1 /* 2 * kmp_affinity.cpp -- affinity management 3 */ 4 5 //===----------------------------------------------------------------------===// 6 // 7 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 8 // See https://llvm.org/LICENSE.txt for license information. 9 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "kmp.h" 14 #include "kmp_affinity.h" 15 #include "kmp_i18n.h" 16 #include "kmp_io.h" 17 #include "kmp_str.h" 18 #include "kmp_wrapper_getpid.h" 19 #if KMP_USE_HIER_SCHED 20 #include "kmp_dispatch_hier.h" 21 #endif 22 23 // Store the real or imagined machine hierarchy here 24 static hierarchy_info machine_hierarchy; 25 26 void __kmp_cleanup_hierarchy() { machine_hierarchy.fini(); } 27 28 void __kmp_get_hierarchy(kmp_uint32 nproc, kmp_bstate_t *thr_bar) { 29 kmp_uint32 depth; 30 // The test below is true if affinity is available, but set to "none". Need to 31 // init on first use of hierarchical barrier. 32 if (TCR_1(machine_hierarchy.uninitialized)) 33 machine_hierarchy.init(NULL, nproc); 34 35 // Adjust the hierarchy in case num threads exceeds original 36 if (nproc > machine_hierarchy.base_num_threads) 37 machine_hierarchy.resize(nproc); 38 39 depth = machine_hierarchy.depth; 40 KMP_DEBUG_ASSERT(depth > 0); 41 42 thr_bar->depth = depth; 43 thr_bar->base_leaf_kids = (kmp_uint8)machine_hierarchy.numPerLevel[0] - 1; 44 thr_bar->skip_per_level = machine_hierarchy.skipPerLevel; 45 } 46 47 #if KMP_AFFINITY_SUPPORTED 48 49 bool KMPAffinity::picked_api = false; 50 51 void *KMPAffinity::Mask::operator new(size_t n) { return __kmp_allocate(n); } 52 void *KMPAffinity::Mask::operator new[](size_t n) { return __kmp_allocate(n); } 53 void KMPAffinity::Mask::operator delete(void *p) { __kmp_free(p); } 54 void KMPAffinity::Mask::operator delete[](void *p) { __kmp_free(p); } 55 void *KMPAffinity::operator new(size_t n) { return __kmp_allocate(n); } 56 void KMPAffinity::operator delete(void *p) { __kmp_free(p); } 57 58 void KMPAffinity::pick_api() { 59 KMPAffinity *affinity_dispatch; 60 if (picked_api) 61 return; 62 #if KMP_USE_HWLOC 63 // Only use Hwloc if affinity isn't explicitly disabled and 64 // user requests Hwloc topology method 65 if (__kmp_affinity_top_method == affinity_top_method_hwloc && 66 __kmp_affinity_type != affinity_disabled) { 67 affinity_dispatch = new KMPHwlocAffinity(); 68 } else 69 #endif 70 { 71 affinity_dispatch = new KMPNativeAffinity(); 72 } 73 __kmp_affinity_dispatch = affinity_dispatch; 74 picked_api = true; 75 } 76 77 void KMPAffinity::destroy_api() { 78 if (__kmp_affinity_dispatch != NULL) { 79 delete __kmp_affinity_dispatch; 80 __kmp_affinity_dispatch = NULL; 81 picked_api = false; 82 } 83 } 84 85 #define KMP_ADVANCE_SCAN(scan) \ 86 while (*scan != '\0') { \ 87 scan++; \ 88 } 89 90 // Print the affinity mask to the character array in a pretty format. 91 // The format is a comma separated list of non-negative integers or integer 92 // ranges: e.g., 1,2,3-5,7,9-15 93 // The format can also be the string "{<empty>}" if no bits are set in mask 94 char *__kmp_affinity_print_mask(char *buf, int buf_len, 95 kmp_affin_mask_t *mask) { 96 int start = 0, finish = 0, previous = 0; 97 bool first_range; 98 KMP_ASSERT(buf); 99 KMP_ASSERT(buf_len >= 40); 100 KMP_ASSERT(mask); 101 char *scan = buf; 102 char *end = buf + buf_len - 1; 103 104 // Check for empty set. 105 if (mask->begin() == mask->end()) { 106 KMP_SNPRINTF(scan, end - scan + 1, "{<empty>}"); 107 KMP_ADVANCE_SCAN(scan); 108 KMP_ASSERT(scan <= end); 109 return buf; 110 } 111 112 first_range = true; 113 start = mask->begin(); 114 while (1) { 115 // Find next range 116 // [start, previous] is inclusive range of contiguous bits in mask 117 for (finish = mask->next(start), previous = start; 118 finish == previous + 1 && finish != mask->end(); 119 finish = mask->next(finish)) { 120 previous = finish; 121 } 122 123 // The first range does not need a comma printed before it, but the rest 124 // of the ranges do need a comma beforehand 125 if (!first_range) { 126 KMP_SNPRINTF(scan, end - scan + 1, "%s", ","); 127 KMP_ADVANCE_SCAN(scan); 128 } else { 129 first_range = false; 130 } 131 // Range with three or more contiguous bits in the affinity mask 132 if (previous - start > 1) { 133 KMP_SNPRINTF(scan, end - scan + 1, "%d-%d", static_cast<int>(start), 134 static_cast<int>(previous)); 135 } else { 136 // Range with one or two contiguous bits in the affinity mask 137 KMP_SNPRINTF(scan, end - scan + 1, "%d", static_cast<int>(start)); 138 KMP_ADVANCE_SCAN(scan); 139 if (previous - start > 0) { 140 KMP_SNPRINTF(scan, end - scan + 1, ",%d", static_cast<int>(previous)); 141 } 142 } 143 KMP_ADVANCE_SCAN(scan); 144 // Start over with new start point 145 start = finish; 146 if (start == mask->end()) 147 break; 148 // Check for overflow 149 if (end - scan < 2) 150 break; 151 } 152 153 // Check for overflow 154 KMP_ASSERT(scan <= end); 155 return buf; 156 } 157 #undef KMP_ADVANCE_SCAN 158 159 // Print the affinity mask to the string buffer object in a pretty format 160 // The format is a comma separated list of non-negative integers or integer 161 // ranges: e.g., 1,2,3-5,7,9-15 162 // The format can also be the string "{<empty>}" if no bits are set in mask 163 kmp_str_buf_t *__kmp_affinity_str_buf_mask(kmp_str_buf_t *buf, 164 kmp_affin_mask_t *mask) { 165 int start = 0, finish = 0, previous = 0; 166 bool first_range; 167 KMP_ASSERT(buf); 168 KMP_ASSERT(mask); 169 170 __kmp_str_buf_clear(buf); 171 172 // Check for empty set. 173 if (mask->begin() == mask->end()) { 174 __kmp_str_buf_print(buf, "%s", "{<empty>}"); 175 return buf; 176 } 177 178 first_range = true; 179 start = mask->begin(); 180 while (1) { 181 // Find next range 182 // [start, previous] is inclusive range of contiguous bits in mask 183 for (finish = mask->next(start), previous = start; 184 finish == previous + 1 && finish != mask->end(); 185 finish = mask->next(finish)) { 186 previous = finish; 187 } 188 189 // The first range does not need a comma printed before it, but the rest 190 // of the ranges do need a comma beforehand 191 if (!first_range) { 192 __kmp_str_buf_print(buf, "%s", ","); 193 } else { 194 first_range = false; 195 } 196 // Range with three or more contiguous bits in the affinity mask 197 if (previous - start > 1) { 198 __kmp_str_buf_print(buf, "%d-%d", static_cast<int>(start), 199 static_cast<int>(previous)); 200 } else { 201 // Range with one or two contiguous bits in the affinity mask 202 __kmp_str_buf_print(buf, "%d", static_cast<int>(start)); 203 if (previous - start > 0) { 204 __kmp_str_buf_print(buf, ",%d", static_cast<int>(previous)); 205 } 206 } 207 // Start over with new start point 208 start = finish; 209 if (start == mask->end()) 210 break; 211 } 212 return buf; 213 } 214 215 void __kmp_affinity_entire_machine_mask(kmp_affin_mask_t *mask) { 216 KMP_CPU_ZERO(mask); 217 218 #if KMP_GROUP_AFFINITY 219 220 if (__kmp_num_proc_groups > 1) { 221 int group; 222 KMP_DEBUG_ASSERT(__kmp_GetActiveProcessorCount != NULL); 223 for (group = 0; group < __kmp_num_proc_groups; group++) { 224 int i; 225 int num = __kmp_GetActiveProcessorCount(group); 226 for (i = 0; i < num; i++) { 227 KMP_CPU_SET(i + group * (CHAR_BIT * sizeof(DWORD_PTR)), mask); 228 } 229 } 230 } else 231 232 #endif /* KMP_GROUP_AFFINITY */ 233 234 { 235 int proc; 236 for (proc = 0; proc < __kmp_xproc; proc++) { 237 KMP_CPU_SET(proc, mask); 238 } 239 } 240 } 241 242 // When sorting by labels, __kmp_affinity_assign_child_nums() must first be 243 // called to renumber the labels from [0..n] and place them into the child_num 244 // vector of the address object. This is done in case the labels used for 245 // the children at one node of the hierarchy differ from those used for 246 // another node at the same level. Example: suppose the machine has 2 nodes 247 // with 2 packages each. The first node contains packages 601 and 602, and 248 // second node contains packages 603 and 604. If we try to sort the table 249 // for "scatter" affinity, the table will still be sorted 601, 602, 603, 604 250 // because we are paying attention to the labels themselves, not the ordinal 251 // child numbers. By using the child numbers in the sort, the result is 252 // {0,0}=601, {0,1}=603, {1,0}=602, {1,1}=604. 253 static void __kmp_affinity_assign_child_nums(AddrUnsPair *address2os, 254 int numAddrs) { 255 KMP_DEBUG_ASSERT(numAddrs > 0); 256 int depth = address2os->first.depth; 257 unsigned *counts = (unsigned *)__kmp_allocate(depth * sizeof(unsigned)); 258 unsigned *lastLabel = (unsigned *)__kmp_allocate(depth * sizeof(unsigned)); 259 int labCt; 260 for (labCt = 0; labCt < depth; labCt++) { 261 address2os[0].first.childNums[labCt] = counts[labCt] = 0; 262 lastLabel[labCt] = address2os[0].first.labels[labCt]; 263 } 264 int i; 265 for (i = 1; i < numAddrs; i++) { 266 for (labCt = 0; labCt < depth; labCt++) { 267 if (address2os[i].first.labels[labCt] != lastLabel[labCt]) { 268 int labCt2; 269 for (labCt2 = labCt + 1; labCt2 < depth; labCt2++) { 270 counts[labCt2] = 0; 271 lastLabel[labCt2] = address2os[i].first.labels[labCt2]; 272 } 273 counts[labCt]++; 274 lastLabel[labCt] = address2os[i].first.labels[labCt]; 275 break; 276 } 277 } 278 for (labCt = 0; labCt < depth; labCt++) { 279 address2os[i].first.childNums[labCt] = counts[labCt]; 280 } 281 for (; labCt < (int)Address::maxDepth; labCt++) { 282 address2os[i].first.childNums[labCt] = 0; 283 } 284 } 285 __kmp_free(lastLabel); 286 __kmp_free(counts); 287 } 288 289 // All of the __kmp_affinity_create_*_map() routines should set 290 // __kmp_affinity_masks to a vector of affinity mask objects of length 291 // __kmp_affinity_num_masks, if __kmp_affinity_type != affinity_none, and return 292 // the number of levels in the machine topology tree (zero if 293 // __kmp_affinity_type == affinity_none). 294 // 295 // All of the __kmp_affinity_create_*_map() routines should set 296 // *__kmp_affin_fullMask to the affinity mask for the initialization thread. 297 // They need to save and restore the mask, and it could be needed later, so 298 // saving it is just an optimization to avoid calling kmp_get_system_affinity() 299 // again. 300 kmp_affin_mask_t *__kmp_affin_fullMask = NULL; 301 302 static int nCoresPerPkg, nPackages; 303 static int __kmp_nThreadsPerCore; 304 #ifndef KMP_DFLT_NTH_CORES 305 static int __kmp_ncores; 306 #endif 307 static int *__kmp_pu_os_idx = NULL; 308 309 // __kmp_affinity_uniform_topology() doesn't work when called from 310 // places which support arbitrarily many levels in the machine topology 311 // map, i.e. the non-default cases in __kmp_affinity_create_cpuinfo_map() 312 // __kmp_affinity_create_x2apicid_map(). 313 inline static bool __kmp_affinity_uniform_topology() { 314 return __kmp_avail_proc == (__kmp_nThreadsPerCore * nCoresPerPkg * nPackages); 315 } 316 317 // Print out the detailed machine topology map, i.e. the physical locations 318 // of each OS proc. 319 static void __kmp_affinity_print_topology(AddrUnsPair *address2os, int len, 320 int depth, int pkgLevel, 321 int coreLevel, int threadLevel) { 322 int proc; 323 324 KMP_INFORM(OSProcToPhysicalThreadMap, "KMP_AFFINITY"); 325 for (proc = 0; proc < len; proc++) { 326 int level; 327 kmp_str_buf_t buf; 328 __kmp_str_buf_init(&buf); 329 for (level = 0; level < depth; level++) { 330 if (level == threadLevel) { 331 __kmp_str_buf_print(&buf, "%s ", KMP_I18N_STR(Thread)); 332 } else if (level == coreLevel) { 333 __kmp_str_buf_print(&buf, "%s ", KMP_I18N_STR(Core)); 334 } else if (level == pkgLevel) { 335 __kmp_str_buf_print(&buf, "%s ", KMP_I18N_STR(Package)); 336 } else if (level > pkgLevel) { 337 __kmp_str_buf_print(&buf, "%s_%d ", KMP_I18N_STR(Node), 338 level - pkgLevel - 1); 339 } else { 340 __kmp_str_buf_print(&buf, "L%d ", level); 341 } 342 __kmp_str_buf_print(&buf, "%d ", address2os[proc].first.labels[level]); 343 } 344 KMP_INFORM(OSProcMapToPack, "KMP_AFFINITY", address2os[proc].second, 345 buf.str); 346 __kmp_str_buf_free(&buf); 347 } 348 } 349 350 #if KMP_USE_HWLOC 351 352 static void __kmp_affinity_print_hwloc_tp(AddrUnsPair *addrP, int len, 353 int depth, int *levels) { 354 int proc; 355 kmp_str_buf_t buf; 356 __kmp_str_buf_init(&buf); 357 KMP_INFORM(OSProcToPhysicalThreadMap, "KMP_AFFINITY"); 358 for (proc = 0; proc < len; proc++) { 359 __kmp_str_buf_print(&buf, "%s %d ", KMP_I18N_STR(Package), 360 addrP[proc].first.labels[0]); 361 if (depth > 1) { 362 int level = 1; // iterate over levels 363 int label = 1; // iterate over labels 364 if (__kmp_numa_detected) 365 // node level follows package 366 if (levels[level++] > 0) 367 __kmp_str_buf_print(&buf, "%s %d ", KMP_I18N_STR(Node), 368 addrP[proc].first.labels[label++]); 369 if (__kmp_tile_depth > 0) 370 // tile level follows node if any, or package 371 if (levels[level++] > 0) 372 __kmp_str_buf_print(&buf, "%s %d ", KMP_I18N_STR(Tile), 373 addrP[proc].first.labels[label++]); 374 if (levels[level++] > 0) 375 // core level follows 376 __kmp_str_buf_print(&buf, "%s %d ", KMP_I18N_STR(Core), 377 addrP[proc].first.labels[label++]); 378 if (levels[level++] > 0) 379 // thread level is the latest 380 __kmp_str_buf_print(&buf, "%s %d ", KMP_I18N_STR(Thread), 381 addrP[proc].first.labels[label++]); 382 KMP_DEBUG_ASSERT(label == depth); 383 } 384 KMP_INFORM(OSProcMapToPack, "KMP_AFFINITY", addrP[proc].second, buf.str); 385 __kmp_str_buf_clear(&buf); 386 } 387 __kmp_str_buf_free(&buf); 388 } 389 390 static int nNodePerPkg, nTilePerPkg, nTilePerNode, nCorePerNode, nCorePerTile; 391 392 // This function removes the topology levels that are radix 1 and don't offer 393 // further information about the topology. The most common example is when you 394 // have one thread context per core, we don't want the extra thread context 395 // level if it offers no unique labels. So they are removed. 396 // return value: the new depth of address2os 397 static int __kmp_affinity_remove_radix_one_levels(AddrUnsPair *addrP, int nTh, 398 int depth, int *levels) { 399 int level; 400 int i; 401 int radix1_detected; 402 int new_depth = depth; 403 for (level = depth - 1; level > 0; --level) { 404 // Detect if this level is radix 1 405 radix1_detected = 1; 406 for (i = 1; i < nTh; ++i) { 407 if (addrP[0].first.labels[level] != addrP[i].first.labels[level]) { 408 // There are differing label values for this level so it stays 409 radix1_detected = 0; 410 break; 411 } 412 } 413 if (!radix1_detected) 414 continue; 415 // Radix 1 was detected 416 --new_depth; 417 levels[level] = -1; // mark level as not present in address2os array 418 if (level == new_depth) { 419 // "turn off" deepest level, just decrement the depth that removes 420 // the level from address2os array 421 for (i = 0; i < nTh; ++i) { 422 addrP[i].first.depth--; 423 } 424 } else { 425 // For other levels, we move labels over and also reduce the depth 426 int j; 427 for (j = level; j < new_depth; ++j) { 428 for (i = 0; i < nTh; ++i) { 429 addrP[i].first.labels[j] = addrP[i].first.labels[j + 1]; 430 addrP[i].first.depth--; 431 } 432 levels[j + 1] -= 1; 433 } 434 } 435 } 436 return new_depth; 437 } 438 439 // Returns the number of objects of type 'type' below 'obj' within the topology 440 // tree structure. e.g., if obj is a HWLOC_OBJ_PACKAGE object, and type is 441 // HWLOC_OBJ_PU, then this will return the number of PU's under the SOCKET 442 // object. 443 static int __kmp_hwloc_get_nobjs_under_obj(hwloc_obj_t obj, 444 hwloc_obj_type_t type) { 445 int retval = 0; 446 hwloc_obj_t first; 447 for (first = hwloc_get_obj_below_by_type(__kmp_hwloc_topology, obj->type, 448 obj->logical_index, type, 0); 449 first != NULL && 450 hwloc_get_ancestor_obj_by_type(__kmp_hwloc_topology, obj->type, first) == 451 obj; 452 first = hwloc_get_next_obj_by_type(__kmp_hwloc_topology, first->type, 453 first)) { 454 ++retval; 455 } 456 return retval; 457 } 458 459 static int __kmp_hwloc_count_children_by_depth(hwloc_topology_t t, 460 hwloc_obj_t o, 461 kmp_hwloc_depth_t depth, 462 hwloc_obj_t *f) { 463 if (o->depth == depth) { 464 if (*f == NULL) 465 *f = o; // output first descendant found 466 return 1; 467 } 468 int sum = 0; 469 for (unsigned i = 0; i < o->arity; i++) 470 sum += __kmp_hwloc_count_children_by_depth(t, o->children[i], depth, f); 471 return sum; // will be 0 if no one found (as PU arity is 0) 472 } 473 474 static int __kmp_hwloc_count_children_by_type(hwloc_topology_t t, hwloc_obj_t o, 475 hwloc_obj_type_t type, 476 hwloc_obj_t *f) { 477 if (!hwloc_compare_types(o->type, type)) { 478 if (*f == NULL) 479 *f = o; // output first descendant found 480 return 1; 481 } 482 int sum = 0; 483 for (unsigned i = 0; i < o->arity; i++) 484 sum += __kmp_hwloc_count_children_by_type(t, o->children[i], type, f); 485 return sum; // will be 0 if no one found (as PU arity is 0) 486 } 487 488 static int __kmp_hwloc_process_obj_core_pu(AddrUnsPair *addrPair, 489 int &nActiveThreads, 490 int &num_active_cores, 491 hwloc_obj_t obj, int depth, 492 int *labels) { 493 hwloc_obj_t core = NULL; 494 hwloc_topology_t &tp = __kmp_hwloc_topology; 495 int NC = __kmp_hwloc_count_children_by_type(tp, obj, HWLOC_OBJ_CORE, &core); 496 for (int core_id = 0; core_id < NC; ++core_id, core = core->next_cousin) { 497 hwloc_obj_t pu = NULL; 498 KMP_DEBUG_ASSERT(core != NULL); 499 int num_active_threads = 0; 500 int NT = __kmp_hwloc_count_children_by_type(tp, core, HWLOC_OBJ_PU, &pu); 501 // int NT = core->arity; pu = core->first_child; // faster? 502 for (int pu_id = 0; pu_id < NT; ++pu_id, pu = pu->next_cousin) { 503 KMP_DEBUG_ASSERT(pu != NULL); 504 if (!KMP_CPU_ISSET(pu->os_index, __kmp_affin_fullMask)) 505 continue; // skip inactive (inaccessible) unit 506 Address addr(depth + 2); 507 KA_TRACE(20, ("Hwloc inserting %d (%d) %d (%d) %d (%d) into address2os\n", 508 obj->os_index, obj->logical_index, core->os_index, 509 core->logical_index, pu->os_index, pu->logical_index)); 510 for (int i = 0; i < depth; ++i) 511 addr.labels[i] = labels[i]; // package, etc. 512 addr.labels[depth] = core_id; // core 513 addr.labels[depth + 1] = pu_id; // pu 514 addrPair[nActiveThreads] = AddrUnsPair(addr, pu->os_index); 515 __kmp_pu_os_idx[nActiveThreads] = pu->os_index; 516 nActiveThreads++; 517 ++num_active_threads; // count active threads per core 518 } 519 if (num_active_threads) { // were there any active threads on the core? 520 ++__kmp_ncores; // count total active cores 521 ++num_active_cores; // count active cores per socket 522 if (num_active_threads > __kmp_nThreadsPerCore) 523 __kmp_nThreadsPerCore = num_active_threads; // calc maximum 524 } 525 } 526 return 0; 527 } 528 529 // Check if NUMA node detected below the package, 530 // and if tile object is detected and return its depth 531 static int __kmp_hwloc_check_numa() { 532 hwloc_topology_t &tp = __kmp_hwloc_topology; 533 hwloc_obj_t hT, hC, hL, hN, hS; // hwloc objects (pointers to) 534 int depth, l2cache_depth, package_depth; 535 536 // Get some PU 537 hT = hwloc_get_obj_by_type(tp, HWLOC_OBJ_PU, 0); 538 if (hT == NULL) // something has gone wrong 539 return 1; 540 541 // check NUMA node below PACKAGE 542 hN = hwloc_get_ancestor_obj_by_type(tp, HWLOC_OBJ_NUMANODE, hT); 543 hS = hwloc_get_ancestor_obj_by_type(tp, HWLOC_OBJ_PACKAGE, hT); 544 KMP_DEBUG_ASSERT(hS != NULL); 545 if (hN != NULL && hN->depth > hS->depth) { 546 __kmp_numa_detected = TRUE; // socket includes node(s) 547 if (__kmp_affinity_gran == affinity_gran_node) { 548 __kmp_affinity_gran = affinity_gran_numa; 549 } 550 } 551 552 package_depth = hwloc_get_type_depth(tp, HWLOC_OBJ_PACKAGE); 553 l2cache_depth = hwloc_get_cache_type_depth(tp, 2, HWLOC_OBJ_CACHE_UNIFIED); 554 // check tile, get object by depth because of multiple caches possible 555 depth = (l2cache_depth < package_depth) ? package_depth : l2cache_depth; 556 hL = hwloc_get_ancestor_obj_by_depth(tp, depth, hT); 557 hC = NULL; // not used, but reset it here just in case 558 if (hL != NULL && 559 __kmp_hwloc_count_children_by_type(tp, hL, HWLOC_OBJ_CORE, &hC) > 1) 560 __kmp_tile_depth = depth; // tile consists of multiple cores 561 return 0; 562 } 563 564 static int __kmp_affinity_create_hwloc_map(AddrUnsPair **address2os, 565 kmp_i18n_id_t *const msg_id) { 566 hwloc_topology_t &tp = __kmp_hwloc_topology; // shortcut of a long name 567 *address2os = NULL; 568 *msg_id = kmp_i18n_null; 569 570 // Save the affinity mask for the current thread. 571 kmp_affin_mask_t *oldMask; 572 KMP_CPU_ALLOC(oldMask); 573 __kmp_get_system_affinity(oldMask, TRUE); 574 __kmp_hwloc_check_numa(); 575 576 if (!KMP_AFFINITY_CAPABLE()) { 577 // Hack to try and infer the machine topology using only the data 578 // available from cpuid on the current thread, and __kmp_xproc. 579 KMP_ASSERT(__kmp_affinity_type == affinity_none); 580 581 nCoresPerPkg = __kmp_hwloc_get_nobjs_under_obj( 582 hwloc_get_obj_by_type(tp, HWLOC_OBJ_PACKAGE, 0), HWLOC_OBJ_CORE); 583 __kmp_nThreadsPerCore = __kmp_hwloc_get_nobjs_under_obj( 584 hwloc_get_obj_by_type(tp, HWLOC_OBJ_CORE, 0), HWLOC_OBJ_PU); 585 __kmp_ncores = __kmp_xproc / __kmp_nThreadsPerCore; 586 nPackages = (__kmp_xproc + nCoresPerPkg - 1) / nCoresPerPkg; 587 if (__kmp_affinity_verbose) { 588 KMP_INFORM(AffNotCapableUseLocCpuidL11, "KMP_AFFINITY"); 589 KMP_INFORM(AvailableOSProc, "KMP_AFFINITY", __kmp_avail_proc); 590 if (__kmp_affinity_uniform_topology()) { 591 KMP_INFORM(Uniform, "KMP_AFFINITY"); 592 } else { 593 KMP_INFORM(NonUniform, "KMP_AFFINITY"); 594 } 595 KMP_INFORM(Topology, "KMP_AFFINITY", nPackages, nCoresPerPkg, 596 __kmp_nThreadsPerCore, __kmp_ncores); 597 } 598 KMP_CPU_FREE(oldMask); 599 return 0; 600 } 601 602 int depth = 3; 603 int levels[5] = {0, 1, 2, 3, 4}; // package, [node,] [tile,] core, thread 604 int labels[3] = {0}; // package [,node] [,tile] - head of lables array 605 if (__kmp_numa_detected) 606 ++depth; 607 if (__kmp_tile_depth) 608 ++depth; 609 610 // Allocate the data structure to be returned. 611 AddrUnsPair *retval = 612 (AddrUnsPair *)__kmp_allocate(sizeof(AddrUnsPair) * __kmp_avail_proc); 613 KMP_DEBUG_ASSERT(__kmp_pu_os_idx == NULL); 614 __kmp_pu_os_idx = (int *)__kmp_allocate(sizeof(int) * __kmp_avail_proc); 615 616 // When affinity is off, this routine will still be called to set 617 // __kmp_ncores, as well as __kmp_nThreadsPerCore, 618 // nCoresPerPkg, & nPackages. Make sure all these vars are set 619 // correctly, and return if affinity is not enabled. 620 621 hwloc_obj_t socket, node, tile; 622 int nActiveThreads = 0; 623 int socket_id = 0; 624 // re-calculate globals to count only accessible resources 625 __kmp_ncores = nPackages = nCoresPerPkg = __kmp_nThreadsPerCore = 0; 626 nNodePerPkg = nTilePerPkg = nTilePerNode = nCorePerNode = nCorePerTile = 0; 627 for (socket = hwloc_get_obj_by_type(tp, HWLOC_OBJ_PACKAGE, 0); socket != NULL; 628 socket = hwloc_get_next_obj_by_type(tp, HWLOC_OBJ_PACKAGE, socket), 629 socket_id++) { 630 labels[0] = socket_id; 631 if (__kmp_numa_detected) { 632 int NN; 633 int n_active_nodes = 0; 634 node = NULL; 635 NN = __kmp_hwloc_count_children_by_type(tp, socket, HWLOC_OBJ_NUMANODE, 636 &node); 637 for (int node_id = 0; node_id < NN; ++node_id, node = node->next_cousin) { 638 labels[1] = node_id; 639 if (__kmp_tile_depth) { 640 // NUMA + tiles 641 int NT; 642 int n_active_tiles = 0; 643 tile = NULL; 644 NT = __kmp_hwloc_count_children_by_depth(tp, node, __kmp_tile_depth, 645 &tile); 646 for (int tl_id = 0; tl_id < NT; ++tl_id, tile = tile->next_cousin) { 647 labels[2] = tl_id; 648 int n_active_cores = 0; 649 __kmp_hwloc_process_obj_core_pu(retval, nActiveThreads, 650 n_active_cores, tile, 3, labels); 651 if (n_active_cores) { // were there any active cores on the socket? 652 ++n_active_tiles; // count active tiles per node 653 if (n_active_cores > nCorePerTile) 654 nCorePerTile = n_active_cores; // calc maximum 655 } 656 } 657 if (n_active_tiles) { // were there any active tiles on the socket? 658 ++n_active_nodes; // count active nodes per package 659 if (n_active_tiles > nTilePerNode) 660 nTilePerNode = n_active_tiles; // calc maximum 661 } 662 } else { 663 // NUMA, no tiles 664 int n_active_cores = 0; 665 __kmp_hwloc_process_obj_core_pu(retval, nActiveThreads, 666 n_active_cores, node, 2, labels); 667 if (n_active_cores) { // were there any active cores on the socket? 668 ++n_active_nodes; // count active nodes per package 669 if (n_active_cores > nCorePerNode) 670 nCorePerNode = n_active_cores; // calc maximum 671 } 672 } 673 } 674 if (n_active_nodes) { // were there any active nodes on the socket? 675 ++nPackages; // count total active packages 676 if (n_active_nodes > nNodePerPkg) 677 nNodePerPkg = n_active_nodes; // calc maximum 678 } 679 } else { 680 if (__kmp_tile_depth) { 681 // no NUMA, tiles 682 int NT; 683 int n_active_tiles = 0; 684 tile = NULL; 685 NT = __kmp_hwloc_count_children_by_depth(tp, socket, __kmp_tile_depth, 686 &tile); 687 for (int tl_id = 0; tl_id < NT; ++tl_id, tile = tile->next_cousin) { 688 labels[1] = tl_id; 689 int n_active_cores = 0; 690 __kmp_hwloc_process_obj_core_pu(retval, nActiveThreads, 691 n_active_cores, tile, 2, labels); 692 if (n_active_cores) { // were there any active cores on the socket? 693 ++n_active_tiles; // count active tiles per package 694 if (n_active_cores > nCorePerTile) 695 nCorePerTile = n_active_cores; // calc maximum 696 } 697 } 698 if (n_active_tiles) { // were there any active tiles on the socket? 699 ++nPackages; // count total active packages 700 if (n_active_tiles > nTilePerPkg) 701 nTilePerPkg = n_active_tiles; // calc maximum 702 } 703 } else { 704 // no NUMA, no tiles 705 int n_active_cores = 0; 706 __kmp_hwloc_process_obj_core_pu(retval, nActiveThreads, n_active_cores, 707 socket, 1, labels); 708 if (n_active_cores) { // were there any active cores on the socket? 709 ++nPackages; // count total active packages 710 if (n_active_cores > nCoresPerPkg) 711 nCoresPerPkg = n_active_cores; // calc maximum 712 } 713 } 714 } 715 } 716 717 // If there's only one thread context to bind to, return now. 718 KMP_DEBUG_ASSERT(nActiveThreads == __kmp_avail_proc); 719 KMP_ASSERT(nActiveThreads > 0); 720 if (nActiveThreads == 1) { 721 __kmp_ncores = nPackages = 1; 722 __kmp_nThreadsPerCore = nCoresPerPkg = 1; 723 if (__kmp_affinity_verbose) { 724 char buf[KMP_AFFIN_MASK_PRINT_LEN]; 725 __kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN, oldMask); 726 727 KMP_INFORM(AffUsingHwloc, "KMP_AFFINITY"); 728 if (__kmp_affinity_respect_mask) { 729 KMP_INFORM(InitOSProcSetRespect, "KMP_AFFINITY", buf); 730 } else { 731 KMP_INFORM(InitOSProcSetNotRespect, "KMP_AFFINITY", buf); 732 } 733 KMP_INFORM(AvailableOSProc, "KMP_AFFINITY", __kmp_avail_proc); 734 KMP_INFORM(Uniform, "KMP_AFFINITY"); 735 KMP_INFORM(Topology, "KMP_AFFINITY", nPackages, nCoresPerPkg, 736 __kmp_nThreadsPerCore, __kmp_ncores); 737 } 738 739 if (__kmp_affinity_type == affinity_none) { 740 __kmp_free(retval); 741 KMP_CPU_FREE(oldMask); 742 return 0; 743 } 744 745 // Form an Address object which only includes the package level. 746 Address addr(1); 747 addr.labels[0] = retval[0].first.labels[0]; 748 retval[0].first = addr; 749 750 if (__kmp_affinity_gran_levels < 0) { 751 __kmp_affinity_gran_levels = 0; 752 } 753 754 if (__kmp_affinity_verbose) { 755 __kmp_affinity_print_topology(retval, 1, 1, 0, -1, -1); 756 } 757 758 *address2os = retval; 759 KMP_CPU_FREE(oldMask); 760 return 1; 761 } 762 763 // Sort the table by physical Id. 764 qsort(retval, nActiveThreads, sizeof(*retval), 765 __kmp_affinity_cmp_Address_labels); 766 767 // Check to see if the machine topology is uniform 768 int nPUs = nPackages * __kmp_nThreadsPerCore; 769 if (__kmp_numa_detected) { 770 if (__kmp_tile_depth) { // NUMA + tiles 771 nPUs *= (nNodePerPkg * nTilePerNode * nCorePerTile); 772 } else { // NUMA, no tiles 773 nPUs *= (nNodePerPkg * nCorePerNode); 774 } 775 } else { 776 if (__kmp_tile_depth) { // no NUMA, tiles 777 nPUs *= (nTilePerPkg * nCorePerTile); 778 } else { // no NUMA, no tiles 779 nPUs *= nCoresPerPkg; 780 } 781 } 782 unsigned uniform = (nPUs == nActiveThreads); 783 784 // Print the machine topology summary. 785 if (__kmp_affinity_verbose) { 786 char mask[KMP_AFFIN_MASK_PRINT_LEN]; 787 __kmp_affinity_print_mask(mask, KMP_AFFIN_MASK_PRINT_LEN, oldMask); 788 if (__kmp_affinity_respect_mask) { 789 KMP_INFORM(InitOSProcSetRespect, "KMP_AFFINITY", mask); 790 } else { 791 KMP_INFORM(InitOSProcSetNotRespect, "KMP_AFFINITY", mask); 792 } 793 KMP_INFORM(AvailableOSProc, "KMP_AFFINITY", __kmp_avail_proc); 794 if (uniform) { 795 KMP_INFORM(Uniform, "KMP_AFFINITY"); 796 } else { 797 KMP_INFORM(NonUniform, "KMP_AFFINITY"); 798 } 799 if (__kmp_numa_detected) { 800 if (__kmp_tile_depth) { // NUMA + tiles 801 KMP_INFORM(TopologyExtraNoTi, "KMP_AFFINITY", nPackages, nNodePerPkg, 802 nTilePerNode, nCorePerTile, __kmp_nThreadsPerCore, 803 __kmp_ncores); 804 } else { // NUMA, no tiles 805 KMP_INFORM(TopologyExtraNode, "KMP_AFFINITY", nPackages, nNodePerPkg, 806 nCorePerNode, __kmp_nThreadsPerCore, __kmp_ncores); 807 nPUs *= (nNodePerPkg * nCorePerNode); 808 } 809 } else { 810 if (__kmp_tile_depth) { // no NUMA, tiles 811 KMP_INFORM(TopologyExtraTile, "KMP_AFFINITY", nPackages, nTilePerPkg, 812 nCorePerTile, __kmp_nThreadsPerCore, __kmp_ncores); 813 } else { // no NUMA, no tiles 814 kmp_str_buf_t buf; 815 __kmp_str_buf_init(&buf); 816 __kmp_str_buf_print(&buf, "%d", nPackages); 817 KMP_INFORM(TopologyExtra, "KMP_AFFINITY", buf.str, nCoresPerPkg, 818 __kmp_nThreadsPerCore, __kmp_ncores); 819 __kmp_str_buf_free(&buf); 820 } 821 } 822 } 823 824 if (__kmp_affinity_type == affinity_none) { 825 __kmp_free(retval); 826 KMP_CPU_FREE(oldMask); 827 return 0; 828 } 829 830 int depth_full = depth; // number of levels before compressing 831 // Find any levels with radiix 1, and remove them from the map 832 // (except for the package level). 833 depth = __kmp_affinity_remove_radix_one_levels(retval, nActiveThreads, depth, 834 levels); 835 KMP_DEBUG_ASSERT(__kmp_affinity_gran != affinity_gran_default); 836 if (__kmp_affinity_gran_levels < 0) { 837 // Set the granularity level based on what levels are modeled 838 // in the machine topology map. 839 __kmp_affinity_gran_levels = 0; // lowest level (e.g. fine) 840 if (__kmp_affinity_gran > affinity_gran_thread) { 841 for (int i = 1; i <= depth_full; ++i) { 842 if (__kmp_affinity_gran <= i) // only count deeper levels 843 break; 844 if (levels[depth_full - i] > 0) 845 __kmp_affinity_gran_levels++; 846 } 847 } 848 if (__kmp_affinity_gran > affinity_gran_package) 849 __kmp_affinity_gran_levels++; // e.g. granularity = group 850 } 851 852 if (__kmp_affinity_verbose) 853 __kmp_affinity_print_hwloc_tp(retval, nActiveThreads, depth, levels); 854 855 KMP_CPU_FREE(oldMask); 856 *address2os = retval; 857 return depth; 858 } 859 #endif // KMP_USE_HWLOC 860 861 // If we don't know how to retrieve the machine's processor topology, or 862 // encounter an error in doing so, this routine is called to form a "flat" 863 // mapping of os thread id's <-> processor id's. 864 static int __kmp_affinity_create_flat_map(AddrUnsPair **address2os, 865 kmp_i18n_id_t *const msg_id) { 866 *address2os = NULL; 867 *msg_id = kmp_i18n_null; 868 869 // Even if __kmp_affinity_type == affinity_none, this routine might still 870 // called to set __kmp_ncores, as well as 871 // __kmp_nThreadsPerCore, nCoresPerPkg, & nPackages. 872 if (!KMP_AFFINITY_CAPABLE()) { 873 KMP_ASSERT(__kmp_affinity_type == affinity_none); 874 __kmp_ncores = nPackages = __kmp_xproc; 875 __kmp_nThreadsPerCore = nCoresPerPkg = 1; 876 if (__kmp_affinity_verbose) { 877 KMP_INFORM(AffFlatTopology, "KMP_AFFINITY"); 878 KMP_INFORM(AvailableOSProc, "KMP_AFFINITY", __kmp_avail_proc); 879 KMP_INFORM(Uniform, "KMP_AFFINITY"); 880 KMP_INFORM(Topology, "KMP_AFFINITY", nPackages, nCoresPerPkg, 881 __kmp_nThreadsPerCore, __kmp_ncores); 882 } 883 return 0; 884 } 885 886 // When affinity is off, this routine will still be called to set 887 // __kmp_ncores, as well as __kmp_nThreadsPerCore, nCoresPerPkg, & nPackages. 888 // Make sure all these vars are set correctly, and return now if affinity is 889 // not enabled. 890 __kmp_ncores = nPackages = __kmp_avail_proc; 891 __kmp_nThreadsPerCore = nCoresPerPkg = 1; 892 if (__kmp_affinity_verbose) { 893 char buf[KMP_AFFIN_MASK_PRINT_LEN]; 894 __kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN, 895 __kmp_affin_fullMask); 896 897 KMP_INFORM(AffCapableUseFlat, "KMP_AFFINITY"); 898 if (__kmp_affinity_respect_mask) { 899 KMP_INFORM(InitOSProcSetRespect, "KMP_AFFINITY", buf); 900 } else { 901 KMP_INFORM(InitOSProcSetNotRespect, "KMP_AFFINITY", buf); 902 } 903 KMP_INFORM(AvailableOSProc, "KMP_AFFINITY", __kmp_avail_proc); 904 KMP_INFORM(Uniform, "KMP_AFFINITY"); 905 KMP_INFORM(Topology, "KMP_AFFINITY", nPackages, nCoresPerPkg, 906 __kmp_nThreadsPerCore, __kmp_ncores); 907 } 908 KMP_DEBUG_ASSERT(__kmp_pu_os_idx == NULL); 909 __kmp_pu_os_idx = (int *)__kmp_allocate(sizeof(int) * __kmp_avail_proc); 910 if (__kmp_affinity_type == affinity_none) { 911 int avail_ct = 0; 912 int i; 913 KMP_CPU_SET_ITERATE(i, __kmp_affin_fullMask) { 914 if (!KMP_CPU_ISSET(i, __kmp_affin_fullMask)) 915 continue; 916 __kmp_pu_os_idx[avail_ct++] = i; // suppose indices are flat 917 } 918 return 0; 919 } 920 921 // Contruct the data structure to be returned. 922 *address2os = 923 (AddrUnsPair *)__kmp_allocate(sizeof(**address2os) * __kmp_avail_proc); 924 int avail_ct = 0; 925 int i; 926 KMP_CPU_SET_ITERATE(i, __kmp_affin_fullMask) { 927 // Skip this proc if it is not included in the machine model. 928 if (!KMP_CPU_ISSET(i, __kmp_affin_fullMask)) { 929 continue; 930 } 931 __kmp_pu_os_idx[avail_ct] = i; // suppose indices are flat 932 Address addr(1); 933 addr.labels[0] = i; 934 (*address2os)[avail_ct++] = AddrUnsPair(addr, i); 935 } 936 if (__kmp_affinity_verbose) { 937 KMP_INFORM(OSProcToPackage, "KMP_AFFINITY"); 938 } 939 940 if (__kmp_affinity_gran_levels < 0) { 941 // Only the package level is modeled in the machine topology map, 942 // so the #levels of granularity is either 0 or 1. 943 if (__kmp_affinity_gran > affinity_gran_package) { 944 __kmp_affinity_gran_levels = 1; 945 } else { 946 __kmp_affinity_gran_levels = 0; 947 } 948 } 949 return 1; 950 } 951 952 #if KMP_GROUP_AFFINITY 953 954 // If multiple Windows* OS processor groups exist, we can create a 2-level 955 // topology map with the groups at level 0 and the individual procs at level 1. 956 // This facilitates letting the threads float among all procs in a group, 957 // if granularity=group (the default when there are multiple groups). 958 static int __kmp_affinity_create_proc_group_map(AddrUnsPair **address2os, 959 kmp_i18n_id_t *const msg_id) { 960 *address2os = NULL; 961 *msg_id = kmp_i18n_null; 962 963 // If we aren't affinity capable, then return now. 964 // The flat mapping will be used. 965 if (!KMP_AFFINITY_CAPABLE()) { 966 // FIXME set *msg_id 967 return -1; 968 } 969 970 // Contruct the data structure to be returned. 971 *address2os = 972 (AddrUnsPair *)__kmp_allocate(sizeof(**address2os) * __kmp_avail_proc); 973 KMP_DEBUG_ASSERT(__kmp_pu_os_idx == NULL); 974 __kmp_pu_os_idx = (int *)__kmp_allocate(sizeof(int) * __kmp_avail_proc); 975 int avail_ct = 0; 976 int i; 977 KMP_CPU_SET_ITERATE(i, __kmp_affin_fullMask) { 978 // Skip this proc if it is not included in the machine model. 979 if (!KMP_CPU_ISSET(i, __kmp_affin_fullMask)) { 980 continue; 981 } 982 __kmp_pu_os_idx[avail_ct] = i; // suppose indices are flat 983 Address addr(2); 984 addr.labels[0] = i / (CHAR_BIT * sizeof(DWORD_PTR)); 985 addr.labels[1] = i % (CHAR_BIT * sizeof(DWORD_PTR)); 986 (*address2os)[avail_ct++] = AddrUnsPair(addr, i); 987 988 if (__kmp_affinity_verbose) { 989 KMP_INFORM(AffOSProcToGroup, "KMP_AFFINITY", i, addr.labels[0], 990 addr.labels[1]); 991 } 992 } 993 994 if (__kmp_affinity_gran_levels < 0) { 995 if (__kmp_affinity_gran == affinity_gran_group) { 996 __kmp_affinity_gran_levels = 1; 997 } else if ((__kmp_affinity_gran == affinity_gran_fine) || 998 (__kmp_affinity_gran == affinity_gran_thread)) { 999 __kmp_affinity_gran_levels = 0; 1000 } else { 1001 const char *gran_str = NULL; 1002 if (__kmp_affinity_gran == affinity_gran_core) { 1003 gran_str = "core"; 1004 } else if (__kmp_affinity_gran == affinity_gran_package) { 1005 gran_str = "package"; 1006 } else if (__kmp_affinity_gran == affinity_gran_node) { 1007 gran_str = "node"; 1008 } else { 1009 KMP_ASSERT(0); 1010 } 1011 1012 // Warning: can't use affinity granularity \"gran\" with group topology 1013 // method, using "thread" 1014 __kmp_affinity_gran_levels = 0; 1015 } 1016 } 1017 return 2; 1018 } 1019 1020 #endif /* KMP_GROUP_AFFINITY */ 1021 1022 #if KMP_ARCH_X86 || KMP_ARCH_X86_64 1023 1024 static int __kmp_cpuid_mask_width(int count) { 1025 int r = 0; 1026 1027 while ((1 << r) < count) 1028 ++r; 1029 return r; 1030 } 1031 1032 class apicThreadInfo { 1033 public: 1034 unsigned osId; // param to __kmp_affinity_bind_thread 1035 unsigned apicId; // from cpuid after binding 1036 unsigned maxCoresPerPkg; // "" 1037 unsigned maxThreadsPerPkg; // "" 1038 unsigned pkgId; // inferred from above values 1039 unsigned coreId; // "" 1040 unsigned threadId; // "" 1041 }; 1042 1043 static int __kmp_affinity_cmp_apicThreadInfo_phys_id(const void *a, 1044 const void *b) { 1045 const apicThreadInfo *aa = (const apicThreadInfo *)a; 1046 const apicThreadInfo *bb = (const apicThreadInfo *)b; 1047 if (aa->pkgId < bb->pkgId) 1048 return -1; 1049 if (aa->pkgId > bb->pkgId) 1050 return 1; 1051 if (aa->coreId < bb->coreId) 1052 return -1; 1053 if (aa->coreId > bb->coreId) 1054 return 1; 1055 if (aa->threadId < bb->threadId) 1056 return -1; 1057 if (aa->threadId > bb->threadId) 1058 return 1; 1059 return 0; 1060 } 1061 1062 // On IA-32 architecture and Intel(R) 64 architecture, we attempt to use 1063 // an algorithm which cycles through the available os threads, setting 1064 // the current thread's affinity mask to that thread, and then retrieves 1065 // the Apic Id for each thread context using the cpuid instruction. 1066 static int __kmp_affinity_create_apicid_map(AddrUnsPair **address2os, 1067 kmp_i18n_id_t *const msg_id) { 1068 kmp_cpuid buf; 1069 *address2os = NULL; 1070 *msg_id = kmp_i18n_null; 1071 1072 // Check if cpuid leaf 4 is supported. 1073 __kmp_x86_cpuid(0, 0, &buf); 1074 if (buf.eax < 4) { 1075 *msg_id = kmp_i18n_str_NoLeaf4Support; 1076 return -1; 1077 } 1078 1079 // The algorithm used starts by setting the affinity to each available thread 1080 // and retrieving info from the cpuid instruction, so if we are not capable of 1081 // calling __kmp_get_system_affinity() and _kmp_get_system_affinity(), then we 1082 // need to do something else - use the defaults that we calculated from 1083 // issuing cpuid without binding to each proc. 1084 if (!KMP_AFFINITY_CAPABLE()) { 1085 // Hack to try and infer the machine topology using only the data 1086 // available from cpuid on the current thread, and __kmp_xproc. 1087 KMP_ASSERT(__kmp_affinity_type == affinity_none); 1088 1089 // Get an upper bound on the number of threads per package using cpuid(1). 1090 // On some OS/chps combinations where HT is supported by the chip but is 1091 // disabled, this value will be 2 on a single core chip. Usually, it will be 1092 // 2 if HT is enabled and 1 if HT is disabled. 1093 __kmp_x86_cpuid(1, 0, &buf); 1094 int maxThreadsPerPkg = (buf.ebx >> 16) & 0xff; 1095 if (maxThreadsPerPkg == 0) { 1096 maxThreadsPerPkg = 1; 1097 } 1098 1099 // The num cores per pkg comes from cpuid(4). 1 must be added to the encoded 1100 // value. 1101 // 1102 // The author of cpu_count.cpp treated this only an upper bound on the 1103 // number of cores, but I haven't seen any cases where it was greater than 1104 // the actual number of cores, so we will treat it as exact in this block of 1105 // code. 1106 // 1107 // First, we need to check if cpuid(4) is supported on this chip. To see if 1108 // cpuid(n) is supported, issue cpuid(0) and check if eax has the value n or 1109 // greater. 1110 __kmp_x86_cpuid(0, 0, &buf); 1111 if (buf.eax >= 4) { 1112 __kmp_x86_cpuid(4, 0, &buf); 1113 nCoresPerPkg = ((buf.eax >> 26) & 0x3f) + 1; 1114 } else { 1115 nCoresPerPkg = 1; 1116 } 1117 1118 // There is no way to reliably tell if HT is enabled without issuing the 1119 // cpuid instruction from every thread, can correlating the cpuid info, so 1120 // if the machine is not affinity capable, we assume that HT is off. We have 1121 // seen quite a few machines where maxThreadsPerPkg is 2, yet the machine 1122 // does not support HT. 1123 // 1124 // - Older OSes are usually found on machines with older chips, which do not 1125 // support HT. 1126 // - The performance penalty for mistakenly identifying a machine as HT when 1127 // it isn't (which results in blocktime being incorrecly set to 0) is 1128 // greater than the penalty when for mistakenly identifying a machine as 1129 // being 1 thread/core when it is really HT enabled (which results in 1130 // blocktime being incorrectly set to a positive value). 1131 __kmp_ncores = __kmp_xproc; 1132 nPackages = (__kmp_xproc + nCoresPerPkg - 1) / nCoresPerPkg; 1133 __kmp_nThreadsPerCore = 1; 1134 if (__kmp_affinity_verbose) { 1135 KMP_INFORM(AffNotCapableUseLocCpuid, "KMP_AFFINITY"); 1136 KMP_INFORM(AvailableOSProc, "KMP_AFFINITY", __kmp_avail_proc); 1137 if (__kmp_affinity_uniform_topology()) { 1138 KMP_INFORM(Uniform, "KMP_AFFINITY"); 1139 } else { 1140 KMP_INFORM(NonUniform, "KMP_AFFINITY"); 1141 } 1142 KMP_INFORM(Topology, "KMP_AFFINITY", nPackages, nCoresPerPkg, 1143 __kmp_nThreadsPerCore, __kmp_ncores); 1144 } 1145 return 0; 1146 } 1147 1148 // From here on, we can assume that it is safe to call 1149 // __kmp_get_system_affinity() and __kmp_set_system_affinity(), even if 1150 // __kmp_affinity_type = affinity_none. 1151 1152 // Save the affinity mask for the current thread. 1153 kmp_affin_mask_t *oldMask; 1154 KMP_CPU_ALLOC(oldMask); 1155 KMP_ASSERT(oldMask != NULL); 1156 __kmp_get_system_affinity(oldMask, TRUE); 1157 1158 // Run through each of the available contexts, binding the current thread 1159 // to it, and obtaining the pertinent information using the cpuid instr. 1160 // 1161 // The relevant information is: 1162 // - Apic Id: Bits 24:31 of ebx after issuing cpuid(1) - each thread context 1163 // has a uniqie Apic Id, which is of the form pkg# : core# : thread#. 1164 // - Max Threads Per Pkg: Bits 16:23 of ebx after issuing cpuid(1). The value 1165 // of this field determines the width of the core# + thread# fields in the 1166 // Apic Id. It is also an upper bound on the number of threads per 1167 // package, but it has been verified that situations happen were it is not 1168 // exact. In particular, on certain OS/chip combinations where Intel(R) 1169 // Hyper-Threading Technology is supported by the chip but has been 1170 // disabled, the value of this field will be 2 (for a single core chip). 1171 // On other OS/chip combinations supporting Intel(R) Hyper-Threading 1172 // Technology, the value of this field will be 1 when Intel(R) 1173 // Hyper-Threading Technology is disabled and 2 when it is enabled. 1174 // - Max Cores Per Pkg: Bits 26:31 of eax after issuing cpuid(4). The value 1175 // of this field (+1) determines the width of the core# field in the Apic 1176 // Id. The comments in "cpucount.cpp" say that this value is an upper 1177 // bound, but the IA-32 architecture manual says that it is exactly the 1178 // number of cores per package, and I haven't seen any case where it 1179 // wasn't. 1180 // 1181 // From this information, deduce the package Id, core Id, and thread Id, 1182 // and set the corresponding fields in the apicThreadInfo struct. 1183 unsigned i; 1184 apicThreadInfo *threadInfo = (apicThreadInfo *)__kmp_allocate( 1185 __kmp_avail_proc * sizeof(apicThreadInfo)); 1186 unsigned nApics = 0; 1187 KMP_CPU_SET_ITERATE(i, __kmp_affin_fullMask) { 1188 // Skip this proc if it is not included in the machine model. 1189 if (!KMP_CPU_ISSET(i, __kmp_affin_fullMask)) { 1190 continue; 1191 } 1192 KMP_DEBUG_ASSERT((int)nApics < __kmp_avail_proc); 1193 1194 __kmp_affinity_dispatch->bind_thread(i); 1195 threadInfo[nApics].osId = i; 1196 1197 // The apic id and max threads per pkg come from cpuid(1). 1198 __kmp_x86_cpuid(1, 0, &buf); 1199 if (((buf.edx >> 9) & 1) == 0) { 1200 __kmp_set_system_affinity(oldMask, TRUE); 1201 __kmp_free(threadInfo); 1202 KMP_CPU_FREE(oldMask); 1203 *msg_id = kmp_i18n_str_ApicNotPresent; 1204 return -1; 1205 } 1206 threadInfo[nApics].apicId = (buf.ebx >> 24) & 0xff; 1207 threadInfo[nApics].maxThreadsPerPkg = (buf.ebx >> 16) & 0xff; 1208 if (threadInfo[nApics].maxThreadsPerPkg == 0) { 1209 threadInfo[nApics].maxThreadsPerPkg = 1; 1210 } 1211 1212 // Max cores per pkg comes from cpuid(4). 1 must be added to the encoded 1213 // value. 1214 // 1215 // First, we need to check if cpuid(4) is supported on this chip. To see if 1216 // cpuid(n) is supported, issue cpuid(0) and check if eax has the value n 1217 // or greater. 1218 __kmp_x86_cpuid(0, 0, &buf); 1219 if (buf.eax >= 4) { 1220 __kmp_x86_cpuid(4, 0, &buf); 1221 threadInfo[nApics].maxCoresPerPkg = ((buf.eax >> 26) & 0x3f) + 1; 1222 } else { 1223 threadInfo[nApics].maxCoresPerPkg = 1; 1224 } 1225 1226 // Infer the pkgId / coreId / threadId using only the info obtained locally. 1227 int widthCT = __kmp_cpuid_mask_width(threadInfo[nApics].maxThreadsPerPkg); 1228 threadInfo[nApics].pkgId = threadInfo[nApics].apicId >> widthCT; 1229 1230 int widthC = __kmp_cpuid_mask_width(threadInfo[nApics].maxCoresPerPkg); 1231 int widthT = widthCT - widthC; 1232 if (widthT < 0) { 1233 // I've never seen this one happen, but I suppose it could, if the cpuid 1234 // instruction on a chip was really screwed up. Make sure to restore the 1235 // affinity mask before the tail call. 1236 __kmp_set_system_affinity(oldMask, TRUE); 1237 __kmp_free(threadInfo); 1238 KMP_CPU_FREE(oldMask); 1239 *msg_id = kmp_i18n_str_InvalidCpuidInfo; 1240 return -1; 1241 } 1242 1243 int maskC = (1 << widthC) - 1; 1244 threadInfo[nApics].coreId = (threadInfo[nApics].apicId >> widthT) & maskC; 1245 1246 int maskT = (1 << widthT) - 1; 1247 threadInfo[nApics].threadId = threadInfo[nApics].apicId & maskT; 1248 1249 nApics++; 1250 } 1251 1252 // We've collected all the info we need. 1253 // Restore the old affinity mask for this thread. 1254 __kmp_set_system_affinity(oldMask, TRUE); 1255 1256 // If there's only one thread context to bind to, form an Address object 1257 // with depth 1 and return immediately (or, if affinity is off, set 1258 // address2os to NULL and return). 1259 // 1260 // If it is configured to omit the package level when there is only a single 1261 // package, the logic at the end of this routine won't work if there is only 1262 // a single thread - it would try to form an Address object with depth 0. 1263 KMP_ASSERT(nApics > 0); 1264 if (nApics == 1) { 1265 __kmp_ncores = nPackages = 1; 1266 __kmp_nThreadsPerCore = nCoresPerPkg = 1; 1267 if (__kmp_affinity_verbose) { 1268 char buf[KMP_AFFIN_MASK_PRINT_LEN]; 1269 __kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN, oldMask); 1270 1271 KMP_INFORM(AffUseGlobCpuid, "KMP_AFFINITY"); 1272 if (__kmp_affinity_respect_mask) { 1273 KMP_INFORM(InitOSProcSetRespect, "KMP_AFFINITY", buf); 1274 } else { 1275 KMP_INFORM(InitOSProcSetNotRespect, "KMP_AFFINITY", buf); 1276 } 1277 KMP_INFORM(AvailableOSProc, "KMP_AFFINITY", __kmp_avail_proc); 1278 KMP_INFORM(Uniform, "KMP_AFFINITY"); 1279 KMP_INFORM(Topology, "KMP_AFFINITY", nPackages, nCoresPerPkg, 1280 __kmp_nThreadsPerCore, __kmp_ncores); 1281 } 1282 1283 if (__kmp_affinity_type == affinity_none) { 1284 __kmp_free(threadInfo); 1285 KMP_CPU_FREE(oldMask); 1286 return 0; 1287 } 1288 1289 *address2os = (AddrUnsPair *)__kmp_allocate(sizeof(AddrUnsPair)); 1290 Address addr(1); 1291 addr.labels[0] = threadInfo[0].pkgId; 1292 (*address2os)[0] = AddrUnsPair(addr, threadInfo[0].osId); 1293 1294 if (__kmp_affinity_gran_levels < 0) { 1295 __kmp_affinity_gran_levels = 0; 1296 } 1297 1298 if (__kmp_affinity_verbose) { 1299 __kmp_affinity_print_topology(*address2os, 1, 1, 0, -1, -1); 1300 } 1301 1302 __kmp_free(threadInfo); 1303 KMP_CPU_FREE(oldMask); 1304 return 1; 1305 } 1306 1307 // Sort the threadInfo table by physical Id. 1308 qsort(threadInfo, nApics, sizeof(*threadInfo), 1309 __kmp_affinity_cmp_apicThreadInfo_phys_id); 1310 1311 // The table is now sorted by pkgId / coreId / threadId, but we really don't 1312 // know the radix of any of the fields. pkgId's may be sparsely assigned among 1313 // the chips on a system. Although coreId's are usually assigned 1314 // [0 .. coresPerPkg-1] and threadId's are usually assigned 1315 // [0..threadsPerCore-1], we don't want to make any such assumptions. 1316 // 1317 // For that matter, we don't know what coresPerPkg and threadsPerCore (or the 1318 // total # packages) are at this point - we want to determine that now. We 1319 // only have an upper bound on the first two figures. 1320 // 1321 // We also perform a consistency check at this point: the values returned by 1322 // the cpuid instruction for any thread bound to a given package had better 1323 // return the same info for maxThreadsPerPkg and maxCoresPerPkg. 1324 nPackages = 1; 1325 nCoresPerPkg = 1; 1326 __kmp_nThreadsPerCore = 1; 1327 unsigned nCores = 1; 1328 1329 unsigned pkgCt = 1; // to determine radii 1330 unsigned lastPkgId = threadInfo[0].pkgId; 1331 unsigned coreCt = 1; 1332 unsigned lastCoreId = threadInfo[0].coreId; 1333 unsigned threadCt = 1; 1334 unsigned lastThreadId = threadInfo[0].threadId; 1335 1336 // intra-pkg consist checks 1337 unsigned prevMaxCoresPerPkg = threadInfo[0].maxCoresPerPkg; 1338 unsigned prevMaxThreadsPerPkg = threadInfo[0].maxThreadsPerPkg; 1339 1340 for (i = 1; i < nApics; i++) { 1341 if (threadInfo[i].pkgId != lastPkgId) { 1342 nCores++; 1343 pkgCt++; 1344 lastPkgId = threadInfo[i].pkgId; 1345 if ((int)coreCt > nCoresPerPkg) 1346 nCoresPerPkg = coreCt; 1347 coreCt = 1; 1348 lastCoreId = threadInfo[i].coreId; 1349 if ((int)threadCt > __kmp_nThreadsPerCore) 1350 __kmp_nThreadsPerCore = threadCt; 1351 threadCt = 1; 1352 lastThreadId = threadInfo[i].threadId; 1353 1354 // This is a different package, so go on to the next iteration without 1355 // doing any consistency checks. Reset the consistency check vars, though. 1356 prevMaxCoresPerPkg = threadInfo[i].maxCoresPerPkg; 1357 prevMaxThreadsPerPkg = threadInfo[i].maxThreadsPerPkg; 1358 continue; 1359 } 1360 1361 if (threadInfo[i].coreId != lastCoreId) { 1362 nCores++; 1363 coreCt++; 1364 lastCoreId = threadInfo[i].coreId; 1365 if ((int)threadCt > __kmp_nThreadsPerCore) 1366 __kmp_nThreadsPerCore = threadCt; 1367 threadCt = 1; 1368 lastThreadId = threadInfo[i].threadId; 1369 } else if (threadInfo[i].threadId != lastThreadId) { 1370 threadCt++; 1371 lastThreadId = threadInfo[i].threadId; 1372 } else { 1373 __kmp_free(threadInfo); 1374 KMP_CPU_FREE(oldMask); 1375 *msg_id = kmp_i18n_str_LegacyApicIDsNotUnique; 1376 return -1; 1377 } 1378 1379 // Check to make certain that the maxCoresPerPkg and maxThreadsPerPkg 1380 // fields agree between all the threads bounds to a given package. 1381 if ((prevMaxCoresPerPkg != threadInfo[i].maxCoresPerPkg) || 1382 (prevMaxThreadsPerPkg != threadInfo[i].maxThreadsPerPkg)) { 1383 __kmp_free(threadInfo); 1384 KMP_CPU_FREE(oldMask); 1385 *msg_id = kmp_i18n_str_InconsistentCpuidInfo; 1386 return -1; 1387 } 1388 } 1389 nPackages = pkgCt; 1390 if ((int)coreCt > nCoresPerPkg) 1391 nCoresPerPkg = coreCt; 1392 if ((int)threadCt > __kmp_nThreadsPerCore) 1393 __kmp_nThreadsPerCore = threadCt; 1394 1395 // When affinity is off, this routine will still be called to set 1396 // __kmp_ncores, as well as __kmp_nThreadsPerCore, nCoresPerPkg, & nPackages. 1397 // Make sure all these vars are set correctly, and return now if affinity is 1398 // not enabled. 1399 __kmp_ncores = nCores; 1400 if (__kmp_affinity_verbose) { 1401 char buf[KMP_AFFIN_MASK_PRINT_LEN]; 1402 __kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN, oldMask); 1403 1404 KMP_INFORM(AffUseGlobCpuid, "KMP_AFFINITY"); 1405 if (__kmp_affinity_respect_mask) { 1406 KMP_INFORM(InitOSProcSetRespect, "KMP_AFFINITY", buf); 1407 } else { 1408 KMP_INFORM(InitOSProcSetNotRespect, "KMP_AFFINITY", buf); 1409 } 1410 KMP_INFORM(AvailableOSProc, "KMP_AFFINITY", __kmp_avail_proc); 1411 if (__kmp_affinity_uniform_topology()) { 1412 KMP_INFORM(Uniform, "KMP_AFFINITY"); 1413 } else { 1414 KMP_INFORM(NonUniform, "KMP_AFFINITY"); 1415 } 1416 KMP_INFORM(Topology, "KMP_AFFINITY", nPackages, nCoresPerPkg, 1417 __kmp_nThreadsPerCore, __kmp_ncores); 1418 } 1419 KMP_DEBUG_ASSERT(__kmp_pu_os_idx == NULL); 1420 KMP_DEBUG_ASSERT(nApics == (unsigned)__kmp_avail_proc); 1421 __kmp_pu_os_idx = (int *)__kmp_allocate(sizeof(int) * __kmp_avail_proc); 1422 for (i = 0; i < nApics; ++i) { 1423 __kmp_pu_os_idx[i] = threadInfo[i].osId; 1424 } 1425 if (__kmp_affinity_type == affinity_none) { 1426 __kmp_free(threadInfo); 1427 KMP_CPU_FREE(oldMask); 1428 return 0; 1429 } 1430 1431 // Now that we've determined the number of packages, the number of cores per 1432 // package, and the number of threads per core, we can construct the data 1433 // structure that is to be returned. 1434 int pkgLevel = 0; 1435 int coreLevel = (nCoresPerPkg <= 1) ? -1 : 1; 1436 int threadLevel = 1437 (__kmp_nThreadsPerCore <= 1) ? -1 : ((coreLevel >= 0) ? 2 : 1); 1438 unsigned depth = (pkgLevel >= 0) + (coreLevel >= 0) + (threadLevel >= 0); 1439 1440 KMP_ASSERT(depth > 0); 1441 *address2os = (AddrUnsPair *)__kmp_allocate(sizeof(AddrUnsPair) * nApics); 1442 1443 for (i = 0; i < nApics; ++i) { 1444 Address addr(depth); 1445 unsigned os = threadInfo[i].osId; 1446 int d = 0; 1447 1448 if (pkgLevel >= 0) { 1449 addr.labels[d++] = threadInfo[i].pkgId; 1450 } 1451 if (coreLevel >= 0) { 1452 addr.labels[d++] = threadInfo[i].coreId; 1453 } 1454 if (threadLevel >= 0) { 1455 addr.labels[d++] = threadInfo[i].threadId; 1456 } 1457 (*address2os)[i] = AddrUnsPair(addr, os); 1458 } 1459 1460 if (__kmp_affinity_gran_levels < 0) { 1461 // Set the granularity level based on what levels are modeled in the machine 1462 // topology map. 1463 __kmp_affinity_gran_levels = 0; 1464 if ((threadLevel >= 0) && (__kmp_affinity_gran > affinity_gran_thread)) { 1465 __kmp_affinity_gran_levels++; 1466 } 1467 if ((coreLevel >= 0) && (__kmp_affinity_gran > affinity_gran_core)) { 1468 __kmp_affinity_gran_levels++; 1469 } 1470 if ((pkgLevel >= 0) && (__kmp_affinity_gran > affinity_gran_package)) { 1471 __kmp_affinity_gran_levels++; 1472 } 1473 } 1474 1475 if (__kmp_affinity_verbose) { 1476 __kmp_affinity_print_topology(*address2os, nApics, depth, pkgLevel, 1477 coreLevel, threadLevel); 1478 } 1479 1480 __kmp_free(threadInfo); 1481 KMP_CPU_FREE(oldMask); 1482 return depth; 1483 } 1484 1485 // Intel(R) microarchitecture code name Nehalem, Dunnington and later 1486 // architectures support a newer interface for specifying the x2APIC Ids, 1487 // based on cpuid leaf 11. 1488 static int __kmp_affinity_create_x2apicid_map(AddrUnsPair **address2os, 1489 kmp_i18n_id_t *const msg_id) { 1490 kmp_cpuid buf; 1491 *address2os = NULL; 1492 *msg_id = kmp_i18n_null; 1493 1494 // Check to see if cpuid leaf 11 is supported. 1495 __kmp_x86_cpuid(0, 0, &buf); 1496 if (buf.eax < 11) { 1497 *msg_id = kmp_i18n_str_NoLeaf11Support; 1498 return -1; 1499 } 1500 __kmp_x86_cpuid(11, 0, &buf); 1501 if (buf.ebx == 0) { 1502 *msg_id = kmp_i18n_str_NoLeaf11Support; 1503 return -1; 1504 } 1505 1506 // Find the number of levels in the machine topology. While we're at it, get 1507 // the default values for __kmp_nThreadsPerCore & nCoresPerPkg. We will try to 1508 // get more accurate values later by explicitly counting them, but get 1509 // reasonable defaults now, in case we return early. 1510 int level; 1511 int threadLevel = -1; 1512 int coreLevel = -1; 1513 int pkgLevel = -1; 1514 __kmp_nThreadsPerCore = nCoresPerPkg = nPackages = 1; 1515 1516 for (level = 0;; level++) { 1517 if (level > 31) { 1518 // FIXME: Hack for DPD200163180 1519 // 1520 // If level is big then something went wrong -> exiting 1521 // 1522 // There could actually be 32 valid levels in the machine topology, but so 1523 // far, the only machine we have seen which does not exit this loop before 1524 // iteration 32 has fubar x2APIC settings. 1525 // 1526 // For now, just reject this case based upon loop trip count. 1527 *msg_id = kmp_i18n_str_InvalidCpuidInfo; 1528 return -1; 1529 } 1530 __kmp_x86_cpuid(11, level, &buf); 1531 if (buf.ebx == 0) { 1532 if (pkgLevel < 0) { 1533 // Will infer nPackages from __kmp_xproc 1534 pkgLevel = level; 1535 level++; 1536 } 1537 break; 1538 } 1539 int kind = (buf.ecx >> 8) & 0xff; 1540 if (kind == 1) { 1541 // SMT level 1542 threadLevel = level; 1543 coreLevel = -1; 1544 pkgLevel = -1; 1545 __kmp_nThreadsPerCore = buf.ebx & 0xffff; 1546 if (__kmp_nThreadsPerCore == 0) { 1547 *msg_id = kmp_i18n_str_InvalidCpuidInfo; 1548 return -1; 1549 } 1550 } else if (kind == 2) { 1551 // core level 1552 coreLevel = level; 1553 pkgLevel = -1; 1554 nCoresPerPkg = buf.ebx & 0xffff; 1555 if (nCoresPerPkg == 0) { 1556 *msg_id = kmp_i18n_str_InvalidCpuidInfo; 1557 return -1; 1558 } 1559 } else { 1560 if (level <= 0) { 1561 *msg_id = kmp_i18n_str_InvalidCpuidInfo; 1562 return -1; 1563 } 1564 if (pkgLevel >= 0) { 1565 continue; 1566 } 1567 pkgLevel = level; 1568 nPackages = buf.ebx & 0xffff; 1569 if (nPackages == 0) { 1570 *msg_id = kmp_i18n_str_InvalidCpuidInfo; 1571 return -1; 1572 } 1573 } 1574 } 1575 int depth = level; 1576 1577 // In the above loop, "level" was counted from the finest level (usually 1578 // thread) to the coarsest. The caller expects that we will place the labels 1579 // in (*address2os)[].first.labels[] in the inverse order, so we need to 1580 // invert the vars saying which level means what. 1581 if (threadLevel >= 0) { 1582 threadLevel = depth - threadLevel - 1; 1583 } 1584 if (coreLevel >= 0) { 1585 coreLevel = depth - coreLevel - 1; 1586 } 1587 KMP_DEBUG_ASSERT(pkgLevel >= 0); 1588 pkgLevel = depth - pkgLevel - 1; 1589 1590 // The algorithm used starts by setting the affinity to each available thread 1591 // and retrieving info from the cpuid instruction, so if we are not capable of 1592 // calling __kmp_get_system_affinity() and _kmp_get_system_affinity(), then we 1593 // need to do something else - use the defaults that we calculated from 1594 // issuing cpuid without binding to each proc. 1595 if (!KMP_AFFINITY_CAPABLE()) { 1596 // Hack to try and infer the machine topology using only the data 1597 // available from cpuid on the current thread, and __kmp_xproc. 1598 KMP_ASSERT(__kmp_affinity_type == affinity_none); 1599 1600 __kmp_ncores = __kmp_xproc / __kmp_nThreadsPerCore; 1601 nPackages = (__kmp_xproc + nCoresPerPkg - 1) / nCoresPerPkg; 1602 if (__kmp_affinity_verbose) { 1603 KMP_INFORM(AffNotCapableUseLocCpuidL11, "KMP_AFFINITY"); 1604 KMP_INFORM(AvailableOSProc, "KMP_AFFINITY", __kmp_avail_proc); 1605 if (__kmp_affinity_uniform_topology()) { 1606 KMP_INFORM(Uniform, "KMP_AFFINITY"); 1607 } else { 1608 KMP_INFORM(NonUniform, "KMP_AFFINITY"); 1609 } 1610 KMP_INFORM(Topology, "KMP_AFFINITY", nPackages, nCoresPerPkg, 1611 __kmp_nThreadsPerCore, __kmp_ncores); 1612 } 1613 return 0; 1614 } 1615 1616 // From here on, we can assume that it is safe to call 1617 // __kmp_get_system_affinity() and __kmp_set_system_affinity(), even if 1618 // __kmp_affinity_type = affinity_none. 1619 1620 // Save the affinity mask for the current thread. 1621 kmp_affin_mask_t *oldMask; 1622 KMP_CPU_ALLOC(oldMask); 1623 __kmp_get_system_affinity(oldMask, TRUE); 1624 1625 // Allocate the data structure to be returned. 1626 AddrUnsPair *retval = 1627 (AddrUnsPair *)__kmp_allocate(sizeof(AddrUnsPair) * __kmp_avail_proc); 1628 1629 // Run through each of the available contexts, binding the current thread 1630 // to it, and obtaining the pertinent information using the cpuid instr. 1631 unsigned int proc; 1632 int nApics = 0; 1633 KMP_CPU_SET_ITERATE(proc, __kmp_affin_fullMask) { 1634 // Skip this proc if it is not included in the machine model. 1635 if (!KMP_CPU_ISSET(proc, __kmp_affin_fullMask)) { 1636 continue; 1637 } 1638 KMP_DEBUG_ASSERT(nApics < __kmp_avail_proc); 1639 1640 __kmp_affinity_dispatch->bind_thread(proc); 1641 1642 // Extract labels for each level in the machine topology map from Apic ID. 1643 Address addr(depth); 1644 int prev_shift = 0; 1645 1646 for (level = 0; level < depth; level++) { 1647 __kmp_x86_cpuid(11, level, &buf); 1648 unsigned apicId = buf.edx; 1649 if (buf.ebx == 0) { 1650 if (level != depth - 1) { 1651 KMP_CPU_FREE(oldMask); 1652 *msg_id = kmp_i18n_str_InconsistentCpuidInfo; 1653 return -1; 1654 } 1655 addr.labels[depth - level - 1] = apicId >> prev_shift; 1656 level++; 1657 break; 1658 } 1659 int shift = buf.eax & 0x1f; 1660 int mask = (1 << shift) - 1; 1661 addr.labels[depth - level - 1] = (apicId & mask) >> prev_shift; 1662 prev_shift = shift; 1663 } 1664 if (level != depth) { 1665 KMP_CPU_FREE(oldMask); 1666 *msg_id = kmp_i18n_str_InconsistentCpuidInfo; 1667 return -1; 1668 } 1669 1670 retval[nApics] = AddrUnsPair(addr, proc); 1671 nApics++; 1672 } 1673 1674 // We've collected all the info we need. 1675 // Restore the old affinity mask for this thread. 1676 __kmp_set_system_affinity(oldMask, TRUE); 1677 1678 // If there's only one thread context to bind to, return now. 1679 KMP_ASSERT(nApics > 0); 1680 if (nApics == 1) { 1681 __kmp_ncores = nPackages = 1; 1682 __kmp_nThreadsPerCore = nCoresPerPkg = 1; 1683 if (__kmp_affinity_verbose) { 1684 char buf[KMP_AFFIN_MASK_PRINT_LEN]; 1685 __kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN, oldMask); 1686 1687 KMP_INFORM(AffUseGlobCpuidL11, "KMP_AFFINITY"); 1688 if (__kmp_affinity_respect_mask) { 1689 KMP_INFORM(InitOSProcSetRespect, "KMP_AFFINITY", buf); 1690 } else { 1691 KMP_INFORM(InitOSProcSetNotRespect, "KMP_AFFINITY", buf); 1692 } 1693 KMP_INFORM(AvailableOSProc, "KMP_AFFINITY", __kmp_avail_proc); 1694 KMP_INFORM(Uniform, "KMP_AFFINITY"); 1695 KMP_INFORM(Topology, "KMP_AFFINITY", nPackages, nCoresPerPkg, 1696 __kmp_nThreadsPerCore, __kmp_ncores); 1697 } 1698 1699 if (__kmp_affinity_type == affinity_none) { 1700 __kmp_free(retval); 1701 KMP_CPU_FREE(oldMask); 1702 return 0; 1703 } 1704 1705 // Form an Address object which only includes the package level. 1706 Address addr(1); 1707 addr.labels[0] = retval[0].first.labels[pkgLevel]; 1708 retval[0].first = addr; 1709 1710 if (__kmp_affinity_gran_levels < 0) { 1711 __kmp_affinity_gran_levels = 0; 1712 } 1713 1714 if (__kmp_affinity_verbose) { 1715 __kmp_affinity_print_topology(retval, 1, 1, 0, -1, -1); 1716 } 1717 1718 *address2os = retval; 1719 KMP_CPU_FREE(oldMask); 1720 return 1; 1721 } 1722 1723 // Sort the table by physical Id. 1724 qsort(retval, nApics, sizeof(*retval), __kmp_affinity_cmp_Address_labels); 1725 1726 // Find the radix at each of the levels. 1727 unsigned *totals = (unsigned *)__kmp_allocate(depth * sizeof(unsigned)); 1728 unsigned *counts = (unsigned *)__kmp_allocate(depth * sizeof(unsigned)); 1729 unsigned *maxCt = (unsigned *)__kmp_allocate(depth * sizeof(unsigned)); 1730 unsigned *last = (unsigned *)__kmp_allocate(depth * sizeof(unsigned)); 1731 for (level = 0; level < depth; level++) { 1732 totals[level] = 1; 1733 maxCt[level] = 1; 1734 counts[level] = 1; 1735 last[level] = retval[0].first.labels[level]; 1736 } 1737 1738 // From here on, the iteration variable "level" runs from the finest level to 1739 // the coarsest, i.e. we iterate forward through 1740 // (*address2os)[].first.labels[] - in the previous loops, we iterated 1741 // backwards. 1742 for (proc = 1; (int)proc < nApics; proc++) { 1743 int level; 1744 for (level = 0; level < depth; level++) { 1745 if (retval[proc].first.labels[level] != last[level]) { 1746 int j; 1747 for (j = level + 1; j < depth; j++) { 1748 totals[j]++; 1749 counts[j] = 1; 1750 // The line below causes printing incorrect topology information in 1751 // case the max value for some level (maxCt[level]) is encountered 1752 // earlier than some less value while going through the array. For 1753 // example, let pkg0 has 4 cores and pkg1 has 2 cores. Then 1754 // maxCt[1] == 2 1755 // whereas it must be 4. 1756 // TODO!!! Check if it can be commented safely 1757 // maxCt[j] = 1; 1758 last[j] = retval[proc].first.labels[j]; 1759 } 1760 totals[level]++; 1761 counts[level]++; 1762 if (counts[level] > maxCt[level]) { 1763 maxCt[level] = counts[level]; 1764 } 1765 last[level] = retval[proc].first.labels[level]; 1766 break; 1767 } else if (level == depth - 1) { 1768 __kmp_free(last); 1769 __kmp_free(maxCt); 1770 __kmp_free(counts); 1771 __kmp_free(totals); 1772 __kmp_free(retval); 1773 KMP_CPU_FREE(oldMask); 1774 *msg_id = kmp_i18n_str_x2ApicIDsNotUnique; 1775 return -1; 1776 } 1777 } 1778 } 1779 1780 // When affinity is off, this routine will still be called to set 1781 // __kmp_ncores, as well as __kmp_nThreadsPerCore, nCoresPerPkg, & nPackages. 1782 // Make sure all these vars are set correctly, and return if affinity is not 1783 // enabled. 1784 if (threadLevel >= 0) { 1785 __kmp_nThreadsPerCore = maxCt[threadLevel]; 1786 } else { 1787 __kmp_nThreadsPerCore = 1; 1788 } 1789 nPackages = totals[pkgLevel]; 1790 1791 if (coreLevel >= 0) { 1792 __kmp_ncores = totals[coreLevel]; 1793 nCoresPerPkg = maxCt[coreLevel]; 1794 } else { 1795 __kmp_ncores = nPackages; 1796 nCoresPerPkg = 1; 1797 } 1798 1799 // Check to see if the machine topology is uniform 1800 unsigned prod = maxCt[0]; 1801 for (level = 1; level < depth; level++) { 1802 prod *= maxCt[level]; 1803 } 1804 bool uniform = (prod == totals[level - 1]); 1805 1806 // Print the machine topology summary. 1807 if (__kmp_affinity_verbose) { 1808 char mask[KMP_AFFIN_MASK_PRINT_LEN]; 1809 __kmp_affinity_print_mask(mask, KMP_AFFIN_MASK_PRINT_LEN, oldMask); 1810 1811 KMP_INFORM(AffUseGlobCpuidL11, "KMP_AFFINITY"); 1812 if (__kmp_affinity_respect_mask) { 1813 KMP_INFORM(InitOSProcSetRespect, "KMP_AFFINITY", mask); 1814 } else { 1815 KMP_INFORM(InitOSProcSetNotRespect, "KMP_AFFINITY", mask); 1816 } 1817 KMP_INFORM(AvailableOSProc, "KMP_AFFINITY", __kmp_avail_proc); 1818 if (uniform) { 1819 KMP_INFORM(Uniform, "KMP_AFFINITY"); 1820 } else { 1821 KMP_INFORM(NonUniform, "KMP_AFFINITY"); 1822 } 1823 1824 kmp_str_buf_t buf; 1825 __kmp_str_buf_init(&buf); 1826 1827 __kmp_str_buf_print(&buf, "%d", totals[0]); 1828 for (level = 1; level <= pkgLevel; level++) { 1829 __kmp_str_buf_print(&buf, " x %d", maxCt[level]); 1830 } 1831 KMP_INFORM(TopologyExtra, "KMP_AFFINITY", buf.str, nCoresPerPkg, 1832 __kmp_nThreadsPerCore, __kmp_ncores); 1833 1834 __kmp_str_buf_free(&buf); 1835 } 1836 KMP_DEBUG_ASSERT(__kmp_pu_os_idx == NULL); 1837 KMP_DEBUG_ASSERT(nApics == __kmp_avail_proc); 1838 __kmp_pu_os_idx = (int *)__kmp_allocate(sizeof(int) * __kmp_avail_proc); 1839 for (proc = 0; (int)proc < nApics; ++proc) { 1840 __kmp_pu_os_idx[proc] = retval[proc].second; 1841 } 1842 if (__kmp_affinity_type == affinity_none) { 1843 __kmp_free(last); 1844 __kmp_free(maxCt); 1845 __kmp_free(counts); 1846 __kmp_free(totals); 1847 __kmp_free(retval); 1848 KMP_CPU_FREE(oldMask); 1849 return 0; 1850 } 1851 1852 // Find any levels with radiix 1, and remove them from the map 1853 // (except for the package level). 1854 int new_depth = 0; 1855 for (level = 0; level < depth; level++) { 1856 if ((maxCt[level] == 1) && (level != pkgLevel)) { 1857 continue; 1858 } 1859 new_depth++; 1860 } 1861 1862 // If we are removing any levels, allocate a new vector to return, 1863 // and copy the relevant information to it. 1864 if (new_depth != depth) { 1865 AddrUnsPair *new_retval = 1866 (AddrUnsPair *)__kmp_allocate(sizeof(AddrUnsPair) * nApics); 1867 for (proc = 0; (int)proc < nApics; proc++) { 1868 Address addr(new_depth); 1869 new_retval[proc] = AddrUnsPair(addr, retval[proc].second); 1870 } 1871 int new_level = 0; 1872 int newPkgLevel = -1; 1873 int newCoreLevel = -1; 1874 int newThreadLevel = -1; 1875 for (level = 0; level < depth; level++) { 1876 if ((maxCt[level] == 1) && (level != pkgLevel)) { 1877 // Remove this level. Never remove the package level 1878 continue; 1879 } 1880 if (level == pkgLevel) { 1881 newPkgLevel = new_level; 1882 } 1883 if (level == coreLevel) { 1884 newCoreLevel = new_level; 1885 } 1886 if (level == threadLevel) { 1887 newThreadLevel = new_level; 1888 } 1889 for (proc = 0; (int)proc < nApics; proc++) { 1890 new_retval[proc].first.labels[new_level] = 1891 retval[proc].first.labels[level]; 1892 } 1893 new_level++; 1894 } 1895 1896 __kmp_free(retval); 1897 retval = new_retval; 1898 depth = new_depth; 1899 pkgLevel = newPkgLevel; 1900 coreLevel = newCoreLevel; 1901 threadLevel = newThreadLevel; 1902 } 1903 1904 if (__kmp_affinity_gran_levels < 0) { 1905 // Set the granularity level based on what levels are modeled 1906 // in the machine topology map. 1907 __kmp_affinity_gran_levels = 0; 1908 if ((threadLevel >= 0) && (__kmp_affinity_gran > affinity_gran_thread)) { 1909 __kmp_affinity_gran_levels++; 1910 } 1911 if ((coreLevel >= 0) && (__kmp_affinity_gran > affinity_gran_core)) { 1912 __kmp_affinity_gran_levels++; 1913 } 1914 if (__kmp_affinity_gran > affinity_gran_package) { 1915 __kmp_affinity_gran_levels++; 1916 } 1917 } 1918 1919 if (__kmp_affinity_verbose) { 1920 __kmp_affinity_print_topology(retval, nApics, depth, pkgLevel, coreLevel, 1921 threadLevel); 1922 } 1923 1924 __kmp_free(last); 1925 __kmp_free(maxCt); 1926 __kmp_free(counts); 1927 __kmp_free(totals); 1928 KMP_CPU_FREE(oldMask); 1929 *address2os = retval; 1930 return depth; 1931 } 1932 1933 #endif /* KMP_ARCH_X86 || KMP_ARCH_X86_64 */ 1934 1935 #define osIdIndex 0 1936 #define threadIdIndex 1 1937 #define coreIdIndex 2 1938 #define pkgIdIndex 3 1939 #define nodeIdIndex 4 1940 1941 typedef unsigned *ProcCpuInfo; 1942 static unsigned maxIndex = pkgIdIndex; 1943 1944 static int __kmp_affinity_cmp_ProcCpuInfo_phys_id(const void *a, 1945 const void *b) { 1946 unsigned i; 1947 const unsigned *aa = *(unsigned *const *)a; 1948 const unsigned *bb = *(unsigned *const *)b; 1949 for (i = maxIndex;; i--) { 1950 if (aa[i] < bb[i]) 1951 return -1; 1952 if (aa[i] > bb[i]) 1953 return 1; 1954 if (i == osIdIndex) 1955 break; 1956 } 1957 return 0; 1958 } 1959 1960 #if KMP_USE_HIER_SCHED 1961 // Set the array sizes for the hierarchy layers 1962 static void __kmp_dispatch_set_hierarchy_values() { 1963 // Set the maximum number of L1's to number of cores 1964 // Set the maximum number of L2's to to either number of cores / 2 for 1965 // Intel(R) Xeon Phi(TM) coprocessor formally codenamed Knights Landing 1966 // Or the number of cores for Intel(R) Xeon(R) processors 1967 // Set the maximum number of NUMA nodes and L3's to number of packages 1968 __kmp_hier_max_units[kmp_hier_layer_e::LAYER_THREAD + 1] = 1969 nPackages * nCoresPerPkg * __kmp_nThreadsPerCore; 1970 __kmp_hier_max_units[kmp_hier_layer_e::LAYER_L1 + 1] = __kmp_ncores; 1971 #if KMP_ARCH_X86_64 && (KMP_OS_LINUX || KMP_OS_WINDOWS) 1972 if (__kmp_mic_type >= mic3) 1973 __kmp_hier_max_units[kmp_hier_layer_e::LAYER_L2 + 1] = __kmp_ncores / 2; 1974 else 1975 #endif // KMP_ARCH_X86_64 && (KMP_OS_LINUX || KMP_OS_WINDOWS) 1976 __kmp_hier_max_units[kmp_hier_layer_e::LAYER_L2 + 1] = __kmp_ncores; 1977 __kmp_hier_max_units[kmp_hier_layer_e::LAYER_L3 + 1] = nPackages; 1978 __kmp_hier_max_units[kmp_hier_layer_e::LAYER_NUMA + 1] = nPackages; 1979 __kmp_hier_max_units[kmp_hier_layer_e::LAYER_LOOP + 1] = 1; 1980 // Set the number of threads per unit 1981 // Number of hardware threads per L1/L2/L3/NUMA/LOOP 1982 __kmp_hier_threads_per[kmp_hier_layer_e::LAYER_THREAD + 1] = 1; 1983 __kmp_hier_threads_per[kmp_hier_layer_e::LAYER_L1 + 1] = 1984 __kmp_nThreadsPerCore; 1985 #if KMP_ARCH_X86_64 && (KMP_OS_LINUX || KMP_OS_WINDOWS) 1986 if (__kmp_mic_type >= mic3) 1987 __kmp_hier_threads_per[kmp_hier_layer_e::LAYER_L2 + 1] = 1988 2 * __kmp_nThreadsPerCore; 1989 else 1990 #endif // KMP_ARCH_X86_64 && (KMP_OS_LINUX || KMP_OS_WINDOWS) 1991 __kmp_hier_threads_per[kmp_hier_layer_e::LAYER_L2 + 1] = 1992 __kmp_nThreadsPerCore; 1993 __kmp_hier_threads_per[kmp_hier_layer_e::LAYER_L3 + 1] = 1994 nCoresPerPkg * __kmp_nThreadsPerCore; 1995 __kmp_hier_threads_per[kmp_hier_layer_e::LAYER_NUMA + 1] = 1996 nCoresPerPkg * __kmp_nThreadsPerCore; 1997 __kmp_hier_threads_per[kmp_hier_layer_e::LAYER_LOOP + 1] = 1998 nPackages * nCoresPerPkg * __kmp_nThreadsPerCore; 1999 } 2000 2001 // Return the index into the hierarchy for this tid and layer type (L1, L2, etc) 2002 // i.e., this thread's L1 or this thread's L2, etc. 2003 int __kmp_dispatch_get_index(int tid, kmp_hier_layer_e type) { 2004 int index = type + 1; 2005 int num_hw_threads = __kmp_hier_max_units[kmp_hier_layer_e::LAYER_THREAD + 1]; 2006 KMP_DEBUG_ASSERT(type != kmp_hier_layer_e::LAYER_LAST); 2007 if (type == kmp_hier_layer_e::LAYER_THREAD) 2008 return tid; 2009 else if (type == kmp_hier_layer_e::LAYER_LOOP) 2010 return 0; 2011 KMP_DEBUG_ASSERT(__kmp_hier_max_units[index] != 0); 2012 if (tid >= num_hw_threads) 2013 tid = tid % num_hw_threads; 2014 return (tid / __kmp_hier_threads_per[index]) % __kmp_hier_max_units[index]; 2015 } 2016 2017 // Return the number of t1's per t2 2018 int __kmp_dispatch_get_t1_per_t2(kmp_hier_layer_e t1, kmp_hier_layer_e t2) { 2019 int i1 = t1 + 1; 2020 int i2 = t2 + 1; 2021 KMP_DEBUG_ASSERT(i1 <= i2); 2022 KMP_DEBUG_ASSERT(t1 != kmp_hier_layer_e::LAYER_LAST); 2023 KMP_DEBUG_ASSERT(t2 != kmp_hier_layer_e::LAYER_LAST); 2024 KMP_DEBUG_ASSERT(__kmp_hier_threads_per[i1] != 0); 2025 // (nthreads/t2) / (nthreads/t1) = t1 / t2 2026 return __kmp_hier_threads_per[i2] / __kmp_hier_threads_per[i1]; 2027 } 2028 #endif // KMP_USE_HIER_SCHED 2029 2030 // Parse /proc/cpuinfo (or an alternate file in the same format) to obtain the 2031 // affinity map. 2032 static int __kmp_affinity_create_cpuinfo_map(AddrUnsPair **address2os, 2033 int *line, 2034 kmp_i18n_id_t *const msg_id, 2035 FILE *f) { 2036 *address2os = NULL; 2037 *msg_id = kmp_i18n_null; 2038 2039 // Scan of the file, and count the number of "processor" (osId) fields, 2040 // and find the highest value of <n> for a node_<n> field. 2041 char buf[256]; 2042 unsigned num_records = 0; 2043 while (!feof(f)) { 2044 buf[sizeof(buf) - 1] = 1; 2045 if (!fgets(buf, sizeof(buf), f)) { 2046 // Read errors presumably because of EOF 2047 break; 2048 } 2049 2050 char s1[] = "processor"; 2051 if (strncmp(buf, s1, sizeof(s1) - 1) == 0) { 2052 num_records++; 2053 continue; 2054 } 2055 2056 // FIXME - this will match "node_<n> <garbage>" 2057 unsigned level; 2058 if (KMP_SSCANF(buf, "node_%u id", &level) == 1) { 2059 if (nodeIdIndex + level >= maxIndex) { 2060 maxIndex = nodeIdIndex + level; 2061 } 2062 continue; 2063 } 2064 } 2065 2066 // Check for empty file / no valid processor records, or too many. The number 2067 // of records can't exceed the number of valid bits in the affinity mask. 2068 if (num_records == 0) { 2069 *line = 0; 2070 *msg_id = kmp_i18n_str_NoProcRecords; 2071 return -1; 2072 } 2073 if (num_records > (unsigned)__kmp_xproc) { 2074 *line = 0; 2075 *msg_id = kmp_i18n_str_TooManyProcRecords; 2076 return -1; 2077 } 2078 2079 // Set the file pointer back to the begginning, so that we can scan the file 2080 // again, this time performing a full parse of the data. Allocate a vector of 2081 // ProcCpuInfo object, where we will place the data. Adding an extra element 2082 // at the end allows us to remove a lot of extra checks for termination 2083 // conditions. 2084 if (fseek(f, 0, SEEK_SET) != 0) { 2085 *line = 0; 2086 *msg_id = kmp_i18n_str_CantRewindCpuinfo; 2087 return -1; 2088 } 2089 2090 // Allocate the array of records to store the proc info in. The dummy 2091 // element at the end makes the logic in filling them out easier to code. 2092 unsigned **threadInfo = 2093 (unsigned **)__kmp_allocate((num_records + 1) * sizeof(unsigned *)); 2094 unsigned i; 2095 for (i = 0; i <= num_records; i++) { 2096 threadInfo[i] = 2097 (unsigned *)__kmp_allocate((maxIndex + 1) * sizeof(unsigned)); 2098 } 2099 2100 #define CLEANUP_THREAD_INFO \ 2101 for (i = 0; i <= num_records; i++) { \ 2102 __kmp_free(threadInfo[i]); \ 2103 } \ 2104 __kmp_free(threadInfo); 2105 2106 // A value of UINT_MAX means that we didn't find the field 2107 unsigned __index; 2108 2109 #define INIT_PROC_INFO(p) \ 2110 for (__index = 0; __index <= maxIndex; __index++) { \ 2111 (p)[__index] = UINT_MAX; \ 2112 } 2113 2114 for (i = 0; i <= num_records; i++) { 2115 INIT_PROC_INFO(threadInfo[i]); 2116 } 2117 2118 unsigned num_avail = 0; 2119 *line = 0; 2120 while (!feof(f)) { 2121 // Create an inner scoping level, so that all the goto targets at the end of 2122 // the loop appear in an outer scoping level. This avoids warnings about 2123 // jumping past an initialization to a target in the same block. 2124 { 2125 buf[sizeof(buf) - 1] = 1; 2126 bool long_line = false; 2127 if (!fgets(buf, sizeof(buf), f)) { 2128 // Read errors presumably because of EOF 2129 // If there is valid data in threadInfo[num_avail], then fake 2130 // a blank line in ensure that the last address gets parsed. 2131 bool valid = false; 2132 for (i = 0; i <= maxIndex; i++) { 2133 if (threadInfo[num_avail][i] != UINT_MAX) { 2134 valid = true; 2135 } 2136 } 2137 if (!valid) { 2138 break; 2139 } 2140 buf[0] = 0; 2141 } else if (!buf[sizeof(buf) - 1]) { 2142 // The line is longer than the buffer. Set a flag and don't 2143 // emit an error if we were going to ignore the line, anyway. 2144 long_line = true; 2145 2146 #define CHECK_LINE \ 2147 if (long_line) { \ 2148 CLEANUP_THREAD_INFO; \ 2149 *msg_id = kmp_i18n_str_LongLineCpuinfo; \ 2150 return -1; \ 2151 } 2152 } 2153 (*line)++; 2154 2155 char s1[] = "processor"; 2156 if (strncmp(buf, s1, sizeof(s1) - 1) == 0) { 2157 CHECK_LINE; 2158 char *p = strchr(buf + sizeof(s1) - 1, ':'); 2159 unsigned val; 2160 if ((p == NULL) || (KMP_SSCANF(p + 1, "%u\n", &val) != 1)) 2161 goto no_val; 2162 if (threadInfo[num_avail][osIdIndex] != UINT_MAX) 2163 #if KMP_ARCH_AARCH64 2164 // Handle the old AArch64 /proc/cpuinfo layout differently, 2165 // it contains all of the 'processor' entries listed in a 2166 // single 'Processor' section, therefore the normal looking 2167 // for duplicates in that section will always fail. 2168 num_avail++; 2169 #else 2170 goto dup_field; 2171 #endif 2172 threadInfo[num_avail][osIdIndex] = val; 2173 #if KMP_OS_LINUX && !(KMP_ARCH_X86 || KMP_ARCH_X86_64) 2174 char path[256]; 2175 KMP_SNPRINTF( 2176 path, sizeof(path), 2177 "/sys/devices/system/cpu/cpu%u/topology/physical_package_id", 2178 threadInfo[num_avail][osIdIndex]); 2179 __kmp_read_from_file(path, "%u", &threadInfo[num_avail][pkgIdIndex]); 2180 2181 KMP_SNPRINTF(path, sizeof(path), 2182 "/sys/devices/system/cpu/cpu%u/topology/core_id", 2183 threadInfo[num_avail][osIdIndex]); 2184 __kmp_read_from_file(path, "%u", &threadInfo[num_avail][coreIdIndex]); 2185 continue; 2186 #else 2187 } 2188 char s2[] = "physical id"; 2189 if (strncmp(buf, s2, sizeof(s2) - 1) == 0) { 2190 CHECK_LINE; 2191 char *p = strchr(buf + sizeof(s2) - 1, ':'); 2192 unsigned val; 2193 if ((p == NULL) || (KMP_SSCANF(p + 1, "%u\n", &val) != 1)) 2194 goto no_val; 2195 if (threadInfo[num_avail][pkgIdIndex] != UINT_MAX) 2196 goto dup_field; 2197 threadInfo[num_avail][pkgIdIndex] = val; 2198 continue; 2199 } 2200 char s3[] = "core id"; 2201 if (strncmp(buf, s3, sizeof(s3) - 1) == 0) { 2202 CHECK_LINE; 2203 char *p = strchr(buf + sizeof(s3) - 1, ':'); 2204 unsigned val; 2205 if ((p == NULL) || (KMP_SSCANF(p + 1, "%u\n", &val) != 1)) 2206 goto no_val; 2207 if (threadInfo[num_avail][coreIdIndex] != UINT_MAX) 2208 goto dup_field; 2209 threadInfo[num_avail][coreIdIndex] = val; 2210 continue; 2211 #endif // KMP_OS_LINUX && USE_SYSFS_INFO 2212 } 2213 char s4[] = "thread id"; 2214 if (strncmp(buf, s4, sizeof(s4) - 1) == 0) { 2215 CHECK_LINE; 2216 char *p = strchr(buf + sizeof(s4) - 1, ':'); 2217 unsigned val; 2218 if ((p == NULL) || (KMP_SSCANF(p + 1, "%u\n", &val) != 1)) 2219 goto no_val; 2220 if (threadInfo[num_avail][threadIdIndex] != UINT_MAX) 2221 goto dup_field; 2222 threadInfo[num_avail][threadIdIndex] = val; 2223 continue; 2224 } 2225 unsigned level; 2226 if (KMP_SSCANF(buf, "node_%u id", &level) == 1) { 2227 CHECK_LINE; 2228 char *p = strchr(buf + sizeof(s4) - 1, ':'); 2229 unsigned val; 2230 if ((p == NULL) || (KMP_SSCANF(p + 1, "%u\n", &val) != 1)) 2231 goto no_val; 2232 KMP_ASSERT(nodeIdIndex + level <= maxIndex); 2233 if (threadInfo[num_avail][nodeIdIndex + level] != UINT_MAX) 2234 goto dup_field; 2235 threadInfo[num_avail][nodeIdIndex + level] = val; 2236 continue; 2237 } 2238 2239 // We didn't recognize the leading token on the line. There are lots of 2240 // leading tokens that we don't recognize - if the line isn't empty, go on 2241 // to the next line. 2242 if ((*buf != 0) && (*buf != '\n')) { 2243 // If the line is longer than the buffer, read characters 2244 // until we find a newline. 2245 if (long_line) { 2246 int ch; 2247 while (((ch = fgetc(f)) != EOF) && (ch != '\n')) 2248 ; 2249 } 2250 continue; 2251 } 2252 2253 // A newline has signalled the end of the processor record. 2254 // Check that there aren't too many procs specified. 2255 if ((int)num_avail == __kmp_xproc) { 2256 CLEANUP_THREAD_INFO; 2257 *msg_id = kmp_i18n_str_TooManyEntries; 2258 return -1; 2259 } 2260 2261 // Check for missing fields. The osId field must be there, and we 2262 // currently require that the physical id field is specified, also. 2263 if (threadInfo[num_avail][osIdIndex] == UINT_MAX) { 2264 CLEANUP_THREAD_INFO; 2265 *msg_id = kmp_i18n_str_MissingProcField; 2266 return -1; 2267 } 2268 if (threadInfo[0][pkgIdIndex] == UINT_MAX) { 2269 CLEANUP_THREAD_INFO; 2270 *msg_id = kmp_i18n_str_MissingPhysicalIDField; 2271 return -1; 2272 } 2273 2274 // Skip this proc if it is not included in the machine model. 2275 if (!KMP_CPU_ISSET(threadInfo[num_avail][osIdIndex], 2276 __kmp_affin_fullMask)) { 2277 INIT_PROC_INFO(threadInfo[num_avail]); 2278 continue; 2279 } 2280 2281 // We have a successful parse of this proc's info. 2282 // Increment the counter, and prepare for the next proc. 2283 num_avail++; 2284 KMP_ASSERT(num_avail <= num_records); 2285 INIT_PROC_INFO(threadInfo[num_avail]); 2286 } 2287 continue; 2288 2289 no_val: 2290 CLEANUP_THREAD_INFO; 2291 *msg_id = kmp_i18n_str_MissingValCpuinfo; 2292 return -1; 2293 2294 dup_field: 2295 CLEANUP_THREAD_INFO; 2296 *msg_id = kmp_i18n_str_DuplicateFieldCpuinfo; 2297 return -1; 2298 } 2299 *line = 0; 2300 2301 #if KMP_MIC && REDUCE_TEAM_SIZE 2302 unsigned teamSize = 0; 2303 #endif // KMP_MIC && REDUCE_TEAM_SIZE 2304 2305 // check for num_records == __kmp_xproc ??? 2306 2307 // If there's only one thread context to bind to, form an Address object with 2308 // depth 1 and return immediately (or, if affinity is off, set address2os to 2309 // NULL and return). 2310 // 2311 // If it is configured to omit the package level when there is only a single 2312 // package, the logic at the end of this routine won't work if there is only a 2313 // single thread - it would try to form an Address object with depth 0. 2314 KMP_ASSERT(num_avail > 0); 2315 KMP_ASSERT(num_avail <= num_records); 2316 if (num_avail == 1) { 2317 __kmp_ncores = 1; 2318 __kmp_nThreadsPerCore = nCoresPerPkg = nPackages = 1; 2319 if (__kmp_affinity_verbose) { 2320 if (!KMP_AFFINITY_CAPABLE()) { 2321 KMP_INFORM(AffNotCapableUseCpuinfo, "KMP_AFFINITY"); 2322 KMP_INFORM(AvailableOSProc, "KMP_AFFINITY", __kmp_avail_proc); 2323 KMP_INFORM(Uniform, "KMP_AFFINITY"); 2324 } else { 2325 char buf[KMP_AFFIN_MASK_PRINT_LEN]; 2326 __kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN, 2327 __kmp_affin_fullMask); 2328 KMP_INFORM(AffCapableUseCpuinfo, "KMP_AFFINITY"); 2329 if (__kmp_affinity_respect_mask) { 2330 KMP_INFORM(InitOSProcSetRespect, "KMP_AFFINITY", buf); 2331 } else { 2332 KMP_INFORM(InitOSProcSetNotRespect, "KMP_AFFINITY", buf); 2333 } 2334 KMP_INFORM(AvailableOSProc, "KMP_AFFINITY", __kmp_avail_proc); 2335 KMP_INFORM(Uniform, "KMP_AFFINITY"); 2336 } 2337 int index; 2338 kmp_str_buf_t buf; 2339 __kmp_str_buf_init(&buf); 2340 __kmp_str_buf_print(&buf, "1"); 2341 for (index = maxIndex - 1; index > pkgIdIndex; index--) { 2342 __kmp_str_buf_print(&buf, " x 1"); 2343 } 2344 KMP_INFORM(TopologyExtra, "KMP_AFFINITY", buf.str, 1, 1, 1); 2345 __kmp_str_buf_free(&buf); 2346 } 2347 2348 if (__kmp_affinity_type == affinity_none) { 2349 CLEANUP_THREAD_INFO; 2350 return 0; 2351 } 2352 2353 *address2os = (AddrUnsPair *)__kmp_allocate(sizeof(AddrUnsPair)); 2354 Address addr(1); 2355 addr.labels[0] = threadInfo[0][pkgIdIndex]; 2356 (*address2os)[0] = AddrUnsPair(addr, threadInfo[0][osIdIndex]); 2357 2358 if (__kmp_affinity_gran_levels < 0) { 2359 __kmp_affinity_gran_levels = 0; 2360 } 2361 2362 if (__kmp_affinity_verbose) { 2363 __kmp_affinity_print_topology(*address2os, 1, 1, 0, -1, -1); 2364 } 2365 2366 CLEANUP_THREAD_INFO; 2367 return 1; 2368 } 2369 2370 // Sort the threadInfo table by physical Id. 2371 qsort(threadInfo, num_avail, sizeof(*threadInfo), 2372 __kmp_affinity_cmp_ProcCpuInfo_phys_id); 2373 2374 // The table is now sorted by pkgId / coreId / threadId, but we really don't 2375 // know the radix of any of the fields. pkgId's may be sparsely assigned among 2376 // the chips on a system. Although coreId's are usually assigned 2377 // [0 .. coresPerPkg-1] and threadId's are usually assigned 2378 // [0..threadsPerCore-1], we don't want to make any such assumptions. 2379 // 2380 // For that matter, we don't know what coresPerPkg and threadsPerCore (or the 2381 // total # packages) are at this point - we want to determine that now. We 2382 // only have an upper bound on the first two figures. 2383 unsigned *counts = 2384 (unsigned *)__kmp_allocate((maxIndex + 1) * sizeof(unsigned)); 2385 unsigned *maxCt = 2386 (unsigned *)__kmp_allocate((maxIndex + 1) * sizeof(unsigned)); 2387 unsigned *totals = 2388 (unsigned *)__kmp_allocate((maxIndex + 1) * sizeof(unsigned)); 2389 unsigned *lastId = 2390 (unsigned *)__kmp_allocate((maxIndex + 1) * sizeof(unsigned)); 2391 2392 bool assign_thread_ids = false; 2393 unsigned threadIdCt; 2394 unsigned index; 2395 2396 restart_radix_check: 2397 threadIdCt = 0; 2398 2399 // Initialize the counter arrays with data from threadInfo[0]. 2400 if (assign_thread_ids) { 2401 if (threadInfo[0][threadIdIndex] == UINT_MAX) { 2402 threadInfo[0][threadIdIndex] = threadIdCt++; 2403 } else if (threadIdCt <= threadInfo[0][threadIdIndex]) { 2404 threadIdCt = threadInfo[0][threadIdIndex] + 1; 2405 } 2406 } 2407 for (index = 0; index <= maxIndex; index++) { 2408 counts[index] = 1; 2409 maxCt[index] = 1; 2410 totals[index] = 1; 2411 lastId[index] = threadInfo[0][index]; 2412 ; 2413 } 2414 2415 // Run through the rest of the OS procs. 2416 for (i = 1; i < num_avail; i++) { 2417 // Find the most significant index whose id differs from the id for the 2418 // previous OS proc. 2419 for (index = maxIndex; index >= threadIdIndex; index--) { 2420 if (assign_thread_ids && (index == threadIdIndex)) { 2421 // Auto-assign the thread id field if it wasn't specified. 2422 if (threadInfo[i][threadIdIndex] == UINT_MAX) { 2423 threadInfo[i][threadIdIndex] = threadIdCt++; 2424 } 2425 // Apparently the thread id field was specified for some entries and not 2426 // others. Start the thread id counter off at the next higher thread id. 2427 else if (threadIdCt <= threadInfo[i][threadIdIndex]) { 2428 threadIdCt = threadInfo[i][threadIdIndex] + 1; 2429 } 2430 } 2431 if (threadInfo[i][index] != lastId[index]) { 2432 // Run through all indices which are less significant, and reset the 2433 // counts to 1. At all levels up to and including index, we need to 2434 // increment the totals and record the last id. 2435 unsigned index2; 2436 for (index2 = threadIdIndex; index2 < index; index2++) { 2437 totals[index2]++; 2438 if (counts[index2] > maxCt[index2]) { 2439 maxCt[index2] = counts[index2]; 2440 } 2441 counts[index2] = 1; 2442 lastId[index2] = threadInfo[i][index2]; 2443 } 2444 counts[index]++; 2445 totals[index]++; 2446 lastId[index] = threadInfo[i][index]; 2447 2448 if (assign_thread_ids && (index > threadIdIndex)) { 2449 2450 #if KMP_MIC && REDUCE_TEAM_SIZE 2451 // The default team size is the total #threads in the machine 2452 // minus 1 thread for every core that has 3 or more threads. 2453 teamSize += (threadIdCt <= 2) ? (threadIdCt) : (threadIdCt - 1); 2454 #endif // KMP_MIC && REDUCE_TEAM_SIZE 2455 2456 // Restart the thread counter, as we are on a new core. 2457 threadIdCt = 0; 2458 2459 // Auto-assign the thread id field if it wasn't specified. 2460 if (threadInfo[i][threadIdIndex] == UINT_MAX) { 2461 threadInfo[i][threadIdIndex] = threadIdCt++; 2462 } 2463 2464 // Aparrently the thread id field was specified for some entries and 2465 // not others. Start the thread id counter off at the next higher 2466 // thread id. 2467 else if (threadIdCt <= threadInfo[i][threadIdIndex]) { 2468 threadIdCt = threadInfo[i][threadIdIndex] + 1; 2469 } 2470 } 2471 break; 2472 } 2473 } 2474 if (index < threadIdIndex) { 2475 // If thread ids were specified, it is an error if they are not unique. 2476 // Also, check that we waven't already restarted the loop (to be safe - 2477 // shouldn't need to). 2478 if ((threadInfo[i][threadIdIndex] != UINT_MAX) || assign_thread_ids) { 2479 __kmp_free(lastId); 2480 __kmp_free(totals); 2481 __kmp_free(maxCt); 2482 __kmp_free(counts); 2483 CLEANUP_THREAD_INFO; 2484 *msg_id = kmp_i18n_str_PhysicalIDsNotUnique; 2485 return -1; 2486 } 2487 2488 // If the thread ids were not specified and we see entries entries that 2489 // are duplicates, start the loop over and assign the thread ids manually. 2490 assign_thread_ids = true; 2491 goto restart_radix_check; 2492 } 2493 } 2494 2495 #if KMP_MIC && REDUCE_TEAM_SIZE 2496 // The default team size is the total #threads in the machine 2497 // minus 1 thread for every core that has 3 or more threads. 2498 teamSize += (threadIdCt <= 2) ? (threadIdCt) : (threadIdCt - 1); 2499 #endif // KMP_MIC && REDUCE_TEAM_SIZE 2500 2501 for (index = threadIdIndex; index <= maxIndex; index++) { 2502 if (counts[index] > maxCt[index]) { 2503 maxCt[index] = counts[index]; 2504 } 2505 } 2506 2507 __kmp_nThreadsPerCore = maxCt[threadIdIndex]; 2508 nCoresPerPkg = maxCt[coreIdIndex]; 2509 nPackages = totals[pkgIdIndex]; 2510 2511 // Check to see if the machine topology is uniform 2512 unsigned prod = totals[maxIndex]; 2513 for (index = threadIdIndex; index < maxIndex; index++) { 2514 prod *= maxCt[index]; 2515 } 2516 bool uniform = (prod == totals[threadIdIndex]); 2517 2518 // When affinity is off, this routine will still be called to set 2519 // __kmp_ncores, as well as __kmp_nThreadsPerCore, nCoresPerPkg, & nPackages. 2520 // Make sure all these vars are set correctly, and return now if affinity is 2521 // not enabled. 2522 __kmp_ncores = totals[coreIdIndex]; 2523 2524 if (__kmp_affinity_verbose) { 2525 if (!KMP_AFFINITY_CAPABLE()) { 2526 KMP_INFORM(AffNotCapableUseCpuinfo, "KMP_AFFINITY"); 2527 KMP_INFORM(AvailableOSProc, "KMP_AFFINITY", __kmp_avail_proc); 2528 if (uniform) { 2529 KMP_INFORM(Uniform, "KMP_AFFINITY"); 2530 } else { 2531 KMP_INFORM(NonUniform, "KMP_AFFINITY"); 2532 } 2533 } else { 2534 char buf[KMP_AFFIN_MASK_PRINT_LEN]; 2535 __kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN, 2536 __kmp_affin_fullMask); 2537 KMP_INFORM(AffCapableUseCpuinfo, "KMP_AFFINITY"); 2538 if (__kmp_affinity_respect_mask) { 2539 KMP_INFORM(InitOSProcSetRespect, "KMP_AFFINITY", buf); 2540 } else { 2541 KMP_INFORM(InitOSProcSetNotRespect, "KMP_AFFINITY", buf); 2542 } 2543 KMP_INFORM(AvailableOSProc, "KMP_AFFINITY", __kmp_avail_proc); 2544 if (uniform) { 2545 KMP_INFORM(Uniform, "KMP_AFFINITY"); 2546 } else { 2547 KMP_INFORM(NonUniform, "KMP_AFFINITY"); 2548 } 2549 } 2550 kmp_str_buf_t buf; 2551 __kmp_str_buf_init(&buf); 2552 2553 __kmp_str_buf_print(&buf, "%d", totals[maxIndex]); 2554 for (index = maxIndex - 1; index >= pkgIdIndex; index--) { 2555 __kmp_str_buf_print(&buf, " x %d", maxCt[index]); 2556 } 2557 KMP_INFORM(TopologyExtra, "KMP_AFFINITY", buf.str, maxCt[coreIdIndex], 2558 maxCt[threadIdIndex], __kmp_ncores); 2559 2560 __kmp_str_buf_free(&buf); 2561 } 2562 2563 #if KMP_MIC && REDUCE_TEAM_SIZE 2564 // Set the default team size. 2565 if ((__kmp_dflt_team_nth == 0) && (teamSize > 0)) { 2566 __kmp_dflt_team_nth = teamSize; 2567 KA_TRACE(20, ("__kmp_affinity_create_cpuinfo_map: setting " 2568 "__kmp_dflt_team_nth = %d\n", 2569 __kmp_dflt_team_nth)); 2570 } 2571 #endif // KMP_MIC && REDUCE_TEAM_SIZE 2572 2573 KMP_DEBUG_ASSERT(__kmp_pu_os_idx == NULL); 2574 KMP_DEBUG_ASSERT(num_avail == (unsigned)__kmp_avail_proc); 2575 __kmp_pu_os_idx = (int *)__kmp_allocate(sizeof(int) * __kmp_avail_proc); 2576 for (i = 0; i < num_avail; ++i) { // fill the os indices 2577 __kmp_pu_os_idx[i] = threadInfo[i][osIdIndex]; 2578 } 2579 2580 if (__kmp_affinity_type == affinity_none) { 2581 __kmp_free(lastId); 2582 __kmp_free(totals); 2583 __kmp_free(maxCt); 2584 __kmp_free(counts); 2585 CLEANUP_THREAD_INFO; 2586 return 0; 2587 } 2588 2589 // Count the number of levels which have more nodes at that level than at the 2590 // parent's level (with there being an implicit root node of the top level). 2591 // This is equivalent to saying that there is at least one node at this level 2592 // which has a sibling. These levels are in the map, and the package level is 2593 // always in the map. 2594 bool *inMap = (bool *)__kmp_allocate((maxIndex + 1) * sizeof(bool)); 2595 for (index = threadIdIndex; index < maxIndex; index++) { 2596 KMP_ASSERT(totals[index] >= totals[index + 1]); 2597 inMap[index] = (totals[index] > totals[index + 1]); 2598 } 2599 inMap[maxIndex] = (totals[maxIndex] > 1); 2600 inMap[pkgIdIndex] = true; 2601 2602 int depth = 0; 2603 for (index = threadIdIndex; index <= maxIndex; index++) { 2604 if (inMap[index]) { 2605 depth++; 2606 } 2607 } 2608 KMP_ASSERT(depth > 0); 2609 2610 // Construct the data structure that is to be returned. 2611 *address2os = (AddrUnsPair *)__kmp_allocate(sizeof(AddrUnsPair) * num_avail); 2612 int pkgLevel = -1; 2613 int coreLevel = -1; 2614 int threadLevel = -1; 2615 2616 for (i = 0; i < num_avail; ++i) { 2617 Address addr(depth); 2618 unsigned os = threadInfo[i][osIdIndex]; 2619 int src_index; 2620 int dst_index = 0; 2621 2622 for (src_index = maxIndex; src_index >= threadIdIndex; src_index--) { 2623 if (!inMap[src_index]) { 2624 continue; 2625 } 2626 addr.labels[dst_index] = threadInfo[i][src_index]; 2627 if (src_index == pkgIdIndex) { 2628 pkgLevel = dst_index; 2629 } else if (src_index == coreIdIndex) { 2630 coreLevel = dst_index; 2631 } else if (src_index == threadIdIndex) { 2632 threadLevel = dst_index; 2633 } 2634 dst_index++; 2635 } 2636 (*address2os)[i] = AddrUnsPair(addr, os); 2637 } 2638 2639 if (__kmp_affinity_gran_levels < 0) { 2640 // Set the granularity level based on what levels are modeled 2641 // in the machine topology map. 2642 unsigned src_index; 2643 __kmp_affinity_gran_levels = 0; 2644 for (src_index = threadIdIndex; src_index <= maxIndex; src_index++) { 2645 if (!inMap[src_index]) { 2646 continue; 2647 } 2648 switch (src_index) { 2649 case threadIdIndex: 2650 if (__kmp_affinity_gran > affinity_gran_thread) { 2651 __kmp_affinity_gran_levels++; 2652 } 2653 2654 break; 2655 case coreIdIndex: 2656 if (__kmp_affinity_gran > affinity_gran_core) { 2657 __kmp_affinity_gran_levels++; 2658 } 2659 break; 2660 2661 case pkgIdIndex: 2662 if (__kmp_affinity_gran > affinity_gran_package) { 2663 __kmp_affinity_gran_levels++; 2664 } 2665 break; 2666 } 2667 } 2668 } 2669 2670 if (__kmp_affinity_verbose) { 2671 __kmp_affinity_print_topology(*address2os, num_avail, depth, pkgLevel, 2672 coreLevel, threadLevel); 2673 } 2674 2675 __kmp_free(inMap); 2676 __kmp_free(lastId); 2677 __kmp_free(totals); 2678 __kmp_free(maxCt); 2679 __kmp_free(counts); 2680 CLEANUP_THREAD_INFO; 2681 return depth; 2682 } 2683 2684 // Create and return a table of affinity masks, indexed by OS thread ID. 2685 // This routine handles OR'ing together all the affinity masks of threads 2686 // that are sufficiently close, if granularity > fine. 2687 static kmp_affin_mask_t *__kmp_create_masks(unsigned *maxIndex, 2688 unsigned *numUnique, 2689 AddrUnsPair *address2os, 2690 unsigned numAddrs) { 2691 // First form a table of affinity masks in order of OS thread id. 2692 unsigned depth; 2693 unsigned maxOsId; 2694 unsigned i; 2695 2696 KMP_ASSERT(numAddrs > 0); 2697 depth = address2os[0].first.depth; 2698 2699 maxOsId = 0; 2700 for (i = numAddrs - 1;; --i) { 2701 unsigned osId = address2os[i].second; 2702 if (osId > maxOsId) { 2703 maxOsId = osId; 2704 } 2705 if (i == 0) 2706 break; 2707 } 2708 kmp_affin_mask_t *osId2Mask; 2709 KMP_CPU_ALLOC_ARRAY(osId2Mask, (maxOsId + 1)); 2710 2711 // Sort the address2os table according to physical order. Doing so will put 2712 // all threads on the same core/package/node in consecutive locations. 2713 qsort(address2os, numAddrs, sizeof(*address2os), 2714 __kmp_affinity_cmp_Address_labels); 2715 2716 KMP_ASSERT(__kmp_affinity_gran_levels >= 0); 2717 if (__kmp_affinity_verbose && (__kmp_affinity_gran_levels > 0)) { 2718 KMP_INFORM(ThreadsMigrate, "KMP_AFFINITY", __kmp_affinity_gran_levels); 2719 } 2720 if (__kmp_affinity_gran_levels >= (int)depth) { 2721 if (__kmp_affinity_verbose || 2722 (__kmp_affinity_warnings && (__kmp_affinity_type != affinity_none))) { 2723 KMP_WARNING(AffThreadsMayMigrate); 2724 } 2725 } 2726 2727 // Run through the table, forming the masks for all threads on each core. 2728 // Threads on the same core will have identical "Address" objects, not 2729 // considering the last level, which must be the thread id. All threads on a 2730 // core will appear consecutively. 2731 unsigned unique = 0; 2732 unsigned j = 0; // index of 1st thread on core 2733 unsigned leader = 0; 2734 Address *leaderAddr = &(address2os[0].first); 2735 kmp_affin_mask_t *sum; 2736 KMP_CPU_ALLOC_ON_STACK(sum); 2737 KMP_CPU_ZERO(sum); 2738 KMP_CPU_SET(address2os[0].second, sum); 2739 for (i = 1; i < numAddrs; i++) { 2740 // If this thread is sufficiently close to the leader (within the 2741 // granularity setting), then set the bit for this os thread in the 2742 // affinity mask for this group, and go on to the next thread. 2743 if (leaderAddr->isClose(address2os[i].first, __kmp_affinity_gran_levels)) { 2744 KMP_CPU_SET(address2os[i].second, sum); 2745 continue; 2746 } 2747 2748 // For every thread in this group, copy the mask to the thread's entry in 2749 // the osId2Mask table. Mark the first address as a leader. 2750 for (; j < i; j++) { 2751 unsigned osId = address2os[j].second; 2752 KMP_DEBUG_ASSERT(osId <= maxOsId); 2753 kmp_affin_mask_t *mask = KMP_CPU_INDEX(osId2Mask, osId); 2754 KMP_CPU_COPY(mask, sum); 2755 address2os[j].first.leader = (j == leader); 2756 } 2757 unique++; 2758 2759 // Start a new mask. 2760 leader = i; 2761 leaderAddr = &(address2os[i].first); 2762 KMP_CPU_ZERO(sum); 2763 KMP_CPU_SET(address2os[i].second, sum); 2764 } 2765 2766 // For every thread in last group, copy the mask to the thread's 2767 // entry in the osId2Mask table. 2768 for (; j < i; j++) { 2769 unsigned osId = address2os[j].second; 2770 KMP_DEBUG_ASSERT(osId <= maxOsId); 2771 kmp_affin_mask_t *mask = KMP_CPU_INDEX(osId2Mask, osId); 2772 KMP_CPU_COPY(mask, sum); 2773 address2os[j].first.leader = (j == leader); 2774 } 2775 unique++; 2776 KMP_CPU_FREE_FROM_STACK(sum); 2777 2778 *maxIndex = maxOsId; 2779 *numUnique = unique; 2780 return osId2Mask; 2781 } 2782 2783 // Stuff for the affinity proclist parsers. It's easier to declare these vars 2784 // as file-static than to try and pass them through the calling sequence of 2785 // the recursive-descent OMP_PLACES parser. 2786 static kmp_affin_mask_t *newMasks; 2787 static int numNewMasks; 2788 static int nextNewMask; 2789 2790 #define ADD_MASK(_mask) \ 2791 { \ 2792 if (nextNewMask >= numNewMasks) { \ 2793 int i; \ 2794 numNewMasks *= 2; \ 2795 kmp_affin_mask_t *temp; \ 2796 KMP_CPU_INTERNAL_ALLOC_ARRAY(temp, numNewMasks); \ 2797 for (i = 0; i < numNewMasks / 2; i++) { \ 2798 kmp_affin_mask_t *src = KMP_CPU_INDEX(newMasks, i); \ 2799 kmp_affin_mask_t *dest = KMP_CPU_INDEX(temp, i); \ 2800 KMP_CPU_COPY(dest, src); \ 2801 } \ 2802 KMP_CPU_INTERNAL_FREE_ARRAY(newMasks, numNewMasks / 2); \ 2803 newMasks = temp; \ 2804 } \ 2805 KMP_CPU_COPY(KMP_CPU_INDEX(newMasks, nextNewMask), (_mask)); \ 2806 nextNewMask++; \ 2807 } 2808 2809 #define ADD_MASK_OSID(_osId, _osId2Mask, _maxOsId) \ 2810 { \ 2811 if (((_osId) > _maxOsId) || \ 2812 (!KMP_CPU_ISSET((_osId), KMP_CPU_INDEX((_osId2Mask), (_osId))))) { \ 2813 if (__kmp_affinity_verbose || \ 2814 (__kmp_affinity_warnings && \ 2815 (__kmp_affinity_type != affinity_none))) { \ 2816 KMP_WARNING(AffIgnoreInvalidProcID, _osId); \ 2817 } \ 2818 } else { \ 2819 ADD_MASK(KMP_CPU_INDEX(_osId2Mask, (_osId))); \ 2820 } \ 2821 } 2822 2823 // Re-parse the proclist (for the explicit affinity type), and form the list 2824 // of affinity newMasks indexed by gtid. 2825 static void __kmp_affinity_process_proclist(kmp_affin_mask_t **out_masks, 2826 unsigned int *out_numMasks, 2827 const char *proclist, 2828 kmp_affin_mask_t *osId2Mask, 2829 int maxOsId) { 2830 int i; 2831 const char *scan = proclist; 2832 const char *next = proclist; 2833 2834 // We use malloc() for the temporary mask vector, so that we can use 2835 // realloc() to extend it. 2836 numNewMasks = 2; 2837 KMP_CPU_INTERNAL_ALLOC_ARRAY(newMasks, numNewMasks); 2838 nextNewMask = 0; 2839 kmp_affin_mask_t *sumMask; 2840 KMP_CPU_ALLOC(sumMask); 2841 int setSize = 0; 2842 2843 for (;;) { 2844 int start, end, stride; 2845 2846 SKIP_WS(scan); 2847 next = scan; 2848 if (*next == '\0') { 2849 break; 2850 } 2851 2852 if (*next == '{') { 2853 int num; 2854 setSize = 0; 2855 next++; // skip '{' 2856 SKIP_WS(next); 2857 scan = next; 2858 2859 // Read the first integer in the set. 2860 KMP_ASSERT2((*next >= '0') && (*next <= '9'), "bad proclist"); 2861 SKIP_DIGITS(next); 2862 num = __kmp_str_to_int(scan, *next); 2863 KMP_ASSERT2(num >= 0, "bad explicit proc list"); 2864 2865 // Copy the mask for that osId to the sum (union) mask. 2866 if ((num > maxOsId) || 2867 (!KMP_CPU_ISSET(num, KMP_CPU_INDEX(osId2Mask, num)))) { 2868 if (__kmp_affinity_verbose || 2869 (__kmp_affinity_warnings && 2870 (__kmp_affinity_type != affinity_none))) { 2871 KMP_WARNING(AffIgnoreInvalidProcID, num); 2872 } 2873 KMP_CPU_ZERO(sumMask); 2874 } else { 2875 KMP_CPU_COPY(sumMask, KMP_CPU_INDEX(osId2Mask, num)); 2876 setSize = 1; 2877 } 2878 2879 for (;;) { 2880 // Check for end of set. 2881 SKIP_WS(next); 2882 if (*next == '}') { 2883 next++; // skip '}' 2884 break; 2885 } 2886 2887 // Skip optional comma. 2888 if (*next == ',') { 2889 next++; 2890 } 2891 SKIP_WS(next); 2892 2893 // Read the next integer in the set. 2894 scan = next; 2895 KMP_ASSERT2((*next >= '0') && (*next <= '9'), "bad explicit proc list"); 2896 2897 SKIP_DIGITS(next); 2898 num = __kmp_str_to_int(scan, *next); 2899 KMP_ASSERT2(num >= 0, "bad explicit proc list"); 2900 2901 // Add the mask for that osId to the sum mask. 2902 if ((num > maxOsId) || 2903 (!KMP_CPU_ISSET(num, KMP_CPU_INDEX(osId2Mask, num)))) { 2904 if (__kmp_affinity_verbose || 2905 (__kmp_affinity_warnings && 2906 (__kmp_affinity_type != affinity_none))) { 2907 KMP_WARNING(AffIgnoreInvalidProcID, num); 2908 } 2909 } else { 2910 KMP_CPU_UNION(sumMask, KMP_CPU_INDEX(osId2Mask, num)); 2911 setSize++; 2912 } 2913 } 2914 if (setSize > 0) { 2915 ADD_MASK(sumMask); 2916 } 2917 2918 SKIP_WS(next); 2919 if (*next == ',') { 2920 next++; 2921 } 2922 scan = next; 2923 continue; 2924 } 2925 2926 // Read the first integer. 2927 KMP_ASSERT2((*next >= '0') && (*next <= '9'), "bad explicit proc list"); 2928 SKIP_DIGITS(next); 2929 start = __kmp_str_to_int(scan, *next); 2930 KMP_ASSERT2(start >= 0, "bad explicit proc list"); 2931 SKIP_WS(next); 2932 2933 // If this isn't a range, then add a mask to the list and go on. 2934 if (*next != '-') { 2935 ADD_MASK_OSID(start, osId2Mask, maxOsId); 2936 2937 // Skip optional comma. 2938 if (*next == ',') { 2939 next++; 2940 } 2941 scan = next; 2942 continue; 2943 } 2944 2945 // This is a range. Skip over the '-' and read in the 2nd int. 2946 next++; // skip '-' 2947 SKIP_WS(next); 2948 scan = next; 2949 KMP_ASSERT2((*next >= '0') && (*next <= '9'), "bad explicit proc list"); 2950 SKIP_DIGITS(next); 2951 end = __kmp_str_to_int(scan, *next); 2952 KMP_ASSERT2(end >= 0, "bad explicit proc list"); 2953 2954 // Check for a stride parameter 2955 stride = 1; 2956 SKIP_WS(next); 2957 if (*next == ':') { 2958 // A stride is specified. Skip over the ':" and read the 3rd int. 2959 int sign = +1; 2960 next++; // skip ':' 2961 SKIP_WS(next); 2962 scan = next; 2963 if (*next == '-') { 2964 sign = -1; 2965 next++; 2966 SKIP_WS(next); 2967 scan = next; 2968 } 2969 KMP_ASSERT2((*next >= '0') && (*next <= '9'), "bad explicit proc list"); 2970 SKIP_DIGITS(next); 2971 stride = __kmp_str_to_int(scan, *next); 2972 KMP_ASSERT2(stride >= 0, "bad explicit proc list"); 2973 stride *= sign; 2974 } 2975 2976 // Do some range checks. 2977 KMP_ASSERT2(stride != 0, "bad explicit proc list"); 2978 if (stride > 0) { 2979 KMP_ASSERT2(start <= end, "bad explicit proc list"); 2980 } else { 2981 KMP_ASSERT2(start >= end, "bad explicit proc list"); 2982 } 2983 KMP_ASSERT2((end - start) / stride <= 65536, "bad explicit proc list"); 2984 2985 // Add the mask for each OS proc # to the list. 2986 if (stride > 0) { 2987 do { 2988 ADD_MASK_OSID(start, osId2Mask, maxOsId); 2989 start += stride; 2990 } while (start <= end); 2991 } else { 2992 do { 2993 ADD_MASK_OSID(start, osId2Mask, maxOsId); 2994 start += stride; 2995 } while (start >= end); 2996 } 2997 2998 // Skip optional comma. 2999 SKIP_WS(next); 3000 if (*next == ',') { 3001 next++; 3002 } 3003 scan = next; 3004 } 3005 3006 *out_numMasks = nextNewMask; 3007 if (nextNewMask == 0) { 3008 *out_masks = NULL; 3009 KMP_CPU_INTERNAL_FREE_ARRAY(newMasks, numNewMasks); 3010 return; 3011 } 3012 KMP_CPU_ALLOC_ARRAY((*out_masks), nextNewMask); 3013 for (i = 0; i < nextNewMask; i++) { 3014 kmp_affin_mask_t *src = KMP_CPU_INDEX(newMasks, i); 3015 kmp_affin_mask_t *dest = KMP_CPU_INDEX((*out_masks), i); 3016 KMP_CPU_COPY(dest, src); 3017 } 3018 KMP_CPU_INTERNAL_FREE_ARRAY(newMasks, numNewMasks); 3019 KMP_CPU_FREE(sumMask); 3020 } 3021 3022 /*----------------------------------------------------------------------------- 3023 Re-parse the OMP_PLACES proc id list, forming the newMasks for the different 3024 places. Again, Here is the grammar: 3025 3026 place_list := place 3027 place_list := place , place_list 3028 place := num 3029 place := place : num 3030 place := place : num : signed 3031 place := { subplacelist } 3032 place := ! place // (lowest priority) 3033 subplace_list := subplace 3034 subplace_list := subplace , subplace_list 3035 subplace := num 3036 subplace := num : num 3037 subplace := num : num : signed 3038 signed := num 3039 signed := + signed 3040 signed := - signed 3041 -----------------------------------------------------------------------------*/ 3042 static void __kmp_process_subplace_list(const char **scan, 3043 kmp_affin_mask_t *osId2Mask, 3044 int maxOsId, kmp_affin_mask_t *tempMask, 3045 int *setSize) { 3046 const char *next; 3047 3048 for (;;) { 3049 int start, count, stride, i; 3050 3051 // Read in the starting proc id 3052 SKIP_WS(*scan); 3053 KMP_ASSERT2((**scan >= '0') && (**scan <= '9'), "bad explicit places list"); 3054 next = *scan; 3055 SKIP_DIGITS(next); 3056 start = __kmp_str_to_int(*scan, *next); 3057 KMP_ASSERT(start >= 0); 3058 *scan = next; 3059 3060 // valid follow sets are ',' ':' and '}' 3061 SKIP_WS(*scan); 3062 if (**scan == '}' || **scan == ',') { 3063 if ((start > maxOsId) || 3064 (!KMP_CPU_ISSET(start, KMP_CPU_INDEX(osId2Mask, start)))) { 3065 if (__kmp_affinity_verbose || 3066 (__kmp_affinity_warnings && 3067 (__kmp_affinity_type != affinity_none))) { 3068 KMP_WARNING(AffIgnoreInvalidProcID, start); 3069 } 3070 } else { 3071 KMP_CPU_UNION(tempMask, KMP_CPU_INDEX(osId2Mask, start)); 3072 (*setSize)++; 3073 } 3074 if (**scan == '}') { 3075 break; 3076 } 3077 (*scan)++; // skip ',' 3078 continue; 3079 } 3080 KMP_ASSERT2(**scan == ':', "bad explicit places list"); 3081 (*scan)++; // skip ':' 3082 3083 // Read count parameter 3084 SKIP_WS(*scan); 3085 KMP_ASSERT2((**scan >= '0') && (**scan <= '9'), "bad explicit places list"); 3086 next = *scan; 3087 SKIP_DIGITS(next); 3088 count = __kmp_str_to_int(*scan, *next); 3089 KMP_ASSERT(count >= 0); 3090 *scan = next; 3091 3092 // valid follow sets are ',' ':' and '}' 3093 SKIP_WS(*scan); 3094 if (**scan == '}' || **scan == ',') { 3095 for (i = 0; i < count; i++) { 3096 if ((start > maxOsId) || 3097 (!KMP_CPU_ISSET(start, KMP_CPU_INDEX(osId2Mask, start)))) { 3098 if (__kmp_affinity_verbose || 3099 (__kmp_affinity_warnings && 3100 (__kmp_affinity_type != affinity_none))) { 3101 KMP_WARNING(AffIgnoreInvalidProcID, start); 3102 } 3103 break; // don't proliferate warnings for large count 3104 } else { 3105 KMP_CPU_UNION(tempMask, KMP_CPU_INDEX(osId2Mask, start)); 3106 start++; 3107 (*setSize)++; 3108 } 3109 } 3110 if (**scan == '}') { 3111 break; 3112 } 3113 (*scan)++; // skip ',' 3114 continue; 3115 } 3116 KMP_ASSERT2(**scan == ':', "bad explicit places list"); 3117 (*scan)++; // skip ':' 3118 3119 // Read stride parameter 3120 int sign = +1; 3121 for (;;) { 3122 SKIP_WS(*scan); 3123 if (**scan == '+') { 3124 (*scan)++; // skip '+' 3125 continue; 3126 } 3127 if (**scan == '-') { 3128 sign *= -1; 3129 (*scan)++; // skip '-' 3130 continue; 3131 } 3132 break; 3133 } 3134 SKIP_WS(*scan); 3135 KMP_ASSERT2((**scan >= '0') && (**scan <= '9'), "bad explicit places list"); 3136 next = *scan; 3137 SKIP_DIGITS(next); 3138 stride = __kmp_str_to_int(*scan, *next); 3139 KMP_ASSERT(stride >= 0); 3140 *scan = next; 3141 stride *= sign; 3142 3143 // valid follow sets are ',' and '}' 3144 SKIP_WS(*scan); 3145 if (**scan == '}' || **scan == ',') { 3146 for (i = 0; i < count; i++) { 3147 if ((start > maxOsId) || 3148 (!KMP_CPU_ISSET(start, KMP_CPU_INDEX(osId2Mask, start)))) { 3149 if (__kmp_affinity_verbose || 3150 (__kmp_affinity_warnings && 3151 (__kmp_affinity_type != affinity_none))) { 3152 KMP_WARNING(AffIgnoreInvalidProcID, start); 3153 } 3154 break; // don't proliferate warnings for large count 3155 } else { 3156 KMP_CPU_UNION(tempMask, KMP_CPU_INDEX(osId2Mask, start)); 3157 start += stride; 3158 (*setSize)++; 3159 } 3160 } 3161 if (**scan == '}') { 3162 break; 3163 } 3164 (*scan)++; // skip ',' 3165 continue; 3166 } 3167 3168 KMP_ASSERT2(0, "bad explicit places list"); 3169 } 3170 } 3171 3172 static void __kmp_process_place(const char **scan, kmp_affin_mask_t *osId2Mask, 3173 int maxOsId, kmp_affin_mask_t *tempMask, 3174 int *setSize) { 3175 const char *next; 3176 3177 // valid follow sets are '{' '!' and num 3178 SKIP_WS(*scan); 3179 if (**scan == '{') { 3180 (*scan)++; // skip '{' 3181 __kmp_process_subplace_list(scan, osId2Mask, maxOsId, tempMask, setSize); 3182 KMP_ASSERT2(**scan == '}', "bad explicit places list"); 3183 (*scan)++; // skip '}' 3184 } else if (**scan == '!') { 3185 (*scan)++; // skip '!' 3186 __kmp_process_place(scan, osId2Mask, maxOsId, tempMask, setSize); 3187 KMP_CPU_COMPLEMENT(maxOsId, tempMask); 3188 } else if ((**scan >= '0') && (**scan <= '9')) { 3189 next = *scan; 3190 SKIP_DIGITS(next); 3191 int num = __kmp_str_to_int(*scan, *next); 3192 KMP_ASSERT(num >= 0); 3193 if ((num > maxOsId) || 3194 (!KMP_CPU_ISSET(num, KMP_CPU_INDEX(osId2Mask, num)))) { 3195 if (__kmp_affinity_verbose || 3196 (__kmp_affinity_warnings && (__kmp_affinity_type != affinity_none))) { 3197 KMP_WARNING(AffIgnoreInvalidProcID, num); 3198 } 3199 } else { 3200 KMP_CPU_UNION(tempMask, KMP_CPU_INDEX(osId2Mask, num)); 3201 (*setSize)++; 3202 } 3203 *scan = next; // skip num 3204 } else { 3205 KMP_ASSERT2(0, "bad explicit places list"); 3206 } 3207 } 3208 3209 // static void 3210 void __kmp_affinity_process_placelist(kmp_affin_mask_t **out_masks, 3211 unsigned int *out_numMasks, 3212 const char *placelist, 3213 kmp_affin_mask_t *osId2Mask, 3214 int maxOsId) { 3215 int i, j, count, stride, sign; 3216 const char *scan = placelist; 3217 const char *next = placelist; 3218 3219 numNewMasks = 2; 3220 KMP_CPU_INTERNAL_ALLOC_ARRAY(newMasks, numNewMasks); 3221 nextNewMask = 0; 3222 3223 // tempMask is modified based on the previous or initial 3224 // place to form the current place 3225 // previousMask contains the previous place 3226 kmp_affin_mask_t *tempMask; 3227 kmp_affin_mask_t *previousMask; 3228 KMP_CPU_ALLOC(tempMask); 3229 KMP_CPU_ZERO(tempMask); 3230 KMP_CPU_ALLOC(previousMask); 3231 KMP_CPU_ZERO(previousMask); 3232 int setSize = 0; 3233 3234 for (;;) { 3235 __kmp_process_place(&scan, osId2Mask, maxOsId, tempMask, &setSize); 3236 3237 // valid follow sets are ',' ':' and EOL 3238 SKIP_WS(scan); 3239 if (*scan == '\0' || *scan == ',') { 3240 if (setSize > 0) { 3241 ADD_MASK(tempMask); 3242 } 3243 KMP_CPU_ZERO(tempMask); 3244 setSize = 0; 3245 if (*scan == '\0') { 3246 break; 3247 } 3248 scan++; // skip ',' 3249 continue; 3250 } 3251 3252 KMP_ASSERT2(*scan == ':', "bad explicit places list"); 3253 scan++; // skip ':' 3254 3255 // Read count parameter 3256 SKIP_WS(scan); 3257 KMP_ASSERT2((*scan >= '0') && (*scan <= '9'), "bad explicit places list"); 3258 next = scan; 3259 SKIP_DIGITS(next); 3260 count = __kmp_str_to_int(scan, *next); 3261 KMP_ASSERT(count >= 0); 3262 scan = next; 3263 3264 // valid follow sets are ',' ':' and EOL 3265 SKIP_WS(scan); 3266 if (*scan == '\0' || *scan == ',') { 3267 stride = +1; 3268 } else { 3269 KMP_ASSERT2(*scan == ':', "bad explicit places list"); 3270 scan++; // skip ':' 3271 3272 // Read stride parameter 3273 sign = +1; 3274 for (;;) { 3275 SKIP_WS(scan); 3276 if (*scan == '+') { 3277 scan++; // skip '+' 3278 continue; 3279 } 3280 if (*scan == '-') { 3281 sign *= -1; 3282 scan++; // skip '-' 3283 continue; 3284 } 3285 break; 3286 } 3287 SKIP_WS(scan); 3288 KMP_ASSERT2((*scan >= '0') && (*scan <= '9'), "bad explicit places list"); 3289 next = scan; 3290 SKIP_DIGITS(next); 3291 stride = __kmp_str_to_int(scan, *next); 3292 KMP_DEBUG_ASSERT(stride >= 0); 3293 scan = next; 3294 stride *= sign; 3295 } 3296 3297 // Add places determined by initial_place : count : stride 3298 for (i = 0; i < count; i++) { 3299 if (setSize == 0) { 3300 break; 3301 } 3302 // Add the current place, then build the next place (tempMask) from that 3303 KMP_CPU_COPY(previousMask, tempMask); 3304 ADD_MASK(previousMask); 3305 KMP_CPU_ZERO(tempMask); 3306 setSize = 0; 3307 KMP_CPU_SET_ITERATE(j, previousMask) { 3308 if (!KMP_CPU_ISSET(j, previousMask)) { 3309 continue; 3310 } 3311 if ((j + stride > maxOsId) || (j + stride < 0) || 3312 (!KMP_CPU_ISSET(j, __kmp_affin_fullMask)) || 3313 (!KMP_CPU_ISSET(j + stride, 3314 KMP_CPU_INDEX(osId2Mask, j + stride)))) { 3315 if ((__kmp_affinity_verbose || 3316 (__kmp_affinity_warnings && 3317 (__kmp_affinity_type != affinity_none))) && 3318 i < count - 1) { 3319 KMP_WARNING(AffIgnoreInvalidProcID, j + stride); 3320 } 3321 continue; 3322 } 3323 KMP_CPU_SET(j + stride, tempMask); 3324 setSize++; 3325 } 3326 } 3327 KMP_CPU_ZERO(tempMask); 3328 setSize = 0; 3329 3330 // valid follow sets are ',' and EOL 3331 SKIP_WS(scan); 3332 if (*scan == '\0') { 3333 break; 3334 } 3335 if (*scan == ',') { 3336 scan++; // skip ',' 3337 continue; 3338 } 3339 3340 KMP_ASSERT2(0, "bad explicit places list"); 3341 } 3342 3343 *out_numMasks = nextNewMask; 3344 if (nextNewMask == 0) { 3345 *out_masks = NULL; 3346 KMP_CPU_INTERNAL_FREE_ARRAY(newMasks, numNewMasks); 3347 return; 3348 } 3349 KMP_CPU_ALLOC_ARRAY((*out_masks), nextNewMask); 3350 KMP_CPU_FREE(tempMask); 3351 KMP_CPU_FREE(previousMask); 3352 for (i = 0; i < nextNewMask; i++) { 3353 kmp_affin_mask_t *src = KMP_CPU_INDEX(newMasks, i); 3354 kmp_affin_mask_t *dest = KMP_CPU_INDEX((*out_masks), i); 3355 KMP_CPU_COPY(dest, src); 3356 } 3357 KMP_CPU_INTERNAL_FREE_ARRAY(newMasks, numNewMasks); 3358 } 3359 3360 #undef ADD_MASK 3361 #undef ADD_MASK_OSID 3362 3363 #if KMP_USE_HWLOC 3364 static int __kmp_hwloc_skip_PUs_obj(hwloc_topology_t t, hwloc_obj_t o) { 3365 // skip PUs descendants of the object o 3366 int skipped = 0; 3367 hwloc_obj_t hT = NULL; 3368 int N = __kmp_hwloc_count_children_by_type(t, o, HWLOC_OBJ_PU, &hT); 3369 for (int i = 0; i < N; ++i) { 3370 KMP_DEBUG_ASSERT(hT); 3371 unsigned idx = hT->os_index; 3372 if (KMP_CPU_ISSET(idx, __kmp_affin_fullMask)) { 3373 KMP_CPU_CLR(idx, __kmp_affin_fullMask); 3374 KC_TRACE(200, ("KMP_HW_SUBSET: skipped proc %d\n", idx)); 3375 ++skipped; 3376 } 3377 hT = hwloc_get_next_obj_by_type(t, HWLOC_OBJ_PU, hT); 3378 } 3379 return skipped; // count number of skipped units 3380 } 3381 3382 static int __kmp_hwloc_obj_has_PUs(hwloc_topology_t t, hwloc_obj_t o) { 3383 // check if obj has PUs present in fullMask 3384 hwloc_obj_t hT = NULL; 3385 int N = __kmp_hwloc_count_children_by_type(t, o, HWLOC_OBJ_PU, &hT); 3386 for (int i = 0; i < N; ++i) { 3387 KMP_DEBUG_ASSERT(hT); 3388 unsigned idx = hT->os_index; 3389 if (KMP_CPU_ISSET(idx, __kmp_affin_fullMask)) 3390 return 1; // found PU 3391 hT = hwloc_get_next_obj_by_type(t, HWLOC_OBJ_PU, hT); 3392 } 3393 return 0; // no PUs found 3394 } 3395 #endif // KMP_USE_HWLOC 3396 3397 static void __kmp_apply_thread_places(AddrUnsPair **pAddr, int depth) { 3398 AddrUnsPair *newAddr; 3399 if (__kmp_hws_requested == 0) 3400 goto _exit; // no topology limiting actions requested, exit 3401 #if KMP_USE_HWLOC 3402 if (__kmp_affinity_dispatch->get_api_type() == KMPAffinity::HWLOC) { 3403 // Number of subobjects calculated dynamically, this works fine for 3404 // any non-uniform topology. 3405 // L2 cache objects are determined by depth, other objects - by type. 3406 hwloc_topology_t tp = __kmp_hwloc_topology; 3407 int nS = 0, nN = 0, nL = 0, nC = 0, 3408 nT = 0; // logical index including skipped 3409 int nCr = 0, nTr = 0; // number of requested units 3410 int nPkg = 0, nCo = 0, n_new = 0, n_old = 0, nCpP = 0, nTpC = 0; // counters 3411 hwloc_obj_t hT, hC, hL, hN, hS; // hwloc objects (pointers to) 3412 int L2depth, idx; 3413 3414 // check support of extensions ---------------------------------- 3415 int numa_support = 0, tile_support = 0; 3416 if (__kmp_pu_os_idx) 3417 hT = hwloc_get_pu_obj_by_os_index(tp, 3418 __kmp_pu_os_idx[__kmp_avail_proc - 1]); 3419 else 3420 hT = hwloc_get_obj_by_type(tp, HWLOC_OBJ_PU, __kmp_avail_proc - 1); 3421 if (hT == NULL) { // something's gone wrong 3422 KMP_WARNING(AffHWSubsetUnsupported); 3423 goto _exit; 3424 } 3425 // check NUMA node 3426 hN = hwloc_get_ancestor_obj_by_type(tp, HWLOC_OBJ_NUMANODE, hT); 3427 hS = hwloc_get_ancestor_obj_by_type(tp, HWLOC_OBJ_PACKAGE, hT); 3428 if (hN != NULL && hN->depth > hS->depth) { 3429 numa_support = 1; // 1 in case socket includes node(s) 3430 } else if (__kmp_hws_node.num > 0) { 3431 // don't support sockets inside NUMA node (no such HW found for testing) 3432 KMP_WARNING(AffHWSubsetUnsupported); 3433 goto _exit; 3434 } 3435 // check L2 cahce, get object by depth because of multiple caches 3436 L2depth = hwloc_get_cache_type_depth(tp, 2, HWLOC_OBJ_CACHE_UNIFIED); 3437 hL = hwloc_get_ancestor_obj_by_depth(tp, L2depth, hT); 3438 if (hL != NULL && 3439 __kmp_hwloc_count_children_by_type(tp, hL, HWLOC_OBJ_CORE, &hC) > 1) { 3440 tile_support = 1; // no sense to count L2 if it includes single core 3441 } else if (__kmp_hws_tile.num > 0) { 3442 if (__kmp_hws_core.num == 0) { 3443 __kmp_hws_core = __kmp_hws_tile; // replace L2 with core 3444 __kmp_hws_tile.num = 0; 3445 } else { 3446 // L2 and core are both requested, but represent same object 3447 KMP_WARNING(AffHWSubsetInvalid); 3448 goto _exit; 3449 } 3450 } 3451 // end of check of extensions ----------------------------------- 3452 3453 // fill in unset items, validate settings ----------------------- 3454 if (__kmp_hws_socket.num == 0) 3455 __kmp_hws_socket.num = nPackages; // use all available sockets 3456 if (__kmp_hws_socket.offset >= nPackages) { 3457 KMP_WARNING(AffHWSubsetManySockets); 3458 goto _exit; 3459 } 3460 if (numa_support) { 3461 hN = NULL; 3462 int NN = __kmp_hwloc_count_children_by_type(tp, hS, HWLOC_OBJ_NUMANODE, 3463 &hN); // num nodes in socket 3464 if (__kmp_hws_node.num == 0) 3465 __kmp_hws_node.num = NN; // use all available nodes 3466 if (__kmp_hws_node.offset >= NN) { 3467 KMP_WARNING(AffHWSubsetManyNodes); 3468 goto _exit; 3469 } 3470 if (tile_support) { 3471 // get num tiles in node 3472 int NL = __kmp_hwloc_count_children_by_depth(tp, hN, L2depth, &hL); 3473 if (__kmp_hws_tile.num == 0) { 3474 __kmp_hws_tile.num = NL + 1; 3475 } // use all available tiles, some node may have more tiles, thus +1 3476 if (__kmp_hws_tile.offset >= NL) { 3477 KMP_WARNING(AffHWSubsetManyTiles); 3478 goto _exit; 3479 } 3480 int NC = __kmp_hwloc_count_children_by_type(tp, hL, HWLOC_OBJ_CORE, 3481 &hC); // num cores in tile 3482 if (__kmp_hws_core.num == 0) 3483 __kmp_hws_core.num = NC; // use all available cores 3484 if (__kmp_hws_core.offset >= NC) { 3485 KMP_WARNING(AffHWSubsetManyCores); 3486 goto _exit; 3487 } 3488 } else { // tile_support 3489 int NC = __kmp_hwloc_count_children_by_type(tp, hN, HWLOC_OBJ_CORE, 3490 &hC); // num cores in node 3491 if (__kmp_hws_core.num == 0) 3492 __kmp_hws_core.num = NC; // use all available cores 3493 if (__kmp_hws_core.offset >= NC) { 3494 KMP_WARNING(AffHWSubsetManyCores); 3495 goto _exit; 3496 } 3497 } // tile_support 3498 } else { // numa_support 3499 if (tile_support) { 3500 // get num tiles in socket 3501 int NL = __kmp_hwloc_count_children_by_depth(tp, hS, L2depth, &hL); 3502 if (__kmp_hws_tile.num == 0) 3503 __kmp_hws_tile.num = NL; // use all available tiles 3504 if (__kmp_hws_tile.offset >= NL) { 3505 KMP_WARNING(AffHWSubsetManyTiles); 3506 goto _exit; 3507 } 3508 int NC = __kmp_hwloc_count_children_by_type(tp, hL, HWLOC_OBJ_CORE, 3509 &hC); // num cores in tile 3510 if (__kmp_hws_core.num == 0) 3511 __kmp_hws_core.num = NC; // use all available cores 3512 if (__kmp_hws_core.offset >= NC) { 3513 KMP_WARNING(AffHWSubsetManyCores); 3514 goto _exit; 3515 } 3516 } else { // tile_support 3517 int NC = __kmp_hwloc_count_children_by_type(tp, hS, HWLOC_OBJ_CORE, 3518 &hC); // num cores in socket 3519 if (__kmp_hws_core.num == 0) 3520 __kmp_hws_core.num = NC; // use all available cores 3521 if (__kmp_hws_core.offset >= NC) { 3522 KMP_WARNING(AffHWSubsetManyCores); 3523 goto _exit; 3524 } 3525 } // tile_support 3526 } 3527 if (__kmp_hws_proc.num == 0) 3528 __kmp_hws_proc.num = __kmp_nThreadsPerCore; // use all available procs 3529 if (__kmp_hws_proc.offset >= __kmp_nThreadsPerCore) { 3530 KMP_WARNING(AffHWSubsetManyProcs); 3531 goto _exit; 3532 } 3533 // end of validation -------------------------------------------- 3534 3535 if (pAddr) // pAddr is NULL in case of affinity_none 3536 newAddr = (AddrUnsPair *)__kmp_allocate(sizeof(AddrUnsPair) * 3537 __kmp_avail_proc); // max size 3538 // main loop to form HW subset ---------------------------------- 3539 hS = NULL; 3540 int NP = hwloc_get_nbobjs_by_type(tp, HWLOC_OBJ_PACKAGE); 3541 for (int s = 0; s < NP; ++s) { 3542 // Check Socket ----------------------------------------------- 3543 hS = hwloc_get_next_obj_by_type(tp, HWLOC_OBJ_PACKAGE, hS); 3544 if (!__kmp_hwloc_obj_has_PUs(tp, hS)) 3545 continue; // skip socket if all PUs are out of fullMask 3546 ++nS; // only count objects those have PUs in affinity mask 3547 if (nS <= __kmp_hws_socket.offset || 3548 nS > __kmp_hws_socket.num + __kmp_hws_socket.offset) { 3549 n_old += __kmp_hwloc_skip_PUs_obj(tp, hS); // skip socket 3550 continue; // move to next socket 3551 } 3552 nCr = 0; // count number of cores per socket 3553 // socket requested, go down the topology tree 3554 // check 4 cases: (+NUMA+Tile), (+NUMA-Tile), (-NUMA+Tile), (-NUMA-Tile) 3555 if (numa_support) { 3556 nN = 0; 3557 hN = NULL; 3558 // num nodes in current socket 3559 int NN = 3560 __kmp_hwloc_count_children_by_type(tp, hS, HWLOC_OBJ_NUMANODE, &hN); 3561 for (int n = 0; n < NN; ++n) { 3562 // Check NUMA Node ---------------------------------------- 3563 if (!__kmp_hwloc_obj_has_PUs(tp, hN)) { 3564 hN = hwloc_get_next_obj_by_type(tp, HWLOC_OBJ_NUMANODE, hN); 3565 continue; // skip node if all PUs are out of fullMask 3566 } 3567 ++nN; 3568 if (nN <= __kmp_hws_node.offset || 3569 nN > __kmp_hws_node.num + __kmp_hws_node.offset) { 3570 // skip node as not requested 3571 n_old += __kmp_hwloc_skip_PUs_obj(tp, hN); // skip node 3572 hN = hwloc_get_next_obj_by_type(tp, HWLOC_OBJ_NUMANODE, hN); 3573 continue; // move to next node 3574 } 3575 // node requested, go down the topology tree 3576 if (tile_support) { 3577 nL = 0; 3578 hL = NULL; 3579 int NL = __kmp_hwloc_count_children_by_depth(tp, hN, L2depth, &hL); 3580 for (int l = 0; l < NL; ++l) { 3581 // Check L2 (tile) ------------------------------------ 3582 if (!__kmp_hwloc_obj_has_PUs(tp, hL)) { 3583 hL = hwloc_get_next_obj_by_depth(tp, L2depth, hL); 3584 continue; // skip tile if all PUs are out of fullMask 3585 } 3586 ++nL; 3587 if (nL <= __kmp_hws_tile.offset || 3588 nL > __kmp_hws_tile.num + __kmp_hws_tile.offset) { 3589 // skip tile as not requested 3590 n_old += __kmp_hwloc_skip_PUs_obj(tp, hL); // skip tile 3591 hL = hwloc_get_next_obj_by_depth(tp, L2depth, hL); 3592 continue; // move to next tile 3593 } 3594 // tile requested, go down the topology tree 3595 nC = 0; 3596 hC = NULL; 3597 // num cores in current tile 3598 int NC = __kmp_hwloc_count_children_by_type(tp, hL, 3599 HWLOC_OBJ_CORE, &hC); 3600 for (int c = 0; c < NC; ++c) { 3601 // Check Core --------------------------------------- 3602 if (!__kmp_hwloc_obj_has_PUs(tp, hC)) { 3603 hC = hwloc_get_next_obj_by_type(tp, HWLOC_OBJ_CORE, hC); 3604 continue; // skip core if all PUs are out of fullMask 3605 } 3606 ++nC; 3607 if (nC <= __kmp_hws_core.offset || 3608 nC > __kmp_hws_core.num + __kmp_hws_core.offset) { 3609 // skip node as not requested 3610 n_old += __kmp_hwloc_skip_PUs_obj(tp, hC); // skip core 3611 hC = hwloc_get_next_obj_by_type(tp, HWLOC_OBJ_CORE, hC); 3612 continue; // move to next node 3613 } 3614 // core requested, go down to PUs 3615 nT = 0; 3616 nTr = 0; 3617 hT = NULL; 3618 // num procs in current core 3619 int NT = __kmp_hwloc_count_children_by_type(tp, hC, 3620 HWLOC_OBJ_PU, &hT); 3621 for (int t = 0; t < NT; ++t) { 3622 // Check PU --------------------------------------- 3623 idx = hT->os_index; 3624 if (!KMP_CPU_ISSET(idx, __kmp_affin_fullMask)) { 3625 hT = hwloc_get_next_obj_by_type(tp, HWLOC_OBJ_PU, hT); 3626 continue; // skip PU if not in fullMask 3627 } 3628 ++nT; 3629 if (nT <= __kmp_hws_proc.offset || 3630 nT > __kmp_hws_proc.num + __kmp_hws_proc.offset) { 3631 // skip PU 3632 KMP_CPU_CLR(idx, __kmp_affin_fullMask); 3633 ++n_old; 3634 KC_TRACE(200, ("KMP_HW_SUBSET: skipped proc %d\n", idx)); 3635 hT = hwloc_get_next_obj_by_type(tp, HWLOC_OBJ_PU, hT); 3636 continue; // move to next node 3637 } 3638 ++nTr; 3639 if (pAddr) // collect requested thread's data 3640 newAddr[n_new] = (*pAddr)[n_old]; 3641 ++n_new; 3642 ++n_old; 3643 hT = hwloc_get_next_obj_by_type(tp, HWLOC_OBJ_PU, hT); 3644 } // threads loop 3645 if (nTr > 0) { 3646 ++nCr; // num cores per socket 3647 ++nCo; // total num cores 3648 if (nTr > nTpC) 3649 nTpC = nTr; // calc max threads per core 3650 } 3651 hC = hwloc_get_next_obj_by_type(tp, HWLOC_OBJ_CORE, hC); 3652 } // cores loop 3653 hL = hwloc_get_next_obj_by_depth(tp, L2depth, hL); 3654 } // tiles loop 3655 } else { // tile_support 3656 // no tiles, check cores 3657 nC = 0; 3658 hC = NULL; 3659 // num cores in current node 3660 int NC = 3661 __kmp_hwloc_count_children_by_type(tp, hN, HWLOC_OBJ_CORE, &hC); 3662 for (int c = 0; c < NC; ++c) { 3663 // Check Core --------------------------------------- 3664 if (!__kmp_hwloc_obj_has_PUs(tp, hC)) { 3665 hC = hwloc_get_next_obj_by_type(tp, HWLOC_OBJ_CORE, hC); 3666 continue; // skip core if all PUs are out of fullMask 3667 } 3668 ++nC; 3669 if (nC <= __kmp_hws_core.offset || 3670 nC > __kmp_hws_core.num + __kmp_hws_core.offset) { 3671 // skip node as not requested 3672 n_old += __kmp_hwloc_skip_PUs_obj(tp, hC); // skip core 3673 hC = hwloc_get_next_obj_by_type(tp, HWLOC_OBJ_CORE, hC); 3674 continue; // move to next node 3675 } 3676 // core requested, go down to PUs 3677 nT = 0; 3678 nTr = 0; 3679 hT = NULL; 3680 int NT = 3681 __kmp_hwloc_count_children_by_type(tp, hC, HWLOC_OBJ_PU, &hT); 3682 for (int t = 0; t < NT; ++t) { 3683 // Check PU --------------------------------------- 3684 idx = hT->os_index; 3685 if (!KMP_CPU_ISSET(idx, __kmp_affin_fullMask)) { 3686 hT = hwloc_get_next_obj_by_type(tp, HWLOC_OBJ_PU, hT); 3687 continue; // skip PU if not in fullMask 3688 } 3689 ++nT; 3690 if (nT <= __kmp_hws_proc.offset || 3691 nT > __kmp_hws_proc.num + __kmp_hws_proc.offset) { 3692 // skip PU 3693 KMP_CPU_CLR(idx, __kmp_affin_fullMask); 3694 ++n_old; 3695 KC_TRACE(200, ("KMP_HW_SUBSET: skipped proc %d\n", idx)); 3696 hT = hwloc_get_next_obj_by_type(tp, HWLOC_OBJ_PU, hT); 3697 continue; // move to next node 3698 } 3699 ++nTr; 3700 if (pAddr) // collect requested thread's data 3701 newAddr[n_new] = (*pAddr)[n_old]; 3702 ++n_new; 3703 ++n_old; 3704 hT = hwloc_get_next_obj_by_type(tp, HWLOC_OBJ_PU, hT); 3705 } // threads loop 3706 if (nTr > 0) { 3707 ++nCr; // num cores per socket 3708 ++nCo; // total num cores 3709 if (nTr > nTpC) 3710 nTpC = nTr; // calc max threads per core 3711 } 3712 hC = hwloc_get_next_obj_by_type(tp, HWLOC_OBJ_CORE, hC); 3713 } // cores loop 3714 } // tiles support 3715 hN = hwloc_get_next_obj_by_type(tp, HWLOC_OBJ_NUMANODE, hN); 3716 } // nodes loop 3717 } else { // numa_support 3718 // no NUMA support 3719 if (tile_support) { 3720 nL = 0; 3721 hL = NULL; 3722 // num tiles in current socket 3723 int NL = __kmp_hwloc_count_children_by_depth(tp, hS, L2depth, &hL); 3724 for (int l = 0; l < NL; ++l) { 3725 // Check L2 (tile) ------------------------------------ 3726 if (!__kmp_hwloc_obj_has_PUs(tp, hL)) { 3727 hL = hwloc_get_next_obj_by_depth(tp, L2depth, hL); 3728 continue; // skip tile if all PUs are out of fullMask 3729 } 3730 ++nL; 3731 if (nL <= __kmp_hws_tile.offset || 3732 nL > __kmp_hws_tile.num + __kmp_hws_tile.offset) { 3733 // skip tile as not requested 3734 n_old += __kmp_hwloc_skip_PUs_obj(tp, hL); // skip tile 3735 hL = hwloc_get_next_obj_by_depth(tp, L2depth, hL); 3736 continue; // move to next tile 3737 } 3738 // tile requested, go down the topology tree 3739 nC = 0; 3740 hC = NULL; 3741 // num cores per tile 3742 int NC = 3743 __kmp_hwloc_count_children_by_type(tp, hL, HWLOC_OBJ_CORE, &hC); 3744 for (int c = 0; c < NC; ++c) { 3745 // Check Core --------------------------------------- 3746 if (!__kmp_hwloc_obj_has_PUs(tp, hC)) { 3747 hC = hwloc_get_next_obj_by_type(tp, HWLOC_OBJ_CORE, hC); 3748 continue; // skip core if all PUs are out of fullMask 3749 } 3750 ++nC; 3751 if (nC <= __kmp_hws_core.offset || 3752 nC > __kmp_hws_core.num + __kmp_hws_core.offset) { 3753 // skip node as not requested 3754 n_old += __kmp_hwloc_skip_PUs_obj(tp, hC); // skip core 3755 hC = hwloc_get_next_obj_by_type(tp, HWLOC_OBJ_CORE, hC); 3756 continue; // move to next node 3757 } 3758 // core requested, go down to PUs 3759 nT = 0; 3760 nTr = 0; 3761 hT = NULL; 3762 // num procs per core 3763 int NT = 3764 __kmp_hwloc_count_children_by_type(tp, hC, HWLOC_OBJ_PU, &hT); 3765 for (int t = 0; t < NT; ++t) { 3766 // Check PU --------------------------------------- 3767 idx = hT->os_index; 3768 if (!KMP_CPU_ISSET(idx, __kmp_affin_fullMask)) { 3769 hT = hwloc_get_next_obj_by_type(tp, HWLOC_OBJ_PU, hT); 3770 continue; // skip PU if not in fullMask 3771 } 3772 ++nT; 3773 if (nT <= __kmp_hws_proc.offset || 3774 nT > __kmp_hws_proc.num + __kmp_hws_proc.offset) { 3775 // skip PU 3776 KMP_CPU_CLR(idx, __kmp_affin_fullMask); 3777 ++n_old; 3778 KC_TRACE(200, ("KMP_HW_SUBSET: skipped proc %d\n", idx)); 3779 hT = hwloc_get_next_obj_by_type(tp, HWLOC_OBJ_PU, hT); 3780 continue; // move to next node 3781 } 3782 ++nTr; 3783 if (pAddr) // collect requested thread's data 3784 newAddr[n_new] = (*pAddr)[n_old]; 3785 ++n_new; 3786 ++n_old; 3787 hT = hwloc_get_next_obj_by_type(tp, HWLOC_OBJ_PU, hT); 3788 } // threads loop 3789 if (nTr > 0) { 3790 ++nCr; // num cores per socket 3791 ++nCo; // total num cores 3792 if (nTr > nTpC) 3793 nTpC = nTr; // calc max threads per core 3794 } 3795 hC = hwloc_get_next_obj_by_type(tp, HWLOC_OBJ_CORE, hC); 3796 } // cores loop 3797 hL = hwloc_get_next_obj_by_depth(tp, L2depth, hL); 3798 } // tiles loop 3799 } else { // tile_support 3800 // no tiles, check cores 3801 nC = 0; 3802 hC = NULL; 3803 // num cores in socket 3804 int NC = 3805 __kmp_hwloc_count_children_by_type(tp, hS, HWLOC_OBJ_CORE, &hC); 3806 for (int c = 0; c < NC; ++c) { 3807 // Check Core ------------------------------------------- 3808 if (!__kmp_hwloc_obj_has_PUs(tp, hC)) { 3809 hC = hwloc_get_next_obj_by_type(tp, HWLOC_OBJ_CORE, hC); 3810 continue; // skip core if all PUs are out of fullMask 3811 } 3812 ++nC; 3813 if (nC <= __kmp_hws_core.offset || 3814 nC > __kmp_hws_core.num + __kmp_hws_core.offset) { 3815 // skip node as not requested 3816 n_old += __kmp_hwloc_skip_PUs_obj(tp, hC); // skip core 3817 hC = hwloc_get_next_obj_by_type(tp, HWLOC_OBJ_CORE, hC); 3818 continue; // move to next node 3819 } 3820 // core requested, go down to PUs 3821 nT = 0; 3822 nTr = 0; 3823 hT = NULL; 3824 // num procs per core 3825 int NT = 3826 __kmp_hwloc_count_children_by_type(tp, hC, HWLOC_OBJ_PU, &hT); 3827 for (int t = 0; t < NT; ++t) { 3828 // Check PU --------------------------------------- 3829 idx = hT->os_index; 3830 if (!KMP_CPU_ISSET(idx, __kmp_affin_fullMask)) { 3831 hT = hwloc_get_next_obj_by_type(tp, HWLOC_OBJ_PU, hT); 3832 continue; // skip PU if not in fullMask 3833 } 3834 ++nT; 3835 if (nT <= __kmp_hws_proc.offset || 3836 nT > __kmp_hws_proc.num + __kmp_hws_proc.offset) { 3837 // skip PU 3838 KMP_CPU_CLR(idx, __kmp_affin_fullMask); 3839 ++n_old; 3840 KC_TRACE(200, ("KMP_HW_SUBSET: skipped proc %d\n", idx)); 3841 hT = hwloc_get_next_obj_by_type(tp, HWLOC_OBJ_PU, hT); 3842 continue; // move to next node 3843 } 3844 ++nTr; 3845 if (pAddr) // collect requested thread's data 3846 newAddr[n_new] = (*pAddr)[n_old]; 3847 ++n_new; 3848 ++n_old; 3849 hT = hwloc_get_next_obj_by_type(tp, HWLOC_OBJ_PU, hT); 3850 } // threads loop 3851 if (nTr > 0) { 3852 ++nCr; // num cores per socket 3853 ++nCo; // total num cores 3854 if (nTr > nTpC) 3855 nTpC = nTr; // calc max threads per core 3856 } 3857 hC = hwloc_get_next_obj_by_type(tp, HWLOC_OBJ_CORE, hC); 3858 } // cores loop 3859 } // tiles support 3860 } // numa_support 3861 if (nCr > 0) { // found cores? 3862 ++nPkg; // num sockets 3863 if (nCr > nCpP) 3864 nCpP = nCr; // calc max cores per socket 3865 } 3866 } // sockets loop 3867 3868 // check the subset is valid 3869 KMP_DEBUG_ASSERT(n_old == __kmp_avail_proc); 3870 KMP_DEBUG_ASSERT(nPkg > 0); 3871 KMP_DEBUG_ASSERT(nCpP > 0); 3872 KMP_DEBUG_ASSERT(nTpC > 0); 3873 KMP_DEBUG_ASSERT(nCo > 0); 3874 KMP_DEBUG_ASSERT(nPkg <= nPackages); 3875 KMP_DEBUG_ASSERT(nCpP <= nCoresPerPkg); 3876 KMP_DEBUG_ASSERT(nTpC <= __kmp_nThreadsPerCore); 3877 KMP_DEBUG_ASSERT(nCo <= __kmp_ncores); 3878 3879 nPackages = nPkg; // correct num sockets 3880 nCoresPerPkg = nCpP; // correct num cores per socket 3881 __kmp_nThreadsPerCore = nTpC; // correct num threads per core 3882 __kmp_avail_proc = n_new; // correct num procs 3883 __kmp_ncores = nCo; // correct num cores 3884 // hwloc topology method end 3885 } else 3886 #endif // KMP_USE_HWLOC 3887 { 3888 int n_old = 0, n_new = 0, proc_num = 0; 3889 if (__kmp_hws_node.num > 0 || __kmp_hws_tile.num > 0) { 3890 KMP_WARNING(AffHWSubsetNoHWLOC); 3891 goto _exit; 3892 } 3893 if (__kmp_hws_socket.num == 0) 3894 __kmp_hws_socket.num = nPackages; // use all available sockets 3895 if (__kmp_hws_core.num == 0) 3896 __kmp_hws_core.num = nCoresPerPkg; // use all available cores 3897 if (__kmp_hws_proc.num == 0 || __kmp_hws_proc.num > __kmp_nThreadsPerCore) 3898 __kmp_hws_proc.num = __kmp_nThreadsPerCore; // use all HW contexts 3899 if (!__kmp_affinity_uniform_topology()) { 3900 KMP_WARNING(AffHWSubsetNonUniform); 3901 goto _exit; // don't support non-uniform topology 3902 } 3903 if (depth > 3) { 3904 KMP_WARNING(AffHWSubsetNonThreeLevel); 3905 goto _exit; // don't support not-3-level topology 3906 } 3907 if (__kmp_hws_socket.offset + __kmp_hws_socket.num > nPackages) { 3908 KMP_WARNING(AffHWSubsetManySockets); 3909 goto _exit; 3910 } 3911 if (__kmp_hws_core.offset + __kmp_hws_core.num > nCoresPerPkg) { 3912 KMP_WARNING(AffHWSubsetManyCores); 3913 goto _exit; 3914 } 3915 // Form the requested subset 3916 if (pAddr) // pAddr is NULL in case of affinity_none 3917 newAddr = (AddrUnsPair *)__kmp_allocate( 3918 sizeof(AddrUnsPair) * __kmp_hws_socket.num * __kmp_hws_core.num * 3919 __kmp_hws_proc.num); 3920 for (int i = 0; i < nPackages; ++i) { 3921 if (i < __kmp_hws_socket.offset || 3922 i >= __kmp_hws_socket.offset + __kmp_hws_socket.num) { 3923 // skip not-requested socket 3924 n_old += nCoresPerPkg * __kmp_nThreadsPerCore; 3925 if (__kmp_pu_os_idx != NULL) { 3926 // walk through skipped socket 3927 for (int j = 0; j < nCoresPerPkg; ++j) { 3928 for (int k = 0; k < __kmp_nThreadsPerCore; ++k) { 3929 KMP_CPU_CLR(__kmp_pu_os_idx[proc_num], __kmp_affin_fullMask); 3930 ++proc_num; 3931 } 3932 } 3933 } 3934 } else { 3935 // walk through requested socket 3936 for (int j = 0; j < nCoresPerPkg; ++j) { 3937 if (j < __kmp_hws_core.offset || 3938 j >= __kmp_hws_core.offset + 3939 __kmp_hws_core.num) { // skip not-requested core 3940 n_old += __kmp_nThreadsPerCore; 3941 if (__kmp_pu_os_idx != NULL) { 3942 for (int k = 0; k < __kmp_nThreadsPerCore; ++k) { 3943 KMP_CPU_CLR(__kmp_pu_os_idx[proc_num], __kmp_affin_fullMask); 3944 ++proc_num; 3945 } 3946 } 3947 } else { 3948 // walk through requested core 3949 for (int k = 0; k < __kmp_nThreadsPerCore; ++k) { 3950 if (k < __kmp_hws_proc.num) { 3951 if (pAddr) // collect requested thread's data 3952 newAddr[n_new] = (*pAddr)[n_old]; 3953 n_new++; 3954 } else { 3955 if (__kmp_pu_os_idx != NULL) 3956 KMP_CPU_CLR(__kmp_pu_os_idx[proc_num], __kmp_affin_fullMask); 3957 } 3958 n_old++; 3959 ++proc_num; 3960 } 3961 } 3962 } 3963 } 3964 } 3965 KMP_DEBUG_ASSERT(n_old == nPackages * nCoresPerPkg * __kmp_nThreadsPerCore); 3966 KMP_DEBUG_ASSERT(n_new == 3967 __kmp_hws_socket.num * __kmp_hws_core.num * 3968 __kmp_hws_proc.num); 3969 nPackages = __kmp_hws_socket.num; // correct nPackages 3970 nCoresPerPkg = __kmp_hws_core.num; // correct nCoresPerPkg 3971 __kmp_nThreadsPerCore = __kmp_hws_proc.num; // correct __kmp_nThreadsPerCore 3972 __kmp_avail_proc = n_new; // correct avail_proc 3973 __kmp_ncores = nPackages * __kmp_hws_core.num; // correct ncores 3974 } // non-hwloc topology method 3975 if (pAddr) { 3976 __kmp_free(*pAddr); 3977 *pAddr = newAddr; // replace old topology with new one 3978 } 3979 if (__kmp_affinity_verbose) { 3980 char m[KMP_AFFIN_MASK_PRINT_LEN]; 3981 __kmp_affinity_print_mask(m, KMP_AFFIN_MASK_PRINT_LEN, 3982 __kmp_affin_fullMask); 3983 if (__kmp_affinity_respect_mask) { 3984 KMP_INFORM(InitOSProcSetRespect, "KMP_HW_SUBSET", m); 3985 } else { 3986 KMP_INFORM(InitOSProcSetNotRespect, "KMP_HW_SUBSET", m); 3987 } 3988 KMP_INFORM(AvailableOSProc, "KMP_HW_SUBSET", __kmp_avail_proc); 3989 kmp_str_buf_t buf; 3990 __kmp_str_buf_init(&buf); 3991 __kmp_str_buf_print(&buf, "%d", nPackages); 3992 KMP_INFORM(TopologyExtra, "KMP_HW_SUBSET", buf.str, nCoresPerPkg, 3993 __kmp_nThreadsPerCore, __kmp_ncores); 3994 __kmp_str_buf_free(&buf); 3995 } 3996 _exit: 3997 if (__kmp_pu_os_idx != NULL) { 3998 __kmp_free(__kmp_pu_os_idx); 3999 __kmp_pu_os_idx = NULL; 4000 } 4001 } 4002 4003 // This function figures out the deepest level at which there is at least one 4004 // cluster/core with more than one processing unit bound to it. 4005 static int __kmp_affinity_find_core_level(const AddrUnsPair *address2os, 4006 int nprocs, int bottom_level) { 4007 int core_level = 0; 4008 4009 for (int i = 0; i < nprocs; i++) { 4010 for (int j = bottom_level; j > 0; j--) { 4011 if (address2os[i].first.labels[j] > 0) { 4012 if (core_level < (j - 1)) { 4013 core_level = j - 1; 4014 } 4015 } 4016 } 4017 } 4018 return core_level; 4019 } 4020 4021 // This function counts number of clusters/cores at given level. 4022 static int __kmp_affinity_compute_ncores(const AddrUnsPair *address2os, 4023 int nprocs, int bottom_level, 4024 int core_level) { 4025 int ncores = 0; 4026 int i, j; 4027 4028 j = bottom_level; 4029 for (i = 0; i < nprocs; i++) { 4030 for (j = bottom_level; j > core_level; j--) { 4031 if ((i + 1) < nprocs) { 4032 if (address2os[i + 1].first.labels[j] > 0) { 4033 break; 4034 } 4035 } 4036 } 4037 if (j == core_level) { 4038 ncores++; 4039 } 4040 } 4041 if (j > core_level) { 4042 // In case of ( nprocs < __kmp_avail_proc ) we may end too deep and miss one 4043 // core. May occur when called from __kmp_affinity_find_core(). 4044 ncores++; 4045 } 4046 return ncores; 4047 } 4048 4049 // This function finds to which cluster/core given processing unit is bound. 4050 static int __kmp_affinity_find_core(const AddrUnsPair *address2os, int proc, 4051 int bottom_level, int core_level) { 4052 return __kmp_affinity_compute_ncores(address2os, proc + 1, bottom_level, 4053 core_level) - 4054 1; 4055 } 4056 4057 // This function finds maximal number of processing units bound to a 4058 // cluster/core at given level. 4059 static int __kmp_affinity_max_proc_per_core(const AddrUnsPair *address2os, 4060 int nprocs, int bottom_level, 4061 int core_level) { 4062 int maxprocpercore = 0; 4063 4064 if (core_level < bottom_level) { 4065 for (int i = 0; i < nprocs; i++) { 4066 int percore = address2os[i].first.labels[core_level + 1] + 1; 4067 4068 if (percore > maxprocpercore) { 4069 maxprocpercore = percore; 4070 } 4071 } 4072 } else { 4073 maxprocpercore = 1; 4074 } 4075 return maxprocpercore; 4076 } 4077 4078 static AddrUnsPair *address2os = NULL; 4079 static int *procarr = NULL; 4080 static int __kmp_aff_depth = 0; 4081 4082 #if KMP_USE_HIER_SCHED 4083 #define KMP_EXIT_AFF_NONE \ 4084 KMP_ASSERT(__kmp_affinity_type == affinity_none); \ 4085 KMP_ASSERT(address2os == NULL); \ 4086 __kmp_apply_thread_places(NULL, 0); \ 4087 __kmp_create_affinity_none_places(); \ 4088 __kmp_dispatch_set_hierarchy_values(); \ 4089 return; 4090 #else 4091 #define KMP_EXIT_AFF_NONE \ 4092 KMP_ASSERT(__kmp_affinity_type == affinity_none); \ 4093 KMP_ASSERT(address2os == NULL); \ 4094 __kmp_apply_thread_places(NULL, 0); \ 4095 __kmp_create_affinity_none_places(); \ 4096 return; 4097 #endif 4098 4099 // Create a one element mask array (set of places) which only contains the 4100 // initial process's affinity mask 4101 static void __kmp_create_affinity_none_places() { 4102 KMP_ASSERT(__kmp_affin_fullMask != NULL); 4103 KMP_ASSERT(__kmp_affinity_type == affinity_none); 4104 __kmp_affinity_num_masks = 1; 4105 KMP_CPU_ALLOC_ARRAY(__kmp_affinity_masks, __kmp_affinity_num_masks); 4106 kmp_affin_mask_t *dest = KMP_CPU_INDEX(__kmp_affinity_masks, 0); 4107 KMP_CPU_COPY(dest, __kmp_affin_fullMask); 4108 } 4109 4110 static int __kmp_affinity_cmp_Address_child_num(const void *a, const void *b) { 4111 const Address *aa = &(((const AddrUnsPair *)a)->first); 4112 const Address *bb = &(((const AddrUnsPair *)b)->first); 4113 unsigned depth = aa->depth; 4114 unsigned i; 4115 KMP_DEBUG_ASSERT(depth == bb->depth); 4116 KMP_DEBUG_ASSERT((unsigned)__kmp_affinity_compact <= depth); 4117 KMP_DEBUG_ASSERT(__kmp_affinity_compact >= 0); 4118 for (i = 0; i < (unsigned)__kmp_affinity_compact; i++) { 4119 int j = depth - i - 1; 4120 if (aa->childNums[j] < bb->childNums[j]) 4121 return -1; 4122 if (aa->childNums[j] > bb->childNums[j]) 4123 return 1; 4124 } 4125 for (; i < depth; i++) { 4126 int j = i - __kmp_affinity_compact; 4127 if (aa->childNums[j] < bb->childNums[j]) 4128 return -1; 4129 if (aa->childNums[j] > bb->childNums[j]) 4130 return 1; 4131 } 4132 return 0; 4133 } 4134 4135 static void __kmp_aux_affinity_initialize(void) { 4136 if (__kmp_affinity_masks != NULL) { 4137 KMP_ASSERT(__kmp_affin_fullMask != NULL); 4138 return; 4139 } 4140 4141 // Create the "full" mask - this defines all of the processors that we 4142 // consider to be in the machine model. If respect is set, then it is the 4143 // initialization thread's affinity mask. Otherwise, it is all processors that 4144 // we know about on the machine. 4145 if (__kmp_affin_fullMask == NULL) { 4146 KMP_CPU_ALLOC(__kmp_affin_fullMask); 4147 } 4148 if (KMP_AFFINITY_CAPABLE()) { 4149 if (__kmp_affinity_respect_mask) { 4150 __kmp_get_system_affinity(__kmp_affin_fullMask, TRUE); 4151 4152 // Count the number of available processors. 4153 unsigned i; 4154 __kmp_avail_proc = 0; 4155 KMP_CPU_SET_ITERATE(i, __kmp_affin_fullMask) { 4156 if (!KMP_CPU_ISSET(i, __kmp_affin_fullMask)) { 4157 continue; 4158 } 4159 __kmp_avail_proc++; 4160 } 4161 if (__kmp_avail_proc > __kmp_xproc) { 4162 if (__kmp_affinity_verbose || 4163 (__kmp_affinity_warnings && 4164 (__kmp_affinity_type != affinity_none))) { 4165 KMP_WARNING(ErrorInitializeAffinity); 4166 } 4167 __kmp_affinity_type = affinity_none; 4168 KMP_AFFINITY_DISABLE(); 4169 return; 4170 } 4171 } else { 4172 __kmp_affinity_entire_machine_mask(__kmp_affin_fullMask); 4173 __kmp_avail_proc = __kmp_xproc; 4174 } 4175 } 4176 4177 if (__kmp_affinity_gran == affinity_gran_tile && 4178 // check if user's request is valid 4179 __kmp_affinity_dispatch->get_api_type() == KMPAffinity::NATIVE_OS) { 4180 KMP_WARNING(AffTilesNoHWLOC, "KMP_AFFINITY"); 4181 __kmp_affinity_gran = affinity_gran_package; 4182 } 4183 4184 int depth = -1; 4185 kmp_i18n_id_t msg_id = kmp_i18n_null; 4186 4187 // For backward compatibility, setting KMP_CPUINFO_FILE => 4188 // KMP_TOPOLOGY_METHOD=cpuinfo 4189 if ((__kmp_cpuinfo_file != NULL) && 4190 (__kmp_affinity_top_method == affinity_top_method_all)) { 4191 __kmp_affinity_top_method = affinity_top_method_cpuinfo; 4192 } 4193 4194 if (__kmp_affinity_top_method == affinity_top_method_all) { 4195 // In the default code path, errors are not fatal - we just try using 4196 // another method. We only emit a warning message if affinity is on, or the 4197 // verbose flag is set, an the nowarnings flag was not set. 4198 const char *file_name = NULL; 4199 int line = 0; 4200 #if KMP_USE_HWLOC 4201 if (depth < 0 && 4202 __kmp_affinity_dispatch->get_api_type() == KMPAffinity::HWLOC) { 4203 if (__kmp_affinity_verbose) { 4204 KMP_INFORM(AffUsingHwloc, "KMP_AFFINITY"); 4205 } 4206 if (!__kmp_hwloc_error) { 4207 depth = __kmp_affinity_create_hwloc_map(&address2os, &msg_id); 4208 if (depth == 0) { 4209 KMP_EXIT_AFF_NONE; 4210 } else if (depth < 0 && __kmp_affinity_verbose) { 4211 KMP_INFORM(AffIgnoringHwloc, "KMP_AFFINITY"); 4212 } 4213 } else if (__kmp_affinity_verbose) { 4214 KMP_INFORM(AffIgnoringHwloc, "KMP_AFFINITY"); 4215 } 4216 } 4217 #endif 4218 4219 #if KMP_ARCH_X86 || KMP_ARCH_X86_64 4220 4221 if (depth < 0) { 4222 if (__kmp_affinity_verbose) { 4223 KMP_INFORM(AffInfoStr, "KMP_AFFINITY", KMP_I18N_STR(Decodingx2APIC)); 4224 } 4225 4226 file_name = NULL; 4227 depth = __kmp_affinity_create_x2apicid_map(&address2os, &msg_id); 4228 if (depth == 0) { 4229 KMP_EXIT_AFF_NONE; 4230 } 4231 4232 if (depth < 0) { 4233 if (__kmp_affinity_verbose) { 4234 if (msg_id != kmp_i18n_null) { 4235 KMP_INFORM(AffInfoStrStr, "KMP_AFFINITY", 4236 __kmp_i18n_catgets(msg_id), 4237 KMP_I18N_STR(DecodingLegacyAPIC)); 4238 } else { 4239 KMP_INFORM(AffInfoStr, "KMP_AFFINITY", 4240 KMP_I18N_STR(DecodingLegacyAPIC)); 4241 } 4242 } 4243 4244 file_name = NULL; 4245 depth = __kmp_affinity_create_apicid_map(&address2os, &msg_id); 4246 if (depth == 0) { 4247 KMP_EXIT_AFF_NONE; 4248 } 4249 } 4250 } 4251 4252 #endif /* KMP_ARCH_X86 || KMP_ARCH_X86_64 */ 4253 4254 #if KMP_OS_LINUX 4255 4256 if (depth < 0) { 4257 if (__kmp_affinity_verbose) { 4258 if (msg_id != kmp_i18n_null) { 4259 KMP_INFORM(AffStrParseFilename, "KMP_AFFINITY", 4260 __kmp_i18n_catgets(msg_id), "/proc/cpuinfo"); 4261 } else { 4262 KMP_INFORM(AffParseFilename, "KMP_AFFINITY", "/proc/cpuinfo"); 4263 } 4264 } 4265 4266 FILE *f = fopen("/proc/cpuinfo", "r"); 4267 if (f == NULL) { 4268 msg_id = kmp_i18n_str_CantOpenCpuinfo; 4269 } else { 4270 file_name = "/proc/cpuinfo"; 4271 depth = 4272 __kmp_affinity_create_cpuinfo_map(&address2os, &line, &msg_id, f); 4273 fclose(f); 4274 if (depth == 0) { 4275 KMP_EXIT_AFF_NONE; 4276 } 4277 } 4278 } 4279 4280 #endif /* KMP_OS_LINUX */ 4281 4282 #if KMP_GROUP_AFFINITY 4283 4284 if ((depth < 0) && (__kmp_num_proc_groups > 1)) { 4285 if (__kmp_affinity_verbose) { 4286 KMP_INFORM(AffWindowsProcGroupMap, "KMP_AFFINITY"); 4287 } 4288 4289 depth = __kmp_affinity_create_proc_group_map(&address2os, &msg_id); 4290 KMP_ASSERT(depth != 0); 4291 } 4292 4293 #endif /* KMP_GROUP_AFFINITY */ 4294 4295 if (depth < 0) { 4296 if (__kmp_affinity_verbose && (msg_id != kmp_i18n_null)) { 4297 if (file_name == NULL) { 4298 KMP_INFORM(UsingFlatOS, __kmp_i18n_catgets(msg_id)); 4299 } else if (line == 0) { 4300 KMP_INFORM(UsingFlatOSFile, file_name, __kmp_i18n_catgets(msg_id)); 4301 } else { 4302 KMP_INFORM(UsingFlatOSFileLine, file_name, line, 4303 __kmp_i18n_catgets(msg_id)); 4304 } 4305 } 4306 // FIXME - print msg if msg_id = kmp_i18n_null ??? 4307 4308 file_name = ""; 4309 depth = __kmp_affinity_create_flat_map(&address2os, &msg_id); 4310 if (depth == 0) { 4311 KMP_EXIT_AFF_NONE; 4312 } 4313 KMP_ASSERT(depth > 0); 4314 KMP_ASSERT(address2os != NULL); 4315 } 4316 } 4317 4318 #if KMP_USE_HWLOC 4319 else if (__kmp_affinity_top_method == affinity_top_method_hwloc) { 4320 KMP_ASSERT(__kmp_affinity_dispatch->get_api_type() == KMPAffinity::HWLOC); 4321 if (__kmp_affinity_verbose) { 4322 KMP_INFORM(AffUsingHwloc, "KMP_AFFINITY"); 4323 } 4324 depth = __kmp_affinity_create_hwloc_map(&address2os, &msg_id); 4325 if (depth == 0) { 4326 KMP_EXIT_AFF_NONE; 4327 } 4328 } 4329 #endif // KMP_USE_HWLOC 4330 4331 // If the user has specified that a paricular topology discovery method is to be 4332 // used, then we abort if that method fails. The exception is group affinity, 4333 // which might have been implicitly set. 4334 4335 #if KMP_ARCH_X86 || KMP_ARCH_X86_64 4336 4337 else if (__kmp_affinity_top_method == affinity_top_method_x2apicid) { 4338 if (__kmp_affinity_verbose) { 4339 KMP_INFORM(AffInfoStr, "KMP_AFFINITY", KMP_I18N_STR(Decodingx2APIC)); 4340 } 4341 4342 depth = __kmp_affinity_create_x2apicid_map(&address2os, &msg_id); 4343 if (depth == 0) { 4344 KMP_EXIT_AFF_NONE; 4345 } 4346 if (depth < 0) { 4347 KMP_ASSERT(msg_id != kmp_i18n_null); 4348 KMP_FATAL(MsgExiting, __kmp_i18n_catgets(msg_id)); 4349 } 4350 } else if (__kmp_affinity_top_method == affinity_top_method_apicid) { 4351 if (__kmp_affinity_verbose) { 4352 KMP_INFORM(AffInfoStr, "KMP_AFFINITY", KMP_I18N_STR(DecodingLegacyAPIC)); 4353 } 4354 4355 depth = __kmp_affinity_create_apicid_map(&address2os, &msg_id); 4356 if (depth == 0) { 4357 KMP_EXIT_AFF_NONE; 4358 } 4359 if (depth < 0) { 4360 KMP_ASSERT(msg_id != kmp_i18n_null); 4361 KMP_FATAL(MsgExiting, __kmp_i18n_catgets(msg_id)); 4362 } 4363 } 4364 4365 #endif /* KMP_ARCH_X86 || KMP_ARCH_X86_64 */ 4366 4367 else if (__kmp_affinity_top_method == affinity_top_method_cpuinfo) { 4368 const char *filename; 4369 if (__kmp_cpuinfo_file != NULL) { 4370 filename = __kmp_cpuinfo_file; 4371 } else { 4372 filename = "/proc/cpuinfo"; 4373 } 4374 4375 if (__kmp_affinity_verbose) { 4376 KMP_INFORM(AffParseFilename, "KMP_AFFINITY", filename); 4377 } 4378 4379 FILE *f = fopen(filename, "r"); 4380 if (f == NULL) { 4381 int code = errno; 4382 if (__kmp_cpuinfo_file != NULL) { 4383 __kmp_fatal(KMP_MSG(CantOpenFileForReading, filename), KMP_ERR(code), 4384 KMP_HNT(NameComesFrom_CPUINFO_FILE), __kmp_msg_null); 4385 } else { 4386 __kmp_fatal(KMP_MSG(CantOpenFileForReading, filename), KMP_ERR(code), 4387 __kmp_msg_null); 4388 } 4389 } 4390 int line = 0; 4391 depth = __kmp_affinity_create_cpuinfo_map(&address2os, &line, &msg_id, f); 4392 fclose(f); 4393 if (depth < 0) { 4394 KMP_ASSERT(msg_id != kmp_i18n_null); 4395 if (line > 0) { 4396 KMP_FATAL(FileLineMsgExiting, filename, line, 4397 __kmp_i18n_catgets(msg_id)); 4398 } else { 4399 KMP_FATAL(FileMsgExiting, filename, __kmp_i18n_catgets(msg_id)); 4400 } 4401 } 4402 if (__kmp_affinity_type == affinity_none) { 4403 KMP_ASSERT(depth == 0); 4404 KMP_EXIT_AFF_NONE; 4405 } 4406 } 4407 4408 #if KMP_GROUP_AFFINITY 4409 4410 else if (__kmp_affinity_top_method == affinity_top_method_group) { 4411 if (__kmp_affinity_verbose) { 4412 KMP_INFORM(AffWindowsProcGroupMap, "KMP_AFFINITY"); 4413 } 4414 4415 depth = __kmp_affinity_create_proc_group_map(&address2os, &msg_id); 4416 KMP_ASSERT(depth != 0); 4417 if (depth < 0) { 4418 KMP_ASSERT(msg_id != kmp_i18n_null); 4419 KMP_FATAL(MsgExiting, __kmp_i18n_catgets(msg_id)); 4420 } 4421 } 4422 4423 #endif /* KMP_GROUP_AFFINITY */ 4424 4425 else if (__kmp_affinity_top_method == affinity_top_method_flat) { 4426 if (__kmp_affinity_verbose) { 4427 KMP_INFORM(AffUsingFlatOS, "KMP_AFFINITY"); 4428 } 4429 4430 depth = __kmp_affinity_create_flat_map(&address2os, &msg_id); 4431 if (depth == 0) { 4432 KMP_EXIT_AFF_NONE; 4433 } 4434 // should not fail 4435 KMP_ASSERT(depth > 0); 4436 KMP_ASSERT(address2os != NULL); 4437 } 4438 4439 #if KMP_USE_HIER_SCHED 4440 __kmp_dispatch_set_hierarchy_values(); 4441 #endif 4442 4443 if (address2os == NULL) { 4444 if (KMP_AFFINITY_CAPABLE() && 4445 (__kmp_affinity_verbose || 4446 (__kmp_affinity_warnings && (__kmp_affinity_type != affinity_none)))) { 4447 KMP_WARNING(ErrorInitializeAffinity); 4448 } 4449 __kmp_affinity_type = affinity_none; 4450 __kmp_create_affinity_none_places(); 4451 KMP_AFFINITY_DISABLE(); 4452 return; 4453 } 4454 4455 if (__kmp_affinity_gran == affinity_gran_tile 4456 #if KMP_USE_HWLOC 4457 && __kmp_tile_depth == 0 4458 #endif 4459 ) { 4460 // tiles requested but not detected, warn user on this 4461 KMP_WARNING(AffTilesNoTiles, "KMP_AFFINITY"); 4462 } 4463 4464 __kmp_apply_thread_places(&address2os, depth); 4465 4466 // Create the table of masks, indexed by thread Id. 4467 unsigned maxIndex; 4468 unsigned numUnique; 4469 kmp_affin_mask_t *osId2Mask = 4470 __kmp_create_masks(&maxIndex, &numUnique, address2os, __kmp_avail_proc); 4471 if (__kmp_affinity_gran_levels == 0) { 4472 KMP_DEBUG_ASSERT((int)numUnique == __kmp_avail_proc); 4473 } 4474 4475 // Set the childNums vector in all Address objects. This must be done before 4476 // we can sort using __kmp_affinity_cmp_Address_child_num(), which takes into 4477 // account the setting of __kmp_affinity_compact. 4478 __kmp_affinity_assign_child_nums(address2os, __kmp_avail_proc); 4479 4480 switch (__kmp_affinity_type) { 4481 4482 case affinity_explicit: 4483 KMP_DEBUG_ASSERT(__kmp_affinity_proclist != NULL); 4484 if (__kmp_nested_proc_bind.bind_types[0] == proc_bind_intel) { 4485 __kmp_affinity_process_proclist( 4486 &__kmp_affinity_masks, &__kmp_affinity_num_masks, 4487 __kmp_affinity_proclist, osId2Mask, maxIndex); 4488 } else { 4489 __kmp_affinity_process_placelist( 4490 &__kmp_affinity_masks, &__kmp_affinity_num_masks, 4491 __kmp_affinity_proclist, osId2Mask, maxIndex); 4492 } 4493 if (__kmp_affinity_num_masks == 0) { 4494 if (__kmp_affinity_verbose || 4495 (__kmp_affinity_warnings && (__kmp_affinity_type != affinity_none))) { 4496 KMP_WARNING(AffNoValidProcID); 4497 } 4498 __kmp_affinity_type = affinity_none; 4499 __kmp_create_affinity_none_places(); 4500 return; 4501 } 4502 break; 4503 4504 // The other affinity types rely on sorting the Addresses according to some 4505 // permutation of the machine topology tree. Set __kmp_affinity_compact and 4506 // __kmp_affinity_offset appropriately, then jump to a common code fragment 4507 // to do the sort and create the array of affinity masks. 4508 4509 case affinity_logical: 4510 __kmp_affinity_compact = 0; 4511 if (__kmp_affinity_offset) { 4512 __kmp_affinity_offset = 4513 __kmp_nThreadsPerCore * __kmp_affinity_offset % __kmp_avail_proc; 4514 } 4515 goto sortAddresses; 4516 4517 case affinity_physical: 4518 if (__kmp_nThreadsPerCore > 1) { 4519 __kmp_affinity_compact = 1; 4520 if (__kmp_affinity_compact >= depth) { 4521 __kmp_affinity_compact = 0; 4522 } 4523 } else { 4524 __kmp_affinity_compact = 0; 4525 } 4526 if (__kmp_affinity_offset) { 4527 __kmp_affinity_offset = 4528 __kmp_nThreadsPerCore * __kmp_affinity_offset % __kmp_avail_proc; 4529 } 4530 goto sortAddresses; 4531 4532 case affinity_scatter: 4533 if (__kmp_affinity_compact >= depth) { 4534 __kmp_affinity_compact = 0; 4535 } else { 4536 __kmp_affinity_compact = depth - 1 - __kmp_affinity_compact; 4537 } 4538 goto sortAddresses; 4539 4540 case affinity_compact: 4541 if (__kmp_affinity_compact >= depth) { 4542 __kmp_affinity_compact = depth - 1; 4543 } 4544 goto sortAddresses; 4545 4546 case affinity_balanced: 4547 if (depth <= 1) { 4548 if (__kmp_affinity_verbose || __kmp_affinity_warnings) { 4549 KMP_WARNING(AffBalancedNotAvail, "KMP_AFFINITY"); 4550 } 4551 __kmp_affinity_type = affinity_none; 4552 __kmp_create_affinity_none_places(); 4553 return; 4554 } else if (!__kmp_affinity_uniform_topology()) { 4555 // Save the depth for further usage 4556 __kmp_aff_depth = depth; 4557 4558 int core_level = __kmp_affinity_find_core_level( 4559 address2os, __kmp_avail_proc, depth - 1); 4560 int ncores = __kmp_affinity_compute_ncores(address2os, __kmp_avail_proc, 4561 depth - 1, core_level); 4562 int maxprocpercore = __kmp_affinity_max_proc_per_core( 4563 address2os, __kmp_avail_proc, depth - 1, core_level); 4564 4565 int nproc = ncores * maxprocpercore; 4566 if ((nproc < 2) || (nproc < __kmp_avail_proc)) { 4567 if (__kmp_affinity_verbose || __kmp_affinity_warnings) { 4568 KMP_WARNING(AffBalancedNotAvail, "KMP_AFFINITY"); 4569 } 4570 __kmp_affinity_type = affinity_none; 4571 return; 4572 } 4573 4574 procarr = (int *)__kmp_allocate(sizeof(int) * nproc); 4575 for (int i = 0; i < nproc; i++) { 4576 procarr[i] = -1; 4577 } 4578 4579 int lastcore = -1; 4580 int inlastcore = 0; 4581 for (int i = 0; i < __kmp_avail_proc; i++) { 4582 int proc = address2os[i].second; 4583 int core = 4584 __kmp_affinity_find_core(address2os, i, depth - 1, core_level); 4585 4586 if (core == lastcore) { 4587 inlastcore++; 4588 } else { 4589 inlastcore = 0; 4590 } 4591 lastcore = core; 4592 4593 procarr[core * maxprocpercore + inlastcore] = proc; 4594 } 4595 } 4596 if (__kmp_affinity_compact >= depth) { 4597 __kmp_affinity_compact = depth - 1; 4598 } 4599 4600 sortAddresses: 4601 // Allocate the gtid->affinity mask table. 4602 if (__kmp_affinity_dups) { 4603 __kmp_affinity_num_masks = __kmp_avail_proc; 4604 } else { 4605 __kmp_affinity_num_masks = numUnique; 4606 } 4607 4608 if ((__kmp_nested_proc_bind.bind_types[0] != proc_bind_intel) && 4609 (__kmp_affinity_num_places > 0) && 4610 ((unsigned)__kmp_affinity_num_places < __kmp_affinity_num_masks)) { 4611 __kmp_affinity_num_masks = __kmp_affinity_num_places; 4612 } 4613 4614 KMP_CPU_ALLOC_ARRAY(__kmp_affinity_masks, __kmp_affinity_num_masks); 4615 4616 // Sort the address2os table according to the current setting of 4617 // __kmp_affinity_compact, then fill out __kmp_affinity_masks. 4618 qsort(address2os, __kmp_avail_proc, sizeof(*address2os), 4619 __kmp_affinity_cmp_Address_child_num); 4620 { 4621 int i; 4622 unsigned j; 4623 for (i = 0, j = 0; i < __kmp_avail_proc; i++) { 4624 if ((!__kmp_affinity_dups) && (!address2os[i].first.leader)) { 4625 continue; 4626 } 4627 unsigned osId = address2os[i].second; 4628 kmp_affin_mask_t *src = KMP_CPU_INDEX(osId2Mask, osId); 4629 kmp_affin_mask_t *dest = KMP_CPU_INDEX(__kmp_affinity_masks, j); 4630 KMP_ASSERT(KMP_CPU_ISSET(osId, src)); 4631 KMP_CPU_COPY(dest, src); 4632 if (++j >= __kmp_affinity_num_masks) { 4633 break; 4634 } 4635 } 4636 KMP_DEBUG_ASSERT(j == __kmp_affinity_num_masks); 4637 } 4638 break; 4639 4640 default: 4641 KMP_ASSERT2(0, "Unexpected affinity setting"); 4642 } 4643 4644 KMP_CPU_FREE_ARRAY(osId2Mask, maxIndex + 1); 4645 machine_hierarchy.init(address2os, __kmp_avail_proc); 4646 } 4647 #undef KMP_EXIT_AFF_NONE 4648 4649 void __kmp_affinity_initialize(void) { 4650 // Much of the code above was written assumming that if a machine was not 4651 // affinity capable, then __kmp_affinity_type == affinity_none. We now 4652 // explicitly represent this as __kmp_affinity_type == affinity_disabled. 4653 // There are too many checks for __kmp_affinity_type == affinity_none 4654 // in this code. Instead of trying to change them all, check if 4655 // __kmp_affinity_type == affinity_disabled, and if so, slam it with 4656 // affinity_none, call the real initialization routine, then restore 4657 // __kmp_affinity_type to affinity_disabled. 4658 int disabled = (__kmp_affinity_type == affinity_disabled); 4659 if (!KMP_AFFINITY_CAPABLE()) { 4660 KMP_ASSERT(disabled); 4661 } 4662 if (disabled) { 4663 __kmp_affinity_type = affinity_none; 4664 } 4665 __kmp_aux_affinity_initialize(); 4666 if (disabled) { 4667 __kmp_affinity_type = affinity_disabled; 4668 } 4669 } 4670 4671 void __kmp_affinity_uninitialize(void) { 4672 if (__kmp_affinity_masks != NULL) { 4673 KMP_CPU_FREE_ARRAY(__kmp_affinity_masks, __kmp_affinity_num_masks); 4674 __kmp_affinity_masks = NULL; 4675 } 4676 if (__kmp_affin_fullMask != NULL) { 4677 KMP_CPU_FREE(__kmp_affin_fullMask); 4678 __kmp_affin_fullMask = NULL; 4679 } 4680 __kmp_affinity_num_masks = 0; 4681 __kmp_affinity_type = affinity_default; 4682 __kmp_affinity_num_places = 0; 4683 if (__kmp_affinity_proclist != NULL) { 4684 __kmp_free(__kmp_affinity_proclist); 4685 __kmp_affinity_proclist = NULL; 4686 } 4687 if (address2os != NULL) { 4688 __kmp_free(address2os); 4689 address2os = NULL; 4690 } 4691 if (procarr != NULL) { 4692 __kmp_free(procarr); 4693 procarr = NULL; 4694 } 4695 #if KMP_USE_HWLOC 4696 if (__kmp_hwloc_topology != NULL) { 4697 hwloc_topology_destroy(__kmp_hwloc_topology); 4698 __kmp_hwloc_topology = NULL; 4699 } 4700 #endif 4701 KMPAffinity::destroy_api(); 4702 } 4703 4704 void __kmp_affinity_set_init_mask(int gtid, int isa_root) { 4705 if (!KMP_AFFINITY_CAPABLE()) { 4706 return; 4707 } 4708 4709 kmp_info_t *th = (kmp_info_t *)TCR_SYNC_PTR(__kmp_threads[gtid]); 4710 if (th->th.th_affin_mask == NULL) { 4711 KMP_CPU_ALLOC(th->th.th_affin_mask); 4712 } else { 4713 KMP_CPU_ZERO(th->th.th_affin_mask); 4714 } 4715 4716 // Copy the thread mask to the kmp_info_t strucuture. If 4717 // __kmp_affinity_type == affinity_none, copy the "full" mask, i.e. one that 4718 // has all of the OS proc ids set, or if __kmp_affinity_respect_mask is set, 4719 // then the full mask is the same as the mask of the initialization thread. 4720 kmp_affin_mask_t *mask; 4721 int i; 4722 4723 if (KMP_AFFINITY_NON_PROC_BIND) { 4724 if ((__kmp_affinity_type == affinity_none) || 4725 (__kmp_affinity_type == affinity_balanced)) { 4726 #if KMP_GROUP_AFFINITY 4727 if (__kmp_num_proc_groups > 1) { 4728 return; 4729 } 4730 #endif 4731 KMP_ASSERT(__kmp_affin_fullMask != NULL); 4732 i = 0; 4733 mask = __kmp_affin_fullMask; 4734 } else { 4735 KMP_DEBUG_ASSERT(__kmp_affinity_num_masks > 0); 4736 i = (gtid + __kmp_affinity_offset) % __kmp_affinity_num_masks; 4737 mask = KMP_CPU_INDEX(__kmp_affinity_masks, i); 4738 } 4739 } else { 4740 if ((!isa_root) || 4741 (__kmp_nested_proc_bind.bind_types[0] == proc_bind_false)) { 4742 #if KMP_GROUP_AFFINITY 4743 if (__kmp_num_proc_groups > 1) { 4744 return; 4745 } 4746 #endif 4747 KMP_ASSERT(__kmp_affin_fullMask != NULL); 4748 i = KMP_PLACE_ALL; 4749 mask = __kmp_affin_fullMask; 4750 } else { 4751 // int i = some hash function or just a counter that doesn't 4752 // always start at 0. Use gtid for now. 4753 KMP_DEBUG_ASSERT(__kmp_affinity_num_masks > 0); 4754 i = (gtid + __kmp_affinity_offset) % __kmp_affinity_num_masks; 4755 mask = KMP_CPU_INDEX(__kmp_affinity_masks, i); 4756 } 4757 } 4758 4759 th->th.th_current_place = i; 4760 if (isa_root) { 4761 th->th.th_new_place = i; 4762 th->th.th_first_place = 0; 4763 th->th.th_last_place = __kmp_affinity_num_masks - 1; 4764 } else if (KMP_AFFINITY_NON_PROC_BIND) { 4765 // When using a Non-OMP_PROC_BIND affinity method, 4766 // set all threads' place-partition-var to the entire place list 4767 th->th.th_first_place = 0; 4768 th->th.th_last_place = __kmp_affinity_num_masks - 1; 4769 } 4770 4771 if (i == KMP_PLACE_ALL) { 4772 KA_TRACE(100, ("__kmp_affinity_set_init_mask: binding T#%d to all places\n", 4773 gtid)); 4774 } else { 4775 KA_TRACE(100, ("__kmp_affinity_set_init_mask: binding T#%d to place %d\n", 4776 gtid, i)); 4777 } 4778 4779 KMP_CPU_COPY(th->th.th_affin_mask, mask); 4780 4781 if (__kmp_affinity_verbose 4782 /* to avoid duplicate printing (will be correctly printed on barrier) */ 4783 && (__kmp_affinity_type == affinity_none || 4784 (i != KMP_PLACE_ALL && __kmp_affinity_type != affinity_balanced))) { 4785 char buf[KMP_AFFIN_MASK_PRINT_LEN]; 4786 __kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN, 4787 th->th.th_affin_mask); 4788 KMP_INFORM(BoundToOSProcSet, "KMP_AFFINITY", (kmp_int32)getpid(), 4789 __kmp_gettid(), gtid, buf); 4790 } 4791 4792 #if KMP_OS_WINDOWS 4793 // On Windows* OS, the process affinity mask might have changed. If the user 4794 // didn't request affinity and this call fails, just continue silently. 4795 // See CQ171393. 4796 if (__kmp_affinity_type == affinity_none) { 4797 __kmp_set_system_affinity(th->th.th_affin_mask, FALSE); 4798 } else 4799 #endif 4800 __kmp_set_system_affinity(th->th.th_affin_mask, TRUE); 4801 } 4802 4803 void __kmp_affinity_set_place(int gtid) { 4804 if (!KMP_AFFINITY_CAPABLE()) { 4805 return; 4806 } 4807 4808 kmp_info_t *th = (kmp_info_t *)TCR_SYNC_PTR(__kmp_threads[gtid]); 4809 4810 KA_TRACE(100, ("__kmp_affinity_set_place: binding T#%d to place %d (current " 4811 "place = %d)\n", 4812 gtid, th->th.th_new_place, th->th.th_current_place)); 4813 4814 // Check that the new place is within this thread's partition. 4815 KMP_DEBUG_ASSERT(th->th.th_affin_mask != NULL); 4816 KMP_ASSERT(th->th.th_new_place >= 0); 4817 KMP_ASSERT((unsigned)th->th.th_new_place <= __kmp_affinity_num_masks); 4818 if (th->th.th_first_place <= th->th.th_last_place) { 4819 KMP_ASSERT((th->th.th_new_place >= th->th.th_first_place) && 4820 (th->th.th_new_place <= th->th.th_last_place)); 4821 } else { 4822 KMP_ASSERT((th->th.th_new_place <= th->th.th_first_place) || 4823 (th->th.th_new_place >= th->th.th_last_place)); 4824 } 4825 4826 // Copy the thread mask to the kmp_info_t strucuture, 4827 // and set this thread's affinity. 4828 kmp_affin_mask_t *mask = 4829 KMP_CPU_INDEX(__kmp_affinity_masks, th->th.th_new_place); 4830 KMP_CPU_COPY(th->th.th_affin_mask, mask); 4831 th->th.th_current_place = th->th.th_new_place; 4832 4833 if (__kmp_affinity_verbose) { 4834 char buf[KMP_AFFIN_MASK_PRINT_LEN]; 4835 __kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN, 4836 th->th.th_affin_mask); 4837 KMP_INFORM(BoundToOSProcSet, "OMP_PROC_BIND", (kmp_int32)getpid(), 4838 __kmp_gettid(), gtid, buf); 4839 } 4840 __kmp_set_system_affinity(th->th.th_affin_mask, TRUE); 4841 } 4842 4843 int __kmp_aux_set_affinity(void **mask) { 4844 int gtid; 4845 kmp_info_t *th; 4846 int retval; 4847 4848 if (!KMP_AFFINITY_CAPABLE()) { 4849 return -1; 4850 } 4851 4852 gtid = __kmp_entry_gtid(); 4853 KA_TRACE(1000, (""); { 4854 char buf[KMP_AFFIN_MASK_PRINT_LEN]; 4855 __kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN, 4856 (kmp_affin_mask_t *)(*mask)); 4857 __kmp_debug_printf( 4858 "kmp_set_affinity: setting affinity mask for thread %d = %s\n", gtid, 4859 buf); 4860 }); 4861 4862 if (__kmp_env_consistency_check) { 4863 if ((mask == NULL) || (*mask == NULL)) { 4864 KMP_FATAL(AffinityInvalidMask, "kmp_set_affinity"); 4865 } else { 4866 unsigned proc; 4867 int num_procs = 0; 4868 4869 KMP_CPU_SET_ITERATE(proc, ((kmp_affin_mask_t *)(*mask))) { 4870 if (!KMP_CPU_ISSET(proc, __kmp_affin_fullMask)) { 4871 KMP_FATAL(AffinityInvalidMask, "kmp_set_affinity"); 4872 } 4873 if (!KMP_CPU_ISSET(proc, (kmp_affin_mask_t *)(*mask))) { 4874 continue; 4875 } 4876 num_procs++; 4877 } 4878 if (num_procs == 0) { 4879 KMP_FATAL(AffinityInvalidMask, "kmp_set_affinity"); 4880 } 4881 4882 #if KMP_GROUP_AFFINITY 4883 if (__kmp_get_proc_group((kmp_affin_mask_t *)(*mask)) < 0) { 4884 KMP_FATAL(AffinityInvalidMask, "kmp_set_affinity"); 4885 } 4886 #endif /* KMP_GROUP_AFFINITY */ 4887 } 4888 } 4889 4890 th = __kmp_threads[gtid]; 4891 KMP_DEBUG_ASSERT(th->th.th_affin_mask != NULL); 4892 retval = __kmp_set_system_affinity((kmp_affin_mask_t *)(*mask), FALSE); 4893 if (retval == 0) { 4894 KMP_CPU_COPY(th->th.th_affin_mask, (kmp_affin_mask_t *)(*mask)); 4895 } 4896 4897 th->th.th_current_place = KMP_PLACE_UNDEFINED; 4898 th->th.th_new_place = KMP_PLACE_UNDEFINED; 4899 th->th.th_first_place = 0; 4900 th->th.th_last_place = __kmp_affinity_num_masks - 1; 4901 4902 // Turn off 4.0 affinity for the current tread at this parallel level. 4903 th->th.th_current_task->td_icvs.proc_bind = proc_bind_false; 4904 4905 return retval; 4906 } 4907 4908 int __kmp_aux_get_affinity(void **mask) { 4909 int gtid; 4910 int retval; 4911 kmp_info_t *th; 4912 4913 if (!KMP_AFFINITY_CAPABLE()) { 4914 return -1; 4915 } 4916 4917 gtid = __kmp_entry_gtid(); 4918 th = __kmp_threads[gtid]; 4919 KMP_DEBUG_ASSERT(th->th.th_affin_mask != NULL); 4920 4921 KA_TRACE(1000, (""); { 4922 char buf[KMP_AFFIN_MASK_PRINT_LEN]; 4923 __kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN, 4924 th->th.th_affin_mask); 4925 __kmp_printf("kmp_get_affinity: stored affinity mask for thread %d = %s\n", 4926 gtid, buf); 4927 }); 4928 4929 if (__kmp_env_consistency_check) { 4930 if ((mask == NULL) || (*mask == NULL)) { 4931 KMP_FATAL(AffinityInvalidMask, "kmp_get_affinity"); 4932 } 4933 } 4934 4935 #if !KMP_OS_WINDOWS 4936 4937 retval = __kmp_get_system_affinity((kmp_affin_mask_t *)(*mask), FALSE); 4938 KA_TRACE(1000, (""); { 4939 char buf[KMP_AFFIN_MASK_PRINT_LEN]; 4940 __kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN, 4941 (kmp_affin_mask_t *)(*mask)); 4942 __kmp_printf("kmp_get_affinity: system affinity mask for thread %d = %s\n", 4943 gtid, buf); 4944 }); 4945 return retval; 4946 4947 #else 4948 4949 KMP_CPU_COPY((kmp_affin_mask_t *)(*mask), th->th.th_affin_mask); 4950 return 0; 4951 4952 #endif /* KMP_OS_WINDOWS */ 4953 } 4954 4955 int __kmp_aux_get_affinity_max_proc() { 4956 if (!KMP_AFFINITY_CAPABLE()) { 4957 return 0; 4958 } 4959 #if KMP_GROUP_AFFINITY 4960 if (__kmp_num_proc_groups > 1) { 4961 return (int)(__kmp_num_proc_groups * sizeof(DWORD_PTR) * CHAR_BIT); 4962 } 4963 #endif 4964 return __kmp_xproc; 4965 } 4966 4967 int __kmp_aux_set_affinity_mask_proc(int proc, void **mask) { 4968 if (!KMP_AFFINITY_CAPABLE()) { 4969 return -1; 4970 } 4971 4972 KA_TRACE(1000, (""); { 4973 int gtid = __kmp_entry_gtid(); 4974 char buf[KMP_AFFIN_MASK_PRINT_LEN]; 4975 __kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN, 4976 (kmp_affin_mask_t *)(*mask)); 4977 __kmp_debug_printf("kmp_set_affinity_mask_proc: setting proc %d in " 4978 "affinity mask for thread %d = %s\n", 4979 proc, gtid, buf); 4980 }); 4981 4982 if (__kmp_env_consistency_check) { 4983 if ((mask == NULL) || (*mask == NULL)) { 4984 KMP_FATAL(AffinityInvalidMask, "kmp_set_affinity_mask_proc"); 4985 } 4986 } 4987 4988 if ((proc < 0) || (proc >= __kmp_aux_get_affinity_max_proc())) { 4989 return -1; 4990 } 4991 if (!KMP_CPU_ISSET(proc, __kmp_affin_fullMask)) { 4992 return -2; 4993 } 4994 4995 KMP_CPU_SET(proc, (kmp_affin_mask_t *)(*mask)); 4996 return 0; 4997 } 4998 4999 int __kmp_aux_unset_affinity_mask_proc(int proc, void **mask) { 5000 if (!KMP_AFFINITY_CAPABLE()) { 5001 return -1; 5002 } 5003 5004 KA_TRACE(1000, (""); { 5005 int gtid = __kmp_entry_gtid(); 5006 char buf[KMP_AFFIN_MASK_PRINT_LEN]; 5007 __kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN, 5008 (kmp_affin_mask_t *)(*mask)); 5009 __kmp_debug_printf("kmp_unset_affinity_mask_proc: unsetting proc %d in " 5010 "affinity mask for thread %d = %s\n", 5011 proc, gtid, buf); 5012 }); 5013 5014 if (__kmp_env_consistency_check) { 5015 if ((mask == NULL) || (*mask == NULL)) { 5016 KMP_FATAL(AffinityInvalidMask, "kmp_unset_affinity_mask_proc"); 5017 } 5018 } 5019 5020 if ((proc < 0) || (proc >= __kmp_aux_get_affinity_max_proc())) { 5021 return -1; 5022 } 5023 if (!KMP_CPU_ISSET(proc, __kmp_affin_fullMask)) { 5024 return -2; 5025 } 5026 5027 KMP_CPU_CLR(proc, (kmp_affin_mask_t *)(*mask)); 5028 return 0; 5029 } 5030 5031 int __kmp_aux_get_affinity_mask_proc(int proc, void **mask) { 5032 if (!KMP_AFFINITY_CAPABLE()) { 5033 return -1; 5034 } 5035 5036 KA_TRACE(1000, (""); { 5037 int gtid = __kmp_entry_gtid(); 5038 char buf[KMP_AFFIN_MASK_PRINT_LEN]; 5039 __kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN, 5040 (kmp_affin_mask_t *)(*mask)); 5041 __kmp_debug_printf("kmp_get_affinity_mask_proc: getting proc %d in " 5042 "affinity mask for thread %d = %s\n", 5043 proc, gtid, buf); 5044 }); 5045 5046 if (__kmp_env_consistency_check) { 5047 if ((mask == NULL) || (*mask == NULL)) { 5048 KMP_FATAL(AffinityInvalidMask, "kmp_get_affinity_mask_proc"); 5049 } 5050 } 5051 5052 if ((proc < 0) || (proc >= __kmp_aux_get_affinity_max_proc())) { 5053 return -1; 5054 } 5055 if (!KMP_CPU_ISSET(proc, __kmp_affin_fullMask)) { 5056 return 0; 5057 } 5058 5059 return KMP_CPU_ISSET(proc, (kmp_affin_mask_t *)(*mask)); 5060 } 5061 5062 // Dynamic affinity settings - Affinity balanced 5063 void __kmp_balanced_affinity(kmp_info_t *th, int nthreads) { 5064 KMP_DEBUG_ASSERT(th); 5065 bool fine_gran = true; 5066 int tid = th->th.th_info.ds.ds_tid; 5067 5068 switch (__kmp_affinity_gran) { 5069 case affinity_gran_fine: 5070 case affinity_gran_thread: 5071 break; 5072 case affinity_gran_core: 5073 if (__kmp_nThreadsPerCore > 1) { 5074 fine_gran = false; 5075 } 5076 break; 5077 case affinity_gran_package: 5078 if (nCoresPerPkg > 1) { 5079 fine_gran = false; 5080 } 5081 break; 5082 default: 5083 fine_gran = false; 5084 } 5085 5086 if (__kmp_affinity_uniform_topology()) { 5087 int coreID; 5088 int threadID; 5089 // Number of hyper threads per core in HT machine 5090 int __kmp_nth_per_core = __kmp_avail_proc / __kmp_ncores; 5091 // Number of cores 5092 int ncores = __kmp_ncores; 5093 if ((nPackages > 1) && (__kmp_nth_per_core <= 1)) { 5094 __kmp_nth_per_core = __kmp_avail_proc / nPackages; 5095 ncores = nPackages; 5096 } 5097 // How many threads will be bound to each core 5098 int chunk = nthreads / ncores; 5099 // How many cores will have an additional thread bound to it - "big cores" 5100 int big_cores = nthreads % ncores; 5101 // Number of threads on the big cores 5102 int big_nth = (chunk + 1) * big_cores; 5103 if (tid < big_nth) { 5104 coreID = tid / (chunk + 1); 5105 threadID = (tid % (chunk + 1)) % __kmp_nth_per_core; 5106 } else { // tid >= big_nth 5107 coreID = (tid - big_cores) / chunk; 5108 threadID = ((tid - big_cores) % chunk) % __kmp_nth_per_core; 5109 } 5110 5111 KMP_DEBUG_ASSERT2(KMP_AFFINITY_CAPABLE(), 5112 "Illegal set affinity operation when not capable"); 5113 5114 kmp_affin_mask_t *mask = th->th.th_affin_mask; 5115 KMP_CPU_ZERO(mask); 5116 5117 if (fine_gran) { 5118 int osID = address2os[coreID * __kmp_nth_per_core + threadID].second; 5119 KMP_CPU_SET(osID, mask); 5120 } else { 5121 for (int i = 0; i < __kmp_nth_per_core; i++) { 5122 int osID; 5123 osID = address2os[coreID * __kmp_nth_per_core + i].second; 5124 KMP_CPU_SET(osID, mask); 5125 } 5126 } 5127 if (__kmp_affinity_verbose) { 5128 char buf[KMP_AFFIN_MASK_PRINT_LEN]; 5129 __kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN, mask); 5130 KMP_INFORM(BoundToOSProcSet, "KMP_AFFINITY", (kmp_int32)getpid(), 5131 __kmp_gettid(), tid, buf); 5132 } 5133 __kmp_set_system_affinity(mask, TRUE); 5134 } else { // Non-uniform topology 5135 5136 kmp_affin_mask_t *mask = th->th.th_affin_mask; 5137 KMP_CPU_ZERO(mask); 5138 5139 int core_level = __kmp_affinity_find_core_level( 5140 address2os, __kmp_avail_proc, __kmp_aff_depth - 1); 5141 int ncores = __kmp_affinity_compute_ncores(address2os, __kmp_avail_proc, 5142 __kmp_aff_depth - 1, core_level); 5143 int nth_per_core = __kmp_affinity_max_proc_per_core( 5144 address2os, __kmp_avail_proc, __kmp_aff_depth - 1, core_level); 5145 5146 // For performance gain consider the special case nthreads == 5147 // __kmp_avail_proc 5148 if (nthreads == __kmp_avail_proc) { 5149 if (fine_gran) { 5150 int osID = address2os[tid].second; 5151 KMP_CPU_SET(osID, mask); 5152 } else { 5153 int core = __kmp_affinity_find_core(address2os, tid, 5154 __kmp_aff_depth - 1, core_level); 5155 for (int i = 0; i < __kmp_avail_proc; i++) { 5156 int osID = address2os[i].second; 5157 if (__kmp_affinity_find_core(address2os, i, __kmp_aff_depth - 1, 5158 core_level) == core) { 5159 KMP_CPU_SET(osID, mask); 5160 } 5161 } 5162 } 5163 } else if (nthreads <= ncores) { 5164 5165 int core = 0; 5166 for (int i = 0; i < ncores; i++) { 5167 // Check if this core from procarr[] is in the mask 5168 int in_mask = 0; 5169 for (int j = 0; j < nth_per_core; j++) { 5170 if (procarr[i * nth_per_core + j] != -1) { 5171 in_mask = 1; 5172 break; 5173 } 5174 } 5175 if (in_mask) { 5176 if (tid == core) { 5177 for (int j = 0; j < nth_per_core; j++) { 5178 int osID = procarr[i * nth_per_core + j]; 5179 if (osID != -1) { 5180 KMP_CPU_SET(osID, mask); 5181 // For fine granularity it is enough to set the first available 5182 // osID for this core 5183 if (fine_gran) { 5184 break; 5185 } 5186 } 5187 } 5188 break; 5189 } else { 5190 core++; 5191 } 5192 } 5193 } 5194 } else { // nthreads > ncores 5195 // Array to save the number of processors at each core 5196 int *nproc_at_core = (int *)KMP_ALLOCA(sizeof(int) * ncores); 5197 // Array to save the number of cores with "x" available processors; 5198 int *ncores_with_x_procs = 5199 (int *)KMP_ALLOCA(sizeof(int) * (nth_per_core + 1)); 5200 // Array to save the number of cores with # procs from x to nth_per_core 5201 int *ncores_with_x_to_max_procs = 5202 (int *)KMP_ALLOCA(sizeof(int) * (nth_per_core + 1)); 5203 5204 for (int i = 0; i <= nth_per_core; i++) { 5205 ncores_with_x_procs[i] = 0; 5206 ncores_with_x_to_max_procs[i] = 0; 5207 } 5208 5209 for (int i = 0; i < ncores; i++) { 5210 int cnt = 0; 5211 for (int j = 0; j < nth_per_core; j++) { 5212 if (procarr[i * nth_per_core + j] != -1) { 5213 cnt++; 5214 } 5215 } 5216 nproc_at_core[i] = cnt; 5217 ncores_with_x_procs[cnt]++; 5218 } 5219 5220 for (int i = 0; i <= nth_per_core; i++) { 5221 for (int j = i; j <= nth_per_core; j++) { 5222 ncores_with_x_to_max_procs[i] += ncores_with_x_procs[j]; 5223 } 5224 } 5225 5226 // Max number of processors 5227 int nproc = nth_per_core * ncores; 5228 // An array to keep number of threads per each context 5229 int *newarr = (int *)__kmp_allocate(sizeof(int) * nproc); 5230 for (int i = 0; i < nproc; i++) { 5231 newarr[i] = 0; 5232 } 5233 5234 int nth = nthreads; 5235 int flag = 0; 5236 while (nth > 0) { 5237 for (int j = 1; j <= nth_per_core; j++) { 5238 int cnt = ncores_with_x_to_max_procs[j]; 5239 for (int i = 0; i < ncores; i++) { 5240 // Skip the core with 0 processors 5241 if (nproc_at_core[i] == 0) { 5242 continue; 5243 } 5244 for (int k = 0; k < nth_per_core; k++) { 5245 if (procarr[i * nth_per_core + k] != -1) { 5246 if (newarr[i * nth_per_core + k] == 0) { 5247 newarr[i * nth_per_core + k] = 1; 5248 cnt--; 5249 nth--; 5250 break; 5251 } else { 5252 if (flag != 0) { 5253 newarr[i * nth_per_core + k]++; 5254 cnt--; 5255 nth--; 5256 break; 5257 } 5258 } 5259 } 5260 } 5261 if (cnt == 0 || nth == 0) { 5262 break; 5263 } 5264 } 5265 if (nth == 0) { 5266 break; 5267 } 5268 } 5269 flag = 1; 5270 } 5271 int sum = 0; 5272 for (int i = 0; i < nproc; i++) { 5273 sum += newarr[i]; 5274 if (sum > tid) { 5275 if (fine_gran) { 5276 int osID = procarr[i]; 5277 KMP_CPU_SET(osID, mask); 5278 } else { 5279 int coreID = i / nth_per_core; 5280 for (int ii = 0; ii < nth_per_core; ii++) { 5281 int osID = procarr[coreID * nth_per_core + ii]; 5282 if (osID != -1) { 5283 KMP_CPU_SET(osID, mask); 5284 } 5285 } 5286 } 5287 break; 5288 } 5289 } 5290 __kmp_free(newarr); 5291 } 5292 5293 if (__kmp_affinity_verbose) { 5294 char buf[KMP_AFFIN_MASK_PRINT_LEN]; 5295 __kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN, mask); 5296 KMP_INFORM(BoundToOSProcSet, "KMP_AFFINITY", (kmp_int32)getpid(), 5297 __kmp_gettid(), tid, buf); 5298 } 5299 __kmp_set_system_affinity(mask, TRUE); 5300 } 5301 } 5302 5303 #if KMP_OS_LINUX 5304 // We don't need this entry for Windows because 5305 // there is GetProcessAffinityMask() api 5306 // 5307 // The intended usage is indicated by these steps: 5308 // 1) The user gets the current affinity mask 5309 // 2) Then sets the affinity by calling this function 5310 // 3) Error check the return value 5311 // 4) Use non-OpenMP parallelization 5312 // 5) Reset the affinity to what was stored in step 1) 5313 #ifdef __cplusplus 5314 extern "C" 5315 #endif 5316 int 5317 kmp_set_thread_affinity_mask_initial() 5318 // the function returns 0 on success, 5319 // -1 if we cannot bind thread 5320 // >0 (errno) if an error happened during binding 5321 { 5322 int gtid = __kmp_get_gtid(); 5323 if (gtid < 0) { 5324 // Do not touch non-omp threads 5325 KA_TRACE(30, ("kmp_set_thread_affinity_mask_initial: " 5326 "non-omp thread, returning\n")); 5327 return -1; 5328 } 5329 if (!KMP_AFFINITY_CAPABLE() || !__kmp_init_middle) { 5330 KA_TRACE(30, ("kmp_set_thread_affinity_mask_initial: " 5331 "affinity not initialized, returning\n")); 5332 return -1; 5333 } 5334 KA_TRACE(30, ("kmp_set_thread_affinity_mask_initial: " 5335 "set full mask for thread %d\n", 5336 gtid)); 5337 KMP_DEBUG_ASSERT(__kmp_affin_fullMask != NULL); 5338 return __kmp_set_system_affinity(__kmp_affin_fullMask, FALSE); 5339 } 5340 #endif 5341 5342 #endif // KMP_AFFINITY_SUPPORTED 5343