xref: /freebsd/contrib/llvm-project/openmp/runtime/src/kmp_affinity.cpp (revision 031beb4e239bfce798af17f5fe8dba8bcaf13d99)
1 /*
2  * kmp_affinity.cpp -- affinity management
3  */
4 
5 //===----------------------------------------------------------------------===//
6 //
7 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
8 // See https://llvm.org/LICENSE.txt for license information.
9 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "kmp.h"
14 #include "kmp_affinity.h"
15 #include "kmp_i18n.h"
16 #include "kmp_io.h"
17 #include "kmp_str.h"
18 #include "kmp_wrapper_getpid.h"
19 #if KMP_USE_HIER_SCHED
20 #include "kmp_dispatch_hier.h"
21 #endif
22 #if KMP_USE_HWLOC
23 // Copied from hwloc
24 #define HWLOC_GROUP_KIND_INTEL_MODULE 102
25 #define HWLOC_GROUP_KIND_INTEL_TILE 103
26 #define HWLOC_GROUP_KIND_INTEL_DIE 104
27 #define HWLOC_GROUP_KIND_WINDOWS_PROCESSOR_GROUP 220
28 #endif
29 #include <ctype.h>
30 
31 // The machine topology
32 kmp_topology_t *__kmp_topology = nullptr;
33 // KMP_HW_SUBSET environment variable
34 kmp_hw_subset_t *__kmp_hw_subset = nullptr;
35 
36 // Store the real or imagined machine hierarchy here
37 static hierarchy_info machine_hierarchy;
38 
39 void __kmp_cleanup_hierarchy() { machine_hierarchy.fini(); }
40 
41 void __kmp_get_hierarchy(kmp_uint32 nproc, kmp_bstate_t *thr_bar) {
42   kmp_uint32 depth;
43   // The test below is true if affinity is available, but set to "none". Need to
44   // init on first use of hierarchical barrier.
45   if (TCR_1(machine_hierarchy.uninitialized))
46     machine_hierarchy.init(nproc);
47 
48   // Adjust the hierarchy in case num threads exceeds original
49   if (nproc > machine_hierarchy.base_num_threads)
50     machine_hierarchy.resize(nproc);
51 
52   depth = machine_hierarchy.depth;
53   KMP_DEBUG_ASSERT(depth > 0);
54 
55   thr_bar->depth = depth;
56   __kmp_type_convert(machine_hierarchy.numPerLevel[0] - 1,
57                      &(thr_bar->base_leaf_kids));
58   thr_bar->skip_per_level = machine_hierarchy.skipPerLevel;
59 }
60 
61 static int nCoresPerPkg, nPackages;
62 static int __kmp_nThreadsPerCore;
63 #ifndef KMP_DFLT_NTH_CORES
64 static int __kmp_ncores;
65 #endif
66 
67 const char *__kmp_hw_get_catalog_string(kmp_hw_t type, bool plural) {
68   switch (type) {
69   case KMP_HW_SOCKET:
70     return ((plural) ? KMP_I18N_STR(Sockets) : KMP_I18N_STR(Socket));
71   case KMP_HW_DIE:
72     return ((plural) ? KMP_I18N_STR(Dice) : KMP_I18N_STR(Die));
73   case KMP_HW_MODULE:
74     return ((plural) ? KMP_I18N_STR(Modules) : KMP_I18N_STR(Module));
75   case KMP_HW_TILE:
76     return ((plural) ? KMP_I18N_STR(Tiles) : KMP_I18N_STR(Tile));
77   case KMP_HW_NUMA:
78     return ((plural) ? KMP_I18N_STR(NumaDomains) : KMP_I18N_STR(NumaDomain));
79   case KMP_HW_L3:
80     return ((plural) ? KMP_I18N_STR(L3Caches) : KMP_I18N_STR(L3Cache));
81   case KMP_HW_L2:
82     return ((plural) ? KMP_I18N_STR(L2Caches) : KMP_I18N_STR(L2Cache));
83   case KMP_HW_L1:
84     return ((plural) ? KMP_I18N_STR(L1Caches) : KMP_I18N_STR(L1Cache));
85   case KMP_HW_LLC:
86     return ((plural) ? KMP_I18N_STR(LLCaches) : KMP_I18N_STR(LLCache));
87   case KMP_HW_CORE:
88     return ((plural) ? KMP_I18N_STR(Cores) : KMP_I18N_STR(Core));
89   case KMP_HW_THREAD:
90     return ((plural) ? KMP_I18N_STR(Threads) : KMP_I18N_STR(Thread));
91   case KMP_HW_PROC_GROUP:
92     return ((plural) ? KMP_I18N_STR(ProcGroups) : KMP_I18N_STR(ProcGroup));
93   }
94   return KMP_I18N_STR(Unknown);
95 }
96 
97 const char *__kmp_hw_get_keyword(kmp_hw_t type, bool plural) {
98   switch (type) {
99   case KMP_HW_SOCKET:
100     return ((plural) ? "sockets" : "socket");
101   case KMP_HW_DIE:
102     return ((plural) ? "dice" : "die");
103   case KMP_HW_MODULE:
104     return ((plural) ? "modules" : "module");
105   case KMP_HW_TILE:
106     return ((plural) ? "tiles" : "tile");
107   case KMP_HW_NUMA:
108     return ((plural) ? "numa_domains" : "numa_domain");
109   case KMP_HW_L3:
110     return ((plural) ? "l3_caches" : "l3_cache");
111   case KMP_HW_L2:
112     return ((plural) ? "l2_caches" : "l2_cache");
113   case KMP_HW_L1:
114     return ((plural) ? "l1_caches" : "l1_cache");
115   case KMP_HW_LLC:
116     return ((plural) ? "ll_caches" : "ll_cache");
117   case KMP_HW_CORE:
118     return ((plural) ? "cores" : "core");
119   case KMP_HW_THREAD:
120     return ((plural) ? "threads" : "thread");
121   case KMP_HW_PROC_GROUP:
122     return ((plural) ? "proc_groups" : "proc_group");
123   }
124   return ((plural) ? "unknowns" : "unknown");
125 }
126 
127 const char *__kmp_hw_get_core_type_string(kmp_hw_core_type_t type) {
128   switch (type) {
129   case KMP_HW_CORE_TYPE_UNKNOWN:
130     return "unknown";
131 #if KMP_ARCH_X86 || KMP_ARCH_X86_64
132   case KMP_HW_CORE_TYPE_ATOM:
133     return "Intel Atom(R) processor";
134   case KMP_HW_CORE_TYPE_CORE:
135     return "Intel(R) Core(TM) processor";
136 #endif
137   }
138   return "unknown";
139 }
140 
141 #if KMP_AFFINITY_SUPPORTED
142 // If affinity is supported, check the affinity
143 // verbose and warning flags before printing warning
144 #define KMP_AFF_WARNING(s, ...)                                                \
145   if (s.flags.verbose || (s.flags.warnings && (s.type != affinity_none))) {    \
146     KMP_WARNING(__VA_ARGS__);                                                  \
147   }
148 #else
149 #define KMP_AFF_WARNING(s, ...) KMP_WARNING(__VA_ARGS__)
150 #endif
151 
152 ////////////////////////////////////////////////////////////////////////////////
153 // kmp_hw_thread_t methods
154 int kmp_hw_thread_t::compare_ids(const void *a, const void *b) {
155   const kmp_hw_thread_t *ahwthread = (const kmp_hw_thread_t *)a;
156   const kmp_hw_thread_t *bhwthread = (const kmp_hw_thread_t *)b;
157   int depth = __kmp_topology->get_depth();
158   for (int level = 0; level < depth; ++level) {
159     if (ahwthread->ids[level] < bhwthread->ids[level])
160       return -1;
161     else if (ahwthread->ids[level] > bhwthread->ids[level])
162       return 1;
163   }
164   if (ahwthread->os_id < bhwthread->os_id)
165     return -1;
166   else if (ahwthread->os_id > bhwthread->os_id)
167     return 1;
168   return 0;
169 }
170 
171 #if KMP_AFFINITY_SUPPORTED
172 int kmp_hw_thread_t::compare_compact(const void *a, const void *b) {
173   int i;
174   const kmp_hw_thread_t *aa = (const kmp_hw_thread_t *)a;
175   const kmp_hw_thread_t *bb = (const kmp_hw_thread_t *)b;
176   int depth = __kmp_topology->get_depth();
177   int compact = __kmp_topology->compact;
178   KMP_DEBUG_ASSERT(compact >= 0);
179   KMP_DEBUG_ASSERT(compact <= depth);
180   for (i = 0; i < compact; i++) {
181     int j = depth - i - 1;
182     if (aa->sub_ids[j] < bb->sub_ids[j])
183       return -1;
184     if (aa->sub_ids[j] > bb->sub_ids[j])
185       return 1;
186   }
187   for (; i < depth; i++) {
188     int j = i - compact;
189     if (aa->sub_ids[j] < bb->sub_ids[j])
190       return -1;
191     if (aa->sub_ids[j] > bb->sub_ids[j])
192       return 1;
193   }
194   return 0;
195 }
196 #endif
197 
198 void kmp_hw_thread_t::print() const {
199   int depth = __kmp_topology->get_depth();
200   printf("%4d ", os_id);
201   for (int i = 0; i < depth; ++i) {
202     printf("%4d ", ids[i]);
203   }
204   if (attrs) {
205     if (attrs.is_core_type_valid())
206       printf(" (%s)", __kmp_hw_get_core_type_string(attrs.get_core_type()));
207     if (attrs.is_core_eff_valid())
208       printf(" (eff=%d)", attrs.get_core_eff());
209   }
210   printf("\n");
211 }
212 
213 ////////////////////////////////////////////////////////////////////////////////
214 // kmp_topology_t methods
215 
216 // Add a layer to the topology based on the ids. Assume the topology
217 // is perfectly nested (i.e., so no object has more than one parent)
218 void kmp_topology_t::_insert_layer(kmp_hw_t type, const int *ids) {
219   // Figure out where the layer should go by comparing the ids of the current
220   // layers with the new ids
221   int target_layer;
222   int previous_id = kmp_hw_thread_t::UNKNOWN_ID;
223   int previous_new_id = kmp_hw_thread_t::UNKNOWN_ID;
224 
225   // Start from the highest layer and work down to find target layer
226   // If new layer is equal to another layer then put the new layer above
227   for (target_layer = 0; target_layer < depth; ++target_layer) {
228     bool layers_equal = true;
229     bool strictly_above_target_layer = false;
230     for (int i = 0; i < num_hw_threads; ++i) {
231       int id = hw_threads[i].ids[target_layer];
232       int new_id = ids[i];
233       if (id != previous_id && new_id == previous_new_id) {
234         // Found the layer we are strictly above
235         strictly_above_target_layer = true;
236         layers_equal = false;
237         break;
238       } else if (id == previous_id && new_id != previous_new_id) {
239         // Found a layer we are below. Move to next layer and check.
240         layers_equal = false;
241         break;
242       }
243       previous_id = id;
244       previous_new_id = new_id;
245     }
246     if (strictly_above_target_layer || layers_equal)
247       break;
248   }
249 
250   // Found the layer we are above. Now move everything to accommodate the new
251   // layer. And put the new ids and type into the topology.
252   for (int i = depth - 1, j = depth; i >= target_layer; --i, --j)
253     types[j] = types[i];
254   types[target_layer] = type;
255   for (int k = 0; k < num_hw_threads; ++k) {
256     for (int i = depth - 1, j = depth; i >= target_layer; --i, --j)
257       hw_threads[k].ids[j] = hw_threads[k].ids[i];
258     hw_threads[k].ids[target_layer] = ids[k];
259   }
260   equivalent[type] = type;
261   depth++;
262 }
263 
264 #if KMP_GROUP_AFFINITY
265 // Insert the Windows Processor Group structure into the topology
266 void kmp_topology_t::_insert_windows_proc_groups() {
267   // Do not insert the processor group structure for a single group
268   if (__kmp_num_proc_groups == 1)
269     return;
270   kmp_affin_mask_t *mask;
271   int *ids = (int *)__kmp_allocate(sizeof(int) * num_hw_threads);
272   KMP_CPU_ALLOC(mask);
273   for (int i = 0; i < num_hw_threads; ++i) {
274     KMP_CPU_ZERO(mask);
275     KMP_CPU_SET(hw_threads[i].os_id, mask);
276     ids[i] = __kmp_get_proc_group(mask);
277   }
278   KMP_CPU_FREE(mask);
279   _insert_layer(KMP_HW_PROC_GROUP, ids);
280   __kmp_free(ids);
281 }
282 #endif
283 
284 // Remove layers that don't add information to the topology.
285 // This is done by having the layer take on the id = UNKNOWN_ID (-1)
286 void kmp_topology_t::_remove_radix1_layers() {
287   int preference[KMP_HW_LAST];
288   int top_index1, top_index2;
289   // Set up preference associative array
290   preference[KMP_HW_SOCKET] = 110;
291   preference[KMP_HW_PROC_GROUP] = 100;
292   preference[KMP_HW_CORE] = 95;
293   preference[KMP_HW_THREAD] = 90;
294   preference[KMP_HW_NUMA] = 85;
295   preference[KMP_HW_DIE] = 80;
296   preference[KMP_HW_TILE] = 75;
297   preference[KMP_HW_MODULE] = 73;
298   preference[KMP_HW_L3] = 70;
299   preference[KMP_HW_L2] = 65;
300   preference[KMP_HW_L1] = 60;
301   preference[KMP_HW_LLC] = 5;
302   top_index1 = 0;
303   top_index2 = 1;
304   while (top_index1 < depth - 1 && top_index2 < depth) {
305     kmp_hw_t type1 = types[top_index1];
306     kmp_hw_t type2 = types[top_index2];
307     KMP_ASSERT_VALID_HW_TYPE(type1);
308     KMP_ASSERT_VALID_HW_TYPE(type2);
309     // Do not allow the three main topology levels (sockets, cores, threads) to
310     // be compacted down
311     if ((type1 == KMP_HW_THREAD || type1 == KMP_HW_CORE ||
312          type1 == KMP_HW_SOCKET) &&
313         (type2 == KMP_HW_THREAD || type2 == KMP_HW_CORE ||
314          type2 == KMP_HW_SOCKET)) {
315       top_index1 = top_index2++;
316       continue;
317     }
318     bool radix1 = true;
319     bool all_same = true;
320     int id1 = hw_threads[0].ids[top_index1];
321     int id2 = hw_threads[0].ids[top_index2];
322     int pref1 = preference[type1];
323     int pref2 = preference[type2];
324     for (int hwidx = 1; hwidx < num_hw_threads; ++hwidx) {
325       if (hw_threads[hwidx].ids[top_index1] == id1 &&
326           hw_threads[hwidx].ids[top_index2] != id2) {
327         radix1 = false;
328         break;
329       }
330       if (hw_threads[hwidx].ids[top_index2] != id2)
331         all_same = false;
332       id1 = hw_threads[hwidx].ids[top_index1];
333       id2 = hw_threads[hwidx].ids[top_index2];
334     }
335     if (radix1) {
336       // Select the layer to remove based on preference
337       kmp_hw_t remove_type, keep_type;
338       int remove_layer, remove_layer_ids;
339       if (pref1 > pref2) {
340         remove_type = type2;
341         remove_layer = remove_layer_ids = top_index2;
342         keep_type = type1;
343       } else {
344         remove_type = type1;
345         remove_layer = remove_layer_ids = top_index1;
346         keep_type = type2;
347       }
348       // If all the indexes for the second (deeper) layer are the same.
349       // e.g., all are zero, then make sure to keep the first layer's ids
350       if (all_same)
351         remove_layer_ids = top_index2;
352       // Remove radix one type by setting the equivalence, removing the id from
353       // the hw threads and removing the layer from types and depth
354       set_equivalent_type(remove_type, keep_type);
355       for (int idx = 0; idx < num_hw_threads; ++idx) {
356         kmp_hw_thread_t &hw_thread = hw_threads[idx];
357         for (int d = remove_layer_ids; d < depth - 1; ++d)
358           hw_thread.ids[d] = hw_thread.ids[d + 1];
359       }
360       for (int idx = remove_layer; idx < depth - 1; ++idx)
361         types[idx] = types[idx + 1];
362       depth--;
363     } else {
364       top_index1 = top_index2++;
365     }
366   }
367   KMP_ASSERT(depth > 0);
368 }
369 
370 void kmp_topology_t::_set_last_level_cache() {
371   if (get_equivalent_type(KMP_HW_L3) != KMP_HW_UNKNOWN)
372     set_equivalent_type(KMP_HW_LLC, KMP_HW_L3);
373   else if (get_equivalent_type(KMP_HW_L2) != KMP_HW_UNKNOWN)
374     set_equivalent_type(KMP_HW_LLC, KMP_HW_L2);
375 #if KMP_MIC_SUPPORTED
376   else if (__kmp_mic_type == mic3) {
377     if (get_equivalent_type(KMP_HW_L2) != KMP_HW_UNKNOWN)
378       set_equivalent_type(KMP_HW_LLC, KMP_HW_L2);
379     else if (get_equivalent_type(KMP_HW_TILE) != KMP_HW_UNKNOWN)
380       set_equivalent_type(KMP_HW_LLC, KMP_HW_TILE);
381     // L2/Tile wasn't detected so just say L1
382     else
383       set_equivalent_type(KMP_HW_LLC, KMP_HW_L1);
384   }
385 #endif
386   else if (get_equivalent_type(KMP_HW_L1) != KMP_HW_UNKNOWN)
387     set_equivalent_type(KMP_HW_LLC, KMP_HW_L1);
388   // Fallback is to set last level cache to socket or core
389   if (get_equivalent_type(KMP_HW_LLC) == KMP_HW_UNKNOWN) {
390     if (get_equivalent_type(KMP_HW_SOCKET) != KMP_HW_UNKNOWN)
391       set_equivalent_type(KMP_HW_LLC, KMP_HW_SOCKET);
392     else if (get_equivalent_type(KMP_HW_CORE) != KMP_HW_UNKNOWN)
393       set_equivalent_type(KMP_HW_LLC, KMP_HW_CORE);
394   }
395   KMP_ASSERT(get_equivalent_type(KMP_HW_LLC) != KMP_HW_UNKNOWN);
396 }
397 
398 // Gather the count of each topology layer and the ratio
399 void kmp_topology_t::_gather_enumeration_information() {
400   int previous_id[KMP_HW_LAST];
401   int max[KMP_HW_LAST];
402 
403   for (int i = 0; i < depth; ++i) {
404     previous_id[i] = kmp_hw_thread_t::UNKNOWN_ID;
405     max[i] = 0;
406     count[i] = 0;
407     ratio[i] = 0;
408   }
409   int core_level = get_level(KMP_HW_CORE);
410   for (int i = 0; i < num_hw_threads; ++i) {
411     kmp_hw_thread_t &hw_thread = hw_threads[i];
412     for (int layer = 0; layer < depth; ++layer) {
413       int id = hw_thread.ids[layer];
414       if (id != previous_id[layer]) {
415         // Add an additional increment to each count
416         for (int l = layer; l < depth; ++l)
417           count[l]++;
418         // Keep track of topology layer ratio statistics
419         max[layer]++;
420         for (int l = layer + 1; l < depth; ++l) {
421           if (max[l] > ratio[l])
422             ratio[l] = max[l];
423           max[l] = 1;
424         }
425         // Figure out the number of different core types
426         // and efficiencies for hybrid CPUs
427         if (__kmp_is_hybrid_cpu() && core_level >= 0 && layer <= core_level) {
428           if (hw_thread.attrs.is_core_eff_valid() &&
429               hw_thread.attrs.core_eff >= num_core_efficiencies) {
430             // Because efficiencies can range from 0 to max efficiency - 1,
431             // the number of efficiencies is max efficiency + 1
432             num_core_efficiencies = hw_thread.attrs.core_eff + 1;
433           }
434           if (hw_thread.attrs.is_core_type_valid()) {
435             bool found = false;
436             for (int j = 0; j < num_core_types; ++j) {
437               if (hw_thread.attrs.get_core_type() == core_types[j]) {
438                 found = true;
439                 break;
440               }
441             }
442             if (!found) {
443               KMP_ASSERT(num_core_types < KMP_HW_MAX_NUM_CORE_TYPES);
444               core_types[num_core_types++] = hw_thread.attrs.get_core_type();
445             }
446           }
447         }
448         break;
449       }
450     }
451     for (int layer = 0; layer < depth; ++layer) {
452       previous_id[layer] = hw_thread.ids[layer];
453     }
454   }
455   for (int layer = 0; layer < depth; ++layer) {
456     if (max[layer] > ratio[layer])
457       ratio[layer] = max[layer];
458   }
459 }
460 
461 int kmp_topology_t::_get_ncores_with_attr(const kmp_hw_attr_t &attr,
462                                           int above_level,
463                                           bool find_all) const {
464   int current, current_max;
465   int previous_id[KMP_HW_LAST];
466   for (int i = 0; i < depth; ++i)
467     previous_id[i] = kmp_hw_thread_t::UNKNOWN_ID;
468   int core_level = get_level(KMP_HW_CORE);
469   if (find_all)
470     above_level = -1;
471   KMP_ASSERT(above_level < core_level);
472   current_max = 0;
473   current = 0;
474   for (int i = 0; i < num_hw_threads; ++i) {
475     kmp_hw_thread_t &hw_thread = hw_threads[i];
476     if (!find_all && hw_thread.ids[above_level] != previous_id[above_level]) {
477       if (current > current_max)
478         current_max = current;
479       current = hw_thread.attrs.contains(attr);
480     } else {
481       for (int level = above_level + 1; level <= core_level; ++level) {
482         if (hw_thread.ids[level] != previous_id[level]) {
483           if (hw_thread.attrs.contains(attr))
484             current++;
485           break;
486         }
487       }
488     }
489     for (int level = 0; level < depth; ++level)
490       previous_id[level] = hw_thread.ids[level];
491   }
492   if (current > current_max)
493     current_max = current;
494   return current_max;
495 }
496 
497 // Find out if the topology is uniform
498 void kmp_topology_t::_discover_uniformity() {
499   int num = 1;
500   for (int level = 0; level < depth; ++level)
501     num *= ratio[level];
502   flags.uniform = (num == count[depth - 1]);
503 }
504 
505 // Set all the sub_ids for each hardware thread
506 void kmp_topology_t::_set_sub_ids() {
507   int previous_id[KMP_HW_LAST];
508   int sub_id[KMP_HW_LAST];
509 
510   for (int i = 0; i < depth; ++i) {
511     previous_id[i] = -1;
512     sub_id[i] = -1;
513   }
514   for (int i = 0; i < num_hw_threads; ++i) {
515     kmp_hw_thread_t &hw_thread = hw_threads[i];
516     // Setup the sub_id
517     for (int j = 0; j < depth; ++j) {
518       if (hw_thread.ids[j] != previous_id[j]) {
519         sub_id[j]++;
520         for (int k = j + 1; k < depth; ++k) {
521           sub_id[k] = 0;
522         }
523         break;
524       }
525     }
526     // Set previous_id
527     for (int j = 0; j < depth; ++j) {
528       previous_id[j] = hw_thread.ids[j];
529     }
530     // Set the sub_ids field
531     for (int j = 0; j < depth; ++j) {
532       hw_thread.sub_ids[j] = sub_id[j];
533     }
534   }
535 }
536 
537 void kmp_topology_t::_set_globals() {
538   // Set nCoresPerPkg, nPackages, __kmp_nThreadsPerCore, __kmp_ncores
539   int core_level, thread_level, package_level;
540   package_level = get_level(KMP_HW_SOCKET);
541 #if KMP_GROUP_AFFINITY
542   if (package_level == -1)
543     package_level = get_level(KMP_HW_PROC_GROUP);
544 #endif
545   core_level = get_level(KMP_HW_CORE);
546   thread_level = get_level(KMP_HW_THREAD);
547 
548   KMP_ASSERT(core_level != -1);
549   KMP_ASSERT(thread_level != -1);
550 
551   __kmp_nThreadsPerCore = calculate_ratio(thread_level, core_level);
552   if (package_level != -1) {
553     nCoresPerPkg = calculate_ratio(core_level, package_level);
554     nPackages = get_count(package_level);
555   } else {
556     // assume one socket
557     nCoresPerPkg = get_count(core_level);
558     nPackages = 1;
559   }
560 #ifndef KMP_DFLT_NTH_CORES
561   __kmp_ncores = get_count(core_level);
562 #endif
563 }
564 
565 kmp_topology_t *kmp_topology_t::allocate(int nproc, int ndepth,
566                                          const kmp_hw_t *types) {
567   kmp_topology_t *retval;
568   // Allocate all data in one large allocation
569   size_t size = sizeof(kmp_topology_t) + sizeof(kmp_hw_thread_t) * nproc +
570                 sizeof(int) * (size_t)KMP_HW_LAST * 3;
571   char *bytes = (char *)__kmp_allocate(size);
572   retval = (kmp_topology_t *)bytes;
573   if (nproc > 0) {
574     retval->hw_threads = (kmp_hw_thread_t *)(bytes + sizeof(kmp_topology_t));
575   } else {
576     retval->hw_threads = nullptr;
577   }
578   retval->num_hw_threads = nproc;
579   retval->depth = ndepth;
580   int *arr =
581       (int *)(bytes + sizeof(kmp_topology_t) + sizeof(kmp_hw_thread_t) * nproc);
582   retval->types = (kmp_hw_t *)arr;
583   retval->ratio = arr + (size_t)KMP_HW_LAST;
584   retval->count = arr + 2 * (size_t)KMP_HW_LAST;
585   retval->num_core_efficiencies = 0;
586   retval->num_core_types = 0;
587   retval->compact = 0;
588   for (int i = 0; i < KMP_HW_MAX_NUM_CORE_TYPES; ++i)
589     retval->core_types[i] = KMP_HW_CORE_TYPE_UNKNOWN;
590   KMP_FOREACH_HW_TYPE(type) { retval->equivalent[type] = KMP_HW_UNKNOWN; }
591   for (int i = 0; i < ndepth; ++i) {
592     retval->types[i] = types[i];
593     retval->equivalent[types[i]] = types[i];
594   }
595   return retval;
596 }
597 
598 void kmp_topology_t::deallocate(kmp_topology_t *topology) {
599   if (topology)
600     __kmp_free(topology);
601 }
602 
603 bool kmp_topology_t::check_ids() const {
604   // Assume ids have been sorted
605   if (num_hw_threads == 0)
606     return true;
607   for (int i = 1; i < num_hw_threads; ++i) {
608     kmp_hw_thread_t &current_thread = hw_threads[i];
609     kmp_hw_thread_t &previous_thread = hw_threads[i - 1];
610     bool unique = false;
611     for (int j = 0; j < depth; ++j) {
612       if (previous_thread.ids[j] != current_thread.ids[j]) {
613         unique = true;
614         break;
615       }
616     }
617     if (unique)
618       continue;
619     return false;
620   }
621   return true;
622 }
623 
624 void kmp_topology_t::dump() const {
625   printf("***********************\n");
626   printf("*** __kmp_topology: ***\n");
627   printf("***********************\n");
628   printf("* depth: %d\n", depth);
629 
630   printf("* types: ");
631   for (int i = 0; i < depth; ++i)
632     printf("%15s ", __kmp_hw_get_keyword(types[i]));
633   printf("\n");
634 
635   printf("* ratio: ");
636   for (int i = 0; i < depth; ++i) {
637     printf("%15d ", ratio[i]);
638   }
639   printf("\n");
640 
641   printf("* count: ");
642   for (int i = 0; i < depth; ++i) {
643     printf("%15d ", count[i]);
644   }
645   printf("\n");
646 
647   printf("* num_core_eff: %d\n", num_core_efficiencies);
648   printf("* num_core_types: %d\n", num_core_types);
649   printf("* core_types: ");
650   for (int i = 0; i < num_core_types; ++i)
651     printf("%3d ", core_types[i]);
652   printf("\n");
653 
654   printf("* equivalent map:\n");
655   KMP_FOREACH_HW_TYPE(i) {
656     const char *key = __kmp_hw_get_keyword(i);
657     const char *value = __kmp_hw_get_keyword(equivalent[i]);
658     printf("%-15s -> %-15s\n", key, value);
659   }
660 
661   printf("* uniform: %s\n", (is_uniform() ? "Yes" : "No"));
662 
663   printf("* num_hw_threads: %d\n", num_hw_threads);
664   printf("* hw_threads:\n");
665   for (int i = 0; i < num_hw_threads; ++i) {
666     hw_threads[i].print();
667   }
668   printf("***********************\n");
669 }
670 
671 void kmp_topology_t::print(const char *env_var) const {
672   kmp_str_buf_t buf;
673   int print_types_depth;
674   __kmp_str_buf_init(&buf);
675   kmp_hw_t print_types[KMP_HW_LAST + 2];
676 
677   // Num Available Threads
678   if (num_hw_threads) {
679     KMP_INFORM(AvailableOSProc, env_var, num_hw_threads);
680   } else {
681     KMP_INFORM(AvailableOSProc, env_var, __kmp_xproc);
682   }
683 
684   // Uniform or not
685   if (is_uniform()) {
686     KMP_INFORM(Uniform, env_var);
687   } else {
688     KMP_INFORM(NonUniform, env_var);
689   }
690 
691   // Equivalent types
692   KMP_FOREACH_HW_TYPE(type) {
693     kmp_hw_t eq_type = equivalent[type];
694     if (eq_type != KMP_HW_UNKNOWN && eq_type != type) {
695       KMP_INFORM(AffEqualTopologyTypes, env_var,
696                  __kmp_hw_get_catalog_string(type),
697                  __kmp_hw_get_catalog_string(eq_type));
698     }
699   }
700 
701   // Quick topology
702   KMP_ASSERT(depth > 0 && depth <= (int)KMP_HW_LAST);
703   // Create a print types array that always guarantees printing
704   // the core and thread level
705   print_types_depth = 0;
706   for (int level = 0; level < depth; ++level)
707     print_types[print_types_depth++] = types[level];
708   if (equivalent[KMP_HW_CORE] != KMP_HW_CORE) {
709     // Force in the core level for quick topology
710     if (print_types[print_types_depth - 1] == KMP_HW_THREAD) {
711       // Force core before thread e.g., 1 socket X 2 threads/socket
712       // becomes 1 socket X 1 core/socket X 2 threads/socket
713       print_types[print_types_depth - 1] = KMP_HW_CORE;
714       print_types[print_types_depth++] = KMP_HW_THREAD;
715     } else {
716       print_types[print_types_depth++] = KMP_HW_CORE;
717     }
718   }
719   // Always put threads at very end of quick topology
720   if (equivalent[KMP_HW_THREAD] != KMP_HW_THREAD)
721     print_types[print_types_depth++] = KMP_HW_THREAD;
722 
723   __kmp_str_buf_clear(&buf);
724   kmp_hw_t numerator_type;
725   kmp_hw_t denominator_type = KMP_HW_UNKNOWN;
726   int core_level = get_level(KMP_HW_CORE);
727   int ncores = get_count(core_level);
728 
729   for (int plevel = 0, level = 0; plevel < print_types_depth; ++plevel) {
730     int c;
731     bool plural;
732     numerator_type = print_types[plevel];
733     KMP_ASSERT_VALID_HW_TYPE(numerator_type);
734     if (equivalent[numerator_type] != numerator_type)
735       c = 1;
736     else
737       c = get_ratio(level++);
738     plural = (c > 1);
739     if (plevel == 0) {
740       __kmp_str_buf_print(&buf, "%d %s", c,
741                           __kmp_hw_get_catalog_string(numerator_type, plural));
742     } else {
743       __kmp_str_buf_print(&buf, " x %d %s/%s", c,
744                           __kmp_hw_get_catalog_string(numerator_type, plural),
745                           __kmp_hw_get_catalog_string(denominator_type));
746     }
747     denominator_type = numerator_type;
748   }
749   KMP_INFORM(TopologyGeneric, env_var, buf.str, ncores);
750 
751   // Hybrid topology information
752   if (__kmp_is_hybrid_cpu()) {
753     for (int i = 0; i < num_core_types; ++i) {
754       kmp_hw_core_type_t core_type = core_types[i];
755       kmp_hw_attr_t attr;
756       attr.clear();
757       attr.set_core_type(core_type);
758       int ncores = get_ncores_with_attr(attr);
759       if (ncores > 0) {
760         KMP_INFORM(TopologyHybrid, env_var, ncores,
761                    __kmp_hw_get_core_type_string(core_type));
762         KMP_ASSERT(num_core_efficiencies <= KMP_HW_MAX_NUM_CORE_EFFS)
763         for (int eff = 0; eff < num_core_efficiencies; ++eff) {
764           attr.set_core_eff(eff);
765           int ncores_with_eff = get_ncores_with_attr(attr);
766           if (ncores_with_eff > 0) {
767             KMP_INFORM(TopologyHybridCoreEff, env_var, ncores_with_eff, eff);
768           }
769         }
770       }
771     }
772   }
773 
774   if (num_hw_threads <= 0) {
775     __kmp_str_buf_free(&buf);
776     return;
777   }
778 
779   // Full OS proc to hardware thread map
780   KMP_INFORM(OSProcToPhysicalThreadMap, env_var);
781   for (int i = 0; i < num_hw_threads; i++) {
782     __kmp_str_buf_clear(&buf);
783     for (int level = 0; level < depth; ++level) {
784       kmp_hw_t type = types[level];
785       __kmp_str_buf_print(&buf, "%s ", __kmp_hw_get_catalog_string(type));
786       __kmp_str_buf_print(&buf, "%d ", hw_threads[i].ids[level]);
787     }
788     if (__kmp_is_hybrid_cpu())
789       __kmp_str_buf_print(
790           &buf, "(%s)",
791           __kmp_hw_get_core_type_string(hw_threads[i].attrs.get_core_type()));
792     KMP_INFORM(OSProcMapToPack, env_var, hw_threads[i].os_id, buf.str);
793   }
794 
795   __kmp_str_buf_free(&buf);
796 }
797 
798 #if KMP_AFFINITY_SUPPORTED
799 void kmp_topology_t::set_granularity(kmp_affinity_t &affinity) const {
800   const char *env_var = affinity.env_var;
801   // Set the number of affinity granularity levels
802   if (affinity.gran_levels < 0) {
803     kmp_hw_t gran_type = get_equivalent_type(affinity.gran);
804     // Check if user's granularity request is valid
805     if (gran_type == KMP_HW_UNKNOWN) {
806       // First try core, then thread, then package
807       kmp_hw_t gran_types[3] = {KMP_HW_CORE, KMP_HW_THREAD, KMP_HW_SOCKET};
808       for (auto g : gran_types) {
809         if (get_equivalent_type(g) != KMP_HW_UNKNOWN) {
810           gran_type = g;
811           break;
812         }
813       }
814       KMP_ASSERT(gran_type != KMP_HW_UNKNOWN);
815       // Warn user what granularity setting will be used instead
816       KMP_AFF_WARNING(affinity, AffGranularityBad, env_var,
817                       __kmp_hw_get_catalog_string(affinity.gran),
818                       __kmp_hw_get_catalog_string(gran_type));
819       affinity.gran = gran_type;
820     }
821 #if KMP_GROUP_AFFINITY
822     // If more than one processor group exists, and the level of
823     // granularity specified by the user is too coarse, then the
824     // granularity must be adjusted "down" to processor group affinity
825     // because threads can only exist within one processor group.
826     // For example, if a user sets granularity=socket and there are two
827     // processor groups that cover a socket, then the runtime must
828     // restrict the granularity down to the processor group level.
829     if (__kmp_num_proc_groups > 1) {
830       int gran_depth = get_level(gran_type);
831       int proc_group_depth = get_level(KMP_HW_PROC_GROUP);
832       if (gran_depth >= 0 && proc_group_depth >= 0 &&
833           gran_depth < proc_group_depth) {
834         KMP_AFF_WARNING(affinity, AffGranTooCoarseProcGroup, env_var,
835                         __kmp_hw_get_catalog_string(affinity.gran));
836         affinity.gran = gran_type = KMP_HW_PROC_GROUP;
837       }
838     }
839 #endif
840     affinity.gran_levels = 0;
841     for (int i = depth - 1; i >= 0 && get_type(i) != gran_type; --i)
842       affinity.gran_levels++;
843   }
844 }
845 #endif
846 
847 void kmp_topology_t::canonicalize() {
848 #if KMP_GROUP_AFFINITY
849   _insert_windows_proc_groups();
850 #endif
851   _remove_radix1_layers();
852   _gather_enumeration_information();
853   _discover_uniformity();
854   _set_sub_ids();
855   _set_globals();
856   _set_last_level_cache();
857 
858 #if KMP_MIC_SUPPORTED
859   // Manually Add L2 = Tile equivalence
860   if (__kmp_mic_type == mic3) {
861     if (get_level(KMP_HW_L2) != -1)
862       set_equivalent_type(KMP_HW_TILE, KMP_HW_L2);
863     else if (get_level(KMP_HW_TILE) != -1)
864       set_equivalent_type(KMP_HW_L2, KMP_HW_TILE);
865   }
866 #endif
867 
868   // Perform post canonicalization checking
869   KMP_ASSERT(depth > 0);
870   for (int level = 0; level < depth; ++level) {
871     // All counts, ratios, and types must be valid
872     KMP_ASSERT(count[level] > 0 && ratio[level] > 0);
873     KMP_ASSERT_VALID_HW_TYPE(types[level]);
874     // Detected types must point to themselves
875     KMP_ASSERT(equivalent[types[level]] == types[level]);
876   }
877 }
878 
879 // Canonicalize an explicit packages X cores/pkg X threads/core topology
880 void kmp_topology_t::canonicalize(int npackages, int ncores_per_pkg,
881                                   int nthreads_per_core, int ncores) {
882   int ndepth = 3;
883   depth = ndepth;
884   KMP_FOREACH_HW_TYPE(i) { equivalent[i] = KMP_HW_UNKNOWN; }
885   for (int level = 0; level < depth; ++level) {
886     count[level] = 0;
887     ratio[level] = 0;
888   }
889   count[0] = npackages;
890   count[1] = ncores;
891   count[2] = __kmp_xproc;
892   ratio[0] = npackages;
893   ratio[1] = ncores_per_pkg;
894   ratio[2] = nthreads_per_core;
895   equivalent[KMP_HW_SOCKET] = KMP_HW_SOCKET;
896   equivalent[KMP_HW_CORE] = KMP_HW_CORE;
897   equivalent[KMP_HW_THREAD] = KMP_HW_THREAD;
898   types[0] = KMP_HW_SOCKET;
899   types[1] = KMP_HW_CORE;
900   types[2] = KMP_HW_THREAD;
901   //__kmp_avail_proc = __kmp_xproc;
902   _discover_uniformity();
903 }
904 
905 // Represents running sub IDs for a single core attribute where
906 // attribute values have SIZE possibilities.
907 template <size_t SIZE, typename IndexFunc> struct kmp_sub_ids_t {
908   int last_level; // last level in topology to consider for sub_ids
909   int sub_id[SIZE]; // The sub ID for a given attribute value
910   int prev_sub_id[KMP_HW_LAST];
911   IndexFunc indexer;
912 
913 public:
914   kmp_sub_ids_t(int last_level) : last_level(last_level) {
915     KMP_ASSERT(last_level < KMP_HW_LAST);
916     for (size_t i = 0; i < SIZE; ++i)
917       sub_id[i] = -1;
918     for (size_t i = 0; i < KMP_HW_LAST; ++i)
919       prev_sub_id[i] = -1;
920   }
921   void update(const kmp_hw_thread_t &hw_thread) {
922     int idx = indexer(hw_thread);
923     KMP_ASSERT(idx < (int)SIZE);
924     for (int level = 0; level <= last_level; ++level) {
925       if (hw_thread.sub_ids[level] != prev_sub_id[level]) {
926         if (level < last_level)
927           sub_id[idx] = -1;
928         sub_id[idx]++;
929         break;
930       }
931     }
932     for (int level = 0; level <= last_level; ++level)
933       prev_sub_id[level] = hw_thread.sub_ids[level];
934   }
935   int get_sub_id(const kmp_hw_thread_t &hw_thread) const {
936     return sub_id[indexer(hw_thread)];
937   }
938 };
939 
940 static kmp_str_buf_t *
941 __kmp_hw_get_catalog_core_string(const kmp_hw_attr_t &attr, kmp_str_buf_t *buf,
942                                  bool plural) {
943   __kmp_str_buf_init(buf);
944   if (attr.is_core_type_valid())
945     __kmp_str_buf_print(buf, "%s %s",
946                         __kmp_hw_get_core_type_string(attr.get_core_type()),
947                         __kmp_hw_get_catalog_string(KMP_HW_CORE, plural));
948   else
949     __kmp_str_buf_print(buf, "%s eff=%d",
950                         __kmp_hw_get_catalog_string(KMP_HW_CORE, plural),
951                         attr.get_core_eff());
952   return buf;
953 }
954 
955 // Apply the KMP_HW_SUBSET envirable to the topology
956 // Returns true if KMP_HW_SUBSET filtered any processors
957 // otherwise, returns false
958 bool kmp_topology_t::filter_hw_subset() {
959   // If KMP_HW_SUBSET wasn't requested, then do nothing.
960   if (!__kmp_hw_subset)
961     return false;
962 
963   // First, sort the KMP_HW_SUBSET items by the machine topology
964   __kmp_hw_subset->sort();
965 
966   // Check to see if KMP_HW_SUBSET is a valid subset of the detected topology
967   bool using_core_types = false;
968   bool using_core_effs = false;
969   int hw_subset_depth = __kmp_hw_subset->get_depth();
970   kmp_hw_t specified[KMP_HW_LAST];
971   int *topology_levels = (int *)KMP_ALLOCA(sizeof(int) * hw_subset_depth);
972   KMP_ASSERT(hw_subset_depth > 0);
973   KMP_FOREACH_HW_TYPE(i) { specified[i] = KMP_HW_UNKNOWN; }
974   int core_level = get_level(KMP_HW_CORE);
975   for (int i = 0; i < hw_subset_depth; ++i) {
976     int max_count;
977     const kmp_hw_subset_t::item_t &item = __kmp_hw_subset->at(i);
978     int num = item.num[0];
979     int offset = item.offset[0];
980     kmp_hw_t type = item.type;
981     kmp_hw_t equivalent_type = equivalent[type];
982     int level = get_level(type);
983     topology_levels[i] = level;
984 
985     // Check to see if current layer is in detected machine topology
986     if (equivalent_type != KMP_HW_UNKNOWN) {
987       __kmp_hw_subset->at(i).type = equivalent_type;
988     } else {
989       KMP_AFF_WARNING(__kmp_affinity, AffHWSubsetNotExistGeneric,
990                       __kmp_hw_get_catalog_string(type));
991       return false;
992     }
993 
994     // Check to see if current layer has already been
995     // specified either directly or through an equivalent type
996     if (specified[equivalent_type] != KMP_HW_UNKNOWN) {
997       KMP_AFF_WARNING(__kmp_affinity, AffHWSubsetEqvLayers,
998                       __kmp_hw_get_catalog_string(type),
999                       __kmp_hw_get_catalog_string(specified[equivalent_type]));
1000       return false;
1001     }
1002     specified[equivalent_type] = type;
1003 
1004     // Check to see if each layer's num & offset parameters are valid
1005     max_count = get_ratio(level);
1006     if (max_count < 0 ||
1007         (num != kmp_hw_subset_t::USE_ALL && num + offset > max_count)) {
1008       bool plural = (num > 1);
1009       KMP_AFF_WARNING(__kmp_affinity, AffHWSubsetManyGeneric,
1010                       __kmp_hw_get_catalog_string(type, plural));
1011       return false;
1012     }
1013 
1014     // Check to see if core attributes are consistent
1015     if (core_level == level) {
1016       // Determine which core attributes are specified
1017       for (int j = 0; j < item.num_attrs; ++j) {
1018         if (item.attr[j].is_core_type_valid())
1019           using_core_types = true;
1020         if (item.attr[j].is_core_eff_valid())
1021           using_core_effs = true;
1022       }
1023 
1024       // Check if using a single core attribute on non-hybrid arch.
1025       // Do not ignore all of KMP_HW_SUBSET, just ignore the attribute.
1026       //
1027       // Check if using multiple core attributes on non-hyrbid arch.
1028       // Ignore all of KMP_HW_SUBSET if this is the case.
1029       if ((using_core_effs || using_core_types) && !__kmp_is_hybrid_cpu()) {
1030         if (item.num_attrs == 1) {
1031           if (using_core_effs) {
1032             KMP_AFF_WARNING(__kmp_affinity, AffHWSubsetIgnoringAttr,
1033                             "efficiency");
1034           } else {
1035             KMP_AFF_WARNING(__kmp_affinity, AffHWSubsetIgnoringAttr,
1036                             "core_type");
1037           }
1038           using_core_effs = false;
1039           using_core_types = false;
1040         } else {
1041           KMP_AFF_WARNING(__kmp_affinity, AffHWSubsetAttrsNonHybrid);
1042           return false;
1043         }
1044       }
1045 
1046       // Check if using both core types and core efficiencies together
1047       if (using_core_types && using_core_effs) {
1048         KMP_AFF_WARNING(__kmp_affinity, AffHWSubsetIncompat, "core_type",
1049                         "efficiency");
1050         return false;
1051       }
1052 
1053       // Check that core efficiency values are valid
1054       if (using_core_effs) {
1055         for (int j = 0; j < item.num_attrs; ++j) {
1056           if (item.attr[j].is_core_eff_valid()) {
1057             int core_eff = item.attr[j].get_core_eff();
1058             if (core_eff < 0 || core_eff >= num_core_efficiencies) {
1059               kmp_str_buf_t buf;
1060               __kmp_str_buf_init(&buf);
1061               __kmp_str_buf_print(&buf, "%d", item.attr[j].get_core_eff());
1062               __kmp_msg(kmp_ms_warning,
1063                         KMP_MSG(AffHWSubsetAttrInvalid, "efficiency", buf.str),
1064                         KMP_HNT(ValidValuesRange, 0, num_core_efficiencies - 1),
1065                         __kmp_msg_null);
1066               __kmp_str_buf_free(&buf);
1067               return false;
1068             }
1069           }
1070         }
1071       }
1072 
1073       // Check that the number of requested cores with attributes is valid
1074       if (using_core_types || using_core_effs) {
1075         for (int j = 0; j < item.num_attrs; ++j) {
1076           int num = item.num[j];
1077           int offset = item.offset[j];
1078           int level_above = core_level - 1;
1079           if (level_above >= 0) {
1080             max_count = get_ncores_with_attr_per(item.attr[j], level_above);
1081             if (max_count <= 0 ||
1082                 (num != kmp_hw_subset_t::USE_ALL && num + offset > max_count)) {
1083               kmp_str_buf_t buf;
1084               __kmp_hw_get_catalog_core_string(item.attr[j], &buf, num > 0);
1085               KMP_AFF_WARNING(__kmp_affinity, AffHWSubsetManyGeneric, buf.str);
1086               __kmp_str_buf_free(&buf);
1087               return false;
1088             }
1089           }
1090         }
1091       }
1092 
1093       if ((using_core_types || using_core_effs) && item.num_attrs > 1) {
1094         for (int j = 0; j < item.num_attrs; ++j) {
1095           // Ambiguous use of specific core attribute + generic core
1096           // e.g., 4c & 3c:intel_core or 4c & 3c:eff1
1097           if (!item.attr[j]) {
1098             kmp_hw_attr_t other_attr;
1099             for (int k = 0; k < item.num_attrs; ++k) {
1100               if (item.attr[k] != item.attr[j]) {
1101                 other_attr = item.attr[k];
1102                 break;
1103               }
1104             }
1105             kmp_str_buf_t buf;
1106             __kmp_hw_get_catalog_core_string(other_attr, &buf, item.num[j] > 0);
1107             KMP_AFF_WARNING(__kmp_affinity, AffHWSubsetIncompat,
1108                             __kmp_hw_get_catalog_string(KMP_HW_CORE), buf.str);
1109             __kmp_str_buf_free(&buf);
1110             return false;
1111           }
1112           // Allow specifying a specific core type or core eff exactly once
1113           for (int k = 0; k < j; ++k) {
1114             if (!item.attr[j] || !item.attr[k])
1115               continue;
1116             if (item.attr[k] == item.attr[j]) {
1117               kmp_str_buf_t buf;
1118               __kmp_hw_get_catalog_core_string(item.attr[j], &buf,
1119                                                item.num[j] > 0);
1120               KMP_AFF_WARNING(__kmp_affinity, AffHWSubsetAttrRepeat, buf.str);
1121               __kmp_str_buf_free(&buf);
1122               return false;
1123             }
1124           }
1125         }
1126       }
1127     }
1128   }
1129 
1130   struct core_type_indexer {
1131     int operator()(const kmp_hw_thread_t &t) const {
1132       switch (t.attrs.get_core_type()) {
1133 #if KMP_ARCH_X86 || KMP_ARCH_X86_64
1134       case KMP_HW_CORE_TYPE_ATOM:
1135         return 1;
1136       case KMP_HW_CORE_TYPE_CORE:
1137         return 2;
1138 #endif
1139       case KMP_HW_CORE_TYPE_UNKNOWN:
1140         return 0;
1141       }
1142       KMP_ASSERT(0);
1143       return 0;
1144     }
1145   };
1146   struct core_eff_indexer {
1147     int operator()(const kmp_hw_thread_t &t) const {
1148       return t.attrs.get_core_eff();
1149     }
1150   };
1151 
1152   kmp_sub_ids_t<KMP_HW_MAX_NUM_CORE_TYPES, core_type_indexer> core_type_sub_ids(
1153       core_level);
1154   kmp_sub_ids_t<KMP_HW_MAX_NUM_CORE_EFFS, core_eff_indexer> core_eff_sub_ids(
1155       core_level);
1156 
1157   // Determine which hardware threads should be filtered.
1158   int num_filtered = 0;
1159   bool *filtered = (bool *)__kmp_allocate(sizeof(bool) * num_hw_threads);
1160   for (int i = 0; i < num_hw_threads; ++i) {
1161     kmp_hw_thread_t &hw_thread = hw_threads[i];
1162     // Update type_sub_id
1163     if (using_core_types)
1164       core_type_sub_ids.update(hw_thread);
1165     if (using_core_effs)
1166       core_eff_sub_ids.update(hw_thread);
1167 
1168     // Check to see if this hardware thread should be filtered
1169     bool should_be_filtered = false;
1170     for (int hw_subset_index = 0; hw_subset_index < hw_subset_depth;
1171          ++hw_subset_index) {
1172       const auto &hw_subset_item = __kmp_hw_subset->at(hw_subset_index);
1173       int level = topology_levels[hw_subset_index];
1174       if (level == -1)
1175         continue;
1176       if ((using_core_effs || using_core_types) && level == core_level) {
1177         // Look for the core attribute in KMP_HW_SUBSET which corresponds
1178         // to this hardware thread's core attribute. Use this num,offset plus
1179         // the running sub_id for the particular core attribute of this hardware
1180         // thread to determine if the hardware thread should be filtered or not.
1181         int attr_idx;
1182         kmp_hw_core_type_t core_type = hw_thread.attrs.get_core_type();
1183         int core_eff = hw_thread.attrs.get_core_eff();
1184         for (attr_idx = 0; attr_idx < hw_subset_item.num_attrs; ++attr_idx) {
1185           if (using_core_types &&
1186               hw_subset_item.attr[attr_idx].get_core_type() == core_type)
1187             break;
1188           if (using_core_effs &&
1189               hw_subset_item.attr[attr_idx].get_core_eff() == core_eff)
1190             break;
1191         }
1192         // This core attribute isn't in the KMP_HW_SUBSET so always filter it.
1193         if (attr_idx == hw_subset_item.num_attrs) {
1194           should_be_filtered = true;
1195           break;
1196         }
1197         int sub_id;
1198         int num = hw_subset_item.num[attr_idx];
1199         int offset = hw_subset_item.offset[attr_idx];
1200         if (using_core_types)
1201           sub_id = core_type_sub_ids.get_sub_id(hw_thread);
1202         else
1203           sub_id = core_eff_sub_ids.get_sub_id(hw_thread);
1204         if (sub_id < offset ||
1205             (num != kmp_hw_subset_t::USE_ALL && sub_id >= offset + num)) {
1206           should_be_filtered = true;
1207           break;
1208         }
1209       } else {
1210         int num = hw_subset_item.num[0];
1211         int offset = hw_subset_item.offset[0];
1212         if (hw_thread.sub_ids[level] < offset ||
1213             (num != kmp_hw_subset_t::USE_ALL &&
1214              hw_thread.sub_ids[level] >= offset + num)) {
1215           should_be_filtered = true;
1216           break;
1217         }
1218       }
1219     }
1220     // Collect filtering information
1221     filtered[i] = should_be_filtered;
1222     if (should_be_filtered)
1223       num_filtered++;
1224   }
1225 
1226   // One last check that we shouldn't allow filtering entire machine
1227   if (num_filtered == num_hw_threads) {
1228     KMP_AFF_WARNING(__kmp_affinity, AffHWSubsetAllFiltered);
1229     __kmp_free(filtered);
1230     return false;
1231   }
1232 
1233   // Apply the filter
1234   int new_index = 0;
1235   for (int i = 0; i < num_hw_threads; ++i) {
1236     if (!filtered[i]) {
1237       if (i != new_index)
1238         hw_threads[new_index] = hw_threads[i];
1239       new_index++;
1240     } else {
1241 #if KMP_AFFINITY_SUPPORTED
1242       KMP_CPU_CLR(hw_threads[i].os_id, __kmp_affin_fullMask);
1243 #endif
1244       __kmp_avail_proc--;
1245     }
1246   }
1247 
1248   KMP_DEBUG_ASSERT(new_index <= num_hw_threads);
1249   num_hw_threads = new_index;
1250 
1251   // Post hardware subset canonicalization
1252   _gather_enumeration_information();
1253   _discover_uniformity();
1254   _set_globals();
1255   _set_last_level_cache();
1256   __kmp_free(filtered);
1257   return true;
1258 }
1259 
1260 bool kmp_topology_t::is_close(int hwt1, int hwt2, int hw_level) const {
1261   if (hw_level >= depth)
1262     return true;
1263   bool retval = true;
1264   const kmp_hw_thread_t &t1 = hw_threads[hwt1];
1265   const kmp_hw_thread_t &t2 = hw_threads[hwt2];
1266   for (int i = 0; i < (depth - hw_level); ++i) {
1267     if (t1.ids[i] != t2.ids[i])
1268       return false;
1269   }
1270   return retval;
1271 }
1272 
1273 ////////////////////////////////////////////////////////////////////////////////
1274 
1275 #if KMP_AFFINITY_SUPPORTED
1276 class kmp_affinity_raii_t {
1277   kmp_affin_mask_t *mask;
1278   bool restored;
1279 
1280 public:
1281   kmp_affinity_raii_t() : restored(false) {
1282     KMP_CPU_ALLOC(mask);
1283     KMP_ASSERT(mask != NULL);
1284     __kmp_get_system_affinity(mask, TRUE);
1285   }
1286   void restore() {
1287     __kmp_set_system_affinity(mask, TRUE);
1288     KMP_CPU_FREE(mask);
1289     restored = true;
1290   }
1291   ~kmp_affinity_raii_t() {
1292     if (!restored) {
1293       __kmp_set_system_affinity(mask, TRUE);
1294       KMP_CPU_FREE(mask);
1295     }
1296   }
1297 };
1298 
1299 bool KMPAffinity::picked_api = false;
1300 
1301 void *KMPAffinity::Mask::operator new(size_t n) { return __kmp_allocate(n); }
1302 void *KMPAffinity::Mask::operator new[](size_t n) { return __kmp_allocate(n); }
1303 void KMPAffinity::Mask::operator delete(void *p) { __kmp_free(p); }
1304 void KMPAffinity::Mask::operator delete[](void *p) { __kmp_free(p); }
1305 void *KMPAffinity::operator new(size_t n) { return __kmp_allocate(n); }
1306 void KMPAffinity::operator delete(void *p) { __kmp_free(p); }
1307 
1308 void KMPAffinity::pick_api() {
1309   KMPAffinity *affinity_dispatch;
1310   if (picked_api)
1311     return;
1312 #if KMP_USE_HWLOC
1313   // Only use Hwloc if affinity isn't explicitly disabled and
1314   // user requests Hwloc topology method
1315   if (__kmp_affinity_top_method == affinity_top_method_hwloc &&
1316       __kmp_affinity.type != affinity_disabled) {
1317     affinity_dispatch = new KMPHwlocAffinity();
1318   } else
1319 #endif
1320   {
1321     affinity_dispatch = new KMPNativeAffinity();
1322   }
1323   __kmp_affinity_dispatch = affinity_dispatch;
1324   picked_api = true;
1325 }
1326 
1327 void KMPAffinity::destroy_api() {
1328   if (__kmp_affinity_dispatch != NULL) {
1329     delete __kmp_affinity_dispatch;
1330     __kmp_affinity_dispatch = NULL;
1331     picked_api = false;
1332   }
1333 }
1334 
1335 #define KMP_ADVANCE_SCAN(scan)                                                 \
1336   while (*scan != '\0') {                                                      \
1337     scan++;                                                                    \
1338   }
1339 
1340 // Print the affinity mask to the character array in a pretty format.
1341 // The format is a comma separated list of non-negative integers or integer
1342 // ranges: e.g., 1,2,3-5,7,9-15
1343 // The format can also be the string "{<empty>}" if no bits are set in mask
1344 char *__kmp_affinity_print_mask(char *buf, int buf_len,
1345                                 kmp_affin_mask_t *mask) {
1346   int start = 0, finish = 0, previous = 0;
1347   bool first_range;
1348   KMP_ASSERT(buf);
1349   KMP_ASSERT(buf_len >= 40);
1350   KMP_ASSERT(mask);
1351   char *scan = buf;
1352   char *end = buf + buf_len - 1;
1353 
1354   // Check for empty set.
1355   if (mask->begin() == mask->end()) {
1356     KMP_SNPRINTF(scan, end - scan + 1, "{<empty>}");
1357     KMP_ADVANCE_SCAN(scan);
1358     KMP_ASSERT(scan <= end);
1359     return buf;
1360   }
1361 
1362   first_range = true;
1363   start = mask->begin();
1364   while (1) {
1365     // Find next range
1366     // [start, previous] is inclusive range of contiguous bits in mask
1367     for (finish = mask->next(start), previous = start;
1368          finish == previous + 1 && finish != mask->end();
1369          finish = mask->next(finish)) {
1370       previous = finish;
1371     }
1372 
1373     // The first range does not need a comma printed before it, but the rest
1374     // of the ranges do need a comma beforehand
1375     if (!first_range) {
1376       KMP_SNPRINTF(scan, end - scan + 1, "%s", ",");
1377       KMP_ADVANCE_SCAN(scan);
1378     } else {
1379       first_range = false;
1380     }
1381     // Range with three or more contiguous bits in the affinity mask
1382     if (previous - start > 1) {
1383       KMP_SNPRINTF(scan, end - scan + 1, "%u-%u", start, previous);
1384     } else {
1385       // Range with one or two contiguous bits in the affinity mask
1386       KMP_SNPRINTF(scan, end - scan + 1, "%u", start);
1387       KMP_ADVANCE_SCAN(scan);
1388       if (previous - start > 0) {
1389         KMP_SNPRINTF(scan, end - scan + 1, ",%u", previous);
1390       }
1391     }
1392     KMP_ADVANCE_SCAN(scan);
1393     // Start over with new start point
1394     start = finish;
1395     if (start == mask->end())
1396       break;
1397     // Check for overflow
1398     if (end - scan < 2)
1399       break;
1400   }
1401 
1402   // Check for overflow
1403   KMP_ASSERT(scan <= end);
1404   return buf;
1405 }
1406 #undef KMP_ADVANCE_SCAN
1407 
1408 // Print the affinity mask to the string buffer object in a pretty format
1409 // The format is a comma separated list of non-negative integers or integer
1410 // ranges: e.g., 1,2,3-5,7,9-15
1411 // The format can also be the string "{<empty>}" if no bits are set in mask
1412 kmp_str_buf_t *__kmp_affinity_str_buf_mask(kmp_str_buf_t *buf,
1413                                            kmp_affin_mask_t *mask) {
1414   int start = 0, finish = 0, previous = 0;
1415   bool first_range;
1416   KMP_ASSERT(buf);
1417   KMP_ASSERT(mask);
1418 
1419   __kmp_str_buf_clear(buf);
1420 
1421   // Check for empty set.
1422   if (mask->begin() == mask->end()) {
1423     __kmp_str_buf_print(buf, "%s", "{<empty>}");
1424     return buf;
1425   }
1426 
1427   first_range = true;
1428   start = mask->begin();
1429   while (1) {
1430     // Find next range
1431     // [start, previous] is inclusive range of contiguous bits in mask
1432     for (finish = mask->next(start), previous = start;
1433          finish == previous + 1 && finish != mask->end();
1434          finish = mask->next(finish)) {
1435       previous = finish;
1436     }
1437 
1438     // The first range does not need a comma printed before it, but the rest
1439     // of the ranges do need a comma beforehand
1440     if (!first_range) {
1441       __kmp_str_buf_print(buf, "%s", ",");
1442     } else {
1443       first_range = false;
1444     }
1445     // Range with three or more contiguous bits in the affinity mask
1446     if (previous - start > 1) {
1447       __kmp_str_buf_print(buf, "%u-%u", start, previous);
1448     } else {
1449       // Range with one or two contiguous bits in the affinity mask
1450       __kmp_str_buf_print(buf, "%u", start);
1451       if (previous - start > 0) {
1452         __kmp_str_buf_print(buf, ",%u", previous);
1453       }
1454     }
1455     // Start over with new start point
1456     start = finish;
1457     if (start == mask->end())
1458       break;
1459   }
1460   return buf;
1461 }
1462 
1463 // Return (possibly empty) affinity mask representing the offline CPUs
1464 // Caller must free the mask
1465 kmp_affin_mask_t *__kmp_affinity_get_offline_cpus() {
1466   kmp_affin_mask_t *offline;
1467   KMP_CPU_ALLOC(offline);
1468   KMP_CPU_ZERO(offline);
1469 #if KMP_OS_LINUX
1470   int n, begin_cpu, end_cpu;
1471   kmp_safe_raii_file_t offline_file;
1472   auto skip_ws = [](FILE *f) {
1473     int c;
1474     do {
1475       c = fgetc(f);
1476     } while (isspace(c));
1477     if (c != EOF)
1478       ungetc(c, f);
1479   };
1480   // File contains CSV of integer ranges representing the offline CPUs
1481   // e.g., 1,2,4-7,9,11-15
1482   int status = offline_file.try_open("/sys/devices/system/cpu/offline", "r");
1483   if (status != 0)
1484     return offline;
1485   while (!feof(offline_file)) {
1486     skip_ws(offline_file);
1487     n = fscanf(offline_file, "%d", &begin_cpu);
1488     if (n != 1)
1489       break;
1490     skip_ws(offline_file);
1491     int c = fgetc(offline_file);
1492     if (c == EOF || c == ',') {
1493       // Just single CPU
1494       end_cpu = begin_cpu;
1495     } else if (c == '-') {
1496       // Range of CPUs
1497       skip_ws(offline_file);
1498       n = fscanf(offline_file, "%d", &end_cpu);
1499       if (n != 1)
1500         break;
1501       skip_ws(offline_file);
1502       c = fgetc(offline_file); // skip ','
1503     } else {
1504       // Syntax problem
1505       break;
1506     }
1507     // Ensure a valid range of CPUs
1508     if (begin_cpu < 0 || begin_cpu >= __kmp_xproc || end_cpu < 0 ||
1509         end_cpu >= __kmp_xproc || begin_cpu > end_cpu) {
1510       continue;
1511     }
1512     // Insert [begin_cpu, end_cpu] into offline mask
1513     for (int cpu = begin_cpu; cpu <= end_cpu; ++cpu) {
1514       KMP_CPU_SET(cpu, offline);
1515     }
1516   }
1517 #endif
1518   return offline;
1519 }
1520 
1521 // Return the number of available procs
1522 int __kmp_affinity_entire_machine_mask(kmp_affin_mask_t *mask) {
1523   int avail_proc = 0;
1524   KMP_CPU_ZERO(mask);
1525 
1526 #if KMP_GROUP_AFFINITY
1527 
1528   if (__kmp_num_proc_groups > 1) {
1529     int group;
1530     KMP_DEBUG_ASSERT(__kmp_GetActiveProcessorCount != NULL);
1531     for (group = 0; group < __kmp_num_proc_groups; group++) {
1532       int i;
1533       int num = __kmp_GetActiveProcessorCount(group);
1534       for (i = 0; i < num; i++) {
1535         KMP_CPU_SET(i + group * (CHAR_BIT * sizeof(DWORD_PTR)), mask);
1536         avail_proc++;
1537       }
1538     }
1539   } else
1540 
1541 #endif /* KMP_GROUP_AFFINITY */
1542 
1543   {
1544     int proc;
1545     kmp_affin_mask_t *offline_cpus = __kmp_affinity_get_offline_cpus();
1546     for (proc = 0; proc < __kmp_xproc; proc++) {
1547       // Skip offline CPUs
1548       if (KMP_CPU_ISSET(proc, offline_cpus))
1549         continue;
1550       KMP_CPU_SET(proc, mask);
1551       avail_proc++;
1552     }
1553     KMP_CPU_FREE(offline_cpus);
1554   }
1555 
1556   return avail_proc;
1557 }
1558 
1559 // All of the __kmp_affinity_create_*_map() routines should allocate the
1560 // internal topology object and set the layer ids for it.  Each routine
1561 // returns a boolean on whether it was successful at doing so.
1562 kmp_affin_mask_t *__kmp_affin_fullMask = NULL;
1563 // Original mask is a subset of full mask in multiple processor groups topology
1564 kmp_affin_mask_t *__kmp_affin_origMask = NULL;
1565 
1566 #if KMP_USE_HWLOC
1567 static inline bool __kmp_hwloc_is_cache_type(hwloc_obj_t obj) {
1568 #if HWLOC_API_VERSION >= 0x00020000
1569   return hwloc_obj_type_is_cache(obj->type);
1570 #else
1571   return obj->type == HWLOC_OBJ_CACHE;
1572 #endif
1573 }
1574 
1575 // Returns KMP_HW_* type derived from HWLOC_* type
1576 static inline kmp_hw_t __kmp_hwloc_type_2_topology_type(hwloc_obj_t obj) {
1577 
1578   if (__kmp_hwloc_is_cache_type(obj)) {
1579     if (obj->attr->cache.type == HWLOC_OBJ_CACHE_INSTRUCTION)
1580       return KMP_HW_UNKNOWN;
1581     switch (obj->attr->cache.depth) {
1582     case 1:
1583       return KMP_HW_L1;
1584     case 2:
1585 #if KMP_MIC_SUPPORTED
1586       if (__kmp_mic_type == mic3) {
1587         return KMP_HW_TILE;
1588       }
1589 #endif
1590       return KMP_HW_L2;
1591     case 3:
1592       return KMP_HW_L3;
1593     }
1594     return KMP_HW_UNKNOWN;
1595   }
1596 
1597   switch (obj->type) {
1598   case HWLOC_OBJ_PACKAGE:
1599     return KMP_HW_SOCKET;
1600   case HWLOC_OBJ_NUMANODE:
1601     return KMP_HW_NUMA;
1602   case HWLOC_OBJ_CORE:
1603     return KMP_HW_CORE;
1604   case HWLOC_OBJ_PU:
1605     return KMP_HW_THREAD;
1606   case HWLOC_OBJ_GROUP:
1607 #if HWLOC_API_VERSION >= 0x00020000
1608     if (obj->attr->group.kind == HWLOC_GROUP_KIND_INTEL_DIE)
1609       return KMP_HW_DIE;
1610     else if (obj->attr->group.kind == HWLOC_GROUP_KIND_INTEL_TILE)
1611       return KMP_HW_TILE;
1612     else if (obj->attr->group.kind == HWLOC_GROUP_KIND_INTEL_MODULE)
1613       return KMP_HW_MODULE;
1614     else if (obj->attr->group.kind == HWLOC_GROUP_KIND_WINDOWS_PROCESSOR_GROUP)
1615       return KMP_HW_PROC_GROUP;
1616 #endif
1617     return KMP_HW_UNKNOWN;
1618 #if HWLOC_API_VERSION >= 0x00020100
1619   case HWLOC_OBJ_DIE:
1620     return KMP_HW_DIE;
1621 #endif
1622   }
1623   return KMP_HW_UNKNOWN;
1624 }
1625 
1626 // Returns the number of objects of type 'type' below 'obj' within the topology
1627 // tree structure. e.g., if obj is a HWLOC_OBJ_PACKAGE object, and type is
1628 // HWLOC_OBJ_PU, then this will return the number of PU's under the SOCKET
1629 // object.
1630 static int __kmp_hwloc_get_nobjs_under_obj(hwloc_obj_t obj,
1631                                            hwloc_obj_type_t type) {
1632   int retval = 0;
1633   hwloc_obj_t first;
1634   for (first = hwloc_get_obj_below_by_type(__kmp_hwloc_topology, obj->type,
1635                                            obj->logical_index, type, 0);
1636        first != NULL && hwloc_get_ancestor_obj_by_type(__kmp_hwloc_topology,
1637                                                        obj->type, first) == obj;
1638        first = hwloc_get_next_obj_by_type(__kmp_hwloc_topology, first->type,
1639                                           first)) {
1640     ++retval;
1641   }
1642   return retval;
1643 }
1644 
1645 // This gets the sub_id for a lower object under a higher object in the
1646 // topology tree
1647 static int __kmp_hwloc_get_sub_id(hwloc_topology_t t, hwloc_obj_t higher,
1648                                   hwloc_obj_t lower) {
1649   hwloc_obj_t obj;
1650   hwloc_obj_type_t ltype = lower->type;
1651   int lindex = lower->logical_index - 1;
1652   int sub_id = 0;
1653   // Get the previous lower object
1654   obj = hwloc_get_obj_by_type(t, ltype, lindex);
1655   while (obj && lindex >= 0 &&
1656          hwloc_bitmap_isincluded(obj->cpuset, higher->cpuset)) {
1657     if (obj->userdata) {
1658       sub_id = (int)(RCAST(kmp_intptr_t, obj->userdata));
1659       break;
1660     }
1661     sub_id++;
1662     lindex--;
1663     obj = hwloc_get_obj_by_type(t, ltype, lindex);
1664   }
1665   // store sub_id + 1 so that 0 is differed from NULL
1666   lower->userdata = RCAST(void *, sub_id + 1);
1667   return sub_id;
1668 }
1669 
1670 static bool __kmp_affinity_create_hwloc_map(kmp_i18n_id_t *const msg_id) {
1671   kmp_hw_t type;
1672   int hw_thread_index, sub_id;
1673   int depth;
1674   hwloc_obj_t pu, obj, root, prev;
1675   kmp_hw_t types[KMP_HW_LAST];
1676   hwloc_obj_type_t hwloc_types[KMP_HW_LAST];
1677 
1678   hwloc_topology_t tp = __kmp_hwloc_topology;
1679   *msg_id = kmp_i18n_null;
1680   if (__kmp_affinity.flags.verbose) {
1681     KMP_INFORM(AffUsingHwloc, "KMP_AFFINITY");
1682   }
1683 
1684   if (!KMP_AFFINITY_CAPABLE()) {
1685     // Hack to try and infer the machine topology using only the data
1686     // available from hwloc on the current thread, and __kmp_xproc.
1687     KMP_ASSERT(__kmp_affinity.type == affinity_none);
1688     // hwloc only guarantees existance of PU object, so check PACKAGE and CORE
1689     hwloc_obj_t o = hwloc_get_obj_by_type(tp, HWLOC_OBJ_PACKAGE, 0);
1690     if (o != NULL)
1691       nCoresPerPkg = __kmp_hwloc_get_nobjs_under_obj(o, HWLOC_OBJ_CORE);
1692     else
1693       nCoresPerPkg = 1; // no PACKAGE found
1694     o = hwloc_get_obj_by_type(tp, HWLOC_OBJ_CORE, 0);
1695     if (o != NULL)
1696       __kmp_nThreadsPerCore = __kmp_hwloc_get_nobjs_under_obj(o, HWLOC_OBJ_PU);
1697     else
1698       __kmp_nThreadsPerCore = 1; // no CORE found
1699     __kmp_ncores = __kmp_xproc / __kmp_nThreadsPerCore;
1700     if (nCoresPerPkg == 0)
1701       nCoresPerPkg = 1; // to prevent possible division by 0
1702     nPackages = (__kmp_xproc + nCoresPerPkg - 1) / nCoresPerPkg;
1703     return true;
1704   }
1705 
1706 #if HWLOC_API_VERSION >= 0x00020400
1707   // Handle multiple types of cores if they exist on the system
1708   int nr_cpu_kinds = hwloc_cpukinds_get_nr(tp, 0);
1709 
1710   typedef struct kmp_hwloc_cpukinds_info_t {
1711     int efficiency;
1712     kmp_hw_core_type_t core_type;
1713     hwloc_bitmap_t mask;
1714   } kmp_hwloc_cpukinds_info_t;
1715   kmp_hwloc_cpukinds_info_t *cpukinds = nullptr;
1716 
1717   if (nr_cpu_kinds > 0) {
1718     unsigned nr_infos;
1719     struct hwloc_info_s *infos;
1720     cpukinds = (kmp_hwloc_cpukinds_info_t *)__kmp_allocate(
1721         sizeof(kmp_hwloc_cpukinds_info_t) * nr_cpu_kinds);
1722     for (unsigned idx = 0; idx < (unsigned)nr_cpu_kinds; ++idx) {
1723       cpukinds[idx].efficiency = -1;
1724       cpukinds[idx].core_type = KMP_HW_CORE_TYPE_UNKNOWN;
1725       cpukinds[idx].mask = hwloc_bitmap_alloc();
1726       if (hwloc_cpukinds_get_info(tp, idx, cpukinds[idx].mask,
1727                                   &cpukinds[idx].efficiency, &nr_infos, &infos,
1728                                   0) == 0) {
1729         for (unsigned i = 0; i < nr_infos; ++i) {
1730           if (__kmp_str_match("CoreType", 8, infos[i].name)) {
1731 #if KMP_ARCH_X86 || KMP_ARCH_X86_64
1732             if (__kmp_str_match("IntelAtom", 9, infos[i].value)) {
1733               cpukinds[idx].core_type = KMP_HW_CORE_TYPE_ATOM;
1734               break;
1735             } else if (__kmp_str_match("IntelCore", 9, infos[i].value)) {
1736               cpukinds[idx].core_type = KMP_HW_CORE_TYPE_CORE;
1737               break;
1738             }
1739 #endif
1740           }
1741         }
1742       }
1743     }
1744   }
1745 #endif
1746 
1747   root = hwloc_get_root_obj(tp);
1748 
1749   // Figure out the depth and types in the topology
1750   depth = 0;
1751   pu = hwloc_get_pu_obj_by_os_index(tp, __kmp_affin_fullMask->begin());
1752   KMP_ASSERT(pu);
1753   obj = pu;
1754   types[depth] = KMP_HW_THREAD;
1755   hwloc_types[depth] = obj->type;
1756   depth++;
1757   while (obj != root && obj != NULL) {
1758     obj = obj->parent;
1759 #if HWLOC_API_VERSION >= 0x00020000
1760     if (obj->memory_arity) {
1761       hwloc_obj_t memory;
1762       for (memory = obj->memory_first_child; memory;
1763            memory = hwloc_get_next_child(tp, obj, memory)) {
1764         if (memory->type == HWLOC_OBJ_NUMANODE)
1765           break;
1766       }
1767       if (memory && memory->type == HWLOC_OBJ_NUMANODE) {
1768         types[depth] = KMP_HW_NUMA;
1769         hwloc_types[depth] = memory->type;
1770         depth++;
1771       }
1772     }
1773 #endif
1774     type = __kmp_hwloc_type_2_topology_type(obj);
1775     if (type != KMP_HW_UNKNOWN) {
1776       types[depth] = type;
1777       hwloc_types[depth] = obj->type;
1778       depth++;
1779     }
1780   }
1781   KMP_ASSERT(depth > 0);
1782 
1783   // Get the order for the types correct
1784   for (int i = 0, j = depth - 1; i < j; ++i, --j) {
1785     hwloc_obj_type_t hwloc_temp = hwloc_types[i];
1786     kmp_hw_t temp = types[i];
1787     types[i] = types[j];
1788     types[j] = temp;
1789     hwloc_types[i] = hwloc_types[j];
1790     hwloc_types[j] = hwloc_temp;
1791   }
1792 
1793   // Allocate the data structure to be returned.
1794   __kmp_topology = kmp_topology_t::allocate(__kmp_avail_proc, depth, types);
1795 
1796   hw_thread_index = 0;
1797   pu = NULL;
1798   while ((pu = hwloc_get_next_obj_by_type(tp, HWLOC_OBJ_PU, pu))) {
1799     int index = depth - 1;
1800     bool included = KMP_CPU_ISSET(pu->os_index, __kmp_affin_fullMask);
1801     kmp_hw_thread_t &hw_thread = __kmp_topology->at(hw_thread_index);
1802     if (included) {
1803       hw_thread.clear();
1804       hw_thread.ids[index] = pu->logical_index;
1805       hw_thread.os_id = pu->os_index;
1806       // If multiple core types, then set that attribute for the hardware thread
1807 #if HWLOC_API_VERSION >= 0x00020400
1808       if (cpukinds) {
1809         int cpukind_index = -1;
1810         for (int i = 0; i < nr_cpu_kinds; ++i) {
1811           if (hwloc_bitmap_isset(cpukinds[i].mask, hw_thread.os_id)) {
1812             cpukind_index = i;
1813             break;
1814           }
1815         }
1816         if (cpukind_index >= 0) {
1817           hw_thread.attrs.set_core_type(cpukinds[cpukind_index].core_type);
1818           hw_thread.attrs.set_core_eff(cpukinds[cpukind_index].efficiency);
1819         }
1820       }
1821 #endif
1822       index--;
1823     }
1824     obj = pu;
1825     prev = obj;
1826     while (obj != root && obj != NULL) {
1827       obj = obj->parent;
1828 #if HWLOC_API_VERSION >= 0x00020000
1829       // NUMA Nodes are handled differently since they are not within the
1830       // parent/child structure anymore.  They are separate children
1831       // of obj (memory_first_child points to first memory child)
1832       if (obj->memory_arity) {
1833         hwloc_obj_t memory;
1834         for (memory = obj->memory_first_child; memory;
1835              memory = hwloc_get_next_child(tp, obj, memory)) {
1836           if (memory->type == HWLOC_OBJ_NUMANODE)
1837             break;
1838         }
1839         if (memory && memory->type == HWLOC_OBJ_NUMANODE) {
1840           sub_id = __kmp_hwloc_get_sub_id(tp, memory, prev);
1841           if (included) {
1842             hw_thread.ids[index] = memory->logical_index;
1843             hw_thread.ids[index + 1] = sub_id;
1844             index--;
1845           }
1846           prev = memory;
1847         }
1848         prev = obj;
1849       }
1850 #endif
1851       type = __kmp_hwloc_type_2_topology_type(obj);
1852       if (type != KMP_HW_UNKNOWN) {
1853         sub_id = __kmp_hwloc_get_sub_id(tp, obj, prev);
1854         if (included) {
1855           hw_thread.ids[index] = obj->logical_index;
1856           hw_thread.ids[index + 1] = sub_id;
1857           index--;
1858         }
1859         prev = obj;
1860       }
1861     }
1862     if (included)
1863       hw_thread_index++;
1864   }
1865 
1866 #if HWLOC_API_VERSION >= 0x00020400
1867   // Free the core types information
1868   if (cpukinds) {
1869     for (int idx = 0; idx < nr_cpu_kinds; ++idx)
1870       hwloc_bitmap_free(cpukinds[idx].mask);
1871     __kmp_free(cpukinds);
1872   }
1873 #endif
1874   __kmp_topology->sort_ids();
1875   return true;
1876 }
1877 #endif // KMP_USE_HWLOC
1878 
1879 // If we don't know how to retrieve the machine's processor topology, or
1880 // encounter an error in doing so, this routine is called to form a "flat"
1881 // mapping of os thread id's <-> processor id's.
1882 static bool __kmp_affinity_create_flat_map(kmp_i18n_id_t *const msg_id) {
1883   *msg_id = kmp_i18n_null;
1884   int depth = 3;
1885   kmp_hw_t types[] = {KMP_HW_SOCKET, KMP_HW_CORE, KMP_HW_THREAD};
1886 
1887   if (__kmp_affinity.flags.verbose) {
1888     KMP_INFORM(UsingFlatOS, "KMP_AFFINITY");
1889   }
1890 
1891   // Even if __kmp_affinity.type == affinity_none, this routine might still
1892   // be called to set __kmp_ncores, as well as
1893   // __kmp_nThreadsPerCore, nCoresPerPkg, & nPackages.
1894   if (!KMP_AFFINITY_CAPABLE()) {
1895     KMP_ASSERT(__kmp_affinity.type == affinity_none);
1896     __kmp_ncores = nPackages = __kmp_xproc;
1897     __kmp_nThreadsPerCore = nCoresPerPkg = 1;
1898     return true;
1899   }
1900 
1901   // When affinity is off, this routine will still be called to set
1902   // __kmp_ncores, as well as __kmp_nThreadsPerCore, nCoresPerPkg, & nPackages.
1903   // Make sure all these vars are set correctly, and return now if affinity is
1904   // not enabled.
1905   __kmp_ncores = nPackages = __kmp_avail_proc;
1906   __kmp_nThreadsPerCore = nCoresPerPkg = 1;
1907 
1908   // Construct the data structure to be returned.
1909   __kmp_topology = kmp_topology_t::allocate(__kmp_avail_proc, depth, types);
1910   int avail_ct = 0;
1911   int i;
1912   KMP_CPU_SET_ITERATE(i, __kmp_affin_fullMask) {
1913     // Skip this proc if it is not included in the machine model.
1914     if (!KMP_CPU_ISSET(i, __kmp_affin_fullMask)) {
1915       continue;
1916     }
1917     kmp_hw_thread_t &hw_thread = __kmp_topology->at(avail_ct);
1918     hw_thread.clear();
1919     hw_thread.os_id = i;
1920     hw_thread.ids[0] = i;
1921     hw_thread.ids[1] = 0;
1922     hw_thread.ids[2] = 0;
1923     avail_ct++;
1924   }
1925   if (__kmp_affinity.flags.verbose) {
1926     KMP_INFORM(OSProcToPackage, "KMP_AFFINITY");
1927   }
1928   return true;
1929 }
1930 
1931 #if KMP_GROUP_AFFINITY
1932 // If multiple Windows* OS processor groups exist, we can create a 2-level
1933 // topology map with the groups at level 0 and the individual procs at level 1.
1934 // This facilitates letting the threads float among all procs in a group,
1935 // if granularity=group (the default when there are multiple groups).
1936 static bool __kmp_affinity_create_proc_group_map(kmp_i18n_id_t *const msg_id) {
1937   *msg_id = kmp_i18n_null;
1938   int depth = 3;
1939   kmp_hw_t types[] = {KMP_HW_PROC_GROUP, KMP_HW_CORE, KMP_HW_THREAD};
1940   const static size_t BITS_PER_GROUP = CHAR_BIT * sizeof(DWORD_PTR);
1941 
1942   if (__kmp_affinity.flags.verbose) {
1943     KMP_INFORM(AffWindowsProcGroupMap, "KMP_AFFINITY");
1944   }
1945 
1946   // If we aren't affinity capable, then use flat topology
1947   if (!KMP_AFFINITY_CAPABLE()) {
1948     KMP_ASSERT(__kmp_affinity.type == affinity_none);
1949     nPackages = __kmp_num_proc_groups;
1950     __kmp_nThreadsPerCore = 1;
1951     __kmp_ncores = __kmp_xproc;
1952     nCoresPerPkg = nPackages / __kmp_ncores;
1953     return true;
1954   }
1955 
1956   // Construct the data structure to be returned.
1957   __kmp_topology = kmp_topology_t::allocate(__kmp_avail_proc, depth, types);
1958   int avail_ct = 0;
1959   int i;
1960   KMP_CPU_SET_ITERATE(i, __kmp_affin_fullMask) {
1961     // Skip this proc if it is not included in the machine model.
1962     if (!KMP_CPU_ISSET(i, __kmp_affin_fullMask)) {
1963       continue;
1964     }
1965     kmp_hw_thread_t &hw_thread = __kmp_topology->at(avail_ct++);
1966     hw_thread.clear();
1967     hw_thread.os_id = i;
1968     hw_thread.ids[0] = i / BITS_PER_GROUP;
1969     hw_thread.ids[1] = hw_thread.ids[2] = i % BITS_PER_GROUP;
1970   }
1971   return true;
1972 }
1973 #endif /* KMP_GROUP_AFFINITY */
1974 
1975 #if KMP_ARCH_X86 || KMP_ARCH_X86_64
1976 
1977 template <kmp_uint32 LSB, kmp_uint32 MSB>
1978 static inline unsigned __kmp_extract_bits(kmp_uint32 v) {
1979   const kmp_uint32 SHIFT_LEFT = sizeof(kmp_uint32) * 8 - 1 - MSB;
1980   const kmp_uint32 SHIFT_RIGHT = LSB;
1981   kmp_uint32 retval = v;
1982   retval <<= SHIFT_LEFT;
1983   retval >>= (SHIFT_LEFT + SHIFT_RIGHT);
1984   return retval;
1985 }
1986 
1987 static int __kmp_cpuid_mask_width(int count) {
1988   int r = 0;
1989 
1990   while ((1 << r) < count)
1991     ++r;
1992   return r;
1993 }
1994 
1995 class apicThreadInfo {
1996 public:
1997   unsigned osId; // param to __kmp_affinity_bind_thread
1998   unsigned apicId; // from cpuid after binding
1999   unsigned maxCoresPerPkg; //      ""
2000   unsigned maxThreadsPerPkg; //      ""
2001   unsigned pkgId; // inferred from above values
2002   unsigned coreId; //      ""
2003   unsigned threadId; //      ""
2004 };
2005 
2006 static int __kmp_affinity_cmp_apicThreadInfo_phys_id(const void *a,
2007                                                      const void *b) {
2008   const apicThreadInfo *aa = (const apicThreadInfo *)a;
2009   const apicThreadInfo *bb = (const apicThreadInfo *)b;
2010   if (aa->pkgId < bb->pkgId)
2011     return -1;
2012   if (aa->pkgId > bb->pkgId)
2013     return 1;
2014   if (aa->coreId < bb->coreId)
2015     return -1;
2016   if (aa->coreId > bb->coreId)
2017     return 1;
2018   if (aa->threadId < bb->threadId)
2019     return -1;
2020   if (aa->threadId > bb->threadId)
2021     return 1;
2022   return 0;
2023 }
2024 
2025 class kmp_cache_info_t {
2026 public:
2027   struct info_t {
2028     unsigned level, mask;
2029   };
2030   kmp_cache_info_t() : depth(0) { get_leaf4_levels(); }
2031   size_t get_depth() const { return depth; }
2032   info_t &operator[](size_t index) { return table[index]; }
2033   const info_t &operator[](size_t index) const { return table[index]; }
2034 
2035   static kmp_hw_t get_topology_type(unsigned level) {
2036     KMP_DEBUG_ASSERT(level >= 1 && level <= MAX_CACHE_LEVEL);
2037     switch (level) {
2038     case 1:
2039       return KMP_HW_L1;
2040     case 2:
2041       return KMP_HW_L2;
2042     case 3:
2043       return KMP_HW_L3;
2044     }
2045     return KMP_HW_UNKNOWN;
2046   }
2047 
2048 private:
2049   static const int MAX_CACHE_LEVEL = 3;
2050 
2051   size_t depth;
2052   info_t table[MAX_CACHE_LEVEL];
2053 
2054   void get_leaf4_levels() {
2055     unsigned level = 0;
2056     while (depth < MAX_CACHE_LEVEL) {
2057       unsigned cache_type, max_threads_sharing;
2058       unsigned cache_level, cache_mask_width;
2059       kmp_cpuid buf2;
2060       __kmp_x86_cpuid(4, level, &buf2);
2061       cache_type = __kmp_extract_bits<0, 4>(buf2.eax);
2062       if (!cache_type)
2063         break;
2064       // Skip instruction caches
2065       if (cache_type == 2) {
2066         level++;
2067         continue;
2068       }
2069       max_threads_sharing = __kmp_extract_bits<14, 25>(buf2.eax) + 1;
2070       cache_mask_width = __kmp_cpuid_mask_width(max_threads_sharing);
2071       cache_level = __kmp_extract_bits<5, 7>(buf2.eax);
2072       table[depth].level = cache_level;
2073       table[depth].mask = ((-1) << cache_mask_width);
2074       depth++;
2075       level++;
2076     }
2077   }
2078 };
2079 
2080 // On IA-32 architecture and Intel(R) 64 architecture, we attempt to use
2081 // an algorithm which cycles through the available os threads, setting
2082 // the current thread's affinity mask to that thread, and then retrieves
2083 // the Apic Id for each thread context using the cpuid instruction.
2084 static bool __kmp_affinity_create_apicid_map(kmp_i18n_id_t *const msg_id) {
2085   kmp_cpuid buf;
2086   *msg_id = kmp_i18n_null;
2087 
2088   if (__kmp_affinity.flags.verbose) {
2089     KMP_INFORM(AffInfoStr, "KMP_AFFINITY", KMP_I18N_STR(DecodingLegacyAPIC));
2090   }
2091 
2092   // Check if cpuid leaf 4 is supported.
2093   __kmp_x86_cpuid(0, 0, &buf);
2094   if (buf.eax < 4) {
2095     *msg_id = kmp_i18n_str_NoLeaf4Support;
2096     return false;
2097   }
2098 
2099   // The algorithm used starts by setting the affinity to each available thread
2100   // and retrieving info from the cpuid instruction, so if we are not capable of
2101   // calling __kmp_get_system_affinity() and _kmp_get_system_affinity(), then we
2102   // need to do something else - use the defaults that we calculated from
2103   // issuing cpuid without binding to each proc.
2104   if (!KMP_AFFINITY_CAPABLE()) {
2105     // Hack to try and infer the machine topology using only the data
2106     // available from cpuid on the current thread, and __kmp_xproc.
2107     KMP_ASSERT(__kmp_affinity.type == affinity_none);
2108 
2109     // Get an upper bound on the number of threads per package using cpuid(1).
2110     // On some OS/chps combinations where HT is supported by the chip but is
2111     // disabled, this value will be 2 on a single core chip. Usually, it will be
2112     // 2 if HT is enabled and 1 if HT is disabled.
2113     __kmp_x86_cpuid(1, 0, &buf);
2114     int maxThreadsPerPkg = (buf.ebx >> 16) & 0xff;
2115     if (maxThreadsPerPkg == 0) {
2116       maxThreadsPerPkg = 1;
2117     }
2118 
2119     // The num cores per pkg comes from cpuid(4). 1 must be added to the encoded
2120     // value.
2121     //
2122     // The author of cpu_count.cpp treated this only an upper bound on the
2123     // number of cores, but I haven't seen any cases where it was greater than
2124     // the actual number of cores, so we will treat it as exact in this block of
2125     // code.
2126     //
2127     // First, we need to check if cpuid(4) is supported on this chip. To see if
2128     // cpuid(n) is supported, issue cpuid(0) and check if eax has the value n or
2129     // greater.
2130     __kmp_x86_cpuid(0, 0, &buf);
2131     if (buf.eax >= 4) {
2132       __kmp_x86_cpuid(4, 0, &buf);
2133       nCoresPerPkg = ((buf.eax >> 26) & 0x3f) + 1;
2134     } else {
2135       nCoresPerPkg = 1;
2136     }
2137 
2138     // There is no way to reliably tell if HT is enabled without issuing the
2139     // cpuid instruction from every thread, can correlating the cpuid info, so
2140     // if the machine is not affinity capable, we assume that HT is off. We have
2141     // seen quite a few machines where maxThreadsPerPkg is 2, yet the machine
2142     // does not support HT.
2143     //
2144     // - Older OSes are usually found on machines with older chips, which do not
2145     //   support HT.
2146     // - The performance penalty for mistakenly identifying a machine as HT when
2147     //   it isn't (which results in blocktime being incorrectly set to 0) is
2148     //   greater than the penalty when for mistakenly identifying a machine as
2149     //   being 1 thread/core when it is really HT enabled (which results in
2150     //   blocktime being incorrectly set to a positive value).
2151     __kmp_ncores = __kmp_xproc;
2152     nPackages = (__kmp_xproc + nCoresPerPkg - 1) / nCoresPerPkg;
2153     __kmp_nThreadsPerCore = 1;
2154     return true;
2155   }
2156 
2157   // From here on, we can assume that it is safe to call
2158   // __kmp_get_system_affinity() and __kmp_set_system_affinity(), even if
2159   // __kmp_affinity.type = affinity_none.
2160 
2161   // Save the affinity mask for the current thread.
2162   kmp_affinity_raii_t previous_affinity;
2163 
2164   // Run through each of the available contexts, binding the current thread
2165   // to it, and obtaining the pertinent information using the cpuid instr.
2166   //
2167   // The relevant information is:
2168   // - Apic Id: Bits 24:31 of ebx after issuing cpuid(1) - each thread context
2169   //     has a uniqie Apic Id, which is of the form pkg# : core# : thread#.
2170   // - Max Threads Per Pkg: Bits 16:23 of ebx after issuing cpuid(1). The value
2171   //     of this field determines the width of the core# + thread# fields in the
2172   //     Apic Id. It is also an upper bound on the number of threads per
2173   //     package, but it has been verified that situations happen were it is not
2174   //     exact. In particular, on certain OS/chip combinations where Intel(R)
2175   //     Hyper-Threading Technology is supported by the chip but has been
2176   //     disabled, the value of this field will be 2 (for a single core chip).
2177   //     On other OS/chip combinations supporting Intel(R) Hyper-Threading
2178   //     Technology, the value of this field will be 1 when Intel(R)
2179   //     Hyper-Threading Technology is disabled and 2 when it is enabled.
2180   // - Max Cores Per Pkg:  Bits 26:31 of eax after issuing cpuid(4). The value
2181   //     of this field (+1) determines the width of the core# field in the Apic
2182   //     Id. The comments in "cpucount.cpp" say that this value is an upper
2183   //     bound, but the IA-32 architecture manual says that it is exactly the
2184   //     number of cores per package, and I haven't seen any case where it
2185   //     wasn't.
2186   //
2187   // From this information, deduce the package Id, core Id, and thread Id,
2188   // and set the corresponding fields in the apicThreadInfo struct.
2189   unsigned i;
2190   apicThreadInfo *threadInfo = (apicThreadInfo *)__kmp_allocate(
2191       __kmp_avail_proc * sizeof(apicThreadInfo));
2192   unsigned nApics = 0;
2193   KMP_CPU_SET_ITERATE(i, __kmp_affin_fullMask) {
2194     // Skip this proc if it is not included in the machine model.
2195     if (!KMP_CPU_ISSET(i, __kmp_affin_fullMask)) {
2196       continue;
2197     }
2198     KMP_DEBUG_ASSERT((int)nApics < __kmp_avail_proc);
2199 
2200     __kmp_affinity_dispatch->bind_thread(i);
2201     threadInfo[nApics].osId = i;
2202 
2203     // The apic id and max threads per pkg come from cpuid(1).
2204     __kmp_x86_cpuid(1, 0, &buf);
2205     if (((buf.edx >> 9) & 1) == 0) {
2206       __kmp_free(threadInfo);
2207       *msg_id = kmp_i18n_str_ApicNotPresent;
2208       return false;
2209     }
2210     threadInfo[nApics].apicId = (buf.ebx >> 24) & 0xff;
2211     threadInfo[nApics].maxThreadsPerPkg = (buf.ebx >> 16) & 0xff;
2212     if (threadInfo[nApics].maxThreadsPerPkg == 0) {
2213       threadInfo[nApics].maxThreadsPerPkg = 1;
2214     }
2215 
2216     // Max cores per pkg comes from cpuid(4). 1 must be added to the encoded
2217     // value.
2218     //
2219     // First, we need to check if cpuid(4) is supported on this chip. To see if
2220     // cpuid(n) is supported, issue cpuid(0) and check if eax has the value n
2221     // or greater.
2222     __kmp_x86_cpuid(0, 0, &buf);
2223     if (buf.eax >= 4) {
2224       __kmp_x86_cpuid(4, 0, &buf);
2225       threadInfo[nApics].maxCoresPerPkg = ((buf.eax >> 26) & 0x3f) + 1;
2226     } else {
2227       threadInfo[nApics].maxCoresPerPkg = 1;
2228     }
2229 
2230     // Infer the pkgId / coreId / threadId using only the info obtained locally.
2231     int widthCT = __kmp_cpuid_mask_width(threadInfo[nApics].maxThreadsPerPkg);
2232     threadInfo[nApics].pkgId = threadInfo[nApics].apicId >> widthCT;
2233 
2234     int widthC = __kmp_cpuid_mask_width(threadInfo[nApics].maxCoresPerPkg);
2235     int widthT = widthCT - widthC;
2236     if (widthT < 0) {
2237       // I've never seen this one happen, but I suppose it could, if the cpuid
2238       // instruction on a chip was really screwed up. Make sure to restore the
2239       // affinity mask before the tail call.
2240       __kmp_free(threadInfo);
2241       *msg_id = kmp_i18n_str_InvalidCpuidInfo;
2242       return false;
2243     }
2244 
2245     int maskC = (1 << widthC) - 1;
2246     threadInfo[nApics].coreId = (threadInfo[nApics].apicId >> widthT) & maskC;
2247 
2248     int maskT = (1 << widthT) - 1;
2249     threadInfo[nApics].threadId = threadInfo[nApics].apicId & maskT;
2250 
2251     nApics++;
2252   }
2253 
2254   // We've collected all the info we need.
2255   // Restore the old affinity mask for this thread.
2256   previous_affinity.restore();
2257 
2258   // Sort the threadInfo table by physical Id.
2259   qsort(threadInfo, nApics, sizeof(*threadInfo),
2260         __kmp_affinity_cmp_apicThreadInfo_phys_id);
2261 
2262   // The table is now sorted by pkgId / coreId / threadId, but we really don't
2263   // know the radix of any of the fields. pkgId's may be sparsely assigned among
2264   // the chips on a system. Although coreId's are usually assigned
2265   // [0 .. coresPerPkg-1] and threadId's are usually assigned
2266   // [0..threadsPerCore-1], we don't want to make any such assumptions.
2267   //
2268   // For that matter, we don't know what coresPerPkg and threadsPerCore (or the
2269   // total # packages) are at this point - we want to determine that now. We
2270   // only have an upper bound on the first two figures.
2271   //
2272   // We also perform a consistency check at this point: the values returned by
2273   // the cpuid instruction for any thread bound to a given package had better
2274   // return the same info for maxThreadsPerPkg and maxCoresPerPkg.
2275   nPackages = 1;
2276   nCoresPerPkg = 1;
2277   __kmp_nThreadsPerCore = 1;
2278   unsigned nCores = 1;
2279 
2280   unsigned pkgCt = 1; // to determine radii
2281   unsigned lastPkgId = threadInfo[0].pkgId;
2282   unsigned coreCt = 1;
2283   unsigned lastCoreId = threadInfo[0].coreId;
2284   unsigned threadCt = 1;
2285   unsigned lastThreadId = threadInfo[0].threadId;
2286 
2287   // intra-pkg consist checks
2288   unsigned prevMaxCoresPerPkg = threadInfo[0].maxCoresPerPkg;
2289   unsigned prevMaxThreadsPerPkg = threadInfo[0].maxThreadsPerPkg;
2290 
2291   for (i = 1; i < nApics; i++) {
2292     if (threadInfo[i].pkgId != lastPkgId) {
2293       nCores++;
2294       pkgCt++;
2295       lastPkgId = threadInfo[i].pkgId;
2296       if ((int)coreCt > nCoresPerPkg)
2297         nCoresPerPkg = coreCt;
2298       coreCt = 1;
2299       lastCoreId = threadInfo[i].coreId;
2300       if ((int)threadCt > __kmp_nThreadsPerCore)
2301         __kmp_nThreadsPerCore = threadCt;
2302       threadCt = 1;
2303       lastThreadId = threadInfo[i].threadId;
2304 
2305       // This is a different package, so go on to the next iteration without
2306       // doing any consistency checks. Reset the consistency check vars, though.
2307       prevMaxCoresPerPkg = threadInfo[i].maxCoresPerPkg;
2308       prevMaxThreadsPerPkg = threadInfo[i].maxThreadsPerPkg;
2309       continue;
2310     }
2311 
2312     if (threadInfo[i].coreId != lastCoreId) {
2313       nCores++;
2314       coreCt++;
2315       lastCoreId = threadInfo[i].coreId;
2316       if ((int)threadCt > __kmp_nThreadsPerCore)
2317         __kmp_nThreadsPerCore = threadCt;
2318       threadCt = 1;
2319       lastThreadId = threadInfo[i].threadId;
2320     } else if (threadInfo[i].threadId != lastThreadId) {
2321       threadCt++;
2322       lastThreadId = threadInfo[i].threadId;
2323     } else {
2324       __kmp_free(threadInfo);
2325       *msg_id = kmp_i18n_str_LegacyApicIDsNotUnique;
2326       return false;
2327     }
2328 
2329     // Check to make certain that the maxCoresPerPkg and maxThreadsPerPkg
2330     // fields agree between all the threads bounds to a given package.
2331     if ((prevMaxCoresPerPkg != threadInfo[i].maxCoresPerPkg) ||
2332         (prevMaxThreadsPerPkg != threadInfo[i].maxThreadsPerPkg)) {
2333       __kmp_free(threadInfo);
2334       *msg_id = kmp_i18n_str_InconsistentCpuidInfo;
2335       return false;
2336     }
2337   }
2338   // When affinity is off, this routine will still be called to set
2339   // __kmp_ncores, as well as __kmp_nThreadsPerCore, nCoresPerPkg, & nPackages.
2340   // Make sure all these vars are set correctly
2341   nPackages = pkgCt;
2342   if ((int)coreCt > nCoresPerPkg)
2343     nCoresPerPkg = coreCt;
2344   if ((int)threadCt > __kmp_nThreadsPerCore)
2345     __kmp_nThreadsPerCore = threadCt;
2346   __kmp_ncores = nCores;
2347   KMP_DEBUG_ASSERT(nApics == (unsigned)__kmp_avail_proc);
2348 
2349   // Now that we've determined the number of packages, the number of cores per
2350   // package, and the number of threads per core, we can construct the data
2351   // structure that is to be returned.
2352   int idx = 0;
2353   int pkgLevel = 0;
2354   int coreLevel = 1;
2355   int threadLevel = 2;
2356   //(__kmp_nThreadsPerCore <= 1) ? -1 : ((coreLevel >= 0) ? 2 : 1);
2357   int depth = (pkgLevel >= 0) + (coreLevel >= 0) + (threadLevel >= 0);
2358   kmp_hw_t types[3];
2359   if (pkgLevel >= 0)
2360     types[idx++] = KMP_HW_SOCKET;
2361   if (coreLevel >= 0)
2362     types[idx++] = KMP_HW_CORE;
2363   if (threadLevel >= 0)
2364     types[idx++] = KMP_HW_THREAD;
2365 
2366   KMP_ASSERT(depth > 0);
2367   __kmp_topology = kmp_topology_t::allocate(nApics, depth, types);
2368 
2369   for (i = 0; i < nApics; ++i) {
2370     idx = 0;
2371     unsigned os = threadInfo[i].osId;
2372     kmp_hw_thread_t &hw_thread = __kmp_topology->at(i);
2373     hw_thread.clear();
2374 
2375     if (pkgLevel >= 0) {
2376       hw_thread.ids[idx++] = threadInfo[i].pkgId;
2377     }
2378     if (coreLevel >= 0) {
2379       hw_thread.ids[idx++] = threadInfo[i].coreId;
2380     }
2381     if (threadLevel >= 0) {
2382       hw_thread.ids[idx++] = threadInfo[i].threadId;
2383     }
2384     hw_thread.os_id = os;
2385   }
2386 
2387   __kmp_free(threadInfo);
2388   __kmp_topology->sort_ids();
2389   if (!__kmp_topology->check_ids()) {
2390     kmp_topology_t::deallocate(__kmp_topology);
2391     __kmp_topology = nullptr;
2392     *msg_id = kmp_i18n_str_LegacyApicIDsNotUnique;
2393     return false;
2394   }
2395   return true;
2396 }
2397 
2398 // Hybrid cpu detection using CPUID.1A
2399 // Thread should be pinned to processor already
2400 static void __kmp_get_hybrid_info(kmp_hw_core_type_t *type, int *efficiency,
2401                                   unsigned *native_model_id) {
2402   kmp_cpuid buf;
2403   __kmp_x86_cpuid(0x1a, 0, &buf);
2404   *type = (kmp_hw_core_type_t)__kmp_extract_bits<24, 31>(buf.eax);
2405   switch (*type) {
2406   case KMP_HW_CORE_TYPE_ATOM:
2407     *efficiency = 0;
2408     break;
2409   case KMP_HW_CORE_TYPE_CORE:
2410     *efficiency = 1;
2411     break;
2412   default:
2413     *efficiency = 0;
2414   }
2415   *native_model_id = __kmp_extract_bits<0, 23>(buf.eax);
2416 }
2417 
2418 // Intel(R) microarchitecture code name Nehalem, Dunnington and later
2419 // architectures support a newer interface for specifying the x2APIC Ids,
2420 // based on CPUID.B or CPUID.1F
2421 /*
2422  * CPUID.B or 1F, Input ECX (sub leaf # aka level number)
2423     Bits            Bits            Bits           Bits
2424     31-16           15-8            7-4            4-0
2425 ---+-----------+--------------+-------------+-----------------+
2426 EAX| reserved  |   reserved   |   reserved  |  Bits to Shift  |
2427 ---+-----------|--------------+-------------+-----------------|
2428 EBX| reserved  | Num logical processors at level (16 bits)    |
2429 ---+-----------|--------------+-------------------------------|
2430 ECX| reserved  |   Level Type |      Level Number (8 bits)    |
2431 ---+-----------+--------------+-------------------------------|
2432 EDX|                    X2APIC ID (32 bits)                   |
2433 ---+----------------------------------------------------------+
2434 */
2435 
2436 enum {
2437   INTEL_LEVEL_TYPE_INVALID = 0, // Package level
2438   INTEL_LEVEL_TYPE_SMT = 1,
2439   INTEL_LEVEL_TYPE_CORE = 2,
2440   INTEL_LEVEL_TYPE_MODULE = 3,
2441   INTEL_LEVEL_TYPE_TILE = 4,
2442   INTEL_LEVEL_TYPE_DIE = 5,
2443   INTEL_LEVEL_TYPE_LAST = 6,
2444 };
2445 
2446 struct cpuid_level_info_t {
2447   unsigned level_type, mask, mask_width, nitems, cache_mask;
2448 };
2449 
2450 static kmp_hw_t __kmp_intel_type_2_topology_type(int intel_type) {
2451   switch (intel_type) {
2452   case INTEL_LEVEL_TYPE_INVALID:
2453     return KMP_HW_SOCKET;
2454   case INTEL_LEVEL_TYPE_SMT:
2455     return KMP_HW_THREAD;
2456   case INTEL_LEVEL_TYPE_CORE:
2457     return KMP_HW_CORE;
2458   case INTEL_LEVEL_TYPE_TILE:
2459     return KMP_HW_TILE;
2460   case INTEL_LEVEL_TYPE_MODULE:
2461     return KMP_HW_MODULE;
2462   case INTEL_LEVEL_TYPE_DIE:
2463     return KMP_HW_DIE;
2464   }
2465   return KMP_HW_UNKNOWN;
2466 }
2467 
2468 // This function takes the topology leaf, a levels array to store the levels
2469 // detected and a bitmap of the known levels.
2470 // Returns the number of levels in the topology
2471 static unsigned
2472 __kmp_x2apicid_get_levels(int leaf,
2473                           cpuid_level_info_t levels[INTEL_LEVEL_TYPE_LAST],
2474                           kmp_uint64 known_levels) {
2475   unsigned level, levels_index;
2476   unsigned level_type, mask_width, nitems;
2477   kmp_cpuid buf;
2478 
2479   // New algorithm has known topology layers act as highest unknown topology
2480   // layers when unknown topology layers exist.
2481   // e.g., Suppose layers were SMT <X> CORE <Y> <Z> PACKAGE, where <X> <Y> <Z>
2482   // are unknown topology layers, Then SMT will take the characteristics of
2483   // (SMT x <X>) and CORE will take the characteristics of (CORE x <Y> x <Z>).
2484   // This eliminates unknown portions of the topology while still keeping the
2485   // correct structure.
2486   level = levels_index = 0;
2487   do {
2488     __kmp_x86_cpuid(leaf, level, &buf);
2489     level_type = __kmp_extract_bits<8, 15>(buf.ecx);
2490     mask_width = __kmp_extract_bits<0, 4>(buf.eax);
2491     nitems = __kmp_extract_bits<0, 15>(buf.ebx);
2492     if (level_type != INTEL_LEVEL_TYPE_INVALID && nitems == 0)
2493       return 0;
2494 
2495     if (known_levels & (1ull << level_type)) {
2496       // Add a new level to the topology
2497       KMP_ASSERT(levels_index < INTEL_LEVEL_TYPE_LAST);
2498       levels[levels_index].level_type = level_type;
2499       levels[levels_index].mask_width = mask_width;
2500       levels[levels_index].nitems = nitems;
2501       levels_index++;
2502     } else {
2503       // If it is an unknown level, then logically move the previous layer up
2504       if (levels_index > 0) {
2505         levels[levels_index - 1].mask_width = mask_width;
2506         levels[levels_index - 1].nitems = nitems;
2507       }
2508     }
2509     level++;
2510   } while (level_type != INTEL_LEVEL_TYPE_INVALID);
2511 
2512   // Set the masks to & with apicid
2513   for (unsigned i = 0; i < levels_index; ++i) {
2514     if (levels[i].level_type != INTEL_LEVEL_TYPE_INVALID) {
2515       levels[i].mask = ~((-1) << levels[i].mask_width);
2516       levels[i].cache_mask = (-1) << levels[i].mask_width;
2517       for (unsigned j = 0; j < i; ++j)
2518         levels[i].mask ^= levels[j].mask;
2519     } else {
2520       KMP_DEBUG_ASSERT(levels_index > 0);
2521       levels[i].mask = (-1) << levels[i - 1].mask_width;
2522       levels[i].cache_mask = 0;
2523     }
2524   }
2525   return levels_index;
2526 }
2527 
2528 static bool __kmp_affinity_create_x2apicid_map(kmp_i18n_id_t *const msg_id) {
2529 
2530   cpuid_level_info_t levels[INTEL_LEVEL_TYPE_LAST];
2531   kmp_hw_t types[INTEL_LEVEL_TYPE_LAST];
2532   unsigned levels_index;
2533   kmp_cpuid buf;
2534   kmp_uint64 known_levels;
2535   int topology_leaf, highest_leaf, apic_id;
2536   int num_leaves;
2537   static int leaves[] = {0, 0};
2538 
2539   kmp_i18n_id_t leaf_message_id;
2540 
2541   KMP_BUILD_ASSERT(sizeof(known_levels) * CHAR_BIT > KMP_HW_LAST);
2542 
2543   *msg_id = kmp_i18n_null;
2544   if (__kmp_affinity.flags.verbose) {
2545     KMP_INFORM(AffInfoStr, "KMP_AFFINITY", KMP_I18N_STR(Decodingx2APIC));
2546   }
2547 
2548   // Figure out the known topology levels
2549   known_levels = 0ull;
2550   for (int i = 0; i < INTEL_LEVEL_TYPE_LAST; ++i) {
2551     if (__kmp_intel_type_2_topology_type(i) != KMP_HW_UNKNOWN) {
2552       known_levels |= (1ull << i);
2553     }
2554   }
2555 
2556   // Get the highest cpuid leaf supported
2557   __kmp_x86_cpuid(0, 0, &buf);
2558   highest_leaf = buf.eax;
2559 
2560   // If a specific topology method was requested, only allow that specific leaf
2561   // otherwise, try both leaves 31 and 11 in that order
2562   num_leaves = 0;
2563   if (__kmp_affinity_top_method == affinity_top_method_x2apicid) {
2564     num_leaves = 1;
2565     leaves[0] = 11;
2566     leaf_message_id = kmp_i18n_str_NoLeaf11Support;
2567   } else if (__kmp_affinity_top_method == affinity_top_method_x2apicid_1f) {
2568     num_leaves = 1;
2569     leaves[0] = 31;
2570     leaf_message_id = kmp_i18n_str_NoLeaf31Support;
2571   } else {
2572     num_leaves = 2;
2573     leaves[0] = 31;
2574     leaves[1] = 11;
2575     leaf_message_id = kmp_i18n_str_NoLeaf11Support;
2576   }
2577 
2578   // Check to see if cpuid leaf 31 or 11 is supported.
2579   __kmp_nThreadsPerCore = nCoresPerPkg = nPackages = 1;
2580   topology_leaf = -1;
2581   for (int i = 0; i < num_leaves; ++i) {
2582     int leaf = leaves[i];
2583     if (highest_leaf < leaf)
2584       continue;
2585     __kmp_x86_cpuid(leaf, 0, &buf);
2586     if (buf.ebx == 0)
2587       continue;
2588     topology_leaf = leaf;
2589     levels_index = __kmp_x2apicid_get_levels(leaf, levels, known_levels);
2590     if (levels_index == 0)
2591       continue;
2592     break;
2593   }
2594   if (topology_leaf == -1 || levels_index == 0) {
2595     *msg_id = leaf_message_id;
2596     return false;
2597   }
2598   KMP_ASSERT(levels_index <= INTEL_LEVEL_TYPE_LAST);
2599 
2600   // The algorithm used starts by setting the affinity to each available thread
2601   // and retrieving info from the cpuid instruction, so if we are not capable of
2602   // calling __kmp_get_system_affinity() and __kmp_get_system_affinity(), then
2603   // we need to do something else - use the defaults that we calculated from
2604   // issuing cpuid without binding to each proc.
2605   if (!KMP_AFFINITY_CAPABLE()) {
2606     // Hack to try and infer the machine topology using only the data
2607     // available from cpuid on the current thread, and __kmp_xproc.
2608     KMP_ASSERT(__kmp_affinity.type == affinity_none);
2609     for (unsigned i = 0; i < levels_index; ++i) {
2610       if (levels[i].level_type == INTEL_LEVEL_TYPE_SMT) {
2611         __kmp_nThreadsPerCore = levels[i].nitems;
2612       } else if (levels[i].level_type == INTEL_LEVEL_TYPE_CORE) {
2613         nCoresPerPkg = levels[i].nitems;
2614       }
2615     }
2616     __kmp_ncores = __kmp_xproc / __kmp_nThreadsPerCore;
2617     nPackages = (__kmp_xproc + nCoresPerPkg - 1) / nCoresPerPkg;
2618     return true;
2619   }
2620 
2621   // Allocate the data structure to be returned.
2622   int depth = levels_index;
2623   for (int i = depth - 1, j = 0; i >= 0; --i, ++j)
2624     types[j] = __kmp_intel_type_2_topology_type(levels[i].level_type);
2625   __kmp_topology =
2626       kmp_topology_t::allocate(__kmp_avail_proc, levels_index, types);
2627 
2628   // Insert equivalent cache types if they exist
2629   kmp_cache_info_t cache_info;
2630   for (size_t i = 0; i < cache_info.get_depth(); ++i) {
2631     const kmp_cache_info_t::info_t &info = cache_info[i];
2632     unsigned cache_mask = info.mask;
2633     unsigned cache_level = info.level;
2634     for (unsigned j = 0; j < levels_index; ++j) {
2635       unsigned hw_cache_mask = levels[j].cache_mask;
2636       kmp_hw_t cache_type = kmp_cache_info_t::get_topology_type(cache_level);
2637       if (hw_cache_mask == cache_mask && j < levels_index - 1) {
2638         kmp_hw_t type =
2639             __kmp_intel_type_2_topology_type(levels[j + 1].level_type);
2640         __kmp_topology->set_equivalent_type(cache_type, type);
2641       }
2642     }
2643   }
2644 
2645   // From here on, we can assume that it is safe to call
2646   // __kmp_get_system_affinity() and __kmp_set_system_affinity(), even if
2647   // __kmp_affinity.type = affinity_none.
2648 
2649   // Save the affinity mask for the current thread.
2650   kmp_affinity_raii_t previous_affinity;
2651 
2652   // Run through each of the available contexts, binding the current thread
2653   // to it, and obtaining the pertinent information using the cpuid instr.
2654   unsigned int proc;
2655   int hw_thread_index = 0;
2656   KMP_CPU_SET_ITERATE(proc, __kmp_affin_fullMask) {
2657     cpuid_level_info_t my_levels[INTEL_LEVEL_TYPE_LAST];
2658     unsigned my_levels_index;
2659 
2660     // Skip this proc if it is not included in the machine model.
2661     if (!KMP_CPU_ISSET(proc, __kmp_affin_fullMask)) {
2662       continue;
2663     }
2664     KMP_DEBUG_ASSERT(hw_thread_index < __kmp_avail_proc);
2665 
2666     __kmp_affinity_dispatch->bind_thread(proc);
2667 
2668     // New algorithm
2669     __kmp_x86_cpuid(topology_leaf, 0, &buf);
2670     apic_id = buf.edx;
2671     kmp_hw_thread_t &hw_thread = __kmp_topology->at(hw_thread_index);
2672     my_levels_index =
2673         __kmp_x2apicid_get_levels(topology_leaf, my_levels, known_levels);
2674     if (my_levels_index == 0 || my_levels_index != levels_index) {
2675       *msg_id = kmp_i18n_str_InvalidCpuidInfo;
2676       return false;
2677     }
2678     hw_thread.clear();
2679     hw_thread.os_id = proc;
2680     // Put in topology information
2681     for (unsigned j = 0, idx = depth - 1; j < my_levels_index; ++j, --idx) {
2682       hw_thread.ids[idx] = apic_id & my_levels[j].mask;
2683       if (j > 0) {
2684         hw_thread.ids[idx] >>= my_levels[j - 1].mask_width;
2685       }
2686     }
2687     // Hybrid information
2688     if (__kmp_is_hybrid_cpu() && highest_leaf >= 0x1a) {
2689       kmp_hw_core_type_t type;
2690       unsigned native_model_id;
2691       int efficiency;
2692       __kmp_get_hybrid_info(&type, &efficiency, &native_model_id);
2693       hw_thread.attrs.set_core_type(type);
2694       hw_thread.attrs.set_core_eff(efficiency);
2695     }
2696     hw_thread_index++;
2697   }
2698   KMP_ASSERT(hw_thread_index > 0);
2699   __kmp_topology->sort_ids();
2700   if (!__kmp_topology->check_ids()) {
2701     kmp_topology_t::deallocate(__kmp_topology);
2702     __kmp_topology = nullptr;
2703     *msg_id = kmp_i18n_str_x2ApicIDsNotUnique;
2704     return false;
2705   }
2706   return true;
2707 }
2708 #endif /* KMP_ARCH_X86 || KMP_ARCH_X86_64 */
2709 
2710 #define osIdIndex 0
2711 #define threadIdIndex 1
2712 #define coreIdIndex 2
2713 #define pkgIdIndex 3
2714 #define nodeIdIndex 4
2715 
2716 typedef unsigned *ProcCpuInfo;
2717 static unsigned maxIndex = pkgIdIndex;
2718 
2719 static int __kmp_affinity_cmp_ProcCpuInfo_phys_id(const void *a,
2720                                                   const void *b) {
2721   unsigned i;
2722   const unsigned *aa = *(unsigned *const *)a;
2723   const unsigned *bb = *(unsigned *const *)b;
2724   for (i = maxIndex;; i--) {
2725     if (aa[i] < bb[i])
2726       return -1;
2727     if (aa[i] > bb[i])
2728       return 1;
2729     if (i == osIdIndex)
2730       break;
2731   }
2732   return 0;
2733 }
2734 
2735 #if KMP_USE_HIER_SCHED
2736 // Set the array sizes for the hierarchy layers
2737 static void __kmp_dispatch_set_hierarchy_values() {
2738   // Set the maximum number of L1's to number of cores
2739   // Set the maximum number of L2's to to either number of cores / 2 for
2740   // Intel(R) Xeon Phi(TM) coprocessor formally codenamed Knights Landing
2741   // Or the number of cores for Intel(R) Xeon(R) processors
2742   // Set the maximum number of NUMA nodes and L3's to number of packages
2743   __kmp_hier_max_units[kmp_hier_layer_e::LAYER_THREAD + 1] =
2744       nPackages * nCoresPerPkg * __kmp_nThreadsPerCore;
2745   __kmp_hier_max_units[kmp_hier_layer_e::LAYER_L1 + 1] = __kmp_ncores;
2746 #if KMP_ARCH_X86_64 && (KMP_OS_LINUX || KMP_OS_FREEBSD || KMP_OS_WINDOWS) &&   \
2747     KMP_MIC_SUPPORTED
2748   if (__kmp_mic_type >= mic3)
2749     __kmp_hier_max_units[kmp_hier_layer_e::LAYER_L2 + 1] = __kmp_ncores / 2;
2750   else
2751 #endif // KMP_ARCH_X86_64 && (KMP_OS_LINUX || KMP_OS_WINDOWS)
2752     __kmp_hier_max_units[kmp_hier_layer_e::LAYER_L2 + 1] = __kmp_ncores;
2753   __kmp_hier_max_units[kmp_hier_layer_e::LAYER_L3 + 1] = nPackages;
2754   __kmp_hier_max_units[kmp_hier_layer_e::LAYER_NUMA + 1] = nPackages;
2755   __kmp_hier_max_units[kmp_hier_layer_e::LAYER_LOOP + 1] = 1;
2756   // Set the number of threads per unit
2757   // Number of hardware threads per L1/L2/L3/NUMA/LOOP
2758   __kmp_hier_threads_per[kmp_hier_layer_e::LAYER_THREAD + 1] = 1;
2759   __kmp_hier_threads_per[kmp_hier_layer_e::LAYER_L1 + 1] =
2760       __kmp_nThreadsPerCore;
2761 #if KMP_ARCH_X86_64 && (KMP_OS_LINUX || KMP_OS_FREEBSD || KMP_OS_WINDOWS) &&   \
2762     KMP_MIC_SUPPORTED
2763   if (__kmp_mic_type >= mic3)
2764     __kmp_hier_threads_per[kmp_hier_layer_e::LAYER_L2 + 1] =
2765         2 * __kmp_nThreadsPerCore;
2766   else
2767 #endif // KMP_ARCH_X86_64 && (KMP_OS_LINUX || KMP_OS_WINDOWS)
2768     __kmp_hier_threads_per[kmp_hier_layer_e::LAYER_L2 + 1] =
2769         __kmp_nThreadsPerCore;
2770   __kmp_hier_threads_per[kmp_hier_layer_e::LAYER_L3 + 1] =
2771       nCoresPerPkg * __kmp_nThreadsPerCore;
2772   __kmp_hier_threads_per[kmp_hier_layer_e::LAYER_NUMA + 1] =
2773       nCoresPerPkg * __kmp_nThreadsPerCore;
2774   __kmp_hier_threads_per[kmp_hier_layer_e::LAYER_LOOP + 1] =
2775       nPackages * nCoresPerPkg * __kmp_nThreadsPerCore;
2776 }
2777 
2778 // Return the index into the hierarchy for this tid and layer type (L1, L2, etc)
2779 // i.e., this thread's L1 or this thread's L2, etc.
2780 int __kmp_dispatch_get_index(int tid, kmp_hier_layer_e type) {
2781   int index = type + 1;
2782   int num_hw_threads = __kmp_hier_max_units[kmp_hier_layer_e::LAYER_THREAD + 1];
2783   KMP_DEBUG_ASSERT(type != kmp_hier_layer_e::LAYER_LAST);
2784   if (type == kmp_hier_layer_e::LAYER_THREAD)
2785     return tid;
2786   else if (type == kmp_hier_layer_e::LAYER_LOOP)
2787     return 0;
2788   KMP_DEBUG_ASSERT(__kmp_hier_max_units[index] != 0);
2789   if (tid >= num_hw_threads)
2790     tid = tid % num_hw_threads;
2791   return (tid / __kmp_hier_threads_per[index]) % __kmp_hier_max_units[index];
2792 }
2793 
2794 // Return the number of t1's per t2
2795 int __kmp_dispatch_get_t1_per_t2(kmp_hier_layer_e t1, kmp_hier_layer_e t2) {
2796   int i1 = t1 + 1;
2797   int i2 = t2 + 1;
2798   KMP_DEBUG_ASSERT(i1 <= i2);
2799   KMP_DEBUG_ASSERT(t1 != kmp_hier_layer_e::LAYER_LAST);
2800   KMP_DEBUG_ASSERT(t2 != kmp_hier_layer_e::LAYER_LAST);
2801   KMP_DEBUG_ASSERT(__kmp_hier_threads_per[i1] != 0);
2802   // (nthreads/t2) / (nthreads/t1) = t1 / t2
2803   return __kmp_hier_threads_per[i2] / __kmp_hier_threads_per[i1];
2804 }
2805 #endif // KMP_USE_HIER_SCHED
2806 
2807 static inline const char *__kmp_cpuinfo_get_filename() {
2808   const char *filename;
2809   if (__kmp_cpuinfo_file != nullptr)
2810     filename = __kmp_cpuinfo_file;
2811   else
2812     filename = "/proc/cpuinfo";
2813   return filename;
2814 }
2815 
2816 static inline const char *__kmp_cpuinfo_get_envvar() {
2817   const char *envvar = nullptr;
2818   if (__kmp_cpuinfo_file != nullptr)
2819     envvar = "KMP_CPUINFO_FILE";
2820   return envvar;
2821 }
2822 
2823 // Parse /proc/cpuinfo (or an alternate file in the same format) to obtain the
2824 // affinity map.
2825 static bool __kmp_affinity_create_cpuinfo_map(int *line,
2826                                               kmp_i18n_id_t *const msg_id) {
2827   const char *filename = __kmp_cpuinfo_get_filename();
2828   const char *envvar = __kmp_cpuinfo_get_envvar();
2829   *msg_id = kmp_i18n_null;
2830 
2831   if (__kmp_affinity.flags.verbose) {
2832     KMP_INFORM(AffParseFilename, "KMP_AFFINITY", filename);
2833   }
2834 
2835   kmp_safe_raii_file_t f(filename, "r", envvar);
2836 
2837   // Scan of the file, and count the number of "processor" (osId) fields,
2838   // and find the highest value of <n> for a node_<n> field.
2839   char buf[256];
2840   unsigned num_records = 0;
2841   while (!feof(f)) {
2842     buf[sizeof(buf) - 1] = 1;
2843     if (!fgets(buf, sizeof(buf), f)) {
2844       // Read errors presumably because of EOF
2845       break;
2846     }
2847 
2848     char s1[] = "processor";
2849     if (strncmp(buf, s1, sizeof(s1) - 1) == 0) {
2850       num_records++;
2851       continue;
2852     }
2853 
2854     // FIXME - this will match "node_<n> <garbage>"
2855     unsigned level;
2856     if (KMP_SSCANF(buf, "node_%u id", &level) == 1) {
2857       // validate the input fisrt:
2858       if (level > (unsigned)__kmp_xproc) { // level is too big
2859         level = __kmp_xproc;
2860       }
2861       if (nodeIdIndex + level >= maxIndex) {
2862         maxIndex = nodeIdIndex + level;
2863       }
2864       continue;
2865     }
2866   }
2867 
2868   // Check for empty file / no valid processor records, or too many. The number
2869   // of records can't exceed the number of valid bits in the affinity mask.
2870   if (num_records == 0) {
2871     *msg_id = kmp_i18n_str_NoProcRecords;
2872     return false;
2873   }
2874   if (num_records > (unsigned)__kmp_xproc) {
2875     *msg_id = kmp_i18n_str_TooManyProcRecords;
2876     return false;
2877   }
2878 
2879   // Set the file pointer back to the beginning, so that we can scan the file
2880   // again, this time performing a full parse of the data. Allocate a vector of
2881   // ProcCpuInfo object, where we will place the data. Adding an extra element
2882   // at the end allows us to remove a lot of extra checks for termination
2883   // conditions.
2884   if (fseek(f, 0, SEEK_SET) != 0) {
2885     *msg_id = kmp_i18n_str_CantRewindCpuinfo;
2886     return false;
2887   }
2888 
2889   // Allocate the array of records to store the proc info in.  The dummy
2890   // element at the end makes the logic in filling them out easier to code.
2891   unsigned **threadInfo =
2892       (unsigned **)__kmp_allocate((num_records + 1) * sizeof(unsigned *));
2893   unsigned i;
2894   for (i = 0; i <= num_records; i++) {
2895     threadInfo[i] =
2896         (unsigned *)__kmp_allocate((maxIndex + 1) * sizeof(unsigned));
2897   }
2898 
2899 #define CLEANUP_THREAD_INFO                                                    \
2900   for (i = 0; i <= num_records; i++) {                                         \
2901     __kmp_free(threadInfo[i]);                                                 \
2902   }                                                                            \
2903   __kmp_free(threadInfo);
2904 
2905   // A value of UINT_MAX means that we didn't find the field
2906   unsigned __index;
2907 
2908 #define INIT_PROC_INFO(p)                                                      \
2909   for (__index = 0; __index <= maxIndex; __index++) {                          \
2910     (p)[__index] = UINT_MAX;                                                   \
2911   }
2912 
2913   for (i = 0; i <= num_records; i++) {
2914     INIT_PROC_INFO(threadInfo[i]);
2915   }
2916 
2917   unsigned num_avail = 0;
2918   *line = 0;
2919   while (!feof(f)) {
2920     // Create an inner scoping level, so that all the goto targets at the end of
2921     // the loop appear in an outer scoping level. This avoids warnings about
2922     // jumping past an initialization to a target in the same block.
2923     {
2924       buf[sizeof(buf) - 1] = 1;
2925       bool long_line = false;
2926       if (!fgets(buf, sizeof(buf), f)) {
2927         // Read errors presumably because of EOF
2928         // If there is valid data in threadInfo[num_avail], then fake
2929         // a blank line in ensure that the last address gets parsed.
2930         bool valid = false;
2931         for (i = 0; i <= maxIndex; i++) {
2932           if (threadInfo[num_avail][i] != UINT_MAX) {
2933             valid = true;
2934           }
2935         }
2936         if (!valid) {
2937           break;
2938         }
2939         buf[0] = 0;
2940       } else if (!buf[sizeof(buf) - 1]) {
2941         // The line is longer than the buffer.  Set a flag and don't
2942         // emit an error if we were going to ignore the line, anyway.
2943         long_line = true;
2944 
2945 #define CHECK_LINE                                                             \
2946   if (long_line) {                                                             \
2947     CLEANUP_THREAD_INFO;                                                       \
2948     *msg_id = kmp_i18n_str_LongLineCpuinfo;                                    \
2949     return false;                                                              \
2950   }
2951       }
2952       (*line)++;
2953 
2954 #if KMP_ARCH_LOONGARCH64
2955       // The parsing logic of /proc/cpuinfo in this function highly depends on
2956       // the blank lines between each processor info block. But on LoongArch a
2957       // blank line exists before the first processor info block (i.e. after the
2958       // "system type" line). This blank line was added because the "system
2959       // type" line is unrelated to any of the CPUs. We must skip this line so
2960       // that the original logic works on LoongArch.
2961       if (*buf == '\n' && *line == 2)
2962         continue;
2963 #endif
2964 
2965       char s1[] = "processor";
2966       if (strncmp(buf, s1, sizeof(s1) - 1) == 0) {
2967         CHECK_LINE;
2968         char *p = strchr(buf + sizeof(s1) - 1, ':');
2969         unsigned val;
2970         if ((p == NULL) || (KMP_SSCANF(p + 1, "%u\n", &val) != 1))
2971           goto no_val;
2972         if (threadInfo[num_avail][osIdIndex] != UINT_MAX)
2973 #if KMP_ARCH_AARCH64
2974           // Handle the old AArch64 /proc/cpuinfo layout differently,
2975           // it contains all of the 'processor' entries listed in a
2976           // single 'Processor' section, therefore the normal looking
2977           // for duplicates in that section will always fail.
2978           num_avail++;
2979 #else
2980           goto dup_field;
2981 #endif
2982         threadInfo[num_avail][osIdIndex] = val;
2983 #if KMP_OS_LINUX && !(KMP_ARCH_X86 || KMP_ARCH_X86_64)
2984         char path[256];
2985         KMP_SNPRINTF(
2986             path, sizeof(path),
2987             "/sys/devices/system/cpu/cpu%u/topology/physical_package_id",
2988             threadInfo[num_avail][osIdIndex]);
2989         __kmp_read_from_file(path, "%u", &threadInfo[num_avail][pkgIdIndex]);
2990 
2991         KMP_SNPRINTF(path, sizeof(path),
2992                      "/sys/devices/system/cpu/cpu%u/topology/core_id",
2993                      threadInfo[num_avail][osIdIndex]);
2994         __kmp_read_from_file(path, "%u", &threadInfo[num_avail][coreIdIndex]);
2995         continue;
2996 #else
2997       }
2998       char s2[] = "physical id";
2999       if (strncmp(buf, s2, sizeof(s2) - 1) == 0) {
3000         CHECK_LINE;
3001         char *p = strchr(buf + sizeof(s2) - 1, ':');
3002         unsigned val;
3003         if ((p == NULL) || (KMP_SSCANF(p + 1, "%u\n", &val) != 1))
3004           goto no_val;
3005         if (threadInfo[num_avail][pkgIdIndex] != UINT_MAX)
3006           goto dup_field;
3007         threadInfo[num_avail][pkgIdIndex] = val;
3008         continue;
3009       }
3010       char s3[] = "core id";
3011       if (strncmp(buf, s3, sizeof(s3) - 1) == 0) {
3012         CHECK_LINE;
3013         char *p = strchr(buf + sizeof(s3) - 1, ':');
3014         unsigned val;
3015         if ((p == NULL) || (KMP_SSCANF(p + 1, "%u\n", &val) != 1))
3016           goto no_val;
3017         if (threadInfo[num_avail][coreIdIndex] != UINT_MAX)
3018           goto dup_field;
3019         threadInfo[num_avail][coreIdIndex] = val;
3020         continue;
3021 #endif // KMP_OS_LINUX && USE_SYSFS_INFO
3022       }
3023       char s4[] = "thread id";
3024       if (strncmp(buf, s4, sizeof(s4) - 1) == 0) {
3025         CHECK_LINE;
3026         char *p = strchr(buf + sizeof(s4) - 1, ':');
3027         unsigned val;
3028         if ((p == NULL) || (KMP_SSCANF(p + 1, "%u\n", &val) != 1))
3029           goto no_val;
3030         if (threadInfo[num_avail][threadIdIndex] != UINT_MAX)
3031           goto dup_field;
3032         threadInfo[num_avail][threadIdIndex] = val;
3033         continue;
3034       }
3035       unsigned level;
3036       if (KMP_SSCANF(buf, "node_%u id", &level) == 1) {
3037         CHECK_LINE;
3038         char *p = strchr(buf + sizeof(s4) - 1, ':');
3039         unsigned val;
3040         if ((p == NULL) || (KMP_SSCANF(p + 1, "%u\n", &val) != 1))
3041           goto no_val;
3042         // validate the input before using level:
3043         if (level > (unsigned)__kmp_xproc) { // level is too big
3044           level = __kmp_xproc;
3045         }
3046         if (threadInfo[num_avail][nodeIdIndex + level] != UINT_MAX)
3047           goto dup_field;
3048         threadInfo[num_avail][nodeIdIndex + level] = val;
3049         continue;
3050       }
3051 
3052       // We didn't recognize the leading token on the line. There are lots of
3053       // leading tokens that we don't recognize - if the line isn't empty, go on
3054       // to the next line.
3055       if ((*buf != 0) && (*buf != '\n')) {
3056         // If the line is longer than the buffer, read characters
3057         // until we find a newline.
3058         if (long_line) {
3059           int ch;
3060           while (((ch = fgetc(f)) != EOF) && (ch != '\n'))
3061             ;
3062         }
3063         continue;
3064       }
3065 
3066       // A newline has signalled the end of the processor record.
3067       // Check that there aren't too many procs specified.
3068       if ((int)num_avail == __kmp_xproc) {
3069         CLEANUP_THREAD_INFO;
3070         *msg_id = kmp_i18n_str_TooManyEntries;
3071         return false;
3072       }
3073 
3074       // Check for missing fields.  The osId field must be there, and we
3075       // currently require that the physical id field is specified, also.
3076       if (threadInfo[num_avail][osIdIndex] == UINT_MAX) {
3077         CLEANUP_THREAD_INFO;
3078         *msg_id = kmp_i18n_str_MissingProcField;
3079         return false;
3080       }
3081       if (threadInfo[0][pkgIdIndex] == UINT_MAX) {
3082         CLEANUP_THREAD_INFO;
3083         *msg_id = kmp_i18n_str_MissingPhysicalIDField;
3084         return false;
3085       }
3086 
3087       // Skip this proc if it is not included in the machine model.
3088       if (KMP_AFFINITY_CAPABLE() &&
3089           !KMP_CPU_ISSET(threadInfo[num_avail][osIdIndex],
3090                          __kmp_affin_fullMask)) {
3091         INIT_PROC_INFO(threadInfo[num_avail]);
3092         continue;
3093       }
3094 
3095       // We have a successful parse of this proc's info.
3096       // Increment the counter, and prepare for the next proc.
3097       num_avail++;
3098       KMP_ASSERT(num_avail <= num_records);
3099       INIT_PROC_INFO(threadInfo[num_avail]);
3100     }
3101     continue;
3102 
3103   no_val:
3104     CLEANUP_THREAD_INFO;
3105     *msg_id = kmp_i18n_str_MissingValCpuinfo;
3106     return false;
3107 
3108   dup_field:
3109     CLEANUP_THREAD_INFO;
3110     *msg_id = kmp_i18n_str_DuplicateFieldCpuinfo;
3111     return false;
3112   }
3113   *line = 0;
3114 
3115 #if KMP_MIC && REDUCE_TEAM_SIZE
3116   unsigned teamSize = 0;
3117 #endif // KMP_MIC && REDUCE_TEAM_SIZE
3118 
3119   // check for num_records == __kmp_xproc ???
3120 
3121   // If it is configured to omit the package level when there is only a single
3122   // package, the logic at the end of this routine won't work if there is only a
3123   // single thread
3124   KMP_ASSERT(num_avail > 0);
3125   KMP_ASSERT(num_avail <= num_records);
3126 
3127   // Sort the threadInfo table by physical Id.
3128   qsort(threadInfo, num_avail, sizeof(*threadInfo),
3129         __kmp_affinity_cmp_ProcCpuInfo_phys_id);
3130 
3131   // The table is now sorted by pkgId / coreId / threadId, but we really don't
3132   // know the radix of any of the fields. pkgId's may be sparsely assigned among
3133   // the chips on a system. Although coreId's are usually assigned
3134   // [0 .. coresPerPkg-1] and threadId's are usually assigned
3135   // [0..threadsPerCore-1], we don't want to make any such assumptions.
3136   //
3137   // For that matter, we don't know what coresPerPkg and threadsPerCore (or the
3138   // total # packages) are at this point - we want to determine that now. We
3139   // only have an upper bound on the first two figures.
3140   unsigned *counts =
3141       (unsigned *)__kmp_allocate((maxIndex + 1) * sizeof(unsigned));
3142   unsigned *maxCt =
3143       (unsigned *)__kmp_allocate((maxIndex + 1) * sizeof(unsigned));
3144   unsigned *totals =
3145       (unsigned *)__kmp_allocate((maxIndex + 1) * sizeof(unsigned));
3146   unsigned *lastId =
3147       (unsigned *)__kmp_allocate((maxIndex + 1) * sizeof(unsigned));
3148 
3149   bool assign_thread_ids = false;
3150   unsigned threadIdCt;
3151   unsigned index;
3152 
3153 restart_radix_check:
3154   threadIdCt = 0;
3155 
3156   // Initialize the counter arrays with data from threadInfo[0].
3157   if (assign_thread_ids) {
3158     if (threadInfo[0][threadIdIndex] == UINT_MAX) {
3159       threadInfo[0][threadIdIndex] = threadIdCt++;
3160     } else if (threadIdCt <= threadInfo[0][threadIdIndex]) {
3161       threadIdCt = threadInfo[0][threadIdIndex] + 1;
3162     }
3163   }
3164   for (index = 0; index <= maxIndex; index++) {
3165     counts[index] = 1;
3166     maxCt[index] = 1;
3167     totals[index] = 1;
3168     lastId[index] = threadInfo[0][index];
3169     ;
3170   }
3171 
3172   // Run through the rest of the OS procs.
3173   for (i = 1; i < num_avail; i++) {
3174     // Find the most significant index whose id differs from the id for the
3175     // previous OS proc.
3176     for (index = maxIndex; index >= threadIdIndex; index--) {
3177       if (assign_thread_ids && (index == threadIdIndex)) {
3178         // Auto-assign the thread id field if it wasn't specified.
3179         if (threadInfo[i][threadIdIndex] == UINT_MAX) {
3180           threadInfo[i][threadIdIndex] = threadIdCt++;
3181         }
3182         // Apparently the thread id field was specified for some entries and not
3183         // others. Start the thread id counter off at the next higher thread id.
3184         else if (threadIdCt <= threadInfo[i][threadIdIndex]) {
3185           threadIdCt = threadInfo[i][threadIdIndex] + 1;
3186         }
3187       }
3188       if (threadInfo[i][index] != lastId[index]) {
3189         // Run through all indices which are less significant, and reset the
3190         // counts to 1. At all levels up to and including index, we need to
3191         // increment the totals and record the last id.
3192         unsigned index2;
3193         for (index2 = threadIdIndex; index2 < index; index2++) {
3194           totals[index2]++;
3195           if (counts[index2] > maxCt[index2]) {
3196             maxCt[index2] = counts[index2];
3197           }
3198           counts[index2] = 1;
3199           lastId[index2] = threadInfo[i][index2];
3200         }
3201         counts[index]++;
3202         totals[index]++;
3203         lastId[index] = threadInfo[i][index];
3204 
3205         if (assign_thread_ids && (index > threadIdIndex)) {
3206 
3207 #if KMP_MIC && REDUCE_TEAM_SIZE
3208           // The default team size is the total #threads in the machine
3209           // minus 1 thread for every core that has 3 or more threads.
3210           teamSize += (threadIdCt <= 2) ? (threadIdCt) : (threadIdCt - 1);
3211 #endif // KMP_MIC && REDUCE_TEAM_SIZE
3212 
3213           // Restart the thread counter, as we are on a new core.
3214           threadIdCt = 0;
3215 
3216           // Auto-assign the thread id field if it wasn't specified.
3217           if (threadInfo[i][threadIdIndex] == UINT_MAX) {
3218             threadInfo[i][threadIdIndex] = threadIdCt++;
3219           }
3220 
3221           // Apparently the thread id field was specified for some entries and
3222           // not others. Start the thread id counter off at the next higher
3223           // thread id.
3224           else if (threadIdCt <= threadInfo[i][threadIdIndex]) {
3225             threadIdCt = threadInfo[i][threadIdIndex] + 1;
3226           }
3227         }
3228         break;
3229       }
3230     }
3231     if (index < threadIdIndex) {
3232       // If thread ids were specified, it is an error if they are not unique.
3233       // Also, check that we waven't already restarted the loop (to be safe -
3234       // shouldn't need to).
3235       if ((threadInfo[i][threadIdIndex] != UINT_MAX) || assign_thread_ids) {
3236         __kmp_free(lastId);
3237         __kmp_free(totals);
3238         __kmp_free(maxCt);
3239         __kmp_free(counts);
3240         CLEANUP_THREAD_INFO;
3241         *msg_id = kmp_i18n_str_PhysicalIDsNotUnique;
3242         return false;
3243       }
3244 
3245       // If the thread ids were not specified and we see entries entries that
3246       // are duplicates, start the loop over and assign the thread ids manually.
3247       assign_thread_ids = true;
3248       goto restart_radix_check;
3249     }
3250   }
3251 
3252 #if KMP_MIC && REDUCE_TEAM_SIZE
3253   // The default team size is the total #threads in the machine
3254   // minus 1 thread for every core that has 3 or more threads.
3255   teamSize += (threadIdCt <= 2) ? (threadIdCt) : (threadIdCt - 1);
3256 #endif // KMP_MIC && REDUCE_TEAM_SIZE
3257 
3258   for (index = threadIdIndex; index <= maxIndex; index++) {
3259     if (counts[index] > maxCt[index]) {
3260       maxCt[index] = counts[index];
3261     }
3262   }
3263 
3264   __kmp_nThreadsPerCore = maxCt[threadIdIndex];
3265   nCoresPerPkg = maxCt[coreIdIndex];
3266   nPackages = totals[pkgIdIndex];
3267 
3268   // When affinity is off, this routine will still be called to set
3269   // __kmp_ncores, as well as __kmp_nThreadsPerCore, nCoresPerPkg, & nPackages.
3270   // Make sure all these vars are set correctly, and return now if affinity is
3271   // not enabled.
3272   __kmp_ncores = totals[coreIdIndex];
3273   if (!KMP_AFFINITY_CAPABLE()) {
3274     KMP_ASSERT(__kmp_affinity.type == affinity_none);
3275     return true;
3276   }
3277 
3278 #if KMP_MIC && REDUCE_TEAM_SIZE
3279   // Set the default team size.
3280   if ((__kmp_dflt_team_nth == 0) && (teamSize > 0)) {
3281     __kmp_dflt_team_nth = teamSize;
3282     KA_TRACE(20, ("__kmp_affinity_create_cpuinfo_map: setting "
3283                   "__kmp_dflt_team_nth = %d\n",
3284                   __kmp_dflt_team_nth));
3285   }
3286 #endif // KMP_MIC && REDUCE_TEAM_SIZE
3287 
3288   KMP_DEBUG_ASSERT(num_avail == (unsigned)__kmp_avail_proc);
3289 
3290   // Count the number of levels which have more nodes at that level than at the
3291   // parent's level (with there being an implicit root node of the top level).
3292   // This is equivalent to saying that there is at least one node at this level
3293   // which has a sibling. These levels are in the map, and the package level is
3294   // always in the map.
3295   bool *inMap = (bool *)__kmp_allocate((maxIndex + 1) * sizeof(bool));
3296   for (index = threadIdIndex; index < maxIndex; index++) {
3297     KMP_ASSERT(totals[index] >= totals[index + 1]);
3298     inMap[index] = (totals[index] > totals[index + 1]);
3299   }
3300   inMap[maxIndex] = (totals[maxIndex] > 1);
3301   inMap[pkgIdIndex] = true;
3302   inMap[coreIdIndex] = true;
3303   inMap[threadIdIndex] = true;
3304 
3305   int depth = 0;
3306   int idx = 0;
3307   kmp_hw_t types[KMP_HW_LAST];
3308   int pkgLevel = -1;
3309   int coreLevel = -1;
3310   int threadLevel = -1;
3311   for (index = threadIdIndex; index <= maxIndex; index++) {
3312     if (inMap[index]) {
3313       depth++;
3314     }
3315   }
3316   if (inMap[pkgIdIndex]) {
3317     pkgLevel = idx;
3318     types[idx++] = KMP_HW_SOCKET;
3319   }
3320   if (inMap[coreIdIndex]) {
3321     coreLevel = idx;
3322     types[idx++] = KMP_HW_CORE;
3323   }
3324   if (inMap[threadIdIndex]) {
3325     threadLevel = idx;
3326     types[idx++] = KMP_HW_THREAD;
3327   }
3328   KMP_ASSERT(depth > 0);
3329 
3330   // Construct the data structure that is to be returned.
3331   __kmp_topology = kmp_topology_t::allocate(num_avail, depth, types);
3332 
3333   for (i = 0; i < num_avail; ++i) {
3334     unsigned os = threadInfo[i][osIdIndex];
3335     int src_index;
3336     kmp_hw_thread_t &hw_thread = __kmp_topology->at(i);
3337     hw_thread.clear();
3338     hw_thread.os_id = os;
3339 
3340     idx = 0;
3341     for (src_index = maxIndex; src_index >= threadIdIndex; src_index--) {
3342       if (!inMap[src_index]) {
3343         continue;
3344       }
3345       if (src_index == pkgIdIndex) {
3346         hw_thread.ids[pkgLevel] = threadInfo[i][src_index];
3347       } else if (src_index == coreIdIndex) {
3348         hw_thread.ids[coreLevel] = threadInfo[i][src_index];
3349       } else if (src_index == threadIdIndex) {
3350         hw_thread.ids[threadLevel] = threadInfo[i][src_index];
3351       }
3352     }
3353   }
3354 
3355   __kmp_free(inMap);
3356   __kmp_free(lastId);
3357   __kmp_free(totals);
3358   __kmp_free(maxCt);
3359   __kmp_free(counts);
3360   CLEANUP_THREAD_INFO;
3361   __kmp_topology->sort_ids();
3362   if (!__kmp_topology->check_ids()) {
3363     kmp_topology_t::deallocate(__kmp_topology);
3364     __kmp_topology = nullptr;
3365     *msg_id = kmp_i18n_str_PhysicalIDsNotUnique;
3366     return false;
3367   }
3368   return true;
3369 }
3370 
3371 // Create and return a table of affinity masks, indexed by OS thread ID.
3372 // This routine handles OR'ing together all the affinity masks of threads
3373 // that are sufficiently close, if granularity > fine.
3374 static void __kmp_create_os_id_masks(unsigned *numUnique,
3375                                      kmp_affinity_t &affinity) {
3376   // First form a table of affinity masks in order of OS thread id.
3377   int maxOsId;
3378   int i;
3379   int numAddrs = __kmp_topology->get_num_hw_threads();
3380   int depth = __kmp_topology->get_depth();
3381   const char *env_var = affinity.env_var;
3382   KMP_ASSERT(numAddrs);
3383   KMP_ASSERT(depth);
3384 
3385   maxOsId = 0;
3386   for (i = numAddrs - 1;; --i) {
3387     int osId = __kmp_topology->at(i).os_id;
3388     if (osId > maxOsId) {
3389       maxOsId = osId;
3390     }
3391     if (i == 0)
3392       break;
3393   }
3394   affinity.num_os_id_masks = maxOsId + 1;
3395   KMP_CPU_ALLOC_ARRAY(affinity.os_id_masks, affinity.num_os_id_masks);
3396   KMP_ASSERT(affinity.gran_levels >= 0);
3397   if (affinity.flags.verbose && (affinity.gran_levels > 0)) {
3398     KMP_INFORM(ThreadsMigrate, env_var, affinity.gran_levels);
3399   }
3400   if (affinity.gran_levels >= (int)depth) {
3401     KMP_AFF_WARNING(affinity, AffThreadsMayMigrate);
3402   }
3403 
3404   // Run through the table, forming the masks for all threads on each core.
3405   // Threads on the same core will have identical kmp_hw_thread_t objects, not
3406   // considering the last level, which must be the thread id. All threads on a
3407   // core will appear consecutively.
3408   int unique = 0;
3409   int j = 0; // index of 1st thread on core
3410   int leader = 0;
3411   kmp_affin_mask_t *sum;
3412   KMP_CPU_ALLOC_ON_STACK(sum);
3413   KMP_CPU_ZERO(sum);
3414   KMP_CPU_SET(__kmp_topology->at(0).os_id, sum);
3415   for (i = 1; i < numAddrs; i++) {
3416     // If this thread is sufficiently close to the leader (within the
3417     // granularity setting), then set the bit for this os thread in the
3418     // affinity mask for this group, and go on to the next thread.
3419     if (__kmp_topology->is_close(leader, i, affinity.gran_levels)) {
3420       KMP_CPU_SET(__kmp_topology->at(i).os_id, sum);
3421       continue;
3422     }
3423 
3424     // For every thread in this group, copy the mask to the thread's entry in
3425     // the OS Id mask table. Mark the first address as a leader.
3426     for (; j < i; j++) {
3427       int osId = __kmp_topology->at(j).os_id;
3428       KMP_DEBUG_ASSERT(osId <= maxOsId);
3429       kmp_affin_mask_t *mask = KMP_CPU_INDEX(affinity.os_id_masks, osId);
3430       KMP_CPU_COPY(mask, sum);
3431       __kmp_topology->at(j).leader = (j == leader);
3432     }
3433     unique++;
3434 
3435     // Start a new mask.
3436     leader = i;
3437     KMP_CPU_ZERO(sum);
3438     KMP_CPU_SET(__kmp_topology->at(i).os_id, sum);
3439   }
3440 
3441   // For every thread in last group, copy the mask to the thread's
3442   // entry in the OS Id mask table.
3443   for (; j < i; j++) {
3444     int osId = __kmp_topology->at(j).os_id;
3445     KMP_DEBUG_ASSERT(osId <= maxOsId);
3446     kmp_affin_mask_t *mask = KMP_CPU_INDEX(affinity.os_id_masks, osId);
3447     KMP_CPU_COPY(mask, sum);
3448     __kmp_topology->at(j).leader = (j == leader);
3449   }
3450   unique++;
3451   KMP_CPU_FREE_FROM_STACK(sum);
3452 
3453   *numUnique = unique;
3454 }
3455 
3456 // Stuff for the affinity proclist parsers.  It's easier to declare these vars
3457 // as file-static than to try and pass them through the calling sequence of
3458 // the recursive-descent OMP_PLACES parser.
3459 static kmp_affin_mask_t *newMasks;
3460 static int numNewMasks;
3461 static int nextNewMask;
3462 
3463 #define ADD_MASK(_mask)                                                        \
3464   {                                                                            \
3465     if (nextNewMask >= numNewMasks) {                                          \
3466       int i;                                                                   \
3467       numNewMasks *= 2;                                                        \
3468       kmp_affin_mask_t *temp;                                                  \
3469       KMP_CPU_INTERNAL_ALLOC_ARRAY(temp, numNewMasks);                         \
3470       for (i = 0; i < numNewMasks / 2; i++) {                                  \
3471         kmp_affin_mask_t *src = KMP_CPU_INDEX(newMasks, i);                    \
3472         kmp_affin_mask_t *dest = KMP_CPU_INDEX(temp, i);                       \
3473         KMP_CPU_COPY(dest, src);                                               \
3474       }                                                                        \
3475       KMP_CPU_INTERNAL_FREE_ARRAY(newMasks, numNewMasks / 2);                  \
3476       newMasks = temp;                                                         \
3477     }                                                                          \
3478     KMP_CPU_COPY(KMP_CPU_INDEX(newMasks, nextNewMask), (_mask));               \
3479     nextNewMask++;                                                             \
3480   }
3481 
3482 #define ADD_MASK_OSID(_osId, _osId2Mask, _maxOsId)                             \
3483   {                                                                            \
3484     if (((_osId) > _maxOsId) ||                                                \
3485         (!KMP_CPU_ISSET((_osId), KMP_CPU_INDEX((_osId2Mask), (_osId))))) {     \
3486       KMP_AFF_WARNING(affinity, AffIgnoreInvalidProcID, _osId);                \
3487     } else {                                                                   \
3488       ADD_MASK(KMP_CPU_INDEX(_osId2Mask, (_osId)));                            \
3489     }                                                                          \
3490   }
3491 
3492 // Re-parse the proclist (for the explicit affinity type), and form the list
3493 // of affinity newMasks indexed by gtid.
3494 static void __kmp_affinity_process_proclist(kmp_affinity_t &affinity) {
3495   int i;
3496   kmp_affin_mask_t **out_masks = &affinity.masks;
3497   unsigned *out_numMasks = &affinity.num_masks;
3498   const char *proclist = affinity.proclist;
3499   kmp_affin_mask_t *osId2Mask = affinity.os_id_masks;
3500   int maxOsId = affinity.num_os_id_masks - 1;
3501   const char *scan = proclist;
3502   const char *next = proclist;
3503 
3504   // We use malloc() for the temporary mask vector, so that we can use
3505   // realloc() to extend it.
3506   numNewMasks = 2;
3507   KMP_CPU_INTERNAL_ALLOC_ARRAY(newMasks, numNewMasks);
3508   nextNewMask = 0;
3509   kmp_affin_mask_t *sumMask;
3510   KMP_CPU_ALLOC(sumMask);
3511   int setSize = 0;
3512 
3513   for (;;) {
3514     int start, end, stride;
3515 
3516     SKIP_WS(scan);
3517     next = scan;
3518     if (*next == '\0') {
3519       break;
3520     }
3521 
3522     if (*next == '{') {
3523       int num;
3524       setSize = 0;
3525       next++; // skip '{'
3526       SKIP_WS(next);
3527       scan = next;
3528 
3529       // Read the first integer in the set.
3530       KMP_ASSERT2((*next >= '0') && (*next <= '9'), "bad proclist");
3531       SKIP_DIGITS(next);
3532       num = __kmp_str_to_int(scan, *next);
3533       KMP_ASSERT2(num >= 0, "bad explicit proc list");
3534 
3535       // Copy the mask for that osId to the sum (union) mask.
3536       if ((num > maxOsId) ||
3537           (!KMP_CPU_ISSET(num, KMP_CPU_INDEX(osId2Mask, num)))) {
3538         KMP_AFF_WARNING(affinity, AffIgnoreInvalidProcID, num);
3539         KMP_CPU_ZERO(sumMask);
3540       } else {
3541         KMP_CPU_COPY(sumMask, KMP_CPU_INDEX(osId2Mask, num));
3542         setSize = 1;
3543       }
3544 
3545       for (;;) {
3546         // Check for end of set.
3547         SKIP_WS(next);
3548         if (*next == '}') {
3549           next++; // skip '}'
3550           break;
3551         }
3552 
3553         // Skip optional comma.
3554         if (*next == ',') {
3555           next++;
3556         }
3557         SKIP_WS(next);
3558 
3559         // Read the next integer in the set.
3560         scan = next;
3561         KMP_ASSERT2((*next >= '0') && (*next <= '9'), "bad explicit proc list");
3562 
3563         SKIP_DIGITS(next);
3564         num = __kmp_str_to_int(scan, *next);
3565         KMP_ASSERT2(num >= 0, "bad explicit proc list");
3566 
3567         // Add the mask for that osId to the sum mask.
3568         if ((num > maxOsId) ||
3569             (!KMP_CPU_ISSET(num, KMP_CPU_INDEX(osId2Mask, num)))) {
3570           KMP_AFF_WARNING(affinity, AffIgnoreInvalidProcID, num);
3571         } else {
3572           KMP_CPU_UNION(sumMask, KMP_CPU_INDEX(osId2Mask, num));
3573           setSize++;
3574         }
3575       }
3576       if (setSize > 0) {
3577         ADD_MASK(sumMask);
3578       }
3579 
3580       SKIP_WS(next);
3581       if (*next == ',') {
3582         next++;
3583       }
3584       scan = next;
3585       continue;
3586     }
3587 
3588     // Read the first integer.
3589     KMP_ASSERT2((*next >= '0') && (*next <= '9'), "bad explicit proc list");
3590     SKIP_DIGITS(next);
3591     start = __kmp_str_to_int(scan, *next);
3592     KMP_ASSERT2(start >= 0, "bad explicit proc list");
3593     SKIP_WS(next);
3594 
3595     // If this isn't a range, then add a mask to the list and go on.
3596     if (*next != '-') {
3597       ADD_MASK_OSID(start, osId2Mask, maxOsId);
3598 
3599       // Skip optional comma.
3600       if (*next == ',') {
3601         next++;
3602       }
3603       scan = next;
3604       continue;
3605     }
3606 
3607     // This is a range.  Skip over the '-' and read in the 2nd int.
3608     next++; // skip '-'
3609     SKIP_WS(next);
3610     scan = next;
3611     KMP_ASSERT2((*next >= '0') && (*next <= '9'), "bad explicit proc list");
3612     SKIP_DIGITS(next);
3613     end = __kmp_str_to_int(scan, *next);
3614     KMP_ASSERT2(end >= 0, "bad explicit proc list");
3615 
3616     // Check for a stride parameter
3617     stride = 1;
3618     SKIP_WS(next);
3619     if (*next == ':') {
3620       // A stride is specified.  Skip over the ':" and read the 3rd int.
3621       int sign = +1;
3622       next++; // skip ':'
3623       SKIP_WS(next);
3624       scan = next;
3625       if (*next == '-') {
3626         sign = -1;
3627         next++;
3628         SKIP_WS(next);
3629         scan = next;
3630       }
3631       KMP_ASSERT2((*next >= '0') && (*next <= '9'), "bad explicit proc list");
3632       SKIP_DIGITS(next);
3633       stride = __kmp_str_to_int(scan, *next);
3634       KMP_ASSERT2(stride >= 0, "bad explicit proc list");
3635       stride *= sign;
3636     }
3637 
3638     // Do some range checks.
3639     KMP_ASSERT2(stride != 0, "bad explicit proc list");
3640     if (stride > 0) {
3641       KMP_ASSERT2(start <= end, "bad explicit proc list");
3642     } else {
3643       KMP_ASSERT2(start >= end, "bad explicit proc list");
3644     }
3645     KMP_ASSERT2((end - start) / stride <= 65536, "bad explicit proc list");
3646 
3647     // Add the mask for each OS proc # to the list.
3648     if (stride > 0) {
3649       do {
3650         ADD_MASK_OSID(start, osId2Mask, maxOsId);
3651         start += stride;
3652       } while (start <= end);
3653     } else {
3654       do {
3655         ADD_MASK_OSID(start, osId2Mask, maxOsId);
3656         start += stride;
3657       } while (start >= end);
3658     }
3659 
3660     // Skip optional comma.
3661     SKIP_WS(next);
3662     if (*next == ',') {
3663       next++;
3664     }
3665     scan = next;
3666   }
3667 
3668   *out_numMasks = nextNewMask;
3669   if (nextNewMask == 0) {
3670     *out_masks = NULL;
3671     KMP_CPU_INTERNAL_FREE_ARRAY(newMasks, numNewMasks);
3672     return;
3673   }
3674   KMP_CPU_ALLOC_ARRAY((*out_masks), nextNewMask);
3675   for (i = 0; i < nextNewMask; i++) {
3676     kmp_affin_mask_t *src = KMP_CPU_INDEX(newMasks, i);
3677     kmp_affin_mask_t *dest = KMP_CPU_INDEX((*out_masks), i);
3678     KMP_CPU_COPY(dest, src);
3679   }
3680   KMP_CPU_INTERNAL_FREE_ARRAY(newMasks, numNewMasks);
3681   KMP_CPU_FREE(sumMask);
3682 }
3683 
3684 /*-----------------------------------------------------------------------------
3685 Re-parse the OMP_PLACES proc id list, forming the newMasks for the different
3686 places.  Again, Here is the grammar:
3687 
3688 place_list := place
3689 place_list := place , place_list
3690 place := num
3691 place := place : num
3692 place := place : num : signed
3693 place := { subplacelist }
3694 place := ! place                  // (lowest priority)
3695 subplace_list := subplace
3696 subplace_list := subplace , subplace_list
3697 subplace := num
3698 subplace := num : num
3699 subplace := num : num : signed
3700 signed := num
3701 signed := + signed
3702 signed := - signed
3703 -----------------------------------------------------------------------------*/
3704 static void __kmp_process_subplace_list(const char **scan,
3705                                         kmp_affinity_t &affinity, int maxOsId,
3706                                         kmp_affin_mask_t *tempMask,
3707                                         int *setSize) {
3708   const char *next;
3709   kmp_affin_mask_t *osId2Mask = affinity.os_id_masks;
3710 
3711   for (;;) {
3712     int start, count, stride, i;
3713 
3714     // Read in the starting proc id
3715     SKIP_WS(*scan);
3716     KMP_ASSERT2((**scan >= '0') && (**scan <= '9'), "bad explicit places list");
3717     next = *scan;
3718     SKIP_DIGITS(next);
3719     start = __kmp_str_to_int(*scan, *next);
3720     KMP_ASSERT(start >= 0);
3721     *scan = next;
3722 
3723     // valid follow sets are ',' ':' and '}'
3724     SKIP_WS(*scan);
3725     if (**scan == '}' || **scan == ',') {
3726       if ((start > maxOsId) ||
3727           (!KMP_CPU_ISSET(start, KMP_CPU_INDEX(osId2Mask, start)))) {
3728         KMP_AFF_WARNING(affinity, AffIgnoreInvalidProcID, start);
3729       } else {
3730         KMP_CPU_UNION(tempMask, KMP_CPU_INDEX(osId2Mask, start));
3731         (*setSize)++;
3732       }
3733       if (**scan == '}') {
3734         break;
3735       }
3736       (*scan)++; // skip ','
3737       continue;
3738     }
3739     KMP_ASSERT2(**scan == ':', "bad explicit places list");
3740     (*scan)++; // skip ':'
3741 
3742     // Read count parameter
3743     SKIP_WS(*scan);
3744     KMP_ASSERT2((**scan >= '0') && (**scan <= '9'), "bad explicit places list");
3745     next = *scan;
3746     SKIP_DIGITS(next);
3747     count = __kmp_str_to_int(*scan, *next);
3748     KMP_ASSERT(count >= 0);
3749     *scan = next;
3750 
3751     // valid follow sets are ',' ':' and '}'
3752     SKIP_WS(*scan);
3753     if (**scan == '}' || **scan == ',') {
3754       for (i = 0; i < count; i++) {
3755         if ((start > maxOsId) ||
3756             (!KMP_CPU_ISSET(start, KMP_CPU_INDEX(osId2Mask, start)))) {
3757           KMP_AFF_WARNING(affinity, AffIgnoreInvalidProcID, start);
3758           break; // don't proliferate warnings for large count
3759         } else {
3760           KMP_CPU_UNION(tempMask, KMP_CPU_INDEX(osId2Mask, start));
3761           start++;
3762           (*setSize)++;
3763         }
3764       }
3765       if (**scan == '}') {
3766         break;
3767       }
3768       (*scan)++; // skip ','
3769       continue;
3770     }
3771     KMP_ASSERT2(**scan == ':', "bad explicit places list");
3772     (*scan)++; // skip ':'
3773 
3774     // Read stride parameter
3775     int sign = +1;
3776     for (;;) {
3777       SKIP_WS(*scan);
3778       if (**scan == '+') {
3779         (*scan)++; // skip '+'
3780         continue;
3781       }
3782       if (**scan == '-') {
3783         sign *= -1;
3784         (*scan)++; // skip '-'
3785         continue;
3786       }
3787       break;
3788     }
3789     SKIP_WS(*scan);
3790     KMP_ASSERT2((**scan >= '0') && (**scan <= '9'), "bad explicit places list");
3791     next = *scan;
3792     SKIP_DIGITS(next);
3793     stride = __kmp_str_to_int(*scan, *next);
3794     KMP_ASSERT(stride >= 0);
3795     *scan = next;
3796     stride *= sign;
3797 
3798     // valid follow sets are ',' and '}'
3799     SKIP_WS(*scan);
3800     if (**scan == '}' || **scan == ',') {
3801       for (i = 0; i < count; i++) {
3802         if ((start > maxOsId) ||
3803             (!KMP_CPU_ISSET(start, KMP_CPU_INDEX(osId2Mask, start)))) {
3804           KMP_AFF_WARNING(affinity, AffIgnoreInvalidProcID, start);
3805           break; // don't proliferate warnings for large count
3806         } else {
3807           KMP_CPU_UNION(tempMask, KMP_CPU_INDEX(osId2Mask, start));
3808           start += stride;
3809           (*setSize)++;
3810         }
3811       }
3812       if (**scan == '}') {
3813         break;
3814       }
3815       (*scan)++; // skip ','
3816       continue;
3817     }
3818 
3819     KMP_ASSERT2(0, "bad explicit places list");
3820   }
3821 }
3822 
3823 static void __kmp_process_place(const char **scan, kmp_affinity_t &affinity,
3824                                 int maxOsId, kmp_affin_mask_t *tempMask,
3825                                 int *setSize) {
3826   const char *next;
3827   kmp_affin_mask_t *osId2Mask = affinity.os_id_masks;
3828 
3829   // valid follow sets are '{' '!' and num
3830   SKIP_WS(*scan);
3831   if (**scan == '{') {
3832     (*scan)++; // skip '{'
3833     __kmp_process_subplace_list(scan, affinity, maxOsId, tempMask, setSize);
3834     KMP_ASSERT2(**scan == '}', "bad explicit places list");
3835     (*scan)++; // skip '}'
3836   } else if (**scan == '!') {
3837     (*scan)++; // skip '!'
3838     __kmp_process_place(scan, affinity, maxOsId, tempMask, setSize);
3839     KMP_CPU_COMPLEMENT(maxOsId, tempMask);
3840   } else if ((**scan >= '0') && (**scan <= '9')) {
3841     next = *scan;
3842     SKIP_DIGITS(next);
3843     int num = __kmp_str_to_int(*scan, *next);
3844     KMP_ASSERT(num >= 0);
3845     if ((num > maxOsId) ||
3846         (!KMP_CPU_ISSET(num, KMP_CPU_INDEX(osId2Mask, num)))) {
3847       KMP_AFF_WARNING(affinity, AffIgnoreInvalidProcID, num);
3848     } else {
3849       KMP_CPU_UNION(tempMask, KMP_CPU_INDEX(osId2Mask, num));
3850       (*setSize)++;
3851     }
3852     *scan = next; // skip num
3853   } else {
3854     KMP_ASSERT2(0, "bad explicit places list");
3855   }
3856 }
3857 
3858 // static void
3859 void __kmp_affinity_process_placelist(kmp_affinity_t &affinity) {
3860   int i, j, count, stride, sign;
3861   kmp_affin_mask_t **out_masks = &affinity.masks;
3862   unsigned *out_numMasks = &affinity.num_masks;
3863   const char *placelist = affinity.proclist;
3864   kmp_affin_mask_t *osId2Mask = affinity.os_id_masks;
3865   int maxOsId = affinity.num_os_id_masks - 1;
3866   const char *scan = placelist;
3867   const char *next = placelist;
3868 
3869   numNewMasks = 2;
3870   KMP_CPU_INTERNAL_ALLOC_ARRAY(newMasks, numNewMasks);
3871   nextNewMask = 0;
3872 
3873   // tempMask is modified based on the previous or initial
3874   //   place to form the current place
3875   // previousMask contains the previous place
3876   kmp_affin_mask_t *tempMask;
3877   kmp_affin_mask_t *previousMask;
3878   KMP_CPU_ALLOC(tempMask);
3879   KMP_CPU_ZERO(tempMask);
3880   KMP_CPU_ALLOC(previousMask);
3881   KMP_CPU_ZERO(previousMask);
3882   int setSize = 0;
3883 
3884   for (;;) {
3885     __kmp_process_place(&scan, affinity, maxOsId, tempMask, &setSize);
3886 
3887     // valid follow sets are ',' ':' and EOL
3888     SKIP_WS(scan);
3889     if (*scan == '\0' || *scan == ',') {
3890       if (setSize > 0) {
3891         ADD_MASK(tempMask);
3892       }
3893       KMP_CPU_ZERO(tempMask);
3894       setSize = 0;
3895       if (*scan == '\0') {
3896         break;
3897       }
3898       scan++; // skip ','
3899       continue;
3900     }
3901 
3902     KMP_ASSERT2(*scan == ':', "bad explicit places list");
3903     scan++; // skip ':'
3904 
3905     // Read count parameter
3906     SKIP_WS(scan);
3907     KMP_ASSERT2((*scan >= '0') && (*scan <= '9'), "bad explicit places list");
3908     next = scan;
3909     SKIP_DIGITS(next);
3910     count = __kmp_str_to_int(scan, *next);
3911     KMP_ASSERT(count >= 0);
3912     scan = next;
3913 
3914     // valid follow sets are ',' ':' and EOL
3915     SKIP_WS(scan);
3916     if (*scan == '\0' || *scan == ',') {
3917       stride = +1;
3918     } else {
3919       KMP_ASSERT2(*scan == ':', "bad explicit places list");
3920       scan++; // skip ':'
3921 
3922       // Read stride parameter
3923       sign = +1;
3924       for (;;) {
3925         SKIP_WS(scan);
3926         if (*scan == '+') {
3927           scan++; // skip '+'
3928           continue;
3929         }
3930         if (*scan == '-') {
3931           sign *= -1;
3932           scan++; // skip '-'
3933           continue;
3934         }
3935         break;
3936       }
3937       SKIP_WS(scan);
3938       KMP_ASSERT2((*scan >= '0') && (*scan <= '9'), "bad explicit places list");
3939       next = scan;
3940       SKIP_DIGITS(next);
3941       stride = __kmp_str_to_int(scan, *next);
3942       KMP_DEBUG_ASSERT(stride >= 0);
3943       scan = next;
3944       stride *= sign;
3945     }
3946 
3947     // Add places determined by initial_place : count : stride
3948     for (i = 0; i < count; i++) {
3949       if (setSize == 0) {
3950         break;
3951       }
3952       // Add the current place, then build the next place (tempMask) from that
3953       KMP_CPU_COPY(previousMask, tempMask);
3954       ADD_MASK(previousMask);
3955       KMP_CPU_ZERO(tempMask);
3956       setSize = 0;
3957       KMP_CPU_SET_ITERATE(j, previousMask) {
3958         if (!KMP_CPU_ISSET(j, previousMask)) {
3959           continue;
3960         }
3961         if ((j + stride > maxOsId) || (j + stride < 0) ||
3962             (!KMP_CPU_ISSET(j, __kmp_affin_fullMask)) ||
3963             (!KMP_CPU_ISSET(j + stride,
3964                             KMP_CPU_INDEX(osId2Mask, j + stride)))) {
3965           if (i < count - 1) {
3966             KMP_AFF_WARNING(affinity, AffIgnoreInvalidProcID, j + stride);
3967           }
3968           continue;
3969         }
3970         KMP_CPU_SET(j + stride, tempMask);
3971         setSize++;
3972       }
3973     }
3974     KMP_CPU_ZERO(tempMask);
3975     setSize = 0;
3976 
3977     // valid follow sets are ',' and EOL
3978     SKIP_WS(scan);
3979     if (*scan == '\0') {
3980       break;
3981     }
3982     if (*scan == ',') {
3983       scan++; // skip ','
3984       continue;
3985     }
3986 
3987     KMP_ASSERT2(0, "bad explicit places list");
3988   }
3989 
3990   *out_numMasks = nextNewMask;
3991   if (nextNewMask == 0) {
3992     *out_masks = NULL;
3993     KMP_CPU_INTERNAL_FREE_ARRAY(newMasks, numNewMasks);
3994     return;
3995   }
3996   KMP_CPU_ALLOC_ARRAY((*out_masks), nextNewMask);
3997   KMP_CPU_FREE(tempMask);
3998   KMP_CPU_FREE(previousMask);
3999   for (i = 0; i < nextNewMask; i++) {
4000     kmp_affin_mask_t *src = KMP_CPU_INDEX(newMasks, i);
4001     kmp_affin_mask_t *dest = KMP_CPU_INDEX((*out_masks), i);
4002     KMP_CPU_COPY(dest, src);
4003   }
4004   KMP_CPU_INTERNAL_FREE_ARRAY(newMasks, numNewMasks);
4005 }
4006 
4007 #undef ADD_MASK
4008 #undef ADD_MASK_OSID
4009 
4010 // This function figures out the deepest level at which there is at least one
4011 // cluster/core with more than one processing unit bound to it.
4012 static int __kmp_affinity_find_core_level(int nprocs, int bottom_level) {
4013   int core_level = 0;
4014 
4015   for (int i = 0; i < nprocs; i++) {
4016     const kmp_hw_thread_t &hw_thread = __kmp_topology->at(i);
4017     for (int j = bottom_level; j > 0; j--) {
4018       if (hw_thread.ids[j] > 0) {
4019         if (core_level < (j - 1)) {
4020           core_level = j - 1;
4021         }
4022       }
4023     }
4024   }
4025   return core_level;
4026 }
4027 
4028 // This function counts number of clusters/cores at given level.
4029 static int __kmp_affinity_compute_ncores(int nprocs, int bottom_level,
4030                                          int core_level) {
4031   return __kmp_topology->get_count(core_level);
4032 }
4033 // This function finds to which cluster/core given processing unit is bound.
4034 static int __kmp_affinity_find_core(int proc, int bottom_level,
4035                                     int core_level) {
4036   int core = 0;
4037   KMP_DEBUG_ASSERT(proc >= 0 && proc < __kmp_topology->get_num_hw_threads());
4038   for (int i = 0; i <= proc; ++i) {
4039     if (i + 1 <= proc) {
4040       for (int j = 0; j <= core_level; ++j) {
4041         if (__kmp_topology->at(i + 1).sub_ids[j] !=
4042             __kmp_topology->at(i).sub_ids[j]) {
4043           core++;
4044           break;
4045         }
4046       }
4047     }
4048   }
4049   return core;
4050 }
4051 
4052 // This function finds maximal number of processing units bound to a
4053 // cluster/core at given level.
4054 static int __kmp_affinity_max_proc_per_core(int nprocs, int bottom_level,
4055                                             int core_level) {
4056   if (core_level >= bottom_level)
4057     return 1;
4058   int thread_level = __kmp_topology->get_level(KMP_HW_THREAD);
4059   return __kmp_topology->calculate_ratio(thread_level, core_level);
4060 }
4061 
4062 static int *procarr = NULL;
4063 static int __kmp_aff_depth = 0;
4064 static int *__kmp_osid_to_hwthread_map = NULL;
4065 
4066 static void __kmp_affinity_get_mask_topology_info(const kmp_affin_mask_t *mask,
4067                                                   kmp_affinity_ids_t &ids,
4068                                                   kmp_affinity_attrs_t &attrs) {
4069   if (!KMP_AFFINITY_CAPABLE())
4070     return;
4071 
4072   // Initiailze ids and attrs thread data
4073   for (int i = 0; i < KMP_HW_LAST; ++i)
4074     ids[i] = kmp_hw_thread_t::UNKNOWN_ID;
4075   attrs = KMP_AFFINITY_ATTRS_UNKNOWN;
4076 
4077   // Iterate through each os id within the mask and determine
4078   // the topology id and attribute information
4079   int cpu;
4080   int depth = __kmp_topology->get_depth();
4081   KMP_CPU_SET_ITERATE(cpu, mask) {
4082     int osid_idx = __kmp_osid_to_hwthread_map[cpu];
4083     const kmp_hw_thread_t &hw_thread = __kmp_topology->at(osid_idx);
4084     for (int level = 0; level < depth; ++level) {
4085       kmp_hw_t type = __kmp_topology->get_type(level);
4086       int id = hw_thread.sub_ids[level];
4087       if (ids[type] == kmp_hw_thread_t::UNKNOWN_ID || ids[type] == id) {
4088         ids[type] = id;
4089       } else {
4090         // This mask spans across multiple topology units, set it as such
4091         // and mark every level below as such as well.
4092         ids[type] = kmp_hw_thread_t::MULTIPLE_ID;
4093         for (; level < depth; ++level) {
4094           kmp_hw_t type = __kmp_topology->get_type(level);
4095           ids[type] = kmp_hw_thread_t::MULTIPLE_ID;
4096         }
4097       }
4098     }
4099     if (!attrs.valid) {
4100       attrs.core_type = hw_thread.attrs.get_core_type();
4101       attrs.core_eff = hw_thread.attrs.get_core_eff();
4102       attrs.valid = 1;
4103     } else {
4104       // This mask spans across multiple attributes, set it as such
4105       if (attrs.core_type != hw_thread.attrs.get_core_type())
4106         attrs.core_type = KMP_HW_CORE_TYPE_UNKNOWN;
4107       if (attrs.core_eff != hw_thread.attrs.get_core_eff())
4108         attrs.core_eff = kmp_hw_attr_t::UNKNOWN_CORE_EFF;
4109     }
4110   }
4111 }
4112 
4113 static void __kmp_affinity_get_thread_topology_info(kmp_info_t *th) {
4114   if (!KMP_AFFINITY_CAPABLE())
4115     return;
4116   const kmp_affin_mask_t *mask = th->th.th_affin_mask;
4117   kmp_affinity_ids_t &ids = th->th.th_topology_ids;
4118   kmp_affinity_attrs_t &attrs = th->th.th_topology_attrs;
4119   __kmp_affinity_get_mask_topology_info(mask, ids, attrs);
4120 }
4121 
4122 // Assign the topology information to each place in the place list
4123 // A thread can then grab not only its affinity mask, but the topology
4124 // information associated with that mask. e.g., Which socket is a thread on
4125 static void __kmp_affinity_get_topology_info(kmp_affinity_t &affinity) {
4126   if (!KMP_AFFINITY_CAPABLE())
4127     return;
4128   if (affinity.type != affinity_none) {
4129     KMP_ASSERT(affinity.num_os_id_masks);
4130     KMP_ASSERT(affinity.os_id_masks);
4131   }
4132   KMP_ASSERT(affinity.num_masks);
4133   KMP_ASSERT(affinity.masks);
4134   KMP_ASSERT(__kmp_affin_fullMask);
4135 
4136   int max_cpu = __kmp_affin_fullMask->get_max_cpu();
4137   int num_hw_threads = __kmp_topology->get_num_hw_threads();
4138 
4139   // Allocate thread topology information
4140   if (!affinity.ids) {
4141     affinity.ids = (kmp_affinity_ids_t *)__kmp_allocate(
4142         sizeof(kmp_affinity_ids_t) * affinity.num_masks);
4143   }
4144   if (!affinity.attrs) {
4145     affinity.attrs = (kmp_affinity_attrs_t *)__kmp_allocate(
4146         sizeof(kmp_affinity_attrs_t) * affinity.num_masks);
4147   }
4148   if (!__kmp_osid_to_hwthread_map) {
4149     // Want the +1 because max_cpu should be valid index into map
4150     __kmp_osid_to_hwthread_map =
4151         (int *)__kmp_allocate(sizeof(int) * (max_cpu + 1));
4152   }
4153 
4154   // Create the OS proc to hardware thread map
4155   for (int hw_thread = 0; hw_thread < num_hw_threads; ++hw_thread)
4156     __kmp_osid_to_hwthread_map[__kmp_topology->at(hw_thread).os_id] = hw_thread;
4157 
4158   for (unsigned i = 0; i < affinity.num_masks; ++i) {
4159     kmp_affinity_ids_t &ids = affinity.ids[i];
4160     kmp_affinity_attrs_t &attrs = affinity.attrs[i];
4161     kmp_affin_mask_t *mask = KMP_CPU_INDEX(affinity.masks, i);
4162     __kmp_affinity_get_mask_topology_info(mask, ids, attrs);
4163   }
4164 }
4165 
4166 // Create a one element mask array (set of places) which only contains the
4167 // initial process's affinity mask
4168 static void __kmp_create_affinity_none_places(kmp_affinity_t &affinity) {
4169   KMP_ASSERT(__kmp_affin_fullMask != NULL);
4170   KMP_ASSERT(affinity.type == affinity_none);
4171   affinity.num_masks = 1;
4172   KMP_CPU_ALLOC_ARRAY(affinity.masks, affinity.num_masks);
4173   kmp_affin_mask_t *dest = KMP_CPU_INDEX(affinity.masks, 0);
4174   KMP_CPU_COPY(dest, __kmp_affin_fullMask);
4175   __kmp_affinity_get_topology_info(affinity);
4176 }
4177 
4178 static void __kmp_aux_affinity_initialize_masks(kmp_affinity_t &affinity) {
4179   // Create the "full" mask - this defines all of the processors that we
4180   // consider to be in the machine model. If respect is set, then it is the
4181   // initialization thread's affinity mask. Otherwise, it is all processors that
4182   // we know about on the machine.
4183   int verbose = affinity.flags.verbose;
4184   const char *env_var = affinity.env_var;
4185 
4186   // Already initialized
4187   if (__kmp_affin_fullMask && __kmp_affin_origMask)
4188     return;
4189 
4190   if (__kmp_affin_fullMask == NULL) {
4191     KMP_CPU_ALLOC(__kmp_affin_fullMask);
4192   }
4193   if (__kmp_affin_origMask == NULL) {
4194     KMP_CPU_ALLOC(__kmp_affin_origMask);
4195   }
4196   if (KMP_AFFINITY_CAPABLE()) {
4197     __kmp_get_system_affinity(__kmp_affin_fullMask, TRUE);
4198     // Make a copy before possible expanding to the entire machine mask
4199     __kmp_affin_origMask->copy(__kmp_affin_fullMask);
4200     if (affinity.flags.respect) {
4201       // Count the number of available processors.
4202       unsigned i;
4203       __kmp_avail_proc = 0;
4204       KMP_CPU_SET_ITERATE(i, __kmp_affin_fullMask) {
4205         if (!KMP_CPU_ISSET(i, __kmp_affin_fullMask)) {
4206           continue;
4207         }
4208         __kmp_avail_proc++;
4209       }
4210       if (__kmp_avail_proc > __kmp_xproc) {
4211         KMP_AFF_WARNING(affinity, ErrorInitializeAffinity);
4212         affinity.type = affinity_none;
4213         KMP_AFFINITY_DISABLE();
4214         return;
4215       }
4216 
4217       if (verbose) {
4218         char buf[KMP_AFFIN_MASK_PRINT_LEN];
4219         __kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN,
4220                                   __kmp_affin_fullMask);
4221         KMP_INFORM(InitOSProcSetRespect, env_var, buf);
4222       }
4223     } else {
4224       if (verbose) {
4225         char buf[KMP_AFFIN_MASK_PRINT_LEN];
4226         __kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN,
4227                                   __kmp_affin_fullMask);
4228         KMP_INFORM(InitOSProcSetNotRespect, env_var, buf);
4229       }
4230       __kmp_avail_proc =
4231           __kmp_affinity_entire_machine_mask(__kmp_affin_fullMask);
4232 #if KMP_OS_WINDOWS
4233       if (__kmp_num_proc_groups <= 1) {
4234         // Copy expanded full mask if topology has single processor group
4235         __kmp_affin_origMask->copy(__kmp_affin_fullMask);
4236       }
4237       // Set the process affinity mask since threads' affinity
4238       // masks must be subset of process mask in Windows* OS
4239       __kmp_affin_fullMask->set_process_affinity(true);
4240 #endif
4241     }
4242   }
4243 }
4244 
4245 static bool __kmp_aux_affinity_initialize_topology(kmp_affinity_t &affinity) {
4246   bool success = false;
4247   const char *env_var = affinity.env_var;
4248   kmp_i18n_id_t msg_id = kmp_i18n_null;
4249   int verbose = affinity.flags.verbose;
4250 
4251   // For backward compatibility, setting KMP_CPUINFO_FILE =>
4252   // KMP_TOPOLOGY_METHOD=cpuinfo
4253   if ((__kmp_cpuinfo_file != NULL) &&
4254       (__kmp_affinity_top_method == affinity_top_method_all)) {
4255     __kmp_affinity_top_method = affinity_top_method_cpuinfo;
4256   }
4257 
4258   if (__kmp_affinity_top_method == affinity_top_method_all) {
4259 // In the default code path, errors are not fatal - we just try using
4260 // another method. We only emit a warning message if affinity is on, or the
4261 // verbose flag is set, an the nowarnings flag was not set.
4262 #if KMP_USE_HWLOC
4263     if (!success &&
4264         __kmp_affinity_dispatch->get_api_type() == KMPAffinity::HWLOC) {
4265       if (!__kmp_hwloc_error) {
4266         success = __kmp_affinity_create_hwloc_map(&msg_id);
4267         if (!success && verbose) {
4268           KMP_INFORM(AffIgnoringHwloc, env_var);
4269         }
4270       } else if (verbose) {
4271         KMP_INFORM(AffIgnoringHwloc, env_var);
4272       }
4273     }
4274 #endif
4275 
4276 #if KMP_ARCH_X86 || KMP_ARCH_X86_64
4277     if (!success) {
4278       success = __kmp_affinity_create_x2apicid_map(&msg_id);
4279       if (!success && verbose && msg_id != kmp_i18n_null) {
4280         KMP_INFORM(AffInfoStr, env_var, __kmp_i18n_catgets(msg_id));
4281       }
4282     }
4283     if (!success) {
4284       success = __kmp_affinity_create_apicid_map(&msg_id);
4285       if (!success && verbose && msg_id != kmp_i18n_null) {
4286         KMP_INFORM(AffInfoStr, env_var, __kmp_i18n_catgets(msg_id));
4287       }
4288     }
4289 #endif /* KMP_ARCH_X86 || KMP_ARCH_X86_64 */
4290 
4291 #if KMP_OS_LINUX
4292     if (!success) {
4293       int line = 0;
4294       success = __kmp_affinity_create_cpuinfo_map(&line, &msg_id);
4295       if (!success && verbose && msg_id != kmp_i18n_null) {
4296         KMP_INFORM(AffInfoStr, env_var, __kmp_i18n_catgets(msg_id));
4297       }
4298     }
4299 #endif /* KMP_OS_LINUX */
4300 
4301 #if KMP_GROUP_AFFINITY
4302     if (!success && (__kmp_num_proc_groups > 1)) {
4303       success = __kmp_affinity_create_proc_group_map(&msg_id);
4304       if (!success && verbose && msg_id != kmp_i18n_null) {
4305         KMP_INFORM(AffInfoStr, env_var, __kmp_i18n_catgets(msg_id));
4306       }
4307     }
4308 #endif /* KMP_GROUP_AFFINITY */
4309 
4310     if (!success) {
4311       success = __kmp_affinity_create_flat_map(&msg_id);
4312       if (!success && verbose && msg_id != kmp_i18n_null) {
4313         KMP_INFORM(AffInfoStr, env_var, __kmp_i18n_catgets(msg_id));
4314       }
4315       KMP_ASSERT(success);
4316     }
4317   }
4318 
4319 // If the user has specified that a paricular topology discovery method is to be
4320 // used, then we abort if that method fails. The exception is group affinity,
4321 // which might have been implicitly set.
4322 #if KMP_USE_HWLOC
4323   else if (__kmp_affinity_top_method == affinity_top_method_hwloc) {
4324     KMP_ASSERT(__kmp_affinity_dispatch->get_api_type() == KMPAffinity::HWLOC);
4325     success = __kmp_affinity_create_hwloc_map(&msg_id);
4326     if (!success) {
4327       KMP_ASSERT(msg_id != kmp_i18n_null);
4328       KMP_FATAL(MsgExiting, __kmp_i18n_catgets(msg_id));
4329     }
4330   }
4331 #endif // KMP_USE_HWLOC
4332 
4333 #if KMP_ARCH_X86 || KMP_ARCH_X86_64
4334   else if (__kmp_affinity_top_method == affinity_top_method_x2apicid ||
4335            __kmp_affinity_top_method == affinity_top_method_x2apicid_1f) {
4336     success = __kmp_affinity_create_x2apicid_map(&msg_id);
4337     if (!success) {
4338       KMP_ASSERT(msg_id != kmp_i18n_null);
4339       KMP_FATAL(MsgExiting, __kmp_i18n_catgets(msg_id));
4340     }
4341   } else if (__kmp_affinity_top_method == affinity_top_method_apicid) {
4342     success = __kmp_affinity_create_apicid_map(&msg_id);
4343     if (!success) {
4344       KMP_ASSERT(msg_id != kmp_i18n_null);
4345       KMP_FATAL(MsgExiting, __kmp_i18n_catgets(msg_id));
4346     }
4347   }
4348 #endif /* KMP_ARCH_X86 || KMP_ARCH_X86_64 */
4349 
4350   else if (__kmp_affinity_top_method == affinity_top_method_cpuinfo) {
4351     int line = 0;
4352     success = __kmp_affinity_create_cpuinfo_map(&line, &msg_id);
4353     if (!success) {
4354       KMP_ASSERT(msg_id != kmp_i18n_null);
4355       const char *filename = __kmp_cpuinfo_get_filename();
4356       if (line > 0) {
4357         KMP_FATAL(FileLineMsgExiting, filename, line,
4358                   __kmp_i18n_catgets(msg_id));
4359       } else {
4360         KMP_FATAL(FileMsgExiting, filename, __kmp_i18n_catgets(msg_id));
4361       }
4362     }
4363   }
4364 
4365 #if KMP_GROUP_AFFINITY
4366   else if (__kmp_affinity_top_method == affinity_top_method_group) {
4367     success = __kmp_affinity_create_proc_group_map(&msg_id);
4368     KMP_ASSERT(success);
4369     if (!success) {
4370       KMP_ASSERT(msg_id != kmp_i18n_null);
4371       KMP_FATAL(MsgExiting, __kmp_i18n_catgets(msg_id));
4372     }
4373   }
4374 #endif /* KMP_GROUP_AFFINITY */
4375 
4376   else if (__kmp_affinity_top_method == affinity_top_method_flat) {
4377     success = __kmp_affinity_create_flat_map(&msg_id);
4378     // should not fail
4379     KMP_ASSERT(success);
4380   }
4381 
4382   // Early exit if topology could not be created
4383   if (!__kmp_topology) {
4384     if (KMP_AFFINITY_CAPABLE()) {
4385       KMP_AFF_WARNING(affinity, ErrorInitializeAffinity);
4386     }
4387     if (nPackages > 0 && nCoresPerPkg > 0 && __kmp_nThreadsPerCore > 0 &&
4388         __kmp_ncores > 0) {
4389       __kmp_topology = kmp_topology_t::allocate(0, 0, NULL);
4390       __kmp_topology->canonicalize(nPackages, nCoresPerPkg,
4391                                    __kmp_nThreadsPerCore, __kmp_ncores);
4392       if (verbose) {
4393         __kmp_topology->print(env_var);
4394       }
4395     }
4396     return false;
4397   }
4398 
4399   // Canonicalize, print (if requested), apply KMP_HW_SUBSET
4400   __kmp_topology->canonicalize();
4401   if (verbose)
4402     __kmp_topology->print(env_var);
4403   bool filtered = __kmp_topology->filter_hw_subset();
4404   if (filtered) {
4405 #if KMP_OS_WINDOWS
4406     // Copy filtered full mask if topology has single processor group
4407     if (__kmp_num_proc_groups <= 1)
4408 #endif
4409       __kmp_affin_origMask->copy(__kmp_affin_fullMask);
4410   }
4411   if (filtered && verbose)
4412     __kmp_topology->print("KMP_HW_SUBSET");
4413   return success;
4414 }
4415 
4416 static void __kmp_aux_affinity_initialize(kmp_affinity_t &affinity) {
4417   bool is_regular_affinity = (&affinity == &__kmp_affinity);
4418   bool is_hidden_helper_affinity = (&affinity == &__kmp_hh_affinity);
4419   const char *env_var = affinity.env_var;
4420 
4421   if (affinity.flags.initialized) {
4422     KMP_ASSERT(__kmp_affin_fullMask != NULL);
4423     return;
4424   }
4425 
4426   if (is_regular_affinity && (!__kmp_affin_fullMask || !__kmp_affin_origMask))
4427     __kmp_aux_affinity_initialize_masks(affinity);
4428 
4429   if (is_regular_affinity && !__kmp_topology) {
4430     bool success = __kmp_aux_affinity_initialize_topology(affinity);
4431     if (success) {
4432       // Initialize other data structures which depend on the topology
4433       machine_hierarchy.init(__kmp_topology->get_num_hw_threads());
4434       KMP_ASSERT(__kmp_avail_proc == __kmp_topology->get_num_hw_threads());
4435     } else {
4436       affinity.type = affinity_none;
4437       KMP_AFFINITY_DISABLE();
4438     }
4439   }
4440 
4441   // If KMP_AFFINITY=none, then only create the single "none" place
4442   // which is the process's initial affinity mask or the number of
4443   // hardware threads depending on respect,norespect
4444   if (affinity.type == affinity_none) {
4445     __kmp_create_affinity_none_places(affinity);
4446 #if KMP_USE_HIER_SCHED
4447     __kmp_dispatch_set_hierarchy_values();
4448 #endif
4449     affinity.flags.initialized = TRUE;
4450     return;
4451   }
4452 
4453   __kmp_topology->set_granularity(affinity);
4454   int depth = __kmp_topology->get_depth();
4455 
4456   // Create the table of masks, indexed by thread Id.
4457   unsigned numUnique;
4458   __kmp_create_os_id_masks(&numUnique, affinity);
4459   if (affinity.gran_levels == 0) {
4460     KMP_DEBUG_ASSERT((int)numUnique == __kmp_avail_proc);
4461   }
4462 
4463   switch (affinity.type) {
4464 
4465   case affinity_explicit:
4466     KMP_DEBUG_ASSERT(affinity.proclist != NULL);
4467     if (is_hidden_helper_affinity ||
4468         __kmp_nested_proc_bind.bind_types[0] == proc_bind_intel) {
4469       __kmp_affinity_process_proclist(affinity);
4470     } else {
4471       __kmp_affinity_process_placelist(affinity);
4472     }
4473     if (affinity.num_masks == 0) {
4474       KMP_AFF_WARNING(affinity, AffNoValidProcID);
4475       affinity.type = affinity_none;
4476       __kmp_create_affinity_none_places(affinity);
4477       affinity.flags.initialized = TRUE;
4478       return;
4479     }
4480     break;
4481 
4482   // The other affinity types rely on sorting the hardware threads according to
4483   // some permutation of the machine topology tree. Set affinity.compact
4484   // and affinity.offset appropriately, then jump to a common code
4485   // fragment to do the sort and create the array of affinity masks.
4486   case affinity_logical:
4487     affinity.compact = 0;
4488     if (affinity.offset) {
4489       affinity.offset =
4490           __kmp_nThreadsPerCore * affinity.offset % __kmp_avail_proc;
4491     }
4492     goto sortTopology;
4493 
4494   case affinity_physical:
4495     if (__kmp_nThreadsPerCore > 1) {
4496       affinity.compact = 1;
4497       if (affinity.compact >= depth) {
4498         affinity.compact = 0;
4499       }
4500     } else {
4501       affinity.compact = 0;
4502     }
4503     if (affinity.offset) {
4504       affinity.offset =
4505           __kmp_nThreadsPerCore * affinity.offset % __kmp_avail_proc;
4506     }
4507     goto sortTopology;
4508 
4509   case affinity_scatter:
4510     if (affinity.compact >= depth) {
4511       affinity.compact = 0;
4512     } else {
4513       affinity.compact = depth - 1 - affinity.compact;
4514     }
4515     goto sortTopology;
4516 
4517   case affinity_compact:
4518     if (affinity.compact >= depth) {
4519       affinity.compact = depth - 1;
4520     }
4521     goto sortTopology;
4522 
4523   case affinity_balanced:
4524     if (depth <= 1 || is_hidden_helper_affinity) {
4525       KMP_AFF_WARNING(affinity, AffBalancedNotAvail, env_var);
4526       affinity.type = affinity_none;
4527       __kmp_create_affinity_none_places(affinity);
4528       affinity.flags.initialized = TRUE;
4529       return;
4530     } else if (!__kmp_topology->is_uniform()) {
4531       // Save the depth for further usage
4532       __kmp_aff_depth = depth;
4533 
4534       int core_level =
4535           __kmp_affinity_find_core_level(__kmp_avail_proc, depth - 1);
4536       int ncores = __kmp_affinity_compute_ncores(__kmp_avail_proc, depth - 1,
4537                                                  core_level);
4538       int maxprocpercore = __kmp_affinity_max_proc_per_core(
4539           __kmp_avail_proc, depth - 1, core_level);
4540 
4541       int nproc = ncores * maxprocpercore;
4542       if ((nproc < 2) || (nproc < __kmp_avail_proc)) {
4543         KMP_AFF_WARNING(affinity, AffBalancedNotAvail, env_var);
4544         affinity.type = affinity_none;
4545         __kmp_create_affinity_none_places(affinity);
4546         affinity.flags.initialized = TRUE;
4547         return;
4548       }
4549 
4550       procarr = (int *)__kmp_allocate(sizeof(int) * nproc);
4551       for (int i = 0; i < nproc; i++) {
4552         procarr[i] = -1;
4553       }
4554 
4555       int lastcore = -1;
4556       int inlastcore = 0;
4557       for (int i = 0; i < __kmp_avail_proc; i++) {
4558         int proc = __kmp_topology->at(i).os_id;
4559         int core = __kmp_affinity_find_core(i, depth - 1, core_level);
4560 
4561         if (core == lastcore) {
4562           inlastcore++;
4563         } else {
4564           inlastcore = 0;
4565         }
4566         lastcore = core;
4567 
4568         procarr[core * maxprocpercore + inlastcore] = proc;
4569       }
4570     }
4571     if (affinity.compact >= depth) {
4572       affinity.compact = depth - 1;
4573     }
4574 
4575   sortTopology:
4576     // Allocate the gtid->affinity mask table.
4577     if (affinity.flags.dups) {
4578       affinity.num_masks = __kmp_avail_proc;
4579     } else {
4580       affinity.num_masks = numUnique;
4581     }
4582 
4583     if ((__kmp_nested_proc_bind.bind_types[0] != proc_bind_intel) &&
4584         (__kmp_affinity_num_places > 0) &&
4585         ((unsigned)__kmp_affinity_num_places < affinity.num_masks) &&
4586         !is_hidden_helper_affinity) {
4587       affinity.num_masks = __kmp_affinity_num_places;
4588     }
4589 
4590     KMP_CPU_ALLOC_ARRAY(affinity.masks, affinity.num_masks);
4591 
4592     // Sort the topology table according to the current setting of
4593     // affinity.compact, then fill out affinity.masks.
4594     __kmp_topology->sort_compact(affinity);
4595     {
4596       int i;
4597       unsigned j;
4598       int num_hw_threads = __kmp_topology->get_num_hw_threads();
4599       for (i = 0, j = 0; i < num_hw_threads; i++) {
4600         if ((!affinity.flags.dups) && (!__kmp_topology->at(i).leader)) {
4601           continue;
4602         }
4603         int osId = __kmp_topology->at(i).os_id;
4604 
4605         kmp_affin_mask_t *src = KMP_CPU_INDEX(affinity.os_id_masks, osId);
4606         kmp_affin_mask_t *dest = KMP_CPU_INDEX(affinity.masks, j);
4607         KMP_ASSERT(KMP_CPU_ISSET(osId, src));
4608         KMP_CPU_COPY(dest, src);
4609         if (++j >= affinity.num_masks) {
4610           break;
4611         }
4612       }
4613       KMP_DEBUG_ASSERT(j == affinity.num_masks);
4614     }
4615     // Sort the topology back using ids
4616     __kmp_topology->sort_ids();
4617     break;
4618 
4619   default:
4620     KMP_ASSERT2(0, "Unexpected affinity setting");
4621   }
4622   __kmp_affinity_get_topology_info(affinity);
4623   affinity.flags.initialized = TRUE;
4624 }
4625 
4626 void __kmp_affinity_initialize(kmp_affinity_t &affinity) {
4627   // Much of the code above was written assuming that if a machine was not
4628   // affinity capable, then affinity type == affinity_none.
4629   // We now explicitly represent this as affinity type == affinity_disabled.
4630   // There are too many checks for affinity type == affinity_none in this code.
4631   // Instead of trying to change them all, check if
4632   // affinity type == affinity_disabled, and if so, slam it with affinity_none,
4633   // call the real initialization routine, then restore affinity type to
4634   // affinity_disabled.
4635   int disabled = (affinity.type == affinity_disabled);
4636   if (!KMP_AFFINITY_CAPABLE())
4637     KMP_ASSERT(disabled);
4638   if (disabled)
4639     affinity.type = affinity_none;
4640   __kmp_aux_affinity_initialize(affinity);
4641   if (disabled)
4642     affinity.type = affinity_disabled;
4643 }
4644 
4645 void __kmp_affinity_uninitialize(void) {
4646   for (kmp_affinity_t *affinity : __kmp_affinities) {
4647     if (affinity->masks != NULL)
4648       KMP_CPU_FREE_ARRAY(affinity->masks, affinity->num_masks);
4649     if (affinity->os_id_masks != NULL)
4650       KMP_CPU_FREE_ARRAY(affinity->os_id_masks, affinity->num_os_id_masks);
4651     if (affinity->proclist != NULL)
4652       __kmp_free(affinity->proclist);
4653     if (affinity->ids != NULL)
4654       __kmp_free(affinity->ids);
4655     if (affinity->attrs != NULL)
4656       __kmp_free(affinity->attrs);
4657     *affinity = KMP_AFFINITY_INIT(affinity->env_var);
4658   }
4659   if (__kmp_affin_origMask != NULL) {
4660     if (KMP_AFFINITY_CAPABLE()) {
4661       __kmp_set_system_affinity(__kmp_affin_origMask, FALSE);
4662     }
4663     KMP_CPU_FREE(__kmp_affin_origMask);
4664     __kmp_affin_origMask = NULL;
4665   }
4666   __kmp_affinity_num_places = 0;
4667   if (procarr != NULL) {
4668     __kmp_free(procarr);
4669     procarr = NULL;
4670   }
4671   if (__kmp_osid_to_hwthread_map) {
4672     __kmp_free(__kmp_osid_to_hwthread_map);
4673     __kmp_osid_to_hwthread_map = NULL;
4674   }
4675 #if KMP_USE_HWLOC
4676   if (__kmp_hwloc_topology != NULL) {
4677     hwloc_topology_destroy(__kmp_hwloc_topology);
4678     __kmp_hwloc_topology = NULL;
4679   }
4680 #endif
4681   if (__kmp_hw_subset) {
4682     kmp_hw_subset_t::deallocate(__kmp_hw_subset);
4683     __kmp_hw_subset = nullptr;
4684   }
4685   if (__kmp_topology) {
4686     kmp_topology_t::deallocate(__kmp_topology);
4687     __kmp_topology = nullptr;
4688   }
4689   KMPAffinity::destroy_api();
4690 }
4691 
4692 static void __kmp_select_mask_by_gtid(int gtid, const kmp_affinity_t *affinity,
4693                                       int *place, kmp_affin_mask_t **mask) {
4694   int mask_idx;
4695   bool is_hidden_helper = KMP_HIDDEN_HELPER_THREAD(gtid);
4696   if (is_hidden_helper)
4697     // The first gtid is the regular primary thread, the second gtid is the main
4698     // thread of hidden team which does not participate in task execution.
4699     mask_idx = gtid - 2;
4700   else
4701     mask_idx = __kmp_adjust_gtid_for_hidden_helpers(gtid);
4702   KMP_DEBUG_ASSERT(affinity->num_masks > 0);
4703   *place = (mask_idx + affinity->offset) % affinity->num_masks;
4704   *mask = KMP_CPU_INDEX(affinity->masks, *place);
4705 }
4706 
4707 // This function initializes the per-thread data concerning affinity including
4708 // the mask and topology information
4709 void __kmp_affinity_set_init_mask(int gtid, int isa_root) {
4710 
4711   kmp_info_t *th = (kmp_info_t *)TCR_SYNC_PTR(__kmp_threads[gtid]);
4712 
4713   // Set the thread topology information to default of unknown
4714   for (int id = 0; id < KMP_HW_LAST; ++id)
4715     th->th.th_topology_ids[id] = kmp_hw_thread_t::UNKNOWN_ID;
4716   th->th.th_topology_attrs = KMP_AFFINITY_ATTRS_UNKNOWN;
4717 
4718   if (!KMP_AFFINITY_CAPABLE()) {
4719     return;
4720   }
4721 
4722   if (th->th.th_affin_mask == NULL) {
4723     KMP_CPU_ALLOC(th->th.th_affin_mask);
4724   } else {
4725     KMP_CPU_ZERO(th->th.th_affin_mask);
4726   }
4727 
4728   // Copy the thread mask to the kmp_info_t structure. If
4729   // __kmp_affinity.type == affinity_none, copy the "full" mask, i.e.
4730   // one that has all of the OS proc ids set, or if
4731   // __kmp_affinity.flags.respect is set, then the full mask is the
4732   // same as the mask of the initialization thread.
4733   kmp_affin_mask_t *mask;
4734   int i;
4735   const kmp_affinity_t *affinity;
4736   const char *env_var;
4737   bool is_hidden_helper = KMP_HIDDEN_HELPER_THREAD(gtid);
4738 
4739   if (is_hidden_helper)
4740     affinity = &__kmp_hh_affinity;
4741   else
4742     affinity = &__kmp_affinity;
4743   env_var = affinity->env_var;
4744 
4745   if (KMP_AFFINITY_NON_PROC_BIND || is_hidden_helper) {
4746     if ((affinity->type == affinity_none) ||
4747         (affinity->type == affinity_balanced) ||
4748         KMP_HIDDEN_HELPER_MAIN_THREAD(gtid)) {
4749 #if KMP_GROUP_AFFINITY
4750       if (__kmp_num_proc_groups > 1) {
4751         return;
4752       }
4753 #endif
4754       KMP_ASSERT(__kmp_affin_fullMask != NULL);
4755       i = 0;
4756       mask = __kmp_affin_fullMask;
4757     } else {
4758       __kmp_select_mask_by_gtid(gtid, affinity, &i, &mask);
4759     }
4760   } else {
4761     if (!isa_root || __kmp_nested_proc_bind.bind_types[0] == proc_bind_false) {
4762 #if KMP_GROUP_AFFINITY
4763       if (__kmp_num_proc_groups > 1) {
4764         return;
4765       }
4766 #endif
4767       KMP_ASSERT(__kmp_affin_fullMask != NULL);
4768       i = KMP_PLACE_ALL;
4769       mask = __kmp_affin_fullMask;
4770     } else {
4771       __kmp_select_mask_by_gtid(gtid, affinity, &i, &mask);
4772     }
4773   }
4774 
4775   th->th.th_current_place = i;
4776   if (isa_root && !is_hidden_helper) {
4777     th->th.th_new_place = i;
4778     th->th.th_first_place = 0;
4779     th->th.th_last_place = affinity->num_masks - 1;
4780   } else if (KMP_AFFINITY_NON_PROC_BIND) {
4781     // When using a Non-OMP_PROC_BIND affinity method,
4782     // set all threads' place-partition-var to the entire place list
4783     th->th.th_first_place = 0;
4784     th->th.th_last_place = affinity->num_masks - 1;
4785   }
4786   // Copy topology information associated with the place
4787   if (i >= 0) {
4788     th->th.th_topology_ids = __kmp_affinity.ids[i];
4789     th->th.th_topology_attrs = __kmp_affinity.attrs[i];
4790   }
4791 
4792   if (i == KMP_PLACE_ALL) {
4793     KA_TRACE(100, ("__kmp_affinity_set_init_mask: binding T#%d to all places\n",
4794                    gtid));
4795   } else {
4796     KA_TRACE(100, ("__kmp_affinity_set_init_mask: binding T#%d to place %d\n",
4797                    gtid, i));
4798   }
4799 
4800   KMP_CPU_COPY(th->th.th_affin_mask, mask);
4801 
4802   /* to avoid duplicate printing (will be correctly printed on barrier) */
4803   if (affinity->flags.verbose &&
4804       (affinity->type == affinity_none ||
4805        (i != KMP_PLACE_ALL && affinity->type != affinity_balanced)) &&
4806       !KMP_HIDDEN_HELPER_MAIN_THREAD(gtid)) {
4807     char buf[KMP_AFFIN_MASK_PRINT_LEN];
4808     __kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN,
4809                               th->th.th_affin_mask);
4810     KMP_INFORM(BoundToOSProcSet, env_var, (kmp_int32)getpid(), __kmp_gettid(),
4811                gtid, buf);
4812   }
4813 
4814 #if KMP_OS_WINDOWS
4815   // On Windows* OS, the process affinity mask might have changed. If the user
4816   // didn't request affinity and this call fails, just continue silently.
4817   // See CQ171393.
4818   if (affinity->type == affinity_none) {
4819     __kmp_set_system_affinity(th->th.th_affin_mask, FALSE);
4820   } else
4821 #endif
4822     __kmp_set_system_affinity(th->th.th_affin_mask, TRUE);
4823 }
4824 
4825 void __kmp_affinity_set_place(int gtid) {
4826   // Hidden helper threads should not be affected by OMP_PLACES/OMP_PROC_BIND
4827   if (!KMP_AFFINITY_CAPABLE() || KMP_HIDDEN_HELPER_THREAD(gtid)) {
4828     return;
4829   }
4830 
4831   kmp_info_t *th = (kmp_info_t *)TCR_SYNC_PTR(__kmp_threads[gtid]);
4832 
4833   KA_TRACE(100, ("__kmp_affinity_set_place: binding T#%d to place %d (current "
4834                  "place = %d)\n",
4835                  gtid, th->th.th_new_place, th->th.th_current_place));
4836 
4837   // Check that the new place is within this thread's partition.
4838   KMP_DEBUG_ASSERT(th->th.th_affin_mask != NULL);
4839   KMP_ASSERT(th->th.th_new_place >= 0);
4840   KMP_ASSERT((unsigned)th->th.th_new_place <= __kmp_affinity.num_masks);
4841   if (th->th.th_first_place <= th->th.th_last_place) {
4842     KMP_ASSERT((th->th.th_new_place >= th->th.th_first_place) &&
4843                (th->th.th_new_place <= th->th.th_last_place));
4844   } else {
4845     KMP_ASSERT((th->th.th_new_place <= th->th.th_first_place) ||
4846                (th->th.th_new_place >= th->th.th_last_place));
4847   }
4848 
4849   // Copy the thread mask to the kmp_info_t structure,
4850   // and set this thread's affinity.
4851   kmp_affin_mask_t *mask =
4852       KMP_CPU_INDEX(__kmp_affinity.masks, th->th.th_new_place);
4853   KMP_CPU_COPY(th->th.th_affin_mask, mask);
4854   th->th.th_current_place = th->th.th_new_place;
4855   // Copy topology information associated with the place
4856   th->th.th_topology_ids = __kmp_affinity.ids[th->th.th_new_place];
4857   th->th.th_topology_attrs = __kmp_affinity.attrs[th->th.th_new_place];
4858 
4859   if (__kmp_affinity.flags.verbose) {
4860     char buf[KMP_AFFIN_MASK_PRINT_LEN];
4861     __kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN,
4862                               th->th.th_affin_mask);
4863     KMP_INFORM(BoundToOSProcSet, "OMP_PROC_BIND", (kmp_int32)getpid(),
4864                __kmp_gettid(), gtid, buf);
4865   }
4866   __kmp_set_system_affinity(th->th.th_affin_mask, TRUE);
4867 }
4868 
4869 int __kmp_aux_set_affinity(void **mask) {
4870   int gtid;
4871   kmp_info_t *th;
4872   int retval;
4873 
4874   if (!KMP_AFFINITY_CAPABLE()) {
4875     return -1;
4876   }
4877 
4878   gtid = __kmp_entry_gtid();
4879   KA_TRACE(
4880       1000, (""); {
4881         char buf[KMP_AFFIN_MASK_PRINT_LEN];
4882         __kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN,
4883                                   (kmp_affin_mask_t *)(*mask));
4884         __kmp_debug_printf(
4885             "kmp_set_affinity: setting affinity mask for thread %d = %s\n",
4886             gtid, buf);
4887       });
4888 
4889   if (__kmp_env_consistency_check) {
4890     if ((mask == NULL) || (*mask == NULL)) {
4891       KMP_FATAL(AffinityInvalidMask, "kmp_set_affinity");
4892     } else {
4893       unsigned proc;
4894       int num_procs = 0;
4895 
4896       KMP_CPU_SET_ITERATE(proc, ((kmp_affin_mask_t *)(*mask))) {
4897         if (!KMP_CPU_ISSET(proc, __kmp_affin_fullMask)) {
4898           KMP_FATAL(AffinityInvalidMask, "kmp_set_affinity");
4899         }
4900         if (!KMP_CPU_ISSET(proc, (kmp_affin_mask_t *)(*mask))) {
4901           continue;
4902         }
4903         num_procs++;
4904       }
4905       if (num_procs == 0) {
4906         KMP_FATAL(AffinityInvalidMask, "kmp_set_affinity");
4907       }
4908 
4909 #if KMP_GROUP_AFFINITY
4910       if (__kmp_get_proc_group((kmp_affin_mask_t *)(*mask)) < 0) {
4911         KMP_FATAL(AffinityInvalidMask, "kmp_set_affinity");
4912       }
4913 #endif /* KMP_GROUP_AFFINITY */
4914     }
4915   }
4916 
4917   th = __kmp_threads[gtid];
4918   KMP_DEBUG_ASSERT(th->th.th_affin_mask != NULL);
4919   retval = __kmp_set_system_affinity((kmp_affin_mask_t *)(*mask), FALSE);
4920   if (retval == 0) {
4921     KMP_CPU_COPY(th->th.th_affin_mask, (kmp_affin_mask_t *)(*mask));
4922   }
4923 
4924   th->th.th_current_place = KMP_PLACE_UNDEFINED;
4925   th->th.th_new_place = KMP_PLACE_UNDEFINED;
4926   th->th.th_first_place = 0;
4927   th->th.th_last_place = __kmp_affinity.num_masks - 1;
4928 
4929   // Turn off 4.0 affinity for the current tread at this parallel level.
4930   th->th.th_current_task->td_icvs.proc_bind = proc_bind_false;
4931 
4932   return retval;
4933 }
4934 
4935 int __kmp_aux_get_affinity(void **mask) {
4936   int gtid;
4937   int retval;
4938 #if KMP_OS_WINDOWS || KMP_DEBUG
4939   kmp_info_t *th;
4940 #endif
4941   if (!KMP_AFFINITY_CAPABLE()) {
4942     return -1;
4943   }
4944 
4945   gtid = __kmp_entry_gtid();
4946 #if KMP_OS_WINDOWS || KMP_DEBUG
4947   th = __kmp_threads[gtid];
4948 #else
4949   (void)gtid; // unused variable
4950 #endif
4951   KMP_DEBUG_ASSERT(th->th.th_affin_mask != NULL);
4952 
4953   KA_TRACE(
4954       1000, (""); {
4955         char buf[KMP_AFFIN_MASK_PRINT_LEN];
4956         __kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN,
4957                                   th->th.th_affin_mask);
4958         __kmp_printf(
4959             "kmp_get_affinity: stored affinity mask for thread %d = %s\n", gtid,
4960             buf);
4961       });
4962 
4963   if (__kmp_env_consistency_check) {
4964     if ((mask == NULL) || (*mask == NULL)) {
4965       KMP_FATAL(AffinityInvalidMask, "kmp_get_affinity");
4966     }
4967   }
4968 
4969 #if !KMP_OS_WINDOWS
4970 
4971   retval = __kmp_get_system_affinity((kmp_affin_mask_t *)(*mask), FALSE);
4972   KA_TRACE(
4973       1000, (""); {
4974         char buf[KMP_AFFIN_MASK_PRINT_LEN];
4975         __kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN,
4976                                   (kmp_affin_mask_t *)(*mask));
4977         __kmp_printf(
4978             "kmp_get_affinity: system affinity mask for thread %d = %s\n", gtid,
4979             buf);
4980       });
4981   return retval;
4982 
4983 #else
4984   (void)retval;
4985 
4986   KMP_CPU_COPY((kmp_affin_mask_t *)(*mask), th->th.th_affin_mask);
4987   return 0;
4988 
4989 #endif /* KMP_OS_WINDOWS */
4990 }
4991 
4992 int __kmp_aux_get_affinity_max_proc() {
4993   if (!KMP_AFFINITY_CAPABLE()) {
4994     return 0;
4995   }
4996 #if KMP_GROUP_AFFINITY
4997   if (__kmp_num_proc_groups > 1) {
4998     return (int)(__kmp_num_proc_groups * sizeof(DWORD_PTR) * CHAR_BIT);
4999   }
5000 #endif
5001   return __kmp_xproc;
5002 }
5003 
5004 int __kmp_aux_set_affinity_mask_proc(int proc, void **mask) {
5005   if (!KMP_AFFINITY_CAPABLE()) {
5006     return -1;
5007   }
5008 
5009   KA_TRACE(
5010       1000, (""); {
5011         int gtid = __kmp_entry_gtid();
5012         char buf[KMP_AFFIN_MASK_PRINT_LEN];
5013         __kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN,
5014                                   (kmp_affin_mask_t *)(*mask));
5015         __kmp_debug_printf("kmp_set_affinity_mask_proc: setting proc %d in "
5016                            "affinity mask for thread %d = %s\n",
5017                            proc, gtid, buf);
5018       });
5019 
5020   if (__kmp_env_consistency_check) {
5021     if ((mask == NULL) || (*mask == NULL)) {
5022       KMP_FATAL(AffinityInvalidMask, "kmp_set_affinity_mask_proc");
5023     }
5024   }
5025 
5026   if ((proc < 0) || (proc >= __kmp_aux_get_affinity_max_proc())) {
5027     return -1;
5028   }
5029   if (!KMP_CPU_ISSET(proc, __kmp_affin_fullMask)) {
5030     return -2;
5031   }
5032 
5033   KMP_CPU_SET(proc, (kmp_affin_mask_t *)(*mask));
5034   return 0;
5035 }
5036 
5037 int __kmp_aux_unset_affinity_mask_proc(int proc, void **mask) {
5038   if (!KMP_AFFINITY_CAPABLE()) {
5039     return -1;
5040   }
5041 
5042   KA_TRACE(
5043       1000, (""); {
5044         int gtid = __kmp_entry_gtid();
5045         char buf[KMP_AFFIN_MASK_PRINT_LEN];
5046         __kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN,
5047                                   (kmp_affin_mask_t *)(*mask));
5048         __kmp_debug_printf("kmp_unset_affinity_mask_proc: unsetting proc %d in "
5049                            "affinity mask for thread %d = %s\n",
5050                            proc, gtid, buf);
5051       });
5052 
5053   if (__kmp_env_consistency_check) {
5054     if ((mask == NULL) || (*mask == NULL)) {
5055       KMP_FATAL(AffinityInvalidMask, "kmp_unset_affinity_mask_proc");
5056     }
5057   }
5058 
5059   if ((proc < 0) || (proc >= __kmp_aux_get_affinity_max_proc())) {
5060     return -1;
5061   }
5062   if (!KMP_CPU_ISSET(proc, __kmp_affin_fullMask)) {
5063     return -2;
5064   }
5065 
5066   KMP_CPU_CLR(proc, (kmp_affin_mask_t *)(*mask));
5067   return 0;
5068 }
5069 
5070 int __kmp_aux_get_affinity_mask_proc(int proc, void **mask) {
5071   if (!KMP_AFFINITY_CAPABLE()) {
5072     return -1;
5073   }
5074 
5075   KA_TRACE(
5076       1000, (""); {
5077         int gtid = __kmp_entry_gtid();
5078         char buf[KMP_AFFIN_MASK_PRINT_LEN];
5079         __kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN,
5080                                   (kmp_affin_mask_t *)(*mask));
5081         __kmp_debug_printf("kmp_get_affinity_mask_proc: getting proc %d in "
5082                            "affinity mask for thread %d = %s\n",
5083                            proc, gtid, buf);
5084       });
5085 
5086   if (__kmp_env_consistency_check) {
5087     if ((mask == NULL) || (*mask == NULL)) {
5088       KMP_FATAL(AffinityInvalidMask, "kmp_get_affinity_mask_proc");
5089     }
5090   }
5091 
5092   if ((proc < 0) || (proc >= __kmp_aux_get_affinity_max_proc())) {
5093     return -1;
5094   }
5095   if (!KMP_CPU_ISSET(proc, __kmp_affin_fullMask)) {
5096     return 0;
5097   }
5098 
5099   return KMP_CPU_ISSET(proc, (kmp_affin_mask_t *)(*mask));
5100 }
5101 
5102 // Dynamic affinity settings - Affinity balanced
5103 void __kmp_balanced_affinity(kmp_info_t *th, int nthreads) {
5104   KMP_DEBUG_ASSERT(th);
5105   bool fine_gran = true;
5106   int tid = th->th.th_info.ds.ds_tid;
5107   const char *env_var = "KMP_AFFINITY";
5108 
5109   // Do not perform balanced affinity for the hidden helper threads
5110   if (KMP_HIDDEN_HELPER_THREAD(__kmp_gtid_from_thread(th)))
5111     return;
5112 
5113   switch (__kmp_affinity.gran) {
5114   case KMP_HW_THREAD:
5115     break;
5116   case KMP_HW_CORE:
5117     if (__kmp_nThreadsPerCore > 1) {
5118       fine_gran = false;
5119     }
5120     break;
5121   case KMP_HW_SOCKET:
5122     if (nCoresPerPkg > 1) {
5123       fine_gran = false;
5124     }
5125     break;
5126   default:
5127     fine_gran = false;
5128   }
5129 
5130   if (__kmp_topology->is_uniform()) {
5131     int coreID;
5132     int threadID;
5133     // Number of hyper threads per core in HT machine
5134     int __kmp_nth_per_core = __kmp_avail_proc / __kmp_ncores;
5135     // Number of cores
5136     int ncores = __kmp_ncores;
5137     if ((nPackages > 1) && (__kmp_nth_per_core <= 1)) {
5138       __kmp_nth_per_core = __kmp_avail_proc / nPackages;
5139       ncores = nPackages;
5140     }
5141     // How many threads will be bound to each core
5142     int chunk = nthreads / ncores;
5143     // How many cores will have an additional thread bound to it - "big cores"
5144     int big_cores = nthreads % ncores;
5145     // Number of threads on the big cores
5146     int big_nth = (chunk + 1) * big_cores;
5147     if (tid < big_nth) {
5148       coreID = tid / (chunk + 1);
5149       threadID = (tid % (chunk + 1)) % __kmp_nth_per_core;
5150     } else { // tid >= big_nth
5151       coreID = (tid - big_cores) / chunk;
5152       threadID = ((tid - big_cores) % chunk) % __kmp_nth_per_core;
5153     }
5154     KMP_DEBUG_ASSERT2(KMP_AFFINITY_CAPABLE(),
5155                       "Illegal set affinity operation when not capable");
5156 
5157     kmp_affin_mask_t *mask = th->th.th_affin_mask;
5158     KMP_CPU_ZERO(mask);
5159 
5160     if (fine_gran) {
5161       int osID =
5162           __kmp_topology->at(coreID * __kmp_nth_per_core + threadID).os_id;
5163       KMP_CPU_SET(osID, mask);
5164     } else {
5165       for (int i = 0; i < __kmp_nth_per_core; i++) {
5166         int osID;
5167         osID = __kmp_topology->at(coreID * __kmp_nth_per_core + i).os_id;
5168         KMP_CPU_SET(osID, mask);
5169       }
5170     }
5171     if (__kmp_affinity.flags.verbose) {
5172       char buf[KMP_AFFIN_MASK_PRINT_LEN];
5173       __kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN, mask);
5174       KMP_INFORM(BoundToOSProcSet, env_var, (kmp_int32)getpid(), __kmp_gettid(),
5175                  tid, buf);
5176     }
5177     __kmp_affinity_get_thread_topology_info(th);
5178     __kmp_set_system_affinity(mask, TRUE);
5179   } else { // Non-uniform topology
5180 
5181     kmp_affin_mask_t *mask = th->th.th_affin_mask;
5182     KMP_CPU_ZERO(mask);
5183 
5184     int core_level =
5185         __kmp_affinity_find_core_level(__kmp_avail_proc, __kmp_aff_depth - 1);
5186     int ncores = __kmp_affinity_compute_ncores(__kmp_avail_proc,
5187                                                __kmp_aff_depth - 1, core_level);
5188     int nth_per_core = __kmp_affinity_max_proc_per_core(
5189         __kmp_avail_proc, __kmp_aff_depth - 1, core_level);
5190 
5191     // For performance gain consider the special case nthreads ==
5192     // __kmp_avail_proc
5193     if (nthreads == __kmp_avail_proc) {
5194       if (fine_gran) {
5195         int osID = __kmp_topology->at(tid).os_id;
5196         KMP_CPU_SET(osID, mask);
5197       } else {
5198         int core =
5199             __kmp_affinity_find_core(tid, __kmp_aff_depth - 1, core_level);
5200         for (int i = 0; i < __kmp_avail_proc; i++) {
5201           int osID = __kmp_topology->at(i).os_id;
5202           if (__kmp_affinity_find_core(i, __kmp_aff_depth - 1, core_level) ==
5203               core) {
5204             KMP_CPU_SET(osID, mask);
5205           }
5206         }
5207       }
5208     } else if (nthreads <= ncores) {
5209 
5210       int core = 0;
5211       for (int i = 0; i < ncores; i++) {
5212         // Check if this core from procarr[] is in the mask
5213         int in_mask = 0;
5214         for (int j = 0; j < nth_per_core; j++) {
5215           if (procarr[i * nth_per_core + j] != -1) {
5216             in_mask = 1;
5217             break;
5218           }
5219         }
5220         if (in_mask) {
5221           if (tid == core) {
5222             for (int j = 0; j < nth_per_core; j++) {
5223               int osID = procarr[i * nth_per_core + j];
5224               if (osID != -1) {
5225                 KMP_CPU_SET(osID, mask);
5226                 // For fine granularity it is enough to set the first available
5227                 // osID for this core
5228                 if (fine_gran) {
5229                   break;
5230                 }
5231               }
5232             }
5233             break;
5234           } else {
5235             core++;
5236           }
5237         }
5238       }
5239     } else { // nthreads > ncores
5240       // Array to save the number of processors at each core
5241       int *nproc_at_core = (int *)KMP_ALLOCA(sizeof(int) * ncores);
5242       // Array to save the number of cores with "x" available processors;
5243       int *ncores_with_x_procs =
5244           (int *)KMP_ALLOCA(sizeof(int) * (nth_per_core + 1));
5245       // Array to save the number of cores with # procs from x to nth_per_core
5246       int *ncores_with_x_to_max_procs =
5247           (int *)KMP_ALLOCA(sizeof(int) * (nth_per_core + 1));
5248 
5249       for (int i = 0; i <= nth_per_core; i++) {
5250         ncores_with_x_procs[i] = 0;
5251         ncores_with_x_to_max_procs[i] = 0;
5252       }
5253 
5254       for (int i = 0; i < ncores; i++) {
5255         int cnt = 0;
5256         for (int j = 0; j < nth_per_core; j++) {
5257           if (procarr[i * nth_per_core + j] != -1) {
5258             cnt++;
5259           }
5260         }
5261         nproc_at_core[i] = cnt;
5262         ncores_with_x_procs[cnt]++;
5263       }
5264 
5265       for (int i = 0; i <= nth_per_core; i++) {
5266         for (int j = i; j <= nth_per_core; j++) {
5267           ncores_with_x_to_max_procs[i] += ncores_with_x_procs[j];
5268         }
5269       }
5270 
5271       // Max number of processors
5272       int nproc = nth_per_core * ncores;
5273       // An array to keep number of threads per each context
5274       int *newarr = (int *)__kmp_allocate(sizeof(int) * nproc);
5275       for (int i = 0; i < nproc; i++) {
5276         newarr[i] = 0;
5277       }
5278 
5279       int nth = nthreads;
5280       int flag = 0;
5281       while (nth > 0) {
5282         for (int j = 1; j <= nth_per_core; j++) {
5283           int cnt = ncores_with_x_to_max_procs[j];
5284           for (int i = 0; i < ncores; i++) {
5285             // Skip the core with 0 processors
5286             if (nproc_at_core[i] == 0) {
5287               continue;
5288             }
5289             for (int k = 0; k < nth_per_core; k++) {
5290               if (procarr[i * nth_per_core + k] != -1) {
5291                 if (newarr[i * nth_per_core + k] == 0) {
5292                   newarr[i * nth_per_core + k] = 1;
5293                   cnt--;
5294                   nth--;
5295                   break;
5296                 } else {
5297                   if (flag != 0) {
5298                     newarr[i * nth_per_core + k]++;
5299                     cnt--;
5300                     nth--;
5301                     break;
5302                   }
5303                 }
5304               }
5305             }
5306             if (cnt == 0 || nth == 0) {
5307               break;
5308             }
5309           }
5310           if (nth == 0) {
5311             break;
5312           }
5313         }
5314         flag = 1;
5315       }
5316       int sum = 0;
5317       for (int i = 0; i < nproc; i++) {
5318         sum += newarr[i];
5319         if (sum > tid) {
5320           if (fine_gran) {
5321             int osID = procarr[i];
5322             KMP_CPU_SET(osID, mask);
5323           } else {
5324             int coreID = i / nth_per_core;
5325             for (int ii = 0; ii < nth_per_core; ii++) {
5326               int osID = procarr[coreID * nth_per_core + ii];
5327               if (osID != -1) {
5328                 KMP_CPU_SET(osID, mask);
5329               }
5330             }
5331           }
5332           break;
5333         }
5334       }
5335       __kmp_free(newarr);
5336     }
5337 
5338     if (__kmp_affinity.flags.verbose) {
5339       char buf[KMP_AFFIN_MASK_PRINT_LEN];
5340       __kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN, mask);
5341       KMP_INFORM(BoundToOSProcSet, env_var, (kmp_int32)getpid(), __kmp_gettid(),
5342                  tid, buf);
5343     }
5344     __kmp_affinity_get_thread_topology_info(th);
5345     __kmp_set_system_affinity(mask, TRUE);
5346   }
5347 }
5348 
5349 #if KMP_OS_LINUX || KMP_OS_FREEBSD
5350 // We don't need this entry for Windows because
5351 // there is GetProcessAffinityMask() api
5352 //
5353 // The intended usage is indicated by these steps:
5354 // 1) The user gets the current affinity mask
5355 // 2) Then sets the affinity by calling this function
5356 // 3) Error check the return value
5357 // 4) Use non-OpenMP parallelization
5358 // 5) Reset the affinity to what was stored in step 1)
5359 #ifdef __cplusplus
5360 extern "C"
5361 #endif
5362     int
5363     kmp_set_thread_affinity_mask_initial()
5364 // the function returns 0 on success,
5365 //   -1 if we cannot bind thread
5366 //   >0 (errno) if an error happened during binding
5367 {
5368   int gtid = __kmp_get_gtid();
5369   if (gtid < 0) {
5370     // Do not touch non-omp threads
5371     KA_TRACE(30, ("kmp_set_thread_affinity_mask_initial: "
5372                   "non-omp thread, returning\n"));
5373     return -1;
5374   }
5375   if (!KMP_AFFINITY_CAPABLE() || !__kmp_init_middle) {
5376     KA_TRACE(30, ("kmp_set_thread_affinity_mask_initial: "
5377                   "affinity not initialized, returning\n"));
5378     return -1;
5379   }
5380   KA_TRACE(30, ("kmp_set_thread_affinity_mask_initial: "
5381                 "set full mask for thread %d\n",
5382                 gtid));
5383   KMP_DEBUG_ASSERT(__kmp_affin_fullMask != NULL);
5384   return __kmp_set_system_affinity(__kmp_affin_fullMask, FALSE);
5385 }
5386 #endif
5387 
5388 #endif // KMP_AFFINITY_SUPPORTED
5389