC_GROUP_KIND_INTEL_MODULE) 1694 return KMP_HW_MODULE; 1695 else if (obj->attr->group.kind == HWLOC_GROUP_KIND_WINDOWS_PROCESSOR_GROUP) 1696 return KMP_HW_PROC_GROUP; 1697 #endif 1698 return KMP_HW_UNKNOWN; 1699 #if HWLOC_API_VERSION >= 0x00020100 1700 case HWLOC_OBJ_DIE: 1701 return KMP_HW_DIE; 1702 #endif 1703 } 1704 return KMP_HW_UNKNOWN; 1705 } 1706 1707 // Returns the number of objects of type 'type' below 'obj' within the topology 1708 // tree structure. e.g., if obj is a HWLOC_OBJ_PACKAGE object, and type is 1709 // HWLOC_OBJ_PU, then this will return the number of PU's under the SOCKET 1710 // object. 1711 static int __kmp_hwloc_get_nobjs_under_obj(hwloc_obj_t obj, 1712 hwloc_obj_type_t type) { 1713 int retval = 0; 1714 hwloc_obj_t first; 1715 for (first = hwloc_get_obj_below_by_type(__kmp_hwloc_topology, obj->type, 1716 obj->logical_index, type, 0); 1717 first != NULL && hwloc_get_ancestor_obj_by_type(__kmp_hwloc_topology, 1718 obj->type, first) == obj; 1719 first = hwloc_get_next_obj_by_type(__kmp_hwloc_topology, first->type, 1720 first)) { 1721 ++retval; 1722 } 1723 return retval; 1724 } 1725 1726 // This gets the sub_id for a lower object under a higher object in the 1727 // topology tree 1728 static int __kmp_hwloc_get_sub_id(hwloc_topology_t t, hwloc_obj_t higher, 1729 hwloc_obj_t lower) { 1730 hwloc_obj_t obj; 1731 hwloc_obj_type_t ltype = lower->type; 1732 int lindex = lower->logical_index - 1; 1733 int sub_id = 0; 1734 // Get the previous lower object 1735 obj = hwloc_get_obj_by_type(t, ltype, lindex); 1736 while (obj && lindex >= 0 && 1737 hwloc_bitmap_isincluded(obj->cpuset, higher->cpuset)) { 1738 if (obj->userdata) { 1739 sub_id = (int)(RCAST(kmp_intptr_t, obj->userdata)); 1740 break; 1741 } 1742 sub_id++; 1743 lindex--; 1744 obj = hwloc_get_obj_by_type(t, ltype, lindex); 1745 } 1746 // store sub_id + 1 so that 0 is differed from NULL 1747 lower->userdata = RCAST(void *, sub_id + 1); 1748 return sub_id; 1749 } 1750 1751 static bool __kmp_affinity_create_hwloc_map(kmp_i18n_id_t *const msg_id) { 1752 kmp_hw_t type; 1753 int hw_thread_index, sub_id; 1754 int depth; 1755 hwloc_obj_t pu, obj, root, prev; 1756 kmp_hw_t types[KMP_HW_LAST]; 1757 hwloc_obj_type_t hwloc_types[KMP_HW_LAST]; 1758 1759 hwloc_topology_t tp = __kmp_hwloc_topology; 1760 *msg_id = kmp_i18n_null; 1761 if (__kmp_affinity.flags.verbose) { 1762 KMP_INFORM(AffUsingHwloc, "KMP_AFFINITY"); 1763 } 1764 1765 if (!KMP_AFFINITY_CAPABLE()) { 1766 // Hack to try and infer the machine topology using only the data 1767 // available from hwloc on the current thread, and __kmp_xproc. 1768 KMP_ASSERT(__kmp_affinity.type == affinity_none); 1769 // hwloc only guarantees existance of PU object, so check PACKAGE and CORE 1770 hwloc_obj_t o = hwloc_get_obj_by_type(tp, HWLOC_OBJ_PACKAGE, 0); 1771 if (o != NULL) 1772 nCoresPerPkg = __kmp_hwloc_get_nobjs_under_obj(o, HWLOC_OBJ_CORE); 1773 else 1774 nCoresPerPkg = 1; // no PACKAGE found 1775 o = hwloc_get_obj_by_type(tp, HWLOC_OBJ_CORE, 0); 1776 if (o != NULL) 1777 __kmp_nThreadsPerCore = __kmp_hwloc_get_nobjs_under_obj(o, HWLOC_OBJ_PU); 1778 else 1779 __kmp_nThreadsPerCore = 1; // no CORE found 1780 __kmp_ncores = __kmp_xproc / __kmp_nThreadsPerCore; 1781 if (nCoresPerPkg == 0) 1782 nCoresPerPkg = 1; // to prevent possible division by 0 1783 nPackages = (__kmp_xproc + nCoresPerPkg - 1) / nCoresPerPkg; 1784 return true; 1785 } 1786 1787 #if HWLOC_API_VERSION >= 0x00020400 1788 // Handle multiple types of cores if they exist on the system 1789 int nr_cpu_kinds = hwloc_cpukinds_get_nr(tp, 0); 1790 1791 typedef struct kmp_hwloc_cpukinds_info_t { 1792 int efficiency; 1793 kmp_hw_core_type_t core_type; 1794 hwloc_bitmap_t mask; 1795 } kmp_hwloc_cpukinds_info_t; 1796 kmp_hwloc_cpukinds_info_t *cpukinds = nullptr; 1797 1798 if (nr_cpu_kinds > 0) { 1799 unsigned nr_infos; 1800 struct hwloc_info_s *infos; 1801 cpukinds = (kmp_hwloc_cpukinds_info_t *)__kmp_allocate( 1802 sizeof(kmp_hwloc_cpukinds_info_t) * nr_cpu_kinds); 1803 for (unsigned idx = 0; idx < (unsigned)nr_cpu_kinds; ++idx) { 1804 cpukinds[idx].efficiency = -1; 1805 cpukinds[idx].core_type = KMP_HW_CORE_TYPE_UNKNOWN; 1806 cpukinds[idx].mask = hwloc_bitmap_alloc(); 1807 if (hwloc_cpukinds_get_info(tp, idx, cpukinds[idx].mask, 1808 &cpukinds[idx].efficiency, &nr_infos, &infos, 1809 0) == 0) { 1810 for (unsigned i = 0; i < nr_infos; ++i) { 1811 if (__kmp_str_match("CoreType", 8, infos[i].name)) { 1812 #if KMP_ARCH_X86 || KMP_ARCH_X86_64 1813 if (__kmp_str_match("IntelAtom", 9, infos[i].value)) { 1814 cpukinds[idx].core_type = KMP_HW_CORE_TYPE_ATOM; 1815 break; 1816 } else if (__kmp_str_match("IntelCore", 9, infos[i].value)) { 1817 cpukinds[idx].core_type = KMP_HW_CORE_TYPE_CORE; 1818 break; 1819 } 1820 #endif 1821 } 1822 } 1823 } 1824 } 1825 } 1826 #endif 1827 1828 root = hwloc_get_root_obj(tp); 1829 1830 // Figure out the depth and types in the topology 1831 depth = 0; 1832 pu = hwloc_get_pu_obj_by_os_index(tp, __kmp_affin_fullMask->begin()); 1833 KMP_ASSERT(pu); 1834 obj = pu; 1835 types[depth] = KMP_HW_THREAD; 1836 hwloc_types[depth] = obj->type; 1837 depth++; 1838 while (obj != root && obj != NULL) { 1839 obj = obj->parent; 1840 #if HWLOC_API_VERSION >= 0x00020000 1841 if (obj->memory_arity) { 1842 hwloc_obj_t memory; 1843 for (memory = obj->memory_first_child; memory; 1844 memory = hwloc_get_next_child(tp, obj, memory)) { 1845 if (memory->type == HWLOC_OBJ_NUMANODE) 1846 break; 1847 } 1848 if (memory && memory->type == HWLOC_OBJ_NUMANODE) { 1849 types[depth] = KMP_HW_NUMA; 1850 hwloc_types[depth] = memory->type; 1851 depth++; 1852 } 1853 } 1854 #endif 1855 type = __kmp_hwloc_type_2_topology_type(obj); 1856 if (type != KMP_HW_UNKNOWN) { 1857 types[depth] = type; 1858 hwloc_types[depth] = obj->type; 1859 depth++; 1860 } 1861 } 1862 KMP_ASSERT(depth > 0); 1863 1864 // Get the order for the types correct 1865 for (int i = 0, j = depth - 1; i < j; ++i, --j) { 1866 hwloc_obj_type_t hwloc_temp = hwloc_types[i]; 1867 kmp_hw_t temp = types[i]; 1868 types[i] = types[j]; 1869 types[j] = temp; 1870 hwloc_types[i] = hwloc_types[j]; 1871 hwloc_types[j] = hwloc_temp; 1872 } 1873 1874 // Allocate the data structure to be returned. 1875 __kmp_topology = kmp_topology_t::allocate(__kmp_avail_proc, depth, types); 1876 1877 hw_thread_index = 0; 1878 pu = NULL; 1879 while ((pu = hwloc_get_next_obj_by_type(tp, HWLOC_OBJ_PU, pu))) { 1880 int index = depth - 1; 1881 bool included = KMP_CPU_ISSET(pu->os_index, __kmp_affin_fullMask); 1882 kmp_hw_thread_t &hw_thread = __kmp_topology->at(hw_thread_index); 1883 if (included) { 1884 hw_thread.clear(); 1885 hw_thread.ids[index] = pu->logical_index; 1886 hw_thread.os_id = pu->os_index; 1887 // If multiple core types, then set that attribute for the hardware thread 1888 #if HWLOC_API_VERSION >= 0x00020400 1889 if (cpukinds) { 1890 int cpukind_index = -1; 1891 for (int i = 0; i < nr_cpu_kinds; ++i) { 1892 if (hwloc_bitmap_isset(cpukinds[i].mask, hw_thread.os_id)) { 1893 cpukind_index = i; 1894 break; 1895 } 1896 } 1897 if (cpukind_index >= 0) { 1898 hw_thread.attrs.set_core_type(cpukinds[cpukind_index].core_type); 1899 hw_thread.attrs.set_core_eff(cpukinds[cpukind_index].efficiency); 1900 } 1901 } 1902 #endif 1903 index--; 1904 } 1905 obj = pu; 1906 prev = obj; 1907 while (obj != root && obj != NULL) { 1908 obj = obj->parent; 1909 #if HWLOC_API_VERSION >= 0x00020000 1910 // NUMA Nodes are handled differently since they are not within the 1911 // parent/child structure anymore. They are separate children 1912 // of obj (memory_first_child points to first memory child) 1913 if (obj->memory_arity) { 1914 hwloc_obj_t memory; 1915 for (memory = obj->memory_first_child; memory; 1916 memory = hwloc_get_next_child(tp, obj, memory)) { 1917 if (memory->type == HWLOC_OBJ_NUMANODE) 1918 break; 1919 } 1920 if (memory && memory->type == HWLOC_OBJ_NUMANODE) { 1921 sub_id = __kmp_hwloc_get_sub_id(tp, memory, prev); 1922 if (included) { 1923 hw_thread.ids[index] = memory->logical_index; 1924 hw_thread.ids[index + 1] = sub_id; 1925 index--; 1926 } 1927 prev = memory; 1928 } 1929 prev = obj; 1930 } 1931 #endif 1932 type = __kmp_hwloc_type_2_topology_type(obj); 1933 if (type != KMP_HW_UNKNOWN) { 1934 sub_id = __kmp_hwloc_get_sub_id(tp, obj, prev); 1935 if (included) { 1936 hw_thread.ids[index] = obj->logical_index; 1937 hw_thread.ids[index + 1] = sub_id; 1938 index--; 1939 } 1940 prev = obj; 1941 } 1942 } 1943 if (included) 1944 hw_thread_index++; 1945 } 1946 1947 #if HWLOC_API_VERSION >= 0x00020400 1948 // Free the core types information 1949 if (cpukinds) { 1950 for (int idx = 0; idx < nr_cpu_kinds; ++idx) 1951 hwloc_bitmap_free(cpukinds[idx].mask); 1952 __kmp_free(cpukinds); 1953 } 1954 #endif 1955 __kmp_topology->sort_ids(); 1956 return true; 1957 } 1958 #endif // KMP_USE_HWLOC 1959 1960 // If we don't know how to retrieve the machine's processor topology, or 1961 // encounter an error in doing so, this routine is called to form a "flat" 1962 // mapping of os thread id's <-> processor id's. 1963 static bool __kmp_affinity_create_flat_map(kmp_i18n_id_t *const msg_id) { 1964 *msg_id = kmp_i18n_null; 1965 int depth = 3; 1966 kmp_hw_t types[] = {KMP_HW_SOCKET, KMP_HW_CORE, KMP_HW_THREAD}; 1967 1968 if (__kmp_affinity.flags.verbose) { 1969 KMP_INFORM(UsingFlatOS, "KMP_AFFINITY"); 1970 } 1971 1972 // Even if __kmp_affinity.type == affinity_none, this routine might still 1973 // be called to set __kmp_ncores, as well as 1974 // __kmp_nThreadsPerCore, nCoresPerPkg, & nPackages. 1975 if (!KMP_AFFINITY_CAPABLE()) { 1976 KMP_ASSERT(__kmp_affinity.type == affinity_none); 1977 __kmp_ncores = nPackages = __kmp_xproc; 1978 __kmp_nThreadsPerCore = nCoresPerPkg = 1; 1979 return true; 1980 } 1981 1982 // When affinity is off, this routine will still be called to set 1983 // __kmp_ncores, as well as __kmp_nThreadsPerCore, nCoresPerPkg, & nPackages. 1984 // Make sure all these vars are set correctly, and return now if affinity is 1985 // not enabled. 1986 __kmp_ncores = nPackages = __kmp_avail_proc; 1987 __kmp_nThreadsPerCore = nCoresPerPkg = 1; 1988 1989 // Construct the data structure to be returned. 1990 __kmp_topology = kmp_topology_t::allocate(__kmp_avail_proc, depth, types); 1991 int avail_ct = 0; 1992 int i; 1993 KMP_CPU_SET_ITERATE(i, __kmp_affin_fullMask) { 1994 // Skip this proc if it is not included in the machine model. 1995 if (!KMP_CPU_ISSET(i, __kmp_affin_fullMask)) { 1996 continue; 1997 } 1998 kmp_hw_thread_t &hw_thread = __kmp_topology->at(avail_ct); 1999 hw_thread.clear(); 2000 hw_thread.os_id = i; 2001 hw_thread.ids[0] = i; 2002 hw_thread.ids[1] = 0; 2003 hw_thread.ids[2] = 0; 2004 avail_ct++; 2005 } 2006 if (__kmp_affinity.flags.verbose) { 2007 KMP_INFORM(OSProcToPackage, "KMP_AFFINITY"); 2008 } 2009 return true; 2010 } 2011 2012 #if KMP_GROUP_AFFINITY 2013 // If multiple Windows* OS processor groups exist, we can create a 2-level 2014 // topology map with the groups at level 0 and the individual procs at level 1. 2015 // This facilitates letting the threads float among all procs in a group, 2016 // if granularity=group (the default when there are multiple groups). 2017 static bool __kmp_affinity_create_proc_group_map(kmp_i18n_id_t *const msg_id) { 2018 *msg_id = kmp_i18n_null; 2019 int depth = 3; 2020 kmp_hw_t types[] = {KMP_HW_PROC_GROUP, KMP_HW_CORE, KMP_HW_THREAD}; 2021 const static size_t BITS_PER_GROUP = CHAR_BIT * sizeof(DWORD_PTR); 2022 2023 if (__kmp_affinity.flags.verbose) { 2024 KMP_INFORM(AffWindowsProcGroupMap, "KMP_AFFINITY"); 2025 } 2026 2027 // If we aren't affinity capable, then use flat topology 2028 if (!KMP_AFFINITY_CAPABLE()) { 2029 KMP_ASSERT(__kmp_affinity.type == affinity_none); 2030 nPackages = __kmp_num_proc_groups; 2031 __kmp_nThreadsPerCore = 1; 2032 __kmp_ncores = __kmp_xproc; 2033 nCoresPerPkg = nPackages / __kmp_ncores; 2034 return true; 2035 } 2036 2037 // Construct the data structure to be returned. 2038 __kmp_topology = kmp_topology_t::allocate(__kmp_avail_proc, depth, types); 2039 int avail_ct = 0; 2040 int i; 2041 KMP_CPU_SET_ITERATE(i, __kmp_affin_fullMask) { 2042 // Skip this proc if it is not included in the machine model. 2043 if (!KMP_CPU_ISSET(i, __kmp_affin_fullMask)) { 2044 continue; 2045 } 2046 kmp_hw_thread_t &hw_thread = __kmp_topology->at(avail_ct++); 2047 hw_thread.clear(); 2048 hw_thread.os_id = i; 2049 hw_thread.ids[0] = i / BITS_PER_GROUP; 2050 hw_thread.ids[1] = hw_thread.ids[2] = i % BITS_PER_GROUP; 2051 } 2052 return true; 2053 } 2054 #endif /* KMP_GROUP_AFFINITY */ 2055 2056 #if KMP_ARCH_X86 || KMP_ARCH_X86_64 2057 2058 template <kmp_uint32 LSB, kmp_uint32 MSB> 2059 static inline unsigned __kmp_extract_bits(kmp_uint32 v) { 2060 const kmp_uint32 SHIFT_LEFT = sizeof(kmp_uint32) * 8 - 1 - MSB; 2061 const kmp_uint32 SHIFT_RIGHT = LSB; 2062 kmp_uint32 retval = v; 2063 retval <<= SHIFT_LEFT; 2064 retval >>= (SHIFT_LEFT + SHIFT_RIGHT); 2065 return retval; 2066 } 2067 2068 static int __kmp_cpuid_mask_width(int count) { 2069 int r = 0; 2070 2071 while ((1 << r) < count) 2072 ++r; 2073 return r; 2074 } 2075 2076 class apicThreadInfo { 2077 public: 2078 unsigned osId; // param to __kmp_affinity_bind_thread 2079 unsigned apicId; // from cpuid after binding 2080 unsigned maxCoresPerPkg; // "" 2081 unsigned maxThreadsPerPkg; // "" 2082 unsigned pkgId; // inferred from above values 2083 unsigned coreId; // "" 2084 unsigned threadId; // "" 2085 }; 2086 2087 static int __kmp_affinity_cmp_apicThreadInfo_phys_id(const void *a, 2088 const void *b) { 2089 const apicThreadInfo *aa = (const apicThreadInfo *)a; 2090 const apicThreadInfo *bb = (const apicThreadInfo *)b; 2091 if (aa->pkgId < bb->pkgId) 2092 return -1; 2093 if (aa->pkgId > bb->pkgId) 2094 return 1; 2095 if (aa->coreId < bb->coreId) 2096 return -1; 2097 if (aa->coreId > bb->coreId) 2098 return 1; 2099 if (aa->threadId < bb->threadId) 2100 return -1; 2101 if (aa->threadId > bb->threadId) 2102 return 1; 2103 return 0; 2104 } 2105 2106 class kmp_cache_info_t { 2107 public: 2108 struct info_t { 2109 unsigned level, mask; 2110 }; 2111 kmp_cache_info_t() : depth(0) { get_leaf4_levels(); } 2112 size_t get_depth() const { return depth; } 2113 info_t &operator[](size_t index) { return table[index]; } 2114 const info_t &operator[](size_t index) const { return table[index]; } 2115 2116 static kmp_hw_t get_topology_type(unsigned level) { 2117 KMP_DEBUG_ASSERT(level >= 1 && level <= MAX_CACHE_LEVEL); 2118 switch (level) { 2119 case 1: 2120 return KMP_HW_L1; 2121 case 2: 2122 return KMP_HW_L2; 2123 case 3: 2124 return KMP_HW_L3; 2125 } 2126 return KMP_HW_UNKNOWN; 2127 } 2128 2129 private: 2130 static const int MAX_CACHE_LEVEL = 3; 2131 2132 size_t depth; 2133 info_t table[MAX_CACHE_LEVEL]; 2134 2135 void get_leaf4_levels() { 2136 unsigned level = 0; 2137 while (depth < MAX_CACHE_LEVEL) { 2138 unsigned cache_type, max_threads_sharing; 2139 unsigned cache_level, cache_mask_width; 2140 kmp_cpuid buf2; 2141 __kmp_x86_cpuid(4, level, &buf2); 2142 cache_type = __kmp_extract_bits<0, 4>(buf2.eax); 2143 if (!cache_type) 2144 break; 2145 // Skip instruction caches 2146 if (cache_type == 2) { 2147 level++; 2148 continue; 2149 } 2150 max_threads_sharing = __kmp_extract_bits<14, 25>(buf2.eax) + 1; 2151 cache_mask_width = __kmp_cpuid_mask_width(max_threads_sharing); 2152 cache_level = __kmp_extract_bits<5, 7>(buf2.eax); 2153 table[depth].level = cache_level; 2154 table[depth].mask = ((-1) << cache_mask_width); 2155 depth++; 2156 level++; 2157 } 2158 } 2159 }; 2160 2161 // On IA-32 architecture and Intel(R) 64 architecture, we attempt to use 2162 // an algorithm which cycles through the available os threads, setting 2163 // the current thread's affinity mask to that thread, and then retrieves 2164 // the Apic Id for each thread context using the cpuid instruction. 2165 static bool __kmp_affinity_create_apicid_map(kmp_i18n_id_t *const msg_id) { 2166 kmp_cpuid buf; 2167 *msg_id = kmp_i18n_null; 2168 2169 if (__kmp_affinity.flags.verbose) { 2170 KMP_INFORM(AffInfoStr, "KMP_AFFINITY", KMP_I18N_STR(DecodingLegacyAPIC)); 2171 } 2172 2173 // Check if cpuid leaf 4 is supported. 2174 __kmp_x86_cpuid(0, 0, &buf); 2175 if (buf.eax < 4) { 2176 *msg_id = kmp_i18n_str_NoLeaf4Support; 2177 return false; 2178 } 2179 2180 // The algorithm used starts by setting the affinity to each available thread 2181 // and retrieving info from the cpuid instruction, so if we are not capable of 2182 // calling __kmp_get_system_affinity() and _kmp_get_system_affinity(), then we 2183 // need to do something else - use the defaults that we calculated from 2184 // issuing cpuid without binding to each proc. 2185 if (!KMP_AFFINITY_CAPABLE()) { 2186 // Hack to try and infer the machine topology using only the data 2187 // available from cpuid on the current thread, and __kmp_xproc. 2188 KMP_ASSERT(__kmp_affinity.type == affinity_none); 2189 2190 // Get an upper bound on the number of threads per package using cpuid(1). 2191 // On some OS/chps combinations where HT is supported by the chip but is 2192 // disabled, this value will be 2 on a single core chip. Usually, it will be 2193 // 2 if HT is enabled and 1 if HT is disabled. 2194 __kmp_x86_cpuid(1, 0, &buf); 2195 int maxThreadsPerPkg = (buf.ebx >> 16) & 0xff; 2196 if (maxThreadsPerPkg == 0) { 2197 maxThreadsPerPkg = 1; 2198 } 2199 2200 // The num cores per pkg comes from cpuid(4). 1 must be added to the encoded 2201 // value. 2202 // 2203 // The author of cpu_count.cpp treated this only an upper bound on the 2204 // number of cores, but I haven't seen any cases where it was greater than 2205 // the actual number of cores, so we will treat it as exact in this block of 2206 // code. 2207 // 2208 // First, we need to check if cpuid(4) is supported on this chip. To see if 2209 // cpuid(n) is supported, issue cpuid(0) and check if eax has the value n or 2210 // greater. 2211 __kmp_x86_cpuid(0, 0, &buf); 2212 if (buf.eax >= 4) { 2213 __kmp_x86_cpuid(4, 0, &buf); 2214 nCoresPerPkg = ((buf.eax >> 26) & 0x3f) + 1; 2215 } else { 2216 nCoresPerPkg = 1; 2217 } 2218 2219 // There is no way to reliably tell if HT is enabled without issuing the 2220 // cpuid instruction from every thread, can correlating the cpuid info, so 2221 // if the machine is not affinity capable, we assume that HT is off. We have 2222 // seen quite a few machines where maxThreadsPerPkg is 2, yet the machine 2223 // does not support HT. 2224 // 2225 // - Older OSes are usually found on machines with older chips, which do not 2226 // support HT. 2227 // - The performance penalty for mistakenly identifying a machine as HT when 2228 // it isn't (which results in blocktime being incorrectly set to 0) is 2229 // greater than the penalty when for mistakenly identifying a machine as 2230 // being 1 thread/core when it is really HT enabled (which results in 2231 // blocktime being incorrectly set to a positive value). 2232 __kmp_ncores = __kmp_xproc; 2233 nPackages = (__kmp_xproc + nCoresPerPkg - 1) / nCoresPerPkg; 2234 __kmp_nThreadsPerCore = 1; 2235 return true; 2236 } 2237 2238 // From here on, we can assume that it is safe to call 2239 // __kmp_get_system_affinity() and __kmp_set_system_affinity(), even if 2240 // __kmp_affinity.type = affinity_none. 2241 2242 // Save the affinity mask for the current thread. 2243 kmp_affinity_raii_t previous_affinity; 2244 2245 // Run through each of the available contexts, binding the current thread 2246 // to it, and obtaining the pertinent information using the cpuid instr. 2247 // 2248 // The relevant information is: 2249 // - Apic Id: Bits 24:31 of ebx after issuing cpuid(1) - each thread context 2250 // has a uniqie Apic Id, which is of the form pkg# : core# : thread#. 2251 // - Max Threads Per Pkg: Bits 16:23 of ebx after issuing cpuid(1). The value 2252 // of this field determines the width of the core# + thread# fields in the 2253 // Apic Id. It is also an upper bound on the number of threads per 2254 // package, but it has been verified that situations happen were it is not 2255 // exact. In particular, on certain OS/chip combinations where Intel(R) 2256 // Hyper-Threading Technology is supported by the chip but has been 2257 // disabled, the value of this field will be 2 (for a single core chip). 2258 // On other OS/chip combinations supporting Intel(R) Hyper-Threading 2259 // Technology, the value of this field will be 1 when Intel(R) 2260 // Hyper-Threading Technology is disabled and 2 when it is enabled. 2261 // - Max Cores Per Pkg: Bits 26:31 of eax after issuing cpuid(4). The value 2262 // of this field (+1) determines the width of the core# field in the Apic 2263 // Id. The comments in "cpucount.cpp" say that this value is an upper 2264 // bound, but the IA-32 architecture manual says that it is exactly the 2265 // number of cores per package, and I haven't seen any case where it 2266 // wasn't. 2267 // 2268 // From this information, deduce the package Id, core Id, and thread Id, 2269 // and set the corresponding fields in the apicThreadInfo struct. 2270 unsigned i; 2271 apicThreadInfo *threadInfo = (apicThreadInfo *)__kmp_allocate( 2272 __kmp_avail_proc * sizeof(apicThreadInfo)); 2273 unsigned nApics = 0; 2274 KMP_CPU_SET_ITERATE(i, __kmp_affin_fullMask) { 2275 // Skip this proc if it is not included in the machine model. 2276 if (!KMP_CPU_ISSET(i, __kmp_affin_fullMask)) { 2277 continue; 2278 } 2279 KMP_DEBUG_ASSERT((int)nApics < __kmp_avail_proc); 2280 2281 __kmp_affinity_dispatch->bind_thread(i); 2282 threadInfo[nApics].osId = i; 2283 2284 // The apic id and max threads per pkg come from cpuid(1). 2285 __kmp_x86_cpuid(1, 0, &buf); 2286 if (((buf.edx >> 9) & 1) == 0) { 2287 __kmp_free(threadInfo); 2288 *msg_id = kmp_i18n_str_ApicNotPresent; 2289 return false; 2290 } 2291 threadInfo[nApics].apicId = (buf.ebx >> 24) & 0xff; 2292 threadInfo[nApics].maxThreadsPerPkg = (buf.ebx >> 16) & 0xff; 2293 if (threadInfo[nApics].maxThreadsPerPkg == 0) { 2294 threadInfo[nApics].maxThreadsPerPkg = 1; 2295 } 2296 2297 // Max cores per pkg comes from cpuid(4). 1 must be added to the encoded 2298 // value. 2299 // 2300 // First, we need to check if cpuid(4) is supported on this chip. To see if 2301 // cpuid(n) is supported, issue cpuid(0) and check if eax has the value n 2302 // or greater. 2303 __kmp_x86_cpuid(0, 0, &buf); 2304 if (buf.eax >= 4) { 2305 __kmp_x86_cpuid(4, 0, &buf); 2306 threadInfo[nApics].maxCoresPerPkg = ((buf.eax >> 26) & 0x3f) + 1; 2307 } else { 2308 threadInfo[nApics].maxCoresPerPkg = 1; 2309 } 2310 2311 // Infer the pkgId / coreId / threadId using only the info obtained locally. 2312 int widthCT = __kmp_cpuid_mask_width(threadInfo[nApics].maxThreadsPerPkg); 2313 threadInfo[nApics].pkgId = threadInfo[nApics].apicId >> widthCT; 2314 2315 int widthC = __kmp_cpuid_mask_width(threadInfo[nApics].maxCoresPerPkg); 2316 int widthT = widthCT - widthC; 2317 if (widthT < 0) { 2318 // I've never seen this one happen, but I suppose it could, if the cpuid 2319 // instruction on a chip was really screwed up. Make sure to restore the 2320 // affinity mask before the tail call. 2321 __kmp_free(threadInfo); 2322 *msg_id = kmp_i18n_str_InvalidCpuidInfo; 2323 return false; 2324 } 2325 2326 int maskC = (1 << widthC) - 1; 2327 threadInfo[nApics].coreId = (threadInfo[nApics].apicId >> widthT) & maskC; 2328 2329 int maskT = (1 << widthT) - 1; 2330 threadInfo[nApics].threadId = threadInfo[nApics].apicId & maskT; 2331 2332 nApics++; 2333 } 2334 2335 // We've collected all the info we need. 2336 // Restore the old affinity mask for this thread. 2337 previous_affinity.restore(); 2338 2339 // Sort the threadInfo table by physical Id. 2340 qsort(threadInfo, nApics, sizeof(*threadInfo), 2341 __kmp_affinity_cmp_apicThreadInfo_phys_id); 2342 2343 // The table is now sorted by pkgId / coreId / threadId, but we really don't 2344 // know the radix of any of the fields. pkgId's may be sparsely assigned among 2345 // the chips on a system. Although coreId's are usually assigned 2346 // [0 .. coresPerPkg-1] and threadId's are usually assigned 2347 // [0..threadsPerCore-1], we don't want to make any such assumptions. 2348 // 2349 // For that matter, we don't know what coresPerPkg and threadsPerCore (or the 2350 // total # packages) are at this point - we want to determine that now. We 2351 // only have an upper bound on the first two figures. 2352 // 2353 // We also perform a consistency check at this point: the values returned by 2354 // the cpuid instruction for any thread bound to a given package had better 2355 // return the same info for maxThreadsPerPkg and maxCoresPerPkg. 2356 nPackages = 1; 2357 nCoresPerPkg = 1; 2358 __kmp_nThreadsPerCore = 1; 2359 unsigned nCores = 1; 2360 2361 unsigned pkgCt = 1; // to determine radii 2362 unsigned lastPkgId = threadInfo[0].pkgId; 2363 unsigned coreCt = 1; 2364 unsigned lastCoreId = threadInfo[0].coreId; 2365 unsigned threadCt = 1; 2366 unsigned lastThreadId = threadInfo[0].threadId; 2367 2368 // intra-pkg consist checks 2369 unsigned prevMaxCoresPerPkg = threadInfo[0].maxCoresPerPkg; 2370 unsigned prevMaxThreadsPerPkg = threadInfo[0].maxThreadsPerPkg; 2371 2372 for (i = 1; i < nApics; i++) { 2373 if (threadInfo[i].pkgId != lastPkgId) { 2374 nCores++; 2375 pkgCt++; 2376 lastPkgId = threadInfo[i].pkgId; 2377 if ((int)coreCt > nCoresPerPkg) 2378 nCoresPerPkg = coreCt; 2379 coreCt = 1; 2380 lastCoreId = threadInfo[i].coreId; 2381 if ((int)threadCt > __kmp_nThreadsPerCore) 2382 __kmp_nThreadsPerCore = threadCt; 2383 threadCt = 1; 2384 lastThreadId = threadInfo[i].threadId; 2385 2386 // This is a different package, so go on to the next iteration without 2387 // doing any consistency checks. Reset the consistency check vars, though. 2388 prevMaxCoresPerPkg = threadInfo[i].maxCoresPerPkg; 2389 prevMaxThreadsPerPkg = threadInfo[i].maxThreadsPerPkg; 2390 continue; 2391 } 2392 2393 if (threadInfo[i].coreId != lastCoreId) { 2394 nCores++; 2395 coreCt++; 2396 lastCoreId = threadInfo[i].coreId; 2397 if ((int)threadCt > __kmp_nThreadsPerCore) 2398 __kmp_nThreadsPerCore = threadCt; 2399 threadCt = 1; 2400 lastThreadId = threadInfo[i].threadId; 2401 } else if (threadInfo[i].threadId != lastThreadId) { 2402 threadCt++; 2403 lastThreadId = threadInfo[i].threadId; 2404 } else { 2405 __kmp_free(threadInfo); 2406 *msg_id = kmp_i18n_str_LegacyApicIDsNotUnique; 2407 return false; 2408 } 2409 2410 // Check to make certain that the maxCoresPerPkg and maxThreadsPerPkg 2411 // fields agree between all the threads bounds to a given package. 2412 if ((prevMaxCoresPerPkg != threadInfo[i].maxCoresPerPkg) || 2413 (prevMaxThreadsPerPkg != threadInfo[i].maxThreadsPerPkg)) { 2414 __kmp_free(threadInfo); 2415 *msg_id = kmp_i18n_str_InconsistentCpuidInfo; 2416 return false; 2417 } 2418 } 2419 // When affinity is off, this routine will still be called to set 2420 // __kmp_ncores, as well as __kmp_nThreadsPerCore, nCoresPerPkg, & nPackages. 2421 // Make sure all these vars are set correctly 2422 nPackages = pkgCt; 2423 if ((int)coreCt > nCoresPerPkg) 2424 nCoresPerPkg = coreCt; 2425 if ((int)threadCt > __kmp_nThreadsPerCore) 2426 __kmp_nThreadsPerCore = threadCt; 2427 __kmp_ncores = nCores; 2428 KMP_DEBUG_ASSERT(nApics == (unsigned)__kmp_avail_proc); 2429 2430 // Now that we've determined the number of packages, the number of cores per 2431 // package, and the number of threads per core, we can construct the data 2432 // structure that is to be returned. 2433 int idx = 0; 2434 int pkgLevel = 0; 2435 int coreLevel = 1; 2436 int threadLevel = 2; 2437 //(__kmp_nThreadsPerCore <= 1) ? -1 : ((coreLevel >= 0) ? 2 : 1); 2438 int depth = (pkgLevel >= 0) + (coreLevel >= 0) + (threadLevel >= 0); 2439 kmp_hw_t types[3]; 2440 if (pkgLevel >= 0) 2441 types[idx++] = KMP_HW_SOCKET; 2442 if (coreLevel >= 0) 2443 types[idx++] = KMP_HW_CORE; 2444 if (threadLevel >= 0) 2445 types[idx++] = KMP_HW_THREAD; 2446 2447 KMP_ASSERT(depth > 0); 2448 __kmp_topology = kmp_topology_t::allocate(nApics, depth, types); 2449 2450 for (i = 0; i < nApics; ++i) { 2451 idx = 0; 2452 unsigned os = threadInfo[i].osId; 2453 kmp_hw_thread_t &hw_thread = __kmp_topology->at(i); 2454 hw_thread.clear(); 2455 2456 if (pkgLevel >= 0) { 2457 hw_thread.ids[idx++] = threadInfo[i].pkgId; 2458 } 2459 if (coreLevel >= 0) { 2460 hw_thread.ids[idx++] = threadInfo[i].coreId; 2461 } 2462 if (threadLevel >= 0) { 2463 hw_thread.ids[idx++] = threadInfo[i].threadId; 2464 } 2465 hw_thread.os_id = os; 2466 } 2467 2468 __kmp_free(threadInfo); 2469 __kmp_topology->sort_ids(); 2470 if (!__kmp_topology->check_ids()) { 2471 kmp_topology_t::deallocate(__kmp_topology); 2472 __kmp_topology = nullptr; 2473 *msg_id = kmp_i18n_str_LegacyApicIDsNotUnique; 2474 return false; 2475 } 2476 return true; 2477 } 2478 2479 // Hybrid cpu detection using CPUID.1A 2480 // Thread should be pinned to processor already 2481 static void __kmp_get_hybrid_info(kmp_hw_core_type_t *type, int *efficiency, 2482 unsigned *native_model_id) { 2483 kmp_cpuid buf; 2484 __kmp_x86_cpuid(0x1a, 0, &buf); 2485 *type = (kmp_hw_core_type_t)__kmp_extract_bits<24, 31>(buf.eax); 2486 switch (*type) { 2487 case KMP_HW_CORE_TYPE_ATOM: 2488 *efficiency = 0; 2489 break; 2490 case KMP_HW_CORE_TYPE_CORE: 2491 *efficiency = 1; 2492 break; 2493 default: 2494 *efficiency = 0; 2495 } 2496 *native_model_id = __kmp_extract_bits<0, 23>(buf.eax); 2497 } 2498 2499 // Intel(R) microarchitecture code name Nehalem, Dunnington and later 2500 // architectures support a newer interface for specifying the x2APIC Ids, 2501 // based on CPUID.B or CPUID.1F 2502 /* 2503 * CPUID.B or 1F, Input ECX (sub leaf # aka level number) 2504 Bits Bits Bits Bits 2505 31-16 15-8 7-4 4-0 2506 ---+-----------+--------------+-------------+-----------------+ 2507 EAX| reserved | reserved | reserved | Bits to Shift | 2508 ---+-----------|--------------+-------------+-----------------| 2509 EBX| reserved | Num logical processors at level (16 bits) | 2510 ---+-----------|--------------+-------------------------------| 2511 ECX| reserved | Level Type | Level Number (8 bits) | 2512 ---+-----------+--------------+-------------------------------| 2513 EDX| X2APIC ID (32 bits) | 2514 ---+----------------------------------------------------------+ 2515 */ 2516 2517 enum { 2518 INTEL_LEVEL_TYPE_INVALID = 0, // Package level 2519 INTEL_LEVEL_TYPE_SMT = 1, 2520 INTEL_LEVEL_TYPE_CORE = 2, 2521 INTEL_LEVEL_TYPE_MODULE = 3, 2522 INTEL_LEVEL_TYPE_TILE = 4, 2523 INTEL_LEVEL_TYPE_DIE = 5, 2524 INTEL_LEVEL_TYPE_LAST = 6, 2525 }; 2526 2527 struct cpuid_level_info_t { 2528 unsigned level_type, mask, mask_width, nitems, cache_mask; 2529 }; 2530 2531 static kmp_hw_t __kmp_intel_type_2_topology_type(int intel_type) { 2532 switch (intel_type) { 2533 case INTEL_LEVEL_TYPE_INVALID: 2534 return KMP_HW_SOCKET; 2535 case INTEL_LEVEL_TYPE_SMT: 2536 return KMP_HW_THREAD; 2537 case INTEL_LEVEL_TYPE_CORE: 2538 return KMP_HW_CORE; 2539 case INTEL_LEVEL_TYPE_TILE: 2540 return KMP_HW_TILE; 2541 case INTEL_LEVEL_TYPE_MODULE: 2542 return KMP_HW_MODULE; 2543 case INTEL_LEVEL_TYPE_DIE: 2544 return KMP_HW_DIE; 2545 } 2546 return KMP_HW_UNKNOWN; 2547 } 2548 2549 // This function takes the topology leaf, a levels array to store the levels 2550 // detected and a bitmap of the known levels. 2551 // Returns the number of levels in the topology 2552 static unsigned 2553 __kmp_x2apicid_get_levels(int leaf, 2554 cpuid_level_info_t levels[INTEL_LEVEL_TYPE_LAST], 2555 kmp_uint64 known_levels) { 2556 unsigned level, levels_index; 2557 unsigned level_type, mask_width, nitems; 2558 kmp_cpuid buf; 2559 2560 // New algorithm has known topology layers act as highest unknown topology 2561 // layers when unknown topology layers exist. 2562 // e.g., Suppose layers were SMT <X> CORE <Y> <Z> PACKAGE, where <X> <Y> <Z> 2563 // are unknown topology layers, Then SMT will take the characteristics of 2564 // (SMT x <X>) and CORE will take the characteristics of (CORE x <Y> x <Z>). 2565 // This eliminates unknown portions of the topology while still keeping the 2566 // correct structure. 2567 level = levels_index = 0; 2568 do { 2569 __kmp_x86_cpuid(leaf, level, &buf); 2570 level_type = __kmp_extract_bits<8, 15>(buf.ecx); 2571 mask_width = __kmp_extract_bits<0, 4>(buf.eax); 2572 nitems = __kmp_extract_bits<0, 15>(buf.ebx); 2573 if (level_type != INTEL_LEVEL_TYPE_INVALID && nitems == 0) 2574 return 0; 2575 2576 if (known_levels & (1ull << level_type)) { 2577 // Add a new level to the topology 2578 KMP_ASSERT(levels_index < INTEL_LEVEL_TYPE_LAST); 2579 levels[levels_index].level_type = level_type; 2580 levels[levels_index].mask_width = mask_width; 2581 levels[levels_index].nitems = nitems; 2582 levels_index++; 2583 } else { 2584 // If it is an unknown level, then logically move the previous layer up 2585 if (levels_index > 0) { 2586 levels[levels_index - 1].mask_width = mask_width; 2587 levels[levels_index - 1].nitems = nitems; 2588 } 2589 } 2590 level++; 2591 } while (level_type != INTEL_LEVEL_TYPE_INVALID); 2592 2593 // Ensure the INTEL_LEVEL_TYPE_INVALID (Socket) layer isn't first 2594 if (levels_index == 0 || levels[0].level_type == INTEL_LEVEL_TYPE_INVALID) 2595 return 0; 2596 2597 // Set the masks to & with apicid 2598 for (unsigned i = 0; i < levels_index; ++i) { 2599 if (levels[i].level_type != INTEL_LEVEL_TYPE_INVALID) { 2600 levels[i].mask = ~((-1) << levels[i].mask_width); 2601 levels[i].cache_mask = (-1) << levels[i].mask_width; 2602 for (unsigned j = 0; j < i; ++j) 2603 levels[i].mask ^= levels[j].mask; 2604 } else { 2605 KMP_DEBUG_ASSERT(i > 0); 2606 levels[i].mask = (-1) << levels[i - 1].mask_width; 2607 levels[i].cache_mask = 0; 2608 } 2609 } 2610 return levels_index; 2611 } 2612 2613 static bool __kmp_affinity_create_x2apicid_map(kmp_i18n_id_t *const msg_id) { 2614 2615 cpuid_level_info_t levels[INTEL_LEVEL_TYPE_LAST]; 2616 kmp_hw_t types[INTEL_LEVEL_TYPE_LAST]; 2617 unsigned levels_index; 2618 kmp_cpuid buf; 2619 kmp_uint64 known_levels; 2620 int topology_leaf, highest_leaf, apic_id; 2621 int num_leaves; 2622 static int leaves[] = {0, 0}; 2623 2624 kmp_i18n_id_t leaf_message_id; 2625 2626 KMP_BUILD_ASSERT(sizeof(known_levels) * CHAR_BIT > KMP_HW_LAST); 2627 2628 *msg_id = kmp_i18n_null; 2629 if (__kmp_affinity.flags.verbose) { 2630 KMP_INFORM(AffInfoStr, "KMP_AFFINITY", KMP_I18N_STR(Decodingx2APIC)); 2631 } 2632 2633 // Figure out the known topology levels 2634 known_levels = 0ull; 2635 for (int i = 0; i < INTEL_LEVEL_TYPE_LAST; ++i) { 2636 if (__kmp_intel_type_2_topology_type(i) != KMP_HW_UNKNOWN) { 2637 known_levels |= (1ull << i); 2638 } 2639 } 2640 2641 // Get the highest cpuid leaf supported 2642 __kmp_x86_cpuid(0, 0, &buf); 2643 highest_leaf = buf.eax; 2644 2645 // If a specific topology method was requested, only allow that specific leaf 2646 // otherwise, try both leaves 31 and 11 in that order 2647 num_leaves = 0; 2648 if (__kmp_affinity_top_method == affinity_top_method_x2apicid) { 2649 num_leaves = 1; 2650 leaves[0] = 11; 2651 leaf_message_id = kmp_i18n_str_NoLeaf11Support; 2652 } else if (__kmp_affinity_top_method == affinity_top_method_x2apicid_1f) { 2653 num_leaves = 1; 2654 leaves[0] = 31; 2655 leaf_message_id = kmp_i18n_str_NoLeaf31Support; 2656 } else { 2657 num_leaves = 2; 2658 leaves[0] = 31; 2659 leaves[1] = 11; 2660 leaf_message_id = kmp_i18n_str_NoLeaf11Support; 2661 } 2662 2663 // Check to see if cpuid leaf 31 or 11 is supported. 2664 __kmp_nThreadsPerCore = nCoresPerPkg = nPackages = 1; 2665 topology_leaf = -1; 2666 for (int i = 0; i < num_leaves; ++i) { 2667 int leaf = leaves[i]; 2668 if (highest_leaf < leaf) 2669 continue; 2670 __kmp_x86_cpuid(leaf, 0, &buf); 2671 if (buf.ebx == 0) 2672 continue; 2673 topology_leaf = leaf; 2674 levels_index = __kmp_x2apicid_get_levels(leaf, levels, known_levels); 2675 if (levels_index == 0) 2676 continue; 2677 break; 2678 } 2679 if (topology_leaf == -1 || levels_index == 0) { 2680 *msg_id = leaf_message_id; 2681 return false; 2682 } 2683 KMP_ASSERT(levels_index <= INTEL_LEVEL_TYPE_LAST); 2684 2685 // The algorithm used starts by setting the affinity to each available thread 2686 // and retrieving info from the cpuid instruction, so if we are not capable of 2687 // calling __kmp_get_system_affinity() and __kmp_get_system_affinity(), then 2688 // we need to do something else - use the defaults that we calculated from 2689 // issuing cpuid without binding to each proc. 2690 if (!KMP_AFFINITY_CAPABLE()) { 2691 // Hack to try and infer the machine topology using only the data 2692 // available from cpuid on the current thread, and __kmp_xproc. 2693 KMP_ASSERT(__kmp_affinity.type == affinity_none); 2694 for (unsigned i = 0; i < levels_index; ++i) { 2695 if (levels[i].level_type == INTEL_LEVEL_TYPE_SMT) { 2696 __kmp_nThreadsPerCore = levels[i].nitems; 2697 } else if (levels[i].level_type == INTEL_LEVEL_TYPE_CORE) { 2698 nCoresPerPkg = levels[i].nitems; 2699 } 2700 } 2701 __kmp_ncores = __kmp_xproc / __kmp_nThreadsPerCore; 2702 nPackages = (__kmp_xproc + nCoresPerPkg - 1) / nCoresPerPkg; 2703 return true; 2704 } 2705 2706 // Allocate the data structure to be returned. 2707 int depth = levels_index; 2708 for (int i = depth - 1, j = 0; i >= 0; --i, ++j) 2709 types[j] = __kmp_intel_type_2_topology_type(levels[i].level_type); 2710 __kmp_topology = 2711 kmp_topology_t::allocate(__kmp_avail_proc, levels_index, types); 2712 2713 // Insert equivalent cache types if they exist 2714 kmp_cache_info_t cache_info; 2715 for (size_t i = 0; i < cache_info.get_depth(); ++i) { 2716 const kmp_cache_info_t::info_t &info = cache_info[i]; 2717 unsigned cache_mask = info.mask; 2718 unsigned cache_level = info.level; 2719 for (unsigned j = 0; j < levels_index; ++j) { 2720 unsigned hw_cache_mask = levels[j].cache_mask; 2721 kmp_hw_t cache_type = kmp_cache_info_t::get_topology_type(cache_level); 2722 if (hw_cache_mask == cache_mask && j < levels_index - 1) { 2723 kmp_hw_t type = 2724 __kmp_intel_type_2_topology_type(levels[j + 1].level_type); 2725 __kmp_topology->set_equivalent_type(cache_type, type); 2726 } 2727 } 2728 } 2729 2730 // From here on, we can assume that it is safe to call 2731 // __kmp_get_system_affinity() and __kmp_set_system_affinity(), even if 2732 // __kmp_affinity.type = affinity_none. 2733 2734 // Save the affinity mask for the current thread. 2735 kmp_affinity_raii_t previous_affinity; 2736 2737 // Run through each of the available contexts, binding the current thread 2738 // to it, and obtaining the pertinent information using the cpuid instr. 2739 unsigned int proc; 2740 int hw_thread_index = 0; 2741 KMP_CPU_SET_ITERATE(proc, __kmp_affin_fullMask) { 2742 cpuid_level_info_t my_levels[INTEL_LEVEL_TYPE_LAST]; 2743 unsigned my_levels_index; 2744 2745 // Skip this proc if it is not included in the machine model. 2746 if (!KMP_CPU_ISSET(proc, __kmp_affin_fullMask)) { 2747 continue; 2748 } 2749 KMP_DEBUG_ASSERT(hw_thread_index < __kmp_avail_proc); 2750 2751 __kmp_affinity_dispatch->bind_thread(proc); 2752 2753 // New algorithm 2754 __kmp_x86_cpuid(topology_leaf, 0, &buf); 2755 apic_id = buf.edx; 2756 kmp_hw_thread_t &hw_thread = __kmp_topology->at(hw_thread_index); 2757 my_levels_index = 2758 __kmp_x2apicid_get_levels(topology_leaf, my_levels, known_levels); 2759 if (my_levels_index == 0 || my_levels_index != levels_index) { 2760 *msg_id = kmp_i18n_str_InvalidCpuidInfo; 2761 return false; 2762 } 2763 hw_thread.clear(); 2764 hw_thread.os_id = proc; 2765 // Put in topology information 2766 for (unsigned j = 0, idx = depth - 1; j < my_levels_index; ++j, --idx) { 2767 hw_thread.ids[idx] = apic_id & my_levels[j].mask; 2768 if (j > 0) { 2769 hw_thread.ids[idx] >>= my_levels[j - 1].mask_width; 2770 } 2771 } 2772 // Hybrid information 2773 if (__kmp_is_hybrid_cpu() && highest_leaf >= 0x1a) { 2774 kmp_hw_core_type_t type; 2775 unsigned native_model_id; 2776 int efficiency; 2777 __kmp_get_hybrid_info(&type, &efficiency, &native_model_id); 2778 hw_thread.attrs.set_core_type(type); 2779 hw_thread.attrs.set_core_eff(efficiency); 2780 } 2781 hw_thread_index++; 2782 } 2783 KMP_ASSERT(hw_thread_index > 0); 2784 __kmp_topology->sort_ids(); 2785 if (!__kmp_topology->check_ids()) { 2786 kmp_topology_t::deallocate(__kmp_topology); 2787 __kmp_topology = nullptr; 2788 *msg_id = kmp_i18n_str_x2ApicIDsNotUnique; 2789 return false; 2790 } 2791 return true; 2792 } 2793 #endif /* KMP_ARCH_X86 || KMP_ARCH_X86_64 */ 2794 2795 #define osIdIndex 0 2796 #define threadIdIndex 1 2797 #define coreIdIndex 2 2798 #define pkgIdIndex 3 2799 #define nodeIdIndex 4 2800 2801 typedef unsigned *ProcCpuInfo; 2802 static unsigned maxIndex = pkgIdIndex; 2803 2804 static int __kmp_affinity_cmp_ProcCpuInfo_phys_id(const void *a, 2805 const void *b) { 2806 unsigned i; 2807 const unsigned *aa = *(unsigned *const *)a; 2808 const unsigned *bb = *(unsigned *const *)b; 2809 for (i = maxIndex;; i--) { 2810 if (aa[i] < bb[i]) 2811 return -1; 2812 if (aa[i] > bb[i]) 2813 return 1; 2814 if (i == osIdIndex) 2815 break; 2816 } 2817 return 0; 2818 } 2819 2820 #if KMP_USE_HIER_SCHED 2821 // Set the array sizes for the hierarchy layers 2822 static void __kmp_dispatch_set_hierarchy_values() { 2823 // Set the maximum number of L1's to number of cores 2824 // Set the maximum number of L2's to either number of cores / 2 for 2825 // Intel(R) Xeon Phi(TM) coprocessor formally codenamed Knights Landing 2826 // Or the number of cores for Intel(R) Xeon(R) processors 2827 // Set the maximum number of NUMA nodes and L3's to number of packages 2828 __kmp_hier_max_units[kmp_hier_layer_e::LAYER_THREAD + 1] = 2829 nPackages * nCoresPerPkg * __kmp_nThreadsPerCore; 2830 __kmp_hier_max_units[kmp_hier_layer_e::LAYER_L1 + 1] = __kmp_ncores; 2831 #if KMP_ARCH_X86_64 && (KMP_OS_LINUX || KMP_OS_FREEBSD || KMP_OS_WINDOWS) && \ 2832 KMP_MIC_SUPPORTED 2833 if (__kmp_mic_type >= mic3) 2834 __kmp_hier_max_units[kmp_hier_layer_e::LAYER_L2 + 1] = __kmp_ncores / 2; 2835 else 2836 #endif // KMP_ARCH_X86_64 && (KMP_OS_LINUX || KMP_OS_WINDOWS) 2837 __kmp_hier_max_units[kmp_hier_layer_e::LAYER_L2 + 1] = __kmp_ncores; 2838 __kmp_hier_max_units[kmp_hier_layer_e::LAYER_L3 + 1] = nPackages; 2839 __kmp_hier_max_units[kmp_hier_layer_e::LAYER_NUMA + 1] = nPackages; 2840 __kmp_hier_max_units[kmp_hier_layer_e::LAYER_LOOP + 1] = 1; 2841 // Set the number of threads per unit 2842 // Number of hardware threads per L1/L2/L3/NUMA/LOOP 2843 __kmp_hier_threads_per[kmp_hier_layer_e::LAYER_THREAD + 1] = 1; 2844 __kmp_hier_threads_per[kmp_hier_layer_e::LAYER_L1 + 1] = 2845 __kmp_nThreadsPerCore; 2846 #if KMP_ARCH_X86_64 && (KMP_OS_LINUX || KMP_OS_FREEBSD || KMP_OS_WINDOWS) && \ 2847 KMP_MIC_SUPPORTED 2848 if (__kmp_mic_type >= mic3) 2849 __kmp_hier_threads_per[kmp_hier_layer_e::LAYER_L2 + 1] = 2850 2 * __kmp_nThreadsPerCore; 2851 else 2852 #endif // KMP_ARCH_X86_64 && (KMP_OS_LINUX || KMP_OS_WINDOWS) 2853 __kmp_hier_threads_per[kmp_hier_layer_e::LAYER_L2 + 1] = 2854 __kmp_nThreadsPerCore; 2855 __kmp_hier_threads_per[kmp_hier_layer_e::LAYER_L3 + 1] = 2856 nCoresPerPkg * __kmp_nThreadsPerCore; 2857 __kmp_hier_threads_per[kmp_hier_layer_e::LAYER_NUMA + 1] = 2858 nCoresPerPkg * __kmp_nThreadsPerCore; 2859 __kmp_hier_threads_per[kmp_hier_layer_e::LAYER_LOOP + 1] = 2860 nPackages * nCoresPerPkg * __kmp_nThreadsPerCore; 2861 } 2862 2863 // Return the index into the hierarchy for this tid and layer type (L1, L2, etc) 2864 // i.e., this thread's L1 or this thread's L2, etc. 2865 int __kmp_dispatch_get_index(int tid, kmp_hier_layer_e type) { 2866 int index = type + 1; 2867 int num_hw_threads = __kmp_hier_max_units[kmp_hier_layer_e::LAYER_THREAD + 1]; 2868 KMP_DEBUG_ASSERT(type != kmp_hier_layer_e::LAYER_LAST); 2869 if (type == kmp_hier_layer_e::LAYER_THREAD) 2870 return tid; 2871 else if (type == kmp_hier_layer_e::LAYER_LOOP) 2872 return 0; 2873 KMP_DEBUG_ASSERT(__kmp_hier_max_units[index] != 0); 2874 if (tid >= num_hw_threads) 2875 tid = tid % num_hw_threads; 2876 return (tid / __kmp_hier_threads_per[index]) % __kmp_hier_max_units[index]; 2877 } 2878 2879 // Return the number of t1's per t2 2880 int __kmp_dispatch_get_t1_per_t2(kmp_hier_layer_e t1, kmp_hier_layer_e t2) { 2881 int i1 = t1 + 1; 2882 int i2 = t2 + 1; 2883 KMP_DEBUG_ASSERT(i1 <= i2); 2884 KMP_DEBUG_ASSERT(t1 != kmp_hier_layer_e::LAYER_LAST); 2885 KMP_DEBUG_ASSERT(t2 != kmp_hier_layer_e::LAYER_LAST); 2886 KMP_DEBUG_ASSERT(__kmp_hier_threads_per[i1] != 0); 2887 // (nthreads/t2) / (nthreads/t1) = t1 / t2 2888 return __kmp_hier_threads_per[i2] / __kmp_hier_threads_per[i1]; 2889 } 2890 #endif // KMP_USE_HIER_SCHED 2891 2892 static inline const char *__kmp_cpuinfo_get_filename() { 2893 const char *filename; 2894 if (__kmp_cpuinfo_file != nullptr) 2895 filename = __kmp_cpuinfo_file; 2896 else 2897 filename = "/proc/cpuinfo"; 2898 return filename; 2899 } 2900 2901 static inline const char *__kmp_cpuinfo_get_envvar() { 2902 const char *envvar = nullptr; 2903 if (__kmp_cpuinfo_file != nullptr) 2904 envvar = "KMP_CPUINFO_FILE"; 2905 return envvar; 2906 } 2907 2908 // Parse /proc/cpuinfo (or an alternate file in the same format) to obtain the 2909 // affinity map. On AIX, the map is obtained through system SRAD (Scheduler 2910 // Resource Allocation Domain). 2911 static bool __kmp_affinity_create_cpuinfo_map(int *line, 2912 kmp_i18n_id_t *const msg_id) { 2913 *msg_id = kmp_i18n_null; 2914 2915 #if KMP_OS_AIX 2916 unsigned num_records = __kmp_xproc; 2917 #else 2918 const char *filename = __kmp_cpuinfo_get_filename(); 2919 const char *envvar = __kmp_cpuinfo_get_envvar(); 2920 2921 if (__kmp_affinity.flags.verbose) { 2922 KMP_INFORM(AffParseFilename, "KMP_AFFINITY", filename); 2923 } 2924 2925 kmp_safe_raii_file_t f(filename, "r", envvar); 2926 2927 // Scan of the file, and count the number of "processor" (osId) fields, 2928 // and find the highest value of <n> for a node_<n> field. 2929 char buf[256]; 2930 unsigned num_records = 0; 2931 while (!feof(f)) { 2932 buf[sizeof(buf) - 1] = 1; 2933 if (!fgets(buf, sizeof(buf), f)) { 2934 // Read errors presumably because of EOF 2935 break; 2936 } 2937 2938 char s1[] = "processor"; 2939 if (strncmp(buf, s1, sizeof(s1) - 1) == 0) { 2940 num_records++; 2941 continue; 2942 } 2943 2944 // FIXME - this will match "node_<n> <garbage>" 2945 unsigned level; 2946 if (KMP_SSCANF(buf, "node_%u id", &level) == 1) { 2947 // validate the input fisrt: 2948 if (level > (unsigned)__kmp_xproc) { // level is too big 2949 level = __kmp_xproc; 2950 } 2951 if (nodeIdIndex + level >= maxIndex) { 2952 maxIndex = nodeIdIndex + level; 2953 } 2954 continue; 2955 } 2956 } 2957 2958 // Check for empty file / no valid processor records, or too many. The number 2959 // of records can't exceed the number of valid bits in the affinity mask. 2960 if (num_records == 0) { 2961 *msg_id = kmp_i18n_str_NoProcRecords; 2962 return false; 2963 } 2964 if (num_records > (unsigned)__kmp_xproc) { 2965 *msg_id = kmp_i18n_str_TooManyProcRecords; 2966 return false; 2967 } 2968 2969 // Set the file pointer back to the beginning, so that we can scan the file 2970 // again, this time performing a full parse of the data. Allocate a vector of 2971 // ProcCpuInfo object, where we will place the data. Adding an extra element 2972 // at the end allows us to remove a lot of extra checks for termination 2973 // conditions. 2974 if (fseek(f, 0, SEEK_SET) != 0) { 2975 *msg_id = kmp_i18n_str_CantRewindCpuinfo; 2976 return false; 2977 } 2978 #endif // KMP_OS_AIX 2979 2980 // Allocate the array of records to store the proc info in. The dummy 2981 // element at the end makes the logic in filling them out easier to code. 2982 unsigned **threadInfo = 2983 (unsigned **)__kmp_allocate((num_records + 1) * sizeof(unsigned *)); 2984 unsigned i; 2985 for (i = 0; i <= num_records; i++) { 2986 threadInfo[i] = 2987 (unsigned *)__kmp_allocate((maxIndex + 1) * sizeof(unsigned)); 2988 } 2989 2990 #define CLEANUP_THREAD_INFO \ 2991 for (i = 0; i <= num_records; i++) { \ 2992 __kmp_free(threadInfo[i]); \ 2993 } \ 2994 __kmp_free(threadInfo); 2995 2996 // A value of UINT_MAX means that we didn't find the field 2997 unsigned __index; 2998 2999 #define INIT_PROC_INFO(p) \ 3000 for (__index = 0; __index <= maxIndex; __index++) { \ 3001 (p)[__index] = UINT_MAX; \ 3002 } 3003 3004 for (i = 0; i <= num_records; i++) { 3005 INIT_PROC_INFO(threadInfo[i]); 3006 } 3007 3008 #if KMP_OS_AIX 3009 int smt_threads; 3010 lpar_info_format1_t cpuinfo; 3011 unsigned num_avail = __kmp_xproc; 3012 3013 if (__kmp_affinity.flags.verbose) 3014 KMP_INFORM(AffParseFilename, "KMP_AFFINITY", "system info for topology"); 3015 3016 // Get the number of SMT threads per core. 3017 int retval = 3018 lpar_get_info(LPAR_INFO_FORMAT1, &cpuinfo, sizeof(lpar_info_format1_t)); 3019 if (!retval) 3020 smt_threads = cpuinfo.smt_threads; 3021 else { 3022 CLEANUP_THREAD_INFO; 3023 *msg_id = kmp_i18n_str_UnknownTopology; 3024 return false; 3025 } 3026 3027 // Allocate a resource set containing available system resourses. 3028 rsethandle_t sys_rset = rs_alloc(RS_SYSTEM); 3029 if (sys_rset == NULL) { 3030 CLEANUP_THREAD_INFO; 3031 *msg_id = kmp_i18n_str_UnknownTopology; 3032 return false; 3033 } 3034 // Allocate a resource set for the SRAD info. 3035 rsethandle_t srad = rs_alloc(RS_EMPTY); 3036 if (srad == NULL) { 3037 rs_free(sys_rset); 3038 CLEANUP_THREAD_INFO; 3039 *msg_id = kmp_i18n_str_UnknownTopology; 3040 return false; 3041 } 3042 3043 // Get the SRAD system detail level. 3044 int sradsdl = rs_getinfo(NULL, R_SRADSDL, 0); 3045 if (sradsdl < 0) { 3046 rs_free(sys_rset); 3047 rs_free(srad); 3048 CLEANUP_THREAD_INFO; 3049 *msg_id = kmp_i18n_str_UnknownTopology; 3050 return false; 3051 } 3052 // Get the number of RADs at that SRAD SDL. 3053 int num_rads = rs_numrads(sys_rset, sradsdl, 0); 3054 if (num_rads < 0) { 3055 rs_free(sys_rset); 3056 rs_free(srad); 3057 CLEANUP_THREAD_INFO; 3058 *msg_id = kmp_i18n_str_UnknownTopology; 3059 return false; 3060 } 3061 3062 // Get the maximum number of procs that may be contained in a resource set. 3063 int max_procs = rs_getinfo(NULL, R_MAXPROCS, 0); 3064 if (max_procs < 0) { 3065 rs_free(sys_rset); 3066 rs_free(srad); 3067 CLEANUP_THREAD_INFO; 3068 *msg_id = kmp_i18n_str_UnknownTopology; 3069 return false; 3070 } 3071 3072 int cur_rad = 0; 3073 int num_set = 0; 3074 for (int srad_idx = 0; cur_rad < num_rads && srad_idx < VMI_MAXRADS; 3075 ++srad_idx) { 3076 // Check if the SRAD is available in the RSET. 3077 if (rs_getrad(sys_rset, srad, sradsdl, srad_idx, 0) < 0) 3078 continue; 3079 3080 for (int cpu = 0; cpu < max_procs; cpu++) { 3081 // Set the info for the cpu if it is in the SRAD. 3082 if (rs_op(RS_TESTRESOURCE, srad, NULL, R_PROCS, cpu)) { 3083 threadInfo[cpu][osIdIndex] = cpu; 3084 threadInfo[cpu][pkgIdIndex] = cur_rad; 3085 threadInfo[cpu][coreIdIndex] = cpu / smt_threads; 3086 ++num_set; 3087 if (num_set >= num_avail) { 3088 // Done if all available CPUs have been set. 3089 break; 3090 } 3091 } 3092 } 3093 ++cur_rad; 3094 } 3095 rs_free(sys_rset); 3096 rs_free(srad); 3097 3098 // The topology is already sorted. 3099 3100 #else // !KMP_OS_AIX 3101 unsigned num_avail = 0; 3102 *line = 0; 3103 #if KMP_ARCH_S390X 3104 bool reading_s390x_sys_info = true; 3105 #endif 3106 while (!feof(f)) { 3107 // Create an inner scoping level, so that all the goto targets at the end of 3108 // the loop appear in an outer scoping level. This avoids warnings about 3109 // jumping past an initialization to a target in the same block. 3110 { 3111 buf[sizeof(buf) - 1] = 1; 3112 bool long_line = false; 3113 if (!fgets(buf, sizeof(buf), f)) { 3114 // Read errors presumably because of EOF 3115 // If there is valid data in threadInfo[num_avail], then fake 3116 // a blank line in ensure that the last address gets parsed. 3117 bool valid = false; 3118 for (i = 0; i <= maxIndex; i++) { 3119 if (threadInfo[num_avail][i] != UINT_MAX) { 3120 valid = true; 3121 } 3122 } 3123 if (!valid) { 3124 break; 3125 } 3126 buf[0] = 0; 3127 } else if (!buf[sizeof(buf) - 1]) { 3128 // The line is longer than the buffer. Set a flag and don't 3129 // emit an error if we were going to ignore the line, anyway. 3130 long_line = true; 3131 3132 #define CHECK_LINE \ 3133 if (long_line) { \ 3134 CLEANUP_THREAD_INFO; \ 3135 *msg_id = kmp_i18n_str_LongLineCpuinfo; \ 3136 return false; \ 3137 } 3138 } 3139 (*line)++; 3140 3141 #if KMP_ARCH_LOONGARCH64 3142 // The parsing logic of /proc/cpuinfo in this function highly depends on 3143 // the blank lines between each processor info block. But on LoongArch a 3144 // blank line exists before the first processor info block (i.e. after the 3145 // "system type" line). This blank line was added because the "system 3146 // type" line is unrelated to any of the CPUs. We must skip this line so 3147 // that the original logic works on LoongArch. 3148 if (*buf == '\n' && *line == 2) 3149 continue; 3150 #endif 3151 #if KMP_ARCH_S390X 3152 // s390x /proc/cpuinfo starts with a variable number of lines containing 3153 // the overall system information. Skip them. 3154 if (reading_s390x_sys_info) { 3155 if (*buf == '\n') 3156 reading_s390x_sys_info = false; 3157 continue; 3158 } 3159 #endif 3160 3161 #if KMP_ARCH_S390X 3162 char s1[] = "cpu number"; 3163 #else 3164 char s1[] = "processor"; 3165 #endif 3166 if (strncmp(buf, s1, sizeof(s1) - 1) == 0) { 3167 CHECK_LINE; 3168 char *p = strchr(buf + sizeof(s1) - 1, ':'); 3169 unsigned val; 3170 if ((p == NULL) || (KMP_SSCANF(p + 1, "%u\n", &val) != 1)) 3171 goto no_val; 3172 if (threadInfo[num_avail][osIdIndex] != UINT_MAX) 3173 #if KMP_ARCH_AARCH64 3174 // Handle the old AArch64 /proc/cpuinfo layout differently, 3175 // it contains all of the 'processor' entries listed in a 3176 // single 'Processor' section, therefore the normal looking 3177 // for duplicates in that section will always fail. 3178 num_avail++; 3179 #else 3180 goto dup_field; 3181 #endif 3182 threadInfo[num_avail][osIdIndex] = val; 3183 #if KMP_OS_LINUX && !(KMP_ARCH_X86 || KMP_ARCH_X86_64) 3184 char path[256]; 3185 KMP_SNPRINTF( 3186 path, sizeof(path), 3187 "/sys/devices/system/cpu/cpu%u/topology/physical_package_id", 3188 threadInfo[num_avail][osIdIndex]); 3189 __kmp_read_from_file(path, "%u", &threadInfo[num_avail][pkgIdIndex]); 3190 3191 #if KMP_ARCH_S390X 3192 // Disambiguate physical_package_id. 3193 unsigned book_id; 3194 KMP_SNPRINTF(path, sizeof(path), 3195 "/sys/devices/system/cpu/cpu%u/topology/book_id", 3196 threadInfo[num_avail][osIdIndex]); 3197 __kmp_read_from_file(path, "%u", &book_id); 3198 threadInfo[num_avail][pkgIdIndex] |= (book_id << 8); 3199 3200 unsigned drawer_id; 3201 KMP_SNPRINTF(path, sizeof(path), 3202 "/sys/devices/system/cpu/cpu%u/topology/drawer_id", 3203 threadInfo[num_avail][osIdIndex]); 3204 __kmp_read_from_file(path, "%u", &drawer_id); 3205 threadInfo[num_avail][pkgIdIndex] |= (drawer_id << 16); 3206 #endif 3207 3208 KMP_SNPRINTF(path, sizeof(path), 3209 "/sys/devices/system/cpu/cpu%u/topology/core_id", 3210 threadInfo[num_avail][osIdIndex]); 3211 __kmp_read_from_file(path, "%u", &threadInfo[num_avail][coreIdIndex]); 3212 continue; 3213 #else 3214 } 3215 char s2[] = "physical id"; 3216 if (strncmp(buf, s2, sizeof(s2) - 1) == 0) { 3217 CHECK_LINE; 3218 char *p = strchr(buf + sizeof(s2) - 1, ':'); 3219 unsigned val; 3220 if ((p == NULL) || (KMP_SSCANF(p + 1, "%u\n", &val) != 1)) 3221 goto no_val; 3222 if (threadInfo[num_avail][pkgIdIndex] != UINT_MAX) 3223 goto dup_field; 3224 threadInfo[num_avail][pkgIdIndex] = val; 3225 continue; 3226 } 3227 char s3[] = "core id"; 3228 if (strncmp(buf, s3, sizeof(s3) - 1) == 0) { 3229 CHECK_LINE; 3230 char *p = strchr(buf + sizeof(s3) - 1, ':'); 3231 unsigned val; 3232 if ((p == NULL) || (KMP_SSCANF(p + 1, "%u\n", &val) != 1)) 3233 goto no_val; 3234 if (threadInfo[num_avail][coreIdIndex] != UINT_MAX) 3235 goto dup_field; 3236 threadInfo[num_avail][coreIdIndex] = val; 3237 continue; 3238 #endif // KMP_OS_LINUX && USE_SYSFS_INFO 3239 } 3240 char s4[] = "thread id"; 3241 if (strncmp(buf, s4, sizeof(s4) - 1) == 0) { 3242 CHECK_LINE; 3243 char *p = strchr(buf + sizeof(s4) - 1, ':'); 3244 unsigned val; 3245 if ((p == NULL) || (KMP_SSCANF(p + 1, "%u\n", &val) != 1)) 3246 goto no_val; 3247 if (threadInfo[num_avail][threadIdIndex] != UINT_MAX) 3248 goto dup_field; 3249 threadInfo[num_avail][threadIdIndex] = val; 3250 continue; 3251 } 3252 unsigned level; 3253 if (KMP_SSCANF(buf, "node_%u id", &level) == 1) { 3254 CHECK_LINE; 3255 char *p = strchr(buf + sizeof(s4) - 1, ':'); 3256 unsigned val; 3257 if ((p == NULL) || (KMP_SSCANF(p + 1, "%u\n", &val) != 1)) 3258 goto no_val; 3259 // validate the input before using level: 3260 if (level > (unsigned)__kmp_xproc) { // level is too big 3261 level = __kmp_xproc; 3262 } 3263 if (threadInfo[num_avail][nodeIdIndex + level] != UINT_MAX) 3264 goto dup_field; 3265 threadInfo[num_avail][nodeIdIndex + level] = val; 3266 continue; 3267 } 3268 3269 // We didn't recognize the leading token on the line. There are lots of 3270 // leading tokens that we don't recognize - if the line isn't empty, go on 3271 // to the next line. 3272 if ((*buf != 0) && (*buf != '\n')) { 3273 // If the line is longer than the buffer, read characters 3274 // until we find a newline. 3275 if (long_line) { 3276 int ch; 3277 while (((ch = fgetc(f)) != EOF) && (ch != '\n')) 3278 ; 3279 } 3280 continue; 3281 } 3282 3283 // A newline has signalled the end of the processor record. 3284 // Check that there aren't too many procs specified. 3285 if ((int)num_avail == __kmp_xproc) { 3286 CLEANUP_THREAD_INFO; 3287 *msg_id = kmp_i18n_str_TooManyEntries; 3288 return false; 3289 } 3290 3291 // Check for missing fields. The osId field must be there, and we 3292 // currently require that the physical id field is specified, also. 3293 if (threadInfo[num_avail][osIdIndex] == UINT_MAX) { 3294 CLEANUP_THREAD_INFO; 3295 *msg_id = kmp_i18n_str_MissingProcField; 3296 return false; 3297 } 3298 if (threadInfo[0][pkgIdIndex] == UINT_MAX) { 3299 CLEANUP_THREAD_INFO; 3300 *msg_id = kmp_i18n_str_MissingPhysicalIDField; 3301 return false; 3302 } 3303 3304 // Skip this proc if it is not included in the machine model. 3305 if (KMP_AFFINITY_CAPABLE() && 3306 !KMP_CPU_ISSET(threadInfo[num_avail][osIdIndex], 3307 __kmp_affin_fullMask)) { 3308 INIT_PROC_INFO(threadInfo[num_avail]); 3309 continue; 3310 } 3311 3312 // We have a successful parse of this proc's info. 3313 // Increment the counter, and prepare for the next proc. 3314 num_avail++; 3315 KMP_ASSERT(num_avail <= num_records); 3316 INIT_PROC_INFO(threadInfo[num_avail]); 3317 } 3318 continue; 3319 3320 no_val: 3321 CLEANUP_THREAD_INFO; 3322 *msg_id = kmp_i18n_str_MissingValCpuinfo; 3323 return false; 3324 3325 dup_field: 3326 CLEANUP_THREAD_INFO; 3327 *msg_id = kmp_i18n_str_DuplicateFieldCpuinfo; 3328 return false; 3329 } 3330 *line = 0; 3331 3332 #if KMP_MIC && REDUCE_TEAM_SIZE 3333 unsigned teamSize = 0; 3334 #endif // KMP_MIC && REDUCE_TEAM_SIZE 3335 3336 // check for num_records == __kmp_xproc ??? 3337 3338 // If it is configured to omit the package level when there is only a single 3339 // package, the logic at the end of this routine won't work if there is only a 3340 // single thread 3341 KMP_ASSERT(num_avail > 0); 3342 KMP_ASSERT(num_avail <= num_records); 3343 3344 // Sort the threadInfo table by physical Id. 3345 qsort(threadInfo, num_avail, sizeof(*threadInfo), 3346 __kmp_affinity_cmp_ProcCpuInfo_phys_id); 3347 3348 #endif // KMP_OS_AIX 3349 3350 // The table is now sorted by pkgId / coreId / threadId, but we really don't 3351 // know the radix of any of the fields. pkgId's may be sparsely assigned among 3352 // the chips on a system. Although coreId's are usually assigned 3353 // [0 .. coresPerPkg-1] and threadId's are usually assigned 3354 // [0..threadsPerCore-1], we don't want to make any such assumptions. 3355 // 3356 // For that matter, we don't know what coresPerPkg and threadsPerCore (or the 3357 // total # packages) are at this point - we want to determine that now. We 3358 // only have an upper bound on the first two figures. 3359 unsigned *counts = 3360 (unsigned *)__kmp_allocate((maxIndex + 1) * sizeof(unsigned)); 3361 unsigned *maxCt = 3362 (unsigned *)__kmp_allocate((maxIndex + 1) * sizeof(unsigned)); 3363 unsigned *totals = 3364 (unsigned *)__kmp_allocate((maxIndex + 1) * sizeof(unsigned)); 3365 unsigned *lastId = 3366 (unsigned *)__kmp_allocate((maxIndex + 1) * sizeof(unsigned)); 3367 3368 bool assign_thread_ids = false; 3369 unsigned threadIdCt; 3370 unsigned index; 3371 3372 restart_radix_check: 3373 threadIdCt = 0; 3374 3375 // Initialize the counter arrays with data from threadInfo[0]. 3376 if (assign_thread_ids) { 3377 if (threadInfo[0][threadIdIndex] == UINT_MAX) { 3378 threadInfo[0][threadIdIndex] = threadIdCt++; 3379 } else if (threadIdCt <= threadInfo[0][threadIdIndex]) { 3380 threadIdCt = threadInfo[0][threadIdIndex] + 1; 3381 } 3382 } 3383 for (index = 0; index <= maxIndex; index++) { 3384 counts[index] = 1; 3385 maxCt[index] = 1; 3386 totals[index] = 1; 3387 lastId[index] = threadInfo[0][index]; 3388 ; 3389 } 3390 3391 // Run through the rest of the OS procs. 3392 for (i = 1; i < num_avail; i++) { 3393 // Find the most significant index whose id differs from the id for the 3394 // previous OS proc. 3395 for (index = maxIndex; index >= threadIdIndex; index--) { 3396 if (assign_thread_ids && (index == threadIdIndex)) { 3397 // Auto-assign the thread id field if it wasn't specified. 3398 if (threadInfo[i][threadIdIndex] == UINT_MAX) { 3399 threadInfo[i][threadIdIndex] = threadIdCt++; 3400 } 3401 // Apparently the thread id field was specified for some entries and not 3402 // others. Start the thread id counter off at the next higher thread id. 3403 else if (threadIdCt <= threadInfo[i][threadIdIndex]) { 3404 threadIdCt = threadInfo[i][threadIdIndex] + 1; 3405 } 3406 } 3407 if (threadInfo[i][index] != lastId[index]) { 3408 // Run through all indices which are less significant, and reset the 3409 // counts to 1. At all levels up to and including index, we need to 3410 // increment the totals and record the last id. 3411 unsigned index2; 3412 for (index2 = threadIdIndex; index2 < index; index2++) { 3413 totals[index2]++; 3414 if (counts[index2] > maxCt[index2]) { 3415 maxCt[index2] = counts[index2]; 3416 } 3417 counts[index2] = 1; 3418 lastId[index2] = threadInfo[i][index2]; 3419 } 3420 counts[index]++; 3421 totals[index]++; 3422 lastId[index] = threadInfo[i][index]; 3423 3424 if (assign_thread_ids && (index > threadIdIndex)) { 3425 3426 #if KMP_MIC && REDUCE_TEAM_SIZE 3427 // The default team size is the total #threads in the machine 3428 // minus 1 thread for every core that has 3 or more threads. 3429 teamSize += (threadIdCt <= 2) ? (threadIdCt) : (threadIdCt - 1); 3430 #endif // KMP_MIC && REDUCE_TEAM_SIZE 3431 3432 // Restart the thread counter, as we are on a new core. 3433 threadIdCt = 0; 3434 3435 // Auto-assign the thread id field if it wasn't specified. 3436 if (threadInfo[i][threadIdIndex] == UINT_MAX) { 3437 threadInfo[i][threadIdIndex] = threadIdCt++; 3438 } 3439 3440 // Apparently the thread id field was specified for some entries and 3441 // not others. Start the thread id counter off at the next higher 3442 // thread id. 3443 else if (threadIdCt <= threadInfo[i][threadIdIndex]) { 3444 threadIdCt = threadInfo[i][threadIdIndex] + 1; 3445 } 3446 } 3447 break; 3448 } 3449 } 3450 if (index < threadIdIndex) { 3451 // If thread ids were specified, it is an error if they are not unique. 3452 // Also, check that we waven't already restarted the loop (to be safe - 3453 // shouldn't need to). 3454 if ((threadInfo[i][threadIdIndex] != UINT_MAX) || assign_thread_ids) { 3455 __kmp_free(lastId); 3456 __kmp_free(totals); 3457 __kmp_free(maxCt); 3458 __kmp_free(counts); 3459 CLEANUP_THREAD_INFO; 3460 *msg_id = kmp_i18n_str_PhysicalIDsNotUnique; 3461 return false; 3462 } 3463 3464 // If the thread ids were not specified and we see entries that 3465 // are duplicates, start the loop over and assign the thread ids manually. 3466 assign_thread_ids = true; 3467 goto restart_radix_check; 3468 } 3469 } 3470 3471 #if KMP_MIC && REDUCE_TEAM_SIZE 3472 // The default team size is the total #threads in the machine 3473 // minus 1 thread for every core that has 3 or more threads. 3474 teamSize += (threadIdCt <= 2) ? (threadIdCt) : (threadIdCt - 1); 3475 #endif // KMP_MIC && REDUCE_TEAM_SIZE 3476 3477 for (index = threadIdIndex; index <= maxIndex; index++) { 3478 if (counts[index] > maxCt[index]) { 3479 maxCt[index] = counts[index]; 3480 } 3481 } 3482 3483 __kmp_nThreadsPerCore = maxCt[threadIdIndex]; 3484 nCoresPerPkg = maxCt[coreIdIndex]; 3485 nPackages = totals[pkgIdIndex]; 3486 3487 // When affinity is off, this routine will still be called to set 3488 // __kmp_ncores, as well as __kmp_nThreadsPerCore, nCoresPerPkg, & nPackages. 3489 // Make sure all these vars are set correctly, and return now if affinity is 3490 // not enabled. 3491 __kmp_ncores = totals[coreIdIndex]; 3492 if (!KMP_AFFINITY_CAPABLE()) { 3493 KMP_ASSERT(__kmp_affinity.type == affinity_none); 3494 return true; 3495 } 3496 3497 #if KMP_MIC && REDUCE_TEAM_SIZE 3498 // Set the default team size. 3499 if ((__kmp_dflt_team_nth == 0) && (teamSize > 0)) { 3500 __kmp_dflt_team_nth = teamSize; 3501 KA_TRACE(20, ("__kmp_affinity_create_cpuinfo_map: setting " 3502 "__kmp_dflt_team_nth = %d\n", 3503 __kmp_dflt_team_nth)); 3504 } 3505 #endif // KMP_MIC && REDUCE_TEAM_SIZE 3506 3507 KMP_DEBUG_ASSERT(num_avail == (unsigned)__kmp_avail_proc); 3508 3509 // Count the number of levels which have more nodes at that level than at the 3510 // parent's level (with there being an implicit root node of the top level). 3511 // This is equivalent to saying that there is at least one node at this level 3512 // which has a sibling. These levels are in the map, and the package level is 3513 // always in the map. 3514 bool *inMap = (bool *)__kmp_allocate((maxIndex + 1) * sizeof(bool)); 3515 for (index = threadIdIndex; index < maxIndex; index++) { 3516 KMP_ASSERT(totals[index] >= totals[index + 1]); 3517 inMap[index] = (totals[index] > totals[index + 1]); 3518 } 3519 inMap[maxIndex] = (totals[maxIndex] > 1); 3520 inMap[pkgIdIndex] = true; 3521 inMap[coreIdIndex] = true; 3522 inMap[threadIdIndex] = true; 3523 3524 int depth = 0; 3525 int idx = 0; 3526 kmp_hw_t types[KMP_HW_LAST]; 3527 int pkgLevel = -1; 3528 int coreLevel = -1; 3529 int threadLevel = -1; 3530 for (index = threadIdIndex; index <= maxIndex; index++) { 3531 if (inMap[index]) { 3532 depth++; 3533 } 3534 } 3535 if (inMap[pkgIdIndex]) { 3536 pkgLevel = idx; 3537 types[idx++] = KMP_HW_SOCKET; 3538 } 3539 if (inMap[coreIdIndex]) { 3540 coreLevel = idx; 3541 types[idx++] = KMP_HW_CORE; 3542 } 3543 if (inMap[threadIdIndex]) { 3544 threadLevel = idx; 3545 types[idx++] = KMP_HW_THREAD; 3546 } 3547 KMP_ASSERT(depth > 0); 3548 3549 // Construct the data structure that is to be returned. 3550 __kmp_topology = kmp_topology_t::allocate(num_avail, depth, types); 3551 3552 for (i = 0; i < num_avail; ++i) { 3553 unsigned os = threadInfo[i][osIdIndex]; 3554 int src_index; 3555 kmp_hw_thread_t &hw_thread = __kmp_topology->at(i); 3556 hw_thread.clear(); 3557 hw_thread.os_id = os; 3558 3559 idx = 0; 3560 for (src_index = maxIndex; src_index >= threadIdIndex; src_index--) { 3561 if (!inMap[src_index]) { 3562 continue; 3563 } 3564 if (src_index == pkgIdIndex) { 3565 hw_thread.ids[pkgLevel] = threadInfo[i][src_index]; 3566 } else if (src_index == coreIdIndex) { 3567 hw_thread.ids[coreLevel] = threadInfo[i][src_index]; 3568 } else if (src_index == threadIdIndex) { 3569 hw_thread.ids[threadLevel] = threadInfo[i][src_index]; 3570 } 3571 } 3572 } 3573 3574 __kmp_free(inMap); 3575 __kmp_free(lastId); 3576 __kmp_free(totals); 3577 __kmp_free(maxCt); 3578 __kmp_free(counts); 3579 CLEANUP_THREAD_INFO; 3580 __kmp_topology->sort_ids(); 3581 if (!__kmp_topology->check_ids()) { 3582 kmp_topology_t::deallocate(__kmp_topology); 3583 __kmp_topology = nullptr; 3584 *msg_id = kmp_i18n_str_PhysicalIDsNotUnique; 3585 return false; 3586 } 3587 return true; 3588 } 3589 3590 // Create and return a table of affinity masks, indexed by OS thread ID. 3591 // This routine handles OR'ing together all the affinity masks of threads 3592 // that are sufficiently close, if granularity > fine. 3593 template <typename FindNextFunctionType> 3594 static void __kmp_create_os_id_masks(unsigned *numUnique, 3595 kmp_affinity_t &affinity, 3596 FindNextFunctionType find_next) { 3597 // First form a table of affinity masks in order of OS thread id. 3598 int maxOsId; 3599 int i; 3600 int numAddrs = __kmp_topology->get_num_hw_threads(); 3601 int depth = __kmp_topology->get_depth(); 3602 const char *env_var = __kmp_get_affinity_env_var(affinity); 3603 KMP_ASSERT(numAddrs); 3604 KMP_ASSERT(depth); 3605 3606 i = find_next(-1); 3607 // If could not find HW thread location with attributes, then return and 3608 // fallback to increment find_next and disregard core attributes. 3609 if (i >= numAddrs) 3610 return; 3611 3612 maxOsId = 0; 3613 for (i = numAddrs - 1;; --i) { 3614 int osId = __kmp_topology->at(i).os_id; 3615 if (osId > maxOsId) { 3616 maxOsId = osId; 3617 } 3618 if (i == 0) 3619 break; 3620 } 3621 affinity.num_os_id_masks = maxOsId + 1; 3622 KMP_CPU_ALLOC_ARRAY(affinity.os_id_masks, affinity.num_os_id_masks); 3623 KMP_ASSERT(affinity.gran_levels >= 0); 3624 if (affinity.flags.verbose && (affinity.gran_levels > 0)) { 3625 KMP_INFORM(ThreadsMigrate, env_var, affinity.gran_levels); 3626 } 3627 if (affinity.gran_levels >= (int)depth) { 3628 KMP_AFF_WARNING(affinity, AffThreadsMayMigrate); 3629 } 3630 3631 // Run through the table, forming the masks for all threads on each core. 3632 // Threads on the same core will have identical kmp_hw_thread_t objects, not 3633 // considering the last level, which must be the thread id. All threads on a 3634 // core will appear consecutively. 3635 int unique = 0; 3636 int j = 0; // index of 1st thread on core 3637 int leader = 0; 3638 kmp_affin_mask_t *sum; 3639 KMP_CPU_ALLOC_ON_STACK(sum); 3640 KMP_CPU_ZERO(sum); 3641 3642 i = j = leader = find_next(-1); 3643 KMP_CPU_SET(__kmp_topology->at(i).os_id, sum); 3644 kmp_full_mask_modifier_t full_mask; 3645 for (i = find_next(i); i < numAddrs; i = find_next(i)) { 3646 // If this thread is sufficiently close to the leader (within the 3647 // granularity setting), then set the bit for this os thread in the 3648 // affinity mask for this group, and go on to the next thread. 3649 if (__kmp_topology->is_close(leader, i, affinity)) { 3650 KMP_CPU_SET(__kmp_topology->at(i).os_id, sum); 3651 continue; 3652 } 3653 3654 // For every thread in this group, copy the mask to the thread's entry in 3655 // the OS Id mask table. Mark the first address as a leader. 3656 for (; j < i; j = find_next(j)) { 3657 int osId = __kmp_topology->at(j).os_id; 3658 KMP_DEBUG_ASSERT(osId <= maxOsId); 3659 kmp_affin_mask_t *mask = KMP_CPU_INDEX(affinity.os_id_masks, osId); 3660 KMP_CPU_COPY(mask, sum); 3661 __kmp_topology->at(j).leader = (j == leader); 3662 } 3663 unique++; 3664 3665 // Start a new mask. 3666 leader = i; 3667 full_mask.include(sum); 3668 KMP_CPU_ZERO(sum); 3669 KMP_CPU_SET(__kmp_topology->at(i).os_id, sum); 3670 } 3671 3672 // For every thread in last group, copy the mask to the thread's 3673 // entry in the OS Id mask table. 3674 for (; j < i; j = find_next(j)) { 3675 int osId = __kmp_topology->at(j).os_id; 3676 KMP_DEBUG_ASSERT(osId <= maxOsId); 3677 kmp_affin_mask_t *mask = KMP_CPU_INDEX(affinity.os_id_masks, osId); 3678 KMP_CPU_COPY(mask, sum); 3679 __kmp_topology->at(j).leader = (j == leader); 3680 } 3681 full_mask.include(sum); 3682 unique++; 3683 KMP_CPU_FREE_FROM_STACK(sum); 3684 3685 // See if the OS Id mask table further restricts or changes the full mask 3686 if (full_mask.restrict_to_mask() && affinity.flags.verbose) { 3687 __kmp_topology->print(env_var); 3688 } 3689 3690 *numUnique = unique; 3691 } 3692 3693 // Stuff for the affinity proclist parsers. It's easier to declare these vars 3694 // as file-static than to try and pass them through the calling sequence of 3695 // the recursive-descent OMP_PLACES parser. 3696 static kmp_affin_mask_t *newMasks; 3697 static int numNewMasks; 3698 static int nextNewMask; 3699 3700 #define ADD_MASK(_mask) \ 3701 { \ 3702 if (nextNewMask >= numNewMasks) { \ 3703 int i; \ 3704 numNewMasks *= 2; \ 3705 kmp_affin_mask_t *temp; \ 3706 KMP_CPU_INTERNAL_ALLOC_ARRAY(temp, numNewMasks); \ 3707 for (i = 0; i < numNewMasks / 2; i++) { \ 3708 kmp_affin_mask_t *src = KMP_CPU_INDEX(newMasks, i); \ 3709 kmp_affin_mask_t *dest = KMP_CPU_INDEX(temp, i); \ 3710 KMP_CPU_COPY(dest, src); \ 3711 } \ 3712 KMP_CPU_INTERNAL_FREE_ARRAY(newMasks, numNewMasks / 2); \ 3713 newMasks = temp; \ 3714 } \ 3715 KMP_CPU_COPY(KMP_CPU_INDEX(newMasks, nextNewMask), (_mask)); \ 3716 nextNewMask++; \ 3717 } 3718 3719 #define ADD_MASK_OSID(_osId, _osId2Mask, _maxOsId) \ 3720 { \ 3721 if (((_osId) > _maxOsId) || \ 3722 (!KMP_CPU_ISSET((_osId), KMP_CPU_INDEX((_osId2Mask), (_osId))))) { \ 3723 KMP_AFF_WARNING(affinity, AffIgnoreInvalidProcID, _osId); \ 3724 } else { \ 3725 ADD_MASK(KMP_CPU_INDEX(_osId2Mask, (_osId))); \ 3726 } \ 3727 } 3728 3729 // Re-parse the proclist (for the explicit affinity type), and form the list 3730 // of affinity newMasks indexed by gtid. 3731 static void __kmp_affinity_process_proclist(kmp_affinity_t &affinity) { 3732 int i; 3733 kmp_affin_mask_t **out_masks = &affinity.masks; 3734 unsigned *out_numMasks = &affinity.num_masks; 3735 const char *proclist = affinity.proclist; 3736 kmp_affin_mask_t *osId2Mask = affinity.os_id_masks; 3737 int maxOsId = affinity.num_os_id_masks - 1; 3738 const char *scan = proclist; 3739 const char *next = proclist; 3740 3741 // We use malloc() for the temporary mask vector, so that we can use 3742 // realloc() to extend it. 3743 numNewMasks = 2; 3744 KMP_CPU_INTERNAL_ALLOC_ARRAY(newMasks, numNewMasks); 3745 nextNewMask = 0; 3746 kmp_affin_mask_t *sumMask; 3747 KMP_CPU_ALLOC(sumMask); 3748 int setSize = 0; 3749 3750 for (;;) { 3751 int start, end, stride; 3752 3753 SKIP_WS(scan); 3754 next = scan; 3755 if (*next == '\0') { 3756 break; 3757 } 3758 3759 if (*next == '{') { 3760 int num; 3761 setSize = 0; 3762 next++; // skip '{' 3763 SKIP_WS(next); 3764 scan = next; 3765 3766 // Read the first integer in the set. 3767 KMP_ASSERT2((*next >= '0') && (*next <= '9'), "bad proclist"); 3768 SKIP_DIGITS(next); 3769 num = __kmp_str_to_int(scan, *next); 3770 KMP_ASSERT2(num >= 0, "bad explicit proc list"); 3771 3772 // Copy the mask for that osId to the sum (union) mask. 3773 if ((num > maxOsId) || 3774 (!KMP_CPU_ISSET(num, KMP_CPU_INDEX(osId2Mask, num)))) { 3775 KMP_AFF_WARNING(affinity, AffIgnoreInvalidProcID, num); 3776 KMP_CPU_ZERO(sumMask); 3777 } else { 3778 KMP_CPU_COPY(sumMask, KMP_CPU_INDEX(osId2Mask, num)); 3779 setSize = 1; 3780 } 3781 3782 for (;;) { 3783 // Check for end of set. 3784 SKIP_WS(next); 3785 if (*next == '}') { 3786 next++; // skip '}' 3787 break; 3788 } 3789 3790 // Skip optional comma. 3791 if (*next == ',') { 3792 next++; 3793 } 3794 SKIP_WS(next); 3795 3796 // Read the next integer in the set. 3797 scan = next; 3798 KMP_ASSERT2((*next >= '0') && (*next <= '9'), "bad explicit proc list"); 3799 3800 SKIP_DIGITS(next); 3801 num = __kmp_str_to_int(scan, *next); 3802 KMP_ASSERT2(num >= 0, "bad explicit proc list"); 3803 3804 // Add the mask for that osId to the sum mask. 3805 if ((num > maxOsId) || 3806 (!KMP_CPU_ISSET(num, KMP_CPU_INDEX(osId2Mask, num)))) { 3807 KMP_AFF_WARNING(affinity, AffIgnoreInvalidProcID, num); 3808 } else { 3809 KMP_CPU_UNION(sumMask, KMP_CPU_INDEX(osId2Mask, num)); 3810 setSize++; 3811 } 3812 } 3813 if (setSize > 0) { 3814 ADD_MASK(sumMask); 3815 } 3816 3817 SKIP_WS(next); 3818 if (*next == ',') { 3819 next++; 3820 } 3821 scan = next; 3822 continue; 3823 } 3824 3825 // Read the first integer. 3826 KMP_ASSERT2((*next >= '0') && (*next <= '9'), "bad explicit proc list"); 3827 SKIP_DIGITS(next); 3828 start = __kmp_str_to_int(scan, *next); 3829 KMP_ASSERT2(start >= 0, "bad explicit proc list"); 3830 SKIP_WS(next); 3831 3832 // If this isn't a range, then add a mask to the list and go on. 3833 if (*next != '-') { 3834 ADD_MASK_OSID(start, osId2Mask, maxOsId); 3835 3836 // Skip optional comma. 3837 if (*next == ',') { 3838 next++; 3839 } 3840 scan = next; 3841 continue; 3842 } 3843 3844 // This is a range. Skip over the '-' and read in the 2nd int. 3845 next++; // skip '-' 3846 SKIP_WS(next); 3847 scan = next; 3848 KMP_ASSERT2((*next >= '0') && (*next <= '9'), "bad explicit proc list"); 3849 SKIP_DIGITS(next); 3850 end = __kmp_str_to_int(scan, *next); 3851 KMP_ASSERT2(end >= 0, "bad explicit proc list"); 3852 3853 // Check for a stride parameter 3854 stride = 1; 3855 SKIP_WS(next); 3856 if (*next == ':') { 3857 // A stride is specified. Skip over the ':" and read the 3rd int. 3858 int sign = +1; 3859 next++; // skip ':' 3860 SKIP_WS(next); 3861 scan = next; 3862 if (*next == '-') { 3863 sign = -1; 3864 next++; 3865 SKIP_WS(next); 3866 scan = next; 3867 } 3868 KMP_ASSERT2((*next >= '0') && (*next <= '9'), "bad explicit proc list"); 3869 SKIP_DIGITS(next); 3870 stride = __kmp_str_to_int(scan, *next); 3871 KMP_ASSERT2(stride >= 0, "bad explicit proc list"); 3872 stride *= sign; 3873 } 3874 3875 // Do some range checks. 3876 KMP_ASSERT2(stride != 0, "bad explicit proc list"); 3877 if (stride > 0) { 3878 KMP_ASSERT2(start <= end, "bad explicit proc list"); 3879 } else { 3880 KMP_ASSERT2(start >= end, "bad explicit proc list"); 3881 } 3882 KMP_ASSERT2((end - start) / stride <= 65536, "bad explicit proc list"); 3883 3884 // Add the mask for each OS proc # to the list. 3885 if (stride > 0) { 3886 do { 3887 ADD_MASK_OSID(start, osId2Mask, maxOsId); 3888 start += stride; 3889 } while (start <= end); 3890 } else { 3891 do { 3892 ADD_MASK_OSID(start, osId2Mask, maxOsId); 3893 start += stride; 3894 } while (start >= end); 3895 } 3896 3897 // Skip optional comma. 3898 SKIP_WS(next); 3899 if (*next == ',') { 3900 next++; 3901 } 3902 scan = next; 3903 } 3904 3905 *out_numMasks = nextNewMask; 3906 if (nextNewMask == 0) { 3907 *out_masks = NULL; 3908 KMP_CPU_INTERNAL_FREE_ARRAY(newMasks, numNewMasks); 3909 return; 3910 } 3911 KMP_CPU_ALLOC_ARRAY((*out_masks), nextNewMask); 3912 for (i = 0; i < nextNewMask; i++) { 3913 kmp_affin_mask_t *src = KMP_CPU_INDEX(newMasks, i); 3914 kmp_affin_mask_t *dest = KMP_CPU_INDEX((*out_masks), i); 3915 KMP_CPU_COPY(dest, src); 3916 } 3917 KMP_CPU_INTERNAL_FREE_ARRAY(newMasks, numNewMasks); 3918 KMP_CPU_FREE(sumMask); 3919 } 3920 3921 /*----------------------------------------------------------------------------- 3922 Re-parse the OMP_PLACES proc id list, forming the newMasks for the different 3923 places. Again, Here is the grammar: 3924 3925 place_list := place 3926 place_list := place , place_list 3927 place := num 3928 place := place : num 3929 place := place : num : signed 3930 place := { subplacelist } 3931 place := ! place // (lowest priority) 3932 subplace_list := subplace 3933 subplace_list := subplace , subplace_list 3934 subplace := num 3935 subplace := num : num 3936 subplace := num : num : signed 3937 signed := num 3938 signed := + signed 3939 signed := - signed 3940 -----------------------------------------------------------------------------*/ 3941 static void __kmp_process_subplace_list(const char **scan, 3942 kmp_affinity_t &affinity, int maxOsId, 3943 kmp_affin_mask_t *tempMask, 3944 int *setSize) { 3945 const char *next; 3946 kmp_affin_mask_t *osId2Mask = affinity.os_id_masks; 3947 3948 for (;;) { 3949 int start, count, stride, i; 3950 3951 // Read in the starting proc id 3952 SKIP_WS(*scan); 3953 KMP_ASSERT2((**scan >= '0') && (**scan <= '9'), "bad explicit places list"); 3954 next = *scan; 3955 SKIP_DIGITS(next); 3956 start = __kmp_str_to_int(*scan, *next); 3957 KMP_ASSERT(start >= 0); 3958 *scan = next; 3959 3960 // valid follow sets are ',' ':' and '}' 3961 SKIP_WS(*scan); 3962 if (**scan == '}' || **scan == ',') { 3963 if ((start > maxOsId) || 3964 (!KMP_CPU_ISSET(start, KMP_CPU_INDEX(osId2Mask, start)))) { 3965 KMP_AFF_WARNING(affinity, AffIgnoreInvalidProcID, start); 3966 } else { 3967 KMP_CPU_UNION(tempMask, KMP_CPU_INDEX(osId2Mask, start)); 3968 (*setSize)++; 3969 } 3970 if (**scan == '}') { 3971 break; 3972 } 3973 (*scan)++; // skip ',' 3974 continue; 3975 } 3976 KMP_ASSERT2(**scan == ':', "bad explicit places list"); 3977 (*scan)++; // skip ':' 3978 3979 // Read count parameter 3980 SKIP_WS(*scan); 3981 KMP_ASSERT2((**scan >= '0') && (**scan <= '9'), "bad explicit places list"); 3982 next = *scan; 3983 SKIP_DIGITS(next); 3984 count = __kmp_str_to_int(*scan, *next); 3985 KMP_ASSERT(count >= 0); 3986 *scan = next; 3987 3988 // valid follow sets are ',' ':' and '}' 3989 SKIP_WS(*scan); 3990 if (**scan == '}' || **scan == ',') { 3991 for (i = 0; i < count; i++) { 3992 if ((start > maxOsId) || 3993 (!KMP_CPU_ISSET(start, KMP_CPU_INDEX(osId2Mask, start)))) { 3994 KMP_AFF_WARNING(affinity, AffIgnoreInvalidProcID, start); 3995 break; // don't proliferate warnings for large count 3996 } else { 3997 KMP_CPU_UNION(tempMask, KMP_CPU_INDEX(osId2Mask, start)); 3998 start++; 3999 (*setSize)++; 4000 } 4001 } 4002 if (**scan == '}') { 4003 break; 4004 } 4005 (*scan)++; // skip ',' 4006 continue; 4007 } 4008 KMP_ASSERT2(**scan == ':', "bad explicit places list"); 4009 (*scan)++; // skip ':' 4010 4011 // Read stride parameter 4012 int sign = +1; 4013 for (;;) { 4014 SKIP_WS(*scan); 4015 if (**scan == '+') { 4016 (*scan)++; // skip '+' 4017 continue; 4018 } 4019 if (**scan == '-') { 4020 sign *= -1; 4021 (*scan)++; // skip '-' 4022 continue; 4023 } 4024 break; 4025 } 4026 SKIP_WS(*scan); 4027 KMP_ASSERT2((**scan >= '0') && (**scan <= '9'), "bad explicit places list"); 4028 next = *scan; 4029 SKIP_DIGITS(next); 4030 stride = __kmp_str_to_int(*scan, *next); 4031 KMP_ASSERT(stride >= 0); 4032 *scan = next; 4033 stride *= sign; 4034 4035 // valid follow sets are ',' and '}' 4036 SKIP_WS(*scan); 4037 if (**scan == '}' || **scan == ',') { 4038 for (i = 0; i < count; i++) { 4039 if ((start > maxOsId) || 4040 (!KMP_CPU_ISSET(start, KMP_CPU_INDEX(osId2Mask, start)))) { 4041 KMP_AFF_WARNING(affinity, AffIgnoreInvalidProcID, start); 4042 break; // don't proliferate warnings for large count 4043 } else { 4044 KMP_CPU_UNION(tempMask, KMP_CPU_INDEX(osId2Mask, start)); 4045 start += stride; 4046 (*setSize)++; 4047 } 4048 } 4049 if (**scan == '}') { 4050 break; 4051 } 4052 (*scan)++; // skip ',' 4053 continue; 4054 } 4055 4056 KMP_ASSERT2(0, "bad explicit places list"); 4057 } 4058 } 4059 4060 static void __kmp_process_place(const char **scan, kmp_affinity_t &affinity, 4061 int maxOsId, kmp_affin_mask_t *tempMask, 4062 int *setSize) { 4063 const char *next; 4064 kmp_affin_mask_t *osId2Mask = affinity.os_id_masks; 4065 4066 // valid follow sets are '{' '!' and num 4067 SKIP_WS(*scan); 4068 if (**scan == '{') { 4069 (*scan)++; // skip '{' 4070 __kmp_process_subplace_list(scan, affinity, maxOsId, tempMask, setSize); 4071 KMP_ASSERT2(**scan == '}', "bad explicit places list"); 4072 (*scan)++; // skip '}' 4073 } else if (**scan == '!') { 4074 (*scan)++; // skip '!' 4075 __kmp_process_place(scan, affinity, maxOsId, tempMask, setSize); 4076 KMP_CPU_COMPLEMENT(maxOsId, tempMask); 4077 } else if ((**scan >= '0') && (**scan <= '9')) { 4078 next = *scan; 4079 SKIP_DIGITS(next); 4080 int num = __kmp_str_to_int(*scan, *next); 4081 KMP_ASSERT(num >= 0); 4082 if ((num > maxOsId) || 4083 (!KMP_CPU_ISSET(num, KMP_CPU_INDEX(osId2Mask, num)))) { 4084 KMP_AFF_WARNING(affinity, AffIgnoreInvalidProcID, num); 4085 } else { 4086 KMP_CPU_UNION(tempMask, KMP_CPU_INDEX(osId2Mask, num)); 4087 (*setSize)++; 4088 } 4089 *scan = next; // skip num 4090 } else { 4091 KMP_ASSERT2(0, "bad explicit places list"); 4092 } 4093 } 4094 4095 // static void 4096 void __kmp_affinity_process_placelist(kmp_affinity_t &affinity) { 4097 int i, j, count, stride, sign; 4098 kmp_affin_mask_t **out_masks = &affinity.masks; 4099 unsigned *out_numMasks = &affinity.num_masks; 4100 const char *placelist = affinity.proclist; 4101 kmp_affin_mask_t *osId2Mask = affinity.os_id_masks; 4102 int maxOsId = affinity.num_os_id_masks - 1; 4103 const char *scan = placelist; 4104 const char *next = placelist; 4105 4106 numNewMasks = 2; 4107 KMP_CPU_INTERNAL_ALLOC_ARRAY(newMasks, numNewMasks); 4108 nextNewMask = 0; 4109 4110 // tempMask is modified based on the previous or initial 4111 // place to form the current place 4112 // previousMask contains the previous place 4113 kmp_affin_mask_t *tempMask; 4114 kmp_affin_mask_t *previousMask; 4115 KMP_CPU_ALLOC(tempMask); 4116 KMP_CPU_ZERO(tempMask); 4117 KMP_CPU_ALLOC(previousMask); 4118 KMP_CPU_ZERO(previousMask); 4119 int setSize = 0; 4120 4121 for (;;) { 4122 __kmp_process_place(&scan, affinity, maxOsId, tempMask, &setSize); 4123 4124 // valid follow sets are ',' ':' and EOL 4125 SKIP_WS(scan); 4126 if (*scan == '\0' || *scan == ',') { 4127 if (setSize > 0) { 4128 ADD_MASK(tempMask); 4129 } 4130 KMP_CPU_ZERO(tempMask); 4131 setSize = 0; 4132 if (*scan == '\0') { 4133 break; 4134 } 4135 scan++; // skip ',' 4136 continue; 4137 } 4138 4139 KMP_ASSERT2(*scan == ':', "bad explicit places list"); 4140 scan++; // skip ':' 4141 4142 // Read count parameter 4143 SKIP_WS(scan); 4144 KMP_ASSERT2((*scan >= '0') && (*scan <= '9'), "bad explicit places list"); 4145 next = scan; 4146 SKIP_DIGITS(next); 4147 count = __kmp_str_to_int(scan, *next); 4148 KMP_ASSERT(count >= 0); 4149 scan = next; 4150 4151 // valid follow sets are ',' ':' and EOL 4152 SKIP_WS(scan); 4153 if (*scan == '\0' || *scan == ',') { 4154 stride = +1; 4155 } else { 4156 KMP_ASSERT2(*scan == ':', "bad explicit places list"); 4157 scan++; // skip ':' 4158 4159 // Read stride parameter 4160 sign = +1; 4161 for (;;) { 4162 SKIP_WS(scan); 4163 if (*scan == '+') { 4164 scan++; // skip '+' 4165 continue; 4166 } 4167 if (*scan == '-') { 4168 sign *= -1; 4169 scan++; // skip '-' 4170 continue; 4171 } 4172 break; 4173 } 4174 SKIP_WS(scan); 4175 KMP_ASSERT2((*scan >= '0') && (*scan <= '9'), "bad explicit places list"); 4176 next = scan; 4177 SKIP_DIGITS(next); 4178 stride = __kmp_str_to_int(scan, *next); 4179 KMP_DEBUG_ASSERT(stride >= 0); 4180 scan = next; 4181 stride *= sign; 4182 } 4183 4184 // Add places determined by initial_place : count : stride 4185 for (i = 0; i < count; i++) { 4186 if (setSize == 0) { 4187 break; 4188 } 4189 // Add the current place, then build the next place (tempMask) from that 4190 KMP_CPU_COPY(previousMask, tempMask); 4191 ADD_MASK(previousMask); 4192 KMP_CPU_ZERO(tempMask); 4193 setSize = 0; 4194 KMP_CPU_SET_ITERATE(j, previousMask) { 4195 if (!KMP_CPU_ISSET(j, previousMask)) { 4196 continue; 4197 } 4198 if ((j + stride > maxOsId) || (j + stride < 0) || 4199 (!KMP_CPU_ISSET(j, __kmp_affin_fullMask)) || 4200 (!KMP_CPU_ISSET(j + stride, 4201 KMP_CPU_INDEX(osId2Mask, j + stride)))) { 4202 if (i < count - 1) { 4203 KMP_AFF_WARNING(affinity, AffIgnoreInvalidProcID, j + stride); 4204 } 4205 continue; 4206 } 4207 KMP_CPU_SET(j + stride, tempMask); 4208 setSize++; 4209 } 4210 } 4211 KMP_CPU_ZERO(tempMask); 4212 setSize = 0; 4213 4214 // valid follow sets are ',' and EOL 4215 SKIP_WS(scan); 4216 if (*scan == '\0') { 4217 break; 4218 } 4219 if (*scan == ',') { 4220 scan++; // skip ',' 4221 continue; 4222 } 4223 4224 KMP_ASSERT2(0, "bad explicit places list"); 4225 } 4226 4227 *out_numMasks = nextNewMask; 4228 if (nextNewMask == 0) { 4229 *out_masks = NULL; 4230 KMP_CPU_INTERNAL_FREE_ARRAY(newMasks, numNewMasks); 4231 return; 4232 } 4233 KMP_CPU_ALLOC_ARRAY((*out_masks), nextNewMask); 4234 KMP_CPU_FREE(tempMask); 4235 KMP_CPU_FREE(previousMask); 4236 for (i = 0; i < nextNewMask; i++) { 4237 kmp_affin_mask_t *src = KMP_CPU_INDEX(newMasks, i); 4238 kmp_affin_mask_t *dest = KMP_CPU_INDEX((*out_masks), i); 4239 KMP_CPU_COPY(dest, src); 4240 } 4241 KMP_CPU_INTERNAL_FREE_ARRAY(newMasks, numNewMasks); 4242 } 4243 4244 #undef ADD_MASK 4245 #undef ADD_MASK_OSID 4246 4247 // This function figures out the deepest level at which there is at least one 4248 // cluster/core with more than one processing unit bound to it. 4249 static int __kmp_affinity_find_core_level(int nprocs, int bottom_level) { 4250 int core_level = 0; 4251 4252 for (int i = 0; i < nprocs; i++) { 4253 const kmp_hw_thread_t &hw_thread = __kmp_topology->at(i); 4254 for (int j = bottom_level; j > 0; j--) { 4255 if (hw_thread.ids[j] > 0) { 4256 if (core_level < (j - 1)) { 4257 core_level = j - 1; 4258 } 4259 } 4260 } 4261 } 4262 return core_level; 4263 } 4264 4265 // This function counts number of clusters/cores at given level. 4266 static int __kmp_affinity_compute_ncores(int nprocs, int bottom_level, 4267 int core_level) { 4268 return __kmp_topology->get_count(core_level); 4269 } 4270 // This function finds to which cluster/core given processing unit is bound. 4271 static int __kmp_affinity_find_core(int proc, int bottom_level, 4272 int core_level) { 4273 int core = 0; 4274 KMP_DEBUG_ASSERT(proc >= 0 && proc < __kmp_topology->get_num_hw_threads()); 4275 for (int i = 0; i <= proc; ++i) { 4276 if (i + 1 <= proc) { 4277 for (int j = 0; j <= core_level; ++j) { 4278 if (__kmp_topology->at(i + 1).sub_ids[j] != 4279 __kmp_topology->at(i).sub_ids[j]) { 4280 core++; 4281 break; 4282 } 4283 } 4284 } 4285 } 4286 return core; 4287 } 4288 4289 // This function finds maximal number of processing units bound to a 4290 // cluster/core at given level. 4291 static int __kmp_affinity_max_proc_per_core(int nprocs, int bottom_level, 4292 int core_level) { 4293 if (core_level >= bottom_level) 4294 return 1; 4295 int thread_level = __kmp_topology->get_level(KMP_HW_THREAD); 4296 return __kmp_topology->calculate_ratio(thread_level, core_level); 4297 } 4298 4299 static int *procarr = NULL; 4300 static int __kmp_aff_depth = 0; 4301 static int *__kmp_osid_to_hwthread_map = NULL; 4302 4303 static void __kmp_affinity_get_mask_topology_info(const kmp_affin_mask_t *mask, 4304 kmp_affinity_ids_t &ids, 4305 kmp_affinity_attrs_t &attrs) { 4306 if (!KMP_AFFINITY_CAPABLE()) 4307 return; 4308 4309 // Initiailze ids and attrs thread data 4310 for (int i = 0; i < KMP_HW_LAST; ++i) 4311 ids.ids[i] = kmp_hw_thread_t::UNKNOWN_ID; 4312 attrs = KMP_AFFINITY_ATTRS_UNKNOWN; 4313 4314 // Iterate through each os id within the mask and determine 4315 // the topology id and attribute information 4316 int cpu; 4317 int depth = __kmp_topology->get_depth(); 4318 KMP_CPU_SET_ITERATE(cpu, mask) { 4319 int osid_idx = __kmp_osid_to_hwthread_map[cpu]; 4320 ids.os_id = cpu; 4321 const kmp_hw_thread_t &hw_thread = __kmp_topology->at(osid_idx); 4322 for (int level = 0; level < depth; ++level) { 4323 kmp_hw_t type = __kmp_topology->get_type(level); 4324 int id = hw_thread.sub_ids[level]; 4325 if (ids.ids[type] == kmp_hw_thread_t::UNKNOWN_ID || ids.ids[type] == id) { 4326 ids.ids[type] = id; 4327 } else { 4328 // This mask spans across multiple topology units, set it as such 4329 // and mark every level below as such as well. 4330 ids.ids[type] = kmp_hw_thread_t::MULTIPLE_ID; 4331 for (; level < depth; ++level) { 4332 kmp_hw_t type = __kmp_topology->get_type(level); 4333 ids.ids[type] = kmp_hw_thread_t::MULTIPLE_ID; 4334 } 4335 } 4336 } 4337 if (!attrs.valid) { 4338 attrs.core_type = hw_thread.attrs.get_core_type(); 4339 attrs.core_eff = hw_thread.attrs.get_core_eff(); 4340 attrs.valid = 1; 4341 } else { 4342 // This mask spans across multiple attributes, set it as such 4343 if (attrs.core_type != hw_thread.attrs.get_core_type()) 4344 attrs.core_type = KMP_HW_CORE_TYPE_UNKNOWN; 4345 if (attrs.core_eff != hw_thread.attrs.get_core_eff()) 4346 attrs.core_eff = kmp_hw_attr_t::UNKNOWN_CORE_EFF; 4347 } 4348 } 4349 } 4350 4351 static void __kmp_affinity_get_thread_topology_info(kmp_info_t *th) { 4352 if (!KMP_AFFINITY_CAPABLE()) 4353 return; 4354 const kmp_affin_mask_t *mask = th->th.th_affin_mask; 4355 kmp_affinity_ids_t &ids = th->th.th_topology_ids; 4356 kmp_affinity_attrs_t &attrs = th->th.th_topology_attrs; 4357 __kmp_affinity_get_mask_topology_info(mask, ids, attrs); 4358 } 4359 4360 // Assign the topology information to each place in the place list 4361 // A thread can then grab not only its affinity mask, but the topology 4362 // information associated with that mask. e.g., Which socket is a thread on 4363 static void __kmp_affinity_get_topology_info(kmp_affinity_t &affinity) { 4364 if (!KMP_AFFINITY_CAPABLE()) 4365 return; 4366 if (affinity.type != affinity_none) { 4367 KMP_ASSERT(affinity.num_os_id_masks); 4368 KMP_ASSERT(affinity.os_id_masks); 4369 } 4370 KMP_ASSERT(affinity.num_masks); 4371 KMP_ASSERT(affinity.masks); 4372 KMP_ASSERT(__kmp_affin_fullMask); 4373 4374 int max_cpu = __kmp_affin_fullMask->get_max_cpu(); 4375 int num_hw_threads = __kmp_topology->get_num_hw_threads(); 4376 4377 // Allocate thread topology information 4378 if (!affinity.ids) { 4379 affinity.ids = (kmp_affinity_ids_t *)__kmp_allocate( 4380 sizeof(kmp_affinity_ids_t) * affinity.num_masks); 4381 } 4382 if (!affinity.attrs) { 4383 affinity.attrs = (kmp_affinity_attrs_t *)__kmp_allocate( 4384 sizeof(kmp_affinity_attrs_t) * affinity.num_masks); 4385 } 4386 if (!__kmp_osid_to_hwthread_map) { 4387 // Want the +1 because max_cpu should be valid index into map 4388 __kmp_osid_to_hwthread_map = 4389 (int *)__kmp_allocate(sizeof(int) * (max_cpu + 1)); 4390 } 4391 4392 // Create the OS proc to hardware thread map 4393 for (int hw_thread = 0; hw_thread < num_hw_threads; ++hw_thread) { 4394 int os_id = __kmp_topology->at(hw_thread).os_id; 4395 if (KMP_CPU_ISSET(os_id, __kmp_affin_fullMask)) 4396 __kmp_osid_to_hwthread_map[os_id] = hw_thread; 4397 } 4398 4399 for (unsigned i = 0; i < affinity.num_masks; ++i) { 4400 kmp_affinity_ids_t &ids = affinity.ids[i]; 4401 kmp_affinity_attrs_t &attrs = affinity.attrs[i]; 4402 kmp_affin_mask_t *mask = KMP_CPU_INDEX(affinity.masks, i); 4403 __kmp_affinity_get_mask_topology_info(mask, ids, attrs); 4404 } 4405 } 4406 4407 // Called when __kmp_topology is ready 4408 static void __kmp_aux_affinity_initialize_other_data(kmp_affinity_t &affinity) { 4409 // Initialize other data structures which depend on the topology 4410 if (__kmp_topology && __kmp_topology->get_num_hw_threads()) { 4411 machine_hierarchy.init(__kmp_topology->get_num_hw_threads()); 4412 __kmp_affinity_get_topology_info(affinity); 4413 #if KMP_WEIGHTED_ITERATIONS_SUPPORTED 4414 __kmp_first_osid_with_ecore = __kmp_get_first_osid_with_ecore(); 4415 #endif 4416 } 4417 } 4418 4419 // Create a one element mask array (set of places) which only contains the 4420 // initial process's affinity mask 4421 static void __kmp_create_affinity_none_places(kmp_affinity_t &affinity) { 4422 KMP_ASSERT(__kmp_affin_fullMask != NULL); 4423 KMP_ASSERT(affinity.type == affinity_none); 4424 KMP_ASSERT(__kmp_avail_proc == __kmp_topology->get_num_hw_threads()); 4425 affinity.num_masks = 1; 4426 KMP_CPU_ALLOC_ARRAY(affinity.masks, affinity.num_masks); 4427 kmp_affin_mask_t *dest = KMP_CPU_INDEX(affinity.masks, 0); 4428 KMP_CPU_COPY(dest, __kmp_affin_fullMask); 4429 __kmp_aux_affinity_initialize_other_data(affinity); 4430 } 4431 4432 static void __kmp_aux_affinity_initialize_masks(kmp_affinity_t &affinity) { 4433 // Create the "full" mask - this defines all of the processors that we 4434 // consider to be in the machine model. If respect is set, then it is the 4435 // initialization thread's affinity mask. Otherwise, it is all processors that 4436 // we know about on the machine. 4437 int verbose = affinity.flags.verbose; 4438 const char *env_var = affinity.env_var; 4439 4440 // Already initialized 4441 if (__kmp_affin_fullMask && __kmp_affin_origMask) 4442 return; 4443 4444 if (__kmp_affin_fullMask == NULL) { 4445 KMP_CPU_ALLOC(__kmp_affin_fullMask); 4446 } 4447 if (__kmp_affin_origMask == NULL) { 4448 KMP_CPU_ALLOC(__kmp_affin_origMask); 4449 } 4450 if (KMP_AFFINITY_CAPABLE()) { 4451 __kmp_get_system_affinity(__kmp_affin_fullMask, TRUE); 4452 // Make a copy before possible expanding to the entire machine mask 4453 __kmp_affin_origMask->copy(__kmp_affin_fullMask); 4454 if (affinity.flags.respect) { 4455 // Count the number of available processors. 4456 unsigned i; 4457 __kmp_avail_proc = 0; 4458 KMP_CPU_SET_ITERATE(i, __kmp_affin_fullMask) { 4459 if (!KMP_CPU_ISSET(i, __kmp_affin_fullMask)) { 4460 continue; 4461 } 4462 __kmp_avail_proc++; 4463 } 4464 if (__kmp_avail_proc > __kmp_xproc) { 4465 KMP_AFF_WARNING(affinity, ErrorInitializeAffinity); 4466 affinity.type = affinity_none; 4467 KMP_AFFINITY_DISABLE(); 4468 return; 4469 } 4470 4471 if (verbose) { 4472 char buf[KMP_AFFIN_MASK_PRINT_LEN]; 4473 __kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN, 4474 __kmp_affin_fullMask); 4475 KMP_INFORM(InitOSProcSetRespect, env_var, buf); 4476 } 4477 } else { 4478 if (verbose) { 4479 char buf[KMP_AFFIN_MASK_PRINT_LEN]; 4480 __kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN, 4481 __kmp_affin_fullMask); 4482 KMP_INFORM(InitOSProcSetNotRespect, env_var, buf); 4483 } 4484 __kmp_avail_proc = 4485 __kmp_affinity_entire_machine_mask(__kmp_affin_fullMask); 4486 #if KMP_OS_WINDOWS 4487 if (__kmp_num_proc_groups <= 1) { 4488 // Copy expanded full mask if topology has single processor group 4489 __kmp_affin_origMask->copy(__kmp_affin_fullMask); 4490 } 4491 // Set the process affinity mask since threads' affinity 4492 // masks must be subset of process mask in Windows* OS 4493 __kmp_affin_fullMask->set_process_affinity(true); 4494 #endif 4495 } 4496 } 4497 } 4498 4499 static bool __kmp_aux_affinity_initialize_topology(kmp_affinity_t &affinity) { 4500 bool success = false; 4501 const char *env_var = affinity.env_var; 4502 kmp_i18n_id_t msg_id = kmp_i18n_null; 4503 int verbose = affinity.flags.verbose; 4504 4505 // For backward compatibility, setting KMP_CPUINFO_FILE => 4506 // KMP_TOPOLOGY_METHOD=cpuinfo 4507 if ((__kmp_cpuinfo_file != NULL) && 4508 (__kmp_affinity_top_method == affinity_top_method_all)) { 4509 __kmp_affinity_top_method = affinity_top_method_cpuinfo; 4510 } 4511 4512 if (__kmp_affinity_top_method == affinity_top_method_all) { 4513 // In the default code path, errors are not fatal - we just try using 4514 // another method. We only emit a warning message if affinity is on, or the 4515 // verbose flag is set, an the nowarnings flag was not set. 4516 #if KMP_USE_HWLOC 4517 if (!success && 4518 __kmp_affinity_dispatch->get_api_type() == KMPAffinity::HWLOC) { 4519 if (!__kmp_hwloc_error) { 4520 success = __kmp_affinity_create_hwloc_map(&msg_id); 4521 if (!success && verbose) { 4522 KMP_INFORM(AffIgnoringHwloc, env_var); 4523 } 4524 } else if (verbose) { 4525 KMP_INFORM(AffIgnoringHwloc, env_var); 4526 } 4527 } 4528 #endif 4529 4530 #if KMP_ARCH_X86 || KMP_ARCH_X86_64 4531 if (!success) { 4532 success = __kmp_affinity_create_x2apicid_map(&msg_id); 4533 if (!success && verbose && msg_id != kmp_i18n_null) { 4534 KMP_INFORM(AffInfoStr, env_var, __kmp_i18n_catgets(msg_id)); 4535 } 4536 } 4537 if (!success) { 4538 success = __kmp_affinity_create_apicid_map(&msg_id); 4539 if (!success && verbose && msg_id != kmp_i18n_null) { 4540 KMP_INFORM(AffInfoStr, env_var, __kmp_i18n_catgets(msg_id)); 4541 } 4542 } 4543 #endif /* KMP_ARCH_X86 || KMP_ARCH_X86_64 */ 4544 4545 #if KMP_OS_LINUX || KMP_OS_AIX 4546 if (!success) { 4547 int line = 0; 4548 success = __kmp_affinity_create_cpuinfo_map(&line, &msg_id); 4549 if (!success && verbose && msg_id != kmp_i18n_null) { 4550 KMP_INFORM(AffInfoStr, env_var, __kmp_i18n_catgets(msg_id)); 4551 } 4552 } 4553 #endif /* KMP_OS_LINUX */ 4554 4555 #if KMP_GROUP_AFFINITY 4556 if (!success && (__kmp_num_proc_groups > 1)) { 4557 success = __kmp_affinity_create_proc_group_map(&msg_id); 4558 if (!success && verbose && msg_id != kmp_i18n_null) { 4559 KMP_INFORM(AffInfoStr, env_var, __kmp_i18n_catgets(msg_id)); 4560 } 4561 } 4562 #endif /* KMP_GROUP_AFFINITY */ 4563 4564 if (!success) { 4565 success = __kmp_affinity_create_flat_map(&msg_id); 4566 if (!success && verbose && msg_id != kmp_i18n_null) { 4567 KMP_INFORM(AffInfoStr, env_var, __kmp_i18n_catgets(msg_id)); 4568 } 4569 KMP_ASSERT(success); 4570 } 4571 } 4572 4573 // If the user has specified that a paricular topology discovery method is to be 4574 // used, then we abort if that method fails. The exception is group affinity, 4575 // which might have been implicitly set. 4576 #if KMP_USE_HWLOC 4577 else if (__kmp_affinity_top_method == affinity_top_method_hwloc) { 4578 KMP_ASSERT(__kmp_affinity_dispatch->get_api_type() == KMPAffinity::HWLOC); 4579 success = __kmp_affinity_create_hwloc_map(&msg_id); 4580 if (!success) { 4581 KMP_ASSERT(msg_id != kmp_i18n_null); 4582 KMP_FATAL(MsgExiting, __kmp_i18n_catgets(msg_id)); 4583 } 4584 } 4585 #endif // KMP_USE_HWLOC 4586 4587 #if KMP_ARCH_X86 || KMP_ARCH_X86_64 4588 else if (__kmp_affinity_top_method == affinity_top_method_x2apicid || 4589 __kmp_affinity_top_method == affinity_top_method_x2apicid_1f) { 4590 success = __kmp_affinity_create_x2apicid_map(&msg_id); 4591 if (!success) { 4592 KMP_ASSERT(msg_id != kmp_i18n_null); 4593 KMP_FATAL(MsgExiting, __kmp_i18n_catgets(msg_id)); 4594 } 4595 } else if (__kmp_affinity_top_method == affinity_top_method_apicid) { 4596 success = __kmp_affinity_create_apicid_map(&msg_id); 4597 if (!success) { 4598 KMP_ASSERT(msg_id != kmp_i18n_null); 4599 KMP_FATAL(MsgExiting, __kmp_i18n_catgets(msg_id)); 4600 } 4601 } 4602 #endif /* KMP_ARCH_X86 || KMP_ARCH_X86_64 */ 4603 4604 else if (__kmp_affinity_top_method == affinity_top_method_cpuinfo) { 4605 int line = 0; 4606 success = __kmp_affinity_create_cpuinfo_map(&line, &msg_id); 4607 if (!success) { 4608 KMP_ASSERT(msg_id != kmp_i18n_null); 4609 const char *filename = __kmp_cpuinfo_get_filename(); 4610 if (line > 0) { 4611 KMP_FATAL(FileLineMsgExiting, filename, line, 4612 __kmp_i18n_catgets(msg_id)); 4613 } else { 4614 KMP_FATAL(FileMsgExiting, filename, __kmp_i18n_catgets(msg_id)); 4615 } 4616 } 4617 } 4618 4619 #if KMP_GROUP_AFFINITY 4620 else if (__kmp_affinity_top_method == affinity_top_method_group) { 4621 success = __kmp_affinity_create_proc_group_map(&msg_id); 4622 KMP_ASSERT(success); 4623 if (!success) { 4624 KMP_ASSERT(msg_id != kmp_i18n_null); 4625 KMP_FATAL(MsgExiting, __kmp_i18n_catgets(msg_id)); 4626 } 4627 } 4628 #endif /* KMP_GROUP_AFFINITY */ 4629 4630 else if (__kmp_affinity_top_method == affinity_top_method_flat) { 4631 success = __kmp_affinity_create_flat_map(&msg_id); 4632 // should not fail 4633 KMP_ASSERT(success); 4634 } 4635 4636 // Early exit if topology could not be created 4637 if (!__kmp_topology) { 4638 if (KMP_AFFINITY_CAPABLE()) { 4639 KMP_AFF_WARNING(affinity, ErrorInitializeAffinity); 4640 } 4641 if (nPackages > 0 && nCoresPerPkg > 0 && __kmp_nThreadsPerCore > 0 && 4642 __kmp_ncores > 0) { 4643 __kmp_topology = kmp_topology_t::allocate(0, 0, NULL); 4644 __kmp_topology->canonicalize(nPackages, nCoresPerPkg, 4645 __kmp_nThreadsPerCore, __kmp_ncores); 4646 if (verbose) { 4647 __kmp_topology->print(env_var); 4648 } 4649 } 4650 return false; 4651 } 4652 4653 // Canonicalize, print (if requested), apply KMP_HW_SUBSET 4654 __kmp_topology->canonicalize(); 4655 if (verbose) 4656 __kmp_topology->print(env_var); 4657 bool filtered = __kmp_topology->filter_hw_subset(); 4658 if (filtered && verbose) 4659 __kmp_topology->print("KMP_HW_SUBSET"); 4660 return success; 4661 } 4662 4663 static void __kmp_aux_affinity_initialize(kmp_affinity_t &affinity) { 4664 bool is_regular_affinity = (&affinity == &__kmp_affinity); 4665 bool is_hidden_helper_affinity = (&affinity == &__kmp_hh_affinity); 4666 const char *env_var = __kmp_get_affinity_env_var(affinity); 4667 4668 if (affinity.flags.initialized) { 4669 KMP_ASSERT(__kmp_affin_fullMask != NULL); 4670 return; 4671 } 4672 4673 if (is_regular_affinity && (!__kmp_affin_fullMask || !__kmp_affin_origMask)) 4674 __kmp_aux_affinity_initialize_masks(affinity); 4675 4676 if (is_regular_affinity && !__kmp_topology) { 4677 bool success = __kmp_aux_affinity_initialize_topology(affinity); 4678 if (success) { 4679 KMP_ASSERT(__kmp_avail_proc == __kmp_topology->get_num_hw_threads()); 4680 } else { 4681 affinity.type = affinity_none; 4682 KMP_AFFINITY_DISABLE(); 4683 } 4684 } 4685 4686 // If KMP_AFFINITY=none, then only create the single "none" place 4687 // which is the process's initial affinity mask or the number of 4688 // hardware threads depending on respect,norespect 4689 if (affinity.type == affinity_none) { 4690 __kmp_create_affinity_none_places(affinity); 4691 #if KMP_USE_HIER_SCHED 4692 __kmp_dispatch_set_hierarchy_values(); 4693 #endif 4694 affinity.flags.initialized = TRUE; 4695 return; 4696 } 4697 4698 __kmp_topology->set_granularity(affinity); 4699 int depth = __kmp_topology->get_depth(); 4700 4701 // Create the table of masks, indexed by thread Id. 4702 unsigned numUnique; 4703 int numAddrs = __kmp_topology->get_num_hw_threads(); 4704 // If OMP_PLACES=cores:<attribute> specified, then attempt 4705 // to make OS Id mask table using those attributes 4706 if (affinity.core_attr_gran.valid) { 4707 __kmp_create_os_id_masks(&numUnique, affinity, [&](int idx) { 4708 KMP_ASSERT(idx >= -1); 4709 for (int i = idx + 1; i < numAddrs; ++i) 4710 if (__kmp_topology->at(i).attrs.contains(affinity.core_attr_gran)) 4711 return i; 4712 return numAddrs; 4713 }); 4714 if (!affinity.os_id_masks) { 4715 const char *core_attribute; 4716 if (affinity.core_attr_gran.core_eff != kmp_hw_attr_t::UNKNOWN_CORE_EFF) 4717 core_attribute = "core_efficiency"; 4718 else 4719 core_attribute = "core_type"; 4720 KMP_AFF_WARNING(affinity, AffIgnoringNotAvailable, env_var, 4721 core_attribute, 4722 __kmp_hw_get_catalog_string(KMP_HW_CORE, /*plural=*/true)) 4723 } 4724 } 4725 // If core attributes did not work, or none were specified, 4726 // then make OS Id mask table using typical incremental way. 4727 if (!affinity.os_id_masks) { 4728 __kmp_create_os_id_masks(&numUnique, affinity, [](int idx) { 4729 KMP_ASSERT(idx >= -1); 4730 return idx + 1; 4731 }); 4732 } 4733 if (affinity.gran_levels == 0) { 4734 KMP_DEBUG_ASSERT((int)numUnique == __kmp_avail_proc); 4735 } 4736 4737 switch (affinity.type) { 4738 4739 case affinity_explicit: 4740 KMP_DEBUG_ASSERT(affinity.proclist != NULL); 4741 if (is_hidden_helper_affinity || 4742 __kmp_nested_proc_bind.bind_types[0] == proc_bind_intel) { 4743 __kmp_affinity_process_proclist(affinity); 4744 } else { 4745 __kmp_affinity_process_placelist(affinity); 4746 } 4747 if (affinity.num_masks == 0) { 4748 KMP_AFF_WARNING(affinity, AffNoValidProcID); 4749 affinity.type = affinity_none; 4750 __kmp_create_affinity_none_places(affinity); 4751 affinity.flags.initialized = TRUE; 4752 return; 4753 } 4754 break; 4755 4756 // The other affinity types rely on sorting the hardware threads according to 4757 // some permutation of the machine topology tree. Set affinity.compact 4758 // and affinity.offset appropriately, then jump to a common code 4759 // fragment to do the sort and create the array of affinity masks. 4760 case affinity_logical: 4761 affinity.compact = 0; 4762 if (affinity.offset) { 4763 affinity.offset = 4764 __kmp_nThreadsPerCore * affinity.offset % __kmp_avail_proc; 4765 } 4766 goto sortTopology; 4767 4768 case affinity_physical: 4769 if (__kmp_nThreadsPerCore > 1) { 4770 affinity.compact = 1; 4771 if (affinity.compact >= depth) { 4772 affinity.compact = 0; 4773 } 4774 } else { 4775 affinity.compact = 0; 4776 } 4777 if (affinity.offset) { 4778 affinity.offset = 4779 __kmp_nThreadsPerCore * affinity.offset % __kmp_avail_proc; 4780 } 4781 goto sortTopology; 4782 4783 case affinity_scatter: 4784 if (affinity.compact >= depth) { 4785 affinity.compact = 0; 4786 } else { 4787 affinity.compact = depth - 1 - affinity.compact; 4788 } 4789 goto sortTopology; 4790 4791 case affinity_compact: 4792 if (affinity.compact >= depth) { 4793 affinity.compact = depth - 1; 4794 } 4795 goto sortTopology; 4796 4797 case affinity_balanced: 4798 if (depth <= 1 || is_hidden_helper_affinity) { 4799 KMP_AFF_WARNING(affinity, AffBalancedNotAvail, env_var); 4800 affinity.type = affinity_none; 4801 __kmp_create_affinity_none_places(affinity); 4802 affinity.flags.initialized = TRUE; 4803 return; 4804 } else if (!__kmp_topology->is_uniform()) { 4805 // Save the depth for further usage 4806 __kmp_aff_depth = depth; 4807 4808 int core_level = 4809 __kmp_affinity_find_core_level(__kmp_avail_proc, depth - 1); 4810 int ncores = __kmp_affinity_compute_ncores(__kmp_avail_proc, depth - 1, 4811 core_level); 4812 int maxprocpercore = __kmp_affinity_max_proc_per_core( 4813 __kmp_avail_proc, depth - 1, core_level); 4814 4815 int nproc = ncores * maxprocpercore; 4816 if ((nproc < 2) || (nproc < __kmp_avail_proc)) { 4817 KMP_AFF_WARNING(affinity, AffBalancedNotAvail, env_var); 4818 affinity.type = affinity_none; 4819 __kmp_create_affinity_none_places(affinity); 4820 affinity.flags.initialized = TRUE; 4821 return; 4822 } 4823 4824 procarr = (int *)__kmp_allocate(sizeof(int) * nproc); 4825 for (int i = 0; i < nproc; i++) { 4826 procarr[i] = -1; 4827 } 4828 4829 int lastcore = -1; 4830 int inlastcore = 0; 4831 for (int i = 0; i < __kmp_avail_proc; i++) { 4832 int proc = __kmp_topology->at(i).os_id; 4833 int core = __kmp_affinity_find_core(i, depth - 1, core_level); 4834 4835 if (core == lastcore) { 4836 inlastcore++; 4837 } else { 4838 inlastcore = 0; 4839 } 4840 lastcore = core; 4841 4842 procarr[core * maxprocpercore + inlastcore] = proc; 4843 } 4844 } 4845 if (affinity.compact >= depth) { 4846 affinity.compact = depth - 1; 4847 } 4848 4849 sortTopology: 4850 // Allocate the gtid->affinity mask table. 4851 if (affinity.flags.dups) { 4852 affinity.num_masks = __kmp_avail_proc; 4853 } else { 4854 affinity.num_masks = numUnique; 4855 } 4856 4857 if ((__kmp_nested_proc_bind.bind_types[0] != proc_bind_intel) && 4858 (__kmp_affinity_num_places > 0) && 4859 ((unsigned)__kmp_affinity_num_places < affinity.num_masks) && 4860 !is_hidden_helper_affinity) { 4861 affinity.num_masks = __kmp_affinity_num_places; 4862 } 4863 4864 KMP_CPU_ALLOC_ARRAY(affinity.masks, affinity.num_masks); 4865 4866 // Sort the topology table according to the current setting of 4867 // affinity.compact, then fill out affinity.masks. 4868 __kmp_topology->sort_compact(affinity); 4869 { 4870 int i; 4871 unsigned j; 4872 int num_hw_threads = __kmp_topology->get_num_hw_threads(); 4873 kmp_full_mask_modifier_t full_mask; 4874 for (i = 0, j = 0; i < num_hw_threads; i++) { 4875 if ((!affinity.flags.dups) && (!__kmp_topology->at(i).leader)) { 4876 continue; 4877 } 4878 int osId = __kmp_topology->at(i).os_id; 4879 4880 kmp_affin_mask_t *src = KMP_CPU_INDEX(affinity.os_id_masks, osId); 4881 kmp_affin_mask_t *dest = KMP_CPU_INDEX(affinity.masks, j); 4882 KMP_ASSERT(KMP_CPU_ISSET(osId, src)); 4883 KMP_CPU_COPY(dest, src); 4884 full_mask.include(src); 4885 if (++j >= affinity.num_masks) { 4886 break; 4887 } 4888 } 4889 KMP_DEBUG_ASSERT(j == affinity.num_masks); 4890 // See if the places list further restricts or changes the full mask 4891 if (full_mask.restrict_to_mask() && affinity.flags.verbose) { 4892 __kmp_topology->print(env_var); 4893 } 4894 } 4895 // Sort the topology back using ids 4896 __kmp_topology->sort_ids(); 4897 break; 4898 4899 default: 4900 KMP_ASSERT2(0, "Unexpected affinity setting"); 4901 } 4902 __kmp_aux_affinity_initialize_other_data(affinity); 4903 affinity.flags.initialized = TRUE; 4904 } 4905 4906 void __kmp_affinity_initialize(kmp_affinity_t &affinity) { 4907 // Much of the code above was written assuming that if a machine was not 4908 // affinity capable, then affinity type == affinity_none. 4909 // We now explicitly represent this as affinity type == affinity_disabled. 4910 // There are too many checks for affinity type == affinity_none in this code. 4911 // Instead of trying to change them all, check if 4912 // affinity type == affinity_disabled, and if so, slam it with affinity_none, 4913 // call the real initialization routine, then restore affinity type to 4914 // affinity_disabled. 4915 int disabled = (affinity.type == affinity_disabled); 4916 if (!KMP_AFFINITY_CAPABLE()) 4917 KMP_ASSERT(disabled); 4918 if (disabled) 4919 affinity.type = affinity_none; 4920 __kmp_aux_affinity_initialize(affinity); 4921 if (disabled) 4922 affinity.type = affinity_disabled; 4923 } 4924 4925 void __kmp_affinity_uninitialize(void) { 4926 for (kmp_affinity_t *affinity : __kmp_affinities) { 4927 if (affinity->masks != NULL) 4928 KMP_CPU_FREE_ARRAY(affinity->masks, affinity->num_masks); 4929 if (affinity->os_id_masks != NULL) 4930 KMP_CPU_FREE_ARRAY(affinity->os_id_masks, affinity->num_os_id_masks); 4931 if (affinity->proclist != NULL) 4932 __kmp_free(affinity->proclist); 4933 if (affinity->ids != NULL) 4934 __kmp_free(affinity->ids); 4935 if (affinity->attrs != NULL) 4936 __kmp_free(affinity->attrs); 4937 *affinity = KMP_AFFINITY_INIT(affinity->env_var); 4938 } 4939 if (__kmp_affin_origMask != NULL) { 4940 if (KMP_AFFINITY_CAPABLE()) { 4941 #if KMP_OS_AIX 4942 // Uninitialize by unbinding the thread. 4943 bindprocessor(BINDTHREAD, thread_self(), PROCESSOR_CLASS_ANY); 4944 #else 4945 __kmp_set_system_affinity(__kmp_affin_origMask, FALSE); 4946 #endif 4947 } 4948 KMP_CPU_FREE(__kmp_affin_origMask); 4949 __kmp_affin_origMask = NULL; 4950 } 4951 __kmp_affinity_num_places = 0; 4952 if (procarr != NULL) { 4953 __kmp_free(procarr); 4954 procarr = NULL; 4955 } 4956 if (__kmp_osid_to_hwthread_map) { 4957 __kmp_free(__kmp_osid_to_hwthread_map); 4958 __kmp_osid_to_hwthread_map = NULL; 4959 } 4960 #if KMP_USE_HWLOC 4961 if (__kmp_hwloc_topology != NULL) { 4962 hwloc_topology_destroy(__kmp_hwloc_topology); 4963 __kmp_hwloc_topology = NULL; 4964 } 4965 #endif 4966 if (__kmp_hw_subset) { 4967 kmp_hw_subset_t::deallocate(__kmp_hw_subset); 4968 __kmp_hw_subset = nullptr; 4969 } 4970 if (__kmp_topology) { 4971 kmp_topology_t::deallocate(__kmp_topology); 4972 __kmp_topology = nullptr; 4973 } 4974 KMPAffinity::destroy_api(); 4975 } 4976 4977 static void __kmp_select_mask_by_gtid(int gtid, const kmp_affinity_t *affinity, 4978 int *place, kmp_affin_mask_t **mask) { 4979 int mask_idx; 4980 bool is_hidden_helper = KMP_HIDDEN_HELPER_THREAD(gtid); 4981 if (is_hidden_helper) 4982 // The first gtid is the regular primary thread, the second gtid is the main 4983 // thread of hidden team which does not participate in task execution. 4984 mask_idx = gtid - 2; 4985 else 4986 mask_idx = __kmp_adjust_gtid_for_hidden_helpers(gtid); 4987 KMP_DEBUG_ASSERT(affinity->num_masks > 0); 4988 *place = (mask_idx + affinity->offset) % affinity->num_masks; 4989 *mask = KMP_CPU_INDEX(affinity->masks, *place); 4990 } 4991 4992 // This function initializes the per-thread data concerning affinity including 4993 // the mask and topology information 4994 void __kmp_affinity_set_init_mask(int gtid, int isa_root) { 4995 4996 kmp_info_t *th = (kmp_info_t *)TCR_SYNC_PTR(__kmp_threads[gtid]); 4997 4998 // Set the thread topology information to default of unknown 4999 for (int id = 0; id < KMP_HW_LAST; ++id) 5000 th->th.th_topology_ids.ids[id] = kmp_hw_thread_t::UNKNOWN_ID; 5001 th->th.th_topology_attrs = KMP_AFFINITY_ATTRS_UNKNOWN; 5002 5003 if (!KMP_AFFINITY_CAPABLE()) { 5004 return; 5005 } 5006 5007 if (th->th.th_affin_mask == NULL) { 5008 KMP_CPU_ALLOC(th->th.th_affin_mask); 5009 } else { 5010 KMP_CPU_ZERO(th->th.th_affin_mask); 5011 } 5012 5013 // Copy the thread mask to the kmp_info_t structure. If 5014 // __kmp_affinity.type == affinity_none, copy the "full" mask, i.e. 5015 // one that has all of the OS proc ids set, or if 5016 // __kmp_affinity.flags.respect is set, then the full mask is the 5017 // same as the mask of the initialization thread. 5018 kmp_affin_mask_t *mask; 5019 int i; 5020 const kmp_affinity_t *affinity; 5021 bool is_hidden_helper = KMP_HIDDEN_HELPER_THREAD(gtid); 5022 5023 if (is_hidden_helper) 5024 affinity = &__kmp_hh_affinity; 5025 else 5026 affinity = &__kmp_affinity; 5027 5028 if (KMP_AFFINITY_NON_PROC_BIND || is_hidden_helper) { 5029 if ((affinity->type == affinity_none) || 5030 (affinity->type == affinity_balanced) || 5031 KMP_HIDDEN_HELPER_MAIN_THREAD(gtid)) { 5032 #if KMP_GROUP_AFFINITY 5033 if (__kmp_num_proc_groups > 1) { 5034 return; 5035 } 5036 #endif 5037 KMP_ASSERT(__kmp_affin_fullMask != NULL); 5038 i = 0; 5039 mask = __kmp_affin_fullMask; 5040 } else { 5041 __kmp_select_mask_by_gtid(gtid, affinity, &i, &mask); 5042 } 5043 } else { 5044 if (!isa_root || __kmp_nested_proc_bind.bind_types[0] == proc_bind_false) { 5045 #if KMP_GROUP_AFFINITY 5046 if (__kmp_num_proc_groups > 1) { 5047 return; 5048 } 5049 #endif 5050 KMP_ASSERT(__kmp_affin_fullMask != NULL); 5051 i = KMP_PLACE_ALL; 5052 mask = __kmp_affin_fullMask; 5053 } else { 5054 __kmp_select_mask_by_gtid(gtid, affinity, &i, &mask); 5055 } 5056 } 5057 5058 th->th.th_current_place = i; 5059 if (isa_root && !is_hidden_helper) { 5060 th->th.th_new_place = i; 5061 th->th.th_first_place = 0; 5062 th->th.th_last_place = affinity->num_masks - 1; 5063 } else if (KMP_AFFINITY_NON_PROC_BIND) { 5064 // When using a Non-OMP_PROC_BIND affinity method, 5065 // set all threads' place-partition-var to the entire place list 5066 th->th.th_first_place = 0; 5067 th->th.th_last_place = affinity->num_masks - 1; 5068 } 5069 // Copy topology information associated with the place 5070 if (i >= 0) { 5071 th->th.th_topology_ids = __kmp_affinity.ids[i]; 5072 th->th.th_topology_attrs = __kmp_affinity.attrs[i]; 5073 } 5074 5075 if (i == KMP_PLACE_ALL) { 5076 KA_TRACE(100, ("__kmp_affinity_set_init_mask: setting T#%d to all places\n", 5077 gtid)); 5078 } else { 5079 KA_TRACE(100, ("__kmp_affinity_set_init_mask: setting T#%d to place %d\n", 5080 gtid, i)); 5081 } 5082 5083 KMP_CPU_COPY(th->th.th_affin_mask, mask); 5084 } 5085 5086 void __kmp_affinity_bind_init_mask(int gtid) { 5087 if (!KMP_AFFINITY_CAPABLE()) { 5088 return; 5089 } 5090 kmp_info_t *th = (kmp_info_t *)TCR_SYNC_PTR(__kmp_threads[gtid]); 5091 const kmp_affinity_t *affinity; 5092 const char *env_var; 5093 bool is_hidden_helper = KMP_HIDDEN_HELPER_THREAD(gtid); 5094 5095 if (is_hidden_helper) 5096 affinity = &__kmp_hh_affinity; 5097 else 5098 affinity = &__kmp_affinity; 5099 env_var = __kmp_get_affinity_env_var(*affinity, /*for_binding=*/true); 5100 /* to avoid duplicate printing (will be correctly printed on barrier) */ 5101 if (affinity->flags.verbose && (affinity->type == affinity_none || 5102 (th->th.th_current_place != KMP_PLACE_ALL && 5103 affinity->type != affinity_balanced)) && 5104 !KMP_HIDDEN_HELPER_MAIN_THREAD(gtid)) { 5105 char buf[KMP_AFFIN_MASK_PRINT_LEN]; 5106 __kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN, 5107 th->th.th_affin_mask); 5108 KMP_INFORM(BoundToOSProcSet, env_var, (kmp_int32)getpid(), __kmp_gettid(), 5109 gtid, buf); 5110 } 5111 5112 #if KMP_OS_WINDOWS 5113 // On Windows* OS, the process affinity mask might have changed. If the user 5114 // didn't request affinity and this call fails, just continue silently. 5115 // See CQ171393. 5116 if (affinity->type == affinity_none) { 5117 __kmp_set_system_affinity(th->th.th_affin_mask, FALSE); 5118 } else 5119 #endif 5120 #ifndef KMP_OS_AIX 5121 // Do not set the full mask as the init mask on AIX. 5122 __kmp_set_system_affinity(th->th.th_affin_mask, TRUE); 5123 #endif 5124 } 5125 5126 void __kmp_affinity_bind_place(int gtid) { 5127 // Hidden helper threads should not be affected by OMP_PLACES/OMP_PROC_BIND 5128 if (!KMP_AFFINITY_CAPABLE() || KMP_HIDDEN_HELPER_THREAD(gtid)) { 5129 return; 5130 } 5131 5132 kmp_info_t *th = (kmp_info_t *)TCR_SYNC_PTR(__kmp_threads[gtid]); 5133 5134 KA_TRACE(100, ("__kmp_affinity_bind_place: binding T#%d to place %d (current " 5135 "place = %d)\n", 5136 gtid, th->th.th_new_place, th->th.th_current_place)); 5137 5138 // Check that the new place is within this thread's partition. 5139 KMP_DEBUG_ASSERT(th->th.th_affin_mask != NULL); 5140 KMP_ASSERT(th->th.th_new_place >= 0); 5141 KMP_ASSERT((unsigned)th->th.th_new_place <= __kmp_affinity.num_masks); 5142 if (th->th.th_first_place <= th->th.th_last_place) { 5143 KMP_ASSERT((th->th.th_new_place >= th->th.th_first_place) && 5144 (th->th.th_new_place <= th->th.th_last_place)); 5145 } else { 5146 KMP_ASSERT((th->th.th_new_place <= th->th.th_first_place) || 5147 (th->th.th_new_place >= th->th.th_last_place)); 5148 } 5149 5150 // Copy the thread mask to the kmp_info_t structure, 5151 // and set this thread's affinity. 5152 kmp_affin_mask_t *mask = 5153 KMP_CPU_INDEX(__kmp_affinity.masks, th->th.th_new_place); 5154 KMP_CPU_COPY(th->th.th_affin_mask, mask); 5155 th->th.th_current_place = th->th.th_new_place; 5156 5157 if (__kmp_affinity.flags.verbose) { 5158 char buf[KMP_AFFIN_MASK_PRINT_LEN]; 5159 __kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN, 5160 th->th.th_affin_mask); 5161 KMP_INFORM(BoundToOSProcSet, "OMP_PROC_BIND", (kmp_int32)getpid(), 5162 __kmp_gettid(), gtid, buf); 5163 } 5164 __kmp_set_system_affinity(th->th.th_affin_mask, TRUE); 5165 } 5166 5167 int __kmp_aux_set_affinity(void **mask) { 5168 int gtid; 5169 kmp_info_t *th; 5170 int retval; 5171 5172 if (!KMP_AFFINITY_CAPABLE()) { 5173 return -1; 5174 } 5175 5176 gtid = __kmp_entry_gtid(); 5177 KA_TRACE( 5178 1000, (""); { 5179 char buf[KMP_AFFIN_MASK_PRINT_LEN]; 5180 __kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN, 5181 (kmp_affin_mask_t *)(*mask)); 5182 __kmp_debug_printf( 5183 "kmp_set_affinity: setting affinity mask for thread %d = %s\n", 5184 gtid, buf); 5185 }); 5186 5187 if (__kmp_env_consistency_check) { 5188 if ((mask == NULL) || (*mask == NULL)) { 5189 KMP_FATAL(AffinityInvalidMask, "kmp_set_affinity"); 5190 } else { 5191 unsigned proc; 5192 int num_procs = 0; 5193 5194 KMP_CPU_SET_ITERATE(proc, ((kmp_affin_mask_t *)(*mask))) { 5195 if (!KMP_CPU_ISSET(proc, __kmp_affin_fullMask)) { 5196 KMP_FATAL(AffinityInvalidMask, "kmp_set_affinity"); 5197 } 5198 if (!KMP_CPU_ISSET(proc, (kmp_affin_mask_t *)(*mask))) { 5199 continue; 5200 } 5201 num_procs++; 5202 } 5203 if (num_procs == 0) { 5204 KMP_FATAL(AffinityInvalidMask, "kmp_set_affinity"); 5205 } 5206 5207 #if KMP_GROUP_AFFINITY 5208 if (__kmp_get_proc_group((kmp_affin_mask_t *)(*mask)) < 0) { 5209 KMP_FATAL(AffinityInvalidMask, "kmp_set_affinity"); 5210 } 5211 #endif /* KMP_GROUP_AFFINITY */ 5212 } 5213 } 5214 5215 th = __kmp_threads[gtid]; 5216 KMP_DEBUG_ASSERT(th->th.th_affin_mask != NULL); 5217 retval = __kmp_set_system_affinity((kmp_affin_mask_t *)(*mask), FALSE); 5218 if (retval == 0) { 5219 KMP_CPU_COPY(th->th.th_affin_mask, (kmp_affin_mask_t *)(*mask)); 5220 } 5221 5222 th->th.th_current_place = KMP_PLACE_UNDEFINED; 5223 th->th.th_new_place = KMP_PLACE_UNDEFINED; 5224 th->th.th_first_place = 0; 5225 th->th.th_last_place = __kmp_affinity.num_masks - 1; 5226 5227 // Turn off 4.0 affinity for the current tread at this parallel level. 5228 th->th.th_current_task->td_icvs.proc_bind = proc_bind_false; 5229 5230 return retval; 5231 } 5232 5233 int __kmp_aux_get_affinity(void **mask) { 5234 int gtid; 5235 int retval; 5236 #if KMP_OS_WINDOWS || KMP_OS_AIX || KMP_DEBUG 5237 kmp_info_t *th; 5238 #endif 5239 if (!KMP_AFFINITY_CAPABLE()) { 5240 return -1; 5241 } 5242 5243 gtid = __kmp_entry_gtid(); 5244 #if KMP_OS_WINDOWS || KMP_OS_AIX || KMP_DEBUG 5245 th = __kmp_threads[gtid]; 5246 #else 5247 (void)gtid; // unused variable 5248 #endif 5249 KMP_DEBUG_ASSERT(th->th.th_affin_mask != NULL); 5250 5251 KA_TRACE( 5252 1000, (""); { 5253 char buf[KMP_AFFIN_MASK_PRINT_LEN]; 5254 __kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN, 5255 th->th.th_affin_mask); 5256 __kmp_printf( 5257 "kmp_get_affinity: stored affinity mask for thread %d = %s\n", gtid, 5258 buf); 5259 }); 5260 5261 if (__kmp_env_consistency_check) { 5262 if ((mask == NULL) || (*mask == NULL)) { 5263 KMP_FATAL(AffinityInvalidMask, "kmp_get_affinity"); 5264 } 5265 } 5266 5267 #if !KMP_OS_WINDOWS && !KMP_OS_AIX 5268 5269 retval = __kmp_get_system_affinity((kmp_affin_mask_t *)(*mask), FALSE); 5270 KA_TRACE( 5271 1000, (""); { 5272 char buf[KMP_AFFIN_MASK_PRINT_LEN]; 5273 __kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN, 5274 (kmp_affin_mask_t *)(*mask)); 5275 __kmp_printf( 5276 "kmp_get_affinity: system affinity mask for thread %d = %s\n", gtid, 5277 buf); 5278 }); 5279 return retval; 5280 5281 #else 5282 (void)retval; 5283 5284 KMP_CPU_COPY((kmp_affin_mask_t *)(*mask), th->th.th_affin_mask); 5285 return 0; 5286 5287 #endif /* !KMP_OS_WINDOWS && !KMP_OS_AIX */ 5288 } 5289 5290 int __kmp_aux_get_affinity_max_proc() { 5291 if (!KMP_AFFINITY_CAPABLE()) { 5292 return 0; 5293 } 5294 #if KMP_GROUP_AFFINITY 5295 if (__kmp_num_proc_groups > 1) { 5296 return (int)(__kmp_num_proc_groups * sizeof(DWORD_PTR) * CHAR_BIT); 5297 } 5298 #endif 5299 return __kmp_xproc; 5300 } 5301 5302 int __kmp_aux_set_affinity_mask_proc(int proc, void **mask) { 5303 if (!KMP_AFFINITY_CAPABLE()) { 5304 return -1; 5305 } 5306 5307 KA_TRACE( 5308 1000, (""); { 5309 int gtid = __kmp_entry_gtid(); 5310 char buf[KMP_AFFIN_MASK_PRINT_LEN]; 5311 __kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN, 5312 (kmp_affin_mask_t *)(*mask)); 5313 __kmp_debug_printf("kmp_set_affinity_mask_proc: setting proc %d in " 5314 "affinity mask for thread %d = %s\n", 5315 proc, gtid, buf); 5316 }); 5317 5318 if (__kmp_env_consistency_check) { 5319 if ((mask == NULL) || (*mask == NULL)) { 5320 KMP_FATAL(AffinityInvalidMask, "kmp_set_affinity_mask_proc"); 5321 } 5322 } 5323 5324 if ((proc < 0) || (proc >= __kmp_aux_get_affinity_max_proc())) { 5325 return -1; 5326 } 5327 if (!KMP_CPU_ISSET(proc, __kmp_affin_fullMask)) { 5328 return -2; 5329 } 5330 5331 KMP_CPU_SET(proc, (kmp_affin_mask_t *)(*mask)); 5332 return 0; 5333 } 5334 5335 int __kmp_aux_unset_affinity_mask_proc(int proc, void **mask) { 5336 if (!KMP_AFFINITY_CAPABLE()) { 5337 return -1; 5338 } 5339 5340 KA_TRACE( 5341 1000, (""); { 5342 int gtid = __kmp_entry_gtid(); 5343 char buf[KMP_AFFIN_MASK_PRINT_LEN]; 5344 __kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN, 5345 (kmp_affin_mask_t *)(*mask)); 5346 __kmp_debug_printf("kmp_unset_affinity_mask_proc: unsetting proc %d in " 5347 "affinity mask for thread %d = %s\n", 5348 proc, gtid, buf); 5349 }); 5350 5351 if (__kmp_env_consistency_check) { 5352 if ((mask == NULL) || (*mask == NULL)) { 5353 KMP_FATAL(AffinityInvalidMask, "kmp_unset_affinity_mask_proc"); 5354 } 5355 } 5356 5357 if ((proc < 0) || (proc >= __kmp_aux_get_affinity_max_proc())) { 5358 return -1; 5359 } 5360 if (!KMP_CPU_ISSET(proc, __kmp_affin_fullMask)) { 5361 return -2; 5362 } 5363 5364 KMP_CPU_CLR(proc, (kmp_affin_mask_t *)(*mask)); 5365 return 0; 5366 } 5367 5368 int __kmp_aux_get_affinity_mask_proc(int proc, void **mask) { 5369 if (!KMP_AFFINITY_CAPABLE()) { 5370 return -1; 5371 } 5372 5373 KA_TRACE( 5374 1000, (""); { 5375 int gtid = __kmp_entry_gtid(); 5376 char buf[KMP_AFFIN_MASK_PRINT_LEN]; 5377 __kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN, 5378 (kmp_affin_mask_t *)(*mask)); 5379 __kmp_debug_printf("kmp_get_affinity_mask_proc: getting proc %d in " 5380 "affinity mask for thread %d = %s\n", 5381 proc, gtid, buf); 5382 }); 5383 5384 if (__kmp_env_consistency_check) { 5385 if ((mask == NULL) || (*mask == NULL)) { 5386 KMP_FATAL(AffinityInvalidMask, "kmp_get_affinity_mask_proc"); 5387 } 5388 } 5389 5390 if ((proc < 0) || (proc >= __kmp_aux_get_affinity_max_proc())) { 5391 return -1; 5392 } 5393 if (!KMP_CPU_ISSET(proc, __kmp_affin_fullMask)) { 5394 return 0; 5395 } 5396 5397 return KMP_CPU_ISSET(proc, (kmp_affin_mask_t *)(*mask)); 5398 } 5399 5400 #if KMP_WEIGHTED_ITERATIONS_SUPPORTED 5401 // Returns first os proc id with ATOM core 5402 int __kmp_get_first_osid_with_ecore(void) { 5403 int low = 0; 5404 int high = __kmp_topology->get_num_hw_threads() - 1; 5405 int mid = 0; 5406 while (high - low > 1) { 5407 mid = (high + low) / 2; 5408 if (__kmp_topology->at(mid).attrs.get_core_type() == 5409 KMP_HW_CORE_TYPE_CORE) { 5410 low = mid + 1; 5411 } else { 5412 high = mid; 5413 } 5414 } 5415 if (__kmp_topology->at(mid).attrs.get_core_type() == KMP_HW_CORE_TYPE_ATOM) { 5416 return mid; 5417 } 5418 return -1; 5419 } 5420 #endif 5421 5422 // Dynamic affinity settings - Affinity balanced 5423 void __kmp_balanced_affinity(kmp_info_t *th, int nthreads) { 5424 KMP_DEBUG_ASSERT(th); 5425 bool fine_gran = true; 5426 int tid = th->th.th_info.ds.ds_tid; 5427 const char *env_var = "KMP_AFFINITY"; 5428 5429 // Do not perform balanced affinity for the hidden helper threads 5430 if (KMP_HIDDEN_HELPER_THREAD(__kmp_gtid_from_thread(th))) 5431 return; 5432 5433 switch (__kmp_affinity.gran) { 5434 case KMP_HW_THREAD: 5435 break; 5436 case KMP_HW_CORE: 5437 if (__kmp_nThreadsPerCore > 1) { 5438 fine_gran = false; 5439 } 5440 break; 5441 case KMP_HW_SOCKET: 5442 if (nCoresPerPkg > 1) { 5443 fine_gran = false; 5444 } 5445 break; 5446 default: 5447 fine_gran = false; 5448 } 5449 5450 if (__kmp_topology->is_uniform()) { 5451 int coreID; 5452 int threadID; 5453 // Number of hyper threads per core in HT machine 5454 int __kmp_nth_per_core = __kmp_avail_proc / __kmp_ncores; 5455 // Number of cores 5456 int ncores = __kmp_ncores; 5457 if ((nPackages > 1) && (__kmp_nth_per_core <= 1)) { 5458 __kmp_nth_per_core = __kmp_avail_proc / nPackages; 5459 ncores = nPackages; 5460 } 5461 // How many threads will be bound to each core 5462 int chunk = nthreads / ncores; 5463 // How many cores will have an additional thread bound to it - "big cores" 5464 int big_cores = nthreads % ncores; 5465 // Number of threads on the big cores 5466 int big_nth = (chunk + 1) * big_cores; 5467 if (tid < big_nth) { 5468 coreID = tid / (chunk + 1); 5469 threadID = (tid % (chunk + 1)) % __kmp_nth_per_core; 5470 } else { // tid >= big_nth 5471 coreID = (tid - big_cores) / chunk; 5472 threadID = ((tid - big_cores) % chunk) % __kmp_nth_per_core; 5473 } 5474 KMP_DEBUG_ASSERT2(KMP_AFFINITY_CAPABLE(), 5475 "Illegal set affinity operation when not capable"); 5476 5477 kmp_affin_mask_t *mask = th->th.th_affin_mask; 5478 KMP_CPU_ZERO(mask); 5479 5480 if (fine_gran) { 5481 int osID = 5482 __kmp_topology->at(coreID * __kmp_nth_per_core + threadID).os_id; 5483 KMP_CPU_SET(osID, mask); 5484 } else { 5485 for (int i = 0; i < __kmp_nth_per_core; i++) { 5486 int osID; 5487 osID = __kmp_topology->at(coreID * __kmp_nth_per_core + i).os_id; 5488 KMP_CPU_SET(osID, mask); 5489 } 5490 } 5491 if (__kmp_affinity.flags.verbose) { 5492 char buf[KMP_AFFIN_MASK_PRINT_LEN]; 5493 __kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN, mask); 5494 KMP_INFORM(BoundToOSProcSet, env_var, (kmp_int32)getpid(), __kmp_gettid(), 5495 tid, buf); 5496 } 5497 __kmp_affinity_get_thread_topology_info(th); 5498 __kmp_set_system_affinity(mask, TRUE); 5499 } else { // Non-uniform topology 5500 5501 kmp_affin_mask_t *mask = th->th.th_affin_mask; 5502 KMP_CPU_ZERO(mask); 5503 5504 int core_level = 5505 __kmp_affinity_find_core_level(__kmp_avail_proc, __kmp_aff_depth - 1); 5506 int ncores = __kmp_affinity_compute_ncores(__kmp_avail_proc, 5507 __kmp_aff_depth - 1, core_level); 5508 int nth_per_core = __kmp_affinity_max_proc_per_core( 5509 __kmp_avail_proc, __kmp_aff_depth - 1, core_level); 5510 5511 // For performance gain consider the special case nthreads == 5512 // __kmp_avail_proc 5513 if (nthreads == __kmp_avail_proc) { 5514 if (fine_gran) { 5515 int osID = __kmp_topology->at(tid).os_id; 5516 KMP_CPU_SET(osID, mask); 5517 } else { 5518 int core = 5519 __kmp_affinity_find_core(tid, __kmp_aff_depth - 1, core_level); 5520 for (int i = 0; i < __kmp_avail_proc; i++) { 5521 int osID = __kmp_topology->at(i).os_id; 5522 if (__kmp_affinity_find_core(i, __kmp_aff_depth - 1, core_level) == 5523 core) { 5524 KMP_CPU_SET(osID, mask); 5525 } 5526 } 5527 } 5528 } else if (nthreads <= ncores) { 5529 5530 int core = 0; 5531 for (int i = 0; i < ncores; i++) { 5532 // Check if this core from procarr[] is in the mask 5533 int in_mask = 0; 5534 for (int j = 0; j < nth_per_core; j++) { 5535 if (procarr[i * nth_per_core + j] != -1) { 5536 in_mask = 1; 5537 break; 5538 } 5539 } 5540 if (in_mask) { 5541 if (tid == core) { 5542 for (int j = 0; j < nth_per_core; j++) { 5543 int osID = procarr[i * nth_per_core + j]; 5544 if (osID != -1) { 5545 KMP_CPU_SET(osID, mask); 5546 // For fine granularity it is enough to set the first available 5547 // osID for this core 5548 if (fine_gran) { 5549 break; 5550 } 5551 } 5552 } 5553 break; 5554 } else { 5555 core++; 5556 } 5557 } 5558 } 5559 } else { // nthreads > ncores 5560 // Array to save the number of processors at each core 5561 int *nproc_at_core = (int *)KMP_ALLOCA(sizeof(int) * ncores); 5562 // Array to save the number of cores with "x" available processors; 5563 int *ncores_with_x_procs = 5564 (int *)KMP_ALLOCA(sizeof(int) * (nth_per_core + 1)); 5565 // Array to save the number of cores with # procs from x to nth_per_core 5566 int *ncores_with_x_to_max_procs = 5567 (int *)KMP_ALLOCA(sizeof(int) * (nth_per_core + 1)); 5568 5569 for (int i = 0; i <= nth_per_core; i++) { 5570 ncores_with_x_procs[i] = 0; 5571 ncores_with_x_to_max_procs[i] = 0; 5572 } 5573 5574 for (int i = 0; i < ncores; i++) { 5575 int cnt = 0; 5576 for (int j = 0; j < nth_per_core; j++) { 5577 if (procarr[i * nth_per_core + j] != -1) { 5578 cnt++; 5579 } 5580 } 5581 nproc_at_core[i] = cnt; 5582 ncores_with_x_procs[cnt]++; 5583 } 5584 5585 for (int i = 0; i <= nth_per_core; i++) { 5586 for (int j = i; j <= nth_per_core; j++) { 5587 ncores_with_x_to_max_procs[i] += ncores_with_x_procs[j]; 5588 } 5589 } 5590 5591 // Max number of processors 5592 int nproc = nth_per_core * ncores; 5593 // An array to keep number of threads per each context 5594 int *newarr = (int *)__kmp_allocate(sizeof(int) * nproc); 5595 for (int i = 0; i < nproc; i++) { 5596 newarr[i] = 0; 5597 } 5598 5599 int nth = nthreads; 5600 int flag = 0; 5601 while (nth > 0) { 5602 for (int j = 1; j <= nth_per_core; j++) { 5603 int cnt = ncores_with_x_to_max_procs[j]; 5604 for (int i = 0; i < ncores; i++) { 5605 // Skip the core with 0 processors 5606 if (nproc_at_core[i] == 0) { 5607 continue; 5608 } 5609 for (int k = 0; k < nth_per_core; k++) { 5610 if (procarr[i * nth_per_core + k] != -1) { 5611 if (newarr[i * nth_per_core + k] == 0) { 5612 newarr[i * nth_per_core + k] = 1; 5613 cnt--; 5614 nth--; 5615 break; 5616 } else { 5617 if (flag != 0) { 5618 newarr[i * nth_per_core + k]++; 5619 cnt--; 5620 nth--; 5621 break; 5622 } 5623 } 5624 } 5625 } 5626 if (cnt == 0 || nth == 0) { 5627 break; 5628 } 5629 } 5630 if (nth == 0) { 5631 break; 5632 } 5633 } 5634 flag = 1; 5635 } 5636 int sum = 0; 5637 for (int i = 0; i < nproc; i++) { 5638 sum += newarr[i]; 5639 if (sum > tid) { 5640 if (fine_gran) { 5641 int osID = procarr[i]; 5642 KMP_CPU_SET(osID, mask); 5643 } else { 5644 int coreID = i / nth_per_core; 5645 for (int ii = 0; ii < nth_per_core; ii++) { 5646 int osID = procarr[coreID * nth_per_core + ii]; 5647 if (osID != -1) { 5648 KMP_CPU_SET(osID, mask); 5649 } 5650 } 5651 } 5652 break; 5653 } 5654 } 5655 __kmp_free(newarr); 5656 } 5657 5658 if (__kmp_affinity.flags.verbose) { 5659 char buf[KMP_AFFIN_MASK_PRINT_LEN]; 5660 __kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN, mask); 5661 KMP_INFORM(BoundToOSProcSet, env_var, (kmp_int32)getpid(), __kmp_gettid(), 5662 tid, buf); 5663 } 5664 __kmp_affinity_get_thread_topology_info(th); 5665 __kmp_set_system_affinity(mask, TRUE); 5666 } 5667 } 5668 5669 #if KMP_OS_LINUX || KMP_OS_FREEBSD || KMP_OS_AIX 5670 // We don't need this entry for Windows because 5671 // there is GetProcessAffinityMask() api 5672 // 5673 // The intended usage is indicated by these steps: 5674 // 1) The user gets the current affinity mask 5675 // 2) Then sets the affinity by calling this function 5676 // 3) Error check the return value 5677 // 4) Use non-OpenMP parallelization 5678 // 5) Reset the affinity to what was stored in step 1) 5679 #ifdef __cplusplus 5680 extern "C" 5681 #endif 5682 int 5683 kmp_set_thread_affinity_mask_initial() 5684 // the function returns 0 on success, 5685 // -1 if we cannot bind thread 5686 // >0 (errno) if an error happened during binding 5687 { 5688 int gtid = __kmp_get_gtid(); 5689 if (gtid < 0) { 5690 // Do not touch non-omp threads 5691 KA_TRACE(30, ("kmp_set_thread_affinity_mask_initial: " 5692 "non-omp thread, returning\n")); 5693 return -1; 5694 } 5695 if (!KMP_AFFINITY_CAPABLE() || !__kmp_init_middle) { 5696 KA_TRACE(30, ("kmp_set_thread_affinity_mask_initial: " 5697 "affinity not initialized, returning\n")); 5698 return -1; 5699 } 5700 KA_TRACE(30, ("kmp_set_thread_affinity_mask_initial: " 5701 "set full mask for thread %d\n", 5702 gtid)); 5703 KMP_DEBUG_ASSERT(__kmp_affin_fullMask != NULL); 5704 #if KMP_OS_AIX 5705 return bindprocessor(BINDTHREAD, thread_self(), PROCESSOR_CLASS_ANY); 5706 #else 5707 return __kmp_set_system_affinity(__kmp_affin_fullMask, FALSE); 5708 #endif 5709 } 5710 #endif 5711 5712 #endif // KMP_AFFINITY_SUPPORTED 5713