1 /* 2 * kmp_affinity.cpp -- affinity management 3 */ 4 5 //===----------------------------------------------------------------------===// 6 // 7 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 8 // See https://llvm.org/LICENSE.txt for license information. 9 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "kmp.h" 14 #include "kmp_affinity.h" 15 #include "kmp_i18n.h" 16 #include "kmp_io.h" 17 #include "kmp_str.h" 18 #include "kmp_wrapper_getpid.h" 19 #if KMP_USE_HIER_SCHED 20 #include "kmp_dispatch_hier.h" 21 #endif 22 #if KMP_USE_HWLOC 23 // Copied from hwloc 24 #define HWLOC_GROUP_KIND_INTEL_MODULE 102 25 #define HWLOC_GROUP_KIND_INTEL_TILE 103 26 #define HWLOC_GROUP_KIND_INTEL_DIE 104 27 #define HWLOC_GROUP_KIND_WINDOWS_PROCESSOR_GROUP 220 28 #endif 29 #include <ctype.h> 30 31 // The machine topology 32 kmp_topology_t *__kmp_topology = nullptr; 33 // KMP_HW_SUBSET environment variable 34 kmp_hw_subset_t *__kmp_hw_subset = nullptr; 35 36 // Store the real or imagined machine hierarchy here 37 static hierarchy_info machine_hierarchy; 38 39 void __kmp_cleanup_hierarchy() { machine_hierarchy.fini(); } 40 41 void __kmp_get_hierarchy(kmp_uint32 nproc, kmp_bstate_t *thr_bar) { 42 kmp_uint32 depth; 43 // The test below is true if affinity is available, but set to "none". Need to 44 // init on first use of hierarchical barrier. 45 if (TCR_1(machine_hierarchy.uninitialized)) 46 machine_hierarchy.init(nproc); 47 48 // Adjust the hierarchy in case num threads exceeds original 49 if (nproc > machine_hierarchy.base_num_threads) 50 machine_hierarchy.resize(nproc); 51 52 depth = machine_hierarchy.depth; 53 KMP_DEBUG_ASSERT(depth > 0); 54 55 thr_bar->depth = depth; 56 __kmp_type_convert(machine_hierarchy.numPerLevel[0] - 1, 57 &(thr_bar->base_leaf_kids)); 58 thr_bar->skip_per_level = machine_hierarchy.skipPerLevel; 59 } 60 61 static int nCoresPerPkg, nPackages; 62 static int __kmp_nThreadsPerCore; 63 #ifndef KMP_DFLT_NTH_CORES 64 static int __kmp_ncores; 65 #endif 66 67 const char *__kmp_hw_get_catalog_string(kmp_hw_t type, bool plural) { 68 switch (type) { 69 case KMP_HW_SOCKET: 70 return ((plural) ? KMP_I18N_STR(Sockets) : KMP_I18N_STR(Socket)); 71 case KMP_HW_DIE: 72 return ((plural) ? KMP_I18N_STR(Dice) : KMP_I18N_STR(Die)); 73 case KMP_HW_MODULE: 74 return ((plural) ? KMP_I18N_STR(Modules) : KMP_I18N_STR(Module)); 75 case KMP_HW_TILE: 76 return ((plural) ? KMP_I18N_STR(Tiles) : KMP_I18N_STR(Tile)); 77 case KMP_HW_NUMA: 78 return ((plural) ? KMP_I18N_STR(NumaDomains) : KMP_I18N_STR(NumaDomain)); 79 case KMP_HW_L3: 80 return ((plural) ? KMP_I18N_STR(L3Caches) : KMP_I18N_STR(L3Cache)); 81 case KMP_HW_L2: 82 return ((plural) ? KMP_I18N_STR(L2Caches) : KMP_I18N_STR(L2Cache)); 83 case KMP_HW_L1: 84 return ((plural) ? KMP_I18N_STR(L1Caches) : KMP_I18N_STR(L1Cache)); 85 case KMP_HW_LLC: 86 return ((plural) ? KMP_I18N_STR(LLCaches) : KMP_I18N_STR(LLCache)); 87 case KMP_HW_CORE: 88 return ((plural) ? KMP_I18N_STR(Cores) : KMP_I18N_STR(Core)); 89 case KMP_HW_THREAD: 90 return ((plural) ? KMP_I18N_STR(Threads) : KMP_I18N_STR(Thread)); 91 case KMP_HW_PROC_GROUP: 92 return ((plural) ? KMP_I18N_STR(ProcGroups) : KMP_I18N_STR(ProcGroup)); 93 } 94 return KMP_I18N_STR(Unknown); 95 } 96 97 const char *__kmp_hw_get_keyword(kmp_hw_t type, bool plural) { 98 switch (type) { 99 case KMP_HW_SOCKET: 100 return ((plural) ? "sockets" : "socket"); 101 case KMP_HW_DIE: 102 return ((plural) ? "dice" : "die"); 103 case KMP_HW_MODULE: 104 return ((plural) ? "modules" : "module"); 105 case KMP_HW_TILE: 106 return ((plural) ? "tiles" : "tile"); 107 case KMP_HW_NUMA: 108 return ((plural) ? "numa_domains" : "numa_domain"); 109 case KMP_HW_L3: 110 return ((plural) ? "l3_caches" : "l3_cache"); 111 case KMP_HW_L2: 112 return ((plural) ? "l2_caches" : "l2_cache"); 113 case KMP_HW_L1: 114 return ((plural) ? "l1_caches" : "l1_cache"); 115 case KMP_HW_LLC: 116 return ((plural) ? "ll_caches" : "ll_cache"); 117 case KMP_HW_CORE: 118 return ((plural) ? "cores" : "core"); 119 case KMP_HW_THREAD: 120 return ((plural) ? "threads" : "thread"); 121 case KMP_HW_PROC_GROUP: 122 return ((plural) ? "proc_groups" : "proc_group"); 123 } 124 return ((plural) ? "unknowns" : "unknown"); 125 } 126 127 const char *__kmp_hw_get_core_type_string(kmp_hw_core_type_t type) { 128 switch (type) { 129 case KMP_HW_CORE_TYPE_UNKNOWN: 130 return "unknown"; 131 #if KMP_ARCH_X86 || KMP_ARCH_X86_64 132 case KMP_HW_CORE_TYPE_ATOM: 133 return "Intel Atom(R) processor"; 134 case KMP_HW_CORE_TYPE_CORE: 135 return "Intel(R) Core(TM) processor"; 136 #endif 137 } 138 return "unknown"; 139 } 140 141 #if KMP_AFFINITY_SUPPORTED 142 // If affinity is supported, check the affinity 143 // verbose and warning flags before printing warning 144 #define KMP_AFF_WARNING(s, ...) \ 145 if (s.flags.verbose || (s.flags.warnings && (s.type != affinity_none))) { \ 146 KMP_WARNING(__VA_ARGS__); \ 147 } 148 #else 149 #define KMP_AFF_WARNING(s, ...) KMP_WARNING(__VA_ARGS__) 150 #endif 151 152 //////////////////////////////////////////////////////////////////////////////// 153 // kmp_hw_thread_t methods 154 int kmp_hw_thread_t::compare_ids(const void *a, const void *b) { 155 const kmp_hw_thread_t *ahwthread = (const kmp_hw_thread_t *)a; 156 const kmp_hw_thread_t *bhwthread = (const kmp_hw_thread_t *)b; 157 int depth = __kmp_topology->get_depth(); 158 for (int level = 0; level < depth; ++level) { 159 if (ahwthread->ids[level] < bhwthread->ids[level]) 160 return -1; 161 else if (ahwthread->ids[level] > bhwthread->ids[level]) 162 return 1; 163 } 164 if (ahwthread->os_id < bhwthread->os_id) 165 return -1; 166 else if (ahwthread->os_id > bhwthread->os_id) 167 return 1; 168 return 0; 169 } 170 171 #if KMP_AFFINITY_SUPPORTED 172 int kmp_hw_thread_t::compare_compact(const void *a, const void *b) { 173 int i; 174 const kmp_hw_thread_t *aa = (const kmp_hw_thread_t *)a; 175 const kmp_hw_thread_t *bb = (const kmp_hw_thread_t *)b; 176 int depth = __kmp_topology->get_depth(); 177 int compact = __kmp_topology->compact; 178 KMP_DEBUG_ASSERT(compact >= 0); 179 KMP_DEBUG_ASSERT(compact <= depth); 180 for (i = 0; i < compact; i++) { 181 int j = depth - i - 1; 182 if (aa->sub_ids[j] < bb->sub_ids[j]) 183 return -1; 184 if (aa->sub_ids[j] > bb->sub_ids[j]) 185 return 1; 186 } 187 for (; i < depth; i++) { 188 int j = i - compact; 189 if (aa->sub_ids[j] < bb->sub_ids[j]) 190 return -1; 191 if (aa->sub_ids[j] > bb->sub_ids[j]) 192 return 1; 193 } 194 return 0; 195 } 196 #endif 197 198 void kmp_hw_thread_t::print() const { 199 int depth = __kmp_topology->get_depth(); 200 printf("%4d ", os_id); 201 for (int i = 0; i < depth; ++i) { 202 printf("%4d ", ids[i]); 203 } 204 if (attrs) { 205 if (attrs.is_core_type_valid()) 206 printf(" (%s)", __kmp_hw_get_core_type_string(attrs.get_core_type())); 207 if (attrs.is_core_eff_valid()) 208 printf(" (eff=%d)", attrs.get_core_eff()); 209 } 210 printf("\n"); 211 } 212 213 //////////////////////////////////////////////////////////////////////////////// 214 // kmp_topology_t methods 215 216 // Add a layer to the topology based on the ids. Assume the topology 217 // is perfectly nested (i.e., so no object has more than one parent) 218 void kmp_topology_t::_insert_layer(kmp_hw_t type, const int *ids) { 219 // Figure out where the layer should go by comparing the ids of the current 220 // layers with the new ids 221 int target_layer; 222 int previous_id = kmp_hw_thread_t::UNKNOWN_ID; 223 int previous_new_id = kmp_hw_thread_t::UNKNOWN_ID; 224 225 // Start from the highest layer and work down to find target layer 226 // If new layer is equal to another layer then put the new layer above 227 for (target_layer = 0; target_layer < depth; ++target_layer) { 228 bool layers_equal = true; 229 bool strictly_above_target_layer = false; 230 for (int i = 0; i < num_hw_threads; ++i) { 231 int id = hw_threads[i].ids[target_layer]; 232 int new_id = ids[i]; 233 if (id != previous_id && new_id == previous_new_id) { 234 // Found the layer we are strictly above 235 strictly_above_target_layer = true; 236 layers_equal = false; 237 break; 238 } else if (id == previous_id && new_id != previous_new_id) { 239 // Found a layer we are below. Move to next layer and check. 240 layers_equal = false; 241 break; 242 } 243 previous_id = id; 244 previous_new_id = new_id; 245 } 246 if (strictly_above_target_layer || layers_equal) 247 break; 248 } 249 250 // Found the layer we are above. Now move everything to accommodate the new 251 // layer. And put the new ids and type into the topology. 252 for (int i = depth - 1, j = depth; i >= target_layer; --i, --j) 253 types[j] = types[i]; 254 types[target_layer] = type; 255 for (int k = 0; k < num_hw_threads; ++k) { 256 for (int i = depth - 1, j = depth; i >= target_layer; --i, --j) 257 hw_threads[k].ids[j] = hw_threads[k].ids[i]; 258 hw_threads[k].ids[target_layer] = ids[k]; 259 } 260 equivalent[type] = type; 261 depth++; 262 } 263 264 #if KMP_GROUP_AFFINITY 265 // Insert the Windows Processor Group structure into the topology 266 void kmp_topology_t::_insert_windows_proc_groups() { 267 // Do not insert the processor group structure for a single group 268 if (__kmp_num_proc_groups == 1) 269 return; 270 kmp_affin_mask_t *mask; 271 int *ids = (int *)__kmp_allocate(sizeof(int) * num_hw_threads); 272 KMP_CPU_ALLOC(mask); 273 for (int i = 0; i < num_hw_threads; ++i) { 274 KMP_CPU_ZERO(mask); 275 KMP_CPU_SET(hw_threads[i].os_id, mask); 276 ids[i] = __kmp_get_proc_group(mask); 277 } 278 KMP_CPU_FREE(mask); 279 _insert_layer(KMP_HW_PROC_GROUP, ids); 280 __kmp_free(ids); 281 } 282 #endif 283 284 // Remove layers that don't add information to the topology. 285 // This is done by having the layer take on the id = UNKNOWN_ID (-1) 286 void kmp_topology_t::_remove_radix1_layers() { 287 int preference[KMP_HW_LAST]; 288 int top_index1, top_index2; 289 // Set up preference associative array 290 preference[KMP_HW_SOCKET] = 110; 291 preference[KMP_HW_PROC_GROUP] = 100; 292 preference[KMP_HW_CORE] = 95; 293 preference[KMP_HW_THREAD] = 90; 294 preference[KMP_HW_NUMA] = 85; 295 preference[KMP_HW_DIE] = 80; 296 preference[KMP_HW_TILE] = 75; 297 preference[KMP_HW_MODULE] = 73; 298 preference[KMP_HW_L3] = 70; 299 preference[KMP_HW_L2] = 65; 300 preference[KMP_HW_L1] = 60; 301 preference[KMP_HW_LLC] = 5; 302 top_index1 = 0; 303 top_index2 = 1; 304 while (top_index1 < depth - 1 && top_index2 < depth) { 305 kmp_hw_t type1 = types[top_index1]; 306 kmp_hw_t type2 = types[top_index2]; 307 KMP_ASSERT_VALID_HW_TYPE(type1); 308 KMP_ASSERT_VALID_HW_TYPE(type2); 309 // Do not allow the three main topology levels (sockets, cores, threads) to 310 // be compacted down 311 if ((type1 == KMP_HW_THREAD || type1 == KMP_HW_CORE || 312 type1 == KMP_HW_SOCKET) && 313 (type2 == KMP_HW_THREAD || type2 == KMP_HW_CORE || 314 type2 == KMP_HW_SOCKET)) { 315 top_index1 = top_index2++; 316 continue; 317 } 318 bool radix1 = true; 319 bool all_same = true; 320 int id1 = hw_threads[0].ids[top_index1]; 321 int id2 = hw_threads[0].ids[top_index2]; 322 int pref1 = preference[type1]; 323 int pref2 = preference[type2]; 324 for (int hwidx = 1; hwidx < num_hw_threads; ++hwidx) { 325 if (hw_threads[hwidx].ids[top_index1] == id1 && 326 hw_threads[hwidx].ids[top_index2] != id2) { 327 radix1 = false; 328 break; 329 } 330 if (hw_threads[hwidx].ids[top_index2] != id2) 331 all_same = false; 332 id1 = hw_threads[hwidx].ids[top_index1]; 333 id2 = hw_threads[hwidx].ids[top_index2]; 334 } 335 if (radix1) { 336 // Select the layer to remove based on preference 337 kmp_hw_t remove_type, keep_type; 338 int remove_layer, remove_layer_ids; 339 if (pref1 > pref2) { 340 remove_type = type2; 341 remove_layer = remove_layer_ids = top_index2; 342 keep_type = type1; 343 } else { 344 remove_type = type1; 345 remove_layer = remove_layer_ids = top_index1; 346 keep_type = type2; 347 } 348 // If all the indexes for the second (deeper) layer are the same. 349 // e.g., all are zero, then make sure to keep the first layer's ids 350 if (all_same) 351 remove_layer_ids = top_index2; 352 // Remove radix one type by setting the equivalence, removing the id from 353 // the hw threads and removing the layer from types and depth 354 set_equivalent_type(remove_type, keep_type); 355 for (int idx = 0; idx < num_hw_threads; ++idx) { 356 kmp_hw_thread_t &hw_thread = hw_threads[idx]; 357 for (int d = remove_layer_ids; d < depth - 1; ++d) 358 hw_thread.ids[d] = hw_thread.ids[d + 1]; 359 } 360 for (int idx = remove_layer; idx < depth - 1; ++idx) 361 types[idx] = types[idx + 1]; 362 depth--; 363 } else { 364 top_index1 = top_index2++; 365 } 366 } 367 KMP_ASSERT(depth > 0); 368 } 369 370 void kmp_topology_t::_set_last_level_cache() { 371 if (get_equivalent_type(KMP_HW_L3) != KMP_HW_UNKNOWN) 372 set_equivalent_type(KMP_HW_LLC, KMP_HW_L3); 373 else if (get_equivalent_type(KMP_HW_L2) != KMP_HW_UNKNOWN) 374 set_equivalent_type(KMP_HW_LLC, KMP_HW_L2); 375 #if KMP_MIC_SUPPORTED 376 else if (__kmp_mic_type == mic3) { 377 if (get_equivalent_type(KMP_HW_L2) != KMP_HW_UNKNOWN) 378 set_equivalent_type(KMP_HW_LLC, KMP_HW_L2); 379 else if (get_equivalent_type(KMP_HW_TILE) != KMP_HW_UNKNOWN) 380 set_equivalent_type(KMP_HW_LLC, KMP_HW_TILE); 381 // L2/Tile wasn't detected so just say L1 382 else 383 set_equivalent_type(KMP_HW_LLC, KMP_HW_L1); 384 } 385 #endif 386 else if (get_equivalent_type(KMP_HW_L1) != KMP_HW_UNKNOWN) 387 set_equivalent_type(KMP_HW_LLC, KMP_HW_L1); 388 // Fallback is to set last level cache to socket or core 389 if (get_equivalent_type(KMP_HW_LLC) == KMP_HW_UNKNOWN) { 390 if (get_equivalent_type(KMP_HW_SOCKET) != KMP_HW_UNKNOWN) 391 set_equivalent_type(KMP_HW_LLC, KMP_HW_SOCKET); 392 else if (get_equivalent_type(KMP_HW_CORE) != KMP_HW_UNKNOWN) 393 set_equivalent_type(KMP_HW_LLC, KMP_HW_CORE); 394 } 395 KMP_ASSERT(get_equivalent_type(KMP_HW_LLC) != KMP_HW_UNKNOWN); 396 } 397 398 // Gather the count of each topology layer and the ratio 399 void kmp_topology_t::_gather_enumeration_information() { 400 int previous_id[KMP_HW_LAST]; 401 int max[KMP_HW_LAST]; 402 403 for (int i = 0; i < depth; ++i) { 404 previous_id[i] = kmp_hw_thread_t::UNKNOWN_ID; 405 max[i] = 0; 406 count[i] = 0; 407 ratio[i] = 0; 408 } 409 int core_level = get_level(KMP_HW_CORE); 410 for (int i = 0; i < num_hw_threads; ++i) { 411 kmp_hw_thread_t &hw_thread = hw_threads[i]; 412 for (int layer = 0; layer < depth; ++layer) { 413 int id = hw_thread.ids[layer]; 414 if (id != previous_id[layer]) { 415 // Add an additional increment to each count 416 for (int l = layer; l < depth; ++l) 417 count[l]++; 418 // Keep track of topology layer ratio statistics 419 max[layer]++; 420 for (int l = layer + 1; l < depth; ++l) { 421 if (max[l] > ratio[l]) 422 ratio[l] = max[l]; 423 max[l] = 1; 424 } 425 // Figure out the number of different core types 426 // and efficiencies for hybrid CPUs 427 if (__kmp_is_hybrid_cpu() && core_level >= 0 && layer <= core_level) { 428 if (hw_thread.attrs.is_core_eff_valid() && 429 hw_thread.attrs.core_eff >= num_core_efficiencies) { 430 // Because efficiencies can range from 0 to max efficiency - 1, 431 // the number of efficiencies is max efficiency + 1 432 num_core_efficiencies = hw_thread.attrs.core_eff + 1; 433 } 434 if (hw_thread.attrs.is_core_type_valid()) { 435 bool found = false; 436 for (int j = 0; j < num_core_types; ++j) { 437 if (hw_thread.attrs.get_core_type() == core_types[j]) { 438 found = true; 439 break; 440 } 441 } 442 if (!found) { 443 KMP_ASSERT(num_core_types < KMP_HW_MAX_NUM_CORE_TYPES); 444 core_types[num_core_types++] = hw_thread.attrs.get_core_type(); 445 } 446 } 447 } 448 break; 449 } 450 } 451 for (int layer = 0; layer < depth; ++layer) { 452 previous_id[layer] = hw_thread.ids[layer]; 453 } 454 } 455 for (int layer = 0; layer < depth; ++layer) { 456 if (max[layer] > ratio[layer]) 457 ratio[layer] = max[layer]; 458 } 459 } 460 461 int kmp_topology_t::_get_ncores_with_attr(const kmp_hw_attr_t &attr, 462 int above_level, 463 bool find_all) const { 464 int current, current_max; 465 int previous_id[KMP_HW_LAST]; 466 for (int i = 0; i < depth; ++i) 467 previous_id[i] = kmp_hw_thread_t::UNKNOWN_ID; 468 int core_level = get_level(KMP_HW_CORE); 469 if (find_all) 470 above_level = -1; 471 KMP_ASSERT(above_level < core_level); 472 current_max = 0; 473 current = 0; 474 for (int i = 0; i < num_hw_threads; ++i) { 475 kmp_hw_thread_t &hw_thread = hw_threads[i]; 476 if (!find_all && hw_thread.ids[above_level] != previous_id[above_level]) { 477 if (current > current_max) 478 current_max = current; 479 current = hw_thread.attrs.contains(attr); 480 } else { 481 for (int level = above_level + 1; level <= core_level; ++level) { 482 if (hw_thread.ids[level] != previous_id[level]) { 483 if (hw_thread.attrs.contains(attr)) 484 current++; 485 break; 486 } 487 } 488 } 489 for (int level = 0; level < depth; ++level) 490 previous_id[level] = hw_thread.ids[level]; 491 } 492 if (current > current_max) 493 current_max = current; 494 return current_max; 495 } 496 497 // Find out if the topology is uniform 498 void kmp_topology_t::_discover_uniformity() { 499 int num = 1; 500 for (int level = 0; level < depth; ++level) 501 num *= ratio[level]; 502 flags.uniform = (num == count[depth - 1]); 503 } 504 505 // Set all the sub_ids for each hardware thread 506 void kmp_topology_t::_set_sub_ids() { 507 int previous_id[KMP_HW_LAST]; 508 int sub_id[KMP_HW_LAST]; 509 510 for (int i = 0; i < depth; ++i) { 511 previous_id[i] = -1; 512 sub_id[i] = -1; 513 } 514 for (int i = 0; i < num_hw_threads; ++i) { 515 kmp_hw_thread_t &hw_thread = hw_threads[i]; 516 // Setup the sub_id 517 for (int j = 0; j < depth; ++j) { 518 if (hw_thread.ids[j] != previous_id[j]) { 519 sub_id[j]++; 520 for (int k = j + 1; k < depth; ++k) { 521 sub_id[k] = 0; 522 } 523 break; 524 } 525 } 526 // Set previous_id 527 for (int j = 0; j < depth; ++j) { 528 previous_id[j] = hw_thread.ids[j]; 529 } 530 // Set the sub_ids field 531 for (int j = 0; j < depth; ++j) { 532 hw_thread.sub_ids[j] = sub_id[j]; 533 } 534 } 535 } 536 537 void kmp_topology_t::_set_globals() { 538 // Set nCoresPerPkg, nPackages, __kmp_nThreadsPerCore, __kmp_ncores 539 int core_level, thread_level, package_level; 540 package_level = get_level(KMP_HW_SOCKET); 541 #if KMP_GROUP_AFFINITY 542 if (package_level == -1) 543 package_level = get_level(KMP_HW_PROC_GROUP); 544 #endif 545 core_level = get_level(KMP_HW_CORE); 546 thread_level = get_level(KMP_HW_THREAD); 547 548 KMP_ASSERT(core_level != -1); 549 KMP_ASSERT(thread_level != -1); 550 551 __kmp_nThreadsPerCore = calculate_ratio(thread_level, core_level); 552 if (package_level != -1) { 553 nCoresPerPkg = calculate_ratio(core_level, package_level); 554 nPackages = get_count(package_level); 555 } else { 556 // assume one socket 557 nCoresPerPkg = get_count(core_level); 558 nPackages = 1; 559 } 560 #ifndef KMP_DFLT_NTH_CORES 561 __kmp_ncores = get_count(core_level); 562 #endif 563 } 564 565 kmp_topology_t *kmp_topology_t::allocate(int nproc, int ndepth, 566 const kmp_hw_t *types) { 567 kmp_topology_t *retval; 568 // Allocate all data in one large allocation 569 size_t size = sizeof(kmp_topology_t) + sizeof(kmp_hw_thread_t) * nproc + 570 sizeof(int) * (size_t)KMP_HW_LAST * 3; 571 char *bytes = (char *)__kmp_allocate(size); 572 retval = (kmp_topology_t *)bytes; 573 if (nproc > 0) { 574 retval->hw_threads = (kmp_hw_thread_t *)(bytes + sizeof(kmp_topology_t)); 575 } else { 576 retval->hw_threads = nullptr; 577 } 578 retval->num_hw_threads = nproc; 579 retval->depth = ndepth; 580 int *arr = 581 (int *)(bytes + sizeof(kmp_topology_t) + sizeof(kmp_hw_thread_t) * nproc); 582 retval->types = (kmp_hw_t *)arr; 583 retval->ratio = arr + (size_t)KMP_HW_LAST; 584 retval->count = arr + 2 * (size_t)KMP_HW_LAST; 585 retval->num_core_efficiencies = 0; 586 retval->num_core_types = 0; 587 retval->compact = 0; 588 for (int i = 0; i < KMP_HW_MAX_NUM_CORE_TYPES; ++i) 589 retval->core_types[i] = KMP_HW_CORE_TYPE_UNKNOWN; 590 KMP_FOREACH_HW_TYPE(type) { retval->equivalent[type] = KMP_HW_UNKNOWN; } 591 for (int i = 0; i < ndepth; ++i) { 592 retval->types[i] = types[i]; 593 retval->equivalent[types[i]] = types[i]; 594 } 595 return retval; 596 } 597 598 void kmp_topology_t::deallocate(kmp_topology_t *topology) { 599 if (topology) 600 __kmp_free(topology); 601 } 602 603 bool kmp_topology_t::check_ids() const { 604 // Assume ids have been sorted 605 if (num_hw_threads == 0) 606 return true; 607 for (int i = 1; i < num_hw_threads; ++i) { 608 kmp_hw_thread_t ¤t_thread = hw_threads[i]; 609 kmp_hw_thread_t &previous_thread = hw_threads[i - 1]; 610 bool unique = false; 611 for (int j = 0; j < depth; ++j) { 612 if (previous_thread.ids[j] != current_thread.ids[j]) { 613 unique = true; 614 break; 615 } 616 } 617 if (unique) 618 continue; 619 return false; 620 } 621 return true; 622 } 623 624 void kmp_topology_t::dump() const { 625 printf("***********************\n"); 626 printf("*** __kmp_topology: ***\n"); 627 printf("***********************\n"); 628 printf("* depth: %d\n", depth); 629 630 printf("* types: "); 631 for (int i = 0; i < depth; ++i) 632 printf("%15s ", __kmp_hw_get_keyword(types[i])); 633 printf("\n"); 634 635 printf("* ratio: "); 636 for (int i = 0; i < depth; ++i) { 637 printf("%15d ", ratio[i]); 638 } 639 printf("\n"); 640 641 printf("* count: "); 642 for (int i = 0; i < depth; ++i) { 643 printf("%15d ", count[i]); 644 } 645 printf("\n"); 646 647 printf("* num_core_eff: %d\n", num_core_efficiencies); 648 printf("* num_core_types: %d\n", num_core_types); 649 printf("* core_types: "); 650 for (int i = 0; i < num_core_types; ++i) 651 printf("%3d ", core_types[i]); 652 printf("\n"); 653 654 printf("* equivalent map:\n"); 655 KMP_FOREACH_HW_TYPE(i) { 656 const char *key = __kmp_hw_get_keyword(i); 657 const char *value = __kmp_hw_get_keyword(equivalent[i]); 658 printf("%-15s -> %-15s\n", key, value); 659 } 660 661 printf("* uniform: %s\n", (is_uniform() ? "Yes" : "No")); 662 663 printf("* num_hw_threads: %d\n", num_hw_threads); 664 printf("* hw_threads:\n"); 665 for (int i = 0; i < num_hw_threads; ++i) { 666 hw_threads[i].print(); 667 } 668 printf("***********************\n"); 669 } 670 671 void kmp_topology_t::print(const char *env_var) const { 672 kmp_str_buf_t buf; 673 int print_types_depth; 674 __kmp_str_buf_init(&buf); 675 kmp_hw_t print_types[KMP_HW_LAST + 2]; 676 677 // Num Available Threads 678 if (num_hw_threads) { 679 KMP_INFORM(AvailableOSProc, env_var, num_hw_threads); 680 } else { 681 KMP_INFORM(AvailableOSProc, env_var, __kmp_xproc); 682 } 683 684 // Uniform or not 685 if (is_uniform()) { 686 KMP_INFORM(Uniform, env_var); 687 } else { 688 KMP_INFORM(NonUniform, env_var); 689 } 690 691 // Equivalent types 692 KMP_FOREACH_HW_TYPE(type) { 693 kmp_hw_t eq_type = equivalent[type]; 694 if (eq_type != KMP_HW_UNKNOWN && eq_type != type) { 695 KMP_INFORM(AffEqualTopologyTypes, env_var, 696 __kmp_hw_get_catalog_string(type), 697 __kmp_hw_get_catalog_string(eq_type)); 698 } 699 } 700 701 // Quick topology 702 KMP_ASSERT(depth > 0 && depth <= (int)KMP_HW_LAST); 703 // Create a print types array that always guarantees printing 704 // the core and thread level 705 print_types_depth = 0; 706 for (int level = 0; level < depth; ++level) 707 print_types[print_types_depth++] = types[level]; 708 if (equivalent[KMP_HW_CORE] != KMP_HW_CORE) { 709 // Force in the core level for quick topology 710 if (print_types[print_types_depth - 1] == KMP_HW_THREAD) { 711 // Force core before thread e.g., 1 socket X 2 threads/socket 712 // becomes 1 socket X 1 core/socket X 2 threads/socket 713 print_types[print_types_depth - 1] = KMP_HW_CORE; 714 print_types[print_types_depth++] = KMP_HW_THREAD; 715 } else { 716 print_types[print_types_depth++] = KMP_HW_CORE; 717 } 718 } 719 // Always put threads at very end of quick topology 720 if (equivalent[KMP_HW_THREAD] != KMP_HW_THREAD) 721 print_types[print_types_depth++] = KMP_HW_THREAD; 722 723 __kmp_str_buf_clear(&buf); 724 kmp_hw_t numerator_type; 725 kmp_hw_t denominator_type = KMP_HW_UNKNOWN; 726 int core_level = get_level(KMP_HW_CORE); 727 int ncores = get_count(core_level); 728 729 for (int plevel = 0, level = 0; plevel < print_types_depth; ++plevel) { 730 int c; 731 bool plural; 732 numerator_type = print_types[plevel]; 733 KMP_ASSERT_VALID_HW_TYPE(numerator_type); 734 if (equivalent[numerator_type] != numerator_type) 735 c = 1; 736 else 737 c = get_ratio(level++); 738 plural = (c > 1); 739 if (plevel == 0) { 740 __kmp_str_buf_print(&buf, "%d %s", c, 741 __kmp_hw_get_catalog_string(numerator_type, plural)); 742 } else { 743 __kmp_str_buf_print(&buf, " x %d %s/%s", c, 744 __kmp_hw_get_catalog_string(numerator_type, plural), 745 __kmp_hw_get_catalog_string(denominator_type)); 746 } 747 denominator_type = numerator_type; 748 } 749 KMP_INFORM(TopologyGeneric, env_var, buf.str, ncores); 750 751 // Hybrid topology information 752 if (__kmp_is_hybrid_cpu()) { 753 for (int i = 0; i < num_core_types; ++i) { 754 kmp_hw_core_type_t core_type = core_types[i]; 755 kmp_hw_attr_t attr; 756 attr.clear(); 757 attr.set_core_type(core_type); 758 int ncores = get_ncores_with_attr(attr); 759 if (ncores > 0) { 760 KMP_INFORM(TopologyHybrid, env_var, ncores, 761 __kmp_hw_get_core_type_string(core_type)); 762 KMP_ASSERT(num_core_efficiencies <= KMP_HW_MAX_NUM_CORE_EFFS) 763 for (int eff = 0; eff < num_core_efficiencies; ++eff) { 764 attr.set_core_eff(eff); 765 int ncores_with_eff = get_ncores_with_attr(attr); 766 if (ncores_with_eff > 0) { 767 KMP_INFORM(TopologyHybridCoreEff, env_var, ncores_with_eff, eff); 768 } 769 } 770 } 771 } 772 } 773 774 if (num_hw_threads <= 0) { 775 __kmp_str_buf_free(&buf); 776 return; 777 } 778 779 // Full OS proc to hardware thread map 780 KMP_INFORM(OSProcToPhysicalThreadMap, env_var); 781 for (int i = 0; i < num_hw_threads; i++) { 782 __kmp_str_buf_clear(&buf); 783 for (int level = 0; level < depth; ++level) { 784 kmp_hw_t type = types[level]; 785 __kmp_str_buf_print(&buf, "%s ", __kmp_hw_get_catalog_string(type)); 786 __kmp_str_buf_print(&buf, "%d ", hw_threads[i].ids[level]); 787 } 788 if (__kmp_is_hybrid_cpu()) 789 __kmp_str_buf_print( 790 &buf, "(%s)", 791 __kmp_hw_get_core_type_string(hw_threads[i].attrs.get_core_type())); 792 KMP_INFORM(OSProcMapToPack, env_var, hw_threads[i].os_id, buf.str); 793 } 794 795 __kmp_str_buf_free(&buf); 796 } 797 798 #if KMP_AFFINITY_SUPPORTED 799 void kmp_topology_t::set_granularity(kmp_affinity_t &affinity) const { 800 const char *env_var = affinity.env_var; 801 // Set the number of affinity granularity levels 802 if (affinity.gran_levels < 0) { 803 kmp_hw_t gran_type = get_equivalent_type(affinity.gran); 804 // Check if user's granularity request is valid 805 if (gran_type == KMP_HW_UNKNOWN) { 806 // First try core, then thread, then package 807 kmp_hw_t gran_types[3] = {KMP_HW_CORE, KMP_HW_THREAD, KMP_HW_SOCKET}; 808 for (auto g : gran_types) { 809 if (get_equivalent_type(g) != KMP_HW_UNKNOWN) { 810 gran_type = g; 811 break; 812 } 813 } 814 KMP_ASSERT(gran_type != KMP_HW_UNKNOWN); 815 // Warn user what granularity setting will be used instead 816 KMP_AFF_WARNING(affinity, AffGranularityBad, env_var, 817 __kmp_hw_get_catalog_string(affinity.gran), 818 __kmp_hw_get_catalog_string(gran_type)); 819 affinity.gran = gran_type; 820 } 821 #if KMP_GROUP_AFFINITY 822 // If more than one processor group exists, and the level of 823 // granularity specified by the user is too coarse, then the 824 // granularity must be adjusted "down" to processor group affinity 825 // because threads can only exist within one processor group. 826 // For example, if a user sets granularity=socket and there are two 827 // processor groups that cover a socket, then the runtime must 828 // restrict the granularity down to the processor group level. 829 if (__kmp_num_proc_groups > 1) { 830 int gran_depth = get_level(gran_type); 831 int proc_group_depth = get_level(KMP_HW_PROC_GROUP); 832 if (gran_depth >= 0 && proc_group_depth >= 0 && 833 gran_depth < proc_group_depth) { 834 KMP_AFF_WARNING(affinity, AffGranTooCoarseProcGroup, env_var, 835 __kmp_hw_get_catalog_string(affinity.gran)); 836 affinity.gran = gran_type = KMP_HW_PROC_GROUP; 837 } 838 } 839 #endif 840 affinity.gran_levels = 0; 841 for (int i = depth - 1; i >= 0 && get_type(i) != gran_type; --i) 842 affinity.gran_levels++; 843 } 844 } 845 #endif 846 847 void kmp_topology_t::canonicalize() { 848 #if KMP_GROUP_AFFINITY 849 _insert_windows_proc_groups(); 850 #endif 851 _remove_radix1_layers(); 852 _gather_enumeration_information(); 853 _discover_uniformity(); 854 _set_sub_ids(); 855 _set_globals(); 856 _set_last_level_cache(); 857 858 #if KMP_MIC_SUPPORTED 859 // Manually Add L2 = Tile equivalence 860 if (__kmp_mic_type == mic3) { 861 if (get_level(KMP_HW_L2) != -1) 862 set_equivalent_type(KMP_HW_TILE, KMP_HW_L2); 863 else if (get_level(KMP_HW_TILE) != -1) 864 set_equivalent_type(KMP_HW_L2, KMP_HW_TILE); 865 } 866 #endif 867 868 // Perform post canonicalization checking 869 KMP_ASSERT(depth > 0); 870 for (int level = 0; level < depth; ++level) { 871 // All counts, ratios, and types must be valid 872 KMP_ASSERT(count[level] > 0 && ratio[level] > 0); 873 KMP_ASSERT_VALID_HW_TYPE(types[level]); 874 // Detected types must point to themselves 875 KMP_ASSERT(equivalent[types[level]] == types[level]); 876 } 877 } 878 879 // Canonicalize an explicit packages X cores/pkg X threads/core topology 880 void kmp_topology_t::canonicalize(int npackages, int ncores_per_pkg, 881 int nthreads_per_core, int ncores) { 882 int ndepth = 3; 883 depth = ndepth; 884 KMP_FOREACH_HW_TYPE(i) { equivalent[i] = KMP_HW_UNKNOWN; } 885 for (int level = 0; level < depth; ++level) { 886 count[level] = 0; 887 ratio[level] = 0; 888 } 889 count[0] = npackages; 890 count[1] = ncores; 891 count[2] = __kmp_xproc; 892 ratio[0] = npackages; 893 ratio[1] = ncores_per_pkg; 894 ratio[2] = nthreads_per_core; 895 equivalent[KMP_HW_SOCKET] = KMP_HW_SOCKET; 896 equivalent[KMP_HW_CORE] = KMP_HW_CORE; 897 equivalent[KMP_HW_THREAD] = KMP_HW_THREAD; 898 types[0] = KMP_HW_SOCKET; 899 types[1] = KMP_HW_CORE; 900 types[2] = KMP_HW_THREAD; 901 //__kmp_avail_proc = __kmp_xproc; 902 _discover_uniformity(); 903 } 904 905 // Represents running sub IDs for a single core attribute where 906 // attribute values have SIZE possibilities. 907 template <size_t SIZE, typename IndexFunc> struct kmp_sub_ids_t { 908 int last_level; // last level in topology to consider for sub_ids 909 int sub_id[SIZE]; // The sub ID for a given attribute value 910 int prev_sub_id[KMP_HW_LAST]; 911 IndexFunc indexer; 912 913 public: 914 kmp_sub_ids_t(int last_level) : last_level(last_level) { 915 KMP_ASSERT(last_level < KMP_HW_LAST); 916 for (size_t i = 0; i < SIZE; ++i) 917 sub_id[i] = -1; 918 for (size_t i = 0; i < KMP_HW_LAST; ++i) 919 prev_sub_id[i] = -1; 920 } 921 void update(const kmp_hw_thread_t &hw_thread) { 922 int idx = indexer(hw_thread); 923 KMP_ASSERT(idx < (int)SIZE); 924 for (int level = 0; level <= last_level; ++level) { 925 if (hw_thread.sub_ids[level] != prev_sub_id[level]) { 926 if (level < last_level) 927 sub_id[idx] = -1; 928 sub_id[idx]++; 929 break; 930 } 931 } 932 for (int level = 0; level <= last_level; ++level) 933 prev_sub_id[level] = hw_thread.sub_ids[level]; 934 } 935 int get_sub_id(const kmp_hw_thread_t &hw_thread) const { 936 return sub_id[indexer(hw_thread)]; 937 } 938 }; 939 940 static kmp_str_buf_t * 941 __kmp_hw_get_catalog_core_string(const kmp_hw_attr_t &attr, kmp_str_buf_t *buf, 942 bool plural) { 943 __kmp_str_buf_init(buf); 944 if (attr.is_core_type_valid()) 945 __kmp_str_buf_print(buf, "%s %s", 946 __kmp_hw_get_core_type_string(attr.get_core_type()), 947 __kmp_hw_get_catalog_string(KMP_HW_CORE, plural)); 948 else 949 __kmp_str_buf_print(buf, "%s eff=%d", 950 __kmp_hw_get_catalog_string(KMP_HW_CORE, plural), 951 attr.get_core_eff()); 952 return buf; 953 } 954 955 // Apply the KMP_HW_SUBSET envirable to the topology 956 // Returns true if KMP_HW_SUBSET filtered any processors 957 // otherwise, returns false 958 bool kmp_topology_t::filter_hw_subset() { 959 // If KMP_HW_SUBSET wasn't requested, then do nothing. 960 if (!__kmp_hw_subset) 961 return false; 962 963 // First, sort the KMP_HW_SUBSET items by the machine topology 964 __kmp_hw_subset->sort(); 965 966 // Check to see if KMP_HW_SUBSET is a valid subset of the detected topology 967 bool using_core_types = false; 968 bool using_core_effs = false; 969 int hw_subset_depth = __kmp_hw_subset->get_depth(); 970 kmp_hw_t specified[KMP_HW_LAST]; 971 int *topology_levels = (int *)KMP_ALLOCA(sizeof(int) * hw_subset_depth); 972 KMP_ASSERT(hw_subset_depth > 0); 973 KMP_FOREACH_HW_TYPE(i) { specified[i] = KMP_HW_UNKNOWN; } 974 int core_level = get_level(KMP_HW_CORE); 975 for (int i = 0; i < hw_subset_depth; ++i) { 976 int max_count; 977 const kmp_hw_subset_t::item_t &item = __kmp_hw_subset->at(i); 978 int num = item.num[0]; 979 int offset = item.offset[0]; 980 kmp_hw_t type = item.type; 981 kmp_hw_t equivalent_type = equivalent[type]; 982 int level = get_level(type); 983 topology_levels[i] = level; 984 985 // Check to see if current layer is in detected machine topology 986 if (equivalent_type != KMP_HW_UNKNOWN) { 987 __kmp_hw_subset->at(i).type = equivalent_type; 988 } else { 989 KMP_AFF_WARNING(__kmp_affinity, AffHWSubsetNotExistGeneric, 990 __kmp_hw_get_catalog_string(type)); 991 return false; 992 } 993 994 // Check to see if current layer has already been 995 // specified either directly or through an equivalent type 996 if (specified[equivalent_type] != KMP_HW_UNKNOWN) { 997 KMP_AFF_WARNING(__kmp_affinity, AffHWSubsetEqvLayers, 998 __kmp_hw_get_catalog_string(type), 999 __kmp_hw_get_catalog_string(specified[equivalent_type])); 1000 return false; 1001 } 1002 specified[equivalent_type] = type; 1003 1004 // Check to see if each layer's num & offset parameters are valid 1005 max_count = get_ratio(level); 1006 if (max_count < 0 || 1007 (num != kmp_hw_subset_t::USE_ALL && num + offset > max_count)) { 1008 bool plural = (num > 1); 1009 KMP_AFF_WARNING(__kmp_affinity, AffHWSubsetManyGeneric, 1010 __kmp_hw_get_catalog_string(type, plural)); 1011 return false; 1012 } 1013 1014 // Check to see if core attributes are consistent 1015 if (core_level == level) { 1016 // Determine which core attributes are specified 1017 for (int j = 0; j < item.num_attrs; ++j) { 1018 if (item.attr[j].is_core_type_valid()) 1019 using_core_types = true; 1020 if (item.attr[j].is_core_eff_valid()) 1021 using_core_effs = true; 1022 } 1023 1024 // Check if using a single core attribute on non-hybrid arch. 1025 // Do not ignore all of KMP_HW_SUBSET, just ignore the attribute. 1026 // 1027 // Check if using multiple core attributes on non-hyrbid arch. 1028 // Ignore all of KMP_HW_SUBSET if this is the case. 1029 if ((using_core_effs || using_core_types) && !__kmp_is_hybrid_cpu()) { 1030 if (item.num_attrs == 1) { 1031 if (using_core_effs) { 1032 KMP_AFF_WARNING(__kmp_affinity, AffHWSubsetIgnoringAttr, 1033 "efficiency"); 1034 } else { 1035 KMP_AFF_WARNING(__kmp_affinity, AffHWSubsetIgnoringAttr, 1036 "core_type"); 1037 } 1038 using_core_effs = false; 1039 using_core_types = false; 1040 } else { 1041 KMP_AFF_WARNING(__kmp_affinity, AffHWSubsetAttrsNonHybrid); 1042 return false; 1043 } 1044 } 1045 1046 // Check if using both core types and core efficiencies together 1047 if (using_core_types && using_core_effs) { 1048 KMP_AFF_WARNING(__kmp_affinity, AffHWSubsetIncompat, "core_type", 1049 "efficiency"); 1050 return false; 1051 } 1052 1053 // Check that core efficiency values are valid 1054 if (using_core_effs) { 1055 for (int j = 0; j < item.num_attrs; ++j) { 1056 if (item.attr[j].is_core_eff_valid()) { 1057 int core_eff = item.attr[j].get_core_eff(); 1058 if (core_eff < 0 || core_eff >= num_core_efficiencies) { 1059 kmp_str_buf_t buf; 1060 __kmp_str_buf_init(&buf); 1061 __kmp_str_buf_print(&buf, "%d", item.attr[j].get_core_eff()); 1062 __kmp_msg(kmp_ms_warning, 1063 KMP_MSG(AffHWSubsetAttrInvalid, "efficiency", buf.str), 1064 KMP_HNT(ValidValuesRange, 0, num_core_efficiencies - 1), 1065 __kmp_msg_null); 1066 __kmp_str_buf_free(&buf); 1067 return false; 1068 } 1069 } 1070 } 1071 } 1072 1073 // Check that the number of requested cores with attributes is valid 1074 if (using_core_types || using_core_effs) { 1075 for (int j = 0; j < item.num_attrs; ++j) { 1076 int num = item.num[j]; 1077 int offset = item.offset[j]; 1078 int level_above = core_level - 1; 1079 if (level_above >= 0) { 1080 max_count = get_ncores_with_attr_per(item.attr[j], level_above); 1081 if (max_count <= 0 || 1082 (num != kmp_hw_subset_t::USE_ALL && num + offset > max_count)) { 1083 kmp_str_buf_t buf; 1084 __kmp_hw_get_catalog_core_string(item.attr[j], &buf, num > 0); 1085 KMP_AFF_WARNING(__kmp_affinity, AffHWSubsetManyGeneric, buf.str); 1086 __kmp_str_buf_free(&buf); 1087 return false; 1088 } 1089 } 1090 } 1091 } 1092 1093 if ((using_core_types || using_core_effs) && item.num_attrs > 1) { 1094 for (int j = 0; j < item.num_attrs; ++j) { 1095 // Ambiguous use of specific core attribute + generic core 1096 // e.g., 4c & 3c:intel_core or 4c & 3c:eff1 1097 if (!item.attr[j]) { 1098 kmp_hw_attr_t other_attr; 1099 for (int k = 0; k < item.num_attrs; ++k) { 1100 if (item.attr[k] != item.attr[j]) { 1101 other_attr = item.attr[k]; 1102 break; 1103 } 1104 } 1105 kmp_str_buf_t buf; 1106 __kmp_hw_get_catalog_core_string(other_attr, &buf, item.num[j] > 0); 1107 KMP_AFF_WARNING(__kmp_affinity, AffHWSubsetIncompat, 1108 __kmp_hw_get_catalog_string(KMP_HW_CORE), buf.str); 1109 __kmp_str_buf_free(&buf); 1110 return false; 1111 } 1112 // Allow specifying a specific core type or core eff exactly once 1113 for (int k = 0; k < j; ++k) { 1114 if (!item.attr[j] || !item.attr[k]) 1115 continue; 1116 if (item.attr[k] == item.attr[j]) { 1117 kmp_str_buf_t buf; 1118 __kmp_hw_get_catalog_core_string(item.attr[j], &buf, 1119 item.num[j] > 0); 1120 KMP_AFF_WARNING(__kmp_affinity, AffHWSubsetAttrRepeat, buf.str); 1121 __kmp_str_buf_free(&buf); 1122 return false; 1123 } 1124 } 1125 } 1126 } 1127 } 1128 } 1129 1130 struct core_type_indexer { 1131 int operator()(const kmp_hw_thread_t &t) const { 1132 switch (t.attrs.get_core_type()) { 1133 #if KMP_ARCH_X86 || KMP_ARCH_X86_64 1134 case KMP_HW_CORE_TYPE_ATOM: 1135 return 1; 1136 case KMP_HW_CORE_TYPE_CORE: 1137 return 2; 1138 #endif 1139 case KMP_HW_CORE_TYPE_UNKNOWN: 1140 return 0; 1141 } 1142 KMP_ASSERT(0); 1143 return 0; 1144 } 1145 }; 1146 struct core_eff_indexer { 1147 int operator()(const kmp_hw_thread_t &t) const { 1148 return t.attrs.get_core_eff(); 1149 } 1150 }; 1151 1152 kmp_sub_ids_t<KMP_HW_MAX_NUM_CORE_TYPES, core_type_indexer> core_type_sub_ids( 1153 core_level); 1154 kmp_sub_ids_t<KMP_HW_MAX_NUM_CORE_EFFS, core_eff_indexer> core_eff_sub_ids( 1155 core_level); 1156 1157 // Determine which hardware threads should be filtered. 1158 int num_filtered = 0; 1159 bool *filtered = (bool *)__kmp_allocate(sizeof(bool) * num_hw_threads); 1160 for (int i = 0; i < num_hw_threads; ++i) { 1161 kmp_hw_thread_t &hw_thread = hw_threads[i]; 1162 // Update type_sub_id 1163 if (using_core_types) 1164 core_type_sub_ids.update(hw_thread); 1165 if (using_core_effs) 1166 core_eff_sub_ids.update(hw_thread); 1167 1168 // Check to see if this hardware thread should be filtered 1169 bool should_be_filtered = false; 1170 for (int hw_subset_index = 0; hw_subset_index < hw_subset_depth; 1171 ++hw_subset_index) { 1172 const auto &hw_subset_item = __kmp_hw_subset->at(hw_subset_index); 1173 int level = topology_levels[hw_subset_index]; 1174 if (level == -1) 1175 continue; 1176 if ((using_core_effs || using_core_types) && level == core_level) { 1177 // Look for the core attribute in KMP_HW_SUBSET which corresponds 1178 // to this hardware thread's core attribute. Use this num,offset plus 1179 // the running sub_id for the particular core attribute of this hardware 1180 // thread to determine if the hardware thread should be filtered or not. 1181 int attr_idx; 1182 kmp_hw_core_type_t core_type = hw_thread.attrs.get_core_type(); 1183 int core_eff = hw_thread.attrs.get_core_eff(); 1184 for (attr_idx = 0; attr_idx < hw_subset_item.num_attrs; ++attr_idx) { 1185 if (using_core_types && 1186 hw_subset_item.attr[attr_idx].get_core_type() == core_type) 1187 break; 1188 if (using_core_effs && 1189 hw_subset_item.attr[attr_idx].get_core_eff() == core_eff) 1190 break; 1191 } 1192 // This core attribute isn't in the KMP_HW_SUBSET so always filter it. 1193 if (attr_idx == hw_subset_item.num_attrs) { 1194 should_be_filtered = true; 1195 break; 1196 } 1197 int sub_id; 1198 int num = hw_subset_item.num[attr_idx]; 1199 int offset = hw_subset_item.offset[attr_idx]; 1200 if (using_core_types) 1201 sub_id = core_type_sub_ids.get_sub_id(hw_thread); 1202 else 1203 sub_id = core_eff_sub_ids.get_sub_id(hw_thread); 1204 if (sub_id < offset || 1205 (num != kmp_hw_subset_t::USE_ALL && sub_id >= offset + num)) { 1206 should_be_filtered = true; 1207 break; 1208 } 1209 } else { 1210 int num = hw_subset_item.num[0]; 1211 int offset = hw_subset_item.offset[0]; 1212 if (hw_thread.sub_ids[level] < offset || 1213 (num != kmp_hw_subset_t::USE_ALL && 1214 hw_thread.sub_ids[level] >= offset + num)) { 1215 should_be_filtered = true; 1216 break; 1217 } 1218 } 1219 } 1220 // Collect filtering information 1221 filtered[i] = should_be_filtered; 1222 if (should_be_filtered) 1223 num_filtered++; 1224 } 1225 1226 // One last check that we shouldn't allow filtering entire machine 1227 if (num_filtered == num_hw_threads) { 1228 KMP_AFF_WARNING(__kmp_affinity, AffHWSubsetAllFiltered); 1229 __kmp_free(filtered); 1230 return false; 1231 } 1232 1233 // Apply the filter 1234 int new_index = 0; 1235 for (int i = 0; i < num_hw_threads; ++i) { 1236 if (!filtered[i]) { 1237 if (i != new_index) 1238 hw_threads[new_index] = hw_threads[i]; 1239 new_index++; 1240 } else { 1241 #if KMP_AFFINITY_SUPPORTED 1242 KMP_CPU_CLR(hw_threads[i].os_id, __kmp_affin_fullMask); 1243 #endif 1244 __kmp_avail_proc--; 1245 } 1246 } 1247 1248 KMP_DEBUG_ASSERT(new_index <= num_hw_threads); 1249 num_hw_threads = new_index; 1250 1251 // Post hardware subset canonicalization 1252 _gather_enumeration_information(); 1253 _discover_uniformity(); 1254 _set_globals(); 1255 _set_last_level_cache(); 1256 __kmp_free(filtered); 1257 return true; 1258 } 1259 1260 bool kmp_topology_t::is_close(int hwt1, int hwt2, int hw_level) const { 1261 if (hw_level >= depth) 1262 return true; 1263 bool retval = true; 1264 const kmp_hw_thread_t &t1 = hw_threads[hwt1]; 1265 const kmp_hw_thread_t &t2 = hw_threads[hwt2]; 1266 for (int i = 0; i < (depth - hw_level); ++i) { 1267 if (t1.ids[i] != t2.ids[i]) 1268 return false; 1269 } 1270 return retval; 1271 } 1272 1273 //////////////////////////////////////////////////////////////////////////////// 1274 1275 #if KMP_AFFINITY_SUPPORTED 1276 class kmp_affinity_raii_t { 1277 kmp_affin_mask_t *mask; 1278 bool restored; 1279 1280 public: 1281 kmp_affinity_raii_t() : restored(false) { 1282 KMP_CPU_ALLOC(mask); 1283 KMP_ASSERT(mask != NULL); 1284 __kmp_get_system_affinity(mask, TRUE); 1285 } 1286 void restore() { 1287 __kmp_set_system_affinity(mask, TRUE); 1288 KMP_CPU_FREE(mask); 1289 restored = true; 1290 } 1291 ~kmp_affinity_raii_t() { 1292 if (!restored) { 1293 __kmp_set_system_affinity(mask, TRUE); 1294 KMP_CPU_FREE(mask); 1295 } 1296 } 1297 }; 1298 1299 bool KMPAffinity::picked_api = false; 1300 1301 void *KMPAffinity::Mask::operator new(size_t n) { return __kmp_allocate(n); } 1302 void *KMPAffinity::Mask::operator new[](size_t n) { return __kmp_allocate(n); } 1303 void KMPAffinity::Mask::operator delete(void *p) { __kmp_free(p); } 1304 void KMPAffinity::Mask::operator delete[](void *p) { __kmp_free(p); } 1305 void *KMPAffinity::operator new(size_t n) { return __kmp_allocate(n); } 1306 void KMPAffinity::operator delete(void *p) { __kmp_free(p); } 1307 1308 void KMPAffinity::pick_api() { 1309 KMPAffinity *affinity_dispatch; 1310 if (picked_api) 1311 return; 1312 #if KMP_USE_HWLOC 1313 // Only use Hwloc if affinity isn't explicitly disabled and 1314 // user requests Hwloc topology method 1315 if (__kmp_affinity_top_method == affinity_top_method_hwloc && 1316 __kmp_affinity.type != affinity_disabled) { 1317 affinity_dispatch = new KMPHwlocAffinity(); 1318 } else 1319 #endif 1320 { 1321 affinity_dispatch = new KMPNativeAffinity(); 1322 } 1323 __kmp_affinity_dispatch = affinity_dispatch; 1324 picked_api = true; 1325 } 1326 1327 void KMPAffinity::destroy_api() { 1328 if (__kmp_affinity_dispatch != NULL) { 1329 delete __kmp_affinity_dispatch; 1330 __kmp_affinity_dispatch = NULL; 1331 picked_api = false; 1332 } 1333 } 1334 1335 #define KMP_ADVANCE_SCAN(scan) \ 1336 while (*scan != '\0') { \ 1337 scan++; \ 1338 } 1339 1340 // Print the affinity mask to the character array in a pretty format. 1341 // The format is a comma separated list of non-negative integers or integer 1342 // ranges: e.g., 1,2,3-5,7,9-15 1343 // The format can also be the string "{<empty>}" if no bits are set in mask 1344 char *__kmp_affinity_print_mask(char *buf, int buf_len, 1345 kmp_affin_mask_t *mask) { 1346 int start = 0, finish = 0, previous = 0; 1347 bool first_range; 1348 KMP_ASSERT(buf); 1349 KMP_ASSERT(buf_len >= 40); 1350 KMP_ASSERT(mask); 1351 char *scan = buf; 1352 char *end = buf + buf_len - 1; 1353 1354 // Check for empty set. 1355 if (mask->begin() == mask->end()) { 1356 KMP_SNPRINTF(scan, end - scan + 1, "{<empty>}"); 1357 KMP_ADVANCE_SCAN(scan); 1358 KMP_ASSERT(scan <= end); 1359 return buf; 1360 } 1361 1362 first_range = true; 1363 start = mask->begin(); 1364 while (1) { 1365 // Find next range 1366 // [start, previous] is inclusive range of contiguous bits in mask 1367 for (finish = mask->next(start), previous = start; 1368 finish == previous + 1 && finish != mask->end(); 1369 finish = mask->next(finish)) { 1370 previous = finish; 1371 } 1372 1373 // The first range does not need a comma printed before it, but the rest 1374 // of the ranges do need a comma beforehand 1375 if (!first_range) { 1376 KMP_SNPRINTF(scan, end - scan + 1, "%s", ","); 1377 KMP_ADVANCE_SCAN(scan); 1378 } else { 1379 first_range = false; 1380 } 1381 // Range with three or more contiguous bits in the affinity mask 1382 if (previous - start > 1) { 1383 KMP_SNPRINTF(scan, end - scan + 1, "%u-%u", start, previous); 1384 } else { 1385 // Range with one or two contiguous bits in the affinity mask 1386 KMP_SNPRINTF(scan, end - scan + 1, "%u", start); 1387 KMP_ADVANCE_SCAN(scan); 1388 if (previous - start > 0) { 1389 KMP_SNPRINTF(scan, end - scan + 1, ",%u", previous); 1390 } 1391 } 1392 KMP_ADVANCE_SCAN(scan); 1393 // Start over with new start point 1394 start = finish; 1395 if (start == mask->end()) 1396 break; 1397 // Check for overflow 1398 if (end - scan < 2) 1399 break; 1400 } 1401 1402 // Check for overflow 1403 KMP_ASSERT(scan <= end); 1404 return buf; 1405 } 1406 #undef KMP_ADVANCE_SCAN 1407 1408 // Print the affinity mask to the string buffer object in a pretty format 1409 // The format is a comma separated list of non-negative integers or integer 1410 // ranges: e.g., 1,2,3-5,7,9-15 1411 // The format can also be the string "{<empty>}" if no bits are set in mask 1412 kmp_str_buf_t *__kmp_affinity_str_buf_mask(kmp_str_buf_t *buf, 1413 kmp_affin_mask_t *mask) { 1414 int start = 0, finish = 0, previous = 0; 1415 bool first_range; 1416 KMP_ASSERT(buf); 1417 KMP_ASSERT(mask); 1418 1419 __kmp_str_buf_clear(buf); 1420 1421 // Check for empty set. 1422 if (mask->begin() == mask->end()) { 1423 __kmp_str_buf_print(buf, "%s", "{<empty>}"); 1424 return buf; 1425 } 1426 1427 first_range = true; 1428 start = mask->begin(); 1429 while (1) { 1430 // Find next range 1431 // [start, previous] is inclusive range of contiguous bits in mask 1432 for (finish = mask->next(start), previous = start; 1433 finish == previous + 1 && finish != mask->end(); 1434 finish = mask->next(finish)) { 1435 previous = finish; 1436 } 1437 1438 // The first range does not need a comma printed before it, but the rest 1439 // of the ranges do need a comma beforehand 1440 if (!first_range) { 1441 __kmp_str_buf_print(buf, "%s", ","); 1442 } else { 1443 first_range = false; 1444 } 1445 // Range with three or more contiguous bits in the affinity mask 1446 if (previous - start > 1) { 1447 __kmp_str_buf_print(buf, "%u-%u", start, previous); 1448 } else { 1449 // Range with one or two contiguous bits in the affinity mask 1450 __kmp_str_buf_print(buf, "%u", start); 1451 if (previous - start > 0) { 1452 __kmp_str_buf_print(buf, ",%u", previous); 1453 } 1454 } 1455 // Start over with new start point 1456 start = finish; 1457 if (start == mask->end()) 1458 break; 1459 } 1460 return buf; 1461 } 1462 1463 // Return (possibly empty) affinity mask representing the offline CPUs 1464 // Caller must free the mask 1465 kmp_affin_mask_t *__kmp_affinity_get_offline_cpus() { 1466 kmp_affin_mask_t *offline; 1467 KMP_CPU_ALLOC(offline); 1468 KMP_CPU_ZERO(offline); 1469 #if KMP_OS_LINUX 1470 int n, begin_cpu, end_cpu; 1471 kmp_safe_raii_file_t offline_file; 1472 auto skip_ws = [](FILE *f) { 1473 int c; 1474 do { 1475 c = fgetc(f); 1476 } while (isspace(c)); 1477 if (c != EOF) 1478 ungetc(c, f); 1479 }; 1480 // File contains CSV of integer ranges representing the offline CPUs 1481 // e.g., 1,2,4-7,9,11-15 1482 int status = offline_file.try_open("/sys/devices/system/cpu/offline", "r"); 1483 if (status != 0) 1484 return offline; 1485 while (!feof(offline_file)) { 1486 skip_ws(offline_file); 1487 n = fscanf(offline_file, "%d", &begin_cpu); 1488 if (n != 1) 1489 break; 1490 skip_ws(offline_file); 1491 int c = fgetc(offline_file); 1492 if (c == EOF || c == ',') { 1493 // Just single CPU 1494 end_cpu = begin_cpu; 1495 } else if (c == '-') { 1496 // Range of CPUs 1497 skip_ws(offline_file); 1498 n = fscanf(offline_file, "%d", &end_cpu); 1499 if (n != 1) 1500 break; 1501 skip_ws(offline_file); 1502 c = fgetc(offline_file); // skip ',' 1503 } else { 1504 // Syntax problem 1505 break; 1506 } 1507 // Ensure a valid range of CPUs 1508 if (begin_cpu < 0 || begin_cpu >= __kmp_xproc || end_cpu < 0 || 1509 end_cpu >= __kmp_xproc || begin_cpu > end_cpu) { 1510 continue; 1511 } 1512 // Insert [begin_cpu, end_cpu] into offline mask 1513 for (int cpu = begin_cpu; cpu <= end_cpu; ++cpu) { 1514 KMP_CPU_SET(cpu, offline); 1515 } 1516 } 1517 #endif 1518 return offline; 1519 } 1520 1521 // Return the number of available procs 1522 int __kmp_affinity_entire_machine_mask(kmp_affin_mask_t *mask) { 1523 int avail_proc = 0; 1524 KMP_CPU_ZERO(mask); 1525 1526 #if KMP_GROUP_AFFINITY 1527 1528 if (__kmp_num_proc_groups > 1) { 1529 int group; 1530 KMP_DEBUG_ASSERT(__kmp_GetActiveProcessorCount != NULL); 1531 for (group = 0; group < __kmp_num_proc_groups; group++) { 1532 int i; 1533 int num = __kmp_GetActiveProcessorCount(group); 1534 for (i = 0; i < num; i++) { 1535 KMP_CPU_SET(i + group * (CHAR_BIT * sizeof(DWORD_PTR)), mask); 1536 avail_proc++; 1537 } 1538 } 1539 } else 1540 1541 #endif /* KMP_GROUP_AFFINITY */ 1542 1543 { 1544 int proc; 1545 kmp_affin_mask_t *offline_cpus = __kmp_affinity_get_offline_cpus(); 1546 for (proc = 0; proc < __kmp_xproc; proc++) { 1547 // Skip offline CPUs 1548 if (KMP_CPU_ISSET(proc, offline_cpus)) 1549 continue; 1550 KMP_CPU_SET(proc, mask); 1551 avail_proc++; 1552 } 1553 KMP_CPU_FREE(offline_cpus); 1554 } 1555 1556 return avail_proc; 1557 } 1558 1559 // All of the __kmp_affinity_create_*_map() routines should allocate the 1560 // internal topology object and set the layer ids for it. Each routine 1561 // returns a boolean on whether it was successful at doing so. 1562 kmp_affin_mask_t *__kmp_affin_fullMask = NULL; 1563 // Original mask is a subset of full mask in multiple processor groups topology 1564 kmp_affin_mask_t *__kmp_affin_origMask = NULL; 1565 1566 #if KMP_USE_HWLOC 1567 static inline bool __kmp_hwloc_is_cache_type(hwloc_obj_t obj) { 1568 #if HWLOC_API_VERSION >= 0x00020000 1569 return hwloc_obj_type_is_cache(obj->type); 1570 #else 1571 return obj->type == HWLOC_OBJ_CACHE; 1572 #endif 1573 } 1574 1575 // Returns KMP_HW_* type derived from HWLOC_* type 1576 static inline kmp_hw_t __kmp_hwloc_type_2_topology_type(hwloc_obj_t obj) { 1577 1578 if (__kmp_hwloc_is_cache_type(obj)) { 1579 if (obj->attr->cache.type == HWLOC_OBJ_CACHE_INSTRUCTION) 1580 return KMP_HW_UNKNOWN; 1581 switch (obj->attr->cache.depth) { 1582 case 1: 1583 return KMP_HW_L1; 1584 case 2: 1585 #if KMP_MIC_SUPPORTED 1586 if (__kmp_mic_type == mic3) { 1587 return KMP_HW_TILE; 1588 } 1589 #endif 1590 return KMP_HW_L2; 1591 case 3: 1592 return KMP_HW_L3; 1593 } 1594 return KMP_HW_UNKNOWN; 1595 } 1596 1597 switch (obj->type) { 1598 case HWLOC_OBJ_PACKAGE: 1599 return KMP_HW_SOCKET; 1600 case HWLOC_OBJ_NUMANODE: 1601 return KMP_HW_NUMA; 1602 case HWLOC_OBJ_CORE: 1603 return KMP_HW_CORE; 1604 case HWLOC_OBJ_PU: 1605 return KMP_HW_THREAD; 1606 case HWLOC_OBJ_GROUP: 1607 #if HWLOC_API_VERSION >= 0x00020000 1608 if (obj->attr->group.kind == HWLOC_GROUP_KIND_INTEL_DIE) 1609 return KMP_HW_DIE; 1610 else if (obj->attr->group.kind == HWLOC_GROUP_KIND_INTEL_TILE) 1611 return KMP_HW_TILE; 1612 else if (obj->attr->group.kind == HWLOC_GROUP_KIND_INTEL_MODULE) 1613 return KMP_HW_MODULE; 1614 else if (obj->attr->group.kind == HWLOC_GROUP_KIND_WINDOWS_PROCESSOR_GROUP) 1615 return KMP_HW_PROC_GROUP; 1616 #endif 1617 return KMP_HW_UNKNOWN; 1618 #if HWLOC_API_VERSION >= 0x00020100 1619 case HWLOC_OBJ_DIE: 1620 return KMP_HW_DIE; 1621 #endif 1622 } 1623 return KMP_HW_UNKNOWN; 1624 } 1625 1626 // Returns the number of objects of type 'type' below 'obj' within the topology 1627 // tree structure. e.g., if obj is a HWLOC_OBJ_PACKAGE object, and type is 1628 // HWLOC_OBJ_PU, then this will return the number of PU's under the SOCKET 1629 // object. 1630 static int __kmp_hwloc_get_nobjs_under_obj(hwloc_obj_t obj, 1631 hwloc_obj_type_t type) { 1632 int retval = 0; 1633 hwloc_obj_t first; 1634 for (first = hwloc_get_obj_below_by_type(__kmp_hwloc_topology, obj->type, 1635 obj->logical_index, type, 0); 1636 first != NULL && hwloc_get_ancestor_obj_by_type(__kmp_hwloc_topology, 1637 obj->type, first) == obj; 1638 first = hwloc_get_next_obj_by_type(__kmp_hwloc_topology, first->type, 1639 first)) { 1640 ++retval; 1641 } 1642 return retval; 1643 } 1644 1645 // This gets the sub_id for a lower object under a higher object in the 1646 // topology tree 1647 static int __kmp_hwloc_get_sub_id(hwloc_topology_t t, hwloc_obj_t higher, 1648 hwloc_obj_t lower) { 1649 hwloc_obj_t obj; 1650 hwloc_obj_type_t ltype = lower->type; 1651 int lindex = lower->logical_index - 1; 1652 int sub_id = 0; 1653 // Get the previous lower object 1654 obj = hwloc_get_obj_by_type(t, ltype, lindex); 1655 while (obj && lindex >= 0 && 1656 hwloc_bitmap_isincluded(obj->cpuset, higher->cpuset)) { 1657 if (obj->userdata) { 1658 sub_id = (int)(RCAST(kmp_intptr_t, obj->userdata)); 1659 break; 1660 } 1661 sub_id++; 1662 lindex--; 1663 obj = hwloc_get_obj_by_type(t, ltype, lindex); 1664 } 1665 // store sub_id + 1 so that 0 is differed from NULL 1666 lower->userdata = RCAST(void *, sub_id + 1); 1667 return sub_id; 1668 } 1669 1670 static bool __kmp_affinity_create_hwloc_map(kmp_i18n_id_t *const msg_id) { 1671 kmp_hw_t type; 1672 int hw_thread_index, sub_id; 1673 int depth; 1674 hwloc_obj_t pu, obj, root, prev; 1675 kmp_hw_t types[KMP_HW_LAST]; 1676 hwloc_obj_type_t hwloc_types[KMP_HW_LAST]; 1677 1678 hwloc_topology_t tp = __kmp_hwloc_topology; 1679 *msg_id = kmp_i18n_null; 1680 if (__kmp_affinity.flags.verbose) { 1681 KMP_INFORM(AffUsingHwloc, "KMP_AFFINITY"); 1682 } 1683 1684 if (!KMP_AFFINITY_CAPABLE()) { 1685 // Hack to try and infer the machine topology using only the data 1686 // available from hwloc on the current thread, and __kmp_xproc. 1687 KMP_ASSERT(__kmp_affinity.type == affinity_none); 1688 // hwloc only guarantees existance of PU object, so check PACKAGE and CORE 1689 hwloc_obj_t o = hwloc_get_obj_by_type(tp, HWLOC_OBJ_PACKAGE, 0); 1690 if (o != NULL) 1691 nCoresPerPkg = __kmp_hwloc_get_nobjs_under_obj(o, HWLOC_OBJ_CORE); 1692 else 1693 nCoresPerPkg = 1; // no PACKAGE found 1694 o = hwloc_get_obj_by_type(tp, HWLOC_OBJ_CORE, 0); 1695 if (o != NULL) 1696 __kmp_nThreadsPerCore = __kmp_hwloc_get_nobjs_under_obj(o, HWLOC_OBJ_PU); 1697 else 1698 __kmp_nThreadsPerCore = 1; // no CORE found 1699 __kmp_ncores = __kmp_xproc / __kmp_nThreadsPerCore; 1700 if (nCoresPerPkg == 0) 1701 nCoresPerPkg = 1; // to prevent possible division by 0 1702 nPackages = (__kmp_xproc + nCoresPerPkg - 1) / nCoresPerPkg; 1703 return true; 1704 } 1705 1706 #if HWLOC_API_VERSION >= 0x00020400 1707 // Handle multiple types of cores if they exist on the system 1708 int nr_cpu_kinds = hwloc_cpukinds_get_nr(tp, 0); 1709 1710 typedef struct kmp_hwloc_cpukinds_info_t { 1711 int efficiency; 1712 kmp_hw_core_type_t core_type; 1713 hwloc_bitmap_t mask; 1714 } kmp_hwloc_cpukinds_info_t; 1715 kmp_hwloc_cpukinds_info_t *cpukinds = nullptr; 1716 1717 if (nr_cpu_kinds > 0) { 1718 unsigned nr_infos; 1719 struct hwloc_info_s *infos; 1720 cpukinds = (kmp_hwloc_cpukinds_info_t *)__kmp_allocate( 1721 sizeof(kmp_hwloc_cpukinds_info_t) * nr_cpu_kinds); 1722 for (unsigned idx = 0; idx < (unsigned)nr_cpu_kinds; ++idx) { 1723 cpukinds[idx].efficiency = -1; 1724 cpukinds[idx].core_type = KMP_HW_CORE_TYPE_UNKNOWN; 1725 cpukinds[idx].mask = hwloc_bitmap_alloc(); 1726 if (hwloc_cpukinds_get_info(tp, idx, cpukinds[idx].mask, 1727 &cpukinds[idx].efficiency, &nr_infos, &infos, 1728 0) == 0) { 1729 for (unsigned i = 0; i < nr_infos; ++i) { 1730 if (__kmp_str_match("CoreType", 8, infos[i].name)) { 1731 #if KMP_ARCH_X86 || KMP_ARCH_X86_64 1732 if (__kmp_str_match("IntelAtom", 9, infos[i].value)) { 1733 cpukinds[idx].core_type = KMP_HW_CORE_TYPE_ATOM; 1734 break; 1735 } else if (__kmp_str_match("IntelCore", 9, infos[i].value)) { 1736 cpukinds[idx].core_type = KMP_HW_CORE_TYPE_CORE; 1737 break; 1738 } 1739 #endif 1740 } 1741 } 1742 } 1743 } 1744 } 1745 #endif 1746 1747 root = hwloc_get_root_obj(tp); 1748 1749 // Figure out the depth and types in the topology 1750 depth = 0; 1751 pu = hwloc_get_pu_obj_by_os_index(tp, __kmp_affin_fullMask->begin()); 1752 KMP_ASSERT(pu); 1753 obj = pu; 1754 types[depth] = KMP_HW_THREAD; 1755 hwloc_types[depth] = obj->type; 1756 depth++; 1757 while (obj != root && obj != NULL) { 1758 obj = obj->parent; 1759 #if HWLOC_API_VERSION >= 0x00020000 1760 if (obj->memory_arity) { 1761 hwloc_obj_t memory; 1762 for (memory = obj->memory_first_child; memory; 1763 memory = hwloc_get_next_child(tp, obj, memory)) { 1764 if (memory->type == HWLOC_OBJ_NUMANODE) 1765 break; 1766 } 1767 if (memory && memory->type == HWLOC_OBJ_NUMANODE) { 1768 types[depth] = KMP_HW_NUMA; 1769 hwloc_types[depth] = memory->type; 1770 depth++; 1771 } 1772 } 1773 #endif 1774 type = __kmp_hwloc_type_2_topology_type(obj); 1775 if (type != KMP_HW_UNKNOWN) { 1776 types[depth] = type; 1777 hwloc_types[depth] = obj->type; 1778 depth++; 1779 } 1780 } 1781 KMP_ASSERT(depth > 0); 1782 1783 // Get the order for the types correct 1784 for (int i = 0, j = depth - 1; i < j; ++i, --j) { 1785 hwloc_obj_type_t hwloc_temp = hwloc_types[i]; 1786 kmp_hw_t temp = types[i]; 1787 types[i] = types[j]; 1788 types[j] = temp; 1789 hwloc_types[i] = hwloc_types[j]; 1790 hwloc_types[j] = hwloc_temp; 1791 } 1792 1793 // Allocate the data structure to be returned. 1794 __kmp_topology = kmp_topology_t::allocate(__kmp_avail_proc, depth, types); 1795 1796 hw_thread_index = 0; 1797 pu = NULL; 1798 while ((pu = hwloc_get_next_obj_by_type(tp, HWLOC_OBJ_PU, pu))) { 1799 int index = depth - 1; 1800 bool included = KMP_CPU_ISSET(pu->os_index, __kmp_affin_fullMask); 1801 kmp_hw_thread_t &hw_thread = __kmp_topology->at(hw_thread_index); 1802 if (included) { 1803 hw_thread.clear(); 1804 hw_thread.ids[index] = pu->logical_index; 1805 hw_thread.os_id = pu->os_index; 1806 // If multiple core types, then set that attribute for the hardware thread 1807 #if HWLOC_API_VERSION >= 0x00020400 1808 if (cpukinds) { 1809 int cpukind_index = -1; 1810 for (int i = 0; i < nr_cpu_kinds; ++i) { 1811 if (hwloc_bitmap_isset(cpukinds[i].mask, hw_thread.os_id)) { 1812 cpukind_index = i; 1813 break; 1814 } 1815 } 1816 if (cpukind_index >= 0) { 1817 hw_thread.attrs.set_core_type(cpukinds[cpukind_index].core_type); 1818 hw_thread.attrs.set_core_eff(cpukinds[cpukind_index].efficiency); 1819 } 1820 } 1821 #endif 1822 index--; 1823 } 1824 obj = pu; 1825 prev = obj; 1826 while (obj != root && obj != NULL) { 1827 obj = obj->parent; 1828 #if HWLOC_API_VERSION >= 0x00020000 1829 // NUMA Nodes are handled differently since they are not within the 1830 // parent/child structure anymore. They are separate children 1831 // of obj (memory_first_child points to first memory child) 1832 if (obj->memory_arity) { 1833 hwloc_obj_t memory; 1834 for (memory = obj->memory_first_child; memory; 1835 memory = hwloc_get_next_child(tp, obj, memory)) { 1836 if (memory->type == HWLOC_OBJ_NUMANODE) 1837 break; 1838 } 1839 if (memory && memory->type == HWLOC_OBJ_NUMANODE) { 1840 sub_id = __kmp_hwloc_get_sub_id(tp, memory, prev); 1841 if (included) { 1842 hw_thread.ids[index] = memory->logical_index; 1843 hw_thread.ids[index + 1] = sub_id; 1844 index--; 1845 } 1846 prev = memory; 1847 } 1848 prev = obj; 1849 } 1850 #endif 1851 type = __kmp_hwloc_type_2_topology_type(obj); 1852 if (type != KMP_HW_UNKNOWN) { 1853 sub_id = __kmp_hwloc_get_sub_id(tp, obj, prev); 1854 if (included) { 1855 hw_thread.ids[index] = obj->logical_index; 1856 hw_thread.ids[index + 1] = sub_id; 1857 index--; 1858 } 1859 prev = obj; 1860 } 1861 } 1862 if (included) 1863 hw_thread_index++; 1864 } 1865 1866 #if HWLOC_API_VERSION >= 0x00020400 1867 // Free the core types information 1868 if (cpukinds) { 1869 for (int idx = 0; idx < nr_cpu_kinds; ++idx) 1870 hwloc_bitmap_free(cpukinds[idx].mask); 1871 __kmp_free(cpukinds); 1872 } 1873 #endif 1874 __kmp_topology->sort_ids(); 1875 return true; 1876 } 1877 #endif // KMP_USE_HWLOC 1878 1879 // If we don't know how to retrieve the machine's processor topology, or 1880 // encounter an error in doing so, this routine is called to form a "flat" 1881 // mapping of os thread id's <-> processor id's. 1882 static bool __kmp_affinity_create_flat_map(kmp_i18n_id_t *const msg_id) { 1883 *msg_id = kmp_i18n_null; 1884 int depth = 3; 1885 kmp_hw_t types[] = {KMP_HW_SOCKET, KMP_HW_CORE, KMP_HW_THREAD}; 1886 1887 if (__kmp_affinity.flags.verbose) { 1888 KMP_INFORM(UsingFlatOS, "KMP_AFFINITY"); 1889 } 1890 1891 // Even if __kmp_affinity.type == affinity_none, this routine might still 1892 // be called to set __kmp_ncores, as well as 1893 // __kmp_nThreadsPerCore, nCoresPerPkg, & nPackages. 1894 if (!KMP_AFFINITY_CAPABLE()) { 1895 KMP_ASSERT(__kmp_affinity.type == affinity_none); 1896 __kmp_ncores = nPackages = __kmp_xproc; 1897 __kmp_nThreadsPerCore = nCoresPerPkg = 1; 1898 return true; 1899 } 1900 1901 // When affinity is off, this routine will still be called to set 1902 // __kmp_ncores, as well as __kmp_nThreadsPerCore, nCoresPerPkg, & nPackages. 1903 // Make sure all these vars are set correctly, and return now if affinity is 1904 // not enabled. 1905 __kmp_ncores = nPackages = __kmp_avail_proc; 1906 __kmp_nThreadsPerCore = nCoresPerPkg = 1; 1907 1908 // Construct the data structure to be returned. 1909 __kmp_topology = kmp_topology_t::allocate(__kmp_avail_proc, depth, types); 1910 int avail_ct = 0; 1911 int i; 1912 KMP_CPU_SET_ITERATE(i, __kmp_affin_fullMask) { 1913 // Skip this proc if it is not included in the machine model. 1914 if (!KMP_CPU_ISSET(i, __kmp_affin_fullMask)) { 1915 continue; 1916 } 1917 kmp_hw_thread_t &hw_thread = __kmp_topology->at(avail_ct); 1918 hw_thread.clear(); 1919 hw_thread.os_id = i; 1920 hw_thread.ids[0] = i; 1921 hw_thread.ids[1] = 0; 1922 hw_thread.ids[2] = 0; 1923 avail_ct++; 1924 } 1925 if (__kmp_affinity.flags.verbose) { 1926 KMP_INFORM(OSProcToPackage, "KMP_AFFINITY"); 1927 } 1928 return true; 1929 } 1930 1931 #if KMP_GROUP_AFFINITY 1932 // If multiple Windows* OS processor groups exist, we can create a 2-level 1933 // topology map with the groups at level 0 and the individual procs at level 1. 1934 // This facilitates letting the threads float among all procs in a group, 1935 // if granularity=group (the default when there are multiple groups). 1936 static bool __kmp_affinity_create_proc_group_map(kmp_i18n_id_t *const msg_id) { 1937 *msg_id = kmp_i18n_null; 1938 int depth = 3; 1939 kmp_hw_t types[] = {KMP_HW_PROC_GROUP, KMP_HW_CORE, KMP_HW_THREAD}; 1940 const static size_t BITS_PER_GROUP = CHAR_BIT * sizeof(DWORD_PTR); 1941 1942 if (__kmp_affinity.flags.verbose) { 1943 KMP_INFORM(AffWindowsProcGroupMap, "KMP_AFFINITY"); 1944 } 1945 1946 // If we aren't affinity capable, then use flat topology 1947 if (!KMP_AFFINITY_CAPABLE()) { 1948 KMP_ASSERT(__kmp_affinity.type == affinity_none); 1949 nPackages = __kmp_num_proc_groups; 1950 __kmp_nThreadsPerCore = 1; 1951 __kmp_ncores = __kmp_xproc; 1952 nCoresPerPkg = nPackages / __kmp_ncores; 1953 return true; 1954 } 1955 1956 // Construct the data structure to be returned. 1957 __kmp_topology = kmp_topology_t::allocate(__kmp_avail_proc, depth, types); 1958 int avail_ct = 0; 1959 int i; 1960 KMP_CPU_SET_ITERATE(i, __kmp_affin_fullMask) { 1961 // Skip this proc if it is not included in the machine model. 1962 if (!KMP_CPU_ISSET(i, __kmp_affin_fullMask)) { 1963 continue; 1964 } 1965 kmp_hw_thread_t &hw_thread = __kmp_topology->at(avail_ct++); 1966 hw_thread.clear(); 1967 hw_thread.os_id = i; 1968 hw_thread.ids[0] = i / BITS_PER_GROUP; 1969 hw_thread.ids[1] = hw_thread.ids[2] = i % BITS_PER_GROUP; 1970 } 1971 return true; 1972 } 1973 #endif /* KMP_GROUP_AFFINITY */ 1974 1975 #if KMP_ARCH_X86 || KMP_ARCH_X86_64 1976 1977 template <kmp_uint32 LSB, kmp_uint32 MSB> 1978 static inline unsigned __kmp_extract_bits(kmp_uint32 v) { 1979 const kmp_uint32 SHIFT_LEFT = sizeof(kmp_uint32) * 8 - 1 - MSB; 1980 const kmp_uint32 SHIFT_RIGHT = LSB; 1981 kmp_uint32 retval = v; 1982 retval <<= SHIFT_LEFT; 1983 retval >>= (SHIFT_LEFT + SHIFT_RIGHT); 1984 return retval; 1985 } 1986 1987 static int __kmp_cpuid_mask_width(int count) { 1988 int r = 0; 1989 1990 while ((1 << r) < count) 1991 ++r; 1992 return r; 1993 } 1994 1995 class apicThreadInfo { 1996 public: 1997 unsigned osId; // param to __kmp_affinity_bind_thread 1998 unsigned apicId; // from cpuid after binding 1999 unsigned maxCoresPerPkg; // "" 2000 unsigned maxThreadsPerPkg; // "" 2001 unsigned pkgId; // inferred from above values 2002 unsigned coreId; // "" 2003 unsigned threadId; // "" 2004 }; 2005 2006 static int __kmp_affinity_cmp_apicThreadInfo_phys_id(const void *a, 2007 const void *b) { 2008 const apicThreadInfo *aa = (const apicThreadInfo *)a; 2009 const apicThreadInfo *bb = (const apicThreadInfo *)b; 2010 if (aa->pkgId < bb->pkgId) 2011 return -1; 2012 if (aa->pkgId > bb->pkgId) 2013 return 1; 2014 if (aa->coreId < bb->coreId) 2015 return -1; 2016 if (aa->coreId > bb->coreId) 2017 return 1; 2018 if (aa->threadId < bb->threadId) 2019 return -1; 2020 if (aa->threadId > bb->threadId) 2021 return 1; 2022 return 0; 2023 } 2024 2025 class kmp_cache_info_t { 2026 public: 2027 struct info_t { 2028 unsigned level, mask; 2029 }; 2030 kmp_cache_info_t() : depth(0) { get_leaf4_levels(); } 2031 size_t get_depth() const { return depth; } 2032 info_t &operator[](size_t index) { return table[index]; } 2033 const info_t &operator[](size_t index) const { return table[index]; } 2034 2035 static kmp_hw_t get_topology_type(unsigned level) { 2036 KMP_DEBUG_ASSERT(level >= 1 && level <= MAX_CACHE_LEVEL); 2037 switch (level) { 2038 case 1: 2039 return KMP_HW_L1; 2040 case 2: 2041 return KMP_HW_L2; 2042 case 3: 2043 return KMP_HW_L3; 2044 } 2045 return KMP_HW_UNKNOWN; 2046 } 2047 2048 private: 2049 static const int MAX_CACHE_LEVEL = 3; 2050 2051 size_t depth; 2052 info_t table[MAX_CACHE_LEVEL]; 2053 2054 void get_leaf4_levels() { 2055 unsigned level = 0; 2056 while (depth < MAX_CACHE_LEVEL) { 2057 unsigned cache_type, max_threads_sharing; 2058 unsigned cache_level, cache_mask_width; 2059 kmp_cpuid buf2; 2060 __kmp_x86_cpuid(4, level, &buf2); 2061 cache_type = __kmp_extract_bits<0, 4>(buf2.eax); 2062 if (!cache_type) 2063 break; 2064 // Skip instruction caches 2065 if (cache_type == 2) { 2066 level++; 2067 continue; 2068 } 2069 max_threads_sharing = __kmp_extract_bits<14, 25>(buf2.eax) + 1; 2070 cache_mask_width = __kmp_cpuid_mask_width(max_threads_sharing); 2071 cache_level = __kmp_extract_bits<5, 7>(buf2.eax); 2072 table[depth].level = cache_level; 2073 table[depth].mask = ((-1) << cache_mask_width); 2074 depth++; 2075 level++; 2076 } 2077 } 2078 }; 2079 2080 // On IA-32 architecture and Intel(R) 64 architecture, we attempt to use 2081 // an algorithm which cycles through the available os threads, setting 2082 // the current thread's affinity mask to that thread, and then retrieves 2083 // the Apic Id for each thread context using the cpuid instruction. 2084 static bool __kmp_affinity_create_apicid_map(kmp_i18n_id_t *const msg_id) { 2085 kmp_cpuid buf; 2086 *msg_id = kmp_i18n_null; 2087 2088 if (__kmp_affinity.flags.verbose) { 2089 KMP_INFORM(AffInfoStr, "KMP_AFFINITY", KMP_I18N_STR(DecodingLegacyAPIC)); 2090 } 2091 2092 // Check if cpuid leaf 4 is supported. 2093 __kmp_x86_cpuid(0, 0, &buf); 2094 if (buf.eax < 4) { 2095 *msg_id = kmp_i18n_str_NoLeaf4Support; 2096 return false; 2097 } 2098 2099 // The algorithm used starts by setting the affinity to each available thread 2100 // and retrieving info from the cpuid instruction, so if we are not capable of 2101 // calling __kmp_get_system_affinity() and _kmp_get_system_affinity(), then we 2102 // need to do something else - use the defaults that we calculated from 2103 // issuing cpuid without binding to each proc. 2104 if (!KMP_AFFINITY_CAPABLE()) { 2105 // Hack to try and infer the machine topology using only the data 2106 // available from cpuid on the current thread, and __kmp_xproc. 2107 KMP_ASSERT(__kmp_affinity.type == affinity_none); 2108 2109 // Get an upper bound on the number of threads per package using cpuid(1). 2110 // On some OS/chps combinations where HT is supported by the chip but is 2111 // disabled, this value will be 2 on a single core chip. Usually, it will be 2112 // 2 if HT is enabled and 1 if HT is disabled. 2113 __kmp_x86_cpuid(1, 0, &buf); 2114 int maxThreadsPerPkg = (buf.ebx >> 16) & 0xff; 2115 if (maxThreadsPerPkg == 0) { 2116 maxThreadsPerPkg = 1; 2117 } 2118 2119 // The num cores per pkg comes from cpuid(4). 1 must be added to the encoded 2120 // value. 2121 // 2122 // The author of cpu_count.cpp treated this only an upper bound on the 2123 // number of cores, but I haven't seen any cases where it was greater than 2124 // the actual number of cores, so we will treat it as exact in this block of 2125 // code. 2126 // 2127 // First, we need to check if cpuid(4) is supported on this chip. To see if 2128 // cpuid(n) is supported, issue cpuid(0) and check if eax has the value n or 2129 // greater. 2130 __kmp_x86_cpuid(0, 0, &buf); 2131 if (buf.eax >= 4) { 2132 __kmp_x86_cpuid(4, 0, &buf); 2133 nCoresPerPkg = ((buf.eax >> 26) & 0x3f) + 1; 2134 } else { 2135 nCoresPerPkg = 1; 2136 } 2137 2138 // There is no way to reliably tell if HT is enabled without issuing the 2139 // cpuid instruction from every thread, can correlating the cpuid info, so 2140 // if the machine is not affinity capable, we assume that HT is off. We have 2141 // seen quite a few machines where maxThreadsPerPkg is 2, yet the machine 2142 // does not support HT. 2143 // 2144 // - Older OSes are usually found on machines with older chips, which do not 2145 // support HT. 2146 // - The performance penalty for mistakenly identifying a machine as HT when 2147 // it isn't (which results in blocktime being incorrectly set to 0) is 2148 // greater than the penalty when for mistakenly identifying a machine as 2149 // being 1 thread/core when it is really HT enabled (which results in 2150 // blocktime being incorrectly set to a positive value). 2151 __kmp_ncores = __kmp_xproc; 2152 nPackages = (__kmp_xproc + nCoresPerPkg - 1) / nCoresPerPkg; 2153 __kmp_nThreadsPerCore = 1; 2154 return true; 2155 } 2156 2157 // From here on, we can assume that it is safe to call 2158 // __kmp_get_system_affinity() and __kmp_set_system_affinity(), even if 2159 // __kmp_affinity.type = affinity_none. 2160 2161 // Save the affinity mask for the current thread. 2162 kmp_affinity_raii_t previous_affinity; 2163 2164 // Run through each of the available contexts, binding the current thread 2165 // to it, and obtaining the pertinent information using the cpuid instr. 2166 // 2167 // The relevant information is: 2168 // - Apic Id: Bits 24:31 of ebx after issuing cpuid(1) - each thread context 2169 // has a uniqie Apic Id, which is of the form pkg# : core# : thread#. 2170 // - Max Threads Per Pkg: Bits 16:23 of ebx after issuing cpuid(1). The value 2171 // of this field determines the width of the core# + thread# fields in the 2172 // Apic Id. It is also an upper bound on the number of threads per 2173 // package, but it has been verified that situations happen were it is not 2174 // exact. In particular, on certain OS/chip combinations where Intel(R) 2175 // Hyper-Threading Technology is supported by the chip but has been 2176 // disabled, the value of this field will be 2 (for a single core chip). 2177 // On other OS/chip combinations supporting Intel(R) Hyper-Threading 2178 // Technology, the value of this field will be 1 when Intel(R) 2179 // Hyper-Threading Technology is disabled and 2 when it is enabled. 2180 // - Max Cores Per Pkg: Bits 26:31 of eax after issuing cpuid(4). The value 2181 // of this field (+1) determines the width of the core# field in the Apic 2182 // Id. The comments in "cpucount.cpp" say that this value is an upper 2183 // bound, but the IA-32 architecture manual says that it is exactly the 2184 // number of cores per package, and I haven't seen any case where it 2185 // wasn't. 2186 // 2187 // From this information, deduce the package Id, core Id, and thread Id, 2188 // and set the corresponding fields in the apicThreadInfo struct. 2189 unsigned i; 2190 apicThreadInfo *threadInfo = (apicThreadInfo *)__kmp_allocate( 2191 __kmp_avail_proc * sizeof(apicThreadInfo)); 2192 unsigned nApics = 0; 2193 KMP_CPU_SET_ITERATE(i, __kmp_affin_fullMask) { 2194 // Skip this proc if it is not included in the machine model. 2195 if (!KMP_CPU_ISSET(i, __kmp_affin_fullMask)) { 2196 continue; 2197 } 2198 KMP_DEBUG_ASSERT((int)nApics < __kmp_avail_proc); 2199 2200 __kmp_affinity_dispatch->bind_thread(i); 2201 threadInfo[nApics].osId = i; 2202 2203 // The apic id and max threads per pkg come from cpuid(1). 2204 __kmp_x86_cpuid(1, 0, &buf); 2205 if (((buf.edx >> 9) & 1) == 0) { 2206 __kmp_free(threadInfo); 2207 *msg_id = kmp_i18n_str_ApicNotPresent; 2208 return false; 2209 } 2210 threadInfo[nApics].apicId = (buf.ebx >> 24) & 0xff; 2211 threadInfo[nApics].maxThreadsPerPkg = (buf.ebx >> 16) & 0xff; 2212 if (threadInfo[nApics].maxThreadsPerPkg == 0) { 2213 threadInfo[nApics].maxThreadsPerPkg = 1; 2214 } 2215 2216 // Max cores per pkg comes from cpuid(4). 1 must be added to the encoded 2217 // value. 2218 // 2219 // First, we need to check if cpuid(4) is supported on this chip. To see if 2220 // cpuid(n) is supported, issue cpuid(0) and check if eax has the value n 2221 // or greater. 2222 __kmp_x86_cpuid(0, 0, &buf); 2223 if (buf.eax >= 4) { 2224 __kmp_x86_cpuid(4, 0, &buf); 2225 threadInfo[nApics].maxCoresPerPkg = ((buf.eax >> 26) & 0x3f) + 1; 2226 } else { 2227 threadInfo[nApics].maxCoresPerPkg = 1; 2228 } 2229 2230 // Infer the pkgId / coreId / threadId using only the info obtained locally. 2231 int widthCT = __kmp_cpuid_mask_width(threadInfo[nApics].maxThreadsPerPkg); 2232 threadInfo[nApics].pkgId = threadInfo[nApics].apicId >> widthCT; 2233 2234 int widthC = __kmp_cpuid_mask_width(threadInfo[nApics].maxCoresPerPkg); 2235 int widthT = widthCT - widthC; 2236 if (widthT < 0) { 2237 // I've never seen this one happen, but I suppose it could, if the cpuid 2238 // instruction on a chip was really screwed up. Make sure to restore the 2239 // affinity mask before the tail call. 2240 __kmp_free(threadInfo); 2241 *msg_id = kmp_i18n_str_InvalidCpuidInfo; 2242 return false; 2243 } 2244 2245 int maskC = (1 << widthC) - 1; 2246 threadInfo[nApics].coreId = (threadInfo[nApics].apicId >> widthT) & maskC; 2247 2248 int maskT = (1 << widthT) - 1; 2249 threadInfo[nApics].threadId = threadInfo[nApics].apicId & maskT; 2250 2251 nApics++; 2252 } 2253 2254 // We've collected all the info we need. 2255 // Restore the old affinity mask for this thread. 2256 previous_affinity.restore(); 2257 2258 // Sort the threadInfo table by physical Id. 2259 qsort(threadInfo, nApics, sizeof(*threadInfo), 2260 __kmp_affinity_cmp_apicThreadInfo_phys_id); 2261 2262 // The table is now sorted by pkgId / coreId / threadId, but we really don't 2263 // know the radix of any of the fields. pkgId's may be sparsely assigned among 2264 // the chips on a system. Although coreId's are usually assigned 2265 // [0 .. coresPerPkg-1] and threadId's are usually assigned 2266 // [0..threadsPerCore-1], we don't want to make any such assumptions. 2267 // 2268 // For that matter, we don't know what coresPerPkg and threadsPerCore (or the 2269 // total # packages) are at this point - we want to determine that now. We 2270 // only have an upper bound on the first two figures. 2271 // 2272 // We also perform a consistency check at this point: the values returned by 2273 // the cpuid instruction for any thread bound to a given package had better 2274 // return the same info for maxThreadsPerPkg and maxCoresPerPkg. 2275 nPackages = 1; 2276 nCoresPerPkg = 1; 2277 __kmp_nThreadsPerCore = 1; 2278 unsigned nCores = 1; 2279 2280 unsigned pkgCt = 1; // to determine radii 2281 unsigned lastPkgId = threadInfo[0].pkgId; 2282 unsigned coreCt = 1; 2283 unsigned lastCoreId = threadInfo[0].coreId; 2284 unsigned threadCt = 1; 2285 unsigned lastThreadId = threadInfo[0].threadId; 2286 2287 // intra-pkg consist checks 2288 unsigned prevMaxCoresPerPkg = threadInfo[0].maxCoresPerPkg; 2289 unsigned prevMaxThreadsPerPkg = threadInfo[0].maxThreadsPerPkg; 2290 2291 for (i = 1; i < nApics; i++) { 2292 if (threadInfo[i].pkgId != lastPkgId) { 2293 nCores++; 2294 pkgCt++; 2295 lastPkgId = threadInfo[i].pkgId; 2296 if ((int)coreCt > nCoresPerPkg) 2297 nCoresPerPkg = coreCt; 2298 coreCt = 1; 2299 lastCoreId = threadInfo[i].coreId; 2300 if ((int)threadCt > __kmp_nThreadsPerCore) 2301 __kmp_nThreadsPerCore = threadCt; 2302 threadCt = 1; 2303 lastThreadId = threadInfo[i].threadId; 2304 2305 // This is a different package, so go on to the next iteration without 2306 // doing any consistency checks. Reset the consistency check vars, though. 2307 prevMaxCoresPerPkg = threadInfo[i].maxCoresPerPkg; 2308 prevMaxThreadsPerPkg = threadInfo[i].maxThreadsPerPkg; 2309 continue; 2310 } 2311 2312 if (threadInfo[i].coreId != lastCoreId) { 2313 nCores++; 2314 coreCt++; 2315 lastCoreId = threadInfo[i].coreId; 2316 if ((int)threadCt > __kmp_nThreadsPerCore) 2317 __kmp_nThreadsPerCore = threadCt; 2318 threadCt = 1; 2319 lastThreadId = threadInfo[i].threadId; 2320 } else if (threadInfo[i].threadId != lastThreadId) { 2321 threadCt++; 2322 lastThreadId = threadInfo[i].threadId; 2323 } else { 2324 __kmp_free(threadInfo); 2325 *msg_id = kmp_i18n_str_LegacyApicIDsNotUnique; 2326 return false; 2327 } 2328 2329 // Check to make certain that the maxCoresPerPkg and maxThreadsPerPkg 2330 // fields agree between all the threads bounds to a given package. 2331 if ((prevMaxCoresPerPkg != threadInfo[i].maxCoresPerPkg) || 2332 (prevMaxThreadsPerPkg != threadInfo[i].maxThreadsPerPkg)) { 2333 __kmp_free(threadInfo); 2334 *msg_id = kmp_i18n_str_InconsistentCpuidInfo; 2335 return false; 2336 } 2337 } 2338 // When affinity is off, this routine will still be called to set 2339 // __kmp_ncores, as well as __kmp_nThreadsPerCore, nCoresPerPkg, & nPackages. 2340 // Make sure all these vars are set correctly 2341 nPackages = pkgCt; 2342 if ((int)coreCt > nCoresPerPkg) 2343 nCoresPerPkg = coreCt; 2344 if ((int)threadCt > __kmp_nThreadsPerCore) 2345 __kmp_nThreadsPerCore = threadCt; 2346 __kmp_ncores = nCores; 2347 KMP_DEBUG_ASSERT(nApics == (unsigned)__kmp_avail_proc); 2348 2349 // Now that we've determined the number of packages, the number of cores per 2350 // package, and the number of threads per core, we can construct the data 2351 // structure that is to be returned. 2352 int idx = 0; 2353 int pkgLevel = 0; 2354 int coreLevel = 1; 2355 int threadLevel = 2; 2356 //(__kmp_nThreadsPerCore <= 1) ? -1 : ((coreLevel >= 0) ? 2 : 1); 2357 int depth = (pkgLevel >= 0) + (coreLevel >= 0) + (threadLevel >= 0); 2358 kmp_hw_t types[3]; 2359 if (pkgLevel >= 0) 2360 types[idx++] = KMP_HW_SOCKET; 2361 if (coreLevel >= 0) 2362 types[idx++] = KMP_HW_CORE; 2363 if (threadLevel >= 0) 2364 types[idx++] = KMP_HW_THREAD; 2365 2366 KMP_ASSERT(depth > 0); 2367 __kmp_topology = kmp_topology_t::allocate(nApics, depth, types); 2368 2369 for (i = 0; i < nApics; ++i) { 2370 idx = 0; 2371 unsigned os = threadInfo[i].osId; 2372 kmp_hw_thread_t &hw_thread = __kmp_topology->at(i); 2373 hw_thread.clear(); 2374 2375 if (pkgLevel >= 0) { 2376 hw_thread.ids[idx++] = threadInfo[i].pkgId; 2377 } 2378 if (coreLevel >= 0) { 2379 hw_thread.ids[idx++] = threadInfo[i].coreId; 2380 } 2381 if (threadLevel >= 0) { 2382 hw_thread.ids[idx++] = threadInfo[i].threadId; 2383 } 2384 hw_thread.os_id = os; 2385 } 2386 2387 __kmp_free(threadInfo); 2388 __kmp_topology->sort_ids(); 2389 if (!__kmp_topology->check_ids()) { 2390 kmp_topology_t::deallocate(__kmp_topology); 2391 __kmp_topology = nullptr; 2392 *msg_id = kmp_i18n_str_LegacyApicIDsNotUnique; 2393 return false; 2394 } 2395 return true; 2396 } 2397 2398 // Hybrid cpu detection using CPUID.1A 2399 // Thread should be pinned to processor already 2400 static void __kmp_get_hybrid_info(kmp_hw_core_type_t *type, int *efficiency, 2401 unsigned *native_model_id) { 2402 kmp_cpuid buf; 2403 __kmp_x86_cpuid(0x1a, 0, &buf); 2404 *type = (kmp_hw_core_type_t)__kmp_extract_bits<24, 31>(buf.eax); 2405 switch (*type) { 2406 case KMP_HW_CORE_TYPE_ATOM: 2407 *efficiency = 0; 2408 break; 2409 case KMP_HW_CORE_TYPE_CORE: 2410 *efficiency = 1; 2411 break; 2412 default: 2413 *efficiency = 0; 2414 } 2415 *native_model_id = __kmp_extract_bits<0, 23>(buf.eax); 2416 } 2417 2418 // Intel(R) microarchitecture code name Nehalem, Dunnington and later 2419 // architectures support a newer interface for specifying the x2APIC Ids, 2420 // based on CPUID.B or CPUID.1F 2421 /* 2422 * CPUID.B or 1F, Input ECX (sub leaf # aka level number) 2423 Bits Bits Bits Bits 2424 31-16 15-8 7-4 4-0 2425 ---+-----------+--------------+-------------+-----------------+ 2426 EAX| reserved | reserved | reserved | Bits to Shift | 2427 ---+-----------|--------------+-------------+-----------------| 2428 EBX| reserved | Num logical processors at level (16 bits) | 2429 ---+-----------|--------------+-------------------------------| 2430 ECX| reserved | Level Type | Level Number (8 bits) | 2431 ---+-----------+--------------+-------------------------------| 2432 EDX| X2APIC ID (32 bits) | 2433 ---+----------------------------------------------------------+ 2434 */ 2435 2436 enum { 2437 INTEL_LEVEL_TYPE_INVALID = 0, // Package level 2438 INTEL_LEVEL_TYPE_SMT = 1, 2439 INTEL_LEVEL_TYPE_CORE = 2, 2440 INTEL_LEVEL_TYPE_MODULE = 3, 2441 INTEL_LEVEL_TYPE_TILE = 4, 2442 INTEL_LEVEL_TYPE_DIE = 5, 2443 INTEL_LEVEL_TYPE_LAST = 6, 2444 }; 2445 2446 struct cpuid_level_info_t { 2447 unsigned level_type, mask, mask_width, nitems, cache_mask; 2448 }; 2449 2450 static kmp_hw_t __kmp_intel_type_2_topology_type(int intel_type) { 2451 switch (intel_type) { 2452 case INTEL_LEVEL_TYPE_INVALID: 2453 return KMP_HW_SOCKET; 2454 case INTEL_LEVEL_TYPE_SMT: 2455 return KMP_HW_THREAD; 2456 case INTEL_LEVEL_TYPE_CORE: 2457 return KMP_HW_CORE; 2458 case INTEL_LEVEL_TYPE_TILE: 2459 return KMP_HW_TILE; 2460 case INTEL_LEVEL_TYPE_MODULE: 2461 return KMP_HW_MODULE; 2462 case INTEL_LEVEL_TYPE_DIE: 2463 return KMP_HW_DIE; 2464 } 2465 return KMP_HW_UNKNOWN; 2466 } 2467 2468 // This function takes the topology leaf, a levels array to store the levels 2469 // detected and a bitmap of the known levels. 2470 // Returns the number of levels in the topology 2471 static unsigned 2472 __kmp_x2apicid_get_levels(int leaf, 2473 cpuid_level_info_t levels[INTEL_LEVEL_TYPE_LAST], 2474 kmp_uint64 known_levels) { 2475 unsigned level, levels_index; 2476 unsigned level_type, mask_width, nitems; 2477 kmp_cpuid buf; 2478 2479 // New algorithm has known topology layers act as highest unknown topology 2480 // layers when unknown topology layers exist. 2481 // e.g., Suppose layers were SMT <X> CORE <Y> <Z> PACKAGE, where <X> <Y> <Z> 2482 // are unknown topology layers, Then SMT will take the characteristics of 2483 // (SMT x <X>) and CORE will take the characteristics of (CORE x <Y> x <Z>). 2484 // This eliminates unknown portions of the topology while still keeping the 2485 // correct structure. 2486 level = levels_index = 0; 2487 do { 2488 __kmp_x86_cpuid(leaf, level, &buf); 2489 level_type = __kmp_extract_bits<8, 15>(buf.ecx); 2490 mask_width = __kmp_extract_bits<0, 4>(buf.eax); 2491 nitems = __kmp_extract_bits<0, 15>(buf.ebx); 2492 if (level_type != INTEL_LEVEL_TYPE_INVALID && nitems == 0) 2493 return 0; 2494 2495 if (known_levels & (1ull << level_type)) { 2496 // Add a new level to the topology 2497 KMP_ASSERT(levels_index < INTEL_LEVEL_TYPE_LAST); 2498 levels[levels_index].level_type = level_type; 2499 levels[levels_index].mask_width = mask_width; 2500 levels[levels_index].nitems = nitems; 2501 levels_index++; 2502 } else { 2503 // If it is an unknown level, then logically move the previous layer up 2504 if (levels_index > 0) { 2505 levels[levels_index - 1].mask_width = mask_width; 2506 levels[levels_index - 1].nitems = nitems; 2507 } 2508 } 2509 level++; 2510 } while (level_type != INTEL_LEVEL_TYPE_INVALID); 2511 2512 // Set the masks to & with apicid 2513 for (unsigned i = 0; i < levels_index; ++i) { 2514 if (levels[i].level_type != INTEL_LEVEL_TYPE_INVALID) { 2515 levels[i].mask = ~((-1) << levels[i].mask_width); 2516 levels[i].cache_mask = (-1) << levels[i].mask_width; 2517 for (unsigned j = 0; j < i; ++j) 2518 levels[i].mask ^= levels[j].mask; 2519 } else { 2520 KMP_DEBUG_ASSERT(levels_index > 0); 2521 levels[i].mask = (-1) << levels[i - 1].mask_width; 2522 levels[i].cache_mask = 0; 2523 } 2524 } 2525 return levels_index; 2526 } 2527 2528 static bool __kmp_affinity_create_x2apicid_map(kmp_i18n_id_t *const msg_id) { 2529 2530 cpuid_level_info_t levels[INTEL_LEVEL_TYPE_LAST]; 2531 kmp_hw_t types[INTEL_LEVEL_TYPE_LAST]; 2532 unsigned levels_index; 2533 kmp_cpuid buf; 2534 kmp_uint64 known_levels; 2535 int topology_leaf, highest_leaf, apic_id; 2536 int num_leaves; 2537 static int leaves[] = {0, 0}; 2538 2539 kmp_i18n_id_t leaf_message_id; 2540 2541 KMP_BUILD_ASSERT(sizeof(known_levels) * CHAR_BIT > KMP_HW_LAST); 2542 2543 *msg_id = kmp_i18n_null; 2544 if (__kmp_affinity.flags.verbose) { 2545 KMP_INFORM(AffInfoStr, "KMP_AFFINITY", KMP_I18N_STR(Decodingx2APIC)); 2546 } 2547 2548 // Figure out the known topology levels 2549 known_levels = 0ull; 2550 for (int i = 0; i < INTEL_LEVEL_TYPE_LAST; ++i) { 2551 if (__kmp_intel_type_2_topology_type(i) != KMP_HW_UNKNOWN) { 2552 known_levels |= (1ull << i); 2553 } 2554 } 2555 2556 // Get the highest cpuid leaf supported 2557 __kmp_x86_cpuid(0, 0, &buf); 2558 highest_leaf = buf.eax; 2559 2560 // If a specific topology method was requested, only allow that specific leaf 2561 // otherwise, try both leaves 31 and 11 in that order 2562 num_leaves = 0; 2563 if (__kmp_affinity_top_method == affinity_top_method_x2apicid) { 2564 num_leaves = 1; 2565 leaves[0] = 11; 2566 leaf_message_id = kmp_i18n_str_NoLeaf11Support; 2567 } else if (__kmp_affinity_top_method == affinity_top_method_x2apicid_1f) { 2568 num_leaves = 1; 2569 leaves[0] = 31; 2570 leaf_message_id = kmp_i18n_str_NoLeaf31Support; 2571 } else { 2572 num_leaves = 2; 2573 leaves[0] = 31; 2574 leaves[1] = 11; 2575 leaf_message_id = kmp_i18n_str_NoLeaf11Support; 2576 } 2577 2578 // Check to see if cpuid leaf 31 or 11 is supported. 2579 __kmp_nThreadsPerCore = nCoresPerPkg = nPackages = 1; 2580 topology_leaf = -1; 2581 for (int i = 0; i < num_leaves; ++i) { 2582 int leaf = leaves[i]; 2583 if (highest_leaf < leaf) 2584 continue; 2585 __kmp_x86_cpuid(leaf, 0, &buf); 2586 if (buf.ebx == 0) 2587 continue; 2588 topology_leaf = leaf; 2589 levels_index = __kmp_x2apicid_get_levels(leaf, levels, known_levels); 2590 if (levels_index == 0) 2591 continue; 2592 break; 2593 } 2594 if (topology_leaf == -1 || levels_index == 0) { 2595 *msg_id = leaf_message_id; 2596 return false; 2597 } 2598 KMP_ASSERT(levels_index <= INTEL_LEVEL_TYPE_LAST); 2599 2600 // The algorithm used starts by setting the affinity to each available thread 2601 // and retrieving info from the cpuid instruction, so if we are not capable of 2602 // calling __kmp_get_system_affinity() and __kmp_get_system_affinity(), then 2603 // we need to do something else - use the defaults that we calculated from 2604 // issuing cpuid without binding to each proc. 2605 if (!KMP_AFFINITY_CAPABLE()) { 2606 // Hack to try and infer the machine topology using only the data 2607 // available from cpuid on the current thread, and __kmp_xproc. 2608 KMP_ASSERT(__kmp_affinity.type == affinity_none); 2609 for (unsigned i = 0; i < levels_index; ++i) { 2610 if (levels[i].level_type == INTEL_LEVEL_TYPE_SMT) { 2611 __kmp_nThreadsPerCore = levels[i].nitems; 2612 } else if (levels[i].level_type == INTEL_LEVEL_TYPE_CORE) { 2613 nCoresPerPkg = levels[i].nitems; 2614 } 2615 } 2616 __kmp_ncores = __kmp_xproc / __kmp_nThreadsPerCore; 2617 nPackages = (__kmp_xproc + nCoresPerPkg - 1) / nCoresPerPkg; 2618 return true; 2619 } 2620 2621 // Allocate the data structure to be returned. 2622 int depth = levels_index; 2623 for (int i = depth - 1, j = 0; i >= 0; --i, ++j) 2624 types[j] = __kmp_intel_type_2_topology_type(levels[i].level_type); 2625 __kmp_topology = 2626 kmp_topology_t::allocate(__kmp_avail_proc, levels_index, types); 2627 2628 // Insert equivalent cache types if they exist 2629 kmp_cache_info_t cache_info; 2630 for (size_t i = 0; i < cache_info.get_depth(); ++i) { 2631 const kmp_cache_info_t::info_t &info = cache_info[i]; 2632 unsigned cache_mask = info.mask; 2633 unsigned cache_level = info.level; 2634 for (unsigned j = 0; j < levels_index; ++j) { 2635 unsigned hw_cache_mask = levels[j].cache_mask; 2636 kmp_hw_t cache_type = kmp_cache_info_t::get_topology_type(cache_level); 2637 if (hw_cache_mask == cache_mask && j < levels_index - 1) { 2638 kmp_hw_t type = 2639 __kmp_intel_type_2_topology_type(levels[j + 1].level_type); 2640 __kmp_topology->set_equivalent_type(cache_type, type); 2641 } 2642 } 2643 } 2644 2645 // From here on, we can assume that it is safe to call 2646 // __kmp_get_system_affinity() and __kmp_set_system_affinity(), even if 2647 // __kmp_affinity.type = affinity_none. 2648 2649 // Save the affinity mask for the current thread. 2650 kmp_affinity_raii_t previous_affinity; 2651 2652 // Run through each of the available contexts, binding the current thread 2653 // to it, and obtaining the pertinent information using the cpuid instr. 2654 unsigned int proc; 2655 int hw_thread_index = 0; 2656 KMP_CPU_SET_ITERATE(proc, __kmp_affin_fullMask) { 2657 cpuid_level_info_t my_levels[INTEL_LEVEL_TYPE_LAST]; 2658 unsigned my_levels_index; 2659 2660 // Skip this proc if it is not included in the machine model. 2661 if (!KMP_CPU_ISSET(proc, __kmp_affin_fullMask)) { 2662 continue; 2663 } 2664 KMP_DEBUG_ASSERT(hw_thread_index < __kmp_avail_proc); 2665 2666 __kmp_affinity_dispatch->bind_thread(proc); 2667 2668 // New algorithm 2669 __kmp_x86_cpuid(topology_leaf, 0, &buf); 2670 apic_id = buf.edx; 2671 kmp_hw_thread_t &hw_thread = __kmp_topology->at(hw_thread_index); 2672 my_levels_index = 2673 __kmp_x2apicid_get_levels(topology_leaf, my_levels, known_levels); 2674 if (my_levels_index == 0 || my_levels_index != levels_index) { 2675 *msg_id = kmp_i18n_str_InvalidCpuidInfo; 2676 return false; 2677 } 2678 hw_thread.clear(); 2679 hw_thread.os_id = proc; 2680 // Put in topology information 2681 for (unsigned j = 0, idx = depth - 1; j < my_levels_index; ++j, --idx) { 2682 hw_thread.ids[idx] = apic_id & my_levels[j].mask; 2683 if (j > 0) { 2684 hw_thread.ids[idx] >>= my_levels[j - 1].mask_width; 2685 } 2686 } 2687 // Hybrid information 2688 if (__kmp_is_hybrid_cpu() && highest_leaf >= 0x1a) { 2689 kmp_hw_core_type_t type; 2690 unsigned native_model_id; 2691 int efficiency; 2692 __kmp_get_hybrid_info(&type, &efficiency, &native_model_id); 2693 hw_thread.attrs.set_core_type(type); 2694 hw_thread.attrs.set_core_eff(efficiency); 2695 } 2696 hw_thread_index++; 2697 } 2698 KMP_ASSERT(hw_thread_index > 0); 2699 __kmp_topology->sort_ids(); 2700 if (!__kmp_topology->check_ids()) { 2701 kmp_topology_t::deallocate(__kmp_topology); 2702 __kmp_topology = nullptr; 2703 *msg_id = kmp_i18n_str_x2ApicIDsNotUnique; 2704 return false; 2705 } 2706 return true; 2707 } 2708 #endif /* KMP_ARCH_X86 || KMP_ARCH_X86_64 */ 2709 2710 #define osIdIndex 0 2711 #define threadIdIndex 1 2712 #define coreIdIndex 2 2713 #define pkgIdIndex 3 2714 #define nodeIdIndex 4 2715 2716 typedef unsigned *ProcCpuInfo; 2717 static unsigned maxIndex = pkgIdIndex; 2718 2719 static int __kmp_affinity_cmp_ProcCpuInfo_phys_id(const void *a, 2720 const void *b) { 2721 unsigned i; 2722 const unsigned *aa = *(unsigned *const *)a; 2723 const unsigned *bb = *(unsigned *const *)b; 2724 for (i = maxIndex;; i--) { 2725 if (aa[i] < bb[i]) 2726 return -1; 2727 if (aa[i] > bb[i]) 2728 return 1; 2729 if (i == osIdIndex) 2730 break; 2731 } 2732 return 0; 2733 } 2734 2735 #if KMP_USE_HIER_SCHED 2736 // Set the array sizes for the hierarchy layers 2737 static void __kmp_dispatch_set_hierarchy_values() { 2738 // Set the maximum number of L1's to number of cores 2739 // Set the maximum number of L2's to to either number of cores / 2 for 2740 // Intel(R) Xeon Phi(TM) coprocessor formally codenamed Knights Landing 2741 // Or the number of cores for Intel(R) Xeon(R) processors 2742 // Set the maximum number of NUMA nodes and L3's to number of packages 2743 __kmp_hier_max_units[kmp_hier_layer_e::LAYER_THREAD + 1] = 2744 nPackages * nCoresPerPkg * __kmp_nThreadsPerCore; 2745 __kmp_hier_max_units[kmp_hier_layer_e::LAYER_L1 + 1] = __kmp_ncores; 2746 #if KMP_ARCH_X86_64 && (KMP_OS_LINUX || KMP_OS_FREEBSD || KMP_OS_WINDOWS) && \ 2747 KMP_MIC_SUPPORTED 2748 if (__kmp_mic_type >= mic3) 2749 __kmp_hier_max_units[kmp_hier_layer_e::LAYER_L2 + 1] = __kmp_ncores / 2; 2750 else 2751 #endif // KMP_ARCH_X86_64 && (KMP_OS_LINUX || KMP_OS_WINDOWS) 2752 __kmp_hier_max_units[kmp_hier_layer_e::LAYER_L2 + 1] = __kmp_ncores; 2753 __kmp_hier_max_units[kmp_hier_layer_e::LAYER_L3 + 1] = nPackages; 2754 __kmp_hier_max_units[kmp_hier_layer_e::LAYER_NUMA + 1] = nPackages; 2755 __kmp_hier_max_units[kmp_hier_layer_e::LAYER_LOOP + 1] = 1; 2756 // Set the number of threads per unit 2757 // Number of hardware threads per L1/L2/L3/NUMA/LOOP 2758 __kmp_hier_threads_per[kmp_hier_layer_e::LAYER_THREAD + 1] = 1; 2759 __kmp_hier_threads_per[kmp_hier_layer_e::LAYER_L1 + 1] = 2760 __kmp_nThreadsPerCore; 2761 #if KMP_ARCH_X86_64 && (KMP_OS_LINUX || KMP_OS_FREEBSD || KMP_OS_WINDOWS) && \ 2762 KMP_MIC_SUPPORTED 2763 if (__kmp_mic_type >= mic3) 2764 __kmp_hier_threads_per[kmp_hier_layer_e::LAYER_L2 + 1] = 2765 2 * __kmp_nThreadsPerCore; 2766 else 2767 #endif // KMP_ARCH_X86_64 && (KMP_OS_LINUX || KMP_OS_WINDOWS) 2768 __kmp_hier_threads_per[kmp_hier_layer_e::LAYER_L2 + 1] = 2769 __kmp_nThreadsPerCore; 2770 __kmp_hier_threads_per[kmp_hier_layer_e::LAYER_L3 + 1] = 2771 nCoresPerPkg * __kmp_nThreadsPerCore; 2772 __kmp_hier_threads_per[kmp_hier_layer_e::LAYER_NUMA + 1] = 2773 nCoresPerPkg * __kmp_nThreadsPerCore; 2774 __kmp_hier_threads_per[kmp_hier_layer_e::LAYER_LOOP + 1] = 2775 nPackages * nCoresPerPkg * __kmp_nThreadsPerCore; 2776 } 2777 2778 // Return the index into the hierarchy for this tid and layer type (L1, L2, etc) 2779 // i.e., this thread's L1 or this thread's L2, etc. 2780 int __kmp_dispatch_get_index(int tid, kmp_hier_layer_e type) { 2781 int index = type + 1; 2782 int num_hw_threads = __kmp_hier_max_units[kmp_hier_layer_e::LAYER_THREAD + 1]; 2783 KMP_DEBUG_ASSERT(type != kmp_hier_layer_e::LAYER_LAST); 2784 if (type == kmp_hier_layer_e::LAYER_THREAD) 2785 return tid; 2786 else if (type == kmp_hier_layer_e::LAYER_LOOP) 2787 return 0; 2788 KMP_DEBUG_ASSERT(__kmp_hier_max_units[index] != 0); 2789 if (tid >= num_hw_threads) 2790 tid = tid % num_hw_threads; 2791 return (tid / __kmp_hier_threads_per[index]) % __kmp_hier_max_units[index]; 2792 } 2793 2794 // Return the number of t1's per t2 2795 int __kmp_dispatch_get_t1_per_t2(kmp_hier_layer_e t1, kmp_hier_layer_e t2) { 2796 int i1 = t1 + 1; 2797 int i2 = t2 + 1; 2798 KMP_DEBUG_ASSERT(i1 <= i2); 2799 KMP_DEBUG_ASSERT(t1 != kmp_hier_layer_e::LAYER_LAST); 2800 KMP_DEBUG_ASSERT(t2 != kmp_hier_layer_e::LAYER_LAST); 2801 KMP_DEBUG_ASSERT(__kmp_hier_threads_per[i1] != 0); 2802 // (nthreads/t2) / (nthreads/t1) = t1 / t2 2803 return __kmp_hier_threads_per[i2] / __kmp_hier_threads_per[i1]; 2804 } 2805 #endif // KMP_USE_HIER_SCHED 2806 2807 static inline const char *__kmp_cpuinfo_get_filename() { 2808 const char *filename; 2809 if (__kmp_cpuinfo_file != nullptr) 2810 filename = __kmp_cpuinfo_file; 2811 else 2812 filename = "/proc/cpuinfo"; 2813 return filename; 2814 } 2815 2816 static inline const char *__kmp_cpuinfo_get_envvar() { 2817 const char *envvar = nullptr; 2818 if (__kmp_cpuinfo_file != nullptr) 2819 envvar = "KMP_CPUINFO_FILE"; 2820 return envvar; 2821 } 2822 2823 // Parse /proc/cpuinfo (or an alternate file in the same format) to obtain the 2824 // affinity map. 2825 static bool __kmp_affinity_create_cpuinfo_map(int *line, 2826 kmp_i18n_id_t *const msg_id) { 2827 const char *filename = __kmp_cpuinfo_get_filename(); 2828 const char *envvar = __kmp_cpuinfo_get_envvar(); 2829 *msg_id = kmp_i18n_null; 2830 2831 if (__kmp_affinity.flags.verbose) { 2832 KMP_INFORM(AffParseFilename, "KMP_AFFINITY", filename); 2833 } 2834 2835 kmp_safe_raii_file_t f(filename, "r", envvar); 2836 2837 // Scan of the file, and count the number of "processor" (osId) fields, 2838 // and find the highest value of <n> for a node_<n> field. 2839 char buf[256]; 2840 unsigned num_records = 0; 2841 while (!feof(f)) { 2842 buf[sizeof(buf) - 1] = 1; 2843 if (!fgets(buf, sizeof(buf), f)) { 2844 // Read errors presumably because of EOF 2845 break; 2846 } 2847 2848 char s1[] = "processor"; 2849 if (strncmp(buf, s1, sizeof(s1) - 1) == 0) { 2850 num_records++; 2851 continue; 2852 } 2853 2854 // FIXME - this will match "node_<n> <garbage>" 2855 unsigned level; 2856 if (KMP_SSCANF(buf, "node_%u id", &level) == 1) { 2857 // validate the input fisrt: 2858 if (level > (unsigned)__kmp_xproc) { // level is too big 2859 level = __kmp_xproc; 2860 } 2861 if (nodeIdIndex + level >= maxIndex) { 2862 maxIndex = nodeIdIndex + level; 2863 } 2864 continue; 2865 } 2866 } 2867 2868 // Check for empty file / no valid processor records, or too many. The number 2869 // of records can't exceed the number of valid bits in the affinity mask. 2870 if (num_records == 0) { 2871 *msg_id = kmp_i18n_str_NoProcRecords; 2872 return false; 2873 } 2874 if (num_records > (unsigned)__kmp_xproc) { 2875 *msg_id = kmp_i18n_str_TooManyProcRecords; 2876 return false; 2877 } 2878 2879 // Set the file pointer back to the beginning, so that we can scan the file 2880 // again, this time performing a full parse of the data. Allocate a vector of 2881 // ProcCpuInfo object, where we will place the data. Adding an extra element 2882 // at the end allows us to remove a lot of extra checks for termination 2883 // conditions. 2884 if (fseek(f, 0, SEEK_SET) != 0) { 2885 *msg_id = kmp_i18n_str_CantRewindCpuinfo; 2886 return false; 2887 } 2888 2889 // Allocate the array of records to store the proc info in. The dummy 2890 // element at the end makes the logic in filling them out easier to code. 2891 unsigned **threadInfo = 2892 (unsigned **)__kmp_allocate((num_records + 1) * sizeof(unsigned *)); 2893 unsigned i; 2894 for (i = 0; i <= num_records; i++) { 2895 threadInfo[i] = 2896 (unsigned *)__kmp_allocate((maxIndex + 1) * sizeof(unsigned)); 2897 } 2898 2899 #define CLEANUP_THREAD_INFO \ 2900 for (i = 0; i <= num_records; i++) { \ 2901 __kmp_free(threadInfo[i]); \ 2902 } \ 2903 __kmp_free(threadInfo); 2904 2905 // A value of UINT_MAX means that we didn't find the field 2906 unsigned __index; 2907 2908 #define INIT_PROC_INFO(p) \ 2909 for (__index = 0; __index <= maxIndex; __index++) { \ 2910 (p)[__index] = UINT_MAX; \ 2911 } 2912 2913 for (i = 0; i <= num_records; i++) { 2914 INIT_PROC_INFO(threadInfo[i]); 2915 } 2916 2917 unsigned num_avail = 0; 2918 *line = 0; 2919 while (!feof(f)) { 2920 // Create an inner scoping level, so that all the goto targets at the end of 2921 // the loop appear in an outer scoping level. This avoids warnings about 2922 // jumping past an initialization to a target in the same block. 2923 { 2924 buf[sizeof(buf) - 1] = 1; 2925 bool long_line = false; 2926 if (!fgets(buf, sizeof(buf), f)) { 2927 // Read errors presumably because of EOF 2928 // If there is valid data in threadInfo[num_avail], then fake 2929 // a blank line in ensure that the last address gets parsed. 2930 bool valid = false; 2931 for (i = 0; i <= maxIndex; i++) { 2932 if (threadInfo[num_avail][i] != UINT_MAX) { 2933 valid = true; 2934 } 2935 } 2936 if (!valid) { 2937 break; 2938 } 2939 buf[0] = 0; 2940 } else if (!buf[sizeof(buf) - 1]) { 2941 // The line is longer than the buffer. Set a flag and don't 2942 // emit an error if we were going to ignore the line, anyway. 2943 long_line = true; 2944 2945 #define CHECK_LINE \ 2946 if (long_line) { \ 2947 CLEANUP_THREAD_INFO; \ 2948 *msg_id = kmp_i18n_str_LongLineCpuinfo; \ 2949 return false; \ 2950 } 2951 } 2952 (*line)++; 2953 2954 #if KMP_ARCH_LOONGARCH64 2955 // The parsing logic of /proc/cpuinfo in this function highly depends on 2956 // the blank lines between each processor info block. But on LoongArch a 2957 // blank line exists before the first processor info block (i.e. after the 2958 // "system type" line). This blank line was added because the "system 2959 // type" line is unrelated to any of the CPUs. We must skip this line so 2960 // that the original logic works on LoongArch. 2961 if (*buf == '\n' && *line == 2) 2962 continue; 2963 #endif 2964 2965 char s1[] = "processor"; 2966 if (strncmp(buf, s1, sizeof(s1) - 1) == 0) { 2967 CHECK_LINE; 2968 char *p = strchr(buf + sizeof(s1) - 1, ':'); 2969 unsigned val; 2970 if ((p == NULL) || (KMP_SSCANF(p + 1, "%u\n", &val) != 1)) 2971 goto no_val; 2972 if (threadInfo[num_avail][osIdIndex] != UINT_MAX) 2973 #if KMP_ARCH_AARCH64 2974 // Handle the old AArch64 /proc/cpuinfo layout differently, 2975 // it contains all of the 'processor' entries listed in a 2976 // single 'Processor' section, therefore the normal looking 2977 // for duplicates in that section will always fail. 2978 num_avail++; 2979 #else 2980 goto dup_field; 2981 #endif 2982 threadInfo[num_avail][osIdIndex] = val; 2983 #if KMP_OS_LINUX && !(KMP_ARCH_X86 || KMP_ARCH_X86_64) 2984 char path[256]; 2985 KMP_SNPRINTF( 2986 path, sizeof(path), 2987 "/sys/devices/system/cpu/cpu%u/topology/physical_package_id", 2988 threadInfo[num_avail][osIdIndex]); 2989 __kmp_read_from_file(path, "%u", &threadInfo[num_avail][pkgIdIndex]); 2990 2991 KMP_SNPRINTF(path, sizeof(path), 2992 "/sys/devices/system/cpu/cpu%u/topology/core_id", 2993 threadInfo[num_avail][osIdIndex]); 2994 __kmp_read_from_file(path, "%u", &threadInfo[num_avail][coreIdIndex]); 2995 continue; 2996 #else 2997 } 2998 char s2[] = "physical id"; 2999 if (strncmp(buf, s2, sizeof(s2) - 1) == 0) { 3000 CHECK_LINE; 3001 char *p = strchr(buf + sizeof(s2) - 1, ':'); 3002 unsigned val; 3003 if ((p == NULL) || (KMP_SSCANF(p + 1, "%u\n", &val) != 1)) 3004 goto no_val; 3005 if (threadInfo[num_avail][pkgIdIndex] != UINT_MAX) 3006 goto dup_field; 3007 threadInfo[num_avail][pkgIdIndex] = val; 3008 continue; 3009 } 3010 char s3[] = "core id"; 3011 if (strncmp(buf, s3, sizeof(s3) - 1) == 0) { 3012 CHECK_LINE; 3013 char *p = strchr(buf + sizeof(s3) - 1, ':'); 3014 unsigned val; 3015 if ((p == NULL) || (KMP_SSCANF(p + 1, "%u\n", &val) != 1)) 3016 goto no_val; 3017 if (threadInfo[num_avail][coreIdIndex] != UINT_MAX) 3018 goto dup_field; 3019 threadInfo[num_avail][coreIdIndex] = val; 3020 continue; 3021 #endif // KMP_OS_LINUX && USE_SYSFS_INFO 3022 } 3023 char s4[] = "thread id"; 3024 if (strncmp(buf, s4, sizeof(s4) - 1) == 0) { 3025 CHECK_LINE; 3026 char *p = strchr(buf + sizeof(s4) - 1, ':'); 3027 unsigned val; 3028 if ((p == NULL) || (KMP_SSCANF(p + 1, "%u\n", &val) != 1)) 3029 goto no_val; 3030 if (threadInfo[num_avail][threadIdIndex] != UINT_MAX) 3031 goto dup_field; 3032 threadInfo[num_avail][threadIdIndex] = val; 3033 continue; 3034 } 3035 unsigned level; 3036 if (KMP_SSCANF(buf, "node_%u id", &level) == 1) { 3037 CHECK_LINE; 3038 char *p = strchr(buf + sizeof(s4) - 1, ':'); 3039 unsigned val; 3040 if ((p == NULL) || (KMP_SSCANF(p + 1, "%u\n", &val) != 1)) 3041 goto no_val; 3042 // validate the input before using level: 3043 if (level > (unsigned)__kmp_xproc) { // level is too big 3044 level = __kmp_xproc; 3045 } 3046 if (threadInfo[num_avail][nodeIdIndex + level] != UINT_MAX) 3047 goto dup_field; 3048 threadInfo[num_avail][nodeIdIndex + level] = val; 3049 continue; 3050 } 3051 3052 // We didn't recognize the leading token on the line. There are lots of 3053 // leading tokens that we don't recognize - if the line isn't empty, go on 3054 // to the next line. 3055 if ((*buf != 0) && (*buf != '\n')) { 3056 // If the line is longer than the buffer, read characters 3057 // until we find a newline. 3058 if (long_line) { 3059 int ch; 3060 while (((ch = fgetc(f)) != EOF) && (ch != '\n')) 3061 ; 3062 } 3063 continue; 3064 } 3065 3066 // A newline has signalled the end of the processor record. 3067 // Check that there aren't too many procs specified. 3068 if ((int)num_avail == __kmp_xproc) { 3069 CLEANUP_THREAD_INFO; 3070 *msg_id = kmp_i18n_str_TooManyEntries; 3071 return false; 3072 } 3073 3074 // Check for missing fields. The osId field must be there, and we 3075 // currently require that the physical id field is specified, also. 3076 if (threadInfo[num_avail][osIdIndex] == UINT_MAX) { 3077 CLEANUP_THREAD_INFO; 3078 *msg_id = kmp_i18n_str_MissingProcField; 3079 return false; 3080 } 3081 if (threadInfo[0][pkgIdIndex] == UINT_MAX) { 3082 CLEANUP_THREAD_INFO; 3083 *msg_id = kmp_i18n_str_MissingPhysicalIDField; 3084 return false; 3085 } 3086 3087 // Skip this proc if it is not included in the machine model. 3088 if (KMP_AFFINITY_CAPABLE() && 3089 !KMP_CPU_ISSET(threadInfo[num_avail][osIdIndex], 3090 __kmp_affin_fullMask)) { 3091 INIT_PROC_INFO(threadInfo[num_avail]); 3092 continue; 3093 } 3094 3095 // We have a successful parse of this proc's info. 3096 // Increment the counter, and prepare for the next proc. 3097 num_avail++; 3098 KMP_ASSERT(num_avail <= num_records); 3099 INIT_PROC_INFO(threadInfo[num_avail]); 3100 } 3101 continue; 3102 3103 no_val: 3104 CLEANUP_THREAD_INFO; 3105 *msg_id = kmp_i18n_str_MissingValCpuinfo; 3106 return false; 3107 3108 dup_field: 3109 CLEANUP_THREAD_INFO; 3110 *msg_id = kmp_i18n_str_DuplicateFieldCpuinfo; 3111 return false; 3112 } 3113 *line = 0; 3114 3115 #if KMP_MIC && REDUCE_TEAM_SIZE 3116 unsigned teamSize = 0; 3117 #endif // KMP_MIC && REDUCE_TEAM_SIZE 3118 3119 // check for num_records == __kmp_xproc ??? 3120 3121 // If it is configured to omit the package level when there is only a single 3122 // package, the logic at the end of this routine won't work if there is only a 3123 // single thread 3124 KMP_ASSERT(num_avail > 0); 3125 KMP_ASSERT(num_avail <= num_records); 3126 3127 // Sort the threadInfo table by physical Id. 3128 qsort(threadInfo, num_avail, sizeof(*threadInfo), 3129 __kmp_affinity_cmp_ProcCpuInfo_phys_id); 3130 3131 // The table is now sorted by pkgId / coreId / threadId, but we really don't 3132 // know the radix of any of the fields. pkgId's may be sparsely assigned among 3133 // the chips on a system. Although coreId's are usually assigned 3134 // [0 .. coresPerPkg-1] and threadId's are usually assigned 3135 // [0..threadsPerCore-1], we don't want to make any such assumptions. 3136 // 3137 // For that matter, we don't know what coresPerPkg and threadsPerCore (or the 3138 // total # packages) are at this point - we want to determine that now. We 3139 // only have an upper bound on the first two figures. 3140 unsigned *counts = 3141 (unsigned *)__kmp_allocate((maxIndex + 1) * sizeof(unsigned)); 3142 unsigned *maxCt = 3143 (unsigned *)__kmp_allocate((maxIndex + 1) * sizeof(unsigned)); 3144 unsigned *totals = 3145 (unsigned *)__kmp_allocate((maxIndex + 1) * sizeof(unsigned)); 3146 unsigned *lastId = 3147 (unsigned *)__kmp_allocate((maxIndex + 1) * sizeof(unsigned)); 3148 3149 bool assign_thread_ids = false; 3150 unsigned threadIdCt; 3151 unsigned index; 3152 3153 restart_radix_check: 3154 threadIdCt = 0; 3155 3156 // Initialize the counter arrays with data from threadInfo[0]. 3157 if (assign_thread_ids) { 3158 if (threadInfo[0][threadIdIndex] == UINT_MAX) { 3159 threadInfo[0][threadIdIndex] = threadIdCt++; 3160 } else if (threadIdCt <= threadInfo[0][threadIdIndex]) { 3161 threadIdCt = threadInfo[0][threadIdIndex] + 1; 3162 } 3163 } 3164 for (index = 0; index <= maxIndex; index++) { 3165 counts[index] = 1; 3166 maxCt[index] = 1; 3167 totals[index] = 1; 3168 lastId[index] = threadInfo[0][index]; 3169 ; 3170 } 3171 3172 // Run through the rest of the OS procs. 3173 for (i = 1; i < num_avail; i++) { 3174 // Find the most significant index whose id differs from the id for the 3175 // previous OS proc. 3176 for (index = maxIndex; index >= threadIdIndex; index--) { 3177 if (assign_thread_ids && (index == threadIdIndex)) { 3178 // Auto-assign the thread id field if it wasn't specified. 3179 if (threadInfo[i][threadIdIndex] == UINT_MAX) { 3180 threadInfo[i][threadIdIndex] = threadIdCt++; 3181 } 3182 // Apparently the thread id field was specified for some entries and not 3183 // others. Start the thread id counter off at the next higher thread id. 3184 else if (threadIdCt <= threadInfo[i][threadIdIndex]) { 3185 threadIdCt = threadInfo[i][threadIdIndex] + 1; 3186 } 3187 } 3188 if (threadInfo[i][index] != lastId[index]) { 3189 // Run through all indices which are less significant, and reset the 3190 // counts to 1. At all levels up to and including index, we need to 3191 // increment the totals and record the last id. 3192 unsigned index2; 3193 for (index2 = threadIdIndex; index2 < index; index2++) { 3194 totals[index2]++; 3195 if (counts[index2] > maxCt[index2]) { 3196 maxCt[index2] = counts[index2]; 3197 } 3198 counts[index2] = 1; 3199 lastId[index2] = threadInfo[i][index2]; 3200 } 3201 counts[index]++; 3202 totals[index]++; 3203 lastId[index] = threadInfo[i][index]; 3204 3205 if (assign_thread_ids && (index > threadIdIndex)) { 3206 3207 #if KMP_MIC && REDUCE_TEAM_SIZE 3208 // The default team size is the total #threads in the machine 3209 // minus 1 thread for every core that has 3 or more threads. 3210 teamSize += (threadIdCt <= 2) ? (threadIdCt) : (threadIdCt - 1); 3211 #endif // KMP_MIC && REDUCE_TEAM_SIZE 3212 3213 // Restart the thread counter, as we are on a new core. 3214 threadIdCt = 0; 3215 3216 // Auto-assign the thread id field if it wasn't specified. 3217 if (threadInfo[i][threadIdIndex] == UINT_MAX) { 3218 threadInfo[i][threadIdIndex] = threadIdCt++; 3219 } 3220 3221 // Apparently the thread id field was specified for some entries and 3222 // not others. Start the thread id counter off at the next higher 3223 // thread id. 3224 else if (threadIdCt <= threadInfo[i][threadIdIndex]) { 3225 threadIdCt = threadInfo[i][threadIdIndex] + 1; 3226 } 3227 } 3228 break; 3229 } 3230 } 3231 if (index < threadIdIndex) { 3232 // If thread ids were specified, it is an error if they are not unique. 3233 // Also, check that we waven't already restarted the loop (to be safe - 3234 // shouldn't need to). 3235 if ((threadInfo[i][threadIdIndex] != UINT_MAX) || assign_thread_ids) { 3236 __kmp_free(lastId); 3237 __kmp_free(totals); 3238 __kmp_free(maxCt); 3239 __kmp_free(counts); 3240 CLEANUP_THREAD_INFO; 3241 *msg_id = kmp_i18n_str_PhysicalIDsNotUnique; 3242 return false; 3243 } 3244 3245 // If the thread ids were not specified and we see entries entries that 3246 // are duplicates, start the loop over and assign the thread ids manually. 3247 assign_thread_ids = true; 3248 goto restart_radix_check; 3249 } 3250 } 3251 3252 #if KMP_MIC && REDUCE_TEAM_SIZE 3253 // The default team size is the total #threads in the machine 3254 // minus 1 thread for every core that has 3 or more threads. 3255 teamSize += (threadIdCt <= 2) ? (threadIdCt) : (threadIdCt - 1); 3256 #endif // KMP_MIC && REDUCE_TEAM_SIZE 3257 3258 for (index = threadIdIndex; index <= maxIndex; index++) { 3259 if (counts[index] > maxCt[index]) { 3260 maxCt[index] = counts[index]; 3261 } 3262 } 3263 3264 __kmp_nThreadsPerCore = maxCt[threadIdIndex]; 3265 nCoresPerPkg = maxCt[coreIdIndex]; 3266 nPackages = totals[pkgIdIndex]; 3267 3268 // When affinity is off, this routine will still be called to set 3269 // __kmp_ncores, as well as __kmp_nThreadsPerCore, nCoresPerPkg, & nPackages. 3270 // Make sure all these vars are set correctly, and return now if affinity is 3271 // not enabled. 3272 __kmp_ncores = totals[coreIdIndex]; 3273 if (!KMP_AFFINITY_CAPABLE()) { 3274 KMP_ASSERT(__kmp_affinity.type == affinity_none); 3275 return true; 3276 } 3277 3278 #if KMP_MIC && REDUCE_TEAM_SIZE 3279 // Set the default team size. 3280 if ((__kmp_dflt_team_nth == 0) && (teamSize > 0)) { 3281 __kmp_dflt_team_nth = teamSize; 3282 KA_TRACE(20, ("__kmp_affinity_create_cpuinfo_map: setting " 3283 "__kmp_dflt_team_nth = %d\n", 3284 __kmp_dflt_team_nth)); 3285 } 3286 #endif // KMP_MIC && REDUCE_TEAM_SIZE 3287 3288 KMP_DEBUG_ASSERT(num_avail == (unsigned)__kmp_avail_proc); 3289 3290 // Count the number of levels which have more nodes at that level than at the 3291 // parent's level (with there being an implicit root node of the top level). 3292 // This is equivalent to saying that there is at least one node at this level 3293 // which has a sibling. These levels are in the map, and the package level is 3294 // always in the map. 3295 bool *inMap = (bool *)__kmp_allocate((maxIndex + 1) * sizeof(bool)); 3296 for (index = threadIdIndex; index < maxIndex; index++) { 3297 KMP_ASSERT(totals[index] >= totals[index + 1]); 3298 inMap[index] = (totals[index] > totals[index + 1]); 3299 } 3300 inMap[maxIndex] = (totals[maxIndex] > 1); 3301 inMap[pkgIdIndex] = true; 3302 inMap[coreIdIndex] = true; 3303 inMap[threadIdIndex] = true; 3304 3305 int depth = 0; 3306 int idx = 0; 3307 kmp_hw_t types[KMP_HW_LAST]; 3308 int pkgLevel = -1; 3309 int coreLevel = -1; 3310 int threadLevel = -1; 3311 for (index = threadIdIndex; index <= maxIndex; index++) { 3312 if (inMap[index]) { 3313 depth++; 3314 } 3315 } 3316 if (inMap[pkgIdIndex]) { 3317 pkgLevel = idx; 3318 types[idx++] = KMP_HW_SOCKET; 3319 } 3320 if (inMap[coreIdIndex]) { 3321 coreLevel = idx; 3322 types[idx++] = KMP_HW_CORE; 3323 } 3324 if (inMap[threadIdIndex]) { 3325 threadLevel = idx; 3326 types[idx++] = KMP_HW_THREAD; 3327 } 3328 KMP_ASSERT(depth > 0); 3329 3330 // Construct the data structure that is to be returned. 3331 __kmp_topology = kmp_topology_t::allocate(num_avail, depth, types); 3332 3333 for (i = 0; i < num_avail; ++i) { 3334 unsigned os = threadInfo[i][osIdIndex]; 3335 int src_index; 3336 kmp_hw_thread_t &hw_thread = __kmp_topology->at(i); 3337 hw_thread.clear(); 3338 hw_thread.os_id = os; 3339 3340 idx = 0; 3341 for (src_index = maxIndex; src_index >= threadIdIndex; src_index--) { 3342 if (!inMap[src_index]) { 3343 continue; 3344 } 3345 if (src_index == pkgIdIndex) { 3346 hw_thread.ids[pkgLevel] = threadInfo[i][src_index]; 3347 } else if (src_index == coreIdIndex) { 3348 hw_thread.ids[coreLevel] = threadInfo[i][src_index]; 3349 } else if (src_index == threadIdIndex) { 3350 hw_thread.ids[threadLevel] = threadInfo[i][src_index]; 3351 } 3352 } 3353 } 3354 3355 __kmp_free(inMap); 3356 __kmp_free(lastId); 3357 __kmp_free(totals); 3358 __kmp_free(maxCt); 3359 __kmp_free(counts); 3360 CLEANUP_THREAD_INFO; 3361 __kmp_topology->sort_ids(); 3362 if (!__kmp_topology->check_ids()) { 3363 kmp_topology_t::deallocate(__kmp_topology); 3364 __kmp_topology = nullptr; 3365 *msg_id = kmp_i18n_str_PhysicalIDsNotUnique; 3366 return false; 3367 } 3368 return true; 3369 } 3370 3371 // Create and return a table of affinity masks, indexed by OS thread ID. 3372 // This routine handles OR'ing together all the affinity masks of threads 3373 // that are sufficiently close, if granularity > fine. 3374 static void __kmp_create_os_id_masks(unsigned *numUnique, 3375 kmp_affinity_t &affinity) { 3376 // First form a table of affinity masks in order of OS thread id. 3377 int maxOsId; 3378 int i; 3379 int numAddrs = __kmp_topology->get_num_hw_threads(); 3380 int depth = __kmp_topology->get_depth(); 3381 const char *env_var = affinity.env_var; 3382 KMP_ASSERT(numAddrs); 3383 KMP_ASSERT(depth); 3384 3385 maxOsId = 0; 3386 for (i = numAddrs - 1;; --i) { 3387 int osId = __kmp_topology->at(i).os_id; 3388 if (osId > maxOsId) { 3389 maxOsId = osId; 3390 } 3391 if (i == 0) 3392 break; 3393 } 3394 affinity.num_os_id_masks = maxOsId + 1; 3395 KMP_CPU_ALLOC_ARRAY(affinity.os_id_masks, affinity.num_os_id_masks); 3396 KMP_ASSERT(affinity.gran_levels >= 0); 3397 if (affinity.flags.verbose && (affinity.gran_levels > 0)) { 3398 KMP_INFORM(ThreadsMigrate, env_var, affinity.gran_levels); 3399 } 3400 if (affinity.gran_levels >= (int)depth) { 3401 KMP_AFF_WARNING(affinity, AffThreadsMayMigrate); 3402 } 3403 3404 // Run through the table, forming the masks for all threads on each core. 3405 // Threads on the same core will have identical kmp_hw_thread_t objects, not 3406 // considering the last level, which must be the thread id. All threads on a 3407 // core will appear consecutively. 3408 int unique = 0; 3409 int j = 0; // index of 1st thread on core 3410 int leader = 0; 3411 kmp_affin_mask_t *sum; 3412 KMP_CPU_ALLOC_ON_STACK(sum); 3413 KMP_CPU_ZERO(sum); 3414 KMP_CPU_SET(__kmp_topology->at(0).os_id, sum); 3415 for (i = 1; i < numAddrs; i++) { 3416 // If this thread is sufficiently close to the leader (within the 3417 // granularity setting), then set the bit for this os thread in the 3418 // affinity mask for this group, and go on to the next thread. 3419 if (__kmp_topology->is_close(leader, i, affinity.gran_levels)) { 3420 KMP_CPU_SET(__kmp_topology->at(i).os_id, sum); 3421 continue; 3422 } 3423 3424 // For every thread in this group, copy the mask to the thread's entry in 3425 // the OS Id mask table. Mark the first address as a leader. 3426 for (; j < i; j++) { 3427 int osId = __kmp_topology->at(j).os_id; 3428 KMP_DEBUG_ASSERT(osId <= maxOsId); 3429 kmp_affin_mask_t *mask = KMP_CPU_INDEX(affinity.os_id_masks, osId); 3430 KMP_CPU_COPY(mask, sum); 3431 __kmp_topology->at(j).leader = (j == leader); 3432 } 3433 unique++; 3434 3435 // Start a new mask. 3436 leader = i; 3437 KMP_CPU_ZERO(sum); 3438 KMP_CPU_SET(__kmp_topology->at(i).os_id, sum); 3439 } 3440 3441 // For every thread in last group, copy the mask to the thread's 3442 // entry in the OS Id mask table. 3443 for (; j < i; j++) { 3444 int osId = __kmp_topology->at(j).os_id; 3445 KMP_DEBUG_ASSERT(osId <= maxOsId); 3446 kmp_affin_mask_t *mask = KMP_CPU_INDEX(affinity.os_id_masks, osId); 3447 KMP_CPU_COPY(mask, sum); 3448 __kmp_topology->at(j).leader = (j == leader); 3449 } 3450 unique++; 3451 KMP_CPU_FREE_FROM_STACK(sum); 3452 3453 *numUnique = unique; 3454 } 3455 3456 // Stuff for the affinity proclist parsers. It's easier to declare these vars 3457 // as file-static than to try and pass them through the calling sequence of 3458 // the recursive-descent OMP_PLACES parser. 3459 static kmp_affin_mask_t *newMasks; 3460 static int numNewMasks; 3461 static int nextNewMask; 3462 3463 #define ADD_MASK(_mask) \ 3464 { \ 3465 if (nextNewMask >= numNewMasks) { \ 3466 int i; \ 3467 numNewMasks *= 2; \ 3468 kmp_affin_mask_t *temp; \ 3469 KMP_CPU_INTERNAL_ALLOC_ARRAY(temp, numNewMasks); \ 3470 for (i = 0; i < numNewMasks / 2; i++) { \ 3471 kmp_affin_mask_t *src = KMP_CPU_INDEX(newMasks, i); \ 3472 kmp_affin_mask_t *dest = KMP_CPU_INDEX(temp, i); \ 3473 KMP_CPU_COPY(dest, src); \ 3474 } \ 3475 KMP_CPU_INTERNAL_FREE_ARRAY(newMasks, numNewMasks / 2); \ 3476 newMasks = temp; \ 3477 } \ 3478 KMP_CPU_COPY(KMP_CPU_INDEX(newMasks, nextNewMask), (_mask)); \ 3479 nextNewMask++; \ 3480 } 3481 3482 #define ADD_MASK_OSID(_osId, _osId2Mask, _maxOsId) \ 3483 { \ 3484 if (((_osId) > _maxOsId) || \ 3485 (!KMP_CPU_ISSET((_osId), KMP_CPU_INDEX((_osId2Mask), (_osId))))) { \ 3486 KMP_AFF_WARNING(affinity, AffIgnoreInvalidProcID, _osId); \ 3487 } else { \ 3488 ADD_MASK(KMP_CPU_INDEX(_osId2Mask, (_osId))); \ 3489 } \ 3490 } 3491 3492 // Re-parse the proclist (for the explicit affinity type), and form the list 3493 // of affinity newMasks indexed by gtid. 3494 static void __kmp_affinity_process_proclist(kmp_affinity_t &affinity) { 3495 int i; 3496 kmp_affin_mask_t **out_masks = &affinity.masks; 3497 unsigned *out_numMasks = &affinity.num_masks; 3498 const char *proclist = affinity.proclist; 3499 kmp_affin_mask_t *osId2Mask = affinity.os_id_masks; 3500 int maxOsId = affinity.num_os_id_masks - 1; 3501 const char *scan = proclist; 3502 const char *next = proclist; 3503 3504 // We use malloc() for the temporary mask vector, so that we can use 3505 // realloc() to extend it. 3506 numNewMasks = 2; 3507 KMP_CPU_INTERNAL_ALLOC_ARRAY(newMasks, numNewMasks); 3508 nextNewMask = 0; 3509 kmp_affin_mask_t *sumMask; 3510 KMP_CPU_ALLOC(sumMask); 3511 int setSize = 0; 3512 3513 for (;;) { 3514 int start, end, stride; 3515 3516 SKIP_WS(scan); 3517 next = scan; 3518 if (*next == '\0') { 3519 break; 3520 } 3521 3522 if (*next == '{') { 3523 int num; 3524 setSize = 0; 3525 next++; // skip '{' 3526 SKIP_WS(next); 3527 scan = next; 3528 3529 // Read the first integer in the set. 3530 KMP_ASSERT2((*next >= '0') && (*next <= '9'), "bad proclist"); 3531 SKIP_DIGITS(next); 3532 num = __kmp_str_to_int(scan, *next); 3533 KMP_ASSERT2(num >= 0, "bad explicit proc list"); 3534 3535 // Copy the mask for that osId to the sum (union) mask. 3536 if ((num > maxOsId) || 3537 (!KMP_CPU_ISSET(num, KMP_CPU_INDEX(osId2Mask, num)))) { 3538 KMP_AFF_WARNING(affinity, AffIgnoreInvalidProcID, num); 3539 KMP_CPU_ZERO(sumMask); 3540 } else { 3541 KMP_CPU_COPY(sumMask, KMP_CPU_INDEX(osId2Mask, num)); 3542 setSize = 1; 3543 } 3544 3545 for (;;) { 3546 // Check for end of set. 3547 SKIP_WS(next); 3548 if (*next == '}') { 3549 next++; // skip '}' 3550 break; 3551 } 3552 3553 // Skip optional comma. 3554 if (*next == ',') { 3555 next++; 3556 } 3557 SKIP_WS(next); 3558 3559 // Read the next integer in the set. 3560 scan = next; 3561 KMP_ASSERT2((*next >= '0') && (*next <= '9'), "bad explicit proc list"); 3562 3563 SKIP_DIGITS(next); 3564 num = __kmp_str_to_int(scan, *next); 3565 KMP_ASSERT2(num >= 0, "bad explicit proc list"); 3566 3567 // Add the mask for that osId to the sum mask. 3568 if ((num > maxOsId) || 3569 (!KMP_CPU_ISSET(num, KMP_CPU_INDEX(osId2Mask, num)))) { 3570 KMP_AFF_WARNING(affinity, AffIgnoreInvalidProcID, num); 3571 } else { 3572 KMP_CPU_UNION(sumMask, KMP_CPU_INDEX(osId2Mask, num)); 3573 setSize++; 3574 } 3575 } 3576 if (setSize > 0) { 3577 ADD_MASK(sumMask); 3578 } 3579 3580 SKIP_WS(next); 3581 if (*next == ',') { 3582 next++; 3583 } 3584 scan = next; 3585 continue; 3586 } 3587 3588 // Read the first integer. 3589 KMP_ASSERT2((*next >= '0') && (*next <= '9'), "bad explicit proc list"); 3590 SKIP_DIGITS(next); 3591 start = __kmp_str_to_int(scan, *next); 3592 KMP_ASSERT2(start >= 0, "bad explicit proc list"); 3593 SKIP_WS(next); 3594 3595 // If this isn't a range, then add a mask to the list and go on. 3596 if (*next != '-') { 3597 ADD_MASK_OSID(start, osId2Mask, maxOsId); 3598 3599 // Skip optional comma. 3600 if (*next == ',') { 3601 next++; 3602 } 3603 scan = next; 3604 continue; 3605 } 3606 3607 // This is a range. Skip over the '-' and read in the 2nd int. 3608 next++; // skip '-' 3609 SKIP_WS(next); 3610 scan = next; 3611 KMP_ASSERT2((*next >= '0') && (*next <= '9'), "bad explicit proc list"); 3612 SKIP_DIGITS(next); 3613 end = __kmp_str_to_int(scan, *next); 3614 KMP_ASSERT2(end >= 0, "bad explicit proc list"); 3615 3616 // Check for a stride parameter 3617 stride = 1; 3618 SKIP_WS(next); 3619 if (*next == ':') { 3620 // A stride is specified. Skip over the ':" and read the 3rd int. 3621 int sign = +1; 3622 next++; // skip ':' 3623 SKIP_WS(next); 3624 scan = next; 3625 if (*next == '-') { 3626 sign = -1; 3627 next++; 3628 SKIP_WS(next); 3629 scan = next; 3630 } 3631 KMP_ASSERT2((*next >= '0') && (*next <= '9'), "bad explicit proc list"); 3632 SKIP_DIGITS(next); 3633 stride = __kmp_str_to_int(scan, *next); 3634 KMP_ASSERT2(stride >= 0, "bad explicit proc list"); 3635 stride *= sign; 3636 } 3637 3638 // Do some range checks. 3639 KMP_ASSERT2(stride != 0, "bad explicit proc list"); 3640 if (stride > 0) { 3641 KMP_ASSERT2(start <= end, "bad explicit proc list"); 3642 } else { 3643 KMP_ASSERT2(start >= end, "bad explicit proc list"); 3644 } 3645 KMP_ASSERT2((end - start) / stride <= 65536, "bad explicit proc list"); 3646 3647 // Add the mask for each OS proc # to the list. 3648 if (stride > 0) { 3649 do { 3650 ADD_MASK_OSID(start, osId2Mask, maxOsId); 3651 start += stride; 3652 } while (start <= end); 3653 } else { 3654 do { 3655 ADD_MASK_OSID(start, osId2Mask, maxOsId); 3656 start += stride; 3657 } while (start >= end); 3658 } 3659 3660 // Skip optional comma. 3661 SKIP_WS(next); 3662 if (*next == ',') { 3663 next++; 3664 } 3665 scan = next; 3666 } 3667 3668 *out_numMasks = nextNewMask; 3669 if (nextNewMask == 0) { 3670 *out_masks = NULL; 3671 KMP_CPU_INTERNAL_FREE_ARRAY(newMasks, numNewMasks); 3672 return; 3673 } 3674 KMP_CPU_ALLOC_ARRAY((*out_masks), nextNewMask); 3675 for (i = 0; i < nextNewMask; i++) { 3676 kmp_affin_mask_t *src = KMP_CPU_INDEX(newMasks, i); 3677 kmp_affin_mask_t *dest = KMP_CPU_INDEX((*out_masks), i); 3678 KMP_CPU_COPY(dest, src); 3679 } 3680 KMP_CPU_INTERNAL_FREE_ARRAY(newMasks, numNewMasks); 3681 KMP_CPU_FREE(sumMask); 3682 } 3683 3684 /*----------------------------------------------------------------------------- 3685 Re-parse the OMP_PLACES proc id list, forming the newMasks for the different 3686 places. Again, Here is the grammar: 3687 3688 place_list := place 3689 place_list := place , place_list 3690 place := num 3691 place := place : num 3692 place := place : num : signed 3693 place := { subplacelist } 3694 place := ! place // (lowest priority) 3695 subplace_list := subplace 3696 subplace_list := subplace , subplace_list 3697 subplace := num 3698 subplace := num : num 3699 subplace := num : num : signed 3700 signed := num 3701 signed := + signed 3702 signed := - signed 3703 -----------------------------------------------------------------------------*/ 3704 static void __kmp_process_subplace_list(const char **scan, 3705 kmp_affinity_t &affinity, int maxOsId, 3706 kmp_affin_mask_t *tempMask, 3707 int *setSize) { 3708 const char *next; 3709 kmp_affin_mask_t *osId2Mask = affinity.os_id_masks; 3710 3711 for (;;) { 3712 int start, count, stride, i; 3713 3714 // Read in the starting proc id 3715 SKIP_WS(*scan); 3716 KMP_ASSERT2((**scan >= '0') && (**scan <= '9'), "bad explicit places list"); 3717 next = *scan; 3718 SKIP_DIGITS(next); 3719 start = __kmp_str_to_int(*scan, *next); 3720 KMP_ASSERT(start >= 0); 3721 *scan = next; 3722 3723 // valid follow sets are ',' ':' and '}' 3724 SKIP_WS(*scan); 3725 if (**scan == '}' || **scan == ',') { 3726 if ((start > maxOsId) || 3727 (!KMP_CPU_ISSET(start, KMP_CPU_INDEX(osId2Mask, start)))) { 3728 KMP_AFF_WARNING(affinity, AffIgnoreInvalidProcID, start); 3729 } else { 3730 KMP_CPU_UNION(tempMask, KMP_CPU_INDEX(osId2Mask, start)); 3731 (*setSize)++; 3732 } 3733 if (**scan == '}') { 3734 break; 3735 } 3736 (*scan)++; // skip ',' 3737 continue; 3738 } 3739 KMP_ASSERT2(**scan == ':', "bad explicit places list"); 3740 (*scan)++; // skip ':' 3741 3742 // Read count parameter 3743 SKIP_WS(*scan); 3744 KMP_ASSERT2((**scan >= '0') && (**scan <= '9'), "bad explicit places list"); 3745 next = *scan; 3746 SKIP_DIGITS(next); 3747 count = __kmp_str_to_int(*scan, *next); 3748 KMP_ASSERT(count >= 0); 3749 *scan = next; 3750 3751 // valid follow sets are ',' ':' and '}' 3752 SKIP_WS(*scan); 3753 if (**scan == '}' || **scan == ',') { 3754 for (i = 0; i < count; i++) { 3755 if ((start > maxOsId) || 3756 (!KMP_CPU_ISSET(start, KMP_CPU_INDEX(osId2Mask, start)))) { 3757 KMP_AFF_WARNING(affinity, AffIgnoreInvalidProcID, start); 3758 break; // don't proliferate warnings for large count 3759 } else { 3760 KMP_CPU_UNION(tempMask, KMP_CPU_INDEX(osId2Mask, start)); 3761 start++; 3762 (*setSize)++; 3763 } 3764 } 3765 if (**scan == '}') { 3766 break; 3767 } 3768 (*scan)++; // skip ',' 3769 continue; 3770 } 3771 KMP_ASSERT2(**scan == ':', "bad explicit places list"); 3772 (*scan)++; // skip ':' 3773 3774 // Read stride parameter 3775 int sign = +1; 3776 for (;;) { 3777 SKIP_WS(*scan); 3778 if (**scan == '+') { 3779 (*scan)++; // skip '+' 3780 continue; 3781 } 3782 if (**scan == '-') { 3783 sign *= -1; 3784 (*scan)++; // skip '-' 3785 continue; 3786 } 3787 break; 3788 } 3789 SKIP_WS(*scan); 3790 KMP_ASSERT2((**scan >= '0') && (**scan <= '9'), "bad explicit places list"); 3791 next = *scan; 3792 SKIP_DIGITS(next); 3793 stride = __kmp_str_to_int(*scan, *next); 3794 KMP_ASSERT(stride >= 0); 3795 *scan = next; 3796 stride *= sign; 3797 3798 // valid follow sets are ',' and '}' 3799 SKIP_WS(*scan); 3800 if (**scan == '}' || **scan == ',') { 3801 for (i = 0; i < count; i++) { 3802 if ((start > maxOsId) || 3803 (!KMP_CPU_ISSET(start, KMP_CPU_INDEX(osId2Mask, start)))) { 3804 KMP_AFF_WARNING(affinity, AffIgnoreInvalidProcID, start); 3805 break; // don't proliferate warnings for large count 3806 } else { 3807 KMP_CPU_UNION(tempMask, KMP_CPU_INDEX(osId2Mask, start)); 3808 start += stride; 3809 (*setSize)++; 3810 } 3811 } 3812 if (**scan == '}') { 3813 break; 3814 } 3815 (*scan)++; // skip ',' 3816 continue; 3817 } 3818 3819 KMP_ASSERT2(0, "bad explicit places list"); 3820 } 3821 } 3822 3823 static void __kmp_process_place(const char **scan, kmp_affinity_t &affinity, 3824 int maxOsId, kmp_affin_mask_t *tempMask, 3825 int *setSize) { 3826 const char *next; 3827 kmp_affin_mask_t *osId2Mask = affinity.os_id_masks; 3828 3829 // valid follow sets are '{' '!' and num 3830 SKIP_WS(*scan); 3831 if (**scan == '{') { 3832 (*scan)++; // skip '{' 3833 __kmp_process_subplace_list(scan, affinity, maxOsId, tempMask, setSize); 3834 KMP_ASSERT2(**scan == '}', "bad explicit places list"); 3835 (*scan)++; // skip '}' 3836 } else if (**scan == '!') { 3837 (*scan)++; // skip '!' 3838 __kmp_process_place(scan, affinity, maxOsId, tempMask, setSize); 3839 KMP_CPU_COMPLEMENT(maxOsId, tempMask); 3840 } else if ((**scan >= '0') && (**scan <= '9')) { 3841 next = *scan; 3842 SKIP_DIGITS(next); 3843 int num = __kmp_str_to_int(*scan, *next); 3844 KMP_ASSERT(num >= 0); 3845 if ((num > maxOsId) || 3846 (!KMP_CPU_ISSET(num, KMP_CPU_INDEX(osId2Mask, num)))) { 3847 KMP_AFF_WARNING(affinity, AffIgnoreInvalidProcID, num); 3848 } else { 3849 KMP_CPU_UNION(tempMask, KMP_CPU_INDEX(osId2Mask, num)); 3850 (*setSize)++; 3851 } 3852 *scan = next; // skip num 3853 } else { 3854 KMP_ASSERT2(0, "bad explicit places list"); 3855 } 3856 } 3857 3858 // static void 3859 void __kmp_affinity_process_placelist(kmp_affinity_t &affinity) { 3860 int i, j, count, stride, sign; 3861 kmp_affin_mask_t **out_masks = &affinity.masks; 3862 unsigned *out_numMasks = &affinity.num_masks; 3863 const char *placelist = affinity.proclist; 3864 kmp_affin_mask_t *osId2Mask = affinity.os_id_masks; 3865 int maxOsId = affinity.num_os_id_masks - 1; 3866 const char *scan = placelist; 3867 const char *next = placelist; 3868 3869 numNewMasks = 2; 3870 KMP_CPU_INTERNAL_ALLOC_ARRAY(newMasks, numNewMasks); 3871 nextNewMask = 0; 3872 3873 // tempMask is modified based on the previous or initial 3874 // place to form the current place 3875 // previousMask contains the previous place 3876 kmp_affin_mask_t *tempMask; 3877 kmp_affin_mask_t *previousMask; 3878 KMP_CPU_ALLOC(tempMask); 3879 KMP_CPU_ZERO(tempMask); 3880 KMP_CPU_ALLOC(previousMask); 3881 KMP_CPU_ZERO(previousMask); 3882 int setSize = 0; 3883 3884 for (;;) { 3885 __kmp_process_place(&scan, affinity, maxOsId, tempMask, &setSize); 3886 3887 // valid follow sets are ',' ':' and EOL 3888 SKIP_WS(scan); 3889 if (*scan == '\0' || *scan == ',') { 3890 if (setSize > 0) { 3891 ADD_MASK(tempMask); 3892 } 3893 KMP_CPU_ZERO(tempMask); 3894 setSize = 0; 3895 if (*scan == '\0') { 3896 break; 3897 } 3898 scan++; // skip ',' 3899 continue; 3900 } 3901 3902 KMP_ASSERT2(*scan == ':', "bad explicit places list"); 3903 scan++; // skip ':' 3904 3905 // Read count parameter 3906 SKIP_WS(scan); 3907 KMP_ASSERT2((*scan >= '0') && (*scan <= '9'), "bad explicit places list"); 3908 next = scan; 3909 SKIP_DIGITS(next); 3910 count = __kmp_str_to_int(scan, *next); 3911 KMP_ASSERT(count >= 0); 3912 scan = next; 3913 3914 // valid follow sets are ',' ':' and EOL 3915 SKIP_WS(scan); 3916 if (*scan == '\0' || *scan == ',') { 3917 stride = +1; 3918 } else { 3919 KMP_ASSERT2(*scan == ':', "bad explicit places list"); 3920 scan++; // skip ':' 3921 3922 // Read stride parameter 3923 sign = +1; 3924 for (;;) { 3925 SKIP_WS(scan); 3926 if (*scan == '+') { 3927 scan++; // skip '+' 3928 continue; 3929 } 3930 if (*scan == '-') { 3931 sign *= -1; 3932 scan++; // skip '-' 3933 continue; 3934 } 3935 break; 3936 } 3937 SKIP_WS(scan); 3938 KMP_ASSERT2((*scan >= '0') && (*scan <= '9'), "bad explicit places list"); 3939 next = scan; 3940 SKIP_DIGITS(next); 3941 stride = __kmp_str_to_int(scan, *next); 3942 KMP_DEBUG_ASSERT(stride >= 0); 3943 scan = next; 3944 stride *= sign; 3945 } 3946 3947 // Add places determined by initial_place : count : stride 3948 for (i = 0; i < count; i++) { 3949 if (setSize == 0) { 3950 break; 3951 } 3952 // Add the current place, then build the next place (tempMask) from that 3953 KMP_CPU_COPY(previousMask, tempMask); 3954 ADD_MASK(previousMask); 3955 KMP_CPU_ZERO(tempMask); 3956 setSize = 0; 3957 KMP_CPU_SET_ITERATE(j, previousMask) { 3958 if (!KMP_CPU_ISSET(j, previousMask)) { 3959 continue; 3960 } 3961 if ((j + stride > maxOsId) || (j + stride < 0) || 3962 (!KMP_CPU_ISSET(j, __kmp_affin_fullMask)) || 3963 (!KMP_CPU_ISSET(j + stride, 3964 KMP_CPU_INDEX(osId2Mask, j + stride)))) { 3965 if (i < count - 1) { 3966 KMP_AFF_WARNING(affinity, AffIgnoreInvalidProcID, j + stride); 3967 } 3968 continue; 3969 } 3970 KMP_CPU_SET(j + stride, tempMask); 3971 setSize++; 3972 } 3973 } 3974 KMP_CPU_ZERO(tempMask); 3975 setSize = 0; 3976 3977 // valid follow sets are ',' and EOL 3978 SKIP_WS(scan); 3979 if (*scan == '\0') { 3980 break; 3981 } 3982 if (*scan == ',') { 3983 scan++; // skip ',' 3984 continue; 3985 } 3986 3987 KMP_ASSERT2(0, "bad explicit places list"); 3988 } 3989 3990 *out_numMasks = nextNewMask; 3991 if (nextNewMask == 0) { 3992 *out_masks = NULL; 3993 KMP_CPU_INTERNAL_FREE_ARRAY(newMasks, numNewMasks); 3994 return; 3995 } 3996 KMP_CPU_ALLOC_ARRAY((*out_masks), nextNewMask); 3997 KMP_CPU_FREE(tempMask); 3998 KMP_CPU_FREE(previousMask); 3999 for (i = 0; i < nextNewMask; i++) { 4000 kmp_affin_mask_t *src = KMP_CPU_INDEX(newMasks, i); 4001 kmp_affin_mask_t *dest = KMP_CPU_INDEX((*out_masks), i); 4002 KMP_CPU_COPY(dest, src); 4003 } 4004 KMP_CPU_INTERNAL_FREE_ARRAY(newMasks, numNewMasks); 4005 } 4006 4007 #undef ADD_MASK 4008 #undef ADD_MASK_OSID 4009 4010 // This function figures out the deepest level at which there is at least one 4011 // cluster/core with more than one processing unit bound to it. 4012 static int __kmp_affinity_find_core_level(int nprocs, int bottom_level) { 4013 int core_level = 0; 4014 4015 for (int i = 0; i < nprocs; i++) { 4016 const kmp_hw_thread_t &hw_thread = __kmp_topology->at(i); 4017 for (int j = bottom_level; j > 0; j--) { 4018 if (hw_thread.ids[j] > 0) { 4019 if (core_level < (j - 1)) { 4020 core_level = j - 1; 4021 } 4022 } 4023 } 4024 } 4025 return core_level; 4026 } 4027 4028 // This function counts number of clusters/cores at given level. 4029 static int __kmp_affinity_compute_ncores(int nprocs, int bottom_level, 4030 int core_level) { 4031 return __kmp_topology->get_count(core_level); 4032 } 4033 // This function finds to which cluster/core given processing unit is bound. 4034 static int __kmp_affinity_find_core(int proc, int bottom_level, 4035 int core_level) { 4036 int core = 0; 4037 KMP_DEBUG_ASSERT(proc >= 0 && proc < __kmp_topology->get_num_hw_threads()); 4038 for (int i = 0; i <= proc; ++i) { 4039 if (i + 1 <= proc) { 4040 for (int j = 0; j <= core_level; ++j) { 4041 if (__kmp_topology->at(i + 1).sub_ids[j] != 4042 __kmp_topology->at(i).sub_ids[j]) { 4043 core++; 4044 break; 4045 } 4046 } 4047 } 4048 } 4049 return core; 4050 } 4051 4052 // This function finds maximal number of processing units bound to a 4053 // cluster/core at given level. 4054 static int __kmp_affinity_max_proc_per_core(int nprocs, int bottom_level, 4055 int core_level) { 4056 if (core_level >= bottom_level) 4057 return 1; 4058 int thread_level = __kmp_topology->get_level(KMP_HW_THREAD); 4059 return __kmp_topology->calculate_ratio(thread_level, core_level); 4060 } 4061 4062 static int *procarr = NULL; 4063 static int __kmp_aff_depth = 0; 4064 static int *__kmp_osid_to_hwthread_map = NULL; 4065 4066 static void __kmp_affinity_get_mask_topology_info(const kmp_affin_mask_t *mask, 4067 kmp_affinity_ids_t &ids, 4068 kmp_affinity_attrs_t &attrs) { 4069 if (!KMP_AFFINITY_CAPABLE()) 4070 return; 4071 4072 // Initiailze ids and attrs thread data 4073 for (int i = 0; i < KMP_HW_LAST; ++i) 4074 ids[i] = kmp_hw_thread_t::UNKNOWN_ID; 4075 attrs = KMP_AFFINITY_ATTRS_UNKNOWN; 4076 4077 // Iterate through each os id within the mask and determine 4078 // the topology id and attribute information 4079 int cpu; 4080 int depth = __kmp_topology->get_depth(); 4081 KMP_CPU_SET_ITERATE(cpu, mask) { 4082 int osid_idx = __kmp_osid_to_hwthread_map[cpu]; 4083 const kmp_hw_thread_t &hw_thread = __kmp_topology->at(osid_idx); 4084 for (int level = 0; level < depth; ++level) { 4085 kmp_hw_t type = __kmp_topology->get_type(level); 4086 int id = hw_thread.sub_ids[level]; 4087 if (ids[type] == kmp_hw_thread_t::UNKNOWN_ID || ids[type] == id) { 4088 ids[type] = id; 4089 } else { 4090 // This mask spans across multiple topology units, set it as such 4091 // and mark every level below as such as well. 4092 ids[type] = kmp_hw_thread_t::MULTIPLE_ID; 4093 for (; level < depth; ++level) { 4094 kmp_hw_t type = __kmp_topology->get_type(level); 4095 ids[type] = kmp_hw_thread_t::MULTIPLE_ID; 4096 } 4097 } 4098 } 4099 if (!attrs.valid) { 4100 attrs.core_type = hw_thread.attrs.get_core_type(); 4101 attrs.core_eff = hw_thread.attrs.get_core_eff(); 4102 attrs.valid = 1; 4103 } else { 4104 // This mask spans across multiple attributes, set it as such 4105 if (attrs.core_type != hw_thread.attrs.get_core_type()) 4106 attrs.core_type = KMP_HW_CORE_TYPE_UNKNOWN; 4107 if (attrs.core_eff != hw_thread.attrs.get_core_eff()) 4108 attrs.core_eff = kmp_hw_attr_t::UNKNOWN_CORE_EFF; 4109 } 4110 } 4111 } 4112 4113 static void __kmp_affinity_get_thread_topology_info(kmp_info_t *th) { 4114 if (!KMP_AFFINITY_CAPABLE()) 4115 return; 4116 const kmp_affin_mask_t *mask = th->th.th_affin_mask; 4117 kmp_affinity_ids_t &ids = th->th.th_topology_ids; 4118 kmp_affinity_attrs_t &attrs = th->th.th_topology_attrs; 4119 __kmp_affinity_get_mask_topology_info(mask, ids, attrs); 4120 } 4121 4122 // Assign the topology information to each place in the place list 4123 // A thread can then grab not only its affinity mask, but the topology 4124 // information associated with that mask. e.g., Which socket is a thread on 4125 static void __kmp_affinity_get_topology_info(kmp_affinity_t &affinity) { 4126 if (!KMP_AFFINITY_CAPABLE()) 4127 return; 4128 if (affinity.type != affinity_none) { 4129 KMP_ASSERT(affinity.num_os_id_masks); 4130 KMP_ASSERT(affinity.os_id_masks); 4131 } 4132 KMP_ASSERT(affinity.num_masks); 4133 KMP_ASSERT(affinity.masks); 4134 KMP_ASSERT(__kmp_affin_fullMask); 4135 4136 int max_cpu = __kmp_affin_fullMask->get_max_cpu(); 4137 int num_hw_threads = __kmp_topology->get_num_hw_threads(); 4138 4139 // Allocate thread topology information 4140 if (!affinity.ids) { 4141 affinity.ids = (kmp_affinity_ids_t *)__kmp_allocate( 4142 sizeof(kmp_affinity_ids_t) * affinity.num_masks); 4143 } 4144 if (!affinity.attrs) { 4145 affinity.attrs = (kmp_affinity_attrs_t *)__kmp_allocate( 4146 sizeof(kmp_affinity_attrs_t) * affinity.num_masks); 4147 } 4148 if (!__kmp_osid_to_hwthread_map) { 4149 // Want the +1 because max_cpu should be valid index into map 4150 __kmp_osid_to_hwthread_map = 4151 (int *)__kmp_allocate(sizeof(int) * (max_cpu + 1)); 4152 } 4153 4154 // Create the OS proc to hardware thread map 4155 for (int hw_thread = 0; hw_thread < num_hw_threads; ++hw_thread) 4156 __kmp_osid_to_hwthread_map[__kmp_topology->at(hw_thread).os_id] = hw_thread; 4157 4158 for (unsigned i = 0; i < affinity.num_masks; ++i) { 4159 kmp_affinity_ids_t &ids = affinity.ids[i]; 4160 kmp_affinity_attrs_t &attrs = affinity.attrs[i]; 4161 kmp_affin_mask_t *mask = KMP_CPU_INDEX(affinity.masks, i); 4162 __kmp_affinity_get_mask_topology_info(mask, ids, attrs); 4163 } 4164 } 4165 4166 // Create a one element mask array (set of places) which only contains the 4167 // initial process's affinity mask 4168 static void __kmp_create_affinity_none_places(kmp_affinity_t &affinity) { 4169 KMP_ASSERT(__kmp_affin_fullMask != NULL); 4170 KMP_ASSERT(affinity.type == affinity_none); 4171 affinity.num_masks = 1; 4172 KMP_CPU_ALLOC_ARRAY(affinity.masks, affinity.num_masks); 4173 kmp_affin_mask_t *dest = KMP_CPU_INDEX(affinity.masks, 0); 4174 KMP_CPU_COPY(dest, __kmp_affin_fullMask); 4175 __kmp_affinity_get_topology_info(affinity); 4176 } 4177 4178 static void __kmp_aux_affinity_initialize_masks(kmp_affinity_t &affinity) { 4179 // Create the "full" mask - this defines all of the processors that we 4180 // consider to be in the machine model. If respect is set, then it is the 4181 // initialization thread's affinity mask. Otherwise, it is all processors that 4182 // we know about on the machine. 4183 int verbose = affinity.flags.verbose; 4184 const char *env_var = affinity.env_var; 4185 4186 // Already initialized 4187 if (__kmp_affin_fullMask && __kmp_affin_origMask) 4188 return; 4189 4190 if (__kmp_affin_fullMask == NULL) { 4191 KMP_CPU_ALLOC(__kmp_affin_fullMask); 4192 } 4193 if (__kmp_affin_origMask == NULL) { 4194 KMP_CPU_ALLOC(__kmp_affin_origMask); 4195 } 4196 if (KMP_AFFINITY_CAPABLE()) { 4197 __kmp_get_system_affinity(__kmp_affin_fullMask, TRUE); 4198 // Make a copy before possible expanding to the entire machine mask 4199 __kmp_affin_origMask->copy(__kmp_affin_fullMask); 4200 if (affinity.flags.respect) { 4201 // Count the number of available processors. 4202 unsigned i; 4203 __kmp_avail_proc = 0; 4204 KMP_CPU_SET_ITERATE(i, __kmp_affin_fullMask) { 4205 if (!KMP_CPU_ISSET(i, __kmp_affin_fullMask)) { 4206 continue; 4207 } 4208 __kmp_avail_proc++; 4209 } 4210 if (__kmp_avail_proc > __kmp_xproc) { 4211 KMP_AFF_WARNING(affinity, ErrorInitializeAffinity); 4212 affinity.type = affinity_none; 4213 KMP_AFFINITY_DISABLE(); 4214 return; 4215 } 4216 4217 if (verbose) { 4218 char buf[KMP_AFFIN_MASK_PRINT_LEN]; 4219 __kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN, 4220 __kmp_affin_fullMask); 4221 KMP_INFORM(InitOSProcSetRespect, env_var, buf); 4222 } 4223 } else { 4224 if (verbose) { 4225 char buf[KMP_AFFIN_MASK_PRINT_LEN]; 4226 __kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN, 4227 __kmp_affin_fullMask); 4228 KMP_INFORM(InitOSProcSetNotRespect, env_var, buf); 4229 } 4230 __kmp_avail_proc = 4231 __kmp_affinity_entire_machine_mask(__kmp_affin_fullMask); 4232 #if KMP_OS_WINDOWS 4233 if (__kmp_num_proc_groups <= 1) { 4234 // Copy expanded full mask if topology has single processor group 4235 __kmp_affin_origMask->copy(__kmp_affin_fullMask); 4236 } 4237 // Set the process affinity mask since threads' affinity 4238 // masks must be subset of process mask in Windows* OS 4239 __kmp_affin_fullMask->set_process_affinity(true); 4240 #endif 4241 } 4242 } 4243 } 4244 4245 static bool __kmp_aux_affinity_initialize_topology(kmp_affinity_t &affinity) { 4246 bool success = false; 4247 const char *env_var = affinity.env_var; 4248 kmp_i18n_id_t msg_id = kmp_i18n_null; 4249 int verbose = affinity.flags.verbose; 4250 4251 // For backward compatibility, setting KMP_CPUINFO_FILE => 4252 // KMP_TOPOLOGY_METHOD=cpuinfo 4253 if ((__kmp_cpuinfo_file != NULL) && 4254 (__kmp_affinity_top_method == affinity_top_method_all)) { 4255 __kmp_affinity_top_method = affinity_top_method_cpuinfo; 4256 } 4257 4258 if (__kmp_affinity_top_method == affinity_top_method_all) { 4259 // In the default code path, errors are not fatal - we just try using 4260 // another method. We only emit a warning message if affinity is on, or the 4261 // verbose flag is set, an the nowarnings flag was not set. 4262 #if KMP_USE_HWLOC 4263 if (!success && 4264 __kmp_affinity_dispatch->get_api_type() == KMPAffinity::HWLOC) { 4265 if (!__kmp_hwloc_error) { 4266 success = __kmp_affinity_create_hwloc_map(&msg_id); 4267 if (!success && verbose) { 4268 KMP_INFORM(AffIgnoringHwloc, env_var); 4269 } 4270 } else if (verbose) { 4271 KMP_INFORM(AffIgnoringHwloc, env_var); 4272 } 4273 } 4274 #endif 4275 4276 #if KMP_ARCH_X86 || KMP_ARCH_X86_64 4277 if (!success) { 4278 success = __kmp_affinity_create_x2apicid_map(&msg_id); 4279 if (!success && verbose && msg_id != kmp_i18n_null) { 4280 KMP_INFORM(AffInfoStr, env_var, __kmp_i18n_catgets(msg_id)); 4281 } 4282 } 4283 if (!success) { 4284 success = __kmp_affinity_create_apicid_map(&msg_id); 4285 if (!success && verbose && msg_id != kmp_i18n_null) { 4286 KMP_INFORM(AffInfoStr, env_var, __kmp_i18n_catgets(msg_id)); 4287 } 4288 } 4289 #endif /* KMP_ARCH_X86 || KMP_ARCH_X86_64 */ 4290 4291 #if KMP_OS_LINUX 4292 if (!success) { 4293 int line = 0; 4294 success = __kmp_affinity_create_cpuinfo_map(&line, &msg_id); 4295 if (!success && verbose && msg_id != kmp_i18n_null) { 4296 KMP_INFORM(AffInfoStr, env_var, __kmp_i18n_catgets(msg_id)); 4297 } 4298 } 4299 #endif /* KMP_OS_LINUX */ 4300 4301 #if KMP_GROUP_AFFINITY 4302 if (!success && (__kmp_num_proc_groups > 1)) { 4303 success = __kmp_affinity_create_proc_group_map(&msg_id); 4304 if (!success && verbose && msg_id != kmp_i18n_null) { 4305 KMP_INFORM(AffInfoStr, env_var, __kmp_i18n_catgets(msg_id)); 4306 } 4307 } 4308 #endif /* KMP_GROUP_AFFINITY */ 4309 4310 if (!success) { 4311 success = __kmp_affinity_create_flat_map(&msg_id); 4312 if (!success && verbose && msg_id != kmp_i18n_null) { 4313 KMP_INFORM(AffInfoStr, env_var, __kmp_i18n_catgets(msg_id)); 4314 } 4315 KMP_ASSERT(success); 4316 } 4317 } 4318 4319 // If the user has specified that a paricular topology discovery method is to be 4320 // used, then we abort if that method fails. The exception is group affinity, 4321 // which might have been implicitly set. 4322 #if KMP_USE_HWLOC 4323 else if (__kmp_affinity_top_method == affinity_top_method_hwloc) { 4324 KMP_ASSERT(__kmp_affinity_dispatch->get_api_type() == KMPAffinity::HWLOC); 4325 success = __kmp_affinity_create_hwloc_map(&msg_id); 4326 if (!success) { 4327 KMP_ASSERT(msg_id != kmp_i18n_null); 4328 KMP_FATAL(MsgExiting, __kmp_i18n_catgets(msg_id)); 4329 } 4330 } 4331 #endif // KMP_USE_HWLOC 4332 4333 #if KMP_ARCH_X86 || KMP_ARCH_X86_64 4334 else if (__kmp_affinity_top_method == affinity_top_method_x2apicid || 4335 __kmp_affinity_top_method == affinity_top_method_x2apicid_1f) { 4336 success = __kmp_affinity_create_x2apicid_map(&msg_id); 4337 if (!success) { 4338 KMP_ASSERT(msg_id != kmp_i18n_null); 4339 KMP_FATAL(MsgExiting, __kmp_i18n_catgets(msg_id)); 4340 } 4341 } else if (__kmp_affinity_top_method == affinity_top_method_apicid) { 4342 success = __kmp_affinity_create_apicid_map(&msg_id); 4343 if (!success) { 4344 KMP_ASSERT(msg_id != kmp_i18n_null); 4345 KMP_FATAL(MsgExiting, __kmp_i18n_catgets(msg_id)); 4346 } 4347 } 4348 #endif /* KMP_ARCH_X86 || KMP_ARCH_X86_64 */ 4349 4350 else if (__kmp_affinity_top_method == affinity_top_method_cpuinfo) { 4351 int line = 0; 4352 success = __kmp_affinity_create_cpuinfo_map(&line, &msg_id); 4353 if (!success) { 4354 KMP_ASSERT(msg_id != kmp_i18n_null); 4355 const char *filename = __kmp_cpuinfo_get_filename(); 4356 if (line > 0) { 4357 KMP_FATAL(FileLineMsgExiting, filename, line, 4358 __kmp_i18n_catgets(msg_id)); 4359 } else { 4360 KMP_FATAL(FileMsgExiting, filename, __kmp_i18n_catgets(msg_id)); 4361 } 4362 } 4363 } 4364 4365 #if KMP_GROUP_AFFINITY 4366 else if (__kmp_affinity_top_method == affinity_top_method_group) { 4367 success = __kmp_affinity_create_proc_group_map(&msg_id); 4368 KMP_ASSERT(success); 4369 if (!success) { 4370 KMP_ASSERT(msg_id != kmp_i18n_null); 4371 KMP_FATAL(MsgExiting, __kmp_i18n_catgets(msg_id)); 4372 } 4373 } 4374 #endif /* KMP_GROUP_AFFINITY */ 4375 4376 else if (__kmp_affinity_top_method == affinity_top_method_flat) { 4377 success = __kmp_affinity_create_flat_map(&msg_id); 4378 // should not fail 4379 KMP_ASSERT(success); 4380 } 4381 4382 // Early exit if topology could not be created 4383 if (!__kmp_topology) { 4384 if (KMP_AFFINITY_CAPABLE()) { 4385 KMP_AFF_WARNING(affinity, ErrorInitializeAffinity); 4386 } 4387 if (nPackages > 0 && nCoresPerPkg > 0 && __kmp_nThreadsPerCore > 0 && 4388 __kmp_ncores > 0) { 4389 __kmp_topology = kmp_topology_t::allocate(0, 0, NULL); 4390 __kmp_topology->canonicalize(nPackages, nCoresPerPkg, 4391 __kmp_nThreadsPerCore, __kmp_ncores); 4392 if (verbose) { 4393 __kmp_topology->print(env_var); 4394 } 4395 } 4396 return false; 4397 } 4398 4399 // Canonicalize, print (if requested), apply KMP_HW_SUBSET 4400 __kmp_topology->canonicalize(); 4401 if (verbose) 4402 __kmp_topology->print(env_var); 4403 bool filtered = __kmp_topology->filter_hw_subset(); 4404 if (filtered) { 4405 #if KMP_OS_WINDOWS 4406 // Copy filtered full mask if topology has single processor group 4407 if (__kmp_num_proc_groups <= 1) 4408 #endif 4409 __kmp_affin_origMask->copy(__kmp_affin_fullMask); 4410 } 4411 if (filtered && verbose) 4412 __kmp_topology->print("KMP_HW_SUBSET"); 4413 return success; 4414 } 4415 4416 static void __kmp_aux_affinity_initialize(kmp_affinity_t &affinity) { 4417 bool is_regular_affinity = (&affinity == &__kmp_affinity); 4418 bool is_hidden_helper_affinity = (&affinity == &__kmp_hh_affinity); 4419 const char *env_var = affinity.env_var; 4420 4421 if (affinity.flags.initialized) { 4422 KMP_ASSERT(__kmp_affin_fullMask != NULL); 4423 return; 4424 } 4425 4426 if (is_regular_affinity && (!__kmp_affin_fullMask || !__kmp_affin_origMask)) 4427 __kmp_aux_affinity_initialize_masks(affinity); 4428 4429 if (is_regular_affinity && !__kmp_topology) { 4430 bool success = __kmp_aux_affinity_initialize_topology(affinity); 4431 if (success) { 4432 // Initialize other data structures which depend on the topology 4433 machine_hierarchy.init(__kmp_topology->get_num_hw_threads()); 4434 KMP_ASSERT(__kmp_avail_proc == __kmp_topology->get_num_hw_threads()); 4435 } else { 4436 affinity.type = affinity_none; 4437 KMP_AFFINITY_DISABLE(); 4438 } 4439 } 4440 4441 // If KMP_AFFINITY=none, then only create the single "none" place 4442 // which is the process's initial affinity mask or the number of 4443 // hardware threads depending on respect,norespect 4444 if (affinity.type == affinity_none) { 4445 __kmp_create_affinity_none_places(affinity); 4446 #if KMP_USE_HIER_SCHED 4447 __kmp_dispatch_set_hierarchy_values(); 4448 #endif 4449 affinity.flags.initialized = TRUE; 4450 return; 4451 } 4452 4453 __kmp_topology->set_granularity(affinity); 4454 int depth = __kmp_topology->get_depth(); 4455 4456 // Create the table of masks, indexed by thread Id. 4457 unsigned numUnique; 4458 __kmp_create_os_id_masks(&numUnique, affinity); 4459 if (affinity.gran_levels == 0) { 4460 KMP_DEBUG_ASSERT((int)numUnique == __kmp_avail_proc); 4461 } 4462 4463 switch (affinity.type) { 4464 4465 case affinity_explicit: 4466 KMP_DEBUG_ASSERT(affinity.proclist != NULL); 4467 if (is_hidden_helper_affinity || 4468 __kmp_nested_proc_bind.bind_types[0] == proc_bind_intel) { 4469 __kmp_affinity_process_proclist(affinity); 4470 } else { 4471 __kmp_affinity_process_placelist(affinity); 4472 } 4473 if (affinity.num_masks == 0) { 4474 KMP_AFF_WARNING(affinity, AffNoValidProcID); 4475 affinity.type = affinity_none; 4476 __kmp_create_affinity_none_places(affinity); 4477 affinity.flags.initialized = TRUE; 4478 return; 4479 } 4480 break; 4481 4482 // The other affinity types rely on sorting the hardware threads according to 4483 // some permutation of the machine topology tree. Set affinity.compact 4484 // and affinity.offset appropriately, then jump to a common code 4485 // fragment to do the sort and create the array of affinity masks. 4486 case affinity_logical: 4487 affinity.compact = 0; 4488 if (affinity.offset) { 4489 affinity.offset = 4490 __kmp_nThreadsPerCore * affinity.offset % __kmp_avail_proc; 4491 } 4492 goto sortTopology; 4493 4494 case affinity_physical: 4495 if (__kmp_nThreadsPerCore > 1) { 4496 affinity.compact = 1; 4497 if (affinity.compact >= depth) { 4498 affinity.compact = 0; 4499 } 4500 } else { 4501 affinity.compact = 0; 4502 } 4503 if (affinity.offset) { 4504 affinity.offset = 4505 __kmp_nThreadsPerCore * affinity.offset % __kmp_avail_proc; 4506 } 4507 goto sortTopology; 4508 4509 case affinity_scatter: 4510 if (affinity.compact >= depth) { 4511 affinity.compact = 0; 4512 } else { 4513 affinity.compact = depth - 1 - affinity.compact; 4514 } 4515 goto sortTopology; 4516 4517 case affinity_compact: 4518 if (affinity.compact >= depth) { 4519 affinity.compact = depth - 1; 4520 } 4521 goto sortTopology; 4522 4523 case affinity_balanced: 4524 if (depth <= 1 || is_hidden_helper_affinity) { 4525 KMP_AFF_WARNING(affinity, AffBalancedNotAvail, env_var); 4526 affinity.type = affinity_none; 4527 __kmp_create_affinity_none_places(affinity); 4528 affinity.flags.initialized = TRUE; 4529 return; 4530 } else if (!__kmp_topology->is_uniform()) { 4531 // Save the depth for further usage 4532 __kmp_aff_depth = depth; 4533 4534 int core_level = 4535 __kmp_affinity_find_core_level(__kmp_avail_proc, depth - 1); 4536 int ncores = __kmp_affinity_compute_ncores(__kmp_avail_proc, depth - 1, 4537 core_level); 4538 int maxprocpercore = __kmp_affinity_max_proc_per_core( 4539 __kmp_avail_proc, depth - 1, core_level); 4540 4541 int nproc = ncores * maxprocpercore; 4542 if ((nproc < 2) || (nproc < __kmp_avail_proc)) { 4543 KMP_AFF_WARNING(affinity, AffBalancedNotAvail, env_var); 4544 affinity.type = affinity_none; 4545 __kmp_create_affinity_none_places(affinity); 4546 affinity.flags.initialized = TRUE; 4547 return; 4548 } 4549 4550 procarr = (int *)__kmp_allocate(sizeof(int) * nproc); 4551 for (int i = 0; i < nproc; i++) { 4552 procarr[i] = -1; 4553 } 4554 4555 int lastcore = -1; 4556 int inlastcore = 0; 4557 for (int i = 0; i < __kmp_avail_proc; i++) { 4558 int proc = __kmp_topology->at(i).os_id; 4559 int core = __kmp_affinity_find_core(i, depth - 1, core_level); 4560 4561 if (core == lastcore) { 4562 inlastcore++; 4563 } else { 4564 inlastcore = 0; 4565 } 4566 lastcore = core; 4567 4568 procarr[core * maxprocpercore + inlastcore] = proc; 4569 } 4570 } 4571 if (affinity.compact >= depth) { 4572 affinity.compact = depth - 1; 4573 } 4574 4575 sortTopology: 4576 // Allocate the gtid->affinity mask table. 4577 if (affinity.flags.dups) { 4578 affinity.num_masks = __kmp_avail_proc; 4579 } else { 4580 affinity.num_masks = numUnique; 4581 } 4582 4583 if ((__kmp_nested_proc_bind.bind_types[0] != proc_bind_intel) && 4584 (__kmp_affinity_num_places > 0) && 4585 ((unsigned)__kmp_affinity_num_places < affinity.num_masks) && 4586 !is_hidden_helper_affinity) { 4587 affinity.num_masks = __kmp_affinity_num_places; 4588 } 4589 4590 KMP_CPU_ALLOC_ARRAY(affinity.masks, affinity.num_masks); 4591 4592 // Sort the topology table according to the current setting of 4593 // affinity.compact, then fill out affinity.masks. 4594 __kmp_topology->sort_compact(affinity); 4595 { 4596 int i; 4597 unsigned j; 4598 int num_hw_threads = __kmp_topology->get_num_hw_threads(); 4599 for (i = 0, j = 0; i < num_hw_threads; i++) { 4600 if ((!affinity.flags.dups) && (!__kmp_topology->at(i).leader)) { 4601 continue; 4602 } 4603 int osId = __kmp_topology->at(i).os_id; 4604 4605 kmp_affin_mask_t *src = KMP_CPU_INDEX(affinity.os_id_masks, osId); 4606 kmp_affin_mask_t *dest = KMP_CPU_INDEX(affinity.masks, j); 4607 KMP_ASSERT(KMP_CPU_ISSET(osId, src)); 4608 KMP_CPU_COPY(dest, src); 4609 if (++j >= affinity.num_masks) { 4610 break; 4611 } 4612 } 4613 KMP_DEBUG_ASSERT(j == affinity.num_masks); 4614 } 4615 // Sort the topology back using ids 4616 __kmp_topology->sort_ids(); 4617 break; 4618 4619 default: 4620 KMP_ASSERT2(0, "Unexpected affinity setting"); 4621 } 4622 __kmp_affinity_get_topology_info(affinity); 4623 affinity.flags.initialized = TRUE; 4624 } 4625 4626 void __kmp_affinity_initialize(kmp_affinity_t &affinity) { 4627 // Much of the code above was written assuming that if a machine was not 4628 // affinity capable, then affinity type == affinity_none. 4629 // We now explicitly represent this as affinity type == affinity_disabled. 4630 // There are too many checks for affinity type == affinity_none in this code. 4631 // Instead of trying to change them all, check if 4632 // affinity type == affinity_disabled, and if so, slam it with affinity_none, 4633 // call the real initialization routine, then restore affinity type to 4634 // affinity_disabled. 4635 int disabled = (affinity.type == affinity_disabled); 4636 if (!KMP_AFFINITY_CAPABLE()) 4637 KMP_ASSERT(disabled); 4638 if (disabled) 4639 affinity.type = affinity_none; 4640 __kmp_aux_affinity_initialize(affinity); 4641 if (disabled) 4642 affinity.type = affinity_disabled; 4643 } 4644 4645 void __kmp_affinity_uninitialize(void) { 4646 for (kmp_affinity_t *affinity : __kmp_affinities) { 4647 if (affinity->masks != NULL) 4648 KMP_CPU_FREE_ARRAY(affinity->masks, affinity->num_masks); 4649 if (affinity->os_id_masks != NULL) 4650 KMP_CPU_FREE_ARRAY(affinity->os_id_masks, affinity->num_os_id_masks); 4651 if (affinity->proclist != NULL) 4652 __kmp_free(affinity->proclist); 4653 if (affinity->ids != NULL) 4654 __kmp_free(affinity->ids); 4655 if (affinity->attrs != NULL) 4656 __kmp_free(affinity->attrs); 4657 *affinity = KMP_AFFINITY_INIT(affinity->env_var); 4658 } 4659 if (__kmp_affin_origMask != NULL) { 4660 if (KMP_AFFINITY_CAPABLE()) { 4661 __kmp_set_system_affinity(__kmp_affin_origMask, FALSE); 4662 } 4663 KMP_CPU_FREE(__kmp_affin_origMask); 4664 __kmp_affin_origMask = NULL; 4665 } 4666 __kmp_affinity_num_places = 0; 4667 if (procarr != NULL) { 4668 __kmp_free(procarr); 4669 procarr = NULL; 4670 } 4671 if (__kmp_osid_to_hwthread_map) { 4672 __kmp_free(__kmp_osid_to_hwthread_map); 4673 __kmp_osid_to_hwthread_map = NULL; 4674 } 4675 #if KMP_USE_HWLOC 4676 if (__kmp_hwloc_topology != NULL) { 4677 hwloc_topology_destroy(__kmp_hwloc_topology); 4678 __kmp_hwloc_topology = NULL; 4679 } 4680 #endif 4681 if (__kmp_hw_subset) { 4682 kmp_hw_subset_t::deallocate(__kmp_hw_subset); 4683 __kmp_hw_subset = nullptr; 4684 } 4685 if (__kmp_topology) { 4686 kmp_topology_t::deallocate(__kmp_topology); 4687 __kmp_topology = nullptr; 4688 } 4689 KMPAffinity::destroy_api(); 4690 } 4691 4692 static void __kmp_select_mask_by_gtid(int gtid, const kmp_affinity_t *affinity, 4693 int *place, kmp_affin_mask_t **mask) { 4694 int mask_idx; 4695 bool is_hidden_helper = KMP_HIDDEN_HELPER_THREAD(gtid); 4696 if (is_hidden_helper) 4697 // The first gtid is the regular primary thread, the second gtid is the main 4698 // thread of hidden team which does not participate in task execution. 4699 mask_idx = gtid - 2; 4700 else 4701 mask_idx = __kmp_adjust_gtid_for_hidden_helpers(gtid); 4702 KMP_DEBUG_ASSERT(affinity->num_masks > 0); 4703 *place = (mask_idx + affinity->offset) % affinity->num_masks; 4704 *mask = KMP_CPU_INDEX(affinity->masks, *place); 4705 } 4706 4707 // This function initializes the per-thread data concerning affinity including 4708 // the mask and topology information 4709 void __kmp_affinity_set_init_mask(int gtid, int isa_root) { 4710 4711 kmp_info_t *th = (kmp_info_t *)TCR_SYNC_PTR(__kmp_threads[gtid]); 4712 4713 // Set the thread topology information to default of unknown 4714 for (int id = 0; id < KMP_HW_LAST; ++id) 4715 th->th.th_topology_ids[id] = kmp_hw_thread_t::UNKNOWN_ID; 4716 th->th.th_topology_attrs = KMP_AFFINITY_ATTRS_UNKNOWN; 4717 4718 if (!KMP_AFFINITY_CAPABLE()) { 4719 return; 4720 } 4721 4722 if (th->th.th_affin_mask == NULL) { 4723 KMP_CPU_ALLOC(th->th.th_affin_mask); 4724 } else { 4725 KMP_CPU_ZERO(th->th.th_affin_mask); 4726 } 4727 4728 // Copy the thread mask to the kmp_info_t structure. If 4729 // __kmp_affinity.type == affinity_none, copy the "full" mask, i.e. 4730 // one that has all of the OS proc ids set, or if 4731 // __kmp_affinity.flags.respect is set, then the full mask is the 4732 // same as the mask of the initialization thread. 4733 kmp_affin_mask_t *mask; 4734 int i; 4735 const kmp_affinity_t *affinity; 4736 const char *env_var; 4737 bool is_hidden_helper = KMP_HIDDEN_HELPER_THREAD(gtid); 4738 4739 if (is_hidden_helper) 4740 affinity = &__kmp_hh_affinity; 4741 else 4742 affinity = &__kmp_affinity; 4743 env_var = affinity->env_var; 4744 4745 if (KMP_AFFINITY_NON_PROC_BIND || is_hidden_helper) { 4746 if ((affinity->type == affinity_none) || 4747 (affinity->type == affinity_balanced) || 4748 KMP_HIDDEN_HELPER_MAIN_THREAD(gtid)) { 4749 #if KMP_GROUP_AFFINITY 4750 if (__kmp_num_proc_groups > 1) { 4751 return; 4752 } 4753 #endif 4754 KMP_ASSERT(__kmp_affin_fullMask != NULL); 4755 i = 0; 4756 mask = __kmp_affin_fullMask; 4757 } else { 4758 __kmp_select_mask_by_gtid(gtid, affinity, &i, &mask); 4759 } 4760 } else { 4761 if (!isa_root || __kmp_nested_proc_bind.bind_types[0] == proc_bind_false) { 4762 #if KMP_GROUP_AFFINITY 4763 if (__kmp_num_proc_groups > 1) { 4764 return; 4765 } 4766 #endif 4767 KMP_ASSERT(__kmp_affin_fullMask != NULL); 4768 i = KMP_PLACE_ALL; 4769 mask = __kmp_affin_fullMask; 4770 } else { 4771 __kmp_select_mask_by_gtid(gtid, affinity, &i, &mask); 4772 } 4773 } 4774 4775 th->th.th_current_place = i; 4776 if (isa_root && !is_hidden_helper) { 4777 th->th.th_new_place = i; 4778 th->th.th_first_place = 0; 4779 th->th.th_last_place = affinity->num_masks - 1; 4780 } else if (KMP_AFFINITY_NON_PROC_BIND) { 4781 // When using a Non-OMP_PROC_BIND affinity method, 4782 // set all threads' place-partition-var to the entire place list 4783 th->th.th_first_place = 0; 4784 th->th.th_last_place = affinity->num_masks - 1; 4785 } 4786 // Copy topology information associated with the place 4787 if (i >= 0) { 4788 th->th.th_topology_ids = __kmp_affinity.ids[i]; 4789 th->th.th_topology_attrs = __kmp_affinity.attrs[i]; 4790 } 4791 4792 if (i == KMP_PLACE_ALL) { 4793 KA_TRACE(100, ("__kmp_affinity_set_init_mask: binding T#%d to all places\n", 4794 gtid)); 4795 } else { 4796 KA_TRACE(100, ("__kmp_affinity_set_init_mask: binding T#%d to place %d\n", 4797 gtid, i)); 4798 } 4799 4800 KMP_CPU_COPY(th->th.th_affin_mask, mask); 4801 4802 /* to avoid duplicate printing (will be correctly printed on barrier) */ 4803 if (affinity->flags.verbose && 4804 (affinity->type == affinity_none || 4805 (i != KMP_PLACE_ALL && affinity->type != affinity_balanced)) && 4806 !KMP_HIDDEN_HELPER_MAIN_THREAD(gtid)) { 4807 char buf[KMP_AFFIN_MASK_PRINT_LEN]; 4808 __kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN, 4809 th->th.th_affin_mask); 4810 KMP_INFORM(BoundToOSProcSet, env_var, (kmp_int32)getpid(), __kmp_gettid(), 4811 gtid, buf); 4812 } 4813 4814 #if KMP_OS_WINDOWS 4815 // On Windows* OS, the process affinity mask might have changed. If the user 4816 // didn't request affinity and this call fails, just continue silently. 4817 // See CQ171393. 4818 if (affinity->type == affinity_none) { 4819 __kmp_set_system_affinity(th->th.th_affin_mask, FALSE); 4820 } else 4821 #endif 4822 __kmp_set_system_affinity(th->th.th_affin_mask, TRUE); 4823 } 4824 4825 void __kmp_affinity_set_place(int gtid) { 4826 // Hidden helper threads should not be affected by OMP_PLACES/OMP_PROC_BIND 4827 if (!KMP_AFFINITY_CAPABLE() || KMP_HIDDEN_HELPER_THREAD(gtid)) { 4828 return; 4829 } 4830 4831 kmp_info_t *th = (kmp_info_t *)TCR_SYNC_PTR(__kmp_threads[gtid]); 4832 4833 KA_TRACE(100, ("__kmp_affinity_set_place: binding T#%d to place %d (current " 4834 "place = %d)\n", 4835 gtid, th->th.th_new_place, th->th.th_current_place)); 4836 4837 // Check that the new place is within this thread's partition. 4838 KMP_DEBUG_ASSERT(th->th.th_affin_mask != NULL); 4839 KMP_ASSERT(th->th.th_new_place >= 0); 4840 KMP_ASSERT((unsigned)th->th.th_new_place <= __kmp_affinity.num_masks); 4841 if (th->th.th_first_place <= th->th.th_last_place) { 4842 KMP_ASSERT((th->th.th_new_place >= th->th.th_first_place) && 4843 (th->th.th_new_place <= th->th.th_last_place)); 4844 } else { 4845 KMP_ASSERT((th->th.th_new_place <= th->th.th_first_place) || 4846 (th->th.th_new_place >= th->th.th_last_place)); 4847 } 4848 4849 // Copy the thread mask to the kmp_info_t structure, 4850 // and set this thread's affinity. 4851 kmp_affin_mask_t *mask = 4852 KMP_CPU_INDEX(__kmp_affinity.masks, th->th.th_new_place); 4853 KMP_CPU_COPY(th->th.th_affin_mask, mask); 4854 th->th.th_current_place = th->th.th_new_place; 4855 // Copy topology information associated with the place 4856 th->th.th_topology_ids = __kmp_affinity.ids[th->th.th_new_place]; 4857 th->th.th_topology_attrs = __kmp_affinity.attrs[th->th.th_new_place]; 4858 4859 if (__kmp_affinity.flags.verbose) { 4860 char buf[KMP_AFFIN_MASK_PRINT_LEN]; 4861 __kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN, 4862 th->th.th_affin_mask); 4863 KMP_INFORM(BoundToOSProcSet, "OMP_PROC_BIND", (kmp_int32)getpid(), 4864 __kmp_gettid(), gtid, buf); 4865 } 4866 __kmp_set_system_affinity(th->th.th_affin_mask, TRUE); 4867 } 4868 4869 int __kmp_aux_set_affinity(void **mask) { 4870 int gtid; 4871 kmp_info_t *th; 4872 int retval; 4873 4874 if (!KMP_AFFINITY_CAPABLE()) { 4875 return -1; 4876 } 4877 4878 gtid = __kmp_entry_gtid(); 4879 KA_TRACE( 4880 1000, (""); { 4881 char buf[KMP_AFFIN_MASK_PRINT_LEN]; 4882 __kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN, 4883 (kmp_affin_mask_t *)(*mask)); 4884 __kmp_debug_printf( 4885 "kmp_set_affinity: setting affinity mask for thread %d = %s\n", 4886 gtid, buf); 4887 }); 4888 4889 if (__kmp_env_consistency_check) { 4890 if ((mask == NULL) || (*mask == NULL)) { 4891 KMP_FATAL(AffinityInvalidMask, "kmp_set_affinity"); 4892 } else { 4893 unsigned proc; 4894 int num_procs = 0; 4895 4896 KMP_CPU_SET_ITERATE(proc, ((kmp_affin_mask_t *)(*mask))) { 4897 if (!KMP_CPU_ISSET(proc, __kmp_affin_fullMask)) { 4898 KMP_FATAL(AffinityInvalidMask, "kmp_set_affinity"); 4899 } 4900 if (!KMP_CPU_ISSET(proc, (kmp_affin_mask_t *)(*mask))) { 4901 continue; 4902 } 4903 num_procs++; 4904 } 4905 if (num_procs == 0) { 4906 KMP_FATAL(AffinityInvalidMask, "kmp_set_affinity"); 4907 } 4908 4909 #if KMP_GROUP_AFFINITY 4910 if (__kmp_get_proc_group((kmp_affin_mask_t *)(*mask)) < 0) { 4911 KMP_FATAL(AffinityInvalidMask, "kmp_set_affinity"); 4912 } 4913 #endif /* KMP_GROUP_AFFINITY */ 4914 } 4915 } 4916 4917 th = __kmp_threads[gtid]; 4918 KMP_DEBUG_ASSERT(th->th.th_affin_mask != NULL); 4919 retval = __kmp_set_system_affinity((kmp_affin_mask_t *)(*mask), FALSE); 4920 if (retval == 0) { 4921 KMP_CPU_COPY(th->th.th_affin_mask, (kmp_affin_mask_t *)(*mask)); 4922 } 4923 4924 th->th.th_current_place = KMP_PLACE_UNDEFINED; 4925 th->th.th_new_place = KMP_PLACE_UNDEFINED; 4926 th->th.th_first_place = 0; 4927 th->th.th_last_place = __kmp_affinity.num_masks - 1; 4928 4929 // Turn off 4.0 affinity for the current tread at this parallel level. 4930 th->th.th_current_task->td_icvs.proc_bind = proc_bind_false; 4931 4932 return retval; 4933 } 4934 4935 int __kmp_aux_get_affinity(void **mask) { 4936 int gtid; 4937 int retval; 4938 #if KMP_OS_WINDOWS || KMP_DEBUG 4939 kmp_info_t *th; 4940 #endif 4941 if (!KMP_AFFINITY_CAPABLE()) { 4942 return -1; 4943 } 4944 4945 gtid = __kmp_entry_gtid(); 4946 #if KMP_OS_WINDOWS || KMP_DEBUG 4947 th = __kmp_threads[gtid]; 4948 #else 4949 (void)gtid; // unused variable 4950 #endif 4951 KMP_DEBUG_ASSERT(th->th.th_affin_mask != NULL); 4952 4953 KA_TRACE( 4954 1000, (""); { 4955 char buf[KMP_AFFIN_MASK_PRINT_LEN]; 4956 __kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN, 4957 th->th.th_affin_mask); 4958 __kmp_printf( 4959 "kmp_get_affinity: stored affinity mask for thread %d = %s\n", gtid, 4960 buf); 4961 }); 4962 4963 if (__kmp_env_consistency_check) { 4964 if ((mask == NULL) || (*mask == NULL)) { 4965 KMP_FATAL(AffinityInvalidMask, "kmp_get_affinity"); 4966 } 4967 } 4968 4969 #if !KMP_OS_WINDOWS 4970 4971 retval = __kmp_get_system_affinity((kmp_affin_mask_t *)(*mask), FALSE); 4972 KA_TRACE( 4973 1000, (""); { 4974 char buf[KMP_AFFIN_MASK_PRINT_LEN]; 4975 __kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN, 4976 (kmp_affin_mask_t *)(*mask)); 4977 __kmp_printf( 4978 "kmp_get_affinity: system affinity mask for thread %d = %s\n", gtid, 4979 buf); 4980 }); 4981 return retval; 4982 4983 #else 4984 (void)retval; 4985 4986 KMP_CPU_COPY((kmp_affin_mask_t *)(*mask), th->th.th_affin_mask); 4987 return 0; 4988 4989 #endif /* KMP_OS_WINDOWS */ 4990 } 4991 4992 int __kmp_aux_get_affinity_max_proc() { 4993 if (!KMP_AFFINITY_CAPABLE()) { 4994 return 0; 4995 } 4996 #if KMP_GROUP_AFFINITY 4997 if (__kmp_num_proc_groups > 1) { 4998 return (int)(__kmp_num_proc_groups * sizeof(DWORD_PTR) * CHAR_BIT); 4999 } 5000 #endif 5001 return __kmp_xproc; 5002 } 5003 5004 int __kmp_aux_set_affinity_mask_proc(int proc, void **mask) { 5005 if (!KMP_AFFINITY_CAPABLE()) { 5006 return -1; 5007 } 5008 5009 KA_TRACE( 5010 1000, (""); { 5011 int gtid = __kmp_entry_gtid(); 5012 char buf[KMP_AFFIN_MASK_PRINT_LEN]; 5013 __kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN, 5014 (kmp_affin_mask_t *)(*mask)); 5015 __kmp_debug_printf("kmp_set_affinity_mask_proc: setting proc %d in " 5016 "affinity mask for thread %d = %s\n", 5017 proc, gtid, buf); 5018 }); 5019 5020 if (__kmp_env_consistency_check) { 5021 if ((mask == NULL) || (*mask == NULL)) { 5022 KMP_FATAL(AffinityInvalidMask, "kmp_set_affinity_mask_proc"); 5023 } 5024 } 5025 5026 if ((proc < 0) || (proc >= __kmp_aux_get_affinity_max_proc())) { 5027 return -1; 5028 } 5029 if (!KMP_CPU_ISSET(proc, __kmp_affin_fullMask)) { 5030 return -2; 5031 } 5032 5033 KMP_CPU_SET(proc, (kmp_affin_mask_t *)(*mask)); 5034 return 0; 5035 } 5036 5037 int __kmp_aux_unset_affinity_mask_proc(int proc, void **mask) { 5038 if (!KMP_AFFINITY_CAPABLE()) { 5039 return -1; 5040 } 5041 5042 KA_TRACE( 5043 1000, (""); { 5044 int gtid = __kmp_entry_gtid(); 5045 char buf[KMP_AFFIN_MASK_PRINT_LEN]; 5046 __kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN, 5047 (kmp_affin_mask_t *)(*mask)); 5048 __kmp_debug_printf("kmp_unset_affinity_mask_proc: unsetting proc %d in " 5049 "affinity mask for thread %d = %s\n", 5050 proc, gtid, buf); 5051 }); 5052 5053 if (__kmp_env_consistency_check) { 5054 if ((mask == NULL) || (*mask == NULL)) { 5055 KMP_FATAL(AffinityInvalidMask, "kmp_unset_affinity_mask_proc"); 5056 } 5057 } 5058 5059 if ((proc < 0) || (proc >= __kmp_aux_get_affinity_max_proc())) { 5060 return -1; 5061 } 5062 if (!KMP_CPU_ISSET(proc, __kmp_affin_fullMask)) { 5063 return -2; 5064 } 5065 5066 KMP_CPU_CLR(proc, (kmp_affin_mask_t *)(*mask)); 5067 return 0; 5068 } 5069 5070 int __kmp_aux_get_affinity_mask_proc(int proc, void **mask) { 5071 if (!KMP_AFFINITY_CAPABLE()) { 5072 return -1; 5073 } 5074 5075 KA_TRACE( 5076 1000, (""); { 5077 int gtid = __kmp_entry_gtid(); 5078 char buf[KMP_AFFIN_MASK_PRINT_LEN]; 5079 __kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN, 5080 (kmp_affin_mask_t *)(*mask)); 5081 __kmp_debug_printf("kmp_get_affinity_mask_proc: getting proc %d in " 5082 "affinity mask for thread %d = %s\n", 5083 proc, gtid, buf); 5084 }); 5085 5086 if (__kmp_env_consistency_check) { 5087 if ((mask == NULL) || (*mask == NULL)) { 5088 KMP_FATAL(AffinityInvalidMask, "kmp_get_affinity_mask_proc"); 5089 } 5090 } 5091 5092 if ((proc < 0) || (proc >= __kmp_aux_get_affinity_max_proc())) { 5093 return -1; 5094 } 5095 if (!KMP_CPU_ISSET(proc, __kmp_affin_fullMask)) { 5096 return 0; 5097 } 5098 5099 return KMP_CPU_ISSET(proc, (kmp_affin_mask_t *)(*mask)); 5100 } 5101 5102 // Dynamic affinity settings - Affinity balanced 5103 void __kmp_balanced_affinity(kmp_info_t *th, int nthreads) { 5104 KMP_DEBUG_ASSERT(th); 5105 bool fine_gran = true; 5106 int tid = th->th.th_info.ds.ds_tid; 5107 const char *env_var = "KMP_AFFINITY"; 5108 5109 // Do not perform balanced affinity for the hidden helper threads 5110 if (KMP_HIDDEN_HELPER_THREAD(__kmp_gtid_from_thread(th))) 5111 return; 5112 5113 switch (__kmp_affinity.gran) { 5114 case KMP_HW_THREAD: 5115 break; 5116 case KMP_HW_CORE: 5117 if (__kmp_nThreadsPerCore > 1) { 5118 fine_gran = false; 5119 } 5120 break; 5121 case KMP_HW_SOCKET: 5122 if (nCoresPerPkg > 1) { 5123 fine_gran = false; 5124 } 5125 break; 5126 default: 5127 fine_gran = false; 5128 } 5129 5130 if (__kmp_topology->is_uniform()) { 5131 int coreID; 5132 int threadID; 5133 // Number of hyper threads per core in HT machine 5134 int __kmp_nth_per_core = __kmp_avail_proc / __kmp_ncores; 5135 // Number of cores 5136 int ncores = __kmp_ncores; 5137 if ((nPackages > 1) && (__kmp_nth_per_core <= 1)) { 5138 __kmp_nth_per_core = __kmp_avail_proc / nPackages; 5139 ncores = nPackages; 5140 } 5141 // How many threads will be bound to each core 5142 int chunk = nthreads / ncores; 5143 // How many cores will have an additional thread bound to it - "big cores" 5144 int big_cores = nthreads % ncores; 5145 // Number of threads on the big cores 5146 int big_nth = (chunk + 1) * big_cores; 5147 if (tid < big_nth) { 5148 coreID = tid / (chunk + 1); 5149 threadID = (tid % (chunk + 1)) % __kmp_nth_per_core; 5150 } else { // tid >= big_nth 5151 coreID = (tid - big_cores) / chunk; 5152 threadID = ((tid - big_cores) % chunk) % __kmp_nth_per_core; 5153 } 5154 KMP_DEBUG_ASSERT2(KMP_AFFINITY_CAPABLE(), 5155 "Illegal set affinity operation when not capable"); 5156 5157 kmp_affin_mask_t *mask = th->th.th_affin_mask; 5158 KMP_CPU_ZERO(mask); 5159 5160 if (fine_gran) { 5161 int osID = 5162 __kmp_topology->at(coreID * __kmp_nth_per_core + threadID).os_id; 5163 KMP_CPU_SET(osID, mask); 5164 } else { 5165 for (int i = 0; i < __kmp_nth_per_core; i++) { 5166 int osID; 5167 osID = __kmp_topology->at(coreID * __kmp_nth_per_core + i).os_id; 5168 KMP_CPU_SET(osID, mask); 5169 } 5170 } 5171 if (__kmp_affinity.flags.verbose) { 5172 char buf[KMP_AFFIN_MASK_PRINT_LEN]; 5173 __kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN, mask); 5174 KMP_INFORM(BoundToOSProcSet, env_var, (kmp_int32)getpid(), __kmp_gettid(), 5175 tid, buf); 5176 } 5177 __kmp_affinity_get_thread_topology_info(th); 5178 __kmp_set_system_affinity(mask, TRUE); 5179 } else { // Non-uniform topology 5180 5181 kmp_affin_mask_t *mask = th->th.th_affin_mask; 5182 KMP_CPU_ZERO(mask); 5183 5184 int core_level = 5185 __kmp_affinity_find_core_level(__kmp_avail_proc, __kmp_aff_depth - 1); 5186 int ncores = __kmp_affinity_compute_ncores(__kmp_avail_proc, 5187 __kmp_aff_depth - 1, core_level); 5188 int nth_per_core = __kmp_affinity_max_proc_per_core( 5189 __kmp_avail_proc, __kmp_aff_depth - 1, core_level); 5190 5191 // For performance gain consider the special case nthreads == 5192 // __kmp_avail_proc 5193 if (nthreads == __kmp_avail_proc) { 5194 if (fine_gran) { 5195 int osID = __kmp_topology->at(tid).os_id; 5196 KMP_CPU_SET(osID, mask); 5197 } else { 5198 int core = 5199 __kmp_affinity_find_core(tid, __kmp_aff_depth - 1, core_level); 5200 for (int i = 0; i < __kmp_avail_proc; i++) { 5201 int osID = __kmp_topology->at(i).os_id; 5202 if (__kmp_affinity_find_core(i, __kmp_aff_depth - 1, core_level) == 5203 core) { 5204 KMP_CPU_SET(osID, mask); 5205 } 5206 } 5207 } 5208 } else if (nthreads <= ncores) { 5209 5210 int core = 0; 5211 for (int i = 0; i < ncores; i++) { 5212 // Check if this core from procarr[] is in the mask 5213 int in_mask = 0; 5214 for (int j = 0; j < nth_per_core; j++) { 5215 if (procarr[i * nth_per_core + j] != -1) { 5216 in_mask = 1; 5217 break; 5218 } 5219 } 5220 if (in_mask) { 5221 if (tid == core) { 5222 for (int j = 0; j < nth_per_core; j++) { 5223 int osID = procarr[i * nth_per_core + j]; 5224 if (osID != -1) { 5225 KMP_CPU_SET(osID, mask); 5226 // For fine granularity it is enough to set the first available 5227 // osID for this core 5228 if (fine_gran) { 5229 break; 5230 } 5231 } 5232 } 5233 break; 5234 } else { 5235 core++; 5236 } 5237 } 5238 } 5239 } else { // nthreads > ncores 5240 // Array to save the number of processors at each core 5241 int *nproc_at_core = (int *)KMP_ALLOCA(sizeof(int) * ncores); 5242 // Array to save the number of cores with "x" available processors; 5243 int *ncores_with_x_procs = 5244 (int *)KMP_ALLOCA(sizeof(int) * (nth_per_core + 1)); 5245 // Array to save the number of cores with # procs from x to nth_per_core 5246 int *ncores_with_x_to_max_procs = 5247 (int *)KMP_ALLOCA(sizeof(int) * (nth_per_core + 1)); 5248 5249 for (int i = 0; i <= nth_per_core; i++) { 5250 ncores_with_x_procs[i] = 0; 5251 ncores_with_x_to_max_procs[i] = 0; 5252 } 5253 5254 for (int i = 0; i < ncores; i++) { 5255 int cnt = 0; 5256 for (int j = 0; j < nth_per_core; j++) { 5257 if (procarr[i * nth_per_core + j] != -1) { 5258 cnt++; 5259 } 5260 } 5261 nproc_at_core[i] = cnt; 5262 ncores_with_x_procs[cnt]++; 5263 } 5264 5265 for (int i = 0; i <= nth_per_core; i++) { 5266 for (int j = i; j <= nth_per_core; j++) { 5267 ncores_with_x_to_max_procs[i] += ncores_with_x_procs[j]; 5268 } 5269 } 5270 5271 // Max number of processors 5272 int nproc = nth_per_core * ncores; 5273 // An array to keep number of threads per each context 5274 int *newarr = (int *)__kmp_allocate(sizeof(int) * nproc); 5275 for (int i = 0; i < nproc; i++) { 5276 newarr[i] = 0; 5277 } 5278 5279 int nth = nthreads; 5280 int flag = 0; 5281 while (nth > 0) { 5282 for (int j = 1; j <= nth_per_core; j++) { 5283 int cnt = ncores_with_x_to_max_procs[j]; 5284 for (int i = 0; i < ncores; i++) { 5285 // Skip the core with 0 processors 5286 if (nproc_at_core[i] == 0) { 5287 continue; 5288 } 5289 for (int k = 0; k < nth_per_core; k++) { 5290 if (procarr[i * nth_per_core + k] != -1) { 5291 if (newarr[i * nth_per_core + k] == 0) { 5292 newarr[i * nth_per_core + k] = 1; 5293 cnt--; 5294 nth--; 5295 break; 5296 } else { 5297 if (flag != 0) { 5298 newarr[i * nth_per_core + k]++; 5299 cnt--; 5300 nth--; 5301 break; 5302 } 5303 } 5304 } 5305 } 5306 if (cnt == 0 || nth == 0) { 5307 break; 5308 } 5309 } 5310 if (nth == 0) { 5311 break; 5312 } 5313 } 5314 flag = 1; 5315 } 5316 int sum = 0; 5317 for (int i = 0; i < nproc; i++) { 5318 sum += newarr[i]; 5319 if (sum > tid) { 5320 if (fine_gran) { 5321 int osID = procarr[i]; 5322 KMP_CPU_SET(osID, mask); 5323 } else { 5324 int coreID = i / nth_per_core; 5325 for (int ii = 0; ii < nth_per_core; ii++) { 5326 int osID = procarr[coreID * nth_per_core + ii]; 5327 if (osID != -1) { 5328 KMP_CPU_SET(osID, mask); 5329 } 5330 } 5331 } 5332 break; 5333 } 5334 } 5335 __kmp_free(newarr); 5336 } 5337 5338 if (__kmp_affinity.flags.verbose) { 5339 char buf[KMP_AFFIN_MASK_PRINT_LEN]; 5340 __kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN, mask); 5341 KMP_INFORM(BoundToOSProcSet, env_var, (kmp_int32)getpid(), __kmp_gettid(), 5342 tid, buf); 5343 } 5344 __kmp_affinity_get_thread_topology_info(th); 5345 __kmp_set_system_affinity(mask, TRUE); 5346 } 5347 } 5348 5349 #if KMP_OS_LINUX || KMP_OS_FREEBSD 5350 // We don't need this entry for Windows because 5351 // there is GetProcessAffinityMask() api 5352 // 5353 // The intended usage is indicated by these steps: 5354 // 1) The user gets the current affinity mask 5355 // 2) Then sets the affinity by calling this function 5356 // 3) Error check the return value 5357 // 4) Use non-OpenMP parallelization 5358 // 5) Reset the affinity to what was stored in step 1) 5359 #ifdef __cplusplus 5360 extern "C" 5361 #endif 5362 int 5363 kmp_set_thread_affinity_mask_initial() 5364 // the function returns 0 on success, 5365 // -1 if we cannot bind thread 5366 // >0 (errno) if an error happened during binding 5367 { 5368 int gtid = __kmp_get_gtid(); 5369 if (gtid < 0) { 5370 // Do not touch non-omp threads 5371 KA_TRACE(30, ("kmp_set_thread_affinity_mask_initial: " 5372 "non-omp thread, returning\n")); 5373 return -1; 5374 } 5375 if (!KMP_AFFINITY_CAPABLE() || !__kmp_init_middle) { 5376 KA_TRACE(30, ("kmp_set_thread_affinity_mask_initial: " 5377 "affinity not initialized, returning\n")); 5378 return -1; 5379 } 5380 KA_TRACE(30, ("kmp_set_thread_affinity_mask_initial: " 5381 "set full mask for thread %d\n", 5382 gtid)); 5383 KMP_DEBUG_ASSERT(__kmp_affin_fullMask != NULL); 5384 return __kmp_set_system_affinity(__kmp_affin_fullMask, FALSE); 5385 } 5386 #endif 5387 5388 #endif // KMP_AFFINITY_SUPPORTED 5389